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Living cells communicate with their external environment, by means of a biochemical architecture known as signal transduction network, which allows them to interpret physical and chemical signals and produce appropriate responses. This complex machinery is indeed orchestrated by signaling cascades, which play the role of intracellular transmitters, by transferring biochemical stimuli between cellular membrane and nucleus. It has been shown that a perturbation can propagate upstream (and not only downstream) a cascade, through a phenomenon called retroactivity. Our investigation aims to compare the biochemical conditions which promote one and/or the other direction of signaling in linear cascades. By means of analytical and numerical approaches, we have answered to this question, by characterizing the arising different signaling regimes, and we have designed a compact graphical representation to relay the gist of such conditions. We have also developed the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade, at steady state. Such sequences correspond to pieces of orbits of a two-dimensional discrete dynamical system. From the study of the possible phase portraits, as a function of the biochemical parameters, we focused on the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations. We have deduced a classification of the cascade tiers into three main types, whose biological impact within a signaling network has been examined, especially for homogeneous parameters. This method also provided global insights about the interplay between forward and retroactive signaling, and how signal is amplified along the cascade activation profile.
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Introduction

Sujet de la Thèse

La recherche présentée dans cette Thèse porte sur les unités de base du mécanisme de transduction du signal: les cascades intracellulaires de signalisation. De tels systèmes consistent en des modifications de protéines via des réactions enzymatiques successives, activées par un signal d'entrée biochimique, e.g. un facteur de croissance, qui se lie à un récepteur cellulaire spécifique. Ces modifications posttranscriptionnel contrôlent et réglementent les activités cellulaires essentielles, telles que la croissance, la différenciation, la survie, et d'autres processus de prise de décision. Leur déregulation est associée à une variété de maladies, y compris le cancer. Dans ce cas, une stratégie bien connue est l'inhibition ciblée d'une protéine de la cascade par un médicament, dont la fonction est de se lier et de séquestrer une partie de cette protéine pour réduire la prolifération cellulaire incontrôlée (réponse en aval à des facteurs de croissance). L'interférence des médicaments se traduit généralement par une modification de l'équilibre de l'ensemble de la cascade, étant donné que la perturbation peut affecter à la fois les protéines qui suivent et qui précèdent la protéines séquestrée (respectivement en aval et en amont de la propagation). Ce travail a été centré sur l'étude des cascades de signalisation en tant qu'émetteurs bidirectionnels. Selon leurs propriétés cinétiques (basées sur des concepts de saturation d'enzymes, séquestration de protéines, et affinité de liaison), telle recherche a particulièrement mis l'accent sur le phénomène de la signalisation rétroactive (i.e. en amont), comme conséquence du câblage des modules impliqués dans la transduction du signal.

Plan de la Thèse

La présente Thèse est organisée en trois parties principales. Dans la première partie, le Chapitre 2 vise à présenter le cadre transdisciplinaire dans lequel notre recherche est inscrite. Tout d'abord, en délimitant le contexte biologique de la signalisation cellulaire, en se concentrant sur le système des cascades de signalisation. Ensuite, en introduisant cetains concepts mathématiques fondamentaux, sur lesquels repose la modélisation en biologie des systèmes. Enfin, en examinant les propriétés fondamentales de la modularité, la rétroactivité, et l'ultrasensitivité, dans les cascades de signalisation intracellulaires.

La deuxième partie est composée de nos principales contributions à la recherche précédente. Le Chapitre 3 dévéloppe la partie analytique sur laquelle notre investigation se fonde et prend forme: principalement le modèle biochimique, et le système d'équations à l'état stationnaire régies par une fonction itérative, qui sera utilisé pour obtenir des fonctions de réponse à des stimuli distincts (en haut et au fond, d'une cascade linéaire). L'approche analytique concernera essentiellement des cascades avec mêmes paramètres pour chaque niveau (cascades homogènes), mais avec x longueur arbitraire. Dans ce sens, nous allons définir la fonction de dose-réponse et de drogue-réponse. En particulier, nous allons établir des conditions paramètriques pour optimiser la dose-réponse, c'est-à-dire entraînant une signalisation en avant efficace. La signalisation en arrière, ou rétroactivité, sera discutée dans un contexte plus général faisant référence aux équations sous-jacentes à la modélisation d'un système biochimique. Cette approche permettra de distinguer les systèmes entre ceux qui sont dépédants et ceux qui sont indépéndants de la rétroactivité, et nous soulignerons l'origine de la rétroactivité d'un point de vue mathématique. Le Chapitre 4 dévéloppe l'analyse numérique que nous allons méner pour explorer les paramètres associés aux régimes de signalisation (propagation vers l'avant et/ou l'arrière) de cascades inhmogènes de longueur trois. La signalisation en avant sera analysée à partir de la variation de la dose-réponse de la troisième protéine active; tandis que la rétroactivité sera étudiée à partir de la variation des drogue-réponses des protéines actives du premier et du second niveau. L'espace des paramètres sera classé selon différents régimes de signalisation, en tenant compte de la propagation vers l'avant et/ou vers l'arrière. La transmission combinée de stimuli en amont et en aval sera davantage discutée dans le Chapitre 5, grâce à une approche de systèmes dynamiques discrèts. Il fournira un cadre global dans lequel analyser la façon de traiter un signal le long d'une cascade.

La troisième partie présente des perspectives de recherche en cours et à venir, dans le Chapitre 6. Ensuite, le Chapitre 7 tire les conclusions au sujet de l'étude de la retroactivité discuté dans cette Thèse.

Contenu

Cascades de signalisation intracellulaire

Transduction du signal cellulaire Chaque cellule est un système de régulation d'entrée-sortie, qui surveille constamment son environnement intra-et extracellulaire pour traiter les informations qu'elle recueille, pour y répondre convenablement. Pour tout organisme, dès unicellulaires jusqu'aux pluricellulaires, le noyau de ces communications se base sur des signaux chimiques qui voyagent à travers l'organisme, ou dans la cellule, pour atteindre des cibles spécifiques (e.g des récepteurs) afin d'induire des réponses cellulaires claires et efficaces. Cette complexe machinerie, connue sous le nom de réseau de transduction du signal, est régulée par des protéines soumises à des changements réversibles d'état successifs (activation et inactivation) qui transmettent une impulsion. Un tel procédé est généralement rapide, et peut durer des millisecondes en cas de flux d'ions, des minutes pour l'activation de cascades de kinases, et des heures ou des jours pour l'expression de gènes [url]. Contrairement aux voies métaboliques, la transduction du signal ne comporte pas de composés de carbone (pour stocker l'énergie sous la forme de biomolécules), mais elle déclenche des processus cellulaires à travers une série d'étapes enzymatiques, tels que: la transcription des gènes, la sécrétion, la motilité, la prolifération, la différenciation, les réponses au stress (comme l'inflammation et la réponse immunitaire), ou l'apoptose [?].

Remarquablement, seulement dix-sept voies de signalisation semblent être impliqués dans la transduction chez les eucaryotes, et responsables du développement des animaux, du stade embryonnaire à la physiologie des adultes [Gerhart 1999]; chacune d'elles étant distinguée par son ensemble d'éléments régulateurs. Cependant, différentes voies partagent généralement plusieurs composantes, ce qui souligne la structure à réseau sous-jacent les voies de signalisation dans les systèmes vivants. La combinaison de plusieurs mécanismes -tels que les interactions de type crosstalk, les feedbacks ou boucles de rétroaction, la modulation de l'intensité du signal, la cinétique ligand-récepteur, les échafaudages, la compartimentation, et la translocation -caractérisent les réponses cellulaires selon trois propriétés: la spécificité, la flexibilité et la robustesse [Pires-daSilva 2003]. Plus en détail, la transduction du signal est initiée par un ligand extracellulaire (e.g. facteurs de croissance, hormones, facteurs de stress cellulaires) se liant à un récepteur transmembranaire. Ce dernier provoque la première d'une série de modifications transitoires switch-like (on/off) à l'intérieur de la cellule impliquant des protéines en tant qu'intermédiaires dans le flux de propagation du signal le long de la voie. Chaque intermédiaire modifie en fait la protéine suivante, souvent par phosphorylation (i.e. via le transfert covalent d'un groupe phosphate à partir d'une molécule d'ATP à une protéine cible), et progressivement il récupère son état initial (e.g. inactif) jusqu'à la modification suivante, due à un nouveau stimulus. Le xii dernier élément de la voie de signalisation, conduit à l'activation ou la répression d'un processus spécifique, par la modification d'une protéine cible. Ce processus constitue la réponse de la cellule au signal d'entrée.

Historiquement, l'étude de la transduction du signal a parcourue plusieurs étapes avant d'aboutir à la modélisation mathématique. En fait, à partir des années 1930, le développement de la biologie moléculaire a favorisé la recherche dans différents domaines comme la génétique, l'oncologie, l'évolution et le développement animal, la biologie synthétique, etc. Tous ces domaines ont à la base le même mécanisme: la régulation cellulaire à travers les voies de signalisation.

Afin d'étudier la transduction, une approche de type modélisation mathématique des systèmes biomoléculaires s'est diffusée. Une des difficultés principales de cette approche est celle de décider quels éléments sont essentiels et quel est le type d'interaction parmi eux. En conséquence, on y retrouve, aux deux extrêmes, les modèles très détaillées et les modèles minimalistes. Dans les deux cas, le modèle mathématique résultant, consistant en un ensemble d'équations différentielles (DEs), décrit l'évolution du système au fil du temps, ce qui représente la variation de chaque concentration d'espèces moléculaires (ou variable d'état), selon certaines lois physiques ou chimiques (très souvent la loi d'action de masse). La plupart des fois, comme les processus cellulaires suivent des relations non linéaires, on n'a pas de solutions exactes des DEs, alors on se sert des simulations numériques (expériences in silico) pour étudier la relation entre la dynamique et la structure du système.

Dysfonctions et maladies Les cascades de signalisation sont à la base de la transduction cellulaire, et ainsi régulent et contribuent au bon fonctionnement de l'organisme entier. Impliquées dans nombreux processus de prise de décision, la dérégulation des cascades de signalisation peut avoir des répercussions importantes et en fait être à l'origine d'une très longue liste de maladies, comme le cancer, le diabète, les maladies neurodégénératives (e.g. la maladie d'Alzheimer et de Parkinson), le syndrome de Down, les maladies inflammatoires et auto-immunes, ou l'ostéoporose (voir e.g. [Coulthard 2009], [Kim 2010], [Li 2012a]). Ce sujet a incité le développement de thérapies ciblée basées sur des traitements médicamenteux pour réguler la réponse cellulaire anormale (voir [Cohen 2002] pour une revue). Toutefois, il se peut que une thérapie efficace ne soit pas dépourvue de conséquences. Les effets secondaires se produisent, en raison de l'interdépendance de chaque élément de signalisation [Wynn 2011]. La manière dans laquelle les voies de signalisation sont affectées par l'administration de médicaments, est un sujet d'étude important [Berg 2005] en vue de l'optimisation des effets thérapeutiques et au détriment des effets secondaires [Csermely 2013]. Dans le traitement du cancer, une technique classique appliquée aux cascades, e.g. MAPK, est l'inhibition de kinase [O' Shaughnessy 2011, Coulthard 2009]. Le contrôle de la prolifération anormale des cellules se fait par l'interférence d'un médicament (qu'on appellera drogue plus loin) avec une protéine de la cascade (par séquestration), de sorte que la réponse xiii cellulaire mitotique induite par cette protéine soit réduite. La séquestration de la protéine par la drogue joue un rôle clé dans le traitement du signal et peut modifier considérablement le comportement de la cascade de signalisation, mettant en évidence une propriété intrinsèque, appelée rétroactivité, caractérisée par un signal qui remonte la cascade. Cependant, ce phénomène peut également survenir sans ajout d'une perturbation externe et peut être caractéristique de la cinétique de la cascade (ses paramètres biochimiques, tels que les taux de réaction ou une affinité de liaison) et la structure de la cascade avec son degré de modularité (discuté plus loin).

Modélisation de réseaux biomoléculaires De célèbres travaux, piliers dans la modélisation de cascades de signalisation, sont: la loi cinétique de Michaelis et Menten (1913), et le cycle de modification covalente de Goldbeter et Koshland, GK (1981). Les modèles de cascades peuvent être classés en deux catégories d'équations:

dx i dt
" f px i´1 , x i q, i " 1, 2, . . . , n et dx i dt " f px i´1 , x i , x i`1 q, i " 1, 2, . . . , n .

A la première classe appartiennent e.g. les modèles type GK [Ventura 2008, Li 2012b] et le modèle à vitesses de réaction linéaires [Heinrich 2002, Chaves 2004, Beguerisse-Díaz 2016]; tandis que le modèle mécanistique réduit [Ventura 2008] fait partie de la deuxième classe d'équations. En particulier, cette dernière formulation implique un couplage de trois niveaux consécutifs, ce qui se traduit dans une sorte de rétroaction négative implicite cachée (également confirmé dans [Fages 2008] avec l'utilisation d'un formalisme de graphes d'influence). Une telle formulation a prouvé, pour la première fois, que les cascades sont des systèmes bidirectionnels, permettant aux perturbations d'être transmises à la fois en avant et en arrière en même temps. Ce qui est possible car, dans un cycle de phosphorylation donné, la protéine inactive est impliquée dans le cycle précédant et la protéine active dans le cycle suivant à travers les complexes intermédiaires dans lesquelles est peuvent être séquestrées.

Deux autres études qui tiennent compte de la séquestration due au câblage de cycles sont ceux de [Feliu 2012a] et de [Rácz 2008]. Dans le premier article, certaines propriétés universelles, relatives aux cascades linéaires de longueur arbitraire n, ont été déduite au moyen d'une formulation algébrique des états stationnaires qui, à nouveau, met en évidence l'interaction entre trois niveaux consécutifs. En particulier, ils sont discutés: l'existence et unicité d'un état d'équilibre pour chaque niveau, l'identification du domaine biologiquement significatif des fonctions de stimulus-réponse, et la variabilité en amont et en aval (i.e. comment les variations de concentrations de substrat totales sont transmises vers l'arrière et vers l'avant). Dans le deuxième article, une cascade linéaire de longueur n " 1, 2, 3 est analysée dans le but de découvrir quels paramètres la rendent un amplificateur de sensibilité xiv efficace (coir dans la Section ?? pour plus de détails). Dans cette Thèse, on se base sur la généralisation, pour n arbitraire, du système d'équations dérivé dans [Rácz 2008], présenté dans le Chapitre 3, et décrit par équations du type x i´1 " f i px i , x i`1 q , i " 1, 2, . . . , n .

La structure itérative d'une telle modélisation nous permettra d'examiner les propriétés de la cascade à l'état d'équilibre, avec une approche analytique.

Modularité De la biologie évolutionniste [Raff 2000] à la biologie moléculaire [Del Vecchio 2008], plusieurs systèmes biomoléculaires ont été révélés être l'assemblage, à différentes échelles, d'éléments qui se répètent, appelés modules. Preuve de la modularité, ainsi que des hypothèses sur son origine et sa sélection tout au long de l'évolution sont passés en revue dans [START_REF] Günter P Wagner | The road to modularity[END_REF]]. L'architecture modulaire sur laquelle les systèmes sont construits, inspire et justifie l'étude des composants minimales, dont les interactions seraient capables de reproduire un certain phénomène que nous sommes intéressés à observer au niveau du système entier. En effet, ce cadre suggère une perspective où ces modules sont des structures séparables, fonctionnelles et autonomes, dont la fonctionnalité reste intacte sans ressentir l'effet du reste du réseau, lorsqu'ils sont insérés dans ceci. Cependant, nous savons que les systèmes naturels sont conçus de telle sorte que leurs composants ne sont pas totalement indépendants (modulaires), mais ni complètement connectés (non modulaires). La légitimité de l'hypothèse de la modularité dans les systèmes biomoléculaires naturels est largement discutés dans [Pantoja-Hernández 2015]. Par ailleurs, les systèmes que nous traitons sont des cascades de signalisation intracellulaires. Elles montrent une structure modulaire typique basée sur l'interconnexion de plusieurs cycles de modifications covalentes. Toutefois, le câblage d'un nouveau module généralement affecte le fonctionnement des modules précédents. Ainsi, les modules interconnectés interfèrent au niveau global et ressentent de l'influence des autres, de sorte qu'on ne peut pas supposer qu'ils se comportent comme la somme de modules simples. Différentes études ont porté sur la quantification du degré de modularité afin de minimiser ceci, e.g. [Saez-Rodriguez 2008] (plus de détails dans la Section 5.5.4). En conséquence de ces interconnections, de nouveaux phénomènes (comme la rétroactivité) peuvent émerger, et leur présence, une fois quantifiée, peut être utilisée comme une mesure de la modularité du réseau même. La relation entre la modularité et le phénomène de la rétroactivité a été discuté dans la revue [Pantoja-Hernández 2015], et précédemment dans [START_REF] Alexander | [END_REF]].

Les descriptions mathématiques qui représentent une cascade de signalisation selon sa nature quasi-modulaire -et en particulier capable de capturer la propriété rétroactive, i.e. une propagation de signaux vers l'arrière ainsi qu'en amont de la cascade -sont généralement de la forme dx i dt " f i px i´1 , x i , x i`1 q (cf. [Rácz 2008], [Feliu 2012a], [Catozzi 2016]). Comme déjà mentionné, cette formulation considère le couplage de trois niveaux consécutifs.

xv Rétroactivité Le terme "rétroactivité" a été inventé dans le domaine de l'ingénierie électrique, pour indiquer la modification des propriétés dynamiques d'un dispositif en cas de câblage à un autre qui, à son tour, affecte rétroactivement le précédent. Ceci est une propriété bien connue dans la mise en oeuvre d'un circuit électrique: la connexion en série de plusieurs modules peut modifier, ou même couper, la transmission de flux.

Les réseaux de signalisation présentent de nombreuses analogies avec les appareils électriques: par exemple, les deux étant des systèmes avec une structure modulaire et une fonction d'émetteurs et modulateurs de signaux (voir e.g. [Sauro 2007], [ Saez-Rodriguez 2005]). Par conséquent, les systèmes de signalisation ont commencé à être analysés par leur propriété de rétroactivité, vue comme une perturbation qui grimpe la voie de signalisation, à partir du bas, en raison de l'interconnexion des cycles.

La signalisation rétroactive dans les réseaux moléculaires a été théoriquement approchée dans [Del Vecchio 2008]. Les auteurs ont établi un cadre formel pour modéliser la rétroactivité, ont défini une mesure de cet effet sur le système en amont, et ont proposé une méthode pour la minimiser grâce à un mécanisme qui vise à isoler les modules en amont et en aval, adapté de l'ingénierie électrique. En revanche, d'autres recherches actuelles envisagent l'hypothèse d'un possible rôle fonctionnel de la rétroactivité, soit en tant que mécanisme de régulation naturelle, ou en biologie synthétique, comme nouveau moyen de signalisation. La présente Thèse creuse en particulier cette question. Un exemple empirique de l'utilisation de la réglementation rétroactive provient de la voie de signalisation de l'interleukine-2 (IL-2), qui est activée par un stimulus provocant une réponse immunologique concernant les cellules T [Pantoja-Hernández 2015].

Malgré que différentes appellations ont été utilisées pour lui se référer, plusieurs articles ont traité directement ou indirectement le phénomène de la rétroactivité. Comme preuve du fait que la communauté scientifique n'a pas encore une désignation officielle, ce phénomène se trouve sous différents noms selon les auteurs: feedback caché [Ventura 2008], modulation induite par une charge [Jiang 2011], régulation négative [O' Shaughnessy 2011], variabilité en amont [Feliu 2012a], distorsion due à une charge [Lyons 2014], rétroaction intrinsèque [Sepulchre 2013], propagation rétrograde [Jesan 2013], couplage bidirectionnel (rétroactif) entre modules [Saez-Rodriguez 2008]. Ensuite, la rétroactivité a été aussi plus généralement reconnu comme conséquence de: séquestrations [Blüthgen 2006], couplages en aval [START_REF] Ventura | [END_REF]], inhibiteurs de kinase [Wynn 2011], variations de substrat [Kim 2011] ; et cause pour: interactions de longue portée [Jesan 2013], effets secondaires hors-cible [Wynn 2011].

Principes de fonctionnement de la signalisation Les cascades de signalisation sont reconnues être des amplificateurs biochimiques capables de produire des réponses ultrasensitives ou switch-like (voir e.g. [Blüthgen 2006]), autant que des réponses linéaires graduées (voir e.g. [Sauro 2007]).

Malgré l'incompatibilité apparente de ces deux régimes, il a été montré que in vivo les deux mécanismes subsistent. Un exemple typique est illustré par les courbes de réponse de deux protéines présentes dans le sang, la myoglobine et l'hémoglobine. En fonction de la pression partielle d'oxygène, elles suivent, respectivement, une fonction hyperbolique, et sigmoïdale (ou logistique). D'autres types de fonctions de stimulus-réponse sont décrites dans [Gomez-Uribe 2007], selon le niveau de saturation de protéine kinase et/ou enzyme phosphatase, dans un cycle de phosphorylation.

La façon selon laquelle un système répond à un stimulus détermine son degré de sensitivité. Cela peut être mesuré globalement, avec le coefficient de Hill, l'indice de coopérativité, la valeur de switch, la sensibilité logarithmique, le coefficient d'amplification relative; ou localement, avec le coefficient de réponse.

Idéalement, l'ultrasensitivité est le phénomène par lequel un signal d'entrée progressif est converti en une réponse binaire [Ferrell 2014a]. Dans la pratique, cela détermine trois régions distinctes (pour des valeurs de stimulus petits, moyens et élevés): permettant le filtrage (en gardant le système proche de son état basal), la variation abrupte (changement brusque sur un petit intervalle), et la réponse maximale (saturation). L'ultrasensitivité a été tout d'abord observé par Hill tout en traçant la courbe qui décrit la liaison de l'hémoglobine à lìoxygène, à partir de données empiriques. L'hémoglobine dispose de quatre sites de liaison fonctionnant en coopération (i.e. le premier site favorise l'affinité pour la liaison suivante et ainsi de suite), et cette caractéristique a été considérée comme une source de comportement ultrasensible. D'autre part, l'ultrasensitivité est un des mécanismes qui permettent l'amplification du signal. Au-delà de cela, elle introduit aussi un degré de non-linéarité qui peut induire des comportements dynamiques plus complexes, tels que multistabilité, adaptation, et oscillations. Ces phénomènes sont à la base des mécanismes cellulaires de niveau supérieur, comme la détermination du destin cellulaire, l'homéostasie et le rythme biologique [Zhang 2013].

Dans [Zhang 2013] elles sont examinées six catégories principales caractérisées par des mécanismes cinétiques distincts capables de produire des réponses ultrasensitives : (i) liaison de coopérativité positive, (ii) homo-multimérisation, (iii) signalisation en plusieurs étapes, (iv) titrage moléculaire, (v) cycle de modification covalente (ultrasensitivité d'ordre zéro) et (vi) feedback positif. En particulier, le travail pionnier de [Goldbeter 1981] a montré que, dans un cycle de modification covalente simple, la réponse à l'état stationnaire peut présenter une sorte d'ultrasensitivité, provenant d'enzymes qui travaillent proche de la saturation (i.e. dans la région d'ordre zéro, où la relation stimulus-réponse est à peu près constant). Ainsi, cela a été nommé ultrasensitivité d'ordre zéro. Ce résultat a été obtenu en un seul cycle de phosphorylation-déphosphorylation en supposant que la concentration des enzymes (kinase et phosphatase) soit négligeable par rapport à la concentration du substrat. Cependant, cette hypothèse est souvent irréaliste, et dans [Goldbeter 1981], les auteurs ont montré que la sensibilité et ainsi que la saturation maximale la diminuent lorsque les concentrations des enzymes augmentent xvii par rapport au substrat. Preuve expérimentale des résultats théoriques de Golberter et Koshland a été fournie d'abord par [LaPorte 1983] en considérant la phosphorylation réversible de l'isocitrate déshydrogénase, puis par [Huang 1996] avec une cascade de MAPK (avec double phosphorylation au deuxième et troisième niveaux) dans des extraits d'ovocytes de Xenopus.

De nombreux autres articles portent sur l'étude de la sensitivité et ultrasensitivité, dans des conditions et systèmes différents de ceux de Goldbeter et Koshland, e.g. [Blüthgen 2006, Gomez-Uribe 2007, Rácz 2008, O'Shaughnessy 2011, Feliu 2012a]. Les articles de revue [Zhang 2013] et [Ferrell 2014b] discutent, entre autres, du rôle de l'ultrasensitivité dans les phénomènes tels que multistabilité et comportement oscillatoire. De tels comportements ne se produisent jamais dans une cascade composée de cycles monophosphorylés [Feliu 2012a]. Par contre, ils peuvent provenir de modèles plus complexes, qui impliquent e.g. des cycles de phosphorylation double (comme dans les cascades MAPK naturelles) [Ortega 2006, Qiao 2007b, Sepulchre 2013], un partage d'enzyme [Feliu 2012b], la compartimentation [Bhalla 2011, Harrington 2013], un feedback positif ou double négatif [Ferrell 2002, Blüthgen 2006, Feliu 2015], des feedback positifs et négatifs couplés [Sarma 2012], une variation du substrat [Liu 2011], etc.

Cette Thèse ne va pas approfondir ces aspects non linéaires mentionnés ci-dessus, principalement parce que le modèle de cascade de signalisation que nous allons discuter et exploiter ici ne présente qu'un état stationnaire unique, ce qui déjà en soi, montre plusieurs aspects complexes à démêler!

Étude analytique des cascades de signalisation linéaires

Le système que nous considérons est une cascade de signalisation arbitraire de n niveaux, chacun consistant en un cycle de modification covalente, comme e.g. un cycle de phosphorylation-déphosphorylation simple. Un tel système est appelé cascade de signalisation linéaire dans [Feliu 2012a] et est illustré dans la Figure 3.1(a) (en noir). Une cascade est déclenchée au sommet par la molécule-activateur Y 1 0 , et le stimulus d'entrée que nous considérons est sans dimension et proportionnel à la concentration de l'activateur, noté s. On remarque que les sont des représentations non conventionnelles de cascade, que nous avons conçues dans le but de transmettre l'idée de transduction du signal bidirectionnelle.

Nous allons analyser les propriétés stationnaires d'une cascade linéaire, de longueur arbitraire n (autant que possible), en étudiant l'effet du stimulus s sur les protéines actives adimensionnelles de la cascade, notées x 1 , x 2 , . . . , x n (Figure 3.1(b)).

Par conséquent, les soi-disant fonctions de dose-réponse x 1 psq, x 2 psq, . . . , x n psq seront au centre de notre investigation.

xviii En outre, un composé D (en orange sur la Figure 3.1(a)) au fond de la cascade sera également considéré pour illustrer le phénomène de rétroactivité causé par inhibition de kinase. Remarquablement, une telle approche est l'une des stratégies thérapeutiques ciblées les plus employées pour limiter l'activité dans une cascade [Cohen 2002]. Biologiquement, la drogue (ou médicament) séquestre en partie la n-ème kinase (en fonction de sa concentration et son affinité biochimique) de telle sorte que la variation de la quantité disponible de Y 1 n diminue la quantité de protéine déphosphorylée Y 0 n et affecte son interaction avec la kinase précédente (à travers le complexe

Y 0 n Y 1 n´1 , noté C 0 n ).
En conséquence, moins de kinase Y 1 n´1 sera requise par le niveau suivant -conduisant ainsi à une décharge pour le pn ´1q-ème cycle -et donc plus de kinase libre sera disponible pour être déphosphorylée -ce qui implique une augmentation en concentration de Y 0 n´1 . A son tour, ce dernier augmentera son influence sur le niveau précédent n ´2. Le raisonnement se répète, causant une variation alternativement positive et négative, à partir de la dernière proteine et se terminant au premier niveau. De cette façon, le médicament induit artificiellement un second stimulus, noté d T (adimensionnel et proportionnel à la concentration du médicament), dont l'effet peut être mesuré sur les niveaux en amont grâce à ce que nous avons nommé fonctions de drogue-réponse, x 1 pd T q, x 2 pd T q, . . . , x n pd T q. Plus généralement, la rétroactivité est la propagation vers l'arrière d'une perturbation qui peut agir à tous les niveaux de la cascade. Par conséquent, afin de sonder la rétroactivité, il n'y a pas besoin d'introduire une autre molécule dans le système (e.g. D), mais toute perturbation des paramètres (tel affinités de liaison, vitesses de réaction, ou concentrations totales) peut avoir une influence sur les étapes en amont (précédant celle où la perturbation est appliquée), et il sera enfin possible de mesurer tel effet rétroactif.

Nous avons développé le modèle mathématique des états stationnaires et récrit comme un système d'équations couplées trois par trois, sous la forme d'une fonction itérative f i , qui établit une relation parmi trois variables adimensionnelles x i (i.e. les protéines actives normalisées). Nous avons montré comment obtenir des fonctions de dose-réponse x i psq et les fonctions de drogue-réponse x i pd T q, pour 1 ď i ď n. Une façon classique d'analyser la propagation d'un signal le long d'une cascade est basée sur la caractérisation des courbes de dose-réponse, qui donnent raison de la signalisation en avant notamment. Dans ce cadre, nous avons développé une approche analytique permettant une investigation de la fonction de dose-réponse pour les cascades homogènes (i.e. mêmes paramètres à chaque niveau) avec une longueur arbitraire n (bien que certains résultats puissent être généralisés à des systèmes hétérogènes). Néanmoins, nous avons montré que la fonction dose-réponse pourrait être représentée comme l'itération d'une fonction rationnelle explicite. Cette structure itérative nous a permis de calculer les propriétés analytiques de la fonction de réponse, comme ses dérivées, première et seconde, à l'origine. Ces calculs, ainsi que la détermination d'une borne inférieure de la valeur maximale de la fonction de réponse (i.e. le point fixe de la fonction itérative), ont permis d'établir des conditions sur les paramètres biochimiques qui permettent d'optimiser la signalisation en avant dans les cascades homogènes. Nous avons également discuté de certaines particularités de ce que nous appelons les fonctions de réponse aux médicaments (ou drogues), étant présentées comme une mesure de la rétroactivité du système à chacun des niveaux. Malheureusement, ces fonctions présentent des problèmes que nous ne pouvons pas contourner facilement au moyen d'une démarche analytique similaire à celle adoptée ci-dessus pour la dose-réponse. Voilà pourquoi, dans le chapitre suivant, nous allons aborder cette question avec une méthode numérique. Nous avons aussi développé un cadre plus général, où nous avons classé les systèmes biochimiques en deux catégories: avec ou sans rétroactivité -à partir d'une définition formelle de cette propriété. Cette classification est fondée sur le choix de la modélisation mathématique, auquel elle est reliée la possibilité d'observer, dans le même système, une coexistence de la signalisation vers l'avant et rétroactive.

Régimes de signalisation dans une cascade à trois niveaux

Ce chapitre est dédié aux méthodes numériques et statistiques, nous avons utilisé pour générer de nouvelles données portant sur la question de la propagation bidirectionnelle dans des cascades linéaire de longueur 3, avec paramètres inhomogènes.
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Pour tout un ensemble de paramètres donné, notre but est de tester la cascade, pour sa capacité de propagation uni-et bidirectionnelle. Ainsi, l'exploration de l'espace des paramètres d'une cascade à 3 niveaux nous a permis d'établir une correspondance entre les paramètres et 4 régimes de signalisation spécifiques qui combinent les réponses en amont et/ou en aval. Notamment, nous avons quantifié la probabilité qu'une cascade présente des comportements spéciaux, tels que la rétroactivité pure, ou la bidirectionnalité simultanée. Ainsi l'une des principales conclusions de notre étude numérique est que les jeux de paramètres permettant les deux modes de réponses, avant et rétroactifs, se produisent rarement.

Bien que la possibilité pour une cascade de transmettre des informations vers l'arrière, en raison des effets de séquestration des enzymes, a été démontrée par plusieurs études [Ventura 2008, Del Vecchio 2008, Ventura 2009[START_REF] Ventura | [END_REF], Kim 2011], [Ossareh 2011], la signalisation rétroactive n'est pas prise en compte dans la littérature actuelle comme une propriété standard que les cascades devraient posséder. Dans ce cadre, les résultats présentés dans ce chapitre contribuent et apportent des réponses à des questions concernant la compatibilité des signalisations en avant et rétroactive. En fait, l'attention sur les cascades de signalisation est généralement traitée uniquement pour leur capacité de signalisation en avant. Par exemple, dans l'étiologie du cancer, l'attention se concentre sur la suractivation des kinases dans les voies impliquées dans la prolifération cellulaire, tels que les cascades de signalisation MAPK. Lorsque ces voies sont dérégulées de cette manière, cela signifie que leurs propriétés de signalisation vers l'avant sont très efficaces. En outre, dans ce cas, les thérapies contre le cancer qui reposent sur l'inhibition de kinase, sont décrites par le terme de liaison du médicament D dans notre modélisation mathématique. Par conséquent, notre principal résultat conforte le point de vue que, lors de l'utilisation de ces thérapies, les propriétés rétroactives d'une cascade de signalisation peuvent, la plupart du temps, être négligés, même si de rares effets hors-cible ne doivent pas être exclus [Wynn 2011]. D'une part, nous avons établi quelles régions de paramètres séparent la signalisation de l'anti-signalisation. Nous avons également observé que les propagations vers l'avant et vers l'arrière sont généralement associées à des plages de paramètres séparées, ou même opposées. Par ailleurs, nous avons détecté des restrictions de l'espace des paramètres qui augment la probabilité d'un régime choisi. Tous les résultats ont été ensuite interprétés en termes de concepts biochimiques bien connus -comme la saturation d'un enzyme, la séquestration d'une protéine, ou l'activation d'un cycle. Enfin, nous avons discuté de la fiabilité et de la robustesse de nos conclusions en ce qui concerne les conditions numériques que nous avons fixé pour nos simulations (i.e. les seuils déterminant les régimes de signalisation et les plages de paramètres échantillonnés).

Dans ce chapitre, nous avons montré que certains résultats analytiques obtenues dans le chapitre précédent sont corroborés par cet approche numérique.

Le point de vue des systèmes dynamiques discrets

Dans le chapitre précédent, nous avons exploré la propagation rétroactive sous la forme d'une drogue induisant la séquestration du dernier cycle d'une cascade de signalisation. Cependant, nous avons montré dans le Chapitre 3 que la rétroactivité peut être discutée dans un sens plus général, comme l'effet d'une perturbation arbitraire de certains paramètres du système à un certain étage. La classification des paramètres déduits dans le chapitre précédent, inspire la caractérisation d'une cascade comme tendanciellement retroactive, juste en fonction de ses paramètres biochimiques spécifiques. D'autre part, comme nous l'avons montré au moyen d'outils numériques dans le Chapitre 4, il est possible que les propagations vers l'avant et vers l'arrière coexistent. Par conséquent, dans ce chapitre, nous allons mettre en lumière la façon dont ces deux directions de transmission se combinent. Surtout, nous allons expliquer comment reconnaître la marque de rétroactivité à partir du type de propagation en aval, qui est définie par la séquence des protéines actives x 1 , . . . , x n , pour une valeur donnée du stimulus, que nous avons nommée profil d'activation de la voie, ou plus brièvement, profil d'activation.

Afin d'avoir une compréhension globale du comportement d'une cascade, nous avons montré qu'il est intéressant d'étudier les stimulus-réponses à toutes les étapes intermédiaires le long desquelles un signal se propage. Les états stationnaires (i.e. les profils d'activation) de la cascade, présentés par les fonctions f i dans le Chapitre 3, ont été ici convertis sous la forme de morceaux d'orbites, décrites par une système dynamique discrète 2D, mené par la map bidimensionnelle F i : I 2 Þ Ñ I 2 , où I 2 est le carré unité r0, 1s ˆr0, 1s. L'avantage d'utiliser une approche de système dynamique est d'offrir une vue d'ensemble sur l'effet de modifier les paramètres du système, et de classer les types de cascades en fonction des propriétés structurellement stables de chaque niveau: tels que le nombre, la stabilité et les courbes invariantes des points fixes de F i . De plus, les transitions entre ces classes robustes peuvent être traitées grâce à des concepts de la théorie de la bifurcation. Plusieurs résultats et la plupart des exemples ont été présentés pour des cascades homogènes. Par conséquent, ces cascades peuvent être caractérisées par une seule map F pour tout niveau. Nous avons établi que toute cascade peut être classée dans un des trois types de profils d'activation maximales, que nous avons discutés en détail pour le cas homogène. Les points clés de cette analyse sont les points fixes et les valeurs propres associées à la map F. Toutefois, en ce qui concerne les systèmes hétérogènes, la situation se complique et ultérieures recherches seront présentées dans le chapitre suivant. En outre, en considérant la linéarisation du système dynamique discret, nous avons trouvé des expressions analytiques compactes pour exprimer la pente des fonctions de réponse (à la fois dose-réponses et drogue-réponses), déjà introduites dans le Chapitre 3. Ces pentes (i.e. dérivées premières) révèlent une relation intéressante entre l'efficacité de la signalisation (en avant et/ou en arrière) et les valeurs propres associées au point fixe instable et positif x `du système. Par ailleurs, ces deux dérivées de dose-et drogue-réponse, présentent des formules symétriques, en fonction des valeurs propres associées à la matrice jacobienne de la map F i . Ces formules corroborent effectivement les résultats de l'étude numérique détaillée dans le Chapitre 4, à savoir que les conditions paramétriques favorisant la signalisation en amont et en aval sont le plus souvent exclusives [Catozzi 2016]. Dans certaines limites, nous avons pu montrer que les valeurs propres positives contrôlent la pente de la courbe de dose-réponse, tandis que les valeurs propres négatives contrôlent la pente des drogue-réponses. Nous avons également déterminé que la réponse rétroactive ne peut jamais être amplifiée par rapport à l'amplitude d'un signal d'entrée modulé. Inversement, la signalisation en avant peut être soit amortie ou amplifiée, en fonction de la plage de la modulation du signal d'entrée choisie, qui dépend du nombre et de la stabilité des points fixes de la map discrète associée au système.

Perspectives

Dans ce chapitre, nous avons énuméré quelques-unes des recherches en cours et à venir, qui concernent quatre voies principales. Tout d'abord, étendre l'approche de système dynamique discret du Chapitre 5, aux cascades inhomogènes décrites par les maps F i . Deuxièmement, quantifier la sensibilité des cascades de signalisation à trois étages (en utilisant les fonctions de réponse obtenues à partir de l'échantillonnage aléatoire du Chapitre 4) selon le régime de signalisation auquel elles appartiennent. En troisième lieu, appliquer la formulation itérative des états stationnaires à des cascades ramifiées, afin d'explorer la façon dans laquelle la rétroactivité peut se manifester. Enfin, dériver une formulation itérative pour les états d'équilibre d'une cascade avec des cycles doubles de phosphorylation.

Conclusion

Au fil du temps et des espèces, du plus simple organisme unicellulaire au plus complexe organisme multicellulaire, le mécanisme de transduction du signal a été hérité et transmis, comme un moyen de communication entre et au sein même des cellules. Ce processus est essentiellement due à des interactions protéine-protéine précises qui orchestrent le cycle cellulaire, de la naissance à la mort. La réception et le traitement d'un signal biochimique (ligand) ont lieu par des altérations de la conformation de protéines qui induisent une altération de leur même fonctionnalité. En conséquence, une séquence ordonnée de réactions a lieu et retransmet le signal d'entrée, jusqu'au noyau, ce qui entraîne une réponse cellulaire spécifique. Les réactions sous-jacents consistent en cycles enzymatiques réversibles, où une première protéine passe à sa forme active, combine à la protéine suivante en induisant son activation, puis la première protéine retrouve sa forme inactive, et la seconde peut activer une troisième protéine et ainsi de suite. De telles séquences d'émetteurs biochimiques impliquant des réactions de modifications covalentes, sont appelés cascades de signalisation.

L'investigation des principes de fonctionnement des cascades de signalisation a été abordée dans différents domaines de recherche, du niveau microscopique au macroscopique. Traditionnellement considérés comme des systèmes d'entrée-sortie, les cascades de signalisation ont été caractérisées en fonction de leur signalisation en avant: l'effet d'un stimulus agissant sur le premier niveau, et affectant la protéine du dernier niveau, est généralement décrit par la courbe de dose-réponse résultant. En particulier, en ce qui concerne la signalisation vers l'avant, la propriété de ultrasensitivité a été reconnue, dans des travaux à la fois expérimentaux et théoriques.

