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Abstract: Graphs are powerful mathematical modeling tools used in various fields

of computer science, in particular, in Pattern Recognition. Graph matching is the

main operation in Pattern Recognition using graph-based approach. Finding solu-

tions to the problem of graph matching that ensure optimality in terms of accuracy

and time complexity is a difficult research challenge and a topical issue. In this the-

sis, we investigate the resolution of this problem in two fields: 2D and 3D Pattern

Recognition. Firstly, we address the problem of geometric graphs matching and its

applications on 2D Pattern Recognition. Kite (archaeological structures) recogni-

tion in satellite images is the main application considered in this first part. We

present a complete graph based framework for Kite recognition on satellite images.

We propose mainly two contributions. The first one is an automatic process trans-

forming Kites from real images into graphs and a process of generating randomly

synthetic Kite graphs. This allowing to construct a benchmark of Kite graphs (real

and synthetic) structured in different level of deformations. The second contribution

in this part, is the proposition of a new graph similarity measure adapted to geo-

metric graphs and consequently for Kite graphs. The proposed approach combines

graph invariants with a geometric graph edit distance computation. Secondly, we ad-

dress the problem of deformable 3D objects recognition, represented by graphs, i.e.,

triangular tessellations. We propose a new decomposition of triangular tessellations

into a set of substructures that we call triangle-stars. Based on this new decom-

position, we propose a new algorithm of graph matching to measure the distance

between triangular tessellations. The proposed algorithm offers a better measure by

assuring a minimum number of triangle-stars covering a larger neighbourhood, and

uses a set of descriptors which are invariant or at least oblivious under most common

deformations. Finally, we propose a more general graph matching approach founded

on a new formalization based on the stable marriage problem. The proposed ap-

proach is optimal in term of execution time, i.e. the time complexity is quadratic

O(n2) and flexible in term of applicability (2D and 3D). The analyze of the time

complexity of the proposed algorithms and the extensive experiments conducted on

Kite graph data sets (real and synthetic) and standard data sets (2D and 3D) attest

the effectiveness, the high performance and accuracy of the proposed approaches

and show that the proposed approaches are extensible and quite general.

Keywords: Graph matching, Graph edit distance, Graph decomposition, Graph

based modelling, Pattern recognition, 3D object recognition, Deformable object

recognition, Kites, Satellite image.
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Résumé: Les Graphes sont des structures mathématiques puissantes constituant

un outil de modélisation universel utilisé dans différents domaines de l’informatique,

notamment dans le domaine de la reconnaissance de formes. L’appariement de

graphes est l’opération principale dans le processus de la reconnaissance de formes à

base de graphes. Dans ce contexte, trouver des solutions d’appariement de graphes,

garantissant l’optimalité en termes de précision et de temps de calcul est un prob-

lème de recherche difficile et d’actualité. Dans cette thèse, nous nous intéressons

à la résolution de ce problème dans deux domaines : la reconnaissance de formes

2D et 3D. Premièrement, nous considérons le problème d’appariement de graphes

géométriques et ses applications sur la reconnaissance de formes 2D. Dance cette pre-

mière partie, la reconnaissance des Kites (structures archéologiques) est l’application

principale considérée. Nous proposons un "framework" complet basé sur les graphes

pour la reconnaissance des Kites dans des images satellites. Dans ce contexte, nous

proposons deux contributions. La première est la proposition d’un processus au-

tomatique d’extraction et de transformation de Kites à partir d’images réelles en

graphes et un processus de génération aléatoire de graphes de Kites synthétiques. En

utilisant ces deux processus, nous avons généré un benchmark de graphes de Kites

(réels et synthétiques) structuré en 3 niveaux de bruit. La deuxième contribution de

cette première partie, est la proposition d’un nouvel algorithme d’appariement pour

les graphes géométriques et par conséquent pour les Kites. L’approche proposée

combine les invariants de graphes au calcul de l’édition de distance géométrique.

Deuxièmement, nous considérons le problème de reconnaissance des formes 3D où

nous nous intéressons à la reconnaissance d’objets déformables représentés par des

graphes c.à.d. des tessellations de triangles. Nous proposons une décomposition

des tessellations de triangles en un ensemble de sous structures que nous appelons

triangle-étoiles. En se basant sur cette décomposition, nous proposons un nouvel

algorithme d’appariement de graphes pour mesurer la distance entre les tessellations

de triangles. L’algorithme proposé assure un nombre minimum de structures dis-

jointes, offre une meilleure mesure de similarité en couvrant un voisinage plus large

et utilise un ensemble de descripteurs qui sont invariants ou au moins tolérants

aux déformations les plus courantes. Finalement, nous proposons une approche

plus générale de l’appariement de graphes. Cette approche est fondée sur une nou-

velle formalisation basée sur le problème de mariage stable. L’approche proposée



est optimale en terme de temps d’exécution, c.à.d. la complexité est quadratique

O(n2), et flexible en terme d’applicabilité (2D et 3D). Cette approche se base sur

une décomposition en sous structures suivie par un appariement de ces structures en

utilisant l’algorithme de mariage stable. L’analyse de la complexité des algorithmes

proposés et l’ensemble des expérimentations menées sur les bases de graphes des

Kites (réelle et synthétique) et d’autres bases de données standards (2D et 3D)

attestent l’efficacité, la haute performance et la précision des approches proposées

et montrent qu’elles sont extensibles et générales.

Mots clés: Appariement de graphes, Distance d’édition de graphes, Décomposi-

tion de graphes, Modélisation à base de graphes, Reconnaissance de formes, Recon-

naissance d’objets 3D, Reconnaissance d’objets déformables, Kites, Images satellites.
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Chapter 1

General Introduction

Graph theory is an important mathematical field. Its origin dates back to 1735 when

the Swiss mathematician Leonard Euler solved the problem of the Seven Bridges of

Königsberg, called also, the Königsberg bridge problem [6]. The city of Königsberg in

Prussia (now Kaliningrad) was built on both sides of the Pregel River, and included

two islands connected to each other and the mainland by seven bridges (See Figure

1.1). The problem was to find a continuous tour through the city of Königsberg that

would cross each bridge exactly once, come back at the same point from which it

began. The Swiss mathematician, Leonard Euler, demonstrated that no such tour

was possible. He gave an abstract model of the problem by representing land masses

with points and bridges with links between pairs of points (See Figure 1.2). This

abstract description of the problem was the introduction to the graph notion, and

its solution is often referred as the first theorem in graph theory [6].

Graphs are useful and powerful mathematical tools allowing both the description

of properties of an object and the relationships between a set of objects. The

object properties are described by means of nodes and the relationships between

objects are represented by means of edges. In this context, graphs constitute an

universal modeling tool and receive considerable attention from the whole scientific

community, allowing their use in various fields of computer science, in particular the

field of Pattern Recognition.

Pattern recognition describes the act allowing to determine the category or the class

to which a given pattern belongs. The term "pattern" means an observation in the

real world. Pattern recognition is one of the important capabilities of humans, with

which intuitively we can recognize the face of a friend, a category of an animal, a

written sentence, a spoken word, a car in the street, an object in a specific place,

an image, etc. The aim of pattern recognition as a field of computer science is

to propose algorithms allowing the imitation as possible of the human capacity of

perception and recognition [7].
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Figure 1.1: The Seven Bridges of Königsberg city [1].

Figure 1.2: Graph representation of Königsberg bridge problem [1].

Over the years, the use of graphs in pattern recognition has gained popularity and

has obtained a growing attention from the scientific community. Consequently,

graph-based approaches are used in various fields [2], like 2D and 3D pattern recog-

nition (eg., face recognition, street recognition, rigid and non-rigid object recog-

nition), document analysis (eg., handwriting recognition, digit and symbols recog-
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nition), biometric identification (eg., fingerprint recognition), video analysis (eg.,

human gesture recognition), ... , etc.

Graph matching and more generally graph comparison is the main operation in the

process of pattern recognition using a graph-based approach. Graph matching is the

process of finding a correspondence between vertices and edges of two graphs that

satisfies a certain number of constraints ensuring that substructures in one graph

are mapped to similar substructures in the other. Graph matching solutions are

classified into two wide categories: exact approaches and inexact approaches.

In this thesis, Inexact graph matching and its applications for 2D and 3D Pattern

Recognition are investigated. Thus, the thesis is divided into 8 chapters organized

into two parts. Each part contains two chapters. First of all, in Chapter 2, we give

some preliminaries and introduce some notations needed in the rest of the thesis.

Then, we give in Chapter 3, an overview of the related work concerning graph

matching and its applications in Pattern Recognition.

Part I: Geometric graph matching: application to 2D pattern recognition

In the field of Pattern Recognition, it is often required to compare objects, and

the question how to represent those objects in a formal way is a fundamental is-

sue. Graphs are popular and powerful mathematical modeling tools. Graph based

techniques for pattern recognition aim to solve mainly two major problems. The

first is to find an optimal way to represent the considered patterns by graphs. The

second problem is to find the adequate method to compare the objects represented

by graphs. In this context, finding solutions to the problem of graph modeling and

graph matching that ensure optimality in terms of accuracy and time complexity

is a difficult research challenge and a topical issue. The related work about graph

modeling, graph matching and its applications in Pattern Recognition are detailed

in Chapter 3. In this part, we address the issue of geometric graphs matching and

its applications on 2D Pattern Recognition. Kite recognition in satellite images is

the main application considered in this part. Kites are huge archaeological struc-

tures of stone visible from satellite images. Because of their important number and

their wide geographical distribution, automatic recognition of these structures on

images is an important step towards understanding these enigmatic remnants. In

this part, we present a complete identification tool relying on a graph representation

3
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of the Kites. As Kites are naturally represented by graphs, graph matching meth-

ods are thus the main building blocks in the Kite identification process. However,

Kite graphs are disconnected geometric graphs for which traditional graph matching

methods are useless. This part of this thesis is realized within the KITE project,

consequently, Kite recognition in satellite images, is the main application of the geo-

metric graph matching part. KITE project allowed us to collaborate with a team

of archeologists expert on Kites. The archeologists provided us the satellite images

(ground truth data) needed to the construction of the Kite database. They have

also checked and validated the experiments steps that we realized and the obtained

results. This part contains two chapters, in the first one (Chapter 4), we present the

process of Kite graphs construction from real images, and the process of generating

a synthetic data set of Kite graphs generated randomly. The two data sets (real

and synthetic) are used to validate our algorithms. In the second one (Chapter 5),

we propose a new graph similarity measure adapted to geometric graphs and conse-

quently for Kite graphs. The proposed approach combines graph invariants with a

geometric graph edit distance computation leading to an efficient Kite identification

process. In Chapter 5, we analyze the time complexity of the proposed algorithms

and conduct extensive experiments both on real and synthetic Kite graph data sets

to attest the effectiveness of the approach. We also perform a set of experimenta-

tions on other data sets in order to show that the proposed approach is extensible

and quite general.

Part II: Inexact graph matching for 3D objects recognition

Object recognition is one of the fundamental challenges in computer vision, which

has been studied for more than four decades [8]. In the last years, there has an

increasing interest on the 3D objects analysis. The high advances in different fields

of technology and specially in the field of 3D, engender a high growing need of auto-

mated methods for 3D objects recognition. Using triangular tessellations, 3D objects

may be compared with graph matching techniques. This part addresses the problem

of comparing deformable or non-rigid 3D objects (such as human and animal bod-

ies). The shapes considered are represented by graphs, i.e., triangular tessellations.

We propose a new distance for comparing deformable 3D objects. This distance is

based on the decomposition of triangular tessellations into a set of substructures

that we call triangle-stars. A triangle-star is a connected component formed by

4



the union of a triangle and its neighborhood. The proposed decomposition offers

a parameterizable triangle-stars depending on the degree of the considered neigh-

borhood. The number of triangle-stars obtained is much smaller than the number

of nodes and the number of classic stars [9, 10] and, as a result, the computational

complexity is reduced. Furthermore, triangle-stars are local structures that cover

a larger neighborhood than classic stars decomposition [9, 10]. Consequently, the

proposed dissimilarity measure assures an optimal approximation. This is justi-

fied by the fact that optimal methods are based on graph’s global structures and,

consequently, a larger local structure allows to be closer to the global one. The

proposed approach uses a set of descriptors which are invariant or at least oblivious

under most common deformations. This part contains two chapters, in the first one

(Chapter 6), we present the proposed decomposition of triangular tessellations into

triangle-stars. We describe the proposed distance (dissimilarity measure). We prove

that the proposed distance is a pseudo-metric and we analyse its time complexity.

In the second chapter (Chapter 7), we describe the experimentations that we under-

took to evaluate our approach. We present the different databases that we use in our

experiments, some state of the art shape-matching algorithms to compare with, the

evaluation criteria and the experimental results. The analysis of the time complex-

ity and our experimental results on three standard databases (TOSCA, SHREC09

and SHREC11) confirm the high performance and accuracy of our algorithm. The

set of experimentations and the obtained results on SHREC09 database show that

the proposed approach is efficient also for the 3D objects sub-matching, which prove

that our method is extensible and quite general.

Finally, Chapter 8 concludes the thesis with a summary of the contributions and

some suggestions for further research. One of the promising ideas that we project to

realize in further research is described in this last chapter. We propose a more gen-

eral graph matching approach founded on a new formalization based on the stable

marriage problem [11]. The proposed approach is optimal in term of execution time,

i.e. the time complexity is quadratic O(n2). The proposed algorithm is flexible in

term of applicability (2D and 3D).

The set of publications arising from this thesis are listed in Appendix A.
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Chapter 2

Preliminary Notions

Contents

2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Some special graphs . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Graph matching . . . . . . . . . . . . . . . . . . . . . . . . . . 11

In this chapter, we first introduce some useful definitions related to graphs, and

present a short overview of the notations used in this thesis. Secondly, we present

some common concepts and typical classes of graphs. Finally, we present some

aspects of graph matching. Definitions and notations related to a particular chapter

can be found in the corresponding chapter. We refer the reader to ([12], [13], [14]

and [15]) for more background information on graph theory.

2.1 Basic definitions

In this section, we introduce some useful definitions and notation relating to graphs.

Graph: A graph is mathematical construct that models a relationship between a

set of items. The set of items represents a set of objects. A link between the two

items represents a relationship between two objects. The items are called vertices

or nodes and the links are called edges. Thus, a graph G(V,E) is a set of nodes

connected by a set of edges. Formally, a graph G is a four tuple G = (V,E, α, β),

where V is a finite not empty set of nodes or vertices. E ⊆ V × V is the set

of edges. α : V → LV is the node labelling function, β : E → LE is the edge

labelling function while LV and LE are the sets of labels associated with the nodes

and edges respectively. The cardinality of the node set V (G) is called the order of

G, commonly denoted by |V (G)|. The cardinality of the edge set E(G) is the size

of G, commonly denoted by |E(G)|. A graph can be directed or undirected. In a
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directed graph, edges are ordered pairs (u, v) connecting the source node u to the

target node v, commonly denoted by −→uv and called arcs. In an undirected graph,

edges are unordered pairs {u, v} and connect the two nodes in both directions. The

notation uv is used to indicate the edge {u, v}. In an undirected graph G, two

distinct nodes u and v are adjacent or neighbors if there exists an edge uv ∈ E(G)

that connects them. An edge uv is said to be incident to the nodes u and v. Two

edges are adjacent if they are incident to a same node (they share a node). A loop

at a node, links the node to itself and makes it its own neighbor. A graph is simple

if there is at most one edge between every two nodes.

In this thesis, unless it is specified, the graphs which are considered will be finite

simple undirected graphs, having no loops.

Neighborhood and Degree: The set of all neighbors of a node v in a graph G,

is denoted by N(v). The number of neighbors of v is called the degree of v and it

is denoted by deg(v). A node v is an isolated node if deg(v) = 0, which means that

v is without any neighbors. A node of degree one (deg(v) = 1) is called a leaf or a

pendant node. The minimum degree of a graph G is δ(G) = min{deg(v) : v ∈ V (G)}
and the maximum degree of a graph G is denoted by Δ(G) = max{deg(v) : v ∈
V (G)}.

Path and Cycle: A path is in an undirected graph G defined as a sequence of

nodes (v1, v2, . . . , vk) such that each pair vi, vi+1 is an edge in E(G). A path is

called simple if all its nodes are distinct. Figure 2.1 shows an example of a simple

graph path. A cycle is in an undirected graph G defined as a sequence of nodes

(v0, v1, . . . , vk) such that the set of edges E(G) is vivi+1 and the edge vkv0, where

i ∈ {0, . . . , k−1}. In other words, a cycle is a closed path staring and finishing with

the same node. Figure 2.2 shows an example of a cycle.

1 2 3 4 5

Figure 2.1: Example of a graph path

Connectivity and Clique: A graph G is connected if there exists a path between

any two distinct vertices of G (see Figure 2.3). Otherwise, the graph G is discon-

nected. A clique in a graph G is a subset S of V (G) such that every two nodes in

8
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S are adjacent.

1 2 3

456

Figure 2.2: Example of a cycle

1 2 3

45

6

Figure 2.3: Example of a connected graph

Subgraph and Supergraph: A graph H is called a subgraph of a graph G,

written as H ⊆ G, if every node of the graph H is also a node of the graph G and

every edge of the graph H is an edge of the graph G. Formally, V (H) ⊆ V (G) and

E(H) ⊆ E(G). Which means also that the graph G is a supergraph of the graph

H.

2.2 Some special graphs

Several graph classes have been defined and considered in the graph theory literature,

in order to model specific problems or to take advantage of the theoretical properties

of those classes. In this section, we present some typical and important classes that

will be considered in this thesis.

Planar graph: A graph is planar if it can be drawn in the plane without any edges

crossing, which means that edges intersect only at their common nodes. Figure 2.4

illustrates an example of a planar graph.

9



Chapter 2. Preliminary Notions

1 2 3

45

6

Figure 2.4: Example of a planar graph

Bipartite graph: A graph G = (V,E) is bipartite if its set of nodes V can be

split into two disjoint subsets V1 and V2 such that every edge of E connects a node

in V1 to another node in V2. Figure 2.5 illustrates an example of a bipartite graph.

1

2

3

4

5

6

7

V1 V2

Figure 2.5: Example of a bipartite graph

Tree: A tree T is a connected graph which has not any cycles. An Example is

given in Figure 2.6. A tree can be rooted or unrooted. A rooted tree is a tree in

which one vertex has been distinguished as the root.

Star: A star S is a labelled, single-level, tree which can be represented by a 3-tuple

S = (r, L, l), where r is the root node, L is the set of leaves (mono-degree nodes)

and l is a labelling function. Edges exist only between the root node r and any

nodes in L [10]. Figure 2.7 illustrates an example of a star. Figure 2.8 shows the

obtained stars from a given graph G.

10
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2 3 4

8

10

1

6 75

9

Figure 2.6: Example of a tree.

1 2
3

4

5 6

Figure 2.7: Example of a star.

Figure 2.8: Example of stars of a graph

2.3 Graph matching

Graph matching is the process of finding a correspondence between nodes and edges

of two graphs. In this section we present some important definitions related to graph

matching. We present also the Graph edit distance (GED) which is one of the most

famous and powerful fault-tolerant graph matching method.

11
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Graph homomorphism: A graph homomorphism f from a graph G to a graph

H, written as G → H, is a mapping from V (G) to V (H) with edge preserving,

which means that, if two nodes are adjacent in G, their images by f are adjacent

in H. However, more than one node of G may be mapped to the same node in H.

Formally, uv ∈ E(G) ⇒ f(u)f(v) ∈ E(H).

Graph isomorphism: A graph isomorphism f between two graphs G and H,

written as G � H, is a bijection between their sets of nodes V (G) and V (H) with

edge preserving. In other words, a graph isomorphism is a graph homomorphism

with one-to-one correspondence between V (G) and V (H). Figure 2.9 illustrates an

example of an isomorphism f between two graphs G and H.

1 2

3 4

A

B

D

C

G H
f(1)=A  

f(3)=D  
f(2)=B  

f(4)=C  

Figure 2.9: Example of a graph isomorphism.

Subgraph isomorphism: A graph isomorphism f between a graph G and a

subgraph H ′ of the graph H (G � H ′) is called subgraph isomorphism between G

and H. Figure 2.10 illustrates an example of a subgraph isomorphism f between

two graphs G and H.

1 2

3

4 A B

C

f(1)=A
f(2)=B
f(3)=C

G H

Figure 2.10: Example of a subgraph isomorphism.

Graph monomorphism: A graph monomorphism is a relaxed instance of sub-

graph isomorphism, in which the mapped subgraph allows additional edges. In other

words, additional edges are allowed between nodes in the larger graph.

12
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Maximum common subgraph isomorphism: A graph isomorphism f between

the largest subgraph G′ of the graph G and a subgraph H ′ of the graph H (G′ � H ′)

is called Maximum common subgraph isomorphism between G and H. In other

words, the Maximum common subgraph is the largest isomorphic part of two graphs.

In general, in the literature, this problem is related to the maximum clique problem.

Graph Edit Distance (GED) The Graph Edit Distance [9] between two graphs

G1 and G2 is the minimum number of edit operations (minimum cost) to transform

a graph G1 into a graph G2. A set of edit operations is given by insertions, deletions

and substitutions (or relabeling) of graph elements (nodes and/or edges). We denote

the substitution of two elements u and v by (u → v), the deletion of the element u

by (u → ε), and the insertion of the element v by (ε → v). A cost is associated to

each edit operation. A sequence of edit operations e1, ..., ek transforming G1 into G2

is called an edit path between G1 and G2. However, for every pair of graphs G1 and

G2, several edit paths transforming G1 into G2 exist with different total costs. The

edit distance of two graphs is then defined as the minimum cost edit path between

the two graphs G1 and G2. Figure 2.11 gives an example of the process graph edit

distance (GED) transforming the graph G1 into the graph G2.

