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préparée au sein European Synchrotron Radiation Facility (ESRF)
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Abstract

The subject of the present thesis is the investigation of magnetic properties of transition

metals and their alloys under high pressure by means of first-principles calculations.

First, the results of the K-edge x-ray magnetic circular dichroism (XMCD) experiments

on Ni and Co are interpreted. It is shown that the experimental pressure evolution

of the data should be compared with that of the p-projected orbital magnetization. I

emphasize that the spin and orbital moments have different behavior upon compression.

In the case of FeCo alloy the structural transition occurs under the pressure of 35 GPa.

I propose that the emergence of antiferromagnetism can explain the disappearance of

the XMCD signal at the Fe and Co K-edges.

Then, the phase transformation in FePd3, induced under pressure of 12 GPa, is inves-

tigated. I demonstrate that the system is described by an extended Heisenberg model,

containing strong biquadratic exchange interactions. According to the results, FePd3

undergoes a transition from the ferromagnetic to the noncollinear triple-Q state when

compressed.

Finally, the implementation of the stress tensor in the BigDFT software package is pre-

sented. It is shown that an explicit treatment of core electrons can considerably reduce

the errors introduced by the pseudopotentials. Thus the estimates of the structural

properties can be improved.
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Resumé

Le sujet de cette thèse porte sur l’étude des propriétés magnétiques de métaux de tran-

sition et leurs alliages sous haute pression au moyen de calculs ab initio.

D’abord, les résultats de mesures de dichröısme magnétique circulaire des rayons X

(XMCD) au seuil K du nickel et du cobalt sont interprétés. Je montre que les données

expérimentales doivent être comparées à celle de l’aimantation d’orbite projetée sur les

états p. Je mets en avant que la pression affecte différemment le spin et le moment

orbitalaire.

Dans le cas de l’alliage FeCo, la transition structurelle s’effectue sous une pression ap-

pliquée de l’ordre de 35 GPa. Je propose que l’émergence de l’antiferromagnétisme peut

expliquer la disparition du signal XMCD au seuil K du fer et du cobalt.

Ensuite, la transformation de phase dans FePd3, induite sous une pression de 12 GPa,

est étudiée. Je démontre que le système est décrit par un modèle de Heisenberg étendu,

contenant interactions d’échange biquadratiques forts. Selon nos résultats, FePd3 subit

une transition de l’etat ferromagnétique á l’état triple-Q non-colinéaire, lorsqu’il est

compressé.

Enfin, une mise en oeuvre du tenseur des contraintes dans le code BigDFT est présentée.

Il est montré qu’un traitement explicite des électrons de coeur permet de réduire con-

sidérablement les erreurs introduites par les pseudo-potentiels. Ainsi, les estimations

des propriétés structurales peuvent être améliorées.
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Introduction

Understanding the processes deep inside the Earth has been a dream of humanity since

antiquity. There are lots of mysteries, as, for example, the origin of our planet’s magnetic

field. This problem is still under debate – a few models have been proposed but none of

them is able to give an unequivocal answer.

Unfortunately, the level of today’s technology allows us to dig holes no deeper than a few

kilometers. So there is still a very long way to the Earth’s core. Nonetheless, we know

the constitution of the mantle and more deeper regions of the Earth. There are such

elements as oxygen, magnesium, silicon and iron. The inner core of our planet is made

predominantly of iron and nickel. These transition metal elements are of the greatest

interest, since at normal conditions they possess spontaneous magnetization. We can

also estimate the most important thermodynamic parameters in this region: pressure in

the inner core region should be about 300 GPa and temperature exceeds 4000 K 1.

Thanks to the use of diamond anvil cells it has become possible to reach pressures

of the order of 100 GPa. Regarding the second parameter, today’s lasers are able to

heat the matter up to the necessary level. So, in principle, the Earth’s core conditions

can be reconstructed in a modern laboratory. In combination with element-selective

techniques like x-ray spectroscopy, this becomes a powerful tool for the investigation of

the electronic and magnetic properties of the Earth’s interior.

Moreover, from a fundamental point of view an application of pressure to the transition

metals allows us to verify existing models of magnetism. The reality is that there is

no unified theory which could a priori describe any magnet. Hence, in studying a

particular system one is forced remain in one of two frameworks, depending on the

1In spite of such high temperatures, the inner core is solid, since the tremendous pressure pushes the
melting point of iron-nickel alloys much higher.
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Figure 1: Schematic representation of densities of states (N(E)) in ferromagnetic
system and its changes upon application of pressure. Bands become wider due to

increase of orbital overlap, while magnetic splitting tends to decrease (∆i > ∆f ).

degree of localization of the magnetization density. Magnetic systems which consist of

relatively well-localized spins (in real space) are usually studied within a Heisenberg

model. On the contrary, itinerant magnets, characterized by delocalized magnetization

density, are treated with the help of Stoner model [156].

The magnetism in transition metals arises from the unfilled 3d electron shell. The spatial

distribution of 3d WFs is such that electrons are located right on the border between

atomic localization and formation of wide electronic bands (see e.g. Ref. [155][p. 223]).

As a result, the very same 3d states can exhibit opposite behavior depending on their

environment and filling. Thus compression, i.e. a change of interatomic distances, allows

one to adjust the localization in a precisely controlled way.

Effects of pressure on electronic structure of ferromagnetic metals are known. The most

general trends are shown on Fig. 1. As the interatomic distance decreases, the overlap

between electrons wavefunctions gets larger, which leads to their delocalization. Ac-

cording to Stoner theory, the density of states at the Fermi level (DOS(Ef )) should

exceed a certain threshold in order to favour appearance of ferromagnetic order. There-

fore it is reasonable to assume that application of pressure should eventually lead to the

disappearance of magnetism.

This suggested tendency is indeed observed in experiments, but such a magnetic tran-

sition does not really occur for 3d metals. Structural transitions usually take place at

lower pressures than needed to violate the Stoner criterion. For instance, such situation

appears in bcc iron, which undergoes a transition to a non-magnetic hcp phase [115].
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In the present thesis we will try to get deeper insight into the change of magnetic

properties of 3d systems with the help of the Heisenberg Hamiltonian. The key quantity

of the present theory is the set of interatomic exchange parameters Jij . These parameters

will be extracted from realistic band structure calculation for a particular system and

their pressure dependence will be studied. Their change with lattice contraction is

not straightforward to predict. On one hand, reduction of the lattice constant leads

to increase of the overlap. Therefore the so-called direct exchange interaction should

become larger. On the other hand, the local magnetic splitting gets smaller, as was

already shown. Thus there are two general tendencies which compete with each other.

The problem gets more complicated due to the fact that in metallic systems the J ’s are

rather long-ranged in space. It turns out that magnetic moments separated by several

Angströms are still coupled, and this coupling is not related to direct overlap of the

orbitals. Hence, this requires the use of electronic structure calculations which are able

to provide a detailed description of electronic bands.

Organization of the thesis

The thesis is organized as follows:

Chapter 1 contains an overview of ab initio band structure methods. It is primarily

devoted to the Density Functional Theory (DFT), which is the main instrument in

the present study. Drawbacks and merits of different realizations of this theory are

discussed. Special attention is given to the study of structural and magnetic properties.

Such quantities as stress, pressure and magnetic couplings are formulated in terms of

the present apparatus.

Chapter 2 concerns analysis of K-edge x-ray magnetic circular dichroism (XMCD) data

in various 3d systems. First, a historical overview is given of present experimental

technique, as well as its theoretical modeling. Next, XMCD spectra measured on bulk

Ni, Co and FeCo alloys are analyzed with the help of first-principles calculations.

In Chapter 3 an analysis of magnetic interactions in FePd3 is presented. Based on these

results, a new magnetic ground state is suggested to be stabilized under pressure in this

system. Various experiments which could confirm these findings are proposed.
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Chapter 4 is devoted to calculation of the stress tensor within a particular DFT code.

The computational scheme is applied to various classes of materials and the results are

compared with prior realizations of this formalism. Further, an emphasis is given to the

impact of core electrons on structural properties of quantum systems. The importance

of this contribution is discussed.

Finally, general conclusions and perspectives of this work are outlined.



Chapter 1

Computational methods in band

structure modeling

The so-called ab initio (i.e. first-principles) methods for electronic structure calculations

are widely used in modern science. They allow us to simulate and sometimes even predict

properties of the actual materials with no use of any adjustable parameters. These

methods require almost no information about the system: it is just necessary to know

its crystal structure in order to start the calculation. Then any observable quantity,

like equilibrium volume, magnetization, ionic charge and others can be extracted from

the calculation and sometimes directly compared with experimental data. The range

of application of these methods spreads from the material science, solid state physics,

chemistry and biology. This is how science is made nowadays, but such progress was

achieved only recently. Therefore, before describing the state-of-the-art methods this

chapter will start by the historical overview of the electronic structure modelling.

1.1 Hartree-Fock method

To have such powerful approaches, able to deal with the quantum systems consisting of

many particles, was one of the biggest challenges for physics of XX’th century. One of

the first methods was proposed by Hartree in 1928 [76]. At that time it was already

known that the properties of quantum systems are governed by the Schrödinger equa-

tion. In particular, a system which consists of N atoms and n electrons coupled via

5
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electromagnetic interaction is described by the following Hamiltonian:

Ĥ =− 1

2

n∑

i=1

∇2
ri +

1

2

∑

i 6=j

1

| ~ri − ~rj |
−

N∑

I=1

n∑

i=1

ZI

| ~RI − ~ri |

−
N∑

I=1

1

2MI
∇2

RI
+

1

2

∑

I 6=J

ZIZJ

| ~RI − ~RJ |
,

(1.1)

where ~ri and ~RI are the positions of electrons and atoms, respectively. Letters Z andM

denote charge and mass of each nucleus. This equation is written in the atomic units:

mass is in the units of electron mass me and charge is measured in electronic charge

| e |. We are eventually interested in finding the eigenvalues and eigenvectors of the

corresponding operator, which will give an access to all observable properties. But the

Hilbert space dimension is 3(N + n), which makes it certainly impossible to diagonalize

the matrix explicitly.

Nonetheless, the last two terms in the right-hand side (r.h.s.) of Eq. (1.1) describe the

dynamics of ions, which are at least ≈1836 times heavier than electrons. Therefore, it

is well justified to decouple these degrees of freedom from electronic ones. This can be

done using so-called Born-Oppenheimer approximation [17], which consists in treating

the ions classically. It is assumed that the ionic positions are completely frozen and they

form an electrostatic potential which acts on electrons. Hence the atomic positions and

charges enter the Eq. (1.1) as the external parameters in our quantum problem.

This way the dimension of the problem is reduced (to 3n variables) and is associated

with electronic degrees of freedom solely. However, the Hilbert space dimension is still

too large for the real compounds.

Therefore we are forced to use approximations in order to simplify the initial problem.

The idea of Hartree was to map the many-body problem into a non-interacting parti-

cle problem in an effective potential. Hence, each electron is moving in some central

field created by nucleus and other electrons. Within the proposed method the many-

electron wavefunction (WF) Ψ(r1, r2, ..., rn) is represented as a product of one-particle

wavefunctions:

Ψ(r1, r2, ..., rn) = ψ1(r1)ψ2(r2) . . . ψn(rn), (1.2)
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each of those satisfies the one-particle Shrödinger equation:

[
−1

2
∇2 + Vext +Φi

]
ψi(ri) = εiψi(ri), (1.3)

where Vext is external lattice potential and Φi is a potential of electron-electron inter-

action. So the influence of all other electrons on a certain particle is taken into account

in a mean-field (MF) manner and enters the Hamiltonian via the terms of the following

type:

Uij =

∫∫
d~r1d~r2 | ψi(~r1) |2 Vee(~r1 − ~r2) | ψj(~r2) |2, (1.4)

where Uij is a direct Coulomb interaction between wavefunctions corresponding to the

states i and j. It has the form of interaction between two charge densities like in classical

electrodynamics. This was a so-called Hartree approximation.

Later it was shown that during the construction of a many-body WF it is necessary

to satisfy rules of Fermi statistics: i.e. the antisymmetry of fermionic operators with

respect to the swap of two particles [53]. The r.h.s. of Eq. (1.2) becomes a determinant

of different ψ’s, called “Slater determinant” [151], namely:

Ψ(r1, r2, ..., rn) =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) . . . ψ1(rn)

ψ2(r1) ψ2(r2) . . . ψ2(rn)

. . . . . . . . . . . .

ψn(r1) ψn(r2) . . . ψn(rn)

∣∣∣∣∣∣∣∣∣∣∣∣

. (1.5)

This is the base of the Hartree-Fock technique. Reformulation of Ψ(r1, r2, ..., rn) has an

important consequences and results in the appearance of additional contributions to Φi

- the non-local exchange terms of the following type:

Jij =

∫∫
d~r1d~r2ψ

∗
i (~r1)ψ

∗
j (~r2)Vee(~r1 − ~r2)ψj(~r1)ψi(~r2). (1.6)

It is worth emphasizing that this is a purely quantum effect, which originates from Pauli

exclusion principle. However, exchange term is an essential quantity in the theory of

magnetism1. So the quantity Jij is important in the present context and will be widely

1It is fascinating to realize that we have actual magnetic materials solely thanks to laws of quantum
mechanics.
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used throughout this thesis.

Concerning the Hartree-Fock method, it is worth noting, that in some cases the system’s

WF should be described via a linear combination of Slater determinants, corresponding

to the states with similar energies. In principle, this procedure gives a reasonably exact

wavefunction, but the computational effort grows very fast with increase of the number

of particles. Hence, in practice, the method is only used if the quantum problem is (or

can be reduced to) relatively small.

1.2 Density Functional Theory

Due to the above-mentioned reasons, it is clear the use of WFs is not so efficient for

realistic systems. A big step forward in the problem of finding ground state (GS) energy

was made by Hohenberg and Kohn in 1964 [78, 96]. They suggested to operate with elec-

tronic density (ρ) instead. Their celebrated Hohenberg-Kohn (HK) theorem states that

for a given n particles the GS charge density determines uniquely the external potential

of the electronic Hamiltonian. In the other words, there is a one-to-one correspondence

between GS density and external potential, which controls the inhomogeneity of the

electron gas. The total energy (E) is a functional of ρ and reaches its minimum for true

GS density ρ0:

E[ρ] = T0[ρ] +

∫
d~rρ(~r)Vext(~r) +

1

2

∫∫
d~rd~r′

ρ(~r)ρ(~r′)

| ~r − ~r′ |
+ Exc[ρ], (1.7)

where T0 is the kinetic energy contribution and Exc is the exchange-correlation (XC)

term. The second and third terms are electron-ion Coulomb interaction and electron-

electron interactions, respectively. The latter contribution has exactly the same form as

in Hartree method and therefore is called Hartree potential. Instead of Fock contribu-

tions, one introduces the Exc term which is called to mimic the exchange part and also

many-body (correlation) effects. We can define a new quantity ǫxc(~r) – the so-called XC

density per particle which will be associated with Exc, so that:

Exc[ρ] =

∫
d~rρ(~r)ǫxc[ρ](~r). (1.8)
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DFT would be an exact theory if we knew the true form of this term, which is missing.

Hence it is inevitable to use some approximations to Exc and their choice plays a crucial

role in the theory. This problem will be addressed later in more details.

Having defined a suitable XC term, the GS of the system can be obtained. We can use

an advantage of the DFT that it is not important from which WFs the electron density

is built. Therefore for practical applications ρ can be defined as:

ρ(~r) =

n∑

i=1

|ψi(~r)|2, (1.9)

where n is a number of electrons (which is fixed). Varying the Eq. (1.7) with respect

to new variables ψi(~r) with an additional constraint for their normalization leads to the

system of coupled Kohn-Sham (KS) equations:

[
−∇2 −

∑

I

2ZI

| ~r − ~RI |
+ 2

∫
ρ(~r′)

| ~r − ~r′ |
d~r′ + Vxc(~r)

]
ψi = εiψi, (1.10)

where εi are the Lagrange multipliers that form the spectrum of single-particle states;

The XC potential is a functional derivative of Exc, i.e.:

Vxc =
δExc[ρ]

δρ(~r)
=

d

dρ
(ρǫxc[ρ]). (1.11)

System of Eq. (1.10) has to be solved iteratively. One can start calculation with trial

WFs, for example a set of isolated ionic states, and solve the Poisson equation to find

Hartree potential. Then one has to diagonalize the KS Hamiltonian and construct the

new electronic density. The procedure has to be repeated until one reaches the minimum

of the total energy E[ρ0]. This is the basic representation of a self-consistent (SC) loop.

In practice, there are different strategies for updating the density and several possible

choices of the convergence criteria, but we shall omit these details at this stage.

1.3 XC Approximations

As it has already been mentioned, the biggest problem of the DFT is the lack of an

exact form of the XC term. There is no universal approximation which could correctly
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describe properties of any material. However, for wide range of systems the so-called

Local Density approximation (LDA) is rather successful.

In the present framework the XC density is taken in the form for homogeneous interacting

electron gas (h.g.) of the density ñ, but at each point in space ñ is substituted for an

actual density ρ. Hence ǫxc[ρ] = ǫh.g.xc (ρ(~r)) and one can write explicitly:

Exc[ρ] =

∫
ρ(~r)ǫxc(ρ(~r))d~r. (1.12)

Spin-polarized version of LDA, called local spin density approximation (LSDA), is used

for magnetic systems. This method introduces two separate densities of electrons with

positive and negative spin projections on quantization axis, ρ↑ and ρ↓, respectively. The

quantity ǫxc can be parametrized using results of numerical calculations and several

realizations are present nowadays [134, 167, 168].

L(S)DA was implemented in the first realizations of the DFT and immediately showed an

impressive performance. Such a simple approximation led to a rather good prediction of

band structures of the whole class of conventional semiconductors, alkali and transition

metals [88]. In principle, LDA provides the most accurate results for systems, whose

electronic density varies rather slowly in space.

The next generation of the XC functionals was built using not only the electronic density

but also its gradient, i.e. :

ǫxc(~r) = ǫxc(ρ(~r), |~∇ρ|(~r)). (1.13)

In this case, XC potential, according to Eq. (1.11), is given by:

Vxc(~r) =
d

dρ
(ρǫxc[ρ]) +

∫
d~r′ρ(~r′)

∂ǫxc
∂|∇ρ|

δ|∇ρ|(~r′)
δρ(~r)

. (1.14)

The first term in the current expression is the same as in the case of the LDA, while

the second one represents an additional correction. The present approach is called

Generalized Gradient Approximation (GGA) [135].
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In most cases, L(S)DA and GGA provide with very similar ground states. GGA often

provides better estimates of structure-related quantities, like bulk moduli (B) and equi-

librium volume (Ω0) [73]. In terms of other properties, magnetic for instance, usually

there are no significant differences between results provided by these two methods.

However, these results are not general and there is no a priori knowledge about the choice

of the XC approximation for a particular system. A well-known example is elementary

iron: LDA predicts its paramagnetic fcc phase to be more stable than ferromagnetic bcc

one, which is a real GS of iron in nature, while GGA is able to overcome these unphysical

outcomes [176]. On the other hand, GGA faces problems in predicting correctly the

stable crystal structure of Fe3Al alloy [104].

In general, GGA shares the same problems with LDA in modeling a certain class of

materials, so-called “strongly correlated” systems. This problem will be addressed in

the next section.

It’s worth mentioning that these days the list of available functionals is not limited

to LDA/GGA types only. An improvement of XC potentials is a stand-alone field of

research which develops very fast. For instance, there are attempts to add a fraction of

the exact exchange energy, i.e. provide a combination of the DFT with HF methods [12].

