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Introduction

N

emerging technologies hold the promise to replace or complement CMOS transistors as building block for computing. However, a crucial setback for applications using nanodevices is that the latter are particularly sensitive to noise and thus exhibit stochastic behaviors. A disruptive solution is to take inspiration from the brain in order to use these stochastic devices. Indeed the brain operates in a noisy environment and is able to perform computing at low power even though its components are stochastic.

In this thesis we introduce techniques that allow to harness randomness and explain why a specific stochastic nanodevice -the superparamagnetic tunnel junction -is a promising building block for bio-inspired computing. We present the physics of this device and then propose two main paths to perform low-power computing with it. The first path is to use it as an oscillator for synchronization-based computing schemes. Therefore we investigate how to use noise to control the low-power synchronization of a superparamagnetic tunnel junction, as well as the synchronization of several coupled junctions. The second path is to draw in analogy between the superparamagnetic tunnel junction and a sensory neuron. Taking inspiration from neuroscience, we demonstrate that populations of junctions can perform learning and computing.

INTRODUCTION

W the rise of nanoelectronics, many novel technologies have emerged, holding the promise to replace or complement the traditional computing building block -the CMOS transistor [ , ].

These emerging technologies range from alternative transistors -such as carbon nanotubes -to devices exhibiting more complex functionalities -such as memristor which are nanoscale non-volatile multilevel memories. Nanoeletronic devices have been greeted by a strong interest from the scienti c communities and huge e forts are being made to develop them for computing applications, from academic to industrial levels.

However, at the nanoscale, noise signi cantly a fects the behavior of systems, inducing random uctuations. Various types of noise are involved: thermal noise, shot noise, excess noise due to boundaries e fects, etc. Furthermore, the fabrication processes of nanodevices lead to device-to-device variability, which increases as the size of the device is decreased. The fact that emerging technologies are subject to such errors and variability levels is a major setback for their use in conventional computing applications. Although methods aiming at reducing the impact of these errors exist, most of them are energetically hungry: error corrections codes, redundancy of the components, higher programming voltages... For example, magnetic random access memories are nanoscale non-volatile memories which are expected to replace current technologies in computers processors [ , ]. However, the write operation of magnetic random access memories is stochastic because of the thermal noise. For the write operation to be successful, one has to apply long programming voltage pulses, which consumes a lot of energy. It is thus natural to look for computing techniques which are intrinsically tolerant to noise, variability and errors, or even better, which take advantage of these.

Among the possible solutions, one paradigm has emerged as particularly promising and disruptive: taking inspiration from biology. Indeed, our brain is able to perform computations even though its environment is highly noisy and even though its components themselves -the neurons and the synapses -exhibit stochastic behavior [ ]. First, the stimuli received by the brain from the world are noisy: for example the photons arrive on a photodetector in the eye with Poisson statistics. Furthermore, the random motion of charge carriers inside brain cells and the stochastic opening of ion channels around these cells lead to probabilistic behaviors. The neurons communicate by emitting voltage spikes to each other but the time intervals between these spikes seem random. The synapses interconnect the neurons but their probability of failing to transmit a signal can be higher than % [ , ]. On top of these probabilistic e fects, the brain has to deal with high variability between components and cell death. Despite all these obstacles, our brain functions successfully and only consumes about W. Some neuroscience studies even suggest that this low power consumption is due to the fact that the brain has evolved to bene t from noise [ ].

In consequence, taking inspiration from the brain and adapt to nanodevices the methods it uses to tackle randomness is a promising path.

INTRODUCTION

implementations of the latter are thus energetically hungry. Mixing conventional electronic components with emerging technologies could allow performing such tasks at much lower energy cost.

T focus of this thesis is a speci c nanodevice, the magnetic tunnel junction. Because of its en- durance, reliability and CMOS compatibility, this bistable system has emerged as the agship device of spintronics [ ]. In particular, it is traditionally used as the unit cell of magnetic random access memories [ ]. However, maintaining the stability of this device while reducing its size is a challenge. Unstable magnetic tunnel junctions behave as stochastic oscillators and are called superparamagnetic tunnel junctions [ , ]. These devices are usually discarded because of their random dynamics. Yet, they have key advantages. First, their stochastic oscillations are fully powered by thermal noise and thus do not require any external energy input. Furthermore, as their stability is not at stake any longer, they can be shrunk to extreme dimensions. In this thesis, it is investigated for the rst time how to harness the random behavior of stochastic magnetic tunnel junctions and shown that -far from being useless -they could enable low power bio-inspired computing. An interdisciplinary approach is taken, by merging ideas from neuroscience and computing with the physics of our devices. Computational primitives are experimentally demonstrated on single devices. Based on these experiments, a theoretical model is developed and used to show how systems composed of many devices can perform computations.

The rst Chapter of this thesis -"Computing with noise and stochastic components", starts by a review of the scienti c phenomena and method which harness randomness. Most of these techniques have been known for long, but have never delivered their promises of leveraging noise for computing. Finding an appropriate stochastic system could nally unlock the potential of these methods. In consequence, various technologies, which intrinsic stochastic behaviors have been proposed for computing, are reviewed.

The Chapter ends by a focus on spintronics which is a particularly promising eld for novel computing applications. The various spintronic devices and the phenomena at play in them are described in details. In conclusion, it is explained why the superparamagnetic tunnel junction has important advantages compared to other stochastic devices.

The second Chapter of this thesis -"The superparamagnetic tunnel junction: a noise-powered stochastic oscillator" -presents the physics of the device. In this study, I use experiments to con rm the existing theory as well as to complete it. These experiments are used to develop a model of the superparamagnetic tunnel junction, which use in numerical simulations is shown.

The third Chapter -"Noise-induced synchronization of a superparamagnetic tunnel junction to an external drive" -presents the rst experimental demonstration of this phenomenon. It allows achieving synchronization at low energy cost. Furthermore, a comprehensive theoretical analysis of the phenomenon, using both numerical simulations and an analytical model, is provided. These results are useful for the hardware implementation of computing schemes based on the synchronization of oscillators. In consequence, the fourth Chapter -"Synchronization of coupled stochastic oscillators" -investigates how to synchronize coupled stochastic oscillators. For doing so, the theoretical model presented and veri ed in the third Chapter is used.

The fth Chapter -"Superparamagnetic tunnel junctions as sensing neurons" -starts by drawing an INTRODUCTION analogy between superparamagnetic tunnel junctions and sensory neurons. Numerical simulations are performed to show that population of superparamagnetic tunnel junctions can represent probability distributions, and how several connected populations can achieve computing tasks such as learning and sensory fusion. One promising application is targeted: intelligent sensory processing.

Chapter

Computing with noise and stochastic components I C , we look for a stochastic nanodevice which could be the building block for bio-inspired computing. We start by reviewing scientific phenomena and method which harness randomness. Most of these techniques have been known for long, but have never delivered their promises of leveraging noise for computing. We articulate how finding an appropriate stochastic system will finally unlock the potential of these methods. In consequence, we then review various technologies which intrinsic stochastic behaviors have been proposed

for computing. We focus on spintronics which is a particularly promising field for novel computing applications. We detail the various spintronic devices and the phenomena at play in them. We explain why a stochastic spintronic device, the superparamagnetic tunnel junction, is an appropriate building block to implement bio-inspired computing schemes which take advantage of noise.

CHAPTER : COMPUTING WITH NOISE AND STOCHASTIC COMPONENTS

T C presents the scienti c context and motivations of this thesis. Furthermore, it pro- vides an introduction to the concepts, devices and phenomena that will be used in this work.

Section . explains why harnessing randomness instead of ghting against it is an attractive strategy for low-power applications. It presents various ways in which randomness can be used and how they are relevant to novel computing.

Section . introduces di ferent systems in which randomness can be harnessed to perform computations.

It focuses on nanotechnology and speci cally spintronics, which is the object of this thesis.

State of the art and explanations which are linked to speci c aspects of this work are presented in the corresponding chapters.

.

Harnessing randomness

The reliability of components has been pinned as an important issue since the early days of computing machines. In his lecture, von Neumann expressed concern about computation errors due to the intrinsic physics of components [ , ]. As vacuum tubes were replaced by transistors, components became highly reliable. Transistors could be shrunk down and assembled in always larger circuits at a steady pace, following the prediction of Moore. But since the late 's, scientists have predicted and feared the "End of Moore's law" [ -]. The International Technology Roadmap for Semiconductors report con rms the end of transistor scaling [ ]. Not only transistors are increasingly di cult and costly to manufacture as they reach nanometric dimensions but their reliability decreases as well [ ].

In particular, components become signi cantly sensitive to noise and device variation, and lose their perfectly deterministic behavior. Facing these issues, several approaches are possible. The most obvious approach is to ght unreliability. This means programming voltages cannot be scaled down anymore and error correction schemes sometimes need to be used [ -]. However, these solutions are energetically costly. In consequence, two di ferent paths have been proposed: trading-o f reliability for low power consumption and embracing unreliability.

.

. Reliability vs. energy trade-o f

As early as , the International Technology Roadmap for Semiconductors (ITRS) stated that "relaxing the requirement of % correctness for devices and interconnects" would allow drastic cost reductions [ ]. A lot of e fort has been put into designing computing architectures that produce reliable results with unreliable components [ , ]. These methods are known as probabilistic computing, inexact design, or approximate computing.

The group of Krishna Palem at Rice University showed that a small loss in reliability can lead to important energy savings, as illustrated in Fig. . [ ]. The energy per switching step of an inverter made of transistors is represented versus the success probability of the switch. It is observed that allowing for a few more percents of error allows a three-fold energy reduction. Figure . represents the energy reduction as compared to the 10 -10 error rate case versus the error rate, for the programming of a memory cell. A 10 -3 error probability can still be tackled for some applications and cuts the energy consumption down by a factor two ("approximate memory " regime). However, in order to drastically reduce energy costs, one must reach high error rates. For instance reducing the energy by % (i.e. a ten-fold energy gain) would require an error rate close to %. In this regime (indicated as "stochastic synapse" in Figure . ), the programming is fully random. This calls for non-conventional architectures and computing schemes that are robust to such high error rates, as illustrated in Section . . . .

It should be noted that not all computing applications are suited for approximate computing. For instance one will not accept imprecision in systems dealing with bank accounts. However many important computing applications nowadays do not require maximal precision to be useful. Image, audio and video processing can allow various levels of imprecision, depending on the expected quality. Tasks such as recognition of patterns and classi cation often only require the most important features of the input. The result of a data mining search does not need to be optimal to be good enough. Applications such as weather forecast are probabilistic by nature and cannot be expected to reach perfect precision.

Figure . : Numerical simulations of the energy reduction as compared to the 10 -10 error rate case for the programming of a magnetic memory cell versus the error rate. Three regimes can be distinguished: reliable memory (red), approximate memory (yellow) and stochastic synapse (green).

.

. Using noise

This path is an even further break from the traditional approach. It consists in fully embracing noise and stochasticity and using schemes where they can have a positive impact. That noise can be useful might be counter-intuitive but observed in many elds of science. In particular, it is used in computing . We do not aim at providing an exhaustive review of such phenomena, but rather at presenting in details the ones relevant to this work. First, in this Section, we focus on the use of noise in physical systems and speci cally on stochastic resonance and noise-induced synchronization. Then, in Section . . , we present stochastic computing, a paradigm in which computations are performed with probabilities encoded by random numbers. We show the assets of these approaches and pin what is required to ful ll their potential for low-power computing applications.

The bene ts of noise in physical systems were rst made famous in the early 's with the development of a theory showing that an optimal amount of noise can amplify the response of a bistable system to a weak signal [ -]. This phenomenon was called stochastic resonance. One di culty in approaching the abundant literature concerning stochastic resonance is that a wide range of phenomena have been labeled this way. In this section we aim at:

. Providing a synthetic and rigorous presentation of stochastic resonance and noise-induced phenomena.

. Showing how it can be applied to computing and what is needed for this to happen.

For example in image processing the dithering technique adds noise to an image in order to reduce errors to to quantization. In machine learning, noise can be added to avoid local minima and over-tting. Stochastic gradient descent chooses random data points from the learning set for an easier implementation.

According to a Google Scholar search, over , articles contain the phrase "stochastic resonance". The value of the drive is -A 0 = -0.1. (c) the value of the drive is +A 0 = +0.1. In panels (b) and (c) the arrows represent the fact that the particle has a strong probability to jump from the high potential well to the low potential well.

First, we introduce the canonical model of stochastic resonance. Then, we present the most signi cant extensions that have been added to this model and list the wide variety of systems in which they have been studied. We continue by explaining how stochastic resonance ts into the broader paradigm of stochastic facilitation. We end by focusing on the speci c phenomenon of noise-induced synchronization and explaining why it is particularly relevant for bio-inspired computing.

.

. . The canonical model of stochastic resonance

The rst and most popular model of stochastic resonance corresponds to a bistable system submitted to a periodic drive. A comprehensive and detailed mathematical derivation of the phenomenon can be found in the reviews by Gammaitoni et al. [ ] and Wellens et al. [ ] as well as in the numerous articles cited within them. Here we aim at presenting the phenomenon and providing to the reader an understanding of why it has generated so much interest.

We consider a double-well potential landscape, depicted in Figure . (a):

V (x) = 1 4 x 4 - 1 2 x 2 . ( . )
The two stable states of the system correspond to the local minima, which are located at . ) and are separated by a potential barrier ∆V = 1 4 . ( . )

x 1/2 = ±x min = ±1 ( 
A particle in this potential is submitted to noise so that its equation of motion is:

ẋ(t) = -V (x) + χ(t) ( . )
where χ(t) is a white Gaussian random function with mean zero,auto-correlation function χ(t)χ(0) = 2Dδ(t) and intensity D. In the case of thermal noise D = k B T with k B the Boltzmann constant and T the temperature. The particle motion is driven by noise and it can be shown that it randomly switches symmetrically from well to well (i.e. between positions around x 1 and x 2 ) with the Kramer escape rate [ ]:

r K = 1 √ 2π exp - ∆V D . ( . 
)
The particle is now submitted to a periodic drive so that its equation becomes:

ẋ(t) = -V (x) + A 0 cos(2πF t) + χ(t) ( . )
where A 0 is the amplitude of the drive and F is its frequency. This is equivalent to titling back and forth the potential:

V (x, t) = V (x) + A 0 x sin(2πF t).

( . )

The e fect of the drive on the potential is depicted in Figures . ( b) and (c). As a consequence, the drive in uences the motion of the particle. When it raises the potential of one well, it increases the probability for the particle to leave this well and jump to the lower potential well (as depicted by the arrows in Figures

. (b) and (c)). Here we suppose that the amplitude of the drive is too weak to trigger forced oscillations of the particle between the wells. The intuitive reasoning would be to expect that the noise is detrimental to a the motion of the particle following the periodic drive. However, it is observed that there is an optimal value of noise for which the response of the particle to the drive is maximal! Indeed for small drive amplitudes, the average position of the particle over many trials is:

x(t) = X(D) cos(2πF t + Φ(D)).

( . )

Where X is the amplitude of the periodic response of the system and is plotted in function of noise in and Φ is a phase-lag:

Φ(D) = arctan 2πF 2r K . ( . )
The expression of X(D) was obtained by neglecting the intra-well dynamics and supposing that the particle can only take the positions x 1 and x 2 .

As expected, the periodic response X depends on the noise intensity D. But surprisingly, its dependency is non-monotonous and exhibits a maximum for a positive value, as shown in Figure . . The higher the drive amplitude, the stronger the response of the system. This phenomenon has been called stochastic resonance. Indeed the bell shape of the X versus D curve reminds of the amplitude versus frequency curve of traditional resonance.

A useful metric to quantify the response of the system to the periodic drive is the spectral density of the motion of the particle. It exhibits several peaks at odd-number multiples of the drive frequency F . Jung and Hanggi showed that the integrated power associated with the peak at F is p = πX(D) 2 [ , ]. In consequence the spectral power of the peak at the drive frequency takes a maximal value for an optimal level of noise as well.

The qualitative interpretation of the phenomenon is the following. For low noise intensities, the switches from well to well are rare (most of the motion is intra-well). There is little or no response to the periodic drive. As the noise intensity is increased, the switches are more frequent. They are facilitated by the periodic drive, which sees its action e fectively ampli ed. When the noise becomes too intense, random switches dominate the motion of the particle and the in uence of the drive loses its relevance. There is thus an optimal level of noise for which the response of the system to the drive is maximal. This optimal noise level depends on the amplitude of the drive A 0 as well as its frequency F . The response is maximal when the Kramer's rate induced by the noise are close to twice the frequency of the drive: the time scale of the system (its "natural frequency") and the time scale of the drive match (as two switches are needed to complete one full oscillation) . Other metrics to quantify stochastic resonance can be found in literature and some will be detailed in Chapter . Interestingly, while all metrics exhibit a maximum at a non-zero noise intensity, the optimal noise intensity is not the same for every metric.

These are two important features of stochastic resonance:

. Stochastic resonance is a resonance in noise intensity and not in frequency. The periodic response decreases monotonously as the frequency of the drive increases. This will be seen with more details in Chapter .

. Stochastic resonance ampli es the response of the bistable system to a periodic drive but it does not correspond to synchronization. Noise can induce synchronization in bistable systems but under stricter conditions. More details about noise-induced synchronization will be given in Section . . . . The di ferences between stochastic resonance and noise-induced synchronization will be investigated and illustrated by experiments in Chapter .

On top of its non-intuitive character which makes it scienti cally fascinating, stochastic resonance is promising for applications. Usually noise is detrimental to the detection of weak signals and forces the observer to use stronger signals. But here, noise, which is often free (whether is is thermal noise from the room temperature or various uctuations due to a real world environment) enables the use of weaker signals and thus allows a lower energy consumption.

.

. . Various types of stochastic resonance

As noise is ubiquitous in physical systems, the idea that it can be useful has sparked a lot of interest. The Ph.D. thesis of Mark McDonnell o fers an original and detailed historical review of stochastic resonance and the various phenomena deriving from it [ ]. Stochastic resonance has indeed been quickly extended from the canonical model to a more general framework. The canonical model describes stochastic resonance as occurring within these three conditions:

. The system is bistable.

. It is submitted to a periodic drive.

. The amplitude of the drive is sub-threshold.

However, it has been demonstrated that these are not required to observe a noise-induced ampli cation

It should be noted that the switching rate for which the response is maximal does not exactly correspond to the double of the drive frequency [ ]. of the response of a system to a signal (i.e. stochastic resonance).

Aperiodic stochastic resonance and non-linear systems

Collins et al. showed that stochastic resonance can occur not only for a periodic drive but for any signal.

They labeled this aperiodic stochastic resonance [ -]. Furthermore, they showed that stochastic resonance (periodic or aperiodic) can occur not only in bistable systems but also in excitable systems (such as neurons that re when their input crosses a threshold for instance) [ ]. They extended their study to show that stochastic resonance only needs a non-linear system and a weak input signal to occur [ ].

Figure . illustrates stochastic resonance in the case of a single threshold system. Here the system detects any signal which amplitude is above a given threshold. Panel (a): a sinusoidal signal (solid line) has to be detected but its amplitude is below the detection threshold (dashed line). Panel (b): noise is added to the signal and enables it to pass the threshold, triggering detection. Here detection is only possible because of the presence of noise. Having too much noise into the system would lead to false positive detection events. The response of the system to the signal (e.g. its detection) is therefore maximal for an optimal amount of noise. The shape of the signal (whether it is periodic or not, etc.) is not determinant for the occurrence of the phenomenon.

Supra-threshold stochastic resonance

From what has been described previously it seems that stochastic resonance can only occur for subthreshold inputs. And this is indeed the case for single element systems. Let us look again at the example depicted in Figure . : if the signal amplitude is high enough to cross the threshold and trigger detection, adding any level of noise will only produce false positive events and decrease the performance. However, Figure . provides an illustration of supra-threshold stochastic resonance. A gray-scale picture is submitted to a threshold operation so that each pixel becomes either black (value below the threshold) or white (value above the threshold). This black and white picture (Fig. . (a)) is the input of the system . White

Gaussian noise is then added to the input: a positive or negative random number is added to the value of each pixel. Some black pixels become white and some white pixels become black. Our eye performs a local average operation of neighboring pixels, thus leading to a impression of gray-scale (even though the picture is only composed of black and white pixels). For an optimal level of noise (Fig. . (b)), this improves our visual perception of the picture. Too much noise (Fig. . (c)) makes the picture blurry and damages perception. The response of the system to the signal (perception of the picture -and recognition of the person) is maximal for a non-zero level of noise, which is exactly stochastic resonance.

In consequence, stochastic resonance can occur in non-linear systems submitted to a signal, provided that the global response of the system to the signal is sub-optimal in the absence of noise. This condition is extremely broad and as a consequence stochastic resonance has been studied both theoretically and experimentally in an many di ferent systems and elds. Among the most signi cant, we can mention:

• Climatology. The canonical model of stochastic resonance allowed to explain how small variations of the eccentricity of the earth's orbit around the sun induced glacial ages every 10 Here each pixel acts as a single threshold element. Some individual inputs (i.e. value of the pixels) are sub-threshold (black) while some are supra-threshold (white). • Sensory receptors in both animals and humans. A very complete (although a bit old) review has been written by Moss et al. [ ]. This review includes stochastic resonance in neurons. Sensory receptors often exhibit threshold e fects, which allows to observe periodic and aperiodic resonance.

Systems involving ensemble of receptors undergo supra-threshold resonance.

• Electrical circuits. Example of stochastic resonance in electrical circuits as well as corresponding mathematical models can be found in the review by Harmer et al. [ ]. Here again, various types of stochastic resonance are studied, with a focus on supra-threshold resonance which is described as more favorable for applications (as the value of the threshold is not critical to the success of the phenomenon). . The brain operates in an environment where noise can be found at high levels and under various forms [ , , ].

. The human brain is able to perform complex computations, and this while only consuming Watts.

. Both neural models and real neurons are able to exhibit stochastic resonance.

Regardless of whether noise is really used by the brain, these facts suggest that stochastic resonance is an interesting path for the design of computing systems that are inspired from biology. A straightforward and attractive idea is to use stochastic resonance for weak signal detection by arti cial neurons (in smart sensors for instance). However, using stochastic resonance for detection has not been translated into real applications, despite many attempts among which can be cited the following patents [ -]. Some possible reasons for this fact are:

. Using noise for computing is a good idea but stochastic resonance is limited to weak signal detection, which is not the most useful e fect for computing. . An appropriate system for noise to be used in has not been proposed yet.

As a consequence, in section . . . we review other noise-induced phenomena and in section . . . we explain why noise-induced synchronization is promising. Then in section . we show that the superparamagnetic tunnel junction is an appropriate building block. It should be noted that the phrase stochastic resonance is often used in the literature to refer to any phenomenon where noise has a positive impact, which leads to confusion. This is why it has been proposed to designate these phenomena by the expression stochastic facilitation [ ]. Stochastic facilitation is thus a generalization of stochastic resonance. It describes the fact that the performance of a system is maximal for an optimal level of noise which is non-zero, as depicted in Figure . . Two important conditions should be reunited for stochastic facilitation to occur:

. . . The broader paradigm of stochastic facilitation

Output performance

Noise level

Figure . : Sketch of the typical output performance versus noise level curve in a system which exhibits stochastic facilitation.

. The system should be non-linear.

. The performance in the absence of noise should be sub-optimal.

. . . Noise-induced synchronization for low power computing?

Noise can induce the synchronization of a system with an external signal drive. As for noise-induced detection in the case of stochastic resonance, this phenomenon occurs for sub-threshold signals which am- Synchronization plays an important role in the brain [ ]: phase-locking of neuronal oscillations might be a key element in the processes of learning and memorization. Inspired by these observations, many theoretical schemes using synchronization of oscillators to perform tasks such as pattern recognition and classi cation have been proposed [ , ]. Implementing these schemes in hardware holds the promise of fast and low power cognitive computing. Speci cally, several groups have worked on how to use networks of coupled spin torque nano-oscillators [ -]. In nanoscale devices, the uctuations of thermal noise have an important impact. In particular, noise is detrimental to traditional synchronization. Being able to use noise-induced synchronization would not only settle the issue of noise but also allow further power consumption gains (as lower drive amplitudes would be required). In Chapter we show how noise induces the low power synchronization of a spin-torque nano-oscillator.

Applying this for computing applications requires understanding how noise-induced synchronization occurs in systems composed of several coupled oscillators. Noise-induced synchronization of coupled elements has been studied for several systems, such as arrays of generic nonlinear elements [ -] or linear chains of di fusely coupled diode resonators [ ]. These works focus on noise-induced signal power ampli cation but do not study frequency-locking and phase-locking directly. In Chapter we conduct a study of noise-induced synchronization of coupled spin-torque nano-oscillators.

Conclusion

The potential of noise-induced phenomena is large. Over a thousand patents including the phrase "stochastic resonance" have been led (according to a Google Patents search). However, over three decades after the discovery of stochastic resonance, little has actually been done in term of concrete applications . Stochastic resonance has been demonstrated and patented in spintronic devices but with a goal of traditional detection and not computing [ , , , ]. Attempts to use stochastic resonance for computing, such as logical stochastic resonance [ ], have not lead to concrete applications.

Stochastic resonance is extremely useful for the detection of weak signals but is probably not the most suitable noise-induced phenomenon for computing. On the contrary, noise-induced synchronization can be used in synchronization-based computing schemes. It is thus promising for leveraging noise in order to lower the power consumption of computing operations. To ful ll this potential, there is the need for a non-linear device that can exhibit noise-induced phenomena and t into computing schemes.

After describing in this section how noise in physical system can have a positive impact, we now turn to the direct bene ts of randomness for computing. The following section explains how random numbers encoding probabilities can allow to perform computations at low energy cost.

. . Computing with probabilities: stochastic computing

Since the beginnings of computing machines, it has been proposed to encode information by probabilities and not numbers [ , , ]. The series of " " and " " bits no longer use the traditional binary representation but form a random bitstream which average value (i.e. the probability to have a " " bit)

is the encoded number. For example, the number " " should be read as the probability " / = . " (instead of " " in binary representation ). Larger numbers of bits allow to encode numbers with a higher precision. A small bitstream will give a rough approximation of the result, thus allowing a progressive precision gain. Using random bitstreams to encode numbers and the ensemble of schemes to perform operations on them is called stochastic computing. The main asset of this probabilistic representation is its tolerance to errors. With traditional binary representation, errors can be fatal if they concern the most signi cant bits. On the contrary, the bits composing random bitstreams do not have a hierarchy of signi cance: each bit contributes equally to the average. For example, coding " " instead of " " (i.e. an error on one bit) leads to representing " . " instead of " . ". A much smaller error

As an anecdote, the most mature application of a noise-induced phenomenon is the improvement of balance in elderly people via vibrating shoe soles [ ].

In binary representation, a number of N digits encodes the value N -1 i=0 2 i where i is the index of the digit (with for the last digit on the right and N -1 for the rst digit on the left). than representing " " instead of " "! Many schemes allowing to perform computations on random bitstream have been developed [ , ].

An important asset of stochastic computing has emerged: many operations that are complex and thus costly with traditional binary representation are simple when dealing with probabilities. For example, implementing the multiplication of two binary numbers requires counters and full adders. On the other hand, a single AND gate is su cient to multiply two probabilities, as described in Figure . The strengths of stochastic computing are:

. Small area used and low energy cost . High tolerance to errors . Progressive precision However, these strengths have not been su cient to alter the domination of conventional deterministic computing. CMOS transistors have quickly become highly reliable and the advances of Moore's law have allowed for lower and lower energy costs, making stochastic computing promises unnecessary. Moreover, stochastic computing has critical issues. The generation of random bitstreams with CMOS technology is energy costly, and the same is true about analog-random bitstream conversions. Furthermore the random bitstreams in a stochastic logic unit (ex: an AND gate for a multiplication) should be uncorrelated for the operation to be accurate. This makes cascading logic gates uneasy and requires to regenerate random bitstreams frequently, which consumes even more energy. The energy gain due to the logic simpli cation of stochastic computing is annihilated by the cost of generating the stochasticity. For these reasons, stochastic computing has been unable to compete with conventional computing yet.

As Moore's law is coming to an end and as energy consumption is becoming a burning issue, stochastic computing appears increasingly appealing. It proposes to put randomness at the core of the hardware and to use noise through stochastic facilitation (see section . . ). Diverse forms of computing with probabilistic hardware have been developed as well [ -].

Though promising, this new view of stochastic computing does not address the issue of random bitstream generation. There is the need for a device which is able to generate random numbers at low energy cost.

Several very di ferent media have been proposed and will be detailed in the following section of this chapter: biomolecular automata [ ], memristors [ ], chromophores [ ], spintronic devices. We explain why spintronic devices are particularly promising.

Conclusion

Several ways to harness randomness for computing exist and have been studied thoroughly. However they

have not yet lead to actual computing applications. Indeed it is di cult to identify a perfect stochastic building block.

This device should:

. Have a non-linear dynamics in order to allow stochastic facilitation phenomena.

. Have an intrinsic stochastic behavior which is well understood and controlled.

. Have an easily readable output.

. Be able to integrate in novel computing schemes.

. Be compatible with CMOS technology in order to build hybrid circuits.

In the following section we review various proposed candidates. We investigate how nanotechnology can answer to this need and we explain why stochastic spintronic devices called superparamagnetic tunnel junctions are particularly promising building blocks.

.

Proposals of stochastic building blocks

Several systems -which di fer fundamentally -have been proposed to implement novel forms of computing that harness randomness. However, computing with these stochastic devices is still at a very early stage and not much has been demonstrated yet. We present the most signi cant of these devices and explain why they can be promising.

Section . . Quantum Dots Cellular Automata presents a computing system subject to randomness: quantum dots. Section . . Molecular approaches introduces two molecular media for stochastic computing: chromophores and bio-molecular automata. The devices in Sections . . and . . are quite far from those used in this thesis. The role of these sections is rather to illustrate the variety of possible approaches to harness natural randomness. Sections . . Memristors and . . Spintronics describe approaches using nanotechnology. Nanoscale devices are particularly interesting for computing applications because they exhibit complex dynamics and their states can be read and controlled more easily than the ones of molecular devices. Furthermore, it has been shown that nano-devices can emulate some functionalities of the components of the brain: synapses and neurons. This makes them promising candidates for the hardware implementation of bio-inspired computing schemes. Section . . presents how to use the natural stochasticity of memristors for computing while Section . . focuses on the eld of nanotechnology which is the topic of this thesis: spintronics. Quantum dots cellular automata are not limited to random number generation, they are building block for computing. For example, a majority gate can be implemented by several cells, as illustrated in Figure . (c). The three inputs cells A, B and C in uence the cell in the middle. Because of Coulomb repulsion, the middle cell takes the polarization corresponding to the majority of the three inputs and propagate its state to the output cell. In the depicted example A = 0, B = 0 and C = 1 so the output is " ".

. . Quantum Dots Cellular Automata

Their intrinsic random behavior makes quantum dot cellular automata interesting candidates for stochastic computing. However, despite the facts that this stochasticity has been widely studied and that computing schemes with probabilistic cellular automata have been proposed, there has been -to the best of our knowledge -no use of quantum dots for stochastic computing. The works on computing with quantum dots rather focus on how to ght their randomness, with redundancy between others [ , ].

The quantum dots cellular automata, built by Orlov et al., This idea is exciting because molecules can be synthesized in huge numbers with atomic precision. Biomolecular computing are particularly promising for the biomedical applications of stochastic computing. However, non-biological computing tasks, if they were to be implemented by biomolecular automata, would require complex and costly electronics/biology conversions of information.

Biomolecular computing has undergone a lot of progress, as detailed in the review by Benenson [ ].

Basic computations have been demonstrated, such as a few consecutive XOR gates [ ] or a binary counter up to [ ]. However, the realization of large scale system is challenging (due to issues such as error propagation) its feasibility yet remains to be demonstrated. .

. . Resonant energy transfer between chromophores

The chromophore is the part of a uorescent molecule which is responsible for its color. A chromophore has two molecular orbitals which energy di ference correspond to visible light. In consequence it can absorb a photon of a given wavelength, exciting an electron from its ground state to a higher energy orbital.

The excited chromophore can then re-emit a photon of the same wavelength. An excited chromophore naturally re-emits energy in two manners: uorescence and nonradiative decay.

As a consequence there are several possible paths for a network of two chromophores when one absorbs a photon, described in 

Conclusion

Several approaches to use molecules as building blocks for stochastic computing have been proposed.

These approaches are exciting, however, molecular computers still have a long way to go before becoming a mature technology. In particular, it is di cult to read and control the state of molecules. In the next section we turn to nanotechnology and more speci cally memristors -which do not su fer from these issues.

. . Memristors

The aim of this Section is to:

. Explain why memristors are promising for novel forms of computing.

. Present the existing approaches that leverage stochasticity in these devices.

Remark: This Section does not aim at reviewing the uses of memristors for computing in general nor for the speci c eld of bio-inspired computing. Detailed reviews can be found in [ -] and the articles cited within them. Furthermore, this Section voluntary exclude spintronic memristors which are presented in Section . . . . . . . What is a memristor?

Memristor is the contraction of memory-resistor. In this work we use the following de nition: a device which resistance depends on the history of electrical charges owing through it. The typical resistance versus voltage curve of memristors is represented in Figure . . The highest resistance corresponds to the OFF state (little current can ow through the device) while the lowest resistance corresponds to the ON state (more current can ow). Some devices exhibit intermediary resistance states. Switching between the di ferent states can be achieved by varying the voltage across the device. Memristors and the physical phenomena responsible for their resistance variation come in extremely various types. Some undergo phase-transitions, some undergo reduction-oxidation reactions, some undergo motion of atoms, some are made of organic molecules, some are magnetic.

Although the term "memristor" originally referred to analog value resistors, it appears that binary devices can be used in similar way as multi-state devices for computing purposes. In consequence we will consider binary devices as memristors . Furthermore we focus on nanoscale memristors .

Memristors have attracted a lot of attention because of their assets for many applications such as data storage, logic and bio-inspired computing. Indeed it has been demonstrated that memristors can emulate some functions of the brain components: neurons and synapses.

Neurons are the computational units of the brain. They receive and emit voltage signals, thus communicating with other neurons. Synapses connect the neurons to each other. They carry memory by having a variable non-volatile electrical resistance. The synaptic weight between two neurons (i.e. the resistance of the synapse between them) determines how strongly connected they are. The higher the conductance (the lower the resistance), the stronger the connection. The algorithms to implement learning in arti cial neural networks typically modify the synaptic weights in order to get the wanted connections between the input neurons (which receive the data) and the output neurons (which give the result of the task).

Using nanodevices as arti cial neurons and synapses would enable to implement bio-inspired computing schemes in hardware and thus save huge amounts of energy as compared to software methods. Nonvolatile memristors naturally emulate synapses and exhibit several of their functionalities [ -]. It has been demonstrated that they can be used in bio-inspired learning schemes [ , ] . Implementations of neurons using memristors (called neuristors) have also been proposed [ ].

Because the relative importance of thermal uctuations become more important at the nanoscale, the switching mechanisms of many memristors are intrinsically stochastic. The solutions to ght this randomness are energetically costly. In consequence, several groups have proposed to embrace the stochasticity of memristor and use it for computing applications. Here we present the most signi cant contributions.

. . . Memristors as random bitstream generators

The to migrate back toward the top layer. This thins down the lament and increases the resistance, hence the slope changes from ( ) to ( ). When the voltage reaches the threshold V --4V , the lament no longer connects the two electrodes. The resistance switches to the high value ( ): the device is back in the OFF state. The negative voltage destroys the lament ( ) and the cycle can start again.

The process of lament formation is intrinsically stochastic because it involves the motion of atoms. When a large enough voltage is applied, the waiting time before the formation of the lament is random and follows a Poisson process [ ], as depicted in Figure . (a). The probability for the lament to form in a ∆t interval within a time t is:

P (t) = ∆t τ exp - t τ . ( . 
)
Where τ is the characteristic time, which decreases when the applied voltage increases.

Integrating equation . leads to the cumulative switching probability:

C(t) = 1 -exp - t τ . ( . )
If a voltage pulse of given amplitude and width is applied to the device, the probability to switch the resistance is given by equation . . This memristor emulates a true random bitstream generator. It could be used for stochastic computing applications. A critical issue of such devices is their high power consumption. For instance Figure .   presents results obtained for an applied voltage of . V, which is much higher than the ones used in traditional computing circuits. This principle has been explored further by other groups. More recently, Balatti et al. proposed a true random number generator based on a ReRAM device and investigated the power consumption of the system as well as the circuit integration aspects [ ].

. . . Memristors as stochastic integrate-and-re neurons Various types of neurons have been observed and many theoretical models have been proposed. One of the most popular models is the integrate and fire neuron. This type of neuron receives voltage inputs and integrates them. When the cumulative value of the received inputs exceeds a threshold, the neuron res a voltage pulse (also called spike). The neuron is reset and integration can start from zero.

In biological neurons, inputs are stored by the potential of the membrane (a lipid bi-layer around the cell).

Integrating inputs and ring outputs are stochastic processes. This is due to the noise of ionic conductance, the e fect of thermal noise on the motion of charge carriers, inter-neuron morphological variability and background noise. Stochasticity is an important component of neural behavior. Some studies have even suggested that it is used for information encoding [ ]. Speci cally, many schemes using assemblies -called populations -of stochastic neurons have been proposed. More details are given in Chapter which focuses on computing with populations of stochastic spintronics devices as neurons.

Here we present an implementation of stochastic integrate and re neurons with phase-change memristors, proposed by Tuma et al

. [ ].
The memristor is composed of a chalcogenide-based phase-changing material sandwiched between two metallic electrodes, as shown in Figure . (a). The phase-change material has two possible states: crystalline or amorphous. The crystalline state has a higher electrical conductance (lower resistance) than the amorphous state. The device studied is called mushroom type because only a dome-shaped region of the material actually undergoes phase transitions while the rest remains crystalline, as depicted in Figure .   (b). The conductance of the device is directly linked to the thickness of the amorphous region. Figure .

(b) represents the evolution of the conductance of the memristor versus the number of applied voltage pulses. At rst the conductance is low because the amorphous region is large (red in the insets). Applying voltage pulses lets current ow through the device. This generates a Joule heating of the amorphous region. For the right pulses amplitude, the temperature is above the glass transition but below the melting point of the material. The heating therefore allows crystal growth and the thickness of the amorphous region decreases. The conductance of the device thus increases. When it reaches a threshold, the current owing through the device is large enough for the temperature to reach the meting point. As the pulse is cut-o f abruptly, the material within the region quenches into the amorphous phase. This corresponds to the ring of the neuron and resets the device to a low conductance.

The thickness of the amorphous region and its evolution are ruled by processes that are intrinsically stochastic. The origins of this randomness are:

. The thickness of the amorphous region and its internal atomic con guration created by melting and quenching when the neuron res are never the same after reset.

