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Abstract

In the process of recording electrical activity of the brain, the signal of interest is usually
contaminated with different activities arising from various sources of noise and artifact
such as muscle activity. This renders denoising as an important preprocessing stage in
some ElectroEncephaloGraphy (EEG) applications such as source localization. In this
thesis, we propose six methods for noise cancelation of epileptic signals.

The first two methods, which are based on Generalized EigenValue Decomposition
(GEVD) and Denoising Source Separation (DSS) frameworks, are used to denoise in-
terictal data. To extract a priori information required by GEVD and DSS, we propose
a series of preprocessing stages including spike peak detection, extraction of exact time
support of spikes and clustering of spikes involved in each source of interest. Two other
methods, called Time Frequency (TF)-GEVD and TF-DSS, are also proposed in order
to denoise ictal EEG signals for which the time-frequency signature is extracted using
the Canonical Correlation Analysis method. We also propose a deflationary Indepen-
dent Component Analysis (ICA) method, called JDICA, that is based on Jacobi-like
iterations. Moreover, we propose a new direct algorithm, called SSD-CP, to compute
the Canonical Polyadic (CP) decomposition of complex-valued multi-way arrays. The
proposed algorithm is based on the Simultaneous Schur Decomposition (SSD) of par-
ticular matrices derived from the array to process. We also propose a new Jacobi-like
algorithm to calculate the SSD of several complex-valued matrices. The last two algo-
rithms are used to denoise both interictal and ictal data.

We evaluate the performance of the proposed methods to denoise both simulated
and real epileptic EEG data with interictal or ictal activity contaminated with muscular
activity. In the case of simulated data, the effectiveness of the proposed algorithms is
evaluated in terms of relative root mean square error between the original noise-free
signals and the denoised ones, number of required flops and the location of the original
and denoised epileptic sources. For both interictal and ictal data, we present some
examples on real data recorded in patients with a drug-resistant partial epilepsy.
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Résumé

Lorsque 'on enregistre 'activité cérébrale en électroencéphalographie (EEG) de surface,
le signal d’intérét est fréquemment bruité par des activités différentes provenant de
différentes sources de bruit telles que 'activité musculaire. Le débruitage de 'EEG est
donc une étape de pré-traitement important dans certaines applications, telles que la
localisation de source. Dans cette thése, nous proposons six méthodes permettant la
suppression du bruit de signaux EEG dans le cas particulier des activités enregistrées
chez les patients épileptiques soit en période intercritique (pointes) soit en période
critique (décharges).

Les deux premiéres méthodes, qui sont fondées sur la décomposition généralisée en
valeurs propres (GEVD) et sur le débruitage par séparation de sources (DSS), sont
utilisées pour débruiter des signaux EEG épileptiques intercritiques. Pour extraire
I'information a priori requise par GEVD et DSS, nous proposons une série d’étapes de
prétraitement, comprenant la détection de pointes, 'extraction du support des pointes
et le regroupement des pointes impliquées dans chaque source d’intérét. Deux autres
méthodes, appelées Temps Fréquence (TF) -GEVD et TF-DSS, sont également pro-
posées afin de débruiter les signaux EEG critiques. Dans ce cas on extrait la signa-
ture temps-fréquence de la décharge critique par la méthode d’analyse de corrélation
canonique. Nous proposons également une méthode d’Analyse en Composantes In-
dépendantes (ICA), appelé JDICA, basée sur une stratégie d’optimisation de type Ja-
cobi. De plus, nous proposons un nouvel algorithme direct de décomposition canonique
polyadique (CP), appelé SSD-CP, pour calculer la décomposition CP de tableaux a
valeurs complexes. L’algorithme proposé est basé sur la décomposition de Schur simul-
tanée (SSD) de matrices particuliéres dérivées du tableau a traiter. Nous proposons
également un nouvel algorithme pour calculer la SSD de plusieurs matrices a valeurs
complexes. Les deux derniers algorithmes sont utilisés pour débruiter des données in-
tercritiques et critiques.

Nous évaluons la performance des méthodes proposées pour débruiter les signaux
EEG (simulés ou réels) présentant des activités intercritiques et critiques épileptiques
bruitées par des artéfacts musculaires. Dans le cas des données simulées, 'efficacité
de chacune de ces méthodes est évaluée d’'une part en calculant ’erreur quadratique
moyenne normalisée entre les signaux originaux et débruités, et d’autre part en com-
parant les résultats de localisation de sources, obtenus a partir des signaux non bruités,
bruités, et débruités. Pour les données intercritiques et critiques, nous présentons égale-
ment quelques exemples sur données réelles enregistrées chez des patients souffrant
d’épilepsie partielle.
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Résumé long en francais

Lorsque l'on enregistre Pactivité cérébrale en électroencéphalographie (EEG) de sur-
face, le signal d’intérét est fréquemment bruité par des activités différentes provenant
de différentes sources de bruit. Certains de ces bruits proviennent de sources ex-
ternes au cerveau comme les interférences dues au réseau électrique ou le bruit lié a
I'instrumentation (mauvais contact des électrodes par exemple). En outre, certains
bruits peuvent aussi provenir de sources physiologiques, externes au cerveau, telles
que le clignement des yeux, les mouvements oculaires lents, ’activité musculaire et les
battements cardiaques. Dans certaines applications, une partie de l'activité cérébrale
elle-méme, comme 'EEG de fond, est considérée comme un bruit qui doit étre sup-
primé. Le débruitage de 'EEG est donc une étape de pré-traitement importante a la
fois pour permettre une meilleure interprétation qualitative des tracés par les cliniciens
et pour améliorer la précision de certaines applications, telles que la localisation de
source. Dans cette thése, nous proposons six méthodes permettant la suppression du
bruit de signaux EEG dans le cas particulier des activités enregistrées chez les patients
épileptiques soit en période intercritique (pointes) soit en période critique (décharges).

EEG et Epilepsie

L’électroencéphalographie consiste a enregistrer I’activité électrique cérébrale au moyen
d’électrodes posées a la surface de la téte au niveau du scalp (on parle I’'EEG de surface
ou d’EEG de scalp). Les potentiels électriques enregistrés en surface du scalp sont le
reflet de I'activité des neurones corticaux sous-jacents. Pour que les potentiels puissent
étre enregistrés a la surface du scalp il faut qu’ils résultent de ’activation synchrone et
simultanée d’un grand nombre de neurones.

L’épilepsie est une affection neurologique invalidante, responsable de la survenue
répétitive d’épisodes paroxystiques brefs, ou "crises", qui peuvent comporter des man-
ifestions motrices, sensorielles ou psychiques irrépressibles et peuvent s’accompagner
d’une altération partielle ou totale de la conscience. Selon I'OMS, la prévalence de
’épilepsie (c’est a dire le nombre de cas & un moment donné et sur un groupe donné)
est estimée entre 0,5 et 0,8Certains types d’épilepsies, dites pharmaco-résistantes ou
réfractaires, sont totalement résistantes aux traitements médicamenteux. Elles sont
souvent d’origine focale ou partielle, c’est-a-dire qu’elles prennent leur origine dans une
région cérébrale relativement circonscrite du cerveau. On peut alors dans ce cas pro-
poser au patient un traitement chirurgical visant a réséquer de facon sélective cette
région, appelée " zone épileptogéne " afin de mettre un terme aux crises, a condition
évidemment que les déficits potentiels induits par la chirurgie restent acceptables. La
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délimitation aussi précise que possible de la zone épileptogéne constitue ’objectif ul-
time du bilan préchirurgical et repose sur la confrontation des résultats issus de diverses
explorations cliniques, anatomiques et fonctionnelles plus ou moins invasives.

L’EEG de surface a été le premier outil employé pour le diagnostic de I’épilepsie.
C’est grace a cette méthode que ’on a pu visualiser les paroxysmes épileptiques qui sont
le reflet d’'une hyperexcitabilité neuronale et traduisent la survenue de décharges élec-
triques neuronales bréves, soudaines et excessives au sein d’une ou de plusieurs régions
cérébrales. Comme ces régions sont variables d’'un patient & un autre, les manifesta-
tions cliniques associées aux crises sont donc variables et dépendent de la localisation
des régions épileptiques. Divers paroxysmes EEG épileptiques peuvent étre collectés:

i) Les paroxysmes EEG intercritiques surviennent en dehors des crises de fagon
inconstante et trés variable selon les patients et les types d’épilepsie et sont en général
d’aspect polymorphe. Il peut s’agir de pointes, pointes ondes, polypointes, polypointes-
onde isolées ou en salves. Les régions d’otl proviennent ces paroxysmes se regroupent
sous le terme de "zone irritative". Ces paroxysmes sont sans conteste un marqueur de
I’épilepsie mais les relations spatiales qu’ils entretiennent avec la zone épileptogéne sont
parfois mal définies et en tous cas variables d'un patient a ’autre.

ii) Les paroxysmes EEG épileptiques critiques, ou décharges critiques, surviennent
pendant les crises. Elles se caractérisent par des activités rythmiques dont la mor-
phologie varie d’une part en fonction du type d’épilepsie (partielle vs. généralisée par
exemple) et d’autre part dans le temps & mesure que l'activité critique se propage. On
peut par exemple enregistrer au cours des crises des décharges de pointes, des pointes
ondes rythmiques, des activités rapides ou des ondes lentes rythmiques. La zone épilep-
togéne est définie a ['origine comme la région cérébrale nécessaire au déclenchement des
décharges critiques habituelles d’un patient.

L’objectif principal de la thése

Dans le cadre de I’enregistrement de 'activité EEG épileptique, le signal enregistré peut
étre considéré comme une combinaison (i) du signal d’intérét provenant des régions
épileptiques du cerveau et (ii) du signal de non-intérét composé de différents types de
bruits, de 'activité de fond et des artefacts. L’objectif de ce rapport est de proposer
des méthodes qui extraient le signal d’intérét a partir du signal enregistré, c’est-a-dire
qui débruitent les activités EEG épileptiques. Plus particuliérement, I’objectif principal
de cette thése est d’éliminer l'activité musculaire (parfois appelée activité myogénique)
qui peut contaminer les activités épileptiques intercritiques et critiques enregistrées en
EEG de surface.

Les algorithmes proposés

Dans cette thése, les méthodes proposées pour le débruitage des signaux EEG peut étre
classées en trois familles.
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I) Des méthodes semi-aveugles basées sur GEVD /DSS:

Des méthodes semi-aveugles qui exploitent la connaissance a priori d’informations sur
les sources d’intérét. Il s’agit par exemple du support temporel des pointes intercritiques
ou du support temps-fréquence des décharges critiques. Essentiellement, la source est
extraite en maximisant sa puissance relative sur le support estimé. Mathématique-
ment, les critéres qui en découlent sont exprimés sous forme de quotients de Rayleigh,
et maximisés de maniére algébrique en calculant des vecteurs propres généralisés (gen-
eralized eigenvalue decomposition, GEVD). Le débruitage par séparation de sources
(denoising source separation, DSS) incorpore l'information a priori sur le support de
la source d’'intérét afin d’en améliorer ’estimation en utilisant des itérations du type
expectation-maximization (EM).

Concernant I'activité intercritique, pour extraire 'information a priori requise par
GEVD et DSS, nous proposons une série d’étapes de prétraitement, comprenant la dé-
tection de pointes, ’extraction du support temporal des pointes et le regroupement des
pointes impliquées dans chaque source d’intérét. Ces informations sont ensuite util-
isées dans GEVD ou DSS pour extraire les sources de l'activité intercritique. Deux
autres méthodes, appelées Temps Fréquence (TF)-GEVD et TF-DSS, sont également
proposées afin de débruiter les signaux EEG critiques. Dans ce cas on extrait la sig-
nature temps-fréquence de la décharge critique par la méthode d’analyse de corrélation
canonique (CCA).

II) JDICA :

Nous proposons également une méthode d’analyse en composantes indépendantes (ICA)
a déflation, appelé JDICA, basée sur une stratégie d’optimisation de type Jacobi.
Dans cette méthode, nous maximisons le critére de kurtosis en nous appuyant sur
une paramétrisation particuliére de la matrice séparatrice, unitaire aprés blanchiment.
Cette paramétrisation, originalement proposée par Delfosse et Loubaton, a ’avantage
de permettre la déflation de la source estimée (c’est-a-dire, la soustraction de la con-
tribution de la source estimée au mélange) tout en réduisant la dimensionnalité du
probléme. Au lieu d’'un algorithme de gradient utilisé dans I'implantation originale, la
thése propose un balayage de type Jacobi (d’ou le nom de Jacobi-like deflationary ICA,
JDICA) ou chaque angle recherché est calculé comme 1'une des racines d’un polynome
de degré 8. L’algorithme de débruitage proposé est testé sur données intercritiques et
critiques.

ITT) SSD-CP :

La troisieme famille méthodologique est basée sur I'exploitation du caractére trilinéaire
du tableau espace x temps x fréquence construit a partir des observations spatio-
temporelles. Cette approche nécessite de calculer une décomposition tensorielle du type
canonique polyadique (CANDECOMP /PARAFAC, CP). Nous proposons une méthode
directe, appelée SSD-CP, pour calculer la décomposition CP de tableaux a valeurs
complexes. L’algorithme proposé est basé sur la décomposition simultanée de Schur
(simultaneous Schur decomposition, SSD) de matrices particuliéres dérivées du tableau
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d’ordre 3 a traiter. Nous proposons également un nouvel algorithme pour calculer la
SSD de plusieurs matrices a valeurs complexes. [’algorithme SSD-CP est alors utilisé
pour débruiter des données intercritiques et critiques.

Nous présentons également une étude détaillée du coiut de calcul des différentes
méthodes développées.

Donnée et résultats expérimentaux

Nous évaluons la performance des méthodes proposées pour débruiter les signaux EEG
(simulés ou réels) présentant des activités intercritiques et critiques épileptiques bruitées
par des artéfacts musculaires. Les signaux simulés sont issus d’un modéle réaliste de
Iactivité EEG de surface développé au LTSI, basé sur un modéle de populations de
neurones et sur une description fine de la géométrie du néocortex. L’'EEG est simulé en
résolvant le probléme direct a partir des sources synthétiques et un modéle réaliste de la
téte humaine. Pour bruiter cet EEG simulé on lui ajoute de ’activité musculaire mélée
a de l'activité de fond issues d’'un EEG réel. Les différents algorithmes proposés sont
ensuite testés sur ces signaux synthétiques dans le cas de trois configurations de sources
différentes : on considére une seule région (patch) neuronale d’activité épileptique,
deux régions dont les activités sont décorrélées, et deux régions dont les activités sont
corrélées. L'efficacité de chacune de ces méthodes est évaluée d’une part en calculant
I’erreur quadratique moyenne normalisée entre les signaux originaux et débruités, et
d’autre part en comparant les résultats de la localisation de sources, obtenus a partir
des signaux non bruités, bruités, et débruités.

Parmi les nombreux résultats obtenus, on remarque la meilleure performance, dans
la plupart des cas, des méthodes semi-aveugles basées sur la GEVD et la DSS, ce qui
peut s’expliquer par le fait que ces méthodes exploitent explicitement l'information
a priori sur les sources. Les performances de la SSD-CP sont relativement faibles si
I’on considére ’estimation de la dynamique temporelle des sources, mais la localisation
des sources épileptiques intercritiques est néanmoins satisfaisante pour cette méthode,
probablement en raison d’une identification plus précise des signatures spatiales des
activations neuronales obtenue par cette méthode.

Pour les données intercritiques et critiques, nous présentons également quelques
exemples sur données réelles enregistrées chez des patients souffrant d’épilepsie partielle.

En plus des résultats mentionnés ci-dessus, la méthode de décomposition tensorielle
directe SSD-CP est appliquée a des cas particuliers (présence de " bottleneck ", sures-
timation du rang du tenseur) qui posent probléme aux algorithmes existants basés sur
les moindres carrés alternés (ALS) ou sur l'itération de Levenverg-Marquardt. Dans
tous ces cas difficiles, la SSD-CP montre des performances remarquables & un cott de
calcul trés raisonnable.

Perspectives

Pour la continuation du travail, nous proposons de quelques pistes telles que I’évaluation
de performances sur une base de données des signaux réels, 'utilisation de techniques



Contents 11

plus performantes pour la détection et la classification de pics des pointes intercritiques,
et le développement de modéles tensoriels alternatifs moins restrictifs que la décompo-
sition CP.
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Acronyms and notations

Acronyms

Models and methods

AF: Adaptive Filtering

ALS: Alternating Least Squares

BSS: Blind Source Separation

BEMD: Bivariate Empirical Mode Decomposition

CCA: Canonical Correlation Analysis

CP: CANDECOMP /PARAFAC model and Canonical Polyadic decomposition
DF': Digital Filter

DSS: Denoising Source Separation

ELS-ALS: Enhanced Line Search-Alternating Least Squares
EM: Expectation-Maximization

EMD: Empirical Mode Decomposition

FLM: Fast Levenberg-Marquardt

GEVD: Generalized EigenValue Decomposition

ICA: Independent Component, Analysis

IMEF': Intrinsic Mode Function

JAD: Joint Approximate Diagonalization

JDICA: Jacobi-like Deflationary ICA

LM: Levenberg-Marquardt

M-EMD: Multivariate Empirical Mode Decomposition

MI: Mutual Information
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14 Acronyms and notations

e PCA: Principal Components Analysis

e RLS: Recursive Least Square

e SCICA: Spatially-Constrained ICA

e SOBI: Second-Order Blind Identification
e SSD: Simultaneous Schur Decomposition
e SVD: Singular Value Decomposition

e SVM: Support Vector Machine

e STF: Space-Time-Frequency

e STWYV: Space-Time-Wave-Vector

e TF-DSS: Time-Frequency DSS

e TF-GEVD: Time-Frequency GEVD

e WD: Wavelet Denoising

e WPT: Wavelet Packet Transform

e WT: Wavelet Transform

Signals
e ECG: ElectroCardioGram

e EEG: ElectroEncephaloGram
ECoG: ElectroCorticoGram

EMG: ElectroMyoGram

MCG: MagnetoCardioGram
e MEG: MagnetoEncephaloGram

Notations
Typography
e vectors are denoted with lowercase letters (a, b, - - )
e matrices are denoted with uppercase letters (A, B,---)
e HO arrays are denoted with calligraphic letters (A, B, ---)

e the entry with row ¢ and column j in a matrix A is symbolized by A, ;
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e the (i, j, k)-th component of a third order array B is symbolized by B, ;

e A denotes the estimate of A

Variables

e )/: number of observation channels

N: number of time samples

K: number of frequency samples

P: number of all sources

e P': dimension of the source space
e P.: number of epileptic sources

e P!: dimension of the epileptic subspace

Operators

e o: the outer product
e ®: the Kronecker product

#: the Moore-Penrose pseudo-inverse

T: the transpose operator

n(.): cardinality of a set
e E[]: mathematical expectation

e (.): temporal mean
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Chapter 1

Introduction

In recording brain activity, the signal of interest is often contaminated by different ac-
tivities arising from various sources of noise and artifacts. Some of these artifacts are
externally generated such as power line noise and instrumentation noise produced by
inappropriate electrode connections. In addition to externally generated artifacts, noise
can also arise from physiological sources, external to the brain, such as eye blinks, eye
movements, muscle activity and heart pulse. In some applications, part of the brain
activity itself such as brain background activity is considered as a noise that should
be removed. This renders denoising as an important preprocessing stage in ElectroEn-
cephaloGram (EEG) applications such as source localization or Brain Computer In-
terface (BCI). In this thesis, we focus on muscular noise cancelation of epileptic EEG
data. Firstly, we introduce the EEG and brain electrogenesis. Then we specifically
focus on Epilepsy and epileptic EEG paroxysms with an explanation of the sources of
noise. Finally, the problem of denoising of epileptic EEG is formulated and previous
work is examined.

1.1 EEG and brain electrogenesis

EEG consists of recording of brain activity using electrodes placed at the surface of
the scalp (also called surface EEG or scalp EEG). The EEG represents the potential
difference between the various electrodes taken in pairs (bipolar montage), between each
electrode and a common reference electrode (unipolar or referential montage) or between
each electrode and a virtual electrode representing for example the average activity on
all recording channels (average reference montage). The number of electrodes varies
widely (between 19 and 256 electrodes). They are symmetrically positioned on the two
hemispheres, according to standard locations as shown in figure [[LJ. These standard
locations are defined by the 10-20 system [Jasper, 1958], the 10-10 system [Chatrian,
1985] or the 5-5 system |Oostenveld and Praamstra, 2001|, with the number of electrodes
increases from the first system to the third. There are other kinds of EEG recordings.
For example, ElectroCorticoGraphy (ECoG) collects the intracranial electrical activity
with electrodes positioned directly on the surface of the cerebral cortex, or on dura.
Another example is Stereo-EEG (SEEG) that records intracerebral activity using multi-
contact electrodes directly implanted in the brain tissue. In this work, we focus on the
scalp EEG only.

17
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(a) (b)

Figure 1.1: The international 10-20 system seen from (a) left and (b) above the head.
A=ear lobe, C=central, Pg—nasopharyngeal, P=parietal, F=frontal, Fp=frontal polar,
O=occipital, T=temporal [Jasper, 1958|.

Electrical potentials recorded at the scalp surface reflect the activity of underlying
cortical neurons. In the cortical ribbon, postsynaptic potentials from the pyramidal
neurons of layers IIT and V (figure [[L2(a)) are considered to be the main contributors
to scalp EEG signals [Elul, 1972]. Schematically, the arrival of an action potential at a
synapse of a pyramidal neuron causes a release of neurotransmitters at the presynaptic
membrane. The neurotransmitters migrate to the postsynaptic membrane and bind to
specific receptors. This causes opening of ion channels and change of ionic concentra-
tions on either side of the cell membrane. The entry and exit of ions cause a potential
difference, or postsynaptic potential, then can be recorded by microelectrodes in the
extracellular space. It has been shown that these postsynaptic potentials and their
summation are the origin of the electrical activity recorded at the scalp while action
potentials, despite the fact that their amplitude is three times greater than that of
a synaptic potential, contribute to a negligible part of the EEG activity [Elul, 1972].
By considering an excitatory synapse at dendrite level of a cortical pyramidal neuron
(figure [L2(b)), the synaptic activation causes a massive influx of ion Na* (depolariza-
tion) at the postsynaptic membrane which can be represented by a current input (or
sink) and thus a deficit in positive charges in the extracellular medium. This massive
influx of ions is balanced by current outputs (or sources) below of this point, along the
membrane. An activated neuron can therefore be represented by a group of positive
charges and a group of negative charges separated by a small distance, i.e. a dipole.
Extracellular currents, and therefore the potential fields established between positive
and negative regions, are the origin of EEG activity collected on the surface.

In order for this potential to be recorded at the scalp, it must result from the
synchronous and quasi-simultaneous activation of a large number of neurons. In this
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(a) (b) (¢)

Figure 1.2: (a) Histological section of neocortex (somatosensory). The gray matter is
formed by the molecular layer (I), the external granular layer (II), the outer pyramidal
layer (IIT), the internal granular layer (IV), the ganglionic or internal pyramidal layer
(V) and polymorphic layer (VI). The cell bodies of pyramidal neurons primarily located
in the layers III and V. (b) Schematic of an excitatory synapse at a pyramidal neuron.
(c) Slice of mouse neocortex (Dr. Fu-Ming Zhou, University of Tennessee). The pyra-
midal cell bodies of neurons of the layer V and their dendrites that are aligned parallel
to the cortical surface are distinguished. This organization, called "lattice", is favorable
to the summation of postsynaptic potentials.

case, and due to the lattice structure of pyramidal neurons in the cerebral neocortex
(figure [[.2(c)), these unitary activities are summed to provide EEG signals with a
sufficient amplitude to be detectable at the surface of the scalp.

1.2 Epilepsy and epileptic EEG paroxysms

1.2.1 Definition and epidemiological data

Epilepsy is a debilitating neurological disease, responsible for the repetitive occurrence
of brief paroxysmal episodes or "seizures", which may include uncontrollable motor, sen-
sory or mental demonstrations and may be accompanied by a partial or total impairment
of consciousness. According to World Health Organization (WHO), the prevalence of
epilepsy (i.e. the number of cases at a given time and a given group) is estimated be-
tween 0.5 and 0.8% of the population, including in France almost 1% of the population,
making it the most common neurological disorder after migraine. The incidence of this
disease is estimated to be two new cases per day in France with a population of one
million. The occurrence of a single seizure may involve a higher population percentage
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(up to 10% of people worldwide have at least one seizure during their lifetimes), but
one seizure does not signal epilepsy.

Currently among the 500000 epileptic patients treated in France, approximately
50% of cases recover, while in 25% of patients medication controls only partially the
seizures, and in the remaining 25% cases, patients are resistant to medication. These
group of epilepsies, called drug-resistant or refractory, are among the most severe. They
are often of focal or partial origin, i.e. seizure originate from a relatively circumscribed
brain region. In this case a surgical treatment is possible to selectively resect this
region called "epileptogenic zone" and to stop seizures, provided that the potential
deficits induced by surgery are acceptable. The precise delimitation of the epileptogenic
zone is the ultimate goal of presurgical evaluation. This delimitation is based on the
results from different clinical, anatomical and functional explorations that are more or
less invasive. The number of patients eligible for surgery is still low compared to the
demand, which poses a real public health problem as the continuation of medication is
more expensive than surgery.

1.2.2 Epileptic EEG paroxysms

The surface EEG is the first tool used in the diagnosis of epilepsy. This method can
record epileptic paroxysms that reflect neuronal hyperexcitability and reflet the oc-
currence of brief, sudden and excessive neuronal discharges within one or more brain
regions. As these regions vary from one patient to another, the clinical manifestations
associated with seizures are variable and depend on the localization of epileptic regions.

The EEG examination, coupled with video recording of seizures (Video-EEG) is per-
formed continuously for several days during the first phase of the presurgical evaluation
of refractory partial epilepsy. In this examination, various epileptic EEG paroxysms
are collected:

Interictal EEG paroxysms, also called "interictal spikes", occur inconsistently be-
tween seizures. Interictal spikes are highly variable among patients and types of epilepsy
and they generally have polymorphic nature (figure [[3). They may be spikes, spike-
waves, polyspikes or polyspike-wave complexes. The regions where these paroxysms
originate define the "irritative zone". These paroxysms are undoubtedly a marker for
epilepsy but the spatial relationships that they have with the epileptogenic zone are
sometimes unclear and can vary from one patient to another. For example in the case
of specific lesions such as focal cortical dysplasia, interictal paroxysms are often frequent
or continuous and arise from the vicinity of the epileptogenic region. In other cases such
as in mesial temporal lobe epilepsy, interictal paroxysms are rather a reflection of a net-
work of structures larger than the epileptogenic zone. The characterization of interictal
paroxysms and their location are important aspects of the analyses conducted during
the first phase of the presurgical evaluation.

Ictal EEG parozysms, or ictal discharges occuring during seizures. They are char-
acterized by rhythmic activities whose morphology varies depending on the type of
epilepsy (for example partial vs generalized) and changes also with time as the ictal
activity spreads. Figure [[3(b) shows examples of ictal activity that can be recorded
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during seizures such as spike discharges, spike-waves rhythms, fast activities or slow-
wave rthythms. The epileptogenic zone is originally defined as the brain region necessary
for triggering usual ictal discharges of a patient [Bancaud et al., 1962]. It is also defined
as the smallest area whose resection (or disconnection) causes complete cessation of
seizures.

In the particular case of partial epilepsies (which are considered in our study),
intracerebral SEEG records a rapid and low voltage activity at the onset of seizures that
is considered as the electroencephalographic signature of one (or more) region(s) from
where seizures start [Bancaud et al., 1962]. These regions are also called "Onset zones"
and their resection is correlated to good postsurgical prognosis [Alarcon et al., 1995].
The representation of this activity on the time-frequency map is specific [Shamsollahi
et al., 1996, Wendling et al., 2003| and looks like a "chirp": it is a narrow band activity
whose frequency gradually decreases and whose amplitude increases (figure [[.4]). The
maximum frequency of these discharges varies from one patient to another. For example,
this rapid activity often peaks around 25 Hz when it comes from the mesial temporal
lobe, whereas it can reach much higher frequencies (80 Hz or more) in some neocortical
regions. Unlike SEEG, this activity is difficult to observe on scalp EEG, even in the
absence of artifacts, because of its low amplitude and thus its unfavorable signal to noise
ratio. When seizures are recorded during the first phase of presurgical evaluation, the
clinician therefore tries to identify these rapid discharges on EEG traces. Depending
on the size and topology of the region from which the discharge originates, it may have
no reflection on the surface EEG or it may be associated with a focal flattening on
EEG. In our study, we will consider on the one hand interictal spikes and on the other
hand rapid activities at the onset of ictal discharges. These activities will constitute
our signals of interest that we seek to denoise.

1.3 Sources of disturbance

Surface epileptic EEG signals are often contaminated with a variety of "noises" that
can more or less hide the signal of interest. These noises are generally classified into
two categories.

Instrumentation noise brings together non-physiological artifacts from the record-
ing equipment itself or other close devices. For example, the 50 Hz noise is captured
on scalp EEG in the presence of electronic devices in the recording room. Similarly,
poor impedance recording electrode causes artifacts in the corresponding channel. How-
ever, this type of noise is directly attributable to the quality of the recording and it is
theoretically managed when the recording system and methodology are of quality.

Physiological noise includes all the physiological activities that are not from cerebral
origin and that can affect the quality of the EEG signal of interest. Thus, the eye
movement (slow or fast) and blinking induce high amplitude variations in the potential
most often seen in the frontal electrodes. Similarly, cardiac activity may generate an
artifact on the electrodes placed in proximity to an artery. In addition, the activity of
most of the muscles of the head, face and neck results in an often high amplitude and
wide frequency band signal on EEG. Finally, in some applications, part of the brain
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Figure 1.3: Epileptic paroxysms of scalp EEG. (a) Interictal paroxysms. (b) Ictal
paroxysms. (c) Ictal discharge during which we identify different types of ictal activities
|Crespel et al., 2006].

activity itself such as EEG background activity is considered as a noise that should be
removed. The elimination of the muscle activity (sometimes called myogenic activity)
which masks the EEG signal of interest is the main focus of our work.

The highly disruptive effect of muscle activity on the EEG is directly attributable
to its properties. These have been studied in detail in the study of Goncharova and his
colleagues |Goncharova et al., 2003|, whose main conclusions are summarized as follows:

Muscular EEG signal has a wide frequency spectrum, generally ranging between
20 and 80 Hz. The activity of the frontal muscle has a frequency between 20 and 30
Hz, whereas the activity of the temporal muscle is rather between 40 and 80 Hz. For
all muscle activity, the peak frequency increases as contraction increases. In addition,
muscle activity may also contain low frequency component (0-5 Hz) or in the alpha band.
Accordingly, all the frequency bands of EEG and therefore all rhythms (physiological
or epileptic) are likely to be masked by muscle activity. The spatial distribution is not
ubiquitous, contrarily to other artifacts such as eye movements. Muscle activity may
involve EEG channels, based on the muscles involved. The anterior electrodes mainly
record the activity of the facial muscles (frontal muscle, corrugator supercilii), the lateral
electrodes rather record the activity of the chewing muscles (temporal muscle) and the
posterior electrodes are rather sensitive to the activity of muscles of the neck or of base
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Figure 1.4: The fast activity at the beginning of the ictal discharge. (a) Ictal discharge
SEEG recorded in a patient with a parieto-occipital epilepsy associated with dysplastic
lesions. The intracerebral electrode contact placed in the lesion recorded a discharge
that starts with a fast activity (40Hz). The time-frequency signature is illustrated
between the two white arrows. (b) In the same patient, seizures have been recorded by
scalp EEG. At the posterior electrode Pz, we guess the end of the fast discharge (white
Arrows).

of the skull (occipital muscle, trapezoid muscle). The co-contraction of certain muscles
(frontal and temporal, for example) can induce myogenic activities at distant electrodes.
Therefore, the myogenic activity is not only captured at the channels near the muscles
that contract but also sometimes at more remote electrodes. Finally, myogenic activity
can also induce an artifact with a more broad topography that varies according to the
subjects. All the electrodes are potentially "perturbable" by the muscular activity.

