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R E S U M E

Dans le cadre de la recherche sur les dispositifs post-CMOS, l’électronique
moléculaire bénéficie de la polyvalence de la chimie organique, qui of-
fre de nouvelles fonctions alliant spécificités optiques et électroniques,
tout en accédant au régime de confinement quantique intrinsèque aux
petites molécules. Conducteurs 1D, les nanotubes de carbone font le
lien entre l’électronique des petites molécules émergente et la tech-
nologie des semi-conducteurs, tout en tirant parti de la chimie or-
ganique. Au-delà de la miniaturisation, ils offrent la possibilité de con-
cevoir de nouveaux dispositifs pour des capteurs, l’optoélectronique
et l’électronique quantique. Cependant, la plupart des études se con-
centrent sur leurs applications aux capteurs ou pour le photovoltaïque
qui impliquent un ensemble macroscopique de nanotubes. Dans ce
cas, les transferts d’excitation sont moyennés sur un ensemble statis-
tique, ce qui empêche l’accès à leurs mécanismes fondamentaux. Il
est donc nécessaire de concevoir des dispositifs fonctionnels à base
de nanotubes de carbone individuels. Pour cela, les nanotubes dou-
ble paroi ont de nombreux avantages sur les monoparois. En général,
ils présentent une stabilité plus élevée, qui peut être d’une aide sub-
stantielle dans des expériences à haute intensité et à fort champ. Ils
réalisent un système cœur-coquille: leur structure concentrique sug-
gère leur utilisation pour réaliser indépendamment un dopage ou
une fonctionnalisation des tubes intérieur et extérieur. Dans ce pro-
jet de thèse, nous étudions des transistors à effet de champ basés
sur des systèmes hybrides nanotubes individuels double paroi/chro-
mophore. Nous présentons d’abord le procédé de fabrication de tran-
sistors à effet de champ de nanotubes de carbone à paroi individu-
els (DWFET), qui sont ensuite caractérisés à la fois par des tech-
niques optiques et électriques. Nous avons notamment étudié le cou-
plage électron-phonon par spectroscopie Raman sous dopage électro-
statique. Le tube métallique interne apparaît également affecté par
la grille électrostatique et montre des changements significatifs de
la signature Raman. Nous avons ensuite fonctionnalisé les DWFET
de façon non covalente avec deux types de molécules optiquement
sensibles (terpyridine d’osmium et complexe de zinc (II) métallopor-
phyrine). Les hybrides sont caractérisés à la fois en optique et en
transport électronique. Il apparaît un transfert de charge entre les
molécules et le DWNT qui joue le rôle d’une grille chimique dé-
tectable par spectroscopie Raman et transport électrique, ce qui in-
dique que les DWFETs peuvent être utilisés pour la détection de
molécules. L’excitation lumineuse des molécules conduit à un dopage
des hybrides et permet de plus de révéler le couplage entre les parois
des nanotubes.
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De plus, nous avons réalisé des expériences de grille optique à
longueur d’onde variable sur les dispositifs hybrides, couplant à la
fois la spectroscopie Raman et des mesures de transport électrique
de la température ambiante jusqu’à la température de l’hélium. Le
contrôle optique du comportement électronique des hybrides est ex-
pliqué en termes de transfert de charge photo-induit entre les molécules
greffées et le DWNT. Par conséquent, nos FET hybrides peuvent être
utilisés comme mémoire à commande optique jusqu’au régime de
transfert d’électrons uniques.

ii
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A B S T R A C T

In the frame of the intense research on electronics beyond CMOS,
molecular electronics offers the versatility of organic chemistry in or-
der to tailor new functions combining optical and electronic speci-
fications, while accessing the quantum confined regime intrinsic to
small molecules. As 1D conductors, carbon nanotubes bridge the gap
between small molecules electronics and semiconductor technology
with great promises while being a playground for organic chemistry.
Beyond miniaturization, they offer the opportunity to design new de-
vices from accurate sensors to optoelectronic and quantum devices.
However most studies focus on sensor or photovoltaic applications
and thus involve a macroscopic assembly of nanotubes. This averages
the excitation transfers, which prevents access to their fundamental
mechanisms. This requires the design of individual carbon nanotube
based functional devices. For this issue double wall carbon nanotubes
have many advantages over simple SWNTs. In general, they exhibit
higher stability, which can be a substantial help in high-current and
high-field experiments. They realize a core-shell system: their concen-
tric structure suggests its use for independent doping or function-
alization of inner and outer tubes. In this PhD project, we demon-
strate field effect transistors based on hybrid systems of individual
double wall carbon nanotubes and optically sensitive molecule. We
first introduce the method for making individual double wall car-
bon nanotube field effect transistors (DWNT FETs), which are then
characterized both optically and electrically. We also studied the elec-
tron phonon coupling in the DWNT system by Raman spectroscopy
with electrostatic gating. The inner metallic tube is also affected by
the electrostatic gate and shows dramatic changes of the overall Ra-
man signature. We then functionalized non covalently two kinds of
optically sensitive molecules to DWNT and graphene FETs (Terpyri-
dine Osmium complex and Zinc(II) metalloporphyrin). The hybrids
are characterized both optically and electrically. Charge transfer be-
tween DWNTs and molecules plays as a chemical gating which can be
detected by Raman spectroscopy as well as electrical transport mea-
surements, which indicates that the DWNT FETs can be utilized for
molecular sensing. Light excitation of the molecules leads to doping
of the hybrids and reveals the coupling between the nanotube walls.

Moreover, we realized wavelength dependent optical gating on
the hybrid device, detected by both Raman spectroscopy and electri-
cal transport measurements at both room temperature and helium
temperature. The optical control of the hybrids’ electronic behavior
will be elucidated in terms of photo-induced charge transfer between
the grafted molecules and the DWNT component. As a consequence,

iii
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this hybrid FETs can be used as an optically controlled memory down
to single electron transfers at low temperature.

iv
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A journey of thousands of miles may not be achieved through
accumulation of each single step, just as the enormous ocean may

not be formed gathering every brook or stream.

—Xun Zi, Advice on Studying

v
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M O T I VAT I O N O F T H I S W O R K

Carbon nanotubes offer the opportunity to design new devices from
accurate sensors to optoelectronic and quantum devices. However
most studies focus on sensor or photovoltaic applications and thus
involve a macroscopic assembly of nanotubes. This averages the ex-
citation transfers, which prevents access to their fundamental mech-
anisms. This requires the design of an individual carbon nanotube
based functional devices. In this thesis we adress the issue of optical
stimulus detection with nanotube/chromophore hybrids. We inves-
tigate single nanotube hybrids in order to tackle the fundamental
mechanisms involved in the light excitation and detection since the
most reported functionalized devices are made from DWNT bundles
which brings the difficulties to interpret the physical processes.

We give a brief introduction to graphene and carbon nanotubes,
including the geometry, synthesis methods, the electronic band struc-
ture and phonon dispersion.

We mainly use a non covalent method to functionalize graphene
or isolated DWNT transistors with optically sensitive molecules, the
vibrational and electronic properties of the hybrids will be discussed
by combining Raman spectroscopy and electrical transport measure-
ments. For this issue double wall carbon nanotubes have many ad-
vantages over simple SWNTs. In general, they exhibit higher stability,
which can be a substantial help in high-current and high-field exper-
iments. They realize a core-shell system: their concentric structure
suggests its use for independent doping or functionalization of in-
ner and outer tubes is possible. The inter-tube interaction plays an
important role in the electrical and vibrational properties of DWNTs.
But there are only a few studies focusing on individual DWNTs. In
this thesis, we mainly focus on isolated DWNT functionalized tran-
sistors which will be the subject of Chapter 2. The charge transfer
between the doping molecule and the DWNTs is an important issue
in the functionalized devices. We used electrostatics doping and op-
tical phonons to demonstrate the doping effect on both walls of a
DWNT, which reflects inter-tube charge transfer.

The charge transfer between the chromophore and each wall of
the DWNTs will be investigated by resonant Raman spectroscopy and
electrical transport measurement at room temperature in Chapter 3.
Both the influence of the grafting of the molecule and of the light stim-
ulus will be investigated. We will present different kind of molecules
with significant different behaviours: a redox and a conformational
switching molecule.

1
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2 contents

In the fourth chapter we focus more on the optical excitation
of the hybrid devices. Through optical gating experiment down to
low temperature, we will address issues about the reversibility of the
process and its dynamics.

Most of our work is devoted to non covalent grafting of the chro-
mophores. Preliminary results on covalent grafting will be discussed
in the last chapter in terms of perspectives for nanotube optoelectron-
ics.
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1
I N T R O D U C T I O N

This chapter aims to give a brief introduction to graphene and carbon
nanotubes, including their structure, synthesis and characterisation
methods, moreover, we will focus on their electronic band structure,
phonon dispersion and finally their application, which provides the
background of this thesis. Besides, we will also introduce the main
motivation and the structure of this thesis.

1.1 structure and synthesis of graphene and carbon

nanotubes

Since it was first discovered by Geim and Novoselov in 2004, graphene
was intensely studied by scientists all over the world [1]. Graphene
is the latest discovered carbon allotrope after fullerene and carbon
nanotubes. Since then, the carbon paradigm from zero dimension to
three dimensions has completed, including 0D fullerene (e.g. C60),
1D carbon nanotube, 2D graphene, 3D graphite and diamond et al.

Figure 1: Mother of all graphitic forms. Graphene is a 2D building ma-
terial for carbon materials of all other dimensionalities. It can
be wrapped up into 0D buckyballs, rolled into 1D nanotubes or
stacked into 3D graphite. Picture taken from [2].

Graphene and carbon nanotubes are both important materials in
the sp2 carbon family. Since carbon nanotubes were discovered before

3
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4 chapter 1

graphene, many methods used to study graphene, for example, its
electrical properties and optical properties, are borrowed from those
for studying carbon nanotubes. They share many similarities, but also
many differences.

1.1.1 Structure of graphene and carbon nanotubes

Graphene is a one-atom thick honeycomb-like sheet of carbon, and
is thus a two-dimensional material. Carbon atoms are periodically ar-
ranged in the form of planar hexatomic rings. Each carbon atom is
connected with three adjacent carbon atoms by σ bond. S, Px and
Py hybridized orbitals form strong covalent bonds, which compose
its sp2 hybrid structure, and confer graphene very good mechanical
properties. The estimated in-plane Young’s modulus values of single-
and bi-layer graphene are 2.4± 0.4 TPa and 2.0± 0.5 TPa, respectively
[3]. The remaining Pz orbit forms a π orbit in the direction perpendic-
ular to the plane. These π electrons can move freely in the graphene
crystal plane, making a 2D free electron gas with outstanding mobil-
ity of 275, 000 cm2 V−1 s−1 [4].

Figure 2: Sketch of the AB and AA stacking of bilayer graphene [5].

According to the number of layers, graphene can be classified
into monolayer, bilayer and multilayer graphene, among which, though
monolayer remains the case study material, bilayer graphene has also
been widely studied in the recent years [6, 7, 8, 9, 10, 11]. Bilayer
graphene can exist in the AB or AA form (Figure 2) or twisted with
certain angles. It was predicted that a tunable bandgap can be intro-
duced if an electric displacement field is applied to the two layers. The
up left figure in Figure 3 presents the structure of bilayer graphene.
The mismatch of the two layers form a twist angle and also a large
periodic lattice (so called superlattice), which gives rise to a moiré
pattern visible in STM and a Raman fingerprint.

Infinite single-wall nanotubes are hollow cylinders with carbon
atoms organized in a honeycomb lattice. It can be considered as rolled
monolayer graphene (for a review, see ref. [14]). Depending on the di-
rection in which the graphene is rolled up, the resulting single wall
carbon nanotube has different chiralities. Each SWNT is specified
by the chiral vector Ch, defined as the vector corresponding to the
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1.1 structure and synthesis of graphene and carbon nanotubes 5

Figure 3: Sketches and atomically resolved STM images of bilayer graphene
and DWNT, top: graphene, bottom: DWNT adapted from [12, 13].

circumference of the nanotube: a1 and a2 are two lattice vectors of
graphene with 120 deg. between them, as shown in Figure 4.

Ch = n× a1 + m× a2. (1)

With this definition in the figure, a1 and a2 can be expressed us-
ing the Cartesian coordinate (x, y), a1 = (32acc,

√
3
2 acc) and a2 =

(32acc,−
√
3
2 acc), where acc is the bond length of carbon atoms. For

graphite acc = 1.42Å. The same value is often used for nanotubes.
However, probably, acc = 1.44Å is a better approximation for nan-
otubes. Nevertheless, it depends on the curvature of the tube. A slightly
larger value for higher curvature is required.

Hence, the combination of integers (n, m) characterizes the chiral-
ity of carbon nanotube. Chiral angle θ is defined as the angle between
Ch and a1. The nanotube diameter can be calculated as

d = Ch/π =

√
3

2
aCC(m

2 +mn+n2)/π, (2)
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6 chapter 1

and

θ = tan−1[
√
3m/(m+ 2n)]. (3)

The chirality (n,m) define the nanotube structure and also their
electronic nature (Figure 4).

Figure 4: Structure of single wall carbon nanotubes [14].

1.1.2 Synthesis of graphene and carbon nanotubes

There are many methods for the synthesis of graphene and carbon
nanotubes. The first monolayer graphene sample was made from the
exfoliation of graphite using scotch tape [15], which is widely used
for making high quality graphene in the lab. The graphene samples
obtained in this way has a very high mobility (200,000 cm2.V−1.s−1 at
room temperature) [16]. However, it is not a scalable technique, as the
flakes that can be obtained are in the micron range. Another method
widely used by chemists is the chemical reduction of graphite to yield
few-layer graphite oxide. Though reversible, this method induces a
lot of defects and breaks the C=C bond. This type of graphene sam-
ples can be used for the functionalization for chemistry or biology
purposes [17, 18]. Multilayer graphene has also been synthesized by
thermal decomposition on the (0001) surface of 6H-SiC [19, 20].

The graphene used for this thesis was grown by chemical vapor
deposition (CVD) on copper. In the recent few years, the CVD method
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1.1 structure and synthesis of graphene and carbon nanotubes 7

has become the most efficient way to make high quality, large size
and uniform graphene [21, 22, 23]. By using copper as the catalytic
substrate for the growth, it is possible to grow monolayer graphene
over macroscopic surfaces [24]. In our research group, Z. Han et al.
developed a pulsed CVD method to avoid any multilayer patches and
make large scale homogeneous monolayer graphene (see Figure 5)
[25]. The graphene made by this method has homogeneous optical
and electronic properties. The mobility can reach as high as 200 000

cm2.V−1.s−1.

Figure 5: Sketch of work flow of standard and pulsed-CVD [25].

Many methods used to grow graphene are also applicable to car-
bon nanotubes. For example, the CVD method is also an important
method for the carbon nanotube synthesis. Laser ablation [26] and
arc discharge [27] are the other two methods that are mainly used for
CNTs. Both of them need to make graphite sublimation. In order to
reach the required high temperature, we can either create the arc dis-
charge between two carbon electrodes or focus a laser onto graphite.
The catalyst is also necessary. Normally, the transition metals (Fe, Co,
Ni...) are used as the catalysts. They are put into the carbon elec-
trode or the graphite rod. After a cooling down process, the carbon
nanotube network or powder can be collected in the chamber. By con-
trolling the catalyst, the reaction atmosphere and the pressure in the
experiment chamber, the number of layers, the diameter and the pu-
rity can be controlled to a certain degree. Compared to laser ablation
and arc discharge, the CVD method has many advantages.

Firstly, the experiment process is more controllable. There exist
several parameters that can be used to tune the length, diameter and
quality of carbon nanotubes:

1. The reaction gas, which is used as the carbon precursor. Many
kinds of gas can be chosen from, for example, CH2, C2H2, CH4,
CO et al.

2. The pressure and reaction time.

[ March 31, 2016 at 11:19 – classicthesis version 4.0 ]



8 chapter 1

3. The type and size of catalyst particles.

Secondly, CVD is an efficient method for the mass production of car-
bon nanotubes. Last but not least, by using CVD, carbon nanotubes
can be directly grown onto the silicon surface, metal electrodes or
other substrates. This property makes more likely the control of the
position and orientation of carbon nanotubes, which can directly self-
assemble. This technique has many applications as well, for example,
the field effect transistor, suspended carbon nanotube resonator and
so on.

In this thesis, we mainly focus on the study of double wall car-
bon nanoutbes. Extending the CVD methods to synthesis of a high
yield of double wall carbon nanotubes was achieved by controlling
the thickness of the Fe catalyst thin film. T. Yamada et al. achieved an
85 percent yield of DWNTs [28]. M. Endo et al. developed a CVD
method with a two-step purification process to fabricate high pu-
rity (more than 95%) DWNTs [29]. Another synthesis method used
specifically for DWNTs or MWNTs is the so called "peapod" method.
Peapods are fullerene filled SWNTs, which were first demonstrated in
1998 by Smith et al. [30]. Since the first example by Smith et al.,[31] the
peapods have been used as precursors to prepare DWNTs by anneal-
ing in vacuum or inert gas. In this thesis, we have been using DWNTs
from E. Flahaut et al. (CIRIMAT, Toulouse), which are fabricated by
a catalytic chemical vapour deposition (CCVD) method. The carbon
precusor is H2-CH4 mixture, and the heating and cooling rate is 5

◦C.min−1 with a maximum temperature of 1000
◦C. The catalyst is

a Mg1−xCoxO solid solution containing additions of Mo oxide; this
MgO-based catalyst can be easily removed. This results in a dense
mat of composite powder, which was treated with a concentrated
aqueous HCl solution to separate the CNTs, leading to gram-scale
amounts of clean carbon nanotubes [32].

To sum up, in this section, the structure and synthesis methods of
graphene and carbon nanotubes has been introduced. The structure
determines the electronic band structure and the phonon dispersion,
and consequently the physical properties of DWNT. The next section
will be dedicated to electronic band structure of graphene and CNTs.

1.2 electronic structure of sp
2

carbon

1.2.1 Electronic band structure of monolayer graphene and single wall car-
bon nanotubes

As discussed in the last section, graphene consists of a hexagonally or-
ganized carbon honeycomb lattice. The unit cell of monolayer graphene
is shown in Figure 6. It contains two carbon atoms which were labeled
as A and B. The distance between two atoms is a = 0.142nm, which
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1.2 electronic structure of sp
2

carbon 9

is an average of a single (C-C) and double (C=C) covalent σ bonds, as
in the case of benzene.

Figure 6: Schematics of graphene and carbon nanotube unit cells: (a) and
(b) are the graphene lattice in real (a) and reciprocal space (b), (c)
and (d) are the unit cell and first Brillouin zone of SWNT (figure
adapted from Z. Han and R.Saito).

The band structure of graphene can be calculated from the tight-
binding model [33]. The details of calculation can be easily found in
the literature [34, 35, 36]. In this model, the electrons are not fixed
on the lattice points, but in interaction with their neighbors. For this
simple calculation, only the π electrons with interaction up to the first
nearest neighbors (this interaction is characterized by the hopping
parameter γ0 '3 eV ) is considered. Solving the Schrödinger equation
in periodic lattice, the eigenvalue of the Bloch wave follows the energy
dispersion relation:

E(~k) = ±γ0

√
1+ 4 cos (

√
3kxacc

2
) cos (

kya

2
) + 4 cos2 (

kya

2
) (4)

The resulting band structure is presented in Figure 7. The valence
and conduction bands can be distinguished. They meet at 6 points of
the first Brillouin zone (noted as K and K’ points) with zero band gap.

Since a SWNT is a rolled up graphene sheet, the band structure
can be obtained from the one of graphene. Figure 6 c) shows the unit
cell of SWNT in real space. Because of the 1D quantum confinement,
the Brillouin Zone (BZ) of a SWNT corresponds to a set of equidistant
lines (also called cutting-lines or 1D BZs) in the BZ of 2D graphene
(Figure 7). The direction and spacing of cutting lines are determined
by Ch, as shown in Figure 6 d). If the cutting lines pass the K or
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Figure 7: a) First Brillouin zone of graphene, b) calculated constant energy
contours for the conduction an valence bands of graphene, the
solid curves show the cutting line for the (4,2) nanotube. c) Band
structure and DOS of graphene plotted as a cut of the 3D picture.
d) Energy band diagram and DOS of the (4,2) carbon nanotube.
Figure reproduced from [14, 36, 37, 38].

K’points, then the nanotube is metallic. Otherwise the nanotube is
semiconducting. Therefore, the SWNTs are metals in case (n−m)/3

is an integer, and semiconductors (up to 2 eV bandgap) in other cases.
Furthermore the density of states of SWNTs exhibits van Hove singu-
larities (vHSs) depending on the chirality (Figure 7). Besides the chi-
rality, curvature also plays a role in the electronic structure of SWNTs.
For small diameter SWNTs, because the π electron states highly hy-
bridize with the σ electron states, the tight binding model is not suit-
able anymore. The smaller the diameter, the greater the downward
shift of the π states. Li et al. measured the absorption spectra of 4 Å
single walled carbon nanotube, the results agreed well with the ab
initio calculations of band structure based on the local density func-
tional approximation [39], indicating that the strong hybridization is
caused by the curvature.

1.2.2 Electronic structure of double wall carbon nanotubes

A DWNT is made of two SWNTs, but the electronic structure of
DWNT cannot be simply considered as the sum of the two indi-
vidual SWNTs. In 1993, Saito et al. studied commensurate metallic-
metallic and also incommensurate metallic-semiconducting DWNTs,
and found that the inner and outer tubules are coupled by interwall
interaction. [40]. The interwall interaction should be considered when
calculating the electronic structure of DWNTs.
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By using tight binding method, Liang et al. found that there is
a relation between interwall coupling strength and the diameter of
DWNTs. Increasing interwall coupling and DWNT diameter causes
the S@S tubes to become metallic. Many agree that the interwall in-
teraction reduces the band gap or even drives the systems from semi-
conducting to metallic [41, 42, 40].

The interwall interaction also depends on the wall to wall dis-
tance. For example, Song et al. calculated the electronic structure of
zigzag (7,0)@(15,0), (7,0)@(18,0) ,(8,0)@(16,0) and (4,2)@(10,5) DWNTs
from DFT with the local density approximation [43]. Figure 8 shows
their calculated band structure of (7,0), (15,0) SWNTs and (7,0)@(15,0)
DWNT. Both of the π and π∗ bands of the inner (7,0) SWNT have a
larger downshift than those of the outer (15,0) SWNT. The downshifts
caused by the interwall interaction. When the interwall distance be-
comes smaller, the downshifts becomes larger. For instance, for the
larger inner (8,0) tube, the downshift is smaller and does not lead to
a metallic state.

Figure 8: calculated electronic structure of (7,0),(15,0) SWNT, and
(7,0)@(15,0) DWNT, figure taken from [43].

There are several other works related to the calculation of the
electronic structure of DWNTs [44, 42, 43]. Because DWNT is a core-
shell system, the inner tube and the outer tube have different chi-
ralities. The unit cell of DWNT can then end up very big. The ear-
lier calculations based on DFT or tight binding method only handled
some special tube pairs, for example, both of which are armchair or
zigzag tubes. The calculation of the electronic structure of DWNTs
still have limitations. As mentioned, the DFT calculation can only ap-
ply to small unit cell DWNTs. In other cases, the parameters used
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for the calculation still need to be chosen with great care in order to
match experiments better.

From the experimental point of view, many different techniques
have been used to investigate the electronic structures. Most experi-
ments involve two or three techniques for unambiguous determina-
tion of the chirality and the electrical or optical properties. The exper-
imental works also indicate that the interwall interaction has a strong
influence on the electronic structure of DWNT. For example, Giusca
et al. [45] used transmission electron microscopy (TEM) to get the dis-
tribution of the inner and outer tube diameters. They found that the
inner diameters of their samples range from 0.9 to 1.9 nm, and the
outer ones range from 1.9 to 2.6 nm, with the wall to wall distance
ranging from 0.30 to 0.54 nm. Then they dispersed DWNTs onto Au
substrate and obtained their structure by Scanning Tunneling Spec-
troscopy (STS) of a single DWNT. By comparing with DWNT density
of state calculation, they deduced that the chirality of the outer tube is
(18,10). Although the outer tube has semiconducting-like chirality, it
shows finite DOS at the Fermi level (Figure 9 a)). Then inner tube chi-
rality can be determined by comparing with the calculations (Figure 9

b)). However, this tube exhibits several additional Van Hove singular-
ities, which are due to band structure modification by the interwall
interaction.

Figure 9: Scanning tunneling spectroscopy of a DWNT, (a) from the compar-
ison with the calculation of SWNT DOS, the outer wall chirality is
determined, (b) additional peaks come from the inter-tube intera-
tion [45].

These results show that the interaction between the outer wall
and the inner wall cannot be ignored. The intertube interaction has
interesting consequences on the electronic properties, as well as on
vibrational properties probed by Raman spectroscopy, which we will
discuss in the next section.

In this section, we introduced the electronic structures of graphene,
SWNTs and DWNTs. In graphene, electrons behave like massless
Dirac Fermions that appear in the electronic band structure as gapless
excitations with a linear dispersion-the "Dirac cone". The electronic
band structure of SWNTs can be obtained by superimposing the 1D
cutting lines on the 2D graphene BZ. For DWNTs, the electronic struc-
ture cannot be considered as the sum of two individual SWNTs’ ones,
because of the interwall interaction. The current theoretical and ex-
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perimental works studying the influence of the interwall interaction
have limitations. Since the electronic properties rely on the electronic
structures, it is very important to find new ways to study the influ-
ence of interwall interaction in a more accurate and straightforward
manner.

The interwall interaction can also influence the vibrational prop-
erties of DWNTs, which will modify the Raman spectra of DWNTs.
Moreover, because of band structure modification in the DWNT in-
duced by the interwall interaction, the resonance Raman spectra will
be influenced, which we will discuss in the next section.

1.3 vibrational properties of graphene and nanotubes

1.3.1 Raman spectroscopy: a brief introduction

When a substance is illuminated, part of the energy passes through
it (transmission). The other part of energy is absorbed, reflected and
scattered by the substance. Raman scattering is an inelastic scatter-
ing of light, that is, the frequency of the scattered light is differ-
ent from the incident light. Raman scattering has two inelastically
scattered components with frequency ω −ω0 (Stokes) and ω +ω0
(anti-Stokes). Feynman diagrams of the Stokes and anti-Stokes pro-
cesses are shown in Figure 10. In experiments, most Raman spectra
are Stokes measurements (as phonon absorption is a more probable
event than phonon emission), Raman spectra show intensity of scat-
tered light vs. the difference between incident and scattered photon
energy, the so called "Raman shift" in cm−1 units.

Figure 10: Feynman diagram of (a) Stokes scattering, (b) anti-Stokes scatter-
ing, picture adapted from [46].

In a scattering event, (1) an electron is excited from the valence
energy band to a virtual band or a real electronic conduction energy
band (resonance Raman scattering) by absorbing a photon, (2) the ex-
cited electron is scattered by emitting (or absorbing) phonons, and
(3) the electron relaxes to a virtual valence band or another real elec-
tronic band (resonance Raman scattering) by emitting a photon. In
Stokes measurements, the scattered photons whose energy is smaller
than the incident photon are collected. By measuring the intensity of
scattered light as a function of frequency downshift (losing energy)

[ March 31, 2016 at 11:19 – classicthesis version 4.0 ]



14 chapter 1

of incident light, phonon frequencies of the probed material can be
obtained Figure 11.

Figure 11: Scheme of Raman scattering process, (a) non resonant, (b) sin-
gle resonant (incoming resonance), (c) double resonant (incoming
and outcoming resonance), figure taken from [47]

The incident photons have energy Ei and momentum ki. After
scattering, the photon energy and momentum change to Ed and kd,
respectively. The scattering process obeys the conservation laws:

Ed = Ei + Eph (5)

kd = ki + q (6)

Eph and q are phonon energy and momentum, respectively. Based
on the Fermi golden rule, the Raman intensity IRaman is related to 1)
electron-radiation matrix element Me−r for the incident or scattered
light; 2) electron-phonon coupling matrix element Me−ph; 3) energy
Eµ corresponding to a certain transition state:

I(Eph,Ei) = (n+ 1)

∣∣∣∣Me−rMe−phMe−r

∆E(∆E− Eph)

∣∣∣∣ . (7)

∆E = Ei − Eµ − iγ, and Eµ is the energy difference between the
ground electronic state and the intermediate state. γ is a damping
parameter characterizing the life time of the excited electronic inter-
mediate state, which determines the resonance window and inversely
proportional to the electronic transition relaxation time τ,

γ =
 h

τ
(8)
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The width of Raman peak (Γ ) contains information about the anhar-
monic effect and/or anything else that disturbs the phonon life time,
for example, the electron-phonon coupling.

The simplified expression of the Raman intensity shows two res-
onant laser energy

Ei = Eµ incoming resonance

Ei = Eµ + Eph outcoming resonance,
(9)

where the Raman signal reaches maximum. If one of these condi-
tions is met, the process is a single resonance Raman process (see
Figure 11). If both conditions are met, the process is a double res-
onance Raman process. The resonance phenomenon is important in
the cases of carbon nanotubes and graphene. Both single and double
resonances are observed in carbon nanotubes, but they have distinct
features and yield different kinds of physical insight into nanotubes.
The principle of resonant Raman scattering is responsible for the ex-
planation of several observations.

Figure 12: The Kataura plot for bundled SWNTs with medium diameter of
about 1.4 nm. [48, 49, 50]

In practice, the carbon nanotube exhibits molecular-like behavior,
with well defined electronic energy levels at van Hove singularities.
A resonant Raman process occurs when the laser excitation energy
is equal to the energy spacing between vHSs in the valence and con-
duction bands that are restricted to the selection rules required for
optically allowed electronic transitions. When Raman spectra are mea-
sured, only the carbon nanotube with Eii in resonance with the laser
energy will contribute strongly to the spectrum, where Eii [48, 49, 50]
represents an optically allowed electronic transition energy. Kataura
plot [48, 49, 50] shows the energy Eii versus the nanotube diameter
Figure 12. Each data point represents Eii for a given (n, m) SWNT.
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Kataura plots are very useful for Raman and PL characterization of
carbon nanotubes.

1.3.2 Optical phonons of graphene and carbon nanotubes

Phonons are quanta of lattice vibrations in normal modes, which
affect many processes in crystals. Phonons are carriers of thermal
energy. The phonon dispersion of SWNTs can be deduced from the
phonon dispersion of 2D graphene, as done for electronic band struc-
ture. Figure 13 shows the phonon dispersion of graphene and SWNTs.

1. For graphene: Graphene has three optical phonon modes, i.e.
longitudinal optical (LO), in-plane transverse optical (iTO) and
out-of-plane transverse optical (oTO) modes and three acoustic
phonon modes (LA,iTA,oTA) [Figure 13 (a)].