The results for some molecular systems have proven that these “Hybrid” functionals

provide a more accurate bond length and ionization energy estimations as compared

with experimental data [11].

For deeper insight into the constellation of existing functionals the reader is referred to

Ref. [113] and references therein. Present study concerns the investigation of magnetic

properties of pure transition metals and their alloys. For this type of systems classical

LDA/GGA-type functionals are known to be suitable (see e.g. [8]) and will be used

throughout this thesis work.

1.4 Realizations of the DFT

In last decades plenty of DFT-based codes have appeared, in spite of the fact that they

all implement the same theory. The main reason for these developments is related with

an increase of accuracy and ability to treat bigger systems on a reasonable time-scale.
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Moreover, certain physical quantities can be accessed more easily depending on the

employed formalism.

Different realizations of the DFT can be characterized according to the basis functions

used for expressing the KS orbitals. These basis sets can be divided in two major groups:

the ones which are more localized in reciprocal space (plane waves [PW], for example)

and in direct one (like Gaussian-type orbitals [GTO]2).

As a limiting case one can think of a completely isolated (non-periodic) molecular sys-

tem. Clearly, the WFs are difficult to treat using PWs, since they contain too many

components in the expansion. Atomic-like functions would be more efficient for this

study.

Therefore, before starting the band structure simulation of a certain compound, it is

reasonable to inquire whether the system is mainly characterized by highly mobile (de-

localized) electrons, which is a typical situation in metals, or it is an insulator with

quite localized WFs. Indeed, periodic systems are more difficult to sort: they sometimes

exhibit a mixed behavior, but normally can be attributed to one of two groups. Thus

an appropriate set of basis functions can be chosen. In other words, the most efficient

way is to choose the basis set according to particular needs.

It is sometimes necessary to work with several realizations of the DFT and balance

between them. Here we wish to make an overview of several basis sets, each of whose

will be used in the present work. Note that the list is not exhaustive, but represents a

diversity of the DFT codes. Interested reader is referred to the book by R. Martin [114].

1.4.1 Muffin-tin orbitals

At the time of the first developments of the DFT codes the computers performance was

much lower than today. The codes which were written 40 years ago aimed to reduce the

computational effort, so the state-of-the-art machines were capable to solve the prob-

lem. Thus the first realizations of the DFT contained some additional approximations

(beyond intrinsic), which in principle can be avoided nowadays thanks to the progress

2These functions are widely used in the field of quantum chemistry for studying molecular compounds.
Minor attention is paid to this topic in the present thesis, since it is primarily concerns metallic systems.
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of computational technology. However, the methods developed at whose times are still

used and there are reason for that.

One of the first approaches which incorporated the DFT was similar to the tight-

binding method. In this spirit WF of each electron, which is a solution of KS equation

(Eq. (1.10)), is approximated as a sum of atomic-like orbitals, centered on a certain

atom. Due to the symmetry of the Hamiltonian under consideration, it is reasonable to

define a sphere of a certain radius (RMT ) around each atom and assign it to this ion.

O.K. Andersen [4] suggested to extend these regions so that the entire system will be

represented by a sum of overlapping spheres. This way of the space partitioning is called

called the atomic sphere approximation [ASA]. For not-so-close-packed crystal structures

we can fill the interstitial space with the empty spheres (ES), possessing zeroth charge.

At this stage we can make an approximation to the potential and require it to be

spherically symmetric inside each sphere and constant outside, so that:

V (~r) =





V (|~r|), if |~r| ≤ RMT

C, if |~r| > RMT

(1.15)

A potential defined this way is called the muffin-tin (MT) one. Inside the sphere our

problem is reduced to the Shrödinger equation with spherical potential, which solution

is known. Core electrons in each ion form localized levels with practically no dispersion

which are relatively easy to calculate. Valence electrons that participate in formation of

bands, certainly require a more thorough treatment.

Outside of each sphere there is the Laplace equation which has to be solved: ∇2Φi = 0.

Hence a true valence WF has to match the boundary conditions (BCs) on the spheres.

Therefore it becomes not only a function of position, but also that of energy.

Andersen’s idea was to linearize this energy-dependence [4], i.e. take first two terms in

corresponding Taylor expansion :

ψi(~r) =
∑

lm

[
Almφl(~r,Eν) +Blm

∂φl
∂E

(~r,Eν)

]
Ylm(~r), (1.16)

where the sum is over angular momentum quantum numbers (l), φl is a solution of

the radial Shrödinger equation for the energy Eν inside a MT sphere; and Ylm are

Legendre polynomials. Coefficients Alm and Blm are fitted in order to fulfill the BCs.
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The linearization energy Eν is usually chosen to be in the center of the corresponding

band. Thanks to such choice, the errors due to linearization are efficiently canceled.

On the first sight, this looks as a rather crude approximation of the real band structure.

In reality this approach was a real breakthrough. It turned out to be quite accurate

for real applications and quickly became an essential tool of computational solid state

physics.

Why is this method still used ? Its main advantage, especially nowadays, is perfor-

mance. A band structure of simple metal can be calculated in few seconds. Use of the

ASA is not always physically motivated, but on the other hand it allows to access the

local quantities (via occupation matrices) straightforwardly. Since entire space is parti-

tioned, one can immediately obtain the magnetization per atom, ionic charge and other

important properties. Additionally, an analogy with the tight-binding method makes

interpretation of the results quite simple and intuitive.

1.4.2 Plane waves

In one of the most wide-spread realizations of the DFT, the KS wavefunction is repre-

sented as a linear combination of orthogonal plane waves:

ψl(~r) =
∑

| ~G|<Gmax

C l
G exp

(
i ~G · ~r

)
, (1.17)

where ~G is a vector of reciprocal space. In principle there is only one parameter which

has to be adjusted– the energy cut-off which sets the maximal modulus of reciprocal

vectors Gmax used in Eq. (1.17). The cut-off is a variational parameter, namely its

increase results strictly in lowering the absolute value of the total energy. Hence the

accuracy is straightforward to control.

In general this basis set is very convenient to operate with. For instance, in Fourier space

the kinetic part of the Hamiltonian is just diagonal. In addition, these codes widely use

the Fast Fourier Transform (FFT), which gives an almost linear (∼ n log n) scaling of

computational time with respect to number of electrons.

On the other hand, wavefunctions have to be re-orthonormalized on each iteration and

this step is the most demanding in the whole SC process. As a result, the overall
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computational cost grows as n3 and limits the domain of application of PW’s up to the

systems containing few hundred atoms. Nonetheless, PWs is a suitable basis set for

periodic and highly-symmetric systems.

1.4.2.1 Pseudopotentials

In practice, the KS WFs strongly oscillate in the vicinity of atomic core. In order

to represent such function in Fourier space one will need to drastically increase the

size of PW set to obtain reasonable accuracy. This is not efficient and sometimes not

even feasible. However, the nucleus charge is largely screened by core electrons. Thus

valence electrons – the ones which we are primarily interested in – do not “feel” this

bare charge. So the total ionic (i.e. combined nucleus and core electrons) potential can

be substituted by another operator, called “pseudopotential” (PSP), which mimics true

potential in some region of space. Usually this region is located outside of the sphere of

a certain radius (Rcore).

Pseudopotentials are meant to provide a detailed representation of ionic charge influence

on valence electrons. They normally consist of two terms: local and non-local ones. The

first part is a function, which depends solely on the distance from the nucleus, being

purely isotropic. However, in general case, core electrons occupy orbitals with different l

quantum numbers. This brings some anisotropy on the produced potential. In the PSP

present effect is taken into account via an introduction of l−dependent terms, called

“non-local” ones. Thanks to these terms, valence states, characterized by different l-

numbers, are affected differently by core electrons.

With the help of the PSP, the dimension of the problem is reduced (only valence electrons

are considered) and size of the basis set is decreased. Although it is highly beneficial,

the method has certain drawbacks.

First of all, core electrons do not enter the simulation explicitly and their action is not

updated during the SF loop. This is usually not a problem if the system is next to

equilibrium volume. However, can cause some undesired effects if one wants to study



Computational methods 16

properties at ultra-high pressures. As a solution one has to use “harder” PSPs (which

require higher cut-off) with semi-core states treated explicitly 3.

Secondly, the construction of the pseudopotential is a procedure, which is rather complex

and not easy to automatize. In most cases, users of the PW codes have to use PSPs

provided by developers within the same package. In practice, it turns out that a certain

PSP represents some physical properties better than others in comparison with all-

electron calculations taken as reference. This is not related with the accuracy of the

DFT formalism itself and is just due to self-introduced computational errors.

Hence, the construction of a PSP has to be done with care and special attention must

be paid to its transferability, i.e. the ability to reproduce well the all-electron behavior

of a given atom independently of its chemical environment.

1.4.2.2 Non-linear Core Correction (NLCC)

One of the possibilities to improve the quality of PSPs is inclusion of nonlinear core

corrections (NLCC) [108], where the core charge density (ρc) is explicitly introduced.

Yet, it is considered to be independent of chemical environment and is frozen during the

self-consistent process. Usually, for simplicity, the distribution of the core electrons is

represented in a simple analytical form.

In order to understand the importance of such treatment of ρc, it is useful to con-

sider the overall spin polarization of a system, i.e. the following quantity: ξ(~r) =

(ρ↑(~r)− ρ↓(~r)) / (ρ↑(~r) + ρ↓(~r)), where {↑, ↓} denote spin projections. Clearly, ξ is

poorly represented, if core electrons are neglected. In most cases the primary con-

tribution to the total charge density comes from low-lying levels. Even though the spin

density is negligible in the core region, accounting for ρc↑(↓) affects ξ dramatically. Let

us imagine, for instance, an ionic configuration where all valence electrons have the same

spin projection, e.g. |↑↑↑↑↑〉 . If only valence electrons are considered, then: ξ → 1. Tak-

ing into account core electrons (suppose that Z >> 1) results into: ξ → 0. Since ξ is an

important quantity, the NLCC is expected to improve the description of spin-polarized

valence states.

3This is especially important in the case of Projector Augmented Wave (PAW)[15] formalism. Here
the “core ” sphere radius is much larger comparing with classical PSP, so even moderate pressure can
cause an overlap of these regions which is, strictly speaking, forbidden.



Computational methods 17

1.4.3 Linearized Augmented Plane Waves (LAPW)

Present approach is a sort of combination of the methods described above. Here, MT

spheres are also introduced, but in a different manner: they do not overlap, leaving the

interstitial space untouched.

Within MT sphere the potential is not assumed to be isotropic (∼ Y00), but also contains

higher-order expansion coefficients, so that :

V (~r) =





∑
lm

Vlm(~r) · Ylm(~r), if |~r| ≤ RMT

∑
~G

VG · exp
(
i ~G~R

)
, if |~r| > RMT

(1.18)

Since there is no approximation to the shape of the potential, this method is called

“full-potential” (FP). Core levels are re-calculated at each iteration and corresponding

contribution to the potential is updated. This is a dramatic difference with respect to

previously mentioned techniques. In fact, it allows also to access such nuclear quantities

as isomer shifts, hyperfine fields and electric field gradients.

Concerning the WF of valence electrons, it has the same form as given by Eq. (1.16)

inside the MT sphere. Outside of this region the WF shows a delocalized character and

is expanded in PWs (Eq. (1.17)). Such division results into a very efficient flexibility in

the WF representation.

The FP-LAPW method is considered to provide the most precise modeling of the band

structure. Usually the results of calculations produced with this technique are used as

a reference for comparison with other DFT realizations. The price to pay is compu-

tational time: since there are less approximations, the method is more demanding. In

addition, access to local quantities is not always straightforward. Projections on atoms

are performed within MT spheres, so the interstitial charge density is not attributed to

any site. Hence, an attention has to be payed to the choice of RMT .

1.4.4 Wavelets

Wavelets is a special type of functions which was introduced in order to analyze fre-

quency components of data. Their name already implies that wavelets must look like

local perturbations which starts at some point, oscillates with finite amplitude and then



Computational methods 18

-4 -2 0 2 4 6

-1

0

1

x

Figure 1.1: Daubechies wavelet functions of order 2 (red line) and 8 (blue dashed
line).

attenuates back to zero. Indeed, the shape of these functions reminds particle wave

packets from the course of quantum mechanics.

All families are characterized by two fundamental functions in wavelet theory, which are

the scaling function φ(x) and the wavelet ψ(x)4.

Fig. 1.1 shows the 2-nd and 8-th order wavelets from the Daubechies family [31]. It is

clearly seen that the support length (i.e. an interval where functions are nonzero) widens

as the order of wavelets increases. The most important property of wavelet families is

that their degrees are in relation. Namely, the functions φ(x) and ψ(x) are defined in

such a way that they obey so-called refinement relations:

φ(x) =
√
2

m∑
j=1−m

hjφ(2x− j)

ψ(x) =
√
2

m∑
j=1−m

gjφ(2x− j),

(1.19)

where hj and gj are the elements of a filter that characterizes the wavelet family, and

m is the order of the wavelet family. In fact, there is no analytical expression for

wavelets, but components of these filter coefficients can be computed exactly, so they are

tabulated. Depending on the form of {hj} and {gj}, wavelets can be be either orthogonal,

biorthogonal or semiorthogonal. In orthogonal wavelets families the following relations

4Not to be mixed with WFs
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between filter coefficients take place:

gj = (−1)jh−j+1,
∑
l

hl−2ihl−2j = δij ,

∑
l

gl−2igl−2j = δij ,

∑
l

gl−2ihl−2j = 0.

(1.20)

Eq. (1.19) together with (1.20) establishes correspondence between the scaling functions

on a discretized grid of spacing h and another one of spacing h/2. All wavelets properties

can be obtained from these expressions. The entire basis set can be built from all possible

translations of the mother function centered at the origin by a certain grid spacing h.

The mother function is localized and has relatively compact support.

As we have seen, wavelets form a smooth basis set that is localized in both direct and

reciprocal space. Thanks to these unique properties, they are of great potential applica-

tions. Wavelets have recently became a useful tool for solving differential equations [61].

Since such type of mathematical problems appears almost everywhere, wavelets enter

more and more fields of nowadays research.

Just a few years ago an efficient method for solving Poisson equation in different BCs,

based on the wavelet-like functions, was suggested[57, 58]. Soon after wavelets were

already applied to realistic band structure caculations. Daubechies family as a basis set

are incorporated with the PSP formalism and realised in the BigDFT code [59], which

will be used in the present thesis.

The primary merit of this approach is an ability to treat systems with different BCs

on equal footing. For example, in case of surface BCs one direction, say y, is isolated

while two others are periodic. In majority of the DFT codes the modeling of such

system would require an enlargement of the unit cell in y-direction, preserving its peri-

odicity. Thus the system becomes well-separated from its y-translated replica. But the

simulation box has to be extremely large to ensure the cancellation of the long-ranged

Coulomb interactions. Hence, an explicit treatment of mixed BCs becomes very ad-

vantageous from computational viewpoint. Moreover, charged systems can be treated

without introduction of an artificial compensating background, as done, for example, in

Ref. [111].
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In addition, the code is young, massively parallelized and shows fair performance on

nowadays computers [60].

1.5 Drawbacks of DFT-based methods

In previous section a brief overview of several realizations of the DFT was made. Some

of them are more accurate than the others due to the presence of approximations to the

ionic potential.

However all codes share the same drawbacks which arise from the basic DFT formalism.

For instance, there is an intrinsic problem of self-interactions. Since all electrons con-

tribute to the Hartree term, it leads to the unphysical consequence that each electron is

affected by the field which is partially produced by itself.

Another shortcoming of this technique is that it provides only with the GS at zero tem-

perature (T = 0). But in reality we have to deal with materials at finite temperature,

thus the lowest state gets mixed with excited ones, like in Boltzmann’s ansatz. Unfor-

tunately, there is no direct access to excited states in the present framework. Moreover,

the information about higher-lying states is essential, since most often in an experiment

the system under consideration is subjected to some perturbation and gets excited from

its GS. Post-DFT approaches like time-dependent DFT (TD-DFT)[143] and the GW

method[80] were suggested in order to overcome this problem. They are on the level of

development.

A serious problem of the DFT is the lack of the many-body (correlation) effects. In the

present approach the electrons experience the same average potential which depends

on total electron density solely. The corresponding Hamiltonian can be diagonalized

resulting in a set of independent particles moving in some MF. In the context of the

Hubbard model[79], it means that only the band term (containing hopping) is present.

The four-particle (i.e. coupling) term which is responsible for the multiplet structure

formation and atomic-like behavior is completely omitted within the DFT formalism.

For strongly correlated systems these effects dramatically affect the band structure and

therefore the DFT can not provide an accurate model for them. This is exactly the case,

for instance, in transition metal oxides and unconventional superconductors like cuprates
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and pnictides. Nowadays there are several techniques exist, able to go beyond conven-

tional DFT and include some part of correlation effects. Among such approaches the

most widely-used are LDA+U [5] method and a conjunction of the DFT and Dynamical

Mean Field Theory (DFT+DMFT) [97].

There is another drawback of the conventional DFT which is important for magnetic

systems. It is the well-known problem of underestimation of orbital magnetism [26,

28]. There are at least two ways to improve these assessments: the already mentioned

LDA+U and the orbital polarization (OP) [20, 44, 45] techniques. The first one, taking

into account part of local correlations, essentially leads to electron localization, which

usually results into an augmentation of local quantities like spin and orbital moments.

Within second approach an additional term to the Hamiltonian, which reflects the second

Hund’s rule, is introduced. Both methods require some ad hoc parameters, even though

the possibilities of ab initio determination of them were proposed [45, 70].

In the context of the present work it was already mentioned that the DFT provide quite

detailed description of transition metals band structures. However, the drawbacks have

to be kept in mind while using this technique to study new classes of materials, where

a priori knowledge is missing.

1.6 Practical applications of the DFT formalism

Using the DFT it is possible to simulate vast amount of physical and chemical properties

of the matter. The aim of the present work does not imply to cover the whole spectrum

of its applications, so we will restrict ourselves to few classes.

Since the present work concerns the properties of transition metals under extreme pres-

sures, we will be interested in seeing how stress affects electronic and crystal structure of

particular systems. Transition metals mainly attract attention of physicists because they

exhibit spontaneous magnetism, so the pressure evolution of their magnetic properties

should be studied as well.

In the following paragraphs it will be explained in more detail how structural and mag-

netic properties of solids can be studied by means of the DFT calculations.
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1.6.1 Structural properties

A problem of finding an atomic configuration corresponding to the local minimum of the

total energy is very important in the context of ab initio simulations. These methods

can shed light on real physical origins of a certain crystal structure formation and relate

it to electronic and magnetic properties of the compound. For example, according to the

Stoner model the appearance of spontaneous magnetization tends to decrease system’s

equilibrium volume [156]. And first-principles calculations based on the DFT are able

to reproduce this physics together with a detailed description of the band structure.

However, the so-called structural optimization problem is not always straightforward to

solve.

If a periodic system is characterized by one atom per unit cell one can identify few

degrees of freedom related with the change of the lattice vectors, i.e. the shape and the

volume of a cell. For example, if the symmetry is cubic then the problem becomes easy

and has an intuitive solution with the help of the DFT simulations. Namely, one can

just vary the lattice constant in order to find the value which corresponds to the energy

minimum.

On the other hand, if we consider a system with several atoms per unit cell, the problem

becomes much more complicated. The number of degrees of freedom is too high and

the “random walk” in these variables is not efficient at all. Instead, thanks to the use of

Hellman-Feymann theorem [50], local forces acting on each atom within unit cell can be

directly extracted from the calculation. Then the atomic positions can be moved in the

direction of the forces (if a used method does not restrict it). After each displacement the

density has to be re-calculated to reach self-consistency. In practice few such interactions

are enough to find an optimal atomic configuration.