As a matter of fact, muscle activity is often temporally confounded with seizures.
Indeed, clinical signs of the ictal discharges induce muscle activity that is directly
reflected in the EEG. For example, hypertonic contractions of facial muscles, jaw or
chewing movements often occur at the beginning of seizures and directly perturb the
ictal signal. Consequently, it is rare to record seizures on scalp EEG that are not
partially or totally obscured by muscle activity. Pretreatment with denoising methods
is essential to remove these contaminations before analyzing these signals.
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1.4 Problem formulation

In the context of recording the epileptic EEG activity, the recorded signal can be con-
sidered as a combination of (i) the signal of interest arising from the epileptic brain
regions and (ii) the signal of non-interest composed of different types of noise, back-
ground activity and artifacts. The aim of this thesis is to propose methods that extract
the signal of interest from the recorded signal, i.e. that denoise epileptic EEG signals.
Since the proposed methods use different approaches to denoise EEG signals, including
both statistical and deterministic methods, we present the problem formulation both
in statistical and deterministic formats.

1.4.1 Statistical problem formulation

In the statistical model, we model the EEG signal recorded from M electrodes as one
realization {x[n]} of an M-dimensional random vector process {&[n]}. We can represent
the observation process {&[n]} as follows:

n] = 29N +2Yn]+ 2™ [n] + [n)
A5+ ALEO[R] + A™ M [n] + pn) (1.1)

IR

—

(X

n

where {3 [n]}, {38®[n]}, {3/™[n]}, {©[n]} are the random vector processes representing
the activity of P. epileptic sources, P, background sources, P,, muscular sources and
the M-dimensional instrument noise, respectively. The mixing matrices A, A® and
A™ of size (M x P.), (M x P,) and (M x P,,), model the transfer function from
all possible sources of activity to scalp electrodes. All these mixing matrices can be
combined in a global mixing matrix A of size (M x P) where P = P, + P, + P,.
Therefore, (LI) can be rewritten as follows:

&[n] = A8[n] + o[n] (1.2)

where {8[n]} is the random vector process representing all sources.

As far as the statistical properties of vector random processes {3[n]}, {5 [n]},
{3'[n]} and {&[n]} are concerned, we can assume that they are independent as
they correspond to different physiological /physical phenomena. Nevertheless, such
an assumption is not valid within each vector random process regarding its compo-
nents. In particular, some of epileptic activity sources may be statistically mutually
dependent. We will then assume that, for every time index, the three vectors 5 [n],
5®[n] and 87 [n] can be factorized as 5 [n] = BO#[n], 30[n] = BY#®[n] and
5™ [n] = BM™#Mp), respectively where #[n] = [#©[n] ,#O[n]",#™n]']" is a P'-
dimensional vector of mutually independent random variables such that P’ < M and
where B = [B©", B®" B™"|" isa (P x P') matrix such as the product G = A B is a
full column rank matrix. Eventually, the {#[n]} vector random process can be assumed
to be Gaussian as most of instrument noises |[Albera et al., 2012].

The aim of the proposed statistical approaches, is to extract the signal of inter-
est, {(®)[n]}, which represents one realization of the epileptic vector random process
{£[n]}, from {x[n]}. Indeed, by computing from {[n]} the corresponding realiza-
tion, {r©[n]}, of {#[n]} and the corresponding mixing matrix G = A B the
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M-dimensional signal {x(®)[n]} given by 2(°)[n] = G'©r(©)[n] will represent the denoised
EEG data.

1.4.2 Deterministic problem formulation

Regarding the deterministic model, we assume that N samples of the M-dimensional
EEG signal can then be modeled as follows:

xn] = A9Ds[n] + AWsOn] 4 A ™ [n] + vn] (1.3)

where {s)[n]}, {s®[n]}, {5 [n]} and {v[n]} are vector signals representing P, epilep-
tic activities, P, background activities, P,, muscular activities and an M-dimensional
instrument noise, respectively. The mixing matrices A, A® and A™ of size (MxP,),
(M x Py) and (M x P,,), model the transfer function from all possible activities within
the brain to scalp electrodes. All these mixing matrices can be combined in a global
mixing matrix A of size (M x P) where P = P, + B, + F,,. Therefore, (I.3)) can be
rewritten as follows:

x[n] = As[n| + v[n] (1.4)
where {s[n]} is a vector signal representing all sources.

In addition, we assume that, for every time index n, the three vectors s(9[n], s®[n]
and 5™ [n] can be factorized as s [n] = B9r©[n], s®[n] = BOr®[n] and s [n] =
B p(m) [n], respectively, where the different signals of the P’-dimensional vector signal
r[n] defined by r[n] = [r©[n]",#®[n]", r™[n]"]" have time constant frequency contents
up to a multiplicative scalar. As in section [[A1] the (M x P’) matrix G will denote
the product G = A B where B = [B(e)T,B(b)T,B(m)T]T. Nevertheless, contrarily to
the statistical model, here P’ can be strictly greater than M.

As a result, by computing the P/-dimensional vector signal {r(¢)[n]} and the cor-
responding G© = A© B matrix of coordinates from the measurements {x[n]}, the
M-dimensional signal {x(®[n]} given by 2(¢)[n] = G'©r(©)[n] will represent the denoised
EEG data.

In the following chapters, the p-th epileptic source and the p-th source will corre-
spond to the p-th entry of the epileptic signal {r(®[n]} and the p-th entry of the whole
signal {r[n|}, respectively.

1.5 Previous work

In this section, we study the previous work performed in the context of noise removal
from EEG signals including epileptic EEG signal denoising. There are widely ranged
researches in this context. Here, we study these researches in two main groups, namely
blind and semi-blind methods. It is noteworthy that, despite their names, both blind
and semi-blind methods use some knowledge about sources of interest. Although the
blind methods blindly extract all sources, they use a priori knowledge to identify the
sources of interest. On the other hand, the semi-blind methods use a priori knowledge
in the stage of extracting the sources. In each group, we sort the studies by date. At
the end of the section, other methods are briefly introduced.
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1.5.1 Blind methods

Blind methods have been used in different fields such as audio processing, face recogni-
tion, biomedical signal processing and communications. In the rest of this section, we
introduce some well-known results based on blind approaches in the context of EEG
signal denoising.

1.5.1.1 ICA, DCCA and PCA-based methods

One of the widely used Blind Source Separation (BSS) approaches in the context of
biomedical signal processing is Independent Component Analysis (ICA) with the fun-
damental assumption that the sources are mutually independent. Herault and Jutten
are the first (around 1983) to use informally the concept of ICA, especially in order
to solve the BSS problem |Ans et al., 1985]. A few years later, Comon presents a
mathematical formulation of ICA and shows how Higher Order (HO) cumulants can
be used to solve the problem of ICA: the HO contrast-based method CoM, arises
from this work (see [Comon, 1994] and references therein). In parallel, Cardoso and
Souloumiac develop the JADE algorithm |Cardoso and Souloumiac, 1993|, based on
a Joint Approximate Diagonalization (JAD). In the context of biomedical signal pro-
cessing, ICA has been used in a wide range of studies such as ElectroCardioGram
(ECG) |Zarzoso et al., 1997, [De Lathauwer et al., 2000,[Phlypo et al., 2010a], Elec-
troMyoGram (EMG) [Subasi and Kiymik, 2010,Naik et al., 2013|, functional Magnetic
Resonance Imaging (fMRI) [Akhbari et al., 2010}/Griffanti et al., 2014], MagnetoEn-
cephaloGram (MEG) [Fatima et al., 2013| and EEG |Albera et al., 2012].

Another approach is Decorrelated and Colored Component Analysis (DCCA), in
which BSS-CCA and SOBI have been used in the context of biomedical signal pro-
cessing. Blind Source Separation based on Canonical Correlation Analysis (BSS-CCA),
briefly called CCA, has been used for processing of biomedical signals such as EEG
|[De Clercq et al., 2006,|Lin et al., 2013|, fMRI |Guccione et al., 2013| and Electro-
HysteroGram [Hassan et al., 2011]. The Second-Order Blind Identification (SOBI)
algorithm [Belouchrani et al., 1997| has been also used for processing of biomedical
signals such as EEG |Tang et al., 2005,|Wang et al., 2004| and ECG. Principal Compo-
nents Analysis (PCA) is another BSS method used for processing of biomedical signals.
In the rest of this section, we introduce some well-known ICA, DCCA and PCA-based
researches in the context of EEG signal denoising.

ICA was used in |[Vigario, 1997| to remove ocular artifacts from real EEG data
recorded in a routine clinical 22-channel experiment from children aged 9-13 years.
In another study [Jung et al., 2000], ICA was used to remove eye movement, muscle
artifacts, line noise, blink and blink-related activities from three different EEG datasets
collected from normal and autistic subjects. The results showed that ICA greatly
surpassed regression and PCA methods.

In order to remove non-ictal noise and artifacts from ictal signals, ICA was applied
to the ictal EEGs of patients with medial Temporal Lobe Epilepsy (TLE) in [Nam
et al., 2002|. As illustrated in this paper, all ictal EEGs were successfully decomposed
to epileptic and non-epileptic components, and after EEG reconstruction with exclusion
of artifacts, the quality of the EEG was improved.
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ICA, PCA and regression based methods were compared in [Wallstrom et al., 2004]
for removing ElectroOculoGram (EOG) artifacts, using simulated and real (eyes open)
EEG data. In contrary to the previous ICA-based studies, the obtained results sup-
ported the use of regression-based and PCA-based ocular artifact correction and sug-
gested a need for further studies examining possible spectral distortion from ICA-based
correction procedures.

A SOBI-based BSS algorithm was used in [Joyce et al., 2004] for automatic removal
of ocular artifacts from EEG data. The BSS algorithm described herein could isolate
correlated electroocular components with a high degree of accuracy. This method was
studied on an example of real EEG data.

ICA and its combination with Digital Filter (DF) were used to denoise ictal EEGs
in [Urrestarazu et al., 2004]. 20 seizures of nine patients with focal epilepsy were studied
and the results showed that all the recordings except one improved after the use of ICA
for the elimination of blinking and muscle artifacts. Moreover, the results showed that
combination of ICA and DF improved the quality of results. As stated in this paper,
the greatest difficulty for ICA was to separate the muscle artifact.

The CCA method was applied in [De Clercq et al., 2006] on synthetic and real ictal
EEG recordings contaminated with muscle artifacts. For the synthetic data, an EEG
epoch of 10 s containing mainly alpha (8-13 Hz) activity was selected and real muscle
noise were superimposed. As shown in this paper, the CCA method outperformed a
low-pass filter with different cutoff frequencies and an ICA technique, namely JADE
[Cardoso and Souloumiac, 1993]|, for muscle artifact removal.

The goal of the study performed in [[riarte et al., 2006] was to analyze focal seizures
with ICA, i.e., decomposing the elements of the seizures to understand their genesis and
propagation, and to differentiate between various types of focal seizures. In addition,
ICA was used in order to denoise ictal EEGs from muscular activity. In this study, the
JADE algorithm was used to separate independent components from 26 focal seizures
of 12 different patients. The results showed that ICA demonstrated a high capacity to
separate the ictal activity from the normal brain activity and artifacts.

Usual ICA methods of artifact removal require a tedious visual classification of
the components. The proposed system in [LeVan et al., 2006] automated this process
and removed simultaneously multiple types of artifacts, including EMG and EOG.
This system was based on ICA and Bayesian classifier. The system was tested on
real ictal EEG and compared with ICA method with manual classification with visual
inspection. The results showed that the proposed Bayesian classifier had a performance
that was only slightly worse than the errors that would be expected from human expert
variability.

In another study [Delorme et al., 2007, three popular ICA algorithms, InfoMax [Lee
et al., 1999, Makeig et al., 2000], SOBI, and FastICA |Comon and Jutten, 2010] were
used to remove different types of noise and artifact, including muscle activity, eye
blink, electrical shift artifacts, linear trends and white noise, from normal EEG data.
To this end, event-related EEG data from a visual categorization task was recorded
and different types of noise and simulated artifacts were added to noise-free signal with
different SNRs from —50dB to 0dB. The results showed that except for muscle artifact
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detection where no gain was found by using ICA, the ICA-decomposed data gave better
results than the raw scalp data in the procedure of automated detection of small non-
brain artifacts. Moreover, the results showed that the InfoMax algorithm performed
better than the SOBI and FastICA.

A combination of BSS methods and Support Vector Machine (SVM) in [Halder
et al., 2007| was used for online EOG and EMG noise removal from EEG data. In
the first part of the algorithm, the BSS methods, such as JADE, InfoMax, FastICA
and AMUSE [Tong et al., 1990], were used to decompose recorded signal to artifact
and non-artifact components. SVM was then used for automatic classification of the
components. EEG data were recorded while the subject was performing no particular
task and were cleaned of blinks and other obvious artifacts. EMG and EOG artifact
signals were recorded from forearm and electrode Fpl, respectively, and were added to
noise-free signal. Four kinds of artifacts (jaw muscles, forehead movement, eye blinks,
and eye movement), each recorded with four different subjects, were used to train
the SVM to classify various EEG artifacts. To select the best BSS method, JADE,
InfoMax, FastlICA and AMUSE were examined. AMUSE and InfoMax gave the best
results with EOG and EMG artifacts, respectively. This method was evaluated on three
BCI datasets as a proof-of-concept of the method.

A study was performed [Fitzgibbon et al., 2007] to investigate and compare the per-
formance of BSS algorithms for separating common types of contamination from EEG.
The dataset was constructed with a known mixture of known real brain and contami-
nating signals. Five different BSS methods, namely PCA, SOBI, InfoMax, JADE and
FastICA, were examined. The key finding was that although BSS is an effective and
powerful tool for separating and removing contamination from EEG, the quality of the
separation is highly dependent on the type of contamination, the degree of contamina-
tion, and the choice of BSS algorithm. BSS appeared to be more effective at separating
muscle and blink contamination and less effective at saccadic and tracking contamina-
tion. Moreover, for all types of contamination, PCA was a strong performer when the
contamination was greater in amplitude than the brain signal whereas other algorithms
such as SOBI and InfoMax were generally better for specific types of contamination of
lower amplitude.

The potential clinical relevance of BSS-CCA was investigated in [Vergult et al.,
2007| to remove muscle artifacts in ictal scalp EEG. Applying BSS-CCA on the ictal
data of thirty-seven patients with refractory partial epilepsy with a well-defined seizure
onset zone showed that BSS-CCA significantly improved the sensitivity to localize the
seizure onset from 62% to 81%, and gave the best results in ictal EEGs with moderate
to severe muscle artifact contamination.

In the study performed in [Kachenoura et al., 2008], different ICA algorithms,
namely SOBI, CoMs [Comon, 1994], JADE, ICAR, FastICA and InfoMax, were ex-
amined in the context of BCI systems based on the Mu rhythm. In this context, the
surface observations can be considered as a noisy mixture of one source of interest,
namely the Mu rhythm, and artifact sources such as the ocular and cardiac activities.
A comparative study of these algorithms in terms of estimation accuracy and numerical
complexity, conducted on simulated EEG data, showed that the use of an appropriate
ICA algorithm may significantly improve the capabilities of BCI systems.



1.5. Previous work 29

The study presented in [Crespo-Garcia et al., 2008 aimed at assessing the perfor-
mance of four ICA algorithms, namely AMUSE, SOBI, InfoMax and JADE;, to separate
myogenic activity from EEG during sleep, in order to determine the optimal method.
The algorithms were examined on both simulated and real sleep EEG data. The results
showed that AMUSE, InfoMax, and SOBI performed significantly better than JADE at
eliminating muscle artifacts over temporal regions, but AMUSE was independent of the
signal-to-noise ratio over non-temporal regions and markedly faster than the remaining
algorithms.

In [Congedo et al., 2008|, different Second Order Statistics (SOS)-based and Higher
Order Statistics (HOS)-based methods were compared for the extraction of spontaneous
and induced EEG, and a method based on the approximate joint diagonalization of
Fourier co-spectral matrices was proposed.

In the study performed in [Romero et al., 2009], regression analysis, adaptive filter-
ing, and BSS were evaluated with simulated data in the context of EOG removal. In
the first two methods, filtered versions were also taken into account by filtering EOG
references in order to reduce the cancelation of cerebral high frequency components in
EEG data. As BSS methods, PCA, SOBI, InfoMax and FastICA were considered. In
general, filtered versions of time-domain regression and of adaptive filtering with Recur-
sive Least Square (RLS) algorithm provided a very effective ocular reduction. However,
BSS based on second order statistics, SOBI and PCA, showed the highest similarity
indexes and the lowest errors in spectral variables.

In the study performed in [Safieddine et al., 2011],[Safieddine et al., 2012], in ad-
dition to ICA algorithms, some other denoising algorithms, such as CCA, Empirical
Mode Decomposition (EMD) and Wavelet Denoising (WD) were studied for removal
of the muscular artifacts from surface EEG signals recorded in epileptic patients. This
study showed that CCA and ICA approaches outperform EMD and WD in denoising
of interictal signals with moderate noise levels.

A method by combining BSS, WD and discriminant analysis was proposed in [Romo Vazquez
et al., 2012| in order to remove ocular, high frequency muscle and ECG artifacts from
EEG. The method was examined on both simulated and real interictal and ictal signals.

As mentioned in [Albera et al., 2012], only few ICA algorithms such as InfoMax and
FastICA are used nowadays to process biomedical signals. The authors in [Albera et al.,
2012| examined fifteen ICA algorithms in terms of performance and computational com-
plexity in the context of removal of muscle artifacts from interictal epileptiform activity.
The results have shown that CoMs offers the best compromise between performance
and numerical complexity.

An underdetermined blind source separation method and a novel MMSE beam-
former were used in [Koldovsky et al., 2012] to remove artifacts from motor imagery
signals in the context of BCI. They showed that by using the proposed method, the
BCI classification accuracy was improved by up to 10%.

In another study [Zou et al., 2012], an artifact removal algorithm based on ICA and
Hierarchal clustering was presented. This technique used general temporal and spectral
features and particular information about target Event-Related Potentials (ERPs) to
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separate ERPs and artifact activities. The EEG data was recorded from fifteen subjects
in a Visual Evoked Potential (VEP) study. They showed that the proposed method
could effectively enhance the ERPs for all subjects.

As presented in [Kang and Zhizeng, 2012|, a combination of wavelet denoising, PCA
and density estimation BSS (DEBSS) were used to remove EOG and ECG from EEG
data. The DEBSS algorithm used in this method is a generalization of equivariant
adaptive separation via independence (EASI) to the heterogeneous mixture signals.

In the study performed in [Qi, 2012], two different algorithms, RLS and BSS, were
compared to investigate their performances on removing EOG artifacts from EEG sig-
nals. Results indicated that the performance of RLS algorithm was better than BSS
algorithm no matter whether there were any EOG reference signals.

A novel method to enhance ERPs was proposed in [Kawaguchi et al., 2013] which was
based on combining PCA with multivariate empirical mode decomposition (M-EMD).
In the proposed method, PCA reduced the data dimensions, while M-EMD removed
the relatively large background EEGs. The results of the method with simulated and
real P300 ERP components showed the usefulness of the proposed method to improve
the SNR of P300s.

Stone’s method, which used two different linear filters that process the same set
of sources, was used in [Chaozhu et al., 2013] to remove EOG artifact from EEG sig-
nals. Comparing the Stone’s BSS results with those of FastICA and JADE showed the
superiority of the proposed algorithm.

A new approach for joint BSS of datasets at multiple time lags using CCA was
developed in [Shen et al., 2013] for removing muscular artifacts from EEG recordings.
The proposed approach jointly extracted sources from each dataset in a decreasing order
of between-set source correlations. Muscular artifact sources that typically have lowest
between-set correlations can then be removed. The results on real data showed that
the proposed method offered better performance in removing muscular artifacts than
the conventional CCA.

A fully automatic system based on underdetermined blind source separation and
using kurtosis of the sources to distinguish them was proposed in |[Ge et al., 2014] to
remove ocular artifacts from EEG. In this system, the fourth-order cumulant based
method (FOOBI) |[De Lathauwer et al., 2007] decomposed multiple EEG channels into
a relative large number of source components and the kurtosis value was used to identify
the ocular components in these source components. Results on real EEG data showed
the superiority of the proposed method on FastICA.

1.5.1.2 Canonical Polyadic decomposition methods

The Canonical Polyadic or CANDECOMP /PARAFAC (CP) decomposition consists in
decomposing a HO array as a linear combination of a minimal number of rank-1 terms.
The CP model can then be seen as a generalization of the Singular Value Decomposition
(SVD) of two-way data to multi-way data. But the main difference is that, under
weak assumptions [Kruskal, 1977,[Jiang and Sidiropoulos, 2004, Sidiropoulos and Bro,
2000, Stegman and Sidiropoulos, 2007], no orthogonality constraint is needed to ensure
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uniqueness of the CP decomposition. This advantage makes the CP decomposition
very useful in various applications. The CP decomposition was first proposed to solve
psychometric problems [Carroll and Chang, 1970]. Afterwards, it was extended to
various fields such as chemometrics [Bro, 1997], spectroscopy [Villringer and Chance,
1997| and biomedical engineering [Vos et al., 2007, Becker et al., 2014b|. In the rest of
this section, we study previous work performed in the context of EEG signal processing.

The CP decomposition of time-varying EEG spectrum was used in [Miwakeichi
et al., 2004] for the comparison of resting EEG to that recorded while the subject
performed mental arithmetic. Mental arithmetic produces theta activity in the frontal
area and a suppression of alpha activity in the occipital area, while the converse occurs
when the eyes are closed in the resting condition. Real EEG data was used in this
study and the HO array had time, space and frequency. For generating the frequency
mode, a complex Morlet mother wavelet was used. As explained in this study, the
CP decomposition can be used not only for extracting significant activities from EEG,
but also for searching for the presence of atoms in a new data set, which were not
used for estimating the loading matrices and can be either from the same or from a
different subject. Moreover, if certain atoms obtained by the CP decomposition contain
artifacts (e.g., eye movements, eye blinking, electromyogram), their space/frequency
reconstructions can be used as templates for an artifact detector. The reconstruction,
obtained by eliminating the component that corresponds to artifacts, will be an artifact
removal method.

The CP decomposition was used in [Mgrup et al., 2006 to decompose wavelet trans-
formed (using Morlet mother wavelet) event-related EEG given by the inter-trial phase
coherence encompassing ANOVA analysis of differences between conditions and 5-way
analysis of channel, frequency, time, subject and condition. The CP decomposition
of the 3-way array of ANOVA F-test values clearly showed the difference of regions
of interest across modalities, while the 5-way analysis enabled visualization of both
quantitative and qualitative differences.

Synthetic EEG data were used in [De Vos et al., 2007 in order to study the efficiency
of the CP decomposition in localizing the ictal epileptic dipole sources. A three-way data
array of size (spacexscalextime) was obtained by wavelet-transforming every channel
of the simulated EEG matrix. The EEG of the ictal activity was generated using a
fixed dipole in a three-shell spherical head model. The different time courses generated
by the dipole were a 4Hz sinusoidal waveform and a 4 Hz sawtooth (both of them
representing seizure activity in patients with mesial temporal lobe epilepsy) at different
noise levels. The influence of the frequency of the seizure signal on ictal scalp EEG
source localization at a fixed noise level was also studied. In another simulation, the
dipole localization error was examined when the frequency changed during the 2 seconds
under investigation which does not give a trilinear signal after wavelet transformation.
To this end, a chirp was used that linearly changed in frequency from 8Hz at the start
to 4Hz at the end of the considered 2 seconds. Two rhythmical sources firing at the
same frequency separated from each other by about 1 cm were considered in the other
simulation. The effect of using dense array EEG (148 electrodes) was also studied.
In all simulations, noise matrix was generated using 2 seconds of awake background
EEG activity from a normal subject. It was shown that in a spherical head model with
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realistically simulated EEG, the proposed algorithm correctly localized the seizure-
related atom with an accuracy of about 5 mm, even at SNR ratios that were lower than
0dB.

In another study of this group [Vos et al., 2007|, both simulated and real ictal EEG
data were used. The same algorithm as in the previous study was used and a three-
way array of size (channelsxtimexscales) was generated. For the simulated data, a
5.7 Hz sine wave was used and muscle artifacts were superimposed with SNR values
between —15dB and —2dB. The results were compared with power CP decomposition
(which used power of wavelet transform to create the three-way array) and SVD. The
results showed that the CP decomposition based on pure wavelet-transformed EEG was
better than SVD and the decomposition on the power of the wavelet-transformed EEG.
Clinical validation on real ictal EEGs showed that the CP method correctly localized
the seizure onset zone in 34 of 37 cases (92%) while a human reader, blinded to all
other information, was able to localize 21 of 37 cases (57%).

The same approach to generate the three-way array from ictal epileptic EEG was
used in [Acar et al., 2007]. Epileptic focus localization, artifact extraction and artifact
removal were studied in this research. 10 real ictal EEGs from 7 patients were considered
in this study. The results for 8 seizures matched with clinical observations in terms of
seizure origin and extracted artifacts. On the other hand, for 2 of the seizures, seizure
localization was not achieved using an initial trial of CP modeling. In these cases, first,
they applied an artifact removal method and subsequently applied the CP model on
the epilepsy tensor from which potential artifacts have been removed. This method
successfully identified the seizure origin in both cases.

The two algorithms proposed in [Deburchgraeve et al., 2009] differ in the way the
tensor was constructed and in the type of activity they were able to extract. While
the first method extracted oscillatory seizure activity, the second extracted spike train
activity. The first algorithm, called O-CP decomposition method in this study, was
similar to the above-mentioned algorithms and was designed to localize the oscillatory
type of neonatal seizures. The third dimension of the tensor was constructed using the
continuous wavelet transform of the ongoing EEG recording and the tensor consisted of
the dimensions channels, time and frequency. The suitable number of components was
determined by performing the core consistency diagnostic (CorConDia). The second
algorithm, called SP-CP decomposition, used the output of the spike train seizure
detector to construct the three-way array. The first two dimensions of the tensor were
EEG channels and time and the third dimension was built up by aligning all EEG
segments (taking all channels) of the detected spikes one after the other in different
slices of the tensor. The third dimension of the tensor thus consisted of an aligned set of
EEG slices. After construction of the complete tensor, a rank-1 CP decomposition was
computed. Simulations illustrate the robustness of the SP-CP method in comparison
with spike triggered averaging. In this simulation, impact of noise (—15 dB-15 dB) on
localization was studied. Moreover, the seizure localization results of 21 seizures from
6 neonates with post-asphyxial hypoxic ischemic encephalopathy were compared with
those based on the visual analysis of the EEG by a clinical neurophysiologist. There
was a good agreement, between the two methods in the localization of seizure onset in
all.
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In the studies performed in [Becker et al., 2010, Becker et al., 2012, Becker et al.,
2014b|, a new multi-way approach based on Space-Time-Wave-Vector (STWV) data
was proposed which was obtained by a 3D local Fourier transform over space accom-
plished on the measured data. This method can be seen as a preprocessing step that
separates the sources, reduces noise as well as interference and extracts the source time
signals. Most of the previously mentioned studies used frequency transform of data
to construct the three-way (SpacexTimexFrequency) (STF) arrays. The STF-based
techniques depend on the source time signals, which are assumed to be oscillatory, and
does not permit to separate several simultaneously active brain regions with correlated
activities into more than one component, thus preventing the representation of such a
scenario by an adequate number of equivalent dipoles. Contrary to the STFE analysis,
the STWV method allows also for the separation of correlated sources. Moreover, it per-
mits to accurately localize one or several equivalent dipole sources and to extract at the
same time a good estimate of the source time signals. In the simulations, epileptiform
signals were generated with the help of the Jansen model. A noise matrix containing
temporally white, but spatially correlated noise was computed in the same way as the
data matrix for given noise dipoles with radial orientation emitting white Gaussian
signals. The source localization error was calculated for the noise level of —8 dB to 10
dB. Compared to the STF analysis, the STWV method was particularly well suited if
the data was only recorded for a small number of time samples. A potential applica-
tion of the STWYV technique is thus the tracing of the temporal evolution of sources.
Moreover, the estimation error of the leadfield matrix was reduced, which improved
the performance of the source localization. Moreover, a new algorithm was proposed
in [Becker et al., 2014b|, which shows how tensor-based approaches can be designed
to perform an accurate source localization of spatially distributed sources. Note that
realistic simulated and real EEG data were used to assess the good behavior of the
proposed method.

In the study performed in [Phan et al., 2013a], the method Fast CP (FCP) was
proposed to reduce the numerical complexity of CP decomposition by decomposing an
unfolded tensor with lower order, e.g., order-3 tensor, instead of directly factorizing the
high order data tensor. The method was applied on Event-Related EEGs stored in as
a 4-way tensor of size (28 measurements x 61 frequency bins x 64 channels x 72 time
frames). The aim of this paper was to compare the factorization time of ALS and FCP
over various Ranks in the range of 5—72 with and without a HOSVD-based compression
prior to the CP decompositions. Moreover, another method proposed in [Phan et al.,
2013b| reduced the extra memory requirements of CP algorithms and accelerates the
standard alternating CP algorithms 20-30 times for order-5 and order-6 tensors. To
study the factorization time of the proposed method, the same data as the previous
study was used. In addition, another data set including EEG motor imagery data was
examined by considering an order-5 tensor of size (2 dictionaries x 23 frequency bins
(8-30 Hz) x 50 time frames x 62 channels x 200 trials).

The study performed in |[Niknazar et al., 2014] studied blind source separation for
underdetermined mixtures (i.e., more sources than sensors) of event-related sources that
include quasi-periodic sources (e.g., ECG), sources with synchronized trials (e.g., ERP),
and amplitude-variant sources. Their method consisted of two stages: (i) CP decom-
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position for underdetermined source separation and (ii) signal extraction by Kalman
filtering to recover the source dynamics. A tensor was constructed for each source by
synchronizing on the event period of the corresponding signal and stacking different
periods along the second dimension of the tensor. To cope with the interference from
other sources that impede on the extraction of weak signals, two robust CP decom-
position methods were proposed and compared in three different applications: ERP
extraction, fetal ECG extraction and twin MagnetoCardioGram (MCG) extraction.

1.5.1.3 EMD-based methods

The EMD method |[Huang et al., 1998| can decompose any complicated data set into
a finite and often small number of components called intrinsic mode functions (IMF).
An IMF represents a generally simple oscillatory mode as a counterpart to the simple
harmonic function. Since the decomposition is based on the local characteristic time
scale of the data, it can be applied to nonlinear and non-stationary processes. EMD was
first used to study the laboratory made wave data and typical ocean wave data from
the field stations [Huang et al., 1998|. After that, it has been used in different fields
such as biomedical engineering |Bajaj and Pachori, 2012, |Liang et al., 2005a], image
processing |[Hariharan et al., 2006| and speech processing |[Huang and Pan, 2006|.

In the biomedical signal processing, EMD has been widely used in order to ana-
lyze and denoise signals. It was shown in |Liang et al., 2000] that EMD could separate,
identify and remove contamination from a wide variety of artifactual sources in Electro-
GastroGram (EGG) recordings. EMD was also used in |Liang et al., 2005b] to analyze
of esophageal manometric data in gastroesophageal reflux disease. Moreover, EMD
was used in |[Blanco-Velasco et al., 2008| to enhance ECG signals by removing both
high-frequency noise and baseline wander with minimum signal distortion. A combi-
nation of the BSS-CCA and EMD methods, called CCA-EMD, was used in [Hassan
et al., 2011| to denoise monopolar ElectroHysteroGram (EHG). A framework based on
EMD was proposed in [Zhang and Zhou, 2013| to eliminate power line interference,
white Gaussian noise and baseline wandering from EMG. A combination of EMD and
ICA was used in |Lee and Lee, 2013| to remove ECG artifacts from EMG. An EMD
method based on combination of instantaneous half period and soft-thresholding was
used in [Samadi and Shamsollahi, 2014] for noise reduction of ECG signals.

EMD has been widely used in processing of EEG data, especially for removing
noise and artifacts from EEG data. In this part, we introduce some new researches
in this context. In the study performed in |Looney et al., 2008|, EMD was used to
remove ocular artifacts from real EEG. An EMD-based approach was used in [Rutkowski
et al., 2009] to separate muscular interference from brain electrical activity. Indeed, the
EMD components from each EEG channel have been compared in spectral domain and
analyzed with a clustering technique in order to identify those similar across channels.
The resulting reconstruction separated common muscular interferences from underlying
brain activity.

To remove EOG from Steady-State Visual Evoked Potential (SSVEP) [Rutkowski
et al., 2010], each of the recorded channels in multichannel EEG recording environment
was decomposed into IMF components. The IMF components were further clustered
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for their spectral similarity in order to identify only those carrying responses to present
stimuli to the subjects. The results showed the superiority of this method in comparison
with contemporary blind source separation algorithms.

