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Outline of this thesis

Nano-opto-electromechanical systems (NOEMS) play an important role in many fields of physics. They combine small dimensions, low masses and high resonant frequencies which makes them interesting for ultra-sensitive force sensing applications, but also for exploring the quantum regime with extended mechanical oscillators and study the transition from classical to quantum mechanics.

Graphene is an exceptional material that is atomically thin, thus exhibiting an extremely high surface-to-volume ratio. Typical graphene resonators are very light (10 -16 to 10 -14 kg) and have high in-plane stiffness (340 N/m), which endows them with high resonance frequencies in the MHz range. Furthermore, the resonance frequencies exhibit a high tunability up to 400% upon the application of strain. Another advantage of graphene is its low bending rigidity which allows for a highly efficient transduction of forces into a measurable displacement. Moreover graphene is conductive and absorbs 2.3% of light in the visible range thus allowing to be coupled to both electrical and optical fields. In terms of applications, it opens the road towards the active manipulation of these optical and electrical fields, which can alternatively be employed to actuate or detect the graphene resonator's motion. Therefore graphene resonators are very promising candidates for NOEMS applications.

However, as the devices become atomically thin, the homogeneity concerning the lattice structure, topography, residual strain and charge doping become increasingly difficult to control. On the other hand, the sensitivity of the resonator to perturbations, both intrinsic and external, increases. In order to obtain a good control over such resonators, it is therefore crucial to gain a detailed understanding of their intrinsic properties and how they are affected by external factors.

The objective of this PhD project was to develop the first optomechanical experiment in the laboratory based on single graphene membranes and to explore the physics of these exceptional nanoresonators with optical tools, namely Raman spectroscopy, optomechanical and thermo-optical measurements. The findings of this study will be presented in this manuscript which is structured as follows:

The first chapter gives an overview of opto-electromechanical systems in general and their realizations in form of carbon nanotube and graphene nanoresonators in particular. We then review graphene's exceptional material properties and introvii duce Raman spectroscopy as a versatile optical technique for their characterization. The last part of this chapter is dedicated to introducing the formalisms used throughout the manuscript to describe the vibrations of the graphene resonator.

The second chapter presents the nanofabrication processes that were developed to obtain suspended membranes made from graphene grown by chemical vapour deposition. Two different sample architectures were designed for our experiments. One type allows for electrical manipulation of the graphene membrane with a metallic substrate serving as backgate, while the other type is intended for purely optomechanical studies. The latter samples distinguish themselves by the absence of a reflecting substrate complicating the understanding of the transverse spatial dependence of the observed optomechanical effects. Instead, they give access to the optical transmission of the graphene membrane and allow for the investigation of spatial effects with spatially offset pump and probe lasers.

In chapter 3 we investigate the influence of the supporting substrate on mechanical strain and charge doping in graphene membranes. Furthermore we show that the spatial strain and doping distributions can be deduced from Raman maps. A comparative study reveals that the topography and spatial strain distribution are closely linked in suspended membranes. More insight into the mechanical properties of suspended membranes is gained by applying an electrostatic pressure. Finally, we perform a simultaneous strain and displacement study of the resonating graphene membrane and investigate the dynamical coupling of optical and driven acoustical phonons in a two-dimensional material.

In order to investigate the thermal noise of the graphene membranes, we continue the dynamical study of the graphene resonator in the fourth chapter on an optomechanical setup which was specifically developed for that purpose. Its characterization is presented with a particular focus on the displacement sensitivity and the efficiency of an optothermal actuation mechanism. We also expose our observations on the pressure and dimension dependencies of the mechanical properties of the graphene resonators.

In the fifth chapter we study the coupling of the graphene resonator to vibrational modes of the supporting substrate. In this context we observe a strong deviation from the normal mode expansion, which is investigated in more detail. We subsequently verify the validity of the fluctuation-dissipation theorem with the help of complementary pump-probe measurements performed to determine the local mechanical susceptibility of the coupled system.

The last chapter is dedicated to the investigation of the thermal properties of the graphene membrane using novel spectral and spatial optical characterization tools. In particular, it reveals the complex structure of the thermal response of a microstructured graphene sheet displaying grain boundaries, contaminations or viii multilayer patches. A correlation between the latter and the local heat conduction properties of the graphene membrane is disclosed. The investigation makes use of the mechanical and thermal response of the system that can be characterized using both static and dynamical periodic heating. 

The role of mechanical oscillators as transducers

Micro-and nanomechanical oscillators play an outstanding role in physics as an interface with phenomena that cannot be accessed directly via optical or electrical means. This is the reason why they are omnipresent in our daily life in form of accelerometers in vehicles, gyroscopes or loudspeakers in mobile phones or gas sensing devices in medical applications to name just a few examples [START_REF] Liu | Foundations of NEMS[END_REF]. Such applications are derived from a longstanding tradition of mechanical oscillators in various fields of fundamental research. In 1960, a detection scheme for gravitational waves based on macroscopic mechanical oscillators was proposed [2]. This legacy lives on in modern day optomechanical setups for gravitational wave detection. Another milestone in the application of mechanical oscillators came about two decades later as the invention of atomic force microscopy [3] in 1986. This method revolutionized surface science by allowing to image surfaces with an unprecedented resolution in the sub-nanometre range by scanning them with a sharp tip attached to a resonating cantilever. Ever new variations of sensing methods based on mechanical oscillators have been developed since. A rather new example is nanoscale magnetic resonance imaging for the detection of a single electron spin [START_REF] Rugar | Single spin detection by magnetic resonance force microscopy[END_REF].

All the named examples have in common that the mechanical oscillator responds to a physical stimulus (such as a gravitational wave or magnetic force) with a deformation that can be easily detected by optical or electrical means. It therefore acts as a transducer rendering a broad range of phenomena accessible for detection. Several readout protocols can be used to probe external fields such as measurements of resonance frequency shifts, change of mechanical damping rates or modification of the driven oscillating amplitude when the oscillator enters into interaction with the force under investigation.

In the strive for higher sensitivities and faster operation, the miniaturization of the mechanical oscillators has become important, leading to the development of micro-and now even nanomechanical systems. The reduced mass of such devices results in higher force sensitivities and resonance frequencies. However, the extreme down-sizing does not come without challenges. In fact, specific phenomena need to be taken into account when entering the nanometre regime which distinguish nanomechanical systems from their bigger counterparts. In the following we will list the most important consequences. From a purely practical point of view, nanoscale devices are difficult to address with standard measurement schemes. Coupling to light in the visible range becomes weak due to the small interaction cross-sections for devices with systems with subwavelength dimensions, whereas electrical actuation schemes are increasingly impaired by parasitic capacitances.

Furthermore, the intrinsic dynamic properties of nanoresonators are also affected as their size shrinks: first of all, the increasing surface-to-volume ratio makes nanoresonators prone to dissipation mechanisms related to surface defects which are likely to degrade their quality factor [START_REF] Seoánez | Surface dissipation in nanoelectromechanical systems: Unified description with the standard tunneling model and effects of metallic electrodes[END_REF]. In order to improve device performances, extensive research is being done in order to understand dissipation mechanisms and fundamental limitations of the quality factor at the nanoscale. Secondly, non-linear mechanical behaviour comes into play for relatively small displacements. Non-linear terms can arise from the amplitude-dependence of the restoring force or damping mechanisms [START_REF] Eichler | Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene[END_REF]. Often, this is an undesired effect since it reduces the dynamical range of the resonator. However, it can also give rise to interesting effects such as coupling of different mechanical modes of a resonator with potential applications in signal processing [START_REF] Eichler | Strong coupling between mechanical modes in a nanotube resonator[END_REF]. We will come back to the aspect of mode coupling in section 1. [START_REF] Seoánez | Surface dissipation in nanoelectromechanical systems: Unified description with the standard tunneling model and effects of metallic electrodes[END_REF].

Since nanometric objects are extremely sensitive to external forces, backaction noise can become important. This term describes perturbations of the mechanical system arising from the measurement process itself. As a result of the Heisenberg principle, the displacement of the resonator cannot be measured without disturbing its motion, which sets a lower limit for the displacement sensitivity. However, backaction forces also offer the possibility to get a unique control over the oscilla-1.2. CARBON-BASED NANORESONATORS tor dynamics. Research on ultracold ions has shown that the quantum mechanical ground state of a mechanical oscillator can be reached using active cooling techniques. Quantum mechanical behaviour can be observed when the mechanical oscillator's temperature is cooled below the quantum mechanical temperature defined by k B T = Ω m , where Ω m is the mechanical resonance frequency. In this situation the occupation number of the fundamental phonon mode is inferior to one, which motivates the interest in cooling the resonator motion. Historically nonclassical states of motion were demonstrated with small objects such as trapped ions, which naturally rises the question of the validity of quantum mechanics for larger objects. Recently, several groups succeeded in reaching the mechanical ground state of motion with extended nanomechanical resonators [START_REF] O'connell | Quantum ground state and single-phonon control of a mechanical resonator[END_REF][START_REF] Teufel | Sideband cooling of micromechanical motion to the quantum ground state[END_REF][START_REF] Chan | Laser cooling of a nanomechanical oscillator into its quantum ground state[END_REF] using a piezoelectric resonator, a superconducting resonator, and an opto-mechanical crystal. This is an exciting development inasmuch as it may allow to translate the quantum coherent control of mechanical states of motion demonstrated in trapped ion experiments to systems that could be integrated on-chip and possibly be interfaced more easily.

However, the field is still in its infancy with many open questions yet to be answered. A vivid quest for the development of new nanomechanical devices to explore the quantum regime is ongoing. Among others, graphene could be an interesting candidate for such devices due to its exceptional mechanical, electrical and optical properties which offer several degrees of freedom that can be coupled in order to control the system. First efforts have demonstrated feedback cooling of graphene resonators by coupling to a microwave cavity [START_REF] Weber | Detection and Generation of Gravitational Waves[END_REF]13,[START_REF] Song | Graphene optomechanics realized at microwave frequencies[END_REF]. Phonon occupation numbers as low as five were achieved. Although the mechanical ground state has not been reached yet with these devices, this goal seems within reach. In order to improve the properties of graphene nanomechanical resonators, a good understanding of the unique material properties as well as how their interplay can be exploited in opto-electro-mechanical systems is indispensable. The following section gives a brief overview of carbon-based nanoresonators and their exceptional properties.

Carbon-based nanoresonators

Historically, micromechanical systems have been fabricated in a top-down approach from bulk materials such as silicon, silicon nitride or diamond by etching them into defined, micron-sized structures. However, the miniaturization of mechanical oscillators has been pushed further to reach the ultimate one-and two dimensional limit. This is achieved using materials such as the sp 2 -hybridized carbon allotropes carbon nanotubes (CNT) or graphene in a bottom-up approach. Even tough their fabrication is more difficult, they have become the material of choice for many applications due to their exceptional properties. Nanomechanical oscillators from CNT and graphene are extremely light with masses in the range of 10 -19 to 10 -15 kg, but at the same time very stiff with a Young's modulus of 1 TPa, which is comparable to that of diamond and significantly higher than for Bottom: Schematic of the CNT radio actuation and detection scheme. Images in (b) and (c) were adapted from [START_REF] Sazonova | A tunable carbon nanotube electromechanical oscillator[END_REF] and [START_REF] Jensen | Nanotube radio[END_REF] respectively. silicon (140 GPa) or silicon nitride (340 GPa). Due to these properties, carbonbased oscillators display high resonance frequencies in the MHz to GHz range, which are also easily tunable. Moreover they can vibrate with high displacement amplitudes with respect to their thickness. In the following we will present the properties of carbon-based nano-electro-and opto-mechanical systems (NOEMS) at the example of some achievements that paved the way for this booming research field.

Carbon nanotube resonators

Due to their exceptional mechanical and electrical properties, CNTs were identified early as interesting candidates for nano-electromechanical systems.
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Resonant excitation

In 1999, Poncharal et al. [15] demonstrated the resonant excitation of simply clamped CNTs in the fundamental and higher resonance modes by applying an AC gate voltage between the CNT and a close-by, grounded counter electrode as depicted in figure 1.2(a) bottom. The actuation mechanism relies on an attractive electrostatic force between charges accumulated in the CNT and the counter electrode. Applying an AC voltage with DC offset V = V g + δV g cos (ωt) between the two electrodes induces a time-dependent charge variation in the CNT which in turn creates an electrostatic force F el = 1 2 C g V 2 . In the latter equation C g denotes the spatial derivative of the gate capacitance. The oscillating part of the force drives the mechanical motion of the CNT. The mechanism will be explained in more detail in chapter 3, section 3.2.3.1. The mechanical vibrations were detected in situ in a transmission electron microscope which allowed to image the vibrational mode shapes (see figure 1.2(a) topp), determine the resonance frequencies falling in the MHz range and extract the CNT's Young's modulus which was found to be of the order of 1 TPa.

Combined electrical actuation and detection of mechanical resonance

Five years later, a CNT-based NEMS with combined electrical actuation and readout scheme based on signal mixing was presented by Sazonova et al. [START_REF] Sazonova | A tunable carbon nanotube electromechanical oscillator[END_REF] (cf. figure 1.2(b)). In her case, a doubly clamped CNT is suspended over a trench in a silica/silicon substrate. Again, the actuation relies on electrostatic gating by applying an AC voltage between the silicon backgate and the CNT. The detection scheme, is realized by heterodyne mixing (see section 1.2.3.2). The tested devices exhibited resonance frequencies varying from 3 to 200 MHz, which could be tuned by applying a DC voltage to the backgate. This results in an electrostatic force generating a tension in the CNT. This, in turn increases the mechanical resonance frequency, just like in a guitar string.

CNT mechanical resonator for signal processing

Since the publication of Sazonova's findings, research on CNT resonators has rapidly progressed producing interesting applications such as a fully integrated radio receiver made from a single CNT, where the latter executes several electrical signal processing functions like that of an antenna, tunable band-pass filter, amplifier and demodulator [START_REF] Jensen | Nanotube radio[END_REF]. The working principle of this device is similar to that of a conventional vacuum tube (see figure 1.2(c)) and is based on earlier work by Purcell et al. [START_REF] Purcell | Tuning of Nanotube Mechanical Resonances by Electric Field Pulling[END_REF]. The carbon nanotube is mounted on an electrode in close proximity to a counter electrode. A DC voltage is applied between the two electrodes such that the CNT becomes negatively charged. The CNT acts as an antenna for an incoming rf field which induces mechanical oscillations. The latter modulate the field emission current which serves as detectable signal.

Ultra-sensitive CNT mass sensor

Another promising application of CNTs concerns ultra-sensitive mass sensing.
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Chaste et al. demonstrated a CNT mass sensor with an impressive resolution of one yoctogram (10 -24 g) [START_REF] Chaste | A nanomechanical mass sensor with yoctogram resolution[END_REF]. The mass detection relies on the decrease of the CNT resonance frequency when a molecule adsorbs to its surface. In this work, the frequency is monitored with a mixing technique as employed by Sazonova. In order to achieve an extremely high sensitivity, the authors worked at a very low pressures around 10 -11 mbar and repeatedly performed current-annealing of the CNT in order to stabilize its resonance frequency.

As we have seen, CNT NOEMS have very interesting characteristics. However, the controlled fabrication of CNT resonators is extremely challenging and they are especially difficult to address both optically and electrically due to the onedimensional geometry. Furthermore resonators with large surface areas can be advantageous for certain applications, which explains the interest in graphene resonators.

Graphene resonators

After its first isolation in 2004, graphene quickly moved into the focus of research aspiring to extend the scope of nanomechanical systems. Despite CNTs generally exhibiting higher resonance frequencies, graphene has its own exceptional qualities which predestine it for certain applications. The first property to name in that context is the extreme surface-to-volume ratio of graphene resonators which renders them especially suitable for applications such as pressure detection or gas sensing [START_REF] Smith | Electromechanical piezoresistive sensing in suspended graphene membranes[END_REF][START_REF] Aguilera-Servin | Nanoscale pressure sensors realized from suspended graphene membrane devices[END_REF]. Another great advantage of the large spatial extent of graphene with respect to CNT is that addressing graphene optically becomes easier due to a greater cross section for the interaction with light in the visible range. Secondly, mass-production of integrated graphene NOEMS seems to come into reach with recent progress made in graphene production based on chemical vapour deposition (CVD) [24]. Thus today's rather bulky micro electromechanical systems in electronic devices could possibly be replaced by on-chip graphene counterparts taking over signal processing tasks. Last but not least, graphene can be easily hybridized and is biocompatible, which opens the route towards the vast field of biosensing applications [START_REF] Zhu | Optoelectromechanical multimodal biosensor with graphene active region[END_REF]. In the following, we will now give a brief overview over some major achievements in the field of graphene NOEMS.

Opto-electro-mechanical coupling in graphene

The first graphene resonator was reported in 2007 by Bunch et al. [START_REF] Bunch | Electromechanical resonators from graphene sheets[END_REF]. It was fabricated by exfoliating graphene over predefined trenches in silica as depicted in figure 1.3. Two alternative actuation mechanisms are employed: firstly the capacitive scheme using the silicon backgate as described earlier and secondly an optical drive with an intensity modulated laser beam. The motion detection is also realized by optical interferometry. In fact, the sample constitutes a Fabry-Perot optical cavity where the silicon substrate and graphene act as mirrors. The reported resonance frequencies are found between 1 to 200 MHz, while the quality 1.2. CARBON-BASED NANORESONATORS Figure 1.3: Graphene resonators with optical read-out. (a) Left: Optically driven displacement spectrum of the fundamental mode of a single-layer graphene resonator similar to the one shown in the SEM image inset. Schematic of the employed optical actuation and read-out scheme. An intensity modulated laser drives the graphene motion by an optothermal effect, while the motion read-out relies on optical interferometry with a continuous wave probe laser. (b) Capacitively driven graphene resonator: At a wavelength of 568 nm, the effective damping Γ eff increases with laser power (exhibiting positive optomechanical damping Γ OM ) whereas at a wavelength of 633 nm it decreases with laser power (exhibiting negative Γ OM ). Figure (a) and (b) adapted from [START_REF] Bunch | Electromechanical resonators from graphene sheets[END_REF] and [START_REF] Barton | Photothermal self-oscillation and laser cooling of graphene optomechanical systems[END_REF] respectively.
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factors range from 20 to 850 at room temperature for resonators consisting of up to seven graphene layers. Two years later, Chen and coauthors [START_REF] Chen | Performance of monolayer graphene nanomechanical resonators with electrical readout[END_REF] showed that the frequency of graphene resonators can be tuned by applying an electrical DC gate voltage and creating tension in the graphene as done earlier for CNTs. They demonstrated a tunability of about 300% over a voltage range of 10 V.

Optical backaction in a graphene NOEMS

The optical properties of graphene resonators were further explored by Barton et al. [START_REF] Barton | Photothermal self-oscillation and laser cooling of graphene optomechanical systems[END_REF] who showed first evidence for photo-thermal back-action in a graphene NOEMS capable of cooling vibrational modes or inducing self-oscillations. The gate-driven motion of the graphene is detected. The damping of the mechanical graphene resonator is found to depend on drive laser power. Depending on the employed wavelength, the change of damping with laser power can be positive or negative, which is indicative of a photo-thermal force acting on the oscillating graphene. The force is identified to be of photothermal origin rather than radiation pressure.

Sideband cooling with a microcavity field

Despite the fact that graphene can interact with light in the visible range, the coupling is rather low for optomechanical manipulations such as cooling the membrane motion. Stronger interaction can be achieved with a microwave cavity field via capacitive coupling as shown in the simplified sketch in figure 1.4(b). This experiment was performed by several groups [START_REF] Weber | Detection and Generation of Gravitational Waves[END_REF]13,[START_REF] Song | Graphene optomechanics realized at microwave frequencies[END_REF] quasi-simultaneously. The cooling of the graphene motion is based on an anti-Stokes process involving acoustical graphene phonons and photons of the microwave cavity field: upon pumping the cavity at a frequency ω p , sidebands are created at ω p ± ω m , where ω m denotes the mechanical resonance frequency of the graphene. This is due to the coupling between the photons and the mechanical vibrations. If the pump is detuned such that the upper sideband frequency is matched with the cavity resonance frequency ω c = ω p + ω m the anti-Stokes scattering is resonantly enhanced. Despite considerable effort, graphene has not been cooled to its ground state yet. However, gate-tuning of the single-photon coupling rate was demonstrated by the Bachtold group [START_REF] Weber | Detection and Generation of Gravitational Waves[END_REF], which is an interesting new feature for optomechanical devices.

Common NOEMS actuation and detection techniques

In the previous section we have presented some pioneering experiments on carbonbased nanoresonators, without detailing in each case the employed actuation and read-out scheme. The most common transduction mechanisms for graphene and CNT NOEMS will therefore be briefly summarized here. They rely on mechanical, optothermal and thermal effects. where ω m denotes the mechanical resonance frequency of the graphene. This is due to the coupling between the photons and the mechanical vibrations. If the pump is detuned such that the upper sideband frequency is matched with the cavity resonance frequency ω c = ω p + ω m the anti-Stokes scattering is resonantly enhanced.
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Actuation

Mechanical

A method that is very easy to implement is to mechanically couple the device to a vibrating piezoelectric actuator. The main advantage of this technique is the fact that the device does not need to be connected to any electrode, while its down-side is the non-uniform transduction factor of the piezo. This means that excitation amplitude is frequency-dependent thus influencing the response spectrum of the device.

Optothermal

An optothermal actuation scheme can be employed if the coupling of the device to light is sufficiently strong. It consists in focussing an intensity modulated laser
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beam onto the mechanical oscillator. The laser beam modulates the oscillator temperature causing it to periodically contract and expand thus driving the motion. Figure 1.3 (a) shows a realization of this method in case of graphene. Unlike the mechanical actuation, the optothermal drive acts locally, if the extent of the driven thermal wave is smaller than the characteristic length of the mechanical vibration profile. This can be advantageous for certain experiments as will be seen in chapter 5. However, this approach also exhibits a non-uniform transduction factor that takes the form of a low-pass filter. Its cut-off frequency is related to the characteristic sample dimensions. This aspect will be discussed in detail in chapter 6.

Electrostatic

This method can be applied to electrically conducting mechanical oscillators and is therefore well-suited for graphene and CNTs. The mechanical oscillator is placed in close proximity to a gate electrode. Applying an AC voltage δV g with a DC offset V g between the gate and the mechanical oscillator results in an oscillating electrostatic force on the mechanical structure. It is given by F V g δV g C , where C is the spatial derivative of the oscillator-gate electrode capacitance. This method ideally acts uniformly on the oscillating structure. However, the smaller the device dimensions, the higher can be the influence of stray capacitances.

Detection Optical

This technique is based on optical interferometry. A probe laser is focussed onto the mechanical oscillator, off which it reflects. It superimposes coherently with a reference beam that typically passes through the oscillator and reflects off the substrate. Thus the total reflected light beam exhibits an interference pattern, that is sensitive to the position of the graphene above the substrate. The motion of the graphene is detected by monitoring the intensity modulation of the reflected signal using a fast photodiode while biasing the system on the side of a fringe. Alternatively, phase detection can be employed.

This detection scheme provides local information on the vibration pattern. By scanning the probe laser beam over the oscillating structure, information about the spatial structure of the vibration mode can therefore be gained.

Heterodyne mixing

This electrical detection scheme can be employed for materials with non-linear conduction properties such as CNTs or graphene. We briefly touched upon this method when discussing Sazonova's work on CNT in section 1.2.1. A schematic of the read-out scheme is depicted in figure 1.2(b). It makes use of the gate-dependent conductance of the oscillator. In order to understand this, we need to take a look at the gate-induced modulation of the charge carrier concentration δq in the oscillator when applying a gate voltage V = V g +δV g cos (ωt). The charge carrier modulation has two contributions: a purely electrical one originating from the AC gate voltage 1.2. CARBON-BASED NANORESONATORS δV g , and an electromechanical one which emerges because the gate capacitance varies with the position of the oscillating structure with a strength proportional to the spatial derivative of the gate capacitance C g . The total modulation of the charge carrier concentration in the oscillator hence becomes: δq C g δV g cos(ωt) + C g (ω)V g . This leads in turn to a variation of the conductance G of the oscillator: δG = dG dq δq. The latter can be determined by applying a bias voltage between the source and drain electrodes contacting the mechanical structure and measuring the source drain current. However, the mechanical resonance frequencies of the CNT or graphene oscillators exceed the cut-off frequency of the electrical circuit. This problem is circumvented by using a frequency mixing technique. It consists in applying a source drain voltage V sd with a slight offset from the actuation frequency δω resulting in a source drain current I sd = G(ω)V sd (ω + δω). This product of two sinusoidal functions is the sum of a high-frequency (2ω + δω) and low-frequency (δω) term. The latter can be measured easily with a lock-in.

The heterodyne mixing technique gives a spatially averaged signal of the oscillator's motion and is therefore non-local. It is well-suited for the motion detection of one-dimensional objects such as CNTs or graphene ribbons, but does not capture more complex vibrational patterns of two-dimensional structures such as graphene drums or spatial variations due to sample inhomogeneities.

Owing to its exceptional mechanical, optical and electrical properties, graphene is a very versatile material. This is why various types of graphene transducers have been realized in the past years combining its different material properties. Examples of actuation and detection schemes for graphene resonators including both optical and electrical methods are given in table 1.5. In the next chapter the exceptional properties of graphene will be presented in more detail. A combined electrical actuation and detection scheme as previously employed for CNTs by [START_REF] Sazonova | A tunable carbon nanotube electromechanical oscillator[END_REF], was also demonstrated for graphene resonators (e- [START_REF] Chen | Performance of monolayer graphene nanomechanical resonators with electrical readout[END_REF]). Different realizations of optical coupling to mechanical graphene resonators exist: The first devices worked in the visible range (VIS) with the graphene being part of an optical cavity integrated on-chip (a- [START_REF] Bunch | Electromechanical resonators from graphene sheets[END_REF], b- [START_REF] Barton | Photothermal self-oscillation and laser cooling of graphene optomechanical systems[END_REF]).
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In the present work we will present an optomechanical study of the dynamics of graphene resonators in an optical cavity-free structure in chapters 4-6. Graphene resonators integrated into microwave (µ-wave) cavities as realized by (d- [START_REF] Weber | Detection and Generation of Gravitational Waves[END_REF]) combine the mechanical, optical and electrical properties of graphene in an original way. The work of Engel et al. [START_REF] Engel | Light-matter interaction in a microcavitycontrolled graphene transistor[END_REF] investigates the light-matter interaction in a microcavity-controlled graphene transistor.

Introduction to graphene

We have already mentioned graphene throughout the previous sections. Now we will go into more detail and look at its structure and how it leads to exceptional physical properties. Before plunging into their description it is important to point out that graphene is so unique due to the interplay of its mechanical, optical, electrical and thermal properties, which offer many control knobs and the possibility to study the coupling between different phenomena at the nanoscale. In the following we will review the most crucial points concerning graphene properties that will be used later on in the manuscript. For a more detailed discussion, the reader may be referred to the excellent reviews by Geim and Novoselov [START_REF] Geim | The rise of graphene[END_REF], Castro Neto et al. [START_REF] Castro Neto | The electronic properties of graphene[END_REF], Bonaccorso et al. [START_REF] Bonaccorso | Graphene Photonics and Optoelectronics[END_REF] and Cooper et al. [START_REF] Cooper | Experimental Review of Graphene[END_REF].

Structure of graphene

Graphene is an ideal two-dimensional material. It consists of an atomic plane of carbon atoms arranged in hexagonal lattice. The unit cell of this crystal contains 1.3. INTRODUCTION TO GRAPHENE two carbon atoms, A and B, each forming a triangular 2D network as depicted in figure 1.6. The first Brillouin zone is hexagonal, with two inequivalent consecutive corners denoted K and K'. These points are of particular importance for graphene's electronic and optical properties as we will see in the next sections. The carbon atoms are sp 2 -hybridized forming strong covalent bonds and a delocalized electron gas arising from the overlapping p z -orbitals. Thus the sp 2 -bonds are responsible for both graphene's extreme mechanical stiffness and high electrical conductivity. The described two-dimensional structure is the building block for other carbon allotropes: by stacking graphene sheets we obtain graphite, while rolling up a graphene sheet to form a cylinder yields carbon nanotubes. We can even think of forming a ball out of graphene which creates a C 60 bucky ball. The latter two are one-and zero-dimensional objects, which also have very interesting properties due to their special structure. In the following we will sketch out how the unique structure of graphene affects diverse physical properties of this material.

Mechanical properties

Because of its two-dimensional structure, graphene exhibits distinct in-and out-ofplane mechanical properties. As mentioned earlier, the σ-bonds formed by neighbouring carbon atoms lead to an extremely high in-plane stiffness of graphene, while the bending rigidity, an out-of plane property, is rather low.

The elastic properties of a material are described at first order by Hooke's law relating stress σ to strain components according to σ ij = C ijkl kl in three dimensions. Here, C ijkl denotes the elasticity tensor, which is symmetric and contains 21 elasticity constants. The elasticity tensor can be diagonalized and expressed in the base of three axes defining the principle strain directions. For
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graphite, the elasticity tensor is well documented [START_REF] Kelly | Physics of Graphite[END_REF]. Since graphene consists of only one atomic layer of graphite, we can deduce its elasticity tensor from the corresponding in-plane block of the graphite tensor [START_REF] Lambin | Elastic Properties and Stability of Physisorbed Graphene[END_REF]. For graphene the twodimensional Hook law reads:

   σ xx σ yy σ xy    =    C 11 C 12 0 C 12 C 11 0 0 0 1 2 (C 11 -C 12 )       x y xy    , (1.3.1)
where the elastic constants are functions of the in-plane Young's modulus E and in-plane Poisson's ratio ν:

C 11 = E 1 -ν 2 C 12 = νE 1 -ν 2 1 2 (C 11 -C 12 ) = E 2(1 + ν) . (1.3.2)
The third row in expression (1.3.1) describes the shear stress due to shear strain. Note that the Young's modulus describes how much stress is created in the graphene as a result of strain, whereas Poisson's ratio is a measure of how much the graphene contracts in a direction perpendicular to applied uni-axial strain. From the form of the elasticity tensor in (1.3.1), we see that graphene is fully isotropic concerning its in-plane elastic properties.

The parameter describing the out-of-plane properties of graphene is the bending rigidity κ. It is a measure of the energetic cost associated with bending deformations induced in the membrane. Several definitions of the bending energy exist, but all of them are related to the membrane curvature. The most simple definition of the bending energy V b is given in terms of the mean curvature H integrated over the membrane surface:

V b = κ 2 dS H 2 . (1.3.3)
In continuum mechanics the bending rigidity of thin plates is connected to their in-plane elastic modulus and Poisson's ratio by κ = Et 3 /12(1 -ν 2 ), where t is the plate thickness. However, this model does not capture the truly two-dimensional nature of graphene which does not have a well-defined thickness. This model predicts a bending rigidity of about 20 eV which is superior to the generally accepted value of κ = 1 eV estimated by molecular dynamics simulations of [START_REF] Wang | Wrinkling of monolayer graphene: A study by molecular dynamics and continuum plate theory[END_REF]. Experimentally determined values on buckled membranes based on the plate model find κ = 7 eV [START_REF] Lindahl | Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes[END_REF]. However, an experimental determination of the intrinsic bending rigidity of graphene is difficult, because suspended graphene membranes are generally structured by ripples or folds which modify the membrane rigidity. The in-plane Young's modulus of graphene was determined by Lee et al. using the nano-indentation technique on exfoliated suspended graphene membrane [START_REF] Lee | Measurement of the elastic properties and intrinsic strength of monolayer graphene[END_REF]. As sketched in figure 1.7, it consists in applying a load to the suspended membrane with an AFM tip while tracking the membrane displacement. Thus the 2D in-plane elastic modulus of graphene was determined to be Et = 340 N/m, where t = 3.4 Å is the thickness of graphene. Note that the thickness of crystal with a thickness The breaking force depends strongly on the tip radius but not on the sample diameter. Image adapted from [START_REF] Lee | Measurement of the elastic properties and intrinsic strength of monolayer graphene[END_REF]. (b) top: Schematic of a graphene sealed microchamber. When the sample is placed in vacuum, the graphene membrane bulges up forming a balloon-like structure. Inset: optical image of a single atomic layer graphene drumhead on a silica well. Bottom: AFM topography image of a multilayer graphene drumhead subjected to a pressure difference. These experiments showed that graphene is impermeable to gas including helium. Images adapted from [START_REF] Bunch | Impermeable atomic membranes from graphene sheets[END_REF].
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of one atomic layer is not a well defined quantity, which is why the graphite interlayer distance given above is generally used. Note that the determined value for the in-plane Young's modulus is extremely high. It should be pointed out that the stress-strain relation is no longer linear for high applied loads as can be seen in figure 1.7. This requires to take the third order elastic modulus D into account, so that the stress is given by σ = E + D 2 . The third order elastic modulus is determined to be Dt = -690 N/m. Also, the graphene membranes were found to have a pre-strain on the order of 10 -5 to 10 -4 which is assumed to result from the graphene transfer. As will be seen in chapter 3, similar values are found in this work by Raman measurements on suspended graphene grown by chemical vapour deposition.

When continuously increasing the load on the graphene membrane with the AFM tip, it will tear at a value equal to its breaking strength. This was found to be 42 N/m corresponding to an astonishingly high strain of 25%.

Instead of applying a point-like force on the graphene as done by the nanoindentation technique, a uniformly distributed force can be exerted by subjecting a graphene membrane to a pressure difference. This was first demonstrated by Bunch et al. [START_REF] Bunch | Impermeable atomic membranes from graphene sheets[END_REF], who exfoliated graphene onto wells in a silica substrate. When placing such a sample in vacuum, the graphene membrane bulges up due to the pressure of the gas trapped inside the well. The in-plane Young's modulus of graphene deduced from this experiment yielded similar values to the nanoindentation technique. However, it also revealed another interesting property of graphene: this atomically thin membrane is impermeable to gases including helium.

Electrical properties

As we have seen, graphene is endowed with exceptional mechanical properties that result from its crystal structure. The same holds true for its electronic properties which is one of the main causes why graphene stirred such a great excitement upon its first isolation. An extensive treatment of all the electrical properties of graphene is beyond the scope of this work. We will therefore restrict the discussion to the aspects that will be of relevance later on. This concerns first and foremost the electronic band structure.

An intuitive understanding of the band structure can be gained by considering the molecular orbital model. In graphene, the outer s atomic orbital is hybridized with two p orbitals forming three sp 2 orbitals in plane and leaving one unchanged p z atomic orbital out-of-plane. Each of these orbitals is filled with one of carbon's four valence electrons. The orbitals of neighbouring carbon atoms overlap to form molecular orbitals, or energy bands. In the graphene plane sp 2 orbitals overlap strongly giving rise to three pairs of bonding/anti-bonding σ/σ * bands, which are far below the Fermi energy. Those are the covalent bonds that are responsible for the high mechanical stiffness of graphene. The p z orbitals have a smaller overlap and result in π/π * bands as show in figure 1.8. The π/π * bonds are weaker and hence their energy bands lie higher. They touch each other at the so-called Dirac The rapid decrease in resistivity on adding charge carriers indicates their high mobility, which does not noticeably change when increasing the temperature to 300 K. Image from [START_REF] Geim | The rise of graphene[END_REF].

points, [START_REF] Weber | Detection and Generation of Gravitational Waves[END_REF] which are located at the K and K' points of the first Brillouin zone.

Only the four energetically lowest orbitals are occupied, which correspond to the bonding σ and π bands. The Fermi energy E F of charge neutral graphene therefore cuts through the Dirac points, implying that the Fermi surface consists of only six points in the Brillouin zone. In vicinity of these points (for energies E which fulfil |E -E F | < 0.5 eV), the π/π * bands have a conical shape and are therefore often referred to as Dirac cones. In these regions the energy dispersion (q) is linear as can be found from tight binding calculations:

± = v F |q|, (1.3.4) 
where q = |k -K| and v F the electronic group velocity. The linear energy dispersion is unusual in a medium. It reminds of the energy dispersion of massless photons as described by relativity theory. Therefore electrons in graphene are sometimes referred to as massless or relativistic fermions. The Fermi energy of graphene is given by:

E F = v F √ πn, (1.3.5)
where n is the charge carrier density, while the electronic density of states ρ( ) takes the form:

ρ( ) = 2| | π( v F ) 2 . (1.3.6)
Note that as a consequence of the shape of the energy bands, the electronic density of states vanishes at the Fermi level without opening an energy gap. For this reason graphene is a semimetal or gapless semiconductor.
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When considering electronic transport properties of graphene, only electrons in the vicinity (within k B T ) of the Fermi energy play a role. The electronic transport properties can be characterized by the square electrical conductivity G = µne, which depends on the charge carrier density n and the electrical mobility µ, e is the electron charge. Note that the conductivity of graphene has a minimum value of G min = 4e 2 /h. The mobility is a material parameter, which is very high for graphene. Mobilities as high as 2 • 10 5 cm 2 V -1 s -1 have been reported in suspended graphene at room temperature in suspended graphene [START_REF] Bolotin | Ultrahigh electron mobility in suspended graphene[END_REF]. An exemplary field effect measurement curve is shown in figure 1.8.

Optical properties

The electronic band structure of graphene also has consequences for its optical properties. Due to the linear dispersion, graphene exhibits a broad optical absorption spectrum in the visible range. This aspect was first studied by Nair et al. [START_REF] Nair | Fine structure constant defines visual transparency of graphene[END_REF], who found an optical absorption A of:

A = πα, (1.3.7)
where α = e 2 /(4π 0 c) 1/137 is the fine structure constant. The absorption of about 2.3% per graphene layer is quasi-constant over a wide spectral range 
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(approximately 300 to 2500) covering basically the whole visible range of light. Moreover, the absorption is and proportional to the number of graphene layers. Taking into consideration that graphene is only one atom thick, it interacts surprisingly strongly with light. The reflectance of graphene is considerably lower than the absorption, being inferior to 0.1%.

While graphene is a relatively opaque material considering its ultimate thinness, it is paradoxically interesting for optoelectronics as a transparent conductor for applications such as flat displays, touch screens, light emitting diodes and solar cells. In fact, graphene can beat the performance of today's industrial optically transparent conducting materials (e. g. indium tin oxide) giving an unprecedented electrical conductance/optical absorption ratio [START_REF] Bonaccorso | Graphene Photonics and Optoelectronics[END_REF]. This is the quantity which defines the figure of merit of conducting and transparent thin films. Moreover, the excellent flexibility of graphene makes this material very promising for plastic electronics.

Photons in the visible range sent onto graphene, can also scatter inelastically at its lattice phonons resulting in a characteristic Raman spectroscopy fingerprint of graphene which is of utmost importance for its characterization. Section 1.4.1 is dedicated to Raman spectroscopy on graphene. However, we will first discuss the thermal properties which are also closely related to its lattice vibrations.

Thermal properties

We will now discuss the thermal properties of graphene. More details can be found in two very instructive reviews by Baladin and Balandin and Nika respectively, treating experimental and theoretical aspects of graphene thermal properties [START_REF] Balandin | Thermal properties of graphene and nanostructured carbon materials[END_REF][START_REF] Nika | Two-dimensional phonon transport in graphene[END_REF]. The following discussion follows closely these examples.

A key quantity in characterizing the thermal behaviour of a material is the thermal conductivity κ which relates the heat flux q to the temperature gradient ∇T via Fourier's law: q = κ∇T . Graphene has an exceptionally high thermal conductivity: values of 2000-5000 W m -1 K -1 at room temperature were reported by experimental studies. This is comparable to the thermal conductivity of natural diamond and is about five times higher than the thermal conductivity of copper, which is one of the best metallic conductors.

The thermal properties of graphene are tightly linked to its crystal structure. Due to the strong sp 2 -bonds, the contribution of lattice phonons to graphene's thermal conductivity dominates over the electron one. Unlike bulk materials, where the thermal conductivity is limited by the crystal anharmonicity, a logarithmic divergence κ ∝ log(N ) with the number of atoms N is predicted by many theories in case of ideal two-dimensional systems [START_REF] Nika | Two-dimensional phonon transport in graphene[END_REF]. Finite conductivities of the order of some thousands of W m -1 K -1 are predicted when introducing extrinsic phonon scattering mechanisms such as defect scattering or coupling to the substrate in the models.

Indeed, experimental studies using an optothermal Raman technique on suspended single layer graphene, both exfoliated and grown by chemical vapour depo- The thermal conductivity increases with the graphene membrane length, even if the latter exceeds by far the average phonon mean free path. A logarithmic divergence of the thermal conductivity with the sample length is predicted theoretically for ideal two-dimensional systems. Images from [START_REF] Xu | Length-dependent thermal conductivity in suspended singlelayer graphene[END_REF]. (c) Thermal expansion coefficient α of graphite and graphene as a function of temperature as found by first principles calculations by [START_REF] Mounet | First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[END_REF]. The thermal expansion coefficient of both graphite and graphene takes negative values over a wide temperature range, which means that they contract upon heating.

sition, confirmed an exceptionally high thermal conductivity: values in the range of 2000 -5000 W m -1 K -1 near room temperature were found by an optothermal

INTRODUCTION TO GRAPHENE

Raman technique [START_REF] Balandin | Superior thermal conductivity of single-layer graphene[END_REF][START_REF] Jauregui | Thermal Transport in Graphene Nanostructures: Experiments and Simulations[END_REF]. This steady-state method measures the shift of the Raman G peak as a function of the laser heating power (see section 1.4 for a detailed discussion of Raman spectroscopy). An independent calibration of the shift of the G-phonon with temperature allows to deduce the temperature shift upon heating and thus the thermal conductivity. Interestingly, Xu et al. [START_REF] Xu | Length-dependent thermal conductivity in suspended singlelayer graphene[END_REF] were able to confirm the exotic behaviour of graphene resulting from its two-dimensional nature: they showed that the thermal conductivity keeps increasing, and remains logarithmically divergent with the sample length (see figure 1.10). This was even demonstrated for sample lengths exceeding by far the average phonon mean free path. The experiments were performed on suspended single-layer graphene using electrical electrodes as hot and cold reservoirs: One side of the graphene membrane was heated by the Joule effect, thus defining the hot reservoir. The temperature on either side of the membrane was deduced from the electrical resistance of the respective electrodes.