An optimization of geometry of the unit cell requires another quantity as a source of

information and is treated differently. For this purpose a quantity called “stress tensor”

has to be computed [124–126]. To introduce it, let us consider a general transformation

of particles coordinates in a quantum system due to space deformation:

r′i,α = ri,α +
∑

β

εαβri,β , (1.21)
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where i numerates the particles, {α, β} = {x, y, z} are projections on Cartesian axes and

εαβ is a so-called “strain tensor”, which in the present context describes deformation of

the lattice.

In spirit of the linear response theory, the stress tensor Tαβ is defined as a variation of

the total energy with respect to infinitesimal perturbation governed by εαβ :

Tαβ = −∂Etot

∂εαβ
. (1.22)

Hence Tαβ describes the reaction of the system on certain changes of the lattice. The

trace of T defines internal pressure (i.e. P = 1
3

∑
µ
Tµµ) and shows preferable direction

for the change of the volume of the unit cell. Off-diagonal terms are responsible for shear

deformations. In general, stress tensor has 9 components, but only 6 are independent

due to the space isotropicity. Moreover, the symmetries of the crystal structure relate

different components of the tensor. As an example, in the most symmetrical case,

i.e. cubic symmetry, the only one independent component remains, i.e. P = Txx. In

equilibrium, internal stresses disappear, so all components of Tαβ should vanish. While

in order to obtain the structure corresponding to a given external (hydrostatic) pressure

Ptarg, one should aim to reach the following relation: Txx = Tyy = Tzz = Ptarg.

In general, the structural optimization has to be done in two steps. A good way of doing

it is to start from experimental structure and minimize interatomic forces. Once it is

done, the stress tensor can be used to adjust the geometry of the lattice. It is worth

emphasizing that the predicted structure depends on the choice of XC potential. If the

chosen approximation does not properly describe the GS band structure, there is, in

principle, no reason to rely on the results for structural properties (see e.g. [162]).

1.6.2 Magnetism: Mapping on the Heisenberg model

As was already mentioned (2), there are two major models in modern theory of mag-

netism: Heisenberg and Stoner ones. In spite of the fact that Stoner mechanism is well

reproduced within the DFT [68], this model does not provide an adequate explanation

of finite-temperature magnetism. The Curie-Weiss behavior which is reported for nearly

any 3d system can not be reproduced: according to the Stoner theory the magnetic

moments should disappear above Curie point. Hence it is not surprising that Curie
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temperatures (Tc) of transition metals estimated from density of states at Fermi level

(DOS(Ef )) are reported to be highly overestimated [69].

Thus, if we want to get a deeper insight into magnetic properties, for instance, to get

realistic prediction for Tc or probe the stability of particular magnetic state, it is more

useful to use the Heisenberg model for localized spins. Indeed, such approach is not

always well-justified when applied to any 3d metal. For example, bulk nickel possessing

magnetization of ≈ 0.6µB per atom, can be barely considered as a Heisenberg magnet.

Indeed, present analysis is supposed to work better for systems like iron and cobalt

alloys, which are characterized by significant magnetic moment per ion of the order of

few µB.

A phenomenological Heisenberg Hamiltonian in one of its forms can be written as:

Ĥexch = −
∑

i 6=j

Jij~ei · ~ej (1.23)

where Jij denotes the exchange integral between magnetic atoms at sites i and j, and ~ei

and ~ej are unit vectors in the directions of the local magnetization on sites i and j, respec-

tively. The classical5 model treats magnetic moments as vectors of constant magnitude,

which interact with each other via parameter Jij . In present notation (Eq. (1.23)),

positive J reads ferromagnetic (FM) coupling.

In real magnetic systems Jij ’s have several different contributions. A direct exchange

given by Eq. (1.6) is only one of them. It can be either FM or antiferromagnetic (AFM),

depending on the degree of overlap of two WFs. If we speak about transition metals

whose magnetic moments are mainly carried by 3d states, this contribution should decay

fast with increase of the distance between spins.

However, there are other exchange mechanisms, like superexchange due to virtual hop-

ping from occupied levels of ligands. The sign of this coupling depends on the local

geometry and on orbitals involved in the hopping processes [66]. More often superex-

change mechanism results in an effective AFM interaction between spins.

5A quantum version of Eq. (1.23) also exists. According to the basic laws of quantum mechanics, one
has to substitute magnetization vectors by corresponding operators.
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Conduction electrons are also able to mediate magnetic interactions. Due to their high

mobility, Jij(|~r|) can become a rather long-ranged function, having an oscillatory char-

acter such that couplings of both signs (FM/AFM) can appear between different pairs.

Current mechanism is called Ruderman-Kittel-Kasuya-Yosida (RKKY) [142] interaction

and is very common in metallic systems.

Other effective interactions such as “kinetic” or “double” exchange can be also important

in the context of 3d metals and their alloys. A book by Fazekas[49] gives a brilliant

overview of different exchange mechanisms and explains in detail how they can be derived

from many-body Hamiltonians.

Thus Jij is the key quantity of present theoretical method, but in practice has a rather

complicated structure with several contributions. Different impacts compete with each

other and therefore it is rather difficult to predict even a sign of the total interaction.

It was shown by Lichtenstein et al.[105] that there is a way to extract J parameters from

the GS DFT calculation.

The primary idea of the suggested approach is to consider an infinitesimal rotation of

the spin i on angle θ and then write second variation of the total energy with respect to

this perturbation. Starting from the FM state from Eq. (1.23) one obtains:

Ĥ = −
∑

i 6=j

Jij |~ei| · |~ej | cos θ ≈ −
∑

i 6=j

Jij +
∑

i 6=j

Jij
θ2

2
. (1.24)

Then the same procedure has to be performed on a real spin-polarized Hamiltonian,

which comes from converged DFT calculation. Projected on atomic states Hamiltonian

can be expressed in the matrix form as Ĥσσ′

ijmm′ =< im′σ′|Ĥ|imσ > where i denotes

site, m is magnetic quantum number and σ = {↑, ↓} is electron spin projection. It is

also useful to formally define the corresponding Green’s function as Ĝ(z) = (z − Ĥ)−1.

Such quantities are more easily accessed within LMTO formalism which is the most

widely-used approach for such type of studies.

In terms of electronic Hamiltonian the above-mentioned transformation corresponds to

an application of the following operator:

Û = exp

[
i~θ · ~̂S

]
≈ 1 + i~θ · ~̂S − 1

2
(~θ · ~̂S)2, (1.25)
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where ~̂S = ~̂σ
2 and ~̂σ = {σ̂x, σ̂y, σ̂z} is a vector of Pauli matrices.

Using “local force theorem“ [129], which states that variation of the total energy with

respect to to some perturbation (δE) is a sum of changes in one-electron energies, it

can be shown that for small values of θ there is an exact mapping of real electronic

Hamiltonian on the Heisenberg one. So one obtains the same form of variation as given

by Eq. (1.24), where intersite exchange Jij is expressed in terms of band structure

quantities:

Jij =
1

4π
ℑ
∫ Ef

−∞
Tr{m}(∆iG

↑
ij∆jG

↓
ji)dz. (1.26)

Here ∆i = (Ĥ↑
ii − Ĥ↓

ii) is an exchange potential on the i-th site and Gσ
ij is a matrix of

intersite Green’s function, which describes propagation of an electron with spin σ from

site i to j. Here z is a complex energy variable of the form E + iǫ. Integration has to

be performed over z, in order to avoid poles of the Green’s function.

Suggested approach allows to compute exchange integrals between any pair of spins in

a real magnetic system, assuming that the DFT provides a correct description of its

electronic structure. This approach was applied to series of transition metal alloys and

provided nice estimations of Tc as compared with experimental data [56, 74, 130]. In

practice it turns out that the agreement is better for compounds with larger values of

magnetization. This is understandable, since the squared magnitude of a quantum spin

S is |S|2 = S(S + 1), while in classical Heisenberg model it equals S2. Both these

expression coincide in the case of infinitely large spin S, meaning that the larger the

spin value the closer its behavior to the classical one. This gives an idea about the range

of application of Lichtenstein’s approach.

It has to be emphasized that calculated J-parameters are extracted from the GS with a

certain (assumed) magnetic order. Therefore these parameters are not universal quanti-

ties and in principle there is no guarantee that extracted from different reference states

values will coincide.

However this information can be useful for studying the stability of a particular magnetic

state. For this purpose obtained J ’s can be used to find low-energy magnetic excitation

(i.e. frozen magnon) spectra [130].
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q

z

Figure 1.2: Schematic representation of a frozen magnon. Arrows show the direction
of local magnetization, which is initially aligned along Z axis.

1.6.2.1 Frozen magnons simulations

Magnons or spin waves (SWs)6 are quasiparticles representing a certain type of excita-

tions in the spin density. They can be seen as infinitesimal deviation of one spin’s orien-

tation which then propagates through the entire periodic system with a given wavevector

~q. Real SWs are observed in inelastic neutron scattering (INS) experiments and provide

information about system’s dynamical magnetic susceptibility χ(ω, ~q).

In the framework of “frozen magnons” there is no real motion. Imagine that we take a

snapshot of a SW at a certain time – it will look like a spin spiral with small transverse

components, as shown on Fig. 1.2.

This is a valid representation of real magnons in adiabatic limit, i.e. when spin dynamics

is defined on a much shorter time-lengths than changes in the electronic potential energy.

Indeed, one of the possibilities to model SWs is to directly calculate the total energy of

such spin spirals. This can be done with the help of generalized Bloch theorem [146].

We will follow another strategy and use extracted Jij parameters. For this purpose we

consider a simple gyroscopic equation of motion which governs SW dynamics:

d ~Sj
dt

= −1

~

[
~Bj × ~Sj

]
, (1.27)

where ~Sj = |Sj |~ej is a vector of the magnetic moment located at the position ~Rj ; ~Bj is an

effective field acting on the corresponding spin, which appears from the spin Hamiltonian

:

~Bj = − ∂Ĥ
∂ ~Sj

. (1.28)

6This term must be distinguished from the spin density waves (SDW), which are related to the
modulation of the spin density. SDW does not imply systems’s excitation.
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In the simplest case of FM system containing one magnetic atom per unit cell and

described by Heisenberg Hamiltonian (Eq. (1.23)) it is easy to show that energies of

spin waves propagating with wavevector ~q are given by:

E(~q) =
4µB
|S|

∑

j 6=0

J0j

[
1− exp (i~q · ~Rj)

]
(1.29)

Eq. (A.1) can be generalized for the case of several magnetic sublattices and different

their arbitrary orientations. A detailed derivation of the corresponding formulas is given

in the Appendix A. In these cases one has to deal with a linear system of coupled equa-

tions, which solution will give few branches of spin waves. One of them will necessarily

possess the following property: lim
q→0

E(q) = 0. This is a so-called “Goldstone” mode

which is responsible for low-energy excitations, we will be interested in. Appearance

of negative/imaginary eigenmodes in this mode will indicate instability of the assumed

magnetic order.

In this thesis the calculation of SWs Goldstone mode will be performed for certain

magnetic alloys. Note that higher-lying (”optic“) modes will not always be shown in

present work since it is out of the scope of the study. In reality, these branches will

be considerably attenuated due to presence of another type of spin excitations called

”Stoner excitations“. They appear when majority-spin electron jumps to unoccupied

spin-down state. This process requires to flip the spin and, therefore, costs some finite

energy of the order of intra-atomic exchange ∼ 1 eV.

1.7 Conclusions

In this chapter we have introduced the standard methods, which are used for first-

principles modeling of the electronic structure in solids. It has to be emphasized that

the DFT is an exact theory. Yet, its realizations should be called ”ab initio“ with certain

provisos. Within this theory, there is a choice of the XC potential which implies some

approximations. For many systems these approximations are acceptable and the method

can be used to investigave microscopic mechanisms, which define the overall system’s

behavior.
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It is a powerful and widely used tool in nowadays condensed matter physics. In the

next chapters we shall see how the present theory can be applied to study magnetic and

structural properties of various 3d metal-based systems.



Chapter 2

K-edge XMCD study of transition

metals under high pressure

2.1 Introduction: experimental technique

It was Faraday who first pointed out peculiarities in the interaction between a light and

magnetized matter [48]. He discovered that if a sample is exposed to a magnetic field,

shining a linearly polarized light in the direction of the field on it causes rotation of the

corresponding polarization vector. Later Kerr found the same phenomenon for a reflected

light, which permitted to the observe domain structure in ferromagnetic compounds (see

e.g.[169]). These findings opened a new branch of effects called “magneto-optical” and

since then their number increased dramatically. Nowadays they are one of the primary

tools to study magnetic materials.

Magneto-optical experiments were initially carried out using solely the visible light.

However, the same phenomena take place for other parts of the spectrum of electromag-

neti radiation. And the biggest achievements in this field are related with the use of

x-ray photon energies.

The main merit of x-rays is the element-selectivity. A simple estimates for hydrogen-

like atom show that energy of 1s level of an element with atomic charge Z should be

30
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proportional to Z2 [16]. Therefore, absorption edges1 of all atomic species are well-

separated in the absolute energy scale. Corresponding energies for the majority of

elements from periodic table fall into the range, which is covered by soft and hard x-ray

regimes2. Thus exposing a sample to the x-ray beam of a certain wavelength permits to

investigate the states of this particular element and not the others.

In terms of absorption of electromagnetic waves, there is an interesting magneto-optical

effect: magnetic samples absorb the light with right and left circular polarization (RCP

and LCP) differently. The effect is called Magnetic Circular Dichroism (MCD). Its man-

ifestation in x-ray regime (XMCD) was predicted theoretically by Erskine and Stern [47]

for M2,3-edges of Ni. However, the first experimental confirmation of the XMCD effect

was obtained more than ten years later by van der Laan et al. [164].

It can be shown that the change of incident light helicity is equal to the invertion of

magnetic field direction, since both operations have a meaning of the time inversion. So

the XMCD signal is defined by taking the difference between X-ray absorption spectra

measured with parallel and antiparallel (µ+ and µ−, respectively) orientations of the

magnetization with respect to beam helicity:

µXMCD(ω) = µ+(ω)− µ−(ω). (2.1)

The pioneering experimental study of the XMCD in transition metals was performed by

Schütz et al. [149] at the K-edge of iron. However, the biggest challenge was to address

L2,3-edges, since the final state of this process is in 3d shell, where main magnetic

properties come from. Chen et al. [29] were the first who succeeded in carrying out

such experiment on pure nickel. Since few years after this work the XMCD has already

become one of the most widely-used tools to probe orbital magnetism [139]. Using this

technique one is able to resolve different contributions to spin and orbital magnetizations

originating from inequivalent atomic species (see e.g. Ref. [38]).

1This is the energy which is needed to move an electron from corresponding bound state to the
continuum. Notations K,L1, L3,2 mean that 1s, 2s, 2p electron levels are, respectively, involved.

2Soft x-rays are usually called the ones whose energies are in the region between 0.1 and 1 keV, e.g.
L2,3-edges of 3d metals. Hard x-rays regime is in between 1 and 10 keV, e.g. K-edges of the same class
of elements
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In nowadays x-ray experiments an achievement of ultra-high pressure is possible thanks

to the use of diamond anvil cells (DACs). This is one of the hardest and least compress-

ible materials on the Earth. DAC allows us to reach pressures of the order of Mbar (∼100

GPa). Moreover, its another advantage is transparency with respect to a big fraction of

electromagnetic waves; so it does not affect measured spectra. However, characteristic

energies of L3,2 edges of 3d metals are exceptions in this list. And diamond’s opacity is

the main reason why spectroscopic measurements with DAC are made at the K-edge of

transition metals. It is still an element-specific tool, but the final state is not in a local-

ized 3d shell. This fact complicates data interpretation and this issue will be addressed

in the next section.

2.2 Theoretical interpretation of XMCD spectra

The easiest way to quantitatively understand the XMCD effect is to look on a photon as

a bosonic particle with angular momentum quantum number L = 1 (in units of ~)3. As

usual, we can choose a certain quantization axis, which in our case is along propagation

direction, and define projection of L on this axis, called Lz. It can be shown that

Lz = 1 corresponds to the RCP of a wave and Lz = −1 – to the LCP. Let us consider

a pure 3d metal. If a photon undergoes an elastic collision with 1s (L = 0) electron,

conservation of the total momentum implies that final state of electron will be different,

solely depending on the “handedness” of incident light. Of course, total 〈Lz〉 should be

non-zero in the final state, which is 4p level in this particular case. If it was not the case,

no dichroism would be observed. Any features in the XMCD spectrum clearly shows

presence of non-zero orbital moment, i.e. breaking of time-reversal symmetry.

One has to make one step forward and state that the presence of 〈L〉 implies non-zero

spin magnetization. Opposite situation is not known to be realized in nature. Thus, by

looking on K-edge XMCD data, we can clearly judge whether the system is ferromagnetic

or not.

Total orbital moment in transition metals is much smaller than the one predicted by

Hund’s rules: it is efficiently quenched by the crystal field. It means that in resulting

wavefunctions {dxy, dxz, dyz, dz2 , dx2−y2} the angular momentum components Yl,±m are

3In fact, it gives an intuitive justification of a dipole-selection rule: ∆l = ±1, widely used for inter-
pretation of x-ray spectra
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mutually compensated4. For example, in fcc Ni its value is about 0.05µB [3]. The

quenching is not complete mainly thanks to spin-orbit coupling (SOC) in the d-shell.

Spin-orbit coupling constant for these states is estimated to be of the order of∼0.05 eV. If

we look on SOC as a perturbation to crystal field potential, then current value defines the

bare energy scale of energy levels shifts associated with this interaction. SOC partially

lifts the degeneracy of Yl,m and Yl,−m states and gives rise to a finite Lz. Since d bands

are strongly hybridized with p levels, the latter also gets spin- and orbitally-polarized.

This is a physical origin of magnetic signal observed in K-edge XMCD experiments on

transition metal.

Quantitative understanding of XMCD in realistic systems is usually based on the use

of the so-called “sum rules”. These expressions allow us to estimate real values of spin

and orbital moments in µB right from the measured spectra. Sum rules for different

edges and light polarizations were derived by several authors [25, 158, 170]. In most

cases formula derivation was based on atomic multiplet theory. This is certainly an

appropriate model of f -states in rare-earth materials, where degree of localization is

relatively high, so the electronic structure is well described in the atomic limit. Indeed,

in this case atomic multiplet approach is able to reproduce experimental data rather

well.

The situation, described above, is very different from 3d metals, where itinerant electron

picture is more appropriate one. As was already mentioned, 3d states are strongly

affected by crystal field and hybridization effects. Thus the modeling of experimental

data should be based on a detailed description of the band structure. Present philosophy

was used by Ebert et al. who initialized an approach to simulate XMCD spectra using

outcomes of relativistic DFT calculations [39, 40]. Yaresko and co-workers implemented

similar technique within LMTO formalism and applied it to various transition-metal

compounds [8]. In spite of the fact that experimental quantities became accessible, there

are some intrinsic problems in the GS, like orbital moments underestimation (mentioned

in Chapter 1), which have to be remembered.

It was reported that the use of the sum rules is still appropriate for L2,3-edge studies on

3d metals [28], since d-levels are rather well-defined with the dispersion of the order of

4In each cubic harmonic Yl,±m appear solely in pairs, preventing appearance of a finite Lz value
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≈5 eV. On the other hand, the K-edge data are more tricky to analyze, since the final

state is in a broad 4p band.