. During melting, the atomic mobility is high. Small variations in the initial conditions or pulse characteristics lead to di ferent states and thus di ferent growth velocity.

. At each reset the amorphous region has di ferent crystalline nuclei. This leads to di ferent thickness evolution when pulses are applied.

. Additional crystalline nuclei can appear and after the thickness evolution.

This stochasticity is translated into the distribution of the interspike intervals. Figure . shows that the distribution of the interspike intervals is broad for a given pulse width. The mean interval decreases exponentially when the pulse width increases. The inset of Figure . shows that the distributions of interspike intervals are Gaussian. The larger the pulse width, the lower the mean interval and the more narrow the distribution.

A population of such stochastic neurons are able to encode information in a way that is not possible with a single neuron or a population of deterministic neurons. The population is composed of an assembly of This work illustrates how stochasticity and variability in nanodevices can be used as an asset.

Conclusion

We have presented two approaches where the random behavior of memristors are leveraged: using the stochastic pulse-programming of memristors as a true random bitstream generator and using the stochastic ring of integrate-and-re memristors to encode signals with a better time resolution. Both these applications would not be possible with deterministic devices. There is no doubts that many other schemes where the stochasticity of memristors is a bene t can be proposed.

These results are promising for the implementation of computing systems using randomness. As mentioned previously, memristors have many attractive qualities to be computational building blocks. However, they have some limitations. The stochastic behavior of memristors come from physical phenomena that are multiple and not well controlled. The physics of lament formation and destruction in memristors is yet not fully understood. Although the resistance switching mechanism can be described as a Poisson process, its characteristic time and the way it varies from device to device are not well modeled. Similarly, the randomness in the interspike intervals of phase-change memristors comes from many non-controllable physical sources. Stochastic behaviors in memristors originate from defects and hard to predict parameters. It seems therefore challenging to manufacture large numbers of memristors which random behaviors follow probability distributions with random parameters, though this would be a requirement in order to build computing systems. Furthermore, the resistance of phase-change devices drifts with time so that it is di ferent every time the state is modi ed. This is due to variations in the structure of the device when it relaxes to the amorphous phase [ ]. Finally, the described memristors exhibit resistance changes due to structural variations or atomic motion. Performing these changes degrades the device. In consequence, these memristors have a limited endurance (typically thy can only last up to 10 9 cycles) [ ].

In consequence, we turn to a speci c eld of nanotechnology -spintronics. We will show how stochastic spintronics devices possess similar qualities to memristors while exhibiting better reliability and endurance as well as a much better understood and controlled stochasticity.

.

. Spintronics

Spintronics is a contraction of spin electronics. It concerns the study of the physics of the spin of the electrons and of devices aiming at coding and processing information not only with the charge of the electrons (which corresponds to conventional electronics) but also with their spin.

The aim of this Section is to:

. Introduce spintronics and the important phenomena used in this thesis.

. Review the most signi cant spintronic devices and their applications for conventional and nonconventional computing.

. Present the existing approaches that leverage randomness in spintronic devices.

. Express why spintronic devices are particularly promising for applications and speci cally for the ones involving stochastic behavior.

. . . Coding information with magnetic states -Giant and tunnel magnetoresistances Spintronics was born with the discovery of the Giant Magnetoresistance by Albert Fert and Peter Grünberg [ , ]. In , Fert and his group showed that the electrical resistance of a superlattice of thin ferromagnetic layers varies when an external magnetic eld is applied. Figure . represents the resistance of various stacks of iron and chromium layers as a function of the magnetic eld. It can be observed that the resistance is maximal at zero eld and drops to a minimal value when a positive or negative magnetic eld is applied. The Fe layers are coupled so that two consecutive layers have anti-parallel magnetizations at zero eld. When the magnetic eld is applied, all the Fe layers align. These results implies that a stack of anti-parallel ferromagnetic layers has a higher electrical resistance than the same stack with parallel layers.

This e fect is called Giant Magnetoresistance. At the same time, Grünberg observed the same e fect in a Fe/Cr/Fe trilayer. The discovery of Giant Magnetoresistance created the eld and led to the Nobel Prize in for Fert and Grünberg.

Giant Magnetoresistance

Giant Magnetoresistance can be explained as follows. In a magnetic material such as Cobalt or Nickel, the electrons responsible for the magnetism are in the 3d energy band and the electrons responsible for conduction are in the 4s band. The 3d bands for the electrons which spins are ↑ ("up") and ↓ ("down") have di ferent energy levels. The "up" 3d band is lled while the "down" 3d band has available state at the Fermi level. This density discrepancy leads to the magnetism as there is a majority of spin "up" electrons.

Resistivity arises from the scattering of the conduction electrons (4s band) to the 3d band. As there are more available energy levels in the 3d band of the "down" electrons and spin reversals are rare, the "down" electrons undergo more scattering. This phenomenon is the basis for the two-channels model: the current can be seen as separated in two paths with two di ferent electrical resistances. One path is for the "up" electrons and has a low resistance, the other is for the "down" electrons and has a high resistance. The equivalent circuit is composed of two resistances in parallel (one for the spins "up" and one for the spins "down").

Figures . (a) and (b) depict the scattering of electrons in a magnetoresistive device composed of two magnetic layers separated by a metal. If the two magnetic layers have parallel magnetizations, the notions of "up" and "down" are the same for both layers. On the contrary, if the two magnetic layers have antiparallel magnetizations, the notions of "up" and "down" are reversed from one layer to the other. Figures

. (c) and (d) represent the corresponding electrical circuits. r/2 is the resistance of a magnetic layer for the parallel channel and R/2 is for the anti-parallel channel (with r < R). The global resistances of the device are:

R P = Rr R + r ( . )
and

R AP = R + r 4 . ( . )
The physical phenomenon is similar in the case of superlattices.

The magnetoresistance ratio is expressed as follows:

M R = R AP -R P R AP + R P = (R -r) 2 4Rr . ( . )
The larger the ratio, the larger the giant magnetoresistance e fect. Many applications rely on the knowledge of whether the ferromagnetic layers are in the parallel or anti-parallel con guration, in consequence high magnetoresistance ratios are critical.

A spin valve is a device composed of two thin magnetic lms separated by a non-magnetic metal (Fig.

. Magnetoresistance, the resistance is higher in the AP state than in the P state. This allows reading a magnetic state by a simple electrical measurement. Each con guration (parallel or anti-parallel) can encode a possible value of the magnetic bit (" " or " ").

Tunnel Magnetoresistance

At room temperature, the magnetoresistance ratio in spin valves does not exceed a few tens of percents [ ]. A strategy to achieve higher ratios is to replace the non-magnetic metal by an insulating barrier which the electrons tunnel through. This type of device is a magnetic tunnel junction and can exhibit ratios of several hundreds of percent [ ]. The magnetoresistive phenomenon is then called Tunnel Magnetoresistance and can be explained as follows.

A voltage V is applied to the device. The two magnetic layers have energy levels shifted by eV and are separated by a tunnel barrier. We can make the approximation that only energy states between E F -eV and E F can take part in the tunneling, with E F the Fermi energy. The current owing from layer to layer is proportional to the density of states in each layer:

I ∝ D 1 (E F )D 2 (E F )eV. ( . )
Where D 1 (E F ) is the density of states at the Fermi level in layer .

Because the layers are magnetic, the conservation of the spins of tunneling electrons has to be considered.

The current is the sum of the currents composed by electrons "up" and "down", according to the model developed by Jullière [ ]:

I = I ↑ + I ↓ . ( . )
In consequence the currents are di ferent for the parallel and anti-parallel con gurations:

I P ∝ D 1,M aj D 2,M aj + D 1,min D 2,min ( . ) 
and

I AP ∝ D 1,M aj D 2,min + D 1,min D 2,M aj . ( . )
Where D 1,M aj is the density of states at the Fermi level in layer for the electrons which spin is parallel to the magnetization (the majority). D 1,min is the density of states for electron which spin is anti-parallel to the magnetization (the minority). Depending on the orientation of the magnetization, the majority of the spin are "up" or "down".

The resulting tunnel magnetoresistance ratio is: Applied magnetic field (G) Where P 1 is the spin polarization of the magnetic layer .

T M R = R AP -R P R P = I AP -I P I P = 2P 1 P 2 1 -P 1 P 2 . ( . 
)
P i = D i,↑ (E F ) -D i,↓ (E F ) D i,↑ (E F ) + D i,↓ (E F ) . ( . )
The higher the polarization, the higher the tunnel magnetoresistance ratio. The value of the polarization depends on the materials of the magnetic layers as well as the tunnel barrier. The materials used for the magnetic layers of magnetic tunnel junctions are typically metallic alloys such as Cobalt-Iron-Boron (CoFeB) or Nickel-Iron (NiFe). Currently, the most common material for the tunnel barrier is Manganese oxide (MgO).

For better stability, the reference layer is usually made not with a single magnetic layer but with a synthetic antiferromagnet .

Figure . plots the measured resistance of a magnetic tunnel junction in function of the magnetic eld applied along the direction anti-parallel to magnetization of the xed layer. We observe that a negative eld leads to a low resistance while a positive eld leads to a high resistance. These results means that the magnetic eld can switch the magnetization of the junction from one orientation to the other depending on its direction. The coercitive elds (i.e. elds required to switch states) are di ferent for the P and AP A synthetic antiferromagnet is composed of two magnetic layers separated by a non-magnetic one. The magnetic layers have an antiferromagnetic coupling. A typical example is CoFe/Ru/CoFe.

The device used in this experiment is a "Type B" sample, as described in Chapter .

states, which leads to a hysteresis loop .

The magnetic tunnel junction is the agship device of spintronics nowadays and the device used in this thesis. It is described in length in this chapter and the following one.

. . . Modifying the magnetic state -Spin torques 

Dynamics of the magnetization of a nanomagnet

Let us suppose a nanomagnet made of a thin ferromagnetic ellipse. It is mono-domain so that its magnetization m can be described by one single macro-spin rather than many individual electronic spins. At zero temperature, the dynamics of its magnetization follows the Landau-Lifshitz-Gilbert equation:

1 γ dm dt = m × H ef f - α m m × H ef f . ( . )
Where γ = 2µ B is the gyro-magnetic ratio and α is the damping coe cient, which depends on material parameters . H ef f is the e fective magnetic eld. In the case of an out-of-plane magnetization:

H ef f = H + H D + H k ( . )
H is the external applied magnetic eld. H D is the demagnetizing eld. In the case of an out-of-plane magnetization it is perpendicular to the plane of the magnet. H k is the magneto-crystalline anisotropy.

Its presence allows the out plane magnetization. H D and H k are parallel.

In the case of an in-plane magnetization:

H ef f = H + H D + H an ( . )
In the case of an in-plane magnetization the demagnetizing eld H D is in the plane of the magnet. H an is the anisotropy eld due to the shape of the magnet. It keeps the magnetization along the easy axis. In the case of a thin elliptic nanomagnet the easy axis is the long axis of the ellipse. In the case of an in-plane magnetization, H an is perpendicular to H D .

The fact that this loop is not centered on zero eld is explained in Chapter . γ 1.76 × 10 11 rad.s -1 .T -1 . α is small, typically α 0.01. The direction of the applied magnetic eld (vertical blue arrow) is parallel to the easy axis.

The di ferent torques acting on the magnetization are indicated by arrows: damping (green), spin transfer torque (red), eld-like torque (orange) and torque generated by the magnetic eld (blue).

The magnetization precesses around the easy axis, as depicted in Figure . . The magnetization is subject to two torques. The eld torque drives the precession while the damping brings the magnetization back to the easy axis. This corresponds to oscillations in one of the potential wells.

The disorder induced by thermal noise is small compared to the exchange energy which tends to align the spins. In consequence thermal noise does not reduce the magnetization but rather kicks it around randomly. Finite temperature can thus be modeled by adding a Langevin random eld H L in Equation .[ ]:

1 γ dm dt = m × H ef f + H L - α m m × H ef f . ( . )
H L,i = 2αk B T γm I rand,i (t) for i = x, y, z. I rand (t) is a random number with Gaussian distribution of mean zero and standard deviation one. The three x, y, z random components are uncorrelated. The amplitude of the eld is deduced from the uctuation-dissipation theorem.

The dynamics of the magnetization is thermally activated. The random uctuations of thermal noise can cause the magnetization to leave its potential well, following a Poisson process. The average time spent by the magnetization in the well is the characteristic time of the Poisson law. This life-time inside the well

τ = τ 0 exp ∆E k B T , ( . )
where k B is the Boltzmann constant, T is the temperature, τ 0 1 γH k is the attempt time and ∆E is the potential barrier height of the well.

Spin transfer torque

A spin-polarized charge current is injected in the thin lm, perpendicularly to its plane. The spin-polarization has a value:

η = I ↑ -I ↓ I ↑ + I ↓ ( . )
where I ↑ and I ↓ are the currents in the two spin channels (parallel and anti-parallel to the spin-polarization).

The unit vector of the polarization is n s .

The spin-polarization of the current is modi ed by the magnetization. Reciprocally, some spin angular momentum of the current is absorbed by the magnetization. The amplitude m of the magnetization is unchanged but its transverse component is modi ed. As a consequence, it is the magnetization precession which is a fected. The resulting torque has two components: the spin transfer torque which is co-linear to the damping and the eld-like torque which is co-linear to the eld torque (Fig. . ). The eld-like torque is weaker than the spin transfer torque but still signi cant. In magnetic tunnel junctions it is typically around % to % of the spin transfer torque [ , ]. Here we focus on the dominant term, the spin transfer torque. It can be shown that in the macrospin case, the transverse component of the spin-torque is [ , ]:

Γ = Iη 2e 1 m 2 (n s × m) × m. ( . 
)
Where e is the charge of the electron and is the Planck constant divided by 2π. This component is proportional to the number of electrons owing through the layer and their spin-polarization. The transverse component of the spin-torque has to be added to the right member of Equation . , which then becomes:

1 γ dm dt = m × H ef f + H L - α m m × (H ef f + H s ) . ( . 
)
Where

H s = Iη 2e 1 mα n s . ( . )
The spin torque does not contain a uctuating eld because it is already a dissipating force itself. In the small cone limit of an out of plane magnetization (e.g. the magnetization does not go too far away from its easy axis), H ef f and H s are approximately parallel. In consequence, Equation . is equivalent to Equation . where the damping α is replaced by α:

1 γ dm dt = m × H ef f + H L - α m m × H ef f . ( . )
The e fective damping is expressed as follows:

α = α 1 + H s H ef f = α 1 + I I c . ( . )
The critical current I c corresponds to the current required to switch the magnetization at zero temperature [ , ]:

I c = 1 η 2e mαH ef f . ( . )
Typically

H ef f = H + H D + H k = H + 2K µ 0 M s + 2πM s , ( . 
)
where K is the magneto-crystalline anisotropy constant and M s is the saturation magnetization.

M s = m V
where V is the volume of the nanomagnet.

In the case of an in-plane magnetization, it can be shown that the expression of the critical current is [ ]:

I c = 1 η e h mα(H + 2πM s ). ( . )
When the e fective damping becomes negative, the disturbances to the magnetization equilibrium are ampli ed rather than damped out. This instability leads to magnetization reversal. The spin transfer torque is often referred to as an anti-damping. The sign of the critical current depends on the sign of m and thus on the orientation of the magnetization. In consequence each polarity of the current stabilizes one orientation of the magnetization and destabilizes the other. Figure . shows the e fect of current on a magnetic tunnel junction. A negative current switches the magnetization of the free layer in the AP state while a positive current switches it in the P state. Because the critical currents for P and AP states are di ferent, the curve exhibits a hysteresis loop. Critical current densities typically range from 10 6 to

10 7 A/cm 2 [ - ].
The thermal term H L is not modi ed by the current. In consequence it corresponds to an e fective temperature T such that α T = αT [ ]. Therefore, the dwell-time of the magnetization in the potential well is modi ed as follows by the spin transfer torque [ ]:

τ = τ 0 exp ∆E k B T = τ 0 exp ∆E k B T α α ( . ) τ = τ 0 exp ∆E k B T 1 - I I c . ( . 
)
This expression is valid for a current of amplitude inferior to I c . It will be illustrated experimentally in

Chapter . The value and sign of I c depend on the orientation of the magnetization. Thus a given current polarity will stabilize one orientation and destabilize an other. A current with an opposite polarity will have the inverse e fect. 

Application to multi-layer devices

The state of multi-layer magnetoresistive devices (spin valves or magnetic tunnel junctions) can be read by an electrical resistance measurement. Similarly, the state of the free layer can be written by the injection of an electrical current through the device, as described in Figure . . The reference layer acts as a spinpolarizer. The newly spin-polarized current can then modify the magnetization of the free layer through spin transfer torque.

It is important to remark that any nanomagnetic device has an intrinsically stochastic behavior. This randomness is directly due to the uctuations of thermal noise and arises for any nite temperature, which means in any real-world situation. Contrary to the devices studied in Section . . , stochasticity does not come from defects. This allows us to understand better the stochastic behavior and, more importantly, to control it. Nanomagnets naturally amplify the thermal noise into full amplitude magnetization reversals.

In the case of magnetoresistive devices, this translates into full amplitude oscillations of the resistance.

Section . . . presents uses of spintronic devices stochastic behavior. Chapter is dedicated to the study of magnetic tunnel junctions as stochastic devices.

Spin-Orbit torque

The spin-orbit torques refer to the ensemble of torques originating from the interaction between the spin and the orbit of an electron. The best understood (and used in Chapter of this thesis) spin-orbit torque -the vertical component of the spin current exerts a torque on the magnetization of the ferromagnetic layer via transfer of angular momentum. Growing a magnetic tunnel junction from free layer to reference layer on top of a heavy metal underlayer thus allows to switch the state of the device by spin-orbit torque [ ]. Because the current is owing along the heavy metal underlayer and not through the magnetic tunnel junction, there is less degradation of the barrier. Furthermore it is also hoped that spin-orbit torque will consume less energy than using spin transfer torque as the resistance of the underlayer is lower than the one of the junction. The materials used for the underlayer are heavy metals such as Platinum. For now this e fect has been mainly observed in in-plane magnetization switching, although a lot of e forts are directed toward using spin-orbit torque for out-of-plane magnetization switching.

. . . Spintronic devices and their most natural applications

This section reviews the most important spintronic devices and their most natural applications: data storage and computing. In magnetic hard disk drives bits of information are stored in tiny magnetic volumes that can each take two possible orientations (corresponding to " " and " "). The magnets conserve their magnetization without external energy supply, thus making the memory non-volatile. A magnetic sensor (which magnetization is xed) is mechanically moved above the magnets and reads the value of each bit through its electrical resistance . The writing operation is performed magnetically through an inductive ring. This technique allows to pack magnetic bits extremely densely and with low economic costs (in Seagate unveiled over 1Tb/in 2 density drives). However, the read-write operations are slow (several milliseconds [ ]).

Magnetic hard disk drives

For this reason, magnetic storage is con ned to long term mass storage applications and is excluded from computing purposes memories.

Domain walls based devices

If a magnetic material is composed of several regions of di ferent magnetizations, the regions -called 

Magnetic random access memories

The agship device of modern spintronics -and device studied in this thesis -is the magnetic tunnel junction. It primary use is to be a non-volatile memory as the unit cell of Magnetic Random Access Memories (MRAMs). A junction in the parallel state codes for a " " while a junction in the anti-parallel state codes for a " ". The read operation is done through a measurement of the electrical resistance. The most recent generations of MRAMs use the phenomenon of spin transfer torque to perform the write
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operation through current injection (these are called STT-MRAMs).

The two important features of a magnetic tunnel junction for memory applications are its energy barrier (i.e. the height of the potential well) and its critical current. The energy barrier has to be large to guarantee the stability of the stored state. The critical current has to small to limit the energetic cost of write operations. Lowering the critical current while maintaining the energy barrier is a crucial challenge of

MRAM design and fabrication [ ].

The notion of whether a magnetic tunnel junction is stable or unstable is entirely relative to the relevant time scale. When destined to memory applications, magnetic tunnel junctions are designed so that no junction on the memory chip will switch over years. This leads to energy barriers so that ∆E Despite these signi cant advances, MRAMs face one critical challenge: magnetic tunnel junctions lose their stability when their size is decreased. While these unstable devices (superparamagnetic tunnel junctions) are useless for memory applications, they are promising for unconventional computing, as will be shown in the Chapters to of this thesis. More details about the physics of unstable magnetic tunnel junctions will be given and illustrated by experiments in Chapter .

Spin torque nano-oscillators [ ]

When the applied magnetic eld is strong enough to distort the energy landscape of a magnetoresistive device into a single well, a single stable state remains, as depicted in Figure . Another type of spin torque oscillators has been developed: magnetic vortex oscillators. A magnetic vortex is a non-uniform state of the magnetization where the directions of the spins are in-plane on the edges and out-of-plane at the very core. A vortex is depicted in the inset of Figure . . In order to obtain a vortex it is required that it is more energetically favorable for the magnetization to take a vortex con guration rather than be uniform. This condition is achieve if the device is large enough not to be a single magnetization element and thick enough for the magnetization to be out of plane at the core of the vortex, as shown in Figure . . The vortex con guration minimizes the surface magnetic charges. In small junctions the exchange interaction is dominant so the uniform con guration is more favorable. When spin-polarized

At the th Global MRAM innovation forum in Zurich, the th June . current is injected from a polarizer with perpendicular [ ] or vortex [ ] magnetization, with the right sign of the current, the core of the vortex performs circular oscillations around the center of free layer. In the case of a vortex in a magnetic tunnel junction, these oscillations emit a voltage signal. The advantages of the vortex oscillators is that they are less sensitive to defects and noise and thus exhibit a more narrow linewidth (down to several hundreds of kHz [ ]) than uniform oscillators. Furthermore they emit a higher power (up to . µW [ ]). However they are limited to frequencies of several hundreds of MHz.

These two types of nano-oscillators are promising for communications applications. In that goal, synchronization of an oscillator to a periodic source as well as mutual synchronization of several oscillators have been widely studied [ -].

Nanomagnetic logic

The fact that a nanomagnets can encode binary information is not only useful for data storage but also for logic applications. Several schemes implementing diverse logic functions with single magnetization elements have been proposed. Cowburn et al. showed how to build an AND gate [ ]. Figure .   presents the used network. The circular nanomagnets are the bits and are coupled to each other. The elongated nanomagnet serves as a bias value that can be " " or " " depending on its magnetization. An external magnetic eld is applied. The value of the rst circular nanomagnet is switched to " " if both the bias is " " and the magnetic eld is on (" "). This implements an AND gate. A periodic magnetic eld Other spintronic phenomena Some new spintronic systems are currently being investigated. At longer term they could be used for data storage and computing. Among them we can cite a few.

Vortex state

• Magnetic bubbles are circular single magnetization domains in a thin lm of opposite magnetization, as depicted in Figure . (a) [ ]. The absence or presence of magnetic bubble encodes a " " or a " ". The "magnetic bubble memory" was proposed and realized as early as [ ].

• Magnetic Skyrmions are non uniform distributions of spins in magnetic materials, as depicted in This means that two skyrmions bumping into each other are not destroyed. Furthermore skyrmions can be much smaller than bubbles.

• Magnetic monopoles appear when nanomagnets are arranged in lattices of speci c geometries (usually referred to as artificial spin ices), such as the kagome as shown in Figure . (c) [ , ].

They are frustrations of the magnetic state and can propagate in the lattice. The control of their propagation is essential for monopoles to be used in applications.

• Spin waves are collective states that can be formed by the spins of individual electrons, as depicted

in Figure . (d) [ ].
The quantum of spin wave is called a magnon and could be used to carry information.

.

. . Spintronics for unconventional and bio-inspired computing

On top of being attractive for conventional computing, spintronics devices are promising candidates for non conventional and speci cally bio-inspired computing. Their fast-non linear dynamics as well as their tunable functionalities (for instance a magnetic tunnel junction can be a non-volatile memory or an auto-oscillator depending on its operation conditions) emulate some important functions of the brain components. Here we present the most signi cant implementations of unconventional computing with spintronic devices. In particular we show how they can emulate synapses and neurons. This section is restrained to deterministic applications, as section . . . is dedicated to stochastic applications of spintronics, bio-inspired or not.

Non-Boolean logic with nanomagnets

Bhanja et al. demonstrated that nanomagnets could perform non-Boolean logic and speci cally optimization problems, which are useful in computer vision applications for instance[ ]. A network of coupled nanomagnets relax in its lowest energy state. Energy minimization is at the core of many optimization tasks. Each nanomagnet corresponds to a macro-spin which is coupled to the other macro-spins.

The Hamiltonian of the system depends on the state of all the macro-spins and the couplings between them. A carefully chosen network of nanomagnets can thus map directly the Hamiltonian that has to be minimized for the problem to be solved. Using a network of nanomagnets rather than traditional logic for this allows to directly solve the problem, no matter the size of the data to process (in contrary to a Boolean logic scheme where the number of steps increases with the size of the problem). They used both nanomagnets in uniform single magnetization state and nanomagnets in vortex state. They showed that their system can perform salient edges detection in images. This demonstration is a promising rst step for unconventional computing with nanomagnets. However the system still requires pre-processing of the image where salient edge detection is performed. Furthermore, although a recon gurable system is proposed as well, the experimentally demonstrated system can only be used for the detection of one speci c image.

Spintronic memristors as synapses

The spintronic memristor proposed by Lequeux et al. at the Unité Mixte CNRS/Thales is a stack of magnetic materials similar to a magnetic tunnel junction (Fig. . This allows the free layer to no longer be a single magnetization element (as it is the case for magnetic tunnel junctions) but rather to be composed of two magnetization domains, separated by a domain wall. One domain is in the parallel state while the other is in the antiparallel state. The resistance of the device depends on the relative sizes of the two domains. Applying a dc current moves the domain wall (in one direction with a positive current and the opposite with a negative current). The resistance can be tuned continuously by the value of the current, as shown in Figure . (c) and (d). Pushing the domain wall completely to one end or the other of the device leads to the usual fully parallel and anti-parallel states, which correspond respectively to the minimal and maximal resistance levels. The spintronic memristor is a non-volatile multi-level memory. This device is particularly relevant for bio-inspired computing, as it emulates a synapse.

For now this device requires currents up to mA. In order to reduce the energetic cost linked to these high currents, the device needs to be scaled down. Furthermore, the variations of resistance between the di ferent levels are too low (the highest resistance is less than double the lowest) to allow this memristor to be used in a cross-bar array like other types of memristors (such as phase-change or lamentary devices where the highest resistance is several orders of magnitudes above the lowest). However the spintronic memristor could be used as a synapse to couple two oscillators acting as neurons.

Spin torque nano-oscillators as neurons

Neurons exhibit an oscillatory behavior. Neuroscience research suggests that the synchronization of networks of neurons, and speci cally their phase-locking -is a key element for memory and learning represents the frequencies of oscillators and versus the frequency of the input oscillator. For extreme frequencies of the input (much smaller or much larger than frequencies and ), the core oscillators stay at their natural frequencies, independently of the input. However when the frequency of the input is in-between frequencies and , the core oscillators and the input synchronize to a common frequency.

Note that this frequency is not the natural input frequency.

The read-out of the system is "are oscillators and synchronized?". This small network allows classi cation with two classes: "oscillators and are synchronized" and "oscillators and are not synchronized".

Di ferent ranges of input frequencies correspond to di ferent classes. Of course this example is extremely simple. Increasing the size of the network allows for more complex classi cation. For instance the net- In order to have the network classify as needed to solve a given problem, one must chose the natural frequencies and couplings of the oscillators. In order for the system to be adaptable to various problems, this should be achieved through learning. Research on that topic is ongoing.

These oscillator-based computing schemes exhibit high computational power compared to their Boolean counterparts. However, their implementations are expensive if the oscillators are numerically simulated.

Using nano oscillators that can be integrated in a CMOS circuit, be coupled to each other and synchronize, is an attractive path. In consequence, it has been proposed to use spin torque nano oscillators as neurons for cognitive computing tasks. Synchronization of spintronic oscillators to an external source as well as mutual synchronization of coupled spintronic oscillators have been demonstrated and are promising for the implementation of oscillator-based computing circuits [ -]. Several groups are currently investigating how to build these types of circuits [ , , ].

.

. . Harnessing the stochasticity of spintronic devices for computing

As mentioned in Section . . . , the magnetization switching process of the magnetic tunnel junction is intrinsically stochastic because of thermal noise. None of the devices described above use this stochasticity. On the contrary, it is perceived as a critical issue, leading to huge e forts in design and fabrication to counter it. In this section, we present the strategies that reverse the problem and use noise as an asset.

Spin dice: a true random number generator Fukushima et al. have proposed to use magnetic tunnel junctions as true random number generators

A random number generator which randomness comes from a physical process and not a deterministic algorithm.

(b) (a) (c) [ ]. The magnetic tunnel junction starts in the parallel state. A current pulse of amplitude I and width ∆t is applied to the junction. The probability for the junction to switch to the anti-parallel state is [ ]:

P (I) = 1 -exp - ∆t τ 0 exp - ∆E k B T 1 - I I c . ( . )
The current amplitude and width are chosen so that the probability is . . If the junction switches, the value encoded is " ". If it does not switch, it is " ". The junction is then reset in the parallel state by a negative current pulse and can be excited again, as shown in Figure . In Chapter we present an alternative method to generate true random numbers with magnetic tunnel junctions.

See the paper [ ] and the Special Publication Statistical Tests Suite on the website http://csrc.nist.gov/ for more details. Each input neuron corresponds to a pixel of the input data. When there is a high value in the corresponding pixel, an input neuron res, emitting a voltage pulse to the crossbar, through the magnetic tunnel junctions. This voltage leads to currents received by the output neurons. The output neurons integrate these currents and each res when it has received a certain amount of current. If the system is operating successfully, each output neuron specializes in one speci c lane and res if and only if a car passes through it. The success of this classi cation tasks depends on the states of the magnetic tunnel junctions (i.e. synaptic weights) connecting the input and output neurons.

Stochastic synapses

The synaptic weights are initially random. The input neurons re pulses accordingly to the data from the arti cial retina. First the output neuron re randomly as the voltage they receive depends on the random weights. Progressively the weights are adjusted by a simple learning rule. The rule is implemented only when an output neuron res and goes as follows:

. If the output spike is shortly after an input spike, the weight is incremented.

. Otherwise the weight is decreased.

After the learning, each output neuron specializes in one speci c lane, as can be observed in Figure . (c).

Practically, this means that the synapses connecting the considered output neuron and the input neurons corresponding to the pixels of the associated lane have a high conductance (low resistance). The great advantage of this learning method it that is unsupervised. There is no need to tell the system what are the correct answers (the di ferent lanes in this case). This rule is a simpli ed version of the Spike Timing Dependent Plasticity (STDP), a bio-inspired learning rule [ , ].

The ability of memristors to exhibit STDP and use it for classi cation tasks has been shown by several groups [ , ]. Traditionally it requires analog or at least many-level synapses. However, it has been demonstrated that the same results can be achieved with binary synapses which are programmed in a stochastic way [ -]. Indeed the requirement for analog weights is due to the fact that the weights need to be only slightly modi ed by each spiking event. Otherwise the system is highly sensitive to noise

This arti cial retina an event-driven camera. This means it only records data for a pixel when its luminosity varies. The value of the pixel is then the luminosity di ference. The advantage of such a camera is its low power cost. It only consumes power when events (luminosity changes) occur whereas a traditional camera constantly consumes power. and isolated events (for instance a single event could saturate some weights). If the increase/decrease of the binary weights is implemented with a given probability, it is equivalent at the system level to an increase/decrease by small steps. Using binary stochastic synapses instead of deterministic multi-level ones enables a much simpler implementation as fabricating and controlling multi-level stable devices in a reliable way is challenging.

Vincent et al. showed that the magnetic tunnel junction is a particularly appropriate device to emulate a binary stochastic synapse. Indeed, the success rate of detecting cars in the right lane was above % for most lanes. They also demonstrated that the system exhibits a strong robustness to device variability.

.

. . Limitations of spintronic devices compared to other technologies

Low OFF/ON ratios The rst limitation of spintronic devices is that they exhibit low read-out signals. In these devices (whether they are magnetic tunnel junctions, spintronic memristors, spin torque nano-oscillators etc.), the magnetic state can be transformed into an electrical signal and be read because of the magnetoresistance e fect at play (giant or tunnel). A common metric to quantify the read-out signal is the OFF/ON ratio, which correspond to the ratio between the low and high levels of the signal. Here the OFF/ON ratio is thus equal to the ratio between the low resistance and the high resistance. Tunnel magnetoresistance ratios are typically between % and %, which correspond to OFF/ON ratios between and . The best reported tunnel magnetoresistance ratios at room temperature are around T M R = 600% [ ]. More complex stacks of materials might lead to even higher ratios. However, this remains low compared to other memristive technologies which can exhibit OFF/ON ratios larger than 10 4 .

The low OFF/ON ratios of spintronics devices means that their signals need to be ampli ed by transistors.

Architectures relying on spintronic devices might therefore require more CMOS overhead than those relying on other memristive technologies. For example, sense ampli ers can be used to read the state of the device and transmit it to the rest of the circuit. In Section . of Chapter , an example of such ampli er is presented.

High write currents

A second limitation of spintronics devices is that their programming requires high currents compared to CMOS devices. Applications usually require stable junctions with energy barriers so that ∆E > 60k B T . This corresponds to a write energy of 100fJ. This result is very promising for future developments. However, this write energy is still large compared to the write energy of CMOS devices (for instance the write energy of a SRAM cell which is below the fJ), but highly relevant for applications.

This device exhibits a tunnel magnetoresistance ratio of only about %. Furthermore, its energy barrier is below 35k B T , which is encouraging but still far from the 60k B T required for large scale systems. These results illustrate the di culty of reducing the energy consumption while maintaining the stability of the devices.

In this thesis, we target devices which are unstable: the superparamagnetic tunnel junctions. In consequence there is no high energy barrier constraint and the critical current can be drastically reduced.

Conclusion

Randomness is a crucial issue faced by all components used for computing when scaled down to the nanoscale, whether they are CMOS transistors or emerging technologies such as molecular, memristive or spintronic devices. Nevertheless, randomness can be useful in many physical phenomena which are relevant for computing applications. Speci cally we have targeted and presented noise-induced synchronization and stochastic computing. We showed that these schemes need a stochastic building block to (b) ful ll their potential. We have described various computing components exhibiting stochastic behavior and the strategies employed to harness this randomness.

We have focused on spintronics, which is a promising eld for novel forms of computing and memory.

Even though spintronics su fers from some limitations (low read-out signals and high programming currents), its agship device -the magnetic tunnel junction -is an appropriate stochastic building block.

Indeed, this device ful ll the requirements we had identi ed in the conclusion of Section . :

. It exhibits a non-linear dynamics which has been intensively studied experimentally and theoretically for several decades. The dynamics can be manipulated by an electrical current.

. The state changes correspond to magnetization reversals, which do not damage the device. In consequence magnetic tunnel junction could exhibit unlimited endurance [ ].

. The resistance of each state is constant in time and does not drift.

. Its stochasticity is well understood and modeled. It comes from thermal noise and not defects.

Therefore it can be controlled.

. Its state can be read by a simple electrical measurement.

. It is compatible with CMOS technology.

We have described systems which harness the stochasticity of magnetic tunnel junction. However, they only use the fact that the programming is stochastic and still require stable junctions. Embracing the instability of magnetic tunnel junctions would allow down scaling them to extreme dimensions and obtaining low programming currents. In consequence, in this thesis, we investigate for the rst time how to use a stochastic magnetic tunnel junction, which unstable magnetization oscillates randomly due to the uctuations of thermal noise.

Furthermore, using a spintronic devices has other advantages:

. Spintronics has proven its potential for applications, with magnetic hard disk drives being the main mass data storage. Magnetic tunnel tunnel junctions are a mature technology, already manufactured industrially and commercialized as the unit cell of MRAMs.

. As shown in section . . , spintronics is a rich eld encompassing a wide variety of devices with various functionalities. The same stack of thin layers can be a memory, a memristor, an uniform oscillator or a vortex oscillator depending on its geometry and size. Using magnetic tunnel junctions as stochastic building block ensures an easy compatibility with a broad ranges of other devices. An illustration of this will be seen in Chapter where spintronics neurons and synapses are made of the same stack.

In Chapter we present in details the physics of the magnetic tunnel junction in its stochastic regime. It

. PROPOSALS OF STOCHASTIC BUILDING BLOCKS is then called a superparamagnetic tunnel junction.

In Chapter and we study the noise-induced synchronization of a single then two coupled superparamagnetic tunnel junctions. These results are useful for the implementation of computing schemes based on the synchronization of oscillators. Here the superparamagnetic tunnel junction is analogous to an oscillating neuron.

Chapter explores the potential of superparamagnetic tunnel junctions as Poisson neurons to be integrated in neural networks for cognitive tasks such as learning.

Chapter

The superparamagnetic tunnel junction: a noise-powered stochastic oscillator T C of this thesis presents the physics of the device: the superparamagnetic tunnel junction. In this study, we use experiments to confirm the existing theory as well as to complete it. In particular we investigate the handles to control a superparamagnetic tunnel junction: a magnetic field, a current or a voltage. We present an original study of the e ect of electrical noise on a superparamagnetic tunnel junction. We leverage T C presents the system which is the focus of this thesis, the superparamagnetic tun- nel junction, which is treated as a bistable stochastic device. The goals of this chapter are to present:

. The superparamagnetic tunnel junction as a stochastic oscillator.

. The handles that are available to control this oscillator.

. The theoretical model we developed and its validation by comparison to experiments.

. How superparamagnetic tunnel junctions can be integrated in CMOS circuits

. How superparamagnetic tunnel junctions scale.

We start by presenting the devices used in this thesis and introducing the general theory of superparamagnetic tunnel junctions. Then we show how we conducted experiments to present the handles to control the junctions. These experiments enable us to con rm and detail some aspects of the theory as well as develop new ones. Speci cally we model the in uence of the electrical noise on superparamagnetic tunnel junctions.

. Experimental methods

. . Devices used in the experiments

The magnetic tunnel junctions used in the experiments of this thesis were fabricated by the team of S.

Yuasa at the National Institute of Advanced Industrial Science and Technology (AIST), in Tsukuba, Japan. Two di ferent batches of devices were used in the experiments presented here. We refer to them as Type A junctions and Type B junctions. All samples have an in-plane magnetization. ples are elliptic pillars with a 60 × 120 nm 2 cross-section.

The variability between nominally identical samples is very important. In consequence we were not able to observe signi cant di ferences between the type A and type B samples.