2. For SWNTs: The phonon dispersion can be derived from that
for graphene, as we discussed in the electronic structure ses-
sion. Their unit cell comprises more atoms than graphene, and
thus SWNTs have more phonon modes. Note that the LO and
TO phonon modes of graphene are no longer degenerate in the
case of nanotubes because of the curvature effect, showing two
differentiable bands G− and G+ (Figure 14). Moreover, there is
an additional mode only present in nanotubes, the radial breath-
ing mode, in which the atoms vibrate along a radial direction
of the tube.

Figure 13: Phonon dispersion of graphene and CNTs, (a) phonon dispersion
of graphene, (b) the phonon density of states of graphene, (c)
the calculated phonon dispersion of (10,10) carbon nanotube, (d)
phonon density of state of the (10,10) carbon nanotube (figure
taken from [14])

Raman spectra from different types of sp2 nanocarbons are shown
in Figure 14. The graphene-related structures are labeled next to their
respective spectra. The detailed analysis of the frequency, line shape,
and intensity for these features gives a great deal of information about
each respective sp2 carbon structure.
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Figure 14: Raman spectra from different types of sp2 nanocarbons. The
graphene-related structures are labeled next to their respective
spectra (figure taken from [51].)

Graphene has two atoms per unit cell, thus six normal modes (3
degrees of freedom for each atom, but actually two of the modes are
doubly degenerate) at the Brillouin zone centre Γ (Figure 15).

Figure 15: Lattice vibrating modes of graphene.
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The G band (∼ 1582 cm−1, for laser excitation at 2.41 eV) can be
found in all sp2 carbon allotropes, whose energy is insensitive to in-
cident laser, but can be influenced by factors that can affect the C-C
bond, such as strain, doping, or temperature. Moreover, G band in-
tensity is proportional to the number of graphene layers (up to about
10 layers). The G band is associated with the doubly degenerate (iTO
and LO) phonon mode (E2g symmetry) at the Brillouin zone center,
which is the only band coming from a normal first order Raman scat-
tering process in graphene systems.

When introducing defects, some modes are thus visible, this is
the case of D band (∼ 1350 cm−1, for laser excitation at 2.41 eV).
The associated vibrational mode D is the breath of aromatic rings.
It comes from iTO phonons around the Brillouin zone corner K (A1g
symmetry). It requires a defect to activate it and it is a double res-
onance process, which is strongly dispersive with excitation energy.
The D band phonon at K point is related to defects in graphitic mate-
rials. This peak was firstly assigned by Tuinstra et al. in 1970 [52], they
show the presence of mode around 1355 cm−1 observed in disorderly
or non crystalline graphite samples.

The 2D band is an intense band in graphitic systems, between
2650 and 2800 cm−1, this 2D band is always present in sp2 carbon
(graphite, nanotubes, graphene). The 2D band is related to a dou-
ble resonant process leading to the most intense Raman peak in the
case of graphene. The double resonance process means that all the in-
volved states in this process are real electronic states of the system. In
general, the 2D band is generated by four steps where (a) an incom-
ing photon excites an electron with wave vector k, (b) the electron
is scattered from k to k+q by emitting a phonon with wavevector q,
(c) the electron is backscattered from k+q to k by emitting a second
phonon with wavevector -q, and (d) the electron recombines with a
hole at k. Moreover, intensity and frequency of 2D band are extremely
sensitive to the environment. In the graphene system, the 2D peak is
also used widely to analyze the number of layers.

The D ′ band is located near the right shoulder of G band (∼ 1610

cm−1, for laser excitation at 2.41 eV), and is due to double resonance
of an intra-valley process connecting two points of the same Dirac
cone (K or K ′).

As a member of sp2 carbon family, many peaks in graphene
also exist in carbon nanotubes. In the following paragraphs, we will
mainly discuss the G mode and the RBM mode in carbon nanotubes.

Lim et al. [53] used a macroscopic ensemble of highly (6,5) en-
riched single wall carbon nanotubes and observed vibrational modes
in large spectral range (10-3000 cm−1). A total of 14 modes were
clearly resolved and identified, including fundamental modes of A,
E1,and E2 symmetries and their combinational modes involving two
and three phonons (Figure 16).
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Figure 16: Fundamental and combinational mode in highly (6,5) enriched
SWNT, the intensity is plotted in logarithm scale (figure taken
from [53]).

Figure 17: Scheme of the atomic vibration for the G (left) and the RBM
(right) mode

The radial-breathing mode (RBM) is an important mode for char-
acterization and identification of carbon nanotubes, in particular of
their chirality. The RBM Raman feature of carbon nanotubes corre-
sponds to atomic vibration of C atoms in the radial direction, as
shown in Figure 17. The importance of radial-breathing mode for sin-
gle wall carbon nanotube characterization comes from its frequency
dependance with the tube diameter, ωRBM = A/dt +B, where A and
B are determined experimentally. In the case of double-walled nan-
otubes, the radial-breathing like modes (RBLMs) are the eigenmodes
of the inner and outer tubes combine into in phase and out-of-phase
modes, and their coupling is described by the graphite inter layer
coupling strength. Popov and Henrard showed using a valence-force
field model that the coupled radial modes both increase in frequency
compared to the same tube in single walled form (see Figure 19). Ex-
perimentally, the exact assignment of double-walled tube modes have
not been conclusively identified. In this thesis, we will call the RBLM
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mode for DWNT instead of RBM mode because of the interwall inter-
action.

As mentioned above, the RBLM is a resonant Raman feature. The
Raman intensity is enhanced by some orders of magnitude if the en-
ergy of the incident or scattered light matches the energy of an elec-
tronic transition. A single resonance profile is rendered by recording
the Raman intensity as a function of excitation energy.

Figure 18: Schematic representation of the non resonance, incoming reso-
nance and the outgoing resonance process (a), the resonance con-
dition and the resonance window (b) (adapted from [54, 55]), (c)
our data of tunable Raman spectra, fitted by Equation 10.

In this thesis, to quantify the strength of the measured Raman
scattered signal (mainly the RBLM peaks), we use the differential Ra-
man scattering cross-section

dσ(El,Eph, θ)
dΩ

= A
(El − Eph)

2

E2phE
2
l

∣∣∣∣∣ 1√
El ∓ Eph − Eii − iη

−
1√

El − Eii − iη

∣∣∣∣∣
2

(10)

[56, 57]. Where, A = CNph
∣∣Me−ph

∣∣2. C is a tube dependent con-
stant which includes the photon energy independent parts of the
optical matrix elements. El is the excitation photon energy, Eph is
the phonon energy, η is the broadening factor and related to elec-
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tronic transition relaxation time, Me−ph is the e-ph transition ele-
ment (here we suppose that the electron phonon coupling contri-
bution to the RBLM modes did not change with the laser energy),
Nph = (nph+ 1) for Stokes scattering and Nph = nph for anti-Stokes
scattering, nph = 1/(eEph/kT − 1) is the phonon number.

Figure 19: (a) Displacement of the unit cell atoms and frequencies for RBLM
of two kinds of DWNTs with considering the inter-tube inter-
action. (b) Frequencies of coupled radial-breathing modes in
double-walled nanotubes. Open symbols belong to uncoupled
tubes of the same diameter, solid symbols to double-walled nan-
otubes. The coupled frequencies are always higher than the un-
coupled ones. Figure taken from [58]

The G bands in carbon nanotubes are different from graphene:
In contrast to the graphite Raman G band, which exhibits one single
Lorentzian peak at 1582 cm−1 related to the tangential mode vibra-
tions of carbon atoms, the SWNT G band split into G− and the G+

bands, due to the phonon wave vector confinement along the SWNT
circumferential direction and due to symmetry-breaking effects asso-
ciated with SWNT curvature which softens the tangential vibration
in the circumferential direction (see Figure 17) [14]. In many cases
the G− band shows an asymmetric (Breit-Wigner-Fano) (BWF) shape.
This BWF line is also observed in many graphite-like materials with
metallic character, such as n-doped graphite intercalated compounds,
n-doped fullerenes. The BWF feature is a signature of metallic tube,
but not all the metallic tube shows a BWF feature. The G− mode has
also diameter dependence. Figure 20 shows the frequency vs. 1/dt
for the two most intense G band features (ωG+ and ωG−) from iso-
lated SWNTs. ωG+ is practically independent of tube diameter, ωG+

decreases when decreasing dt, and this decrease becomes larger as
the curvature of the sheet increases.

1.3.3 Charge transfer influence on optical phonons

Raman spectroscopy can non-invasively probe graphene and carbon
nanotubes. It is also a useful tool to understand the electron phonon
coupling in the sp2 carbon system. It contains profound information
by measuring a single spectrum. For example, doping or strain can
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Figure 20: Diameter dependence forωG+ andωG− for several isolated semi-
conducting and metallic SWNTs [59]

affect the full-width half maximum, peak area, peak position of G
and 2D band. In the following paragraphs, we will mainly discuss the
doping effect, since in the CNT and molecule hybrids, doping effect
is the most important issue for the modification of Raman spectra.

As early as 1997, Rao et al. [60] studied the charge transfer from
small molecules to carbon nanotubes by Raman spectroscopy. They
doped carbon nanotubes with different kinds of molecules (electron
donor and acceptor) and studied the G peak and the RBLM peak
shifts for each doping conditions.

Carbon nanotube or graphene transistors have high mobility and
are very sensitive to the environment change since all their atoms are
exposed to it. Transfer of charges or the change of dipolar environ-
ment can be induced by deposition of molecules on the surface of
nanotubes or graphene; or due to an electrical field applied by a back
gate or top gate. One ultimate interest of such sensitivity to doping
is to modulate the electronic properties of the transistors based on
sp2 nano carbon materials to induce superconductivity, such as the
carbon nanotubes doped with boron or nitrogen [61]. Variation of the
density of electric charges in graphene or metallic nanotubes strongly
affects certain phonon modes due to the electron phonon coupling as
explained below.

To test the effect of charge, the Fermi level is modulated by i) a
back gate, ii) a top gate or side gate, iii) an ionic liquid gate. Figure 21

presents a summary about the study of the graphene or carbon nan-
otube G peak change while changing the Fermi level modulated by
electrostatic doping.

It is found that the variation of the Fermi level leads to a soften-
ing of the phonon mode associated with the G band of graphene and
nanotubes (LO mode). The work of Caudal et al. [71] in 2007 (nan-
otubes), Piscanec et al. [72] (graphite and nanotube) and Pisana et al.
[65] in 2007 (graphene) lead to establish a model explaining the sen-
sitivity of the G mode to the position of the Fermi level. In summary,
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Figure 21: The Raman G peak dependence on the electronic doping; a, fre-
quency of the G peak according to the Fermi level for graphene
and metallic nanotubes; b, details for the graphene with low val-
ues of doping and sketch of the Fermi level shift, data taken from
[62, 63, 64, 65, 66, 67, 68, 69], figure adapted from [70].

the dynamic matrix, which decides the frequency of phonon modes,
contains an electron-phonon coupling term involving two kinds of
interaction. One is the inter band (electron transition between the va-
lence and conduction bands), and the other one is intra-band (elec-
tronic transition within the same band). For low values of doping
(∆ EF < upper band), electronic inter-band transitions dominate ac-
cording to the transition diagram shown in Figure 21. By varying the
position of the Fermi level around the Dirac point, the system reaches
a regime where the electronic transition by phonon absorption turns
possible or not. This change occurs when the Fermi level is shifted by
an amount equal to half of the involved phonon energy.

The phonon spectrum has a singularity in the dispersion of the
LO mode at q = 0. This singularity is called Kohn anomaly, and it is
also observed for q = K (D and 2D modes) [73]. Here we must em-
phasize that to describe the Kohn anomaly, it is necessary to consider
the dynamic effects of ions compared to electrons. Meaning that adi-
abatic approximation Born-Oppenheimer is no longer valid [72]. The
electron system cannot remain in the ground state and the the elec-
tron system is shaken up by an atomic vibration while keeping their
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electronic ground state. The model should then describe the energy
variation of G (LO) phonon with q = 0 (G band) as a function of
displacement u associated with this mode along with the consequent
variation of the Fermi level depending on the position of the ions
since it is outside the framework of the adiabatic Born-Oppenheimer
approximation:

∆ωG =
1

2mω0G

d2∆EF(u)

du2
(11)

To sum up, any induced charge or dipolar environment change
can affect the Raman spectra of graphene and CNTs through the
electron-electron interaction or electron-phonon interaction. The charge
can be injected into the system by molecular doping or electrostatic
doping through a top or back gate, then the charge induced Raman
spectra change can be studied systematically. We will now focus more
specifically on the Raman spectroscopy of DWNTs.

1.3.4 Optical phonons of DWNTs

The first Raman spectroscopy experiments have been performed on
DWNT bundles because nanosized carbon nanotubes have a high ten-
dency toward self-aggregation due to strong van der Waals forces.
Samples used, were synthesised by CVD method [74, 75] or pea-
pod method [76, 77]. Figure 22 shows the Raman spectra of SWNTs,
peapods and final product–DWNT bundles.

Figure 22: Raman spectra of SWNTs, peapods and DWNT bundles (figure
adapted from [76])

The RBLM band is very interesting since responses of inner tube
and outer tube are well separated since RBLM frequency is inversely
proportional to tube diameter. From the Raman spectra, we can clearly
see that peaks come out after 250 cm−1 which stand for the evolution
from peapod to DWNT bundles. The Raman spectra of RBLM modes
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of DWNTs show a much larger number of inner tubes RBLMs than
geometrically possible [78]. It was certified by comparing the DWNT
Raman map (contour plots of the RBLM intensity vs. frequency and
excitation energy) to the SWNTs one [79]( Figure 23). For example,
the (6,5) and (6,4) tube show more than one RBM frequencies and
form to cluster in the map. Pfeiffer et al. claimed that the clusters
originate from the same inner-tube type accommodated in several
different outer tubes. The inter tube interaction depends on the chi-
rality difference of the two tubes. The stronger the interaction, the
further the inner tube RBLM shifts to higher frequencies.

Figure 23: Fine structures of RBLM mode of DWNT bundles. The green
lines are measured RBLM frenquencies and transition energies of
sodium dodecyl sulfate wrapped HiPCo tubes. (figure adapted
from [79])

Only a few groups measured the Raman spectra on individual
DWNTs [80, 81]. Some experiments were performed on either iso-
lated DWNTs lying on substrates or suspended DWNTs combined
with Rayleigh scattering or TEM measurement. The experiments per-
formed on suspended DWNTs could avoid the influence of the envi-
ronment and reveal the intrinsic properties of DWNTs, especially the
inner wall coupling between the outer and inner shells of DWNTs. For
example, D.Levshov et.al performed Raman scattering experiment on
chirality determined individual suspended DWNTs. They showed
that the Raman features obtained at different excitation energies on
the (12,8)@ (16,14) DWCNT can only be understood in a coherent
way by considering the coupling between the two concentric layers.
Because both of the RBLM frequency and intensity have mismatch to
single wall carbon nanotube [82]. More recently, Levshov et al. inves-
tigated the intertube distance dependence of G-modes of individual
index-identified DWNTs composed of two semiconducting SWNTs
[81]. The results are: (1) when the interlayer distance is larger than
the nominal van der Waals distance (close to 0.34 nm), a downshift of
the inner-layer G-modes with respect to the G-modes in the equiva-
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lent SWNTs is measured, (2) the amplitude of the downshift depends
on the interlayer distance, or in other words, on the negative pres-
sure felt by the inner layer in DWNT, (3) no shift is observed for an
intertube distance close to 0.34 nm. This investigation indicates that
not every DWNT has strong interlayer interation, it really depends
on tube diameter and these relationship is still unclear.

Liu et al. combined simultaneous structral (TEM), electronic (Rayleigh
scattering) and vibrational (Raman scattering) to investigate the cou-
pled RBLM oscillations. From the modeling of the RBLMs frequencies
measured on 12 individual free-standing index-identified DWNTs,
they have been able to evaluate the coupling force constant, kc, be-
tween the inner and outer tubes and by the following, to derive the
average unit-area force constant owing to tube?tube van der Waals
interaction for different interlayer distances. A comparison of these
average force constants with high-pressure graphite measurements
propose a relationship between the interlayer distance and an internal
effective pressure. Furthermore, they also show that in many cases,
both coupled RBM oscillations will be resonantly excited if an elec-
tronic transition of either wall matches the excitation photon energy,
which can be explained by strong quantum interference between Ra-
man scattering from inner and outer wall excitation pathways. Actu-
ally, from the differential Raman scattering cross section (Equation
(9)), we can find that electronic transition can influence the resonance
feature. The results of Levshov’s and Liu’s experiments lead us to con-
sider the strain induced electronic transition energy change, which
was studied by Souza Filho et al. and showed the evidence of strain in-
duced quantum interference by applying forces on individual SWNT
tube by AFM tips [83]. They also discussed that the electron-phonon
matrix element can also affect Raman differential cross-section, in or-
der to observe quantum interference, CNTs with low chiral angles
should to be chosen because they will have large values for electron-
phonon matrix elements [83]. The interaction between the walls also
depends on the chirality of nanotubes.

The TEM data obtained by Levshov and Liu et al. are based on
the nanotubes with big diameter, actually, the inter wall coupling also
depend on the tube diameter, as it shown in Figure 19, the smaller the
diameter, the higher shift of the RBLM frequency of the inner tube.

To sum up, in this section, we introduced the Raman spectra of
graphene and carbon nanotubes. Raman spectroscopy is a versatile
tool to investigate the vibrational properties of graphene and nan-
otubes. The Raman spectra of graphene and carbon nanotube are also
sensitive to the charges around them. It is very useful for studying the
charge transfer in the hybrid system. In addition, we also discussed
the Raman spectra of DWNTs, many works have been done to study
the intertube interaction from the shift of Raman profiles. The inter-
actions depend on the interlayer distance. We will pursue the presen-
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tation of the influence of the electronic properties by presenting the
features of sp2 nanocarbon-based devices.

1.4 carbon nanotube based devices

Though single-atom thick materials, graphene and nanotubes have
been the first real low dimension electrical conductors. They provide
textbook systems to test electron transport at low dimensions.

1.4.1 Carbon nanotube field effect transistors

A field effect transistor (FET) is a transistor that uses an electric field
to control the conductivity of a channel of one type of charge carrier
in a semiconductor material. FETs can be majority-charge-carrier de-
vices, in which current is carried predominantly by majority carriers,
or minority-charge-carrier devices, in which current is mainly due to
minority carriers. FETs consist of an active channel through which
charge carriers flow from the source to the drain. Source and drain
terminal conductors are normally (in bulk FETs at least) connected
to the semiconductor through ohmic contacts. The FETs’ terminals
are: drain and source, which are connected to the "conduction chan-
nel" of the FET (through which current flows) and the gate, which is
the terminal that modulates the channel’s conductivity. By applying
a gate voltage, one can control the current which flows from source
to drain (IDS). The flow of charges through the channel is controlled
by affecting the size and shape of the conductive channel created and
influenced by voltage applied across the gate and source terminals.
A FET has different states. In the depletion state, the corresponding
charges are kept away from the conduction channel, so that the "Off"
state of the device is reached (the current passing through the chan-
nel is small compared to the "On" state). The voltage at which the FET
is turned off is referred to as the threshold voltage (Vth) of the FET.
When the back gate is swept to values which exceed Vth) (in positive
or negative values depending on the type of carrier), the FET is in
its active region ("on state"), which at first has a linear dependence
with Vg, and then reaches a saturation point (current does not grow
further with a higher Vg). Depending on whether the substrate of the
transistor is p or n doped, the "on state" will correspond to negative
or positive values of Vg.

A carbon nanotube field-effect transistor (CNTFET) refers to a
field-effect transistor that uses a single carbon nanotube or an array
of carbon nanotubes as the channel material instead of bulk silicon in
the traditional MOSFET structure. Inspired by the unusual electronic
properties of carbon nanotubes, the first single carbon nanotube tran-
sistor appeared in 1998 [84, 85]. There are many types of CNTFET de-
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Figure 24: Sketch of the CNTFET, source and drain electrodes are patterned
onto the nanotube while the silicon substrate is used as a back-
gate.

vices, Figure 24 presents the sketch of a back gated individual CNT
transistor which is used in this thesis. The CNTs (most of the time
DWNTs in this thesis) were dispersed onto the SiO2/Si substrate and
connected with two palladium (Pd) electrodes.

The three main sources of resistance that limit carrier transport in
CNTs are 1) quantized contact resistance arising from the mismatch
in the number of states between bulk contacts and 1D nanotube [86];
2) elastic and inelastic scattering mechanisms; 3) Schottky barriers
and possible additional contact resistance. When the channel length
is less than the mean free path of the scatters and the contact barriers
are transparent, then the ballistic transport can be observed in CNTs
transistors [86]. Here, we want to discuss more about the existence
of Schottky barriers at the contact. A lot of works have shown that
carbon nanotube transistors operate as Schottky barrier transistors
(SBFETs) [87], in which the gate controls the Schottky barrier and the
inject ion of the carriers.

Figure 25 shows the scheme of a Schottky barrier. When two ma-
terials with a different Fermi levels are put into contact, their charges
are redistributed, so as to equalize the chemical energies at both sides
of the interface. The larger the difference in Fermi energy, the more
important this redistribution will be. In the case of a metal/semicon-
ductor contact, consider that qφm is the work function of the metal
(the energy which is necessary for an electron of charge q to escape
from the Fermi level into vacuum and qχ is the energy which an
electron needs to go from the conductance band of the semiconduc-
tor into vacuum ("electron affinity"). When the two materials come
into contact, the Fermi energy of the semiconductors matches the one
of the metal; if qχ > qφm, the concentration of holes increases at
the surface and the energy bands of the semiconductor are bent to-
wards positive energy values. If, on the contrary,qχ < qφm, a higher
concentration of electrons at the interface causes the energy bands
to bend towards more negative values at the interface, while remain-
ing constant in the bulk of the semiconductor. Therefore, for both
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Figure 25: (a)Schematic representation of a Schottky barrier between a metal
and a semiconductor; Schematic representation of the off state (b)
and on state (p side) (c) of the field effect transistor.

electrons and holes a barrier is built: the barrier seen by electrons
corresponds to qφBN = q(φM − χ) and the one seen by holes is
qφBP = EG − q(φM − χ) . This means that the sum of the barrier
seen by electrons and the one seen by holes is equivalent to the en-
ergy gap of the semiconductor.

In the case of CNTs, special characteristics arise due to the fact
that they are one-dimensional systems: in doped CNTs, in fact, the
length of charge depletion (W) is very sensitive to doping and to an
applied back gate voltage (Vg), and the barrier profile is linear which
makes it even more sensitive. In this way, the width of the barrier can
be tuned changing Vg, and the amount of electrons which can tunnel
through the potential barrier is controlled. The capability of electrons
of passing through the Schottky barrier also depends on temperature:
"hotter" electrons will see a lower barrier, and will therefore be able to
go through it with a tunnel effect. In Figure 25 the working principle
of a Schottky barrier field effect transistor (SBFET) is illustrated: when
Vg is smaller than the threshold voltage (VTH), the barriers at the
contacts do not allow electrons to pass, whereas when Vg > VTH the
barrier is thin enough and electrons or holes can tunnel through it.
If the Fermi level aligns midgap with the CNT, both types of carriers
can be injected from opposite contacts,then the device is an ambipolar
device, as shown in Figure 45

When the finite size of a crystal is taken into account, the wave-
functions of electrons are altered and states that are forbidden within
the bulk semiconductor gap are allowed at the surface. Similarly, at
a metal-semiconductor interface, the wave function of an electron in
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the semiconductor must match that of an electron in the metal at the
interface. Since the Fermi levels of the two materials must match at
the interface, there exists gap states that decay deeper into the semi-
conductor. This can pin the Fermi level of the semiconductor to a
position in the bulk gap. These states (the so-called "Metal-induced
gap states") decay exponentially with the distance from the interface,
and after a certain distance the Fermi level is no longer pinned. There-
fore, the choice of the metal used for the contacts is crucial to reduce
the barrier height as much as possible and approach the ballistic con-
duction in the CNTs. Palladium has become the metal of choice for
the contact with CNTs. Palladium’s work function, known to be 5.12

eV, is among the highest in commonly available metals, so the Fermi
level approximately aligns with the valence band edge, allowing for
holes to tunnel easily into the conduction channel. As shown in Fig-
ure 26, comparing to Ti and Al contacts, the Pd contact achieve the
highest on state current. The result in the experiments is consistent
with the expected dependence of metal contacts.

Figure 26: Plot of CNFETs Ion as a function of nanotube diameter, d, for Pd,
Ti, and Al metal contacts. Figure taken from [88]

Many devices have been made based on CNTFETs, for example,
T. Rueckes et al. made carbon nanotube-based nonvolatile random ac-
cess memory [89]; in 2013, the CNT based computer has been made
by M. Shulaker et al. in Stanford university [90]. Recently, IBM reports
carbon nanotube transistor breakthrough for making CNTFETs with
tiny ( 9nm) contacts that exhibit low, size-independent resistance [91].
This overcomes a huge hurdle in shrinking transistor size beyond cur-
rent limits for post-CMOS applications. Moreover, plenty of works
have pursued molecular electronic devices based on CNT-based field
effect transistors. For example, X. Guo et al. covalently bridge a gap in
a single wall carbon nanotube with an electrically functional molecule.
The molecular bridge can perform the dual task of carrying electrical
current and sensing (light, PH, gas, DNA...) / recognition of biol-
ogy signals [92]. Recently, S. Sorgenfrei et al. realised the detection of
DNA hybridization at the single-molecule level using a carbon nan-
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otube field effect transistor [93]. Carbon nanotubes are very suitable
for making hybrid devices with functional molecules as they offer the
versatility of carbon-based chemistry. Carbon nanotube hybrids can
be used to make single electron devices, for example, L. Marty et al.
made single electron memories based on the hybrids of CNTFET and
gold nano particles [94]. In the next section, we will introduce the
principle of the single electron transistor.

1.4.2 Coulomb blockade and single electron box

The single electron transistor (SET) is a type of switching device that
uses controlled electron tunneling and electrostatic repulsion to con-
trol current. It is the simplest device where the effect of Coulomb
blockade can be observed [95]. A SET is composed of two tunnel
junctions. The tunnelling of a single electron between two metal elec-
trodes through an intermediate island can be blocked by the electro-
static energy of a single excess electron trapped on the central island.
In the case of non-symmetric tunnelling barriers (e.g. tunnelling junc-
tion on the left and ideal (infinite resistance) capacitor on the right),
this device model describes a ’single-electron box’.

There are two basic requirements for single electron tunneling
to occur [96]. Firstly, the energy uncertainty ∆E associated with the
lifetime due to tunneling when adding an extra charge, τr = RtC,
needs to be much smaller than the charging energy Ec = e2/C which
is required to add a charge carrier to the island:

Ecτr = (e2/C)RtC� ∆Eτr ∼ h. (12)

So the tunneling resistance Rt must far exceed the quantum resistance
RK = h/e2 ' 25.8KΩ, namely,

Rt � RK. (13)

Secondly, the energy Ec should far exceeds the thermal fluctua-
tion energy,

Ec � kBT . (14)

Figure 27 (b) shows a capacitive model for the single electron box
[99]. The total capacitance is the sum of the capacitances between the
dot and the source Cs, the drain Cd, and the gate Cg: C = Cs +Cd +

Cg. The total energy U(N) of a dot with N electrons in the ground
state, with voltages Vs, Vd, and Vg applied to the source, drain, and
gate, respectively, is given by:

U(N) =
(−e|N−N0|

2 +CsVs +CdVd +CgVg)
2

2C
, (15)
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Figure 27: Sketch and capacitive model of single electron transistor, adapted
from [97, 98]

where −|e| is the electron charge, N0|e| is the charge in the dot com-
pensating the positive background charge that originates from the
donors in the heterostructure. The terms CsVs, CdVd and CgVg can
be changed continuously, and represent an effective induced charge
that changes the electrostatic potential on the dot. The electrochemi-
cal potential µ(N) of the dot is defined as:

µ(N) = U(N) −U(N− 1)

µ(N) = (N−N0 −
1

2
Ec) −

Ec

e
(CsVs +CdVd +CgVg).

(16)

Energy conservation needs to be satisfied during the charge trans-
port process. Therefore, the electrochemical potential (µ) of the island
should lie between the electrochemical potentials of the source and
the drain, that is,

µs > µ > µd. (17)

µs − µd = −e | Vsd |, with Vsd being the source-drain voltage.

Apparently, Coulomb blockade can be modified by changing Vsd.
This changes the bias window as well as the electrochemical potential
of the dot, due to the capacitive coupling to the source. A current
flows only when µ falls within the bias window. By increasing Vsd

until both the ground state and an excited state transition fall within
the bias window, an electron can choose to tunnel not only through
the ground state, but also through an excited state of the N-electron
dot. This is reflected in the change of the total current.

The Coulomb blockade can also be lifted by changing Vg and
consequently shifting the whole ladder of electrochemical potential
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Figure 28: Scheme of Coulomb diamonds (or stability diagram of the island),
adapted from [98].

levels up or down. When a level falls within the bias window, a cur-
rent passes through the device.

Overall, the charging energy may be overcome by changing the
source-drain voltage as well as by changing the gate voltage. In this
way we draw the so called stability diagram of single electron tran-
sistor, which is shown as the Coulomb diamonds as presented in Fig-
ure 28. Within the diamonds, Coulomb blockade is established, while
outside, a current flows between source and drain.

It was indeed demonstrated that nanotubes are quantum con-
ductors allowing discrete charge transfers in the Coulomb blockade
regime. In the case of graphene, one needs to design small size islands
on graphene to allow confining charges and observe this Coulomb
blockade. Beyond Coulomb interaction, we will now present charge/en-
ergy transfer to nanotubes driven by light.

[ March 31, 2016 at 11:19 – classicthesis version 4.0 ]



34 chapter 1

1.5 functionalization of graphene and nanotubes for

optoelectronics

1.5.1 Functionalization methods

Functionalization of graphene and/or carbon nanotubes involves at-
taching molecular groups to the wall of the nanotube so as to mod-
ify their properties, especially their affinity with different chemical
or biological environments and species. By choosing specific func-
tional groups, it is possible to improve the properties of the devices
(nanosensors, nanoprobes). Recent work has also demonstrated the
operation of nanosensors based on functionalized graphene and car-
bon nanotubes. For example, by using the DNA strands to make
an odor detector, or using an enzyme, for measuring real time bio-
logical activity. Over the past fifteen years, the functionalization of
carbon nanotubes and graphene have been greatly developed. Vari-
ety of molecular groups with different types of chemical bonds were
studied. The functionalization can be distinguished into covalent and
non-covalent methods [100].

Figure 29: Covalent (A and B) and non covalent (C, D and E) functionaliza-
tion of SWNTs [100]

.

