
HAL Id: tel-01493668
https://theses.hal.science/tel-01493668

Submitted on 21 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Longevity and Economic Growth : three Essays
Laurent Brembilla

To cite this version:
Laurent Brembilla. Longevity and Economic Growth : three Essays. Economics and Finance. Uni-
versité Paris sciences et lettres, 2016. English. �NNT : 2016PSLED025�. �tel-01493668�

https://theses.hal.science/tel-01493668
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT 

de 
PSL Research University 

Préparée à -Dauphine 

Soutenue le 
par   

cole Doctorale de Dauphine  ED 543 

Spécialité   

Dirigée par 

Longevity and Economic Growth: Three Essays.

08.11.2016

Paris School of Economics

Aix-Marseille Université

University of Oregon

Université Paris-Dauphine

Université Paris-Est

Sciences économiques

Membre du jury

Université Paris-Dauphine 

Président du jury

Directrice de thèse

Rapporteur



1

L’Université Paris-Dauphine n’entend donner aucune approbation ni improbation aux

opinions émises dans les thèses ; ces opinions doivent être considérées comme propres à leurs

auteurs.



2



3

Qui veut s’élever au-dessus des hommes

doit se préparer à une lutte, ne reculer

devant aucune difficulté. Un grand

écrivain est un martyr qui ne mourra

pas, voilà tout.

Honoré de Balzac, Illusions Perdues

.
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Introduction

Current income per capita in the US is about 15 fold that of Sub-Saharan countries. Un-

derstanding income disparities across countries has been one of the main question addressed

by economists since The Wealth of Nations by Adam Smith (1776). The possibility for longe-

vity to be one important factor shaping these disparities has only started to be considered in

the last fifteen years. This contrasts with another demographic variable, fertility, which has

played a central role in the theory of economic growth since the essays of Malthus (1807).

Indeed, for most of human history, countries have been trapped in the Malthusian regime,

in which the level of technological advancement is not correlated with the income level, yet

with the population density : further technological progress allows individuals to have more

children, which annihilates income per capita gains. The break-up of this mechanism is a

necessary condition for countries to enter the modern growth regime. Weil and Galor (1999)

argue that this is made possible by a change in the nature of technological progress that

becomes more and more skill-demanding. This creates an incentive for individuals to have

fewer children and to invest more in their education, which marks the onset of standards of

living improvements.

More recent contributions underline the role of life expectancy improvement in this change of

regime and as an important dimension to take into account in the economic growth theory.

Boucekkine et al. (2004) advance that the exit of the Malthusian regime is not a consequence

of a greater demand for human capital, as suggested by Weil and Galor (1999), but is due to

a greater human capital supply caused by more favourable climatic conditions that improve

life expectancy. At the heart of their explanation is the so-called Ben-Porath mechanism :

as longevity increases, the time period during which individuals can benefit from their

schooling investments increases, which stimulates human capital supply. To gain intuition,

consider the case of individuals facing low survival chances. Oster et al. (2013) study the

college attendance decision of a sample of individuals who have a parent with Huntington

disease. This illness, which has a one-half probability to be transmitted to child, limits the

life expectancy of an infected individual to 20 years after symptoms begin. Oster et al. (2013)

show that individuals discovering their genetic mutation during high school are 30% less

likely to attend college than those who do not. Furthermore, the earlier the symptoms begin,

the earlier individuals stop their schooling as the Ben-Porath mechanism suggests. Note

that this effect directly arises from the lifetime budget constraint of individuals : with an

increasing utility function, that does not depend on schooling, the best schooling time is the

one that maximizes lifetime income and it is increasing with the number of years the indivi-

11



12 Introduction

dual can work. However, for agents that make their decisions by maximizing their lifetime

utility function, longevity also directly enters their preferences. To see how this interacts

with their decisions, consider again the case of individuals facing a limited life expectancy.

Lorentzen et al. (2008) study their behavior on a sample composed of people living near the

power plant of Tchernobyl during the catastrophe and individuals infected by HIV. They

show that these individuals engage into more risky behaviors such as : smoking, drinking,

unsafe sexual relationships. Indeed, these individuals know that they cannot enjoy utility

in the future, so they dedicate all their resources, here particularly their health capital,

to maximize their present utility which merges into their lifetime utility. However, this is

unlikely to compensate the welfare loss due to their premature death because they still have

a decreasing marginal utility. On the contrary, individuals who do not face low survival

chances can get a greater lifetime welfare by choosing to channel resources in the future.

Furthermore, individuals can decide to spend resources to increase their future survival

chances to enjoy consumption utility for a longer period. In other words, physical capital

supply is also driven by health conditions. This is a second link, first highlighted by Bloom et

al. (2003) and Chakraborty (2004), through which longevity and economic growth interact.

As human and physical capital are the main production factors, this helps to understand the

results of Weil (2007) according to whom up to 20% of across countries income per capita

dispersion can be explained by differences of adult survival rates. Thus, studying the role

played by health in economics contributes to better understand the mechanics of economic

development. This PhD dissertation proposes three essays on the links between health and

economic development. More specifically, I will address the three following questions : (i)

Can a country experience a higher economic growth rate by spending more on health ? (ii)

Do health expenditures endanger economic growth ? (iii) How does the aging process affect

the income level and the sectorial labor allocation of a multi-sector economy ?

In addition to the theoretical insights quoted previously, a link between life expectancy

and income per capita can be sensed from the observation of the trajectories of the two

variables. For most countries, they both fluctuate around a nearly constant value during

most of human history before entering a positive growth regime at different dates. More

precisely, consider the case of England, the first country to enter the modern growth regime.

Evolution of life expectancy has paralleled that of income with some lags. Life expectancy

was 39,24 in England in 1820. It was still close to this value in 1850 (40,6), while during the

same period income per capita has increased by 41%. 1 Then, except during war periods,

both life expectancy and income have been increasing. 2 Life expectancy is now more than the

double of its value in 1820, while income has been multiplied by more than 13. The picture

1. Historical data on life expectancy are from de la Croix and Sommacal (2009), while those on income are

from Fouquet and Broadberry (2015). Any other data used in the introduction, whose source is not mentioned,

are obtained from the World bank database. Income is GDP per capita in current US dollars.

2. There are exceptions to this in developed countries. In Russia, life expectancy has decreased after the fall

of the soviet union. Case and Deaton (2015) document a rising mortality in midlife among white non-Hispanic

Americans during the period 1999-2014.
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of developing countries is more contrasted. Overall, thanks to the eradication of smallpox,

which was responsible for 2 million deaths a year until the end of 1960, health conditions

have improved (Bloom et al. 2005). 3 This is confirmed by the world life expectancy evolution

which increased from 52 in 1960 to 71 in 2013. In East Asia, life expectancy stands at 76,

while it was 46,4 just after WWII. In Sub-Saharan countries, average life expectancy has

increased from 51 to 58,1 over the last decade. However, in terms of income evolution, large

disparities exist. In 1962, income per capita of East Asia was 4.3% that of the US, while

income per capita of Subsaharan Africa was 4.1% that of the US. In 2014, income per capita

of East Asia was 18% that of the US, while income per capita of Subsaharan Africa was

3% that of the US. Regarding Sub-saharan Africa, current life expectancy in the region

corresponds to the one of England in 1925. Yet, income per capita at that time exceeded by

more than 60% the current level in Sub-saharan countries.

These empirical facts are well captured by the Preston curve (see Figure 1). Preston (1975)

estimates the cross-sectional relationship between income per capita and life expectancy. He

observes a concave and increasing relationship between the two variables. The concavity of

the curve is a consequence of the quasi complete convergence of some developing countries

in terms of life expectancy while their convergence in terms of income is still incomplete. For

example, life expectancies of US and China, respectively equal to 79 and 75, only differ by

5%, while the income per capita in US is more than sixfold the one of China. The fact that

current Sub-saharan individuals live as long as European did in 1925, while their income is

only 60% of the English level in 1925 is an illustration of the upward shift with time of the

curve.

Understanding the origin of the Preston curve is a mirror problem of understanding the

link between life expectancy and income. The curve reflects the causal impact of life expec-

tancy on income, the reverse causality as well as the influence of other correlates. Dalgaard

and Strulik (2014) argue that about 80% of the Preston curve can be attributed to the causal

effect of income on life expectancy : richer countries can spend more resources on health,

for example, by implementing better medical facilities and public infrastructure such as raw

sewage disposals that reduce the propagation of diseases. A contrario, empirical evidence on

the causal impact of life expectancy on income are contrasted, leaving 20% of the relationship

between income and life expectancy unexplained. Acemoglu and Johnson (2007) and Ashraf

et al. (2008) find no significant effect of life expectancy on the growth rate of income per

capita, while Aghion et al. (2011) and Sunde and Strittmatter (2013) find a positive effect

of life expectancy on economic growth. These results are unexpected from two perspectives.

First, microeconometric studies unambiguously claim that healthier individuals get a higher

income. 4 Second, it is unexpected from life cycle theory, as I mentioned it previously, these

3. As for developed countries, some countries have undergone a decrease of life expectancy particularly be-

cause of HIV epidemics. This is the case for South-Africa and Namibia. In South-Africa, life expectancy was 62

in 1992, while it was 52 in 2005. In Namibia, life expectancy was 61 in 1991, while it was 54 in 2003.

4. See among others : Duncan and Strauss (1997), Bleakley (2003) and Miguel and Kremer (2004).
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Figure 1 – GDP per capita (x-axis) and life expectancy (y-axis) across countries (2012).

Source : World Bank database.

models predict that a greater longevity should stimulate both human and physical capital

supply. As pointed out by Acemoglu (2010), this means that there are general equilibrium

effects at stake. 5 Thus, in this PhD dissertation, I will study theoretically how life expec-

tancy interferes with income from dynamic general equiilibrium models. Not only does the

understanding of the causal impact of life expectancy on income enables to understand how

previous health improvements have contributed to shape the wealth of Nations, but it also

enables to better understand how income will evolve in the future as life expectancy will

pursue its upward trend. Indeed, evolution of life expectancy in developed countries, coupled

with that of fertility, is such that they enter the aging phase : the ratio of workers to people

aged more than 65 is increasing. Indeed, the dependency ratio, the ratio of people aged less

than 20 or more than 65 to those aged between 20 and 65, currently at 68,35% in OECD

countries, is expected to reach 86,7% in 2050 according to OECD.

In various dynamic general equilibrium settings, I will study the consequences on the econo-

mic outcome of an exogenous shock on the longevity parameter or I will study the possibility

for the longevity to be itself an endogenous variable. There are two types of economic models

that I will use extensively for the analysis. The first step, at the microeconomic level, is to de-

rive the behavior of agents, particularly with respect to their longevity, through the life cycle

hypothesis. Pioneered by Modigliani and Brumberg (1954), this theory hypothesizes that in-

dividuals allocate their lifetime resources in order to maximize their lifetime utility function.

Thus, longevity naturally enters the individual decisions as opposed to the infinite horizon

framework used in standard growth models. The second step consists in the aggregation of

5. d’Albis et al. (2012) and Sunde and Cervellati (2013) suggest that a life expectancy increase can be the

result of an increase of survival probabilities at different ages, which can activate life-cycle mechanisms differently.

For example, schooling time responds to increases in survival probabilities in adulthood and not to survival

probabilites in retirement period.
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the behavior of agents differing with respect to their birth dates to determine the equilibrium

of the economy. This is precisely what overlapping generations (henceforth OLG) models

allow to do. Pioneered by Allais (1947), Samuelson (1958) and Diamond (1965), OLG models

are microfunded macroeconomic models in which agents may differ with respect to their

age. They represent a natural tool to introduce demographic variables into macroeconomic

studies. Blanchard (1985) is the first who explicitly introduced longevity as an exogenous

variable in an OLG model using a version of the life-cycle model of Yaari (1965). There are

numerous declinations of this type of work in growth models with different growth engines.

For instance, Boucekkine et al. (2003) translate a life-cycle model à la Ben-Porath (1967)

into an OLG model, while Prettner (2013) examines the consequences of a longevity shift

in an endogenous growth framework. Chapter 3 places itself in this kind of analysis, that I

extend to multi-sector growth models. Indeed, in a multi-sector Diamond model, I study how

the labor allocation of the economy is impacted by a longevity shock and I show that these

labor reallocations can produce negative effects on the income per worker level. The second

type of studies of longevity in OLG economies is due to Cipriani and Blackburn (2002)

and Chakraborty (2004). They formulate OLG models in which the longevity is no more a

parameter, but an endogenous variable. In Cipriani and Blackburn (2002), human capital

investments exert a positive externality on longevity, while in Chakraborty (2004) there is

a government that taxes at a constant rate the wage of individuals to finance public health

expenditures that increase longevity. In the first chapter, this paper is extensively quoted

as I argue that the potential of his framework has not been fully exploited. Indeed, I will

study how the tax rate influences the transitional dynamics as well as the steady state of the

economy. In the second chapter, I will propose an OLG model with endogenous lifetime in

which the agents choose their level of health expenditures. More specifically, the dissertation

is organized into three chapters which can be summarized as follows.

In the first chapter, I study the impact of health expenditures on economic growth and on

welfare. For this, I draw on the seminal contribution of Chakraborty (2004). In his two-period

overlapping generations model with a lifetime depending on public health expenditures, I

study the influence of the tax rate, which is an exogenous parameter in Chakraborty (2004),

on the economy. First, I determine the growth-maximizing tax rate, which is shown to be

0 in low-income countries. Second, I show that the steady-state income level is an inverted

U-shaped function or a decreasing function of the tax rate. Third, I study the tax rate that

maximizes the steady-state welfare level.

In the second chapter, I propose a theoretical model to study the growth impacts of health

expenditures chosen by the agents. Indeed, I develop a Diamond model with endogenous

growth in which young individuals can spend resources to increase their longevity in retire-

ment period. First, I derive the demand for health and show that the income share spent on

health is an inverted U-shaped function of income. Second, I fully characterize the dynamic

general equilibrium and determine the growth impacts of the health expenditures. Several

cases can occur. Health expenditures can speed up or slow down economic growth. They

can be a barrier to growth or they can be a necessity for growth to take place. A simple
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calibration of the model to OECD countries suggests that the latter case is the most likely

one.

Finally, the third chapter determines the theoretical impact of the aging process on the

sectorial allocation of labor. To this aim, I build a multi-sector two-period overlapping gene-

rations model in which I examine the consequences of both a longevity shift and a fertility

shift on the labor allocation of the economy. There are three effects at stake : (i) Given

prices, a longevity shift directly affects consumption levels of the individuals. (ii) Given the

consumption levels of young and old individuals, aging increases the ratio of old to young

individuals. (iii) Aging affects the price vector of an economy through its impact on the ac-

cumulation of production factors. These effects change the relative demand between sectors,

which modifies the labor allocation. I first state necessary and sufficient conditions for aging

to create intratemporal reallocation of resources at the individual as well as at the aggregate

level in partial equilibrium. Then, I study the dependence of the labor ratios between sectors

with respect to demographic variables along a path satisfying the Kaldor facts.



1Endogenous lifetime and

economic growth : the role of

the tax rate

1.1 Introduction

The last decade has been the stage of a vivid academic debate on the health-growth nexus.

This was stimulated by reports from International Organizations advocating health enhan-

cing policies (see Acemoglu and Johnson (2006)). According to their views, the benefits of

these policies are two-fold : (i) Improving health has positive welfare impacts. (ii) Improving

health spurs economic growth. For example, Weil (2014) quotes the following passage of the

WHO commission report :

Improving the health and longevity of the poor is an end in itself, a funda-

mental goal of economic development. But it is also a means to achieving the

other development goals relating to poverty reduction. The linkages of health to

poverty reduction and to long-term economic growth are powerful, much stronger

than is generally understood. The burden of disease in some low-income regions,

especially sub-Saharan Africa, stands as a stark barrier to economic growth and

therefore must be addressed frontally and centrally in any comprehensive deve-

lopment strategy.

Over the period 1950-1990, the life expectancy increase in developing countries is well-

documented (Bourguignon and Morrison 2002 ; Becker et al. 2005). Even though HIV caused

life expectancy reversals in some countries such as in South-Africa or Namibia, overall pro-

gresses can be observed from the increase of the world life expectancy average from 52 in 1960

to 71 in 2013. 1 This is particularly due to reductions in infant mortality rates (Cutler et al.

2006). Although survival rates of children in developing countries have not reached those of

developed countries, future gains in life expectancy in developing countries will mainly pass

through health improvements at older ages. While Acemoglu and Johnson (2006) attribute

1. These numbers and the others used in the introduction are all obtained from the World Bank database.
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the past health improvements to the diffusion of new drugs and new medical practises, survi-

val gains at older ages will depend on domestic health expenditures (Cutler et al. 2006). This

motivates us to ask whether statements (i) and (ii) are valid when health improvements are

costly.

In Figure 1.1, I plot the ratio of total health expenditures to GDP as a function of GDP

per capita across countries. While the share of resources spent on health seems to increase

with income when income is not too low, there is no clear relation between the two variables

when income is low. Sierra Leone spends almost 12% of its income on health, which is almost

the share spent by France, while the income per capita of France is 25 times that of Sierra

Leone. On the contrary, in Lao or Pakistan, this ratio is less than 2.75%. This raises several

questions : Can a low-income country spur economic growth by spending more resources on

health ? From a welfare point of view, can it be optimal for a country not to spend resources

on health ? This paper uses theory to answer these questions. Otherwise said, I determine

analytically if statements (i) and (ii) remain valid when health improvements are not free of

cost.

Figure 1.1 – GDP per capita and ratio of total health expenditures to GDP across countries (2012).

Source : World Bank database.

More precisely, I extend the results of Chakraborty (2004), who builds a Diamond model

with a survival probability into second period that depends on public health expenditures.

Indeed, I study the impact of the tax rate, which is an exogenous parameter in Chakraborty

(2004), on the income level and on the welfare in the steady state (hereafter SS) to answer the

two following questions : How does the income level vary with respect to the tax rate ? Is the

welfare-maximizing tax rate always positive ? Doing this, I complement a large theoretical

literature on the health-growth nexus that has got interested into statements (i) and (ii).

Statement (ii) has received much attention in the literature. On the empirical side, the re-

sults are contrasted. Aghion et al.(2011) observe a positive impact of life expectancy growth

rate on GDP per capita growth rate. Instrumenting life expectancy by the introduction date



1.1. Introduction 19

of a public health care system, Strittmatter and Sunde (2013) also find a positive effect of

life expectancy on GDP per capita growth rate. On the other hand, Acemoglu and Johnson

(2007) argue that the positive impact of health on GDP growth is counteracted by a popula-

tion increase so that GDP per capita of health improvements become non-significant. Using

a simulation approach, Ashraf et al.(2008) also conclude that the income benefits of health

improvements are negligible. On the theoretical side, authors have examined the impact of

the life expectancy parameter on the income level in various dynamic general equilibrium

frameworks. In a R&D based-growth model, Prettner (2013) shows that a longevity increase

has a positive effect on the income per capita growth rate. In a growth model with human

capital investments, de la Croix and Licandro (1999) show that a longevity increase induces

two counteracting effects on the growth rate. On the one hand, the Ben Porath effect in-

creases human capital supply. On the other hand, this leaves more retirees and more people

educated a long time ago. Finally, when capital accumulation is the growth engine, longevity

increases are seen as positive because they increase the propensity to save of the individuals

and then economic growth (Bloom et al. (2003) and Chakraborty (2004)). These results are

causal statements that neglect the possible costs of longevity improvements.

My contribution to the literature that has studied statement (ii) is to determine the

impact on economic growth of costly longevity improvements. Closely related to my work are

Chakraborty (2004) and Bhattacharya and Qiao (2007). Both papers are based on Diamond

model with an endogenous survival probability into second period. In Bhattacharya and Qiao

(2007), the survival probability depends on both private health expenditures, whose level is

chosen by the agent, and public health expenditures, whose financing tax rate is an exogenous

parameter. 2 The authors show that the SS income per worker level is an inverted U-shaped

function of the tax rate. Here I aim to determine how the income per worker level depends

on the total level of health expenditures. To do this, I abstract from the financing source of

health expenditures and directly build on the model of Chakraborty (2004) by considering

that all health expenditures are public. Then, I assess how the SS income level depends on

these health expenditures. The question is not trivial because health expenditures create a

trade-off on savings, hence on economic growth as capital accumulation is the growth engine

in our specification. On the one hand, health expenditures increase longevity and so the

propensity to save (Bloom et al. (2003) and Chakraborty (2004)). On the other hand, health

expenditures reduce the disposable income and so savings. From this framework, I can also

provide results on the welfare impact of health expenditures in SS, hence I can assess if the

theory is also in line with statement (i).

Statement (i) has been much less examined by economists. Becker et al. (2005) argue

that life expectancy improvements in developing countries in the XXth century significantly

improved welfare. Murphy and Topel (2006) assess the social value of longevity gains in US

on the previous century and show that it is potentially large. Theoretically, the literature

has also discussed normative aspects of health expenditures particularly the decentralization

2. The authors also make a simplifying assumption, that I do not follow here, according to which only old

agents derive utility from consumption.
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of social optimum in the context of health related externalities. 3 For example, Jouvet et

al.(2010) and Ponthiere (2016) discuss the decentralization of social optimum in economies

in which pollution exerts negative externalities on the longevity of individuals. To the best of

my knowledge, the literature has not discussed whether positive health expenditures maxi-

mize welfare in an environment free of externalities. However, there are reasons to believe

that the level of health expenditures that maximizes welfare is not necessarily positive. Even

though marginal utility of longevity is positive, longevity improvements can decrease welfare

as they can diminish the level of resources per period. Second, health expenditures reduce

the disposable income of individuals. Third, it is possible that health expenditures decrease

the SS income level. This leaves three possible negative forces on welfare that health expen-

ditures can exert. This justifies to investigate carefully whether the welfare-maximizing level

of health expenditures is necessarily positive.

The rest of the paper proceeds as follows. Section 1.2 outlines the model of Chakraborty

(2004) with two slight modifications. Section 1.3 studies the growth-maximizing tax rate and

the tax rate that maximizes the steady-state income level. Section 1.4 studies the welfare-

maximizing tax rate. Section 1.5 concludes.

1.2 The model

The model follows the one outlined by Chakraborty (2004). Consider a two-period OLG

model in which the survival into second period occurs with probability pt for an individual

born at time t. pt is taken as exogenous by the individuals. The number of young agents is

constant and normalized to 1. Agents work during the first period and retire in second period.

The consumption plan of a cohort-t individual is chosen by maximizing the following lifetime

expected utility function :

Ut = u(c1t) + ptu(c2t+1) (1.1)

Subject to the budget constraints :

c1t + st ≤ (1 − τ)wt and c2t+1 ≤ 1+rt+1

pt
st.

Where c1t is the first period consumption, c2t+1 the second period consumption, rt+1 the

interest rate. τ is the tax rate on wages imposed by the government. st are the savings that

are invested in capital by mutual funds. Assuming perfect competition among mutual funds,

as in Yaari (1965), implies that the rate of return is 1+rt+1

pt

u is the utility per period function. I will consider two different specifications for u :

u(c) = ln(c) (case (A)) and u(c) = c1−σ

1−σ , with σ < 1 (case (B)). Case (A) is the one considered

by Chakraborty (2004). In this case, utility becomes negative when the income level is low,

which yields a negative marginal utility of longevity. As long as longevity is not chosen by

the agent, this has no consequences, however in section 1.4 when I determine the welfare-

maximizing tax rate, this property is crucial. To determine if my results are sensitive to the

3. de la Croix and Ponthiere (2010) derive the golden rule in a growth model with endogenous lifetime.
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positiveness of the utility function, I also consider case (B), in which utility level is positive for

any income levels. Hence, marginal utility of longevity is always positive. Case (B) is used in

growth models in which health expenditures are chosen by individuals such as Chakraborty

and Das (2005) and Bhattacharya and Qiao (2007).

It follows that savings are given by :

st =
pt

(1 + rt+1)
σ−1

σ + pt

(1 − τ)wt (1.2)

Where σ = 1 is case (A), while σ < 1 is case (B).

The final good is produced with labor, Lt, and capital, Kt. It is consumed or invested in

physical capital or used by the government to increase longevity. The production function is

Cobb-Douglas : Yt = AKα
t Lt

1−α with A > 0 and α ∈ (0, 1). Inputs are paid at their marginal

productivity. Using the fact that the workforce size is 1, I get that :

1 + rt = AαKα−1
t (1.3)

and

wt = A(1 − α)Kα
t (1.4)

Where I have assumed that capital fully depreciates at each period. pt has yet to be

specified. The government finances public health expenditures with a balanced budget and

pt is an increasing and strictly concave function of health expenditures per young person :

pt = p(τwt).

Where p satisfies :

p(0) = p > 0, lim
x→∞

(p(x)) = p ≤ 1, p′(0) = γ < ∞ (1.5)

I will also consider the limit cases p = 0 and γ = ∞ to see how they change my results.

τ is taken as constant in this section. I will study the influence of τ in the next two

sections. Finally, the dynamics of the economy is obtained by imposing the equilibrium on

the capital market :

Kt+1 =
p(τA(1 − α)Kα

t )

(Aα)
σ−1

σ K
1−σ

σ (1−α)
t+1 + p(τA(1 − α)Kα

t )
(1 − τ)A(1 − α)Kα

t (1.6)

The study and the interpretation of (1.6) in case (A) can be found in Chakraborty (2004).

Here I add a sufficient condition for the SS of (1.6) to be unique. Moreover, I study the

dynamics in case (B) and provide a sufficient condition for the SS uniqueness. Taking care of

the uniqueness of the SS is necessary for the following sections in order to define economic

variables in SS as functions of the tax rate.

Proposition 1.1. Assume σ = 1. If α ≤ 1/3 or if α ∈ (1/3, 1/2] and x → (−p′′(x))x
p′(x)

is

increasing, then (1.6) has a unique positive steady state, which is stable.

Proposition 1.2. Assume σ < 1. (1.6) has a positive steady state. If α < 1/2 and x →
(−p′′(x))x

p′(x)
is increasing, then (1.6) has a unique positive steady-state, which is stable.
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Proof. See Appendix A

I will note K(τ) the unique SS of (1.6), as in the following sections I want to empha-

size the impact of τ on the SS of the economy. Propositions 1.1 and 1.2 command some

technical remarks. In case (A), when α ∈ (1/3, 1/2], an additional condition is required to

insure SS uniqueness. The same condition is required for the case (B). This condition is not

restrictive for three reasons. First, as x → x
p′(x)

is increasing, the assumption only requires

that x → −p′′(x) does not decrease too much. Second, x → (−p′′(x))x
p′(x)

takes greater values

for large x than for small x. Third, the survival functions used in the literature satisfy this

condition. Following an example given by Chakraborty (2004), Raffin and Seegmuller (2014)

use a survival function of the form : p(x) =
p+px

1+x . This function satisfies the condition of

Proposition 1.1 and 1.2. This is also true for p(x) =
p+pxβ

1+xβ with β ∈ (0, 1]. Consider the

following logistic function : p(x) = p

p

p−p

e−kx+
p

p−p

with k > 0. For this function to be an ad-

missible survival function,
p

p must be greater than 1
2 . Then, it also satisfies the condition. A

simple way to build survival functions is to consider a probability density, f , on [0, ∞) and to

define p(x) = p
∫ x

0 f (a)da + p. Then, p is an admissible survival function if and only if f is

decreasing. For usual decreasing density distributions (Gaussian, exponential, Weibull), the

condition is also satisfied. Then, for the rest of the paper, I will assume that x → (−p′′(x))x
p′(x)

is

increasing and α < 1/2 .

1.3 The influence of the tax rate on the growth rate and on

the SS income level

In this section, I examine two questions linked to statement (ii). Is the growth-maximizing

tax rate positive ? How does the SS income level vary with the tax rate ?

1.3.1 The growth-maximizing tax rate

I first determine how the exogenous variable τ influences the transitional dynamics of the

economy. At time t, given that capital stock is Kt, is the tax rate that maximizes next period

capital stock positive ? Define :

τ∗
t = arg max

τ∈[0,1]

(
Kt+1

Kt
− 1) = arg max

τ∈[0,1]

(
p(τA(1 − α)Kα

t )

(Aα)
σ−1

σ K
1−σ

σ (1−α)
t+1 + p(τA(1 − α)Kα

t )
(1− τ)A(1− α)Kα

t )

(1.7)

Subject to (1.6).

τ∗
t maximizes the growth rate of income per worker, the growth rate of output as well

as the growth rate of income per capita at time t. Increasing the tax rate τ creates opposite

effects on the growth rate. First, it increases the longevity and so the propensity to save
p(τA(1−α)Kα

t )

(Aα)
σ−1

σ K
1−σ

σ (1−α)
t+1 +p(τA(1−α)Kα

t )
. This increases next period capital stock, Kt+1, which decreases
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the interest rate and decreases savings when the IES is strictly greater than 1. Moreover,

increasing the tax rate decreases the disposable income (1 − τ)A(1 − α)Kα
t . This leaves a

priori ambiguous the total effect of the tax rate on the growth rate. It is useful to define C,

the unique positive real number that satisfies :

C =
p

α
σ−1

σ C
1−σ

σ + p
(1 − α) (1.8)

Then, the following proposition characterizes τ∗
t :

Proposition 1.3. Note a(Kt, τ∗
t ) the growth rate of the economy at time t when the tax rate

τ∗
t is applied. There exists K̂ > 0 such that :

I) If γA
1

1−α C
1

1−α+
1−σ

σ <
p2

α
σ−1

σ
, then :

(i) If Kt < K(0), then τ∗
t = 0 and a(Kt, τ∗

t ) > 0.

(ii) If K(0) < Kt < K̂, then τ∗
t = 0 and a(Kt, τ∗

t ) < 0.

(iii) If Kt > K̂, then τ∗
t > 0 and a(Kt, τ∗

t ) < 0.

(II) If γA
1

1−α C
1

1−α+
1−σ

σ >
p2

α
σ−1

σ
, then there exists K1 > K̂ such that :

(i) If Kt < K̂, then τ∗
t = 0 and a(Kt, τ∗

t ) > 0.

(ii) If K̂ < Kt < K1, then τ∗
t > 0 and a(Kt, τ∗

t ) > 0.

(iii) If Kt > K1, then τ∗
t > 0 and a(Kt, τ∗

t ) < 0.

(III) If γ = ∞ or p = 0, then K̂ = 0.

Proof. See Appendix B

Proposition 1.3 goes at odds with the claim that a positive level of health expenditures

is growth-maximizing and yields a positive growth rate. Indeed, Proposition 1.3 shows that

there is only one case in which such a scenario happens. Moreover, a sufficiently high level

of capital is required for the optimal tax rate to be positive, which implies that increasing

health expenditures is detrimental to economic growth in low-income economies. This is

due to my assumption that the marginal productivity of health expenditures in 0 (hence

γ) is finite, otherwise as implied by point (III), the optimal tax rate is initially positive

and yields a positive growth rate. Indeed, when the capital stock is low, the wage is low, so

the marginal gain in longevity of increasing the tax rate is low. Thus, the increase of the

propensity to save is low and it is smaller than the decrease of the disposable income due

to the increase of the tax rate. This implies that savings decrease with the tax rate. The

role of the marginal productivity of health expenditures in 0 also appears for larger levels

of the capital stock. When γ is low such that the economy is in case (I), then the marginal

gain in longevity by increasing the tax rate is low for any capital stock levels, which implies

that health expenditures are always detrimental to growth. On the contrary, when γ is large

enough for the economy to be in case (II), then the governement can spur economic growth

by setting a positive level of health expenditures for a large enough capital stock.
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1.3.2 The impact of the tax rate on the SS income level

In this subsection, I want to determine the variations of the function τ → K(τ) to assess

the long-run economic consequences of health expenditures. The result is in the following

proposition, which is one the main results of the paper :

Proposition 1.4. (I) If γA
1

1−α C
1

1−α+
1−σ

σ ≤ p2

α
σ−1

σ
, then τ → K(τ) is decreasing.

(II) If γA
1

1−α C
1

1−α+
1−σ

σ >
p2

α
σ−1

σ
, then τ → K(τ) is inverted U-shaped.

(III) If γ = ∞ or p = 0, then τ → K(τ) is inverted U-shaped.

Proof. See Appendix C

Proposition 1.4 shows that taking into account the cost of longevity improvements com-

pletely modifies the consequences in terms of economic development of health improvements.

Consider first the same Diamond economy, yet with a constant survival function equal to p

and a tax rate equal to 0. The SS income level of this economy is an increasing function of p.

Hence if there are exogenous shocks that increase p, then the SS income level increases. This

confirms the statement (ii) of the introduction. However, if increasing longevity is costly, such

as specified in our framework, then according to Proposition 1.4, it is possible that increasing

longevity can only be realized at the expense of the income level. There are three important

parameters that determine the occurence of this case (case (I)). It happens for a low techno-

logy level A, a low initial marginal productivity of health expenditures γ and a high initial

longevity p. 4 These three parameters influence the impact of the tax rate on the propensity

to save, hence the benefits in terms of income of health expenditures. As previously argued,

when γ is low, increasing health expenditures does not increase by much the longevity and

so the propensity to save. This is also the case for a low value of A, as it implies a low wage,

so much that increasing the tax rate does not change by much the longevity. When the initial

longevity is already large, health expenditures cannot increase the longevity by much, which

also implies low benefits in terms of income of health expendiutres. In the contrary case, case

(II), the tax rate that maximizes the SS income level is positive, hence the benefits of increa-

sing the tax rate, a higher propensity to save, are initially higher than the costs, a reduced

disposable income.

