
HAL Id: tel-01493810
https://theses.hal.science/tel-01493810

Submitted on 22 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exemplar based texture synthesis : models and
applications
Lara Raad Cisa

To cite this version:
Lara Raad Cisa. Exemplar based texture synthesis : models and applications. General Mathematics
[math.GM]. Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLN042�. �tel-01493810�

https://theses.hal.science/tel-01493810
https://hal.archives-ouvertes.fr

NNT : SACLN

THESE DE DOCTORAT

DE

L’UNIVERSITE DE PARIS-SACLAY

PREPAREE A

L’ECOLE NORMALE SUPERIEURE DE CACHAN

(ECOLE NORMALE SUPERIEURE DE PARIS-SACLAY)

ÉCOLE DOCTORALE N◦574
Eocle doctorale de mathématiques Hadamard (EDMH)

Spécialité de doctorat : Mathématiques appliquées

Par

Mme Lara Raad

Exemplar Based Texture Synthesis: Models and Applications

Thèse présentée et soutenue à Cachan, le  octobre :

Composition du Jury:

M. Yann Gousseau, Professeur, Télécom ParisTech, Président du Jury

M. Jean-François Aujol, Professeur, Institut de Mathématiques de Bordeaux, Rapporteur

M. Gabriel Peyré, Directeur de recherche CNRS, Université Paris Dauphine, Rapporteur

M. Javier Portilla, Professeur,CSIC, Rapporteur M. Pablo Musé, Professeur, Universidad de la

Republica, Examinateur

Mme. Agnès Desolneux, Directrice de recherche CNRS, ENS Paris-Saclay, Directrice de thèse

M. Jean-Michel Morel, Professeur des Universités, ENS Paris-Saclay, Co-directeur de thèse

Version of March ,  at :.

To Petra and Pierre

Contents

 Introduction 

 Locally Gaussian models 

. Introduction . 

. The patch Gaussian model . 

. The locally Gaussian texture synthesis algorithm 

. Experiments . 

. Conclusion . 

 Conditional Gaussian model:

a multiscale algorithm 

. Introduction . 

. Gaussian patches . 

. Conditional Gaussian models . 

. A multiscale generalization . 

. Experiments . 

. Conclusion . 

 Midway patch blending 

. Introduction . 

. Optimal transport - midway equalization algorithm 

. Midway blending . 

. Experiments . 

. Conclusion . 

 Can we emulate large textures? 

. Introduction . 

. Large natural textures . 

. Exemplar based texture synthesis methods . 

. Applying the classical methods . 

. Masking repetitions with anamorphosis . 

. Random mosaics . 

. Synthesizing low frequencies . 

. Mixing texture images . 

. Conclusion . 



A Efros and Freeman Image Quilting

Algorithm for Texture Synthesis 

A. Introduction . 

A. Algorithm Description . 

A. Implementation . 

A. Experiments . 

A. Conclusion . 

Bibliography 



Introduction

Motivation

La synthèse de texture par l’exemple a pour but de générer à partir d’un échantillon de texture de

nouvelles images qui sont perceptuellement équivalentes à celle de départ. Les méthodes peuvent

se regrouper en deux catégories : les méthodes paramétriques et les méthodes non-paramétriques

à base de patchs. Le premier groupe a pour but de caractériser une image de texture à partir d’un

ensemble de statistiques qui définissent un processus stochastique sous-jacent. Les résultats visuels

de ces méthodes sont satisfaisants, mais seulement pour un groupe réduit de types de texture.

La synthèse pour des images de textures ayant des structures très contrastées peut échouer. La

deuxième catégorie d’algorithme découpe, puis recolle de manière consistente des voisinages lo-

caux de l’image de départ pour générer de nouvelles configurations plausibles de ces voisinages (ou

patchs). Les résultats visuels de ces méthodes sont impressionnants. Néanmoins, on observe sou-

vent des répétitions verbatim de grandes parties de l’image d’entrée qui du coup peuvent être re-

produites plusieurs fois. De plus, ces algorithmes peuvent diverger, reproduisant de façon itérative

une partie de l’image de l’entrée en négligeant le reste.

Dans cette thèse on présente une approche combinant des idées des méthodes paramétriques

et des méthodes non paramétriques à base de patchs. On l’appelle synthèse localement Gaussienne

et elle est présentée dans le Chapitre . On préserve dans cette nouvelle méthode les aspects positifs

de chaque approche : la capacité d’innover des méthodes paramétriques, et la capacité de générer

des textures fortement structurées des méthodes non paramétriques à base de patchs. Pour ce faire,

on construit un modèle Gaussien multidimensionnel des auto-similarités d’une image de texture.

Une nouvelle image est générée patch par patch, où pour chaque patch une loi normale multidi-

mensionnelle est estimée à partir des patchs de l’image d’entrée qui lui ressemble le plus, et ensuite

échantillonné à partir de cette loi. Les images synthétisées sont donc différentes point à point de la

texture de départ. Ainsi, on obtient des résultats qui sont visuellement supérieurs à ceux obtenus

avec les méthodes paramétriques et qui sont comparables à ceux obtenus avec les méthodes non-

paramétriques à base de patchs tout en utilisant une paramétrisation locale de l’image. La thèse

s’attache aussi à résoudre une autre difficulté des méthodes à base de patchs : le choix de la taille du

patch. Afin de réduire significativement cette dépendance, on propose une extension multi-échelle

de la méthode au Chapitre .

Les méthodes à bases de patchs supposent une étape de recollement. En effet, les patchs de

l’image synthétisée se superposent entre eux, il faut donc gérer le recollement dans ces zones. La

première approche qu’on a considérée consiste à prendre en compte cette contrainte de superpo-

sition dans la modélisation des patchs. Cette approche est décrite au Chapitre . Les expériences

montrent que cela est satisfaisant pour des images de textures périodiques ou pseudo-périodiques



et qu’en conséquence l’étape de recollement peut être supprimée pour ces textures. Cependant,

pour des images de textures plus complexes ce n’est pas le cas, ce qui nous a menée à proposer une

nouvelle méthode de recollement inspirée du transport optimal qui est détaillée au Chapitre .

Cette thèse se termine avec une étude complète de l’état de l’art en génération d’images de tex-

tures naturelles dans le Chapitre , qui tient lieu aussi de conclusion. L’étude que nous présentons

montre que, malgré les progrès considérables des méthodes de synthèse à base d’exemples pro-

posées dans la vaste littérature, et même en les combinant astucieusement, celles-ci sont encore

incapables d’émuler des textures complexes et non stationnaires.

Dans cette introduction on donne une vue d’ensemble de tous les chapitres de la thèse avec

leur résultats principaux et conclusions. On termine avec la liste de publications en lien avec ces

travaux.

Chapitre  : Modèles localement Gaussien

Les principales approches de la synthèse d’images de textures sont les méthodes paramétriques et

les méthodes non-paramétriques à base de patch. Le premier modèle de texture caractérise l’image

par un ensemble de statistiques. L’algorithme de synthèse associé estime ces statistiques à partir

de l’échantillon de texture et génère une nouvelle image. La texture générée est en général moins

précise que celle d’entrée. Le second modèle se résume à une démarche intelligente de “copier-

coller” qui met ensemble des morceaux de la texture d’entrée. La texture générée peut présenter des

répétitions verbatim de grandes parties de l’échantillon de texture. Au Chapitre  nous proposons

de mélanger les deux approches mentionnées en utilisant un modèle de texture localement Gaus-

sien dans l’espace des patchs. Cela permet de synthétiser des textures qui sont partout différentes

de celle d’entrée tout en ayant une meilleur qualité visuelle par rapport aux résultats de méthodes

paramétriques.

Inspiré de la méthode d’Efros et Freeman [] nous synthétisons une nouvelle texture patch par

patch. A différence de [] on va supposer que chaque nouveau patch synthétisé suit une loi nor-

male multidimensionnelle qui est apprise à partir d’un ensemble de patchs pris dans l’échantillon

de texture. Cet ensemble est constitué des patchs les plus semblables, pour la norme L2, au patch

qui est en cours de synthèse. Les modèles localement Gaussien ont été utilisés pour le débruitage

d’image [] avec des résultats très satisfaisants. Pour la synthèse de texture, cette approche nous

permets de maintenir la cohérence entre patchs par rapport à l’image d’entrée tout en créant de

nouveaux patchs qui n’existent a priori pas dans l’échantillon de texture mais qui leur sont visuel-

lement semblables.

Le modèle de patch Les lois normales multidimensionnelles impliquées sont définies par leur

vecteur moyen µ(x,y) et leur matrice de covariance Σ(x,y). Pour un patch donné p
(x,y)
u , sous sa

forme vectorielle, et qui est de taille 1 × n2, les paramètres de la Gaussienne sont estimés à par-

tir d’un ensemble de patchs que l’on dénote U = {p(xi,yi)u , i = 1, . . . ,m}, où les p
(xi,yi)
u , i =

1, . . . ,m sont lesm patchs les plus semblables à pu(x, y) selon la normeL2. Le vecteur p̃
(x,y)
u défini

comme dans l’équation (.) suit une loi normale N (µ(x,y),Σ(x,y)). On observe que les variances

de ces modèles confirment un degré d’innovation raisonnable pour les vecteurs échantillonnés.

p̃(x,y)u =
1√
m− 1

m
∑

i=1

ai(p
(xi,yi)
u − µ(x,y)) + µ(x,y), ai ∼ N (0, 1), i = 1, . . . ,m ()



L’algorithme de synthèse localement Gaussienne On enchaı̂ne sur la description d’un al-

gorithme de synthèse qui génère une nouvelle image de texture en collant entre eux des patchs

échantillonnés selon des lois normales multidimensionnelles (.). On note cet algorithme par LG.

Cette méthode est itérative : les patchs sont synthétisés en raster-scan (de haut en bas, de gauche

à droite). Le but de chaque itération est de générer un nouveau patch p
(x,y)
w qui est partiellement

défini sur une région qu’on appelle “région d’intersection” (voir Figure ). La partie connue du

patch est utiliser pour définir l’ensemble U qui déterminera la loi normale du nouveau patch. Le

patch p
(x,y)
w est généré comme défini dans (.). La dernière étape consiste à recoller le nouveau

patch dans l’image de sortie. Pour cela la méthode utilisée est celle proposée dans []. En conclu-

sion, l’algorithme de synthèse proposé génère une nouvelle image de texturew qui est visuellement

semblable à la texture d’entrée et pourtant elle n’est pas composée des patchs existant dans l’image

d’entrée. Par conséquent, la méthode proposée est capable de diminuer quelques uns des aspects

négatifs des méthodes de synthèse dites paramétriques et non-paramétriques à base de patchs.

Vertical overlap

Iteration 10

Horizontal overlap

Iteration 115

L-shape overlap

Iteration 239

FIGURE 1 – On montre trois itérations différentes de la synthèse d’une texture. A chaque itération un

patch est synthétisé. Il est représenté en rose à chaque itération. De gauche à droite on observe les trois

cas d’intersection : vertical, horizontal et en forme de L.

L’algorithme reste cependant dépendant du choix de la taille du patch n et de m la taille de

l’ensembleU , comme on peut observer dans la Figure  et qui devrait être ajuster selon l’échantillon

detexture. Notre algorithme a une faible complexité comparé aux méthodes de débruitage à base

de patch comme [], []. Une possibilité pour réduire la dépendance de la méthode à la taille du

patch est de travailler avec une approche multi-échelle. Cette extension est présentée au Chapitre

. Contrairement aux méthodes de synthèse de texture paramétriques et tout comme les méthodes

non-paramétriques à base de patchs, notre algorithme n’est pas forcé à respecter les statistiques

globales de l’image d’entrée. Cet aspect est également considéré au Chapitre . Un dernier point

tout aussi important est traité aux Chapitres  et  et qui concerne le recollement d’un nouveau

patch dans une partie de l’image déjà synthétisée.

Chapitre  : Modèle conditionnel Gaussien : un algorithme

multi-échelle

Dans ce chapitre on étend le modèle présenté au Chapitre  et on représente les auto-similarités

d’une image de texture avec des lois normales conditionnelles aux valeurs de l’intersection des



input m = 10, n = 20 m = 10, n = 30

m = 20, n = 10 m = 20, n = 20 m = 20, n = 30

m = 30, n = 10 m = 30, n = 20 m = 30, n = 30

FIGURE 2 – Influence des paramétres. L’image du coin supérieur gauche et la texture d’entrée. Les images

restantes sont des synthéses en variant la taille du patch n et m la taille de l’ensemble U . De gauche

à droite n = 10, 20, 30. Du haut vers le bas m = 10, 20, 30. Tous ces résultats correspondent à une

intersection o de taille n/2.

patchs. Notre but est que le modèle considéré prenne en compte l’étape de recollement des patchs.

Aussi, nous proposons de généraliser l’algorithme de synthèse localement Gaussienne (LG en uti-

lisant une approche multi-échelle où la texture est considérée comme étant localement Gaussienne

aux différentes échelles. Cette approche est évaluée en utilisant une grande variété d’images de tex-

ture (réelles et synthétiques) et les résultats montrent l’efficacité de la métode proposée pour une

grande gamme de texture.

Modèle conditionnel Gaussien La première question qu’on s’est posé était si l’étape de recol-

lement des patchs pouvait être supprimée et comment ? Dans le Chapitre , on a adopté l’approche

d’Efros et Freeman [] où pour chaque nouveau patch synthétisé son bord, sur la région d’inter-

section, est redéfini. Dans ce chapitre on considère deux modèles qui sont contraints aux valeurs de

la région d’intersection : le modèle Gaussien conditionnel (CLG) et le modèle Gaussien condition-

nel régularisé (RCLG). Ces deux solutions montrent des résultats satisfaisants pour des images de

texture périodiques et pseudo-périodiques mais elles ont tendance a échoué pour des textures plus

complexes. On peut voir dans la Figure  deux exemples de textures synthétisées en appliquant les



différents modèles.

input LG model CLG model RCLG model

FIGURE 3 – Comparaison des modèles de patchs. De gauche à droite : texture d’entrée, synthèse LG,

synthèseCLG et synthèseRCLG. Aucune étape de recollement a été appliquée pour les trois modèles

montrès. Les paramètres pour ces synthèses sont n = 40,m = 30 et o = 0.5n.

Généralisation multi-échelle La deuxième question qu’on s’est posé par rapport aux méthodes

à base de patchs était comment gérer leur forte dépendance à la taille du patch utilisé en particu-

lier quand on travaille avec des images fortement structurées. En effet, les textures structurées ont

en général des détails à différentes échelles qui ne peuvent pas être capturés avec une seule taille

de patch. L’approche multi-échelle que nous envisageons peut être résumée en quelques lignes

et qu’on dénote MSLG. La méthode commence à l’échelle la plus grossière où on utilise l’al-

gorithme présenté au Chapitre  avec une différence : l’étape de recollement des patchs est rem-

placée par une combinaison linéaire des valeurs sur la région d’intersection. Aux échelles suivantes

la synthèse est faite telle qu’à chaque échelle les détails fins sont rajoutés à l’image synthétisée à

l’échelle précédente. On suppose que les détails suivent une loi normale multidimensionnelle. En

résumé, une image de plus faible résolution est synthétisée et utilisée comme guide à laquelle on

rajoute les détails des échelles restantes. Une description complète est fournie dans le Chapitre .

Dans la Figure  on montre quelques résultats de synthèse multi-échelle.

Chapitre  : Recollement midway de patchs

Dans le Chapitre  on s’intéresse à la phase de recollement de patchs des méthodes de synthèse à

base de patchs. Un des défis de cette étape est de recoller des patchs qui diffèrent considérablement

sur leur bord commun. Les techniques utilisées pour la synthèse de texture ont tendance à échouer

dans des cas de fort contraste et par conséquent on observe la transition entre les patchs (voir

Figure ).

On propose une nouvelle méthode qui se base sur la théorie du transport optimal afin de fu-

sionner deux patchs tout en ayant une transition lisse entre eux. Cette approche peut se décomposer



input LG model MSLG model input LG model MSLG model

FIGURE 4 – Comparaison de la synthèse localement Gaussienne (LG) à la synthèse multi­échelle (MSLG).

De gauche à droite : texture d’entrée, synthèseLG et synthèseMSLG. Les paramètres utilisés pour ces

synthèses sont n = 20, m = 50 et o = 0.5n. Pour le multi­échelle le nombre d’échelles K utilisées est

K = 3. Pour les deux modèles on a utilisé le même patch d’initialisation.

FIGURE 5 – Teaser. De gauche à droite : deux patchs d’entrée, deux patchs recollés avec Poisson editing

[47], deux patchs recollés avec [15], deux patchs recollés avec le recollement midway.

en deux étapes. La première consiste à définir un bord commun aux deux patchs qui se trouve à mi-

chemin entre leur bords initiaux. Pour obtenir ce bord à mi-chemin deux déformations différentes

sont appliquées à chaque patch individuellement. La deuxième étape consiste à propager graduel-

lement ces déformations sur chacun des patchs afin de générer un changement graduel et lisse sur

chacun des patchs.

Le signal à mi-chemin La première étape consiste à trouver un signal de dimension un qui se

trouve à mi-chemin entre deux signaux de dimension un qu’on dénote s1 et s2. Ces signaux, s1
et s2, correspondent aux bords des patchs p1 et p2 sur lesquels on veut les recoller (voir Figure

). On considère s1 et s2 comme étant deux histogrammes qu’on veut transporter dans l’esprit de

la méthode d’égalisation d’histogrammes midway []. Le signal s à mi-chemin est défini tel que

son histogramme cumulé soit la moyenne harmonique des histogrammes cumulés de s1 et s2. Pour

passer des signaux s1 et s2 au signal s on applique deux déformations différentes φ1 et φ2 à s1 et

s2 qu’on appellera les déformations midway.

Propagation des déformations midway Une fois que les signaux s1 et s2 coı̈ncident il faut

propager les déformations φ1 et φ2 afin que dans les patchs p1 et p2 il n’y ait pas de disconti-

nuités entre s et le reste du patch respectivement. Pour cela on considère deux alternatives. La



première consiste à propager linéairement et graduellement les déformations midway φ1 et φ2 dans

chaque patch. La deuxième consiste à définir des signaux intermédiaires (pour chaque patch) qui

résultent d’une combinaison convexe entre l’inverse de l’histogramme cumulé de s et l’inverse de

l’histogramme cumulé du signal provenant du bord qui délimite la zone de propagation dans chacun

des patchs. La première méthode de propagation rend des résultats où les déformations appliquées

sont très lisses. Cependant, des problèmes de normalisation sont évidents et résultent du fait de

considérer les signaux comme des histogrammes (qu’il faut donc normaliser pour qu’ils aient la

même masse). La deuxième méthode est exempte de ces problèmes de normalisation. Néanmoins,

les déformations sont bien plus brusques et peuvent être quelque fois plus visibles que dans le cas

linéaire.