Origin of the superparamagnetism in the samples

We characterized over a hundred samples from di ferent batches and observed that only a fraction of these samples were superparamagnetic. More precisely, the junctions exhibited extremely di ferent stability levels, with mean dwell times ranging from at least several minutes (i.e. no reversal observed during the courses of the experiment) to tens of microseconds. Two samples next to each other in the chip could have frequencies di fering by several orders of magnitude. Furthermore, the samples were large: ellipses with semi-axis from nm to nm. At these sizes, within the macrospin model, the junctions are expected to be stable and not superparamagnetic. These observations lead us to think that our samples do not undergo macrospin reversals. Instead, a smaller sub-volume of the free layer switches and then drags the rest of the layer along. In some samples, more than two resistance levels were observed. These multi-state devices can be interpreted as follows: sometimes only a fraction of the free layer is reversed, which leads to an intermediary resistance.

However:

. The macrospin model can still be used to describe the dynamics of our samples. Indeed we are interested in the dwell times and their statistics rather than the precise dynamics of the switching itself. The only required adjustment to be made is that the energy barrier correspond to the subvolume and not the entire free layer. In consequence we do not compute the value of an energy barrier from material and shape parameters, but rather extract it from experimental characterization.

As will be seen all along this thesis, the macrospin-based models we develop match the experimental data very well.

. The junctions considered in the purely theoretical parts of this thesis, as well as the ones we recommend using for applications based on this thesis, are small enough to be fully described by the macrospin model (diameters from few nm to few tens of nm).

.

. Measurements and data analysis

The samples are measured in a probe station equipped with electromagnets. Dc current is injected by a Keithley current source. A large 4.7 kΩ resistance is connected in series to the superparamagnetic tunnel junction in order to protect it. The resistance of the junction is measured through time with an oscilloscope and converted into a binary signal (Anti-parallel or Parallel state) by a threshold operation.

All measurements aiming at statistical results are conducted so that to collect at least a hundred reversal events.

. Presentation of the superparamagnetic tunnel junction Because the magnetization of the free layer behaves as a macro-spin, the thermal noise can induce full amplitude reversals, as described by the Neel-Brown model [ ]. Figure . (a) presents the evolution with time of the resistance of a superparamagnetic tunnel junction (type A sample). We observe switches of the resistance between the AP and P state, with random intervals. We expect these switches to be probabilistic and driven by a Poisson process which escape rates follow the Arrhenius equations:

φ AP = φ P = φ 0 exp - ∆E k B T ( . )
Here φ AP (φ P ) is the escape rate from the AP (P) state. φ 0 = 1 τ 0 = 10 -9 s is the invert of the attempt time τ 0 , k B is the Boltzmann constant and T is the temperature. This model does not take into account the dynamics of the magnetization inside each energy well (intra-well dynamics) and hence does not take switching duration into account. Therefore, Equation . is valid if the time intervals between reversals are large compared to the time scale of the intra-well dynamics which have a time constant in the order of nanoseconds [ ].

The time intervals between reversals are called dwell-times. Figure . (b) presents histograms of measured dwell times. Both for the AP and P states we observe the exponential decrease of the dwell-time counts, which is characteristic of a Poisson process. For each state, the mean dwell time is the invert of the escape rate so we expect:

τ AP = τ P = τ 0 exp ∆E k B T . ( . )
The probability for the junction to leave a state after a time interval t follows the Kramer's transition rate theory [ ]:

P P/AP = 1 -exp(-t φ P/AP ). ( . )
As mentioned previously, any magnetic tunnel junction has an intrinsically stochastic behavior. The notion of whether a magnetic tunnel junction is superparamagnetic or not is entirely relative to the relevant time scale. While devices destined to memory applications have energy barriers so that ∆E k B T > 60, we have used sampled so that ∆E k B T < 24 at room temperature. This means they switch several times per minute (as observed in Figure . (a)). For applications purposes it is favorable to have much more frequent reversals and thus much lower energy barriers. In consequence in our theoretical work we have used junctions so that ∆E k B T < 10 at room temperature . The energy barrier is proportional to the surface of the base of the junction. Thus, smaller devices are less stable (see Section . ).

. . A stochastic bistable oscillator

When a junction is unstable over the relevant time scale, it should then not be considered as a bistable memory but as a stochastic oscillator, as observed in Figure . (a).

Note that the energy barrier here is of the sub-volume which starts the reversal and not the whole free layer. Frequency and phase of the oscillator Although such a system is di ferent from a periodic oscillator, standard features of oscillators can be de ned in the stochastic case as well. The frequency of the stochastic oscillator corresponds to the mean number of oscillations per second (i.e. half the number of reversals) and can be computed as follows:

F = 1 τ AP + τ P . ( . )
We thus expect the frequency to be dependent on the energy barrier versus temperature ratio:

F = 1 2τ 0 exp ∆E k B T . ( . )
The phase of the stochastic oscillator increases by π at every reversal. There are many ways to de ne the phase between the reversals [ ]. In this work we chose to reconstruct the phase as piece-wise linear (i.e.

the phase is linear between each reversal).

Free oscillations

The presence of thermal noise is su cient to induce reversals of the magnetization. Therefore, the stochastic oscillator functions without any external supply of energy. These "free oscillations" make superparamagnetic tunnel junction promising candidates for low power applications.

Ratio of time spent in the AP state

An important feature of the superparamagnetic tunnel junction is the proportion of time it spends in each state. If the junction is used as a random bitstream generator, this proportion will correspond to the probability of the bitstream (proportion of " "s versus " "s). It is de ned as follows:

Ratio = < τ AP > < τ AP > + < τ P > . ( . )
The average resistance of the junction can be expressed in function of the ratio: ) . . Handles to control the superparamagnetic tunnel junction At room temperature, several handles enable us to in uence the escape rates of the Poisson process and thus control the superparamagnetic tunnel junction: a magnetic eld, a voltage or current and electrical noise. We study these handles through experiments conducted on the devices presented above.

R = R P + Ratio (R AP -R P ). ( . 
.

. . Magnetic eld

We apply a variable magnetic eld along the easy axis of a stable magnetic tunnel junction (type B sample).

Figure . (a) represents the resistance of the junction as a function of the magnetic eld. The magnetiza-tion tends to align with the eld, so for a strong positive eld the state is AP and for a strong negative eld the state is P. However the elds required to switch from P to AP and AP to P are di ferent, which leads to a hysteresis behavior. We observe that neither the hysteresis loop of the stable junction or the switching zone of the superparamagnetic tunnel junction are centered on zero-eld. This shift is due to the fact that the synthetic antiferromagnet which constitutes the reference layer is in practice not perfectly balanced and thus creates a residual stray eld H 0 . In order to have a zero e fective eld, we apply a correcting eld H 0 to the junctions during the experiments.

The e fect of the magnetic eld translates into a deformation of the energy double-well and thus a modulation of the mean dwell times of the Poisson process [ ]:

τ AP/P = τ 0 exp ∆E k B T 1 ∓ H H k n , ( . 
)
where H is the component of the eld along the easy axis of the junction, H k is the coercitive eld of the junction and n is a real number exponent. There has been a debate regarding the value of n [ -].

The nal output is that the n varies with the angle between the applied eld and the easy axis of the junction. While it is closer to n = 3 2 for most angles, it is appropriate to use n = 2 in the case of a eld parallel to the easy axis. We use n = 2 in the rest of this work.

Taking into account the stray eld from the synthetic antiferromagnet, the expression of the dwell times is: ) .

< τ AP/P >= τ 0 exp ∆E k B T 1 ∓ H -H 0 H k n . ( . 

. . Spin transfer torque

A current ow through the junction can switch the magnetization of the free layer through the phenomenon of spin transfer torque (STT) [ , , , ]. While a strong current will fully reverse the magnetization (which is how the write operation is conducted in STT-MRAMs), a weak current will result in a nite probability for the magnetization to switch.

Under zero e fective eld, we inject a varying dc-current in a superparamagnetic tunnel junction (type B sample) and measure the mean dwell times of the AP and P states. Figure . (a) presents the mean dwell times of the states AP (blue) and P (green) as functions of the current I dc . Here we used the convention in which a positive current ows from the free to the pinned layer. We observe that when the current increases, the mean dwell time in the AP state increases while the mean dwell time in the P state decreases.

This observation means that a positive current destabilizes the P state in favor of the AP state while a negative current destabilizes the AP state in favor of the P state.

Precisely, the current in uences the escape rates of the Poisson process [ ]:

< τ AP/P >= τ 0 exp ∆E k B T 1 ± I dc I cAP/P . ( . 
)
Where I cAP (I cP ) is the critical current at T = 0K -i.e. the required current to deterministically switch the magnetization from AP to P (P to AP). 

V AP = I dc × R AP (V P = I dc × R P )
. We observe that both curves are linear with slopes of opposed signs and similar amplitudes.

These observations con rm that -under zero e fective eld -Equation . can be rewritten as follows:

τ AP/P = τ 0 exp ∆E k B T 1 ± V V cAP/P , ( . 
)
where V is the voltage across the junction (de ned positive from the pinned to the free layer) and

V cAP = R AP × I cAP (V cP = R P × I cP )
is the critical voltage of the state AP (P).

Sun and Ralph have calculated that the critical voltage is approximately independent on the state of the CHAPTER : THE SUPERPARAMAGNETIC TUNNEL JUNCTION Through spin transfer torque, the frequency as well as the ratio of the oscillator can be tuned by applying a voltage. Figure . (a) represents the frequency as a function of the voltage V dc . We observe a bell-shape curve, which is consistent with the expected expression of the frequency:
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F = F 0 cosh ∆E k B T V Vc . ( . )
The fact that superparamagnetic tunnel junctions have a voltage-dependent frequency is crucial for the analogy with sensory neurons, as will be detailed in Chapter . 

Ratio = 1 1 + exp 2 ∆E k B T V Vc . ( . )
When a both voltage and a magnetic eld are applied to the junction, the mean dwell times are given by the general expression:

In both Figures . (a) and (b), V dc is de ned as the arithmetic average between the voltages in the AP and P states.

-3 0 -2 0 -1 0 0 1 0 2 0 3 0 0 ) . . . Field-like torque

< τ AP/P >= τ 0 exp ∆E k B T 1 ± V V c 1 ± H -H 0 H k 2 . ( . 
In addition to the spin transfer torque, a voltage across the junction will in uence the dwell times in a eld-like way [ ]:

τ AP/P = τ 0 exp ∆E k B T 1 ± V V c 1 ∓ AV + BV 2 + H -H 0 H k 2 , ( . 
)
where A and B are the eld-like torque linear and quadratic coe cients, which depend on the materials and size of the junction. The e fect of the eld-like torque is weaker than the spin transfer torque (typically about % to % [ ]). In the type of junctions we measured, it the eld-like torque is mainly linear with voltage and thus cannot easily be distinguished from spin transfer torque [ ]. In consequence, in this thesis, we only model spin transfer torque.

.

. E fect of electrical noise

Thermal noise induces switches of the magnetization and thus raises the frequency of the stochastic oscillator. Through spin transfer torque, electrical noise can have a similar e fect. In order to study the in uence of electrical noise, we conducted experiments and developed a model.

CHAPTER : THE SUPERPARAMAGNETIC TUNNEL JUNCTION

If a white Gaussian noise N (t) with standard deviation σ N oise and cuto f frequency F N oise is applied to a superparamagnetic tunnel junction, the escape rates φ P and φ AP are time dependent random variables:

φ AP/P (t) = φ 0 exp - ∆E k B T 1 ± V + N (t) V c ( . )
We computed (see Appendix A for the demonstration) that the probabilities to switch states during a time interval t need to be averaged over all possible values of N :

P AP/P (t) = 1 - +∞ -∞ 1 -exp -δtφ 0 exp - ∆E k B T 1 ± V + N V c ψ(N )dN t δt , ( . 
)
where δt = 1/F N oise is the smallest time scale of the electrical noise and ψ(N ) is a Gaussian distribution with standard deviation σ noise .

Although accurate, this expression is not very convenient to use for further analytical computations, and does not provide a qualitative understanding of the e fect of electrical noise. In consequence, we performed the following experiment: we apply a I dc = 400µA dc current and a white Gaussian noise voltage of cuto f frequency F N oise = 40MHz to a superparamagnetic tunnel junction (type A sample).

The electrical noise is generated by the Agilent A Pulse Function Arbitrary Noise Generator . The Gaussian distribution of the noise is cut at 5 × σ N oise .

Figure . represents the logarithm of the mean dwell times of the AP (a) and P (b) states as functions of the amplitude (standard deviation of the Gaussian distribution) of the noise. We observe that the logarithm of the mean dwell times exhibit a quadratic dependence on the noise amplitude.

We computed the following approximation, valid when the noise level σ noise is low enough:

P AP/P (t) = 1 -exp(-t < φ AP/P >) ( . ) with < φ AP/P (t) >= φ 0 exp - ∆E k B T 1 ± V V c exp 1 2 ∆E k B T σ N oise V c 2 . ( . )
This low noise approximation matches our experimental observations, the logarithm of the dwell times are of the shape :

log( φ AP/P (t) ) = a + b × σ 2 N oise . ( . 
)
The noise is pre-recorded and has a signal repetition period of days, which is more than enough considering the time scale of our experiments does not exceed the hour.

Where

a = log φ0 exp -∆E k B T 1 ± V Vc and b = 1 2 ∆E k B T 1 Vc 2 .
. NUMERICAL MODEL AND SIMULATIONS These results allow us to understand better the e fect of electrical noise and how it compares to the e fect of thermal noise. Electrical noise lowers the mean dwell times and thus raises the frequency of the junction.

In that sense electrical noise and thermal noise have similar e fects. Indeed it will be seen in Chapter that both electrical and thermal noise can induce synchronization of a junction to a periodic drive and have qualitatively the same e fect.

The frequency taking into account electrical noise is expressed as follows;

F (σ N oise ) = F (σ N oise = 0) × exp 1 2 ∆E k B T σ N oise V c 2 . ( . 
)
Where F (σ N oise = 0) is the frequency when no electrical noise is applied, as expressed in Equation ..

However there are two important di ferences between electrical and thermal noise:

. Electrical noise equally a fects the AP and P states. The proportion of time spent in the AP state is thus independent of the electrical noise, whereas it is dependent on the thermal noise.

Ratio = 1 1 + exp 2 ∆E k B T V Vc . ( . )
. When electrical noise is applied, the escape rates of the Poisson process are random variable themselves, driven by the random uctuations of the applied voltage N . On the contrary, when only thermal noise is present, the escape rates are constant. All our analytical derivations deal with averages over the possible values of the instantaneous applied voltage N . However, one must not forget that these are averages and that the instantaneous values of the escape rates can vary strongly.

This di ference can lead to strong qualitative variations of noise-induced phenomena, as described in Chapter .

.

Numerical model and simulations

We developed a model describing the behavior of the superparamagnetic tunnel junction and aimed at performing numerical simulations. Here we present this model and confront it to experimental results.

In order to perform fast simulations, this model is not based on the full magnetic Landau-Lifshitz-Gilbert equation but on the Néel-Brown model presented in section . . At each time step the program computes the mean dwell-times τ AP and τ P and the corresponding probability to switch from the current state to the other, according to equations ( . ) and ( . ). A random number is generated to take the decision whether to switch or not. The model is valid if the dwell-times are large compared to a nanosecond [ ].

In order to have time e cient simulations and not lose the advantage of the model, it is important that the time step is not too small. On the other hand, to accurately reproduce the Néel-Brown model, the time step must be small compared to the dwell times. The model allows the user to set all the parameters 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 -5 . 2 L n ( present in equation ( . ), as well as the resistances of the parallel and anti-parallel states. This model can be adapted to various programming languages.

τ P ) σ N o i s e 2 ( m V 2 ) ( a )
It is important to have models of superparamagnetic tunnel junctions that are compatible with the tools used by both academic and industrial researchers to design integrated circuits including CMOS technology.

In consequence, we have adapted our model into a compact model written in the VerilogA language, that can be used within standard design tools, such as the Cadence Spectre simulator.

In this work we used two numerical simulators: MATLAB and Cadence Spectre.

Confrontation to experimental data

We test our VerilogA model by comparing it with the experimental characterization of a superparamagnetic tunnel junction (type A sample). Simulation are made on the Cadence Spectre platform. We use the VerilogA command boundstep which allows to set a variable upper limit on the time step. . .

CMOS INTEGRATION WITH CADENCE
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CMOS integration with Cadence

We illustrate how a superparamagnetic tunnel junction can be integrated into a CMOS circuit and how

Cadence Spectre can simulate such a circuit. Here we show the example of a Pre-Charge Sense Ampli er, which is a circuit speci cally designed to read the state of magnetic tunnel junctions. Details about this circuit can be found in [ ]. To read the state one has to apply " " to the read function "Sense" (circled in red). When " " is applied to "Sense", then Q keeps its current state. • Before t 1 the output was Q = 1. At t 1 the state is read. R = 200Ω = R P so the output drops to Q = 0.

• The output stays Q = 0 until t 2 when the state is sampled again. R = 400Ω = R AP so the output raises to Q = 1.

• Before t 3 the output was Q = 0. At t 3 the state is sampled. R = 200Ω = R P . the output undergoes a rapid transient state then settles to Q = 0 again.

Cadence allows to design complex circuits (through the graphic interface or through scripts). The models of electronics components (and speci cally transistors) that are used match the real-life behavior of industrial devices. It is thus a powerful tool to investigate hybrid emerging technologies / CMOS circuits.

.

Scaling and perspectives

Fabricating magnetic tunnel junctions is the target of intense e forts, both from academic and industrial actors. For now there has been very little interest in the fabrication of superparamagnetic tunnel junctions and the focus of researchers has on the contrary been to build junctions with a large energy barrier.

Suppressing the large energy barrier constraint will allow having junctions with a small size and a low critical current. In consequence we are optimistic that the design and manufacture of superparamagnetic tunnel junctions is feasible.

In the theoretical parts of this thesis we use a simple model for the dependence of the junctions' energy Both the energy barrier and the critical current are proportional to the volume of the free layer and thus have a quadratic dependence on the diameter:

∆E(d) = ∆E 0 d 2 d 2 0 . ( . )
Where ∆E 0 10k B T for d 0 = 10nm.

I c (d) = I c0 d 2 d 2 0 . ( . 
)
Where I c0 10µA. This model is based on the single magnetization domain assumption and is valid if the diameter of the junction is smaller than nm. ("Sense"), the Resistance (in Ohms) and the output ("Q") are plotted versus time, in red, black and green respectively. The vertical blue dashed lines correspond to the sampling times labeled t 1 , t 2 and t 3 .

The critical voltage is expressed as follows:

V c (d) = I c (d) × R(d). ( . )
The resistance is itself dependent on the size of the junction:

R(d) = RA π d 2 4 . ( . 
)
Where RA is the resistance × area product and ranges from to Ω × cm 2 depending on the used materials. In consequence the critical voltage is constant when the size of the junction is decreased.

Sato et al. showed a very good agreement between this model and the experimental data obtained from the characterization of out-of-plane magnetic tunnel junctions with diameters ranging from nm to nm. A junction with a nm diameter corresponds to a F = 22.7kHz natural frequency. The transition from state to state lasts about ns. In consequence, frequencies up to the GHz can be expected from the down scaling of superparamagnetic tunnel junctions. However, the dwell-time expressions presented in this Chapter are no longer valid as such frequency and the switches would be correlated because of their proximity in time. Such a device would not be suitable for some applications such as random number generation. For the latter, frequencies up to about MHz can be expected. At this frequency, the energy barrier is equivalent to the thermal energy k B T , which requires a diameter of roughly nm.

Conclusion

The superparamagnetic tunnel junction is a noise-powered bistable stochastic oscillator. Though its behavior is random, its physics is well understood and modeled. The superparamagnetic tunnel junction is a promising building block for bio-inspired computing systems. In this thesis we show three paths to use this device as such:

. As an oscillator to achieve low-power synchronization (Chapters and ).

. As a Poisson neuron to perform population coding (Chapter ).

. As a true random number generator (Chapter ).

Chapter

Noise-induced synchronization of a superparamagnetic tunnel junction to an external drive I C we demonstrate how thermal and electrical noises can induce the low- power synchronization of a superparamagnetic tunnel junction to an external drive. As perfect synchronization is not possible in a stochastic device, a looser definition of synchronization has to be adopted. We investigate and compare several metrics to measure synchronization. Both We start by brie y de ning synchronization of a stochastic bistable oscillator to an external drive (Section . ).

Section . features the rst experimental demonstration of noise-induced synchronization in a magnetic tunnel junction. It investigates various synchronization criteria and shows how the theoretical model presented in Chapter accurately describes experimental results.

Section . is a theoretical study of how to use temperature to control the synchronization of a superparamagnetic tunnel junction. We develop a comprehensive analytical model of noise-induced synchronization.

In particular, this model gives access to the noise range for which synchronization occurs.

Section . features the rst experimental demonstration of synchronization controlled by external noise in a nanoscale system. We extend the model presented in section . to the case of electrical noise and show that it accurately describes experimental results.

In Section . we leverage our analytical model to compute the energetic cost of noise-induced synchronization for optimized devices.

. Synchronization of a stochastic bistable oscillator to an external drive Synchronization of a harmonic periodic oscillator to a harmonic periodic drive is achieved if both signals have the same frequency and the same phase. In the case of a stochastic bistable oscillator, synchronization has to be rede ned.

For a bistable oscillator driven by a two-states signal, we have a four state system. The oscillator is considered synchronized with the drive if it is "UP" (AP in the case of a magnetic tunnel junction) when the drive is "UP" and "DOWN" (P) when the drive is "DOWN" (Fig. As the oscillator has an intrinsically random behavior, perfect synchronization cannot be achieved and a less strict de nition of synchronization has to be adopted. Several criteria can be used and will be explored in this chapter.

Drive

Osc.

t t

Perfect synchronization Stochastic synchronization . Harnessing the available thermal energy at room temperature Phenomena occurring at room temperature are the most desirable for applications. We demonstrate how to harness the thermal noise available at room temperature to induce synchronization.

We studied the response of a superparamagnetic tunnel junction (type A sample) to a weak oscillating excitation current. At room temperature and under zero e fective eld (see Chapter ), we injected a square periodic current of di ferent frequencies and amplitudes well below the critical current I c

1.3mA of our junction.

We monitor the voltage across the junction with an oscilloscope. As there are two levels of current (+I ac and -I ac ) and two possible resistance values (R P and R AP ), there are four possible levels of voltage:

+I ac × R AP , +I ac × R P , -I ac × R P and -I ac × R AP (from highest to lowest). We identify each level and reconstruct the evolution with time of the current drive and of the resistance of the junction.

For each ac-current amplitude I ac and frequency F ac considered, traces of seconds in duration were recorded in order to obtain su cient statistics on the response of the stochastic device.

.

. Various synchronization regimes

Our goal is to detect and quantify the synchronization of the stochastic oscillator with the drive. We start by analyzing the time resolved evolution of the resistance of the junction, for a ac-current amplitude i.e. the state of the junction -versus time. Figure . (c) plots the phase of the periodic drive φ e (black)

I ac = 250µA .
and the phase of the oscillator φ s (red). Both phases are obtained by adding π at each reversal and piecewise reconstruction between the reversals. In consequence a periodic signal has a fully linear phase. Figure . (d) represents histograms of the dwell-times for the anti-parallel (red) and parallel (green) states.

We observe three di ferent regimes at various frequencies:

(1)

F ac = 450Hz
When the frequency of the drive is higher than the natural frequency of the junction, there is no synchronization. The oscillations of the junction (Fig. . (b)) do not follow the oscillations of the drive (Fig.

.

(a)

). We observe that sometimes the drive reversal is followed by a state switch of the junction, but most of the times the junction "misses" the switches. The phase of the periodic drive φ e is linear, while the phase of the junction φ s is non-linear and left behind the phase of the drive (Fig. . (c)). These observations can be explained by the fact that the junction tries to follow the drive but is too slow to achieve synchronization. The analysis of the dwell times histograms con rms that the junction responds to the excitation of the drive. Instead of the characteristic shape of a Poisson process, the dwell times are grouped into peaks around odd integer multiples of Tac 2 . A Tac 2 dwell time means that the junction is synchronized with the drive for half a period. A 3Tac 2 dwell time means the junction missed one oscillation of the drive, a 5Tac 2 dwell time means the junction missed two oscillations of the drive, and so on. This behavior corresponds to stochastic resonance: it occurs in conditions less strict than noise-induced synchronization [ , , ].

(2) F ac = 100Hz When the frequency of the drive is of the same order as the natural frequency of the junction, there is synchronization. For each oscillation of the drive there is one oscillation of the junction (Fig. are grouped into a single peak at Tac 2 . Synchronization is not perfect as the junction has a stochastic behavior. Indeed we observe that after each reversal of the drive, the junction waits a random delay to switch, which translates into the widths of the dwell times peaks. However we observe that although the phase di ference between the drive and the junction is non-zero, it is bounded (Fig. . ). In consequence, the system exhibits both synchronization in frequency and phase-locking. As the drive amplitude is well below the critical current, it cannot induce synchronization by itself. Here synchronization is only made possible by the presence of thermal noise. This allows to achieve synchronization at a lower energy cost than in the noiseless case.

(3) F ac = 7.8Hz When the frequency of the drive is much lower than the natural frequency of the junction, the junction is able to follow the drive easily. We observe that the random delays between the reversals of the drive and the junction are shorter that in the previous case. This leads to the fact that the dwell-times peaks are much narrower than at F ac = 100Hz. However, the time intervals between two drive reversals are long .

 e  e  e  s  s  s  s   e

. . Matching time

The matching time corresponds to the proportion of time where both the junction and the drive are in the same state "UP" or "DOWN": junction in the AP state when the drive is +I ac and junction in the P state when the drive is -I ac . If the junction is completely uncorrelated from the drive and its behavior is fully random, the matching time is %. If the junction is perfectly synchronized with the drive, the matching decreases. Indeed, the slower the drive, the easier it is for the junction to synchronize on it. Glitches are more and more frequent when the drive frequency decreases but they are very short and therefore do not signi cantly a fect the matching time. We can highlight that the matching time behavior is monotonous with the drive frequency: stochastic resonance is a resonance in noise level and not frequency. Furthermore, we observe that the matching time is higher for larger drive amplitudes. Indeed, synchronization is more e cient with a strong signal.

. . . Frequency of the oscillator frequency is equal to the drive frequency, which is symbolized by the F = F ac dashed line. We observe that at high drive frequencies, the frequency of the junction is constant and only depends on the drive amplitude.This saturation can be interpreted as follows: the drive is so fast compared to the junction the junction only see averages values (the amplitude) and does not respond at all to the oscillations. In this regime, there is no stochastic resonance. We observe that when the drive frequency decreases, the frequency of the junction is pulled towards it (which corresponds to stochastic resonance). Synchronization occurs when the frequency reaches the drive frequency. At low drive frequencies, we observe that the frequency of the junction raises above the drive frequency. This is due to the appearance of glitches.

Furthermore, we observe that the larger the drive amplitude, the broader the synchronization range.

We use our compact model to conduct numerical simulations with the Cadence Spectre simulator as extracted from prior characterization then nely tuned to t the experimental data. Figure . shows that our model (grey solid lines) describes accurately the experimental results (symbols). This demonstrate the validity of our model for the prediction of the dynamics of a superparamagnetic tunnel junction in the case of a complex phenomenon.

.

. . E fective di fusion constant of the phase

The dynamics of the state of the junction can be viewed as a one-dimension Brownian motion of a particle where the switches correspond to jumps back and forth. In a D Brownian motion, the signi cant variable is the di ference between the quadratic average of the position X(t) 2 and the average position X(t)

of the particle:

X(t) 2 -X(t) = 2tD ef f . ( . )
In a Brownian motion the average position is typically zero as the particle di fuses equally both directions.

The quadratic average is then proportional to the time t and the proportionality coe cient D ef f is called the e fective di fusion constant. The e fective di fusion constant is thus a metric of how much the particle spreads away from its average position. By analogy we can de ne the e fective di fusion constant of the phase of the junction [ ]:

D ef f = 1 2 d dt φ s,i 2 -φ 2 s,i . ( . )
Where φ s,i is the average over several independent measurements of the phase φ s . The average phase is driven by the frequency of the junction: φ s,i = 2πF t. The quadratic average quanti es how much the phase spreads around its average motion. In consequence the e fective di fusion constant is a metric of how much stochastic the motion is. A low di fusion constant signi es a close to periodic behavior (a perfectly periodic motion has a zero di fusion constant) while a large di fusion constant signi es a fully stochastic behavior, which is not well described by its average motion. of the order of a couple hundreds rad 2 /s), as observed in Figure . (a). We conclude that at low drive frequencies, the behavior of the junction is mainly periodic, i.e. synchronized to the drive. The fact that the e fective di fusion constant remains small at very low frequencies means that the glitches do not a fect it. It should be noted that the transition from stochastic to synchronized behavior -which occurs around

F ac 250Hz -is sharp.

Conclusion

To conclude, we have investigated three di ferent metrics quantifying synchronization. of synchronization for computing will depend on the application. Indeed, for for some applications, such as Hop eld networks or Boltzmann machines for examples, we expect that glitches will not be an issue. On the contrary, for some other applications, such as schemes compatible with rate-based coding of information for example, frequency synchronization might be more appropriate. Besides, neuroscience research suggest that several types of synchronization are employed by the brain [ ]. In consequence, it is an asset to have di ferent types of noise-induced synchronization that can occur in di ferent conditions.

Theoretical schemes using synchronization for pattern recognition and classi cation have "which oscillators are synchronized together" as a read-out. Therefore, depending on the speci c architectures and synchronization detection systems, di ferent synchronization metrics might be more appropriate:

• If we want to answer the question "are these two oscillators synchronized" in a binary fashion, then it is better to use a metric with a sharp transition between the synchronized and non-synchronized state. In this case the frequency or the e fective di fusion constant of the phase are more relevant.

• If we want to measure the degree of synchronization between two oscillators, then it is better to have synchronization de ned as an analog quantity. In this case the matching time is more relevant.

. Controlling synchronization with the temperature

In Section . we observed the noise-induced synchronization of a superparamagnetic tunnel junction. In order to leverage this phenomenon for applications, it is necessary to control synchronization: i.e. being able to induce or suppress synchronization. In this section we show how to control synchronization by varying the temperature. We present numerical simulations performed with the model described in Chapter and validated for the description of noise-induced synchronization in Section . . We also develop an analytical model of noise-induced synchronization. This model does not only aim at providing a qualitative understanding but also to give quantitatively accurate predictions. In particular, the model gives access to the temperature range which induces synchronization. In this section and the following, we show that our model matches experimental results.

We perform numerical simulations of a superparamagnetic tunnel junction with an energy barrier and temperature such that ∆E = 30 k B T at T = 50K (i.e. ∆E = 5 k B T at T = 300K room temperature) and a threshold voltage V c = 1 V. We apply a square periodic voltage with frequency F ac = 1/T ac = 1 MHz and with sub-threshold amplitude V = 0.75V to the junction. The three regimes observed in the previous section are found here as well. Indeed, raising the temperature increases the natural frequency of the oscillator. At low temperature, the oscillator is too slow to synchronize to the drive. For an optimal range of temperature, the oscillator and the drive have comparable frequencies and synchronization is achieved: this corresponds to the plateau. At high temperature the oscillator is too fast compared to the drive and therefore glitches appear. The glitches do not a fect the matching time until they are extremely frequent. In consequence, the rise of the matching time is much steeper than its fall and the synchronization plateau does not coincide with the maximum of the matching time.

We choose to focus on the synchronization in frequency. In order to harness noise-induced synchronization for application, it is necessary to understand quantitatively the conditions leading to it. Therefore we develop an analytical model based on the switching rates between the P and AP states of the stochastic oscillator.

.

. Modeling noise-induced synchronization

The most recent and precise analytical expression of the frequency of a stochastic oscillator submitted to a square periodic drive has been found by Casado-Pascual [ ]:

F = γ 4   1 -∆ 2   1 - 4 tanh γ Tac 4 γ T ac     . ( . 
)
Where F r e q u e n c y ( M H z ) M a t c h i n g t i m e ( % ) M a t c h i n g t i m e ( % ) and

γ = φ + + φ - ( . ) 0 
∆ = φ + -φ - γ . ( . 
)
This analytical expression of the frequency describes accurately the numerical results, as can be observed in Figure . . However, Casado-Pascual's model has several issues:

. It does not give access to further understanding of the phenomenon.

. It cannot be used in the case of electrical noise, when the escape rates are random variables themselves.

. It cannot be used in the case of more complex circuits, composed of several coupled oscillators for instance.

In consequence, we develop a model which provides quantitatively accurate results as well as a better qualitative understanding on the phenomenon. This model can be very directly adapted to the cases of electrical noise (as shown in Section . ) and of coupled oscillators (as shown in Chapter ). .

. . Finding the boundaries of the synchronization frequency plateau

The junction is considered to be in-phase with the drive if it is in the AP state when the drive is +V and in the P state when the drive is -V . In consequence we can de ne P + the probability to phase-lock to the drive in half a period (i.e. before the next drive reversal) and P -the probability to phase-unlock: ) where P P →AP +V, Tac 2 is the probability to switch from P to AP in a Tac 2 time interval when a voltage +V is applied, and

P + = P P →AP +V, T ac 2 = P AP →P -V, T ac 2 = 1 -exp - T ac 2 φ + ( . ) P -= P P →AP -V, T ac 2 = P AP →P +V, T ac 2 = 1 -exp - T ac 2 φ - ( . 
φ + = φ 0 exp - ∆E k B T 1 - V V c ( . ) φ -= φ 0 exp - ∆E k B T 1 + V V c . ( . 
)
We illustrate this model in Figure . : for each temperature, the probabilities P + and P -are computed analytically and plotted on the right axis while the frequency is plotted on the left axis.

At low temperatures, the probability to phase-lock P + is low: the oscillator cannot follow the drive and there is thus no synchronization. We investigate the conditions leading to the occurrence of synchronization. When the junction and the drive are out-of-phase, they have a probability P + to phase-lock in the next half-period Tac 2 (before the next switch of the drive). When the junction and the drive are in-phase, they have a probability (1 -P -) to stay phase-locked during the next half-period. As the junction is intrinsically stochastic, there cannot be perfect deterministic synchronization.

We consider the junction to be synchronized to the drive for P + > 0.99 and P -< 0.01 . These conditions correspond to the temperature range 85K < T < 241K and indeed we observe that it matches the visual boundaries of the plateau where the frequency of the junction is equal to the frequency of the drive (as symbolized by the light red zone labeled "synchronization" in Figure . ). More precisely it corresponds to the temperature range in which F = F ac with a % precision.

Above T = 241K, the probability to phase-unlock P -is higher than . . We observe that the junction regularly slips out of phase. These parasitic oscillations (glitches) raise the frequency of the junction above F ac and destroy synchronization.

. . . Modeling the shape of the frequency

We provide analytical expressions of the frequency for the di ferent regimes and compare them to numerical results in Figure . . . At very low temperatures, the junction is too slow to respond to the oscillations of the drive. The switching rate φ -can be neglected in front of φ + . The junction can switch from AP to P (with the rate φ + ) when the drive is -V and from P to AP (also with the rate φ + ) when the drive is +V . As the behavior of the junction is fully stochastic, these conditions are ful lled on average half of the time. The mean switching rate is thus φ + 2 . As there are two switches per oscillation, this corresponds to a frequency:

F low noise = φ + 4 . ( . )
In our device and under the considered conditions, this expression is valid for T < 60K, as observed in Figure . (a).

As will be detailed, the error accepted on the frequency-locking can be chosen by tuning the noise range.

. When the level of thermal noise is slightly sub-optimal, synchronization is limited by the junction's ability to phase-lock fast enough when the excitation voltage reverses. Therefore the mean frequency of the junction is F = F ac (2P + -1). On the other hand, when the noise level is slightly supra-optimal, synchronization is limited by the junction's tendency to jump out of phase with the excitation voltage. Therefore F = F ac (1 + 2P -). On the whole, near the plateau, the mean frequency of the junction is:

F plateau = F ac (2P + + 2P --1). ( . )
In our device and under the considered conditions, this expression is valid for 60K < T < 360K, as observed in Figure . (a). The full demonstration of equation . can be found in Appendix B.

This model enables us to predict the boundaries of the plateau for any chosen precision on the frequency. If we seek an error rate below x (i.e. (1 -x)F ac < F < (1 + x)F ac ) the conditions on the switching probabilities are P + > 1 -x 2 and P -< x 2 .

. At very high temperature, the junction is so fast that it perceives the drive as a dc-voltage. Its frequency is the mean of the frequencies when the drive is +V and -V :

F high noise = 1 2 (F +V + F -V ) ( . ) = 1 φ -1 + + φ -1 - .
( . )

In our device and under the considered conditions, this expression is valid for temperatures above K, as observed in Figure . (b).

For very low and very high levels of thermal noise, the frequency of the junction does not depend on the frequency of the drive (Equations . and . ). The involved time scales are too di ferent to trigger a response. For medium levels of thermal noise (around the synchronization range), the frequency of the junction depends on the frequency of the drive (Equation .). This is stochastic resonance. For a range of noise within stochastic resonance, the frequency of the junction is equal to the frequency of the drive (F = F ac ). This is noise-induced synchronization.

In the previous section, we saw that noise-induced synchronization can only occur in speci c drive frequency ranges and that it is more e cient for higher drive amplitudes. We use numerical simulations and our analytical model to get a quantitative understanding of the e fect of the drive characteristics (Fig. 
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F r e q u e n c y ( M H z ) T e m p e r a t u r e ( K ) increases the width of the plateau. A minimum voltage is observed at V ac = V min = 0.3V: below this amplitude, synchronization cannot be achieved at any temperature, for this drive frequency. This drive amplitude constrains the minimum external power supply required to sustain synchronization at this drive frequency.

V a c = 0 . 9 V c V a c = 0 . 8 V c V a c = 0 . 7 V c V a c = 0 . 6 V c V a c = 0 . 5 V c V a c = 0 . 4 V c V a c = 0 . 3 V c F a c
P min = 1 2 V 2 min R . ( . 
)
Where R is the average resistance of the junction. We experimentally observed that noise-induced synchronization of a bistable oscillator is achieved in a single period, therefore the minimum energy required to achieve synchronization at a given drive frequency is: ) . . . E fect of the drive frequency versus drive frequency" of the synchronization region (in red). We observe that raising the drive frequency shift the plateau toward higher temperatures. Indeed higher levels of thermal noise increase the natural frequency of the junction. At F ac = 100MHz, the plateau is no longer observed. We observe a maximum at F ac = F max = 60MHz: above this drive frequency, synchronization cannot be achieved at any temperature, for this drive amplitude. It is important to notice that noise allows synchronization to occur over broad ranges of frequencies (several orders of magnitude). This is a key advantage of noise-induced synchronization over traditional synchronization.

E min = 1 2 V 2 min R T ac . ( . 
The fact that noise-induced synchronization occurs over broad ranges of temperature, drive amplitudes and frequencies makes it robust to device variations.

.

. . Comparison of the model with experimental results

Our model can be used to map the three di ferent regimes experimentally observed at room temperature (see Section . ). .