Point (iii) shows that the violations of the Inada conditions by the survival function

are determinant ingredients of my results. If γ = ∞, then, as previously argued, increasing

initially health expenditures increase by a large amount the longevity, which implies that

the propensity to save increases more than the disposable income reduction.Thus, health

expenditures initially increase income. When p = 0, if the tax rate is null, then individuals

do not live in second period, so they do not save. As capital is an essential input, the income

level is null. Thus, the tax rate that maximizes the SS income level is necessarily positive.

The inverted U-shaped curve can also be viewed from another perspective. There are

income levels that are obtained by two economies that are similar except their tax rate. Even

4. I prove that p → C
1

1−α
+ 1−σ

σ

p2 is decreasing in Appendix C.
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though they achieve the same economic outcome, the economy that spends more on health

achieves a higher life expectancy.

Which of these two cases corresponds to low-income or developed countries ? Case (I)

occurs for economies with a low level of technology and for which the effect of health spending

on longevity is small. Thus, this case is more likely to correspond to low-income countries,

while case (II) is more likely to correspond to developed countries. This implies that health

expenditures spur economic development in low-income countries only if they adopt effective

medical technologies.

The results also give some clues on the impacts on growth of the health policies applied

across the world, which roughly correspond to the political-economic equilibrium of the mo-

del. In this equilibrium, the tax rate applied at each period is that chosen by the young

because the old do not vote. This happens because the old realize their mortality shock at

the end of the previous period so much that they do not benefit from the current health ex-

penditures. Moreover, as the tax is applied on the wages, old individuals are not concerned

by the financing of these expenditures. Thus, the tax rate applied is the one that maximizes

(1.1) subject to the budget constraints. Then, when income is low, individuals choose a tax

rate equal to 0 because the survival function p does not satisfy Inada conditions. According

to Proposition 1.3, this policy is likely to maximize the economic growth rate. As income

grows, individuals decide to spend a positive amount on health expenditures and the tax rate

increases, which is in accordance with the situation of developed countries. 5 According to

Proposition 1.3, this policy can spur or harm economic growth depending on the effective-

ness of the health expenditures.

1.4 Impact of the tax rate on the SS welfare

In this section, I study how the tax rate influences the welfare in SS. Write U(τ) the

lifetime welfare in SS and define :

τ∗ = arg max
τ∈[0,1]

(U(τ)) (1.9)

I do not provide a complete characterization of the cases in which τ∗ is positve or not.

In light of the results of the previous section, I rather answer the two following questions :

Is τ∗ necessarily positive in an economy in which the tax rate that maximizes the SS income

level is positive ? Is it possible to have τ∗ positive in economies in which the tax rate that

maximizes the SS income level is 0 ? It is convenient to separate the case σ = 1 from the case

σ < 1.

5. The fact that the tax rate of the political-economic equilibrium increases with income is proved in the

appendix B of Chakraborty (2004).
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1.4.1 u(c) = ln(c) case :

I first highlight the channels through which the tax rate influences welfare in SS. For any

variable X, I will write X(τ) its SS value. U(τ) can be written as follows :

U(τ) = ln(
w(τ)(1 − τ)

1 + p(τw(τ))
) + p(τA(1 − α)K(τ)α) ln(

(1 + r(τ))w(τ)(1 − τ)

1 + p(τw(τ))
) (1.10)

Let us ignore first the general equilibrium effects of τ. Increasing τ reduces the disposable

income, which reduces welfare in first and second period. Increasing τ also increases the

longevity, which has two consequences on welfare. First, as the length of the working period

is fixed, it implies that individuals must diminish their resources spent per period, hence

the consumption levels decrease, which decreases welfare in first and second period. Second,

individuals enjoy consumption utility during a longer period. This increases welfare if the

utility in second period is positive, otherwise this decreases welfare. Indeed, the logarithm

utility case implies that for low income levels, the marginal utility of longevity is negative.

Overall, the tax rate produces several counteracting forces on welfare. The total impact of

the tax rate also includes its impact on the prices. For example, if the tax rate reduces the SS

income level, then increasing τ creates an additional negative force on welfare as this reduces

the wage.

Proposition 1.5. (i) There exists α <
1
2 , A > 0 and γ̂ > 0 such that if α < α, A < A and

γ ∈ (γ̂, ∞], then τ → K(τ) is inverted U-shaped and τ∗ = 0.

(ii) There exists Ã > 0 such that for all A > 0, there exists 0 < γ(A) <
p

2+ 1
1−α

(pA(1−α))
1

1−α

such that if A > Ã and γ(A) < γ <
p

2+ 1
1−α

(pA(1−α))
1

1−α
, then τ → K(τ) is decreasing and τ∗

> 0.

(iii) If p = 0, then τ∗
> 0.

Proof. See Appendix D

Proposition 1.5 shows that the SS welfare effects of health expenditures may be comple-

tely different from their effect on the SS income level.

Proposition 1.5 also clearly goes at odds with statement (i) according to which health

improving policies always increase welfare. It further states that even in economies in which

health expenditures stimulate the SS income level, a positive level of health expenditures can

produce a negative effect on welfare. There are two important parameters restrictions that

insure the occurence of such a scenario. The first one is a lower-bound on γ which insures that

the SS income level is an inverted U-shaped function of the tax rate according to Proposition

1.4. The second one is an upper-bound on the technology level A. The higher A, the higher

income, the higher second period utility level. Hence a low A implies a low marginal utility of

longevity, which implies that welfare can decrease with longevity. Thus, there remains only

one channel through which the tax rate positively influences welfare : through its (initial)
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positive effect on the income level. Under the parameters restriction of (i), this positive chan-

nel is offset by the negative ones, which implies that the tax rate that maximizes SS welfare

is equal to 0. Note that this happens for arbitrarily large values of γ (even when γ = ∞).

If γ is very large, health expenditures are very effective to increase longevity initially, ho-

wever as welfare decreases with longevity, there is still only one channel through which the

tax rate positively influences welfare, which is offset by the other negative channels. To which

extent does this result depend on the utility specification ? I have previously highlighted three

channels through which health expenditures negatively impact welfare. First, the disposable

income reduction is always present once longevity improvements are costly. Second, the di-

minution of per period resources also negatively affects welfare independently on the utility

function. However, it can be cancelled by an increase of the retirement legal age. Third, for

low income levels, the marginal utility of longevity is negative. This is a direct consequence of

the logarithmic specification. In the next section, I determine if the result holds with a CES

utility function with IES strictly greater than 1, which insures a positive marginal utility of

longevity for any income levels.

On the contrary, in case (ii), SS welfare is maximized with a positive level of health expen-

ditures, even though the SS income is diminished by these health expenditures. This happens

for a large enough value of the technology parameter. As previously said, the higher A, the

higher the marginal utility of longevity. Thus, if A is large enough, then welfare increases

with longevity and it is possible to find parameters such that this positive force on welfare

offsets the negative ones.

Finally, the point (iii) shows that contrary to the study of the SS income level, the origin

of the violation of the Inada conditions by the survival function is important to take into

account. As previously argued, when γ = ∞, τ∗ can be null or positive, while with p = 0, τ∗

is always null. The result is obvious as the income level is null in this case if the tax rate is 0,

which implies that welfare is −∞.

1.4.2 u(c) = c1−σ

1−σ case :

In this case, the SS welfare is given by :

U(τ) =
1

1 − σ
((1 − τ)w(τ))1−σ(1 + r(τ))1−σ(p(τw(τ)) + (1 + r(τ))

σ−1
σ )σ (1.11)

Let us consider first the partial equilibrium effects of increasing τ on welfare, hence let us

maintain w(τ) and r(τ) fixed in (1.11). This reduces the disposable income, which decreases

welfare. This also increases longevity. Recall that a longevity increase has two consequences

on welfare : it decreases the level of resources spent per period, which negatively impacts

welfare and it increases the period length during which individuals can enjoy consumption

utility, which increases welfare as the marginal utility of longevity is always positive in this

case. From (1.11), we see that the total effect of a longevity increase on welfare is always

positive with our utility specification. This contrasts with the logarithm utility case, in which

a longevity increase can decrease welfare. This shuts-off a channel through which health
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expenditures can negatively impact welfare. In the following proposition, I show that this

does not impede the existence of parameters for which τ∗ = 0 while τ → K(τ) is inverted

U-shaped.

Proposition 1.6. (i) The set of parameters that imply that τ∗ = 0 and τ → K(τ) is inverted

U-shaped has positive measure.

(ii) If p = 0, then τ∗
> 0.

Proof. See Appendix E

Proposition 1.6 shows that my results obtained with a logarithm utility specification

remain valid with a CES utility function with IES strictly greater than 1. Hence a positive

marginal utility of longevity does not suffice to make the welfare-maximizing level of health

expenditures necessarily positive. This is true even though the SS income level is maximized

for a positive level of health expenditures.

1.5 Conclusion

In this paper, I assessed theoretically the consequences in terms of economic perfomance

and welfare of increasing longevity when these health improvements are costly. To this aim,

I extended the results of Chakraborty (2004) by studying the influence of the tax rate on

the economy. First, I studied the influence of the tax rate on the transitional dynamics of

the economy and I showed that the growth-maximizing tax rate is 0 in low-income countries.

Second, I studied how the SS income level varies with the tax rate. I found that the curve

is decreasing or inverted U-shaped, hence the level of health expenditures that maximizes

the income level is not necessarily positive. Third, I studied the tax rate that maximizes

the SS welfare. I observed that this tax rate can be positive in economies in which health

expenditures reduce the SS income level, while it can be null in economies in which a positive

level of health expenditures maximizes the SS income level.

These results cast doubt on the views that consider health-improving policies as necessa-

rily positive for economic development as well as for welfare. While the literature has already

pointed out that a life expectancy increase can be detrimental to economic development,

this paper has underlined the costs of the longevity improvements as a cause of this negative

nexus. Relative to my results on welfare, my contribution is to shed light on negative chan-

nels through which health expenditures affect welfare. Simulation studies could be useful to

highlight countries in which increasing health expenditures can increase or not welfare.
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1.6 Appendix A

In the various proofs, I will use the following result :

Lemma 1.7. If x → (−p′′(x))x
p′(x)

is increasing, then x → e(x) := p′(x)x
p(x)

is upper-bounded by 1.

Proof. The sign of e′(x) is the one of 1 − (−p′′(x))x
p′(x)

− e(x). Define g(x) = 1 − (−p′′(x))x
p′(x)

. g(.)

is decreasing from a positive value to a negative value. If e(x) is in the set A = {y ≥ 0,

y < g(x)}, then e′(x) > 0, while e′(x) ≤ 0 if e(x) is in the set B = {y ≥ 0, y ≥ g(x)}.

Initially e(x) ∈ A because e(0) = 0 < g(0). So e initially increases and must hit the boundary

of B, where its slope is null, while the slope of the boundary of B is negative. Thus, e enters the

set B, where it is trapped because if it hits the boundary its slope is null, while the splope of

the boundary is negative. Thus, x → e(x) is inverted U- shaped. And e(x) is upper-bounded

by g(0), which is strictly smaller than 1

I first show that the dynamical system (1.6) defines a unique trajectory (Kt)t≥0 for any

initial condition. Rewrite (1.6) as :

Kt+1[(Aα)
σ−1

σ K
1−σ

σ (1−α)
t+1 + p(τA(1 − α)Kα

t )] = p(τA(1 − α)Kα
t )(1 − τ)A(1 − α)Kα

t (1.12)

The LHS of (1.12) increases with Kt+1 from 0 to ∞. Thus for any Kt ≥ 0 and any τ ∈ [0, 1],

there exists a unique Kt+1 that solves (1.12). Write this solution as Kt+1 = g(Kt, τ). The

implicit function theorem insures the differentiability of g. Its partial derivative with respect

to K is given by :

∂g

∂K
(K, τ) = A(1− α)αKα−1 (1 − τ)p(τA(1 − α)Kα) + p′(τA(1 − α)Kα)τ[(1 − τ)A(1 − α)Kα − g(K, τ)]

(Aα)
σ−1

σ (1 + 1−σ
σ (1 − α))g(K, τ)

1−σ
σ (1−α) + p(τA(1 − α)Kα)

(1.13)

Note that :

(1 − τ)A(1 − α)Kα − g(K, τ) = (Aα)
σ−1

σ g(K,τ)
1−σ

σ (1−α)

(Aα)
σ−1

σ g(K,τ)
1−σ

σ (1−α)+p(τA(1−α)Kα)
(1 − τ)A(1 − α)Kα

> 0.

Thus, ∂g
∂K (K, τ) > 0.

Moreover, from (1.13), ∂g
∂K (K, τ) ∼

K→0
Kα−1(1 − τ)A(1 − α)α. Hence lim

K→0

∂g
∂K (K, τ) = ∞.

Hence if (1.6) has positive steady states, then the first one is stable.

For K > 0, the fixed point equation writes :

K =
p(τA(1 − α)Kα)

(Aα)
σ−1

σ K
1−σ

σ (1−α) + p(τA(1 − α)Kα)
(1 − τ)A(1 − α)Kα (1.14)

⇔ (Aα)
σ−1

σ K
1−σ

σ (1−α) + p(τA(1 − α)Kα) = p(τA(1 − α)Kα)(1 − τ)A(1 − α)Kα−1 (1.15)

The LHS of (1.15) is increasing with K from p to ∞. The sign of the derivative of the RHS

with respect to K is given by :

(α − 1)Kα−2 p(τA(1 − α)Kα) + τA(1 − α)αK2α−2 p′(τA(1 − α)Kα)



30 Chapitre 1. Endogenous lifetime and economic growth : the role of the tax rate

= Kα−2(1 − α)p(τA(1 − α)Kα)[
τAαKα p′(τA(1 − α)Kα)

p(τA(1 − α)Kα)
− 1]

As α <
1
2 :

τAαKα p′(τA(1 − α)Kα)

p(τA(1 − α)Kα)
<

τA(1 − α)Kα p′(τA(1 − α)Kα)

p(τA(1 − α)Kα)
< 1

Where the last inequality follows from Lemma 1.7. This shows that the RHS of (1.15)

is decreasing with K from ∞ to 0. This proves that the fixed point equation has a unique

positive solution.

1.7 Appendix B

τ∗
t = arg max

τ∈[0,1]

(Kt+1

Kt
− 1) = arg max

τ∈[0,1]

(g(Kt, τ)). Apply the implicit function theorem to

(1.12) to obtain the partial derivative of g with respect to τ :

∂g

∂τ
(Kt, τ) = A(1 − α)Kα (1 − τ)A(1 − α)Kα

t p′ − p − gp′

(1 + 1−σ
σ (1 − α))g

1−σ
σ (1−α)(Aα)

σ−1
σ + p

Thus, ∂g
∂τ (Kt, τ) > 0 is equivalent to :

(1 − τ)A(1 − α)Kα
t −

p(τA(1 − α)Kα
t )

p′(τA(1 − α)Kα
t )

> g(Kt, τ) (1.16)

Note that the LHS of (1.16) is decreasing with τ. If (1.16) is satisfied in τ = 0, then

τ → g(Kt, τ) is initially increasing. As the LHS decreases with τ, there necessarily exists

τ∗ ∈ [0, 1] such that (1 − τ∗)A(1 − α)Kα
t −

p(τ∗A(1−α)Kα
t )

p′(τ∗A(1−α)Kα
t )

= g(Kt, τ∗), hence ∂g
∂τ (Kt, τ∗) = 0.

The derivative of the LHS of (1.16) is still negative at τ∗, this implies that (1 − τ)A(1 −
α)Kα

t −
p(τA(1−α)Kα

t )
p′(τA(1−α)Kα

t )
< g(Kt, τ) in the right-neighborhood of τ∗. Then, for all τ > τ∗, (1 −

τ)A(1 − α)Kα
t −

p(τA(1−α)Kα
t )

p′(τA(1−α)Kα
t )

≤ g(Kt, τ), because when g is equal to the LHS of (1.16), its

derivative is null, while the derivative of the LHS is negative. Hence τ → g(Kt, τ) is inverted

U-shaped in this case. With the same argument, I can show that τ → g(Kt, τ) is decreasing

if A(1 − α)Kα
t −

p

γ < g(Kt, 0).

Use (1.12) to write the condition A(1 − α)Kα
t −

p

γ < g(Kt, 0) as :

(Aα)
σ−1

σ g(Kt, 0)1+ 1−σ
σ (1−α)

<
p2

γ . Note that g(0, 0) = 0 and lim
K→∞

g(K, 0) = ∞. Moreover,

as ∂g
∂K (K, 0) > 0 for all K > 0, there exists K̂ such that A(1 − α)Kα

t −
p

γ < g(Kt, 0) if and only

if Kt < K̂. This shows that τ∗
t = 0 (respectively τ∗

t > 0) if Kt < K̂ (resp. Kt > K̂ ). I now

determine if the economy grows or declines when the tax rate τ∗
t is applied. For this, I need

to sign
g(Kt,τ

∗
t )

Kt
− 1. There are two cases to consider. First, if K(0) < K̂ .

For Kt < K̂ , τ∗
t = 0, so

g(Kt,τ
∗
t )

Kt
− 1 > 0 is equivalent to :
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g(Kt, 0)

Kt
− 1 > 0

⇔ g(Kt, 0)

Kt
>

g(K(0), 0)

K(0)
(1.17)

Write the LHS of (1.17) as :

g(Kt, 0)

Kt
=

A(1 − α)Kα−1
t

1 + g(Kt, 0)
1−σ

σ (1−α) (Aα)
σ−1

σ

p

(1.18)

This shows that Kt → g(Kt,0)
Kt

is decreasing. Hence (1.17) is equivalent to Kt < K(0). Thus,

when τ∗
t is applied, the economy grows if Kt < K(0) and declines if K(0) < Kt < K̂. For

Kt > K̂, write g(Kt,τ)
Kt

as :

g(Kt, τ)

Kt
=

p(τA(1 − α)Kα
t )

(Aα)
σ−1

σ g(Kt, τ)
1−σ

σ (1−α) + p(τA(1 − α)Kα
t )
(1 − τ)A(1 − α)Kα−1

t (1.19)

Note that the denominator of the RHS of (1.19) is increasing with Kt. The derivative of

the numerator is :

(1 − α)Kα−2
t p(τA(1 − α)Kα

t )[
p′(τA(1 − α)Kα

t )K
α
t τAα

p(τA(1 − α)Kα
t )

− 1]

Note now that
p′(τA(1−α)Kα

t )K
α
t τAα

p(τA(1−α)Kα
t )

<
p′(τA(1−α)Kα

t )K
α
t τA(1−α)

p(τA(1−α)Kα
t )

< 1 according to Lemma 1.7.

This implies that Kt → g(Kt,τ)
Kt

is decreasing. Thus, for all Kt > K̂,
g(Kt,τ

∗
t )

Kt
<

g(K̂,τ∗
t )

K̂
<

g(K̂,0)

K̂
<

1.

Consider now the case K̂ < K(0). As Kt → g(Kt,0)
Kt

is decreasing and is worth 1 at Kt =

K(0), it must be that g(Kt,0)
Kt

> 1 for all Kt < K̂. Hence the economy grows if Kt < K̂ when τ∗
t

is applied.

Define m(Kt) = max
τ∈[0,1]

( g(Kt,τ)
Kt

). m(K̂) > 1 and this function is decreasing as Kt → g(Kt,τ)
Kt

is decreasing. Moreover, from (1.12) :

g(Kt, τ)

Kt
< A(1 − α)Kα−1

t

This implies that lim
Kt→∞

(m(Kt)) = 0. Thus, there exists a unique K1 > K̂ such that

g(Kt,τ
∗
t )

Kt
> 1 if and only if Kt < K1. Finally, to obtain the condition of Proposition 1.3, note

that the the condition K(0) < K̂ is equivalent to the condition (Aα)
σ−1

σ g(K(0), 0)1+ 1−σ
σ (1−α)

<

p2

γ . Note that g(K(0), 0) = K(0) and that K(0) = (AC)
1

1−α , where C is defined by (1.8). This

completes the proof of Proposition 1.3.
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1.8 Appendix C

Define :

G(K, τ) =
p(τA(1 − α)Kα)

(Aα)
σ−1

σ K
1−σ

σ (1−α) + p(τA(1 − α)Kα)
(1 − τ)A(1 − α)Kα−1

According to Proposition 1.1 and 1.2, for each τ ∈ [0, 1], I can define K(τ) the unique

root to the equation G(K, τ) = 1 and K(τ) is the unique SS of the dynamical system (1.6).

Note that :

(1 − τ)A(1 − α)

G(K, τ)
=

(Aα)
σ−1

σ K
(1−α)

σ

p(τA(1 − α)Kα)
+ K1−α (1.20)

The derivative with respect to K of the first member of the RHS of (1.20) is :

(Aα)
σ−1

σ K
(1−α)

σ −1(1 − α)

p(τA(1 − α)Kα)
[
1

σ
− τAαKα p′(τA(1 − α)Kα)

p(τA(1 − α)Kα)
]

As τAαKα p′(τA(1−α)Kα)
p(τA(1−α)Kα)

< 1 and 1
σ > 1, I obtain that K → G(K, τ) is decreasing.

∂G

∂τ
(K, τ) =

(−1)p(τA(1 − α)Kα)

(Aα)
σ−1

σ K
1−σ

σ (1−α) + p(τA(1 − α)Kα)
A(1 − α)Kα−1+

(1 − τ)A(1 − α)Kα−1 A(1 − α)p′(τA(1 − α)Kα)(Aα)
σ−1

σ Kα+ 1−σ
σ (1−α)

((Aα)
σ−1

σ K
1−σ

σ (1−α) + p(τA(1 − α)Kα))2
(1.21)

Note that ∂2G
∂τ2 (K, τ) < 0, hence τ → G(K, τ) is concave. Thus, τ → G(K, τ) is decreasing

(respectively U-shaped) if ∂G
∂τ (K, 0) < 0 (resp. ∂G

∂τ (K, 0) > 0). Moreover,

∂G

∂τ
(K, 0) < 0 ⇔ A(1 − α)γKα+ 1−σ

σ (1−α) − pK
1−σ

σ (1−α)
<

p2

(αA)
σ−1

σ

Assume that this condition holds for K(0). Then it must be that τ → G(K(0), τ) is

decreasing. By definition of K(0), G(K(0), 0) = 1. Thus G(K(0), τ) < 1 for all τ > 0. As

K → G(K, τ) is decreasing, it must be that G(K, τ) < 1 for all K > K(0) and τ ≥ 0. Hence

for K > K(0), the equation G(K, τ) = 1 has no root.

Note now that if A(1 − α)γK(0)α+ 1−σ
σ (1−α) − pK(0)

1−σ
σ (1−α)

<
p2

(αA)
σ−1

σ
, then this inequa-

lity is true for all K < K(0). Hence τ → G(K, τ) is decreasing for all K < K(0). And for all

K < K(0), G(K, 0) > 1 = G(K(0), 0) as K → G(K, 0) is decreasing. This means that the

equation G(K, τ) = 1 has exactly one root for all K < K(0), write it τ(K). Note that we can

extend the function to K = 0 with τ(K) = 1. By the implicit function theorem :

τ′(K)
∂G

∂τ
(K, τ(K)) = −∂G

∂K
(K, τ(K))

Hence K → τ(K) is a decreasing one-to-one map from [0, K(0)] to [0, 1]. Hence τ → K(τ)

which is the inverse of K → τ(K), is decreasing on [0, 1].
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Assume now that ∂G
∂τ (K(0), 0) > 0. Hence, τ → G(K(0), τ) is inverted U-shaped and it

is also true for any K > K(0). For any K > K(0), as K → G(K, 0) is decreasing, G(K, 0) <

G(K(0), 0) = 1.

Because τ → G(K(0), τ) is inverted U-shaped, I can define m(K) = max
τ∈[0,1]

G(K, τ) for

K > K(0). This function is decreasing because K → G(K, τ) is decreasing for all τ ∈ [0, 1].

Moreover :

G(K, τ) < A(1 − α)Kα−1

Thus, lim
K→∞

G(K, τ) = 0. Moreover m(K(0)) > 1. So there exists K∗
> K(0) such that

m(K∗) = 1 and m(K) < 1 if and only if K > K∗.

So for all K > K∗, the equation G(K, τ) = 1 has no root. Define K̂ as the unique solution

to the equation : A(1 − α)γK̂α+ 1−σ
σ (1−α) − pK̂

1−σ
σ (1−α) =

p2

(αA)
σ−1

σ
. By assumption K(0) > K̂.

For K(0) < K < K∗, as τ → G(K, τ) is inverted U-shaped and takes values strictly greater

than 1, the equation G(K, τ) = 1 has exactly two roots : β(K) and λ(K),with β(K) < λ(K).

As τ → G(K, τ) is inverted U-shaped and K → G(K, τ) is decreasing, β(K) is increasing

while λ(K) is decreasing. For K̂ < K < K(0), τ → G(K, τ) is still inverted U-shaped, however

G(K, 0) > 1. Thus, the equation G(K, τ) = 1 has exactly one root, which is decreasing with

K. For K < K̂, τ → G(K, τ) is now decreasing, with G(K, 0) > 1 and G(K, 1) = 0, so

the equation G(K, τ) = 1 has exactly one root, which is decreasing with K. Extend λ(K) on

[0, K∗]. Set τ∗ = λ(K∗). It is a decreasing one-to-one map from [0, K∗] to [τ∗, 1]. Consequently,

the restriction of τ → K(τ) to [τ∗, 1] which is the inverse of K → λ(K), is decreasing.

K → β(K) is an increasing one-to-one map from [K(0), K∗] to [0, τ∗]. This means that the

restriction of τ → K(τ) to [0, τ∗] which is the inverse of K → β(K), is increasing. This proves

that τ → K(τ) is inverted U-shaped on [0, 1].

To get the conditions (I) and (II) of Proposition 1.4, note that K(0) satisfies the following

equation :

K(0)1−α

A
=

p

α
σ−1

σ (K(0)1−α

A )
1−σ

σ + p
(1 − α)

Thus, there exists C > 0 independent of A and γ such that K(0)1−α

A = C. Thus, I can

rewrite the condition ∂G
∂τ (K(0), 0) < 0 as :

A
1

1−α γ(1 − α)C
α

1−α+
1−σ

σ <

p2

α
σ−1

σ

+ pC
1−σ

σ

By using (1.8), I obtain the inequalities in (I) and (II) from the previous inequality. To

prove (III), I find an equivalent of C when p tends to 0. Note first from (1.8) that lim
p→0

C = 0.

Then, rewrite (1.8) as :

α
σ−1

σ C
1
σ

p
= 1 − α − C
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Thus, C ∼
p→0

( 1−α

α
σ−1

σ
p)σ.

This implies that C
1

1−α
+ 1−σ

σ

p2 ∼
p→0

( 1−α

α
σ−1

σ
)

1−σ+ σ
1−α

p
1−α(1+σ)

1−α

. As α <
1
2 and σ < 1, α(1 + σ)<1. Thus,

lim
p→0

C
1

1−α
+ 1−σ

σ

p2 = ∞. This proves (III) and completes the proof of Proposition 1.4.

In the interpretation of Proposition 1.4, I claim that p → C
1

1−α
+ 1−σ

σ

p2 is decreasing. To prove

this, I implicitely differentiate (1.8) to get that :

dC

dp
=

p

C

α
σ−1

σ C
1−σ

σ

p + α
σ−1

σ (1 + 1−σ
σ )C

1−σ
σ

Then I can compute the derivative of C
1

1−α
+ 1−σ

σ

p2 with respect to p. This derivative is posi-

tive if and only if :

(
1

1 − α
+

1 − σ

σ
)

α
σ−1

σ C
1−σ

σ

p + α
σ−1

σ C
1−σ

σ (1 + 1−σ
σ )

> 2

Note that the LHS of (1.8) is upper-bounded by
1

1−α+
1−σ

σ

1+ 1−σ
σ

. Note finally that this upper-

bound cannot be greater than 2 when α <
1
2 . Hence p → C

1
1−α

+ 1−σ
σ

p2 is decreasing.

1.9 Appendix D

Use (1.1) to (1.4) to write :

U(τ) = ln(
A(1 − α)K(τ)α(1 − τ)

1 + p(A(1 − α)K(τ)ατ)
) + p(A(1 − α)K(τ)ατ) ln(

A2α(1 − α)K(τ)2α−1(1 − τ)

1 + p(A(1 − α)K(τ)ατ)
)

(1.22)

So :

U(τ) ≤ ln(
A(1 − α)K(τ)α

1 + p(A(1 − α)K(τ)ατ)
) + p(A(1 − α)K(τ)ατ) ln(

A2α(1 − α)K(τ)α

1 + p(A(1 − α)K(τ)ατ)
)

(1.23)

Write the RHS of (1.23) as Z(K(τ), p(A(1 − α)K(τ)ατ)). Note that :

∂Z

∂K
(K, p) =

α − (1 − 2α)p

K

If I impose α < (1 − 2α)p, then ∂Z
∂K (K(τ), p(A(1 − α)K(τ)ατ)) < 0 for all τ ∈ [0, 1].

Moreover,

∂Z

∂p
(K, p) = ln(A2α(1 − α)) + (2α − 1) ln(K)− 1 − ln(1 + p)

Then, ∂Z
∂p (K, p) < 0 is equivalent to :

ln(A2α(1 − α)) < (1 − 2α) ln(K) + 1 + ln(1 + p)
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Note τ∗ = arg max
τ∈[0,1]

(K(τ)) and τ̂ the positive root to the equation K(τ) = K(0). Note

that K(τ) > K(0) = (
A(1−α)p

1+p )
1

1−α on [0, τ̂]. So, if I impose :

ln(A2α(1 − α)) < (1 − 2α) ln((
A(1 − α)p

1 + p
)

1
1−α ) + 1 + ln(1 + p)

⇔ ln(A
1

1−α α(1 − α)) < (1 − 2α) ln((
(1 − α)p

1 + p
)

1
1−α ) + 1 + ln(1 + p)

Then, ∂Z
∂p (K(τ), p(A(1− α)K(τ)ατ)) < 0 for all τ ∈ [0, τ̂]. For all τ ∈ [0, τ̂], K(τ) ≥ K(0)

and p(A(1 − α)K(τ)ατ) ≥ p, thus Z(K(τ), p(A(1 − α)K(τ)ατ)) ≤ Z(K(0), p) = U(0).

There remains to show that the maximum cannot be reached on [τ̂, 1]. For this, use the

fixed point equation to write U(τ) as :

U(τ) = ln(
K(τ)

p(A(1 − α)K(τ)ατ)
) + p(A(1 − α)K(τ)ατ) ln(

AαK(τ)α

p(A(1 − α)K(τ)ατ)
)

On [τ̂, 1], τ → K(τ) is decreasing, thus K(τ) is upper-bounded by K(τ̂) = K(0). Thus,

the LHS is upper-bounded by :

ln( K(0)
p(A(1−α)K(τ)ατ)

) + p(A(1 − α)K(τ)ατ) ln( AαK(0)α

p(A(1−α)K(τ)ατ)
) := M(p(A(1 − α)K(τ)ατ))

on [τ̂, 1].

M′(p) = − 1

p
+ ln(AαK(0)α)− 1 − ln(p)

So M′(p) < 0 is equivalent to :

ln(AαK(0)α) < 1 + ln(p) +
1

p
(1.24)

The RHS of (1.24) is lower-bounded by : 2 + ln(p). Thus, if I impose ln(A
1

1−α α(1 −
α)

α
1−α ) < 2+ ln(p), then M′(p) < 0 for all p ≥ p. For all τ ∈ [τ̂, 1], p(A(1− α)K(τ)ατ)) ≥ p,

thus M(p(A(1 − α)K(τ)ατ)) ≤ M(p) = U(0). Hence τ∗ = 0. The conditions that I find for

this to happen are :

γ(
A(1 − α)p

1 + p
)

1
1−α > p2 (1.25)

α < (1 − 2α)p (1.26)

ln(A
1

1−α α(1 − α)
α

1−α ) < 2 + ln(p) (1.27)

ln(A
1

1−α α(1 − α)) < (1 − 2α) ln((
(1 − α)p

1 + p
)

1
1−α ) + 1 + ln(1 + p) (1.28)

Where (1.25) insures that τ → K(τ) is inverted U-shaped. Choose first α low enough for

(1.26) to be satisfied. Then, choose A low enough for (1.27) and (1.28) to be satisfied. Then,
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choose γ large enough for (1.25) to be satisfied. This completes the proof of the point (i) of

Proposition 1.5.

To prove the point (ii), I need to compute dU
dτ (0). For this, I need to compute dK

dτ (τ) and
d(K(τ)ατ)

dτ . I use the implicit function theorem to compute dK
dτ (τ) from the fixed point equation.