Non-covalent methods are based on the Van der Waals inter-
action or π stacking. This method is particularly well suited to at-
tach DNA, polymers and surfactants onto nanotubes. This category
also includes encapsulation of small molecules inside the nanotubes.
The non-covalent functionalization has the advantage that it provides
weak interaction with the nanotube and can preserve the electrical
or optical properties of it. But also because of the interaction with the
nanotube or graphene is not strong, it can easily be affected by the sur-
rounding environment. On the other hand, covalent methods involve
the covalent bond to the carbon nanotube or graphene when adding
the molecular groups. This type of functionalization is not easy to
achieve, because the structure of carbon nanotube is stable and needs
specific conditions to react with other chemical groups. Many addi-
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tion reactions are limited to attack only already vulnerable sites on
carbon nanotubes, such as the defects and the nanotube ends. So acid
treated carbon nanotubes, which have carboxylic (-COOH) groups,
are more reactive. Covalent methods allow a stronger coupling be-
tween the grafts and the carbon nanotubes, and is recognized for its
stability, reproducibility and selectivity thanks to the good control of
the chemical reaction bonds. However, this method also has disadvan-
tages: the covalent bonds can highly affect the electronic structure of
the carbon nanotube and can significantly destroy the electrical and
optical properties of carbon nanotubes.

1.5.2 Carbon nanotube and graphene-molecule hybrids for optoelectronics

The functional carbon nanotubes and graphene with optically ac-
tive molecules are quite promising for applications of nanometre-
scale light sources [101], photodetectors [102] and photovoltaic de-
vices [103]. In the recent years, there are many reports related to the

Figure 30: Hybrid optoelectronic devices: (a) zinc(II) metallopor-
phyrin/SWNT hybrid optical switch; (b) polymer function-
alized CNTs for optoelectronic switch and memory devices;
(c) porphyrin coated silicon nanowire for optical switch and
photo detector; (d) graphene-chlorophyll phototransistors, figure
adapted from [104, 105, 106, 107].

carbon nanotube and the optical active molecule hybrids, for exam-
ple, Hecht et al. [104] used field-effect transistors to directly monitor
the interactions between a zinc(II) metalloporphyrin/SWNT system
upon irradiation with visible light, and emphasized that the hybrid
nano-FETs have an extremely large possible range of optoelectronic
applications, from spectrally resolved artificial eyes to photovoltaic
cells (Figure 30 (a)); Borghetti et al. functionalised CNTFETs with op-
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tical sensitive polymer and they demonstrated that depending on the
applied gate bias, the device can be optimized as a memory element
or as an optical switch [105] (Figure 30 (b)); Chen et al. reported
graphene-chlophyll phototransistors with high gain (Figure 30 (d)).
All of these studies indicate that carbon nanotube or graphene func-
tionalised by chromophore or other kind photo sensitive molecule are
strong candidates for optoelectronic applications.

Figure 31: Schematic representation: excitation of chromophore (a); electron
(b) and energy transfer (c) from chromophore to acceptor, figure
adapted from [108]

.

Owing to the importance and complexity of carbon based hy-
brid optoelectronics, the basic principles of photo-induced electron
and energy transfer are required. Figure 31 presents the sketch for
explaining photo induced electron and energy transfer process. A
molecule in the excited state can relax to the ground state either by
fluorescence, non radiative decay et al. or by electron/energy trans-
fer to another molecule. In an electron transfer reaction, upon photo-
excitation, the electron donor transfer an electron to a electron ac-
ceptor, making the chromophore oxidized and the acceptor reduced
(Figure 31 (b)). In the case of energy transfer, the excited state energy
of the donor is transferred to the acceptor, which excites the acceptor
molecule, thus leaving the donor molecule in the ground state and
the acceptor molecule in the excited state. This absorbed energy will
be efficiently converted into electrical or thermal energy or the energy
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for chemical reaction (e.g. photosynthesis in plants), thus leads to the
initial ground states of the donor-acceptor species (Figure 31 (c)).

Figure 32: Energy transfer in SWNT/H2TPP hybrids, (a) absorption spec-
tra of SWNTs and SWNT/TPP compounds in micellar solutions;
(b) PL map of SWNT/TPP compounds suspension; (c) schematic
representation of energy transfer in SWNT/H2TPP hybrids, fig-
ure adapted from [109]

.

For the carbon nanotube-molecule hybrids, the energy transfer
from the excited molecule to carbon nanotube can be observed in pho-
toluminescence experiment [110, 109]. We can observe from Figure 32

that when excitation energy corresponds to the molecule absorption
Soret band, the emission of nanotube is enhanced. This brings evi-
dence for EET from the porphyrin to the nanotube: when photons
are absorbed by porphyrin molecules, the luminescence of the nan-
otube is enhanced.

However, the charge transfer process can not be observed through
photoluminescence experiments. In the following paragraph, we will
introduce how the charge transfer can be observed through electron
transfer characterised curve of CNT-molecule hybrid transistors.

As we mentioned before, there are a lot of works describing
the response of SWNT or graphene field effect transistors to vari-
ous molecules. Those molecules noncovalently attached to the sur-
face of SWNT or graphene are expected to have two effects that can
change the conductivity. First, there is a charge transfer between the
molecule and the nanotube, changing the carrier concentration; sec-
ond, the molecule may act as a randomly distributed scattering po-
tential, change the mobility of the charge carrier. A measurement of
the conductivity alone can not distinguish between a change in the
carrier concentration and a change in the mobility of the electrons.
Extensive experiment has proved that the change of carrier concen-
tration lead to shifts of the threshold voltage, which is the voltage
where the device first turns on, as shown in Figure 30 (a) and (b)
[104, 105]. In fact the change of carrier concentration leads to the shift
of Fermi energy, which can be observed through the shift of Fermi
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neutral point in the transfer characteristic curve [104, 105, 107]. From
the shift of threshold voltage, the change of carrier concentration can
be extracted. More details will be discussed in chapter 3 and chapter
4.

From this chapter, we know that both of Raman spectroscopy
and electrical transport measurements are sensitive to the change of
charge carrier concentration in sp2 carbon hybrid system. In this the-
sis, we will discuss light induced charge transfer by crossing study-
ing the vibrational and electron properties of several kinds of sp2

carbon hybrid systems. Moreover, because in most of reported exper-
iments, the nanotube bundles instead of individual nanotubes were
used in this experiment, which prevents access to their fundamental
mechanisms. In this thesis, we will introduce the carbon nanotube/-
molecule hybrids based on individual nanotube and few molecules.
On the other hand, in the recent years, Bouilly et al. [111] covalently
functionalized individual double wall carbon nanotubes transistors
by diazonium salt, which pave a way for covalently grafting opti-
cal active molecule onto DWNT transistors. We will firstly discuss
the interaction, charge transfer and optical effect between the DWNT
and the chromophores in the non covalently functionalized hybrid
transisors, and will also show the preliminary results of covalently
functionalized DWNT transistors.
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2
G R A P H E N E A N D I S O L AT E D D W N T F E T S – F R O M
FA B R I C AT I O N T O E L E C T R O N P H O N O N C O U P L I N G

In this chapter, we introduce the fabrication methods and process
of graphene and individual DWNT field effect transistors. We also
introduce the characterization methods of the pristine material and
the transistors, such as scanning electron microscopy (SEM), high-
resolution transmission electron microscopy (HRTEM), Raman spec-
troscopy and electrical transport measurement in ambient condition.
In particular, we will detail how coupling Raman spectroscopy and
transport measurements on a metallic carbon nanotubes, allow us
to observe a Kohn anomaly which can be explained by an electron-
phonon coupling process.

2.1 synthesis and characterization

2.1.1 CCVD of DWNT

The DWNTs that we used in this thesis is synthesised by the CCVD
method which is described in chapter 1 [32]. In order to know the
quality of the as grown DWNTs, we did Raman spectroscopy mea-
surement.

2.1.1.1 Brief introduction to the Raman spectrometers

Two Raman spectrometers are available in NEEL institute. One is a
commercial Witec Alpha 500 confocal micro Raman spectrometer, as
it shown in Figure 33. A confocal microscope allows to determine
with good approximation the desired spot ( 500 nm), while a me-
chanical stage is used to position the sample in all three directions
in order to adjust the sample’s position to the incoming laser spot
(and so as to focus correctly), and a piezoelectric element can per-
form much more precise movements (resolution: about 10 nm) to
perform Raman imaging. Scattered light is collected by a large nu-
merical aperture objective and enters a fiber which carries the light
to the spectrometer where it will be dispersed by a grating and an-
alyzed by a CCD camera. The CCD camera collects the wavelength
dispersed photons; a cooling system has to bring the CCD camera to
a low temperature (in the case of the Witec alpha 500 Raman spec-
trometer, -62

◦C by Peltier cooling). A sample holder with electrical
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connection can be installed on the piezo stage (Figure 33), which can
be used for the in situ Raman spectroscopy during the electrical trans-
port measurement of the DWNT or hybrid transistors. There are two
laser wavelengths available for this Witec spectrometer in the lab (532

and 633 nm).

Figure 33: Witec Alpha 500 micro Raman spectrometer (a) photo of the con-
focal microscope and stages, (b) scheme of the Raman spectrom-
eter, (c) in situ Raman spectroscopy on the back gated devices
[CNRS Photothèque].

The other Raman spectrometer that we used is a commercial
Jobin-Yvon T64000 spectrometer. It allows choice of single and triple
monochromator stage spectrometer operation modes (Figure 34). The
advantage of this spectrometer is that it has large spectral range and
very high spectral resolution down to 0.15 cm−1. Furthermore, a con-
tinuous tunable laser can be adapted to the system, which brings fa-
cilities for the resonance Raman spectroscopy study of the nanotube
system. In this thesis, Raman spectra excited at 514 nm and 488 nm
were taken by using an Ar/Kr laser lines. A Ti : sapphire laser was
used for the continuous tunable laser wavelength between 740 to 850

nm.

Tunability is a very crucial aspect, since the DWNTs have dif-
ferent chiralities, and in our case, most of our samples are individual
DWNTs. In order to get the signal of the Raman spectroscopy, suitable
excitation laser wavelength needs to be chosen to make the sample
resonant.
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Figure 34: Optical setup of the tunable Raman spectroscopy.(Adapted from
[54, 55])

2.1.1.2 SEM and Raman spectra of as grown DWNTs

The original as grown DWNT sample is black powder. But through
the SEM, the sample looks quite different. Figure 35 (left) shows the
SEM image of as grown DWNTs. We can see from the image that the
carbon nanotubes are very long and get entangled and intertwined
with each other. In this kind of samples, DWNT organize in bundles.

Figure 35 (right) shows the Raman spectra of the DWNT bundles.
The used laser wavelength is 532 nm. The laser spot is around 500 nm.
This kind of sample is very sensitive to the laser power, because it can
absorb a lot of heat and the laser might burn the sample (nanotubes
in air can burn at 400

◦C), so we always use a low power (lower
than 0.5 mW) to protect the sample. For the Raman spectra, the G
mode and 2D mode can be clearly observed (see Chapter 1 for details
about Raman spectroscopy). The G+ mode is at 1593 cm−1 and the
2D mode components of the inner and outer tubes are at 2626, 2674

cm−1. The D mode (1200− 1400cm−1) is hardly observed. As we dis-
cussed in chapter 1, the appearance of D peak is due to the defects in
the sample. The D peak absence here indicates that defects are few in
the sample, or in other words, our pristine DWNTs have good struc-
tural quality. The G band exhibits both semiconducting and metallic
components as expected on a bundle of NT. DWNT have different
configurations, which are S@S, S@M, M@S, M@M, respectively. The
DWNT bundle sample is a mixture of all the configurations. In the
range of radial breathing like modes, it can be observed that two
groups, corresponding to the breathing signals from the outer tubes
and the inner tubes. Peaks around 160 and 191 cm−1, corresponding
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Figure 35: Up: SEM images of as grown DWNT powder, they are entan-
gled and form as bundles. Bottom: Raman spectra of DWNT bun-
dle(laser wavelength: 532 nm)

to the tube diameter from 1.51 and 1.25 nm, are from the contribution
of outer walls. The peaks around 270 and 320 cm−1, corresponding
to tube diameter from 0.86 to 0.71 nm, are from the inner walls. Here,
we used the function ωRBM = 218.8/dt + 15.9 cm−1 to calculate the
diameter [112, 113]. In the literature, there are other equations for cal-
culating the diameters of DWNTs. For instance, in ref. [114], there are
other equations which was proposed, for the inner tubes,

ωinner =
225

dinner
+ 20.6dinner − 2.4 (18)
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, and for the outer tubes,

ωinner =
−88.76
d2inner

+
324.1
dinner

− 14.7 (19)

If we use these equations, for the outer tubes, the diameters are from
1.22 to 1.53 nm, and for the inner tubes, the diameters are from 0.73 to
0.89 nm. The results are similar to the calculation from the other equa-
tions [114]. In DWNT bundles, the diameter distribution is bimodal
and we expect a 2D band with two main features that correspond to
the inner 2D1 and outer 2D2 tubes. We can deduce that the peaks
around 2626cm−1 are from the inner tubes, 2674 cm−1 are from the
outer tubes.

Raman can be interstingly complemented by HRTEM because of
the unknown Kataura plot for DWNTs.

2.1.1.3 HRTEM of as grown DWNTs

The HRTEM can be used to get high resolution images of the indi-
vidual DWNTs and do the statistic of the diameter of the DWNTs.
Figure 36 (left) shows the HRTEM image of a DWNT bundle [32].
HRTEM was performed by E. Flahaut et al. at CIRIMAT. From this
image, we can easily distinguish single wall from double wall car-
bon nanotubes. The diameter of the carbon nanotubes can be directly
measured on the HRTEM image. The statistics of the diameter of both
the inner and the outer tubes have been done on these samples. The
inner and outer diameters range from 0.53 to 2.53 nm and from 1.23

to 3.23 nm, respectively. The median inner diameter is 1.35 nm and
the median outer diameter is 2.05 nm. (Figure 36 (right)).

Figure 36: Left: The HRTEM image of as grown DWNT bundles, right: statis-
tics of the diameter distribution of the inner (di) and outer tubes
(d0) (figure adapted from [32])
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2.1.2 CVD on copper of graphene

Graphene was synthesised by the CVD method on copper foil (99.8%
purity from Alfa-Aesar company), a home-built CVD reactor with a
4-inches diameter quartz tube and effective heating length of about
30 cm is used. All components are automated by a home-built pro-
gram, which enables real time control of flow rate, injection time of
reacting gases as well as the reaction temperature. A standard CVD
process is used for this experiment (Figure 37). There are three steps
in the synthesis process. The first one is the pre-growth stage, where
the temperature is ramped up and the copper foil is annealed. The
second one is the growth stage, CH4 (carbon precusor), H2 and Ar
are injected to the furnace. After a certain growth time, the system is
cooled down, which is the last step of the synthesis. Graphene used
in this thesis is synthesised by Dipankar Kalita (PhD student, hybrid
group).

Figure 37: The process flow for the standard CVD growth (from Zheng Han
[25]).

Then the graphene is transferred to a silicon substrate [25] by
a polymer-assisted wet transfer technique [21]. Figure 38 shows the
scheme of polymer assisted wet transfer technique. The principle
of this technique is to cover graphene with a polymer supporting
layer, PMMA (PolyMethylMetAcrylate) in our case, and then chem-
ically etch the copper foil which is underneath the graphene layer.
This method has been widely used for the transfer of graphene and
other 2D materials [115, 116, 117, 118]. The ammonium persulfate
(NH4)2S2O8 was chosen to disolve the copper in order to reduce
defect formation [25].

In this section, we mainly introduce the synthesis and the char-
acterization of pristine DWNTs and graphene. For the next step, we
need to connect them to the electrodes and make field effect transis-
tors, the methods of which will be discussed in the next section.
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Figure 38: The process of polymer assisted wet transfer technique (adapted
from [21]).

2.2 fabrication of individual dwnt field effect tran-
sistors

Making the DWNT field effect transistors is the first task of the whole
experiment. We are interested in both the optical and electrical prop-
erties of individual carbon nanotubes. For the electrical transport
measurement, we need metal electrodes to make the contacts for the
measurement. For Raman spectroscopy, we also need markers to lo-
cate the position of individual nanotubes. In the following text, we
will present various techniques to completely introduce the fabrica-
tion process. To ensure the quality of the sample, the fabrication work
was carried out in the Nanofab clean room of Néel institute and with
the help of its technical support team.

The first step is cleaning of the silicon wafer. In all experiments,
we used a highly p doped silicon wafer with a 285 nm thick silicon-
oxide layer on top. The wafer was cleaned by firstly dipping into
acetone, and then washing by deionized water and 2-isopropanol.
The drying process is done with a nitrogen gun. At last, the wafer
was put in the plasma chamber to do an oxygen plasma treatment to
make sure the silicon wafer was totally cleaned.

2.2.1 Substrate patterning

After cleaning the silicon wafer, we then use a deep-UV lithography
process to deposit the patterned macroscopic gold electrodes. The
gold electrodes can be used as markers for the next electron beam
lithography step. They were used to locate the position of carbon
nantoubes and also to do the alignment in the electron beam lithogra-
phy process. Attention is paid to create electrodes and markers which
are parallel to the silicon grain boundaries for subsequent cleaving of
the wafer.

The principle of UV or deep UV lithography is using light to
transfer a geometric pattern from a photo mask to a light-sensitive
chemical "photoresist", or simply "resist" on the substrate. A series of
chemical treatments then either engraves the exposure pattern into, or
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Figure 39: Scheme of the photo lithography process (a) S1085 coating, (b) ex-
posure, (c) before development, (d) after development, (e) metal
deposition, (f) after lift off.

enables deposition of a new material in the desired pattern upon, the
material underneath the photo resist. The equipment that we used
is a Karl Süss deep UV aligner in NEEL/Nanofab. This aligner is
equipped with a 500 W pressurized Cd/Xe lamp which emits in Deep
UV (240 nm). The resist that we chose is the S1805. At first, S1805 was
spin coated on the silicon wafer (a). After that, the wafer was baked at
180

◦C for drying S1850. Then a patterned quartz mask was used to
make shadows where we want to block the UV light (b). The pattern
is shown in figure Figure 40. After the alignment of the mask and the
wafer, the sample was exposed to the deep UV light for 30 seconds (c).
After a chemical development process, the S1805 at the patterned and
exposured place was removed (d). Then the sample can be transferred
to an evaporator system to deposit 10 nm Ti and 100 nm Au (e). At
last, the sample was put into acetone solution to do the lift off and
wash away the redundant resist and metal (f).

2.2.2 Deposition of double wall carbon nanotubes

The double wall carbon nanotubes fabricated by CCVD method usu-
ally twist into bundles. There are methods which have been devel-
oped to separate the bundles by dispersing the carbon nanotubes
into chemicals. The most popular method consists in using surfac-
tant to wrap onto the single nanotube surface and a following DGU
process to separate them. But this method is not suitable for our pur-
pose, since (1) this process needs very strong sonication which might
bring defects on the nanotubes, (2) the surfactant is difficult to be
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Figure 40: a) The patterned gold electrodes. b) Zoom of each grid with 6

patterns with alignment marks, c) Zoom of b),d) Zoom view of c)
(50×50 µm2), this is the writing field of e beam lithography, also
the place of interest to connect the carbon nantoubes.

totally washed away which causes contamination of the nanotube.
Both of the two factors can affect the optical and electrical properties
of carbon nanotubes. So, we used a mild sonication process here. A
few flakes of carbon nanotubes were put into a dichloroethane (DCE)
solution. The bottle is then suspended in the ultrasonic bath for 3

minutes. The power was set at 40 percent. After the sonication, the
solution was settled down for about 1 hour, and the supernatant was
collected. One or two drops of the nanotube solution are spin-coated
on the wafer. The concentration of the solution and the number of
droplets need to be adjusted to make a better separation. After 15

seconds, wafer is washed with ethanol and dried with nitrogen. The
above process need to be repeated several times in order to get a ap-
propriate tube density (about 1 tube per µm2) on the wafer for the
fabrication of isolated DWNT, which can be checked under the AFM
or SEM.

2.2.3 Electrode design

Electron-beam lithography (e-beam lithography) is the practice of
scanning a focused beam of electrons to draw custom shapes on a
surface covered with an electron-sensitive film called a resist ("expo-
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sure"). Here, we want to draw electrodes to connect the carbon nan-
otubes to the already made bigger gold electrode patterns. So the first
step of the e-beam lithography process is locate the carbon nanotubes.
The position of a nanotube is determined with respect to the gold
electrodes. We use SEM (ZEISS ultra+ FESEM) to get the image of the
nanotube with the already designed markers. This imaging technique
relies on the fact that the nanotubes are conducting, and the substrate
on which they are lying is insulating which provides a good contrast
down to the isolated nanotubes. The SEM images by scanning a high
energy beam of electrons over the sample. For protecting the carbon
nanotube sample from being damaged by the beam, typical accelerat-
ing voltage for imaging was 500-800 V and capture was performed in
a few seconds. Several SEM images are stitched together so as to place
all the CNTs present in the working area to avoid shortcuts and per-
mit the most convenient design of the circuits. The software Klayout
was used to design the electrodes on top of the SEM pictures. Fig-
ure 41 shows the stitched SEM images and the designed electrodes.
The carbon nanotubes need to be separated very well, so the long,
straight and thin tubes were selected for our design.

Figure 41: The SEM images and the design electrodes,we choose the long,
thin and well isolated nanotubes to make the dessign.

The resist that we choose for the e-beam lithography is PMMA.
The deposition of resist is done with the spin-coating method (acceler-
ation: 4000-6000 rotation/min2, velocity: 4000 rotation/min, time:
60 seconds). By using these parameters, about 2 µm PMMA can be
deposited. After the deposition, the wafer was heated to 180

◦C for
3 minutes to evaporate the solvent. Then we used optical microscopy
to check the deposition. The PMMA should be uniform on the sili-
con surface. If there are bubbles or other contaminations, the wafer
should be washed in acetone and the deposition process should be
repeated.

[ March 31, 2016 at 11:19 – classicthesis version 4.0 ]



2.2 fabrication of individual dwnt field effect transistors 49

Electronic lithography is carried out inside a Scanning Electron
Microscope (SEM, model : Jeol LEO 1530). The process is controlled
by the Elphy plus software. After the wafer is loaded into the cham-
ber, one needs firstly to optimize different parameters of the SEM, in
order to get it well focused on the wafer surface. Then the alignement
procedure to locate the nanotube must be done. Knowing the relative
positions of alignment marks with respect to the reference point, we
need to zoom the view-field into the area with the alignment marks.
Another alignment process is done to locate several special alignment
marks serving as reference points for small structures. The exposure
is done at 20 keV with a dose of 270 µC/cm2 (To get a better quality
of the sample, the dose test is necessary before the lithography pro-
cess). The next step is using a mixed solution of Methylisobutylketone
(MIBK) and 2-Isopropanol (IPA) to develop the exposed resist. The so-
lution is made with one volume of MIBK and three volume of IPA.
The wafer needs to be washed in the solution for 60 seconds, then
transferred to the solution of IPA for more than 30 seconds to stop
the developing.

After the development the desired metal is evaporated onto the
wafer. Different metals can be used, with Pd affording the best con-
tacts. The evaporation is done by using the electron gun evaporator
(PLASSYS) system in NEEL/Nanofab. The process has been done in
high-vacuum (10−7 mbar) by heating the material through Joule Ef-
fect. Before the evaporation of Pd, a degassing process is necessary to
improve the vacuum, which can be done by heating Ti for 10 seconds
in vacuum. The typical thickness of Pd is 50 nm.

After the evaporation, the wafer is completely covered by a metal-
lic layer. To lift the undesired metal layer, one needs to leave the wafer
in acetone for several hours. A syringe is used to eject acetone onto
the wafer surface to help the removal of the metal layer. The wafer is
then cleaned in 2-isopropanol. After lift-off, the device is ready.

The e-beam lithography is not used for making graphene tran-
sistor in this thesis because the graphene that we synthesised is in
millimeter range. They were made by directly evaporating gold elec-
trodes through a metal shadow mask with etched two parallel trenches.
The gap between the trenches is 3 mm. The techniques that were used
to characterise DWNT FETs can also be used to characterise graphene
and graphene FETs.

In summary, in this section, we introduced the methods and the
procedures for making the individual DWNT transistors. There are
several steps, including using deep UV lithography to make the gold
markers, seperation and deposition of the DWNTs and electron beam
lithography to connect the individual DWNT to the gold markers. In
the next section, several characterization methods will be introduced
to characterise the DWNT transistors.
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2.3 electron-phonon coupling in an isolated dwnt fet

Many techniques for the study of nano-materials can be used to
characterise the as grown DWNTs. In this section, I will present the
transfer characteristics of DWNT FETs at room temperature, and also
the spatially resolved Raman spectroscopy for probing the individual
DWNT.

2.3.1 Electronic characteristics of graphene and isolated DWNT transis-
tors

2.3.1.1 Introduction to the equipments for the electrical transport measure-
ments

During the PhD thesis, we used three kinds of equipments to do the
electrical transport measurement for the transistors, including the in-
dividual DWNT, monolayer graphene and the DWNT or graphene/-
molecule hybrid transistors. The first equipment is an ambient probe
station with two tungsten probes at room temperature (Figure 42 (a)).
Transfer characteristics can be acquired using a Keithley’s Series 2400

Source Measure Unit. The transistor characteristics of device were
measured by applying a Vds = 2 mV DC bias between the source
and drain electrodes while sweeping the gate voltage (Vg) between
± 30 V with a Yokogawa voltage source. The advantage of this probe
station is the ease of operation. The transfer characteristic curves can
be acquired in 2 minutes. One of the disadvantage is that there is
no vacuum chamber, so the sample can be only measured in ambi-
ent condition. The other one is that there is a lot of noise because
of the exposure to the air. This probe station is used for testing the
connection of the nanotube to the electrodes. Depending on different
purpose of the experiment, the metallic or semiconducting DWNTs
need to be screened.

The second one is a vacuum Desert Cryogenics probe station
with four beryllium-copper probes (Figure 42 (b)). One of the probe
could be replaced by an optical fiber which can be used for mea-
suring the sample under light illumination. Transfer characteristics
dV/dI− Vg curves are acquired in a current-biased lock-in configu-
ration using a Stanford Research lock-in amplifier SR830 with a po-
larization resistance of 980 MOhms. The transistor characteristics of
the device were measured by applying a 50 nA drain-source current
while sweeping the gate voltage with a Keithley 6430. The use of lock-
in amplifier reduced the noise. By using this probe station, the sample
can be measured in vacuum and also at low temperature. One draw-
back is that we need to contact the probe to the sample manually, the
vibration of the probe could affect the contact or damage the sample.
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See Figure 42 (a) (b) (c)

contact mode probe probe micro bond
Vacuum no yes yes
Low T no 1 K 4.2 K

Optical window no yes compatible with microscopy

Table 1: Summary of the three equipments for the electrical transport mea-
surements.

The last one is a Janis helium-flow cryostat (Figure 42 (c)). The
sample should be micro bonded to a PCB or wired sample holder
which contains several electrode that can be connected to the exter-
nal circuit for the measurement. Adwin Pro system is used for apply-
ing the back gate voltage, bias voltage and measure the bias current.
The Adwin Pro system can be controlled with Java script which is
developed in NEEL Institute (Nano QT group: E. Bonet, C. Thirion)
that can provide more facilities for the experiment. The advantage of
this set up is that the sample can be well connected and protected
in the cryostat. But the sample could be destroyed by the electrical
static charge before or during the micro bonding or mounting of the
sample to the cryostat.

Each of these three equipments have their own advantages and
disadvantages. We have to select the appropriate equipment accord-
ing to needs of the experiment. Janis was used when optics was really
needed.

2.3.1.2 Typical transfer characteristic curves of individual DWNT and
graphene transistors

In our experiment, the drain-source current (Ids) is measured as a
function of the gate voltage (Vg) at a constant drain-source poten-
tial (Vds). This allows to distinguish the metallic and semiconducting
nanotubes. For the metallic nanotubes, the density of states remains
constant over a wide range of chemical potential and the current re-
mains substantially constant as a function of the gate voltage. For
semiconductors, the presence of an energy gap in the density of states
results in several orders of magnitude modulation of the current. Fig-
ure 43 is the transfer characteristic of a typical metallic and a semi-
conducting double wall carbon nanotube. As we discussed in the last
section, the gold and palladium electrodes were used to mark the po-
sition of the nanotubes. By using this method, we can compare the
transfer characteristics to the Raman spectra in order to get more in-
formation. Moreover, as we discussed in chapter 1, the DWNTs have
four kinds of metallic and semiconducting configurations, which are
M@M, M@S, S@M, S@S tubes. Theoretically, the proportion of these
four kinds of tubes are 1

9 , 29 , 29 and 4
9 , respectively. Figure 44 shows

the statistic of on/off current ratio (Ion/Ioff) of 25 pristine isolated
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Figure 43: Typical transfer characteristic curves of individual DWNT (up)
and graphene FETs (down).

DWNT FETs, among which, we found that 3 tubes have Ion/Ioff =
1, which means these 3 tubes have M@M configuration. Similarly, for
the Ion/Ioff > 30, there are 8 tubes, the proportion of which satisfied
the distribution of S@S tubes. The Ion/Ioff of the rest of tubes are
between 1 and 5, which may have M@S or M@S configuration. From
Figure 44, we can observe that the distribution correlated well with
the theory, therefore, we can roughly estimate that in our experiment,
if Ion/Ioff > 30, the DWNT has S@S configuration; if 1 < Ion/Ioff <
30, the DWNT is a M@S or S@M tube; if Ion/Ioff = 1, then the DWNT
is a M@M tube.

Recently, Ghedjatti et al. studied the structure and inter wall
coupling of CVD synthesised DWNTs by HRTEM. By investigating
huge amount of samples and Monte Carlo simulations, they found
that many incommensurate DWNTs does exist (Ghedjatti PhD the-
sis 2016). We want to note that the statistical tool that we mentioned
above only can be used to roughly estimate the metallic and semi-
conducting configurations of DWNT. In the experiment, we need to
combine different methods to determine the configurations, for ex-
ample, the Raman spectrosocpy which will be discussed in the next
section.

Carbon nanotubes are ambipolar conductors, the transport car-
riers are either dominated by the holes or electrons depending on
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Figure 44: Distribution of the on/off current ratio for the pristine isolated
DWNT FETs.

the doping level. The semiconductor transfer characteristic has three
branches: the p branch where the majority carriers are holes (Vg<0),
the n branch where the majority carriers are electrons (Vg>0) and the
off branch where the conductance is minimum (Vg ∼ 0). The current
in the off state can be very low depending on the width of the band
gap. Figure 45 (c) and (d) show a FET have ambipolar behavior and
unipolar behavior, respectively.

Figure 45: Schematic representation and the typical transfer characteristic of
the ambipolar ((a),(c)) and unipolar FET ((b),(d)), nanotubes and
graphene are always ambipolar, but if the barrier is too asymmet-
ric then it turns difficult to reach the n side (but it exist).

The transfer characteristics should be corrected for the gate leak-
age. It is important to note that the transfer characteristics presents a
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significant hysteresis which is mainly caused by the trapping charges
on the substrate and also depend on the sweeping speed. To ensure
they have comparable characteristics of a measurement to the other,
we sweep the voltage at a constant speed and make several cycles to
make sure of the stability of the systems. Normally, we compare the
data from the second cycle to be sure to have reached stability.