Une nouvelle piste de recherche a émergé à partir d'observations en biologie synthétique et dans les circuits électriques, qui ont révélé une nouvelle propriété, appelée rétroactivité. Cette dernière traduit l'effet rétroactif des perturbations en aval, sur les étapes précédentes d'une cascade. Ce phenomène a été reconnu pouvoir affecter la signalisation vers l'avant, en raison par example de la séquestration enzymatique. Dans ce cadre, les cascades de signalisation ont commencé à être édudiée en tant que dispositifs bidirectionnels d'entrée-sortie, capables de transmettre des stimuli ou des perturbations, à la fois en amont et en aval de la cascade.

Cette question n'a rencontré l'intérêt de la communauté scientifique que récemment, comme l'atteste le fait que la première revue sur la rétroactivité dans les systèmes biomoléculaires est apparue en 2015.

Notre travail s'inscrit dans ce contexte de recherche, qui traite de la question fondamentale de savoir si, dans une cascade de signalisation, la signalisation vers l'arrière et vers l'avant peuvent coexister. Remarquablement, cet aspect a été exploré avec une modélisation appropriée, qui prévoit la rétroactivité dans ses équations. Nous avons ensuite examiné le système de cascades linéaires de longueur n arbitraire, à l'état d'équilibre, en dérivant une formulation basée sur une fonction itérative de second ordre. A partir d'une telle fonction, nous avons calculé analytiquement la fonction de dose-réponse de la dernière protéine, et ainsi étudié les propriétés de la signalisation en avant dans la cascade. En introduisant une perturbation au bas de la cascade sous la forme de ligand séquestrateur de kinase, nous avons dérivé analytiquement la fonction de drogue-réponse de la première protéine, ce qui nous a permis d'étudier les propriétés de la signalisation vers l'arrière. En particulier, nous avons établi les conditions biologiques qui optimisent l'efficacité de la transmission en aval, pour des cascades homogènes (à savoir avec les mêmes paramètres pour chaque niveau) de longueur arbitraire. Toutefois, en raison de certaines difficultés analytiques, l'approche utilisée pour la dose-réponse n'a pas pu être appliqué aux drogue-réponses. La relation profonde entre la modélisation et la rétroactivité a été discutée, et à cet égard, nous avons dérivé des classes générales d'équations à l'état stationnaire, à partir desquelles on est en mesure de prédire comment les perturbations se propagent et quelles niveaux de la cascade en résultent affectés.

Afin de surmonter les difficultés rencontrées dans la caractérisation analytique de l'efficacité de la transmission en amont, nous avons mis en place une étude numérique systématique. Une telle méthodologie a été appliquée à des cascades inhomogènes de longueur fixe à 3, et a fourni des nouveaux aperçus sur la question controversée qui prône la concomitance de la signalisation vers l'arrière et en avant. Nous avons établi dans quelles conditions biochimiques cette coexistence est possible. En faisant une analyse statistique sur les paramètres, nous avons réalisé que la transmission simultanée en avant et en arrière est peu probable, mais nous avons identifié la région de paramètre dans laquelle ce comportement peut être observé avec plus de probabilité (même si, dans l'absolu, cette probabilité reste faible). Il serait intéressant que tel résultat original soit validé expérimentalement, en utilisant les conditions paramétriques que nous avons déduite et représentées graphiquement sous la forme de motifs (Figure 4.6). En parallèle, nous avons également déterminé les régions de paramètres qui favorisent un certain régime de transmission du signal: soit en amont ou en aval. Étonnamment, nous avons constaté que, dans une cascade à 3 niveaux, la signalisation vers l'arrière se produit avec le même ordre de probabilité que la signalisation vers l'avant.

Ces résultats encouragent l'étude des voies de signalisation qui sont à priori négligées car inefficaces par rapport à la propagation vers l'avant. Notre analyse suggère la perspective que de tels systèmes peuvent cacher une certaine utilité dans le contrôle des voies, en raison de leurs qualités de retrosignalisation.

Dans le but d'expliquer l'interaction complexe entre la signalisation en avant et celle vers l'arrière, nous avons présenté une méthode innovante concernant une cascade linéaire de longueur arbitraire n, qui prend en compte globalement le chemin de transduction du signal. Nous avons ensuite abordé les fonctions de dose-réponse de tous les niveaux intermédiaires de la cascade, qui peuvent être calculés au moyen de la fonction itérative xxv de second ordre, que nous avons construite à partir de notre modèle. Pour un stimulus fixé, ces doses-réponses composent un profil d'activation de la voie (à savoir la séquence des concentrations des protéines actives à l'état stationnaire). D'autre part, nous avons reformulé notre fonction itérative sous la forme de système dynamique discret qui évolue dans l'espace de phase de deux protéines actives libres consécutives. Un tel système dynamique offre une visualisation géométrique de l'évolution globale des profils d'activation de la voie, qui, dans l'espace de phase, correspondent à des morceaux d'orbites. L'analyse de la stabilité des points fixes d'un tel système a améné à certaines conditions paramétriques qui caractérisent la configuration des profils d'activation, i.e. la manière dans laquelle un signal, ou un signal modulé, est amplifié ou atténué le long de la cascade. Les profils d'activation des cascades homogènes ont été classés en trois catégories distinctes, en fonction du nombre de points fixes apparaissant dans la partie biologiquement significative de l'espace de phase. En particulier, tout profil décroissant correspond à des cascades qui sont dépourvues de retroactivité, mais atténue également la propagation en avant. Inversement, tout profil non monotone est propre à une cascade affectée, de façon plus ou moins importante, par la rétroactivité. Notamment, les profils oscillatoires sont la marque d'une rétroactivité relativement significative.

Nous insistons sur le fait que, bien que ces résultats sont applicables en particulier aux cascades homogènes, nous les avons aussi étendu à des systèmes hétérogènes, ce qui nous semble une perspective prometteuse. Dans ce cas plus générale, la classification précédente en trois catégories est légèrement modifiée, et met en évidence le rôle joué localement par un niveau donné, au sein d'une cascade inhomogène. Ces classes ont été nommée comme atténuante, ciblante ou sensible, et cette dénomination fait allusion à la façon dont le signal est traité en passant d'un niveau au suivant. Cependant, il nous manque un dernier morceau pour compléter ce puzzle, qui consiste en l'identification des conditions paramétriques qui caractérisent ces trois classes.

En outre, cette étude a également mené à des conclusions générales sur les systèmes hétérogènes. Il a révélé que les valeurs propres associées à la matrice jacobienne de notre système dynamique discret régule la combinaison entre la signalisation en avant et vers l'arrière. Nous avons découvert qu'il existe une relation entre ces valeurs propres positives/négatives et l'efficacité de la propagation en aval/en amont (i.e. les pentes des fonctions de dose-/drogue-réponse). Un tel résultat fournit une explication simple du pourquoi la rétroactivité est essentiellement atténuée étape par étape, au fur et à mesure qu'elle monte la cascade. Cela confirme également l'une de la revendication principale de cette Thèse: une cascade de signalisation peut transmettre des informations vers l'avant et vers l'arrière, mais peu probablement simultanément.

Enfin, nous croyons que les outils fournis dans la présente Thèse pourraient susciter l'intérêt de disciplines appliquées telles que la théorie du contrôle ou la biologie synthétique. Retroactivity in signal transduction: A comparative study of forward and backward responses in signaling cascades Introduction

Thesis statement

The research presented in this Thesis deals with the basic units of the complex mechanism of signal transduction: the intracellular signaling cascades. Such systems consist in sequential protein modifications through enzymatic reactions, activated by an input biochemical signal, e.g. a growth factor, binding a specific cell receptor. These post-transcriptional modifications control and regulate essential cellular activities, such as growth, differentiation, survival, and other decision-making processes. Their misregulation is associated with a variety of diseases, including cancer. In that case, a well-known strategy is the targeted inhibition of a cascade protein by a drug, whose function is to bind and sequester part of this protein to reduce uncontrolled cell proliferation (downstream response to growth factors). Drug interference generally results in a modification of the equilibrium of the whole cascade, since the perturbation can affect proteins both following and preceding the sequestered protein (respectively, downstream and upstream propagation). This work has been centered on investigating the consequences of signaling cascades as bidirectional signal transmitters. According to their kinetic properties (based on concepts of enzyme saturation, protein sequestration, and binding affinity), the research has been particularly focused on the phenomenon of retroactive (i.e. upstream) signaling, as consequence of wiring of the modules implicated in the signal transduction.

Thesis outline

The present Thesis is organized into three main parts. In the first part, Chapter 2 aims to present the general transdisciplinar framework in which our research is inscribed. Firstly, delineating the biological context of cellular signaling, by focusing on the system of signaling cascades. Then, introducing some mathematics and fundamental concepts, on which systems biology modeling is based. Finally, discussing the fundamental properties of modularity, retroactivity, and ultrasensitivity, in intracellular signaling cascades.

The second part is composed by our main contributions to previous research. Chapter 3 contains the analytical setup on which our investigation is grounded and takes shape: mainly the biochemical model, and the system of steady-state equations governed by an iterative function, which will be used to obtain response functions to distinct stimuli (at the top, and at the bottom, of a linear cascade). Analytical approach will be essentially concerned with cascades with same parameters for each tier (homogeneous), but arbitrary length. Along these lines, we will define dose-response and drug-response functions. Particularly we will establish parameter conditions to optimize dose-responses, thus account for an efficient forward signaling. Backward signaling, or retroactivity, will be discussed in a more general context referring to the equations underlying the modeling of a biochemical system. This approach will allow to distinguish retroactive-free from retroactive-dependent systems, and point out the origin of retroactivity from a mathematical point of view. Chapter 4 contains the numerical setup we will make use to explore the parameters associated to the signaling regimes (forth and/or backward propagation) of inhomogeneous cascades with length fixed to three. Forward signaling will be analyzed from the variation of dose-response of the third active protein; while retroactivity from the variation of drug-responses of the first and second active proteins. The parameter space will be classified according to distinct signaling regimes, considering forward and/or backward propagation. Further insights on the combined transmission of upstream and downstream stimuli will be disclosed in Chapter 5, thanks to a discrete dynamical system approach. It will provide a global framework in which analyze signal processing along a cascade.

The third part includes perspectives of ongoing and future research, in Chapter 6. Then, Chapter 7 will draw final conclusions about this study on retroactivity presented in this Thesis. 

Cellular signal transduction

Every cell is an input-output regulatory system, constantly monitoring its intraand extracellular environment to process the information it collects, and so suitably respond. From unicellular to multicellular organisms, the core of these communications is based on chemical signals traveling throughout the organism, or within cell, to attain specific targets (e.g. receptors) in order to induce clear and effective cellular responses. This complex machinery, known as signal transduction network, is regulated by proteins subjected to successive reversible changes of state (activation and inactivation) which relay an impulse. Such a process is usually rapid, lasting milliseconds in the case of ion flux, minutes for the activation of kinase cascades, and hours or days for gene expression [url]. Contrary to metabolic pathways, signal transduction does not involve carbon compounds (to stock energy under the form of biomolecules) but, through a series of enzymatic steps, it triggers cellular processes such as gene transcription, secretion, motility, proliferation, differentiation, stress responses (like inflammation and immune response), or apoptosis [START_REF] Alberts | [END_REF]]. Outstandingly, only seventeen basic eukaryotic signal transduction pathways seem to be implicated in and responsible for animal development, from early stage to adult physiology (see Table 2.1 adapted from [Gerhart 1999]); each of them being distinguished by its set of regulatory elements. However, different pathways typically share various signal-transducing components, what points out the inherent network's attributes of signaling pathways in living systems. The combination of several mechanisms -such as crosstalk interactions, feedback loops, modulation of signal intensity, ligand-receptor kinetics, scaffolding, compartmentalization, and translocation -characterizes cellular responses through three paramount properties: specificity, flexibility, and robustness [Pires-daSilva 2003]. Specificity of response depends both on the input and on its dynamical profile (e.g. transient or long stimulation): this phenomenon has been termed kinetic insulation in [Behar 2007] and contributes to the control of flexibility and robustness.

Table 2.1: The 17 intercellular signaling pathways (from [Gerhart 1999]).

1.

Wnt pathway 2.

Receptor serine/threonine kinase (TGFβ) pathway 3.

Hedgehog pathway 4.

Receptor tyrosine kinase (small G proteins) pathway 5.

Notch/Delta pathway 6.

Cytokine receptor (cytoplasmic tyrosine kinases) pathway 7.

IL1/Toll NFkB pathway 8.

Nuclear hormone receptor pathway 9.

Apoptosis pathway 10. Receptor phosphotyrosine phosphatase pathway 11. Receptor guanylate cyclase pathway 12. Nitric oxide receptor pathway 13. G-protein coupled receptor (large G proteins) pathway 14. Integrin pathway 15. Cadherin pathway 16. Gap junction pathway 17. Ligand-gated cation channel pathway More in detail, as a process of information transfer, signal transduction is initiated by an extracellular ligand (such as growth factors, hormones, and various cellular stressors like heat shock, oxidative stress, osmotic shock, or inflammatory cytokines) binding a transmembrane receptor (see Figure 2.1). This latter provokes the first of a series of transient switch-like (on/off) modifications inside the cell involving proteins as intermediates in the flow of signal propagation of the pathway. Each intermediate modifies the next one, often by phosphorylation (i.e. the covalent transfer of a phosphate group, from an ATP molecule to a target protein), and gradually it recovers its former (inactive) state until the following modification, due to a new or prolonged stimulus. The last signaling component, by modifying a target protein, leads to activation or repression of a specific process. That process is actually the cell's response to the initiating signal. 

Historical background

In the 1930's our predecessors assisted to the advent of molecular biology, the fruitful encounter between biochemistry and genetics, which marked the beginning of new exploratory technologies. The scientific community started to address its interest to the study of signal transduction pathways, but firstly with an indirect approach rather focusing on the result of cell signaling, instead of its intrinsic components. Many investigations were conducted in the field of developmental and evolutionary biology to isolate mutant genes and understand cancer proliferation (which was recognized to have genetic basis in 1902 by the German zoologist Theodor Boveri while making experiments on sea urchins [Boveri 1902]). Boveri claimed that tumors are due to abnormal chromosomes and their mutation might be caused by radiation, physical or chemical stress, or by pathogenic microorganisms. This hypothesis was confirmed in 1915 by the Nobel Prize Thomas Hunt Morgan, when studying the role that chromosomes play in heredity. Other studies concerned the relation between genetic variation and morphological evolution, for instance how particular pattern elements are generated in butterfly according to wing-pattern mutants, Figure 2.2 (for a review see [START_REF] Beldade | The genetics and evo-devo of butterfly wing patterns[END_REF]), or also how cell transplantation in salamander embryos "organizes" the coexistence of host and implanted individuals in future development (the so-called Spemann-Mangold organizer) resulting in a Siamese twin, with two heads and one tail, Figure 2.3 (for a review see [Pires-daSilva 2003]). Most of the studies which can be seen as precursors of the characterization of signaling pathways, lie on molecular genetics and oncology research. They actually led to the first investigations (after the Mendelian model of inheritance in 1866) on the outcomes and consequences of signal transduction, under the form of gene transcription and mutation. Therefore it is worth to mention a few crucial discoveries (some of them have also deserved a Nobel Prize), cornerstones in the exploration of the domain of cell's regulation.

In the late 1970's Christiane Nüsslein-Volhard and Eric Wieschaus identified the hedgehog (hh) gene as one of the most importantly involved in the development of anterior and posterior axis (body segmentation) in Drosophila melanogaster (commonly known as fruit fly). The comparison of a larvae having a hh mutant with the wild type, resulted in a stubbier and hairy fly, which inspired the name given to that gene [START_REF] Nüsslein | Mutations affecting segment number and polarity in Drosophila[END_REF]. Actually hh gene is just one of the target genes of the homonym signaling pathway, which in fact has a prominent role in embryogenesis, but also in adult stem cell proliferation [Li 2012a]. Later, the isolation of the first gene of the Wnt signaling pathway, allowed to disclose its role in preventing wing development in flies [START_REF] Nüsslein | Mutations affecting segment number and polarity in Drosophila[END_REF], and promoting mammary gland tumors in mice [START_REF] Nusse | Wnt signaling in disease and in development[END_REF]]. Different researchers discovered a link between a misactivation of Wnt signaling pathway and colon carcinogenesis (see e.g. [START_REF] Mccormick | Signalling networks that cause cancer[END_REF]] for a review), even though other diseases can also develop, such as heart and eye diseases, schizophrenia, or Alzheimer's disease [Klaus 2008].

The earliest article specifically pointing out the mechanism of signal transduction (instead of the resulting response) dates from 1972 [Rensing 1972]. At that time, the term "signal transduction" was not yet universally employed, but it became official and widespread from the following decade (see the review article [START_REF] Rodbell | The role of hormone receptors and GTP-regulatory proteins in membrane transduction[END_REF]). Thus, different domains -such as developmental and evolutionary biology, molecular genetics, cellular regulation and culture, hormonal control, cell-to-cell variability, biology of cancer and other diseases, and so on -eventually found their common denominator.

Henceforth, yeast -a unicellular eukaryotic organism -became a standard model exploited by biologists for investigations on its highly complex signaling network. Notably, amongst other pathways, the mating-pheromone response pathway has been extensively studied and the mechanism of yeast shmooing, as a mating trigger, unraveled (illustrated in Figure 2.4). Such a mechanism occurs when an a cell intercepts the mating pheromones of an α cell (and inversely). So the cells project themselves toward the direction of the other, by forming a protuberance called shmoo. This represents the first phase of mating of two haploid cells, ending with a complete genetic makeup for a diploid yeast cell.

Later on, also theoretical research focused on signaling pathways, by making use of numerical, analytical, and statistical tools. The purpose being double: first, replacing some long and expensive clinical trials with trustworthy (mathematical) models designed to explore and predict system's behaviors -we discuss these modeling aspects in Section 2.2.2 -second, the accomplishment of a universal theory able to understand and explain the complexity of signal transduction in the context of systems biology. In this view, a comprehensive understanding of the working principles of cell signaling is essential for both fundamental and applied research.

Particularly, each pathway is characterized by an intracellular signaling cascade, which allows the transmission of some specific signals, through a set of proteins which is targeted by a specific ligand-receptor bound (stimulus). Across an ordered chain of chemical reactions, each protein is subjected to covalent modifications (e.g. methylation-demethylation, activation-inactivation of GTP binding proteins and phosphorylation-dephosphorylation) and, when converted into its activated form, it promotes the activation of another one. Covalent modification is a mechanism typical of both signaling and metabolic pathways, consisting in an enzyme-catalyzed alteration, either reversible or irreversible, and which includes the addition or removal of chemical groups, via a covalent bound (namely implying the sharing of electrons between substrate and chemical groups) [START_REF] Alberts | [END_REF]], see Figure 2.5. Particularly, reversible protein phosphorylation has been found to be a pivotal biological regulatory mechanism by Fischer and Krebs, who were awarded of the Nobel Prize for their discovery in 1992.

Signaling cascades

Dysfunctions and diseases

Signaling cascades regulate and contribute to the proper functioning of the whole organism, however there are still several unknowns about their role and properties. Since implicated in several decision-making processes (e.g. development, differentiation, aging, mitosis), dysregulation of cell signaling may have important repercussions and actually be at the origin of a very long list of diseases, such as cancer, diabetes, neurodegenerative diseases (e.g. Alzheimer's and Parkinson's), protein that carries a post-translational addition to more than one of its amino acid side chains can be considered to carry a combinatorial regulatory code. Multisite modifications are added to (and removed from) a protein through signaling networks, and the resulting combinatorial regulatory code on the protein is read to alter its behavior in the cell. (B) The pattern of some covalent modifications to the protein p53.

Down syndrome, inflammatory and autoimmune diseases, or osteoporosis (see e.g. [Coulthard 2009, Kim 2010, Li 2012a]). This topic prompted the development of molecularly targeted therapies based on drug treatments to regulate abnormal cell response (e.g. [Munoz 2010] for Alzheimer's disease, and [Cohen 2002] for a review). However it may be that effective therapies are not free of consequences. Side effects arise, due to the complex interdependency of each signaling component within the network [Wynn 2011]. How signaling pathways are affected by drug delivery is an important subject of study [Berg 2005] in view of the optimization of therapeutic effects to the detriment of side effects [Csermely 2013]. In cancer therapy, a classic technique applied to signaling cascades, e.g. MAPK, is the kinase inhibition [O' Shaughnessy 2011, Coulthard 2009]. The control of abnormal cell proliferation is done by interference of a drug with a cascade protein (via sequestration), so that the cellular response of mitosis results reduced with the concentration of free protein. Sequestration plays a key role in the treatment of signal and can significantly alters the behavior of the signaling cascade, highlighting an intrinsic property, called retroactivity (discussed in the homonym Section 5.5.4) characterized by a signal typically climbing up the cascade. However, this phe-nomenon can also arise without any external perturbation and can be characteristic of the cascade's kinetics (biochemical parameters such as reaction rates or binding affinity) and structure (see Section 2.2.3 discussing modularity).

Modeling of biomolecular networks

"I'm no model lady. A model's just an imitation of the real thing" said the American actress, playwright, screenwriter, and sex symbol, Mae West. But hopefully -I dare to add -models are useful imitations of reality.

Modeling biomolecular systems is not a simple job, even less if we think that we do not have any certitude about how interconnections matters for the functioning of the system we aim to study. Equivalently, we do not exactly know which are the minimal components we have to consider without loosing typical features or behaviors we are interested in. Indeed, one of the main difficulty of modeling resides on establishing the boundaries which define what a system is [Pantoja-Hernández 2015]. The fact that there is no universal definition for "system" suffices to explain the multitude of models which already disagree from the outset. Moreover, the selection of the essential elements which do characterize the system under study, can be done at least in two ways: according either to the system's structure (topology), or to the system's functioning (purpose). Some other elements or interactions can be accessory in the sense that they are not responsible for a specific global behavior, but have instead enhancing properties, for instance, in system's robustness. That partially explains why it is currently employed the term complex systems.

As a consequence, modeling techniques range from more detailed to minimal models. Both with the aim of providing clues for the observed behaviors, the first class of models usually integrates big data sets including a maximum of details, while the opposite class focuses on particular dynamical behaviors with the less variables and parameters possible, omitting many of the complicating features. This latter approach is very common in the emerging discipline of synthetic biology, where engineering meets biology, to design, control and program complex systems' behaviors following engineering principles [Cameron 2014]. Cornerstones of synthetic networks' implementation are the repressilator [Elowitz 2000] and the toggle switch [Gardner 2000], in Escherichia coli. The first one consists in an artificial genetic circuit made of three transcriptional repressors. This circuit constitutes an artificial clock and is able to induce oscillations, which have been measured following the periodical synthesis of green fluorescent protein (GFP). The second one describes a two-promoter circuit mutually inhibiting (each promoter controls the transcription of a repressor of the other) able to give rise to bistability. Transient external signals (like IPTG molecule, and thermal pulse as repressor inhibitors) make the system switch between the two stable steady states, meaning that, even after removal of the signal, the system remains in the last reached state. In both articles, proper tuning of parameters is crucial to select the oscillatory or bistable region.

The existence of a negative, or positive, feedback loop is a necessary condition, respectively, for stable sustained oscillations, or multistationarity [Thomas 1981]. In a network, the feedback loop is positive when the inhibitory interactions are even in number, and negative, otherwise. As a consequence, the specific feedback loop structure characterizes the system's dynamical behavior. For instance, simple two-component modules (Figure 2.6) can yet exhibit either periodic or multistable states, according to their loops, and provided appropriate parameter values. Of course, each module's structure remains invariant, whether we add an even number of repressors, or any number of activators. Generally the effect will be a gain or a loose in robustness [Fritsche-Guenther 2011]. Models are conceived for different purposes, and can usually capture specific properties of the system under study, and neglect some other ones. However, what makes a model useful and trustworthy, it is not necessarily its detailed accuracy, but the ability to answer a question, highlight special behaviors, and ideally have predictive power.

X Y X Y X Y
A first rough model of molecular interactions can typically be formulated as an interaction diagram, such as the one in Figure 2.7 which illustrates the ERK signaling cascade. This representation delineates a qualitative description of system's behavior, which may actually leave significant ambiguity especially when the interaction network involves feedback (nonlinear interactions and feedback loops are typical of complex systems), and might limit intuitive understanding of the global process' outcome. That is why, in Section 3.1, we will introduce an original representation of signaling cascade, where the concept of bidirectional propagation we want to emphasize will be more explicit than in the classical representation with downward arrows, like in Figure 2.7.

A quantitative representation of an interaction diagram can be achieved with a mathematical formulation of the same. If the model includes a term of randomness, it is called stochastic, otherwise it is deterministic. In both cases, this implies the knowledge of the parameter values characterizing such interactions. When this is not possible, due to our lack of system's insights or appropriate measurement tools, one possibility is to resort to statistical studies in view of parameter inference. Then the resulting mathematical model, consisting in a set of differential equations (DEs), will describe the evolution of the system over time, accounting for the variation of each molecular species concentration (or state variable). From the interaction diagram, in fact, one can explicitly extract the relevant set of reactions (chemical reaction network) concerning all the molecular species, and then derive a mechanistic model based on some physical or chemical laws. A general representation is provided by the power-law formalism, but unfortunately it usually requires a degree of knowledge of the system's parameters which might not be available. Therefore, other representations can be employed, e.g. the law of mass action (discussed below), which is a quite standard approach in signaling modeling.

Cellular processes usually behave according to nonlinear relations, thus, in absence of exact solutions to the DEs, numerical simulations (in silico experiments) are a practicable way to investigate the relation between system's dynamics and structure, by means of a variety of model analysis techniques.

Law of mass action

The construction of a mathematical model depends on the physical and chemical assumptions that one decides to make about its system. One of the most commonly used is the law of mass action, claiming that the rate of each chemical reaction is proportional to the product of the reactants' concentrations [Ingalls 2012]. Supposing that network reactions occur in a fixed volume (so that total concentrations of each species are constant), mass action is formally based on the following assumptions:

(i) spatial homogeneity: the reaction volume is well-stirred and all reactants are equally distributed (implying that the value of the reaction rates is spatialindependent);

(ii) continuum hypothesis: the number of molecules is such that each species can be described by a continuous-time concentration.

Sometimes, for the sake of model simplicity, the law of mass action is applied even when the assumption of spatial homogeneity does not hold. In particular, our model of signaling cascade, described in Chapter 3, is obtained by the law of mass action. Eventually, once got the set of DEs, it is not unusual to make some approximations in the purpose of model reduction, based on time-scale separation of the chemical kinetics. Although the model of signaling cascade presented in this Thesis does not rely any model reduction, it is worth to cite the rapid equilibrium approximation and the quasi steady-state assumption (defined in the sequel), which are fundamental concepts in biosystems modeling, for both biochemical and mathematical reasons. By a majority, chemical reaction networks are assumed to follow mass-action kinetics, and many of them are based on irreversible enzyme-catalyzed reactions, from which in 1913, Michaelis and Menten derived the most famous formula describing the rate of such enzymatic reactions. In reality, Michaelis and Menten own their success to Victor Henri, who 10 years before, presented that formula, when studying the hydrolysis reaction of sucrose catalyzed by invertase enzyme (see [FEBS 2013[START_REF] Cornish-Bowden | Athel Cornish-Bowden. One hundred years of Michaelis-Menten kinetics[END_REF] for the centenary of the Henri-Michaelis-Menten equation).

Michaelis-Menten kinetics

Let us consider a substrate S is transformed into a product P , by passing through the intermediate complexes, enzyme-substrate C 1 and enzyme-product C 2 :

S `E a Ý á â Ý d C 1 a 1 Ý á â Ý d 1 C 2 k Ý Ñ P `E .
Let us also assume that the time scale of the conversion of C 1 into C 2 is much faster if compared to the other reactions of association and dissociation (that is called the rapid equilibrium assumption). Hence the system reduces to Let us now suppose that the complex dynamics are much faster than the ones governing the substrate and the product. This can be achieved e.g. by supposing that E T ! S T , which implies a key point of the Michaelis-Menten kinetics, known as quasi steady-state approximation (QSSA), which is mathematically transcribed as dC dt " 0. Actually, since the free enzyme E immediately combines with a molecule of S, the enzyme is always saturated with its substrate; hence the complex concentration is roughly constant with time. Thus, from the derivative of C set to zero, and the conservation law E " E T ´C, we obtain

S `E a Ý á â Ý d C k Ý Ñ P `E . ( 2 
C " E T S K m `S , where K m " d `k a .
By replacing this latter expression for C into the ODE for rate of product formation v " dP dt , then it follows

v " v max S K m `S ,
where v max " kE T .

(2.

2)

The value K m is the well-known Michaelis-Menten constant, and v max is the maximal reaction rate.

The curve defined by (2.2) and portrayed in Figure 2.8, has some peculiar properties. Among them, it is worth to mention that it is an increasing and saturable curve, which is very common in biology. The relation substrate-velocity is linear for small substrate concentrations (S ! K m implying v " vmax Km S), and asymptotic for large substrate concentrations (S " K m implying v Ñ v max ). These two distinct regions characterize the enzyme activity: in the first one, the enzyme is said to be operating in the first-order (or linear) regime, and in the second one, the enzyme is saturated by its substrate and is said to be acting in the zero-order regime. As a result, the product grows proportionally with the substrate concentration when it is low, but from a certain value S ą K m the product rate is independent and attaining its maximal value v max . Moreover, if we define S p as the value of S that produces a reaction velocity being p% of v max , then S 50 " K m and the ratio S 90 S 10 will be always equal to 81, regardless the other parameter values. Sometimes S p is denoted as EC p (effective concentration).

K m v max v max /2 Figure 2.8: Michaelis-Menten equation, with parameters v max " K m " 1.

Covalent modification cycle

The coupling of two Michaelian enzymatic kinetics of type (2.1) describes a general reversible substrate-product reaction. Such a model is frequently used to account for protein-protein interactions, whose diagram is given in Figure 2.9.

In 1981, Goldbeter and Koshland published a pillar work in the domain of signaling cascades based on this model, and explored its properties, highlighting the socalled phenomenon of ultrasensitivity, which will be developed later in Section 2.3.1 (arising for saturated enzyme kinetics), and illustrated in Figure 2.10 (red curve) [ Goldbeter 1981]. In the literature, this curve is often compared to, and sometimes replaced by, the Hill function (see Figure 2.12). In particular, considering the interaction diagram from Figure 2.9 we get the following reaction network:

Y 0 `I a 0 Ý á â Ý d 0 C 0 k 0 Ý Ñ Y 1 `I Y 1 `E a 1 Ý á â Ý d 1 C 1 k 1 Ý Ñ Y 0 `E
we can write the set of ODEs, by way of the law of mass action, to get, among others, the following equation:

dY 1 dt `dC 1 dt " k 0 C 0 ´k1 C 1 .
Then, at steady state, we replace the expressions for the intermediate complexes, considering the conservation equations I T " I `C0 , and E T " E `C1 , thus to obtain:

0 " k 0 I T Y 0 Y 0 `K ´k1 E T Y 1 Y 1 `K1 .
(2.

3)

The following conservation law is considered:

Y T " Y 0 `Y 1 `C0 `C1 « Y 0 `Y 1 ,
where the authors assumed the protein concentration to be in large abundance with respect to the other species concentrations (so that complexed forms become negligible). Let us now set x " Y 1 {Y T the normalized active protein, hence we can rewrite the steady-state equation ( 2.3) as

f1 pI T , xq " k 0 I T 1 ´x 1 ´x `b ´k1 E T x x `a " 0 , (2.4) 
where a and b are the Michaelis-Menten constants, K 1 and K 0 , normalized by Y T . Expression (2.4) represents the steady-state equation derived in [Goldbeter 1981] for a single covalent modification cycle, where sequestration into complexes is neglected. 

Signaling cascade models

A signal transduction cascade of length n is a chain of covalent modification cycles. It can be quite generally described by an autonomous (i.e. time-independent) dynamical system dx dt " f pxq ,

with x P R n the vector of (normalized) species concentrations, and f P R n the vector containing the quantitative description of the dynamics of the molecular reactions. In particular, we illustrate the simplest case of a single-cycle cascade and its extensions to n cycles, by pointing out the pioneering models described by equations of type

dx i dt " f i px i´1 , x i q, i " 1, 2, . . . , n . (2.6) 
GK-like model A direct but non rigorous extension of the model (2.4) is driven by steady-state equations of the form:

f i px i´1 , x i q " k 0 i x i´1 1 ´xi 1 ´xi `bi ´k1 i E iT x i x i `ai " 0, i " 1, 2, . . . , n (2.7) 
with x 0 " I T or, equivalently, using f1 pI T , xq for the first cycle. This system is known as GK-like model (GK standing for Goldbeter-Koshland) (cf. [Ventura 2008]), and comes from a phenomenological description of a n-tier cascade, where the input kinase I is generally replaced by the previous kinase Y 1 i´1 which activates the following cycle, for i " 1, 2, . . . , n and with Y 1 0 " I. The underlying chemical reaction network is the following:

Y 0 i `Y 1 i´1 a 0 i Ý á â Ý d 0 i C 0 i k 0 i Ý Ñ Y 1 i `Y 1 i´1 Y 1 i `Ei a 1 i Ý á â Ý d 1 i C 1 i k 1 i Ý Ñ Y 0 i `Ei (2.8)
The GK-like model is a signaling cascade whose steady states are driven by equations of the type f i px i´1 , x i q " 0. As illustrated in [Li 2012b], this kind of system can be explicitly written as x i`1 " φpx i q , i " 0, 1, . . . , n ´1

or equivalently, x i " φ ´1px i´1 q , i " 1, . . . , n, and can be easily displayed by the so-called cobweb method. From a given x 0 , the subsequent iterates follow a sort of "stair path" between the curve x i`1 " φpx i q and the bisectrix x i`1 " x i , as shown in Figure 2.11, for different kinds of function φ. As φ has only one fixed point, which is either C1-a at low level or C1-b at high level, the steady state x n approaches to it due to its stability. C2 As φ has two fixed points, one is unstable p 1 and the other is stable p 2 . The steady state x n approaches to p 2 only if x 0 ‰ p 1 . C3 As φ has three fixed points, one is unstable p 2 and the other two are stable p 1,3 . The steady state x n approaches, to either

p 1 if x 0 ă p 2 or p 3 if x 0 ą p 2 .
Linear rates model Let us now consider the complexes into the GK-like reaction network (2.8) to be negligible, and the phosphatase concentration E i to be constant. Thus, the two Michaelian reactions become:

Y 0 i `Y 1 i´1 ᾱi Ý Ñ Y 1 i `Y 1 i´1 Y 1 i β i Ý Ñ Y 0 i (2.9)
This is the so-called linear rates model, proposed in [Heinrich 2002]. The second reaction of (2.9) can be derived by assuming spontaneous deactivation of the i-th protein with rate β i , as suggested by [Beguerisse-Díaz 2016].

Mathematically such a network can be formulated as

dY 1 i dt " ᾱi Y 1 i´1 Y 0 i ´βi Y 1 i ,
with the protein concentration supposed to be conserved:

Y iT " Y 0 i `Y 1 i .
By setting x i " Y 1 i {Y iT for the normalized active proteins, then we get

dx i dt " α i x i´1 p1 ´xi q ´βi x i , where α i " ᾱi Y i´1,T (2.10) 
The authors investigated this system under several plausible approximation hypotheses, most importantly two opposite regimes were considered: weakly and strongly activated pathways.

The assumption of weak activation (low free phosphorylated protein concentration, 2.10) to a linear system dx i dt " α i x i´1 ´βi x i . They characterized fastness, duration and amplitude of signal transmission along the cascade by tuning three control parameters: the inverse of the characteristic time of the i-th kinase, namely the kinase activation rate (α i ), the kinase deactivation rate (β i ), and the characteristic time of the input signal duration (1{λ). Especially, the limit of λ Ñ 0 represents the condition of permanent signal activation.

Y 1 i ! Y iT ) reduces equation (
The assumption of strong and permanent activation instead, reduces equation (2.10) to dx i dt " 0, that results in a Michaelian-like formulation:

x i " Y i´1,T x i´1
x i´1 `βi {α i . In particular, under these and other approximations, the authors of [Heinrich 2002] derived the parameter conditions for signal amplification or dampening.

Other interesting results based on the reaction network (2.9), with the assumption of weak activation, have been provided by [Chaves 2004]. Here, signaling efficiency was treated as an optimization problem with respect to the cascade length, and based on definitions of signal duration, signal amplitude, and signaling time (the time for the stimulus to traverse the cascade). In this framework, the authors looked for the conditions making a cascade optimal, i.e. able to respond with sharp output signals. It was found that the parameter set maximizing signal amplitude coincides with the one minimizing signaling time, what determines the optimal length of a cascade to be efficient. The total amplification of a cascade was also calculated as the product of the single step's amplifications/dampenings. Such a product, being commutative, says that -in linear models -signal amplification is independent of the levels' ordering. Moreover, the design for an optimal cascade requires all deactivation rates β i equal for all i, whose exact value depends on the finite length n of the cascade, and the internal gain of the system G "

ś i α i ś i β i .
The addition of a positive feedback, from x n to x 1 , even improves the efficiency of signal transmission, in the sense that good amplification is achieved with a shorter cascade.

More recently, further investigation of the linear model (2.10), in the weakly activated regime, was addressed in [Beguerisse-Díaz 2016]. The authors derived general analytical solutions for the considered linear system, in particular in the case of optimal cascades, that is when β i " β for all 1 ď i ď n [Chaves 2004]. Notably, such solutions have been provided by considering four distinct kinds of input stimulus x 0 ptq: (i) step function, (ii) exponentially decreasing function, (iii) periodic function, (iv) Gaussian function. All these four cases are claimed of biological interest, for example, for the modeling of: (i) any constant stimulus applied (such as temperature, light, treatment), (ii) metabolized molecules, desensitized receptors, (iii) circadian and other biological rhythms, or (iv) drug intake. Each analytical solution

x n ptq represents then the system's response to a given category of stimulus, and essentially depends on the set of parameter tα i , β, nu satisfying the optimal-cascade requirements provided by [Chaves 2004]. In that regard, the authors have pointed out that the choice of identical deactivation rates β for each stage, seems unrealistic from a biological point of view. So, they tested how some relaxations of such hypothesis impinged the cascade output resulting from optimal conditions. Firstly, they focused on near-optimal cascades with random deactivation rates, described by the parameter set tα, β i , nu, with α (same for each level) and n fixed. The β i 's have been sampled from a Gaussian distribution with a given variance σ 2 , and a mean equal to the "true" optimal value, say βn , determined by the choice of α and n.

Regarding cascades activated by a step-function stimulus, it has been proved that it exists a sort of near-optimal analytical solution x n ptq for t Ñ `8, coming from a particular scaling. As we mentioned before, the authors calculated two analytical expressions of the output x n ptq, with inhomogeneous and homogeneous parameters β i , let us denote them x β i n ptq and x β n ptq, respectively. By comparing them, it resulted that the distribution of x β i n pt Ñ `8q for random rates β i " N p βn , σ 2 q is actually well approximated by the distribution of x β n pt Ñ `8q, where the deactivation rates belong to a scaled Gaussian distribution β i " N p βn , σ 2 {nq. A second perturbation from the optimal-cascade conditions has been considered, and consisted in analyzing the effect of a single different deactivation rate β `ε and the effect of its position 1 ď k ď n along the cascade. It has been shown that the position of such a perturbation is independent of the perturbed output, but actually, it lacked a discussion about how the output is consequently modified. Finally, it has been numerically displayed that the linear rates model can reproduce a good fit of simple delayed systems, described by linear delay differential equations (see the pioneer work of [MacDonald 1977]). In particular, Beguerisse et al. provided an explicit relation between n, β, and τ (the delay).

Remark. We notice that equation (2.10) at steady state, corresponds to the steadystate equations (2.7), with the assumption of unsaturated phosphatases and kinases, i.e. respectively, a i , b i " 1, and the definitions α i Y i´1,T "

k 1 i b i and β i " k 1 i E iT a i .
Hill functions An extension of a reversible catalyzed reaction consists in considering an enzyme with n binding sites for its substrate, that is:

Y 0 i `nY 1 i´1 α i Ý á â Ý β i Y 1 i `nY 1 i´1 .
In this case, the system shows the property of cooperativity: substrate binding changes enzyme's affinity for its subsequent substrate. If there is an increase or a decrease of affinity, we talk about positive or negative cooperativity, respectively. If there is no change, we have instead non-cooperative binding. For instance, protein hemoglobin binds 4 molecules of oxygen HbpO 2 q 4 , so it exhibits positive cooperativity, and has a typical sigmoidal curve; while protein myoglobin binds one molecule of oxygen HbO 2 , so there is not cooperativity, and it shows an hyperbolic curve. The equation describing such a phenomenon is known as Hill function and given by y "

x n K n `xn , which relates concentrations of product (e.g. active protein) and enzyme (e.g. kinase), and K corresponds to the EC 50 (the input value giving the half maximal effective concentration of output, that is at 50%). We remark that for n " 1, we recover a Michaelian formulation, which does not have to be confused with the Michaelis-Menten equation (2.2) which relates enzyme activity to substrate concentration (see Figure 2.12). A similar model has been used in [START_REF] Qu | Effects of cascade length, kinetics, and feedback loops on biological signal transduction dynamics in a simplified cascade model[END_REF]].