I find that :

dK

dτ
(τ) = AK(τ)α

p′K(τ)
p − p

p + 1 − AαK(τ)ατp′
p

(1.29)

Thus,

dK

dτ
(0) = AK(0)α

γK(0)
p − p

p + 1
= A

1
1−α (

(1 − α)p

1 + p
)

α
1−α

γ(A(
(1−α)p

1+p )
1

1−α − p2

p(p + 1)

Then, I compute d(K(τ)ατ)
dτ from (1.29) :

d(K(τ)ατ)

dτ
= AK(τ)α(1 + p)

1 − τ
1−τ

α
1−α

p + 1 − AαK(τ)ατp′
p

6Thus,
d(K(τ)ατ)

dτ
)τ=0 = AK(0)α (1.30)

Thus, I can compute dU
dτ (0). From (1.30) :

dU

dτ
(0) =

dK

dτ
(0)

1 + pα

K(0)
+

d(K(τ)ατ)

dτ
)τ=0[ln(

AαK(0)α

p
)−

1 + p

p
]γ

= (
(1 − α)p

1 + p
)

α
1−α

γ(A(
(1−α)p

1+p )
1

1−α − p2

p(p + 1)

1 + pα

(
(1−α)p

1+p )
1

1−α

+ A
1

1−α (
(1 − α)p

1 + p
)

α
1−α [ln(

A
1

1−α α(
(1−α)p

1+p )
α

1−α

p
)−

1 + p

p
]γ

Note now that it suffices to have dU
dτ (0) > 0 for τ∗ to be positive. The condition dU

dτ (0) > 0

is equivalent to :

A
1

1−α [ln(
A

1
1−α α(

(1−α)p

1+p )
α

1−α

p
)−

1 + p

p
+

1 + pα

p(p + 1)
]γ >

p

p + 1

1 + pα

(
(1−α)p

1+p )
1

1−α

(1.31)

I now examine if this condition can be compatible with the one that guarantees that

τ → K(τ) is decreasing, hence γA
1

1−α <
p2

(
(1−α)p

1+p )
1

1−α
. Choose first A large enough for

ln(
A

1
1−α α(

(1−α)p

1+p )
α

1−α

p )− 1+p

p +
1+pα

p(p+1)
to be positive. Then, (1.33) is equivalent to :

6. From this, we can observe that the Laffer rate is 1 − α.
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γA
1

1−α >

p

p+1

1+pα

(
(1−α)p

1+p )
1

1−α

ln(
A

1
1−α α(

(1−α)p

1+p )
α

1−α

p )− 1+p

p +
1+pα

p(p+1)

Note now that for A large enough :

p

p+1

1+pα

(
(1−α)p

1+p )
1

1−α

ln(
A

1
1−α α(

(1−α)p

1+p )
α

1−α

p )− 1+p

p +
1+pα

p(p+1)

<

p2

(
(1−α)p

1+p )
1

1−α

Thus, I choose γ such that :

1

A
1

1−α

p

p+1

1+pα

(
(1−α)p

1+p )
1

1−α

ln(
A

1
1−α α(

(1−α)p

1+p )
α

1−α

p )− 1+p

p +
1+pα

p(p+1)

< γ <

p2

(A
(1−α)p

1+p )
1

1−α

Under this parametric restriction τ → K(τ) is decreasing and dU
dτ (0) > 0. This completes

the proof of point (ii).

1.10 Appendix E

Use (1.1) and (1.2) to get that utility in SS is :

U(τ) =
1

1 − σ
((1 − τ)w)1−σR1−σ(p(τw) + R

σ−1
σ )σ

Use now (1.4) and (1.3) to write U(τ) as :

U(τ) = V(K(τ), τ) =
1

1 − σ
(1 − τ)1−σ(K

(2α−1)(1−σ)
σ p(τA(1 − α)Kα) + (αA)

σ−1
σ Kα 1−σ

σ )σ

I first find a condition to have ∂V
∂k (K(τ), τ) < 0 for all τ ∈ [0, 1]. Note first than V(0, τ) =

V(∞, τ), hence the equation ∂V
∂k (K, τ) = 0 has at least one root for each τ. To lower-bound

the smallest root to this equation, note that :

∂V

∂k
(K, τ) = 0

⇐⇒ σ

1 − σ
(

1 − τ

K
(2α−1)(1−σ)

σ p + (αA)
σ−1

σ Kα 1−σ
σ

)1−σ[
(2α − 1)(1 − σ)

σ
K

(2α−1)(1−σ)
σ −1 p+

Aτ(1 − α)αKα−1+ (2α−1)(1−σ)
σ p′ + (αA)

σ−1
σ α

1 − σ

σ
Kα 1−σ

σ −1] = 0 (1.32)

⇐⇒ (1 − 2α)(1 − σ)

σ
p = Aτ(1 − α)αKα p′ + (αA)

σ−1
σ α

1 − σ

σ
K(1−α) 1−σ

σ (1.33)
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Note that the LHS of (1.33) is initially greater than the RHS, thus to lower-

bound the smallest root of this equation, I upper-bound the RHS by A(1 − α)αKαγ +

(αA)
σ−1

σ α 1−σ
σ K(1−α) 1−σ

σ and I lower-bound the LHS by (1−2α)(1−σ)
σ p. This means that any root

of the equation ∂V
∂k (K, τ) = 0 is lower-bounded by K̂ which solves the following equation :

(1 − 2α)(1 − σ)

σ
p = A(1 − α)αK̂αγ + (αA)

σ−1
σ α

1 − σ

σ
K̂(1−α) 1−σ

σ

I now search for a condition that insures that K(τ) < K̂ for all τ ∈ [0, 1]. Note that

K(τ) < A
1

1−α (1 − α)
1

1−α . Thus, A
1

1−α (1 − α)
1

1−α < K̂ is sufficient to have K(τ) < K̂ for all

τ ∈ [0, 1]. The condition is equivalent to :

A(1− α)α(A
1

1−α (1− α)
1

1−α )αγ+(αA)
σ−1

σ α
1 − σ

σ
(A

1
1−α (1− α)

1
1−α )(1−α) 1−σ

σ <
(1 − 2α)(1 − σ)

σ
p

(1.34)

⇐⇒ A
1

1−α γ <
1 − σ

σ

p(1 − 2α)− α1+ σ−1
σ

(1 − α)
1

1−α α

I now check if this inequality can be made compatible with the one that insures that

τ → K(τ) is inverted U-shaped. For the two inequalities to be compatible, it must be that :

p
p + α

σ−1
σ C

1−σ
σ

(1 − α)α
σ−1

σ C
1−σ

σ + α
1−α

<
1 − σ

σ

p(1 − 2α)− α1+ σ−1
σ

(1 − α)
1

1−α α

⇐⇒ pα
1
σ

p + α
σ−1

σ C
1−σ

σ

(1 − α)C
1−σ

σ + α
1−α

<
1 − σ

σ

p(1 − 2α)− α1+ σ−1
σ

(1 − α)
1

1−α

(1.35)

Note first that the RHS of (1.35) has a positive limit as α tends to 0. To obtain the limit

of the LHS, use (1.8) :

C =
p(1 − α)

p + α
σ−1

σ C
1−σ

σ

For C fixed, the RHS of (1.8) tends to 0 as α tends to 0, while the LHS of ((1.8) tends to

C. Thus it must be that lim
α→0

C = 0. This implies from (1.8) that lim
α→0

α
σ−1

σ C
1−σ

σ = ∞. Then, as

α tends to 0, the LHS of (1.35) is equivalent to p α

C
α

1−α
.

Because lim
α→0

(C) = 0, 1

C
α

1−α
≤ 1

C as α is close to 0. Hence 0 ≤ lim
α→0

(p α

C
α

1−α
) ≤ lim

α→0
(p α

C ) = 0.

Hence there exists α > 0 such that (1.35) is satisfied for all α < α.

I now search for a condition that insures ∂V
∂τ (K(τ), τ) < 0 for all τ ∈ [0, 1].

∂V

∂τ
(K, τ) = −(1 − τ)−σ(1 − σ)(K

(2α−1)(1−σ)
σ p + (αA)

σ−1
σ Kα 1−σ

σ )σ+

(1 − τ)1−σ A(1 − α)Kα+ (2α−1)(1−σ)
σ p′σ(K

(2α−1)(1−σ)
σ p + (αA)

σ−1
σ Kα 1−σ

σ )σ−1 (1.36)

Note that ∂2V
∂τ2 (K(τ), τ) < 0. Hence ∂V

∂τ (K, τ) < 0 for all τ ∈ [0, 1] is equivalent to
∂V
∂τ (K, 0) < 0, which is equivalent to :

A(1 − α)Kαγ <
1 − σ

σ
(p + (αA)

σ−1
σ K(1−α) 1−σ

σ )
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⇔ A(1 − α)Kαγ − 1 − σ

σ
(αA)

σ−1
σ K(1−α) 1−σ

σ <
1 − σ

σ
p (1.37)

To study the LHS of (1.37) with respect to K, note that there are two cases to consider :

α > (1 − α) 1−σ
σ and α < (1 − α) 1−σ

σ . I only consider the second case because my previous

conditions require α to be small.

Define G(K) = A(1− α)Kαγ− 1−σ
σ (αA)

σ−1
σ K(1−α) 1−σ

σ . This function is inverted U-shaped.

Note K̃ = arg max
K≥0

(G(K)). If I impose G(K̃) < 1−σ
σ p, then ∂V

∂τ (K(τ), τ) < 0 for all τ ∈ [0, 1].

I find that :

G(K̃) = (1 − ασ
(1−α)(1−σ)

)( ασ
(1−α)(1−σ)

)
1

(1−α)(1−σ)
ασ −1 ( α(1−α)

1−α
α

( 1−σ
σ )

σ
1−σ

)

1−σ
σ

(1−α)(1−σ)
ασ −1 (γ1−α A)

1−σ
σ

(1−α)(1−σ)
ασ −1 .

Thus, I can write the inequality G(K̃) < 1−σ
σ p as :

γA
1

1−α <
1

1 − α
(
(1 − α)(1 − σ)2

α
1
σ σ2

)
α

1−α (
1−σ

σ p

1 − ασ
(1−α)(1−σ)

)
1− ασ

(1−α)(1−σ) (1.38)

I have now to check if this inequality is compatible with the one that insures that τ →
K(τ) is inverted U-shaped when α tends towards 0. As α tends towards 0, the RHS of (1.38)

tends to : 1−σ
σ p. The LHS of (1.38) is equivalent to

p

C
α

1−α
. Hence as α tends towards 0, the

ratio of the two quantities is equivalent to :

1 − σ

σ
e

α
1−α ln(C)

>
1 − σ

σ
e

α
1−α ln(α)

As the RHS tends to 1−σ
σ as α tends towards 0, if I impose 1−σ

σ > 1, hence σ <
1
2 , then

(1.38) is true for α small enough.

I now impose the three previous conditions. Recall that τ∗ = arg max
τ∈[0,1]

(K(τ)) and τ̂ is the

positive root to the equation K(τ) = K(0).

τ → V(K(τ), τ) is decreasing on [0, τ∗]. Thus, it cannot reach its maximum on [0, τ∗].

For all τ ∈ [τ∗, τ̂], V(K(τ), τ) < V(K(0), 0) because K(τ) > K(0).

There remains to prove that the maximum is not reached on [τ̂, 1]. To do this, use the

fixed point equation to write welfare as :

U(τ) =
1

1 − σ
(

(1 − τ)w

p(τw) + R
σ−1

σ

)1−σR1−σ(p(τw)+R
σ−1

σ ) =
1

1 − σ
(

K

p(τw)
)1−σR1−σ(p(τw)+R

σ−1
σ )

U(τ) = Kα(1−σ)(
(αA)

σ−1
σ K(1−α) 1−σ

σ

p(τw)
+ 1)p(τw)σ

For τ ∈ [τ̂, 1], K(τ) < K(0). Thus, U < K(0)α(1−σ)( (αA)
σ−1

σ K(0)(1−α) 1−σ
σ

p + 1)pσ

Define Z(p) = K(0)α(1−σ)( (αA)
σ−1

σ K(0)(1−α) 1−σ
σ

p + 1)pσ. I search for a condition that insures

that p → Z(p) is decreasing on [p, p]. Z′(p) < 0 is equivalent to :

p
σ

1 − σ
< (αA)

σ−1
σ K(0)(1−α) 1−σ

σ
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Consequently, if I impose σ
1−σ < (αA)

σ−1
σ K(0)(1−α) 1−σ

σ = α
σ−1

σ C
1−σ

σ , then p → Z(p) is

decreasing on [p, p].

Note that this condition does not contradict the previous ones when α is small because

lim
α→0

(α
σ−1

σ C
1−σ

σ ) = ∞.

Under this condition U < Z(p) = V(K(0), 0). This proves that the maximum is not

reached on [τ̂, 1]. This completes the proof of Proposition 1.6.



2Growth, longevity and

endogenous health expenditures

2.1 Introduction

The share of health expenditures in GDP is on the rise in developed countries. In US,

which is presently the country with the highest share of total health expenditures in GDP,

the ratio has increased from 3,2% in 1950 to 17,6% in 2015 (Chernew and Newhouse 2011).

The same trend is observed in all other OECD countries (see Figure 2.1). Over the period

2000-2013, the income per capita of the OECD area grew at an average annual rate of 2.9%,

while the total level of health expenditures per capita grew at an average annual rate of

4.75%. 1 Concerns have been raised according to which devoting so much resources to the

health sector could endanger economic growth (see Kuhn and Prettner (2016)). This paper

proposes a simple theoretical framework to assess such concerns. In a standard growth model

augmented with endogenous health expenditures, I determine if individuals can voluntarily

choose to spend a level of resources on health that harms or even impedes long-run economic

growth.

More precisely, let us consider first a Diamond model with a AK technology. Because of

constant returns to reproductible factors, there exists a mild condition on the parameters

under which the economy perpetually grows. Second, let us add to this standard framework

the possibility for young agents to make expenditures to live longer in second period. Does

this economy perpetually grow under the mild condition of the AK model ? In other words,

can the possibility to spend resources to live longer impede long-run economic growth ? If

the economy perpetually grows, then does it grow faster than the AK economy ? Conversely,

if the mild condition fails, can the economy grow ? These questions are not trivial because

health expenditures produce both positive and negative effects on economic growth. In a AK

framework, the growth engine is the physical capital accumulation. 2 When agents increase

1. These numbers and Figure 2.1 are obtained from the OECD database.

2. It could be argued that human capital is also an important growth engine to take into account to study

the health-growth nexus. However, as I consider longevity improvements in retirement period, the Ben-Porath

mechanism does not operate (Cervellati and Sunde 2013).

41
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Figure 2.1 – Ratio of total health expenditures to GDP in 10 OECD countries

their level of health expenditures, this creates two opposite effects on savings, hence on eco-

nomic growth. On the one hand, this increases their longevity which positively impacts their

propensity to save (Bloom et al. 2003 ; Chakraborty 2004). On the other hand, in the previous

chapter, I underline that health expenditures also decrease their disposable income which ne-

gatively impacts their savings. Particularly, if young agents were to spend all their resources

on health, then there would be no capital stock for the next period and the economy would be

trapped to a null income perpetually. Thus, when young agents spend a too large fraction of

their income on health, they force a growing economy to stop its expansion. Otherwise said,

a high level of health expenditures can be optimal for the current generation, while exerting

strong negative intergenerational externalities on future generations who could be trapped to

a constant income level. This paper focuses on this trade-off that health expenditures create

on economic growth and omits other possible channels, such as the impact of health on pro-

ductivity, to analyze analytically the occurrence of such an event. This enables to shed light

on key parameters to take into account for the introduction of a health system to be a growth

success.

Doing this, the paper connects two strands of the literature. The first one is a rich theo-

retical literature on the health-growth nexus, which has investigated the role of longevity

in various dynamic general equilibrium settings. This literature first focused on the causal

impact of longevity on economic growth by applying shocks on the longevity parameter in

different growth models. For example, Boucekkine et al. (2002) and de la Croix and Licandro

(1999) study the effect of a longevity increase on economic growth in a model with human

capital investments. On the one hand, the human capital supply is stimulated through the

Ben-Porath effect following a longevity increase. On the other hand, this creates more re-

tirees and more people educated a long time before, leaving the total impact on economic

growth ambiguous. This type of analysis has also been performed in models with a different
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growth engine. Prettner (2013) examines the consequences of an exogenous longevity shift in

a R&D based growth model, while Chakraborty (2004) shows that the higher the longevity

in retirement period, the higher the propensity to save and then economic growth when it is

driven by physical capital accumulation. Second, this literature has studied the joint dyna-

mics of income and longevity, when the latter is determined by health expenditures. 3 In an

infuential paper, Chakraborty (2004) proposes a Diamond model in which the survival pro-

bability into second period depends on public health expenditures. Bhattacharya and Qiao

(2007) propose an OLG model in which there are public and private health expenditures that

affect the longevity. Kuhn and Prettner (2016) introduce a health sector into an endogenous

growth model and examine the impact of its size on the growth rate and on the welfare of

the individuals. However, in these papers, individuals do not control completely the level of

their health expenditures. Indeed, the tax rate that finances the public health expenditures

is exogenously fixed in these papers. 4To rationalize the upward trend of the ratio of health

expenditures to GDP and to analyze its consequences in terms of economic growth, I need a

framework in which total health expenditures arise from the maximization of lifetime utility

by agents. To achieve this, I abstract from the financing source of health and I follow Chakra-

borty (2004) and Bhattacharya and Qiao (2007) by letting second period longevity to depend

on health expenditures, where, contrary to these two papers, the level of these expenditures

is chosen by the agent by maximizing his lifetime utility under the budget constraints.

Thus, the paper also sheds light on the determinants of the demand for health. 5 This

literature pioneered by Grossman (1972) has proposed various modelling strategies to incor-

porate health decisions into life-cycle models. In Grossman (1972) or Ehrlich and Chuma

(1990), individuals live until their health capital, that depreciates each period and that can

be increased through investment, falls under a threshold value. Dalgaard and Strulik (2014),

criticize the possibility for individuals to increase their health stock and propose a frame-

work based on research in natural sciences, in which individuals make expenditures to slow

the accumulation of deficits caused by aging. Here, I do not follow these approaches as they

are not suitable for dynamic general equilibrium. I rather consider a framework in which

health expenditures only allow to live longer to enjoy consumption utility. 6 In addition to its

analytical convenience for the study of the dynamics of the economy, the formulation allows

to establish new results on the income elasticity of health expenditures. Following Jones and

Hall (2007), this elasticity is believed to be positively driven by the ratio of health elasticity

to consumption elasticity (see also Acemoglu et al. 2013). The first contribution of the paper

3. Some authors also study growth models in which longevity is determined by various externalities. Cipriani

and Blackburn (2002) and Cervellati and Sunde (2005) both examine a model in which investments in education

exert a positive externality on the longevity of individuals. In Mariani et al. (2010) and Raffin and Seegmuller

(2014), pollution exerts a negative effect on the individuals’longevity. In Ponthiere (2011), good consumption

influences the longevity.

4. In Chakraborty and Das (2005), individuals fully control their longevity. Yet the authors focus on the trans-

mission of inequalities in a small open economy framework that does not allow to study the growth consequences

of these health expenditures.

5. In line with this literature, I do not study supply side effects of the health sector.

6. See Azomahou et al. (2015) for a discussion on the inclusion of health in individuals’preferences.
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is to prove and explain why the ratio of these two elasticities is an imperfect picture of the

income elasticity of health expenditures. The second one is to provide a complete characteri-

zation of the dynamics of the economy to assess the growth impacts of health expenditures.

The rest of the paper is as follows. Section 2.2 presents the model and characterizes the

level of health expenditures. Section 2.3 studies the dynamics of the economy. Section 2.4

discusses alternative preferences and proposes a numerical illustration for OECD countries.

Section 2.5 concludes.

2.2 The model

2.2.1 Outline

Individuals live for two periods. The young work while the old are retired. For a cohort-

t individual, the length of the first and the second period are respectively 1 and pt, with

pt ≤ 1. There is a single good in the economy which is produced competitively. This good

can be consumed or invested in physical capital or used to increase pt. The size of each new

cohort is constant and normalized to 1.

2.2.2 Firms

Here I follow Raffin and Seegmuller (2014) to introduce a AK technology for the produc-

tion sector. There is a representative firm which uses labor and capital to produce the unique

good of this economy. The production function F is homogeneous of degree 1 and satisfies

Inada conditions :

Yt = F(Kt, BtLt) (2.1)

Where Yt is output at time t, Kt the capital stock, Lt labor and Bt is the labor augmenting

technological progress. There are positive externalities in the use of capital that linearly

increase the productivity of workers : Bt = Kt. Factors are paid at their marginal productivity.

At the equilibrium,

1 + rt = F1(1, 1) (2.2)

wt = KtF2(1, 1) (2.3)

Where I have assumed that the capital fully depreciates at each period. It is convenient

to define A = F(1, 1) and α = F1(1,1)
F(1,1)

to write (2.2) and (2.3) as :

1 + rt = Aα = 1 + r (2.4)

wt = Kt(1 − α)A (2.5)
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2.2.3 Preferences

Individuals choose their consumption levels in both periods. They can also spend re-

sources during their first period to increase their longevity pt in second period. More preci-

sely, each cohort-t member maximizes the following lifetime utility function :

Ut = u(ct,t) + p(et)u(ct,t+1) (2.6)

With respect to ct,t, ct,t+1 and et subject to the budget constraints :

ct,t + st + et = wt (2.7)

p(et)ct,t+1 = (1 + r)st (2.8)

Where ct,t is the consumption level per unit of time in first period of a cohort-t member,

ct,t+1 the consumption level per unit of time in second period, et the level of health expen-

ditures, st the savings. The function p specifies the relationship between the level of health

expenditures and the longevity : pt = p(et). The function p is twice differentiable, increasing

and strictly concave with :

p(0) = p ≥ 0, lim
e→∞

p(e) = p ≤ 1, p′(0) = γ ∈ (0,+∞] (2.9)

The set of survival functions p includes the ones that satisfy Inada conditions (this hap-

pens if p(0) = 0 and γ = ∞). Assuming that p is increasing and strictly concave is usual

in the literature, however there is no consensus on the values of p(0) (null or positive) and

p′(0) (finite or not). In Chakraborty (2004), p(0) is null and p′(0) is finite. In Boucekkine

and Laffargue (2010), p(0) is positive and p′(0) is finite. Finally, in Chakraborty and Das

(2005), p(0) is null and p′(0) is non-finite. I will consider both possibilities for p(0) and p′(0)

in the analysis to determine how these assumptions change the results.

As argued by Hall and Jones (2007), the shape of the function u is crucial for the health

spending decision. I will pursue the analysis with the following functional form :

Assumption 1. u(c) = c1−σ

1−σ , σ < 1.

Assumption 1 is a standard assumption in growth models incorporating health decisions.

It can be found in Chakraborty and Das (2005) and Bhattacharya and Qiao (2007). It has the

advantage to insure a positive flow utility and hence a positive marginal utility of longevity.

It also implies that utility from consumption has a constant elasticity, which, as we will see

in the next section, has strong implications concerning the health decision of agents. Thus, I

will discuss and study numerically other forms of preferences in section 2.4.

2.2.4 Partial equilibrium results

In this subsection, I study the solution to the maximization problem of the consumer. I

use (2.7) and (2.8) to eliminate the consumption levels in (2.6). Then the problem is reduced

to maximize (2.6) with respect to st and et. The First-Order-Condition (FOC) on st yields :
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st =
p(et)

p(et) + (1 + r)
σ−1

σ

(wt − et) (2.10)

From (2.10), we can observe the trade-off that health expenditures create on savings :

the propensity to save p(et)

p(et)+(1+r)
σ−1

σ
increases with et, while the disposable income wt − et

decreases with et.

For an interior solution, the FOC on et yields :

c−σ
t,t + p′(et)c

1−σ
t,t+1 = p′(et)

c1−σ
t,t+1

1 − σ
(2.11)

The Left-Hand-Side (LHS) of (2.11) is the marginal cost of health expenditures. It is com-

posed of two terms. The first one is the loss of first period utility from foregone consumption.

The second one is the loss of second period utility from diminishing per period resources due

to longevity extension. The Right-Hand-Side (RHS), the marginal benefit of health expendi-

tures, is the total second period utility gain due to longevity extension. At the optimal level

of health expenditures, the marginal cost of health expenditures must equate its marginal

benefit. It is useful to rewrite (2.11) as :

c−σ
t,t = σp′(et)

c1−σ
t,t+1

1 − σ
(2.12)

Where the RHS of (2.12) is the net marginal benefit of longevity extension, which is posi-

tive. This means that despite the reduction of per period resources in retirement period, a

longevity extension always increases welfare. Finally, (2.10) and (2.11) imply that an interior

solution for the level of health expenditures must solve the following equation :

σ

1 − σ

p′(et)

p(et) + (1 + r)
σ−1

σ

(wt − et) = 1 (2.13)

The following proposition characterizes the solution of (2.13) :

Proposition 2.1. The optimal level of health expenditures is unique. Note it e(wt).

(i) If wt ≤ 1−σ
σ

p+(1+r)
σ−1

σ

γ , then e(wt) = 0.

(ii) If wt >
1−σ

σ

p+(1+r)
σ−1

σ

γ , then 0 < e(wt) < wt.

(iii) wt −→ e(wt) is increasing on [ 1−σ
σ

p+(1+r)
σ−1

σ

γ , ∞). 7

Proof. See Appendix A

When the initial marginal productivity of health expenditures γ is finite, Proposition

2.1 shows that individuals spend resources on health only if their income is above a certain

threshold. As the marginal productivity of health expenditures in 0 is finite, the marginal

utility of health expenditures in 0 is finite. On the contrary, the marginal utility of consump-

tion is non-finite in 0. Thus, low-income individuals choose to spend their resources only on

consumption.

7. When γ = ∞, [ 1−σ
σ

p+(1+r)
σ−1

σ

γ , ∞) is simply read as [0, ∞).
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When γ is non-finite, the corner solution for health expenditures disappears and indivi-

duals spend resources on health for all positive income levels.

Remark 2.2. Consider the alternative assumption found in the literature according to which

pt is the probability to reach the second period. Assume as in Yaari (1965) that there is a

perfect annuity market. If agents internalize the effect of health expenditures on the return of

annuities, then the problem of the consumer is identical to the one studied in this section. If

agents do not internalize the effect of health expenditures on the return of annuities, then the

optimal level of health expenditures, eY
t , would be the solution of the following equation :

p′(eY
t )

p(eY
t ) + (1 + r)

σ−1
σ

(wt − eY
t ) = 1 (2.14)

Thus, et < eY
t if and only if σ <

1
2 . And all the propositions of the paper can be adapted to

this alternative assumption on pt given the similarity of the equations (2.13) and (2.14).

Proposition 2.1 also states that health is a normal good. I now sharpen this result by

studying the income share spent on health, x(wt) := e(wt)
wt

. To get the exact shape of the

function x(.), I will need an additional assumption on the function p which has already been

used in the previous chapter :

Assumption 2. e → (−p′′(e))e
p′(e) is increasing.

In the previous chapter I provide three reasons to believe that Assumption 2 is harmless,

the most important one being that usual survival functions satisfy this condition. I am now

able to prove the first main result of the paper.

Proposition 2.3. (i) wt → x(wt) is inverted U-shaped on [ 1−σ
σ

p+(1+r)
σ−1

σ

γ , ∞).

(ii) lim

wt→ 1−σ
σ

p+(1+r)
σ−1

σ

γ

x(wt) = lim
wt→∞

x(wt) = 0.

Proof. See Appendix B

Proposition 2.3 can be restated as follows :

Corollary 2.4. The ratio of health expenditures to GDP can be written as a function of

GDP, Yt → g(Yt), which is as follows :

(i) g(Yt ) = 0 for all Yt in [0, 1−σ
σ

p+(1+r)
σ−1

σ

(1−α)γ
]

(ii) Yt → g(Yt) increases on [ 1−σ
σ

p+(1+r)
σ−1

σ

(1−α)γ
, w∗

1−α ], where w∗ = arg max
w≥0

(x(w)).

(iii) Yt → g(Yt) decreases on [ w∗
1−α , ∞).

Proof. Note that wt = (1 − α)Yt. Then g(Yt) =
x((1−α)Yt)

1−α and the result follows from Propo-

sition 2.3

Proposition 2.3 shows that health is a luxury good as individuals start spending resources

on health. Thus, our simple framework is consistent with the joint increase of income and
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income share of health expenditures that OECD countries have known over the last forty

years. 8 It also predicts that this income share should not keep rising perpetually with income.

Before interpreting the result, notice that consumption in first and second periods are both

normal goods so that the result is not driven by an undesirable feature of the preferences. 9

As income increases, there are three effects that induce a change of the income share spent

on health (see equation (2.12)) : (i) The marginal cost in terms of first period utility loss falls.

(ii) The marginal benefits of longevity increases because second period utility level increases.

(iii) The marginal effect of health expenditures on longevity decreases. When income is low,

the effect (i) is large because the first period marginal utility is convex. The effect (ii) is

also large because the second period utility function is concave. Thus, maintaining the effect

(iii) as fixed, the income fall reduces the marginal cost of health expenditures and increase

their marginal benefit both by a large amount. Thus, health expenditures have to increase

for the marginal costs and benefits to equate. Recall that under Assumption 2, the derivative

of the survival function cannot be too convex, hence health expenditures must increase by a

large amount, superior to income, for the marginal costs and benefits to equate. Thus, the

income share spent on health increases. For high income levels, the contrary holds : effect (i)

and effect (ii) are small. This is also a consequence of the convexity of the marginal utility

and of the concavity of the utility per period. Thus, health expenditures can increase by a

small amount for the marginal costs and benefits to equate. One could argue that because

the survival function is bounded, the marginal impact of health expenditures on longevity

rapidly falls and then that health expenditures still have to increase by a large amount to

correct the differences between the marginal costs and benefits. However, for high income

levels w, the ratio of these quantities is of order 1
w , which is shown to always fall faster than

the survival function derivative. Hence, the income share spent on health decreases.

To which extent do the results depend on the utility per period specification ? For low

income levels, the convexity of the marginal utility and the concavity of the utility apply

for more general utility specifications. Hence, the result that health is a luxury good for low

income levels should extend to more general utility specifications. For high income levels, my

result relies on the ratio of marginal utility to utility, which in my specification is of order 1
w .

However, there exist utility specifications in the literature for which this ratio does not fall

faster than the survival function derivative. Following Hall and Jones (2007), consider the

utility function u(c) = c1−σ

1−σ + b, σ > 1, b > 0. For high income levels, the ratio of marginal

costs to benefits is of order 1
wσ , which does not necessarily fall faster than the survival function

derivative, leaving the possibility for the income share spent on health to perpetually increase

with income. 10

The result is linked to Hall and Jones (2007). In a static framework in which agents

8. In section 2.4, I plot the cross-sectional relationship between income and income share of health expendi-

tures for OECD countries for 2012. The curve is upward-sloping (see Figure 2.5).

9. To see this, note that ct,t =
wt−e(wt)

p(e(wt))+(1+r)
σ−1

σ
. Using (2.13), ct,t =

1−σ
σ

1
p′(e(wt))

. As wt → e(wt) is increasing,

ct,t is increasing with wt. The same proof applies for second period consumption.

10. The result is stated formally in section 2.4
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choose their consumption levels as well as their health spending, they show that the ratio

of health spending to consumption is an increasing function of the ratio of the elasticity of

the survival function to the elasticity of the consumption utility. Hence the income share of

health spending is driven by the ratio of these two elasticities. For large income levels w,

our discussion is indeed equivalent to a discussion on the ratio of the two elasticities. With

u(c) = c1−σ

1−σ , σ < 1, this ratio behaves as wp′(w), while with u(c) = c1−σ

1−σ + b, σ > 1, b > 0,

this ratio behaves as wσ p′(w) . However, the ratio of the two elasticities does not completely

governe the income share spent on health for all income levels. In Figures 2.2 and 2.3, I plot,

for the survival function p(e) = e0.5

1+e0.5 , the ratio of the two elasticities, which is decreasing

in this case, and w → x(w) which is inverted U-shaped according to Proposition 2.3. Hence,

the ratio of the two elasticities is an imperfect picture of the income share spent on health.

Figure 2.2 – Health elasticity to consumption

elasticity ratio (i.e. e → p′(e)e
p(e)

(1−σ)). p(e) =

e0.5

1+e0.5 , σ = 0.5.

Figure 2.3 – Income share spent on health as

a function of income (i.e. w → x(w)). p(e) =
e0.5

1+e0.5 , σ = 0.5, R = 4.801.

For the next section, I will maintain Assumption 1. Despite the existence of income levels

for which health is a luxury good, there is no perpetual growth of the share of resources spent

on health to 1. Otherwise, we could have concluded from the partial equilibrium analysis

that the economy would not grow perpetually. Thus, in the next section, I study the dyna-

mic general equilibrium to answer this question. In section 2.4, I rediscuss the alternative

specification u(c) = c1−σ

1−σ + b, σ > 1, b > 0.

2.3 The dynamic general equilibrium

In this section, I study the dynamics of the economy of section 2.2, which is obtained by

imposing the capital market clearing condition :

Kt+1 = st (2.15)

Using (2.10) and (2.5), (2.15) is equivalent to :

wt+1 =
p(e(wt))

p(e(wt)) + (αA)
σ−1

σ

(wt − e(wt))A(1 − α) (2.16)
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It is useful to study equation (2.16) separetely according to the value of p.

2.3.1 Dynamics in the case p = 0.

In this case, health expenditures are necessary for the economy not to collapse to a null

income. Otherwise, without health expenditures, individuals do not live in second period,

which implies that they do not save. As capital is an essential input, there is no production.