The multivariate extension of EMD [Fleureau et al., 2011bl[Fleureau et al., 2011a],
called MEMD, was used in [Molla et al., 2012] to separate EOG artifacts from EEG data
recorded during visual facial stimuli. A combination of EMD and Adaptive Filtering
(AF) was used in [Navarro et al., 2012] to cancel ECG noise in a simplified EEG montage
for preterm infants. In this study simulation signals were created from real artifact-free
EEG and then the cardiac artifacts were added to these signals. As shown in this paper,
cleaned signals improved up to 17% the correlation coefficient with original datasets in
comparison with signals denoised solely with AF. A method based on combining EMD
and ICA, called EMD-ICA, was proposed in [Mijovic et al., 2010b] in order to separate
independent sources when the number of these sources was higher than the number of
channels available. Two applications were considered for this method. In the first, the
new method was used to separate the ECG artifact from the EMG recordings. And in
the second one, EMD-ICA was applied to one of the EEG channels contaminated by
muscle artifact, eye artifact and seizure activity. A method for a single-channel signal
decomposition was proposed in [Mijovic et al., 2010a] which combined EMD with ICA.
A two step extension to bivariate EMD (BEMD) was proposed in [Molla et al., 2010] to
remove ocular artifacts from EEG. The BEMD is a generalized extension of the EMD
to complex signals.

A real-time implementation of an EMD-based signal enhancement scheme was pro-
posed in [Santillan-Guzman et al., 2013] for removing noise, suppressing muscle artifacts
and detrending EEG signals in an automatic manner and in real-time. In order to test
the performance of the EMD in real-time, semi-simulated EEG data were created: real
EEG signals from the central and frontal parts of the brain were contaminated with
simulated muscle artifacts. A real EEG dataset from an epileptic patient was also
employed. In both real and simulated experiments, results indicated that the muscle
artifacts were successfully suppressed.

A systematic approach to EEG signal enhancement was proposed in [Wang et al.,
2013] which was based on EMD and threshold filtering/rejection. The results of apply-
ing the method on synthetic and real Auditory Evoked Potential (AEP) data showed
the effectiveness of the method to improve the quality of AEPs. A method based on
EMD and Orthogonal Matching Pursuit was proposed in [Mourad and Niazy, 2013| for
automatic correction of eye blink artifact in single channel EEG recording. The effec-
tiveness of the method was studied on real EEG data superimposed with the eye blink
artifact recorded at the EOG electrode. A hybrid algorithm based on EMD and ICA
was also proposed in [Soomro et al., 2013] that automatically removed the eye blink
artifact from the EEG. The proposed algorithm was evaluated on both simulated and
real EEGs with eye blink artifact. In another study [Mert and Akan, 2014], a method
based on EMD and Mutual Information (MI) was proposed in order to remove white
noise from EEG signals. In this method, MI was used as a metric to define the infor-
mative level of extracted intrinsic mode functions referencing to the noisy EEG signals.
Two hybrid algorithms by combining the concept of Wavelet Packet Transform (WPT),
EMD and ICA, called WPT-ICA and WPT-EMD, were proposed in [Bono et al., 2014].
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The algorithms have been tested on multiple trials of four different artifact cases, eye-
blinking and muscle artifacts including left and right hand movement and head-shaking.
The results showed that the proposed methods were robust and holistic since they do
not require any a priori information about the artifact.

1.5.1.4 'Wavelet-based methods

The Wavelet Transform (WT) originated in 1980 with Morlet, a French research sci-
entist working on seismic data analysis [Morlet, 1983]. The WT has been found to be
particularly useful for analyzing signals which can be described as aperiodic, noisy, in-
termittent, transient and so on. Its ability to examine the signal simultaneously in both
time and frequency in a distinctly different way from the traditional Short Time Fourier
Transform (STFT) makes WT a widely used method in a variety of research areas such
as biomedical signal processing [Senhadji et al., 1995|[Shamsollahi et al., 1996|, digi-
tal watermarking [Lai and Tsai, 2010|, face recognition [Srinivasan and Ravichandran,
2013| and tracking of moving targets |Rui et al., 2013].

The WT has been widely used in the context of noise cancelation of biomedical
signals such as ECG [Cherkassky and Kilts, 2001} Castillo et al., 2013], EMG [von
Tscharner et al., 2011| and fMRI [Patel et al., 2014]. A lot of studies have been done in
the context of EEG noise cancelation, including EOG and muscular noise cancelation.
In this section, we study some of recent work in this context.

The BSS-CCA technique with wavelet filtering approach, called wavelet enhanced
BSS-CCA, was proposed in |[Raghavendra and Dutt, 2011| for minimizing both ocular
and muscle artifacts simultaneously. The performance of the proposed wavelet enhanced
BSS-CCA method was tested on real EEG recordings contaminated with ocular and
muscle artifacts that suggested that the proposed hybrid approach minimizes ocular
and muscle artifacts effectively, minimally affecting underlying cerebral activity in EEG
recordings. The Automatic Wavelet Independent Component Analysis, AWICA, was
proposed in [Mammone et al., 2012] for automatic EEG artifact removal. AWICA
consists of a two-step procedure relying on the concepts of kurtosis and Renyi’s entropy.
The results on both simulated and real EEG data showed improved success in terms of
suppression of artifact components while reducing the loss of residual informative data,
since the components related to relevant EEG activity were mostly preserved.

A wavelet-based method was used in [Scolaro et al., 2012] to attenuate the back-
ground activity and high frequencies in real interictal epileptic EEG signals. In the
study performed in [Mamun et al., 2013|, four different discrete wavelet functions were
used to remove noise from the EEG signal gotten from two different types of patients
(healthy and epileptic) to examine the effectiveness of Discrete Wavelet Transform
(DWT) on EEG noise removal. In another study [Zima et al., 2012], a method based
on a combination of ICA and Wavelet, called Robust Artifact Removal (RAR), was
proposed which was capable of removing short-duration, high-amplitude artifacts from
long-term neonatal EEG recordings. Such artifacts are mainly caused by movement
activity, and have an adverse effect on automatic processing of long-term sleep record-
ings. In order to gain robustness of the RAR method, the whole EEG recording was
processed multiple times. The resulting tentative reconstructions were then combined.
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The method was shown to perform better than either the wavelet-enhanced ICA or the
simple artifact rejection method without the combination procedure.

A nonparametric Bayesian estimator for signal and image denoising in the wavelet
domain, called MAP BKF, was presented in [Boubchir and Boashash, 2013|. The results
obtained with real EEG data (with open eye and closed eye) corrupted by Gaussian
noise indicated that the MAP BKF denoiser performed better than the soft and hard
thresholding methods. In [Abtahi et al., 2014], wavelet coefficient thresholding was
used to ECG removal from neonates EEG.

1.5.2 Semi-blind methods

In this section, we present semi-blind and/or constrained source separation methods
that use some a priori knowledge about sources or signals of interest. Sometimes even
rather weak data modeling priors exists, such as the general shape of the time curves
or their frequency contents. It would be very useful if such prior knowledge could be
incorporated into the separation algorithm directly. This kind of problem setting is
often called semi-blind. It is noteworthy that finding a strict boundary between blind
and semi-blind methods is somewhat difficult and in some researches, methods which
used knowledge about sources of interest were presented as blind methods.

One semi-blind method is the Denoising Source Separation (DSS) [Sarela and Valpola,
2005|, a powerful algorithmic framework built around the concept of a denoising func-
tion. In DSS, the independence criterion of ICA is replaced by the assumption that the
sources should 1) be uncorrelated and 2) maximize some desired properties. Another
approach is using Generalized EigenValue Decomposition (GEVD) with prior knowl-
edge about sources of interest. Constrained ICA algorithms which use prior knowledge
as temporally or spacially constraints are also used in denoising biomedical signals [Ille
et al., 2002|. In the rest of this section, we study semi-blind source separation methods

used in the context of noise removal from brain signals, including EEG, ECoG and
MEG.

1.5.2.1 GEVD and DSS-based methods

DSS was used in [Gunduz et al., 2008] to remove the interictal activity from ECoG
of patients who have lost their motor functions in order to improve linear prediction
of hand trajectories. In this method, the high amplitude quasiperiodic nature of the
observed interictal spikes was used as prior knowledge to present an iterative DSS
method.

In the study recently performed in [Samadi et al., 2013], a fast method to extract
the sources related to interictal epileptiform state was proposed. The method was
based on GEVD using two correlation matrices during: 1) periods including Interictal
Epileptiform Discharges (IED) as a reference activation model and 2) periods excluding
[EDs or abnormal physiological signals as background activity. The IED and non-IED
time intervals were manually identified by the epileptologist for each patient considering
all the intracerebral EEG channels. The method was evaluated using both realistic
simulated data and actual intracerebral EEGs of patients suffering from focal epilepsy.
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A deflation algorithm based on GEVD was presented in [Sameni and Gouy-Pailler,
2014] for the automatic detection and removal of EOG artifacts from EEG. The EOG
reference channel was used to identify time samples in which EOG artifact is high.
The notion of effective number of identifiable dimensions was also used to estimate
the number of dominant dimensions of the ocular subspace, which enabled the precise
and fast convergence of the algorithm. The results of applying the proposed method
on real and synthetic data showed the superiority of this method on some ICA-based
approaches such as FastICA and JADE.

1.5.2.2 Constrained ICA-based methods

An spatial filter approach, called Spatially-Constrained ICA (SCICA), for artifact cor-
rection in EEG and MEG recordings was presented in [Ille et al., 2002]. SCICA used
the prior knowledge about artifact topographies and combined it with the temporal-
statistical strategy of ICA to estimate the brain signal topographies from the whole
data segment to be corrected. The proposed method was used to remove EOG and
ECG artifacts from EEG and MEG data.

Temporally constrained ICA was used in [James and Gibson, 2003] to remove EOG,
ECG and line noise from EEG and EMG signals. To this end, for each type of artifacts
one (or more) reference signal(s) was (were) extracted by using the knowledge available
in the recorded signal and these reference signals were used to extract the corresponding
artifact components. The results on synthetic and real data showed the effectiveness of
this method.

A Jacobi-based constrained ICA technique was proposed in [De Vos et al., 2006] to
remove eye artifacts from the EEG. The idea of this method was that there is strong
prior information about the mixing vector of eye artifacts which can be used as a
constraint in ICA model. The advantage of this method is that the components do not
have to be inspected afterwards in order to detect the artifactual ones.

The concept and use of spatial constraints was introduced in [Hesse and James, 20006|
in biomedical semi-blind source separation applications. To this end, different kinds of
spatial constraint were defined and detailed general guidelines were provided on how
these constraints could be incorporated into existing gradient-based BSS approaches.
The effectiveness of using spatial constraints were studied by using normal and ictal
EEG data in the context of artifact removal and source tracking.

BSS-CCA and SCICA were used in [Hallez et al., 2009] as a preprocessing step
before the source localization by means of the Rap-MUSIC algorithm [Mosher and
Leahy, 1999| during the ictal period. The methods were examined through the source
localization procedure and showed that the accuracy of the source localization can be
increased by preprocessing the ictal EEG segment by BSS-CCA and SCICA.

A framework was proposed in [Akhtar et al., 2012| based on SCICA and WD. In this
framework, SCICA was used to extract artifact-only independent components from the
given EEG data and WD was used to remove any cerebral activity from the extracted
artifacts components. Finally the artifacts were projected back to be subtracted from
EEG signals to get clean EEG data. Prior assumptions regarding the spatial topography
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of some sources were used as spatial constraints on the mixing matrix. The proposed
method was examined on both simulated EEG data with simulated eye-blink artifacts
and real EEG data contaminated with ocular artifacts. It showed better results than
the previous wavelet-based methods.

A constrained ICA approach [Shapoori et al., 2013| was used for separation of in-
tracranial spikes from EEG. This method was based on creating a template from in-
tracranial data, by using approximate entropy, and then this template was used in the
form of a constraint in an ICA algorithm. The effectiveness of the algorithm was studied
by using real intracranial EEG data.

1.5.3 Other methods

In addition to the above-mentioned methods, there exist other methods used in the
context of noise removal from EEG signals. Among these methods we can mention
methods based on Kalman Filters [Galka et al., 2011}[Oikonomou et al., 2007b|, adap-
tive and Volterra filters [Mateo et al., 2013|, filtering and thresholding the analytic
signal envelope [Melia et al., 2014] and Bayesian framework [Zumer et al., 2007]. In
addition, several reviews and comparison studies in this context are available such as
in [Kachenoura et al., 2011, Khatwani and Tiwari, 2013,[Salis et al., 2013]. Table [[1]
summarizes the main advantages and disadvantages of the denoising methods.

1.6 The outline of the thesis report

The rest of this report is organized as follows. First, in chapter 2, we present the pro-
posed methods to denoise epileptic EEG data. These methods are presented in three
groups: the GEVD and DSS-based methods, the JDICA algorithm and the SSD-CP al-
gorithm. For each proposed algorithm, we explain how it can be used in order to denoise
interictal and/or ictal EEG data. At the end of this chapter, the numerical complexity
of all proposed algorithms is studied. In the third chapter, we present the simulated
and real data used in our various analyses. Then, we introduce the performance criteria
used in the fourth chapter for comparison between the denoising methods. Chapter 4
shows the results obtained with interictal and ictal EEG signals, for both simulated
signals and real data. Finally, the conclusion, discussion and perspectives of our work
are presented in the last chapter.

1.7 List of publications

In this thesis, several methods are proposed for noise cancelation of epileptic signals.
The first two methods, which are based on Generalized EigenValue Decomposition
(GEVD) and Denoising Source Separation (DSS) approaches, are used to denoise in-
terictal data. To extract a priori information required by GEVD and DSS, we propose
a series of preprocessing stages including spike peak detection, extraction of exact time
support of spikes and clustering of spikes involved in each source of interest. The first
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version of the GEVD-based denoising method has been presented at a conference in
2012:

S. HAJIPOUR, M. B. SHAMSOLLAHI, L. ALBERA and I. MERLET,
"Noise cancelation of epileptic interictal EEG data based on generalized
eigenvalue decomposition," in TSP 12, 2012 IEEE Thirty-Fifth International
Conference on Telecommunications and Signal Processing, Prague, Czech
Republic, July 3-4 2012, pp. 591-595.

Then, we modify the preprocessing algorithms and add the DSS-based method. The
presentation of the GEVD-based and DSS-based methods and results of comparing them
with ICA and DCCA methods has been accepted to appear in the following journal:

S. HAJIPOUR, M. B. SHAMSOLLAHI, L. ALBERA and I. MERLET,
"Interictal EEG noise cancelation: GEVD and DSS based approaches versus
ICA and DCCA based methods," to appear in IRBM.

Two other methods, namely Time Frequency (TF)-GEVD and TF-DSS, are also
proposed in order to denoise ictal EEG signals for which the time-frequency signature
of ictal sources is extracted by using the CCA method. This work has been accepted
to appear in the following journal:

S. HAJIPOUR SARDOUIE, M. B. SHAMSOLLAHI, L. ALBERA and I.
MERLET, "Denoising of ictal EEG data using semi-blind source separation
methods based on time-frequency priors," to appear in IEEE Journal of
Biomedical and Health Informatics.

We also propose a deflationary ICA method, namely JDICA, that is based on Jacobi-
like iterations. More particularly, while a projection-based deflation scheme inspired by
Delfosse and Loubaton’s ICA technique (DelLR) is used, a Jakobi-like optimization
strategy is proposed in order to maximize a fourth order cumulant-based contrast built
from whitened observations. This work has been accepted to appear in the following
journal:

S. HAJIPOUR, L. ALBERA, M. B. SHAMSOLLAHI and I. MERLET,
"An efficient Jacobi-like deflationary ICA algorithm: application to EEG
denoising," to appear in IEEE Signal Processing Letters.

Moreover, we propose a new direct algorithm, called SSD-CP, to compute the CP
decomposition of complex-valued multi-way arrays. The proposed algorithm is based
on the Simultaneous Schur Decomposition (SSD) of particular matrices derived from
the array to process. We also propose a new Jacobi-like algorithm to calculate the
SSD of several complex-valued matrices. This work has been presented in the following
conference:

S. HAJIPOUR, L. ALBERA, M. B. SHAMSOLLAHI and I. MERLET,
"Canonical polyadic decomposition of complex-valued multi-ways arrays
based on simultaneous Schur decomposition," in ICASSP 13, 2013 IEEE
International Conference on Acoustics Speech and Signal Processing, Van-
couver, Canada, May 26-31 2013, pp. 4178-4182.

Finally, we plan to submit a journal paper from the above work very soon:
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S. HAJIPOUR, L. ALBERA, M. B. SHAMSOLLAHI and I. MERLET,
"From simultaneous Schur decomposition to canonical polyadic decomposi-
tion of complex-valued multi-way arrays," to be submitted in IEEE Trans-
actions on Signal Processing.
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Table 1.1: The main advantages and disadvantages of the denoising approaches.

Advantages

Disadvantages

spoyleut paseq-yDd pue YOO ‘VOI

e Used for denoising of different kinds
of signals (Normal, interictal, ic-
tal,...) and noises (EOG, EMG,
ECG,...)

e Various methods have been proposed
in this category

e Show better denoising performance
in comparison with other methods
for low SNR values

e Subspace of interest and subspace of
non-interest should be independent
or uncorrelated

e Dimension of the source space should
be estimated to achieve good results

e The sources of interest and number
of them should be chosen manually
or with an extra step

e High computational complexity in
case of higher dimensions

e The dimension of the source space
should be less than the number of
channels

Spot1ouI paseq Uo1IsoduIodsp J0

e No independency assumption is
needed

e The dimension of the source space
can be more than the number of
channels

e Data should be represented as a
higher order array

e The array to be decomposed should
fit trilinear (or higher) model

e High computational complexity in
case of higher dimensions

e The sources of interest and number
of them should be chosen manually
or with an extra step

spot3our paseq-(qNd

e Good performance for low SNR val-
ues

e Usually used in combination with
other denoising methods

e Choosing components of interest (or
non-interest) is manual in most cases

e High numerical complexity
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Table 1.1: (cont.) The main advantages and disadvantages of the denoising approaches.

Advantages

Disadvantages

SPOT[}9UI POSR(-1I[OARAN

e Low numerical complexity

e Different mother wavelets can be
used based on the type of signal and
noise

e Usually used in combination with
other denoising methods

e Poor performance for low SNR values

e Choosing components of interest
(or non-interest) and thresholding is
manual in most cases

Spot3eul peseq-SS(I pue (JAHD

e Low numerical complexity

e Good performance when the a pri-
ori knowledge is available about the
subspace of interest

e No need to choose the sources of in-
terest

e Appropriate information about the
subspace of interest is needed

e Performance is greatly sensitive to
the quality of the a priori informa-
tion on subspace of interest

e Poor performance for low SNR values

SPOT[JoU Paseq-y )] PouIeIIsuo))

e Good performance when the a pri-
ori knowledge is available about the
subspace of interest

e Appropriate information about the
subspace of interest is needed

e Performance is greatly sensitive to
the quality of the a priori informa-
tion on subspace of interest

e Poor performance for low SNR values
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Chapter 2

Algorithms

In this chapter, we present the proposed methods to denoise epileptic EEG data. These
methods are presented in three groups. First, we study the methods that are based
on GEVD and DSS frameworks. Then, we propose the JDICA algorithm that is a
deflationary ICA method based on Jacobi-like iterations. The third method, called the
SSD-CP algorithm, is based on the CP decomposition. For each proposed algorithm,
we explain how it can be used in order to denoise interictal and/or ictal EEG data. At
the end of the chapter, the numerical complexity of all proposed algorithms is studied.

2.1 Semi-blind GEVD/DSS based methods

GEVD/DSS based approaches can be used when we have a priori information about
the subspace of interest. In this thesis, we separately propose two methods based on the
GEVD and DSS [Sarela and Valpola, 2005] frameworks for denoising interictal and ictal
data. Indeed, we want to test if a priori information on the subspace of interest can
be used in the denoising process. To this end, first we introduce the GEVD and DSS
frameworks and then we separately present the proposed methods to denoise interictal
and ictal EEGs.

2.1.1 Generalized Eigenvalue Decomposition

The problem of GEVD of a pair of symmetric matrices (C1, Cy) € RM*M x RM*M g
defined by finding the matrices W and A such that:

W' 'C\W = A
W' C,W =1 (2.2)

where A and I are a diagonal matrix and the identity matrix of size (M x M), re-

spectively. After multiplying equations (ZI) and (Z2) with W~ and combining these
equations, we obtain [Parra and Sajda, 2004):

If Cy and Cy are symmetric positive definite matrices, matrix A contains the posi-
tive generalized eigenvalues corresponding to the real generalized eigenmatrix W =

45
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[wy, ..., wy|. If the generalized eigenvalues are sorted in descending order on the di-
agonal of matrix A, the first generalized eigenvector w;, corresponding to the largest
generalized eigenvalue, maximizes the Rayleigh quotient given as follows:

.
w Ciw

J(w) = (2.4)

w' Crw

Due to the assumption of linear mixtures, maximizing a Rayleigh quotient can be
formulated in the time, frequency, wavelet, etc. in any domain obtained after a mapping
reserving the linearity of the mixture [Sameni et al., 2010,[Phlypo et al., 2010al Phlypo
et al., 2010b|.

2.1.2 The Denoising Source Separation framework

To define the DSS framework, we use the statistical problem formulation given in section
[L4T and especially the following noisy linear static model:

z[n| = Gr[n] + v[n] (2.5)

To define the DSS algorithm, it is assumed that the observations {&[n]} are whitened
as explained in [Comon, 1994], such that the covariance matrix of the noiseless observa-
tions becomes equal to the identity matrix. Consequently, with the whitening assump-
tion, M = P’ and G is a (P’ x P’) orthogonal matrix. Based on the N observations,
the problem consists in estimating (i) the mixing matrix G and (ii) the source signals.

The DSS framework is based on the Expectation-Maximization (EM) algorithm
[Dempster et al., 1977]. For being self-contained, the detailed procedure to extract
the DSS framework, based on [Sarela and Valpola, 2005, Belouchrani and Cardoso,
1995, Bermond and Cardoso, 1999], is given in appendix [Al Here we give some brief
explanations.

First, the likelihood £(80) of the observation matrix is calculated in terms of the
vector of unknown parameters 6. To find the maximum likelihood estimate of the
unknown parameters, all partial derivatives of £(80) should be equal to zero. These
equations do not have a closed form solution. So, to solve this problem, an iterative
EM-like algorithm is used. In this algorithm, in each step, the parameters are estimated
again in such a way that a monotonic increase in the likelihood is guaranteed.

In the extracted EM algorithm, all the components are estimated simultaneously.
However, by using the aforementioned assumptions, including the prewhitening of the
observations, and simplifying the results, the DSS framework to extract the sources
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one-by-one is obtained as follows [Sarela and Valpola, 2005]:

1)E — step :
a) Calculating the noisy estimate of one source :
Vn, rj(oi) [n] = wz(f)Ta:[n] (2.6)

b) Denoising based on the a priori in formation about

the sources :

vn, % [n] = f(ry)[n]) (2.7)
2) M — step :
a) Calculating the new ML estimate of wz(f)
N
wit = alnlr o (2.8)
n=1

b) Normalizing the mixing vector :
(i)+

(i+1) _ _Wp
RO TOR 29

Until convergence

where {x[n]} corresponds to the recorded realization of {&[n]} and {r[n|} 1s the cor-

responding realization of the source process {7[n|}. In this framework, {Tp [n]} and

w},) represent the p-th source and its corresponding separator in the i-th iteration,

respectively.

As stated in [Sarela and Valpola, 2005|, this interpretation is not novel, but it allows
for the development of new algorithms that are not derived starting from generative
models. Therefore, the family of DSS al or1thms 1s 1ntroduced as algorithms that have
the form (2.6)- (IZZI) and the equation Tp = f(r{"[n]) is interpreted as denoising.

2.1.3 The GEVD and DSS based methods for denoising of in-
terictal data

For EEG signals, it has been previously shown that different assumptions about sources
of interest, such as spatial constraints [Hesse and James, 2006|, locations of known
sources |Latif et al., 2006], shape and latency of the signal of interest [Ahmadian et al.,
2013] and time support of spikes |[Samadi et al., 2013|, can be considered in semi-
blind or constrained source separation methods. In this thesis, we use the timing
information of the epileptic interictal sources (i.e. the time samples corresponding
to each epileptic source) and propose a series of preprocessing stages to extract the
useful information to be used in the GEVD and DSS frameworks. These preprocessing
stages consist of the detection and clustering of the epileptic spikes involved in each
source of interest. It should be mentioned that a GEVD-based method was previously
proposed in [Samadi et al., 2013] in order to determine epileptic regions from epileptic
intracerebral EEG signals. This method has a manual preprocessing stage to extract
periods including interictal epileptiform discharges. On the contrary, in a GEVD-based
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Figure 2.1: The flowchart of the GEVD and DSS-based denoising methods

. . Extracting the . The time samples
[The nmsy}_) Spike exact time support | Spike { corresponding to

signal detection of the spikes Clustering each epileptic source

Figure 2.2: The flowchart of the preprocessing stage of the GEVD and DSS-based
denoising methods

method used in this thesis to denoise interictal EEG data, all the preprocessing stages
to extract the time samples corresponding to each epileptic source, including spike
detection, extraction the exact time support of spikes and spike clustering, are fully
automated. It should also be mentioned that both works have been done in parallel
and independently. Some parts of our work was previously presented in [Hajipour et al.,
2012|. In this section, we use the statistical model as presented in section [4.1]

As shown in figure 211 in order to denoise interictal EEG signals, we show how the
GEVD/DSS approach can be used through two main stages: (1) a preprocessing stage
and (2) the subspace decomposition stage. In the preprocessing stage, some a priori
knowledge about the occurrence times of spikes (spike time samples involved in each
epileptic source) are extracted. This information is used in the GEVD or DSS method to
separate the epileptic subspace from the noise subspace. Finally, the estimated denoised
signal is achieved by reconstructing the observation signals only from estimated epileptic
sources. As shown in figure 2.2] the preprocessing stage has three parts. We first detect
the spike peak times. Then the exact time support of spikes is identified. After that,
we cluster the extracted spikes into P! groups corresponding to P! epileptic interictal
sources. In the rest of this section, these three stages are explained in detail and the
GEVD and DSS-based methods to denoise interictal data are then studied.

2.1.3.1 Spike detection

In the context of EEG signal processing, various methods have been proposed for spike

detection |Senhadji et al., 1995|[Senhadji et al., 1997, Wilson and Emerson, 2002| Acir
et al., 2005,Bourien et al., 2007, Indiradevia et al., 2008,Ji et al., 2011]. These methods

may use the information obtained from a single channel [Senhadji et al., 1995] or from
several (multi-) channels [Ji et al., 2011Acir et al., 2005]. They may also be categorized
by the features they used: morphological features |Ji et al., 2011| or time-frequency
ones |Senhadji et al., 1995]. Most of the spike detection methods have an enhancement
stage that generates an output signal in which the distinction between the spikes and the
noise is increased by some filtering methods such as WT [Senhadji and Wendling, 2002,
[Indiradevia et al., 2008|, matched filters |[Pfurtscheller and Fischer, 1978| or Kalman
filter |Oikonomou et al., 2007a]. At this stage, the output signal is used in a decision
procedure in order to extract the spike peak times. This decision procedure may be
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Figure 2.3: The spike peak detection algorithm

Spike Peaks

Hierarchical Clustering

implemented by a simple thresholding algorithm [Bourien et al., 2007] or may have a
more complex structure [Senhadji et al., 1995].

In this thesis, we use a three-stage multi-channel spike detection method that is a
generalized version of the previously proposed single-channel spike detection method
[Senhadji et al., 1995|[Senhadji et al., 1997]. This single-channel wavelet-based spike
detection method consists of two stages (S and S) that detect the candidates for spike
peak times of each channel of observation (figure Z3). In [Senhadji et al., 1997], it
was shown that this wavelet-based algorithm has a better performance than other spike
detection algorithms. To generalize this method to multi-channel detection, we add
a third stage (S3) in which a clustering algorithm combines the extracted information
from all channels to detect the spike peak times. Figure 2.3 shows the three stages of
the algorithm.

The detailed procedure of this three-stage multi-channel spike detection method
can be described as follows. First, note that the signal of interest, the spikes in our
application, are contaminated by piece-wise stationary signals, such as background
EEG and measurement noise as well as by transient signals such as muscular artifacts.
Therefore, this algorithm eliminates the signals of non-interest in two successive stages:
the first stage (S7) separates transient signals (including the spikes) from the piece-wise
stationary signals and the second stage (S3) tries to separate the spikes from muscular
artifacts (rejection of false alarms). To this end, two measures 7™ and GY are
calculated for each channel of observation {z,,[n]} and for each time sample n. Then
by using the appropriate thresholding processes, the candidates for spike peak times
are obtained for each channel. The detailed procedure of these two stages is presented
in [Senhadji et al., 1995|[Senhadji et al., 1997] and is also given in appendix Bl

Up to this point, we estimate the candidates for the spike peak times for each
observation channel. Since there may be false detections and since the peak time
might be misestimated by a few samples, a decision algorithm has to be performed at
a stage S3 by using the information of all channels. We use a hierarchical clustering
method [Ward, 1963] to group all possible candidates for spike peaks of all channels.
The hierarchical grouping starts by defining a number Ny of clusters equal to the total
number of candidates. In the first grouping step, the number of clusters is reduced to
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Ny — 1 by combining the two nearest spike peak times. In successive stages the newly
formed groups are linked to other spikes or spike groups with the lowest distance (i.e.
the distance between the centers of the clusters). In each step we save the center and
the maximum intra-distance, i.e. the distance between the individuals in one group, for
each cluster. This procedure is repeated until the maximum intra-distance of all clusters
is less than a given threshold Thgp. chosen as the length of a spike. After extracting
all clusters, we select only the clusters for which the population is more than Ny (i.e.
the minimum number of channels which are affected by one spike) and accordingly the
centers of these clusters are the estimated peak times.

2.1.3.2 Extraction of the exact time support of the spikes

Only a few studies have worked on extracting the time support of a spike. In most
applications, such as extracting the morphological features, only the spike peak times
and the distance between adjacent peaks are calculated. To extract the important
morphological points, the curvature features based on the second derivative are usually
used. In this thesis, we use a curvature measure proposed in [Rosenfeld and Johnston,
1973] to extract the time support of the spikes. First, in order to eliminate the inef-
fective channels, i.e. channels with little spike characteristics, we calculate a measure
of spikiness based on the fourth standardized moment of each observation channel as
follows:

(El(@m[n]
(E[(Zm[n]

EZn[n]])"])
Bl [n]])?])?

