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Prof. Université Claude Bernard Lyon 1, Rapporteur
Mr., Jean-Philippe Guillet
DR2 Laboratoire d’Annecy-le-Vieux de Physique Théorique, Rapporteur
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Résumé

Il n’est pas rare que les théories au-delà du Modèle Standard de physique des particules (MS)
contiennent de nouveaux bosons vecteurs. Ils apparaissent dès que le groupe de jauge du MS
est étendu. Dénotés Z� et W�, il s’agit de particules massives de spin 1, respectivement neutres
et charges. Ce sont les médiateurs des courants neutres et chargés des fermions du MS. Dans
l’hypothése où leur couplage aux quarks et aux leptons est suffisamment important, et que leur
masse respective n’est pas trop élevée, il est possible de les observer au sein de collisionneurs. Par
exemple, des bosons Z� et W� avec des couplages de l’ordre de ceux du MS devraient être accessibles
au LHC jusqu’à des masses de l’ordre de 5 TeV. Cependant, les données actuelles d’ATLAS et CMS
excluent toute présence de telles résonances pour des masses inférieures à 3 TeV environ.

Dans ce manuscrit, nous étudions l’impact de l’existence hypothétique de bosons Z� et W�

sur les observables habituellement mesurées au LHC. Nous présentons la phénoménologie d’une
classe d’extensions du MS dans laquelle le groupe de jauge est élargi par l’addition d’un facteur de
groupe SU(2). En scannant l’espace des paramètres, restreint par les limites d’exclusions obtenues
à partir d’observables à basse énergie, nous obtenons des prédictions pour les sections efficaces
de production des leptons et quarks de troisième génération au Leading Order (LO), au premier
order en théorie des perturbations. En particulier, nous montrons comment les corrélations entre
les sections efficaces peuvent être utilisées pour déterminer le modèle sous-jacent. Par la suite, le
calcul de la section efficace de production électrofaible d’une paire de quarks top est présenté. Les
corrections Next to Leading Order (NLO), à l’ordre O(αSα2

W ) sont également incluses. Le résultat
de ce calcul a été implémenté dans un générateur d’événements Monte Carlo qui permet de réaliser
de maniére cohérente la fusion du calcul QCD NLO avec l’algorithme de parton shower.

Dans le chapitre 1, nous montrons comment les couplages des bosons Z� et W� peuvent être
paramétrisés par un petit ensemble de paramètres communs. Les limites d’exclusion de ces paramè-
tres, obtenues par une analyse globale récente des observables de basse énergie, ainsi que des
donnes du LEP, sont discutées. Il est confirmé que les sections efficaces totales des bosons de jauge
chargés et neutres se désintégrant en leptons et quarks de troisième génération sont accessibles
au LHC jusqu’à des valeurs de masse de 5 TeV dans l’intervalle de paramètres autorisés. Une
nouvelle méthode, très efficace pour distinguer les différents modèles basés sur le groupe de jauge
SU(2)×SU(2)×U(1) est également proposée. En effet, les sections efficaces totales ne permettent
pas individuellement d’identifier le modèle sous-jacent de la classe G(221), alors que les corrélations
de ces mêmes sections efficaces pourraient bien conduire à une identification unique.

Dans le chapitre 2, nous présentons le calcul des corrections NLO à la production électrofaible
d’une paire de quarks top au sein de collisionneurs hadroniques dans les extensions du MS contenant
un boson Z� supplémentaire. Au LHC, le quark top devrait être produit abondamment et toute
déviation des prédictions du MS pourrait suggérer la présence de physique au-delà du MS. C’est
pourquoi il est fondamental d’avoir des prédictions les plus précises possible pour les observables
relatives au quark top. La contribution à l’arbre, ainsi que les corrections virtuelles et réelles
à la production électrofaible d’une paire de quarks top sont calcules puis implémentées dans le
générateur d’évènements Monte Carlo POWHEG BOX. Les divergences ultraviolettes, apparaissant
dans le calcul des corrections NLO, sont traitées par la procédure de renormalisation, tandis que
les divergences QCD infrarouges sont traitées automatiquement directement par POWHEG BOX
dans le cadre du formalisme de soustraction de dipôle. Les divergences QED infrarouges sont pour
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le moment régularisées en introduisant une masse non nulle pour le photon. La cohérence de notre
calcul est minutieusement vérifiée. En effet, les prédictions au LO sont comparées aux prédictions
de générateurs Monte Carlo à usage général. La cohérence des corrections NLO est vérifiée soit
analytiquement, pour les corrections virtuelles, soit numériquement en utilisant les outils fournis
par POWHEG BOX ou par comparaison avec les prédictions de générateurs Monte Carlo à usage
général. Nous constatons que les corrections QCD NLO peuvent être très importantes, mais que
les K-facteurs restent modestes dans la région de masse invariante centrée autour de la masse de
la résonance. Il est également observé que les corrections réelles aux canaux quark-gluon à haute
énergie contribuent de manière importante à la section efficace totale ce qui est dû à une forte
luminosité quark-gluon.
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Introduction

The Standard Model (SM) of particle physics [1, 2, 3, 4, 5, 6, 7, 8, 9] is very successful in describing
a wealth of experimental data, but is widely believed to be incomplete. Be it by virtue of gauge
group unification, extra dimensions or high scale strong dynamics, many theories beyond the SM
predict the existence of new resonances with properties similar to that of the SM, namely the W
and Z gauge bosons. The new resonances, often denoted as Z�- and W�-bosons, are massive, neutral
and charged spin-1 particles respectively and mediate the neutral and charged current interactions
of the SM fermions. If not too heavy, they could give clear signals at hadron colliders.

New heavy resonances with significant couplings to quarks and leptons are at hadron colliders
most easily seen in the Drell-Yan (DY) process with dilepton and lepton plus missing transverse
energy final states. The signals of the Drell-Yan channels are among the cleanest in the difficult
environment of high-energy hadron colliders. Besides the DY channel, new heavy resonances are
also searched for in processes in which a top quark is produced. The top quark is the only SM
particle with a mass of the order of the electroweak symmetry breaking scale and a very short
lifetime so that it decays before it can form any hadronic bound state. Owing to its extremely
short lifetime and its large mass, careful measurements of top quark properties are likely to be
sensitive to new physics.

While, in principle, it is possible to parametrize the interaction of new heavy resonances in
a model independent manner, the Lagrangian describing such interactions has an abundance of
free parameters. For practical reasons, therefore, it is desirable to restrict this freedom. In the
Sequential Standard Model (SSM) [10], for example, the Z� and W� boson couplings are assumed to
be SM-like and the only free parameter is their mass1. In other phenomenological studies such as
[11, 12, 13, 14], the Z�- and W�-bosons are described by a minimal set of free parameters mimicking
the behaviour of new resonances predicted in some popular models. If desirable, one can also study
the phenomenology of a chosen model [15], or preferably study the collider signatures of a class
of models, grouped by their theoretical origin, with a common parametrization in full generality
[16, 17].

In this manuscript we present the collider phenomenology of a class of models motivated by the
principle of gauge unification and characterized by an additional SU(2) group. The SM reposes on
the ad hoc gauge group SU(3)C×SU(2)L×U(1)Y with three unrelated factors. Their unification in
a larger, simple group is theoretically very attractive. The possible unification groups have a rank
equal or larger than the SM and thus also contain additional subgroups like a U(1) or a second
SU(2). The SU(2) group has three generators and supplementing it to the gauge group of the SM
implies the existence of three additional gauge bosons, out of which one turns out to be neutral,
the Z�, and two charged, W�±.

After the discovery of a particle consistent with the SM Higgs boson [18, 19] at the Large

1Even though the width of Z� and W� bosons is fixed by their mass and couplings it is often taken to be a free
parameter.
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Hadron Collider (LHC), the search for new physics is one of the top priorities. The Z� and W�

bosons are actively searched for but so far the LHC could only extend the bounds on the new
physics scale. In experimental searches, in which the SSM is often taken as a benchmark scenario,
the Z� and W� bosons should be accessible at LHC up to masses of 5 TeV [20], while with the
present CMS (ATLAS) data masses below 2.96 (2.86) [21, 22] and 3.35 (2.55) TeV [23, 24] are
excluded in the electron and muon channels. New neutral and charged resonances are also searched
for in the top-pair and the single-top channels [25, 26, 27, 28] but the exclusion limits are typically
less constraining than for new resonances decaying into leptons. Furthermore new resonances are
searched for in τ lepton pairs [29, 30], dijets [31, 32], dibosons [33, 34, 35] or decaying into qW or
qZ [36].

At the LHC, information about extended gauge symmetries can be obtained from cross section
measurements, e.g. of pairs of leptons or top quarks [37, 38, 17, 16] or their associated production
with W� bosons [39, 40], or measurements of the top quark polarization [41, 42, 43].

In Chapter 1 we study the LHC phenomenology of a class of models with an enlarged gauge
sector in leading order accuracy. We start with a model independent Lagrangian describing charged
and neutral currents beyond the SM. We then show how an extra gauge group implies the existence
of new gauge bosons. Subsequently, we present the object of our study, namely the class of G(221)
models. We derive a practical and intuitive common parametrization of Z� and W� masses and
couplings and discuss their constraints derived from low-energy observables. Finally, we assume
one of these bosons to have been observed and its mass to have been measured with a conservative
error estimate and study how suitable correlations between cross sections at the LHC can be used
to distinguish between the underlying G(221) models. We show that the total cross sections, while
experimentally easily accessible, provide individually only partial information about the model
realized in Nature. In contrast, correlations of these cross sections may well lead to a unique
identification.

In Chapter 2 we shift towards next-to-leading order accuracy. We present a calculation of 1-loop
corrections to the resonant production of a Z�-boson decaying into a pair of top quarks beyond the
SM. Sections 2.2 and 2.3 present a detailed discussion on the analytic calculations followed by a
description of the implementation of the NLO calculation in a Monte Carlo generator in Section
2.4. The calculation of next-to-leading corrections is a very time consuming task and we have tried
to perform as much of it as possible in an automated fashion. Some aspects of the automation are
described in Section 2.5 where we also give an overview of the tools we use and the way we interface
them to minimize the user input. To conclude Chapter 2, in Section 2.6, we discuss the impact of
1-loop corrections to the top-pair production at the LHC.

A summary and an outlook is given in the last chapter and technical details of some of the
calculations have been relegated to the appendices.
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Chapter 1

Z� and W� bosons in theories with
extended gauge symmetry

The SM of particle physics is very successful in describing a wealth of experimental data, but
is widely believed to be incomplete. One of the reasons is that it reposes on the gauge group
SU(3)C×SU(2)L×U(1)Y with three unrelated factors, of which the second one violates parity,
while the third one depends on the unphysical hypercharge. Their unification in a larger, simple
group is theoretically very attractive. Beyond minimal SU(5), already ruled out from proton decay,
the possible unification groups have a rank larger than the SM and thus also contain additional
subgroups like U(1) or a second SU(2), which lead to additional neutral and charged gauge bosons,
namely the Z� and W� bosons.

In this chapter we study the LHC phenomenology of SM extensions with an enlarged gauge
group. We assume that the SM gauge group is supplemented by an additional SU(2) factor predict-
ing the existence of both Z�- and W�-bosons. We begin by a looking at the Lagrangian describing
the interaction of generic neutral and charged spin-1 gauge bosons with the SM fermions, referred
to as the neutral and charged currents beyond the SM in Section 1.1. The appearance of Z�- and
W�-bosons in theories with extended gauge sector is illustrated by a simple example in Section
1.2. In Section 1.3 we present the models from the G(221) class, explore the properties of Z�- and
W�-bosons and show the exclusion limits on their masses and couplings derived from low-energy
observables. Subsequently, we show the predictions for the new physics contribution to the total
cross sections of lepton pair and third-generation quark pair production, their correlations and
explore the reach and the distinguishability of G(221) models at the LHC. In the last section we
draw our conclusions.

1.1 Neutral and charged currents beyond the Standard Model

The most general Lorentz and gauge invariant renormalizable Lagrangian describing the interaction
of a neutral and a charged vector boson, here denoted as Z�- and W�-boson respectively, with the
SM fermions can be written as [44]:

LW�

CC =
gW√

2

�
uiγ

µ
�
(CW�

q,L)ijPL + (CW�

q,R)ijPR

�
dj

+ ν iγ
µ
�
(CW�

�,L)ijPL + (CW�

�,R)ijPR

�
ej

�
W�

µ + h.c. (1.1)
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LZ�

NC =
gW

cθW


�

q

q iγ
µ
�
(CZ�

q,L)ijPL + (CZ�

q,R)ijPR

�
qj

+
�

�

�iγ
µ
�
(CZ�

�,L)ijPL + (CZ�

�,R)ijPR

�
�j


Z�µ + h.c. (1.2)

where q ∈ {ui, dj}, � ∈ {ν i, ej} (i, j = 1, 2, 3) are the SM fermions (including a right-handed
neutrino) in the mass eigenstate basis. Furthermore, PR,L = (1 ± γ5)/2, gW is the SU(2)L gauge
coupling and θW is the Weinberg angle. The Cq,L(R), C�,L(R) are arbitrary complex couplings
that differ for quarks and leptons1 and for trigonometric functions we use shorthand notation
sφ = sin φ, cφ = cos φ, tφ = tanφ. The form of the charged current (CC) and neutral current
(NC) Lagrangians, LZ�

NC and LW�

CC, is inspired by the Lagrangian describing the interactions of the
SM Z- and W-boson. The CC and NC SM Lagrangian can be obtained from eqs. (1.1) and (1.2)
by setting C

Z�

f,L = (T3(f)−Q(f)s2θW
)1, C

Z�

f,R = −Q(f)s2θW
1, C

W�

q,L to the CKM matrix, C
W�

�,L to the

PMNS matrix and C
W�

q(�),R = 0, where T3(f) and Q(f) are the third component of the isospin and
the charge of a given fermion f , respectively.

The Lagrangian in eqs. (1.1) and (1.2) contains many free parameters. For example, in the
case of the W�-boson, there are 9 qq � vertices each of them having two couplings (independent
combinations of vector, γµ, and axial-vector, γµγ5, couplings) resulting in 18 free, complex cou-
plings. Similarly, we have 18 free couplings to the leptons if right-handed neutrinos are included.
Moreover, there are 6 qq and 6 �� neutral current vertices resulting in 24 free couplings2. If one
would allow all of these parameters to be free a systematic and complete model independent col-
lider phenomenology study would be unfeasible. On the other hand a detailed study of a particular
realization of a chosen model may be too restrictive and thus not very interesting. The optimal
approach may be to study a well motivated class of models predicting Z�- and W�-bosons with their
couplings parametrized by a limited set of common free parameters. In this manuscript we present
a collider phenomenology of such a class of models.

The Z�- and W�-bosons appear whenever the gauge group of the SM is extended, as the gauge
bosons of the extra broken symmetries. An additional U(1) gauge group implies the existence of
a Z�-boson, an additional SU(2) group the existence of both Z�- and W�-bosons. Note that, in the
models with an extended gauge group, the discovery of a W�-boson naturally implies the existence
of a Z�-boson, but not vice versa. In our work, we investigate the LHC phenomenology of a class of
realistic theories beyond the SM with the electroweak gauge group extended to include an additional
SU(2) group. Such models are often referred to as models belonging to the G(221) class. All our
predictions are compared to the well known benchmark model often used in experimental analyses,
the Sequential Standard Model (SSM), in which Z�- and W�-bosons have the same couplings to the
SM fermions as the SM Z- and W-bosons and their masses are free parameters. We demonstrate
that such a study is feasible and more importantly vital for the identification of the model realized
in Nature, should a Z�- or W�-boson be observed at the LHC.

The best way to discover neutral and charged resonances that couple to SM quarks and leptons,
such as the Z�- and W�-bosons, is in the spectrum of the invariant mass or transverse mass distribu-
tion. Resonant production of a vector boson and its subsequent decay into a pair of SM fermions

1If (C
W�

�,R)ij �= 0 then the ith generation includes a right-handed neutrino.
2Not counting the couplings to the right-handed neutrino.
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will lead to a peak in the invariant (transverse) mass distribution of the fermion pair at the mass
of the resonance. To be able to compute the invariant mass we have to know the momenta of both
final states, which we do in the case that both final state particles are either charged (charged
leptons), or their momentum can be fully reconstructed from their decay products (top quarks). If
one final state particle is neutral its longitudinal component of the missing momentum cannot be
reconstructed because of the collision fragments directed along the beam axis [45]. One, therefore,
resorts to measuring the transverse mass instead. The invariant mass MI and transverse mass MT

are defined as:

M2
I =(p1 + p2)2 , (1.3)

M2
T =(ET1 + ET2)

2 − (�pT1 + �pT2)
2 , (1.4)

where pi are the final state momenta, if known, or �pTi the transverse momentum and ETi =�
M2

i + p2
Ti

the transverse energy, if the longitudinal component of the final state momenta cannot
be reconstructed. Our work revolves around the searches of new gauge bosons in the invariant
mass distribution of �+�−, tt, tb and in the transverse mass distribution of �±ν production at
the LHC. Because the new physics contributions to the total cross section of the production of
previously mentioned final states is rather low, we concentrate on observables measured right after
the discovery like the total cross sections, the masses and eventually the widths of Z�-, W�-bosons.
Most notably, we show that the total cross section for lepton and third-generation quark pairs, while
experimentally accessible, provide individually only partial information about the model realized in
Nature. In contrast, correlations of these cross sections in the neutral and charged current channels
may well lead to a unique identification.

1.2 Extended electroweak gauge group

To illustrate the appearance of new neutral and charged gauge bosons when the electroweak
gauge group of the SM is extended let us consider a simple quantum field theory with a local
SU(2)×SU(2)×U(1) symmetry spontaneously broken down to a U(1) symmetry. Our aim is to
show that, in general, a theory with a SU(2)1×SU(2)2×U(1)X gauge group contains one additional
neutral gauge boson, Z�, and two additional charged gauge bosons, W�±, as compared to a the-
ory with a SU(2)×U(1) gauge group containing two neutral gauge bosons and two charged gauge
bosons which are in the SM denoted as γ, Z and W±. We will also demonstrate how the particle
content and its transformation properties, as well as the vacuum expectation values (VEVs) of the
scalar sector enter the expressions for masses of the new gauge bosons and their couplings to the
fermions summarized in eqs. (1.1) and (1.2).

For simplicity, let us assume that the particle content comprises of only two fermion fields F1

and F2, F1 transforming as a doublet under SU(2)1 and as a singlet under SU(2)2, F2 transforming
as a doublet under SU(2)2 and as a singlet under SU(2)1. The U(1)X charge of the fermions Fi, an
analogue of the SM hypercharge, is equal to −1/2. After gauging the symmetry, the particle content
will contain spin-1 fields W1, W2 and B corresponding to the factors of the underlying gauge group,
SU(2)1, SU(2)2, and U(1)X , respectively. In order to break the symmetry SU(2)1×SU(2)2×U(1)X

down to U(1), we introduce two complex scalar fields H1, H2 transforming just like the fermions
F1, F2, with the exception of the U(1)X charge being equal to 1/2. The particle content can be
summarized as

F1 ∼ (2,1,−1/2), F2 ∼ (1,2,−1/2), H1 ∼ (2,1, 1/2), H2 ∼ (1,2, 1/2), (1.5)
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where the numbers in the parenthesis denote the charge assignments under the SU(2)1×SU(2)2
×U(1)X group.

The kinetic part of the most general Lagrangian invariant under a SU(2)1×SU(2)2× U(1)X

gauge group, L221, reads

Lkin
221 = · · · − F 1 /DF1 − F 2 /DF2 − (DµH1)†(DµH1) − (DµH2)†(DµH2) + · · · , (1.6)

where we show only the terms relevant for the mass spectrum of the gauge bosons and their couplings
to the fermions, since the full Lagrangian is rather lengthy. According to the transformation
properties of the particle content in eq. (1.5), the covariant derivatives of the fermions F1, F2 and
scalars H1, H2 can be written as

DµFi = ∂µFi +
�
−δij igj

2
(Wj)a

µτa +
igX

2
Bµ

�
Fi, (1.7)

DµHi = ∂µHi +
�
−δij igj

2
(Wj)a

µτa −
igX

2
Bµ

�
Hi, (1.8)

where the matrices τa, corresponding the generators of a SU(2) group, are the usual Pauli matrices,
and g1, g2, gX are the coupling constants associated with the gauge group factors SU(2)1, SU(2)2,
U(1)X respectively.

Now, let us assume that the symmetry is spontaneously broken via non-zero VEVs of the neutral
components of the scalar fields Hi:

�Hi� =
1√
2
vi

�
0
1

�
. (1.9)

After contracting the vector fields (Wi)a
µ with the Pauli matrices τa, substituting the VEVs from

eq. (1.9) and the covariant derivatives from eq. (1.8) into the expression for the Lagrangian in
eq. (1.6), the scalar field kinetic term containing gauge boson mass terms becomes

−
�

i

(DµHi)†(DµHi) = · · ·− 1
4
g2
1v

2
1W

+
µ W−µ − 1

8
v2
1(−g1(W1)3µ + gXBµ)(−g1(W1)3µ + gXBµ)

− 1
4
g2
2v

2
2W

�+
µ W�−µ − 1

8
v2
2(−g2(W2)3µ + gXBµ)(−g2(W2)3µ + gXBµ) + · · · (1.10)

where we display only the terms proportional to v2
i and we have introduced

W±
µ =

1√
2

�
(W1)1µ ∓ i(W1)2µ

�
, W�±

µ =
1√
2

�
(W2)1µ ∓ i(W2)2µ

�
. (1.11)

The mass terms for the linear combinations W±
µ , W�±

µ can be written in a convenient matrix form

�
W±µ W�±µ

�
�

M2
W 0
0 M2

W�

��
W±

µ

W�±
µ

�
(1.12)

with masses MW = g1v1/2, MW� = g2v2/2. Since the mass matrix in eq. (1.12) is diagonal,
the flavour eigenstates3 W±

µ , W�±
µ of our simple example align with the mass eigenstates of the

3It is possible to show, that the linear combinations W±
µ , W�±

µ transform as δW±
µ = ±iωW±

µ , δW�±
µ = ±iωW�±

µ

under U(1) gauge transformation, where ω corresponds to an infinitesimal shift. They thus correspond to flavour
eigenstates of the Lagrangian L221 with charges ±1 of the remaining unbroken U(1) symmetry.
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Lagrangian. The theory described by the Lagrangian L221 will thus contain two pairs of charged
gauge bosons W±, W�±, with independent masses MW, MW� respectively. In general, the mass
matrix is not diagonal, flavour eigenstates mix and the mass matrix needs to be diagonalized to
obtain the mass eigenstates.

Similarly, the mass terms of the remaining fields, (W1)3µ, (W2)3µ and Bµ, can be written as

�
(W1)3µ (W2)3µ Bµ

�



g2
1v

2
1 0 g1gXv2

1

0 g2
2v

2
2 g2gXv2

2

g1gXv2
1 g2gXv2

2 g2
X(v2

1 + v2
2)







(W1)3µ

(W2)3µ

Bµ


 . (1.13)

Assuming, that the symmetry of the group SU(2)2 is broken at much higher scale than that of
the group SU(2)1, v2

1/v2
2 → 0, the mass matrix in eq. (1.13) can be diagonalized by an orthogonal

mixing matrix parametrized by two mixing angles4

tφ1 = g1

�
1

g2
X

+
1
g2
2

, tφ2 =
g2

gX
. (1.14)

The mass matrix from eq. (1.13) can be diagonalized and written as

�
γµ Zµ Z�µ

�



0 0 0

0 g2
Xv2

1

s2φ1

c2φ2

0

0 0 g2
Xv2

2
1

c2φ1







γµ

Zµ

Z�µ


 . (1.15)

The theory described by the Lagrangian L221 will thus on top of two charged gauge boson pairs also
contains three neutral gauge bosons γ, Z, Z�, out of which one is massless and two are massive with
independent masses MZ, MZ� respectively. In the limit v2

1/v2
2 → 0, the mass of the Z� boson will be

much larger than the one of the Z boson, M 2
Z/M2

Z� → 0. The mass eigenstates of the Lagrangian
γµ, Zµ, Z�µ can be expressed in terms of the (W1)3µ, (W2)3µ, Bµ fields as

γµ = −cφ1(W1)3µ − sφ1cφ2(W2)3µ + sφ1sφ2B
µ,

Zµ = −sφ1(W1)3µ − cφ1cφ2(W2)3µ + cφ1sφ2B
µ,

Z�µ = − sφ2(W2)3µ + cφ2B
µ. (1.16)

The inverse mapping from {γµ,Zµ,Z�µ} into {(W1)3µ, (W2)3µ, Bµ} can be obtained simply by trans-
posing the corresponding mixing matrix since the mapping is orthogonal.

Let us now have a look at the couplings of the Z�-boson to the SM fermions. By making
use of the expression for the covariant derivative in eq. (1.7) and by changing the basis from
{(W1)3µ, (W2)3µ, Bµ} to {γ, Z, Z�}, the kinetic term for the fermions Fi becomes

−
�

i

1
2
F i /DFi = · · ·− i

4
g1sφ2Z

�
µF−1 γµF−1 −

i

4
g2cφ2Z

�
µF−2 γµF−2 + · · · , (1.17)

where F−i denotes the negatively charged component of the fermion doublet

Fi =
�

F 0
i

F−i

�
. (1.18)

4Recall the shorthand notation introduced in the previous section sφ = sin φ, cφ = cos φ, tφ = tan φ.
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Note that the U(1) charge of the components of a fermion doublet can be calculated as the sum
of the third components of SU(2)1 and SU(2)2 isospin plus the U(1)X charge. The Z�-boson, will
couple to the charged components of the fermion doublets F1, F2 with different strengths as a result
of the fact that F1, F2 are doublets under different gauge groups. The couplings of Z�-boson to
the neutral components of fermion doublets Fi, as well as the couplings of the W�-boson can be
obtained in a similar fashion.

In conclusion, in a theory with a SU(2)1×SU(2)2×U(1)X gauge group one extra neutral gauge
boson, Z�, and two extra charged gauge bosons, W�±, appear as compared to a theory with a
SU(2)×U(1) gauge group. The masses of the additional gauge bosons will be functions of the
scalar field VEVs, the couplings g1, g2, gX and mixing angles constructed out of the ratios of these
couplings. We will show, in one of the following sections, that the dominant contributions to the
couplings of the Z�-, W�-bosons in the extensions of the SM with extended electroweak sector by an
additional SU(2) group can be expressed in terms of the electroweak coupling, gW , the Weinberg
angle θW and one additional mixing angle in the form of the Lagrangian in eqs. (1.1), (1.2).

1.3 G(221) models

While the recent discovery of non-zero neutrino masses [46, 47], possibly generated by a see-saw
mechanism and the prospect of parity restoration point in the direction of a left-right (LR) sym-
metric group containing a SU(2)R, the large hierarchy in the mass spectrum of the SM fermions
motivates fermion un-unified (UU) or generation non-universal (NU) groups SU(2)2 and SU(2)1,
broken at high and low (SM-like) vacuum expectation values u and v. In general, a large variety
of models with a second SU(2) subgroup exist. Often denoted as G(221) models, they also appear
naturally in larger unification groups like SO(10) and E6 and in many string theory compactifica-
tions.

The G(221) class, thus, comprises of models with an extended gauge group. More specifically,
the electroweak part of the SM gauge group, SU(2)L×U(1)Y , is in G(221) models replaced by the
SU(2)1×SU(2)2×U(1)X gauge group. As discussed in the previous section, the particle content of
G(221) models is consequently richer than that of the SM. The fermionic content is usually un-
changed, however, some of the models may need additional fermion fields assuring the cancellation
of gauge anomalies5 and thus their renormalizability. The gauge sector contains three additional
gauge bosons, the neutral Z�-boson and W�-boson with electric charge either +1 or −1. The particle
content is also extended to contain extra scalars breaking the additional SU(2) symmetry.

1.3.1 Symmetry breaking in G(221) models

In Nature a local U(1)em symmetry is observed. So that the G(221) models describe the ex-
periment, the SU(2)1×SU(2)2×U(1)X group has to be broken down to the U(1)em group. This
symmetry breaking is usually realized in two steps and at two energy scales. In the first step,
SU(2)1×SU(2)2×U(1)X is broken down to the gauge group of the SM, which in the second step is
broken down to U(1)em. The representations and the VEVs of the scalars are arranged such that
the masses of additional vector bosons are large enough neither to have any measurable impact on
low-energy observables nor to have been already observed at collider experiments. On the other
hand, the VEV of the scalar field triggering the first stage symmetry breaking, realized at a large

5One usually assumes that the additional fermion fields needed for anomaly cancellation are very heavy and
decouple.
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energy scale, can be chosen such that the masses of additional Z�- and W�-bosons are still low
enough to be within the reach of the LHC.

G(221) models can be classified according to their symmetry breaking pattern [48]. Identifi-
cation of SU(2)1 with the one of the SM implies in the simplest scenarios the breaking scheme
SU(2)2×U(1)X→U(1)Y at the scale u through a Higgs doublet (D) or triplet (T ). This scheme
applies not only to LR [49], but also to leptophobic (LP), hadrophobic (HP) and to fermiophobic
(FP) models [50]. In contrast, identification of U(1)X with the hypercharge group of the SM as in
the UU [51] and NU [52] models leads to the breaking scheme SU(2)1×SU(2)2→ SU(2)L through a
Higgs bi-doublet at the scale u. This classification can be summarized as:

• right-handed models (pattern 1): LR, LP, HP and FP models
SU(2)1 ≡ SU(2)L, SU(2)L×SU(2)2×U(1)X → SU(2)L×U(1)Y → U(1)em

• left-handed models (pattern 2): UU, NU models
U(1)X ≡ U(1)Y , SU(2)1×SU(2)2×U(1)Y → SU(2)L×U(1)Y → U(1)em

where we employ different model category names6 as compared to the classification in [48]. The
W�-bosons of left-handed models couple only to left-handed fermions, while in the right-handed
models the couplings of the W�-boson to the left-handed SM fermions, induced by a mixing of the
W�-boson and the SM W-boson, is strongly constrained by low energy observables and precision
data.

Table 1.1: The charge assignments of the SM fermions under the G(221) gauge groups [48]. Unless
otherwise specified, the charge assignments apply to all three generations.