Formally, Let G1 = (V1, E1, α1, β1) be the source and G2 = (V2, E2, α2, β2) be the

target graph. The graph edit distance between G1 and G2 is defined as following:

λ(G1, G2) = min
(e1,...,ek) ∈ γ(G1,G2)

k∑
i=1

c(ei)

where γ(G1, G2) denotes the set of edit paths transforming G1 into G2, and c denotes

the cost function measuring the strength c(ei) of edit operation ei.

1 2

4

3 1 2

4

3 1 2

4

3

5

1 2

4

3

5

1 2

4

3

5

1 2

4

3

G1 G2

Delet e={1,4} Delet e={3,4} Add v={5} Add e={3,5} Add e={4,5}

Figure 2.11: Example of applying the Graph Edit Distance (GED).
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Inexact graph matching and its applications on 2D and 3D Pattern Recognition is

the main problem that we consider in this thesis. In this chapter, firstly, we present

and discuss a state of the art related to graph matching algorithms. Due to the

huge number of graph matching algorithms proposed since the late 1970s, it is not

possible to review all the available algorithms in the literature. Thus, we provide

juste the necessary state of the art needed for understanding this thesis and placing

it within the appropriate context. For more exhaustive surveys, we refer the reader

to [2, 16, 3, 17, 18]. In the state of the art that we present, we survey some graph

matching algorithms available in the literature, especially the recent ones and we

describe the different classes of graph matching algorithms based mainly on the

taxonomy introduced in [2, 3]. Secondly, we present some applications of graph-

based approaches used in Pattern Recognition. A special attention is given to 2D

and 3D applications which are the main applications in this thesis.
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3.1 Introduction

Graphs are a powerful representation tool and a famous mathematical formalism

used in many applications of structural Pattern Recognition and classification [3, 17].

Graphs constitute an universal and a flexible modeling tool allowing both the de-

scription of properties of an object and the relationships between a set of objects.

Since the late 1970s, the use of graphs in Pattern Recognition gained popularity and

obtained a growing attention from the scientific community. Consequently, graph-

based approaches are used in various fields. This wide utilisation is due to the tech-

nological advancement of new computer generations offering a high computational

power, allowing the use of graph-based algorithms which have in the majority of

cases a high computational complexity. Graph based techniques for Pattern Recog-

nition aim to solve mainly two major problems. The first one is to find an optimal

way to represent objects by graphs. The second problem is to find the appropriate

method to compare and/or classify the objects represented by graphs.

In this chapter, we survey some efficient and recent graph matching algorithms and

graph-based techniques in Pattern Recognition. We also present various applications

of graph-based approaches in Pattern Recognition. The state of the art that we

present is organized on two taxonomies. In the first one (Section 3.2), we present

some efficient graph matching algorithms and graph-based techniques in Pattern

Recognition available in the literature, especially the recent ones, and we describe

their associated classes of graph matching algorithms. A special attention is given

to two main approaches that we use in the rest of this thesis: Graph Edit Distance

(GED) and graph invariants. The second taxonomy (Section 3.3) presents various

applications of graph-based approaches in Pattern Recognition. We focus on the

2D and 3D Pattern Recognition which are the two main applications in this thesis.

Section (3.4) concludes the chapter.

3.2 Graph matching methods

It is often required in many applications to compare objects. When objects are

represented by graphs, graph matching and, more generally, graph comparison is a

fundamental issue. Graph matching is the process of finding a correspondence be-

tween vertices and edges of two graphs that satisfies a certain number of constraints,

ensuring that substructures in one graph are mapped to similar substructures in the

16
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other. In this section, we present some graph matching and, more generally, graph

comparison algorithms that have been proposed and utilized in Pattern Recogni-

tion. Figure 3.1 presents the taxonomy and the classification considered of the graph

matching techniques and the graph-based approaches in Pattern Recognition.

Graph matching solutions are classified into two wide categories: exact approaches

and inexact approaches. Exact approaches, such as those that test for graph iso-

morphism or sub-graph isomorphism, refer to the methods that look for an exact

mapping between the vertices and the edges of a query graph and the vertices and

the edges of a target graph. Inexact graph matching computes a distance between

the compared graphs. This distance measures how similar (or dissimilar) are the

graphs and deals with the errors that are introduced by the processes needed to

model objects by graphs. In sections 3.2.1 and 3.2.2, we present respectively exact

and inexact graph matching algorithms. In Section 3.2.3, we present some graph-

based algorithms (used in Pattern Recognition) which are not exactly forms of graph

matching. However, they are related to graph matching either because they present

a way of comparing graphs or because they use graphs in the process of classification.

3.2.1 Exact graph matching

Exact graph matching is a mapping between the nodes and the edges of a query

graph and the nodes and the edges of a target graph. With exact graph matching,

edge-preserving must be ensured. This means that adjacent nodes in the query graph

are mapped to adjacent nodes in the target graph. Graph isomorphism represents

the most strict form of graph matching, in which the edge-preserving is satisfied

in both directions and the mapping is a bijective (one-to-one) correspondence. A

graph isomorphism between one of the two graphs and a subgraph of the other

graph is known as subgraph isomorphism. Other forms of exact graph matching ex-

ist, in which the constraint of edge-preserving in both directions is dropped, giving

rise to other type of graph matching like: graph monomorphism, graph homomor-

phism, maximum common subgraph (MCS). See Chapter 2 for detailed definitions.

All the forms of exact graph matching, that we cited before, belong to the NP-

complete class. Graph isomorphism constitutes the only exception for which it has

not yet been demonstrated if it belongs to the NP class or not [2]. Recently, the

authors of [19] show that graph isomorphism can be solved in quasi-polynomial time

(exp((log n)O(1))). Some algorithms for graph isomorphism with polynomial time
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Graph-based approaches in Pattern Recognition

Exact graph matching

Inexact graph matching

Tree search based techniques

Other techniques

Tree search based techniques

Continuous optimization

Spectral methods

Other techniques

Other graph-based methods

Graph embedding

Graph kernels

Graph clustering

Graph learning

GED based formulation

Figure 3.1: Taxonomy of Graph-based approaches in Pattern Recognition based on

the taxonomies introduced in [2, 3].
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complexity have been proposed for special kinds of graphs (such as: e.g. trees [20]

and planar graphs [21]). However, until now, no polynomial algorithms are pro-

posed for the general case. Exact graph matching has exponential time complexity

in the worst case. Consequently, the exact methods are known to be only able to

deal with graphs having a small number of nodes. The exact methods are mainly

aimed to reduce the computational time of the matching process deriving from the

exponential complexity of the exact matching problem. In the following we briefly

review some typical methods for exact graph matching.

3.2.1.1 Tree search based techniques

Tree search based techniques constitute the main pillar of the most of existing al-

gorithms for exact graph matching. These techniques use principally backtracking

process in addition to some heuristics. The key idea in tree search based techniques

is the following: a partial matching is constructed starting with an empty map-

ping set and iteratively enriched by adding a new couple of mapped nodes, with

possibility of backtracking, usually using some heuristics to cut as soon as possible

unfruitful search paths in order to avoid the complete exploration of the research

space of all the possible matchings.

Various algorithms based on tree search techniques have been proposed in the litera-

ture. Ullmann’s algorithm [22], is the first important algorithm based on tree search

techniques. The algorithm is one of the most popular graph matching algorithm and

still largely used until now despite of its age. Ullmann’s algorithm addresses mainly

graph isomorphism, subgraph isomorphism and monomorphism problems. However

Ullmann explain a way to use the algorithm for maximum clique detection and con-

sequently for the Maximum common subgraph (MCS) problem. Ullmann proposes

a procedure called refinement procedure in order to cut the search space (unfruitful

matches). The proposed procedure uses a matrix of possible future mapped couples

of nodes to remove. In 1998, the authors of [23] propose the VF algorithm which is

an algorithm for both isomorphism and subgraph isomorphism. The authors pro-

pose a fast heuristic which analyses the nodes adjacent to the ones already added

in the partial matching. In 2004, the same authors propose an enhanced version of

the algorithm [24], called VF2, in which they reduce the memory requirement from

O(n2) to O(n), where n is the number of nodes in the graphs. An improved version

of VF2 for biological graphs is presented in [25].
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More recent tree search based algorithms have been proposed. In 2007, the authors

of [26] propose an enhanced algorithm for finding the Maximum Clique and by the

same way the Maximum Common Subgraph (MCS), called MaxCliqueDyn. In order

to prune unfruitful matches, the proposed algorithm uses branch and bound com-

bined with approximate graph coloring for finding tight bounds. In 2011, Ullmann

in [27] presents an important enhancement of his own very well-known isomorphism

algorithm from 1976 [22]. The new algorithm is based on the Binary Constraint

Satisfaction Problem. Other algorithms based on Constraint Satisfaction Problem

(CSP) have been proposed (eg., [28] and the improved version in [29]). A more im-

proved algorithm has been proposed by Solnon [30], in which the author use a better

filtering based on the AllDifferent constraint. In 2016, the authors of [31] proposed

a new exact maximum clique algorithm for large and massive sparse graphs. The

authors used a branch-and-bound algorithm with a novel sparse encoding for the

adjacency matrix.

3.2.1.2 Other techniques

Other algorithms addressing the problem of exact graph matching, not based on tree

search techniques, have been proposed in the literature. One of the most efficient,

fastest and interesting algorithm addressing the problem of graph isomorphism, not

based on tree search techniques, is Nauty ’s algorithm which is proposed in 1981 by

McKay [32]. Using some results coming from group theory, Nauty’s algorithm con-

structs an automorphism group of each graph. The algorithm associates a canonical

form to each graph, consequently, two graphs are isomorphic if their canonical forms

are equal. The equality between two canonical forms can be verified in O(n2) time,

however the canonical form can be constructed in exponential time in the worst

case, while in the average case, Nauty’s algorithm achieves a good performance.

Other kind of approaches are graph invariants, which have been efficiently used to

solve the graph comparison problem in general and the graph isomorphism problem

in particular. They are used for example in Nauty [32]. A vertex invariant, for

example, is a number i(v) assigned to a vertex v such that if there is an isomorphism

that maps v to v′ then i(v) = i(v′). Examples of invariants are the degree of a vertex,

the number of cliques of size k that contain the vertex, the number of vertices at

a given distance from the vertex, etc. Graph invariants are also the basis of graph

probing [33], where a distance between two graphs is defined as the norm of their
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probes. Each graph probe is a vector of graph invariants. A generalization of this

concept is also used in [34] to compare biological data.

Other algorithms not based on tree search have been proposed. In [35], the authors

propose an isomorphism algorithm that is based on Random Walks. The authors

of [36] discuss the matching problem (graph isomorphism, subgraph isomorphism

and maximum common subgraph) for the special case of graphs having unique node

labels. In 2012, the authors of [37] propose a technique for speeding up existing

exact subgraph isomorphism algorithms on large graphs.

3.2.2 Inexact graph matching

Identical structure with edge preserving in both directions are the constraints re-

quired by the exact graph matching so that two graphs will be isomorphic. Moreover,

exact graph matching algorithms require a high computational complexity. All these

strict constraints make exact graph matching only usable in few applications. The

handled graphs in various graph-based applications, are subject to deformations due

to several causes, (eg, the non-rigidity of the patterns, the noise in the acquisition

process and the errors introduced by the modeling processes, etc). Consequently,

the obtained graphs in many cases are different from the graph reference models.

Hence, the matching process must be fault tolerant and this by allowing the struc-

tural difference between the compared graphs. The matching process must also able

to find the solution in acceptable time, even without guarantee to find the optimal

solution, but at least, find a good approximate solution. All these reasons and needs

that we cited above have prompted the authors to propose an important number

of inexact graph matching algorithms. The ignoring of the identical structure with

edge preserving constraint imposed in the exact graph matching algorithms, is re-

placed by considering a system of penalizing which is used when the edge preserving

is not respected in the inexact graph matching process. Indeed, a specific cost is

associated to the edges not satisfying the edge preserving constraint. Thus, inexact

graph matching algorithms aim to find a matching between the compared graphs

that minimizes (or maximizes) the matching cost. In other words, inexact graph

matching algorithms aim to compute a distance between the compared graphs. This

distance measures how similar (or dissimilar) are the graphs.

Inexact graph matching algorithms are mainly classified into two classes: optimal

and approximate algorithms.
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Optimal inexact matching algorithms always find a solution if it exists. The solution

found is exact and represents a global minimum of the matching cost. Consequently,

these algorithms are considered as a generalization of exact matching algorithms.

Optimal inexact matching algorithms not only require an exponential time com-

plexity as exact graph matching algorithms but they are generally more expensive,

which makes these algorithms not useable for many applications.

Suboptimal or approximate matching algorithms find a local minimum of the match-

ing cost. The local minimum found is generally not far from the global one. However,

there are no guarantees to reach the global minimum and to be able to find an ex-

act solution if it exists [2]. The main advantage of these algorithms is their time

complexity, which is usually polynomial. Hence, approximate matching algorithms

are widely used in many applications.

A large number of inexact graph matching approaches have been proposed in the

literature. In the following, we review some important inexact graph matching

approaches, classified following the kind of the matching algorithm used.

3.2.2.1 Approaches based on Graph Edit Distance formulation

Many inexact graph matching algorithms are formulated as an approximation ap-

proach to compute the Graph Edit Distance (GED). Graph edit distance (GED)

is one of the most famous and powerful fault-tolerant graph matching measures to

determine the distance between graphs [38, 39, 40]. It is based on a kind of graph

transformation called an edit operation. An edit operation is either an insertion, a

suppression or a substitution of a node and/or an edge in the graph. A cost function

associates a cost to each edit operation. The edit distance between two graphs is

defined by the minimum costing sequence of edit operations that are necessary to

transform one graph into an other [41]. This sequence is called an optimal edit

path (See Chapter 2 for a formal definition). Tolerance to noise and distortion is

one of the advantages of GED. Unfortunately, computing the exact value of the

edit distance between two graphs is NP-Hard for general graphs and induces an ex-

ponential computational complexity [10]. This motivated the apparition of several

heuristics giving rise to many inexact graph matching algorithms that approach the

exact value of GED in polynomial time, using different methods such as bipartite

assignment, dynamic programming and probability, etc.

Bipartite graph matching has been demonstrated to be one of the most efficient
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algorithms to solve fault-tolerant graph matching [42]. In [9] and [10], the authors

proposed an approach based on bipartite assignment in which they partition the

compared graphs into smaller substructures and approximate GED by computing

edit distance between substructures. A cost matrix between these substructures

is defined and a mapping between them is realized using an algorithm of linear

assignment, mainly, the Hungarian algorithm [43] or the Jonker-Volgenant algorithm

[44]. These substructures are generally stars, i.e., nodes with their direct neighbors

and edges. However, they are called local descriptions in [9], stars in [10], b-stars in

[45] and probe vectors in [46]. The edit distance between substructures is achieved

in O((n + m)3) time steps, where n and m are the number of nodes in the two

compared graphs.

In addition to classic operators (insertion, suppression and substitution) used in

GED, other ones are proposed. In [47], the authors proposed a novel solution of

GED in which they introduce a new operator to support the node merging and

splitting. They proposed also to apply edit operations in the both compared graphs

until a common graph structure, instead of applying edit operations only to one

graph in order to transform it to the other. They proposed to consider virtual

nodes in the process of graph matching. Virtual nodes are the result of merging

compatible nodes. Two nodes i, j are compatible nodes if they are adjacent and the

distance Dw(i, j) is less than a defined threshold.

Another approximation called BEAM is proposed in [48], where the authors present

a fast suboptimal graph edit distance search which is a variant of a standard A*

algorithm reducing the search space. Rather than expanding all successor vertices

in the search tree, only a fixed number of vertices to be processed are kept in the

set of open vertices at all times. The search space is not completely explored, only

the vertices belonging to the most promising partial matches are expanded.

Recent works are realized in order to speed up the runtime of the bipartite graph

matching based approaches. In [49], the author proposed a new algorithm to com-

pute the Graph Edit Distance in a sub-optimal way. The author demonstrated that

the proposed algorithm ensure the same distance proposed in [9] with a reduced

run time, which is O((max(n, m))3), where n and m are the number of nodes in

the two compared graphs. However, the edit costs have to be defined in such way

allowing that the GED to be defined as distance function, which means that the

cost of insertion plus deletion of nodes (or arcs) have to be lower or equal than the

cost of substitution of nodes (or arcs). The same author, in [50], proposed a new
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fast algorithm, with O((max(n, m))3) time complexity, to compute the Graph Edit

Distance in a sub-optimal way. The author used the Jonker-Volgenant linear solver

[44] which is known to produce similar results than the Hungarian algorithm [43]

but with an important run time reduction. However, the Jonker-Volgenant linear

solver [44] has some convergence problems on some specific cost matrices. Hence,

the author define a new cost matrix such that the Jonker-Volgenant linear solver

[44] converges and the matching algorithm obtains the same distance value than

the Bipartite algorithm [9]. In [51], the authors proposed a new distance called

Hausdorff Edit Distance (HED). The proposed distance (HED) is an adaptation of

the well-known Hausdorff distance between sets [52] for the Graph Edit Distance

(GED). The proposed algorithm has a quadratic computational cost O(n∗m), where

n and m are the number of nodes in the two compared graphs. However, it does

not obtain a bijective correspondence between the nodes of both graphs.

A comparison between the three algorithms Bipartite (BP) [9], Fast Bipartite (FBP)

[49] and Square Fast Bipartite (SFBP) [50] was realized in [42]. The authors have

shown that the performance and the optimality of FBP and SFBP were not affected

by the violation of the theoretically restrictions imposed in FBP and SFBP. The

authors have shown also that SFBP [50] with the Jonker-Volgenant solver [44] is

the fastest algorithm. In [53], the authors proposed eight different options of local

structures considered to construct the cost matrix in the Bipartite Graph Match-

ing. The authors have shown also that the type of local structure and the distance

defined between these structures is relevant for the runtime and classification ratio.

Other recent works have been proposed in order to speed up the runtime and/or

improve the accuracy of Graph Edit Distance based approach. Among them we cite:

[54], [55] and [56]. We refer the reader to [57] for a detailed GED survey.

3.2.2.2 Tree search based techniques

As in the exact graph matching, tree search based techniques with backtracking have

been also utilized for inexact graph matching. The principe, in this case, is that both

the cost of the current partial matching and the estimated cost of the rest of nodes

using a heuristic, are used to guide the search process. The total cost is utilized

either to cut unfruitful paths as in a branch and bound algorithm, or to specify the

order of branches to be traversed in the search tree, as in the A∗ algorithm [58].

The considered heuristics may not ensure to find the optimal solution, which means
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that the matching is suboptimal. Various inexact graph matching algorithms based

on tree search techniques have been proposed, for example: [59], [60], [61] and [62].

Many of the proposed algorithms are based on the well know A∗ algorithm, such as:

[63], [64], [65], [66] and [48].

3.2.2.3 Continuous optimization

Although graph matching is naturally a discrete optimization problem, and usu-

ally the methods proposed to solve it, use directly graphs. A thoroughly different

method, is to solve the graph matching problem by solving an equivalent continuous

one. This method is performed mainly on three steps: firstly, the graph matching

problem is reformulated as a continuous problem. Secondly, the continuous problem

is solved using an optimization algorithm. Finally, the continuous solution found

is recast to the initial discrete domain. The inconvenient of this method is there

is no guarantees to reach even the local optimality. Indeed, even the optimization

algorithms used for the continuous problem in the second step ensure to find a local

optimum (suboptimal solution). The final solution, resulting by the last approxima-

tion of the discretization step, may not guarantee to reach local optimality. However,

continuous optimization based approach is very useful in many applications due to

its very reduced computational cost which is usually polynomial [2].

Several inexact graph matching algorithms based on continuous optimization have

been proposed, mainly organized into two families: probabilistic relaxation labeling

and weighted graph matching problem (WGM). The first family (the probabilistic

relaxation labeling) is an iterative process trying to find a correspondence between

graphs by assigning a label to each node or substructure of one graph and this based

on a set of constraints. Various algorithms have been proposed in this category, such

as: [67], [68], [69], [70], [71], [72] and [73]. The second family is based on a formula-

tion of the problem as a Weighted Graph Matching Problem (WGM). This approach

is based on the use of a mapping matrix M containing real valued elements [0, 1]

in order to find a matching between two sets of nodes or substructures of the two

compared graphs. A defined objective function which depends on the weights of the

edges preserved by the match, must be optimised by the required matching. Due

to the continuous values [0, 1] of the elements of the matrix M , the WGM prob-

lem is usually and naturally transformed into a continuous problem. Hence, the

WGM problem becomes a quadratic optimization problem. One of the important
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disadvantages of the weighted graph matching WGM based approach is that only

the weights of edges are accepted as attributes and the nodes cannot have. The

authors of [74] were among the first, who linearized and solved the quadratic prob-

lem using the simplex algorithm. In [75], the authors propose an approach based on

Lagrangian relaxation network for Graph Matching. The authors of [76], proposed a

method to approximate the maximum common subgraph isomorphism problem by

producing a weighted graph. The obtained weights indicate the probability that the

associated link will be in the maximum common subgraph of the two graphs consid-

ered. Other methods for inexact graph matching based on continuous optimization

have been proposed. Among them we can cite, the fuzzy graph matching ([77], [78]

and [79]), Kernel Methods for graph matching such as Reproducing Kernel Hilbert

Spaces based approaches ([80] and [81]).