Graphene exhibits another interesting feature regarding its thermal behaviour: A negative thermal expansion coefficient from 0 to about 2500 K is predicted by [START_REF] Mounet | First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[END_REF] from first principles calculations (see figure 1.10). This means that graphene contracts upon heating. Several groups have reported the observation of a negative expansion coefficient of graphene by various experimental methods finding values in the range of -6 to -8 • 10 -6 K -1 [START_REF] Yoon | Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy[END_REF][START_REF] Singh | Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators[END_REF][START_REF] Bao | In situ observation of electrostatic and thermal manipulation of suspended graphene membranes[END_REF].

From the overview presented in this section, we find that graphene is endowed with exceptional mechanical, optical, electrical and thermal properties. Table 1.1 summarizes the most important quantities that will be used throughout this manuscript.

Furthermore we have seen that the two-dimensional lattice structure of graphene is responsible for graphene's exotic thermal properties. In the next section we will discuss the interaction between photons and the lattice vibrations of graphene. [START_REF] Yoon | Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy[END_REF][START_REF] Singh | Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators[END_REF][START_REF] Bao | In situ observation of electrostatic and thermal manipulation of suspended graphene membranes[END_REF] Table 1.1: Important mechanical, electrical, optical and thermal properties of graphene.

thermal thermal conductivity (suspended, 300K) up to κ th = 5000 W m -1 K -1 [44, 45] thermal expansion coefficient (300 K) α ≈ -7 • 10 -6 K -1

Introduction to Raman spectroscopy

This section gives a brief overview over Raman spectroscopy on graphene. More information can be found in the book of Cardona et al. [START_REF] Cardona | Light Scattering in Solids I[END_REF] and in the reviews of Dresselhaus [START_REF] Dresselhaus | Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy[END_REF] and Ferrari and Basko [START_REF] Ferrari | Raman spectroscopy as a versatile tool for studying the properties of graphene[END_REF]. Raman spectroscopy deals with the study of photons in the visible range that are inelastically scattered by optical phonons in matter. An incoming photon of energy ω in and wave vector k in creates a phonon of energy Ω ph and wave vector q ph resulting in a scattered photon of energy ω sc and wave vector k sc . The scattering process obeys energy and momentum conservation:

ω in = ω sc + Ω ph (1.4.8) k in = k sc + q ph .
(1.4.9)

Let us briefly outline some basic considerations concerning the kinetics of the photon-phonon scattering process in a solid. The momentum of photons in the visible range (wavelengths between 380 and 750 nm) is of the order of ≈ 10 -3 Å-1 .

The behaviour of the phonons in a solid, can be entirely described by Bloch waves in the first Brillouin zone, the dimensions of which are given by the inverse lattice parameters a. The momentum of a phonon in the solid is therefore of the order of π/a ≈ Å-1 . This implies that the maximum momentum transfer, which occurs (a) Microscopic picture of a firstorder electronic Raman scattering process at the example of a direct band-gap semiconductor: the absorption of an incident photon of energy ω in excites an electron from state |i to |n . The excited electron is inelastically scattered into state |n * by a phonon of energy Ω ph and wave vector q ph . Note that the sketch is not to scale. When inspecting the orders of magnitude, momentum conservation requires that the phonon wave vector be close to zero. After scattering, the excited electron recombines with the hole thus returning to its original state |i . In the de-excitation process a photon of energy ω sc is emitted. These scattered photons constitute the detected Raman signal. (b) Sketch illustrating first and higher order phonon scattering: The first order process only involves a single phonon with energy Ω 0 near the Γ-point (purple disk), while in higher order processes, where more than one phonon is involved, momentum conservation can be satisfied with larger phonon wave vectors. Examples of two-phonon processes are overtones involving two phonons from the same phonon branch or the combination of phonons from two different branches.

for back-scattering of the photon, has an upper bound of |q ph,max | = 2|k in | ≈ 0, meaning that the incoming photon can only scatter at phonons with small momentum, i.e. that are very close to the Brillouin zone centre denoted Γ.

In a microscopic picture, an electronic Raman scattering process is related to an electronic transition which mediates the scattering process of photons. An example of such a process is illustrated by figure 1.11 for an interband electronic Raman scattering process in a direct band-gap semiconductor. The Raman scattering intensity is proportional to the total transition probability given by Fermi's Golden rule:

I ∝ n,n * ω sc , ph, i|H ρ |0, ph, n * 0, ph, n * |H e-ph |0, 0, n 0, 0, n|H ρ |ω i , 0, i [ ω i -(E n -E i )] • [ ω i -Ω ph -(E n * -E i )] 1.4. INTRODUCTION TO RAMAN SPECTROSCOPY
and electronic nature and is denoted |photon, phonon, electron . The terms of the form j|H|k are Hamiltonian matrix transition elements for each step of the scattering process, where H ρ describes electron-photon interactions, while H e-ph contains the electron-phonon interaction. The individual steps of the scattering process are depicted in figure 1.11 and describe the following transitions:

• 0, 0, n|H ρ |ω i , 0, i : the absorption of an incident photon of energy ω in results in the excitation from the electronic state i to n. The phonon bath is not affected by the electronic transition.

• 0, ph, n * |H e-ph |0, 0, n : The excited electron is scattered from state n to n * and emits a phonon.

• ω sc , ph, i|H ρ |0, ph, n * : The exited electron recombines with the hole thus returning from state n * to its initial state i. The deexcitation is a radiative process resulting in the emission of a photon of energy ω sc Note that the form of the matrix elements depends on the symmetry of the transition operator H and the intervening states of the system leading to symmetry selection rules. Upon inspection of equation 1.4.10, we notice that the intensity is maximal when the denominator vanishes, that is when the energy of the incoming and/or scattered photon matches the energy of an electronic transition. This is called resonant Raman scattering. A doubly resonant scattering process can lead to an intensity enhancement of 10 5 to 10 7 compared to a non resonant Raman process. So far we have been dealing with first order Raman processes which are a result of the interaction of an incoming photon with one phonon in the solid. As a result of the selection rule q ph ≈ 0, these processes only render phonons accessible that are close to the Brillouin zone centre. However, higher order scattering processes can occur which involve more than one phonon. In that case the mentioned selection rule can be satisfied by phonons far from the Γ-point. This is possible, for example, when two (or more) phonons are excited in the solid. This can occur for phonons of the same phonon branch giving rise to overtones of a particular mode or for phonons of different phonon branches generating modes that are a superposition of different modes. However, higher order scattering processes can also be mediated by phonon scattering at a defect in the solid. All of theses three mentioned higher order processes allow to probe phonons with higher wave vectors. This mechanism is important for Raman scattering in graphene as will be discussed in more detail in the next section.

Raman spectroscopy on graphene

As mentioned earlier, the lattice structure of graphene gives rise to delocalized electrons due to π bonds between adjacent carbon atoms. These bonds show characteristic, sharp Raman bands (named G, D and 2D) that can be found in ) results from a first order scattering process, while the 2D peak (∼ 2650 cm -1 ) arises from a second order scattering process. Usually the 2D mode is more intense than the G mode. This is not the case in the shown spectrum due to optical cavity effect (see section 3.1.3). Both the G and 2D mode are sensitive to environmental conditions and can for example be used to determine charge doping or strain in the graphene membrane. The D mode ∼ 1350 cm -1 requires structural defects for its generation. Its intensity is therefore a measure of the structural quality of the sample.

any system of sp 2 hybridized carbon atoms. In the following we will give a short outline of the main Raman peaks in graphene.

The graphene crystal possesses six phononic normal modes, three of which are optical phonon branches denoted LO, iTO and oTO, while the other three are acoustic branches called LA, iTA, oTA, where the used abbreviations are defined as follows: O (optical), A (acoustic), L (longitudinal), T (tangential), i (in-plane), o (out-of-plane). Figure 1.13 shows the phonon branches for single layer graphene that are relevant for Raman processes. Two of the six normal modes are doubly degenerate at the Brillouin zone centre, the Γ-point, so that only four vibrational symmetries occur. They are denoted A 2u , B 2g , E 1u and E 2g . Note that A 2u and B 2g are out-of-plane modes which cannot be detected by Raman scattering using light that is polarized in the graphene plane (standard situation). Let us now consider the main graphene peaks.

G-mode

The G-band is situated at about 1580 cm -1 . It has E 2g symmetry and is doubly degenerate at the Γ-point in case of graphene (iTO and iLO branch in the phonon dispersion). It corresponds to a collective in-plane vibration of carbon atoms, where two neighbouring atoms move in anti-phase as depicted in figure 1. 13(b). The G-phonon arises from a first order Raman process as sketched in figure 1 
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Phonon wave vector (2 π/a 0 ) Figure 1.13: Phonon dispersion of graphene. (a) The black curves represent the calculated dispersion of in-plane phonon modes in graphene in the energy and frequency range relevant for Raman scattering. The symbols are experimental data taken on graphene and graphite. The Raman G mode is generated at the centre of the Brillouin zone denoted Γ, while the D and 2D modes consist of phonons at the corner of the Brillouin zone called K-point. The figure was adapted from [START_REF] Ferrari | Raman spectroscopy as a versatile tool for studying the properties of graphene[END_REF]. (b) Schematic of the lattice vibrations for the G and D modes. The depicted vibrations correspond to the tangential and longitudinal in-plane optical phonon branch at the Γ-point in the case of the G mode, while the D mode originates from the in-plane tangential optical phonon branch at the K-point. Figure inspired by [START_REF] Beams | Raman characterization of defects and dopants in graphene[END_REF]. Electron dispersion (solid black lines), occupied states (shaded areas), interband transitions neglecting the photon momentum, accompanied by photon absorption (blue arrows) and emission (red arrows), intraband transitions accompanied by phonon emission (dashed arrows), electron scattering on a defect (horizontal dotted arrows). Figure adapted from [START_REF] Ferrari | Raman spectroscopy as a versatile tool for studying the properties of graphene[END_REF] pair close to the K-point. The electron is subsequently scattered by a phonon at the Γ-point (q ph = 0) and the electron-hole pair recombines radiatively by emission of the Raman-photon.
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The degeneracy of the G-mode in graphene can be lifted by strain. When uniaxial strain is applied, the G-mode splits into the so-called G + and G -mode which are polarized along the strain direction and perpendicular to it [START_REF] Mohiuddin | Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation[END_REF]. The higher the strain, the stronger the redshift of both modes and the stronger the splitting between them. However, if the strain is weak, the splitting cannot be resolved, but might lead to an observed broadening of the G-peak.

D-mode

A Raman band at about 1350 cm -1 is often observed in graphene Raman spectra. It arises from a doubly-resonant process that involves the iTO phonon mode at the K-point and requires a defect for momentum conservation. The D-phonon corresponds to the breathing mode of the sp 2 hybridized carbon ring as depicted in figure 1.13(c). In this Raman process, an electron with a wave vector close to the K-point is resonantly excited into a real state by the absorption of the incident photon. Subsequently, the electron is inelastically scattered to the K'point by an iTO phonon (|q ph | ≈ K) as depicted in figure 1.14. The electron is then elastically back-scattered to the K-point by a defect (|q def ect | + |q ph | = 0) and recombines radiatively with the hole. Note, that the D mode can also arise from hole-or electron-hole-scattering event. However, all scattering processes involving a D phonon have in common, that they involve an elastic scattering event by defects of the crystal and an inelastic scattering event by emitting or 1.4. INTRODUCTION TO RAMAN SPECTROSCOPY absorbing a phonon. They are intervalley processes. An equivalent mechanism also exists as an intravalley process associated to the so-called D'-mode.

In order to satisfy momentum conservation in the D-mode scattering process, the defect must break the lattice symmetry of graphene. Candidates are therefore structural defects such as sp 3 -hybridized carbon atoms, lattice vacancies, grain boundaries or graphene edges. The intensity of the D-mode is therefore commonly used as a measure for the structural quality of a graphene sample.

2D-mode

The 2D-mode occurring at about 2650 cm -1 is the most intense Raman band in graphene. It is an overtone of the D mode and, like the latter, originates from the in-plane breathing mode of the aromatic carbon ring. Unlike the D mode, the 2D phonon does not require defects for its generation because the momentum generation is assured by two phonon scattering events. A realization of this Raman mechanism is depicted in figure 1.14. Once again, the absorption of a photon generates an electron-hole pair close to the K-point. Both the electron and hole are then inelastically scattered to the K'-point by an iTO phonon before recombining radiatively and emitting a photon.

The energy of the 2D mode is strongly influenced by the environmental conditions comprising effects of strain in the crystal lattice, the number of graphene layers or charge doping. It was shown by [START_REF] Ferrari | Raman spectrum of graphene and graphene layers[END_REF] that in the case of Bernal stacking the number of graphene layers up to five can be identified by a close analysis of the 2D mode shape. For single layer graphene, the 2D mode is given by a simple Lorentzian, while in case of a Bernal stacked a bilayer, it is a superposition of four Lorentzians. However, if the two layers have an arbitrary rotation angle, only one single Lorentzian peak is observed, which has twice the intensity of a single layer [START_REF] Poncharal | Raman Spectra of misoriented bilayer graphene[END_REF].

In this work we will frequently encounter two factors in the graphene environment that influence both its G and 2D mode, namely charge doping and mechanical strain. We will therefore briefly describe the effects that these two factors have on the graphene Raman spectrum in the following two sections.

Effect of charge doping on the graphene Raman response

By applying a gate voltage to graphene, its charge carrier density can be controlled which affects the carrier mobility and in turn allows to tune the electrical conductivity (see figure 1.8). This electrical field effect is the basis of semiconductorbased transistors and caused much excitement about graphene. However, charge transfer to graphene can also occur involuntarily from contaminants at its surface or charges trapped in the substrate. Due to strong electron-phonon coupling in graphene, charge doping can affect the phonon modes. Charge doping is therefore a crucial point to take into consideration when it comes to the interpretation of The influence of charge doping on the Raman spectrum of single layer graphene has been studied by several groups, mainly by employing an electrical backgate [START_REF] Yan | Electric field effect tuning of electron-phonon coupling in graphene[END_REF][START_REF] Pisana | Breakdown of the adiabatic Born-Oppenheimer approximation in graphene[END_REF][START_REF] Das | Monitoring dopants by Raman scattering in an electrochemically topgated graphene transistor[END_REF]]. An alternative approach consists in electrochemically top-gating the graphene which allows for a wider range of charge carrier concentrations to be explored [START_REF] Das | Monitoring dopants by Raman scattering in an electrochemically topgated graphene transistor[END_REF][START_REF] Froehlicher | Raman spectroscopy of electrochemically gated graphene transistors: Geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering[END_REF]. Figure 1.15 gives an overview of the observed effects on the G and 2D mode in case of electrochemically top-gated single layer graphene reported by Das et al. [START_REF] Das | Monitoring dopants by Raman scattering in an electrochemically topgated graphene transistor[END_REF]. The presented measurements show that the G mode experiences a stiffening upon both electron (n) and hole (p) doping, whereas its width takes its maximum value at the Dirac point and decreases for both doping types. The linewidth decrease saturates when the doping causes the Fermi-level to shift by a value superior to the photon energy because of blockage of the phonon decay channel into electron-hole pairs due to the Pauli principle. This means that the phonon life time increases when the Fermi level moves away from the Dirac point.

Two effects need to be taken into account to explain the behaviour of the G mode upon doping. The first one concerns a change in the graphene lattice constant that goes in hand with a modified charge carrier concentration: in case of electron (hole) doping the lattice constant increases (decreases) resulting in a stiffening (softening) of the phonon energy. This effect is hence asymmetric with respect to the sign of charge doping. The second effect is related to the Kohn anomaly at the Γ point in the graphene phonon dispersion. It describes the softening of the phonon energy due to non-adiabatic electron-phonon coupling. More precisely, the interaction between the G phonon and a virtual electron-hole pair causes a renormalization of the phonon's energy. As a result the phonon lifetime and energy are lowered. The degree to which the phonon energy is renormalized is determined by the strength of the electron-phonon coupling which depends on the Fermi energy. As shown in figure 1.15 (e), increasing the Fermi energy inhibits the creation of electron-hole pairs, which suppresses the perturbation of electrons and phonons. Due to the linear electronic dispersion in graphene, this effect is symmetric with respect to the Fermi energy, and for large doping levels the frequency shift of the G phonon becomes proportional to the Fermi level. Another consequence of the Pauli blocking for high doping levels is the blockage of the decay channel of phonons into electron-hole pairs which results in a longer phonon life time and hence sharper peak.

The dependence of the 2D position on doping is more complex because the 2D mode originates from a doubly resonant Raman process where real electronic excitations need to be exactly matched. Figure 1.15 shows that the 2D mode stiffens upon hole doping, whereas being almost constant for an electron doping concentration up to about 3.2 • 10 13 cm -1 . Upon further increase of the electron density, it drops abruptly. The exact mechanism leading to this behaviour remains unknown.

As will be discussed in detail in chapter 3, the sensitivity of the G and 2D mode energies to the Fermi energy can be used to determine the doping level of single layer graphene. To this end a correlation analysis of the G and 2D peak position biaxial strain induced with a piezoelectric actuator allowing to bend the flexible support onto which the graphene has been deposited. The solid lines are linear fits. [START_REF] Ding | Stretchable graphene: A close look at fundamental parameters through biaxial straining[END_REF]. is required. We note that for hole doping levels below 2 • 10 13 cm -1 , the relative Raman shift of the G and 2D mode is quasi linear. As Lee and coworkers pointed out [START_REF] Lee | Estimation of Young's modulus of graphene by Raman spectroscopy[END_REF], averaging over the results of several measurements by Das et al. [START_REF] Das | Monitoring dopants by Raman scattering in an electrochemically topgated graphene transistor[END_REF][START_REF] Das | Phonon renormalization in doped bilayer graphene[END_REF], the relative frequency shift can be estimated to be ∆ω 2D ∆ω G hole = 0.7. Note, that Froelicher et al. [START_REF] Froehlicher | Raman spectroscopy of electrochemically gated graphene transistors: Geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering[END_REF] found a similar value of 0.5.

However, the G and 2D phonon energies are also affected by other phenomena. A commonly occurring cause is mechanical strain in the graphene membrane as will be discussed in the following.

Effect of mechanical strain on the graphene Raman response

Applying mechanical stain to a crystalline material deforms its lattice which can break the lattice symmetry. It was shown by [START_REF] Mohiuddin | Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation[END_REF], that a uniaxial strain lifts the degeneracy of the graphene G mode, splitting it into the so-called G + and G - components for high strains (of about 0.37% in their case). These split modes are orthogonal and sensitive to the polarization of the probe photons. According to Frank et al. [START_REF] Frank | Raman 2D-band splitting in graphene: Theory and experiment[END_REF], the 2D mode also splits in strained graphene, but to a somewhat lesser extent. However, mechanical strain has also an effect on the energy of the graphene Raman phonons as reported by [START_REF] Mohiuddin | Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation[END_REF][START_REF] Huang | Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy[END_REF][START_REF] Ding | Stretchable graphene: A close look at fundamental parameters through biaxial straining[END_REF]. The effect of weak biaxial strain was quantitatively measured by [START_REF] Ding | Stretchable graphene: A close look at fundamental parameters through biaxial straining[END_REF], see figure 1.16. All observed mode experience a shift in their energy. Note that in this example no 1.5. THE HARMONIC OSCILLATOR peak splitting is expected because of the biaxial character of the strain. However, the attained strain values are probably too low anyway for the splitting to be detectable. The phonon energy shift is a very sensitive probe of strain. From figure 1.16, a sensitivity to biaxial strain b of ∆ω G ∆ b = -57.3 cm -1 % and ∆ω 2D ∆ b = -160.3 cm -1 % can be deduced for the G and 2D mode respectively. This means that the 2D mode is about 3 times more sensitive to strain than the G mode. In fact, a remarkable lower detection limit for strain of 0.01% (0.03%) in case of biaxial (uniaxial) strain was reached with the 2D mode by [START_REF] Mohiuddin | Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation[END_REF].

The sensitivity of the phonon frequencies to strain is generally described by the Grüneisen parameter γ of the corresponding mode. When considering graphene drums that are supported along their entire circumference as studied in this work, we assume that biaxial rather than uniaxial strain will play an important role. In this case the Grüneisen parameter reads:

γ = - 1 2ω 0 ∂ω ∂ b , (1.4.11)
where ω is the frequency of the phonon mode. Reported Grüneisen parameters of the graphene G and 2D mode under biaxial strain are γ G = 1.8 [START_REF] Mohiuddin | Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation[END_REF] by firstprinciples calculations and γ 2D = 2.98 [START_REF] Das | Phonon renormalization in doped bilayer graphene[END_REF] by Raman measurements.

Having introduced the local electronic and vibrational properties of the graphene crystal, we now turn to the description of the collective motion of graphene membranes which will in turn affect the above described signatures.

The harmonic oscillator 1.5.1 Mechanical states of motion

It is not an understatement to say that the harmonic oscillator is one of the major powerhorses in physics. In this section we will introduce the ingredients to model the vibrational properties and dynamics of graphene nanoresonators. We will first introduce the basic concepts related to the mechanical harmonic oscillator and its coupling to a thermal bath and an external force. Subsequently the acoustic vibrations of extended membranes will be presented.

Energy quantization of the harmonic oscillator

The dynamics of a one-dimensional particle moving in a parabolic potential V (x) = 1 2 kx 2 are described by the Hamiltonian [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF]:

Ĥ = P 2 2M + k 2 X2 , (1.5.12)
where X and P are the position and momentum operator which satisfy the commutation relation [ X, P ] = i . In a classical picture, the movement of the harmonic oscillator corresponds to an oscillation around its equilibrium position with a frequency Ω m = k M . It is convenient to introduce the creation (â † ) and annihilation (â) operators which are linear combinations of the position and momentum operator:

â = M Ω m 2 X + i P M Ω m , â † = M Ω m 2 X -i P M Ω m . (1.5.13)
These operators satisfy the commutation relation [â, â † ] = 1. Thus the Hamiltonian (1.5.12) can be rewritten in the form:

Ĥ = Ω m â † â + 1 2 . (1.5.14)
Here, â † â = n is the phonon number operator at frequency Ω m , whose eigenstates are the Fock states |n of phonon number n, such that n|n = n|n . These Fock states are also eigenstates of the Hamiltonian operator Ĥ:

Ĥ|n = E n |n = Ω m (n + 1 2 )|n . (1.5.15)
From this expression we see that the quantum mechanical oscillator has a quantized energy spectrum with a non-zero ground state energy, also called zero-point energy, of Ω m /2. This is depicted in figure 1.17. Furthermore the energy levels are equidistant with a separation of Ω m . The non-zero ground state energy can also be interpreted in terms of the Heisenberg uncertainty principle ∆ X∆ P ≥ 2 , which states that the oscillator displays fluctuations about its equilibrium position, the zero-point motion ∆x zpm given by:

∆x zpm = 2M Ω m . (1.5.16)
So far we have treated the harmonic oscillator as being isolated. However, a real system always couples to its environment. This aspect will be studied in the next section. The classical picture does not account for the zero-point energy of the oscillator and therefore fails in the low temperature limit.

Coupling to the environment

We will now consider the coupling of the mechanical oscillator to the environment. Such interaction leads to the thermalization of the mechanical oscillator. At thermal equilibrium the phonon occupation number will follow the Bose-Einstein distribution. The oscillator is then described by the density matrix:

ρ = 1 Z e -Ĥ k B T , (1.5.17) 
where T the temperature and Z is the partition function and which normalizes the density matrix and is defined as:

Z = ∞ n=0 e -(n+ 1 2 ) Ωm k B T = e -Ωm 2k B T 1 -e -Ωm k B T
.

(1.5.18)

We then find the mean energy of the thermally excited oscillator to be:

H = Tr ρH = Ω m n th + 1 2 (1.5.19)
with mean phonon number

n th = 1 e Ωm k B T -1 . (1.5.20)
The energy of the quantized harmonic oscillator as a function of temperature is depicted in figure 1. [START_REF] Purcell | Tuning of Nanotube Mechanical Resonances by Electric Field Pulling[END_REF]. Note, that in a classical picture, the equipartition theorem predicts that every quadratic degree of freedom of a system in thermodynamic equilibrium contributes an energy of k B Θ/2 to the total mean energy of the system: E classic = k B Θ, which vanishes at zero temperature. The difference in energy between the classical and quantum oscillator at zero temperature is given by the zero-point energy Ω m /2.

Mechanical susceptibility

We now turn to the dynamical behaviour of the damped, driven harmonic oscillator. It is described by the following equation of motion:

ẍ(t) = -Ω 2 m x(t) -Γ m ẋ(t) + 1 M F ext (t), ( 1 
.5.21)
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where Γ m is the oscillator damping rate and F ext an externally applied force. The response of the oscillator to this force can be described in Fourier space1 by a transfer function χ[Ω], called the mechanical susceptibility. It is given by:

χ[Ω] = 1 M (Ω 2 m -Ω 2 -iΩΓ m ) (1.5.22)
and relates the oscillator displacement to the external force via:

x[Ω] = χ[Ω]F ext [Ω]. (1.5.23)
We note that a commonly used quantity to characterize the thermal displacement noise spectrum is the quality factor Q given by the ratio of the oscillator's resonance frequency and damping rate

Q = Ω m /Γ m .
In this work we will deal with two types of forces: a monochromatic, coherent force and a broadband, incoherent force resulting in the thermal excitation of the mechanical oscillator. The latter case will be studied in more detail in the next section.

Thermal displacement noise

In the following, we will study the consequences of the coupling of the oscillator to the surrounding thermal bath. This coupling is mediated by the quantum mechanical analogue of the Langevin force F T , which satisfies the following commutation relation:

[F th [Ω], F th [Ω ]] = 2πδ(Ω + Ω )2 M Γ m Ω m , (1.5.24)
and has and average value of zero F th = 0. The frequency spectrum of the Langevin force F T is defined by:

F th [Ω]F th [Ω ] = 2πδ(Ω + Ω )S F th , (1.5.25)
and amounts to:

S q F th [Ω] = -Im 1 χ[Ω] coth |Ω| 2k B T = M Γ m |Ω| coth |Ω| 2k B T . (1.5.26)
This is a special case of the fluctuation-dissipation theorem [START_REF] Kubo | The fluctuation-dissipation theorem[END_REF]. It links the energy dissipation of a system, described by the imaginary part of the mechanical susceptibility, to the spectrum of the Langevin force. In the high temperature limit we obtain the classical analogue: The thermal displacement noise spectral density as given by expression 1.5. [START_REF] Lambin | Elastic Properties and Stability of Physisorbed Graphene[END_REF]. With increasing quality factor, the displacement noise amplitude becomes narrower and higher and the phase slope steeper.

S F th [Ω] = 2k B T |Ω| Im 1 χ[Ω] . ( 1 
The Langevin force induces fluctuations of the position of the oscillator described by the displacement noise spectral density. The latter is given by the Fourier transform of the displacement autocorrelation function:

S x [Ω] = ∞ -∞ x(t), x(t + τ ) e iΩτ dτ.
(1.5.28)

Note that this expression corresponds to the measurement protocol of a network analyzer, so that S x [Ω] can be easily accessed experimentally. According to equation (1.5.23), the displacement noise spectral density is also given by:

S x [Ω] = |χ[Ω]| 2 S F th [Ω],
(1.5.29) which hence becomes:

S x [Ω] = 2Γ m Ω m /M (Ω 2 m -Ω 2 ) 2 + Ω 2 Γ 2 m n th + 1 2 .
(1.5.30)

We are furthermore interested in the zero-point displacement fluctuations of the quantum mechanical oscillator at n = 0. Upon inspection of equation (1.5.28), we find: .5.31) as predicted by the Heisenberg uncertainty principle (1.5.16). The zero-point displacement can hence be deduced from measurements of the displacement noise spectral density as the area below curve. Classical analogues of the above equations can be found in the high temperature limit, where k B T Ω m (n th + 1 2 ). The spectral density of the classical Langevin force F th then takes the form:

∆x 2 zpm = 1 2π ∞ -∞ dΩ S x [Ω] = 2M Ω m , ( 1 
S th F [Ω] = 2M Γ m k B T. (1.5.32)
resulting in a thermal spectral density of mechanical oscillations proportional to the equilibrium temperature:

S th x [Ω] = 2Γ m k B T M ((Ω 2 m -Ω 2 ) 2 + Ω 2 Γ 2 m )
, (1.5.33)
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It is depicted in figure 1.19 for varying quality factors. With the above expression we find the classical variance of the displacement:

∆x 2 th = 1 2π ∞ -∞ dΩ S th x [Ω] = k B T M Ω 2 m .
(1.5.34)

So far we have studied the dynamics of a one-dimensional harmonic oscillator. However, in this work we are dealing with the oscillations of extended membranes. In the next section we will deduce the spatial vibration profiles of such objects.

Vibrational eigenmodes of thin films

Graphene as a one-atom thick membrane can be considered as a thin, elastic film (see section 1.3.2). We will now investigate how the acoustic modes of such an object can be described in terms of continuum elasticity theory. An extensive overview over this field is given by [START_REF] Landau | Theory of Elasticity[END_REF][START_REF] Timoshenko | Theory of Plates and Shells[END_REF][START_REF] Weaver | Vibration problems in engineering[END_REF]. When a thin film is deflected, restoring forces of two different origins will a priori act on the membrane: one stems from the elastic rigidity of the material and the other from stress that exists in the film. If the elastic rigidity dominates, the sheet is called a plate, whereas in the opposite case it is called a membrane. Usually the object of interest is classified into one of the two categories for which well-known models exist.

However, graphene is a membrane at the extreme two-dimensional limit which could possibly display exotic behaviour. Graphene has a very low bending rigidity of about 1.1 eV [START_REF] Bao | In situ observation of electrostatic and thermal manipulation of suspended graphene membranes[END_REF], which would suggest that it behaves like a membrane. However, this also depends on the order of magnitude of stress acting in the membrane, for example due to clamping at its edges, and on the effective bending rigidity of a graphene sheet that is structured on the microscopic level due to grain boundaries, folds or wrinkles. Since we do not necessarily know which model describes the graphene membrane dynamics best, we include both the bending and stretching contribution in the following treatment, which is inspired by [START_REF] Fartash | Thin-film modeling for mechanical measurements: Should membranes be used or plates?[END_REF][START_REF] Eriksson | Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators[END_REF].

The total energy of a thin sheet vibrating along the z-direction (perpendicular to the membrane plane at equilibrium) is given by the sum of the bending V b , stretching V s and kinetic energies E kin :

E tot = V b + V s + E kin .
(1.5.35)

The individual energy contributions are given by:

V b = κ 2 A dA |∆u| 2 (1.5.36) V s = T 2 A dA |∇u| 2 (1.5.37) E kin = ρ 2 A dA ∂u ∂t 2 , ( 1 
.5.38)
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where u is the displacement perpendicular to the film's plane and A, κ and ρ are its surface area, bending rigidity and mass density respectively. The tension in the film is denoted as T . The equation of motion of the film can be found by variational minimization of the total energy. This is a complex problem which depends on the geometry of the film. Here we chose to treat the classical case of a disk.

Circular thin film

In the following, we will study the example of an isotropic circular disk under uniform biaxial tension that is clamped along its entire circumference. In that case, the energy contributions in cylindrical coordinates become [START_REF] Fartash | Thin-film modeling for mechanical measurements: Should membranes be used or plates?[END_REF]:

V b = Eh 3 24(1 -ν 2 ) 2π 0 a 0 ∂ 2 u ∂r 2 + 1 r ∂u ∂r + 1 r 2 ∂ 2 u ∂ϕ 2 2 r dr dϕ (1.5.39) V s = T h 2 2π 0 a 0   ∂u ∂r 2 + 1 r 2 ∂u ∂ϕ 2   r dϕ dr (1.5.40) E kin = ρh 2 2π 0 a 0 ∂u ∂t 2 r dr dϕ, (1.5.41)
where E is the Young's modulus, ν the Poisson's ratio, a the radius and h the thickness of the thin film. Note that we used the κ = Eh 3 /12(1 -ν 2 ) to express the film's bending energy. We obtain the equation of motion of the latter by minimizing its total energy:

Eh 2 12(1 -ν 2 ) ∇ 4 u -T ∇ 2 u + ρ ∂ 2 u ∂t 2 = 0. (1.5.42)
Separating the spatial and temporal variables, we can search for a solution of the form u(r, ϕ, t) = Re u(r, ϕ)e iΩt where Ω is the angular frequency. The equation of motion can then be written in the form:

(∇ 2 + α 2 + )(∇ 2 -α 2 -)u(r, ϕ) = 0, (1.5.43)
where

α ± = - 6(1 -ν 2 ) Eh 2   ±T -T 2 + ρΩ 2 Eh 2 3(1 -ν 2 )   .
(1.5.44)

In equation (1.5.43) at least one of the two factors must vanish, which yields two eigenvalue problems:

(∇ 2 + α 2 + )u(r, ϕ) = 0 (∇ 2 -α 2 -)u(r, ϕ) = 0 (1.5.45)
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The general solution of the equation of motion (1.5.43) is a superposition of solutions to equations (1.5.45), which are well-known. The general solution is given by: u(r, ϕ) = cos(mϕ)[AJ m (α + r) + BI m (α -r)], (1.5.46) where J m is the m-th order Bessel function, I m is its hyperbolic counterpart with imaginary argument α -r and A and B are constants.

If the tension in the film is high, its membrane properties will dominate, which translates into I m (α -r) ∼ 0. Since the edges of the film are fixed, the boundary condition takes the form J m (α + a) ∼ 0. Which implies that the values of α + a must be equal to the roots α mn of the Bessel function (J m (α mn ) = 0), where the subscripts m and n represent the number of nodal lines and circles. From the boundary condition aα + = α mn , we obtain the function defining the shape of mode (m, n) :

u(r, ϕ) = A m cos(mϕ)J m ( α mn r a ), (1.5.47)
where A m is a normalization factor. The six lowest modes are depicted in figure 1.20. The resonance frequency of mode (m, n) is given by:

f mn = α mn 2π T ρa 2 + Eh 2 α 2 mn 12ρa 4 (1 -ν 2 ) . (1.5.48)
The resonance frequency of mode (m,n) depends on the corresponding root of the Bessel function. Note, that the first term in equation (1.5.48) represents the membrane contribution, whereas the second one accounts for the plate behaviour. Let us consider the case of a standard graphene drum with a diameter of 10 µm, nominal in-plane elastic modulus of 1 TPa and Poisson's ratio of 0.15. In that case the membrane term starts dominating for tensions higher than about 1 kPa. As will be seen in chapter 3, this represents a very low value, since the intrinsic stress in a typical suspended graphene membrane is found to be of the order 100 MPa. In case of negligible bending rigidity, the second term in the root vanishes, so that the result reduces to the resonance frequency of the membrane model:

f mem mn = α mn 2π T ρa 2 .
(1.5.49)
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We close this section by pointing out that the behaviour of the fundamental frequency f 01 as a function of the membrane dimension is different in the membrane and plate model. In the former case, it is inversely proportional to the membrane radius (f 01 ∼ 1/a), whereas in the latter the inverse proportionality is established with the squared radius f 01 ∼ 1/a 2 . We will come back to this aspect in chapter 4.

Rectangular thin film

The case of a uniform rectangular film under uniform biaxial tension that is clamped along its edges can be treated in analogy to the previous example. The equation of motion (1.5.42) must now be solved in Cartesian coordinates with the boundary conditions u(0, y) = u(x, 0) = u(L x , y) = u(x, L y ) = 0, where L x and L y are the sidelengths of the film. This leads to the solution:

u(x, y) = sin πmx L x sin πnx L y , (1.5.50)
where m and n are natural numbers giving the number of antinodes along the x and y direction respectively (see figure 1.20). The resonance frequency of mode (m,n) is given by:

f mn = 1 2π T ρ   mπ L x 2 + πn L y 2   + Eh 2 12ρ(1 -ν 2 )   mπ L x 2 + nπ L y 2   2 .
(1.5.51) Once again, keeping only the left (right) term in the square root of equation, we obtain the limit of the pure membrane (plate) model.

In this section we have presented the vibrational eigenmodes of thin films. The next section will explain how these eigenmodes can be used in order to explain more complex deformations of graphene resonators.

Normal mode expansion

In section 1.5.1.4 we presented a formalism to describe the thermal displacement noise of a single particle in one dimension, while section 1.5.2 was dedicated to the description of the vibrational eigenmodes of extended films. Now we will show how these two concepts can be combined in order to describe the thermal displacement noise of macroscopic oscillators made of a large number of atoms using the normal mode expansion. The following discussion borrows largely from Pinard et al. [START_REF] Pinard | Effective mass in quantum effects of radiation pressure[END_REF].

The transverse deformations δx(r, t) of an extended 2D mechanical resonator parameterized by r ≡ (y, z) can be expanded in the basis of its vibrational eigenmodes of frequencies Ω m,n /2π with spatial profiles u n (r): 

δx(r, t) = n a n (t)u n (r) (1.5.52)
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where a n (t) is the time-dependent amplitude of mode n. The total energy of the mechanical oscillator is the sum of the kinetic and potential energies of all modes:

E = n ȧ2 n 2M n + 1 2 M n Ω 2 m,n a 2 n , (1.5.53)
where we have introduced the dynamical mass of mode n, integrated on the oscillator volume:

M n = ρe u 2 n (r) d 2 r, (1.5.54)
ρ being the material density and e its thickness. The dynamics of each of the resonator's mode is described by an individual equation of motion in analogy to the one-dimensional case:

än (t) = -Ω 2 m,n a n (t) -Γ m,n ȧn (t) + 1 M n (F th,n (t) + f ext (r, t), u n (r) ) , (1.5.55)
where we have also integrated the contribution of an external surface force through f ext (r, t), u n (r) ≡ d 2 r f ext (r, t) u n (r) which denotes the spatial overlap of the surface force density f ext (r, t) with the vibrational profile u n of mode n. We have also introduced the Langevin force F th,n experienced by the n-th mode. Requiring that the fluctuation-dissipation theorem holds for each mode, the classical thermal force spectral density is given by:

S F th,n [Ω] = 2k B T |Ω| Im 1 χ n [Ω]
,

(1.5.56)

where we have introduced the mechanical susceptibility of the n-th mode:

χ n [Ω] = 1/M n /(Ω 2 m,n -Ω 2 -iΩΓ m,n
) and the dynamics of the each mode in Fourier space follows:

a n [Ω] = χ n [Ω] (F th,n [Ω] + f ext (r, t), u n (r) ) . (1.5.57)
These considerations assume that the dissipation process independently act on each eigenmode. The above expressions are indeed true only in case of homogeneously distributed losses in the resonator. In case of heterogeneous damping, one needs to take into account cross-couplings between eigenmodes. In chapter 5, we will explore in greater detail an observed deviation from the normal mode expansion.

Optical readout

We will now see how we can describe the measured signal, which is derived from an interferometric measurement, giving access to the local deformations of the 2D resonator at the measurement location r 0 . The membrane is assumed to be located at the waist of a incident TM 00 mode, whose transverse electric field spatial profile is given by:

v 0 (r) = 2 πw 2 0 e -(r-r 0 ) 2 /w 2 0 .
(1.5.58)
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Note that we have omitted here all of the non paraxial effects and employed a simple scalar approximation for simplicity. The incident electric field on the graphene membrane can then be written E(r, t) = v 0 (r)α(t)e -iω 0 t , where α(t) is the slowly varying envelope and ω 0 the optical frequency. The field reflected by the graphene membrane undergoes a position dependent dephasing and can be locally written:

E (r, t) = r(r)v 0 (r)α(t)e -iω 0 t e 2ikδx(r,t) (1.5.59)
where r(r) is the local reflection coefficient of the membrane, that can potentially depends on the position in case of inhomogeneous sample. The reflected field is not a pure TM 00 mode since it is perturbed by the last exponential term and may present some non-zero overlap with other transverse modes. However the final detection employed is in general dominantly sensitive to the TM 00 contribution.

For example as employed later in a balanced homodyne detection, the beating between the TM 00 shaped local oscillator mode and the potential TM 10 contribution of the reflected field cancels due to phase and spatial overlap considerations on the photodetector surface. As such, the detection signal is in general only sensitive to the projection of the reflected field on the TM 00 mode and is then proportional to:

E (r, t), v 0 (r)e iω 0 t ≈ α(t) r(r)v 0 (r)(1 + 2ikδx(r, t)), v 0 (r) (1.5.60)
If we then assume that the optical readout spot employed is significantly smaller than the characteristic dimensions of the oscillator, so that the above scalar product can be simplified to the local evaluations of both the graphene reflection coefficient r(r 0 ) and dephasing due to vibrations 2ik δx(r 0 ). For what concerns the dynamical mechanical signals, a balanced homodyne detection, probing the phase of the reflected beam, will thus permit to probe to the local deformations of the graphene membrane:

δx opt (t) ≡ v 2 0 , δx(r, t) ≈ δx(r 0 , t) (1.5.61)

Effective mass

The above considerations on the optical readout, will now allow to attribute an effective mass to each eigenmode. The modal expansion can be injected in the above expression modelling the optical readout. In Fourier space we obtain:

δx opt [Ω] = n χ n [Ω] (F th,n + f ext , u n ) u n (r 0 ), (1.5.62)
where we used v 2 0 , u n (r) ≈ u n (r 0 ). We now inspect the specific case of an external force having the same spatial profile as the optical readout beam, which is true in particular for the radiation pressure force. In that case, the surface force density can be written f ext (r, t) = F ext v 2 0 (r) and the above expression becomes:

δx opt [Ω] = n χ eff n [Ω] F eff th,n + F ext , (1.5.63)
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where we have introduced the effective susceptibilities

χ eff n [Ω] = 1 M eff n Ω 2 m,n -Ω 2 -iΩΓ m,n
(1.5.64) making use of the effective masses:

M eff n = M n u n , v 2 0 2 = ρ u 2 n (r) u 2 n (r 0 ) d 3 r. (1.5.65)
The above expression allows to compute the effective masses with the eigenmode vibration spatial profiles and reflects the efficiency of the optical readout: if the laser is positioned at a node of the eigenmode, then its effective mass will be extremely large, which is consistent with the fact that almost no contribution from that mode will be visible in the interferometric signal. For the example of a square membrane whose eigenmode spatial profiles are given by expression (1.5.50), we find that the effective mass is expected to be 1/4 of the membrane mass.