One of the first attempts to understand K-edge XMCD of pure 3d metals was made

by Ebert and co-workers [39]. Igarashi and Hirai [81] developed a tight-binding-based

method for calculating XMCD probabilities, where spin-orbit coupling was treated as a

perturbation. They were the first who showed numerically that the spin-polarization of

the d levels is the primary origin of XMCD signal in the present case. Later Guo [71]

derived an expression for the K-edge sum rule, which looks the following way:

∫ Ec

Ef
dω

[
µ+(ω)− µ−(ω)

]

∫ Ec

Ef
dωµ0(ω)

= −3〈Lz〉p
nhp

(2.2)

where nhp is the number of holes and 〈Lz〉p is p-projected ground state orbital moment.

Ef and Ec are Fermi and cut-off energies, respectively. Cut-off is determined in a such

way that XMCD intensity must not have any features above this energy.

Above-mentioned formula is rigorous upon few approximation. One of them is a neglect

of quadrupole transitions (1s→ 3d). Otherwise, a relatively small admixture of d-orbital

moment should be added to the right-hand side. However, previous results for fcc Ni re-

assured that dipole approximation is quite appropriate for pure transition metals.Among

other approximations the most rude one is assumption of energy-independence of tran-

sition matrix elements of the type: 〈1s|r̂|4p〉. This is quite far from reality for the case

of highly delocalized 4p bands.

Therefore it is quite difficult to extract absolute quantitative information on the magnetic

moment from the K-edge XMCD spectra.

2.3 Bulk Ni: an example of persistent ferromagnet

Ni is a nice case study for magnetic properties investigation. It is a “strong” ferromag-

net5, meaning that its majority d-levels are fully occupied and the DOS(EF ) has only

contributions coming from spin-down electrons. This class of magnets is characterized

5For this classification, consult Ref. [120]
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by a small susceptibility and very stable magnetic moment with respect to a change of

external parameters.

Moreover, Ni is crystallized in the closed-packed fcc structure. Opposite to the cases of

bcc iron and hcp Co, which exhibit pressure-induced structural transitions along with

magnetic ones, Ni persists its structure up to very high pressures [33]. Therefore, Ni’s

case allows us to reduce amount of degrees of freedom and investigate solely how lattice

constant contraction affects its electronic and magnetic properties. It gives an ideal

opportunity to check the very theory of band magnetism.

An x-ray absorption spectroscopy (XAS), XMCD and x-ray diffraction (XRD) measure-

ments using DAC were made on the beamlines ID27 and ID24 at the European Syn-

chrotron Radiation Facility (ESRF). The data obtained for polycrystalline Ni sample is

shown on Fig. 2.1.
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Figure 2.1: Upper panel: XAS (left) and XMCD (right) spectra in compressed Ni.
(E0 = 8323 eV). Lower panel: selected angle-dispersive XRD patterns, showing no

structural changes up to maximal pressure considered.

First of all, one clearly sees that both XAS and XMCD curves do not change significantly

upon sample’s compression. A global shift of features in high-energetic region of XAS
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spectra corresponds to the change of interatomic distances. Neither structural, nor

magnetic transitions were observed, as suggested by the obtained data. There is a

gradual decay of peak intensities in XMCD signal, while its overall shape remains the

same for the entire pressure range. We can conclude that Ni is ferromagnetic under

applied pressure at least up to 200 GPa.

As was already mentioned, quantitative information on a sample’s magnetic state is

more difficult to extract, since the K-edge XMCD signal does not probe total spin

magnetization directly.

In order to understand the results of experiments, we have computed differential XMCD

signal of Ni with the help of PY-LMTO [8] code, defined as:

dXMCD(E) ≡
∑

nk

[
|〈Ψnk|Π+|Ψ1s〉|2 − |〈Ψnk|Π−|Ψ1s〉|2

]
δ(E − Enk) (2.3)

where Π+(−) is the dipole interaction operator of an electron with a photon of right(left)

helicity ; sum goes over bands and k-points from the first BZ.

The comparison of the present quantity with p−projected orbital magnetization density

dml(E) = d〈Lz〉/dE is shown on Fig. 2.2.
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Figure 2.2: Calculated orbital magnetization density of 4p states and the K-edge
differential XMCD for bulk Ni (ambient pressure)

The similarity between these quantities, which is mainly due to smooth energy depen-

dence of transition matrix elements [9, 67], allows us to assume that integrated K-edge

XMCD signal6 can be expected to be proportional to the p−orbital moment and their

evolution with pressure can be compared.

6Integration of XMCD spectrum has to be done in the region, sensitive to the electronic structure
(close to the edge). At higher energies the behavior is governed by local atomic structure
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In order to check this, we carried out a series of first-principles calculations of the

l−projected orbital and spin contributions to the total magnetization for different unit

cell volumes of bulk Ni. Two implementations of the DFT were used: PY-LMTO and

WIEN2K [14], which realized FP-LAPW method. In both codes the SOC is added to the

Hamiltonian through so-called second-variational method7 [37, 109]. We benefit from the

use of present approach, since it permits to artificially “turn off“ SOC on certain orbitals.

This information can be useful for understanding the origin of magnetic moments.

To verify the dependence of the results on the choice of XC-potential, we have performed

series of calculations using several functionals [135, 136]. However, all results appeared

to be in the same trend.

It has to be mentioned that in spite of a common difficulty in predicting orbital mag-

netism, the DFT-based calculations in LSDA provide a fair estimate for Ni, slightly

underestimated by not more than 5% [26, 46].

The outcomes of our calculations are shown on Fig. 2.3. The results are in good agree-

ment with previous theoretical simulations and experiments [46, 81, 86, 119, 174].

The results indicate that, as the pressure is raised, the total spin moment first decreases

slowly, but from a certain pressure value onwards a fast attenuation begins, presum-

ably indicating the violation of the Stoner criterion. Interestingly, the p and d orbital

moment components show a different dependence with respect to the total spin magne-

tization. Although the decay rates of the moments are not the same, they all quench

simultaneously which is not surprising, as they are all induced by spin polarization of

the d−bands, i.e. the d−spin moment.

Some deviations in the absolute values of the magnetic moments can be due to different

definition of MT spheres (see Chapter 1). The discrepancy between the predicted values

of FM-to-nonmagnetic transition provided by different implementations is presumably

due to the approximations to the potential made for the LMTO method. However, one

has to be cautious with the latter estimates, since DFT models the ground state at

zeroth temperature. In reality it is not excluded that the Tc will decrease with pressure

and at some point will drop below the room temperature. Thus, if one studies stability

7A set of independent fully-relativistic calculations, based on the non-perturbative treatment of SOC
effects, as appears in the Dirac equation, was also performed. However, we report no differences with
respect to the results obtained with second variational technique.
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Figure 2.3: Volume evolution of different calculated components of Ni magnetization
along with normalized integrated XMCD signal. V0 reads experimental equilibrium

volume. Note that absolute values are plotted; Sp is antiparallel to Sd.

of different phases, then both external parameters (P and T ) have to be controlled

simultaneously during the experiment.

According to our results, for values of the relative compression V/V0 ranging from 1

to 0.66 (corresponding to the experimentally applied pressure values up to 2 Mbar) the

total spin magnetization decreases by roughly 20%, while the p− and d−orbital moments

fade by 60% as does the integrated K-edge XMCD signal (Fig. 2.3).

Constrained calculations revealed that p−orbital moment originates from SOC on 3d

and 4p levels. Opposite to the results of previous calculations, we report that the latter

impact is not negligible: it contributes approximately 35% of overall magnitude of the

moment at ambient pressure, while at relative compression rate of 0.66 it reaches 50%.

In general, this yields an interesting result that the integrated K-edge XMCD signal

closely follows 〈Lz〉p, the pressure behavior of which is different from the one of total spin

moment. Whereas the latter was usually used to interpret this type of measurements [82,

84].
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The article which contains these results is published in the journal Physical Review

Letters [160].

2.4 Orbital magnetism in hcp Co under pressure

Next, a similar analysis was conducted on bulk cobalt. It is known that the FM hcp phase

is stable against applied pressure. A martensitic-type hcp-fcc transition appears to be

sluggish and is spread in the region between 100 and 150 GPa [175]. According to several

theoretical predictions, the low-volume phase has to be non-magnetic [82, 118, 144]. An

interesting behavior of elastic and vibrational properties as a function of pressure was

reported for this system [6, 7, 63].

Recently two experimental groups performed high-pressure XMCD measurements on

pure cobalt [83, 161]. Obtained data are depicted in Fig. 2.4.

Figure 2.4: Pressure evolution of normalized integrated XMCD signal measured at
the K-edge of bulk Co. Data is taken from Ref. [83, 161].

Results reported by two groups are similar for the low-pressure hcp phase, but high-

pressure data are in contradiction. Ishimatsu et al. suggest that fcc phase is para-

magnetic with anomalously large susceptibility, while Torchio and co-workers report a

complete disappearance of a magnetic signal. Present issue is still under debate. How-

ever, it was clear that pressure evolution of integrated XMCD signal does not follow

that of total spin magnetization. The latter is predicted to decrease much slower in a

volume range close to equilibrium.
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First, we have modeled the phase diagram by comparing total energies of magnetic

and non-magnetic crystal structures. Present set of calculations was carried out in the

VASP code, using GGA (Perdew-Burke-Ernzerhof [PBE][135]) functional. In agreement

with prior studies, ferromagnetic hcp Co is predicted to undergo an hcp-fcc transition

at approximately 100 GPa. Its fcc phase loses magnetization at lower pressures (≈80

GPa), which is a virtual transition, and in reality one obtains a non-magnetic fcc phase,

as suggested by XMCD measurements by Torchio et al.

Next, we have investigated various contributions of the total magnetization, and tried

to relate XMCD results with the outcomes of first-principles calculations. For present

study the simulations were conducted using WIEN2k [14] code. Following the approach

by Antonangelli et al. [7], we obtained c/a ratio which corresponds to the minimum of

the total energy for a fixed volume of the cell.

Opposite to the case of Ni, d-orbital moment of hcp Co is strongly underestimated in the

conventional DFT [26, 28, 46]. In order to improve this, we applied OP correction to the

d-states, as implemented in WIEN2k code. Results obtained with GGA and GGA+OPC

schemes for various compressions of the unit cell are shown in Fig. 2.5.

It is seen that spin moments are barely modified by the presence of the OP term.

Whereas orbital moments are strongly enhanced, providing results which are in better

agreement with ambient pressure estimates. However, their collapse is predicted for the

same value of pressure. This is predictable, since the magnitude of the OP correction is

in proportion to the orbital moment itself. Hence, the smaller the 〈L〉d, the smaller its

enhancement.

Interestingly, the pressure dependence of magnetization in both crystal stuctures dra-

matically changes at ≈80 GPa. Analysis of the band structure revealed that at such

compressions the magnetic splitting is not sufficiently strong to keep the entire majority-

band occupied. As a result, spin-up states start to cross the Fermi level and this makes

the magnetic moment more sensitive to pressure. Measured XMCD signal also changes

its behavior at ≈75 GPa, but at these compressions the hysteresis of the hcp-fcc tran-

sition already emerges, as seen in the XAS data [161]. It is reasonable to assume that

all these band structure features are interconnected. Most likely, the above-mentioned

change of the Fermi surface is responsible for destabilization of the hcp structure.
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Figure 2.5: Calculated spin and orbital components of l−projected magnetic moments
in hcp and fcc Co as a function of applied pressure. Note that absolute values are

plotted; 〈S〉p is antiparallel to 〈S〉d.

Since absolute values of magnetizations are not accessible with the K-edge XMCD, it

is rather difficult to judge whether the OP term really improves the result. The overall

physical picture is unchanged: we again witness that quenching of orbital moment upon

compression is much faster than that of spin one.

2.4.1 Simple view on the evolution of L and S under pressure

On the first sight, it looks counter-intuitive, that orbital and spin moments behave

differently under pressure. We will show that a simple quantum-mechanical picture is

able to explain it.

Let us consider the d-electron shell in a cubic environment and add SOC as a perturba-

tion. If exchange splitting is bigger than the crystal field, one can neglect the possibilities

of the spin-flip transitions and re-write the SOC operator in a simpler form (as done in
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e.g. [21]):

ĤSO ≈ λLzSz, (2.4)

where λ is SOC coupling constant. Terms associated with S± are omitted. This way

ĤSO has only few non-zero matrix elements, namely:

〈dxy|ĤSO|dx2−y2〉 =
(
〈dx2−y2 |ĤSO|dxy〉

)∗
= 2iλSz. (2.5)

First-order corrected dxy orbital will take admixture from dx2−y2 state:

|d′xy〉 = |dxy〉 −
2iλSz

Exy − Ex2−y2
|dx2−y2〉, (2.6)

where Ei is the energy of unperturbed i-th level. The denominator, therefore, equals to

the unique crystal field parameter ∆cf . The contribution from this electron state to the

total orbital moment can be estimated as (see e.g. Ref. [155][p. 303]):

〈d′xy|Lz|d′xy〉 ∼
λ

∆cf
〈dxy|Sz|dxy〉. (2.7)

Effect of pressure leads to the increase in ∆cf and presumably modifies λ. If we assume

that λ is not much sensitive to the pressure, one immediately sees that the orbital

moment attenuates faster than the spin one. Similar tendency was reported for 5f

systems [19], but perturbative treatment of SOC would be doubtful for such ”heavy”

orbitals.

Generally, there is no direct relation between spin and orbital moments. The latter

results from an interplay between crystal structure, band filling and spin-orbit coupling.

Present situation takes place in 3d metals and our experimental and theoretical studies

of the XMCD show that the analysis of S and L has to be done separately.

2.5 Competing phases in FeCo alloy

Iron and cobalt are neighboring elements in the periodic table and, therefore, have similar

electronic properties. Bulk phases of both metals exhibit spontaneous ferromagnetism

with a rather well-developed magnetic moments. The difference of single electron in a
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valence band seems to be negligible for magnetic properties. However, due to this fact

pure iron is on the edge between ”strong“ and ”weak“ ferromagnets, while elemental Co

has majority band fully occupied (see e.g. p.82 in ref. [120]).

FeCo alloy in its CsCl-structure is a nice textbook example of so-called covalent mag-

netism [150]. Due to similar ionic electronegativities, charge transfer processes between

iron and cobalt atoms are strongly suppressed. Their states efficiently hybridize and

form bonds of mainly covalent character. Bound together, Fe and Co able to further

increase Fe spin magnetization: in FeCo alloy its value per unit cell reaches almost 3

µB. As a result, this system is known to have one of the largest values of the Curie tem-

perature (>1500 K). It is interesting to investigate how such well-pronounced magnetic

properties will be affected by uniform compression.

2.5.1 X-ray experiments

Measurements of x-ray diffraction, along with the XAS and XMCD at Fe and Co K-

edges were carried out on two types of Fe0.5Co0.5 samples, depending on their preparation

conditions. One of the them was annealed up to 350oC for one day, while second one

was use as it is (called ”as prepared“ onwards).

Results of the XAS and XMCD experiments made on ”as prepared“ sample are shown

on Fig. 2.6.

One can see that overall fine structure at both Fe and Co edges have very similar shape.

The pressure evolution of spectral features share the same degree of similarity. As a

sample gets compressed, the peak ”c“ located at ≈50 eV becomes more pronounced,

whereas features ”d“ and ”d′“ merge into a single oscillation. The same changes in Fe

K-edge were observed in the case of bcc-to-hcp transformation of iron [115]. Above 32

GPa the structure is stable and further compression does not change it. Formation of

this low-volume crystal structure was confirmed by diffraction measurements. It starts

at the pressure of 31 GPa and reaches saturation at 35 GPa.

It is worth noting that the degree of chemical order is rather difficult to extract from

the present experiments. As it was mentioned, x-rays are too insensitive to such similar

elements like Fe and Co.
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Figure 2.6: Normalized XAS and XMCD spectra of Fe0.5Co0.5 at Co K-edges (panels
”a“ and ”b“, respectively.); and that at Fe K-edge (panels ”c“ and ”d“). Pressure axes

are indicated by blue arrows.

The results of XAS and XRD experiments for annealed sample are not shown here,

since majority of properties are the same as in the ”as prepared“ one. However, slight

differences in crystal structures were found. We report that annealed samples are char-

acterized by larger lattice constant in bcc phase and anomalous c/a ratio in hcp one.

The changes are minor, but considerably affect the magnetic properties.

Concerning XMCD spectra, both samples are characterized by rather stable XMCD

signals at both Fe and Co absorption edges. It is very pronounced down to transition

pressure, where it suddenly drops. Disappearance of the signal takes place along with

the structural transition, indicated by other techniques. Fig. 2.7 shows integral of the

main peak of the Co K-edge XMCD spectra for annealed and ”as prepared“ samples.

According to the data, the way how sample is prepared indeed affects magnetic proper-

ties and is able to push the magnetic transition towards lower volumes range. Indeed,

annealed sample showed disappearance of magnetic signal close to 40 GPa.

2.5.2 Phase diagram from first principles

Clearly, the observed drop-off of XMCD under pressure is an indication of restoring of

the macroscopic time-reversal symmetry, i.e. disappearance of the net magnetic moment
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Figure 2.7: Integrated main peak intensity of Co K-edge XMCD signal as a function
of applied pressure for annealed and ”as prepared“ samples.

(which, however, does not exclude antiferromagnetism).

Hence, the question we are going to pose is whether a given crystalline phase has a

preference to be magnetic or not under certain external conditions. Spin-polarized DFT

calculations without SOC are already able to answer this question. For this purpose

we carried out first-principles simulations using VASP code [99], which is a realization of

PW+PSP method. An XC potential of PBE [135] type was used, since it is known to

yield fair estimates of equilibrium volume for this system. The enthalpy H = Etot+PV ,

where Etot is total energy, was used as a criterion to establish the most convenient

structure as a function of the pressure. Magnetization around Co and Fe atoms was

measured within a Wigner-Seitz radii of 1.3 Å and 1.16 Å, respectively.

Due to lack of unambiguous information about chemical order of studied FeCo samples,

we decided to investigate how different possible structures would react on applied pres-

sure from ab initio viewpoint. Calculations were carried out for the CsCl-type crystal

structure of FeCo alloy (Fig. 2.8(a)), which is the most preferable one from thermody-

namical viewpoint at ambient conditions. Its hcp counterpart shown in Fig. 2.8(c) was

constructed, following the same transition path, as proposed for elemental iron [22, 42].

In this scenario, the bcc-hcp transformation is of martensitic type, where two neigh-

boring (110) planes are shifted and sheared, hence forming a proper hcp stacking 8. In

order to study the effect of chemical environment, we have also considered a Zintl-type

8In principle, transformations involving diffusion of some atoms can not be omitted. However, it
is likely to be separated from initial state by rather high energy barriers. Present issue requires an
additional investigation.
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a)

c)

b)

d)

e) f)

Figure 2.8: (colors on line) Considered crystal structures of equiatomic FeCo alloy.
Panels “a” and “b”: bcc CsCl and Zintl phases. Their hcp counterparts are depicted in
panels “c” and “d”, respectively. Vinous and cyan (dark and light) spheres represent
two atomic sorts (Fe and Co). Shaded areas indicate the (110) planes in bcc structures,
which become (0001) and (0002) ones in the hcp states. Mentioned planes are repre-
sented by a hexagon and a triangle in the hcp phase; Panels ”e“ and ”f“: suggested

spin configurations in high-pressure hcp phases (see text).

structure, characterized by each atom being coordinated with 4 atoms of the same ele-

ment and 4 of the other type This way the amount of homoatomic bonds is maximized.