3.2.2.4 Spectral methods

The basic idea considered in spectral methods is that the eigenvalues and the eigen-

vectors of the adjacency matrix of a graph are invariant to node permutations.

Which means that, even if the rows and the columns of the adjacency matrix are

permuted, its eigenvalues and eigenvectors stay unchanged. Consequently, the ad-

jacency matrices of isomorphic graphs have the same eigenvalues and eigenvectors.

However, the inverse is not true [82], which means that we cannot infer that two

graphs are isomorphic, if their eigenvalues and/or eigenvectors are equal. Moreover,

spectral methods are inexact in the sense that they do not ensure finding the opti-

mal solution [3]. Furthermore, spectral methods cannot use the attributes of nodes

or edges except some spectral methods which are able to exploit only real weights

of edges. However, due to the polynomial time complexity of the spectral methods,

they are widely used for solving the graph matching problem. Hence, various algo-

rithms based on this approach have been proposed. We can cite, [83], [84], [85], [86],

[87], [88], [89], [90], [73] and [91]. We refer the readers to [92], in which the authors

present a survey of various graph based spectral approaches for comparing graphs

and trees.

3.2.2.5 Other techniques

Other categories of inexact graph matching that are not mentioned previously, exist

in the literature, where several algorithms have been proposed. We can cite: de-
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composition methods ([93], [94], [95]), [96] and [97], neural networks ([98], [99], [100]

and [101]), genetic algorithms ([102], [103], [104], [105] and [106]), methods based on

local properties ([107], [108] and [109]) and methods based on tabu research ([110],

[111]).

3.2.3 Other graph-based methods

In this section we briefly describe some graph-based methods in Pattern Recogni-

tion which are not exactly considered as forms of graph matching. However, these

approaches can be affiliated to graph matching methods either because they present

a manner of comparing two graphs, such as graph embedding and graph kernels,

or because they use graphs to classify objects into classes, such as graph clustering

and graph learning [3]. In the recent years, graph embedding and graph kernels

have received a special attention and have gained popularity ([112] and [113]). The

authors of [16] and [114] propose a survey related to graph kernels and graph em-

bedding, in which they present these approaches as a manner to unify the statistical

and structural techniques in Pattern Recognition. The authors show how to com-

bine the complementary properties of the statistical and the structural techniques.

We can also cite the Elastic Graph Matching problem (EGM ) which is an image

matching problem suing a graph structure. The idea is to superimpose a grid on

the model image and define a set of attributes by computing some image features at

the intersections of the grid lines. An isomorphic grid is also superimposed on the

request image, and is then deformed (using the graph structure) in order to have

the best matching between the features computed at the request grid points and the

ones computed at the model grid. Several works dealing with the EGM problem

have been realized, among them we cite: [115], [116], [117], [118], [119] and [120].

3.2.3.1 Graph embedding

Graph embedding approaches are based on a mapping onto a vector space. Graph

embedding approaches cover mainly two slightly different categories [3]. The first

one includes the methods that match the set of nodes (or substructures) of a graph

onto a set of points in a vector space, where similar nodes (or substructures) will

be mapped onto close points in the vector space. Several works have been realized

in the literature, we can cite: [121], [122] and [89]. The second category includes

approaches that match entire graphs onto points in a vector space, where similar
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graphs will be mapped onto close points in the vector space. In this second category

of graph embedding, according to the taxonomy proposed in [3], we distinguish four

approaches. The first approach is the isometric embedding, in which the proposed

methods use a similarity measure between graphs and aim to find a mapping to

vectors conserving this measure. Among the proposed works in literature, we can

cite: [101], [122] and [123]. The second approach is the spectral embedding, in which

the proposed methods are based on the use of spectral properties of graphs such

as the properties related to the eigenvalues and eigenvectors. Among the proposed

works in literature, we can cite: [124], [125], [126] and [127]. The third approach

is the subpattern embedding, in which the proposed methods aim to classify some

specific kinds of subpatterns in the graphs to be embedded. Many works have been

proposed in the literature, we can cite: [128], [129], [130], [131], [132], [133] and

[134]. The fourth approach is the prototype-based embedding, in which the proposed

methods aim to find a mapping of a graph onto a vector space, according to the

distances of the graph from a set of supposed graph prototypes, using a defined

distance function. Among the proposed works in the literature, we can cite: [128],

[135], [136] and [137]. Several strategies for selecting the graph prototypes have been

proposed such as: [138], [135], [139], [140], [141] and [142].

3.2.3.2 Graph kernels

A graph kernel is a symmetric and positive semi-definite function k that maps a

couple of graphs from the space of all the graphs G onto a real number, k : G×G →
R. Every graph kernel k can be considered as a vector dot product, because they

have similar properties. Instead of mapping graphs from G to a feature space and

computing their dot product there, the value of kernel function k can simply be

evaluated in G [143]. Kernel methods allow to extend basic linear algorithms to

complex non-linear ones in a unified and elegant way [16]. Furthermore, kernel

methods can replace the dot product in several vector-based algorithms and make

standard algorithms, originally developed for vectors, applicable to more complex

data structures such as graphs. Consequently, the concept of kernel machines can

be extended from vectorial domains to structural domains [16]. In addition, using

graph kernels methods allows to benefit from both the representational power of

graphs and the huge number of vector-based algorithms. Hence, kernel methods are

more appropriate for difficult Pattern Recognition tasks than traditional methods
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under some conditions [144]. Several works have been realized in the literature,

among them we cite: diffusion kernels ([145], [146] and [147]), convolution kernel

([148], [149] and [150]), walk kernel ([151], [152], [153], [154], [155] and [156]), based

on GED ([157], [158], [159], [160]) and other methods ([161], [162] and [163]).

3.2.3.3 Graph clustering

Graph clustering approaches cover mainly two different categories. In the first one,

a graph is used to represent each pattern and the clustering is realized on the set of

graphs. Various works have been realized in this first category, among them we cite:

[164], [165], [166] and [167]. In the second category, a graph is used to represent

a set of patterns. Each node represent a pattern and edges are used to represent

the relationships between couples of patterns. Usually, edges are weighted based

on a similarity measure. In this category, the clustering is realized by partitioning

the graph’s nodes under some conditions. Many works have been realized in this

second category, among them we cite: [168], [169], [170], [171], [172], [173], [174],

[175], [176], [177], [178], [179], [180], [181], [182], [183], [184], [185] and [186].

3.2.3.4 Graph learning

The term Graph learning represent the learning approaches using graphs and refers

mainly to two categories. In the first one, each pattern is represented by a graph.

The class descriptions are also based on graph representation. Various works have

been realized in this first category, among them we cite: [187], [188], [189], [190],

[191], [192], [193], [194], [195] and [196]. In the second category, a graph is used to

represent a set of objects. Each node represents an object and edges are used to

represent the relationships between couples of objects. Usually, edges are weighted

based on a similarity or distance measure. Many works have been realized in this

second category, among them we cite: [197], [198], [199], [200], [201], [202], [203]

and [204].

3.3 Applications of graph matching in Pattern Recogni-

tion

Several applications in Pattern Recognition using graph-based approaches have been

proposed in the literature. Graph matching algorithms were the main build of
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these approaches and were evaluated using various applications. Whatever are the

considered graph-based applications, a step of graph representation and construction

is needed. In this section we present some graph representations used in Pattern

recognition. We present also some applications in Pattern recognition, mainly in

the fields of 2D and 3D.

3.3.1 Graph representations

In the step of graph representation, nodes, edges and their attributes will be spec-

ified. Depending on the kind of the application, the nodes can represent points

and/or regions of interest or any other components obtained by applying a specific

process on the data such as segmentation. Edges represent connections between

these nodes and define a specific relationship between nodes, such as proximity, ad-

jacency, etc. Several graph databases are available in the literature, among them we

can cite the well-known IAM Graph Database Repository [205], which contains sev-

eral graph data sets. The first data set is the Letter Graphs data set which contains

graphs that represent letter drawings (15 capital letters of the Roman alphabet that

consist of straight lines only). Lines are represented by undirected edges and ending

points of lines by nodes. Each node is labeled with a two-dimensional attribute

giving its position relative to a reference coordinate system. Edges are unlabeled.

The second data set is Digit Graphs, which consists of graphs representing hand-

written digits. Nodes are inserted in regular intervals between the beginning and

ending points of a line. Successive nodes are connected by undirected edges. Each

node is labeled with a two-dimensional attribute giving its position relative to a

reference coordinate system. Edges are attributed with an angle representing the

orientation of the edge relative to the horizontal direction. GREC Graphs is the

third data set consisting of graphs representing symbols from architectural and elec-

tronic drawings. Ending points, corners, intersections and circles are represented by

nodes and labeled with a two-dimensional attribute giving their position. The nodes

are connected by undirected edges which are labeled as line or arc. An additional

attribute denotes the angle with respect to the horizontal direction or the diameter

in case of arcs. The fourth data set is Fingerprint Graphs which consists of graphs

representing fingerprints, which are converted into graphs by filtering the images

and extracting important regions [206]. Then, a skeletonized representation of the

extracted regions is obtained by applying a process of binarization and thinning.
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Ending points and bifurcation points of the resulted skeleton are represented by

nodes. Additional nodes are inserted in regular intervals between ending points and

bifurcation points. Undirected edges link nodes that are directly connected through

a ridge in the skeleton. Nodes are labeled with a two-dimensional attribute giving

their positions. Edges are attributed with an angle giving the orientation of the

edge with respect to the horizontal direction. Other data sets of the IAM Graph

Database Repository (COIL Graphs, Web-page Graphs, AIDS Graphs, Mutagenicity

Graphs and Protein Graphs) are detailed in [205].

In the field of 3D image or object analysis, several graph based methods have been

proposed [207]. Among them, approaches based on skeletons ([208], [209] and [210]),

in which the shapes are transformed into skeletons using a process of thinning. Then,

the resulted skeletons are compared using graph matching methods. Approaches

based on Reeb graphs which are constructed from functions defined on manifold

objects. Several works have been proposed such as: [211], [212] and [213]. Other

graph-based approaches have been proposed, such as methods using shape segmen-

tation, in which the shapes are segmented into a set of components. Then, a graph

of these components is constructed, where nodes represent the resulted segments

which are linked by edges. Finally, the obtained graphs are compared using graph

matching methods. Several works have been realized, among them, we cite: [214],

[215] and [216]

3.3.2 Pattern Recognition examples using graphs

Various graph-based applications have been proposed in the literature, in many ap-

plications fields, among them, we can cite: 2D image analysis ([62], [99], [217],

[218], [9], [46], [45], [49], [51]) and 3D image analysis, in which we can distinguish

mainly two categories, rigid objects and non-rigid or deformable objects. In the first

category, rigid objects are considered such as: a car, a chair, a bowl, ..., etc. De-

formable objects can be also considered in the first category. However, each position

of a deformable object is considered as a different object associated to a different

class, for example, we associate each position of the human body (sitting, standing,

hands raised, etc.) to a deferent class. In the second category, deformable objects

are considered such as humans and animals. Unlike the first category, we associated

one class to each deformable object, whatever the different positions. Various works

have been realized in the field of 3D object analysis, among them: [69], [95], [219],
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[220], [220], [221], [222], [223], [224], [225], [226]. Document analysis including

handwritten recognition (string, letters and digits) in different languages (Roman,

Arabic, Chinese, etc.), symbol and graphics recognition. Several works have been

realised in the field of Document analysis, among them, we cite: ([227], [228],

[229], [230], [231], [16], [232], [233], [234], [51], [235]). Biometric identification,

including face recognition, face mentions and expressions recognition, fingerprint

recognition, etc. Various works have been realized in this field, among them, we

cite: [236], [237], [238], [116], [239], [240], [241], [242], [243], [244], [245]. Medical

images analysis, among them: [246], [247] and [248], etc. Other graph-based ap-

plications have been proposed in the literature in other fields, among them, we cite:

Image database, Web-pages data, Video analysis, etc.

3.4 Conclusions

In this chapter, we presented and discussed a state of the art related to graph

matching algorithms. The state of the art presented in this chapter only provides

the necessary elements for understanding this thesis and placing it within the appro-

priate context. We surveyed graph matching algorithms available in the literature

and especially the recent ones and we described the different classes of graph match-

ing algorithms. We also presented some applications of graph-based approaches in

Pattern Recognition.

32



Part I

Geometric graph matching:

application to 2D Pattern

Recognition





Introduction to Part I

This part addresses the issue of geometric graph matching and its applications on

2D Pattern Recognition. Kite recognition in satellite images is the main application

considered in this part. We present a complete framework for Kite recognition on

satellite images where Kites are modeled by graphs. Kites are huge archaeological

structures of stone visible from satellite images. Because of their important number

and their wide geographical distribution, automatic recognition of these structures

on images is an important step towards understanding these enigmatic remnants. In

this part, we present a complete identification tool relying on a graph representation

of the Kites. As Kites are naturally represented by graphs, graph matching meth-

ods are thus the main building blocks in the Kite identification process. However,

Kite graphs are disconnected geometric graphs for which traditional graph matching

methods are useless.

This part contains two chapters, in the first one (Chapter 4), we present the pro-

cess of Kite graph construction from real images, and the process of generating a

synthetic data set of Kite graphs generated randomly. The two data sets (real and

synthetic) are used to validate our algorithms. In the second one (Chapter 5), we

propose a new graph similarity measure adapted to geometric graphs and conse-

quently for Kite graphs. The proposed approach combines graph invariants with a

geometric graph edit distance computation leading to an efficient Kite identification

process. In Chapter 5, we analyze the time complexity of the proposed algorithms

and conduct extensive experiments both on real and synthetic Kite graph data sets

to attest the effectiveness of the approach. We also perform a set of experimenta-

tions on other data sets in order to show that the proposed approach is extensible

and quite general.

The satellite images (ground truth data) used in the construction of the Kite

database are provided by a team of archeologists expert on Kites. The archeol-

ogists have also checked and validated the experiment steps that we realized and

the obtained results.
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Kites are huge archaeological structures of stone visible from satellite images. Be-

cause of their important number and their wide geographical distribution, automatic

recognition of these structures on satellite images is an important step towards un-

derstanding these enigmatic remnants. Kites are naturally represented by graphs.

In this chapter, we present the process of Kite graph construction from real images,

and the process of generating a synthetic data set of Kite graphs generated randomly.

The two data sets (real and synthetic) are used to validate our algorithms.

This chapter is organized as follows: in Section 4.1, we give a short overview de-

scribing the archaeological structure called Kites. In Section 4.2, we explain the

process of constructing and generating the real and synthetic Kite graph data sets.

Section 4.3 concludes the chapter.

4.1 Kite

A Kite is an archaeological structure consisting of two long walls built of stones and

arranged within a funnel shape opening onto an enclosure. The walls can reach a

length of several kilometers and the enclosure can cover an area of several hectares.

This yields huge constructions that are visible on satellite images as depicted in

Figure 4.1(a). Kites were discovered in the Middle East in 1920. They were first
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discovered by the British airmen who flew over the Jordanian desert during the pe-

riod of the Mandate. They were thus called Kites due to the analogy of their shape

with the shape of a Kite. Despite several studies, the issues related to their age and

functions remain without satisfactory answers. Some rare dating attributes them

to the Bronze Age but predated use of these structures is not excluded. The exact

function of these structures has never been established. Many authors attribute a

hunting function to the Kites, but the hypothesis of a pastoral use has not been

refuted. These uncertainties are due to the extreme difficulty of obtaining reliable

data during field investigations in contexts where archaeological material is most

often absent [249, 250]. Recently, public access to high resolution satellite images

(Google Earth, Bing) has significantly expanded the number of discovered Kites

and also enlarged their geographical spread from the south of the Arabian Penin-

sula to the Aralo-Caspian region [251]. The massive use of Kites, judging by the

density of these structures, probably had territorial implications and socioeconomic

importance in a region that has seen the advent of agriculture and the birth of the

urban phenomenon. Kites are thus an underestimated phenomenon. Establishing

the duration of their utilization, outlining their use and functioning, and trying to

identify the population responsible for these constructions are the challenges that

would highlight the significance of this unknown phenomenon. However, these is-

sues cannot be seriously addressed without an almost exhaustive inventory of these

structures [252]. For this purpose, automatic recognition of Kites on satellite images

offers archeologists valuable help in understanding this phenomenon. This will allow

a systematic and homogeneous search in the entire distribution area of Kites and

then in the peripheral regions.

4.2 Kite graph data-set construction

In this section, we present the process of Kite graph construction from real images,

and the process of generating a synthetic data set of Kite graphs generated randomly.

The two data sets (real and synthetic) are used to evaluate the efficiency and the

resilience of the proposed approach (described in Chapter 5).

4.2.1 Real data set construction

On satellite images, Kites appear as flat surfaces delimited by a set of lines as

illustrated in (Figure 4.1(a)). To convert Kites’ images into attributed graphs, the
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(a)

(b)

(c)

(d)

(e)

(f) Enclosure (g) Antenna

Figure 4.1: Illustration of Kite detection
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first step is to extract the Kite structures from the images by edge detection. Edge

(segment or line) detection in images is an intensively studied topic in image analysis

[253, 254]. Besides, several recent methods such as [255, 256, 257] give good results

on satellite images. The main difficulty with such methods is to find the adequate

settings to obtain an acceptable segment detection for a specific application. For

Kites, we investigated several solutions with various settings and the LSD algorithm

[257] gave us the most satisfactory set of segments (see Figure 4.1(b)). The LSD

algorithm is followed by four steps to obtain the final Kite graphs:

• Deleting isolated segments: We consider that a segment is isolated if its

length is less than a threshold lengthmin and if it has no neighbors according

to a minimum neighborhood distance neighbormin.

• Merging neighboring segments: During this step, each pair of segments

that are neighbors according to neighbormin, do not cross each other and

have the same angle with the horizontal line with a tolerance angle delta, are

merged in one segment.

lengthmin, neighbormin and delta are set during experimentations. Delet-

ing isolated segments and merging neighboring ones are illustrated in Figure

4.1(c).

• Thinning segments: In this step, a skeleton is generated by reducing the

width of all the segments to 1 pixel (see Figure 4.1(d)) using the Skeletonize

"ImageJ" method, which is the implementation of the approach described in

[258].

• Graph construction: Finally, we construct the graph from the skeleton

by representing lines by edges and ending points of lines by vertices (Figure

4.1(e)). Each vertex is labeled with a two-dimensional attribute giving its

position and an n-dimensional attribute containing the angles between every

pair of consecutive incident edges. According to the state of preservation of the

Kite, a graph obtained by this process can have a single connected component

(i.e., the Kite is totally preserved) or it can be composed by two or more

connected components (i.e., some parts of the Kite have been destroyed).

We executed our algorithm on 350 images (250 with Kites and 100 without Kites)

with different states of preservation. We classified the obtained graphs into four

preservation levels:
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1. State I: The Kite is entire and well preserved. The Kite graph obtained is

perfect and the few disconnections found are corrected manually with the help

of the archeologists.

2. State II: The Kite is entire and well preserved. The Kite graph may be

disconnected but the disconnections are neither frequent nor important.

3. State III: The Kite graph is very disconnected. Some parts of the Kite are

not present.

4. State IV: The graph is not a Kite. These graphs are obtained by executing

the algorithm on images that do not contain Kites. These images are extracted

near (geographical positions) the images containing Kites, so these images have

the same reliefs as the images containing the Kites, and the graphs obtained

represent structures close to Kites.

Figure 4.2 depicts some examples in each case. Figures (4.3, 4.4, 4.5 and 4.6)

illustrate the process of extraction and transformation into graphs applied on twelve

satellite images, three images per state of preservation.

The characteristics of the data set are summarized in Table 4.1.

All the Data set State-I State-II State-III State-IV

#G 4081 62 129 1581 2309

#Img 350 50 100 100 100

avg (V ) 26.14 110.84 113.74 30.09 15.59

max (V ) 949 316 320 779 949

avg (E) 26.28 116.51 122.34 30.56 15.90

max (E) 1081 327 331 864 1081

avgAng 91.22 91.19 91.31 91.24 91.15

maxAng 180 180 180 180 180

#G: number of graphs. #Img: number of images. avg(V ): average number of vertices. avg(E): average

number of edges. max(V ): maximum number of vertices. max(E): maximum number of edges. avgAng :

average value of the angles. maxAng maximum angle value.

Table 4.1: Real Data set Characteristics

Kite graphs Prototype(Real) With the help of the archeologists, we selected

from the graphs in State-I, the most preserved Kites as prototype Kite graphs. Also,

to be able to deal with disconnected Kite graphs without adding significant com-

puting costs, we constructed a prototype graph for each Kite component, namely:
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Preservation State I

Preservation State II

Preservation State III

Preservation State IV: non Kite graphs

Figure 4.2: Real data-set.
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State-I 
Kite 1 Kite 2 Kite 3 

   

   

 
  

 
  

 
  

 

Figure 4.3: State-I: Example of extraction and transformation of images into graphs
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State- II 
Kite 1 Kite 2 Kite 3 

   

   

 
  

 
  

 
  

 

Figure 4.4: State-II: Example of extraction and transformation of images into

graphs
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State- III 
Kite 1 Kite 2 Kite 3 

 
  

   

 
 

 

 
 

 

  
 

 

Figure 4.5: State-III: Example of extraction and transformation of images into

graphs
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State-IV 
No-Kite 1 No-Kite 2 No-Kite 3 

   

  
 

  
 

  
 

   
 

Figure 4.6: State-IV: Example of extraction and transformation of images into

graphs
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antenna and enclosure. Figures 4.1(f) and 4.1(g) give, respectively, an example of

a Kite enclosure and a Kite antenna. In our experimentation, we consider a Graph

Antenna, a Graph Enclosure and four different Graph Kites.