After discussing the transfer characteristics of CNTFETs, in the
next paragraphs, we will discuss the graphene FETs (GFETs). Large-
area graphene is a semimetal with zero bandgap. Its valence and con-
duction bands are cone-shaped and meet at the K points of the Bril-
louin zone. This makes GFET the first atomically thin 2D ambipolar
field effect transistors. The same as the nanotube transistor, the trans-
port carriers are either dominated by the holes or electrons depending
on the doping level Figure 43. From the equation,

EF(n) = −sgn(n) hvF
√
(π|n|) (20)

( n: charge carrier density, VF: Fermi velosity). It is clear that by chang-
ing the charge carrier density, the Fermi level of graphene is tuned
towards a certain energy, so the conductivity of the graphene FETs
is also tuned. When the Fermi level is at the Dirac point, then the
conductivity is tuned into minimum, so as the charge carrier density
Figure 43. This point in field effect curve is often referred to as the
Dirac point VDirac or the charge neutrality point VNP. In our case,
the charge carrier density is tuned by applying a back gate voltage.
In our experiments, the graphene is transferred on top of a thick di-
electric layer (285 nm SiO2). By capacitive coupling Q = CVg, the
induced charge carrier density per unit area, per unit Volt, is

n =
εε0
de

∼ 7.56× 1010cm−2V−1 (21)

Normally, the dV/dI (Vg) curves of graphene transistors show the
V shape behaviour related to the Dirac point. The gate-voltage de-
pendent conductance shows hysteresis depending on the gate sweep-
ing rate/range, which is mainly caused by the adsorbates on the
graphene surface. In order to monitor the shift of the curves after
functionalization, we keep the same sweeping rate and only compare
the curve when sweeping the back gate from positive to the negative
value. The shift of VDirac can be used to evaluate the shift of doping
level (electrostatic doping or chemical doping), it also can be used in
CNTFETs. We will discuss in detail in the next chapters.

Although many information, such as the resistance, the intrinsic
doping level can be extracted from the transfer characteristic curve,
other techniques are also needed for studying optical and vibrational
properties of DWNT and graphene. In the following subsection, the
Raman spectroscopy of graphene and DWNT FETs will be introduced.

[ March 31, 2016 at 11:19 – classicthesis version 4.0 ]



56 chapter 2

2.3.2 Vibrational features for monolayer graphene and isolated DWNT

2.3.2.1 Raman spectroscopy of isolated DWNT transistors

In order to get the Raman spectra of individual DWNTs, a spatially
resolved Raman mapping technic was used. It was performed with a
commercial Witec Alpha 500 spectrometer set up with a dual axis X-Y
piezo stage in a backscattering/reflection configuration. The grating
had 1800 lines per mm. Two laser excitation wavelengths are available
in our lab: 532 nm and 633 nm.

Figure 46: Spatial resolved Raman images of a DWNT transistor. (a) Sum of
the mode of SiO2,(b) sum of G peaks.

Figure 46 shows typical Raman images of an isolated DWNT
transistor. The intensity is plotted in different colors. (a) is the map-
ping of the SiO2, the electrode and substrate can be easily distin-
guished from this mapping figure. (b) is the sum of G peaks, that
is the mapping of the carbon nanotube, we can clearly see that the
position of the carbon nanotube is between two electrodes. In prac-
tical, using this method can help us to find the accurate position of
the nanotube and focus the laser exactly on the tube that we want
to measure. As soon as we get the best focus, the single spectra with
better resolution and higher signal to noise ratio are recorded.

Figure 47 shows an example of single spectrum of the isolated
DWNT. One is a metallic sample, the other is a semiconducting one.
The corresponding transfer characteristic was present in the last sec-
tion figure Figure 43. Two excitation laser wavelength were used for
the measurement: 633 nm ((a), (b) and (c)) and 532 nm ((d), (e) and (f)).
The red lines represent the signal of the metallic tube and the black
lines are the signal from the semiconducting one. As we discussed in
the first chapter, the Raman response for metallic and semiconduct-
ing tubes can be quite different, especially in the G band region. Due
to the electron-phonon coupling, the G band could show an assymet-
ric Breit-Wigner-Fano (BWF) like line shape and thus its FWHM is
broader than for the semiconducting tubes. Here, we did a simple
analysis of the data by using the software provided by the Witec sys-
tem. We used a Lorentzien filter to fit the G peak with the Lorentzian
function. At the excitation wavelength of 633 nm, for the metallic tube,
a BMF line shape can be clearly observed in the G band region (fig-
ure (b)); for the semiconducting one, two sharp peaks at 1585 cm−1
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and 1561 cm−1 appeared, which can be easily assigned to the G+

and the G− peaks. The G peaks of the metallic tube are 2 to 6 cm−1

wider than the semiconducting tube. We have a similar result when
the excitation laser wavelength changed to 532 nm, as shown in fig-
ure (e). For the metallic tube, the G peak at 1588 cm−1 has a FWHM
of 22 cm−1 which is larger than the one of the semiconducting tube
(6 cm−1).

At 633 nm, the metallic tube achieves a good resonant condition,
the RBLM peaks can be observed. We can observe from Figure 47 that
except the peak at 302 cm−1 which is the signature of silicon sub-
strate, two other peaks appear. We assign the peak around 146 cm−1

to the contribution from the outer wall and the 210 cm−1 to the inner
wall. Because we are measuring isolated DWNTs with mixed chirali-
ties, it is very difficult to find the resonant tubes like the metallic tube
that we show here. We study only the tubes which are resonant in
those wavelengths as far as the imaging is mandatory to check the
nanotubes transistors. For this semiconducting tube, the RBM peaks
are not observed.

Raman spectroscopy not only can get the M and S configurations
of the isolated DWNTs, but also can give the information of the inter-
wall coupling. In all the resonance samples that we have measured,
two kinds of spectra can be observed. For most of the cases, only one
RBM is resonant at a certain excitation wavelength (Figure 48 (b)), but
sometimes, two RBM peaks from the inner and the outer wall can be
observed at the same time, as shown in Figure 48 (a), and one peak is
much higher than the other one. Moreover, even we change the exci-
tation wavelength, the two peaks still can be observed spontaneously.
In this case, the two walls have strong coupling, either mechanically
[82, 81] or electrically [119]. In a word, from the observation of the
RBM peaks of DWNTs, strong or weak interwall coupling could be
determined.

2.3.2.2 Raman spectroscopy of monolayer graphene

The spatially resolved Raman spectroscopy also can be used to char-
acterise graphene. Figure 49 (a) and (b) show the Raman mapping of
graphene G band and 2D band respectively. The black part shows the
position of SiO2 which is not covered by graphene, because there is
no graphene signal. The orange part shows the position of graphene.
The graphene edge and the wrinkle can be easily distinguished. Fig-
ure 49 (c) shows several Raman spectra extracted from the Raman
map at different positions. Single-Lorentzian profiles of G and 2D
peaks unambiguously show a monolayer graphene feature. No no-
ticeable D band can be found neither in the plain nor in the wrinkle
parts, suggesting good quality of this graphene. Furthermore, com-
paring to the blue curve, the G peak of the green curve has a slight
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Figure 48: RBM peaks of two kinds of DWNT, (a) strong interwall coupling,
(b) weak interwall coupling.

down shift (2 cm−1), which was attribute to the strain induced by the
wrinkle [120].

Figure 49: Spatially resolved Raman spectra of graphene on SiO2 substrate,
(a) (b) mapping of G band and 2D band, (c) spectra at different po-
sition extracted from the map (spectra correspond to the crosses
on image b), grating: 1800/mm.

Overall, some information can be obtained from the spatially re-
solved Raman spectroscopy. For example, the position and the shape
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of graphene, the number of layers, the quality and the defects ...
It is the most used and performing tool to study the properties of
graphene.

By combining the Raman spectra with the transfer characteris-
tics of the DWNT, we can distinguish the metallic and semiconduct-
ing DWNT, and in some cases their configurations. Moreover, this
technique also can be used to study graphene. It is one of the main
technique that we used in this thesis to study the properties of iso-
lated DWNT and graphene FETs. Raman spectroscopy also allows to
investigate specific fundamental issues in sp2 carbon systems, such as
electron-phonon coupling, which we will discuss in the next section.

2.3.3 Kohn anomaly and electron-phonon coupling

Many researchers claim that the BWF line shape of the metallic nan-
otube G mode is caused by the so called Kohn anomally [121]. A
Kohn anomaly is an anomaly in the dispersion relation of a phonon
branch in a metal. For a specific wavevector, the frequency and thus
the energy of the associated phonon is considerably lowered, and
there is a discontinuity in its derivative. They have been first pro-
posed by Walter Kohn in 1955 [122]. Metallic nanotubes are predicted
to be one dimensional quantum wires with ballistic electron trans-
port. However, high field electrical transport measurements show that
the electron-phonon scattering by optical phonons at K breaks down
the ballistic behavior [123]. Electron phonon coupling (EPC) is thus
the fundamental bottleneck for ballistic transport. Recent experimen-
tal and theoretical studies on single wall nanotubes (SWNTs) have
reported significant electron-phonon (e−-ph) interactions in electri-
cal transport [124, 125], electron tunneling [126], and optical transi-
tions [127, 128]. An investigation of the e−-p coupling mechanisms
in metallic nanotubes is therefore fundamental to understanding 1D
conduction in these materials. The frequency and the intensity of the
Raman modes are determined by the EPC matrix elements. There
are already many researchers studied the EPC in metallic SWNTs
[67, 129, 130, 131, 132] and graphene [62, 63] by in situ Raman spec-
troscopy. In this thesis, we used this method to study individual
DWNTs. As we discussed in chapter 1, for DWNT, there is inter-layer
interaction as it in double layer graphene. We try to understand how
the inter layer interaction can affect the electron phonon coupling in
the double wall system.

2.3.3.1 Experimental setup

Figure 50 shows the scheme of the experimental setup. At first, we
mounted the DWNT transitors to a cryostat which has optical access
(Janis). The cryostat was mounted onto the Witec Raman stage, the
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stage can move in X, Y and Z direction, therefore we can locate the
position and focus the laser onto the DWNT. The objective used in a
Mitutoyo 100× with a NA of 0.70 and corrected for the optical win-
dow. The Raman measurments were performed in a backscattering
configuration with 532 nm and 633 nm laser excitation. The laser spot
size is around 500 nm and the power was kept below 1 mW. The gate
was applied by the Adwin-Pro system with a 20× voltage amplifier
(A400D, FLC electronic).

Figure 50: Schematic representation of the experimental set up for the in situ
Raman measurement(up); experimental setup in the lab(down)

2.3.3.2 Results and discussion

Figure 51 shows the transfer characteristic of the measured DWNT.
The applied bias voltage is adjusted according to the sample resis-
tance so as to have a certain current in the device (high enough for
the signal to noise ratio, small enough to prevent Joule heating and
damage). In this case, the bias voltage is 1 mV. We can observe from
the figure that the transfer characteristic shows a slight field effect
with the on state and off state current ratio Ion/Ioff = 2.16. The re-
sistance of this DWNT is around 50 kΩ which is lower than a typical
semiconducting CNT. Therefore, we assign this DWNT is a mixture
of a metallic and a semiconducting tube as described in last section.
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This can be confirmed by the Raman spectra of this DWNT, as shown
in Figure 52.

Figure 51: Transfer characteristic of the sample, the bias voltage is 1 mV, the
back gate is swept from 30 V to -30 V and then from -30 V to 30

V.

In Figure 52, the RBM mode, G mode and 2D is presented. One
RBM peak at 254 cm−1 can be observed. Here we can use the Kataura
plot to estimate the metallic or semiconducting configuration of the
DWNT, because from the Raman spectrum, only one RBM mode is
observed, which means the mechanical coupling of the two walls is
not very strong or we are not at the right wavelength (see chapter
3), other wise, two correlated RBM modes should be observed simul-
taneously [80, 82]. By using the Kataura plot, the transition energy
falls into the first transition for metallic nanotubes (EM11), so this tube
is metallic. By comparing the peak position to the DWNT bundles,
we assign this peak to the inner tube. We did not have an efficient
resonant condition for the outer tube to observe its breathing mode.
But from the peaks in the G mode region, we still can get a lot of in-
formation. Nevertheless, as we discussed in chapter 1, The G peak of
the DWNT should have 4 components, the highest two should come
from the G+ mode of the two tubes. And the two lowest ones are
from the G− mode. In the 2D mode region, we assign the peak at
2652 cm−1 to the contribute of the inner wall and 2684 cm−1 to the
outer wall [133]. A asymmetric component can be observed from the
G peak region, which is the so called BWF peak and the signature
of metallic tube. Comparing our data to the literature [133], we claim
that this DWNT has a M@S configuration, which is in consistent with
the probe test measurements.

The in situ Raman spectra of this sample was measured at the
laser excitation wavelength 532 nm with the gate tuning from 15 V to
65 V. The data are normalized by the intensity of G+ peak. During
the experimental process we tuned the back gate from 15 V to 65 V
by step of 5 V. The high frequency mode corresponding to the G+
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Figure 52: Raman spectrum of sample measured with the laser excitation
wavelength 532 nm

ωG1 ΓG1 ωG ΓG2 ωG3 ΓG3 ωGFano ΓGFano

cm−1 cm−1 cm−1 cm−1 cm−1 cm−1 cm−1 cm−1

1594.7 7.4 1591.3 5.6 1582.1 11.6 1550.3 71.5

Table 2: Summary of the fitting of peaks when the applied back gate is 25 V.

mode and the low ones corresponding to the G− mode. Before fit-
ting the curves, several changes can already be observed easily when
changing the back gate. At first, the intensity of the G− Fano peak
increasing when tuning the back gate. Second, comparing the data of
Raman spectra at 65 V to that of 25 V, the G− peak looks much wider.
To see the changes more clearly, we fitted the data into four peaks.
We call them G1,G2,G3 and Fano peak, respectively. The peaks of
G1,G2,G3 were fitted by the Lorentzien function, and for the asym-
metric peak at the lower frequency, the following Breit-Wigner-Fano
function was used:

I(ω) = I0
[1+ (ω−ωFano)/qΓ ]

2

1+ [(ω−ωFano)/Γ ]2
(22)

The function was used to fit the BWF lineshape, in which 1/q
represents the asymmetry of the shape, (it represents the electron-
phonon interaction),ωFano, I0 and Γ are fitting parameters of the cen-
tral frequency, the intensity and the broadening factor, respectively.
As we discussed above, this nanotube is a mixture of a semiconduct-
ing outer tube and a metallic inner tube, this BWF peak shows an-
other evidence of metallic tube existence in the sample.
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Figure 53: The in situ Raman spectra of the sample measure at the laser
excitation wavelength 532 nm with the gate tuning from 15 V to
65 V

Figure 54: The fitting of G band of sample D2-4-1h2h with an applied 25 V
back gate.

Table 2 shows the fitting results for the sample when applied a 25

V back gate. ωG1 ,ωG2 ,ωG3 ,ωFano are 1594.7, 1591.3, 1582.1, 1551.6
cm−1, respectively. Based on the method discussed in [134], we as-
sign the two higher frequency peaks G1 and G2 to the G+ peaks of
the outer wall and the inner wall, and the lower frequency peaks G3
and GFano to the G− peaks of the two walls. The EPC determines an
important broadening of the LO mode of metallic tubes [66]. This ex-
plains the large width of the GFano (71.5 cm−1) lines. The sharpness
of the G1 and G2 line (7.4 and 5.6 cm−1) is explained by consider-
ing that the semiconducting LO and the metallic TO modes are not
broadened by EPC and that their frequencies are almost independent
from diameter. In the case of semiconducting tubes, the phonon is not
coupled to electron since there is a gap, so the Raman process is not
affected by the conduction electrons. In the case of the metallic tube,
the TO is independent from the electron phonon coupling due to the
selection rules.
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In order to compare the position and FWHM change of the four
peaks at different applied back gate voltage, the figures of back gate
voltage (Vg VS.ωG and ΓG have been made. (Figure 55)

Figure 55: (a) The back gate dependence of the GFano peak frequency (trian-
gle) and fitted width (squares). The left axis is the fitted frequency
of the GFano peak, the right axis is the width. The triangle and
square represent the frequency and width respectively; (b) The
three diagrams show the modulation of the Fermi level relative
to the Fermi neutral point. The arrows represent the possibility
for an electron to produce an interband transition depending on
the position of the Fermi level. The length of the arrows is equal
to the energy of the phonon match (about 195 meV for the LO
mode).

The back gate dependence of the GFano peak frequency and
width are shown in Figure 55 (a). It is clear that both of the frequency
and the width of the Fano peak have remarkable change while chang-
ing the back gate. For the frequency, before 30V ± 2V , it is decreasing
while increasing the back gate, and after 30V ± 2V , it is increasing
while the back gate increase. In the meanwhile, the width of the Fano
peak shows the reverse behavior. These results are consistent with
the result in [132] for the isolated metallic SWNT, and also the result
in [63] for monolayer graphene. These behaviors can be explained by
the electron phonon coupling process as shown in Figure 55 (b). As
we mentioned in chapter 1, the electron or hole carriers were injected
by the electrostatic charge which can be controlled by the back gate
[132]. The symmetric changes of ωGFano(Vg) and ΓGFano(Vg) relative
to the value of Vg ∼ 30V linked to the symmetry of the electronic band
structure that occurs at the Fermi neutral point. From the probe test,
we stoppped at 30V to prevent the back gate leakage, so we know
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VDirac > 30V, it is a proof here that VDirac = 30V, it is consistent
with p doping we usually see in our devices. ωGFano(Vg) has mini-
mum near the Fermi neutral point, revealing that increases in charge
density of either side result in stiffening of the G mode. On the other
hand, ΓGFano sharply decreases as |Vg − VDirac| ( VDirac = 30± 2V
)increases, showing that longer phonon lifetimes are linked to higher
particle/hole density. The largest effect is the frequency increase of
the GFano line by 9 (8) cm−1 on electron (hole), which are smaller
than the reported frequency increase of the doping SWNT by the
liquid gate (10 to 15 cm−1 ) [67]. This may be because the applied
liquid gate in ref. [67] can push the Fermi level higher than the back
gate that we used for this experiment. The substantial decrease of
GFano line width is remarkable (over than 40 cm−1). Both effects
are due to the dependence of the EPC on Vg in the metallic inner
tube. Phonon decay processes are real transitions that conserve en-
ergy and momentum. The small wavevector G phonon can only de-
cay into particle-hole pairs represented by vertical transitions that
have vanishingly small wavevector transfer. The coupling is allowed
only when |EF| < ELO (Figure 55 (b)). For evaluating the strength of
the electron phonon coupling, we plotted −1/q of the GFano peak
as a function of Vg (Figure 56(a)). The value of −1/q varies from 0.2
to 0.45 with the change of the back gate voltage, which means the
electron phonon coupling strength is modified by the change of back
gate voltage.

Figure 56 (b) shows the intensity ratio of the GFano and G1 as
a function of Vg. The intensity change may be mostly due to the
resonant profile change when the Fermi level shift. [67, 132].

Moreover, the same analysis on G1,G2 and G3, as presented in
Figure 57. It can be observed from Figure 57 (a) that ωG1 has no
obvious change with the back gate. Only the ΓG1 increases as the back
gate increases after the 30±2V (Fermi neutral point). As we discussed
above, the G1 peak mostly comes from the contribution of the G+

mode of the outer semiconducting tube, which can be assigned to the
LO mode of the outer tube [72]. The behavior of the G1 line at high
doping is mostly due to semiconducting tubes. The width shift of the
G1 line is correlated to the trend of IDS current which should also
increase when increasing the electron doping level, indicating that
the G1 shift is due to the change of the electron (hole) populations in
the conduction (valence) bands of semiconducting tube. The similar
effect also observed by Das et al. [66] and Yuan et al. [135] for SWNT
bundle and individual semiconducting DWNT.

Figure 57 (b) and (c) show that there is no obvious dependence
of Vg for the frequency and width of G2 and G3, which consistent
with the results of Das et al. [66]. The results shown in Figure 57 and
Figure 55 indicate that even if there is no mechanical coupling be-
tween the inner wall and the outer wall of this double wall carbon
nanotube, metallic inner tubes accept charge carriers even from the
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Figure 56: (a)−1/q of the GFano peak as a function of Vg (b) The intensity
ratio of the GFano and G1 as a function of Vg.

semiconducting outer tube. Inner metallic tube still exhibits the simi-
lar electron phonon coupling behavior of a single metallic single wall
carbon nanotube when applying the back gate.

In summary, we studied the electron phonon coupling in one in-
dividual DWNT. The sample that we measured have an inner metallic
and outer semiconducting tube. The M@S configuration was deter-
mined by combining the spacially resolved Raman spectroscopy and
the transport measurement on the same tube. The evolution of LO
mode of the inner metallic tube while applying the back gate was
carefully studied. The frequency, width, and the asymmetric factor
-1/q of the LO peak of the inner wall shows the same dependence
on the back gate voltage (Fermi level), and can be explained by the
electron phonon coupling due to the Kohn anomaly. To the best of
our knowledge, this is the first report of an experimental work for
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Figure 57: The frequency (black triangles) and width (blue squares) of G1
(a), G2 (b), G3 (c) as a function of Vg. The left axis is the fitted
frequency of the GFano peak, the right axis is the width. The tri-
angle and square represent the frequency and width respectively.

studying the electron phonon coupling in double wall carbon nan-
otube. And because of the complex structure of DWNT, there is not
many calculations studying the electron phonon coupling performed
on this system. We are currently performing more experiments on
different samples, for example, the samples with different configu-
rations or different diameters. Our current results on the response
of the asymmetric LO phonon mode of the inner tube under gating
provide the guidance for assigning peaks in the double wall carbon
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nanotube system and may create opportunities for studying the in-
ter layer coupling in the double wall tube system, for instance, the
S@M configuration would be interesting to see how much screening
of the charges by the M tube affects the inner tube and M@M tubes
are interesting to see the influence of the EPC on interwall coupling.

2.3.4 Summary of the section

By combining optical phonons measurements and electrical transport
measurement, the electronic configuration (S@S, S@M, M@S, M@M)
of the the DWNT could be determined. Moreover, we observe two
families of DWNT: a strong interwall coupling family where the me-
chanical coupling is strong enough that the RBLM are correlated and
simultaneously resonant whereas the second family of DWNTs be-
have like two embedded SWNTs.

By tuning the gate voltage on a FET configuration, we demon-
strate that it is possible to tune the electronic properties of an inner
metallic tube. In fact, the outer one has a semiconducting behaviour
as a tranparent material. Once again, the strong coupling between
optical phonons and electrons allows us to tune inner wall electronic
properties. As we discussed in chapter 1, there are several ways to in-
duce doping in the sp2 system. In this section, we used the back gate
electrostatic doping. In fact, molecules can also have doping effect
which is comparable to the back gate doping effect. In order to study
the molecule induced doping effect, especially study how doping can
effect the inner tube, at first, we need to functionalise the nanotubes.
In the following section, we will discuss the functionalization meth-
ods that are used in this thesis.

2.4 functionalization of graphene and isolated dwnt

transistors

As we discussed in chapter 1, there are two methods to functional-
ize graphene and CNT transistors. One is the non covalent method,
the other is the covalent method. In this thesis, we mainly use the
non covalent way to functionalize graphene and DWNT transisors
with the optical sensitive molecules. We also graft diazonium salt
covalently to the outer wall of DWNT transistors to study the elec-
trical and optical properties change with the effect of covalent graft-
ing. For the non covalent functionalization experiment, we use the
drop-cast method. At first, the molecules were dissolved in the sol-
vent (Tetrahydrofuran (THF), Acetonitrile (ACN), Dichloromethane
(CH2Cl2) et al.), the solution was then drop-casted onto the silicon
substrate with the graphene or DWNT transistors. After that, the sub-
strate was rinsed in the solvent to wash out extra molecules. In order
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molecule solvent concentration
(mol.L−1)

TPyOs ACN 2.64× 10−4

TPPZn THF 5.89× 10−4

H2TPP THF 3.25× 10−5

DHP ACN 2.4× 10−5

Table 3: List of molecules which was used to non covalently functionalize
graphene and DWNT transistors.

to protect the transistors away from the damage caused by the cap-
illary force, the substrate was then put into IPA. At last, a nitrogen
gun was used to dry the substrate. The proper solvent and deposition
time need to be chosen for different molecule. Table 3 shows the list
of molecules that we used to non covalently functionalize graphene
and DWNT transistors. The corresponding solvent, concentration of
solution are presented.

2.5 conclusion

Thanks to micro fabrication techniques, isolated DWNT transistors
have been achieved. By combining optical phonons and electrical
transport measurements, the electronic configuration (S@S, S@M, M@S,
M@M) of the DWNT could be determined. Finally, the electron phonon
coupling in individual DWNT is investigated. We observed a depen-
dency of the metallic LO mode with an electrical gating, indicating,
for the first time, a strong EPC in the complex DWNT system.
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T H E R O L E O F I N T E R - WA L L I N T E R A C T I O N I N T H E
H Y B R I D ’ S O P T I C A L R E S P O N S E

Carbon nanotube transistors can, by themselves, emit or detect pho-
tons at wavelengths defined by the nanotube chirality [136, 137, 138,
139, 140, 141, 142]. To extend their capabilities in optoelectronics, one
way is to couple them with molecules of various band gap, in order
to broaden the detected light wavelength [143]. Among them, terpyri-
dine transition metal complex [144, 145, 146] have been proven to be
good photo-sensitizer due to their photo-activated redox states and
can efficiently transfer charges to fullerene [147, 148], graphene [149,
150] or SWNTs [151] whereas molecular dipoles, like dimethyldihy-
dropyrene molecules (DHP), can induce electric field similar to the
one at play in CNFETs [152, 153, 154]. On the other hand, as we
discussed previously (see chapter 1), the core-shell configuration of
DWNTs is an important advantage to realize operating functionalized
electronic devices compared to SWNTs based ones.

In this chapter, we will present combined optical phonons and
electon transport measurements performed on functionalized DWNTs
by two different photo-active molecules: terpyridine osmium complex
which is a redox molecule and DHP chromophores which could have
conformational change. We will try to emphasize similarities and dif-
ferences on the grafting effect observed on DWNT based transistors
and also on optoelectronics properties under illumination. Thus we
will discuss these two kinds of devices both in the framework of
electron-phonon coupling and interwall interaction with and without
illumination.

3.1 non covalent sp
2

carbon /redox chromophore based

transistors

3.1.1 Introduction to structural and electronic properties of terpyridine
complexes

Terpyridine complexes, like other polypyridine complexes, exhibit op-
tical characteristic and electrochemical properties like metal-to-ligand
charge transfer (transfer of electrons from molecular orbital with metal-
like character to those with ligand-like character) in the visible region,
reversible reduction and oxidation, and fairly intense luminescence
[155]. This terpyridin is a simple ring structure derived from pyridine

71
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Figure 58 which is mainly used as a ligand and forms complexes with
most transition metal.

Figure 58: Left: Structure formula of the terpyridine group, right: symmetric
bis-terpyridine metal complex

By using terpyridine complexes with different lengths, it is pos-
sible to access two different electronic transport regimes for quantum
transport through a single molecule: the low transparency quantum
dot regime for long chains and intermediate transparency quantum
dot (so called Kondo effect regime). Actually, Park and Pasupathy
et al. reported the introduction of thiol-functionalised bis-terpyridine
complexes into a gap of a 200 nm. The inter-electrode gap arises from
electromigration of metal of an electrode by ramping to large volt-
ages at cryogenic temperatures [156]. During this process, some of
the complexes, which were first bound to the gold wire before break-
age, get into the 1-2 nm gap. Moreover, by using complexes with
different thiol-to-thiol lengths, they show different physical effects at
the molecular level: for "longer" complex, a single-electron molecular
transistor behaviour has been observed whereas for "shorter" com-
plex, a stronger coupling between the ion and the electrons leads to
Kondo-assisted tunnelling, which can be described as the formation
of a bound state between a local spin in the cobalt(II) centre and the
conduction electrons in the electrodes, which drives to a conductance
enhancement at low biases. Thus choosing the terpyridine metal com-
plex length (but also anchors) allows to engineer the molecular device
conductance.

Moreover, the terpyridine transition metal complexes feature very
interesting photo-physical properties [157]. They have strong light ab-
sorption in the visible light range and are also luminescent at room
temperature, making them ideal candidates for solar energy conver-
sion, for example, in photo-voltaic devices, molecular opto-eclectrical
switches and light emitting electrochemical cells [158, 159, 160, 161,
162]. Recently, the enhancement of photoinduced electron transfer
in self-assembled polymer films using mixed metal-terpyridine com-
plexes has been proven [163, 164]. Thus, the interaction between non
bonding electrons of the three nitrogen atoms in terpyrine (Tpy) and
the p-electrons of carbon nanotubes could induce electron transfer
between the Tpy and carbon nanotubes through non covalent func-
tionalization process [165].
In order to check this statement, we non covalently grafted terpyri-
dine osmium complexes (TPyOs) onto double wall carbon nanotube
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Figure 59: (a), Structure of the terpyridine Co complex, the scale bars show
the lengths of the molecules as calculated by energy minimiza-
tion. (b), Cyclic voltammogram showing the Co2+/Co3+ redox
peak. (c), I-V curves of a [Co(tpy-(CH2)5-SH)2]+2 single-electron
transistor at different gate voltages (Vg) from -0.4 V (red) to -1.0
V (black) with ∆ Vg approximately -0.15 V. Upper inset, a topo-
graphic atomic force microscope image of the electrodes with a
gap (scale bar, 100 nm). Lower inset, a schematic diagram of the
device. (Figure reproduced from [156])

transistors. TPyOs is provided by G. Royal et al. (Département de
Chimie Moléculaire, UJF, St Martin d’Hères) The absorption spectrum
and the structural formula are presented in Figure 60. The absorption
spectrum shows as expected a strong peak in the UV light region (315

nm) and two absorption peaks in the visible light range, 490 nm and
675 nm. The Raman spectra of TPyOs measured at two different ex-
citation laser wavelength shows in Figure 61 . At both 633 nm and
532 nm, the Raman profile of TPyOs can be obtained. From Figure 61,
several peaks can be observed. Peak at 1469 and 1605 cm−1 can be
assigned to bipyridine ring stretch. And peak at 1350 cm−1 is from
C-C inter ring stretch [166].

We will now focus on the charge and/or energy transfer mecha-
nism between the terpyridine complex and the double wall nanotube
as well as the exchange of this transfered excitation and/or charge
between the outer and the inner walls of the double wall carbon nan-
otubes structure.
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Figure 60: Absorption spectrum of TPyOs, the inset is the structural formula
of TPyOs.

Figure 61: Raman spectra of TPyOs powders measured by the laser of 532

nm and 633 nm

3.1.2 Graphene-Osmium terpyridine hybrid : the 2D case

Graphene was first used as a reference system to evaluate the effect
of grafting TPyOs on sp2 carbon system. We expected charge trans-
fer from the grafted molecules and a possible chemical enhancement
effect. We will use this hybrid system to fixe experimental protocol
and applied to DWNT. Let us first introduce the experiment method
for making graphene/TPyOs hybrids.