Nous avons évalué en détail les méthodes proposées. Dans une première partie nous avons

analysé le recollement midway en sélectionnant deux patchs de manière aléatoire dans une même

image de texture. Nous avons comparé le recollement midway à deux autres méthodes : Poisson

editing [] et le quilting d’Efros et Freeman []. Quelques exemples difficiles sont montrés dans

la Figure . Dans une deuxième partie nous avons testé le recollement midway dans l’algorithme

de synthèse d’Efros et Freeman [] et comparé les résultats à ceux de la méthode originale. Ces

résultats nous ont permis de conclure que la méthode proposée est une possible alternative pour le

recollement des patchs dans les méthodes de synthèse à base de patchs.

0 50 100 150 200
50

100

150

200

0 50 100 150 200
110

120

130

140

150

160

170

180

190

I1

blending edge s1(t)

blending edge s2(t)

x0

x0

I2

FIGURE 6 – Illustration des signaux de dimension un à recoller. Les patchs à recoller sont représentés par

I1 et I2 et les bords de recollement sont représentés par s1 et s2.

Chapitre  : Peut-on faire de la synthèse à base de grandes

textures ?

Dans ce chapitre conclusif on veut explorer quelles sont les limitations des méthodes de synthèse de

texture à partir d’exemples quand on utilise de grandes images de texture en entrée (voir Figure ).

Contrairement aux méthodes de synthèse par l’exemple classique qui utilisent des images d’entrée

très petites le but est de synthétiser de très grandes images de texture. On étudie ce problème avec



FIGURE 7 – Quelques exemples difficiles de recollement de patchs. De gauche à droite : entrées, recolle­

ment avec Poisson editing [47], recollement avec [15] et recollement midway.

les outils qui sont à notre disposition : les méthodes qui ressortent de la vaste littérature de la

synthèse par l’exemple ainsi que nos contributions des Chapitres  et , et des combinaisons de ces

méthodes.

Pour anticiper nos conclusions aucune des méthodes existantes n’est capable de synthétiser

correctement de grandes images de texture. Néanmoins, nous explorons des combinaisons astu-

cieuses de ces méthodes qui présentent des résultats intéressants mais pas parfaits. Les méthodes

existantes montrent des résultats très satisfaisants quand elles sont appliquées à de tout petit bout

des grandes texture d’entrée (voir Figure ). Nous observons que ces grandes textures sont très

différentes des textures académiques utilisées jusqu’à présent. Au fait elles montrent des variations

locales très prononcées, qui peuvent être vues comme différentes textures, même si leur aspect glo-

bal est celui d’une seule texture (Figure ). Cette étude est une bonne expérience pour mettre en

épreuve toutes les méthodes de synthèse à base d’exemple classiques.

Cette étude commence par tester différentes méthodes de synthèse de texture par l’exemple no-

tamment celles d’Efros et Freeman [], Portilla et Simoncello [], Galerne et al. [] et l’approche

multi-échelle présenté au Chapitre  appliquées à différentes images de texture naturelles et de très

grande taille comme du bois, de la pierre et du métal. On a observé que les résultats de synthèse

sur les images de bois n’étaient pas satisfaisants. Néanmoins quand on a considéré des sous-images

prises dans ces grandes textures de bois et où aucune structure saillante apparaı̂t, les résultats de

synthèse sont bons. On peut rapidement conclure que la perception qu’on a de ces images comme

étant une seule texture n’est pas “vraie”. Un exemple est montré avec les Figures  et . Le deuxième



FIGURE 8 – Texture de bois. L’image originale est de taille 7087× 23622 pixels. Pour les expériences on a

travaillé sur des images réduites d’un facteur 16.

crop  crop  crop  crop 

FIGURE 9 – On montre quatre sous­images prise de l’image de la Figure 1.8 à la résolution originale. Ces

sous­images sont de taille 500×500 pixels. On observe que chacune de ces quatre images représentent

des textures bien différentes appartenants à une seule “grande” texture.

jeu d’expériences consiste à combiner ces méthodes de synthèse, en particulier :

• La méthode d’Efros et Freeman [] combinée à la synthèse localement Gaussienne (LG +
EF)

• La méthode de Portilla et Simoncelli [] combinée à la synthèse localement Gaussienne

(LG+ PS)

Les combinaisons précédentes améliorent significativement les résultats obtenus dans la première

étape en particulier la combinaison LG+PS. Pourtant cette alternative n’est pas suffisante dans le

cas des images de bois. Par la suite on montre différentes tentatives pour synthétiser ces images

comme par exemple l’application de déformation géométriques en espérant varier l’aspect des

structures fortement saillantes. Une astuce qui est souvent utile est de permuter de manière aléatoire

des sous-parties de l’image d’entrée afin de décomposer ses détails fortement reconnaissables comme

dans le cas du bois et de les disposer de façon aléatoire dans la nouvelle image. Une dernière

expérience que nous avons considérée est de varier les basses fréquences de l’image d’entrée en

utilisant la méthode de Galerne et al. [] tout en laissant inchangé les hautes fréquences de l’image

d’entrée. Dans ces trois essais de synthèse nous observons des comportements intéressants pour les

différentes textures. Pour illustration trois exemples sont montrés dans la Figure .



input

output

input output input output

FIGURE 10 – Résultats de synthèse pour différentes “grande” textures.

Liste de Publications

• L. Raad, A. Desolneux and J.-M. Morel. Locally Gaussian Exemplar Based Texture Synthesis.

In IEEE International Conference on Image Processing (ICIP), pages  - , . IEEE.

• L. Raad, A. Desolneux and J.-M. Morel. Conditional Gaussian Models for Texture Synthesis.

In International Conference on Scale Space and Variational Methods in Computer Vision

(SSVM), pages  - , . Springer International Publishing.

• L. Raad, A. Desolneux and J.-M. Morel. Multiscale Exemplar Based Texture Synthesis by Lo-

cally Gaussian Models. In IberoAmerican Congress on Pattern Recognition (CIARP),pages

 - , . Springer Iternational Publishing.

• L. Raad, A. Desolneux and J.-M. Morel. Conditional and multiscale locally Gaussian models

for texture synthesis. In Journal of Mathematical Imaging and Vision (JMIV), pages  - ,

.

• L. Raad and B. Galerne. Efros and Freeman Image Quilting Algorithm for Texture Synthesis.

Submitted to Image Processing On Line (IPOL).



• L. Raad, A. Desolneux and J.-M. Morel. Midway blending as a new technique for patch quil-

ting. To be submitted.

• L. Raad, A. Desolneux and J.-M. Morel. Can exemplar based texture synthesis models emulate

large textures ? To be submitted.





1 Introduction

Motivation

Exemplar based texture synthesis is the process of generating, from an input texture sample, new

texture images that are perceptually equivalent to the input. There are roughly two main categories

of algorithms: the statistics-based methods and the non-parametric patch-based methods. The

statistics-based methods aim at characterizing a given texture sample by estimating a set of statistics

which will define an underlying stochastic process. The new images will then be samples of this

stochastic process, i.e. they will have the same statistics as the input sample. The question here

is what would be the appropriate set of statistics to yield a correct synthesis for the wide variety

of texture images? The results of statistical methods are satisfying but only on a small group of

textures, and often fail when important structures are visible in the input. The non-parametric

patch-based methods reorganize local neighborhoods from the input sample in a consistent way

to create new texture images. These methods return impressive visual results. Nevertheless, they

often yield verbatim copies of large parts of the input sample. Furthermore, they can diverge,

starting to reproduce iteratively one part of the input sample and neglecting the rest of it, thus

growing what experts call “garbage”.

In this thesis we propose a technique combining ideas from the statistical based methods and

from the non-parametric patch-based methods. We call it the locally Gaussian method and it is

presented in Chapter . The method retains the positive aspects of both categories: the innovation

capacity of the parametric methods and the ability to synthesize highly structured textures of the

non-parametric methods. To this aim, the self-similarities of a given input texture are modeled

with conditional multivariate Gaussian distributions in the patch space. A new image is generated

patch-wise, where for each given patch a multivariate Gaussian model is inferred from its nearest

neighbors in the patch space of the input sample, and hereafter sampled from this model. The

synthesized textures are therefore everywhere different from the original. In general, the results

obtained are visually superior to those obtained with statistical based methods, which can be ex-

plained by the use of a local parametric model instead of a global one. On the other hand, our

results are comparable to the visual results obtained with the non-parametric patch-based meth-

ods. This dissertation addresses in Chapter  another weakness of patch-based methods. They are

strongly dependent on the patch size, which has to be decided manually. It is therefore crucial to

fix a correct patch size for each synthesis. Since texture images have, in general, details at different

scales, we extend the method to a multiscale approach which reduces the strong dependency of the

method on the patch size.

Patch based methods involve a stitching step. Indeed, the patches used for the synthesis pro-

cess overlap each other. This overlap must be taken into account to avoid any transition artifact



from patch to patch. Our first attempt to deal with it was to consider directly the overlap con-

straints in the local parametric model. This is described in Chapter . The experiments show that

for periodic and pseudo-periodic textures, considering these constraints in the parametrization is

enough to avoid the stitching step. Nevertheless, for more complex textures it is not sufficient. This

leads us to suggest a new stitching technique inspired by optimal transport and midway histogram

equalization which is detailed in Chapter .

This thesis ends with an extensive analysis of the generation of several natural textures in the

conclusive Chapter . This study shows that, in spite of remarkable progress for local textures, the

methods proposed in the extensive literature of exemplar based texture synthesis are still limited

when dealing with complex and non-stationary textures.

In this introduction, we give a brief overview of all the chapters and their main results and

conclusions. We end it with a list of publications linked to this PhD.

Chapter : Locally Gaussian models

The main approaches to texture modeling are the statistics-based methods and the non-parametric

patch-based methods. In the first model the texture is characterized by a sophisticated statistical

signature. The associated sampling algorithm estimates this signature from the example and pro-

duces a genuinely different texture. This texture nevertheless often loses accuracy. The second

model boils down to a clever “copy-paste” procedure, which stitches together verbatim copies of

large regions of the example. In Chapter  we propose to involve a locally Gaussian texture model

in the patch space. It permits to synthesize textures that are everywhere different from the original

but with better quality than the purely statistical methods.

We model each texture patch by a multivariate Gaussian distribution learned from its similar

patches. Inspired by [], we maintain the idea of searching for patches to stitch together in the

original sample. However, instead of using the exact patch taken in the input texture, we sample

the stitched patch from its Gaussian model. The locally Gaussian patch models have been proved

very useful in image denoising []. Our approach permits to maintain the coherence between

patches with respect to the input sample, while creating new patches that do not exist in the sample

texture but are still perceptually equivalent to it.

The patch model The multivariate Gaussian models involved are defined by their mean vector

µ(x,y) and their covariance matrix Σ(x,y). For a given patch p
(x,y)
u , of size n × n pixels, these

parameters are estimated from the set of the m nearest patches U = {p(xi,yi)u , i = 1, . . . ,m}. The

sampled vector p̃
(x,y)
u defined in (.) follows the distributionN (µ(x,y),Σ(x,y)). We observed that

indeed these models have reasonable variances confirming that effectively the patches simulated

have an acceptable degree of innovation.

p̃(x,y)u =
1√
m− 1

m
∑

i=1

ai(p
(xi,yi)
u − µ(x,y)) + µ(x,y), ai ∼ N (0, 1), i = 1, . . . ,m (.)

The locally Gaussian synthesis algorithm We follow by describing a synthesis algorithm

that generates a new texture image by stitching together patches sampled from multivariate Gaus-

sian distributions (.) in the input sample patch space. This method is iterative: the patches are

synthesized in a raster-scan order (top to bottom and left to right). The goal of each iteration is to



generate a new patch p
(x,y)
ũ that is partially defined on a region called the overlap area (see Figure

.). The known part of the patch will define the set of patches U from which its Gaussian model

is inferred. The generated patch p
(x,y)
ũ is then sampled as defined in (.). The last step consists in

stitching the patch into the output texture using the quilting method of []. This synthesis algo-

rithm generates a texture that is perceptually equivalent to the sample texture yet not composed

of patches existing in the input texture. Thus, this method reduces some of the drawbacks of the

statistics-based and the patch-based methods.

Vertical overlap

Iteration 10

Horizontal overlap

Iteration 115

L-shape overlap

Iteration 239

Figure 1.1 – Three different iterations of the synthesis process are shown. At each iteration a patch is

being synthesized. This patch is represented by the pink square in the three iterations shown. From left

to right the three overlap cases are represented: vertical, horizontal and L­shape.

The algorithm remains dependent on the choice of the patch size n and of the number of

nearest neighbours m as can be observed in Figure ., that may have to be adjusted for each

texture sample. Our algorithm has low complexity, compared for instance with classic patch-based

denoising algorithms [], []. An alternative to reduce the dependency of the method to the

patch size is to work in a multiscale approach. This extension is presented in Chapter . Unlike the

statistics-based algorithms, but like the other patch-based methods, our algorithm is not forced to

respect the global statistics of the texture sample. This issue is also considered in Chapter . A last

and not minor aspect that will be addressed in Chapter  and Chapter  is the way the patches are

actually stitched together.

Chapter  is structured as follows. In Section ., we give an estimation method of the Gaussian

model for each patch. An analysis of the model’s variance is provided. In Section ., the locally

Gaussian synthesis algorithm is described. Section . compares the results with state of the art

texture-synthesis methods. The concluding section . also states the limitations of the method.

Chapter : Conditional Gaussian model: a multiscale algo-

rithm

In this chapter, we extend the model of Chapter  to model texture self-similarity with conditional

Gaussian distributions in the patch space. Our goal is to extend the use of stitching techniques. In

continuation the algorithm is also generalized by a multiscale procedure, where texture patches are

modeled at each scale as spatially variable Gaussian vectors. This approach is tested over several

real and synthetic texture images and its results show the effectiveness of the proposed technique

for a wide range of textures.



input m = 10, n = 20 m = 10, n = 30

m = 20, n = 10 m = 20, n = 20 m = 20, n = 30

m = 30, n = 10 m = 30, n = 20 m = 30, n = 30

Figure 1.2 – Texture synthesis result for the left top corner texture image. We show the results obtained

for different values of m (the number of similar patches) and n (the side patch size). From left to right

n = 10, 20, 0. From top to bottom, the number of nearest neighbours is m = 10, 20, 30. All the results

are obtained for an overlap of a half patch size o = n/2.

Conditional Gaussian models The first question that was brought up was how to stitch to-

gether the patches. In Chapter , the Efros and Freeman’s approach [] was adopted, where every

new patch overlaps the previously synthesized one, and the overlapped parts are blended. In this

chapter we consider two models constrained to respect the values of its overlapping zone: the Con-

ditional Gaussian model (CLG) and the Regularized Conditional Gaussian model (RCLG). This

solution shows satisfying results for periodic or pseudo-periodic textures but sometimes fails for

more complex ones. Two texture examples are shown in . where the three models LG, CLG and

RCLG are compared.

Multiscale generalization The second and central question brought up by non-parametric

patch-based methods is: how to handle the strong dependency of the method on the patch size,

in particular when dealing with macro-textures. Indeed, macro-textures show information at dif-

ferent scales that cannot be captured with a unique patch size. The multiscale approach can be

summarized in a few sentences. The method begins by a synthesis at the coarsest scale using the

local Gaussian method presented in Chapter  where the stitching step is replaced by a simple av-



input LG model CLG model RCLG model

Figure 1.3 – Patch model comparison. From left to right: texture sample, synthesis result using LG, CLG

and RCLG. No quilting technique was applied to stitch together the simulated patches for the three

presented models. The parameters used for all examples are n = 40,m = 30 and o = 0.5n.

erage of the overlapping patches. For the remaining scales a synthesis is performed by using the

result of the previous scale and the partial input at the same resolution. At each scale the synthesis

is done patch by patch in a raster-scan order. Each new patch, added to the synthesized image,

overlaps part of the previously synthesized patch and is the combination of a low resolution patch

and a high resolution one sampled from a multivariate Gaussian distribution. The Gaussian dis-

tribution of the high frequencies of a given patch is estimated from the high frequencies of its m
nearest neighbours in the corresponding scale input image. The synthesis result of the finer scale

is the desired output image. A full description and discussion is provided in Chapter . In Figure

. we show the strength of the multiscale approach compared to the results of the LG method.

Chapter  is structured as follows. In Section . the local Gaussian (LG) model is described as

well as the description of its synthesis method. In Section . two new patch models are introduced:

the conditional local Gaussian model (CLG) and the regularized conditional local Gaussian model

(RCLG). Section . presents the multiscale approach (MSLG). Section . shows several experi-

ments: a comparison of the three patch models proposed, a comparison to the results of state of

the art texture synthesis methods and the influence of the parameters involved in the multiscale

texture synthesis algorithm. Conclusions are presented in Section ..

Chapter : Midway patch blending

The problem of stitching patches together is the subject of Chapter . One of the major challenges

is stitching patches that differ considerably along the edges. Stitching methods used in texture

synthesis usually fail in these cases, resulting in evident contrast changes between the patches (see

Figure .).

We suggest a novel method based on optimal transport theory that manages to merge both

patches producing a smooth transition between them. This approach works in two steps: first by



input LG model MSLG model input LG model MSLG model

Figure 1.4 – Comparison of LG (Locally Gaussian) to MSLG (Multiscale Locally Gussian). From left to right:

texture sample, synthesis result using LG, and MSLG. The parameters used for these examples are n =
20, m = 50 and o = 0.5n. For the multiscale synthesis results the number of scales K used is K = 3.

For both methods we used the same seed patch for each texture sample.

Figure 1.5 – Teaser. From left to right: input, input blended with Poisson editing [47], input blended with

quilting [15], input blended with midway blending.

defining a “midway” common restriction for both patches on their common stitchig edge. Mid-

way also defines a different deformation along the edge for each patch. Then this deforamtion is

propagated into both patches to produce a smooth transition.

The midway signal The first step can be described as finding a common one dimensional signal

which is midway, up to a minimal deformation, between two one dimensional signals denoted s1
and s2 (see Figure .). The signals under construction are nothing but the restriction of the

patches p1 and p2 to the blending edge. The two signals s1 and s2 are handled as two histograms

on which we apply a geometric deformation derived from the midway histogram equalization [].

The common intermediary signal s is thus defined as the underlying histogram of the harmonic

mean of the cumulative functions of s1 and s2.

Propagating the midway signal For the propagation step two alternatives are considered. The

first one consists in linearly propagating the deformations. The second one considers convex com-

binations of two inverse cumulative signals: the midway signal and the signal on the curve up to

which the deformation is propagated. The first alternative yields smoother results but is prob-

lematic regarding the normalization step of the signals (to impose the same mass). The second

option avoids the normalization issues yet the propagation is more brutal and sometimes more



conspicuous than the linear alternative.