Spikiness({Z,[n]}) = — (2.10)
where (.) stands for the temporal mean. We then eliminate the first N,. channels
with minimum Spikiness. The remaining channels are called "epileptic channels" in the
following. Then we consider a symmetric window around each peak time (extracted
in the previous step) and calculate the average value of the epileptic channels for all
samples in the defined window. Then each signal is low pass filtered with a moving
average filter of length L,,, 1. Up to this point, for each spike we have a smooth signal
around the spike peak time. To find the start and end samples of each spike, we define
a curvature measure as follows:

Curvg[n] = icos(ﬁgn)) (2.11)

where (‘)Z(”) is the angle between two line segments that connect the points (n—1i, x[n—i))
and (n+ i, z[n +1]) to (n,z[n]) as shown in figure 2.4l Then we use Thy as a threshold
to define the start and end points of the spike. Since the data are noisy, we must ensure
that the curvature of at least Ny consecutive points are greater than Thy. Thus, the
start point of a spike is chosen as a first sample where its curvature and the curvature
of the Ny —1 following samples are greater than Thy. Similarly, the end point of a spike
is chosen as a last sample where its curvature and the curvature of the Ny — 1 previous
samples are greater than Thy.
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Figure 2.4: The angle 02(”) used in the curvature definition

2.1.3.3 Spike clustering

In this stage, the spikes extracted in the previous stages are clustered into P! clusters
corresponding to P! epileptic sources. The morphological features of spikes (including
the peak location, the zero-crossing sample, slope and ...) originating from different
epileptic sources are slightly different. These features may be used to cluster the spikes
according to their corresponding epileptic sources. In this thesis, we use the ratio
between the spike amplitudes on all electrodes at two main peak times. Since the
location of epileptic sources in the brain has a direct impact on the spike amplitudes of
different channels, this vector of features can effectively cluster the spikes. Since for the
simulated data of this thesis we use biphasic spikes, we consider two peaks for each spike
in this section. To extract this vector of features for each spike, we do the following
procedure on each spike truncated at its extracted time support. These truncated spikes
are represented by {z)[n,]} with 1 < ¢ < N, where N, is the number of spikes. So,
we should first detect the occurrence time of two main peaks as shown in figure
Note that the spike peak times extracted in the first preprocessing stage may match
one of these peaks, but in this stage we determine all of the peak times. To this end, for
each spike, we calculate the moving average low pass filtered signal (with the filter of
length L, 2) of each channel as shown in figure 2.5(a). Then, we calculate the average
of absolute values of amplitudes over all channels in each time sample, represented by
{|z®|[n,]} as shown in figure 25(b). Then, the time of zero-crossing in approximately
middle of the signal is determined. To find this point, the sample with minimum value
in the middle third of the signal is extracted (ng) as shown in figure 2Z3[(b). After that,
for {|x®|[n,]}, we consider two segments: one from the start point to ny and the other
one from ng to end, and for each segment we find the point with maximum value as
shown in figure 25)(c). These two arguments of maximum, ";(ﬁ) and n'9, correspond to

2
the occurrence time of the negative and positive peaks of the spike. Then we use the

values of observations of different channels in the time samples nffl) and nfo) to generate
a normalized vector of features for each spike as follows:
Ol Ol
x[n x([n
VI<{<N,,  f[{] ] ] I (2.12)

= [ ,
VM wanlf) SN )

Then by using the feature vectors of all spikes, f[¢] for £ € {1,..., Ny}, and the Fuzzy
C-Means (FCM) clustering algorithm [Bezdek et al., 1984], the spikes are classified into
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Figure 2.5: The procedure of feature extraction from one spike: (a) the low-pass filtered
signals of all channels, (b) extracting the zero-crossing sample of |2 |[k], (c) extracting
the occurrence time of two negative and positive peaks

P. groups corresponding to P, epileptic sources. We represent, the cluster containing
all time samples corresponding to the p-th epileptic source by cluster(p) and the sets

T and T are defined as follows:

T1(p) ={n:n € cluster(p)}
TQ(p) ={n:n ¢ cluster(p)} (2.13)

2.1.3.4 The GEVD-based method for denoising interictal EEGs

Let us assume that the vector random process {&[n]} can be approximately decomposed
as a linear combination of decorrelated random processes, say as &[n] = G7[n] where
P’ components of {#*[n]} correspond to the components of {#[n]}, i.e. they span the
epileptic source subspace, and the other P’— P! components span the noise subspace.
To extract these P. epileptic components as well as their corresponding columns in the
mixing matrix G, we use a GEVD-based subspace decomposition algorithm. In this
algorithm, we extract each epileptic component separately and then reconstruct the
denoised observation signal corresponding to epileptic sources. The whole procedure
to extract the epileptic subspace is shown in figure For the epileptic source p €
{1,..., P’} and for each time sample, we define two types of covariance matrices of the
random vector {Z[n]} as follows:

Vm e T, CVm] = EB[@[m]—E&@n) (@[] -E@m])']

= GCY G (2.14)
Vno € T, CPno) = E[(&[ne] —E[&[na])) (&[na] —E[Z[n2]])']

= GCY[n,)G" (2.15)

where the sets ") and 74" are defined in (ZI3) and the matrices C[n;] and C* [ny]
are the diagonal covariance matrices of the source vector {#[n]} at two time samples

ny € T and ny € T, respectively.



2.1. Semi-blind GEVD/DSS based methods 53

To identify the p-th epileptic component {TI(;E) [k]}, we maximize the Rayleigh quo-
tient defined as follows:

wT<C(p) [”1]>Tl“’)'w

w' <C(p) [”2]>T2<P)'w

J®) (w) = (2.16)

where (C'?) [n]) ;) is the sample estimate (by time averaging) of the covariance ma-
J
trices C'P[n;] on the interval Tj(p) and w is the estimated separator. In practice and
with ergodicity hypothesis, this average covariance matrix can be estimated from a
realization {z[n]} _,m of the vector random process {Z[n]} . as follows:
J J

ﬁ S (feblt—dzlh,o ) (febl - e,

nET].(p )

vj € {1,2}, (CP ]y ~
(2.17)

where n(Tj(p)) represents the number of samples in the set Tj(p) and ({x[n]}),» =
J

W >er@ x[n]. Finding the argument of the maximum of (2.I6)) is equivalent to

jointly diagonalizing the matrices (C¥) [71]) ;@ and (cw [12]) .. Consequently, the
1 2
separator vector can be found by solving a problem of joint diagonalization by congru-
ence. To this end, the GEVD of the pair of matrices (C'?) [n1]) ) and (cw [12]) 1) 18
1 2

solved in order to maximize ([ZI6). More particularly, the vector w, maximizing J®
(210) is computing as the eigenvector associated with the largest eigenvalue of matrix

(c® [m]};(lp)(C;p) [n1]) ;. An estimate of {r{?[n]} is then given by {#\”[n]} where
5 1

p(e) [n] = w;af:[n] for any time index n. Once the estimate {ﬂ(f) [n]} of the P! epileptic
components {rj(f) [n]} have been computed, the estimated denoised EEG signal {&“[n]}
is achieved by reconstructing the observation signals only from the estimated epileptic

subspace as follows:

O] = GO (2.18)
where #©[n] = [#9)[n], ...,fgf,) ], G = X(IAZ(E))tt and where X and R are the
(M x N) and (P! x N) matrices standing for N samples of the M-dimensional signal
{x[n]} and N samples of the P/-dimensional reconstructed signal {#[n]}, respectively,
with the assumption that N > M. Therefore, {&'®[n]} contains essentially the contri-
bution of the epileptic activity on the scalp electrodes.

2.1.3.5 The DSS-based algorithm for denoising interictal EEGs

In this section, as mentioned before, we use the information extracted from the prepro-
cessing stages of the algorithm to design an appropriate denoising method in the DSS
framework. The model (235) for the observation is considered. The flowchart of the
proposed DSS algorithm to extract one epileptic source is shown in figure 2.7 In this
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flowchart, {#”[n]} and the vector w),, represent the p-th extracted epileptic source and
its corresponding separator, respectively.

As shown in figure 2.7, the first step of the algorithm is a whitening of the observa-
tions {a[n]}. The whitened signal {z[n]} is given by z[n] = ©*z[n] where © is a square
root of the covariance matrix of the noiseless observation vector process {&[n] — D[n]}.
By means of this whitening procedure, the matrix GG is transformed into an orthogonal
matrix W of size (P’ x P’). The five sub-steps are the main steps of the DSS method
which are repeated in an iterative procedure. First, by using an initial value of sep-
arator vector w, of unit norm of size (P’ x 1), a noisy estimate of the p-th source is
calculated as follows:

Vn, fj(f) [n] = w;z[n] (2.19)

The next step, called the denoising step, is the main stage of the algorithm. In
this stage, by using the pre-obtained information, the current estimated noisy source is
modified or denoised. As stated in section 2.1.2] the general form of this stage is given
by A9 [n] = f(7[n]). In the DSS algorithm used in this thesis, the denoised source
{#{%[n]} is produced from the noisy source {#\”[n]} as follows:

5 (e) ' (p)
NOTSII I i n] ifneT] 9 90
F { 0 otherwise (220)

where Tl(p ) is the set containing the time samples corresponding to the p-th source as

defined in (2.13)).
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In the third, fourth and fifth steps, by using the denoised source {f;[(,eH[n]}, a new
estimation of the separator vector is calculated and normalized as follows:

N
wy =Y z[n)fl"n] (2.21)
n=1
w{™ = I w ) (2.22)
w(orth)
(new) p
p (orth) (223)
Jwp” |

where IT* is defined by:

It =7— [/V(p—l)(Vv(p—l)TVv(p—l))—lvv(p—l)T — - weHwe-DT (2.24)
with WE™ = [w,, ... w, 1] (2.25)

It is clear that the matrix ITT represents the orthogonal projector onto the subspace
orthogonal to the previously extracted sources, so by multiplying this matrix by w; ,
the effect of previously extracted sources is removed. By using this deflation step in the
DSS framework, the convergence to previously extracted sources is prevented [Sarela
and Valpola, 2005]. Then, the present estimated separator vector w, is passed to the
first block and this procedure continues until convergence. The outputs of the algorithm
are w, and ﬂ[(,e) [n] = w;z[n]. By using the same procedure, all epileptic sources are
extracted. The estimated denoised EEG signal can then be achieved as follows:

(e)

vk, &9n] =G #9n (2.26)

where G = @W'" with W' = [wy, ..., wp].

2.1.3.6 Setting the parameters

In order to optimize the performance of the GEVD and DSS methods, we set the value
of the parameters T'hgpike, Nues Ly Noy, Limg,1 and Ly, 2 equal to 80, 17, 81, 7, 9 and 19,
respectively. The value of N,y was set to be 4 and 6 for the first scenario and the other
scenarios, respectively. Thy was set to be 0.4curv, where curv, is the average of the
curvature measure in the examined interval. Noted that these values were estimated
from a few trials of the simulated data and then we used these constant values dealing
with all data.

2.1.4 The TF-GEVD and TF-DSS methods for denoising of ictal
data

As previously said, in this section we are interested in proposing GEVD/DSS-based
source separation methods to denoise ictal EEGs. To this end, we look for some a
priori information on the sources of interest to define the covariance matrices in the
GEVD method and in denoising step of the DSS method. Accordingly, the proposed
methods, namely TF-GEVD and TF-DSS, use the time-frequency signature of ictal
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discharges to denoise ictal EEGs. To extract the time-frequency information on ictal
sources, we use the CCA approach that has been shown to be the most efficient method
to date, to denoise ictal EEG signals contaminated by muscular activity [De Clercq
et al., 2006, Hallez et al., 2009,[Safieddine, 2012} Karfoul et al., 2015].

Note that, in this section, we use the statistical model as presented in section
4Tl In addition, we denote by {7}, [n,k]} the random process defined as the lin-
ear time-frequency transform of the random process {Z,,[n]}, where n and k stand
for the time and frequency indices, respectively. The M-dimensional random vector
process {Tz[n, k|} then contains the linear time-frequency samples of the M channels.
Therefore, according to (2.3]), for each couple (n, k) of {1, ..., N} x {1, ..., K}, we have:

Tz[n, k] = zP:gp T;,[n, k] = G T [n, k] (2.27)

where {75, [n,k]} and {T5[n, k]} represent the linear time-frequency transform of the
random processes {7,[n]} and {7[n]}, respectively. We also denote the linear time-
frequency transform of a realization {x[n]} of the random vector process {&[n|} by

{T[n, K]}

We can consider that the energy of the epileptic sources is local in the time-frequency
domain. This hypothesis comes from the observation made by clinicians and epilep-
tologists, that at the beginning of seizures, the fast ictal activity is very narrow band,
and of low amplitude. According to this property, for the p-th ictal source we assume
that the largest portion of its energy is reserved in a time-frequency subset TF®) of
{1,..,N} x {1,...,K}. Thus, our aim is to compute the epileptic subspace {x(°[n]}
using this a prior: information on the ictal sources through specific time-frequency
matrices. Given an L-dimensional random vector process {@[n]} and its linear time-
frequency transform {75 [n, k|}, we define the (L x L) time-frequency covariance matrices
CP[ny, k] and CP[ny, ks as follows:

V(ny, ki) € TE®), CP[ny, ki) = B[(Talny, ki) = E[Talng, k) (Talng, ki) —E[Talng, ki)'

T

V(na, ks) ¢ TF®), CP)[ny, ka] = E[(Ta[ne, ka] —E[Ta[na, k2)]) (Talne, ko] —E[Talng, ko)) ']
(2.28)

We also represent the time-frequency average of the covariance matrices C?[n,, k;] and
C'P)[ny, ko] on their time-frequency support by (C®[ny, k1])ppe and (CP[n,, ko)) )5
respectively. In practice, these average time-frequency covariance matrices can be esti-
mated from a realization {Ty[n, k|} of the vector random process {T[n, k]} as follows:

T

(CSf) [nl, k1]>TF(p) R‘in(ﬂl?(p) Z (Ta[nh k1]—<Tﬁ[n17 kl]))(Tﬂ[nlv kl]_<Tﬁ["17 k1]>)
(n1,k1)ETF(®P)

1
) R m k%T(FY(;a; [n2, ko] = (Talna, ko)) (Talna, ko] — (Talna, ka)))

T

(CP)[na, ko))

(2.29)
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Figure 2.8: The flow chart of the denoising procedure to extract the p-th ictal subspace
corresponding to the p-th ictal source by TF-GEVD and TF-DSS methods.

where n(TF®) represents the number of samples in the set TF( ). Here, for simplic—
ity, we represent matrices (CP[ny, k1])qpen and (CP [ng,kg]) » by C'(p) and C'P
respectively. Consequently, the average time-frequency Covarlance matrix on all tlme—
frequency samples, C,, can be defined as follows:

=

1 - T
Cu=wp > (Ta Taln, k) (Taln, k| —(Ta[n, k])) (2.30)

n=1 k=1

The general flowchart of the proposed methods to extract the ictal subspace corre-
sponding to the p-th ictal source is shown in Figure 2.8l As illustrated in this figure, the
proposed methods consist of three main steps: 1) extracting the linear time-frequency
signature of the p-th ictal source, 2) calculating the time-frequency transform of the
observations and 3) applying a time-frequency-based denoising method to the linear
time-frequency transform of the observations. The proposed methods only differ in the
third block where either TF-GEVD or TF-DSS is used for the denoising procedure.
These steps are explained in details in the rest of this section and then the relation
between the two proposed methods is studied.

2.1.4.1 Extracting time-frequency mask corresponding to each ictal source

The CCA-based BSS method extracts the sources from observations with the main
assumption that the sources are mutually uncorrelated as well as maximally auto-
correlated [De Clercq et al., 2006]. As shown in previous studies [De Clercq et al.,
2006,[Satieddine, 2012, Karfoul et al., 2015|, CCA surpasses other methods for the de-
noising of ictal signals. Nevertheless it can not achieve sufficiently good results in some
instances such as low SNRs. In the method we propose, we use the CCA method to
extract some a priori information on ictal sources in order to improve the denoising
process. To this end, we apply the CCA method on the observed EEGs to obtain
M sources. The next step consists in selecting the sources of ictal activity. A visual
selection of ictal sources from their time course is difficult and sometimes impossible.
Therefore different methods have been proposed to select ictal sources from all extracted
ones, such as methods based on the time-frequency transform of each source [Safieddine,
2012| and methods based on spectral coherence of sources [Subramaniyam et al., 2013|.
To select the sources corresponding to ictal activities, we use the linear time-frequency
representation of each source and then we choose the sources of interest based on a
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signature that consists of a narrow-band, high frequency signal at the beginning of
the seizure, that decreases in frequency and increases in amplitude over time. Figures
2.9(a) and 2Z.9(b) show an example of the selected ictal source extracted by CCA and
its linear time-frequency representation, respectively. In this thesis, we use the Contin-
uous Wavelet Transform (CWT) with real Morlet mother wavelet which shows a good
representation of ictal sources in the time-frequency domain. As explained later in this
section, since the real-valued data should be used in the proposed algorithms, CWT
with real Morlet mother wavelet is an appropriate choice. After selecting the sources of
interest, we use an automated procedure to generate the time-frequency mask. To this
end, we use an appropriate threshold to select the dominant time-frequency samples
from the linear time-frequency representation of each source of interest. The thresh-
old used for the source of interest {r,[n]} is obtained as th,, = myr, | + oz, | where
myr,,| and oy, | are the mean value and standard deviation of the absolute values of
{T;,[n, k]} over all (n, k) € {1,..., N} x{1,..., K}, respectively. Then the absolute value
of {T,[n, k]} is compared with th, at each time-frequency sample (n, k) and the p-th
time-frequency mask S® is obtained as follows:

1 if |T,, [n, K]| > th,,

SPn, k] = { 0 o (2.31)

Then, we consider the obtained time-frequency mask {S®[n, k]} as a binary image and
modify it by using morphological operators. To this end, we use the morphological
"closing" operator |[Gonzalez and Woods, 2002| with a disk structuring element of size
1. The "closing" operator performs morphological closing on the grayscale or binary
image by applying a dilation followed by an erosion, using the same structuring element
for both operations. By using this operator, the holes in the initial time-frequency mask
are filled. Figure2:9((c) shows the time-frequency mask created by the above-mentioned
procedure. The time-frequency samples corresponding to the p-th ictal source are then
stored in the set TF®):

TF® = {(n(p), k(p)) € the p-th ictal mask} (2.32)

The obtained samples will then be used in the proposed TF-GEVD and TF-DSS meth-
ods to denoise ictal signals.

2.1.4.2 TF-GEVD

In this section, we propose a GEVD-based method to identify the p-th ictal source
using its time-frequency support TF® . More particularly, we aim at computing the
M-dimensional vector w, such that the signal {#\"'[n]} defined by #”[n] = w,” [n] is
an estimate of the p-th ictal source {7“1(,6) [n]}. To this end, we maximize the following
quotient of energies on and outside the time-frequency support TF®):
w" CP w
JP () = ——=_— (2.33)
w' CP w
which is a Rayleigh quotient. Finding the argument w, of the maximum of (233 is
equivalent to solving a specific GEVD problem, i.e. computing the eigenvector associ-

N1
ated with the largest eigenvalue of the (M x M) matrix (Cg’)) cw.
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Figure 2.9: Procedure used to create the time-frequency mask corresponding to an ictal
source, (a) selected ictal source generated by CCA, (b) time-frequency representation
(absolute value of CWT) of the ictal source and (c) time-frequency mask corresponding
to the ictal source of (a).

By executing the abovementioned procedure for each p € {1,..., P/}, P. vectors

" N #
w, are extracted and the matrix G(e) of coordinates can be estimated as X(R(e))

where X and R are the (M x N) and (P! x N) matrices standing for the M-
dimensional signal {x[n]} and the P/-dimensional signal {#[n]}, respectively, with

7 [n] = V%@ n],--- ’fgf) [n]]".

/
e

2.1.4.3 TF-DSS

In this section, we propose a DSS-based method to denoise ictal EEG data in the time-
frequency domain. The TF-DSS algorithm is based on a whitening of the linear time-
frequency transform of observations, {T;[n, k|}, such that the time-frequency covariance
matrix C, of the output signal z[n] = ©*x[n] is equal to the identity matrix. In
practice, ® is computed as a square root of the time-frequency matrix C,. By means
of this whitening procedure, the matrix G is transformed into an orthogonal matrix of
size (P’ x P').

The four consequent steps are the main steps of the TF-DSS method which are
repeated in an iterative procedure to extract the p-th ictal source. First, by using a
P’-dimensional initial vector w, of unit norm, a noisy estimate of the time-frequency
transform of the p-th ictal source for each time-frequency sample (n, k) is calculated as
follows:

T [n, k] = w," T:[n, k| (2.34)

The next step, called the denoising step, is the main stage of the algorithm. In this
stage, the current estimated time-frequency transform of the p-th ictal source, for each
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time-frequency sample (n, k), is modified or denoised as follows:

T.[n k] if (nk)eTF®

T k| = 2.35
) In, k] { 0 otherwise (235)

In the third and fourth steps, by using the denoised time-frequency transform of the p-
th ictal source, namely {77, [n, k]}, a new estimation of the mixing vector is calculated
T

and normalized as follows:p

N K
w = ZZTZ[n,k]TIE)[n,k] (2.36)
n=1 k=1 P
w, = (2.37)
: [[wit ] '

Then, the present estimated mixing vector w,, is passed to the first step given by (2.34))
and this procedure continues until convergence. The global convergence of the iterative
DSS scheme is proved in [Sarela and Valpola, 2005]. The outputs of the algorithm, w,
and the signal {#}”[n]}, which is defined by #(”[n] = w," z[n], are the separator and
an estimate of the p-th ictal source.

It should be noted that if we have extracted the first p — 1 sources, to extract the
p-th source, the fourth step given by (Z37) can be replaced by:

Lo
w, = II"w} (2.38)
Wy, (2.39)
w = .
g [l

where the orthogonal projector II' is defined by:
It =7— W(pfl)(W(pfl)Tw(pfl))—lw(pfl)T — [ - weHye-1T (2.40)
with:
W(pil) = ['wl, ce ,'wp_l] (241)
By adding this deflation step to the DSS framework, the convergence to previously
extracted ictal sources is prevented [Sarela and Valpola, 2005].
By executing the above-mentioned procedure for each p € {1, ..., P/}, all separators

w, and consequently the corresponding ictal source are estimated. The matrix G(e) of
coordinates can then be obtained similarly to the TF-GEVD method as described at
the end of section 2.1.4.2]

2.1.4.4 Relation between TF-GEVD and TF-DSS methods

First, for the TF-DSS method, we do not consider the deflation step (238, which
means that only one ictal source has to be estimated.

In the TF-GEVD method, the GEVD problem of the pair of matrices C%) and C'%)
can be reformulated as an exact joint diagonalization by congruence problem of these
two matrices.
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On the other hand, when the denoising stage in DSS algorithm is linear, the whole
iterative algorithm can be expressed as a closed-form solution. In section 2.1.4.3] by
inserting (2.34) and (2.35) into (2.30), we can show that the four steps of the TF-DSS
algorithm can be summarized by the following procedure:

wi = CPw, (2.42)
+
wp
w, = (2.43)
" [lwy]]

which is actually the classical power method applied to matrix C(zp) in order to compute
its dominant eigenvector w,. Let W ®) be the orthogonal matrix of the P! eigenvectors
(including w,) of the symmetric matrix C'?). Consequently, the (P! x M) matrix WD(g)ST
given by WD(IS’)ST = W»T @F diagonalizes by congruence the time-frequency matrix Cgf).
Moreover, due to the orthogonality of W ® and since © is a root square of Cy, we can
easily show that the matrix WD(g)ST also diagonalizes by congruence the time-frequency
matrix C. As a result, the TF-DSS algorithm estimates the p-th ictal source by means
of a joint diagonalization by congruence of the matrices C’g’) and C.

Now by comparing the two joint diagonalization problems corresponding to the TF-
GEVD and TF-DSS methods, the former simultaneously diagonalizes the matrices C§f>
and C’g’), while the latter jointly diagonalizes the matrices Cg’) and C,.

Now, if we consider the deflation step (238) for the TF-DSS method, equations

(242) and (243) will be changed to:

wy = I CPw, (2.44)
1
'lUp

w, = (2.45)
g lwy ]|

which results in diagonalization of matrix IT* C(zp). Consequently, the TF-DSS method
to extract the p-th ictal source can be described as two serial diagonalization steps, say
diagonalization of C, and diagonalization of IT* C(zp). But contrarily to the previous
case, it seems that these two diagonalizations cannot be simplified to a joint diagonal-
ization problem preventing us to compare more precisely the TF-DSS and TF-GEVD
algorithms when two or more ictal sources have to be estimated.

2.2 The JDICA method

ICA is a very useful tool to process biomedical signals such as EEG data. ICA consists of
retrieving an unobserved realizations {r[n]} of a P’-dimensional random vector process
7[n] from an observed realization {x[n]} of a N-dimensional random vector process
{z[n|} that can linearly be modeled as follows:

Zln] = Hin] + v (2.46)

The fundamental assumption of ICA is that the P’ unknown sources {7,[n]} are
mutually independent.
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ICA algorithms can be divided into two groups: i)"symmetric" approaches jointly
extract the independent components while ii) "deflationary" techniques estimate sources
one by one. Symmetric algorithms seem to converge to the expected solution in practice,
but no theoretical result is available. On the other hand, the convergence of most
of deflationary algorithms have been proved analytically [Hyvarinen and Oja, 1997,
Delfosse and Loubaton, 1995|Zarzoso and Comon, 2010|. In addition, in deflationary
algorithms, a penalty term can be added to the contrast function [Mi, 2014] to force the
algorithm to extract the sources of interest during the early steps. As a consequence,
when the number of all sources largely surpasses the number of sources of interest, the
computational complexity of the deflationary algorithms is greatly reduced.

Here, we propose a new Jacobi-like Deflationary ICA algorithm, called JDICA,
based on second and Fourth Order (FO) statistics. The deflation procedure of our
algorithm is inspired by [Delfosse and Loubaton, 1995|. The gradient-based ICA algo-
rithm (called DelLR throughout this manuscript) proposed in |Delfosse and Loubaton,
1995|, estimates the sources one by one using a smart projection-based deflation scheme.
According to its gradient-based structure, the step size must be precisely chosen to guar-
antee acceptable results specially with noisy data. A multi-initialization procedure can
even be necessary in some practical contexts. In order to overcome these drawbacks, we
propose a Jacobi-like algorithm to maximize the contrast function computed from the
FO cumulants of the whitened observations. In the following sections, we first intro-
duce the proposed JDICA algorithm and then show how it can be used in the context
of denoising of epileptic EEG signals.

2.2.1 The JDICA algorithm: methodology

We assume that we have one realization {x[n]} of length N of the real-valued random
vector process {&[n]} (240]). Since JDICA, like a large group of ICA algorithms, needs a
prewhitening step [Comon and Jutten, 2010] without loss of generality we assume that
the process {&[n]} denotes the prewhitened observation random vector process and
matrix H = [hy, ..., hp] is a (P’ x P’) real-valued orthogonal mixing matrix. The aim
of our method is then to estimate the P’ columns h, of H and the P’ corresponding
sources such that 7,[n] = h;a:[n]. More particularly, vector h, can be identified by
maximizing the following contrast function:

§g®) = 7 (Calpll))? = 1 (Calg™ Eln)))? (2.47)

with respect to g where Cy(y,[n]) is the FO marginal cumulant of y,[n] = g®)" &[n].
The advantage of defining such a contrast function is that the arguments of the local
maxima of § on the unit sphere are the vectors {+h,},—1 _p [Delfosse and Loubaton,
1995|. This property ensures our maximization (2.47) to converge to one column of
the matrix H and consequently one of the sources is extracted. Thus a projection
deflation procedure is applied to subtract the contribution of the extracted source from
the mixture. These two steps require a particular parametrization of the elements of
the unit sphere which is given by:
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Lemma 1 Each unit norm column vector g€ R” whose last component gps is strictly
positive can be represented as the last column of an orthogonal matrix given by:

G(t) = Gp/_l(tp/_l) Ce Gg(tg)Gl(tl) (248)

where the P’ — 1 real-valued elements of ¢t = [t, ...,tp/,l]T correspond to tangents of
uniquely defined angles belonging to | —7/2, 7/2[ and G, (¢,) is a Givens rotation of size
(P' x P’) derived from an identity matrix for which the (p, p)-th, (P’, P’)-th, (p, P')-th,
(P',p)-th components are replaced with (1 + ¢2)7%/2, (1 4+ ¢2)7"2 #,(1 + ¢2)~"/2 and
—tp(1 4 t2)71/2, respectively.

Proof derives from [Delfosse and Loubaton, 1995, lemma 2.2| by expressing cos(6)
and sin(f) as a function of ¢ = tan(#) [Comon and Jutten, 2010|. This parametrization
differs from that of [Delfosse and Loubaton, 1995 and allows us both to reformulate
the contrast (2.47) as a rational function and to consider other optimization strategies
such as a Jacobi-like procedure.

To extract the first source, we then propose to compute a matrix G (t) such that
its last column, g”(t), maximizes the contrast function (2Z.47) with respect to t. Our
Jacobi-like optimization procedure consists then of decomposing G (t) as a product of
(P — 1) elementary Givens rotations G’ (t,) and sequentially identifying the (P" — 1)
corresponding parameters t,. The (P’ — 1)-dimensional optimization problem is thus
replaced with (P’ — 1) sequential mono-dimensional optimization problems. In prac-
tice, several sweeps of the (P’ — 1) parameters are necessary to achieve convergence.
More precisely, let us consider the p-th mono-dimensional maximization problem of a
sweep of our Jacobi-like procedure. It consists in computing matrix G"*(t,) defined
by G"7(t,) = G} (t,)G"” such that its last column, g"*(t,), maximizes the con-
trast function (2.47), where G is the product of all the elementary Givens rotations
estimated previously.

(1-) (1-)
1

Denoting the last column of G*” by g0~ = [¢\', ..., g%, the last column of

G"") can be written as:

g (t,) = [0 (1), .. gp ()] = (2.49)
98, g0 g5 (), g8t - g ()]
where:
Gr) = gl + — gl (2:50)
VI+E VI+E
957 (1) = ﬁg,a“ " ﬁggﬂ (2.51)

It appears that only the p-th and P’-th components of g (¢,) depend on ¢,. Then,
we set the derivative of the contrast function with respect to ¢, equal to zero to find
the appropriate ¢, value:

9{Ca(w[n]))?/4 _
ot >

—0 (2.52)
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which results in simply vanishing 9(Cy(y1[n]))/0t,.

Now using the multi-linearity property of cumulants, it can be shown that (Cy(y;[n]))
can be written as follows:

(Calwn[n])) = duolgy ™ (tp))" + dar (g5 (1)) (gp" (1)) +

daz (g5 (8))*(9p” (t))* + diz(gy ™ () (g (1)) *+

doa(gp:” (t))" + dso (g () + dan (g5 (¢ )) (99" ()
(t

+dia(gy 7 (t)) (gp” (1)) dos (g () +dao (g5 (1))
+di (g5 (1)) (gp” (1)) + doa(gp”)* + dro(gy™)
+ do1(gp”) + doo (2.53)

where the coefficients d;; are given in appendix [Cl
Consequently, by computing the derivative of (2.53)), we obtain:

4

3
D emty +/1H2( D futy) =0 (2.54)
n=0

m=0

where the coefficients e,, and f, are given in appendix
Equation (Z54) can be simplified to an 8-th degree polynomial equation as follows:

8 m 6 m/
DY enemnt) =L+ )Y Y furfrw—wty) =0 (2.55)

m=0 n=0 m!'=0n’'=0

By rooting (255)), 8 solutions #, are obtained. Then we calculate the contrast function
(ZA7) for all real-valued roots and we choose the root £"” which maximizes it. Eventu-

ally, we calculate the matrices G;”(fl(f)pt ) and G () (o) ). This procedure is performed

iteratively for all p € {11 ..., P’ — 1} and for several sweeps until convergence. At this

stage, the first column h; of the estimated mixing matrix is given by the last update
T

of g@*(£9")) and the realization of the first source is estimated by 7[n] = h,x[n].

After identifying the first source, we remove its contribution from the observations
by projecting the observations onto the subspace orthogonal to that spanned by h,
by computing MM = TIMx[n] where IV is a (P’ — 1 x P') projection matrix built
by stacking vertically the (P’ — 1) first rows of the last update of G** (i)', Now
to estimate the other sources, the same procedure should be done by using equations
(249) to (255). The only difference is that the vector of observations x[n| should be
replaced by the observation ®~Y[n] of reduced dimension (P’ — p + 1) in order to
extract the p-th source.

Note that the estimation of FO cumulants is not required at each iteration of
our Jacobi-like procedure. The M* FO averaged cumulants Cpy, 1y mamie of {Z[n]}
can be estimated at the beginning of the procedure and sorted in a (M? x M?) ma-
trix, @Q,, called quadricovariance [Albera et al., 2012]. The FO averaged cumulants
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Crny mamsmaa® Of {5:(”) [n]} can then be derived using the following formula Q) =
AQxAT where:
p—1
A =9 @ 1) (2.56)
i=1

2.2.2 Denoising epileptic EEG signals using the JDICA algo-
rithm

The JDICA algorithm can be used to denoise both the interictal and ictal data. The
procedure is almost similar and has three steps. First by using the JDICA algorithm,
P’ sources, including both sources of interest and non-interest, are extracted and the
mixing matrix is estimated. Then, the sources of interest are identified and finally by
using the estimated mixing matrix and the sources of interest, the denoised epileptic
signal is obtained. The only problem that must be explained is how the sources of
interest are identified. This procedure can be manual (visual) or automatic. In this
thesis, we use the following procedure to select the sources of interest.

For interictal data, we use the spike detection algorithm (see section 2.T.3.1]) to
select the sources of interest. More particularly, by applying the two first steps of the
spike detection algorithm (S; and S) on each extracted source, the spike candidates for
each source are detected. Then by considering a window around each detected spike,
the Energy Ratio (ER) of each source is calculated as follows:

W > nert (1p[n])?
ER, = e (2.57)
W > gr . (Tp[n])?

spike

(p)

spike 18 the set containing the time samples in the windows around all detected

spikes for the extracted source {r,[n]} and n(FiZke) is the number of time samples in

this set. The sources with the highest ERs are selected as interictal sources of interest.

where I’

For ictal data, as in section 2.T.4.T] sources of interest are extracted using the linear
time-frequency representation of each source and then by choosing the sources of interest
based on the existence of a narrow-band high frequency signature at the beginning of
the seizure and of a decrease in the frequency in the following time samples.