There remains to determine how the economy behaves when individuals spend a positive

amount of resources on health. The result is in the following proposition :

Proposition 2.5. (i) If
p

p+(1+r)
σ−1

σ
A(1− α) ≤ 1, then for all w0 ≥ 0, the economy converges

to a null income.

(ii) If
p

p+(1+r)
σ−1

σ
A(1 − α) > 1, then (2.16) has a unique positive steady state, w∗

>

1−σ
σ

p+(1+r)
σ−1

σ

γ , which is unstable. Hence, if w0 > w∗, then the economy perpetually grows,

while if w0 < w∗, then the economy converges to a null income.

(iii) If the economy perpetually grows, hence if
p

p+(1+r)
σ−1

σ
A(1 − α) > 1 and w0 > w∗,

then the growth rate monotonically increases along the trajectory.

Proof. See Appendix C

Proposition 2.5 shows that the possibility to spend resources on health can have large

benefits in terms of economic growth as it can allow the economy to perpetually grow instead

of being trapped to a null income. For this to happen, the maximal longevity and the initial

income must be high enough. These conditions yield a large enough initial longevity for

the individuals to save a level of resources that allows the economy to grow. In this case,

according to point (iii), health expenditures create a virtuous cycle : as income increases,

health expenditures and then longevity increase, and the propensity to save increases more

than the possible disposable income reduction due to greater health expenditures. According

to Proposition 2.5, this happens when the maximal longevity p is large. This implies that

health expenditures can increase longevity by a large amount and so that the benefits of

health expenditures are large and larger than their costs. Thus, savings and the growth rate

increase with income.

2.3.2 Dynamics in the case p > 0.

In this case, health expenditures are no more necessary for this economy to grow. Consider

the same economy as the one outlined in section 2.2 without the possibility for the individuals

to spend resources on health. It is a standard AK economy, whose dynamics is governed by

the following equation :

wt+1 =
p

p + (αA)
σ−1

σ

A(1 − α)wt (2.17)
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I easily get that the solution to (2.17) perpetually grows if and only if
p

p+(αA)
σ−1

σ
A(1 −

α) > 1. I will write this condition as A > A where A satisfies
p

p+(αA)
σ−1

σ
A(1 − α) = 1.

In the first part of this section, I will maintain this condition and determine if it is suffi-

cient for the economy governed by (2.16) to perpetually grow. Alternatively, we can formu-

late the problem as follows. The economy perpetually grows if and only if G(e(wt), wt) :=
p(e(wt))

p(e(wt))+(αA)
σ−1

σ
(wt − e(wt))A(1 − α) > wt for all income levels. Under the condition A > A,

e → G(e, wt) is decreasing or inverted U-shaped and the equation G(e, wt) = wt has a unique

root ê(wt) such that if for some income levels e(wt) > ê(wt), then the economy does not

perpetually grow. Otherwise said, if health expenditures are too large, then the disposable

income reduction is greater than the increase of the propensity to save and savings become

too low for economic growth to occur. The following proposition, which is the main result of

the paper, gives necessary and sufficient conditions for this scenario to happen :

Proposition 2.6. Note a := lim
e→0

( (−p′′(e))e
p′(e) ) < 1. The three following statements are equiva-

lent :

(i) A > A and the solution to (2.16) does not perpetually grow.

(ii) α >
(p σ

1−σ (1−a))
σ

σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ

σ−1
and A ∈ (A, A∗), where A∗

> A.

(iii) (2.16) has two steady states w1 and w2, with 1−σ
σ

p+(αA)
σ−1

σ

γ < w1 < w2. w1 is stable,

while w2 is unstable.

Proof. See Appendix D

Proposition 2.6 states that the mild condition that insures perpetual growth in the stan-

dard AK model (A > A) is not sufficient to insure perpetual growth when individuals can

spend resources to increase their longevity. This means that implementing a health system

can have important repercussions on the long-term development of an economy. Assume that

γ is finite and consider an economy that does not initially spend resources on health (hence

w0 <
1−σ

σ

p+(αA)
σ−1

σ

γ ). Its trajectory is initially governed by the evolution equation of the AK

model (2.17). Hence, under the condition A > A, the economy grows at a positive rate. When

income exceeds the threshold 1−σ
σ

p+(αA)
σ−1

σ

γ , individuals start spending resources on health.

Under the conditions (ii), the economy still grows at a positive rate, yet the growth rate

declines until income is trapped to the middle-income level w1. Otherwise said, health expen-

ditures create a strong negative intergenerational externality in this case, as they impede any

possibility of growth for future generations.

According to conditions (ii), this scenario occurs in economies with a not too large tech-

nology level A and a high initial longevity p. A high initial longevity implies that health

expenditures cannot increase longevity by much since it is already large. This implies that

the benefits of health expenditures, a greater propensity to save, are not important in this

case. A influences the growth rate through three channels. First, the greater A, the greater

the interest rate, which increases both savings and health expenditures because the inverse

of the intertemporal elasticity of substitution (IES) is strictly smaller than 1. Second, an
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increase of A also acts as an increase of the disposable income (see the linear term in A in

G(e(w), w)). The increase of savings and of the disposable income both increase the growth

rate. The increase of health expenditures has the two opposite consequences on economic

growth previously mentioned : it increases the propensity to save and it decreases the dispo-

sable income. In appendix D, I prove that the total effect of an increase of A on the growth

rate is always positive. Hence a greater A can compensate negative growth effects of health

expenditures. This means that once A is large enough (strictly greater than A∗), the economy

perpetually grows.

To gain intuition, I reconsider the alternative formulation of the problem : are there

income levels for which G(e(wt), wt) < wt ? I use (2.13) to rewrite this inequality as
1−σ

σ A(1 − α) <
p′(e(wt))wt

p(e(wt))
and I note that it is sufficient to have 1−σ

σ A(1 − α) <
p′(wt)wt

p(wt)

for this inequality to be true. Hence when the elasticity of the survival function is high (grea-

ter than 1−σ
σ A(1 − α)), individuals choose to devote a large share of their resources to their

health because health expenditures have a strong positive impact on their longevity and then

on their welfare.

I now study the dynamics of the economy when it perpetually grows. Does this economy

grow faster than the economy that does not spend resources on health ? The following pro-

position gives necessary and sufficient conditions for the economy to grow perpetually and

examines if the growth rate is greater than the AK-growth rate :

Proposition 2.7. Note g(wt) the growth rate of the economy governed by (2.16) and gAK =
p

p+(1+r)
σ−1

σ
A(1 − α)− 1. Note also Â =

(p( 1−aσ
1−σ −1))

σ
σ−1

α . Assume A > A.

(i) The economy perpetually grows if and only if α <
(p σ

1−σ (1−a))
σ

σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ

σ−1
or A > A∗.

(ii) If α <
(p σ

1−σ (1−a))
σ

σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ

σ−1
and if A ∈ [A, Â], then :

g(wt)




= gAK while wt ≤ 1−σ

σ

p+(αA)
σ−1

σ

γ

> gAK and
dg(wt)

dt > 0 for wt >
1−σ

σ

p+(αA)
σ−1

σ

γ

(iii) If α <
(p σ

1−σ (1−a))
σ

σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ

σ−1
and if A > Â or if A > A∗ and α >

(p σ
1−σ (1−a))

σ
σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ

σ−1
,

then there exists w̃ >
1−σ

σ

p+(αA)
σ−1

σ

γ such that :

g(wt)





= gAK while wt ≤ 1−σ
σ

p+(αA)
σ−1

σ

γ

< gAK for wt ∈ ( 1−σ
σ

p+(αA)
σ−1

σ

γ , w̃)

> gAK and
dg(wt)

dt > 0 for wt > w̃

Proof. See Appendix E

Proposition 2.7 states that there are two types of trajectories for an economy that per-

petually grows. Along the first one, health expenditures create a virtuous cycle : as income

grows, health expenditures increase and they have a positive impact on the growth rate.

Then, at each period, the economy grows faster than the AK-economy. Along the second one,
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as individuals start spending resources on health, the growth rate is reduced compared to the

one of the AK-economy. Yet, after an income threshold is reached, the growth rate increases

and eventually exceeds the one of the AK-economy.

The reason why the economy finally grows faster than the AK-economy in all cases is that

the income share spent on health ends decreasing and tends to 0 for large income levels. Thus,

the negative effects of health expenditures, a reduced disposable income, vanish, while the

positive effects of health expenditures, a higher propensity to save, increase because health

expenditures keep rising.

There are two combinations of parameters under which the economy initially grows more

slowly than the AK-economy. The first one requires that the initial longevity is high enough

and the technology level is high enough to avoid the middle income trap. As previously ex-

plained, a high initial longevity implies that health expenditures cannot increase by much the

longevity. Then, the benefits of health expenditures are low and are smaller than their costs.

The second combination of parameters shows that a high initial longevity is sufficient but

not necessary for the economy to initially grow more slowly than the AK-economy. Indeed,

this happens also if the initial longevity is low and the technology level is large enough. As

previously said, the growth rate of the economy increases with the technology level, howe-

ver the growth rate of the AK-economy increases too. Recall that there are four channels

through which A impacts the growth rate (interest rate, linear term, longevity, disposable

income). The first two are common to both economies, while the last two are absent in the

AK-economy. Hence the result is driven by an inverted U-shaped relationship between health

expenditures and the growth rate. The increase of A initially increases more the propensity to

save (which is concave in health expenditures) than it reduces the disposable income (which

is linear in health expenditures). This implies that the increase of A initially increases more

the growth rate of the economy than the one of the AK economy. Then the contrary happens.

Finally, I determine the dynamics of the economy under the condition A < A. Can

the economy perpetually grow under this condition ? The following proposition provides the

answer :

Proposition 2.8. Assume A < A.

(i) If A(1 − α) p

p+(αA)
σ−1

σ
≤ 1, then the economy converges to a null income.

(ii) If A(1 − α) p

p+(αA)
σ−1

σ
> 1, then the dynamical system (2.16) has a unique unstable

steady state, w∗. If w0 < w∗, then the economy converges to a null income. If w0 > w∗, then

the economy perpetually grows and its growth rate increases along the trajectory.

Proof. See Appendix F

Proposition 2.8 shows that health expenditures can be necessary for economic growth

to take place. Indeed, when the condition that insures perpetual growth in the AK model

fails, it is possible for the economy to perpetually grow. For this to happen, the survival

function must not take too small values, otherwise the propensity to save is too low for the

economy to grow. Moreover, the initial income level must be high enough. When γ is finite,

this poverty trap is due to the fact that individuals initially choose not to spend on health,
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which means that the economy behaves exactly as the AK economy, which cannot grow by

assumption. Overall, my characterization of the dynamics of the economy shows that the

introduction of health expenditures in the AK model yields completely different trajectories

depending on the values of the parameters. Indeed, as suggested by Proposition 2.8, health

expenditures can be necessary to perpetual growth, while as suggested by Proposition 2.6,

health expenditures can annihilate the perpetual growth of the AK economy. This motivates

the following section in which I provide a simple calibration of the model.

2.4 Discussion and numerical illustration

2.4.1 Alternative preferences

In the previous sections, utility per period is such that for any survival function, the

income share spent on health falls to 0 for large income levels. As previously argued, this is a

consequence of assuming an inverse of the IES strictly smaller than 1. There are both types

of empirical evidence suggesting values above or below 1 for the IES. Thus, in this section, I

briefly discuss my results when utility per period is u(c) = c1−σ

1−σ + b, σ > 1, b > 0. In this case,

the positive intercept b is required to avoid that agents unrealistically choose not to spend

resources on health for any income level.

With the same notations as before, the FOC on health expenditures now writes :

c−σ
t,t + p′(et)c

1−σ
t,t+1 = p′(et)(

c1−σ
t,t+1

1 − σ
+ b) (2.18)

The LHS of (2.18) is the marginal cost of health expenditures : first period utility loss

plus second period utility loss due to diminishing per period resources. The RHS of (2.18) is

the marginal benefit of health expenditures, which is the total second period utility gain due

to longevity extension. Note first that the marginal benefit of health expenditures is negative

for low income levels. Hence, the marginal utility of longevity is negative for poor individuals,

which implies that they do not spend resources on health. This means that contrary to the

case σ < 1, the corner solution for health expenditures is unrelated to the finiteness of the

initial marginal productivity of health expenditures γ. Rewrite (2.18) as :

c−σ
t,t = p′(et)(

σc1−σ
t,t+1

1 − σ
+ b)

For low income levels, as income increases, the first period marginal utility decreases and

the second period utility increases by a large amount due to the convexity of the marginal

utility and the concavity of the utility per period function. This requires health expenditures

to increase by a large amount, more than income, for the marginal cost and the marginal be-

nefit to equate. For large income levels, the second period utility is equivalent to the intercept

b, which does not depend on income. The first period marginal utility decreases by a small

amount. Then, the adjustment of health expenditures to equal the marginal cost and the
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marginal benefit depends on how the maginal productivity of health expenditures behaves

asymptotically. The result is in the following proposition :

Proposition 2.9. The problem of the consumer has a unique solution. There exists w > 0

such that e(w) = 0 for w ≤ w, while w → e(w) is increasing on [w, ∞).

(i) w → x(w) is initially increasing on [w, ∞).

(ii) If lim
w→∞

p′(w)wσ = 0, then lim
w→∞

x(w) = 0.

(iii) If lim
w→∞

p′(w)wσ = l < ∞, then lim
w→∞

x(w) =

(bl)
1
σ

(1+r)
1−σ

σ p+1

1+ (bl)
1
σ

(1+r)
1−σ

σ p+1

.

(iv) If lim
w→∞

p′(w)wσ = ∞, then lim
w→∞

x(w) = 1.

Proof. See Appendix G

Point (i) of Proposition 2.9 confirms our intuition that health is initially a luxury good.

The proposition also shows that the parametric specification of the survival function is crucial

to determine the shape of the function w → x(w), which can perpetually increase with

income towards 1 or falls to 0. This justifies to have worked with a general survival function.

For example, with p(e) =
p+peǫ

1+eǫ , ǫ ∈ (0, 1], case (ii) occurs if σ < 1 + ǫ, case (iii) occurs if

σ = 1 + ǫ, while case (iv) occurs if σ > 1 + ǫ. With p(e) = 2√
Π

p
∫
0

e
e
−u2

2 du + p, only case (ii)

occurs.

As an immediate corollary, we see that in case (iv) the economy does not perpetually grow

under the mild condition that insures perpetual growth in the AK model. With this utility

specification, I cannot provide a complete characterization of the dynamics of the economy

as in section 2.3, so I calibrate the model to study the dynamical general equilibrium.

2.4.2 Numerical application

In this subsection, I propose a numerical calibration of the model for OECD countries,

when u(c) = c1−σ

1−σ + b, σ > 1, b > 0, to answer two questions : Will the income share spent

on health continue to increase ? How health expenditures modify the trajectory of these

economies ?

I consider that a period is equal to 40 years and that individuals enter first period at the

age of 25. r and α and σ are first set to standard values. The annual interest is 4%, which yields

a value of 4.801 for R. α is set to 0.3. σ is set to 1.5, which yields a risk aversion coefficient in

line with empirical estimates (Chetty 2006). The remaining unknowns are b and the survival

function.

Usually in such models, the unknown parameters are calibrated from the equation that

governes the dynamics of the economy (equation (2.16)) to match time series data. However,

the two-period framework requires long time series to have a sufficient number of points

to match. Here I rather notice that all the remaining unknowns enter the equation that

determines the income share spent on health x(w). 11. This equation links health expenditures

11. When u(c) = c1−σ

1−σ + b, σ > 1, b > 0, this is the equation (2.32) in Appendix G



56 Chapitre 2. Growth, longevity and endogenous health expenditures

to income, thus it can be estimated from cross-sectional data. I then choose my unknowns by

minimizing the distance between the income share spent on health generated by the model

and the true ones. Regarding first the survival function, I have tried all the examples cited in

the paper, yet the best fit of the model is obtained whith the following specification :

p(e) =
p + p ln(1 + e

C )

1 + ln(1 + e
C )

(2.19)

Where C is a positive constant to be estimated. A bounded and concave function becomes

rapidly flat. The parameter C allows not to have our health expenditures levels on the flat

part of the curve, which could not yield a good fit of the cross-sectional variation of longe-

vity. However, the higher the scaling parameter C, the lower the dispersion of the ei
C , which

also impedes a good fit of the cross-sectional variation of longevity. Thus, I need a survival

function that does not become flat too fast in order not to have to use a too large scaling

parameter. This explains why I obtain my best fit with the function (2.19). Thus, there are

four parameters to be estimated : (b, C, p, p). Note (wi, xi, pi)i=1..33 our data, where wi is

wage in country i, xi the income share of health expenditures and pi the longevity. 12 Then,

my parameters choice (b∗, C∗, p∗, p∗) is :

arg min
(b,C,p,p)

(
33

∑
i=1

(x(wi)− xi)
2 + (pm − p(wmx(wm))

2 + (pM − p(wMx(wM))2) (2.20)

Where m = arg min
i=1..33

(pi) and M = arg max
i=1..33

(pi). I obtain (b∗, C∗, p∗, p∗) =

(0.0206, 39991.876, 0.02, 0.65). Figure 2.5 plots (wi, xi)i=1..33 and (wi, x(wi))i=1..33. Figure

2.4 plots (wixi, pi)i=1..33 and (wix(wi), p(wix(wi)))i=1..33. The two graphs suggest that the

model can replicate reasonably well the relationship between income and income share spent

on health and health expenditures and longevity. There is one country, US, which is not well

captured by the model : its income share on health is much larger than other countries, while

its life expectancy is only in the middle of the distribution.

My calibration parameters have two direct consequences. First, without health expendi-

tures, the economy does not grow, hence the condition that insures perpetual growth in the

AK model fails. This means that there is a poverty trap. Second, the economy is in the case

(iv) of Proposition 2.9, hence the income share spent on health tends to 1 for large income

levels. This means that there is a positive stable steady state. I first compute the values of

these steady states to assess the position of my sample with respect to these points. I find

that the first steady-state income level is worth 12149. Two countries of the sample are below

this level, which means that they are trapped. This suggests that health expenditures could

12. The data are obtained from the OECD database for the year 2012. The sample includes all OECD members

except Luxembourg (33 countries). I use GDP per capita in current US dollars to compute the corresponding

GDP per worker and then the wage. Total health expenditures are also in current US dollars. For the estimation,

I multiply these quantities by 40 to get their value on the model period. When reporting the results, I use annual

values. pi is computed from life expectancy at birth, Ei : Ei = 65 + 40pi.
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Figure 2.4 – Health expenditures-Life expec-

tancy

Figure 2.5 – Income-Income share spent on

health

be a barrier to convergence in income levels across countries. The second steady-state income

level is greater than 1.109, which is well above the income levels of the sample. This means

that the growing income share spent on health should not be an obstacle to economic growth

in a not too far future for the countries which are not trapped. I now simulate the trajectory

over 10 periods for the economy with the median income. Figure 2.6 reports the dynamics

of the wage, while Figure 2.7 reports the dynamics of the income share spent on health.

Over this period, the economy grows at an accelerating rate and its income share spent on

health is increasing. After 10 periods, the income share spent on health reaches 0.33, which

is more than the triple of its initial value. This does not prevent the economy from growing.

This means that economic growth can take place despite a large amount of resources spent

for health. The overall conclusion of this numerical analysis is that health expenditures are

more necessary than detrimental to economic growth and that health expenditures endanger

economic growth only if their level becomes much larger than their current level in OECD

countries.

Figure 2.6 – Wage dynamics over 10 periods

Figure 2.7 – Income share spent on health

dynamics over 10 periods
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2.5 Conclusion

In a two-period OLG model with endogenous growth, I studied the consequences of al-

lowing individuals to choose the level of health expenditures that increase their longevity

in retirement period. I presented several results. With a CES utility function, with an IES

strictly greater than 1, and a general survival function, I proved that the income share spent

on health is an inverted U-shaped function of income. This implies that an increasing ratio

of health elasticity to consumption elasticity is neither necessary nor sufficient for health to

be a luxury good. Then, I gave a complete characterization of the dynamics of the economy.

Under the condition that insures perpetual growth in the same AK economy except that

health expenditures are constrained to be null, there are three types of trajectories. Along

the first one, the economy perpetually grows and grows at each period faster than the AK

economy. Along the second one, the economy perpetually grows, however its growth rate is

initially reduced compared to the one of the AK economy, before growing faster than the

AK economy. Finally, along the third trajectory, the economy is trapped to a middle income

level and does not experience perpetual growth. This means that health expenditures create

a strong negative intergenerational externality in this case by impeding any possibility of

growth for future generations. I also found that when the condition that insures perpetual

growth in the AK model fails, the economy can all the same experience perpetual growth. A

simple calibration of the model to OECD countries suggests that this case might be the most

likely one, hence that health expenditures are more necessary than detrimental to growth.

Acemoglu and Johnson (2007) conclude their study by noting that the decision to imple-

ment a health system in a country can be considered as orthogonal to its development policy

given the weak impacts of longevity on economic growth they find. In this paper, I reach a dif-

ferent conclusion as I have shown theoretically that the implementation of a health system is

not neutral for economic growth. Indeed, in the framework used, a standard Diamond model

with health expenditures, there are economies in which the presence of these health expendi-

tures produce drastic negative consequences by impeding any possibility of long-run economic

growth. This should stimulate future empirical research on the health-growth nexus. Given

its theoretical focus, the present analysis has omitted possibly important channels through

which health expenditures can modify the growth path of an economy such as the impact of

health on productivity or the introduction of a social security system. They could be included

in future simulation studies.
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2.6 Appendix A

Assume first that p > 0 and γ < ∞. The problem of the consumer is equivalent to

maximize :

V(st, et) =
(wt − st − et)1−σ

1 − σ
+ p(et)

σ s1−σ
t (1 + r)1−σ

1 − σ

Subject to the constraints st + et ≤ wt and 0 ≤ et and 0 ≤ st. The Lagrangian associated

to this problem writes :

L(st, et, χ1, χ2, χ3) = V(st, et) + χ1(wt − st − et) + χ2et + χ3st

Where χ1 to χ3 are the Lagrange multipliers. Note first that ∂V
∂s (0, et) = ∞ for all et ∈

[0, wt). Thus, st = 0 is never optimal and χ3 = 0. Third, ∂V
∂s (wt − et, et) = −∞ for all

et ∈ [0, wt). Thus, χ1 is equal to 0 and the KKT conditions for a point (st, et) to be an

optimum can be written as :

(i)
∂V

∂s
(st, et) = −(wt − et − st)

−σ + p(et)
σs−σ

t (1 + r)1−σ = 0

(ii)
∂V

∂e
(st, et) = −(wt − et − st)

−σ + σp′(et)p(et)
σ−1 s1−σ

t (1 + r)1−σ

1 − σ
= −χ2

(iii)min(χ2, et) = 0

Consider now the possibility that et = 0. From (i), I get the optimal saving, st =
p

p+(1+r)
σ−1

σ
wt. And χ2 must be non-negative. Thus, (ii) writes ∂V

∂e (
p

p+(1+r)
σ−1

σ
wt, 0) ≤ 0 which

is equivalent to wt ≤ 1−σ
σ

p+(1+r)
σ−1

σ

γ . Thus, for wt ≤ 1−σ
σ

p+(1+r)
σ−1

σ

γ , (
p

p+(1+r)
σ−1

σ
wt, 0) satisfies

the KKT conditions and is a possible solution. Consider now the case et > 0. Then, χ2 = 0

and the conditions (i) and (ii) imply the equations (2.10) and (2.13) of the text. Note that

the left-hand-side (LHS) of (2.13) decreases and is worth 0 at et = wt. Thus, (2.13) has a

unique positive solution if and only if the LHS of (2.13) takes a value strictly greater than 1

at et = 0. This condition is equivalent to wt >
1−σ

σ

p+(1+r)
σ−1

σ

γ . Thus, for wt >
1−σ

σ

p+(1+r)
σ−1

σ

γ ,

there exists a unique pair (st, et) that satisfies the KKT conditions. Note finally that the pro-

blem of the consumer has always at least one solution because (s, e) → V(s, e) is continuous

on the maximization domain, which is compact. Consequently, the unique pair satisfying

the KKT conditions in the two cases wt ≤ 1−σ
σ

p+(1+r)
σ−1

σ

γ and wt >
1−σ

σ

p+(1+r)
σ−1

σ

γ is the

unique solution to the problem of the consumer. In the first case, the optimal level of health

expenditures is equal to 0, while it is positive in the second case. The case p = 0 follows

by continuity. When γ = ∞, notice that the KKT conditions for a corner solution to exist

cannot be satisfied. This completes the proof of Proposition 2.1.
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2.7 Appendix B

Set w = 1−σ
σ

p+(1+r)
σ−1

σ

γ , which is possibly equal to 0 when γ = ∞. I first need to compute

lim
w→w

x(w). If γ < ∞, then e(w) = x(w)w = 0, then lim
w→w

x(w) = 0. If γ = ∞, then w = 0. I

will need the following lemma :

Lemma 2.10. lim
w→0

(wp′(w)) = 0

Proof. The first derivative of w → wp′(w) is p′(w)(1 − (−p′′(w))w
p′(w)

). The properties of the

function p imply that a := lim
w→0

( (−p′′(w))w
p′(w)

) < 1. This implies that w → wp′(w) increases

in the neighborhood of 0. Consequently lim
w→0

(wp′(w)) exists. It must be finite because w →
wp′(w) is initially increasing. Assume lim

w→0
(wp′(w)) = l > 0. Then there must exists W > 0

such that :

u < W ⇒ up′(u) >
l

2
(2.21)

Consider w < W. Divide by u both terms of the previous inequality and integrate it from

w to W to get :

l

2
ln(

W

w
) < p(W)− p(w)

⇐⇒ p(w) +
l

2
ln(W) < p(W) +

l

2
ln(w)

This contradicts the fact that lim
w→0

p(w) > −∞. Then, it must be that lim
w→0

(wp′(w)) = 0

Then use (2.13) :
σ

1 − σ

p′(e(w))e(w)

p(e(w)) + (1 + r)
σ−1

σ

=
x(w)

1 − x(w)

Thus, lim
w→0

( x(w)
1−x(w)

) = lim
w→0

( σ
1−σ

p′(e(w))e(w)

p(e(w))+(1+r)
σ−1

σ
) = σ

1−σ

lim
w→0

(wp′(w))

p+(1+r)
σ−1

σ
= 0 according to

Lemma 2.10. This implies that lim
w→0

(x(w)) exists and is equal to 0.

Apply now the implicit function theorem to (2.13) to get that :

x′(wt) =
1

wt

p′(x(wt)wt)(σ − x(wt)) + x(wt)p′′(x(wt)wt)σwt(1 − x(wt))

p′(x(wt)wt) + (−p′′(x(wt)wt))σwt(1 − x(wt))
(2.22)

Thus, x′(wt) > 0 is equivalent to :

(−p′′(x(wt)wt))x(wt)wt)

p′(x(wt)wt)
<

σ − x(wt)

σ(1 − x(wt))
(2.23)

Define m(x, wt) ≡ (−p′′(xwt))xwt)
p′(xwt)

and g(x) ≡ σ−x
σ(1−x)

.

By Assumption 2, x → m(x, wt) increases from a value strictly smaller than 1 on [0, 1].

x → g(x) decreases from 1 to −∞ on [0, 1]. Thus, for any wt there exists a unique root on [0, 1]
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to the equation m(x, wt) = g(x). Note it Σ(wt). wt → Σ(wt) decreases because ∂m
∂wt

(x, wt) >

0 and lim(Σ(wt)) = 0
wt→∞

. Draw the curve wt → Σ(wt) on [w, ∞). Note that x′(wt) > 0 if and

ony if x(wt) ∈ {y ≥ 0, y < Σ(wt)} = ∆. Initially x(wt) ∈ ∆ because lim
wt→w

x(wt) = 0. There

necessarily exists w∗ such that x(w∗) = Σ(w∗) because Σ decreases towards 0. By definition

of Σ, x′(w∗) = 0, while Σ′(w∗) < 0. Thus, wt → x(wt) enters ∆ at w∗ and x(wt) is trapped

in ∆ because wherever it hits the boundary of ∆, it has a greater slope than the boundary.

Thus w → x(w) is inverted U-shaped.

There remains to compute the limit of x(wt) as wt tends towards ∞. This limit exists as

wt → x(wt) ends decreasing.

Lemma 2.11. lim
w→∞

(wp′(w)) = 0

Proof. I first show that w → wp′(w) ends decreasing. Its first derivative is p′(w)(1 −
(−p′′(w))w

p′(w)
) which is non-positive when w gets large as lim

w→∞

(−p′′(w))w
p′(w)

> 1. Therefore,

lim
w→∞

(wp′(w)) exists and it must be finite because w → wp′(w) ends decreasing. Note this

limit l and assume that l is positive. Then, there exists M > 0 such that wp′(w) > l
2 for all

w greater than M. Integrate the previous inequality from M to a > M to get :

p(a)− p(M) >
l

2
ln(

a

M
) (2.24)

As a tends towards ∞, the RHS of (2.24) tends towards ∞. This contradicts the fact that

p is upper-bounded. Thus, l = 0

From (2.13) :

lim
w→∞

(
x(w)

1 − x(w)
) = lim

w→∞
(

σ

1 − σ

p′(e(w))e(w)

p(e(w)) + (1 + r)
σ−1

σ

) =
σ

1 − σ

lim
w→∞

(wp′(w))

p + (1 + r)
σ−1

σ

= 0 (2.25)

This implies that lim
w→∞

(x(w)) = 0. This completes the proof of Proposition 2.3.

2.8 Appendix C

If p

p+(1+r)
σ−1

σ
A(1 − α) < 1, then G(e(wt),wt)

wt
= p(e(A,w))

p(e(A,w))+(αA)
σ−1

σ

(w−e(A,w))
w A(1 − α) <

p

p+(1+r)
σ−1

σ
A(1 − α) < 1. Hence, the propagator of (2.16) is strictly below the 45◦ line for

any income levels, which implies that the economy converges to 0.

If p

p+(1+r)
σ−1

σ
A(1 − α) > 1 :

p = 0 implies that
G(e( 1−σ

σ
(αA)

σ−1
σ

γ ), 1−σ
σ

(αA)
σ−1

σ
γ )

1−σ
σ

(αA)
σ−1

σ
γ

= 0 for all γ ∈ (0, ∞].

Use (2.13) to write G(e(w),w)
w as :

G(e(w), w)

w
=

1 − σ

σ

p(e(w))

wp′(e(w))
A(1 − α) (2.26)

Note first from (2.22) that :
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e′(w) =
σp′(e(w))

p′(e(w)) + (−p′′(e(w)))σ(w − e(w))
(2.27)

Then I can compute the derivative of G(e(w),w)
w with respect to w. I find that :

d(G(e(w),w)
w )

dw
=

(1 − σ)A(1 − α)p(e(w))

w2
(

1
G(e(w),w)

w

−
(1 − σ

(−p′′(e(w))e(w)
p′(e(w))

)

σ
) (2.28)

Thus, I get that :

d(G(e(w),w)
w )

dw
> 0 ⇔ (1 − σ)A(1 − α)

G(e(w),w)
w

>

(1 − σ
(−p′′(e(w))e(w)

p′(e(w))
)

σ
(2.29)

At w = 1−σ
σ

(αA)
σ−1

σ

γ , this condition writes :

∞ >
1 − σa

σ

As this condition holds, it must be that w → 1
G(e(w),w)

w

is initially decreasing. Note also

that w →
(1−σ

(−p′′(e(w))e(w)

p′(e(w))
)

σ is decreasing. If 1
G(e(w),w)

w

stays below
(1−σ

(−p′′(e(w))e(w)

p′(e(w))
)

σ , then w →

1
G(e(w),w)

w

is decreasing. If for some y >
1−σ

σ
(αA)

σ−1
σ

γ , 1
G(e(y),y)

y

is equal to
(1−σ

(−p′′(e(y))e(y)
p′(e(y)) )

σ , then

d( 1
G(e(w),w)

w

)

dw )w=y = 0, while the derivative of
(1−σ

(−p′′(e(w))e(w)

p′(e(w))
)

σ at w = y is negative. Thus,

1
G(e(w),w)

w

>

(1−σ
(−p′′(e(w))e(w)

p′(e(w))
)

σ in the right neighborhood of y. This proves that
d

G(e(w),w)
w

dw ≥ 0 for

all w >
1−σ

σ
(αA)

σ−1
σ

γ .

Finally, recall that lim
w→∞

(x(w)) = 0, which implies that lim
w→∞

(G(e(w),w)
w ) =

p

p+(1+r)
σ−1

σ
A(1 − α) > 1. This proves that the propagator of (2.16) is equal to 0 while

w ≤ 1−σ
σ

(αA)
σ−1

σ

γ , then increases and crosses the 45◦ line exactly one time. This completes the

proof of the point (ii).

Point (iii) follows from the fact that w → G(e(w),w)
w increases on [ 1−σ

σ
(αA)

σ−1
σ

γ , ∞).

For the rest of the paper it will be useful to get the variations of w → G(e(w),w)
w when p > 0.

Use first (2.29) at w = 1−σ
σ

p+(αA)
σ−1

σ

γ to see that w → G(e(w),w)
w is initially increasing if and

only if 1−σ
σ

p+(αA)
σ−1

σ

p >
1−σa

σ . Use the same argument as in the case p = 0 to get that w →
G(e(w),w)

w is increasing. If 1−σ
σ

p+(αA)
σ−1

σ

p <
1−σa

σ , then w → G(e(w),w)
w is initially decreasing.