We thoroughly evaluated the proposed method first by trying it directly on randomly selected

patches and comparing it to two stitching techniques: the Poisson editing method [] and the

Efros and Freeman method []. A few challenging examples examples are shown in Figure .. We

then tried this method as a new stitching approach in the Efros and Freeman synthesis methods[].

Based on the results, the proposed method proved to be a possible alternative to perform patch

stitching in non-parametric patch-based methods.

0 50 100 150 200
50

100

150

200

0 50 100 150 200
110

120

130

140

150

160

170

180

190

I1

blending edge s1(t)

blending edge s2(t)

x0

x0

I2

Figure 1.6 – Illustration of the blending edges. The two images to blend are represented by I1 and I2 and

the edges on which the midway blending is applied are s1 and s2.

Chapter  is organized as follows. Section . recalls the midway equalization algorithm []. In

section . the midway blending technique is introduced. At first a description on a simple blending

curve is given. It is followed by a generalization of the method. A description of the algorithm is

provided as well as a discussion on the extension to a color version. As a final contribution of

this section we describe how to integrate this method into a simple and efficient texture synthesis

method. In section . experimental results are organized in two parts. The first one compares the

midway blending method to [] and []. The second part compares synthesis results of [] to

the same synthesis method using the midway blending. Conclusions are given in section ..

Chapter : Can we emulate large textures?

In this conclusive chapter we aim at analyzing the limits of exemplar-based texture methods when

using large natural texture images (see Figure .), a new problem which we might call Big Exem-

plar Based texture synthesis. Unlike exemplar-based methods that use small texture samples the

goal is to synthesize large textures. We shall explore this problem with the tools at reach, namely the

best methods from the extensive literature including our contributions of the previous chapters,

and will not hesitate to combine them. To anticipate our conclusions, none of the existing methods

manage by itself to satisfactorily emulate “big textures”. Yet, we’ll find that a clever combination of

these methods yields interesting-if not perfect-results. Interestingly, the existing methods provide

very good results on small crops (see Figure .) of “big textures” images. But we discovered with



Figure 1.7 – Some challenging examples blending patches which do not match. Comparison with two

other stitching methods. From left to right: input, Poisson editing [47] and the midway blending.

some dismay and shall illustrate on many examples that “big textures” are very different from aca-

demic texture crops. They show drastic local textural variations, even if their overall effect still is

the one of a single texture (see the crops of a plank in Figure .). This study is therefore a good

test to put on trial all existing exemplar-based texture synthesis methods.

We began by trying some of the exemplar based texture synthesis approaches (Efros and Free-

man [], Portilla and Simoncelli [], Galerne et al. [] and the multiscale locally Gaussian

method presented in Chapter ) on different types of natural large texture images such as: wood,

stone and metal. We observed that the synthesis results for the wood images were not satisfying.

However for local crops of these textures where no strong global organization were evident the

results obtained are impressive. One concludes obviously that, in spite of their perceptual unity,

large textured images are more than a texture in the usual academic sense, as can be seen for the

wood texture example shown in Figure . and its crops in Figure .. We follow by showing results

of a combination of the considered texture synthesis methods, namely:

• The Efros and Freeman method [] combined to the locally Gaussian method (LG+EF)

• The Portilla and Simoncelli method [] combined to the locally Gaussian method (LG+PS)

Combining the methods yields better visual results in particular for the combination PS + LG. Still

this combination will not make it for wood textures, for example. We then show other emulation



Figure 1.8 – Wood texture 1. The original input provided was of size 7087× 23622 pixels. For the exper­

iments the image was reduced by a zoom out of factor 16.

crop  crop  crop  crop 

Figure 1.9 – Four crops of different parts of Figure 1.8 at its original resolution. The cropped images are

of size 500× 500 pixels. Each one represents a different texture belonging to a single “big texture”.

attempts, like for example the application of geometric deformations to the inputs aiming at chang-

ing the aspect of the salient structures. An often successful trick is randomly switching sub-parts

of the input to partition the salient structures and reorganize them in a way that visually mitigates

the repeated patterns. As a last experiment we tried to vary the low frequency information using

the method proposed by Galerne et al. in [] while leaving unchanged the high frequencies with

the same purpose. In all three emulation attempts we observed interesting behaviours for some of

the textures. In Figure . we show three examples.

Chapter  is organized as follows. Section . describes the large natural texture images we

worked on. In section . a brief analysis of some of the state of the art exemplar-based texture

synthesis methods is provided listing the pros and cons of each of them. In section . a first set

of experiments are showed on small crops of the big textures. All of the exemplar-based methods

of section . are tested on these images. They are tested separately and then some of them are

combined. The results on these images are very satisfying. The same experiments are performed

on the big texture themselves to try to emulate their structures at low resolution. The results are

not very satisfying since the typical drawbacks of exemplar based methods arise (verbatim copies

and garbage growing). This brings us to test other alternatives presented in Sections ., . and

.. We try the application of one and two dimensional anamorphoses to the inputs, a random

combination of slices of the input texture and the application of the method [] to randomize the

low frequencies of the input.



input

output

input output input output

Figure 1.10 – Synthesis results of different natural large textures.

List of Publications

• L. Raad, A. Desolneux and J.-M. Morel. Locally Gaussian Exemplar Based Texture Synthesis.

In IEEE International Conference on Image Processing (ICIP), pages  - , . IEEE.

• L. Raad, A. Desolneux and J.-M. Morel. Conditional Gaussian Models for Texture Synthesis.

In International Conference on Scale Space and Variational Methods in Computer Vision

(SSVM), pages  - , . Springer International Publishing.

• L. Raad, A. Desolneux and J.-M. Morel. Multiscale Exemplar Based Texture Synthesis by Lo-

cally Gaussian Models. In IberoAmerican Congress on Pattern Recognition (CIARP),pages

 - , . Springer Iternational Publishing.

• L. Raad, A. Desolneux and J.-M. Morel. Conditional and multiscale locally Gaussian models

for texture synthesis. In Journal of Mathematical Imaging and Vision (JMIV), pages  - ,

.

• L. Raad and B. Galerne. Efros and Freeman Image Quilting Algorithm for Texture Synthesis.

Submitted to Image Processing On Line (IPOL).



• L. Raad, A. Desolneux and J.-M. Morel. Midway blending as a new technique for patch quilt-

ing. To be submitted.

• L. Raad, A. Desolneux and J.-M. Morel. Can exemplar based texture synthesis models emulate

large textures? To be submitted.





2 Locally Gaussian models

The main approaches to texture modeling are the statistical psychophysically inspired

model and the patch-based model. In the first model the texture is characterized by a

sophisticated statistical signature. The associated sampling algorithm estimates this

signature from the example and produces a genuinely different texture. This texture

nevertheless often loses accuracy. The second model boils down to a clever copy-

paste procedure, which stitches verbatim copies of large regions of the example. In

this chapter we propose to involve a locally Gaussian texture model in the patch space.

It permits to synthesize textures that are everywhere different from the original but

with better quality than the purely statistical methods.

. Introduction

Exemplar-based texture synthesis aims at generating new texture images inspired from a texture

sample. Texture synthesis algorithms can be roughly divided in two categories: the statistics-based

methods [, , , , ] and the non parametric patch based methods [, , , , , , , ].

Statistics-based methods estimate a set of the sample’s statistics, which are then enforced in

the synthesized texture. The statistical characterization of texture images was initiated by Julesz.

Julesz was the first to point out that texture images could be reliably organized, according to their

N-th order statistics, into groups of textures that are preattentively indistinguishable by humans

[]. In [], Julesz demonstrated that many texture pairs sharing the same second-order statistics

would not be discerned by human preattentive vision. This hypothesis constitutes the first Julesz

axiom for texture perception. One consequence of this axiom is that two textures sharing the

same Fourier modulus but with different phase should be perceptually equivalent. This motivates

a class of algorithms (random phase methods) aiming at creating textures with a given second-

order statistic. An example of such algorithms is [] and its extension [] in which a texture is

generated by randomizing the Fourier phase while maintaining the Fourier modulus. The random

phase method in [] correctly synthesizes micro-texture images which adapt well to a Gaussian

distribution, but it fails for more structured ones, as can be experimented in the executable paper

[]. It has then been showed that textures with the same second and even third order statistics

were visually different [, ]. In [, ] Julesz proposed a second theory to explain texture preat-

tentive discrimination theory by introducing the notion of textons (local conspicuous features).

This new theory states that only the first order statistics of these textons are relevant for texture

perception: images having the same texton densities (first ordre statistic) should not be discrimi-

nated. Relative to the texton theory, one axiom is that texture perception is invariant to random

shifts of the textons [] leading to the stochastic dead leaves models [, , ].



Heeger and Bergen [] extended the Julesz approach to multiscale statistics. They charac-

terized a texture sample by the histograms of its wavelet coefficients. By enforcing the same his-

tograms on a white noise image, they obtained an exemplar based synthesis method. Yet this

method only measures marginal statistics. It misses important correlations between pixels across

scales and orientations. See the online execution of this method [] where some success but many

failures are evident, like for []. Within a similar range of results De Bonet [] randomizes the

initial texture image and preserves only a few statistics: the dependencies across scales of a multi-

resolution filter banch response. In [] the authors propose to synthesize a texture by taking

randomly patches from the sample texture and placing them randomly in the output texture im-

age. A blending step is applied across the overlapping blocks to avoid edge artifacts. The results

achieved are similar to [, ]. Other methods are also based on statistics of wavelet coefficients

or more involved multiscale image representations [, , ]. The Heeger-Bergen method was

extended by Portilla and Simoncelli [] who proposed to evaluate on the sample some  cross-

correlations, autocorrelations and statistical moments of the wavelet coefficients. Enforcing the

same statistics on synthetic images achieves striking results for a very wide range of texture ex-

amples. This method, which represents the state of the art for psychophysically and statistically

founded algorithms is nevertheless computationally heavy, and its convergence is not guaranteed.

Its results, though generally indiscernible from the original samples in a pre-attentive examination,

often present blur and phantoms.

Patch-based methods constitute a totally different category of texture synthesis algorithms.

The initial Efros and Leung [] method is based on Shannon’s Markov random field model for

the English language. In analogy with Shannon’s algorithm for synthesizing sentences, the texture

is constructed pixelwise. For each new pixel in the reconstructed image, a patch centered in the

pixel is compared to all the patches of the input sample. The patches in the sample that are closer

help predict the pixel value in the synthetic image. Several optimizations have been proposed to ac-

celerate this algorithm. Among them Wei and Levoy [], who managed to fix the shape and size of

the learning patch and Ashikhmin [] who proposed to extend existing patches whenever possible

instead of searching in the entire sample texture. Yet, as already pointed out in the original paper

[], an iterative procedure may fail by producing “garbage” when the neigborhood’s size is too

small. On the other hand it can lead to a trivial verbatim reproduction of big pieces of the sample

when the neighborhood is too large. This can be experimented in []. Several extensions of []

have been proposed that manage to accelerate the procedure and resolve the “garbage” problem

by stitching entire patches instead of pixels. In [] the authors propose to synthesize the image

by quilting together patches that were taken from the input image among those who best match

the patch under construction. A blending step was also added to overcome some edge artifacts.

Efros and Freeman [] proposed an extension of the latter introducing for the quilting method a

blending algorithm that computes a path with minimal contrast across overlapping patches, thus

mitigating the transition effect from patch to patch. Kwatra et al. in [] extend [] by using a

graphcut algorithm to define the edges of the patch to quilt in the synthesis image. Another exten-

sion of [] is proposed by Kwatra et al. in [] where to synthesize a texture image they improve

the quality of the synthesis image sequentially by minimizing a patch-based energy function. For

these methods the visual results are strikingly good, but they still retain the risk of verbatim copy-

ing large parts of the input sample. For practical applications this may result in the appearance of

repeated patterns in the synthesized image.

An ideal exemplar-based texture synthesis algorithm should create a new texture image that is

perceptually equivalent to the input sample, but this image should be as random as possible while

maintaining the same statistics as the input. To the best of our knowledge, none of the methods



proposed in the literature are able to combine these advantages. On the one hand, statistics-based

methods fail, in general, to be perceptually equivalent to the input, either because the statistics are

not well enforced or because these statistics are not complete enough. On the other hand, patch-

based methods are too close to a mere copy-paste. This effect can be observed in the synthesis

maps of Figure ..

In this chapter, we propose an algorithm that lies between statistics-based and patch-based

algorithms. We gave up choosing a set of statistics from the input sample to enforce in the syn-

thesized image. Instead, we chose to model each texture patch by a Gaussian distribution learned

from its similar patches. Inspired by [], we maintain the idea of searching for patches to stitch to-

gether in the original sample. However, instead of using the exact patch taken in the input texture,

we sample the stitched patch from its Gaussian model. Locally Gaussian patch model have been

proved useful in image denoising []. Our approach permits to maintain the coherence between

patches with respect to the input sample, while creating new patches that do not exist in the sample

texture but are still perceptually equivalent to it. In this way, we manage to combine the positive

aspects of statistics-based and patch-based methods, while overcoming some of their drawbacks.

This chapter is structured as follows. In Section ., we give an estimation method of the

Gaussian model for each patch. An analysis of the model’s variance is provided. In Section .,

the locally Gaussian synthesis algorithm is described. Section . compares the results with state

of the art texture-synthesis methods. The concluding section . also states the limitations of the

method.

u Ω→ R: input texture image defined on the discrete domain Ω = IM × IN of size

M ×N where Ic denotes the discrete interval [0, . . . , c− 1]
w Ωr → R: output texture image defined on the discrete domain Ωr = IrM × IrN

of size rM × rN
d is equal to 1 if u is grayscale and to 3 for color images

r ratio (size of output image w)/(size of input image u)

n side patch size

m number of nearest neighbours used to learn the parameters of the Gaussian dis-

tribution

o overlap size

p
(x,y)
u square patch of size n × n from an image u of size M × N at position (x, y),

p
(x,y)
u = {u ((x, y) + (i, j)) , (i, j) ∈ [0, . . . , n − 1]2}, (x, y) ∈ Vu where Vu =
IM−n+1×IN−n+1 denotes the discrete domain of the valid patches in u. The patch

p
(x,y)
u will be considered as a column vector of size dn2 × 1

Im denotes the m×m identity matrix

Table 2.1 – Summary of the notations used in this chapter.

. The patch Gaussian model

In this section we consider a first and simple model of the texture sample. We denote u : Ω → R

the input texture image defined on the discrete domain Ω = IM × IN of size M × N and p
(x,y)
u

a patch from u defined as a square block of size n × n among all possible overlapping patches in

u. Each patch is defined by the position of its left top corner (x, y) ∈ Ω. We assume that the



underlying distribution of a given patch p
(x,y)
u in u follows a multivariate Gaussian distribution of

mean µ(x,y) and covariance matrix Σ(x,y). Hence to generate a new texture image w : Ω → R

according to this model all the patches of u are replaced by samples of these multivariate Gaussian

distributions.

Given the image u and fixing an overlap size o ∈ [0, 1] we will consider only the patches

from u that are taken in a raster-scan order (left to right and top to bottom) and whose centers are

separated by (1−o)n pixels. We call them the patches under construction. They can overlap in three

possible way: horizontally, vertically and forming an L-shape overlap (see Figure .). Each one of

these patches will be replaced by a new patch p̃
(x,y)
u sampled from its corresponding multivariate

Gaussian ditribution of parameters µ(x,y) and Σ(x,y).

The parameters µ(x,y) and Σ(x,y) of the Gaussian distribution of the patch p
(x,y)
u are estimated

from the set of nearest patches U = {p(xi,yi)u , i = 1, . . . ,m}. Here p
(xi,yi)
u are the m nearest

patches to p
(x,y)
u in u according to the L2 distance. The empirical statistics µ(x,y) and Σ(x,y) are

then defined as

µ(x,y) = 1
m

∑m
i=1 p

(xi,yi)
u

Σ(x,y) =

∑m
i=1

∑m
j=1

(

p
(xi,yi)
u −µ(x,y)

)

(

p
(xj,yj)
u −µ(x,y)

)t

(m−1) .

(.)

To simplify the notation, we denote byP the matrix whose columns are the normalized patches

in vector form (p
(xi,yi)
u − µ(x,y)), i = 1, . . . ,m. Then we can reformulate the covariance matrix

Σ(x,y)

Σ(x,y) =
1

(m− 1)
PP t.

Sampling step Sampling a vector p̃
(x,y)
u ∼ N (µ(x,y),Σ(x,y)) boils down to a linear combination

of the m nearest patches p
(xi,yi)
u such as

p̃(x,y)u =
1√
m− 1

m
∑

i=1

ai(p
(xi,yi)
u − µ(x,y)) + µ(x,y) =

1√
m− 1

PA+ µ(x,y) (.)

where ai ∼ N (0, 1), i = 1, . . . ,m are independent random variables andA is a column vector of

size m× 1 whose elements are the standard normal independent random variables ai. We denote

by N (µ,Σ) the multivariate normal distribution of mean µ and covariance matrix Σ. Indeed the

sampled patch p̃
(x,y)
u follows the mutltivariate normal distributionN (µ(x,y),Σ(x,y)) where

E(p(x,y)u) =
1√
m− 1

m
∑

i=1

E(ai)(p
(xi,yi)
u − µ(x,y)) + µ(x,y) = µ(x,y)



and

E((p̃(x,y)u − µ(x,y))(p̃(x,y)u − µ(x,y))t) =
1

(m− 1)

m
∑

i=1

m
∑

j=1

E(aiaj)(p
(xi,yi)
u − µ(x,y))(p(xj ,yj)u − µ(x,y))t =

1

m− 1

m
∑

i=1

(p(xi,yi)u − µ(x,y))(p(xi,yi)u − µ(x,y))t = Σ(x,y).

Blending step Once a patch p̃
(x,y)
u is sampled it is placed in image w at position (x, y) over-

lapping the part which has been synthesized previously. Across this overlap area the pixel values

are blended using a convex combination. That is, at each position (i, j) in the overlap region two

values are possible: the one from the previous synthesis gold and the one from the actual synthesis

gnew. We denote g the value assigned at position (i, j) defined as

g = (1− γ(i, j))gold + γ(i, j)gnew

where γ = (1− α)(1− β) and

α(x, y) =

{

1− x−1
on−1 if 1 ≤ x ≤ on

0 if x > on

and

β =

{

1− y−1
on−1 if 1 ≤ y ≤ on

0 if y > on
.

The procedure is summarized in Algorithm .