We have also introduced

F eff th,n ≡ F th,n u n , v 2 0 , (1.5.66) 
the modified Langevin forces which individually verifies the fluctuation dissipation theorem associated with

χ eff n : S F eff th,n [Ω] = 2k B T /|Ω| Im 1/χ eff n [Ω] .
One can then define a total effective susceptibility χ eff describing the optically measured motion of the graphene membrane where all modes contributions have been included:

δx opt [Ω] = χ eff [Ω] F ext [Ω] + F eff T [Ω] (1.5.67)
with:

χ eff [Ω] = n χ eff n (1.5.68)
and

F eff T [Ω] = n χ eff n χ eff [Ω] F eff th,n . (1.5.69)
As defined the effective Langevin force F eff T follows the fluctuation dissipation theorem associated to the effective mechanical susceptibility χ eff . The later permits to describe the dynamics of the measured position fluctuation in 1D, it contains the individual contributions from all mechanical eigenmodes which are coupled to the external force field, which presents an actuation profile similar to the readout optical mode. This is obviously the case for radiation pressure forces, and can also work reasonably well with localized actuation mechanisms, presenting actuation profiles centered on the readout spot and small compared to the eigenmode characteristic dimensions.

As we have seen, the normal mode expansion is a powerful tool which enables us to describe the global response of an extended resonator to an applied force as the superposition of its normal modes. However, if the perturbations of the system due to an applied force become big, the linear response theory does not 1.6. MODE COUPLING IN NANOMECHANICAL SYSTEMS hold any more. In such a system the modes of the system can couple, so that the normal mode expansion is no longer valid. In the following section we will give an example of such a case.

Mode coupling in nanomechanical systems

In the previous section we presented a formalism to describe arbitrary deformations of an extended resonator. This analysis is based on linear systems in which the normal mode expansion holds, i. e. where the overall displacement of the system can be decomposed into a linear superposition of orthogonal modes. However, due to the reduction of the resonator dimensions, the sensitivity of nanoresonators to external force fields increases. Such external perturbations may brake the resonator symmetries and cause cross-couplings between eigenmodes. This phenomenon was largely investigated in physics. Let us briefly illustrate the consequences of mode coupling with two examples from nanomechanics.

An interesting case of cross-coupling between quasi-degenerate vibrational modes of a nanostring resonator was reported by Faust et al. [START_REF] Faust | Coherent control of a classical nanomechanical two-level system[END_REF]. In this work, the modes are coupled by an externally applied non-linear dielectric force. The authors show that the mechanical system behaves like a classical two-level system that can be coherently controlled as demonstrated by Rabi, Ramsey and Hahn echo experiments (see figure 1.21).

It is interesting to mention that when the nanoresonator can vibrate in two dimensions, for example the in-and out of plane modes of a nanowire, a great phenomenological richness arises. In particular when the external force field, which crosscouples the eigenmodes, is of non-conservative nature [START_REF] Gloppe | Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field[END_REF], a novel phenomenology appears. This situation was investigated in the nano-optomechanics group at the Néel Institute by inserting a nanowire in a strongly focussed light field, which was generating a rotational force field that was inducing a novel optomechanical instability that originates from the non-conservative nature of the force field.

Both of the previously mentioned nanosystems operate with eigenmodes displaying similar damping rates. In this situation the normal mode expansion is well suited to describe the multimode physics. However, we will see that this approximation is not valid in case of unequal damping rates. The present work extends the results previously obtained in the optomechanics group to the case of non-homogeneous damping rates.

It is also worth mentioning the generic rule saying that when one wants to maximize a mechanical quality factor, it is advantageous to avoid cross-coupling with other systems. This principle was largely applied in gravitational wave detectors or in nanomechanical systems [START_REF] Tsaturyan | Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics[END_REF].

Finally, mode coupling can also arise due to deviation from the linear elasticity regime. A typical example of this is the Duffing behaviour which is frequently The resonance frequencies of the out-of-plane and in-plane fundamental modes of the nanoresonator are controlled by the voltage applied with an arbitrary waveform generator. The black circle marks the initialization state at 0V and the frequency of the radiofrequency drive, while the green and blue circles correspond to the lower and upper states of the classical two-level system, respectively. (b) Measurement of Ramsey fringes. Above: Pulse scheme. The system is adiabatically tuned from the initialization to the lower state. A π/2-pulse creates a superposition state, and after a delay τ a second π/2-pulse is applied. Below: A 500 Hz detuning between the drive and precession frequency leads to a slow rotation of the superposition state in the equator plane of the equivalent Bloch sphere, giving rise to a beating pattern in the measured z component after the second pulse. The Bloch sphere in the inset shows the state of the Bloch vector at selected times, which are marked in the same colour in the top panel. Images taken from [START_REF] Faust | Coherent control of a classical nanomechanical two-level system[END_REF].

observed in CNT and graphene resonators. In this situation, modes can be crosscoupled via the non linearity: the oscillation of one mode can modify for example the frequency of another mode. This non linear coupling between different vibrational modes of an oscillator as has been observed, among others, by [START_REF] Antonio | Frequency stabilization in nonlinear micromechanical oscillators[END_REF][START_REF] Venstra | Strongly coupled modes in a weakly driven micromechanical resonator[END_REF]. However, as Eichler et al. [START_REF] Eichler | Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene[END_REF] pointed out at the example of vibrational modes in a CNT, mode coupling can also occur in case of nonlinear damping. The latter arises from the interaction of the mechanical resonator with a thermal bath and depends on the oscillator's velocity.

Conclusion

Mechanical oscillators are commonly used as transducers that give access to phenomena that cannot be observed directly by optical or electrical means. For many applications, low masses and high resonance frequencies are desirable which has 1.7. CONCLUSION led to a miniaturization of the devices now attaining the nanometre scale in form of nano-opto-electromechanical systems (NOEMS). Such devices can reach exceptional force sensitivities up to the aN range. However, when entering the nanoscale, specific phenomena need to be taken into account which distinguish nanoresonators from their bigger counterparts. For example, it becomes increasingly difficult to address such small devices both optically and electrically. Furthermore, in systems exhibiting extreme surface-to volume ratios, structural defects can become an important source of dissipation. On the other hand, nanoresonators with large aspect ratios can exhibit large mechanical susceptibilities and consequently considerable displacement amplitudes. This is advantageous for many applications since it facilitates the motion detection and increases the transduction efficiency. Recently, the quantum mechanical regime has been reached with extended resonators. Big efforts are now done to explore the quantum mechanical regime with a wider range of extended mechanical resonators. Among others, graphene is a candidate for such experiments.

Graphene is an ideal two-dimensional material which takes the reduction of the thickness of mechanical resonators to a physical limit. Additionally, graphene is endowed with exceptional mechanical, optical and electrical properties. Here we summarize some of those properties and the reasons why they play an important role for NOEMS:

• Low mass (of the order of 10 -16 to 10 -14 kg for typical resonators)

• High in-plane stiffness of 340 N/m. In combination with the low mass this results in high resonance frequencies in the MHz range for graphene resonators with lateral dimensions of a few microns. Moreover the frequencies can be efficiently tuned by inducing strain.

• Low bending rigidity of 1 eV allowing for large displacement amplitudes up to several tens of nm for resonators with lateral dimensions of a few microns

• Spectrally flat absorption of 2.3% of visible light per graphene layer. This means that despite its extreme thinness, graphene interacts efficiently with light, which allows for both optical actuation and readout of graphene resonators.

• Electrical conductivity. High charge carrier mobilities up to 200 000 cm 2 /(V s) have been reported in suspended graphene at room temperature. Graphene resonators can therefore be integrated into electronic circuits for electrical manipulation and readout.

Graphene resonators with both electrical and optical actuation and detection schemes have been realized demonstrating the coupling of mechanical, electrical and optical effects at the nanoscale. Furthermore, graphene resonators have been successfully coupled to microwave cavities in which their motion was cooled down to a few remaining phonons by feedback cooling [START_REF] Weber | Detection and Generation of Gravitational Waves[END_REF]13,[START_REF] Song | Graphene optomechanics realized at microwave frequencies[END_REF].

1.8. GOALS OF THIS WORK

Goals of this work

When I started this PhD project, I could build on experiments previously conducted in the Low dimensional hybrid systems and Hybrid quantum nano-optomechanics (HQNOM) groups at the Institut Néel. The starting point was the work of the former PhD student A. Reserbat-Plantey. In his PhD project, he had studied NOEMS made of singly clamped multi-layer graphene cantilevers. These cantilevers were fabricated by mechanical exfoliation onto a silicon/silica substrate and consisted of several hundreds of graphene layers. An electrical and optical approach was combined by actuating the resonators with an electrical backgate and detecting the motion by interferometry taking advantage of the optical cavity design of the sample (see section 1.2.3.2). In an original approach, A. Reserbat-Plantey was able to demonstrate the coupling of acoustical and optical phonon modes in these rigid resonators by combining optical interferometry and Raman measurements to achieve the simultaneous detection of displacement and strain as depicted in the top panel of figure 1.22 [START_REF] Reserbat-Plantey | A local optical probe for measuring motion and stress in a nanoelectromechanical system[END_REF].

On the other hand, the HQNOM group had demonstrated the capacity to probe the thermal noise of sub-wavelength sized resonators, in particular during the PhD of A. Gloppe. In a collaboration with researchers from the Institut Lumière Matière he investigated the thermal noise of singly clamped silicon carbide nanowires, with extremely large dynamics, above 70 dB, using transmission measurements (see figure 1.22, bottom). This allowed for the exploration of the fundamental coupling between light and mechanical motion at the waist of an optical beam and highlighted the non-conservative nature of the optomechanical interaction [START_REF] Gloppe | Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field[END_REF].

More generally, one of the main research topics of the HQNOM group concerns the investigation of hybrid qubit-nanomechanical systems, aiming at transferring the quantum nature of the qubit onto a macroscopic nanomechanical oscillator. Experiments combing spin qubits and nanomechanical oscillators under magnetic coupling were investigated during the PhD of S. Rohr and L. Mercier de Lépinay with the help of B. Pigeau [START_REF] Rohr | Synchronizing the Dynamics of a Single Nitrogen Vacancy Spin Qubit on a Parametrically Coupled Radio-Frequency Field through Microwave Dressing[END_REF][START_REF] Pigeau | Observation of a phononic Mollow triplet in a hybrid spin-nanomechanical system[END_REF][START_REF] Mercier De Lépinay | Nano-optomechanical measurement in the photon counting regime[END_REF]. In a collaboration with the NPSC group at the Institut Néel, the HQNOM group demonstrated that strain could be used to couple a quantum dot and the vibration of a nanomechanical oscillator, allowing to reach extremely large coupling strengths [START_REF] Yeo | Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system[END_REF].

With this in mind, the underlying objective of my PhD project was to investigate the optomechanical properties of graphene in order to see if it could be well-suited for hybrid spin-nanomechanical experiments. In this respect, the strain coupling to internal defects, which can be investigated with Raman spectroscopy, could play an important role in the future. As a consequence, it was a natural step to aim at transferring the knowledge acquired on multilayer graphite systems to single layer graphene membranes which required to develop both new types of graphene samples and a more sensitive readout technique that was able to probe the thermal noise of these atomically thin membranes. Chapter 2

Nanofabrication of suspended graphene membranes

Till the end of the 20th century, the idea of the existence of a stable, twodimensional crystal was contested by renowned physicists with the argument of thermodynamic instability [START_REF] Peierls | Bemerkungen über Umwandlungstemperaturen[END_REF][START_REF] Landau | Zur Theorie der Phasenumwandlungen II[END_REF][START_REF] Mermin | Crystalline order in two dimensions[END_REF]. It therefore came as a surprise to the scientific community when the Novoselov group prooved in 2004 the existence of few-layer graphene flakes produced by a mechanical exfoliation technique that are stable under ambient conditions [START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF]. Three years later freely suspended single layer graphene was produced for the first time [START_REF] Meyer | The structure of suspended graphene sheets[END_REF] proofing that two-dimensional crystals are stable even without a supporting substrate. This discovery sparked off the development of the booming research field of graphene NEMS that was briefly outlined in the previous chapter. Despite the progress that has been made in recent years, the fabrication of high-quality and large-scale single layer graphene remains challenging, especially in view of industrialization. Up to date the highest quality graphene is produced by mechanical cleavage of highly oriented pyrolytic graphite. This method does not only result in high structural integrity, but also in high cleanliness and low charge doping, because it does not require graphene to come into contact with any other material during the transfer process. However, mechanical exfoliation produces small, typically some tens of microns-sized graphene flakes at an arbitrary place of the substrate. Neither the shape, nor the size nor the number of graphene layers in the flake can be controlled. Although stamping techniques now exist [START_REF] Dean | Boron nitride substrates for high-quality graphene electronics[END_REF], which allow the micromanipulation of exfoliated flakes by picking them up and transferring them to a desired place or even stacking them, this method stays somewhat tedious and cannot be extended to large surfaces due to the limited size of the flakes.

The drawbacks of the mechanical cleavage technique have initiated a vivid quest for more reliable graphene production methods that can be extended to large scales as needed for the mass production of graphene devices. Chemical vapour deposition (CVD) reigns supreme regarding the inexpensive growth of macroscopic monolayer graphene that can subsequently be transferred to an arbitrary substrate 2.1. GRAPHENE GROWN BY CHEMICAL VAPOUR DEPOSITION [START_REF] Li | Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[END_REF]24]. Moreover, the structural quality of an individual CVD grown graphene grain matches that of exfoliated flakes [START_REF] Petrone | Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene[END_REF]. For these reasons we chose to employ this technique.

The most delicate point in the fabrication of graphene NEMS is the process where the graphene sheet is detached from its support (underlying substrate or resist layer) in order to obtain a fully suspended structure that is only one atomic layer thick, but extends laterally over several microns. Two main approaches have been developed worldwide to achieve this goal: using hydrofluoric acid (HF) to underetch graphene deposited onto a substrate or graphene transfer onto wells or trenches in a pre-patterned substrate. In our work, preference was given to the latter approach, because it allows for a better control of the geometry of the wells (HF can be guided to undesired places by the graphene thus giving rise to an irregular well shape). Furthermore it avoids an additional etching step which can cause higher contamination levels of the graphene.

In the following, we will give an overview of the fabrication processes developed in this work. The fabrication was carried out in the nanofabrication cleanroom at the Néel institute. The developed methods allow to obtain suspended, single layer membranes with diameters up to 20 µm from CVD graphene. This is among the largest single layer graphene membranes which have been achieved so far for the purpose of experiments on graphene resonators. However, it must be noted that Lee et al. [START_REF] Lee | Monatomic Chemical-Vapor-Deposited Graphene Membranes Bridge a Half-Millimeter-Scale Gap[END_REF] have reported the fabrication of suspended graphene membranes with multilayer patches with diameters of 500 µm.

Graphene grown by chemical vapour deposition

In this section we will briefly sketch the main points of graphene growth by chemical vapour deposition on copper that will be relevant for this work. Due to the abundant research in this field, the short overview we give here can by no means be complete. For more details the reader is referred to the excellent review of Mattevi et al. [START_REF] Mattevi | A review of chemical vapour deposition of graphene on copper[END_REF].

We grow the graphene in a chemical vapour deposition oven which was designed and assembled in our group by the PhD student Zheng Han. An overview of a growth process is given in figure 2.1(a). The growth is realized on commercial copper foil (Alfar Aesar, 5N purity) from a methane precursor that is injected into the growth chamber at a certain flow rate. At high temperature (about 1000 • C), the copper acts as a catalyst for the formation of sp 2 -hybridized carbon on its surface. The growth starts at defect sites on the copper from where is spreads to form graphene grains with typical lateral dimensions of some tens of microns. The shape of the grains depends on the growth parameters which include the temperature, composition of gas flow comprising hydrogen, methane and Argon and their respective partial pressures. If the growth process is interrupted at an early stage, individual, non-percolating graphene grains are the result as depicted in fig- While the standard graphene growth method results in graphene with multilayer patches, the pulsed growth technique developed in the group allows to grow largescale continuous monolayer graphene. (a) Process flows comparing the time evolution of furnace temperature and injected gases for standard-CVD (continuous) growth and the improved pulsed-CVD growth method. The pulsed growth is characterized by a carbon injection pulse time t 1 and an idle time without carbon exposure t 2 and the total growth time t g . (b) SEM micrograph of continuous monolayer graphene grown with the pulsed technique. The graphene is free of multi-layers. However, it displays wrinkles that can be seen as dark streaks and grain boundaries (not visible). (c) Dependence of the morphology of CVD graphene multilayer islands on total pressure for standard growth. Note that the growth process was interrupted before reaching full surface coverage. Image (a) was adapted from [START_REF] Han | Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils[END_REF] and image (c) from [START_REF] Han | Macroscopic CVD Graphene for Nanoelectronics: from growth to proximity-induced 2D superconductivity[END_REF]. ure 2.1(c). However, if the growth conditions are maintained for long enough, the grains will percolate forming a fully continuous, flat and polycrystalline graphene layer.

It must be noted, though, that a standard growth technique is not capable of producing a purely monolayered graphene sheet, because multi-layer patches are formed at the copper defect sites. The multilayers are formed because carbon atoms are solved in the copper at defect sites at high temperature. Even if a continuous graphene monolayer is formed at high temperature, carbon atoms will segregate from the copper substrate upon cooling to room temperature because the carbon solubility decreases with temperature. These excess carbon atoms will form grains below the continuous graphene sheet which can be identified as multilayer patches. This process is sketched in figure 2.2.

It is known that multilayer patches can be detrimental to graphene's exceptional thermal, optical and electrical properties. This is why a growth process was developed by Zheng Han in our group which allows the growth of pure monolayers [START_REF] Han | Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils[END_REF]. This so-called pulsed graphene growth technique consists of injecting the methane precursor in pulses into the growth chamber (see process flow in figure 2.1(a)). In the idle time between two successive injection pulses, carbon atoms that are solved in the copper are released, so that no excess carbon atoms are stored inside the substrate and a continuous, fully monolayered graphene sheet can be obtained.

An example of such a multilayer-free graphene sheet is shown in figure 2.1(b). Even though the sheet is fully monolayered, is still displays defects such as wrinkles that can be seen as dark streaks on the SEM micrograph or grain boundaries which represent structural defects in the graphene lattice. The wrinkles are inherent to CVD grown graphene [START_REF] Li | Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[END_REF] and can be attributed to the different thermal expansion coefficients of graphene (α G = -7 • 10 -6 /K at 300 K [START_REF] Bao | Controlled ripple texturing of suspended graphene and ultrathin graphite membranes[END_REF]) and copper (α Cu = 24 • 10 -6 /K). This mismatch in thermal expansion coefficients means that upon cooling the copper surface will retract with respect to the graphene. Thus compressive mechanical stress is exerted on the graphene which is released by wrinkle formation. Grain boundaries on the other hand represent the main topological defect in the graphene hexagonal lattice [START_REF] Yazyev | Topological defects in graphene: Dislocations and grain boundaries[END_REF]. Graphene grains are typically stitched together by pentagon-hexagon pairs which represent discontinuities in the graphene lattice as can be seen in the scanning electron transmission image 2.3. These local defect lines are responsible for modified overall graphene properties such as lower electrical mobility and heat diffusion coefficient due to increased defect-scattering of both electrons and phonons. Moreover, they are the chemically most reactive [START_REF] Seifert | Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization[END_REF] and mechanically most fragile [START_REF] Zhang | Intrinsic strength and failure behaviors of graphene grain boundaries[END_REF] regions (weak links) where the membrane usually starts fracturing under applied stress.

Substrate preparation

In the course of this work, two major prepatterned substrates types were developed that allow to suspend graphene. Each substrate was designed to meet the specific requirements for different, complementary measurement strategies. The main fabrication steps for both types of devices are sketched in figure 2.4.

We will first introduce the fabrication of integrated suspended graphene devices that allow to electrically contact the graphene by top electrodes as well as electrical manipulation via a backgate. This is a commonly used device design which is interesting in terms of read-out and control of graphene NEMS for sensing or signal processing applications. Apart from the electrical aspects, this sample design has another specificity: it constitutes an optical cavity where the graphene acts as a semitransparent mirror. The optical cavity not only allows to increase the light intensity in the visible range absorbed by the graphene, which is of interest for optical detection methods, but also to enhance the intensity of Raman scattered light facilitating spectroscopic detection. These aspects will be discussed in detail in section 3.1.3. The second substrate type represents a frame with a fully traversing hole onto which the graphene is transferred. The absence of a remaining substrate layer below the graphene allows for optical access to the graphene membrane from two sides. Such a substrate architecture allows to perform optical pump-probe measurements with laser beams illuminating the graphene from opposite sides. This rather new approach opens the route to spatially resolved measurements of suspended graphene membranes because the two lasers can be moved independently across the membrane surface. We were thus able to make cartographies of several different membrane properties. These aspects will be further discussed in chapters 4 to 6.

Substrates for integrated devices: Optical cavity with electrical back-gate and top electrodes

The fabrication process starts with a silicon wafer with a silica layer of 500 nm thickness (see figure 2.4(a)). Regions that are designated for gold electrodes contacting the graphene are opened with deep ultra-violet lithography. For better adhesion, a few nanometres of Titanium are evaporated onto the wafer, followed by about 10 nm of gold. The evaporations are done at a pressure of about 10 -5 mbar. Then the wafer is cleaned before being prepared for a laser lithography step which defines the structure of the wells that will be formed in the substrate. Typically, the wells have a lateral size in the range of 4 to 10 µm and are connected to 10 µm trenches via smaller, about 2 µm wide ones. These trenches act as drains during liquid graphene transfer. If fully closed structures are desired, for example for pressure experiments, no drains are used. Once the resist is opened in the structured regions, the wafer undergoes reactive ion etching using fluoroform (CHF 3 ) gas in order to create wells with well-defined geometries in the silica layer. The etching depth is typically in the range of 300 to 350 nm, which ensures that a silica layer of about 200 nm remains on the silicon surface. This is important, because we generally transfer large pieces of continuous graphene onto the sample. In some areas the graphene will sag to the bottom of the wells. If the silicon backgate was not protected by an insulating material, the sagging of graphene in only one well would short-circuit the backgate for the entire device. Before discussing the graphene transfer, we will briefly touch upon the second substrate type. In the corners between defined squareshaped structures the silicon is already completely etched away by the KOH, so that only a semitransparent silicon nitride membranes are left. The lines between these 1 cm wide squares serve as cleavage lines to obtain individual samples. Each sample features a 9 by 9 array of small silicon nitride membranes.

SUBSTRATE PREPARATION

Substrates with fully traversing holes for optical cartography and transmission experiments

The substrates we present here were developed with the help of B. Fernandez and A. Kuhn. The used substrate is a silicon wafer coated on both sides with 500 nm of a low stress silicon nitride film. In a first lithography step, large windows (of about 100 µm × 150 µm) are defined on the wafer backside. A second, aligned laser lithography step on the top silicon nitride surface defines small square windows in the range between 4 to 20 µm side length above the large windows. The silicon nitride is etched away in the developed regions on both sides of the wafer by reactive ion etching in a sulphur hexafluoride plasma. In order to obtain a traversing hole, the silicon is subsequently etched away between the windows in the silicon nitride in a potassium hydroxide solution (see figure 2.6). This is an anisotropic process with 400 times higher etching rate along the 100 crystal direction than along 111 . The wafer surface is a 100 -plane, so that the KOH etching proceeds in a pyramidal shape perpendicular to the wafer surface. The etching angle amounts to 54.7 • , which is useful for optical experiments where objectives with a high numerical aperture are used. Once the silicon between the two silicon nitride windows is removed, a freely suspended, 500 nm thick silicon nitride membrane with pre-defined holes is obtained on the top surface can be seen in figure 2.4(c) and (e).

GRAPHENE TRANSFER ONTO A SUBSTRATE

Graphene transfer onto a substrate 2.3.1 Liquid transfer

Hydrophilization and cleaning

Contamination is a main factor which can deteriorate the exceptional graphene properties. Therefore great care must be taken in every fabrication step to reduce contamination to its minimum level. An indispensable step in this respect is cleaning the substrate surface prior to graphene transfer. This is done by reactive ion etching in an oxygen plasma which removes carbon contamination. Furthermore, the oxygen plasma treatment renders the substrate surfaces used in this work (silica and silicon nitride) hydrophilic. This is advantageous for the liquid transfer of graphene onto the substrate because a continuous water film forms on a hydrophilic surface. When graphene is transferred onto such a surface, adhesion to the substrate is more uniform.

The oxygen plasma treatment is performed in a Plassys reactive ion etching reactor. We start by pumping the sample chamber down to a pressure of 10 -5 mbar. Then the chamber is filled with oxygen gas to reach a pressure of 0.2 mbar. During the etching process an rf power of 50 W is applied and the temperature is kept constant at 15 • C. After 5 minutes of plasma treatment, the samples are immediately used for the graphene transfer.

Alternatively, organic residues are removed from the substrate by emerging it in "piranha solution" (H 2 SO 4 /H 2 O) for about ten minutes and subsequent rinsing in deionized water.

Transfer

During the CVD growth, graphene forms on either side of the copper substrate. We now wish to transfer it onto a pre-structured substrate. To this end the graphene is spin-coated with a resist support layer (PMMA) on the top side, whereas the back side undergoes short oxygen plasma treatment in order to remove the graphene. Subsequently, the copper is etched away in an ammonium persulfate solution ((NH 4 ) 2 S 2 O 8 ). Depending on the etchant concentration, the complete removal of the copper layer can take from ten minutes to several hours.

Once the copper is fully dissolved, the graphene needs to be rinsed thoroughly in deionized water in order to remove any contaminant. The graphene can be handled after the dissolution of the copper, because it adheres strongly to the PMMA support layer which is relatively robust. The rinsing is achieved by transferring graphene successively into several distilled water baths with a spoon-like structure that avoids any contact of the graphene with a medium other than water.

After intensive cleaning, the graphene-PMMA sandwich is transferred onto a substrate that has undergone a an oxygen plasma treatment only a few minutes earlier. The actual transfer is achieved by "fishing" the graphene-PMMA structure with the substrate from below. In order to remove the remaining water and ensure a good graphene adhesion, the substrate is heated on a hot plate at 130 • C for about ten minutes. The next step consists in removing the PMMA resist layer by plunging the sample into acetone for at least half an hour. Once the support layer is dissolved, the graphene is extremely sensitive, so that the sample needs to be handled with great care from now on. It is rinsed in several isopropanol baths to remove acetone residues, and then dried in a supercritical dryer which uses carbon dioxide as drying medium. Supercritical drying avoids a direct liquid/vapour interface that is a frequent cause of graphene device rupturing due to surface tension and capillary forces. The working principle of the supercritical drying process is sketched in figure 2.7. It consists in taking the system from the liquid to the gaseous phase without a direct phase transition by going around the critical point. This is achieved by going through an adapted pressure and temperature cycle.

GRAPHENE TRANSFER ONTO

Once these steps are accomplished, we obtain freely suspended graphene membranes supported by silicon nitride frame that is suspended itself.

Dry transfer with thermal release tape

The liquid transfer process described above works well for samples in which the liquid can be evacuated. This is why we designed trenches as liquid drains for the integrated graphene sample type. However, for some applications we wish to have a sealed structure, where the graphene closes off completely the volume inside a silica cavity. In this case, any manipulation with liquid must be avoided. Therefore we employed an alternative, dry transfer process. It consists in gluing thermal release tape (TRT) onto the stacked PMMA-graphene-copper structure prior to copper dissolution. Once the copper is removed (as detailed earlier), we are left with a TRT-PMMA-graphene structure that is rinsed in deionized water and then dried thoroughly. Subsequently it is pressed onto the substrate with the graphene side by application of mechanical pressure. As its name suggests, the TRT can be released from the PMMA by heating the sample on a hot plate to about 80 • C. All
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following steps, starting with the PMMA dissolution, are analogous to the liquid transfer described in the previous section.

Some intrinsic properties of suspended CVD graphene membranes

Having outlined different processes to fabricate suspended CVD graphene membranes, we would now like to present typical membrane structures. A preliminary characterization of the suspended membranes can be done by optical and scanning electron microscopy (SEM). While optical microscopy generally allows to identify fully suspended membranes (see figure 2.4(d)), its characterization scope is rather limited due to low spatial resolution. However, in case of very big membranes without back mirror, information on the smoothness of the membrane in the outof-plane direction can be obtained as can be seen in figure 2.8. The optical images show that the suspended membranes have an undulated topography which is generally attributed to tension in the membrane [START_REF] Vandeparre | Wrinkling Hierarchy in Constrained Thin Sheets from Suspended Graphene to Curtains[END_REF]. This aspect will be investigated in see chapter 3. Note that such undulations cannot always be identified with by SEM.

Nonetheless SEM can yield important complementary information on the membrane structure regarding the existence of multilayer patches, small wrinkles or holes. This is particularly relevant for graphene suspended over a silicon back mirror, where a pure characterization in the visible range proofs very difficult due to poor contrast. Figure 2.9 shows frequently occurring membrane structures for graphene transferred to a SiO 2 /Si substrate. 
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At this point we should mention that despite several improvements in the fabrication process, the production of free-standing graphene monolayers remains challenging and yields are rather low. In general, the yield depends on the lateral size of the membranes: While success rates of the order of 1% are achieved for membranes with diameters of up to 6 µm, larger membranes between 10 and 20 µm show yields that are two to three times smaller. In fact, most membranes burst during the fabrication as illustrated by the black spots in panel (a). Alternatively, the membrane can stay intact, but have holes of significant size. This is no problem, when they occur above the trench as in (b), but they can also be placed in the drumhead region. Such membranes are typically very unstable and tear apart under laser heating or when being actuated. Another case in the list of problems are membranes that sink to the bottom of the substrate as shown in (e), thus being no longer suspended.

With this in mind, we can appreciate membranes such as the one depicted at the bottom of panel (a), which stay fully intact and suspended. However, it must be noted that even these membranes are not free of defects as they have structural defects such as grain boundaries or residual wrinkles which remain from the growth process as discussed in section 2.1. Also, thin, narrowly spaced wrinkles as shown in (d) are observed on a regular basis. These features are replica of copper terraces on which the graphene was grown. They arise when the copper is annealed under hydrogen flow prior to graphene growth causing surface reconstruction in terraces.

So far we have considered single layer graphene, but SEM is also an easy method to identify multilayer patches as is illustrated at the example of graphene transferred to a silicon nitride substrate in figure 2.10. In the zoom of panel (c), we can identify the grain boundaries of the different graphene layers as well as the wrinkle structure replicating the copper terrace structure. Even tough being at the atomic scale, these inhomogeneities play a crucial role for the thermal properties of the graphene membrane as will be seen in chapter 6. The multilayer region can clearly be distinguished. Furthermore we can discern undulated features representing small wrinkles that were formed along the terraces of the copper substrate and thinner, more widely and randomly spaced wrinkles which are produced when the copper and graphene retract differently during the cool-down after growth.
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Conclusion

The existence of stable two-dimensional crystals was contested for a long time because they were considered thermodynamically unstable. However, free-standing two-dimensional membranes of only one atom thickness such as graphene are now routinely fabricated in laboratories across the world. The stability of such membranes is assumed to result from their complex microstructure that is related to the fabrication process. This chapter presented the fabrication processes employed in the present work for obtaining freely suspended membranes from graphene grown by chemical vapour deposition (CVD) and discussed typical features of their microstructure. Two-dimensional graphene crystals are grown by CVD from a methane precursor an a copper substrate acting as a growth catalyst. At the percolation limit, individual graphene crystals join to form a continuous, polycrystalline graphene layer. Under specially controlled growth conditions, the creation of multilayer graphene grains can be suppressed yielding a fully mono-layered graphene sheet that can subsequently be transferred onto an arbitrary substrate.

In this work we developed two types of substrates designated for different experiments. On the hand we fabricate integrated graphene devices, where the graphene is transferred onto prepatterned wells in a silica/silicon substrate. This results in an optical cavity device whose properties can be tuned by varying the thickness of the different layers. Furthermore the described sample architecture allows for the application of a gate voltage to induce static strain or resonantly drive the graphene membrane vibrations.

On the other hand we developed substrates with fully traversing holes. The absence of a backreflecting substrate allows for optical transmission experiments and gives optical access to the membrane from opposites sides. Thus optical pumpprobe measurements can be performed which shed light on the local mechanical and thermal properties of graphene resonators.

The transfer of graphene onto the prepatterned substrates is a very delicate process. It consists of the following main fabrication steps:

• after growth, the graphene is coated with a resist support layer (PMMA)

• the copper is etched away in an ammonium persulfate solution

• the graphene/resist bilayer is wet-transferred onto a prepatterned substrate

• the resist support layer is removed in a solvent (acetone) and the sample thoroughly rinsed in another solvent (isopropanol)

• the sample undergoes a supercritical drying process in order to avoid surface tension which can rupture the graphene membrane Light microscope and scanning electron (SEM) images of suspended graphene membranes reveal their rich microstructure. They exhibit features that are imprinted on the graphene from the growth process such as small wrinkles. These occur as a result of stress release because graphene expands upon cooling back down to room temperature after growth due to its negative thermal expansion coefficient, while the supporting copper substrate contracts at the same time. Furthermore, out-of plane undulations on length scales up to several microns are frequently observed in suspended graphene membranes. They are commonly suspected to originate from strain induced during the graphene transfer. Although they cannot be resolved with SEM, grain boundaries also play in important role since they represent structural defects which cause local discontinuities in the graphene lattice. These can strongly effect the global properties of a graphene membrane. Similarly, the occurrence of multilayer patches correspond to a structural modification of the graphene membrane that has a big impact on its mechanical and thermal properties as will be seen in the following chapters.

Chapter 3

Strain in suspended graphene integrated systems

Due to their large aspect ratio, high in-plane stiffness and low bending rigidity, graphene membranes can vibrate at high frequencies and at the same time display large displacement amplitudes. Therefore graphene is a very promising material for ultra-sensitive force-sensing applications with efficient readout. Large-area graphene can now be routinely transferred in batches which holds the promise of on-chip mass production of graphene nanoresonators. However, as discussed in section 2.4, graphene grown by chemical vapour deposition shows a rich microstructure featuring grain boundaries, wrinkles or folds. These cause discontinuities in the membrane properties such as the strain distribution or the electrical and thermal conductivity (see chapter 6). Furthermore, the graphene transfer process can create structural deformations such as ripples [START_REF] Meyer | The structure of suspended graphene sheets[END_REF]. For these reasons, a graphene membrane is not fully isotropic, but shows local variations of the above-mentioned properties.

On the other hand, a good understanding and deliberate engineering of strain in graphene, also opens the way to optimized devices and new applications. For instance, it is known from scanning tunnelling microscopy that graphene is locally strained when deposited on a corrugated substrate such as a silicon dioxide layer [START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Ryu | Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO 2 Substrate[END_REF]. By designing an appropriate substrate, this can be used to create strain superlattices in macroscopically suspended graphene [START_REF] Reserbat-Plantey | Strain superlattices and macroscale suspension of Graphene induced by corrugated substrates[END_REF] which could be interesting for electron transport applications. Concerning graphene resonators, [START_REF] Oshidari | High quality factor graphene resonator fabrication using resist shrinkageinduced strain[END_REF] and [START_REF] Lee | Electrically integrated SU-8 clamped graphene drum resonators for strain engineering[END_REF] have demonstrated that pre-straining graphene with a resist-shrinkage technique can significantly increase the resonance frequency and quality factor as well as eliminate unwanted edge modes. Also, strain can induce strong pseudomagnetic fields and open a band gap in graphene's electronic band structure [START_REF] Guinea | Energy gaps, topological insulator state and zero-field quantum Hall effect in graphene by strain engineering[END_REF].

As these examples show, strain is a very important property for both supported and suspended graphene which can be used to tailor its mechanical and electrical properties. However, in order to engineer graphene properties by strain, a detailed understanding of its creation and control is indispensable. In the following we will study the intrinsic properties of supported and suspended CVD grown graphene transferred onto silicon/silica substrates to form drum-like structures as detailed in section 2.2.1. Subsequently we will assess the behaviour of the suspended graphene membranes under an applied force.

Properties of freely suspended graphene

revealed by atomic force microscopy and Raman spectroscopy

Topography of freely suspended graphene drums by atomic force microscopy

As already mentioned in chapter 2, graphene grown by chemical vapour deposition displays a rich topography such as wrinkles and grain boundaries which are important to identify in order to understand its mechanical, electrical and thermal behaviour. Although these structures can also be made visible by scanning electron microscopy (SEM) as was seen in chapter 2, this method is more invasive because it can induce charge doping even at low acceleration voltages or even cause structural defects in the graphene due to strong electron bombardment. Atomic force microscopy (AFM) is an effective tool to study the topographic structure of graphene without these side effects and above all with a high spatial resolution along the vertical axis. Additionally, it offers a way to characterize transferred graphene in terms of surface contaminants that often remain from graphene transfer process and usually go unnoticed on SEM images. Concerning suspended graphene, AFM gives an important insight into the substrate-graphene interaction as well as the mechanical behaviour of a free-standing graphene sheet. Figure 3.1 (a) shows an AFM topography map of a typical graphene drum taken in tapping-mode. For all samples of CVD graphene that were transferred in liquid medium we observed that the graphene adheres to the sidewalls of the silicon dioxide hole over typical distances of some tens of nanometers. The depth profiles in panel 3.1(b) taken along two different directions of the same drum illustrate this fact. It is known that the adhesion is caused by Van der Waals forces acting between the graphene and substrate [START_REF] Bunch | Impermeable atomic membranes from graphene sheets[END_REF]. The adhesion is strong enough to resist delamination from the substrate even when high forces act on the graphene (see section 3.2.2.1). The depth profiles shown in panel (b) disclose another interesting feature that is observed for the majority of drums: along certain directions the membrane buckles upwards. We attribute this behaviour to intrinsic compressive strain in the membrane that is maintained after the CVD growth. This argument is underpinned by Raman measurements that will be presented in section 3.2.1.2. Note that a similar topography was observed by [START_REF] Lindahl | Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes[END_REF] in suspended graphene ribbons.

The topography map also reveals structural properties on the graphene such as folds indicated by white arrows in the zoom on figure 3 indicated by a blue arrow. We can even discern a small hole in the membrane along the grain boundary line, which shows that the membrane is especially vulnerable at these places. Additionally, we observe a variation of the graphene membrane thickness caused by PMMA residues from the transfer process. This is routinely observed for graphene wet-transferred with a polymer support. First tests performed in the group on annealing the graphene at temperatures of about 300 • C in vacuum have shown that the contamination level of the graphene can be significantly reduced.

We close this section by pointing out that imaging suspended membranes is not always straightforward since an interaction between the AFM tip and the membrane can occur in tapping mode, while imaging in contact mode can easily rupture the membrane. In tapping mode, the tip exerts an oscillating force on the membrane. Although the membranes discussed in this work have resonance frequencies that exceed those of the AFM tips by about two orders of magnitude, the mechanical susceptibility of the graphene drums can be sufficiently high at low frequencies for the membrane to be driven by the AFM tip. This can result in considerable deflection amplitudes of the membrane which in turn influence the AFM tip dynamics leading to artefacts as is shown at the example of the topography map in figure 3.2. This means that the AFM tip must be chosen carefully in terms of its stiffness and hence resonance frequency in order to minimize membrane-tip interactions. For suspended graphene drum measurements, we mostly employed AFM probes with a cantilever spring constant of 26 N/m with an associated resonance frequency of 300 kHz. Note that the AFM cantilever stiffness is hence about one order of magnitude lower than that of graphene, which was determined to be 340 N/m by Lee et al. [START_REF] Lee | Measurement of the elastic properties and intrinsic strength of monolayer graphene[END_REF] (see section 1.3.2). In some cases, however, softer tips with resonance frequencies between 10 to 80 kHz had to be used.

Raman spectroscopy of suspended and supported graphene membranes

A characterization technique for graphene that is complementary to AFM is Raman spectroscopy. Its principles are outlined in section 1.4. Before presenting the Raman results, we will briefly describe the Raman setup used in this work. The Raman spectra are taken with a commercial WITec Alpha 500 spectrometer with confocal optics and backscattering geometry. It is operated with a solid state continuous wave Nd:YAG laser with a wavelength of 532 nm. At ambient pressure, three different objectives with magnifications (numerical aperture) of 10x (0.25), 50x (0.75), 100x (0.95) respectively are used. The sample can also be measured at low pressures up to 10 -6 mbar when it is placed in a vacuum chamber. In that case we employ a 50x (0.42) Mitutoyo objective with a long working distance of 2 cm. It is corrected for the glass window in the vacuum chamber. The spatial resolution along the optical axis is about 700 nm, while the transverse resolution goes down to 320 nm. The spectral resolution depends on the optical grating used. With a 1800 (600) grooves/mm grating a resolution of about 0.9 cm -1 (2 cm -1 ) are announced by the constructor. However, under typical measurement conditions for graphene and sufficiently long integration times, a spectral resolution of 0.02 cm -1 can be reached. Note that all Raman spectra presented in this work are calibrated using the Si-TO peak at 520.7 cm -1 of a silicon standard as spectral reference. The sample positioning and Raman mapping are done by coarse positioning with a set of three step motors, while fine positioning is realized with a piezoelectric stage allowing for a spatial resolution of 10 nm.