Reduced mechanistic model Based on the same reaction scheme network of the GK-like models presented previously, and recalled below, it is the work of [Ventura 2008]:

Y 0 i `Y 1 i´1 a 0 i Ý á â Ý d 0 i C 0 i k 0 i Ý Ñ Y 1 i `Y 1 i´1 Y 1 i `Ei a 1 i Ý á â Ý d 1 i C 1 i k 1 i Ý Ñ Y 0 i `Ei
from which it was derived the so-called reduced mechanistic model. Importantly, the conservation equation differs from the GK-like models, as it actually includes the quantity of protein at level i which is sequestrated into complex

C 0 i`1 : Y iT " Y 0 i `Y 1 i `C0 i `C1 i `C0 i`1 with C n`1 " 0 (2.11)
The authors assumed that the total phosphatase concentrations were negligible with respect to total kinase concentrations, so that they could define a slow variable

y i " Y i `C0 i`1 Y iT
. Under the assumptions:

k 0 i Y i´1,T k 1 i Y iT " E iT Y iT ! 1
, and the quasi steadystate assumption (i.e. the dynamics of the complex formation are fast compared to the other ones), they derived the differential equation for y i :

dy i dt " V 0 i y i´1 z i K 0 i `zi ´V 1 i y i K 1 i ´1 `zi`1 K 0 i`1 ¯`y i , i " 1, 2, . . . , n ,
where z i " Y 0 i {Y iT is the normalized inactive protein, K 0 i , K 1 i the normalized Michaelis-Menten constants, and V 0 i and V 1 i are constants. This new formulation involves a coupling of three consecutive levels, which is translated into a hidden implicit negative feedback (also confirmed in [Fages 2008] with an influence graph formalism). Such a formulation proved, for the very first time, that cascades are bidirectional systems, allowing perturbations to propagate both backward and forward at the same time. Damped temporal oscillations has been also observed. Similarly, at steady state, the sequence of phosphorylated proteins x i can generate a non-monotone profile with amplified "pathway" oscillations, increasing with i (Figure 2.13). The reason of this behavior will be disclosed by our research in Chapter 5. The stimulus-response curves are less ultrasensitive (i.e. switch-like) -as an effect of sequestration (already remarked by [Blüthgen 2006]) -than the outcomes of the GK-like model. Moreover, the mild relaxation of the assumptions,

k 0 i Y i´1,T k 1 i Y iT " E iT Y iT ! 1,
do not (significantly) affect the conclusions that draw cascades as bidirectional transmitters owing to a three-variable coupling. 2.13: From [Ventura 2008]. Lateral input is propagated forwards and backwards in the new model. y i [free phosphorylatated protein] is plotted as a function of the index of the unit in the chain, for a chain of 15 units. The status of the chain at t " 21 (in arbitrary units) is indicated with the symbol +, and it corresponds to the steady-state situation. At t " 0, the indicated unit (see asterisk on the horizontal axis) receives a perturbation ∆x, which is then propagated to other units. Times 1 to 10 are plotted in dotted lines.

Another study which takes into account the sequestration due to cycles' wiring, so using the same kind of conservation law (2.11) as in [Ventura 2008], is the one of [Feliu 2012a]. Here, some universal properties on linear cascades of arbitrary length n have been derived, by means of an algebraic formulation of the steady states under the form: .12) which highlights the interaction between three consecutive levels.

Y 1 i´1 " f i pY 1 i , C 0 i`1 q , ( 2 
In particular, some points -which could be seen as pioneering of our work presented in this Thesis -are discussed, such as the existence and unicity of a steady state for each level, the identification of the biologically-meaningful domain of the stimulus-response functions, and the upstream and downstream variability (i.e. how variations in total substrate concentrations are transmitted backward and forward).

Eventually, we briefly mention the model of [Rácz 2008], that we generalized to arbitrary n and in which we have grounded our investigation and derived all the results presented in the present Thesis. Such a formulation is quite realistic, as it includes the intermediate complexes, without any simplifying assumption. Moreover and more technically, the advantage with respect to the model of [Ventura 2008] is that the steady-state equations relate the same kind of variables, and not mixed variables, y i and z i . Indeed, Rácz's representation considers only variables x i (that are free activated proteins), coupled three-by-three as follows:

x i´1 " f i px i , x i`1 q .
Such equations are explicitly derived and analyzed for n " 1, 2, 3, in the aim of finding out which parameters make the cascade an efficient sensitivity amplifier (further detailed in Section 2.3). The generalization of this system of equations for arbitrary n, that we worked out, is presented in Chapter 3. The iterative structure of such a modeling will lead us to an interesting analytical treatment of the cascade at steady state and allow us to examine its properties.

Modularity

Ranging from the domain of evolutionary biology [Raff 2000] to molecular systems biology [Del Vecchio 2008], diverse biomolecular systems, at different scales, has been revealed to be the assembly of several building blocks, or modules. Evidence of modularity, as well as hypotheses on its origin and its selection throughout evolution are reviewed in [START_REF] Günter P Wagner | The road to modularity[END_REF]]. The modular architecture on which systems are built, inspires and justifies the study of system-level behaviors by way of a focused approach, which only takes into account the minimal set of interacting components able to produce a certain phenomenon we are interested to observe. Indeed, this framework suggests a perspective where such modules are separable, functional and autonomous structures, whose functionality remains intact without feeling the effect of the rest of the network, when inserted into it. However, we know that natural systems are conceived such that their components are not completely independent (modular), but neither completely connected (non-modular). The legitimacy of the assumption of modularity in natural biomolecular systems is widely discussed in [Pantoja-Hernández 2015]. Usually, components' independence and functional dissociation are sought features in synthetic biology. In fact, design and implementation of artificial systems essentially consist in the interconnection of independent subsystems, like e.g. the cycles forming a signaling cascade. A module can be identified by clustering methods, which lump biochemical processes according to a common structure, or to a common task. That means that modules can be defined by referring to a morphological (structural) or a physiological (operative) classification. In reality, the complex interactions within natural systems can make difficult to determine the structural and functional boundaries delimiting modules. In that regard, a quantity for measuring local modularity in complex networks has been proposed e.g. by [Xiang 2016]. The authors suggest that biological systems need an optimal functioning between modularity and connectivity. In fact, on the one hand, high modularity offers the advantage of many "entry points" allowing system's regulation, basically through each module's input; on the other hand, it has the drawback of losing system's robustness. Indeed, a probable strategy employed by viruses consists in taking control, by crosstalk interaction, of a host network by intercepting an entry point for their signal. On the other extreme, full connectivity, through redundancy, feedbacks, and any other interlinkages, would lead to a dramatic system's plasticity. Therefore the balance between these two extremes seems a reasonable option for biomolecular networks, so that they can integrate multiple entry points, redundancy, and feedbacks, in a right degree to ensure robustness to parameter fluctuations, controllability, adaptation, flexibility and heterogeneity of behaviors. All that, resulting in an optimal interplay between biological connectivity and isolation, which makes such networks quasi-modular [Sun 2015].

The systems we deal with in this Thesis are intracellullar signaling cascades, which also show a typical modular structure, as interconnection of cycles of covalent modifications. Yet in this case, full modularization of the signal transduction network is not a very plausible idea. It suffices to consider that a wide and diverse set of biochemical processes is regulated by only a few pathways, which were naturally selected and conserved throughout different species (for instance, yeast and human) [Gerhart 1999].

Although modularity assumption for signaling cascade is far from being a realistic assumption, some mathematical models were grounded on it, and are generally described by equations of the type dx i dt " f i px i´1 , x i q, i " 1, 2, . . . , n. Moreover, since module wiring usually is not a free-of-charge process, interconnected modules globally interfere and feel the influence (charge, or load) of the other ones, so that they cannot be expected to behave as the sum of single modules. Different studies focused on the quantification of the degree of modularity in order to minimized it, e.g. [Saez-Rodriguez 2008] (further detailed in Section 5.5.4).

As a result of such interlinks, new phenomena (such as retroactivity) can emerge, and their presence, once quantified, can be used as a measure of the modularity of the network under study. The relation between modularity and the phenomenon of retroactivity has been discussed in the review [Pantoja-Hernández 2015], and previously in [START_REF] Alexander | [END_REF]].

Related to the issue about modularity, some "unexpected" results can appear from experimental studies, like in [Prabakaran 2014] and [Jesan 2013] (discussed later). Mathematical descriptions accounting for the quasi-modular structure of a signaling cascade -and in particular able to capture the retroactive property, i.e. a backward propagation of signals upstream the cascade -are typically of the form [Rácz 2008], [Feliu 2012a], [Catozzi 2016]). This formulation, in fact, considers the coupling of three consecutive levels of the cascade, so that a forth and backward transmission is possible (see Section 2.2.2).

dx i dt " f i px i´1 , x i , x i`1 q (cf.

Retroactivity

There are two sides to every story. (popular wisdom)

The term "retroactivity" was coined in the domain of electric engineering, to indicate the modification of the dynamical properties of a device when matched downstream to another one which, at his turn retroactively affects the previous one. This is a well-know property arising in electrical circuit implementation: the connection in series of several modules may alter, or even disrupt, the flow transmission. In other words, upon connection, and in absence of explicit feedback, upstream modules are subjected to the influence of a downstream element (often called "load"), where the output of the first network becomes the input of the second one.

Signaling networks present many analogies with electrical devices: for instance, both being modularly structured systems with a function of signal transmitters and modulators (see e.g. [Sauro 2007]). Such correspondence has been driven forward at the point that the same terminology and similar approaches have been adopted, just transposing them from electrical to biological systems [Saez-Rodriguez 2005]. Therefore, signaling systems started to be analyzed by their property of retroactivity, seen as a perturbed signal climbing up the pathway, from the bottom, owing to the cycles' interlink.

In [Saez-Rodriguez 2005] retroactivity has been re-examined as a consequence of a lack of modularity in the system, and the authors proposed a criterion of module detection based on the property of retroactive-free connections. They discussed some cases relevant to signaling and metabolic pathways which, under certain assumptions and regimes (such as negligible concentrations, timescale separations, quasi steady-state assumption, etc.), can exclude retroactive interactions emerging among network components, and so ensuring unidirectionality of connection. Based on the above-mentioned criterion, Saez-Rodriguez et al. implemented an algorithm for automatic decomposition of kinetic models of signaling networks, built on network theory (instead of graph theory and clustering methods) [Saez-Rodriguez 2008]. The knowledge of the network structure has been used to define a modularity coefficient (depending on the so-called retroactivity matrix) and has been optimized by means of techniques borrowed from community structure detection.

In this view, the key point is that modularity optimization is a way to reduce retroactive effects, that is, biological modules with low retroactivity can be interlinked without altering the individual dynamics. With this assumption, for instance, the steady-state values of the molecules in a signaling cascade of n stages will not be perturbed by an additional one.

Explicit relation between modularity and retroactivity in biomolecular systems was spotlighted in [START_REF] Alexander | [END_REF]], and re-discussed in the first review article on this topic [Pantoja-Hernández 2015].

There exist different opinions about the role of retroactivity in natural systems. By citing [Pantoja-Hernández 2015]: the question whether "in the practice, retroactivity may be unimportant and leave the systems functionalities unchanged", is still under debate. One of the hypotheses is that biomolecular systems evolved towards a minimization of retroactivity. However, whether this is still true in natural systems, the question remains open to at least two other hypotheses: (i) retroactivity could be intentionally employed to modulate signals, (ii) it could be selectively enhanced or reduced according to the environment.

Retroactive signaling in molecular networks has been theoretically approached in [Del Vecchio 2008]. The authors set a formal framework to model retroactivity, provided a measure of this effect on the upstream system (Figure 2.14), and proposed a method to minimize it through a feedback mechanism by means of an insulator between the upstream and downstream module, inspired by electric engineering. Their analysis is valid in the assumption of timescale separation between the dynamics of "upstream" and "downstream" systems, which is often the case in gene transcriptional networks (protein transcription and translation are slow compared to protein-receptor binding). In particular, a measure for retroactivity to the output (see caption of Figure 2.14 for more details) is derived by applying standard singular perturbation analysis on a simple transcriptional network. In this case, retroactivity resulted to be small if the affinity for the binding with the downstream module is small and/or if the output of the upstream system is large enough compared to the total amount of the downstream ligand, namely, when globally sequestration from the load is small. In such a situation, the authors suggest an insulator device able to: (i) minimize the retroactive effect on the upstream module (retroactivity to the input r « 0), and (ii) keep the same output (in free and complexed form) regardless of any downstream connection. In particular, they explored some conditions such that the mechanism of phosphorylation-dephosphorylation can be an excellent insulator, by illustrating the example of a single-cycle cascade, where the coupling of amplification and negative feedback is shown to be an insulation technique for biological amplifiers (Figure 2.15). They concluded by saying "Here, we argue that another beneficial feature of covalent modification as a signal transduction system is an inherent capacity to provide insulation and thus to increase the modularity of the system in which it is placed". r s ]. An input-output model of a system connected downstream to another system, will send upstream a signal that will alter the dynamics of the first one. System S has internal state x, two types of inputs, and two types of outputs.

An input u, an output y, a retroactivity to the input r, and a retroactivity to the output s. This representation takes into account the main variables related to the interconnection mechanism that alters the output of the system once it is interconnected. A single cycle of phosphorylationdephosphorylation, already known as biological amplifier, is also a simple biological insulation device. Its basic feedback-amplification mechanism attenuates the effect of the retroactivity to the output s. Amplification occurs through Z activating the phosphorylation of X. Negative feedback occurs through a phosphatase Y that converts the active form Xp back to its inactive form X. The stronger the phosphatase concentration, the stronger the feedback and so the insulation from downstream sequestration. The red part belongs to a downstream transcriptional block that takes protein concentration Xp as its input, binding to operator sites on the promoter p.

In the other hand, our current research is dealing with some hypotheses contemplating the possible functional role of retroactivity, either as a natural regulatory mechanism, or in synthetic biology, as a new way of signaling. In that way, the present Thesis is willing to make its contribution to unravel this topic. An empirical example of use of retroactive regulation comes from the interleukin-2 (IL-2) signaling, which is turned on by a stimulus asking for an immunological response concerning T cells [Pantoja-Hernández 2015]. When stimulated, T helper (Th) cells secrete molecules of IL-2, which at their turn bind Th cells receptors and induce their proliferation. However, in the absence of IL-2, Th cells recover a specific state known as anergy, and die. At the same time, Th cells proliferation is controlled by Th regulatory (Treg) cells, whose function is to compete for IL-2 abun-dance to decrease the inflammatory response from the Th cells. Like Th cells, Treg cells divide after binding IL-2, but their division is delayed by the larger number of receptors that have to be bound in order to produce that response. Finally, Treg cells in reason of the higher affinity for IL-2, become a competitor for Th cells, thus regulating their activity. Eventually, such a retroactive mechanism dissimulates a sort of negative feedback. In [Wynn 2011], a model made of two signaling pathways with a common activator, as well as some variations of this former (Figure 2.17), have been investigated, assuming no crosstalk between the two parallel pathways. The authors established that a perturbed pathway (by means of a kinase-inhibitor strategy) is able to affect the parallel pathway, and identified some key parameters enhancing these "off-target effects". The perturbation, propagating by retroactivity to the upstream activator, was transmitted downstream to the non-targeted pathway. The method used here is purely numerical and based on steady-state responses.

A similar idea has been developed by [Jesan 2013], where the findings of [Wynn 2011] were confirmed experimentally on the two parallel JNK and p38MAPK pathways having a common cycle (branched MAPK cascade, with double phosphorylation-dephosphorylation cycles). The authors measured the effect of the clog of a terminal kinase activation in one branch, on the response variation in the other branch. They also pointed out two aspects. The first one concerns two different clog methods (kinase inhibition or expression suppression) surprisingly entailing opposite outcomes (respectively, increasing or decreasing activation in the unperturbed branch), thus underlining the importance of knowing the way a perturbation acts on its target, e.g. in drug design. The second point regards branch asymmetry, which manifests in the fact that perturbations propagate much more significantly from JNK to p38MAPK, than the opposite (already observed, numerically, in [Sepulchre 2012]). The extent of retrograde (or retroactive) propagation was also tested in different configurations (considering more than two branches, combined with single/double phosphorylations, and single/multiple blocked kinases) in order to integrate many important aspects such as: competition between branches for a common activator, competition between previous kinase and phosphatase for unphopshorylated or singly phopshorylated proteins, and kinase sequestration.

The relation between cascade length and retroactive attenuation along a signaling cascade is the focus of [Ossareh 2011]. The considered model is a linear (singly phosphorylated) cascade whose n-th kinase binds a load D. According to classic techniques of linear perturbation analysis, the effect of small perturbations in the total amount of D is evaluated on the steady states of the (free and total) phosphorylated proteins. Some (necessary or sufficient) analytical conditions for attenuation and amplification of retroactive perturbation are derived by means of a local gain term Ψ i (being ă 1 and ą 1, respectively), defined as the ratio between the perturbed free phosphorylated protein at level i and i `1. From such a term, the global gain Ψ tot was calculated as the product of the local gains. In addition, particularly under a few assumptions (among which the weak activation, as defined in [Heinrich 2002]), the analytical conditions for amplification resulted opposite to the ones for attenuation, which underlies separated parameter regions characterizing opposite cascade behaviors. The authors also highlighted sign-reversal in the retroactive signal: inducing alternatively negative and positive effect as the perturbation travels up to the cascade, starting from a negative effect on the last kinase as the load increases. The probability of retroactivity amplification/attenuation in cascades with varied length n was assessed by means of numerical simulations (with parameter ranges taken from the literature). In particular, global attenuation was found to be generally more likely than global amplification, and it becomes sure for cascades of length n ě 6. However, in average, natural signaling cascades are made of only 3 tiers, which increases the probability of amplification of a downstream perturbation.

Shorter signaling cascades have been examined in [Sepulchre 2012] (using models inspired from [Wynn 2011] and [Ossareh 2011]) according to the central notion of cycle activation and deactivation (i.e., respectively, the ratio between the maximal rates of activation and deactivation is supposed greater or smaller than 1). Combinations of activated and deactivated cycles, as a function of the terminal kinase or phosphatase concentrations, are classified in view of the optimization of upstream or parallel responses. It was found out that, in a simple linear one-or two-tier cascade, cycles' deactivation is a key element to increase retroactivity. Conversely to engineering purposes (like e.g.

[Del Vecchio 2008]), in [Sepulchre 2012] the focus is most on retroactivity maximization than minimization, so adhering to the less classic perspective which considers this phenomenon yet likely operating in biology, and potentially in combination with forward propagation.

In [Lyons 2014] is presented an interesting theoretical study on two simple networks, one synthetic and the other natural: the genetic toggle switch (with a load added on each repressor), and the Ras-Raf cascade (where Raf is seen as a load for Ras activation steps). Their analysis was based on stochastic simulations and bifurcation diagrams showing how loads can affect system's dynamical properties such as bistability, irreversibility, and oscillations.

Finally, a purely algebraic approach on an arbitrary long linear cascade is introduced by [Feliu 2012a]. Beyond several mathematical points concerning the cascade steady states -such as unicity and stability, their formulation as rational functions, or their biologically-meaningful domain of existence -the authors analyzed the well-known dose-response curves, as a consequence of varying substrate and phosphatase levels. The property of retroactive signaling was also proved to have alternate positive-negative influence upon transmission. A combination of the mathematical description of [Feliu 2012a] and the one of [Rácz 2008] are the bases which the present Thesis is built on. Some experimental studies (in vivo or in vitro) were conducted to shed some light on retroactivity, through the observation of any direct manifestation of the same [Jiang 2011, O'Shaughnessy 2011, Jesan 2013, Kim 2011, Prabakaran 2014].

As an evidence of the fact that the scientific community does not have an official designation yet, this phenomenon has been named differently according to the authors: hidden feedback [Ventura 2008], load-induced modulation [Jiang 2011], negative regulation [O' Shaughnessy 2011], upstream variability [Feliu 2012a], load bias [Lyons 2014], intrinsic feedback [Sepulchre 2013], retrograde propagation [Jesan 2013], bidirectional (retroactive) couplings among modules [Saez-Rodriguez 2008].

Then it has been also more generally recognized as the consequence of: sequestration effects [Blüthgen 2006], downstream targets [START_REF] Ventura | [END_REF]], kinase inhibitor [Wynn 2011], substrate-dependent control [Kim 2011]; and a cause for: long-range interactions [Jesan 2013], off-target effects [Wynn 2011].

Signaling working principles

The most widespread hypothesis about signal processing suggests signaling cascades as biochemical switch-like amplifiers. In this view, the concepts of signal amplification and sensitivity range constitute the central parameters of such systems.

The work of [Blüthgen 2006] e.g. leans toward the idea of cascades operating as switch-like devices. In [Sauro 2007], instead, the opposite hypothesis is defended, and MAPK pathways are seen as biochemical feedback amplifiers, showing a linear graded response over an extended operating range. According to the authors, this may be a way to enhance robustness with respect to internal and external perturbations, ensuring functional modularization. Notably, graded responses have been proposed to arise from the coupling between ultrasensitivity and negative feedback, and that has been discussed on a MAPK cascade with (strong) negative feedback.

Despite the apparent incompatibility of these two hypotheses, it has been shown that in vivo both mechanisms subsist and signal processing can be effectuated through smoothly graded or switch-like responses. The biological function dictates the required nonlinearity, formulated as hyperbolic or sigmoidal (or logistic) functions, respectively. A popular example is illustrated by the curves relating, respectively, myoglobin or hemoglobin to the partial pressure of oxygen. The fraction of bound proteins as a function of the oxygen concentration is described by the Hill function y " x n K n `xn , where K is the Michaelis-Menten coefficient, with n " 1 or n " 2 ´3, respectively [Ingalls 2012]. Myoglobin stores oxygen in muscle tissue, so that oxygen binding slowly reaches saturation. To get an idea, this family of curves requires a 81-fold change in ligand concentration to pass from 10% to 90% saturation, and for small concentrations the relation is linear. Instead, hemoglobin serves to bind and release oxygen with a rapid turnover, so that a small variation in ligand concentration will produce a drastic change in saturation. For instance, between lungs and capillaries, the variation in oxygen can be of only 5-fold to have an efficient shuttling.

Other kinds of stimulus-response function arise when kinase and/or phosphatase (in a monocycle cascade) are saturated. These four cases were suggested by [Gomez-Uribe 2007], and then re-illustrated by [Ferrell 2014a] in Figure 2.20, with the method of the rate-balance plots (representing saturating and non-saturating dynamics for kinase and phosphatase activities, discussed in Section 2.3.1). The resulting dose-responses was found to be: (A) hyperbolic, (B) threshold-hyperbolic, (C) signal-transducing (kind of ultrasensitive-linear), (D) ultrasensitive-sigmoidal.

Beyond their repeated basic chain-structure, signaling cascades present a wide variability in the signal treatment, according to their biochemical parameters, components' interactions, and embedding in a system-level network. They have been recognized to be able to: amplify weak signals, accelerate the speed of signaling, steepen the profile of a graded input as it propagates, filter out noise in signal reception, introduce time delay, allow alternative entry points for differential regulation, show adaptation, generate an irreversible on/off response or more generally multistable states, introduce oscillations, etc. Apparently, at the origin of some of these distinct behaviors there is the so-called ultrasensitivity [Ferrell 2014a]. Such an important feature is discussed in the following section, after a brief paragraph on how sensitivity can be measured.

Measures of sensitivity

The steepness of a sigmoidal response (approximated by a Hill function) is related to the so-called Hill coefficient n or, more frequently n H , which represents the index of cooperativity. It is a common measure of the switch-like character of a process, and e.g. in [Huang 1996] is defined as

n H " ln 81 lnpEC 90 {EC 10 q ,
where it involves the effective concentration (EC) of the input for 90% and 10% of the maximal response. Moreover, for Hill functions, an increase of the sensitivity n H implies a decrease of the EC 50 (the amount of input required to achieve a halfmaximal output) [O' Shaughnessy 2011].

There also exist alternative measures of sensitivity, based on the EC values, like the ratio EC 90 EC 10 , called cooperativity index, which actually furnishes a better global measure of sensitivity, when the response is not well-approximated by the Hill equation, provided that has a sufficiently low basal level [Goldbeter 1981].

Otherwise, as mentioned in [Gunawardena 2005], on can consider the difference EC 90 ´EC 10 , called the switch value, which inversely increases with sensitivity.

As a local measure of sensitivity, it is worth to mention the local sensitivity or response coefficient (as named in the context of metabolic control analysis) or logarithmic gain (from biochemical systems theory), defined e.g. in [Gunawardena 2005] by

R " s x dx ds " dx{x ds{s " d lnpxq d lnpsq ,
representing the fractional change of the response x with an infinitesimal variation of stimulus s. The maximum of the local sensitivity over the entire stimulus range is known as logarithmic sensitivity.

More recently, in [Legewie 2005], it has been proposed a new global measure of sensitivity, which overcomes the issues encountered when the considered response function significantly deviates from the best-fit Hill equation, especially if the basal level is high. Such a measure is based on the response coefficient R, as a function of the response x (which must be normalized between 0 and 1). The area under the curve Rpxq (in a interval rx L , x H s Ď r0, 1s) is compared to the one of a chosen reference curve Rpxq, where x " xpsq could be in principle any monotone response function. This measure has been termed relative amplification coefficient and is given by

n R " | ş x H x L R x dx| | ş x H x L Rx dx| .
Notably, as a reference function xpsq, it might be convenient to choose the Michaelis-Menten function, because it would define a threshold for subsensitive responses, since it is associated to a Hill coefficient n H " 1.

Ultrasensitivity

Ideally, ultrasensitivity is the phenomenon for which a gradual input is converted into a binary response [Ferrell 2014a]. In practice, it determines three regions (for low, medium and high stimuli) enabling filtering out (by keeping the system close to its basal state), switch (abrupt changes over a narrow range), and maximal response (saturation). Ultrasensitivity has been firstly observed by Hill while tracing the curve of hemoglobin-oxygen binding, from empirical data. Hemoglobin has four binding sites operating cooperatively (i.e. the first site promotes the affinity for the following binding and so on), and this feature was considered a source for such a ultrasensitive behavior.

The purpose of ultrasensitivity In a very simplified framework, in the review article of [Ferrell 2014b] it is exposed the role of ultrasensitivity in the outcome of signal transduction. The authors showed how a linear cascade made of moderately ultrasensitive tiers generates sensitivity amplification (defined as the increase in foldchange output relative to the fold-change input). They considered the input-output relation of each tier being described by a Hill function

x i " hpx i´1 q " x n i´1 K n `xn i´1 , for i " 1, 2, 3 ,
and mapped the interval I 0 " rEC 10 , EC 90 s of the initial input x 0 into the interval of x 1 (finding I 1 " r0.1, 0.9s), then keeping going with the iteration until obtaining the interval I 3 " h ˝h ˝hpI 0 q of the final output x 3 . Hence, they compared the size of I 0 and I 3 and it followed that: for n " 1, the cascade, being made of hyperbolic tiers, enables a dampening of the response with its length; for n " 2 signals are transmitted down the cascade without distortion; and for n ą 2 signals are amplified (Figure 2.18). Therefore, the Hill coefficient n was exploited to measure the ultrasensitivity, and resulted a key feature for a cascade to act as a biochemical amplifier.

Due to the iterative character of this reasoning, such conclusions hold for arbitrarily longer cascades. However, such a representation is built on the three constraining assumptions: that each tier can be represented by a Hill function, implicitly requiring the system to be modular, and so neglecting the effects of wiring. As a consequence, this over-simplification calls into question the interplay of ultrasensitivity whenever the system is subjected to sequestration.

The methodology we will present in this Thesis is also based on an iterative function, which however takes into account the retroactivity of the system, so enriching the possible scenarios of signaling. Its recursive nature will be exploited particularly to get dose-response curves, and more originally, we will reformulate it as a dynamical system evolving in its phase space.

Beyond signal amplification, ultrasensitivity is essential to get a sufficient degree of nonlinearity in the outcome, so to induce more complex dynamical behaviors, such as multistability, robust adaptation and oscillation. These phenomena are at the basis of higher-level cellular mechanisms, e.g. cell fate determination, homeostasis and biological rhythm [Zhang 2013].

The origin of ultrasensitivity In [Zhang 2013] there are reviewed six main categories, with distinct kinetic mechanisms, underlying ultrasensitivity: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signaling, (iv) molecular titration, (v) covalent modification cycle (zero-order ultrasensitivity) and (vi) positive feedback (see Figure 2.19). In particular, multisite phosphorylation may promote ultrasensitivity especially if the activation sites are large in numbers, and if there is a phenomenon of cooperativity between them. Also, some proteins do not require all their occupied sites to become activated (thus they have a set of essential sites and a set of inessential ones), however the presence of such inessential sites is an ultrasensitivity promoter (see [Ferrell 2014a] for a review on ultrasensitivity).

Before experiments, theory identified the so-called zero-order ultrasensitivity. Actually, the pioneering work of [Goldbeter 1981] showed that in a single covalent modification cycle, the steady-state response can exhibit a kind of ultrasensitivity, which do not arise from phenomena such as cooperativity, but from enzymes operating near saturation (i.e. in the zero-order region, where the relation stimulusresponse is roughly constant). Thus it was named zero-order ultrasensitivity. This result has been obtained on a single cycle of phosphorylation-dephosphorylation assuming:

(i) low kinase and phosphatase concentration with respect to protein concentration (ii) Michaelis-Menten kinetics for the enzymes' activity (instead of mass action kinetics, according to which the reaction rate is directly proportional to the concentration of the substrates involved) i.e. v " vmaxY K`Y (cf. Section 2.2.2). Based on [Gomez-Uribe 2007], the authors of [Ferrell 2014a] showed four cases combining whether the two enzymes follow either Michaelis-Menten or mass action kinet- ics, by means of a rate-balance plot separating the terms with positive and negative sign (contributing, respectively, to phosphorylation and dephosphorylation) giving the phosphorylated fraction of protein Y 1 {Y T OT (active protein over its total concentration) in the steady-state equation, Figure 2.20. In particular, if both the enzymes are far from saturation, we have a hyperbolic response (blue curve in panel A of Figure 2.20); while if the phosphatase is operating near saturation but the kinase is not, we have a threshold-hyperbolic response (B). Ultrasensitivity is achieved for both enzymes saturated, where the curve shows a threshold and then an abrupt switch reaching the maximal saturation level.

Often assumption (i) above-mentioned is unrealistic, therefore one has to take into account a non-negligible amount of enzymes. In [Goldbeter 1981], the authors numerically showed that both sensitivity and maximal saturation decrease as the enzymes' concentrations augment (equal kinase and phosphatase concentrations have been considered).

Experimental evidence of the theoretical results of Golberter and Koshland has been provided at first by [LaPorte 1983] on the reversible phosphorylation of isocitrate dehydrogenase, and then by [Huang 1996] on a MAPK cascade (with double phosphorylation of the second and third tiers) in Xenopus oocyte extracts. This latter article showed that ultrasensitivity of the stimulus-responses, while moving down the cascade, was essentially due to the double phosphorylations, even though zero-order ultrasensitivity overall contributed. Numerical results were in good agreement with their experimental curves.

In [Blüthgen 2006] it has been established that, in the case where the concentration of kinases and phosphatases is comparable (as it is usually the case in signaling networks but not in metabolic ones) -that is when protein sequestration is significant (this often occurs in vivo) -cascade sensitivity (even of length 1) decreases with the assumption of zero-order ultrasensitivity (which is not a sufficient condition for ultrasensitivity anymore). Thus the conclusions of [Goldbeter 1981], based on negligible phosphatase amounts, do not hold in this case, suggesting that ultrasensitivity must arise from a different mechanism than zero-order ultrasensitivity, such as multisite phosphorylation. Furthermore, in a MAPK cascade with negative feedback, sequestration can prevent sustained oscillations and introduce a delay in the signal transduction, by making the cascade robust to short stimuli and able to respond when the perturbation lasts sufficiently long.

Similarly, in [Feliu 2012a] it is claimed that each level provokes the reduction of the maximal response (due to sequestration), except if the new level accounts for a very large protein concentration.

The article of [Gomez-Uribe 2007] found out a variation on the condition for saturated enzymes, based on the total quasi-steady-state assumption, which guarantees ultransensitive responses (for monocycle cascades) even for kinases and phosphatases taken in comparable concentrations (plus other three operating In [Rácz 2008], the authors have carried on a parameter analysis about sensitivity (measured as Hill and logarithmic sensitivity) and efficacy (maximal output value) of a n-cycle cascade, n " 1, 2, 3, pointing out the effect of enzymatic asymme-try, namely the ratio between affinities for kinase and for phosphatase of the same cycle, say a{b. Unsaturated kinases and saturated phosphatases, i.e. b ą a, resulted to be sufficient and necessary conditions to prevent protein sequestration, which in fact negatively impacts sensitivity amplification, as confirmed by [Blüthgen 2006].

The work of [O' Shaughnessy 2011] explored the origin of ultrasensitive responses in a synthetic MAPK cascade with either double and single phosphorylations tiers for the second and third levels. In both cases, ultrasensitivity showed supramultiplicative accumulation throughout the levels, and a strong dependence on kinase cascading (i.e. kinase amounts progressively increasing) as well as on the parameters responsible for the cascade activation, and optimal scaffold concentration. However, conditions for zero-order ultrasensitivity (i.e. enzymes' saturation) and dephosphorylation reactions resulted to be non-critical but generally improving ultrasensitivity. Their results are based on the analysis of the variation of three control parameters: Hill coefficient, EC 50 , and signal strength of the output response.

To conclude this section, we mention the review papers of [Zhang 2013] and [Ferrell 2014b], where it is discussed the prompting role of ultrasensitivity in phenomena as multistability and oscillatory behavior. Such behaviors never occur in a cascade of singly phosphorylated units [Feliu 2012a]. Whereas, they can arise from more complex models, involving e.g. double phosphorylation cycles (like in natural MAPK cascades) [Ortega 2006, Qiao 2007b, Sepulchre 2013], enzyme sharing [Feliu 2012b], compartmentalization [Bhalla 2011, Harrington 2013], positive or double-negative feedback loops [Ferrell 2002, Blüthgen 2006, Feliu 2015], coupled positive and negative loops [Sarma 2012], substrate-dependent control [Liu 2011], etc. This Thesis will not deepen into these latter nonlinear aspects, mainly because the model of signaling cascades we discuss and exploit here does present a unique steady state, which already show several complex aspects to unravel! Chapter 3

Analytical Study of Linear

Signaling Cascades 

Introduction

The system we consider is an arbitrary signaling cascade made of n tiers, each consisting in a cycle of covalent modifications, like e.g. single phosphorylationdephosphorylation cycles. Such a system is called linear signaling cascade in [Feliu 2012a] and is illustrated in Figure 3.1(a) (in black). It is triggered at the top by an activator molecule, Y 1 0 , which binds and phosphorylates the first protein Y 0 1 and so on. The input stimulus we consider is dimensionless and proportional to the activator concentration, and hereon denoted as s. We remark that are unconventional representations of cascade, which we designed with the purpose to convey the idea of bidirectional signal transduction, exposed in the sequel.

General stationary properties of a linear cascade, of arbitrary length n (whenever possible), will be brought to light, by studying the effect of stimulus s on the dimensionless active proteins of the cascade, denoted as x 1 , x 2 , . . . , x n (Figure 3.1(b)). Therefore, the so-called dose-response functions x 1 psq, x 2 psq, . . . , x n psq will be at the center of our investigation. Furthermore, a compound D (in orange in Figure 3.1(a)) at the bottom of the cascade will be also considered to illustrate the phenomenon of retroactivity arising from kinase inhibition. Remarkably, such an approach is one of the most employed drug-targeted therapeutic strategies to limit cascade activity [Cohen 2002]. Biologically, the drug sequestrates part of the n-th kinase (according to its concentration and biochemical affinity) so that the change in the available amount of Y 1 n will decrease the amount of dephosphorylated protein Y 0 n and affect its interaction with the previous kinase (through complex Y 0 n Y 1 n´1 , denoted C 0 n ). As a consequence, less kinase Y 1 n´1 will be required by its following tier -thus resulting in a load-release for the pn ´1q-th cycle -and more free kinase will be available to be dephosphorylated -thus implying an increase of the amount of Y 0 n´1 . In its turn, this latter will augment the load charge for the previous tier n ´2. The reasoning repeats, with alternatively negative and positive influence, starting from the last and ending to the first tier. In this way, the drug artificially originates a second stimulus, denoted as d T (dimensionless and proportional to the drug concentration), whose effect can be measured on upstream levels through what we have named drug-response functions, x 1 pd T q, x 2 pd T q, . . . , x n pd T q. More generally, retroactivity is the backward propagation of a perturbation which can act at any level of the cascade. Therefore, in order to probe retroactivity, there is no need to introduce another molecule in the system (e.g D), but any perturbation of parameters (e.g binding affinities, reaction rates, or total concentrations) can have an influence on upstream stages (preceding the one where the perturbation is applied), and it will be possible to measure the retroactive effect.

In this chapter, we will develop the mathematical model of the steady states as a system of three-by-three coupled equations, under the form of an iterative function, notably relating the dimensionless variables in Figure 3.1(b) (Section 3.2). We will show how to obtain dose-response functions x i psq and drug-response functions x i pd T q, for 1 ď i ď n (Section 3.3). Analytical study of the dose-response will be then led to identify some control parameters -such as slope, curvature, and asymptotes -from which we will establish a criterion characterizing the efficiency of the forward signaling. In particular, asymptotes will be shown to depend on the fixed points of the iterative function above-mentioned, which are analytically more achievable (Section 3.5). The question of retroactivity related to drug-responses will be introduced, then the discussion will be extended and inscribed in a more general framework, where retroactivity is related to the chosen mathematical model (Section 3.6). Retroactivity from drug-responses will be further addressed in Chapter 4 (with numerical and statistical tools), and in Chapter 5 (analytically).

The Model

The kinetic description of the system illustrated in Figure 3.1(a) (in the absence of drug D) is deduced by applying the law of mass action to the following reaction network (i " 1, 2, . . . , n):

Y 0 i `Y 1 i´1 a 0 i Ý á â Ý d 0 i C 0 i k 0 i Ý Ñ Y 1 i `Y 1 i´1 (3.1a) Y 1 i `Ei a 1 i Ý á â Ý d 1 i C 1 i k 1 i Ý Ñ Y 0 i `Ei (3.1b)
We assume that both the activation reaction (3.1a) and the inactivation reaction (3.1b) are enzymatic and irreversible. We denote the species: Y 0 i and Y 1 i , the inactive and active form of protein, respectively, C 0 i and C 1 i , the enzyme-substrate complexes, and E i the enzyme phosphatase, at the i-th tier, with i " 1, 2, . . . , n. We also denote the kinetic rates: a i and d i for, respectively, the association and dissociation constants, and k i the catalytic rate. The convention is that upper index 0 pertains to inactive forms (no phosphate groups), while 1 to activate forms (one phosphate group involved).

By applying the law of mass action on reactions (3.1a)-(3.1b), one obtains a system of ordinary differential equations (ODEs), expressing the variation of the species' concentrations with time (2n complexes and 2n proteins, in both active and inactive forms) as follows:

dC 0 i dt " a 0 i Y 0 i Y 1 i´1 ´pd 0 i `k0 i q C 0 i (3.2a) dC 1 i dt " a 1 i Y 1 i E i ´pd 1 i `k1 i q C 1 i (3.2b) dY 0 i dt " ´a0 i Y 0 i Y 1 i´1 `d0 i C 0 i `k1 i C 1 i (3.2c) dY 1 i dt " ´a1 i Y 1 i E i `d1 i C 1 i `k0 i C 0 i ´a0 i`1 Y 0 i`1 Y 1 i `pd 0 i`1 `k0 i`1 q C 0 i`1 , (3.2d) 
with Y 0 n`1 " C 0 n`1 " 0. Morevover, we assume the total concentrations of the activator enzyme Y 1 0 , the n phosphatases E i , and the n proteins Y i , to be constant. So that one has the following conservation laws (i " 1, 2, . . . , n):

Y 0T " Y 1 0 `C0 1 (3.3a) Y iT " Y 0 i `Y 1 i `C0 i `C1 i `C0 i`1 , with C 0 n`1 " 0 (3.3b) E iT " E i `C1 i . (3.3c) 
At steady state, all the ODEs (3.2a)- (3.2d) are set to zero. Thus, from the sum of (3.2a) and (3.2c), we get

k 0 i C 0 i ´k1 i C 1 i " 0 , for i " 1, 2, . . . , n .
Then combining (3.2b) and (3.3c), where we define K j i " pd j i `kj i q{a j i , for j " 0, 1 (the so-called Michaelis-Menten constants), one obtains:

C 1 i " E iT Y 1 i K 1 i `Y 1 i
while from (3.2a) one gets:

C 0 i " Y 1 i´1 Y 0 i K 0 i .
Hence, the set of equations (3.2) and (3.3) is reduced to the following system of p2n `1q steady-state equations (SSEs), i " 1, 2, . . . , n:

Y 0T " Y 1 0 `Y0T Y 0 1 K 0 1 `Y 0 1 (3.4a) k 0 i Y 1 i´1 Y 0 i K 0 i ´k1 i E iT Y 1 i K 1 i `Y 1 i " 0 (3.4b) Y iT " Y 1 i `Y 0 i `Y 1 i´1 Y 0 i K 0 i `EiT Y 1 i K 1 i `Y 1 i `Y 1 i Y 0 i`1 K 0 i`1 . (3.4c)
We remark that equation (3.4c) expresses a coupling between proteins of three consecutive stages i ´1, i, and i `1.