Algorithm : Naive locally Gaussian texture synthesis

Input: input texture sample u, side patch size n, number of nearest neighbours m,

overlap size o
Output: reconstructed texture w

: for x = 1 : n(1− o) : M do

: for y = 1 : n(1− o) : N do

: Compute U = {p(xi,yi)u , i = 1, . . . ,m} the set of m closest patches to p
(x,y)
u

: Estimate µ(x,y) ← 1
m

∑m
i=1 p

(xi,yi)
u

: p̃
(x,y)
u ← 1√

m−1
(P − µ(x,y))A+ µ(x,y), A ∼ N (~0, Im) {sampling step}

: Blend p̃
(x,y)
u in the image w at position (x, y) {blending step}

: end for

: end for

: return w

The size n of the patches and the size of the neighborhood m are user-specified values. The

results of this first model are shown in Figure .. Observe that replacing the patches of the input

texture by simulated ones (with the corresponding Gaussian models) achieves a faithful random

variant of the original image, for reasonable values of n and m. For large values of m the model



no longer represents the patch faithfully because the set U will contain outliers. Nevertheless,

reasonable values for n and m ensure a correct reconstruction when replacing patches by others

simulated from multivariate Gaussian distributions. We observed that when using 30×30 patches,

it is reasonable to consider a neighborhood of 10 to 20 patches. Even though the generated texture

is a random and new image perceptually equivalent to the input one, both are visually too similar.

We would like to observe more randomness in the generated texture. A second inconvenient of

this model is that the generated texture has necessarily the same size as the input image. For these

reasons we propose a second model which does not fix the patches and has no constraint on the

size of the generated texture. This is explained in the next section.

input m = 10, n = 20 m = 10, n = 30

m = 20, n = 10 m = 20, n = 20 m = 20, n = 30

m = 30, n = 10 m = 30, n = 20 m = 30, n = 30

Figure 2.1 – Visual evaluation of the validity of a Gaussian patch model. This experiment performs a

Gaussian substitution for each patch of the left top corner texture image (Algorithm 1). From left to right

the patch size isn = 10, 20, 30. From top to bottom the number of nearest neighbours ism = 10, 20, 30.

The model’s variance It is important to analyze how the variance of the Gaussian distribution

varies with the patch size n and the number of nearest neighbours m used to estimate these distri-

butions. We expect to have a variance that is not equal to zero since this would correspond to taking

the best match in u and thus having no innovation at all. On the other hand a high variance would

introduce too much variability and therefore end up with a blurry reconstruction of the texture.

The ranges for m and n yielding a correct estimate for the variance cannot be determined a priori



and strongly depend on the texture sample. To measure the variability of the Gaussian model we

observe the mean standard deviation per pixel of a given patch p
(x,y)
u in the texture image which

can be estimated by

σ̄ =
1

dn2

dn2
∑

i=1

√

Σ(x,y)(i, i) =
1

dn2

dn2
∑

i=1

σi

where d is the number of channels (d = 1 for grayscale images and d = 3 for color images).

In Figure ., two texture examples are presented. As expected for a fixed patch size n the mean

standard deviation per pixel σ̄ increases when using more patches to estimate the Gaussian distri-

bution. For a fixed value of m the same behaviour is observed when increasing n. The first exam-

ple, a micro texture, shows that the variance of the patch is not negligible even form = 5. Gaussian

models are well suited for this kind of texture. The second example, a periodic texture, shows that

the patch mean standard deviation varies between 8 and 18 for values of m ∈ {5, 10, 30, 50}.
These are reasonable values confirming that effectively the patches simulated have an acceptable

degree of innovation.

Input 500× 500

0 200 400 600 800 1000
16

18

20

22

24

26

28

30

32

34

Patch 1

m

σ̄

n=10

n=20

n=40

n=80

Patch 

0 200 400 600 800 1000
18

20

22

24

26

28

30

32

34

Patch 2

m

σ̄

n=10

n=20

n=40

n=80

Patch 

Input 384× 364

0 200 400 600 800 1000
10

12

14

16

18

20

22

24

26

28

Patch 1

m

σ̄

n=10

n=20

n=40

n=80

Patch 

0 200 400 600 800 1000
8

10

12

14

16

18

20

22

24

26

Patch 2

m

σ̄

n=10

n=20

n=40

n=80

Patch 

Figure 2.2 – Behaviour of the mean standard deviation of the patches as functions of the patch size n
and the neighbourhood sizem. For each texture example two patches have been selected (left column).

For each of them the mean standard deviation is computed for several values ofn ∈ {10, 20, 40, 80} and

m ∈ {5, 10, 30, 50, 500, 1000}. In the input image patch 1 is represented by a solid line and patch 2 by a

dashed line.



. The locally Gaussian texture synthesis algorithm

As mentioned in the previous section simply replacing the texture patches by Gaussian samples is

not enough for synthesizing a texture. This model yields texture images that are visually too similar

to the input sample and of fixed size. We aim at generating images that are perceptually equivalent

to the input yet not visually identical. Inspired by the work of Efros and Freeman [] we propose

an iterative algorithm that models the self-similarities of the input sample as multivariate Gaussian

distributions.

The proposed algorithm consists in generating a new texture image w patch by patch in a

raster-scan order given the input sample u. At each iteration the goal is to generate a new patch

p
(x,y)
w that is partially defined on a region called the overlap region (see Figure .). The known part

of the patch will define the set of patches from u that will infer its Gaussian model. The generated

patch p
(x,y)
w will be a sample of this model. The overlap size o is fixed and for all the presented

results o is half the size n of the patch.

Vertical overlap

Iteration 10

Horizontal overlap

Iteration 115

L-shape overlap

Iteration 239

Figure 2.3 – Three different iterations of the synthesis process are shown. At each iteration a patch is

being synthesized. This patch is represented by the pink square in the three iterations shown. From left

to right the three overlap cases are represented: vertical, horizontal and L­shape.

We initialize the new texture image w placing a seed patch in its top left corner. For this we

pick a random patch from the texture sample u, estimate its underlying Gaussian distribution and

sample a new patch from it (the seed patch). In continuation, each synthesized patch is sampled

from a Gaussian model learnt from the m patches with their left half most similar to the right half

of the last synthesized texture patch. This new patch is then quilted on the current texture.

Patch stitching is an important step when adding the new patches at each iteration. In this

chapter we propose to follow the procedure presented in []. In Chapters  and  we suggest other

stitching alternatives. The method proposed in [] assigns new edges to the patches on the overlap

area in order to quilt them along the path on which they best match. These edges are selected as

curves minimizing the error between the new patch and part of the synthesized image across the

overlap region. For a detailed description of this step please refer to Annex A... The synthesis

procedure is summarized in Algorithm .

The proposed method yields a new texture image perceptually similar to the original sample

and whose patches have been randomized. The result obtained is visually similar to the input

sample, i.e. we could consider that the input texture and the new texture are two different sub

images of one same bigger texture. Initializing the input with the seed patch and synthesizing the



Gaussian patches in a raster-scan order using only their overlap to find the nearest neighbours

from the input yields this variability regarding the first model we proposed.

input m = 10, n = 20 m = 10, n = 30

m = 20, n = 10 m = 20, n = 20 m = 20, n = 30

m = 30, n = 10 m = 30, n = 20 m = 30, n = 30

Figure 2.4 – Texture synthesis result for the left top corner texture image. We show the results obtained

for different values of m (the number of similar patches) and n (the side patch size). From left to right

n = 10, 20, 0. From top to bottom, the number of nearest neighbours is m = 10, 20, 30. All the results

are obtained for an overlap of a half patch size o = n/2.

A discussion on the underlying mathematical model The underlying random field of a

given input texture is assumed to be a Gaussian random field. Indeed, as illustrated with the

experiment in Figure ., a patch in the input is assumed to be a multivariate Gaussian vector.

Furthermore, we assume the existence of a set of other patches following the same probability

distribution, from which the parameters (mean and covariance matrix) are estimated. Thus the

resulting reconstructed image is a sample of a Gaussian random field. Nevertheless, the same

cannot be stated for the underlying random field of the synthesized textures when using Algorithm

. These generated textures are not samples of a Gaussian random field. What can be affirmed is

that the conditional distribution of the patches are Gaussian, meaning that if p0w, p
1
w, p

2
w . . . are

the overlapping patches of the image taken in a raster scan order, then the conditional probability

P(pnw|pn−1
w) is a Gaussian multivariate distribution. However, the mean and the covariance matrix



Algorithm : Locally Gaussian texture synthesis (LG)

Input: input texture sample u, side patch size n, overlap size o, number of nearest

neighbours m, ratio (output size)/(input size) r
Output: synthesized texture w

: Initialize w placing a seed patch in its top-left corner (x = 1, y = 1). The image w is

of size rM × rN , where M ×N is the size of u.

: for x = 1 : n(1− o) : rM do

: for y = 1 : n(1− o) : rN do

: if (x > 1 or y > 1) then

: Find the m nearest patches p
(xi,yi)
u , i = 1, . . . ,m in the input sample u that

best agree with the patch under construction p
(x,y)
w along the overlap area

: Estimate µ(x,y) ← 1
m

∑m
i=1 p

(xi,yi)
u

: Sample p̃
(x,y)
w ←

(

1√
m−1

PA+ µ
)

∼ N
(

µ(x,y),Σ(x,y)
)

where A ∼ N (~0, Im)

: Quilt p̃
(x,y)
w in w at position (x, y) {see Annex A..}

: end if

: end for

: end for

: return w

of this Gaussian distribution are computed from patches similar to pn−1
w in the input sample.

Therefore the joint probability distribution of the patches is not necessarily Gaussian.

Thus, while the algorithms are effective, they do not imply so far the existence of a complete

texture model. Indeed, the input sample is characterized by a Gaussian distribution for each patch

but also by spreads, defined as the spatial distribution of the patches belonging to the same Gaussian

model. For some periodic textures the spread is deterministic (like in a chessboard for instance)

but for general textures the spread itself is random. To model the whole texture as a random field

a stochastic model for the spreads would therefore be necessary. For example, if the spread of the

input sample is given and the patches of the generated texture are samples of conditional Gaussian

distributions respecting exactly the same spread as the input’s, then the underlying random field

of the whole synthesized texture is Gaussian (as in the example of Figure .). Nevertheless, to

synthesize textures this is not very interesting in terms of variability among the different sampled

textures. Another meaningful example where the model is complete is the case of periodic textures

where the spread is deterministic. For a fixed seed patch (the one that initializes the generated

texture) the underlying random field of the generated textures is a periodic Gaussian random field.

But this is no longer the case when the seed patch is random.

To summarize, we cannot claim that the proposed synthesis algorithm corresponds to a com-

plete texture model, because it would require a stochastic model for the spread, namely the spatial

interaction between patches obeying the same Gaussian model. This is left for future investigation,

perhaps in the spirit of [].



. Experiments

A first set of synthesis results can be seen in Figure . to illustrate the influence of the parameters

n and m for a given texture example. We vary the values of the number of nearest neighbours m
used to estimate the parameters of the Gaussian distributions and of the side patch size n. The

first observation is that the preferable patch size has a sample-dependent lower bound. If the patch

size is too small the algorithm does not capture the variability of the sample. This is the case for

all non parametric patch-based methods. Yet, the larger the patch size, the fewer the neighbours

that we can use to build a faithful model for the patches. The second observation relates to the

size of the overlap between patches. If the proportion of the overlap area with respect to the patch

size is too small, the obtained model may no longer be a correct representation of the patch to

simulate. Indeed, the patches are compared on the overlap area but the model is learnt on the

whole patch. We observed that for an overlap of half the patch size the model is faithful enough

to achieve good results. The number of nearest neighbours used to infer the Gaussian models is

strongly dependent of the input texture. For periodic or pseudo-periodic textures this is not an

issue, as long as the patch size is not too large, since there are many similar patches to infer a good

patch model. Whenever strong and isolated configurations are visible then this becomes tricky and

the value of m is limited. Moreover a unique value of m may not be adapted in particular if the

texture is not stationary. Another limitation on the value ofm is indeed the size of the input image.

Figure . compares several state of the art texture synthesis methods. In general we can ob-

serve that for statistics-based methods (three first columns) the quality of our algorithm’s visual

results is considerably superior. However, when the size of the patch n is too large compared to

the texture’s structure (last row in Figure .) blurring artifacts can appear in our results. On the

other hand, like for the Efros-Freeman algorithm [] our method is able to preserve the strong

structures available in the input sample. We obtain similar visual results while creating an image

whose patches are new configurations. Of course one can notice that for isolated configurations

even if the generated patches are pixelwise different to the input ones, visually they are very similar

and verbatim copy effects are still visible. We believe that being able to work with smaller patches

reduces significantly this drawback.

In Figure . we compare the capacity of innovation of our method to the work in []. To

illustrate this we represent the synthesis results using position and synthesis maps as can be seen in

Figure . which shows the input sample u, the associated position map (Pmap), the synthesized

texture w and the associated synthesis map (Smap). Each pixel position x in the sample texture u
is associated to a different color from a continuous colormap. The resulting image is the position

map. The synthesis map associated to the synthesized texture w is obtained by mapping each of its

positions x′ to the color value of the corresponding position x of u. This position x corresponds

to the central pixel of the nearest patch in u to the patch centered in x
′ in w. The synthesis map

permits to identify the tendency of an algorithm to generate verbatim copies and to visualize from

which regions of the input texture are sampled the patches. To compute these synthesis maps we

used the PatchMatch algorithm [] an efficient method to approximate optimal correspondences.

Patch match is an algorithm that finds approximate nearest neighbours matches between image

patches. That is, given two input images A and B the patch match algorithm returns an offset

map. This offset map indicates where, for each pixel x′
i in B considering the patch centered in x

′
i,

is approximatively the nearest patch inA centered in xj . We used the implementation of the patch

match algorithm provided in [].



Figure 2.5 – Results representation. From left to right: texture sample, position map, synthesized image

and synthesis map. The synthesis map shows for each synthesized patch its initial position in the texture

sample. It allows then to identify exactly the verbatim copy regions (they correspond to continuous

color areas of the map).

. Conclusion

In this chapter we presented a synthesis algorithm that generates a new texture image by stitch-

ing together patches sampled from multivariate Gaussian distributions in the input sample patch

space. For each patch under construction in the output image the underlying Gaussian model is

inferred from the set of similar patches (to the patch under construction) from the input sam-

ple. Hence the algorithm synthesizes a texture that is perceptually equivalent to the sample texture

yet not composed of patches existing in the input texture. This method reduces some of the draw-

backs of the statistics-based and the patch-based methods. The stitching procedure is a bit complex

and will be replaced in Chapter . Like the Efros-Leung or the Efros-Freeman methods, the algo-

rithm remains dependent on the choice of n and m, that may have to be adjusted for each texture

sample. In our opinion the texture samples used in the literature are too small, particularly for

macro-textures like the ones presented here and in most papers. Thus, our local Gaussian model

is forced to use only  to  degrees of freedom because only some  to  patches are similar

enough. This estimate should improve with larger texture samples. Our algorithm has low com-

plexity, compared for instance with classic patch-based denoising algorithms [], []. Indeed, the

patch covariance matrix needs not to be computed or inverted. The gaussian samples are simply

obtained by linearly combining the nearest neighbours patches. Another alternative to reduce the

dependency of the method to the patch size is to work in a multiscale approach. This extension

is presented in the next chapter. Unlike the statistics-based algorithms, but like the other patch-

based methods, our algorithm is not forced to respect the global statistics of the texture sample.

This can be observed in the second row of Figure . where our result correctly reproduces an im-

age of petals but fails to insert a correct proportion of the leaves in the synthetic image. In the next

chapter we also deal with this issue.



Input RPN HB PS EF LG

Figure 2.6 – Comparison with various other texture synthesis methods. From left to right: texture sam­

ple, synthesis results of [20], [6], [50], [15] and our algorithm the locally Gaussian synthesis method (LG).

For all the examplesm = 10, n = 30 except for the third row where n = 10.



Input Pmap [] Smap LG Smap

Figure 2.7 – Comparison of the synthesis maps. From left to right: texture sample, associated position

map (Pmap), synthesis results of the Efros and Freeman method [15], associated synthesis map (Smap),

results of LG and the associated synthesis map (Smap). The results of [15] and LG presented in this image

are the same as the ones shown in Figure 2.6.



3 Conditional Gaussian model:

a multiscale algorithm

Exemplar based texture synthesis is defined as the process of generating, from an in-

put texture sample, new texture images that are perceptually equivalent to the input.

In the present chapter, we model texture self-similarity with conditional Gaussian

distributions in the patch space in order to extend the use of stitching techniques.

Then, a multiscale texture synthesis algorithm is introduced, where texture patches

are modeled at each scale as spatially variable Gaussian vectors in the patch space.

The Gaussian distribution for each patch is inferred from the set of its nearest neigh-

bours in the patch space obtained from the input sample. This approach is tested

over several real and synthetic texture images and its results show the effectiveness of

the proposed technique for a wide range of textures.

. Introduction

In this chapter, an extension and detailed description of a texture synthesis framework is proposed

which combines a multiscale approach to the locally Gaussian texture model in the patch space.

Each texture patch of the synthesized image is sampled from its Gaussian distribution estimated

on a set of similar patches taken in the input sample as defined in Chapter . Modeling patches

with conditional Gaussian distributions is an approach that is also used in image processing as for

instance in the denoising algorithm of Buades et al. []. The first question that was brought up was

how to stitch together the patches. In Chapter , the Efros and Freeman’s [] was adopted, where

every new patch overlaps the previously synthesized one, and the overlapped parts are blended.

In this chapter we consider conditional Gaussian models constrained to respect the values of its

overlapping zone. This solution shows satisfying results for periodic or pseudo-periodic textures

but fails for more complex ones. The second and central question brought up by non paramatric

patch based methods is: how to handle the strong dependency of the method on the patch size in

particular when dealing with macro-textures. Macro-textures show information at different scales

that cannot be captured with a unique patch size. To this aim, a multiscale approach is considered.

A full description and discussion is provided here.

In this chapter, we aim at extending the Gaussian model proposed in Chapter  to take into ac-

count the stitching step. We first recall briefly the principle of non-parametric patch-based meth-

ods and review the most recent contributions. As we have seen in Chapter , non-parametric

patch-based methods were initialized by Efros and Leung [] who extended to images Shannon’s

Markov random field model initially devised to simulate text. In analogy with Shannon’s algo-



rithm for synthesizing sentences, the texture is constructed pixelwise. For each new pixel in the

reconstructed image, a patch centered at the pixel is compared to all patches with the same size

in the input sample. The nearest matches in the input help predict the pixel value in the recon-

structed image. Several optimizations have been proposed to extend and accelerate this algorithm.

Among them, Wei and Levoy [], managed to fix the shape and the size of the learning patch

and Ashikmin [] proposed to extend existing patches whenever possible instead of searching in

the entire sample texture. As we mentioned, these pixelwise algorithms are not always satisfactory.