Raman spectroscopy is a powerful tool to probe optical phonons which contain rich information on the local properties of the graphene membrane. For instance, the presence of strain locally changes the lattice parameter and thus leads to modified properties of both optical and acoustical phonons as discussed in section 1.4.3. It is well known that strain is induced in the graphene by a corrugated substrate. This is due to the fact that graphene has a very low bending rigidity and therefore conforms readily to surface corrugations which can lead to high local strain values on lateral length scales up to some nanometres [START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Ryu | Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO 2 Substrate[END_REF].

On the other hand, the substrate can induce charge doping in the graphene thanks to oxygen species present at the substrate-graphene interface. We have seen in section 1.4.2 that because of the strong electron-phonon coupling in graphene, charge doping can significantly influence the dispersion of optical phonons which are probed by Raman spectroscopy.

In consideration of these effects, it seems a natural step to study free-standing graphene membranes which are decoupled from the substrate and are expected to display graphene's intrinsic properties. Freely suspended graphene was first fabricated in the Novoselov group by exfoliating graphene onto a silica/silicon substrate that was subsequently wet-etched into a scaffold-like structure [START_REF] Meyer | The structure of suspended graphene sheets[END_REF]. An investigation of the membrane's topology reveals, however, that suspended graphene also exhibits certain corrugations such as ripples which can extend over several microns [START_REF] Meyer | The structure of suspended graphene sheets[END_REF][START_REF] Fasolino | Intrinsic ripples in graphene[END_REF]. It is assumed that such microscopic roughening contributes to the stability of a two-dimensional membrane which is predicted to be unstable if it were entirely flat.

Raman spectroscopy performed on suspended and supported graphene indeed shows that graphene decoupled from the substrate has different properties. Exfoliated single layer graphene suspended over trenches in a silicon dioxide substrate was studied by Berciaud et al. [START_REF] Berciaud | Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers[END_REF][START_REF] Berciaud | Intrinsic line shape of the Raman 2D-mode in freestanding graphene monolayers[END_REF]. These experiments show that the frequencies of both the graphene G and 2D modes are down-shifted in suspended with respect to supported graphene. Furthermore the width of the G peak is larger in suspended graphene, while the shape of the 2D peak changes slightly. The interpretation of the shape and width of the 2D peak is more delicate since complex effects of triagonal warping also need to be taken into account. This results in two components of the 2D mode being visible in intrinsic suspended graphene [START_REF] Berciaud | Intrinsic line shape of the Raman 2D-mode in freestanding graphene monolayers[END_REF].

To illustrate the difference between Raman spectra of suspended and supported ATOMIC FORCE MICROSCOPY AND RAMAN SPECTROSCOPY The data presented for the suspended (supported) graphene is taken from the bright green (dark green) area in (b). The mean values µ and standard deviations σ of the histograms are reported in units of cm -1 in the legends. While the Raman shift of the G mode hardly changes, The 2D mode frequency is on average up-shifted by about 1 cm -1 in the supported region. The FWHM decreases for both modes in the suspended region by about 1 cm -1 .

Raman shift (cm )
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graphene, measurements performed on a typical sample are displayed in figure 3.3. The spectra are taken with the 1800 grooves/mm grating, on single layer CVD graphene transferred onto a 500 nm thick silica layer patterned with wells. Panel (a) shows typical spectra taken in the suspended and supported regions as indicated by the crosses on the optical image in panel (b). We notice that the intensities for the Raman G and 2D modes differ for both cases. This is due to the optical cavity formed by the graphene and silicon substrate which has different resonance conditions for supported or suspended graphene. This aspect will be discussed in more detail in the next section. The position (width) of the G and 2D bands are indicated next to the peaks in units of cm -1 . The absence of a significant D peak (see panel (c)) demonstrates the high structural quality of the transferred CVD graphene.

In order to do some statistics on the properties of the Raman spectra of suspended and supported graphene, a Raman map is taken in the region marked by a red square in the optical image shown in panel (b). The most important properties of the spectra taken in the supported (dark green) and suspended (bright green) regions of the map are summarized by the histograms in panels (d) to (g). Note that the peak properties are determined from fits with single Lorentzians for both modes since no noteworthy peak asymmetries were observed. From the analysed data we find that the frequency of the G mode does not change noticeably when decoupled from the substrate. It takes a value of 1583.7 cm -1 in both cases. On the contrary, the frequency of the 2D mode down-shifts on average by 1 cm -1 from 2674.9 cm -1 to 2673.9 cm -1 . This could possibly be explained by the fact that the 2D mode is about 2.8 times more sensitive to doping than the G mode as will be discussed in section 3.2.1.1.

Another interesting finding concerns the widths of the two Raman peaks which both decrease by about 1cm -1 on average in the suspended region. More precisely, the G (2D) mode width goes from 16.5 cm -1 (29.7 cm -1 ) in supported to 15.4 cm -1 (28.8 cm -1 ) in suspended graphene. The reduced width of the G-mode implies a longer G-phonon lifetime in graphene decoupled from the substrate, which seems intuitive. We note, that Berciaud et al. [START_REF] Berciaud | Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers[END_REF] determine an even lower absolute value of the G mode width of about 14 cm -1 in suspended exfoliated graphene. However, in their case the G mode width is higher in suspended than in supported graphene, which is the opposite situation compared our findings. Furthermore, we find that the 2D mode width is higher by 3.7 cm -1 (5.8 cm -1 ) in our supported (suspended) graphene than is observed by Berciaud et al. The different findings might be founded in residual strain and doping levels in suspended graphene that may vary from sample to sample and strongly depend on the microfabrication procedure. In the case of both exfoliated and CVD graphene, we expect low levels of strain to occur. On the other hand, charge doping is expected to be higher in CVD graphene which usually exhibits low levels of PMMA contamination. On the other hand, the larger 2D-mode width observed in our samples could possibly be explained by the polycristallinity of CVD graphene. Grain boundaries could act as scatterers for the 2D phonon. Therefore a wider range of 2D phonon vectors could be expected in CVD graphene due to the triagonal warping effect.

As we can see, it is very delicate to generalize properties of suspended and supported graphene without a good understanding of residual doping and strain in both regions as well as the structural homogeneity of the employed graphene. Our observations therefore call for a detailed analysis of strain and doping in graphene that will be pursued in section 3.2.1. For now we will elucidate the role of the substrate geometry on the intensity of the Raman peaks.

Influence of interference effects on the Raman intensity

In the previous section we briefly touched upon the subject of different Raman intensities observed for suspended and supported graphene. This is hardly surprising when we consider that the wavelengths of photons involved in the Raman measurement are comparable to the dimensions of the structured substrate. Optical interferences are hence expected to occur in such a device and should be taken into account when interpreting the intensity of the collected Raman signals.

The effect of interference on the Raman spectrum of graphene supported by a silica/silicon substrate has been studied by several groups [START_REF] Wang | Interference enhancement of Raman signal of graphene[END_REF][START_REF] Yoon | Interference effect on Raman spectrum of graphene on SiO {2}/Si[END_REF][START_REF] Schedin | Surface-enhanced Raman spectroscopy of graphene[END_REF], while Metten et al. [START_REF] Metten | All-Optical Blister Test of Suspended Graphene Using Micro-Raman Spectroscopy[END_REF][START_REF] Metten | Doping-and interference-free measurement of I2D/IG in suspended monolayer graphene blisters[END_REF] consider the interference effect in case of suspended graphene for displacement calibration of strained graphene and the calculation of the intrinsic ratio of the Raman 2D and G intensities. However, another aspect can also be of interest: by carefully choosing the thickness of the substrate layers, the Raman signal for the G and 2D modes can be optimized. In the following we will discuss this aspect in more detail.

The intensity of the measured Raman signal is proportional to the intensity of incident light absorbed by the graphene |E λ in | 2 . The graphene in turn emits Raman scattered photons that need to propagate towards the detection area, with an escape efficiency called H λ R . It is delicate to model the optical properties of an atomically thin object in terms of optical propagation. An alternative, commonly used approach consists in modelling graphene's optical properties by considering it as a slab of material with thickness d 1 and refractive index n 1 , see table 3.1, which is partially imaginary to account for graphene absorption losses. Then one needs to integrate over the graphene thickness to compute the total Raman scattering efficiency, assuming no coupling between individual layers and calculate for each vertical layer the incoming photon flux and the outscattered efficiency. The latter are computed following the sketches of figure 3.4. In this model the measured Raman intensity is proportional to: tions will help to understand how the sample design can be optimized in order to obtain a maximal Raman signal for both the G and 2D modes.

F λ in →λ R ∝ d 1 0 dx |E λ in (x)| 2 H λ R (x), ( 3 
In the samples studied in this work, wells are formed in the substrate by reactive ion etching of the silica layer up to a controlled depth d air . Transferring graphene onto the wells, creates an optical interference structure with the following layers from top to bottom: air (0), graphene (1), air (2), silica (3) and silicon (4) as depicted in figure 3.4. The properties of each of the layers are summarized in table 3.1. The silica layer of the employed wafers has a fixed thickness of 500 nm. By carefully choosing the etching depth d air , we can tune the thickness of layers 2 and 3, which are connected to each other via the relation d 3 = 500 nm -d air . In order to find the enhancement factor F λ in →λ R , we need to find an expression of the electric field inside the graphene membrane.

In this context we have to consider the interferences that occur due to reflections at each of the interfaces between the multiple layers of the system for light with the wavelength of the employed laser and the wavelength of the Raman photon of interest. To simplify the problem, we can consider that the layers below the graphene (air, silica, silicon) have an effective reflection coefficient (see figure 3.1(a)) and calculate the interferences in the remaining three layers.

Let us first calculate the effective reflection coefficient of the layers below the graphene. It is convenient to use the transfer matrix formalism to that end. For a multilayer system the global transfer matrix M 0N relates the electric field amplitudes of layer 0 and N :

E + 0 E - 0 = M 0N 11 M 0N 12 M 0N 21 M 0N 22 • E + N E - N . (3.1.2)
It can be computed sequentially by iterating over the contribution of all layers as follows:

M 0N = D 01 N -1 i=1 P i D i,i+1 , (3.1.3)
where

D i,i+1 = 1 t i,i+1 1 r i,i+1 r i,i+1 1 (3.1.4)
captures the transition between two successive layers i and i + 1, while

P i = e iϕ i 0 0 e -iϕ i (3.1.5)
describes the propagation in layer i. In the above equations we use the following definitions for the transmission (t i,i+1 ) and reflection coefficient (r i,i+1 ) at the interface of layers i and i + 1 and for the phase ϕ i that the electric field acquires when passing through layer i:

t i,i+1 = 2n i n i + n i+1 r i,i+1 = n i -n i+1 n i + n i+1 ϕ i = 2π λ n i d i , (3.1.6)
where n i (n i+1 ) are the refractive indices of layer i (i + 1), and d i is the thickness of the i-th layer. Once the transfer matrix is known, the effective reflection coefficient of the multilayer system can be calculated by taking the ratio of the incident E + 0 and reflected E - 0 field amplitudes. Assuming no backward waves in the right-most medium, the reflection coefficient becomes:

r eff = E + 0 E - 0 = M 0N 21 M 0N 11 . (3.1.7)
In case of the suspended graphene sample, it is interesting to evaluate the effective reflection coefficients of the layers located bellow the graphene comprising air, silica and silicon. To do so, we need to compute M 14 using the same conventions as above (see figure 3.4). It is given by:

M 14 = D 12 4 i=2 P i D i,i+1 . (3.1.8)
From this expression we can deduce the effective reflection coefficient of the airsilica-silicon layer, which determines the equivalent reflection coefficient of the graphene lower interface, evaluated inside the graphene layer:

r eff = (r 23 + r 34 e -i2ϕ
3 ) e -i2ϕ 2 + r 12 (1 + r 23 r 34 e -i2ϕ 3 ) 1 + (r 23 + r 34 e -i2ϕ 3 ) r 12 e -i2ϕ 2 + r 23 r 34 e -i2ϕ 3 .

(3.1.9)

We are now able to give an expression for the electric field of the laser beam inside the graphene layer at a position x (corresponding to a dephasing of ϕ x = 2πn 1 x/λ in ) by considering the three-layer system air-graphene-effective medium:

E λ in (x) = t 01 e -iϕx + r eff e -i(2ϕ 1 -ϕx) 1 + r 01 r eff e -i2ϕ 1 E in , (3.1.10)
where E in is the electric field of the laser field impinging on the first interface (corresponding to E + 0 ). The expression for escape efficiency of Raman scattered light takes a similar form when taking into account that the Raman light is emitted from the graphene layer rather than entering it (see sketch 3.4(a)) and that it undergoes the dephasing φx = 2πn 1 x/λ R [START_REF] Wang | Interference enhancement of Raman signal of graphene[END_REF]:

H λ R (x) = t 10 e -iϕx + r eff e -i(2 φ1 -φx) 1 + r 01 r eff e -i2 φ1 2 , (3.1.11)
With these expressions we can calculate the enhancement factor given by equation (3.1.1) for the G and 2D modes as a function of the hole depth in the silica layer as shown in figure 3.4. The experimental points are reasonably well fitted by the calculated curves when using an overall intrinsic Raman intensity ratio

I 2D I G intr = 8
. This is to compare to an average value of 5 found by [START_REF] Metten | Doping-and interference-free measurement of I2D/IG in suspended monolayer graphene blisters[END_REF] for suspended exfoliated graphene under biaxial strain and 3.2 found by [START_REF] Yoon | Interference effect on Raman spectrum of graphene on SiO {2}/Si[END_REF] for graphene exfoliated on a silica/silicon substrate. In order to get maximal signal
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for both Raman modes for further experiments, samples were fabricated with a well depth of about 360 nm. This value was preferred over the slightly better depth of about 200 nm because suspending graphene over shallower wells is more difficult.

Having discussed the influence of the substrate on the Raman intensity, we will now turn to the question of how to interpret frequency shifts of the Raman peaks.

Properties of strained graphene drums

When discussing the difference in the properties of suspended and supported graphene membranes in section 3.1.2, we came to understand that a deeper knowledge about the mechanical strain and charge doping is necessary in order to draw well-founded conclusions on the actual state of a given graphene membrane. We will therefore present a study of intrinsic strain in graphene drums after transfer from the copper growth substrate in this section. This will be complemented by an investigation of suspended graphene membranes subjected to additional external strain.

Strain and doping in suspended graphene drums revealed by Raman spectroscopy

We have seen in section 1.4 that the energy of the G and 2D phonons in graphene is an extremely sensitive probe for strain. However, the same holds true for charge doping. We are therefore faced with the task of deconvoluting the strain and charge doping contributions to the phonon mode energy shifts in order to be able to use Raman spectroscopy as an effective graphene characterization tool.

Quantitative determination of mechanical strain and charge doping by Raman spectroscopy

We have presented the effects of charge doping and mechanical strain on the Raman spectrum of graphene in sections 1.4.2 and 1.4.3. As Lee et al. [START_REF] Lee | Estimation of Young's modulus of graphene by Raman spectroscopy[END_REF] pointed out, a correlation analysis of the Raman shifts of the G and 2D modes allows to disentangle these effects. Here we show that Lee's findings can be used to deduce the spatial distribution of strain and charge doping from Raman maps. The behaviour of the G and 2D Raman mode under charge doping has been studied by Das et al. [START_REF] Das | Monitoring dopants by Raman scattering in an electrochemically topgated graphene transistor[END_REF][START_REF] Das | Phonon renormalization in doped bilayer graphene[END_REF]. Their results indicate an average ratio of 2D and G mode shifts of ∆ω 2D ∆ω G hole = 0.7 for hole doping up to a hole surface charge of 2 • 10 13 cm -2 . Note that these are averaged experimental values and that a lower value of 0.55 was determined by [START_REF] Froehlicher | Raman spectroscopy of electrochemically gated graphene transistors: Geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering[END_REF]. In case of electron doping, the ratio takes a slightly lower value in all cited studies. However, we know that the graphene we produce is rather hole doped by virtue of differential four probe resistance measurements. This is illustrated by figure 3.5 which shows the resistance curve of a typical mono-layer graphene sample produced and measured by Zheng Han in the hybrid systems group at the Néel Institute. The fact that the maximum resistance is shifted to positive gate voltage indicates that the Fermi-level is situated below the Dirac point and hence the graphene is hole-doped. It is known that hole-doping of graphene can be caused by interaction with the SiO 2 substrate via silanol groups at the surface or by adsorbed water containing solvated oxygen [START_REF] Aguirre | The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors[END_REF] as well as by doping of graphene by atmospheric oxygen [START_REF] Ryu | Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO 2 Substrate[END_REF]. This is in contrast to the behaviour of the Raman modes when subjected to biaxial mechanical strain. According to [START_REF] Ding | Stretchable graphene: A close look at fundamental parameters through biaxial straining[END_REF], the ratio of G and 2D modes shifts amounts to ∆ω 2D ∆ω G biaxial = 2.8 for both tensile and compressive strain. For a 2dimensional object that is attached to the substrate via van der Waals forces along its entire perimeter, it seems reasonable to assume biaxial rather than uniaxial strain.
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When we perform Raman measurements, the peak positions of the G and 2D modes are known. From one set of G and 2D mode positions, we obtain one particular point (ω G , ω 2D ) defining vector x with the origin (ω G0 , ω 2D0 ) as sketched in figure 3.6. The origin is chosen as the point where neither any strain nor charge doping prevails in the graphene.

In order to extract the strain and doping for the vector of interest x, we need to project it onto the non-orthogonal vectors e and e n defining the lines along which pure strain and pure doping occur respectively. This can be achieved by a simple coordinate transformation as follows. The strain and doping vectors are known in Measuring the G and 2D modes at one point of the graphene sample allows to trace a vector x in the (G,2D) frequency-plane. Its coordinates, which are known in the orthogonal base given by the vectors e G and e 2D , can be projected onto the non-orthogonal vectors e and e n which define the components x and n x of vector x in terms of mechanical strain and charge doping respectively. The origin of the coordinate system, denoted (ω G0 , ω 2D0 ), is defined by the G and 2D modes position for unstrained and undoped graphene. When moving along the strain line towards higher (lower) G and 2D frequencies, the compressive (tensile) strain increases. terms of their components in the space spanned by the orthogonal vectors e G and e 2D as depicted in figure 3.6:
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G frequency (cm ) 2D frequency (cm )

e e n = s G s 2D p G p 2D • e G e 2D , ( 3 
.2.12)

where the matrix elements denote the shifts of the G and 2D modes positions as a function of biaxial strain and hole doping and are given by [START_REF] Ding | Stretchable graphene: A close look at fundamental parameters through biaxial straining[END_REF][START_REF] Lee | Estimation of Young's modulus of graphene by Raman spectroscopy[END_REF]:

s G = ∆ω G ∆ = -57.3 cm -1 % s 2D = ∆ω 2D ∆ = -160.3 cm -1 % (3.2.13) p G = ∆ω G ∆n = 1.0 • 10 -12 cm -1 cm -2 p 2D = ∆ω 2D ∆n = 0.7 • 10 -12 cm -1 cm -2 . (3.2.14)
Inverting equation (3.2.12) allows us to express the vectors along the G and 2D axis mode which are known from the measurement as a function of e and e n :

e G e 2D = 1 s G p 2D -s 2D p G p 2D -s 2D -p G s G • e e n .
(3.2.15)
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With this information we can express an arbitrary measured vector x = x G e G +

x 2D e 2D in terms of its strain and doping components:

x = x G p 2D -x 2D p G s G p 2D -s 2D p G e + x 2D s G -x G s 2D s G p 2D -s 2D p G e n (3.2.16)
The approach described above is of great use for the determination of charge doping and mechanical strain in graphene membranes from Raman data as will be discussed in detail in the next section.

Intrinsic strain and doping in supported and suspended graphene

In order to gain a good understanding of the studied system, it is crucial to characterize the intrinsic graphene properties. However, when we want to extract the exact values of strain and doping, the origin of the strain and doping line needs to be known. This is not straightforward since there is no absolute reference. For this work we decided to define the reference experimentally with another type of device: CVD graphene grown by Dipankar Kalita in the group and suspended over macroscopic length scales (some tens of micrometers) supported by a regular array of SiO 2 nano-pillars as detailed in [START_REF] Reserbat-Plantey | Strain superlattices and macroscale suspension of Graphene induced by corrugated substrates[END_REF]. It seems reasonable to take this graphene as a reference for several reasons: First of all, the graphene employed in both cases comes from the same source (same CVD oven and same growth recipe). Secondly, in case of the macroscopically suspended graphene, only about 10% of the graphene are in direct contact with the substrate as can be deduced from an estimation of the pillar apex radius from SEM micrographs. Therefore the substrate-induced charge doping should be very small. Thirdly, stress can relax easily in this structure. We therefore consider this device the optimal choice for the origin of the strain-doping graph. Its coordinates were found by averaging over several spectra taken in different regions of a macroscopically suspended monolayer graphene sheet and are given by (ω G , ω 2D ) = (1570 cm -1 , 2760 cm -1 ). It is marked as a black disk in figure 3.7.

The beforementioned figure summarizes the results from Raman maps taken on two different types of samples: graphene deposited either onto silica or silicon nitride substrates as detailed in chapter 2. Each colour represents data from a different drum measurement. In case of SiO 2 substrates, we can distinguish between the regions where the graphene is suspended and supported which are plotted in two separate graphs (panels (a) and (b)). The Raman spectrum of graphene on SiN, on the other hand, cannot be determined because the high SiN fluorescence hides the Raman peaks.

We notice that the Raman peak positions acquired on a particular drum are grouped in elongated clusters which are parallel to the vectors defining pure doping and pure strain. Furthermore the great majority of points is located in the compressive strain region of the graph. As explained in section 2.1, CVD graphene grown on a copper substrate generally exhibits compressive strain due to the mismatch of thermal expansion coefficients of copper and graphene. This thermally
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-1 graphene region as sketched in the inset. Additionally it states the mean strain value in % and, in brackets, its standard deviation. The corresponding doping histograms are plotted in panels (d),(f) and (h). As for the strain, the text box on the top left gives the average doping value in 10 12 cm -1 and its standard deviation.
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induced compressive was determined to take values of a few percent [START_REF] Tapasztó | Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene[END_REF] for graphene grown on copper and can be partially relaxed by wrinkle formation. The Raman results presented here hint at the fact that nonetheless compressive strain is maintained at lower values up to 0.07% in the graphene membrane even after transfer onto another substrate.

A deeper inspection reveals that graphene deposited onto a SiO 2 substrate rather follows the deformation line implying a broader range of strain values, but smaller variation in terms of doping, which is reflected by the histograms in panels (c) to (f). Even though the difference between the suspended and supported regions is small in general, slightly higher mean values for both strain (-0.029 as compared to -0.023%) and doping (1.0 as compared to 0.7•10 12 cm -2 ) are found for the graphene in direct contact with the SiO 2 substrate. The fact that graphene is strained on the substrate is supported by scanning tunnelling studies [START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF] which find that the graphene conforms to the corrugated substrate structure and thus can be locally strongly strained. However, strain can also be easily induced during the graphene transfer onto the substrate which concerns both suspended and supported graphene. Due to the laser spot diameter of about 320 nm, Raman spectroscopy gives access to a strain value averaged over the illuminated region. As mentioned earlier, hole doping of graphene from a silica substrate can be attributed to electron transfer from graphene to silanol groups at the silica surface or chemisorbed hydrated oxygen present in adsorbed water [START_REF] Aguirre | The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors[END_REF][START_REF] Ryu | Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO 2 Substrate[END_REF]. The fact that the suspended graphene is also doped can be explained by resist residues that remain on the surface from the transfer process [START_REF] Pirkle | The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2[END_REF] or by doping from atmospheric oxygen. In general, we cannot identify PMMA peaks in Raman spectra, indicating that, although being certainly present, the level of PMMA contamination is low.

The doping-induced shift of the Fermi level is given by E F = sgn(n) √ nπ v F , where n is the surface charge concentration, v F is the Fermi velocity and v F = 5.52 eV Å from density fluctuation theory [START_REF] Piscanec | Kohn anomalies and electron-phonon interactions in graphite[END_REF]. With this expression we obtain low shifts of the Fermi energy on the order of 100 to 200 meV, so that an impact on the optical properties of the graphene samples can be safely excluded, since the energy of the photons involved in Raman process are on the order of 1.6 to 3 eV.

Graphene on the SiN samples on the other hand shows a wider spread in doping but rather uniform strain values for a given data set (see histograms in panels (c) and (d)). It is known, that charge trapping occurs at amorphous silicon/silicon nitride interfaces [START_REF] Hepburn | Charge trapping effects in amorphous silicon/silicon nitride thin film transistors[END_REF]. Possibly charge traps are created at the silicon/silicon nitride interface in our case during the reactive ion etching process. Another interesting result on the effect of laser annealing is obtained from the data : the yellow cluster denoted by the number 1 was taken directly after the graphene transfer, while clusters 2-4 were measured after laser annealing (scanning with a laser (wavelength 633 nm) at a power of 1 mW for about an hour). The orange cluster denoted 2 corresponds to cluster 1 after laser annealing. Comparing the two, we find that the laser treatment reduced the doping of the membrane, but also increased the compressive strain. The decrease in doping level could originate from a thermally-induced desorption of contaminants from the graphene surface.
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Such an effect was reported by Ryu et al. [START_REF] Ryu | Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO 2 Substrate[END_REF] in case of graphene supported by silica. An increase of compressive strain after thermal annealing at 400 • C was reported by Lee et al. [START_REF] Lee | Estimation of Young's modulus of graphene by Raman spectroscopy[END_REF]. Even though the exact mechanism for this effect is unknown, it is conceivable that the different thermal expansion coefficients of graphene and silicon nitride are responsible for an altered strain distribution after heating.

Joint strain -topography study for a detailed understanding of the spatial distribution of intrinsic strain

We have seen in the previous section that Raman spectroscopy is a powerful tool to study intrinsic properties of graphene such as strain or charge doping. However, due to the high variability of fabricated graphene membranes, it proofs difficult to draw generalized conclusions on different samples. Moreover the strain and doping distributions tend to be spatially non-uniform in a single membrane. In order to capture such subtleties, a membrane needs to be studied more extensively.

It is particularly instructive to relate the topography of a suspended graphene membrane to the strain distribution.

To this end we take a close look at a particular membrane. The results of its characterization are shown in figure 3.8. Panels (a) to (c) summarize the topography of the membrane: as discussed in section 3.1.1, the graphene adheres to the side walls of the well in the substrate. However, the graphene does not conform uniformly to the rim of the silica wall over its entire circumference. The distance over which it adheres to the silica ranges from approximately 20 to 60 nm. Furthermore the membrane is slightly buckled upwards with a curvature that is also position-dependent. This curvature is superimposed with smaller-scale ripples which seem to follow a main orientation axis.

The topography images are complemented by Raman maps of the same membrane with a high spectral resolution of 1 cm -1 (1800 grating). The maps were taken by the master student Léo Djevahirdjian. First interesting information is obtained from the intensity of the Raman G and 2D peaks. The depth of the well of this sample was designed in order to optimize the signal of these two Raman modes, and indeed, the measured intensity in the suspended regions is higher than for the supported graphene. Furthermore we observe a bright ring of increased G mode intensity along the circumference of the well. This can be explained in terms of an increased scattering cross section for graphene that is aligned with the optical axis of the laser beam as compared to the perpendicular geometry for the rest of the surface. Note, that only first order Raman processes are proportional to the scattering volume, which explains why the same effect is not observed for the 2D mode [START_REF] Cardona | Light Scattering in Solids I[END_REF]. The effect on the G mode intensity supports the AFM findings regarding the adhesion of graphene to the side walls of the well. Taking a look an the G and 2D band frequencies, we find an overall mode stiffening in the supported regions. Once again the effect is more pronounced for the 2D peak with shifts in the order of 3 to 7 cm -1 . This is especially interesting since we know that 2D mode is about three times more sensitive to strain than the G mode (note that in While the doping level is rather homogeneous over the whole measured region, the strain distribution displays local variations that can be understood in terms of the topography of the membrane. 85
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the case of hole-doping, the G peak is the more sensitive one by a factor of about 1.4) [START_REF] Das | Monitoring dopants by Raman scattering in an electrochemically topgated graphene transistor[END_REF][START_REF] Das | Phonon renormalization in doped bilayer graphene[END_REF][START_REF] Ding | Stretchable graphene: A close look at fundamental parameters through biaxial straining[END_REF][START_REF] Lee | Estimation of Young's modulus of graphene by Raman spectroscopy[END_REF]. Comparing the Raman-frequency maps with the membrane topography, we find an interesting connection between the two: in the regions around the circumference where the membrane sags over a considerable distance, the frequency of both modes is at its minimum. Finally we turn to the width of the two Raman modes. Again, we find a similar behaviour for both modes which consists in an overall decrease of the width in the suspended regions which comes close to the intrinsic values expected for graphene. This is in good agreement with theory which predicts a shorter phonon lifetime for supported graphene due to phonon-phonon coupling with substrate modes from the substrate [START_REF] Cardona | Light Scattering in Solids I[END_REF].

We will now pursue our study by investigating the spatial strain distribution by the method detailed in section 3.2.1.1. In a first step, we obtain the correlation plot of the G and 2D frequencies as depicted in 3.8(e). The resulting cluster is aligned with the pure strain line implying a constant, low doping level, but a certain variation concerning strain. The colour of each dot in the figure indicates at what distance from the centre of the membrane the measurement was taken. The colour distribution within the cluster already gives a first hint about the spatial strain distribution: the area close to the centre (dark spots) nearly superimposes with the area far from the centre (bright spots) where the graphene is supported by the substrate. However, the data can be represented in a more intuitive way by generating a spatial map of the strain and doping distribution as shown in panels (f) and (g). Turning to the strain map we find indeed, that the values in the centre region show a low compressive strain in the order of 0.04 to 0.03%, which is close to the slightly higher compressive strain in the supported region of about 0.05 to 0.06%. Interestingly, the strain becomes less compressive in general when approaching the membrane edge and even turns to tensile in the regions where the graphene deeply sinks into the hole (compare with topography images). These results imply that stress up to about 600 MPa is exerted on the graphene membrane at its circumference where it is attached to the substrate which is a rather low value compared to local strain in graphene ripples which is about two orders of magnitude higher. The tensile stress at the edge of the membrane counteracts the intrinsic compressive strain that remains after the CVD growth as explained in the previous section. A similar spatial strain distribution was observed by [START_REF] Reserbat-Plantey | A local optical probe for measuring motion and stress in a nanoelectromechanical system[END_REF], who found maximum strain at the clamping point of a multi-layer graphene cantilever resonator.

We now turn to the doping map in figure 3.8(g). With a few 10 12 cm -2 , the doping level is very low throughout the whole graphene membrane being slightly lower in the suspended region. However, a quantitative determination of the doping is difficult at low doping levels, because of the anomalous G mode softening which occurs when |E F | = ω G /2 = 98.5 meV (Kohn anomaly) as explained in section 1.4.2. This leads to a relationship between the G mode frequency and doping level which is not linear for low doping levels [START_REF] Lee | Estimation of Young's modulus of graphene by Raman spectroscopy[END_REF]. 
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Mechanical properties and topography of statically strained suspended graphene membranes

So far we have discussed the intrinsic properties of suspended graphene membranes.

In this section we will investigate the behaviour of a graphene membrane when subjected to a static load.

Pressurized graphene balloon

An effective way to strain a suspended membrane, is to create a pressure difference between a volume closed off by the membrane and the outside as depicted in the sketches in figure 3.9. The pressure difference is achieved by pumping on the surrounding AFM chamber, i.e. the outside of the graphene drum. In order to create and maintain a pressure difference, the membrane must well seal off the inside volume. Therefore we use devices made by dry graphene transfer onto wells in the substrate which do not have any drains for this experiment. AFM topography images taken at two different pressures (atmospheric and 1 • 10 -5 mbar) are shown in figure 3.9(d). The membrane initially has a complicated three-dimensional struc-87 ture with concave indentation along a semicircle. Some patches show a higher roughness which are not physical, but due to membrane-tip interactions as discussed in section 3.1.1. When pumping on the sample chamber, the pressure difference between the inside and outside of the drum increases causing the membrane to bulge and become convex shaped (see figure 3.9(c)). The membrane is hence able to withstand a considerable load of 101.3 kPa. However, analysis of the path-length of the depth profiles shows that no average tensile strain is induced in the membrane at this load. However, the high quality of the seal of the membrane is proven by the stability of the bulged membrane the profile of which did not change over a pumping period of two days.
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Electrostatically strained graphene probed by AFM

One option of applying a uniform pressure is to apply a static voltage between the graphene and the silicon substrate as shown in the sketch of figure 3.10(a). The substrate thus acts as an electric backgate and the charges that accumulate in the silicon give rise to the electrostatic potential energy which can be approximated by that of a parallel plate capacitor: U g = 1 2 C s g AV 2 g , where C s g is the total capacitance per unit area of the device and V g is the applied gate voltage. Note that the electrostatic force is always attractive independently of the sign of the applied voltage since in both cases charges of opposite signs accumulate in the graphene and silicon. The electrostatic pressure P g acting vertically on the graphene can be
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P g = F g A = - 1 A dU g dz = - 1 2 C s g dz V 2 g . (3.2.17)
The total capacitance of the system can be described as a series capacitance taking into account the silicon dioxide and air dielectric layers, resulting in the following expression for the electrostatic pressure exerted by the backgate:

P g = 0 2 SiO 2 V 2 g 2(d SiO 2 + SiO 2 d air ) 2 . (3.2.18)
Figure 3.10 (b) shows line profiles of a circular suspended graphene membrane taken across its centre for different gate voltages in tapping-mode AFM. The deflection profile of a membrane subjected to a uniformly applied load along the lateral direction and with fixed edges is a classical problem of continuum mechanics. When the deflection is small compared to the radius of the membrane, h(r) a and the bending rigidity of the membrane is negligible (as is the case for graphene with a bending rigidity of about 1.1 eV [START_REF] Fasolino | Intrinsic ripples in graphene[END_REF]), the profile of the membrane can be assumed as parabolic [START_REF] Timoshenko | Theory of Plates and Shells[END_REF]:

h(r) h 0 1 - r a 2 , (3.2.19)
with a deflection at the centre of the membrane given by the positive root of a cubic equation:

h 0 0.622 a 4 P g E 1 3 = 0.622 0 2E a 2 SiO 2 V g d SiO 2 + SiO 2 d air 2 3 , (3.2.20)
where r is the radial coordinate, a the radius and E the Young's modulus of the membrane. The prefactor takes into account the membrane shape and Poisson's ratio.

Taking a closer look at figure 3.10(b), we notice that the membrane is slightly convex shaped when no voltage is applied. Upon increasing the voltage successively, the membrane profile becomes concave and is in good agreement with the parabolic model for moderate voltages as is confirmed by the superimposed parabolic fits (black dashed lines). Note that a step occurs at the edge of the left clamping point for the two highest voltage values. We attribute this step to a double tip structure which must have developed during the scanning. The slight asymmetry in the depth profiles can be explained in terms of a spatial strain distribution which is distorted. This could be due to a spatially inhomogeneous topography and intrinsic strain distribution which already exists at 0 V. The depth profile for the highest voltage shows a stronger deviation from the parabolic model and a kink-like structure at the maximum deflection point. The reason for the
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occurrence of this structure could not be determined unambiguously. However it seems reasonable that a grain boundary or folding in the graphene could cause such a behaviour at high applied loads. It is worth mentioning that the deformation of the membrane was, once again, reversible over several cycles. Now we investigate the deflection at the centre of the membrane. According to equation 3.2.20, its third power scales linearly with the applied electrostatic pressure. Figure 3.10(c) suggests that this is the case. Note that the highest pressure value was left out for this study because a leak current was observed when applying 100 V and hence the applied load was well below the nominal value of 320 kPa. From a linear fit of the data, we obtain an experimental value of the graphene Young's modulus of 3.8 TPa. This is in contradiction with the value of 1.0 to 1.1 TPa which was reported by several groups [START_REF] Lee | Measurement of the elastic properties and intrinsic strength of monolayer graphene[END_REF][START_REF] Jiang | Young's modulus of graphene: A molecular dynamics study[END_REF][START_REF] Bao | In situ observation of electrostatic and thermal manipulation of suspended graphene membranes[END_REF][START_REF] Metten | All-Optical Blister Test of Suspended Graphene Using Micro-Raman Spectroscopy[END_REF]. The source of error could be a leak current that already occurred at lower voltages and led to an overestimation of the applied electrostatic pressure.

At last we can draw some basic conclusions regarding the strain of the suspended drum subjected to a uniform force field. From the path length of the graphene profiles in figure 3.10(b), we can deduce the average tensile strain = ∆l/l that takes values up to 0.44 %. Considering that this is an average value and that the intrinsic (compressive) strain in a typical suspended drum is of the order of 0.02 %, this is a high value hinting at the fact that the induced strain can be locally very high. Raman mapping would have been an option to find the local strain distribution. Unfortunately we could not repeat the electrostatic measurement to collect Raman data, because a gate leakage occurred after the AFM measurements.

Motion and strain in actuated graphene resonators

So far we have focussed on the static properties of a suspended graphene sheet. In this section we will study the dynamical behaviour of the driven membrane. First the employed actuation and detection schemes will be briefly introduced and then the measurement results presented.

Actuation

The graphene membrane is driven electrostatically as outlined in section 1.2.3.1. A voltage is applied to the graphene while the silicon substrate is grounded as sketched (see figure 3.11(a)). The voltage is applied with a vector analyzer and contains an AC component which drives the graphene motion. The total applied voltage is given by V (t) = V g + δV g cos(Ωt). According to equation 3.2.17, the force acting on the membrane is approximately

F g 1 2 dC g dz V 2 g + 2V 0 δV g cos(Ωt) , (3.2.21)
where the first term in the bracket gives the static contribution of the force giving rise to mechanical tension in the membrane, and the second term is the AC force The position of the membrane is chosen in a way to be positioned at the intensity slope. Hence, when the membrane moves along the optical axis, it causes an intensity modulation of the reflected light. (c) Typical electrically driven displacement amplitude of a graphene oscillator (8 µm in diameter) at 10 K obtained by sweeping the excitation frequency. Peaks of several vibrational modes can be seen. The spectrum exhibits a dip around 30 MHz which can be explained in terms of destructive interference of the responses of individual eigenmodes. (d) Electrically driven displacement amplitude of the same membrane as in (c) for an excitation power of 0 dBm and at 300 K. The spectra in (c) and (d) were both taken at low pressure of some 10 -6 mbar.
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oscillating at angular frequency Ω. Even if we only apply an rf voltage with the network analyzer, there is still a dc force acting on the membrane. It stems from the intrinsic hole doping (see section 3.2.1.2), which shifts the Fermi level by an energy corresponding to about 100 to 200 mV for our samples. Combining equations 3.2.17 and 3.2.21, we find the amplitude of the oscillating part of the force responsible for driving the membrane around its equilibrium position:

δF g 0 2 SiO 2 A (d SiO 2 + SiO 2 d air ) 2 V g δV g .
(3.2.22)

For excitation powers between -30 and 0 dBm, we thus find force values ranging from 1 to 100 pN provided that there is no gate leakage.

Detection

We opt for an optical readout approach which allows for a simultaneous readout of both motion and strain via reflected and Raman-scattered photons respectively as sketched in figure 3.11(a) and only requires one electrode on the graphene. The displacement detection scheme consists in illuminating the resonator with a probe laser beam (wavelength of 532 nm) and monitoring the reflected light intensity with a fast photodiode. The photodiode signal is sent back to the network analyzer which also generated the excitation signal. The latter Fourier-transforms the autocorrelation function of the photodiode signal, which is proportional to the displacement spectral density of the graphene membrane. As mentioned earlier in section 3.1.3, the semi-transparent graphene membrane and the silicon substrate form an optical cavity acting as an interferometer. In order to achieve maximum displacement sensitivity, the probe laser focus is adjusted such that it is slightly offset with respect to the graphene membrane position. Thus the membrane motion induces maximum modulation of the reflected light intensity. Using a beam splitter, part of the signal coming from the sample is simultaneously sent to the Raman spectrometer. Note that the dissipation is strong at ambient pressure due to viscous drag of air molecules. This considerably reduces the quality factor of the mechanical resonance. All response measurements are therefore performed at low pressure ranging from 10 -4 to 10 -6 mbar. Furthermore the sample is placed in a Heliumflow cryostat which can cool it down to about 10 K. The quality factor of the mechanical resonance typically improves by a factor of about two upon cooling a resonator from ambient temperature to 10 K. However, it proved technically difficult to work at low temperature because of thermally induced spatial drifts of the sample with respect to the optical axis. Therefore only few measurements were performed at low temperature.
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Driven mechanical response of single-layer graphene resonators

An exemplary response spectrum of a graphene membrane is depicted in figure 3.11(c). It was measured under vacuum in a Helium-flow cryostat which cooled the sample down to about 10 K. It was taken at the centre of a circular singlelayer graphene membrane with a diameter of 8 µm and for an excitation power of 20 dBm. We can discern up to eight vibrational modes of the graphene resonator.