2.3 The SSD-CP method

As mentioned in chapter [I the CP decomposition consists in decomposing a HO array
as a linear combination of a minimal number of rank-1 terms and can then be seen as a
generalization of the SVD of two-way data to multi-way data. But the main difference is
that, under weak assumptions [Kruskal, 1977/ Jiang and Sidiropoulos, 2004} Sidiropoulos
and Bro, 2000,/Stegman and Sidiropoulos, 2007], no orthogonality constraint is needed
to ensure uniqueness of the CP decomposition. This advantage makes the CP decom-
position very useful in various applications. The CP decomposition was first proposed



66 chapter2

to solve psychometric problems |Carroll and Chang, 1970]. Afterwards, it was ex-
tended to various fields such as chemometrics [Bro, 1997], spectroscopy |Villringer and
Chance, 1997| and biomedical engineering [Acar et al., 2007,[Vos et al., 2007, Becker
et al., 2010, Becker et al., 2012].

Several algorithms were proposed to solve the CP problem. They can be classified
in three main groups [Tomasi and Bro, 2006]: 1) alternating algorithms, which update
only a subset of the parameters at each step; 2) derivative-based methods, seeking for an
update of all the parameters simultaneously by successive approximations; and 3) direct
procedures. Forinstance, the Alternating Least Squares (ALS) based techniques [Harsh-
man and Lundy, 1994, Rajih et al., 2008, Nion and Lathauwer, 2008, Karfoul et al.,
2011,/Chen et al., 2011 belong to the first group. The ALS approach |Harshman and
Lundy, 1994| is the most popular due its simplicity. Its main drawback is its slow
convergence caused for instance by the presence of bottlenecks |[Comon et al., 2009|,
say collinear factors. Recently, Enhanced Line Search (ELS) schemes [Rajih et al.,
2008,|Nion and Lathauwer, 2008, Karfoul et al., 2011,|Chen et al., 2011| were proposed
to cope with this drawback. But there are some simple cases such as decomposing the
fully parameterizable (2x2x2) arrays given by Paatero [Paatero, 2000], where any alter-
nating algorithm, including the ALS algorithm with ELS scheme (ELS-ALS), does not
succeed in achieving the good decomposition |[Comon et al., 2009|. The second main
group of CP methods set is represented by the Levenberg-Marquardt (LM) [Comon
et al., 2009, Tomasi and Bro, 2006| and nonlinear conjugate gradient approaches [Acar
et al., 2011|. As the alternating algorithms, the derivative-based algorithms suffer from
converging to local minima. To compensate this problem, different initial points must
be used, which results to a time-consuming procedure. In order to overcome this draw-
back, a fast implementation of the LM algorithm, named Fast LM (FLM), has been
recently proposed |Phan et al., 2013c, Tichavsky et al., 2013|. As far as the third group
of CP algorithms is concerned, the most known implementations are the Generalized
Rank Annihilation Method (GRAM) [Sanchez and Kowalski, 1986] and the Direct Tri-
Linear Decomposition (DTLD) algorithm [Sanchez and Kowalski, 1990], both based
on a generalized eigenvalue problem. In other words, the latter methods compute the
CP decomposition by solving an alternative algebra problem of lower dimension, but
they do not provide a solution in terms of least squares, contrarily to the alternating
and derivative-based techniques. It is noteworthy that novel direct algorithms have ap-
peared during the last decade. They reformulate the CP problem as a Joint EigenValue

Decomposition (JEVD) |[Roemer and Haardt, 2008|,Luciani and Albera, 2010, Luciani
and Albera, 2011,Roemer and Haardt, 2013, Luciani and Albera, 2014], Joint Diagonal-

ization by Congruence (JDC) [De Lathauwer, 2006] or Simultaneous Generalized Schur
Decomposition (SGSD) [De Lathauwer et al., 2004, Sgrensen and De Lathauwer, 2010]
problem. The latter reformulated problems are usually solved by means of a Jacobi-like
procedure.

In this thesis, we propose a new direct algorithm to compute the CP decomposition
of complex-valued multi-way arrays. The proposed algorithm is based on the Simul-
taneous Schur Decomposition (SSD) of particular matrices derived from the array to
process. We also propose a new Jacobi-like algorithm to calculate the SSD of several
complex-valued matrices. In the following sections, first the new Jacobi-like algorithm



2.3. The SSD-CP method 67

for SSD of complex matrices is proposed. Then the proposed CP algorithm for de-
composing a HO complex-valued array is introduced. After that, the identification
constraints for the existence and uniqueness of the solution of the proposed algorithm
are analyzed. Finally, we explain how to use the proposed SSD-CP algorithm in the
context of denoising of epileptic EEG signals.

2.3.1 Complex Simultaneous Schur Decomposition: the SSD
technique

In this section, we introduce a new Jacobi-like algorithm in order to calculate the SSD
of several complex-valued matrices. It is a nontrivial extension of a method proposed in
the nineties for real-valued matrices only [Haardt and Nossek, 1998|. The SSD problem
can be expressed as the following simultaneous triangularization problem. Given R
matrices Y ¥e €44 which have the following structure:

YO = Q0 x0 Q0" (2.58)

where Q© € €% is a unitary matrix and where the R matrices X© e C%? are
upper triangular matrices, our objective is the simultaneous triangularization of the
R matrices Y? by finding the appropriate unitary matrix Q®. We use the upper
index (0) to denote the optimum value of the corresponding variable. In the presence
of noise, the matrices Y do not exactly fit 258), so Q® should be computed as an
approximate solution to the problem of simultaneous upper triangularization. Indeed,
we should find matrix Q® which minimizes the following cost function with respect to
the unitary matrix Q:

#(Q) = S IL@YIQ)| (2.59)

where £(Y ®) extracts the strictly lower triangular part of its matrix-valued argument
by replacing the upper triangular part with zeros and where ||.||r denotes the Frobenius
norm.

Minimizing the function v in several variables is a hard optimization problem, ex-
cept for small dimensions. The idea is to reformulate this multivariate optimization
problem in a finite sequence of monovariate optimization problems using a Jacobi-like
optimization scheme. Since any unitary matrix can be written as a product of elemen-
tary Givens rotation matrices, we can parameterize the unitary matrix Q as follows:

#ofsweeps d q—1

Q= 1[I IIIIe*” (2.60)

sw=1 q=2 p=1

where each elementary Givens rotation matrix Q™ is obtained from an identity matrix
in which we have Q%% = ¢, QW9 = s, QP9 = —s* and Q%:? = ¢, where (c,s) € Rx C
such that ¢+ |5|2 = 1. An appropriate parametrization of ¢ and s in the complex domain
used in the proposed algorithm is:

t 1
s=———, ¢=—o-  teC (2.61)

VIt VIF
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In each iteration, a new elementary Givens rotation matrix Q®?? which defines Q©
(260)) is computed in order to minimize the cost function (2.59). So, for each couple
(p,q), the R complex-valued matrices Y® are transformed as follows:

H

Y(r)/ _ Q(O,p,q) Y(T)Q(07P7Q) (262)

Since this orthogonal similarity transformation changes only the components of ¥Y'®
which appear in rows and columns p and ¢, the components of Y ® on its strictly lower
triangular part change as follows:

VE 1<k <p, Y= ) - )

Yk, 1<k<qk#p, Y=+ 2@V +v)

YO =(1+ [t~ eY,®) — 2y + Y1) — ey ™)

Ve, p<k<dk#q Y=+ -tY")

Vk, q <k <d, Y,j’””:u )7z (Y + v (2.63)

q

and the other components do not change. So by applying the transformation (2.62)),
the change in the cost function can be expressed as follows:

R
A(QWM) = 3 (LY 3 1LY ) ) (2.64)
r=1
R q—1
:Z( & |+Z(|Ykp YR ==Y (1 + ) ))
=1 k=p+1 k=p+1

where the equality ¢ + |s|° = 1 is used to simplify the equation. The equation (2.64)
can also be presented as a function of ¢ as follows:

A¢(Q(pvq)):(1 + |t]?) 2 (Us + 2Re{tv — tvg — t*vl

+|t|2(1)1 + UIO) + 2|t|2Re{t*v5 — t*U; — U4} + |t|41)6)

+ (L4 [¢)*) 7" (w1 —2Ref{tus } + [t *us + w1 +2Ref{tw, }

R q—1
12 .2 .2
) -3 (i + 3 (i + ) (265)

r=1 k=p+1

where the coefficients vi-vyg, ui-us and w-ws are given in appendix [Dl

To calculate an appropriate complex value for ¢ in each iteration, we use the parametriza-
tion t = pe’® and then differentiate (Z.65) with respect to p and ¢ separately. Note that
the roots of the following equation system are the stationary points of Ay(Q,, ).

08(pd) _ (2.66)

¢ 0
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which results in:

OA : . . .
a—pt(ip4<el¢bo—e—1¢b3>+p3<b3+i<eﬂ%1+e-12%>;>>
+p%(—i3€(by — by) + 1372 (by — b))
+p(by — 1€29b; + ie™290%)
— ie"%by +ie7%3) /(1 + p*)* =0 (2.67)
and:
JAN . . . .
_aa j) = (P*(e%bo + e7bg) + p*(€by + b))

+p(eby + €783)) /(1 + p*)* =0 (2.68)

where the coefficients by-b, are given in appendix
The equation (Z68) can then be converted into a second degree polynomial equation
with regards to p:
pop’ +pip+po =0 (2.69)

with:
Py = €9by+e79b; = 2Re{e "Dy}
p1 = €2b +e729h7 = 2Re{e?%h,}
po = €%by+e7 by = 2Re{eby}

So, we can compute the roots of (2.69) as follows:

p= —p1 £ pf — 4popo

2.70
2py ( )

and insert them into (2.67). By replacing €!?® with x and simplifying the equation, we
can obtain a single 14-th degree polynomial P, in variable x whose coefficients A, are
given in appendix [Dl

By rooting this polynomial numerically, fourteen complex values z; are extracted.
Now, we should choose the optimum solution (> which minimizes the cost function
(Z65]) with respect to all computed values . Since the equation (2.65) is a function of
t, we have first to calculate the value t; corresponding to each Z; in order to choose the
best solution. To this end, we do the following computations. The values qgk associated
with the fourteen values z, can be computed as follows:

~ angle{;}

=7 (2.71)

Afterwards for each (ﬁk, two corresponding values ﬁ,(j) and ﬁ,(;) are calculated by using

2.70):

02 ia t 2 .4 .2
o Rethe ) £/ (Re{byei2ny) " ARe{bye ) Refbaci®) -
g 2Re{boeidr}
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Algorithm 2.1: Simultaneous triangularization of R complex-valued matrices
Inputs: R matrices Y? e Qx4
Outputs: R upper triangular matrices X0 e ¢4 and the unitary matrix Q¥ e ¢xd

which satisfy (2Z58]).
1: Repeat

22 Forg=2:ddo

3 Forp=1:q—1do

4: Compute the fourteen roots z; of Pj,.

5: For each root 3y, calculate ¢, = %@’“).

6 Calculate both corresponding values ﬁ,(j) and ,6,(;) by using (272]).

7 Compute fgj/ o= ﬁ,(j/ Jeidk,

8 Calculate the cost function (Z.63]) for the twenty-eight values f,(:r/ 7 and find

among them the best solution £© that minimizes the negative-valued fitness.
9: From the selected £©) generate matrix Q®*? (ZBI) and update matrices
Y ® by using (Z62).
10: End For
11:  End For
12: Until the algorithm converges

So, for each Zj, two couples (gbk, ) and (gzﬁk, ) are obtained. Then, for each couple

(¢ A(Jr/ ) t](:r/ ) is calculated as follows.

To select the optimum solution f(o), the cost function (2.63]) is computed for the twenty-

eight values of fg/ 7 and the minimizer of (Z65) that makes it negative (to ensure that
the cost function (2.59)) is reduced in each step) is chosen as follows:

0 = arg rg}r)l{Aw( D)} (2.74)

By using the selected {©, QP9 is computed and the matrices Y© are updated as
described by equation 2.62] The summarized procedure to simultaneously triangularize
complex-valued matrices is shown in algorithm (2.T]).

2.3.2 Direct CP decomposition: the SSD-CP method

The CP decomposition of a g-th order complex-valued array T of size (N; x Nox. .. X N,)
is defined by the following minimal linear combination:

P
T = Z ug) o 'u,f) 0---0 uz(f) (2.75)
p=1

where for each integer i € {1,...,q} the P complex-valued vectors u() are the column
vectors of a (N; x P) matrix U(Z called i-th loading matrix. The aim of the CP problem
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is to determine the ¢ loading matrices U of T up to a diagonal scaling matrix and
a permutation which are the classical indeterminacies of the CP decomposition. It is
noteworthy that the permutation indeterminacy is the same for the P loading matrices.

Note also that the minimal number P of rank-1 terms allowing us to decompose T
(2770) defines the rank of T .

Generally, people prefer to handle unfolding matrices of multi-way arrays. All possi-
ble matricizations T'(m, L) of a g-way array T can be defined by using two parameters,
namely a permutation function 7 of {1,...,¢} and an integer L € {1,...,q}. More
precisely, the (k, £)-th component of T'(w, L) is given by:

T(?T, L)k,é - 7711,712 ..... ng (276)

where:

L
k= Nzr@) + Z(nﬂ_(j)_1)N(ﬂ'(l),ﬂ'(Q)’”',ﬂ-(jil))

Jj=2

and:

j=L+2

with N(@1-0K) = Ny, Ngy...Ng,.. In the proposed algorithm, we use two different un-
folding matrices, namely TW = T'(r, L;) and T® = T'(r, L,), where the permutation
function 7, the constants L; and Ly (L; < Lg) are defined in such a way that the
following assumptions hold:

1. The rank P of the array 7T is lower than or equal to N(™(W»m(L1)),

2. The entries of at least one row of the matrix [ ("(@:7(L2+1))

are non-zero.
3. The matrix U™E2)7(E1+1) g f4]] column rank.
4. The matrix U™@72+1) i fu]] column rank.

5. The matrix U™EV7M) g fu1l column rank.

where the (N(175) x P) matrix U™ ™%) is given by the following Khatri-Rao product
of K matrices:

U(nltnk) — U("l) ® U("2) ®...0 U(”K) (277)

These assumptions ensuring identifiability of the proposed CP algorithm will be dis-
cussed in section 233l For the sake of simplicity, we first explain the proposed method
for a three-way complex-valued array T of size (N; X Ny x N3) defined by:

T = Z ul(,l) o ul(f) ou® (2.78)
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Next we will generalize our method to higher-order arrays. We also assume in the
following of this section that 7 is the identity permutation. It can be easily shown that
the unfolding matrix T™W of size (Ny x N,N3) (L; is equal to 1) can be expressed as
follows:

TV — W (U(3> o U(?))T _ e’ (2.79)

Note that the U®? matrix can also be written as follows:

T

Ut = [0y, ety (2.80)

where ® is a (P x P) diagonal matrix built from the i-th row of matrix U®. On the
other hand, under assumptions[Adl),[A3]) and [A4]) we can compute the SVD truncated
at order P to decompose TW as follows:

TV = Z% V" (2.81)

where Z, ¥ and V are of size (N7 x P), (Px P) and (NyN3 x P), respectively. Under
assumptions [A3)), [A4)) and [AB]) (note that here L, is necessarily equal to 2), by com-

paring (Z779) and (2.81]), we can conclude that there exists a non-singular matrix W of
size (P x P) such that:

Vi =wut?' (2.82)
Now by inserting (280) in (282), we can rewrite V as follows:

H

V:[r“), S 0 (2.83)

where the Ny matrices T of size (P x Ny) are given by I‘(Z:) =W aDU® Under
assumptions [A2) and [A3), there is at least one matrix 'Y admitting the Moore-
Penrose matrix inverse TW?. Therefore, we can define R matrices Y *7) as follows:

Yy @) — pOT6)H (2.84)
— WQ(Z')U(?)T(U(2)T)tt(q,(j))—1wfl
= WDWw!

where N3 — 1 < R < N3(Ns — 1) and for each couple (i,j), D) = &O (@)1 js a
(P x P) diagonal matrix. Let us write W = QR, namely the QR decomposition of

matrix W where QQH = I and R is an upper triangular matrix. Thus, we can rewrite
Y @9 as follows:

y®) — wpDtIw-! (2.85)
= QRD"R'Q™!
_ Qx(i,j)QH

Since R is an upper triangular matrix, R~" and X)) = RD®)R™! are upper trian-
gular matrices too. The elements on the diagonal of X ) are equal to the diagonal
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components of D). By applying the SSD algorithm proposed in section 22311 to
matrices Y "9 the upper triangularized matrices X" 9 and consequently the diagonal

matrices D(”) can be extracted. Indeed, we have D;[(,p) = XI(,Z’,J for any triplet (i, 7, p).

In order to estimate the components of matrix U®, for each column of this matrix,
we have R equations. If J is a set indexing the rows of matrix U® whose elements are
non-zero or equivalently the matrices ') which admit a Moore-Penrose matrix inverse,

we have:
U g
vjedVie{l,....No}/{j}¥pe{l,....P}, —&= DS (2.86)
Jp
Hence: . .
(Z, ) —

Uy — DU =0 (2.87)

These equations can be written in a matrix form:
M(p)uf) = Opy1 (2.88)
where u!” is the p—th column of matrix U® defined by u{’ [Ulp, UQ(?;), . UN3 p] .

The matrix M® of size (R x Ns) is defined as follows. For each ordered pair (i, )
with j € J, i # j and 1 < i,j < N3, we consider one row in matrix M® such that the
component in the i-th column is equal to 1, the component in the j-th column is equal
to —D;[(,f}[,]) and the other components are null. Note that the order of the rows is not
important in the solution. For instance, assuming that all components of matrix Uu®
are non-zero leading to R = N3(N3 — 1), we put the rows corresponding to i = 1 in
the first N3 — 1 rows of matrix M® and the rows corresponding to ¢ = N3 in its last
N3 — 1 rows as follows:

1 =D 0 0 ]
: i=1
1,N
1 0o ... 0 —DLN
M®» = . : : (2.89)
D0 0 1
: : i=N;
0 0 ...-=D{FM Y 1|

Consequently, the loading factor uf’) can be identified up to a scale factor by com-

puting the right singular vector associated with the zero singular value of M®. By
repeating this procedure P times, the P columns of U® can be identified up to a right
multiplicative diagonal matrix.

Next we derive U*Y from matrix U® by using the (N;N; x N3) unfolding matrix
T® (let us recall that L, is equal to 2). Indeed, it can be shown that T is equal to:

T® - yCeH y®' (2.90)
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where U® was calculated in the previous stage. Therefore, under assumption [A4),
matrix UV can be computed as follows:

f
U = 7O(r, L,) (U(3)T) (2.91)

Since UV is defined by the Khatri-Rao product of two loading matrices according to

([ZT7), we can use a procedure based on rank-1 SVDs to calculate UY) and U®. To
this end, for each p € {1, ..., P}, we build the rank-1 matrix U®1P) of size (N7 x Na)
associated with the p-th column of U%Y as follows:
.. 2:1, 2:1
(i,j) € {1,... . No} x {1,....Ni} UG =0 (2.92)
such that the (i, j)-th component, Ui(jfl’p), of UZP) is equal to Ui(;) UJ(-’Q. Then the p-th
column of the loading matrices UM and U® can be extracted by computing the left

and right singular vectors associated with non-zero singular value of U®'?). Indeed,

we have:

H H

U%Y) = 200 =Zwv (2.93)
where z and v are vectors of size (No x 1) and (N; X 1), respectively. So, we have up
to a scale factor:

uj(f) =z and uj(gl) =" (2.94)

By solving the SVD problem for all p € {1,..., P}, the two loading matrices UY and
U® can be obtained up to a right multiplicative diagonal matrix.

We now explain in the following how to generalize the proposed SSD-CP method
to the case of higher-order arrays. To calculate the loading matrices of a ¢-th order

the third order case, we can express the matrix T as follows:

70 — ) glali+)’ (2.95)

q:L1+1)

where the matrix U’ given by (2.77) can also be written as follows:

U(q:L1+1) _ U(q:Lg—f—l) o U(LQ:Ll—i—l)

]
- [<I><1>U<L2=L1+1>T, . ,¢<N*>U<L2=Ll+1>T] (2.96)

respectively. Then, we can conclude that there exists a non-singular matrix W of size
(P x P) such that:

V' =wuyueht)’ (2.97)
Thus by inserting (Z96) in (2.97), we can rewrite V' as follows:

H
V:[r“), ..., T (2.98)
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where the N* matrices T of size (PxNE1+1L2)) are given by I') = W @) gy (F2:L1+1)]
Similarly to the third order case, R matrices Y ") can be computed by using (2.84)
where R is now a value between (N*—1) and N*(N*—1). Then, the same procedure as
(2.85)-(2:89), i.e. applying the SSD algorithm and solving systems of linear equations,
can be used to estimate the matrix U@L+,

After that, we define the unfolding matrix T® of size (N(1-F2) x N2ty Tt
can be shown that T'® is equal to:

TR = gl gk (2.99)
where U@2%D was calculated in the previous stage. Therefore, matrix U2V can be
computed as follows:

U — 7O (1) (U<q:Lz+1>T)ﬁ (2.100)

Now, note that both matrices U@+ and U"2) are defined as the Khatri-Rao prod-
uct of several loading matrices according to (2.77). So, we should apply the same pro-
cedure as ([2.92)-(2.94) in order to calculate the corresponding loading matrices. Let’s
describe this procedure with the more general matrix U™ %) given by (IZZZI) Accord-
ing to the definition of the Khatri-Rao product, the p-th column of matrlx U™ ™) can
be represented by the Kronecker product u( )® ® u("K) where up ) denotes the p-th
column vector of matrix U™. Then, let’s build the (N,, x ... x N, ) rank-1 array
UmmeP) agsociated with the p-th column of U™ %) as follows:

: : (n1:ng,p) (n1ng)
V(Zl, N ,’LK), ull,lz, K UllJer 2((% )Ny . Nnk),p (2101)

such that the (iy,...,ix)-th entry Z/lZfLZIQ"K’p of UMK P) i equal to U“"; Uz(:; e Ui(gf;).
Consequently, a simple rank-1 HOSVD [De Lathauwer et al., 2000] of the array ¢ ™:mx»)
allows us to extract the p-th column of the K loading matrices U™ . More precisely,
let us denote the mode-¢ matricization of Y™ ™xP) by UMmKkPY) that arranges the

mode-/ fibers to be the columns of the resulting matrix, such that:

(ning,p,l) 7 (ning,p)
VYl e {1, LK Ulw1 Kbt — Uih;%fii (2.102)
with:
J—1+Z k—leandJk—H (2.103)
k=1,k#L m=1,m#(

Thus the p-th column up ) of the n-th loading matrix U™ is given by the left dominant
singular vector of U™ ™xP4) e the left singular vector associated with the non-zero
singular value of U ™% P9 To extract all loading matrices, the aforementioned scheme
should be executed for the N modes of Y ™™%P) So, by this way we can extract the
¢ loading matrices U® from U@t and U*2Y involving the computation of Pq
SVDs.

The proposed algorithm of CP decomposition, named SSD-CP, is summarized in
algorithm 2.2
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Algorithm 2.2: The SSD-CP technique
Inputs: 7 € CM>%Na and P € IN*.

Outputs: The ¢ loading matrices UY of T.
: Choose the appropriate permutation II and the couple (L, L) of integers.

1
2. Construct the unfolding matrices TW and T,

3: Compute the SVD of matrix T truncated at order P: T = zZsv'
4: Fori=1: NU2F19) do

5. Stack the i-th (P x NZ1+L-L2)) matrix block of V' in T,

6:

7

8

9

. Calculate the Moore-Penrose inverse I'V* of matrix T'.
: End For
: For i =1: N2+1--9 do
. For j € J/{i} do
10: Calculate matrix Y @) = p@0)%,

11: End For
12: End For

13: Simultaneously triangularize matrices Y 9 by using algorithm 211

14: For p=1: P do

15:  Build matrix M®) from the triangularized from of matrices y (9),

16:  Calculate the p-th column of matrix U%L2*Y by computing the right singular
vector associated with the lowest singular value of M®.

17: End For

18: Calculate matrix UV from T® and U@L2+Y),

19: For p=1: P do

20:  Reshape column p of matrix U**Y into an Lo-th order rank-1 array U240,

21:  Compute the rank-1 HOSVD of the array U£21?) in order to identify the p-th
column of the L, first loading matrices U®.

22:  Reshape column p of matrix U“L2*Y into a (¢ — Ly)-th order rank-1 array
Y aL2+1p)

23:  Compute the rank-1 HOSVD of the array U @*2+5P) in order to compute the p-th
column of the (¢ — L,) other loading matrices U®.

24: End For

2.3.3 Identifiability

In this section we show that assumptions [AI)){AB5]) ensure identifiability of the SSD-
CP method proposed previously. To this end, we study the different steps of the
proposed algorithm. Next, we show how the assumptions [AT){AB]) can be simplified
by considering the generic identifiability of the SSD-CP approach, which should help
the user in practice to choose the m permutation and the couple (Lq, Ly) of integers.
Recall that a property is called generic when it holds everywhere, except for a set with
Lebesgue measure 0 [De Lathauwer, 2006].

First, in order to calculate the truncated SVD of the unfolding matrix TW | the di-
mensions of T'Y) must be greater than or equal to the rank P, i.e. P < min{N@1)--m(L1)
, NatD,m@)1 - Under assumption [ATl), we have P < NMW»m(l1))  In addition,
under assumption [A3)), matrix U ("(E2):m (Lt D) g fy]] column rank and consequently we
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get P < N(atD.m(L2)) - Gimilarly, under assumption [Ad)), matrix U@ (L2+D) g
full column rank and we have P < N(™(L2+1),.7(a))  Thys we get P < min{N(”(l) """ ”(Ll)),

N@LitD),.w(le) N (r(L2+D),... ﬂ(q))} which leads to P < Hlin{N(W(l)v---ﬂr(Ll))’ N (T (L1+1),..., ﬂ(q))}'

In the next step, in order to deﬁne matrices Y /) we compute the Moore-Penrose
inverse of at least one matrix I'V). Assumption [A2) implies that it exists at least one
index j such the diagonal matrix <I)() is invertible. So, under assumptions [A2]) and
[A3)), since W is non-singular, at least one matrix ') is full row rank and admits a
Moore-Penrose matrix inverse denoted by T'V%.

Now, let’s study the conditions for which matrix U@%2*Y) is unique up to a diag-
onal matrix. In order to maintain this uniqueness, for each p, matrix M® should be
unique and rank deficient only by one implying that M ® has one and only one zero
singular value. The specific structure of matrix M®) with only two non-zero entries in
each row where one of them is constant 1 (as presented in (2.89)), clearly shows that
each (N((L2+1).7(@)) _ 1) columns of M® are linearly independent. Moreover, since
U ¢ i5 a solution of (Z8), it is clear that the N(™(2+1--7(@) columns of M) are
linearly dependent. Consequently, M is rank deficient only by one. On the other
hand, since the non-constant entries of matrices M® are the diagonal entries of ma-
trices D7), for each ordered pair (i,7), the eigen values of matrix Y ) as well as the
arrangement of these eigenvalues with respect to those of other (R — 1) matrices y ()
must be unique. The former condition inherently holds, but to satisfy the latter, the
joint diagonalizer W used in (2.84)) must be unique. To this end, we use the following
uniqueness theorem |[De Lathauwer et al., 2004]:

Theorem 1 The JEVD of R matrices Y of size (P x P) by a matrix transform W
is unique up to a permutation and a scaling of the columns of W if and only if all the
columns of the (R x P) matrix E, whose (r, p)-th component of E is equal to DI(M)O, are
distinct.

Note that in our case the number R of matrices to be triangularized is a value between
NE(Let)sm(@) 1 apnd NEetm(@) (N (r(E2+1)m@) — 1) Although this theorem
is expressed in the real domain, it can easily be extended to the complex case. This
theorem states that the uniqueness is guaranteed if for each couple (pl, p2) there is at

least one pair (4, 7) such that D) £ D) e, such that Ut /U # UL, U,
definition of D™ and consequently Uy, /Us, # U:, /UL, where U* = U )”(LQH)).

As a consequence, the result of theorem [ is valid if the columns of U ™(@:(F2+1)

non-colinear, which is ensured under assumption [A4]).

are

Finally, to compute the Moore-Penrose inverse of U™ @™(2+1) in order to calculate
matrix UTE27 W) magrix U@ (E24D) ghould be full column rank, which is satisfied
under assumption [A4]).

Now let’s show how the assumptions [AI){A5]) can be simplified by considering the
generic case. To this end, we use the lemma defined in [De Lathauwer, 2006|, which is
expressed as follows:

Lemma 2 Consider A € R™” and B € R7*". Generically we have rank(A ® B) =
min(/J, P).
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This lemma can easily be generalized to complex-valued matrices. Consequently, the
following equality holds generically:

rank (U "F2) )y = pip (N Tt on(L2) - py
(2.104)

Assumption [A3)) is then generically equivalent to the inequality P < N™(atDs,.m(l2)),
Similarly, [A4) and [A5) are generically equivalent to P < N™(L2+1).m(@) and to
P < NOWeom@1) - regpectively. On the other hand the assumption [A2) is equiv-
alent to the assumption that at least the entries of one row of the (¢ — L) load-
ing matrices U™ L2+ to U™ are non-zero. In summary, we conclude that if P <
min{ N*Ws-m(Ea)) | N (L), m(L2)) N(”(L”l)’ »™(@)} and at least the entries of one row
of the loadlng matrlces U™2H) t6 U™ are non-zero , then the identifiability of the
proposed SSD-CP algorithm is generically ensured. It is noteworthy that these sim-
plified identifiability conditions of the SSD-CP method should be used in practice to
choose the m permutation and the couple (L, Ly) of integers which give a maximal
achievable rank.

The last point that we should state is that in solving the CP problem by using the
proposed method, there are many I'® matrices which can be used to define matrices
Y9 as defined in (284). There is no need to use all ' matrices to solve the CP
problem. We can choose only matrices with good condition number in order not to
affect the conditioning of the problem by computing the pseudoinverse.

2.3.4 Denoising epileptic EEG signals using the SSD-CP algo-
rithm

To use the SSD-CP algorithm to denoise interictal and ictal data, we should define
appropriate higher order arrays. For both interictal and ictal data, the continuous
wavelet transform is used to construct a third-order array. Consequently, the tensor
dimensions are channels, time and frequency. Then, we applied the SSD-CP algorithm
on the constructed array with the rank P’. The first loading matrix U™ is the estimate
of the mixing matrix G. Then we calculate all the P’ sources as #[n] = UM*x[n]. For
interictal data, we use the same spike detection algorithm as described in section
to select the sources of interest. For ictal data, we choose the epileptic sources by using
the time-frequency plot of each source. Eventually, we denoise signal by using only the
sources of interest.

2.4 The numerical complexity of the proposed algo-
rithms

In this section, we analyze the numerical complexity of the proposed algorithms in terms
of real-valued floating point operations (flops). A flop corresponds to a multiplication
followed by an addition, but in practice the number of multiplications is computed
because they are more expensive than additions.
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Table 2.1: The numerical complexity of each step of the GEVD/DSS-based interictal
denoising methods

Multiplications Comparisons
Spike detection MN(M,F, +12) +2(M — | 2N log(N) +
1)N, MN,log(MN;) + (M —
1)Ng(M(Ns+1) — 3) + N;
Extraction of the ex- | M(2N + 2) + 44N, L, N,L,,
act time support
Spike clustering M (Lo oTs + 2N, P?) 1T,
The GEVD algorithm | S M*P/+ M?P/(N+T,+1)
The DSS algorithm B+ P/(M?T+ MN + M)+
S It,(2MN + M)

In the following computations, M, N, P’ and P, are the number of channels, time
samples, all independent sources and independent epileptic sources, respectively. B =
min{ NM?/2 + 4M?3/3 + P'"MN,2NM?} is the number of flops required to perform
spatial whitening. Moreover, the parameters corresponding to each method are defined
at the beginning of each subsection. Note that the results of this section will be used
later in chapter @ in order to compare the denoising algorithms.

2.4.1 The GEVD/DSS methods to denoise interictal EEGs

In this section, M, and F, are the number of wavelet decompositions and the length of
discrete mother wavelet in spike detection algorithm. Ny is the total number of spikes
in all epileptic sources and 7T is the total number of samples in the spike durations.
L, is the length of window used in extracting the exact time support of the spikes.
The length of the moving average filters used in the sections "Extraction of the exact
time support of the spikes" and "Spike clustering" are denoted by L1 and L2,
respectively. It, is the number of iterations in the DSS algorithm to extract the p-th
epileptic source. The numerical complexity of each step of the semi-blind methods is
shown in Table 2.1

By using these calculations, the total numerical complexity of the GEVD-based and
DSS-based methods are computed and shown in Table 2.3l Since the comparison is
much simpler than multiplications, we consider only the number of multiplications for
calculating the required flops. It should be noted that for these methods, we separately
show the numerical complexities of two cases (1) P, = 1 and (2) P! # 1, because for
the case of P! = 1 the spike clustering stage is discarded.