4.2.2 Synthetic data set generation

Random generation of a synthetic data set of Kite graphs offers us the possibility

of: (i) obtaining Kite graphs in several possible preservation states. (ii) Obtaining

Kite graphs with numerous deformations, which may correspond to the variations

in form of Kite components or the absence of one or more of these components. (iii)

Studying the scalability and resilience of our Kite recognition process.

In order to generate a graph representing a Kite (Figure 4.7 (d)), we generate the

graphs of each component, namely the enclosure graphs and the antenna graphs.

The different parameters used to generate the graphs of each Kite component are

checked and controlled by a team of Kite expert archeologists.

Enclosure graph generation Due to the form of the Kite enclosure which is

pseudo-convex, the generation of its graph is based on a circle equation. The center

position c, the number of vertices N and the radius circle R are generated randomly

according to a minimum and a maximum limit defined by the archaeologists. An

angle Ang is generated according to the number of vertices in the Kite enclosure

(see Figure 4.7 (a)). The coordinates (x, y) of the vertices of the Kite enclosure are

generated according to the circle equation. To obtain the pseudo-convex form of the

enclosure, we vary the values of the radius (R±ε R, i) and the angle (Ang±ε Ang, i)

for each generation of vertex coordinates (see Figure 4.7 (b)).

Antenna graph generation A Kite antenna is represented by a graph that is

an open chain of edges (at least one edge). The number of edges, the distance

between two vertices constituting an edge, and the inclination angle of an edge are

generated randomly depending on a set of minimum and maximum values of the

condescending parameters (see Figure 4.7(c)).

Using the described generation process, we obtain a synthetic data set containing

1000 graphs representing Kites. The characteristics of the synthetic data set are

summarized in Table 4.2.
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(a) (b)

(c) (d)

Figure 4.7: Kite graphs syntectic data-set generation process.

#G avg (V ) max (V ) avg (E) max (E) avgAng maxAng

1000 58.44 90 57.41 89 108.89 180

#G: number of graphs. avg(V ): average number of vertices. avg(E): average number of edges.

max(V ): maximum number of vertices. max(E): maximum number of edges. avgAng : average value of

the angles. maxAng maximum angle value.

Table 4.2: Synthetic Graph Data set Characteristics

Kite graphs Prototype(Synthetic) Using the described process, we generate

a set of prototype graphs representing: an antenna, an enclosure and four entire

Kites.

4.3 Conclusion

In this chapter, we introduced a graph representation of Kites and we proposed an

automatic process for extracting and transforming Kites from satellite images into a

set of graphs. We also proposed a process of generating randomly a synthetic data
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set of Kite graphs. Using the two proposed processes, we construct a benchmark of

Kite graphs (real and synthetic) structured in different levels of deformations. This

benchmark is used to validate our algorithms.
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In this chapter, we propose a new graph similarity measure adapted to geometric

graphs and consequently for Kite graphs. The proposed approach combines graph

invariants with a geometric graph edit distance computation leading to an efficient

Kite identification process. We analyze the time complexity of the proposed algo-

rithms and conduct extensive experiments on both real and synthetic Kite graph

data sets to attest the effectiveness of the proposed approach. We also perform a set

of experimentations on other data sets in order to show that the proposed approach

is extensible and quite general.

5.1 Introduction

Kite recognition as a graph matching problem is interesting because it raises several

challenges not addressed by existing methods. In fact, Kite graphs are not connected

and may contain several parts. They have specific geometric forms that distinguish

them from other constructions. Furthermore, each processed image can involve a

large number of graphs, thus implying the use of rapid recognition algorithms. To
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tackle these challenges, we propose a multi-level recognition framework that first

applies rapidly computed graph invariants to discard non-Kite graphs in the early

stages of the recognition framework. Then, we use a local similarity measure that

takes into account the geometric form of Kite graphs by considering the angles of the

form. Finally, a reconstruction process allows us to consider disconnection within

Kite graphs.

We compare our work with existing methods using the two data sets (real and

synthetic) Kite graphs and we also apply it to other data sets mainly characterized

by the geometric form of the graphs. These experimentations show that the proposed

framework is a practical and efficient Kite recognition tool that applies directly to

images. The realized experiments show also that the proposed approach is quite

general.

The rest of the chapter is organized as follows: Section 5.2 describes the proposed

similarity measure and presents its complexity analysis. Section 5.3 reports our

experimental results and finally, Section 5.4 concludes the chapter.

5.2 Algorithm overview

In this section, we describe the proposed Kite recognition solution, which is a hi-

erarchical graph-based approach consisting of: approaches measuring the distance

between two graphs and a reconstruction process. Firstly we present the proposed

approaches measuring the distance between two graphs: a global similarity measure

denoted Global, a geometric local similarity measure denoted GeoLocal and two va-

rieties of hierarchical measures that we call GlobalGeoLocal and GeoLocalGlobal which

are the result of combining Global and GeoLocal depending on the defined order.

The global similarity Global is a fast computable measure based on graph invariants.

This similarity aims to rapidly discard the graphs that cannot be Kites and avoid

unnecessary and more costly comparisons. The geometric local similarity GeoLocal

is a more accurate measure based on the geometric form and the structured features

extracted from the graphs. This similarity is based on graph edit distance GED

to deal with the state of preservation of the Kites. Secondly, we present the re-

construction process, which aims to verify if the different connected components of

the graph identified as Kite components (enclosure and antenna) constitute a Kite.

Identification of the different connected components of the graph as Kite compo-

nents is realized using one of the proposed approaches of graph similarity measure,

52



5.2. Algorithm overview

Symbol Description

G(V,E) undirected labeled graph where V is its vertex set and E its edge set.

Both vertices and edges are labeled.

V (G) vertex set of graph G.

E(G) edge set of graph G.

deg(v) degree of vertex v.

Δ(G) the greatest vertex degree in graph G.

�(e) the label of edge e.

A(G) the greatest angle in graph G.

L(G) the greatest edge label in graph G.

‖S‖ size of the set S.

(∠v1v2v3)Gi
the angle between the two edges (v1, v2) and (v2, v3) in the graph Gi.

Table 5.1: Notation

namely: Global, GeoLocal or one of two hierarchical measures GlobalGeoLocal or

GeoLocalGlobal. Finally, we present the computational complexity of the proposed

algorithm.

Table 5.1 summarizes the notation that we use in the remainder of this chapter.

5.2.1 Global similarity

Global similarity computes graph invariants. We consider the number of vertices

of the compared graphs, the labels of the edges, which correspond to the length of

the Kite walls, and the angles between edges. So, the global similarity between two

graphs G1 and G2 is given by:

Global(G1, G2) = w1 ∗ dV ertices(G1, G2)

+ w2 ∗ dEdges(G1, G2)

+ w3 ∗ dAngles(G1, G2)

+ w4 ∗ dConvex(G1, G2)

(5.1)

where wi is a weighting coefficient with
∑i=4

i=1wi = 1, dV ertices(G1, G2) compares

the order of the two graphs.

dV ertices(G1, G2) =

∣∣‖V (G1)‖ − ‖V (G2)‖
∣∣

Max
(‖V (G1)‖, ‖V (G2)‖

) (5.2)
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dEdges(G1, G2) compares the global size of the two Kites by comparing the distances

reported on the edges of the corresponding graphs.

dEdges(G1, G2) =

∣∣ ‖E(G1)‖∑
�(ei)
i=1

−
‖E(G2)‖∑

�(ej)
j=1

∣∣

Max
( ‖E(G1)‖∑

�(ei)
i=1

,
‖E(G2)‖∑

�(ej)
j=1

) (5.3)

dConvex(G1, G2) and dAngles(G1, G2) compare the global geometric forms of the two

Kites based on the convexity of the angles and the total value of the angles, respec-

tively:

dConvex(G1, G2) =
∣∣‖a ∈ AnglesG1

, a < ConvexityTh‖
‖AnglesG1

‖
− ‖b ∈ AnglesG2

, b < ConvexityTh‖
‖AnglesG2

‖
∣∣ (5.4)

where AnglesGi
denotes the set of angles of graph Gi and ConvexityTh is an angle

threshold at most equal to 180◦. However, it will be defined according to the form

of the Kites.

dAngles(G1, G2) =
|∑Anglei,G1

−∑
Anglej,G2

|
Max(

∑
Anglei,G1

,
∑

Anglej,G2
)

(5.5)

where Anglei,G denotes the ith angle of graph G.

The algorithm takes as inputs a set of prototype graphs, which are: GAntenna,

GEnclosure, four different GKite and a query graph. For each connected component

of the query graph, the algorithm returns the most similar Kite component.

5.2.2 Geometric local similarity

The geometric local similarity measure GeoLocal is a distance based on the approx-

imation of the graph edit distance that compares the graphs using local descrip-

tions of substructures (see Figure 2.8). However, unlike the approaches proposed

in [9, 46, 10], in our approach we extended local descriptions by considering angles

in addition to degrees of vertices and labels of the edges. This allows us to distin-

guish between two isomorphic graphs with different geometry (Figure 5.1(a)). In

fact, almost all existing graph similarity measures compare the structures of graphs

in terms of vertices, edges and their labels, but they do not consider the geometric

form of these graphs. Some authors even use the angle as an attribute or a label
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associated with an edge [205]. This attribute represents the angle between the con-

sidered edge and a horizontal or a vertical line landmark (Figure 5.1(d, e)). The

drawback of this representation is that the value of the angle may change if a rota-

tion is applied. This is not a problem in some graph representations such as graphs

representing letters, digits, etc. However, considering a model that resists rotation

and other deformations is very important when the graphs represent objects with

specific forms as is the case of Kite graphs. Thus, in our framework two graphs are

isomorphic if they also have the same form according to the following definition.

Definition 1 (geometrical isomorphic) Let G1(V1, E1) and G2(V2, E2) be two

graphs. G1 and G2 are geometrical isomorphic if they are isomorphic and have

the same geometric form.

Example 1 Let Gi(V,E) where i = 1...5, be five graphs, such that V = {v1, v2, v3}
and E = {e1, e2, e3} (Figure 5.1(a, b)). We can easily find a mapping between the

set of vertices of G1 and G2 ensuring edge preservation, thus G1 and G2 are isomor-

phic. However, they are not geometrical isomorphic because they do not have the

same geometric form ((∠v1v2v3)G1
	= (∠v1v2v3)G2

), (see Figure 5.1(a)). G3, G4 and

G5 (see Figure 5.1(b)) are geometrical isomorphic: because they are isomorphic

and have the same geometric form ((∠v1v2v3)G3
= (∠v1v2v3)G4

= (∠v1v2v3)G5
).

However, if we consider angles between edges and the horizontal axis x, G3 and G5 in

(Figure 5.1(d, e)) are isomorphic but not geometrical isomorphic : (α1, G3
	= β1, G5

and α2, G3
	= β2, G5

).

In order to compute the geometric local similarity, each vertex v is represented

by a signature i.e., a vector defining its local structure as follows:

s(v) = {deg(v), { Angi, �(ei, 1), �(ei, 2) }(deg(v)−1)
1 }, where:

• deg(v) is the degree of the vertex v.

• �(ei, 1) and �(ei, 2) are the labels (weights) of the two edges constituting the

angle Angi. �(ei, 1) and �(ei, 2) are ranked in descending order.

• The triplets { Angi, �(ei, 1), �(ei, 2) } are ranked according to the angle Angi

in descending order.

• All the vertices are represented by signatures i.e. vectors which have the same

size: size = 1 + ((Δ(G1, G2)− 1) ∗ 3).
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(a)

(b)

(c) (d) (e)

Figure 5.1: Example of isomorphic graphs

• Δ(G1, G2) is the greatest vertex degree in the compared graphs G1 and G2.

• If a vertex v has a degree less than Δ(G1, G2) , the rest of the vector is

completed with zeros.

The similarity measure d between two signatures s1 and s2 is computed as follows:

d(s1, s2) = 1−
i=3∑
i=1

ωi ∗ Fi (5.6)

The functions Fi are defined as follows:

F1 =
|deg(v1)− deg(v2)|
Max(Δ(G1),Δ(G2))

(5.7)

F2 =

Max(Δ(G1),Δ(G2))∑
k=1

|�(e1,k)− �(e2,k)|
Max(Δ(G1),Δ(G2)) ∗Max(L(G1),L(G2))

(5.8)
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F3 =

Max(Δ(G1),Δ(G2))−1∑
k=1

|Ang1,k −Ang2,k|
(Max(Δ(G1),Δ(G2))− 1) ∗Max(A(G1),A(G2))

(5.9)

where ωi are weighting coefficients with
∑i=3

i=1 ωi = 1, Angi, k is the kth angle of

vertex vi. Fi=1...3 compares, respectively, the degree of the vertices, the labels of

edges and the angles.

The Geometric Local Similarity GeoLocal aims to determine the best matching

between the signatures (defining the local structure of each vertex) associated with

the two compared graphs. Formally, let G1 and G2 be two graphs, S1 and S2 their

corresponding sets of signatures, and M the set of all possible matching between S1

and S2. The similarity GeoLocal(S1, S2) is formulated as follows:

GeoLocal(S1, S2) = 1−
Max

m ∈ M

∑
si ∈ S1, m(si) ∈ S2

d(si , m(si))

Max(‖S1‖, ‖S2‖) (5.10)

Computation of GeoLocal(S1, S2) is equivalent to solving the assignment problem

which is a fundamental combinatorial optimization problem that aims to find the

minimum/maximum weight matching in a weighted bipartite graph. To solve this

assignment problem, we define a n × n matrix D, where n = max(‖S1‖, ‖S2‖).
Each element Di,j of the matrix represents the similarity measure d(si, sj) between

a signature si in S1 and a signature sj in S2. In the case of ‖S1‖ 	= ‖S2‖, the

smallest set of signatures is completed by (max(||S1||, ||S2||) − min(||S1||, ||S2||))
empty signatures ε. The similarity between an empty signature ε and a signature

s is computed by the formula (Eq. 5.6) and corresponds to the cost of adding s to

the small graph (or of deleting s from the large graph).

We apply the Hungarian algorithm [43] on the matrix D in order to find the best

assignment in O(n3) time.

The resulting distance (dissimilarity) is compared to a threshold th ∈ [0, 1] defined

by an expert or by experimentation, in order to decide if the compared graphs are

similar or not. Like the algorithm of Global, the algorithm of GeoLocal takes as

inputs a set of prototype graphs, which are: GAntenna, GEnclosure, four different

GKite and a query graph. For each connected component of the query graph, the

algorithm returns the most similar Kite component.
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Figure 5.2: The graphs G1 and G2 in Example 2.

Example 2 Let G1 and G2 be two graphs (see Figure 5.2), S1 and S2 their cor-

responding sets of signatures, such that ‖S1‖ = 3 and ‖S2‖ = 4. Let D, be the

matrix of similarities between S1 and S2. Where Di,j = d(si , sj). ‖S1‖ < ‖S2‖,
thus we add an ε signature to S1 and we complete the matrix D by d(ε , s2, j=0...3).

⎛
⎜⎜⎜⎜⎜⎝

s2,0 s2,1 s2,2 s2,3

s1,0 0.96 0.33 0.58 0.96

s1,1 0.54 0.75 1 0.54

s1,2 0.92 0.29 0.54 1

ε 0.92 0.04 0.29 0.75

⎞
⎟⎟⎟⎟⎟⎠

The max sum is 3.25. The normalized dissimilarity is GeoLocal(S1, S2) =

1 − 3.25
4 = 0.1875. The signature s2,0 (of the node v1 in G2) is deleted (s2,0 → ε).

5.2.3 Hierarchical similarity measure

In this section, we present two hierarchical measures that we call GlobalGeoLocal

and GeoLocalGlobal which are the result of combining the global similarity mea-

sure Global and the geometric local similarity measure GeoLocal depending on the

defined order.

Global geometric-Local similarity The Global geometric-Local similarity

GlobalGeoLocal is a hierarchical similarity measure, which aims to measure the dis-

tance between two graphs using firstly the global similarity measure Global, then us-

ing the geometric local similarity measure GeoLocal if necessary. The main idea is to

measure the distance between the two graphs using Global. If the distance obtained

is less than a specific threshold, which means that the two graphs are similar accord-
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ing to Global, then we check this result using GeoLocal. Otherwise, the two graphs

are not similar, which means that we do not need to use GeoLocal. GlobalGeoLocal

aims to enhance time processing of Kite graphs by first computing invariants on the

graphs. Formally, let G1 and G2 be two graphs, S1 and S2 the set of signatures of

G1 and G2 respectively, th ∈ [0, 1] a threshold and d1 = Global(G1, G2).

GlobalGeoLocal(G1, G2) =

⎧⎨
⎩

d1, if d1 > th

GeoLocal(S1, S2), otherwise
(5.11)

Geometric-Local Global similarity Like GlobalGeoLocal, the Geometric-Local

Global similarity GeoLocalGlobal is a hierarchical similarity measure, which aims to

measure the distance between two graphs using firstly GeoLocal, then using Global

if necessary. The main idea is to measure the distance between the two graphs using

GeoLocal. If the distance obtained is less than a specific threshold, which means

that the two graphs are similar according to GeoLocal, then we check this result

using Global. Otherwise, the two graphs are not similar, which means we do not

need to use Global. However, only the vertices assigned in the phase of GeoLocal

will be considered in the second phase using Global. In the case where the two

graphs have the same number of vertices, all the vertices will be considered in the

second phase, i.e., Global. GeoLocalGlobal aims to improve Global, based on the

graph invariants, in the second level by only considering the assigned vertices in the

first level using GeoLocal. Formally, let G1 and G2 be two graphs, G2 is the graph

prototype, S1 and S2 the sets of signatures of G1 and G2 respectively, th ∈ [0, 1]

a threshold, d2 = GeoLocal(S1, S2) and G′
1 is the subgraph induced by the vertices

of G1 assigned in the first phase using GeoLocal.

GeoLocalGlobal(G1, G2) =

⎧⎨
⎩

d2, if d2 > th

Global(G′
1, G2), otherwise

(5.12)

5.2.4 Reconstruction process

Each connected component from the whole graph representing the query image is

compared to the set of prototype graphs (GAntenna, GEnclosure and four different

GKite), using the proposed similarity measure (GeoLocal, Global, GlobalGeoLocal

or GeoLocalGlobal). Consequently, each connected component (a query graph) is

classified as Kite, a part of Kite or not a Kite nor a part of Kite. When a query

graph passes the considered similarity measure (GeoLocal, Global, GlobalGeoLocal
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or GeoLocalGlobal) with more than one connected component classified as a Kite

part and at least one of them is classified as an enclosure, we need to know if these

Kite parts are parts of the same Kite or belong to different Kites. This is the aim

of the reconstruction step that uses the coordinates of the vertices to eventually

reconstruct the entire Kite from different components: i.e, enclosure and antennas.

The principle is to associate a subset of Kite parts classified as antennas to a Kite

part classified as an enclosure, taking into account the distance between them and

their orientations. The aggregated similarity Simaggre of the reconstructed Kite i,

is given by:

Simaggre(Kitei) = ψ ∗ Sim(Ei) +

j=n∑
j=1

μ ∗ Sim(Ai,j) (5.13)

Where: ψ + μ = 1, Sim(Ei) is the similarity attributed to the enclosure of the

reconstructed Kite i, n is the number of antennas and Sim(Ai,j) is the similarity

attributed to an antenna j of the reconstructed Kite i.

5.2.5 Complexity study

For the Geometric local similarity measure GeoLocal, the most important part,

in term of complexity, is the one solving the assignment problem. We used the

Hungarian algorithm [43] to find the best assignment in O(n3) time, where n is the

maximum number of vertices in the two compared graphs. Consequently, the time

complexity of GeoLocal is O(n3). The Global similarity measure Global is based on

a graph invariant, which is linear in terms of computational complexity. Thus, the

time complexity of Global is O(n), where n is the maximum number of vertices in

the two compared graphs.

5.3 Experimental results

For evaluation, we used all the available graphs in the real data set described in

Section 4.2.1 and the synthetic data set described in Section 4.2.2. We also used

a well-known graph data set of symbols from architectural and electronic drawings

named GREC [205], which is one of the data sets of the IAM graph database repos-

itory. The GREC data set is composed of 1100 undirected graphs distributed over

22 classes from the original GREC database [259]. The GREC data set is split into

a training and a validation set, each of size 286, and a test set of size 528.
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We conducted four series of experiments to evaluate the robustness and accuracy

of our similarity measures. The first three series of experiments are realized on the

real and synthetic Kite graph database, while the fourth experimentation is realized

on the GREC data set. We compared our approach with two approaches from the

state-of-the-art based on local structure comparison:

• GEDBipartite: a GED based on a bipartite assignment of vertices and their

local structures [9].

• BeamGED: a simple and fast suboptimal GED based on beam search [48].