For grafting TPyOs onto the graphene surface, 2.46× 10
−4 Mol.L−1

TPyOs in Acetonitrile (ACN) solution was drop-casted onto graphene
sample which was then rinsed in ACN solvent; at last the sample
was washed by IPA and blow dried by nitrogen. This method has
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been proven efficient for non covalently grafting SMM molecules on
the graphene surface [167]. The sample was characterized by optical
microscopy, SEM and Raman spectroscopy.

Figure 62: (a) Optical image of CVD graphene transferred on the substrate.
(b) SEM picture of zoom in of the square part of (a) after grafting
of TPyOs. No molecule cluster is visible at this scale.

Figure 62 (a) shows an optical image of graphene transferred on
a 285 nm thick SiO2/Si++ substrate. The continuous polycrystalline
graphene layer covers most of the silicon surface, the edges can be eas-
ily observed due to our transfer process which induced defects at the
border. Moreover, we observe ripples and small patches which rep-
resent bilayer or multilayer graphene growth at nucleation sites [25].
In the following, we focus on a small part of graphene located at the
edge of the continuous layer, as shown in the square of Figure 62 (a).
Thanks to its easily recognizable shape, we can always find it even af-
ter the grafting process. Figure 62 (b) shows the SEM image of TPyOs
grafted graphene corresponding to the square part of Figure 62 (a).
The overall structure is the same as before grafting indicating that the
graphene structure is not strongly affected by the grafting process. To
go further, spatially resolved Raman imaging was used to detect the
presence of the grafted molecules on graphene.

Figure 63 shows G band intensity map before and after TPyOs
grafting. We observe from the upper image that G band intensity is al-
most homogeneous except at edges and ripples where a higher inten-
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Figure 63: The Raman mapping of the G peak intensity of the graphene
before and after grafting TPyOs.

sity is observed in agreement with previous studies [168]. The darker
color areas on the map indicate a low G band intensity, compare to the
main part (light blue), the intensity ratio Idark/Imain is 0.54. The de-
crease of the intensity are probably due to PMMA residues from the
transfer process. In fact, if residual PMMA covers part of graphene
surface, it makes the Raman intensity decreased [169]. The bottom
image of Figure 63 shows the G peak intensity mapping of graphene
after grafting TPyOs. A global enhancement of the G peak intensity
can be easily observed. On average, the intensity is increased by about
12%, due to a probable chemical enhancement process [167]. The ori-
gin of this enhancement is attributed to charge transfer between the
molecule and the graphene surface [167, 170].

Figure 64 shows Raman spectra of graphene before (black) and
after (blue) TPyOs grafting. First of all, we can observe a new peak
around 1337 cm−1. It can be fitted into two Lorentzien peaks at 1337
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Figure 64: The Raman spectra of graphene before (in black) and after (in
blue) grafting TPyOs (normallized by G mode). The inset is the
zoom of the G band region.

Figure 65

cm−1 and 1348 cm−1. As we discussed before, the peak at 1348 cm−1

is from the molecule. Second, a small peak around 1619 cm−1 comes
out after grafting TPyOs. In order to figure out the origin of these
peaks, we obtained the Raman mapping of them, as it shown in
Figure 65. It can be observed clearly that after grafting TPyOs, the
peak at 1348 cm−1 and 1619 cm−1 can be observed not only on the
graphene surface but also on the silicon substrate, which means that
these two peaks are from TPyOs molecule. This result corresponding
well with the Raman signature of TPyOs as it shown in Figure 61.
From the Raman mapping, we also can observe that after grafting
TPyOs, intensity of the peak at 1337 cm−1 does not change much,
which means that the grafting method did not induced many defects
in the graphene system. The inset of Figure 64 shows a downshift
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and a shrinking of about 1cm−1 of the G mode with grafting. In
the meanwhile, the 2D mode presents a small shift but its FWHM
also narrowed about 5cm−1. We attribute these changes of G and 2D
modes to charge transfer between TPyOs molecules and graphene
which shifts the Fermi level and thus change the electron-phonon
coupling . Different reasons leads to this assumption:

1. The terpyridine metal complex molecule can be an electron don-
ner or acceptor [144] depending on the workfunction of the nan-
otubes. Previous experimental and theoretical works show that
an efficient charge transfer process can occur between the com-
plex and sp2 carbon [166, 171].

2. The FWHM(2D) is narrowed after grafting which is a strong
indication of a doping effect since a uniaxial strain effect will
lead to a significant increase of 2D width [172] and a biaxial
strain lead to a constant FWHM (2D) [173].

3. Moreover, the intensity ratio of G mode to 2D mode (IG/I2D)
can also be used to monitor the charge transfer [174, 175]. In our
case, IG/I2D changes from 1.2 to 1.6 indicating that graphene is
doped by the TPyOs molecules.

4. As discussed in chapter 2, graphene is sensitive to changes
in its direct environment, including surface charges. Charges
can come from electrochemical doping, back or top gating or
molecular charge transfer [167, 176, 177, 178]. It is well known
that charge transfer induces stiffening or softening of graphene
optical phonons frequencies depending on its initial electronic
state (neutrality point or p or n doped point) [63]. Thus, the
G band softening and shrinking observed in TPyOs grafted
graphene (combined with a constant 2D band position but a
narrow FWHM) is another strong indication of charge transfer.
Finally, by comparing our results to Yan et al. [63] and Pisana et
al. [65] works, we estimate that charge transfer between TPyOs
molecules and graphene caused a Fermi level shift on graphene
about 10− 20 meV , corresponding to a charge carrier density
change around 1012e−1.cm2, approximately, 0.1 electron is trans-
ferred from one TPyOs molecule to graphene.

In order to investigate the doping level at different positions on
the graphene sheet, the mapping of fitted G mode frequency and
FWHM is presented in Figure 66. G mode frequency exhibits a global
downshift, indicating that the doping effect is homogeneous over the
graphene surface (which is about 100 µm2).

In summary, non covalent functionalization of graphene with
TPyOs molecules induced a charge transfer between them and a chem-
ical enhancement is observed. Nevertheless, in this case, the enhance-
ment is an exaltation of the graphene Raman signal. The only TPyOs
signature is indirect: (1) TPyOs transfer charges to graphene with a
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Figure 66: Raman mapping of graphene G peak frequency and FWHM be-
fore and after grafting TPyOs, wavelength: 532 nm, grating: 600

/mm

charge density about 1012e/cm2 based on G mode frequency shift
and (2) a shrink of the 2D mode FWMH. These effects are similar
to those already measured by Lopes et al. on SMM-graphene hybrid
[167].

3.1.3 Complete assignment of an isolated DWNT FET

The validation of a low charge transfer with a non covalent function-
alization on 2D carbon material opens the way to probe same effect
on 1D core-shell system like DWNT based transistors. Thus the same
procedure has been applied in order to obtain functionalized DWNT
based transistor.

Figure 67 shows the SEM image of a typical DWNT field effect
transistor. From this image, we can clearly see a DWNT deposited
onto SiO2 substrate connected to drain and source electrodes. Most
of the transistors used in this work have a 1 µm long inter electrode
gap in order to be able to obtain Raman spectra without too much
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luminescence from the metallic contacts. During this work, 42 DWNT
based transistors were measured, only 4 of them present an inner and
outer walls in resonance at the same laser energy.

Figure 67: Typical SEM image of isolated DWNT field effect transistor.

In order to follow the changes induced by the functionalization
with photoactive molecules, we need to fully characterize it. In other
words to get structural information such as: is it a single tube? what
about its diameters and electronic configuration? To reach this goal,
we perform Raman and transport measurement.

3.1.3.1 Optical phonons measurement of pristine DWNT transistor

Figure 68 shows the Raman spectra featuring RBLM, G band and 2D
band from a DWNT transistor measured at three different laser ex-
citation wavelengths (488 nm, 514 nm and 532 nm respectively). The
Raman spectra at 488nm show two RBLM modes at (162 cm−1 and
245 cm−1) which means that both inner and outer tubes are resonant
at this laser excitation energy. Moreover, the fitting parameters of the
RBLM (see Figure 72) show a FWHM for both RBLM bands less than
8 cm−1, which suggests that the DWNTs were dispersed at the single
tube level [179]. The signal to noise ratio observed in these spectra
vary strongly with laser excitation energy, indicating that resonance
conditions for this nanotube are drastic even at G band range. Actu-
ally, from these spectra, we can extract an upper bound for RBLM
resonance window about 130 meV which seems to be the same upper
bound for 2D mode resonant conditions. This observation also leads
us to suppose that this DWNT is an isolated one. Finally, we observe
two peaks at 2D mode region, which are ω2D1 = 2657.5 (Γ2D1=29.6)
and ω2D2= 2699.9 (Γ2D2=33.3) cm−1. According to the literature, for
an isolated DWNT, the 2D peaks are different from the DWNT bun-
dles [112] or bilayer graphene [180] which contains four peaks. 2D
mode of an individual DWNT is composed of two peaks due to dou-
ble resonance process occurring independently for each wall [133].

Thus, in order to extract diameters of both inner and outer tubes,
we can estimate them thanks to the equation ωRBLM = 218.8/dt +
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15.9cm−1 [112], which is valid for individual DWNT on silicon sub-
strate, as in our experiment. From this equation, we extract an inner
tube diameter about 0.96 nm and an outer one about 1.50 nm with an
inter-wall distance about 2.7 Å in agreement with previous DWNT
Raman characterization studies [133, 112, 111]. Finally, a Kataura plot
which was calculated considering environmental effects is used to de-
termine metallic or semiconducting configurations of both inner and
outer tube[49, 50, 133], as shown in Figure 69.

Figure 68: Raman spectra of DWNT sample A measured at three different
laser wavelength (488 nm, 514 nm and 532 nm). The spectra were
normalized by the silicon peak at 520.7 cm−1 and then the inten-
sity of G peaks and 2D peaks were adjusted for comparison.

The two vertical lines in the Kataura plot (see Figure 69) indicate
the diameters of both inner and outer wall. As observed in Figure 68,
the inner wall is strongly excited at Elaser = 2.41eV which corre-
sponds in the Kataura plot to the E11M transition, whereas the outer
tube is more resonant at Elaser = 2.54eV corresponding to the E33S
transition. Thus, optical phonons analysis suggests that this DWNT
has an M@S configuration.

To be complete, we also try to assign the different G band compo-
nents to outer and inner walls. By fitting the G band with 4 Lorentzian
at Elaser = 2.54eV (result is shown in Figure 72), we attribute the
two highest peaks at 1589.9 and 1593.9 cm−1 to G+ components of
each walls, and the two lowest ones at 1565.3 and 1571.9 cm−1 to
the G− ones [14, 111, 112]. The same attribution has been done at
Elaser = 2.41eV and at Elaser = 2.33eV (see Figure 72).

The fact that at Elaser = 2.41eV ( see Figure 68 ), we only ob-
serve one RBLM mode at 245 cm−1 meaning that only the inner tube
is still in resonance at this laser excitation energy. If we now consider
the intensity ratio between the G+

inner and the G+
outer measured at

this excitation energy as η2.41, and the one measured at Elaser= 2.54

eV as η2.54, we find that η2.41=0.70 is higher than η2.54=0.19, which
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Figure 69: Comparison of the results from Raman spectra with the Kataura
plot. The two horizontal lines stand for the two excitation laser
energies (2.54 eV and 2.41 eV). The 2.54 eV laser excited the outer
tube and the 2.41 eV laser excited the inner tube. The two vertical
lines mark the diameter of the inner (0.96 nm) and outer tubes
(1.50 nm), respectively. The two cyan rectangles stand for the po-
sitions of the outer and the inner tubes in the Kataura plot, the
outer one falls into the E22S transition region and the inner one
falls into the E11M transition region [49, 50].

indicates that Elaser =2.54 eV is closer to the resonant condition for
the outer tube. This explanation correlates well with the RBLM signa-
ture as discussed before. This result also indicates that the assignment
of each G peak component is reasonable. The results of the inter wall
distance which is 2.7 Å as we discussed, lead us to consider the inter-
wall mechanical coupling in this DWNT [81]. We also find that when
Elaser = 2.41eV , the inner and outer tubes can be resonant at the
same time, which prove that interwall coupling in this tube indeed
exist. But since we didn’t manage a complete tunable Raman experi-
ment we are unable to extract the coupling strengh (see Section 3.3).

At this stage, Raman measurement of this DWNT transistor indi-
cates an isolated M@S tube but we still need an electrical characteri-
zation in order to have the complete electronic picture of this device
before molecular grafting and light illumination.

3.1.3.2 Tranport measurements of pristine DWNT transistor

Figure 70 presents the transfer characteristics of this pristine DWNT
transistor at room temperature (black curve). We plot here the dif-
ferential resistance (dV/dI) as a function of the gate voltage (Vg). In
order to get rid of artifacts from gate hysteresis, all curves were ac-
quired on the same measurement cycle while scanning from positive
to negative bias. As we already know that in a metallic nanotube,
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the conductance shows little dependence to Vg as expected from its
band structure. On the contrary, a semiconducting nanotube shows a
strong Vg dependence: (i) it has a high conductance when the Fermi
level is located in the valence band (p-doped regime), (ii) its conduc-
tance decreases when the Fermi level falls within the band gap region
and finally (iii) the conductance increases again when the Fermi level
is in the conduction band (n-doped regime). In the case of this spe-
cific pristine DWNT transistor, Figure 70 shows ambipolar behavior
with on-off ratio about 20. The Fermi neutral point of this transistor
is around 22 V, which means that at around 22 V, the electrons filled
the valence band. By comparing our statistics (see chapter 2) with this
data, we determine that this DWNT has an M@S or S@M configura-
tion in agreement with our Raman analysis on the same sample.

3.1.4 Charge transfer on DWNT-terpyridine Osmium hybrids

Let us now investigate the influence of TPyOs on this very nanotube.
An electric field caused by charge density modification can stimulate
the response of CNT based sensors by shifting the threshold voltage
[152, 153, 154]. Therefore, by non covalently grafting TPyOs on this
DWNT transistor (as for graphene see the last section), this molecule
will act as an additional gate voltage giving rise to a visible shift
equivalent to an effective electrostatic gating (which we can name
as a molecular gating). The carbon nanotube itself can interact elec-
tronically through charge transfer processes with a broad range of
molecules [181, 154, 182, 183, 184, 185, 186]. The Fermi level shift can
be detected through the Fermi neutral point change in the probe test.

In fact, after grafting TPyOs molecules onto our DWNT transis-
tor, the threshold voltage shifts by 5.5 V (from 25 to 19.5) towards
the negative gate voltages. As Terpyridine complexes are known to
be strong electron donors, we therefore demonstrate that the effec-
tive n doping process is caused by charge transfer from the TPyOs to
DWNT.

The transferred charge carrier density can be calculated in a sim-
plistic capacitive model through the formula

∆n = Cg∆V/e (23)

[63, 187]

∆V is the change of threshold voltage, Cg is the capacitance of
the channel with respect to the back gate. Cg can be obtained by a
cylinder/plane model of a capacitor from the geometry of the device

Cg =
2πεavgε0

ln(2+ 4tox/d)
(24)
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Figure 70: Transfer characteristics of DWNT sample A at Vds = 50 mV be-
fore (black) and after (blue) grafting TPyOs.

[187, 188, 189]

Here, εavg is the average of the dielectric constant above ε(air) =
1.0 and below ε(SiO2) = 0.39 the nanotube, tox is the silicon oxide
thickness (285 nm) and d is the diameter of the nanotube (outer tube
1.50 nm). Cg has a value of 2.29× 10−11F/m giving ∆n = 0.76/nm.
The doping level is very similar to the functionalized SWNT with
tetrathiafulvalene-based mediator system [187], which is also a non
covalent functionalised system.

The charge transfer process can also be evaluated from the change
of Raman peaks. Figure 71 shows the comparison between Raman
spectra of sample A before (black) and after (blue) grafting TPyOs,
for laser energy 2.54 eV, 2.41 eV and 2.33 eV. We observed several
significant changes after the functionalization.

The most obvious change is in the RBLM region. In Figure 71 (a),
for Elaser = 2.54 eV, RBLM modes disappeare after TPyOs grafting.
In the meanwhile, the G band intensity decreases about 14 times in-
dicating that resonant conditions for this tube at this laser excitation
energy are not satisfied anymore [190]. This statement is confirmed by
Figure 71(b), where the RBLM mode at 160 cm−1 appeared at Elaser
= 2.41 eV. Even if this mode is slightly shifted (about 2 cm−1), it still
can be assigned to RBLM mode of outer wall.

Similarly, as can be observed in Figure 71 (c), at Elaser = 2.33eV ,
the peak at 244 cm−1 which is the RBLM peak of the inner wall comes
out. The enhancement of the G peak can be observed at both exciting
laser energies. The appearance and disappearance of RBLM mode
compared to pristine DWNT (before grafting) can only be explained
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by a shift of RBLM resonant window after TPyOs grafting. The res-
onance window described here is the Raman intensity as a function
of laser excitation energy in the range where RBLM feature can be
observed. It can be used to determine the electronic transition energy
Eii. The RBLM resonant window shift indicates the shift of Eii elec-
tronic transition [190, 191, 192, 193]. Because of the limitation of our
experiment facilities, we are not able to tune the laser wavelength
continuously around these laser excitation energies for this DWNT.
Later on, a complete picture of resonant Raman scattering process
will be described on a different TPyOs-DWNT based transistor (see
Section 3.3).

We also want to point out that not only the outer wall, which is
considered to be directly in contact with the molecule, has dramatic
change of its RBLM mode, but also the inner tube exhibits a resonance
window shift even if it is supposed to be protected by the outer one.
This result shows the possibility to transfer charges to inner wall and
thus asks the question of the role of interaction between walls. Actu-
ally, in this case the DWNT is an M@S tube so if the Fermi level falls
in the gap of the semiconducting tube, it is possible to imagine that
both walls are doped by TPyOs.

From Figure 71, the G modes evolution of both the inner and
outer tubes also suggests a doping effect of both walls. Clear upshifts
of G+ peaks can be observed after TPyOs functionalization . Under
the 488 nm laser excitation (Elaser=2.54 eV), one of the G+ peak posi-
tion (FWHM) shifts from 1593.9 (8.3) to 1595.8 (12.3) cm−1, the other
one shifts from 1589.9 (6.8) to 1591.9 (6.7) cm−1. Based on the liter-
ature, the G peak shift could be caused by different origins, such as
defects [194], strain [195, 196, 197, 198], doping effect, temperature
change [190]. In our case, the laser power was kept lower than 1 mW,
and the Si substrate can be considered as a heat sink to absorb the
thermal power from the laser. that laser heating is less important for
individual DWNTs in contact with the substrate or connected to the
metal electrode which are also efficient heat sinks [199]. The shift
should then not be caused by the thermal effect. We did not induce
any external force during the experimental process, so the strain ef-
fect should not be considered. No obvious D peak change is observed
and the intensity ratio of the D peak to the G peak ID/IG is always
below 0.04 no matter before or after grafting TPyOs, which indicates
that the grafting process did not induced many defects. Thus, the G
peak change is not caused by themal effect, nor by strain or defects,
it is more likely originating from charge transfer from grafted TPyOs.
There are also dramatic changes of 2D peak visible on the fitted data
in Figure 72. ∆ω(488nm) for 2D mode is positive whereas at 532 nm
is negative. At 488nm, TPyOs has an absorption band thus the Raman
laser is invasive, TPyOs molecule is in an excited state and a doping
occur, whereas at 532nm it’s not the case and thus 2D mode shift back
to its dark value of DWNT grafted with TPyOs in its intial state.
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In the following paragraph, we will present the comparison with
Raman spectra of another DWNT sample B before and after grafting
TPyOs (Figure 73). This sample B present a broad G− peak which is
a signature of a metallic tube. Following the evolution of the metal-
lic tube G− peak can give us the information of charge transfer and
electron phonon coupling [67, 129, 130, 131], as we discussed in Chap-
ter 2. In the RBLM region, we observed the similar effect as for sam-
ple A. Two RBLM peaks can be observed, ωRBLM1 = 146cm−1 and
ωRBLM2 = 200cm−1 before grafting TPyOs. After grafting, the two
RBLM peaks can still be observed, but the intensity changes a lot. The
intensity of the RBLM peak 1 IRBLM1 increases by 1.5 times and inten-
sity of the RBLM peak 2 IRBLM2 decreases by 4.9 times. The changes
of RBLM in this sample proves the repeatability of the experiment.

Figure 73: Raman spectra of sample B before and after grafting TPyOs, the
laser wavelength is 633 nm

We can get more information through the analysis of the G band.
The G band was fitted into four Lorentzian peaks Figure 74 (noted as
peak 1, 2, 3 and 4). The fitting parameters are listed in Table 4. We can
observed from Figure 74 and Table 4 that the position and FWHM of
every peak changed after grafting. The most noticeable change occurs
to peak 1 which is the broadest peak at 1543.7 cm−1 with a FWHM of
44.4 cm−1. We assign this peak to the G− peak of the inner metallic
tube. After grafting, this peak shifts to 1568.3 cm−1 and the FWHM
decreases by 19.6 cm−1. Such a dramatic change was also observed in
the liquid gating of metallic SWNTs [67, 129], back gate electrostatic
gating of suspended metallic SWNTs [132] and it is also similar to the
back gate tuned DWNT transistor that we observed and discussed in
chapter 2. We then attribute the change of peak 1 to similar reasons
as presented in the literature, that is, the electron-phonon coupling
is modified by the shift of the Fermi level. A difference in this case
is that the electrical field is caused by the molecular dipoles grafted
onto the DWNT surface instead of by a liquid or back gate. In other
words, the grafted TPyOs transfer charges to the DWNT which shifts
the Fermi level of the system and brings it closer (or further) to the
Fermi neutral point, making the electron-phonon coupling stronger
or weaker. The decrease of the FWHM of peak 1 indicates that the
electron-phonon coupling becomes weaker after grafting TPyOs: the
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ω1 Γ1 ω2 Γ2 ω3 Γ3 ω4 Γ4

Before 1543.7 44.4 1570.5 13.0 1582.6 7.5 1590.5 7.8
After 1568.3 19.6 1579.1 3.6 1583.6 5.5 1589.8 8.8
δ 25.6 -24.8 8.6 -9.4 1.0 -2.0 -0.7 1

Table 4: Fitting summary of Sample B : Raman G peak before and after graft-
ing TPyOs

charge transfer induced doping of the DWNT shifts the Fermi energy
further from the Fermi neutral point. To sum up, we investigated

Figure 74: The Lorentzian fitting of the Raman G peak of sample B before
and after grafting TPyOs

.

grafting effect of TPyOs onto DWNTs by combining Raman spec-
troscopy and transport measurements. The Raman G and 2D modes
upshift with grafting whereas RBLM intensities change drastically
before and after TPyOs functionalization. This optical phonons fre-
quency shift is a direct probe of a modification in DWNT Fermi neu-
tral point. Electrical characteristics confirm the Fermi neutral point
downshift of this DWNT/TPyOs transistor and allow us to estimate
a molecular transfer about 0.076 electrons/molecule to 1 carbon atom.
Moreover, not only the outer tube is affected by charge transfer but
also the inner one since a huge a modification in RBLM resonant con-
dition for both tubes are observed. The doping caused the Fermi level
to up shift further to the neutral point, implying a decrease of the
electron-phonon coupling strength and thus a shrink on FWHM in
the case of sample B which has an inner metallic tube. All these effects
observed on DWNT/TPyOs hybrids are also observed in graphene-
molecular devices for TPyOs but also with SMM molecules [167] in-
dicating the universal behaviour of sp2 carbon systems under charge
transfer either by a back gate or a molecular charge transfer. Terpyri-
dine are used here as a reference chromophore base on a light acti-
vated redox transition. Before investigating the optical properties of
our hybrids, we will compare the terpyridin case with another family
of molecules based on light-induced conformation changes.
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3.1.5 DHP chromophore DWNT based transistors

In this section, we present a non covalently grafted DHP chromophore
on DWNTs and we will show how the electronic and vibrational prop-
erties of our DWNT samples are changed by such a grafting. We will
end up with a comparaison between TPyOs ans DHP in terms of
grafting effects.

3.1.5.1 Introduction to structural and electronic properties of the dimethyldihy-
dropyrene chromophore

Dimethyldihydropyrene (DHP, closed configuration) is a polycyclic π
conjugated unit, which can be optically converted into a less π conju-
gated and colorless cyclophanediene (CPD, open configuration) iso-
mer by opening one central bond. It is a multi-addressable system,
that is, its property changes can be operated by at least two comple-
mentary input signals [200]. The open state (CPD) can be reversibly
switched (both photochemically and thermally) into the colored and
more stable closed isomer (DHP) by exposure to light with two dif-
ferent wavelengths (Figure 75(a)). Such systems are very useful for
developing devices for complex logic operations [201]. Recent stud-
ies, mainly reported by Mitchell et al. [202], Nishihara et al.[203] and
Royal et al. [204] clearly show that the DHP is a very promising can-
didate for the preparation of multi-functional materials. Especially,
single-molecule conductance measurements have been done recently
on the DHP/CPD isomer, which show a big change in the conduc-
tivity (ON/OFF ratio (> 104)) and an excellent reversibility of con-
ductance switching of this molecule when its internal π conjugated
structure is broken therefore such molecule has the required potential
for molecular electronics. The polycyclic structure of this molecule is
also a useful basis which can be adapted with different chemical func-
tionalizations, so as to tune its properties. As a result, this material is
very attractive for the creation of new molecular devices.

Figure 75 (b) shows the absorption spectra of DHP. There are two
peaks in the UV light region and four peaks in the visible light region.
It also shows time-dependent evolution (with 10 min intervals) of the
UV/vis spectra of DHP with two pyridine rings, the blue line is the
closed state and the red line is the open state. In the UV light region,
the two absorption peaks were increasing while the the four peaks in
the visible light region were decreasing during the light illumination
process. These changes can be used to detect the photoconversion of
the DHP closed state into its corresponding colorless open isomer.
In that experiment, the switching process was taking place in solu-
tion. In our case, we want to check weather it is possible to convert
the closed state for molecules deposited on a solid surfaces as a first
step before envisioning devices. At first, macroscopic green crystals
of DHP-pr were put inside the optical vacuum chamber, as shown in
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Figure 75: (a)Switch of DHP to its less stable conformational state CPD, (b)
Time-dependent evolution (with 10 min intervals) of the UV/vis
spectra of DHP with two pyridine rings (DHP-pr), the chemical
sketch is shown in the inset figure [204].

Figure 76. We used a 405 nm wavelength laser to illuminate the crys-
tals locally through the optical window of the chamber for 24 hours.
We found that the illuminated crystals turned to white while the rest
of them are still green. Figure 76 shows the photos of the white colour
part and the green part taken through the microscope. It can be ob-
served that the green part is still well crystallized and the white part
shows more amorphous form. This result shows that the DHP-pr can
be converted to its open form even in the solid state, which is the first
step toward hybrid CNFETs.

Figure 77 shows the Raman spectra of the DHP-pr before and
after the laser illumination (red light (600-700 nm), 100 W/m2). It
can be observed that before light illumination, there are a lot of sharp
peaks with high intensity, but after the light illumination, some peaks
become broader while other peaks disappeared. It indicates that the
structure of the molecule changed a lot and the DHP group trans-
forms to CPD.

3.1.5.2 DHP grafting effect on DWNT based transistor

We choose an alternatively functionalized DHP molecule ( Figure 78)
to decorate DWNTs (the deposition method was presented in chapter
2). This molecule is a good match for non-covalent functionalization
onto CNTs, since its additional pyrene groups can be bound to the
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Figure 76: (a)The optical window of the optical cryostat with micro-crystals
in vacuum inside, (b) the DHP crystals on the sample holder, the
white part is the molecule after 405 nm laser illumination for 24

hours, (c) (d) are the microscope photos of the white part and the
green part respectively.

Figure 77: Raman spectra of DHP-pr before and after white light illumina-
tion,illumination time: 1 hour, power: 100 W/m2.

surface of the CNTs by π-π stacking interactions, which can ensure a
better charge-transfer mechanism during the optical gating process.

Figure 78: Left: chemical sketch of molecule DHP-ab73, right: Raman spec-
trum of DHP-ab73 (wavelength 532 nm).
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Raman spectroscopy measurements were carried out, and differ-
ent processes were studied. Spectra were taken before and after graft-
ing the molecule. In fact, as visible from Figure 81, the general trend
we observe is, with the grafting, the spectrum was modified: consid-
ering especially the G peak, we can see that its intensity is enhanced,
in average, with functionalization.

From Figure 81, after grafting DHP-ab73 on DWNT, a global en-
hancement by a factor 2 of all the Raman peaks are observed. This
is very similar to the chemical enhancement effect that many people
have studied [205, 167]. Moreover, the 2D band, hardly visible before
functionnalization, turns to be observed for the hybrid system. How-
ever, contrary to the TPyOs case, we observe no significant shift of
any Raman peaks due to functionlaization. This seems to discard any
charge transfer and would rather correspond to a change in the elec-
trostatic environment of the nanotube only. Both charge transfer and
dipolar effect leads to a modification of the Raman cross section and
an enhancement of the nanotubes modes.

Here we showed the influence of grafting DHP on nanotubes is
visible though weaker than for the TPyOs case. Let us now consider
the effect of light on this DWNT-switch hybrid.

3.2 optical gating on dwnt-molecule hybrid transistors

These new DWNT-molecular hybrid present now a huge photo-active
potential for transducing a light excitation to an electrical one. Such
excitation transfer can involve charge transfer from a redox photoac-
tive molecule (terpyridine complex) to the inner wall, or a change in
the electrostatic environment induced by the photo-excitation of chro-
mophore molecule (DHP), which acts as an optical gate. We will now
investigate each hybrid exposed to light in the absorption range of the
molecule. Unfortunately our samples did not allow a complete char-
acterization, so we will present only electrical characterization for the
TPyOs hybrid and only Raman characterization for the DHP-hybrid.

3.2.1 Light exitation of a redox switching molecule

In order to illuminate the obtained TPyOs-DWNT based transistors,
we use an X-Cite 120Q excitation light source. The illumination power
applied to samples remains with a maximum value of about 100

W/m2 for an illuminated surface of approximately 1 cm2.

Figure 79 shows the compared transfer characteristics curves of
DWNT-TPyOs hybrid transistor with and without light illumination.
It can be clearly seen that the threshold voltage shifts towards pos-
itive direction, which is the opposite way of the grafting effect. So
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this transistor undergoes an effective p-doping process under white
light illumination, the shift of the Fermi neutral point is around 5

V, and the transferred charge carrier density is around 0.69/nm. Fig-
ure 80 shows the sketch of the p-doping process which is caused by
the optical gating on the hybrid system. The black curve represents
the density of state of a semiconducting carbon nanotube. The blue
line represents the Fermi level of the hybrid system without light illu-
mination; under light illumination, the Fermi level shifts to the posi-
tion noted as EF light on (red line). The Fermi level shift also caused
the optical transition energy to change, which we will discuss in Sec-
tion 3.3. The process is similar to the optical gating effect described
by J. Borghetti et al. [105], and also similar to the DWNT coated TiO2
[206] or ZnO [207]. White illumination causes a photoinduced posi-
tive charge transfer from the TPyOs to the DWNT.