Cat. Model SU(2)1 SU(2)2 U(1)X

le
ft
-h

a
n
d
ed

un-unified (UU)

0
@uL

dL

1
A

0
@νL

eL

1
A YSM for all fermions.

non-universal (NU)

0
@uL

dL

1
A

1st,2nd

,

0
@νL

eL

1
A

1st,2nd

0
@uL

dL

1
A

3rd

,

0
@νL

eL

1
A

3rd

YSM for all fermions.

ri
gh

t-
h
a
n
d
ed

left-right (LR)

0
@uL

dL

1
A ,

0
@νL

eL

1
A

0
@uR

dR

1
A ,

0
@νR

eR

1
A

1
6

for quarks,

− 1
2

for leptons.

leptophobic (LP)

0
@uL

dL

1
A ,

0
@νL

eL

1
A

0
@uR

dR

1
A

1
6

for quarks,

YSM for leptons.

hadrophobic (HP)

0
@uL

dL

1
A ,

0
@νL

eL

1
A

0
@νR

eR

1
A YSM for quarks,

− 1
2

for leptons.

fermiophobic (HP)

0
@uL

dL

1
A ,

0
@νL

eL

1
A YSM for all fermions.

6For reference, the original model category names, as in [48], are listed in the parentheses.
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Table 1.1 shows the transformation properties, or charge assignments, of the SM fermions under
the SU(2)1, SU(2)2 and U(1)X groups, where fL(R) denotes left(right)-handed fermions of the SM,
PL(R)f . In the UU model, the universality of quark and lepton couplings postulated in the SM is
removed and quarks and leptons are in doublet representations of different SU(2) groups. The NU
model, on the other hand, questions the universality of couplings across generations of fermions. A
special role is attributed to the 3rd generation of SM fermions which transform as doublets under
one group, while the 1st and 2nd generation transform as doublets under the other SU(2). The
LR model extends the particle content by 3 families of right-handed neutrinos such that the right-
handed fermions can be put under the doublet representation of one of the SU(2) groups similar to
the left-handed SM fermions. In the LP model, only the right-handed quarks transform as doublets
and the right-handed neutrinos are absent. The W� in this model is leptophobic, i.e. its couplings
to the left- and right-handed leptons are suppressed. Similarly, the W� couplings to quarks and
fermions are suppressed in the HP and FP models, respectively. The details of the scalar sector in
G(221) models are shown in Table 1.2.

Table 1.2: These tables display the model-specific scalar field representations and VEVs that
achieve the symmetry breaking of G(221) models [48].

First stage breaking

Rep. Multiplet and VEV

LR-D, LP-D, HP-D, FP-D Φ ∼ (1, 2, 1
2
) Φ =

„
φ+

φ0

«
, �Φ� = 1√

2

„
0

uD

«

LR-T, LP-T, HP-T, FP-T Φ ∼ (1, 3, 1) Φ = 1√
2

„
φ+

√
2φ++

√
2φ0 −φ+

«
, �Φ� = 1√

2

„
0 0

uT 0

«

UU, NU Φ ∼ (2, 2, 0) Φ =

„
φ0 + π0

√
2π+

√
2π− φ0 − π0

«
, �Φ� = 1√

2

„
u 0
0 u

«

Second stage breaking

Rep. Multiplet and VEV

LR-D, LP-D, HP-D, FP-D H ∼ (2, 2, 0) H =

„
h0

1 h+
1

h−2 h0
2

«
, �H� = v√

2

„
cβ 0
0 sβ

«

LR-T, LP-T, HP-T, FP-T H ∼ (2, 2, 0) H =

„
h0

1 h+
1

h−2 h0
2

«
, �H� = v√

2

„
cβ 0
0 sβ

«

UU, NU H ∼ (1, 2, 1
2
) H =

„
h+

h0

«
, �H� = v√

2

„
0
1

«

Parameterizing the model dependence in terms of the tangent of the mixing angle tan φ = gX/g2

(LR, LP, HP, FP) or g2/g1 (UU, NU) at the first breaking stage, the ratio of the squared Higgs
VEVs x = u2/v2, and the alignment angle β of the light Higgs fields in the case of the first
breaking pattern, Hsieh et al. have been able to perform a global analysis of low-energy and
electroweak precision data with an effective Lagrangian approach [48] which resulted essentially in
lower bounds on the masses of the Z�- and W�-bosons. The global constraints have been obtained
on the basis of a number of theoretical assumptions, in particular generation-diagonal, perturbative
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gauge couplings (smaller than
√

4π), minimal (doublet, triplet or bi-doublet) Higgs sectors with
a hierarchy of VEVs (u � v), validity of the Appelquist-Carazzone decoupling theorem [53], and
negligible influence of additional fermions required, e.g., for the cancellation of gauge anomalies.
Fixed reference observables were the electromagnetic fine structure constant α, the Fermi constant
GF determining v2, and the mass of the SM Z boson MZ fixing the tangent of the weak mixing angle
sθ/cθ = gY /gL. Similar to the SM analysis of the Particle Data Group (PDG) [44], the two (three)
free parameters were fit to 37 observables, of which the most important ones were the total hadronic
cross section at the Z pole, the b-quark forward-backward asymmetry, the neutrino-nucleon deep
inelastic scattering cross section, and the parity-violating weak charge of Caesium 133. Low-energy
constraints like BR(b → sγ) requiring information on the extended flavor structure of the models
(e.g. the right-handed CKM matrix) were voluntarily omitted. Fixing the top quark and light
Higgs-boson masses to their SM best-fit values had little influence on the results, which led to lower
bounds on the Z � and W � masses ranging from 0.3 to 3.6 TeV depending on the particular G(221)
model.

In the following sections, we summarize the properties of the Z�- and W�-bosons predicted in
models from the left- and right-handed categories. In the first step we show how their couplings
to the SM fermions [48], expressed in terms of g1, g2, gX can be rewritten in terms of the SM
electroweak coupling gW , the Weinberg angle θW and extra G(221) parameters instead. We then
show the constraints on these models derived from low-energy observables in mass vs. coupling
planes, instead of v2/u2 vs. coupling planes used in [48].

1.3.2 Left-handed models

The models in the left-handed category are the UU (un-unified) and NU (non-universal) models.
Their symmetry breaking can be described by the first and second stage mixing angles7.

tφ =
g2

g1
, tθ =

gW

gY
, (1.19)

where

gW =
�

1
g2
1

+
1
g2
2

�−1/2

, gY = gX . (1.20)

The electric charge is given by
1
e2

=
1
g2
1

+
1
g2
2

+
1

g2
X

, (1.21)

and the gauge couplings g1, g2, gX can be written in terms of the mixing angles φ, θ and the electric
charge as follows

g1 =
e

sφsθ
, g2 =

e

cφsθ
, gX =

e

cθ
. (1.22)

The expression for the masses of the Z�- and W�-bosons and their couplings to the SM fermions
contain only two extra free parameters. The first stage symmetry breaking mixing angle φ and the
VEV u. All the other parameters, can be identified with the (free) parameters of the SM which
can be extracted from experiment. For example, the second stage mixing angle θ must be equal to
the Weinberg angle θW within the precision of measurement and the second stage VEV v can be
obtained from the measurement of the W-bosons mass8. Similarly, had the Z�- or W�-boson been

7Two mixing angles are sufficient for the description of the symmetry breaking only in the presence of a hierarchy
of VEVs (u � v).

8Note that the experimentally observed W-boson is in the G(221) models the lighter mass eigenstate of the W1

and W2 system.
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observed, one could use its mass MZ�(W�) to fix the value of the first stage breaking VEV u. Instead
of parametrizing the W�- and Z�-boson masses and couplings by {φ, u} they can be parametrized
by {t = tφ, MW�(Z�)}.

In left-handed models, it is found that the Z�- and W�-bosons are almost degenerate, M 2
Z�/M

2
W� =

1 +O(v2/u2) [48]. Thus, hereafter, when referring to the Z�- or W�-boson predicted by left-handed
models we will use the symbol M to denote both of their masses

M2 = M2
W�(Z�) =

1
4
�
g2
1 + g2

2

�
u2 +

s2φ
4

g2
2v

2 +O(v4/u4). (1.23)

The expressions for the Z�- and W�-boson couplings in terms of {t = tθ, M} can be obtained in the
following way. The couplings in terms of the gauge couplings g1, g2, gX , the mixing angles θ, φ
and the squared ratio of the VEVs u and v, extracted from [48], are listed in Tables A.1 and A.2 in
Appendix A. In the first step, we substitute eqs. (1.22) and (1.20) into the expression for the full
CC and NC Lagrangian in eq. (A.1) in Appendix A. In the second step, we solve eq. (1.23) for the
VEV u expressed in terms of the resonance mass M and the mixing angle φ, which we consequently
substitute into the Lagrangian in eq. (A.1). In the UU model this leads to

C
W�

q,L =
1
t
− cθ�(t, M), C

W�

q,R = 0,

C
Z�

q,L = T3(f)cθ
1
t

+ (T3(f) + Q(f)s2
θ)�(t, M), C

Z�

q,R = Q(f)s2θ�(t, M),

C
W�

l,L = −t− cθ�(t, M), C
W�

l,R = 0,

C
Z�

l,L = −T3(f)cθt + (T3(f) + Q(f)s2θ)�(t, M), C
Z�

l,R = Q(f)s2θ�(t, M). (1.24)

Similarly, in the NU model the couplings read

C
W�

1st(2nd),L
=

1
t
− cθ�(t, M), C

W�

1st(2nd),R
= 0,

C
Z�

1st(2nd),L
= T3(f)cθ

1
t

+ (T3(f) + Q(f)s2
θ)�(t, M), C

Z�

1st(2nd),R
= Q(f)s2θ�(t, M),

C
W�

3rd,L
= −t− cθ�(t, M), C

W�

3rd,R
= 0,

C
Z�

3rd,L
= −T3(f)cθt + (T3(f) + Q(f)s2θ)�(t, M), C

Z�

3rd,R
= Q(f)s2θ�(t, M), (1.25)

where q and l in the subscript of C denote SM quarks and leptons, while 1st(2nd) and 3rd denote
the first(second) and third generation of SM fermions. Furthermore T3(f) is the sum of the third
components of the SU(2)1 and SU(2)2 isospin9, Q(f) the electric charge and the CKM mixing
matrix has been omitted10. The �(t, M) function collects terms proportional to t/M 2 and thus
strongly suppressed. Note that the value of t does not necessarily have to be positive and all
the couplings, including the �(t, M) function, are odd in t. The Z�- and W�-bosons predicted by
left-handed models are both left-handed. That is, similar to the SM W-boson, the right-handed
W� couplings are equal to zero. On the other hand the right-handed Z� couplings are strongly
suppressed, in contrast to the SM Z-boson whose right-handed couplings are sizable.

The exclusion limits, derived from low-energy and electroweak precision data [48], in the {t, M}
plane are displayed in Figure 1.1. Left-handed models are quite constrained, in particular new

9The sum of the third components of SU(2)1 and SU(2)2 isospin for SM fermions in G(221) models can be identified
with the third component of the SU(2)L isospin in the SM.

10To restore the CKM matrix one just needs to multiply the W�-boson couplings to the SM quarks by VCKM.
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Figure 1.1: Exclusion limits for left-handed models. The full and the dashed line represent the 95%
confidence level contours, the area outside of the area bounded by the dotted lines represents the
regions where at least one of the gauge couplings becomes non-perturbative. The shaded contours
represent values of �(t, M).

resonances in the NU model are excluded up to 3.6 TeV, while their mass in the UU model can
go down to 2.5 TeV. However, there is still a significant portion of the allowed parameter space
reachable at the LHC with

√
s = 14 TeV, as we shall see in Section 1.4.1.

For completeness, we also show the dependence of ratios of various W�- and Z�-bosons couplings
over the corresponding SM W- and Z-boson couplings on the t parameter with the �(t,M) set to
zero by hand. Note that if �(t,M) = 0, the tangent of the first stage mixing angle t is the only
free parameter in the expressions for the couplings. The values of �(t, M) in the t vs. M plane are
shown in Figure 1.1 as contours in shades of gray and blue. To demonstrate the error committed
if one neglects the terms in � we show the value of 500�� alongside the couplings in Figure 1.2.
��(t) is equal to the value of �(t, M) along the exclusion limit curves in Figure 1.1 and thanks to
the direction of the � contours represents a good estimate of the largest possible values for �(t, M)
under the constraints imposed by the exclusion limits. The values of �(t, M) can reach at most
0.2% of the couplings and thus are negligible. The couplings of Z�, W� bosons to the SM fermions
can be up to 10 times larger or 10 times smaller than the corresponding SM Z, W boson couplings.
The regions of perturbativity represented by horizontal dotted lines in Figures 1.1 and 1.2, were
constructed from the requirement that the gauge couplings be perturbative (smaller than

√
4π)

which translates into a condition for cφ, sφ > 0.18 [48].
In conclusion, the left-handed models predict new left-handed charged and neutral gauge bosons.

The description of their couplings and masses contains two free parameters. Their mass is con-
strained from low-energy and precision observables up to 2.5 TeV, 3.6 TeV in the UU, NU model
respectively. At the LHC, one would search for these new Z� and W� bosons in the invariant and
transverse mass distributions of �+�−, tt, �±ν and tb production at equal masses M = MZ�(W�).

1.3.3 Right-handed models

The models in the right-handed category are the LR (left-right), LP (leptophobic), HP (hadropho-
bic), and FP (fermiophobic) models. The first stage symmetry breaking can proceed either via
a scalar in a doublet (D) or a triplet (T) representation of the SU(2)2 group, Φ ∼ (1, 2, 1/2) or
Φ ∼ (1, 3, 1), see Table 1.2. According to this representation, the model abbreviations pick up a
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Figure 1.2: Ratios of Z�- and W�-boson couplings over Z- and W-boson couplings to SM fermions
as function of the t parameter with �(t, M) = 0. The couplings that are identically equal to zero or
are proportional to �(t, M) are not shown. �� represents the values of �(t, M) evaluated along the
exclusion limits curves. Top: UU model. Bottom: NU model.

suffix -D or -T. For example, the leptophobic model with its first stage symmetry breaking triggered
by a triplet, will hereafter be denoted as LP-T.

Independent of whether the first stage scalar field transforms as doublet or triplet, the symmetry
breaking of right-handed models can be parametrized by the first and second stage mixing angles

tφ =
gX

g2
, tθ =

gW

g1
, (1.26)

where

gY =
�

1
g2
2

+
1

g2
X

�−1/2

, gW = g1. (1.27)

The electric charge is, as for left-handed models, given by eq. (1.21) and the gauge couplings g1, g2,
gX can be in terms of the mixing angles φ, θ and the electric charge written as

g1 =
e

sθ
, g2 =

e

sφcθ
, gX =

e

cφcθ
. (1.28)
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Right-handed G(221) models pick up one additional free parameter β, which describes the
alignment of the second stage scalar field VEV, see Table 1.2. As compared to two free parameters
of left-handed models, the right-handed ones have three free parameters {u, φ,β}. Practically,
however, it turns out that the sensitivity of Z�- and W�-boson masses and couplings to the SM
fermions to the β parameter is very low. We shall see, that for the purpose of this study, two
parameters are to a good precision sufficient for their description.
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Figure 1.3: Top: Ratio of MZ� mass over MW� mass as a function of t for all allowed values of
the remaining free parameters (u, β). The line thickness corresponds to the variation of u and
β. Bottom: Line thickness - the maximum of the ratio of the difference of upper and lower line
boundaries from the upper plot divided by their average.

In contrast to left-handed models, new resonances predicted in right-handed models are not
degenerate. The series expansion of the ratio of Z�- and W�-boson masses squared around v2/u2 → 0
can be in the limit s22β � u2 written as

-D:
M2

Z�

M2
W�

= (1 + t2) +
v2

u2

�
1− (1 + t2)2

(1 + t2)

�
+ O(v4/u4),

-T:
M2

Z�

M2
W�

= 2(1 + t2) +
v2

u2

�
1− 2(1 + t2)2

2(1 + t2)

�
+ O(v4/u4). (1.29)

where t = tφ. The ratio does not depend on the model, only on the first stage scalar field represen-
tation – doublet denoted by -D, triplet by -T. We can see, that the second stage VEV alignment
β dependence drops out of the approximate expression for the ratio of masses squared, while the
first stage scalar field VEV u enters only in the ratio v2/u2. The ratio of masses squared as a
function of t is shown in Figure 1.3, where we use the full expressions for resonance masses, which
we do not show here for brevity. The variation of all the free parameters but t, with the constraint
MW� < 5 TeV, is contained in the thickness of the line. The mass ratio MZ�/MW� can go up to
∼ 10 for models broken by a triplet scalar and up to ∼ 14 for models broken by a doublet scalar
field. Note that, the W�-boson is always lighter than the Z�-boson and thus is likely to be observed
first.
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The couplings of the Z�- and W�-bosons to the SM fermions can be in right-handed models
written as

left-right lepto-phobic

C
W�

q,R = −tθ

�
1 + t2

t2
VR C

W�

q,R = −tθ

�
1 + t2

t2
VR

C
W�

�,R = −tθ

�
1 + t2

t2
C

W�

�,R = 0 (1.30)

hadro-phobic fermio-phobic

C
W�

q,R = 0 C
W�

q,R = 0

C
W�

�,R = −tθ

�
1 + t2

t2
C

W�

�,R = 0 (1.31)

C
W�

q,L = −�W�
(t, MW�, β)VCKM

C
W�

�,L = −�W�
(t, MW�, β) (1.32)

C
Z�

L = −sθX(f)t +
�
T3(f) + Q(f)s2θ

�
�Z

�
(t, MZ�)

C
Z�

R = sθ

�
−X(f)t + T3(f)

1
t

�
+ Q(f)s2θ�

Z�(t, MZ�) (1.33)

where t, T3(f), Q(f), θ have the same meaning as in the case of left-handed models, X(f) is the
U(1)X charge and VR the right-handed analogue of the CKM mixing matrix in the left-handed
sector. The values of the T3(f) and X(f) fermion charges are shown in Table 1.3. The functions
�W

�
(t, MW�, β) and �Z�(t, MZ�) collect terms proportional to s2

2β

√
1 + t2/(M2

W�t) and 1/(M2
Z�t), re-

spectively. In the allowed regions, under the constraints derived from low energy and precision data,
the values of � are strongly suppressed. The expressions for � functions can be found in Appendix
A. Note that the couplings, except for the full expressions for � functions, do not explicitly depend
on the choice of the first stage scalar field representation. The W�-boson in right-handed models
is right-handed, that is its couplings to the left-handed SM fermions are suppressed. Furthermore,
the W� boson in the LP model is leptophobic, i.e. does not couple to leptons at all, and the W�

boson in the HP and FP models does not couple to quarks and fermions respectively.
As mentioned earlier, two parameters are sufficient to describe the Z�- and W�-boson masses

and their couplings to the SM fermions. The ratio of masses squared as a first approximation
doesn’t depend on the alignment angle β. Additionally, β enters the expression for couplings only
via the �Z�(W�) functions which are strongly suppressed. Given a mass M = MZ�(W�) and a tangent
of the first stage mixing angle t, one can generate any realization of one of the right-handed models,
provided the mass M is large enough and the couplings C(t) stay perturbative. Moreover, according
to [54], the β parameter almost completely decouples from the u parameter while it is strongly
correlated to the φ parameter. Thanks to that, the global constraints in [48] could have been for a
given value of φ acquired by first computing the value of β and only then fixing the value of u. In the
following, we will assume, therefore, that β decouples from u completely and its value can be fully
obtained from the value of φ, such that it is no longer a free parameter. Had the Z�-(W�-)boson been
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Table 1.3: The charge assignments of the SM fermions in right-handed models. Note that T3, here
corresponds to the sum of the third components of SU(2)1 and SU(2)2 isospin.

T3 X T3 X T3 X T3 X

LR

νL + 1
2 − 1

2

LP

νL + 1
2 − 1

2

HP

νL + 1
2 − 1

2

FP

νL + 1
2 − 1

2

eL − 1
2 − 1

2 eL − 1
2 − 1

2 eL − 1
2 − 1

2 eL − 1
2 − 1

2

uL + 1
2 + 1

6 uL + 1
2 + 1

6 uL + 1
2 + 1

6 uL + 1
2 + 1

6

dL − 1
2 + 1

6 dL − 1
2 + 1

6 dL − 1
2 + 1

6 dL − 1
2 + 1

6

νR + 1
2 − 1

2 νR 0 0 νR + 1
2 − 1

2 νR 0 0

eR − 1
2 − 1

2 eR 0 −1 eR − 1
2 − 1

2 eR 0 −1

uR + 1
2 + 1

6 uR + 1
2 + 1

6 uR 0 + 2
3 uR 0 + 2

3

dR − 1
2 + 1

6 dR − 1
2 + 1

6 dR 0 − 1
3 dR 0 − 1

3

observed, one could use its mass MZ�(W�) to fix the value of the first stage breaking VEV u for every
value of the first stage mixing angle φ. We are thus free to parametrize the couplings of right-handed
Z�- and W�-bosons to the SM fermions models using either {t = tφ, MZ�} or {t = tφ, MW�}. Because
the masses are not degenerate, these parametrizations are not equivalent and in the following we
use {t, MZ�} to parametrize the Z�-boson couplings and {t, MW�} the couplings of the W�.

Figure 1.4: Exclusion limits in {t, MZ�} and {t,MW�} planes for right-handed models. The dashed
or full lines with or without markers represent the 95% confidence level contours, the dotted lines
correspond to the boundaries of the region in which all the gauge couplings are perturbative. The
blue shaded contours represent the values of �Z�(W�).

The exclusion limits in the {t, MZ�} and {t, MW�} planes, derived from low-energy and elec-
troweak precision data [48], are displayed in Figure 1.4. We observe that the right-handed models
are less constrained than the left-handed models and the lowest allowed mass MZ� is 1.6 TeV in
the LR model, 1.7 TeV in the LP, HP and FP models. The W�-boson lower mass constraint has a
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stronger model dependence and varies between 0.3 TeV and 0.7 TeV11.
Because the observables requiring information on the extended flavour structure of the mod-

els, like BR(b → sγ), were voluntarily omitted in the global fit to the low energy and precision
observables, the exclusion limits in Figure 1.4 do not depend on the right-handed mixing matrix
VR. Moreover the right-handed mixing matrix is not predicted by the gauge structure of these
models and we are thus free to fix the value of all its entries. In the numerical study, contained in
Section 1.4, we will assume VR = VCKM . To correct for the lack of constraints from the extended
flavour structure, which have been shown to be quite restrictive but strongly dependent on the
right-handed mixing matrix [55], we will assume that a W� with a mass below 1.5 TeV is excluded.
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Figure 1.5: Ratios of couplings of Z�- and W�-bosons to Z- and W-bosons couplings to SM fermions
as function of the t parameter with �(t, M) = 0. The couplings that are identically equal to zero
or are proportional to �(t, M) are not displayed. �� represents the values of �(t,M) evaluated along
the exclusion limits curves. Note that all the couplings as well as the � function are odd in t. Top:
Left-handed couplings in both LR and LP models. Bottom: Right-handed couplings.

The dependence of ratios of various W�- and Z�-bosons couplings over the corresponding SM
11See Table 7 in [48] for a complete list of lower mass constraints.
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W- and Z-boson couplings on the t parameter with the �Z�(W�) = 0 for LR and LP models is shown
in Figure 1.5. The couplings in HP and FP models can be obtained from the LP model couplings.
The values of the terms collected in �(t, M) in the t vs. M plane are shown in Figure 1.4 as contours
in shades of gray and blue. To show the maximum contribution of terms collected in the �Z�(W�)

functions to the Z� and W� couplings, we have calculated them along the exclusion limit curves in
Figure 1.4 and show the value of 50�(t, M) in Figure 1.5. Their value can exceed 2% of some of
the W�-boson couplings in the LP, HP and FP models, while their value can be even larger than
some Z�-boson couplings in the points of the parameter space in which the right-handed lepton or
right-handed quark couplings change the sign.

Note that the right-handed neutrino νR is a necessary element of the particle content of the
LR model. The gauge structure of the LR model, however, doesn’t predict most of the properties
of νR, like its mass or decay width, and one would need additional free parameters to be able to
study their phenomenology. In the LP model, the right-handed neutrino is absent and moreover
the W�-boson is leptophobic. Therefore, we have decided not to investigate the lepton plus missing
transverse energy final state within right-handed models. For examples of phenomenological studies
on and experimental searches of a purely right-handed W� decaying into a charged lepton and a
right-handed neutrino the reader is referred to [56, 57, 58, 59].

The LR and LP models predict non-degenerate Z�- and W�-bosons, MZ� > MW�. Their masses
and couplings can be described by two free parameters. In Section 1.4, we shall investigate their
impact on the transverse dilepton mass as well as the third-generation quark pair production.

1.4 LHC phenomenology

After the discovery of a particle consistent with the Higgs boson at the LHC, the search for new
physics is one of the top priorities. New Z� and W� bosons with significant couplings to quarks
and leptons are most easily seen as resonances in the invariant and transverse mass spectrum of
the Drell-Yan process with dilepton and lepton plus missing transverse energy final states or in the
invariant mass distribution of third-generation quark pair production. In this section we study the
impact of the presence of Z�- and W�-bosons predicted in G(221) models on the production of �+�−,
�±ν, tt and tb at the LHC.

We assume that the LHC will operate after the 2013-2014 shutdown at its design center-of-mass
energy of

√
s = 14 TeV and accumulate an integrated luminosity of 10 to 100 fb−1, so that cross

sections down to 10−2 fb can be observed. In the SSM [10], which is often taken as a benchmark
scenario, the Z� and W� bosons would then be accessible up to masses of 5 TeV [20], while with
the present CMS (ATLAS) data masses below 2.96 (2.86) [21, 22] and 3.35 (2.55) TeV [23, 24] are
excluded in the electron and muon channels.

In the first step we study new physics contributions to the total cross section for the production
of W� and Z� bosons decaying into leptons and third-generation quarks in the regions allowed by
low-energy and electroweak precision data shown in Sections 1.3.2 and 1.3.3. We then correlate the
new physics contributions in different channels among each other. We show that the total cross
sections, while experimentally easily accessible, provide individually only partial information about
the model realized in Nature. In contrast, correlations of these cross sections in the neutral and
charged current channels may well lead to a unique identification [16].

All the simulations have been performed with the Monte Carlo program Pythia 6.4 [60], which
we have supplemented by terms accounting for the interferences of new and SM charged spin-1
bosons. While the latter can have a significant influence on the shape of the resonance region, their
impact on the total cross sections is small. The masses of the t and b quarks and SM Z and W
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bosons are fixed to their PDG values [44], and we use the CTEQ6 LO analysis of parton density
functions (PDFs) [61]. For a study of the PDF uncertainties on SM and new weak gauge boson
production cross sections we refer the reader to Ref. [62]. Following the ATLAS leptonic analyses
[24, 22], we require electrons to have transverse energy ET > 25 GeV and lie within the rapidity
ranges |η| < 1.37 or 1.52 < |η| < 2.47. For �ν final states, a missing energy Emiss

T > 25 GeV is
imposed. In the third-generation quark channels, the ATLAS collaboration reconstruct jets with
the anti-kT algorithm [63] and a radius of R = 0.4 and require them to have ET > 20 GeV and
|η| < 4.5 [64]. The total cross sections are then still largely dominated by SM backgrounds, which
we suppress by imposing an invariant or transverse mass larger than 75% of the new gauge boson
mass.

The invariant mass MI and transverse mass MT were defined in eqs. (1.3) and (1.4). To be able
to compute the invariant mass we have to know the momenta of both final states which we do in the
case that both final state particles are either charged (charged leptons, jets) or their momentum
can be fully reconstructed from their decay products (top quarks). If one final state particle is
neutral its longitudinal component of the missing momentum cannot be reconstructed because of
the collision fragments directed along the beam axis. One, therefore, resorts to measuring the
transverse mass instead.

The shape of the invariant mass distribution of a single neutral boson is of a Breit-Wigner
form peaked at the mass of the boson with a half-width proportional to its decay width, while
the transverse mass distribution of a single charged boson develops a Jacobian peak at the mass
of the boson mediating the interaction12. In the case that two bosons interfere13 the shape of the
peaks may be significantly distorted. Generally, the contribution of the interference between the
two peaks has the opposite sign to the sign of the interference outside of the peaks and its overall
sign depends on the relative sign of the couplings14.

Monte Carlo generators including next-to-leading order (NLO) QCD corrections exist, but only
for leptonically decaying Z� and W� bosons [66, 67], so that we have not made use of them in this
study for consistency. The impact of NLO QCD corrections to the electroweak top-pair production
[68] is investigated in the next chapter.

1.4.1 Cross sections

For each model and for each point of its discretized parameter space constrained by the correspond-
ing exclusion limits we have generated samples consisting of 30000 events, each event describing a
fixed order LO production of a single Z� or a single W� bosons decaying into a lepton pair, a top
quark pair, a lepton and a neutrino or a top and bottom quark separately. The lepton-neutrino pair
production was simulated only for left-handed models, since the left-handed couplings of the W�-
boson in right-handed models are strongly suppressed. Furthermore, at a hadron collider the total
cross section of the W�-boson production in HP and FP models is strongly suppressed. We expect
the effect of parton shower in the high invariant mass region to be negligible, because corrections
to the transverse momentum of final state particles induced by a near-collinear radiation are very
small as compared to the transverse momentum of highly boosted final state pair. Therefore, the

12Also note that transverse mass distribution contains more information than the transverse momentum distribution
of the outgoing lepton as it contains the full information about the transverse momentum of the boson in the play –
the peak is sharper [65].

13The interference is not necessarily present – in the case one boson decays into states that are differently polarized
than the decay products of the other boson, then these final states are not considered as undistinguishable and thus
there is no interference.

14The couplings of W�- and Z�-bosons to the SM fermions can in general be both positive or negative.

20



Figure 1.6: Total CC (left) and NC (right) cross sections in the lepton (top) and third-generation
quark (bottom) channels.

effects of the parton shower were not simulated. We have, however, verified this assumption on a
small control sample.

In Figure 1.6 we show the resulting total CC (left) and NC (right) cross sections in the lepton
(top) and third-generation quark (bottom) channels. In all models, including the SSM shown for
comparison, they are by up to two orders of magnitude larger than the SM background (which
depends on MW�,Z� due to the transverse and invariant mass cutoff, respectively), but still exceed
10−2 fb for masses up to 5 TeV. The shaded areas correspond to the ranges in parameter space still
allowed after the global analysis of low-energy and LEP data. As one can observe, they exhibit
a large overlap (grey). So while the cross sections are experimentally easily accessible, the pre-
LHC constraints are clearly not strong enough to allow for an unambiguous identification of the
gauge group possibly realized in Nature. The same applies to the Higgs sector of the LR (pink),
LP (green), HP (purple), and FP (olive) models, for which regions with doublets and triplets are
coded with the same color, as they overlap almost completely. For these models, we make no
predictions for the lepton-neutrino channel, as we do not have any information about the right-
handed neutrino sector. Applying a b-tag to the quark channels would reduce their cross sections
by the corresponding efficiency of about 60%15 [64]. For completeness, we also show predictions
for the LHC operating at

√
s = 8 TeV in Figure 1.7.

1.4.2 Cross section correlations

In the previous section, we have shown that new resonances predicted in G(221) models are at the
LHC operating at

√
s = 14 TeV reachable up to masses 4 − 5 TeV but their prediction regions of

new physics contributions to the cross section of the Z�, W� production and their subsequent decay

1560% for each b quark in the final state.
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Figure 1.7: Total CC (left) and NC (right) cross sections in the lepton (top) and third-generation
quark (bottom) channels.

into a fermionic final state exhibit a large overlap and for significant portions of their parameter
spaces are not distinguishable.