Hence w → 1
G(e(w),w)

w

is initially increasing, while w →
(1−σ

(−p′′(e(w))e(w)

p′(e(w))
)

σ is decreasing. Thus,

there exists y >
1−σ

σ

p+(αA)
σ−1

σ

γ , such that 1
G(e(y),y)

y

=
(1−σ

(−p′′(e(y))e(y)
p′(e(y)) )

σ .
d( 1

G(e(w),w)
w

)

dw )w=y = 0, while



2.9. Appendix D 63

the derivative of
(1−σ

(−p′′(e(w))e(w)

p′(e(w))
)

σ at w = y is negative. Thus, 1
G(e(w),w)

w

>

(1−σ
(−p′′(e(w))e(w)

p′(e(w))
)

σ in

the right neighborhood of y and w → G(e(w),w)
w remains increasing according to the previous

argument. Thus, w → G(e(w),w)
w is U-shaped if 1−σ

σ

p+(αA)
σ−1

σ

p <
1−σa

σ .

2.9 Appendix D

I will assume that γ is positive, yet by following the same steps, the proof can be adapted

to the case γ = ∞.

It will be necessary here to write explicitly the dependence of e(wt) with respect to A,

due to the dependence of the interest rate on A. Then define :

H(A, w) =
p(e(A, w))

p(e(A, w)) + (αA)
σ−1

σ

(w − e(A, w))

w
A(1 − α) (2.30)

Step 1 : I prove that ∂H
∂A (A, w) > 0 for any pair (A, w) ∈ (0, ∞)2.

For (A, w) ∈ (0, ∞)2 such that w ≤ 1−σ
σ

p+(αA)
σ−1

σ

γ , H(A, w) =
p

p+(αA))
σ−1

σ
A(1 − α) and

the result follows.

For (A, w) ∈ (0, ∞)2 such that w >
1−σ

σ

p+(αA)
σ−1

σ

γ , apply the implicit function theorem

to (2.13) to get that ∂e
∂A (A, w) > 0.

Rewrite (2.30) as :

H(A, w) =
1 − σ

σ

p(e(A, w))

wp′(e(A, w))
A(1 − α) (2.31)

Thus, ∂H
∂A > 0.

Step 2 : I prove that for any w > 0, there exists a unique Z(w) > 0 such that : A <

Z(w) ⇐⇒ H(A, w) < 1.

This follows from the fact that A → H(A, w) increases (step 1) from 0 to ∞ on [0, ∞).

Define now for each w >
1−σ

σ

p

γ , A(w) as w = 1−σ
σ

p+(αA(w))
σ−1

σ

γ and reciprocally for each

A > 0, w(A) as w(A) = 1−σ
σ

p+(αA)
σ−1

σ

γ .

Step 3 : I prove that for w ≤ w(A), Z(w) = A.

By definition, H(A, w(A)) = 1. Thus, Z(w(A)) = A.

If w < w(A), then A(w) > A. Thus H(A(w), w) =
p

p+(αA(w))
σ−1

σ
A(w)(1 − α) is strictly

greater than 1.Thus, Z(w) < A(w).

So, H(Z(w), w) =
p

p+(αZ(w)))
σ−1

σ
Z(w)(1 − α). As H(Z(w), w) = 1, it must be that

Z(w) = A.

This means that under the condition A > A, the propagator of (2.16) is strictly above

the 45◦ line for w < w(A). Thus, any steady state of (2.16) is necessarily greater than w(A)

under the condition A > A.
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Step 4 : I prove that max(
w≥w(A)

Z(w)) exists. And max(
w≥w(A)

Z(w)) > A ⇔ 1−aσ
σ >

1−σ
σ

p+(αA)
σ−1

σ

p .

The continuity of (A, w) → H(A, w) implies the one of w → Z(w). Moreover,

Z(w(A)) = A. Z(w) has also a limit in ∞, noted Z(∞), which satisfies :

p

p + (αZ(∞))
σ−1

σ

Z(∞)(1 − α) = 1

The fact that p < p implies that Z(∞) < A. This proves that w → Z(w) has a maximum

on [w(A), ∞).

Consider now the function w → H(A, w) on [w(A), ∞). From the proof of Proposition

2.5. (Appendix C), this function is increasing (if 1−aσ
σ <

w(A)p′(e(w(A)))
p(e(w(A)))

= 1−σ
σ

p+(αA)
σ−1

σ

p ) or

U-shaped (otherwise).

If w → H(A, w) is increasing, then H(A, w) > 1 for all w ≥ w(A). Thus, Z(w) < A for

all w ≥ w(A). Hence, max(
w≥w(A)

Z(w)) is exactly A in this case.

If w → H(A, w) is U-shaped, then there exists z(A) > w(A) such that H(A, w) < 1 for

all w ∈ (w(A), z(A)). Thus, Z(w) > A for all w ∈ (w(A), z(A)). Hence, max(
w≥w(A)

Z(w)) is

strictly greater than A in this case.

Thus, it must be that max(
w≥w(A)

Z(w)) > A ⇔ 1−aσ
σ <

1−σ
σ

p+(αA)
σ−1

σ

p .

Write A∗ = max(
w≥w(A)

Z(w)).

Step 5 : I prove that A < A∗ and A ∈ (A, A∗) ⇔ (2.16) has exactly two positive steady

states under the condition A > A.

Assume first that (2.16) has exactly two positive steady states and A > A. It means

that Z(w) takes values strictly greater than A on (w(A), ∞). Thus, A < A∗. Note also that

A < A∗ otherwise H(A, w) would be strictly greater than 1 for all w ≥ 0 which would

contradict the fact that (2.16) has two steady states.

Assume now that A < A∗ and A ∈ (A, A∗). Then, w → H(A, w) takes values strictly

smaller than 1 on (w(A), ∞), H(A, w) > 1 if w ≤ w(A) and lim(
w→∞

H(A, w)) > 1 because

A > A. Thus, (2.16) has at least two steady states. Denote w1(A) the smallest one, which is

necessarily stable, and w2(A), the highest one, which is necessarily unstable.

From step 4, the condition A < max(
w≥w(A)

Z(w)) is equivalent to 1−aσ
σ >

1−σ
σ

p+(αA)
σ−1

σ

p .

Then, it must be that 1−aσ
σ >

1−σ
σ

p+(αA)
σ−1

σ

p and according to the proof of Proposition 2.5, it

must be that w → H(A, w) is U-shaped. Consequently, w1(A) and w2(A) are the two only

steady states of (2.16).

To complete the proof, I rearrange the condition 1−aσ
σ >

1−σ
σ

p+(αA)
σ−1

σ

p to obtain condition

(ii).

Step 6 : I prove that 1−aσ
σ >

1−σ
σ

p+(αA)
σ−1

σ

p ⇔ α >
(p σ

1−σ (1−a))
σ

σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ

σ−1
.
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By definition of A,
pA(1−α)

p+(αA)
σ−1

σ
= 1.

Then, 1−aσ
σ >

1−σ
σ

p+(αA)
σ−1

σ

p ⇔ p

p+(αA)
σ−1

σ
>

1−σ
1−aσ where

p

p+(αA)
σ−1

σ
= 1

A(1−α)

Set m(A) =
p

p+(αA)
σ−1

σ
and n(A) = 1

A(1−α)
. m increases, while n decreases.

Then the previous statement is true if and only if m is strictly greater than n at the point

at which n is worth 1−σ
1−aσ . As this point is 1−aσ

(1−α)(1−σ)
, this condition is

p

p+(α 1−aσ
(1−α)(1−σ)

)
σ−1

σ
>

1
1−aσ

(1−α)(1−σ)
(1−α)

.

This completes the proof of Proposition 2.6.

2.10 Appendix E

(i) is a corollary of Proposition 2.6.

Recall first from the proof of Proposition 2.5 that w → G(e(w), w) is increasing (if 1−aσ
σ <

1−σ
σ

p+(αA)
σ−1

σ

γ p′(e( 1−σ
σ

p+(αA)
σ−1

σ

γ ))

p(e( 1−σ
σ

p+(αA)
σ−1

σ

γ ))

= 1−σ
σ

p+(αA)
σ−1

σ

p ) or U-shaped (otherwise).

If A > A and α <
(p σ

1−σ (1−a))
σ

σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ

σ−1
, then according to the proof of Proposition 2.6,

1−aσ
σ <

1−σ
σ

p+(αA)
σ−1

σ

p . Thus for A ∈ (A, Â), w → G(e(w), w) is increasing, while the function

is U-shaped for A > Â.

If A > A∗ and α >
(p σ

1−σ (1−a))
σ

σ−1

1−aσ
1−σ +(p σ

1−σ (1−a))
σ

σ−1
, then according to the proof of Proposition

2.6,1−aσ
σ >

1−σ
σ

p+(αA)
σ−1

σ

p and then for all A > A∗
> A, 1−aσ

σ >
1−σ

σ

p+(αA)
σ−1

σ

p and

w → G(e(w), w) is U-shaped.

This completes the proof of Proposition 2.7.

2.11 Appendix F

w → G(e(w), w) is an increasing or U-shaped function which is below 1 for w ≤
1−σ

σ

p+(αA(w))
σ−1

σ

γ . This means that the equation G(e(w), w) = 1 has a unique solution if and

only if lim
w→∞

G(e(w), w) = pA(1−α)

p+(αA)
σ−1

σ
> 1. In this case, the unique solution to the fixed point

equation is an unstable steady state. If pA(1−α)

p+(αA)
σ−1

σ
< 1, then G(e(w), w) is strictly smaller

than 1 for all income levels, which implies that the economy converges to a null income.

2.12 Appendix G

I follow the proof of Proposition 2.1. Assume first that p > 0 and γ < ∞. The agent

maximizes :
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V(st, et) =
(wt − et − st)1−σ

1 − σ
+ p(et)

σ s1−σ
t (1 + r)1−σ

1 − σ
+ bp(et)

Subject to the constraints st + et ≤ wt and 0 ≤ et and 0 ≤ st. The Inada condition of the

utility function implies that the Lagrangian writes :

L(st, et, χ1) = V(st, et) + χ1et

The KKT conditions for a point (st, et) to be an optimum can be written as :

(i)
∂V

∂s
(st, τt) = 0

(ii)
∂V

∂e
(st, et) = −(wt − et − st)

−σ + p′(et)[
σ

1 − σ
(

st(1 + r)

p(et)
)1−σ + b] = −χ2

(iii)min(χ2, et) = 0

Consider now the possibility that et = 0. From (i), I get the optimal saving, st =
p

p+(1+r)
σ−1

σ
wt. And χ2 must be non-negative. Thus, (ii) writes ∂V

∂e (
p

p+(1+r)
σ−1

σ
wt, 0) ≤ 0 which

is equivalent to γ(b − σ
1−σ

w1−σ
t (1+r)1−σ

(p+(1+r)
σ−1

σ )1−σ
) ≤ w−σ

t (1+r)1−σ

(p+(1+r)
σ−1

σ )−σ
. The LHS of this inequality in-

creases from −∞ to b on [0, ∞), while the RHS decreases from ∞ to 0 on [0, ∞). Thus, there

exists w ∈ (0, ∞) such that the previous inequality is satisfied if and only if wt < w. Thus, for

wt < w, (
p

p+(1+r)
σ−1

σ
wt, 0) satisfies the KKT conditions and is a possible solution. Consider

now the case et > 0. Then, χ2 = 0 and the conditions (i) and (ii) imply the equation (2.10)

and :

1

p′(et)
= (

wt − et

p(et) + (1 + r)
σ−1

σ

)σRσ−1b − σ

σ − 1

wt − et

p(et) + (1 + r)
σ−1

σ

(2.32)

Note the RHS of (2.32) as h( wt−et

p(et)+(1+r)
σ−1

σ
), where h(x) = xσRσ−1b − σ

σ−1 x. Note that h

is increasing where it is non-negative and so et → h( wt−et

p(et)+(1+r)
σ−1

σ
) is decreasing on [0, wt].

Moreover, the RHS of (2.32) is equal to 0 at et = wt. As the LHS of (2.32) is positive and

increasing, (2.32) has a solution, which is also unique, if and only if h( wt

p+(1+r)
σ−1

σ
) > 1

γ which

is equivalent to γ(b − σ
1−σ

w1−σ
t (1+r)1−σ

(p+(1+r)
σ−1

σ )1−σ
) >

w−σ
t (1+r)1−σ

(p+(1+r)
σ−1

σ )−σ
and so to wt > w. Thus, for

wt > w, there exists a unique pair (st, et) that satisfies the KKT conditions. Note finally

that the problem of the consumer has always at least one solution because (s, e) → V(s, τ)

is continuous on the maximization domain, which is compact. Consequently, the unique

pair satisfying the KKT conditions in the two cases wt ≤ w and wt > w is the unique

solution to the problem of the consumer. The case p = 0 follows by continuity. When
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γ = ∞, the condition for et = 0 to satisfy the KKT conditions write now st =
p

p+(1+r)
σ−1

σ
wt

and lim
et→0

p′(et)(b − σ
1−σ

w1−σ
t (1+r)1−σ

(p+(1+r)
σ−1

σ )1−σ
) ≤ w−σ

t (1+r)1−σ

(p+(1+r)
σ−1

σ )−σ
. The second inequality is true if

and only if wt < (b 1−σ
σ )

1
1−σ (

p+(1+r)
σ−1

σ

1+r )1−σ. Thus, for wt < (b 1−σ
σ )

1
1−σ (

p+(1+r)
σ−1

σ

1+r )1−σ,

(
p

p+(1+r)
σ−1

σ
wt, 0) satisfies the KKT conditions. Consider now an interior solution. It satis-

fies the equations (2.10) and (2.32). For (2.32) to have a solution, the necessary and sufficient

condition is now : lim
et→0

1
p′(et)

< lim
et→0

( wt−et

p(et)+(1+r)
σ−1

σ
)σRσ−1b − σ

σ−1
wt−et

p(et)+(1+r)
σ−1

σ
, which is equi-

valent to wt > (b 1−σ
σ )

1
1−σ (

p+(1+r)
σ−1

σ

1+r )1−σ. Hence for wt > (b 1−σ
σ )

1
1−σ (

p+(1+r)
σ−1

σ

1+r )1−σ, there is

a unique pair (st, et) that satisfies the KKT conditions.

Note that h( wt−et

p(et)+(1+r)
σ−1

σ
) increases with wt, which shows that e(wt) is increasing.

To see that w → x(w) is initially increasing on [w, ∞), note that x(w) = 0, while x(w) >

0 on [w, ∞).

To get lim
wt→∞

x(wt), rewrite first (2.32) at the optimum :

1

p′(e(wt))
= (

wt − e(wt)

p(e(wt)) + (1 + r)
σ−1

σ

)σRσ−1b − σ

σ − 1

wt − e(wt)

p(e(wt)) + (1 + r)
σ−1

σ

Note that lim
wt→∞

1
p′(e(wt))

= ∞, so it must be that lim
wt→∞

wt−e(wt)

p(e(wt))+(1+r)
σ−1

σ
= ∞.

Thus, h( wt−et

p(et)+(1+r)
σ−1

σ
) ∼

wt→∞
( wt−e(wt)

p(e(wt))+(1+r)
σ−1

σ
)σRσ−1b. And then ( x(wt)

1−x(wt)
)σ ∼

wt→∞

p′(e(wt))e(wt)σ

(p+(1+r)
σ−1

σ )σ
Rσ−1b. This gives the three possible cases of Proposition 2.9.





3Aging and sectorial labor

allocation

3.1 Introduction

The aging process that developed countries currently undergo is well summarized by two

strong demographic facts : a low fertility rate below the replacement level and increased

survival probabilities at old ages. Indeed, the fertility rate in OECD countries decreased from

3.2 in 1970 to 1.76 in 2012. Over this same period, the life expectancy conditional at being

alive at 65 increased from 12.5 in 1970 to 20.7 in 2012. 1 These large life expectancy gains

translated into life gains during retirement period as the retirement legal age increased much

slower than life expectancy did (Prettner and Canning (2014)). Taking into account that

old individuals value healthcare more than young individuals do, Hashimoto and Tabata

(2010) argue that aging creates a positive shock on the demand for healthcare that spurs

labor reallocation towards the health sector. Aisa and Pueyo (2014) note that this result

depends on the elasticity of substitution between labor and capital of the non-health sector.

As aging stimulates capital accumulation, aging may redirect labor towards the non-health

sector if capital and labor are complementary factors of production. On the empirical side,

Moreno-Galbis and Sopraseuth (2014) find that aging is a driving force of the increased

demand for labor in services sector because aging increases the demand for healthcare. These

results suggest two channels through which aging affects the labor allocation of a multi-sector

economy. First, the increased demand for healthcare is a consequence of the heterogeneity of

preferences between old and young individuals. Second, the fact that aging stimulates capital

accumulation, which is a well-known result in one-sector models, implies that aging creates

a positive demand shock to the investment sector. 2 In this chapter, I study theoretically

how aging affects the labor allocation of a stylized multi-sector economy. I shed light on

the possible channels through which aging affects the labor allocation of the economy and I

examine how aging redirects labor between sectors along a path satisfying the Kaldor facts.

To this aim, I formulate a two-period overlapping generations (hereafter OLG) model

with two consumption goods and one pure capital good. As previously said, aging implies

1. These values are all computed from the OECD database.

2. See Bloom et al.(2003), Chakraborty (2004), Zhang and Zhang (2005) or El Mekkaoui de Freitas and

Oliveira-Martins (2014).
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an increased demand for the investment sector, which justifies a separate treatment of this

sector. The OLG structure enables to introduce the demographic variables at stake in the

aging process (i.e. fertility and the longevity in retirement period) and to make exogenous

shocks on them in a simple and tractable manner. I classify the labor reallocations caused by

aging into three types. The first two types of reallocation are due to two partial equilibrium

effects of aging. Given prices, savings and consumption levels of the individuals are directly

affected by a longevity shift. I show that the intertemporal reallocation of resources, hence the

increase of savings, caused by aging in one-sector models creates intratemporal reallocations

of resources in a multi-goods framework once intratemporal preferences are non-homothetic.

Then, I define the "allocation effect" as the partial equilibrium change of aggregate rela-

tive demand between sectors due to aging when the population structure is held fixed. The

second type of labor reallocations are those due to pure "demographic effects" : aging dimi-

nishes the ratio of young to old people or in other words the ratio of savers to consumers. The

"population effect" is then defined as the partial equilibrium change of aggregate relative

demand between sectors due to aging with fixed individual allocations. I show that there are

two alternative assumptions on the individuals’preferences that make the aggregate relative

demand between consumption goods dependent on demographic variables and I explain how

differently the "population effect" and the "allocation effect" occur under these two different

assumptions. The third type of labor reallocations are those due to the general equilibrium

effects of aging. They manifest themselves under two forms. Firstly, if sectors use different

production functions, the surplus of capital following a longevity increase creates labor real-

locations ceteris paribus. Secondly, aging changes the aggregate relative demand through its

indirect impact on the price vector. After specifying functional forms for preferences and

production functions, I study how these effects translate in general equilibrium. I examine

how the relative labor shares vary with longevity and the cohort growth rate along a path

satisfying the Kaldor facts. Finally, I provide a simple calibration of the model on the US

economy to assess the importance of the labor flows that the aging process could engender.

To build my multi-sector economy, I draw on the vast literature on the process of struc-

tural change, which analyzes the inputs reallocation that occur between sectors along the

development path. 3 Firstly pointed by Kuznets (1957), two main explanations of structural

change have been highlighted. Demand side explanations shed the light on the role of the

non-homotheticity of preferences in this process. 4 As income grows, because of technological

progress and capital deepening, the consumption share of necessity goods shrinks relatively

to the consumption share of superior goods. This creates labor flows from the production of

goods with low income elasticity to the production of goods with high income elasticity. Sup-

ply side explanations point out the differences of production functions across sectors. Ngai

and Pissarides (2007) develop a model where sectors have the same production functions, yet

different TFP growth rates. They show that on the unique path along which Kaldor facts

3. The literature is reviewed by Herrendorf et al.(2014).

4. See among others : Matsuyama (1992), Echevarria (1997), Gollin, Parente, Rogerson (2002).
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are satisfied, labor flows towards the sector that has the lowest TFP growth rate among

consumption goods producing sectors, while the investment sector does not encounter any

labor reallocation. In the model of Acemoglu and Guerrieri (2008), there are two sectors that

use Cobb-Douglas production functions with different capital intensities. They find that ca-

pital deepening implies a labor reallocation towards the less capital intensive sector. Finally,

Boppart (2014) proposes an analytical model that incorporates the two types of labor real-

locations. Here I specify a model of structural change close to the one of Boppart (2014)

before making exogenous shocks on the longevity and fertility parameters. The literature on

structural change has long remained mute on the role of the demographic structure. There

are a few notable exceptions. In an infinite horizon representative agent model, Leukhina and

Turnovsky (2015) characterize the impact of a change of the population size on the process

of structural change before applying their model to Britain from which they conclude that

population growth has a significant and positive effect on the British industrialization. Bar

and Leukhina (2010) examine quantitatively the role of child mortality in a structural change

model with fertility choice. In other words, the literature has focused on the interaction bet-

ween the demographic transition and the structural change process. In this paper, I argue

that the aging process must be examined distinctly as I show that fertility and the longevity

in retirement period interact differently with the sectorial allocation of labor.

The paper differs from those from Hashimoto and Tabata (2010) and Aisa and Pueyo

(2014) with respect to three main aspects. First, these authors focus on the labor realloca-

tion between the health sector and the non-health sector. Here I argue that this masks labor

reallocations due to aging inside the non-health sector. Second, contrary to these two papers,

I choose not to endogeneize fertility to also examine the impact of an exogenous fertility de-

crease, which is also a pillar of the aging process, on the labor allocation. Third, my use of a

stylized multi-sector economy in line with the structural change literature allows to connect

more easily the model to data to assess the importance of the effects at stake. Finally, the

paper also complements a large literature that studies the exogenous impact of demogra-

phic variables on economic growth in one-sector models. In a one-sector Diamond model, a

longevity increase or a fertility decrease both increase income per worker. In a one-sector

OLG model with a demographic structure à la Yaari (1965), d’Albis (2007) shows that the

impact of the population growth rate on income per worker is non-monotonic. Boucekkine

et al. (2002) also find a non-monotonic relationship between longevity and income per wor-

ker in a one-sector model with human capital investments and endogenous retirement. This

chapter complements these findings by showing that a multi-sector framework can also create

non-monotonicities between demographic variables and income per worker.

The rest of this paper is organized as follows. Section 3.2 examines the channels through

which aging affects the partial equilibrium of a multi-goods economy. Section 3.3 specifies

functional forms for utility and production functions to investigate the impact of aging on

the sectorial labor allocation in general equilibrium. Section 3.4 concludes.
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3.2 Longevity in a multi-sector Diamond economy : partial

equilibrium analysis

3.2.1 Outline of the model

Individuals live for two periods. They work during the first period and retire during the

second period, whose length is set to q ∈ (0, 1]. Cohort-t is populated by Lt homogenous

individuals, with Lt+1 = (1 + n)Lt and n > −1. There are three sectors in this economy.

Sectors 1 and 2 produce two different consumption goods, while the third sector, sector I,

produces capital good, which is taken as the numéraire. Capital fully depreciates each period.

3.2.2 Intratemporal reallocation of resources at the individual level

The preferences of each young individual born at time t are represented by the following

lifetime utility function :

Ut = u(c1t, c2t) + qv(d1t, d2t) (3.1)

Where cit is the consumption per unit of time of good i in first period of a cohort-t indivi-

dual, dit the consumption per unit of time in second period. u and v are twice differentiable

increasing and strictly concave functions. Note that young individuals and old individuals

are allowed to have different utility per period functions.

Each agent maximizes (3.1) subject to the budget constraints :

P1tc1t + P2tc2t + st = wt (3.2)

q(d1tP1t+1 + d2tP2t+1) = Rt+1st (3.3)

Where Pit is the price of good i at time t, Rt+1 the interest rate, wt the wage, st the

savings.

By solving this optimization problem, I get the following preliminary result :

Lemma 3.1. st = s(wt, Rt+1, q) is unique. ∂st
∂q and

∂(
st
q )

∂q are respectively positive and negative.

Proof. See Appendix A

Lemma 3.1 is a well-known result of the one sector Diamond model : savings increase with

longevity in retirement period given prices. Two effects are at stake in this process. First, a

greater q means that the individual discounts less the future so much that with fixed lifetime

resources, the individual channels more resources into second period. Second, an increase

of q also acts as a decrease of the interest rate (see (3.3)), whose effect on savings depends

on the intertemporal elasticity of substitution. Lemma 3.1 states that the total effect on

savings is always positive. 5In a one-sector model, a shock on q can only cause intertemporal

5. Note that in one sector models, authors often use the specification of Yaari (1965) in which q is the proba-

bility to reach the second period, whose length is equal to 1 and there is a perfect annuity market so much that

the return on savings is R̂ = R
q . Then, they make a shock on q given R̂, which implies that the second effect is

neutralized in this type of partial equilibrium analysis.
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reallocation of resources, because there is no intratemporal decision to make. However, in the

present specification, q can also have an impact on the intratemporal allocation of resources,

i.e. on the consumption shares c1t
c2t

and d1t
d2t

. To investigate this, the following corollary of lemma

3.1 is useful :

Lemma 3.2. Let e1t = P1tc1 + P2tc2t and e2t = d1tP1t+1 + d2tP2t+1 be respectively the per unit

of time expenditure levels in first and second periods of a cohort-t individual. Given prices,

e1t and e2t decrease with q.

Proof. Immediate from Lemma 3.1

Lemma 3.2 is a reformulation of Lemma 3.1 in terms of expenditure functions. Its inter-

pretation comes from the lifetime budget constraint :

e1t + e2t
q

Rt+1
= wt (3.4)

Given prices, the right-hand-side (RHS) of (3.4) is independent of q. Given expenditures

levels, the left-hand-side (LHS) of (3.4) increases with q because the duration of the second

period increases. Then, for the constraint to be fulfilled, the expenditure levels must decrease.

This reformulation is useful because expenditure levels summarize all the dependence of the

intratemporal allocation with respect to q. Thus, the dependence of consumption ratios with

respect to q is obtained in the following proposition :

Proposition 3.3. For i ∈ {1; 2}, note ε
y
it = ∂ ln(cit)

∂ ln(e1t)
and εo

it =
∂ ln(dit)
∂ ln(e2t)

. Given prices :

(i)
∂(

c1t
c2t

)

∂q > 0 if and only if ε
y
1t < ε

y
2t, with equality if and only if ε

y
1t = ε

y
2t.

(ii)
∂(

d1t
d2t

)

∂q > 0 if and only if εo
1t < εo

2t, with equality if and only if εo
1t = εo

2t.

Proof. (i) Because lifetime utility is separable, c1t
c2t

only depends on e1t and P1t
P2t

. Then,
∂(

c1t
c2t

)

∂q =

∂e1t
∂q

∂(
c1t
c2t

)

∂e1t
. The result follows by using Lemma 3.2.

(ii) Proceed as in (i)

Proposition 3.3 is the first main result of the paper. It gives the impact of a longevity

increase on the intratemporal consumption ratios in partial equilibrium. This information

is obtained by comparing the expenditure elasticity of the two goods. A longevity increase

creates an intratemporal reallocation of resources towards the good with the smaller expen-

diture elasticity. Indeed, the (intratemporal) consumption ratios only depend on q through

the expenditure level which is a decreasing function of q from Lemma 3.2. Then, a decrease of

expenditure implies an increase of the consumption of the good with the smaller expenditure

elasticity. This result shows that in a multi-goods economy, a longevity increase produces

both intertemporal and intratemporal reallocation of resources at the individual level. Note

finally that if the intratemporal preferences are homothetic, then longevity does not impact

the intratemporal allocation of resources at the individual level.
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3.2.3 The allocation and the population effect

In this subsection, I examine if a longevity or a fertility shift implies a change of the

aggregate relative demand between goods in partial equilibrium. For notational convenience,

I will write explicitly the dependence of consumption levels with respect to demographic

variables only when needed. Their dependence with respect to prices is omitted as they are

maintained fixed in this partial equilibrium analysis. I first focus on the aggregate relative

demand between consumption goods. The aggregate consumption ratio at time t, C1t
C2t

, is given

by :

C1t

C2t
=

c1t +
q

1+n d1t−1

c2t +
q

1+n d2t−1
(3.5)

This ratio may be impacted by q through two channels. As highlighted in Lemma 3.1 and

Proposition 3.3, the quantities c1t, c2t, d1t−1, d2t−1 depend on q and then impact C1t
C2t

through

an "allocation effect". Also, this ratio directly depends on q through a "population effect" :

given consumption levels, an increase of q implies that the total consumption in second period

of the two goods increases. I will say that :

Definition 3.4. Set DC(q, n, a, b) =
c1t(q,n)+ a

1+b d1t−1(q,n)

c2t(q,n)+ a
1+b d2t−1(q,n)

.

(i) Longevity (respectively fertility) is said to be "allocation-neutral" if ∂DC
∂q (q, n, q, n) = 0

(respectively ∂DC
∂n (q, n, q, n) = 0) for all (q, n) ∈ [0, 1)× (0, ∞) and for any price vector.

(ii) Longevity (respectively fertility) is said to be "population-neutral" if ∂DC
∂a (q, n, q, n) =

0 (respectively ∂DC
∂b (q, n, q, n) = 0) for all (q, n) ∈ [0, 1)× (0, ∞) and for any price vector.

For the aggregate relative demand between the capital good and the consumption goods,

I will use the same definition except that instead of using the function DC, I will use the

function DI defined by :

DI(q, n, a, b) =
st(q, n)

c1t(q, n) + c2t(q, n) + a
1+b (d1t−1(q, n) + d2t−1(q, n))

(3.6)

This definition allows to disentangle the two effects of aging on the aggregate relative

demand in partial equilibrium. When longevity is "allocation-neutral", the changes of the

consumption levels due to aging do not cause a change of the aggregate consumption ra-

tio for a fixed population. When longevity is "population neutral", the composition change

of the population due to aging does not affect the aggregate consumption ratio for fixed

consumption levels of the population.

Note that Definition 3.4 incorporates the two channels previously studied by the lite-

rature. First, Hashimoto and Tabata (2010) and Aisa and Pueyo (2014) argue that aging

increases the relative number of individuals valuing healthcare. This is a "population effect"

between two consumption sectors, the health sector and the non-health sector. Second, aging

increases the savings of individuals or, in other words, the relative demand for capital good.

This is an "allocation effect" between the consumption sectors and the investment sector. De-

finition 3.4 opens the way to other channels through which aging can affect aggregate relative
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demand : Can there be allocation effects between consumption goods ? Are there population

effects between the investment sector and the consumption sectors ? Moreover, by studying

the occurence of the "population effect" or the "allocation effect", I can determine if aging

creates aggregate relative demand changes only between the health and the non-health sector

and between the investment and the consumption sectors.

Note first that the population growth rate can only affect C1t
C2t

through a "population ef-

fect" since the consumption levels do not depend on n in partial equilibrium (equivalently,

fertility is always "allocation neutral"). To see how different assumptions on preferences drive

the dependence of C1t
C2t

with respect to q, it is useful to consider the case in which the intratem-

poral preferences are homothetic and identical for young and old individuals. Intratemporal

preferences of the young (respectively of the old) are said to be homothetic if u (respectively

v) is a monotonic transformation of a linearly homogenous function. Intratemporal prefe-

rences of the young and of the old are said to be identical if u and v are monotonic transfor-

mations of the same linearly homogenous functions. The first assumption implies that there

are functions γ and β such that : c1t
c2t

= γ( P1t
P2t
) and d1t

d2t
= β( P1t+1

P2t+1
), hence consumption ratios

only depend on current relative prices. The second one implies that β(.) = γ(.), hence the

current young and the current old do the same intratemporal choice. The aggregate share

(3.5) can be written as :

C1t

C2t
=

c1t

c2t

1 + q
1+n

d1t−1

c1t

1 + q
1+n

d2t−1

c2t

= γ(
P1t

P2t
) (3.7)

This shows that in this case, the aggregate consumption ratio does not depend on q in par-

tial equilibrium. This ratio will be affected by a longevity change in general equilibrium only

through the impact of q on the relative price between consumption goods. Two ingredients

explain this result. First, the homotheticity of preferences implies that the consumption ratio

of each individual at each period only depends on current relative prices. Second, as young

and old agents have the same utility per period, the dependence of their current consumption

ratio to the relative price is identical. Finally, as the current old and the current young face

the same prices, c1t
c2t

= d1t−1

d2t−1
. Alternatively, this result can be obtained by analyzing the "al-

location effect" and the "population effect" defined previously. Differentiate first (3.5) with

respect to q while maintaining c1t, c2t, d1t−1 and d2t−1 as constant to get that longevity is

"population neutral" if and only if for all (q, n) ∈ [0, 1)× (0, ∞) and any price vector :

d1t−1

c1t
=

d2t−1

c2t
(3.8)

If we change the composition of the population, while maintaining fixed the consump-

tion levels, then C1t
C2t

changes if and only if the old and the young have different consumption

bundles. Since condition (3.8) is fulfilled and C1t
C2t

does not depend on q when the intratemporal

preferences of young and old individuals are identical and homothetic, it must be that un-

der this specification of preferences, longevity is both "allocation-neutral" and "population-

neutral". From (3.8), longevity is not "population-neutral" if and only if the consumption
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shares of the old and of the young differ for at least one pair (q, n) ∈ [0, 1)× (0, ∞). There

are two ways for this to happen. If intratemporal preferences are homothetic but not identical,

the two consumption shares will be two different functions of the current relative price. Then,

the two consumption shares will be different for all (q, n) ∈ [0, 1)× (0, ∞). The alternative

condition for the "population effect" to occur is to consider non-homothetic intratemporal

preferences. In this case, even though u and v are identical, the two consumption shares de-

pend on expenditure levels of different cohorts. Thus, except possibly for some particular

pairs (q, n), the consumption shares differ and there is a "population effect".