. Extension to other drive waveforms

We extend our study to a drive waveforms other than a square periodic: square stochastic and sinusoidal.

For both cases, we consider a junction of energy barrier ∆E = 5k B T at T = 300K, to which a drive of frequency F ac = 1MHz is applied.

. . . Square stochastic drive

The square stochastic drive is generated by a Poisson process of characteristic time τ = 1 2Fac . The noiseinduced synchronization mechanism is similar to the square periodic drive case [ ]. Figure . represents the time evolution of the resistance of a superparamagnetic tunnel junction (up) and the square stochastic drive applied to it (down), for various temperatures simulated in the Cadence Spectre simulator. We observe the usual three di ferent regimes at di ferent temperatures: stochastic (Fig. Figure . compares the frequency (a) and matching time (b) versus temperature for a periodic drive and a stochastic drive. We observe that while the matching time is similar for the stochastic and periodic cases, the synchronization plateau is narrower for a stochastic drive. Synchronization occurs when the natural frequency of junction is of the same order as the drive frequency (here as illustrated for T = 250K).

But for a given average frequency of the stochastic drive, only a portion of the switches occur at this time scale and many dwell times of the drive are too fast or slow for the junction. Therefore the noise range for which synchronization occurs is reduced.

These observations and interpretations can be formalized by adapting our analytical model to the stochastic drive case. The escape rates φ + and φ -are constants as in the square periodic case. However, the probabilities to switch P + and P -are random variables because the time intervals spent by the drive in each of its two states are random. The quantities to consider are thus the average probabilities over all possible values of the time interval t:

P + = ∞ 0 dt τ exp - t τ P + (t). ( . )
Where τ = Tac 2 is the characteristic time of the Poisson process generating the stochastic drive.

P + = ∞ 0 dt τ exp - t τ (1 -exp (-t φ + )) . ( . )
In consequence:

P + = 1 - φ -1 + τ + φ -1 + ( . )
and by similar computations

P -= 1 - φ -1 - τ + φ -1 - . ( . )
The analytical expression of the frequency around the plateau in the stochastic drive case is thus:

F = F ac (2 P + + 2 P --1) . ( . )
Figure . presents the numerically obtained frequency in function of the temperature for the square periodic (black squares) and square stochastic (red circles) drives , as well as their analytical counterparts (solid lines). We observe that the analytical model accurately describes the numerical results around the synchronization plateau for both drives.

To the best of our knowledge this is the only analytical model of the frequency around the plateau of noise-induced synchronization which is able to di ferentiate a stochastic from a periodic square drive. The only available analytical expression for the frequency resulting from a stochastic square drive was given by Neiman et al. and is part of a framework where both stochastic and periodic drives are considered equivalent [ ].

.

. . Sinusoidal drive

Figure . represents the evolution with time of the sinusoidal drive and the state of the junction at di ferent temperatures, simulated in the Cadence Spectre simulator. We observe the three usual regimes.

At T = 80K the behavior is stochastic. At T = 350K the junction is in the glitches regime. At T = 110K

and T = 260K the junction is synchronized with the drive: for each oscillation of the drive there is one oscillation of the junction and their phase di ference is bounded. However, the average phase di ference between the drive and the oscillator varies with the temperature within the synchronization regime, as illustrated in Figure . (a). At T = 110K, the oscillator switches when the drive is

V (t) = +V ac
Here the drive amplitude is Vac = 0.75Vc for both cases. which leads to a π 2 phase di ference. As the temperature increases, P + reaches values close to % at lower V (t) values, which leads to switches of the junction earlier in the drive period and therefore a lower phase di ference (about π 4 at T = 260K). The decrease of the phase di ference stops when the glitches appear and synchronization is lost.

Figure . (b) compares the evolution of the oscillator frequency versus the temperature for the sinusoidal and square cases, at various drive amplitudes. We observe that the plateau is narrower for a sinusoidal drive. Indeed, at xed amplitude V ac , the e fective value of the drive is lower in the sinusoidal case:

V ef f = V ac sin(2π t T 2 = V ac √ 2 . ( . )

Conclusion

We have shown how thermal noise can be used to control the synchronization of a superparamagnetic tunnel junction to a voltage drive of various shapes, frequencies and amplitudes. We have developed a comprehensive analytical model of noise-induced synchronization. This model allows to get the boundaries of the temperature range where synchronization occurs, given the characteristics of the junction and the drive and given a chosen error tolerance. .

Controlling synchronization with electrical noise

Controlling synchronization with temperature might not be convenient for many applications. Therefore we show that synchronization can be controlled through another handle: electrical noise. In the following Section . we demonstrate that using electrical to induce synchronization rather than harnessing the room temperature thermal noise is energetically e cient. In this Section and Chapter , we show the similarities and di ferences between the synchronization phenomena induced by thermal and electrical noises.

We show how our analytical model can be easily adapted to the electrical noise case by computing the average probabilities P + and P -. By leveraging this model, we were able to nd the conditions (drive amplitude, drive frequency and electrical noise range) leading to noise induced synchronization of our devices and perform experiments. In Section . . . we showed how our model allows predicting in which regime (stochastic, synchronization or glitches) an experimental measurement will fall. Here, we demonstrate that our model can provide much more detailed predictions: the noise levels for which synchronization occurs, given a chosen error tolerance.

.

. A qualitative understanding of electrical noise-induced synchronization

In Section . we have given a quantitative interpretation of noise-induced synchronization based on the probabilities P + and P -of the junction to switch from state to state. Furthermore, we have explained how this quantitative interpretation can be qualitatively understood as the fact that noise-induced synchronization occurs when the characteristic time scale of the junction matches the period of the drive.

This explanation still holds in the case of electrical noise: indeed electrical noise raises the frequency of the junction (see Chapter , Section . . ). Tuning the level of electrical noise is equivalent to tuning the frequency of the junction and thus allows controlling synchronization. However, the idea that electrical noise -i.e. adding noise on the signal -can be bene cial to synchronization is completely non-intuitive.

Therefore we provide a supplementary way to understand this noise-induced synchronization.

Here we use a simplistic model of the superparamagnetic tunnel junction where the voltage drive triggers a P to AP transition when it crosses the +V c threshold and an AP to P transition when it crosses the -V c threshold. Depending on the value of the drive amplitude, two cases are possible. If the drive amplitude is larger than V c then each polarity reversal of the voltage triggers a switch of the junction (Fig. . (a)). This is the supra-threshold case, which consumes a high amount of power as a large drive amplitude is required. In order to lower power consumption we turn to the sub-threshold case (Fig. .
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. Synchronization induced by electrical noise

We now perform the following experiment: a square periodic voltage of amplitude V ac = 63mV and frequency F ac = 50Hz is applied across a superparamagnetic tunnel junction (sample X described in Chapter , Section . . ). In addition to this drive, an electrical white Gaussian noise of cuto f frequency F N oise = 40MHz is applied (see Chapter , Section . . ). Data analysis is made in a similar way as in Section . . However, the presence of noise on the drive makes this analysis much more challenging.

Various numerical lters were applied on the measured voltage across the junction. However these automated techniques missed some very short reversals (often materialized by down to one single data point).

In consequence, an extremely careful manual observation of the data has to be made at the highest noise levels. .

. Theoretical study

We perform numerical simulations in a similar way as in the case without electrical noise. The noise is generated by a random number generator for each time step dt = 1/F noise . We confront the numerical results to the experimental results. The experiment is repeated at various drive amplitudes (Fig. . (a)):

V ac = 63mV (red), V ac = 50mV (blue) and V ac = 44mV (green). As expected the width of the plateau increases with the drive amplitude. Our model reproduced the experimental data accurately. The parameters used in the model are: ∆E/k B T = 22.5 and V c = 235mV.

Our analytical model can be adapted to the electrical noise case as well. The escape rates φ + and φ -are time dependent random variables:

φ + (t) = φ 0 exp - ∆E k B T 1 - V + N (t) V c ( . ) φ -(t) = φ 0 exp - ∆E k B T 1 + V + N (t) V c ( . )
In this case, the switching probabilities need to be averaged over all possible values of N . The average probabilities to phase-lock and unlock can be computed as follows:

P ± = 1 - +∞ -∞ 1 -exp -δtφ 0 exp - ∆E kT 1 ± V + N V c ψ(N )dN Tac 2δt , ( . 
)
where δt = 1/F N oise is the smallest time scale of the electrical noise and ψ(N ) is a Gaussian distribution with standard deviation σ N oise .

In Fig. . (a), the average probabilities P + and P -for a V ac = 63mV amplitude are plotted versus the noise's standard deviation σ N oise . Noise-induced synchronization is achieved with less than % error on the frequency for 18mV < σ N oise < 38mV which corresponds to P + > 99.5% and P -< 0.5% (see Section . . . , Equation .).

We use our analytical model to study the e fect of the drive amplitude and frequency. Behaviors similar to the thermal noise case are observed.

. . . E fect of the drive amplitude V ac = 82mV : Analytical calculations of the electrical noise boundaries of the synchronization zone for the area of the experimental device (blue), the area increased by % (red) and the area decreased by % (green). The gray zone is thus the zone where synchronization is achieved for a % variability on the area. The blue (orange) circle marks the position of the minimum voltage required to achieve synchronization with no variability on the area (with % variability on the area).

experimental results. We were able to show that electrical noise-induced synchronization is robust to variations of the drive and device variability.

.

Energetic cost of synchronization

We investigate the energy consumption of spintronic circuits leveraging the synchronization of superparamagnetic tunnel junctions for computing. In such circuits, a calculation is nished once steady synchronization patterns are formed within the assembly of oscillators after its perturbation by an external input signal [ , ]. Superparamagnetic tunnel junctions phase lock fast, in a single period of the input signal.

To evaluate the energy needed for such operation, we focus on the most recent generation of magnetic tunnel junctions with perpendicularly magnetized layers. We consider the model inspired from [ ] and presented in Section . .

We calculate the minimum energy E min necessary to synchronize the junction with and without the help of electrical noise. Figure . (a) shows the evolution of E min as a function of junction diameter for di ferent drive frequencies. When only thermal noise is used the minimum energy is

E min = V 2 1 R T ac , ( . )
where V 1 is the minimum drive voltage required to phase-lock the junction in one drive period T ac (see inset in Fig. . (a)). When electrical noise is added, the minimum energy becomes

E min = V 2 0 R + σ 2 0 R T ac , ( . )
where V 0 is the minimum drive voltage required for phase-locking and σ 0 the corresponding noise level (see inset in Fig. . (a)). Interestingly, for each drive frequency, there is an optimal diameter D min for which the energy needed to achieve phase-locking is minimal. Indeed the junction diameter determines its natural frequency: large diameters correspond to low frequencies because large magnetic volumes are more di cult to switch (see Section . ). Above D min , the drive frequency is larger than the junction's mean frequency. To phase-lock, the junction has to be accelerated. In the absence of electrical noise, this can be done through an increase of the drive amplitude, which enhances the ability of the junction to synchronize (stars in Fig. . (a)).

Adding electrical noise lowers the drive amplitude required to synchronize and thus decreases the total amount of energy to provide (circles in Fig. . (a)). Below D min , the junction has to be slowed down in order to phase lock. As electrical noise always speeds up the oscillator by increasing the number of switches, this can only be achieved by increasing the drive amplitude.

Our results indicate that carefully engineering the junctions' dimensions can drastically decrease the energy required to achieve phase-locking, about 8 × 10 -14 J for a drive frequency of MHz (Figure . (a)).

By comparison, synchronizing a harmonic dc-driven spin-torque oscillator with a GHz frequency [ ] to a drive current would require times more energy . CMOS implementations of oscillators for bio-inspired computing applications are also more costly in terms of energy, with a consumption above 7 × 10 -12 J for integrate and re neurons [ ]. In addition they occupy a large area on chip, typically several hundreds of µm 2 .

Figure . (b) presents the same study as Figure . (a) but in power consumption rather than energy:

P min = E min T ac . ( . )
Contrary to the energy case, the minimum power required to sustain synchronization increases with the drive frequency. As a consequence, lower drive frequencies should be chosen for power constrained applications (systems powered by energy harvesting or solar cells for instance) while higher drive frequencies should be chosen for energy constrained applications (systems powered by a battery for instance).

For the energy consumption of a deterministic spin-torque oscillator we considered the same model with a resistance × area product RA = 3 Ω × µm 2 and a diameter of nm (which corresponds to the traditionally required energy barrier of ∆E = 60kBT ). The power consumption is dominated by the DC current required to induce high frequency oscillations of the magnetization, therefore P = V 2 c R 8 × 10 -4 W. Thus for a spin torque oscillator of GHz frequency taking Tsync = 10ns to reach synchronization, the energy consumption is E = P × Tsync 8 × 10 -12 J.
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Conclusion

Using noise -thermal or electrical -to induce the synchronization of stochastic spintronic devices allows to achieve energy and power consumption gain over the deterministic synchronization of traditional nano-oscillators. Furthermore, it allows the synchronization of a single oscillator to drives of frequencies varying over several orders of magnitude. This phenomenon functions with various shapes of drives. The fact that noise-induced synchronization is achieved over broad ranges of noise as well as drive amplitude and frequency makes it robust to device and system variability.

In order to leverage these assets in order to perform cognitive tasks, we must study the noise-induced synchronization of coupled stochastic oscillators.

The rst demonstration of noise-induced synchronization in a magnetic tunnel junction -described in CHAPTER : SYNCHRONIZATION OF COUPLED STOCHASTIC OSCILLATORS B -computing schemes based on the synchronization of networks of coupled oscillators are diverse and it is not clear yet which ones will be appropriate to be implemented with superparamagnetic tunnel junctions. In consequence, it is necessary to investigate the di ferent synchronization phenomena that can arise when two superparamagnetic tunnel junctions are coupled to each other.

We study two major types of synchronization: synchronization of junctions to an external drive and synchronization between junctions.

In Section . , we study the synchronization of two coupled junctions to an external voltage drive.

In Section . , we study the synchronization of one junction to another junction.

In Section . , we study the mutual synchronization of two junctions to each other.

.

Synchronization of electrically coupled junctions to an external voltage drive

To be able to synchronize large networks of oscillators, it is necessary to couple these oscillators to each other. The most convenient coupling to implement with superparamagnetic tunnel junctions is electrical coupling, which can be achieved by simply connecting the junctions together. Dipolar coupling between junctions is more challenging because its strength depends on the distance between the devices, which cannot be tuned once the system is built. However, in further work, it would also be interesting to study how the dipolar coupling between junctions close to each other can a fect their synchronization.

We use our model to study theoretically the synchronization of coupled oscillators. We consider two identical junctions connected in series with a square periodic drive voltage, as depicted in Figure . . The voltages V 1 and V 2 applied to each junction depend on the states of both junctions:

V 1,2 = V ac R 1,2 R 1 + R 2 , ( . )
where R 1,2 are the respective resistances of the junctions. In consequence the state of each junction in uences the voltage across the other junction, which correspond to an electrical coupling. When the pinned layer of junction is connected to the free layer of junction , we call the junctions head to tail.

On the contrary, when the pinned layer of junction is connected to the pinned layer of junction , we call them head to head.

. . Thermal noise induced synchronization

In this section we study the case where only thermal noise is involved. We consider two identical junctions which electrical resistances are such that R AP = 4R P , with R AP (R P ) the resistance corresponding to the AP (P) state. The corresponding tunnel magnetoresistance ratio is T M R = R AP -R P R P = 300%. We apply a square periodic voltage of frequency F ac = 10kHz and amplitude V ac = 1.5V to the junctions. Head to tail Head to head T e m p e r a t u r e ( K ) P 3 = 0 . 9 9 P 2 = 0 . 9 9 P 3 = 0 . 0 1 P 4 = 0 . 0 1 P 5 = 0 . 0 1 ) is represented with squares (resp. circles).

V 1 V 2 V 1 V 2
In the case where both junctions are head to tail (resp. head to head) the symbols are black (resp. grey). The drive frequency F ac as well a half the drive frequency Fac 2 are represented by black horizontal lines. The probabilities to switch during Tac 2 , P 2 , P 3 , P 4 and P 5 are represented by solid lines of color from purple to orange. The dashed vertical lines represent the temperatures at which P 2 = 0.99, P 3 = 0.01, P 3 = 0.99, P 4 = 0.01 and P 5 = 0.01.

. . . Junctions connected head to tail

The numerical simulation is conducted in the same way as the single junction study in Section . . A random number is generated for each junction. If both junctions have a random number lower than their switching probability, the precise times of switching corresponding to each random number are computed. Two cases arise:

. Either the times of switching are separated by less than ns and both junctions switch simultaneously ( ns is the typical duration of a switch [ ]).

. Either the times of switching are separated by more than ns, in which case the junction with the lowest switching time switches rst. Then the switching time of the other junction has to be recomputed, because its switching probability is di ferent now that the rst junction has switched, modifying the applied voltage.

The frequencies of both junctions are plotted in black in Figure . . They are superimposed for all temperatures. The plateau at the frequency of the drive, characteristic of synchronization, is present between T = 111K and T = 170K. Surprisingly, we observe the existence of a second plateau at half the frequency of the drive, between T = 40K and T = 68K . Figure . A presents the evolution with time of the voltage drive and the resistances of both junctions. In panels (d), (e) and (f) the temperature is K which corresponds to the plateau at the drive frequency. As expected, both junctions are locked in phase with the drive. In panels (a), (b) and (c) the temperature is K which corresponds to the plateau at half the drive frequency. We observe that, at each period of the drive, one junction is locked in phase with the drive while the other is blocked in the P state. The phase-locked junction alternates randomly from period to period.

To get a quantitative understanding of this phenomenon we de ne six di ferent probabilities which correspond to the possible switching probabilities of the junctions for the di ferent drive and resistances con gurations:

. P 1 = P AP →P (-4V 5 )

. P 2 = P AP →P (-V 2 ) = P P →AP (+ V 2 )

. P 3 = P P →AP (+ V 5 )

. P 4 = P P →AP (-V 5 )

. P 5 = P AP →P (+ V 2 ) = P P →AP (-V 2 )

. P 6 = P AP →P (+ 4V 5 )

When both junctions are in the same state, a voltage Vac 2 is applied to each. When they are in di ferent states, 4Vac 5 is applied to the junction in the AP state while Vac 5 is applied to the junction in the P state. Therefore, P 1 and P 6 correspond to the switching probabilities of a junction in the AP state when the other junction is in the P state. P 3 and P 4 correspond to the switching probabilities of a junction in the P state when the other junction is in the AP state. P 2 and P 5 correspond to the switching probabilities when both junctions are in the same state, P or AP.

In Figure . the frequencies of junctions and as well as the probabilities P 2 , P 3 , P 4 and P 5 are plotted versus temperature. The probabilities P 1 and P 6 do not appear on this graph as P 1 1 and P 6 < 0.01 within the studied temperature range. Figure . B illustrates the switching cycles of both junctions.

The plateau at half the drive frequency can be interpreted as follows and depicted in Figure . B. We use the following example as a starting point: the drive voltage is +V = 1.5V and both junctions are in the P state. (A similar reasoning can be made for any other initial conditions.) Figure . shows that P 2 > 0.99 in this temperature range. Therefore, both junctions have a high probability (P 2 ) to switch in the AP state in the following half period Tac 2 . One junction switches to the AP state as shown in Fig. . A. The switching probabilities are P 6 for the junction in the AP state and P 3 for the junction in the P state. As both probabilities P 6 and P 3 are below . in this temperature range, both junctions remain in their state until the next switch of the drive, depicted by the "T = 60K" arrow in Figure . B. When the drive switches from +V to -V the switching probabilities become P 1 for the junction in the AP state and P 4 for the junction in the P state. As P 4 < 0.01 while P 1 > 0.99 in this temperature range, the junction in the AP state switches to the P state. Both junctions are in the P state with a switching probability of P 5 < 0.01: they remain in their state until the next switch of the drive. Then, their switching probabilities become P 2 and the cycle starts again. To summarize, at each oscillation cycle of the drive, one random junction is locked in phase with the drive while the other is blocked in the P state, leading to a mean frequency of Fac 2 for both junctions. This is shown on the the "Temperature = K" panel of Fig. . A.

For 111K < T < 170K, P 3 is larger than . . Considerations similar the the study of the 40 -68K range, depicted in Figure . B, show that both junctions are locked in phase with the drive. This gives rise to the frequency plateau at F ac and is shown on the "Temperature = K" panel of Figure . A.

P 5 is the probability to phase-unlock with the drive, both when the drive is in the +V and -V states (Fig. . B). For temperatures above K, P 5 is larger than . so glitches appear and synchronization is destroyed.

.

. . Junctions connected head to head

We now consider that junction is connected head to head with junction . In that case, the voltage applied to the junction, and governing the probabilities is

V 2 = -V ac R 2 R 1 +R 2 .
We observe in Figure . (a) that the frequencies of junctions and -plotted in grey -are equal at all temperatures. The frequency of the junctions increases with the temperature. Contrary to the case where the junctions are head to tail, a single plateau at the drive frequency F ac is observed, between T = 40K and T = 126K. Panels (g), (h) and (i) of Figure . A shows the evolution with time of the voltage drive, and the states of junctions and , for a temperature of T= K. This regime corresponds to the plateau and we observe that junction is locked in phase with the drive while junction is locked in anti-phase with the drive. These results can be interpreted with the same reasoning as in the head to tail case and as depicted in Figure . B.

. . . Conclusion

This study has enabled us to observe an expected phenomenon -the synchronization of the two junctions to the external drive -as well as an unexpected phenomenon -the plateau at half the drive frequency where the junctions block each other. The plateau at half the drive frequency corresponds to a strongly coupled regime: the state of one junction can fully determine the state of the other. On the contrary, the plateau at the drive frequency corresponds to a weakly coupled regime: the junctions have little in uence on each other and synchronize to the drive as in the single junction case.

Coupling several stochastic oscillators can improve their noise-induced synchronization to a drive, as has been shown in several systems , such as arrays of generic nonlinear elements [ -] or linear chains of di fusely coupled diode resonators [ ]. However this is not the case for electrically coupled superparamagnetic tunnel junctions. On the contrary, the strong coupling at low temperature can decrease the synchronization range to the pro t of the F ac /2 plateau (in the case of head to tail connections). While this e fect of coupling can be seen as disappointing for the prospect of synchronizing many junctions to a drive, it also gives rise to interesting new physics. Furthermore, in the following Section . . , we will see that the strong coupling between junctions provides the opportunity to study fundamental di ferences between synchronization induced by thermal and electrical noises.

Note however that these works focus on the noise-induced signal power ampli cation and do not study the e fect of coupling on the frequency plateau In the case where both junctions are head to tail the symbols are black whereas in the case where the junctions are head to head the symbols are grey. The drive frequency F ac as well a half the drive frequency Fac 2 are represented by black horizontal lines. The average probabilities to switch during Tac 2 , P 1 , P 2 , P 3 , P 4 , P 5 and P 6 are represented by solid lines of color from purple to light orange. The dashed vertical lines represent the electrical noise levels at which P 2 = 0.99, P 3 = 0.99, P 5 = 0.01 and P 6 = 0.01.

In section . . , we use further numerical simulations and our analytical model to investigate the in uence of the tunnel magneto-resistance and the drive frequency on the existence and width of the plateaus. We observe that a high tunnel magneto-resistance widens the plateau at F ac /2 and narrows the plateau at F ac . A 300% TMR is a good illustration of the e fect of the coupling while maintaining a realistic tunnel magneto-resistance. A drive frequency of F ac = 10kHz enables the system to exhibit two signi cant synchronization plateaus, at F ac and F ac /2.

. . Electrical noise induced synchronization

In this section, we now control synchronization by injection of electrical noise. Contrary to the single junction case, we show that, in the two junctions case, electrical noise induces a behavior qualitatively di ferent from the one induced by thermal noise. We consider two identical junctions with a tunnel magneto-resistance of T M R = R AP -R P R P = 100%. As shown in section . . , this is high enough to have a signal that can be detected easily and low enough to exhibit a signi cant synchronization plateau.

The switching probabilities are the averaged probabilities P 1 to P 6 over all possible values of N (t).

In Figure . the frequencies of junctions (squares) and (circles) are plotted -on the left axis -versus the standard deviation of the noise distribution, both for the con gurations where the junctions are head to tail (black) and head to head (grey). The average probabilities P 2 (purple), P 3 (red), P 5 (orange) and P 6 (yellow) are plotted -on the right axis -versus the standard deviation of the noise distribution.

. . . Junctions connected head to tail

The black circles and squares in Figure . show that both junctions have the same frequency at all levels of electrical noise.

One would expect to observe a frequency plateau at half the drive frequency in the range of electrical noise for which P 2 > 0.99 and P 3 < 0.01. However, this is not observed, as shown in Figure . .

This absence of plateau at Fac

2 can be interpreted as follows. In the thermal noise study, the escape rates are constant in time for a given temperature. The probability of switching at a given time is low but, because it is sustained over a long time, the probability for one junction to switch eventually is high. The situation is di ferent when electrical noise is added on the drive. The distribution of the voltage from the electrical noise is Gaussian, so high voltage value have a low but nite probability to occur. As the noise is on the drive which is applied to both junctions, when a high value voltage occur, both junctions have a probability to switch that is close to one. Thus high value voltage causes both junctions to switch simultaneously.

Let us consider that both junctions are in the P state. When the drive switches to +V two cases arise:

. A high value voltage occurs and both junctions switch simultaneously to the AP state.

. No high value voltage occur and only one junction switches in the AP state while the other remains blocked in the P state as explained in section . . . . As the noise level is increased, more high value voltages occur and thus more simultaneous switches of the junctions occur. In consequence, the frequency of the junctions increases with electrical noise.

These observations pin down a fundamental physical di ference between internal and external noise.

For 0.58V < σ noise < 0.84V the frequency of the junctions is equal to the drive frequency F ac . Indeed P 3 > 0.99 and P 5 < 0.01. Both junctions are synchronized with the drive, in the same way as in the thermal noise study. For σ noise > 0.84V, P 5 is larger than 0.01 so glitches appear and synchronization is lost.

CHAPTER : SYNCHRONIZATION OF COUPLED STOCHASTIC OSCILLATORS

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7 1 0 8 .

. . Junctions connected head to head

Both junctions have the same frequency for all levels of noise. For 0.16V < σ noise < 0.72V the frequency of the junctions is equal to the frequency of the drive F ac . The behaviors of both junctions are the same as in the thermal noise study: junction is locked in-phase while junction is locked in anti-phase with the drive. P 6 > P 4 so synchronization is lost when P 6 > 0.01, which occurs when σ noise > 0.72V.

.

. E fects of the tunnel magnetoresistance and the drive frequency

We study the e fects of tunnel magneto-resistance and drive frequency on noise induced synchronization of two superparamagnetic tunnel junctions, connected head to tail. Two identical superparamagnetic tunnel junctions of energy barrier such that ∆E = 30k B T studied at T = 50K are submitted to a periodic drive of amplitude V = 1.5V c . The analytical model is used to compute the width in temperature of both synchronization plateaus, for various drive frequencies and magneto-resistance values. The results are presented in Figure . for the F = F ac plateau and in Figure . for the F = F ac /2 plateau.

We observe that increasing the tunnel magneto-resistance widens the plateau at F = F ac /2 and narrows the plateau at F = F ac . When the junctions are in di ferent states, the ratio between the voltage received by the junction in the AP state and the junction in the P state increases with the R AP /R P ratio, which strengthens the coupling and favors the F = F ac /2 regime. For R AP = R P there is no tunnel magnetoresistance and the plateau at F = F ac /2 is absent. The e fect of drive frequency is non-monotonous.

Drive frequencies too high compared to the natural frequency of the junctions (which depends on the energy barrier) prevent the apparition of synchronization plateaus. On the other side, as temperature increases the frequency of the junction, lowering the drive frequency narrows the temperature range which can induce synchronization.

. SYNCHRONIZATION TO AN EXTERNAL DRIVE 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7 1 0 8 The same study is conducted in the case of synchronization induced by electrical noise. Figure . presents the in uence of drive frequency and tunnel magneto-resistance on the width of the synchronization plateau at F ac . We observe that the plateau is widest for low magneto-resistances and high drive frequencies. Numerical simulations show that no synchronization plateau can be observed at F ac /2, no matter the value of the magneto-resistance.

In consequence, the qualitative behavior of the system can be tuned by choosing the tunnel magneto resistance ratio of the junctions. If one wants to synchronize both junction to the external drive, then it is best to choose low values of the tunnel magneto resistance. On the contrary, if one wants to strengthen the e fects of the coupling between the junctions and observe phenomena such as the plateau at half the drive frequency, then one should choose higher values of the tunnel magnetoresistance.

.

. Synchronization of two junctions of di ferent sizes

We are interested in the case where the two junctions have di ferent sizes and thus di ferent energy barriers and natural frequencies. Two phenomena have to be considered, depending on the temperature range:

Strongly coupled regime (at low temperature)

When the two junctions are identical, they both exhibit a plateau at half the drive frequency. On the contrary, when the junctions have di ferent energy barriers they each exhibit a plateau at di ferent frequencies.

The junction with the lowest energy barrier has the highest natural frequency and therefore has a plateau at the highest frequency. We observe that a junction of xed energy barrier (here junction always has ∆E 2 = 15k B T ) can exhibit a plateau at various frequencies, depending on the junction it is coupled with. Choosing the size of junction here allows to tune the frequency of the plateau of junction .

Weakly coupled regime (at high temperature)

Concerning the plateau at the frequency of the drive two cases are observed:

. The natural frequencies of the junctions are too di ferent. Then each junction exhibits a plateau at the drive frequency but the temperature ranges of their synchronization are disjoint. In consequence the two junctions are never in-phase. This con guration is illustrated by the green curves on

Figure . which corresponds to ∆E

1 = 5k B T (then F 1 F 2 2 4
). The highest frequency junction (here junction ) is synchronized with the drive for lower temperatures than the lowest frequency junction (here junction ).

. The natural frequencies of the junctions are close enough. Then there is a temperature range from which both junctions are synchronized with the drive. They are in-phase. This con guration is illustrated by the pink, red, orange, purple and black curves, which correspond to 10k B T < T e m p e r a t u r e ( K ) .

∆E 1 < 15k B T (then 1 < F 1 F 2 < 150).
∆E 1 = 5 k B T F 2 F 1 ∆E 1 = 1 0 k B T F 2 F 1 ∆E 1 = 1 2 k B T F 2 F 1 ∆E 1 = 1 3 k B T F 2 F 1 ∆E 1 = 1 4 k B T F 2 F 1 ∆E 1 = 1 5 k B T F 2 F 1 F a c

. Conclusion

We have shown how to use noise to control the synchronization of two electrically coupled superparamagnetic tunnel junctions to a voltage drive. This is possible even when the two junctions have natural frequencies orders of magnitude apart, which is a huge advantage over traditional synchronization. Synchronization can be achieved both by thermal and electrical noise.

Furthermore, we have observed an unexpected phenomenon -the presence of the half frequency plateau -and investigated how it pin-points a fundamental di ference between thermal and electrical noise.

These results illustrate the complexity of noise-induced synchronization of superparamagnetic tunnel junctions and the variety of phenomena that can be induced by tuning the topology of the circuit and the parameters of the devices.

. Master-slave type synchronization of two superparamagnetic tunnel junctions

After studying the synchronization of two superparamagnetic tunnel junctions to a drive, we move on to the synchronization of junctions to each other, in the absence of external drive. First, we investigate CHAPTER : SYNCHRONIZATION OF COUPLED STOCHASTIC OSCILLATORS how to synchronize one junction to another junction.

In Chapter , we showed how a stochastic square voltage could drive a superparamagnetic tunnel junction (as expected from the caclulations by Neiman et al. [ ]). As a junction generates a square stochastic signal, we can also synchronize a junction (the slave) to an other junction (the master). Whether synchronization is achieved or not depends on the values of the switching rates of the slave junction. We de ne the following switching rates:

φ P (P ) = ψ 0 exp - ∆E k B T V (P ) V c ( . ) φ P (AP ) = ψ 0 exp - ∆E k B T V (AP ) V c ( . ) φ AP (P ) = ψ 0 exp ∆E k B T V (P ) V c ( . ) φ AP (AP ) = ψ 0 exp ∆E k B T V (AP ) V c ( . )
where φ P (AP ) (resp. φ P (P )) is the switching rate of the P state of the slave junction when the master junction is in the AP (resp. P) state, φ AP (AP ) (resp. φ AP (P )) is the switching rate of the AP state of the slave junction when the master junction is in the AP (resp. P) state, ψ 0 = φ 0 exp -∆E k B T and V (P ) (resp. V (AP )) is the voltage across the slave junction when the master junction is in the P (resp. AP) state.

For synchronization to be achieved, one needs:

. The switching rates from the phase-locked state φ P (P ) and φ AP (AP ) to be weak.

. The switching rates from the phase-unlocked state φ P (AP ) and φ AP (P ) to be strong. This can only be veri ed if φ P (P ) and φ AP (AP ) are inferior to φ P (AP ) and φ AP (P ). In particular, this requires that:

φ P (P ) = exp - ∆E k B T V (P ) V c < φ AP (P ) = ψ 0 exp ∆E k B T V (P ) V c ( . )
which implies that V (P ) > 0 and

φ AP (AP ) = ψ 0 exp ∆E k B T V (AP ) V c < φ P (AP ) = ψ 0 exp - ∆E k B T V (AP ) V c ( . )
which implies that V (AP ) < 0.

Qualitatively, these results can be understood as follows. The master junction needs to behave as square stochastic signal able to drive the slave junction, i.e. the signal emitted by the master junction should change sign at each reversal. This condition is mathematically expressed as:

V (P ) × V (AP ) < 0. ( . )
When powered by a constant positive (resp. negative) voltage, the master junction emits a current which oscillates between two positive (resp. negative) values. In consequence, this current has to be re-centered on zero, which can be done through a bias current.

We propose a circuit, described in Figure . (a), which ful lls equation . . Two junctions are connected in a head to head con guration and powered by a dc-voltage source V 0 = 100 mV. A dc-current This analysis shows that synchronization of a superparamagnetic tunnel junction to another one is feasible.

I 0 = -
However this requires designing junctions with the required parameters. Furthermore, the dc-current source consumes a lot of power.

Achieving mutual synchronization of oscillators is a key building block for synchronization-based computing. Indeed, in many of these computing schemes, the goal is to selectively synchronize together groups of oscillators in the network. The di culty resides in determining the appropriate couplings between the oscillators giving rise to such synchronization groups and in implementing these couplings. In this section we investigate how to mutually synchronize two coupled superparamagnetic tunnel junctions.

The behavior of a superparamagnetic tunnel junction is driven by its switching rate, which is of the shape

K exp(X). K = φ 0 exp ∆E k B
T is its natural switching rate and X is a variable which sign and value depends on the state of the junction as well as the voltage and magnetic eld applied to it. In consequence, in a circuit of coupled junctions, X depends on the states of each junction and expresses how they are coupled to each other.

Finding the appropriate electrical circuit to implement given couplings between junctions (i.e. given values of X ) is a signi cant work in itself. Here, we suppose that any coupling can be implemented and focus on investigating which couplings and systems enable the mutual synchronization of stochastic oscillators. This work can directly be applied to superparamagnetic tunnel junctions as well as to other types of bistable stochastic oscillators.

A natural idea when trying to achieve mutual synchronization of two oscillators would be to assume a simple synchronizing coupling between them. Figure . presents two identical bistable stochastic oscillators coupled so that their switching rates are:

. K exp(-S) when they are in the same state (" " or " ").

. K exp(+S) when they are in di ferent states.

Where K is their natural switching rate and S is a constant corresponding to the coupling from one oscillator to the other. For the coupling to be synchronizing, S should be positive.

The switching cycle goes as follows:

. At rst the oscillators are in-phase (i.e. in the same state) -as depicted in Figure . (a). Their switching rate is K exp(-S). S is positive so this rate is low: the state of the system is stable.

. After a while, one of the oscillators will switch out of phase, making the switching rate K exp(S), which is high (Fig. . (b)). This state is unstable.

. One of the oscillators will switch within a short time in order to get back in phase. However, both oscillators have the same probability to switch. This means that the "synchronized switches" (one oscillator switches and is promptly followed by the other The fact that Poisson processes have no history prevents the straightforward mutual synchronization of stochastic oscillators. As a consequence, we propose an alternative system enabling mutual synchronization, depicted in Figure . . Three stochastic oscillators are now considered: oscillator , oscillator and the "bu fer". The switching rate of oscillator j is:

φ j = K exp - i =j C i,j ( . )
Where C i,j is the coupling from oscillator i to oscillator j. The indexes are i, j = (1, 2, B). Oscillators and have a symmetric synchronizing coupling:

C 1,2 = C 2,1 = +S. ( . )
The coupling from the oscillators and to the bu fer is synchronizing:

C 1,B = C 1,B = +S. ( . )
The coupling from the bu fer to oscillators and is anti-synchronizing:

C B,1 = C B,2 = -S. ( . )
Figure . describes the mechanism leading to the synchronization of oscillators and . The synchronization cycle goes as follows :

. All are in the same state. All switching rates are low, the system is stable (Fig. . (a)).

. After a while oscillators switches. The switching rate of oscillator is high (Fig. . (b)).

. Oscillator switches. The switching rates of both oscillators and are low while the bu fer's is high (Fig. . (c)).

. The bu fer switches. All three are back in the same state and the cycle can start again (Fig. . (d)).

The bu fer acts as a memory of the system. It keeps the current state and prevents the rst oscillator which switches to switch again in a glitch.

Figure . presents numerical simulation results of the time evolution of the three oscillators. Oscillator and are mutually synchronized, through the bu fer.

This system allows the mutual synchronization of stochastic bistable oscillators but this requires to control the coupling between each couple of oscillators, which is not trivial in the case of superparamagnetic tunnel junctions. One possible solution would to inject spin currents to the junctions through spin orbit torque.

Conclusion

We have studied di ferent types of interactions concerning synchronization of coupled stochastic oscillators: synchronization of two oscillators to an external drive, master-slave synchronization of one oscillator to another and mutual synchronization of two oscillators through a third one. These results illustrate the variety of noise-induced synchronization phenomena available with coupled stochastic oscillators and will be useful for the implementation of computing schemes.

It is important to observe that noise-induced synchronization of stochastic bistable oscillators is very di ferent from classical synchronization of harmonic oscillators. It has both advantages (such as the low energy cost, the rapidity of phase locking and the possibility to synchronize oscillators with very di ferent frequencies) and drawbacks (for instance mutual synchronization is achieved less naturally). In consequence, the various computing schemes based on the synchronization of networks of oscillators have to

In this cycle, oscillators and are interchangeable. The choice of oscillator versus oscillator at step is random with a % probability. The cycle is the same whether oscillator or switches rst. In this Chapter we investigate this analogy and show that superparamagnetic tunnel junctions can emulate sensing neurons. Speci cally we take interest in ensembles of neurons, called populations. First, in this Section, we explain how to implement the appropriate populations of superparamagnetic tunnel junctions.