The �+�− and tt production, mediated by the Z�, and �±ν and tb production, mediated by the
W� are correlated. Looking at the cross section correlation in these channels may thus lead to more
conclusive predictions. For each model and for each point of its discretized parameter space we have
calculated the total cross section for the relevant final states and plot them in the σa vs. σb planes,
where a, b ∈ {�+�−, tt, �±ν, tb}. In Figure 1.8 we show the resulting cross section correlations for
the UU and NU models. The blue and red solid curves correspond to the M = MZ�(W�) = 5 TeV iso-
curves for UU and NU models respectively, while the dashed curves correspond to the M < 5 TeV
iso-curves.

The cross section correlations regions still exhibit a large overlap (grey) among UU and NU
models as well as with the SSM cross section correlation curve. It is crucial, however, to observe
that for most of the cross section correlations the fixed mass contours intersect in a single point.
Constraining the masses of one of the new gauge bosons to its measured value may shrink the
cross section correlation regions and limit their overlap. Note that, knowing one of the masses is
sufficient, since in the left-handed models the Z� and W� are degenerate, and in the right-handed
models their masses are strongly correlated. Similar observations can be made for the cross section
correlations in the right-handed models.

Let us now assume one of these bosons to have been observed in at least one channel and its
mass to have been measured from the invariant mass of a lepton (e, µ), tt̄, or tb̄ pair or the Jacobian
peak of the transverse mass of a single lepton and missing transverse energy as 3.0 ± 0.1 TeV or
4.0 ± 0.1 TeV with a conservative error estimate [20]. Estimating the mass uncertainty ΔM from
the resonance width Γ and the number of events N with ΔM = Γ/

√
N shows that in the G(221)

models studied here the statistical error will often be smaller by up to a factor of ten with respect
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Figure 1.8: Correlations of CC and NC lepton (e, µ) and third-generation quark cross sections in
left-handed models.

to the conservative error estimate we consider. It will then become comparable to the experimental
resolution of currently about 2% and ultimately 0.5%.

In Figure 1.9 we show the total cross section correlations assuming either a known mass of
MW � = 3.0± 0.1 TeV (top row, center row) or of MZ� = 3.0± 0.1 TeV (top row, bottom row). The
shaded areas correspond now to the regions of parameter space allowed by the global fit and in
addition the uncertainty in the mass of the observed gauge boson. Should the uncertainty be only
0.05 instead of 0.1 TeV, the width of these bands shrinks by more than a factor of two, turning them
almost into sharp lines. As the plots in the first line always involve the lepton-neutrino channel
and as masses below 3.6 TeV are already excluded for the NU model [48] (cf. also Figure 1.6), we
show there only predictions for the UU model, in which MW � � MZ� (see above). With signal
cross cross sections that are one to three orders of magnitude larger than those of the SM and do
not overlap with those of the SSM for which we also assume MW � = MZ� , it would therefore be
easily identifiable. The plots in the other two lines do not involve the lepton-neutrino channel, and
we can therefore show predictions for all G(221) models except for the excluded NU model and
the HP and FP models, which are only accessible in the NC channels. It is clear that the overlap
is very much reduced compared to Figure 1.6, making a unique identification of the underlying
gauge group possible in almost all cases. Even doublet (D) and triplet (T) Higgs fields can now
be distinguished, but this requires the observation of at least one CC channel and/or knowledge of
the W � mass. The NC channels are obviously most useful if the Z � mass is known (bottom right)
and exhibit then already by themselves a large discriminatory power of the gauge group. It would
in particular be sufficient to measure the tt̄ and �+�− cross sections with a precision of about 30%.

The position of these measurements in the correlation plane would then also give information
on the remaining model parameters, in particular the mixing angle φ at the first breaking stage
(cf. the red iso-lines in the bottom-right plots of Figures 1.9 and 1.10).
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Figure 1.9: Correlations of CC and NC lepton (e, µ) and third-generation quark cross sections for
fixed MW � = 3.0± 0.1 TeV (top row, center row) and MZ� = 3.0± 0.1 TeV (top row, bottom row).

A similar analysis is performed in Fig 1.10, where the W � (top row, center row) and Z � (top row,
bottom row) mass is now assumed to be 4.0±0.1 TeV, respectively. This larger mass naturally leads
to cross sections that are reduced by about one order of magnitude with respect to those in Figure
1.9, but they remain observable and larger than the SM background. For this higher mass, the NU
model is no longer excluded by the global analysis and therefore added to the plots. Correlating
the lepton-neutrino with the tb̄ and/or NC channels (top) makes it then clearly distinct from the
UU model. Since the third generation couples differently from the other two in the NU model,
its predictions for third-generation quark cross sections lead to almost constant lines or point-like
areas when correlated with the lepton cross sections or each other.

Conversely, agreement of the experimental measurements with the SM predictions in Figs. 1.6-
1.10 would allow to considerably constrain the parameter space of the different G(221) models or
even to exclude the corresponding new gauge boson masses altogether.

For completeness, we also show the cross section correlations for the LHC operating at
√

s =
8 TeV. The cross sections for resonances with a mass of 4 TeV turn out to be too small and we
therefore fix the mass to 3±0.1 TeV in Figure 1.11. The NU model can thus not be identified with
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Figure 1.10: Correlations of CC and NC lepton and third-generation quark cross sections for fixed
MW � = 4.0± 0.1 TeV (top row, center row) and MZ� = 4.0± 0.1 TeV (top row, bottom row).

data taken at 8 TeV. Inspecting Figure 1.11, new gauge bosons with a mass of 3 TeV in the UU
model could already be distinguished from the SSM if one of the third generation quark channels
is measurable (top). If both the neutral and charged current channels are measurable, one can
also distinguish it from the LR-D and LP-D models without making any assumptions on the right-
handed neutrino (center). Distinguishing different doublet (LR-D, LP-D, . . . ) and triplet (LR-T,
LP-T, . . . ) models is partly possible using the (σtt̄, σtb̄) correlation (bottom left). Furthermore,
depending on the precision of the Z � mass measurement, it might also be feasible when correlating
the neutral current lepton channel with the tt̄ channel (bottom right) and then even lead to a first
measurement of the mixing angle φ.

1.5 Conclusions

We have investigated the implications of an extended SM gauge symmetry at the LHC. Models
with an additional SU(2) group predict the existence of additional neutral and charged gauge
bosons, namely the Z�- and W�-boson, and we have explored their impact on common LHC signals
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Figure 1.11: Same as Figure 1.9 for LHC at
√

s = 8 TeV.

such as the dilepton, lepton plus missing transverse energy, top-pair and tb production. We have
concentrated on a class of models with the electroweak gauge symmetry based on the SU(2)×
SU(2)×U(1) gauge group, motivated experimentally, e.g., by the observation of neutrino masses
and theoretically as an intermediate step towards the grand unification of the SM gauge groups.

We have shown how the Z�- and W�-boson couplings can be parametrized by a set of two (three)
common parameters and presented their exclusion limits derived from low-energy and precision
data. The total cross sections of the predicted charged and neutral gauge bosons decaying into
leptons and third-generation quarks were confirmed to be accessible at the LHC up to masses of
5 TeV within the range of parameters allowed by a recent global analysis of low-energy and LEP
constraints.

We have proposed a novel and powerful method to distinguish general SU(2)× SU(2)×U(1)
models. Individually, the total cross sections did not allow for the unique identification of the
underlying G(221) model. With a Monte Carlo simulation and after applying realistic experimental
cuts, we demonstrated that this does become possible by correlating the charged and neutral current
cross sections of leptons and third-generation quarks, assuming only that the mass of either the
W� or the Z� boson has been measured with a conservative uncertainty. The mixing angle of the
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high-energy symmetry breaking stage will then also become measurable. The correlations of two
observables work nicely here because we only have two (three) free parameters describing all the
G(221) models. In the general case of models with more parameters the identification of suitable
subsets of correlated observables would represent a first step towards a global analysis of the
parameter space.
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Chapter 2

QCD corrections to the electroweak
top-pair production beyond the
Standard Model

Even long after its discovery, at the pp collider Tevatron in 1995, the top quark remains a very
popular subject of particle physics research. With a mass mt = 173.2 ± 0.9 GeV [69] close to the
electroweak symmetry breaking scale, it is by far the heaviest of all known particles. Due to its
very short lifetime, it decays before it can hadronize. This offers a unique opportunity to study
the properties of a bare quark, including effects due to its spin via angular correlations of its decay
products. It may well provide an effective probe for the electroweak symmetry breaking mechanism
and the physics beyond the SM.

At hadron colliders, top quarks can be produced either in pairs, pp(p) → tt or as single tops,
pp(p) → tb, pp(p) → tq , and pp(p) → tW. At the LHC, running at its design energy

√
s = 14

TeV and luminosity of 10 fb−1/yr, we expect over 106 top-pairs and almost as many single tops
produced yearly. Therefore, precision measurements of the top quark properties, such as the mass,
the production cross section and kinematic distributions become feasible and any deviations from
the SM predictions will hint at physics beyond the SM.

While leading order (LO) predictions in theories beyond the SM usually suffice for devising new
physics search strategies or even for deriving the exclusion limits in the parameter spaces of new
physics scenarios, an accurate determination of the model parameters requires precise predictions
that go beyond the leading order accuracy. Should the new physics be observed, higher-order
predictions will most likely play a vital role in the identification of the underlying theory.

Ideally, precise predictions for the production cross sections should be combined with simulations
of parton shower effects, multi-parton interactions, and the underlying event – the effects that are
always present at hadron colliders. This calls for the use of multi purpose Monte Carlo generators
such as Pythia [60] or Herwig [70], which, however, provide only LO accuracy for hard scattering
processes.

A framework that allows to combine NLO QCD computations with the parton shower is the so-
called POWHEG [71] approach. The POWHEG BOX [72] is a public tool providing all general building
blocks of this method, but requires the user to individually implement process specific pieces such
as matrix elements for the hard scattering process at NLO QCD accuracy.

In this manuscript we present the calculation of 1-loop corrections to the top-pair production
at hadron colliders in SM extensions featuring an additional Z� boson and its implementation in
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POWHEG BOX. The NLO corrections to the top-pair production have been previously studied within
a specific model in [73] or for a class of models predicting strongly coupled neutral resonances
mediating the top-pair production in [74]. Before the completion of our calculation, a similar
calculation of Z�-boson production and its decay into a pair of the top quarks has appeared in [75].
In this publication, a similar set of 1-loop corrections is calculated including the decay of the top-
quark at NLO accuracy. As compared to our work, the calculation by Melnikov et. al. is a fixed
order calculation, while we offer an implementation in a Monte Carlo event generator compatible
with the parton shower algorithm.

This chapter is organized as follows. The calculation of the LO matrix elements is discussed in
Section 2.2. Section 2.3 details the calculation of next-to-leading (NLO) corrections consisting of
virtual and real contributions, including explanations of the common techniques employed in cal-
culations of 1-loop corrections. The parton shower algorithm and the issue of matching NLO QCD
calculation with the parton shower by virtue of the POWHEG method is discussed in Section 2.4.
Subsequently, in Section 2.5 we briefly address the issue of automation of higher-order calculations.
Finally, the numerical results for the electroweak top-pair production at NLO QCD accuracy at
the LHC are presented in Section 2.6.

2.1 Introduction

The top-pair production in hadronic collisions can be calculated according to the standard factor-
ization formula [76]

σ
tt
h1,h2

(shad, m
2
t ) =

�

ij

� shad

(2mt)2
dŝLij(ŝ, µ2

f )σ̂ij(ŝ, m2
t , µ

2
f ) , (2.1)

in which the interactions at low-momentum and high-momentum transfer factorize. The low-
momentum transfer part, the process independent partonic luminosity Lij naively describes the
probability of finding, in the hadrons h1 and h2 (where h1, h2 = p, p at the LHC), an initial state
involving partons i and j with the given partonic center of mass system energy squared ŝ. The
high-momentum transfer part, the hard scattering of the partons i and j (i, j ∈ {q, q, g}) at a
partonic center of mass energy ŝ is described by the partonic cross section σ̂ij . The integration
ranges extend from the threshold at which two top quarks t with mass mt can be produced up
to the collider hadronic center of mass energy squared shad. Both the partonic cross section and
the luminosities depend on the factorization scale µf which fixes the energy scale at which the
factorization is realized and is usually set to the partonic energy ŝ1.

In principle, the partonic luminosities are calculable in QCD. In practice, this is a non-perturbative
calculation, since the QCD coupling becomes large at energy scales close to the proton mass and
below. This difficulty is sidestepped by extracting the Lij from experiment [62, 77, 78, 79]. On
the other hand, owing to the fact that the QCD coupling is perturbative at the scale of the hard
interaction, the expansion of the hard partonic cross section σ̂ij can be calculated in perturbation
theory. Since the partonic luminosities are universal and their scale dependence well known we will
concern ourselves only with the calculation of the partonic cross section.

At the lowest or leading order of perturbation theory, in terms of the couplings parametrizing
the strength of the strong and electroweak interactions mediating the top-pair production, denoted
αS and αW respectively, the partonic cross section σ̂LO

ij in the Standard Model can be split into

1For more details on the factorization scale µf and its choice, the reader is referred to Section 2.3.3.
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two parts
σ̂LO = σ̂LO

S (α2
S) + σ̂LO

W (α2
W ) (2.2)

where the indices i, j of the incoming partons were suppressed and we keep explicit only the
dependence on the coupling constants. σ̂LO

S denotes the partonic cross section of gluon mediated
subprocesses in the channels gg and qq , see Figure 2.1 (a)-(c) and Figure 2.1 (d) respectively. σ̂LO

W

contains the contributions from the subprocesses mediated by electroweak gauge bosons, photon γ
and Z-boson, initiated by qq , see Figure 2.1 (e) and (f).

Figure 2.1: Leading order Feynman diagrams for top-pair production. gg-channel at the order
O(α2

S) (a)–(c), qq-channel at the order O(α2
S) (d) and qq-channel at the order O(α2

W ) (e), (f).
Thick fermion lines correspond to massive fermions, thin ones to massless fermions.

Higher order corrections to the top-pair production comprise the terms beyond the leading order
perturbative expansion in eq. (2.2). Since two coupling constants enter the top-pair production, αS

and αW , the partonic cross section will have a simultaneous perturbative expansion in both of these
couplings. Next-to-leading corrections to the partonic cross section refer to the terms containing
one additional power of one of the coupling constants αS or αW . The perturbative expansion of
the top-pair production partonic cross section up to the NLO reads

σ̂ = σ̂2;0(α2
S) + σ̂0;2(α2

W ) + σ̂3;0(α3
S) + σ̂2;1(α2

SαW ) + σ̂1;2(αSα2
W ) + σ̂0;3(α3

W ) (2.3)

where the integer indices m; n respectively denote the powers of αS and αW . The expansion is
ordered by the size of the overall coupling2. The terms σ̂2;0, σ̂0;2 correspond to the LO partonic
cross sections σ̂LO

S , σ̂LO
W from eq. (2.2) respectively. Both σ̂LO

S and σ̂LO
W at next-to-leading order

receive QCD as well as electroweak corrections (EW). The QCD and EW corrections to σ̂LO
S are

contained in the terms σ̂3;0 and σ̂2;1, while the QCD and EW corrections to σ̂LO
W in the terms σ̂1;2

and σ̂0;3 respectively. Diagrammatically speaking, since every line in a Feynman diagram has to
couple at its two endpoints, each of them yielding an additional factor α

1/2
S(W ), the NLO corrections

involve the calculation of squared amplitudes corresponding to the interferences of diagrams with
one additional line. Throughout this manuscript we often refer to the term σ̂m;n in the perturbative

21 > αS > αW .
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expansion as the partonic cross section at order O(αm
S αn

W ), e.g. σ̂1;2(αSα2
W ) will be referred to as

the partonic cross section at order O(αSα2
W ).

For the purpose of this calculation, we consider final state top quarks as stable particles produced
on-shell, despite their short lifetime. We can allow ourselves to make such an approximation thanks
to the fact that general purpose Monte Carlo event generators can handle the top quark decay at
leading order accuracy automatically. More detailed discussion on top quark decay can be found in
Section 2.4.3. For an example on how the top quark decay can be accounted for in full generality
at NLO accuracy within the framework of NLO Monte Carlo event generators, we refer to [80].

Cross sections and distributions including QCD effects of O(α3
S) were computed in [81, 82, 83,

84]. From the electroweak side, the one-loop corrections at O(α2
SαW ) were investigated in [85] for

the subclass of the infrared-free non-photonic contributions. In these calculations contributions
including the interference of QCD and electroweak interactions were neglected. A study of non-
photonic EW corrections with the gluon-Z interference effects was done more recently in [86, 87,
88, 89]. Finally, a subset of the full EW corrections, corresponding to the QED corrections was
calculated in [90]. The 1-loop corrections to the top-pair production in the SM are thus complete.

In theories beyond the Standard Model predicting the existence of an additional neutral vector
boson, denoted Z�, the partonic cross section of the top-pair production is modified. In the following
we assume that the Z� couplings to the SM fermions are flavour diagonal3, as is the case of the Z�

bosons predicted in G(221) models. The Feynman rule for the qq vertex featuring such a Z�-boson
can be written as [44]

i(2π)4 gW
cθW

γµ(CZ�

q,LPL + C
Z�

q,RPR) = i(2π)4 gW
4cθW

γµ
�
aq

Z� + bq
Z�γ5

�

where CZ� couplings4 have been introduced in eq. (1.2) and PR,L = (1 ± γ5)/2. Furthermore, γµ

and γ5 are the usual Dirac matrices, g2
W = 4παW , the vector and axial-vector couplings aq

Z�, bq
Z�

in general depend on the quark flavour and we have introduced a short-hand notation sθ = sin θ,
cθ = cos θ.

Figure 2.2: Leading order Feynman diagrams for the new physics contribution to the top-pair
production.

In SM extensions predicting new neutral currents, the partonic cross section of the top-pair
production at leading order receives a contribution from the Z� boson mediated subprocesses in

3The couplings of the Z�-boson across the families of SM fermions are prohibited.
4Note that throughout this chapter we parametrize Z� bosons couplings to the SM fermions by the vector and

axial-vector couplings aZ� and bZ�, instead of the left- and right-handed couplings C
Z�

L and C
Z�

R .
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the qq channel, see Figure 2.2. Since the Z� boson couples to the SM fermions via the electroweak
coupling αW , the new physics contribution to the top-pair production will be contained in the σ̂LO

W

part of the partonic cross section, while in the same SM extension the σ̂LO
S is not altered.

Similarly, at next-to-leading order, neutral currents beyond the SM affect only the partonic
cross section at orders O(α2

SαW ), O(αSα2
W ), O(α3

W ) but not at order O(α3
S). In this work, we

concentrate on the simplest but presumably most relevant term in the perturbative expansion
of the top-pair production cross section, the term σ̂1;2(α2

W αS) corresponding to the NLO QCD
corrections to the EW top-pair production. Even though, the term σ̂2;1(α2

SαW ) is more likely to
yield a larger correction than the term σ̂1;2(αSα2

W ), simply because α2
SαW > αSα2

W , the QCD
corrections to the EW top-pair production are more likely to be relevant for new physics searches
at the LHC due to the resonant role of the Z� boson. Besides, while the procedure for the calculation
of NLO corrections at order O(αSα2

W ) is model independent, provided that the Z� couplings to the
SM quarks are kept general, as in the above mentioned Feynman rule, the NLO corrections at
orders O(α2

SαW ) and O(α3
W ) are strongly model dependent due to the rich structure of the Higgs

sector in models beyond the SM, see for example [91, 92].
In the following sections we will investigate how the presence of an additional Z�-boson impacts

the EW top-pair production. We will detail the calculation of the LO matrix element, and its
virtual and real QCD corrections.

2.2 Leading-order electroweak top-pair production

In SM extensions containing an additional Z� boson, the partonic cross section of the top-pair
production can be split into two parts, the cross section σ̂2;0 = σ̂LO

S of the subprocesses mediated
by the strong interaction and the cross section σ̂0;2 = σ̂LO

W of the subprocesses mediated by the
electroweak interaction. The existence of the Z� boson does not affect the σ̂LO

S cross section, which
is the same as in the SM and has been long known in the literature. In this section we describe
the calculation of the partonic cross section σ̂LO

W , often referred to as the Born or the tree-level
contribution.

Let us start by considering a general 2 → 2 hadron scattering. The momentum conservation
for the hard process can be written as

x1K1 + x2K2 = p1 + p2 , (2.4)

where K1, K2 are the momenta of the incoming hadrons h1, h2 and x1, x2 are the momentum
fractions of the incoming partons, while p1, p2 the momenta of the outgoing particles. In the
following discussion, we will often use the partonic momenta

k1 = x1K1 , k2 = x2K2 (2.5)

instead of the hadronic momenta and the partonic momentum fractions Ki, xi. The hadronic and
partonic center of mass energy squared can be defined in terms of hadronic and partonic momenta
as

shad = −(K1 + K2)2 , ŝ = −(k1 + k2)2 . (2.6)

Note that in calculations throughout this chapter we use the Pauli metric in which the dot product
of momenta has an overall minus sign as compared to the Bjorken-Drell metric5.

5For a detailed discussion on the relevance of the choice of the metric and a recipe on how to convert between
formulae employing different metrics, the reader is encouraged to consult [93].
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To fully characterize the 2-parton phase space, we introduce the set of variables

Φ2 = {x1, x2; p1, p2} . (2.7)

These are constrained by the momentum conservation, eq. (2.4), and by the on-shell conditions
p2

i = −m2
i for final state particles where mi is the mass of the particle with momentum pi.

The total cross section at leading order is given by

σB =
�

dΦ2f1(x1)f2(x2)B(Φ2) (2.8)

where B denotes the LO amplitude squared, summed and averaged over initial spin and color,
including an appropriate flux factor. Furthermore, fi are the parton distribution functions (PDFs)
and the integration measure dΦ2 is defined as

dΦ2 = dx1dx2dΦ2(k1 + k2; p1, p2) , (2.9)

in which dΦ2 is the usual 2-body phase space

dΦ2(q; p1, p2) = (2π)4δ4

�
q −

2�

i=1

pi

�
2�

i=1

d3pi

(2π3)2p0
i

. (2.10)

The parton luminosities Lij in eq. (2.1) are given by a convolution of PDFs fi and fj of the incoming
partons:

Lij(x, µ2
f ) = x

� 1

0
dy

� 1

0
dzδ(x− yz)fi(y, µ2

f )fj(z, µ2
f ). (2.11)

Throughout this chapter, however, we rather use the product of parton distribution functions L
defined as

L = L(x1, x2) = f1(x1)f2(x2) . (2.12)

Note that, as in eq. (2.8), we often suppress the dependence of PDFs and partonic cross sections
on the factorization scale, in which case it is implicit.

While it is possible to express partonic cross sections in terms of the scalar products of inde-
pendent momenta of the process, it is often more convenient to use Mandelstam variables ŝ, t̂ and
û instead. ŝ was defined in eq. (2.6) and the definitions of t̂ and û read

t̂ = −(k1 − p1)2 = −(k2 − p2)2 , û = −(k1 − p2)2 = −(k2 − p1)2 . (2.13)

The Mandelstam variables ŝ, t̂ and û are not all independent and one can easily show that

ŝ + t̂ + û =
�

i

m2
i (2.14)

where we sum over all the external particles, provided they are on-shell.
The amplitude squared of the Born contribution to the EW top-pair production comprises of

nine terms obtained by interfering the diagrams in Figure 2.1 (e), (f) and Figure 2.2. Feynman rules,
spin and polarization sums used in the calculations of amplitudes squared are listed in Appendix
B. The incoming partons are considered massless, while the outgoing top quarks on-shell

k2
i = 0 , p2

i = −m2
t . (2.15)
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The independent scalar products can be expressed in terms of Mandelstam variables as

k1 · k2 = −1
2
ŝ , k1 · p1 =

1
2
(t̂−m2

t ) , k2 · p1 =
1
2
(û−m2

t ) , (2.16)

and the Mandelstam variables sum to

ŝ + t̂ + û = 2m2
t . (2.17)

The full expression for the matrix element is rather lengthy but for completeness we show the
expression for a general interference term, Bq(B, B�):

Bq(B, B�) =
2α2

W

ŝ2DBDB�s4
W

�
ŝ(t̂− û)

�
A

q
BB

q
B� + A

q
B�B

q
B

� �
A

t
BB

t
B� + A

t
B�B

t
B

�
+

�
A

q
BA

q
B� + B

q
BB

q
B�

� ��
t̂2 + û2 + 4ŝm2

t − 2m4
t

�
A

t
BA

t
B� +

�
t̂2 + û2 − 2m4

t

�
B

t
BB

t
B�

��

��
(ŝ−M2

B)(ŝ−M2
B�) + mBmB�ΓBΓB�

�
+ i

�
(ŝ−M2

B)mB�ΓB� − (ŝ−M2
B�)mBΓB

��
, (2.18)

where B, B� ∈ {γ, Z, Z�} and the index q denotes incoming massless partons and

Dγ =
1
ŝ2

, Aq
γ = sW Qq, At

γ = sW Qu, Bq
γ = 0, Bt

γ = 0,

DZ =
1

(ŝ−M2
Z)2 + m2

ZΓ2
Z

, Aq
Z =

aq
Z

4cW
, A

t
Z =

au
Z

4cW
, Bq

Z =
bq
Z

4cW
, B

t
Z =
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4cW
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DZ� =
1

(ŝ−M2
Z�)
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Z�Γ

2
Z�

, Aq
Z� =

aq
Z�

4cW
, A

t
Z� =
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t
Z�

4cW
, Bq
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Z�

4cW
, B

t
Z� =
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t
Z�

4cW
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(2.19)

where Qu, Qd are the electric charges of up- and down-type quark respectively, the Z-boson cou-
plings to the SM fermions are equal to au

Z = 1 − 8/3s2
θW

, ad
Z = 4/3s2

θW
− 1, bu

Z = 1, bd
Z = −1 and

aq
Z�, bq

Z� are the model dependent vector and axial-vector couplings of the Z� boson to a SM quark
q ∈ {d, u, s, c, b, t}. Note in eq. (2.19), that the Z-boson couplings are family universal and the
superscript u refers to up-type quarks, while different generations of the SM fermions can couple
to Z�-boson with different strengths, and the superscript t refers to the top quark couplings only.

The expression for the total Born matrix element can be written in terms of general interference
terms as

B =
�

q


Bq(γ, γ) + Bq(Z, Z) + Bq(Z�, Z�) +

�

B �=B�
Bq(B, B�)


 , (2.20)

where we sum over all the possible light quarks in the initial state q ∈ {d, u, s, c, b}. Note that, in
general, the expression for an interference term Bq has an imaginary part, but since Bq(B,B) ∈ R
and Bq(B�, B) = Bq(B, B�)∗ the total amplitude is real.

The amplitudes squared of the Born contribution in 4- and D-dimensions6, have been calculated
automatically using the tool chain QGRAF/DIANA → FORM [94, 95, 96] interfaced via a Python
[97] script which we have developed for this purpose. A detailed description of this calculation
chain and its automation can be found in Section 2.5.

6The Born matrix element calculated in D-dimensions will be required for the renormalization of the virtual
contribution.
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2.3 Next-to-leading order QCD corrections to the electroweak
top-pair production

The calculation of NLO corrections comprises the calculation of interferences of Feynman diagrams
with one additional line, as compared to the diagrams of the Born contribution. According to how
this line is attached to tree-level diagrams, NLO contributions can be split into two distinct classes.
The virtual and the real corrections.

Figure 2.3: Virtual diagrams contributing to the top-pair production at order O(αSα2
W ).

Virtual contributions are characterized by an additional internal exchange of particles. That
is for a 2 → 2 process, the Feynman diagrams of virtual contributions also have two incoming
and two outgoing external lines. The additional line is internal and leads to a single closed loop.
Hereafter, we will often refer to the diagrams of virtual contribution as the 1-loop diagrams. The
1-loop diagrams of the top-pair production at the order O(αSα2

W ) are displayed in Figure 2.3.
Note that also box-like diagrams, depicted in Figure 2.4 are allowed but do not contribute at order
O(αSα2

W ), because their interference with tree-level diagrams is proportional to a trace over a
single colour matrix which is traceless. A careful reader must have noticed that an interference
of a 1-loop diagram with another 1-loop diagram in Figure 2.3 does not correspond to the order
O(αSα2

W ) but to the order O(α2
Sα2

W ) instead. This is because the interferences of 1-loop diagrams
have two additional internal lines and two loops in total. In order to obtain the corrections at order
O(αSα2

W ), one has to interfere 1-loop diagrams with tree-level diagrams. Because the final state
of the tree-level and 1-loop diagrams is the same, the virtual contribution has to be added to the
Born matrix element coherently.

Figure 2.4: Box-like virtual diagrams that are allowed but do not contribute to the top-pair pro-
duction at order O(αSα2

W ). Note that they will contribute at order O(α2
SαW ).

In the case of real contributions the additional line is external. The real contribution to a 2→ 2
process, therefore, is a 2→ 3 process. At NLO, real contributions do not contain any closed loops,
in contrast with virtual contributions, and the amplitude squared is obtained by interfering real
diagrams with real diagrams. A subset of real diagrams is shown in Figure 2.5. Real contributions
have a different final state, as compared to the tree-level and virtual contributions, therefore, it has
to be added to the total partonic cross section incoherently.
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Figure 2.5: A subset of diagrams contributing to the real part of the NLO top-pair production.

In this section, we present the calculation of the real and virtual corrections to top-pair pro-
duction at order O(αSα2

W ). We demonstrate that virtual corrections suffer from ultra-violet (UV)
and infra-red (IR) divergences which can be regulated in dimensional regularization. We then
show how we evaluate the loop integrals by reducing them to a small set of master integrals which
we subsequently calculate using the differential equations method [98]. Finally, we show that the
UV divergences can be treated by the procedure called renormalization. The treatment of the IR
divergences is postponed to Section 2.3.3.

2.3.1 Virtual contributions

Virtual contributions are characterized by an additional internal line and contain closed loops. Since
the particle on this additional line is virtual and because energy-momentum conservation does not
provide any constraint on it, its four-momentum can take on any value and one has to integrate
over all the possibilities. In the points where the modulus of this four-momentum, also referred to
as the loop momentum, approaches zero or infinity the amplitude of the virtual contribution may
become singular.

Figure 2.6: Left: 1-loop initial state fermion line. Right: 1-loop final state fermion line.