Corresponding bcc and hcp crystal structures are shown in Fig. 2.9 (panels ”b“ and

”d“).

Then, for a given crystalline phase, several magnetic configurations were studied, for

instance: high(low)-spin [H(L)S] FM, AFM and non-magnetic (NM) states. Note, that

the list of considered states is not exhaustive; however, it order to find the magnetic

ground state one has to extract and thoroughly analyze exchange integrals (see e.g.

Ref. [110]), which is beyond the scope of the present study. Starting from a particular

spin structure, the Bravais vectors of the lattice were optimized to provide a certain

value of isotropic stress. We report that the assumed magnetic state strongly influences
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corresponding crystal structures. In particular, pronounced deviations of c/a ratio in

hcp phase are reported.

The comparison between calculated enthalpies for different phases, shown in Fig. 2.9

(top panel), confirms that the ferromagnetic CsCl-type bcc structure is energetically the

most preferable at ambient pressure. Interestingly, that neglecting spin polarization,
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Figure 2.9: Calculated relative enthalpies per atom and saturated magnetic moments
in various phases of equiatomic FeCo alloy. Left panels: CsCl structures, right: Zintl.

Enthalpy of CsCl bcc phase at each pressure is taken as reference.

hcp structure becomes a preferable one at equilibrium. Hence, it is magnetism that

plays a key role in the stabilization of the bcc phase, as was already pointed out in

several prior studies [1, 34, 100]. However, as the applied pressure is raised, the system’s

tendency for compact atomic arrangement starts to dominate. This leads to the hcp

phases having lower enthalpies at ≈33 GPa, in agreement with experimental outcomes.

At this point, several magnetic configurations are almost degenerate in energy, due to

smallness of corresponding magnetic moments. Among the studied spin configurations

in the hcp structure, the AFM one, shown in Fig. 2.8(e), has a lower enthalpy than any
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other configurations, starting already from 2.5 GPa of applied pressure. Notably, in this

state, Co ions, surrounded by iron moments pointing ”up” and ”down”, turn out non-

magnetic. The present result agrees with the outcomes of prior studies on disordered

FeCo alloys, where strong dependence of Co magnetization on its magnetic environment

was pointed out [85]. Therefore, Co exhibits a Stoner-like behavior of magnetism in this

case.

Similarly, the occurrence of antiferromagnetism in the high-pressure hcp phase of pure

iron was suggested by several research groups [55, 154]. The AFM exchange interactions

(J) between nearest neighbor Fe atoms are suspected to be the origin of stabilization of

this state [93]. However, triangular lattice is frustrated for such sign of J , thus might

give rise a non-collinear spin arrangements [106].

In the case of FeCo, total energy analysis of various magnetic states suggests the same

sign of Fe-Fe interactions. However, opposite to the case of pure iron, the presence of

another atomic sort permits to reduce the symmetry and remove the frustration. Indeed

in CsCl hcp phase, Co atoms become NM, therefore do not participate in magnetic

couplings, and all Fe-Fe interactions can be satisfied within the geometry, shown in

Fig. 2.8(e).

Concerning Zintl phase, the martensitic bcc-hcp transformation is predicted to happen

at lower pressure, as compared with CsCl structure, i.e. around 22 GPa (Fig. 2.9). Ac-

cording to our results, its hcp phase also shows a tendency to antiferromagnetism among

nearest neighboring Fe atoms. However, environment of Co atoms is less symmetrical

in this case and we found that it can acquire a non-zero magnetization. These moments

show the preference for FM ordering and thus we found that a kind of ferrimagnetic

(FiM) state, shown in Fig. 2.8(f) to have lower enthalpy than other FM and AFM

states. Here, net Fe magnetization is compensated, whereas the one originated from Co

is finite. It equals ≈0.77µB per atom at ambient pressure and gradually decreases upon

volume compression. As a consequence of the small (or absent) Co magnetization, Fe is

pushed back to the ”weak ferromagnet” limit and its magnetic moment becomes more

sensitive to the application of pressure as compared with FM bcc states (Fig. 2.9).

In both suggested high-pressure magnetic configurations iron magnetic moments order

antiferromagnetically. Since K-XMCD is not sensitive to such spin arrangements, the

emergence of the present state is a possible explanation for a drop of magnetic signal in
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this experiment. We suggest that this scenario may be confirmed by linear dichroism

measurements.

The “as prepared” sample, which is presumably less ordered, undergoes a transformation

at around 35 GPa, whereas calculations for disordered Zintl structure suggest transition

to take place at much lower pressures. This is a possible indication of existence of a

chemical short-range order, invisible to XRD because of the short coherence length of

ordered domains and the closely similar scattering factors of Fe and Co, which weakens

the superlattice reflections. Moreover, considered Zintl phase is not supposed (and not

meant) to be a good representation of actual disorder. These findings again emphasize

that the chemical order (and the preparation route) play a crucial role in tuning the

high pressure magnetic and structural response.

2.6 Conclusions

The studies of Ni and Co with the K-edge XMCD technique showed that spin and

orbital moments in 3d metals respond differently to applied pressure. This is clearly

seen in measured spectra and quantitatively well described with the help of the DFT

simulations. Present result does not violate intrinsic electron properties, such as Landé

factor, but is a consequence of perturbative character of the SOC in these systems.

An example of FeCo alloy showed that experimental tools are not always able to provide

all necessary information about studied system. But when computational methods are

known to give reliable results for a class of compounds, they can be used as an addi-

tional source of information about certain system. In the present case the DFT-based

calculations helped to understand structural preference of specifically prepared samples

of FeCo alloy.

In general, such a co-operative experimental and theoretical study of transition metals

under pressure is very beneficial. Being able to be combined with DACs, the X-ray

diffraction yields an unequivocal information about structural changes, while the K-

edge XMCD detects the presence of magnetization at the atoms of a particular element.

The DFT can help to establish the connection between these structural and magnetic

properties. Of course, its ability to play role of a tool of prediction is not unlimited.
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Approximations which we make for exchange and correlation effects within this method

can sometimes result in a poor quality of electronic structure modeling.

However, above-mentioned experimental techniques provide with enough information,

which can be used as a reference points for theory and, first, should be tried to be

reproduced using computational tools. Once some of these reference points are passed,

one can try to proceed with predictions of particular properties.

In general, use of all these techniques together is the best way for understanding the

influence of volume compression on the properties of 3d systems.



Chapter 3

High-pressure phase of FePd3

ordered alloy from first principles

3.1 Introduction

Elemental iron, being the base of steels, is of big importance for modern technology [133].

It has a very rich phase diagram, but the face-centered cubic form is exceptionally

interesting. In pure γ-Fe first-principles calculations predict the stabilization of a spin

spiral state [147]. For some fcc-based alloys, like Fe-Ni and Fe-Pt ones, it was shown that

the sign of effective magnetic couplings (FM or AFM) is volume-dependent [94, 128, 140].

It turned out that interactions are more ferromagnetic at higher volumes and opposite at

lower ones. ones. AFM couplings on frustrated and chemically disordered lattices give

rise to the stabilization of non-collinear GSs at certain volume range, as was predicted

by van Schilfgaarde and co-workers [165]. According to theoretical calculations, this

transition can be achieved by application of external pressure [2, 141].

Several experiments at high pressures were carried out on disordered Invar Fe-Ni al-

loys [32, 35, 116, 117]. These measurements confirmed the stabilization of a spin-glass

state under pressure in Fe-Ni and Fe-Pt alloys [116, 117] and compression-induced change

of the magnetic state (magnetovolume instability). These observations are in agreement

with predictions of a sharp deviation of exchange interactions with pressure reported for

these systems [92, 128, 140].

51
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Thus the magnetism of iron on fcc lattice gives rise to all these peculiar properties and

is a very important subject of the research.

FePd3 is one of the systems where this situation is realized. This alloy has recently at-

tracted a strong interest due to its Invar behavior. One experimental group has recently

observed that under an applied pressure of 7 GPa the system shows an anomalously

small thermal expansion [172]. Same effect was reported for Fe50Ni50 disordered al-

loy [35]. Moreover, as it will be shown below, non-collinear spin states are stabilized in

FePd3 at low volumes, similarly to the Fe50Ni50 case.

Winterrose et al. [172] carried out a joint experimental and theoretical study of FePd3

under pressure. According to results of the XRD measurements, the system sustains

a significant volume collapse under pressure of 12 GPa. However, its L12 structure is

preserved. Moreover, under the same applied pressure they observed a disappearance of

quantum beats in a Nuclear Forward Scattering (NFS) experiment, which implies the

loss of long-range magnetic order in the system.

By means of DFT-based calculations the authors modeled elastic properties of few pos-

sible magnetic configurations of FePd3 and compared it with measured data. They came

to the conclusion that the system undergoes a HS-LS transition under pressure. This

supposition is supported by the fact that the obtained magnetic moments in the LS state

are very tiny (of the order of 10−2 µB) and therefore it can explain the disappearance

of signal in the NFS experiment. On the other hand, the LS state was never found to

possess lower total energy than the FM one in the studied pressure range. Nevertheless,

the authors emphasized that Tc can be seriously affected by volume compression, and,

therefore, there is a possibility of paramagnetic phase formation.

FePd3 is composed of rather localized (Fe) and itinerant (Pd) magnetic moments. One

of the first attempts to account for coexisting magnetism of different types was carried

out by Mohn and Schwarz [121]. They proposed a model where local spins produced

an effective Weiss field acting on itinerant magnetic sublattice. The parametrization of

the model was based on the results of ab initio calculations. The developed model was

applied for Fe-poor FexPd1−x (x < 0.1) alloys and estimated Curie temperatures were

found to be in good agreement with experiment.
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Influence of induced moments on overall magnetic properties of Fe-based alloys was

intensively studied by Mryasov and co-workers [122, 123]. For instance, it was pointed

out that polarized Pt atoms are responsible for anomalous temperature behavior of

magnetocrystalline anisotropy in FePt; magnetization of intrinsically neutral Rh atoms

modifies phase stability of FeRh alloy.

Polesya and co-workers [137] proposed a model where induced magnetization was defined

via vector sum of adjacent magnetic moments. The approach was applied to series of

Fe-Pd and Co-Pt solutions yielding Tc values in a fair agreement with experimental data.

First-principles study of magnetic properties of FePd3 under pressure was recently per-

formed by another research group [36]. In order to interpret previous experimental

results [172], the authors probed different disordered states and arrived at a conclusion

that none of them is the true GS of the compressed system. However, a strong com-

petition between commensurate (FM/AFM) and incommensurate magnetic phases was

observed. This is an indication that the system may transform to some non-collinear

state under pressure, but its topology is unknown.

3.2 Modeling of incommensurate magnetic structures

Mainly motivated by the results of Winterrose et al. [172], we decided to investigate dif-

ferent non-collinear magnetic orderings in FePd3. Of course, it is impossible to probe all

configurations; therefore, we have concentrated only on the most plausible ones. More-

over, a “random walk”-like search of magnetic moments orientations is a difficult task,

since the differences in energies associated to spin deviations are quite small (∼meV), so

the total energy profile is shallow and in addition has many local minima. For this rea-

son the directions of iron magnetic moments were prescribed and kept frozen during the

simulations. Magnitudes and orientation of Pd moments were obtained self-consistently

with no constraints on these parameters. Present strategy is used throughout the text,

unless another one is specified.

Electronic structure was modeled using PY-LMTO code. Correlation effects were treated

within LSDA with the parametrization of Vosko, Wilk and Nusair [168]. The crystalline

structure of the system under consideration, shown in Fig. 3.1, was preserved during all

simulations. The only parameter which was varied is a lattice constant. Its equilibrium
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experimental value (a0) equals 3.849Å [75, 172] and we shall refer to its corresponding

volume V0 throughout this Chapter.

Figure 3.1: Schematic representation of ordered FePd3. The alloy has an fcc-based
L12 (Cu3Au) structure, where Fe atoms are located at the corners of the cube and Pd

atoms are at the centers of the faces.

3.2.1 Spin spirals

We started our analysis from calculations for various spin spiral (SS) states. These

simulations were carried out on the basis of the generalized Bloch theorem [146], where

lattice translations are accompanied by certain rotations of the spin moment. It is worth

emphasizing that that these calculations are still scalar relativistic, so spin degrees of

freedom are decoupled from the lattice ones. This implies conservation of a global spin

rotational invariance and therefore the direction of quantization axis can be chosen arbi-

trarily; we shall align it along the z axis. Hence, SS states are defined by four parameters:

the propagation vector [ ~Q = (qx, qy, qz)] and the angle Θ between magnetization and the

z axis. Once these parameters are chosen, the magnetization of the iron atom in neigh-

boring cells is simply rotated by an angle φi = ~Q · ~R, where ~R denotes a translational

vector. In our calculations the initial phases of Pd moments, located at positions ~ti, were

set to φ0i=~q · ~ti, but were free to choose preferred orientation during the self-consistent

loop.

First, a manifold of the states characterized by Θ = 90o was studied. The energies of

these states as a function of a wave vector are shown in Fig. 3.2. According to the

obtained results, the FM state (corresponds to Γ point) has the lowest energy among



High-pressure phase of FePd3 alloy 55

all considered configurations. In addition there are two local minima at X and M high
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Figure 3.2: Total energies of spin spiral states (Θ = 90o) relative to the energy of the
FM state at a given volume in FePd3. Directions R − X and R −M are not shown,
since wave-vector dependence of Etot was found to be monotonic along these paths.

The energies are given per chemical formula unit (FU).

symmetry points. These points correspond to antiferromagnetic states with ordering

vectors [100] and [110], respectively. Another minimum is lying along Γ − R direction

and corresponds to wave vector q=( π
2a ,

π
2a ,

π
2a).

Present magnetic structures have been already studied by another research group [36]

using FP-LAPW method. Our results obtained with LMTO are in fair agreement with

those calculations, which are supposed to be more accurate ones.

As the cell is compressed, the stability of the FM state is reduced and at the volume

about 0.88V0 we observe the magnetic transition at the point M corresponding to the

AFM[110] phase, as was previously reported by Winterrose and co-workers [172] (see

Fig. 3.2). Augmentation of pressure leads to further destabilization of the ferromagnetic

configuration.

It should be noted that iron has a quite rigid magnetic moment in the entire consid-

ered volume range: For majority of configurations, as volume is decreased by 20%, its

magnetization MFe lowers by not more than 11%.

It is also worth noting that, for a given volume the magnitude of the iron magnetic

moment in different SS states are very similar. The highest difference was observed
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between the FM and AFM[110] states and was estimated to be ≈0.1 µB per atom.

Whereas the value of MPd strongly depends on orientation of adjacent Fe spins as was

already pointed out by another group [137]. For example, at V0 volume in FM state all

Pd ions possess the magnetic moment of ≈0.35 µB per atom. In the layered AFM[100]

state Pd atoms which belong to the same layer as Fe atoms have a magnetization of 0.14

µB per atom, pointing parallel to the iron moment. The remaining palladium atoms are

non-magnetic. In the AFM[110] all Pd moments collapse to zero, because each of them

is surrounded by an equal number of Fe moments pointing parallel and antiparallel to

the field.

Next, various helical structures were simulated. Here we have chosen two ~Q-vectors,

corresponding to the lowest states, observed so far, namely AFM[100] and AFM[110].

After fixing these three parameters of the SS, the Θ angle was varied.

Energies of helical SS’s are shown in Fig. 3.3. First, a destabilization of the FM state

90 60 30 0

Θ  (degrees)

-3

-2

-1

0

1

2

3

E
to

t -
 E

to
tF

M
  (

m
R

y
/F

U
)

V
0

0.96V
0

0.92V
0

0.88V
0

0.8V
0

0 30 60 90

Q=2π /a [1/2, 0, 0] Q=2π /a [1/2, 1/2, 0]

Figure 3.3: Energies of helical spin configurations as a function of the angle between
magnetization and the z axis in FePd3. Values are relative to the energy of the FM

state at a given volume.

upon compression is again well-pronounced. However, for both studied directions ( ~Q),

we observed a wide range of volumes where helical states were in favor. As the cell is

compressed to 0.92V0 the FM phase becomes almost degenerate with two more states,

which in the coordinate system ( ~Q,Θ) correspond to the points (X,50o) and (M ,50o).
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In overall, the helical structures along M direction are favored. At 0.8V0 the AFM[110]

phase possesses the lowest energy among all considered states.

3.2.2 Canted spin states

For deeper exploration of magnetic states manifold, we have constructed a 2×2×1 su-

percell of FePd3 which contains four Fe atoms. The angle θ for iron spins was introduced

in a way shown in the inset of Figure 3.4. It is easy to see that θ = 0 corresponds to

the AFM[110] phase and θ = 180o – to AFM[100]. Therefore, by tuning θ one can go

continuously from one state to another. At each volume self-consistent calculations were

carried out for the angle θ constrained to a given value. According to the results, shown
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Figure 3.4: Results of the total energy DFT calculations of canted states in ordered
FePd3. The inset shows the magnetic structure under consideration. Red arrows indi-

cate iron magnetic moments. Pd magnetization is not shown.

in Fig. 3.4, resulting function Etot(θ) in addition to the points θ = {0, 180o} has one

more minimum at certain angle (θ0). Such angular dependence can not be reproduced

within classical Heisenberg model, which should give a “cos (θ)” curvature1. Present

issue will be later addressed in more detail.

Hence, at this stage we can confirm that FePd3 indeed has a tendency to spin non-

collinearity. Application of pressure causes destabilization of the FM state, several

1The present shape of the total energy profile was found even without inclusion of spin-orbit coupling.
Therefore, relativistic effects, such as magnetic anisotropy, are not responsible for such behavior.
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configuration with lower total energies were found, but true low-volume GS is still un-

known.

3.3 Heisenberg exchange parameters

In order to have a deeper insight into magnetic properties of the system, we have ex-

tracted Heisenberg exchange integrals from several spin configurations. Then, calculated

Jij ’s were used to model low-energy magnetic excitation spectra, following the approach

discussed in Chapter 1. Indeed, such analysis is expected to be valid for Fe spin sub-

system, since it is characterized by relatively large and rigid magnetization. However,

application of the magnetic force theorem to systems with induced local moments is

doubtful (see e.g. [148]) Therefore, our first idea was to possibly suppress Pd degrees of

freedom.

For this purpose we have considered a disordered local moment (DLM) [72] configu-

ration, which is supposed to model high-temperature paramagnetic (PM) phase. In

present context it means that we have constructed a pseudo-ternary alloy (Fe↑,Fe↓)Pd3,

where spins pointing parallel and antiparallel (Fe↑ and Fe↓, respectively) to the field, are

randomly distributed. The effect of disorder is taken into account within the Coherent

Potential Approximation (CPA), as implemented in TB-LMTO-CPA [163]. The DLM

approach is used to describe properties of the system consisting of randomly distributed

magnetic impurities embedded in a non-magnetic medium. Its major advantage is that

induced magnetization on intrinsically non-magnetic ions, collapses to zero in this phase.

According to the obtained results, magnetization of Fe atoms in the DLM state is almost

unchanged with respect to FM one. This is also true for a compressed unit cell and

therefore there is no tendency to suppression of the magnetic moment as suggested by

the HS-LS scenario [172]. Present conclusions have already been reported [36].