The proposed distances GeoLocal and Global are parameterized distances having

a set of parameters αk allowing different configurations. The default value is:∑
αk = 1 and ConvexityTh = 150◦. In addition, we defined a threshold

in order to improve classification accuracy. The parameters αk and the threshold

may be specified by inspection or by using machine learning techniques. In this

chapter, for simplicity, we attribute to all the parameters of our methods and the

methods with which we compare (GEDBipartite and BeamGED) their default val-

ues. However, for each approach we choose the threshold giving the best accuracy.

The default parameters of GEDBipartite and BeamGED are: the same cost for ver-

tex/edge deletions/insertions which is 1, the weighting parameters per vertex/edge

is the same 1, the same cost for vertices and edges (vertexCost = edgeCost) and

for BeamGED, the size of the OPEN set is 10.

In the first experiment, we show the impact of using the reconstruction process in

the obtained accuracy. Table 5.2 depicts the results obtained depending on the use

or not of the process of reconstruction (Threshold = 0.28 ). These experiments are

conducted on the real Kite data set.

Methods Reconstruction State-I State-II State-III State-IV

Global Yes 93.87% 96% 83% 77%

No 89.79% 95% 81% 80%

GeoLocal Yes 100% 98% 91% 78%

No 93.87% 93% 87% 78%

GlobalGeoLocal Yes 91.83% 94% 78% 78%

No 87.75% 92% 76% 82%

GeoLocalGlobal Yes 93.87% 95% 85% 78%

No 89.79% 93% 83% 77%

Table 5.2: The impact of the reconstruction process on the classification
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We can see that the four methods are globally more accurate with considering the

process of reconstruction. This shows the importance of using the reconstruction

process.

In the second series of experiments, we evaluated the accuracy of the proposed

approach by performing classification. These experiments are realized on both the

real and the synthetic Kite data set. Table 5.3 depicts the results obtained by

our approaches and the approaches with which we compare, using the adequate

threshold.

Methods Threshold State State State State Synthetic

I II III IV data set

Global 0.28 93.87% 96% 83% 77% 98%

GeoLocal 0.28 100% 98% 91% 77% 100%

GlobalGeoLocal 0.28 91.83% 94% 78% 78% 98%

GeoLocalGlobal 0.28 93.87% 95% 85% 78% 98%

GEDBipartite 0.40 36.53% 41% 75% 11% 41.3%

BeamGED 0.10 20.20% 28% 75% 44.44% 75%

Table 5.3: Classification on the Kite data set

We can see that our approaches GeoLocal, Global, GlobalGeoLocal and GeoLocalGlobal

are more accurate than GEDBipartite and BeamGED at all the levels of the real and

the synthetic Kite data set. This confirms that considering the geometric form (an-

gles) has a high added value for Kite recognition. We can also see that GeoLocal is

more accurate than Global, GlobalGeoLocal and GeoLocalGlobal at all the levels of the

real and the synthetic Kite data set. However, GlobalGeoLocal and GeoLocalGlobal

are slightly better in the negative data set (State IV) of the real data set. Al-

though, GeoLocal achieves better classification accuracy compared to GlobalGeoLocal

and GeoLocalGlobal. However, use of the hierarchical measures GlobalGeoLocal and

GeoLocalGlobal avoids unnecessary comparison in the second level, thus the general

runtime on the data set is better. We note also that GeoLocalGlobal achieves better

classification accuracy compared to GlobalGeoLocal at all the levels of the real and the

synthetic Kite data sets. However, GlobalGeoLocal achieves a better general runtime

on the data set, due to the fact that Global is faster than GeoLocal.

In the third series of experiments we evaluated the scalability of our approach over an

increasing number of vertices in the query graphs. These experiments are realized

on both the real Kite data set and the synthetic Kite data set. From the 4081

graphs of the real Kite data set and 1000 graphs of the synthetic Kite data set, we
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constructed a set of query groups with the same number of vertices. The number of

vertices vary from 2 vertices to 949 vertices in the real data set and from 30 vertices

to 85 vertices in the synthetic data set.

Figure 5.3 shows the average runtime performance of Global, GeoLocal, GEDBipartie

and BeamGED in both the real Kite data set (Figure 5.3 (a)) and the synthetic

Kite data set (Figure 5.3 (b)). The X-axis shows the number of vertices con-

tained in the query graph and the Y -axis the average runtime, in log scale, ob-

tained over the query group of the corresponding graph size when compared to the

set of Kite prototype graphs. This figure clearly shows the interest of using the

global similarity measure Global, which is largely faster than the geometric local

similarity measure GeoLocal. Figure 5.3 also shows that GeoLocal is faster com-

pared to GEDBipartie and BeamGED. The approaches with which we compare

(GEDBipartie and BeamGED) are approximatively equivalent with a little differ-

ence making GEDBipartie slight faster than BeamGED. The runtime performance

shown in the figure confirms the theoretical time complexity, which is linear for

Global and polynomial for GeoLocal and GEDBipartie. However, GeoLocal has a

better time complexity, which is O((max(n , m))3) compared to GEDBipartie with

O((n + m)3), where n and m are the number of vertices of the two compared

graphs.

Finally, we evaluated the accuracy of the proposed approach by performing classi-

fication on the GREC data set. We compare the results obtained by our approach

GeoLocal with the results obtained by GEDBipartite and BeamGED in [9]. Table 5.4

depicts the results obtained by our approach GeoLocal using the adequate threshold

(0.07) and GEDBipartite and BeamGED.

Methods GeoLocal GEDBipartite BeamGED

GREC data set 96.19% 86.30% 76.70%

Table 5.4: Classification on the GREC data set

We can see that our method GeoLocal is more accurate than the two methods

with which we compare GEDBipartite and BeamGED on the GREC data set. This

confirms that considering the geometric form (angles) has a high added value for

object recognition with specific geometric structures. This also shows that our

method is extensible on other types of data and proves that the proposed approach

is quite general.
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Figure 5.3: Runtime Vs number of vertices.

5.4 Conclusions

In this chapter, we proposed a novel geometric hierarchical graph matching method

based on graph edit distance and graph invariants. The proposed method takes

into account the geometric form of the graphs in addition to their structures. Both

the theoretical time complexity and the experimental results on real and synthetic

Kite data sets confirm the high performance of our approach. Furthermore, the

experimentation performed on the GREC data set [205] proves that the proposed
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approach is extensible and quite general.
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Introduction to Part II

In the field of 3D object recognition, it is often required to compare different 3D

objects represented by graphs. Using triangular tessellations, 3D objects may be

compared with graph matching techniques. This part addresses the problem of

comparing deformable or non-rigid 3D objects (such as human and animal bodies).

The shapes considered are represented by graphs, i.e., triangular tessellations. We

propose a new distance for comparing deformable 3D objects. This distance is based

on the decomposition of triangular tessellations into a set of substructures that we

call triangle-stars. A triangle-star is a connected component formed by the union of

a triangle and its neighborhood. The proposed decomposition offers a parameteri-

zable triangle-stars depending on the degree of the neighborhood considered. The

number of triangle-stars obtained is much smaller than the number of nodes and

the number of classic stars [9, 10] and, as a result, the computational complexity is

reduced. The proposed graph edit distance is based on triangle-stars which is a local

structure that covers a larger neighborhood than a classic star decomposition [9, 10].

Consequently, the proposed dissimilarity measure assures an optimal approximation.

This is justified by the fact that optimal methods are based on graph’s global struc-

tures and, consequently, a larger local structure allows to be closer to the global one.

The distance that we propose uses a set of parameters which are either invariant or

at least oblivious under most common deformations. We prove that the proposed

distance is a pseudo-metric. We analyse its time complexity and we present a set of

experimental results which confirm the high performance of our approach.

This part contains two chapters, in the first one (Chapter 6), we present the pro-

posed decomposition of triangular tessellations into triangle-stars. We describe the

proposed distance (dissimilarity measure). We prove that the proposed distance is

a pseudo-metric and we analyse its time complexity. In the second chapter (Chap-

ter 7), we describe the experimentations that we undertook to evaluate our approach.

We present the different databases that we use in our experiments, some state of

the art shape-matching algorithms to compare with, the evaluation criteria and the

experimental results.

69





Chapter 6

Graph-based approach for

non-rigid 3D Object Recognition

Contents

6.1 Algorithm overview . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Graph decomposition . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Triangles ordering . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Triangle-stars decomposition . . . . . . . . . . . . . . . . . . 80

6.5 Edit distance between triangle-stars and triangular tessel-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.1 Edit distance between triangle-stars . . . . . . . . . . . . . . 84

6.5.2 Edit distance between two triangular tessellations . . . . . . 87

6.6 The pseudo metric . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.7 Complexity of the proposed algorithm . . . . . . . . . . . . . 90

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

In the field of 3D object recognition, it is often required to compare different 3D

objects represented by graphs, i.e., triangular tessellations. Using triangular tes-

sellations, 3D objects may be compared with graph matching techniques. In this

chapter, we address the problem of comparing deformable or non-rigid shapes rep-

resented by graphs, i.e., triangular tessellations. In order to deal with this problem,

we propose a new distance (dissimilarity measure) based on new decomposition of

triangular tessellations into a set of triangle-stars. We prove that the proposed

distance is a pseudo-metric and we analyse its time complexity.

The remainder of the chapter is organized as follows. Firstly, in Section 6.1, we

give an overview of the proposed approach. In Section 6.2, we introduce a set

of concepts defining the triangle-stars substructures. In Section 6.3, we describe
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the triangle order considered for the proposed decomposition method of triangular

tessellations into a set of triangle-stars described in Section 6.4. In Section 6.5, we

describe the proposed distance, we analyse its complexity in Section 6.7. Finally,

Section 6.8 concludes the chapter.

6.1 Algorithm overview

We propose a new decomposition of triangular tessellations into connected compo-

nents that we call triangle-stars. This decomposition aims to reduce the number of

components while covering a larger number of neighbors. The neighborhood area

covered by a triangle-star is parameterizable and depends on the Nk order neigh-

borhood considered in the proposed decomposition. In addition, this decomposition

allows obtaining a representation which is invariant or at least oblivious under most

common deformations. Prior to the decomposition, a strict total order on the tri-

angles must be established. This order aims to reduce the number of triangle-stars

that is generated and guarantees the uniqueness of the resulting decomposition. Fi-

nally, we propose a distance (dissimilarity measure) between the triangle-stars of

the two triangular tessellations and address their matching. We also prove that the

proposed distance is a pseudo-metric. We present the computational complexity of

the proposed algorithm.

6.2 Graph decomposition

We propose a decomposition of a triangular tessellation graph into a set of connected

components that we call triangle-stars (TS). We define the concept of triangle-star

as follows:

Definition 1 (Triangular tessellations): A triangular tessellation gTr is a graph

defined by a set of nodes, edges and triangles. Formally, gTr is a graph defined by

a six tuple gTr = (N,E, T, α, β, θ), where T is a set of triangles and θ : T → LT is

a labelling function and, LT is the set of triangle labels.

Definition 2 (neighborhood of a triangle): two triangles are neighbors, if they

share, at least, a common node. Let t1 and t2 two triangles and N(t1) and N(t2)

their respective nodes. Then, t1 and t2 are neighbors ⇔ ‖N(t1) ∩N(t2)‖ > 0. In
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other words, the neighbors of a triangle t are triangles sharing at least a common

node with the triangle t.

Definition 3 (Nk-neighborhood of a triangle): two triangles t0 and tk are Nk-

neighbors, if there is between t0 and tk a chain of (k− 1) distinct triangles, at most,

which are pairwise consecutive neighbors. Formally, t0 and tk are Nk-neighbors

⇔ ∃ ti=1..k−1 where : ∀ i = 1...(k − 1), ti and ti+1 are neighbors. In other

words, the Nk-neighbors of a triangle t are the k recursive triangle neighbors of t.

In the case of k = 1, the Nk-neighborhood is equivalent to a simple neighborhood

(Definition 2).

Definition 4 (triangle-star): A triangle-star ts is a labelled sub-graph, defined

by a triangle and a set of its neighbors. Formally, a triangle-star ts is a three tuple

ts = (tr, T
′, θ), where: tr is the root triangle, T ′ is the set of adjacent triangles and

θ : T → LT is the triangle labelling function while LT is a set of labels associated

with the triangles.

Definition 5 (Nk-triangle-star): A Nk-triangle-star Nk-ts is triangle-star de-

fined by a triangle and a set of its Nk-neighbors. In the case of k = 1, the Nk-

triangle-star is a simple triangle-star (Definition 4). See Example 1.

Example 1. Let a graph-tessellation Gtr containing 17 triangles t0...16. Table 6.1

shows the graph-tessellation Gtr and the Nk-triangle-stars of the triangle t0 de-

pending on the Nk=0...2 neighborhood considered. In the case of Nk=0, the graph-

tessellation is decomposed into 17 triangle-stars (17 N0-TS, exactly the same num-

ber of triangles). Each triangle-star is constituted only by one triangle without

any triangle neighbors. Thus, the resulted triangle-star N0-TS of the triangle t0 is

constituted only by the triangle t0. In the case of Nk=1, only the direct triangle

neighbors are considered which means that the graph-tessellation is decomposed to

a set of triangle-stars constituted using a triangle with its neighbors (See Definition

2). Thus, the resulted triangle-star N1-TS of the triangle t0 is constituted by the

triangle t0 and its N1-neighbors (direct neighbors), i.e, T (N1-TS) = {t0...7}. In

the case of Nk=2, the N2-neighbors are considered which means that the graph-

tessellation is decomposed into a set of triangle-stars constituted using a triangle

with its N2-neighbors (See Definition 3). Thus, the resulted triangle-star N2-TS
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of the triangle t0, is constituted by the triangle t0 and its N2-neighbors (second

degree neighborhood). T (N2-TS) = {t0...16}. In this example, T (N2-TS) is the all

graph-tessellation Gtr.

Graph Gtr The N0-TS of the triangle t0

The N1-TS of the triangle t0 The N2-TS of the triangle t0

Table 6.1: Example, Nk-triangle-stars.

Triangle-star features: Each triangle tj is defined with six-tuple tj = (n1, n2, n3,

e1, e2, e3). The nodes ni are labelled by their Cartesian coordinates. In our case, the

nodes ni are labelled with three coordinates ni = (x, y, z) corresponding to the three

dimensions. The edges ek = (np, nw) are labelled (weighted) with the Euclidian

distance between their associated nodes (np, nw). The triangles are labelled by a

three-tuple tj = (id, Area, Perimeter), where id is a number. Each triangle-star

is characterised by a set of descriptors, allowing the evaluation of the dissimilarity

between triangle-stars. We consider the following descriptors: Area of triangle-star,

Perimeter of triangle-star, Area of the triangles forming the triangle-stars, their

Perimeters, the Weights associated with their edges, and the Degrees of their nodes.
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Our choice of the set of geometrical descriptors like the weights of edges and the

area and the perimeter of the triangles and the triangle-stars, is justified by the fact

that those geometrical descriptors are oblivious under different deformations and if

necessary invariants (as required in some fields) by normalizing the weights of the

edges and consequently the area and the perimeter. The normalization is realized

according to the maximum edge’s weight WMAX .

Triangle-star Vector representation: A vector representation is associated to

each triangle-star, the vector contains the global area AG of the triangle-star, the

global perimeter PG of the triangle-star, the area A and the perimeter P of each

triangles of the triangle-star, the weights of edges W of the triangle-star and the

degrees of nodes deg of the triangle-star. The vector representation of triangle-star

is given by (see Table 6.5 for symbols descriptions):

{AG(ts), PG(ts), {A(ti), P (ti), W (ti, j=1...3), deg(ti, j=1...3)}i=‖T (ts)‖
i=1 }

where:

• The triangles of triangle-star ts are ranked according to their areas (descending

order).

• The weights of edges are ranked by descending order.

• The degrees of nodes are ranked by descending order.

• All triangle-stars TS are represented by vectors which has the same size :

size = 2 + (Γ ∗ 8).

• Γ is the maximum number of triangles in the two sets of triangle-stars in the

two compared graphs.

• If a triangle-star ts has a number of triangle less than Γ , the rest of the vector

is completed with zeros.

Definition 6 (Disjoint triangle-stars): Two triangle-stars tsi and tsj are disjoints,

if they do not share a common triangle. let i 	= j, tsi and tsj are disjoints ⇒
T (tsi) ∩ T (tsj) = ∅.

Definition 7 (Geodesic Distance): The geodesic distance is the length of the

shortest path λ ∈ Λ (with Λ is the set of all paths) between two points pi and pj .
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The considered path must entirely lie within the object [260]. The geodesic distance

GD is defined as follow:

GDλ(pi, pj) = argmin
λ ∈ Λ

∫
λ
ds

6.3 Triangles ordering

The proposed method of decomposition, allows to have disjoint triangle-stars (Def-

inition 6), which significantly reduces the number of components (‖TS‖ � ‖N‖ <

‖T‖, see Figure 6.1) while reducing the number of comparisons in between the

triangle-stars associated with the two triangular tessellations. However, according

to the order considered, the set of triangle-stars obtained may be different (see Ex-

ample 2). Indeed, the same triangular tessellation may generate different sets of

triangle-stars, both in terms of cardinality and in terms of triangle-stars obtained,

if the ordering of the triangles is not the same.

In order to ensure the uniqueness of the decomposition and a further reduced

number of triangle-stars, a descending strict total order must be established on the

set of triangles prior to their decomposition into triangle-stars (see Example 3).

The Figure 6.2 presents the average number of TS (N1-TS) obtained in the TOSCA

database [261, 262] (See Section 7.1.1 for TOSCA database description) depending

on the triangles order considered. This plot shows that considering a ‖Neighbours

(Triangles)‖ descending order give the minimum number of triangle-stars TS,

which reduces the complexity of the proposed algorithm.

In order to establish a descending strict total order on the triangles set, each triangle

is represented by a 10-tuple < ‖neighbors‖ ; x1, y1, z1 ; x2, y2, z2 ; x3, y3, z3 >: the

number of neighbors and the coordinates x, y, z, in the reference frame defined by

the Eigen vectors of the tensor of inertia associated with the tessellation, of the

three nodes associated with the triangle. The number of neighbors ‖neighbors‖ is

used in order to further reduce the number of triangle-stars. If two triangles have

the same number of neighbors, the node’s coordinates are utilised in order to ensure

the uniqueness of the decomposition. The nodes of the triangle in the 10-tuple are

ordered according to their coordinates, starting by the first coordinate x. In case

of equality, the next coordinates are compared until an inequality is obtained. The

coordinates of the nodes are solely considered in order to ensure the uniqueness the

decomposition. The order of triangles may be affected by the pose changing due

to the node’s coordinates changing, consequently the obtained triangle-stars may
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be different. However, the number of triangle-stars and their cardinality are the

same, because the triangles ordering is based mainly on the number of neighbors.

The node’s coordinates are only used when two triangles have the same number of

neighbors (See Example 4). A solution to avoid that the order of triangles be affected

by the pose changing is to consider the coordinates x, y, z, in the reference frame

defined by the Eigen vectors of the tensor of inertia associated with the tessellation.

Another solution, not affected by the object rotation, ensuring a descending

strict total order on the set of triangles, is based on the selection of six nodes

as a landmark reference and the use of geodesic distance (See Definition 7).

The first step is to select six nodes n1...6. The two nodes n1 and n2 are se-

lected as the two nodes which have the largest geodesic distance GD(n1, n2).

The two nodes n1 and n2 represent the first axis that we call X. The nodes n3

and n4 are selected as the two nodes which have the largest geodesic distance

GD(n3, n4) in the perpendicular plane to the axis X. The two nodes n3 and

n4 represent the second axis that we call Y . The nodes n5 and n6 are selected

as the two nodes which have the largest geodesic distance GD(n5, n6) in the per-

pendicular plane to the axis Y . The two nodes n5 and n6 represent the third

axis that we call Z. The second step is to represent each node ni using the

geodesic distance regarding the six nodes references selected n1...6 as a 6-tuple Ri =

< GD(ni, n1), GD(ni, n2), GD(ni, n3), GD(ni, n4), GD(ni, n5), GD(ni, n6) >.

The third step is to represent each triangles by a 19-tuple < ‖neighbors‖ ; R1 ; R2

; R3 > constituted by the number of neighbors ‖neighbors‖ and the three 6-tuples

Ri=1...3 of the three nodes composing each triangle.

We can obtain from the same object a different tessellation depending on the

tessellation algorithm used and its parametrisation. A different tessellation, even

for the same object, may generate a different triangle-star decomposition. However,

we suppose that the tessellation of objects is realized using the same algorithm

with the same parameters. This ensures that same object have one tessellation

representation, thus we obtain a unique triangle-star decomposition. In the worst

case (the same object have a different tessellation), the proposed distance based

on an approximation of Graph Edit Distance which is fault-tolerant to noise and

distortion, allows to consider the two tessellations as the same (the distance between

them is negligible).
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Figure 6.1: Comparison of the average number of nodes, triangles and triangle-stars

in the TOSCA database.

Figure 6.2: Comparison of the average of ‖TS‖, depending on triangles order con-

sidered, in TOSCA database.

Example 2. Let a graph-tessellation Gtr containing 5 triangles t1...5, with ‖N(t1)‖ =

1, ‖N(t2)‖ = 3, ‖N(t3)‖ = 2, ‖N(t4) = 1‖ and ‖N(t5)‖ = 1, where N is the tri-

angle direct neighborhood (see Figure 6.3). By applying a descending order based

on the number of neighbors ‖N(ti)‖, we obtained 2 triangle-stars (see Table 6.2).

And by applying the ascending order based on the number of neighbors ‖N(ti)‖, we
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obtained 3 triangle-stars (see Table 6.3).