Let us illustrate this on two examples related to the EW top-pair production: the trace of the
fermion line of a tree-level diagram interfered with a 1-loop diagram featuring a gluon exchange in
the initial (final) state, depicted on the left (right) diagram of Figure 2.6. The amplitudes squared
of these fermion lines will contain loop integrals

I i =
�

d4l

(2π)2
f i(l, k1, k2)

l2(k1 − l)2(k2 + l)2
=

�
d4l

(2π)2
f i(l, k1, k2)

l2(l2 − 2k1 · l)(l2 + 2k2 · l)
, (2.21)

I f =
�

d4l

(2π)2
f f(l, p1, p2)

l2[(p1 − l)2 + m2
t ][(p2 + l)2 + m2

t ]

=
�

d4l

(2π)2
ff (l, p1, p2)

l2(l2 − 2p1 · l)(l2 + 2p2 · l)
, (2.22)
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where I i(f) denotes a loop integral in the fermion line with a gluon exchange in the initial (final)
state. The 1/q2 factors come from the propagator denominators of the gluon and (initial) final
state quarks (after) before the emission of the gluon. Furthermore, f i(f) are functions of scalar
products of the momenta l, k1, k2, p1 and p2

7. Considering various forms of the functions f i(f) can
lead to explicit un-integrable singularities.

Assume that the function f i does not depend on the loop momentum. If the virtual gluon is
soft, i.e., l → 0, the integrand of I i can be approximated by

− 1
(2π)2

1
l22k1 · l2k2 · l

(2.23)

and the loop integral will be logarithmically divergent as l → 0, because there are four powers of
l in the denominator. These divergences are called the soft infrared (IR) divergences since they
come from the low-momentum region of the loop integral and are caused by the soft emission of a
particle. The loop integral I i is also divergent when the loop momentum becomes collinear to the
momentum of one of the incoming partons. If l ∼ k1, for example, which also implies l2 → 0, then
the integrand of I i is approximately proportional to

− 1
(2π)2

1
l2l22k1 · k2

. (2.24)

The loop integral is again logarithmically divergent. The divergences originating from the configu-
rations in which the loop momentum is collinear with one of the external momenta are referred to
as collinear IR divergences. The loop integral I i is thus IR divergent. The loop integral I f also has
soft divergences but no collinear divergences, due to the fact that l2 → m2

t if l ∼ p1.
Now let us consider the loop integral I f. In the case when the function f f coincides with one of

the propagator denominators, e.g. f f = l2 − 2p1 · l. In the region where l → ∞, the integrand is
proportional to 1/l4 and leads to a logarithmically divergent loop integral. The divergence in this
case comes from the high-momentum region and is denoted as the ultraviolet (UV) divergence.

UV divergences are properly taken care of by the renormalization procedure, while the soft
divergences cancel in the sum of real and virtual contributions to the cross section. Final state
collinear divergences cancel in inclusive quantities, when integrated over the final state phase space
or with a jet definition. Initial state collinear divergences are absorbed into the PDFs via the
procedure of mass factorization.

Although the divergences are subtracted out in the final physical answer, it is useful to require
that divergent integrals be mathematically manageable in the intermediate stages of the calculation.
This can be achieved via dimensional regularization. As we have seen in the previous section, the
criterion that the loop integrals in eqs. (2.21) and (2.22) diverge is closely related to the dimension
of the integral. A generic loop integral �

d4l

(2π)2
1
ln

(2.25)

is in 4 dimensions UV divergent for n ≤ 4 and IR divergent for n ≥ 4. In D < 4 dimensions,
the same integral is UV finite while in D > 4 it is IR finite. If we keep the dimension D of the
loop momentum in the integral general, the divergences will manifest as 1/(D − 4) poles and the
loop integral becomes divergent only as D approaches 4. UV divergent as D → 4 from the minus
direction, IR divergent as D → 4 from the plus direction. Keeping the number of dimensions
general in the calculation of virtual contributions thus regularizes UV and IR divergences.

7In general, there will be also loop integrals with uncontracted lµ, lν on the numerator, so-called tensor integrals,
which we ignore at the moment.
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Let us define our theory in a D-dimensional Minkowski space. The integration momentum l, is
now a D-dimensional momentum, lµ = (l0, l1, . . . , lD−1). The metric gµν is such that gµ

µ = D. The
integration measure is defined as

�
d4l

(2π)2
→ µ4−D

r

�
dDl

(2π)(D−2)
, (2.26)

where we have introduced a mass scale µr which preserves the coupling constants dimensionless.
We also need to extend the Dirac algebra into D-dimensions. The index µ of γµ now runs over

(0, . . . , D−1). If one naively follows the definition of a Clifford algebra in arbitrary dimensions, one
would normalize the γ matrices such that Tr{γµγν} = 2D/2gµν . This, however, is not necessary as
it is sufficient that our D-dimensional generalization reduces to the usual formula in D = 4, and we
are free to choose the normalization to be Tr{γµγν} = 4gµν [99]. The γ5 matrix in 4-dimensions is
defined as

γ5 = − i

4!
�µνρσγµγνγργσ, (2.27)

where �µνρσ is a totally antisymmetric tensor. This is a purely 4-dimensional quantity and its
definition cannot be consistently extended into D-dimensions. The treatment of γ5 in dimensional
regularization, thus, requires more attention. In the calculation of virtual corrections to the top-
pair production we employ a prescription for γ5 relying on the algorithms for trace calculations
implemented in the computer algebra system FORM [96]. In FORM, it is possible to extend the
definition of all relevant objects to D-dimensions, while for the simplification of chains of γ matrices
one can use the algorithms valid in 4-dimensions. For a detailed account on the algorithms used
implemented in FORM and the γ5 prescription we use we refer to [100]. We point out, that
prescription we use has been shown to be consistent with the procedure of renormalization as well
as with the treatment of infrared divergences.

In dimensional regularization, thus, the calculation of 1-loop corrections involves the evaluation
of loop integrals such as

µ4−D
r

�
dDl

(2π)(D−2)

f(l, k1, k2, p1)
Da

1Db
2 . . .

, (2.28)

where, as previously, f is a function of scalar products of the loop momentum l and external
momenta of the problem, in our case k1, k2 and p1 (p2 can be excluded via the momentum con-
servation). Di denote the denominators coming from the propagators of internal particles and, in
general, are of the form D = (l − q)2 + m2, where l − q is the momentum and m the mass on the
corresponding internal line.

The virtual correction to the top-pair production at order O(αSα2
W ) contain the interference

terms of 1-loop diagrams in Figure 2.3 with the tree-level diagrams in Figure 2.1 (e), (f) and in
Figure 2.2, which totals to 18 interference terms plus the charge conjugated combinations. We have
calculated the corresponding traces in D-dimensions using the γ5 treatment described above and
the Feynman rules listed in Appendix B. The virtual contribution to the NLO top-pair production
partonic cross section can be written as

σV =
�

dΦ2L
�

q

Vq(Φ2) =
�

dΦ2L





�

q

�

B,B�

�
V i

q(B, B�) + V f
q(B, B�)

�
+ c.c.



 (2.29)

where, as in the case of the Born matrix elements, we sum over all the possible light quarks in
the initial state q ∈ {d, u, s, c, b}, and dΦ2 and L were defined in Section 2.2. V i(f)

q (B,B�) denotes
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a general interference term of a 1-loop diagram with a tree diagram involving a s-channel B, B �

vector boson respectively and a gluon exchange in the initial (final) state. We sum over all the
combinations of B and B� where B, B� ∈ {γ,Z,Z�}. The expression for the interference term
V i(f)

q (B, B�) is rather lengthy at this stage and we show it in the next section. The interference
terms V i(f)

q contain in total 30 different loop integrals. As discussed above, the virtual contribution
to the total cross section, σV , at this stage suffers from both UV and IR divergences manifesting
as 1/(D − 4) poles.

Similarly as in the case of the Born matrix elements, the virtual corrections were calculated
automatically using the DIANA/QGRAF→ FORM tool chain. For more details, see the discussion
in Section 2.5.

In the following subsections we show how we evaluate the loop integrals and discuss the details
concerning the renormalization procedure used to cure UV divergences.

Evaluation of loop integrals: IBP reduction

Although it is possible to evaluate all the 1-loop integrals in the problem directly, this is not neces-
sary as not all loop integrals are independent. Let us introduce the concept of auxiliary topologies
[101]. An auxiliary topology is a set of independent propagator denominators A = {D1, . . . ,Dn}
of a size equal to the number of independent scalar products in the problem involving the loop
momentum – scalar products of the loop momentum l with itself and with all the independent
external momenta. The propagator denominators have the usual form D = (l − q)2 + m2, where
l−q is the momentum and m the mass of the corresponding particle in the loop. At 1-loop, all these
scalar products can be expressed in terms of the denominators from the auxiliary topology [102].
The notion of auxiliary topologies, thus, allows us to rewrite the functions f i(f) from eqs. (2.21) and
(2.22) in terms of the propagator denominators and write all loop integrals in the following form

I(a, b, . . . ) = µ4−D
r

�
dDl

(2π)(D−2)

1
Da

1Db
2 . . .

, (2.30)

in which only propagator denominators appear in the integrand. The indices a, b, . . . denote the
denominator powers and can in general acquire positive or negative integer values. The denom-
inators with zero powers do not appear in the loop integral and the denominators with negative
powers appear in the numerator.

Figure 2.7: The momenta distribution in 1-loop diagrams of the top-pair production at order
O(αSα2

W ).

Let us assume that the momenta in 1-loop diagrams, entering the virtual contribution of the
top-pair production at order O(αSα2

W ), are distributed as in Figure 2.7. Since the propagator
denominators in the two diagrams differ in the mass of the fermions in the loop, we will need two
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sets of independent denominators, two auxiliary topologies, to rewrite all the 1-loop integrals into
the form of eq. (2.30). From the loop momentum l and three independent external momenta k1,
k2, p1

8 one can form four scalar products l · l, l ·k1, l ·k2, l ·p1 containing the loop momentum. Both
diagrams in Figure 2.7, however, feature only three propagator denominators containing a loop
momentum. In order to be able to construct auxiliary topologies corresponding to these diagrams
one has to complete the sets of propagator denominators figuring in these diagrams by one linearly
independent denominator. We have chosen the auxiliary topologies in the following way

A1 = {D1,1 = l2,D1,2 = (k1 − l)2,D1,3 = (k2 + l)2,D1,4 = (p1 − k1 + l)2}, (2.31)

A2 = {D2,1 = l2,D2,2 = (k1 − l)2 + m2
t ,D2,3 = (k2 + l)2 + m2

t ,D2,4 = (p1 − k1 + l)2}, (2.32)

where the A1 and A2 auxiliary topologies of the left and right diagrams in the Figure 2.7 were
respectively completed by the denominators D1,4 and D2,1. The scalar products l · l, l · k1, l · k2,
l · p1 can be written in terms of the denominators D1,i,D2,i ∈ A1 ∪A2 as follows

l · l = D1,1 = D2,1 , (2.33)

l · k1 =
1
2

(D1,1 −D1,2) =
1
2

�
D2,1 −D2,2 + m2

t

�
, (2.34)

l · k2 =
1
2

(D1,3 −D1,1) =
1
2

�
D2,3 −D1,1 −m2

t

�
, (2.35)

l · p1 =
1
2
�
t̂ +D1,4 −D1,2

�
=

1
2

�
t̂ +D2,4 −D2,2 + m2

t

�
. (2.36)

All loop integrals figuring in the virtual contributions of top-pair production at order O(αSα2
W )

can be thus written as

IA1(i1, i2, i3, i4) = µ4−D
r

�
dDl

(2π)D−2

1
Di1

1,1Di2
1,2Di3

1,3Di4
1,4

, (2.37)

IA2(i1, i2, i3, i4) = µ4−D
r

�
dDl

(2π)D−2

1
Di1

2,1Di2
2,2Di3

2,3Di4
2,4

, (2.38)

where i1, i2, i3, i4 have integers values.
Loop integrals are not independent of each other but related by Integration By Parts (IBP)

identities. In dimensional regularization the integral over a total derivative is zero. Let I � be an
integrand of (2.37) or (2.38). Then the equation

�
dDl

(2π)D−2

∂

∂lµ
�
qµI �(i1, i2, i3, i4)

�
= 0 (2.39)

can be used for the derivation of IBP identities. The momentum q can be either the loop momentum
or one of the independent external momenta. If the auxiliary topology is constructed out of n loop
momenta and m + 1 external lines one can build n(n + m) identities for every integral [103].

The differentiation in eq. (2.39) will typically generate loop integrals with indices shifted by
integer values and multiplied by a coefficient composed out of the external momenta invariants,
dimension D and the denominator powers ii. It is useful to introduce step operators N+(−) which
raise (lower) the denominator power in the loop integral at position N , e.g. 3+I(i1, i2, i3, i4) =

8p2 can be expressed in terms of k1, k2, p1 via the momentum conservation.
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I(i1, i2, i3 + 1, i4). The IBP identities for auxiliary topologies A1 and A2 read

�
(D − 2i1 − i2 − i3 − i4)− (2+i2 + 3+i3)1− − 4+i4(1− + t̂)

�
IA1(i1, i2, i3, i4) = 0 ,�

(i2 − i1) + 1+i12− − 2+i21− + 3+i3(2− − 1− + ŝ)

−4+i4(2− − 1− + t̂)
�
IA1(i1, i2, i3, i4) = 0 ,�

(i1 − i3)− 1+i13− − 2+i2(1− − 3− + ŝ) + 3+i31−

+4+i4(1− − 3− + t̂)
�
IA1(i1, i2, i3, i4) = 0 ,

�
(i2 − i4) + 1+i1(2− − 4− − t̂) + 2+i24− + 3+i3(2− − 4− + ŝ)

+4+i42−
�
IA1(i1, i2, i3, i4) = 0 , (2.40)

�
(D − 2i1 − i2 − i3 − i4)− (2+i2 + 3+i3)(1− −m2

t )− 4+i4(1− + t̂)
�
IA2(i1, i2, i3, i4) = 0 ,

�
(i2 − i1) + 1+i1(2− −m2

t )− 2+i2(1− + m2
t ) + 3+i3(2− − 1− + ŝ−m2

t )

−4+i4(2− − 1− + t̂)
�
IA2(i1, i2, i3, i4) = 0 ,

�
(i1 − i3)− 1+i1(3− −m2

t )− 2+i2(1− − 3− + ŝ−m2
t ) + 3+i3(1− + m2

t )

+4+i4(1− − 3− + t̂)
�
IA2(i1, i2, i3, i4) = 0 ,

�
(i2 − i4) + 1+i1(2− − 4− − t̂−m2

t ) + 2+i2(4− − 2m2
t ) + 3+i3(2− − 4− + ŝ− 2m2

t )

+4+i42−
�
IA2(i1, i2, i3, i4) = 0 .

(2.41)

The IBP identities, in general, form a homogeneous system of linear equations with the integrals
as unknowns. By solving it, one can obtain the expressions of some of the loop integrals in terms
of other loop integrals. One can easily see that IBP identities in eqs. (2.40) and (2.41) form an
under-determined system. It is thus impossible to find a solution for all loop integrals and the
integrals whose value cannot be determined from the system are called the master integrals. In
conclusion, the IBP identities can be used to express most of the loop integrals in the system in
terms of a small set of master integrals.

The procedure of solving systems of IBPs is called reduction. There exist different reduction
methods. In one method a general solution of an infinite system of identities is attempted, i.e.
a solution valid for any integer values of the denominator powers. This solution has the form of
a combination of identities which, lowering and raising exponents, transform the loop integrals
into linear combinations of carefully chosen master integrals [104, 105]. Up to now, this method
has been based on laborious human analysis because a general algorithm is not known9. In the
other method, the so called Laporta algorithm [107], the values of denominator powers and thus
the system of equations is constrained and solved by the usual Gauss elimination algorithm. The
Laporta algorithm can be fully automated and there exist implementations such as AIR [108] or
Reduze [101, 109], which are publicly available.

In the Laporta algorithm, the abstract propagator denominator powers i1, . . . are substituted
by tuples of integer values, called seeds. For a set of seeds one generates a system of equations
which is consequently solved by eliminating integrals via backsubstitution. Let

�
i cjIj = 0 be an

9There exists a proof that the number of master integrals in any system is finite, but the proof is not constructive
and so it does not provide a method of reduction [106].
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equation from the system, it is then transformed into Il =
�

i�=l c
�
jIj and Il is substituted in all the

other equations in the system.
In general, it is desirable for the solution of a reduction to be composed of expressions of integrals

in terms of simpler integrals. Therefore, it is usually the most complex integral that is put on the
l.h.s. before it is backsubstituted. The definition of the complexity of the loop integrals is one of the
basic ingredients of the Laporta algorithm. Naively, a loop integral with less denominators is likely
going to be easier to evaluate than a loop integral with more denominators, thus, the sum of positive
denominator powers is usually one of the characteristics of the loop integrals entering the definition
of the complexity. Note that because the system is constrained, there may be unsolved integrals
which do not belong to the set of master integrals. These integrals would have been reduced had
the set of seeds been larger. The order in which the equations are chosen for elimination greatly
affects the performance of the algorithm. The set of master integrals in a problem and thus its
solution, however, neither depends on the details of the complexity definition nor on the order in
which the equations are processed, provided that the set of unsolved integrals consists only of the
master integrals.

In the calculation of O(α2
W αS) virtual corrections to the top-pair production we have used the

Laporta algorithm to solve the IBPs in eqs. (2.40) and (2.41) to reduce the amplitude squared
containing 30 distinct loop integrals in terms of only 3 master integrals

IA2(0, 1, 0, 0), IA2(0, 1, 1, 0), IA1(0, 1, 1, 0) (2.42)

where the first integral in the list is usually referred to as the massive tadpole (one-point function),
the second one as the massive bubble and the last one as the massless bubble (two-point functions).
For this purpose, we have used the publicly available tool Reduze version 2 [109]. For details on
how Reduze 2 was interfaced with the QGRAF/DIANA → FORM tool chain, we refer to Section
2.5.

The solution of the full system of IBPs of the auxililiary topologies A1 and A2 in eqs. (2.40) and
(2.41) is too lengthy to be shown here. For illustration, however, we show how the loop integral I i

from eq. (2.21) with f i independent of the loop momentum, the so-called massless triangle, can be
reduced to a massless bubble:

I i
��
f i=1

= IA1(1, 1, 1, 0) =
2
ŝ

�
1

D − 4
+ 1

�
IA1(0, 1, 1, 0) , (2.43)

where we have expanded around D → 4.

Evaluation of loop integrals: Virtual contributions after the reduction

The expression for virtual contributions in eq. (2.29) is assembled from interference terms V i
q and

V f
q . After the reduction to master integrals, the expressions for V i(f)

q are relatively short. There are

in total 18 interference terms of loop and tree-level diagrams V i(f)
q;1,0, displayed in Figures 2.3, 2.1

(e) and (f), 2.2. There are also 18 charge conjugated interference terms V i(f)
q;0,1

10. Observe that, if

the couplings are real, V i(f)
q;1,0(B, B�) = V i(f)

q;1,0(B
�, B)∗ = V i(f)

q;0,1(B,B�)∗.

10Note the 1 ↔ 0 permutation in the subscript of V i(f)
q . The subscript 1, 0 refers to interferences of 1-loop and

tree-level diagrams, while 0, 1 to interferences of tree-level and 1-loop diagrams.
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The expression for the general interference terms of the auxiliary topology A1, featuring gluon
exchange in the initial state after the reduction reads:

V i
q = V i

q;1,0(B,B�) = N αS

2π

CF

(2π)2
2α2

W

ŝ2DBDB�s4
W

�
Aq

BAq
B� + Bq

BBq
B�

�
F (B, B�)

�
A

t
BA

t
B�

�
E1

AIA1(0, 1, 1, 0)
�
+ B

t
BB

t
B�

�
E1

BIA1(0, 1, 1, 0)
��

, (2.44)

while the general interference terms of the auxiliary topology A2, featuring gluon exchange in the
final state after the reduction can be written as

V f
q = V f

q;1,0(B,B�) = N αS

2π

CF

(2π)2
2α2

W

ŝ2DBDB�s4
W

�
Aq

BAq
B� + Bq

BBq
B�

�
F (B, B�)

�
A

t
BA

t
B�

�
E2

AIA2(0, 1, 0, 0) + E3
AIA2(0, 1, 1, 0)

�

+B
t
BB

t
B�

�
E2

BIA2(0, 1, 0, 0) + E3
BIA2(0, 1, 1, 0)

��
(2.45)

where the overall normalization N reads

N = (4π)
4−D

2 Γ(3−D/2)

�
µ2

r

m2
t

� 4−D
2

. (2.46)

In the expressions above we have introduced

F (B, B�) =
��

(s−M2
B)(s−M2

B�) + mBmB�ΓBΓB�
�

+i
�
(s−M2

B)mB�ΓB� − (s−M2
B�)mBΓB

��
, (2.47)

and the coefficients E i
A(B) have, in D = 4− 2� dimensional space, the following expansions around

�→ 0:

E1
A =

1
�
f(3, 1, 2) + f(7/8, 1/8, 1/4) + �f(1, 1/4, 1/2), (2.48)

E1
B =

1
�
f(−1, 1,−2) + f(−5/8, 1/8,−5/4) + �f(−1/2, 1/4,−1), (2.49)

E2
A =

1
8m2

tS

�
1
�
8(t̂ + û)f(3, 1, 1)− 2g(5, 2, 8, 1)− �g(2,−2,−2,−2)

�
, (2.50)

E2
B =

t̂ + û

4m2
tS

�
1
�
4f(−1, 1,−2)− f(1, 1, 2)− �f(0,−2, 0)

�
, (2.51)

E3
A =

1
8S

�
1
�
8(t̂ + û)f(3, 1, 2)− ŝf(7, 1, 2)− �ŝf(4, 2, 0)

�
, (2.52)

E3
B =

1
4S

�
1
�
4(t̂ + û)f(−1, 1,−2)− Sf(1,−1, 6)− �Sf(4,−2, 8)

�
, (2.53)

in which

f(a, b, c) = aŝ2 + b(t̂− û)2 + cŝ(t̂ + û), (2.54)

g(a, b, c, d) = f
�
a/ŝ(ŝ2 + dt̂2 + dû2), b(t̂ + û), cŝ

�
+ 6dŝt̂û, (2.55)

S = ŝ + 2(t̂ + û). (2.56)

As usual, in eqs. (2.44) and (2.45), B, B � ∈ {γ,Z, Z�} and the couplings AB, BB are defined as
in eq. (2.19). The interference terms V i(f)

q in eq. (2.29) are equal to V i(f)
q;1,0, while the V i(f)

q;0,1 terms
contribute to the charge conjugated amplitude.
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Evaluation of loop integrals: Master integrals

IBP identities can be used also to obtain differential equations for the master integrals with respect
to invariants of the problem, which can be subsequently employed for their evaluation. We illustrate
this method for the evaluation of master integrals, often referred to as the differential equation
method [98, 110], in the following example. Let us consider an equal mass two-point function, the
massive bubble

IA2(0, 1, 1, 0) = µ4−D
r

�
dDl

(2π)D−2

1
[(k1 − l)2 + m2

t ][(k2 + l)2 + m2
t ]

. (2.57)

By shifting the momenta k1, k2, l as

k1 − l → l�, k2 + l → p + l�, where p = k1 + k2, (2.58)

the massive bubble can be rewritten as

IA2(0, 1, 1, 0) = µ4−D
r

�
dDl�

(2π)D−2

1
(l�2 + m2

t )[(p + l�)2 + m2
t ]

. (2.59)

Using the properties of dimensional regularization and the fact that

pµ d

dpµ
= pµ d

dp2

dp2

dpµ
= pµ d

dp2
(2pµ) = 2p2 d

dp2
, (2.60)

one can write

d

dp2
IA2(0, 1, 1, 0) =

1
2
IA2(0, 2, 1, 0)− 1

2p2
IA2(0, 1, 1, 0)− D − 2

4m2
tp

2
IA2(0, 1, 0, 0) . (2.61)

This is not a differential equation, since the r.h.s. contains not only the bubble IA2(0, 1, 1, 0) but
also IA2(0, 2, 1, 0), the bubble with one of the propagators squared. IA2(0, 2, 1, 0) can, however, be
reduced to the sum of a massive bubble and a massive tadpole

IA2(0, 2, 1, 0) = IA2(0, 1, 2, 0) = − D − 3
p2 + 4m2

t

IA2(0, 1, 1, 0)− D − 2
2m2

t (p2 + 4m2
t )

IA2(0, 1, 0, 0) . (2.62)

One thus obtains the following differential equation

d

dp2
IA2(0, 1, 1, 0) = −1

2

�
1
p2
− D − 3

p2 + 4m2
t

�
IA2(0, 1, 1, 0)

− D − 2
4m2

t

�
1
p2
− 1

p2 + 4m2
t

�
IA2(0, 1, 0, 0) . (2.63)

The discussion of the solution of this differential equation as well as the evaluation of the other
master integrals, the massless bubble IA1(0, 1, 1, 0) and massive tadpole IA2(0, 1, 0, 0) is beyond the
scope of this manuscript. For more details, we refer to the reviews in [98, 111]. For completeness,
however, we show the expressions for the master integrals we have used in the calculation. It is
convenient to map the center of mass energy ŝ on to a dimensionless variable x:

ŝ→ −m2
t

(1− x)2

x
, x ∈ R. (2.64)
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The Laurent series of the master integrals IA1(0, 1, 1, 0), IA2(0, 1, 0, 0), IA2(0, 1, 1, 0), around D → 4,
then up to the order O((D − 4)2) read11

IA1(0, 1, 1, 0) = (2π)2
�
−(D − 4)−1 1

2
+ (D − 4)0

�
1
2

+
1
4
H(0;x) +

1
2
H(1;x)

�

+ (D − 4)1
�
−1

2
+

1
8
ζ(2)− 1

4
H(0;x)− 1

8
H(0, 0;x)− 1

4
H(0, 1;x)− 1

2
H(1;x)− 1

4
H(1, 0;x)

− 1
2
H(1, 1;x)

�

+ (D − 4)2
�
+

1
2
− 1

8
ζ(2)− 1

8
ζ(3) +

1
4
H(0;x)− 1

16
H(0;x)ζ(2) +

1
8
H(0, 0;x) +

1
16

H(0, 0, 0; x)

+
1
8
H(0, 0, 1; x) +

1
4
H(0, 1;x) +

1
8
H(0, 1, 0; x) +

1
4
H(0, 1, 1; x) +

1
2
H(1;x)

− 1
8
H(1;x)ζ(2) +

1
4
H(1, 0;x) +

1
8
H(1, 0, 0; x) +

1
4
H(1, 0, 1; x) +

1
2
H(1, 1;x)

+
1
4
H(1, 1, 0; x) +

1
2
H(1, 1, 1; x)

�
+O((D − 4)3)

�
, (2.65)

IA2(0, 1, 0, 0) = (2π)2m2
t

�
(D − 4)−1 1

2
− (D − 4)0

1
4
− (D − 4)1

1
8

+ (D − 4)2
1
16

+O((D − 4)3)
�

, (2.66)

IA2(0, 1, 1, 0) = (2π)2
�
−(D − 4)−1 1

2
+ (D − 4)0

�
1
2
− 1

4
H(0;x) +

1
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1
4(1− x)

ζ(2)− 1
8
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1
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H(0;x) +
1
8
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H(0, 0;x)
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�
+

1
2
− 1

4(1− x)
ζ(2)− 1

4(1− x)
ζ(3) +

1
8
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1
8
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1
4(1− x)

H(−1;x)ζ(2)

− 1
8
H(−1;x)ζ(2)− 1

4
H(−1,−1, 0; x) +

1
2(1− x)

H(−1,−1, 0; x) +
1
4
H(−1, 0;x)

− 1
2(1− x)

H(−1, 0;x) +
1
8
H(−1, 0, 0; x)− 1

4(1− x)
H(−1, 0, 0; x)− 1

4
H(0;x)

− 1
8(1− x)

H(0;x)ζ(2) +
1

2(1− x)
H(0;x) +

1
16

H(0;x)ζ(2) +
1
8
H(0,−1, 0; x)

− 1
4(1− x)

H(0,−1, 0; x)− 1
8
H(0, 0;x) +

1
4(1− x)

H(0, 0;x)− 1
16

H(0, 0, 0; x)

+
1

8(1− x)
H(0, 0, 0; x)

�
+O((D − 4)3)

�
, (2.67)

11The expressions for the 1-loop scalar integrals can be for example found in [112].
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where ζ is the Euler-Riemann ζ function and we have introduced functions H, denoting the har-
monic polylogarithms (HPLs) [113, 114]. Note that the Laurent series is needed up to the order
O((D− 4)2) because the coefficients in front of the loop integrals in the general interference terms
of the virtual contribution, eqs. (2.44) and (2.45), contain single and double poles 1/(D − 4),
1/(D − 4)2.

The HPLs can be defined as repeated integrations of the following three fundamental12 weight
functions:

f(−1; t) =
1

t + 1
, f(0; t) =

1
t
, f(1; t) =

1
t− 1

. (2.68)

The weight functions have a non-integrable singularity in t = −1, t = 0 and t = 1 respectively. The
related HPLs of weight 1 are

H(−1;x) =
� x

0
dtf(−1; t) =

� x

0

dt

t + 1
= log(x + 1),

H(0;x) =
� x

1
dtf(0; t) =

� x

1

dt

t
= log(x),

H(1;x) =
� x

0
dtf(1; t) =

� x

0

dt

t− 1
= log(1− x), (2.69)

where x is a real variable (x ∈ R), in our case defined as in eq. (2.64). Since the logarithms have
branch cuts on the real axis for x ≤ −1, x ≤ 0, x ≥ 1, respectively, the three HPLs are real
and uniquely defined only for x > −1, x > 0, and x < 1, respectively. Outside these intervals,
the logarithms become complex, and a prescription for the approach to the branch cut has to be
chosen [115].

A HPL with weight 2 or bigger is defined through a repeated integration of the weight function.
If w is a vector with w components consisting of a sequence of -1, 0, and +1, we define the HPL of
weight w + 1 as follows:

H(a,w; x) =
� x

0
dtf(a; t)H(w; t) , a = −1, 0, 1, (2.70)

with the exception of the case in which the weights are only zeroes, in which case it is defined as

H(0w+1; x) =
� x

1
dtf(0; t)H(0w; t) =

1
(w + 1)!

logw+1(x) . (2.71)

The master integrals in eqs. (2.65), (2.66) and (2.67) have been evaluated in a non-physical
negative-energy region x ≤ 0. For negative x, since the logarithm has a branch cut for negative
argument, we must choose how to approach the cut. In order to do that, we add an infinitesimal
imaginary part to the variable x. Let us choose the following prescription13: x → −x� − i0+. The
HPLs of weight zero then become:

H(0;x) = log(x)→ log(−x� − i0+) = H(0;x�)− iπ,

H(1;x)→ −H(−1; x�),
H(−1;x)→ −H(1; x�). (2.72)

12Note the minus sign in the weight +1 with respect to the Remiddi-Vermaseren definition of [113].
13This choice has to be consistent with the � prescription in the propagators.
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The analytic continuation of the HPLs of higher weight can be obtained by making use of the
shuffle algebra

H(a;x)H(mp, . . . ,m1; x) = H(a,mp, . . . ,m1;x)+
+ H(mp, a,mp−1, . . . ,m1;x) + · · ·+ H(mp, . . . ,m1, a;x). (2.73)

For example the HPL of weight two H(1, 1; x) can be decomposed using the shuffle algebra into a
product of two HPLs of weight one:

H(1, 1;x) =
1
2
H(1;x)H(1;x). (2.74)

Using eqs. (2.72) and the shuffle algebra, the prescription x→ −x� − i0+ maps H(1, 1;x) into

H(1, 1;x) = +
1
2
H(1;x)2 → 1

2
H(−1;x�)2 = H(−1,−1; x�). (2.75)

The HPLs are now consistently defined in a physical region.
The final formula for the virtual contribution to the top-pair production at order O(αSα2

W )
is rather lengthy and so we do not show it here. It contains IR and UV divergences and in the
following section we will discuss the procedure used to cure UV singularities, the renormalization.
The treatment of IR divergences is postponed to Section 2.3.3.