As expected, in the DLM state Pd magnetic moments have collapsed to zero due to

random orientations of Fe spins. We made one step forward and extracted effective ex-

change integrals as a function of inter-atomic distance for a few fractions of equilibrium

volume. Results are shown in Fig. 3.5. The results suggest that the first and second

nearest-neighbor (NN) interactions are dominant. While the first NN interactions (6
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Figure 3.5: (a)The Fe-Fe exchange interactions in FePd3 as functions of the relative
inter-atomic distance d/a, where a is the lattice parameter. (b) corresponding frozen
magnon-dispersion relations. 83 neighbor shells were used for the Fourier transform
of J . The results obtained from the DLM reference state calculated for different cell

compressions.

neighbors) are FM, the second NN (12 neighbors) couplings are AFM. Third NN ex-

change parameters, which are FM, are also important. Such oscillatory behavior is due

to the RKKY [142] exchange mechanism and is similar to that reported for pure bcc

Fe [130].

Remarkably, we observe a strong increase of second NN AFM interactions with pres-

sure while all other couplings depend on volume much more weakly. Moreover, the

corresponding neighborhood forms the fcc lattice, which is frustrated for this sign of in-

teraction. Here the frustration, being a natural source of noncollinearity in spin systems,

is found to effectively increase its contribution at lower volumes.

Magnon dispersions, calculated using Eq. (1.29), are shown in the panel “b” of Fig. 3.5.

It is seen that instabilities at X and M points become more pronounced as the pressure

is raised. Interestingly, the overall shape of this function is very similar to the energies of

transverse SS’s (Fig. 3.2). A one-to-one correspondence between two plots should not be

expected, since they describe propagation of different spin waves: the ones characterized

by Θ →0 and Θ=900, respectively. However, the observed agreement implies that

extracted Jij parameters are meaningful.
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Next, the same analysis of J ’s was done for the AFM[110] state. Two iron sublattices

which appear in this state are denoted as FeA and FeB. Present structure is defined

on a tetragonal
√
2 ×

√
2 × 1 supercell. Extracted exchange integrals for compressed

cell (0.8V0) are shown in Fig. 3.6. Calculated magnon energies (Fig. 3.7) indicate a few
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Figure 3.6: Iron-iron exchange parameters obtained from DLM and AFM[110] states
for 0.8V0. Two magnetic sublattices are denoted as FeA and FeB .

instabilities and the primary one corresponds to the Z = 2π
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Figure 3.7: Volume dependence of frozen magnon energies for FePd3 in the AFM[110]
state.

the fact that under applied pressure this state has lower energy than the FM one, its

magnetic instability further develops and corresponding minimum is enhanced.

Hence, in a low-volume region all considered phases have demonstrated local magnetic

instabilities, indicating that any small perturbation would destroy the state. In other
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words all these magnetic configurations are not even local minima on a phase diagram

of the system under consideration.

3.4 Extended Heisenberg model

An analysis of exchange integrals obtained from AFM[110] reference state (Fig. 3.6),

suggests that the couplings of the “AA”-type are very different from “AB” ones. This

effect is mostly pronounced for second NNs, whose corresponding Fe-Fe bonds pass

directly through palladium atoms. Therefore it is reasonable to assume that interactions

are mediated due to the presence of these paramagnetic ions.

Indeed, palladium is a rather peculiar element: its bulk phase is characterized by a high

value of DOS(Ef ), so the Stoner criterion is nearly satisfied. Therefore Pd can be easily

polarized by putting in a contact with magnetic ions.

The underlying physics of exchange renormalization can be understood by analyzing the

expression Eq. (1.26). Since the magnitude of Fe magnetic moment is almost indepen-

dent of a chosen magnetic order, |∆Fe| is unchanged. Therefore what gives rise to the

observed difference in exchange couplings is the intersite Green’s function. For instance,

in the FM state an electron, going from one iron site to another, propagates through a

strongly polarized medium, while in the AFM state this polarization is missing. Since

Pd magnetization is large (∼0.3 µB per atom), being a first-order term in ∆Fe, its

disappearance gives a significant impact on Gij and eventually on exchange integrals.

Similar behavior was already reported for FeRh compound [123]. Of course, this situa-

tion does not take place in every system and can be considered as a specific characteristic

of 4d elements. In order to emphasize this fact, we performed additional calculations

for a hypothetical system, where palladium was substituted with copper atoms within

same geometry of the unit cell. Opposite to the FePd3, Cu atoms are non-magnetic

independently of the magnetic order. Calculated exchange integrals are represented in

Fig. 3.8. In this case we found that J2 parameters extracted from both configurations

almost coincide with each other. Thus we do not observe any pronounced deviations

from the Heisenberg magnet behavior. Change in J1 can be expected, since it is mostly

originated from the direct overlap of the orbitals.
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Figure 3.8: The Fe-Fe exchange interactions in hypothetical FeCu3 alloy as functions
of inter-atomic distance d/a.

Hence, in the case of FePd3 a classical Heisenberg model with pairwise interactions and

bilinear exchange only, cannot properly map the dependence of the total energy on the

magnetic states and must be extended to include higher-order exchange terms, i.e.:

Ĥ = Ĥexch −
∑

i 6=j

J ′
ij(ei · ej)2, (3.1)

where Ĥexch is given by Eq. (1.23); J ′ is a biquadratic exchange parameter.

Parameterization of the model was done using the outcomes of the DFT-based calcu-

lations. Interactions with first three coordination spheres (J1, J2, J3) were considered,

since the remainder are much smaller. As was already pointed out, the Pd-originated

renormalization of J-parameters is the most pronounced for next NNs (J2) and therefore

we introduce biquadratic term only for this coupling. 2 The values which were extracted

from the Fig. 3.6 and used for the model are shown in Table 3.1. It is seen that J ′
2 is

Table 3.1: Set of parameters used for extended Heisenberg model (in mRy). The
values are extracted from the results represented in Fig. 3.6.

J1 J2 J ′
2 J3

0.236 -0.902 -0.282 0.29

of the same order as bilinear exchange. Such situation is atypical, but not unique: for

2J ′
2 manifests itself in the AFM state. It gives rise to the difference in the values of the effective

parameters between parallel and antiparallel pairs of Fe spins.
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example, a sizable value of the biquadratic term is necessary to explain properties of

another class of Fe-based materials [153].

In order to check the applicability of the proposed model we came back to the results

shown in Fig. 3.4, where the first manifestation of non-Heisenberg behavior was observed.

We can express the magnetic energy per site as a function of θ, using Eq. (3.1). It is

easy to show that it should have the following form:

E(θ) = (2J1 − 8J3)
[
cos(θ)− 1

]
−8J ′

2

[
cos2(θ)− 1

]
. (3.2)

Here, biquadratic term plays a very important role and allows for existence of one

additional minimum of this function at the position:

θ0 = arccos

[
J1 − 4J3

8J ′
2

]
(3.3)

If we take a set of exchange parameters straight from the Table 3.1, then the overall

profile of Etot(θ) dependence will be reproduced, as seen in Fig. 3.9. With a slight

0 50 100 150
θ  (degrees)

-1

0

1

2

3

E
to

t -
 E

to
tA

F
M

[1
1
0
] 

 (m
R

y
/F

U
)

DFT simulation for 0.8V
0

Parametrized model (Table 3.1)
Parametrized model (fit)

Figure 3.9: Comparison between E(θ) dependence (Fig. 3.4) obtained with self-
consistent calculation and the one provided by Extended Heisenberg model. The pa-
rameterization of the latter is listed in Table 3.1. Parameters which provide an excellent

fit are the following: {J1, J2, J ′

2
, J3} → {0.5, -0.902, -0.23, 0.26} (in mRy).

tuning of J-parameters one can achieve a perfect agreement with the results of the self-

consistent calculations. This, however, is not our aim; The primary point here is that

additional minimum θ0 appears in a reasonable position. Present fact implies plausibility

of our model.
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3.5 Triple-Q phase

Once the model is parametrized (see Table 3.1), one can try to minimize magnetic energy

given by Eq. (3.1). For this purpose we considered a 2×2×2 cell, which contains 8 spins.

Each of them is characterized by two degrees of freedom (since its magnitude is fixed),

so we have 16 parameters to tune. Due to spin rotational invariance we can fix two more

of them. Such function can be minimized numerically on a modern computer.

This procedure provided us with a new ground state of the system, which is depicted

in Fig. 3.10. The magnetic structure of this state corresponds to two interpenetrating

Figure 3.10: Proposed high-pressure magnetic order in FePd3. Arrows denote iron
magnetic moments and that of the same color form the so-called triple-Q phases. Note,
that the state is invariant under simultaneous rotations of all spins through the same

angles.

fcc lattices, whose spins form so-called triple-Q (3Q) states [43]. The angle between

each pair of spins is 109o28′, hence the vectors point toward/opposite the vertices of an

ideal tetrahedron. Analysis of the spin arrangement revealed that J3 coupling (FM),

which couples two fcc sublattices, is fully satisfied within such ordering. Remainder

interactions have to compete with each other due to the geometrical frustration. Note,

that negative sign of J ′
2 means that the interaction favors perpendicular spin orientation.

This term is a driving force to the stabilization of a certain angle between spins.

In order to probe local stability of obtained spin structure, we have computed a dis-

persion of low-energy magnetic excitations (Fig. 3.11). According to the results, all
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Figure 3.11: Frozen magnon dispersion of the 3Q state.

excitations have a positive energy, meaning that the state is stable. This is a remarkable

fact, since all states which were studied before exhibited instabilities in their spectra.

Second, there are several almost degenerate Goldstone modes obeying linear dispersion

law at small values of the wave vector q. Present fact will be re-addressed in the next

section.

However, up to now we have been working with the model Hamiltonian, which is sup-

posed to reflect properties of a real compound under consideration. Finally, realistic

electronic structure calculations for the 3Q state in compressed FePd3 were performed.

Magnitude of Fe magnetic moments was found to be ≈3µB, whereas Pd magnetization

spontaneously disappeared during the self-consisteny process, which could be expected

from the topology of the state. Upon compression, the suggested non-collinear state

becomes lower in energy than the FM at small compressions (see Fig. 3.12). At higher

pressure the 3Q state has the lowest total energy among all considered configurations.

It was shown before that stability of triple-Q state with respect to single-Q ones in

fcc-based alloys can be related to nonlinear spin interactions [87] and/or presence of

paramagnetic impurities [107]. In fact, both of these ingredients are present in FePd3,

so our findings are consistent with the established physical picture.

Observation of the 3Q state on L12 lattice was already reported, for instance, for

IrMn3 [145, 159]. Nonetheless, we found a more exotic magnetic order consisting of two

3Q phases, which are coupled ferromagnetically. To the best of our knowledge present
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Figure 3.12: Relative total energy of the 3Q state in FePd3 at various compressions.
Results for FM solution are taken as reference.

spin structure was not observed in alloys with such a low concentration of intrinsically

magnetic ions.

3.6 Relation to experiments

Experimentally, the 3Q states are not easy to distinguish from Néel antiferromag-

nets [98]. The measurement which helped to disentangle these two phases was proposed

by Kawarazaki et al. [90] The method, however, requires certain elements which are the

sources of the γ-rays. Thus for the case of FePd3 a more useful way would be to use the

Mössbauer effect in Fe, but this technique can not yield an unequivocal answer if the

state is more complex than single-Q type [91].

First of all, we suspect that there should be an abrupt change in the shape of the spin-

wave dispersion from parabolic to linear in FePd3 under applied pressure. This would

be the first indication of existence of the triple-Q state, which is necessary, but not

sufficient.

Another external parameter which has to be thoroughly controlled during an experiment

is the temperature. In Ref. [172] a complete vanishing of average Fe magnetization was

observed in the NFS experiment under applied pressure. Present effect can be explained

by a drop of Tc upon compression. A reliable ab initio evaluation of Tc of FM FePd3

is already a difficult task and seems not to be solved in previous studies [23, 137]. Re-

cent results on estimation of the Tc in MFA confirm its decrease upon the application

of pressure [36], but it reaches the room temperature at lower volumes than observed
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experimentally. Due to these contradictions from theoretical side, an experimental con-

firmation would be an optimal solution.

Another possible source of problems for such systems is a chemical disorder. The samples

of FePd3 are prepared by annealing and subsequent fast cooling (quenching). Therefore,

some residual disorder can always remain in a real system. It was reported that the

value of transition pressure in the alloy differs from one sample to another [173]. This

fact may suggest that a small antisite disorder is present and affects a phase diagram of

the compound under consideration. In principle, disorder can cause more complicated

spin orderings or spin glass behavior.

3.7 Conclusions

FePd3 was investigated theoretically by means of the DFT-based calculations. Analysis

of different (in)commensurate magnetic configurations indicated a strong tendency to

spin noncollinearity. Calculated exchange integrals between iron atoms were found to

be strongly renormalized depending on Pd magnetization. As a result, magnetic prop-

erties are poorly described within classical Heisenberg model. We have extended this

model by adding higher-order biquadratic couplings which are meant to mimic effect of

highly paramagnetic impurities on Fe-Fe magnetic interactions. Solution of the proposed

Hamiltonian corresponds to the 3Q magnetic order. Total energy DFT calculations for

compressed FePd3 confirm that this state has the lowest energy among studied. Hence,

3Q is a realistic candidate for a GS of the considered compound.

Essential ingredients which stabilize the 3Q states can be determined: (i) an existence of

strong magnetically frustrated couplings in the system, which is J2 in the present case;

and (ii) admixture of higher-order interactions, favoring perpendicular spin alignment.

The latter is supposed to appear in other alloys where 3d spins interact in paramagnetic

medium formed by 4d elements, like Pd or Rh. Its not excluded that 5d metals (e.g.

Au, Pt) can exhibit similar behavior. However, their valence states have much stronger

SOC and therefore the analysis can not be done on the same footing as was done in

present work. Effect of magnetocrystalline anisotropy can play an important role in this

case (see e.g. [122, 157]).



High-pressure phase of FePd3 alloy 68

Present study has shown that when it comes to noncollinear magnetism, finding of a

GS is not an easy task for the DFT. Associated energy differences are relatively small

(∼meV). Therefore, information about effective exchange couplings can be very useful.

Instead of a “brute force“ search of a GS, one can try to arrange spins in such a way that

these couplings will be satisfied. However, limitations of this method (see Chapter 1)

have to be taken into account; namely, there is, in general, no guarantee that the found

stable solution is the global minimum.

The results presented in this Chapter are published in Physical Review B [103].



Chapter 4

Evaluation of stress in the DFT

4.1 Introduction

The problem of force and pressure in quantum systems was addressed by several authors

since the very formulation of the quantum mechanics (for review, consult Ref. [112]).

In 1927 Ehrenfest showed that the force acting on a particle is given by expectation

value of the gradient of the potential [41]. Thus, a direct analogy with classical physics

was pointed out. In the same spirit it was found that thermodynamical quantities in

many-particle quantum systems are in the same relations as their classical counterparts.

The so-called virial theorem, which states that the total pressure in the system is defined

by the kinetic and potential energies was proven to hold on microscopic scale [54, 152].

Therefore, the stress in a quantum system is an intrinsic property to its ground state.

The latter is known to be well-represented with a help of the DFT.

For this reason, in 1983 Nielsen & Martin [124, 125] developed a technique to extract

information about the stress from a many-body Hamiltonian, which is generally written

as:

Ĥ =

n∑

i

p2i
2mi

+ Vint + Vouter, (4.1)

where the first term is total kinetic energy of n particles, the second one is internal part

of the potential energy which is supposed to be intrinsic to the system. In our case

69
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it is given by Coulombic interactions between particles. The last contribution to the

potential energy Vouter arises from an external influence.

Upon strain, defined in Eq. (1.21), particle wavefunction is changed as follows [54]:

Ψε(~r) =
1

det | 1 + ε |1/2
Ψ
(
(1 + ε)−1~r

)
, (4.2)

where the factor involving matrix determinant guarantees WFs normalization. It is also

easy to show that the transformation of the momentum is given by (up to first order in

ε):

p′i,α = pi,α −
∑

β

εαβpi,β , (4.3)

where i numerates particles and {α, β} denote projections on real axes {x, y, z}. The

total energy associated with the Hamiltonian (Eq. (4.1)) will take the form:

〈Ψε | Ĥ | Ψε〉 =
∫

Ψ∗(~r)

[ n∑

i

p2i − 2εαβpi,αpi,β + εαβεαγpi,βpi,γ
2mi

]
Ψ(~r)d~r +

∫
Ψ∗(~r)

[
Vint

(
(1 + ε)~r

)
+Vouter

(
(1 + ε)~r

)]
Ψ(~r)d~r. (4.4)

According to the variational principle, the change in total energy with respect to the

unperturbed state should be of the second order in strain, therefore the first variation

must vanish:

∂〈Ψε | H | Ψε〉
∂εαβ

= 0 =
n∑

i

〈Ψ | pi,αpi,β
mi

− ri,β
∂

∂ri,α
(Vint + Vouter) | Ψ〉. (4.5)

Present approach is called “stress theorem”. The term which contains Vouter is the

stress exerted by the external environment and is defined analogously to the classical

mechanics. Average stress, which is intrinsic to the quantum system, is given by a sum

of kinetic and potential contributions:

Tαβ = T kin
αβ + T pot

αβ , (4.6)

T kin
αβ = −

∑

i

〈Ψ | pi,αpi,β
mi

| Ψ〉, (4.7)

T pot
αβ =

∑

i

〈Ψ | ri,β
∂

∂ri,α
Vint | Ψ〉. (4.8)
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Hence, the final expression contains only operators, defined for each particle. The au-

thors showed that this quantity can be obtained using converged GS electron density as

comes out from the DFT calculation. They predicted very accurately lattice constants,

bulk moduli and elastic constants of Si, Ge and GaAs [126].

One of the directions for method’s extension is related to the fact that Tαβ does not

represent the field nature of stress. Namely, due to averaging, the information about its

space dependence is lost and therefore one has to reconsider the approach and introduce

the ~r-dependent stress density [125]. Its application was emphasized by Filippetti &

Fiorentini [51, 52], who investigated stress variation at surfaces and interfaces. Nowa-

days, due to the wide use of epitaxial growth of samples, such studies can be of great

interest. However, this quantity is beyond the scope of the present thesis, since it is

dedicated primarily to bulk materials.

The stress tensor carries an important piece of information concerning system’s pref-

erence for structural changes. The described method is realized in several DFT codes.

Following the original paper by Nielsen & Martin [126], Eq. (4.7) and (4.8) are mostly

implemented in PW codes in their reciprocal space form. Primarily, it is done so, since

this representation is a more natural one for periodic systems. Thus realizations based

on a real space treatment of stress are less studied in the literature.

In the present work we shall apply the stress theorem to a wavelets-based DFT package

and show that there are no limitations for its computation in the real space. Then, the

influence of nonlinear core correction [108] on the accuracy of pressure estimates will be

addressed.

4.2 Stress contributions in the PSP formalism

As was already mentioned, the BigDFT is a real-space-based code which uses wavelets in

conjunction with pseudotentials. We shall show explicit formulas for the stress tensor

calculation in this particular realization.

First of all, it should be emphasized that summation in Eq. (4.7) runs over all particles

in the system: both electrons and nuclei. Therefore, each term which contributes to

the total energy also has an impact on the stress. Expressions for the stress tensor are
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well-known and were studied by several authors. In the case of PSP-based approaches

for the DFT, one has the following contributions to the stress:

• Kinetic term.

T kin
αβ = −

∑

i

fi

∫
d~rϕ∗

i (~r)
∂

∂rα

∂

∂rβ
ϕi(~r), (4.9)

where ϕi(~r) is the i-th KS (one-electron) wavefunction, fi is its occupation number

(∈ {0, 1}).

• Hartree term-originated stress. Present component is easier to access in the

Fourier space:

TH
αβ =

1

2
4πe2

∫
d~G

[
2GαGβ

G2
− δαβ

] | ρ( ~G) |2
G2

, (4.10)

where ~G - is a vector of reciprocal space; ρ( ~G) is a Fourier image of total electron

density.