Kinase inhibition Amongst the possible extensions of the model equations, we consider here the possibility for a kinase inhibitor to bind the last protein of the cascade (species D in Figure 3.1). Indeed this addition is motivated by studies in the context of anti-cancer therapies ( [Berg 2005, Coulthard 2009, Csermely 2013] for review), and overall is a simple and direct way to study the phenomenon of retroactivity in signaling pathway [START_REF] Ventura | [END_REF], Wynn 2011, O'Shaughnessy 2011, Jesan 2013, Catozzi 2016]. In the present context, by retroactivity we mean the modification of cycles' variables, upstream with respect to the affected tier, e.g. Y 1 n , as a function of the total concentration of kinase inhibitor D T , which is an additional parameter. Although the property of retroactivity seems to appear naturally, due to the coupling described by equation (3.4c), it is often neglected in mathematical models of signaling pathways (e.g [Goldbeter 1981, Heinrich 2002, Chaves 2004, Russo 2009, Li 2012b], etc.). Retroactivity will be treated as part of a wider framework in Section 3.6, at the end of this chapter.

More specifically, the binding of a drug D to the activated protein in the last stage of the cascade can be described by the chemical reaction:

Y 1 n `D a D Ý Ý á â Ý Ý d D C D . (3.1c) 
Thus the ODE system (3.2) gains a new equation

dC D dt " ´dD dt " a D D Y 1 n ´dD C D , (3.2e) 
The addition of this new equation does not change system (3.2) but only modifies the assignment of the terms indexed by n `1 in (3.2d) and (3.3b) as follows:

a 0 n`1 " a D , d 0 n`1 " d D , k 0 n`1 " 0, Y 0 n`1 " D, and C 0 n`1 " C D .
Equation (3.3b) is replaced by

Y iT " Y 0 i `Y 1 i `C0 i `C1 i `C0 i`1 , with C 0 n`1 " C D , (3.3b 1 )
and the additional conservation law

D T " D `CD (3.3d)
must be taken into account, where D T is the total concentration of drug in the system.

We define the drug dissociation constant K D " d D {a D , and by using also (3.3d), we derive, from (3.2e), the following steady-state equation: Theorem 3.1 (Steady-state iterative function). For a given value of x n P r0, χ n s, the steady states of the (normalized) active proteins of a cascade of length n are determined by the second-order iterative function

C D pK D `Y 1 n q ´DT Y 1 n " 0 . ( 3 
x i´1 " f i px i , x i`1 q (3.5)
defined on a subspace of R 2 , for i " 1, 2, . . . , n, with x i "

Y 1 i Y iT and x n`1 " 0. Function f i is given explicitly by f i px i , x i`1 q " b i e i x i px i `ai q p1 ´xi ´ei`1 x i`1 {px i`1 `ai`1 qq ´ci x i , (3.6) 
with the following dimensionless parameters:

a i " K 1 i Y iT , b i " K 0 i Y iT , c i " ˆ1 `k1 i k 0 i ˙EiT Y iT , e i " k 1 i E iT k 0 i Y i´1,T , (3.7) 
with e n`1 " 0, and arbitrary values for a n`1 ‰ 0. Furthermore, the stimulus s P r0, `8r activating the cascade and defined as

s " k 0 1 Y 0T k 1 1 E 1T , (3.8) 
can be computed from s " f1 px 1 , x 2 q, with f1 px 1 , x 2 q " x 1 x 1 `a1 `b1 x 1 px 1 `a1 q p1 ´x1 ´e2 x 2 {px 2 `a2 qq ´c1 x 1 . (3.9)

Moreover, function f 1 is such that x 0 " f 1 px 1 , x 2 q, which is related to s by

x 0 " 1 ´x1 spx 1 `a1 q . (3.10)
In the case of kinase inhibition, the last equation is replaced by

fn px n , d T q "
b n e n x n px n `an q p1 ´xn ´dT x n {px n `ad qq ´cn x n , (3.11)

where d T " D T Y nT and a d " K D Y nT . (3.12) Proof. The starting point is the conservation equation Y iT " Y 0 i `Y 1 i `C0 i C1 i `C0 i`1
, which, at steady state, is equivalent to (3.4c). In particular, we work out equation (3.4c) with the aim of making it dependent on only one variable, e.g. Y 1

i . We replace in the order: Y 0 i "

K 0 i Y 1 i´1 C 0 i , C 0 i " k 1 i k 0 i C 1 i , and C 1 i " E iT Y 1 i K 1 i `Y 1 i
. Then we divide by the total protein Y iT to get

1 " Y 1 i Y iT `K0 i Y iT k 1 i k 0 i E iT Y 1 i´1 Y 1 i K 1 i `Y 1 i `ˆk 1 i k 0 i `1˙E iT Y iT Y 1 i K 1 i `Y 1 i `k1 i`1 k 0 i`1 E i`1,T Y iT Y 1 i`1 K 1 i`1 `Y 1 i`1
.

By setting x i " Y 1 i {Y iT as dimensionless variable, it follows

1 " x i `K0 i Y iT k 1 i k 0 i E iT Y i´1,T x i´1 x i K 1 i Y iT `xi `ˆk 1 i k 0 i `1˙E iT Y iT x i K 1 i Y iT `xi `k1 i`1 k 0 i`1 E i`1,T Y iT x i`1 K 1 i`1 Y i`1,T `xi`1 .
Therefore, defining a i , b i , c i , e i as dimensionless parameters as in (3.7), we obtain

1 " x i `bi e i x i x i´1 pa i `xi q `ci x i a i `xi `ei`1 x i`1 a i`1 `xi`1 (3.13)
Equivalently, we can rearrange the latter equation with respect to x i´1 as

x i´1 " b i e i x i px i `ai q p1 ´xi ´ei`1 x i`1 {px i`1 `ai`1 qq ´ci x i .

By denoting the right-hand term of this latter equation as f i px i , x i`1 q, we recover (3.6). This formulation is valid for any i " 1, 2, . . . , n, however the cases i " 1 and i " n are special because establishing a sort of boundary conditions.

Case i " 1 By using the conservation law

Y 1 0 " Y 0T ´C0 1 from (3.3a), we rewrite Y 0 i " K 0 i Y 1 i´1 C 0 i , then replace C 0 1 " k 1 1 k 0 1 C 1 1 , and C 1 1 " E 1T Y 1 1 Y 1 1 `K1 1 . Hence, Y 0 1 " K 0 1 k 1 1 E 1T k 0 1 Y 0T Y 0T ´k1 1 E 1T k 0 1 Y 0T " K 0 1 k 0 1 Y 0T k 1 1 E 1T Y 1 1 `K1 1 Y 1 1 ´1 .
We set s " pk 0 1 Y 0T q{pk 1 1 E 1T q as defined in (3.8), representing the dimensionless stimulus. Then we normalize by the total first-protein concentration and use definitions (3.7) to finally get

Y 0 1 Y 1T " b 1 x 1 spx 1 `a1 q ´x1
, and reformulate equation (3.13) as

1 " x 1 `b1 x 1 spx 1 `a1 q ´x1 `c1 x 1 x 1 `a1 `e2 x 2 x 2 `a2 . 
Hence,

s " x 1 x 1 `a1 `b1 x 1 px 1 `a1 q p1 ´x1 ´e2 x 2 {px 2 `a2 qq ´c1 x 1 ,
where the right-hand term will be denoted by f1 px 1 , x 2 q, so to obtain (3.9). Moreover, we remark that by definition s " 1{e 1 (cf. equations (3.7) and (3.8)). Then, multiplying both sides of (3.9) by e 1 (or by 1{s), and defining x 0 " 1 ´x1 { `spx 1 `a1 q ˘as in (3.10) we obtain the sought relation

x 0 " f 1 px 1 , x 2 q .
Case i " n In the extension where one considers a drug binding the last active protein of the cascade -as introduced in the paragraph «Kinase Inhibition» above -the last complex is non-null, that is

C 0 n`1 " C D " pD T Y 1 n q{pK D `Y 1 n q (from (3.4e)). It follows, for i " n, that (3.13) modifies into 1 " x n `bn e n x n x n´1 px n `an q `cn x n x n `an `dT x n x n `ad ,
where d T and a d are dimensionless parameters defined in (3.12). Hence, we obtain x n´1 " b n e n x n px n `an q p1 ´xn ´dT x n {px n `ad qq ´cn x n .

(3.14)

Similarly as before, we rewrite it as

x n´1 " fn px n , d T q .

Remarkably, this latter equation reduces to x n´1 " f n px n , x n`1 " 0q, as d T " 0 (cf. equation (3.6) with i " n). In fact, from (3.3b), C 0 n`1 " 0 indicates that drug is absent so term d T xn xn`a d " 0 in (3.14). Therefore, fn px n , d T " 0q " f n px n , x n`1 " 0q . Theorem 3.1 presents a steady-state formulation of a linear n-tier cascade, based on the iterative function f i : R 2 Þ Ñ R, defined in (3.6) and relating three consecutive dimensionless variables (active proteins) x i´1 , x i , x i`1 (with x i " Y 1 i {Y iT and x n`1 " 0).

Remark. The fact that f i is a rational function has been discussed in [Feliu 2012a], but the explicit form of this function was not given, as we do here. Although the equation x i´1 " f i px i , x i`1 q can be explicitly inverted into x i`1 " h i px i´1 , x i q (as detailed in the forthcoming Section 3.3.2) in order to have increasing indexes, the most natural definition is derived with decreasing indexes (as shown in the proof of Theorem 3.1).

Remark. Equation (3.6) is a generalization of the one presented (for a 3-tier cascade) in [Rácz 2008], extented to an arbitrary length n. Moreover, in [Feliu 2012a] an equivalent formulation (2.12) has been suggested, where (non-normalized) quantities from three consecutive stages are related, as in our case, by a rational function. which is typically discontinuous and presents asymptotes and several branches of values that are not biologically relevant. The question of selection of the biologicallymeaningful region is a major point in the analytical treatment of the function and is discussed in the following section. On of the novelty with respect both these articles is the addition of a drug in our system equations.

Biologically-meaningful response functions

The iterative formulation introduced in Section 3.2.1 provides a way to compute the steady-states responses of the cascade as well as any input-output function of type x i psq, best known as dose-response function.

Another kind of response function can be obtained by considering the dependence of the SS concentrations on the total drug. We term these functions, x i pd T q, as drug-response functions, which will provide insight into how the cascade response is affected by kinase inhibition. Drug-responses describe the impact of a downstream input on previous levels, therefore they become a convenient formulation to characterize backward, or retroactive, signaling. Despite their novelty, mathematically, drug-responses present some common features with dose-responses, which are widely treated in [Feliu 2012a] via an purely algebraic approach.

Dose-response functions

By iteration of maps fn , f i , and f1 , we can deduce s as a function of x n . In practice, for a fixed value of d T , we consider x n P r0, 1s (as normalized, every x i is bounded by 1), and calculate x n´1 , x n´2 , . . . , x 1 , and s by means of the following algorithm:

x n´1 " fn px n , d T q (3.15a) x i´1 " f i px i , x i`1 q, for i " n ´1, . . . , 2 (3.15b) s " f1 px 1 , x 2 q (3.15c)
By increasing x n continuously (starting from 0), we actually obtain functions spx i q's. Typically, these are rational functions, namely they present asymptotes and are overall non-injective, as illustrated in the left panel of Figure 3.2). Such features have been anteriorly highlighted and investigated in detail in [Feliu 2012a], where especially it has been proved that linear signaling cascades are monostationary systems. As they cannot exhibit multistability for any given parameter set (rate constants or total initial amounts of substrates and enzymes), among all the curves in Figure 3.2 (left panel) only one is the sought biologically-meaningful steady state (BMSS). In other words, functions spx i q take BM values in a restricted domain of [0,1], where every response function spx i q is continuous, increasing and invertible.

Restricting the domain of the response functions to their BM region allows to determine, by functional inversion, the well-known dose-responses x i psq (right panel of Figure 3.2). Non-BM curves are characteristic of this iterative method; whereas other computational methods (e.g based on ODE solvers) usually returns the unique BMSS as the only solution. Let us note that response functions spx i q are obtained from (3.15) for values of x n P r0, χ n r, if we keep iterating for x n ą χ n , we get curves with no biological relevance. Algorithmically, we stop the iteration of (3.15) when s diverges so to determine the interval r0, χ n rĂ r0, 1s. Eventually, the dose-response functions are obtained by inverting spx i q in the restricted domain r0, χ i s, to get the BM curves, that are x i psq, each having an horizontal asymptote for x i " χ i (right panel of Figure 3.2), that is: lim sÑ0 x i psq " 0 and lim sÑ`8

x i psq " χ i , with χ i depending on d T .

Remark. From a computational point of view, this procedure is more efficient than others based on ODE integration. For instance, we implemented it in Matlab TM and compared it with the ode15s method. Our procedure resulted around 100 times faster.

Drug-response functions

The introduction of D in the system aims to investigate the retroactive effect of the binding drug on the activation of the upstream cycles through what we have named drug-response functions x i pd T q (i " 1, . . . , n). Such functions take the total amount of drug as a tunable parameter, provided s ą 0 fixed.

We consider the system of equations (3.15c)-(3.15b)- (3.15a) and invert such relations so to be reformulated, respectively, as x 2 " ȟ1 ps, x 1 q (3.16a)

x i`1 " h i px i´1 , x i q, i " 2, . . . , n ´1 (3.16b) d T " ĥn px n´1 , x n q . (3.16c)
Analogously to algorithm (3.15), we take s fixed and x 1 varying in [0,1], then using equations (3.16), we compute x 2 , x 3 , . . . , x n and finally d T . In this way, we deduce d T as a function of x 1 (see Figure 3.3). More precisely, the functions of (3.16) are explicitly given by ȟ1 ps, x 1 q " a 2 ´´s ´x1

x 1 `a1 ¯ppx 1 `a1 qp1 ´x1 q ´c1 x 1 q ´b1 x 1 s ´x1

x 1 `a1 ¯ppx 1 `a1 qp´1 `x1 `e2 q `c1 x 1 q `b1 x 1 (3.17a) h i px i´1 , x i q " a i`1 px i´1 ppx i `ai qp1 ´xi q ´ci x i q ´bi e i x i q x i´1 ppx i `ai qp´1 `xi `ei`1 q `ci x i q `bi e i x i , 1 ă i ă n (3.17b) ĥn px n´1 , x n q " px n `ad q px n´1 ppx n `an qp1 ´xn q ´cn x n q ´bn e n x n q x n´1 x n px n `an q , (3.17c)

where parameters are defined in (3.7), and a d " K D {Y nT . By setting x 0 " 1 ´x1 spx 1 `a1 q , we can write ȟ1 ps, x 1 q " h 1 px 0 , x 1 q.

Algorithm (3.16) numerically produces functions d T px i q for i " 1, 2, . . . , n, which, exactly as the dose-responses, are rational functions and with a unique BMSS to be selected. Notably, we point out that from both algorithms (3.15) and (3.16), every x i results related to both s and d T , so to express a simultaneous dependence of each x i on s and d T , i.e. x i " x i ps, d T q. The difference is that dose-responses typically describe the variation of the x i 's as a function of s, having d T fixed in (3.15a); whereas drug-responses describe the variation of the x i 's as a function of d T , having s fixed in (3.16a). Therefore, for fixed s and d T , (3.15) and (3.16) return the same value of x i . Without loss of generality, we choose d T " 0 and s very large (s Ñ `8), and we fix the cascade length n. Firstly, from (3.15), as dose-responses x i psq are saturating functions, the resulting steady state x i will tend to an asymptotic value, say χ rns i (depending on n). Formally we write:

χ rns i " lim sÑ`8 x i psq| d T "0 .
On the other hand, from (3.16), we also get x i Ñ χ i as d T " 0 and s Ñ `8, that is

χ rns i " lim d T Ñ0
x i pd T q| s"1 .

Indeed the latter equality establishes that the starting point of the BMSS of the drug-response function (for infinite s) corresponds to the maximal value of the doseresponse function (with no drug), see Figure 3.4. Moreover, for infinite drug, the BMSS x i pd T q tends to an asymptotic value. This limit describes the case where the free protein Y 1 n is completely sequestrated by a very large amount of drug, namely the normalized variable x n tends to 0. Practically, this condition entails a decoupling of the n-th cycle from the previous ones, so that the cascade reduces to n ´1 stages without drug. As a consequence, we have

lim d T Ñ`8 x i pd T q| s"1 " lim d T Ñ0
x i pd T q rn´1s | s"1 which, for a similar reasoning than before, it is equal to lim sÑ`8 x i psq rn´1s | d T "0 that corresponds to the saturating value of x i in a cascade of n ´1 cycles, say χ rn´1s 1

. As a result, the variation of the drug-response function x i pd T q, denoted ∆x i " lim d T Ñ`8 x i pd T q ´xi pd T " 0q, can be generally computed as

∆x i " χ rn´1s i ´χrns i .
In particular this variation is negative if n is odd, and positive otherwise. This is due to the way a perturbation at the bottom of a cascade affects the upstream units, i.e. in an alternate manner [Feliu 2012a]. Figure 3.4 illustrates an example of this method which allows us to detect the BM branch of the drug-response function x 1 pd T q.

Back-/Forward function Algorithm (3.15) is based on a second-order iterative function f i which we name backward function, as it derives x i´1 from pairs px i , x i`1 q. Similarly, algorithm (3.16) is based on the forward function h i , giving x i`1 from pairs px i´1 , x i q.

[2]

[3] 

Analytical characterization of the iterative function

Mathematically, any dose-response x n psq can be expressed as a MacLaurin series, i.e. x n psq " ř jě0 x pjq n p0q j! s j , where j is an integer and x pjq n p0q denotes the j-th derivative of x n evaluated at the point s " 0. In theory, if we could calculate all the derivatives up to a sufficient degree j, we would actually know x n psq with a good approximation.

Starting from this idea, in this section we derive the general expressions of the first and second derivatives of the dose-response function, for arbitrary biochemical parameters and cascade length. Moreover, since each dose-response is a saturable function, we are also interested in determining the maximal last-tier response χ n , as s tends to infinity. We will then show that, under certain assumptions, the output χ n has a lower bound, that is the largest fixed point x i of the iterative function f i derived in Section 3.2.1. Since χ n is not analytically attainable without using numerical techniques, the interest of working with x i is double. First, it constitutes a round down of χ n ; second, it has a nice expression, as a function of the cascade parameters, thus allowing further analytical explorations.

This section is rather dense of formalism but is essential since it will furnish all the tools we will make use of in Section 3.5. In particular, in view of analyzing which parameters and which parameter ranges characterize an efficient forward signaling along a linear cascade.

First derivative of the dose-response

Equation x i´1 " f i px i , x i`1 q describes the iterates of a second-order iterative function, which can be expressed as system

" x i´1 " f i px i , y i q y i´1 " g i px i , y i q 1 ď i ď n , (3.18) 
or, more compactly, we can write

z i´1 " F i pz i q , (3.19)
where z i " ˆxi y i ˙and F i " ˆfi g i ˙, with f i px i , y i q as defined in (3.6) and

g i px i , y i q " x i .
In this case, we have the choice of considering, for i " 1, f1 instead of f 1 , thus s " f1 px 1 , x 2 q instead of x 0 " f 1 px 1 , x 2 q.

With F i : R 2 Þ Ñ R 2 we define a backward two-dimensional map, associating z i´1 to z i .

By iterative application, we can obtain z 0 as a function of z n , i.e. z 0 " F 1 ˝F2 ˝. . . ˝Fn pz n q , and in particular calculate its first derivative with respect to variable x n , thus according to the chain rule:

dz 0 dx n " ź 1ďiďn J i pz i q ¨dz n dx n , (3.20) 
where

J i " ˜Bf i Bx i Bf i By i Bg i Bx i Bg i By i ¸for 1 ď i ď n ,
is the Jacobian matrix associated to map F i . For the homogeneity of notation, for i " 1, we intend function f1 instead of f 1 , so to work with stimulus s " f1 px 1 , x 2 q instead of x 0 " f 1 px 1 , x 2 q; and for i " n, we take fn . Hence, in (3.20) we have dz 0 dxn " ´ds dxn , dx 1 dxn ¯T and dzn dxn " ´dxn dxn , dx n`1 dxn ¯T " p1, 0q T , so the first component of dz 0 dxn , i.e. s 1 px n q " ds dxn , is given by

ds dx n " p1 0q ¨ź 1ďiďn J i px i , x i`1 q ¨ˆ1 0 ˙. (3.21)
In particular, we have

J 1 p0, 0q " ¨1 `b1 a 1 0 1 0 ' and J i p0, 0q " ¨bi e i a i 0 1 0 ' and 2 ď i ď n Since dx n ds " ˆds dx n ˙´1 ,
the slope of the dose-response function x n psq at the origin, dxn ds ps " 0q, is simply obtained by inverting expression (3.21) over the biologically relevant domain, and evaluating it at s " 0. Hence, we get the initial slope as .22) Let us note that this formula is derived for an arbitrary cascade with inhomogeneous parameters, describing the contribution of any system's parameter to the slope of the dose-response function. In particular, for homogeneous parameters (we omit parameter subindexes), the initial slope is given by

x 1 n p0q " a 1 1 `b1 ź 2ďiďn a i b i e i . ( 3 
x 1 n p0q " a 1 `b ´a b e ¯n´1 .

Second derivative of the dose-response

Let us assume that z 0 px n q is a twice differentiable function and let be Hf i "

¨B2 f i Bx 2 i B 2 f i Bx i By i B 2 f i Bx i By i B 2 f i By 2 i ' and Hg i " ¨B2 g i Bx 2 i B 2 g i Bx i By i B 2 g i Bx i By i B 2 g i By 2 i '
the hessian matrices associated to F i . Deriving expression (3.20) with respect to x n once again, we generally find

d 2 z 0 dx 2 n " ź 1ďiďn J i pz i q d 2 z n dx 2 n `ÿ 0ďjăn ź 0ďiďj J i pz i q ¨ˆdz j`1 dx n ˙T Hf j`1 pz j`1 q dz j`1 dx n ˆdz j`1 dx n ˙T Hg j`1 pz j`1 q dz j`1 dx n ‹ ‹ '
with J 0 " I 2 (the identity matrix 2 ˆ2), and explicitly,

dz j`1 dxn " ś n k"j`2 J k pz k q dzn dxn . By selecting the first component of d 2 z 0 dx 2 n , denoted d 2 s dx 2 n
, we can calculate the inverse derivative through the relation

d 2 x n ds 2 " ´d2 s dx 2 n ˆds dx n ˙´3 .
We remark that, since g i px i , y i q " x i , the column vector d 2 zn dx 2 n and every matrix Hg i pz i q have zero elements, and expression of d 2 z 0 dx 2 n simplifies. Additionally, although the evaluation of the latter equation at the origin makes the expression of the initial curvature x 2 n ps " 0q simpler, the general formula for arbitrary n still remains cumbersome, and symbolic computations (e.g. with Maple TM ) are necessary. As an example, for n " 3 and inhomogeneous parameters, the initial curvature is given by

β " ´2 ˆa1 a 2 a 3 p1 `b1 qb 2 e 2 b 3 e 3 ˙3 ˜b1 b 2 a 1 ˆe2 b 3 e 3 a 2 a 3 ˙2 ˆ2 ´b2 a 1 1 ´b1 b 2 p1 ´a1 ´c1 q a 1 b 1 1 `b1 a 1 b 2 e 2 b 3 e 2 3 a 2 a 2 3 ˆe3 ˆ1 ´b3 p1 ´a2 ´c2 q a 2 ˙´1 `a3 ˆ1 `dT a d ˙´c 3 ˙¸(3.23)
We finally remark that, with respect to the initial slope x 2 n p0q depends on the whole parameter set ta i , b i , c i , e i }.

Fixed points of the iterative function

In the characterization of the response functions of our system, we will see that an important role is played by the fixed points of function f i , especially in its discrete dynamical system formulation (3.19), henceforth discussed in Chapter 5. Sometimes in the sequel, we will assume that the dimensionless cascade parameters, defined in equations (3.7) (page 48), are the same for each i " 1, 2, . . . , n. In this case, such a system is usually called homogeneous, and we will omit to write the lower index i, if unnecessary. Proposition 3.1 (Fixed points). Let be f homogeneous with same parameters at each tier i. Then, it has at most three fixed points x ˚in the unit interval [0,1], where x ˚" 0, x `, x ´, with x ˘" 1 ´a ´c ´e ˘ap1 ´a ´c ´eq 2 `4pa ´beq 2 .

(3.24)

Moreover, if real, x `ă 1.

Proof. Solving the fixed point equation x " f px, xq, with f defined in (3.6), leads to the third order equation

x 3 ´p1 ´a ´c ´eqx 2 ´pa ´b eqx " 0 , which always admits x " 0 as a solution, as well as two other roots (possibly complex) x ˘given by (3.24). Moreover, we verify that x `is bounded by 1, by replacing the expression of x `from (3.24). So the latter inequality reduces to c `pb `1q e ą 0 , which is always verified, since b, c, e are strictly positive by definition (3.7) (page 48).

Remark. In general, when we refer to homogeneous functions f , we implicitly refer to a parameter homogeneity for the intermediate levels, excluding tiers 1 and n. In fact, functions are slightly different, i.e. f1 and fn , but also, in what concerns the parameters, they depends respectively on e 1 " 1{s and e n`1 " 0.

In the sequel, we demonstrate that, for homogeneous cascades of arbitrary length n, the value of the maximal response χ n for very large stimulus s can be estimated by the largest fixed point x ˚of the homogenous function f , i.e. satisfying the equation x ˚" f px ˚, x ˚q . To prove that proposition, we first need some formulas and a lemma.

Partial derivatives of f i We report here the expression of the derivatives of functions f i (1 ă i ă n), f1 and fn , which will be useful for Lemma 3.1.

Bf i Bx px, yq " b i e i `ai p1 ´ei`1 y{py `ai`1 qq `x2 px `ai qp1 ´x ´ei`1 y{py `ai`1 qq ´ci x ˘2 (3.25) Bf i By px, yq " a i`1 b i e i e i`1
x px `ai q py `ai`1 q 2 `px `ai qp1 ´x ´ei`1 y{py `ai`1 qq ´ci x ˘2 (3.26)

B f1

Bx px, yq " a 1 px `a1 q 2 `b1 `a1 p1 ´e2 y{py `a2 qq `x2 px `a1 qp1 ´x ´e2 y{py `a2 q ´c1 x ˘2

B f1

By px, yq " a 1 b 1 e 2 xpx `a1 q py `a2 q 2 `px `a1 qp1 ´x ´e2 y{py `a2 q ´c1 x ˘2

B fn Bx px, yq " b n e n `an p1 ´dT x{px `ad qq `x2 `dT xpx `an q{px `ad q 2 px `an qp1 ´x ´dT x{px `ad q ´cn x ˘2 B fn By px, yq " b n e n x 2 px `an q px `ad q `px `an qp1 ´x ´dT x{px `ad qq ´cn x ˘2

Partial derivatives of f i evaluated at fixed points The fixed-point equation x " f i px, xq allows to simplify the expressions of the partial derivatives when evaluated at a fixed point px, xq.

Let us consider at first equation (3.25) with y " x, that is

Bf i Bx px, xq " b i e i `ai p1 ´ei`1 x{px `ai`1 qq `x2 px `ai qp1 ´x ´ei`1 x{px `ai`1 qq ´ci x ˘2 .
The purpose is to recover the fixed-point equation x "

b i e i x px`a i qp1´x´e i`1 x{px`a i`1 qq´c i x in the right-hand side of the latter equation, in order to simplify the notation. In this case, let us multiply numerator and denominator by b i e i x 2 and then use the fixed-point equation, so that:

Bf i Bx px, xq " pb i e i xq 2 `ai p1 ´ei`1 x{px `ai`1 qq `x2 px `ai qp1 ´x ´ei`1 x{px `ai`1 qq ´ci x ˘2 b i e i x 2 " x 2 `ai p1 ´ei`1 x{px `ai`1 qq `x2 bi e i x 2
With the same reasoning on Bf i By px, xq from equation (3.26) with y " x, then the two simplified expressions will be given by By hypothesis x ˚ě 0, then it follows that the denominator of the latter equality must be positive. That imposes 1 ´x˚´e x ˚{px ˚`aq ą 0, that is

Bf i Bx px, xq " x 3 `ai`1 x 2 `ai p1 ´ei`1 q x `ai a i`1 b i e i px `ai`1 q (3.27) Bf i By px, xq " a i`1 e i`1 x px `ai q b i e i px `ai`1 q 2 . ( 3 
1 ´ex ˚{px ˚`aq ą 0 ,
which ensures the positiveness of 1 ´ex ˚{px ˚`aq `x2 {a. Therefore, for y " x ˚fixed, f is increasing in variable x.

Proposition 3.2 (Lower bound of χ n ). Let be x ˚ě 0 the largest fixed point of the homogenous function f . Then the maximal response χ n (provided d T " 0) is lower bounded by x ˚, i.e. x ˚ď χ n .

Proof. We work in the limit s Ñ `8, so that for all 0 ď i ď n χ i " lim sÑ`8 x i psq, and χ 0 " 1 (from (3.10) at page 48). We firstly rewrite system (3.6) as

1 " f pχ 1 , χ 2 q χ i´1 " f pχ i , χ i`1 q, 1 ă i ă n χ n´1 " f pχ n , 0q
Let us now suppose the claim is false, that is

χ n ă x ˚.
By considering the arguments about function increasing of Lemma 3.1 (i.e. f is increasing in y for all x, and increasing in x for y " x ˚), we obtain

f pχ n , 0q ď f pχ n , x ˚q ă f px ˚, x ˚q, namely χ n´1 ă x ˚.
Then, a similar reasoning applies for the following backward iteration:

f pχ n´1 , χ n q ă f pχ n´1 , x ˚q ă f px ˚, x ˚q, i.e. χ n´2 ă x ˚.
Eventually it follows 1 " χ 0 ă x ˚. However, this is in contradiction with Proposition 3.1 which proves that x ˚ă 1. Therefore, our claim x ˚ď χ n must be true, and our thesis is demonstrated.

Beyond its mathematical interest, the utility of Proposition 3.2 is also that it can be used to control the parameters of a signaling cascade (complying with the mentioned hypotheses) in such a way that its maximal output response χ n could be above a prescribed value established by fixed point x ˚.

Enhancing the forward signaling

The dose-response function x n psq expresses how the activated protein in the last cycle of the cascade varies with the input signal s (proportional to the total enzyme Y 0T activating the first cycle of the cascade), given the quantity d T fixed e.g. to zero. With our backward function f i , we naturally obtain function spx n q, as discussed in Section 3.3.1. The inverse function x n psq is not easy to obtain analytically, in particular, for a cascade of n ě 3 tiers, because this would require to find the roots of a high-degree polynomial. Nonetheless, we will illustrate how to provide qualitative knowledge of the non-saturating region, and quantitative estimation of the saturation value of the dose-response function by making use of the results from Section 3.4.

In order to simplify the analytical expressions we will assume homogeneous parameters. Then, we will derive the parameter conditions responsible for an efficient forward signaling along a linear cascade, whose steady states are described by map f i . In other words, we will deduce the combinations of parameter ranges which maximize the dose-response function in terms of efficiency -that is, intuitively, when a dose-response achieves a sufficiently large asymptotic value for relatively low s.

Analytical approximation of the dose-response

The strategy consists in approximating x n psq piecewisely by matching analytical quantities (depending on parameters) evaluated at the origin (s " 0) with the ones deduced at saturation (s Ñ `8). As illustrated in Figure 3.5, dose-responses are typically hyperbolic, or logistic-like (also known as sigmoidal or S-shaped), like in the example of myoglobin and hemoglobin, mentioned in Section 2.3. Such a distinction is at the basis of the following approach. Analytically, the non-saturated part of the dose-response function is roughly described by a polynomial function (of first or second order according to the initial curvature sign -negative or positive, respectively), and the saturated part by a constant function. More formally, we state that if the initial curvature β " x 2 n p0q ď 0 (Figure 3.5(a)), then:

x n psq " " α s 0 ď s ă p χ n s ě p with p " χ n α , (3.29) 
where 0 ă α ă 8 and 0 ă χ n ă 1 are defined as α " x 1 n p0q and χ n " lim sÑ`8 x n psq, and p is the intersection point of lines y " αp and y " χ n . In the other case, if β ą 0 (Figure 3.5(b)), then:

x n psq " " α s `1 2 β s 2 0 ď s ă q χ n s ě q with q " ´α `aα 2 `2 β χ n β , (3.30) where q is the intersection point of curves y " αq `1 2 βq 2 and y " χ n .

Hence, a dose-response function can be sketched by a simple curve depending on the three parameters pα, β, χ n q. Precisely, if x n psq is upward convex (β ď 0), the dose-response only depends on its initial slope α and on its asymptotic value χ n , while if x n psq is logistic-like (β ą 0), also the value of its initial curvature β plays a role (if β is large, the dose-response function will reach its asymptotic value for relatively low doses).

An advantage of such a methodology is that, α and β can be analytically calculated, and χ n estimated, in function of the biochemical parameters of the cascade. In turn, these results can be used to connect the parameters with standard characteristics of response functions, like the half maximal effective concentration EC 50 , or effective Hill coefficient n H . For example, simple estimates of the EC 50 can be provided by the value of s such that x n psq " χ n {2 in equations (3.29) and (3.30), yielding the results:

EC 50 " $ ' & ' % χ n 2α if β ď 0 ´α `aα 2 `β χ n β if β ą 0 (3.31)
Effective Hill coefficients can be subjected to several definitions. A possible estimate may be obtained by calculating twice the response coefficient R " s xnpsq x 1 n psq (introduced in Section 2.3 at page 34) at s " EC 50 .

Sufficient conditions to enhance the dose-response

Finding analytical conditions which maximize the response amplitude χ n " lim sÑ`8 x n psq is not trivial because, as mentioned before, the function x n psq is generally speaking intractable. Nevertheless, for a homogeneous cascade, Proposition 3.2 (page 61) proves that the asymptotic value of the dose-response curve χ n is lower bounded by the largest BM fixed point of map f . This is interesting mainly when this fixed point is non-trivial i.e. 0, but strictly positive, which we know to be given by x `" 1 ´a ´e ´c `ap1 ´a ´e ´cq 2 `4pa ´b eq 2 , (3.32) with a, b, c, e defined in (3.7) (cf. Proposition 3.1 at page 58).

Let us then assume that x `exists positive. As a result, since x `ď χ n , requiring a large x `is sufficient to have a large amplitude χ n , and therefore this will promote an efficient forward signaling (see criteria below).

The parameters (α, β, χ n ) characterizing the sketchy dose-response curves in expressions (3.29) and (3.30) will be replaced by the set (α, β, x `), whose elements can be expressed as functions of the cascade parameters pa, b, c, eq.

In fact, from the general formulas derived in Sections 3.4.1 and 3.4.2, respectively, for the first and second derivatives of x n psq, we can calculate the slope and the curvature at s " 0, so to obtain explicit expressions for α and β.

For homogeneous parameters and n " 3, the initial slope of the dose-response is given by

α " a 1 `b ´a b e ¯2 , (3.33) 
and the initial curvature, for d T and a d fixed, is given by

β " ´a 1 `b ´a b e ¯4 ˆb2 e 2 a 2 `a `b pa `c ´1q ´1˘`a p1 `bqd T a d `p1 `bqe a `a `b pa `c ´1q ˘`p1 `bqpa `c ´1q ˙. (3.34)
With the aim of finding the analytical conditions on parameter sets that enhance forward signaling, we state the following criteria.

Criteria of efficient forward signaling

We say that a parameter set provides efficient signaling if it maximizes α and χ n , if β ď 0, or maximizes β and χ n , if β ą 0.

Application of the guide lines furnished by such criteria leads to some sufficient conditions ensuring forward signaling to be efficient. Proposition 3.3 (Sufficient conditions for efficient forward signaling). Sufficient conditions optimizing the downstream propagation in a homogeneous cascade of length 3 are deduced from the criteria of efficient forward signaling. Combined parameter ranges for convex (β ď 0) and logistic-like (β ą 0) curves are reported in the following table .   Parameters Suff. conditions for

β ď 0 β ą 0 a " K 1 Y T ą 1 ! 1 b " K 0 Y T ă 1 ă 1 1{e " k 0 Y T k 1 E T " 1 " 1 c ´e " E T Y T ! 1 ! 1 a{b " K 1 K 0 ą 1 ! 1 
Proof. In general, we remark that the forward signaling is enhanced when no fraction of the last active protein gets sequestrated by the drug, namely for d T " 0 in (3.34).

Especially, we observe that the sign of the initial curvature β is controlled by the terms a `b pa `c ´1q ´1, a `b pa `c ´1q and a `c ´1 .

In particular, we distinguish two cases: a ą 1 and a ! 1 (which are of special interest from a biological point of view, as explained later). If a ą 1 then β results to be non-positive. Thus, according to the criterion above-mentioned, the slope is maximized if, from (3.33), we require a " b e and b ă 1. Moreover, given the previous conditions, the fixed point x ìn (3.32) is maximized if it also yields e ! 1 and c ! 1 (from which it follows E T {Y T ! 1). Conversely, the positiveness of β is assured by the condition a`b pa`c´1q ă 0 (i.e. a{b `a `c ´1 ă 0 implying a `b pa `c ´1q ´1 ă 0 and a `c ´1 ă 0 too), which is actually satisfied if a ! b and a, c ! 1. Moreover, β has to be maximized through the term a 1`b `a be ˘4 from equation (3.34), namely for a " b e and b ă 1. Eventually, all these conditions ensure x `to be already maximized.

The conditions reported in the table of Proposition 3.3 have a precise interpretation, relying on three well-known concepts in biology: enzyme saturation, protein sequestration, and cycle activation. For an enzymatic reaction, the enzyme is said to be saturated by its substrate when the Michaelis-Menten constant is small compared with the total concentration substrate. On the other hand, if the total enzyme concentration is not small compared with the total substrate, the free substrate is expected to be sequestrated by the substrate-enzyme complex. Moreover, in the case of an enzymatic cycle, we call activation parameter, the ratio between the maximal reaction rates of the two enzymes phosphorylating and dephosphorylating a protein.

In light of this terminology, the first line of the table of Proposition 3.3 shows that convex and logistic-like dose-responses are characterized respectively by non-saturation and high saturation of the phosphatases. A similar observation, but concerning a single enzymatic cycle, was reported in [Gomez- Uribe 2007]. So this finding turns out to be generalizable to a whole cascade. The second line of the table indicates that a moderate saturation of the kinase is also a condition that promotes forward signaling, whatever the curvature of the dose-response is. Finally, the third and fourth lines reveal two general features enhancing forward signaling: high activation of the enzymatic cycles as well as non-sequestration of the active proteins by the phosphatase. This latter result is in agreement with [Blüthgen 2006], where the authors compare the effect of sequestration and non-sequestration on logistic-like dose-responses in a MAPK (Mitogen Activated Protein Kinase) cascade. These conditions, derived from analytical calculations, will be compared with the results of a numerical method presented in Chapter 4.

Study of the retroactive signaling

By retroactivity we mean any perturbation that, applied at a certain level of a cascade, propagates upstream, thus altering the steady-states of the previous tiers. In our system, this perturbation is initiated by a compound D (called drug) inhibiting the activated protein at the n-th tier. Our goal is to study the effect of such a perturbation on the upstream levels as a function of some normalized drug concentration d T , assuming that the signal s at the top of the cascade is constant and fixed at a high value. We classify the retroactivity according to its maximal propagation range, so that we call retroactivity of order k (1 ď k ď n ´1), the variation of the activated protein at the pn ´kqth level as a function of the drug concentration, described by the drug-response x n´k pd T q. In particular the highest order of retroactivity in a linear cascade corresponds to the response curve x 1 pd T q.