Renormalization

In computing higher order corrections one faces the problem of having to deal with UV divergences.
As we have seen in previous sections, these come from the high-momentum region of loop integrals
in the amplitudes squared of the interferences of 1-loop and tree-level diagrams. Measurable quanti-
ties or physical observables, like cross sections, are always finite, however. In this section we discuss
renormalization, a procedure which cures UV divergences by a redefinition of the Lagrangian pa-
rameters and fields of the underlying theory, rendering physical observables calculated at higher
orders finite.

Any Lagrangian contains two types of objects: fields and parameters (couplings, masses, . . . ).
Let p0 be a given parameter of the Lagrangian that enters the expression of an observable O(p0).
One could extract p0 by measuring O(p0). If O(p0) = ∞, however, as is usually the case of
observables calculated at higher orders, the extraction of p0 is impossible. The bare parameters of
the Lagrangian, thus, are not necessarily well defined physical quantities. One may replace the bare
parameters of the Lagrangian, {p0}, by the renormalized ones by multiplicative renormalization.
For each bare parameter p0 we write

p0 = Zpp = p + δp, δp = αδp(1) + · · · , (2.76)

where α is a coupling constant and renormalization constants Zp are different from 1 by loop
corrections. The renormalization constants are, in general, infinite and fixed by a finite set of
renormalization conditions. This decomposition is to a large extent arbitrary. The divergent parts
are determined directly by the structure of the divergences of the one-loop amplitudes while the
finite parts depend on our choice of the renormalization condition which, in turn, defines the
renormalization scheme. It turns out, that in a renormalizable theory it is always possible to find
renormalization constants Zp such that the observables depending on the renormalized parameters
O({Z−1

p p0}) are finite. To be more precise, the parameter renormalization is sufficient to obtain
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finite S-matrix elements if, in addition, wave function renormalization factors for external on-shell
particles are included [116].

By virtue of the LSZ-reduction formula, see for example [117], the renormalized amplitude Mren

can be written in terms of the bare amplitude M and renormalized parameters {p} as

M =
�

n

Z
1/2
WF,nM0({p0}→ {Zpp}), (2.77)

where {p0} is the set of bare Lagrangian parameters and the product runs over all the external
particles. ZWF,n is the wave function renormalization constant of the external particle n, in our
case n ∈ {q, t}, and Zp is the renormalization constant for parameter p. In the case of the top-pair
production corrections at order O(αSα2

W ) neither the coupling constants nor the mass of the top
quark mt, which enter the expression for the amplitude, need to be renormalized. The reason is
that the coupling constants as well as the top quark propagator do not receive any corrections.
That is, O(αSα2

W ) corrections to the top-pair production are LO in αS and αW and the diagrams
in Figure 2.3 do not contain corrections to the top quark propagator. It is sufficient thus, to perform
the wave function renormalization.

We renormalise the incoming light quark wave function in the modified minimal subtraction
(MS) scheme, while the outgoing top quark wave function in the on-shell (OS) scheme. The
corresponding wave function renormalization constants in D = 4− 2� dimensional space read [118]

δZWF,q = 0, (2.78)

δZWF,t = C(�)

�
µ2

r

m2
t

��

CF

�
− 3

4�
− 1

1− 2�

�
, (2.79)

where
C(�) = (4π)�Γ(1 + �), (2.80)

and
ZWF,n = 1 +

αS

π
δZWF,n. (2.81)

The bare matrix element of the NLO top-pair production has the following expansion

M = · · ·+
�αW

π

�2
M0;2 + · · ·+ αS

π

�αW

π

�2
M1;2 + · · · , (2.82)

where we show only the terms relevant for the electroweak top-pair production and its QCD cor-
rections. By substituting the expansions (2.81) and (2.82) and the light quark wave function
renormalization constant in eq. (2.79) into the expression for the renormalized matrix element in
eq. (2.77) we obtain

Mren =
�αW

π

�2
M0;2 +

αS

π

�αW

π

�2
M1;2 +

αS

π

�αW

π

�2
δZWF,tM0;2 + · · · . (2.83)

The renormalized amplitude of the top-pair production at order O(αSα2
W ), thus, can be written as

Mren
1;2 =

αS

π

�αW

π

�2
(M1;2 + δZWF,tM0;2). (2.84)

Since only the virtual contributions are UV divergent, one can write

Vren = V +
αS

π
δZWF,tB, (2.85)
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where B is the Born matrix element calculated in D-dimensions and the virtual contribution V
was calculated in one of the previous subsections. Vren is UV finite but still contains IR soft and
collinear divergences. The treatment of soft and collinear divergences will be discussed in Section
2.3.3.

Final remarks

In this section we have calculated the virtual contribution to the NLO QCD corrections of the
electroweak top-pair production. We have calculated the amplitude squared of the interferences of
1-loop diagrams with tree-level diagrams, depicted in Figures 2.3, 2.1 and 2.2, in D dimensions. All
loop integrals figuring in the virtual corrections have been reduced to a small set of master integrals
using the IBP identities and the Laporta algorithm, and the master integrals have been evaluated
using the differential equation method. The bare virtual QCD corrections to the electroweak top-
pair production can be written as:

σV =
�

dΦ2L
�

q

Vq(Φ2) =
�

dΦ2L





�

q

�

B,B�

�
V i

q(B, B�) + V f
q(B, B�)

�
+ c.c.



 (2.86)

where we sum over all the possible light quarks in the initial state q ∈ {d, u, s, c, b}. The expression
for the general interference terms V i(f)

q (B, B�) after the reduction of loop integral to master integrals
and before the insertion of master integrals can be found in eqs. (2.44) and (2.45). Moreover, we
have treated the UV singularities coming from the high-momentum region of the loop integrals
using renormalization.

Note that, while evaluating the loop integrals in D-dimensions we have introduced a renormal-
ization scale µr to preserve the coupling dimensionless. The total cross section, thus, besides the
dependence on the factorization scale µf picks up a dependence on the renormalization scale µr.

A significant part of the calculation has been performed automatically using publicly available
tools interfaced via a Python script that we have developed for this purpose. The details of the
automation of the calculation will be described in Section 2.5, where we describe how the individual
pieces in a calculation of 1-loop corrections can be calculated automatically.

2.3.2 Real contributions

The real contributions involve the production of an additional final state particle. The NLO real
contribution to a 2 → 2 process is a 2 → 3 process. At NLO, the Feynman diagrams contain an
additional external line but no loops, in contrast to the virtual contributions in which the additional
line leads to a closed loop. Because the real diagrams have a different final state from the Born
contribution the amplitude of the real contribution is obtained by interfering real diagrams with
real diagrams.

In the real contribution to the electroweak top-pair production a new channel opens up, as
compared to the channels which are already present at LO. While 2 → 2 top-pair production at
order O(αSα2

W ) can be initiated only by qq , the 2→ 3 production of a top-pair and an additional
parton can also proceed via the gq and gq channels. The real diagrams of the electroweak top-pair
production are shown in Figures 2.8 and 2.9.

Since the real diagrams do not contain any loops, they are not UV divergent. In general,
however, they suffer from soft and collinear singularities. The real contribution in the qq channel
is IR divergent when the additional gluon becomes soft and/or collinear to one of the incoming
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Figure 2.8: Diagrams for qq initiated contributions to the real part of αSα2
W top-pair production

corrections. Note that B ∈ {γ, Z, Z�}.
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Figure 2.9: Diagrams for gq initiated contributions to the real part of αSα2
W top-pair production

corrections. Note that B ∈ {γ, Z, Z�}.

partons. The gq and gq channels, do not have any soft divergences, but there is a collinear
divergence in some of the diagrams with a photon exchange. In particular, there is a collinear
divergence in the 3rd and 4th diagram in Figure 2.9 when the incoming quark is collinear with
the outgoing light quark. The soft divergences in the qq channel cancel against the divergences
originating from the virtual contribution [119, 120], while the initial state collinear divergences
are cancelled by the collinear counterterms of the mass factorization. The initial state collinear
divergences in the gq and gq channels could also be treated with the mass factorization, had photon
been included into the definition of proton. In addition new photon-initiated subprocesses to top-
pair production would have to be taken into account. Due to time constraints, however, we have
not performed the mass factorization of the gq(q) channels and we regulate the corresponding IR
divergences for the time being by giving a non-zero mass to the photon. The cancellation of soft
divergences and the mass factorization will be in more detail discussed in Section 2.3.3.

Let k1, k2 be the momenta of the incoming partons, p1, p2 the momenta of the outgoing t, t
quarks, respectively, and q the momentum of the additional outgoing parton, a gluon in the qq
channel and a light quark in the gq, gq channels. Five independent scalar products are needed
to fully describe the kinematics of this 2 → 3 process and we choose the following invariants to
parametrize them

ŝ = −(k1 + k2)2, t̂1 = −(k2 − p2)2 + p2
2 , t̂� = −(k2 − q)2 ,

û1 = −(k1 − p2)2 + p2
2 , û� = −(k1 − q)2 . (2.87)

The real contribution contains in total 144 interference terms in the qq channel and as many in
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the gq(q) channels. The total real contribution can be written as

σR =
�

dΦ3LR =
�

dΦ3L
�

q

�

ch

�
Rq,ch(γ, γ) +Rq,ch(Z, Z) +Rq,ch(Z�, Z�)

+
�

B �=B�
Rq,ch(B,B�)

�
, (2.88)

where we integrate over the three particle phase space dΦ3 and B, B� ∈ {γ, Z,Z�}. Moreover, we
sum over all the possible light quarks in the initial state q ∈ {d,u, s, c,b} and over the channels
ch ∈ {qq, gq, gq}. Let us denote the term obtained by interfering a real diagram of the qq channel
with a gluon emitted from the external line with momentum p, see the diagrams in Figure 2.8,
with a real diagram with a gluon absorbed by the external line with momentum p� as Rp,p�

q,qq (B, B�).
Then it is convenient to decompose Rq,qq (B, B�) into interference terms with gluon exchange only
in the initial state, only in the final state or mixed terms:

Rq,qq (B, B�) = Ri
q,qq (B, B�) +Rif

q,qq (B,B�) +Rfi
q,qq (B,B�) +Rf

q,qq (B,B�), (2.89)

where

Ri
q,qq (B, B�) =

�

p,p�∈{k1,k2}
Rp,p�

q,qq (B,B�), (2.90)

Rif
q,qq (B, B�) =

�

p∈{k1,k2},p�∈{p1,p2}
Rp,p�

q,qq (B,B�), (2.91)

Rfi
q,qq (B, B�) =

�

p∈{p1,p2},p�∈{k1,k2}
Rp,p�

q,qq (B,B�), (2.92)

Rf
q,qq (B, B�) =

�

p,p�∈{p1,p2}
Rp,p�

q,qq (B, B�). (2.93)

Because there is no colour flow in the s-channel, the mixed terms Rif
q,qq (B,B�) and Rfi

q,qq (B,B�)

are zero and the expression for Ri(f)
q,qq (B,B�) reads:

Ri(f)
q,qq (B,B�) =

αS

2π
CF

2α2
W
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i(f)
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1 c

i(f)
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���
, (2.94)

where the coefficients c
i(f)
l (ŝ, t̂1, û1, t̂

�, û�, mt) are listed in Appendix C. The denominators Di(f)(B)
depend on the topology and we have:

Di
γ =

1
(ŝ + t̂� + û�)2

, Df
γ =

1
ŝ2

,

Di
Z =

1
(ŝ + t̂� + û� −M2

Z)2 + m2
ZΓ2

Z

, Df
Z =

1
(ŝ−M2

Z)2 + m2
ZΓ2

Z

,

Di
Z� =

1
(ŝ + t̂� + û� −M2

Z�)
2 + m2

Z�Γ
2
Z�

, Df
Z� =

1
(ŝ−M2

Z�)
2 + m2

Z�Γ
2
Z�

. (2.95)
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The couplings AB and BB are defined as in eq. (2.19).
The expressions for the interference terms in the gq and gq channels can be obtained from the

interference term Rq,qq (B, B�) via crossing

Rq,g(k2)q(k1) = −3
8
Rq,q(k1)q(k2)(B,B�)

��
t̂1↔û1,t̂�↔û� , (2.96)

Rq,g(k1)q(k2) = −3
8
Rq,q(k1)q(k2)(B,B�)

��
ŝ↔û�,t̂1→−(ŝ+t̂1+û1+t̂�+û�) , (2.97)

Rq,gq = Rq,gq , (2.98)

where the overall minus sign comes from crossing a single external fermion line from the final to
the initial state and the factor of 3/8 from the colour average over the initial state, since we replace
the initial quark by a gluon. Furthermore, the replacement rules for the invariants can be obtained
by renaming the appropriate momenta in eq. (2.87).

The amplitude squared of the real contribution has been calculated automatically. For a detailed
discussion of the automation, the reader is referred to Section 2.5.

2.3.3 Treatment of soft and collinear singularities

The partonic cross section of a general 2 → n hadron scattering can be at next-to-leading order
schematically written as

σNLO =
�

dΦnLB +
�

dΦnLV +
�

dΦn+1LR (2.99)

=
�

n
dσB +

�

n
dσV +

�

n+1
dσR (2.100)

where Φn is a set of variables characterizing the n-particle phase space, similarly as in the case of
the leading order cross section14, and L is the partonic luminosity introduced in eq. (2.12). The
calculation of the Born matrix elements B as well as the next-to-leading order virtual V and real
R corrections to the total partonic cross section were discussed in Sections 2.2, 2.3.1 and 2.3.2
respectively. In this section we briefly describe the cancellation of IR soft and collinear singularities
among the real and virtual contribution and collinear counterterms.

After renormalization of the 1-loop matrix element all the contributions to the cross section σ
are UV finite. The Born contribution is integrable over the IR region of the phase space, but the
real and virtual contributions to σNLO are separately affected by IR divergences produced by soft
and collinear partons.

According to the Kinoshita-Lee-Nauenberg (KLN) theorem, in a theory with massless fields,
the transition rates are free of any infrared divergence if the summation over the initial and final
degenerate states is carried out [119, 120]. In other words, all the soft divergences and the collinear
divergences from the final state radiation cancel in the sum of the virtual and real contributions to
the partonic cross section. The divergences in the initial state radiation remain uncancelled, be-
cause we do not sum over degenerate states in the initial state. They cancel against similar collinear
divergences present in the QCD corrections to the quark distribution functions, the collinear coun-
terterms.

Although the soft and final state collinear IR divergences cancel in the sum on the right-hand
side of eq. (2.100), the separate pieces have to be regularized before any numerical calculation

14For more details, see eqs. (2.7) and (2.9).
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can be attempted. As discussed in 2.3.1, the 1-loop virtual contributions can be regularized via
dimensional regularization and the divergences appear as 1/(D − 4) and 1/(D − 4)2 poles, where
D denotes the number of dimensions. In the real part, the divergences appear in the integration
over the 1-particle phase-space of the additional external particle. In order to obtain a finite result
we need a procedure to explicitly extract and cancel the divergences among the real and virtual
corrections and collinear counterterms. One of the approaches is to use a subtraction method based
on the Catani-Seymour (CS) dipole formalism. There are other methods like the Frixione-Kunszt-
Signer (FKS) dipole subtraction [121] or methods based on phase space slicing, see for example
[90].

In the following we briefly discuss the factorization formula in eq. (2.1), to clarify the issue of
initial state collinear divergences and their treatment. We then describe the CS dipole formalism
and how we have applied it to cross-check the singularity structure of the virtual contribution to the
NLO QCD corrections to the electroweak top-pair production. This section is only a brief review,
for a more detailed account the reader is invited to consult for example [122, 123].

Factorization

The total cross section of many15 hadronic collisions can be calculated using the factorization
formula

σpp→X =
�

ij

�
fi(x1, µf )fj(x2, µf )dσ̂ij→X(µ2

f ) , (2.101)

where X denotes any hadronic final state, dσ̂ij→X contains the matrix elements and the appropriate
phase space. fi are the parton distribution functions (PDFs) naively describing the probability of
finding a parton i with momentum fraction xi in one of the incoming hadrons.

Figure 2.10: A pictorial representation of the factorization formula in eq. (2.101).

The factorization is schematically depicted in Figure 2.10. The central part of the figure,
between the dashed vertical lines, represents the high-momentum transfer part described by the
short distance cross section dσ̂ij→X(µ2

f ), which is the renormalized partonic cross section after
subtracting the collinear divergences. The remaining parts of Figure 2.10, on the left and right of the
dashed vertical lines, represent the low-momentum transfer part of the hadronic collision described
by the parton distribution functions. The dashed lines represent the scale of the factorization µf –
the separation between the high-momentum and low-momentum parts of the hadronic collision.

15The factorization has been explicitly proven for DIS process [124] but it is believed to be a universal feature of
QCD.
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The factorization scale, µf , is an abstract quantity, not a physical observable, and we are free
to choose its value. In a typical calculation involving a s-channel resonance, the factorization
scale is chosen to be equal to the partonic scale of the hard scattering ŝ in order to avoid large
fixed order logarithms ln(ŝ/µ2

f ) in the hard scattering cross sections. The dependence on the
factorization scales becomes smaller when including higher-orders and would vanish if all orders
could be included. This is not rigorous, but a reasonable estimate of the scale uncertainty is usually
obtained by varying the factorization scale in the interval µ2

f ∈ (ŝ/4, 4ŝ).

g g

Figure 2.11: Left: q → qγ splitting as a part of the hadronic cross section. Right: q → qγ as a part
of PDFs. Note that in this case the photon is integrated in the description of the proton.

Because the factorization scale is not fixed, there is an ambiguity on when the radiation of the
extra particle from the initial state happens. Depending on the value of µf , the position of the
vertical dashed line in Figure 2.10, the additional radiation from the initial state can either be
described by the PDFs or the hard part described by the partonic cross section. For example, in
Figure 2.11, the splitting of q → qγ in the 2 → 3 gq scattering can be considered as the part of
the hard process, but it can also happen in the low-momentum non-perturbative regime. Since
splittings of this kind are universal, we are free to absorb the associated collinear divergences into
the description of the proton into the PDFs, as it is usually done.

In conclusion, the collinear divergences in the initial state are absorbed into the definition of
PDFs. In order to obtain a finite partonic cross section, one has to subtract the collinear divergences
which have been absorbed into the definition of PDFs, often referred to as collinear counterterms.
Thanks to the collinear factorization of QCD amplitudes, this subtraction can be taken care of
within the dipole formalism described in the following section.

Dipole subtraction formalism

The NLO contribution to a partonic cross section of a general 2 → n hadron scattering including
collinear counterterms can be schematically written as

σNLO(p) =
�

n+1
dσR(p) +

�

n
(dσB(p) + dσV(p)) +

�

n
dσC(p) (2.102)

where �

n
dσC(p) =

� 1

0
dx

�
dσB(xp)Γ(x), (2.103)

contains the collinear counterterms. As schematically written in eq. (2.103), it can be shown that
the collinear counterterm dσC is given by the convolution of the Born cross section with a process-
independent factor Γ(x), which is singular in 4 dimensions.

The general idea behind the CS dipole formalism is to introduce an auxiliary cross section
dσA that has the same pointwise singular behaviour (in D dimensions) as dσR. Moreover, dσA
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can be chosen simple enough, such that it is analytically integrable in D dimensions over the
one-parton subspaces that cause the soft and collinear divergences. Thus, without performing
any approximations, dσA is subtracted from the real contribution and added back to the virtual
contribution.

Within the dipole formalism, dσA is constructed by summing over different contributions, named
dipoles. Each dipole contribution describes soft and collinear radiation from a pair of ordered
partons. The first parton is called emitter and the second spectator, since only the kinematics
of the former lead to the IR singularities. The dipole configurations can be thought of as being
obtained by an effective two-step process: using the Born cross section, an n-parton configuration
is first produced and the emitter and the spectator, which contains information on the colour and
spin correlations of the real cross section dσR, is used to balance momentum conservation. The
auxiliary cross section dσA can be symbolically written as

dσA =
�

dipoles

dσB ⊗ dVdipole (2.104)

where the universal dipole factors dVdipole describe the two-parton decays of the emitters and can
be obtained from the QCD factorization formulae in the soft and collinear limits (including the
associated colour and spin correlations, as denoted by the symbol ⊗). The dipole factors dVdipole are
process independent and fully analytically integrable over the one-parton subspaces. The integral
over the auxiliary cross section dσA thus can be written as:

�

n+1
dσA =

�

dipoles

�

n
dσB ⊗

�

1
dVdipole =

�

n

�
dσB ⊗ I

�
, (2.105)

where the universal factor I,

I =
�

dipoles

�

1
dVdipoles, (2.106)

contains all the poles necessary to cancel those of dσV .
The final NLO partonic cross section can be written as:

σNLO(p) = σNLO{n+1} + σNLO{n} +
� 1

0
dxσNLO{n}(x;xp)

=
�

n+1


dσR(p)−

�

dipoles

dσB(p)⊗ dVdipole




+
�

n

�
dσB(p) + dσV(p) + dσB(p)⊗ I

�

+
� 1

0

�

n
dσB(xp)⊗ (P + K)(x). (2.107)

The contributions σNLO{n+1} and σNLO{n}, with (m + 1)-parton and m-parton kinematics, respec-
tively, are separately finite and integrable. The integrated dipoles I now also contain the singular
pieces of the collinear counterterms cancelling the initial state collinear divergences in the virtual
part. The finite remainder after cancellation of the singularities of the collinear counterterm, so
called collinear remnants, are contained in the last term on the r.h.s. of eq. (2.107). This term
involves a cross section σNLO{n} with n-parton kinematics and an additional one-dimensional in-
tegration with respect to the longitudinal momentum fraction x. This integration arises from the
convolution of the Born cross section with dσB(xp) with x-dependent universal functions P and K.
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The expressions for the dipoles dVdipole, the universal functions P and K, and the integrated
dipoles I can be found in [122]. If the separate contributions to the NLO cross section, the Born
matrix element B, the renormalized virtual corrections V, the real part R and the full colour
structure of the process is known, the calculation of the finite terms in σNLO{n+1}, σNLO{n} as well
as

� 1
0 dxσNLO{n}(x;xp) can be and has been fully automated, see the discussion in the following

section.
To ensure the consistency of the Born matrix element with the virtual part, we have explicitly

verified the cancellation of the singularities in dσV against dσB ⊗ I manually. As we will discuss
in one of the following sections, this consistency cross-check has not been automated yet. For
completeness, we list the expressions for the integrated dipoles I required for this task.

Before proceeding, let us introduce the square of a colour correlated Born amplitude with n

final state partons,
��Bj,k

��2, as follows

���Bj,k
���
2

=
�
Ba1...bj ...bk...an

�∗
T l

bjaj
T l

bkak
Ba1...aj ...ak...an , (2.108)

where T l
ajbj

= (Tj)l is the colour matrix associated with parton j. For gluon we have T l
cb = ifclb, for

quark and anti-quark T l
αβ = tlαβ , T l

αβ = −tlβα respectively. The colour correlated Born amplitude
is a matrix capturing the colour connections or correlations between the external legs of a given
process. For example, in the case of electroweak top-pair production there is no colour connection
between the initial and final state partons and so the corresponding elements of the colour correlated
Born amplitude are zero, as will be shown in the following section.

The colour charge algebra for the product (Ti)l(Tj)l ≡ Ti ·Tj is:

Ti ·Tj = Tj ·Ti if i �= j, T 2
i = Ci, (2.109)

where Ci is the quadratic Casimir operator in the representation of particle i and we have CF =
(N2

c − 1)/(2Nc), CA = Nc where Nc is number of colours.
The integrated dipole I for a process with two massive final state partons i, j and two initial

state partons a, b reads16:
I = Im + Ia + Ib + I0, (2.110)

where I0 contains dipoles corresponding to the massless initial state partons, Im the dipoles of the
massive final state partons and Ia = Ib = 0 if the colour connection between the initial and final
state partons vanish. Dimensional regularized expressions for the singular parts of Im and I0 in
D = 4− 2� dimensional space read

I0 = −αS

2π

(4π)�

Γ(1− �)
1
T2

a

Ta ·Tb

�
µ2

ŝ

�� �T2
a

�2
+

γa

�

�
+ a↔ b (2.111)

Im = −αS

2π

(4π)�

Γ(1− �)
1
T2

j

Tj ·Tk

�
T2

j

�
µ2

ŝ

�� log ρ

vjk

1
�

+
γa

�

�
+ j ↔ k (2.112)

(2.113)

where Γ is the usual Euler function and γa = 3/2CF for quarks. Furthermore, ρ and vjk are defined
as

vjk =

�
1−

p2
jp

2
k

(pjpk)2
, ρ =

�
1− vjk

1 + vjk
. (2.114)

16See eqs. (6.66), (6.16), (6.18), (6.20), (5.30), (6.28) and (6.32) in [122].
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In electroweak top-pair production these simplify to

vjk =
(1− x)(1 + x)

1 + x2
, ρ = x, (2.115)

in terms of the variable x introduced in eq. (2.64).
After subtracting the Born matrix element, B, multiplied by the singular pieces of integrated

dipoles I from the expression for the renormalized virtual corrections, Vren, we have obtained a
finite expression

Vfin = Vren + B ⊗ I. (2.116)

Note that, Vfin does not constitute the full finite expression for the virtual contribution to the EW
top-pair production, because the finite terms of the dipole subtraction are not included. Vfin does,
however, correspond to the virtual amplitude which has to be implemented in the Monte Carlo
event generator POWHEG BOX, discussed in detail in the following section.

In the following section, we will briefly discuss, among others, how the automation of the
treatment of IR soft and collinear divergences is implemented in the Monte Carlo event generator
POWHEG BOX.

2.4 Implementing next-to-leading order top-pair production in a
Shower Monte Carlo

In order to obtain numerical results for the electroweak top quark production and its NLO QCD
corrections at hadron colliders, we have implemented the formulae calculated in the previous sec-
tions in a Monte Carlo event generator POWHEG BOX [72]. The Positive Weight Hardest Emission
Generator (POWHEG) method, implemented in the POWHEG BOX, allows for a matching of QCD
corrections with a parton shower algorithm implemented in various publicly available Shower Monte
Carlo (SMC) event generators like Pythia [60] or Herwig [70].

SMC codes usually aim at a complete description of particle collisions from the high-energy per-
turbative domain down to the detector level17, which is, after all, what is observed by experiments.
Fixed order calculations, such as the one presented in the previous section, have by definition a
fixed, in most cases, low number of final state particles. This contrasts with the large number of
final state particles in hadronic collisions. Moreover, even at next-to-leading order, in some regions
of the phase space higher-order terms are particularly enhanced and must be accounted for by
resummation.

Besides a large library of SM processes implemented at leading order accuracy, SMC codes
include the so-called parton shower algorithm, in which higher-order low-angle radiation of initial
and final state particles is generated automatically. Furthermore, they usually also implements
the parton-hadron conversion, based on a phenomenological model of hadron formation, and the
subsequent decay of unstable hadrons. Although, one could simply convolute the formulae obtained
in the previous sections with the parton luminosities, to obtain the total cross section or even some
distributions calculated from the kinematics of the final state top-pair, an implementation in a SMC
code, by virtue of parton shower, hadronization and automatic decay of unstable particles, offers
a description of the electroweak top-pair production and its NLO QCD corrections much closer to
what is observed in detectors.

17Excluding the simulation of detector effects that can be performed using detector simulation tools such as
DELPHES [125].
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At next-to-leading order, the usual formulation of the parton shower algorithm suffers from a
conceptual problem. In a parton shower, the first and consequent initial and final state radiation
is automatically generated in the collinear approximation. Next-to-leading order matrix elements
include the description of the first radiation valid also away from this limit. If one would interface
events, generated using a NLO Monte Carlo event generator, with the parton shower algorithm, the
first radiation would be included “twice”. This problem is known under the name of overcounting
and can be overcome by consistently matching the NLO matrix elements with the parton shower.

In this section we describe the implementation of the electroweak top-pair production including
its NLO QCD corrections in the POWHEG BOX framework compatible with the parton shower algo-
rithm. The events generated using POWHEG BOX can be passed to any generic SMC code capable
of performing parton showers on events generated in an external event generator. We start by re-
viewing the basics of the parton shower algorithm. We then briefly discuss the POWHEG method
and its implementation in the POWHEG BOX framework. Finally, we present the implementation of
the top-pair production up to order O(αSα2

W ), calculated in the previous sections, in POWHEG BOX.
In the last section we show numerical results for NLO QCD corrections to the electroweak top-pair
production generated using POWHEG BOX and showered with Pythia.

2.4.1 Basics of QCD parton showers

Let us start by looking at matrix elements in regions of the phase space close to collinear configura-
tions. It can be shown that the squared amplitudes near the collinear limit factorize. Moreover, this
factorization is of the form of amplitudes for the production of the parent parton times a splitting
factor that only depends on the particular splitting involved and on its kinematics. Furthermore,
in as much as the phase space can always be written in factorized form the aforementioned fac-
torization applies to the whole cross section. Given a tree-level amplitude with n + 1 final state
particles and assuming that a final state quark goes collinear to a final state gluon, one can write

|Mn+1|2 → |Mn|2dΦn ×
αS

2π

dt

t
P̂q,qg(z)dz

dφ

2π
, (2.117)

where Mn+1 and Mn are the amplitudes for the n + 1 and n particle processes respectively, P̂q,qg

is the Altarelli-Parisi splitting function for the q → qg splitting and variables t, φ and z describe
the kinematics of the splitting. The n-particle phase space is defined as

dΦn = (2π)4δ4

�
q −

n�

i=1

pi

�
n�

i=1

d3pi

(2π3)2p0
i

. (2.118)

This factorization can be pictorially represented as

where the amplitudes are represented by gray blobs. Similar factorization formulae hold also for
the g → gg and g → qq collinear splittings where the appropriate splitting function has to be used.
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In eq. (2.117), the variable t vanishes in the collinear limit, z yields the momentum fraction of
the outgoing quark relative to the momentum of the quark that has split in the collinear limit

k → z(k + l) for t→ 0, (2.119)

and φ is the azimuthal angle of the plane spanned by
−→
k ,
−→
l with respect to the

−−→
k + l direction.