• PSP contribution. As was mentioned in Chapter 1, PSP has two parts. An

isotropic term, called local, produces the following impact on the stress:

T loc
αβ = −

∑

I

∑

~G 6=0

SI( ~G)ρ
∗( ~G)

[
∂V loc

I ( ~G)

∂G2
2GαGβ + V loc

I ( ~G)δαβ

]
, (4.11)

where I numerates nuclei, ZI reads its charge, SI( ~G) = exp(−2πi ~G~RI) is a shift

factor, associated with an ionic position ~RI .

Whereas nonlocal part of the PSP, defined as V (~r, ~r′), gives rise to another stress

component, given by:

T nl
αβ = Enl[Ψ]δαβ +

∫
d~rd~r′Ψ(~r)Ψ(~r′)

[
rβ
∂V (~r, ~r′)

∂rγ
δαγ + r′β

∂V (~r, ~r′)

∂r′γ
δαγ

]
, (4.12)

where Ψ is a many-body wavefunction of the system in its GS.

• XC contribution (LDA/GGA). In the context of present thesis the most com-

plex form of the XC functional, we operate with, is of GGA type. In this case the
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expression for the tensor T is given by the following formula [30]:

T xc
αβ [GGA] = δαβ

∫
d~rρ(~r)

[
ǫxc − Vxc

]
−
∫
d~r
∂(ρǫxc)

∂(∂βρ)
∂αρ, (4.13)

where ∂γ is a γ-projection of the gradient, i.e. ∂
∂rγ

.

• Ion-ion (Ewald) part. Interactions between point-like atomic charges contribute

to the stress as follows:

TEwald
αβ = −

∑

I 6=J

ZIZJe
2

2

(~RI − ~RJ)α(~RI − ~RJ)β

| ~RI − ~RJ |3
, (4.14)

where ~RI and ZI denote position and charge of I-th nucleus, respectively.

Hence, each component can be computed independently from others. Such flexibility

is advantageous, since some terms are easier to calculate in direct or reciprocal space.

We shall balance between these two representations in order to achieve the highest

performance without loss of the accuracy. A detailed derivation of the formulas, men-

tioned in this chapter, along with a strategy for their computation are presented in

Appendix B. Relatively trivial parts are briefly discussed and computationally more

challenging contributions are addressed in more detail. Note, that the expressions are

given for unpolarized electron density, but the generalization for spin-polarized case is

straightforward.

Present implementation is included in the standard BigDFT package, starting from its

version 1.6.

4.3 Tests and comparisons

4.3.1 Bulk Si

In order to check our implementation, first we considered bulk Si. Since BigDFT works

with orthorhombic systems, a cell containing 8 Si atoms was constructed, as shown in

Fig. 4.1(a). Bulk Si is a wide-band insulator, so accurate estimates of the main observ-

ables can be obtained with relatively small amount of k−points. To ensure convergence,

we used 8×8×8 k−points for the BZ sampling. We compared our results with the
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Figure 4.1: Panel “a”: unit cell used for the calculation; “b”: total energy of bulk Si as
a function of lattice parameter calculated using different DFT codes. LDA functional,

83 k-point grid.

outcomes of a plane-wave code ABINIT [64, 65]. LDA-type PSP with Goedecker-Tutter-

Hartwigsen (GTH) [62] parameterization was used for both sets of calculations.

First we varied the lattice parameter, preserving cubic crystal structure of the system.

A comparison of the results, obtained with two codes, is shown in Fig. 4.1(b).

The agreement in absolute values of total energy is excellent. Note, that in order to

obtain the same accuracy with a plane wave code, we had to use a higher cut-off as

compared with the analog of BigDFT value.

Next, being sure that both programs yield the same GS, we have investigated the stress

in the system. Cubic symmetry implies that any diagonal element of the stress tensor

equals to the pressure. Moreover, in this case the latter is defined as follows:

P = −dEtot

dV
, (4.15)

where V stands for a volume of the unit cell. Hence, the pressure can be directly

extracted from the DFT calculation as a slope of the total energy, which allows us to

compare it with the outcomes of the implemented “stress theorem”. Results for this

test are shown in Fig. 4.2. First of all, one can see that the stress tensor is in very good

agreement with the one calculated by a plane-wave code. Equilibrium lattice constant

corresponds to the minimum of the total energy (i.e. zeroth pressure) and equals to

10.18 Bohr. Present value is in good agreement with the one provided by full-potential

calculations with the LDA-type functional [73]. In addition we show the volume variation
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Figure 4.2: Calculated intrinsic pressure for different values of lattice parameter in
bulk silicon. Results were obtained with the BigDFT and ABINIT codes.

of the total energy (Eq. 4.15), which precisely follows calculated curves. Current result

clearly shows that the the stress tensor has a correct physical meaning.

4.3.2 SrTiO3 and LaAlO3

Next, we have tested our code on more complex materials. SrTiO3 (STO) and LaAlO3

(LAO) compounds have a perovskite structure, schematically shown in Fig. 4.3. These

x

y

R

M

O

Figure 4.3: Crystal structure of RMO3-type perovskite. R={La, Sr}, M={Ti, Al}.

systems are examples of nonmagnetic band insulators. However, it turned out once

they are in contact, their interface becomes conducting [127]. Moreover, the indications
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for emergence of magnetism [18] and superconductivity [138] at low temperatures were

reported.

We have studied structural properties of the present compounds next to equilibrium. The

stress tensor was calculated for bulk phases of LAO and STO for different volumes of the

unit cell. Results, shown in Fig. 4.4, indicate that the lattice constants mismatch between
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Figure 4.4: Calculated pressure for different values of lattice parameter in STO and
LAO. Solid lines with circles show the results obtained with the BigDFT code. Outcomes
of ABINIT are shown with opened squares. PBE functional was used for this set of

calculations.

two structures is about 0.25 bohr, which is in fair agreement with prior studies [132].

Obviously, the tension should appear in epitaxially grown STO on LAO substrate, due to

this difference in lattice parameters. As a perspective, it will be interesting to investigate

the layer-resolved evolution of stress density. In this case wavelets form an optimal basis

set, since, being defined in direct space, they are efficient for problems with isolated

BCs. Present implementations are currently under development.

Next, we examined the convergence of the pressure and total energy estimates. We

took advantage of the fact that in both PW and wavelets implementations the Etot

is variational with respect to certain parameters, which are PW energy cut-off (Ecut)

and grid spacing (h grid), respectively. Hence, with increase of these quantities, the

total energy strictly decreases (i.e. goes toward more negative values)1. The deviation

in pressure versus Etot convergence, obtained for STO are shown in Fig. 4.5. The

curve which corresponds to BigDFT results passes below the one of ABINIT in the entire

considered range of the total energy accuracy. For a given convergence of the total

energy, the precision of the stress estimations is at least two times more accurate with

our implementation. Present result indicates, first of all, that the stress tensor can

1Note that change in the BZ sampling does not meet this criterion, so the accuracy of the results has
to be checked more carefully.
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Figure 4.5: Convergence of pressure versus that of the total energy in bulk STO.
Lattice parameter was fixed to the value of 7.3 bohr. The BZ was sampled with 6×6×6

k−points.

be evaluated in the direct space without any restrictions. Moreover, we report that

present realization is characterized by a faster convergence of the results as compared

with reciprocal space one.

In the studied cases we found that structural properties of a system next to equilibrium

are well described by PSP-based DFT calculations as compared with the full-potential

implementations. Thus the error, introduced due to the PSP substitution of a real

ion, is not so important. However, high-pressure quantities are more sensitive to such

approximation. Next section will be devoted to one of the way to overcome this issue.

4.4 NLCC and intrinsic stress

In the NLCC scheme, already mentioned in Chapter 1, the spin and charge densities

(ρc) of core electrons is explicitly introduced in addition to valence ones. In a spirit of

the GTH-type of PSPs, we shall also represent core density in a simple analytical form.

It was chosen to be a gaussian function:

ρc(~r) = ccore
Z − Zion(√
2πrcore

)3 exp
[
− r2

2r2core

]
, (4.16)
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where parameters ccore and rcore are found during a fitting procedure, explained in

Ref. [171]. Core charge distribution of a given element is defined once and for all, just

like any other parameter of the PSP.

When the core density enters the total energy functional, the latter can be re-written as

follows:

EKS =
∑

i

fi〈ψi |
[
−1

2
∇2 + VH [ρ] + Vxc[ρ+ ρc] + V psp

]
| ψi〉 −

EH [ρ] + Exc[ρ+ ρc]−
∫
d~rρ(~r)Vxc[ρ+ ρc](~r), (4.17)

where ψi’s are KS wavefunctions of valence electrons with occupation number fi, whose

density is denoted as ρ; Exc and Vxc are the XC energy and potential, respectively ; VH

is the Hartree potential.

Regarding the stress tensor, the expressions for most of its contributions are the same

as were described in the Section 4.2. The only term which has to be modified in the

presence of core density is the XC component, which now takes the form:

T xc
αβ = δαβExc[ρ+ ρc]− δαβ

∫
Vxc[ρ+ ρc](~r)ρ(~r)d~r

+

∫
Vxc[ρ+ ρc](~r)rα∂βρc(~r)d~r

−
∫
d~r

{
n(~r)ε̇[n](~r)

∂αn(~r)

|∇n(~r)|

}
∂βn(~r)

∣∣∣∣∣
n=ρ+ρc

, (4.18)

where ε̇[n] = ∂ε[n]/∂(|∇n|) and ∂α is an α-projection of the gradient. The expression

implies a remarkable fact: off-diagonal components of Tαβ which contain gradient of

ρc has to be evaluated already on the level of LDA functionals. Whereas in conven-

tional DFT such contributions appeared only in the case of GGA-type or more complex

functionals. Hence, it can be expected that errors related with the choice of the XC

approximation are partially excluded, thanks to the added correction.

4.5 NLCC and intrinsic stress: Results

An impact of NLCC on structural properties was investigated on a set of the following

bulk systems: diamond-types Si and C, SiC, BN and LiCl. Again, for simplicity we
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have chosen band insulators, but there are no limitations in application of the formalism

to metallic (and magnetic) systems. We have chosen to work with the GGA(PBE)

functional in present study, and its different realizations were adopted.

All-electron calculations were carried out using augmented plane wave plus local orbitals

(APW + lo) method as implemented in the WIEN2k package. Reduced radii of atomic

spheres were used in order to avoid their overlap up to the highest studied pressures.

However, the radii were fixed for the entire range of volumes, so the total energies could

be compared. Semicore states were treated as valence ones, since high compressions can

lead to an overlap of their wavefunctions, which will affect the Etot estimates. Inside the

spheres, the partial waves were expanded up to lmax = 10. The number of plane waves

was limited by a cut-off parameter RMTKmax = 9.0 for all systems under consideration.

The charge density was expanded in Fourier space up to Gmax = 14
√
Ry. In most of

calculations a very dense k-point grid (15×15×15) was used. Pressure was evaluated

using directly Eq. (4.15). Results of all-electron calculations were taken as reference.

Then, the stress was extracted from two sets of calculations performed with the BigDFT

package. The results, produced with standard the Hartwigsen-Goedecker-Hutter (HGH) [77]

PSPs, were compared with the NLCC-including ones. Note that the parameters of these

two types of the PSP are generated independently. Hence, the even the values, which

are not related with the NLCC part, in general, do not coincide with each other. In most

of calculations the cut-off parameter hgrid was set in such a way to achieve the total

energy convergence about 10−5 Ha. An additional set of computations was conducted

using the PAW [15] computational scheme, as implemented in the VASP package.

The results, shown in Fig. 4.6, clearly indicate that inclusion of NLCC to the bare HGH

PSPs improves description of the stress. Present behavior is reported for all compounds

under consideration. Another tendency is that the absolute error in calculated pressure

grows with lattice contraction for all considered PSP-based computational methods.

However, the deviation never exceeded 5% of the corresponding pressure value. In

general, results of the PAW scheme show better agreement with all-electronc calculations

as compared with HGH pseudopotentials. However, in case of carbon we found that

NLCC is able to overcome this issue and achieve even higher accuracy of intrinsic stress

estimates.
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Figure 4.6: Intrinsic pressure, obtained using HGH, HGH+NLCC and PAW methods
as compared with the outcomes of all-electron calculations. Absolute error with respect

to the LAPW results is plotted along y axis.

4.6 Conclusions

A real-space formulation of the stress tensor in the DFT, so far modestly presented in

the literature, was studied. We have described a strategy for efficient calculation of all

contributions to the stress in a wavelet basis set. Present implementation shows a decent

performance and precision in comparison with the PW-based ones.

According to the obtained results, the presence of PSPs affects structural properties and

results into worse description of high-pressure region of volumes. On the other hand,

system’s properties next to equilibrium are relatively well represented. However, we

report that taking into account core electrons “explicitly”, as done in the NLCC and the

PAW techniques, is able to significantly improve the results and provide almost the same

accuracy as all-electron calculations. It is also worth emphasizing that approximations

related with the choice of XC functional cause more severe inaccuracies in estimation of

pressure than the use of the PSP. The proper choice of the functional for each particular

case and thorough comparison with experiment is necessary.
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As a perspective, we anticipate that study of the stress density can be rather insightful.

For instance, present quantity can shed light on the stability of interfaces and epitaxially

grown structures. In this context, use of real-space approach is obviously advantageous

and presented developments are seen as the first step in this direction.

Results are published in the Journal of Chemical Physics [171].



Conclusions

In the present thesis first-principles calculations were applied to investigate the magnetic

properties of transition metals and their alloys under pressure. This study led to the

following conclusions.

In Chapter 2 it was shown how DFT calculations can be used to interpret the K-edge

XMCD spectra measured in Ni, Co and FeCo alloys. We demonstrated that the pres-

sure evolution of the experimental data should be compared with that of p-projected

orbital moment. Moreover, we found that the spin and orbital components of the mag-

netization behave differently upon compression. It was shown that this observation can

be explained from a simplified quantum-mechanical picture, where SOC is treated as a

perturbation. As a result, L turns out to be inversely proportional to the band width

and therefore decays faster than S as the pressure is raised.

We predicted an existence of antiferromagnetism among Fe spins in the high-pressure

hcp phase of ordered FeCo alloy. Co magnetization disappears and, therefore, exhibits

an itinerant magnet behavior. Both findings can explain the outcomes of XMCD exper-

iments, but further experimental investigation is required.

In Chapter 3 the pressure-driven transition in FePd3 was investigated. Analysis of the

calculated exchange integrals revealed strong frustration due to competing interactions.

We have proposed an extended Heisenberg model, which contains relatively strong bi-

quadratic coupling to explain system’s behavior. The enhancement of the biquadratic

term is supposed to come from highly-paramagnetic Pd atoms, surrounding Fe moments.

According to our results, FePd3 undergoes a transition from the FM to the noncollinear

3Q state when compressed.

82
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Finally, the method for the evaluation of intrinsic stress was realized in the BigDFT

code. It allows us to calculate the shape of the system’s unit cell under arbitrary

external conditions. Moreover, it is shown that explicit treatment of core electrons

can considerably reduce the errors introduced by the PSP. Thus the estimates of the

structural properties can be improved.

Outlines and perspectives

It should be emphasized that the predictive power of the DFT is not ultimate. One

of the main shortcomings is the absence of a strategy for finding the global minimum

of the total energy, corresponding to the true GS of the system. Even if the electronic

structure is calculated accurately and no instabilities are found in the phonon (and/or

magnon) spectra, there is no guarantee that the considered state is not a metastable

one. For this reason, it is always preferable to have sufficient amount of experimental

data on the studied compound.

When magnetic properties are probed experimentally, attention has to be paid to the

timescale of the experiment2 It is also preferable to control both thermodynamic pa-

rameters – pressure and temperature – simultaneously. In this regard, spectroscopic

techniques which use x-ray dichroism or Mössbauer effect are suitable tools for such

studies.

In general, structural and magnetic properties of 3dmetals are well described by means of

ab initio methods. It opens a possibility for physicists to search for materials possessing

particular characteristics. For instance, the DFT-based modeling is a widely used tool

in the field of spintronics [24, 27]. Potentially, one can look for substitutions for the

stainless steel, such a useful compound for industrial purposes.

Continuation of present work will be the study of various pressure-driven phenomena.

One of the long-standing problems is the realization of the metal-insulator transitions

(MITs), as suggested in Fe2O3 [101] and MnO [102]. These systems have a rather com-

plex electronic structure and the treatment of dynamical correlations is important. On

the other hand, it is known that structural changes can significantly affect the MIT

mechanism [131]. As long as the LDA+DMFT method is concerned, the comparison of

2This is an important point when one estimates the local magnetization (see e.g. Ref. [166]).
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the total energies of different crystal structures is not straightforward due to so-called

“double counting problem” [89]. Recently realized techniques, such as GW+DMFT [10],

do not suffer from this issue and are very promising. Such calculations are computation-

ally demanding and therefore development of efficient algorithms is a necessary initiative

in the advancement of electronic structure modeling.



Appendix A

General equations for the spin

wave energies

A.1 Collinear magnets with several sublattices

In the presence of several magnetic sublattices in a crystal the equation of motion should

be written in the more general way:

d~̂Sl
j

dt
= −1

~

[
~Bj × ~̂Sl

j

]
(A.1)

where ~̂Sl
j is the operator of j-th magnetic moment in the l-th sublattice, ~Bj is the

effective field acting on the corresponding spin.

The Heisenberg Hamiltonian defined in multi-subblattice case can be written as:

Ĥ = −
∑

l,l′

∑

i∈l′
j∈l

J ll′

ij
~̂Sl′

i
~̂Sl
j (A.2)

where J ll′
ij is the exchange interaction parameter between i-th magnetic moment belong-

ing to the sublattice l′ and j-th moment from sublattice l.

Thus the produced effective field takes the form:

~Bj = − ∂E

∂~Sl
j

= 2
∑

i∈l′

J ll′

ij
~̂Sl′

i (A.3)
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Substituting Eq. (A.3) into Eq. (A.1) , we obtain the following expression:

~
d
[
Ŝl
j

]
α

dt
= −2

∑

i∈l′

J ll′

ij εαβγ
[
Ŝl′

i

]
β

[
Ŝl
j

]
γ

(A.4)

where {α, β, γ} = { x, y, z} is a set of projections and ε is the Levi-Civita tensor.

If we restrict ourselves to the low-energy excitations, the deviation of Sz from its initial

value (Sx and Sy) can be considered as a small quantity and hence we can approximate

Sl
z ∼ |Sl| ≡ Sl. Then we decouple the above system of equations using transformation

to the S± = Sx ± iSy operators.