Figure 6.3: A graph-tessellation Gtr

ST1 ST2

Table 6.2: The set of triangle-stars using a Descending order.

ST1 ST2 ST3

Table 6.3: The set of triangle-stars using a Ascending order.

Example 3. Let a triangle t0 with n triangle neighbors t1...n (see Figure 6.4).

If we consider a triangle order based on the number of neighbors with descending

order, we obtained only one triangle-star, otherwise, if the process of decomposition

starts with any neighbors t1...n we obtained 3 triangle-stars.
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Figure 6.4: The triangle t0 with n triangles neighbors.

Example 4. Let a graph-tessellation G containing 6 triangles t0...5, with ‖N(t0)‖ =

‖N(t1)‖ = 3 and ‖N(t2...5)‖ = 1, where N is the triangle direct neighborhood (see

Figure 6.5). When applying a descending order, we remark that t0 and t1 have the

same number of neighbor which is the highest one. In this case, we use the coordi-

nates of nodes to decide with which triangle we start t0 or t1. However, whatever

starting with t0 or t1, we obtain the same number of triangle-stars with the same

cardinality as shown in (Figure 6.5).

6.4 Triangle-stars decomposition

Once the strict total order of the triangles is established, we evaluate the decompo-

sition of the graph into triangle-stars. The process of decomposition is presented in

the following algorithm (Algo. 6.1).

We explore the list of triangles according to the defined order and we construct

a Nk-triangle-star which is defined by the current triangle and its Nk-neighbors

(Definition 4), according to the degree of neighborhood Nk considered. The process

terminates when the list of triangles not yet explored is empty.

The proposed decomposition of triangular tessellations into triangle-stars offers a

reduced number of triangle-stars ts as opposed to the number of nodes ‖TS‖ � ‖N‖.
The resulting triangle-stars are disjoints, ∀ tsi, tsj ∈ TS(G), i 	= j ⇒ T (tsi) ∩
T (tsj) = ∅. The triangle-star covers a larger local area than the classical star [9].

The proposed decomposition is also a parameterizable method depending on the

degree of the neighborhood. Considering a high degree of neighborhood allows to
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Figure 6.5: Example of graph decomposition with pose changing.
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have a much smaller number of triangle-stars (‖Nk+1-TS‖ ≤ ‖Nk-TS‖) covering

a larger area of neighborhood (‖T (Nk+1-TS)‖ ≥ ‖T (Nk-TS)‖). In addition, the

proposed decomposition is unique.

Algorithm 6.1: Graph decomposition into Nk-triangle-stars.
1: Inputs: A graph gTr and the degree of neighborhood Nk.

2: Outputs: A set of Nk-triangle-stars (Nk-TS).

3: Begin

4: Apply a descending strict total order on the set of triangles of gTr;

5: Nk-TS = ∅ ;

6: while (T (gTr) 	= ∅) do

7: ti = T (gTr)[0]

8: T (Nk-tsi) = ti ∪ Nk-neighbors(ti) ;

9: Nk-TS = Nk-TS ∪ Nk-tsi ;

10: T (gTr) = T (gTr) − T (Nk-tsi) ;

11: end while

12: return TS ;

13: End

Example 5. Let us consider a triangular tessellation defined as follow:

gTr = { 16 nodes , 20 triangles t1...20 } (Table 6.4). The decomposition into

triangles-Stars (N1-TS) begins by constructing the first triangle-star TS1 using the

triangle t13 with the set of its triangle neighbors (N1-neighbors). The triangle t13 is

the first triangle chosen, since it is the one having the maximum number of neigh-

bors, which is 12. In the remaining set of triangles not used in the construction of

TS1, the triangle t1 that had 7 neighbors which is the maximum, is used to construct

the second triangle-star TS2. TS2 is constructed using t1 and its 3 neighbours (not

7, because T (TS1) ∩ T (TS2) = ∅). The third triangle-star TS3 is formed of

t11 and its neighbors, t11 had 5 neighbors which is the maximum in the remaining

set of triangles. TS3 is constructed using t11 and its 2 neighbours (not 6 neigh-

bours, because
⋃i=3

i=1 T (TSi) = ∅). In the case of N2-neighborhood, we obtain one

triangle-star N2-TS1 constituted by the triangle t13 and the set of its triangle N2-

neighbors which represent all the triangles of gTr. Consequently, N2-TS1 is exactly

the triangular tessellation gTr.
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Graph gTr TS1

TS2 TS3

N2-TS1

Table 6.4: Example, decomposition of a graph into a set of triangle-stars and N2-

triangle-stars.

6.5 Edit distance between triangle-stars and triangular

tessellations

In this section, we show how to compute the graph edit distance between triangle-

stars and between two triangular tessellations.
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6.5.1 Edit distance between triangle-stars

The proposed similarity measure is intended for the comparison of deformable ob-

jects. Consequently, the set of descriptors must be invariant or at least oblivious

under most common deformations. Indeed the proposed similarity measure is based

on the following set of parameters: Area of triangle-star, Perimeter of triangle-

star, Area of triangles, Perimeter of triangles, Weights of edges and Degrees of

nodes. Formally a triangle-star is represented as follows: {AG(ts), PG(ts), {A(ti),

P (ti), W (ti, j=1...3), deg(ti, j=1...3)}i=‖T (ts)‖
i=1 }. The similarity measure d between two

triangle-stars tsi and tsj is computed as:

d(tsi, tsj) = 1−
∑k=6

k=1 simk (tsi, tsj)∑k=6
k=1 αk

(6.1)

The similarity measure d is a normalized value (0 ≤ d ≤ 1) based on the set of

functions simk.

The functions simk are defined as follow:

sim1(tsi, tsj) = α1 ∗ |AG(tsi) − AG(tsj)|
AGMAX

(6.2)

sim1(tsi, tsj) compares the Area AG of the two triangle-stars tsi and tsj .

sim2(tsi, tsj) = α2 ∗ |PG(tsi) − PG(tsj)|
PGMAX

(6.3)

sim2(tsi, tsj) compares the Perimeter PG of the two triangle-stars tsi and tsj .

sim3(tsi, tsj) = α3 ∗
∑l=Γ

l=1 | A(T (tsi)l) − A(T (tsj)l) |
AMAX ∗ Γ (6.4)

sim3(tsi, tsj) compares the Area of each triangle A of the two triangle-stars tsi and

tsj .

sim4(tsi, tsj) = α4 ∗
∑l=Γ

l=1 | P (ti,l) − P (tj,l) |
PMAX ∗ Γ (6.5)

sim4(tsi, tsj) compares the Perimeter of each triangle P of the two triangle-stars

tsi and tsj .

sim5(tsi, tsj) = α5 ∗
∑l=Γ

l=1

∑k=3
k=1 | Wi,l,k − Wj,l,k |
3 ∗WMAX ∗ Γ (6.6)

sim5(tsi, tsj) compares the weights of each edge W of the two triangle-stars tsi and

tsj .
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sim6(tsi, tsj) = α6 ∗
∑l=Γ

l=1

∑k=3
k=1 | Degi,l,k − Degj,l,k |
3 ∗DegMAX ∗ Γ (6.7)

sim6(tsi, tsj) compares the Degree of each Node Deg of the two triangle-stars tsi

and tsj .

The symbols associated with the similarity measure are described in Table 6.5.

Symbol Description

ti,l The triangle tl in the triangle-star tsi : tl ∈ tsi

Wi,l,k The weight (Euclidian distance) of the edge ek of the triangle tl ∈ tsi

Degi,l,k The degree of node nk of the triangle tl ∈ tsi

Γ Max number of triangles in the set triangle-stars of the two graphs g1
and g2.

αk=1...6 Parameters associated with the descriptors

αk ∈ N and
∑k=6

k=1 αk > 0

A(ti) Area of the triangle i.

P (ti) Perimeter of the triangle i.

AG(tsi) Area of the triangle-star i. AG(tsi) =
∑j=‖T (tsj)‖

j=1 A(tj)

PG(tsi) Perimeter of the triangle-star i. DG(tsi) =
∑j=‖T (tsj)‖

j=1 D(tj)

Table 6.5: Symbols associated with the similarity measure and theirs description.

Scale invariance. The proposed similarity measure d (Eq. 6.1) is sensitive to

the scale changing, this means that two triangle-stars tsi and tsj having the same

structure with different scale, are not similar d(tsi, tsj) < 1. In the case that we

want to ignore the scale changing (as required in some fields), the weights W of the

edges of the compared graphs are normalized relativizing to the maximum edge’s

weight WMAX . Formally ∀i,Wi =
Wi

WMAX
.

Example 6. Let consider two triangle tessellations gTr1 and gTr2 having the

same structure and composed by one triangle. Consequently, the triangle-stars

ts1 and ts2 obtained are constituted by one triangle ‖T (ts1)‖ = ‖T (ts2)‖ = 1

(See Table 6.6). Even ts1 and ts2 have the same structure, the weights of edges

are different W (ts1) = {10, 15, 20} and W (ts2) = {30, 45, 60}. Consequently,
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d(tsi, tsj) < 1, which means that ts1 and ts2 don’t represent the same triangle-

star. In the case where the weights of edges are normalized: WMAX1 = 20 and

WMAX2 = 60 thus W ′(ts1) = {10/20, 15/20, 20/20} = {0.5, 0.75, 1} and W ′(ts2) =

{30/60, 45/60, 60/60} = {0.5, 0.75, 1}. The normalized weights of edges are the

same W ′(ts1) = W ′(ts2) and ts1 and ts2 have the same structure (See Table 6.6),

consequently d(tsi, tsj) = 1, which means that ts1 and ts2 (with normalized weights)

represent the same triangle-star.

ST1 ST2

ST1 with normalized weights ST2 with normalized weights

Table 6.6: Example of triangle-stars with and without normalized weights.

Deformable objects. The aim of the proposed similarity measure d (Eq. 6.1) is

to measure the similarity between non-rigid (deformable) objects. However, it

can be adapted for the comparison of rigid objects by adding Angles to the set of

descriptors. We associate an angle to each pair of adjacent edges. Consequently, a

set of modifications are realized as follow:

• The vector representation of triangle-star is modified as follow (see Table 6.5 for
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symbols descriptions): {AG(ts), PG(ts), {A(ti), P (ti), W (ti, j=1...3),

deg(ti, j=1...3), Ang(ti, j=1...3)}i=‖T (ts)‖
i=1 }. Where the angles Ang are ranked

by descending order. The size of the vector is increased size = 2 + (Γ ∗ 11).

• A new similarity sim7(tsi, tsj) comparing the Angles of the two triangle-stars

tsi and tsj is defined as follow:

sim7(tsi, tsj) = α7 ∗
∑l=Γ

l=1

∑k=3
k=1 | Angi,l,k − Angj,l,k |
3 ∗AngMAX ∗ Γ (6.8)

With AngMAX is the maximum angle (See Table 6.5 for the rest of symbols).

• The proposed similarity measure d (Eq. 6.1) is modified as follow:

d(tsi, tsj) = 1−
∑k=7

k=1 simk (tsi, tsj)∑k=7
k=1 αk

(6.9)

6.5.2 Edit distance between two triangular tessellations

The dissimilarity between two graphs represented by triangle-stars is addressed

in the last part of the algorithm. We call this dissimilarity measure triangle-star

Measure TSM which aims to determine the best matching between the triangle-

stars associated with two graphs. The dissimilarity between two sets of triangle-

stars is defined as follows:

Definition 7 (TSM) Let gTr1 and gTr2 be two triangular tessellations, TS1 and

TS2 their corresponding sets of triangle-stars and M the set of all possible matching

between TS1 and TS2. The similarity TSM(TS1, TS2) (normalised similarity) is

formulated as follow (Eq. 6.10):

TSM(TS1, TS2) = 1−
maxm∈M

∑
tsi ∈ TS1, m(tsi) ∈ TS2

d(tsi, m(tsi))

max(‖TS1‖, ‖TS2‖) (6.10)

The computation of TSM(TS1, TS2) is equivalent to solving the assignment prob-

lem which is one of the fundamental combinatorial optimization problems that aim

to find the minimum/maximum weight matching in a weighted bipartite graph. To

solve this assignment problem, we define a n×n matrix D, with n = max(‖TS1‖, ‖TS2‖).
Each element Di,j of the matrix represents the dissimilarity measure d(tsi, tsj) be-

tween a triangle-star tsi in TS1 and a triangle-star tsj in TS2. In the case of

‖TS1‖ 	= ‖TS2‖, the smallest set of triangle-stars is completed by (max(||TS1||, ||TS2||)−
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min(||TS1||, ||TS2||)) empty triangle-stars ε. The similarity between an empty

triangle-star ε and a triangle-star ts is computed by the equation (Eq. 6.1) and

correspond to the cost of adding ts to the small set of triangle-stars (or to delete ts

from the large set of triangle-stars).

We apply the Hungarian algorithm [43] on the matrix D in order to find the best

assignment in O(n3) time.

The resulting distance (dissimilarity) is compared to a threshold th ∈ [0, 1] defined

by an expert or by experimentation (depending on the database), in order to decide

if the compared triangular tessellations are similar or not.

The general process of computing the distance between two graphs (triangle tessel-

lations), is summarized in the following algorithm (Algo. 6.2).

Example 7. Let TS1 and TS2 two set of triangle-stars, ‖TS1‖ = ‖TS2‖ = 4.

Let D the matrix of similarities between TS1 and TS2.

⎛
⎜⎜⎜⎜⎜⎝

ts2,0 ts2,1 ts2,2 ts2,3

ts1,0 0.11 0.90 0.25 0.21

ts1,1 0.10 0.15 0.65 0.89

ts1,2 0.67 0.03 0.51 0.17

ts1,3 0.66 0.88 0.33 0.99

⎞
⎟⎟⎟⎟⎟⎠

The max sum, similarity = 3.21. The normalised dissimilarity (edit distance) is

TSM(TS1 , TS2) = 1 − 3.21
4 = 0.1975

Algorithm 6.2: The distance between two graphs using TSM.
1: Inputs: Two graphs g1 and g2.

2: Outputs: The distance between g1 and g2.

3: Begin

4: Decomposition of g1 into a set of triangle-stars TS1, (Algo. 6.1).

5: Decomposition of g2 into a set of triangle-stars TS2, (Algo. 6.1).

6: Construct a matrix of distance D.

7: For each tsi ∈ TS1 and tsj ∈ TS2 do

8: Di,j = d(tsi, tsj) (Eq. 6.1);

9: end For each

10: Solving (Eq. 6.10), by applying the Hungarian algorithm [43] on the matrix D.

11: return the distance TSM(TS1, TS2) ;

12: End
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6.6 The pseudo metric

In this section we prove that the proposed distance is a pseudo-metric.

Definition : Let X a set of objects and x, y, z ∈ X. Let f be a function defined

as follow f : X ×X −→ R.

Let the following set of properties:

1. non-negativity: f(x, y) ≥ 0

2. symmetry: f(x, y) = f(y, x)

3. triangle inequality: f(x, y) ≤ f(x, z) + f(z, y)

4. uniqueness: f(x, y) = 0 ⇒ x = y

The function f is a metric if f satisfies the four mentioned properties and f is a

pseudo-metric if f satisfies only the first three properties (1, 2 and 3).

Since f is a pseudo metric, a distance function may be defined between each pair

of graphs. As a result, the similarity of the objects associated with these graphs

may be efficiently determined. Concretely, f is pseudo metric means that f return

a correct value (f(X,Y ) ≥ 0 and f(X,Y ) = f(Y,X)) and f makes searching more

efficient in the database using the triangle inequality [263, 264].

Lemma The proposed similarity measure TSM (Eq. 6.10) between two sets of

triangles-stars TS1 and TS2 is a pseudo-metric.

Proof: From (Eq. 6.10) it may be concluded that if TSM is a pseudo-metric

then d (Eq. 6.1) is a pseudo-metric which implies that simk (Eq. 6.2) is a pseudo-

metric. Consequently, we shall prove that simk (Eq. 6.2) is a pseudo-metric.

Proving that simk (Eq. 6.2) is a pseudo-metric is equivalent to check the first

three properties in simk (Eq. 6.2). The functions simk are defined as follows:

simk = αk ∗ |x1−x2|
β with x1, x2,∈ R≥0, αk, β ∈ R>0.

1. non-negativity: TSM(TS1, TS2) ≥ 0. We have simk ≥ 0 ⇒ TSM ≥ 0

Thus TSM is non-negative.
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2. symmetry: TSM(TS1, TS2) = TSM(TS2, TS1). The proposed decomposi-

tion is unique and the TSM is only based on symmetrical operations (addition

and subtraction in absolute value). Consequently TSM is symmetric.

3. triangle inequality: TSM(TS1, TS2) ≤ TSM(TS1, TS3)+TSM(TS3, TS2).

We have the triangle inequality verified in: |x1−x2| ≤ |x1−x3|+|x3−x2|. Thus

the triangle inequality is verified in simk therefore, we have: TSM(TS1, TS2) ≤
TSM(TS1, TS3) + TSM(TS3, TS2). Consequently the triangle inequality is

verified in TSM .

6.7 Complexity of the proposed algorithm

The most important part, in term of complexity, is the one solving the assignment

problem. We used the Hungarian algorithm [43] to find the best assignment in

O(n3) time, where n is the maximum number of components in the two graphs

compared. Let n = max(‖N1‖, ‖N2‖) and n′ = max(‖TS1‖, ‖TS2‖), where Ni

is the set of nodes and TSi is the set of triangle-stars in gtr i. In the proposed

decomposition, any triangle-star has at least one triangle. Consequently, in the

worst case, we have n′ = n
3 = 0.33 ∗ n, which means that the complexity is

O(0.037 n3). However the number of triangle-stars depends on the structure of

the underlying graph and the degree of neighborhood Nk considered in the process

of decomposition. The number of triangle-stars is decreasing with the increasing

of the degree of neighborhood Nk as shown in Figure 6.6, in which we can see also

that the number of triangle-stars is less than the number of nodes and triangles

‖Ni+1-TS‖ ≤ ‖Ni-TS‖ ≤ ‖Nodes‖ ≤ ‖Triangles‖, with i = 1...5.

In the following, we present the time complexity depending on the degree of neigh-

borhood Nk in the TOSCA database [261, 262] (See Section 7.1.1 for TOSCA

database description), which is one of the databases that we use in our experiments.

In the case the degree of Neighborhood N1 (N1-TS), we have on average n′ =
n

3.8510 = 0.2596 ∗ n which means that the complexity is: O(0.0174 n3). Since
‖N‖
‖TS‖

∼= 1.1029 ∗ log(‖N‖) , the complexity is of the order of O(0.74 ∗ [ n
log(n) ]

3). In

the case the degree of Neighborhood N2 (N2-TS), we have on average n′ = n
68.6054 =

0.0145 ∗ n which means that the complexity is O(3.0968 ∗ 10−6 n3). Since
‖N‖
‖TS‖

∼= 19.6480 ∗ log(‖N‖) , the complexity is of the order of O(0.0001 ∗ [ n
log(n) ]

3).

For the degree of Neighborhood N3 (N3-TS), we have on average n′ = n
196.4914 =
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0.0050 ∗ n which means that the complexity is O(1.3181∗10−7 n3). Since ‖N‖
‖TS‖

∼=
56.2736 ∗ log(‖N‖) , the complexity is of the order of O(5.6115∗10−6 ∗ [ n

log(n) ]
3).

In the case the degree of Neighborhood N4 (N4-TS), we have on average n′ =
n

350.9977 = 0.0028 ∗ n which means that the complexity is O(2.3125 ∗ 10−8 n3).

Since ‖N‖
‖TS‖

∼= 100.5231 ∗ log(‖N‖), the complexity is of the order of O(9.84 ∗
10−7 ∗ [ n

log(n) ]
3). For the degree of Neighborhood N5 (N5-TS), we have on average

n′ = n
491.0660 = 0.0020 ∗ n which means that the complexity is O(8.4446 ∗

10−9 n3). Since ‖N‖
‖TS‖

∼= 140.6376 ∗ log(‖N‖) , the complexity is of the order of

O(3.59 ∗ 10−7 ∗ [ n
log(n) ]

3). In the case the degree of Neighborhood N6 (N6-TS): we

have on average n′ = n
617.3547 = 0.0016 ∗ n which means that the complexity is:

O(4.25∗10−9 n3). Since ‖N‖
‖TS‖

∼= 176.8057 ∗ log(‖N‖), the complexity is of the order

of O(1.80 ∗ 10−7 ∗ [ n
log(n) ]

3). Table 6.7 summarizes the obtained time complexity

depending on the degree of neighborhood Nk=1...6, in the TOSCA database. Table

6.7 shows that the obtained complexity is improved with the increasing of the degree

of neighborhood Kk.

NK Complexity

N1 O(0.74 ∗ [ n
log(n) ]

3)

N2 O(0.0001 ∗ [ n
log(n) ]

3)

N3 O(5.6115 ∗ 10−6 ∗ [ n
log(n) ]

3)

N4 O(9.84 ∗ 10−7 ∗ [ n
log(n) ]

3)

N5 O(3.59 ∗ 10−7 ∗ [ n
log(n) ]

3)

N6 O(1.80 ∗ 10−7 ∗ [ n
log(n) ]

3)

Table 6.7: The time complexity depending on the degree of neighborhood Nk, in

the TOSCA database.

6.8 Conclusion

In this chapter, we presented a new matching algorithm for addressing the problem

of comparing deformable 3D objects represented by graphs (triangular tessellations).