There is an ambiguity in the definition of t and the usual candidates are the virtuality, t = (k + l)2,
the transverse momentum, t = k2

⊥, or the angular variable, t = E2φ2 where E is the energy of the
parton before splitting. The factorization of eq. (2.117) is valid as long as the value of t between
the two collinear partons is the smallest of the whole amplitude.

In order to describe an exclusive final state, one would like to sum the perturbative expansion
to all orders in αS . This is, clearly, an impossible task. However, if we limit ourselves to an ordered
sequence of the most singular terms in the perturbative expansion, in this case to all terms that
carry the collinear singularities dt/t, we can apply the factorization of eq. (2.117) recursively

|Mn+2|2 → |Mn|dΦn ×
αS

2π

dt�

t�
P̂q,qg(z�)dz�

dφ�

2π
× αS

2π

dt

t
P̂q,qg(z)dz

dφ

2π
× θ(t� − t) , (2.120)

where θ is the usual Heaviside function. The recursive collinear factorization is sometimes also
called the leading-log approximation18. Take for example the qg splitting, a real emission cross
section for n splittings can be written as

σLOαn
S

�
dt1
t1

· · · dtn
tn

θ(Q2 > t1 > · · · > tn > λ2) = σLO 1
n!

αn
S logn Q2

λ2
, (2.121)

where σLO is the LO cross section, Q its hard scale, λ an infrared cut-off and the function θ is equal
to 1 if its argument is true and zero otherwise.

Figure 2.12: Pictorial representation of the recursive application of the collinear factorization for-
mula in eq. (2.120).

On can easily see that when the gluon becomes collinear to the quark, eq. (2.121) will have a
divergence as t → 0. Even though, the integration is limited by a physical cut-off, e.g. ΛQCD, the
presence of the divergence implies that the real cross section is sensitive to low energy phenomena,
which cannot be described by perturbative QCD. Fortunately, the infrared safety of the total cross
section is guaranteed if virtual corrections are included, as the IR divergences cancel in the sum
of real and virtual contributions. Therefore, for the reasons of consistency, one also has to include
virtual contributions.

The virtual contributions are implemented in the parton shower algorithm via Sudakov form
factors. If we interpret the integral of the splitting factor

dP =
αS

2π

dt

t

�
dφ

2π

�
P̂i,jl(z)dz (2.122)

18Leading-log refers to a single power of logarithmic enhancement for every power of αS .
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as the probability of a branching i→ jl in the phase space element [t, t+ dt], 1− dP represents the
probability of no branching in the same interval. Diagrammatically, the probability of no branching
must correspond to the amplitude squared of the sum of all diagrams with no real contribution, i.e.
the amplitude squared of the virtual contributions to all orders in the leading-log approximation.

Provided an event has been generated according to the LO matrix elements, the parton shower
algorithm proceeds as follows:

• For each external coloured parton in the hard interaction, all possible tree-level graphs that
can arise from it, obtained by letting the quark split into a qg pair, the gluon split into a gg
or a qq pair for any quark flavour, are considered. To each splitting occurred, one associates
a t, z and φ value, which are defined by the splitting kinematics.

• The previous step is iterated as many times as desired, for each possible coloured leg present
at any stage. One imposes that the value of t for splitting near the hard process must be
less than the hard process scale Q2, and all subsequent values of t are in decreasing order as
proceeding towards the branches of the tree graph. Then:

– Each vertex obtained in this way has the weight

θ(t− t0)
αS(t)
2π

dt

t
P̂i,jl(z)dz

dφ

2π
, (2.123)

where αS(t) is the QCD running coupling evaluated at the scale t.

– Each line in the graph has weight Δi(t�, t��), where t� is the t value associated with the
upstream vertex, t�� with the downstream vertex, and

Δi(t�, t��) = exp


−

�

(jl)

� t�

t��

dt

t

� 1

0
dz

αS(t)
2π

P̂i,jl(z)


 . (2.124)

In the case of last line, t�� is replaced by the infrared cutoff t0. The weights Δi(t�, t��) are
called Sudakov form factors and represent all the dominant virtual corrections.

• Given the initial hard parton momenta, and the values of the t, z and φ variables at each
splitting vertex, one reconstructs all the momenta in the tree graph. Since a parton line
followed by a splitting process acquires a positive virtuality larger than its mass, the momenta
of the partons must be adjusted so that the momentum is conserved.

The result of the parton shower algorithm applied to a tree process can be pictorially represented
as a tree of splittings with decreasing angles, such that at a given splitting vertex, the splitting
angle is by a factor αS smaller than the previous one. At the point when t reaches the ΛQCD scale,
the hadronization algorithm is invoked.

Up until now, we have ignored the issue of soft IR singularities in the parton shower. In fact,
besides having collinear singularities, QCD amplitudes manifest soft singularities associated to soft
gluon emissions at any angle and are associated with phase space regions in which z → 0 or z → 1.
The proper treatment of soft singularities is implemented in publicly available SMC tools; for
brevity we do not discuss it here and refer the reader to [126] for a detailed discussion.

We have discussed that additional low angle QCD emissions can be generated automatically
using the parton shower algorithm. A parton shower, thus, besides allowing the simulation of
hadronization effects, effectively resums the contribution in the near collinear regions to all orders
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of the perturbation theory. The parton shower in its usual formulation cannot be applied to events
generated using NLO QCD Monte Carlo event generators. However, novel methods have been
developed in the past decade allowing for its consistent matching with NLO QCD corrections, as
we will see below.

2.4.2 Matching next-to-leading order QCD corrections with Shower Monte Car-
los

Next-to-leading order QCD computations have become standard tools for phenomenological stud-
ies at hadron colliders. While leading order calculations, implemented in the context of general
purpose SMC programs, have been the main tools used in experimental analyses, SMCs include
dominant QCD effects at the leading logarithmic level, but do not provide NLO accuracy. For the
purpose of precision measurements, a LO SMC approach used to simulate hadronic collisions down
to the detector level, is lacking accuracy. When using the SMC output to correct the measure-
ment for detector effects the comparison with NLO calculations has limitations leading to larger
uncertainties. For this reason, it is clear that SMC programs should be improved by including
next-to-leading logarithmic accuracy.

The problem of merging NLO calculations with parton shower simulations is basically that of
avoiding overcounting, because the SMC programs do implement approximate NLO corrections
already. Recently, two acceptable solutions were proposed. First, the MC@NLO [127] method
relying on the subtraction from the exact NLO cross section its approximation as implemented in
the SMC program. This method is SMC dependent and can lead to events with negative weights
because, in general, the exact NLO cross section minus the SMC subtraction terms does not need to
be positive. Infrared safe cross sections, however, are always positive. Second, a way to overcome
the problem of negative weighted events was proposed, namely the POWHEG (Positive Weight
Hardest Emission Generator) method [71]. Moreover, the POWHEG method does not depend
on the details of the implementation of the parton shower algorithm, in contrast with MC@NLO,
and thus is not SMC specific. In the POWHEG method the hardest emission is generated first
and its output can be interfaced to any SMC program that is either pT -ordered or allows the
implementation of a pT veto.

In the next two sections we review the basic building blocks of the POWHEG method. We
will introduce all the concepts required for the understanding of the POWHEG BOX framework and
show how soft and collinear singularities are dealt with in the POWHEG method. Then, we briefly
discuss the implementation of the POWHEG method within the POWHEG BOX framework.

POWHEG method: Notations

We recall that the total cross section of a 2→ n hadronic collision can be written at NLO as:

σNLO =
�

dΦnL [B(Φn) + Vren(Φn)] +
�

dΦn+1LR(Φn+1)

+
�

dΦn,1LG1(Φn,1) +
�

dΦn,2LG2(Φn,2), (2.125)

where B, Vren and R respectively denote the squared Born matrix element, the renormalized virtual
contribution and the real contribution, and L is the product of parton distribution functions. The
collinear counterterms for each of the incoming partons labeled 1 and 2, cancelling the initial state
collinear singularities, are contained in the terms G1 and G2. The n-body final state phase space
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can be described by a set of variables

Φn = {x1, x2; p1, . . . , pn}, (2.126)

with its differential defined as

dΦn = dx1dx2dΦn(x1K1 + x2K2; p1, . . . pn) , (2.127)

where dΦn is the usual n-particle phase space, Ki and xi are the momenta of the incoming hadrons
and the momentum fractions of the incoming partons respectively, while pi are the momenta of final
state particles. The phase spaces in the integrals of the collinear counterterms, Φn,1(2), effectively
correspond to n-body final state configurations, except for the energy degree of freedom of the
parton collinear to the beam

Φn,1 = {x1, x2, z; p1, . . . , pn}, zx1K1 + x2K2 =
�

i

pi, (2.128)

Φn,2 = {x1, x2, z; p1, . . . , pn}, x1K1 + zx2K2 =
�

i

pi, (2.129)

where z is the fraction of momentum of the incoming parton after radiation.
Let us consider a generic observable O, a function of the final state momenta. Its expectation

value is given by

�O� =
�

dΦnLOn(Φn) [B(Φn) + Vren(Φn)] +
�

dΦn+1LOn+1(Φn+1)R(Φn+1)

+
�

dΦn,1LOn(Φn,1)G1(Φn,1) +
�

dΦn,2LOn(Φn,2)G2(Φn,2), (2.130)

where On and On+1 are the expressions of the observable O in terms of n and (n + 1) final state
particle momenta. O is required to be an infrared-safe observable. Note that thanks to the infrared
safety, the observable O in the integrals over the collinear counterterms depends on the underlying
n-body configuration Φn,1(2) of the (n+1)-body collinear configuration of the real radiation Φn,1(2),
where

Φn,1(2) = {x̄1, x̄2; p1, . . . , pn}, x̄1(2) = zx1(2), x̄2(1) = x2(1). (2.131)

Furthermore, the Born contribution is required to be infrared finite. Under these assumptions, the
real matrix elements are finite in the whole phase space dΦn+1, except for regions that correspond
to soft and collinear emissions. Moreover, the divergences of each term on the r.h.s. of eq. (2.130)
cancel in the sum, such that the total cross section is finite. The integrals in eq. (2.130), however,
are separately divergent and thus not suitable for numerical evaluation. In the following, we will
show how one can overcome this problem and turn the expression for the expectation value into a
sum of integrals that are separately finite and numerically integrable.

POWHEG method: Dipole subtraction

The real (n + 1)-body final state configuration, Φn+1, in general contains multiple collinear and
soft configurations. Let us now assume that Φn+1 can be decomposed into α singular regions, each
of them containing at most one singular configuration, via a mapping M (α)

Φ̃(α)
n+1 = M (α)(Φn+1), Φ̃

(α)
n+1 = [{x̃1, x̃2; p̃1, . . . , p̃n+1}]α = {x̃(α)

1 , x̃
(α)
2 ; p̃(α)

1 , . . . , p̃
(α)
n+1}, (2.132)
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where [. . . ]α means “in the context of a singular region α”. As we have seen in Section 2.3.3, the
infrared singularities can be treated within a dipole subtraction formalism. Let C (α) be a function
containing the real counterterms for a singular region α. The real counterterms have the property
that for any infrared-safe observable On+1(Φn+1), vanishing fast enough if Φn+1 approaches two
singular regions at the same time, the function

R(Φn+1)On+1(Φn+1)−
�

α

C(α)(Φn+1)On+1

�
M (α)(Φn+1)

�
(2.133)

has at most integrable singularities in the Φn+1 space.
The contribution to any observable O coming from the real radiation can be rewritten using

the real counterterms in the following way
�

dΦn+1LOn+1(Φn+1)R(Φn+1) =
�

α

�
dΦn+1

�
L̃On(Φn)C(Φn+1)

�
α

+
�

dΦn+1

�
LOn+1(Φn+1)R(Φn+1)−

�

α

�
L̃On(Φn)C(Φn+1)

�
α

�
, (2.134)

where L̃ = L(x̃1, x̃2). The second term in the r.h.s. of eq. (2.134) is integrable in D = 4 dimensions
while the first term is divergent. In order to deal with it, we introduce, for each α, the (n+1)-body
phase space parametrization

Φn+1
(α)⇐⇒

�
Φ(α)

n ,Φ(α)
rad

�
, dΦn+1

(α)⇐⇒ dΦ(α)
n dΦ(α)

rad (2.135)

where Φ(α)
n is the n-body underlying configuration of the (n + 1)-body real configuration and Φ(α)

rad

describes the radiation process. The phase space is, thus, in each singular region decomposed
into the phase space of the underlying Born configuration and the phase space of the additional
emission.

The underlying configuration of a region α containing one singular configuration, described by
Φ̃(α)

n+1, can be obtained as follows:

• If α ∈ S (i.e. it is a soft region), Φ(α)
n is obtained by deleting the zero momentum parton.

• If α ∈ FSC (i.e. it is a final state collinear region), Φ(α)
n is obtained by replacing the momenta

of the two collinear partons with their sum.

• If α ∈ ISC (i.e. it is a initial state collinear region), Φ(α)
n is obtained by deleting the radiated

collinear parton, and by replacing the momentum fraction of the initial state radiating parton
with its momentum fraction after radiation.

The underlying configurations Φn,1(2), in eq. (2.130), are of the ISC type. Note that the procedure,
outlined above, implies that the momentum fractions x1, x2 of the underlying n-body configuration
are identical to the original momentum fractions x̃1, x̃2 of the (n + 1)-body configuration in S and
FSC regions, while they differ in ISC regions.

The first term in the r.h.s. of eq. (2.134) can then be, depending on the type of the singular
region, written as

� �
dΦn+1L̃On(Φn)C(Φn+1) =

�
dΦnL̃On(Φn)C(Φn)

�

α∈{FSC,S}
, (2.136)

� �
dΦn+1L̃On(Φn)C(Φn+1) =

�
dΦn

dz

z
L̃On(Φn)C(Φn, z)

�

α∈{ISC}
, (2.137)
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where C are the integrated dipoles
�
C(Φn) =

�
dΦradC(Φn+1)

�

α∈{FSC,S}
, (2.138)

�
C(Φn, z) =

�
dΦradC(Φn+1)zδ(z −

x1(2)

x̃1(2)
)
�

α∈{ISC1(2)}
, (2.139)

and where the parton distribution functions for the underlying configurations of singular regions
can be defined as

L̃ = L(x̃1, x̃2) =

�L(x1, x2) for α ∈ {FSC,S}
L(x1/z, x2) for α ∈ {ISC1}
L(x1, x2/z) for α ∈ {ISC2}

(2.140)

thanks to the way the S and FSC regions are constructed and thanks to the delta function in
eq. (2.139) in the case of ISC regions.

The choice of the mapping M (α) and the counterterms C(α) should be such that the integrals in
eqs. (2.138) and (2.139) are easily performed analytically in D dimensions so that the divergences
appear as 1/(D − 4) poles, similarly to the singularities in virtual corrections.

After the dipole subtraction the expectation value for the observable O in eq. (2.130) becomes

�O� =
�

dΦnLOn(Φn) [B(Φn) + V(Φn)]

+
�

dΦn+1

�
LOn+1(Φn+1)R(Φn+1)−

�

α

�
L̃On(Φn)C(Φn+1)

�
α

�

+
�

dΦn,1L̃On(Φn)Gfin
1 (Φn,1) +

�
dΦn,2L̃On(Φn)Gfin

2 (Φn,2), (2.141)

where we have used the fact that it is always possible to write

G1(2)(Φn,1(2)) +
�

α∈{ISC1(2)}
C(α)(Φn,1(2)) = Gfin

1(2)(Φn,1(2)) + δ(1− z)Gdiv
1(2)(Φn) (2.142)

where the Gfin
1(2)(Φn,1(2)), often referred to as collinear remnants, are finite and

V = Vren +
�

α∈{FSC,ISC}
C(α)(Φn) +

2�

i=1

Gdiv
i (Φn), (2.143)

in which the 1/(D − 4) poles cancel. Note that in eq. (2.143) the n-body underlying configuration
Φn was identified with the n-body Born configuration Φn. All the integrals in eq. (2.141) are now
finite in 4 dimensions and can be integrated numerically.

POWHEG method: Real counterterms

Before proceeding, let us also briefly outline how real counterterms can be generated from real
matrix elements automatically. The second term in eq. (2.141), corresponding to the sum of real
contribution and real counterterms, can be simplified in the following way. Let us for simplicity
assume that there is just one singular region. In 4 dimensions, we describe the kinematics of the
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emitted parton (with momentum q) in the center of mass (CM) frame of the incoming partons with
the following variables

ξ = 2q0/
√

ŝ, y = cos θ, φ, (2.144)

where ŝ is the partonic CM energy, θ is the polar angle of the emitted parton relative to a reference
direction (typically another parton), and φ is an azimuthal angle around the same reference direc-
tion. The soft and collinear singular regions are associated with ξ → 0 and y → 1 respectively. In,
D = 4− 2� dimensions, we can write

dD−1q

2q0(2π)D−1
=

ŝ1−�

(4π)D−1
ξ1−2�(1− y)−�dξdydΩD−2, (2.145)

where

dΩD−2 = (sinφ)−2�dφdΩD−3,

�
dΩD−3 =

2π
D−3

2

Γ
�

D−3
2

� . (2.146)

If we write the real contribution as

R =
1
ξ2

1
1− y

[ξ2(1− y)R], (2.147)

then [ξ2(1−y)R] is regular for ξ → 0 and y → 1. The phase space integral of R is infrared divergent
and the singular part of the integration is proportional to [71]

� 1

−1
dy(1− y)−1−�

� 1

0
dξξ−1−2�g(ξ, y) = − 1

2�

� 1

−1
dy(1− y)−1−�g(0, y)

−
� 1

0
dξ

�
2−�

�

�
1
ξ

�

+

− 2
�

log ξ

ξ

�

+

�
g(ξ, 1)

+
� 1

−1
dy

� 1

0
dξ

�
1
ξ

�

+

�
1

1− y

�

+

g(ξ, y) +O(�), (2.148)

where g(ξ, y) = ξ2(1− y)R and we have defined the + distributions in the usual way

� 1

0
dξF (ξ)+f(ξ) =

� 1

0
dξF (ξ)(f(ξ)− f(0)), where F ∈

�
1
ξ
,
log ξ

ξ

�
, (2.149)

� 1

−1
dy

�
1

1− y

�

+

f(y) =
� 1

−1
dy

f(y)− f(1)
1− y

. (2.150)

The first and second terms in eq. (2.148), after integration in y and φ, give a contribution with
the same structure as the virtual term, with which they are combined. That is, the first and second
terms correspond to the integrated dipoles. It is found that the last term, of the form

� 1

−1
dy

� 1

0
dξ

�
1
ξ

�

+

�
1

1− y

�

+

g(ξ, y) =
� 1

−1
dy

� 1

0
dξξR̂, (2.151)

where

R̂ =
1
ξ

��
1
ξ

�

+

�
1

1− y

�

+

[ξ2(1− y)R]
�

(2.152)
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corresponds to the sum of the real contribution and the real counterterms. The expectation value
of the observable O, thus, can be written as:

�O� =
�

dΦnLOn(Φn) [B(Φn) + Vfin(Φn)] +
�

dΦn+1LOn+1(Φn+1)R̂(Φn+1)

+
�

dΦn,1L̃On(Φn)Gfin
1 (Φn,1) +

�
dΦn,2L̃On(Φn)Gfin

2 (Φn,2). (2.153)

By handling the + distributions in R̂ according to the prescriptions (2.149) and (2.150) one auto-
matically generates the real counterterms, provided the variables ξ and y appear in the phase space
parametrization. If more than one singular region is present, the real cross section is decomposed
into a sum of terms, each of them having singularities in no more than one singular region. For
each term, the phase space is parametrized in such a way that the variables ξ and y, appropriate
to that particular singular region, are present. Note that, in this procedure, the expression for R
in 4-dimensions is sufficient, since one can use the collinear approximation in the y → 1 limit in
order to obtain the singular parts of R in D-dimensions.

POWHEG method: Generation of hardest emission

The embedding of a NLO computation into a Monte Carlo framework aims at reaching NLO
accuracy for inclusive observables, maintaining the leading logarithmic accuracy of the shower
approach. This requires the hardest emission to be generated according to a distribution correct
also away from the collinear direction and that the integrated quantities around the soft and
collinear directions have the NLO accuracy. Within the POWHEG method, the generation of the
hardest emission is performed first, using the full NLO accuracy19, and using the SMC to generate
the subsequent radiation.

In a SMC, the event generation starts from a kinematic configuration which is generated accord-
ing to an exact LO computation. The final state multiplicity is subsequently iteratively increased
by letting each initial and final state parton branch into a couple of partons with a probability
related to a Sudakov form factor. Thus, at a given stage of the shower, the scattering process
is described by m partons. During the following splitting into a pairs of partons, generating an
(m + 1)-body final state, the algorithm defines a mapping

Φn+1
(α)⇐⇒

�
Φ(α)

n ,Φ(α)
rad

�
, (2.154)

fully analogous to the mapping in eq. (2.135). Also in this case, there is one mapping for each
singular region, where the singular region is associated with the parton undergoing the splitting.
Note that, the mapping in eq. (2.154) acts non-trivially also on the momenta of the partons that
do not undergo any splitting and the momentum conservation must be restored.

The Sudakov form factor within the POWHEG method can be written as

Δ(Φn, pmin
T ) = exp

�
−

� [dΦradR(Φn+1)θ(kT (Φn+1)− pmin
T )]Φn=Φn

B(Φn)

�
. (2.155)

The function kT (Φn+1) should be equal, near the singular limit, to the transverse momentum of
the emitted parton relative to the emitting one. The POWHEG cross section for the generation of

19Note that the accuracy of the generation of the hardest emission within the POWHEG method is not exactly
NLO, but rather NLO up to the terms originating from higher order corrections.
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the hardest event is then

dσ = B(Φn)dΦn

�
Δ(Φn, pmin

T ) + Δ(Φn, kT (Φn+1))
R(Φn+1)
B(Φn)

dΦrad

�

Φn=Φn

, (2.156)

where

B(Φn) = L[B(Φn) + V(Φn)]+
��

dΦradL[R(Φn+1)− C(Φn+1)] +
�

dz

z
L[Gfin

1 (Φn,1) + Gfin
2 (Φn,2)]

�

Φn=Φn

. (2.157)

Furthermore, it was assumed that Φn+1 is parametrized in terms of Φrad and Φn. The pmin
T value

was introduced as a lower cut-off on the transverse momentum, that is needed in order to avoid to
reach unphysical values of the strong coupling constant and of the parton density functions. θ is
the usual step function rendering values kT (Φn+1) < pmin

T prohibited.
The POWHEG formula in eq. (2.156) can be used to feed a SMC program, that will perform all

subsequent showers and hadronization. In the following section we will show how the POWHEG
method is embedded in the POWHEG BOX framework.

POWHEG BOX framework

The theoretical construction, described in the previous section, is in practice implemented in a
computer framework called POWHEG BOX [72]. The aim of this framework is to construct a POWHEG
implementation of a QCD NLO process automatically, given the following ingredients

• The list of all flavour structures of the Born process.

• The list of all flavour structures of the real process.

• The Born phase space.

• The Born squared amplitudes B, the colour correlated ones Bij and spin correlated ones Bµν ,
calculated in 4-dimensions.

• The real matrix elements for all relevant partonic processes, calculated in 4-dimensions.

• The finite part of the renormalized virtual corrections, calculated in D-dimensions.

• The Born colour structures in the limit of a large number of colours.

If all these ingredients are provided, the POWHEG BOX does all the rest. It automatically finds
all the singular regions, builds the soft and collinear remnants, generates the scattering with Born
underlying configuration using the full NLO formula and then generates the hardest additional
radiation according to the POWHEG Sudakov form factor.

The POWHEG BOX has been successfully used for many SM processes such as single W and
Z production [128], Higgs boson production [129, 130], single top-quark and heavy-quark pair
production [131, 132], or recently for beyond SM processes like charged Higgs bosons production
or slepton pair production [133, 134]. Note that the heavy-quark pair production implementation
contains the QCD corrections to the top-pair production at order O(α2

S). In this section, we briefly
review the internal workings of POWHEG BOX, while the implementation of the electroweak top-pair
production and its corrections at order O(αSα2

W ) will be discussed in Section 2.4.3.
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The POWHEG BOX framework consists of algorithms and formulae relevant for the POWHEG
method implemented in Fortran 77. In order to implement a new process into POWHEG BOX, the
user has to provide routines initializing the appropriate input parameters and numerical routines
calculating the amplitudes squared of the Born contribution and its virtual and real corrections.
In the following paragraphs, we briefly outline the structure of the code, the procedure for event
generation and some of the related setting requiring user input. Remaining aspects of the proce-
dure of implementing a new process into POWHEG BOX will be discussed and illustrated with the
implementation of electroweak top-pair production in Section 2.4.3. For more details, the reader is
referred to the POWHEG BOX manual in [72].

The flavour structure of the process to be implemented in POWHEG BOX is specified by a list of
flavour configurations stored in the arrays flst born and flst real. Each of the elements of these
arrays contains a list of initial and final state particles of the Born and real process represented
by their PDG codes [44] with the exception of the gluon, which is assigned the code 0. Virtual
contributions have the same flavour structure as the corresponding Born process. The flst born
and flst real arrays are declared in the header file pwhg flst.h and the length of their entries
nlegborn and nlegreal20 in the header file nlegborn.h.

The event generation starts with the phase space. Given a vector of random variables Xborn,
with length equal to the number of independent variables describing the phase space, the Born
momenta are calculated in a routine provided by the user. The number of independent variables
describing the phase space is 3n−2, where n is the number of final state particles, if there is no final
state resonance in the process. Each final state resonance requires an additional random variable
to describe its virtuality. The number of final state particles is calculated from the length of the
flst born array elements, which is specified by the user.

From the vector of random variables, the user-provided routine born phsp calculates the arrays
kn pborn and kn cmpborn containing the lists of Born momenta k1, k2, p1, . . . in the laboratory
frame and CM frame, respectively. The values of kn xb1 and kn xb2 are respectively set to the
parton momentum fractions x1 and x2, and the value kn sborn is set to the squared CM energy of
the Born process. Furthermore, the masses of the Born process initial and final state particles are
filled in the array kn masses, and kn minmass is set to a fixed lower bound on the mass of the final
state (in the case of top-pair production this is equal to 2mt). Finally, the variable kn jacborn is
filled with the Jacobian of the random variable to phase space transformation

Jborn =
����

∂Φn

∂Xborn

���� . (2.158)

Note that variables with a prefix kn are declared in the header file pwhg kn.h.
Once the Born momenta are known the amplitudes squared of the Born and virtual contributions

can be calculated. The Born matrix element, the colour correlated Born amplitudes, defined in
eq. (2.108), and the spin correlated Born amplitudes, defined below, are calculated in the user-
provided routine setborn in 4-dimensions. The spin correlated Born amplitude is defined to be
non-zero if the jth Born leg is a gluon and is basically the Born cross section obtained by leaving
the gluon indices of the jth leg uncontracted. More precisely

Bµν
j = N

�

{i},sj ,s�j

M({i}, sj)M†({i}, s�j)(�µ
sj

)∗�ν
s�j

(2.159)

where M({i}, sj) is the Born amplitude, {i} represent collectively all remaining spins and colours
of the incoming and outgoing particles, sj represents the spin of the jth particle of the process,

20Note that in POWHEG BOX, nlegreal is set automatically to nlegborn + 1.
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�µ
sj are the polarization vectors and the factor N is the appropriate normalization factor including

averages over initial spin and colour and symmetry factors. The user-provided routine setvirtual
returns the finite part of the renormalized virtual contribution Vfin calculated in D-dimensions
and regularized using dimensional regularization. Vfin can be related to the renormalized virtual
contribution Vren, in D = 4− 2� dimensional space, as follows

Vren =
(4π)�

Γ(1− �)

�
µ2

r

Q2

��
αS

2π


 1

�2
aB +

1
�

�

i,j

cijBij + Vfin


 , (2.160)

where the coefficients a and cij do not depend upon � and the scale Q is in POWHEG BOX set to
the renormalization scale µr. Vfin is literally the renormalized virtual contribution stripped off the
1/�2 and 1/� poles and is up to the normalization equal to the renormalized virtual matrix elements
in eq. (2.116), in which we have subtracted the IR singularities using the CS dipole subtraction
formalism.

One of the basic ingredients of the POWHEG method is the decomposition of the real phase
space into singular regions, containing only one singular configuration, and the dipole subtraction.
The dipole subtraction method implemented in POWHEG BOX, is the FKS dipole subtraction [121] in
which the decomposition into singular regions is easier than in the CS formalism21. We recall that
the singularities in virtual corrections are cancelled by the singularities in integrated dipoles con-
taining the 1-body phase space integrals of real and collinear counterterms. Also, the singularities
in real corrections are cancelled using the real counterterms which can be obtained by regularizing
the real contribution using the + distributions assuming that the real phase space was decomposed
into singular regions. Finally, the collinear remnants of the collinear renormalization are added
to the total cross section. POWHEG BOX automatically generates the finite parts of the integrated
dipoles, decomposes the real phase space, handles the real contribution using the + distributions
and generates the collinear remnants automatically within the FKS dipole subtraction framework.

As already mentioned, the decomposition of the real phase space into singular regions is per-
formed automatically. Given the list of flavours of the real graphs, in flst real, one is faced
with the combinatoric problem of finding all singular regions grouped according to their underlying
Born configurations. This can be achieved for final state soft collinear regions22 by the following
procedure. First, one loops over all massless parton pairs i and j. If i and j can come from the
splitting of the same parton, a new list is built from the original one by deleting partons i, j
and adding a parton with the appropriate flavour, i.e. if i, j have opposite flavour, or are both
gluons, a gluon is added. Then one tests whether the newly built flavour list, which now has one
particle less, is an admissible flavour structure for the Born cross section. This is done by checking
whether this list is up to a permutation of the final state partons equal to one of the elements of
the Born flavour structure list. Initial state singular regions23 can be obtained in a similar fashion.
This procedure will lead to a list of all the possible singular configurations in which only one pair
of partons can be collinear or one parton soft (or both).

21It turns out that, within the CS dipole subtraction framework, it is impossible to simple weight the real cross
sections with factors that vanish in all but one singular regions, in contrast with the FKS framework [72].

22A final state collinear region is defined as a region in which a final state parton i is becoming collinear to a final
state parton j, or soft.