As shown by [Feliu 2012a], a perturbation propagates upstream in an alternated way so that, at level n, the amount of activated protein decreases, at level n ´1 it increases, then it decreases at level n ´2 and so on, up to the first level. It follows that function x 1 pd T q is increasing if n is even and decreasing if n is odd. Moreover, retroactivity is overall attenuated in long cascades, but can propagate and amplify its effect for n sufficiently small, e.g. equal to three [Ossareh 2011].

Here, although we have derived the drug-response functions by inverting the iterative functions f i defined in (3.6) (cf. Section 3.3.2 at page 53), analytical characterization of the x i pd T q's is not easy for two reasons. Firstly, as we have briefly mentioned in Section 3.3.2, calculating the amplitude of the drug-response variation requires numerical tools to get the asymptotes of the two associated dose-responses (cf. Figure 3.4 at page 55). Secondly, the study of the derivatives at the origin d T " 0 becomes too complicated to be performed analytically, with a similar method we used for the dose-response functions x i psq at s " 0, 1 ď i ď n (cf. Sections 3.4.1 and 3.4.2). In this case, the main drawback is that, for d T " 0, we have x i pd T q ‰ 0 for any 1 ď i ď n, so that the expressions of the initial slope and curvature of each drug-response x i pd T q do not reduce to nicer expressions. However, in Chapter 5 we will present another approach which, among other results, will lead us to an explicit simple formula for the derivative of the drug-response x 1 pd T q (possibly generalizable to other stages

2 ď i ď n).
Therefore, in Chapter 4, we will deal with the question of drug-responses, and so retroactivity, by means of a numerical method.

We will compute the amplitude of the drug-response functions by using an algorithmic approach, for n " 3 fixed, considering ∆x i the difference between the values lim d T Ñ`8 x i pd T q and x i pd T " 0q, for i " 1, 2. In these computations x i pd T " 0q corresponds to the limit of the dose-response function x i psq, for s Ñ `8, while lim d T Ñ`8 x i pd T q corresponds to the limit of the dose-response function x i psq, for s Ñ `8, for the same cascade but composed only by the first n ´1 levels (as a result of the total sequestration of the last-level active protein by the drug, at steady state).

Before introducing our numerical investigation, we end this chapter with some further general considerations on the origin of retroactivity in biomolecular networks.

Retroactivity arising from modeling

Several different modeling approaches have been employed to investigate the properties of signaling, some of them missed to be exploited to investigate what we termed retroactive (backward) propagation, and some others were just not able to account for it. In this section we give a mathematical explanation of what distinguish systems with and without retroactivity, based on the type of equations used for modeling.

At first, let us consider a dynamical chain made of coupled units characterized by variables x i (i " 1, . . . , n). We suppose that the steady-state equations of this chain (e.g signaling chain) can be written as a system of coupled equations:

g i px 1 , . . . , x n ; p i q " 0, i " 1, 2, . . . , n (3.35) 
Each function g i can depend on several parameters that here are represented by a generic name p i and belong only to unit i.

Definition 3.1 (Retroactivity-free systems). One says that system (3.35) is retroactivity-free if and only if a perturbation of a parameter p i belonging to unit i (i " 1, 2, . . . , n) does not change the steady state variables of any upstream units i ´1, i ´2, . . . 1.

Proposition 3.4. Suppose that, for i given, every function g i depends only on upstream variables px 1 , . . . , x i q. Then the system is retroactivity-free. Moreover a perturbation of parameter p i affects in general all the steady-state variables of downstream units i `1, i `2, . . . , n.

Proof. Let δp i be a perturbation of parameter p i belonging to unit i. We seek variations of the steady states δx i ‰ 0 such that g i px 1 `δx 1 , . . . , x n `δx n ; p i `δp i q " 0 , i " 1, 2, . . . , n .

For a more compact notation, we reformulate system (3.35) in a vectorial form as gpx; p i q " 0, where g " pg 1 , . . . , g n q T , x " px 1 , . . . , x n q T and 0 is the zero column vector n ˆ1.

As a classic technique in perturbation analysis, we write the Taylor expansion of the perturbed system at the first order: gpx `δx, p i `δp i q " gpx, p i q `Jpx, p i qδx `Bg Bp i px, p i q δp i " 0 , with J being the Jacobian matrix associated to g. Since the term gpx, p i q vanishes, we get:

δx " ´J´1 px, p i q Bg Bp i px, p i q δp i (3.36) which explicitly is:

¨δx 1 . . . δx i . . . δx n ‹ ‹ ‹ ‹ ‹ ‹ ' " ´¨B g 1 Bx 1 0 ¨¨¨0 . . . . . . . . . . . . Bg i Bx 1 ¨¨¨B g i Bx i 0 ¨¨¨0 . . . . . . . . . . . . Bg n´1 Bx 1 ¨¨¨B g n´1 Bx n´1 0 Bgn Bx 1 ¨¨¨B gn Bxn ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' ´1 ¨¨0 . . . 0 Bg i Bp i 0 . . . 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' ¨δp i
Because of the hypothesis that each g i depends only on variables px 1 , . . . , x i q, the column vector Bg Bp i has only one non-zero element, on line i, and the Jacobian matrix Jpx, p i q is lower triangular. Thus, the inverse Jpx, p i q ´1 is also lower triangular (a classical property in the matrix theory), and we set:

´Jpx, p i q ´1 " ¨J´1 11 0 ¨¨¨0 . . . . . . . . . . . . J ´1 i1 ¨¨¨J ´1 ii 0 ¨¨¨0 . . . . . . . . . . . . J ´1 n´1,i ¨¨¨J ´1 n´1,n´1 0 J ´1 n1 ¨¨¨J ´1 nn ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
Hence, the matrix product ´J´1 px, p i q Bg Bp i in equation (3.36), is proportional to the i-th column of Jpx, p i q ´1 that has zero entries on lines 1, 2, ¨¨¨, i ´1. Explicitly: ¨δx 1 . . .

δx i´1 δx i . . . δx n ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' " ¨0 . . . 0 J ´1 ii . . . J ´1 ni ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' ¨Bg i Bp i δp i
We conclude that δx k " 0 for any k ă i and in general δx k ‰ 0 for any k ě i.

In other words, in this kind of systems, a local perturbation of a unit will propagate only in the downstream direction.

We highlight that the dependence of g i on upstream variables exclusively, is the key point to determine the absence of retroactivity in a system. Indeed, whether this assumption is not fulfilled, e.g., if every function g i depends also on downstream units, then the lower-triangular structure of the Jacobian matrix is lost. It follows that the inverse of J has generically no zero entries and, as a consequence, a perturbation of parameter p i will affect all the steady-state variables x i , by a perturbation of order δx i . This case is reconsidered at the end of this section, characterizing all systems with retroactivity through variables (see further correspondent paragraph).

Possible extensions of the result of Proposition 3.4 can consider systems of functions g i depending on more parameters than p i , e.g. p i´1 . This hypothesis will modify the vector column Bg Bp i in (3.36), but not the conclusions of absence of retroactivity.

In the sequel, we will treat the effect of the transmission of perturbations, under this and other hypotheses, and illustrate these findings in some known examples from the literature.

More general systems without retroactivity

Let be x " px 1 , . . . , x n q T and x piq " px 1 , . . . , x i q T . Assume the steady states of a system to be driven by gpx piq ; p i´1 , p i q " 0, then

Bg Bp i " ˆ0, . . . 0, Bg i Bp i , Bg i`1 Bp i , 0, . . . , 0 ˙T ,
from which it follows the product is given by ´J´1 px, p i q Bg Bp i " ¨0 . . .

0 J ´1 i,i J ´1 i`1,i . . . J ´1 n,i ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' Bg i Bp i `¨0 . . . 0 0 J ´1 i`1,i`1 . . . J ´1 n,i`1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' Bg i`1 Bp i .
Once multiplied by δp i , from equation (3.36) it yields δx " p0, . . . , 0, δx i , . . . , δx n q T with δx k ‰ 0 for k ě i .

Therefore, this means that parameter perturbations applied to stage i, propagate only to downstream units.

In general, it is possible to show that analogous conclusions are attained for systems of type gpx piq , p piq q " 0 , (3.37) where p piq " pp 1 , . . . , p i q T . As a generalization of systems gpx piq , p i q, these latter functions (3.37) can be replaced in Proposition 3.4.

Remark. Systems with a "sparse" dependence on upstream variables, like e.g. gpx i´4 , x i´1 , x i ; p piq q fall within the same classification of the more general ones (3.37).

Example 1 [Linear rates model (I)] Consider the reaction network (2.9), utilized in [Heinrich 2002] and particularly discussed in the assumption of weak activation in Section 2.2.2 (page 21). The ODEs derived from a phenomenological description, considering an enzymatic activation and a degradation reaction, are:

dx i dt " α i x i´1 ´βi x i .
In this case, the steady states are functions of the form g i px i´1 , x i ; p i q " α i x i´1 βi x i " 0, for i " 1, 2, . . . , n. This formulation affirms that such a system has no retroactivity, what is in agreement with what claimed in [Ventura 2008]. We suggest another example which leads to the same set of ODEs above, when retroactivity is neglected:

. . . Ý Ñx i´1 α i Ý Ñx i Ý Ñx i`1 Ý Ñ . . . Ó β i´1 Ó β i Ó β i`1 ∅ ∅ ∅
This latter reaction scheme could represent e.g. a model of pure activation, where each unit is activated by the previous one, activates the following one, and is degraded at a rate β. No sequestration occurs because, as we can observe from the ODE, the dynamics of every x i is not influenced by the following species x i`1 .

Example 2 [Semicycle model] We consider the following reaction network, proposed in [O' Shaughnessy 2011], which envisages linear degradation velocity for all proteins and complexes and enzymatic reactions for phosphorylation, i.e., for 1 ď i ď n:

v i Ý Ñ Y 0 i w 0 i Ý Ý Ñ ∅, Y 1 i w 1 i Ý Ý Ñ ∅, C i h i Ý Ñ ∅ Y 0 i `Y 1 i´1 a i Ý á â Ý d i C i k i Ý Ñ Y 1 i `Y 1 i´1 Y 0 i`1 `Y 1 i a i`1 Ý ÝÝ á â ÝÝ Ý d i`1 C i`1 k i`1 Ý ÝÝ Ñ Y 1 i`1 `Y 1 i Y 0 1 Y 1 1 Y 0 2 Y 1 2 . . . . . . Y 0 n Y 1 n s
After some calculations, we derive the equations at steady state:

k i pv 0 i ´w0 i Y 0 i q k i `hi `pd i`1 `ki`1 qpv 0 i`1 ´w0 i`1 Y 0 i`1 q k i`1 `hi`1 ´pw 1 i `ai`1 Y 0 i`1 qpv 0 i`1 ´w0 i`1 Y 0 i`1 qpd i`1 `ki`1 `hi`1 q pk i`1 `hi`1 qa i`1 Y 0 i`1 " 0
Thus we end up with a system of steady states that, by lowering of one index, is of the form g i px i´1 , x i ; p i´1 , p i q " 0. Since this function relates only two different stages, this particular system does not allow retroactivity.

Systems with retroactivity through parameters

We demonstrate here how retroactivity can arise from the coupling of variables and parameters belonging to previous and following stages with respect to the perturbed level.

Assume the steady states of a system to be described by gpx piq ; p i , p i`1 q " 0, then Bg Bp i " ˆ0, . . . 0, Bg i´1 Bp i , Bg i Bp i , 0, . . . , 0 ˙T , from which it follows the product in (3.36) is given by ´J´1 px, p i q Bg Bp i " ¨0 . . .

0 0 J ´1 i,i J ´1 i`1,i . . . J ´1 n,i ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' Bg i Bp i `¨0 . . . 0 J ´1 i´1,i´1 J ´1 i,i´1 J ´1 i`1,i´1 . . . J ´1 n,i´1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' Bg i´1 Bp i . (3.38)
Hence, it follows δx " p0, . . . , 0, δx i´1 , δx i , . . . , δx n q T with δx j ‰ 0 for j ě i ´1 .

Systems with such a modeling, when perturbed at a certain stage i, propagate the perturbation downstream, and upstream but only up to the previous layer i ´1.

According to the terminology we introduced at the beginning of Section 3.6, such systems exhibit a retroactivity of first order. Higher orders of retroactivity can be obtained with systems of type gpx piq ; p i , . . . , p i`k q , with k ą 0 , which would alter the steady-state variables bidirectionally, up to k previous levels and down to the n-th stage, i.e. δx j ‰ 0 for j ě i ´k.

Example 3 [Linear rates model (II)] Consider the same reaction networks of Example 1 (page 70),

1 ď i ď n, xi α i Ý á â Ý β i x i and . . . Ý Ñx i´1 α i Ý Ñx i α i`1 Ý ÝÝ Ñx i`1 Ý Ñ . . . Ó β i´1 Ó β i Ó β i`1 ∅ ∅ ∅
This time, we will pay attention to all the reactions where x i is present, thus, the ODEs are given by

dx i dt " α i x i´1 ´pβ i `αi`1 q x i , with α n`1 " 0 .
As a result, the steady states are of the form g i px i´1 , x i ; p i , p i`1 q " 0, for i " 1, 2, . . . , n, and now such a modeling enables to take into account the phenomenon of retroactivity of first order.

The second type of reaction scheme of this example could e.g. describe a simple metabolic chain, where each x i´1 is transformed or consumed into x i , and degraded with a specific rate.

Systems with retroactivity through variables

As discussed previously in Section 3.6.1 (after the proof of Proposition 3.4), the minimal coupling between three variables, x i´1 , x i , x i`1 -one before and one after the level which is altered, -yet presents, from a mathematical point of view, a serious complication, since the matrix J ´1 is not lower triangular anymore. Thus, potentially, a perturbation would impact all the stages, that is δx " pδx 1 , . . . , δx n q T with δx j ‰ 0 for j ě 1 .

Among the models belonging to this category, the less complicated are driven by steady states of the form g i px i´1 , x i , x i`1 ; p i q " 0, with a dependence on parameter p i only.

Our iterative steady-state formulation based on function f i , and derived earlier in Section 3.2.1, is equivalent to steady states of the form 2, . . . , n . (3.39) In this case, we get both a coupling through variables and through parameters. With respect to systems described by g i px i´1 , x i , x i`1 ; p i q " 0, we have the additional dependence on parameter p i`1 . So, we wonder how this extra coupling could further affect the system.

g i px i´1 , x i , x i`1 ; p i , p i`1 q " x i´1 ´bi e i x i px i `ai qp1 ´xi ´ei`1 x i`1 {px i`1 `1qq ´ci x i " 0 i " 1,
Based on the matrix (3.38) associated to systems exhibiting retroactivity through downstream parameters coupled with upstream variables (discussed before), we observe that the perturbation of stage i ´1 is due to the dependence on p i`1 . As a consequence, it is reasonable to say that the presence of p i`1 in (3.39) can further reinforce the effect of the backward propagation, in a system in which retroactivity arises from two "sources": parameters and variables.

Conclusion

Relying on several biochemical parameters, the standard functioning of a cascade is to transmit forward signals between the top and the bottom of a pathway.

A classical way of analyzing this propagation is based on the characterization of the dose-response curves, which particularly give reason of the forward signaling. Along these lines, we have developed an analytical approach enabling an investigation of the dose-response function for cascades with arbitrary length n. Despite this advantage, we usually had to limit our analysis to homogeneous cascades (i.e. same parameters at each tier), even though some results can be generalized to inhomogeneous systems. Nevertheless we have showed that the dose-response function could be represented as the iteration of an explicit rational function. This iterative structure allowed us to compute analytical properties of the response function, like its first and second derivatives at the origin. These computations, together with the determination of a lower bound of the maximal value of the response function, revealed to be invaluable in discussing conditions on the biochemical parameters that optimize forward signaling in homogeneous cascades.

In the next chapter, we will illustrate that the results summarized in Proposition 3.3 are corroborated by numerical computations which explored also cascades with inhomogeneous parameters. Actually, our intent is wider. Chapters 4 is actually dedicated to the development of a comparative study of parameters affecting forward or/and retroactive responses in linear signaling cascades.

We have also discussed some peculiarities of what we called drug-response functions, being introduced as a measure of retroactivity. Unfortunately such functions present some issues we cannot easily bypass by means of an analytical characterization. That is why, in the next chapter, we will approach this question with a numerical method.

We have also developed a more general framework classifying systems with and without retroactivity, grounded on a formal definition of this property. The rigorousness of the statements and the way we proceeded actually adumbrates a more general discussion about the importance of the choices related to the mathematical modeling and possibility to observe an interplay of phenomena, such as forward and retroactive signaling, in the same system.

Introduction

This chapter is dedicated to the numerical and statistical methods we used to generate new data and novel insights dealing with the question of bidirectional propagation in signaling cascades. We will present the results of a numerical investigation, performed jointly with collaborators, on linear 3-tier cascades with inhomogeneous parameters [Catozzi 2016].

In particular, Juan Pablo di Bella took care of all the algorithmic part and of the data pre-processing. Notably, the numerical conditions to test the cascade for uni-and bidirectional propagation (upstream and/or downstream) are based on the analytical considerations, e.g. about signaling enhancing, that we have detailed in Chapter 3. Indeed, these numerical conditions will determine specific signaling regimes, meaning that the cascade parameters, once sampled, will be classified according to the signaling direction they contribute to.

We will also provide an answer about how likely a cascade exhibits special behaviors such as retroactivity and simultaneous bidirectionality (Section 4.2).

In particular, the exploration of the parameter space of a 3-tier cascade will enable us to establish a correspondence between parameters and signaling regimes. On the one hand, we will establish the parameter regions characterizing every signaling regime (Section 4.3). In that regard, the literature seemed to suggest that forward and backward propagations would be associated to separate, or even opposite, parameter ranges. This point will be treated in Section 4.7. On the other hand, we will study the enhancement in probability of a chosen regime for detected restrictions of the parameter space (Section 4.4). Eventually, the findings will be interpreted in terms of biochemical concepts -like enzyme saturation, protein sequestration, or cycle activation -as done in Chapter 3 concerning the analytical results. And we will discuss the trustworthiness and robustness of our conclusions with respect to the numerical conditions we set for our simulations (i.e. the thresholds determining the signaling regimes and the sampled parameter ranges) (Section 4.5). Comparison with some analytical results of the previous chapter will be also discussed (Section 4.6).

Signaling regimes

Overall, the methodology we concocted to generate our data is founded on the notion of what we have named signaling regimes.

A signaling regime portrays specific signaling behaviors and describes the way a cascade responds (significantly or negligibly) to the stimuli it is subjected to, namely the activator signal s (at the top) and the inhibiting drug d T (at the bottom). Practically, this means to measure two effects simultaneously: the impact of the activator on downstream proteins (dose-response curves) and the effect of the drug on the upstream proteins (drug-response curves). Specifically, we are interested in studying how the retroactive signaling propagates (from the pn ´1qth to the first tier) and whether this is compatible with an efficient forward signaling relative to the nth tier.

In specific, the behaviors we aim to inspect are three: the retroactivity of first and second order (defined in Section 3.6 at page 65), and the forward output response. Hence, we define the following 8 signaling regimes and denote them by pjklq, with j, k, l P t0, 1u, where:

• j " 1 if the amplitude of the drug-response curve x 1 pd T q is larger than 5%, j " 0 otherwise;

• k " 1 if the amplitude of the drug-response curve x 2 pd T q is larger than 5%, k " 0 otherwise;

• l " 1 if the amplitude of the dose-response curve x 3 psq is larger than 50%, its slope at the origin is larger than 1 or the curvature should be at least 1, and l " 0 otherwise.

For instance, the signaling regime (001) corresponds to parameters associated to a cascade which exclusively exhibits forward propagation, while ( 110) is for exclusive retroactive propagation. Signaling regimes of type pj1lq will be said to possess first order retroactivity, whereas regimes of the type p1klq will be said to have second order retroactivity. Later, in order to discuss the notion of signaling motifs (cf. Figure 4.6, page 88), it will be convenient to consider hybrid signaling regimes like p1k0q, where k is not determined (k " 0, 1). Finally, ( 000) is the anti-signaling regime, as it denotes the absence of any type of signaling response.

As an illustration of how a signaling regime is associated to the efficiency of the response curves of the cascade, see Figure 4.1.

With regard to this new signaling-regime notation, the analytical results derived in the previous chapter can be revisited and associated to the results concerned with the regimes of type (jk1), for j, k P t0, 1u (no matter the retroactive response), in cascades with homogeneous parameters. 011). The drug-response x 1 pd T q is not efficient, while the drug-response x 2 pd T q and the dose-response x 3 psq are, according to the signaling regime definitions.

Random sampling of the parameter space

As a basis for our methodology, an algorithm has been implemented with the purpose of:

1. randomly sampling the whole set of cascade parameters over a sufficiently large range;

2. classifying such sampled parameter sets according to the signaling regime they give rise to, so leading to a probabilistic estimation of the absolute occurrence of each regime;

3. inspecting the range of some selected (dimensionless and biologically-relevant) parameters which occur the most in -that is, characterize -a given signaling regime.

The first point of our numerical approach consists in the random sampling of 20 biochemical parameters: total phosphatases E iT , total kinases Y iT , Michaelis-Menten constants

K 0 i , K 1 i , catalytic rates k 0 i , k 1 i , a D , d D .
In more details, these 20 dimensional parameters have been sampled in logarithmic scale, uniformly in the range 10 ´2 to 10 2 , to generate N "1.000.000 sets, using the Latin Hypercube Sampling (LHS) as a generator of near-random parameter values [McKay 1979[START_REF] Inman | [END_REF]. This technique enables a more systematic space-filling approach than the standard random sampling, since it does take into account the previously generated sample points, so guaranteeing an exhaustive exploration of the whole parameter space. Indeed, LHS returns N samplings, by dividing the hyperspace R n of n parameters, into N n subspaces, where it randomly picks up a point. Each point is sampled in the same way one would fill in a (multidimensional) sudoku with respect to a same number (e.g. number "1" in Figure 4.2), i.e. so that any column and row do not contain that number more than once. 1 In other words, each parameter range is divided into N (equally spaced) subintervals, which are randomly selected without replacement, for any of the n parameters. So to determine N vectors of n subintervals relative to each parameter with non-repeated coordinate pI p 1 , . . . , I pn q, to which each sample point belongs, as being in R n . Hence, such a sample point results to be a set of n combined values pv p 1 , . . . , v pn q for the n " 20 biochemical parameters we focused on. 1 Actually, another rule of the sudoku is that, in every 3ˆ3 thicker square, each number must appear only once. This additional constraint characterizes another statistical method, known as orthogonal sampling, based on the requirement of equally probable sample subspaces. This allows to generate a less clustered sampling of the space. Similar features are shared with the Maximin Latin Hypercube (MLH) method, which instead maximizes minimum distance between points. In this sense, number "1" certainly could not be an outcome of MLH.

Remark. The conclusions we will derive from this numerical approach will actually be strongly dependent on the assumed distribution of the biochemical parameters for which the sampling is performed. Presumably, the actual parameter distribution existing in natural signaling pathways is not uniform. On the other hand, this knowledge is currently out of reach, or would be very hard to access. Therefore we chose as a reference point, a uniform distribution of biochemical parameters lying in some predefined ranges. We refer to the end of this section, for further discussion.

As mentioned above, the only parameters sampled are E iT , Y iT , K 0 i , K 1 i , k 0 i , k 1 i , for i " 1, 2, . . . , n, and a D , d D , meaning that we missed the complex association rates a 0 i , a 1 i , and the complex dissociation rates d 0 i , d 1 i (whose definite values would matter only for time-dependent behaviors). However, as the Michaelis-Menten constants are parameters which condense information in equilibrium for enzymatic cycles but no dynamic rates, we can compute

a j i " d j i `kj i K j i
, for 1 ď i ď n, j P t0, 1u, and arbitrarily choose the degree of freedom

d j i " 1.
So completed, the 1.000.000 parameter sets have been entered in the ODEs (3.2) (page 46) to be solved for steady states with the ode15s method of Matlab TM . After having solved the ODEs, we have computed the following dimensionless output variables:

x 1 " x 1 pd T Ñ `8, s Ñ `8q ´x1 pd T " 0, s Ñ `8q

x 2 " x 2 pd T Ñ `8, s Ñ `8q ´x2 pd T " 0, s Ñ `8q

x 3 " x 3 pd T " 0, s Ñ `8q ´x3 pd T " 0, s " 0q

These three dimensionless outputs corresponds to the amplitude variation of the stimulus-responses x 1 pd T q, x 2 pd T q and x 3 psq, respectively. The numerical simulation also computes slope, curvature, and fixed point using their corresponding analytical expressions (3.22), (3.23), and (3.32), respectively (pages 57, 58, and 63).

Choice of the sampling distribution In the context of theoretical studies of signaling systems, the use of random scans of biochemical parameters, in order to determine parameter ranges or conditions giving a sought property, has been considered by several authors. Typically these authors uniformly scanned dimensional parameters [Qiao 2007a, Chen 2007, Chiang 2014], or dimensionless parameters [Wynn 2011, Shah 2011[START_REF] Mai | Random Parameter Sampling of a Generic Three-Tier MAPK Cascade Model Reveals Major Factors Affecting Its Versatile Dynamics[END_REF]. Often, the use of dimensionless parameters is motivated by a procedure of non-dimensionalization of the kinetic or of the stationary equations.

In the study presented in this chapter, we chose a random sampling of dimensional parameters, arguing that in general it leads to a better interpretation of the results. Let us first consider the dimensionless parameter space, which is made of elements of type λ " p 1 p 2 , that are ratios of dimensional parameters. If we uniformly sample parameters λ, then due to the change of variables, parameters p will result to have a non-uniform probability distribution. These non-uniform distributions might be non-trivial to figure out, and overall rather arbitrary, as there exist several ways to design non-dimensionalizing procedures. The other way, instead, is to consider the dimensional parameter space to be uniformly sampled. Then, parameters p will have a uniform distribution and, in view of biochemical interpretation, parameters λ will be deduced afterward from these uniform samplings.

Probabilities of the signaling regimes

The second point of the algorithmic procedure introduced in Section 4.2.1 furnishes, as an outcome, the occurrence of each signaling regime, over the whole parameter space. That allows a ranking of every regime probability P pjklq, for j, k, l P t0, 1u, illustrated in Figure 4.3 as follows: 67% of parameters lead to no form of signaling; 19% of parameters show forward signaling without retroactivity; 12% of parameters enable retroactive response but no forward signaling; 2% of parameters exhibit both forward and retroactive signaling properties.

Remark. The fact that numerous efficient signaling cascades, and retroactivity effects, have been measured experimentally, suggests that the estimates reported in Figure 4.3, are likely to be lower bounds of the corresponding natural probabilities. However, the probability of mixed forward and retro-signaling is likely to remain much less probable than the non-mixed signaling regimes because, as we shall see in the following, this kind of signaling properties reckon with parameter conditions that are somehow antagonist.

From the probabilities reported in Figure 4.3, at first, we notice that the majority of the random parameter sets falls within the anti-signaling regime. This suggests that signaling has not come about by accident, and in reality, biological systems necessarily have to accommodate particular parameter conditions. Secondly and surprisingly, we observe that the propensity of a cascade to favor downstream or upstream signal transmission exclusively is of comparable magnitude (19% versus 12%, respectively). Thirdly, the less likely case is the regime for which a cascade would transmit simultaneously forth and backward (around 2%). This result confirms the hypothesis that generally there is an opposition between parameter sets favoring forward and retro-signaling regimes.

Therefore, on the one hand, these findings convey the idea that in most cases, retroactive effects can be neglected when a cascade, which has an efficient forward signaling, is perturbed by an external ligand inhibiting the activation at some tier of the cascade. This result is particularly relevant for therapeutic methodologies based on kinase inhibition. On the other hand, our study highlights a less-known part of the parameter space where, although the forward signaling is inefficient, the cascade can interestingly act as a retro-signaling device. 

Likelihoods of parameters for the signaling regimes

The third point we developed thanks to the random scan (Section 4.2.1) provides the likelihood distributions of some selected dimensionless (biologically-relevant) parameters, with respect to a given signaling regime.

The delicate issue is that in the analytical study of Chapter 3 we deal with dimensionless parameters. These latter being combinations of dimensional parameters that appear, in the the steady-state equations, as ratios of parameters with the same units (e.g. ratios of rates, ratios of concentrations, etc): a i , b i , c i , e i defined in (3.7). Working with ratios enables to determine relative orders of magnitude between the dimensional parameters, that are total concentrations of kinases and phosphatases, Michaelis-Menten constants and catalytic rates for the enzymatic reactions. For instance see conditions in Proposition 3.3 (page 64). More generally, working with dimensionless parameters of a system allows one to achieve "universal" statements about its properties because it is independent of the choice of physical units. Therefore in the sequel, we will explain how dimensionless parameters can be obtained from the dimensional parameters we have sampled.

For each dimensionless parameters (denoted generically by λ) and for each regime pjklq, we construct the following probability using Bayes' theorem: P pjkl|λq " P pλ|jklqP pjklq P pλq (4.1)

with P pjkl|λq being the probability of finding the signaling regime pjklq, given some specific parameter value λ, P pλ|jklq the probability distribution of parameter λ given a specific signaling regime, P pjklq the probability to obtain each regime and P pλq the probability distribution of parameter λ, whatever the regime. The last one is obtained analytically as a sum of 2 (or 4) uniform distributions.

Let us note that when pjklq is fixed, the function P pjkl|λq is not a probability distribution over λ, but is called the likelihood of λ, for a given regime pjklq, see [MacKay 2005]. One main goal of our numerical simulations is to draw and to compare the curves of normalized likelihoods, defined by:

L jkl pλq " P pjkl|λq max λ P pjkl|λq (4.
2)

The reason why we normalize is that the maximum likelihood can be very different from regime to regime, since each probability P pjklq contributes in (4.2) of a factor which was found to vary over 3 orders of magnitude. Hence, using equation ( 4.1), the normalized likelihood functions of all the considered dimensionless parameters can be drawn for all possible regimes. We remark that our methodology -from the sampling to the likelihood -is very general and potentially leads to visualize the likelihood distribution of any dimensionless combination of biochemical parameters (so other parameters beyond a i , b i , c i , e i ).

In particular, we will focus on other dimensionless quantities which are related to well-known biological concepts, concerning sequestration, saturation, and activation. More precisely, we will examine the likelihood of the following parameters:

E iT {Y iT , K 0 i {K 1 i , K 1 i {Y iT , K 0 i {Y iT , pi " 1, 2, 3q K 0 i`1 {K 1 i , pk 0 i`1 Y iT q{pk 1 i`1 E i`1,T q, Y iT {Y i`1,T , pi " 1, 2q
. This enables a parameter analysis which does not have to be restricted to the dimensionless parameters appearing in the analytical iterative function, i.e. 4.4 reports the normalized likelihood curves, with estimated error bars. This is useful because, despite the large number of samplings, we observe that some signaling regimes are rare. For each specific regime the error bars are constructed on the parameter histogram by using a binomial probability p of being in the i-th bin and 1 ´p of being in another bin. Then using error propagation for Bayes relation (4.1) we obtained the error of each parameter curve. means to look for the intervals where the likelihood of each dimensionless parameter is maximized for a considered pjklq. Such a result can be generally expressed as inequality conditions that biochemical parameters should satisfied.

a i " K 1 i {Y iT , b i " K 0 i {Y iT , c i " p1 `k1 i {k 0 i qpE iT {Y iT q, e i " pk 1 i`1 E i`1,T q{pk 0 i`1 Y iT q. Figure

Parameter conditions controlling signaling

In this regard, by mainly proceeding by visual inspection of the likelihood variations, in Figure 4.4 we can distinguish 9 dimensionless parameters such that the likelihood curves for (000) are maximized in opposite ranges than the curves for any other regime (cf. contoured panels). Therefore, these 9 parameters do separate the signaling region from the anti-signaling region, and constitute a first class of parameter conditions composed by

E iT {Y iT , K 0 i {K 1 i pi " 1, 2, 3q, K 0 i`1 {K 1 i pi " 1, 2q, K 0 3 {Y 3T
The second class will be formed by the 9 parameters left, which exhibit likelihood variations being useful to discriminate between the veritable signaling regimes, and specifically related to the probability of a given regime, i.e.

Y iT {Y i`1,T , K 0 i {Y iT (i " 1, 2), pk 0 i Y i´1,T q{pk 1 i E iT q (i " 2, 3), K 1 i {Y iT (i " 1, 2 , 3). 
In the following two subsections we first report on conditions about the biochemical parameters that promote indistinguishably any form of signaling regimes. Then we discuss the role of the other conditions on biochemical parameters specific to each regime.

General conditions promoting signaling

The following conditions on parameters appear to be common to any signaling regimes:

(i) E iT ď Y iT pi " 1, 2, 3q : at each tier of the cascade, the sequestration of the proteins by their phosphatase is absent or moderate.

(ii) K 0 i ! K 1 i
pi " 1, 2, 3q : enzymatic asymmetry in cycle i : the affinity of the kinase for its substrate should be larger than the one of its phosphatase.

(iii) K 0 i`1 ! K 1 i
pi " 1, 2q : enzymatic asymmetry at the junction of tiers i and i `1 : the affinity of an activated protein for its substrate, i.e. the next protein in the cascade, is larger than for its own phosphatase.

(iv) K 0 3 ! Y 3T : the second kinase Y 1 2 is saturated.

Moreover, when these conditions are chosen opposite, the probability of signaling tends to be negligible.

Regime-specific conditions

For an easier inspection, we readjust the information contained in Figure 4.4 into an equivalent representation depicted by Figure 4.5 (excluding (000)). In this figure, each colored band shows the normalized likelihood of one given parameter, compared for every signaling regime pjklq. The intensity of the color in each band is proportional to the heights of curves in Figure 4.4, that is the probability that a specific regime (jkl), with j, k, l P t0, 1u, occurs, according to a given dimensionless parameter, all the other biochemical parameters being chosen at random in a log-uniform distribution.

The various signaling regimes pjklq ‰ p000q are actually determined by a specific combination of parameters concerning cycle activation, protein sequestration and enzyme saturation. Here we discuss the effect of the second class of parameters that specifically favor some types of regime.

(v) 1{e i " pk 0 i Y i´1,T q{pk 1 i E iT q pi " 2, 3q : cycle deactivation (e i ą 1) gives rise to retroactive signaling. Notably, retroactivity appears whenever the third tier is deactivated (e 3 ą 1). In this case, its effect can be either local (limited to the second tier, cf. regimes (01l)) if the second tier is activated (e 2 ă 1 so preventing an upper propagation), or global (e 2 ą 1, affecting both the previous tiers, cf. regimes (1kl)) if also the second tier is deactivated.

(vi) Y iT {Y i`1,T pi " 1, 2q : 4 distinct protein progressions typify the retroactive regimes, i.e. 00l (no retroactivity), 01l (first order retroactivity), 10l (second order retroactivity), and 11l (first and second order retroactivity), with l P t0, 1u. This parameter is associated to sequestration. More particularly, the sequestration of the third inactive protein by its kinase (Y 2T {Y 3T " 1) prevents any retroactive propagation (regimes (000) and ( 001)). The sequestration of the second inactive protein by its kinase (Y 1T {Y 2T " 1) promotes first order retroactivity, i.e. regime (01l). Inversely, non-sequestration (Y 1T {Y 2T " 1) induces second order retroactivity, i.e. regime (1kl).

(vii) K 1 i {Y iT pi " 1, 2, 3q : phosphatase saturation (K 1 i {Y iT ă 1) or nonsaturation (K 1 i {Y iT ě 1) marks out the appearance of second order retroactivity and forward signaling. In particular, saturation (respectively nonsaturation) of the first phosphatase is associated to negligible (respectively significant) second order retroactivity, i.e. j " 0 (respectively j " 1). Instead, saturation (respectively non-saturation) of the third phosphatase is associated to significant (respectively negligible) forward propagation, i.e. l " 1 (respectively l " 0). Moreover, saturated phosphatase at the second tier marks the complete absence of retroactivity (regimes (000) and ( 001)).

(viii) K 0 i {Y iT pi " 1, 2q : saturation (respectively non-saturation) of the activator, K 0 1 {Y 1T ă 1 (respectively K 0 1 {Y 1T ě 1), characterizes a negligible (significant) second order retroactivity, i.e. j " 0 (respectively j " 1). Non-saturation of the kinase activating the second tier (K 0 1 {Y 1T ě 1) is typical of first order retroactivity (regimes ( 010) and ( 011)). Criterion for tier-specific response Regarding the second class of parameters, we can also lead a different analysis, based on the parameter conditions characterizing the independent response of the 3 tiers. In other words, we look for the ranges that enhance the probability P of significant response at one given stage i P t1, 2, 3u, whatever is the response at the other stages j, k, l . Cf. respectively, red, green, and blue circles on Figure 4.5, focusing on regimes p1klq, pj1lq, pjk1q.

(I) P pj " 1q is enhanced if and only if Y 1T ! K 0 1 or Y 1T ! K 1 1 .
(II) (a) P pk " 1q is enhanced only if 1{e 3 ă 1. (b) P p01lq if and only if 1{e 2 ą 1 and 1{e 3 ă 1.

(III) P pl " 1q is enhanced only if E 3T ! Y 3T .
Biologically speaking, the interpretation is the following:

(I) Unsaturated activator ligand or first phosphatase, improve the second-order retroactivity.

(II) (a) Any type of retroactivitity is marked by the last-cycle deactivation.

(b) Activation of the second cycle and deactivation of the third one, improve the first-order retroactivity.

(III) Forward signaling is characterized by low sequestration of the free last-stage protein by its phosphatase.

Biological ranges Amongst the 20 sampled biochemical parameters, 12 dimensions correspond to chemical concentrations and 8 dimensions to reaction rates (with dimension of inverse of time). They all have been chosen in the interval r10 ´2, 10 2 s, thus considering 4 orders of magnitude r´2, 2s in uniform log 10 scale. The interpretation of the results depends yet on the choice of the reference unit concentration (the "0" in log scale). For example, if the reference dimensional concentration is chosen as 0.1 µM, this leads to interpreting the scanned intervals as the range [1 nM, 10 µM], which seems reasonable as intracellular concentrations [Huang 1996]. However this is just an example and the choice of the reference unit concentration remains a degree of freedom in our numerical methodology.

Probabilistic characterization of the signaling regimes

Graphical representation of the signaling regimes

In the previous section, conditions on biochemical parameters which characterize the signaling regimes, have been deduced from the likelihoods of dimensionless parameters. At this stage it is difficult to imagine how, among the various signaling regimes, such conditions are similar or different from each others. Therefore in this section we introduce a method to graphically depict these conditions and visually link them to the cascade signaling properties. The idea is to associate a pictorial code to the parameters in such a way that their graphical representation qualitatively conveys the corresponding signaling regime. The outcome will be 5 distinct signaling motifs (plus one for anti-signaling (000)), depicted in Figure 4.6, which are associated respectively to signaling regimes (001), ( 010), (011), p1k0q, p1k1q. The two latter denote hybrid signaling regimes, with non-determined k " 0 or 1, obtained from the sum of the likelihoods of ( 100) and ( 110), or ( 101) and ( 111), respectively. The conceived procedure translates optimal parameter conditions to observe such regimes into a motif, and consists in 5 steps which will be described below as an algorithm. 

Y 3T medium. Then, if Y 1T ! Y 2T , draw Y 1T medium. b. If Y 2T ă Y 3T (with a magnitude difference of 100 at most) then draw Y 2T medium and Y 3T large. Then if Y 1T " Y 2T , draw Y 1T medium and if Y 1T ă Y 2T , draw Y 1T small. c. If Y 2T ! Y 3T
(with a magnitude difference larger than 100), then draw

Y 2T medium and Y 3T large. Then if Y 1T " Y 2T , draw Y 1T large.
2. Fix the size of the E iT 's (i " 1, 2, 3).

a. If E iT ! Y iT then draw E iT small. b. If E iT " Y iT (a factor of 10 at most) then draw E iT of the same size of Y iT . c. If E iT " Y iT then draw E iT extra large.
3. Represent signaling connectivity (i " 1, 2).

a. If 1{e i ă 1, draw one arrow pointing upward.

b. If 1{e i ą 1, draw one arrow pointing downward.

4.

Empty/full shapes.

a. If Y iT " K 0 i for i " 1, fill in the red triangle. b. If Y iT " K 0 i for i " 2, 3, fill in the pi ´1qth blue ellipse. c. If Y iT " K 1 i for i " 1, 2, 3, fill in the ith green ellipse.

5.