The group of Alexandre Pouget at Rochester University (now at Université de Genève) studied extensively how to encode information with population of Poisson neurons [ -]. Speci cally it showed how to perform Bayesian inference and simple sensory fusion with such populations. In Sections . and

. we show how to adapt and apply these results to superparamagnetic tunnel junctions.

In Section . we propose a principle of bio-inspired intelligent sensor composed of superparamagnetic tunnel junction as sensing neurons. We show that it can perform learning and complex sensory fusion.

. The superparamagnetic tunnel junction as a Poisson neuron . . Tuning curve of the superparamagnetic tunnel junction Just as superparamagnetic tunnel junctions, spiking neurons re with a xed average rate. Many models propose that information is encoded by this ring frequency. Speci cally, it has been observed that the frequency of sensory neurons varies with the value of the stimulus they receive [ , ]. For example,

. THE SUPERPARAMAGNETIC TUNNEL JUNCTION AS A POISSON NEURON some neurons connected to the retina are sensitive to the orientation of the object which is observed (Fig.

. (a)) [ -]. Other sensory neurons (ex: neurons connected to the ear) as well as motor neurons (ex: controlling the direction of eye, head or arm motion) function similarly. The shape of the ring frequency versus the stimulus value is called a tuning curve and varies with the di ferent neuron types.

Many tuning curves are bell-shaped (as the one plotted in Figure . (a)) or sigmoidal.

In an electric circuit connected to a sensor, the stimulus will typically be a voltage. Figure . (b) shows how the frequency of a superparamagnetic tunnel junction varies with the value of the voltage applied across the junction. The tuning curve of the junction is a bell-shape curve as well:

F = F 0 cosh ∆E k B T V Vc , ( . ) 
where

F 0 = 1 2τ 0 exp ∆E k B T . ( . )
The peak of the tuning curve F 0 is determined by the value of the attempt time τ 0 = 1ns, and the energy over temperature ratio ∆E/k B T . The width of the tuning curve is determined by the value of ∆E

k B T 1 
Vc . Just as a neuron with a bell-shaped tuning curve, the superparamagnetic tunnel junction has a preferred stimulus for which its frequency is maximal (F = F 0 ). When the junction is unbiased, the preferred stimulus is V dc = 0V .

The fact that superparamagnetic tunnel junctions exhibit tuning curves similar to the ones of sensory neurons is a key ingredient for achieving computing with these devices. As will be seen in this Chapter, many computing methods involving sensory neurons are based on the expression of their tuning curves.

In consequence we will be able to directly apply these methods to superparamagnetic tunnel junctions.

. . Implementing a population of neurons

One of the proposed mechanisms potentially used by the brain to tackle variability, stochasticity and cell death is redundancy: information is coded not just by one neuron but by an assembly of neurons [ ] (Figure . (a)). The ensemble of methods using assemblies of neurons for computing is called population coding. In the models investigated hear, all the neurons in the population have tuning curves of the same shape but each neuron prefers a di ferent stimulus. For example each neuron connected to an eye will respond more strongly (i.e. oscillate at its maximal frequency) to a speci c orientation. The tuning curves then act as a set of basis functions which cover the wide range of orientations, and can be used to encode information and to perform computations.

We want to design a population of superparamagnetic tunnel junctions in which each junction is tuned A straightforward solution is to use individual voltage biases or a dedicated electronic circuit. The frequency of each junction would then be:

F = F 0 cosh ∆E k B T V -V bias Vc . ( . )
However we also propose an alternative approach, based on spin-orbit torques. In that case, the junctions should be grown from the free layer to the pinned layer, on top of a heavy metal underlayer with variable width, as shown in Figure . (c). When a current I SOT is injected in the underlayer, spin-orbit torques in uence the magnetization of the free layer and modify the spin transfer term in the expression of the switching rates [ ]. This is equivalent to biasing the tuning curve with a voltage proportional to the current density in the metallic layer. As the width of the metallic layer is di ferent for each junction, the e fective bias is di ferent. The stimulus is applied through spin-transfer torque (STT) by a voltage V ST T

shared by all junctions. The frequency of a junction located above an underlayer of width w is:

F = F 0 cosh ∆E k B T V ST T V c,ST T + d t j I SOT w tu I c,SOT . ( . ) 
In this expression, V ST T is the voltage stimulus, applied through a common voltage to all the junctions. . . The black curve corresponds to the natural tuning curve of a junction while the green, red, purple and blue curves correspond to shifted junctions. (c) Possible implementation of such a population. The junctions are on a metallic layer of variable width. A current ows through this layer and biases the junctions via spin orbit torque. The stimulus is applied by a common voltage to all junctions.

V c,ST T is the critical voltage linked to spin transfer torque, d is the diameter of the junction, t j is the thickness of its free layer and I c,SOT is the critical current linked to spin orbit torque. Through spin orbit torque, the injected current in the underlayer I SOT induces a shift of the tuning curve F (V, w), which depends on the width w of the heavy metal underlayer and its thickness t u . Choosing carefully the shape of the underlayer then allows shifting di ferently each junction and building a population of junctions all tuned to di ferent voltages.

Conclusion

Superparamagnetic tunnel junctions can emulate sensory neurons. It is possible to bias the junctions in order to form a population of neurons, which respond not to a preferred value of the stimulus but to the whole possible range of stimulus. In order to use this for computing, the rst task is to investigate how to code and decode information with a population of junctions.

. Coding and decoding -Bayesian interpretation When a population of neurons is submitted to a stimulus, each neuron res spikes at a di ferent average frequency (according to their tuning curve). If the population is observed for a given time duration, one can count the spikes of each neuron. The number of spikes of a neuron is called its activity. The information about the stimulus is thus encoded by the activity of the whole population. How to decode the activity of a neural population has been widely studied and many models have been proposed [ , -]. A straightforward and bio-realistic way to get the value of the stimulus back from the population CHAPTER : SUPERPARAMAGNETIC TUNNEL JUNCTIONS AS SENSING NEURONS is to perform an average of the preferred stimuli, with the individual activities of the neuron as weights

[ , ]:

s = N i=1 µ i r i N i=1 r i , ( . 
)
where s is the stimulus, N is the number of neurons, µ i is the preferred stimulus of the i-th neuron and r i is its observed number of spikes. However the spiking process is intrinsically stochastic. This method thus gives the most probable result.

More advanced techniques allow to access the probabilities of all possible results.

. ). Here we focus on Poisson neurons with Gaussian tuning curves. We present the theory and show how it can be adapted to superparamagnetic tunnel junctions.

. Bayesian interpretation

As the response of the neurons is probabilistic, the right question should not be "what is the value of the stimulus?" but rather "what is the probability density of the possible values of the stimulus, knowing we have observed this activity?". In mathematical terms this is equivalent to looking for P (s|r).

Here r = r 1 ...r N is the activity vector, composed of the individual activities of the N neurons of the population.

We consider neurons the activities of which follow a Poisson law. Therefore the probability to observe an activity r i for the i-th neuron when submitted to a stimulus s is

P (r i |s) = exp (-g f i (s)) (g f i (s)) r i r i ! ( . )
and the average number of spikes is

r i = g f i (s). ( . )
Here f i is the tuning curve of the i -th neuron and g is the gain. The gain is a positive number shared by all neurons which can be chosen by the natural frequency of the neurons and the length of observation.

For Gaussian tuning curves the average number of spikes is

r i = ∆T × F 0 exp - (s -µ i ) 2 2σ 2 0 , ( . 
)
where ∆T is the length of observation, F 0 is the maximal frequency of the neurons and σ 0 is the width of the tuning curve. Here the gain is g = ∆T × F 0 .

In the case of superparamagnetic tunnel junction, the Poissonian variable is the number of switches .

The average activity of a junction is

r i = 2∆T F 0 cosh ∆E k B T s-µ i Vc . ( . )
Here the gain is g = 2∆T × F 0 and the stimuli s and µ i are voltages. The schemes exposed in the following paragraphs can be adapted from neurons to superparamagnetic tunnel junctions because 1 cosh approximates a Gaussian function. We will discuss the validity of this approximation in Section . .

We make the assumption that the neurons are independent. Therefore

P (r|s) = N i=1 P (r i |s) . ( . )
The Bayes' theorem states that for every possible value s of the stimulus P (s|r) = P (s) P (r) P (r|s) .

( . )

Here P (s) is the prior probability to have the value s for the stimulus. It describes knowledge about the system a priori and can be conditioned by a model or previous observations. P (r|s) is the likelihood to have the observed activity knowing that the stimulus has the value s. P (r) is the evidence. P (s|r) is the posterior probability to have the value s for the stimulus. Bayes' formula shows how our observation of r updates the probability for the stimulus to have a value s from the prior to the posterior.

It can be shown (see Appendix C) that the posterior is calculated as

log (P (s|r)) = M + N i=1 (log (f i (s)) r i ) ( . )
where M is a marginalization constant. This equation is valid if the following conditions are ful lled:

. The prior is at: P (s) = C, where C is constant for all values of s.

. The neural network does not favor any values of s: Σ i=1..N f i (s) = K, where K is constant for all values of s. For Gaussian tuning curves this is veri ed as long as the number of neurons is high enough.

Knowing the tuning curves f i and observing the activities r i for each neuron, one can therefore calculate to posterior probability density P (s|r). Figure . illustrate the coding-decoding operation for superparamagnetic tunnel junctions. The activity of each junction is plotted versus the preferred stimuli (Fig.

The number of oscillations is thus Poissonian as well. Unless oscillation are easier to detect than switches (e.g. circuit with only raising edge counter), it is preferable to use switches rather than oscillations since larger statistics lead to better precision. It can be proven (see [ ] and Appendix C) that for a large number of neurons the posterior distribution is approximately a Gaussian function:

P (s|r) = 1 σ √ 2π exp - (s -µ) 2 2σ 2 . ( . )
With parameters such that their averages over many independent trials are:

µ = s 0 ( . ) and σ = ∆µ σ 0 g √ 2π , ( . ) 
where s 0 is the real stimulus and ∆µ is the spacing between the preferred stimuli.

The absolute precision is directly dependent on the gain. More precisely 1 σ 2 ∝ g. The longer the length of observation is and the faster the neurons are, the higher the gain and thus the higher the precision. For a given range of possible values for the stimulus, ∆µ = range N . In consequence, the more neurons in the population, the higher the precision. Everything that raises the total number of observed spikes increases the precision.

Important note

The sensing process is intrinsically stochastic. The probability distribution P (s|r) gives the knwoledge on the stimulus than can be inferred from a speci c trial, and therefore can vary from trial to trial. In consequence one same stimulus will give di ferent posterior distributions for di ferent independent trials, as illustrated in Figure . . Each probability density is an exact inference. Here the stochasticity arises from the process itself and not from an imprecision in the decoding.

.

. Alternative decoding schemes

Calculating log (P (s|r)) = M + N i=1 (log (f i (s)) r i ) performs the exact Bayesian inference on the value of the stimulus. However, this method can be uneasy to implement by an electronic circuit.

Here we present two alternative decoding schemes. Both are based on the assumption that the posterior distribution is a Gaussian. The decoding task then correspond to nding its parameters µ and σ.

. . . Peak method

This method approximates the activity of each neuron by its average value. Moreover, it supposes that the stimulus corresponds to the preferred stimulus of a neuron (the denser the population, the better the approximation). One only needs to take into account the neuron with the most observed spikes. The most probable value of the stimulus is the preferred stimulus of this neuron. The gain can be deduced from the activity r max of this neuron: g = rmax ∆T ×F 0 (or g = rmax 2∆T ×F 0 in the case of superparamagnetic tunnel junctions). The precision σ is then computed by equation . . This method is straightforward but not very accurate, as shown in Fig. .

. . Sum method

We have developed a method which is easier to implement than the exact inference but with no signi cant loss of accuracy on the results (Fig. . ). We have shown (see Appendix C) that for a large number of neurons

N i=1 r i = g σ 0 √ 2π ∆µ ( . ) N i=1 µ i r i = s 0 g σ 0 √ 2π ∆µ . ( . )
As a consequence we can extract the parameters of the Gaussian distribution as follows:

µ = s 0 = N i=1 µ i r i N i=1 r i ( . ) σ = σ 0 N i=1 r i . ( . 
)
Equation . is consistent with the intuitive weighted average which is often used. Figure . confronts the results of the alternative decoding methods to the exact inference. The error decreases with the number of neurons, which is expected since equations . , . , . , . and . use an in nite number of neurons approximation. The sum method is much more accurate than the peak method. As a consequence we recommend to use this method.

. . Validity of the model for superparamagnetic tunnel junctions as neurons

The most important di ference here between a superparamagnetic tunnel junction and a neuron is the shape of the tuning curve. The tuning curve of the superparamagnetic tunnel junction is not exactly Gaussian. We use the following simple approximation:

F = F 0 cosh ∆E k B T V -V bias Vc F 0 exp - (V -V bias ) 2 2σ 2 0 . ( . 
)
Where

σ 0 = α V c k B T ∆E , ( . ) 
with α a parameter to determine.

We test the validity of the coding for junctions which have the parameters ∆E = 10k B T and

V c = 1 V.
This corresponds to a maximal frequency of F 0 = 45kHz. The gain is g = 10. The preferred stimuli of the junctions range between -V and + V. We submit a population of junctions to a stimulus and decode the activity in two ways:

. Using the accurate tuning curve.

. Using the approximate Gaussian tuning curve.

The error is the di ference between the results of the Gaussian approximation and of the exact inference.

Figures . (a) and (b) respectively present the error on the precision σ and the most probable stimulus µ versus the value of the parameter α. While the error on µ is constant with regards to α, σ varies strongly.

There is an optimal value of α 1.43 which minimizes the error. In consequence this value should be used when employing decoding techniques based on the Gaussian approximation (e.g. the sum method).

Figure . present the error as compared to exact inference versus the number of neurons. The error decreases when the number of neuron increases. Even for small populations the error on the most probable stimulus µ is below one percent of the stimuli range. For large populations (more than a hundred junctions) the relative error on the precision σ is only a couple percents. This validate the use of the presented model for superparamagnetic tunnel junctions as stochastic neurons.

Conclusion

An assembly of superparamagnetic tunnel junctions used as a population of neurons can be connected to a sensor an act as a stochastic decoder. As it converts an analog stimulus into a series of telegraphic signals it also acts as a analog to digital random bitstream converter, which is useful for stochastic computing. .

SENSORY FUSION

The number of switches of superparamagnetic tunnel junction can encode Gaussian probability distribution. This result is useful for the implementation of spintronic circuits that perform probability based tasks such as Bayesian computing.

.

Sensory fusion

Very often, information we have about our environment is not collected by one but by several sensors (ex:

the eyes and the ears). Our brain has to merge the di ferent sources of information, this is called sensory fusion and is also a very important task for robotics.

.

. Theoretical framework

The group of A. Pouget has shown that Poisson neurons can perform sensory fusion in a simple way depicted in Figure . [ ]. Let us suppose that we have two sensors -the eye and the ear -each connected to a population of neurons. Both populations are identical. This means they have the same number of neurons N , the same shape of tuning curve (here Gaussian of width σ 0 ) and the same set of preferred stimuli µ i . As a consequence, the neurons can be paired two by two: each pair corresponds to a preferred stimulus and is composed of one neuron of each population. However, the gains g eye and g ear of each population can be di ferent.

It can be shown (see [ ] and Appendix C) that:

P (s|r eye , r ear ) ∝ P (s|r eye + r ear ) ∝ N 1=1 f i (s) r eye,i +r ear,i . ( . )
Where r eye,i (r ear,i ) is the activity of the i-th neuron connected to the eye (ear). This result means that sensory fusion can be achieved by creating a virtual population, identical to the eye and ear populations.

The activity of each neuron of the virtual population is the sum of the activities of the corresponding neurons in the eye and ear populations:

r = r eye + r ear . ( . )
The activity of the virtual population can be decoded in the same way as a real population through the methods described in section . . . As a consequence, sensory fusion achieves a better precision than the individual sensors:

1 σ 2 = 1 σ 2 eye + 1 σ 2 ear .
( . )

Where σ, σ eye and σ ear are the precisions of the sensory fusion, eye and ear respectively. This can be observed in Figure . (b): the probability density is more narrow for the sensory fusion than for each sensor.

The most probable value for the stimulus after sensory fusion is an average of the most probable values given by each sensor, weighted by their gains:

µ = g eye µ eye + g ear µ ear g eye + g ear . ( . )
Where µ, µ eye and µ ear are the most probable stimuli given by the sensory fusion, eye and ear respectively. The gain encodes how trustworthy a sensor is. In the example in Figure . (b), the eye is more trustworthy than the ear and therefore the most probable stimulus is closer to the result given by the eye.

.

. Con icting cues

While in most cases the stimuli perceived by the di ferent sensors will be very close, it can happen that they are far enough for the activity curve to become bi-modal (Fig. This response is mathematically accurate, however it often does not describe the reality. Indeed if the two sensors give completely di ferent results it is likely that one of the sensors might not be working properly. In this peculiar situation, the sum method gives approximately the same result as the exact inference. The peak method however chooses the highest of the two peaks and discard the other. The probability for each peak to be chosen therefore depends on the gain of the sensor.

Conclusion

Poissonian devices make sensory fusion simple to implement. Nevertheless it is restricted to the fusion of identical population, which is neither bio-realistic or practical for applications. We show how to tackle this issue in Section . . .

. Bio-inspired intelligent sensory processing with superparam-

agnetic tunnel junctions

We have demonstrated that populations of superparamagnetic can represent probability distributions and perform sensory fusion. We now want to leverage these results to perform more complex computing.

Many techniques, inspired from biology at more or less abstract levels, have been developed to perform computing. In particular, connecting populations of arti cial neurons by weighted links (analogous to the biological synapses) allows a wide variety of computing tasks. Superparamagnetic tunnel junctions are promising candidates for hardware implementation of such systems.

Speci cally, we have identi ed a key application for superparamagnetic tunnel junctions as sensing neurons: intelligent sensory processing. Indeed, our society sees the appearance of connected objects, based on a wide variety of sensors, which collect, transmit and process data to assist us in our daily lives. For ful lling the full potential of this "Internet of things", these objects should become much more e cient than current implementations. A critical bottleneck in terms of energy cost is the transfer of information between the sensors themselves and the chips processing their information [ ]. An ideal solution would be that the sensors themselves could process information themselves. However, with current technologies, this approach is limited by the area of computing circuits [ ]: several processing-capable sensors have been designed, but, usually, they use the processing power only to extract important features in the sensed signal [ ]. Using smaller circuits based on nanoscale devices is an attractive lead: it would allow sensors to perform advanced operations.

In consequence we propose a design of smart sensor processing unit using populations of superparamagnetic tunnel junctions which emulate sensory neurons, as shown in the previous Sections. First, in this Section, we show that the proposed system can perform learning. We use the example of a robotic task: coordination between a sensor and a motor. Then, we show how this system is a building block for more complex tasks: learning coordinate transformations (Section . . ) and performing sensory fusion of non-identical populations (Section . . ).

.

. Learning a robotic task

Here we propose to link di ferent populations of stochastic magnetic tunnel junctions to realize sensory processing. We rst use the example of the robotic task of Figure . : a robot observes a target with a visual sensor and attempts to grasp it with a gripper. The sensor and the motor controlling the gripper are each connected to a di ferent population of junctions. The sensory junctions switch with frequencies depending on the stimulus received by the visual sensor (i.e. the orientation of the target). On the other hand, the frequencies of the motor junctions control the motor by setting the orientation of the gripper.

In order to achieve the grasping task, the sensory and motor populations need to be coordinated, even if the sensory and motor populations of junctions di fer by their physical properties, or by the total number of junctions. We now demonstrate that our intelligent sensory processor can learn this coordination between a sensor and an actuator using methods inspired by neural networks.

.

. . Implementation of the learning process

In a biological neural network, neurons are connected by synapses, which transmit signals modulated in an analogue way. Synapses in arti cial neural networks are often realized as multiplicative weights stored in memory. Following Salinas and Abbott [ ], we propose to connect the two populations of junctions by a matrix of weights W ij such that the sensory junctions in uence the motor junctions through: where f m i is the frequency of the i-th motor junction and f s j the frequency of the j-th sensory junction.

f m i = Ns j=1 f s j W ij ( 
Depending on the value of the weights, di ferent tasks can be realized as we discuss below.

Initially the weights are chosen randomly, so that the orientation of the gripper is disconnected from the orientation of the target. The sensory processor then learns the appropriate weights through supervised training. As the weights are progressively modi ed, the motor becomes increasingly coordinated with the sensor and allows the gripper to catch the target no matter its orientation. At each learning step the target is presented to the sensor with a randomly chosen orientation. At each attempt to grasp the target ("learning step"), the weights are modi ed according to the learning rule:

W ij → (W ij ± λ Ns j=1 f s j ). ( . 
)
where λ is the learning rate. Low values of λ slow down the learning while high values of λ fasten the learning but limit its performance. Here we found λ = 0.01 satisfying.

• If the gripper succeeds -i.e. if its orientation is close enough to the orientation of the target to be in the "CATCH" zone -the weights are unchanged.

• If the gripper strikes in the "LEFT" zone, the synaptic weights connecting the sensor network to motor junctions which are tuned to orientations on the left of the gripper are decreased. On the contrary, synaptic weights connecting the sensor network to motor junctions tuned to orientations on the right of the gripper are increased.

• If the gripper strikes in the "RIGHT" zone, the opposite is implemented.

.

. . Methods of the numerical simulations

The target has a range of possible orientations, corresponding to di ferent voltage stimuli. The voltage range is here from -V to + V for the simple learning case. We consider superparamagnetic tunnel junctions with in-plane magnetization. Their default parameters are ∆E = 10k B T (where ∆E is the energy barrier, k B is the Boltzmann constant, T is the temperature) and V c = 0.7V (the critical voltage).

This corresponds to a diameter of nm and a maximal frequency of kHz. Each junction has a di ferent bias which corresponds to its preferred stimulus. The preferred stimuli are here chosen linearly spaced on the voltage range. The error is the absolute value of the di ference between the orientation of the target and the orientation given by the motor junctions to the gripper. It is expressed as a percentage of the range of possible orientations (here from -V to + V). It is computed as an average over randomly chosen trials.

. . . Results . (a) shows that the distance between the target and the gripper is progressively decreased through repeated learning steps. After a su cient number of steps, the gripper can catch the target: learning is successful. Here, after , learning steps the average error is below . % of the range. This corresponds to successfully catching over % of the time a target with . °width anywhere within a °range.

Figure

For applications requiring more precision the total number of learning steps should be increased.

In addition, the precision of the sensor is directly linked to the accuracy in determining the junctions'

frequencies. Therefore, it is improved when the total number of switching events occurring in the measurement time window increases. As a consequence, larger populations of junctions enable reaching lower gripper-target distances. This is shown through the black stars in Figure . (b): the distance between the target and the gripper decreases when the number of junctions in each network increases. Our simulations also indicate that the precision of the system is essentially set by the total number of junctions used in the circuit, rather than by the size of each population (red circles in Fig. . (b)). This shows that learning can be achieved for populations of di ferent sizes. For the data presented in Figure . , the natural frequency is about kHz and the observation length ms.

Reducing the size of junctions, thus increasing their maximum frequencies, and increasing the total number of switching events in the window of observation, also increases the sensory processing precision (blue squares in Fig. . (b)).

Finally, precision can also be increased by narrowing the tuning curves and observing the junctions over a longer period of time. However increasing the observation length increases the energy consumption: for a given sought precision, the required observation length is inversely proportional to the natural frequency of the junctions.

. . . Robustness to device variability

We now study how device to device variability, a serious experimental concern, a fects the sensor performances. We consider variability induced by the lithographic process. This means that there is variability on the diameter of the junctions. The energy barrier is proportional to the surface of the elliptic base of the junction. In consequence it is proportional to the square of the diameter d of the junction:

∆E ∝ d 2 . ( . )
This enables us to compute the variability on the energy barrier as a function of the variability on the diameter of the junction. The variability on the energy barrier has a uniform distribution between ∆E 0σ and ∆E 0 + σ. The average frequency of a junction is: Blue squares: the sensory junctions are twice as fast as in the previous case (N s = N m but F s = 2F m ). Red circles: the total number of junctions is constant (N s + N m = 200). In each case, junctions in each network and steps were used. The results are averages over learning trials. The error bars correspond to the standard deviations over these trials. Therefore, the average frequency F is higher than the theoretical frequency F 0 . The blue circles curve in Figure . shows the distance between the gripper and the target versus the variability on the diameter of the junctions. The theoretical diameter is nm. The error decreases until about nm variability. Variability on the size of the junctions increases the average maximal frequency of the population and thus increases the precision. Above nm, mismatch between the expected theoretical tuning curves and the observed tuning curve is too important so the precision is worse than without variability.

F = 1 2τ 0 exp - ∆E k B T = 1 2τ 0 exp - ∆E 0 k B T sinh(σ) σ . ( . )
In the case where the shifting of the di ferent junctions in the population is implemented by spin-orbit torque, one needs to consider the variability on the width of the underlayer. The voltage for which the frequency is maximal is proportional to the inverse of the heavy metal underlayer width:

V 0 = dt j I SOT wt u I c V c . ( . )
This enables us to compute the variability on the maximal voltages as a function of the variability on the width of the underlayer. The red triangles curve in Figure . shows the distance between the gripper and the target versus the variability on the width of the underlayer. This variability only a fects the values of the voltages at which the tuning curves are maximal, which has a purely negative impact on the precision.

When both the underlayer width and the junctions' diameters are a fected by variability, the two e fects balance each other and up to nm variation on the feature size can be tolerated without any precision loss (black squares in Figure . ). Our intelligent sensor therefore exhibits a strong robustness to the unavoidable variability resulting from the lithography process.

. . . Robustness to temperature variations We tested our system's resilience to temperature changes. Figure . shows the evolution of the distance between the gripper and the target versus the temperature. Two cases are studied: the system is calibrated to function at T th = 270K (red circles) and the system is calibrated to function at T th = 300K (black squares). Temperature variations induce deformations of the junctions' tuning curves, which have a negative e fect on the performance. However, raising the temperature increases the natural frequency of the junctions. We observe that this balances the deformation and actually increases the precision of the system. This is only valid up to a certain point: when the temperature is too di ferent from T th , the error rises again. On the contrary, decreasing the temperature lowers the natural frequency and adds up with the mismatch to strongly reduce the precision, as can be observed for the T th = 300K case. In consequence, programming the sensory processor for the bottom of the working temperature range (as illustrated here by the T th = 270K case) allows a high robustness to temperature variations.

. . Learning coordinates transformations . . .

-dimension coordinate transformations

The proposed spintronic sensory processor can learn to transform information. In this case, the orientation of the target is a function of the perceived stimulus. In order to catch the target, the sensory processor has to perform an operation on the value of the stimulus. Figure . (a) compares the distance between the gripper and the target for di ferent operations: the simple value of the stimulus ("z"), the double of the stimulus ("2z"), the square of the stimulus ("z 2 "), the inverse of the stimulus ("1/z") and the sine of the stimulus ("sin(z)").

The task is performed in the same way as in the catching target case, with the orientation of the target being replaced by the result of the transformation operation.

The distance gripper-target is computed as the absolute di ference between the expected value of the transformation and the numerically computed value. It is expressed as a percentage of the range of possible expected values.

For "z": the stimulus range is -to + V and the result range -to + V. For "2z": the stimulus range isto + V and the result range -to + V. For "z 2 ": the stimulus range is -to + V and the result range to + V. For "1/z": the stimulus range is + . to + V and the result range is + to + V. For "sin(z)" the stimulus range is to + . V and the result range to + V.

The results in Figure . (a) show that the same precision can be achieved for coordinate transformations as for simple sensor-motor coordination. Our nanoscale sensory processor is able to learn linear and non-linear transformations. Here we have two sensors, one sensitive to the orientation of the target (φ) and one sensitive to the distance of the target (R). The D motor is controlled by instructions in Cartesian coordinates (x and y).

The stimulus ranges are to V for R and to . V for φ. The range for both x and y is to V. Four populations of junctions encode the four coordinates R, φ, x and y.

The two sensory populations R and phi are concatenated into a single population. Its number of junction is the sum of the number of junctions in each population N s = N R + N φ . Two weights matrices (W x and W y ) connect the sensory (R, φ) to the motor junctions (x, y). The weights matrices W x and W y have the dimensions N x × N s and N y × N s . Where N x (N y ) is the number of junction encoding x (y).

Learning of the weights is implemented as described previously.

The distance gripper-target is computed as the absolute D-distance between the target and the gripper and is expressed as a percentage of the range for x and y. We perform numerical simulations in the same way as in Sections . and . . . The distance to optimal fusion is computed as an average over randomly chosen trials where the two voltages applied to the sensors are kept separated by less than . V.

Figure . (a) represents the distance to optimal fusion versus the number of junctions in each sensor for two cases: a single sensor (black stars) and two sensors (blue squares). We observe that sensory fusion allows a better precision than a single sensor. As expected, the error decreases when the total number of junctions increases. We observe that fusion of populations of di ferent sizes is possible and the error only depends on the total number of junctions in the system (grey triangles in Figure . ). Fusion of two populations when one is composed of faster junctions than the other is also possible (red circles in Figure . ).

. . Implementation of the intelligent sensor

Building this intelligent sensory processor system able of learning, signal transformation and fusion requires implementing in hardware the synaptic weights. This can be done with stable magnetic tunnel junctions, larger than the superparamagnetic ones, implementing non-volatile memory cells as in magnetic random access memories (MRAMs). This allows using the same magnetic stack for neurons and synapses. We have observed that only bits per synapse ( bit of sign, of value) are su cient to achieve the same precision as analogue weights. For a hundred junctions in each of the sensor and motor populations, this amounts to a total of , magnetic tunnel junctions. As hybrid spintronic-CMOS memory chips composed of millions of magnetic tunnel junctions are already commercialized [ ], this number is very reasonable. In the future, the synaptic weights can also be implemented using magnetic memristors [ ], which also opens the possibility of using advanced unsupervised learning schemes. Implementing our sensory processor requires limited CMOS overhead: linking the frequencies of the motor junction to the frequencies of the sensory junctions according to Equation . , and modifying the weights according to Equation . . In particular, the computation of the junctions' frequencies can be realized using binary count-up counters, and the learning rule with simple integer addition circuits.

. . Energy/power consumption

For evaluating the potential of the system in terms of energy and power consumption, we suppose even smaller junctions of parameters ∆E = 6k B T and V c = 0.1V. This corresponds to a natural frequency of . MHz. The junctions are shifted by individual voltage biases between -. V and . V.

The power consumption due to the shifting is:

P shif t = N i=1 V 2 shif t R . ( . ) 
Where N = 100 is the number of junctions, V shif t is the maximal ring voltage for the i-th junction and R is the resistance of the junctions.

For a RA = 20µΩ × cm 2 and a d = 7.7nm diameter the resistance is R = 424kΩ. The power consumption is P shif t = 0.8µW. The maximal power consumption for the stimulus is:

P stim = N 0.1 2 R = 2.4µW. ( . )
So the total power is P = 3.2µW. For a microseconds measurement the energy consumption is

E = 63pJ.

Conclusion

In this Chapter we have shown that the superparamagnetic tunnel junction can emulate a sensing neuron.

We have adapted theoretical neuroscience work to our device and thus demonstrated that populations of superparamagnetic tunnel junctions can encode information, perform Bayesian inference and sensory fusion. As the superparamagnetic tunnel junctions convert a real world signal into stochastic telegraphic signals they can be used as analog to random bitstream converted for stochastic computing circuits.

We have proposed a vision of a intelligent sensory processing unit based on populations of superparamag-netic tunnel junctions. We demonstrated that this system is capable of learning and achieving computing tasks such as motor control, coordinate transformations and more complex sensory fusion. Our system exhibits a strong robustness to device variability as well as temperature variations. We have discussed the feasibility of our system and shown that it is technology-ready. These results open the path toward hardware implementations of our system to integrate this nanoscale circuit close to a sensor, on the same chip.

In addition, since we were guided throughout our study by technical constraints, we have been led to developing simpler methods than existing ones for realizing learning and fusion with diverse populations of spiking units. Mechanisms to achieve transfer of information from a sensory to a motor neural population and coordinate transform have been proposed [ , -] as well as population coding schemes for learning from sensory information in general [ , ]. However in this literature computationally complex learning processes are used, requiring for example to compute the motor neurons frequencies leading to any given gripper orientation [ ]. Our learning mechanism is more adapted to hardware constraints. It only requires knowing if the gripper was in the "LEFT", "RIGHT" or "CATCH" zone instead of a precise measurement of the error as required by many machine learning schemes. We have proved the e ciency of a simple learning rule for realizing complex tasks.

The advantage of using superparamagnetic tunnel junctions over other stochastic nanodevices is that their random behavior is well modeled and controlled. However, these ndings apply well beyond the case of stochastic magnetic junction assemblies, and will be useful for building hardware leveraging population for intelligent sensory processing. However, we expect that many more computing schemes can be implemented with superparamagnetic tunnel junctions, and that our work can also be adapted to other stochastic nanodevices.

S

tunnel junctions are unstable devices. Because of their intrinsically random behavior, they are usually considered useless. However, these devices are well understood, modeled and controlled. Taking inspiration from the brain which computes even though its components are probabilistic, we have shown that the stochastic dynamics of superparamagnetic tunnel junctions can actually be an asset.

Summary

Chapter has provided a review of the state of the art for this thesis. First, we have presented various methods to harness noise and stochasticity rather than ght them. In particular, our brain computes in the presence of noise and with stochastic components. Some studies even suggest that it takes advantage of this randomness to consume little energy. A speci c phenomenon, which might take place in networks of neurons -noise-induced synchronization -has been identi ed as particularly promising for computing. Second, we have described stochastic devices which are potential building blocks for computing.

A focus has been put on spintronics, of which the magnetic tunnel junction is the agship device. In particular we have presented ideas of how spintronics devices can be used for bio-inspired computing and how to take advantage of their intrinsic stochastic behavior. The superparamagnetic tunnel junction has been identi ed as a promising building block for bio-inspired computing schemes which use randomness.

In Chapter , we have presented the physics of the superparamagnetic tunnel junction and shown how a magnetic eld, an electrical current or a voltage can control its average state as well as its frequency. Both experimentally and theoretically, we have studied the in uence of the amplitude and frequency of the drive and have identi ed several key advantages of noise-induced synchronization over deterministic synchronization. Noise allows synchronizing a stochastic oscillator to a drive frequency orders of magnitude higher than its natural frequency, over broad ranges of noise levels, drive frequencies and amplitudes, and at a low energy cost. Noise-induced synchronization is robust to device and system variability.

However, noise-induced synchronization is stochastic so it cannot be perfect and achieving noise-induced synchronization can require a control over the noise level, which might require circuit overheads. These features should be taken into account when designing architectures using noise-induced synchronization.

Using our analytical model, we have investigated the energy required to achieve synchronization of scaled down superparamagnetic tunnel junctions. The thermal noise available at room temperature is su cient to induce synchronization with little external energy input. Furthermore, we have shown that using electrical noise is even more energy e cient. For every drive frequency there is an optimal junction diameter allowing minimal energy consumption. Finally, we have compared our results to the energy required to achieve the synchronization of traditional spin torque nano-oscillators and CMOS neurons and have observed a hundred-fold gain.

The results of Chapter are only useful for computing if synchronization of networks of coupled superparamagnetic tunnel junctions can be achieved. In consequence, in Chapter , we have conducted a theoretical study of the noise-induced synchronization of coupled superparamagnetic tunnel junctions.

First, we have demonstrated that two electrically coupled superparamagnetic tunnel junction can be synchronized to an external voltage drive. When synchronization is induced by thermal noise, we have observed two regimes. On one hand, at low temperature, the junctions are strongly coupled and block each other, thus leading to a frequency plateau at half the drive frequency. On the other hand, at high temperature, the junctions are weakly coupled and are each synchronized to the drive. Contrary to thermal noise, electrical noise can only induce synchronization to the drive. These results highlight an important di ference between thermal and electrical noise-induced synchronizations. Furthermore we have shown that two superparamagnetic tunnel junctions of di ferent natural frequencies can be simultaneously synchronized to a drive.

Second, we have proposed a simple circuit allowing the synchronization of a superparamagnetic tunnel junction to another, in the absence of external drive. However, in order to be feasible, this system requires careful design of the devices.

Third, we have investigated how to mutually synchronize two superparamagnetic tunnel junctions. Supposing a control over the coupling between the oscillators, we have proposed a three-oscillators system where one acts as a bu fer between the two mutually synchronized oscillators.

These results highlight the rich physics of coupled stochastic oscillators. Noise-induced synchronization of bistable stochastic oscillators is very di ferent from deterministic synchronization of harmonic oscilla-tors. In particular some phenomena, such as mutual synchronization, are achieved less naturally.

In Chapter , we have investigated a di ferent bio-inspired way to use superparamagnetic tunnel junctions for computing and have showed that the latter can emulate sensing neurons. Taking inspiration from neuroscience studies, we have shown that populations of superparamagnetic tunnel junctions can represent probability distributions. We have proposed a simple method to decode the information coded by a population of junctions. Several realistic implementations of such populations are possible. Furthermore, sensory fusion of the information coded by two identical populations can be achieved in a simple way.

We have shown that interconnected populations can form a neural network, capable of learning and computing. In particular, this system can perform motor control, coordinate transformations and sensory fusion of non-identical populations. We have shown that learning can be achieved through a simple rule, less complex to implement that those proposed in the literature. This system is the rst demonstration of populations of stochastic nanodevices for computing.

A key application for this system is targeted: intelligent sensory processing. Because of its compactness, it could indeed be embedded on a sensor and allow low energy sensory processing.

We have investigated the e fect of the device to device variability due to the lithography process on the system and shown that a small amount of variability actually improves the performance of our system. Globally, our system exhibits a strong robustness to variability. Furthermore, we have also shown its strong robustness to temperature increases. Finally we have discussed the feasibility of our system. The low requirements both on the number of devices (i.e. less than a hundred thousand) and on their parameters (i.e. high energy barriers are not necessary) open the path to hardware implementations of this intelligent sensor.

Perspectives

We have studied two phenomena: noise-induced synchronization for synchronization-based computing, and population coding for intelligent sensory processing. These results opens the path for bio-inspired computing schemes with stochastic magnetic tunnel junctions. In order to ful ll the potential of these devices, the ongoing work has to be continued.

Regarding synchronization-based computing, thermal noise is su cient to induce synchronization but one might want to use electrical noise of even better energy e ciency. In this case, it is required to control the level of noise in the system. A potential solution is to take advantage of the electrical noise naturally present in circuits, by re-injecting the noise generated by assemblies of stochastic devices for instance. Two or three discrete levels of noise would be su cient to discriminate synchronized from non-synchronized states. Furthermore, the existing synchronization-based computing methods have to be reinvented for stochastic bistable oscillators. Regarding the use of superparamagnetic tunnel junctions as sensory neurons, one needs to be able to go to more complex computing tasks without sacri cing the simplicity and the compactness of the system.