23An initial state collinear region is defined as a region in which a final state parton i is becoming collinear to either
initial state partons j = 1, 2, or soft.
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In order to generate an event, POWHEG BOX first generates a Born kinematic and flavour config-
uration, with a probability proportional to

B(Φn) =


�

fb

B
fb(Φn)


 dΦn (2.161)

where

B
fb(Φn) =

� 1

0
dX

(1)
rad

� 1

0
dX

(2)
rad

� 1

0
dX

(3)
radB̃

fb(Φn, Xrad) (2.162)

and the function B̃fb is defined as

B̃fb(Φn, Xrad) = [L(B(Φn) + V(Φn))]fb
+
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In eqs. (2.161) - (2.163), fb is an element of the flst born array and αr|fb selects a singular regions
αr that has fb as the underlying Born configuration. Furthermore the radiation variables Φrad were
in each singular region parametrized by three variables in the unit cube Xrad = {X(1)

rad, X
(2)
rad, X

(3)
rad}

and the real contribution R̂ has been properly regularized in each singular region using the +
distributions, see eq. (2.152). The radiation is then generated using the POWHEG Sudakov form
factor

Δfb(Φn, pmin
T ) =

�

αr∈{αr|fb}
Δfb

αr
(Φn, pmin

T ), (2.164)

where

Δfb
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�Φ
αr
n =Φn

αr

�
. (2.165)

In conclusion, the construction of a POWHEG implementation is in POWHEG BOX automatic
provided that the user furnishes the lists of flavour structures flst born and flst real, a routine
calculating the phase space born phsp, and routines calculating the Born matrix element, virtual
and real contributions in routines setborn, setvirtual, setreal respectively. The Born and
real contributions should be provided in 4-dimensions, the virtual contribution calculated in D-
dimensions using dimensional regularization, renormalized and stripped off the 1/(D − 4) poles.

2.4.3 Electroweak top-pair production in POWHEG BOX

The electroweak top-pair production and its corrections at order O(αSα2
W ) have been implemented

in the NLO Monte Carlo event generator POWHEG BOX and in this section we discuss the details of
this implementation. The most recent version of the POWHEG BOX package, at the time of checkout
at revision 2220, was obtained from the svn repository at svn://powhegbox.mib.infn.it/trunk/
POWHEG-BOX. As per author’s recommendations we have implemented the electroweak top-pair pro-
duction in a new directory Zprime. At the time of writing of this manuscript, this implementation
has not been committed to the repository and thus is not publicly available.
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In the following, we discuss how to specify the process which is being implemented in the subrou-
tine init processes and the implementation of the subroutines born phsp, setborn, setvirtual
and setreal, the role of which has been explained in the previous section. Furthermore, we dis-
cuss the subroutine init couplings used for the initialization of various input parameters such as
couplings and masses.

It is important to note that in this implementation we assume that final state top-quarks are
produced on-shell. Their decay can be automatically taken into account at leading order accuracy
by Shower Monte Carlo tools such as Pythia.

Process specification: init processes, nlegborn.h

The process under consideration is specified via the lists of Born and real flavour configurations in
the arrays flst born and flst real. Each entry of these arrays contains a list of PDG codes corre-
sponding to the particles on the external lines of the process. For example, the entry [-1,1,6,-6]
specifies a flavour configuration of the tree-level scattering of dd with a top-pair in the final state.
Every possible flavour configuration, in general, leads to a different event and so each one has to
be specified. Note that the flavour configurations identical up to a permutation of the final state
particles are considered equivalent.

Because we rely on SMCs to handle the top quark decay, the Born contribution to the top-pair
production can be in the context of its POWHEG BOX implementation considered a 2 → 2 process.
Therefore, we set nlegborn = 4 and the respective lengths of Born and real flavour configuration
entries are equal to 4 and 5. The Born flavour configuration array flst born contains the following
10 entries

flst_born = [[-5,5,6,-6], ..., [-1,1,6,-6], [1,-1,6,-6], ..., [5,-5,6,-6]]

since we work in the 5 light flavour scheme and both initial state configurations qq and qq have
to be considered. The number of light flavours also has to be specified in the variable st nlight,
which is passed to the subroutine implementing the running of αS . The variable maxprocborn,
specifying the number of inequivalent Born flavour configurations, was correspondingly set to 10.
Note that the code snippets, as the one above, are written throughout this section in a pseudo
language.

The real contribution can proceed via the channels qq , qq, gq and gq . The array flst real of
real flavour configurations, thus, was initialized with the following 30 flavour configurations

flst_real =
[[-5,5,6,-6,0], ..., [-1,1,6,-6], [1,-1,6,-6], ..., [5,-5,6,-6,0],
[0,-5,6,-6,-5], ..., [0,-1,6,-6,-1], [0,1,6,-6,1], ..., [0,5,6,-6,5],
[-5,0,6,-6,-5], ..., [-1,0,6,-6,-1], [1,0,6,-6,1], ..., [5,0,6,-6,5]]

and the variable maxprocreal was correspondingly set to 30.
It is important to note that the variables nlegborn, maxprocborn and maxprocreal have to be

initialized in the header file nlegborn.h which is included in all the POWHEG BOX source files.
POWHEG BOX requires the final state particles, in the lists of flavour configurations, to be ordered

in the following way: colourless particles, massive coloured particles and massless coloured particles.
The index of the first light parton in those arrays must be specified in the variable flst lightpart
which we set to 5.

In the subroutine init processes, we also implement the initialization of the array kn masses
and the variable kn minmass:
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kn_masses = [0,0,mt,mt,0]
kn_minmass = 2*mt

where mt is set equal to the top quark mass and can be modified in the POWHEG BOX input file
powheg.input. More detailed discussion regarding the input file, corresponding to our implemen-
tation, can be found in one of the following subsections.

Phase space: born phsp

We recall that the phase space for contributions with Born-like flavour structures, the Born and
virtual contributions, are calculated in the POWHEG BOX in the subroutine born phsp which has
to be provided by the user. Given a vector of random variables Xborn generated within POWHEG
BOX, the code in born phsp should calculate the Born momenta k1, k2, p1 and p2 in the CM and
laboratory frame, the incoming parton momentum fractions x1 and x2, the partonic CM energy ŝ
and the Jacobian of the random variable to phase space transformation J .

The event generation is conveniently performed in terms of the invariant mass M , the rapidity

Y of the top-pair in the laboratory frame and the angle θ1 between
→
k 1 and

→
p 1 in the partonic CM

frame [132]. The invariant mass and the rapidity are given by

M2 = (p1 + p2)2 = x1x2shad, Y =
1
2

log
x1

x2
, (2.166)

where shad is the hadronic squared CM energy. The momentum fractions can be expressed in terms
of the invariant mass M and rapidity Y as follows,

x1 =

�
M2

shad
eY , x2 =

�
M2

shad
e−Y , and dx1dx2 =

1
shad

dY dM2, (2.167)

and for the integration measure of integrals over Born-like configurations one finds

dΦ2 = dΦ2dx1dx2 =
β

16πshad
d cos θ1dM2dY, (2.168)

where

β =

�

1−
4m2

t

M2
. (2.169)

The appropriate integration region is then

4m2
t ≤M2 ≤ shad,

1
2

log
M2

S
≤ Y ≤ −1

2
log

M2

S
, −1 ≤ cos θ1 ≤ 1. (2.170)

Born, virtual and real contributions: setborn, setvirtual and setreal

The expressions for the Born contribution, and the colour and spin correlated Born are implemented
in the subroutine setborn. Note that the Born contribution in eq. (2.20) includes a sum over all the
possible initial state quarks and the flux factor. Since POWHEG BOX requires the amplitudes to be
implemented for each flavour structure separately and without the flux factor, we have implemented
the following expression in setborn:

born(qi) = 2ŝ


Bq(γ, γ) + Bq(Z, Z) + Bq(Z�,Z�) +

�

B �=B�
Bq(B, B�)


 , (2.171)
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where the PDG code qi ∈ 1, 2, 3, 4, 5 of the quark q, labeling the initial state quark in the r.h.s. of
eq. (2.171), denotes the corresponding flavour structure [qi,-qi,6,-6]. The expressions for the
general interference term Bq(B,B�) can be found in eq. (2.18).

The colour correlated Born bornjk(j,k,qi) = (Bq)j,k, defined in eq. (2.108), is used to calculate
the scalar products of colour charges Tj · Tk employed in the dipole subtraction formalism, see
Section 2.3.3. Note that (Bq)j,k is a symmetric matrix and moreover it is sufficient to know its off-
diagonal entries j �= k. The calculation of its elements amounts to attaching an additional colour
charge matrix, tlαβ for quarks and −tlβα for anti-quarks, between the external lines j, k ∈ {1, 2, 3, 4},
where the 1, 2, 3 and 4 label respectively the external lines with momenta k1, k2, p1, p2. It is easy
to see, that in the case of EW top-pair production this leads to 0 if j is an initial state and k a
final state external line or vice versa24. If j and k are both initial or both final state external lines
we have:

bornjk(j,k,qi) = CFborn(qi), (2.172)

where CF = 4/3.
Since there are no tree-level diagrams with external gluons contributing to the EW top-pair

production, the spin correlated Born bornmunu(mu,nu,j,qi) = (Bq)
µν
j , defined in eq. (2.159), is

equal to zero
bornmunu(mu,nu,j,qi) = 0. (2.173)

The virtual contribution is implemented in the subroutine setvirtual. Similarly as in the case
of Born matrix element, we have implemented the expressions for the virtual corrections for each
flavour configuration separately, labeled by the light quark in the initial state q:

virtual(qi) = 2ŝ
2π

αS

Γ(1 + �)
Γ(1− �)

(mt)�

�
dΦ2L

��

q

�

B,B�

�
V i

q(B, B�) + V f
q(B,B�)

�
+ c.c.

�
. (2.174)

The expressions for the general interference terms V i(f)(B, B�) before the insertion of master inte-
grals can be found in eqs. (2.44), (2.45) and the expressions for the master integrals in eqs. (2.65),
(2.66) and (2.67). The HPLs are numerically evaluated as described in [135].

The real contribution is expected to be implemented in the subroutine setreal. We implement
the formulae calculated in Section 2.3.2 stripped off the flux factor and a factor αS/(2π), similarly
to the virtual contributions. For convenience, POWHEG BOX provides a mechanism for checking the
consistency of the Born matrix element and real contribution. During the initialization, it calculates
for each singular region the ratios of soft and collinear approximations of the real part and their
limiting behaviours constructed from the colour correlated and spin correlated Born amplitudes,
and writes them out into the file pwhg checklimits. The double soft-collinear and collinear-soft
limits are also tested, however, they do not depend on the real amplitudes, but only on the Born
contribution.

The soft and collinear singularities of the real contribution originating from the soft gluon
emission, or initial and final state collinear q → gq splitting in the channel qq are treated auto-
matically within POWHEG BOX, as explained in the previous sections. The collinear singularities in
the channels gq and gq , however, are left untreated. In principle, it would be possible to perform
the appropriate mass factorization, include the photon in the definition of PDFs and generate the
corresponding real counterterms. Due to lack of time, however, we temporarily opt to regulate the
collinear singularities in the quark-gluon channels with a non-zero photon mass. For an example
of mass factorization in the case of QED corrections to the SM top-pair production, in which the
regulation of IR singularities is obtained by phase-space slicing, see Ref. [90].

24This leads to a trace over an odd number of traceless colour matrices.
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Input parameters: init couplings, powheg.input

The handling of input parameters which can be specified in the file powheg.input is implemented in
the subroutine init couplings. In this subsection we discuss the settings relevant to the Zprime
implementation handled by init couplings, a more complete description of powheg.input is
contained in the following subsection.

As described in the previous sections, we keep beyond the SM neutral currents general, param-
eterized by the Z� mass and its couplings to the SM fermions: mZ� (mzp), aq

Z� (azpu, azpd, . . . ), bq
Z�

(bzpu, . . . ). The width of Z� is also considered as a free parameter and can be specified in gzp.
Furthermore, we allow users to modify the SM parameters entering the formulae for EW top-pair
production such as s2θW

(sthw2), mt (mt), the Z mass and width (mz and gz) and finally the inverse
of αEM (alphaem inv) which fixes the value of αW = αEM/s2θW

.
The factorization and renormalization scales, µf and µr, are fixed to the partonic CM energy ŝ

and can be varied by setting the appropriate variables renscfact and factscfact.
The value of the photon mass, which we use in the expressions for the real contribution in the

quark-gluon channels to regulate the corresponding collinear divergences can be modified by setting
the value of mg.

Finally, we allow the user to switch on and off the contributions corresponding to the photon, Z
and Z� exchange. To generate the top-pair production mediated only by photon, only by Z or only
by Z� exchange, the channel should be set to 1, 2 or 3 respectively. The settings channel = 4,
5, 6, respectively, correspond to the contributions mediated by photon/Z, photon/Z�, Z/Z�, where
the slash signifies the sum of the individual contributions including their interference. Finally the
full matrix element containing the contributions from photon, Z and Z�, and all their interferences
are selected by setting channel = 7.

Compiling and running POWHEG BOX: Zprime

Our implementation of EW top-pair production can be compiled using a provided Makefile. Ex-
ecuting

$ make

should build the binary pwhg main. If the use of LHAPDF [136] interface to parton distribution
functions is required by the user, the executable lhapdf-config has to be in the system path.

A typical run would then be executed in a new directory containing the input file powheg.input.
In the input file, the hadronic CM energy can be set for each beam separately in variables ebeam1
and ebeam2 and the PDFs for the two beams can be specified in the variables lhans1 and lhans2.
Events will be generated if the variable numevts specifying the number of events to generate is set
to a value larger than 0. Note that it is also possible to simulate only the Born contribution and
this is achieved by setting the variable bornonly = 1. For more settings, the reader is encouraged
to consult the POWHEG BOX manual [72] or the comments in the powheg.input file.

During the initialization, the consistency between the real and the Born contribution is checked
and the result is stored in pwhg checklimits. This is followed by the integration and event gen-
eration. The result of the integration is printed on screen as well as saved in the file pwgstat.dat
and the events in the Les Houches Event file [137] are stored in the file pwgevents.lhe.

2.4.4 Final remarks

As discussed in this section, the NLO calculations and the parton shower algorithm are not compat-
ible due to the fact that the parton shower includes approximate NLO corrections already. There
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exist, however, methods allowing for a consistent matching of fixed NLO calculations with parton
showers. One of these methods is the POWHEG method, which generates only positive weighted
events and is independent of the details of the implementation of the parton shower as long as it
is pT ordered or allows for the implementation of a pT veto. We have explained some of the basic
features of the method, relying on the dipole subtraction formalism to treat IR singularities. More-
over, a fairly automated implementation of this method exists in the POWHEG BOX package, which
we have used for the implementation of the EW top-pair production and its QCD corrections. The
details of the implementation were given in Section 2.4.3.

2.5 Automation

Calculating 1-loop corrections to a given process beyond the SM (BSM) is not an easy task. There-
fore, we have tried to do as much of the calculation described in the previous sections as possible
automatically. At the time we have started the calculation, no publicly available tool, able to
perform 1-loop calculations without significant user input, existed. Perhaps, with the exception of
the FeynArts/FormCalc/LoopTools [138] framework. On the other hand, tools capable of accom-
plishing some parts of loop calculations such as QGRAF [94] and FORM [96] were made publicly
available a long time ago.

With the technological progress, the automation became a popular subject of interest and many
new tools capable to calculate 1-loop QCD corrections to any SM process appeared. To list a few,
there is MadLoop [139], GoSam [140] and MadGolem [141]. Many of the groups developing these
tools are now working on automating the calculation of BSM amplitudes at 1-loop.

In a typical 1-loop calculation one needs to calculate Born matrix elements, virtual corrections
in D-dimensions and contributions originating from real diagrams with an additional external line.
In order to obtain a finite result, virtual contributions have to be renormalized and one needs
to find a suitable procedure to cancel the IR divergences between virtual and real contributions.
Eventually one also has to treat the initial state collinear singularities which do not cancel in the
sum of real and virtual contributions.

In Feynman diagram based methods, the calculation of BSM Born, virtual and real contributions
can be split into the following tasks:

• model specification, derivation of Feynman rules: FeynRules [142, 143], LanHEP [144]

• generation of Feynman diagrams: QGRAF, DIANA [95], FeynArts

• translation of Feynman diagrams in to corresponding formulae: DIANA

• Feynman diagram substitution, calculation of traces and further algebraic manipulations:
FORM

• renormalization of virtual corrections: QGRAF, DIANA, FORM

• evaluation of loop integrals: Golem [145], LoopTools, Reduze [101, 109]

• treatment of QCD IR singularities: POWHEG BOX

• numerics: POWHEG BOX

In the list above, we also mention the tools which could be in principle employed for a given task.
However, this does not necessarily mean that this task has been fully automated. In particular,
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the renormalization of virtual contributions could be achieved using the same tools that have been
used for its calculation.

The particle content of BSM theories can be very large and the derivation of the corresponding
Feynman rules can thus be a complex task. Therefore it is desirable to automate it, which can be
done using FeynRules or LanHEP. The authors of FeynRules have recently developed the Universal
FeynRules output (UFO) standard [143] allowing for convenient interfacing of FeynRules results.

The generation of Feynman diagrams has also been automated and QGRAF can generate Feyn-
man diagrams with a general number of legs and loops. The output of QGRAF is not immediately
suitable for the calculation of amplitudes and further work is needed. For this purpose, DIANA has
been developed. In DIANA, a script written in its native language is launched for every diagram
generated by QGRAF, which DIANA embeds. In particular, DIANA can distribute the Lorentz
and colour indices and momenta automatically and generate the input for any computer algebra
system (CAS).

After the generation of diagrams and its translation to amplitudes, the calculation of Dirac
traces and further symbolic manipulation can be achieved e.g. with FORM. FORM is a CAS
which is particularly suitable for efficient symbolic computations one encounters in higher-order
calculations.

The renormalization of virtual corrections could be in principle achieved with the combination
of QGRAF, DIANA and FORM as it has been demonstrated for SM processes in [146].

For the evaluation of loop integrals, various approaches exist. One can reduce the loop integrals
with tensorial structure in its numerators into a set of scalar loop integrals using the Passarino-
Veltman decomposition [147]. These scalar integrals, however, are not all independent and the
coefficients of the decomposition can become singular in some points of the phase space, which is
known as the inverse Gram determinant problem. The scalar loop integrals can then be evaluated
numerically using packages such as LoopTools. There exist also a mixed approach of Passarino-
Veltman decomposition and numerical evaluation in the Golem package, which overcomes the prob-
lem of inverse determinant. Alternatively, one can use IBP identities to reduce tensor as well as
scalar loop integrals into a set of independent master integrals avoiding the issue of inverse Gram
determinant. The master scalar integrals can then be calculated analytically using the differential
equation method or numerically using LoopTools.

Finally, the expressions/codes obtained in the previous steps can be implemented in NLO Monte
Carlo tools allowing for consistent matching with the parton shower algorithm such as POWHEG BOX.

Even though each step in the procedure described above is well defined and can be accomplished
for any BSM process, some steps even fully automatically, the user input required between each step
is considerable rendering 1-loop calculation a very time consuming task. Therefore, we have decided
to interface the individual tools in order to minimize the user input and make the calculation of
1-loop corrections as comfortable as possible. Our effort resulted in a collection of Python scripts,
which we refer to as bsmLoops. In the following section we describe some features of bsmLoops.
We avoid getting into technical details since some steps of the automation of the full calculation
have not yet been implemented and we do not plan to publish this tool in the near future.

Loop calculations in bsmLoops

The calculation of amplitudes is based on the Feynman diagram approach. Let us denote D and I
two processes associated with their respective sets of Feynman diagram. In the calculation of the
amplitude M(d1)M(d2)∗ of the interference of two diagrams d1 and d2 from their respective sets
d1 ∈ D and d2 ∈ I, we avoid performing the charge conjugation by inverting the second diagram.
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For the inverted diagram we use the so-called Feynman rules for the shadowed region25. In the
following we will refer to the sets D and I as the regular or direct and shadowed or inverse process
respectively. These sets are equal in the case of Born or real contribution, but they are different
in the case of virtual contributions in which the amplitude is calculated by interfering 1-loop and
tree-level diagrams. The calculation of the amplitude squared of qq → tt is thus obtained as the
product of Mqq→ttMtt→qq .

The input of bsmLoops is the model file, at the moment in the format compatible with DIANA,
and the process specification. The process is specified by listing the external particles and number
of loops. The virtual corrections to dd → tt at order O(αSαW ) in the SM with an additional
Z�-boson would be in the bsmLoops input file specified as follows:

processes:
- uu_ttNLO: # optional name

ingoing:
- d: {}
- D: {}

outgoing:
- t: {mass: mt}
- T: {mass: mt}

loops: 1
- tt_uuLOI: # optional name

inverse: True
ingoing:
- t: {mass: mt}
- T: {mass: mt}

outgoing:
- d: {}
- D: {}

loops: 0
modelFile: ../inc/model.SMwZp

where the file model.SMwZp is a DIANA model file listing all propagators and vertices. The Born,
real and virtual contributions have to be specified separately but can be calculated in a single run.
Also, at the moment we do not implement any collective particle tags and for pp scattering, each
combination of the initial state has to be specified separately.

Given the model file and the process, the Feynman diagrams, including the Lorentz and colour
indices and momenta on lines, are generated fully automatically and stored in a SQL database. At
this stage, the user can calculate the traces or request the generation of interference terms which
are obtained by a Cartesian product of the SQL tables storing all the diagrams, matching the direct
and inverse process appropriately.

Note that in the near future, we plan to implement the interface to the UFO. Also, at the moment
we support only MySQL databases, which require the installation of a database server. This task
is non-trivial, but many scientific institutes may already provide a fully functional installation of
a MySQL database server. Since the SQL language, which is used for the specification of data
structures and communication with the server is highly standardized, the transition towards an
implementation which does not require a database server, but rather stores the data on a local
hard drive, such as SQLite, should not pose considerable effort.

25The notion of shadowed regions was introduced in [93].
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The calculation of traces in the language of bsmLoops refers to the execution of FORM on
a source file generated according to a pre-programmed template. bsmLoops contains a collection
of such templates suitable for various purposes, such as the calculation of Born, virtual and real
contributions. Besides, our FORM code base contains a set of functions, usable in these templates,
which are completely process independent. For example, the spin sums, the translation from the
scalar products into Mandelstam variables or translation of loop momenta suitable for further
processing are written to be valid for any 2 → n process. The result of each trace is stored in a
separate FORM log file and subsequently extracted and stored in the SQL database.

For the Born and real contributions the final step of the calculation is to sum all the traces
which can be done automatically on user request. This task is similar to the calculation of traces.
Again, bsmLoops executes FORM code on a source file generated from a pre-programmed template.
This time however, only one FORM file is generated figuring the sum of all the traces calculated
in the previous step.

For the calculation of virtual contributions bsmLoops offers one more step which is the reduction
of loop integrals using Reduze. Loop integrals are from the traces extracted automatically. Sub-
sequently, we build the auxiliary topologies (including eventual completion as described in Section
2.3.1), pass them to Reduze, extract the expressions for the reduction and use FORM to apply them
and store the results in the database. These results can be summed automatically as described in
the previous paragraph.

The procedure outlined in the paragraphs above requires no user input whatsoever, except for
eventual filtering of diagrams specified in the process description. For example, if one requests the
diagrams for scattering of dd → tt at 1-loop, all the loop diagrams at orders O(α3

S), O(α2
SαW ),

O(αSα2
W ) and O(α3

W ) are generated. The filtering is implemented as filtering on SQL data and the
diagrams can be filtered based on the power of gW and gS in the diagrams and also on the external
particles and so on.

At this stage one would renormalise the virtual contributions. We have not yet implemented this
step, although, bsmLoops can be used for the calculation of self energies and vacuum polarizations as
well as for the generation of “counter term diagrams”. To finalize the step of the renormalization one
would have to automate the calculation of n-point functions and the extraction of renormalization
constants.

In the calculation of QCD corrections to EW top-production we have calculated the master
integrals analytically. The summing capabilities of bsmLoops, however, can be used to generate a
Fortran code which could subsequently be linked to numerical codes able to evaluate the expansion
of scalar loop integrals around D → 4 up to a required order.

From the description of the POWHEG BOX framework it is clear that there are no steps which
could not be easily automated (except for the treatment of non-QCD IR singularities) and such an
automation has been very recently achieved within the framework of GoSam [148].

In order to make bsmLoops competitive in the present environment, further work is necessary.
As mentioned, we plan to implement the interface to the UFO, the automatic generation of the
POWHEG BOX implementation is feasible, but the automation of renormalization presents a significant
task. Also, a considerable amount of work is required for validation, since at the moment bsmLoops
has been fully used only for one process.

The formulation of bsmLoops is very robust and modular. For a skilled FORM user it can
be used to perform many sorts of higher-order calculations. In addition to top pair production
discussed in this thesis, it has been used for the calculation of NLO virtual correction to single-top
production beyond the SM, which we also plan to implement in POWHEG BOX [149]. Note that we
have also calculated 1-loop corrections to top-pair production at order O(α2

SαW ) using bsmLoops,
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but due to the lack of time and the complexity of UV renormalization this calculation has not yet
been finished. Moreover, bsmLoops does not in principle have any limits on the number of loops
and has been tested for the calculation of virtual corrections to Moeller scattering at NNLO QED.
Currently, its limits are being tested in the calculation of semi-inclusive electron-positron scattering
at NNNLO by employing the method in [150].

In conclusion, we have developed a set of scripts, collectively referred to as bsmLoops, interfacing
various tools often used in higher-order calculations which have aided the calculation of QCD
corrections to the EW top-pair production. More specifically, bsmLoops embeds QGRAF/DIANA,
FORM and Reduze interfaced in Python. It minimizes the user input in the calculation of Born,
virtual and real amplitudes, but so far it does not automate the renormalization. In the near future
we plan to extend it starting with an interface to the UFO and an interface to POWHEG BOX.

2.6 Electroweak top-pair production at next-to-leading order QCD
accuracy at the Large Hadron Collider

We have calculated the QCD corrections to the EW top-pair production in theories with an ad-
ditional Z� boson and implemented the formulae derived in the previous sections in the POWHEG
BOX Monte Carlo event generator. Here we refer to this implementation as POWHEG BOX: Zprime
(PBZp). In this section we present the numerical results obtained using PBZp. Due to the lack of
time, we have studied the electroweak top-pair production only in the SSM, in which the Z�-boson
has SM-like couplings. A more complete study including the other G(221) models is planned as
part of a future study.

We begin by discussing the validation of the PBZp code. This includes the comparison of the
LO EW top-pair production cross section obtained using PBZp against the cross sections calcu-
lated in general purpose Monte Carlo event generators Pythia 6.4 and MadGraph5 (MG5) [151].
Furthermore we report on the consistency cross-check of the real contribution in the qq channel
implemented in the POWHEG BOX framework, and compare the PBZp predictions for the gq(q) real
contribution against the predictions of MG5. The consistency of the remaining piece, the virtual
contribution, was verified by subtracting the CS dipoles from the renormalized virtual contribution
resulting in a finite expression, as explained in Section 2.3.3. We did not compare our results
against the calculation presented in [75], because Melnikov et al. do not consider the same set of
NLO corrections. In the remaining parts of this section we show the impact of the QCD corrections
on the resonant production of an SSM Z� with a mass of 4 TeV and its subsequent decay to the
pair of top quarks at the LHC.

2.6.1 Validation

Leading order

In the first step we compare the dependence of the sum of the total cross sections of a single resonant
γ, Z- and Z�-boson production and its decay into a top-pair at a pp collider on the CM energy

√
shad

including all the interferences. We set the Z� boson mass equal to MZ� = 0.8 TeV26, and the Z-
and Z�-boson widths to their respective values as calculated in Pythia27. The remaining input

26Note that such a light SSM Z�-boson is excluded and the numerical results shown in Figure 2.13 serve only for
the purpose of comparison of our results with those of the general purpose Monte Carlo generators.

27The resonance widths in Pythia are calculated automatically and do not necessarily correspond to the values
obtained from the experiment.
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parameters, listed in Section 2.4.3, are set to their respective values extracted from experiment,
and the value of αEM to its value at the scale of the Z pole mass [44]. The input parameters of
Pythia and MG5 are set to match the input parameters of PBZp as closely as possible.

In the upper part of Figure 2.13, we present the total cross sections obtained using PBZp with
the NLO corrections switched off (solid blue), Pythia28 (dashed green) and MG5 (dashed orange).
The factorization scale was identified with the partonic CM energy, µ2

f = ŝ, and the blue band
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Figure 2.13: The comparison of the total cross section dependence on
√

shad for MZ� = 0.8 TeV in
PBZp (solid blue), Pythia (dashed green) and MG5 (dashed orange). The blue band represents the
factorization scale variation uncertainty calculated using PBzp.

represents the variation of the factorization scale in the interval µf/
√

ŝ ∈ (0.5, 2) in PBZp. The
lower part of Figure 2.13 shows the ratios with respect to the central prediction of PBZp.

We also compare the dependence of the total cross section on the mass of the Z�-boson in the
range MZ� ∈ (0.8, 4) TeV at a fixed CM energy,

√
shad = 14 TeV. This comparison is shown in

Figure 2.14, in which we plot the predictions of Pythia and PBZp at LO accuracy.
As one can see in Figures 2.13 and 2.14, we obtain an excellent agreement with the predictions

of MG5 and we also agree with the predictions of Pythia within the scale variation uncertainty.

Next-to-leading order

The POWHEG BOX implements a consistency check between the Born and the real contributions.
As explained in Section 2.4.3, for each singular region the POWHEG BOX automatically calculates
the ratios of soft and collinear QCD approximations of the real part and their limiting behaviours
constructed from the colour correlated and spin correlated Born amplitudes, which are then written

28For the purpose of this comparison, we switch off the initial and final state radiation in Pythia.
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Figure 2.14: The comparison of the total cross section dependence on MZ� in PBZp (solid blue),
Pythia (dashed green). The blue band represents the uncertainty due to factorization scale varia-
tion obtained using PBZp.

into the file pwhg checklimits. We have verified that all the corresponding ratios in the qq channel
are within the precision of the numerical evaluation equal to 1.

The real contribution originating from the gq and gq channels are IR finite with respect to QCD
splittings. It is, thus, impossible to verify its consistency as we did in the case of the qq channel.
Therefore, we have validated the gq and gq channels by comparing the predictions of PBZp against
the ones of MG5, which is capable of calculating cross sections of 2 → n processes, not including
the contribution due to virtual corrections, in an automated fashion. In the left plot of Figure
2.15 we show the sum of the Born, qq → γ → tt, and the real gq(q) → γ → ttq(q) cross section
contributions calculated in PBZp and MG5 as a function of CM energy

√
shad. On the central and

the right part of Figure 2.15 we show similar cross sections for the subprocesses mediated by the
Z- and Z�-boson respectively. Since in the MG5 framework, the treatment of IR singularities is
possible only via the cuts on kinematic variables we have attempted to mimic the behaviour of
MG5 by implementing a cut on the transverse momentum of the light final state quark, pmin

T . The
cross sections shown in Figure 2.15 were obtained using a pmin

T > 10 GeV cut in both PBZp and
MG5. The predictions of PBZp and MG5 agree up to roughly 10% and the relative disagreement is
most likely due to the difference in the implementation of the pmin

T cut. This, however, warrants a
further investigation.

It is important to note that the real subprocesses in the channels gq(q) at high energies constitute
more than 50% of the total cross sections shown in Figure 2.15. Despite the fact that these
subprocesses are suppressed by an additional power of αS , the parton luminosity in the gq(q)
channel is at the LHC considerably larger than the luminosity in the qq channel.