Draw the motif contour following the largest ellipses. Instead of a straight line, the contour will start with a cusp if the red triangle is empty while the first blue solid ellipse is full, and it will end with a cusp if step 2.a is fulfilled.

Using the last step of the procedure, the contour line traced around each motif follows the total proteins' progression and start or ends with a cusp according to the presence of, respectively, second-order retroactivity or forward signaling. Moreover the flow of signal propagation is directed by arrows pointing upward or downward, according to the e i 's (i " 2, 3). As a matter of fact it appears that the final picture can be easily interpreted in terms of signaling regimes pjklq, with the convention that a cusp or a bottleneck in the figure contour means a successful amplitude response at the corresponding tier. Therefore one main benefit of the procedure is to automatically turn the parameter conditions analyzed in last section, into qualitative motifs which are easy to read out in terms of their signaling properties. Additionally, these patterns are easier to remember than a list of conditions, and can thus be used as a tool to recover the criteria for each signaling schemes.

In conclusion, these pictures show that retroactivity is promoted by four features: the last tier is deactivated (1{e 3 ă 1), the second active protein is moderately sequestrated, the second phosphatase is non-saturated and the third inactive protein is not sequestrated. In particular, second-order retroactivity is enhanced if the first protein is saturated, while the input signal and the first phosphatase are not; inversely for first-order retroactivity. A forward response (l " 1) is (most likely) significant if the last active protein is not sequestrated by its phosphatase (E 3T ! Y 3T ). On the other hand, regime ( 001) is favored by a saturated phosphatase at the second tier. Conditions (I)-(II)-(III) of Section 4.3.2 can be easily read from Figure 4.6 too.

In order to make the whole procedure clearer, we will show in details below how to get each signaling motif step by step, from the maximization of the likelihood curves to the drawing of the obtained parameter conditions. Before that, let us discuss the advantages of this representation.

Sampling ranges optimizing regime probabilities

The graphs in Figure 4.6 actually embody also a method to restrict the parameter space in order to enhance the probability of the main modes of signaling, forward, or retroactive, or both. In order to control how the probability of each signaling regime is optimized by choosing parameter values around the likelihood maxima, we divided the ranges of all the 18 parameters in three intervals: high values, medium values, low values. 2Each parameter has been restricted to one of the three intervals depending on where its likelihood is maximized. We note that the intersection of those restricted intervals for each of the 18 parameters, implies a filtering out of the initial number of simulation sets. At worst, we end with no more than 0.1% of the initial set, that is 1000 samples, which we consider enough to test the 3-tier cascade behaviors.

The new probabilities of each regime have been computed and compared with the former simulation sets in order to see how likely is a given regime if we restrict the ranges of the biochemical parameters. The results are summarized in Table 4.1 and Figure 4.7. In a consistent way, the histograms show that the probability to observe a given signaling regime, among one of the 5 motifs of Figure 4.6, is maximized by choosing parameter restrictions associated with the corresponding signaling regime. In particular we see that the optimized probabilities are much higher than in the unrestricted case (top panel). Only the probability of regimes involving both forward signaling and retroactive signaling of second order remains relatively small (3,7%), which evokes once again the scarcity of bidirectional signaling. as well as associated parameter restrictions characterizing each of them according to the conditions in the 5 different motifs. Then, each panel displays the probabilities of a given signaling regime in function of the considered parameter restrictions R(jkl). Consistently, the probability to get a given signaling regime is maximized by choosing the parameter restrictions characterizing it, and this maximum is significantly higher than the probability obtained from a log-uniform distribution of biochemical parameters without any restriction (cf. first bar of the histogram, NR). The set of the underlying data is provided in Table 4.1: The restrictions on parameter ranges (according to the 5 different motifs) actually increase the probability of the considered (possibly hybrid) regime.

1. Relative sizes of the total proteins:

Y 1T ă Y 2T , Y 2T ą Y 3T
2. Relative sizes of the total phosphatases:

E 1T ! Y 1T , E 2T ! Y 2T , E 3T ! Y 3T
3. Cycle activation/deactivation:

1{e 2 " 1, 1{e 3 ą 1 4. Saturation/Non-saturation of kinases Y 1 0 , Y 1 1 , Y 1 2 : K 0 1 ! Y 1T , K 0 2 ! Y 2T , K 0 3 ! Y 3T
5. Saturation/Non-saturation of phosphatases E 1 , E 2 , E 3 : 

K 1 1 " Y 1T , K 1 2 ! Y 2T , K 1 3 " Y 3T

Regime (010)

1. Relative sizes of the total proteins:

Y 1T ą Y 2T , Y 2T ă Y 3T
2. Relative sizes of the total phosphatases:

E 1T ! Y 1T , E 2T " Y 2T , E 3T " Y 3T
3. Cycle activation/deactivation:

1{e 2 ą 1, 1{e 3 ă 1 4. Saturation/Non-saturation of kinases Y 1 0 , Y 1 1 , Y 1 2 : K 0 1 ! Y 1T , K 0 2 ě Y 2T , K 0 3 ! Y 3T
5. Saturation/Non-saturation of phosphatases E 1 , E 2 , E 3 : 1. Relative sizes of the total proteins:

K 1 1 ! Y 1T , K 1 2 " Y 2T , K 1 3 ! Y 3T
Y 1T ą Y 2T , Y 2T ă Y 3T
2. Relative sizes of the total phosphatases:

E 1T ! Y 1T , E 2T " Y 2T , E 3T ! Y 3T
3. Cycle activation/deactivation:

1{e 2 ą 1, 1{e 3 ă 1 4. Saturation/Non-saturation of kinases Y 1 0 , Y 1 1 , Y 1 2 : K 0 1 ! Y 1T , K 0 2 " Y 2T , K 0 3 ! Y 3T
5. Saturation/Non-saturation of phosphatases E 1 , E 2 , E 3 : Regimes (100) or ( 110)

K 1 1 ! Y 1T , K 1 2 " Y 2T , K 1 3 ! Y 3T
1. Relative sizes of the total proteins:

Y 1T ď Y 2T , Y 2T ă Y 3T
2. Relative sizes of the total phosphatases:

E 1T " Y 1T , E 2T " Y 2T , E 3T " Y 3T
3. Cycle activation/deactivation:

1{e 2 ă 1, 1{e 3 ă 1 4. Saturation/Non-saturation of kinases Y 1 0 , Y 1 1 , Y 1 2 : K 0 1 " Y 1T , K 0 2 ă Y 2T , K 0 3 ! Y 3T
5. Saturation/Non-saturation of phosphatases E 1 , E 2 , E 3 : Regimes ( 101) or ( 111)

K 1 1 " Y 1T , K 1 2 " Y 2T , K 1 3 ! Y 3T
1. Relative sizes of the total proteins:

Y 1T " Y 2T , Y 2T ă Y 3T
2. Relative sizes of the total phosphatases:

E 1T " Y 1T , E 2T " Y 2T , E 3T ! Y 3T
3. Cycle activation/deactivation:

1{e 2 ă 1, 1{e 3 ă 1 4. Saturation/Non-saturation of kinases Y 1 0 , Y 1 1 , Y 1 2 : K 0 1 ą Y 1T , K 0 2 ă Y 2T , K 0 3 ! Y 3T 5. Saturation/Non-saturation of phosphatases E 1 , E 2 , E 3 : K 1 1 " Y 1T , K 1 2 " Y 2T , K 1 3 ă Y 3T Figure 4
.12: Normalized likelihood curves of regimes ( 101) and (111).

Arbitrariness of thresholds and sampling ranges

On Figure 4.3 we reported estimated probabilities of four signaling modes of the cascade, i.e. anti-signaling, forward signaling, retrosignaling, or simultaneous forward and retro-signaling. Obviously, the absolute value of these numbers depend on the arbitrary thresholds on response amplitudes, that we fixed to assess the occurrence of these signaling modes. To give evidence of the effect of changing these thresholds on the probabilities of signaling, Table 4.2 reports the occurrence frequency of the 8 considered signaling regimes, for two different choices of thresholds (distinguishing further amongst the four main signaling modes of the cascades, the cases of retroactivity of first and of second order). Although the actual numbers are different when the thresholds are increased, we observe constancies, which is in agreement with the likelihood curves, similar for the two thresholds, illustrated in Figure 4.13, for only one regime as an example. Obviously, the most probable parameters are always the "non-signaling" cases p000q, and the most probable non-trivial signaling regime is the pure forward signaling p001q. Then the probability of signaling regimes always decreases markedly between the cases of retrosignaling of first and second order. In particular one observes that the probabilities of regimes p1k1q, admitting both forward and retrosignaling of order 2, are the smallest ones, and get smaller and smaller with higher thresholds. Therefore as a whole, these numbers confirm the general tendency of our numerical results: system's parameters enabling bidirectional signaling correspond to the most unlikely case.

Regimes Probabilities [in %]

This property can also be characterized in a quantitative way by computing the conditional probability that bidirectional signaling occurs, knowing that the system exhibits at least one regime of signaling (so excluding p000q). This conditional probability is found to be 6% with the thresholds corresponding to column 1 of Table 4.2, and drops to 3% with data in the second column. Moreover we checked that it decreases from 6% to 5% when the uniform ranges of biochemical parameters are extended from the logarithmic interval r´2, 2s to r´2.5, 2.5s (data shown in Table 4.3).

Regimes

Probabilities Therefore we can conclude that requiring both response amplitudes of direct and retrosignaling to be large leads to an antagonism in the parameter sets achieving both requirements. The overall combination of forward and retro-signaling appears to be still more rare. This conclusion answers one of the principal question addressed by this study.

Comparative study between analytics and numerics

In this numerical framework, complementary analysis has been carried out in order to sort results to be compared with the ones inferred in Chapter 3, in what concerns the forward signaling regime pjk1q. Actually, this hybrid regime mainly corresponds to regime (001) because the probability of the others are negligible in comparison.

One of the key point of the analytical method is the distinction of the curvature sign of the dose-response function in s " 0, which gives rise to different parameter conditions optimizing the forward signaling (see table in Proposition 3.3, page 64). Statistically, negative curvature (β ď 0) has been found to be much more frequent than positive curvature, among the response functions. Beyond the occurrence percentages, true is that we did not identify any special dependence of the efficiency (referring to slope and amplitude) on the curvature sign.

Comparative analysis with the analytical results (of the previous chapter) is summarized in Table 4.4. Although analytical and numerical approaches follow different criteria, they point towards the same conditions. The difference between the two methods is substantial because, analytically, -according to the criteria of efficient forward signaling -we derive parameter conditions which jointly maximize regime pjk1q; whereas numerically, -according to the maximization of each likelihood -it results that, for each parameters, regime pjk1q is independently maximized, given the other parameters randomly selected.

In Table 4.4 the second column reports analytical conditions enhancing forward signaling in a homogeneous cascade, whereas the third column describes conditions maximizing the likelihood of inhomogeneous parameters relative to the signaling regime p001q. Moreover, considering that, from the sampled sets, convex (upward) dose-responses (β ď 0) resulted to be much more frequent than logistic-like ones, the obtained conditions are found to be compatible in all cases (sometimes with some dependence of the cascade layer). In particular: (i) the maximal rate of phosphorylation should be larger than the maximal rate of the dephosphorylation, (ii) the phosphatases should be in small amount compared with their total substrate, and (iii) the affinity of the substrate for the kinase should be larger than its affinity for the phosphatase, creating what we call enzymatic asymmetry.

Parameters

Suff. conds. for Maximizing β ď 0 likelihoods for (001)

a " K 1 Y T ą 1 a 3 " 1 b " K 0 Y T ă 1 b i ! 1 (i) 1{e " k 0 Y T k 1 E T " 1 1{e i ą 1 (ii) c ´e " E T Y T ! 1 E iT {Y iT ă 1 (iii) a{b " K 1 K 0 ą 1 a i {b i ą 1
Table 4.4: Sufficient conditions to optimize the forward signaling. The second column reports combined parameter ranges able to enhance the forward response for convex curves, deduced analytically from the criteria of efficient forward signaling. The third column refers to conditions obtained from Figure 4.5, with a numerical method based on a random parameter sampling and maximizing the likelihood of these parameters with respect to the forward signaling.

Other outcomes of the numerical study

We also found out that a procedure, initially designed for homogeneous cascades, actually fits even better with inhomogeneous cascades. It provides an analytical estimate of χ n , the maximum value of x n , based on the assumption that χ n´1 is well approximated by the fixed point of map f n´1 . Hence, by replacing it in the last equation of system (3.5), i.e. x n´1 " f n px n , 0q, for s Ñ `8, we get the implicit equation x ǹ´1 " f n p χn , 0q , which has to be solved analytically with respect to the estimate χn .

Results of this method applied to our inhomogeneous samplings are traced in Under the hypothesis χ n´1 « x ǹ´1 , we are able to estimate the maximal output χ n of a cascade, without relying on the knowledge of the parameters related to all the previous layers 1, 2, . . . , n ´1.

The idea behind this procedure will be clearer after having read the forthcoming Chapter 5, whose results are based on the characterization of fixed points of the iterative map describing the steady states of a cascade.

For a homogeneous sampling (obtained in the same way as described previously in Section 4.2.1), numerics also corroborated the proof of the fixed point as analytical lower bound for the maximal last-tier response (see Proposition 3.2, page 61, and Figure 4.15 below). 

Conclusion

Although the possibility for a cascade to transmit information backward, due to sequestration effects of the enzymes, has been demonstrated by several studies [Ventura 2008, Del Vecchio 2008, Ventura 2009[START_REF] Ventura | [END_REF], Kim 2011], [Ossareh 2011], retroactive signaling is not considered in the current literature as a standard property that cascades should possess. Along these lines, the findings presented in this chapter contribute and provide answers to questions like: How similar or different are the parameter sets that enable forward or retroactive signaling? Are they incompatible? In reality, what do these parameters mean in biochemical terms?

This numerical investigation specially allowed to study the drug-responses and retroactivity properties in inhomogeneous cascades, which was a limitation of the analytical trail. Nonetheless, this latter had the advantage of characterizing the dose-response function for cascades with arbitrary length n. Even if with this general approach, we usually had to limit our analysis to homogeneous cascades (i.e. same parameters at each tier), some results can be generalized to inhomogeneous parameters. On the other side, the drawback of the numerical approach regards the difficulty to deal with a number of parameters increasing with the length of the cascade, so we decided to restrain our research to the case of a 3-tier cascade.

Furthermore, despite the quantitative aspects of our classification depend on some arbitrariness (e.g. thresholds of the amplitude responses for categorization of the 4 modes of regimes, or the method of random scan), our work confirmed the initial intuition that was mentioned in Section 4.1: there is an opposition between the parameter sets of the cascade that promote forward signaling, and parameters that enable retroactive regimes, i.e. backward signaling.

A first evidence of this hypothesis is contained in [Ventura 2008], where the authors show that in an arbitrary long cascade, saturated (respectively, unsaturated) kinases favor the forward (respectively, the backward) signaling mode. In [Ossareh 2011], it has been recognized that natural cascades can amplify a perturbation (for free active protein) as it propagates upstream, but with a probability becoming lower as the cascade increases in length. Moreover, the same parameter conditions responsible for attenuation of retroactivity, provide an amplification of the forward response. Similar conclusions have been unraveled in the work of [Wynn 2011], which combined two parallel branches with a common activator, and by (numerically) optimizing one branch for upstream and the other for downstream propagation, they have been revealed to satisfy opposite requirements. This setting actually hints at what was identified as a sort of branch asymmetry by [Sepulchre 2012]. In that paper, retroactive propagation is explained in terms of cycle deactivation, which found an experimental confirmation in [Jesan 2013] (on two parallel branches of JNK and p38MAPK cascades).

Thus one of the main conclusions of our numerical study is that the parameter sets allowing both modes of responses, forward and retroactive, occur rarely.

Actually, attention on signaling cascades is generally addressed uniquely for their forward signaling ability. For instance in cancer etiology, attention is focused on over-activation of kinases in signaling pathways involved in cell proliferation, such as Mitogen Activated Protein Kinase cascades (MAPK). When these cascade pathways are deregulated in this manner, this means that their forward signaling properties are very effective. Moreover in this case, cancer therapies are based on kinase inhibition, which is described by the drug binding term in our mathematical modeling. Therefore, our main result comforts the point of view that, when using these therapies, retroactive properties of signaling cascade can be neglected most of the time, even though rare off-target effects should not be excluded [Wynn 2011].

Introduction

In the previous chapter, we have explored the retroactive propagation under the form of a drug inducing the sequestration of the last cycle of a signaling cascade. However, we have shown in Section 3.6 at page 65, that retroactivity can be discussed in a more general sense, as an effect of an arbitrary perturbation of some parameters of the system at a certain stage. In other words, Section 3.6 suggests that, qualitatively, the notion of retroactivity might be more general, and independent of the introduction of a drug. It could arise, for instance, from a variation of any other parameter of the last tier, such as a variation in the total concentration of kinase or phosphatase, or a variation of kinetic parameters, like affinities or reaction rates. The parameter classification inferred in the previous chapter, inspires the characterization of a cascade as retrosignaling-inclined, just according to its specific biochemical parameters. Going further with the speculation, this might suggest the hypothesis of retroactivity to have genetic origins, and retrosignaling being the distinct behavior from "mutant" parameters, which lie in a different region with respect to "wild type" cascades essentially working forward. Experimental evidence of how some genetic downregulation can impinge MAPK activity in the Drosophila embryo is presented in [Kim 2011]. Anyway, as we have shown by means of the numerical study in Chapter 4, it is possible that forward and backward propagations coexist. Therefore, in this chapter we will spotlight how backward and forward signaling match. Especially, we will explain how to recognize the hallmark of retroactivity from the type of forward propagation exhibited, being defined by the sequence of active proteins x 1 , . . . , x n that we have termed pathway activation profile (Section 5.2). Our methodology is based on the reformulation of our iterative function f i (introduced in Chapter 3) into a two-dimensional map F i : I 2 Þ Ñ I 2 , where I 2 is the unit square r0, 1s ˆr0, 1s. This map will allow us to revisit the steady states of a linear cascade in terms of discrete dynamical systems (DDSs), as pieces of orbit in the phase space px i , x i`1 q. Map F i will be characterized by means of classical tools belonging to DDS theory: mainly according to its fixed points and their stabilities, as well as the bifurcations the system can undergo, as function of the parameters (Section 5.3). This context will provide a geometric way of thinking about the evolution of a cascade activation profile (i.e. its steady states), for any fixed length n. Furthermore, a particular orbit will correspond to the maximal pathway activation profile, denoted by the sequence of maximal active proteins χ 1 , . . . , χ n . Three types of maximal activation profiles will be classified and discussed in detail for homogeneous cascades. Key points of this analysis are the fixed points, and the associated eigenvalues, of the considered system. (Section 5.4). Eventually, we will further examine how the increase or decrease of an activation profile is associated to a peculiar kind of forward signaling, which determines how the cascade answers to and processes perturbations. In particular, we will show when a cascade actually amplifies or dampens forward or backward signals (Section 5.5).

Pathway activation profiles of a signaling cascade

Let us consider our signaling cascade at steady state described by the iterative function f i (equation (3.5) at page 48), from where we have illustrated how to obtain the stimulus-response x i psq of a given tier indexed by 1 ď i ď n as a function of a given extra-cellular stimulus s (Section 3.3 at page 51).

The propagation of that stimulus along a cascade entails the activation of the sequence of all the implicated proteins x i ą 0 pi " 1, 2, . . . , nq. We name such a sequence as pathway activation profile, formally defined as follows.

Definition 5.1 (Pathway activation profile). For a given value of s P r0, `8r, the sequence `xi psq ˘1ďiďn defines a pathway activation profile of the cascade. Notably, denoting χ i " lim sÑ`8 x i psq, the sequence pχ i q 1ďiďn delineates the maximal pathway activation profile.

Hereafter, we will refer to the "pathway activation profile" shortly as "activation profile", and will explore it according to the monotony and non-monotony of the maximal sequence of steady states. Such a variety of profiles is characteristic of signaling cascades retroactively working. As a comparison (better discussed in previous Section 2. 2.2), in [Li 2012b] it has been shown that linear cascades exhibit decreasing convergent activation profiles (cf. Figure 2.11,, at page 21), as a matter of fact that Li did not consider retroactivity (just the two-by-two coupling of variables).

Remark. In [Li 2012b] it has been defined the concept of signaling profile as the time-dependent sequences `xi ptq ˘1ďiďn , t ě 0. The author investigated the temporal switch-like behavior of type OFF-ON-OFF, and signaling profiles in the limit n Ñ `8 (convergence in finite time), and both n, t Ñ `8 (asymptotic signaling profile). In Li's notation, the sequences that we have named pathway activation profiles correspond to signaling profiles in the limit t Ñ `8 and finite n (convergence to the stationary values).

Based on Definition 5.1 of activation profiles, we reformulate Theorem 3.1 (page 48) in an equivalent way, with a terminology that will be convenient for the framework of DDSs we are going to exploit.

Theorem 5.1 (Backward map of the activation profile). For a given value of x n P r0, χ n s, the activation profile of a cascade of length n is determined via pn ´1q iterations of the discrete map

x i´1 " f i px i , x i`1 q defined on a subspace of R 2 , for i " n, n ´1, . . . , 2, with x i " Y 1 i Y iT and x n`1 " 0. Map f i is given explicitly in (3.6) at page 48.
In Section 3.4 (page 55), we have shown that system x i´1 " f i px i , x i`1 q can be equivalently rewritten with a 2D map formulation as ˆxi y i ˙" F i px i , y i q " ˆfi px i , y i q y i ˙for 1 ď i ď n .

(5.1)

The backward map F i associates pairs px i , x i`1 q to pairs px i´1 , x i q, which can then be represented in a 2D phase space I 2 " r0, 1s ˆr0, 1s (since by definition 0 ď x i ď 1), see left panel of Figure 5.1. We point out that map F i works in a similar way as map f i , namely it starts from an initial condition px n , 0q, with x n P r0, χ n s (cf. Theorem 5.1). In addition, for i " n, n ´1, . . . , 1, through map F i , the abscissa of each pair becomes the ordinate of the following one (cf. dashed lines on left panel). As a result, the obtained sequence of pairs identifies a backward orbit of the system, in the phase space I 2 , which unequivocally identifies an activation profile.

As an illustration with n " 4, Figure 5.1 depicts the maximal orbit of map F i , starting from pχ n , χ n`1 " 0q (left panel), which actually determines the maximal activation profile, namely the steady-state values of the x i 's as s Ñ `8 (right panel). The last point found by iteration is pχ 0 " 1, χ 1 q, which also belongs to the light-blue curve D drawn in the phase space. This point deserves supplementary explications. Right Panel: In the 2D phase space, the maximal backward orbit starts from pχ 4 , 0q and is such that pχ 1 , χ 2 q belongs to the light-blue curve defined by d 1 px 1 , x 2 q " 0 (cf. equation ( 5 Indeed, in [Feliu 2012a] it has been proved that functions x i px n q are continuous and increasing in r0, χ n s. Therefore as x n is increased from 0, the point px 1 , x 2 q moves up in the phase space until it intersects, in pχ 1 , χ 2 q, the curve D defined by equation d 1 px 1 , x 2 q " 0, where d 1 px 1 , x 2 q " px 1 `a1 q `1 ´x1 `e2 x 2 {px 2 `a2 q ˘´c 1 x 1 (5.2) is the algebraic expression of the denominator of f 1 px 1 , x 2 q (see e.g. light-blue curve on Figure 5.1, left panel). From (3.10) and (3.9), it is easy to see that the limits s Ñ `8, d 1 pχ 1 , χ 2 q Ñ 0, and χ 0 Ñ 1 are equivalent and give us the maximal activation profile, which is represented in the phase space by the orbit pχ i , χ i`1 q, for i " n, n ´1, . . . , 0. In conclusion, the maximum activation profile of the cascade, reached when s Ñ `8, corresponds to a piece of discrete orbit of f i , which connects an initial condition pχ n , 0q lying on the bottom side of the unit square I 2 , to a final point p1, χ 1 q lying on the right side of I 2 (the initial and final points are represented by triangles, refer e.g. to Figure 5.1, left panel).

Discrete dynamical system approach

Number and stability of the fixed points

In the previous section, we have showed how the activation profiles of a signaling cascade can be mapped in the phase space of a DDS determined by the iterations of the backward maps F i . In this section, we study the fixed points of F i and their stability properties, depending essentially on the parameters characterizing the i-th tier of the cascade. The goal is to reveal, in Section 5.4, how the stable and unstable manifolds associated to the fixed points, yield insights into a qualitative description of the activation profiles of the cascade. We will focus on the fixed points of maps F i belonging to the biologically-meaningful (BM) domain I 2 " r0, 1s ˆr0, 1s, which are actually the same of maps f i given in Proposition 3.1 (page 58). Moreover in the next proposition we refer to the eigenvalues λ i of the Jacobian matrix J i px, yq evaluated at the corresponding fixed points px i , x i q in the unit square I 2 " r0, 1s ˆr0, 1s.

Proposition 5.1 (Properties of the eigenvalues). For a given i, matrix J i evaluated at one fixed point has two eigenvectors v ȋ " pλ ȋ , 1q T , (5.3) which are associated to the eigenvalues

λ ȋ " f x ˘af 2 x `4f y 2 , (5.4) 
where f x and f y are the partial derivatives Bf i Bx px, yq and Bf i By px, yq. Moreover it holds:

1. f x " λ ì `λí and f y " ´λì λ í 2. λ ì ą 0 and ´1 ă λ í ď 0

3. |λ í | ă λ ì .
Proof. The eigenvalues and eigenvectors associated to the Jacobian matrix J i of map F i are obtained from the following equation:

J i v i " λ i v i .
That implies the determinant of J i ´λi I has to be zero. Matrix J i has already been derived in Section 3.4.1 (page 56), while I is the identity matrix 2ˆ2. By setting f x " Bf i Bx i and f y " Bf i By i (their explicit expressions can be found at page 60), we solve

detpJ i ´λi Iq " det ˆfx ´λi f y 1 ´λi ˙" λ 2 i ´fx λ i ´fy " 0
which gives us the solutions λ ȋ of (5.4). Moreover, by solving equation

J i v i " λ i v i , with v i " pu, wq T , that is ˆfx f y 1 0 ˙ˆu w ˙" λ i ˆu w ˙,
one finds v ȋ as given in (5.3).

1. From the definition of λ ì and λ í , it is trivial to prove that f x and f y are respectively obtained as their sum and their product.

Since λ ì "

fx`?f 2 x `4fy 2 and f x ą 0 and f y ě 0 for any point px, yq (shown in the proof of Lemma 3.1 at page 60), then λ ì ą 0. It follows that λ í " ´fy {λ ì is non-positive. Moreover, by using its definition, we still have to verify that λ í ą ´1, namely f x `1 ą f y . This latter can be expressed as a function of the eigenvalues as λ ì `λí `1 ą ´λì λ í , that is p1 `λì qp1 `λí q ą 0. As λ ì ą 0, the product is positive if and only if 1 `λí ą 0. Hence, we have ´1 ă λ í ď 0. This result is valid for any i " 1, . . . , n, because based on the positiveness of the partial derivatives f x and f y . 3. Eventually, f x " λ ì `λí ą 0 implies λ ì ą ´λí " |λ í |.

Further results will be at first derived in the simpler case of homogeneous cascade, i.e. a system with same parameters at each tier i " 2, . . . , n ´1, except for map F 1 and F n because they depends on e 1 " 1{s and e n`1 " 0. Proposition 5.2 (BM fixed points). For a given map F there exist at most three fixed points px ˚, x ˚q in the unit square I 2 , where x ˚" 0, x `, x ´, with x ˘" 1 ´a ´c ´e ˘ap1 ´a ´c ´eq 2 `4pa ´beq 2 .

and for a given parameter set ta, b, c, eu, there are three exclusive possibilities.

(C1) If either p1 ´a ´c ´eq 2 `4pa ´beq ă 0, or p1 ´a ´c ´eq ď 0 and pbe ´aq ě 0, then p0, 0q is the only fixed point in I 2 . It is a saddle point, with eigenvalues λ `" be{a ě 1 and λ ´" 0.

(C2) If pbe ´aq ă 0 then, besides the origin p0, 0q, it exists px `, x `q such that 0 ă x `ă 1, being a saddle point, with a positive expanding eigenvalue (i.e. λ `ą 1) and a negative contracting eigenvalue (i.e. |λ ´| ă 1). Moreover, p0, 0q is a stable node, connected to px `, x `q through an heteroclinic orbit.

(C3) If p1´a´c´eq ą 0 and pbe´aq ą 0, with p1´a´c´eq 2 `4pa´beq ą 0, then, besides the origin, there exist two fixed points px ´, x ´q and px `, x `q such that 0 ă x ´ă x `ă 1. The eigenvalues λ ´associated to x ´and x `are negative and contracting. Furthermore, p0, 0q and px `, x `q are saddle points, connected to px ´, x ´q being a stable node, by two heteroclinic orbits.

Proof. The expressions of the fixed points have been already derived in the proof of Proposition 3.1. Moreover, we observe that x ``x ´" 1 ´a ´c ´e and x `x´" be ´a , and we set s " x ``x ´, p " x `x´, and ∆ " p1 ´a ´c ´eq 2 `4pa ´beq.

The three scenarios (C1), (C2), and (C3), list the parameter conditions ensuring respectively, one, two, and three BM fixed points, and establish their stability.

For case (C1), we require that x `and x ´are either complex conjugates (namely ∆ ă 0), or non-positive (i.e. their sum has to be s ď 0 and their product p ě 0).

For case (C2), the condition that the product p is negative implies that x ànd x ´are real (∆ ą 0) and means x `ą 0 and x ´ă 0. Moreover, from Proposition 3.1 (page 58), we already know that x `ă 1. For case (C3), we ask x `and x ´to be real (∆ ą 0) and both strictly positive, thus their sum and product have to be strictly positive. It is trivial to verify that x ´ă x `.

The stability of every BM fixed point comes as a consequence of their number, as we are going to show.

First, we recall the definition of λ ˘from (5.4), which, evaluated at (0,0), imply λ `" f x " b e a and λ ´" f y " 0. In particular, the partial derivatives f x and f y are given in (3.27) and (3.28) (page 60). So, λ `associated to (0,0) is ą 1 in cases (C1) and (C3), as p ą 0, and ă 1 in case (C2), as p ă 0. Eventually, to prove the stability of the other fixed points, we will use an argument that we will introduce later on, and which is based on the invariant curve C (derived in Section 5.3.2). We will show that the BM fixed points correspond to the intersection of the bisectrix of the first quadrant of I 2 with such an invariant curve C. Knowing that, two points have to be considered. On the one hand, the shape of the invariant curve C (i.e. hyperbolic or sigmoidal) is determined by the number of required intersections (i.e. fixed points). On the other hand, the direction v `(depending on the eigenvalue λ `) represents the tangent to C in the fixed points. Then, if we are in case (C2), the invariant curve must be hyperbolic, and v `" pλ `, 1q T will be such that λ `ą 1. In case (C3), curve C must be sigmoidal to intersect the bisectrix three times, and a similar reasoning applies to conciliate the number of fixed points with the slope of C. As a result, the λ `associated to x ´must be ă 1, and the λ `associated to x `must be ą 1. Forthcoming illustration of the invariant curve (in purple) is shown in the phase portraits in In all the three cases, we will see that it is the largest saddle point (either 0 or x `) that plays a key role for the orbit evolution in the phase portrait, which is governed by the associated eigenvalues and eigenvectors.

Invariant manifolds in the phase space

Other interesting features which have a crucial role in the characterization of our DDS within the phase space, are the invariant manifolds associated to the fixed points of the two-dimensional map F. One defines the stable invariant manifold M psq of px ˚, x ˚q is such that if pu, vq P M psq , then F n pu, vq P M psq for all integer n ě 0, and lim nÑ`8 F n pu, vq " px ˚, x ˚q. Likewise if px ˚, x ˚q belongs to the unstable invariant manifold M puq , then for all integer n ď 0, F n pu, vq P M puq , and lim nÑ´8 F n pu, vq " px ˚, x ˚q. The knowledge of the invariant manifolds -here, the invariant curves associated to the fixed points -provides complementary information to describe the dynamics of our system and the corresponding bifurcations examined in the next section. Proposition 5.3 (Invariant curve). Let be M : x i`1 Þ Ñ x i , an endomorphism defined on r0, 1s and invertible, whose graph describes an invariant curve of the dynamical system associated to the discrete map F i . Then M satisfies the following functional equation:

M pxq " f px, M ´1pxqq .

(5.5)

Proof. By definition of M , we get x i´1 " M px i q, and from (5.1), x i " y i´1 . Thus we can write x i´1 " M py i´1 q. Moreover, from (5.1), it follows x i´1 " f px i , y i q " f px i , M ´1px i qq. Thus, we get M px i q " f px i , M ´1 i px i qq. For any x, the invariant curve satisfies (5.5).

Remark. We remark that if x " M pxq, then px, xq is a fixed point of F, since in this case x " f px, xq. Therefore, graphically the intersects of the invariant curve defined by M , with the bisectrix of the first quadrant, are fixed points of F in the unit square I 2 . Notably, a saddle-node bifurcation appears, when the bisectrix becomes tangent to the invariant curve in a point belonging to ]0,1[. Furthermore, two fixed points x `and x ´emerge when this tangency point turns into a transverse intersection of the invariant curve with the bisectrix (as an illustration, we refer to the invariant curve in purple, in the left panels of Figures 5.4 Let us first calculate the first derivative of M , namely M 1 " f x `fy M 1 , from which we deduce

M 1 " f x ˘af 2 x `4f y 2 ,
where f x and f y are the partial derivatives of f i . Consistently, the expression of M 1 is the same as the one for the eigenvalues λ ˘of the Jacobian matrix J (cf. equation (5.4)). Indeed the eigenvectors emanating from a fixed point are tangent to the invariant curves connecting this fixed point. In particular for x " 0, we recover M 1 p0q " be a " λ `p0q (5.6) that is the slope of the invariant curve at the origin. By deriving a second time, we have

M 2 " f xx `2 fxy M 1
`fyy´fy M 2 pM 1 q 2 , which evaluated at zero gives M 2 p0q " 2e a 2 `a ´bp1 ´a ´cq ˘(5.7)

that is the curvature at the origin, being respectively positive or negative, if function M ´1pxq is convex or logistic-like (cf. purple curves in the phase space px, x i`1 q in Figure 5.2 at page 118).

Remark. Let us denote C the representative curve of equation x i`1 " M ´1px i q, which is convex (i.e. M 2 p0q ą 0) if at least one the following conditions holds: a ą b or c ą 1 (these conditions are worked out from (5.7)). Then, C can intersect the bisectrix in two points at most, namely p0, 0q and px `, x `q (cf. parameter conditions in Proposition 5.2 for the existence and positiveness of x `).

Bifurcations of the fixed points

Interestingly, the DDS approach offers an overview of different bifurcation scenarios that allow the passage between the distinct cases (C1), (C2), and (C3), described in Proposition 5.2 (page 111), through bifurcations of type transcritical and saddle-node (see [Strogatz 1994] for the theory on nonlinear dynamical systems).

Proposition 5.4 (Bifurcations). The fixed points of F in the domain I 2 appear and disappear through two kinds of bifurcation of codimension 1.

(I) The parameter conditions p1 ´a ´c ´eq 2 `4pa ´beq " 0, with p1 ´a ć ´eq ą 0, create a saddle-node bifurcation. A variation of the system parameters such that the first term passes from negative to positive, implies a transition from (C1) to (C3) of Proposition 5.2, where a stable node and a saddle point appear simultaneously inside the unit square I 2 .

(II) The parameter conditions pbe´aq " 0 and p1´a´c´eq ‰ 0 correspond to a transcritical bifurcation. A variation of the parameters changing the sign of pbe ´aq from negative to positive, allows a transition either from (C2) to (C1) (if p1 ´a ´c ´eq holds negative), or from (C2) to (C3) (if p1 ´a ´c ´eq holds positive). The two instances implying that the fixed point, respectively, either px `, x `q or px ´, x ´q, becomes negative and exchanges its stability with (0,0) (where the stable node becomes a saddle point and vice-versa).

Proof. (I) A dynamical system usually undergoes a saddle-node bifurcation when new fixed points appear in the phase diagram, due to a small parameter variation. In our case, that happens when x `and x ´transit from the set C to the set R, namely when the descriminant ∆ " p1 ´a ´c ´eq 2 `4pa ´beq changes in sign, from negative to positive. In addition, we pass from (C1) to (C3) if both x `and x ´exist strictly positive, which is guaranteed if their sum is p1 ´a ´c ´eq ą 0.

(II) A transcritical bifurcation occurs when the stability of the fixed points is modified as they pass through a bifurcation value. In our case, when x ànd x ´are real, a certain parameter variation causes an exchange of stability between 0 and one the other fixed points (which are ordered, x ´ă x `). That happens when either x ´or x `changes in sign, i.e. transits through the other fixed point 0. Such a transition through 0 constitues the bifurcation point, which is represented by either x `" 0 or x ´" 0, that is translated into a condition on the product of x `and x ´, which is pbe ´aq " 0. When the product is tuned from negative to positive, we pass from case (C2), to case (C1) or (C3), according to which fixed point passes from the bifurcation. Cases (C1) or (C3) are achieved as a result of the sign change of, respectively, x `(becoming negative) or x ´(becoming positive). These two situations correspond to set a condition on the sum of x `and x ´being, respectively, p1 ´a ´c ´eq ă 0 or p1 ´a ´c ´eq ą 0. If the sum is null, i.e. x `" ´x´, then the product pbe ´aq will be negative and no bifurcation will appear.

Biological consequences

In this section, using the mathematical properties described above, we analyze the effect of the system's parameter changes, on the repertoire of activation profiles, and notably explore in detail the case of homogeneous cascades (same parameters for each stage i " 2, . . . , n, except for map F 1 because it depends on e 1 " 1{s). We will derive a classification of such activation profiles and interpret them at the light of key concepts of signaling pathways, such as signal attenuation/amplification, and cascade retroactivity.

Activation profiles of homogeneous cascades

Let be a homogeneous signaling cascade with a fixed set of biochemical parameters and let us consider the corresponding discrete map F. Proposition 5.2 allows us to establish how many fixed points belong to the biologically-meaningful region as well as their stability properties. However, this knowledge does not fully determine the activation profile along a cascade. In other words, for the same number of fixed points, several types of activation profiles can arise. This diversity springs from the dynamical features of the phase space, whose core is the invariant curve C emanating from the origin which is always a fixed point of F.

In order to extract the biological interpretation from the mathematical properties of map F, we discuss in the sequel some illustrative examples of activation profiles arising in a cascade of fixed length n " 4, also pointing to the behavior of the cascade when n is increased. survey the possible activation profiles of a 4-tier homogeneous cascade related to the three cases of fixed points studied in Proposition 5.2.

All these figures are composed by a left panel representing the biologicallyrelevant phase space (cf. the non-shaded domain included in I 2 ) with coordinates px i , y i q, or equivalently px i , x i`1 q. In each instance, we have traced the piece of orbit corresponding to the maximal activation profile. Following Theorem 5.1, these orbits can be tracked backward by iterating F from the "initial" condition pχ 4 , 0q located on the abscissa, leading successively to pχ 3 , χ 4 q, pχ 2 , χ 3 q, pχ 1 , χ 2 q, p1, χ 1 q, since χ 0 " 1 (cf. Theorem 5.1). The end point of this piece of orbit is represented on the left panel by a triangular arrow hitting the right side of the unit square I 2 . Points of this backward orbit are connected by vertical and horizontal segments joined on the bisectrix of I 2 , putting into evidence the property of map F, that the abscissa of each iterate becomes the ordinate of the next iterate. On the same graphs, we have traced the invariant curve C (in purple, cf. equation (5.5)) corresponding to the stable or unstable manifold of the origin. The same curve also describes the unstable manifold of the fixed point px `, x `q when x `ą 0 exists , whereas its stable manifold is only sketched by means of eigenvector v ´pointing towards px `, x `q. Still on the left panels, curve D is depicted in light-blue, being defined by the nullification of the denominator of f 1 px 1 , x 2 q (cf. equation (5.2)). In particular, point pχ 1 , χ 2 q belongs to D, since in this case s tends to infinity and therefore the sequence χ i pi " 1, . . . , 4q corresponds to the maximum activation profile. This latter is explicitly represented on the right panel of each figure, by means of bars whose heights are equal to the ordinates of points shown on the left panels. Some intermediate activation profiles `xi ˘1ďiď4 are also represented by linked diamonds within the bars, for non-maximal initial conditions χ 4 3 , 2χ 4 3 , that is for some intermediate input stimuli s Ps0, `8r.