They are known to grow “garbage” when the compared patches are too small or when the input

texture is not stationary, or may lead to verbatim copies of significant parts of the input sample

for large patches as can be verified in []. This explains why more recent methods stitch together

entire patches instead of performing a synthesis pixel by pixel. The question then is how to blend

a new patch in the existing texture. In [] this is done by a smooth transition. Efros and Freeman

[] refined this process by stitching each new patch along a stitching path with minimal contrast

between the new patch and the texture in their overlapping zone. Kwatra et al. in [] extended the

stitching procedure of [] by a graph cut approach redefining the edges of the patches. In [] the

authors proposed to synthesize a texture image by sequentially improving the quality of a synthesis

by minimizing a patch-based energy function. In the same spirit as [], where texture optimiza-

tion is performed, the authors in [] proposed to synthesize textures in a multiscale framework

using the coordinate maps of the sample texture at different scales. They introduced spatial ran-

domness by applying a jitter function to the coordinates at each level combined to a correction step

inspired by []. One of the key strengths of the method is that it is a parallel synthesis algorithm

which makes it extremely fast. These non-parametric patch-based approaches often present satis-

factory visual results. In particular they have the ability to reproduce highly structured textures.

However, the risk remains of copying even several times verbatim large parts of the input sample.

Furthermore, a fidelity to the global statistics of the initial sample is not guaranteed, in particular

when the texture sample is not stationary. We refer to [] for an extensive overview of the different

non-parametric patch-based methods.

Recently methods such as [, ] combine patch-based and statistics-based methods to over-

come the drawbacks mentioned previously. In [], the author proposes to use a patch-based ap-

proach where all the patches of the synthesized image are created from a sparse dictionary learnt on

the input sample. In [], Tartavel et al. extend the work of [] by minimizing an energy that in-

volves a sparse dictionary of patches combined to constraints on the Fourier spectrum of the input

sample. Still more recently, Gatys et al. [] have introduced the neural network methodology into

the field. Extending the parametric approach, they characterize a texture by the cross-correlations

of kernels learnt from a convolutional neural network dedicated to shape recognition. This al-

gorithm emulates complex textures containing large objects for which the Portilla and Simoncelli

algorithm is not satisfactory. Contrarily to the Portilla and Simoncelli approach, no Occam’s razor

was applied to reduce the number of texture parameters. The number of kernel correlations in-

volved is perhaps exceedingly large: it appears that parts of the input are being recombined in the

output. Nevertheless this learning approach is definitely promising.

The rest of this chapter is structured as follows. In Section . the local Gaussian (LG) model

is described. An analysis of the model’s variance is provided as well as the description of a first

synthesis method. In Section . two new patch models are introduced: the conditional local

Gaussian model (CLG) and the regularized conditional local Gaussian model (RCLG). Section .

presents the multiscale approach (MSLG). Section . shows several experiments: a comparison of

the three patch models proposed, a comparison to the results of state of the art texture synthesis

methods and the influence of the parameters involved in the multiscale texture synthesis algorithm.



Conclusions are presented in Section ..

u Ω→ R: input texture image defined on the discrete domain Ω = IM × IN of size

M ×N where Ic denotes the discrete interval [0, . . . , c− 1]
w Ωr → R: output texture image defined on the discrete domain Ωr = IrM × IrN

of size rM × rN
d is equal to 1 if u is grayscale and to 3 for color images

r ratio (size of output image w)/(size of input image u)

n side patch size

m number of nearest neighbours used to learn the parameters of the Gaussian dis-

tribution

o overlap size

K number of scales (maximum factor of zoom out is K − 1)

uk Ωk → R: zoom out of u of a factor 2k, defined on the discrete domain Ωk =
I2−kM × I2−kN of size 2−kM × 2−kN for k = 1 . . . K − 1

wk Ωk
r → R: synthesized texture at scale k, defined on the discrete domain Ωk

r =
Ir2−kM × Ir2−kN of size r2−kM × r2−kN for k = 0 . . . K − 1

vk Ωk
r → R: zoom in of wk+1 of factor 2. It is the initialization of the low resolution

of the synthesized image wk for k = 0 . . . K − 2

p
(x,y)
u square patch of size n × n from an image u of size M × N at position (x, y),

p
(x,y)
u = {u ((x, y) + (i, j)) , (i, j) ∈ [0, . . . , n − 1]2}, (x, y) ∈ Vu where Vu =
IM−n+1×IN−n+1 denotes the discrete domain of the valid patches in u. The patch

p
(x,y)
u will be considered as a column vector of size dn2 × 1

Gσ Gaussian kernel of mean zero and standard deviation σ, Gσ(x, y) =
1

2πσ2 e
−x2+y2

2σ2

Luk Ωk → R: low resolution of image uk, Luk = uk ∗Gσ, k = 0 . . . K − 2
Huk Ωk → R: high resolution of image uk, Huk = uk − uk ∗Gσ, k = 0 . . . K − 2
Lwk

Ωk
r → R: low resolution of image wk, Lwk

= wk ∗Gσ, k = 0 . . . K − 2
Hwk

Ωk
r → R: high resolution of image wk, Hwk

= wk − wk ∗Gσ, k = 0 . . . K − 2
Im denotes the m×m identity matrix

Table 3.1 – Summary of the notations used in this chapter.

. Gaussian patches

For all notations used in this section we refer to Table . for a detailed definition.

.. The assumption of a Gaussian patch model

We recall in this section the locally Gaussian model suggested in Chapter . For a given texture

image u, the underlying distribution of every patch p
(x,y)
u is modeled as a multivariate Gaussian

distribution of mean µ(x,y) and covariance matrix Σ(x,y).

These parameters are estimated from the set of nearest patches U = {p(xi,yi)u , i = 1, . . . ,m}
where p

(xi,yi)
u are the m nearest patches to p

(x,y)
u in u according to the L2 distance. The empirical



statistics µ(x,y) and Σ(x,y) are then defined as

µ(x,y) = 1
m

∑m
i=1 p

(xi,yi)
u

Σ(x,y) = 1
(m−1)PP

t.

(.)

We denote byP the matrix whose columns are the normalized patches in vector form (p
(xi,yi)
u −

µ(x,y)), i = 1, . . . ,m.

The sampled vector p̃
(x,y)
u is thus defined as a linear combination of the m nearest patches p

(xi,yi)
u

p̃(x,y)u =
1√
m− 1

PA+ µ(x,y). (.)

HereA is a vector whose elements are standar normal independent random variablesA ∼ N (~0, Im).
Thus, the sampled vector has the correct Gaussian distributionN (µ(x,y),Σ(x,y)).

In Chapter  we measured the variability of the Gaussian models with respect to the patch size

n and the number of paches m. For this the mean standard deviation per pixel of a given patch in

the texture image was estimated as

σ̄ =
1

dn2

dn2
∑

i=1

√

Σ(x,y)(i, i) =
1

dn2

dn2
∑

i=1

σi

where d is the number of channels(d= for grayscale images and d = 3 fop color images).We ob-

served that indeed the models considered have reasonable variances confirming that effectively the

patches simulated have an acceptable degree of innovation. From now on to simplify the notations

when referring to µ(x,y) and Σ(x,y) they will be denoted by µ and Σ respectively.

.. Texture synthesis algorithm

We remind the locally Gaussian texture synthesis algorithm (LG) presented in Chapter  with a

different notation that will be useful for the following section. Given the input texture u, an out-

put image w is synthesized sequentially patch by patch in a raster-scan order (left to right, top to

bottom). Each new patch added to w overlaps part of the previously synthesized patch as can be

seen in Figure .. Depending on the stage of the synthesis three different cases of overlap can be

observed: vertical (first row of raster-scan), horizontal (first column of raster-scan) and L-shape

(everywhere else). This is also shown in Figure .. Each patch is simulated following a multivariate

Gaussian distribution of mean µ and covariance matrix Σ as defined in (.). When quilting the

patch in w the same stitching step is applied as in Efros and Freeman’s work [] where the authors

propose to compute an optimal boundary between the new patch and the previously synthesized

one along their overlap region. This is done thanks to a linear programming optimization.

To define the set U = {p(xi,yi)u , i = 1, . . . ,m} of nearest patches to p
(x,y)
w , let us consider p

(x,y)
w

as the patch being currently synthesized and taken as a column vector of size dn2 × 1. The patch

p
(x,y)
w will overlap part of the previous synthesis. To synthesize p

(x,y)
w , we decompose it as

p(x,y)w = StSp(x,y)w +RtRp(x,y)w . (.)

Here, S : Rdn
2 → Rdn

2−k and R : Rdn
2 → Rk are projection operators such that Rp

(x,y)
w is

a vector of size k × 1 with the values of p
(x,y)
w on the overlap area and Sp

(x,y)
w is a vector of size



(dn2 − k) × 1 with the other components of p
(x,y)
w . This decomposition will be useful in the

following section.

The patches p
(xi,yi)
u used to learn the parameters of the multivariate Gaussian distribution

(.) are the m nearest neighbours in u to the current patch p
(x,y)
w , for the L2 distance restricted

to the overlap area, given by ‖Rp(xi,yi)u −Rp(x,y)w ‖2. Once the patch p
(x,y)
w is synthesized from the

Gaussian model (.), the values ofRp
(x,y)
w change. The texture synthesis algorithm is summarized

in Algorithm  in section . of Chapter .

Vertical overlap

Iteration 10

Horizontal overlap

Iteration 115

L-shape overlap

Iteration 239

Figure 3.1 – Three different iterations of the synthesis process are shown. At each iteration a patch is

being synthesized. This patch is represented by the pink square in the three iterations shown. From left

to right the three overlap cases are represented: vertical, horizontal and L­shape.

In Figure . the synthesis results using the Gaussian sampling are compared to those of the

quilting method [] to illustrate that the Gaussian sampling achieves visual results that are com-

parable to those in [] while providing a local parametric model, as shown in Chapter . With

the Gaussian sampling some blur is introduced in the synthesis results but the effects of verbatim

copies and garbage growing are reduced as can be observed in the second example in Figure ..

Regarding the uderlying mathematical model of the synthesized image, as discussed in Chapter ,

we cannot claim that the proposed synthesis algorithm corresponds to a complete texture model,

because it would require a stochastic model for the spread, namely the spatial interaction between

patches obeying the same Gaussian model.

. Conditional Gaussian models

The purpose of this section is to analyze how to replace the stitching step by a conditional patch

model constrained to the overlap zone. The natural idea is to condition the new Gaussian samples

to the values observed in the overlap zone, thus allowing to maintain the same or slightly modifying

the overlap pixels. We observed that conditional Gaussian models used in [] as an inpainting

method for microtextures achieved good results.

This requires modeling the transition effect between patches. Each new patch will be estimated

as a Gaussian vector conditioned to the pixel values of its corresponding overlap region. In this way

the simulated patch would naturally “agree” with w in the overlap area, thus avoiding a stitching

procedure.

Such models will be considered in the following sections.



Input LG method []

Figure 3.2 – Comparison of LG to the quilting method [15]. These results are done taking equal parame­

ters and seed patch to initialize the synthesized imaged. The parameters used are n = 40, o = n/2 and

m = 30 (for the LG model).

.. A first conditional Gaussian model

In this first patch model the idea is to model sample patches obeying a Gaussian distribution that

exactly match with their overlap area pixels, avoiding the unwanted discontinuities. We shall call

this model Conditional Locally Gaussian (CLG).

Each patch p
(x,y)
w is taken as a column vector of size dn2 × 1 and can be partitioned as

p(x,y)w = StSp(x,y)w +RtRp(x,y)w .

We assume throughout that the vector p
(x,y)
w follows a Gaussian distribution of mean µ and co-

variance matrix Σ. These parameters can be expressed as follows :

µ =StSµ+RtRµ = Stµ1 +Rtµ2

and

Σ =StSΣStS + StSΣRtR+RtRΣStS +RtRΣRtR

=StΣ1,1S + StΣ1,2R+RtΣ2,1R+RtΣ2,2R.

The problem can be formulated as finding the “best sample” p̃ = (p̃1, p̃2) conditioned to the

overlap values q0 that are known,

p̃1 = argmax
p1

Pµ,Σ(P1 = p1 | P2 = q0). (.)



Here P1 corresponds to the unknown values of p
(x,y)
w and P2 to the values of p

(x,y)
w on the overlap

area, i.e. P1 = Sp
(x,y)
w and P2 = Rp

(x,y)
w .

Using classic results on conditional multivariate Gaussian distributions [], the distribution of P1

conditioned to P2 = q0 is a multivariate Gaussian distribution of parameters µ̄ and Σ̄ where

µ̄ = µ1 + (SΣRt)(RΣRt)−1(q0 − µ2)
and

Σ̄ = (SΣSt)− SΣRt(RΣRt)−1RΣSt.

Since the most probable sample of a multivariate Gaussian distribution is its mean, the solution to

(.) is

p̃w = Rtq0 + St(µ1 + (SΣRt)(RΣRt)−1(q0 − µ2)). (.)

This first result has the advantage that since the mean of the conditional distribution is taken,

the risk of unwanted sharp transitions between patches for some types of textures will be atten-

uated. Another observation is that since this new model might not have very probable samples,

working with the most probable one improves the visual aspect of the sampled patch. The negative

aspects of taking the most probable sample is that on the one hand the result, for a given initializa-

tion, is deterministic. On the other hand the synthesis result loses details by displaying the mean

of the conditional distribution.

To overcome both mentioned drawbacks we sample a patch from the underlying Gaussian

distribution, that is,

p̃ = Rtq0 + Stp̃1, p̃1 ∼ N (µ̄, Σ̄). (.)

Yet equations (.) and (.) show that these solutions do not make sense if (RΣRt) is not

invertible. This is unfortunately frequent, as the number of neighbours m used to build the Gaus-

sian distribution is often very small compared to the dimension of the vectors we aim to model.

Therefore the learnt Gaussian models are strongly degenerated.

The fact that Σ is not invertible implies that the Gaussian vectors p
(x,y)
w ∼ N (µ,Σ) live in a sub-

space of Rdn
2
. However it does not say that there is no solution to (.). Indeed there are two

possible cases:

. The subspace of Gaussian vectors (N (µ,Σ)) intersects the subspace of vectorsRtq0+S
tp1.

Thus the Gaussian distributionN (µ̄, Σ̄) exists and there is a solution to our problem.

. The subspace of Gaussian vectors (N (µ,Σ)) does not intersect the subspace of Gaussian

vectors Rtq0 + Stp1. Therefore there is no solution.

To avoid the second case (having no solution) a small perturbation is added to the Gaussian distri-

bution learnt for p
(x,y)
w as follows

p(x,y)w ∼ N (µ,Σ+ σ2Idn2),

where σ2 is a real positive number and Idn2 is the identity matrix of size dn2 × dn2 ensuring

that the problem is well conditioned. In that way the Gaussian vectors p
(x,y)
w live in all Rdn

2
, and



this ensures the existence of the conditional multivariate Gaussian distribution sought. The new

covariance matrix is denoted by Γ = Σ+ σ2Idn2 .

If we are in the case where the Gaussian vectors subspace p
(x,y)
w ∼ N (µ,Σ) intersects the

set of Gaussian vectors Rtq0 + Stp1, using the new distribution N (µ,Γ) will slightly modify the

solutions in (.) and (.) when using small values of σ2. Thus it is enough to take a low value

for σ2 and the solutions obtained in both cases (N (µ,Σ) and N (µ,Γ)) will be very close to each

other.

Adding this perturbation to the multivariate Gaussian model has the drawback of increasing

the computational cost of sampling a Gaussian vector. For the model in Section .. a Gaus-

sian vector was sampled by a simple linear combination of m patches. There was no need in

estimating the covariance matrix of the Gaussian distribution. The model presented in this sec-

tion requires the computation of the Gaussian parameters, in particular the covariance matrix

Γ̄ = (SΓSt) − SΓRt(RΓRt)−1RΓSt. The covariance matrix Γ̄ is symmetric and definite pos-

itive and then admits a Cholesky factorization, i.e. there is a unique lower triangular matrix C
such as Γ̄ = CCt. Thus the vector s = Ct + µ̄ yields a sample of the desired Gaussian distribu-

tion N (µ̄, Γ̄) with t ∼ N (~0, Idn2). The complexity of computing the Gaussian samples with the

cholesky decomposition isO(n3) whereas the complexity of the first model isO(nm).

This synthesis method is summarized in Algorithm  and Algorithm .

Algorithm : CLG sampling

Input: set of nearest pathces U , overlap values q0, projection operators R and S
Output: Gaussian sample F

: µ← 1
m

∑m
i=1 p

(xi,yi)
u , mean of the Gaussian model

: Σ← 1
(m−1)

(PP t), covariance matrix of the Gaussian model

: Γ← Σ + θ2In2 , covariance matrix of full rank

: µ̄← Sµ+ (SΓRt)(RΓRt)−1(q0 −Rµ), conditional Gaussian mean

: Γ̄← (SΓSt)− SΓRt(RΓRt)−1RΓSt, conditional covariance matrix

: C ← cholesky decomposition of matrix Γ̄
: t← Gaussian sampleN (~0, In2)
: s← Ct+ µ̄ Gaussian vector followingN (µ̄, Γ̄)
: return F

.. The regularized conditional Gaussian model

In the previous section the patches’ statistical models were conditioned to the exact values of the

synthesized pixels across their overlap area. This is too restrictive for some types of textures and is

at risk of creating unlikely samples. Instead of forcing each patch p
(x,y)
w to take the exact same values

on the previously synthesized part, it is therefore natural to allow the patch to vary slightly on the

overlap area. This variation is rendered necessary by the scarcity of patch samples in a small texture

sample. We shall call this model Regularized Conditional Locally Gaussian (RCLG). Consider the

same patch model N (µ,Σ), but let us now allow the overlap components P2 = Rp
(x,y)
w to take

values P2 = q0 + b, where b ∼ N (0, θ2Ik) and where θ is the variation allowed for the overlap

values. The joint distribution of (P1, P2) is defined by:



Algorithm : CLG texture Synthesis

Input: input texture sample u, side patch size n, overlap size o, number of nearest

neighbours m, ratio (output size)/(input size) r
Output: synthesized texture w

: Initialize w placing a seed patch in its top-left corner (x = 1, y = 1). The image w is

of size rM × rN , where M ×N is the size of u.

: for x = 1 : n− o : rM do

: for y = 1 : n− o : rN do

: if (x > 1 or y > 1) then

: q0 ← known overlap values

: U ← set of m nearest neighbours to p
(x,y)
w

: p̃
(x,y)
w ← CLG sampling(U , q0)

: Quilt p̃
(x,y)
w in w at position (x, y)

: end if

: end for

: end for

: return w

P(p1, p2) =Pµ,Σ(p1|p2)Pq0,θ2Ik(p2)

=
1

Z
e−

1
2
((p1,p2)−(µ̄,q0))t∆−1((p1,p2)−(µ̄,q0)), (.)

where Z =
√

2π det(∆) and ∆ =

(

Σ̄ 0

0 θ2Ik

)

.