As previously said, longevity is "allocation neutral" if preferences are homothetic and

identical. I will show that intratemporal homothetic preferences are needed for longevity to

be "allocation netutral", while identical preferences are not. Indeed, if preferences are non-

homothetic, then a longevity increase changes the consumption bundles of the young and the

old differently because their expenditure levels depend on different prices, which implies a

change of the aggregate relative demand. Then, if preferences are homothetic, yet not iden-

tical, then the change of the expenditure level of the old and the young can change the total

consumption share of each type of population. For example, if after the longevity increase,

the old reduce less their expenditure level than the young do, then their total consumption

increase with respect to the young’s, which affects the aggregate relative demand because

the old and the young have different consumption levels. Hence, if preferences are such that

the old and the young change their expenditure levels equally after a longevity change, then

longevity is "allocation neutral". The condition is in the next theorem, which also collects

and complements my previous results :

Theorem 3.5. (i) Longevity is "allocation neutral" if and only if intratemporal preferences

are homothetic and





intratemporal preferences are identical

or

the IES is equal to 1

.

(ii) Longevity (resp. fertility) is "population neutral" if and only if intratemporal prefe-

rences are homothetic and identical.

(iii)
∂(

C1t
C2t

)

∂q =
∂(

C1t
C2t

)

∂n = 0 for all (q, n) ∈ [0, 1)× (0, ∞) and any price vector if and only if

intratemporal preferences are identical and homothetic.

Proof. See Appendix B

Theorem 3.5 is an important result of this paper stating necessary and sufficient condi-

tions for the aggregate consumption ratio to be invariant with respect to demographic va-

riables in partial equilibrium. Equivalently, Theorem 3.5 states that the aggregate consump-

tion ratio is affected by demographic variables in partial equilibrium if and only if the in-

tratemporal preferences are heterogenous between young and old individuals or if the intra-

temporal preferences are non-homothetic. This shows that the heterogeneity of preferences

between young and old individuals is not necessary for this ratio to depend on q or n. This can

also be achieved if intratemporal preferences are non-homothetic. The non-homotheticity of

preferences between consumption goods is well-documented (between manufacturing goods
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and services for example), which implies that aging is susceptible to create labor reallocations

inside the non-health sector.

It is useful to compare this result with that of Hashimoto, Tabata (2010) and Aisa and

Pueyo (2014). In their framework, individuals enjoy utility from good consumption and heal-

thcare, yet only old individuals enjoy utility from healthcare, which implies that the prefe-

rences of the old and the young are heterogeneous. They are also homothetic and the IES is

equal to 1. According to Theorem 3.5, these assumptions neutralize the "allocation effect",

and the aggregate consumption ratio only depends on aging through the "population effect".

I study now how the "population effect" and the "allocation effect" work under these

two different specifications of preferences. First, as previously said, the "population effect"

occurs when the young and the old have different consumption ratios. With homothetic yet

not identical intratemporal preferences (henceforth case 1), the consumption ratios of the two

generations are different functions of the same current relative price. Thus, the "population

effect" is monotonic with respect to longevity and fertility in case 1. When intratemporal

preferences are identical and non-homothetic (henceforth case 2), the consumption ratios

are the same function of different expenditure levels. As the expenditure levels depend on

longevity, the "population effect" may be non-monotonic with respect to longevity while it

remains monotonic with respect to fertility.

There are two ingredients at work in the "allocation effect". The movement of the four

consumption levels is captured by looking at the movement of the consumption ratios of the

young and of the old, and the absolute change of the consumption of one good by the young

and the old. Hence, the "allocation effect" occurs because the young and the old change

their consumption bundle and because the consumption share of each generation in the total

consumption changes. In case 1, only the second effect occurs. Then, for the longevity increase

to increase C1t
C2t

through the "allocation effect", the expenditure level of the individuals with

the greater share of good 1 in their consumption bundle must decrease less. Indeed, if the old

have more good 1 in their consumption bundle, C1t
C2t

increases if the total consumption share

of the old increases. On the contrary, if the young have more good 1 in their consumption

bundle, then their total consumption share must increase for C1t
C2t

to increase. In case 2, both

effects work. Even though both young and old individuals increase their consumption share

of good 1, C1t
C2t

may decrease if the consumption share of the individuals with the smaller share

of good 1 in their consumption bundle increases.

I can illustrate the difference between the two cases in a simple geometric manner. Note

Y = (y1, y2) the vector of consumption of the young (i.e. yi is the total consumption of good i

by the young) and O = (o1, o2) the vector of consumption of the old. In Figure 3.1, I represent

Y and O.

Then, the aggregate consumption ratio is given by the tangent of the angle u. Note that

when preferences are homothetic, a longevity shift translates Y and O. Noting Y
′
and O′ the

new value of Y and O after a longevity shift, I get that u also changes to u′ :

Moreover, if intratemporal homothetic preferences are also identical across cohorts, then

Y and O are colinear, so much that Y + O and Y′ + O′ are colinear and u is unchanged. In
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Figure 3.1 – Y, O and Y + O.

Figure 3.2 – Change of C1t
C2t

after a longevity shift with homothetic and non-identical preferences.

the non-homothetic case, the longevity shift is no more a translation of Y and O (see Figure

3.3).

Figure 3.3 – Change of C1t
C2t

after a longevity shift with non-homothetic preferences.

It is important to recall that this result holds for fixed prices. In general equilibrium,

as longevity affects the supply of inputs, it can change relative prices, and then aggregate

consumption shares even though intratemporal preferences are identical and homothetic.

These inputs effects are illustrated in the next section where I specify functional forms for the

preferences to study the general equilibrium of the economy. Before turning to the general

equilibrium effects of aging, I briefly examine the aggregate relative demand between the

capital good and the consumption goods. The aggregate saving to total consumption ratio,
St
Ct

is given by :
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St

Ct
=

st

c1t + c2t +
q

1+n (d1t−1 + d2t−1)
(3.9)

Holding c1t, c2t, d1t−1, d2t−1 and st as constant in (3.9), we observe that aging creates a

"population effect" that increases the demand for consumption goods relatively to the de-

mand for the capital good. The reason is that aging increases the number of consumers

relatively to the number of savers. Aging also creates an "allocation effect" in partial equi-

librium between these two sectors : treating q
1+n as a constant in (3.9), this ratio increases

with q when the two consumption goods are normal for both the young and the old. The total

effect of a longevity increase on the relative demand is ambiguous in partial equilibrium : the

number of consumers increases relatively to the number of savers ("population effect"), howe-

ver the consumers consume less, while the savers save more ("allocation effect"). Otherwise

said, the demand for the capital good increases because the saving of the young increases,

yet the demand for the consumption goods can also increase if the consumption increase of

the old overcompensates the consumption decrease of the young. This creates a fundamental

distinction between St
Ct

and C1t
C2t

, which is summarized in the following proposition :

Proposition 3.6. (i) Aging always creates both an "allocation effect" and a "population

effect" between the investment sector and the consumption sectors.

(ii) There does not exist utility per period functions u and v such that St
Ct

is invariant with

respect to demographic variables for any price vector.

Proof. See Appendix C

Note finally that a fertility decrease always decreases St
Ct

in partial equilibrium since it

only acts through the "population effect".

3.3 General equilibrium

The previous section suggests that in a standard multi-sector economy, aging affects the

sectorial labor allocation. In this section, I specify functional forms for preferences and pro-

duction functions to examine how aging affects the sectorial labor allocation in general equi-

librium. First, I interpret good 1 as manufacturing good and good 2 as services. In line with

the structural change literature, particularly Boppart (2014), I assume identical yet non-

homothetic preferences : manufacturing good is a normal good, while services are a luxury

good.

Second, agricultural goods are excluded from the analysis. In developed countries, the

labor share of the farming sector is such that aging is unlikely to spur significant labor reallo-

cations with this sector. Technically, the production of such goods involves other inputs such

as land and uses capital and labor with different factor proportions than the ones of manufac-

turing and services sector, which excludes the existence of a path along which Kaldor facts

are satisfied. Acemoglu and Guerrieri (2008) and Boppart (2014) also exclude agricultural
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goods from their study. 6Finally, the same structure as in section 3.2 is used and the variable

names are conserved.

3.3.1 Firms

The three sectors use labor and capital as inputs. The production function in the sectors

1 and 2 is Cobb-Douglas with capital intensity α ∈ (0, 1). 7 The investment sector also uses a

Cobb-Douglas production function, yet with a different capital intensity αI ∈ (0, 1). Factors

of production are perfectly mobile across sectors and are paid at their marginal product :

wt = P1t A1t(1 − α)kα
1t = P2t A2t(1 − α)kα

2t = AIt(1 − αI)k
αI
It (3.10)

1 + rt = P1t A1tαkα−1
1t = P2t A2tαkα−1

2t = AItαIk
αI−1
It (3.11)

Where kit is the capital to labor ratio of sector i, Ait is the labor-augmenting technological

progress, whose growth rate, gi, is taken as exogenous and constant :

Ait+1 = (1 + gi)Ait (3.12)

(3.10) and (3.11) imply that the capital to labor ratios are equal across the two consump-

tion sectors (hence k1t = k2t). Moreover, the relative price of consumption goods is equal to

the ratio of TFP levels : P1t
P2t

= A2t
A1t

.

3.3.2 Preferences

In structural change models with non-homothetic preferences, the most commonly used

utility per period function, u, in the literature is the Stone-Geary utility function :

u(c1t, c2t) =
m(c1t − c, c2t + d)1−σ − 1

1 − σ
(3.13)

Where σ > 0 is the inverse of the IES, c and d are non-negative constants and m is

linearly homogeneous. Thus, with c = d = 0, preferences are homothetic, while they are non-

homothetic if c or d is positive. A knife-edge-condition relating preferences and technology

must be imposed to insure the existence of an equilibrium with a constant interest rate. To

avoid this issue, Boppart (2014) convincingly proposes to use a subclass of "price independent

generalized linearity" (PIGL) preferences. PIGL preferences are defined by their indirect

utility functions and are a natural starting point for structural change models because all

6. In addition to its Diamond structure, the outlined model differs with that of Boppart (2014) with respect

to several aspects. First, the investment sector uses labor as input and experiences technological progress (i.e.

αI = 1 and gI = 0 in Boppart (2014)). Otherwise, there would be no labor reallocations towards the investment

sector. Second, the asymptotic labor share of sector 1 is positive (θ = 0 in Boppart (2014)). Third, there is no

intratemporal heterogeneity across households (in Boppart (2014), individuals differ in their exogenous labor

endowment).

7. Herrendorf and Valentinyi (2008) provide evidence on the equality of capital intensities between manufac-

turing sector and service sector.
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preferences with a constant intertemporal elasticity of substitution belong to this class of

preferences. To parametrize the indirect utility function per period, I use one specification

proposed by Boppart (2014) :

V(P1, P2, e) =
1

1 − σ
(

e

Pθ
1 P1−θ

2

)1−σ − β

γ
(

P1

P2
)γ − 1

1 − σ
+

β

γ
(3.14)

Where V is the indirect utility function per period, Pi is the price of good i, e the expen-

diture level for the period. I impose σ < 1, γ < 1, β > 0 and θ ∈ [0, 1]. The restriction on σ

is made for capturing the empirically relevant cases. 8 A restriction on the expenditure level

e, stated below, must be imposed for V to be a valid indirect utility specification. 9 When

1 − σ > 0 and β > 0, the preferences are non-homothetic.

The demand functions are obtained as follows. Given an expenditure level e, the consump-

tion level of each good is given by the Roy’s identity. The expenditure in first period, e1t, and

the expenditure in second period, e2t, of a cohort-t individual are obtained by maximizing

the following lifetime indirect utility function :

V(P1t, P2t, e1t) + qV(P1t+1, P2t+1, e2t) (3.15)

Subject to the budget constraints (3.2).

The consumption levels and the expenditures levels are :

c1t =
θe1t

P1t
+

β

1 − σ
(

e1t

P2t
)σ(

P1t

P2t
)γ−1+θ(1−σ); d1t =

θe2t

P1t+1
+

β

1 − σ
(

e2t

P2t+1
)σ(

P1t+1

P2t+1
)γ−1+θ(1−σ)

(3.16)

c2t =
(1 − θ)e1t

P2t
− β

1 − σ
(

e2t

P2t
)σ(

P1t

P2t
)γ+θ(1−σ); d2t =

(1 − θ)e2t

P2t+1
− β

1 − σ
(

e2t

P2t+1
)σ(

P1t+1

P2t+1
)γ+θ(1−σ)

(3.17)

e1t = wt

(1+rt+1)
σ−1

σ

q (
Pθ

1t+1P1−θ
2t+1

Pθ
1tP

1−θ
2t

)
1−σ

σ

1 +
(1+rt+1)

σ−1
σ

q (
Pθ

1t+1P1−θ
2t+1

Pθ
1tP

1−θ
2t

)
1−σ

σ

(3.18)

e2t =
wt

1 + (1+rt+1)
σ−1

σ

q (
Pθ

1t+1P1−θ
2t+1

Pθ
1tP

1−θ
2t

)
1−σ

σ

1 + rt+1

q
(3.19)

And the two following inequalities must be fulfilled :

σβ2

(1 − σ)2
≤ (1 − θ)θ((

P2t

P1t
)γ(

e1t

Pθ
1tP

1−θ
2t

)1−σ)2 +
β(1 − 2θ − γ)

1 − σ
(

P2t

P1t
)γ(

e1t

Pθ
1 P1−θ

2

)1−σ (3.20)

8. Boppart (2014) estimates σ to 0.78. In section 3.3.4, I find a value of 0.65.

9. The Slutsky matrix must be negative semidefinite for V(P1, P2, e) to be a valid indirect utility specification

(see Boppart (2014) for more details). (3.20) and (3.21) insure this condition for young and old individuals.
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σβ2

(1 − σ)2
≤ (1 − θ)θ((

P2t+1

P1t+1
)γ(

e2t

Pθ
1t+1P1−θ

2t+1

)1−σ)2 +
β(1 − 2θ − γ)

1 − σ
(

P2t+1

P1t+1
)γ(

e2t

Pθ
1t+1P1−θ

2t+1

)1−σ

(3.21)

The non-homotheticity of preferences is visible in the fact that Engel curves are not linear

and the consumption ratios ( c1t
c2t

and d1t
d2t
) depend on relative prices and expenditure levels.

3.3.3 Equilibrium

Noting lit the labor share of sector i ∈ {1; 2; I}, the labor market clearing condition reads :

l1t + l2t + lIt = 1 (3.22)

The capital market clearing condition writes :

Ltst = YIt = (l1t+1k1t+1 + l2t+1k2t+1 + lIt+1k It+1)Lt+1 (3.23)

Where Yit is the output of sector i. For i ∈ {1; 2}, the market clearing condition for good i

writes :

Yit = Ltcit + qLt−1dit−1 (3.24)

Then, a dynamic competitive equilibrium is defined as follows :

Definition 3.7. A dynamic competitive equilibrium consists of allocations

(l1t, l2t, lIt, k1t, k2t, k It, c1t, c2t, st, d1t−1,d2t−1)t=1..∞ and prices (P1t, P2t, rt, wt)t=1..∞
such that :

(i) Agents maximize their lifetime indirect utility function (3.15) subject to the budget

constraints (3.2) and (3.3).

(ii) Firms maximize their profits.

(iii) All markets clear (i.e. equations (3.22) to (3.24) are satisfied).

(iv) Inequalities (3.20) and (3.21) are satisfied.

I will restrict the analysis to dynamic competitive equilibrium along which the interest

rate is constant (henceforth CGP). Then, along this path, wt , P1t and P2t grow respectively

at the constant rates (1 + gI)
1

1−αI ,
(1+gI)

1−α
1−αI

1+g1
and (1+gI)

1−α
1−αI

1+g2
according to (3.10) and (3.11).

The market clearing condition of the capital good gives the share of workers in the invest-

ment sector :

lIt = lI =
1 − αI

1 + R
σ−1

σ

q x
(3.25)

Where x = (( 1+g2

1+g1
)θ (1+gI)

1−α
1−αI

1+g2
)

1−σ
σ and R is the interest rate level on the CGP. Equilibrium
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on the consumption goods markets give l1t and l2t :

l1t =

θ(1 − α)(R
σ−1

σ

q x + R

(1+n)(1+gI)
1

1−αI

)

1 + R
σ−1

σ

q x
+

d(Rσ−1

qσ xσ + q
1+n (

R

q(1+gI)
1

1−αI

)σ)R
α(1−σ)
1−αI

(1 + R
σ−1

σ

q x)σ

Aσ
2t(

A2t
A1t

)γ−1+θ(1−σ)

A1t A
α(1−σ)
1−αI

It
(3.26)

l2t =

(1 − θ)(1 − α)(R
σ−1

σ

q x + R

(1+n)(1+gI)
1

1−αI

)

1 + R
σ−1

σ

q x
−

d(Rσ−1

qσ xσ + q
1+n (

R

q(1+gI)
1

1−αI

)σ)R
α(1−σ)
1−αI

(1 + R
σ−1

σ

q x)σ

Aσ
2t(

A2t
A1t

)γ−1+θ(1−σ)

A1t A
α(1−σ)
1−αI

It
(3.27)

Where d = β(1−α)σ

α

α(1−σ)
1−αI

I (1−σ)

( α(1−αI)
αI(1−α)

)α(σ−1).

Finally, the labor market clearing condition pins down the value of R, which depends on

both demographic variables. The result is in the next proposition :

Proposition 3.8. Assume
(

1+g2
1+g1

)γ+θ(1−σ)

(1+g2)1−σ(1+gI)
α(1−σ)
1−αI

< 1 :

(i) Fix n ∈ (−1, ∞). For every q ∈ (0, 1), there exist values for AI0, A20 and A10 such

that for all q greater than q, there exists a unique CGP.

(ii) Fix q ∈ (0, 1]. For every (n, n) ∈ (−1, ∞)2with n < n , there exist values for AI0, A20

and A10 such that for all n ∈ [n, n], there exists a unique CGP.

(iii) Along a CGP, the interest rate R is the unique solution of the following equation :

(1 − α)
R

(1 + n)(1 + gI)
1

1−αI

= αI + α
R

σ−1
σ

q
x (3.28)

(iv) For every (q, n, n) ∈ (0, 1]× (−1, ∞)2, n → R(q, n) is increasing on [n, n].

(v) For every (q, n) ∈ (0, 1)× (−1, ∞), q → R(q, n) is decreasing on [q, 1].

Proof. See Appendix D

Proposition 3.8 shows that along the CGP, the capital stock per worker and the interest

rate behave with longevity and fertility as in the one-sector model. As saving increases with

longevity, the capital per worker level increases and the interest rate decreases. The proof of

Proposition 3.8 makes clears that to insure the existence of a CGP, the inequalities (3.20)

and (3.21) must be dealt carefully. These inequalities depend on both longevity and fertility.

Therefore, when I make a shock on a demographic variable, I must prevent the violation of

these inequalities. (i) and (ii) are two ways to do this. As the goal of this section is to draw

various endogenous variables as functions of longevity and fertility, I will use the point (i)

and (ii) to choose the technology levels so as to draw the various curves on the "largest"

possible set. More precisely :

Definition 3.9. Fix q ∈ (0, 1]. Consider −1 < n < n and (AI0, A20, A10) ∈
(0, ∞)3 technology levels that insure the existence of a CGP for all n ∈ (n, n). Let
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g(q, n, t, AI0, A20, A10) be the CGP value of an endogenous variable of the model outlined

in section 3.3 where (n, t) ∈ [n, n] × [0, ∞). For all time t, assume that you can define

the function n → h(q, n, t, AI0, A20, A10) on (−1, ∞) whose restriction to [n, n] is equal to

g(q, n, t, AI0, A20, A10). Let n(q, t, AI0, A20, A10) and n(q, t, AI0, A20, A10) be respectively the

smallest and the largest solution to the following equation on (0, ∞) :

∂h

∂n
(q, n, t, AI0, A20, A10) = 0 (3.29)

With n(q, t, AI0, A20, A10) = a and n(q, t, AI0, A20, A10) = b if (3.29) has no solution, with

0 < a < b. Assume further that ∂n
∂t = ∂n

∂t = ∂n
∂Ai0

= ∂n
∂Ai0

= 0 for all (t, i) ∈ [0, ∞)× {1; 2; I}
so much that we can write n(q, t, AI0, A20, A10) = n(q) and n(q, t, AI0, A20, A10) = n(q).

Then, we can define Ag(q) the set of initial technology levels whose fertility thresholds

n and n are such that [n(q), n(q)] ⊂ [n, n]. When Ag(q) 6= ∅, we define [ng(q), ng(q)] an

interval that contains all the roots of the partial derivative of h. If (3.29) has no solution,

choose [ng(q), ng(q)] = [a, b].

Proceed similarly to define for fixed n, Bg(n) the set of initial technology levels such

that the longevity threshold q is such that the first partial derivative of the extension of

g(q, n, t, AI0, A20, A10) to (0, 1] (if it exists) does not cancel on (0, q]. And define similarly

[q
g
(n), qg(n)] the interval that contains all the roots of the first partial derivative of the

extension of g(q, n, t, AI0, A20, A10).

Definition 3.9 states formally how to choose initial technology levels such that I can

draw q → g(q, n, t, AI0, A20, A10) or n → g(q, n, t, AI0, A20, A10) on intervals that contain

all change of monotonicity points of the functions without violating the point (iv) of Defi-

nition 3.7. Note finally that for a variable g and a longevity level q ∈ (0, 1] (respectively

n ∈ (−1, ∞)), the non-emptiness of Ag(q) (respectively Bg(n)) is not guaranteed.

As a first step, I determine how aging affects the labor allocation when preferences are

homothetic (i.e. β = 0). Equivalently, this amounts to study how aging affects the asymptotic

labor allocation of the economy.

Proposition 3.10. Note l∗i the asymptotic labor share of sector i ∈ {1; 2; I}.

(i) q → l∗I
l∗i

and n → l∗I
l∗i

increases for i ∈ {1; 2} respectively on (0, 1] and (−1, ∞).

(ii)
l∗1
l∗2

does not depend on q, nor on n.

Proof. See Appendix E

In our framework, the old and the young have identical intratemporal preferences. If

we also assume that they are homothetic, then, according to Theorem 3.5, the aggregate

consumption share only depends on the relative price between the two goods. This relative

price only depends on the exogenous technology levels because the two sectors have the same

production functions. Thus,
l∗1
l∗2

is unaffected by the aging process (point (ii)). Point (i) states

that a longevity increase spurs labor reallocation from the consumption goods sectors to-

wards the investment sector. There are three effects at stake in this process : the "population

effect", the "allocation effect" and the effects of aging on the capital accumulation. From
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section 3.2, we know that the first two effects have opposite impacts on St
C1t

. In Appendix E,

I show that the "allocation effect" always dominates the "population effect". The effects on

the capital accumulation manifest themselves under two forms. First, as the consumption

sector and the investment sector use capital with different proportions, the capital deepe-

ning caused by a longevity increase creates labor reallocation. Given the relative demand,

if the investment sector is less (respectively more) capital intensive, then capital deepening

increases more (resp. less) the production of the consumption sector. Thus, labor reallocates

towards the investment sector (resp. the consumption sector) to compensate the difference of

production changes. Second, aging affects the wage, the interest rate levels and the price of

consumption goods, which directly impact St
C1t

. Consumption levels are linear in the wage be-

cause intratemporal preferences are homothetic and saving is linear in the wage because the

intertemporal elasticity of substitution is constant. Then, St
C1t

does not depend on the wage.

The change of the interest rate due to a longevity increase has an ambiguous effect on St
C1t

. On

the one hand, when the interest rate decreases, the young save less because the intertemporal

elasticity of substitution is smaller than 1. Then, st decreases, while c1t increases. On the

other hand, for the same reason, the old spend less : d1t−1 decreases. The capital deepening

due to a longevity increase increases (respectively decreases) the consumption goods price if

consumption sectors are less (resp. more) capital intensive that the investment sector. As St
C1t

positively depends on the consumption good prices, the indirect effect of aging on St
C1t

through

the consumption price is positive (resp. negative) if α < αI (resp. α > αI) . The total effect

of a longevity increase on
l∗I
l∗i

is independent of these parameters and is positive. Point (i) also

gives the impact of a fertility decrease on
l∗I
l∗i

, which is the opposite of that of a longevity in-

crease. Fertility acts on
l∗I
l∗i

as the longevity does, except that a fertility shock does not create

an "allocation effect". The absence of the "allocation effect" explains the difference of result

between the fertility decrease and the longevity increase. This underlines that the source of

aging is crucial to determine the impact of this process on the allocation of labor. The total

effect of aging on
l∗I
l∗i

is ambiguous and depends on the relative magnitude of the fertility and

the longevity shocks.

I now examine the labor reallocations caused by aging on the CGP when preferences are

non-homothetic. The labor reallocation between the consumption sectors and the investment

sector is easily obtained as a corollary of Proposition 3.10 :

Proposition 3.11. For any (q, n) ∈ (0, 1]× (−1, ∞), A lI
l1+l2

(q) and B lI
l1+l2

(n) are non-empty.

q → lIt
l1t+l2t

and n → lIt
l1t+l2t

increase for i ∈ {1; 2} respectively on any closed subinterval of

(0, 1] and (−1, ∞).

Proof. lIt
l1t+l2t

= 1
θ

l∗I
l∗1

. Then, according to Proposition 3.10, the functions q → lIt
l1t+l2t

and n →
lIt

l1t+l2t
are monotonic. Thus, A lI

l1+l2

(q) and B lI
l1+l2

(n) are non-empty and the variation of the

two functions are obtained from the point (i) of Proposition 3.10.

The non-homotheticity of preferences does not impact the labor reallocation between the

consumption sectors and the investment sector because the two consumption sectors use the
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same production. Thus, the study of lIt
l1t+l2t

is identical to that of
l∗I
l∗i

and the interpretation

of Proposition 3.11 is smilar to that of Proposition 3.10. In the next subsection, I provide a

numerical example of a simultaneous shock on fertility and longevity on lIt
l1t+l2t

.

The result suggests to study how aging affects the income per worker level. In a one-

sector model, the fact that aging stimulates the capital stock per worker implies that aging

increases the income per worker level. However, in a multi-sector framework, this implication

is not necessarily true. The income per worker writes :

yt = P1t A1tk
α
1tl1t + P2t A2tk

α
2tl2t + AItk

αI
It lIt (3.30)

Using (3.10) and (3.11) and the labor-market clearing condition (3.22), this can be written

as :

yt = P2t A2tk
α
2t(1 − lIt) + AItk

αI
It lIt (3.31)

From (3.31), we see that the capital stock per worker increase due to aging increases

income per worker. However, aging also affects lIt. Rewrite (3.31) as :

yt = P2t A2tk
α
2t + lIt(AItk

αI
It − P2t A2tk

α
2t) (3.32)

From (3.32), we see that the impact of aging on lIt can negatively impact the income per

worker level. For example, if the output per worker of the consumption sector is greater than

that of the investment sector, then a longevity increase implies, according to Propostion 3.11,

that labor flows towards the sector with the smaller output per worker, which reduces the

aggregate output per worker. The complete result is in the following proposition :

Proposition 3.12. Note y(n, q) the level of the aggregate output per worker on the CGP.

Fix q ∈ (0, 1]. Ay(q) 6= ∅. The mapping n → y(n, q) is as follows on [ny(q), ny(q)] :

(I) If α > αI , then n → y(n, q) is decreasing.

(II) If α < αI :

(i) If 1−σ
σ > ( (2−α+αI)(1−αI)+2

√
1−α+αI

αI−α ) αI
1−αI

, then n → y(n, q) starts decreasing, ends

decreasing and has exactly one local minimum.

(ii) If 1−σ
σ < ( (2−α+αI)(1−αI)+2

√
1−α+αI

αI−α ) αI
1−αI

, then n → y(n, q) is decreasing.

Proposition 3.13. Fix n ∈ (−1, ∞). By(n) 6= ∅. The mapping q → y(n, q) is as follows on

[q
y
(n), qy(n)] :

(I) If αI < 1/4 and α ∈ [4αI(1 − αI), αI +
√

αI ], then there exists −1 < n1 < n2 such

that :

(i) If n ∈ (−1, n1], then q → y(n, q) starts increasing, ends increasing and has exactly

one local minimum.

(ii) If n ∈ [n1, n2], then q → y(n, q) is U-shaped.

(II) If α > αI and αI > 1/4 or α /∈ [4αI(1 − αI), αI +
√

αI ] or if αI > 1/4 and α ∈
[max(2αI , 4αI(1 − αI), 3αI ], then there exists n3 > −1 such that : if n ∈ (−1, n3), then

q → y(n, q) is U-shaped.

(III) Otherwise, q → y(n, q) is increasing.
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Proof. See Appendix F

Propositions 3.12 and 3.13 show that contrary to the one-sector Diamond model, a lon-

gevity increase or a fertility decrease does not necessarily increase the aggregate output per

worker level. I have highlighted two channels through which aging acts on y(n, q). First, aging

implies a greater capital stock per worker in each sector. This increases y(n, q) and it is the

only channel at stake in the one-sector model. Second, aging changes the allocation of workers

across sectors. This effect increases (resp. decreases) y(n, q) if aging redirects labor towards

the sector with the greater (resp. smaller) output per worker. In our case, as sectors 1 and

2 have the same production function, they have the same output per worker. However, the

output per worker of these two sectors differs with that of the investment sector. Therefore,

the heterogeneity of production functions across sectors can create negative effects of aging

on y(n, q) if aging creates labor flows towards the sector with the smaller output per worker.

According to Proposition 3.11, a longevity increase redirects labor from the consumption sec-

tors towards the investment sector, while a fertility decrease causes the opposite labor flow.

Moreover, the more capital intensive sector is also the sector with the greater output per wor-

ker. Therefore, if αI > α, a longevity increase redirects labor towards the more productive

sector (sector I), which unambiguously increases y(n, q)(note that the case αI > α is in the

case (III) of Proposition 3.13). If αI < α, the two effects of a longevity increase on y(n, q) are

opposite. The contrary holds for a fertility decrease. If αI < α, the fertility decrease redirects

labor towards the more productive sector (sectors 1 and 2), which unambiguously increases

y(n, q) (case (I) of Proposition 3.12). However, when αI > α, the two effects of a fertility

decrease on y(n, q) are opposite.

Non-monotonic relationships between demographic variables and income per worker have

been highlighted in previous works. In a one-sector OLG model à la Yaari (1965), d’Albis

(2007) shows that the steady-state income per worker level is not monotonic with respect to

the population growth rate. Propositions 3.12 and 3.13 strongly echoe back this result given

that multi-period one-sector OLG models roughly behave as two-period multi-sector OLG

models (Balasko et al.(1980)).

I now examine the impact of aging on the labor allocation between consumption sectors.

Hence I study the variations of l1t
l2t

with respect to q and n along the CGP. (3.26) and (3.27)

imply that :

l1t

l2t
=

θ + d

( Rσ−1

qσ xσ+ q
1+n (

R

q(1+gI )

1
1−αI

)σ)R
α(1−σ)
1−αI (1+ R

σ−1
σ

q x)1−σ

(1−α)( R
σ−1

σ
q x+ R

(1+n)g

1
1−αI
I

)

Aσ
2t

A1t A

α(1−σ)
1−αI

It

( A2t
A1t

)γ−1+θ(1−σ)

1 − θ − d

( Rσ−1

qσ xσ+ q
1+n (

R

qg

1
1−αI
I

)σ)R
α(1−σ)
1−αI (1+ R

σ−1
σ

q x)1−σ

(1−α)( R
σ−1

σ
q x+ R

(1+n)g

1
1−αI
I

)

Aσ
2t

A1t A

α(1−σ)
1−αI

It

( A2t
A1t

)γ−1+θ(1−σ)

(3.33)

This ratio decreases with time because the expenditure elasticity of the good 2 is strictly
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greater than that of the good 1. I first analyze how it is impacted by n. As for
l∗I
l∗i

, there are two

channels at stake : the "population effect" and the effects of n on the capital accumulation.

The direction of the "population effect" is provided in the following lemma :

Lemma 3.14. Fix q ∈ (0, 1]. There exists µ(q) ∈ (−1, ∞) such that a decrease of n implies :

An increase (respectively a decrease) of l1t
l2t

through the "population effect" if n < µ(q)

(resp. if n > µ(q)).

Proof. See Appendix G

Point (i) of Lemma 3.14 shows that the direction of the "population effect" changes with n

in general equilibrium. 10 This means that the young consumption share of good 1 overcomes

the one of the old as fertility increases or equivalently that the expenditure level of the old

overcomes that of the young as fertility increases.