Finally, when F also has a non-zero fixed point, it is useful to define a particular activation profile which plays a role in the classification of the other profiles (see Section 5.5). Definition 5.2. Let be the map F describing a homogeneous cascade, and possessing the non-zero fixed point px ˚, x ˚q. Assume that the stable manifold, relative to the negative eigenvalue of Jpx ˚, x ˚q, has a unique intersection p χn , 0q with the x-axis. Then the separating activation profile χi pi " 1, . . . , nq associated to px ˚, x ˚q corresponds to the piece of orbit with initial condition p χn , 0q belonging to the stable manifold of this fixed point.

Examples of separating activation profile are illustrated on the right panels of Figures 5.3 and 5.4 (in red), with n " 4. They are characterized by an activation profile χi pi " 1, . . . , nq which tends to be flat, except on the downstream part of the cascade, over which oscillations appear on a pathway length of order |1{pln |λ ´|q|. The reason of this behavior is that since p χn , 0q lies on the stable manifold of the fixed point, then points p χi , χi`1 q exponentially tend to the fixed point px ˚, x ˚q, as i decreases from n to 1 (cf. Figure 2.13 at page 25). Indeed, point p χi , χi`1 q is obtained from p χi`1 , χi`2 q for all 1 ď i ă n. In a vectorial form, we can write:

p χi ´x˚, χi`1 ´x˚qT " λ ´p χi`1 ´x˚, χi`2 ´x˚qT , 1 ď i ă n ,
or equivalently and more compactly, χi ´x˚" λ ´p χi`1 ´x˚q , 1 ď i ď n , from which we get by iteration: χi ´x˚" pλ ´qn´i p χn ´x˚q , 1 ď i ď n .

Let us now set k " n ´i, that represents the order of retroactivity, and suppose that |λ ´|k decreases exponentially. Hence, the decrease strength can be quantified by the first integer k such that:

|λ ´|k ď e ´1 ,
from which it follows k ě ´1{pln |λ ´|q .

Finally, since |λ ´| ă 1, then ln |λ ´| ă 0, which reduces to

k " r|1{pln |λ ´|q|s ,
where ras indicates the smallest integer greater than or equal to the real number a.

In the sequel, we are going to distinguish the different features of each figure according to the three cases of fixed points which are enumerated by Proposition 5.2.

(C1) F possesses a unique fixed point in I 2 . Then it corresponds to p0, 0q and is a saddle point with eigenvalues λ `ą 1 and λ ´" 0. This particular value of λ ´affects the phase portrait by strongly attracting the initial condition px n , 0q, with x n P r0, χ n s, towards the unstable manifold C of p0, 0q. The distance of the point px i , x i`1 q to C decreases with i " n ´1, . . . , 1, so that the backward orbit roughly evolves along C, away from the origin (cf. left panels of Figure 5.2). Since the equation of C is given by an increasing onedimensional map, equation (5.5), in this approximation the evolution of the discrete orbit can be predicted simply by using the cobweb method, as performed in [Li 2012b] (Figure 2.11, panel (C1-a), at page 21), and gives an increasing sequence x i , when i goes from n to 1. Therefore, in what concerns the signaling cascade, when p0, 0q is the only fixed point of map F in I 2 , the activation profile x 1 , x 2 , . . . , x n is always decreasing monotonously, cf. lowered by a factor 10, but x 1 keeps roughly the same amplitude. These two situations differ by the slope of C at the origin, given by 1{λ `. Let us remark that between these two examples, the curvature of C at p0, 0q changes of sign from negative to positive.

Phase Portrait

Activation Profile (C2) F possesses two fixed points in I 2 . Then, they must be p0, 0q and px `, x `q and are, respectively, a stable node and a saddle point. Proposition 5.4 shows that this situation can arise from the previous case (C1), through a transcritical bifurcation where px `, x `q collides with p0, 0q and the stability of these fixed points is exchanged. More precisely, through this bifurcation, the saddle point p0, 0q becomes a stable node, and px `, x `q, which was a stable node outside I 2 , transforms into a saddle point inside I 2 . However, from a qualitative point of view, regarding the signaling cascade, nearby the bifurcation when x `is quite small, the activation profile does not change abruptly. In order to illustrate features specific to the presence of two fixed points in I 2 , we consider in Figure 5.3 a situation relatively far from the bifurcation, e.g. x `» 0.5.

In this case, the contracting eigenvector v ´" pλ ´, 1q T associated to the saddle px `, x `q can play an important role, changing qualitatively the output of the signaling cascade into a non-decreasing activation profile.

Let us recall that ´1 ă λ ´ă 0 (see Proposition 5.1), so that three scenarios are achievable:

' If |λ ´| À 1, the contraction around px `, x `q is weak or moderate, and moreover the backward orbit oscillates around it, as a consequence of its negative sign. Therefore amplified oscillations appear in the maximal activation profile (Figure 5.3(a)).

' If |λ ´| ! 1 oscillations disappear, as the very first iteration of pχ n , 0q is strongly attracted towards px `, x `q and then the following ones are roughly located along the expanding eigenvector of px `, x `q, which is nearly horizontal. As a result, the maximal activation profile is essentially monotone, Figure 5.3(c).

' Intermediately between the two extreme situations above-mentioned, we usually observe a maximal activation profile which is locally non-monotone, that is decreasing except for the last unit, Figure 5.3(b). Indeed the last rebound, χ n , in the maximum activation profile is typical of an intermediate value of λ ´Ps ´1, 0r.

Remark. The saddle fixed point px `, x `q is growing to its limiting value p1, 1q when the parameter conditions are such that a " b e, b ă 1, c ! 1, and e ! 1, meaning that f x " 0 (since from (3.27) the numerator is positive and divided by term b e ! 1). In this case, the inequalities λ `" 1 and |λ ´| ! 1, as defined in (5.4), constrain the eigenvector v `" pλ `, 1q T to be nearly horizontal. As a result, the maximal activation profile is high and constant, similarly to the one depicted in Figure 5.3(b).

Remark. Since map F possesses a non-zero fixed point px `, x `q, there exists a separating activation profile χi , i " 1, . . . , 4 (cf. Definition 5.2). This latter is shown (in red) in the right panels of ´" ´0.17; λ `px `q " 3.3, λ ´px `q " ´0.1. (c) a " 6, b " 3, c " 5.5, e " 0.2; x `" 0.48, x

´"

´11.18; λ `px `q " 10.25, λ ´px `q " ´0.01.

activation profiles into two classes, below and above χn . These two classes are characterized by the activation profiles such that their 4-th activated protein x 4 is, respectively, either ă χ4 , or ą χ4 .

(C3) F possesses three fixed points, corresponding to p0, 0q, px ´, x ´q, and px `, x `q being respectively a saddle, a node and a saddle point. Proposition 5.4(II) shows that the existence of two strictly positive fixed points can emerge from the two above-reported cases (C1) or (C2), through respectively a saddle-node bifurcation or a transcritical bifurcation. For instance, Figures 5.4 ´q and a repeller px `, x `q, enables the existence of increasing activation profiles, for some range of input stimulus s (cf. Figure 5.4(b)). This property will be called profile amplification and will be analyzed later in Section 5.5 by linking it to the existence here of two separating profiles (shown in red on the right panels of Figure 5.4(b)).

As a conclusion of this section, let us summarize the different types of maximal activation profiles existing in homogeneous signaling cascades. These profiles can be almost flat with a tiny initial decrease, or strictly decreasing from tier 1 to n, or decreasing from 1 to n ´1 and then increasing again at tier n, or alternating with increasing oscillating amplitude as we move downstream. This latter behavior will be related later to the potential retroactivity of the cascade, as discussed in Section 5.5.4. On the other hand, the maximal activation profile of a homogeneous cascade is never strictly increasing.

Signal processing in a cascade

In signal transduction modeling, special attention has been addressed to the property of signal amplification through a signaling cascade [Huang 1996, Rácz 2008, O'Shaughnessy 2011]. The concept of amplification generally means that the amplitude of the output signal is magnified, compared with the amplitude of the input signal. This amplification property can be enhanced by increasing the number of tiers of the cascade. This is the reason why this phenomenon has been put forth to justify the occurrence of several tiers in natural signaling pathways [Ferrell 2014a]. However, depending on the system's parameters, the output signal can also be attenuated by increasing n. So, the mechanism of amplification or attenuation in signal transduction needs to be discussed in more details, by taking into account the assumptions underlying modeling
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(like e.g. neglecting or including the enzyme-substrate complexes in the description).

In the following we consider two types of signal amplifications in a cascade, namely modulated signal amplification and profile amplification. In both cases, our approach based on 2D discrete maps, enables to relate the attribute of amplification/attenuation to the properties of contraction/expansion of the corresponding map F, along the discrete orbit determining the activation profile. The discussion of these features is grounded on analytical expressions relating the efficiency of the dose-and drug-responses to the eigenvalues of map F i , which we are going to introduce at first.

Eigenvalues and cascade responses

In Section 5.3.1 we analyzed the fixed points of a homogeneous map F and their stability properties. Here, we consider the inhomogeneous map F i again, and will establish a relation between the eigenvalues of J i and the derivatives of stimulusand drug-response functions introduced in Section 3.3 (page 51).

Theorem 5.2 (Response derivatives). Let us consider an activation profile `xi ˘1ďiďn associated to backward maps F i pi " 1, . . . , nq of a signaling cascade submitted to stimulus s, and such that the activated protein at the last tier of the cascade binds to a drug d T . Let λ ì and λ í be the eigenvalues of the Jacobian matrix J i px i , x i`1 q of F i . Let us recall that |λ í | λ ì ă 1 (from Proposition 5.1). Then the derivative of the stimulus-response function x n psq at the last tier of the cascade admits the following asymptotic expansion in the

λ í λ ì 's dx n ds " 1 λ1 λ 2 ¨¨¨λ ǹ ˜1 ´|λ 1 | λ1 `n ÿ i"2 |λ í´1 | ´|λ í | λ ì ¸˜1 `O ˆλλ `˙2 ¸. (5.8)
Symmetrically, the derivative of the drug-response function x 1 pd T q at the first tier of the cascade is dominated by the following factor

dx 1 dd T " p´1q n | λ1 λ 2 ¨¨¨λ ń | ˜1 ´|λ 1 | λ1 `n ÿ i"2 |λ í´1 | ´|λ í | λ ì ¸˜1 `O ˆλλ `˙2
¸.

(5.9)

Proof. In Section 3.4.1 (page 56), we derived the formula

ds dx n " p1 0q ¨ź 1ďiďn J i px i , x i`1 q ¨ˆ1 0 ˙,
where, using Proposition 5.1 (page 109),

J i " ˆfx f y 1 0 ˙" ˆλì `λí ´λì λ í 1 0 ˙for 1 ď i ď n ,
is the Jacobian matrix associated to the map F i , with λ ȋ eigenvalues associated to J i and defined in (5.4).

The multiplication by a row vector (on the left) and a column vector (on the right) corresponds to select the element (1,1) of the product of the Jacobians, which gives us ds dxn as a function of the λ ì 's and λ í 's. Particularly, for arbitrary n ě 2, the linear development in the λ í 's can be formulated as follows:

ds dx n " n ź i"1 λ ì `n ÿ i"1 ¨λí n ź j"1 j‰i λ j ‹ ‹ ' ´n´1 ÿ i"1 ¨λí n ź j"1 j‰i`1 λ j ‹ ‹ ' `Opλ í λ j q " n ź i"1 λ ì `λ 1 n ź j"2 λ j `n ÿ i"2 ¨λí n ź j"1 j‰i λ j ‹ ‹ ' ´n ÿ i"2 ¨λí ´1 n ź j"1 j‰i λ j ‹ ‹ ' `Opλ í λ j q " n ź i"1 λ ì `λ 1 n ź j"2 λ j `n ÿ i"2 pλ í ´λí ´1q n ź j"1 j‰i λ j `Opλ í λ j q " n ź i"1 λ ì ˜1 `λ 1 λ1 `n ÿ i"2 λ í ´λí ´1 λ ì Ģiven that dx n ds " ˆds dx n

˙´1

, we say that

dx n ds " 1 λ1 λ 2 ¨¨¨λ ǹ ˜1 `λ 1 λ1 `n ÿ i"2 λ í ´λí ´1 λ ì ¸˜1 `O ˆλλ `˙2 ¸,
which is equivalent to (5.8). It is interesting to distinguish the first term in λ1 because it is the only one which remains if the λ í 's are equal. Furthermore, under the hypothesis λ1 λ1

`řn i"2 λ í ´λí ´1 λ ì ! 1 
, the latter expression reduces to

x 1 n psq " 1 λ1 λ 2 ¨¨¨λ ǹ .
In particular, this approximation holds when for all i, |λ í | » 0, as in the case of a dose-response curve which is overall flat (see e.g. the invariant curve associated to an inefficient signaling cascade, namely showing a low activation profile); but more generally also for |λ í | ! λ ì .

In order to prove the second part of the theorem, let us consider the forward map:

x 2 " ȟ1 ps, x 1 q

x i`1 " h i px i´1 , x i q, 1 ă i ă n d T " ĥn px n´1 , x n q
where functions ȟ1 , h i , ĥn are defined in (3.17) (page 53).

For the uniformity of notation, we use h i for any i, but keeping in mind that, for i " 1 and i " n, we actually imply ȟ1 and ĥn . So let us consider .10) which can be reformulated as the following system:

x i`1 " h i px i´1 , x i q, 1 ď i ď n . ( 5 
" x i`1 " g i`1 px i , y i q y i`1 " h i`1 px i , y i q 0 ď i ď n ´1 , (5.11) 
or , more compactly,

z i`1 " H i`1 pz i q 0 ď i ď n ´1 ,
where z i " px i , y i q T and H i " pg i , h i q T , with g i`1 px i , y i q " y i and h i`1 px i , y i q as defined in (3.17) (page 53).

By iterative application, we can write z n as a function of z 0 , i.e. z n " H n ˝Hn´1 ˝. . . ˝H1 pz 0 q , and in particular calculate its first derivative with respect to variable x 1 , denoted z 1 i " dz i dx 1 , according to the chain rule:

z 1 n " ź 0ďiăn L n´i pz n´i´1 q ¨z1 0 , (5.12) 
where L i "

˜Bg i Bx i Bg i By i Bh i Bx i Bh i By i
¸is the Jacobian matrix associated to system (5.11) and such that L i " J ´1 i , that is:

L i " ˜0 1 1 L Bf i By i ´Bf i Bx i L Bf i By i ¸" ˆ0 1 ´µì µ í µ ì `µí ˙for 1 ď i ď n,
with µ ȋ " 1{λ ȋ as defined in (5.4). From Proposition 5.1 it follows that 0 ă µ ì ă 1 and µ í ă ´1. Hence, in (5.12) we have z 1 n " px 1 n , d 1 T q T and z 1 0 " p0, 1q T , and the second component of z 1 n , i.e. d 1 T px 1 q " dd T dx 1 , is given by dd T dx 1 " p0 1q ¨ź 0ďiăn J ´1 n´i px n´i´1 , x n´i q ¨ˆ0 1 ˙.

(5.13)

Modulated-signal amplification

Let us suppose that the input signal is time-dependent and has the form of a small variation around a reference value, say s 0 ą 0. To fix the idea we consider a square signal oscillating between two positive values, e.g. s 0 ˘δs. Let us assume that the time-scale of the variation is sufficiently short to consider that the output of the cascade is always at steady state, and can be described by a square signal, varying between x n ´δx n and x n `δx n . (So here the actual time-dependent dynamics of the cascade is not taken into account). Then, one is interested to the output-input ratio, δx n {δs, which can be approximated by the derivative of the stimulus-response function at s " s 0 , i.e. δx n « x 1 n ps 0 q δs. Following this reasoning, one will say that the cascade enables amplification of modulated signal (around s 0 ) if x 1 n ps 0 q ą 1. In this perspective, let us consider an inhomogeneous cascade exhibiting some activation profile `xi ˘1ďiďn , for a reference stimulus s 0 . Then, by Theorem 5.2 (page 123), the factor of amplification of a modulated signal around s 0 can be computed by mean of equation ( 5.8), i.e. in function of the eigenvalues of J i px i , x i`1 q computed along the activation profile. Several interesting cases of amplifying cascades can be examined. Suppose first that |λ í | ! λ ì . Then, the following approximation holds

x 1 n ps 0 q " p λ1 λ 2 λ 3 ¨¨¨λ ǹ q ´1 ˜1 `O ˆλλ `˙2 ¸(5.15)
Thus, in order to promote the amplification of modulated signal, one must consider the lowest values of λ ì possible. Let us note that along a discrete orbit in the neighborhood of the invariant curve C i , we can somehow visualize the value of each λ ì by looking at the position of each px i , x i`1 q, with respect to C i . Indeed we have seen that the vector tangent to C i is proportional to pλ ì , 1q. Therefore, in order to get λ ì ă 1, the discrete orbit should wander in a region where the slope of C i is higher than 1. This is the case, in particular, in the neighborhood of a stable fixed point of F i , that is concerning only maps of class (C2) and (C3), described in Section 5.4.1, but not maps of class (C1). Maps F i of class (C2) share the common stable node p0, 0q with associated eigenvalues λ ì p0q " a i b i e i and λ í p0q " 0. In this case, the invariant curve is hyperbolically shaped, with a maximum slope at s " 0. So, it is relevant to consider the reference input stimulus s 0 " 0 and a modulated signal oscillating between 0 and δs. Moreover, the asymptotic expansion (5.15) becomes an exact equation, so that the amplification factor is described by .16) This expression was already derived in [Catozzi 2016]. It indicates explicitly that for i ą 1, b i e i a i is the contribution of tier i in the signal amplification. In fact, equation (5.16) shows that in such an amplifying cascade, some of the tiers could be characterized by attenuation, with factor b i e i a i ă 1, provided that they are compensated by other amplifying tiers yielding a geometrical average greater than 1.

x 1 n p0q " a 1 1 `b1 n ź i"2 b i e i a i . ( 5 
We now consider a homogeneous cascade, whose steady states are characterized by map F. If F belongs to class (C2), the result of the previous paragraph applies and the maximum amplification factor a 1`b `be a ˘n´1 is reached by considering a modulated signal with reference s 0 " 0. Another case which can be dealt with analytically, is the one with map F of class (C3). Hence it has 3 fixed points, and the invariant curve C has a logisticlike (or sigmoidal) shape. Then the optimal modulatory amplification is obtained by considering a signal modulated around a value such that the corresponding discrete orbit remains close the inflexion point of C, where λ `is minimal. For example on Figure 5.4(b), the intermediate fixed point px ´, x ´q is close to the inflexion point of F. Then, a good candidate for the reference stimulus s around which modulational amplification is optimal, is the stimulus corresponding to the separating profile, `χ i ˘1ďiďn , associated to px ´, x ´q. This is obtained by iteration of F from p χn , 0q. Then the amplification factor of a stimulus modulated around s can be analytically estimated by computing x 1 n psq " p λ1 q ´1pλ `q1´n , (5.17)

where λ1 and λ `are the positive eigenvalues of respectively J1 and J, computed at px ´, x ´q. Figure 5.5 illustrates such a modulated signal amplification in a 4-tier homogeneous cascade.

Activation profile amplification

In the previous section we discussed the concept of amplification of a signal modulated in time around a reference value. In this section we consider a different concept of amplification, proper to activation profiles, namely determining conditions under which the sequence x 1 , x 2 , . . . , x n in a cascade profile is strictly increasing. We know that this cannot occur for maximal activation profiles in a homogenous cascade. Nevertheless, the idea is that when a backward orbit px i , x i`1 q (i " n, . . . , 1) is attracted towards a stable fixed point of F, then the forward orbit is repelled from it, and thus in what concerns the signaling cascade, the activation profile displays an amplification above such a stable fixed point. Therefore this property applies naturally to homogeneous cascades whose map F possesses a stable node. In this perspective, we will show that profile amplification can occur in cascades classified under cases (C2) and (C3) of Section 5.4.1 (page 115), but not in case (C1) having only an unstable fixed point.

When F has 2 fixed points in I 2 , respectively a stable node in p0, 0q and a saddle point, then there exists a separating activation profile χi , i " 1, . . . , n (cf. Definition 5.2 at page 116), associated to the saddle point, which separates the set of activation profiles into two classes. These can be characterized by 2 intervals of activated protein at the last stage respectively with 0 ă x n ă χn for the first class, and χn ă x n ď χ n for the second class. In the first class, the overall property is that x i tends to 0 when i decreases from n to 1, attracted toward 0 via the stable manifold C of (0,0). So, this gives an activation profile which is amplified from x 1 to x n . Moreover for a fixed value of the last tier, the larger n, the lower x 1 . Therefore profile amplification occurs in signaling cascade of case (C2) if 0 ă x n ă χn .

Likewise for case (C3), if F has 3 fixed points. Then the corresponding cascade admits 2 separating profiles associated to the stable node px ´, x ´q and to the saddle px `, x `q. Let us denote them by χi and χi , pi " 1, . . . , nq, respectively. Then, a backward orbit with initial condition px n , 0q, where the activated protein in the last stage of the cascade is such that χn ă x n ă χn (namely it is located by construction between two separatrices in the phase space), is converging toward px ´, x ´q. As a consequence, the resulting activation profile is amplified in the sense formulated above. On the contrary, profile amplification is not possible in a homogeneous cascade of class (C1) which has only an unstable fixed point.

Figure 5.5 illustrates in a cascade of length n " 4 an example of profile amplification, as the thickest profile in black.

MODULATED INPUT OUTPUT

.5: Activation profiles for the "initial" conditions x 1 " 0.2, 0.25, 0.3, 0.58. Separating profiles associated to px `, x `q and px ´, x ´q are in red. Amplification of a modulated input signal (modulation around the stable fixed point x ´of map F), along the cascade.

Increasing and decreasing profiles are in black, respectively, thickest and thinnest lines, which correspond to profile amplification and profile attenuation, respectively, for x 1 " 0.3 or x 1 " 0.2. Parameters (same as in Figure 5.4(b)): a " 0.1, b " 5, c " 0.01, e " 0.05;

x `" 0.58, x ´" 0.26; λ ì px ´q " 0.67, λ í px ´q " ´0.02.

Retroactivity in signaling cascades

From a perspective of mathematical modeling, a cascade can potentially exhibit retroactivity only if the steady states of the (e.g. active) proteins are described by coupled equations relating variables of at least three levels, like g i px i´1 , x i , x i`1 q " 0 (as we concluded in Section 3.6 at page 65). Conversely, some modeling of signaling cascades will never be able to report evidence of retroactivity because based on approximations leading to steady-state equations of type g i px i´1 , x i q " 0 which couple only two variables [Thalhauser 2010, Csikász-Nagy 2009[START_REF] Goldbeter | Oscillatory enzyme reactions and Michaelis-Menten kinetics[END_REF]].

Retroactivity and negative eigenvalues

As evoked in Section 3.2 (page 47), one way to probe the amount of retroactivity in a signaling cascade is to consider a chemical species (called the "drug", and whose total concentration is denoted by d T ), that can bind to the activated protein at the last tier n of the pathway. Then retroactivity implies that the state variables x i of upstream proteins pi " n ´1, . . . , 1q vary in function of d T . In particular the function x 1 pd T q is called the drug-response. This function depends on the input stimulus s of the cascade, which can be supposed to be fixed to a large value (e.g. s Ñ `8). Alike in Section 5.5, one can conceive a new type of modulated signaling, here named retroactive signaling, where the cascade is submitted to variations of the drug around a reference value d T ˘δd T . This entails a variation δx 1 around x 1 , which can be estimated by δx 1 « x 1 1 pd T q δd T . Again, the derivative can be interpreted as a factor of amplification or attenuation of the retroactive response. Now, by using the discrete dynamical method, Theorem 5.2 (page 123) is useful to quantify the drugresponse modulation, so the retroactivity of a signaling cascade. Such a theorem states that x 1 1 pd T q can be computed in terms of the eigenvalues of J i along the discrete trajectory (cf. equation (5.9)). In particular, by assuming that |λ í | ! λ ì , the derivative of the drug-response admits the following asymptotic expansion

x 1 1 pd T q " p´1q n | λ1 λ 2 λ 3 ¨¨¨λ ń | ˜1 `O ˆλλ `˙2 ¸, (5.18) 
from which we can deduce several properties about the retroactivity in the signaling cascade:

(i) Contrary to the forward stimulus-response x n psq, the derivative of the drugresponse x 1 pd T q alternates sign as a function of n.

(ii) The fact that |λ í | ă 1 (see Proposition 5.1), implies that the drug-response has a modulated amplitude δx 1 smaller than the drug modulation δd T . Thus, in this sense the retroactive response is always damped. In particular, our approach recovers the known result that long cascades attenuate retroactivity [Ossareh 2011], because x 1 pd T q gets smaller as n increases.

(iii) Equation ( 5.18) says that when the |λ í | λ ì can be neglected, then |x 1 1 pd T q| is the product of all the |λ í |'s. This means that the quantity |λ í | measures the contribution of tier i to retroactivity of the cascade. Hence the limit |λ í | Ñ 0 can be interpreted as absence of retroactivity. On the other hand, the retroactivity induced in the cascade by tier i can be considered strong when |λ í | À 1. As a result, signaling cascades described by maps F i of class (C1) are cascades without retroactivity (since there the only fixed point (0,0) is associated to the eigenvalue λ ´" 0).

Interplay between retroactivity and forward signaling

Theorem 5.2 shows that our DDS approach, based on backward maps F i of the activation profiles, highlights the interplay between forward and retroactive signaling. Equations (5.8) and (5.9), and their simplifications (5.15) and ( 5.18), give respectively the derivatives of the stimulus-response and of the drug-response functions, in a remarkable symmetric way in function of the eigenvalues λ ȋ of J i . It results that, whereas an efficient forward signaling crucially depends on small positive eigenvalues λ ì , the retroactive response induced by the drug is mainly governed by the negative eigenvalues λ í which should be as close as possible to ´1 to maximize retroactivity. In addition, one has the constraint |λ í | ă λ ì (see Proposition 5.1), from which we can conclude that it is not possible to increase the derivative of both stimulus-response and drug-response simultaneously. Indeed, either forward response is amplified, with λ ì ! 1, but then we would also have |λ í | ! 1, which leads to a negligible drug-response. Or, |λ í | » 1 would increase the retroactive response, but then it would imply λ ì ą 1, that is the forward response is attenuated. This conclusion is consistent with the recent result, achieved in a different way, that forward signaling tends to be incompatible with retro-signaling [Catozzi 2016].

Effect of the retroactivity on the activation profile

How retroactivity property affects the maximum activation profile of a homogeneous signaling cascade? Let F be the discrete map corresponding to the steady states of this cascade. In the previous subsection we showed that retroactivity can be qualified to be strong if the eigenvalue |λ ´| of J is lower but close to 1. On the other hand, we have seen that such a value for |λ ´| provokes oscillations along the activation profile `xi ˘1ďiďn , because in this case the discrete backward orbit has a weak contraction towards the invariant manifold C (see e.g. Figure 5.3 at page 120, for an illustration).

Therefore, independently of the drug-response scheme, retroactivity can potentially be revealed in the activation profile, by exhibiting amplified oscillations towards the last activated protein x n .

Conclusion

In order to have a global understanding of a cascade behavior, we have showed that it is interesting to study the stimulus-responses at all the intermediate stages along which a signal propagates. In this perspective, we have introduced the concept of pathway activation profile -or shortly activation profile -that is the distribution of the activated protein at each tier of the cascade, for a given value of the stimulus.

The steady states (i.e. the activation profiles) of the cascade, firstly described by functions f i (Chapter 3), have been converted under the form of pieces of orbits, described by a 2D discrete dynamical system F i pi " 1, . . . , nq, where each map account for one tier of the cascade. The advantage of using a dynamical system approach is to offer an overall view on the effect of changing the system's parameters, and to classify the types of cascades according to structurally stable properties of each tier: such as the number, the stability, and the invariant curves of the fixed points of F i . Moreover, transitions between these robust classes can be handled thanks to concepts of bifurcation theory. Several results and most of the illustrative examples were presented for homogeneous cascades, i.e. systems formed of identical tiers. Hence, these cascades can be characterized by a single map F. However, in what concerns inhomogeneous systems, we are still leading some research, which will be presented in the following chapter. Furthermore, the linearization of the discrete dynamical system we have considered, also enable to provide nice analytical expressions of the slopes of the response functions (both dose-responses and drug-responses) introduced in Chapter 3. Such slopes (i.e. first derivatives) disclose an interesting relation between the (forth and/or backward) signaling efficiency and the eigenvalues associated to the unstable positive fixed point x `. More precisely, these two derivatives were found to have symmetrical formulas, depending on the eigenvalues associated to the Jacobian of map F i . Such formulas actually corroborate the findings of the numerical study detailed in Chapter 4, that are the parameter conditions favoring backward or forward signaling are most often exclusive [Catozzi 2016]. In some limits, we could show that positive eigenvalues control the slope of the dose-response, while negative eigenvalues, the slope of the drug-response. We also determined that, as an output, the retroactive response can never be amplified with respect to the amplitude of a modulated input signal. Conversely, the forward response can be damped or amplified according to the chosen input modulation range, which depends on the number and stability of the fixed points of the discrete map associated to the system under study. In this chapter, we are going to list some ongoing and future research, which concern four main tracks. First, an extension of the discrete dynamical system approach of Chapter 5, to inhomogeneous cascades described by maps F i . Second, quantify the sensitivity of 3-tier signaling cascades (passing through all the response functions obtained from the random sampling in Chapter 4) according to the signaling regime they belong to. Third, the application of the steady-state iterative formulation to branched cascades, in order to explore the way retroactivity manifests. Four, the derivation of a steady-state iterative formulation for cascades with double phoshorylation cycles.

Tier classification in inhomogeneous cascades

In Chapter 5 we have essentially dealt with homogeneous cascades, and characterized the phase portraits and activation profiles of maps F by means of key features belonging to the domain of dynamical systems, especially the fixed points. To take a step forward, we aim to generalize our analysis to inhomogeneous cascades. First of all, we know that activation profiles of an inhomogeneous cascade can show more shape variations than homogeneous ones. Indeed, when the biochemical parameters change at each tier of a signaling cascade, the corresponding discrete map F i varies for each iteration i, and so do the position of its fixed points and their invariant manifolds along each orbit. Therefore, for inhomogeneous cascades we cannot present a general classification of the various activation profiles, as performed in Section 5.4.1 (page 115) for the homogeneous case. Nevertheless, we show here that our approach based on discrete dynamical systems, can still be useful to predict the (local) influence on the activation profile of a cascade tier described by F i , when it is inserted in an inhomogeneous chain.

A first issue comes from the fact that each map f i depends not only on parameters of stage i (namely a i , b i , c i , e i ) but also of i `1 (namely a i`1 , e i`1 ), so map F i does.

At first, let us consider a simpler case, where a i " a i`1 and e i ‰ e i`1 , and revisit Proposition 3.1 (page 58). Proposition 6.1 (Fixed points (II)). For a given 1 ă i ă n and the set of parameters {a i " a i`1 , b i , c i , e i , e i`1 }, function f i has at most three fixed points x i in the unit interval [0,1], where x i " 0, x ì , x í , with x ȋ " 1 ´ai ´ci ´ei`1 ˘ap1 ´ai ´ci ´ei`1 q 2 `4pa i ´bi e i q 2 . (6.1)

Moreover, if real, x ì ă 1.

Proof. Assume the denominator of the fixed point equation x " f i px, xq, for 1 ă i ă n, is ‰ 0. Solving this equation implies to solve

x " b i e i x px `ai q p1 ´x ´ei`1 x{px `ai qq ´ci x , and leads to the third order equation

x 3 ´p1 ´ai ´ci ´ei`1 qx 2 ´pa i ´bi e i qx " 0 , which always admits x " 0 as a solution, as well as two other roots (possibly complex) x ȋ given by (6.1). Moreover, we verify that x ì is bounded by 1, by replacing the expression of x ì from (6.1). So the latter inequality reduces to c i `bi e i `ei`1 ą 0 , which is always verified, since b i , c i , e i , e i`1 are strictly positive by definition (3.7) (page 48).

Since in this case the fixed points x ȋ are still the roots of a second-order polynomial, the respectively) about the classification and bifurcation of these fixed points still hold, but for the fixed points x ȋ as given in (6.1). Now, let us consider a complete inhomogeneous cascades, where each f i depends on all distinct parameters, in particular a i ‰ a i`1 and e i ‰ e i`1 . Thus, the fixed point equation x " f i px, xq, 1 ă i ă n, that is x " b i e i x px `ai q p1 ´x ´ei`1 x{px `ai`1 qq ´ci x , leads to the same trivial solution x ˚" 0 as well as the roots of the following thirdorder polynomial:

px `ai`1 q `px `ai qp1 ´xq ´ci x ´bi e i ˘´e i`1 xpx `ai q " 0 . (6.2) Hence, the map F i associated to such an inhomogeneous system, has at most 4 fixed points in the BM region I 2 .

Remark. We highlight that in the special case a i " a i`1 , the polynomial (6.2) reduces to px `ai q `px `ai qp1 ´xq ´ci x ´bi e i ´ei`1 x ˘" 0 , that is px `ai q `x2 ´p1 ´ai ´ci ´ei`1 qx ´ai `bi e i ˘" 0 , whose solutions are x " ´ai and x " x ȋ as defined in (6.1). However, as x " ´ai is not a BM fixed point, this root does not change the conclusions about the classification into (C1), (C2), and (C3).

In the more general inhomogeneous case, classes (C1), (C2), and (C3) will correspond to some specific conditions ensuring respectively, one, two or three BM fixed points. In addition, we possibly encounter a new scenario of class (C4), where there exist 4 fixed points in the square unit I 2 . In this eventuality, the invariant curve C i would intersect the bisectrix at points p0, 0q ă pα ì , α ì q ă pβ ì , β ì q ă pγ ì , γ ì q. In principle, the conditions to determine the number of the BM fixed points (excluding the trivial one in 0), could be explicitly written by using Cardano's formula for the roots of a cubic polynomial, but in practice, this could reveal to be too cumbersome.

Conjecture Let us consider class (C4). If we assume that the largest fixed point pγ ì , γ ì q -around which the portrait of homogeneous maps used to take form -is a saddle point, then pβ ì , β ì q will be stable, pα ì , α ì q unstable, and (0,0) stable. As a consequence of the origin being a stable node, the curvature of C i will be determined as negative, since the eigenvalue λ `p0q would be ă 1. Mathematical evidence of this conjecture is given in the following. Let us suppose that pγ ì , γ ì q is stable, then the associated eigenvalue λ ì will be ă 1. Graphically this implies that the invariant curve will not lie in the codomain [0,1], which is in contradiction with its definition established in Proposition 5.3 (page 113), since each BM x i P r0, 1s for all i. These reasoning is also applicable to cases (C1)-( C2)-(C3), corresponding to the number of BM solutions of polynomial (6.2).

At the light of this conjecture, let us now revisit the 3 classes (C1)-(C2)-(C3) of maps described in Section 5.3.1, and redefine them as (C 1 1)-(C 1 2)-(C 1 3) for inhomogeneous cascades as follows. Class (C 1 1) will characterize the parameter sets for which it exists a unique BM fixed point in (0,0), which we assume to be a saddle point from the conjecture. Class (C 1 2) will have two BM fixed points, with the largest one being a saddle point. Class (C 1 3) will be characterized by the existence of at least one strictly positive fixed point which is stable.

In inhomogeneous cascades, we obtain activation profiles by application of the backward maps F i , for i " n, . . . , 1. In particular, for each given tier i, and from the knowledge of the parameters related to map F i´1 , we deduce the category, (C 1 1), (C 1 2) or (C 1 3), which tier i ´1 will fall into. According to the category, the activation profile, which goes from i ´1 to i, will evolve in a specific way. It will be decreasing for (C 1 1), increasing for (C 1 2), and increasing or decreasing according to the strength of the input signal for (C 1 3). As a consequence, the corresponding tiers will be respectively termed as attenuating, targeting, or sensitive. We detail these three cases in the following.

If map F i has only the origin as a fixed point it is necessarily a saddle point, with its unstable invariant manifold C i sticking out of the origin with an angle between 0 and 45 ˝. Hence, since any orbit of the backward map F i goes away from the origin, its general effect on the activation profile is inverted, and thus it lowers the activated protein of tier i compared to tier i ´1. Therefore, we can name attenuating tier a cascade element described by maps of the class (C 1 1), since its influence in a signaling cascade is to locally decrease the activation profiles, going down the pathway. For instance, Figure 6.1(a) illustrates that parameter conditions belonging to case (C 1 1), entail that, at any stage, there exists a unique BM fixed point p0, 0q which is always repulsive along the dynamics of F i . This implies that the activation profile, and in particular the maximal activation profile, related to the signaling pathway will be monotonously decreasing, tending to 0 , as the length of the cascade n increases, Figure 6.1(a). Thus such cascades possess a poor stimulus-response.

Secondly, if F i has 2 fixed points, then the origin is a stable node connected by its stable invariant manifold C i to a new saddle fixed point pγ ì , γ ì q. However C i is also the unstable manifold of the saddle point and thus backward orbits are repelled along C i . This motion is inverted from the perspective of forward orbits. Therefore, since its effect in a signaling pathway is to pull the activation profile towards the strictly positive value γ ì , we can call such a cascade element a targeting tier. For instance, we can investigate what happens if a certain tier 1 ă k ă n of the cascade on Figure 6.1(a), with poor stimulus-response, is modified, e.g. by a genetic or drug-induced variation, in such a way that parameter conditions of class (C 1 2) are fulfilled for stage k. Then map F k has a strictly positive fixed point γ k , which may be chosen as a relatively high target. This situation is illustrated in Figure 6.1(b) where the parameters of the third stage are chosen such that γ 3 " 0.9. Here the activation profile follows a decreasing sequence of x i 's, except for x 3 , which can reach a large maximal response. As we argued in Chapter 5, homogeneous cascades cannot exhibit a monotonously increasing maximal activation profiles, for any parameter set. However, this situation may arise in cascades providing specific inhomogeneous parameters. For example, in Figure 6.1(c) we consider parameter sets such that the discrete maps F i pi " 2, . . . , n ´1q admit an increasing sequence of positive fixed points `γì ˘1ăiăn . This ensures the resulting maximal activation profile to be strictly increasing.

Thirdly, if F i has 3 fixed points, they are ordered on the bisectrix of I 2 as follows: the origin (0,0), an intermediate stable node pβ ì , β ì q, and then a saddle fixed point pγ ì , γ ì q. Now, the existence of the intermediate stable node acts here as a threshold, and the activation profiles can again be pulled towards a strictly positive level, or go down to 0 activation, according to the initial value of the stimulus (cf. Figure 5.5 at page 129). Thus, this type of cascade element, can be called sensitive tier. Particularly, by connecting several tiers of this type, one can achieve ultrasensitivity in the stimulus-response of the cascade. Furthermore, if F i has 4 fixed points both (0,0) and pβ ì , β ì q would be stable and therefore establish three distinct regions, determined by the separating profiles associated to the 2 stable nodes. As a result, such a system would exhibit a sort of doubly sensitive property. Eventually, inhomogeneous maps F i with either 3 or 4 BM fixed points, can be gathered into a common class (C 1 3), characterized by the presence of one strictly positive stable node, whose parameters fulfill conditions inducing sensitive tiers.

Sensitivity of the response functions

In Chapter 4 we have presented a classification of 3-tier cascades with inhomogeneous parameters, according to signaling regimes associated to a backward response on the first and second tier, and a forward response on the third tier. On the basis of the numerical data which have been sampled, we would like to further quantify the efficiency of such responses by means of some more standard technique than the cut-off criteria we used for the classification into the 8 signaling regimes, based on some thresholds in the response variation (cf. Section 4.2). In particular, we derived general analytical expressions for the first derivatives of the response functions, depending on the associated Jacobian matrices (see proof of Theorem 5.2), 1{x 1 1 pd T q " d 1 T px 1 q " p0 1q ¨ź 0ďiăn J ´1 n´i px n´i´1 , x n´i q ¨ˆ0 1 1{x 1 2 pd T q " d 1 T px 2 q " p0 1q ¨ź 0ďiăn´1 J ´1 n´i px n´i´1 , x n´i q ¨ˆ0 1 ˙.