The proposed approach is based on a new decomposition of triangular tessellations

into triangle-stars depending on the degree of the considered neighborhood. The

resulting triangle-stars are used to determine the distance between triangular tessel-
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lation using the Hungarian algorithm. The proposed algorithm assures a minimum

number of disjoints triangle-stars, offers a better dissimilarity by covering a larger

area of neighbors in triangle-stars and uses a set of descriptors which are invariant

or at least oblivious under most common deformations. The proposed approach is

based on an approximation of Graph Edit Distance which is fault-tolerant to noise

and distortion, making our approach very appropriate for comparing deformable ob-

jects. We proved that the proposed distance TSM is a pseudo-metric. The analysis

of the time complexity confirm the high performance of our algorithm. In the next

chapter (Chapter 7), we evaluate our approach by performing a set of experimenta-

tions and comparisons in different databases.

Figure 6.6: The number of Nodes, Triangles and triangle-stars in different Nk neigh-

borhood in the TOSCA Database.
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In order to evaluate the proposed approach (Chapter 6), we undertook a set of

experimentations and we compare our approach with some state of the art shape-

matching algorithms on three databases: TOSCA database [261, 262], SHREC11

watertight [4] and SHREC09 database [5]. In this chapter, we present the three

databases that we use in our experiments, some state of the art shape-matching

algorithms to compare with, the evaluation criteria and the experimental results.

The remainder of the chapter is organized as follows. Firstly, in Section 7.1, we

describe the three databases that we use in our experiments. In Section 7.2, we
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describe the state of the art shape-matching algorithms with which we compare our

approach. In Section 7.3, we detail the performance measures that we consider to

evaluate our approach. In Section 7.4, we give and discuss the obtained results and

we compare them with some state of the art shape-matching algorithms. Finally,

Section 7.5 concludes the chapter.

7.1 Databases description

In this section, we describe the three databases that we use in our experiments.

7.1.1 TOSCA database

The TOSCA database [261, 262] is an interesting database for non-rigid object

similarity measures. it consists of 148 three-dimensional objects. Each object is

represented by a triangular tessellation. The database is categorized into 12 classes.

Each class contains an object with different poses (deformations). The cardinality

of the classes is not the same, between 1 and 24 poses for each class (see Table 7.1).

On average, each triangular tessellation has 3154 nodes, 6220 triangles. Table 7.2

shows some 3D objects of the TOSCA Database.

Class Number of poses

cat 9

centaur 6

david 15

dog 11

gorilla 21

horse 17

lioness 15

michael 20

seahorse 6

shark 1

victoria 24

wolf 3

Table 7.1: Number of poses per class in the TOSCA Database.
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Class Pose 1 Pose 2 Pose 3

Centaur

Gorilla

Table 7.2: Some objects from the TOSCA Database.

7.1.2 SHREC11 watertight

The SHREC11 watertight [4] is a large and diverse non-rigid 3D shape database,

recreated and modified from several publicly available databases such as the McGill

database [265], TOSCA database [261, 262] and the Princeton Shape Benchmark

[266]. The SHREC11 watertight [4] contains 600 non-rigid objects represented by

triangular tessellations. The data-set is equally classified into 30 classes, with 20

poses per class. Figure 7.1 shows two objects of each class in the SHREC11 water-

tight data-set [4].

7.1.3 SHREC09 database

The SHREC09 database [5] is Partial 3D Models with the objective to retrieve the

models which have parts similar to the query. It consists on two data-sets:

• Target data-set: The target database contains 720 complete 3D models is

equally classified into 40 classes, with 18 models per class. The classes are

defined with respect to their semantic categories. Table 7.3 shows the different

classes in the target database.

• Query data-set: The query data-set consists of 20 3D partial models which

are obtained by cutting parts from complete models (see Figure 7.2).

7.2 Some state of the art shape-matching algorithms

In order to evaluate and show the efficient of our approach, we compare it with a

state of the art set of shape-matching algorithms.
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Figure 7.1: Example of two objects in each class of SHREC11 watertight data-set

[4]

Bird Tree Fish NonFlyingInsect

FlyingInsect Monoplane Biped Quadruped

ApartmentHouse Motorcycle Skyscraper SingleHouse

Bottle Bicycle Cup Glasses

HandGun Biplane SubmachineGun MusicalInstrument

Mug Rocket FloorLamp DeskLamp

Sword Car Cellphone DeskPhone

Monitor Helicopter Bed NonWheelChair

WheelChair Ship Sofa RectangleTable

RoundTable MilitaryVehicle Bookshelf HomePlant

Table 7.3: The 40 classes of the target database in SHREC09.
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Figure 7.2: The 20 3D partial models of the query data-set in SHREC09 [5].

The set of algorithms with which we compare are:

• CAM: 3D-Matching method using curve analysis [267].

• GeodesicD2: An extension of the Euclidean D2 [268], computed as a global

distribution of geodesic distances in 3D shapes.

• DSR: The Hybrid Feature Vector, which is a combination of two view-based

descriptors: the depth buffer and the silhouette and extent radialized function
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descriptor [269].

• RSH: The Ray-Based Approach with Spherical Harmonic Representation in

which the authors of [270] align the models into the canonical position, extract

the maximal extents and apply spherical harmonic.

• TD: The temperature distribution (TD) descriptor [271] is shape descriptor

based on geometric features. TD descriptor is driven by heat kernel and it is

represented as one dimensional histogram. The L2 norm is used as matching

method to compute the distance between two TD descriptors.

• Shape-DNA: The Shape-DNA [272] is a numerical fingerprint or signature,

of any 2d or 3d manifold by taking the eigenvalues of its Laplace-Beltrami

operator.

• SRCP-TD: The SRCP-TD [273] method is based on sparse representation of

scale-invariant heat kernel. Laplace-Beltrami eigenfunctions are used, a shape

descriptor is formed based on the heat kernels and Sparse representation is

used.

• Modal Repr: An isometric deformation model is used based on the geodesic

distance matrix as an isometry-invariant shape representation. The method

proposed does not need explicit point correspondences for the comparison of

3D shapes [274].

• CMVD-Binary: The method CMVD-Binary ([275], [5]) CMVD-Binary is

based on the Compact Multi-View Descriptor using the silhouettes of 3D ob-

jects.

• CMVD-Depth: The method CMVD-Depth ([275], [5]) is based Compact

Multi-View Descriptor Depth (CMVD-Depth) and processes the depth maps.

• Merged: The method Merged corresponds to the fusion of the CMVD-Binary

and CMVD-Depth methods ([275], [5]).

• BF-SIFT: The method BF-SIFT is based on the ideas of Bag of Features

(BF) and the Scale Invariant Feature Transform (SIFT) ([276], [5]). The

method compares shapes of 3D models visually by using a set of local features

extracted from multiple view 2D depth images of the model.
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• BF-GridSIFT: The method BF-GridSIFT is based on the ideas of Bag of

Features (BF) and the Scale Invariant Feature Transform (SIFT) ([276], [5]).

7.3 Evaluation criteria

Several performance measures are used in the literature to evaluate retrieval methods

and 3D similarity measures ([277], [278]). In this thesis, we evaluate our approach

using the following performance measures:

• True positive (TP ): The set of objects correctly identified.

False positive (FP ): The set of objects incorrectly identified.

True Negative (TN): The set of objects correctly not identified or rejected.

False Negative (FN): The set of objects incorrectly not identified or re-

jected. (See Figure 7.3).

0 1

TN FP
FN TP

0

1

Tr
ue

 cl
as

s

Predicated Class

Figure 7.3: Confusion matrix of metric performances.

• Precision and Recall: We used the following equations to compute the

precision and recall of an object from the class i.

Precision = ‖objectsfound ∈ Ci‖
‖objectsfound‖ Recall = ‖objectsfound ∈ Ci‖

‖Ci‖
Precision and Recall can be also computed as follow:

Precision = TP
TP + FP Recall = TP

TP + FN .

• Accuracy: The percentage of elements correctly identified and those which

are correctly rejected. It is computed as follow: Accuracy = TP + TN
TP + TN + FP + FN .

True Positive Rate (TPR): The percentage of elements correctly classified

within their own class. It is computed as follow: TPR = TP
TP + FN .

True Negative Rate (TNR): The percentage of elements which are not
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attributed to classes in which they are not part (correctly rejected). It is

computed as follow: TNR = TN
TN + FP .

• Run time: We measure the average run time of computing the distance

between two graphs and the global time needed for all the database.

• E_Measure: is based on the combination of precision and recall and it is

defined using F_Measure. F_Measure is defined as follow:

F_Measure = 2 ∗ Precision ∗ Recall
Precision + Recall . And E_Measure is defined as follow:

E_Measure = 1 − F_Measure (F_Measure ∈ [0, 1]) which is equivalent

to: E_Measure = 1 − 2
1

Precision
+ 1

Recall

. With E_Measure ∈ [0, 1] and

the higher value indicate better results.

7.4 Results

In this section, we discuss and compare the obtained results on the three databases

(TOSCA [261, 262], SHREC11 watertight [4] and SHREC09 [5]).

The proposed distance TSM is a parameterized distance having a set of parameters

αk allowing different configurations, the default value is: αk = 1, ∀ k. In addition,

we defined a threshold in order to improve the classification accuracy. Considering

the set of parameters αk and the threshold in our approach offer a error-tolerant

distance and make the proposed approach invariant to different deformations. The

parameters αk and the threshold may be specified by inspection or by using machine

learning techniques.

In our experiments we consider: a descending strict total order on the triangles set of

each object. Different degree of neighborhood NK . The default value of parameters

∀ k, αk = 1. The best threshlod for each degree of neighborhood NK and for each

database.

7.4.1 Results on the TOSCA database

We compute the distance between each pair of triangular tessellations in the TOSCA

database [261, 262] using the proposed similarity measure TSM . Two triangular

tessellations are considered similar if their distance is less than a specific threshold.

Depending on the parameters αk, the threshlod and the degree of neighborhood

NK , the results may be different. Tables (7.4, 7.5, 7.6, 7.7, 7.8 and 7.9) show
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respectively some typical results depending on the degree of neighborhood NK=1...6

with the following settings: ∀ k, αk = 1, threshlod ∈ [0.04, 0.273].

Threshold Accuracy TPR TNR

0.06 83.24 % 82.29 % 83.35 %

0.07 78.3 % 91.1 % 76.79 %

0.08 74.6 % 95.46 % 72.14 %

0.05 88.03 % 64.92 % 90.75 %

0.04 90.54 % 40.75 % 96.40 %

0.036 91.02 % 30.27 % 98.18 %

0 89.48 % 0.17 % 100 %

Table 7.4: The accuracy with the degree of neighborhood NK=1 and according to

the classification threshold, in the TOSCA database.

Threshold Accuracy TPR TNR

0.13 60.56 % 61.34 % 60.47 %

0.11 68.45 % 52.00 % 70.40 %

0.06 86.04 % 20.42 % 93.76 %

0.08 79.90 % 32.90 % 85.44 %

0 89.48 % 0.17 % 100 %

Table 7.5: The accuracy with the degree of neighborhood NK=2 and according to

the classification threshold, in the TOSCA database.

Table 7.10 shows the Accuracy, TPR and TNR results obtained by TSM in the

TOSCA database, using the thresholds giving us the highest Accuracy, TPR and

TNR for each degree of neighborhood NK=1...6 and ∀ k, αk = 1.

We obtained excellent results which are between 60% and 83% in the Accuracy, TPR

and TNR, depending on the degree of neighborhood NK . The direct neighborhood

NK=1 with threshold = 0.06, give us the best accuracy (in average 83%), followed

by the accuracy obtained with NK=4 (in average 68%) then NK=3 and NK=5 (in

average 66%) and finally the accuracy obtained with NK=6 and NK=2 (in average

62%).
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Threshold Accuracy TPR TNR

0.19 65.78 % 66.93 % 65.65 %

0.15 73.87 % 53.66 % 76.25 %

0.11 80.70 % 36.47 % 85.91 %

0 89.48 % 0.17 % 100 %

Table 7.6: The accuracy with the degree of neighborhood NK=3 and according to

the classification threshold, in the TOSCA database.

Threshold Accuracy TPR TNR

0.22 68.65 % 67.89 % 68.74 %

0.18 73.18 % 54.01 % 75.43 %

0.14 82.04 % 34.99 % 87.58 %

0.2 70.30 % 63.44 % 71.11 %

0 89.48 % 0.17 % 100 %

Table 7.7: The accuracy with the degree of neighborhood NK=4 and according to

the classification threshold, in the TOSCA database.

Threshold Accuracy TPR TNR

0.264 65.01 % 64.31 % 65.09 %

0.22 71.27 % 51.92 % 73.55 %

0.16 80.34 % 32.29 % 86 %

0 89.48 % 0.17 % 100 %

Table 7.8: The accuracy with the degree of neighborhood NK=5 and according to

the classification threshold, in the TOSCA database.

We have computed the confusion matrix for all the 3D-objects belonging to the

TOSCA database [261, 262]. Each element of the confusion matrix is associated

with the dissimilarity between objects i and j. Dark colours are associated to

dissimilarity close or equal to zero, Light colours are associated to dissimilarity

close or equal to one. Objects are similar if their dissimilarity is close or equal to
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zero. Using TOSCA database, we generate a n × n matrix, with n = 148 (the

number of 3D objects) for each degree of neighborhood NK=1...6 using the adequate

thresholds (see Table 7.10).

Threshold Accuracy TPR TNR

0.273 62.11 % 61.52 % 62.18 %

0.24 66.95 % 50.17 % 68.93 %

0.1 80.84 % 22.69 % 87.69 %

0 89.48 % 0.17 % 100 %

Table 7.9: The accuracy with the degree of neighborhood NK=6 and according to

the classification threshold, in the TOSCA database.

NK Threshold Accuracy TPR TNR

1 0.06 83.24 % 82.29 % 83.35 %

2 0.13 60.56 % 61.34 % 60.47 %

3 0.19 65.78 % 66.93 % 65.65 %

4 0.22 68.65 % 67.89 % 68.74 %

5 0.264 65.01 % 64.31 % 65.09 %

6 0.273 62.11 % 61.52 % 62.18 %

Table 7.10: TSM Best Accuracy, TPR and TNR results in TOSCA database for

the degree of neighborhood NK=1...6.

Figure 7.4 shows the confusion matrix associated with its dissimilarity for the degrees

of neighborhood NK=1. The darkest regions correspond to the block-diagonals of

the confusion matrix which are associated with the intra-class dissimilarity. In the

Figure 7.4, we observe that objects from the same classes are similar, for instance,

the following classes: gorilla, centaur, horse ... etc. and we observe also that objects

from different classes are dissimilar, for example: (cat, gorilla), (cat, seahorse),

(gorilla, lioness) ... etc. In a few cases, there is some interclass similarity: the dog

and the wolf, David and Victoria and, David and Michael. This is not surprising

considering that their shape is relatively similar. All these observations demonstrate

the efficiency of the proposed algorithm.
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Figure 7.4: The NK=1 Confusion matrix associated with the TOSCA Database.

Even the obtained results using the direct neighborhood NK=1 are highly better

than the results obtained with other degree of neighborhood NK = 2...6. How-

ever, we obtain a high performance in term of the run time using a high degree of

neighborhood.

Figure 7.5 shows the average run time performance for each degree of neighborhood

NK=1...6 in the TOSCA database. The X-axis shows the number of nodes in the two

compared graph tessellations represented by the product ‖G1XG2‖ and the Y -axis

the average run time (Seconds), in log scale. This figure 7.5 shows clearly that the

proposed dissimilarity TSM is much faster using a higher degree of neighborhood,

i.e., TSM with NK=i+1 is more faster than TSM with NK=i. Figure 7.5 shows also

that TSM with NK=2...6 is largely more faster comparing to TSM with NK=1. The

runtime performance shown in Figure 7.5 confirms the theoretical time complexity

(see Table 6.7).

We have also measured the total run time on the TOSCA database for each degree

of neighborhood Nk=1...6 (see Figure 7.6). The total run time performance shown in

Figure 7.6 confirm the performances shown in Figure 7.5 and the theoretical time

complexity. Figure 7.6 show clearly that the time needed to process all the database

using TSM with NK=i is longer than TSM with NK=i+1, i.e., TSM with NK=i

need more time to process all the database than TSM with NK=i+1. We remark

also a big difference between the time needed to process all the database using TSM
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with NK=1 (approximately 9 days) and TSM with NK=2...6 (5 minutes for NK=2

and between 1 to 3 minutes for NK=3...6).
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Figure 7.5: The average run time (Seconds) for each degree of neighborhood

NK=1...6, on the TOSCA database.

In addition to the visual results represented as confusion matrix (Figure 7.4), other

visual results are shown in Figure 7.7. The first column contains six 3D-object

query, while the rest of columns contain the four retrieved 3D-objects in the TOSCA

database for each 3D-object query using the NK=1 neighborhood. Figure 7.7 shows

excellent results in which we can see that the 3D-object queries and their corre-

sponding four retrieved 3D-objects belong to the same class (for example, the first

query is a centaur and the four retrieved 3D-objects are centaurs also). An interest-

ing result for the last 3D-object query "david11" which has as retrieved 3D-objects,

three objects from the same class: "david7", "david10", "david4" and an object

from an other class: "michael9". However, the two classes "david" and "michael"

are semantically equivalent (belong to the class "man").

Figure 7.8 shows six precision-recall curves of the six 3D-object queries presented in

Figure 7.7, from the TOSCA database using the NK=1 neighborhood.

Our method TSM uses a threshold (threshold = 0.06 for NK=1 neighborhood),

which means that only the objects which present a dissimilarity ≤ threshold
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Figure 7.6: The total run time (Seconds) of the TOSCA database, for degree of

neighborhood NK=1...6.

are considered in the process of computing the recall and precision since, otherwise,

they are automatically classified as dissimilar by our algorithm TSM . As showed

in Figure 7.8, we have obtained excellent precision-recall curves which confirm the

visual results shown in Figure 7.7. For instance, gorilla0, horse0, lioness0 and

seahorse0 have a precision of 100% for a recall that goes from 86% to 100%.

We performed also a comparison in term of precision and recall in which we com-

pare our method TSM using the NK=1 neighborhood with the four methods (CAM,

GeodesicD2, DSR and RSH) in the TOSCA database. Figure 7.9 shows the com-

parison of the precision and pecall plot of our approach TSM using the NK=1

neighborhood with the four methods (CAM, GeodesicD2, DSR and RSH) in the

TOSCA database. As the curve of our approach is higher than the four approaches

to which it was compared, we conclude that our method performs better than the

others.(in [267], CAM was compared to GeodesicD2, DSR and RSH).

We performed also an other comparison in term of E_Measure in which we com-

pare our method TSM using the NK=1...6 neighborhood with the three methods

(TD, Shape-DNA and SRCP-TD) in the TOSCA database. Table 7.11 shows the

obtained results (in term of E_Measure) of our approach TSM using the NK=1...6
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Figure 7.7: The first four retrieved results in the TOSCA database, with NK=1

neighborhood.
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Figure 7.8: Precision-recall curves for six distinct 3D-objects of the TOSCA database

with NK=1 neighborhood.

Figure 7.9: Precision and Recall plots comparing our approach to the CAM,

GeodesicD2, DSR and RSH approaches on the TOSCA database.

neighborhood and the three methods (TD, Shape-DNA and SRCP-TD). Table 7.11

shows that our method TSM provide excellent results in terms of E_Measure, and

using TSM with the NK=1 neighborhood, give us the highest results. Table 7.11

shows also that our method TSM provides an E_Measure highly better than the
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three methods with which we compare.

Methods E_Measure

Our method TSM with NK=1 0.9965

Our method TSM with NK=2 0.9965

Our method TSM with NK=3 0.9965

Our method TSM with NK=4 0.9965

Our method TSM with NK=5 0.9965

Our method TSM with NK=6 0.9965

TD 0.33

Shape-DNA 0.55

SRCP-TD 0.56

Table 7.11: E_Measure results of our method TSM using NK=1...6 neighborhood

and other methods of the state of the art in TOSCA database.

7.4.2 Results on the SHREC11 watertight

We compute the distance between each pair of triangular tessellations in the SHREC11

watertight database [4] using the proposed similarity measure TSM . Two triangular

tessellations are considered similar if their distance is less than a specific threshold.

Depending on the parameters αk, the threshlod and the degree of neighborhood

NK , the results may be different. Tables (7.12 and 7.13) show respectively some

typical results depending on the degree of neighborhood NK=2 and NK=6 with the

following settings: ∀ k, αk = 1, threshlod ∈ [0.05, 0.198]. Using NK=1 neighbor-

hood gives us naturally better results accuracy than the ones obtained using NK=2

and NK=6 neighborhood. However, we are limited by the time and as shown in

Figure 7.6, the time needed to process all the database using TSM with NK=i is

longer than TSM with NK=i+1 and especially when using NK=1 neighborhood.

Table 7.14 shows the Accuracy, TPR and TNR results obtained by TSM in the

SHREC11 watertight database, using the thresholds giving us the highest Accu-

racy, TPR and TNR for the two degrees of neighborhood (NK=2 and NK=6) and

∀ k, αk = 1.

We obtained excellent results which are between 61% and 67% in the Accuracy,
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Threshold Accuracy TPR TNR

0.1076 67.08 % 67.04 % 67.08 %

0.09 73.86 % 55.95 % 74.45 %

0.05 89.36 % 23.77 % 91.51 %

0.01 96.82 % 0.05 % 99.99 %

Table 7.12: The Accuracy, TPR and TNR results with the degree of neighborhood

NK=2 and according to the classification threshold, in the SHREC11 watertight

database.