The effects of a fertility decrease on l1t
l2t

through the capital accumulation limit themselves

to the change of the real wage and the interest rate, because the two sectors use the same pro-

duction function. The aggregate relative demand does now depend on the real wage because

the intratemporal preferences are non-homothetic. When the real wage increases, the old and

the young spend more, which implies that they both reduce their consumption share of good

1. Recall from the discussion of section 3.2 that this is not sufficient to state that an increase

of the real wage decreases C1t
C2t

as we also have to check how the consumption shares of each

generation respond to a change of the real wage. In the present specification, the consumption

share of each generation does not depend on the real wage. This happens for two reasons. The

intertemporal preferences are homothetic, which implies that expenditure levels of the young

and the old are both proportional to their wage. Moreover, the wage levels of the young and

the old are proportional along the CGP. Then, the ratio of the two expenditure levels does

not depend on the real wage. This implies that the consumption share of each generation

does not depend on the real wage. Then, as a fertility decrease increases the real wage, this

creates a negative impact on l1t
l2t

. The role of the change of the interest rate is less transparent

as the expenditure levels of the young and the old vary with the interest rate in opposite way.

A decrease of the interest rate increases the expenditure level of the young and decreases

the one of the old ceteris paribus. This happens because the intertemporal elasticity of sub-

stitution is smaller than 1, then the young decrease their expenditures to save more, while

the old can spend more. This means that the interest rate change implies that young and

old change their consumption ratios in opposite direction and that the consumption share of

each generation changes. Then, the total effect of a change of the interest rate is ambiguous.

The following proposition gives some clues on the shape of the function n → l1t
l2t

:

Proposition 3.15. Fix q ∈ (0, 1]. A l1
l2

(q) 6= ∅. Let (AI0, A20, A10) ∈ A l1
l2

(q) and note

[n l1
l2

(q), n l1
l2

(q)] its associated interval. For all time t ≥ 0 :

(i) If 2
σ ≤ α

1−αI
, then n → l1t

l2t
is increasing on [n l1

l2

(q), n l1
l2

(q)].

10. This does not contradict the results of section 3.2 in which I claimed that for fixed prices, the direction of

the "population effect" is monotonic with respect to n.
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(ii) If 1
σ ≤ α

1−αI
≤ 2

σ , then n → l1t
l2t

is initially increasing, ends increasing and has one or

none interior maximum on [n l1
l2

(q), n l1
l2

(q)].

(iii) If 1 ≤ α
1−αI

≤ 1
σ , then n → l1t

l2t
is initially decreasing, ends increasing and has one or

none local maximum on [n l1
l2

(q), n l1
l2

(q)].

(iv) If α
1−αI

≤ 1, then n → l1t
l2t

is initially decreasing, ends decreasing and has one or none

local interior maximum on [n l1
l2

(q), n l1
l2

(q)].

Proof. See Appendix H

The main message of Proposition 3.15 is that the curve n → l1t
l2t

can take very different

shapes. 11 The main drivers of these shapes are the parameters α
1−αI

and 1
σ . α

1−αI
is the absolute

value of the elasticity of the real wage with respect to R, while σ controls the variation of the

expenditure levels with respect to the interest rate. When fertility increases, the greater is
α

1−αI
with respect to 1

σ , the greater is the effect of the decrease of the real wage relatively to

the direct effect of the interest rate.

I now turn to the study of q → l1t
l2t

. Longevity influences l1t
l2t

through the same two channels

as fertility does. However, it also creates an "allocation effect". Thus, I can decompose the

effect of q on l1t
l2t

into three effects : the "allocation effect", the "population effect" and the

effects of a longevity increase on the capital accumulation. These two latter are qualitatively

identical to the ones due to a fertility decrease. The direction of the "allocation effect" and

the "population effect" are obtained in the following lemma :

Lemma 3.16. (I) A longevity increase increases l1t
l2t

through the "allocation effect".

(II) There exists a fertility threshold κ such that :

(i) If n < κ, there exists q∗(n) ∈ (0, 1) such that a longevity increase decreases (resp.

increases) l1t
l2t

through the "population effect" if q < q∗(n) (resp. if q > q∗(n)).

(ii) If n ≥ κ, a longevity increase decreases l1t
l2t

through the "population effect".

Proof. See Appendix I

As the good 1 has a smaller expenditure elasticity than good 2, the increase of q implies

that both the young and the old increase their consumption share of good 1. Point (I) shows

that this positive force on l1t
l2t

is never counteracted by a change of the consumption share

of the old or the young in the total consumption. Thus, we expect that a longevity increase

increases more l1t
l2t

than a fertility decrease. To study q → l1t
l2t

, I use (3.28) to eliminate the

variable q in (3.33). Then, the problem is reduced to draw the function q → f (R(q, n)) for

fixed n ∈ (0, ∞), where f is given by :

f (R) = R
α(1−σ)
1−αI

(1 − αI
α + 1−α

α
R

n(1+gI)
1

1−αI

)1−σ( 1−α
α

R

n(1+gI)
1

1−αI

− αI
α + R

σ−1
σ +1x1−σ

n(1+gI)
σ

1−αI

)

( 1−α
α

R

n(1+gI)
1

1−αI

− αI
α )

1−σ( R

αn(1+gI)
1

1−αI

− αI
α )

(3.34)

11. From the proof of Proposition 3.15, the sign of the derivative of l1t
l2t

with respect to n is the one of a degree

3 polynomial. Thus, it is possible to state exact existence conditions for the local extrema. However, I choose not

to report them because their complexity make them non-informative.
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The complexity of the expression of f makes impossible the study of q → l1t
l2t

for all

parameters combination. However, the following proposition gives some clues on the shape

of the curve :

Proposition 3.17. Fix n ∈ (−1, ∞). B l1
l2

(n) 6= ∅. Note [q l1
l2

(n), 1] its associated interval.

(I) q → l1t
l2t

is initially decreasing on [q l1
l2

(n), 1].

(II) There exists χ ∈ (0, ∞), independent of n, such that if n ≤ χ :

(i) q → l1t
l2t

ends decreasing if α(1 − αI) >
(1−σ)2

σ .

(ii) q → l1t
l2t

ends increasing if α(1 − αI) <
(1−σ)2

σ .

(iii) If σ ∈ [ 1
2 , 1 − 1−αI

α ), q → l1t
l2t

is decreasing on [q l1
l2

(n), 1].

Proof. See Appendix J

Despite the absence of results on all the interval [q l1
l2

(n), 1], Proposition 3.17 shows an

interesting point : for any values of the model parameters, q → l1t
l2t

is initially decreasing.

This contrasts with the results of Proposition 3.15, according to which the curve n → l1t
l2t

is

initially increasing or initially decreasing depending on the values of αI , α and σ. This echoes

back the results on the impact of demographic variables on lIt
l1t+l2t

(Proposition 3.11) that

underline that the source of aging is crucial to examine the labor reallocations caused by the

aging process. This is also unexpected from the result of Lemma 3.16 according to which a

longevity increase increases l1t
l2t

through the "allocation effect" as this creates an additional

positive force on l1t
l2t

in comparison with a fertility decrease. This shows that the two types of

demographic shocks do not only differ with respect to the presence or not of the "allocation

effect" but also with respect to the way they affect the accumulation of inputs and with

respect to the "population effect". In the next subsection, I numerically complete the results

of Proposition 3.17 by assigning values to the different parameters.

3.3.4 Numerical analysis

In this subsection, I assign numerical values to the various parameters of the model to

determine the impact of a longevity and a fertility shift on the CGP labor allocation of the

US economy. I consider that a period of the model equals to 40 years and that young agents

enter the workforce at the age of 25. I assume that the US economy is on the CGP on the

period 1970-2010 and I calibrate the model on this period.

Herrendorf et al.(2014) are precious guides for the numerical calibration of multi-sector

models. They underline that we have to decide whether we interpret consumption and pro-

duction functions as value added components of final consumption and value added produc-

tion functions or respectively as final expenditure consumption and final consumption pro-

duction functions. Here I follow a final expenditure approach. It means that I use consump-

tion measures data to calibrate the model. Then, the production side at the sectoral level of

the model does not have a direct empirical counterpart. More precisely, I use NIPA data of

the Bureau of Economic Analysis (BEA), which collects data on manufacturing and services
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consumption as well as purchasing prices of each good on the period 1970-2010. Consistent

with Boppart (2014), I observe that the consumption share of manufacturing goods grows at

a constant rate, which implies that θ = 0. I set β equal to 1. For α and αI , I use the esti-

mates of Herrendorf and Valentinyi (2008). The authors underline that estimating produc-

tion functions in multi-sector models is much more challenging than estimating an aggregate

production function. The reason is that sectors do not only use capital and labor as inputs

but also other goods produced by the other sectors as inputs. One-sector models do not face

this issue since all the intermediate goods are ultimately produced from capital and labor.

Herrendorf and Valentinyi (2008) propose to estimate sectoral production functions as if all

the intermediate goods used by a sector are produced by this sector with capital and labor.

Thus, I must warn the reader that the production functions used in the calibration are not

the actual production functions used by the US manufacturing or services sectors, but fic-

tive production functions that consider that each sector produces intermediate goods itself

with capital and labor. Put in other words, lit represents the share of workers involved in the

production of good i and not the share of workers employed by sector i.

The remaining parameters to estimate are σ, γ, g1, g2, gI , A10, A20, AI0, q, n. I regress the

log of the relative price between consumption goods on time to find 1+g2

1+g1
and A20

A10
. Then,

I regress the log of income per worker on time to find (1 + gI)
1

1−αI and A
1

1−αI
I0 . Relative to

demographic variables, q is identified as the life expectancy at age 65 of the cohort born in

1905, which is obtained in Bell et al.(1992). The population growth rate on the period is

computed from Table 7 of the BEA, from which I find n = 0.52. Then, I compute σ from

(3.28) for the annual interest rate to equate 4.34% (World Bank database). Then, I regress

the log of the ratio of total expenditures to the price of services to find (1 + g2)(1 + gI)
α

1−αI .

This allows to deduce (1 + g2) and (1 + g1). Finally, I regress the log of the consumption

share of manufacturing good to obtain γ and
Aσ

20
A10

. This allows to obtain A10 and A20.

Table 3.1 summarizes the values of the parameters. 12

I first use these values to draw the curves q → l1t
l2t

and n → l1t
l2t

to complete my theoretical

results of the previous section.

I find that both curves are decreasing. Therefore a longevity increase and a fertility de-

crease redirects labor between consumption sectors in opposite direction. I use these curves

to determine the magnitude of these labor flows. For example, if the life expectancy at 65 in-

creases from 16 to 20, then the ratio of labor in manufacturing to labor in services decreases

by 20.9%. If the life expectancy at 65 increases from 16 to 25, then the ratio decreases by

32.4%. A contrario, if the fertility rate decreases from 1.52 to 1.25, then the ratio increases by

20.9%. If the fertility rate decreases from 1.52 to 1, then the ratio increases by 60.7%. Hence

realistic demographic changes produce significant labor flows between consumption sectors.

However, as a longevity increase and a fertility decrease have an opposite impact on l1t
l2t

, aging

does not necessarily create large labor flows between these two sectors. For instance, if the

12. For these parameters, the general solution produces a non-realistic path, hence to analyze the transitional

dynamics, I would have to recalibrate the model. Thus, I focus here on the CGP.
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Parameter Value

β 1

θ 0

α 0.35

αI 0.28

σ 0.65

γ 0.29

1 + g1 2.62

1 + g2 1.21

(1 + gI)
1

1−αI 3.12

A10 97.05

A20 195

A
1

1−αI
I0 483

Table 3.1 – Parameter values used in the numerical analysis

Figure 3.4 – q → l1t
l2t

for n = 1.52, t = 2010 Figure 3.5 – n → l1t
l2t

for q = 0.4, t = 2010

life expectancy at 65 increases from 16 to 25 and if the fertility rate decreases from 1.52 to

1, then l1t
l2t

decreases by 9%. Note that these magnitudes depend on the period at which the

labor shares are computed. In Figure 3.6, I plot the time evolution of l1t
l2t

along the CGP for

different demographic parameters. As l1t
l2t

converges with time to 0, these shocks dissipate over

time.

I also plot the curves q → lIt
l1t+l2t

and n → lIt
l1t+l2t

. They confirm my theoretical results and

they allow to assess the magnitude of the labor reallocations between the investment sector

and the consumption sectors. If life expectancy at 65 increases from 16 to 20, then lIt
l1t+l2t

increases by 14.7%. If life expectancy at 65 increases from 16 to 25, then lIt
l1t+l2t

increases by

31.3%. If the fertility rate decreases from 1.52 to 1, then lIt
l1t+l2t

decreases by 13%. Hence rea-

listic demographic shocks also create significant labor reallocations between the investement

sector and the consumption sectors. Finally, if the life expectancy at 65 increases from 16

to 25 and if the fertility rate decreases from 1.52 to 1, then lIt
l1t+l2t

increases by 14.5%. Note
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Figure 3.6 – Time evolution of l1t
l2t

for different demographic parameters

that along the CGP, lIt
l1t+l2t

is time-invariant, hence these changes hold for all future periods

provided that the economy stays on the CGP.

Figure 3.7 – q → lIt
l1t+l2t

for n = 1.52 Figure 3.8 – n → lIt
l1t+l2t

for q = 0.4

Second, I determine the impact of demographic variables on income per worker level. I

find that aging unambiguously increases income per worker. Table 3.2 reports the impact on

the income per worker level of different demographic shocks.

Lastly, I assess the magnitude of the three channels through which aging affects the labor

ratios. Rewrite (3.33) as :

l1t

l2t
=

d

( Rσ−1

qσ xσ+ q
1+n (

R

q(1+gI )

1
1−αI

)σ)R
α(1−σ)
1−αI (1+ R

σ−1
σ

q x)1−σ

(1−α)( R
σ−1

σ
q x+ q

1+n
R

qg

1
1−αI
I

)

Aσ
2t

A1t A

α(1−σ)
1−αI

It

( A2t
A1t

)γ−1+θ(1−σ)

1 −−d

( Rσ−1

qσ xσ+ q
1+n (

R

qg

1
1−αI
I

)σ)R
α(1−σ)
1−αI (1+ R

σ−1
σ

q x)1−σ

(1−α)( R
σ−1

σ
q x+ q

1+n
R

qg

1
1−αI
I

)

Aσ
2t

A1t A

α(1−σ)
1−αI

It

( A2t
A1t

)γ−1+θ(1−σ)

(3.35)
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Figure 3.9 – q → yt for n = 1.52 Figure 3.10 – n → yt for q = 0.4

l1t
l2t

lIt
l1t+l2t yt

q = 0.4, n = 0.25 20.9% -6.3% 6%

q = 0.4, n = 0 60.7% -13% 13.2%

q = 0.5, n = 0.52 -20.9% 14.7% 3.7%

q = 0.625, n = 0.52 -32.4% 31.3% 7.4%

q = 0.625, n = 0 -9% 14.5% 22%

Table 3.2 – Percentage change of l1t
l2t

, lIt
l1t+l2t , yt when (q, n) changes from (0.4, 0.52).

To neutralize the general equilibrium effects, I maintain constant the interest rate R in

(3.35). To neutralize the population effect I maintain constant the term q
1+n in (3.35). Finally,

the remaining dependence with respect to q of l1t
l2t

is the allocation effect. I proceed similarly

for lIt
l1t+l2t

. Table 3.3 reports the impact of each effect on the labor ratios when the two others

are neutralized when the life expectancy at 65 increases to 25 and the fertility rate decreases

to 1.

Relative to the impact of aging on lIt
l1t+l2t

, we observe that it is mainly driven by a com-

petition between the allocation effect and the population effect. As predicted by the theory,

the allocation effect diminishes lIt
l1t+l2t

, while the population effect increases lIt
l1t+l2t

. These two

effects are of non-negligible order. Relative to the impact of aging on l1t
l2t

, the three effects

are significant. Both the allocation effect and the population effect decrease l1t
l2t

, yet general

equilibrium effects increase l1t
l2t

by a large amount, which leaves the total effect as relatively

small.

l1t
l2t

lIt
l1t+l2t

Population effect -39.1% -38.8%

Allocation effect -35.4% 56.3%

General equilibrium effects 58% 1.36%

Table 3.3 – Percentage change of l1t
l2t

and lIt
l1t+l2t due to each effect
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3.4 Conclusion

This paper examined the impact of aging on the labor allocation of a stylized multi-sector

economy. There are three effects at stake in this process. A longevity shift directly modifies

the consumption levels of individuals and changes the ratio of young to old people. In partial

equilibrium, I found that these two effects change the aggregate relative demand between

consumption goods if and only if the intratemporal preferences are non-homothetic or not

identical between young and old individuals and that these two effects have opposite conse-

quences on the aggregate relative demand between capital good and consumption good. Fi-

nally, as aging affects the accumulation of production factors, there are general equilibrium

effects that create labor reallocations. In a two-period OLG model with two consumption

goods and one capital good, I studied the direction of the labor flows between sectors caused

by aging on a path satisfying the Kaldor facts. Concerning the labor flows between consump-

tion sectors and the investment sector, I argued that, depending to its source, aging may

have a different impact : a longevity increase spurs labor reallocation towards the invest-

ment sector, whereas a fertility decrease spurs labor reallocation towards the consumption

sectors. Concerning the labor flows between consumption sectors, I also showed that lon-

gevity and the population growth rate do not act similarly. For example, for low longevity

values, increasing longevity always redirects labor from the production of services towards

the production of manufacturing goods while under certain parameters specifications, a fer-

tility decrease creates an opposite labor reallocation. I then calibrated the model on the US

economy to examine the impact of realistic demographic shocks on the CGP labor allocation

between sectors. I found that both a longevity increase and a fertility decrease significantly

affect the CGP labor allocation. Yet, because a longevity increase and a fertility decrease act

in opposite direction, the impact of aging on the labor allocation is not necessarily of high

magnitude. For example, if life expectancy at 65 increases from 16 years to 25 years and the

population growth rate decreases from 1.52 to 1, then the ratio of labor in manufacturing to

labor in services decreases by 9%, while the ratio of labor in investment sector to labor in

consumption sectors increases by 14.5%.

The main contribution of the paper is theoretical : it explains and characterizes how dif-

ferent assumptions on preferences and production functions create channels through which

aging affects the labor allocation of a stylized multi-sector economy. This should stimulate

and guide future empirical research on the labor allocation impacts of aging. A more quan-

titative analysis could be pursued. In my framework, old and young agents have the same

preferences. This could be relaxed by allowing old individuals to home produce some goods

as documented by Hurst and Aguiar (2005) to see how this affects the results.
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3.5 Appendix A

The existence and uniqueness of st is guaranteed by the strict concavity of the functions u

and v. Note Lt the Lagrangian of the maximization problem solved by a cohort-t individual.

Lt = u(c1t, c2t) + qv(d1t, d2t) + λt(wt − P1tc1t − P2tc2t −
q

Rt+1
(d1tP1t+1 + d2tP2t+1)) (3.36)

Where λt is the Lagrange multiplier associated to the lifetime budget constraint. Use the

first-order condition (FOC) for c1t and c2t and the first period budget constraint to get :

u1(c1t,
wt − P1tc1t − st

P2t
)− P1t

P2t
u2(c1t,

wt − P1tc1t − st

P2t
) = 0 (3.37)

Use Inada conditions and the strict concavity of u to prove that the LHS of (3.37) is a

decreasing function of c1t from ∞ to −∞ on [0, wt−st
P1t

]. Then, I can define c1(st) the unique

solution to (3.37), whose derivative is given by the implicit function theorem :

c′1(st) =
1

P2t

u12 − P1t
P2t

u22

u11 − 2 P1t
P2t

u12 + ( P1t
P2t
)2u22

(3.38)

Where the arguments of the various functions have been omitted for notational conve-

nience. Use now the first-order condition (FOC) for d1t and d2t and the second period budget

constraint to get :

v1(d1t,

Rt+1

q st − d1t
P1t+1

P2t+1
)− P1t+1

P2t+1
v2(d1t,

Rt+1

q st − d1t
P1t+1

P2t+1
) = 0 (3.39)

Proceed as for c1t to prove that (3.39) has a unique solution d1(st, q), whose partial deri-

vatives are given by :

∂d1

∂st
(st, q) =

(−Rt+1)

P2t+1q

v12 − P1t+1

P2t+1
v22

v11 − 2 P1t+1

P2t+1
v12 + ( P1t+1

P2t+1
)2v22

(3.40)

∂d1

∂q
(st, q) =

Rt+1

P2t+1q2
st

v12 − P1t+1

P2t+1
v22

v11 − 2 P1t+1

P2t+1
v12 + ( P1t+1

P2t+1
)2v22

(3.41)

Use now the FOCs for c1t and d1t to get :

u1(c1(st),
wt − P1tc1(st)− st

P2t
) =

Rt+1P1t

P1t+1
v1(d1(st, q),

Rt+1

q st − d1(st,q)
P1t+1

P2t+1
) (3.42)

(3.42) has a unique solution because st is unique This defines implicitly st as a function of

q. Differentiate (3.42) with respect to q and use (3.38), (3.41) and (3.40) to get :

∂st

∂q
=

R2
t+1

P2
2t+1q2

st

v2
21−v22v11

v11−2
P1t+1
P2t+1

v12+(
P1t+1
P2t+1

)2v22

1
P2

2t

u2
21−u22u11

u11−2
P1t
P2t

u12+(
P1t
P2t

)2u22

+
R2

r+1

qP2
2t+1

v2
21−v22v11

v11−2
P1t+1
P2t+1

v12+(
P1t+1
P2t+1

)2v22

(3.43)
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The concavity of u and v implies the following inequalities :

v2
21 − v22v11 < 0 (3.44)

u2
21 − u22u11 < 0 (3.45)

v11 − 2
P1t+1

P2t+1
v12 + (

P1t+1

P2t+1
)2v22 < 0 (3.46)

u11 − 2
P1t

P2t
u12 + (

P1t

P2t
)2u22 < 0 (3.47)

This proves that ∂st
∂q > 0. Rewrite ∂st

∂q as :

∂st

∂q
=

st

q

1

P2
2t+1q

R2
t+1P2

2t

u2
21

−u22u11

u11−2
P1t
P2t

u12+(
P1t
P2t

)2u22

v2
21

−v22v11

v11−2
P1t+1
P2t+1

v12+(
P1t+1
P2t+1

)2v22

+ 1

<
st

q
(3.48)

This proves that
∂(

st
q )

∂q is negative.

3.6 Appendix B

(i) Longevity is allocation neutral if and only the following equalities are true for all (q, n)

and any price vector :

(
∂c1t

∂q
+

q

1 + n

∂d1t−1

∂q
)(c2t +

q

1 + n
d2t−1) = (

∂c2t

∂q
+

q

1 + n

∂d2t−1

∂q
)(c1t +

q

1 + n
d1t−1) (3.49)

⇔ (1 + n)2(c2t
∂c1t

∂q
− c1t

∂c2t

∂q
) + q(1 + n)(c2t

∂d1t−1

∂q
+ d2t−1

∂c1t

∂q
− d1t−1

∂c2t

∂q
− c1t

∂d2t−1

∂q
)

+ q2(d2t−1
∂d1t−1

∂q
− d1t−1

∂d2t−1

∂q
) = 0 (3.50)

⇔





c2t
∂c1t
∂q = c1t

∂c2t
∂q

d2t−1
∂d1t−1

∂q = d1t−1
∂d2t−1

∂q

c2t
∂d1t−1

∂q + d2t−1
∂c1t
∂q = d1t−1

∂c2t
∂q + c1t

∂d2t−1

∂q

(3.51)

The two first equalities imply that intratemporal preferences are homothetic. Thus, there

exists µ1 and µ2 which only depend on good prices such that : c1t = µ1c2t and d1t−1 = µ2d2t−1.

Thus the third equality can be written as :

c2t
∂µ2d2t−1

∂q
+ d2t−1

∂µ1c2t

∂q
= µ2d2t−1

∂c2t

∂q
+ µ1c2t

∂d2t−1

∂q
(3.52)
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⇔ c2t
∂d2t−1

∂q
(µ2 − µ1) = d2t−1

∂c2t

∂q
(µ2 − µ1) (3.53)

⇔ µ2 = µ1 or c2t
∂d2t−1

∂q
= d2t−1

∂c2t

∂q
and µ2 6= µ1

When µ2 = µ1 the preferences of the young and the old are identical. Consider now the

case c2t
∂d2t−1

∂q = d2t−1
∂c2t
∂q and µ2 6= µ1.

As intratemporal preferences are homothetic, consumption levels are linear functions of

expenditure levels and the slope is independent of q. Thus, c2t
∂d2t−1

∂q = d2t−1
∂c2t
∂q is equivalent

to
∂(

e2t−1
e1t

)

∂q = 0. I now show that if this condition holds for all q and any price vector, then the

intertemporal elasticity of substitution (IES) is constant and equal to 1. Because intratem-

poral preference are homothetic, I can write utility functions u and v as u(., .) = G(g(., .))

and v(.) = H(h(., .)) where g and h are homogeneous functions of degree 1 and G and H

are increasing. Thus, for a cohort-t individual, the lifetime utility function can be written as

follows :

Ut = G(g(c1t, c2t)) + qH(h(d1t, d2t)) (3.54)

Ut = G(e1tz1t) + qH(e2tz2t) (3.55)

Where zit only depends on the good prices. The Euler equation yields :

G′(e1tz1t)

H′(e2tz2t)
=

Rt+1z2t

z1t
(3.56)

Which can be written as e2t =
1

z2t
(H′)−1( z1t

Rt+1z2t
G′(e1tz1t))

Using the lifetime budget constraint, I get that e1t solves :

e1t +
q

Rt+1

1

z2t
(H′)−1(

z1t

Rt+1z2t
G′(e1tz1t)) = wt (3.57)

I implicitly differentiate (3.57) to obtain :

∂e1t

∂q
+

e2t

Rt+1
+

qz2
1tG

′′(e1tz1t)

R2
t+1z2

2t

((H′)−1)′(H′(e2tz2t))
∂e1t

∂q
= 0 (3.58)

Note that ((H′)−1)′(x) = 1
H′′((H′)−1(x))

Thus,

∂e1t

∂q
=

(− e2t
Rt+1

)

1 +
qz2

1t

R2
t+1z2

2t

G′′(e1tz1t)
H′′(H′(e2tz2t))

(3.59)

I proceed similarly to obtain :

∂e2t−1

∂q
=

(− e2t−1

Rt
)

q
Rt

+
Rtz2

1t−1

z2
2t−1

H′′(e2t−1z2t−1)
G′′(G′(e1t−1z1t−1))

(3.60)
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Using (3.59) and (3.60), the condition
∂(

e2t−1
e1t

)

∂q = 0 can be written as :

e1t
∂e2t−1

∂q
= e2t−1

∂e1t

∂q
(3.61)

⇔
e1t
Rt

q
Rt

+
Rtz2

1t−1

z2
2t−1

H′′(e2t−1z2t−1)
G′′(G′(e1t−1z1t−1))

=

e2t
Rt+1

1 +
qz2

1t

R2
t+1z2

2t

G′′(e1tz1t)
H′′(H′(e2tz2t))

(3.62)

⇔ Rt+1e1t

e2t
[1 +

qz2
1t

R2
t+1z2

2t

G′′(e1tz1t)

H′′(H′(e2tz2t))
] = Rt[

q

Rt
+

Rtz
2
1t−1

z2
2t−1

H′′(e2t−1z2t−1)

G′′(G′(e1t−1z1t−1))
] (3.63)

Rt+1e1t

e2t
[1 +

qz2
1t

R2
t+1z2

2t

G′′(e1tz1t)

H′′(H′(e2tz2t))
] = q +

R2
t z2

1t−1

z2
2t−1

H′′(e2t−1z2t−1)

G′′(G′(e1t−1z1t−1))
(3.64)

Note that the RHS of (3.64) depends on Rt while the LHS does not. So for (3.64) to hold

for all q and any price level, it must be that R2
t

H′′(e2t−1z2t−1)
G′′(G′(e1t−1z1t−1))

does not depend on Rt for any

price vector. Particularly for the price vector faced by cohort-t, thus G′′(e1tz1t)
R2

t+1 H′′(H′(e2tz2t))
does not

depend on Rt+1 As the RHS of (3.64) does not depend on Rt+1, the LHS must not depend on

Rt+1 for (3.64) to be satisfied. This implies that Rt+1e1t

e2t
does not depend on Rt+1. Rewrite the

lifetime budget constraint of a cohort-t individual as :

1 + q
e2t

Rt+1e1t
=

wt

e1t
(3.65)

As e2t
Rt+1e1t

does not depend on Rt+1, e1t does not depend on Rt+1. Thus, I can write e2t as

e2t = DRt+1 where D does not depend on Rt+1. Use now the Euler equation :

G′(e1tz1t) =
Rt+1z2t

z1t
H′(DRt+1z2t) (3.66)

As e1t does not depend on Rt+1, I can integrate (3.66) with respect to Rt+1 to get that the

function H(.) has the following form :

H(x) = A ln(x) + B (3.67)

Then, the Euler equation implies that G(.) has the same form. Thus, the IES is constant

and equal to 1. Reciprocally, if the IES is constant and equal to 1, then
∂(

e2t−1
e1t

)

∂q = 0. This

proves (i).

(ii) Sufficiency is proved in the text. From the text, longevity is population neutral if

and only if for all q and any price vector d1t−1

c1t
= d2t−1

c2t
, which can be written as c2t

c1t
= d2t−1

d1t−1
.

Generally c2t
c1t

depends on Rt+1 while d2t−1

d1t−1
depends on Rt. Thus for the equality to be true for

any price vector, it must be that the consumption shares do not depend on the expenditure

levels, hence intratemporal preferences must be homothetic. They must also be identical for
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the consumption shares to equal. This proves (ii).

(iii) Sufficiency is proved in the text. To prove necessity, note that :

∂(C1t
C2t

)

∂q
= 0 (3.68)

⇒ (
∂c1t

∂q
+

q

1 + n

∂d1t−1

∂q
+

d1t−1

1 + n
)(c2t +

q

1 + n
d2t−1) = (

∂c2t

∂q
+

q

1 + n

∂d2t−1

∂q
+

d2t−1

1 + n
)(c1t +

q

1 + n
d1t−1)

(3.69)

⇒ (1 + n)2(c2t
∂c1t

∂q
− c1t

∂c2t

∂q
) + q2(d2t−1

∂d1t−1

∂q
− d1t−1

∂d2t−1

∂q
)

+ (1 + n)(c2td1t−1 + q(c2t
∂d1t−1

∂q
+ d2t−1

∂c1t

∂q
)− c1td2t−1 − q(d1t−1

∂c2t

∂q
+ c1t

∂d2t−1

∂q
)) = 0

(3.70)

⇒





c2t
∂c1t
∂q = c1t

∂c2t
∂q

d2t−1
∂d1t−1

∂q = d1t−1
∂d2t−1

∂q

q(c2t
∂d1t−1

∂q + d2t−1
∂c1t
∂q ) + c2td1t−1 = q(d1t−1

∂c2t
∂q + c1t

∂d2t−1

∂q ) + c1td2t−1

(3.71)

The two first equalities imply that intratemporal preferences are homothetic. Thus, there

exists µ1 and µ2 which only depend on good prices such that : c1t = µ1c2t and d1t−1 = µ2d2t−1.

Thus, the third equality can be written as :

µ2c2td2t−1 + q(c2t
∂µ2d2t−1

∂q
+ d2t−1

∂µ1c2t

∂q
) = q(µ2d2t−1

∂c2t

∂q
+ µ1c2t

∂d2t−1

∂q
) + µ1c2td2t−1

(3.72)

⇒ (µ2 − µ1)c2td2t−1 + c2t
∂d2t−1

∂q
(µ2 − µ1) = d2t−1

∂c2t

∂q
(µ2 − µ1) (3.73)

⇒ µ2 = µ1 or c2td2t−1 + qc2t
∂d2t−1

∂q
= qd2t−1

∂c2t

∂q
and µ2 6= µ1

When µ2 = µ1 the preferences of the young and the old are identical. Consider now the

case c2td2t−1 + qc2t
∂d2t−1

∂q = qd2t−1
∂c2t
∂q and µ2 6= µ1. The equality can be written as :

1

q
+

∂ ln(d2t−1)

∂q
=

∂ ln(c2t)

∂q
(3.74)

⇒ 1

q
=

∂ ln( c2t
d2t−1

)

∂q
=

∂ ln( e1t
e2t−1

)

∂q
(3.75)
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Where the last equality follows from the fact that the consumption ratio only depends on

q through the ratio of the expenditure levels, as the intratemporal preferences are homothetic.