For instance, methods implementing unsupervised learning with spiking neurons could be adapted.

Other applications of superparamagnetic tunnel junctions for unconventional computing are currently being investigated by our group. In particular, the results of this thesis are used within the European project FP FET OPEN BAMBI. In this project, superparamagnetic tunnel junctions are used as true random number generators. The resistance variations of a superparamagnetic tunnel junction is transformed into a binary signal by a threshold operation. Then, by sampling this signal, a random bitstream is obtained. Sampling has to be done at an appropriate rate to avoid auto-correlation: the time interval between samples should be of the order of a few times the mean period. However, because of the non zero stray eld, the natural probability of the bitstream is di ferent from . . A . probability is a required condition for many applications. In consequence, the bitstream has to be whitened (i.e. transformed into a . probability bitstream). This can be achieved for example by performing XOR operations on di ferent bitstreams. Vodenicarevic et al. have shown that the bitstreams obtained after whitening by XOR operations are of high enough quality to be used in cryptography or stochastic computing applications.

In particular, one goal is to use superparamagnetic tunnel junctions in systems that implement Bayesian inference. In these systems, the probabilities at play are represented by random bitstreams. Using superparamagnetic tunnel junctions would allow to generate these bitstreams in a compact and low power way.

Superparamagnetic tunnel junctions are starting to attract more and more attention. Recently, the group of Supriyo Datta at Purdue university proposed to use superparamagnetic tunnel junctions for non-Boolean logic [ ]. The idea is to build a system which implement the Hamiltonian of an optimization problem. Here they suggest to use spin orbit torque to achieve the required couplings between the junctions. Because they oscillate randomly, the junctions explore all possible solutions and relax in the most favorable energetically. The authors perform numerical simulations showing that this system can solve the traveling salesman problem, which is NP hard.

In all applications, reading the states of the devices will have to be carefully thought of, especially since the OFF/ON ratio of superparamagnetic tunnel junctions is low. Reading and controlling the state of each device while maintaining a low energy cost will might be di cult. Globally, a challenge will be to keep the overhead CMOS computing simple and low energy enough so that it does not overcomes the bene ts of using nanodevices. A modular approach will be required to go from small brick circuits to large systems. Finally, the design of speci cally optimized superparamagnetic tunnel junctions might improve C. . Sum of the average activities times the preferred stimuli

We use the same approximations as in the previous computations.

N i=1 r i µ i = g ∆µ +∞ -∞ x exp - (s 0 -x) 2 2σ 2 0 dx. (C. )
With the variable change x → (x -s 0 ) it follows that:

N i=1 r i µ i = g σ 0 √ 2π ∆µ s. (C. )
C. . Sum of the average activities times the squared preferred stimuli

Still with the same approximations we have:

N i=1 r i µ 2 i = g ∆µ +∞ -∞ x exp - (s 0 -x) 2 2σ 2 0 dx. (C. )
With the variable change x → (x -s 0 ) it follows that:

N i=1 r i µ 2 i = g σ 0 √ 2π ∆µ (s 2 0 + σ 2 0 ). (C. )
C. Probability of a stimulus given the observed activity C. . Expression of the logarithm of the posterior

The probability of a stimulus s to be the real applied stimulus, given the observed activity r is:

P (s|r) = P (s) P (r) P (r|s) (C. ) P (s|r) = P (s) P (r) N i=1 exp (-g f i (s)) (g f i (s)) r i r i ! . (C. )
In consequence:

log P (s|r) = log P (s) -log P (r) -g

N i=1 f i (s) + N i=1 r i log f i (s) + log(g) N i=1 r i - N i=1 log r i !. (C. )
The standard deviation is:

σ = σ 0 ∆µ g √ 2π . (C. )
The integral of the posterior over all possible stimuli is equal to so we can compute that:

M = log 1 σ 0 √ 2π exp gσ 0 √ π ∆µ √ 2 . (C. )
C. . Application to the sum method

In the sum method we use the approximations described above and seek to nd the parameters µ and σ of the Gaussian.

Combining Equations C. and C. allows us to get:

µ = s 0 = N i=1 µ i r i N i=1 r i (C. ) and σ = σ 0 N i=1 r i . (C. )

C. Sensory fusion

Two identical populations of sensing neurons receive a stimulus. The probabilities to observe the activities r eye and r ear knowing the value of the stimulus are independent. In consequence:

P (r eye , r ear |s) = P (r eye |s) × P (r ear |s) (C. ) ear f i (s) r eye,i +r ear,i r eye,i ! (C. )

P (r eye , r ear |s) = N i=1 exp(-g eye f i (s))(g eye f i (s)) r eye,i r eye,i ! × N i=1 exp(-g ear f i (s))(g ear f i (s))
We construct a third identical population, which activity is the sum of the activities of the eye and the ear: Journal of the American Chemical Society, ( ): -, January .

r = r eye + r ear .
[ ] Jieying Jiao, Gary J. Long, Fernande Grandjean, Alicia M. Beatty, and Thomas P. [ ] A. V. Khvalkovskiy, J. Grollier, N. Locatelli, Ya. V. Gorbunov, K. A. Zvezdin, and V. Cros. Nonuniformity of a planar polarizer for spin-transfer-induced vortex oscillations at zero eld. Applied Physics Letters, ( ): , .

[ ] Sumito Tsunegi, Hitoshi Kubota, Kay Yakushiji, Makoto Konoto, Shingo Tamaru, Akio L'objet de cette thèse est un nanodispositif, la jonction tunnel magnétique. Grace à son endurance, sa fiabilité et sa compatibilité avec le CMOS, ce système bistable s'est imposé comme le composant phare de la spintronique. Cependant, garantir la stabilité de ce dispositif tout en réduisant sa taille est un défi.

Les jonctions tunnel magnétiques instables -appelées jonctions tunnel superparamagnétiques -se comportent comme des oscilla-teurs stochastiques. Dans cette thèse, j'examine pour la première fois comment tirer parti du comportement aléatoire des jonctions tunnel magnétiques stochastiques, en s'inspirant de la biologie. L'ensemble de ces résultats suggérent que la jonction tunnel superparamagnétique est une brique de base prometteuse pour la mise en oeuvre matérielle du calcul bio-inspiré.

Title: Stochastic magnetic tunnel junctions for bio-inspired computing Keywords: neuro-inspired electronics, bio-inspired computing, spintronics, artificial neurons, magnetic tunnel junctions, stochastic systems.

Abstract: With the rise of nanoelectronics, many novel technologies have emerged, holding the promise to replace or complement the traditional computing building block -the CMOS transistor. However, at the nanoscale, noise significantly affects the behavior of systems, inducing random fluctuations. It is thus natural to look for computing techniques which are intrinsically tolerant to noise, variability and errors, or even better, which take advantage of these. Among the possible solutions, one paradigm has emerged as particularly promising and disruptive: taking inspiration from biology. Indeed, our brain is able to perform computationswhile consuming only 20 W -even though its components themselves exhibit stochastic behavior. Bio-inspired computing with stochastic nanodevices should prove to be particularly successful for cognitive tasks such as pattern recognition and classification. Mixing conventional electronic components with emerging technologies could allow performing such tasks at low energy cost.

The focus of this thesis is a specific nanodevice, the magnetic tunnel junction. Because of its endurance, reliability and CMOS compatibility, this bistable system has emerged as the flagship device of spintronics. However, maintaining the stability of this device while reducing its size is a challenge. Unstable magnetic tunnel junctions -called superparamagnetic tunnel junctionsbehave as stochastic oscillators. In this thesis, I investigated for the first time how to harness the random behavior of stochastic magnetic tunnel junctions, taking inspiration from biology.

First, it is experimentally demonstrated that electrical noise can induce the synchronization of a junction to a weak voltage source. A theoretical model is developed and predicts that using noise could allow a hundred-fold energy gain over the synchronization of traditional dc-driven spin torque oscillators. This result opens the way to the low power hardware implementation of synchronization-based computing schemes which can perform tasks such as pattern recognition.

Then, an analogy between superparamagnetic tunnel junctions and sensory neurons -which fire voltage pulses with random time intervals -is drawn. Pushing this analogy, it is numerically demonstrated that interconnected populations of junctions can perform computing tasks such as learning, coordinate transformations and sensory fusion. Such a system is realistically implementable and could allow for intelligent sensory processing at low energy cost.

All these results suggest that the superparamagnetic tunnel junction is a promising building block for hardware implementations of bio-inspired computing.
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Figure . :

 . Figure . : Energy required by switching step versus the probability to e fectively perform the switch for PCMOS inverters. This if for TSMC 0.25µm technology with a noise magnitude of . V RMS and . V RMS. Measurement, simulation, and analytical results are shown. From [ , ]

Figure . :

 . Figure . : Energy potential V (x) in function of the position of the particle x. (a) No drive is applied. (b)The value of the drive is -A 0 = -0.1. (c) the value of the drive is +A 0 = +0.1. In panels (b) and (c) the arrows represent the fact that the particle has a strong probability to jump from the high potential well to the low potential well.

FigureFigure

  Figure . :

Figure

  Figure . : (a) Example of signal detection through stochastic resonance. A signal is plotted versus time. The dashed line is the detection threshold. (b) The same signal with additional white Gaussian noise is plotted versus time.

Figure

  Figure . : (a) Picture of Dr. Julie Grollier without noise. (b) Picture with an optimal level of noise. (c) Picture with too much noise.

  5 years [ ]. This speci c case launched the eld of stochastic resonance. • Lasers. Mc Namara et al. observed stochastic resonance in a bistable ring laser [ ]. Barbay et al.

  observed stochastic resonance in a vertical cavity surface emitting laser (VCSEL) [ ]. Both systems are bistable with a double well potential and can exhibit canonical stochastic resonance. • Quantum systems. Lofstedt et al. predicted that stochastic resonance could occur in systems with quantum wells [ ]. Grifoni et al. studied quantum stochastic resonance in spin-boson systems [ ] and Huelga et al. showed it could occur in arrays of coupled quantum elements [ ]. Hibbs et al. showed that stochastic resonance could be used in Superconducting interference devices (SQUIDs) for weak signal detection [ ].

•

  Nanomechanical devices. Badzey et al. provided the rst experimental demonstration of stochastic resonance in a nanoscale system [ ]. They reported the noise-induced ampli cation of the response of a nanomechanical silicon bistable oscillator to a periodic rf signal. Venstra et al. showed how stochastic resonance could allow the detection of a weak signal by a bistable cantilever [ ]. • Magnetic systems. With the emergence of spintronics, stochastic resonance was studied in several bistable nanomagnetic systems: domain wall motion [ ], spin valves [ , ] and recently superparamagnetic tunnel junctions by our group [ , ]. . . . Relevance of stochastic resonance for computing Among the systems in which stochastic resonance has been observed, neurons have received a speci c focus. Models of various types of neural systems have been studied [ ], including integrate and re neurons [ ], spiking neurons [ ], more realistic ionic neurons [ ], small-world networks [ ] and scale free neurons networks [ ]. Stochastic resonance has been observed in in-vitro experiments on rats neurons, suggesting the positive role of noise in sensory tasks [ -]. Hidaka et al. showed in-vivo that submitting a venous blood pressure receptor to a weak periodic drive and an arterial blood pressure receptor to an optimal level of noise can improve the human blood pressure regulatory system [ ]. This suggests that stochastic resonance occurs as the signals from both receptors are combined in the brain. Nevertheless, it has not been demonstrated that the nervous system actually uses stochastic resonance. The review What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology provides more references and details about this topic [ ]. CHAPTER : COMPUTING WITH NOISE AND STOCHASTIC COMPONENTS Whether our brain uses noise to perform computations is a fascinating and still open question. However, the following facts are certain:

  Interesting noise-induced phenomena are numerous and various. They include stochastic resonance , noise-induced synchronization [ -], coherence resonance [ , ], noise-induced phase transitions [ -], noise-induced chaos [ ], noise-induced pattern formation [ , ], noise-induced wave propagation [ , ], diversity resonance [ , ], gain enhancement [ ], and many others [ -].

  Figure . , the frequency of the system plateaus at the frequency of the drive within an optimal range of noise for which synchronization and phase-locking are achieved. This plateau has been experimentally observed in various systems ranging from Schmidt triggers [ ] to laser rings [ ] and biological sensors in sh [ ]. In Chapter we present the rst experimental observation of noise-induced phase locking in a nanoscale device [ ] as well as the rst experimental observation of the frequency versus noise plateau in a nanoscale device [ ]. To our knowledge, only one direct comparison of theory and experiment has been made [ ]. In Chapter we propose an original and comprehensive model of noise-induced synchronization. We validate both numerical and analytical results by direct comparison to experimental data [ , ]. More details about noise-induced synchronization are provided in Chapters and .

  Figure . : Implementation of a multiplication with a single AND gate. The probabilities P 1 and P 2 associated with the inputs as well as the probability P associated with the output are indicated.

  . The random bitstream resulting from the AND operation of two random bitstream has an average value equal to the product of the average values of the two inputs. Many studies have shown that using stochastic computing enables to reduce considerably the chip area used as well as the power cost [ , ]. In the early days of stochastic computing, studies have focused on implementing the building blocks of general purpose computing (matrix operations [ ], division and square rooting [ ], etc. ). Neural networks have been explored [ -], as well as hybrid analog-digital computing [ ].

A

  cellular automaton is a grid of identical unit cells. Each cell has a nite number of states. The change of state of each cell depends on a set of rules conditioned by the state of its neighbor cells. It has been demonstrated that both deterministic [ , ] and probabilistic [ ] cellular automata can perform computing tasks. While most cellular automata are implemented in software, there have been several hardware realizations, the most studied being quantum dot cellular automata and magnetic cellular automata. The latter will be detailed along with other magnetic systems in Section . . so here we focus on the quantum dot cellular automaton.This device was proposed byLent et al. in [ ] and build experimentally by the same team in [ ].

Figure . depicts quantum

  Figure . depicts quantum dot cellular automata. Each cell is composed of four quantum dots and has an excess charge of two electrons. The electrons can tunnel between the dots. Because of the Coulomb repulsion, the two electrons in the cell stay in dots as far as possible from each other. In consequence, the cell can take two con gurations, called polarizations (P = +1 and P = -1) and illustrated in Figures . (a) and (b).To each con guration can be a fected a binary state " " or " ".If two cells are placed next to each other, they will take the same polarization because of Coulomb repulsion. This allows creating wires of quantum dots cellular automata which propagate binary states through space.

Figure

  Figure . : (a)-(b) Quantum boxes composed of four dots. The light grey circles are empty dots while the dark grey circles are dots lled by an electron. The box (a) has a +1 polarity (binary state " ") while the box (b) has a -1 polarity (binary state " "). (c) Majority gate composed of quantum dots. The dark grey circles are the input electron-lled dots while the black circles are the output.

Figure

  Figure . : (A) Principle of a deterministic biomolecular automaton. The blue circles represent the possible states (S and S ) and the curves arrows the transitions (a and b). (B) Evolution of a deterministic biomolecular automaton. The successive states and the program are indicated. The vertical arrows represent the labeled transitions. (C) Principle of a stochastic biomolecular automaton. A probability is associated to each transition. (D) Evolution of a stochastic biomolecular automaton. A probability is associated at each path. The resulting probability of each state is indicated in the lower half of the circle corresponding to the state. From [ ].

  When two chromophores are close to each other resonant energy transfer can occur: the donor absorbs a photon, then transfers energy to the acceptor which in turn can emit a photon (as depicted in Figure.(a)). This is possible when the chromophores are a couple nanometers apart and have overlapping absorption-emission spectra. The resonant energy transfer is a nonradiative dipole-dipole interaction. As only a fraction of the excitation energy is transferred, the light emitted by the acceptor has a larger wavelength than the light absorbed by the donor. Details about resonant energy transfer between chromophores can be found in[ , ]. The time between the absorption by the donor and the emission by the acceptor is random and has an inverse exponential probability distribution. It constitutes a continuous time random Markov chain.

  Figure . (b) and (c). The chromophore (donor) can uoresce, emit energy by nonradiative decay or transfer energy to the other chromophore (acceptor) by resonant energy transfer. The excited acceptor can then uoresce, emit energy by nonradiative decay or re-transfer energy to the donor by resonant energy transfer. Each path is an element of the Markov chain and is associated to a speci c rate (ex: KRET for the resonant energy transfer from the donor to the acceptor).Figure . (c) presents the diagram of the Markov chain of the network. The rates depend on the types of chromophores employed as well as on their distance to each other (the rate of the resonant energy transfer varies like 1 d 6 where d is the distance between the donor and acceptor). Networks composed of large numbers of chromophores can implement complex Markov chains. The photons emitted by the uorescence of each chromophore can be detected. The time intervals between the photon detection events are random and with a probability distribution given by the Markov chain of the network. Wang et al. showed that observing these intervals means sampling from a probability distribution [ ]. It allows to sample both continuous variable and discrete variables (by discretizing the time in time steps). By modifying the types of chromophores and the topology of the network, one can implement many Markov chains and thus many probability distributions to sample from. This is particularly useful to implement computing schemes which require many random numbers (discrete or continuous) from speci c probability distributions. Wang et al. speci cally propose to use resonant energy transfer between chromophores for Bayesian computing tasks. Building a chromophores network matching the considered Bayesian network enables to directly sample from the wanted probability distribution. This allows to perform Bayesian tasks without computing complex probability distributions and arti cially generated random numbers, which is time and energy costly. Also called Forster resonant energy transfer or uorescence resonant energy transfer.

Figure

  Figure . : (a) Schematic of the resonant energy transfer mechanism. (b) Schematic of a twochromophores network. (c) The corresponding Markov chain, with the rates associated to each path. Adapted from [ ].

Figure . :

 . Figure . : Sketch of the typical resistance versus voltage curve of a memristor. From [ ].

  group of Wei Lu at Michigan University has investigated the use of memristors to generate random bitstreams for stochastic computing [ , , ]. The considered device is composed of a solid state electrolyte sandwiched between two electrodes, as depicted in Figure . (a). The bottom electrode is in poly-silicon, the top electrode is in silver and the insulating matrix is in amorphous silicon. Figure . (b) represents the switching cycle of the memristor. The device starts in the OFF state: the resistance is high because of the insulating layer. A positive voltage is applied to the top electrode. Up to a threshold voltage V + 5V , no current ows through the device ( ). The voltage across the device causes silver cations to migrate in the insulating matrix, forming a lament (Fig. . (a)). When the voltage crosses the thresholdV + , the lament reaches the bottom electrode, making the device conductor. The resistance switches to a low value, allowing current to ow ( ). This corresponds to the ON state. The current decreases when the voltage is decreased -as the device behaves as a resistor ( --). A negative voltage causes the cations Except for magnetic devices which are called MRAM as will be seen in Section . . . . ReRAM are restrained to resistance changes originating from a physico-chemical transformation of the material.

Figure

  Figure . : (a) Sketch of the memristor: the insulating matrix (light blue) is sandwiched between the poly-silicon (dark blue) and silver (yellow) electrodes. Silver ions migrate (yellow spheres) migrate in the insulating matrix. From [ ]. (b) Experimental switching cycle of the memristor: the current owing through the memristor is plotted versus the voltage across it. From [ ].

  Applying a succession of identical pulses and observing the state of the memristor generates a random bitstream, as depicted in Figure . (b). Each attempt to induce switching represents a bit. A successful switch corresponds to a " " while no switch corresponds to a " ". The probability encoded by the bitstream can be raised (reduced) by increasing (decreasing) the amplitude and the width of the voltage pulses.

Figure

  Figure . : (a) Random wait time distribution for an applied voltage of . V. Red bars: experimental data. Solid black line: tting of equation . using parameter τ = 340ms. (b) Result of the switching attempt (" " means failure while " " means success) versus the number of the attempt. Each attempt corresponds to a voltage pulse of amplitude . V and width ms. This bitstream has a probability p = 0.4. From [ ].

Figure

  Figure . : (a) Transmission electron microscopy image of a phase-change memristor. The thickness u of the amorphous region is indicated. (b) Conductance of the phase-change memristor versus the number of applied voltage pulses. Inset: sketches of the corresponding states of the device, with the electrodes in green, crystalline region in blue and amorphous region in red. From [ ].

  memristors. Because of inter-device variability, the frequencies of the arti cial neurons follow a roughly Gaussian distribution (as represented in the inset of Figure . (b)). All individual frequencies are below kHz. Each memristor of the population is submitted to triangular input signal of frequency F = 10kHz. This means the signal is broadband as all its components have a frequency above kHz. Figure . (a) compares the input signal and the response of the population. It can be observed that the number of ring devices versus time follows the same shape as the input signal. The population is able to encode a broadband signal even though the individual frequencies of the devices were all under 2F . With a single device, this would have not been possible, due to the Nyquist-Shannon theorem [ ]. With a population of deterministic spiking neurons, which re at a periodic pace, this would have been challenging. Using stochastic rather than deterministic neurons allows in this speci c case to encode a signal with a better time resolution. Figure . (b) shows that the representation error decreases with the number of devices.It outlines the strength of the population coding.

Figure . :

 . Figure . : Main: Distribution of the interspike intervals of a single device versus the width of the applied voltage pulses. the amplitude of the pulses is V. An inverse exponential curve (red solid line) is tted to the experimental data (black-green bars). Inset: Relative frequency of the interspike intervals of a single device for various pulse widths (which values are indicated on top or each curve). A Gaussian curve (solid line) is tted to the experimental data (squares) for each pulse width. From [ ].

Figure

  Figure . : (a) Left axis: input signal versus time. Right axis: number of devices that have red within a µs window versus time. This is for a hundred neurons population. (b) Main: representation error between the input signal and the population response versus the population size. Inset: distribution of the individual neurons frequencies (vertical bars) and Gaussian t (red solid line), for a neurons population. From [ ].

Figure . :

 . Figure . : Normalized resistivity versus magnetic eld for various superlattices at a temperature of . K. "(F e30A/Cr18A) 30 " refers to a stack of Fe/Cr bilayers, each and Angstrom high respectively. From [ ].

  Figure . : (a)-(b) Schematic of the two current channels (spins "up" (↑) and spins "down" ↓) in magnetic layers. The red (blue) arrow indicates the trajectory of the electrons with spins parallel (antiparallel) to the magnetization of the layer. The grey arrows represent the magnetization in each layer. (a) Parallel con guration. (b) Anti-parallel con guration. (c)-(d) Equivalent electrical circuits. Each branch corresponds to one current channel. The resistances for each branch and layer are indicated. (c) Parallel con guration. (d) Anti-parallel con guration. From [ ].

  (a)). One layer -called the reference layer -has a xed magnetization. The other layer -called the free layer -has a magnetization which has the energy landscape represented on Figure . (b). The two stable states are parallel (P) and anti-parallel (AP) to the reference magnetization. Because of the Giant

Figure

  Figure . : (a) Schematic of a magnetoresistive stack of thin lms. (b) Energy landscape of a magnetoresistive device. The magnetic con gurations corresponding to the states P (parallel) and AP (anti-parallel) are sketched under each well. The energy barrier ∆E is represented.

Figure . :

 . Figure . : Resistance of a magnetic tunnel junction in function of the applied magnetic eld. The resistances of the parallel (green) and anti-parallel (red) states are annotated.

  Figure . : The magnetization of the nanomagnet (black arrow) precesses around the easy axis (grey vertical line). The trajectory of the magnetization is represented by a dashed black circle.The direction of the applied magnetic eld (vertical blue arrow) is parallel to the easy axis.The di ferent torques acting on the magnetization are indicated by arrows: damping (green), spin transfer torque (red), eld-like torque (orange) and torque generated by the magnetic eld (blue).

  Figure . : The resistance of a magnetic tunnel junction is plotted in function of the current injected through the junction. The parallel (P) and anti-parallel (AP) states are indicated.

  Figure.: Schematic of the mechanism of spin transfer torque in a multi-layer device. The electrons (orange) ow through the reference layer (blue) which spin-polarizes them. The electrons then ow through the free layer (red) which modi es their spin-polarization (light blue arrow). Reciprocally, the magnetization absorbs some spin-angular momentum (dark blue arrow).

  Giant and Tunnel Magnetoresistances have led to drastic improvements in data storage (Fig. . ) [ ].

  Figure . : (a) The spin Hall e fect mechanism in a heavy metal layer. The charge current ows along the layer (solid orange arrow). The spins "up" (red) and "down" (green) are separated, creating a spin current (dashed grey arrow). (b) System to use spin-orbit torque switching in a magnetic tunnel junction. The junction is grown from free layer (yellow) to reference layer (dark orange) on top of a heavy metal underlayer (light orange).

  domains -are separated by domain walls, as depicted in Figure . (a). A long magnetic wire could store many bits of information (coded by the magnetization orientation) and implement a shift-register memory [ ]. Domain walls separate the bits. They can be moved by an electric current [ , ]. This would allow to have static reading and writing heads instead of having to move them mechanically above the bits like in a hard drive. This concept is called the racetrack memory (Fig. . (b)) [ ]. Such memories are expected to have much faster read/write operations are hard disk drives. Domain walls based devices are not limited to memory, they can also implement logic gates. Allowood et al., demonstrated the implementation of both the NOT and the AND gates with domain walls, which allows to build any logic function [ ].

Figure . :

 . Figure . : Schematic of a magnetic hard drive with its reading head, writing head and the stored bits (adapted from www.cnrs.fr).

Figure

  Figure . : (a) Sketch of a domain wall. From [ ] (b) Principle of a racetrack memory device.

Figure . :

 . Figure . : Left: in-plane magnetic tunnel junction. Right: out-of-plane magnetic tunnel junction. Each stack is composed of a reference layer (blue), a tunnel barrier (yellow) and a free layer (red).The orange arrow is the reference magnetization and the black arrow is the free magnetization.

  k B T > 60 [ ]. The energy barrier is proportional to the surface of the base of the junction [ ]. Thus, smaller devices are less stable (see Section . ). Magnetic tunnel junctions come in two types: in-plane and out-of-plane. In-plane junctions have magnetizations which are parallel to the plane of the thin lms while out-of-plane junctions have magnetizations which are perpendicular to the plane of the thin lms (Fig. . ). Out-of-plane junctions are also called perpendicular junctions. The advantage of perpendicular magnetic tunnel junction is that, at equal stability, they exhibit lower critical currents [ ]. The latest MRAM generations are made with out-of-plane magnetic tunnel junctions [ ]. In order to have an out-of-plane junction one must use materials exhibiting perpendicular magnetic anisotropy and layers thick enough for the magnetization to be perpendicular. Magnetic tunnel junctions are attractive for the following reasons. Their physics is well understood. They are reliable. The switching process does not damage them (contrary to lamentary memristors for instance), therefore they are highly exhibit outstanding endurance [ , ]. They are compatible with CMOS technology. Their read-write operations are fast (from to ns) [ ]. Several companies, including big players such as Samsung, manufacture MRAMs. In consequence, MRAMs have recently known impressive achievements. In , Everspin launched a MBit chip [ ] and Samsung presented a video controller using MBytes of MRAM . MRAMs are strong candidates to replace the memory at several levels in computers: the SRAM in the arithmetic logic unit and the DRAM in cache memory [ ].

  (a). Injecting a strong dc current into the device cannot induce magnetization reversals anymore ; instead, the magnetization undergoes oscillations in the potential well. The orbit of the oscillations is determined by the balance between the four torques (damping, eld torque, spin transfer torque and eld-like torque). The device is a self-sustained oscillator. It emits a sinusoidal voltage signal which frequency can be tuned by the value of the injected current. It is possible to induce oscillations in the in-plane [ ] (Fig. . (b)) and out-of-plane [ ] (Fig. . (c)) geometries.According to theoretical predictions, these auto-oscillators could run up to GHz [ ] but this requires speci c materials and large magnetic elds which is not very practical. Moreover, for simple device geometries and reasonable currents, the magnetization orbit it quite small, therefore the resistance variation (i.e. the amplitude of the signal) is only a small fraction of the magnetoresistance. One possible solution to get oscillations at zeros magnetic eld and a larger signal is to use a hybrid geometry where the stable state of the free magnetization is in-plane but its trajectory follows an out-of-plane orbit, as illustrated in Figure.(d). Such hybrid geometries typically have an in-plane pinned layer and an out-of-plane free layer[ - ]. Without magnetic eld, the oscillators frequencies are about a few GHz. However these oscillators are sensitive to defects and thermal noise, which deform the trajectory of the magnetization, leading to a degradation of the linewidth (typically about MHz).

  Figure . : (a) Energy landscape of a spin torque nano-oscillator. The magnetization (red arrow) precesses in the single well. The red circle indicates the trajectory of the magnetization in the well. (b) In-plane oscillator. The orange arrow is the reference magnetization and the black arrow is the free magnetization. The grey dashed line is the axis of rotation and the grey solid circle is the trajectory of the free magnetization. (c) Out-of-plane oscillator. (d) Hybrid oscillator.

  propagates information from bit to bit in a clock-like manner. Imre et al. showed how to build a majority gate [ ]. Karunaratne et al. moved to spin-valve structures and proposed a more complex architecture with seven inputs [ ]. Nanomagnetic logic exhibits low power and non-volatility [ ]. However the fact that spin/charge conversion is required at the extremities of the circuit limits the energy savings.

Figure . :

 . Figure . : Inset: schematic of the magnetic vortex con guration. Main: regions of stability of the possible con gurations (in-plane, out-of-plane and vortex). The y-axis corresponds to the radius R of the free-layer while the x-axis corresponds to its height L. Both are expressed in units of the exchange length L E of the material. The red region is an instability zone. Adapted from [ ]

Figure

  Figure . (b) [ ]. The advantage of a Skyrmion over a bubble is that it is topologically protected.

Figure

  Figure . : (a) Magnetic bubble. The red region has a magnetization perpendicular to the plane of the gure and facing the reader. The blue region's magnetization is anti-parallel to the red region's. (b) Magnetic Skyrmion. (c) Rectangular nanomagnets in a kagome geometry. Each magnetization is represented by a black arrow. The black disk indicates a magnetic monopole. (d) Spin wave. The individual spins are represented by arrows, their orbits by dashed circles and the resulting spin wave by a solid line. Adapted from [ ].

  (a)) [ ]. The shape of the memristor is elongated, as shown in Figure . (b)

CHAPTERFigure

  Figure . : (a) Schematic of the spintronic memristor. "DW" is the domain wall. (b) Scanning electron microscope image of the sample. (c) Resistance as a function of the vertically injected dc current. (d) Micromagnetic simulations of the domain wall propagating in a magnetic track. Each state is associated to a resistance level in panel (c). From [ ].

  by this, several schemes using the synchronization of networks of oscillators for computing have been proposed[ , , -]. Tasks such as pattern recognition and classi cation are particularly targeted.Here we present one architecture to do classi cation with the synchronization of coupled oscillators, proposed by Vodenicarevic et al. at Centre de Nanosciences et Nanotechnologies in collaboration with the Unité Mixte de Physique CNRS/Thales. This architecture was chosen because although is has notbeen implemented yet, it is realistically realizable with spin torque oscillators.The inset of Figure.(a) represent the smallest classi cation unit. It is composed of one input oscillator and two core oscillators( and ). Each oscillator is coupled to the two others. The natural frequency of each oscillator is tunable. In the case of spin torque nano oscillators, tuning of the frequency is achieved by a simple current injection through the device. The frequencies of the two core oscillators are tuned so that they are slightly di ferent and sweep the natural frequency of the input oscillator. Figure.(a)

  work described on Figure . (b) (two input oscillators and four core oscillators) exhibits classes (list of synchronized oscillators), as depicted in Figure . (c).

Figure

  Figure . : (a) Inset: Network of three oscillators. Main: Frequency of the input and core oscillators versus the natural frequency of the input oscillator. (From [ ]). (b) Network of six oscillators. (From Vodenicarevic et al., in preparation). (c) Map of synchronization classes. X axis: frequency of input A. Y axis: frequency of input B. Each color correspond to a list of synchronized oscillators, i.e. to a class. (From Vodenicarevic et al., in preparation).

Figure . :

 . Figure . : Top: current injected through the magnetic tunnel junction versus time. Bottom: corresponding evolution of the junction's state. The junction can be P or AP, a negative pulse resets it into the P state with % probability. Then a positive pulse excites it in the P or AP state with a % probability for each. Adapted from [ ].

  . The system proposed by Fukushima et al. -called Spin Dice -is composed of eight out-of-plane magnetic tunnel junctions. This allows to represent a -bit random number. Spin Dice is a true random number generator, which can be useful for applications such as cryptography or stochastic computing. It has passed usual random numbers tests from the National Institute of Standard and Technology . It can be scaled to larger systems composed of many magnetic tunnel junctions.

  Vincent et al. at the Centre de Nanosciences et Nanotechnologie have proposed to leverage the stochastic programming of magnetic tunnel junctions for bio-inspired computing [ ]. The proposed system is a neural network. The integrate and re spiking neurons are implemented in CMOS and the synapses are magnetic tunnel junctions. Each input neuron is connected to each output neuron through a crossbar of synapses -as depicted in Figure . (a). Vincent et al. demonstrate that this system can perform a classi cation task. The input is data from a bio-inspired arti cial retina [ ]. It is a video of a highway with several lanes, where cars go by (some data is shown in Figure . (b)). The task is to delimit the lanes and count the cars passing in each of them.

Figure

  Figure . : (a) Input from a bio-inspired arti cial retina. The dashed lines provide a guide to the eye to delimit the highway lanes. (b) Proposed system: a crossbar of magnetic tunnel junctions. Each line has the value of one pixel of the camera as input. Each column is linked to an output neuron. (c) Resistance map for each column. The black (white) pixels correspond to junctions in the AP (P) state. Adapted from [ ] and [ ].

Figure . represents the

  Figure . represents the thermal stability ratio ∆ = ∆E/k B T (panel (a)) and the critical current (panel (b)) in function of the diameter of the junction. We observe that the high energy barrier requirement prevents the reduction of the critical current and thus of the energy consumption. As mentioned earlier in this Chapter, large academic and industrial e forts are targeting how to solve this issue. The current record of lowest write energy is held by the IBM-Samsung MRAM alliance. Nowak et al. demonstrated a write error rate of 10 -6 with a 7.5µA current on an individual nm diameter junction [ ]. This corresponds to a write energy of 100fJ. This result is very promising for future

Figure . :

 . Figure . : From [ ]. (a) Critical current of a magnetic tunnel junction (b) Ratio of thermal stability factor ∆ = ∆E/k B T over the critical current as a function of the diameter. All symbols correspond to experimental data measured by Sato et al. Pink diamonds correspond to data previously published in [ ]. Solid lines correspond to analytical calculations.

  They have been grown by sputtering, then annealed before microfabrication at °C under a magnetic eld of Tesla for hour. Patterning was performed by e-beam lithography, resulting in nanopillars, as shown in Figure . (a). Type A samples are composed of the following stack, depicted in Figure . (b):

  Figure . : (a) TEM image of a magnetic tunnel junction. (b) Material stack of thin lms corresponding to the type A samples. The reference layer is constituted by a synthetic antiferromagnet (SAF).

  Figure . : (a) Schematic of a magnetic tunnel junction. (b) Schematic of the energy landscape of a magnetic tunnel junction with the magnetization con gurations corresponding to each of the wells.

  . . Stochastic behavior of the magnetic tunnel junctionThe two stable states P and AP are separated by an energy barrier ∆E, as depicted in Figure.(b).

CHAPTERFigure

  Figure . : (a) Measurement at 100µA of the resistance versus time of a superparamagnetic tunnel junction (type A sample). (b) Histograms of the dwell times in the parallel and anti-parallel states and corresponding mean dwell times. The di ference between the mean dwell times is due to the disturbance of the measurement current.

  Figure . (b) presents the same experiment with a superparamagnetic tunnel junction (type B sample). We observe that the hysteresis loop has disappeared. Although the resistance can only take two values (R P and R AP ), the average of the resistance over time varies continuously between these two extreme values. The absence of hysteresis and the presence of intermediate resistance levels are characteristic of superparamagnetic tunnel junctions.

Figure

  Figure . : Measurement at 100µA of the resistance versus applied magnetic eld (a) of a stable magnetic tunnel junction and (b) of a superparamagnetic tunnel junction.

  However, in magnetic tunnel junctions (contrary to spin-valves) the switching characteristics depend on the voltage across the device [ ]. Figure . (b) presents the same data as in Figure . (a) but in function of voltage. The logarithm of the mean dwell time of the AP (P) state is plotted as a function of

  Figure . : Experimental results and analytical model. Logarithm of the mean dwell times spent in the state AP (blue) and P (green) versus (a) the current through the junction (b) the voltage applied across the junction. Symbols represent the experiments while solid lines represent the analytical model with parameters ∆E/k B T = 18 and V c = 157mV. (Type B sample)

Figure

  Figure . (b) represents the ratio of time spent in the AP state as a function of the voltage V dc . Here again the experimental observations are consistent with the expected expression:

  Figure . : Experimental results and analytical model. (a) Frequency of the oscillator versus the applied voltage. (b) Ratio of time spent in the AP state versus the applied voltage. Symbols represent the experiments while solid lines represent the analytical model with parameters ∆E/k B T = 18 and V c = 157mV. (Type B sample)

Figure . :

 . Figure . : Experimental results and analytical model. Logarithm of the mean dwell times versus the square of the standard deviation σ N oise of the white Gaussian noise across the junction. The noise has a cuto f frequency F N oise = 40MHz. (a) Anti-parallel state. (b) Parallel state. Symbols: measurements with a I dc = 400µA current. Line: linear t. (Type A sample)

  A satisfying compromise is to compute boundstep as a hundredth of the current mean dwell time at each step.In this sample, R P 130 Ω and R AP 165 Ω. The measurements are conducted at room temperature. Fig. . (a) represents the mean dwell times for the parallel and anti-parallel states as functions of the injected DC current, for various external magnetic elds, at room temperature. Fig. . (b) illustrates the magnetic eld dependency of the superparamagnetic tunnel junction. The injected current for which the probability to be in each sate AP or P is % ( τ AP = τ P ) is plotted as a function the applied magnetic eld. For both cases, we observe that the simulations results (solid line) match the experimental results (symbols). Three parameters are extracted from the experimental data then nely tuned to obtain this match: ∆E/k B T = 11.3, V c = 0.18 V and H k = 57 Oe. Fig. . (b) enables us to extract the value H 0 = 7.8 Oe. These results suggest the validity of the Néel-Brown model with spin transfer torque to describe superparamagnetic tunnel junctions as well as its implementation in our model.