Threshold Accuracy TPR TNR

0.198 61.46 % 62.14 % 61.44 %

0.165 70.39 % 50.42 % 71.05 %

0.1 84.28 % 24.40 % 86.24 %

0.05 92.58 % 14.42 % 95.14 %

0.0101 96.83 % 0.07 % 99.99 %

Table 7.13: The Accuracy, TPR and TNR results with the degree of neighborhood

NK=6 and according to the classification threshold, in the SHREC11 watertight

database.

TPR and TNR results, depending on the degree of neighborhood NK=2 and NK=6.

Using the NK=2 neighborhood with threshold = 0.1076, give us the best accu-

racy (in average 67%) which is better than the accuracy obtained using the NK=6

neighborhood with threshold = 0.198 (in average 61%).

We performed also an other comparison in term of E_Measure in which we compare

our method TSM using NK=2 and NK=6 neighborhood with different methods

of the state of art in the SHREC11 watertight database. Table 7.15 shows the

obtained results (in term of E_Measure) of our approach TSM using NK=2 and

NK=6 neighborhood compared to the other methods. Table 7.15 shows that our

method TSM provides an E_Measure highly better than the other methods with

which we compare.
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NK Threshold Accuracy TPR TNR

2 0.1076 67.08 % 67.04 % 67.08 %

6 0.198 61.46 % 62.14 % 61.44 %

Table 7.14: TSM Best Accuracy, TPR and TNR results in SHREC11 watertight

database for the degree of neighborhood NK=2 and NK=6.

Methods E_Measure

Our method TSM with NK=2 0.9961

Our method TSM with NK=6 0.9966

Modal-repr 0.731

TD 0.3369

Shape-DNA 0.6797

SRCP-TD 0.69

Table 7.15: E_Measure results of our method TSM using NK=2 and NK=6 neigh-

borhood and other methods of the state of the art in SHREC11 watertight database.

7.4.3 Results on the SHREC09 database

We compute the distance between each query and target triangular tessellations

in the SHREC09 database [5] using the proposed similarity measure TSM . Two

triangular tessellations are considered similar if their distance is less than a specific

threshold. Depending on the parameters αk, the threshlod and the degree of neigh-

borhood NK , the results may be different. Tables (7.16 and 7.17) show respectively

some typical results depending on the degree of neighborhood NK=2 and NK=6 with

the following settings: ∀ k, αk = 1, threshlod ∈ [0.09, 0.0401]. We don’t present the

results with NK=1 neighborhood because we are limited by the time and as shown

in Figure 7.6, the time needed to process all the database using TSM with NK=i is

longer than TSM with NK=i+1 and especially when using NK=1 neighborhood.

Table 7.18 shows the Accuracy, TPR and TNR results obtained by TSM in the

SHREC09 database, using the thresholds giving us the highest Accuracy, TPR and

TNR for the two degrees of neighborhood (NK=2 and NK=6) and ∀ k, αk = 1.

We obtained excellent results which are between 55% and 61% in the Accuracy, TPR
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Threshold Accuracy TPR TNR

0.026 55.41 % 55 % 55.42 %

0.023 60.07 % 50.28 % 60.32 %

0.01 84.62 % 15.83 % 86.38 %

0.009 86.49 % 14.17 % 88.34 %

Table 7.16: The Accuracy, TPR and TNR results with the degree of neighborhood

NK=2 and according to the classification threshold, in the SHREC09 database.

Threshold Accuracy TPR TNR

0.0401 61.19 % 59.17 % 61.25 %

0.034 65.85 % 51.39 % 66.22 %

0.02 78.13 % 30 % 79.37 %

0.01 88.47 % 13.89 % 90.38 %

Table 7.17: The Accuracy, TPR and TNR results with the degree of neighborhood

NK=6 and according to the classification threshold, in the SHREC09 database.

and TNR, depending on the degree of neighborhood NK=2 and NK=6. Using the

NK=6 neighborhood with threshold = 0.0401, give us the best accuracy (in average

61%) which is better than the accuracy obtained using the NK=2 neighborhood with

threshold = 0.026 (in average 55%).

We performed also an other comparison in term of E_Measure in which we compare

our method TSM using the NK=2 and NK=6 neighborhood with the five meth-

ods (CMVD-Binary, CMVD-Depth, Merged, BF-SIFT and BF-GridSIFT) in the

SHREC09 database. Table 7.19 shows the obtained results (in term of E_Measure)

of our approach TSM using the NK=2 and NK=6 neighborhood compared to the

five methods (CMVD-Binary, CMVD-Depth, Merged, BF-SIFT and BF-GridSIFT).

Table 7.19 shows that our method TSM provides excellent results in terms of

E_Measure. Table 7.19 shows also that our method TSM provides an E_Measure

highly better than the other methods with which we compare.
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NK Threshold Accuracy TPR TNR

2 0.026 55.41 % 55 % 55.42 %

6 0.0401 61.19 % 59.17 % 61.25 %

Table 7.18: TSM Best Accuracy, TPR and TNR results in SHREC09 database for

the degree of neighborhood NK=2 and NK=6.

Methods E_Measure

Our method TSM with NK=2 0.94

Our method TSM with NK=6 0.93

CMVD-Binary 0.2

CMVD-Depth 0.174

Merged 0.192

BF-SIFT 0.116

BF-GridSIFT 0.204

Table 7.19: E_Measure results of our method TSM using NK=2 and NK=6 neigh-

borhood and other methods of the state of the art in SHREC09 database.

7.4.4 Results discussion

The set of experimentations and the comparisons with some state of the art shape-

matching algorithms, on the three databases: TOSCA database [261, 262], SHREC11

watertight [4] and SHREC09 database [5], show the high performance of our ap-

proach.

Indeed, we obtained excellent results in term of Accuracy, TPR and TNR on

the three databases (TOSCA database [261, 262], SHREC11 watertight [4] and

SHREC09 database [5]). The visual results represented as a confusion matrix (Fig-

ure 7.4) and as the retrieved results in the TOSCA database [261, 262], confirm the

high performance of our approach. Our approach also realize a high performance

in term of the run time (average and total run time) depending on the considered

neighborhood degree, which confirms the theoretical time complexity. The excellent

precision-recall curves obtained and the comparison performed with the four meth-

ods (CAM, GeodesicD2, DSR and RSH) in the TOSCA database, show the high
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performance of our approach in term of precision and recall and that our method is

better. We also performed a comparison in term of E_Measure in which we compare

our method TSM using the different degree of neighborhood with a set of meth-

ods from the state of the art shape-matching algorithms, on the three databases:

TOSCA database [261, 262], SHREC11 watertight [4] and SHREC09 database [5].

The obtained results show that our method performs excellent results in term of

E_Measure and show that our approach is highly better in term of E_Measure

than methods with which we compare.

The results shown in this chapter are obtained using the default parameters and the

adequate threshold. Even the obtained results are excellent, an improvement in term

of performance can be realized by specifying the adequate parameters, threshold and

degree of neighborhood depending on the database considered and this by using

machine learning techniques. The set of descriptors can be also enriched, which can

be allows an improvement of the obtained results.

7.5 Conclusion

We proposed a new graph matching distance for addressing the problem of com-

paring deformable 3D objects represented by graphs (triangular tessellations). The

proposed approach is based on a new decomposition of triangular tessellations into

triangle-Stars. In order to evaluate our approach, we undertook a set of experiments

in different well know databases for entire and partial deformable shape comparison.

We compared the obtained results with some state of the art shape-matching algo-

rithms. We used in our experiments different evaluation criteria. In this chapter, we

described and discussed the experimentations that we performed to evaluate our ap-

proach. We presented the different databases that we used in our experiments, some

state of the art shape-matching algorithms to compare with, the evaluation criteria

and the experimental results. The analysis of the time complexity (Section 6.7)

and our experimental results on three standard databases (TOSCA, SHREC09 and

SHREC11) under different evaluation criteria confirm the high performance and

accuracy of our algorithm.

114



Chapter 8

Conclusions and future works

Contents

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 Further works . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

In this chapter, we first concludes the thesis with a summary of our contributions,

in Section 8.1. We then describe some suggestions for further research and future

works, in Section 8.2.

8.1 Conclusions

In this thesis, graph based approaches for Pattern Recognition and the associated

applications, namely 2D and 3D, are investigated. Graph based techniques for

Pattern Recognition aim to solve mainly two major problems. The first one is to

find an optimal way to represent the considered patterns by graphs. The second

problem is to find the adequate method to compare the objects represented by

graphs. In this context, finding solutions to the problem of graph modeling and

graph matching that ensure optimality in terms of accuracy and time complexity is

a difficult research challenge and a topical issue. Graph matching and more generally

graph comparison is the aim operation in the process of pattern recognition using

graph-based approaches. Graph matching solutions are classified into two wide

categories: exact approaches and inexact approaches. In this thesis, we focused on

inexact graph matching approaches and them applications on 2D and 3D Pattern

Recognition.

In the first part of this thesis, we addressed the issue of geometric graph matching

and its applications on 2D Pattern Recognition. Kite recognition in satellite images

is the main application considered in this part. The visibility of Kites in satellite
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images (due to their huge size), their important number and their wide geographical

distribution, make automatic recognition of Kites an important step towards under-

standing these enigmatic remnants. We presented a complete identification tool

relying on a graph representation of the Kites. In this context, we realized mainly

two major contributions. The first one is the introducing of a graph representation

of Kites and the proposition of an automatic process for extracting and transform-

ing Kites from real images into graphs. We also proposed a process of generating

randomly a synthetic data set of Kite graphs. Using the two proposed processes,

we constructed a benchmark of Kite graphs (real and synthetic) structured in dif-

ferent level of deformations. This benchmark is used to validate our algorithms.

The second contribution in this part, is the proposition of a new graph similar-

ity measure adapted to geometric graphs and consequently for Kite graphs. The

proposed approach combines graph invariants with a geometric graph edit distance

computation leading to an efficient Kite identification process. We analyzed the

time complexity of the proposed algorithms and conducted extensive experiments

both on real and synthetic Kite graph data sets which attested the effectiveness of

the proposed approach. We also performed a set of experimentations on other data

sets which showed that the proposed approach is extensible and quite general. The

satellite images (ground truth data) used to the construction of the Kite database

are provided by a team of archeologists expert on Kites. The archeologists have

also checked and validated the experiments steps that we realized and the obtained

results.

In the second part of this thesis, we addressed the problem of comparing de-

formable or non-rigid 3D objects. The shapes considered are represented by graphs,

i.e., triangular tessellations. In the field of 3D object recognition, it is often required

to compare different 3D objects represented by graphs. Using triangular tessella-

tions, 3D objects may be compared with graph matching techniques. We proposed

a new graph based distance for comparing deformable 3D objects. This distance is

based on a new decomposition of triangular tessellations into a set of substructures

that we called triangle-Stars. A triangle-Star is a connected component formed by

the union of a triangle and its neighborhood. The proposed decomposition offered

a parameterizable triangle-Stars depending on the degree of the neighborhood con-

sidered. The number of triangle-Stars obtained is much smaller than the number

of nodes and the number of classic stars [9, 10] and, as a result, the computational
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complexity is reduced. The proposed graph edit distance is based on triangle-Stars

which is a local structure that covers a larger neighborhood than a classic star de-

composition [9, 10]. Consequently, the proposed dissimilarity measure assures an

optimal approximation. The resulting triangle-Stars are used to determine the dis-

tance between triangular tessellation using the Hungarian algorithm. The proposed

approach assured a minimum number of disjoints triangle-Stars, offered a better

dissimilarity by covering a larger area of neighbors in triangle-Stars and used a

set of descriptors which are invariant or at least oblivious under most common de-

formations. The proposed approach is based on an approximation of Graph Edit

Distance which is fault-tolerant to noise and distortion, making our approach very

appropriate for comparing deformable objects. We proved that the proposed dis-

tance is a pseudo-metric and we analysed its time complexity. We realized a set

of experiments including comparisons, on different well known databases for entire

and partial deformable shape comparison, and under various evaluation criteria.

The analysis of the time complexity and our experimental results on three standard

databases (TOSCA, SHREC09 and SHREC11) confirmed the high performance and

accuracy of our algorithm. The set of experimentations and the obtained results on

SHREC09 database showed that the proposed approach is efficient also for the 3D

objects sub-matching, which proved that our method is extensible and quite general.

8.2 Further works

In this section, we describe some suggestions for further research and future works.

The approaches that we proposed are parameterizable. Indeed, many parameters

are considered: parameters for methods extracting and transforming Kites from real

images to graphs, parameters for the process of generating randomly the synthetic

data set of Kite graphs, parameters for the proposed geometric graph similarity

measure, the degree of neighborhood to be considered in the proposed decomposition

of triangular tessellations into triangle-Stars, parameters associated to the proposed

graph based distance for deformable 3D objects and the thresholds associated with

the proposed similarity measures. Even, by using default values of these parameters,

we obtained excellent results in our experiments, using machine learning techniques

will allow us to use the adequate parameters depending on the databases considered

which should naturally further improve the obtained results.
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The proposed approach dealing with the geometric graphs matching was evalu-

ated on the proposed Kite benchmark (real and synthetic) and on the well known

database GREC [205]. We project to realize other experiments on other well known

graph databases, namely on the rest of data sets of the well-known IAM Graph

Database Repository [205], in order to further evaluate the performances of the pro-

posed approach and specialty for confirming that the proposed approach is quite

general. We project also to improve the proposed approach to be a general solution

for structural Pattern Recognition in satellite images.

The images used for the construction of the prosed Kite database are acquired

manually, as a technical improvement, we project to automate the process of image

acquisition.

In this thesis, two graph based approaches for 2D and 3D Pattern Recognition

are proposed. Their time complexity is excellent, O(n3). However, a more gen-

eral graph matching approach in term of applicability (2D and 3D) with a reduced

time complexity, can be proposed. We can meet this objective using a new for-

malization based on the stable marriage problem [11]. This approach is based on

graph decomposition into a set of substructures, and then followed by a matching

of these substructures based on stable marriage algorithm. The choice of the graph

decomposition method depends on the kind of the considered graphs: a triangle-

Stars decomposition for the triangular tessellations (graphs of 3D shapes) and a star

decomposition for other kinds of graphs (graphs of 2D shapes).

The stable marriage problem is the problem of finding a stable matching between

two sets of elements with equal size, based on an ordering of preferences associated to

each element regarding other elements. Stability means that every matched couple

of elements prefers to stay together rather than be mapped to an other one [11].

Originally, stable marriage problem is introduced by Gale and Shapley in 1962 in

order to find a matching between men and women, based on preference lists in which

each person (man and woman) presents his or her preferences regarding the other

persons with opposite gender. The problem has then adapted in several research

areas, such as mathematics, economics, game theory, computer science, etc. We

refer readers to [279] for more details on stable marriage problem and its variants.
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The basic idea of our new approach is firstly to decompose the two graphs G1 and

G2 that we want to compare into two sets of substructures S1 and S2. Depending

on the kind of the graphs (2D or 3D), the resulted substructures are either stars

or triangle-Stars. A triangle-Stars decomposition (introduced in Chapter 6) for the

triangular tessellations (graphs of 3D shapes) and a star decomposition for other

kinds of graphs (graphs of 2D shapes). The second step is to associate to each

substructure s1,i ∈ S1 from one graph G1, a vector of preferences regarding to the

other substructures s2,j ∈ S2 of the other graph G2. The vectors associated to

s1,i ∈ S1 (respectively s2,j ∈ S2 ) contain the set of substructures S2 (respectively

S1 ) odored following the preferences with a descending order. The preference

P (s1,i, s2,j) between s1,i ∈ S1 and s2,j ∈ S2 is measured either using the proposed

distance defined by the formula (Eq. 5.6, Chapter 5) in the case of stars or using the

proposed distance defined by the formula (Eq. 6.1, Chapter 6) in the case of triangle-

Stars. All the vectors have the same size t, which is equal to the maximum size of

the two sets of substructures t = max(||S1||, ||S2||). In the case of ||S1|| 	= ||S2||,
the vectors with small size will completed by (max(||S1||, ||S2||)−min(||S1||, ||S2||))
empty substructures (ε), with the corresponding preference P (sk,i, ε). In the final,

we obtain a set of vectors constituting a square matrix of preferences Dt,t in which

each case Di,j contain a substructure (or ε) with the corresponding preferences Pi,j .

The third step consists to use the algorithm of stable marriage in order to find

the best match of the different substructures S1 and S2 based on their preferences

vectors, in quadratic time O(n2). The last step is to compute the score of the

matching and this by the sum of preference values of each couple of substructures

Score =
∑i,j=t

i,j=1 P (s1,i, s2,j). An illustration of the the proposed approach is

giving in Example 1.

Example 1. Let S1 and S2 two set of substructures (stars or triangle-Stars) of two

graphs G1 and G2. ‖S1‖ = ‖S2‖ = 4. Let D the matrix of similarities between

S1 and S2 calculated using one of the two formulas: Eq. 5.6 in the case of stars or

Eq. 6.1 in the case of triangle-Stars.

⎛
⎜⎜⎜⎜⎜⎝

s2,0 s2,1 s2,2 s2,3

s1,0 0.11 0.90 0.25 0.21

s1,1 0.10 0.15 0.65 0.89

s1,2 0.67 0.03 0.51 0.17

s1,3 0.66 0.88 0.33 0.99

⎞
⎟⎟⎟⎟⎟⎠
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S2,1 S2,2 S2,3 S2,0
0,90 0,25 0,21 0,11

S2,3 S2,2 S2,1 S2,0
0,89 0,65 0,15 0,10

S2,0 S2,2 S2,3 S2,1
0,67 0,51 0,17 0,03

S2,3 S2,1 S2,0 S2,2
0,99 0,88 0,66 0,33

S1,0

S1,1

S1,2

S1,3

S2,1 S2,3 S2,0 S2,2
0,92 0,99 0,55 0,50

S2,0 S2,3 S2,2 S2,1
0,10 0,88 0,56 0,07

S2,2 S2,1 S2,3 S2,0
0,96 0,65 0,77 0,36

S2,3 S2,2 S2,0 S2,1
0,11 0,81 0,35 0,52

S1,0

S1,2

S1,1

S1,3

(a) S1 preferences (b) S2 preferences

Figure 8.1: Vectors of Preferences of s1,i=0..3 ∈ S1 regarding to s2,j=0..3 ∈ S2 and

vectors of preferences of s2,j=0..3 ∈ S2 regarding to s1,i=0..3 ∈ S1, in descending

order.

Firstly, we associate to each substructure s1,i=0..3 ∈ S1 and s2,j=0..3 ∈ S2, a vector

of preferences regarding to the other set of substructures s2,j=0..3 ∈ S2 and s1,i=0..3

∈ S1 respectively, with a descending order. Figure 8.1(a) shows the four vectors

representing the preferences of s1,i=0..3 ∈ S1 regarding to s2,j=0..3 ∈ S2.

Figure 8.1(b) shows four vectors representing the preferences of s2,j=0..3 ∈ S2 re-

garding to s1,i=0..3 ∈ S1. Secondly, we use the algorithm of stable marriage in

order to find the best match of the different substructures S1 and S2 based on

their preferences vectors. We obtain the following couples: {(s1,0, s2,1); (s1,1, s2,2);
(s1,2, s2,0); (s1,3, s2,3)}. Finally, we calculate the distance corresponding the couples

selected. The score obtained is Score = 3.21 and the normalised dissimilarity is

Score = 1 − 3.21
4 = 0.1975.

As future work, we project to develop this new approach based on stable marriage

and realize a set of experiments, including comparisons, on different well known

databases (real and synthetic) and under various evaluation criteria, in order to

evaluate the performance of our new approach based on Stable Marriage formulation.
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International journals:

1. Kamel Madi, Hamida Seba, Hamamache Kheddouci, Olivier Barge. A

Graph-based approach for Kites recognition. Pattern Recognition Letters.

2016. 10.1016/j.patrec.2016.05.005

2. Remy Crassard, Olivier Barge, Charles-Edmond Bichot, Jacques Elie Brochier,

Jwana Chahoud, Marie-Laure Chambrade, Christine Chataigner, Kamel Madi,

Emmanuelle Regagnon, Hamida Seba, Emmanuelle Vila. Addressing the Desert

Kites Phenomenon and Its Global Range Through a Multi-proxy Approach.

Journal of Archaeological Method and Theory. 2014, 1-29. 10.1007/s10816-

014-9218-7

International conferences:

3. Kamel Madi, Eric Paquet, Hamida Seba, Hamamache Kheddouci. Graph

Edit Distance based on Triangle-Stars Decomposition for Deformable 3D Ob-

jects Recognition. International Conference on 3D Vision (3DV 2015), Lyon

(France) 19-22 October 2015. 55-63.

4. Kamel Madi, Hamida Seba, Hamamache Kheddouci, Charles-Edmont Bi-

chot, Olivier Barge, Christine Chataigner, Remy Crassard, Emmanuelle Reganon,

and Emmanuelle Vila. Kite Recognition by means of Graph Matching. Graph-

based Representations in Pattern Recognition (GbR2015), Beijing (China)

13-15 may 2015. 118-127.

Papers in preparation (for international journals):

5. Kamel Madi, Eric Paquet, Hamida Seba, Hamamache Kheddouci. New

Graph matching and Subgraph Matching methods for Deformable 3D Objects

Recognition based on Triangle-Stars Decomposition. Pattern Recognition. (In

preparation).
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