Proceeding as in the previous model (CLG) the most probable sample

p̃ = arg max
(p1,p2)

Pµ,Σ(p1|p2)P0,θ2Ik(p2 − q0)

is exactly the same as in (.) and has the same drawbacks. On the other hand sampling from (.)

allows to relax the overlap constraint.

Once again, to guarantee the existence of the solution, the Gaussian distribution of p
(x,y)
w is

slightly modified as done in the CLG model. A small perturbation is added to the covariance

matrix Σ and the problem is then well conditioned. Thus, as in the CLG model, the computational

cost of sampling from this new Gaussian distribution is higher compared to the LG sampling as

mentioned for the CLG model since once again the parameters of the RCLG are estimated. The

sampling process is similar to the one described in Algorithm . The difference is that the known

values of the overlap are slightly modified to relax the constraint. Apart from that the procedure is

the same where in one case the overlap values are exactly those from the previous synthesis (CLG)

and in the second case they are slightly modified as q0 + b where b ∼ N (~0, θ2Ik).

. A multiscale generalization

For all notations used in this section we refer to Table . for a detailed definition.



Macro textures present details at different scales: a coarse one that contains the global struc-

ture of the texture and finer ones containing the details. Small patch sizes may capture the finer

details of the input but the resulting texture will lack global coherence. On the other hand using

large patches will maintain better the global structures on the risk of a “copy-paste” effect. Fur-

thermore with large patches it becomes impossible to model the patch variability due to the curse

of dimensionality, in other terms the lack of sufficient samples. This is for example apparent in the

examples of Chapter  where modeling patches as multivariate Gaussian vectors leads to a slightly

blurry texture.

Multiscale approaches permit to contemplate several patch sizes within one synthesis, i.e. to

capture the different levels of details. If we fix the patch size to be n × n and use K scales this is

similar to using K different patch sizes going from 2K−1n × 2K−1n to n × n for the coarsest to

finer details within one synthesis.

In this section the potential of a multiscale approach is illustrated by improving the method

described in Algorithm . Let us first introduce some notations. The input texture sample is

denoted by u and uk, k = 1, . . . ,K − 1 are the zoomed out versions of u by a factor 2k, k =
1, . . . ,K − 1. The synthesis result at each scale is denoted by wk, k = 1, . . . ,K − 1 and w is the

synthesis result returned by the multiscale algorithm. An additional image needed at each scale is

the low resolution of the resultwk that is denoted by vk and its the result of zooming inwk+1. The

multiscale approach can be summarized in a few sentences. The method begins by a synthesis at

the coarsest scale (k = K − 1) using the local Gaussian method in Algorithm  where the quilting

step is replaced by a simple average of the overlapping patches. For the remaining scales (k =
K−2, . . . , 0) a synthesis is performed by using the result of the previous scale (k+1) and the input

of corresponding resolution. At each scale the synthesis is done patch by patch in a raster-scan

order. Each new patch, added to the synthesized image, overlaps part of the previously synthesized

patch and is the combination of a low resolution patch and a high resolution one sampled from a

multivariate Gaussian distribution. The Gaussian distribution of the high frequencies of a given

patch is estimated from the high frequencies of itsm nearest neighbours in the corresponding scale

input image. The synthesis result of the finer scale is the desired output image.

We shall call this method Multiscale Locally Gaussian (MSLG). In the following the different

parts of the method described in Algorithm  are detailed.

Zoom-out The zoom-out operation is based on Gaussian filtering. It is performed as a smooth

frequency cut-off followed by a sub-sampling of factor two. These operations are detailed below in

(.), (.) and (.).

The smooth frequency cut-off is performed with the Gaussian kernel

Gσ(x, y) =
1

σ22π
e−

x2+y2

2σ2 , (.)

where we chose σ = 1.4. Indeed as proved in [] if we consider a Gaussian kernel of standard

deviation σ =
√

(0.8α)2 − 0.82 to smooth the image and then sub-sample it by a factor α we can

assume that no aliasing is generated.

The sub-sampling operation by a factor two applied to an image u : IM × IN 7→ R is defined by

S2 : IM × IN 7→ IM/2 × IN/2,
S2(u)(i, j) = u(2i, 2j), (i, j) ∈ IM/2 × IN/2. (.)



The zoom-out of an image u of factor two is then

Zout
2 (u) = S2(u ∗Gσ). (.)

The images obtained after applying this zoom-out operation have no aliasing and they are

blurry enough to avoid ringing artifacts when applying the zero padding zoom-in.

Zoom-in For an image u : IM × IN → R, v = Z in
2 (u) : I2M × I2N → R is the zoom-in by a

factor two. This operation is performed by a zero padding of û : Î2M × Î2N → C where û denotes

the discrete Fourier transform of u and Îc denotes the discrete interval [−c/2, . . . , c/2 − 1] for c
even and [−(c− 1)/2, . . . , (c− 1)/2] for c odd. This is done as

v̂(ξ1, ξ2) =

{

û(ξ1, ξ2) if |ξ1| ≤
⌊

M−1
2

⌋

, |ξ2| ≤
⌊

N−1
2

⌋

0 else
(.)

where v̂ is the discrete Fourier transform of v and ⌊x⌋ denotes the integer part of x.

The relation between the zoom in and zoom out operators

Z in
2 (Zout

2 (u)) = u

is valid when the image u verifies

û(ξ1, ξ2) = 0, ∀|ξ1| >
⌊

M − 1

2

⌋

, |ξ2| >
⌊

N − 1

2

⌋

.

We could have chosen other interpolation techniques as for example a spline interpolation.

But a zero padding is well suited due to the nature of the zoomed out images which are blurry

enough to avoid any ringing artifacts.

Distance between patches To estimate the parameters of the Gaussian distribution of the

patch being processed, denoted by p
(x′,y′)
wk

, the set U of m nearest patches in uk to p
(x′,y′)
wk

is con-

sidered. These patches are those minimizing the distance to p
(x′,y′)
wk

defined in (.) for k = K−1
and in (.) for the remaining scales k = K − 2, . . . , 0.

The size of patch overlap is fixed to half the patch size n/2. As mentioned in Section .

there are three overlap cases: vertical (V.O.), horizontal (H.O.) and L-shape (L.O.). Here they are

denoted as

Op(x,y)u = {u ((x, y) + (i, j)) , (i, j) ∈ O}

where

O =























[0, . . . , n− 1]×
[

0, . . . , n2 − 1
]

if V.O.
[

0, . . . , n2 − 1
]

× [0, . . . , n− 1] if H.O.
[

0, . . . , n2 − 1
]

× [0, . . . , n− 1]∪
[

n
2 , . . . , n− 1

]

×
[

0, . . . , n2 − 1
]

if L.O.

When k = K − 1, the m nearest neighbours in uK−1 to the current patch p
(x′,y′)
wK−1 are those

minimizing the L2 distance restricted to the overlap area:



d(Op(x,y)uK−1
, Op(x

′,y′)
wK−1

)2 =

1

|O|
∑

(i,j)∈O
(uK−1(x+ i, y + j)− wK−1(x

′ + i, y′ + j))2. (.)

When k = K−2, . . . , 0, the nearest neighbours in uk to the patch p
(x′,y′)
wk

are those minimizing

a distance (.) similar to (.) with an additional term taking into account the low resolution vk
(the synthesis result of the previous scale k + 1). In (.) Luk denotes the low resolution of the

image uk, Luk = uk ∗ Gσ, k = 0, . . . ,K − 2. It is important to notice that when comparing

Op
(x,y)
uk and Op

(x′,y′)
wk

the low and the high resolution must be considered jointly, they are not

independent.

d(p(x,y)uk
, p(x

′,y′)
wk

)2 =

1

|O|
∑

(i,j)∈O
(uk(x+ i, y + j)− wk(x′ + i, y′ + j))2

+
1

n2

n−1
∑

i,j=0

(Luk(x+ i, y + j)− vk(x′ + i, y′ + j))2 (.)

Blending process The blending process consists in simply averaging the values across the over-

lap area as in (.). This step is applied only for the synthesis of scale k = K − 1.

wk(x+ i, y + j) =
{

1
2(p̃

(x,y)
wK−1(i, j) + p

(x,y)
wK−1(i, j)) if (i, j) ∈ O

p̃
(x,y)
wK−1(i, j) if (i, j) ∈ I2n −O

(.)

Synthesizing patches at scales k = K−2, . . . , 0 At each scale k a patch p
(x,y)
wk

is synthesized

as the combination of a low resolution patch with a high resolution one. It can be decomposed as

p(x,y)wk
= p

(x,y)
wk∗Gσ

+ (p(x,y)wk
− p(x,y)wk∗Gσ

)

= p(x,y)vk
+ (p(x,y)wk

− p(x,y)vk
)

= p
(x,y)
Lwk

+ p
(x,y)
Hwk

.

Here Lwk
denotes the low resolution image of wk defined as Lwk

= wk ∗Gσ, k = 0 . . .K − 2 and

Hwk
denotes the high resolution image of wk defined as Hwk

= wk − wk ∗Gσ, k = 0 . . .K − 2.

The set U defines the Gaussian distribution of p
(x,y)
Lwk
∼ N (µL,ΣL) and p

(x,y)
Hwk
∼ N (µH ,ΣH) and

therefore the distribution of the patch p
(x,y)
wk
∼ N (µ,Σ) where

µ = µH + µL

and



Σ = ΣL +ΣH + cov
(

p
(x,y)
Lwk

, p
(x,y)
Hwk

)

+ cov
(

p
(x,y)
Lwk

, p
(x,y)
Hwk

)t
.

Instead of sampling p
(x,y)
Lwk

from its Gaussian distribution, p
(x,y)
vk ∼ N (µL,ΣL) is kept to conserve

the low resolution synthesis from the previous scale. The high frequency patch p
(x,y)
Hwk

is sampled

form N (µH ,ΣH) and then added to p
(x,y)
vk . In this way the correlations between high and low

resolution pixels are respected, using the low resolution synthesis vk as initialization.

For all scales beside the coarsest one the synthesis is done by adding the high frequencies of the

corresponding scale on the the low resolution basis image. It is the important to achieve a correct

basis image in the coarsest scale on which the high frequencies will be added. The texture synthesis

method is summarized in Algorithm .

Algorithm : Multiscale texture syntesis algorithm (MSLG)

Input: input texture sample u, side patch size n, number of nearest neighbours m,

number of scales K, ratio (output size)/(input size) r
Output: synthesized texture w

: Define uk ← Zout
2 (uk−1), k = 1 . . . K − 1

: Define Luk ← uk ∗Gσ, k = 0 . . . K − 2
: Synthesize wK−1 ← LG(uK−1, n,m, r) {see Algorithm }
: for k = K − 2 : 0 do

: vk ← Z in
2 (wk+1)

: Initialize wk with zeros of same size as vk
: for x = 1 : n/2 : (r2−kM − n+ 1) do

: for y = 1 : n/2 : (r2−kN − n+ 1) do

: Compute d(p
(x′,y′)
uk , p

(x,y)
wk), for all (x′, y′) in Vuk , where Vuk denotes the

discrete domain of the valid patches in uk.

: U ← {p(xi,yi)uk , i = 1, . . . ,m} set of m nearest patches in uk that minimize

d(p
(x′,y′)
uk , p

(x,y)
wk)

: H ← {p(x,y)uk − p
(x,y)
uk ∗Gσ, ∀p(x,y)uk ∈ U}, high frequency of the

corresponding patches in U
: Learn (µ,Σ) the parameters of the multivariate Gaussian distribution on the

patches ofH
: Sample p̃ ∼ N (µ,Σ)

: p̃
(x,y)
wk ← p

(x,y)
vk + p̃

: wk((x, y) + (i, j))← p̃
(x,y)
wk for (i, j) in I2n

: end for

: end for

: end for

: return w



. Experiments

In this section, texture synthesis results are shown using the algorithm described in Algorithm .

In Figure ., general results of the multiscale method are shown with success and failure cases. In

Figure . several texture synthesis methods are compared. In Figure . the innovation capacity of

our method is compared to [] using coordinate maps. In Figure . the patch models introduced

in Section . and . are compared. Finally, the influence of the parameters is discussed in Figure

.. There are four of them: the patch size n, the number of neighbours m, the overlap size o
and the number of scales K used in the multiscale approach. This is illustrated with two texture

examples.

In general the results shown in Figure . are satisfying for a wide range of textures. The global

structures are reproduced by the multiscale approach, while the local structures are maintained by

the patch based approach. Using a Gaussian patch model allows to create new patches that do not

exist in the input example while maintaining satisfying visual results. Based on the analysis of the

patch’s variance illustrated in Section . of Chapter  this guarantees that indeed the simulated

patches are sufficiently different from the ones in the input sample. The examples of the last two

rows illustrate some failure cases of the method. The main failure cause is the size of the input

texture. It is obvious that the input must be large enough to provide us with a sufficient number

of patch samples to estimate their distribution. If that is not the case, even though the patches are

pixel-wise different of the input ones the visual aspect may remain too similar and cause a “copy-

paste” effect whenm is small enough. Furthermore, as in other non parametric methods,“garbage”,

namely the excessive use of a subset of patches in the input image is not fully avoided. This effect

is nevertheless mitigated by the multiscale approach.

.. Model comparison

The results in Figure . show the effects of avoiding the use of the blending step in Algorithm .

The three models LG, CLG and RCLG were tested on several types of textures. For the three of

them the quilting step was omitted. This was done to achieve a better comparison of the capacity

of respecting the overlap by modeling or not the restriction of the patches to the overlap values.

The results are compared for the three models applied in the sampling mode. The results of the

same models in the best sample patch mode are less interesting and are not shown here. The

general conclusion of the results in Figure . is that the conditional patch models achieve a better

transition between patches on their overlap region, as expected. Nevertheless the results for CLG

and RCLG both loose some resolution compared to the LG results. One can observe in Figure

. that blur appears progressively in the raster-scan order of the synthesis algorithm. Indeed,

when moving forward in the synthesis the m nearest patches start being too different from each

other (due to the strong restriction of keeping the values of the overlap) and the result is a much

blurrier patch. The first five texture examples in Figure . show better stitching results for CLG and

RCLG than for to LG. Looking carefully at the synthesis results of the LG model the edges between

patches are more noticeable than in the other two models where almost no transition effect can be

seen. Nevertheless the loss of resolution caused by the Gaussian distributions is increased in both

conditional models, mostly for CLG. In the last row example the results are less convincing. There

are not enough reliable samples to estimate a correct conditional model. The visual results of CLG

and RCLG get more and more degraded in the order of the raster scan. This is not surprising since

the sample patches respecting the overlap values become increasingly unlikely.

From the experiments in Figure . one can conclude that a quilting technique is still needed



Figure 3.3 – Synthesis results of the multiscale algorithm. The small images correspond to the texture

samples and the big ones are the corresponding synthesis results. The parameters used for all examples

are n = 20,m = 20 andK = 2.



for complex textures and therefore the LG model is better to model locally the texture input. It

generates less blur in the results and has a significant smaller computational cost. In the rest of the

experiments only the LG model in considered. Nevertheless it could be interesting to test the use

of conditional models in the multiscale version at the coarsest scale.

In Figure . the LG model is compared to the MSLG model. One can observe the strength of

using the multiscale approach in terms of reproducing global arrangements that are not kept in the

LG model for a fixed patch size. This allows to obtain satisfying results for small values of n and

therefore gives more freedom to choose the number of nearest patches m. One can also conclude

from the experiments in Figure . that the multiscale approach generates blurrier textures than

the LG model.

.. Comparison to other texture synthesis methods

In this section the results of Algorithm  are compared to other synthesis methods such as [, ,

]. In general, the results obtained with the multiscale locally Gaussian method are visually com-

parable to the non-parametric patch based method of Efros and Freeman [], with the advantage

that now, the patches are being sampled from their Gaussian model and therefore are different from

their original patches. In Figure ., the first column shows the result of the proposed method. A

noticeable drawback of the method is the loss of resolution caused by the use of Gaussian distribu-

tions. The proposed method was therefore combined with the Portilla and Simoncelli’s algorithm

[] as a first and simple approach to overcome this resolution loss. To combine both methods we

first synthesize the texture example with MSLG and use this synthesis result as the initialization of

the Portilla and Simoncelli algorithm instead of a “noise image”. The result can be seen in the sec-

ond column of Figure .. The result of combining both algorithms is very satisfying. On the one

hand the local and global structures are kept due to use of the patch based and multiscale method.

On the other hand [] allows to respect the global statistics of the input or at least be quite close

to them. Comparing columns one and two to the third one shows how the combination of both

methods improves the results of each method used separately. Of course this solution is limited in

particular when the size of the synthesized image is too large. The fourth column shows the results

of the Tartavel et al. method []. It is interesting to compare our results to this method since

both approaches are multiscale, patch based, and create systematically new patches. The results for

organized highly structured textures are comparable for both cases. Nevertheless for more com-

plex textures like the flower example and the last two rows one notices a lack of sharpness when

recreating the salient objects of the input with the method in []. Finally the last column shows

results of []. One can observe that for MSLG the visual results are in general comparable to those

of [] while providing a local parametric model. The results of [] are obviously excellent. But

once again, in this kind of method, the algorithm ends up copying very large parts of the input. To

illustrate this we represent our synthesis results and the ones obtained with [] using the position

and synthesis maps in section . of Chapter . The synthesis map permits to identify the tendency

of an algorithm to generate verbatim copies and to visualize from which regions of the input tex-

ture are sampled the patches. To compute these synthesis maps we used the PatchMatch algorithm

[]. In Figure . one can observe that in general the synthesis maps associated to the results of

MSLG are more “noisy” than those associated to the results of []. Also in the synthesis maps

associated to [] larger continuous zones are identified. This corresponds to the verbatim copies

produced by the method. It is important to notice, that in both cases, for some texture examples

in the synthesis maps there are some dominant colors represented in the synthesis maps. That

reflects the discussion of Section . where we said that the spread of the input sample is not being



Input LG model CLG model RCLG model

Figure 3.4 – Patch model comparison. From left to right: texture sample, synthesis result using LG, CLG

and RCLG. No quilting technique was applied to stitch together the simulated patches for the three

presented models. The parameters used for all examples are n = 40,m = 30 and o = 0.5n.



Input LG model MSLG model

Figure 3.5 – Comparison of LG to MSLG. From left to right: texture sample, synthesis result using LG, and

MSLG. The parameters used for these examples are n = 20, m = 50 and o = 0.5n. For the multiscale

synthesis results the number of scalesK used isK = 3. For both methods we used the same seed patch

for each texture sample.



respected. For example, in the fifth row of Figure ., the input sample is not stationary (there is

a change of luminosity). Both methods fail in reproducing this. They tend to stay in one region

(the darker one in this particular case) and may lead to garbage growing. This is well represented

with the synthesis maps where green is dominant for the example in row number five. Combining

MSLG to [] used as post-processing significantly reduces this effect, although [] has its own

limitations.