The resonance frequency of the fundamental mode for drums with diameters between 4 and 10 µm are typically found in the range of 10 to 50 MHz with quality factors up to 500 at room temperature and low pressure. In general, the resonance frequencies decrease and quality factors increase upon cooling the sample. Figure 3.11(d) shows a zoom onto the first resonance peak of the same drum for 0 dBm excitation power and taken at room temperature. Due to the limited stability of the experiment, the mechanical response function could unfortunately not be calibrated satisfyingly to an equivalent displacement in the employed setup. However, we can estimate the expected displacements with the help of linear response theory which relates the displacement of the membrane out of its equilibrium position to the oscillating driving force via the mechanical susceptibility in Fourier space:

δx[Ω] = χ[Ω] δF [Ω]. (3.2.23)
Employing a simple one-dimensional model for the graphene oscillator, we can estimate the displacement amplitude at resonance by inserting expression 3.2.22 into the above equation and using the mechanical susceptibility given by equation 1.5.22:

δx = 0 A V 0 δV M eff ΓΩ m SiO 2 d SiO 2 + SiO 2 d air 2 , ( 3 

.2.24)

where A, M eff , Γ and Ω m are respectively the area, effective mass, damping coefficient and resonance frequency of the graphene resonator, while SiO 2 and d SiO 2 are the dielectric constant and thickness of the silicon dioxide layer and d air the thickness of the air layer inside the graphene drum. Considering the graphene resonator for which the example spectrum is shown in figure 3.11(d), we calculate a capacitance of 1.2 fF. The effective mass can be estimated by comparison with optomechanical measurements (see section 4.3.1), giving values of the order of 10 -16 kg . The excitation power of 0 dBm corresponds to δV = 316 mV, and V 0 is considered to be of the order of 1 V for a typical sample (cf. section 3.2.1.1). With these values we find a considerable force of 170 pN acting on the graphene which induces a displacement of 80 nm which represents about 200 times the graphene thickness. The above calculation shows that considerable deflection amplitudes can be attained with the electric actuation technique. They exceed by far typical displacements induced by an opto-thermal drive that are rather on the order of 1 nm as will be discussed in detail in chapter 4.

As mentioned above, the excitation mechanism can influence the properties of the measured spectrum. This fact is illustrated by figure 3.12 which compares an electrical with a mechanical drive. In the former case, an rf signal is directly sent to the backgate of the device, while in the latter one the signal is sent to a piezo supporting the sample which induces the graphene membrane oscillations via indirect mechanical coupling to the substrate. The electrical drive can be assumed to be spectrally flat over the measurement range. Even though the two spectra resemble each other at first sight, we notice some differences: the signal produced by the mechanical drive seems slightly asymmetric and displays additional features such as a dip at 32.2 MHz or a peak at 32.6 MHz. Such distortions are not observed in case of the electrical drive. They are attributed to the interplay between mechanical resonances of the graphene, piezo and substrate. Therefore the electrical drive is chosen for further measurements.

Another fact hints at the high efficiency of the electrical drive: when exciting at high powers, the graphene membrane readily enters into a mechanically nonlinear regime. This is illustrated by figure 3.12(b) where the driven displacement amplitude of the fundamental mode of a singe-layer graphene sheet with a diameter of 8 µm is plotted for different driving powers at 300 K. Even at the lowest value shown here of -3 dBm, the peak cannot be described in terms of a simple Lorentzian. Upon increasing the excitation, the non-linear behaviour becomes more and more pronounced as the peak curves to the right hand side. This is a typical feature of the Duffing oscillator. Its dynamics can be described by the following equation of motion:

ẍ + Γ ẋ + Ω 2 m x + βx 3 = F M cos(Ωt), (3.2.25)
where x is the time-dependent displacement, Γ is the damping coefficient, Ω m /2π
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the eigenfrequency and M the mass of the resonator, and F and Ω are the amplitude and frequency of the driving force. The Duffing oscillator can be interpreted as a system with a non-linear restoring force given by F rest = -Ω 2 m x -βx 2 . This means that for large out-of-plane deformations the tension in the graphene membrane depends on the amount of deflection. Since the peak curves to the right hand side, we are dealing with a hardening spring with a positive Duffing parameter β > 0. Interestingly, the same measurement performed at 10 K showed a peak skewed to the left hand side. A similar inversion of the sign of the Duffing parameter was observed in case of a graphene resonator when the DC backgate voltage was increased [START_REF] Weber | Detection and Generation of Gravitational Waves[END_REF], and in case of a diamond resonator which is either under tensile or compressive strain [START_REF] Rath | Diamondintegrated optomechanical circuits[END_REF]. There are indeed numerous mechanisms that can lead to Duffing-like behaviour, in particular the temperature dependence of the resonance frequency, spatial non-linearities in the actuation mechanism, AC stark shifts often observed in electrostatic actuation schemes which are responsible for a modification of the DC component of the force which in turn changes the mean stress applied on the membrane. The effect of the backgate on the graphene resonator is also to change the static strain component due to quadratic AC stark effects. We therefore assume that the inversion of the Duffing parameter also originates from different static strain values present at room temperature and 10 K.

Having explored the dynamical behaviour of the graphene resonators, we will now turn to the question to what extent the acoustic vibrations affect optical phonons in the system.

Simultaneous detection of motion and strain with a single probe laser beam

When actuating the graphene resonator, we generate deformations in the membrane which can be especially strong when the system is driven at its resonance frequency since we have seen that it is possible to deform the graphene by several 100 times its intrinsic thickness. Such deformations induce strain in the membrane and should change the properties of the optical phonons present in the system. As a consequence, acoustical and optical phonons would couple in the described scenario, as explored in a previous study performed in the group on multilayer graphene cantilevers [START_REF] Reserbat-Plantey | A local optical probe for measuring motion and stress in a nanoelectromechanical system[END_REF]. The aim of this section is to analyse to what extent this phenomenon can be observed in graphene as an ultimate two-dimensional material.

To this end, the graphene membrane is driven at its resonance frequency via electrical gating with high excitation powers (between 20 and 30 dBm). The mechanical response of the system is monitored optically with the probe laser by recording the modulation of the reflected light intensity. Simultaneously, Raman spectroscopy is performed on the inelastically scattered photons. As discussed in section 3.2.1.2, Raman spectroscopy is a sensitive probe for mechanical strain in graphene.

However, it turned out that this experiment is more difficult to realize in practice than initially thought. There are several points that render this experiment delicate. First of all, the mechanical resonance of the graphene membrane is not stable in time causing a detuning between the driving frequency and the graphene resonance over the accumulation time needed to obtain well-resolved Raman spectrum. Drifts of the resonance frequency on the order of 10 kHz were observed. This makes it extremely difficult to stay tuned at the resonance frequency while taking a Raman spectrum and it was not intended to track the resonance due to lack of time. Many reasons can be invoked to explain these frequency drifts such as the insufficient spatial stability of the experiment causing a drift in the steady state thermal profile in the graphene or insufficient temperature stability are some possible reasons. We could also imagine that under the influence of laser illumination molecules desorb from or adsorb onto the graphene surface and modify its resonance frequency. Let us estimate the mass change dM which is necessary to induce a frequency shift dΩ m /2π of the order of 10 kHz. Assuming that the graphene membrane can be described by the membrane model introduced in chapter 1, we obtain the following relation from expression (1.5.49):

dΩ m Ω m = - 1 2 dM M . (3.2.26)
Considering a membrane with a resonance frequency of 10 MHz, we find hence that a mass change of 0.2% is necessary to shift the frequency by 10 kHz. Using the graphene area density ρ = 7.4 • 10 -16 g/µm 2 , we find that the geometric mass of a membrane with a diameter of 8 µm amounts to about M = 1.5 • 10 -16 kg.

A mass change of dM = 3 • 10 -20 kg is hence required to shift the frequency by 10 kHz, which corresponds to adding an equivalent contaminant carbon atom every 20 carbon atoms on the membrane in each direction.

Another difficulty in performing a dynamical strain measurement lies in long acquisition times required for Raman measurements (typically 1 s per spectrum). As the membrane is driven, the induced strain pattern is modulated at twice the resonance frequency of the graphene membrane which we cannot time-resolve with our Raman setup. The measured Raman signal is therefore a time average over many oscillation cycles. Note that tensile strain is induced in the membrane for both positive and negative displacements about the equilibrium position, so that the strain depends quadratically on the driving signal. Since Raman spectroscopy probes in-plane phonons, we hence expect a non-zero average strain to be induced in the membrane when vibrating. This strain results in a shift of the frequencies of the Raman phonons. According to equations (3.2.13), an average strain per cycle of 0.08% (0.13%) is required in order to exceed half the intrinsic width of about 13 cm -1 (7.5 cm -1 ) of the 2D (G) mode.

Preliminary measurements are shown in figure 3. 13. In panel (a) we plot Raman spectra of the 2D peak taken with a laser power of 1.3 mW and wavelength of 532 nm and 1800 grooves/mm grating at ambient temperature. The 2D peak was chosen rather than the G peak for two reasons: Firstly, its relative frequency shift with biaxial strain is about three times larger compared to the G mode [START_REF] Ding | Stretchable graphene: A close look at fundamental parameters through biaxial straining[END_REF]. Secondly, the Raman intensity of the 2D mode is higher allowing for faster spectrum acquisition thus reducing the influence of resonance frequency drifts. One spectrum was taken on the static membrane without any actuation, and the second when electrostatically driving the resonator at its resonance frequency with an excitation power of 30 dBm, corresponding to an estimated displacement amplitude of several hundreds of nm. An optical image of the single-layer graphene drum with a diameter of 6 µm is shown in the inset. The measurements were performed at the centre of the membrane as indicated by the cross. The mechanical resonance was simultaneously monitored during the measurement and a frequency correction compensating for frequency drifts was applied by hand in order to stay tuned at resonance. From the Raman spectra we find a significant downshift of the 2D frequency of 7 cm -1 from the static value of 2676 cm -1 to 2669 cm -1 when actuated.
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As discussed in section 3.2.1, this shift could be induced by two factors, the oscillating surface charge density induced in the graphene or the strain caused by the periodic deformation. To clarify the origin of the frequency shift of the 2D mode, we estimate the shift of the Fermi-level caused by the applied rf voltage. An excitation power of 30 dBm corresponds to a modulation depth δV of 10 V, which induces a surface charge modulation of

δn = C δV eA = 2 • 10 11 cm -2 , (3.2.27)
where C is the sample capacitance (1.2 fF) and A is the surface of the suspended graphene membrane (5 • 10 -7 cm 2 ). From expression (3.2.14), we find that this surface charge modulation corresponds to a negligible shift of the Raman 2D frequency of 0.14 cm -1 . We can thus safely attribute the measured shift to induced strain. The average induced biaxial strain at the drum's centre is calculated using expression (3.2.13) and takes a value of 0.04 %. These observations suggest that the optical and acoustical phonons can indeed also couple in a two-dimensional material as was earlier observed in multilayer graphite resonators [START_REF] Reserbat-Plantey | A local optical probe for measuring motion and stress in a nanoelectromechanical system[END_REF]. The next step would therefore be to perform time-resolved Raman spectroscopy in order to obtain temporal information on the strain evolution in a vibrating graphene membrane.

It is interesting to address the question of the spatial strain profile in the membrane. While the study on the resonating multilayer-graphene cantilever finds highest strain values at the hinge [START_REF] Reserbat-Plantey | A local optical probe for measuring motion and stress in a nanoelectromechanical system[END_REF], measurements on static, pressurized monolayer drums indicate strongest strain at the centre of the bulged membrane [START_REF] Lee | Optical separation of mechanical strain from charge doping in graphene[END_REF][START_REF] Metten | All-Optical Blister Test of Suspended Graphene Using Micro-Raman Spectroscopy[END_REF]. Due to the mechanical frequency drifts in our experiment, it is not feasible to take a Raman map of the entire membrane. However, a line scan across the edge of the graphene drum might be able to give an answer. Data of such a measurement is shown in figure 3.13 (b) and (c). The position of the line scan is given by the black line in the inset representing an optical image of the drum. The measured shifts of the G and 2D modes are plotted for the static drum in panel (b). We observe a softening of both the G and 2D modes in the static suspended region in agreement with the findings presented earlier (see sections 3.1.2 and 3.2.1.3). For measurements at the mechanical resonance of the graphene drum (see panel (c)), this softening becomes more pronounced for both modes. As expected for mechanical strain, the 2D mode shift is larger with values up to 10 cm -1 , while the G mode takes a maximum value of about 4 cm -1 . This data suggests that considerable strain is also generated at the edge of the vibrating membrane. However, the presented data does not allow to draw comprehensive conclusion on the spatial strain distribution. More measurements are needed to confirm our findings.

CONCLUSION

Conclusion

Several properties of graphene membranes can be efficiently tailored using strain. This concerns as varied aspects as the static and vibrational mechanical behaviour and the thermal and electrical conductivity. However, residual strain is omnipresent in graphene membranes regardless of the fabrication method. It is therefore of great importance to gain a profound understanding of how residual strain affects the graphene membrane properties in order to envisage efficient strain engineering.

In this chapter, we characterized suspended and supported single-layer graphene grown by chemical vapour deposition (CVD). This was done with the help of two complementary methods, atomic force microscopy (AFM) and Raman spectroscopy, which allow to probe the topography, mechanical strain and charge doping level of graphene. Our findings show that after transfer, CVD graphene exhibits low residual strain of the order of 0.025% which is likely to remain from the growth on a copper substrate due to a mismatch in the thermal expansion coefficient. Furthermore it displays low residual doping of the order of a few 10 12 cm -1 . Both residual strain and doping levels were observed to be slightly inferior in suspended membranes decoupled from the silica substrate with respect to supported graphene. Furthermore a comparative AFM/Raman study reveals a correlation between the topography of a suspended graphene membrane and the spatial strain distribution. Tensile stress was identified to act close to the edges of the suspended membrane where adheres to the substrate.

More insight into the mechanical properties of the graphene can be gained by inducing strain in a controlled manner by applying a differential gas or electrostatic pressure. In such experiments, deflections of the membrane of up to about 300 times its thickness were found leading to a considerable average strain of the order of 0.4% (about 15 times the intrinsic value). These findings underline the high in-plane stiffness of graphene.

Finally, a simultaneous motion and strain read-out for a resonating graphene membrane was realized. The employed optical interferometric detection scheme was performed with a single probe laser beam and was based on the simultaneous detection of photons that are elastically and inelastically scattered by the graphene resonator. Preliminary results hint at the fact that acoustical and optical phonons are coupled in a single-layer graphene sheet. This is a consequence of the finite correlation length of optical phonons, which results in a local sensitivity to the material deformations.

We note that the simple readout scheme presented in this chapter did not have the sensitivity to probe the thermal noise of the membrane due to optical losses. In order to investigate the intrinsic (non driven) behaviour of a graphene membrane resonator we have therefore developed another setup that will be presented in the next chapter. Generally, very low built-in strain and residual doping levels are observed in our samples, so that we can expect these membranes to have good mechanical resonator properties. Nonetheless, it remains to be investigated in as Chapter 4

Optomechanically probing the vibrations of a graphene membrane

In the previous chapter we have studied the static and dynamical mechanical properties of suspended monolayer graphene membranes. We demonstrated that the motion of a graphene resonator can be effectively detected via an optical read-out scheme. As a next step, we are interested in spatial information on the membrane dynamics. However, spatial maps of the membrane properties are not easy to interpret because the employed samples constitute an optical cavity. As explained in section 3.1.3, their depth is of the order of the probe laser wavelength, so that interference effects with the light backreflected from the substrate can create a standing wave. This can influence the intensity of the reflected light, modify the resonator dynamics and complicate the interpretation of spatial optomechanical imaging. These considerations have led us to develop a novel sample architecture, where we have entirely removed the substrate below the graphene resonator.

The following chapters are devoted to a purely optomechanical study of the dynamics of the suspended graphene resonator. The absence of a backreflecting substrate allows for optical transmission measurements that yield important information on the microstructure of the membrane. Furthermore it gives optical access to the membrane from both the front and back sides which allows to investigate the local response of the system without undesired optical cavity effects.

Complementing local response measurements with information on the membrane's microstructure gives new insights into the membrane properties as will be seen in chapter 6. Another great advantage of this setup is the fact that it allows for optical pump-probe measurements where the pump and probe lasers illuminate the sample from opposite sides. Thus the pump and probe can be moved independently from each other, spatially separating the local drive and motion detection. We are therefore able to obtain information on the functioning of the optothermal actuation mechanism and its interplay with the structure of the membrane.

THE OPTOMECHANICAL SETUP

In the following the optomechanical setup allowing for the mentioned pump-probe measurements will be described in detail.

The optomechanical setup

In a simplified manner, the optomechanical setup can be divided into three major parts: the interferometric motion detection with the probe laser beam, the optothermal actuation scheme based on an intensity modulated pump laser beam and the core of the setup consisting of a vacuum chamber hosting the graphene sample and positioning units for the sample and pump and probe laser objectives. The overall layout of the optical table is sketched in figure 4.1. In the following each of the three aforementioned parts of the setup will be introduced in more detail. 

Core of the setup

The core of the setup placed in a vacuum chamber is depicted in figure 4.2). The sample is mounted vertically on a XYZ piezo stage (100 × 100 × 100 µm range) which allows for a precise positioning with respect to the probe laser beam. In order to allow for larger displacements, the sample piezo can itself be moved by a motorized translation stage. The microscope objective focussing the probe laser onto the sample can be coarsely positioned with the same type of step motor, whereas the pump laser microscope objective is mounted on a XYZ piezo stage (30 × 30 × 10 µm range) in order to micro-position the actuation laser on the graphene surface. Microscope objectives with long working distances (4 mm) and large numerical apertures (100x/0.75) are employed. They allow to focus the pump and probe beams down to optical waists of approximately 330 nm, with a half angle of the order of 45 • . The KOH wet etching angle of silicon (54 • ), which forms the bottom part of the sample (cf. section 2.2.2), allows to preserve the full transmission of the laser beams when positioned anywhere on the graphene membrane. In our experiment, the probe laser is injected from the bottom part of the sample.

The vacuum chamber is designed to have a large internal volume which can host several bulky translation stages. Furthermore it has numerous optical and electrical accesses. It is machined in a monolithic aluminum block and was anodized to maintain a high surface quality overtime. A 300 l/s turbopump allows to reach pressures down to 1 • 10 -6 mbar under continuous pumping. However, in order to avoid excessive vibrations, the pump is stopped during sensitive measurements. In that case, a static pressure below 1 • 10 -2 mbar can be maintained for several days.

Pump laser path

The laser source used for optomechanical actuation and fluorescence measurements is a 532 nm diode pumped solid-state frequency doubled Nd:YaG laser. This low noise, single frequency laser was found to be appropriate to ensure a great pump intensity stability while exhibiting weak intensity noise.

Two different injection paths can be employed: a direct one, where the laser is only adjusted in size and polarization-controlled, and a second one, where its intensity can be adjusted and modulated with an acousto-optic modulator (AOM). The latter is controlled either by a network analyzer for optical force actuation or by an arbitrary function generator.

In order to ensure a flat and broadband response, the AOM is set up in a double path arrangement where the two paths are carefully superimposed in the crystal. After optimisation, a bandwidth of 50 MHz is achieved, with a large rejection (above 70 dB). The output beam is spatially filtered with a monomode fiber prior to its injection in the vacuum chamber. The pump laser enters the vacuum chamber through an optical window covered with a broadband anti-reflection coating. It is reflected by a dichroic mirror located inside the cavity, so that the pump beam and fluorescence channels do not cross the same optical window, which could have increased the parasitic fluorescence. A white light source and a CCD camera can optionally be used for coarse alignment of the sample. The reflected pump intensity is collected through a 90:10 non-polarizing beam splitter (PBS) which is placed on the injection path and focused on a fast, sensitive and low noise detector (not shown in figure 2).

The transmitted pump intensity is collected by the injection objective of the probe laser and then redirected to a fast photodetector by a second dichroic mirror. This allows to probe the transmission of the graphene membrane and measure the intensity modulation strength of the pump laser through a hole in the sample.

Probe laser path

The probe laser is a 632.8 nm Helium-Ne laser, which was checked to be shot noise limited over the whole measurement frequency range. A balanced homodyne detection is used to probe the phase fluctuations of the beam reflected by the sample. The interferometer is stabilized by an actuation piezo stack placed in the local oscillator (LO) arm. An additional fast piezo element is mounted below the LO mirror in order to calibrate the experiment. To do so, a monochromatic modulation is applied (a few hundreds of mV), which generates a fixed modulation of the interferometer arm length (of a few pm), which is thus independent of reflectivity variations on the sample surface or spatial drifts that can occur in the chamber. It serves as a reference to compare different measurements. In order to allow for a change of the polarization sent onto the sample, the reflected signal is deviated by a 90:10 non-polarizing beam splitter prior to its superposition on the LO beam. The error signal of the balanced homodyne detection is split and sent to an oscilloscope for real-time monitoring of the lock, to a spectrum
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analyzer for thermal noise measurements and to a network analyzer for response measurements. The stability of the interferometer is sufficient to realize large spatial maps (up to 100 × 100 points, lasting for up to 12 hours) without having to relock the interferometer. The latter can compensate phase drift corresponding to spatial drifts of up to 3 µm. The next section will describe how the interferometric motion readout is realized in more detail.

Balanced homodyne detection

The displacement of the graphene membrane is measured by optical interferometry using a balanced homodyne detection [START_REF] Cohadon | Bruit thermique et effets de la pression de radiation dans une cavité optique de grande finesse[END_REF]. The displacement read-out is based on the phase analysis of the field reflected off the graphene membrane. The interferometer with balanced homodyne detection was preferred over a simple Michelson interferometer, which was used at an earlier stage of the experiment, since it is locked on the zero of the differential fringes and can therefore counteract a variation of the sample reflectivity in space and time. The measurement sensitivity of the setup amounts to about 2 • 10 -26 m 2 /Hz for an injected optical power of 100 µW (measured prior to entering the vacuum chamber) which is largely sufficient to measure the thermal displacement noise with more than 10 dBm dynamical range.

The incoming, linearly polarized probe laser beam is divided into two branches by a 50:50 polarizing beam splitter (PBS) as depicted in figure 4.3. One beam is subsequently focussed onto and partially reflected off the graphene membrane in one interferometer arm. The second beam serves as a LO in the other arm. The reflected signal beam is collected back by a 90:10 beam splitter and subsequently polarization-combined with the LO beam by 50:50 PBS. The resulting interfering beams are focussed onto fast photodiodes and the difference of the photocurrents is obtained electronically using the differential inputs of the lock-box. The 90:10 beam splitter mixes 10% of the intense beam reflected off the LO with 90% of the signal reflected off the graphene membrane which is significantly weaker. Half-wave plates in the LO arm serve to maximize the fringe contrast without saturating the detectors. The LO mirror is placed two piezo elements. One piezo stack allows to scan the interference over a few micrometers using a 40x low noise voltage amplifier, while a second, fast piezo element (bandwidth 4 MHz) allows to generate a position modulation at high frequencies which is used as a reference displacement (with a typical amplitude of 10 pm) to cross-calibrate the thermal noise spectra.

The optimum measurement sensitivity is achieved at the maximum slope of the interference fringes of the interferometric signal. Fluctuations in the length of the interferometer arms would deteriorate the measurement sensitivity. In order to counteract this, a feedback loop locks the interference fringes at the optimal working point. This is achieved by using the interference signal as an error signal in a feedback loop whose correction is fed back to the slow piezo stack adjusting the LO arm length. Once the gain is optimized, the lock is very robust and allows to accumulate data overnight without being disturbed by unlocking events. In order to detect the Brownian motion of the graphene membrane, the error signal The reflected signals are spatially superimposed on the same beam splitter. The graphene membrane is a semi-transparent rather than a perfectly reflecting mirror and absorbs a non negligible part of the optical light field. Therefore the corresponding vacuum fluctuations entering the interferometer through the graphene membrane need to be taken into account to preserve the commutation relations of the reflected light field operators and their Poissonian character in absence of classical noise. [START_REF] Barnett | Quantum optics of lossy beam splitters[END_REF][START_REF] Matloob | Electromagnetic field quantization in absorbing dielectrics[END_REF].

is sent to the spectrum analyzer. At low frequencies, the phase fluctuations are compensated with a typical actuation bandwidth of 1kHz by the feedback loop (when it is turned on). This does not play any role at mechanical frequencies; but has to be taken into account when probing the low frequency thermal response of the graphene membrane.

Displacement Calibration

The detection scheme described above allows to measure the Brownian motion of the graphene membrane. Its spectral density is obtained by analysing the error signal fluctuations with a spectrum analyzer. In order to convert the measured voltage fluctuations to a displacement noise, we exploit the static slope of the interference pattern which is obtained by piezo scanning the LO path length while recording the interferometric fringes (see figure 4.4(a)). Two interference fringe maxima are separated by half the probe laser wavelength. This allows to convert the horizontal axis of the fringe pattern into a distance and to compensate for potential non-linearities in the piezo scan. A subsequent sinusoidal fit of the position calibrated data allows to obtain the slope dx/dV of the interferometer fringe at the measured point, which is chosen at zero voltage. In this measurement it is important to operate the oscilloscope in a high impedance mode so that the voltage measured is the same as the one probed by the spectrum or network analyzer which have a 50 Ω input impedance. The displacement spectral density in m 2 /Hz where P dBm is the measured noise power in dBm and RBW is the resolution bandwidth. Once the calibration slope is known, the piezo peak calibration can be converted into a reference oscillation amplitude which will be subsequently used as a displacement reference.

Reflection and transmission maps

A preliminary characterization of the structure of the graphene membrane can be performed before starting the opto-mechanical measurements. In this context, it is useful that the setup described above allows for reflection and transmission mapping which yield complementary information (see figure 4.5). The mapping is performed by scanning the sample through the laser spot. Panel (c) shows a map of the transmission of the green laser through the membrane. It allows to distinguish between two regions with different contrasts, where the brighter one probably corresponds to a monolayer whereas the darker one could indicate multilayers (cf. section 6.1). From the transmission maps we can thus obtain qualitative structural information concerning the homogeneity of the graphene layer. The structural information is complemented by reflection measurements from which we can draw conclusions on the topography of the membrane: Panel (a) and (b) show reflection maps of the red and green laser respectively, which reproduce the ripples in the graphene membrane in a remarkable manner. These ripples are created during the graphene transfer process. Especially the red reflection map resolves very well the local variations in the ripple properties. The difference between the red and green transmission map could possibly be explained by a ow level of contamination that exhibits a different absorption and reflection coefficient for red and green light. The larger visibility of the sample's topographic structure observed in reflection as compared to transmission maps is characteristic of thin films imaging. It is due to the fact that the potential interference effects in transmission measurements exhibit a lower contrast because the direct and first round trip interfering fields present very different magnitudes. When having a closer look at the red reflection map, we notice that two regions can be defined, as indicated by the dashed line, where smaller and larger undulation frequencies occur. These are probably regions corresponding to different graphene grains, as is also suggested by the transmission map.

We can quantify the reflection and transmission coefficient by performing reference measurements on a hole in the sample that is not covered with graphene. From this investigation we find that typically 4% of the light are reflected and up to 10% are absorbed. These are rather high values compared to what was measured by Nair et al. [START_REF] Nair | Fine structure constant defines visual transparency of graphene[END_REF] on single layer graphene: reflectance inferior to 0.1% and absorption of 2.3%. We attribute the deviation to PMMA residues which remain on the graphene surface after the transfer process.

THERMAL DISPLACEMENT NOISE OF A GRAPHENE MEMBRANE

Thermal displacement noise of a graphene membrane

The dynamical properties of suspended graphene membranes can be efficiently measured with the presented setup. Its sensitivity is high enough to measure the thermal displacement noise of suspended graphene membranes at room temperature above the measurement background (shot noise limited) with a dynamic ranging from 10 to 25 dB for a 100 µW probe laser. An exemplary thermal displacement noise spectrum is shown in figure 4.6 for a square membrane of 20 µm side length and a probe laser power of 400 µW. For membranes with lateral dimensions of 5 to 20 µm, we find resonance frequencies in the 1 to 10 MHz range and quality factors up to 700 at room temperature and low pressure (10 -4 mbar), although most membranes exhibit lower quality factors about 100 without having undergone any optimisation process (such as annealing).

The following sections are devoted to a more detailed investigation of typical graphene resonator properties including the dependence of the fundamental resonance frequency on the membrane dimensions, the spatial mapping of the resonance profiles and the determination of the effective mass.

Effective mass

As discussed in section 1.5.5, the effective mass M eff of a particular vibrational mode depends on its spatial profile. It can be determined experimentally by fitting the measured displacement noise spectral density S x with a mechanical Lorentzian:

S x [Ω] = 2Γk B T M eff ((Ω 2 m -Ω 2 ) 2 + Γ 2 Ω 2 + S noise x , (4.3.2)
where Γ is the damping coefficient, T the temperature and Ω m /2π the mechanical resonance frequency of the graphene membrane and S noise x is the noise floor of the measurement. When assuming a temperature of 300 K, we obtain an effective graphene mass in the order of some 10 -14 kg to 10 -16 kg depending on the membrane geometry. In general, the measured values for the effective mass are larger than the physical mass of the membrane by a factor that can be as large as ten in case of contaminated surfaces. The contamination can probably be attributed to remaining PMMA residues from the graphene transfer. In future, annealing the graphene samples at high temperature and in vacuum will probably reduce the contamination level.

Displacement sensitivity

In this section the sensitivity of the displacement readout will be studied. We will see that the sensitivity is shot-noise limited for typically employed probe laser powers and that the level of the quantum back action force noise is negligible with respect to the Langevin force contribution. Thermal displacement noise spectrum taken with a probe laser power of 400 µW.
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It can be fitted well with a mechanical Lorentzian (dashed purple line). The narrow peak at the right hand side is generated by a fast piezo element supporting the LO mirror. It serves as reference peak allowing to make up for spatial drifts or reflectivity variations in the sample.

The phase of the field reflected by the membrane is sensitive to the graphene position fluctuations and can therefore be used to probe its position. In order to determine the sensitivity of such a measurement, we need to take into account the quantum fluctuations of the phase of the light beam. If a coherent state impinges on the graphene (which is assumed to be lossless and fully reflecting for the moment), then the phase fluctuations of the incoming beam are encoded on the phase of the reflected beam. This phase noise δφ in is superimposed on the phase variations caused by the graphene deformation according to:

δφ out = 4π λ δx + δφ in . (4.3.3)
The phase noise of the incoming laser is hence a source of noise for the displacement readout and is called shot-noise. It originates from the quantum-mechanical nature of light whose phase fluctuation spectral density δφ is related to the mean photon flux I in via the intensity fluctuations δN [START_REF] Fabre | Fundamental Systems in Quantum Optics Lectures[END_REF]:

S φ in [Ω] = 1 4I (4.3.4)
From this relation we can deduce the limit of the displacement detection due to
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phase noise of the laser, the so-called shot-noise:

δx shot = λ 8π I . (4.3.5)
Note that in the real system, we also need to account for the partial reflectivity of the graphene membrane, which also allows vacuum fluctuation to enter into the measurement port from the back part of the graphene. This results in a degradation of the shot noise level.

From expression (4.3.5), we see that the shot noise spectral density S x is inversely proportional to the employed optical laser power: S x [Ω] ∝ 1 P . In order to check if this is the case in our setup, we measure the displacement noise spectral density for varying probe laser powers as shown in figure 4.7(a). Each spectrum is fitted with equation (4.3.2) in order to obtain the noise level S shot x , the thermal displacement noise at resonance S therm x , the resonance frequency Ω m and the quality factor Q. These quantities are plotted in panels (b) to (d). For laser powers above 100 µW, the noise floor is indeed inversely proportional to the probe laser power confirming that the displacement detection is shot-noise limited. For lower laser powers, however, the dependence of the noise floor on the optical power is quadratic indicating that classical noise sources dominate. By contrast, the thermal displacement noise does not seem to depend on the probe power in the tested range. Its values fluctuate around an average of 7.4 • 10 -25 m 2 /Hz. Interestingly, the frequency of the graphene membrane is more sensitive to the probe power than the amplitude of the thermal noise. From a probe power of about 200 µm on, the frequency shifts by approximately 6 kHz/µW. The quality factor, however, fluctuates around a value of 670 and shows no clear dependence on the probe power.

Finally, we can estimate the effect of backaction noise due to intensity fluctuations of the probe laser. From linear response theory we know that the displacement and force spectral densities are related via the mechanical susceptibility of the resonator: S x = |χ| 2 S F , where S F is proportional to the power spectral density S P with a proportionality factor dF dP 2 . In case of radiation pressure force F rad , the latter is given by F rad = 2A c P opt , where P opt is the mean laser power, A is the absorption coefficient of the graphene membrane and c is the speed of light. Using a typical probe laser power of 100 µW and the upper limit of the measured graphene absorption coefficient of 10% (see section 4.1), we obtain a value of 0.7 fN/µW. Furthermore, the power spectral density of a coherent state is frequency-independent and proportional to the optical power: S P = hνP . With these considerations, we can calculate the displacement spectral density originating from backaction noise due to intensity fluctuations of the laser at the resonance frequency:

S x [Ω] = 1 M eff ΓΩ m 2 • dF dP 2 • hνP (4.3.6)
For a typical probe laser power, we thus obtain a value of 2. The peak heights of the thermal displacement spectral densities and the background noise deduced from the fits are plotted together. Above 100 µm the noise floor is confirmed to be inversely proportional to the probe power, whereas the thermal noise peak height does not depend on the latter. For optical powers lower than 100 µW, the equivalent background level evolves as P -2 , as expected for background voltage fluctuations which are independent on the optical power employed. (c) Above a threshold of about 200 µW the resonance frequency increases linearly with the probe power. (d) The quality factor does not show a clear dependence on the probe power.

is clearly inferior to the displacement detection limit. Effects of backaction due to the probe laser noise can therefore safely be excluded in the following.

Cartography of eigenmode profiles

By scanning the graphene membrane through the probe laser spot and recording a thermal displacement spectrum at each pixel, we can gain information on the spatial resonance profiles. In this measurement, we take advantage of the calibration signal sent on the fast piezo supporting the LO mirror. It generates an oscillating dephasing with a fixed amplitude which is detected in the error signal and serves to cross-compare thermal noise measurements at different positions. Figure 4.8 shows amplitude maps obtained for the first three graphene resonance modes of a square membrane with 20 µm side length and the results of a numerical simu-
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lation based on finite element modelling. It is the same membrane as for which the reflection and transmission maps are depicted in section 4.5. The measured mode profiles are close to the predicted ones, with some small exceptions: the first mode profile is slightly elliptically shaped with the semi-major axis aligned with the diagonal, and the node lines of the second and third mode coincide with the diagonal or a line perpendicular to it respectively. We attribute these effects to residual uniaxial strain oriented along the diagonal direction which was probably induced during the graphene transfer process. It elongates the first mode along the diagonal and splits the otherwise degenerate second mode. This hypothesis is confirmed by finite element modelling using the same membrane dimensions and the usual graphene parameters (mass density ρ = 2230 kg/m 3 , in-plane Young's modulus E = 1 TPa, Poisson's ratio ν = 0.3 and thickness t = 3.4 Å). The edges of the membrane were fixed and the initial strain along the diagonal axis was chosen to be 0.02%, which is in agreement with the typical intrinsic strain deduced from Raman measurements (see section 3.2.1.2). The finite element method reproduces the mode shapes very well and its predictions concerning the mode frequencies seem realistic: The measured (predicted) frequencies for the first three modes are:

f 0 = 0.93 MHz (1.1 MHz), f 1 = 1.5 MHz (1.6 MHz), f 2 = 2 MHz (1.8 MHz).
It must be said that already the qualitative agreement between the measured and predicted mode profiles is rather astonishing considering the structural composition and topography of the membrane (see figure 4.5). In fact, the studied membrane has a region exhibiting a multi-layer graphene patch and shows a rich ripple pattern as well as some localized impurities. Nonetheless the thermal displacement modes have a very homogeneous appearance and seem to be mainly influenced by the directional intrinsic strain.

Dependence of fundamental frequency on membrane dimensions

The resonance frequency of the fundamental mode as a function of the membrane dimension shows a certain variability which amounts to up to 30% for a given geometry. This could be due to variable strain among different samples and to the presence of multilayer areas as well as defects or grain boundaries. Figure 4.9 summarizes our observations for different membrane dimensions. The data points are averages over 8 to 10 membranes. For large membranes, the fundamental frequency is in agreement with a power law inversely proportional to the square of the membrane side length (f 0 ∝ 1/L 2 ), while for small membranes the fundamental frequency is rather proportional to the inverse dimension (f 0 ∝ 1/L). This behaviour is in principle expected since large membranes will have reduced internal stress. Thus for large membranes, this suggests that the bending rigidity rather than the stress is the dominant factor in determining the resonance frequency (cf. section 1.5.2). Mechanical damping rate as a function of pressure. The data is deduced from thermal noise measurements of the graphene and SiN eigenmodes (eigenfrequencies in the MHz range). The pressure dependence of the SiN mode is in agreement with a model accounting for acoustic wave emission (dashed line). However, the same model does not hold for graphene, probably because its spatial extent is significantly smaller than the acoustic wavelength (340 µm).
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Quality factor as a function of pressure

The nanomechanical systems studied here are subjected to acoustic damping because they can emit acoustic waves into the surrounding medium. In order to suppress acoustic emission as best we can, the experiment is performed in a vacuum chamber. In this section we address the coupling with the surrounding air by studying the dependence of the quality factor on air pressure and report on a peculiar deviation from the expected acoustic emission power law observed for graphene.

The energy loss of the nano-resonator can originate from far or near field effects. The radiation of acoustic waves into the surrounding gas is a far field effect, analogous to a vibrating macro-scale drum generating an acoustic wave. In case of near field effects, hydrodynamical considerations on dimensions smaller than the acoustic wave have to be taken into account.

In the following we will study the dissipation in our nanomechanical resonator system due to acoustic radiation. The discussion borrows largely from [START_REF] Landau | Fluid Mechanics[END_REF][START_REF] Briant | Caractérisation du couplage optomécanique entre la lumière et un miroir : bruit thermique et effets quantiques[END_REF]. If the wavelength of the emitted acoustic wave (340 µm at 1 MHz) is small compared to the characteristic scale of the resonator deformation, we can assume that each surface element of the resonator independently emits a plane wave. The mean radiated power P can then be calculated by:

P = cρ air S d 2 r v 2 , (4.3.7)
where c is the speed of sound in air, ρ air is the mass density of air and v2 is the mean quadratic speed of the acoustic air wave. The latter is determined by the deformation speed of the driving resonator, which can be decomposed into orthogonal normal modes according to equation 1.5.52. With this, we can write the mean radiated power of mode n as

P n = cρ air | ȧn (t)| 2 S d 2 r |u n (r)| 2 , ( 4.3.8) 
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which causes a mechanical damping rate characterized by the factor Γ air :

P n = M n Γ air n | ȧn (t)| 2 , ( 4.3.9) 
where M n is the mode's effective mass. Using expression 1.5.65 for the effective mass and the kinetic gas equation, we can express the air damping coefficient as

Γ air n = 2cρ air tρ res = 2cM air tρ res RT p, (4.3.10)
where t is the thickness and ρ res the density of the resonator, while M air , p and T are the molar mass, pressure and temperature of the surrounding air and R is the gas constant. We thus expect a linear dependence of the damping coefficient with pressure.

The damping measured for the fundamental graphene mode and a nearby (higher) SiN mode are plotted in figure 4.10. The damping of the SiN mode can be fitted reasonably well with Γ SiN 2π = 420 Hz + 70 kHz/mbar • p, where the first term is a pressure-independent offset resulting from other dissipation mechanisms. The pressure dependence of the damping of 70 Hz/mbar is in acceptable agreement with the value of 80 Hz/mbar expected from equation 4.3.10.

Due to its extremely small thickness (about 1000 times thinner than the SiN), the above analysis predicts a dissipation rate of 166 kHz/mbar for graphene, which should be easily detectable. However the measured damping rates are far better than anticipated. On the contrary, the power law observed is weaker than the ∝ P observed for the SiN. This suggests that the far field model is not applicable, which is not unexpected because the extended emitter hypothesis is not valid. Improving the intrinsic quality factor will help elucidating this point. Possibly the graphene needs to be treated as a near field emitter and probably the viscous damping regime should also be inspected.

Opto-thermally driven graphene resonator

So far we have investigated the thermal motion of a graphene resonator by optomechanical means. Now we will have a closer look at the response of the system to an optical actuation. To this end the system is locally driven with an oscillating optical force that is spatially superimposed at the position of readout beam on the graphene membrane. The force is exerted by a pump laser beam (wavelength 532 nm) which is intensity-modulated with an acousto-optic modulator (AOM) (see figure 4.11). The modulation frequency is swept across the measurement range while the response of the system is recorded with a network analyzer.

A typical driven displacement response of a single-layer graphene membrane deposited on a SiN membrane frame is depicted in panel (b). It was recorded using a pump laser power of 5 µW and a modulation depth of the pump laser of δP P = 0.5. As will be discussed below, the driving mechanism is based on an opto-thermal effect. The broad peak located around 1 MHz corresponds to the first vibrational The pump and probe lasers are spatially superimposed on graphene membrane. The intensity-modulated pump laser beam mechanical drives the resonator using a photo-thermal effect, while its motion is detected interferometrically by the probe laser. (b) Driven displacement amplitude of the first vibrational mode of a single layer graphene resonator taken with a probe laser power of 5 µW and a modulation depth of δP P = 0.5. The broad graphene peak is positioned at 1 MHz. It is surrounded by several higher mode resonance peaks of the SiN membrane which display significantly higher quality factors. mode of the graphene membrane. It is surrounded by several high order resonance peaks of the SiN membrane which have significantly higher quality factors.

Characteristics of the intensity modulation

The intensity modulation of the pump laser is achieved with an acousto-optical modulator (AOM) which is set up in double pass geometry. The AOM is operated with acoustic waves at a fixed frequency of 200 MHz. The laser intensity modulation is imposed by switching the acoustic wave on and off. Note, that the AOM was actually designed to generate fast optical pulses (of about 20 ns). In order to ensure a flat and broadband response, a careful spatial superposition of the two paths is realized. Thus a bandwidth of 50 MHz can be achieved with a large on/off rejection above 70 dB. The output of the AOM is filtered by a monomode fibre prior to its injection in the chamber. An example of an AOM spectrum taken directly through a hole in the sample with a modulation depth of δP P = 30% is shown in figure 4.12. Note that the output fluctuates in a range of only 0.15 dB. However, the achieved bandwidth only amounts to 3 MHz because the superposition of the laser beams in the AOM was not adjusted in the optimal way at the time.