2.4.2 The GEVD/DSS-based methods to denoise ictal EEGs

In the TF-GEVD and TF-DSS denoising methods, K and T'F; are the number of
frequency samples and total number of time-frequency samples involved in epileptic
sources. [It, is the number of iterations in the DSS algorithm to extract the p-th

epileptic source. The CCA method which is the preprocessing stage of these methods
needs 5NM?+5N M +19M?3 /3 flops. By considering the complexity of the GEVD and



80 chapter2

DSS algorithms (table 2.1]), the numerical complexity of the TF-GEVD and TF-DSS
methods to denoise ictal signals are calculated as shown in table 2.4]

2.4.3 The JDICA algorithm

In the following computations, fy(P") = P'(P'+ 1)(P' + 2)(P’ + 3)/24 is equal to the
number of free entries in a fourth order cumulant tensor of dimension P enjoying all
symmetries. R is the complexity required to compute the roots of a real 8-th degree
polynomial by using the companion matrix technique (we may take 7' = 972 flops). As
a result the proposed JDICA algorithm requires C';p;ca as follows:

P-1

Cypica =B +2N +2P' + MP? + 3N f(P') + Y (2p*(p — 1)*(p* = p+ 1))
p=2

Pl Pl
+Y (PPN +pP' + (p— DP?)+ Y Ttp_pr (T +4p*/3 — Tp* + 62p/3
p=2 p=2
+ 195 + min((p — 2)N + 8(4N + 8),4p + 8(2p* +p* + 7))) (2.105)

As explained in section 2.2.2] in the JDICA-based method to denoise interictal data
we need to select the sources of interest. The numerical complexity of this step is P/ N2.
Therefore, by using this value and the numerical complexity of the JDICA algorithm,
we can calculate the numerical complexity of the JDICA-based methods used to denoise
interictal and ictal signals. The numerical complexity of these methods are shown in

tables 2.3 and 241

2.4.4 The SSD-CP algorithm

In the following computations, Ny to N, are the dimensions of the array. Symbols ¢,
P, L and L, are the order of the array, the rank of the array and the integers used to
define the unfolding matrices T and T®@, respectively. For the sake of simplicity, we
assume that 7 is the identity permutation. R is the number of matrices to be jointly
triangularized. The number of required iterations in the SSD step is equal to It. We
also define N— = Nl N+ = NUatlol2) and N* = N(E2+h-w9)  The number of
required flops for each step of the algorithm is given in table

To calculate the numerical complexity of each step, we use the following facts. First,
for a matrix H of size (M x N) with the rank » (M > N > r), the numerical com-
plexity of calculating singular values, » dominant left singular vectors and r dominant
right singular vectors are (2MN? — 2N3/3), (56Mr? —r3/3) and (5Nr? — r3/3) flops,
respectively. The numerical complexity of the Moore-Penrose pseudoinverse of matrix
H is equal to (8M N?+11N/3) flops. Calculating the roots of a p-th degree polynomial
by using the companion matrix method is equal to (4p®/3 + p) flops. As presented in
table[2.2] since in each iteration, the simultaneous triangularization step should be done
for each pair of (p;, ¢;), numerical complexity of this step should be summed up for all
pairs of (p;,¢;), 1 < p;,q; < P and p; < ¢;. This value should also be multiplied by the
number of iterations /t. By summing up the total complexity of this stage with the
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complexity of the other steps, the total numerical complexity of the SSD-CP algorithm
to calculate the CP decomposition of a g-th order complex array as follows:

P(P—-1) (4 200 10
Cssp—cp = It (% (5143+1073 +47R + TPR)) +P3(§) -

11
P?(13N*N*+8N*+RN*+1) + P <§N*+ 2(N*)’R+

Lo
ANT)? + N"NTN"+ 2N N (D Ny)
i=1
q ) q q q
" 3
+ 2N (A > N - g(ZNZ-)JrS(ZNi) — g“) -+
i=Lo+1 =1 =1
2
2(N7)2NTN* — g(N*)3 (2.106)
By using this numerical complexity, we can calculate the complexity of the SSD-CP
based methods to denoise interictal and ictal signals as explained in section 2.3.4l The
numerical complexity of these methods are shown in tables 2.3l and 2.4l In these tables,
N; and Ny are respectively the number of time and frequency samples in the time-
frequency transform.

2.5 Summary

In this chapter, we presented the proposed methods to denoise epileptic EEG data,
including i) the GEVD and DSS-based methods for denoising of interictal data, ii) the
TF-GEVD and TF-DSS methods for denoising ictal data, iii) the JDICA algorithm
for denoising both interictal and ictal data and iv) the SSD-CP algortihm for denoising
both interictal and ictal data. We also studied the numerical complexity of all proposed
algorithms. In the next chapter, we present the simulated and real data used in various
analysis.
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Table 2.2: Numerical complexity of different steps of the SSD-CP algorithm.

SVD of TW

Calculation of X

2(N~)2N*N* — 2(N-)3

2
3

Computation of V' (only the first P
dominant right singular vectors)

3

SNtTN*p? - L

Computation of the R matrices Y7

Calculation of the pseudo-inverse of the
N* matrices ')

N*(8NTP*+ L p)

Computation of the R matrices Y 7

RN+ P?

Simultaneous Triangularization (for p; and ¢;)

Calculation of the polynomial coeffi-
cients

Computation of the fourteen roots

14 + 314

Calculation of the corresponding p val-
ues

140

Calculation of the cost function for all

~

couples (p, 9)

170R(q; — p;i — 1) + 197R + 168

Update of the matrices Y 9

S8PR+ 16R + 6

Calculation of U@2+D

Computation of the right singular vec-
tor (corresponding to the zero singular
value)

P(2R(NT)? +4(NT)?)

Estimating the loading matrices

Calculation of U®2)

PN*N+N*+8P2N*+%P3+P2+P

HOSVD of the P arrays U L2:1p)

P(2N*N+(N1+...+NL2)—%(N§+...+
N?,) +5(N1+ ...+ Np,) — )

HOSVD of the P arrays Y @L2+1»)

P2N*(Np,41 + ... + N,) — %(szﬂ n
o N2+ 5(Npypr + o+ N) — 552)
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Table 2.3: The numerical complexity of the interictal denoising methods

Numerical Complexity

GEVD (P! =1)

O1M?3/3 + M*(N + Ts + 1) + 44N, L, + M(14N + M F,N + 2 +
2N,) — 2N,

GEVD (P! #1)

OLMBP!/3 + M2P!(N + Ts + 1) + 44N, Ly, + M(14N + MF,N +
Lina2Ts 4+ 24 2N,(1+ P)) — 2N,

DSS (P =1) B+1t,(2MN + M)+ N(16N + M, F,N +4-+2N,) +44N,L,, — 2N,

DSS (P, # 1) B+ M?NP,+ Y0 It,(2MN + M) + 44N, L, — 2N, + M(15N +
MyFyN + P/(N 4 1) + LypaoTs + 3 4 2N,(1 + P?))

JDICA P'N*+B+2N+2P' + MP?+ 3N fi(P)+ X0, (20* (0 — 1) (p* —
D)+ (PPN +pP +(p—1)P?) + 30, Ttprpa (T+4p% /3 —
Tp? +62p/3+195+min((p—2)N +8(4N +8),4p+8(2p* +p> +7)))

SSD-CP P'N? + 2M?N,;N; — 2M?/3 + 5N;N;P”* — P /3 + N;(8P"’N, +

11/3P" + P + P) + RN,P”? + It((13R + 8RP' + 325/3)(P'(P' —
1)/2) + (20RP'(P' +1)(P' —1)/6)) + P'(TR(N; — 1)> + 11/3(N; —
1%+ (Ny = 1)(R+ 1)+ 2(Ny — 1)?) + P'(2M N} — 2N} /3 4+ 6M +
5N; —2/3) + MN,N;P' +8P"*N; +11P'/3

Table 2.4: The numerical complexity of the ictal denoising methods

Numerical Complexity

TF-GEVD SNM? +5NM +19M?3 /3 +91/3M*P + M?P/(NK +TF, 4+ 1)

TF-DSS S5NM? + 5NM + 19M?/3 + B + P(M?NK + MNK + M) +
S It,(2MNEK + M)

JDICA B+ 2N + 2P + MP? + 3N f4(P') + 05 (20%(p — 1)%(0* — p +
1)+ 3, 00N +pP' + (0= )P?) + 5,7, Ttp (T + 4p*/3
Tp? +62p/3+195+min((p—2)N +8(4N +8),4p+8(2p* +p> +7)))

SSD-CP 2M?N,N; — 2M? /3 + 5N, N;P'”*> — P /3 4+ N;(8P"*N, + 11/3P" +

P”? + P) + RN,P” + It((13R + 8RP' + 325/3)(P'(P' — 1)/2) +
(20RP'(P' + 1)(P' —1)/6)) + P'(TR(N; — 1)® + 11/3(N; — 1) +
(Ny = 1)(R+1)+2(Ny — 1)?) + P'(2MN? — 2N} /3 +6M + 5N, —
2/3) + MN;N;P' +8P"*N; +11P'/3
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Chapter 3

Data Generation

In this chapter, we present the simulated and real data used in various analysis. We start
by introducing how interictal and ictal signals are generated from a realistic model of
coupled neuronal population and then we describe the real signals recorded in a patient
with partial epilepsy. Then, we introduce the performance criteria used in the next
chapter for the comparison between the denoising methods.

3.1 Simulated data

To quantitatively evaluate the performance of the proposed methods presented in Chap-
ter 2 simulations of 32 channels of EEG data are generated with a spatio-temporal
model developed in our team [Cosandier-Rimélé et al., 2007, Cosandier-Rimélé et al.,
2008,|Cosandier-Rimélé et al., 2010|. This model combines a biophysical model of the
sources of brain activity, represented by a dipole field at the cortical surface, and a
biomathematical model of coupled neuronal populations. The first model is used to
describe the spatial characteristics of sources and the second one describes the time
course of sources (see figure B.]).

3.1.1 The source model
3.1.1.1 Spatial characteristics of sources

To realistically reproduce the complex geometry of the cerebral neocortex, a mesh of the
cortical surface at the interface of gray and white matter is built from the segmentation
of a 3D T1 MRI image (BrainVisa, SHFJ, Orsay , France) [Mangin et al., 1995]. This
mesh consists of 19626 triangles with an average area of 4.8 mm?. Each triangle in
the mesh is associated with an elementary current dipole placed at the barycenter
of each triangle and oriented perpendicular to its surface. The norm of the dipole
moment is proportional to the area of the corresponding triangle and is obtained by
multiplying the area of the triangle by the dipole moment density per unit area. This
density is defined by the product between the thickness of the neocortex, estimated to
be averagely 3 mm in this study, and the cortical current density, estimated to be 100
nA/mm? [Hamélainen et al., 1993]. The average value of density of the dipole moment

85
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per unit area is equal to 300 nA/mm (nA.m/m?), and the norm ¢; of the i-th dipole
moment is given by ¢; = 300A; nA/mm where A; denotes surface of the i-th triangle.

The source or sources of epileptic activity (interictal or ictal) are defined manually
on the mesh as a set of contiguous triangles (patch). Here, each patch consists of 100
triangles which represents a source of approximately 5 cm?. Different locations were
considered. In cases where one epileptic patch is considered, this patch is delineated in
the left superior temporal gyrus. In the case where two epileptic patches are considered,
the first one is placed in the left superior temporal gyrus, while the second one is located
either in the left inferior parietal region (for simulation of interictal signals) or in the
left inferior frontal region (for simulation of ictal signals).

3.1.1.2 Temporal dynamics of sources

The temporal dynamics of activities of each population of neurons associated with each
dipole of the epileptic patch are generated by a macroscopic model of neural popula-
tions [Jansen et al., 1993|/Jansen and Rit, 1995, Wendling et al., 2000, Wendling et al.,
2001, Wendling et al., 2002|. This model considers the average activity of intercon-
nected neuronal sub-populations without an explicit representation of the unit cells or
of mechanisms associated with transmembrane exchanges. Although macroscopic, this
type of model is based on neurophysiological data and has two essential features. First,
the model parameters reflect the inhibitory and excitatory processes of the considered
neuronal tissues (here the neocortex). Second, the temporal dynamics generated at the
output of the model are similar to those observed in a local potential field. The above-
mentioned work has shown that, in fact, they are comparable to real signals recorded by
electrodes implanted in the cerebral cortex for an appropriate set of parameters in the
model. In other words, we consider that the local field potentials are mainly a reflection
of the dynamic processes associated with synaptic interactions within sub-populations
of cells (pyramidal neurons and interneurons). The macroscopic model that we used
is based on neurophysiological data of neuronal organization and connectivity within
the cerebral cortex. In the model illustrated in figure B.1], each neuronal population is
formed by three subassemblies of cells: the main cells (the pyramidal cells which repre-
sent about 70 percent of the cortical neurons) and two types of interneurons (slow and
fast inhibition). The synaptic organization of the neocortex is represented in the model
by excitatory projections between pyramidal cells and interneurons. In turn, these
interneurons project to the pyramidal cells via inhibitory connections (GABAergic).

In each subset of cells, the input/output relationship is represented generally by
means of two functions: i) a linear transfer function, which transforms the presynaptic
information (the average presynaptic pulse density of afferent action potentials) into
postsynaptic information (an average postsynaptic membrane potential) and ii) a static
non-linear function, which relates the average postsynaptic potential of a given subset to
an average pulse density of potentials fired by the neurons. The linear transfer function
models the effects associated with synaptic kinetics and passive conduction in dendritic
trees. It may be represented by a low-pass filter of order 2, whose impulse response is
given by h(t) = Witwe ™" where (W, w) are the pairs (amplitude, time constant) of the
postsynaptic potential mediated by a specific receptor-type. These pairs are marked
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(A, a) in the excitatory case (AMPA-type receptors) and (B, b) and (G, g), in the three
modes of inhibition dependent on postsynaptic receptors GABA 4 o1, GABA 4 fq-
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Figure 3.1: Simulation of cortical activities. (a) realistic mesh of the cortical surface
(gray matter/white matter interface), built from the segmentation of a 3D anatomical
T1 MRI. A current dipole is located at the barycenter of each triangle and oriented
orthogonally to the surface. The intensity of each dipole is proportional to the area of
the corresponding triangle. (b) Structure of the model used to simulate the activity
of the cerebral cortex. Three subpopulations of neurons are represented: i) pyramidal
cells, ii) somatic-projecting and dendritic-projecting interneurons (type I: basket and
chandelier cells involving currents GABA 4 fq5¢), and iii) dendritic interneurons (type I":
neurogliaformes cells involving currents GABA 4 4, and GABAg). The collateral ex-
citation between pyramidal cells and excitatory input on interneurons are represented
in the model by the currents mediated by AMPA receptors. The parameters (Cpp,
Cpr, Cip, Cr1, Cpp, Cpp, Cpp, Cryp) are constants of local connectivity between sub-
populations. (c) Signals obtained at the output of the model. From up to down: the
signal produced by the model representing a background activity, a signal representing
an interictal spike activity and a signal representing a fast ictal activity.

(basket, chandelier)
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Figure 3.2: In the model, the amplitudes of excitatory and inhibitory parameters A,
B, and G are adjusted such that the model generates normal and epileptic activity.
Signals obtained at the output of the model. From left to right, a background activity
with the basic values used in the model, an interictal spikes activity obtained after a
slight decrease of the slow inhibition (B), a fast activity obtained after a sharp decline
in the slow inhibition, a slower rhythmic activity after increase in slow inhibition.

The synaptic interactions between neuronal subpopulations are also characterized
in the model by COIlIleCtiVity constants (Cpp, Cp[, C[p, OH, Cp[/, O[/P, O[/[/, C[/[),
which represent the average number of synaptic contacts between the considered sub-
populations. Finally, the nonspecific influence of neighbors or more distant populations
is modeled by a Gaussian input noise v(t) (input of type excitatory) that describes
generally the average density of the related action potentials. Finally, in this model, the
inter-population couplings can be defined using the average density of action potentials
generated by the subset of principal cells of a given population as related excitation on
the subset of principal cells of another population. These couplings are resolved through
constant connectivity (K;;), which defines the degree of coupling of a population i to
population j.

In this model, we adjusted the amplitudes of A, B and G to obtain an activity of
type sporadic spikes or an activity of type seizure discharge (figure3.2]). Compared with
baseline values used in the model for the genesis of a background activity, sporadic spikes
are obtained by slightly decreasing of slow inhibition. If B is greatly reduced, we obtain
a fast rhythmic activity (25-30 Hz) that resembles the tonic rapid discharge recorded at
the beginning of the seizure in intracerebral recordings. When rapid inhibition decreases
in turn, we get a slower rhythmic activity (8-10 Hz) that may be related to the slowdown
of the ictal discharge |[Wendling et al., 2005, Cosandier-Rimélé et al., 2012]. To generate
a temporal dynamics of type ictal discharge, we apply the settings to get a quick activity
for the first 10 seconds, then the parameters are set to obtain a slower rhythmic activity
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Figure 3.3: Examples of activities obtained by the model in several populations. (a)
Asynchronous sporadic spikes activities in a group of 10 uncoupled populations. (b)
Sporadic spikes activities in the same group of populations, after introduction of a
constant and uniform coupling value K;; across populations. Strong synchronization
between the temporal dynamics of populations are obtained.

during the last 15 seconds. Between the two activities, we consider a 2 sec period of
linear transition in which the parameter B is varied linearly from one value to another.

3.1.2 Construction of the intensity matrix

In the case of interictal activity, the dynamic of the dipoles related to an epileptic
patch made of 100 triangles are obtained using a model of 100 coupled populations.
The connectivity constant K;; is adjusted to obtain a series of temporal dynamic of
strongly correlated interictal spikes (figure B.3)).

For the genesis of interictal spikes signals, we consider that the activities of dipoles
within a patch are highly synchronized. In the case of two patches, two scenarios are
considered whether activities of patch 1 are: i) decorrelated from those of the patch 2
(two independent sources) or ii) correlated to activities of the patch 2 by considering a
few milliseconds time delay (12-16ms) (propagation of interictal activity from patch 1
to patch 2).

In the case of ictal activities, to simulate the interaction between two brain regions
during a seizure, we consider a model of two coupled populations. Indeed, the coupling
between a large number of populations is difficult to control in the model in the case
of fast activities. The parameters of the first population are set to generate a fast ictal
activity, followed by a slower ictal activity. In the case of the second population, the
excitation parameter A is slightly decreased, in order to obtain a "normal" activity in
the absence of coupling. The introduction of the coupling between the two populations
then drives the second population into the ictal activity (figure B.4]).
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Figure 3.4: Model of two populations in the case of ictal activities. (a) In the first
population, the parameters are set to generate a fast ictal activity, followed by a slower
rhythmic ictal activity. In the second population, the excitation parameter A is slightly
decreased to obtain a "normal" activity. The coupling between the two populations
is zero. The power spectral density (PSD) of the population 1 shows the peak of
fast activity at 25 Hz and the slower peak activity at 8 Hz. (b) The introduction of
the coupling between the two populations drives the second population into the ictal
activity. The PSD of the population 1 shows the same activity peaks at the same
frequencies.

Moreover, as interictal spikes, we also considered a scenario in which the ictal activity
in the patch 1 was independent of the ictal activity in the patch 2. The intensity
matrix is then constructed by assigning the first temporal ictal dynamics to all dipoles
of patch 1 and the second temporal ictal dynamics to all the dipoles of patch 2. Finally
the dipoles outside patches have zero activity. This produces a matrix of intensities S
whose columns and rows represent the patch dipoles and temporal samples, respectively

(figure 3.0)).
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Figure 3.5: (a) Configurations of sources for the genesis of the interictal spikes activities.
From top to bottom, the dynamics of dipoles associated with a single patch located
in the left superior temporal region (orange patch), or two patches, the second one
being located at the left inferior parietal region (yellow patch). Within a given patch,
the spikes are very synchronous. Between patches, activities are either asynchronous
(uncorrelated) or synchronous (correlated). In the latter case, a time delay of a few
milliseconds (16 ms) is added to mimic the activity of the spread between the two
patches. (b) Configurations of sources for the genesis of ictal activities. From top
to bottom, the dynamics of dipoles associated with a single patch located in the left
superior temporal region (orange patch), or from two patches, the second one being
located in the left inferior frontal region (red patch). Ictal activities are generated either
by two independent populations (uncorrelated activities) or by two coupled populations
(correlated activities).

3.1.3 Genesis of simulated EEG signals

In our study, we solve the direct problem in a realistic head model. This model
consists of three nested homogeneous conducting media representing the brain, skull
and scalp. The conductivities of these areas are set at 0.33S/m, 0.0082S/m and
0.33S/m |Gongalves et al., 2003|. The surfaces that define each environment are ex-
tracted from the segmentation of the 3D T1 MRI as the source model, and are meshed
by 2440 triangles (ANT, ASA, Enschede, Netherlands [Zanow and Peters, 1995]). In
this realistic head model, the direct problem can only be solved numerically. We use
the Boundary Element Method (BEM) implemented in ASA, based on [Hamalainen
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(a) (b)
Figure 3.6: The position of 32 scalp electrodes: (a) profile view, (b) top view.

and Sarvas, 1989,[Meijs et al., 1989]. We get a Leadfield matrix A = [a(p1), ..., a(p)]
where p,, is the position of the barycenter of the triangle m and a,, is the leadfield
vector corresponding to the dipole m. The space-time matrix X of the signals at the
32 surface electrodes, defined by the montage illustrated in figure B.6] is then obtained
directly by applying the formula X = AS where S is the intensity matrix.

For each source configuration, 50 realizations were generated. These signals corre-
spond to the noise-free data. In order to generate simulations of noisy EEG, 50 periods
of muscle activity were extracted from real scalp EEG (32 electrodes, figure 3.6). These
data contain a mixture of background activity and muscle activity; we simply call it
muscle activity in the rest of this report. Each muscle activity was normalized to the
channel containing the maximum signal strength. Then, different levels of amplitude
of muscle activity were added to epileptic EEG signals to obtain the simulated noisy
EEGs with different values of Signal to Noise Ratio (SNR). FigureB.7 shows an example
of original noise-free interictal signals and corresponding noisy signals for two different
SNRs (-10 dB and -20 dB). Figure 3.8 shows an example of noise-free ictal signals and
corresponding noisy signals for two different SNRs (-10 dB and -20 dB).

3.2 Real data

To test the feasibility of denoising algorithms on real data, different methods have
been applied to denoise interictal spikes recorded from a 40 years old patient ("patient
P") suffering from a drug-resistant partial epilepsy since age of 26. As part of the
preoperative evaluation, patient P underwent two sessions of video-EEG recording, a
brain MRI and ictal and interictal SPECT examinations. During video-EEG recording,
EEG data were acquired from 32 electrodes (standard 10-20 electrodes system and
additional electrodes FC1, FC2, FC5, FC6, CP1, CP2, CP5, FT9, FT10, P9 and P10),
at a sampling frequency of 256 Hz with a bandpass filter (0.3 - 100 Hz). These data
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Figure 3.7: An example of simulated interictal signals. (a) An example of a noise-free
simulation. These data were generated from a single source (5 cm?) in the left superior
temporal gyrus. The spikes has the maximal amplitude at the electrode T3 (facing the
superior temporal region). (b) and (c) The same simulated data after adding a real
muscle activity with SNR—-10 dB and SNR = -20dB, respectively.

were examined to isolate different periods of 2048 samples (8s) containing a noise-free
period and the periods of 2048 samples containing spikes embedded in muscle activity,
at two different qualitative levels of noise (high noisy and low noisy). An example of
actual data of interictal spike is illustrated in figure 3.9

Furthermore, the denoising algorithms have also been tested on real ictal data,
recorded in a 23 years old patient ("patient N"). This patient was also recorded on
long-term video-EEG (32 electrodes, 256 Hz, PB [0.3-100Hz|) examination during which
several seizures were collected. One of these ictal discharges was almost noise-free and
could be used as a reference signal. A second discharge was much more noisy and
various denoising algorithms were applied on it. The reconstructed signal was then
compared to the reference signal. An example of actual data of ictal signals is shown

in figure B.10.

3.3 Performance criteria

To compare the results of the denoising algorithms, we use six measures as follows:

Relative Root Mean Square Error (RRMSE): This measure quantifies the error in
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Figure 3.8: An example of simulated ictal signals. (a) An example of a noise-free
simulation. These data were generated from a single source (5 cm?) in the left superior
temporal gyrus. The peak value is at the electrode T3 (next to the superior temporal
region). (b) and (c¢) The same simulated data after adding a real muscle activity with
SNR=-10 dB and SNR = -20dB, respectively.

separating the signal of interest, the epileptic interictal activity, from the signal of
non-interest. The RRMSE is given by:

xgﬁ) n —ﬁ:ﬁﬁ) n i
RRMSE = \/Z < _ | ]> (3.1)

\/zm S (o))

where {zﬁﬁ) [n]} and {@(ﬁ) [n]} are the actual and estimated epileptic subspaces on the
m-th channel, respectively.

Local RRMSE: This measure quantifies the error in separating the epileptic interictal
activity from the signal of non-interest at each electrode. The RRMSEgccname at m-th
electrode is given by:

N xﬁﬁ) n —555;? n ’
RRMSE,, \/2"21( - 3 (3.2)

s ()
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Figure 3.9: Examples of real interictal signals. (a) A typical example of noise-free
interictal spikes. (b) An example of interictal spikes affected by muscle activity. (¢) An
example of interictal spikes greatly affected by muscle activity.

where m is the channel number corresponding to the examined electrode and {x,(ﬁ) [n]}
and {i:,(ﬁ) [n]} are the actual and estimated epileptic subspaces at this channel, respec-
tively.

Spike RRMSE: This measure quantifies the error in separating the signal of interest,
the epileptic interictal activity, from the signal of non-interest, in spike intervals. The
Spike RRMSE is given by:

- \/2%1 D _nespikes <x£ﬁ) [n] = 1 [n])2

RRMSEpijes = -
\/Zn]\le ZnNGSpikes <£I?§2) [n]>

(3.3)

Local Spike RRMSE: This measure quantifies the error in separating the signal of
interest, the epileptic interictal activity, from the signal of non-interest, in spike intervals
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Figure 3.10: A real EEG recorded from an epileptic patient during two separate ictal
periods. (a) An almost noise free ictal EEG. (b) Another ictal EEG contaminated by
muscle activity.

at each electrode. The RRMSEpikes EiceName at m-th electrode is given by:

Sncsies (#8181 — 5]

St (#00)

Flops: In order to compare the numerical complexity of the denoising algorithms,
we calculate the number of flops required by each denoising algorithm. To this end, we
use the results illustrated in tables 23] and 2.4]

RRMSEspikes,ElecName - (34)

ROC and AUC: We also compared source localization results obtained on noise-free,
noisy and denoised data by the 4-ExSo-MUSIC algorithm using the Receiver Operating
Characteristic (ROC) curve as a performance criterion. This criterion represents the
mathematical expectation of the True Positive Fraction (TPF) as a function of the
mathematical expectation of the False Positive Fraction (FPF). The TPF is the fraction
between the area of the patch truly retrieved and the total patch area while the FPF is
the fraction between the area falsely localized outside the patch and the total cortical



3.4. Summary 97

area minus the patch area. The Area Under the Curve (AUC) of each algorithm is also
calculated.

3.4 Summary

In this chapter, we presented the simulated and real data used in various analysis. We
first introduced the simulated interictal and ictal data. Secondly, the real interictal and
ictal data were presented. Then, we introduced the performance criteria. In the next
chapter, the performance of the proposed algorithms on both simulated and real data
will be studied.
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Chapter 4

Experimental Results

In this chapter, the performance of the proposed algorithms presented in chapter 2l is
studied in two main parts.

In the first part, we examine the proposed SSD-CP algorithm in some common
scenarios in the context of CP decomposition. The first three tests are well-known
numerical examples extracted from [Comon et al., 2009]. In the last example of this
section, we study the robustness of the proposed algorithm with respect to overfactoring
by using amino acids fluorescence data.

In the second part, we study the performance of the proposed methods to denoise
both simulated and real epileptic EEG data with interictal or ictal activity contaminated
with muscular activity. In the case of simulated data, the effectiveness of the proposed
algorithms is evaluated in terms of Relative Root Mean Square Error between the
original noise-free signals and the denoised ones, number of required flops and the
location of the original and denoised epileptic sources. For both interictal and ictal
data, we present some examples on real data recorded in patients with a drug-resistant
partial epilepsy. The results of this part are presented in four sections: i) simulated
interictal data, ii) simulated ictal data, iii) real interictal data and iv) real ictal data.

4.1 Common examples for testing the proposed SSD-
CP method

In this section, we present the results of applying the SSD-CP algorithm to some well-
known examples. To compare these results with those obtained from other algorithms,
we define an error criterion as follows. Each algorithm gives, for each loading matrix,
a normalized root mean squared estimation error whose median values are computed
from 100 Monte-Carlo experiments and denoted by 7 where 1 < i < ¢ represents
the index of the present loading matrix. Our estimation criterion is then obtained by
Error = % 9_, 7. The first three examples of this section are extracted from [Comon
et al., 2009] to examine the results of the proposed algorithm on some well-known
numerical examples. In the last example, we use the Amino acids fluorescence data
downloaded from [Ami, 1998] and described in [Ami, 1998] to examine the effect of

overfactoring, i.e. overestimating the array rank, on the performance of different CP

99
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methods.

4.1.1 A (2 x2x2) array of rank 2

A good example for studying the efficiency of our algorithm is the fully parameterizable
(2 x 2 x 2) array which was given by Paatero [Paatero, 2000]. The mode-2 unfolding
matrix of this array is as follows:

e O

0 h ) (4.1)

01
= < 1 d
where e is regarded as a constant, typically e = 30. The parabola h = —ed?/4 consists

of degenerate border points. All points below the parabola have rank 3, while all points
above have rank 2.

The CP decomposition of T' defined by [.1]is expressed in the following form:

wma (VY CE ()] e

where parameters €, p, v, r, x, t and z can be calculated as functions of e, d and h.

We study two different cases and in each case we use the parameters similar to
[Comon et al., 2009]. In these cases, the tensors to be decomposed are chosen such
that they have a rank 2, but they lie close to degenerate border points, represented

by a parabola in the subsequent figures. In each case we compare the results of our
algorithm with the ALS, ELS-ALS, LM and FLM algorithms.

In the first case, the array parameters are considered as (e, d, h) = (30,0.26, —0.34)
and the initial value for non-direct algorithms is (e, d, h) = (30, —0.3, —0.12). The ELS
enhancement is executed in each iteration. As shown in figure [4.1] the alternating algo-
rithms ALS and ELS-ALS are very sensitive to the initial value and their convergence
speed are very low with the given initial value. With this initial value, the LM and FLM
algorithms do not converge. Unlike these non-direct algorithms, the proposed SSD-CP
algorithm finds the exact solution in a few flops.

In the second case which is an easier case for non-direct algorithms, the array pa-
rameters are given by (e,d,h) = (30,0.26,—0.29) and the initial value is (e,d,h) =
(30, —0.26,—0.19). The results of using the ALS, ELS-ALS, LM, FLM and the pro-
posed SSD-CP algorithms are shown in figure In this case, the LM and FLM
algorithms converge to the global minimum within a moderate number of iterations.
The ALS algorithm works similarly to the previous case but the ELS-ALS converges to
the solution in fewer flops. Similar to the first case, the proposed SSD-CP algorithm
converges to the exact solution in a few flops.