.. Influence of the parameters

In Figure . and . the influence of the parameters is illustrated. There are four of them: the

patch size n ∈ {10, 20, 40}, the number of neighbours m ∈ {10, 30, 50}, the overlap size o ∈
{0.25, 0.5} × n and the number of scales used K ∈ {1, 2, 3}.

Influence of the patch size The synthesis results are very sensitive to the patch size, in particu-

lar for macro textures that have details at different scales. Figure . clearly shows that if the patch

size is too small then the synthesis will fail. Using the multiscale approach strongly reduces the

dependency of the method on the patch size. For all examples shown in this paper, the multiscale

method using patches of 20× 20 pixels was enough to guarantee correct synthesis results. For the

one scale version the patch size used should have been much larger to produce convenient results,

on the cost of reducing the variability of the Gaussian models and even creating verbatim copy

effects.

Influence of the number of neighbours This parameter corresponds to the number of patches

used to estimate the patches’ Gaussian distribution. As has been discussed in Section . the value

ofm in general should not be too small (> 5) or too large (< 50) to avoid patches of variance null

or too big. These values are not general for all textures. The choice of m is linked to the amount

of self-similarity in the image. Thus when m is too large the Gaussian sampling will blur up the

image. In the experience of Figure . one can see that whenm = 150 this leads to a texture which

is too regular compared to the input sample. Otherwise since the sample texture in Figure . has

many self similar patches the value of m can be large enough. The choice of m is a compromise

between a copy-paste strategy and the risk of a blurry texture reconstruction.

Influence of the overlap size For the nearest patches only the overlap areas are compared. This

implies that the variance of the model estimated on that set of patches will be controlled only on

the overlap region, thus allowing more variety in the remaining pixels of the patch. If that region is

not big enough then the complementary region of the overlap will not be correctly modeled, since

outliers can be considered in the set of patches. In Figure . two overlap cases are considered:

a quarter of the patch side and half the side patch size. This influence is more noticeable in the

columns for n = 20 and n = 40.

Influence of the multiscale process In Figure . the results show that using a single scale for a

fixed patch size is not enough to reproduce faithfully the global structure of the input sample for the

three texture examples. To achieve satisfying results for a single scale a larger side patch size should

be considered. Still this would lead to the limitations mentioned previously. Furthermore when the

number of scales is increased the global arrangements are recovered as expected. This fact can be

checked in the three examples of Figure .. They also put in evidence how using a simple average

of the values along the overlap area of the coarsest scale is sufficient to deal with the overlapping



Input MSLG MSLG+[] [] [] []

Figure 3.6 – Comparison to several texture synthesis algorithms. From left to right: input sample,

MSLG, MSLG combined to Portilla and Simoncelli [50], Portilla and Simoncelli[50], Tartavel et al. [59]

(source: http://perso.telecom-paristech.fr/~tartavel/research/jmiv14.php) and Efros and

Freeman [15]. For MSLG the parameters used are n = 20, m = 20 and K = 2. For [50] four scales and

orientations were used. For [59] the patch size is 12 and the number of scales 3. For [15] the patch size

used is 20.



http://perso.telecom-paristech.fr/~tartavel/research/jmiv14.php

Input Pmap MSLG Smap [] Smap

Figure 3.7 – Innovation capacity of two texture synthesis algorithms. From left to right: input sample,

associated position map (Pmap), results of MSLG, associated synthesis map (Smap), results of [15] and

associated synthesis map (Smap). The results of MSLG and [15] presented in this image are the same as

the ones shown in Figure 3.6. 

Input

overlap = 0.25n overlap = 0.5n

n=10, m=10 n=20, m=10 n=40, m=10

n=10, m=50 n=20, m=50 n=40, m=50

n=10, m=150 n=20, m=150 n=40, m=150

n=10, m=10 n=20, m=10 n=40, m=10

n=10, m=50 n=20, m=50 n=40, m=50

n=10, m=150 n=20, m=150 n=40, m=150

Figure 3.8 – Influence of the choice of the patch size, number of nearest neighbours and overlap size. For

a given texture example several synthesis results are shown for different sets of parameters. For this

experiment the MSLG method is used with K = 2 scales. Two columns of 3 × 3 results are presented.

The left column corresponds to an overlap size o = 0.25 × n and the right column to an overlap size

o = 0.5 × n. For each column of 3 × 3, from top to bottom the number of nearest neighbours m takes

the values 10, 50, 150. From left to right the patch size n takes the values 10, 20, 40. These results clearly

show that for a fixed value of n and m using an overlap size o = 0.25 × n is not enough to determine

a correct set of nearest neighbours. For a fixed patch size, for example (n = 40, o = 0.5 × n) one can

observe that increasing the value ofm smoothes the synthesis result.



patches. More complex quilting techniques are then avoided. The multiscale algorithm fosters a

better respect of the spread (but it’s not a guarantee).

Input K = 1 K = 2 K = 3

Figure 3.9 – Positive effect of a multiscale procedure. For each row from left to right: input sample, three

synthesis results for K = 1, 2, 3 scales. For the three texture examples from top to bottom the param­

eters used were (n = 10,m = 20), (n = 20,m = 20), (n = 20,m = 30). In the three examples the

global arrangement forK = 1 is not respected while forK = 2 andK = 3 are correctly synthesized.

. Conclusion

In this chapter, a local texture sampling method in the patch space using conditional Gaussian

models was proposed. The motivation was to dispose of a patch stitching step by using a more

robust local model for the texture. The Gaussian distribution of a patch was then conditioned to

the values of its overlapping region. Two approaches were considered: CLG and RCLG models, and

were compared to the local Gaussian model (LG). The results show that avoiding the stitching step

is possible when dealing with periodic and pseudo-periodic textures. For more complex textures

the conditional models are less performing and are fast limited by the size of the texture input

sample. In general, the synthesis results using the conditional models were slightly smoother than

the ones of the LG model.

The second contribution of this chapter was a multiscale texture synthesis algorithm using local

Gaussian models (LG). In general, the experiments showed satisfying results for a wide variety of

texture samples. Indeed, the patch-based approach conserves the local structures while sampling

each patch from its Gaussian distribution, thus creating new patches that do not exist in the input

sample. On the other hand the multiscale approach permits to synthesize the global arrangement

of the salient structures of the input sample. The experiments also put in evidence that the use of

Gaussian distributions, for some texture examples, have a tendency to slightly smooth the result



compared to the initial resolution of the sample. To overcome this effect the method was combined

to Portilla and Simoncelli’s algorithm [] as a first solution.

Several aspects of this method are still open to elucidation, such as the way patches are com-

pared, the adaptation of the number of neighbours to the patch being modeled and the conserva-

tion of the texture’s global statistics.



4 Midway patch blending

In this chapter we analyze the problem of stitching patches together. One of the ma-

jor challenges is stitching patches that differ considerably along the edges. Stitching

methods used in texture synthesis usually fail in these cases, resulting in evident con-

trast changes between the patches. We suggest a novel method based on optimal

transport theory that manages to merge both patches producing a smooth transi-

tion between them. This approach works in two steps: first by finding a common

edge using the midway equalization methods, followed by propagating this edge into

both images producing a smooth transition. We thoroughly evaluated the proposed

method first by trying it directly on selected patches, followed by integrating it in

the texture synthesis method of Efros and Freeman. Based on the results the pro-

posed method proved to be a possible alternative to perform patch stitching in non-

parametric patch-based methods.

. Introduction

In this chapter we tackle the problem of stitching texture patches together. This problem arises

repeatedly in the previous chapters where one of the steps of patch based texture synthesis meth-

ods is the fusion of overlapping patches. Given different patches of an input texture we want to

stitch them together seamlessly. When the texture patches to stitch quite similar then existing tech-

niques such as the quilting method in [], Poisson editing [], graph cuts algorithm [] among

others give a satisfactory result. Nevertheless when the patches to stitch are not that similar on

the blending edge then these approaches do not solve conveniently the stitching step. This can be

observed in the illustration of Figure .. Here we address the question of deforming the content

of the patches on a given curve in a way that both patches match on that curve. In other words we

want to find a common signal such as the edges of the patches are transformed to match that sig-

nal. The problem is then composed of two steps. The first one consists in finding a common edge

that is midway between the two edges. The second step consists in finding a way to progressively

propagate this midway edge into both images. For the first step our method is strongly inspired in

the midway equalization algorithm [].

.. Antecedents

The Poisson editing method The Poisson editing method [] is a method based on the ma-

nipulation of the image gradients for processing or combining images. It is used for seamless

cloning, local illumination changes, seamless tiling etc.. In particular for seamless tiling the gra-



dients of the images to tile are given as a vector field and the Poisson equation is used to find the

image gradient field that is the closest to the given vector field. This technique allows to follow the

variations of each region to tile while removing the visible edges between regions. The drawback

we encountered using this technique for the purpose of tiling two texture patches is the fact that

when propagating the seamless tile, the Poisson equation decays very fast and for some cases, even

if the “real edge” disappears since the propagation is quickly attenuated a visual effect of edge still

remains (see Figure .).

The quilting method The quilting method presented in [] is a procedure to stitch a new

patch in the sequentially built output texture by computing an optimal boundary cut between the

patch and the synthesis area thanks to a linear programming optimization. This optimal boundary

is the path on which the cumulative error between both patches is minimum. This technique

presents very good results when the patches to tile are close to each other on their overlapping

area. Nevertheless when this is not the case this optimal boundary is quite noticeable (see Figure

.).

Adaptive stitching methods Another work where texture merging is mentioned is in []. In

this work Kwatra et al. propose to synthesize a new texture by copying irregularly shaped patches

from the sample image into the output image. Once a candidate rectangular patch is selected an

optimal portion of it is selected yielding an irregular shaped patch. The portion of the patch to

copy is determined by using a graph cut algorithm, where the idea is to find out which patch each

of the pixels in the overlapping area (of two patches A and B) come from. This amount to seek

the minimum cost cut of the graph that separates the node A from the node B []. This method

can work to merge patches. The method proposed in [] proposes to use a graph-cut formulation

that uses α-expansions [] in order to take into account the previous seams and update them to

deal with overlaps of more than two patches. They also propose an image merging technique using

the same approach. Given a source image A and a target image B the idea is to constrain some

pixels of image B where the image A will be inserted. Then the graph-cut algorithm finds the

best seam that goes through the remaining unconstrained pixels of B setting the seam between

both images. The results observed are satisfactory as long as both images have some common

background. Otherwise, although the seam computed is optimal it will remain visible.

Our contribution In this chapter we suggest an original method to merge two texture patches

along a common curve (that we call the blending curve). The problem can be seen as finding a

common one dimensional signal which is midway, up to a minimal deformation, between two one

dimensional signals denoted s1 and s2. The signals under construction are nothing but the restric-

tion of the patches p1 and p2 to the blending curve. Afterwards the deformations sending s1 and

2 to their midway signal are progressively propagated inside the corresponding patches. The signal

registration step is inspired in the midway equalization method []. For this we considered that

the two signals s1 and s2 were probability distributions on which we apply a geometric deforma-

tion derived from the midway equalization []. The common intermediary signal s is thus defined

as the underlying histogram of the harmonic mean of the cumulative functions of s1 and s2. We

noticed that the behaviour of the registered signals using the harmonic mean of the cumulative

functions not always gives as result the intuitive registration one could expect. The signals are well

registered but the intermediary signal can sometimes be ”unnatural” and this could complicate the

propagation step. For the propagation step two alternatives are considered. The first one consists

in linearly propagating the deformations. The second one considers convex combinations of two



Figure 4.1 – Teaser. From left to right: input, input blended with Poisson editing [47], input blended with

quilting [15], input blended with midway blending.

inverse cumulative signals: the midway signal and the signal on the curve up to which the defor-

mation is propagated. The first alternative yields smoother results but is problematic regarding

the normalization step of the signals (to impose the same mass). The second option avoids the

normalization issues yet the propagation is more brutal and noticeable than the linear alternative.

Results are shown for both options.

This chapter is organized as follows. Section . recalls the midway equalization algorithm

[]. In section . the midway blending technique is introduced. At first a description on a simple

blending curve is given. It is followed by a generalization of the method. A description of the

algorithm is provided as well as a discussion on the extension to a color version. As a final con-

tribution of this section we describe how to integrate this method to a simple and efficient texture

synthesis method. In section . experimental results are shown organized in two parts. The first

one compares the midway blending method to [] and []. The second part compares synthesis

results of [] to the same synthesis method using the midway blending. Conclusions are given in

section ..

. Optimal transport - midway equalization algorithm

The theory of optimal transport [] has been widely used in computer vision as a metric between

statistical features []. This theory takes into account the spatial location of the density modes and

provides a transport plan between them. Depending on the probability densities that are being

transported, the transport plans can be very irregular. In [] the authors propose a variational

formulation to compute a regular transport map between two empirical densities. They show that

the use of this regularized optimal transport improves visually the results for color image transfer.

The theory of optimal transport has been used in several applications, namely texture synthesis

and texture mixing [, , , ], histogram equalization [, ], color normalization [] and

color transfer [, , , ] among others. We follow by describing with more details the histogram

equalization method [] which is strongly used in the remaining of the chapter.

Delon presented in [] an image equalization method. The comparison of two images is

always better when both images have the same dynamic ranges and luminance. For this given two

images I1 and I2 a contrast change is applied obtaining two new images with the same gray or

colour intensity histogram. It is desired that the common histogram stands midway between the

histograms of I1 and I2 staying as close as possible to both of them avoiding to follow one of them.

Let I : Ω → [0, 255] be an image and h the distribution of its values, i.e. the histogram of I .



The cumulative histogram of I is the increasing function H : [0, 255]→ [0, 1] defined as

H(x) =

∫ x

0
h(t)dt. (.)

For a given function φ : [0, 255] → [0, 255] continuous and strictly increasing the cumulative

histogram of the image φ(I) is H ◦ φ−1. Thus, applying the change of contrast φ1 and φ2 defined

in (.) to the images I1 and I2 respectively transports the respective cumulative histograms H1

and H2 to a common one H . In the definition (.) H−1 is the inverse function of H . In all of the

paper every instance of H−1 will refer to the inverse as a function.

φi = H−1 ◦Hi, i = 1, 2 (.)

In other words the principle of histogram equalization methods is to apply two contrast func-

tions φ1 and φ2 as in (.) to the images I1 and I2 to bring I1 and I2 to have the same histogram

H . There are several ways to determine this common histogram H . Among them the classical

equalization method where H = id, the specification method where the common histogram is

equal to one of the images cumulative histogram H = H1 (or H = H2), taking the mean of

both histograms H = H1+H2
2 . All the previously mentioned methods are in general unsatisfac-

tory. In the first method it might be to drastic to flatten both histograms (if these are far from

being flat), the quantization noise is enhanced with this change of contrast. The second method

is suitable if the dynamic of both histograms is similar otherwise the one that is modified may try

to follow inconsistently the dynamic of the specified image. The third mentioned method tends to

create unexisting structures in the resulting images. In [] the author proposes to use the midway

histogram H as the harmonic mean between the cumulative histograms H1 and H2 where

H−1 =
H−1

1 +H−1
2

2
(.)

and then the contrast changes involved are defined as

φ1 =
id+H−1

2 ◦H1

2 and φ2 =
id+H−1

1 ◦H2

2 . (.)

In this way the equalized images have the same gray level distribution while preserving as much

as possible their initial gray level dynamics. The midway histogram H is in fact the mid point of

the geodesic in the Wassserstein distance [] between the distributions H1 and H2.

. Midway blending

We extended the midway equalization method previously described to use it as a blending method

for texture patches. For this we propose to deform the edges on which the patches are stitched in

the spirit of []. We will consider the signals on these edges as histograms.

Let I1 : Ω → [0, 255] and I2 : Ω → [0, 255] be two images. Here to illustrate the blending

method we consider that the images are blended along a horizontal edge as illustrated in Figure ..

These edges will be referred to as the blending edges. Let s1 : ω → [0, 255] be the one dimensional

edge of I1 and s2 : ω → [0, 255] the one dimensional edge of I2 with ω an interval [a, b]. We refer

to h1 : ω → [0, 1] and h2 : ω → [0, 1] as the one dimensional histograms of s1 and s2 respectively.

These histograms are nothing but the normalized one dimensional signals as defined in (.). The



0 50 100 150 200
50

100

150

200

0 50 100 150 200
110

120

130

140

150

160

170

180

190

I1

blending edge s1(t)

blending edge s2(t)

x0

x0

I2

Figure 4.2 – Illustration of the blending edges. The two images to blend are represented by I1 and I2 and

the edges on which the midway blending is applied are s1 and s2.

cumulative histograms H1 and H2 are then defined as in (.) for h1 and h2 respectively.

hi(x) =
si(x)

∫ b
a si(t)dt

(.)

The deformations we aim at will expand and/or contract the two signals on the blending edges

in order to remove the visible edge between I1 and I2. We denote these two functions as φ1 : ω →
ω and φ2 : ω → ω strictly increasing such as

H1 ◦ φ1 = H2 ◦ φ2 = H,

where the common cumulative histogram H is midway histogram defined in (.). The involved

functions φ1 and φ2 are then defined as

φ1 =
(

I+H−1
2 ◦H1

2

)−1

and φ2 =
(

I+H−1
1 ◦H2

2

)−1

.

Let H̃1 and H̃2 be the deformed cumulative signals after applying φ1 and φ2 respectively

H̃i(x) = Hi(φi(x)), i = 1, 2. (.)

where deriving (.) we obtain the deformed histograms

h̃i(x) = hi(φi(x))φ
′

i(x), ∀x ∈ ω, i = 1, 2

V

and the respective re-normalized deformed signals are

s̃i(x) = m̄h̃i(x), ∀x ∈ ω, i = 1, 2

where m̄ = m1+m2
2 with mi =

∫ b
a si(t)dt for i = 1, 2. In this way s̃1 and s̃2 have the same mass.



Once the signals s1 and s2 are registered, i.e. the two images coincide on the blending edge,

the deformations φ1 and φ2 have to be propagated. Otherwise we will create new discontinuities

between the deformed signal si, i = 1, 2 and its corresponding image Ii, i = 1, 2. To avoid these

inconsistencies we propagate the deformations φ1 and φ2 on a small part of the corresponding

images I1 and I2. This propagation is done progressively to attenuate gradually the deformation

on a portion of the image that we call the propagation band (see Figure .). A first approach, that

seems natural, is to use a linear propagation. That means that for each image Ii, i = 1, 2 the

midway deformation φi, i = 1, 2 is gradually attenuated as defined in (.).