  Figure . : Experiments. (a) Mean dwell times for the anti-parallel (up triangle) and parallel (down triangle) states as functions of the applied current for various applied magnetic elds. (b) Current for which τ AP = τ P as a function of the applied magnetic eld. H 0 is the necessary eld to compensate the residual eld of the reference layer. For both graphs experimental measurements (symbol) are compared with simulations based on the compact model (lines).

Figure

  Figure . depicts the circuit as designed in the Cadence graphic interface. This circuit compares the resistances of two resistors: a reference resistor (on the left) and a magnetic tunnel junction (on the right, circled in black). The value of the reference resistor (R ref = 300Ω) is in-between the two resistances of the magnetic tunnel junction (R P = 200Ω and R AP = 400Ω). The output of the circuit is "Q" (circled in green). If the junction is in the AP state, then R > R ref and Q = 1. If the junction is in the P state, then R > R ref and Q = 0. To read the state one has to apply " " to the read function "Sense" (circled

Figure

  Figure . presents the results of simulations of the circuit with the Cadence Spectre platform. The read function (red), resistance (black) and output (green) are plotted versus time. Every 10µs the value of the resistance is sampled: " " is applied to "Sense". The output "Q" re ects the state of the junction. Let us use three sampling times as examples:

Figure . :

 . Figure . : Schematics of a Pre-Charge Sense Ampli er circuit, as designed with the Cadence graphic interface. The read function "Sense" is circled in red, the output "Q" in green and the superparamagnetic tunnel junction in black.

  barrier and critical current/voltage with their size. This model and the parameters it employs are inspired from the work by Sato et al. [ ]. While the junctions used in the experiments are large and switch through a sub-volume, the junctions considered for the theoretical parts are small enough to switch according to the macrospin model. Sato et al. showed that junctions with diameters under nanometers are macrospin.
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Figure . :

 . Figure . : Cadence Spectre simulations of the Pre-Charge Sense Ampli er circuit. The read function("Sense"), the Resistance (in Ohms) and the output ("Q") are plotted versus time, in red, black and green respectively. The vertical blue dashed lines correspond to the sampling times labeled t 1 , t 2 and t 3 .

  thermal and electrical noise are studied, as well as various shapes of drive (square periodic, square stochastic and sinusoidal). We leverage experiments to develop a theoretical model and demonstrate the validity of this model by comparing it to experimental results. Both numerical simulations and analytical expressions are validated. In particular we show how to find the boundaries of the range of noise (thermal or electrical) for which synchronization occurs. This model enabled to conduct more experiment and to study the e ect of the amplitude and frequency of the drive. Furthermore we used the model to predict energy and power consumption of the noise-induced synchronization of optimized scaled down junctions. We demonstrate that using noise to achieve synchronization allows an energetic consumption much lower than what is possible with harmonic spin torque oscillators or CMOS neurons. In consequence, noise-induced synchronization of superparamagnetic tunnel junction is promising for the low-energy implementation of synchronization-based computing schemes.Mbased on the synchronization of oscillators exist, however they are adapted to harmonic periodic oscillators. In order to use the synchronization of superparamagnetic tunnel junction for computing we need to re-invent these schemes and adapt them to bistable stochastic oscillators. The rst step of this study is to investigate the synchronization of a single superparamagnetic tunnel junction to an external source and how it can be controlled by noise.The goals of this Chapter are to observe, quantify, model and control the noise-induced synchronization of a superparamagnetic tunnel junction to an external electrical drive.

  ). While the switches of the drive and the oscillator would be simultaneous in the case of perfect synchronization (Fig. . left), they are separated by a random delay in the case of stochastic synchronization (Fig. . right).

Figure . :

 . Figure . : Sketches of the time evolution of a square periodic drive (black) and a bistable oscillator (red), in the cases of perfect synchronization (left panel) and stochastic synchronization (right panel).

Figure

  Figure . (a) plots the periodic drive versus time while Figure . (b) plots the response of the system -Here the magnetic eld applied to obtain zero e fective eld is Oe. Here RP 150 Ω and RAP 200 Ω.

  (ab)). Both phases φ s and φ e are linear and follow each other (Fig. . (c)). The dwell times histograms

.

  

Figure . :

 . Figure . : Measurements at room temperature of a superparamagnetic tunnel junction submitted to a I ac = 250µA square periodic current. Three frequencies are show here: F ac = 450Hz (left), F ac = 100Hz (center), F ac = 7.8Hz (right). (a) Current drive versus time. (b) Resistance of the junction versus time. (c) Phases of the junction φ s (in red) and of the excitation φ e (in black) versus time. (d) Histograms of the dwell times for the anti-parallel (red) and parallel (green) states versus time in T ac units.

Figure

  Figure . : Measurement. Phase di ference ∆φ = φ e -φ s between the phase of the drive and the junction versus time.

Figure

  Figure . (b) represents the frequency of the junction F -de ned as the mean number of oscillations per second -versus the drive frequency, for various drive amplitudes. Synchronization is achieved if the

  Figure . : (a) Matching time between the junction and the drive versus the frequency of the drive. (b) Frequency of the superparamagnetic tunnel junction versus the frequency of the drive. The dashed line represents the frequency of the drive. Various current amplitudes are measured: I ac = 250µA (blue), I ac = 200µA (red), I ac = 150µA (green) and I ac = 100µA (black). Symbols: experiments. Lines: numerical simulations with Cadence Spectre.

Figure

  Figure . (a) represents the e fective di fusion constant versus the drive frequency. Figure . (b) represents the temporal evolution of the di ference between the phase and its average position for ten independent trials. We observe two regimes, illustrated by the two panels of Figure . (b).( ) F ac = 700 Hz. We observe in Figure.(b) that the independent trajectories of the phase spread broadly around the average motion. Furthermore, the trajectories are very di ferent from each other. This leads to a large e fective di fusion constant (D ef f of the order of several thousands of rad 2 /s), as observed in Figure.(a). We conclude that at high drive frequencies the behavior of the phase is mainly stochastic.( ) F ac = 210 Hz. We observe in Figure.(b) that the independent trajectories of the phase stay close to the average motion and are all very similar. This leads to a small e fective di fusion constant (D ef f

  Figure . : Measurements. (a) Di fusion e fective constant of the phase of the superparamagnetic tunnel junction versus the frequency of the drive, for a I ac = 250µA current. The green star marks F ac = 210Hz and the red star marks F ac = 700Hz. (b) Phase of the junction versus time for ten independent trials. Two frequencies F ac = 210Hz and F ac = 700Hz are represented.The average phase 2π F t has been subtracted.

Figure . represents the

  Figure . represents the normalized matching time (right axis, in black) as well as the frequency of the oscillator (left axis, in red) versus the temperature. The matching time exhibits the characteristic bell shape of stochastic resonance [ ]. The frequency increases with temperature and presents a plateau at the frequency of the drive F ac . This plateau is a signature of stochastic resonance and noise-induced synchronization [ , ]. It is important to notice that synchronization occurs over a broad range of temperature. This makes noise-induced synchronization robust to temperature variations.
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Figure . :

 . Figure . : MATLAB simulations. Left axis: frequency versus the temperature. The horizontal black line corresponds to the drive frequency. Right axis: normalized matching time versus the temperature. The energy barrier is ∆E = 5k B T at T = 300K, the drive frequency is F ac = 1MHz and the drive amplitude is V ac = 0.75 V c .

First

  Figure .: MATLAB simulations. The numerically obtained frequency of the stochastic oscillator is plotted versus temperature in back squares (in units of the drive frequency F ac ). The probabilities to phase-lock P + and unlock P -are plotted versus temperature in purple and orange solid lines respectively. The drive frequency F ac is represented by a black horizontal line. The temperatures for which P + = 0.99 and P -= 0.01 are represented by purple and orange vertical dashed lines respectively. The red zone symbolizes the range of temperature for which synchronization is achieved.

FFigure . :

 . Figure . (a) represents the characteristic noise-induced synchronization curve of the frequency versus temperature for various drive amplitudes and for F ac = 1MHz. Figure . (b) is a map "temperature versus drive amplitude" of the synchronization region (in red). We observe that raising the drive amplitude

FV

  Figure . : Cadence Spectre simulations and analytical model. (a) Frequency of the oscillator versus the temperature, for various drive amplitudes. The drive frequency is F ac = 1MHz. (b) Temperature range where synchronization occurs versus the amplitude of the drive. The temperature at which P + = 95% is plotted as a black solid line while the temperature at which P -= 5% is plotted as a red solid line (analytical model). The temperature at which F = 0.95F ac is plotted as black squares while the temperature at which F = 1.05F ac is plotted as red stars. The synchronization occurs in the red zone. (c) Frequency of the oscillator versus the temperature, for various drive frequencies. The drive amplitude is V ac = 0.75 V c . (d) Temperature range where synchronization occurs versus the frequency of the drive. The same legend as in panel (b) is used. For all cases the energy barrier is ∆E = 5k B T at T = 300K.

Figure

  Figure . (c) represents the characteristic noise-induced synchronization curve of the frequency versus temperature for various drive frequencies and for V ac = 0.75V. Figure . (d) is a map "temperature

  Figure . : Measurements and analytical model. Synchronization map at room temperature. Drive frequency F ac versus normalized drive amplitude V ac /V c . The frequency synchronization for a % error is represented in red. The stars represent the experimental data points (from the experiment in Section . ) for I ac = 250µA: F ac = 7.8Hz (blue), F ac = 100Hz (green) and F ac = 450Hz (pink).

Figure . :

 . Figure . : Cadence Spectre simulations. Evolution of the resistance of the junction (up) and the stochastic drive (down) versus time at three temperatures: (a) T = 50K, (b) T = 250K and (c) T = 1000K.

  (a)), synchronization (Fig. . (b)) and glitches (Fig. . (c)).
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Figure

  Figure . : (a) Frequency of the oscillator versus the temperature for a stochastic drive (black) and a periodic drive (red) of frequency F ac = 1MHz, for two drive amplitudes V ac = 0.7V c (circles) and V ac = 0.4V c (square). (b) Matching time versus the temperature. The same legend is used for panels (a) and (b).

  Figure . : Frequency of the junction obtained by MATLAB simulations versus the temperature for a square periodic drive (black squares) and a square stochastic drive (red circles). The analytical model of the frequency around the plateau are plotted in solid lines both for the periodic (black) and stochastic (red) cases. The horizontal line symbolizes the drive frequency F ac .

  Figure . : Evolution with time of the sinusoidal drive (blue) and the state of the junction (green) at four di ferent temperatures: (a) T = 80K, (b) T = 110K, (c) T = 260K and (d) T = 350K.

Figure . :

 . Figure . : Cadence Spectre simulations. (a) Phase di ference between the sinusoidal drive and the oscillator for various drive amplitudes. (b) Frequency of the oscillator versus the temperature for a sinusoidal drive (line+symbols) and a square drive (line) of frequency F ac = 1M Hz, for various drive amplitudes: V ac = 0.9V c , V ac = 0.7V c and V ac = 0.3V c .

  (b)). Here the drive amplitude is lower than V c . In consequence the drive alone does not trigger switches of the junction. Adding electrical noise on the drive allows it to sometimes cross the thresholds and thus trigger switches of the junction (Fig.. (c)). For an optimal range of noise the drive crosses the thresholds at the right moments and synchronization occurs (Fig.. (d)). Too much noise causes glitches to appear

V

  

Figure . :

 . Figure . : Sketches of the time evolution of the square periodic voltage drive (blue) and the resistance of the junction (black). The red horizontal lines represent the critical voltages +V c and -V c . Five cases are illustrated. (a) Supra-threshold drive amplitude. (b) Sub-threshold drive amplitude, no electrical noise. (c) Sub-threshold drive amplitude, low noise. (d) Sub-threshold drive amplitude, optimal noise. (e) Sub-threshold drive amplitude, high noise.

Figure

  Figure . (a) represents the frequency of the oscillator versus the level of electrical noise (standard deviation σ N oise of the Gaussian distribution). Just like thermal noise, electrical noise raises the frequency of the superparamagnetic tunnel junction. Synchronization with the drive is achieved for an optimal range of electrical noise, as attested by the frequency plateau at F = F ac . Figure . (b) represents the time evolution of the drive and the state of the junction at di ferent noise levels. The three regimes are observed: stochastic at σ N oise = 15mV (panel ), phase-locking at σ N oise = 30mV (panel ) and

Figure

  Figure . (b) describes the in uence of the drive amplitude for a xed drive frequency (here F ac = 50Hz. The experimental values of the electrical noise level for which F = 0.99 × F ac and for which

Figure . :

 . Figure . : Experimental results, MATLAB simulations and analytical model. Simulations and analytical calculations are done with the same set of parameters: V c = 235mV and ∆E/k B T = 22.5. (a) A square periodic voltage of frequency F ac = 50Hz and a white Gaussian electrical noise are applied to a magnetic tunnel junction. Three amplitudes are studied: V ac = 44mV(green), V ac = 50mV (blue) and V ac = 63mV (red). Left axis: frequency of the oscillator versus the standard deviation of the noise, both experimental results (circles, squares and triangles) and numerical results (solid lines) are represented. Right axis: analytical values of probabilities < P + > and < P -> to switch during half a period T ac /2 versus noise (dash lines). Vertical dot lines represent the noise levels for which < P + >= 99.5% and < P ->= 0.5% for a 63mV amplitude. The horizontal black solid line represents the drive frequency F ac . (b-c) Lower noise bound (black) and higher noise bound (red) of the synchronization plateau versus the drive voltage (b) and versus the drive frequency (c). Both analytical values (dash lines) and experimental results (circles and squares) are presented. In the red zones the oscillator is synchronized with the excitation.

  Figure .: Analytical calculations of the electrical noise boundaries of the synchronization zone for the area of the experimental device (blue), the area increased by % (red) and the area decreased by % (green). The gray zone is thus the zone where synchronization is achieved for a % variability on the area. The blue (orange) circle marks the position of the minimum voltage required to achieve synchronization with no variability on the area (with % variability on the area).

FFigure . :

 . Figure . : MATLAB simulations. (a) Upper inset: Reproduction of Figure . (b). The circle indicates the lowest drive voltage V 0 for which synchronization can be achieved and the corresponding electrical noise level σ 0 . The star indicates the lowest drive voltage V 1 for which synchronization can be achieved through thermal noise alone without addition of any electrical noise. Main: Calculated minimum energy required to synchronize a perpendicularly magnetized superparamagnetic tunnel junction to a periodic voltage drive in one period, plotted versus the diameter of the junction, for di ferent drive frequencies. Circles represent the case where electrical noise has been added while stars represent the case where only thermal noise is used. (b) Power required to sustain synchronization versus the diameter of the junction.

  Section . -made the object of a publication in Physical Review Applied [ ]. The validation of the numerical model for this phenomenon has been published in IEEE Transactions on Magnetism [ ]. The analytical model of noise-induced synchronization controlled by thermal or electrical noise has been published in Physical Review B [ ]. The rst demonstration of the control of synchronization in a magnetic tunnel junction by electrical noise and the corresponding model made the object of a publication in Scienti c Reports [ ].Chapter Synchronization of coupled stochastic oscillators I to unlock the potential of synchronization-based computing, this Chapter presents a theoretical study of the synchronization of coupled stochastic oscillators. First we investigate the synchronization phenomena which occur when two superparamagnetic tunnel junctions are connected in series with a periodic voltage drive. In particular, this setup allows us to pinpoint a fundamental di erence between thermal and electrical noises and the qualitatively di erent behaviors it induces. Then we show how to synchronize a superparamagnetic tunnel junction to another one. Finally we investigate the mutual synchronization of abstract bistable stochastic oscillators. These results illustrate the variety and richness of synchronization phenomena relative to stochastic oscillators. Many synchronization-based computing schemes exist but they are designed for harmonic periodic oscillators, they need to be re-invented and adapted to stochastic oscillators, which opens broad perspectives for this work.

Figure . :

 . Figure . : Schematic of the circuits for the two possible con gurations: (a) head to tail and (b) head to head.

Figure . :

 . Figure . : MATLAB simulations and analytical model. The frequency of junctions is plotted versus temperature. The frequency of junction (resp.) is represented with squares (resp. circles).In the case where both junctions are head to tail (resp. head to head) the symbols are black (resp. grey). The drive frequency F ac as well a half the drive frequency Fac 2 are represented by black horizontal lines. The probabilities to switch during Tac 2 , P 2 , P 3 , P 4 and P 5 are represented by solid lines of color from purple to orange. The dashed vertical lines represent the temperatures at which P 2 = 0.99, P 3 = 0.01, P 3 = 0.99, P 4 = 0.01 and P 5 = 0.01.

Figure . :

 . Figure . : MATLAB simulations. A: Panels a, b and c represent the temporal evolution -at a temperature of T = 60K -of the amplitude of drive voltage V ac (c), the state of junction (b) and the state of junction (a) when the junctions are head to tail. Panels d, e and f represent the temporal evolution -at a temperature of T = 130K -of the amplitude of drive voltage V ac(f), the state of junction (e) and the state of junction (d) when the junctions are head to tail. Panels g, h and i represent the temporal evolution -at a temperature of T = 150K -of the amplitude of drive voltage V ac (g), the state of junction (h) and the state of junction (i) when the junctions are head to head. B: Schematic depiction of the switching cycles that junctions and undergo. The grey rectangles represent the two junctions with their respective state (P or AP). For each con guration, the probability to switch during Tac 2 is indicated on the left of each junction. Blue disks indicate the state of the drive voltage (+V or -V ). Blue horizontal arrows represent switches of the drive while curved vertical arrows represent switches of the junctions. The probability of each switch is indicated on the arrow. When the junctions are head to head, the top junction is and the bottom junction is .

Figure

  Figure . : Width in temperature of the synchronization plateau F = F ac , in function of the R AP /R P ratio and the drive frequency.

FigureFigure . :

 . Figure . : Width in temperature of the synchronization plateau F = F ac /2, in function of the R AP /R P ratio and the drive frequency.

  Figure . illustrates various cases, computed through Cadence numerical simulations. Indeed the Cadence platforms allows to change easily the properties of the components. A square periodic drive of frequency F ac = 100kHz and amplitude V ac = 1.5V is applied to two electrically coupled junctions connected head to tail (as described in Section . ).

Figure . plots the

  Figure . plots the frequency F 1 (up triangles) of the rst junction and the frequency F 2 (down triangles) of the second junction as functions of the temperature. Both junctions have a critical voltage V c = 1V. The energy barrier of the rst junction varies from ∆E 1 = 5k B T to ∆E 1 = 15k B T , each color corresponds to a di ferent energy barrier value.

Figure . :

 . Figure . : Cadence simulations. Frequency of the junction versus the temperature. The frequency is normalized by the drive frequency F ac = 100kHz. The black horizontal line represents the drive frequency F ac . Triangles: two coupled junctions of di ferent energy barriers. The energy barrier of the second junction is xed: ∆E 2 = 15k B T . Each color corresponds to a di ferent energy barrier value of the rst junction: ∆E 1 = 5 (green), ∆E 1 = 10 (pink), ∆E 1 = 12 (red), ∆E 1 = 13 (orange), ∆E 1 = 14 (purple) and ∆E 1 = 15 (black). The up triangles are for the rst junction (F 1 ) and the down triangles for the second junction (F 2 ).

  Figure . : (a) Circuit: two superparamagnetic tunnel junctions are connected to a voltage source V 0 . A current I 0 is injected between the two junctions. (b) State of the junction (master) versus time. (c) State of the junction (slave) versus time.

  350 µV is injected between the two junctions. Figures . (b) and (c) present the time evolution of the states of the master and slave junctions. these results were obtained through numerical simulations with the Cadence Spectre simulator (see Chapter ). Both junctions have an energy barrier so that ∆E/k B T = 5 and resistances R P = 300 Ω and R AP = 500 Ω. The critical voltage of the master junction V c,M = 500 mV is much higher than the slave junction's V c,s = 10 mV. For these parameters, the slave junction is phase-locked to the master junction.

Figure . :

 . Figure . : Two coupled oscillators are represented by the colored circles. The switching rates of the oscillators are indicated at each stage. The fonts should be read as follows: red means a high switching rate while green means low switching rate. The time evolution of the two oscillators are sketched for both paths (a) → (b) → (c) and (a) → (b) → (d).

Figure . :

 . Figure . : Evolution versus time of the state of the bu fer (black), oscillator (red) and oscillator (blue).

Figure

  Figure . : (a) Firing frequency of a spiking neuron linked to the eye of a monkey versus the orientation of an observed object. From [ ]. (b) Frequency of a superparamagnetic tunnel junction versus the applied voltage.

  Figure . : (a) An eye (sensor) observes a target with variable orientation. Five sensory neurons (junctions) are connected to the eye. (b) Frequency versus voltage for ve nominally identical superparamagnetic tunnel junctions. Symbols are experiments, and the lines are ts with Eq. . . The black curve corresponds to the natural tuning curve of a junction while the green, red, purple and blue curves correspond to shifted junctions. (c) Possible implementation of such a population. The junctions are on a metallic layer of variable width. A current ows through this layer and biases the junctions via spin orbit torque. The stimulus is applied by a common voltage to all junctions.

  Pouget et al., have proposed an elegant interpretation of population decoding as a Bayesian inference [ ]. This mathematical framework is valid for Poisson neurons with tuning curves of the exponential family (Gaussian function, sigmoid functions etc.

Figure

  Figure . : MATLAB simulations. (a) Number of switches versus the preferred voltages of the junctions. (b) Probability density versus the value of the voltage.

  Figure . : MATLAB simulations. Probability density versus the value of the stimulus. Five independent trials with the same stimulus are plotted in ten colors, as well as the average result (thick black line).

  .
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Figure

  Figure . : MATLAB simulations. Error as compared to the exact inference versus the number of neurons for (a) the most probable stimulus µ (b) the precision σ. Two methods are compared: the peak (black) and the sum (red). Each data point is an average over trials.

CHAPTER

  Figure . : Error as compared to the exact inference versus the parameter α for (a) the precision σ (b) the most probable stimulus µ. Each data point is an average over trials. The input stimulus was chosen randomly at each trial.

Figure . presents an

  Figure . presents an example of sensory fusion with two populations of superparamagnetic tunnel junction. Here the eye has a gain twice higher than the ear. The gain of the result of sensory fusion is the sum of the gain of each sensors,as illustrated in Figure . (a):

Figure . :Figure . :

 .. Figure . : Mechanism of sensory fusion. Each color corresponds to a preferred stimulus value. The activity of each population is indicated.

  (a)). In this case, the exact inference still gives a uni-modal Gaussian response verifying equations . and . , as represented in Figure . (b).

  Figure . : MATLAB simulations. (a) Number of switches versus the preferred voltage of the junction, for three networks: the eye (green squares), the ear (red circles) and the result of the fusion (black stars). (b) Decoded probability density versus the stimulus for the eye (green), the ear (red) and the result of the fusion (black).

  Figure . : Schematic of the learning process.

Figure . :

 . Figure . : MATLAB simulations. (a) Distance between the gripper and the target as a function of the number of learning steps for junctions in each network. (b) Distance between the gripper and the target as a function of the number of junctions N s in the sensory network. Black stars: the sensory and motor populations are identical (N s = N m and F s = F m ).Blue squares: the sensory junctions are twice as fast as in the previous case (N s = N m but F s = 2F m ). Red circles: the total number of junctions is constant (N s + N m = 200). In each case, junctions in each network and steps were used. The results are averages over learning trials. The error bars correspond to the standard deviations over these trials.
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Figure . :

 . Figure .: Distance between the gripper and the target as a function of the variability on feature size of the lithography process, when variability a fects the junction only (blue disks), the metal layer only (red triangles) and both the junction and the metal layer (black squares). junctions in each network and steps were used. The results are averages over learning trials. The error bars correspond to the standard deviations over these trials.

  Figure . : MATLAB simulations. Distance gripper-target versus the temperature for two calibration temperatures, K (black squares) and K (red circles). In each case, junctions in each network and steps were used. The results are averages over learning trials.

  Figure . : MATLAB simulations. (a) Distance between the gripper and the target in percentage of the motor range for various coordinate transforms. In each case, junctions in each network and steps were used. The results are averages over learning trials. The error bars correspond to the standard deviations over these trials. (b) Schematic of the " D" coordinates transform: the visual sensor is sensitive to the orientation (φ) of the target and its distance (R). The intelligent sensor converts the stimuli into Cartesians coordinates (x,y) for the motor.

Figure

  Figure .(a) shows that, although the error is larger than for D transformations, our system can perform D coordinates transformations.

Figure . :

 . Figure . : Fusion of information from the visual and auditory sensors.

  coding in assemblies of CMOS or any type of emerging technology neurons [ , , ]. CHAPTER : SUPERPARAMAGNETIC TUNNEL JUNCTIONS AS SENSING NEURONS Conclusions and future work S tunnel junctions are unstable devices. Because of their intrinsically random behavior, they are usually considered useless. However, these devices are well understood, modeled and controlled. Taking inspiration from the brain which computes even though its components are probabilistic, we have shown that the stochastic dynamics of superparamagnetic tunnel junctions can actually be an asset. In particular we have proposed two ideas of how to use superparamagnetic tunnel junctions for low-power bio-inspired computing: noise-induced synchronization for synchronization-based computing and population coding

Furthermore

  we have provided an original study of the e fect of electrical noise and demonstrated how to increase the frequency of a junction with it. We have developed a theoretical model which describes the junction as a Poisson oscillator. The validity of this model was demonstrated by comparison to experimental results. This model can be adapted in the VerilogA language and used in the Cadence Spectre simulator, which enables to study the behavior of hybrid-circuits composed of both superparamagnetic tunnel junctions and usual electronic components such as CMOS transistors.Inspired by the synchronization of networks of neurons in the brain, many computing schemes based on the synchronization of coupled oscillators have been proposed. In Chapter , we have studied the synchronization of a stochastic oscillator, the superparamagnetic tunnel junction. We have experimentally demonstrated for the rst time both how to harness thermal energy to induce synchronization of a superparamagnetic tunnel junction to a weak external voltage and how to control synchronization through electrical noise. The model presented in Chapter accurately reproduces experimental results of noiseinduced synchronization, both without and with electrical noise. Using this model, we have investigated how to control synchronization by varying the temperature and we extended our study from periodic square drives to square stochastic drives and sinusoidal drives. Furthermore, we have proposed an original analytical model which gives access to the noise range for which synchronization is achieved, provides a qualitative understanding of the phenomenon and is easily adaptable to various types of noise and drive. The validity of this analytical model was demonstrated by comparison to experimental results.

  Finally, one has to nd how to implement the required couplings between superparamagnetic tunnel junctions. The various available handles for controlling the junctions and emulating a coupling are: through spin transfer torque by direct application of a voltage or current, through spin orbit torque by placing a heavy metal layer under the devices, through magnetic eld by placing antenna above the devices. Furthermore, dipolar coupling can directly be implemented by placing the devices close to each other. It should also be investigated how to detect synchronization. Several promising detection systems have already been proposed by Vodenicarevic et al. [ ]. They were designed for harmonic oscillator but might be adapted to bistable oscillators.
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  Mots clefs : Électronique neuro-inspirée, calcul bio-inspiré, spintronique, neurones artificiels, jonctions tunnel magnétiques, systèmes stochastiques.Résumé : Avec l'avènement de la nanoélectronique, de nombreuses nouvelles technologies ont émergé, portant la promesse de remplacer ou compléter la brique de base traditionnelle du calculle transistor CMOS. Cependant, à l'échelle nanométrique, le bruit affecte significativement le comportement des systèmes, causant des fluctuations aléatoires. Il est donc naturel de rechercher des méthodes de calcul qui sont intrinsèquement tolérantes au bruit, à la variabilité et aux erreurs, ou encore mieux, qui tirent parti de ces derniers. Parmi les solutions envisageables, un paradigme est particulièrement prometteur et disruptif : s'inspirer de la biologie. En effet notre cerveau est capable de calculer -tout en ne consommant que 20 W -bien que ses composants eux-mêmes présentent un comportement stochastique. Le calcul bio-inspiré avec des nanodispositifs stochastiques devrait être particulièrement efficace pour des tâches cognitives telles que la reconnaissance de motif et la classification. Combiner des composants électroniques traditionnels avec des technologies émergentes pourrait permettre d'effectuer ces tâches à bas coût énergétique.

  

  

  Au electrode nmThe synthetic antiferromagnet is the CoFe/Ru/CoFeB tri-layer and the free layer is CoFeTiB. Type A samples are elliptic pillars with a 60 × 180 nm 2 cross-section.

substrate SiO / bu er layer nm / PtMn nm / CoFe . nm / Ru . nm / CoFeB . nm / MgO tunnel barrier . nm / CoFeTiB nm / Ta nm / Ru nm / Cr nm / Type B samples are composed of the following stack: substrate SiO / bu er layer nm / IrMn nm / CoFe . nm / Ru . nm / CoFeB . nm / MgO tunnel barrier . nm / CoFeB . nm / Ta nm / Ru nm / Cr nm / Au electrode nm The synthetic antiferromagnet is the CoFe/Ru/CoFeB tri-layer and the free layer is CoFeB. Type B sam-