4.1.2 Double bottlenecks in a (30 x 30 x 30) array of rank 4

In this case, an array with two double bottlenecks is considered. This array is generated
from three random matrices A, B and C of size (30 x 4). To create two bottlenecks in
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Figure 4.1: Results obtained after applying five algorithms on the first Paatero case.
(a) symbols +, %, o and A denote, respectively the initial value, the global minimum,
the successive iterations for the non-direct algorithms and the solution for the SSD-CP
algorithm, in the (d, h) plane. The parabola shows degenerate border points. (b) Value
of the error as a function of flops.
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Paatero Case #2
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Figure 4.2: Results obtained after applying five algorithms on the second Paatero case.
(a) symbols +, %, o and A denote, respectively the initial value, the global minimum,
the successive iterations for the non-direct algorithms and the solution for the SSD-CP
algorithm, in the (d, h) plane. The parabola shows degenerate border points. (b) Value
of the error as a function of flops.
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Figure 4.3: Value of error as a function of flops: the results of applying five algorithms
on (a) A 30 x 30 x 30 array of rank 4 with double bottlenecks, (b) A 30 x 30 x 30 array
of rank 4 with triple bottlenecks.

the two first modes as stated in [Comon et al., 2009|, the first column a; of A is drawn
randomly from a zero-mean unit-variance Normal distribution and the second column
is set to be as = a; + 0.5v, where v, is drawn from a zero-mean unit-variance Normal
distribution. The third and the fourth columns of A are generated in the same manner,
respectively. Matrix B is independently generated similarly to A while matrix C is
just drawn from a zero-mean unit-variance Normal distribution without bottleneck. For
100 Monte-Carlo runs, we compare the results of the ALS, ELS-ALS, LM, FLM and
SSD-CP algorithms. For each non-direct algorithm, we consider the random initializing
approach. In this experiment, the ALS, ELS-ALS, LM algorithms converge for 72, 84,
and 98 trials, respectively. The FLM algorithm converges for all 100 trials. For each
algorithm, the computed error with respect to number of flops is presented in figure
[43(a). As shown in this figure, the SSD-CP algorithm outperforms the other methods
in terms of performance. In terms of the number of flops, the SSD-CP and FLM
algorithms surpass the other methods.

4.1.3 Triple bottlenecks in a (30 x 30 x 30) array of rank 4

In this case, an array with two triple bottlenecks is randomly generated. Matrices A
and B are generated in the same way as in section L.1.2 But matrix C is generated
similarly to A and B. 100 Monte-Carlo runs are used to compare the performance of
the methods. The ALS, ELS-ALS and LM algorithms converge for 0%, 34% and 51%
of trials, respectively. The FLM and SSD-CP algorithms converge in all 100 trials. As
shown in figure [L3|(b), the SSD-CP algorithm converges with an average error of 1075
in 2.5 x 107 flops. Among the non-direct algorithms only FLM achieve acceptable errors
in comparable number of flops. The other algorithms can not achieve good results in
10° flops.
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4.1.4 Multiway analysis of amino acids fluorescence data

In this section, we examine the effect of overfactoring, i.e., overestimating the array
rank, on the performance of different CP methods. To this end, we use the Amino
acids fluorescence data downloaded from [Ami, 1998| and described in [Ami, 1998], [Bro,
1998|, [Kiers, 1998|. This data set comprises five simple laboratory-made samples. Each
sample contains different amounts of tyrosine, tryptophan and phenylalanine dissolved
in phosphate buffered water. The samples were measured by fluorescence (excitation
250—300 nm, emission 250 —450 nm, 1 nm intervals) on a PE LS50B spectrofluorometer
with excitation slit-width of 2.5 nm, an emission slit-width of 10 nm and a scan-speed of
1500 nm/s [Ami, 1998|. Therefore, the array to be decomposed is of size (5 x 61 x 201).
Since each individual amino acid gives a rank-1 contribution to the data, we can ideally
describe these data with three canonical factors [Ami, 1998]. We applied three classical
CP methods, namely ALS [Harshman and Lundy, 1994], ELS-ALS [Comon et al., 2009],
FLM [Phan et al., 2013c| and the SSD-CP method proposed in this paper, to canonically
decompose the amino acids fluorescence data. Then we compared the emission-mode
factors estimated by the four methods by varying the rank P of the CP decomposition
from 3 to 5 as shown in figure (.41

For each algorithm, we scaled the p-th column of the emission-mode loading matrix
by the norm of the rank-1 three-way array produced by the outer product of p-th
columns of each of the three loading matrices. Note that, regarding the three non-
direct methods, they are run several times with different random initial guess in order
to use the best initialization.

As displayed in figure [f4)(a), for P = 3, all CP algorithms generate almost the
same emission factors corresponding to three amino acids. As shown in figures [£.4|(b-
¢), in the case of P =4 and P = 5, the factors obtained from the ALS and ELS-ALS
change, however the proposed SSD-CP technique and the FLM algorithm generate three
factors that match with the true factors while the forth and the fifth estimated factors
are very small. These results show that SSD-CP and FLM are robust with respect to
overfactoring contrary to the other methods.
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4.2 EEG simulated data

In this section, we study the performance and numerical complexity of the proposed
methods in the case of interictal and ictal EEGs. For both interictal and ictal data, we
examine the algorithms in three different scenarios: i) scenario 1: one epileptic source,
ii) scenario 2: two epileptic sources with uncorrelated activities and iii) scenario 3: two
epileptic sources with correlated activities. The location of epileptic sources and the
procedure of generating epileptic signals in each scenario are explained in details in
chapter Bl

4.2.1 Interictal data

In this section, in addition to the proposed methods, we study the efficiency of two
well-known methods, namely CoM, [Comon, 1994] and SOBI [Belouchrani et al., 1997],
on simulated interictal data. The reason for selecting these algorithms is that the CoM,
algorithm offers the best compromise between performance and numerical complexity
as shown in [Albera et al., 2012] and SOBI is one of the most common DCCA algorithms
used in biomedical applications. In the following tests, the same procedure as explained
for the JDICA algorithm (see section 2:2.2) is used by CoMs; and SOBI to choose
interictal sources from all extracted ones. In each scenario, the number of channels is
32, the number of samples is 10240 (which corresponds to a signal of length 40 seconds
with sampling frequency of 256 Hz) and the SNR values change from —20dB to 5dB
with a step of 5dB. It is noteworthy that for the I[CA and DCCA algorithms, we
changed the dimension of the source space P’ in the range of {4,8,12, 16, 20, 24, 28,32}
and, in each trial of each scenario, we generated the results by choosing the value of P’
yielding the best result.

4.2.1.1 Scenario 1: one epileptic patch

In the first interictal scenario, we consider one patch in the left superior temporal gyrus.
We study the effect of changing SNR on the performance and numerical complexity of
each algorithm. Figured.5shows an example of simulated noise-free, noisy and denoised
data of the first scenario with SNR= —10dB. Electrode T3 shows clear spike-like
activity on original simulated data. This activity is partially disturbed in the simulated
noisy data, on which large muscular activity is seen at T3, T4, F7, F8, FC5, FC6, F'T9
and P9 electrodes. For this example, a visual analysis of denoised data shows that
the spike activity at T3 is well retrieved with all six algorithms. However, in the final
samples of the signal at T3, a distortion is still present in almost all denoised signals,
but appears smaller in the GEVD and DSS denoised signals. The other channels were
acceptably denoised by all six algorithms. Regarding the source localization results
(bottom of each column of figure [L3]), the epileptic source is correctly localized in the
left superior temporal region for the noise-free data. For the noisy data, the epileptic
source is incorrectly localized in the left inferior temporal region. The interictal data
denoised by GEVD, DSS and SSD-CP (figure [L5](c-d,f)) are localized as expected in
the left superior temporal region. The interictal data denoised by JDICA, CoM, and
SOBI (figure [L.5)(e,g,h)) are mislocalized in the inferior temporal gyrus.
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Figure shows the results obtained with the first interictal scenario by using
the six denoising algorithms for different SNRs. Figures .6(a) and [6|(b) show the
RRMSE at all electrodes and at channel T3, respectively. As illustrated in these figures,
the SSD-CP denoising method does not work as well as the other methods. Among
the other methods, the GEVD and DSS methods are better than the others for high
SNRs (—10dB and more) both on a global point of view (i.e. when all electrodes are
considered) and on a local point of view (i.e. when only T3 electrode is considered).
But for lower SNRs (—20dB and —15dB) the ICA-based algorithms, JDICA, CoM,
and SOBI give better results. Figures [L.0(c) and [4.6[(d) show the Spike RRMSE at all
electrodes and at channel T3, respectively. As shown in these figures, unlike RRMSE,
the Spike RRMSE of SSD-CP is similar to or lower than other methods for SNR values
higher than —20dB. Similarly to RRMSE results, GEVD and DSS are better than the
other methods for high SNRs. It shows that GEVD, DSS and SSD-CP denoise signals
in the intervals around spikes better than the other methods. In terms of numerical
complexity (figure L0(e)), the GEVD and DSS algorithms have the lowest number of
flops. Among the other methods, JDICA and SSD-CP are the most time-consuming.
Note that, for CoMy and JDICA, the required flops greatly decreases for higher SNRs.
This is due to the fact that less sources are used to optimize the performance of the
CoM, and JDICA algorithms. Figure [L0(f) shows the area under ROC curve (AUC)
obtained after source localization of signals denoised by each method. As shown in this
figure, for high SNRs (—5dB and higher) all methods generate almost similar and high
AUCs. For —10dB, the AUC after GEVD, DSS and SSD-CP are greater than those
obtained after ICA-based denoised signals. For lower SNRs, CoM, and JDICA surpass
GEVD and DSS, especially for —20dB. These AUC results confirm the Spike RRMSE

results (A6](c,d)).

Figure shows the source localization ROC curves of the six denoising algorithms
for different SNR values. We do not show the results for 0dB and 5dB, since for these
SNRs the curves are almost similar to —5dB. As illustrated in this figure, all algorithms
can acceptably estimate the source location and their ROC curves have an acceptable
distance from the curve corresponding to the Noisy EEG, especially for SNRs equal to
or higher than —15dB.

4.2.1.2 Scenario 2: two uncorrelated epileptic patches

In the second scenario, two patches are considered: the first patch is located in the
superior temporal gyrus and the second patch is located in the inferior frontal gyrus.
In this scenario, these two patches have uncorrelated dynamics. Figure .8 shows an

example of simulated noise-free, noisy and denoised data of the interictal scenario 2
with SNR= —10dB.

In the original noise-free data (figure[d.8(a)), electrodes T3 and FC5 show the max-
imum spike-like activity. This activity is completely hidden in the simulated noisy data
and the other electrodes are considerably noisy (figure E.8(b)). As shown in figure
[@8(c-h), the spike activity at T3 and FC5 is retrieved by all algorithms except by the
SSD-CP method. Although SSD-CP can reduce noise in some channels, it can not
succeed in denoising signals where the maximal activity is present. In addition, the
amplitude of spikes is reduced in channel FC5 after denoising with SOBI. Regarding
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Figure 4.6: Denoising results of the six methods in the case of interictal scenario 1 for
different SNR values between —20 and 5dB: (a) the RRMSE denoising error, (b) the
local RRMSE denoising error at channel T3, (¢) the RRMSE denoising error in spike
intervals, (b) the local RRMSE denoising error at channel T3 in spike intervals, (e)
number of flops and (f) AUC of the source localization ROC curve.
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Figure 4.7: The source localization ROC curves of six denoising algorithms in the case of
the interictal scenario 1 for different SNR values of (a) —20dB, (b) —15dB, (¢) —10dB
and (d) —5dB

the source localization results (bottom of each column of figure L), the two epileptic
sources are correctly localized in the left superior temporal and left inferior frontal re-
gions for the noise-free data. For the noisy data, only one epileptic source is localized in
the left inferior region. The interictal data denoised by all methods are localized close
to the expected regions, i.e. in the superior temporal and inferior frontal gyri. For the
interictal data denoised by SSD-CP and CoMs, the source localization results are not
as accurate as those of the other methods.

Figure shows the results obtained from the second interictal scenario by using
the six denoising algorithms for different SNRs. Figures [49(a), (b) and (c) show the
RRMSE at all electrodes, at channels T3 and FC5, respectively. Similar to the previous
scenario, the SSD-CP method does not denoise as well as the other methods. On a global
point of view (figure L9)(a)), all methods (except SSD-CP) perform almost the same for
SNRs equal to or higher than —10dB. But for lower SNRs, the ICA-based algorithms
surpass the other methods. The results at the electrodes T3 and FC5 show that, for
SNRs higher than —15dB, the GEVD and DSS methods denoise better the signal at
electrode T3 than the other algorithms, whereas ICA-based methods denoise better
the signal at channel FC5 than the other methods. For SNR=—20dB, the ICA-based
methods are better than GEVD and DSS for these two electrodes. Figures [L.9(d), (e)
and (f) show the Spike RRMSE at all electrodes, at channels T3 and FC5, respectively.
Although the results of SSD-CP in terms of RRMSE and local RRMSE are not suitable,
it has acceptable results in terms of Spike RRMSE and local Spike RRMSE, especially
for SNR values equal to or higher than —10dB. In terms of numerical complexity (figure
[19(g)), results are similar to the first scenario and the GEVD, DSS, SOBI, CoM,, SSD-
CP and JDICA denoising methods require from the least to greatest number of flops,
respectively.
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Figure L.9(h) shows the AUC obtained after source localization of signals denoised
by each method. As shown in this figure, for the SNRs of 0d B and 5dB, similar AUCs
are obtained. For —5dB and —10dB, the GEVD and DSS denoised signals give the
best AUCs, but for —20dB CoMs-denoised signals are better localized than the other
ones. In average for all SNRs, SOBI gives the lowest AUCs.

Figure 410 show the source localization ROC curves obtained after denoising in-
terictal signals with the six algorithms for different SNR values. According to these
results, for SNR values equal to or higher than 0dB, signals denoised with all algo-
rithms were accurately localized. For —15dB, —10dB and —5dB, acceptable results
were obtained by all algorithms. For SNR value of —20d B, none of the denoised signals
were accurately localized.

4.2.1.3 Scenario 3: two correlated epileptic patches

In the third interictal scenario, as in the second one, two patches are considered, the first
patch is located in the superior temporal gyrus and the second patch is in the inferior
frontal gyrus. However, in this scenario, these two patches have correlated activity.
Figure shows an example of simulated noise-free, noisy and denoised data of the
interictal scenario 3 with SNR= —15dB.

Similar to the second scenario, in the original noise-free data (figure L 11)(a)), elec-
trodes T3 and FC5 show clear spike-like activity. In the simulated noisy data (figure
[4IT(b)), the spike-like activity is completely hidden and a large noise is seen in the
other electrodes. By using all the six denoising methods, the spike activity at T3 and
FC5 is retrieved (figure[LITc-h)). Among the denoising methods, SSD-CP leaves much
greater noise on the denoised signals, especially at electrodes T3 and FC5. Regarding
the source localization results (bottom of each column of figure [L.11]), the two epileptic
sources are correctly localized in the left superior temporal and left inferior frontal re-
gions for the noise-free data. For the noisy data, two epileptic sources are localized in
the right frontal region. The interictal data denoised by all methods are almost truly
localized as far as the first patch is considered (temporal superior region). However the
second patch is poorly localized by all the algorithms.

Figure shows the results obtained with the third interictal scenario by using
the six denoising algorithms for different SNRs. Figures @.12a), (b) and (c) show the
RRMSE at all electrodes, at channels T3 and FC5, respectively. Similar to the previous
scenarios, the SSD-CP denoising method does not genearate suitable results in terms
of RRMSE and local RRMSE. On a global point of view (figure @12Ja)) as well as
on local results (figure I2(b,c)), GEVD and DSS surpass the ICA-based methods for
SNRs equal to or higher than —15dB. But for —20dB, the ICA-based methods give
better results. FiguresLI2(d), (e) and (f) show the spike RRMSE at all electrodes, at
channels T3 and at FC5, respectively. As shown in these figures, GEVD and DSS are
better than the other algorithms in terms of Spike RRMSE and local Spike RRMSE.
The numerical complexity results (figure .12(g)) are similar to the previous scenarios.

Figure[L.12(h) and figure LT3 respectively show the AUC obtained by each denoising
method and the source localization ROC curves corresponding to each algorithm. As
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Figure 4.8: An example (trial £2) of denoising procedure in the case of simulated interictal data of scenario 2 generated from the
activation of two patches with uncorrelated activities: (a) noise-free simulated EEG with interictal spike-like activity, (b) noisy
EEG after adding real muscle activity and background EEG with SNR= —10dB, (c-h) EEG denoised by the GEVD, DSS, JDICA,
SSD-CP, CoM, and SOBI methods, respectively. At the bottom of each column, the source localization results obtained from 4-
ExSo-MUSIC are illustrated for this trial. Dark brown: real patch; violet: correctly estimated part of the patch; orange: incorrectly
estimated part of the patch.
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Figure 4.9: Denoising results of the six methods in the case of interictal scenario 2 for
different SNR values between —20 and 5dB: (a) the RRMSE denoising error, (b) the
local RRMSE denoising error at channel T3, (c) the local RRMSE denoising error at
channel C5, (d) the RRMSE denoising error in spike interval, (e) the local RRMSE
denoising error at channel T3 in spike interval, (f) the local RRMSE denoising error at

channel C5 in spike interval, (g) number of flops and (h) AUC of the source localization
ROC curve.
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Figure 4.10: The source localization ROC curves of six denoising algorithms in the
case of the interictal scenario 2 for different SNR values of (a) —20dB, (b) —15dB, (c)
—10dB, (d) —5dB, (e) 0dB and (f) 5dB.
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shown in these figures, GEVD and DSS methods give the best source localization results
for almost all SNRs except for —20dB in which JDICA surpasses the other algorithms.
These results confirm the Spike RRMSE and local Spike RRMSE results shown in
figures [4.12(d), (e) and (f).

4.2.2 Ictal data

In this section, in addition to the proposed methods, we study the efficiency of the
CoM; and CCA methods, for the denoising of simulated ictal data. The CCA approach
has been shown to be the most efficient method to date for denoising ictal EEG signals
contaminated by muscular activity [De Clercq et al., 2006Hallez et al., 2009, Safieddine,
2012, Karfoul et al., 2015]. In the following tests, for CCA and CoMs, we use the time-
frequency plot of the extracted sources to choose the ictal sources. In each scenario, the
number of channels is 32, the number of samples is 10000 and the SNR values change
from —30dB to 0dB with a step of 5dB. Similar to the interictal tests, for the ICA
algorithms, we change the number of sources P in the range of {4, 8,12, 16, 20, 24, 28,32}
and in each trial of each scenario, we generate the results by choosing the value of P
yielding the best result.

4.2.2.1 Scenario 1: one epileptic patch

In the first ictal scenario, one patch in the left superior temporal gyrus is considered.
Figure shows an example of simulated noise-free, noisy and denoised data of the
first scenario with SNR= —20dB. Electrode T3 shows a fast ictal activity followed
by a slower rhythmic ictal activity on the original simulated data. Lower amplitude
ictal activities are also seen in F'7, FC5, CP5 and FT9. These activities are completely
hidden in the simulated noisy data.

As shown in figure £14|(c,d,h), TF-GEVD, TF-DSS and CCA can generate denoised
signals almost similar to the noise-free signals. Although the JDICA and CoMs methods
can retrieve a high amplitude activity at electrode T3, there is some differed ictal
activity on other channels. The SSD-CP algorithm can not properly denoise the data
of this example. Regarding the source localization results (bottom of each column
of figure [L.14)), the epileptic source is correctly localized in the left superior temporal
region for the noise-free data. For the noisy data, the epileptic source is incorrectly
localized in the right frontal region. The ictal data denoised by GEVD and DSS (figure
AT4(c,d)) are correctly localized in the left superior temporal region. By applying
the source localization method on the CCA denoised data, two epileptic patches are
obtained: a true one in the left superior temporal region and a false one in the left
anterior temporal region. JDICA and CoM,-denoised signals are not properly localized
(left central region) and the SSD-CP denoised data is also incorrectly localized in the
right hemisphere.

Figure shows the time course and time-frequency representations of the channel
T3 for the noise-free signal, noisy ictal data and signals denoised with the six denoising
methods. The ictal fast activity is clearly observable in the time-frequency represen-
tation of the noise-free signal(figure [£.15)(a)). This time-frequency signature is almost
invisible in the time-frequency representation of the noisy data (figure [£I5|(b)). Figures
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Figure 4.11: An example (trial 44) of denoising procedure in the case of simulated interictal data of scenario 3 generated from
the activation of two patches with correlated activities: (a) noise-free simulated EEG with interictal spike-like activity, (b) noisy
EEG after adding real muscle activity and background EEG with SNR= —15dB, (c-h) EEG denoised by the GEVD, DSS, JDICA,
SSD-CP, CoM; and SOBI methods, respectively. At the bottom of each column, the source localization results obtained from 4-
ExSo-MUSIC are illustrated for this trial. Dark brown: real patch; violet: correctly estimated part of the patch; orange: incorrectly
estimated part of the patch.
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Figure 4.12: Denoising results of the six methods in the case of interictal scenario 3 for
different SNR values between —20 and 5dB: (a) the RRMSE denoising error, (b) the
local RRMSE denoising error at channel T3, (c) the local RRMSE denoising error at
channel FC5, (d) the RRMSE denoising error in spike interval, (e) the local RRMSE
denoising error at channel T3 in spike interval, (f) the local RRMSE denoising error at
channel FC5 in spike interval, (g) number of flops and (h) AUC of the source localization
ROC curve.
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Figure 4.13: The source localization ROC curves of six denoising algorithms in the
case of the interictal scenario 3 for different SNR values of (a) —20dB, (b) —15dB, (c)
—10dB, (d) —5dB, (e) 0dB and (f) 5dB.
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[4I5)(c)-(h) show the time course and time-frequency representations for channel T3 of
the ictal signals denoised by the TF-GEVD, TF-DSS, JDICA, SSD-CP, CoM; and CCA
algorithms, respectively. As shown in these figures, the time-frequency signature of the
ictal activity appears in the signals denoised by all methods except by SSD-CP. It is
noteworthy that although the time course of signals denoised by JDICA and CoM, is
not visually similar to that of the noise-free signal, their time-frequency representations
show a signature of ictal activity in the beginning of the denoised signals.

Figure shows the results obtained from the first ictal scenario by using the six
denoising algorithms for different SNRs. Figures [4I6(a) and (b) show the RRMSE
at all electrodes and at channel T3, respectively. As illustrated in these figures, the
TF-GEVD and TF-DSS methods surpass the other methods for SNR values equal to or
lower than —10dB. For SNR values of —5dB and 0dB, JDICA give better results than
the other algorithms in terms of RRMSE, but local RRMSE at electrode T3 is not as
good as that from TF-GEVD and TF-DSS methods. Among the denoising algorithms,
SSD-CP gives the worst results almost for all SNRs.

In terms of numerical complexity (figure [L.16(c)), CCA and CoM, have the lowest
number of flops and the TF-GEVD and TF-DSS algorithms have low number of flops.
The SSD-CP and JDICA methods have the highest number of flops. Similar to interictal
scenarios, for CoM, and JDICA, the required flops greatly decrease for higher SNRs.
This is due to the fact that less sources are used to optimize the performance of the
CoM; and JDICA algorithms.

Figure L.16](d) and figure L. I7show the AUC and the source localization ROC curves
obtained by each denoising method, respectively. As shown in these figures, for high
SNRs (—10dB and higher) all methods give high AUCs except in the case of —10dB
with SSD-CP. For SNR values lower than —15dB, TF-GEVD and TF-DSS methods
give the best source localization results. After these two methods, the CCA method
precedes the ICA-based methods and SSD-CP in source localization of the first ictal
scenario.

4.2.2.2 Scenario 2: two uncorrelated epileptic patches

In the second ictal scenario, two patches are considered, first patch in the left superior
temporal gyrus and the second one in the left inferior frontal gyrus with uncorrelated
ictal activities. Figure[£.I8shows an example of simulated noise-free, noisy and denoised
data of the second scenario with SNR= —20dB.

As shown in[AI8(a), in the original noise-free data, electrodes T3 and F7 show high
amplitude ictal activities. Lower amplitude ictal activities are also seen in electrodes
FC5, CP5 and FT9. In the simulated noisy data, the signal of all channels is con-
taminated with high amplitude muscular noise (figure LI8(b)). A visual inspection
of figure [LI8(c-h) shows that the TF-GEVD and TF-DSS denoised signals are more
similar to the noise-free data than the signals denoised by other methods. Signals are
well denoised but the amplitude of ictal activities at T3 and F7 is smaller than that of
noise-free data. The CCA method can somewhat denoise data of channels T3 and F7,
but some small activities of non-interest are seen in the other electrodes such as C4.
The JDICA and CoM, algorithms show high amplitude ictal activities at electrodes F'7
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Figure 4.14: An example (trial §2) of denoising procedure in the case of simulated ictal data of scenario 1 generated from the
activation of one patch: (a) noise-free simulated EEG, (b) noisy EEG after adding real muscle activity and background EEG with
SNR= —20dB, (c-h) EEG denoised by the GEVD, DSS, JDICA, SSD-CP, CoM;, and CCA methods, respectively. At the bottom
of each column, the source localization results obtained from 4-ExSo-MUSIC are illustrated for this trial. Dark brown: real patch;
violet: correctly estimated part of the patch; orange: incorrectly estimated part of the patch.
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Figure 4.15: The time courses and time-frequency representations in the case of the
ictal scenario 1 at the channel T3 of: (a) the noise-free ictal EEG, (b) the noisy ictal

segment, (¢) TF-GEVD denoised, (d) TF-DSS denoised, (e) JDICA denoised EEGs.
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Figure 4.15: (cont.) The time courses and time-frequency representations in the case
of the ictal scenario 1 at the channel T3 of: (f) SSD-CP denoised, (g) CoMs denoised

and (h)

CCA denoised EEGs.
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| —©— TF-GEVD =——t— TF-DSS == JDICA ~—#— SSD-CP ' == COM, . =g~ CCA

Figure 4.16: Denoising results of the six methods in the case of ictal scenario 1 for
different SNR values of —30 to 0dB: (a) the RRMSE denoising error, (b) the local
RRMSE denoising error at channel T3, (¢) number of flops and (d) AUC of the source
localization ROC curve.
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Figure 4.17: The source localization ROC curves of six denoising algorithms in the case
of the ictal scenario 1 for different SNR values of (a) —30dB, (b) —25dB, (c) —20dB,
(d) —15dB, (e) —10dB, (f) 5 — dB and (g) 0dB.
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and T3, but high amplitude activities are also seen in other electrodes specially at F8.
The SSD-CP method can not denoise the ictal data of this example.

Figure shows the time course and time-frequency representations of the chan-
nel T3 for the noise-free signal, noisy ictal data and denoised signals by using the six
denoising methods. The ictal fast activity can be seen clearly in the beginning of the
time-frequency representation of the noise-free signal (figure [£19(a)), while this signa-
ture is almost invisible in the time-frequency representation of the noisy data (figure
[ATI9(b)). Figures LI9(c)-(h) show the time course and time-frequency representations
of the channel T3 of the ictal signals denoised by the TF-GEVD, TF-DSS, JDICA,
SSD-CP, CoM, and CCA algorithms, respectively. Similar to the previous scenario,
the time-frequency signature of the ictal activity appears in the signals denoised with
all methods except with SSD-CP. It is noteworthy that, although JDICA and CoM,; do
not show good time representation as shown in figure .18 the time-frequency repre-
sentation of the channel T3 of their denoised signals show a clear ictal activity.

Figure[d.20/shows the results obtained with the second ictal scenario by using the six
denoising algorithms for different SNRs. Figures[£.20(a), (b) and (c) show the RRMSE
at all electrodes, at channel T3 and at channel F7, respectively. In this scenario, the
TF-GEVD and TF-DSS methods surpass the other methods for all SNR values. After
TF-GEVD and TF-DSS, the CCA method gives better results than the ICA-based
algorithms and SSD-CP. For SNR values equal to or lower than —20dB, the local
RRMSE of the CCA method at channel T3 and F7 is equal to that of TF-GEVD and
TF-DSS.

The numerical complexity of the denoising methods in this scenario (figure £20](c)) is
almost similar to the first ictal scenario. The difference is that the numerical complexity
of TF-GEVD and TF-DSS increases for high SNR values and for some SNRs it is higher
than that of JDICA and SSD-CP.
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Figure 4.18: An example (trial §26) of denoising procedure in the case of simulated ictal data of scenario 2 generated from the
activation of two patches with uncorrelated activities: (a) noise-free simulated EEG, (b) noisy EEG after adding real muscle activity

and background EEG with SNR= —20dB, (c-h) EEG denoised by the GEVD, DSS, JDICA, SSD-CP, CoM; and CCA methods,
respectively.
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Figure 4.19: The time courses and time-frequency representations in the case of the
ictal scenario 2 at the channel T3 of: (a) the noise-free ictal EEG, (b) the noisy ictal
segment, (¢) TF-GEVD denoised, (d) TF-DSS denoised, (e) JDICA denoised EEGs.
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Figure 4.19: (cont.) The time courses and time-frequency representations in the case
of the ictal scenario 2 at the channel T3 of: (f) SSD-CP denoised, (g) CoMs denoised
and (h) CCA denoised EEGs.
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Figure 4.20: Denoising results of the six methods in the case of ictal scenario 2 for
different SNR values between —30 and 0dB: (a) the RRMSE denoising error, (b) the
local RRMSE denoising error at channel T3, (c) the local RRMSE denoising error at
channel F7 and (d) number of flops.

4.2.2.3 Scenario 3: two correlated epileptic patches

In the third ictal scenario, similar to the ictal scenario 2, two patches are considered, first
patch in the left superior temporal gyrus and the second one in the left inferior frontal
gyrus. In this scenario the patches are considered to have correlated ictal activities.
Figure shows an example of simulated noise-free, noisy and denoised data of the
second scenario with SNR= —15dB.

As shown in[4.2](a), in the original noise-free data, electrodes T3 and F7 show ictal
activities, but this activity is contaminated with high amplitude muscular noise in the
simulated noisy data (figure L.2Ti(b)). A visual inspection of figure L.2T](c-h) shows that
TF-GEVD, TF-DSS, JDICA, CoM, and CCA can somewhat extract the ictal activity
at channels T3 and F7. Among these methods, TF-DSS and CCA highly decrease the
amplitude of signal at channels F7 and T3, respectively. The SSD-CP method can not
denoise the ictal data of this example.

Figure shows the time course and time-frequency representations of the channel
T3 for the noise-free signal, noisy ictal data and denoised signals by using the six
denoising methods. The ictal fast activity can be seen clearly in the middle times
(10 sec to 20 sec) of the time-frequency representation of the noise-free signal (figure
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[422(a)) and the denoised signals by using TF-GEVD, TF-DSS, JDICA, CoM, and
CCA (figure £.22)(c-e,g-h)) while this signature is almost invisible in the time-frequency
representation of the noisy data (figure £I9(b)) and of the SSD-CP denoised one (figure

Figure 423 shows the results obtained with the third ictal scenario by using the six
denoising algorithms for different SNRs. Figures[£.23(a), (b) and (c¢) show the RRMSE
at all electrodes, at channel T3 and at channel F7, respectively. In this scenario, the
CoM; algorithm surpass the other methods almost for all SNR values. After CoM,,
the TF-GEVD, JDICA and CCA methods give better results than the TF-DSS and
SSD-CP algorithms. For some SNR values, the results of TF-GEVD, JDICA and CCA
are as good as those of CoMs.

The numerical complexity of the denoising methods in this scenario (figure £.23|(c))
is almost identical to the second ictal scenario.

4.3 Real data

In this section, we evaluate the denoising methods in the case of real data with both
interictal and ictal activity.

4.3.1 Interictal data

In this section, the four proposed methods and two ICA algorithms, CoMs and SOBI,
are applied to denoise interictal spikes obtained from a patient suffering from drug-
resistant partial epilepsy as explained earlier in section B2l Figure [£24(a) and (b)
show two epochs of the real interictal data, one epoch containing clean spikes and
one epoch including spikes partially hidden in muscle activity, respectively. The same
procedure as for simulated data was applied to the noisy real EEG epoch to reconstruct
the denoised EEG signals by using the six denoising algorithms as shown in figure [£.24c-
h). Since we do not know the ground truth to evaluate qualitatively the performance
of the six methods, a source localization process was performed on the original clean
signal (considered as a reference), on the noisy data, as well as on the data denoised
by GEVD, DSS, JDICA, SSD-CP, CoM; and SOBI. As shown in figure [£24f(c-h), the
interictal spikes are visible at electrodes F8, T4, FC6 and FT10 in the denoised data
whereas they are partially hidden in the noisy data. It seems that among the denoising
algorithms, SSD-CP leaves more muscular activity at all electrodes. Regarding the
source localization results (bottom of each column of figure L.24]), the spike sources are
localized in the right anterior temporal region for the clean epoch. For the noisy epoch,
the spike source is not in agreement with the source obtained from clean data since it
is localized in the right inferior frontal region. The interictal data denoised by JDICA,
SSD-CP and CoM, are localized in the right temporal neocortex which is concordant
with the source localization obtained from the clean epoch. The interictal data denoised
by GEVD, DSS and SOBI are localized in the right temporal neocortex but also in the
right insula. These results can indicate that JDICA, SSD-CP and CoM, denoise this
example of real interictal data better than GEVD, DSS and SOBI.
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Figure 4.22: The time courses and time-frequency representations in the case of the
ictal scenario 3 at the channel T3 of: (a) the noise-free ictal EEG, (b) the noisy ictal
segment, (¢) TF-GEVD denoised, (d) TF-DSS denoised, (e) JDICA denoised EEGs.