At this stage one obtains:

~
d
[
Ŝl
j

]
±

dt
= −2

∑

l′

∑

i∈l′

J ll′

ij (∓i)
{
Sl
j

[
Ŝl′

i

]
±
−Sl′

i

[
Ŝl
j

]
±

}
(A.5)

After that we can use the system periodicity and perform so-called Lattice Fourier

Transform (LFT):

[
Ŝl
~q

]
−
=

1√
N

∑

j∈l

exp
(
−i~q · ~Rl

j

)[
Ŝl
j

]
−

(A.6)

The application of time-dependent Fourier transform (~i
d
dt → ~ω) results into the fol-

lowing system of equation:

~ω
[
Ŝl
~q

]
−
= −2

∑

l′

∑

il′

J ll′

ij

{
exp

[
i~q ·

(
~Rl′

i − ~Rl
j

)]
Sl
j

[
Ŝl′

~q

]
−
−Sl′

i

[
Ŝl
~q

]
−

}
(A.7)

Now we can define the Fourier image of the exchange parameters as:

J ll′(~q) =
∑

i∈l′

exp

[
i~q ·

(
~Rl′

i − ~Rl
j

)]
J ll′

ij (A.8)

Let us split this system of equations in diagonal and off-diagonal parts, using the fol-

lowing definition of the total interaction of the spin from sublattice l with the sublattice
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l′ :

J l
0(l

′) =
∑

i∈l′

J ll′

ij (A.9)

Resulting formula takes the form:

~ω
[
Ŝl
~q

]
−
= −2

∑

l′ 6=l

J ll′(~q)Sl
j

[
Ŝl′

~q

]
−
+2

{
(
∑

l′

Sl′

i J
l
0(l

′))− J ll(~q)Sl
j

}[
Ŝl
~q

]
−

(A.10)

Now we have to take into account the fact that exchange integrals are calculated within

Lichtenstein’s approach [105], where the Heisenberg Hamiltonian is in the following form:

ĤM = −
∑

ij

J̃ij~̂ei~̂ej (A.11)

where ~̂ei is operator of the unit vector along the direction of the magnetization on i-th

site. In the case of several sublattices the magnitude of spin moment can be different,

so it is useful to rescale them before insertion into the Eq.(A.10):

Jij =
J̃ij
SiSj

(A.12)

The final expression is given by:

~ω
[
Ŝl
~q

]
−
= −2

∑

l′ 6=l

J̃ ll′(~q)

[
Ŝl′

~q

]
−

Sl′
+ 2

{
(
∑

l′

J̃ l
0(l

′))− J̃ ll(~q)

}[
Ŝl
~q

]
−

Sl
(A.13)

Then knowing J(q) at each q-point one has to diagonalize the corresponding matrix in

order to obtain spin wave energies ~ω(~q).

Eq.((A.13)) can be applied to ferromagnetic systems with arbitrary number of magnetic

sublattices as well as to the antiferromagnetic systems. The only difference is that in

the latter case case the corresponding matrix is not symmetrical. For instance in the

case of two antiferromagnetic sublattices (A and B) the matrix to be considered is of

the following form:


 −JAA(~q) + JAA(0)− JAB(0) −JAB(~q)

JAB(~q) JBB(~q)− JBB(0) + JBA(0)


 . (A.14)



Appendix A. Spin wave energies 88

It has to be understood, that in this case the matrix is written in the following basis:

{SA
+, S

B
−}. Hence, strictly speaking, one has to perform Bologyubov transformation in

order to couple “+“ components. However, the correct spectrum is already contained

in the expression Eq. (A.14).

A.2 Noncollinear magnetic structures

In case of non-collinear magnetic systems one has to define a local coordinate system

for each spin, such that new z-axis lies along the corresponding spins direction. Let us

define the corresponding unitary transformation matrix which is related to the i-th spin

as Ûi.

Using this matrix a scalar product of two non-collinear spins can be re-expressed as:

~Si · ~Sj = Ûi
~Si · Ûi

~Sj = Ûi
~Si · ÛiÛ

−1
j · Ûj

~Sj = (0; 0;Si) · T̂ij · (0; 0;Sj)t, (A.15)

where T̂ij = ÛiÛ
−1
j is a matrix which connects reference frames i and j. Such form of

scalar products becomes advantageous, when deviations of moments are introduced.

In this case a tilt of each spin in its own reference frame can be treated as a small

parameter :

~ei =
(
0; 0;S

)
→ ~ei

′ =

(
Six;Siy;S −

S2
ix + S2

iy

2S

)
(A.16)

where ~Six and ~Siy are components related to the spin waves. With respect to these

new variables the Heisenberg Hamiltonian (Eq.(1.23)) appears to be in quadratic form.

Thus the produced effective fields are linear quantities equation of motion leads to linear

system of equations:





dSix

dt = −1
~
Biy

dSiy

dt = 1
~
Bix.

(A.17)

Hence for N spins there are 2N degrees of freedom, related to x and y components of

spin waves, and this defines the dimension of the matrices which have to be diagonalized.
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Derivation of expressions for

stress tensor in the DFT

A thorough derivation of majority of formulas mentioned in Chapter 4 will be presented.

We shall remain the same order of different contributions to the stress, as in the main

text.

B.1 Kinetic stress

Taking into account that many-body WF in the DFT is a product of one-electron ones

(like in Eq. (1.2)), it is easy to show that expression for kinetic part of the stress,

generally defined by Eq. (4.7), will reduce to Eq. (4.9). The KS WFs, which we have to

deal with, are three-dimensional objects. Since one dimensional function is represented

via wavelet and scaling function, the corresponding 3D basis set is built up as a tensor

product of those one-dimensional functions. There are 8 possible combinations of φ’s

and ψ’s in this case (see e.g. Ref. [59]) and they form so-called mixed representation.

Clearly, diagonal coefficients of T kin
αα coincide with projections of the total kinetic energy

on Cartesian axes. Hence, these quantities are already computed on each iteration of

the DFT calculation. Matrix elements of the kinetic energy operator between the basis

functions of the mixed representation are calculated analytically, following the method

described in Ref. [13]. Using wavelets algebra one can derive an eigenvalue equation for

these coefficients. Off-diagonal elements of T kin can be found in the same manner.
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In this case one has to deal with the integrals of the following type:

Ki =

∫
dxφ(x)

d

dx
φ(x− i) (B.1)

It is easy to show, using Eq. (1.19), that one eventually gets the following relation:

Ki =
∑

νµ

2hνhµK2i+µ−ν . (B.2)

Hence, Ki terms can be computed analytically once and for all. These coefficients are

defined uniquely by wavelets filters h and g.

B.2 Stress tensor from the Hartree energy

By definition (Eq. (4.8)), this contribution is defined as:

TH
αβ =

∫
d~rρ(~r)rβ

∂

∂rα
VH(~r), (B.3)

where Hartree potential VH is given in its general form:

VH(~r) =

∫
d~r′ρ(~r′)Ĝ(~r − ~r′), (B.4)

where rho(~r) is the total electron density and Ĝ denotes the Green’s function of the

corresponding Laplace operator.

Eq. (B.3) involves the integral of the function, which we shall define as:

F (~r) = ρ(~r)rβ
∂

∂rα
VH(~r), (B.5)

In reciprocal space such integral will correspond to the zeroth component of the Fourier

image of function F (i.e. F̃ ( ~G = 0)).

Let us represent the function F (~r), as a product of two functions:

f(~r) = ρ(~r)rβ (B.6)

g(~r) =
∂

∂rα
VH(~r). (B.7)
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Reciprocal space counterparts of these expressions are given by:

f̃( ~G) =

∫
d~rρ(~r)rβe

−i ~G~r = i
∂

∂Gβ
ρ( ~G) (B.8)

g̃( ~G) = iGαṼH( ~G) = iGαρ̃( ~G)
˜̂
G( ~G). (B.9)

Multiplication of f and g in real space will correspond to a convolution in the Fourier

one. Hence, we can write an expression for zeroth component of our function under

consideration as:

F̃ ( ~G = 0) = −i2
∫
d ~G′G′

αρ(
~G′)Ĝ( ~G′)

∂ρ(− ~G′)

∂G′
β

=

=

∫
d~G

[
∂

∂Gβ

(
Gα | ρ( ~G) |2 Ĝ( ~G)

)
−

∫
d~Gδαβ | ρ( ~G) |2 Ĝ( ~G) +Gα | ρ( ~G) |2 ∂Ĝ( ~G)

∂Gβ
+Gα

∂ρ( ~G)

∂Gβ
Ĝ( ~G)ρ(− ~G)

]
. (B.10)

Surface-type integral is assumed to vanish. Then, we can benefit from the fact that ρ(~r)

is a purely real function and therefore the following relation is obeyed: ρ∗( ~G) = ρ(− ~G).

Finally, one obtains:

TH
αβ = F̃ ( ~G = 0) =

−1

2

∫
d~G

[
Gα

∂Ĝ( ~G)

∂Gβ
+ δαβĜ( ~G)

]
| ρ( ~G) |2 . (B.11)

The expression is rather general and can, in principle, be applied to different boundary

conditions. In a particular case of 3D BCs, the Fourier image of the Hartree potential

is diagonal in ~G-space and is given by:

ṼH( ~G) =
4πe2ρ( ~G)

G2
(B.12)

Inserting this expression into Eq. (B.11) brings us to the following formula:

TH
αβ =

1

2
4πe2

∫
d~G

[
2GαGβ

G2
− δαβ

] | ρ( ~G) |2
G2

, (B.13)

The only quantity which is required for evaluation of stress is the Fourier image of the

electron density (ρ( ~G)), which can be computed efficiently with the help of the FFT.
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B.3 Local part of the PSP

In the GTH (or HGH) pseudopotentials, employed in the BigDFT, the local part of the

PSP consists of two terms:

V psp(~r) =
∑

I

V erf
I (~r) + V g

I (~r), (B.14)

V erf
I (λI) = −Zion

rloc

1

λ
erf

(
λI√
2

)
, (B.15)

V g
I (λI) = e−

λI
2

2 (C1 + C2λI
2 + C3λI

4 + C4λI
6), (B.16)

where I denotes ions, Zion reads ionic charge, rloc is the localization radius, λI = |~r−~RI |
rloc

and ~RI is the ionic position.

Associated contributions to the stress can be computed independently. Moreover, as it

will be shown, the real space treatment is a more appropriate one for gaussian part of

the PSP.

B.3.1 Long-range part

The long range (error function) part of stress can not be evaluated in a real space, because

of the occurence of a surface term which should vanish due to system periodicity. Hence,

the most rigorous way is to calculate this contribution in reciprocal space. By definition,

V erf is the solution of the Poisson equation for a Gaussian-type density, which is given

by:

ρe(λI) = − 1

(2π)3/2
ZI

r3loc
exp

(
−λ

2
I

2

)
. (B.17)

Its Fourier image is known to be:

ρe( ~G) = ZI exp
(
−2π2rlocG

2
)
. (B.18)

Therefore, the Fourier image of the corresponding potential takes the form:

V erf
I ( ~G) = −ρe(

~G)

πG2
. (B.19)
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Being the function of G2, the derivative of V I
e with respect to its argument can be

calculated straightforwardly:

∂V erf
I (G2)

∂G2
=

ZI

πG2
exp

(
−2π2rlocG

2
)[ 1

G2
+ 2π2rloc

]
. (B.20)

Reciprocal space version of Eq. (4.8) is given directly by Eq. (4.11). Hence, the final

expression for the long range contribution is obtained analytically.

B.3.2 Short-range part

Gaussian part of the pseudopotential can be calculated in the direct space. Using a

simple chain rule for derivatives, it is easy to show that:

∂

∂rα
V g
I (λI) =

∂V g
I

∂λI

∂λI

∂ | ~r − ~RI |
∂ | ~r − ~RI |

∂rα
=

=
rα

λIrloc
· ∂V

g
I

∂λI
. (B.21)

Using the explicit form of the potential V g, given by Eq. (B.16), the first term can be

calculated analytically:

∂V g
I

∂λI
= exp

(
−λ

2
I

2

) 4∑

i=1

[
2
i− 1

λ2I
− 1

]
Ci(λI)

2i−1. (B.22)

The final expression is relatively simple for implementation. In the code this is done at

the stage of the calculation of interatomic forces.

However, the zeroth Fourier component of the integrand of Eq. (4.8) has to be subtracted

from the diagonal elements of the stress tensor. This term is given by:

E0 = −δαβ
∑

I

ρ∗( ~G = 0) · V g
I (
~G = 0) ≡ −δαβ ·Qtot ·

∑

I

∫
V g
I (~r)d~r, (B.23)

where Qtot is the total valence charge. An account for this term is essential for correct

stress evaluation and must be respected.
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B.4 Non-local part of the PSP

The total energy contribution coming from the non-local PSP depends on the coordinates

of two particles. Hence, its change induced by the strain (Eq. (1.21)) can be written as

follows:

Enl[Ψε] =

∫
d~rd~r′Ψ∗

ε(~r)V (~r, ~r′)Ψε(~r′) =

=

∫
d~rd~r′ | 1 + ε | Ψ∗(~r)V ((1 + ε)~r, (1 + ε)~r′)Ψ(~r′). (B.24)

The first-order variation of this quantity is related to the stress. It is given by a general

expression, shown in Eq. (4.12). In a separable type of the PSP [95], like GTH, for

instance, V nl(~r, ~r′) has the following form:

V nl(~r, ~r′) =
∑

ij

h
(l)
ij pi(~r)pj(

~r′) (B.25)

where pi is the projector operator on a certain state i, h
(l)
ij is a symmetric matrix for

each value of l. Projectors have a form of Gaussian-like (short range) functions, centered

at the atomic position. Thanks to this property of the non-local PSP, one can simplify

the expression for the stress:

∂Enl[Ψε]

∂εαβ
= Enl[Ψε]δαβ + 2

∑

ij

h
(l)
ij

∫
d~rΨ(~r)rβ

∂pi(~r)

∂rα

∫
d~r′pj(~r′)Ψ(~r′) (B.26)

It can be shown that this formula can be computed without any loss of computers

performance. To shorten the notations, we introduce two quantities:

Si
αβ =

∫
d~rΨ(~r)rβ

∂pi(~r)

∂rα
, (B.27)

Cj =

∫
d~rpj(~r)Ψ(~r). (B.28)

It is worth mentioning that integration in real space should be done with respect to the

atomic position, i.e. ~r → (~r− ~Ri). Since the total energy contribution can be expressed

using these coefficients as:

Enl =
∑

ij

h
(l)
ij CiCj , (B.29)
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we can also re-write the formula for the stress tensor:

Tnl
αβ =

1

V

∑

ij

h
(l)
ij

[
2Si

αβ + Ci

]
Cj . (B.30)

As was already mentioned, in the GTH class of pseudopotentials the projectors are

written in terms of gaussians and polynomials of the coordinates, such as :

exp (−cr2) · xlxylyzlz . (B.31)

Therefore, any scalar product of the projector and a wavefunction in Daubechies basis

can be factorized to a product of three one-dimensional integrals.

Now we can benefit from the fact that the derivatives of the projectors are already

computed in the BigDFT code for the purpose of forces evaluation. So the following

quantities are at hand:
∂p

∂x
= exp (−cr2) ·P(lx, ly, lz), (B.32)

where P is a polynomial of the following structure :

P(lx, ly, lz) =
∑

ijk

λijkx
lx+iyly+jzlz+k (B.33)

and λijk are real coefficients. The quantities required for stress tensor calculation have

a slightly different form. Nevertheless, it is easy to see that the expressions are related,

e.g.:

y
∂p

∂x
= exp (−cr2)

∑

ijk

λijkx
lx+iy(ly+1)+jzlz+k = P(lx, ly + 1, lz). (B.34)

Thus there is no need to compute any additional integrals, since the only difference with

calculation of the derivative of the projector is in the change of one of the coefficients

in a corresponding polynomial. This computational scheme is especially advantageous

when one has to deal with pseudopotentials containing many projectors of different l

number (e.g. heavy elements).
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B.5 XC contribution

Formula for XC contribution to stress (Eq. (4.13)) is straightforward to obtain by in-

serting the definition of the potential provided by Eq. (1.14) into Eq. (4.8). Evaluation

of present expression can be done in a real space. The most challenging part which is

associated with the calculation for density gradients.

One can see that the XC stress consists of two contributions. The first term in this

expression appears already on the level of LDA-type functionals. Those are diagonal

matrix elements, which do not cause changing of the unit cell’s shape (deformation).

Certainly, this is a shortcoming of a given approximation, but is a natural consequence

of using an ’ideal gas’ expression for correlation effects. However, it is seen that introduc-

tion of the gradients permits the emergence of off-diagonal elements of the stress tensor.

Thus, with the GGA the XC-originated stress becomes more detailed and presumably

reflects physics of real systems in a more appropriate way.

B.6 Ion-ion impact

Ion-ion energy contribution to stress is one of the easiest to calculate. This term does

not involve electron density and therefore does not change during the self-consistent

loop. The corresponding expression is simply given by:

TEwald
αβ = −

∑

I 6=J

ZIZJe
2

2

(~RI − ~RJ)α(~RI − ~RJ)β

| ~RI − ~RJ |3
. (B.35)

Present contribution is called Ewald stress. In the BigDFT, present formula is computed

at the stage of initialization of the calculation.
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and B. Johansson. Magnetically induced crystal structure and phase stability in

fe1−ccoc . Phys. Rev. B, 54:3380–3384, Aug 1996.

[2] I. A. Abrikosov, A. E. Kissavos, F. Liot, B. Alling, S. I. Simak, O. Peil, and A. V.

Ruban. Competition between magnetic structures in the fe rich fcc feni alloys.

Phys. Rev. B, 76:014434, Jul 2007.

[3] K. Adachi, D. Bonneberg, J.J.M. Franse, R. Gersdorf, K.A. Hempel, K. Kane-

matsu, S. Misawa, B. Stearns, and H.P.J. Wijn. 3d, 4d, and 5d Elements, Al-

loys and Compounds / 3d-, 4d- und 5d-Elemente, Legierungen und Verbindungen.

Zahlenwerte und Funktionen aus Naturwissenschaften und Technik: Kristall- und

Festkörperphysik. Springer, 1986.

[4] O.K. Andersen. Linear methods in band theory. Phys. Rev. B, 12(8):3060–3083,

1975.

[5] V.I. Anisimov, J. Zaanen, and O. Andersen. Band theory and mott insulators:

Hubbard u instead of stoner i. Phys. Rev. B, 44(3):943–953, 1991.

[6] D. Antonangeli, M. Krisch, G. Fiquet, J. Badro, D. L. Farber, A. Bossak, and

S. Merkel. Aggregate and single-crystalline elasticity of hcp cobalt at high pressure.

Phys. Rev. B, 72:134303, Oct 2005.

[7] Daniele Antonangeli, Laura Robin Benedetti, Daniel L. Farber, Gerd SteinleNeu-

mann, Anne line Auzende, James Badro, Michael Hanfland, and Michael Krisch.

Anomalous pressure evolution of the axial ratio c/a in hcp cobalt: Interplay

between structure, magnetism, and lattice dynamics. Applied Physics Letters,

92(11):111911, 2008.

97



Bibliography 98

[8] V. Antonov, B. Harmon, and A.N. Yaresko. Electronic Structure and Magneto-

Optical Properties of Solids. Kluwer Academic,Dordrecht, 2004.

[9] V. N. Antonov, B. N. Harmon, and A. N. Yaresko. Electronic structure and x-ray

magnetic circular dichroism in fe3o4 and mn-, Co−, or ni-substituted fe3o4. Phys.

Rev. B, 67:024417, Jan 2003.

[10] Thomas Ayral, Silke Biermann, and Philipp Werner. Screening and nonlocal cor-

relations in the extended hubbard model from self-consistent combined gw and

dynamical mean field theory. Phys. Rev. B, 87:125149, Mar 2013.

[11] Vincenzo Barone. Inclusion of hartree-fock exchange in the density functional

approach. benchmark computations for diatomic molecules containing h, b, c, n,

o, and f atoms. Chemical Physics Letters, 226(3-4):392 – 398, 1994.

[12] Axel D. Becke. A new mixing of hartree–fock and local density-functional theories.

The Journal of Chemical Physics, 98(2):1372–1377, 1993.

[13] G. Beylkin. On the representation of operators in bases of compactly supported

wavelets. SIAM Journal on Numerical Analysis, 29(6):1716–1740, 1992.

[14] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz. Wien2k. http:

//www.wien2k.at/index.html, 2008.
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