  Introduction et contexteAvec l'avènement de la nanoélectronique, de nombreuses nouvelles technologies ont émergé, portant la promesse de remplacer ou compléter la brique de base traditionnelle du calcul -le transistor CMOS.Ces technologies émergentes vont de transistors alternatifs -tels que les nanotubes de carbone -à des dispositifs possedant des fonctionalités plus complexes -tels que les memristors qui sont des memoires nanoscopiques multi-niveaux non-volatiles. Les dispositifs nanoélectroniques ont été salués par un fort intérêt de la part des communautés scienti ques et de gros e forts sont mis en oeuvre pour les développer en vue d'applications de calcul, aussi bien au niveau académique qu'industriel.Cependant, à l'échelle nanométrique, le bruit a fecte signi cativement le comportement des systèmes, causant des uctuations aléatoires. Divers types de bruit jouent un role : le bruit thermique, le shot noise, le bruit d'excès lié aux e fets de bords, etc. De plus, le processus de fabrication de ces nanodispositifs mènent à une variabilité d'un dispositif à un autre, qui augmente lorsque la taille des dispositifs diminue. Le fait que ces technoloiges émergentes soient sujet à de tels taux d'erreurs et de variabilité est un frein majeur à leur utilité pour des applications conventionnelles de calcul. Bien que des méthodes visant à réduire l'impact de ces erreurs existent, la majorité d'entre elles consomment beaucoup d'énergie : codes des correction d'erreur, redondance des composants, fortes tensions de programmation... Par exemple, les magnetic random access memories (MRAM) sont des mémoires nanoscopiques non-volatiles qui remplaceront très probablement les technologies actuelles dans les processeurs. Néanmoins, la programmation de ces mémoires est stochastique à cause du bruit thermique. Pour que la programmation soit réussie, il faut appliquer d longues impulsions de tension, ce qui consomme beaucoup d'énergie. Il est donc naturel de rechercher des méthodes de calcul qui sont intrinsèquement tolérantes au bruit, à la variabilité et aux erreurs, ou encore mieux, qui tirent parti de ces derniers. Parmi les solutions envisageables, un paradigme est particulièrement prometteur et disruptif : s'inspirer de la biologie. En e fet notre cerveau est capable de calculer bien que ses composants eux-mêmes -les neurones et les synapses -présentent un comportement stochastique. Tout d'abord, les stimuli reçus par le cerveau sont eux mêmes bruités : par exemple les photons arrivent sur un photo-détecteur de l'oeil avec des statistiques de Poisson. De plus, le mouvement aléatoire des porteurs de charges dans les cellules nerveuses et l'ouverture stochastique des chaines d'ions autour de ces cellules mènent à des comportements probabilistes. Les neurones communiquent en envoyant des pics de tension mais les intervalles de temps entre ces pics semblent être aléatoires. Les synapses connectent les neurones entre eux mais leur probabilité d'échouer à transmettre un signal peut dépasser les %. En plus de ces e fets probabilistes, le cerveau doit gèrer la forte variabilité entre ces composants et la mort de ses cellules. Malgré tous ces obstacles, notre cerveau fonctionne avec succès et ne consomme que Watts. Certaines études de neurosciences suggèrent même que cette passe consommation est due au fait que le cerveau a évolué pour tirer parti du Le calcul bio-inspiré avec des nanodispositifs stochastiques devrait être particulièrement e cace pour des tâches cognitives où le cerveau excelle : reconaitre des motifs, classi er, prendre des décisions, interpréter des données bruitées et incomplètes, fusionner di férentes sources d'information... Ces tâches ont été longtemps innaccessibles aux ordinateurs. Aujourd'hui, des algorithmes bio-inspirés réalisent ces tâches avec grand succès. Pourtant, les processeurs d'ordinateurs conventionnels sont mal adaptés à de telles tâches et de fait les mises en oeuvre matérielles de ce dernières sont fortement consommatrices d'énergie. 'objet de cette thèse est un nanodispositif, la jonction tunnel magnétique. Grace à son endurance, sa abilité et sa compatibilité avec le CMOS, ce système bistable s'est imposé comme le composant phare de la spintronique. En particulier, il est utilisé comme la brique de base des magnetic random access memories. Cependant, garantir la stabilité de ce dispositif tout en réduisant sa taille est un dé . Les jonctions tunnel magnétiques instables -appelées jonctions tunnel superparamagnétiques -se comportent comme des oscillateurs stochastiques. Ces dispositifs sont habituellement mis à l'écart à cause de leur dynamique aléatoire. Cependant, ils ont des avantages clefs. Tout d'abord, leurs oscillations stochastiques sont complètement alimentées par le bruit thermique et ne requièrent donc aucun apport énergétique extérieur. Les divers dispositifs spintroniques ainsi que les phénomènes physiques mis en jeu sont décrits en détail. Tout spécialement, nous présentons les approches qui ont été prises pour tirer parti du caractère stochastique des dispositifs spintroniques. La jonction tunnel superparamagnétique est identi ée comme une brique de base prometteuse : bien que stochastique, son comportement est bien compris et modèlisé. De plus, elle béné cie des avantages traditionels de la spintronique (endurance, abilité, compatibilité avec le CMOS...). Le Chapitre a pour objet la physique de la jonction tunnel superparamagnétique. Il est montré expériementalement comment un champ magnétique, un courant électrique ou encore une tension peuvent controler son état moyen ainsi que la fréquence de ses oscillations. De plus, nous présentons une étude originale de l'e fet du bruit électrique et démontrons expérimentalement et analytiquement comment il peut augmenter la fréquence d'une jonction. Nous dévelopons un modèle thèorique décrivant la jonction comme un oscillateur de Poisson. La validité de ce modèle est démontrée par comparaison avec des résultats expérimentaux. Ce modèle peut être adpaté au langage VerilogA et utilisé de fait dans le simulateur Cadence Spectre, qui permet l'étude du comportement de circuits hybrides composés de jonctions tunnel superparmagnétiques ainsi que de composants électroniques usuels comme les transistors CMOS. synchroniser des jonctions de petite taille. Le bruit thermique disponible à température ambiante est su sant pour induire la synchronisation avec peu d'apport énergétique externe. De plus, nous montrons qu'utiliser le bruit électrique est encore plus e cace énergétiquement. Pour chaque fréquence d'excitation, il y a un diamètre de jonction optimal permettant une consommation énergétique minimale. Finalement, nous comparons nos résultats à l'énergie requise pour synchroniser des oscillateurs à transfert de spin traditionnels et des neurones CMOS et observons un gain d'un facteur cent. Les résultats du Chapitre sont utile pour le calcul si la synchronisation de réseaux d'oscillateurs couplés peut être réalisée. En conséquence, dans le Chapitre , nous menons une étude théorique de la synchronisation induite par le bruit de deux jonctions tunnel superparamagnétiques couplées. Tout d'abord, nous démontrons que deux jonctions tunnel superparamagnétiques couplées éléctriquement peuvent être synchronisées à un signal extérieur. Quand la synchronisation est induite par le bruit thermique nous avons observé deux régimes. D'une part, à basse température, les jonctions sont fortement couplées et se bloquent mutuellement, menant de fait à un plateau en fréquence à la moitié de la fréquence d'excitation. D'autre part, à haute température, les jonctions sont faiblement couplées et sont chancune synchronisées avec l'excitation. Contrairement au bruit thermique, le bruit électrique ne peut de coordonnées et de la fusion sensorielle de populations non-identiques. Nous montrons que l'apprentissage peut être réalisé à l'aide d'une règle simple, moins complexe à mettre en oeuvre que celles proposées dans la littérature. Ce système est la première démonstration de populations de nanodispositifs stochastiques pour le calcul. Une application clef pour ce système est identi ée : le traitement sensoriel intelligent. Grâce à sa compacité, il pourrait en e fet être embarqué sur un senseur et permettre du traitement sensoriel à bas coût énergétique. Nous étudions l'e fet de la variabilité entre les dispositif, due au processus lithographique, sur le système et montrons qu'une petite variabilité peut améliorer les performances de notre système. Globablement, notre système présente une forte résistance à la variabilité. De plus, nous montrons sa forte résistance aux augmentations de température. Finalement, nous étudions la faisabilité de notre système. Les faibles contraintes, aussi bien sur le nombre de dispositifs (moins de cent mille) que sur leurs paramètres (de fortes barrières d'énergie ne sont pas nécessaires) ouvrent la voie à une mise en oeuvre matérielle de ce capteur intelligent. Deux ou trois niveaux discrets de bruit seraient su sants pour discriminer les états synchronisés et non-synchronisés. De plus, les méthodes de calcul existantes doivent être réinventées pour des oscillateurs stochastiques bistables. Finalement, il faut parvenir à mettre en oeuvre les couplages nécessaires entre les jonctions tunnel superparamagnétiques. Les leviers disponibles pour controler les jonctions et émuler un couplage sont : à travers le couple de transfert de spin par application directe d'une tension ou d'un courant, à travers le couple de spin-orbite en plaçant une couche de métal lourd sous les dispositifs, à travers un champ magnétique en plaçant une antenne au dessus des dispositifs. De plus, le couplage dipolaire peut être directement mis en oeuvre en plaçant les dispositifs à faible distances les uns des autres. Il est également nécessaire d'étudier comment détecter la synchronisation. Par exemple, des méthodes mettant en oeuvre l'apprentissage non supervisé avec des neurones à impulsions pourraient être adaptées. D'autres applications des jonctions superparamagnétiques pour le calcul non-conventionnel sont étudiées en ce moment. En particulier, les résultats de cette thèse sont utilisées au sein du projet européen FP FET OPEN BAMBI. Dans ce projet, des jonctions tunnel superparamagnétiques sont utilisées comme générateurs de vrais nombres aléatoires. Les variations de résistance d'une jonction tunnel superparamagnétique sont transformées en signal binaire par une opération de seuillage. Puis, en échantillonant ce signal, un bitstream aléatoire est obtenu. L'échantillonage doit être e fectué à une fréquence appropriée pour éviter l'auto-corrélation : l'intervalle de temps entre les échantillons doit être de l'ordre de quelques périodes moyennes. Néanmoins, à cause du champ rémanant des jonctions, la probabilité naturelle du bitstream est di férent de . . Or une probabilité de . est nécessaire pour de nombreuses applications. En conséquence, le bitstream doit être blanchi (transformé en un bitstream de probabilité . ). Cela peut être réalisé en e fectuant des opérations XOR sur di férent bitstreams. Vodenicarevic et al. ont montré que le bitstreams obtenus après blanchiment par huit opérations XOR sont de qualité su sante pour être utilisé dans des applications de cryptographie ou de calcul stochastique. En particulier, un but est Nous avons montré que les jonctions tunnel superparamgnétiques sont des briques de base pour la mise en oeuvre à bas coût énergétiques de nouvelles formes de calcul, inspirées de la biologie. Dans cette thèse nous avons proposé deux concepts principaux mais bien d'autres sont possible donc nous nous attendons à voir des développements excitants dans le domaine du calcul avec des jonctions tunnel superparamagnétiques. Milena Grifoni and Peter Hänggi. Coherent and Incoherent Quantum Stochastic Resonance. Alice Mizrahi, Nicolas Locatelli, Romain Lebrun, Vincent Cros, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Damien Querlioz, and Julie Grollier. Controlling the phase locking of stochastic ] Werner Horsthemke. Noise Induced Transitions. In Professeur Dr Christian Vidal and Professeur Dr Adolphe Pacault, editors, Non-Equilibrium Dynamics in Chemical Systems, number in ] A. Mizrahi, N. Locatelli, R. Matsumoto, A. Fukushima, H. Kubota, S. Yuasa, V. Cros, Joo-Von Kim, J. Grollier, and D. Querlioz. Magnetic Stochastic Oscillators: Noise-Induced Synchronization to Underthreshold Excitation and Comprehensive Compact Model. IEEE Transactions on Magnetics, Jan Rappel and Alain Karma. Noise-Induced Coherence in Neural Networks. Physical ] Haitao Yu, Xinmeng Guo, Jiang Wang, Bin Deng, and Xile Wei. E fects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, ( ): , .[ ] Yanan Wu, Yubing Gong, and Qi Wang. Noise-induced synchronization transitions in neuronal network with delayed electrical or chemical coupling. The European Physical Journal B, ( ): -, . [ ] Bruce J. Gluckman, Theoden I. Neto f, Emily J. Neel, William L. Ditto, Mark L. Spano, and Steven J. Schi f. Stochastic Resonance in a Neuronal Network from Mammalian Brain. Physical ] Juergen Fell and Nikolai Axmacher. The role of phase synchronization in memory processes. ] An Chen, James Hutchby, Victor Zhirnov, and George Bouriano f. Emerging Nanoelectronic Devices. John Wiley & Sons, November . [ ] K. Yogendra, Deliang Fan, and K. Roy. Coupled Spin Torque Nano Oscillators for Low Power Neural Computation. IEEE Transactions on Magnetics, ( ): -, October . [ ] Alexander Neiman and Lutz Schimansky-Geier. Stochastic resonance in two coupled bistable systems. Physics Letters A, ( -): -, February . [ ] John F. Lindner, Brian K. Meadows, William L. Ditto, Mario E. Inchiosa, and Adi R. Bulsara. Array Enhanced Stochastic Resonance and Spatiotemporal Synchronization. Phys. Rev. Lett., ] Damian G. Stephen, Bethany J. Wilcox, James B. Niemi, Jason Franz, D. Casey Kerrigan, and Susan E. D'Andrea. Baseline-dependent e fect of noise-enhanced insoles on gait variability in healthy elderly walkers. Gait & Posture, ( ): -, July . [ ] M. d'Aquino, C. Serpico, R. Bonin, G. Bertotti, and I. D. Mayergoyz. Stochastic resonance in noiseinduced transitions between self-oscillations and equilibria in spin-valve nanomagnets. Physical Thomas J. Meitzler, Elena N. Bankowski, Michael Nranian, Ilya N. Krivorotov, Andrei N. Slavin, and Vasyl S. Tyberkevych. Spintronic electronic device and circuits, October . Advances in Information Systems Science, pages -. Springer US, January . [ ] Naresh R. Shanbhag, Rami A. Abdallah, Rakesh Kumar, and Douglas L. Jones. Stochastic com-] Armin Alaghi and John P. Hayes. Survey of Stochastic Computing. ACM Transactions on Embedded Computing Systems, ( s): -, May . [ ] P. Mars and H.R. Mclean. High-speed matrix inversion by stochastic computer. Electronics Letters, ] B.D. Brown and H.C. Card. Stochastic neural computation. I. Computational elements. IEEE Transactions on Computers, ( ): -, September . [ ] V.V. Vujicic, S.S. Milovancev, M.D. Pesaljevic, D.V. Pejic, and I.Z. Zupunski. Low-frequency stochastic true RMS instrument. IEEE Transactions on Instrumentation and Measurement, ] T. Hammadou, M. Nilson, A. Bermak, and P. Ogunbona. A × intelligent digital pixel array with extended binary stochastic arithmetic. volume , pages IV--IV-. IEEE, . [ ] Da Zhang and Hui Li. A Stochastic-Based FPGA Controller for an Induction Motor Drive With Integrated Neural Network Algorithms. IEEE Transactions on Industrial Electronics, ( ): -, . [ ] Girish V. Varatkar, Sriram Narayanan, Naresh R. Shanbhag, and Douglas Jones. Sensor Network-On-Chip. pages -. IEEE, November . ] Antoni Morro, Vincent Canals, Antoni Oliver, Miquel L. Alomar, and Josep L. Rossello. Ultra-Fast Data-Mining Hardware Architecture Based on Stochastic Computing. PLOS ONE, ] Joseph S. Friedman, Laurie E. Calvet, Pierre Bessiere, Jacques Droulez, and Damien Querlioz. Bayesian Inference With Muller C-Elements. IEEE Transactions on Circuits and Systems I: Regular ] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rosselló. A New Stochastic Computing Methodology for E cient Neural Network Implementation. IEEE Transactions on Neural Networks and Learning Systems, ( ): -, March . [ ] Tara Julia Hamilton, Saeed Afshar, Andre van Schaik, and Jonathan Tapson. Stochastic Electronics: A Neuro-Inspired Design Paradigm for Integrated Circuits. Proceedings of the IEEE, ] Tamoghna Purkayastha, Debashis De, and Kunal Das. A novel pseudo random number generator based cryptographic architecture using quantum-dot cellular automata. Microprocessors and Microsystems, : -, August . [ ] Timothy J. Dysart and Peter M. Kogge. Probabilistic Analysis of a Molecular Quantum-Dot ] Craig S. Lent, Beth Isaksen, and Marya Lieberman. Molecular Quantum-Dot Cellular Automata.
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bruit. En conséquence, s'inspirer du cerveau et adapter les nanodispositifs aux méthodes qu'il utilise pour gèrer l'aléatoire est une voie prometteuse. LDe plus, puisque leur stabilité n'est plus un enjeu, ils peuvent être réduits à d'extrêmes dimensions. Dans cette thèse, j'examine pour la première fois comment tirer parti du comportement aléatoire des jonctions tunnel magnétiques stochastiques et montre que -loin d'être inutiles -ces dispositifs pourrait permettre de réaliser du calcul bio-inspiré à bas coût énergétique. Une approche interdisciplinaire est mise en oeuvre, en mêlant des idées de la neuroscience et du calcul avec la physique de nos dispositifs. Des précurseurs de calcul sont démontrés expérimentalement sur des dispositifs individuels. Sur la base de ces expériences, un modèle théorique est développé et utilisé pour montrer comment des systèmes composés de nombreux dispositifs peuvent réaliser du calcul. tre de mettre en oeuvre ces méthodes. De fait, nous décrivons divers systèmes stochastiques qui ont été proposés comme briques de calcul. Une attention particulière est portée au domaine de la spintronique, dont la jonction tunnel magnétique est l'élément phare, et qui est prometteur pour des applications de calcul conventionnelles ainsi que non-conventionnelles (dont le calcul bio-inspiré). Inspirés par la synchronisation de réseaux neuronaux dans le cerveau, de nombreuses méthodes de calcul, basées sur la synchronisation d'oscillateurs couplés ont été proposées. Dans le Chapitre , nous étudions la synchronisation d'un oscillateur stochastique, la jonction tunnel superparamagnétique. Nous démontrons expérimentalement pour la première fois, à la fois comment tirer parti de l'énergie thermique pour induire la synchronisation d'une jonction tunnel superparamagnétique avec un faible signal externe et comment controler la synchronisation grace au bruit électrique. Le modèle présenté dans le Chapitre reproduit correctement les résultats expérimentaux de synchronisation induite par le bruit, avec ou sans bruit électrique. Grace à ce modèle, nous étudions comment controler la synchronisation en variant la température et étendons notre étude de signaux d'excitation créneaux périodiques à des signaux créneaux stochastiques et des signaux sinusoïdaux. plus, la synchronisation peut nécéssiter un controle du niveau de bruit, ce qui peut générer des surcoûts en circuits. Ces éléments devront être pris en considération pour la conception d'architectures utilisant la synchronisation induite par le bruit. Grâce à notre modèle analytique, nous étudions la quantité d'énergie requise pour qu'induire la synchronisation à l'excitation. Ces résultats mettent en avant une importance di férence entre les synchronisations induites par le bruit thermique et le bruit électrique. De plus, nous montrons que deux jonctions tunnel superparamagnétiques de fréquences naturelles di férentes peuvent être simultanément synchronisées avec une excitation. En suite, nous proposons un circuit simple permettant la synchronisation d'une jonction tunnel superparamagnétique avec une autre, en l'absence d'excitation externe. Néanmoins, la faisabilité de ce système requiert une conception minutieuse des dispositifs et leurs paramètres. Finalement, nous étudions comment synchroniser mutuellement deux jonctions tunnel superparamagnétiques. Supposant un controle sur le couplage entre les oscillateurs, nous avons proposé un système à trois oscillateurs, où l'un agit comme mémoire entre les deux oscillateurs synchronisés mutuellement. Nous montrons que des populations connectées entre elles peuvent former un réseau neuronal, capable d'apprendre et calculer. En particulier, ce système peut réaliser du contrôle moteur, des transforma-tions Perspectives Nous avons étudié deux phénomènes : la synchronisation induite par le bruit pour le calcul basé sur la synchronisation et le codage de population pour le traitement sensoriel intelligent. Ces résultats ouvrent la voie au calcul bio-inspiré avec des jonctions tunnel stochastiques. Pour accomplir le potentiel de ces dispositifs, le travail en cours doit être continué. Concernant le calcul basé sur la synchronisation, le bruit thermique est su sant pour induire la synchronisation mais utiliser le bruit électrique permettrait une e cacité énergétique encore meilleure. Dans ce cas, il est nécessaire de controler le niveau de bruit dans le système. Une solution possible est de tirer parti du bruit électrique naturellement présent dans les cicuits, en ré-injectant le bruit généré par des assemblées de dispositifs stochastiques par exemple. Plusieurs systèmes de détection prometteurs ont déjà été proposés par Vodenicarevic et al. Ils ont été conçus pour des oscillateurs harmoniques mais pourraient être adaptés à des oscillateurs bistables. Concernant l'utilisation de jonctions tunnel superparamagnétiques comme neurones sensories, il faut parvenir à des tâches de calcul plu complexes sans pour autant sacri er la simplicité et la compacité du système. d'utiliser des jonctions tunnel superparamagnétiques dnas des systèmes réalisant de l'inférence bayésienne. Dans ces systèmes, les probabilités en jeu sont représentées par des bitstreams aléatoires. Utiliser des jonctions tunnel superparamagnétiques permettrait de générer ces bitstreams de manière compact et peu consommatrice de puissance. Les jonctions tunnel superparamagnétiques commencent à attirer de plus en plus d'attention. Récemment, le groupe de Supriyo Datta à l'université de Purdue a proposé d'utiliser les jonctions tunnel superparamagnétiques pour la logique non-booléenne. L'idée est de construire un système qui réalise l'hamiltonien d'un problème d'optimisation. Ici, ils suggèrent d'utiliser le couple de spin-orbite pour emuler les couplages nécessaires entre les jonctions. Parce qu'elles oscillent aléatoirement, les jonctions explorent toutes les solutions et se détendent dans celle qui est la plus favorable énergétiquement. Les modulaire sera requise pour aller de petits circuits "briques" vers de grands systèmes. Finalement, la conception et l'optimisation spéci que de jonctions tunnel superparamagnétiques pourra améliorer la lecture. [ ] Andrew D. Kent and Daniel C. Worledge. A new spin on magnetic memories. Nature Nanotechnology, ( ): -, March . [ ] H.-S. Philip Wong and Sayeef Salahuddin. Memory leads the way to better computing. Nature Nanotechnology, ( ): -, March . [ ] A. Aldo Faisal, Luc P. J. Selen, and Daniel M. Wolpert. Noise in the nervous system. Nature [ ] C. Allen and C. F. Stevens. An evaluation of causes for unreliability of synaptic transmission. [ ] N. Locatelli, A. Mizrahi, A. Accioly, R. Matsumoto, A. Fukushima, H. Kubota, S. Yuasa, V. Cros, L. G. Pereira, D. Querlioz, J.-V. Kim, and J. Grollier. Noise-Enhanced Synchronization of Stochastic Magnetic Oscillators. Physical Review Applied, ( ): [ ] S. Borkar. Designing Reliable Systems from Unreliable Components: The Challenges of Transistor Variability and Degradation. IEEE Micro, ( ): -, November . [ ] K. Nikolic, A. Sadek, and M. Forshaw. Architectures for reliable computing with unreliable nan-[ ] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on circuit-level timing speculation. [ ] Krishna V. Palem. Energy Aware Algorithm Design via Probabilistic Computing: From Algorithms and Models to Moore's Law and Novel (Semiconductor) Devices. In Proceedings of the International Conference on Compilers, Architecture and Synthesis for Embedded Systems, [ ] R Benzi, A Sutera, and A Vulpiani. The mechanism of stochastic resonance. Journal of Physics A: Mathematical and General, ( ):L -L , November . [ ] R Benzi, G Parisi, A Sutera, and A Vulpiani. Stochastic resonance in climatic change. Tellus, . [ ] S. Fauve and F. Heslot. Stochastic resonance in a bistable system. Physics Letters A, ( ): -, . [ ] Luca Gammaitoni, Peter Hänggi, Peter Jung, and Fabio Marchesoni. Stochastic resonance. Reviews [ ] J. J. Collins, Carson C. Chow, and Thomas T. Imho f. Aperiodic stochastic resonance in excitable systems. Physical Review E, ( )[ ] Susana F. Huelga and Martin B. Plenio. Stochastic Resonance Phenomena in Quantum Many-Body Systems. Physical Review Letters, ( ), April . [ ] A. D. Hibbs, A. L. Singsaas, E. W. Jacobs, A. R. Bulsara, J. J. Bekkedahl, and F. Moss. Stochastic resonance in a superconducting loop with a Josephson junction. Journal of Applied Physics, [ ] Frank Moss, Lawrence M Ward, and Walter G Sannita. Stochastic resonance and sensory information processing: a tutorial and review of application. Clinical neurophysiology, ( ): -, . [ ] G.P. Harmer, B.R. Davis, and D. Abbott. A review of stochastic resonance: circuits and measurement. IEEE Transactions on Instrumentation and Measurement, ( ): -, April . [ ] G. Finocchio, I. N. Krivorotov, X. Cheng, L. Torres, and B. Azzerboni. Micromagnetic understanding of stochastic resonance driven by spin-transfer-torque. Physical Review B, ( ): , . [ ] [ ] Mahmut Ozer, Matjaž Perc, and Muhammet Uzuntarla. Stochastic resonance on Newman-Watts networks of Hodgkin-Huxley neurons with local periodic driving. Physics Letters A, ( ): -, March . [ ] Qingyun Wang, Matjaž Perc, Zhisheng Duan, and Guanrong Chen. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos: An Interdisciplinary Journal of [ ] Belén Sancristóbal, Beatriz Rebollo, Pol Boada, Maria V. Sanchez-Vives, and Jordi Garcia-Ojalvo.

Collective stochastic coherence in recurrent neuronal networks. Nature Physics, advance online publication, . [ [ ] Matjaž Perc. Thoughts out of noise. European Journal of Physics, ( ): , . [ ] Sándor Kádár, Jichang Wang, and Kenneth Showalter. Noise-supported travelling waves in sub-[ ] Leonhard Lücken, Oleksandr V. Popovych, Peter A. Tass, and Serhiy Yanchuk. Noise-enhanced coupling between two oscillators with long-term plasticity. Physical Review E, ( ): , [ ] Boris Shulgin, Alexander Neiman, and Vadim Anishchenko. Mean Switching Frequency Locking in Stochastic Bistable Systems Driven by a Periodic Force. Phys. Rev. Letters, ( ): -, . [ ] Sonya Bahar, Alexander Neiman, Lon A. Wilkens, and Frank Moss. Phase synchronization and stochastic resonance e fects in the cray sh caudal photoreceptor. Physical Review E, ( ): , . [ ] Igor A Khovanov and Peter VE McClintock. Synchronization of stochastic bistable systems by biperiodic signals. Physical Review E, ( ): , . [ [ ] Changsong Zhou and Jürgen Kurths. Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos: An Interdisciplinary Journal of Nonlinear Science, ( ): -, March . [ [ [ ] Frank C. Hoppensteadt and Eugene M. Izhikevich. Oscillatory Neurocomputers with Dynamic Connectivity. Physical Review Letters, ( ): -, . [ ] M. R. Pufall, W. H. Rippard, G. Csaba, D. E. Nikonov, G. I. Bouriano f, and W. Porod. Physical Implementation of Coherently Coupled Oscillator Networks. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, : -, . [ [ ] M Locher, D Cigna, ER Hunt, GA Johnson, F Marchesoni, L Gammaitoni, ME Inchiosa, and AR Bulsara. Stochastic resonance in coupled nonlinear dynamic elements. Chaos: An Interdisciplinary Journal of Nonlinear Science, ( ): -, . [ [ ] Adi R Bulsara, Anna Dari, William L Ditto, K Murali, and Sudeshna Sinha. Logical stochastic resonance. Chemical Physics, ( ): -, . [ ] W. J. Poppelbaum, C. Afuso, and J. W. Esch. Stochastic computing elements and systems. page . ACM Press, . [ ] B. R. Gaines. Stochastic Computing Systems. In Julius T. Tou, editor, Advances in Information Systems Science, [ [ ] Young-Chul Kim and M.A. Shanblatt. Architecture and statistical model of a pulse-mode digital multilayer neural network. IEEE Transactions on Neural Networks, ( ): -, September . [ [ [ ] Vincent Canals, Antoni Morro, and Josep L. Rosselló. Stochastic-based pattern-recognition analysis. Pattern Recognition Letters, ( ): -, November . [ [ ] Emre O. Neftci, Bruno U. Pedroni, Siddharth Joshi, Maruan Al-Shedivat, and Gert Cauwenberghs. Stochastic Synapses Enable E cient Brain-Inspired Learning Machines. Frontiers in Neuroscience, , . [ [ [ ] Benjamin William Vigoda. Analog Logic: Continuous-Time Analog Circuits for Statistical Signal Processing. ResearchGate, May .

[ ] Vikash Kumar Mansinghka. Natively probabilistic computation. January .

[ [

  Fukushima, Hiroko Arai, Hiroshi Imamura, Eva Grimaldi, Romain Lebrun, Julie Grollier, Vincent Cros, and Shinji Yuasa. High emission power and Q factor in spin torque vortex oscillator consisting of FeB free layer. Applied Physics Express, ( ):, June .[ ] Shehzaad Kaka, Matthew R. Pufall, William H. Rippard, Thomas J. Silva, Stephen E. Russek, and Jordan A. Katine. Mutual phase-locking of microwave spin torque nano-oscillators. Nature, ] A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, F. Abreu Araujo, K. A. Zvezdin, J. Grollier, V. Cros, and A. K. Zvezdin. Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators. Applied Physics Letters, Sani, J. Persson, S.M. Mohseni, Ye Pogoryelov, P.K. Muduli, A. Eklund, G. Malm, M. Käll, A. Dmitriev, and J. Åkerman. Mutually synchronized bottom-up multi-nanocontact spin-torque oscillators. Nature Communications, , November . [ ] K. Yu Guslienko. Magnetic Vortex State Stability, Reversal and Dynamics in Restricted Geometries, June . [ ] R. P. Cowburn. Room Temperature Magnetic Quantum Cellular Automata. Science, ] A. Imre. Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata. Science, Magnetic Bubble Technology, volume of Springer Series in Solid-State Sciences. Springer Berlin Heidelberg, Berlin, Heidelberg, . [ ] Naoto Nagaosa and Yoshinori Tokura. Topological properties and dynamics of magnetic skyrmions. Nature Nanotechnology, ( ): -, December . [ ] N. Rougemaille, F. Montaigne, B. Canals, A. Duluard, D. Lacour, M. Hehn, R. Belkhou, O. Fruchart, S. El Moussaoui, A. Bendounan, and F. Maccherozzi. Arti cial Kagome Arrays of Nanomagnets: A Frozen Dipolar Spin Ice. Physical Review Letters, ( ), February . [ ] S. Ladak, D. E. Read, G. K. Perkins, L. F. Cohen, and W. R. Branford. Direct observation of magnetic monopole defects in an arti cial spin-ice system. Nature Physics, ( ): -, May . ] J. Grollier, D. Querlioz, and M. D. Stiles. Spintronic Nanodevices for Bioinspired Computing. ] Sanjukta Bhanja, D. K. Karunaratne, Ravi Panchumarthy, Srinath Rajaram, and Sudeep Sarkar. Non-Boolean computing with nanomagnets for computer vision applications. Nature Nanotechnology, ( ): -, October . [ ] Steven Lequeux, Joao Sampaio, Vincent Cros, Kay Yakushiji, Akio Fukushima, Rie Matsumoto, Hitoshi Kubota, Shinji Yuasa, and Julie Grollier. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Scientific Reports, : , August . [ ] DeLiang Wang. Emergent synchrony in locally coupled neural oscillators. IEEE Transactions on Neural Networks, ( ): -, July . [ ] Michael J Jutras and Elizabeth A Bu falo. Synchronous neural activity and memory formation. ] Steven P. Levitan, Yan Fang, John A. Carpenter, Chet N. Gnegy, Natalie S. Janosik, Soyo Awosika-Olumo, Donald M. Chiarulli, Gyorgy Csaba, and Wolfgang Porod. Associative Processing with ] H. Sato, M. Yamanouchi, S. Ikeda, S. Fukami, F. Matsukura, and H. Ohno. Perpendicularanisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure. Applied Physics Letters, ( ): , July . [ ] A.F. Vincent, N. Locatelli, J.-O. Klein, W.S. Zhao, S. Galdin-Retailleau, and D. Querlioz. Analytical Macrospin Modeling of the Stochastic Switching Time of Spin-Transfer Torque Devices. IEEE Transactions on Electron Devices, ( ): -, January . [ ] Jan A. Freund, Lutz Schimansky-Geier, and Peter Hänggi. Frequency and phase synchronization in stochastic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, ( ): -, March . [ ] R. H. Victora. Predicted time dependence of the switching eld for magnetic materials. Physical Zhao, C. Chappert, V. Javerliac, and J. P. Noziere. High Speed, High Stability and Low Power Sensing Ampli er for MTJ/CMOS Hybrid Logic Circuits. IEEE Transactions on Magnetics, ] A. Mizrahi, N. Locatelli, J. Grollier, and D. Querlioz. Synchronization of electrically coupled stochastic magnetic oscillators induced by thermal and electrical noise. Physical Review B, ( ), George L. Gerstein and Benoit Mandelbrot. Random Walk Models for the Spike Activity of a ] Wei Ji Ma, Je frey M. Beck, Peter E. Latham, and Alexandre Pouget. Bayesian inference with probabilistic population codes. Nature Neuroscience, ( ): -, November . [ ] Je frey M. Beck, Wei Ji Ma, Roozbeh Kiani, Tim Hanks, Anne K. Churchland, Jamie Roitman, Michael N. Shadlen, Peter E. Latham, and Alexandre Pouget. Probabilistic Population Codes for ] Alexandre Pouget, Je frey M. Beck, Wei Ji Ma, and Peter E. Latham. Probabilistic brains: knowns and unknowns. Nature Neuroscience, ( ): -, September . [ ] Peter Dayan and LF Abbott. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, . [ ] H. S. Seung and H. Sompolinsky. Simple models for reading neuronal population codes. Proceed-

		Proceedings of the IEEE,	( ):	-	, October	.
						( ):	, September
	.				
	): Review Letters, ( ): --, February Bayesian Decision Making. Neuron, ( ): . , [ ] S. (	.	-	, December	.
	Current Opinion in Neurobiology, ( ): -, April ings of the National Academy of Sciences, ( ): -	. , November	.
	(	):	-	, January	.
		ical Review B, ( ):	, January	.
						( ):	-	,	.
	Coupled Oscillators. In Proceedings of the [ ] W. ( ): -, October .	International Symposium on Low Power Electronics
		and Design, ISLPED ' , pages	-, Piscataway, NJ, USA,	. IEEE Press.
	[ ] William Rippard, Matthew Pufall, and Anthony Kos. Time required to injection-lock spin torque
	[ ] Pablo Kaluza. Computation with phase oscillators: An oscillatory perceptron model. Neurocom-nanoscale oscillators. Applied Physics Letters, ( ): , October .
		puting, : -, October	.
	[ ] Paolo Livi and Giacomo Indiveri. A current-mode conductance-based silicon neuron for address-[ ] Matthew J. Cotter, Yan Fang, Steven P. Levitan, Donald M. Chiarulli, and Vijaykrishnan Narayanan. Computational Architectures Based on Coupled Oscillators. pages -. IEEE, event neuromorphic systems. pages -. IEEE, May .
		July	.		
	[ ] D. Vodenicarevic, N. Locatelli, J. Grollier, and D. Querlioz. Synchronization detection in networks International Joint Conference on Neural of coupled oscillators for pattern recognition. In August .
	( Networks (IJCNN), pages ): -, September -[ ] ( ): -, November	.	.	, July	.

[ ] A. Dussaux, A. V. Khvalkovskiy, J. Grollier, V. Cros, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K. Ando, and A. Fert. Phase locking of vortex based spin transfer oscillators to a microwave current. Applied Physics Letters, ( ): , March . [ [ [ ] D. K. Karunaratne and Sanjukta Bhanja. Study of single layer and multilayer nano-magnetic logic architectures. Journal of Applied Physics, ( ): A , . [ ] M. Alam, G.H. Bernstein, J. Bokor, D. Carlton, X.S. Hu, S. Kurtz, B. Lambson, M.T. Niemier, W. Porod, M. Siddiq, and E. Varga. Experimental progress of and prospects for nanomagnet logic (NML). pages -. IEEE, June . [ ] A. P. Malozemo f and J. C. Slonczewski. Magnetic Domain Walls in Bubble Materials: Advances in Materials and Device Research. Academic Press, September . Google-Books-ID: LY BQAAQBAJ. [ ] Andrew H. Eschenfelder. [ ] A. V. Chumak, V. Vasyuchka, A. Serga, and B. Hillebrands. Magnon spintronics. Nature Physics, ( ): -, . [ [ [ ] Eugene M. Izhikevich. Dynamical Systems in Neuroscience. MIT Press, . [ ] F.C. Hoppensteadt and E.M. Izhikevich. Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Transactions on Neural Networks, ( ): -, May . [ ] E Vassilieva, G Pinto, José Acacio de Barros, and P Suppes. Learning Pattern Recognition Through Quasi-Synchronization of Phase Oscillators. IEEE Transactions on Neural Networks, ( ): -, January . [ [ ] Dmitri E Nikonov, Gyorgy Csaba, Wolfgang Porod, Tadashi Shibata, Danny Voils, Dan Hammerstrom, Ian A Young, and George I Bouriano f. Coupled-oscillator associative memory array operation. arXiv preprint arXiv: . , . [ [ ] D. Walton. Comment on "Predicted time dependence of the switching eld for magnetic materials". Physical Review Letters, ( ): -, . [ ] R. H. Victora. Victora replies. Physical Review Letters, ( ): -, . [ ] J. C. Slonczewski. Currents, torques, and polarization factors in magnetic tunnel junctions. Phys-[ ] J. Z. Sun and D. C. Ralph. Magnetoresistance and spin-transfer torque in magnetic tunnel junctions. Journal of Magnetism and Magnetic Materials, [ Single Neuron. Biophysical Journal, ( Pt ): -, January . [ ] E.M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Networks, [ [

  Tout d'abord, il est démontré expérimentalement que le bruit électrique peut induire la synchronisation d'une jonction avec un faible source de tension. Un modelé théorique est développé et prédit qu'utiliser le bruit pourrait permettre un gain énergétique d'un facteur cent par rapport à la synchronisation d'oscillateurs à transfert de spin traditionnels. Ce résultat ouvre la voie à la mise en oeuvre matérielle de méthodes de calcul basées sur la synchronisation, effectuant des tâches telles que la reconnaissance de motifs. Ensuite, une analogie est établie entre les jonctions tunnel superparamagnétiques et les neurones sensoriels. En poussant cette analogie, il est démontré numériquement que des populations de jonctions connectées entre elles peuvent effectuer des calculs tels que l'apprentissage, la transformation de coordonnées et la fusion sensorielle. La mise en oeuvre matérielle d'un tel système est réaliste et pourrait permettre du traitement sensoriel intelligent à bas coût énergétique.
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F = 1.01 × F ac are plotted in black squares and red circles respectively, as functions of the drive voltage. The analytically obtained values of the electrical noise for which P + = 99.5% and P -= 0.5% are plotted in black and red dashed lines respectively, versus the drive amplitude. We observe that our model matches the experimental results.

Furthermore, we observe that the range of electrical noise for which phase-locking occurs increases with the drive amplitude. Indeed a stronger signal induces synchronization more easily. As in the thermal noiseinduced synchronization case, when the drive amplitude is too low (here below mV), synchronization cannot be achieved. On the other hand, at large drive amplitudes (here above mV), phase locking can be achieved through room temperature thermal noise alone, without the need to add up electrical noise.

. . . E fect of the drive frequency We observe that increasing the drive frequency shifts the synchronization range towards higher noise levels. Indeed, adding electrical noise raises the frequency of the junction. It is crucial to observe that electrical noise allows achieving synchronization over broad ranges of drive frequencies (here experimentally over a forty-fold range) and orders of magnitude higher than the natural frequency of the junction (here . Hz). This results pinpoint a strong advantage of noise-induced synchronization over deterministic synchronization.

. . . E fect of device variability

Variability on the area of the device causes proportional variability on the value of the energy barrier.

In Figure . we investigate the e fect of a % variability on the area of the junction . Increasing the energy barrier shifts the synchronization zone towards higher electrical noise levels while decreasing the energy barrier shifts it towards lower noise levels. As a result, variability on the area has two e fects. First the minimum drive amplitude required to achieve synchronization V 0 is increased (here from mV to mv), which increases the energy consumption of synchronization. Second the synchronization zone is reduced. For a mV drive amplitude the electrical noise range is reduced from mV to mV. However, the synchronization zone remains large: noise-induced synchronization is robust to variability.

. . Conclusion

We have demonstrated that electrical noise can be used to induce and suppress synchronization. Our model was extended to the case of electrical noise and its validity was shown by direct comparison to We could not get the experimental data points for which F = 1.01 × Fac as they correspond to electrical noise levels too high for our data analysis. the read-out.

We have shown that superparamagnetic tunnel junctions are building blocks for low-power implementations of novel computing forms, inspired from biology. In this thesis, two main concepts were proposed but many more are possible so we expect exciting developments of computing with superparamagnetic tunnel junctions. Furthermore, we hope that our work will also inspire research on computing with other types of stochastic nanodevices.
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Appendix A

In uence of the electrical noise

In this Appendix, we investigate the e ect of electrical noise on a superparamagnetic tunnel junction. Specifically, we provide a demonstration for the expression of the average switching probability used in Chapter .

A superparamagnetic tunnel junction is submitted to a dc voltage V and to electrical white Gaussian noise of cuto f frequency F N oise . We consider time intervals δt = F -1 N oise so that the electrical noise is constant during each time interval.

In consequence, the escape rate of the Poisson process during each time interval δt is:

Where N is the value of the electrical noise during the considered time interval. N follows a white Gaussian distribution of standard deviation σ N oise , so its probability density is:

The probability to switch during δt is:

) so the probability not to switch during δt is:

The average probability not to switch during a time interval δt is:

δP AP/P (N )ψ(N )dN. (A. )

A Poisson process has no history and the values of the electrical noise N at each time interval δt are uncorrelated so the probabilities to switch a each time interval are independent. In consequence, the average probability not to switch during a time t is the product of the average probabilities not to switch at all the time intervals δt composing t:

Indeed there are t δt time intervals δt in t. It follows that the average probability to switch during t is:

Approximate expression of the junction frequency

In this Appendix we give an analytical description of the frequency of a superparamagnetic tunnel junction in the presence of an external drive. Specifically we provide a demonstration for the expression of the frequency around the synchronization plateau, as used in Chapter . In this Appendix we demonstrate how the frequency of the junction can be approximated by F = F ac (2P + + 2P --1) in the vicinity of the synchronization plateau. This expression enables us to get the boundaries of the plateau for any chosen precision on the frequency. If we seek an error rate below

x (i.e. (1 -x)F ac < F < (1 + x)F ac ) the conditions on the switching probabilities are P + > 1 -x 2 and P -< x 2 .

B. De nition of the sub-optimal and supra-optimal noise regimes

We seek to link the values of P + and P -to the boundaries of the plateau. In consequence we are only interested in the electrical noise ranges for which the frequency of the junction is slightly below the frequency of the drive (we call this regime "sub-optimal") or slightly above the frequency of the drive ("supra-optimal").

In Figure B. , we observe that:

• In the sub-optimal regime (typically between T 65K and T 85K), The probability to phase-B. SUPRA-OPTIMAL REGIME unlock in a half-period P -is very low (P -< 10 -10 ). In consequence P -can be neglected.

• In the supra-optimal regime (typically between T 240K and T 360K), one can make the approximation P + 1, where P + is the probability to phase-lock in a half-period.

B. Supra-optimal regime

Because P + 1, each switch of the drive is followed by a switch of the junction. Nevertheless P -cannot be neglected and therefore the junction can spontaneously phase-unlock. The fact that P + 1 then causes the junction to switch back in phase with the drive. These short events are called glitches.

We de ne the following quantities for a second observation time:

• N drive the number of switches of the drive.

• N supra the number of switches of the junction.

• N glitch the number of glitches.

Indeed each glitch contains two switches of the junction.

The probability for a glitch to occur during a half period is P -. Therefore N glitch = 2F ac P -. It follows that:

It takes two switches to completed one oscillation. In consequence in the supra-optimal regime the frequency of the junction is:

In consequence, for P -= x 2 , we have

The junction is frequency-locked with 100×x% precision.

B. Sub-optimal regime

In this regime we neglect P -. In consequence, whenever the junction is phase-locked, it stays as such during the rest of the half-period. Nevertheless, P + is not equal to one anymore. In consequence, each switch of the drive is not automatically followed by a switch of the junction.

In Figure B. , we illustrate this by an example. • Before t A , the junction is phase-locked to the drive. At t = t A , the drive switches from ˘Vac to +V ac . The junction then has a probability P + to phase-lock before the end of the half-period (t B ).

Here the junction does switch from P and AP, thus phase-locking to the drive again.

• At t = t B , the drive switches to ˘Vac . The junction has a probability P+ to phase-lock to the drive again before t C . Here the junction remains in the AP state: it has missed one rst switch.

• At t = t C the drive switches to +V ac . The junction is thus back in phase with the drive. Therefore it will not switch for the rest of the half period and will have to wait until t = t D for an opportunity to switch. In consequence, the junction in now two switches behind the drive.

In consequence, whenever the junction misses one switch of the drive, it automatically misses the next one.

We de ne the following quantities for a second observation time:

• N drive the number of switches of the drive.

• N sub the number of switches of the junction.

• N miss the number of switches missed by the junction.

B. GLOBAL EXPRESSION OF THE FREQUENCY OF THE JUNCTION

)

The probability to miss a given switch is 1 -P + . As missing a given switch implies to miss the following switch we have:

In consequence

And

In consequence, for

The junction is frequency locked with 100 × x% precision.

B. Global expression of the frequency of the junction

In the vicinity of the synchronization plateau, the total number of switches of the junction during second is given by:

It follows that:

Frequency locking is achieved with over 100 × x% precision when P + > 1 -x 2 and P -< x 2 .

B. Validity of the approximation

Equations B. to B. are only valid for low values of P -and high values of P + :

• At low electrical noise, P + is low and therefore the junction switches are not correlated with the switches of the drive. In consequence equations B. and B. cease to be valid.

• At high electrical noise, P -is high and therefore several glitches can happen in each semi period.

In consequence N glitch > 2P -and equations B. and B. cease to be valid.

Nevertheless, equations B. to B. provide a good approximation of the frequency of the junction in the vicinity of the synchronization plateau, as testi ed by the matching between experimental results and this model.

Appendix C

Proofs relative to population coding

In this Appendix we provide the demonstrations for various results relative to population coding, used in Chapter . Specifically we investigate the expression of the probability of a stimulus given an observed activity, both in the cases of a single sensor and of sensory fusion.

A population is composed of N neurons with Gaussian tuning curves of standard deviation σ 0 . The applied stimulus is s 0 and the gain g.

C. Preliminary results

In this section we compute preliminary results which are useful for the sum method as well as for further computations.

C. . Sum of the average activities

Where µ i is the preferred stimulus of the i-th neuron.

For a large number of neuron, which preferred stimuli are close enough to each other, we can approximate the sum over the neurons by an integral over their preferred stimuli:

Where S i and S f are the boundaries of the preferred stimuli range.

We make the assumption that the applied stimulus is not too close from these boundaries :

Where ∆µ is the spacing between two consecutive preferred stimuli.

It follows that: . ) We indeed observe that the sum method is less valid for stimuli close to the boundaries.

The terms log P (r), log(g) N i=1 r i and N i=1 log r i ! do not depend on the value of s and can thus be put in a marginalization term.

We make the following assumptions:

. The prior is at: P (s) = C, where C is constant for all values of s.

. The neural network does not favor any values of s: Σ i=1..N f i (s) = K, where K is constant for all values of s. For Gaussian tuning curves this is veri ed as long as the number of neurons is high enough.

We de ne the marginalization constant M : We make the assumption that the observed activities are large. In consequence we can make the approximation: exp(-gf i (s))(gf i (s)) r eye,i +r ear,i (r eye,i + r ear,i )! (C. )

Where g = g eye + g ear is the gain of the third population.

In consequence: Appendix D

Synthèse en Français

Ici nous présentons une synthèse, en Français, des points importants de cette thèse.

A summary in French of the main points of this work are presented here.