Figure 79: Transfer characteristics of sample A at Vds = 50 mV measured in
dark (blue) and under light illumination (red).

Figure 80: Sketch of the nanotube energy band structure showing the evolu-
tion of the Fermi level after grafting the molecule (left) and under
light illumination (right).
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ω2D1 Γ2D1 I2D1 ω2D2 Γ2D2 I2D2

cm−1 cm−1 cm−1 cm−1

Dark 2670.7 28.9 1×10
−3

2702.6 23.6 1.2×10
−3

Light on 2669.3 34.4 2×10
−3

2704.3 36.2 2.1×10
−3

Light off 2665.0 32.7 1.2×10
−3

2704.2 34.3 2.4×10
−3

Table 5: Summary of the Lorentz fitting of the 2D peaks of sample
DWNT/DHP-ab73

This result indicates that DWNT charge transport in DWNT-TPyOs
hybrid can be modified upon illumination. Let us now turn to the
DHP-based hybrid system as a comparison.

3.2.2 Light excitation of a conformational switching molecule

Illuminating the sample shows a clear increase of the 2D band (twice
more intense) along with a higher signal to noise ratio, which is re-
versible when switching off the light (Table 5), the decrease of the
intensity of RBLM peak evidences the Raman resonance window
change. Therefore we can deduce that with the light illumination, the
DHP converted to the opened state CPD, at the same time, the elec-
tronic structure of the molecule changes, which causes the change of
the electronic structure of the hybrid system.

When the light is turned off, the increase of the intensity of the
Raman RBLM and G peak is still visible, meaning that conformational
change of molecule is stable beyond light exposure. The G peak in-
tensity ratio of "light off" to "dark" is 2.4 and "light off" to "light on"
is 1.7. One possibility is that the kinetic process through which the
excited molecule changes its conformation had not come to an end
when the spectra with illumination were acquired, and that the pro-
cess continued throughout the "Off-state" (when the light stimulus
was removed). The "Off-state" spectra were acquired approximately
two hours after the light stimulus was imposed onto the system. In
this case, two possible explanations can be given: either the kinet-
ics of the molecule is long compared to the time which was waited
before performing the experiments in the "Off-state". We know that
heat might have a back-switching effect, even if UV light is not shone
onto the sample. In the latter case, part of the DHP-ab73 might have
undergone a conformational switch (from the closed-configuration to
the open one) due to excitation given by the red light, and another
part of it might have switched back due to the heat produced from
the illumination, so that only when the light was turned off the kinet-
ics of the conformational switch could be completed. In this case, the
performed measurements might still not describe the final situation,
but, in order to say this, further experiments need to be done, so as
to study the kinetic characteristics of the molecular switches.
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Figure 81: Raman spectra of DHP-ab73 functionalized DWNT before and
after red light illumination (illumination time: 1 hour, power: 100

W/m2, laser wavelength: 532 nm, grating: 1800/mm).

In summay, we introduced a new type of optical switch, which
is DHP that can have conformational change by light illumination.
The visible light can convert DHP to the open state CPD and it can
go back to the closed state by heating or UV light. Our experiments
indicate that even in the solid state, the DHP still can be converted to
CPD if the illumination time is long and the power is high enough.
The molecule DHP-ab73 is grafted onto individual DWNT and the
Raman spectra at different conditions were carried out. The results
indicate that the DHP-ab 73 can modify the resonance window of the
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DWNT and can be stimulated by the visible light which is shown
by the change of the Raman peaks. The DHP-ab 73 is suitable to
functionalize DWNTs and make molecular electronic devices. Further
experiments need to be done to study the kinetic characteristics of the
DHP-ab 73 and DWNT hybrids.

As can be seen in these two systems (TPyOs , DHP), either we
have charge transfer or a dipolar effect (respectively), but in both
cases the first observed effect is an enhancement of optical phonons
intensities indicating a strong electronic coupling between the molecule
and the nanotube. the difference is the effective charge transfer in the
case of TPyOs which leads to a frequency shift of optical phonons
indicating a modification on the oscillator strength and interwall in-
teraction as seen on RBLM features.

3.3 role of interwall coupling on optical gating

Up to now we discussed dicrepancies between different molecule/D-
WNT hybrid based transistor, whatever the tube structure is. In the
following, we want to emphasize the role of interwall coupling on
the photo-induced light effect of the TPyOs/DWNT hybrid. From
the last section, we know that TPyOs photo-active molecule can have
an efficient charge transfer to DWNT. We proposed that the dramatic
change of RBLM peak intensity of both walls is due to RBLM reso-
nance window shift caused by the charge transfer from the TPyOs. To
check our assumption, we performed tunable resonant Raman on the
pristine DWNTs and the DWNT/TPyOs hybrids. This method has
been used to determine quantitatively the RBLM resonance window
of the isolated carbon nanotubes and nanotube hybrids.

Since the inner tube is protected from the environment by the
outer tube [208], it is not in direct contact with a working electrode
[114]: any charge effect must be mediated by charge transfer between
the outer and inner tubes. A similar situation exists for the grafting
of DWNTs when the dopant is located outside the DWNTs [209, 210].
These results lead us to emphasize the coupling between the two
DWNT shells and investigate the inter-tube interaction due to a mod-
ification of its electronic environment.

The electronic transition energy determination Eii can be ob-
tained by analyzing the resonance window for each RBLM peak.

Figure 82 shows the RBLM region of the pristine and the grafted
sample measured by tunable excitation laser energy from 750 nm to
820 nm. Two peaks appeared in this region, , one is very intense and
the other one is hard to see since its intensity is very low. Nevertheless
after TPyOS functionalization, the second RBLM peak is enhanced,
which indicates a change in the inter wall interaction. Let’s first dis-
cuss the pristine spectra at 790 nm, the high intensity peak at 262
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Figure 82: The RBLM region of sample C measured by tunable excitation
laser energy in the 750-820 nm range.

cm−1 and the low intensity peak at 157 cm−1 can be observed. By
using the equation 218.5/dt + 15.9 = ωRBLM [133], which has been
proven accurate to calculate the diameter of isolated double wall car-
bon nanotubes, we deduced the diameters of the walls to be 1.54

and 0.89 nm. The calculated inter-tube distance is 0.33 nm, which is
slightly narrower than the graphite distance. So these two peaks can
be assigned to outer and inner tube respectively. We compared the
data of the corresponding Eii to the ones in the Kataura plot and
tried to find the chirality of the tube, but none of the plot matches the
data that we measured for this sample, as shown in Figure 83.

We also tried other models which have been used in the literature
previously for isolated DWNT, for example 228.8/dt + 2.4 = ωRBLM
[112] and the one considering weak inter tube coupling: ωRBLM,1 =
228/dt (nm) ωRBLM,2 = 204/dt+27 [82, 80, 211], none of those equa-
tions got a good match to the Kataura plot. This result is similar to the
results from the Raman spectra of the DWNT with known structure
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by Levshov et al. [82]. All these results, underline that this discrepen-
cies is due to an intermediate or a strong interwall coupling regime
between the two walls. Liu et al. [119] demonstrate that both RBLM
modes have blue shifts compared to corresponding SWNTs. If we con-
sider these blue shift, the inner tube has a possible chirality of (9,1),
but there is still no data match for the outer tube in the Kataura plot.
Liu and co-workers also investigate electronic interactions of both
walls in this strong coupling regime. electronic interactions. They
found that both coupled RBLM oscillations will be resonantly excited
if an electronic transition of either wall matches the excitation photon
energy. Turning to our results, we suppose that in the excitation laser
energy range that we used (750 to 820 nm), only the electronic tran-
sition of inner wall matches the excitation photon energy, the RBLM
peak of the outer tube is observed because of the coupled oscilla-
tions between the two walls. This hypothesis seems reasonnable since
RBLM intensity of the outer wall (ωouter = 157cm−1 ) is much lower
than the RBLM intensity of the inner one (ωinner = 262cm−1 ): the
intensity ratio Iωinner/Iωouter is about 25. Moreover, after graft-
ing, the outer wall RBLM intensity increase by a factor 4 indicating
an enhancement as describe in the previous section but also the ra-
tio Iωinner/Iωouter decrease drastically indicating a change on the
electronic interaction due to a modification of the interwall interac-
tion [119].

Figure 83: The Kataura plot calculated with the extended tight binding
method, including many body corrections [49, 50]; the two rect-
angle is the transitions of the inner and the outer tube, the size
of which are 0.07 nm × 0.01 eV; the horizontal line is the laser
excitation energy of 1.57 eV.

A quantitavive analysis of resonance excitation profile will pro-
vide more insight on this modification of interwall interaction after
grafting. Figure 84 shows the measured Raman scattered intensity as
a function of laser excitation energy. The spectral location of the reso-
nance excitation profiles yield information about the carbon nanotube
electronic structure. The differential Raman scattering cross section
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which can be used to quantify the strength of the measured Raman
scattered signal was used to fit the curve [57, 212, 56]:

dσ

dΩ
= CNph|Me−ph|

2

∣∣∣∣∣ 1√
EL − Eii− iη

−
1√

EL − Eph − Eii− iη

∣∣∣∣∣
2

(25)

where C is a tube dependent constant which includes the photon
energy independent parts of the optical matrix elements. EL is the
laser energy, Eph is the phonon energy, η is the broadening factor of
the curve and related to electronic transition relaxation time. Me−ph

is the e−-ph transition matrix element (we take it as a constant).
Nph = nph + 1 for Stockes scattering andNph = nph for anti-Stockes
scattering (Stockes scattering in our case), nph = 1/(e|Eph|/kT − 1) is
the phonon number. Eii and η can be extracted from the fitting. From
the fitting parameter, we noticed that the fitting E11 values of the
outer wall and the inner wall just have 5 meV difference, whereas the
∆ηouter(after-before) and the ∆ηinner(after-before) are similar value
but opposite in sign. Adding to this, the Intensity ratio : Iouter(before)/Iouter(after)
(=0,26) versus Iinner(before)/Iinner(after) (=2) behave in opposite
way also. All these observations strongly indicate that oscillation cou-
pling between outer and inner tube takes place in this DWNT/TPyOs
system. The RBLM peak of the outer wall is thus observed because
of the inter tube coupling. This phenomenon could be explained by
the energy transfer process, relying on a mechanical energy transfer
between the two tubes as also describe and observed on SWNT small
bundles [213].

Figure 84: Resonance excitation profiles for the inner tube and the outer tube
of isolated DWNT before (black) and after (blue) grafting TPyOs,
which is fit using Equation 25, and E11 is extracted.

Finally, in Figure 84, we also observe a red shift of transition en-
ergy for both inner and outer tube. This transition energy of both the
outer tube and the inner tube have red shifts. The transition energy
shift can explain the RBLM intensity change of sample A and B that
we discussed in the last subsection. From the transport measurement
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comparison of the DWNT before and after grafting TPyOs, we con-
cluded that the TPyOs transfer electrons to DWNT, making the Fermi
energy of the DWNT down shift. We attribute the transition energy
shift in Figure 84 to the electron transfer process. And because there
is no direct contact between the TPyOs and the inner tube, the elec-
tron should transfer from the outer tube to the inner tube. Based on
these results, a schematic electronic structure of the two tubes and
the Fermi level change caused by the grafting effect is deduced in
Figure 85.

Figure 85: Schematic electronic structure of the inner and the outer tubes,
the Fermi level upshift, the blue dash line shows where the charge
transfer from the outer tube to the inner tube may occur. (Figure
deduced from [214])

Figure 87 shows the resonance excitation profiles of sample C
and TPyOs hybrids with and without light illumination. The curves
are fitted by Equation 25.

We can observe that under white light illumination, the mea-
sured transition energy of the outer tube shifts from 1.53 eV to 1.61 eV
(∆Eouter = 80 meV) , and the one of the inner tube shifts from 1.55 eV
to 1.59 eV (∆Eouter = 40 meV). We already know from the transport
measurements that the light induces an effective p-doping process
to the hybrid system. The Fermi level shift direction observed from
the resonance Raman spectroscopy correlated well with the transport
measurement of the optical gating process.

Another important change is that, for the best excitation condi-
tion, the RBLM peak intensity of both the inner and the outer tubes
increased over 8 times under the light illumination. Because under
the light illumination, the TPyOs molecule is excited, thus the energy
transfer process should be involved. The mechanical and the elec-
tronic coupling between the two walls of the DWNT allows the inter

[ March 31, 2016 at 11:19 – classicthesis version 4.0 ]



102 chapter 3

Figure 86: RBLM peaks of sample C and TPyOs hybrids with (bottom) and
without (top) white light illumination.

Figure 87: Resonance excitation profiles for the inner tube and the outer tube
of sample C and TPyOs hybrids with (red) and without (blue)
white light illumination.
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tube energy transfer [213, 215, 216, 119]. So the intensity enhancement
happens to both of outer and inner tubes.

To sum up, we present results of a tunable resonant Raman spec-
troscopy on an individual DWNT and DWNT TPyOs hybrids with
and without light illumination

1. We revealed the important role of mechanical and electronic
coupling between the two carbon nanotube shells.

2. Based on the analysis of the so called RBLM resonant window,
the information of the excitation transition energy is extracted.
After grafting TPyOs, the excitation transition energy have a red
shift, indicating that TPyOs transfer electrons to DWNT. More-
over, for the first time, we show that electrons not only can be
transferred to outer wall, but to the inner one.

3. Under light illumination, the excitation transition energy of the
DWNT is blue shifted. Transport measurements indicate that
light induced an effective p doping transfer to the DWNT and
optical phonons measurement indicate an energy transfer from
the molecule to DWNT. Actually, both measurements are in
agreement with an effective charge transfer, since transport mea-
surement give only information about the fermi level shift and
can not give the information of energy transfer.

3.4 conclusion

In conclusion, we showed that both kinds of chromophores induce
significant signal when coupled to a DWNT. Their light excitation is
therefore detected by both walls of the DWNTs. Moreover, we show
that the signal is strongly dependent on the nature of the DWNT
and more precisely on the coupling strength between its two walls.
This opens the possibility to use hybrid DWNTFETs as optoelectronic
transducers. Because the oxidation states of TPyOs is relatively stable,
it is difficult to switch it back when turning off the light. Thus, in the
next chapter, we will present our work on chromophore-porphyrin,
which is supposed to be more switchable when it functionlized onto
nanotubes.
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4
R E V E R S I B L E O P T I C A L G AT I N G O N R E D O X
M O L E C U L E / G R A P H E N E A N D / O R D W N T H Y B R I D S

In the previous chapter, we showed charge transfer between a redox
chromophore and DWNT FET is efficient. In order to gain a spe-
cific wavelength dependence and reversibility of the signal, we now
turn to a Zinc(II) metalloporphyrin (TPPZn)/ DWNT hybrids. Opti-
cal properties of TPPZn molecule have been studied widely. It has
sharp and narrow absorption peaks in the blue light range, which
can limit the light trigger in a very narrow range in order to meet
specific requirements. We will more discuss light effect and memory
effect on DWNT/TPPZn hybrid FETs in this chapter.

4.1 introduction to the tppzn metalloporphyrin

Porphyrins are a group of ring structure macrocycle organic com-
pounds, composed of four modified pyrrole subunits interconnected
at their α carbon atoms via methine bridges (= CH−). These molecules
allow trapping a single metallic ions in their center, the latter be-
ing weakly bonded and thus exhibiting its ionic properties. Many
fundamental processes in nature rely on exchange with the metal-
lic core of metalloporphyrins such as , for example, chlorophyll for
photosynthesis and heme (the pigment in red blood cells) for oxygen
storage. Porphyrins provide an extremely versatile synthetic base for
variety of materials applications [217]. The exploration of metallopor-
phyrin assemblies as building blocks for tailored materials proper-
ties has grown rapidly during the past decade. Recent applications
of porphyrins for dye-sensitized solar cells have shown high conver-
sion efficiencies [218]. The nonlinear optical properties of porphyrins
are very interesting for the energy transfer with molecular control
[219, 220, 221, 110, 109] and for the potential applications in optical
communications, data storage and electro optical signal processing
[222].

Porphyrins and metalloporphyrins have broad applications as
field responsive materials, particularly for optoelectronic applications.
For example, Zinc(II) metalloporphyrin was used to coat a SWNT net-
work field effect transistor device in order to initiate an electron trans-
fer for light harvesting [104]. Our group reported porphyrin coated
silicon nanowire FETs display a large and reproducible conductance
increase upon illumination [106]. As far as we know, SWNT networks,
fullerene and graphene have been functionalized with porphyrin for

105
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optoelectronic applications, but there is no report on porphyrin func-
tionalized individual nanotubes, especially on DWNTs.

Figure 88(a) shows the structure of the studied porphyrin which
has a single Zn atom in the center of the porphyrin ring. We charac-
terized TPPZn by using both UV-visible absorption spectroscopy and
Raman spectroscopy. The UV-visible absorption spectrum shown in
Figure 88(b) is measured in 5.89× 10−4mol.L−1 TPPZn in Tetrahy-
drofuran (THF) solution.

Figure 88: (a) Chemical structure of the zinc(II) metalloporphyrin deriva-
tive(TPPZn) [223], (b) UV-visible absorption spectra of TPPZn,(c)
zoom in of the absorption spectrum of TPPZn from 450 to 650

nm.

The highest peak at 425 nm is the so called Soret band [224],
while the other small peaks around 556 nm which can also be ob-
served are the Q bands. Such absorption spectrum is typical for por-
phyrins [224, 225, 226].

Figure 89 shows the Raman spectra of TPPZn powder measured
at 488 nm (a) and 532 nm (b). In Figure 89(a), two main peaks at
1356 cm−1 and 1547 cm−1 can be observed. Figure 89 (a) shows
the atom labeling scheme for a metalloporphyrin, we note the vi-
bration between atom α and β as ν(CαCβ), the peak at 1356 cm−1

comes from ν(CαCβ)+ν(NCα) and the peak at 1547 cm−1 comes
from ν(CαCm)+ν(CβCβ) [227, 223, 227]. There is no sharp peak ob-
served in Figure 89 (b), the whole spectrum shows a convex line
shape, a broad peak around 3000 cm−1 can be observed. Since the
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Figure 89: Raman spectrum of TPPZn powder with and without extra light
illumination. The Raman spectra are measured at excitation wave-
length of 488 nm (a) and 532 nm (b) respectively

sample was measured at the 532 nm laser wavelength in the Stockes
process range, the position of the broad peak is 532nm− 3000cm−1 ≈
633nm. We deduce that this broad peak is caused by the fluorescence
of TPPZn for the following reasons: firstly, we know from [228], that
the Zinc porphyrin shows fluorescence peaks at 610 nm and 650 nm,
which are close to the position of the broad peak; secondly, from the
UV-visible absorption spectrum (Figure 88), in the Q band region,
there is a small peak at 621 nm, which corresponds to the position
of the observed broad peak. Therefore, we conclude that when the
sample was measured by the laser wavelength at 532 nm, the Raman
signal is washed out because of the strong fluorescence signal. Un-
der white light illumination, there is no obvious shift of the peaks as
expected from the fluorescence background.

In this section, we gave a brief introduction to TPPZn metallo-
porphyrins and also presented its UV-visible absorption and Raman
characterization, which provide the fingerprint of this molecule. It
will provide a reference for us to study the properties of the graphene
or DWNT/TPPZn hybrids.

4.2 molecular doping associated with the tppzn func-
tionalization of dwnt/graphene

In the last section, we described the UV-Visible and Raman finger-
prints of TPPZn, which is helpful for studying the more complex
graphene or carbon nanotube/TPPZn system. In this section, we will
investigate the physical properties of the hybrid systems. As we dis-
cussed in the previous chapter, graphene was first used to investi-
gate the influence of functionalization in order to get the best ex-
periment conditions and the doping criteria, then we performed the
same experiment protocol onto DWNTs (see chapter 2 for the depo-
sition method). Such experiment plan also allows to compare the dif-
ferences in the doping effect of 2D to the 1D hybrids.
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4.2.1 Charge transfer in 2D hybrids

As we already discussed in chapter 2, the graphene transistor was
made by directly by evaporating Ti/Au electrodes through a sten-
cil mask. We characterized the devices electrically by measuring the
dV/dI as a function of the gate voltage (Vg).

Figure 90: Comparison of the field effect and Raman spectra of graphene to
graphene/TPPZn hybrids, (a) transfer characteristics of graphene
before (black) and after (blue) coating TPPZn, (b) schematic repre-
sentation of the Fermi level shift after TPPZn coating, (c) Raman
spectra of graphene and graphene/TPPZn hybrids, the inset is
the fitting of the D peak of graphene/TPPZn

Figure 90 (a) shows the transfer characteristic curves of graphene
before and after TPPZn functionalization, which show that the charge
neutrality point shifts from 12.5 V (hole doping) to 2.4 V, which
points out an n-doping upon functionalization. The n-type doping of
graphene suggests an electron transfer from TPPZn to graphene due
to functionalization the charge transfer can be attributed to the en-
ergy level alignment of graphene and TPPZn [229, 230]. Because the
chemical potential of TPPZn (-4.5 eV) is higher than that of graphene
(lower than -4.6 eV) [231, 232], the chemical potential of TPPZn is
lowered when the two materials are brought into contact and the elec-
trons tend to transfer from TPPZn to graphene. The charge transfer
consequently causes both n-type doping in graphene and a positively
charged region near the interface at TPPZn side [107]. Moreover, the
positively charged region results in a built-in electric field at the in-
terface that points toward graphene. According to ref. [63], the two
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following equations are used to calculate the decrease of charge car-
rier density and the Fermi level shift.

∆n = Cg∆V/e (26)

where n is the charge density, Cg is the capacitance per unit surface
between graphene and the substrate,

Cg =
ε0εr

d
(27)

where d = 285nm in our case so as to get optimized optical contrast
for graphene [233]

Cg = 115aF/µm2 and ∆n = 7.8× 1011 cm−2.

EF(n) = −sgn(n) hvF
√

(π|n|) (28)

where vF = 106 m.s−1 is the Fermi velocity. We obtain the charge car-
rier density change is 7.8× 1011cm−2 and the Fermi level shift is 54.3
meV. The amount of charge transfer is of the same order of magnitude
and even a little higher than the Pt-porphyrin coated graphene sys-
tem measured by Li et al. [234]. It indicates that the drop cast method
for functionalizing zinc porphyrins onto graphene is efficient and can
be extended to carbon nanotubes.

The Raman signature of graphene hybrids was also investigated.
As shown in Figure 90 (c), the G and 2D peaks can be easily observed.
These two peaks were fitted into two single Lorenztian peaks, indicat-
ing that the sample is monolayer graphene [235]. After TPPZn coat-
ing, several changes are visible on the Raman spectra. The first one
is that several small peaks appear in the D band region, as shown in
the inset of Figure 90 (c). We assign these peaks to a mixed signal
from the molecule peaks and the DWNT D peak. Still the D peak is
not very high: the intensity ratio of D peak to G peak is 0.14, which
means that only a small amount of defects are induced in the func-
tionalization process. The G peak shifts from 1582.6 to 1584.9 cm−1,
and the FWHM increases from 9.9 to 14.4 cm−1, which are the Raman
signatures of doping in graphene [167]. Here, the doping comes from
the molecule grafting, we can estimate the doping level by compar-
ing the Raman G peak shift with the electrostatic doped graphene, as
shown in Figure 92. The black and blue lines stand for the G peak
position of pristine graphene and graphene/TPPZn hybrids respec-
tively. The molecule doping induced Fermi level shift in graphene is
about 40±20 meV, which correlates well with the electrical transport
measurements estimation of 54.3 meV as we discussed in the last para-
graph. One possible effect on the Raman shifts of the mode could also
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be the influence of pressure induced by the molecules onto graphene.
Lee et al. have shown that it is somehow possible to disentangle the
respective influence of doping and induced strain by looking at the
evolution of the G and 2D modes frequencies [236, 237]. Their inter-
pretation relies on the fact that these two modes are highly sensitive
to the influence of doping and strain through the Grüneisen param-
eters. For a constant doping (resp. strain) in graphene, one expects a
linear dependence of the 2D to G frequency ratio according to:

(
∆ω2D
∆ωG

)doping = 0.36± 0.05 (29)

(
∆ω2D
∆ωG

)strain = 2.2± 0.20 (30)

This provides a new reference system based on strain and doping, as
shown on Figure 91.

If we translate the shifts measured on Figure 90 c) spectra in this
new reference system, we obtain:

∆ω2D
∆ωG

= −1, 045 (31)

which corresponds to a shift of -3.95 unit vectors along the direction
of doping at constant strain and 1.65 unit vectors along the strain
at constant doping one. This means that functionalization drives the
graphene in a less p-doped region along with higher compressive
strain, as expected from such molecular decoration.

Figure 91: The effects of hole carriers with varying density n on (ωG, ω2D)
of graphene, figure taken from [236].

To sum up, in this section, we discussed the charge transfer
in the graphene/TPPZn hybrid FETs by the cross study of optical
phonons and transfer properties of pristine monolayer graphene and
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Figure 92: Comparison of the field effect and Raman spectra of graphene to
graphene/TPPZn hybrids

graphene/TPPZn hybrid FETs. By a simple drop cast method, TPPZn
can be coated onto the graphene surface and also transfer charges
to graphene, about 7.8× 1011cm−2 charges transfer from TPPZn to
graphene, which induced 54.3 meV increase of graphene Fermi en-
ergy. The drop cast method for functionalizing Zinc porphyrins to
graphene is efficient, we can extend the method to carbon nanotube
functionalization. In the next section, we will use the same method to
study the charge transfer between DWNTs and TPPZn.

4.2.2 Charge transfer in 1D hybrids

Since we already confirm charge transfer between TPPZn and graphene,
we thus expect that there should be similar charge transfer effect be-
tween TPPZn and DWNTs. We then functionalize the isolated DWNT
FETs with TPPZn and investigate the charge transfer in the hybrid
system.

Figure 93: (a) SEM image of TPPZn grafted isolated DWNT transistors, the
scale bar is 1 µm, (b) Raman spectra of the DWNT bundle and
isolated DWNT transistor.
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Figure 93 (a) shows a SEM image of the functionalized isolated
DWNT with TPPZn molecules. This is a typical DWNT FET that we
made, the length of which is around 1 µm. The molecule is not ob-
served in this image, indicating that the thickness of the molecule de-
posit is very small. Figure 93 (b) shows the Raman spectra of DWNT
bundles from the DWNT powder before dispersion (pink) and the
bare DWNT transistor before molecule deposition (black), measured
using a 532 nm excitation wavelength. From the pink line, two groups
of peaks can be observed in the RBLM region (100 to 400 cm−1 ). The
first group contains two main peaks at 160 cm−1 and 192 cm−1, and
the second group contains two main peaks at 270 cm−1 and 320 cm−1.
The diameter of the inner and the outer walls of the pristine DWNT
bundles can be estimated by the equations mentioned in [114]. The
corresponding two main outer wall diameters are 1.53 nm (159 cm−1)
and 1.22 nm (191 cm−1), the two main inner wall diameters are 0.89

nm (270 cm−1) and 0.73 nm (320 cm−1). For the bare DWNT transis-
tor (black), two peaks can be observed in the RBLM range. We assign
the peak at 302 cm−1 to the silicon substrate, and the peak at 273

cm−1 to a RBLM peak from the DWNT transistor. Here we want to
emphasize that because most of the measured DWNTs are individ-
ual ones, it is very difficult to observe the RBLM peaks, since it has
much less opportunity to be resonated by the laser with single wave-
length. For the TPPZn functionalized DWNT, the RBLM peak could
be observed only in 10% of the samples. After the chemical func-
tionalization process, around half of the transistors were of infinite
resistance. We will now focus on the sample of Figure 93 as it ex-
hibits both the vibrational (RBLM peak) and the electrical signal. The
combination of Raman and transport measurements provides more
comprehensive information on the DWNT and the hybrid transistors.
From the RBLM peak position, we estimate the diameter of this ex-
cited nanotube to be about 0.9 nm. Compared with the source DWNT
bundles, we assign this RBLM peak to the inner wall of the isolated
DWNT. We used Lorentzian equation to fit this peak, the full width at
half maximum (FWHM) of the RBLM is only 4.7 cm−1 (close to the
instrumental function of our spectrometer). Usually, the linewidths
of the RBLM peak obtained from DWNT bundles are larger (from
11 to 27 cm−1). Considering the other reported isolated single wall
carbon nanotube and individual DWNT dispersed onto a silicon sub-
strate which have FWHM of RBLMs larger than 7 cm−1 [133], the
RBLM linewidth we measured on this tube is much smaller. This in-
dicates that this RBLM peak comes from a single inner tube. Since
the smallest RBLM linewidth values (the natural linewidths) occur
under the strongest resonance conditions where Elaser − Eii ≈ 0, for
both isolated metallic and semiconducting SWNTs [194, 14], such a
small linewidth indicates that this sample meets the strong resonance
requirement at 532 nm.

By placing the tube diameter and the excitation laser energy
Elaser on the Kataura plot, the inner tube falls into the E22S region,
indicating it is a semiconducting one. Moreover, in the G peak region,
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Figure 94: (a),(b) Raman spectra of isolated DWNT before(black) and af-
ter(blue) grafting TPPZn, measured at 532 nm, (c) the position of
the inner tube in the Kataura plot, (d) Raman spectra of isolated
DWNT before(black) and after(blue) grafting TPPZn, measured
at 488 nm.

as shown in Figure 94 (a), a metallic like BWF shoulder appears. Thus
there is a metallic tube in the DWNT transistor, which can only be the
outer tube. Therefore, this tube has a S @ M configuration.

At first, we investigated the Raman spectra of the isolated DWNT
before and after grafting TPPZn, as shown in Figure 94. For ease of
comparison, Raman spectra have been normalized to the intensity of
the Si peak at 520.7 cm−1, and the intensity was expanded by a factor
of 4 for the bare DWNT transistor for the sake of visibility. Because
a BWF line shape is observed, the G peak region was fitted into 3

Lorenztian peaks and one Fano-like peak. The fitting parameters are
shown in Table 6.

Figure 95: Fitting of 2D peak of pristine DWNT and DWNT/TPPZn.
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DWNT DWNT/TPPZn DWNT/TPPZn DWNT/TPPZn
dark light on light off

ωG1 (cm−1) 1591.6 1589.2 1589.8 1589.5

ΓG1 (cm−1) 6.4 9.0 8.9 8.7

ωG2 (cm−1) 1580.9 1582.0 1580.1 1580.2

ΓG2 (cm−1) 4.2 4.4 3.1 3.8

ωG3 (cm−1) 1574.2 1571.8 1571.9 1571.1

ΓG3 (cm−1) 9.0 8.0 8.0 10.6

ωFano (cm−1) 1527.6 1521.5 1515.8 1513.2

ΓFano (cm−1) 99.3 106.1 64.2 81.7

Q -2.3 -3.9 -3.8 -5.4

ωRBLM (cm−1) 273.1 273.8 274.0 274.0

ΓRBLM (cm−1) 4.7 3.2 3.9 3.9

IRBLM 0.03 0.21 0.13 0.15

IG1 0.035 0.20 0.10 0.13

ω2D1 (cm−1) 2628.9 2624.8 2621.7 2622.2

Γ2D1 (cm−1) 43.5 31.7 32.2 32.2

ω2D2 (cm−1) 2681.1 2672.1 2668.9 2669.2

Γ2D2 (cm−1) 45.2 28.3 36.7 31.7

Table 6: Peak fit summary for the spectra measured at 532 nm.