Within the POWHEG BOX framework, the QED IR singularities are not taken care of automatically
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Figure 2.15: The contributions qq → γ → tt and gq(q) → γ → ttq(q) of the EW top-pair
production with a pmin

T > 10 GeV.

in contrast to the QCD ones. Therefore, we have treated the singularities originating from the real
diagrams in the gq(q) channels by giving the photon a non-zero mass29. Preferably, however, one
would integrate the photon into the definition of the PDFs and perform the mass factorization to
treat the initial state collinear QED singularities. For a better understanding, we have calculated
the sensitivity of the sum of qq → γ → tt and gq(q) → γ → ttq(q) cross sections on the value of
the photon mass and the results are shown in Figure 2.16. We see that the sensitivity of the cross
section to the value of the photon mass is negligible as compared to the uncertainty due to the
factorization scale variation.

2.6.2 The impact of next-to-leading order QCD corrections on the electroweak
top-pair production at the Large Hadron Collider

Finally, we study the electroweak top-pair production and its NLO QCD corrections at the LHC
beyond the SM. We show how the total cross section and the top-pair invariant mass distribution
can be strongly affected by the NLO QCD corrections. Here we consider only the SSM Z�-boson
with a mass MZ� = 4 TeV and width ΓZ� = 0.1138 TeV30 at the LHC running at

√
shad = 14 TeV.

Similarly as in the previous section, the values of all the input parameters are set to their respective
values extracted from experiment and the value of αem to its value at the scale of the Z pole-mass.

For the fixed LO predictions as well as for the fixed NLO and the generation of the hardest
emission we now use exclusively PBZp. The output of PBZp is then subsequently showered using
the pT ordered shower algorithm implemented in Pythia. The contribution at the LO accuracy

29A non-zero photon mass was introduced only in formulae for the real contribution in the gq(q) channels.
30This width corresponds to the value calculated using Pythia.
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Figure 2.16: The sum of Born qq → γ → tt and real gq(q)→ γ → ttq(q) contributions to the EW
top-pair production as a function of the photon mass, which is used to regulate the initial state
collinear singularities involving QED splittings.

consists of a single resonant γ, Z-boson and Z�-boson production including all the corresponding
interferences. The NLO corrections include the virtual and real contribution at order O(αSα2

W ) in
the channels qq and gq(q). The virtual contributions were calculated in dimensional regularization
and renormalized in the MS and OS scheme for initial state quarks and final state top quarks,
respectively. The QCD IR singularities were treated automatically within the framework of POWHEG
BOX and the QED IR singularities by introducing a non-zero photon mass. For the PDFs we use
the NLO MSTW distributions [62] both in the NLO and LO runs. The factorization and the
renormalization scales are identified with the partonic CM energy µf = µr =

√
ŝ and varied in the

interval µf = µr, µr(f)/
√

ŝ ∈ (0.5, 2).
It Table 2.1, we list the LO and NLO cross sections in the high invariant mass region Mtt >

2.5 TeV and in the mass slice around the resonance Mtt ∈ (3.9, 4.1) TeV. We find that while
the NLO corrections yield a large contribution in the high mass region, they do not contribute
significantly in the region close to the resonance mass.

Table 2.1: The total cross sections of the EW top-pair production at LO and NLO accuracy in the
high mass region Mtt > 2.5 TeV and in the mass slice around the resonance Mtt ∈ (3.9, 4.1) TeV.

σ(Mtt > 2.5 TeV) [fb] σ(Mtt ∈ (3.9, 4.1) TeV) [fb]

LO 0.70+0.09
−0.07 0.47+0.06

−0.05

NLO 1.31+0.30
−0.20 0.47+0.11

−0.06

The invariant mass distribution of the top-pair at the LO and NLO accuracy including the
effects of the parton shower is shown in Figure 2.17. The uncertainty due to the variation of
factorization and renormalization scales is represented by the corresponding error bars. As the
cross sections in Table 2.1 suggest, we find that the NLO corrections lead to very large K-factors
in the region below the mass of the resonance, while the invariant mass in the resonance regions is
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Figure 2.17: Top: The top-pair invariant mass of its electroweak production at LO (orange) and
NLO (purple) accuracy including the effect of the parton shower. The error bars constitute the
factorization scale and renormalization scale variation uncertainty. Bottom: The ratios of NLO
predictions with respect to the LO prediction.

not affected.
Note that, although one would expect the uncertainty due to the variation of the factorization

and renormalization scales to be reduced after the inclusion of higher-order corrections, this is not
the case. This is caused by the fact that the dependence on the strong coupling constant αS enters
the partonic cross section of the EW top-pair production for the first time at order O(αSα2

W ).
Inclusion of the corrections at order O(α3

W ) are expected to reduce the scale uncertainty.

2.7 Conclusions

Due to its large mass and short lifetime, the top quark may well provide an effective probe for the
physics beyond the SM. Should the new physics be observed, predictions beyond the LO accuracy
will likely play a vital role in the identification of the underlying theory since an accurate deter-
mination of the model parameters requires precise predictions. At the LHC running at its design
energy and luminosity the top quark is expected to be produced abundantly and any deviations
from the precise SM predictions for its properties will hint at physics BSM.

In this chapter we have presented the calculation of NLO QCD corrections to the EW top-pair
production. We have calculated the Born contribution and its NLO virtual and real corrections in
Sections 2.2, 2.3.1 and 2.3.2, respectively. As we have explained in detail, the virtual corrections
containing integrals over the loop momentum, in general, suffer from UV and IR divergences.
Moreover, the real contributions are also IR divergent. We have treated the UV divergences by
the procedure of renormalization. The soft and final state divergences cancel in the sum over the
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virtual and real contributions, while the initial state divergences are absorbed into the definition of
the PDFs via the procedure of mass factorization. The cancellation of IR divergences is not trivial,
but can be realized within the framework of dipole subtraction formalisms. Since the structure of
initial state collinear singularities is universal, their treatment is often also included in the dipole
subtraction framework.

The NLO QCD calculations have become standard tools for phenomenological studies at hadron
collider. They are, however, not trivially compatible with the parton shower algorithm which could
simulate hadronic collisions down to the detector level. Recently, methods allowing for consistent
matching of the parton shower algorithm with fixed NLO QCD calculations have been developed.
We have implemented our calculation of the EW top-pair production at order O(αSα2

W ) within a
framework employing one these methods, namely the POWHEG BOX. The POWHEG method and the
POWHEG BOX framework were reviewed in Sections 2.4.

Within POWHEG BOX, the QCD IR divergences are treated in an automated fashion using the
FKS dipole subtraction. We have provided the matrix element of the Born contribution, the real
corrections and the virtual corrections calculated in dimensional regularization, renormalized and
stripped off the remaining IR singularities. The remaining QED IR divergences, present in some of
the channels of the real contribution, which are not accounted for within POWHEG BOX were treated
by introducing a non-zero photon mass. The loop integrals originating from the virtual corrections
have been reduced to a small set of master integrals, and the master integrals have been evaluated
analytically. The details of this implementation, denoted as PBZp, were discussed in Section 2.4.3.

Finally, in Section 2.6, we have performed numerical studies of top-pair production including
NLO QCD corrections in the SSM. The consistency of our implementation PBZp has been thoroughly
verified. The LO predictions of PZBp were compared against the predictions of general purpose
Monte Carlo generators. The consistency of the NLO corrections were verified either analytically
in the case of the virtual corrections, or numerically using the tools provided by the POWHEG BOX
framework, or by comparison against the predictions of general purpose Monte Carlo generators.

We have found that the NLO QCD corrections can be very large but the K-factors in the invari-
ant mass region around the resonance mass are mild. We also observed that the real corrections in
the quark-gluon channels yield at high-energies a very large contribution to the total cross section
due to the high quark-gluon luminosity.
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Summary and outlook

New vector bosons are a common occurrence in theories beyond the SM. They appear whenever the
gauge group of the SM is extended. Often denoted as Z�- and W�-bosons, they are massive, neutral
and charged spin-1 particles, respectively, and mediate neutral and charged current interactions of
the SM fermions. If their couplings to the SM quarks and leptons are large enough and if they are
not too heavy, they could be observed at colliders. For example, the Z� and W� bosons predicted
in the SSM should be accessible at the LHC up to masses of 5 TeV, while the present ATLAS and
CMS data exclude the SSM Z� and W� bosons with masses below roughly 3 TeV.

In this manuscript we have investigated the impact of the existence of hypothetical Z� and W�

bosons on standard observables at the LHC. In Chapter 1, we studied the phenomenology of a class
of SM extensions with an enlarged gauge group containing an additional SU(2). Scanning over
the parameter space, restricted by the exclusion limits derived from low-energy and precision data,
we have obtained predictions for the lepton and third-generation quark production cross sections.
We have explored the reach of G(221) models at the LHC and studied how suitable correlations
between cross sections can be used to distinguish between the underlying models. Chapter 2 was
dedicated to precise calculations of the top-pair production beyond the SM. We have calculated the
electroweak top-pair production cross section including the NLO corrections at order O(αSα2

W ).
This calculation was then implemented in a Monte Carlo event generator framework POWHEG BOX,
which allows for consistent matching of NLO QCD calculations with the parton shower.

In Chapter 1, we showed how the Z�- and W�-boson couplings can be parametrized by a small
set of common parameters and discussed their exclusion limits derived in a recent global analysis
of low-energy and LEP constraints. The total cross sections of the predicted charged and neutral
gauge bosons decaying into leptons and third-generation quarks were confirmed to be accessible at
the LHC up to masses of 5 TeV within the allowed range of parameters. We proposed a novel and
powerful method to distinguish general SU(2)× SU(2)×U(1) models. Individually, the total cross
sections do not allow for the identification of the underlying G(221) model, however, correlations
of these cross sections may well lead to a unique identification.

In Chapter 2, we presented the calculation of 1-loop corrections to the electroweak top-pair
production at hadron colliders in the SM extensions featuring an additional Z� boson. At the LHC
the top quark is expected to be produced abundantly and any deviations from the SM predictions
may hint at physics BSM. Precise predictions for the top quark related observables are thus highly
desirable. We have calculated the Born contribution and its NLO virtual and real corrections of the
electroweak top-pair production and implemented them in the POWHEG BOX Monte Carlo generator.
The UV divergences have been treated by the procedure of renormalization, while the QCD soft and
collinear IR divergences have been handled automatically within the dipole subtraction formalism
implemented in POWHEG BOX. The QED IR divergences have been for the time being treated by
introducing a non-zero mass of the photon.

Due to the lack of time, we have restricted our numerical study of the EW top-pair production
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at NLO only to the SSM Z� boson and showed a limited set of predictions. We plan to extend this
by including the predictions for other observables, such as the top-pair pT spectrum, and study
the top-pair production in all the G(221) models investigated in Chapter 1. Although, most of our
calculation has been thoroughly validated, the virtual corrections may require further validation.
In particular, we plan to compare our predictions to those of Melnikov et al. as far as possible.

As a result of our calculation, POWHEG BOX now allows for studies of weakly coupled Z�-boson
mediated top-pair production at orders O(α3

S) and O(αSα2
W ). To close the gap, we have also un-

dertaken steps to calculate the 1-loop corrections at order O(α2
SαW ). The Born contribution, the

bare virtual and the real corrections are available. The renormalization of the virtual corrections,
however, requires more work due to the rich structure of SM extensions with an enlarged gauge
group. Moreover, the POWHEG BOX framework needs to be extended to handle non-QCD singulari-
ties. The techniques acquired and the tool developed during this calculation are now being applied
to the calculation of the single-top production in theories BSM [149].
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Appendix A

G(221) models

In this appendix, we list the Lagrangian extracted from [48] which we have used for the derivation
of couplings and masses of Z�- and W�-bosons predicted in the models from the G(221) class in
Sections 1.3.2 and 1.3.3.

The fundamental Lagrangian in terms of the mass eigenstates for both neutral and charged
gauge bosons can be written as:

Lmass
fund =

1
2

�
�M2

Z −
δ�M4

Z

�M2
Z�

�
ZµZµ +

�
�M2

W −
δ�M4

W

�M2
W�

�
W+

µ W−µ

+
1
2

�
�M2

Z� + Δ�M2
Z� +

δ�M4
Z

�M2
Z�

�
Z�µZ�µ +

�
�M2

W� + Δ�M2
W� +

δ�M4
W

M2
W�

�
W�+

µ W�−µ

+ Zµ

�
J0µ −

δ�M2
Z

�M2
Z�

K0µ

�
+ Z�µ

�
K0µ +

δ�M2
Z

�M2
Z�

J0µ

�
+ AµJµ

+

�
W+

µ

�
J+µ −

δ�M2
W

�M2
W�

K+µ

�
+ W�+

µ

�
K+µ +

δ�M2
W

�M2
W�

J+µ

�
+ (+↔ −)

�
, (A.1)

where the neutral currents (K0
µ) and charged currents (K±

µ ), for the various models are summarized
in Tables A.1 and A.2. The masses of Z�- and W�-bosons can be written as:

MZ� =

�����M2
Z� + Δ�M2

Z� +
δ�M4

Z

�M2
Z�

, (A.2)

MW� =

�����M2
W� + Δ�M2

W� +
δ�M4

W

�M2
W�

, (A.3)

where �M , δ�M and Δ�M depend on the symmetry breaking pattern and are given in Table A.3.
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uγµu dγµd νγµν �γµ�

LR
(1
2cφg2 − 1

6sφgX)PR

−1
6sφgXPL

(−1
2cφg2 − 1

6sφgX)PR

−1
6sφgXPL

(1
2cφg2 + 1

2sφgX)PR

+1
2sφgXPL

(−1
2cφg2 + 1

2sφgX)PR

+1
2sφgXPL

LP
(1
2cφg2 − 1

6sφgX)PR

−1
6sφgXPL

(−1
2cφg2 − 1

6sφgX)PR

−1
6sφgXPL

1
2sφgXPL sφgX(1

2PL + PR)

HP −sφgX(1
6PL + 2

3PR) −sφgX(1
6PL − 1

3PR)
(1
2cφg2 + 1

2sφgX)PR

+1
2sφgXPL

(−1
2cφg2 + 1

2sφgX)PR

+1
2sφgXPL

FP −sφgX(1
6PL + 2

3PR) −sφgX(1
6PL − 1

3PR) 1
2sφgXPL sφgX(1

2PL + PR)

UU 1
2cφg1PL −1

2cφg1PL −1
2sφg2PL

1
2sφg2PL

NU 1
2

�
cφg1

−sφg2

�
PL −1

2

�
cφg1

−sφg2

�
PL

1
2

�
cφg1

−sφg2

�
PL −1

2

�
cφg1

−sφg2

�
PL

Table A.1: The couplings g(f, f, Z�) of the current K0µ = fγµg(f, f, Z�)f . For the top four models
(LR, LP, HP, and FP), tanφ ≡ gX/g2. For the lower two models (UU and NU), tanφ ≡ g2/g1.
For the NU model (last row), the top values denote the couplings to the first two generations of
fermions, and the bottom values denote the couplings to the third generation.

dγµu eγµν

LR 1√
2
g2PR

1√
2
g2PR

LP 1√
2
g2PR 0

HP 0 1√
2
g2PR

FP 0 0

UU 1√
2
cφg1PL − 1√

2
sφg2PL

NU 1√
2

�
cφg1

−sφg2

�
PL

1√
2

�
cφg1

−sφg2

�
PL

Table A.2: The couplings g(ψ, ξ,W�) of the current K+µ = ψγµg(ψ, ξ, W�+)ξ. For the top
four models (LR, LP, HP, and FP), tan φ ≡ gX/g2. For the lower two models (UU and NU),
tanφ ≡ g2/g1. For the NU model (last row), the top values denote the couplings to the first two
generations of fermions, and the bottom values denote the couplings to the third generation.
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2u
2
D

c2
φ
4 g2

2v
2 1

4g2
2v

2 −c2
φ

4eg1g2gXv2 −1
4g1g2v

2s2β̃

LR-T, LP-T
HP-T, FP-T

(g2
2 + g2

X)u2
T

1
2g2

2u
2
T

c2
φ
4 g2

2v
2 1

4g2
2v

2 −c2
φ

4eg1g2gXv2 −1
4g1g2v

2s2β̃

UU, NU 1
4(g2

1 + g2
2)u

2 1
4(g2

1 + g2
2)u

2
s2
φ
4 g2

2v
2

s2
φ
4 g2

2v
2 −s2

φ
4eg1g2gXv2 −1

4g1g2v
2s2

φ

Table A.3: The model-dependent parameters �M2
Z�,W�, Δ�M2

Z�,W� and δ�M2
Z,W.
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Appendix B

Feynman rules

Throughout the calculations in Chapter 2 we use the Pauli metric, the Feynman gauge and notations
similar to the ones employed in [93]. In this appendix we summarize the Feynman rules and the
spin and polarization used in Sections 2.2 and 2.3.

External lines

u(p), ū(p),

v̄(p), v(p),

�a
µ, �a∗

µ ,

where

�
u(p)ū(p) = −i/p + m,

�
v(p)v̄(p) = −i/p−m,
�

�a
µ�a∗

ν = δµνδ
ab. (B.1)
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Propagators

1
i(2π)4

δµνδab

p2 − i�
,

B 1
i(2π)4

δµν

p2 + m2
B − i�

,

1
i(2π)4

−i/p + mq

p2 + m2
q − i�

,

where B ∈ {γ,Z, Z�}.

Vertices

i(2π)4gS
1
2
γµtaij ,

i(2π)4gW sθW
Qqγ

µ,

i(2π)4
gW

4cθW

γµ
�
aq

Z + bq
Zγ5

�
,

i(2π)4
gW

4cθW

γµ
�
aq

Z� + bq
Z�γ5

�
,

where gW =
√

4παW is the electroweak coupling constant, gS is the strong coupling constant and
θW the Weinberg angle. Furthermore Qq is the electric charge of quark q, au

Z = 1 − 8/3s2
θW

,
ad

Z = 4/3s2
θW
− 1, bu

Z = 1, bd
Z = −1.
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Appendix C

Real contribution to EW top-pair
production

The total real contribution can be written as

σR =
�

dΦ3LR =
�

dΦ3L
�

q

�

ch

�
Rq,ch(γ, γ) +Rq,ch(Z, Z) +Rq,ch(Z�,Z�)

+
�

B �=B�
Rq,ch(B,B�)

�
, (C.1)

where we integrate over the three particle phase space dΦ3, B, B� ∈ {γ, Z, Z�} and we sum over all
the possible light quarks in the initial state q ∈ {d,u, s, c,b} and over the channels ch ∈ {qq, gq, gq}.

In this appendix, we list the full formulae for the terms Rq,qq (B,B�) including the coefficients
ci(f) which were to lengthy to be shown in Section 2.3.2.

It is convenient to decompose Rq,qq (B, B�) into interference terms with gluon exchange only in
the initial state, only in the final state or the mixed terms:

Rq,qq (B, B�) = Ri
q,qq (B, B�) +Rif

q,qq (B, B�) +Rfi
q,qq (B, B�) +Rf

q,qq (B, B�), (C.2)

where

Ri
q,qq (B, B�) =

�

p,p�∈{k1,k2}
Rp,p�

q,qq (B, B�), (C.3)

Rif
q,qq (B, B�) =

�

p∈{k1,k2},p�∈{p1,p2}
Rp,p�

q,qq (B, B�), (C.4)

Rfi
q,qq (B, B�) =

�

p∈{p1,p2},p�∈{k1,k2}
Rp,p�

q,qq (B, B�), (C.5)

Ri
q,qq (B, B�) =

�

p,p�∈{p1,p2}
Rp,p�

q,qq (B,B�). (C.6)

Because there is no colour flow in the s-channel, the mixed terms Rif
q,qq (B, B�) and Rfi

q,qq (B, B�)
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are zero and the expression for Ri(f)
q,qq (B,B�) read:

Ri(f)
q,qq (B,B�) =

1

64c
i(f)
0

�
(ΓB − 2iMB)2 + 4c

i(f)
1

��
(ΓB� + 2iMB�)2 + 4c

i(f)
1

�

�
A

q
B�

�
A

t
B�

�
A

q
BA

t
Bc

i(f)
3 + B

q
BB

t
Bc

i(f)
1 c

i(f)
2

�
+ B

t
B�

�
A

q
BB

t
Bc

i(f)
1 c

i(f)
2 + B

q
BA

t
Bc

i(f)
4

��

+B
q
B�

�
B

t
B�

�
A

q
BA

t
Bc

i(f)
1 c

i(f)
2 + B

q
BB

t
Bc

i(f)
4

�
+ A

t
B�

�
A

q
BB

t
Bc

i(f)
3 + B

q
BA

t
Bc

i(f)
1 c

i(f)
2

���
. (C.7)

The expressions for coefficients c
i(f)
l read:

ci
0 = t̂�û�, (C.8)

ci
1 = ŝ + t̂� + û�, (C.9)

ci
2 = 2ŝ(t̂1 + t̂� − û1 − û�) + 2t̂1t̂

� + (t̂�)2 − 2û1û
� − (û�)2, (C.10)

ci
3 = 2m2

t

�
2ŝ2 + 2ŝ(t̂� + û�) + (t̂�)2 + (û�)2

�
+ (ŝ + t̂� + û�)

�
2ŝ2 + 2ŝ(t̂1 + t̂� + û1 + û�)

+ 2t̂21 + 2t̂1t̂
� + (t̂�)2 + 2û2

1 + 2û1û
� + (û�)2

�
, (C.11)

ci
4 = −2m2

t

�
2ŝ2 + 2ŝ(t̂� + û�) + (t̂�)2 + (û�)2

�
+ (ŝ + t̂� + û�)

�
2ŝ2 + 2ŝ(t̂1 + t̂� + û1 + û�)

+ 2t̂21 + 2t̂1t̂
� + (t̂�)2 + 2û2

1 + 2û1û
� + (û�)2

�
, (C.12)

cf
0 = (ŝ + t̂1 + û1)2(ŝ + t̂1 + t̂� + û1 + û�)2, (C.13)

cf
1 = ŝ, (C.14)

cf
2 = ŝ

�
−(û�)2

�
−2m2

t + 4t̂1 + t̂� + 6û1

�
− 2m2

t (t̂
�)2 + 2t̂31 + 8t̂21t̂

� + 2t̂21û1 + 6t̂1(t̂�)2

+ û�(t̂� − 4û1)(2t̂1 + t̂� + 2û1) + 8t̂1t̂
�û1 − 2t̂1û

2
1 + (t̂�)3 + 4(t̂�)2û1 − 2û3

1 − (û�)3
�

+ û�
�
4m2

t t̂
�(t̂1 − û1) + (t̂1 + û1)

�
−2û1(t̂1 + t̂�) + t̂�(2t̂1 + t̂�)− 2û2

1

��

+ t̂�
�
û1

�
(2t̂1 + t̂�)2 − 4m2

t t̂
�
�

+ û2
1(2t̂1 + t̂�) + t̂1(t̂1 + t̂�)(2t̂1 + t̂�)

�

− (û�)2
�
t̂1 + û1)(t̂1 + t̂� + 3û1)− 4m2

t t̂1

�
+ 2ŝ3(t̂1 + t̂� − û1 − û�)− (û�)3(t̂1 + û1)

+ ŝ2
�
4t̂21 + 8t̂1t̂

� − 2û�(t̂1 + 4û1) + 3(t̂�)2 + 2t̂�û1 − 4û2
1 − 3(û�)2

�
, (C.15)

cf
3 = 4m4

t ŝ(t̂
� + û�)2 + 2m2

t

�
2ŝ4 + 4ŝ3(t̂1 + t̂� + û1 + û�) + ŝ2

�
2t̂21 + 6t̂1t̂

� + 4t̂1û1 + 6t̂1û
�

+ 3(t̂�)2 + 6t̂�û1 + 4t̂�û� + 2û2
1 + 6û1û

� + 3(û�)2
�

+ 2ŝ
�
t̂�
�
2û1(t̂1 + t̂�) + t̂1(t̂1 + t̂�) + û2

1

�

+ û�(t̂1 + û1)(t̂1 + t̂� + û1) + (û�)2(2t̂1 + û1)
�

+ 2(t̂�û1 − t̂1û
�)2

�

+ ŝ(ŝ + t̂1 + û1)(ŝ + t̂1 + t̂� + û1 + û�)
�
2ŝ2 + 2ŝ(t̂1 + t̂� + û1 + û�) + 2t̂21 + 2t̂1t̂

� + (t̂�)2

+ 2û2
1 + 2û1û

� + (û�)2
�
, (C.16)
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cf
4 = −4m4

t ŝ(t̂
� + û�)2 − 2m2

t

�
2ŝ4 + 4ŝ3(t̂1 + t̂� + û1 + û�) + ŝ2

�
2t̂21 + 6t̂1t̂

� + 6û�(t̂1 + û1)

+ 4t̂1û1 + (t̂�)2 + 6t̂�û1 + 2û2
1 + (û�)2

�
+ 2ŝ

�
t̂�
�
t̂1(t̂1 + t̂�) + 2t̂1û1 + û2

1

�

+ û�(t̂1 − 2t̂� + û1)(t̂1 + t̂� + û1) + (û�)2(û1 − 2t̂�)
�
− 2

�
2t̂�û�

�
t̂21 + t̂1(û1 + û�) + û1(û1 + û�)

�

+ t̂21(û
�)2 + (t̂�)2

�
2û�(t̂1 + û1) + û2

1

���
+ ŝ(ŝ + t̂1 + û1)(ŝ + t̂1 + t̂� + û1 + û�)

�
2ŝ2

+ 2ŝ(t̂1 + t̂� + û1 + û�) + 2t̂21 + 2t̂1t̂
� + (t̂�)2 + 2û2

1 + 2û1û
� + (û�)2

�
. (C.17)

97



98



Bibliography

[1] S. Glashow, “Partial Symmetries of Weak Interactions,” Nucl.Phys. 22 (1961) 579–588.

[2] A. Salam and J. C. Ward, “Electromagnetic and weak interactions,” Phys.Lett. 13 (1964)
168–171.

[3] S. Weinberg, “A Model of Leptons,” Phys.Rev.Lett. 19 (1967) 1264–1266.

[4] S. Glashow, J. Iliopoulos, and L. Maiani, “Weak Interactions with Lepton-Hadron
Symmetry,” Phys.Rev. D2 (1970) 1285–1292.

[5] S. Weinberg, “Mixing angle in renormalizable theories of weak and electromagnetic
interactions,” Phys.Rev. D5 (1972) 1962–1967.

[6] D. Gross and F. Wilczek, “Asymptotically Free Gauge Theories. 1,” Phys.Rev. D8 (1973)
3633–3652.

[7] M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of Weak
Interaction,” Prog.Theor.Phys. 49 (1973) 652–657.

[8] D. Gross and F. Wilczek, “ASYMPTOTICALLY FREE GAUGE THEORIES. 2.,”
Phys.Rev. D9 (1974) 980–993.

[9] H. D. Politzer, “Asymptotic Freedom: An Approach to Strong Interactions,” Phys.Rept. 14
(1974) 129–180.

[10] G. Altarelli, B. Mele, and M. Ruiz-Altaba, “Searching for new heavy vector bosons in pp̄
colliders,” Z. Phys. C45 (1989) 109. Erratum-ibid. C47, 676 (1990).

[11] E. Salvioni, G. Villadoro, and F. Zwirner, “Minimal Z� models: Present bounds and early
LHC reach,” JHEP 0911 (2009) 068, arXiv:0909.1320 [hep-ph].

[12] E. Salvioni, A. Strumia, G. Villadoro, and F. Zwirner, “Non-universal minimal Z� models:
present bounds and early LHC reach,” JHEP 1003 (2010) 010, arXiv:0911.1450
[hep-ph].

[13] C. Grojean, E. Salvioni, and R. Torre, “A weakly constrained W� at the early LHC,” JHEP
1107 (2011) 002, arXiv:1103.2761 [hep-ph].

[14] J. de Blas, J. Lizana, and M. Perez-Victoria, “Combining searches of Z� and W� bosons,”
JHEP 1301 (2013) 166, arXiv:1211.2229 [hep-ph].

[15] R. M. Harris and S. Jain, “Cross Sections for Leptophobic Topcolor Z� Decaying to
Top-Antitop,” Eur.Phys.J. C72 (2012) 2072, arXiv:1112.4928 [hep-ph].

99
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Abstract

General SU(2)×SU(2)×U(1) models represent a well-motivated intermediate step towards the uni-
fication of the Standard Model (SM) gauge groups. Extended gauge group sector, as compared
to that of the SM, leads to additional neutral and charged gauge bosons. These so-called Z� and
W� bosons are actively searched for at the Large Hadron Collider (LHC). Based on a recent global
analysis of low-energy and LEP constraints of these models, we perform numerical scans of their
various signals at the LHC at Leading Order accuracy. We show that total cross sections for lepton
and third-generation quark pairs, while experimentally easily accessible, provide individually only
partial information about the model realized in Nature. In contrast, correlations of these cross
sections in the neutral and charged current channels may well lead to a unique identification. Sub-
sequently we study the electroweak top-pair production at Next-to-leading Order (NLO) accuracy
in the SM extensions with an additional Z� boson assuming general flavour-diagonal couplings. We
calculate the virtual and real corrections at order O(αSα2

W ) and implement them in the POWHEG
BOX framework which allows for consistent matching of NLO QCD calculations with parton show-
ers. We find that the NLO corrections can be very important but the K-factors in the invariant
mass region around the resonance mass are modest.

Résumé

Les modèles SU(2)×SU(2)×U(1) représentent une étape intermédiaire motivée par l’unification des
groupes de jauge du Modèle Standard (MS). Un groupe de jauge étendu, par rapport à celui du
MS, implique l’existence de nouveaux bosons de jauge, neutres et chargés. Ces bosons dénotés
Z� et W� sont recherchés activement au Large Hadron Collider (LHC). Sur la base d’une analyse
globale récente des contraintes sur ces modèles, provenant des expériences à basse énergie et du
LEP, nous effectuons une analyse numérique au Leading Order (LO) des différentes signatures au
LHC. Nous montrons que les sections efficaces totales pour les leptons et les paires de quarks de
troisième génération, expérimentalement facilement accessibles, fournissent individuellement qu’une
information partielles sur le modèle réalisé dans la nature. En revanche, les corrélations de ces
mêmes sections efficaces pourraient bien conduire à une identification unique. Par la suite, nous
étudions la production électrofaible d’une paire de quarks top au Next-to-Leading Order dans les
extensions du MS prédisant un boson Z� supplémentaire et en supposant des couplages génériques
et diagonaux dans la base des saveurs. Nous calculons les corrections virtuelles et réelles à l’ordre
de O(αSα2

W ) et les implémentons dans le générateur d’événements Monte Carlo POWHEG BOX qui
permet de réaliser de manière cohérente la fusion du calcul QCD NLO avec les parton showers. Nous
constatons que les corrections QCD NLO peuvent être très importantes, mais que les K-facteurs
restent modestes dans la région de masse invariante centrée autour de la masse de la résonance.