The modulation efficiency has to be determined for each modulation depth. Note that for large modulation depths, the modulation efficiency of the AOM is The acousto-optical modulator (AOM) output taken for a nominal modulation depth of δP P = 30% shows a low-pass behaviour with a cut-off frequency Ω c = 3 MHz. We note that larger modulation bandwiths were subsequently obtained by optimizing the return optical path in the AOM. However the actuation regime shown here is the one used in the measurements exposed in the next chapter. The slope observed in the dephasing measurement is due to a delay in the establishement of the optical modulation (and marginaly in the detection electronics). (b) Schematic of the AOM transfer function whose transmission does not increase exactly linearly with the control voltage. This causes a saturation in the modulation strength at large actuation amplitudes. (c) Modulation depth of the AOM at a frequency of 1.5 MHz. reduced because of the non-linearity in the voltage-transmission curve (see figure 4.12(c)). To obtain the maximum modulation strength while staying in a linear actuation regime, we use a bias of the network analyzer in order to define a working point in the vicinity of the inflection point depicted in figure 4.12. The saturation effect is taken into account in all response data that will be presented in the following.

Linear response of the graphene resonator

Having described the characteristics of the pump laser beam, we will now turn to the interaction between the beam and the resonator system. First of all, it is important to check that the system responds linearly to the optical driving force. To this end we vary the modulation depth δP of the pump laser while applying a fixed average power of P 0 = 150 µW. It is important to keep this value constant in order to maintain the temperature profile of the resonator system, so that the graphene and SiN resonance modes remain at the same frequency. Thus the overall mechanical susceptibility of the system is not modified under the influence of the pump laser. The results of the force linearity measurements are summarized in figure 4. 13. Panel (a) displays the displacement amplitudes taken for different dephasing. This is not the case here due to the underlying thermal origin of the actuation mechanism. The slight slope observed is due to the thermo-optical origin of the actuation mechanism: the induced temperature change causes a small frequency-dependent delay in the explored frequency range.
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modulation depths δP . Note that all of these measurements were taken at the error signal output port of the lockbox and were deconvoluted from its electronic response that had been measured independently. The graphene response is given by the large peak which is surrounded by two SiN peaks. In order to extract the maximum displacement amplitude and the force experienced by the coupled resonator system, we perform fits of these three peaks. As can be seen in panel (c), the fits are in very good agreement with the experimental data. The graphene displacement peak maxima are plotted against the optical modulation depth in (b). Even for the lowest modulation power of 0.65 µW the driven signal displacement amplitude is about one order of magnitude higher than the thermal displacement noise integrated over the employed resolution bandwidth of 100 Hz. Furthermore we find a linear relationship between the displacement and optical drive up to an amplitude of 1 nm, which corresponds to about three times the graphene monolayer thickness of 0.3 nm.

Opto-thermal drive of the graphene motion

The linearity measurements also give a first hint on the mechanism driving the resonator system. The force experienced by the system is extracted from the measured driven amplitudes showing a 17 µm/W dependency, and using the known effective mass of the graphene M eff = 2.18 • 10 -14 kg derived from the thermal noise measurements. From the slope of the linear fit we deduce an equivalent actuation force of 540 fN/µW. We can compare this value to the radiation pressure force which amounts to 7 fN/µW for a perfectly reflecting membrane (2 k momentum transfer per photon) and to 77 aN/µW for a graphene membrane absorbing 2.3% of the incoming light (cf. 1.3.4). These values lie several orders of magnitude below the measured equivalent driving force, which confirms the dominant role of thermo-optical forces in the optical actuation of graphene. This subject will be studied in more detail in chapter 6.

From the described response measurements we can also estimate the backaction noise due to intensity fluctuations of the laser beams. Note that the probe laser was checked to be shot-noise limited in the measured frequency range. Assuming the same force actuation strength of the probe as for the pump laser, the backaction force amounts to 0.1 fm/ √ Hz for the employed probe laser intensity of 100 µW. This level is largely negligible compared to the measured thermal noise level.

Inspecting the driven amplitude of the graphene for different pump laser modulation depths in figure 4.13, we find a small frequency shift in the spectra which moves to slightly lower frequencies for increasing modulation depths. It can be attributed to a small spatial drift of the sample with respect to the laser spots. The graphene peak position is very sensitive to the position of the laser on the membrane as will be discussed in chapter 6 and to a change of the mean intensity seen by the sample. Also, the non-instantaneous character of the response (δF (t) ∝ δP (τ )) is a further characteristic signature of thermal actuation which causes a delay in the establishment of the force after an intensity change. This 4.5. CONCLUSION will be further investigated in chapter 6.

Conclusion

In this chapter we present a specially designed sample architecture where the graphene is deposited onto a fully traversing silicon nitride membrane frame. The absence of a reflecting substrate has two main advantages. Firstly, it allowed to perform transmission maps which give detailed information on the graphene membrane structure by revealing wrinkles and multilayer graphene patches. Secondly, the graphene membrane can be accessed from opposite sides with pump and probe laser beams. These beams can be moved with respect to each other thus allowing for both locally superimposed, but also spatially offset pump-probe measurements.

With the employed optomechanical setup a displacement sensitivity of 2 • 10 -26 m 2 /Hz can be achieved with a modest probe laser power of 100 µW and the detection was checked to be shot-noise limited for probe laser powers above about 100 µW. This was sufficient to readout the thermal noise of the membrane with a large dynamics up to 25 dBm despite the low reflectivity of graphene.

Maps of the spatial profiles of the resonator modes are realized by scanning the sample transversally across the readout beam. They show a remarkable homogeneity despite the rich microstructure of the graphene membrane. Nonetheless, the mode profiles are generally found to be slightly distorted along one direction indicating that residual strain from the transfer process is present. Surprisingly, a study of the resonance frequency as a function of the membrane dimension revealed that the graphene resonators of large dimensions (> 10µm) can be better modelled with a plate rather than a membrane model. This indicates that residual strain is not the dominant factor in determining the dynamical properties of the membrane and that the bending rigidity is higher than expected for perfect monolayered graphene. This can possibly be explained by the wrinkles and folds present in graphene grown by chemical vapour deposition.

Finally we perform optical pump-probe measurements by actuating the membrane with an intensity-modulated pump laser beam. By varying the modulation depth of the pump intensity, we find that the graphene responds linearly to the drive. The actuation force is determined to be 540 fN/µW, which is largely superior to the radiation pressure force. Moreover a phase delay is observed between the intensity modulation and the force experienced by the nanoresonator. These two findings indicate that the driving mechanism has a photothermal origin.

So far we have focused on the characteristics of the graphene resonator alone. However, we are actually dealing with a system where a strong coupling of the graphene modes to the silicon nitride frame can be observed. The next chapter is dedicated to a detailed analysis of this coupling.

Chapter 5

Violation of normal mode expansion in a hybridized graphene nanoresonator system

Micromechanical resonators are routinely used as force detectors in numerous devices of every-day life. In the pursuit of sensitivity increase, downscaling of the resonators has become an important strategy. The use of nanomechanical resonators nowadays allows to attain force sensitivities in the atto-Newton range which are ultimately limited by the thermal noise of the resonator. It is hence crucial to correctly understand and describe their Brownian motion. The size reduction of the resonators reaches its ultimate limit in one-and two-dimensional devices for example in the form of carbon nanotubes or graphene. For such small dimensions, it becomes more and more difficult to ensure a good spatial homogeneity of the resonator, which can have important consequences for the thermal noise of the resonators.

In this chapter we will study the thermal noise of a coupled graphene-nanoresonator system in which the dissipation is spatially heterogeneous due to the twocomponent character of the device. The thermal noise of a nanomechanical system is commonly described using the normal mode expansion, which assumes that each eigenmode is driven by an independent fluctuating Langevin force, presenting no correlation with other eigenmodes. However, this intuitive description only holds when the mechanical dissipation is homogeneously distributed in the system. Otherwise, the inhomogeneous damping can create dissipative coupling between eigenmodes, leading to a violation of their assumed independence. Such deviations which were already reported on macroscopic devices, are expected to be extremely important in nanomechanical systems, since it becomes increasingly difficult to ensure and even measure a good spatial homogeneity over the entire nano-system as its size is decreased. However no deviation from the normal mode expansion has been reported at the nanoscale up to now, despite the large variety of nanoresonators being investigated. 123
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Hybridized modes and strong coupling

It is known that graphene resonators exhibit a high temperature sensitivity of their vibration frequency [START_REF] Barton | Photothermal self-oscillation and laser cooling of graphene optomechanical systems[END_REF]. Here we take advantage of this property in order to adjust the graphene frequency with a second tuning laser in addition to the readout beam. This allows to bring the graphene in resonance with the vibrational eigenmodes of the supporting SiN resonator. In that situation, we observe a hybridisation of both modes due to an inertial coupling between both nanoresonators, whose dynamical properties are desribed in detail in the following section.

Frequency tuning of the graphene mode and hybridization between graphene and SiN modes

In order to study the coupling of the hybrid graphene-SiN resonator we will at first investigate its thermal motion. The graphene mode needs to be brought close to resonance with a SiN mode to which it can couple without changing the probe characteristics. Therefore the probe laser power is kept constant, while a second, the green pump laser is focussed onto the graphene membrane from the back side and spatially superimposed with the red probe laser spot. Thus the graphene can be locally heated by the absorption of the pump laser. Varying the optical pump intensity allows us to tune the graphene resonance frequency in a controlled manner and bring it in resonance with a SiN mode. Depending on the spatial overlap of the graphene and SiN modes, different hybridization strengths can be observed between eigenmodes of both subsystems (see figure 5.1). An avoided frequency crossing and a modification of the mechanical damping rates are observed as the graphene peak is swept through the SiN resonance frequency as can be seen in figure 5.2 (b). It shows Brownian motion spectra of the first graphene mode (low quality factor) which is surrounded by two higher order SiN modes with significantly larger quality factors. As the pump laser power is increased, the frequency of the graphene mode decreases thus sweeping through the SiN resonances. A frequency splitting can clearly be observed when both resonators' frequencies approach each other, so that two distinct coupled modes can be made out as traced in panel (a) where the measured resonance frequencies of the three peaks are plotted as a function of the pump laser power as violet circles.

Note that when varying the optical intensity in a range of 0.5 mW, the graphene frequency changes by about 5%, while the SiN mode frequencies are hardly affected. The mechanism behind the high graphene frequency shift will be discussed in section 5.4. The hybridization strength for a graphene and SiN mode depends on the spatial overlap of the two vibration mode profiles which is determined by the geometry of the hybrid system. If the significantly smaller graphene membrane is, for instance, placed at an antinode of the SiN mode, a good spatial overlap and hence a strong coupling are expected. Depending on the relative positions of the two resonators' modes, different coupling strengths are observed. Note that several graphene and SiN modes can hybridize simultaneously (see figure 5.1). This is especially likely to happen when working with high frequency graphene modes, which fall in a region of larger mode spectral density of the SiN membrane. Interestingly, the frequency anti-crossing is accompanied by a striking asymmetry for each peak present in the displacement noise spectra of the hybridized system. We will come back to this aspect in section 5.2, but for now we will focus onto the coupled dynamics of the system (frequencies and damping rates) through the anti-crossing.

Phenomenological model

In order to explain the observed behaviour, we consider a simple one-dimensional model of cascaded oscillators [START_REF] Saulson | Thermal noise in mechanical experiments[END_REF] as depicted in the schematic of figure 5.3. Despite the fact that this seems a crude simplification of the continuous twodimensional system, the model conveys most of the observed phenomenology.

Dynamical equations

We recall that the graphene membrane is deposited onto the silicon nitride membrane which itself sits on a rigid silicon wafer. This arrangement can be represented by two coupled oscillators denoted by the subscripts G and S for the graphene and silicon nitride respectively. The dynamics of the graphene and SiN resonators are Thermal displacement noise of a coupled graphenenanoresonator system. (a) Thermal noise measurements, taken for increasing pump laser tuning powers across the anticrossing region, from 50 to 800 µW. The dashed lines are fits using expression (5.3.24) which are in perfect agreement with the measurements across the entire anticrossing region. (b) Density plot of the dataset presented in (a). The anti-crossing becomes very obvious. (c) and (d) report the fitting parameters Ω S,G and Γ S,G used for fitting data in (a), using a fixed inertial coupling strength of µ = 0.002. The solid lines represent the coupled eigenfrequencies Ω ± /2π and effective damping rates Γ ± /2π deduced from equations (5.1.9) and (5. 1.17) which are in good agreement with hybridized mechanical properties (purple disks). (e) Brownian temperature used to fit the measurements according to expression 5.3.24. No apparent temperature increase is observed. 

δẍ G = -Ω 2 G (δx G -δx S ) -Γ G (δ ẋG -δ ẋS ) + δF G M G (5.1.1) δẍ S = -Ω 2 S δx S -µΩ 2 G (δx G -δx S ) -Γ S δ ẋS -µΓ G δx G -δ ẋS + δF S M S , (5.1.2) 
where δx G and δx S are the deflections from the equilibrium positions, Ω G /2π and Ω S /2π are the uncoupled resonance frequencies, Γ G and Γ S are the uncoupled damping rates of the graphene and SiN nanoresonators. The effective mass of the graphene is denoted M G , while M S is related to the SiN mass and determines the inertial coupling strength µ = M G /M S . The external forces acting on the graphene and SiN membranes are denoted δF G and δF S . Passing into Fourier space (using the convention δx j [Ω] ≡ R dt δx j (t)e iΩt ), the above equations are transformed to

δx G [Ω] δx S [Ω] = χ[Ω] F G [Ω] µF S [Ω] ,
(5. 1.3) and the dynamics of the system are described by the dynamical matrix Y[Ω] defined as:

χ[Ω] -1 ≡ M G Y[Ω] = M G Ω 2 G -Ω 2 -iΩΓ G -Ω 2 G + iΩΓ G -µΩ 2 G + iΩµΓ G Ω 2 S + µΩ 2 G -Ω 2 -iΩ(Γ S + µΓ G )
.

(5.1.4) It can be diagonalized over the entire frequency range and its eigenvalues Y ± [Ω] can be written in the general form:

Y ± [Ω] = Ω 2 ± -Ω 2 -iΩΓ ± .
(5.1.5) These expressions will become useful later for the derivation of the damping coefficients and effective eigenfrequencies. We have

Y ± [Ω] ≡ Ω 2 + + Ω 2 - 2 -Ω 2 -iΩ Γ S + (1 + µ)Γ G 2 ± A[Ω],
(5. 1.6) where

A[Ω] ≡ Ω 2 + -Ω 2 - 2 -Ω 2 (Γ S -(1 + µ) Γ G ) 2 + 4µΓ S Γ G -2iΩ Ω 2 S Γ S + (1 + µ) 2 Ω 2 G Γ G + (µ -1)(Ω 2 S Γ G + Ω 2 G Γ G ) .
(5.1.7)

Eigenfrequencies and their splitting

Diagonalisation of the restoring force matrix

M -1 G χ[0] -1 Y[0] = M -1 G χ[0] -1 = Ω 2 G -Ω 2 G -µΩ 2 G Ω 2 S + µΩ 2 G (5.1.8)
yields the eigenfrequencies Ω ± /2π of the hybridized system:

Ω 2 ± ≡ (1 + µ)Ω 2 G + Ω 2 S 2 ± 1 2 (Ω 2 S -(1 + µ)Ω 2 G ) 2 + 4µΩ 2 G Ω 2 S .
(5.1.9)

The eigenfrequencies of the system are determined experimentally by measuring the thermal noise spectra across the anti-crossing for increasing optical pump powers as shown in figure 5.2(a). The thermal noise spectra are then fitted with the expression:

S δx 0 [Ω] = i=+,- A i Γ 2 i Ω 2 i (Ω 2 -Ω 2 i ) 2 + Γ 2 i Ω 2 i , ( 5.1.10) 
which corresponds to the normal mode expansion. While this expression does not allow to fit the shape of the measured thermal noise measurements correctly in the entire frequency range (as will be seen later), it works reasonably well to extract the mechanical parameters of the coupled modes such as their damping rates Γ ± or eigenfrequencies Ω ± /2π. The latter are plotted as violet circles in panel (c), whereas the theoretical predictions according to equation (5.1.9) are traced as solid violet lines. For their evaluation a linear pump power dependence of the uncoupled graphene and SiN eigenfrequencies of -284 Hz/µW and -2 Hz/µW respectively were employed. The theoretical prediction and measured data are in very good agreement. The eigenfrequencies at hand, we can inspect the relative frequency splitting of the two modes which is a key parameter for the description of their coupling. Since the temperature sensitivity of the SiN resonator frequency is significantly lower than that of graphene, we can assume that the SiN mode has a fixed frequency Ω S for the further discussion and inspect the dependence of Ω 2 + -Ω 2 -with respect to Ω G . Differentiating expression 5.1.9 with respect to Ω G , we find a minimum frequency splitting of:

Ω 2 + -Ω 2 -min = Ω 2 S 4µ (1 + µ) 2 1/2 ≈ 2Ω 2 S √ µ,
(5.1.11)
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the last expression being obtained for small µ. This minimum frequency splitting is reached for a value Ω 0 G of the graphene eigenfrequency given by:

Ω 0 G 2 = Ω 2 S 1 -µ (1 + µ) 2 .
(5.1.12)

As we will see later, the inertial coupling parameter µ is typically very small in the studied system, so that we can rightfully assume µ 1. In that case the relative splitting between the coupled frequencies becomes:

(Ω + -Ω -) /Ω ± ≈ √ µ.
(5. 1.13) This corresponds to a canonically defined coupling strength of g = Ω G √ µ [START_REF] Novotny | Strong coupling, energy splitting, and level crossings: A classical perspective[END_REF].

Depending on the eigenmode geometries, a large variety of coupling strengths can be observed reaching up to 200 kHz. Such values largely enter the so-called strong coupling regime defined by g > Γ G , Γ S . Let us once again take a closer look at the data reported in figure 5.2. From panel (c), we find a measured frequency splitting of 50 kHz, while fits according to the normal mode expansion 5.1.10 allow us to deduce the frequency of the hybridized modes at the anticrossing being Ω ± ≈ 1.125 MHz and a coupling parameter of µ = 0.002. Equation 5.1.13 is hence fulfilled.

Furthermore, the value of µ represents the ratio of the graphene and SiN effective masses. The corresponding geometric masses amount to M G,geom = 10 -15 kg and M S,geom = 10 -11 respectively (without taking into account the holes in the silicon nitride). These values result in a geometric mass ratio of 10 -4 . The graphene membrane investigated in this study was hence about ten times heavier than expected, probably due to contamination. It must be noted, however, that only the graphene effective mass can be easily defined in the studied configuration. It amounts to 1/4 of its geometric mass. The effective mass of the silicon nitride membrane, however, is more difficult to estimate since it is perforated. Furthermore, the employed model only takes into account an inertial coupling, but not a tension-induced mechanism: When the silicon nitride moves, the clamping conditions of the graphene are modified which can in turn cause the graphene membrane to move.

Having studied the eigenfrequencies of the hybridized modes in this section, we will turn to the eigenmodes in the following one.

Eigenvectors

Diagonalization of the dynamical matrix also yields the new eigenmodes e ± of the coupled system. They can be expressed as:

e ± = 1 (Ω 2 G -Ω 2 ± ) 2 + Ω 4 G Ω 2 G Ω 2 G -Ω 2 ± (5.1.14)
Upon inspection of equation 5.1.9 and figure 5.2(b), we notice that the coefficient Ω 2 G -Ω 2 ± has a different sign for each eigenmode, thus defining symmetric and antisymmetric modes. The eigenvector e + (e -) hence represents an anti-symmetric
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(symmetric) mode pattern for the eigenvalue Ω + (Ω -) as depicted in figure 5.3(c). This implies that the fundamental mode is symmetric, i. e. both subsystems oscillate in phase.

Effective damping rates

The effective damping rates Γ ± of the coupled modes are mathematically defined as Γ ± = -Im(Y ± [Ω ± ])/Ω ± (see equation (5.1.5)). Their mathematical expressions are obtained by exploiting the following two expressions:

Γ + + Γ -= -Im Y + [Ω + ] + Y -[Ω + ] Ω + (5.1.15)
and

Γ + -Γ -= -Im (Y + [Ω + ] -Y -[Ω + ]) 2 2Ω + (Ω 2 + -Ω 2 -)
.

(5.1.16)

Using expressions (5.1.6) and (5.1.7), the effective damping coefficients of the hybridized eigenmodes become:

Γ ± = Γ S + (1 + µ)Γ G 2 ± Γ S Ω 2 S + (1 + µ) 2 Ω 2 G Γ G + (µ -1)(Γ S Ω 2 G + Γ G Ω 2 S ) 2(Ω 2 + -Ω 2 -)
(5.1.17) As for the eigenfrequencies, the effective damping rates of the hybridized system can be extracted from fits of the thermal noise spectra according to (5.1.10). However, due to the observed peak asymmetry that will be discussed thereafter, the normal mode expansion only provides a rough estimation of the effective damping rates of coupled modes. The extracted values are plotted against the optical pump power in figure 5.2(d) as violet circles. The theoretical prediction according to equation 5.1.17 is superimposed as a violet line and matches well the experimental data. This analysis also allows to extrapolate the power dependence of the uncoupled damping rates Γ G and Γ S (see figure 5.2).

We also observe a slight temperature dependence of the uncoupled graphene and SiN damping rates of about 13 Hz/µW and 1.9 Hz/µW respectively, as well as an increase of the SiN damping rate in the anticrossing region. A possible explanation for this effect could be that the heat absorbed in the graphene layers is efficiently transmitted to the SiN via acoustic vibrations, thus causing a larger temperature increase of the SiN damping.

Deviation from the normal mode expansion

The displacement noise spectra of the coupled graphene-SiN resonator show striking peak asymmetries that are especially pronounced around the frequency anticrossing as can be seen in figure 5. [START_REF] Rugar | Single spin detection by magnetic resonance force microscopy[END_REF]. It shows hybridization spectra taken for different tuning powers. The upper grey curves are the measurements corresponding to the lower grey curves from which the shot-noise was numerically subtracted. Figure 5.4: Deviation from the normal mode expansion The system is tuned to an anticrossing region by adjusting the static pump laser intensity (in absence of intensity modulation). The displacement noise spectra show the graphene peak surrounded by two SiN peaks. The measurements are performed for a probe laser power of 155 µW at a pressure of 0.02 mbar. The lower traces are obtained after numerical shot-noise subtraction. The spectra cannot be fitted with the normal mode expansion (5.2.18) (best fits are plotted as orange lines), since the formula cannot reproduce the observed peak asymmetries. In contrast, the spectra are fitted well by the expression obtained derived from the fluctuation-dissipation theorem using the mechanical susceptibility derived from the phenomenological model (green lines) given by equation (5.3.24).

DEVIATION FROM THE

THERMAL NOISE OF THE HYBRIDIZED SYSTEM

The peak asymmetries become clearly visible, especially in the lower curves. Usually the thermal noise spectra are described in the framework of the normal mode expansion which attributes independent Langevin forces to each uncoupled eigenmode. As discussed in section 1.5, the total thermal noise spectrum can then be expressed as a linear combination of the individual spectra of each mode n according to

S x [Ω] = n 1 M n (Ω 2 n -Ω 2 -iΩΓ n ) 2 S th Fn , (5.2.18)
where we recognize the individual eigenmode susceptibilities χ n which individually verify the fluctuation dissipation theorem given by equation (5.3. [START_REF] Chaste | A nanomechanical mass sensor with yoctogram resolution[END_REF]). The orange lines in Figure 5.4(b) are fits of the measured spectra using equation (5.2.18) including the graphene and SiN modes. The fit parameters are the amplitude, resonance frequency and damping coefficient of each of the modes as well as a constant background. There is a considerable discrepancy between the model and the experimental data, which demonstrates the violation of the normal mode expansion. As described in chapter 1.5, the normal mode expansion method decomposes the motion of the whole system into a linear combination of individual eigenmodes which are individually driven by independent Langevin forces. It thus excludes by construction any coupling between the eigenmodes via damping. This turns out to be a shortcoming for systems in which the dissipation is not homogeneously distributed [START_REF] Saulson | Thermal noise in mechanical experiments[END_REF][START_REF] Yamamoto | Experimental study of thermal noise caused by an inhomogeneously distributed loss[END_REF]132]. The observed deviation is a direct consequence of the system damping heterogeneity: mechanical vibrations are more rapidly damped in graphene than in SiN. In the presence of hybridization, the spatial profile of coupled eigenmodes is delocalized over both sub-systems. As a consequence, we can understand that if one eigenmode is excited, its spatial profile cannot be preserved in time since the oscillating deformations will be more heavily damped on the graphene than on the SiN. This is obviously not the case for homogeneously distributed dissipation. Dissipation mechanisms are able to cross-couple mechanical eigenmodes, so that the description of the system's thermal noise as an independent sum of eigenmodes fails. We point out that the dynamical properties of the system (damping, eigenfrequencies) can still be described using coupled modes, as checked in the previous section. However this is not true for its thermal noise. The next section will investigate how to correctly describe the thermal noise of systems which exhibit a damping heterogeneity.

Thermal noise of the hybridized system

As we have seen in the previous section, the commonly used normal mode expansion fails to correctly describe thermal noise spectra of systems with heterogeneously distributed dissipation. In order to properly describe the thermal noise we need to return to the original formulation of the fluctuation-dissipation theorem 5.3. THERMAL NOISE OF THE HYBRIDIZED SYSTEM [START_REF] Kubo | The fluctuation-dissipation theorem[END_REF][START_REF] Saulson | Thermal noise in mechanical experiments[END_REF]:

S δx G [Ω] = 2k B T |Ω| |Im χ GG [Ω]| (5.3.19)
which relates the measured displacement noise spectral density to the local mechanical susceptibility χ GG [Ω]. The latter connects the optomechanically measured deformations δx G [Ω] of the graphene membrane to the external force δF G [Ω] exerted on the graphene membrane at the measurement point via:

δx G [Ω] = χ GG [Ω] δF G [Ω].
(5.3.20)

Note that we do indeed measure the local mechanical susceptibility in the experiment since the green laser exerting a force on the graphene membrane and the red laser probing its displacement are both focussed at the same position on the graphene membrane and have the same spatial profile. It is worth mentioning that piezo or electrostatic actuation mechanisms would not allow us to deduce the local mechanical susceptibility because they do not match the spatial profile of the probe laser. As mentioned above, the actuation mechanism is based on photo-thermal forces, which in principle do not generate the same spatial actuation profile as the Gaussian shape of the readout beam. However, first of all the characteristic spatial extension of the eigenmodes investigated here is rather large (see figure 4.8) compared to the readout spot. It is therefore justified to consider the interferometric readout as a point-like measurement. Secondly, we will see in chapter 6 that modulating the actuation laser at frequencies close to the mechanical resonance generates thermal waves with a spatial spreading in the µm range. Therefore the photothermal excitation can also be considered as a local actuation.

According to the fluctuation-dissipation theorem, the local mechanical susceptibility χ GG needs to be known in order to correctly understand the thermal noise spectrum of the hybridized system. There are two possible options to access this quantity. We can experimentally measure the local mechanical susceptibility via optomechanical pump-probe measurements. We will discuss this method in detail in section 5.5. However, we can also use the phenomenological model developed earlier to find an analytic expression for χ GG . For the moment we will pursue this path.

In the phenomenological model, the mechanical susceptibility can be computed by inverting the dynamical matrix Y[Ω] given by equation 5.1.4 and selecting the graphene component χ GG that connects the displacement δx G to the force δF G . We can write

1 χ GG = 1 χ G - (χ -1 G + M G Ω 2 ) 2 χ -1 S + χ -1 G + M G Ω 2 , (5.3.21)
where we have used the mechanical susceptibilities χ -1 G,S ≡ M G,S (Ω 2 G,S -Ω 2 -iΩΓ G,S ) of the uncoupled graphene and SiN resonator respectively. The local mechanical susceptibility can also be expanded as:

χ GG [Ω] = 1 M G Ω 2 S + µΩ 2 G -Ω 2 -iΩ (Γ S + µΓ G ) C[Ω] + iΩD[Ω] ,
(5.3.22)
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where

C[Ω] ≡ Ω 4 -Ω 2 (Ω 2 G + Ω 2 S + µΩ 2 G + Γ G Γ S ) + Ω 2 S Ω 2 G , D[Ω] ≡ Γ G Ω 2 S + Γ S Ω 2 G -Ω 2 (Γ G + Γ S + µΓ G ) .
(5.3.23)

Inserting this expression into the fluctuation-dissipation theorem (5.3.19), we obtain an expanded analytical expression for the thermal noise spectrum:

S δx G [Ω] = 2k B T M G Ω 4 Γ G + Ω 2 (Γ G Γ 2 S + µΓ S Γ 2 G -2Γ G Ω 2 S ) + Γ G Ω 4 S + µΓ S Ω 4 G C 2 [Ω] + Ω 2 D 2 [Ω] .
(5.3.24) This expression is used to fit the experimental data. Using T /M G , Ω G , Ω S , Γ G , Γ S , µ and an additional incoherent background level as fitting parameters, we obtain the dashed green lines in figure 5.2(a) and the solid green lines in figure 5.4. They are in very good agreement with the data across the entire anticrossing region. Note that the deduced coupling parameter µ which is fixed at 0.002 for all fits, is in good agreement with the ratio of bare effective masses of the graphene and SiN resonator.

Phenomenological model for a multimode SiN resonator

Taking another look at the thermal noise spectra plotted in figure 5.2(b), we notice that the graphene peak actually couples to two SiN modes. This can be accounted for in the phenomenological model by considering a coupling between three oscillators. Analogously to equation 5.1.3, the dynamics of the three-mode system can be expressed as

   δx G [Ω] δx S1 [Ω] δx S2 [Ω]    = χ[Ω]    F G [Ω] µ 1 F S1 [Ω] µ 2 F S2 [Ω]   
(5. 4.25) with dynamical matrix M G χ[Ω] -1 that is extended to:

M G χ[Ω] -1 =    Y G -1 2 (Y G + Ω 2 ) -1 2 (Y G + Ω 2 ) -µ 1 2 (Y G + Ω 2 ) Y S1 + µ 1 2 (Y G + Ω 2 ) 0 -µ 2 2 (Y G + Ω 2 ) 0 Y S2 + µ 2 2 (Y G + Ω 2 )    , (5.4.26) using Y G,S1,S2 = Ω 2 G,S1,S2 -Ω 2 -iΩΓ G,S1,S2 .
(5.4.27)

The dynamical matrix takes into account the coupling between the graphene and each of the SiN modes S1 and S2 assuming that S1 and S2 are independent from each other. As before, µ 1 ≡ M G /M 1 and µ 2 ≡ M G /M 2 are mass ratios related to
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the hybridization strengths. The mechanical susceptibility χ GG deduced from this model reads:

χ GG = (2Y S1 + µ 1 (Y G + Ω 2 ))(2Y S2 + µ 2 (Y G + Ω 2 )) µ 1 µ 2 Ω 2 (Y G + Ω 2 ) 2 + µ 1 Y S2 (Ω 4 -Y 2 G ) 2 + Y S2 (µ 2 (Ω 4 -Y 2 G ) -4Y G Y S2 ) (5.4.
28) It is used to fit the spectra in figure 5.2(a) and 5.4 using the fluctuation dissipation theorem (5.3. [START_REF] Chaste | A nanomechanical mass sensor with yoctogram resolution[END_REF]. The fits are superimposed on the experimental data as dashed green lines in 5.2(a). A close-up of some selected spectra across the anti-crossing is shown in figure 5. [START_REF] Rugar | Single spin detection by magnetic resonance force microscopy[END_REF], where the fits are also displayed as green lines. The fits are in very good agreement with the experimental data across the entire anti-crossing region.

The uncoupled frequencies Ω G and Ω S deduced from the thermal noise fits are plotted in 5.2(c) as black and orange circles. Both evolve linearly with the applied optical probe power. From linear fits we find resonance frequency shifts of -284 Hz/µW and -2 Hz/µW for the graphene and SiN resonator respectively. It is remarkable that the mechanical frequency of the graphene can be tuned so efficiently. However, the magnitude of the frequency shift, and even its sign changes from one membrane to another. Furthermore the largest changes can be observed by positioning the pump laser at the interface between the SiN and graphene membranes, with a sign that is correlated with the orientation of built-in stress in the sample. These effects point towards a mechanism based on the modification of built-in tension in the graphene membrane due to thermally induced compression. This effect can be coarsely estimated using an average thermal expansion coefficient of graphene of about -10 -5 K at room temperature [START_REF] Yoon | Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy[END_REF]. An assumed 10 K temperature increase (see next paragraph) would hence correspond to a relative deformation of the order of -10 -4 , which would induce a change of strain of E • dl/l = -10 12 • 10 4 P a = -100 MPa (if the SiN does not expand). This value is comparable to the built-in strain evaluated from the frequency splitting of 01/10 membranes modes (cf. section 4.3.3). This crude estimation thus gives an explanation for the large magnitude of frequency shift measured. However, the great observed variability of shifts render a more refined analysis delicate. We also verified that it was not a mechanism due to optical forces (such as trapping/antitrapping effects due to optical gradient forces) that caused the frequency shift. To do so, we reproduced similar measurements (as in figure 5.2) at different positions along the pump laser Rayleigh length, but no significant changes could be observed.

Figure 5.2(e) shows the fitted Brownian temperatures which are determined as follows. The coefficients T /M eff are deduced from the amplitude of the thermal noise spectra. A good estimate of the effective mass can be obtained by analysing a spectrum far from the anti-crossing and assuming a sample temperature of 300 K. This is justified since no static heating was observed in this situation (see chapter 4). Thus we obtain an effective mass of 2.2 • 10 -14 kg which is subsequently used to compute the temperature for the measured spectra. From the data, no static heating can be found that exceeds the measurement error. We can hence place an upper bound of about 10 K on the tuning laser induced temperature increase. Therefore the role of temperature inhomogeneities can be neglected in the modelization of the system. However, the temperature-induced frequency shift of the uncoupled graphene (-284 Hz/µW) and SiN (-2 Hz/µW) can be used to estimate the static heating. A maximum SiN heating of 1 K can be derived from the measured SiN frequency shift [START_REF] Larsen | Ultrasensitive string-based temperature sensors[END_REF]. Using the experimentally measured heat diffusion coefficient of 5 • 10 -6 m 2 /s (see chapter 6), the heat resistance of graphene was numerically estimated at the level of 0.25 K per absorbed µW. Assuming that the employed membrane absorbs 10% of the incident light as found in section 4.2, an upper bound of 4 K can be placed on the static graphene heating.

Role of heterogeneous damping

In order to shed light on the role of heterogeneous dissipation, we perform simulations of the thermal displacement noise. The upper row of figure 5.5 shows noise spectra calculated with equation (5.3.24) for varying graphene damping rates and different coupling strengths µ. The red line corresponds to the case of identical damping rates all over the coupled system (homogeneous dissipation). It is well reproduced by the normal mode expansion model (equation (5.2.18)) plotted as dashed line.

However, in the case of heterogeneous damping a peak asymmetry arises, which becomes more and more pronounced as the ratio between the damping rates of the two resonator components increases. On top of that we find a small frequency range between the two resonance peaks where the noise is reduced with respect to the usual profiles obtained in the normal mode expansion. It comes in hand with an inversion of the inflection of the spectra. The bottom row of graphs in figure 5.5 show theoretical maps of thermal noise spectra obtained by varying the uncoupled graphene frequency Ω G . From the left to the right panel the graphene damping rate is changed: 5 kHz, 50 kHz and 500 kHz, which leads to an increasing dip between the resonance peaks. As expected, all of the effects observed for heterogeneous damping are more pronounced for stronger coupling, i. e. higher µ.

In case of identical uncoupled eigenfrequencies (Ω S = Ω G ), it is possible to compute the error made when trying to estimate the thermal noise with the normal mode expansion expression. The error is frequency dependent and takes its maximum value at the noise squashing frequency, where the thermal noise is found to be lower than the value originating from the normal mode expansion by a factor of (1 + Γ G /Γ S )/2 (no error is made in case of identical damping rates). This expression is independent of the coupling parameter µ as long as the anticrossing visibility is preserved: Γ ± < Ω + -Ω -and can reach large values in case of strong damping heterogeneity. The maximum observed deviations almost reached 20 dB in our experiment. 
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Validity of the Fluctuation Dissipation Theorem

The previous section has shown that the measured thermal displacement noise can be well understood in terms of a simple phenomenological model of coupled oscillators, since its predictions are in good agreement with the experimental data.

In particular, the observed asymmetry in the thermal noise spectra around the frequency anti-crossing is well explained by the model. However, this modelization is adapted for the specific case studied here and therefore lacks universality.

We will now pursue a more general approach which allows to verify that the fluctuation-dissipation theorem is valid for the studied system. This step is crucial in order to confirm that the measured spectra correspond indeed to the thermal noise of the hybridized system. According to the principles of linear response theory [START_REF] Kubo | The fluctuation-dissipation theorem[END_REF], this requires measuring the local mechanical susceptibility of the coupled system, that is χ GG in our case. It is determined by performing local response measurements on the hybridized system. These are realized by locally driving the system with an oscillating force that is spatially superimposed on the readout beam (see figure 4.11). The force is exerted by the pump laser beam which is now intensity modulated with an acousto-optic modulator (AOM). The modulation frequency is swept across the measurement range while the response of the hybridized system is recorded with a network analyzer.

We have already checked the linearity of the optomechanical response of the system in section 4.4.2. This is a prerequisite for applying the concepts of linear response theory. Furthermore, the measurements presented earlier in figure 4.13, which are performed far from the anticrossing region, allow to calibrate the actuation strength as well as the dephasing that occurs between the intensity modulation and the measured deformation. This serves as a reference measurement in the analysis of the coupled system which will be presented now.

In order to check the validity of the fluctuation-dissipation theorem, several response measurements were performed across the frequency anti-crossing in order to compute the local mechanical susceptibility χ GG . In these measurements the modulation depth is kept constant at δP/P 0 = 30% while the average pump intensity P 0 is progressively increased from 50 µW to 800 µW.

In order to obtain a useful response function of the coupled mechanical nanoresonator system relating the measured displacement to the employed optical modulation strength, we need to consider the chain of transfer functions present in the system: the network analyzer determines a complex gain function G 21 [Ω] given by the squared magnitude and phase of the gain measured between its output and input ports. We hence need to convert the input signal to a displacement and the output signal to an intensity modulation. The displacement calibration employed here is analogous to the procedure described in section 4.1.5. In order to determine the intensity modulation, we take advantage of the results presented in figure 4.12. More precisely, the spectral response of the optical modulation strength G opt [Ω] (magnitude given in W/V) needs to be determined. It is important to do so for the 
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employed modulation strength because of the saturation effect discussed earlier. Furthermore, for both the input and output signals, we need to account for the accumulated dephasing in the measurement apparatus and in the optical modulation process. As a result, the complex response function R xP is given by:

R xP [Ω] = G 21 [Ω] G opt [Ω]
dx dV in .

(5.5.29)

The response measurements are reported in figure 5.6. Once again it is worth mentioning that the displacement spectra are well fitted by the phenomenological model using equation (5.3.20) and the mechanical susceptibility (5.4.28), even over a dynamical range of more than 70 dB (see orange dashed lines in panel (c)).

In order to check that the fluctuation-dissipation theorem holds, we need to compute the local mechanical susceptibility from the response measurements, to subsequently deduce the displacement noise spectrum expected according to the fluctuation-dissipation theorem given by equation (5.3.19) and finally to compare it with the measured displacement noise spectrum. From the measured amplitude and phase of the response spectrum, we can deduce the local complex mechanical response in m/W. On the other hand we know from the force linearity measurements realized at the same location on the same membrane, but with a different tuning power to avoid hybridizaiton (graph 4.13(f)), that the force-to-optical intensity conversion factor amounts to dF/dP = 0.15 µN/W. Since the actuation mechanism does not depend on the frequency of the graphene mode, we can employ this conversion factor to calibrate any subsequent response measurement taken at the same location. The same is true for the measured dephasing ϕ 0 between the intensity modulation and the force experienced by the system, which was measured at a level of 135 • for the employed modulation depth. We can therefore convert the measured response to a local mechanical susceptibility in m/N. The complex local mechanical susceptibility is linked to the complex response measurement R xP [Ω] in m/W by:

χ GG [Ω] = R xP [Ω]
dP dF e -iϕ 0 .

(5.5.30)

Now we have all the ingredients to calculate the thermal displacement noise expected according to the fluctuation-dissipation theorem:

S δx [Ω] = 2k B T Ω Im χ GG [Ω].
(5.5.31)

The thermal noise spectra deduced from the response measurements are depicted in figure 5.7 for several pump laser powers. In panel (a), the first two graphs show the measured amplitude and phase of the local mechanical susceptibility χ GG . In the third graph we superimpose the thermal noise spectrum (i) deduced from the fluctuation-dissipation theorem (5.5.31) on the measured thermal noise spectrum (ii) from which the shot-noise-limited background has been subtracted numerically. Curves (iii) and (iv) are the equivalents with the background included. The same procedure is employed for the other positions around the anticrossing as shown in panel (b). Note that the thermal displacement noise spectra Amplitude (m²/Hz) 
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deduced from the response measurements were multiplied with global prefactors ranging from 0.8 to 1.4 in order to match the measured spectra. The difference in amplitude can probably be attributed to small spatial drifts of the laser beam with respect to the optical axis in combination with the slightly non-local character of the photothermal actuation mechanism (see chapter 6). Nonetheless, the agreement found between the two approaches is very good, which demonstrates the validity of the approach based on prediction of the fluctuation-dissipation theorem in the studied coupled nanomechanical systems. It underlines the importance of having access to the local mechanical susceptibility in order to correctly describe and understand the thermal noise of a complex nanomechanical system.