I compute
∂ ln(

e1t
e2t−1

)

∂q from the proof of (i) :

∂ ln( e1t
e2t−1

)

∂q
=

1

e1t

∂e1t

∂q
− 1

e2t−1

∂e2t−1

∂q
(3.76)

And with (3.59) and (3.60) :

∂ ln( e1t
e2t−1

)

∂q
=

(− e2t
e1tRt+1

)

1 +
qz2

1t

R2
t+1z2

2t

G′′(e1tz1t)
H′′(H′(e2tz2t))

+
1

q +
R2

t z2
1t−1

z2
2t−1

H′′(e2t−1z2t−1)
G′′(G′(e1t−1z1t−1))

(3.77)

Thus, (3.77) writes :

1

q
=

(− e2t
e1tRt+1

)

1 +
qz2

1t

R2
t+1z2

2t

G′′(e1tz1t)
H′′(H′(e2tz2t))

+
1

q +
R2

t z2
1t−1

z2
2t−1

H′′(e2t−1z2t−1)
G′′(G′(e1t−1z1t−1))

(3.78)

I now use the same argument as in the proof of (i) to show that R2
t

H′′(e2t−1z2t−1)
G′′(G′(e1t−1z1t−1))

does

not depend on Rt. Thus 1
R2

t+1

G′′(e1tz1t)
H′′(H′(e2tz2t))

does not depend on Rt+1, which implies from (3.78)

that e2t
e1tRt+1

does not depend on Rt+1. From the proof of (i), it implies that the IES is equal to1.

This implies that
∂ ln(

e1t
e2t−1

)

∂q = 0, hence (3.75) is not satisfied. Therefore, the only possibility

for
∂(

C1t
C2t

)

∂q to equal 0 for all (q, n) and any price vector is that preferences are homothetic and

identical. This proves (iii).

3.7 Appendix C

The fact that St
Ct

is non-constant with respect to n is obvious from (3.9). Assume that

preferences exist such that St
Ct

does not depend on q for any price vector. This implies that for

every q, n and any price vector :

d

dq
(

st

c1t + c2t +
q

1+n (d1t−1 + d2t−1)
) = 0 (3.79)

⇔
dst
dq

st
=

(1 + n)( dc1t
dq + dc2t

dq ) + q( dd1t−1

dq + dd2t−1

dq ) + d1t−1 + d2t−1

(1 + n)(c1t + c2t) + q(d1t−1 + d2t−1)
(3.80)

Note that the LHS of (3.80) does not depend on n. Thus, for (3.80) to hold, it must be

that the RHS does not depend on n. This is true if for every q and any price vector :

(
dc1t

dq
+

dc2t

dq
)q(d1t−1 + d2t−1) = (c1t + c2t)(q(

dd1t−1

dq
+

dd2t−1

dq
) + d1t−1 + d2t−1) (3.81)

Under the equality (3.81), the RHS of (3.80) rewrites :
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dst
dq

st
=

dc1t
dq + dc2t

dq

c1t + c2t
(3.82)

From Lemma 3.1 and 3.2, dst
dq > 0 and de1t

dq = P1t
dc1t
dq + P2t

dc2t
dq < 0. Therefore, (3.82) does

not hold when P1t = P2t. This contradicts the fact that St
Ct

does not depend on q for any price

vector.

3.8 Appendix D

Fix (q, n) and the initial technology levels. Consider the allocation of the text defined by :

(a) the consumption levels obtained by the maximization of (3.15) subject to (3.2) and

(3.3).

(b) the capital to labor ratio obtained by firms’ profit maximization.

(c) the labor shares (3.26), (3.27) and (3.25) obtained by imposing the equilibrium on the

capital good market, the good 1 market and the good 2 market.

(d) a constant interest rate equal to R.

According to Definition 3.7, this will be the allocation of a dynamic competitive equili-

brium if it clears the labor market and if the two inequalities (3.20) and (3.21) are satisfied.

The labor market clearing condition writes :

l1t + l2t + lIt = 1 (3.83)

⇔
(1 − α)(R

σ−1
σ

q x + R

(1+n)(1+gI)
1

1−αI

)

1 + R
σ−1

σ

q x
+

1 − αI

1 + R
σ−1

σ

q x
= 1 (3.84)

⇔ αI + α
R

σ−1
σ

q
x =

(1 − α)R

(1 + n)(1 + gI)
1

1−αI

(3.85)

The LHS of (3.85) decreases with R from ∞ to αI , while the RHS of (3.85) increases from

0 to ∞. Thus, there exists a unique admissible value for R (noted R(q, n)) for the allocation

defined previously to be a dynamic competitive equilibrium. This proves (iii) and the unique-

ness of the CGP upon existence. (iv) and (v) are a direct application of the implicit function

theorem. For the allocation defined to be a dynamic competitive equilibrium, there remains

to check that (3.20) and (3.21) are satisfied. (3.20) writes :

σβ2

(1 − σ)2
≤ (1 − θ)θ(X(n, q, t))2 +

β(1 − 2θ − γ)

1 − σ
X(n, q, t) (3.86)

Where

X(n, q, t) = A1−σ
2t A

α(1−σ)
1−αI

It (
A1t

A2t
)γ+θ(1−σ)y(

xR(q,n)
σ−1

σ − α
1−αI

q

1 + xR(q,n)
σ−1

σ

q

)1−σ (3.87)
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And y = (α
α

1−αI
I (1 − α)( α(1−αI)

(1−α)αI
)α)1−σ.

If
(

1+g2
1+g1

)γ+θ(1−σ)

(1+g2)1−σ(1+gI)
α(1−σ)
1−αI

< 1, X(n, q, t) increases with time. Moreover, X → (1 − θ)θX2 +

β(1−2θ−γ)
1−σ X is always increasing when it takes positive values. Thus, if the inequality

(3.86) is satisfied at time 0, it will be satisfied at all periods. Consider now q ∈ (0, 1). I

have that Ωn = minq∈[q,1](
xR(q,n)

σ−1
σ − α

1−αI

q

1+ xR(q,n)
σ−1

σ

q

) > 0. Then, choose A20, A10 and AI0 such that

A1−σ
20 A

α(1−σ)
1−αI

I0 ( A10
A20

)γ+θ(1−σ) is high enough in order for the following inequality to be satisfied :

σβ2

(1 − σ)2
≤ (1− θ)θ(A1−σ

20 A
α(1−σ)
1−αI

I0 (
A10

A20
)γ+θ(1−σ)yΩn)

2 +
β(1 − 2θ − γ)

1 − σ
A1−σ

20 A
α(1−σ)
1−αI

I0 (
A10

A20
)γ+θ(1−σ)yΩn

(3.88)

Then, for all q greater than q, (3.86) is satisfied. Proceed similarly for the inequality

(3.21), which can be written as :

σβ2

(1 − σ)2
≤ (1 − θ)θ(Y(n, q, t))2 +

β(1 − 2θ − γ)

1 − σ
Y(n, q, t) (3.89)

Where

Y(n, q, t) = A1−σ
2t A

α(1−σ)
1−αI

It (
A1t

A2t
)γ+θ(1−σ)y(

xR(q,n)
1− α

1−αI

q

1 + xR(q,n)
σ−1

σ

q

)1−σ (3.90)

Ψn = minq∈[q,1](
xR(q,n)

1− α
1−αI

q

1+ xR(q,n)
σ−1

σ

q

) > 0. Then, choose A20, A10 and AI0 such that

A1−σ
20 A

α(1−σ)
1−αI

I0 ( A10
A20

)γ+θ(1−σ) is high enough in order for the following inequality to be satis-

fied :

σβ2

(1 − σ)2
≤ (1− θ)θ(A1−σ

20 A
α(1−σ)
1−αI

I0 (
A10

A20
)γ+θ(1−σ)yΨn)

2 +
β(1 − 2θ − γ)

1 − σ
A1−σ

20 A
α(1−σ)
1−αI

I0 (
A10

A20
)γ+θ(1−σ)yΨn

(3.91)

Among the two pairs of initial conditions, choose the one that yields the highest value for

A1−σ
20 A

α(1−σ)
1−αI

I0 ( A10
A20

)γ+θ(1−σ). Then (i) holds.

To prove (ii), fix now q ∈ (0, 1]. Consider (n, n) ∈ (−1, ∞)2. Ωq = minn∈[n,n](
xR(q,n)

σ−1
σ − α

1−αI

q

1+ xR(q,n)
σ−1

σ

q

)

and Ψq = minn∈[n,n](
xR(q,n)

1− α
1−αI

q

1+ xR(q,n)
σ−1

σ

q

) are both positive. Then choose A20, A10 and AI0 such that

the two following inequalities are satisfied :
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σβ2

(1 − σ)2
≤ (1− θ)θ(A1−σ

20 A
α(1−σ)
1−αI

I0 (
A10

A20
)γ+θ(1−σ)yΩq)

2 +
β(1 − 2θ − γ)

1 − σ
A1−σ

20 A
α(1−σ)
1−αI

I0 (
A10

A20
)γ+θ(1−σ)yΩq

(3.92)

σβ2

(1 − σ)2
≤ (1− θ)θ(A1−σ

20 A
α(1−σ)
1−αI

I0 (
A10

A20
)γ+θ(1−σ)yΨq)

2 +
β(1 − 2θ − γ)

1 − σ
A1−σ

20 A
α(1−σ)
1−αI

I0 (
A10

A20
)γ+θ(1−σ)yΨq

(3.93)

Then (ii) holds.

3.9 Appendix E

The asymptotic labor share in sector 1 and 2 is obtained by taking the limit of the ex-

pressions (3.26) and (3.27) when t tends to ∞. Then,

l∗1 =

θ(1 − α)(R
σ−1

σ

q x + R

(1+n)(1+gI)
1

1−αI

)

1 + R
σ−1

σ

q x
(3.94)

l∗2 =

(1 − θ)(1 − α)(R
σ−1

σ

q x + R

(1+n)(1+gI)
1

1−αI

)

1 + R
σ−1

σ

q x
=

1 − θ

θ
l∗1 (3.95)

Therefore, the ratio
l∗1
l∗2
= θ

1−θ does not depend on demographic variables. This proves (ii).

The asymptotic labor share of the investment sector is given by (3.25). Then,

l∗I
l∗1

= θ
1 − α

1 − αI

1

(R
σ−1

σ

q x + R

(1+n)(1+gI)
1

1−αI

)
(3.96)

Note first that if R is held constant in (3.96),
l∗I
l∗1

increases with q, which shows that the

"allocation effect" dominates the "population effect". To study q → l∗I
l∗1

, fix n ∈ (−1, ∞) and

eliminate q in the last expression from (3.28) :

l∗I
l∗1

= θ
1 − α

1 − αI

1
R

(1+n)α(1+gI)
1

1−αI

− αI
α

(3.97)

As R is a decreasing function of q, I get that q → l∗I
l∗1

is increasing.

To study n → l∗I
l∗1

, fix q ∈ (0, 1] and eliminate n in the expression (3.96) from (3.28) :

l∗I
l∗1

= θ
1 − α

1 − αI

1

R
σ−1

σ

q x(1 + 1
1−α ) +

αI
1−α

(3.98)

As R increase with n and σ < 1, n → l∗I
l∗1

is increasing.
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3.10 Appendix F

I first have to compute y(n, q). The income per worker yt is given by :

yt = P1t A1tk
α
1tl1t + P2t A2tk

α
2tl2t + AItk

αI
It lIt (3.99)

Using that k1t = k2t and the formula of the relative price, I get :

yt = P1t A1tk
α
1t(l1t + l2t) + AItk

αI
It lIt (3.100)

And use now (3.10) and (3.11) to eliminate P1t, k1t and k It. Use also the expressions of the

labor shares (3.25), (3.26) and (3.27) to get :

yt = A
1

1−αI
It (

αI

R
)

αI
1−αI

1 + αI
1−α + 1

1−α
R

σ−1
σ

q x

1 + R
σ−1

σ

q x
(3.101)

Then, y(n, q) = A
1

1−αI
I0 ( αI

R )
αI

1−αI
1+

αI
1−α+

1
1−α

R
σ−1

σ
q x

1+ R
σ−1

σ
q x

. Fix q ∈ (0, 1]. The dependence of y(n, q)

on n is only due to the dependence of y(n, q) on R. The derivative of y(n, q) with respect to

R has the sign of the following polynomial :

J(
R

σ−1
σ

q
x) = −(

R
σ−1

σ

q
x)2 αI

(1 − αI)

+
R

σ−1
σ

q
x[(

1 − σ

σ
)(αI − α)− αI(2 − α + αI)]−

αI(1 + αI − α)

(1 − αI)
(3.102)

This suffices to prove that Ay(q) 6= ∅. Note first that if αI < α, then J is always negative.

This proves the point (I) of Proposition 3.12.

The determinant of J is positive if 1−σ
σ is not in the following interval :

[
(2 − α + αI)(1 − αI)− 2

√
1 − α + αI

αI − α

αI

1 − αI
,
(2 − α + αI)(1 − αI) + 2

√
1 − α + αI

αI − α

αI

1 − αI
]

(3.103)

And for the two roots to be positive, 1−σ
σ must be greater than (2−α+αI)(1−αI)+2

√
1−α+αI

αI−α
αI

1−αI
.

This proves (II).

Fix now n ∈ (−1, ∞). Use (3.28) to rewrite y(n, q) as :

y(n, q) = A
1

1−αI
I0 (

αI

R
)

αI
1−αI

α − αI +
R

(1+n)(1+gI)
1

1−αI

α − αI + (1 − α) R

(1+n)(1+gI)
1

1−αI

(3.104)

y(n, q) depends on q only through R. The sign of the derivative of y(n, q) with respect to

R is the one of the following polynomial :
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K(
R

n(1 + gI)
1

1−αI

) = −(
R

(1 + n)(1 + gI)
1

1−αI

)2αI(1− α)+
R

(1 + n)(1 + gI)
1

1−αI

(α− αI)(α− 2αI)− αI(α− αI)
2

(3.105)

This proves that By(n) 6= ∅. The determinant of K is positive if α > 4αI(1 − αI). And

the two roots are positive if and only if (α − αI)(α − 2αI) > 0.

Assume now that α > 4αI(1 − αI) and (α − αI)(α − 2αI) > 0. K has two positive roots

β1 and β2 with β1 < β2. To draw the curve q → y(n, q), we need to determine the position of

R(1, n) with respect to β1(1 + n)(1 + gI)
1

1−αI and β2(1 + n)(1 + gI)
1

1−αI .

R(1, n) < β2(1 + n)(1 + gI)
1

1−αI

⇐⇒ 2ααI xR(1, n)
σ−1

σ < α2 − 3αIα +
√

∆K (3.106)

Where ∆K is the discriminant of K.The LHS of (3.106) decreases with n on (−1, ∞) from

∞ to 0. Hence (3.106) is possibly true if and only if the RHS of (3.106) is positive. This is

true if α − 3αI > 0. Otherwise, this is equivalent to :

√
∆K > α(3αI − α) ⇐⇒ ∆K > α2(3αI − α)2 (3.107)

⇐⇒ α2 − 2ααI − αI(1 − αI) > 0 (3.108)

⇐⇒ α > αI +
√

αI (3.109)

I need to check if this condition is compatible with α > 4αI(1 − αI) and (α − αI)(α −
2αI) > 0 and α < 3αI . Necessarily for (α − αI)(α − 2αI) > 0 to be true, it must be that

α > 2αI . For 3αI to be greater than αI +
√

αI , it must be that αI >
1
4 . Then 3αI > 4αI(1− αI).

Hence I need to choose αI >
1
4 and α ∈ [max(2αI , 4αI(1 − αI), αI +

√
αI), 3αI ]. Note that

for αI >
1
4 , max(2αI , 4αI(1 − αI), αI +

√
αI) = max(2αI , 4αI(1 − αI)). Then, under these

conditions, (3.106) is true for n large enough. This proves the second set of conditions of (II).

I now determine the position of R(1, n) with respect to β1(1 + n)(1 + gI)
1

1−αI :

R(1, n) < β1(1 + n)(1 + gI)
1

1−αI

⇐⇒ 2ααI xR(1, n)
σ−1

σ < α2 − 3αIα −
√

∆K (3.110)

As previously, I only need to know the sign of the RHS of (3.110) :

α2 − 3αIα −
√

∆K > 0

⇐⇒




−α2 + 2ααI + αI(1 − αI) > 0

α > 3αI
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Which is equivalent to α > 3αI and α < αI +
√

αI . These conditions must be compatible

with α > 4αI(1− αI) and (α − αI)(α − 2αI) > 0. These four conditions are equivalent to α >

3αI and α < αI +
√

αI and α > 4αI(1− αI). The first two are only possible together if αI <
1
4 .

Then the conditions can be written as αI <
1
4and α ∈ [max(3αI , 4αI(1− αI)), αI +

√
αI ]. Note

finally that for αI <
1
4 , max(3αI , 4αI(1 − αI)) = 4αI(1 − αI). Then, under these conditions, I

can choose n such that (3.110) is satisfied.

This completes the proof of Proposition 3.13.

3.11 Appendix G

Fix q ∈ (0, 1]. A decrease of n increases (respectively decreases) l1t
l2t

through the "popula-

tion effect" if d1t−1

d2t−1
>

c1t
c2t

(respectively d1t−1

d2t−1
<

c1t
c2t
). Because good 1 has smaller expenditure-

elasticity than good 2 and because old and young have the same intratemporal preferences :

d1t−1

d2t−1
>

c1t

c2t
⇐⇒ e2t−1 < e1t (3.111)

From (3.18) and (3.19), this is equivalent to R < (1 + gI)
1

σ(1−αI ) x. n → R(q, n)
1
σ is increa-

sing from 0 to ∞ on (−1, ∞). Therefore, there exists a threshold µ(q) such that if n < µ(q)

(respectively n > µ(q))), then d1t−1

d2t−1
>

c1t
c2t

(resp d1t−1

d2t−1
<

c1t
c2t

). This proves that Lemma 3.14

holds.

3.12 Appendix H

Fix q ∈ (0, 1]. From (3.33), the variation of C1t
C2t

with respect to n are the ones of

( Rσ−1

qσ xσ+ q
1+n (

R

q(1+gI )

1
1−αI

)σ)R
α(1−σ)
1−αI (1+ R

σ−1
σ

q x)

(1+ R
σ−1

σ
q x)σ( R

σ−1
σ

q x+ R

(1+n)g

1
1−αI
I

)
= H(n). Eliminate the direct dependence with res-

pect to n in the expression of H by using (3.28) :

H(n) = G(R(q, n)) =
( xσ

qσ + αI q1−σ(1+gI)
1−σ
1−αI

1−α + α(1+gI)
1−σ
1−αI R

σ−1
σ

(1−α)qσ )R
(1−σ)( α

1−αI
−1)

(1 + R
σ−1

σ

q x)1−σ

( 1
1−α

R
σ−1

σ

q x + αI
1−α )

(3.112)

Rewrite G(R) as follows :

G(R) =
(A + BR

σ−1
σ )(R

α
1−αI

−1
+ R

α
1−αI

− 1
σ

q x)1−σ

(CR
σ−1

σ + D)
(3.113)

The sign of the first derivative of G is the one of the following function :
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P(R
σ−1

σ ) = BC
x

q
(σ

α

1 − αI
− 1)R3 σ−1

σ

+ R2 σ−1
σ [BCσ(

α

1 − αI
− 1) + BD

x

q
(σ

α

1 − αI
− 2) +

x

q
ACσ

α

1 − αI

+R
σ−1

σ [AD
x

q
(σ

α

1 − αI
− 1)+ AC(σ

α

1 − αI
+ 1−σ)+ BD(σ

α

1 − αI
−σ− 1)]+ ADσ(

α

1 − αI
− 1)

(3.114)

Rewrite the polynomial P(X) as P(X) = a3X3 + a2X2 + a1X + a0.

Note that the first derivative of G cancels at most three times. Thus, you can apply the

procedure outlined in Definition 3.9 and the set A l1
l2

(q) is not the empty set.

(i) If 2
σ ≤ α

1−αI
, then a3, a2, a1, a1, a0 are all positive. Then, n → G(R(q, n)) is increasing.

(ii) If 1
σ ≤ α

1−αI
≤ 2

σ , then a3 and a0 are positive. Thus P is initially positive, ends positive

and has at most two roots on [0, ∞). This proves (ii).

(iii) If 1 ≤ α
1−αI

≤ 1
σ , then a3 is negative, while a0 is positive. Thus, P is initially positive,

ends negative and has 1 or 3 roots on [0, ∞). This proves (iii).

(iv) If α
1−αI

≤ 1, then a3 and a0 are negative. Thus P is initially negative, ends negative

and has at most two roots on [0, ∞). This proves (iv).

3.13 Appendix I

(I) Set a = q
1+n , write (3.33) as :

l1t

l2t
=

d

( Rσ−1

qσ xσ+a( R

q(1+gI )

1
1−αI

)σ)R
α(1−σ)
1−αI (1+ R

σ−1
σ

q x)1−σ

(1−α)( R
σ−1

σ
q x+a R

qg

1
1−αI
I

)

Aσ
2t

A1t A

α(1−σ)
1−αI

It

( A2t
A1t

)γ−1+θ(1−σ)

1 − d

( Rσ−1

qσ xσ+a( R

qg

1
1−αI
I

)σ)R
α(1−σ)
1−αI (1+ R

σ−1
σ

q x)1−σ

(1−α)( R
σ−1

σ
q x+a R

qg

1
1−αI
I

)

Aσ
2t

A1t A

α(1−σ)
1−αI

It

( A2t
A1t

)γ−1+θ(1−σ)

(3.115)

l1t

l2t
=

d

(Rσ−1xσ+a( R

(1+gI )

1
1−αI

)σ)R
α(1−σ)
1−αI (q+R

σ−1
σ x)1−σ

(1−α)(R
σ−1

σ x+a R

g

1
1−αI
I

)

Aσ
2t

A1t A

α(1−σ)
1−αI

It

( A2t
A1t

)γ−1+θ(1−σ)

1 − d

(Rσ−1xσ+a( R

(1+gI )

1
1−αI

)σ)R
α(1−σ)
1−αI (q+R

σ−1
σ x)1−σ

(1−α)(R
σ−1

σ x+a R

g

1
1−αI
I

)

Aσ
2t

A1t A

α(1−σ)
1−αI

It

( A2t
A1t

)γ−1+θ(1−σ)

(3.116)

To get the direction of the allocation effect, differentiate the previous expression with

respect to q, while a and R are maintained fixed. Thus, an increase of q increases l1t
l2t

through

the "allocation effect".
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(I I) Fix n ∈ (−1, ∞). From the proof of Lemma 3.14, a longevity increase l1t
l2t

through

the "population effect" if R < (1 + gI)
1

σ(1−αI ) x. q → R(q, n) is decreasing from ∞ to R(1, n)

on (0, 1]. Thus, if R(1, n) < (1 + gI)
1

σ(1−αI ) x (respectively R(1, n) > (1 + gI)
1

σ(1−αI ) x), then

the curve is inverted-U shape (resp. decreasing). As n → R(1, n) increases from 0 to ∞ on

(−1, ∞), I can define κ the fertility level such that R(1, n) = (1+ gI)
1

σ(1−αI ) x. This proves (II).

3.14 Appendix J

A tedious calculation tells us that the extrema of f must solve the following equation :

1−α
α

R

(1+n)(1+gI)
1

1−αI

+ ( σ−1
σ + 1) R

σ−1
σ +1x1−σ

(1+n)(1+gI)
σ

1−αI

1−α
α

R

(1+n)(1+gI)
1

1−αI

− αI
α + R

σ−1
σ +1x1−σ

(1+n)(1+gI)
σ

1−αI

=

1−α
α

(1−σ)R

(1+n)(1+gI)
1

1−αI

1−α
α

R

(1+n)(1+gI)
1

1−αI

− αI
α

− α(1 − σ)

1 − αI

−
1−α

α
R(1−σ)

(1+n)(1+gI)
1

1−αI

1 − αI
α + 1−α

α
R

(1+n)(1+gI)
1

1−αI

+

R

α(1+n)(1+gI)
1

1−αI

R

α(1+n)(1+gI)
1

1−αI

− αI
α

(3.117)

As R goes to ∞, the LHS tends to 1, while the RHS tends to 1 − α(1−σ)
1−αI

. This proves

that the extrema of f are upper-bounded and that B l1
l2

(n) is not the empty set. Moreover,

as R → f (R) ends increasing, q → l1t
l2t

is initially decreasing. This proves (I). To prove (II),

evaluate the derivative of f at R(1, n). Use (3.28) to eliminate the terms R(1, n)
σ−1

σ in the

expression. I get that f ′(R(1, n)) > 0 if and only if :

R(1, n)

1 + n
[

1 − α

α(1 + gI)
1

1−αI

+ (
σ − 1

σ
+ 1)

x−σ

(1 + gI)
σ

1−αI

(
(1 − α)R(1, n)

α(1 + n)(1 + gI)
1

1−αI

− αI

α
)]

>

(1 + R(1,n)x−σ

(1+n)(1+gI)
σ

1−αI

)Q( R(1,n)

(1+n)(1+gI)
1

1−αI

)

(1 − αI
α + 1−α

α
R(1,n)

(1+n)(1+gI)
1

1−αI

)( R(1,n)

α(1+n)(1+gI)
1

1−αI

− αI
α )

(3.118)

Where

Q(X) =
1 − α

α
(1−σ)X(

X

α
− αI

α
)− [

α(1 − σ)

1 − αI
(

X

α
− αI

α
)− X

α
](1− αI

α
+

1 − α

α
X)(

1 − α

α
X− αI

α
)

(3.119)

(3.118) can be written as H( R(1,n)
1+n ) > 0, where H is a fourth degree polynomial, which

is independent on n. The coefficient of the monomial of degree 4 is x−σ

(1+gI)
σ

1−αI

( α(1−αI)
1−σ + σ−1

σ ).
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When this coefficient is positive (resp. negative), there exists ̺1 >
(1+gI)

1
1−αI αI

(1−α)
(resp. ̺2 >

(1+gI)
1

1−αI αI

(1−α)
), such that H is positive (resp. negative) above ̺1 (resp. ̺2). Define χ1 as the

threshold for n such that for n ≤ χ1, R(1,n)
n ≥ max(̺1, ̺2). χ1 exists because n → R(1,n)

n is

decreasing from ∞ to (1+gI)
1

1−αI αI

(1−α)
according to (3.28). This proves (II)(i) and (II)(ii). To prove

(II)(iii), note first that when σ >
1
2 , the LHS of (3.117) is positive for R >

αI
1−α (1 + n)(1 +

gI)
1

1−αI . Moreover, when 1 − α(1−σ)
1−αI

< 0, the RHS of (3.117) has a negative limit in ∞. As the

RHS of (3.117) is a function, independent of n, of R
1+n , there exists φ >

(1+gI)
1

1−αI αI

(1−α)
such that

the RHS of (3.117) is negative for all R > (1 + n)φ. This means that (3.117) has no solution

greater than φ(1 + n). Note now that if n is smaller than a threshold χ2, R(1, n) is greater

than φ(1 + n), which proves that q → l1t
l2t

has no extrema on [q(n), 1]. Take χ = min(χ1, χ2)

to complete the proof.



Conclusion

In this dissertation, I studied the link between longevity and economic growth from OLG

models. In the first chapter, I used the framework of Chakraborty (2004), in which longe-

vity depends on public health expenditures, to determine the impact of the health policy

on economic growth and welfare. In the second chapter, I proposed an endogenous growth

model in which agents can spend resources to live longer in retirement period to analyze

the joint dynamics of health expenditures and income and to assess the growth impacts of

health expenditures. In the third chapter, longevtiy is an exogenous variable and I assessed

its impact on the income level and the labor allocation of a multi-sector economy. My results

of the first two chapters highlight that health expenditures exert both positive and nega-

tive effects on economic growth when it is driven by capital accumulation. On the one hand,

health expenditures increase longevity which increases the propensity to save (Bloom et al.

(2003), Chakraborty (2004)). On the other hand, they decrease the disposable income, which

decreases savings. This explains why in the first chapter I found that the violation of Inada

conditions by the survival function implies that health expenditures reduce the growth rate

in low-income countries. I also characterized the steady-state income level as a function of

the tax rate that finances health expenditures : it is decreasing or inverted U-shaped. Hence

health expenditures can be detrimental to economic development. Finally, I showed that a

positive impact of health expenditures on income is neither sufficient nor necessary for health

expenditures to improve welfare. In the second chapter, when individuals choose the level of

their health expenditures, I noticed the possibility for the negative effects of health expendi-

tures to always overcome their positive effects. This prevents the economy from perpetually

growing. More importantly, the condition for this to happen is not always contradictory with

that that insures perpetual growth in the same economy except that health expenditures are

not possible. Put in other words, health expenditures create a strong negative intergeneratio-

nal externality in this case by annihilating any possibility of growth for future generations.

I also found that health expenditures can increase the growth rate of the economy, hence

they can create a positive intergenerational externality. A calibration of the model to OECD

countries suggests that this case is the most likely one. In the third chapter, as I considered

exogenous longevity improvements, this only creates a greater propensity to save. While in

a one-sector Diamond model this is sufficient to state that a longevity increase increases in-

come per worker, I underlined here that it is no more sufficient in a multi-sector economy. The

reason is that the longevity improvement can redirect labor towards sectors with a smaller

output per worker. I also decomposed and characterized the impact of a longevity increase

on the labor allocation. A calibration of the model on the US economy suggests that these
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effects are significant.

To keep the models analytically tractable, I used simple frameworks. They could be enriched

to obtain more quantitative answers to our various questions. Particularly, Chapter 3 could

be pursued by introducing social security and endogenous retirement. This would give a bet-

ter picture of the economic consequences of the aging process. The analysis of the first two

chapters could also be pursued econometrically. As previously reported, there is no empirical

consensus on the causal impact of life expectancy on economic growth. My results suggests

that the impact of a life expectancy improvement on economic growth depends on whether

it is costly or not. Disentangling the costly longevity improvements from the exogenous ones

could reconcile some empirical findings on the health-growth nexus. Theoretically, drawing

on Chapter 2 and Chapter 3 to build a growth model in which there exists a health sector

could be promising. Given the specificity of health in terms of demand and production, this

could give further insights on the links bewteen health expenditures and economic growth.
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Résumé 

Mots Clés 

Abstract 

Keywords 

Cette thèse s’intéresse à la relation de long-
terme entre la longévité et le développement 
économique. Dans le premier chapitre, j’analyse 
l’impact des dépenses de santé sur la 
croissance économique et le bien-être. Pour 
cela, j’étudie l’influence du taux d’imposition 
dans une économie avec temps de vie 
endogène (Chakraborty (2004)). Je détermine le 
taux d’imposition qui maximise le taux de 
croissance. Je montre notamment que celui-ci 
est nul dans les économies à faible revenu. Puis 
je m’intéresse aux variations du niveau de 
production par travailleur dans l’état stationnaire 
par rapport au taux d’imposition. Je montre que 
cette fonction est décroissante ou en U inversé. 
Enfin, j’étudie le taux d’imposition qui maximise 
le bien-être dans l’état stationnaire. Dans le 
second chapitre, je propose un modèle pour 
étudier l’impact sur la croissance de dépenses 
de santé choisies par les agents. En effet, je 
développe un modèle à générations imbriquées 
avec croissance endogène dans lequel les 
individus peuvent dépenser des ressources pour 
vivre plus longtemps dans leur période de 
retraite. Je donne une caractérisation complète 
de l’équilibre général dynamique puis je 
détermine l’impact sur la croissance économique 
des dépenses de santé. Celles-ci peuvent 
empêcher la croissance ou lui être nécessaires. 
Une calibration du modèle aux pays de l’OCDE 
suggère que cette dernière possibilité est la plus 
probable. Enfin, le troisième chapitre étudie 
l’impact théorique du vieillissement sur 
l’allocation sectorielle des travailleurs. Pour cela, 
je développe un modèle multisectoriel dans 
lequel j’examine les conséquences sur le revenu 
par travailleur et l’allocation sectorielle des 
travailleurs d’un choc de longévité et de fertilité. 
Je montre que contrairement aux modèles 
unisectoriels, le revenu par travailleur n’est pas 
forcément monotone par rapport aux variables 
démographiques. Des chocs démographiques 
réalistes produisent des mouvements non-
négligeables de travailleurs.

This dissertation is interested in the long-run 
relationship between longevity and economic 
development. In the first chapter, I analyse the 
impact of health expenditures on economic 
growth and welfare. For this, I study the 
influence of the tax rate in an economy à la 
Chakraborty (2004). I first determine the 
growth-maximizing tax rate, which is shown to 
be 0 in low-income countries. Second, I show 
that the steady-state income level is an inverted 
U-shaped function or a decreasing function of 
the tax rate. Third, I study the tax rate that 
maximizes the steady-state welfare level. In the 
second chapter, I propose a theoretical model 
to study the growth impacts of health 
expenditures chosen by the agents. Indeed, I 
develop a Diamond model with endogenous 
growth in which young individuals can spend 
resources to increase their longevity in 
retirement period. I give a full characterization of 
the dynamic general equilibrium and determine 
the growth impacts of health expenditures. They 
can speed up or slow down economic growth. 
They can be a barrier or a necessity for growth 
to take place. A calibration to OECD countries 
suggests that the latter case is the most likely 
one. Finally, the third chapter studies the 
theoretical impact of the aging process on the 
sectorial labor allocation. To this aim, I develop 
a multi-sector two-period overlapping 
generations model in which I examine the 
consequences of both a longevity shift and a 
fertility shift on the labor allocation of the 
economy and on the income per worker level. I 
show that contrary to one-sector models, the 
income per worker level is not necessarily 
monotonic with respect to demographic 
variables. Realistic demographic shocks are 
also shown to create significant labor 
reallocation across sectors.

croissance économique, longévité, générations 
imbriquées, changement structurel, 
vieillissement, temps de vie endogène, santé et 
développement

economic growth, longevity, overlapping 
generations, structural change, aging, 
endogenous lifetime, health and development
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