The Raman spectra showing several evidences for the charge
transfer effect:

1. Fluorescence quench: the Raman spectrum of TPPZn powder
measured by 532 nm laser shows no visible Raman peaks due
to the high fluorescence background. But once the molecule is
grafted onto DWNT, the fluorescence signal is not observed at
all, on the contrary, the Raman signature of the TPPZn appears.
The fluorescence quenching of organic molecule or DNA by
carbon nanotube or graphene were observed by many groups
[238, 239, 240, 241, 242], which is explained by the charge trans-
fer between the nanotube or graphene and the molecules. So,
in our case, the fluorescence quenching is also attributed to the
charge transfer between the DWNT and the TPPZn .

2. Shift of G peak: the pristine spectrum shows four peaks, the
two highest are assigned to G+ components of each two walls
and the two lowest to the G− ones. After doping with TPPZn,
ωG1 shifts from 1591.6 to 1589.2 cm−1 ( δ = −2.4cm−1 ), ωG2
shifts from 1574.2 to 1571.8 cm−1 ( δ = −2.4cm−1 ). Comparing
with the G mode shift for molecule-induced doping of SWNTs
[60, 243] and graphene [167], we infer that the outer wall of
DWNT was n-doped, because the G peaks down shift. TPPZn
transfer charges to DWNT, which caused the shift of Fermi level.
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To roughly estimate the shift of Fermi energy, we compare the
G peaks’ shift to the electrostatically induced doping, as shown
in Figure 96. We can clearly see that the Fermi energy change is
20 meV to 43 meV. If we use the equation

∆EF =
 h

2
VF∆n (32)

to calculate the increase of charge carrier density, we get ∆n is
61 to 132 e− /µm.

3. Shift of RBLM peak: the RBLM peak shifted from 273.10 cm−1

to 273.78 cm−1 (δ = 0.68cm−1), which can be also caused by the
charge transfer. H. Farat et al.detected the RBLM peak shift with
the gate voltage and Fermi level change in electrochemically
doped metallic SWNTs [244]. In our case, the RBLM peak has a
slight upshift: the Fermi level is moving away from the neutral
point, meaning the tube is doped. From ref. [245] and our own
data of resonance Raman spectra of TPyOs/DWNT hybrids (see
chapter 3), we know that the doping from the molecule can
cause the shift of RBLM resonance window. The experimental
resonant window range of RBLM peaks of SWNTs is typically
ranging from 40 to 63 meV [246]. The reported resonant win-
dow of RBLM peak for isolated DWNT is even as low as 30 to
40 meV [133]. Furthermore, the RBLM resonance window that
we measured for a inner tube is around 21 meV, and since we
still can observe the RBLM peak after the coating of TPPZn, the
resonant window of this RBLM peak did not shift a lot. So the
doping level is less than 40 meV, which is in accordance with
the doping level analysis from the shift of G peaks as we dis-
cussed previously. It is moreover noteworthy that the RBLM
shifts due to doping though it corresponds to the inner tube
with a metallic shell as the outer wall. This points to the fact
that it is possible to probe the doping from a weakly coupled
molecule (since not covalently bound) to another shell. In the
case we show here, only one RBLM is visible, meaning the me-
chanical coupling between the walls is weak, while charge trans-
fer is still visible between the walls. Last but not least, metallic
walls are expected to screen the electrostatic environment of the
inner wall, but since the latter is doped, it transfers the environ-
ment change towards the inner wall.

4. A global enhancement of the intensity can be observed. The G
peak intensity ratio of DWNT before and after coating TPPZn
I+Gbefore/I+Gafter reaches 5.71, which is another evidence of the
shift of Raman resonance window induced by the charge trans-
fer between TPPZn and DWNT.

5. Figure 95 shows the Lorenztian fitting of the Raman 2D peak of
pristine DWNT and DWNT/TPPZn transistor. Each curve can
be fitted into two peaks, which originate from the two walls of
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the DWNT [133]. We can observe that the intensity ratio of the
first to the second peak I2D1/I2D2 increases a bit, from 2.5 to 6.5,
which also can be explained by the Raman resonance window
shift caused by the doping from the molecule. In the case of
graphene, we analyzed the peak shifts in terms of strain and
doping. Such analysis would be highly promising for nanotubes.
However our situation is rather complex since we can hardly
attribute each mode to a specific wall and more investigation
would be required to check whether analogue analysis could be
implemented on nanotubes.

Figure 96: Estimation of the TPPZn doping induced Fermi energy change
of DWNT. The black and blue lines stand for the G+ peak po-
sition before and after coating TPPZn respectively, the colorful
dots are extracted from ref. [65, 64, 63, 62, 67], which are the G
peak frequency VS. Fermi level shift in the electrostatically doped
graphene (a) and SWNT (b).

Over all, the Raman spectra of DWNT/TPPZn show the direct
evidence of charge transfer from TPPZn to DWNT, which induced
20 to 43 meV increase of Fermi energy of DWNT, in other words, the
charge carrier density change is 61 to 132 µm−1. Next, we will further
demonstrate the charge transfer process from another point of view,
which is the electrical transport measurement.

Figure 97 shows the transfer characteristics curves of isolated
DWNT (black) and DWNT/TPPZn hybrid (blue) FETs. The bare DWNT
FET exhibits p-type field effect characteristics from doping with air
exposure. The DWNT FET has a relatively low resistance at the off
state (63 kΩ) and the on/off ratio is about 6.8. Cabana et al. demon-
strated that transfer characteristics show features from the contribu-
tion of both walls [247]. Based on the method of Cabana et al., we
dedicate that this tube is a mixture of metallic and semiconductor nan-
otubes, which is in agreement with the result of Raman spectra. After
porphyrin coating, the DWNT exhibits a conductance drop of 80%,
which could be the result of the addition of charge scattering sites dis-
tributed randomly along the nanotube [104]. The second change is an
increase of the on to off ratio from 7 to 65, which may be attributed to
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the fact that porphyrins reduce conduction along the metallic outer
wall which reveals the semiconducting behaviour of the inner one.
An increase of 4% in the hysteresis width is also observed. Ong et al.
have shown direct evidence that the charge injection around CNT is
responsible for the hysteretic behavior of CNT FETs using SiO2 as the
gate dielectric [248]. So the increase of the hysteresis can be attributed
to the phorphyrin coating acting as additional charge traps in the
DWNT vicinity. We also observe that the addition of porphyrins in-
troduces a 4.5 V shift in the threshold voltage towards negative gate
voltage. The direction of the shift is in agreement with the results
of Hecht et al. [104]: in SWNT hybrid devices, changes in threshold
voltage are attributed to charge transfer of the functionalized donor
to the acceptor molecule [249, 250]. The electron-donating molecule
leads to a shift towards negative gate voltages. In our case, the shift
caused by the charge transfer from TPPZn to DWNT correlates well
with the Raman spectra in Figure 94, and also with the graphene/TP-
PZn system, as we discussed in the last section.

Figure 97: left: transfer characteristics of isolated DWNT (black) and TPPZn
grafted DWNT (blue) FETs, right: the schematic representation of
the Fermi level shift after grafting TPPZn.

From the cross comparison of electron transport and vibrational
characteristics, we can conclude that deposited TPPZn transferred 61

to 132 µm−1 charge to the connected DWNT, the DWNT Fermi level
shift is around 20 to 43 meV.

The charge tranfer can be more easily monitored at low tempera-
ture where the Coulomb blockade effect takes place and the transfer
of charge becomes discrete (which can be observed from the transfer
characteristic curve). This effect can be implemented for single elec-
tron memories as proposed in ref. [94]: as shown in Figure 98, which
shows the principle of a single electron flash memory. This geometry
is widely used in its classical non quantized version. In the vicinity of
the conduction channel of a field effect transistor is a floating island
used as a memory point. The charge injection in this island is con-
trolled by a local electrostatic gate. The electric field induced by this
gate controls the transfer of electrons between the channel and the
memory point, which allows one to store information in the memory
cell. In the case of the single electron memory, information is encoded
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by the transfer of a single electron in the floating island the low ca-
pacity of which induces selectivity on the number of charge carriers
by Coulomb blockade. In ref. [94], the gold nano particle is used to
trap the charges; in our case, we expect the TPPZn molecule instead
of gold induces the transfer of charges as a real molecular dot.

Figure 98: Principle of the single electron flash memory, figure reproduced
from [251].

The sample was cooled down to 10 K in a He4 circulation cryo-
stat. Figure 99 (a) shows the transfer characteristics of the DWNT
and TPPZn hybrid FET in dark. The characteristics curve exhibits
similar field effect as at room temperature along with additional fea-
tures visible as reproducible conductance steps which are regularly
spaced in Vg and log dependent in dI/dV directions with a hys-
teretic behaviour. The regular field effect we observe indicates that
the nanotube still behaves as a classical field effect transistor while
the observed steps superimposed on it are signatures of single elec-
tron transfer from a trap in the Coulomb blockade regime. Such steps
are usually not observed for non-functionalized nanotubes and we
attribute them to signature of single charge transfer between the nan-
otube and one well-coupled charge trap [251]. The transfer charac-
teristics was differentiated so as to extract the exact position of the
steps. We observe double peaks in the derivative of each step which
are plotted on Figure 99 (c) for each branch of the hysteresis (noted as
forward and backward). The gate dependence of these peaks is linear,
∆ Vg = 0.64 ± 0.04 V, as expected for a conductance channel coupled
to a trap. These regularly steps are not from the Coulomb blockade of
DWNT because the conductance in the step appearance region is still
high, with no range of blocked current, which further illustrates that
the steps come from the Coulomb blockade behavior of the trap. Fur-
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thermore, these steps are regularly spaced in gate voltage meaning
there is no confinement energy involved but only classical Coulomb
blockade from charge repulsion: the gate voltage spacing refers only
to the charging energy of the island. This excludes that the trap is
realized by a single molecule which would exhibit a more complex
electronic level structure. The exact nature of the trap is difficult to
infer, but it could be a cluster of TPPZn molecules as the ones ob-
served in AFM (Figure 100). Furthermore, the steps are also of same
height in semi-log scale: they originate from sharp offsets of the field
effect of the transistor since, in the threshold region, the CNFET has
an exponential response. For this reason, quantized charging of the
trap seems to be the origin of these steps.

Figure 99: The conductivity of DWNT/TPPZn hybrids versus gate voltage
at 10 K. The curve is plotted at Vds = 1 mV (AC) for opposite
gate sweeps of ± 0.1 V/s, (b) shows the derivative curve of (a), (c)
shows the position of each step along with the associated linear
fit.
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Figure 100: AFM image of one TPPZn coated DWNT FET.

A simplified model was used to explain the charge transfer pro-
cess: a capacitive equivalent circuit is shown in (Figure 101). The
molecule can be seen as a complex series of tunnel junctions referred
to as multiple tunnel junction (MTJ) [252] with the capacitance of CM.

Figure 101: Capacitive model of the hybrid FET at low temperature, (a) cir-
cuit of multiple tunnel junction (MTJ), (b) sketch of molecule/-
nanotube hybrid.
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Cgc stands for the coupling between the back gate and the DWNT.
In Figure 99 (a), the step parameters ∆Vw give the information of
charge quantity, which will be discussed in the following paragraph.

∆Vw is controlled by the back gate and refers to the steps appear-
ing for each quantized charge transfer, if we assume that the single
tunnelling region was achieved at 10 K, then

CM∆Vw = e (33)

from Figure 99, we can obtain that ∆Vw = 1.56V , therefore, CM =

0.3aF.

CM can also be calculated through a simplified two panel model,
as it shown in Figure 101,

CM =
ε0εrdNTdm

d
(34)

Through this formula, we can get dm ≈ 10nm, which correlated
well with the AFM image.

In the other hand, if we calculate the charge energy through the
following equation,

Ec =
e2

2CΣ
(35)

where CΣ is the self-capacitance of molecule,

CΣ = 4πε0εrr = 1.7aF (36)

Ec = 50meV , the thermal fluctuation energy Ethermal = KBT =

0.86meV , with T = 10K. Therefore, Ec > Ethermal, which also sup-
ports our assumption of single electron tunneling in our system. In
a word, the result of electrical transport measurement is consistent
with a model of classical Coulomb blockade (without quantum con-
finement).

To sum up, we did the transport measurement of DWNT and
TPPZn hybrids in low temperature (lower than 10K). The regularly
spaced steps are observed along the typical transfer characteristic
curve of DWNT which can be measured in room temperature. The
stairs are the signature of the Coulomb blockade of a trap coupled to
carbon nanotube. Quantized electron transfer happens between trap
and the DWNT. Because what we are using here is a chromophore,
we expect it can be controlled optically instead of electrically. In ad-
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dition, as we discussed in the last chapter, with the help of light, the
optical sensitive molecule can induce the optical gating effect in both
graphene and CNTs. In the next section, we will study the optical
gating effect of TPPZn and nano carbon hybrid FETs.

4.3 optoelectronic response of the hybrid fets

In the last chapter, we realized optical gating on the DWNT/TPyOs
hybrid transistors; in this section, we not only use the same method to
study the optical gating on the graphene/TPPZn and DWNT/TPPZn
FETs, but also to perform wavelength dependent experiment, taking
advantage of the molecular light absorption spectrum. Furthermore,
as it has already been probed in the last section, the DWNT/TPPZn
can be used for single electron transfer controlled by the back gate. In
this section, we will use the optical gate instead of the electrical one
to study the single electron transfer.

4.3.1 Optical gating of graphene/TPPZn hybrids

We use the same graphene/TPPZn sample from the last section, the
transfer characteristic curves of pristine graphene and graphene/TP-
PZn hybrid FETs were shown in Figure 90. We demonstrate that TP-
PZn induces n-type doping to graphene. The equipment that we used
for optical gating is described in Figure 42 (b) (see chapter 2): in the
Desert Cryogenics probe station, light is shone on the sample through
an optical window of the probe station.

Figure 102 shows the transfer characteristics of graphene/TPPZn
hybrid FET measured in dark (blue), under white light (100 W/m2)
illumination (red) and after switching again the light off (green). All
data are taken in vacuum at room temperature and at a constant
drain-source voltage of 50 mV. It is obvious that under light illumina-
tion, the Fermi neutral point shifts from 6.7 V to 12.2 V, thus, the sam-
ple exhibits a large p-type photodoping effect. One has to note that
we work in a wavelength range outside the absorption band of silicon
to avoid the creation of free carriers in the substrate. By using Equa-
tion 26 and Equation 28, we estimate the photo induced carrier con-
centration in this sample is 4.2× 1011cm−2, and the graphene Fermi
level shift is 29.5 meV. After turning off the light, the Fermi neutral
point shifts back slowly (in about 24 hours, green curve), revealing a
reversible photoresponse process. The inset of Figure 102 shows the
Fermi level change when turning on and off the light. The shift di-
rections are the same as for graphene-chlorophyll hybrids [107], and
also the same as for porphyrin coated SWNT films [104].

We also examined the photoresponse dynamics revealed by the
time dependent measurement of the current. Figure 102 (b) shows
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the bias current change of the sample for a sequence of on and off
periods of irradiation. In the hole conduction regime (Vg = 0 V), the
device exhibits a positive gain in current with photoexcitation and
goes back to the previous state after the illumination shuts off. The
time constant for the rise of the conductance under light illumination
is about 1 hour and the time for the decay of the current is about
24 hours for this sample. This is much longer than other reported
graphene hybrids which usually exhibit few milliseconds timescales
[107]. There are several possible reasons. Firstly, this graphene sam-
ple is of millimeter size, which is very large compared to the usu-
ally micrometric reported graphene samples. A lot of charges can be
trapped on the large graphene surface or by the molecule on top of
graphene. Secondly, the SiO2 substrate might trap a lot of charges,
causing the long charge separation time, as proposed in ref [105] and
[253]. In addition, it could be caused by the weak interaction between
the graphene and the TPPZn molecule, considering the π-π stacking
of TPPZn and graphene instead of the covalently interaction. Such
weak coupling would lead to large molecule/nanotube capacitances
and slow relaxation.

We propose a charge transfer mechanism in this graphene and
porphyrin hybrids. At first, the TPPZn is excited by shining light
which creates electron-hole pairs. Holes can be transferred to graphene
which leads to the observed p-doping upon light illumination. The
molecules trap the negative charges which are then slowly relaxing
after light illumination is switched off. As we discussed before, the
charge carrier density change is 4.2× 1011cm−2.

The photo-induced charge transfer can also be detected through
Raman spectroscopy. Figure 103(a) shows Raman spectra of graphene/TP-
PZn measured with and without external white light illumination.
The graphene G peak and 2D peak can be easily observed. Peaks are
fitted by the Lorentz function. Before light illumination, the graphene
G peak is observed at 1582.6 cm−1 with the FWHM = 14.4 cm−1 and
the 2D peak at 2672.9 with the FWHM = 26.4 cm−1. After light illu-
mination, both the G and the 2D peaks are broadened and upshifted.
The G peak shifts to 1583.5 cm−1, the FWHM is 15.9 cm−1; the 2D
peak shifts to 2674.8 cm−1, the FWHM is 25.2 cm−1. The upshift and
the broadening of the G and the 2D peak are caused by the charge
transfer [176, 62, 254, 255], which in this case, originates from the
light induced charges in the hybrid system. By comparing the Raman
G peak shift to the electrostatically doped graphene, we estimate that
the Fermi level shift of graphene is 25±10 meV, which correlates well
with the electrical transport measurements.

We observe that the Raman response change of the TPPZn molecule
is much stronger during light illumination and furthermore evolves
in time. As shown in Figure 103 (b), during the white light illumi-
nation, a series of Raman spectra are captured at different light il-
lumination duration: the black, red, blue, and olive curves are the
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Figure 102: (a) Transfer characteristics of graphene and TPPZn hybrid FET
measured in dark (blue), under white light (power: 100 W/m2)
illumination (red) and light off (green), the sample is measured
by a lock-in system (b) source-drain current record of a graphene
and TPPZn hybrids FET at Vds = 50 mV, Vg =0 V. Upon illumi-
nation (red shaded periods) the conductance of the device is
largely and reproducibly enhanced.

spectra measured after 5, 29, 53 and 54 seconds’ illumination, respec-
tively. As far as the accumulation time is only 1 second, the signal to
noise ratio is much lower than for usual Raman spectra. The charge
transfer dynamics can be observed from the change of the G peak
and the molecule peaks. The curves in Figure 103 (b) are fitted by the
Lorenztian function, the summary of the fitting results is presented
in Table 7. There are several peaks from 1300 to 1560 cm−1 that can
be assigned to the molecule peaks [227]. The fitted G and molecules’
peaks frequencies are plotted in Figure 104. First, the G peak shifts
from 1583.3 cm−1 after 5s to 1584.5 cm−1 after 54s light illumina-
tion. Meanwhile, at the fifth second, no peak can yet be observed
in the molecule peak range. At the 29th second, the peaks at 1520.7
and 1549.2 cm−1 appear and at the 54th second, two more peaks ap-
pear at 1457.5 and 1492.5 cm−1. Based on reference [227], the peak at
1457.5 cm−1 comes from v(CmCα)sym and 1492.5 cm−1 comes from
v(CαCm) + v(CβCβ) vibrational modes of TPPZn (see Figure 88 for
the position of the atoms), meaning that the molecule modes become
progressively visible upon light exposure. The dramatic enhancement
and shifts of the Raman peaks of the molecule can be caused by the
charge transfer between the molecule and graphene, or by the con-
formational change of the molecule. Because the molecule shift (over
than 56.0 cm−1) is much bigger than the G peak shift (1.2 cm−1),
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Figure 103: (a) Raman spectra of graphene and TPPZn measured with (red)
and with out (blue) external white light illumination, excitation
laser wavelength is 532 nm. (b) series Raman spectra measured
at different light illumination time, the black, red, blue, olive
curves are the spectra measured at the 5th, 29th, 53th and 54th
second, respectively, during the white light illumination, the ac-
cumulation time is 1s, the grating is 1800/mm

we suppose that the molecule is undergoing conformational change
rather than charge transfer during the light illumination. We also no-
ticed that the dramatic peak shift happens only in the first minute of
the light illumination, therefore, we deduced that after 1 minute, the
system achieves an equilibrium state.

Figure 104: Raman peak evolution with time during white light illumina-
tion, left: graphene G peak, right: TPPZn peaks

To sum up, we investigated the photo response in the graphene
and TPPZn hybrids, the results shows that there is efficient light in-
duced changer transfer happened between the graphene and TPPZn
molecule, giving rise to the Fermi level down shift of the graphene
and the increase of the bias current. The charge transfer is reversible,
after tuning off the light, the hybrids went back to the original state.
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The charge transfer process was further proved by the Raman spectra
of the hybrids under the white light illumination through tracking
the graphene and TPPZn Raman peaks’ shift. From the transfer char-
acterisation, we obtained the graphene Fermi level shift is 29.5 meV,
which correlates well with the result of Raman spectroscopy.

4.3.2 Optical gating and memory effect of DWNT/TPPZn

4.3.2.1 Light effect on DWNT/TPPZn FETs at room temperature

In the last section, we investigated the light induced charge trans-
fer in the graphene/TPPZn hybrid FETs, in this section, we use the
same method to study the light effect on DWNT/TPPZn hybrids. At
first, we investigated the light induced threshold voltage shift during
the white light illumination on 16 semiconducting DWNT/TPPZn hy-
brid FETs. The statistics of threshold voltage shift ∆Vth are shown in
Figure 105, among which, 13 FETs (81.3%) show positive shifts. This
means most of the DWNT transistors undergo p-doping under white
light illumination. In order to generalize our findings, we also made
the functionalized DWNT FETs with H2TPP, which is another kind
of porphyrin molecule without metal ion inside. 9 among 11 FETs
(81.8%) show a positive shift of the threshold voltage, similar to the
DWNT with TPPZn molecule, indicating that the porphyrin group
more than the metal ion in TPPZn plays an important role in the
light induced charge transfer process.

Next, we used the laser at two different wavelengths, 457 nm and
555 nm to check the wavelength dependence of the threshold voltage
shifts.

Figure 106 (c) shows the transfer characteristic curves of DWNT
and TPPZn hybrid transistor with and without 555 nm laser illumi-
nation. A shift of threshold voltage can be clearly observed. In the
mean time, the shift of Fermi neutral point (Vn) can also be observed
because this tube shows an ambipolar behaviour. The Vn has 1.3 V
up shift, from 23.4 V to 24.7 V which means we realize the optical gat-
ing effect on the hybrid transistors. But if we change the laser wave-
length to 488 nm, which is not in the absorption range of the molecule,
the change of threshold voltage can hardly be observed (<0.2 V), as
shown in Figure 106 (c). This indicates that the optical gating effect
is related to the absorption peak of the molecule. It gives the direct
evidence that the molecule instead of the nanotube is excited and
transfers the charges to the DWNT, which leads to the optical gating.
TPPZn acts as a wavelength dependent optical gate.

Since the device is very sensitive to light at 555 nm wavelength,
we observed "‘fast changes"’ (in the 100s range) of the resistance when
shining the light at Vg = 22 V, as shown in Figure 107(b): the con-
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Figure 105: Statistics of the shift of threshold voltage in the DWNT/H2TPP
and DWNT/TPPZn hybrid FETs during white light illumina-
tion.

Figure 106: (a) Q bands of the absorption spectra of TPPZn, measured in TP-
PZn/THF solution: the blue and green colors point out the two
wavelengths that were used for the optical gating experiments;
transfer characteristic curves of DWNT and TPPZn hybrid tran-
sistor measured in vacuum at 300 K in dark and under 475 nm
(b) and 555 nm (c) laser illumination, the laser power is 2 mW.

ductance did not completely return to its initial value when turning
off the light. We tested over 20 samples, and only one of them went
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back to the previous state after 2 days in ambient condition. This
semi-permanent charged state is a metastable state [256], which is
caused by deeply trapped electrons in organic materials [257, 258].
Unlike single-crystalline inorganic semiconductors, organic materials
usually exist in an amorphous state, which inherently creates a large
number of trap sites. This effect can be used to make memory as
long as we find a way to "erase" it [259]. Actually, we are performing
an ’optical writing’ process to make the molecule trap the charges.
It is though difficult to detrap them optically. It is described in ref.
[257, 105] that a strong external electrical field is needed to do such
an "erase step". This means we need to make an electrical erase step to
make the system go back to the initial state. Figure 107 (a) shows the
several steps necessary for the electrical erasing. A full write-erase cy-
cle sets as follows: at first, we measure the resistance in dark when ap-
plying a 22 V back gate, which is around 20 kΩ (black). Then the light
is turned on, after a few seconds, the resistance decreases to 17 kΩ,
the optical writing step is complete (green), when the light turned off,
the resistance does not change. Next, -40 V back gate is applied for
adding a large electrical field, this step last about 150 seconds (pur-
ple). In order to avoid the influence of the hysteresis, we then apply
30 V back gate voltage (blue). At last, the back gate is tuned from
30 V to 22 V, the resistance goes to 22 KΩ which is slightly higher
than before. We consider that the system goes back to the previous
state, the electrical erasing step is finished. Figure 107 (b) also shows
that the ’optical write’ and the ’electrical erase’ step is reversible, the
process is repeated many times. We noted that the resistance change
is higher and higher. Here, we have two explanations:

1. Firstly, because of the contaminants on the silicon substrate or
other charge impurities around the DWNT/TPPZn devices, the
devices is not originally in the ground state. When we apply a
back gate of -40 V, under the drive induced by the external elec-
trical field, the charges induced by the light illumination and
the intrinsic charge impurities can both be removed. Because
of the hysteresis of the back gate induced electrical field, one
needs to apply several cycles to settle all the charge impurities.
We expect that at one point the traps are saturated and the re-
sistance change between the ground state and the excited stated
becomes constant.

2. Secondly, as discussed in ref. [258], the density of deep traps can
be amplified due to a lattice distortion in an organic layer. And
from Figure 103, we observed a dramatic change of the TPPZn
Raman features, which may be caused by the conformational
change of TPPZn induced by light illumination. Therefore, the
conformational change of TPPZn could affect the structure and
induce the lattice distortion, which then can store more deep
traps, causing the higher and higher resistance difference.
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Figure 107: (a) Sketch of the transfer characteristic curve with the hysteresis,
the arrows mark the direction of the back gate change, the black,
green, purple, blue squares mark the Vg position of several steps
to manipulate the memory effect shown in (b) which is the resis-
tance change at different operation steps (see the explanation in
the main text).

For better understanding the light effect, we did a detailed inves-
tigation of the Raman spectroscopy of the DWNT and TPPZn hybrid
under white light illumination by using both 488 nm and 532 nm laser
excitations. These two wavelengths were chosen because they are not
in the absorption range of TPPZn, as shown in Figure 88. Figure 108

(a) shows the Raman spectra measured using 488 nm laser excita-
tion for TPPZn coated DWNT before and after shining light. Neither
the inner nor the outer tube were resonant at these excitation wave-
lengths, the Raman signals are very weak with no peak in the RBLM
range. We can only observe the G peaks. A sum of Lorentzians was
used to fit each spectrum Figure 109. The peak summary at 488 nm
is presented in Table 8. While illuminating the device, the G mode
region exhibits dramatic changes as shown by the red spectrum in
Figure 108 (a). Two large peaks are visible at 1586 and 1594 cm−1,
none of which matching the values obtained for the G modes before
illumination (dark). Different interpretations for this double peak can
be proposed:
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1. The DWNT is not fully covered with molecules and some parts
of it sense the molecule excitation. This would lead to a spec-
trum featuring superimposed peaks from the two portions, cou-
pled and not to the molecules. In such case we would have ex-
pected to also observe such superimposed features from the
charge transfer associated with grafting in the dark and off
states which is not the case. We then discard this possibility;

2. One could also consider that excitation energy of the molecule
could be transferred to the DWNT and allow the enhancement
of the intrinsic G mode of the nanotube, as for the energy trans-
fer effect observed by F. Vialla et al. through photoluminescence
[109].

3. In a previous chapter, we discussed the resonance window shift
of the DWNT and TPyOs hybrid under the light illumination.
The Raman resonance window shift also could happen on the
DWNT and TPPZn hybrids and lead to intensity increase.

Figure 108: Raman spectra of DWNT/TPPZn under white light illumina-
tion, (a) measured at 488 nm, (b) measured at 532 nm, (c) the
evolution of the RBLM peak under alternative light illumination
(d) the change of molecule peaks during the light illumination
in the first 30 seconds.

In order to get more information, we get the Raman spectra of
the same sample measure using 532 nm laser excitation. The peak
fit summary is presented in Table 6. We obtain that ωG1 shifts from
1589.2 to 1589.8 (δ= 0.6 cm−1). The intensity ratio of peak G1 to peak
G2 IG1/IG2 decrease from 2.0 to 1.8, and IG1/IG3 decrease from 3.40

to 2.19. These results lead us to consider more about the assumption
of the resonance window shift caused by the light induced charge
transfer from DWNT to TPPZn.The RBLM peak intensity was also
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recorded and shown in Figure 108(c). There is a clear increase of the
RBLM intensity (x2) when switching the light on, with a constant time
of about 50s, followed by a decrease at the switching off to a lower
value than in the dark state (-25%) with a constant time of about 60s.
However, no significant change is observed for the subsequent cycles
of light switching. We can discard any damage of the hybrid since
the same effect can be recovered after an overnight relaxation. Similar
measurements were performed for non functionalized devices which
showed no effect at all. Two different phenomena come into play to
explain these results. First a relatively fast process with a constant
time of 50s involves the light excitation of the molecule leading to the
creation of excitons. These excitons are broken providing free carriers
transferred to the nanotube and leading to the observed enhancement.
Doping induced by the charges shifts the resonance window of the
RBLM which gives rise to the intensity increase under light exposure.
The 50s characteristic time involved in this process reveals the low ca-
pacitive coupling between the nanotube and the molecules. Another
process involves long characteristics time of up to hours. Indeed, the
light effect cannot be reproduced before a relaxation time of hours
corresponding to the relaxation time of charges trapped around the
nanotube. It seems that charges get also trapped, either in the sub-
strate or in molecules around and remain after light exposure, acting
as a local gate but not directly injected in the nanotube anymore.

Figure 109: Lorentz fit of the Raman spectra of pristine DWNT (a), DWNT
and TPPZn measured in dark (b), light on (c) and light off (d).