Signal-to-noise ratio improvement in hybridized system

In this section we will investigate how the subtle coupled dynamics of the hybridized system can be used to improve the signal-to-noise ratio of a displacement measurement. It is interesting to study the impact of the deviation from normal mode expansion on the signal-to-noise ratio (SNR) in a force measurement in comparison to the one obtained with the graphene resonator alone. Our first approach is to investigate this question in the framework of the phenomenological model exposed above. When exerting a monochromatic force with amplitude δF G and frequency Ω/2π on the centre of the graphene membrane, we induce a driven displacement given by the complex δx G = χ GG δF G . Its detection is limited by the thermal noise measured at the same location of the membrane. The signal-to-noise ratio is then given by: SNR

[Ω] = |δx[Ω]| 2 S δx [Ω] = |χ GG [Ω]| 2 δF 2 G 2k B T |Ω| |Imχ GG [Ω]| ,
(5. 6.32) which becomes:

SNR[Ω] = δF 2 G 2M G Γ G k B T • (Ω 2 S + µΩ 2 G -Ω 2 ) 2 + Ω 2 (Γ S + µΓ G ) 2 Ω 4 + Ω 2 (Γ 2 S + µΓ S Γ G -2Ω 2 S ) + Ω 4 S + Ω 4 G µΓ S /Γ G (5.6.33)
The first fraction of this expression is frequency-independent and represents the SNR of the graphene membrane alone. It will be denoted SNR G in the following. It compares the spectral density of the Langevin force 2M G Γ G k B T acting on the graphene to the power of the applied force signal δF 2 . The second fraction represents the modification of the SNR due to the hybridization with the SiN membrane. If the damping rates are identical, the SNR can only be inferior to one. Interestingly, the relative increase in the SNR can be larger than one in case of strong hybridization strength (large µ) and good SiN quality factor (small Γ S ) in narrow frequency bands in the vicinity of the SiN resonance. By differentiating equation 5.6.33 with respect to Ω, one can show that an optimal frequency Ω opt 

CONCLUSION

exists, for which the SNR increase becomes maximal. The highest relative increase in the SNR with respect to the graphene alone is given by:

SNR opt SNR G = 1 + Γ G Γ S µ.
(5.6.34)

It is obtained for an optimal measurement frequency Ω opt of

Ω opt = Ω 2 S - Γ S Γ G Ω 2 G , (5.6.35)
which is always defined in our experimental conditions since the ratio of uncoupled damping rates satisfies Γ S /Γ G < 1/10 and is expected to lie in the vicinity of the uncoupled SiN frequency. Figure 5.8 shows the simulated response and thermal noise spectra for realistic parameters of the system in (a). The panel represents the corresponding relative SNR increase. It shows an increase which is peaked in between the graphene and SiN frequencies as predicted by equation (5.6.35).

More generally, expression (5.6.34) tells us that the relative SNR increase will be higher when hybridizing with high-Q SiN modes presenting a large coupling strength µ. This SNR increase will be more profitable for low-Q graphene membranes. This point is illustrated by figure 5.8(c) which depicts the relative SNR increase as a function of measurement frequency and graphene damping rate.

In the studied system we can expect an increase of about 10 % when working relatively far away from the anti-crossing. The modification of the SNR is also observed experimentally with a strong frequency dependence and a more complex spectral shape due to the interplay of several SiN modes (see figure 5.8(d)).

A SNR increase has been reported in other resonator systems. It was found by [START_REF] Caniard | Observation of Back-Action Noise Cancellation in Interferometric and Weak Force Measurements[END_REF] that the signal-to-noise ratio can be improved in a dual resonator system. The underlying mechanism is back-action cancellation due to a coherent mechanical response of the two resonators. In fact, the effective mechanical susceptibility is reduced in a certain frequency range. Contrary to this, in our case the SNR improvement does not originate from interference effects, but is due to a hybridized mechanical susceptibility of a coupled oscillator system. We note that this hybridization was also employed in the readout scheme of gravitational wave detectors based on Weber bars. A similar SNR increase was observed and exploited by [132] with macroscopic oscillators with a mass of 10 3 kg.

Conclusion

In this chapter we studied the dynamics of a coupled nanoresonator system consisting of a graphene membrane deposited onto a silicon nitride (SiN) membrane frame. The frequency of the graphene mode can be thermally tuned with a static tuning laser. Thus it can be brought in resonance with higher order SiN vibrational modes with which it hybridizes by inertial coupling. As the graphene mode 5.7. CONCLUSION is swept across an SiN mode, an avoided frequency crossing is observed. From the frequency splitting we deduce that the hybridized system is in the strong coupling regime. The dynamics of the coupled modes, their resonance frequencies and damping coefficients can be modelled well in the framework of two cascaded oscillators with inertial coupling.

However, a closer investigation of the thermal noise of the hybridized system reveals that it cannot be described by a mere superposition of the SiN and graphene modes manifesting a violation of the normal mode expansion. The underlying reason is the spatially inhomogeneous dissipation in the two-component resonator which couples the modes and does not allow to attribute an individual Langevin force to the uncoupled graphene and SiN modes. In order to describe the thermal noise of the hybridized system correctly, we have to take recourse to the general formulation of the fluctuation-dissipation theorem (FDT). This is done by measuring the mechanical susceptibility with response measurements in order to deduce the thermal noise spectrum predicted by the FDT. The very good agreement between the measured and deduced thermal noise spectra confirms the validity of the FDT.

As a consequence of the modified thermal noise spectrum, a signal-to-noise ratio (SNR) improvement can be obtained for the graphene in the hybridized system with respect to the graphene resonator alone in a specific frequency range. The SNR augmentation is more profitable for graphene membranes with lower quality factors and increases with the coupling strength.

In the presented verification of the fluctuation-dissipation theorem necessitated a careful spatial superimposition of the two lasers on the two-dimensional membrane. This ensured that the location where the system is driven and where its motion is probed are identical, as required to probe the local mechanical susceptibility which enters the FDT. In the next chapter we will show that detailed information on the local properties of the graphene resonator can be gained by moving the pump and probe lasers with respect to each other.

Chapter 6

Imaging heat conduction properties in graphene using opto-thermal actuation

In this chapter we investigate the thermal properties of microstructured suspended graphene membranes. Information about the former can be obtained from both the membrane's static and dynamical response to a thermal wave generated by a tuning laser. Furthermore, the spatial dependence of the thermal conductivity can be accessed due to the possibility to independently move the actuation and tuning laser to an arbitrary spot on the membrane. Since structural defects, multilayers, grain boundaries and contaminants modify the membrane's thermal properties, very visual information about the sample structure can hence be obtained with the described measurement scheme. We propose the latter as a novel method to access the sample's thermal conductivity without physically contacting it, using a direct optical imaging of the thermal wave propagating inside the graphene sample.

Thermometry based on the mechanical frequency of a graphene membrane

In chapter 5, we exploited the fact that the graphene frequency strongly depends on the optical power of the tuning laser because of the photo-thermal actuation mechanism. We found a power sensitivity of the fundamental resonance frequency of -284 Hz/µW when the tuning laser was spatially superimposed with the probe laser at the centre of the graphene membrane. However, it must be pointed out that this value strongly varies from one sample to another. It can even change sign and exhibit deviations from linearity for very large heating powers. Nonetheless, for one given sample, the measurement of the mechanical resonance frequency of the graphene membrane is an indicator of the membrane's temperature. For each membrane, the frequency measurement could in principle be calibrated by determining the temperature dependence of the vibrational eigenmodes using an
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external heating device which warms up the entire sample. Since this has not been done yet on our samples, we only recall the temperature-related results presented in chapter 5, where we estimated a modest temperature increase of the order of 0.1 K for a realistic laser power of 100 µW (assuming that the graphene absorbs about 10% of the incident laser power as heat).

Note that the measurements presented in this chapter were performed at ambient temperature and static pressures in the range of 10 -3 to 10 -2 mbar.

As discussed in section 4.3.3, the spatial shape of the first mechanical eigenmodes remains smoothly distributed over the graphene membrane, even if the sample is heterogeneous or polluted by contaminants. This implies that the vibration frequency shifts probed at an arbitrary point of the spatial mode profile are in principle sensitive to the temperature change at any point of the membrane. As we will described below, there are several mechanisms that render the graphene frequency dependent on temperature. It should be noted that their respective contributions are difficult to correctly estimate when the membrane structure is too heterogeneous. However, most of them are non-local in the sense that their effect is proportional to a weighted spatial average of the induced temperature increase. Among the mechanisms that participate in the temperature induced frequency shifts, we can name the following:

• thermal expansion modifies the dimensions of the membrane • the temperature dependence of graphene's intrinsic material parameters determining its mechanical properties (Lamefficients or speeds of sound)

• temperature induced modifications of stress present in the membrane While the first two effects mainly depend on the temperature profile in the middle of the membrane, the third one can arise from modifications of the temperature profile at the edges of the SiN support or from changes in the SiN temperature itself which may modify the stress induced in the graphene membrane. This great variety of effects can be overwhelming for quantitative analysis, but it is highly interesting for visual imaging of the graphene structure as will be seen in the following.

The above considerations deal with the impact of the temperature on the mechanical resonance frequency of the graphene membrane. In order to properly understand the underlying physics, it is hence important to obtain information about the spatial temperature profile inside the membrane. Up to now, we have not employed the unique possibility we have to move the tuning laser across the graphene surface. Instead, we have carefully superposed the pump laser on the readout spot in order to realize local measurements. Since the absorption in the graphene occurs within the laser spot, of ≈ 400 nm transverse size, we are able to cartography the spatial dependence of the above-mentioned mechanisms by tuning the induced temperature profile.
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Panels (b) and (c) in figure 6.1 show the spatial dependence of the graphene frequency obtained from linear scans of the tuning laser across the membrane, while the probe laser is fixed at the centre. In these measurements, the tuning laser intensity is fixed and no intensity modulation applied, so that we simply induce static heating inside the membrane. The graphene frequency displays a very high spatial sensitivity with relative variations up to 30% for a modest optical power of 100 µW. This leads to multiple anti-crossings with two SiN eigenmodes. The intrinsic (i. e. uncoupled) graphene frequency can be deduced by fitting with the phenomenological model taking into account the coupling to two SiN modes as discussed in section 5.4. Such measurements can be reproduced in two dimensions by scanning the tuning laser across the entire surface of the graphene membrane as sketched in figure 6.1(a). The spatial dependence of the uncoupled graphene frequency deduced from such a measurement is shown in figure 6.1 (d). It reveals the rich microstructure of the membrane.

Note that this membrane has already been characterized in terms of reflection and transmission measurements in section 4.2. The different characterization methods yield complementary information that allow us to gain a good understanding of the sample. In the following we will discuss the membrane structure in more detail with the help of figure 6.2, which compares the photo-thermal and transmission measurement and allows us to draw the following conclusions:

• The "cold" graphene frequency which is only affected by the probe laser heating can be defined as a reference. Note that neither the probe laser power nor position change during the experiment. The reference is measured by placing the tuning laser on the SiN membrane far away from the probing spot which allows to roughly estimate the cold graphene frequency around 1 MHz at point γ (see centre panel of figure 6.2).

• When the graphene is heated by positioning the tuning laser on the membrane, a systematic red shift of the vibrational graphene frequency is observed as described in section 5.1.1. We can thus establish the following rule of thumb: measuring a low graphene frequency corresponds to a large temperature increase in case of the studied sample.

• The transmission measurements reveal the presence of different regions where the graphene frequency map presents large discontinuities. These could possibly originate from multilayer areas or grain boundaries present in the suspended membrane. They have a strong impact on the structure of the graphene frequency map.

• Contaminants can be identified in the reflection/transmission maps as regions where a simultaneous reduction is observed in both optical maps (cf. figure 4.5). They are highlighted by blue contours in figure 6.2. In these areas, the graphene resonance is strongly blue shifted as a consequence of larger absorption.

• The above-mentioned correlation between temperature increase and frequency reduction is further confirmed within each homogeneous area. In fact, when the tuning laser is placed on a spot of the graphene membrane far away from the SiN support acting as a reservoir, a larger temperature increase is observed in the graphene. This is particularly true within regions A and B where a significant frequency gradient can be seen within each area.

• Regions A and B seem to be poorly thermally connected since a large mean temperature gradient is observed between them. Two reasons can be invoked to explain this finding: a grain boundary separating the two regions or the presence of a multilayer patch in area B. One can expect that a grain boundary does not transmit heat as efficiently as a defect-free graphene monolayer. A grain boundary would therefore give rise to a discontinuity in the observed spatial frequency dependence. However, the transmission map also shows a significant contrast between both areas. Lower transmission is observed in area B. This leads us to adopt the interpretation of area B consisting of a
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bilayer. We will use this reasoning in the following.

• Based on the above assumption, the larger frequency shift observed in area B is due to the larger (twice as high) absorption expected in bilayer as compared to a monolayer graphene. This is indeed observed qualitatively in the middle of the graphene membrane between points α in region A and β in region B: ∆f α,γ = -120 kHz and ∆f β,γ = -250 kHz are deduced respectively between points α, γ and β, γ.

• The sharp transition observed between points α and β is very intriguing. How can a resonator exhibit such a sharp position dependence for a thermally mediated process which is usually thought of as being temporally slow and spatially extended? The response to this question arises from the strong asymmetry existing between the in-plane and out-of-plane thermal conductivities of graphite. While the in-plane conductivity is as large as the one of diamond, the transverse one is 1000 times smaller. We can therefore consider that the two layers are almost thermally disconnected. This results in the abrupt transition observed in the frequency map, which in turn arises only from the increased heat absorption in the bilayer.

• The larger absorption expected in the bilayer (area B), but also in the contaminated spots, is visible in the effective temperature map which allows us to clearly distinguish between both areas.

• Within a homogeneous region, lines of slightly lower frequency can be observed as indicated by green dotted lines labelled G in figure 6.2. We attribute these lines to graphene wrinkles which exhibit a larger optical absorption and hence heat up more.

As a conclusion, mapping the graphene frequency shifts obtained for varying positions of the tuning laser reveals a great wealth of details on the sample structure that cannot be derived from spatial maps of the thermal noise of the membrane. On the contrary, the latter were shown to be rather smooth compared to the large heterogeneity of the graphene. In the experiment we have several other possibilities to investigate heat conduction in the suspended graphene membrane. The frequency shift measurements introduced above give information about the steady state temperature profiles within the membrane. The next steps consists in investigating the dynamical properties of the heat transfer within the sample.

Dynamical heat conduction in the suspended graphene membrane

The dynamical behaviour of the graphene and the spatial properties of its heat conduction properties can be investigated by time-modulating the pump laser beam intensity with an acousto-optical modulator and probing the induced perturbations with the probe laser. Figure 6.3 presents a typical broadband response of the membrane. It was measured under the same conditions as the response measurement of the local mechanical susceptibility described in section 5.5, where the probe and pump lasers were spatially superimposed at the centre of the graphene membrane. The spectrum presented here, however, was measured in a broader frequency range and with a logarithmic frequency scaling. In addition to the mechanical response, which is clearly visible around 1 MHz, a low frequency response appears. It can be fitted with a first order low pass filter with a typical cutoff frequency around 7 kHz. In the case shown here, the amplitude of the membrane deformation induced at low frequencies is about ten times higher than the magnitude of the resonant mechanical response.

As before, the quantity measured in the response measurement is the driven dephasing added onto the reflected probe laser field when the pump laser intensity is time-modulated. Two mechanisms can be responsible for such a dephasing: a mechanical deformation induced by the pump laser or a laser-induced phase change in the reflection coefficient of the graphene membrane (for example due to a change in the membrane temperature).

In order to differentiate between both effects, we modified the optical path by setting up a balanced Mach Zehner interferometer as sketched in figure 6.4. In this configuration, the laser beam transmitted by the graphene is polarizationcombined with a reference beam from the same laser source, such that the phase of the transmitted laser beam is measured. Thus mechanical deformations do not modify the phase of the transmitted beam at first order, since the accumulated dephasing remains the same irrespective of the graphene position within the laser propagation axis. Note that this is obviously not true in case of a reflected beam, where a mechanical deformation does create a measurable dephasing. However, the Mach Zehner configuration is sensitive to temperature induced modifications of the optical properties of the graphene, such as their reflection or transmission coefficients. They should in principle be detectable both in transmission and in reflection with a similar magnitude due to energy conservation. We therefore realized response measurements probing the reflected and transmitted fields with the balanced homodyne detection for comparable fringe contrasts. The mechanical resonance and the low frequency response both disappeared in transmission. This means that the low frequency response can also be attributed to a mechanical deformation of the graphene membrane which is thermally induced by the pump laser.

Now we seek to understand the origin of the low frequency response and its link to the thermal properties of the graphene membrane. In order to gain a
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C:\Users\Cornelia\Documents\GNOME\data Gnome\140519_newbarcode\2015-02-10_response/ AmptMap_29_33_0.txt Figure 6.3: Broadband response of the system. In addition to the resonant mechanical response, visible at 1 MHz, also appear a low frequency response which is well adjusted with a first order low pass filter (cut-off: 7 kHz). It can be due to both a temperature mediated reflectivity change or to a thermally induced non-resonant mechanical deformation, but both possibilities reflect the thermal behaviour of the membrane. The cut-off frequency represents the inverse propagation time of the driven heat wave to spread from the graphene centre to the SiN edge. It permits estimating the heat diffusion coefficient for graphene, of the order of ≈ 10 -6 m 2 /s. The slight deviation observed around 1 kHz is due to the lock of the interferometer, which tries to compensate the driven dephasing.

quantitative understanding of the physics involved in this complex heat conduction profile, we will now formalize the thermal properties of the suspended graphene membrane.

Modelling the thermal properties of the heated graphene membrane

The objective of this section is to establish the properties of thermal heat propagation in the graphene membrane. We start by introducing a one-dimensional model which allows us to understand most of the essential physical effects concerning the dynamical heat transport and subsequently describe the results of a numerical modelisation for the two-dimensional case.

We will now study the spatial temperature profile generated in the graphene membrane when it is illuminated by a laser beam creating a heat source located at the laser spot. We consider the case of a periodically intensity-modulated pump laser and investigate the propagation of the thermal waves launched in the graphene membrane. The edges of the graphene membrane which are in contact In this configuration the beam transmitted by the graphene membrane is polarization-combined with the local oscillator beam. Therefore the measured dephasing is insensitive to a displacement of the graphene membrane, but changes if its refractive index undergoes a modification, which allows us to distinguish between a these two effects. (b) Typical response measurements when probing either the reflected or transmitted beams for similar fringe contrasts. While the temperature-induced phase modulation is evident in the reflected beam, it is absent (60 dB lower) in transmission. This suggests that the low frequency response of the system is dominated by the contribution of the deformation.
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with the SiN membrane will be considered reservoirs with a fixed temperature. Note that this is a crude simplification since heat can also flow through the SiN, but it is sufficient for our purposes. In absence of air, there are no heat convection losses and we neglect here radiation losses. The temperature profile T (r, t) that is established within the graphene membrane can be described by the heat diffusion equation in two dimensions.

∂ t T (r, t) -D G T (r, t) = p abs (r, t) ρC , (6.2.1)

where D G ≡ κ G /ρC = 1.22×10 -3 m 2 /s is the heat diffusion coefficient of graphene and κ G is its thermal conductivity, ρ = 2230 kg/m 3 its mass density and C = 700 J/K/kg its heat capacity. The heat source p abs (r, t) by the time modulated laser absorption is given by: p abs (r, t) = P abs (t) d v 2 0 (rr 0 ) (6.2.2)

where d is the thickness of one graphene layer, and the transverse intensity profile is given by a Gaussian:

v 2 0 (r) = 2 πw 2 0 e -2 r 2 w 2 0 , ( 6.2.3) 
where w 0 denotes the optical waist. Moreover, P abs (t) is the spatially integrated total absorbed power, satisfying P abs (t) = d d 2 r p abs (r, t). In our experiments it will be described by a static term and an oscillating contribution with modulation depth at frequency Ω/2π: P abs (t) = AP in (1 + cos(Ωt)), (6.2.4) where A is the absorption coefficient. In the following, we will study the spatial temperature profile in the simplified case of a one-dimensional sample.

One-dimensional analysis

For the generic understanding, it is easier to study the problem in the onedimensional case. With the above considerations, the heat diffusion equation becomes:

∂ t T (r, t) -D G ∂ 2 xx T (r, t) =
AP in eρC 2 πw 2 0 e -2(x-x 0 ) 2 /w 2 0 (1 + cos(Ωt)), (6.2.5)

where A becomes an absorption coefficient per unit length in the one-dimensional model.

In response measurements we measure the amplitude and dephasing with respect to the intensity modulation of the driven deformation, which depends on the driven temperature profile. We will now investigate the time-dependent component of the temperature profile which fluctuates around the static temperature profile: With this model at hand, we can compute the dynamical temperature profiles arising from time-modulated heating induced by the pump laser at a location x 0 of the membrane. Figure 6.5 summarizes the most important results of the modelisation. Firstly, when a static laser (Ω → 0) is positioned in the middle of the membrane (u 0 = 0), we obtain in the limit of a small laser spot (ω 0 L):

δ T [0, Ω → 0] = AP in L κ G 2d (6.2.12)

where we recognize the thermal resistance of the 1D-like graphene conductor: R th = 1 2 L κ G e in K m/W. The factor of 2 originates from the fact that the heat can be evacuated from both sides of the laser spot towards the reservoirs which are positioned at a distance L.

The static temperature profiles generated for varying positions of the heating laser are shown in figure 6.5(b) left. The maximum laser-induced heating measured below the optical spot is achieved when the laser is placed in the middle of the membrane, and linear temperature profiles are observed outside of the heated region, as expected for a static thermal response. We note that the low frequency limit yields the same result as a steady state analysis giving the static temperature profile T stat (x) introduced above.

When the frequency of the pump laser is increased, the wave behaviour of the thermal profile becomes apparent. This can be seen in the plots of the driven thermal wave profiles in figure 6.5(c). As expected, an oscillatory behaviour appears with a spatial period that decreases with the driving frequency. This effect is accompanied by an increased amplitude attenuation.

As a consequence, a natural cutoff frequency appears. It corresponds to the driving frequency Ω G c above which the thermal wave spreading is no longer large enough to reach the reservoirs located at a distance L:

Ω G c /2π ≡ D G L 2 (6.2.13)
This can clearly be seen in figure 6.5(d) showing the relative temperature modulation at the heating position. It was calculated for realistic experimental parameters (laser power P = 100 µW and thermal diffusion coefficient for the graphene sheet of D = 10 -6 m 2 /s). When the pump laser frequency reaches the cutoff frequency, we observe a deviation from the steady state, which becomes evident as a reduction in the response amplitude. By varying the membrane dimensions, see figure 6.5(e), we checked that the cutoff frequency decreases for larger membranes since the thermalization time increases. Of course, the dc value of the induced temperature modulation also depends on the relative sizes of the membrane dimension. For a constant value of heat deposited in the graphene membrane, the dc temperature is determined by the thermal resistance of the graphene. However, another characteristic dimension exists in the problem: the optical waist. Analogous to equation (6.2.13), we can therefore construct a second cutoff frequency:

Ω 0 c /2π ≡ D G w 2 0 , (6.2.14)
which is visible in the theoretical responses curves shown in Figure 6.5 as a second slope change at high frequencies.

To conclude, the simple one-dimensional model allows us to explain most of the observed phenomena such as the spatial dependence of the static temperature profile as observed inside the A area or the existence of a thermal cutoff in the response curves shown in figure 6.3.

Two-dimensional numerical modelisation

B. Pigeau developed a two-dimensional numerical simulation to describe the thermal response of the graphene membrane using the heat diffusion equation (6.2.1).
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The simulation is based on a home-made finite element modelisation realized by establishing a two-dimensional mesh on the membrane, where each site can be filled with a different material thus modifying the local conduction properties. The objective was to account for the unconventional geometry of the system (square membrane and arbitrarily positioned Gaussian-shaped heating source) and for defects and multilayers. Thus it allows for a more detailed modelization of the graphene membrane properties. An important consequence of the two-dimensional simulation, resides in the fact that it predicts response curves with a spectral shape very close to a low pass filter of first order, while this was not the case in the one-dimensional model. Note that the one-dimensional model predicts a phase shift of π/4 at frequencies above the cutoff (see figure 6.5(d) bottom), which was not observed experimentally.

Dynamical and spatial thermal imaging of the membrane

Up to now, we have not made use of the possibility to move the intensity-modulated heating laser across the sample. However, we have seen before that in absence of intensity modulation, this capacity to scan the heat source through the sample gave a lot of insight on the thermal properties of the sample. Concerning the thermal wave emission, moving the probe laser or the pump laser will allow us to directly image the propagation of thermal waves in the sample without physically contacting the fragile graphene membrane. We found this new analytical tool very rich and launched a series of measurements in order to better understand the spatial properties of the driven thermal response of the sample.

To do so, we placed the readout laser in the middle of the graphene membrane probing the deformations induced by the pump laser, which was spatially scanned over the membrane on a typical 40×40 grid. For each position, a response spectrum (amplitude and phase) was measured which is similar to the one shown in figure (6.3). The stability of the experiment was good enough to perform measurements overnight without having to relock the interferometer. For each driving frequency, a spatial map of the response can be plotted in order to deduce the spatial profile δT [r, Ω] of the driven thermal wave propagating through the sample. A series of response maps is shown in figure 6.6(a), for driven frequencies spanning from 2 to 247 kHz. At low frequencies, the thermal wave spreads through the entire graphene membrane as expected from the fact that the drive frequency lies below the thermal cuttoff corresponding to its transverse dimension. At larger frequencies, the response spreads less and less since the thermal wave has less and less time to propagate through the membrane. For high frequencies, a very rich response appears illustrating the strong influence of the membrane structure on the propagation of heat waves. This becomes particularly evident when comparing the spatial profile of the response to the transmission map of the same membrane (cf. 6.6(a),(b)).

We can employ the spectral imaging to deduce the effective heat diffusion coefficient of the membrane. To do so, we evaluated the characteristic area A[Ω] over which the thermal wave spreads for each frequency. It is traced as a function where Ω c = D G /A 2 is linked to the thermal diffusion coefficient of graphene.

Fitting the data according to equation (6.2.15), we obtain D G = 2.1 • 10 -6 m 2 /s. A similar value is obtained from the cut-off frequency of the local frequency response shown in figure 6.6(c) confirming the consistency between both approaches. 

Local spatio-temporal thermal response of the membrane

The small thermal cutoff measured in the middle of the membrane is due to the large spatial heterogeneity of the membrane employed: the thermal waves have to propagate trough wrinkles, multilayer patches and contaminants before reaching the SiN reservoir. All of these effects contribute to reducing the global thermal conductivity of the graphene membrane. However, small regions can be found, where the membrane is more homogeneous and hence the thermal conductivity is locally higher. This can be seen at the example of the triangular region marked by a dashed white line in figure 6.6(a),(b). Its boundaries are defined by a monolayer/bilayer transition and wrinkles, both representing local barriers for the heat conduction. Within this region, the response persists even at high modulation frequencies. This is due to the fast spreading of the thermal wave within the homogeneous region. However, the presented measurement was performed with the probe laser located at the centre of the membrane outside the triangle. It would be interesting to repeat the same experiment for a probe laser placed within the homogeneous region. This would allow to gain more local information on the graphene response. This is indeed possible with the method exposed above because we can tune both the pump and probe laser positions independently on the graphene membrane and inspect the local thermal response. This approach gives hence access to the internal structure of the graphene membrane and can be compared to other analytical methods.

Conclusion

In this chapter, we have investigated the thermal properties of graphene membranes through a pure optical readout technique which permits a non-contact imaging of the graphene heat conduction properties. We have investigated both the static response of the membrane and its dynamical response and both approaches revealed the strong influence of the graphene structure on the propagation of heat.

We have proposed a method permitting to locally probe the thermal properties of the sample. This method will be very useful in the future to characterize complex samples and obtain information that are hardly accessible in electrically probed experiments.

Conclusion and perspectives

In this work we studied nano-resonators made from graphene grown by chemical vapour deposition (CVD). We realized the fabrication of large, free-standing, polycrystalline graphene membranes with diameters up to 20 µm and characterized them with complementary methods comprising scanning electron and atomic force microscopy, Raman spectroscopy as well as optical reflection and transmission maps. By virtue of the different findings, we gained a detailed understanding of the rich microstructure of graphene membranes displaying wrinkles that originate from the growth process and out-of-plane undulations that can be attributed to strain induced during the transfer process. Moreover, we showed that the spatial distribution of charge doping and mechanical strain in graphene membranes can be deduced from Raman maps. From such treatments we find that low charge doping and low compressive strain are present in the membranes, and that their values are slightly lower in suspended than in supported graphene. Compressive strain is known to be created in graphene from the growth on a copper substrate due to a mismatch of the thermal expansion coefficients of the two materials. We found that some of this strain remains, even after the transfer of graphene onto another substrate. Comparison with AFM topography maps showed, however, that tensile strain is acting in suspended graphene membranes close to the edges where it is supported by the substrate. More insight into the mechanical properties of the suspended graphene membranes can be gained by applying an electrostatic pressure to a suspended graphene membrane. We showed that significant deflections up to about 300 times the graphene thickness can induce a considerable average strain of about 0.4%. These findings underline the high in-plane stiffness of graphene.

The second part of the present work was dedicated to the study of the dynamics of graphene nanoresonators. Depending on the membrane dimensions, resonance frequencies ranging from 1 to 10 MHz with quality factors up to about 500 were found at room temperature and low pressure (10 -4 mbar). A simultaneous readout of the deflection and strain in oscillating membranes was realized by joint reflection and Raman measurements. Preliminary measurements hint at the fact that acoustic and optical phonons are coupled in a resonating single-layer graphene membrane.

In order to study the graphene resonator dynamics with a higher displacement sensitivity, we developed a novel optomechanical approach with a setup where the graphene can be optically accessed from opposite sides, which allows to char-
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acterize the entire transverse spatial properties of the membrane. For these experiments we developed a sample architecture where the graphene membrane is deposited onto a fully traversing silicon nitride (SiN) membrane frame. The optomechanical setup allowed for spatial mapping of the thermal noise profiles of the graphene membrane. Despite of the rich membrane microstructure, these profiles showed a remarkable homogeneity. Furthermore we studied the influence of the membrane dimensions and pressure on the fundamental frequency of the graphene resonators. The latter can be thermally tuned by illuminating the membrane with a static laser. Thus it can be brought in resonance with higher order SiN modes with which it hybridized due to inertial coupling. When sweeping the graphene mode across a SiN mode, a strong coupling between both systems manifests itself in a large frequency anti-crossing. The dynamics of the system were further investigated by optical pump-probe measurements employing an intensity modulated pump laser. We found that the driving mechanism originates from a thermal effect which exceeds by far the radiation pressure force.

A close investigation of the thermal noise of the hybridized resonators revealed striking peak asymmetries which deviate from predictions of the usually employed normal mode expansion of the resonator modes. This is due to the spatial inhomogeneity of the dissipation in the two-component resonator. In such a situation it is no longer possible to attribute individual Langevin forces to the uncoupled graphene and SiN modes, implying that the modes are coupled via dissipation.

Having the possibility to tune the frequencies of both subsystems allows to explore the entire anticrossing regime and thus the deviation from the normal mode expansion. In order to correctly describe the thermal noise of the hybridized system, we took recourse to the original formulation of the fluctuation-dissipation theorem (FDT). The validity of the FDT was verified by measuring the local mechanical susceptibility by pump-probe measurements. This allowed to deduce the thermal noise spectrum predicted by the FDT, and the very good agreement found between the measured and deduced thermal noise spectra confirmed the validity of the FDT.

Finally we investigated the effect of the complex microstructure of graphene membranes on their optical, mechanical and thermal conduction properties. This was rendered possible by the capacity to optically probe the graphene from different points in space and at different time scales. This approach allowed us to gain insight into local heat conduction properties of the microstructured graphene membranes. Notably, we performed measurements where a static tuning laser was scanned across the graphene membrane, while its motion was detected at a fixed position on the membrane. From these measurements we found a strong spatial dependence of the graphene frequency on the position of the tuning laser. This spatial dependence is reminiscent of the membrane structure featuring grains, multilayers, wrinkles or contaminants as revealed by transmission maps. These measurements propose novel imaging techniques of the internal structure of graphene 6.4. CONCLUSION membranes.

It would be very interesting to complement the findings that this novel optomechanical tool provides on the structure of the graphene membranes with local structural and thermal information that can be gained by Raman spectroscopy (grain boundaries can be identified by polarized Raman measurements and thermal properties by Stokes/anti-Stokes intensity asymmetries and optothermal Raman spectroscopy). Once the local structure of the graphene membrane will be firmly established by Raman characterization, a more refined analysis of the thermal conduction properties of the graphene membrane can be envisioned. In particular, this will allow for a more quantitative analysis of the conduction properties of defects such as grain boundaries, wrinkles and mono-/multilayer boundaries. Controlled defect engineering of the graphene membranes will allow to address these aspects specifically.

Moreover, the optomechanical cartography of the vibrational properties of the graphene membranes allowed to gain a detailed understanding of its thermal motion. On the other hand, Raman measurements have revealed a coupling between low-frequency mechanical vibrations and optical phonons for graphene membranes undergoing large driven deformations. It would be interesting to combine these methods in order to study the transition between weakly and strongly driven motion. To this end, time resolved Raman measurements, realized for example by optical gating, will allow to gain more detailed information on the parametric coupling observed between the frequency of Raman phonons and low-energy mechanical vibration modes of the membrane. In particular, this would allow to determine the temporal trajectory of the Raman mode frequency and its correlation with the mechanical vibration. Furthermore the spatial heterogeneity of the studied membranes is expected to have an impact on this dynamical coupling.

Up to now we have exploited the impact of the mechanical motion on the frequencies of the optical phonons, but it would also be interesting to study the inverse coupling mechanism: the Raman mode population might affect the mechanical motion of the resonator. In this parametric coupling regime, we expect a force to act on the resonator that depends linearly on the Raman photon population. To this end a stimulated Raman process could be used to modify the population of optical phonons.

To conclude, we investigated the mechanical, structural and thermal properties of graphene membranes using multiple tools including Raman spectroscopy, optomechanical readout and thermo-mechanical imaging. These studies revealed a great richness present in the studied graphene membranes which allowed us to investigate the impact of material defects on their mechanical or thermal properties. We have developed novel analytical tools which will serve to optimize the graphene growth and sample fabrication in future, permitting to envision further investigations of the extremely fundamental yet surprising material. In particular, graphene's exceptional mechanical properties, compatibility with ultralow temperatures and capacity to be efficiently interfaced with external systems or probes, being classical or quantum, opens promising research directions in the future.

Résumé

Le graphène est un matériau atomiquement fin très léger, doté d'une rigidité extrêmement élevée dans le plan et interagissant efficacement avec la lumière et des champs électriques. Par conséquent, les oscillateurs mécaniques à base de graphène sont très intéressants pour l'étude des mécanismes de couplage, en particulier dans le contexte de la détection ultra-sensible de forces. Cependant, les membranes nanométriques sont très sensibles à toute hétérogénéité intrinsèque en raison de leur grand rapport d'aspect. Une telle hétérogénéité peut fortement modifier leurs propriétés vibrationnelles. Dans ce travail, nous étudions les propriétés vibrationnelles du graphène crû par dépôt chimique en phase vapeur et suspendu au-dessus de trous de 20 µm de diamètre dans une géométrie de tambour. La grande dimension des membranes permet de caractériser leurs propriétés spatiales par différentes méthodes. En particulier, nous avons pu cartographier les contraintes mécaniques et la distribution de dopage de charge déduite des mesures Raman.

En outre, nous avons étudié la dynamique de la membrane de graphène avec une nouvelle approche optomécanique utilisant une détection homodyne équilibrée avec une sensibilité limitée au bruit quantique de phase du laser sonde. Pour cela, nous avons développé un nouveau type d'échantillons traversants, dans lequels les effets de la cavité optique sont éliminés et le graphène est accessible optiquement par ses deux côtés permettant des mesures pompe-sonde à résolution spatiale. Nous avons étudié l'impact de la dissipation spatialement hétérogène qui modifie fortement le bruit thermique du système hybride constitué de la membrane de graphène couplée à un autre nanorésonateur. Nous avons observé et quantifié une déviation au développement modal dont l'importance a pu être ajustée en contrôlant thermiquement l'hybridation entre les deux systèmes. On a également vérifié que le théorème de fluctuation dissipation reste valable dans une mesure de force. En couplant le graphène à un résonateur de facteur de qualité plus élevé, le rapport signal sur bruit dans une mesure de force peut ainsi être amélioré sur une certaine plage de fréquence.

Enfin, nous avons étudié les propriétés thermiques de membranes de graphène hétérogènes suspendues, à travers des mesures de réponse thermiques statiques et dynamiques consécutives à un dépot de chaleur controlé généré par un laser de pompe. Cette approche représente une nouvelle méthode pour imager les propriétés de conduction thermique sans contact physique, en utilisant un système d'imagerie optique directe de la propagation des ondes thermiques générées dans l'échantillon de graphène. La dépendance spatiale de la conductivité thermique se révèle fortement corrélée aux hétérogénéités intrinsèques de la membrane.

Abstract

Graphene is an atomically thin material which is very light, displays an extremely high in-plane stiffness and interacts efficiently with light and electrical fields. Therefore graphene-based mechanical oscillators are very interesting for studying coupling mechanisms, in particular in the context of ultra-sensitive force sensing. However, nanoscale membranes are highly sensitive to any intrinsic heterogeneity because of their high surface to volume ratio. The former can strongly modify their vibrational properties.

In this work we investigate the vibrational properties of graphene grown by chemical vapour deposition and suspended over up to 20 µm in a drum geometry. The large dimension of the membranes allows us to characterize their spatial properties by various methods. In particular, we were able to map the built-in mechanical strain and charge doping distribution deduced from Raman measurements.

Furthermore, we investigated the graphene membrane dynamics with a new optomechanical approach employing a balanced homodyne detection with a sensitivity that is only limited by the quantum phase noise of the probe laser. To this end we developed a through hole sample design, where optical cavity effects are eliminated and the graphene can be optically accessed from opposite sides allowing for spatially resolved pump-probe measurements. We found that spatially heterogeneous dissipation strongly modifies the thermal noise of a hybrid system which is composed of graphene coupled to another nanoresonator. We observed and quantified a deviation from the normal mode expansion whose strength could be adjusted by thermally controlling the hybridization between the two nanoresonators. We also verified that the fluctuation dissipation theorem remains valid in response measurements. By coupling graphene to a resonator with a higher quality factor, the signal-to-noise ratio in force measurements can be improved in a certain frequency range.