4.3. Real data 133

SSD-CP denoised

T T AL A T AT i i

il w‘“uIl'"q“‘nh Ll Mg 1 il [ g \

Ay e LA L WE N ) . "y I
B A ‘

| ”‘”JW”WI‘llllln‘mm\"“‘ TN I“l:\h (i) "“ r ‘"”'””‘h ",{'w TIA \\;“I|‘|||“ NI “”,;‘\1“““““”
| o i ; "
iy ! il

Wiy
i

uum‘.‘ ) ‘“m!'

(£) 0 5 10 15 Time(sec) 20 25 30 35

CoMZ denoised

il i gt g
T

i iy,

(g) 0 5 10 15 Time (sec) 20 25 30 35

CCA denoised

I i Ml .
(O i 1w‘‘:‘"wm.,v‘l\wMm\'::‘ll'!'mn“’"""“'“:knn“’“\"snl‘"" i

il i

Freq. (Hz)

(h) 0 5 10 15 Time (sec) 20 25 30 35

Figure 4.22: (cont.) The time courses and time-frequency representations in the case
of the ictal scenario 3 at the channel T3 of: (f) SSD-CP denoised, (g) CoMy denoised
and (h) CCA denoised EEGs.
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Figure 4.23: Denoising results of the six methods in the case of ictal scenario 3 for
different SNR values between —30 and 0dB: (a) the RRMSE denoising error, (b) the
local RRMSE denoising error at channel T3, (c) the local RRMSE denoising error at

channel F7 and (d) number of flops.
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4.3.2 Ictal data

In this section, the denoising algorithms are tested on real ictal data recorded from
a 23 years old patient as explained in section 3.2l These data were collected from a
long-term video-EEG recording (32 electrodes, 256 Hz, BP [0.3-100] Hz) during which
several ictal signals could be recorded. One of these segments is a low noise ictal EEG
with very little muscle activity, that can be used as a reference signal. We apply our
proposed algorithms on the signal acquired during a second seizure that was highly
contaminated with muscle activity. Six channels of both the low noise and the noisy
ictal signal are shown in figure 25](a) and figure 25](b), respectively. As shown in
figure L.25](a), the ictal activity of channel C3 can be segmented to three parts: 1)
rhythmic spikes (red box), 2) fast activity (green box) and 3) slower irregular activity
(blue box). During the second seizure these activities, except the first rhythmic spikes,
are covered with muscular activity as shown in figure [£.25(b).

Figures[.26](a) and [L26](b) show the time course and time-frequency representations
of the channel C3 for the noise-free and noisy ictal signals. The ictal fast activity is high-
lighted in the time-frequency representation of the noise-free segment (figure [£.26{(a)).
This time-frequency signature is almost invisible in the time-frequency representation
of the noisy ictal discharge (figure L26](b)). Figures 26| c-g) show the time course and
time-frequency representations for channel C3 of the second ictal signal, after denoising
by TF-GEVD, TF-DSS, CCA, CoM; and JDICA, respectively. As shown in these fig-
ures, the time-frequency signature of the ictal activity appears in the denoised signals.
The time course of the denoised signals are cleaner than the noisy data, showing three
ictal patterns similar to what had previously been identified during the first noise-free
seizure. Qualitatively, it is noteworthy that although all methods provide fairly good
denoising, the best result is obtained with TF-DSS, which could retrieved the fast ac-
tivity with the highest amplitude. CCA and TF-GEVD gave similar results for the fast
activity, but with TF-GEVD some of the rhythmic activity has been removed by the
denoising procedure. JDICA and CoM, can retrieve part of the fast activity but leaves
a large amount of muscle activity. Since SSD-CP can not generate acceptable results
in this real example, we do not show its results.

4.4 Summary

In this chapter, we studied the performance of the proposed methods. To this end, we
first examined the proposed SSD-CP algorithm in some common scenarios in the context
of CP decomposition. Then, we studied the performance of the proposed methods to
denoise both simulated and real epileptic EEG data with interictal or ictal activity
contaminated with muscular activity. The results of this section were presented in four
parts: i) simulated interictal data, ii) simulated ictal data, iii) real interictal data and
iv) real ictal data. In the next chapter, we will discuss the results given in this chapter
and make a conclusion. We then present some ideas for future work.
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Figure 4.25: A real EEG recorded from an epileptic patient during two separate ictal
periods: (a) an almost noise-free ictal EEG. The channel C3 shows ictal activity consists
of three parts: 1) rhythmic spikes (red box), 2) fast activity (green box) and 3) slower
irregular activity (blue box). (b) another ictal EEG contaminated by muscle activity.
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Figure 4.26: The time courses and time-frequency representations at the channel C3 of:
(a) the noise-free ictal EEG, (b) the noisy ictal segment, (¢) TF-GEVD denoised, (d)
TF-DSS denoised, (e¢) CCA denoised, (f) CoM; denoised, (g) JDICA denoised EEGs.

Ictal fast activity is shown in the white circle on the time-frequency representation.



Chapter 5

Discussion, Conclusion and
Perspectives

In this thesis, we proposed several methods to denoise interictal and ictal EEG signals.
These methods include GEVD and DSS methods to denoise interictal data, TF-GEVD
and TF-DSS to denoise ictal data and JDICA and SSD-CP to denoise both interictal
and ictal signals. We evaluated these methods using both simulated and real epileptic
EEG data with interictal or ictal activity contaminated with muscular activity. In this
chapter, we first discuss the results given in chapter @ and make a conclusion. We then
present some ideas for future work.

5.1 Discussion and Conclusion

5.1.1 SSD-CP and numerical experiments

In chapter [, we first examined the proposed SSD-CP algorithm in some common sce-
narios in the context of CP decomposition. Experimental results showed the efficiency of
the proposed method in solving some well-known numerical problems, especially cases
of arrays with swamp and bottleneck degeneracies. In contrast with other CP algo-
rithms, the proposed SSD-CP algorithm converged in all these experiments and showed
a faster convergence. In another study with real Amino acids fluorescence data, we
showed that the proposed SSD-CP method is robust with respect to the overestimation
of the rank of the array.

5.1.2 Simulated interictal data

In the second part of our study, we examined the efficiency of the proposed methods
for denoising of simulated interictal data with three different scenarios. To this end, we
compared the algorithms in terms of RRMSE, local RRMSE, Spike RRMSE and local
Spike RRMSE. In terms of RRMSE and local RRMSE, GEVD, DSS, JDICA, CoM,
and SOBI surpass SSD-CP in denoising interictal data in all three scenarios. For the
scenarios 1 and 3, with one source and with two correlated sources, respectively, the
GEVD and DSS methods are slightly better than the other methods for high SNRs
(—10dB and higher). However, in the case of low SNRs (—20dB), JDICA, CoM, and
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SOBI denoise better than GEVD and DSS. For scenario 2 with two uncorrelated sources,
for SNRs equal to and higher than —10dB, all methods except SSD-CP produce similar
results. But for low SNRs, GEVD and DSS do not work well. Although the results
of SSD-CP in terms of RRMSE and local RRMSE are not suitable, it has acceptable
results in terms of Spike RRMSE and local Spike RRMSE, especially for SNR values
equal to or higher than —10dB. For the scenario 1, the Spike RRMSE of SSD-CP is
similar to or lower than other methods for SNR values higher than —20dB. In this
scenario, GEVD, DSS and SSD-CP denoise signals in the intervals around spikes better
than the other methods. For scenarios 2 and 3, the Spike RRMSE and local Spike
RRMSE of SSD-CP is comparable with other methods. For scenario 3, GEVD and
DSS are better than the other algorithms in terms of Spike RRMSE and local Spike
RRMSE.

The first noticeable observation from this set of experiments is the difference between
the results of SSD-CP in terms of RRMSE and Spike RRMSE. In terms of RRMSE
and local RRMSE, the SSD-CP method can not denoise signals as well as the other
methods. But in terms of Spike RRMSE and local Spike RRMSE, it has acceptable
results. Even in some cases, the Spike RRMSE of SSD-CP is lower than other methods.
It shows that SSD-CP can denoise signals in the intervals around spikes. Therefore,
the extracted spikes from the SSD-CP denoised signals have true amplitude and shape
which is an important factor for the source localization methods.

Another remark that should be considered is the stage where spike detection is used
in the denoising method. For the GEVD and DSS methods, the first step is spike de-
tection and the second one is subspace decomposition. But for SSD-CP, JDICA, CoM,
and SOBI, spike detection is used after source extraction to identify sources of interest.
It is clear that for the first group of denoising methods, spike detection is applied on
raw data which is more noisy in comparison with the second group. Consequently, for
low SNRs (—15dB and lower) spike detection method does not appropriately detect
interictal spikes and the performance of GEVD and DSS significantly decreases. We
verified this claim by using the manually exacted time support of spikes involved in each
epileptic source in the GEVD and DSS methods, and we observed that the performance
of these methods considerably increases by using this information.

We also compared the denoising methods in terms of source localization results.
The results show that the source localization results are highly correlated with Spike
RRMSE and local Spike RRMSE results (and not with RRMSE and local RRMSE
ones). In particular, although there exists a significant difference between RRMSE
of SSD-CP and that of the others, this difference is smaller in the source localization
results, especially for higher SNRs. In some cases, the signals denoised by SSD-CP are
even better localized than those denoised by the other methods. Although SSD-CP
can not denoise the whole interval of interictal data as well as the other methods, it
can better denoise the signals around spikes. In other words, the denoising procedure
performed by means of SSD-CP preserves better the topography of brain electrical
sources than the other methods. Such a property is crucial for some applications such
as the identification of the epileptic region from interictal EEG data.

We also studied the denoising methods based on their numerical complexity. The
results illustrate that the GEVD and DSS algorithms have the lowest number of flops.
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Among the other methods, JDICA is the most time-consuming. However it provides
the best compromise between other deflationary ICA algorithms when the number of
channel is low. This comes from the fact that the complexity of JDICA is O(P*) where
P is the number of all independent sources or the dimension of space. We showed in
another study performed to denoise pediatric epileptic EEG signals with 12 electrodes,
that JDICA needs a fewer number of flops than the other deflationary algorithms.

We conclude from interictal simulation results that GEVD and DSS has the best
compromise between the proposed denoising methods and CoM;, and SOBI, especially
for SNRs higher than —15dB. For low SNRs (—15dB and —20dB), JDICA can be used
to give the best performance. SSD-CP can be used for high SNR values (—10dB and
higher) especially in the context of interictal source localization.

It should also be noted that all the above-mentioned results were obtained for 32
electrodes and that could be different with more or less sensors.

5.1.3 Simulated ictal data

In the third part of our study, we examined the efficiency of the proposed methods for
denoising of simulated ictal data with three different scenarios. The results obtained
for ictal data were not similar for all three scenarios. For scenario 1, with one epileptic
patch, the TF-GEVD and TF-DSS methods surpass the other methods for SNR values
equal to or lower than —10dB. For SNR values of —5dB and 0dB, JDICA give better
results than the other algorithms in terms of RRMSE, but local RRMSE at electrode T3
is not as good as that from TF-GEVD and TF-DSS methods. For the second scenario
with two uncorrelated sources, the TF-GEVD and TF-DSS methods surpass the other
methods for all SNR values. Similar results obtained by TF-GEVD and TF-DSS admit
the mathematical results presented in section Z1.44l After TF-GEVD and TF-DSS,
the CCA method gives better results than JDICA, CoM, and SSD-CP. For the third
scenario with two correlated patches, the CoM, algorithm surpass the other methods
almost for all SNR values. After CoM,, the TF-GEVD, JDICA and CCA methods
give better results than the TF-DSS and SSD-CP algorithms. In all these scenarios,
SSD-CP give the worst results almost in all cases.

For ictal scenarios, we observed that SSD-CP does not work well. Note that the
CP decomposition is based on the model of data, i.e. for the CP decomposition to
be correct, the array to be decomposed should fit the trilinear model in our context.
Although the third order array created from ictal data (see section 2:3.4)) ideally fit the
trilinear model, it diverges from this model when noise (including muscular activity)
increases. Consequently, the CP decomposition is not precise in the case of very noisy
data and the proposed SSD-CP based denoising method does not work as well as the
other methods for low SNR values. However, this does not disprove the quality of the
CP decomposition based methods in other contexts. Note that contrarily to our study,
in other CP decomposition based denoising or source localization studies, i) the CP
decomposition based approaches were compared in the context of source localization
of cleaned data and not with methods such as ICA-based approaches [Becker et al.,
2012 Phan et al., 2013alBecker et al., 2014a], or ii) the CP decomposition based methods
were tested with simulated non-realistic data which fit the trilinear model [De Vos et al.,
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2007], or iii) the CP decomposition based methods were studied with lower level of
noise [Deburchgraeve et al., 2009| or iv) different methods were used to produce higher
order arrays |[Becker et al., 2010, Becker et al., 2012].

In the proposed TF-GEVD and TF-DSS methods, we used the CCA approach to
extract the time-frequency information on ictal sources, because CCA has been shown
to be the most efficient method to date, to denoise ictal EEG signals contaminated
by muscular activity [De Clercq et al., 2006 Hallez et al., 2009, Safieddine, 2012} Kar-
foul et al., 2015]. However, we observed that in one of the scenarios (the third ictal
scenario with correlated sources), CoMy and JDICA outperforms CCA. Consequently,
we believe that a new framework based on a combination of JDICA (or CoMsy) with
TEF-GEVD/TF-DSS can be used to denoise ictal signals.

The source localization results were provided only for the first ictal scenario, because
for scenarios with two strongly correlated ictal sources, ExSo-MUSIC can not achieve
good results even for noise-free signals. The source localization results for the first
scenario are in agreement with denoising results, and the signals denoised by TF-GEVD
and TF-DSS were localized better than those of other methods especially for low SNRs
(—20dB and lower).

In terms of complexity, CCA and CoMs, have the lowest number of flops and the
TF-GEVD and TF-DSS algorithms have also a low number of flops. The SSD-CP and
JDICA methods have the highest number of flops. As also explained for interictal data,
JDICA can be used when there is a few number of channels.

In summary, for denoising ictal data, TF-GEVD and TF-DSS can be certainly used
for single or uncorrelated sources. For scenarios with correlated sources, we may use
the combination of JDICA or CoM; with the TF-GEVD/TF-DSS methods to achieve
good results.

5.1.4 Real interictal data

The results obtained by applying the proposed methods for denoising real interictal
data shows that all methods improve the signal and greatly remove the noise. However,
comparing the source localization results with that of a noise-free epoch indicates that
JDICA, SSD-CP and CoM; denoise the provided real interictal data better than GEVD,
DSS and SOBI. Since with visual inspection, the time course of all denoised signals are
almost similar, the reason behind the difference between source localization results is
that the mixing matrix of the epileptic sources is better estimated by some methods
and small errors of the estimated mixing matrix lead to high source localization errors.
Another remark that should be noticed is the good source localization result of SSD-
CP which is in agreement with the source localization results obtained from simulated
signals denoised with SSD-CP for high SNRs (see section (.1.2]).

5.1.5 Real ictal data

The results obtained by applying the proposed methods for denoising real ictal data
shows that the time course of all denoised signals are cleaner than the noisy data, except
for SSD-CP. It is noteworthy that although all methods provide fairly good denoising,
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the best result is obtained with TF-DSS, which could retrieve the fast activity with
the highest amplitude. CCA and TF-GEVD gave similar results for the fast activity,
but with TF-GEVD some of the rhythmic activity has been removed by the denoising
procedure. JDICA and CoM, can retrieve part of the fast activity but leave a large
amount of muscle activity. These results are in agreement with the results obtained by
simulated ictal EEGs with one epileptic source.

5.2 Future work

As a future work, we can study the clinical usage of the proposed methods on a large
number of cases, both for the interictal and ictal data. We can also study more com-
plicated scenarios with a higher number of epileptic patches with different locations
and different correlation states. Moreover, in this thesis, we had to limit the number
of channels to 32 for simulations, since the real muscle activity added to the simulated
data were obtained from 32 recording channels. Using an advanced EEG recording
system with large number of channels will allow us to consider simulated and real data
acquired from 256 channels.

As another extension to this work, we can improve the spike detection and spike
clustering methods to be able to safely use them in the GEVD and DSS-based methods
for denoising interictal data with low SNRs. Moreover, to identify ictal sources by using
their time-frequency plot, we can automate this procedure as we did for interictal data.
We can also propose sparse denoising methods taking into account the sparsity of the
ictal data in a transformed domain. For ictal scenarios with correlated sources, we
can also use the combination of JDICA or CoMy with TF-GEVD/TF-DSS methods to
achieve better results.

Moreover, to obtain better results for SSD-CP, we can test other ways of producing
higher order arrays. For example, we can use other time-frequency transforms instead
of wavelet. Another idea is to test the use of another way of building the HO array
as proposed in [Becker et al., 2012|, which consists in computing a spatial short time
Fourier transform, since it appeared to give better results provided that we have a
sufficient number of sensors (at least 64). We can also test other tensor models, less
restrictive than the CP model.
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Appendix A

Deriving the DSS framework from the
EM algorithm

In this chapter, first the EM algorithm is presented and then the detailed procedure
for deriving the DSS framework from the EM algorithm is explained by using the
explanations in [Belouchrani and Cardoso, 1995, Bermond and Cardoso, 1999] Sarela
and Valpola, 2005].

Based on the N observations of the model &[n| = G7[n|+[n|, the problem consists
in estimating (i) the mixing matrix G and (ii) some parameters corresponding to the
distribution of the sources. The unknown parameters are denoted by @ as follows:

6= (G.n) (A1)

where n represents some parameters corresponding to the distribution of the source
vectors. For convenience we denote:

r[2],...,7[N], ReR™¥V (A.2)
= [z[1], z[2],...,x[N]], X e RPN (A.3)

The likelihood of the observation matrix X is given by:
RP/ XN

L(X;9)=p(X;9)=/RP/XNp(X,R; 0)dR= p(X|R;0)p(R;0)dR  (A.4)

where p(X, R;0) denotes the joint probability of X and R, and p(X|R;@) is the
conditional probability of X given a particular R and p(R; 0) is the a priori probability
of R. The maximum likelihood estimate @ of @ is given by:

6 = arg max L(X:0) (A.5)
We can define the log-likelihood of the observations as follows:

£(0) = /]RPIXNlogp(X R.0)dR — Z/ log p(x[n], r[n]: O)drin]  (A.6)
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The last equality is caused from the fact that the sources and therefore the observations
are i.i.d. To find the maximum likelihood estimate 6, all partial derivatives of L£(8)
should be equal to zero. Therefore we have:

=0 (A7)

where 6; represents the j-th element of 8. The equation (A7) does not have a closed
form solution. So, a gradient-based algorithm is a common method to maximize the log-
likelihood (A.6)). However, since the cost of computing the gradient of the log-likelihood
is very high (in each step, we should run a Monte-Carlo simulation to estimate the
probabilities), using a gradient-based method is not advisable. An efficient solution is
to use an iterative EM-like algorithm. In this algorithm, in each step, the parameters
are re-estimated in such a way that a monotonic increase in the likelihood is guaranteed.
Instead of maximizing (A.4), the likelihood is maximized via the maximization of an
auxiliary function, called Q(0, 8’), related to the Kullback-Leibler information measure,
which is a function of the current parameters 8’ and the new parameters 6 as follows:

Q6.0)= [ (X Ri6)logp(X. RiO)iR (A8)
RP/ XN
The key property of the auxiliary function Q(6,0") is
Q(0,0) > QO,0') = L(6) > L(O) (A.9)
which follows that a sequence 0" of parameters iteratively computed as:
0" = arg max (6, 0) (A.10)

produces a monotonic increase in the likelihood. Under the assumption of independence
at different time lags, the partial derivative of the function (A.g)) is given by:

o (0.0 Z /}R p 0')8%logp(a:[n]|r[n];0)dr[n]

= ZEqmn 10gp( [n]|7[n]; 0)] (A.11)

where ¢(r[n]) = p(r[n]|z[n]; ") is the posterior distribution of the sources and 6; cor-
responds to the elements of @ related to the mixing matrix G' and the noise covariance
C,. Since the distribution of noise is assumed to be Gaussian (v[n] ~ N (0,C,)), the
posterior distribution of x[n| is Gaussian too:

log p(@[n]|7[n); 0) = —~([n] - Gr[n]) C, (@[n] - Gr[n]) - %bg!?ﬂCu\ (A12)

Therefore, by calculating the partial derivatives of (A.12) with respect to G and C,,
it is proved that the equations %(0, 0') = 0 (for all ;s related to the mixing matrix
J
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G and the noise covariance C,) admit for the model under consideration a unique
closed-form solution as follows:

G+ = ¢l (A.13)
cH) @ _ 6(i)6(i)—16(i)T
where Cp = % 25:1 m[n]az[n]T, and C,, and C,, are the time average of the non-
stationary covariance matrices computed as expectations over ¢(r):

Cor =y éw[nmm Wl Ce=g éEWD rinlrlnl’ | (A1)

By using (A.T5)), the EM algorithm to estimate the mixing matrix G = [gy, . .., gp/]
has two steps that are computed alternatively. These two steps are represented as
follows:

E — step: Yn, Compute q(r[n]) = p(r[n]|x[n]; 0D) (A.16)

1

N
M — step: Find GOV =arg mCE}XZEq(T[nD log p(x[n]|r[n]; 0)] = 62652_ (A.17)
n=1

As shown above, in the E-step, the posterior distribution ¢(r[n]) of the sources is
calculated based on the known observations and current estimate of the mixing matrix
(more accurately the current estimate of 8). In the M-step, the mixing matrix is fitted
to the new source estimates.

Since the sources are assumed to be independent, the prior p(r[n]) and the likelihood
p(x[n]|r[n]; @) can be factorized [Sarela and Valpola, 2005]. Therefore, the sources are
independent in the posterior ¢(r[n]) and it can be proved that the covariance matrix C,.,.

is diagonal. Consequently, in the M-step, C,.,. reduces to scaling of individual sources.
According to the aforementioned information, since in the M-step we need to calculate
only Cg,, the E-step can be reduced to calculate an expectation of r[n] over g(r[n]).
On the other hand, since ¢(7[n]) depends on the observation only through G~'x[n], the
expectation Eqp.p[r[n]] can be interpreted as a function of G™'x[n] = G x[n] denoted

by f. So, the EM algorithm can be simplified as follows:

E — step : Vn, Compute Eqnp)[r[n]] = F(GD x[n))
M — step : G = 65,)“652_1 (A.18)

Generally, in the E-step, the expectation can be computed exactly in some limited
cases, e.g. when the source distributions are mixtures of Gaussian. In other cases the
expectation can be approximated or can be computed by the Monte-Carlo estimation.
In M-step, as mentioned before, 6;,1 reduces to scaling of individual sources.

Using algorithm (A.18)), the algorithm for extracting the sources one-by-one will be

as follows. In this algorithm, rl(f) [n] and wg) represent the p-th source and its corre-

sponding mixing vector in the i-th iteration, respectively. Since G~ = GT, the matrix
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containing all estimated mixing vectors, W = [w,...,wp/| = G, is the estimated
mixing matrix.

Initialize the mixing vector w](oo)

Loop
1) E — step :
Computing the expectation of rz(f) [n] over q(r) :
i )T
k, i 0] = Egry i lrp[n]] = f(w}) 2[n]) (A.19)
2) M — step :
a) Calculating the new ML estimate of 'wj(j)
N
wz(;)Jr = Z w[n]r}f”[n] (A.20)
n=1
Uép+

(A.21)

b) Normalizing the mizing vector : wy™") =

Until convergence

For explaining the relationship of the above-mentioned algorithm with (A.18]), we can
say that the steps (1) and (2-a) can be combined to the following equation:

N N
1 1 1 (%
=> a7 n] = @)y [rl 0] = N5 Zw Eqtrinp [ [0]])
n=1 n=1 n=1

(A.22)

where + Zn L 2[N] B[ ()[ ]] represents one column of the covariance matrix 652,
In addltlon the normalization in step (2-b) expresses the inversion of the covariance

matrix 652 in M-step.
Finally, since the noisy estimate of the p-th source in the i-th iteration can be

computed by T]()i)[ | = wg) @[n] which is the mode of likelihood, the E-step may be

reinterpreted in two steps and the DSS algorithm is obtained as follows:
1)E — step :
a) Calculating the noisy estimate of one source : Yk, 7“ D[n] = wz(;)Ta:[n] (A.23)

b)
) M

Denoising based on the a priori in formation : Vk, 7“ Dn) = f(rPn])  (A.24)

2 — step :
a) Calculating the new ML estimate of wfj)
N
wg')+ _ Z a:[n]rz(oi)-i-[n] (A.25)
n=1
W
b) Normalizing the mizing vector : 'w(”l) —2 (A.26)

Until convergence
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The wavelet-based spike peak
detection algorithm

In this chapter, the wavelet-based spike peak detection algorithm based on the method
proposed in [Senhadji et al., 1995|/Senhadji et al., 1997] is given in detail. According
to the definition of the Continuous Wavelet Transform (CWT), the coefficients of the
wavelet transform of the observed signal from m-th channel, denoted by {z,,[n]}, with
the mother wavelet ¢ (¢) are defined as follows:

DIY =L wln]us ] (B.1)
Yap(t) € PX(R), Yualn] = Z=(252),0 £ 0,b € R (B.2)

In this algorithm, complex Morlet wavelet is used as follows:
Y(t) = O(1 + cos 27 fot)e* ™ot |¢| <or ﬁ ¢ {-1,0,1} (B.3)

where ¢ sets up the number of oscillations of the complex part, fy is the normalized
frequency and C' is a normalization coefficient (||t = 1) [Senhadji et al., 1995].

)

In the first stage, S, by using the wavelet coefficients D(% in the m-th channel, we

calculate the measure T\™ for each time sample n and compare it with the decision
threshold A{™ as follows:

Z a;| DI 2 > 2™ (B.4)

where parameters I and a;s are chosen such that the coefficients ng% approximately

cover the bandwidth of the spikes. Consequently, at the output of the stage S;, the
transient signals are enhanced when compared to the background activity without any
distinction between interictal spikes and muscular activity [Senhadji et al., 1995]. On
the other hand, the experiments show that for a muscular artifact, compared with a
spike, the squared modulus increases for high resolution scales [Senhadji et al., 1995].
This remark gives the idea to build a decision parameter G which is calculated as the
mean gravity center of the abscissa aii’s weighted by |D((lmT)L 2 on the detection interval
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around each sample point. Therefore, in the stage Sy, the measure G is calculated
in the m-th channel as follows [Senhadji et al., 1995|:

o) I 1y pmp:
Gm — —272;;_1’ ? where gjm) = ZZ:I(“Z’” az;| (B.5)

I (m)
Zi:l |Dai,j

to separate the interictal spikes from muscular activity. Experimentally, this qjuantity
takes distinct values in the presence of an artifact or a spike. By comparing G%m with a
threshold )\ém), the stage Sy separates the useful signals from artifacts [Senhadji et al.,
1995]. In [Senhadji et al., 1995|, a practical method to choose the adaptive thresholds

A and M™ was proposed.




Appendix C

Values of coefficients in the JDICA
algorithm
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P'—1 P'—1
_ (1-))\3 (1-)\2 ,(1-)
dOl - 4 Z <OP,7i17i17i1,$(g’i1 ) + 3 Z OP,,il,il,i%m(gil ) g’ig
i3 =1 ig =1
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ig # i1
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ig Ak i3 #p

p'-1 P-1 P-1 P-1

do="Y D DY Cunigives 95 a5 gl (1)

ip =1 ig =1 i3 =1 ig =1
i1#p d2FPp izFp a4 AP

where C; j ¢z denoted the (7,7, k, )-th average FO cumulant of the process {&[n]}.

eo = dii(gp ) = din(g5 ) + dus(gp )" — dar (g5 )" + (2daz — 4doa) gy~ (95 )°+
(3dsy — 3di3) (g5 ) (g )? + (2dao — 2do2) gl g + (ddag — 2d2) (g5 ) g

e = (2d02 — ngo)(g;i))Q + (2d20 — 2d02)(g}17))2 + (2d22 — 4d04)(g}17))4+
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+ (12dos — 12dos + 12d40) (95 ) (g5 )* — 4di1gl " gip”
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(12d22 — 12d04 — 12d4o)(g;1_))2(g§31,_))2 - 4dng;_)g}l./_)

ey = dn(gz(;l*))Q + d13(9;;17))4 - d11(g§317))2 —da3; (93317))4 + (4dos — 2d22)(91(917))39g7)+
(2das — 4da0) s (9 ") 4+ (Bdsy — 3di3) (g5 ) (g ") + (2do2 — 2d20)g) g5

fo= dlogﬁif) - do1gélf) + d12(g§317))3 - d21(g](917))3 + (2dg; — 3d03)91(917)(9;317))2+
(3dso — 2d12) (g5 )95,

fi = (2d12 — 3d30) (95" )® + (2d21 — 3dos)(gp ") + (6dog — Tda1)(g8 ) gl '+
(6dso — Td12)g (g )? — diog ™ — dorgip”

fo = digp” — dog) ™ + (2dy — 3d03)(9;;17))3 + (3dzo — 2d12) (g5 )+
(6doz — Tda1) gl (g ')? + (Tdaa — 6ds0) (g5 ) g5

fs = (2d1a — 3d30) g5 (g ") — drogl ) — dia(g8 ) + (2da1 — 3dos) (g5 ) g —
d21(9$7))3 - dmg;f)



Appendix D

Values of coefficients in the SSD-CP
algorithm

To calculate the values of coefficients in the SSD-CP algorithm, first we define the values
v1 to V19, u1 to usz and wy to ws as a functions of elements of matrices Y(T), 1<r<R
as follows:

er, ZY;’;pz, prY;;, ZY;’;Y&

R
(r)y/(r)* _ _ (r)* _ (r))?
Us = ZY qu o U = _ZY qu ) US_ZD/(LP‘
r=1 r=1 r=1

R
T r)* _ T 2
Yo = Z Yq(,p)yq(q) S Yq(7q)|
r=1 r=1
R q-1 9 R q-1 . R q-1 9
CEDID I FUNCED DD DR AR MNTED DD DRI
r=1 k=p+1 r=1 k=p+1 r=1 k=p+1
R g-1 5 R g-1 . R gqg-1 5
CEDIDINFURTED DD IRFLSRTED DD DRI (D.1)
r=1 k=p+1 r=1 k=p+1 r=1 k=p+1

bo = i(vE — vy — ug + wy) (D.2)
by = —i2v7
by = i(v; — vg — Ug + wo)

by = —2v1 + 4vg + 4Re(vy) — 2010 + 2uz — 2uy + 2wz — 2w,
by = 2v; — 4Re(vy) — 4dvg + 2010 + 2uz — 2uy + 2wz — 2w,

Co = b%, C1 = —4b;b8 (D3)
Cy = 2‘()1‘2 — 8Re(bgb8), C3 = CT, Cy = CS
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to = 2ib5bI%05% — 2ibobt* — 2ib205 + bybiPhy,
ty = —4ibyby® + 4ibsbt — 4ibybiPhs + bobsbl® 4 2ibybPbh + bybibs® + 12ibobib} b
— 3bsbybiby?
ty = Sibybly" + 10ib2b3bT> — 16iboby by 4 Gibab; by — 6ibibobt® 4 4ibabiybs® + 4ibebybs?
— Giby by — 2ibybybib? — 3babsbibi® + 3bobabiby® + 3b1bsbi by — Gbobsbibiby
ty = Sib2by® + 4ib3bt? — 1200205057 — 2006203705 + 6ib2b; 205 4 20ibyboby® + bybab?
+ 3bybobsb}” + 4ibybobisby® — 14ibybybiby® — 6ibybobiby? — 3bybsbibi” + 3b2bybib;
+ 4ibyb2b® — 302bsbibt — Gbobobsbiby 4 12ibybobiybiby
ty =13, ty = t5, te = t, tr =t (D.4)

s0 = —2ibob}® — 2ibb5* + babi by + 2ibibi by
51 = babi® 4 bobsbt® — 4ibobibi® + 2ibybi2by — bbb + Sibbibiby
s9 = —4ibib5® — 4ibibob? — babsbiy® + 3bobabi® + GibAVb: + 6ib2bTY — 4ibybobi by,
— 200bsbisb + 2b,bsbib;
S3 = S5, Sy = 87, S5 = S, (D.5)

Finally, we can calculate the coefficients A, (0 < ¢ < 14) according to the predefined
parameters:

min (7,0) min (5,0) min (5,0—1)

A= Z trto—k — Z Z 5i8;Co—i—j

k=max (0,6—7) i=max (0,/—9) j=max (0,—9,0—i—4)
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