Another feature that appeared after the light illumination is the
broadening of the G− peak and an increase of the back ground. At
this stage, it is difficult to assign the origin of the broadening and the
back ground. It may be attributed to the fluorescence of the sample or
some component from the TPPZn peaks, as we discussed previously,
there are several TPPZn peaks in the range of 1350 to 1550 cm−1 (see
Figure 89). For better understanding the origin of this peak, burst
mode Raman spectroscopy was performed which is shown in Fig-
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ωG1 ΓG1 ωG2 ΓG2 ωG3 ΓG3 ωG4 ΓG4

DWNT pristine 1594.1 3.8 1588.4 6.2 1580.6 4.1 1568.9 4.6

DWNT+TPPZn dark 1592.7 7.3 – – 1574.1 4.9 – –

DWNT+TPPZn light on 1594.2 10.1 1586.8 7.4 1574.7 10.4 1566.1 4.7

DWNT+TPPZn light off 1594.1 7.9 – – 1577.3 9.6 – –

Table 8: The summary of Lorentz fit of the spectra measured by 488 nm
excitation laser, the units are cm−1.

ure 108(d). A very short accumulation time (1s) was used so as to
record one spectrum every five second. In order to get the signal of
both G and RBLM peaks, a 600 mm−1 grating was used. After ten
seconds of illumination, two new peaks at 1521.7 cm−1 and 1459.7
cm−1 came out. We assign these two peaks to features of TPPZn .
Normally, the TPPZn is not resonant at this excitation energy (2.33

eV), for which we did not see any Raman peak of TPPZn powder
(see Figure 89). At the 20th second, the background began to rise,
and the intensity of the molecule peaks becomes higher and higher.
We then deduce that around 20th second, the DWNT and TPPZn
begin to have strong interaction and the charges begin to accumu-
late to the molecule and nanotube interface, then affect the inten-
sity of the metallic BWF peak. This effect is very similar to the back
gated doped metallic nanotube, the position, the FWHM and also
the intensity of Fano peak change with the change of doping carrier
density [67, 121, 132]. Therefore the strong and broad peak comes
from the mixture of the broadening of the Fano peak and several
molecule peaks. These results correlate well with the light effect on
graphene/TPPZn hybrids, as we already discussed in the last section
(see Figure 104), after 29 seconds of light illumination, the peaks of
TPPZn are observed, which indicate a charge transfer process hap-
pening.

From the Raman spectroscopy, we observe a remarkable change
of the DWNT/TPPZn spectra under the white light illumination, which
is not observed for graphene/TPPZn. It indicates that the DWNT/TP-
PZn system is more sensitive than the graphene/ TPPZn. As we dis-
cussed before, the optical gating and the memory effect on DWN-
T/TPPZn make it a system to make optically controlled memory.
Considering the memory effect, we found that the DWNT/TPPZn
shows another advantage. Here, we used the resistance difference to
distinguish the memory "0" and "1" state. The state before the light
illumination is "0", during the light illumination, the resistance de-
crease, the system is processing the "write" step. After turning off
the light, the system should go to a stable state in order to store the
information. But for graphene/TPPZn, when the light is off, the resis-
tance slowly increases, it needs a long time to achieve a stable state.
And for DWNT/TPPZn, as we discussed before, the system goes to
a metastable state very quickly. We extracted the resistance change
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with time of graphene/TPPZn and DWNT/TPPZn after turning off
the light and fitted the curves by the equation

dV/dI = R1e
−t/τ + R0 (37)

For graphene/TPPZn τgr = 10.08 ± 0.03 and for DWNT/TPPZn,
τDW = 0.07 ± 0.02, so τDW � τgr, which means DWNT/TPPZn
needs much shorter time to achieve the "1" state. Another advantage
of DWNT/TPPZn is that because the DWNT has 1 D structure, sin-
gle electron transfer can take place at the low temperature, which
provides more sensitivity to the molecule and to charge detection. In
the next subsection, we will discuss the light effect of DWNT/TPPZn
at low temperature.

Figure 110: Time evolution of the differential resistance change with time
for graphene/TPPZn and DWNT/TPPZn after turning off the
light; the curves are extracted from Figure 102 and Figure 107

respectively.

4.3.2.2 Light induced charge transfer in the single charge regime

In the next paragraph, we will discuss the behaviour of the optically
induced charge transfer at low temperature. The white light source
(X-cite 120Q) was put on top of the optical window of the optical
cryostat, which we introduced in chapter 2, with a distance of about
20 cm with no focusing to reduce the light surface power density and
prevent any heat effect. Two filters were used for getting the light
in (blue) and out (red) of the absorption range of TPPZn. Figure 111

shows the spectra of the white light source with a red and a blue
filter superimposed on the absorption spectrum of TPPZn. Since the
spectrum with the red filter is not in the absorption range of TPPZn,
the electrical transport properties of the TPPZn and DWNT with and
without shining the red light should be the same.
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Figure 111: The spectra of the light source with the red and the blue filters,
the black curve is the absorption spectrum of TPPZn.

Figure 112: (a) Transfer characteristic curves of DWNT/TPPZn hybrid tran-
sistor measured in dark (black curve), under illumination with
red light (red curve) and blue light (blue curve), (c) the plot is the
position of the steps shown in (a), (d) comparison of the transfer
characteristic curves measured in dark and under the blue light
with ND3.0 filter, (f) average characteristic curve of the steps as
a function of light power, (b) and (e) are the same curve of (a)
and (d) plot in the log scale for better observation of the steps.

Figure 112 (a) shows the transfer characteristic curves of a DWNT
and TPPZn hybrid transistor measured in dark (black curve), under
red light (red curve) and blue light (blue curve) illumination. As we
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discussed in the charge transfer section, the characteristic curve ex-
hibits similar field effect as at room temperature along with addi-
tional features visible as reproducible conductance steps. At first, let
us discuss the main field effect curve: the hole doping and the elec-
tron doping part can be easily distinguished. If we focus on the hole
doping part, which is approximately ranging from -4 V to 0 V, we
find that there is almost no change of the threshold voltage while
shining the red light. Inversely, there is significant change while shin-
ing the blue light. Firstly, the threshold voltage shifts of about 1.52 V,
this behaviour is very similar to the samples measured at room tem-
perature. The transfer characteristic curve shifts towards the positive
side, which means the DWNT gets positive charges from the molecule
when shining the blue light. In addition, the curve is stable: we did
many measurement cycles of changing the back gate from -4 to 5 V
back and forth while keeping shining the blue light at the same power,
the curve is stable. The only explanation is that the system achieves
the equilibrium state.

Secondly, if we focus on the additional steps which we attribute
to the Coulomb blockade features of a nearby trap as we discussed
in the last section, we found that these steps are following the very
same trend. For better comparison, we plot the position of every step
(Figure 112 (c)). The gate dependence of these steps is also linear and
has the same slope as the ones measured in dark and measured under
the red light. Thus the steps are indeed due to the discrete additional
charges traps from the same trap, with no change of its charging
energy considering the constant slope observed at any wavelength.
Still, the hysteresis is reduced and the shape of the steps look sharper.
This effect is strongly power dependent. The position of the steps can
be controlled by changing the power of the light, as shown in Fig-
ure 112 (d), (e) and (f). We used neutral density filters to decrease the
power of the light. The ND n.0 filter means only 10

−n times of the
whole light power can pass through the filter. Figure 112 (c) shows
the dI/dV-Vg curve for the sample measured in dark and under blue
light with the ND 3.0 neutral density filter. We can observe that the
shift of steps is much smaller than the blue curve presented in Figure
Figure 112 (a). The average shift of the steps for the sample measured
by the ND 3.0 filter is 0.58± 0.14V , and the one for the sample mea-
sured by the ND 2.0 filter is 1.79± 0.45V, and the one without using
filter is 1.93± 0.29V (Figure 112 (f)). Comparing with the Vth that we
measured in the last section, which is 0.23 V, the observed shift is one
order of magnitude larger than at room temperature, we thus observe
the device is far more sensitive to light stimulus. This is promising in
terms of using the light induced photo gating effect at very low tem-
perature for detecting and trapping single charge. This result is very
interesting because it indicates that the optical gate can be substituted
to the electrostatic gate for making the single electron devices. Indeed
sharp peaks are expected for a single electron memory with efficient
tunnel rates. On the contrary, less transparent MTJ can lead to lower
rates and step like features [252, 260]. One has to note that the step
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features are not smoothed by light exposure which allows to discard
any heating from the light.

Figure 113: Mapping of light induced peaks shows the Coulomb diamond
(a), (b) is the data from the cutting line of (a).

Figure 113 presents a mapping of the light induced peaks. We
record the dI/dV when sweeping both the bias voltage and the back
gate voltage. The map looks quite similar to the Coulomb diamond
but with a background related to the field effect. When applying
proper amount of energy, one electron can escape from the trap and
jump to the channel, which shows an increase of conductivity. The
cross section of the map Figure 113 (b) shows an oscillation. One
striking feature of this map is that we manage to detect up to seven
steps in the conductivity which also superimpose to the field effect
of the transistor. This shows the robustness of the transfer process
over a large range of electric field. The capacitive model can still be
used to explain these changes. As shown in Figure 101, without light
illumination, charge transfer at low temperature is driven through a
multiple tunnel junction between the trap and DWNT, noted as (Cmc,
Rt). Since most efficient effect is observed only for blue light, this
points to the fact the MTJ is governed by TPPZn molecules coupling
the trap and the nanotube. Under light exposure, photons absorbed
by the molecules allow the lowering of the MTJ barriers which eases
the tunneling of the trapped charges towards the nanotube. The MTJ,
which is the building block element of the single electron memory,
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turns out to be photo-activated with the wavelength selectivity of the
chosen molecule as in ref [261, 262]. With light activation (see Fig-
ure 114), the tunneling rate increases and the faster kinetics is visible
as sharp peaks on the transfer characteristics while for reduced exci-
tation (dark or low power or out of absorption light), the low trans-
fer rate compared to the gate sweep induces slow response visible
as quantized steps. As a result, the sharp peaks instead of the steps
come out during the light illumination.

Figure 114: Sketch for the explanation of charge transfer kinetics, up: with
out light illumination, down: with blue light illumination.

In this subsection, we investigated light effect on DWNT/TPPZn
hybrid FETs at 10K. We already know from the last section that the
charge transfer becomes discrete at 10K, which shows regular steps
superimposed on the transfer characteristic curve of DWNT transistor.
With the illumination of blue light, there is a global shift of transfer
characteristic curve, which is the same optical gating effect that mea-
sured in room temperature. Beyond that, additional peaks with reg-
ular steps are observed, which are the signature of quantized charge
transfer. The next step to overcome would be to prepare the device
in the vicinity of such a step and detect the activation of the transfer
with light.

4.4 conclusion

To sum up, we firstly did the electrical transport and Raman measure-
ment on monolayer graphene/TPPZn and on individual DWNT/TP-
PZn hybrid transistors. The two kind of hybrids show the similar
behavior. The shift of threshold voltage and Raman modes indicate
that there is efficient charge transfer between sp2 carbon and TPPZn

[ March 31, 2016 at 11:19 – classicthesis version 4.0 ]



4.4 conclusion 139

interface. Then the optical gating and the memory effect on the two
systems are realized. There is remarkable change of Raman spectra of
DWNT/TPPZn hybrids, the mechanism of which is still unclear, sev-
eral explanations were proposed, the light induced energy or change
transfer process might be involved. It indicates that the DWNT/TP-
PZn is much more sensitive to light exitation than graphene/TPPZn
hybrid. The charge transfer and the optical gating effects are also in-
vestigated at low temperature, where the transfer of charge becomes
discrete. Under light illumination, transport of charges in DWNT/TP-
PZn shows Coulomb blockade behavior, which was explained by a
capacitive model. The DWNT/TPPZn FETs can be used to make sin-
gle electron memory, which can be controlled by a given light excita-
tion energy. In the next step, we want to further improve the hybrid
system by using the covalent grafting methods in order to make the
hybrids more stable.
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5
T O WA R D S C O VA L E N T LY G R A F T E D H Y B R I D S

As we discussed in chapter 1, there are two approaches for the func-
tionalization of carbon nanotubes. One way is to use noncovalent
functionalization and the other is covalent functionalization methods.
Thus different functionalization methods have their own benefits and
limitations, and the choice of these methods is dictated by the ap-
plications required from the generated nanocomposite materials. In
the previous chapters, we studied the functionalization by the non-
covalent methods. In this chapter, we will use the covalent method
to functionalize the individual double wall carbon nanotube transis-
tors. Covalent functionalization of carbon nanotubes has significantly
expanded the utility of the nanotube structure. But it may produce
defects in the wall structure of the nanotubes by breaking the sp2 lat-
tice. Our study will be focused on the inner wall properties change
while covalently functionalizing the outer wall.

Finally, we show that this process could be a solution to preserve
exceptional electrical properties of inner tube on an operating pho-
toactive DWNT-molecule device.

The Raman mapping and single Raman spectrum were obtained
on both pristine and fuctionalized DWNT transistors. The excitation
laser wavelength were 532 and 633 nm. The probe test was performed
on a probe station with two tungsten probe in ambient condition.
A YOKOGAWA 7651 DC source was used to provide the back gate
voltage, a KEITHLY 2400 source meter was used to apply the bias
voltage and measure the bias current.

For covalently grafting 4-bromobenzene diazonium tetrafluorob-
orate to the individual DWNT transistors (chapter 5), the deoxygenated
ultrapure water was needed to perform the experiment. The sodium
hydroxide was put into the 25 mL ultrapure water to adjust the PH
to around 9. The nitrogen was continuously flowing in the reaction
vessel to get rid of the oxygen in the solvent. Then, the 54.9 mg 4-
bromobenzene diazonium tetrafluoroborate was dissolved to make
the 0.8 mM solvent. Put the substrate with as prepared double wall
carbon nanotube transistor (see chapter 2) into the solvent for 10 min-
utes. At last, the substrate taken out and washed in distilled water
and IPA.
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5.1 assignment of dwnt configurations

8 transistors were measured in total. After the functionalization, 2 of
them have no conductivity left, which may be caused by the chem-
ical reaction process. In order to figure out what happened to the
disconnected transitors, we took SEM pictures and compared them
with the pristine DWNT transistors (Figure 115). The orange and red
circles mark two transitors. After the functionalization, one end of
DWNT was disconnected from the electrode. The DWNT was broken
by external force which may comes from liquid flow.

Figure 115: SEM picture of two dammaged samples of DWNT before lithog-
raphy of the contacts (in yellow) (left) and after (right) covalent
reaction.

Anyway, the 75% success rate proves that this method is reli-
able for grafting the diazonium salt to the individual DWNT transis-
tor. As discussed by Villalpando-Paez et al. [133] double wall carbon
nanotubes have 4 kinds of metallic and semiconducting configura-
tions: M@S, S@S, M@M, M@S respectively. Bouilly et al. distinguish
the configurations by comparing transfer characteristics before and af-
ter covalent functionalization of DWNT transistor [111]. We combine
Raman spectroscopy and transfer characteristics to study the inner
tube’s behavior after covalently breaking the C=C bond of the outer
wall. The samples that we measured can be divided into 3 categories,
the M@S, S@S and M@S DWNTs. We will present the results of the
combing Raman and probe test in the following paragraphs.

Figure 116 (a) and (b) present the SEM image and Raman map-
ping of the G peak of the same tube. At the nanotube position, the G
peak can be easily observed. After the functionalization, there are
two main differences: one is that the surface of the substrates is
more rough than before, small particles can be observed (Figure 116),
the appearance of nano particles may be due to the residual of 4-
bromobenzene diazonium tetrafluoroborate which was used in the
experimental process; the other one is that the G peak can not be ob-
served anymore from the Raman map, this is caused by the breaking
of the C=C bond of the outer wall by the covalent reaction process.
In order to study into more details, we perform the probe test and
Raman spectrum on the same tube.
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Figure 116: Comparison of SEM images ((a),(c)) and the Raman mapping
((b),(d)) of the same DWNT transistor before ((a),(b)) and after
((c),(d)) covalent functionalization. The excitation wavelength for
Raman mapping is 532 nm

Figure 118 shows the transfer characteristics of the sample be-
fore (black) and after (red) functionalization, the drain-source voltage
is 10 mV. The black curve indicates that before functionalization, the
pristine DWNT shows an unambiguous semiconducting behavior, be-
cause it shows clearly the field effect and with on/off current ratio
around 4. Like wise, after the functionalization, the drain source cur-
rent Ids is almost constant (about 20 nA), therefore the tube has a
metallic behavior. Considering the current measured for the function-
alized DWNT is due to the contribution of the inner wall [111], the
red curve indicates the presence of a metallic inner wall. Furthermore,
the Ids of the red curve is very close to the off current of the black
curve (about 15nA). So we assign this tube has a M@S configuration.

Figure 119 shows the Raman spectra of the same M@S sample
before (black) and after (red) functionalization. (a),(b) and (c) are the
RBLM, G and 2D modes measured by laser wavelength at 532 nm;
(d),(e) and (f) are the RBLM, G and 2D mode measured by laser wave-
length at 633 nm. Let us discuss the RBLM band at first. As shown in
Figure 119 (a), except the peak at 302cm−1 (Si peak), the other peak
at 127cm−1 is observed. In order to calculate the diameter, we use the
following equation which was presented in [112]

ωRBLM = 228.8/dt + 2.4cm−1 (38)
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Figure 117: The Kataura plot calculated within the extended tight binding
method, including many body corrections, the red and green
squares represent the inner and outer tube in our case, horizon-
tal lines stand for the laser excitation energies used in this work
[50]

Figure 118: Transfer characteristic of the M@S DWNT before (black) and af-
ter (red) functionalization (Vds = 10 mV).

for ωRBLM1 = 127cm−1, the tube diameter is 1.83 nm. In Figure 119

(d), the other RBLM peak at 196cm−1 is observed when the excita-
tion laser length is 633 nm. ωRBLM2 = 196cm−1 corresponding to
dt2 = 1.18nm. ∆dt = dt1 − dt2 has a result of 0.66 nm. Comparing
diameters to the ones of the DWNT bundles that we measured in
(chapter 2), we assign the RBLM1 at 127cm−1 to the outer tube, and
the RBLM2 at 196cm−1 to the inner tube. The tube-tube distance is
0.33 nm which is close to the graphite inter layer distance and other
reported DWNT inner and outer tube distances [112]. We compare
the data to the Kataura plot of optical transition energy versus the
tube diameter. The Kataura plot was calculated within the extended
tight binding method, including many body corrections, and fitted
to the resonance Raman scattering data from sodium dodecyl sulfate
wrapped high pressure CO conversion SWNTs[50, 49]. In our case,
the Kataura plot is represented in Figure 117, the transition energies
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for the third semiconducting transition of the corresponding outer
tube and the first metallic transition for the inner tube are denoted
by the green and red squares, respectively. From the Kataura plot, we
also can see that the inner tube is metallic tube and the outer one
is a semiconducting one, which is in agreement with the electrical
transport measurement.

Figure 119: Raman spectra of M@S sample before (black) and after (red)
functionalization. Two excitation wavelengths were used 532 nm
((a)(b)(c)) and 633 nm((d)(e)(f))

The process presented in this part is therefore an efficient way to
identify the metallic and semiconducting configuration of the DWNT.
In the next paragraph, we will present the data for an individual
DWNT with other metallic and semiconducting configurations.

Electrical measurement as a function of gate voltage of sample
2 before and after functionalization is presented in Figure 120. Cur-
rent modulation upon gate voltage variation is very strong for the
pristine device (by several orders of magnitude) as well as function-
alized device. Considering that the current measured for a function-
alized DWNT is due to inner wall, the field effect of functionalized
DWNT indicates the presence of a semiconducting inner wall. More
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over, since both before and after functionalization states show strong
modulation, the outer wall must also be semiconducting. We thus
assign this DWNT to a S@S configuration.

Figure 120: Transfer characteristic of the S@S DWNT before (black) and after
(red) functionalization (Vds = 10 mV).

On the other hand, Raman spectra of S@S sample is presented
in Figure 121. In Figure 121(a), a small peak at 314 cm−1 can be ob-
served, which means a tube (diameter 0.73 nm) is excited at 532 nm.
Likewise, in Figure 121(d), another peak at 181 cm−1 is observed, the
tube diameter is around 1.28 nm (calculated by Equation 38). We as-
sign the peak at 314 cm−1 and 181 cm−1 to the RBLM peak of inner
and outer tube, respectively. The G mode is very useful to assign the
DWNT configurations, because at the individual DWNT level, the
shape of the G band is dominated by the S or M nature of the layer
that is in strongest resonance with Elaser [133]. The peak at 1557 and
1582 cm−1 in Figure 121 (b) corresponding to the G band of the in-
ner tube (Ginner) since the 532 nm laser excited the inner tube. The
Ginner has the semiconducting line shape [14], indicating that the
inner tube is semiconducting. Similarly, when Elaser = 633nm, the
outer tube is excited, the line shape of the G band should dominated
by S or M nature of outer tube. From Figure 121 (e), we can observe
that the Gouter shows a semiconducting lineshape. Therefore, we as-
sign the outer tube to a semiconducting one. Thus from the Raman
spectra, we can get that this DWNT has a S@S configuration.

The Raman spectra are correlated well with the transfer charac-
teristics. Both of these two methods indicate that the sample has a S@S
configuration. By using the same method, we can find a DWNT with
a M@M configuration. As it shown in Figure 122. The third sample
shows no current modulation either before or after functionalization.
The absence of modulation after functionalization indicates presence
of a metallic inner wall. Bouilly et al. assigned this signature to either
a metallic core inside a semiconducting wall or a combination of two
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Figure 121: Raman spectra of sample S@S before (black) and after (red)
functionalization. Two excitation wavelengths were used 532 nm
((a)(b)(c)) and 633 nm((d)(e)(f)).

metallic walls. In our case, we assign this signature to a M@M tube
directly. Because if the outer wall is semiconducting, the modulation
of the current upon the back gate should be observed, which is not
the case on this sample. Unfortunately, we did not get the Raman
spectra of this tube to confirm our assignment. Neither the inner wall
nor the outer wall transition energy match two laser energies that we
used here.

In summary, by covalent grafting method, Raman and the elec-
trical transport measurements, we can assign different metallic and
semiconducting configurations of double wall carbon nanotubes. In
the following, we will investigate the effect of the covalent grating
process onto the inner tube.

[ March 31, 2016 at 11:19 – classicthesis version 4.0 ]



148 chapter 5

Figure 122: Transfer characteristic of the M@M DWNT before (black) and
after (red) functionalization (Vds = 10 mV).

5.2 inner wall phonons modified by covalent grafting

As we discussed in Section 5.1, for pristine M@S tube, the RBLM
modes of inner wall and outer wall are observed. For the inner metal-
lic tube, the closest dot in the Kataura plot is corresponding to the
(13,4) SWNT (dt = 1.21nm) with the transition energy of 1.94 eV. And
for the closest dot to outer semiconducting tube is the (21,4) SWNT
(dt = 1.82nm) with transition energy 2.30 eV. Comparing to excita-
tion laser energy that we used for the inner tube (1.96 eV) and the
outer tube (2.33 eV), the transition energy shift is 10 meV for the in-
ner tube and -30 meV for the outer tube. Another important result is
thatωRBLM of the inner tube has about 3.4 cm−1 blue shift compared
to the expected SWNT with the chirality of (13,4), the ωRBLM of the
outer tube has 0.6 cm−1 red shift comparing to the (21,4) SWNT. We
also notice that the diameter difference of the two SWNTs is 0.61 nm,
if there is no interaction between the two tubes, the tube distance
should be 0.305 nm, which is smaller than the layer distance of the
graphite and also the tube distance of this DWNT (0.34 nm). So in
this case, these two RBLM modes are highly coupled in this DWNT.
Because of the inter-wall coupling, the inner tube here is suppressed,
and outer tube is expanded. As a result, the RBLM peak of the in-
ner tube and the outer tube has blue shift and red shift, respectively
[263, 264].

After functionalization, there are several changes of both inner
tube and outer tube:

1. The RBLM "outer mode" has disappeared, while the response
of the inner wall is still observed. In the mean time, the rela-
tive intensity ratio of G peak to the Si peak IG/ISi decreases
79% (from 3.35 to 0.70), indicating that the G component con-
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Inner SWNT 1 (13,4) outer SWNT 2 (21,4)

Eii(eV) 1.96 1.95 2.30 2.33

ωRBLM(cm−1) 195.2 191.8 127.4 128.0

Table 9: The comparison of the transition energy Eii, RBLM
frequencyωRBLM of the inner tube and outer tube of DWNT
with the corresponding SWNTs.

ωRBLM ΓRBLM ωG ΓG IG/ISi ID/IG

Inner before 195.2 6.8 1578.5 6.6 0.59 0.03

Inner after 196.0 8.2 1579.0 8.3 0.74 0.03

Outer before 127.4 11.8 1577.5 24.3 3.35 0.08

Outer after – – 1580.1 22.4 0.70 0.34

Table 10: Summary of the Raman RBLM and G peaks before and after func-
tionalization of sample M@S (see Figure 119 ).

tribution of the outer wall reduced dramatically. Further more,
for the outer wall, the intensity ratio of the D peak to the G
peak ID/IG, which is usually used to evaluate the defect con-
centration in the system, increased from 0.08 to 0.34. But for
inner wall, it has no obvious change, indicating that the struc-
ture of the inner wall is not strongly affected by the functional-
ization process. According to the above results, we can confirm
that the functionalization process only affected the outer wall,
the inner wall structure can be preserved. This conclusion is
well correlated well with other works reported in the literatures
[111, 265, 266, 267].

2. As it presented in Table 10, the RBLM frequency ωRBLM of
the inner tube shifts from 195.2 to 196.0 cm−1 and the FWHM
ΓRBLM increases from 6.8 to 8.2 cm−1. The functionalization
process increase the disorder of the system, thus providing more
scattering mechanism, resulting to a peak broadening.

3. The intensity of RBLM peak and G peak of inner tube increased.
One explanation could be a shift of the transition energy. Bouilly
et al. got the absorption spectra of the DWNT film in pristine,
functionalized and defunctionalized states [111]. From that spec-
tra, a shift of the E11 transition energy can be observed. The shift
of the transition energy causes a shift of resonant window, thus
affecting the intensity of the RBLM and the G peak intensity
[190].

From the Raman analysis of DWNTs before and after covalent
grafting, we can obtain that the RBLM and the G peak have slight
shift after the functionalization, which is due to the interaction be-
tween the inner and outer wall. In summary, from this study, we
found that the functionalization process mostly affects the outer tube,
the electrical and optical properties of inner wall are preserved. Af-
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ter functionalization, field effect can be measured on the inner tube
despite the damage of the outer wall. This a a prof of the concept of
core-shell system. Our next step will be to grafting an optical switch
to realise optoelectronics system.

5.3 conclusion

The covalent process presented here is an efficient way to identify
the electrical combination of walls forming a DWNT. The covalent
functionalization is revealed as a powerful technique to explore fun-
damental electronic phenomena in DWNTs, such as interwall cou-
plings, current repartition between walls or velocity saturation of
carriers. The diazonium salt can be used as a bridge to graft other
functional molecules, such as the optical switch [92], the molecule
magnets [268, 269], protein [270, 271] et al.. This method can be con-
sidered as the first step for more complex DWNT functionalization
process. The result presented here gives us a very important informa-
tion, that is: the diazonium covalent functional process only affect the
outer wall, the electrical and optical properties of inner wall is pro-
tected. Thus, the outer wall can be used as a platform to graft photo-
active groups like DHP, TPyOs, TPPZn... These covalently grafted
photo-active molecules, will allow a more efficient light transduction
to an electrical excitation than non covalently grafted ones. We ex-
pected a better efficiency thanks to a faster excitation exchange be-
tween molecule and nanotube interface.
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conclusions

In this thesis, we have demonstrated isolated double wall carbon
nanotube and chromophore hybrid field effect transistors, from the
synthesis, characterization of pristine transistor, the investigation of
inter-wall coupling in isolated DWNT, the study of vibrational and
electrical properties of DWNT/chromophore hybrids, to the non co-
valently functionalized molecule doping effect on DWNT, the optical
gating effect on the hybrid transistors. At last, we realized the sin-
gle electron memory based on the hybrids at 10 K with some optical
response. We then started investigating the case of covalent grafting.

The fabrication techniques were introduced in chapter 2. By com-
bining different probes, chirality and metallic or semiconducting na-
ture of both inner and the outer wall were determined. Strong or
weak mechanical coupling of individual DWNT can be distinguished
through the optical phonon measurement. Moreover, electron-phonon
coupling in individual DWNT is investigated, to the best of our knowl-
edge, this is the first experimental study of EPC in the complex DWNT
system.

In chapter 3, the optical gating effect is achieved in DWNT (with
strongly coupled walls) and TPyOs hybrid transistors. We demon-
strated that the optically induced charge carriers not only can be
transferred to the outer tube, but also can affect the vibrational and
electrical properties of the inner tube, which caused change of tran-
sition energy Eii and the RBLM resonant condition. This shows that
the optical excitation of the molecule can indeed be sensed by the
inner tube.

Since TPyOs has relatively more stable oxidation state than por-
phyrin molecules, the DWNT/TPPZn hybrid transistors were investi-
gated in order to get a reversible optical gating. The color dependent
memory effect was achieved in the 1D system. At helium temperature,
the charge transport in DWNT/TPPZn shows Coulomb blockade be-
havior and can be tuned optically in certain extend. We investigated
the hybrid DWNT/chromophore transistors in a new regime where
single electron process take place.
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perspectives

Inter wall interaction in 1D core-shell systems

In this thesis, we probe inter wall interaction in a S@M individual
DWNT thanks to molecular grafting. In the near future, the coupling
in DWNT which have different configuration will be possible using
tunable Raman spectroscopy with an electrostatic or a molecule gate.
This study will be interesting to compare with the study of interlayer
coupling in the bilayer graphene system, for example to address the
influence of curvature and commensurability. Furthermore, it will be
also interesting to use the same method to study other 1D core-shell
systems, for example, the BN nanotubes, WS2 tubesetc.

Light induced energy/charge transfer, and the role of excitons

In DWNT/TPPZn system, we found that there is remarkable
change of the Raman modes during illumination, the mechanism of
which is still unclear. Several explanations were proposed: the most
possible one is light induced energy transfer. The role of exciton is
very important to understand more about the excitation transfer pro-
cess. For studying this, one would require other techniques, for in-
stance, photoluminescence spectroscopy or ultrafast spectroscopy to
capture the exciton behavior.

Covalent functionalization of individual DWNT FETs.

Covalently grafting methods allow us to graft a variety of molecules.
In this thesis, we show the influence of diazonium salts, which can
be used as a bridge to link the molecule and individual DWNT FETs,
on RBLM peaks. For the next step, we want to realise the covalently
functionnalized devices in order to make different kind of sensors or
switches, for example, we can funtionalize the DWNT covalently by
molecules with DHP groups. By taking advantage of the conforma-
tional change of the DHP, more stable optical switches or memory
devices can be made.

Electron phonon coupling in low dimensional hybrids

The mechanism of single electron charge transfer could be inves-
tigated more deeply by Raman spectroscopy together with transport
measurement at low temperature. The modification of the vibrational
properties of DWNTS by the single electron transfer will be also valu-
able to study the sensitivity of the inner tube and the inter-tube inter-
action.

The functionalization of individual DWNTs have promising po-
tential on the application to the photoelectric transducer with single
electron sensitivity.
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