Finally, we investigated the thermal properties of heterogeneous suspended graphene by measuring the membrane's static and dynamical response to heat deposited in a controlled manner by a thermal wave generated with a pump laser. This approach constitutes a new method to access the sample's heat conduction properties without physically contacting it, using a direct optical imaging of the thermal wave propagating inside the graphene sample. The spatial dependence of the thermal conductivity is found to be strongly correlated with intrinsic heterogeneities of the membrane.
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 1111 Figure 1.1: Masses and frequencies of miscellaneous mechanical resonators. As the dimensions of the mechanical resonators shrink, their resonance frequency increases. Micro-and nanoresonators can reach resonance frequencies up to hundreds of MHz. Figure adapted from [5].
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 12 Figure 1.2: Carbon nanotube resonators. (a) Top: TEM image of the CNT response to resonant alternating applied potentials. The expected mode shapes are easily recognizable. Images taken from [15]. Bottom: sketch of the actuation scheme. (b) Top: false-colour SEM image of a suspended CNT device. The metal electrodes are shown in yellow. Centre: Detected current as a function of gate voltage and frequency. The oscillation frequency can be tuned with the DC backgate voltage. Bottom: schematic of the actuation and detection scheme. (c) Top: TEM image of static and vibrating CNT. Centre: Transmitted and received audio waveforms. The CNT emission current faithfully reproduces the audio signal. Bottom: Schematic of the CNT radio actuation and detection scheme. Images in (b) and (c) were adapted from[START_REF] Sazonova | A tunable carbon nanotube electromechanical oscillator[END_REF] and[START_REF] Jensen | Nanotube radio[END_REF] respectively.
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 14 Figure 1.4: Graphene nanomechanical resonator coupled to microcavity field. (a) Gate-tunability of the mechanical resonance frequency Ω m and of the single-photon coupling g 0 . Image adapted from [12]. (b) Top: Simplified sketch describing the capacitive coupling of a mechanical resonator to a microwave cavity. Bottom: The principle of sideband cooling is based on an anti-Stokes Raman process involving acoustical graphene phonons and photons of the microwave cavity field. When pumping the cavity at a frequency ω p , sidebands are created at ω p ±ω m , where ω m denotes the mechanical resonance frequency of the graphene. This is due to the coupling between the photons and the mechanical vibrations. If the pump is detuned such that the upper sideband frequency is matched with the cavity resonance frequency ω c = ω p + ω m the anti-Stokes scattering is resonantly enhanced.
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 15 Figure 1.5: Examples of optical and electrical actuation/detection techniques in graphene transducers.A combined electrical actuation and detection scheme as previously employed for CNTs by[START_REF] Sazonova | A tunable carbon nanotube electromechanical oscillator[END_REF], was also demonstrated for graphene resonators (e-[START_REF] Chen | Performance of monolayer graphene nanomechanical resonators with electrical readout[END_REF]). Different realizations of optical coupling to mechanical graphene resonators exist: The first devices worked in the visible range (VIS) with the graphene being part of an optical cavity integrated on-chip (a-[START_REF] Bunch | Electromechanical resonators from graphene sheets[END_REF], b-[START_REF] Barton | Photothermal self-oscillation and laser cooling of graphene optomechanical systems[END_REF]).In the present work we will present an optomechanical study of the dynamics of graphene resonators in an optical cavity-free structure in chapters 4-6. Graphene resonators integrated into microwave (µ-wave) cavities as realized by (d-[START_REF] Weber | Detection and Generation of Gravitational Waves[END_REF]) combine the mechanical, optical and electrical properties of graphene in an original way. The work of Engel et al.[START_REF] Engel | Light-matter interaction in a microcavitycontrolled graphene transistor[END_REF] investigates the light-matter interaction in a microcavity-controlled graphene transistor.
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 16 Figure 1.6: Crystallographic structure of graphene Left: Real space lattice structure of graphene. The triangular unit cell is formed by the basis vectors a 1 and a 2 . Each unit cell has two atoms denoted A and B. Right: corresponding electronic Brillouin zone. The Dirac cones are located at the K and K' points. Image taken from [29].
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 17 Figure 1.7: Mechanical properties of graphene (a) Elastic properties of graphene probed by nanoindentation. Top: Schematic of nanoindentation on suspended graphene membrane. Bottom: Four typical force-displacement curves, with different tip radii R and film diameters 2a. The fracture loads are indicated by × marks.The breaking force depends strongly on the tip radius but not on the sample diameter. Image adapted from[START_REF] Lee | Measurement of the elastic properties and intrinsic strength of monolayer graphene[END_REF]. (b) top: Schematic of a graphene sealed microchamber. When the sample is placed in vacuum, the graphene membrane bulges up forming a balloon-like structure. Inset: optical image of a single atomic layer graphene drumhead on a silica well. Bottom: AFM topography image of a multilayer graphene drumhead subjected to a pressure difference. These experiments showed that graphene is impermeable to gas including helium. Images adapted from[START_REF] Bunch | Impermeable atomic membranes from graphene sheets[END_REF].
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 18 Figure 1.8: Electronic band structure of graphene and ambipolar field effect. (a) Left: Band structure in the first Brillouin zone obtained from tightbinding calculation. Shown are bonding (bottom) and anti-bonding (top) π bands, which touch each other at the Dirac points. Right: Zoom onto the Dirac point. In vicinity of the Dirac points, the energy dispersion is linear. Image from [29]. (b) Resistivity as a function of applied gate voltage for exfoliated single layer graphene.The rapid decrease in resistivity on adding charge carriers indicates their high mobility, which does not noticeably change when increasing the temperature to 300 K. Image from[START_REF] Geim | The rise of graphene[END_REF].
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 19 Figure 1.9: Optical transmission of graphene. (a) Optical image of a 50 µm aperture partially covered by single and double layer graphene. The line scan profile shows the intensity of transmitted white light along the yellow line. (b) Transmittance spectrum of single-layer graphene (open circles). Inset: optical transmittance as a function of the number of graphene layers. Each layer absorbs 2.3% of the incoming light. Images from [39].
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 110 Figure 1.10: Thermal conductivity and thermal expansion coefficient of suspended single-layer graphene. (a) False-colour SEM image of a suspended device, which consists of two 25 × 20µm 2 Pt/SiN x membranes. The red and blue Pt coils are the heater and sensor, which are thermally connected by suspended graphene (grey sheet in the middle). (b) Thermal conductivity versus sample length with negligible thermal contact resistance at 300 and 120 K, respectively.The thermal conductivity increases with the graphene membrane length, even if the latter exceeds by far the average phonon mean free path. A logarithmic divergence of the thermal conductivity with the sample length is predicted theoretically for ideal two-dimensional systems. Images from[START_REF] Xu | Length-dependent thermal conductivity in suspended singlelayer graphene[END_REF]. (c) Thermal expansion coefficient α of graphite and graphene as a function of temperature as found by first principles calculations by[START_REF] Mounet | First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[END_REF]. The thermal expansion coefficient of both graphite and graphene takes negative values over a wide temperature range, which means that they contract upon heating.
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 111 Figure 1.11: Principle of Raman scattering.(a) Microscopic picture of a firstorder electronic Raman scattering process at the example of a direct band-gap semiconductor: the absorption of an incident photon of energy ω in excites an electron from state |i to |n . The excited electron is inelastically scattered into state |n * by a phonon of energy Ω ph and wave vector q ph . Note that the sketch is not to scale. When inspecting the orders of magnitude, momentum conservation requires that the phonon wave vector be close to zero. After scattering, the excited electron recombines with the hole thus returning to its original state |i . In the de-excitation process a photon of energy ω sc is emitted. These scattered photons constitute the detected Raman signal. (b) Sketch illustrating first and higher order phonon scattering: The first order process only involves a single phonon with energy Ω 0 near the Γ-point (purple disk), while in higher order processes, where more than one phonon is involved, momentum conservation can be satisfied with larger phonon wave vectors. Examples of two-phonon processes are overtones involving two phonons from the same phonon branch or the combination of phonons from two different branches.
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 112 Figure1.12: Main peaks of the graphene Raman spectrum. The G peak (∼ 1580 cm -1 ) results from a first order scattering process, while the 2D peak (∼ 2650 cm -1 ) arises from a second order scattering process. Usually the 2D mode is more intense than the G mode. This is not the case in the shown spectrum due to optical cavity effect (see section 3.1.3). Both the G and 2D mode are sensitive to environmental conditions and can for example be used to determine charge doping or strain in the graphene membrane. The D mode ∼ 1350 cm -1 requires structural defects for its generation. Its intensity is therefore a measure of the structural quality of the sample.
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 114 Figure 1.14: Raman processes for the G, D and 2D peaks in graphene.Electron dispersion (solid black lines), occupied states (shaded areas), interband transitions neglecting the photon momentum, accompanied by photon absorption (blue arrows) and emission (red arrows), intraband transitions accompanied by phonon emission (dashed arrows), electron scattering on a defect (horizontal dotted arrows). Figure adapted from[START_REF] Ferrari | Raman spectroscopy as a versatile tool for studying the properties of graphene[END_REF] 
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 115 Figure 1.15: Effect of charge doping on the Raman G and 2D peak of single layer graphene. (a), (b) Upon charge doping the G mode frequency stiffens, while the width sharpens. (c) The dependence of the 2D peak position on the charge carrier density is more complex because the 2D mode originates from a doubly resonant Raman process where real electronic excitations need to be exactly matched. (d) Energy renormalization of the G mode. The G-phonon decay into an electron-hole pair is forbidden by the Pauli principle at high doping levels. (e) The width of the G mode saturates when the Fermi energy becomes equal to the energy of the incoming photon because of blockage of the phonon decay channel into electron-hole pairs due to the Pauli principle. (a) to (c) from [56].
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 4116 Figure 1.16: Effect of biaxial strain on the graphene Raman phonon energies. D, G, and 2D peaks plotted as a function of tensile (T) and compressive (C) biaxial strain induced with a piezoelectric actuator allowing to bend the flexible support onto which the graphene has been deposited. The solid lines are linear fits. [64].
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 118 Figure 1.18: Energy of the harmonic oscillator as a function of the temperature T . The dashed line corresponds to the classical and the red curve to the quantum mechanical description. The classical picture does not account for the zero-point energy of the oscillator and therefore fails in the low temperature limit.
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 119 Figure 1.19: Thermal displacement noise for varying quality factors.The thermal displacement noise spectral density as given by expression 1.5.[START_REF] Lambin | Elastic Properties and Stability of Physisorbed Graphene[END_REF]. With increasing quality factor, the displacement noise amplitude becomes narrower and higher and the phase slope steeper.
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 120 Figure 1.20: Vibrational modes of thin films. Mode shapes for the first six modes of (a) circular and (b) square films. The mode name (m,n) gives the number of nodal lines and circles in case of circular films and the number of antinodes along the x-and y-direction in case of square film.
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 121 Figure 1.21: Coherent control of a classical mechanical two-level system based on two coupled vibrational modes of a nanostring resonator. (a)The resonance frequencies of the out-of-plane and in-plane fundamental modes of the nanoresonator are controlled by the voltage applied with an arbitrary waveform generator. The black circle marks the initialization state at 0V and the frequency of the radiofrequency drive, while the green and blue circles correspond to the lower and upper states of the classical two-level system, respectively. (b) Measurement of Ramsey fringes. Above: Pulse scheme. The system is adiabatically tuned from the initialization to the lower state. A π/2-pulse creates a superposition state, and after a delay τ a second π/2-pulse is applied. Below: A 500 Hz detuning between the drive and precession frequency leads to a slow rotation of the superposition state in the equator plane of the equivalent Bloch sphere, giving rise to a beating pattern in the measured z component after the second pulse. The Bloch sphere in the inset shows the state of the Bloch vector at selected times, which are marked in the same colour in the top panel. Images taken from[START_REF] Faust | Coherent control of a classical nanomechanical two-level system[END_REF].
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 122 Figure 1.22: Multilayer graphene and nanowire resonators. Above: (a) Sketch showing simultaneous detection of motion and strain in a multilayer graphene cantilever. Inset: optical image of a typical resonator. Inset at top left: optical image of a multilayer graphene resonator. (b) Driven amplitude (black) and Raman shift of G mode (green) around the mechanical resonance frequency of the cantilever resonator. Images from [78]. Below: (a) Mechanical vibration spectrum of a SiC nanowire, showing the first three longitudinal modes. (b) Zoom onto the first resonance revealing two peaks corresponding to two orthogonal displacement modes due to asymmetries in the nanowire shape and clamping conditions. (c) Vibration profiles of the first three oscillation modes. (d) SEM image of a singly clamped nanowire suspended at Institut Lumière Matière. Images from [74].
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 21 Figure 2.1: Standard and pulsed CVD growth processes for graphene.While the standard graphene growth method results in graphene with multilayer patches, the pulsed growth technique developed in the group allows to grow largescale continuous monolayer graphene. (a) Process flows comparing the time evolution of furnace temperature and injected gases for standard-CVD (continuous) growth and the improved pulsed-CVD growth method. The pulsed growth is characterized by a carbon injection pulse time t 1 and an idle time without carbon exposure t 2 and the total growth time t g . (b) SEM micrograph of continuous monolayer graphene grown with the pulsed technique. The graphene is free of multi-layers. However, it displays wrinkles that can be seen as dark streaks and grain boundaries (not visible). (c) Dependence of the morphology of CVD graphene multilayer islands on total pressure for standard growth. Note that the growth process was interrupted before reaching full surface coverage. Image (a) was adapted from[START_REF] Han | Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils[END_REF] and image (c) from[START_REF] Han | Macroscopic CVD Graphene for Nanoelectronics: from growth to proximity-induced 2D superconductivity[END_REF].

Figure 2 . 2 :

 22 Figure 2.2: Formation of multilayers during CVD graphene growth. a) and b) Schematics showing the growth mechanisms near a defect site on copper (for standard, continuous CVD growth), leading to a graphene flake with multi-layers as depicted in the SEM picture in c) showing a graphene grain after transfer on oxidized silicon. Notice that the multilayers appear in the centre, which indicates the site of nucleation. Figure taken from [93].
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 23 Figure 2.3: Grain boundaries in graphene grown by chemical vapour deposition. (a) and (b) Annular dark-field scanning transmission electron microscopy images showing two intersecting graphene grains. An aperiodic line of structural defects (pentagons, heptagons and distorted hexagons) stitches the two grains together. The scale bars represent 5 Å. These local defect lines are responsible for modified overall graphene properties such as lower electrical mobility and heat diffusion coefficient due to increased defect-scattering of both electrons and phonons. Images from [91].
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 24 Figure 2.4: Fabrication processes for two different types of suspended graphene samples. (a) After its growth on a copper substrate by chemical vapour deposition, graphene is coated with a resist support layer. Subsequently the copper is removed by wet etching. (a) Fabrication of integrated devices which allow for electrical manipulation of the graphene and constitute an optical cavity. With two subsequent lithography steps, electrodes are put on the SiO 2 /Si substrate and wells are etched into the silica layer. Graphene is then transferred onto the prepatterned substrate. (c) Fabrication of substrates with optical access from opposite sides to the graphene membrane which allow for spatially resolved optical pump-probe measurements. In two aligned lithography steps, windows are opened in the top and bottom silicon nitride layers of a Si 3 N 4 /Si/Si 3 N 4 substrate. Afterwards the silicon layer between the windows is removed by wet etching creating a fully traversing hole in the substrate. Graphene is then transferred onto the created SiN frame.
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 25 Figure 2.5: Optical micrographs of typical samples. (a) Standard sample with wells in the SiO 2 layer of a SiO 2 /Si substrate. The right image is a zoom onto the structure. The small circular and square structures are the wells onto which the graphene is transferred. Fully graphene covered wells are marked by red crosses. Their size ranges from 4 to 10 µm. All the drumheads are connected to trenches acting as drains during liquid graphene transfer. (b) Typical sample which gives access to the graphene from the top and bottom side. The green rectangles in the left image are an array of suspended Si 3 N 4 membranes. These are patterned with holes onto which the graphene is transferred (right image).
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 26 Figure 2.6: Release of silicon nitride frames by deep etching of the silicon substrate. (a) Wafer plunged into a KOH solution heated by a hot plate.In the corners between defined squareshaped structures the silicon is already completely etched away by the KOH, so that only a semitransparent silicon nitride membranes are left. The lines between these 1 cm wide squares serve as cleavage lines to obtain individual samples. Each sample features a 9 by 9 array of small silicon nitride membranes.
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 28 Figure 2.8: Suspended graphene on a Si 3 N 4 frame. (a) and (b) The optical images of free-standing graphene membranes show undulations of the graphene surface that can be of different length scales. (c) The SEM image does not allow to identify such undulations, but thin wrinkles. The side length of all membranes is 20 µm.
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 29 Figure 2.9: SEM micrographs of suspended single layer graphene membranes supported by a SiO 2 /Si substrate. The images summarize some recurring membrane structures demonstrating the difficulty of obtaining a fully intact suspended graphene membrane with little defects like the one shown in (a).Note that the membrane shows some small wrinkles that span across its surface. The fate of most graphene drums is captured by the ruptured membranes surrounding the intact one in (a). Especially the drying process after the graphene transfer is very delicate and tears apart the majority of membranes. However, even if the graphene does not rupture completely, other features can occur that impact the membrane homogeneity: (b) The membrane has an open hole on top of the drain. Such holes can also occur in the drum head. (c) Relatively large wrinkles span across the drumhead. (d) Small wrinkles representing replica of the Cu surface. (e) Even though the membrane is not ruptured, it sank to the bottom of the well and is no longer suspended. The scale bars in (b) to (e) represents 2 µm.
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 210 Figure 2.10: Continuous Graphene with flower-shaped multilayer patches transferred to a perforated Si 3 N 4 substrate. (a) Large scale image showing a perforated Si 3 N 4 membrane fully covered with continuous graphene exhibiting several flower-shaped multilayer patches. (b) Zoom onto the marked region in (a) showing that multilayers extend into the suspended region. The number of layers for the left flower are indicated. (c) Zoom onto the suspended region in (b), where the contrast was optimized to render the membrane structure visible.The multilayer region can clearly be distinguished. Furthermore we can discern undulated features representing small wrinkles that were formed along the terraces of the copper substrate and thinner, more widely and randomly spaced wrinkles which are produced when the copper and graphene retract differently during the cool-down after growth.
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 31 Figure 3.1: Topography of a typical suspended graphene drum. (a) Topographic AFM image. (b) Cross section obtained on the two cuts indicated as lines in on (a). (c) Topography map of (a) where the contrast was optimized to render ripples (white arrows) and grain boundaries and holes (blue arrow) more visible.

Figure 3

 3 Figure 3.2: Suspended graphene membrane driven by an AFM tip in tapping mode. (a) The AFM topography map shows strong height oscillations in the suspended graphene region which is indicative for an interaction between the AFM tip and the graphene membrane. In fact, the graphene membrane locally enters into resonance with the AFM tip causing periodic artefacts in the topography image. (b) Height profile along the scan direction through the cut indicated as a blue line in (a). The oscillating pattern is very regular.

Figure 3 . 3 :

 33 Figure 3.3: Raman study of suspended versus supported graphene. (a)Typical Raman spectra of graphene that is suspended or supported on SiO 2 taken with a laser wavelength of 532 nm and a 1800 grating. The Raman shifts ω (widths Γ) in cm -1 are indicated next to the corresponding peaks. In case of suspended graphene, the 2D mode is slightly down-shifted and the FWHM of both modes is decreased. (b) Optical image of the studied graphene membrane. The red and blue crosses indicate the positions where the Raman spectra in panel (a) were taken. (c) The lack of a D-peak indicates a high structural order of the CVD graphene. The histograms in panel (d) to (g) summarize the properties of the G and 2D peaks obtained from a Raman scan in the region marked by a red square in (b). The data presented for the suspended (supported) graphene is taken from the bright green (dark green) area in (b). The mean values µ and standard deviations σ of the histograms are reported in units of cm -1 in the legends. While the Raman shift of the G mode hardly changes, The 2D mode frequency is on average up-shifted by about 1 cm -1 in the supported region. The FWHM decreases for both modes in the suspended region by about 1 cm -1 .
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 134 Figure 3.4: Interference enhanced Raman scattering. (a) Sketch representing the absorbed laser light in the graphene layer (top) and Raman scattered light (bottom) in a multi-layer system considering that the layers below graphene have an effective reflection coefficient r eff . (b) Enhancement factor F λ in →λ R for the Raman G and 2D modes as a function of the depth of the hole (d air ) in the wafer calculated with expression (3.1.1) for a laser wavelength of λ in = 532 nm. It takes into account interference effects for both the laser and the Raman scattered light. The highest enhancements for both the G and 2D modes are reached at about 200 and 360 nm thickness of the air layer. (d) Intensity ratio of the 2D and G mode displayed in (b).

3. 1 . 1 :

 11 PROPERTIES OF FREELY SUSPENDED GRAPHENE REVEALED BY ATOMIC FORCE MICROSCOPY AND RAMAN SPECTROSCOPYlayer material refractive index at 532 nm thickness Properties of the layers of the device. The complex refractive index for each layer in the third column was taken from[START_REF] Wang | Interference enhancement of Raman signal of graphene[END_REF]. Column four indicates the thickness of each layer. The thickness d air of layer 2 is controlled by the reactive ion etching process. It is linked to the thickness d 3 of 500 nm of the fourth layer by the fixed thickness of the silica layer on the commercial substrate.
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 35 Figure 3.5: Hole doping of graphene (a) Optical image of a Hall-bar device made using standard-CVD graphene transferred onto an SiO 2 substrate. The zone probed between electrodes 1 and 2 is fully monolayered, while the zone between electrodes 2 and 3 shows a multilayer patch as indicated by the arrow. (b) Differential four probe resistance of the zone between electrodes 1 and 2 without a multilayer patch. The maximum of the resistance is shifted to positive voltage values indicating hole doping of the graphene. c) Sketch of the position of the Fermi level E F with respect to the Dirac point in the case of hole doping. Figure adapted from [115].
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 36 Figure 3.6: Deconvolution of charge doping and mechanical strain by correlation analysis of the Raman G and 2D modes positions.Measuring the G and 2D modes at one point of the graphene sample allows to trace a vector x in the (G,2D) frequency-plane. Its coordinates, which are known in the orthogonal base given by the vectors e G and e 2D , can be projected onto the non-orthogonal vectors e and e n which define the components x and n x of vector x in terms of mechanical strain and charge doping respectively. The origin of the coordinate system, denoted (ω G0 , ω 2D0 ), is defined by the G and 2D modes position for unstrained and undoped graphene. When moving along the strain line towards higher (lower) G and 2D frequencies, the compressive (tensile) strain increases.
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 37 Figure 3.7: Determination of intrinsic strain and doping of suspended and supported CVD graphene transferred onto different substrate types.(a) and (b) Correlation between the Raman G and 2D modes for suspended and supported graphene. Each colour stands for a data set from the Raman map of a different graphene drum. (c),(e),(g) Histograms with strain values extracted from the correlation plots. The text box in the top left corner indicates the substrate type and whether the data is taken from a suspended (sus) or supported (sup) graphene region as sketched in the inset. Additionally it states the mean strain value in % and, in brackets, its standard deviation. The corresponding doping histograms are plotted in panels (d),(f) and (h). As for the strain, the text box on the top left gives the average doping value in 10 12 cm -1 and its standard deviation.
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 38 Figure 3.8: Strain and charge doping analysis with complementary AFM and Raman measurements. (a) to (c) AFM topography images. (d) Raman maps summarizing the main peak properties. The AFM and Raman maps were taken by the master student Léo Djevahirdjian. (e) Analysis of Raman G and 2D modes frequency correlation as a function of distance from the centre of the membrane. The dashed line in the colour bar indicates at what distance from the centre we pass from suspended to supported graphene data. (f), (g) Strain and doping maps extracted from (e). While the doping level is rather homogeneous over the whole measured region, the strain distribution displays local variations that can be understood in terms of the topography of the membrane. 85
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 39 Figure 3.9: Inflated graphene balloon: strain induced by hydrostatic pressure. (a) and (b) Sketches of the graphene membrane at atmospheric pressure and under vacuum when the pressure of the air trapped inside the drum pushes the membrane upwards. (c) AFM height profiles for different pressures. (d) AFM topography maps of for two different pressures for the membrane shown in (c) with a diameter of 2 µm.
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 310 Figure 3.10: Graphene under uniform electrostatic pressure. (a) Schematic of the measurement setup. A static voltage is applied between the silicon backgate and the graphene. The latter and the AFM tip are grounded. (b) AFM topography map for an applied voltage of -20 V. (c) Graphene depth profiles for different electrostatic pressures are superimposed with parabolic fits (dashed black lines). (d) Deflection of the centre of the membrane as a function of applied pressure. The dashed line is a linear fit of the data points.
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 311 Figure3.11: Electrically driven graphene resonator (a) Sketch of a graphene resonator driven by a rf voltage applied to the silicon backgate. Via a dual reflection-Raman readout scheme, both reflected and Raman scattered photons can be detected. (b) Schematic of the reflection readout. The graphene slightly is defocussed out of off the centre of the laser beam waist as shown on the left hand side. The intensity distribution of the laser beam is depicted on the right. The position of the membrane is chosen in a way to be positioned at the intensity slope. Hence, when the membrane moves along the optical axis, it causes an intensity modulation of the reflected light. (c) Typical electrically driven displacement amplitude of a graphene oscillator (8 µm in diameter) at 10 K obtained by sweeping the excitation frequency. Peaks of several vibrational modes can be seen. The spectrum exhibits a dip around 30 MHz which can be explained in terms of destructive interference of the responses of individual eigenmodes. (d) Electrically driven displacement amplitude of the same membrane as in (c) for an excitation power of 0 dBm and at 300 K. The spectra in (c) and (d) were both taken at low pressure of some 10 -6 mbar.
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 312 Figure 3.12: Influence of the drive on the mechanical response (a) Comparison of a mechanical (piezo) and electrical (elec.) actuation on the fundamental mode of the membrane. The signals were arbitrarily superposed for comparison. (b) Response spectra taken for different excitation powers at 300 K. As the excitation power increases, the mechanically non-linear behaviour becomes more and more prominent.
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 313 Figure 3.13: Strain in a resonating graphene membrane. (a) Raman 2Dmode a graphene membrane when static and when driven at its resonance frequency with an excitation power of 30 dBm. The spectra were taken at the centre of the graphene membrane as indicated by the cross in the inset presenting an optical image of the membrane. The frequency in the driven case is significantly downshifted by 7 cm -1 , which is an indication for the induced strain. (b) Raman G and 2D modes frequencies extracted from a line scan across the edge of a graphene membrane as shown in the optical image inset. The blue (orange) shaded region corresponds to measurement points in the supported (suspended) graphene region. The left (right) panel shows the spatial evolution of the mode frequencies in the membrane when static (when driven at its resonance frequency).
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 41 Figure 4.1: Sketch of the experimental setup. The following abbreviations are used: (P)BS -(polarizing) beam splitter, LO -local oscillator, AOM -acousto optical modulator, dichr. -dichroic mirror, λ/2 -half wave plate, λ/4 -quater wave plate, PD -photodiode, APD -avalanche photodiode.
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 42 Figure 4.2: Core of the experimental setup. (a) Sketch of the content of the vacuum chamber displaying the optical microscope setup and the positioning units. (b) Coarse and fine positioning is achieved with step motors and piezos that move the objectives and the sample. (c) Photo of the sample sandwiched between the pump and probe laser objectives.
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 43 Figure 4.3: Sketch of the homodyne detection scheme. The incident laser beam is split by a beam splitter and enters the LO and a signal (graphene) arms.The reflected signals are spatially superimposed on the same beam splitter. The graphene membrane is a semi-transparent rather than a perfectly reflecting mirror and absorbs a non negligible part of the optical light field. Therefore the corresponding vacuum fluctuations entering the interferometer through the graphene membrane need to be taken into account to preserve the commutation relations of the reflected light field operators and their Poissonian character in absence of classical noise.[START_REF] Barnett | Quantum optics of lossy beam splitters[END_REF][START_REF] Matloob | Electromagnetic field quantization in absorbing dielectrics[END_REF].
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 44 Figure 4.4: Michelson interference fringes serving as displacement calibration. (a) Typical fringe pattern obtained in the balanced interferometric signal when a triangular shaped modulation is imposed on the LO piezo. The pattern is distorted at the piezo inversion points. (b) Zoom onto the slope of a Michelson fringe after proper calibration of the horizontal axis. The measurement is linear over a distance of about 65 nm and typical measuring slopes are of the order of some 10 7 V/m. (c) Difference of reflected signals detected by the two photodiodes when scanning the sample in the horizontal plane. Moving the graphene membrane along the optical axis (z-direction) changes the phase difference between the beams reflected by the graphene and LO, which gives rise to the interference pattern in the scan. The image is acquired from bottom to top with rapid line scans along the z directions. A slight vertical tilt of the sample is visible. The fast oscillations between horizontal lines are due to LO drifts, while the slower changes are due to sample inhomogeneities impacting the reflected phase. The interference fringe amplitude is maximized at the waist of the laser beam (centre of the image), where the maximum amount of light is collected back. The transverse resolution of the microscope (along x) is approximately 500 nm. (d) Difference and sum of reflected signals detected by the two photodiodes for a larger scan along the optical axis. The sum yields information on the size of the waist of the probe laser beam. 107
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 45 Figure 4.5: Typical reflection and transmission maps. (a) to (c) show reflection and transmission maps for the same membrane with a side length of 20 µm obtained by scanning the sample position. (a) The reflection map taken with the red laser reveals the topography of the membrane. We find regions with larger and smaller ripples, which are typically created during the graphene transfer process. Dark spots are places with high absorption, probably due to impurities deposited on the membrane surface. (b) The green laser reflection map also displays some ripples, albeit in a less pronounced manner. (c) The transmission map of the green laser yields complementary information. Two regions with slightly different contrasts can be discerned: A flower-shaped region in the top left corner (marked by dashed lines) appears brighter than the rest of the membrane. Comparing this region with the reflection maps, we also notice that the flower-shaped region shows larger ripples.
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 46 Figure 4.6: Thermal displacement noise of a single layer graphene membrane. (a) Sketch of the sample environment for displacement noise detection. (b)Thermal displacement noise spectrum taken with a probe laser power of 400 µW. It can be fitted well with a mechanical Lorentzian (dashed purple line). The narrow peak at the right hand side is generated by a fast piezo element supporting the LO mirror. It serves as reference peak allowing to make up for spatial drifts or reflectivity variations in the sample.
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 47 Figure 4.7: Dependence of thermal displacement noise spectra on the probe laser power. (a) Thermal displacement noise spectra taken for different probe laser powers at a pressure of some 10 -6 mbar. Fits with equation 4.3.2 are superimposed as black lines. (b)The peak heights of the thermal displacement spectral densities and the background noise deduced from the fits are plotted together. Above 100 µm the noise floor is confirmed to be inversely proportional to the probe power, whereas the thermal noise peak height does not depend on the latter. For optical powers lower than 100 µW, the equivalent background level evolves as P -2 , as expected for background voltage fluctuations which are independent on the optical power employed. (c) Above a threshold of about 200 µW the resonance frequency increases linearly with the probe power. (d) The quality factor does not show a clear dependence on the probe power.
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 4849 Figure 4.8: Spatial profiles of the first three vibrational graphene modes. (a) Maps of the first three vibrational modes of a square membrane with a width of 20 µm . The first mode is elliptically shaped and the two other ones are aligned along the diagonal of the square. These properties can be explained in terms of strain along the diagonal that originates from the graphene transfer process. It splits the frequencies of the otherwise degenerate second vibrational mode. (b)This assumption is confirmed by finite element modelling for a membrane with initial strain along the diagonal.

Figure 4

 4 Figure 4.10:Mechanical damping rate as a function of pressure. The data is deduced from thermal noise measurements of the graphene and SiN eigenmodes (eigenfrequencies in the MHz range). The pressure dependence of the SiN mode is in agreement with a model accounting for acoustic wave emission (dashed line). However, the same model does not hold for graphene, probably because its spatial extent is significantly smaller than the acoustic wavelength (340 µm).
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 411 Figure 4.11: Typical response spectrum of a graphene membrane driven by an intensity-modulated pump laser. (a) Sketch of the measurement scheme:The pump and probe lasers are spatially superimposed on graphene membrane. The intensity-modulated pump laser beam mechanical drives the resonator using a photo-thermal effect, while its motion is detected interferometrically by the probe laser. (b) Driven displacement amplitude of the first vibrational mode of a single layer graphene resonator taken with a probe laser power of 5 µW and a modulation depth of δP P = 0.5. The broad graphene peak is positioned at 1 MHz. It is surrounded by several higher mode resonance peaks of the SiN membrane which display significantly higher quality factors.
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 4412 Figure 4.12: Characteristics of the intensity modulation of the pump beam. (a)The acousto-optical modulator (AOM) output taken for a nominal modulation depth of δP P = 30% shows a low-pass behaviour with a cut-off frequency Ω c = 3 MHz. We note that larger modulation bandwiths were subsequently obtained by optimizing the return optical path in the AOM. However the actuation regime shown here is the one used in the measurements exposed in the next chapter. The slope observed in the dephasing measurement is due to a delay in the establishement of the optical modulation (and marginaly in the detection electronics). (b) Schematic of the AOM transfer function whose transmission does not increase exactly linearly with the control voltage. This causes a saturation in the modulation strength at large actuation amplitudes. (c) Modulation depth of the AOM at a frequency of 1.5 MHz.
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 413 Figure 4.13: Optomechanical response measurement to check the force linearity (a) and (c) show the driven displacement amplitude for increasing optical modulation depths δP of the pump laser while its average power is kept constant at P 0 = 150 µW. The 3-peak fits according to the model (red dashed lines in (c)) are in very good agreement with the experimental spectra. (b) The maximum displacement amplitude increases linearly with the modulation depth in the studied actuation range (slope of 17 µm/W). (d) Force modulation exerted on the resonator as a function of the applied optical modulation depth. (e) Phase delay measured between the displacement and intensity modulation. (f) Dephasing at resonance versus modulation depth. An instantaneous optical force would give a constant 90• dephasing. This is not the case here due to the underlying thermal origin of the actuation mechanism. The slight slope observed is due to the thermo-optical origin of the actuation mechanism: the induced temperature change causes a small frequency-dependent delay in the explored frequency range.
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 151 Figure 5.1: A coupled graphene-nanoresonator system with tunable frequency. (a) The probe beam is spatially superimposed with a tuning beam at the centre of the graphene membrane which is supported by an oscillating SiN membrane frame. (b) Upon increase of the static intensity of the tuning laser, the frequency of the graphene peak (and to a lesser extent the frequency of the SiN modes) shift, resulting in a succession of frequency anticrossings.

  Figure 5.2:Thermal displacement noise of a coupled graphenenanoresonator system. (a) Thermal noise measurements, taken for increasing pump laser tuning powers across the anticrossing region, from 50 to 800 µW. The dashed lines are fits using expression (5.3.24) which are in perfect agreement with the measurements across the entire anticrossing region. (b) Density plot of the dataset presented in (a). The anti-crossing becomes very obvious. (c) and (d) report the fitting parameters Ω S,G and Γ S,G used for fitting data in (a), using a fixed inertial coupling strength of µ = 0.002. The solid lines represent the coupled eigenfrequencies Ω ± /2π and effective damping rates Γ ± /2π deduced from equations (5.1.9) and (5.1.17) which are in good agreement with hybridized mechanical properties (purple disks). (e) Brownian temperature used to fit the measurements according to expression 5.3.24. No apparent temperature increase is observed.
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 53 Figure 5.3: Schematics of the coupled nanoresonators. (a) Both the SiN and the graphene membrane are free to vibrate. They are described in terms of a one-dimensional model of two cascaded oscillators as depicted in (b). (c) Spatial profiles of the symmetric and anti-symmetric eigenmodes. The symmetric one (Ω -) is the lowest in energy.
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 55 Figure 5.5: Role of damping heterogeneity. Above: thermal noise spectra as measured on the graphene membrane, that are calculated for Ω G /2π = 2 MHz, Γ S /2π = 5 kHz and for different graphene damping rates: (5, 10, 20, 50, 100, 200 and 500 kHz from i to vii). The respective coupling strength are µ = 0.1 and 0.01 for (a) and (b). The peak asymmetry and the noise reduction are absent in case of homogeneous damping (case i in red) and a modal description reproduces well the simulated thermal noise spectra (dashed line). Below: Theoretical maps of thermal noise spectra obtained for varying uncoupled graphene frequency Ω G and for different graphene damping rates: from left to right: Γ G /2π = 5 kHz, 50 kHz and 500 kHz. Other parameters are Ω S /2π = 2 MHz, µ = 0.1 and Γ S /2π = 5 kHz.
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 56 Figure 5.6: Optomechanical response measurement on the hybridized system. (a) and (c) displacement spectra for increasing average pump intensities P 0 and constant modulation depth of δP/P 0 = 30%. The 3-peak fits according to the model (orange dashed lines in (c)) are in perfect agreement with the experimental spectra. (b) Dephasing between the measured displacement and the force experienced by the graphene membrane. A constant offset of about 135 • was applied. It was deduced from linear response measurements on the same graphene membrane and for the same optical modulation depth (see figure 4.13). It accounts for the dephasing measured between the intensity modulation and the force experienced by the resonator. (d) The maximum displacement amplitude increases linearly with the average pump intensity.
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 57 Figure 5.7: Validity of the fluctuation-dissipation theorem. (a) The top left panels show the measured amplitude and phase of the local mechanical susceptibility χ GG for an optical tuning power of 100 µW deduced from the response measurements shown in figure 5.6 in presence of hybridization. In the right panel, the expected thermal noise spectrum deduced from equation (5.3.19) (red line) is superimposed on the measured spectrum. The same procedure is applied for varying tuning powers and as depicted in panel (b). The excellent quantitative agreement between the prediction and the measurement demonstrates the validity of the fluctuation-dissipation theorem.
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 658 Figure 5.8: Improvement of the signal-to-noise ratio. (a) Simulated thermal noise spectrum and driven response measurement using the model with µ = 0.005, Ω G /2π = 1216 kHz, Ω S /2π = 1150 kHz, Γ S /2π = 500 Hz, Γ G /2π = 50 kHz, M g = 10 -14 kg, T = 300 K and a force amplitude of 5 fN. (b) Relative SNR increase (as compared to the graphene alone) as a function of the measurement frequency. (c) Map of the relative SNR increase as a function of measurement frequency and the graphene damping rate. The red line represents the optimum SNR increase. The plotting parameters are µ = 0.1, Γ S /2π = 500 Hz, Ω S /2π = 1.5 MHz. (d) above: experimental data showing the equivalent displacement measured with a 100 Hz resolution bandwidth, of the thermal noise spectrum alone in blue, and with an ensemble of monochromatic drive tones (green). The deduced signal-tonoise ratio is shown bellow, after a proper renormalizaton by the graphene alone contribution. The dashed red line represents the relative SNR change expected from the phenomenological model. The deviation observed at large frequency is due to the presence of an higher order SiN mode.
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 61 Figure 6.1: Spatial dependence of the resonance frequency. (a) Measurement scheme for the study of spatial effects: the probe laser is fixed at the centre of the graphene membrane while the tuning laser is linearly scanned across the sample. For each position of the tuning laser, a thermal noise spectrum is acquired and fitted with the hybridization model for three modes using the mechanical susceptibility (5.4.28) and the fluctuation-dissipation theorem (5.3.19). The uncoupled graphene frequency Ω G as a function of the position of the tuning laser is shown in (d). It displays an extremely rich spatial dependence which provides useful information about the heterogeneous microstructure of the graphene membrane. (b), (c) Series of thermal noise spectra measured along the lines indicated in the frequency map. Several anticrossings are visible due to hybridization of the graphene mode with different SiN membrane modes.
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 62 Figure 6.2: Analysis of the map of graphene frequency shifts. Left: same measurements as shown in figure 6.1 obtained by piezo-scanning the objective across the membrane. The different areas and locations discussed in the text are defined in the central panel. Right: transmission of the tuning laser obtained by piezo-scanning the graphene membrane across the optical waist. It is the image shown in figure 4.5 with optimized contrast to render the different zones more visible. A slight asymmetric image dilatation was applied to compensate for the 2 different piezo scan parameters. Note that the horizontal stripes are artefacts due to the contrast modifications made to underline the larger transmission obtained in the area A compared to areas B (bilayer) and C,D (contamination).
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 64 Figure 6.4: Response measurement in reflection and transmission. (a) Sketch of a Mach Zehner interferometer.In this configuration the beam transmitted by the graphene membrane is polarization-combined with the local oscillator beam. Therefore the measured dephasing is insensitive to a displacement of the graphene membrane, but changes if its refractive index undergoes a modification, which allows us to distinguish between a these two effects. (b) Typical response measurements when probing either the reflected or transmitted beams for similar fringe contrasts. While the temperature-induced phase modulation is evident in the reflected beam, it is absent (60 dB lower) in transmission. This suggests that the low frequency response of the system is dominated by the contribution of the deformation.
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 65 Figure 6.5: Results of the one-dimensional heat conduction model. (a) Sketch of the model (b) Driven temperature profiles calculated at low driving frequency (left) and at frequencies larger than the thermal cutoff of the membrane, for different positions of the heat source. (c) Driven temperature profiles, obtained when the pump laser is localized in the middle of the membrane, for increasing modulation frequencies. (d) Amplitude and dephasing (with respect to the intensity modulation) of the driven temperature response of the center of the membrane, for increasing driving frequencies. (e) Dependence of the thermal response function on the graphene half length (1 µm optical waist) and on the optical waist (for a 10 µm half length).
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 2 DYNAMICAL HEAT CONDUCTION IN THE SUSPENDED GRAPHENE MEMBRANEof the driving frequency in figure6.6(d). The area can be expressed as:A[Ω] = A 0 e - √ Ω/Ωc + A 1 ,(6.2.15) 
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 66 Figure 6.6: Dynamical thermal properties of a graphene membrane. (a) Series of response maps showing the amplitude of the deformation for increasing driving frequencies. At low frequency, the membrane is deformed across its entire surface. As the driving frequency increases, the deformation profile shrinks due to the finite spreading of the thermal wave. Close to the probe laser spot at the centre of the membrane, homogeneous graphene regions, where the thermal conductivity is locally high, exhibit high displacement amplitudes even at high frequency (see white dashed triangle). Comparing the shape of the deformation profile at high frequency with the transmission map in (b), we notice that the former is strongly influenced by the microstructure of the membrane exhibiting wrinkles (white arrow) and bi-(2L) and tri-(3L) layer patches. (c) Local response spectrum taken at the centre of the graphene membrane. It can be well fitted by the superposition (red) of a thermal low-pass filter and mechanical Lorentzian for two coupled modes (both blue). (d) Area of the deformation profile as a function of the driving frequency. The curve is well fitted with equation (6.2.15) with a cutoff frequency Ω 0 /2π = 5.2 kHz and a residual area of 3.1 • 10 -11 m 2 . The latter corresponds to the typical size of the central bilayer area, while the cuttoff frequency is in agreement with the thermal cuttoff measured at the centre of the membrane (panel c). It corresponds to a heat diffusion coefficient of D G = 2.1 • 10 -6 m 2 /s.
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Table 1 .2: Roots of the Bessel functions. Values

 1 α mn of the n-th roots of the Bessel functions J m .

	n=1	n=2	n=3	n=4
	m=0 2.4049 5.201	8.6537	11.7915
	m=1 3.8317 7.0156	10.1735 13.3237
	m=2 6.3802 9.7610	13.0152 14.7960
	m=3 7.5883 11.0647 14.3725 16.22235

The roots for the lowest modes are summarized in table 1.2.

  6 • 10 -29 m 2 /Hz, which

	4.3. THERMAL DISPLACEMENT NOISE OF A GRAPHENE MEMBRANE
	Displ. noise (m²/Hz) (a)	10 10 10 10 10	-27 -26 -25 -24 -23	2.24	2.28	2.32	2.36 Reference 2.40 peak	Probe Power (µW)	600 100 200 300 400 450 50	(b)	noise spectral density (m²/Hz)	10 10 10 10 10	-26 -25 -24 -23 -27	thermal noise background noise 1/P 100 1/P	1000
						Frequency (MHz)								Probe power (µW)
			(c)								(d)	800			
				Resonance freq. (MHz)	2.24 2.28 2.32						Quality factor	600 700			
					0		200	400	600			0		200	400	600
							Probe power (µW)							Probe power (µW)
										112				

  NORMAL MODE EXPANSION

		P = 100 µW pump			250 µW			400 µW	
	Amplitude (m²/Hz)										
	1.1	1.2	1.3	1.4	1.1	1.2	1.3	1.0	1.1	1.2	1.3
		550 µW			700 µW			Frequency (MHz)	
	Amplitude (m²/Hz)										
	1.0	1.1	1.2		1.0	1.1	1.2				
		Frequency (MHz)			Frequency (MHz)				

• δ(ω i -Ω ph -ω sc ),(1.4.10) where a quantum state of the system is characterized by its photonic, phononic

Fourier transforms are defined according to x[Ω] = dτ x(τ ) e iΩτ and x(τ ) = 1

2π dΩ x[Ω] e -iΩτ .

3.3. CONCLUSIONhow much the -partially spatially inhomogeneous-strain distribution affects the resonator properties. The next chapters will give more insight into this subject.
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