1{x 1 n psq " s 1 px n q " p1 0q ¨ź 1ďiďn J i px i , x i`1 q ¨ˆ1 0 Ṫhis allows to calculate the response coefficients (introduced in Section 2.3 at page 34) for each response curve

R 1 " d T x 1 x 1 1 pd T q R 2 " d T x 2 x 1 2 pd T q R 3 " s x 3 x 1 3 psq
Local sensitivity will be computed at the point where the slope of each response function is maximized. For sigmoidal functions, the slope results maximal at the inflection point, which will be found numerically; for hyperbolic functions, instead, we know that the slope is maximal at 0, so we can make use of the simplified formula of x 1 3 psq given in (3.22) (page 57). We refer to Figure 6.2 for an illustration. Assuming our curves to be fitted by an Hill function, we obtained a relation between the Hill coefficient and the response coefficient, i.e. n H " 2 Rpsq ´1 , where s is the point of maximal slope, that is the stimulus for which the response function is steeper. Moreover, for hyperbolic response functions, the response coefficient is maximized at s " 0, implying lim sÑ0 s x i psq " s 1 px i q, then Rp0q " 1. Hence, n H " 1. Alternatively, as a global measure, the relative amplification coefficient (see Section 2.3 at page 34) could be a valid option to the Hill coefficient.

Branched signaling cascades

We would aim to extend the iterative map and the discrete dynamical system approach presented in Chapter 5, to describe branched singly-phosphorylated cascades. At first, let us consider a pathway made of two branches sharing the first tier, so that the amount of the first activated protein is partitioned between the two downstream branches, as displayed in Figure 6.3(a). Steady-state equations relating the normalized active proteins can be derived in an analogous manner as derived in the proof of Theorem 3.1 (page 48). Indeed, two linear branches with a common cycle at the top will be still described by backward functions of type f i px i , x i`1 q, where the first stage will depend on species of both branches, i.e. f1 px 1 " y 1 , x 2 , y 2 q.

The reaction scheme for the X-cascade will be given by

X 0 i `X1 i´1 a 0 i Ý á â Ý d 0 i C 0 i k 0 i Ý Ñ X 1 i `X1
i´1 , 1 ď i ď n (6.3a) 6.3c) and for the Y -cascade:

X 1 i `Ei a 1 i Ý á â Ý d 1 i C 1 i k 1 i Ý Ñ X 0 i `Ei , 1 ď i ď n (6.3b) X 1 n `D a D Ý Ý á â Ý Ý d D C D ( 
Y 0 i `Y 1 i´1 a 1 i 0 Ý Ý á â Ý Ý d 1 i 0 C 1 i 0 k 1 i 0 Ý Ý Ñ Y 1 i `Y 1 i´1 , 2 ď i ď m (6.4a) Y 1 i `E1 i a 1 i 1 Ý Ý á â Ý Ý d 1 i 1 C 1 i 1 k 1 i 1 Ý Ý Ñ Y 0 i `E1 i , 2 ď i ď m (6.4b)
The conservation laws will change only for the first tier

X 0T " X 1 0 `C0 1 , E iT " E i `C1 i , D T " D `CD Y 0T " Y 1 0 `C0 1 , E 1 iT " E 1 i `C1 i 1 X 1T " X 1 1 `X0 1 `C0 1 `C1 1 `C0 2 `C1 2 0 X iT " X 0 i `X1 i `C0 i `C1 i `C0 i`1 , with C 0 n`1 " C D , 2 ď i ď n Y iT " Y 0 i `Y 1 i `C1 i 0 `C1 i 1 `C1 i`1 0 , with C 0 n`1 " 0, 2 ď i ď m
Following the proof of Theorem 3.1 (page 48), we will write:

1

" X 1 1 X 1T `X0 1 X 1T `ˆC 0 1 X 1T `C1 1 X 1T ˙`C 0 2 X 1T `D0 2 X 1T .
Then, at steady state, we get 1 " x 1 `b1 x 1 spx 1 `a1 q ´x1 `c1 x 1 x 1 `a1 `e2 x 2 x 2 `a2 `e1 2 y 2 y 2 `a1 2 , from which it follows s "

x 1 x 1 `a1 `b1 x 1 px 1 `a1 q p1 ´x1 ´e2 x 2 {px 2 `a2 q ´e1 2 y 2 {py 2 `a1 2 qq ´c1 x 1 .

In a more compact notation:

s " f1 px 1 , x 2 , y 2 q .

Let us assume that function f i will characterize the X-cascade, and g i the Y -cascade. We will also suppose, in a first time, that their length are equal, n " m " 3, and no inhibitory drug is introduced, d T " 0.

As backward iterations, we choose one map to iterate, e.g. f i . Thus, for a given x 3 P r0, χ 3 s, we calculate x 2 " f 3 px 3 , 0q, and x 1 " f 2 px 2 , x 3 q. Then we solve the following system with respect to variables y 2 and y 3 : " y 1 " g 2 py 2 , y 3 q y 2 " g 3 py 3 , 0q (6.6) such that it satisfies the matching condition y 1 " x 1 . Eventually, we calculate s " f1 px 1 , x 2 , y 2 q.

The active proteins x i and y i can be visualized as two activation profiles (blue and red, respectively) joined at the first level, where x 1 " y 1 . Figures 6.4 An interesting instance is to demonstrate how a retroactive perturbation applied e.g. under the form of a drug to x n , can affect the whole system. Notably, let us suppose that the X-branch is characterized by a set of biochemical parameters promoting the backward propagation, and let us name it the "retroactive branch"; while the Y -branch is supposed to favor the forward signaling, and so will be called the "forward branch". In such a setup, we definitely expect that the retroactivity registered on tier 1 (coming from x n would be transmitted and, above all, amplified as it propagates down the Y -branch. This feature has already been reported in [Sepulchre 2012, Jesan 2013], but this particular branch asymmetry we mentioned above would be worth to be analyzed with the new tools we have developed. Moreover, a straightforward extension of Theorem 5.2 (page 123) can show that a modulation of this drug could induce an amplified response, downstream in the other parallel branch, with a quantifiable amplification factor, which would be proportional to the product of the negative eigenvalues (in the retroactive branch) and the positive eigenvalues (in the forward branch). This perspective interestingly broadens the scenario for retrosignaling. In fact, as we have shown in Chapter 5, linear signaling cascades alone are not able to amplify retroactivity, but are better inclined for forward signaling amplification (cf. also numerical study in Chapter 4). As a result, if we couple linear cascades into branched cascades, then retroactivity can exploit the amplification property of the parallel branch, potentially, with a slight perturbation of the common unit x 1 . If our guess is correct, this perspective would definitely explain the experimental measurements of [Jesan 2013], as well as quantify the off-target effects, particularly addressed in [Wynn 2011], by the knowledge of the eigenvalues associated to an iterative map, which we believe can be further generalized, e.g. to include double phosphorylations.

Double phosphorylation cycles

Another extension of the iterative formulation might concern the case of double phosphorylation cycles, which is of special interest to model a widespread kind of cascade cascades, known as MAPK cascades. Such cascades are typically made of one singly-phosphorylated cycle, activated two independent branches of 2 stages each, of doubly-phosphorylated cycles. We expect that it can be done analytically and that the obtained map will be more complicated than in the case of single phosphorylation, but still can fit into with the same two-dimensional approach described in Chapter 5. Furthermore, we know from the literature that such a system can exhibit bistability, for some parameter regions. Therefore, the discrete dynamical system might provide novel insights in the understanding of this more complex behavior.

Chapter 7

Conclusion

Throughout time and species, from uni-to multi-cellular organisms, the mechanism of signal transduction has been inherited and transmitted, as a way of communication among and within cells. This process is essentially due to precise protein-protein interactions which orchestrate cell cycle, from birth to death. The reception and processing of a biochemical signal (ligand) occur through alterations of protein conformation, which induce alteration in protein functionality. As a result, an ordered sequence of reactions takes place and relays the input signal, down to the nucleus, entailing a specific cellular response. The underlying reactions consist in reversible enzymatic cycles, where a first protein passes to its active form, combines to the following protein by inducing its activation, then the first protein regains its inactive form, and the second one can activate a third protein and so on. Such sequences of biochemical transmitters undertaking covalent modification reactions are called signaling cascades.

Investigation of the working principles of signaling cascades has been addressed in different areas of research, from microscopic to macroscopic level. Traditionally seen as input-output systems, signaling cascades have been characterized according to their forward signaling: the effect of a stimulus initiated on the first tier, modifying the last-tier protein, is usually described by way of the resulting dose-response curve. In particular, in regard to forward signaling, the property of ultrasensitivity has been recognized, from both experimental and theoretical works.

A new track for research emerged from observations in synthetic biology and electrical circuits, which pointed out a new property, called retroactivity. This latter translated the retroactive effect of downstream perturbations on previous stages of a cascade. This attribute was recognized to possibly affect forward signaling, due to e.g. enzyme sequestration. In this view, signaling cascades started to be inspected as input-output bidirectional devices able to transmit stimuli or perturbations both upstream and downstream the cascade.

Only recently, this question began to meet the interest of the scientific community, as it is witnessed by the fact that retroactivity in biomolecular systems has been reviewed, for the first time, in 2015.

Our work is then inscribed in this research context, dealing with the fundamental question to know whether in signaling cascades, backward and forward signaling may coexist. Remarkably, this aspect has been accounted for with a convenient modeling, which envisages retroactivity in its equations. We then examined the system of general linear cascades made of n stages, at steady state, by deriving a fruitful formulation driven by a second-order iterative function. From such a function, we could analytically calculate the dose-response function of the last protein, and so study the properties of forward signaling in the cascade. By introducing a perturbation at the bottom of the cascade under the form of kinase-sequestering ligand, we analytically derived the drug-response function of the first protein, which allowed us to investigate the properties of backward signaling. In particular, we established the biological conditions optimizing the efficiency of downstream transmission, for homogeneous cascades (i.e. with same parameters for each tier) of arbitrary length. However, due to some additional issues in the analytical treatment, the approach used on dose-responses could not fit for similar purposes on drug-responses. The profound relation between modeling and retroactivity has been discussed, and in that regard, we derived some general classes of steady-state equations, from which we are able to predict how perturbations propagate and which stages are affected.

A systematic numerical investigation has been set up to overcome the difficulty encountered in the analytical characterization of the efficiency of upstream transmission. Such a methodology applied to inhomogeneous cascades of length fixed to 3, and was also invaluable to shed light on the controversial question regarding the concurrence of backward and forward signaling. We found out under which biochemical conditions this coexistence is possible. By making a statistical analysis on parameters we realized that simultaneous forth and backward transmission is unlikely, but we identified the parameter region in which this behavior can be more likely observed (even though, in the absolute, the probability remains low). This novel and original result would be worth to be at the focus of experimental investigations, using the conditions we deduced and graphically represented as motifs (Figure 4.6). In parallel, we have also determined the parameter regions enhancing one regime of signal transmission: either upstream or downstream. Surprisingly, we found that, in 3-tier cascades, backward signaling occurs with the same order of probability than forward signaling.

Such results prompt the consideration of those signaling pathways that are a priori overlooked, because found ineffective for forward propagation. Our analysis unfolds the perspective that such systems possibly hide some usefulness in controlling pathways, due to their qualities of retrosignaling.

As a further attempt to unravel the complex interplay between forward and backward signaling, we outlined an innovative method for the investigation of a linear cascade of arbitrary length n, in its global way of transducing a signal. We have then addressed our attention to the dose-response functions of all intermediate stages of the cascade, which can be computed by means of the second-order iterative function we shaped from our model. For a fixed stimulus, such dose-responses compose a pathway activation profile (i.e. the sequence of the steady-state values of active proteins). On the other side, we reformulated our iterative function into a discrete dynamical system evolving in the phase space of two consecutive free active proteins. Such a dynamical system paved the way for a geometrical visualization of the global evolution of the pathway activation profiles which, in the phase space, are indeed pieces of orbits. The analysis of the stability of the fixed points of such a system disclosed parameter conditions characterizing the configuration of the activation profiles, that is the manner a signal, or a modulated signal, is amplified or dampened along the cascade. The activation profiles of homogeneous cascades resulted classified into three distinct categories, according to the number of fixed points appearing in the biologically-meaningful portion of the phase space. In particular, any decreasing profile corresponds to cascades which are retroactivityfree, but also hinders forward propagation. Conversely, any non-monotone profile is pertinent to a cascade with (more or less significant) retroactivity. Notably, oscillatory profiles are the hallmark of relatively high retroactivity.

We emphasize that, although these results particularly apply to homogeneous cascades, further extension to inhomogeneous systems has been developed yet, and seems to us a promising perspective. In this wide-ranging case, the previous classification into three categories is slightly modified, and highlights the role that one tier locally plays in an inhomogeneous cascade. Such classes have been termed as attenuating, targeting or sensitive, and this denomination hints at the way the signal is processed from a tier to the following one. However, one last piece would complete the puzzle, if we should identify the parameter conditions underlying these three classes.

Furthermore, this study also conducted to some general conclusions about inhomogeneous systems. It revealed that the eigenvalues associated to the Jacobian matrix of our discrete dynamical system regulates the way forth and backward signaling combine. We discovered that it exists a relation between such positive/negative eigenvalues and the efficiency of downstream/upstream propagation (i.e. the slopes of the dose-/drug-response functions). Such a result furnishes a straightforward explanation regarding retroactivity to be attenuated stage by stage, as it climbs up the cascade. It confirms also one of the main claim of this Thesis: signaling cascades can transmit information forward and backward, but unlikely simultaneously.

Finally, we believe that the tools furnished in the present Thesis might capture the interest of applied disciplines such as control theory or synthetic biology.
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 21 Figure 2.1: From [Yarden 2007]. Example of signal transduction network.
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 22 Figure 2.2: From [Beldade 2002]. Wing-pattern mutants. Examples of spontaneous mutants isolated in laboratory populations of Bicyclus anynana that show unusual eyespotpattern phenotypes. All photos are of the ventral surface of the forewing (top) and hindwing (bottom) of B. anynana females. (a) Wild-type phenotype with two eyespots on the forewing and seven on the hindwing, with characterisic relative sizes; (b) Bigeye mutant with overall enlarged eyespots46; (c) Spotty mutant with extra eyespots on the forewing; and (d) Goldeneye mutant, in which the characteristically black scales of the central ring of the eyespots are almost completely replaced by gold scales. The individual shown in (d) is, in fact, a Bigeye-Goldeneye double mutant. Other mutants not illustrated here include comet and cyclops, which have altered eyespot shape, and mutant,which has fewer eyespots on its hindwing.
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 23 Figure 2.3: From [De Robertis 2006]. The Spemann experiment: transplantation of a small fragment of dorsal tissue from the dorsal lip can induce a two-headed individual. Note the less pigmented grafted tissue in the ventral side of an early Xenopus embryo.
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 24 Figure 2.4: (a) Shmooing of yeast, adapted from [Kachurina 2012]. (b) The Shmoo, the cartoon character created by Al Capp.
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 25 Figure 2.5: From [Alberts 2015]. Multisite protein modification and its effects. (A) A protein that carries a post-translational addition to more than one of its amino acid side chains can be considered to carry a combinatorial regulatory code. Multisite modifications are added to (and removed from) a protein through signaling networks, and the resulting combinatorial regulatory code on the protein is read to alter its behavior in the cell. (B) The pattern of some covalent modifications to the protein p53.
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 26 Figure 2.6: Modules of two species enhancing (Ñ) or inhibiting (%) the other species activity.
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 27 Figure 2.7: Interaction diagram of the ERK cascade, activated by Ras and inducing the transcriptional factor (protein) Myc which is pivotal in the regulation of genetic expression.
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 29 Figure 2.9: Cycle of phosphorylation of a protein Y . Protein kinase I and protein phosphatase E are catalysts of the two reactions, respectively adding and removing a phosphate group, from an ATP molecule to a protein Y . Upper indexes "0" and "1" refer on the number of phosphate groups bound to Y .
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 2 Figure 2.10: Ultrasensitivity in the Goldbeter-Koshland model. Steady-state response function, from (2.4), s " x p1´x`bq px`aqp1´xq , with equal normalized Michaelis-Menten constants a " b, whose small value produces ultrasensitive responses.

Figure 2 .

 2 Figure 2.11: From [Li 2012b]. Steady-state response function φ and the generation of steady states of all phosphorylation-dephosphorylation cycles by iteration starting with x 0 .As φ has only one fixed point, which is either C1-a at low level or C1-b at high level, the steady state x n approaches to it due to its stability. C2 As φ has two fixed points, one is unstable p 1 and the other is stable p 2 . The steady state x n approaches to p 2 only if x 0 ‰ p 1 . C3 As φ has three fixed points, one is unstable p 2 and the other two are stable p 1,3 . The steady state x n approaches, to either p 1 if x 0 ă p 2 or p 3 if x 0 ą p 2 .
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 2 Figure 2.12: Hill functions. Hyperbolic response for n " 1; sigmoidal response for n ą 1.
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  Figure 2.13: From [Ventura 2008]. Lateral input is propagated forwards and backwards in the new model. y i [free phosphorylatated protein] is plotted as a function of the index of the unit in the chain, for a chain of 15 units. The status of the chain at t " 21 (in arbitrary units) is indicated with the symbol +, and it corresponds to the steady-state situation. At t " 0, the indicated unit (see asterisk on the horizontal axis) receives a perturbation ∆x, which is then propagated to other units. Times 1 to 10 are plotted in dotted lines.
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 2 Figure 2.14: From [Del Vecchio 2008]. An input-output model of a system connected downstream to another system, will send upstream a signal that will alter the dynamics of the first one. System S has internal state x, two types of inputs, and two types of outputs. An input u, an output y, a retroactivity to the input r, and a retroactivity to the output s. This representation takes into account the main variables related to the interconnection mechanism that alters the output of the system once it is interconnected.
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 2 Figure 2.15:From [DelVecchio 2008].A single cycle of phosphorylationdephosphorylation, already known as biological amplifier, is also a simple biological insulation device. Its basic feedback-amplification mechanism attenuates the effect of the retroactivity to the output s. Amplification occurs through Z activating the phosphorylation of X. Negative feedback occurs through a phosphatase Y that converts the active form Xp back to its inactive form X. The stronger the phosphatase concentration, the stronger the feedback and so the insulation from downstream sequestration. The red part belongs to a downstream transcriptional block that takes protein concentration Xp as its input, binding to operator sites on the promoter p.
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 2 Figure 2.16: From [Pantoja-Hernández 2015]. Regulation of Th (T helper) cells (in green) by retroactivity. Th cells produce IL-2 (yellow tangerine diamonds), which is sensed by receptors on their own cell surface (in bright yellow), resulting in proliferation. If there is not enough IL-2, the cells become anergic and rapidly die. T regulatory cells (Treg, in blue) also have IL-2 receptors. This makes Treg cells capable of sequestering IL-2. The retroactivity and loads effects become significant as T regulatory cells have more receptors than Th cells, which enables them to regulate by competition with the Th population.
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 2 Figure 2.17: From [Wynn 2011]. Topology of the signaling networks studied. Topology of signaling networks studied. Two general types of network motifs consisting of covalently modified cycles were studied: (A) the vertical case where the n-th cycle in the right hand cascade is inhibited and (B) the lateral case where the n-th single-cycle cascade is inhibited. (C) The n " 3 network consisted of exactly 3 cycles and was the simplest form of both the vertical and lateral case. (D) An extended n " 3 network was also studied where a fourth cycle activated by Y 2 was added to the left-most cascade. In all networks, Y 1 served as the upstream activator and cycle 2 and cycle 3 were always in distinct cascades. No additional regulatory connections were included in any network. Off-target effects in cycle 2 were monitored by measuring the steady state concentrations of Y 2 and Y 2 as the concentration of an inhibitory drug that specifically targeted Y n was increased.
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 2 Figure 2.18: From [Ferrell 2014a]. Signaling down: Michaelian versus ultrasensitive cascades. (A) Schematic view of a three-tier kinase cascade, like the mitogen-activated protein kinase (MAPK) cascade. (B) The response of each kinase to an 81-fold change in input, assuming each level of the cascade exhibits a Michaelian response. Note that XP/Xtot is the output of the first tier and the input to the second. Likewise, YP/Ytot is the output of the second tier and the input to the third. (C,D) The response of each kinase to an 81-fold change in input, assuming ultrasensitive responses with a Hill exponent of 2 (C) or 4 (D).

Figure 2 .

 2 Figure 2.19: From [Zhang 2013]. Illustrations of ultrasensitive response motifs. (a) Positive cooperative binding between ligand L and multimeric (two subunits illustrated) receptor R. The sequential increase in binding affinity is indicated by changes in the thickness of transition arrows. The overall activity of R is proportional to its percentage occu-pancy by L. (b) Positive cooperative binding between TF and multiple response elements in gene promoters. The transcriptional activity of the promoter is proportional to its percentage occupancy by TF. (c) Homo-multimerization of TFs to transcriptionally active multimers. Illustrated are TFs activated by ligand binding to form homo-dimers, which gain affinity for DNA promoter. (d) Many inducible enzymes catalysing xenobiotic detoxification or metabolic reactions function as homomultimers. Here, inducible enzyme monomers E associate with one another to form homo-tetramers, which are fully enzymatically active to convert substrate S to product P. (e) Synergistic multistep signalling where a TF directly increases the abundance of the target protein (Pro) through transcriptional induction, and indirectly increases the activity of Pro (dashed line) through processes such as induction of a kinase (not shown) that phosphorylates and thus activates Pro. (f ) A TF may increase the abundance of the target protein Pro through direct transcriptional induction, and indirectly by inhibiting degradation of Pro (dashed line) by inducing factors (not shown) that stabilize Pro. (g) Multisite phosphorylation of protein substrate Pro by the same kinase in a non-processive manner is a common multistep signalling ultrasensitive motif. (h) Molecular titration with decoy or dominant-negative receptor D competing with wild-type receptor R for ligand L. (i) Molecular titration with transcriptional repressor R competing with activator protein A for transcription factor T. (j) Molecule I competitively inhibits enzyme E, preventing it from binding to substrate S and catalysing the reaction. (k) Zero-order ultrasensitivity by covalent modification cycle. Protein substrate Pro can be reversibly modified and de-modified by modifier enzyme (ME) and de-modifier enzyme (DE). (l ) Positive gene auto-regulation where ligand L activates receptor R, which transcriptionally upregulates its own abundance, thus forming a positive feedback loop. (m) Auto-catalysis where an activator, such as a kinase, phosphorylates a substrate protein (Pro). Then phosphorylated Pro can also function as a kinase to catalyse its own phosphorylation. Solid arrow head, chemical conversion or flux; empty arrow head, positive regulation; blunted arrow head, negative regulation.

Figure 2 .

 2 Figure 2.20: Figure from [Ferrell 2014a]. Michaelian responses and zero-order ultrasensitivity: rate-balance analysis. (A) Rate balance analysis assuming mass action kinetics, which yield a Michaelian response. (B-D) Rate balance analysis assuming that one or both of the reactions is running close to saturation. In each panel, the left-hand plot shows the rate curves, with the phosphorylation rates being shown in green and the dephosphorylation rates shown in red. The intersection points (filled black circles) correspond to steady states. The right-hand plots show the input ([kinase]) vs output (the fraction of Xtot phosphorylated at steady state) relationships in unbroken blue, as described by Equations III-V in Box 2. The filled black circles are the same steady states shown in the left-hand plots. The broken black curves in panels B-D show Michaelian input-output relationships, for comparison, and the broken blue curve in panel B shows a Michaelian input-output curve shifted one concentration unit to the right. The assumed kinetic parameters were: k1 = k'1 = Xtot = p'ase = 1 ; Km1 = Km2 = 0.01 ; and kinase = 0.2, 0.4, 0.6, 0.8, 1.0, or 1.2. The effective Hill coefficients for the blue curves are 1, 1.18, 2, and 26.1, respectively. The broken blue line in panel D shows a Hill function with a Hill exponent of 26.1 for comparison. Similar input-output curves can be found in [Gomez-Uribe 2007].

Contents 3 .

 3 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.1 The iterative formulation . . . . . . . . . . . . . . . . . . . . 48 3.3 Biologically-meaningful response functions . . . . . . . . . . 51 3.3.1 Dose-response functions . . . . . . . . . . . . . . . . . . . . . 51 3.3.2 Drug-response functions . . . . . . . . . . . . . . . . . . . . . 53 3.4 Analytical characterization of the iterative function . . . . 55 3.4.1 First derivative of the dose-response . . . . . . . . . . . . . . 56 3.4.2 Second derivative of the dose-response . . . . . . . . . . . . . 57 3.4.3 Fixed points of the iterative function . . . . . . . . . . . . . . 58 3.5 Enhancing the forward signaling . . . . . . . . . . . . . . . . 61 3.5.1 Analytical approximation of the dose-response . . . . . . . . 62 3.5.2 Sufficient conditions to enhance the dose-response . . . . . . 63 3.6 Study of the retroactive signaling . . . . . . . . . . . . . . . . 65 3.6.1 Retroactivity arising from modeling . . . . . . . . . . . . . . 67 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 3 . 1 :

 31 Figure 3.1: Interaction diagram of a signaling cascade made of n tiers. (a) Variables: Y 1 0 cascade activator; Y 0 i and Y 1 i , respectively, inactive and active form of protein Y i , for any 1 ď i ď n; D inhibiting drug. (b) Dimensionless stimuli s and d T , and dimensionless variables x i 's.

  .4e) Thus the system of equations (3.2)-(3.3)-(3.4) describes, respectively, the sets of reaction network, ODEs, SSEs of a linear cascade of length n with or without kinase inhibition at the last stage.

Figure 3 . 2 :

 32 Figure 3.2: Example of dose-response functions computed with the algorithm (3.15). Left panel: The backward iteration of function f i returns the inverse of a stimulus-response function, say spx n q, which presents non-biologically-meaningful steady states (belonging to the gray region). Right panel: When the output function is inverted into x n psq, only the biologically-meaningful values must be considered, the others are cut off. In the graph, χ n indicates the maximal BM value of x n . Parameters: n " 4; a 1 , a 2 , a 3 , a 4 " 2, 1, 0.1, 0.2; b 1 , b 2 , b 3 , b 4 " 5, 0.1, 0.2, 5; c 1 , c 2 , c 3 , c 4 " 0.1, 0.5, 0.2, 0.2; e 2 , e 3 , e 4 " 5, 0.3, 0.01; and d T " 0.

Figure 3 . 3 :

 33 Figure 3.3: Example of drug-response functions computed with the algorithm (3.16). Left panel: The function d T px 1 q with non-biologically meaningful branches. Right panel: The BM drug-response x 1 pd T q. Parameters (1 ď i ď n): n " 3, a i " 2.2, b i " 0.0005, c i " 5.2, e i " 5.1, except e 1 " 0.

Figure 3 . 4 :

 34 Figure 3.4: The BMSS of the drug-response function (in the non-shaded region in the right panel) varies between the asymptotic values χ r2s 1 and χ r3s 1 of two dose-response functions of a cascade of 2 and 3 tiers, respectively, with the same parameter set (left panel). Left panel: dose-responses of a homogeneous cascade of length n " 2 and n " 3, without drug inhibition (d T " 0). Right panel: drug-responses of a strongly activated (s Ñ `8) cascade of length n " 3, for different values of affinity for the drug a d " K D {Y nT . Homogeneous parameters: a " 10, b " 0.04, c " 3, e " 7.

  (a) Convex function (its curvature at the origin is negative). (b) Logistic function (its curvature at the origin is positive).

Figure 3 . 5 :

 35 Figure 3.5: Sketch of typical dose-response functions. Dose-response curves x n psq (dotted blue curves) and their piecewise approximations (solid black lines).

Figure 4 . 1 :

 41 Figure 4.1: Example of signaling regime of type (011). The drug-response x 1 pd T q is not efficient, while the drug-response x 2 pd T q and the dose-response x 3 psq are, according to the signaling regime definitions.

Figure 4 . 2 :

 42 Figure 4.2: Generating a sudoku is similar to applying LHS.
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 43 Figure 4.3: Ranking of the probabilities of the 8 signaling regimes, obtained with a uniform logarithmic sampling with the Latin Hypercube Sampling of the biochemical parameters of a 3-tier cascade.

Figure 4 .

 4 Figure 4.4 will be now treated and examined with the purpose of identifying the region of the parameter space enhancing a given type of signaling regime. That

Figure 4 . 4 :

 44 Figure 4.4: Normalized likelihood curves for each signaling regime. The legend of the figure recalls the probabilities of every regime. Contoured panels correspond to the class of parameters promoting signaling in general (cf. Section 4.3.1).

Figure 4 . 5 :

 45 Figure 4.5: Normalized likelihoods of 18 dimensionless parameters (proportional to color intensities, maxima in black), superimposed for all signaling regimes pjklq ‰ p000q. Circled maxima refer to the tier-specific parameter conditions: (I) red for p1klq, (II) green for pj1lq, (III) blue for pjk1q (cf. details in Section 4.3.2 at page 85).

Figure 4 . 6 :

 46 Figure 4.6: Motifs representing qualitatively conditions on the cascade's main parameters optimizing the likelihood for each signaling regime. Graphical codes for the biochemical species: the triangle corresponds to activator ligand Y 10 (proportional to stimulus s), the ellipses to total proteins Y iT (blue) and total phosphatases E iT (green). The segments refer to cycle activation (if downward arrows) and cycle deactivation (if upward arrows), the first cycle being always strongly activated s Ñ `8. Sequestration of kinase Y 1 i within cycle i and i `1 can be read from the relative size of the ellipses, respectively, protein-phosphatase (Y iT {E iT ) and protein-protein (Y iT {Y i`1,T ).

Figure 4 . 7 :

 47 Figure 4.7: We consider the 5 signaling regimes corresponding to motifs of Figure 4.6,as well as associated parameter restrictions characterizing each of them according to the conditions in the 5 different motifs. Then, each panel displays the probabilities of a given signaling regime in function of the considered parameter restrictions R(jkl). Consistently, the probability to get a given signaling regime is maximized by choosing the parameter restrictions characterizing it, and this maximum is significantly higher than the probability obtained from a log-uniform distribution of biochemical parameters without any restriction (cf. first bar of the histogram, NR). The set of the underlying data is provided in Table4.1.
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 48 Figure 4.8: Normalized likelihood curves of regime (001).

Figure 4 . 9 :

 49 Figure 4.9: Normalized likelihood curves of regime (010).

Figure 4 .

 4 Figure 4.10: Normalized likelihood curves of regime (011).

Figure 4 .

 4 Figure 4.11: Normalized likelihood curves of regimes (100) and (110).

Figure 4 .

 4 Figure 4.13: Non-normalized likelihood curves for regime (100) comparing less and more constraining requirements for such a regime. Threshold 1: ∆x 1 ą 5%, ∆x 2 ą 5%, ∆x 3 ą 50%. Threshold 2: ∆x 1 ą 10%, ∆x 2 ą 10%, ∆x 3 ą 75%.

Figure 4 .

 4 Figure 4.14: The difference between the estimated and true value of the maximal output of a 3-tier cascade is statistically concentrated around 0.

Figure 4 .

 4 Figure 4.15: In homogeneous cascades, the fixed point of the map is a lower bound for the maximal response, whatever the curvature sign β.
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 51 Figure 5.1: Construction of the activation profile of a 4-tier inhomogeneous cascade.Right Panel: In the 2D phase space, the maximal backward orbit starts from pχ 4 , 0q and is such that pχ 1 , χ 2 q belongs to the light-blue curve defined by d 1 px 1 , x 2 q " 0 (cf. equation (5.2)), which is equivalent to considering an infinite stimulus s Ñ `8. Left Panel: Distribution along the cascade of the normalized activated proteins. Parameters: a 1 , a 2 , a 3 , a 4 " 1, 5, 2, 0.1; b 1 , b 2 , b 3 , b 4 " 0.1, 0.5, 5, 0.2; c 1 , c 2 , c 3 , c 4 " 0.5, 0.01, 0.1, 1; e 2 , e 3 , e 4 " 0.9, 0.1, 0.3; d T " 0.

  Figure 5.1: Construction of the activation profile of a 4-tier inhomogeneous cascade.Right Panel: In the 2D phase space, the maximal backward orbit starts from pχ 4 , 0q and is such that pχ 1 , χ 2 q belongs to the light-blue curve defined by d 1 px 1 , x 2 q " 0 (cf. equation (5.2)), which is equivalent to considering an infinite stimulus s Ñ `8. Left Panel: Distribution along the cascade of the normalized activated proteins. Parameters: a 1 , a 2 , a 3 , a 4 " 1, 5, 2, 0.1; b 1 , b 2 , b 3 , b 4 " 0.1, 0.5, 5, 0.2; c 1 , c 2 , c 3 , c 4 " 0.5, 0.01, 0.1, 1; e 2 , e 3 , e 4 " 0.9, 0.1, 0.3; d T " 0.

  (a)-(b) at page 122, which clearly transits through a tangent point with the bisectrix). The existence of such a tangency point depends on the curvature at the origin of the invariant curve, thus on the second derivative of M .

Fig- ure 5 . 2 .

 52 The larger the eigenvalue λ `, the more drastic the decrease of the activation profile, as we have x n " x k {pλ `qn´k when k À n. The right panels ofFigures 5.2

  (a)-(b) show two examples of such a decreasing profile, when λ ìs

Figure 5 . 2 :

 52 Figure 5.2: Activation profiles in homogeneous cascades of type (C1). Parameters: length n " 4, (a) a " 0.7, b " 4, c " 0.3, e " 0.2; λ `p0q " 1.14. (b) a " 0.04,b " 10, c " 0.05, e " 0.04; λ `p0q " 10.

FiguresFigure 5 . 3 :

 53 Figure 5.3: Activation profiles in homogeneous cascades of type (C2). Parameters: length n " 4, (a) a " 10, b " 0.04, c " 3, e i " 7;x `" 0.5, x ´" ´19.5; λ `px `q " 25.2, λ ´px `q " ´0.47. (b) a " 0.2, b " 0.4, c " 0.2, e " 0.3; x `" 0.47, x

  (a)-(b) depict the situation around a saddle-node bifurcation occuring by slightly varying parameter e. Although the corresponding maximal activation profiles shown on Figures 5.4

  (a)-(b) are similar, this saddle-node bifurcation causes a qualitative change in the (non maximal) activation profiles as follows: before the bifurcation point, the activation profiles are always decreasing, like discussed in case (C1), whereas after the transition, the presence of an attractor px ´, x

Figure 5 . 4 :

 54 Figure 5.4: Activation profiles in homogeneous cascades of type (C3). Parameters: length n " 4, a " 0.1, b " 5, c " 0.01, (a) e " 0.06; λ `p0q " 3. (b) e " 0.05; λ `p0q " 2.5;x `" 0.58, x ´" 0.26; λ `px `q " 1.75, λ ´px `q " ´0.01; λ `px ´q " 0.67, λ ´px ´q " ´0.02.
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Figure 6

 6 Figure 6.1: (a) Sequence of attenuating tiers, with x i " 0 for any i " 2, 3, 4. (b) Sequence of attenuating tiers, except for the third one being a targeting tier, with γ 3 " 0.92. (c) An increasing sequence of fixed points determines an increasing activation profile. Fixed points: γ 2 " 0.3, γ 3 " 0.52. Parameters: (a) a 3 , b 3 , c 3 , e 3 " 0.05, 8, 1, 0.02. (b) a 3 , b 3 , c 3 , e 3 " 5, 0.1, 0.1, 0.001. Both (a-b) a 1 , b 1 , c 1 " 0.3, 7, 0.2; a 2 , b 2 , c 2 , e 2 " 0.02, 0.9, 0.8, 0.05; a 4 , b 4 , c 4 , e 4 " 0.1, 15, 2, 0.01. (c) a 1 , b 1 , c 1 " 1, 3, 5; a 2 , b 2 , c 2 , e 2 " 2, 0.3, 5, 0.2; a 3 , b 3 , c 3 , e 3 " 5, 0.3, 5, 0.1; a 4 , b 4 , c 4 , e 4 " 7, 0.3, 0.5, 0.02.
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 62 Figure 6.2: Numerical detection of the point of maximal slope. The slope of a doseresponse function of hyperbolic (a), or sigmoidal type (b), is maximized, respectively, at the origin, or at the inflection point.

Figure 6 . 3 :

 63 Figure 6.3: Interaction diagram of a branched signaling cascade. (a) Variables: X 1 0 cascade activator; X j i and Y j k , with j " 0, 1, are the inactive and active form of, respectively, protein X i and Y k , for any 1 ď i ď n and 1 ď k ď m; D inhibiting drug. (b) Dimensionless stimuli s and d T , and dimensionless variables x i 's and y k 's.

  (a)-(b) illustrate different activation profiles for two cascades, each branch with homogeneous or decreasing.
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Table 4 .

 4 1.

	Parameter Restrictions	Regime Probabilities [in %] (001) (010) (011) (1k0) (1k1)
	none	19.05 11.46 1.77	0.87	0.05
	restriction (001)	94.83 1.15	3.45	0	0
	restriction (010)	3.77	82.37 7.71	0	0
	restriction (011)	17.85 61.07 20	0.36	0.36
	restriction (1k0)	6.03	24.62 4.52	37.94 1.76
	restriction (1k1)	22.45 17.69 7.14	28.23 3.75

Table 4 . 2 :

 42 Probabilities of the signaling regimes according to modified conditions, than stated in Section 4.2, for 2 different choices of thresholds for the response amplitudes. Thresholds 1: ∆x 1 , ∆x 2 ą 5%, ∆x 3 ą 50%. Thresholds 2: ∆x 1 , ∆x 2 ą 10%, ∆x 3 ą 75%.

		Threshold 1	Threshold 2
	(000)	66.11 ˘0.05	72.15 ˘0.04
	(001)	19.74 ˘0.04	16.78 ˘0.04
	(010)	11.35 ˘0.03	9.73 ˘0.03
	(011)	1.89 ˘0.01	0.828 ˘0.009
	(110)	0.474 ˘0.007 0.228 ˘0.004
	(100)	0.383 ˘0.006 0.271 ˘0.005
	(111)	0.035 ˘0.002 0.0068 ˘0.0008
	(101)	0.027 ˘0.002 0.0087 ˘0.0009

Table 4 . 3 :

 43 Probabilities of the signaling regimes according to modified conditions, than stated in Section 4.2, for 2 different choices of sampling ranges for the dimensional parameters. Threshold: ∆x 1 , ∆x 2 ą 5%, ∆x 3 ą 50%. Logarithmic Range 1: r´2, 2s. Logarithmic Range 2: r´2.5, 2.5s.

			[in %]
		Range 1	Range 2
	(000)	66.11 ˘0.05	68.44 ˘0.003
	(001)	19.74 ˘0.04	18.82 ˘0.002
	(010)	11.35 ˘0.03	10.34 ˘0.002
	(011)	1.89 ˘0.01	1.59 ˘0.0007
	(110)	0.474 ˘0.007 0.35 ˘0.0003
	(100)	0.383 ˘0.006 0.37 ˘0.0004
	(111)	0.035 ˘0.002 0.04 ˘0.0001
	(101)	0.027 ˘0.002 0.03 ˘0.0001

For dimensionless parameters being the ratio of two biochemical parameters: the intervals are respectively: r10 ´4, 10 ´1s, s10 ´1, 10r, r10, 10 4 s. For ratios of four biochemical parameters, i.e. 1{e2 and 1{e3, they are instead: r10 ´8, 10 ´2s, s10 ´2, 10 2 r, r10 2 , 10 8 s.
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The iterative formulation

The steady-state system (3.4) can be reformulated by generalizing the method given in [Rácz 2008], resuming the system into an iterative function relating dimensionless variables three by three in the form G i px i´1 , x i , x i`1 q " 0.

Chapter 5

The Insight of Discrete Dynamical System
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Chapter 5. The Insight of Discrete Dynamical System

The element (2,2) of the ś 0ďiăn J ´1 n´i px n´i´1 , x n´i q is equivalent to d 1 T px 1 q. Expressed as a function of the µ ì 's and µ í 's, the general development in the µ í 's truncated at the second order, for n ě 2, is

Knowing that x 1 1 pd T q " 1{d 1 T px 1 q, it follows

In particular, by expanding and rearranging the term at the denominator of (5.14), we get

Then, by replacing µ ȋ " 1{λ ȋ in (5.14), it results

which is equivalent to (5.9).

Under the hypothesis λ1 λ1

˙! 1, some terms at the denominator of the latter equation are negligible, so that expression reduces to x 1 1 pd T q " λ1 λ 2 ¨¨¨λ ń . This approximation is valid especially in the case |λ í | ! λ ì for each i, which is clearly satisfied if λ ì " 1 (as ´1 ă λ í ă 0).

In this theorem the notation λ1 means that we refer to eigenvalues of the Jacobian matrix J1 , computed with f1 instead of f 1 (cf. equation (3.9)). Likewise, the notation λn means that we refer to eigenvalues of the Jacobian matrix Ĵn computed with fn (cf. equation (3.14)).

As explained below, this theorem is capital to discuss the interplay between amplification properties of the stimulus-response in a signaling cascade, and the concept of retroactive signaling. parameters. The horizontal lines traced in the plots indicate the strictly positive fixed point of the maps f i and g i (in blue and red, respectively). These lines are a rough approximation of the separating profiles (defined at page 116) which actually confine the regions where the activation profiles of the associated map are increasing