A

B1

A

B2

A

I1 I2 Ĩ

Figure 4.3 – Illustration of the propagation band of widthW . Left: image I1. The red rectangle marks out

the propagation band of I1. The propagation direction is from bottom to top fromA toB1. The edge in

A represents the blending edge of I1. Center: image I2. The green rectangle marks out the propagation

band of I2. The propagation direction is from top to bottom fromA toB2. The edge inA represents the

blending edge of I2. Right: output image Ĩ where the upper part is the corresponding portion in I1 and

the lower part is the corresponding portion of I2. The blue edge is the registered edge that matches

perfectly after applying the midway deformations.

Let Ω = [1,M]× [1, N] be the rectangular domain of the images I1 and I2 and to illustrate the

blending edges let us suppose that s1(y) = I1(x0, y), y ∈ [1, N] and s2(y) = I1(x0, y), y ∈ [1, N]
(see Figure .). We denote by W the width of the band on which we want to extend progressively

the linear deformation. We denote by Ĩi, i = 1, 2 the images Ii, i = 1, 2 after deformation which

are defined as

Ĩi(x, y) = Ii(x̃i, ỹi)Ji(x, y), ∀(x, y) ∈ Ω, i = 1, 2

where Ji(x, y) = f(x) + (1− f(x))φ′

i(y) and (x̃, ỹ) are the deformed coordinates applying Φi

(x, y)→ (x̃i, ỹi) = Φi(x, y),

x̃i = x,

ỹi = f(x)y + (1− f(x))φi(y) (.)

The weight function f is defined as

f(x) =

{

1 if |x0 − x| > W
|x0−x|
W if |x0 − x| ≤W

.



Finally the images Ĩ1 and Ĩ2 are progressively re-normalized on the band on which the deformation

was propagated to avoid any contrast change that may appear as an edge. The resulting images Ĩ1
and Ĩ2 are then

Ĩi(x, y) =
Ĩi(x, y)

mi(x)
(f(x)mi(x) + (1− f(x))m̄) (.)

where mi(x) =
∫ b
a Ii(x, y)dy. Nevertheless, we notice that propagating linearly the midway de-

formation yields some visual artifacts that comes of the normalization. Indeed, the normalization

step is important since we want to transport signals of the same mass. However, propagating lin-

early the midway deformation does not guarantee that the signals after deformation conserve their

mass. This normalization artifact can be seen in the example of Figure .. A simple synthetic

case is used to illustrate it where two binary images are to be blended. One can observe that the

deformation achieved (in terms of shrinkage and dilatation) is coherent. Nevertheless, for the im-

ages Ĩ2 and Ĩ one can notice a shadowed area (marked with the red circles). This artifact in our

opinion is the result of normalization step (see (.)). Thus a different normalization step should

be considered if propagating linearly the midway deformations.

I1 I2 Ĩ1 Ĩ2 I Ĩ

Upper part

Lower part

Figure 4.4 – Midway blending of two synthetic images using the linear propagation method. From left

to right: image I1, image I2, deformed image Ĩ1, deformed image Ĩ2, image I composed of the upper

part of I1 (above the red line) and the lower part of I2 (under the red line) and Ĩ the blended version of

I . Images Ĩ2 and Ĩ show the normalization artifact indicated within the red circles when propagating

linearly the midway deformations.

The second propagation approach we considered for the midway deformations φ1 and φ2 con-

sisted in a transition between the inverse of the cumulative histograms using a convex combination.

We call it progressive midway. Let us suppose we applied the midway deformations to the signals

s1 and s2 (blending edges of I1 and I2). Thus I1 and I2 match on their blending edge. Now

for each image we aim at propagating the deformation on a small band (see Figure .). For the

propagation step each image is considered independently. Instead of working with the histograms

we work with the inverse of the cumulative histograms. Thus for I1 we consider HA and HB1 the

cumulative histograms of the edges inA andB1 shown in Figure .. The edge inA is the blending

edge after the midway deformation. The inverse cumulative histograms of the signals contained

in the propagation band are a transition between H−1
A and HB1 using a convex combination (see

(.)).

H−1
δ (y) = (1− δ)H−1

A + δH−1
B1
, 0 ≤ δ ≤ 1 (.)

The histograms hδ are then recovered by differentiating the corresponding cumulative histogram

Hδ and the signal sδ yields from re-normalizing hδ as in (.) where mA =
∫ b
a s̃1(y)dy and



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s1

s2

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H1

H2

Hmid

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

s1

s2

smid

Figure 4.5 – Simple illustrative example 1. Left image: signals s1 and s2 to register. Middle image:

cumulative histograms H1 and H2 and the midway histogram H . Right image: signals s1 s2 and the

midway signal s. In this example one can observe that indeed s1 and s2 are translated to a signal that is

halfway between them.

mB1 =
∫ b
a I1(x0 −W, y)dy.

sδ = hδ((1− δ)mA + δmB1), 0 ≤ δ ≤ 1 (.)

This approach deals with the normalization problems evoked for the linear propagation case.

However one can observe in the results of Section . that the deformations can sometimes be

too abrupt. In the next section we analyze the behaviour of the midway algorithm as a blending

approach. We will consider the progressive midway propagation approach.

.. Interpretation of the method

Let us consider two signals s1 and s2 having the same mass as illustrated in Figure . where s2
is simply a translation of s1. We would expect the midway signal smid between s1 and s2 to be

their translations to their halfway point. Indeed, that is exactly the result of applying the midway

deformation to both signals as can be observed in Figure .. As a second example let us consider

another set of rectangular signals s1 and s2, where the flat zones values’ are greater than zero. One

would expect to have the same behaviour as in the example of Figure .. However, the midway sig-

nal s is not a translation of s1 and s2 as one can observe in Figure .. The cumulative histograms

show that transporting the mass of both inputs signals s1 and s2 creates an additional intermedi-

ary flat zone in s. This redistribution of the mass is not intuitive. In this simple case a solution

would be to substract the minimum value to both signals s1 and s2 before their registration. This

is possible here since s1 and s2 have the same minimum value. A third example is shown in Figure

. where once again the behaviour of the midway deformation is not intuitive. In Figures . and

. we consider two signals s1 and s2 having different mass. Once again one can observe that if

the values of the flat zones are greater than zero then the deformed signals have and additional

flat zone yielding unnatural merging results. In Figures . - . five blending results are shown

for synthetic images. The propagation step is done using the progressive midway approach. The

results obtained are coherent with the examples shown in the previous Figures . - ..

We conclude from these experiments that applying the midway blending does not always yield

an intuitive deformation to blend two images. In Section . we show some results on real texture

images where one can observe that it works for several textures and fail for others. In general when

blending texture images these “unnatural” behaviour are less evident.



0 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

s1

s2

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

H1

H2

Hmid

0 10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

s1

s2

smid

Figure 4.6 – Simple illustrative example 2. Left image: signals s1 and s2 to register. Middle image:

cumulative histograms H1 and H2 and the midway histogram H . Right image: signals s1 s2 and the

midway signal s. In this example one can observe that the midway signal is not the local translation of

s1 and s2 that one would expect. The middle image shows that the resulting midway histogram H (i.e.

the harmonic mean of H1 and H2) has an additional slope with respect to H1 and H2. This means that

the midway signal s has an additional intermediary flat zone.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s1

s2

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H1

H2

Hmid

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

s1

s2

smid

Figure 4.7 – Simple illustrative example 3. Left image: signals s1 and s2 to register. Middle image:

cumulative histograms H1 and H2 and the midway histogram H . Right image: signals s1 s2 and the

midway signal s. In this example one can observe that once again the deformation is not the expected

translation. The signal is “split” in two and has an additional mode.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s1

s2

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

H1

H2

Hmid

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

s1

s2

smid

Figure 4.8 – Simple illustrative example 5. Left image: signals s1 and s2 to register. Middle image:

cumulative histograms H1 and H2 and the midway histogram H . Right image: signals s1 s2 and the

midway signal s. This is the case of two signals with different mass. After renormalizing the midway

signal is a translation of s1 and s2 to a half way signal.



0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

s1

s2

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H1

H2

Hmid

0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

s1

s2

smid

Figure 4.9 – Simple illustrative example 4. Left image: signals s1 and s2 to register. Middle image: cumu­

lative histograms H1 and H2 and the midway histogram H . Right image: signals s1 s2 and the midway

signal s. This is the case of two signals with different mass. The midway signal is not the intuitive result

one expects. The redistribution of the mass is as shown in the left image with an extra intermediary flat

zone.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

sA

s1

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

sB

s2

Figure 4.10 – This example illustrates a midway blending of two images I1 and I2 for a ”successful case”.

The propagation of the deformation on each image is done using the progressive midway method. From

left to right: inputs to blend, the deformed signals on I1 and I2 respectively, the blended output. The

deformation on the two images is a progressive translation to a halfway signal.

0 50 100 150 200 250
0.8

1

1.2

1.4

1.6

1.8

2

sA

s1

0 50 100 150 200 250
0.8

1

1.2

1.4

1.6

1.8

2

sB

s2

Figure 4.11 – This example illustrates a midway blending of two images I1 and I2 for a ”failure case”. The

propagation of the deformation on each image is done using the progressive midway method on a band

of 5 pixels of width. From left to right: inputs to blend, the deformed signals on I1 and I2 respectively,

the blended output. As in the case of Figure 4.6 when the values of the grey levels of the flat zones

are larger than zero an additional flat zone is created. The two middle images show how the successive

deformation of the signals starting at s1 (s2) propagates to sA (sB). They show how the two initial flat

zones are deformed to only one flat zone for each image. When the translation of the two initial bars

is big than the mass is re­distributed in two equal modes as can be seen and this is what create the

”passage” to zero from one bar to the other.



0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sA

s1

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sB

s2

Figure 4.12 – This example illustrates a midway blending of two images I1 and I2 of different mass for a

”successful case”. The propagation of the deformation on each image is done using the progressive mid­

way method on a band of 5 pixels of width. From left to right: inputs to blend, the deformed signals on

I1 and I2 respectively, the blended output. The deformation on both images is a progressive translation

from s1 (s2) to sA (sB).

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sA

s1

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sB

s2

Figure 4.13 – This example illustrates a midway blending of two images I1 and I2 of different mass for a

”failure case”. The propagation of the deformation on each image is done using the progressive midway

method on a band of 5 pixels of width. From left to right: inputs to blend, the deformed signals on I1
and I2 respectively, the blended output. The deformed signals once again creates additional flats zones

and is the responsible of the unexpected dilatation of the bright zone in I2.

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

sA

s1

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

sB

s2

Figure 4.14 – This example illustrates a midway blending of two images I1 and I2 of different mass for a

general case. The propagation of the deformation on each image is done using the progressive midway

method on a band of 5 pixels of width. From left to right: inputs to blend, the deformed signals on

I1 and I2 respectively, the blended output. Depending on the size of each flat regions and its values

the resulting blended images can be as expected or not giving results similar to the ones obtained

previously.



.. Midway blending algorithm

For the algorithm description let us suppose that I1 and I2 are two discrete images defined on

Ω = {1, . . . ,M} × {1, . . . , N}. The blending edges are now defined as s1(j) = I1(x0, j), j ∈
{1, . . . , N} and s2(j) = I2(x0, j), j ∈ {1, . . . , N}. The respective histograms are then

hi(j) =
si(j)

∑N
k=1 si(k)

, j ∈ {1, . . . , N}, i = 1, 2 (.)

and the cumulative ones

Hi(j) =

j
∑

k=1

hi(k), j ∈ {1, . . . , N}, i = 1, 2. (.)

A summary of the method is given in Algorithm , Algorithm  and Algorithm .

Algorithm : Pseudo inverse

 Input: Function to invert H , x domain of H
 Output: Inverse H−1

: k ← 2{re-sampling factor}
: n← length(H) {equal to length(x)}
: for i = 1 to kn− 1 do

: z ← (i− 1)/(kn− 2)
: j ←∑n

l=1 1(H[l]<=z)

: Ih[i]← 1
H[j+1]−H[j]

((z −H[j])x[j + 1] + (H[j + 1]− z)x[j])

: end for

: for i = 1 to n do

: H−1[i]← Ih[1 + (i− 1)k]
: end for

: return H−1

Algorithm : Midway histogram

 Input: cumulative histograms H1, H2

 Output: midway cumulative histogram Hmid

: n← lengthH1 {equal to length(H2)}
: H−1

1 ← pseudo− inverse(H1, {1, . . . , n}) {see Algorithm }
: H−1

2 ← pseudo− inverse(H2, {1, . . . , n}) {see Algorithm }
: H−1

mid ← (H−1
1 +H−1

2)/2
: Hmid ← pseudo− inverse(H−1

mid, {0, 1/(n− 1), 2/(n− 1), . . . , 1}) {see Algorithm

}
: return Hmid



Algorithm : Midway registration of two signals

 Input: Signal to register s1 and s2
 Output: Midway signal smid

: n← length(s1) {equal to length(s2)}
: m1 ←

∑n
k=1 s1(k)

: m2 ←
∑n

k=1 s2(k)
: h1 ← s1/m1 {d histogram of s1}
: h2 ← s2/m2 {d histogram of s2}
: H1 ← zeros(n+ 1)
: H2 ← zeros(n+ 1)
: for i = 2 to n+ 1 do

: H1[i]← H1[i− 1] + h1[i− 1]
: H2[i]← H2[i− 1] + h2[i− 1]
: end for

: Hmid ← midway(H1, H2) {see Algorithm }
: hmid ← zeros(n)
: for i = 1 to n do

: hmid[i]← Hmid[i+ 1]−Hmid[i]
: end for

: smid ← hmid

(

m1+m2

2

)

: return smid

Algorithm : Midway blending

 Input: Images to blend I1 and I2, band width W , horizontal blending edge x0

 Output: Blended images Ĩ
: s1[j]← I1[x0, j] {get blending edges from I1}
: s2[j]← I2[x0, j] {get blending edges from I2}
: smid ← midway − registration(s1, s2) {see Algorithm }
: sB1 [j]← I1[x0 −W, j]
: sB2 [j]← I2[x0 +W, j]
: Ĩ1 ← propagate(smid, sB1) {propagation step defined in Section .}
: Ĩ2 ← propagate(smid, sB2) {propagation step defined in Section .}
: Ĩ[i, j]←

{

Ĩ1[i, j] if i ≤ x0

Ĩ2[i, j] if i > x0

: return Ĩ

.. Generalization of the midway blending

Let I1, I2 : Ω → [0, 255] be two images. We consider γ : ω → Ω a parametric curve defined as

γ(t) = (x(t), y(t)), t ∈ ω and ω = [a, b]. Let s1 : ω → [0, 255] and s2 : ω → [0, 255] be the

D blending edges defined as si(t) = Ii(γ(t)), i = 1, 2. Then the histograms h1 and h2 and the

cumulative histograms H1 and H2 are defined as in (.) and (.). As explained in the previous



γ(t)

(xλ, yλ) :=
W − λ

λ
γ(t) +

λ

W
(γ(t) +Wn(t))

γ(t) +Wn(t)

ψ(λ, t)

γ(φ(t))

(x̃λ, ỹλ) := (xλ (ψ(λ, t)) , xλ (ψ(λ, t)))

γ(t) +Wn(t)

Figure 4.15 – Illustration of the linear propagation of the deformation φ on a band of width W . This

figure shows how the three points inA are modified after applying the deformation ψ(λ, t) yielding the

three points in B. For the orange curve the point (x(t), y(t)) moves (x(φ(t)), y(φ(t))). For the blue

curve the point (xλ(t), yλ(t)) moves (xλ(φ(λ, t)), yλ(φ(λ, t))). For the gray curve the point does not

move.

section we aim at finding two functions φ1 and φ2 such as the new histograms h̃1 and h̃2 satisfy

h̃i(t) = hi(φi(t))φ
′
i(t), i = 1, 2.

This implies then ∀t ∈ ω

Ĩi(γ(t)) = Ĩi(x(t), y(t)) =
m̄

mi
Ii(x(φi(t)), y(φi(t)))φ

′

i(t)

where mi =
∫ b
a si(t)dt, i = 1, 2 and m̄ = m1 +m2.

We shall now consider all the curves γα,λ, α ∈ {−1, 1}, λ ∈ [0,W] that are defined on a

band of width 2W around γ. These curves are taken in the normal direction n(t) = γ′(t)⊥

‖γ′(t)‖ and

are defined as

γα,λ(t) = γ(t) + αλn(t).

We assume that the considered curves and the widthW are such that ∀(α, λ, t1) 6= (β, µ, t2), γα,λ(t1) 6=
γβ,µ(t2) (see .). Once again we consider two propagation approaches: the linear propagation

and the progressive midway propagation. The first one, the linear propagation (see Figure .), is

defined as the deformation ψi : ω × [0,W]→ ω, i = 1, 2

ψi(λ, t) =
W − λ
W

φi(t) +
λ

W
t, λ ∈ [0,W], t ∈ ω.

The resulting deformed images Ĩ1 and Ĩ2 are then

Ĩi(xα,λ(t), yα,λ(t)) =

= Ii(xα,λ(ψi(λ, t)), yα,λ(ψi(λ, t)))

(

W − λ
W

φ
′

i(t) +
λ

W

)

,

for i = 1, 2, and after re-normalization



Ĩi(xα,λ(t), yα,λ(t)) =

Ĩi(xα,λ(t), yα,λ(t))

mi(α, λ)

(

(
W − λ
W

)m̄+
λ

W
mi(α, λ)

)

,

where mi(α, λ) =
∫

ω Ii(γ(u) + αλn(u))du.

Let us consider the particular case of a circular arc γ : ω → Ω. That is

γ(t) = (R cos θ(t), R sin θ(t)) = R(cos(s), sin(s)), t ∈ ω

where s = θ(t) = π
2 t, ω = [0, 1] and R is the radius of the circular curve. We consider the curve

γ parametrized in the angles s. The normal n(s) to the curve γ(s) is defined as

n(s) =
γ′′(s)
‖γ′′(s)‖ = −γ(s)

R
= − (cos(s), sin(s)) ,

where s denotes the arc length, i.e. ‖γ′(s)‖ = 1. The resulting images Ĩ1 and Ĩ2 are

Ĩi(R(cos(s), sin(s))− αλ(cos(s), sin(s))) =
Ĩi((R− αλ)(cos(s), sin(s))) =
Ki(r)Ii ((R− αλ)(cos(ψi(s)), sin(ψi(s))))ψ′

i(s),

where Ki(r) =
(

(W−λ
W)m̄+ λ

Wmi(r)
)

/ (mi(r)) and mi(r) =
∫ π/2
0 Ii(r(cos θ, sin θ))dθ.

We can verify that indeed for λ = 0 the deformation function is φi

Ĩi(R(cos(s), sin(s))) = Ki(R)Ii (R(cos(φi(s)), sin(φi(s))))φ
′
i(s)

and for λ =W, α ∈ {−1, 1} the deformation function is the identity

Ĩi((R− αW)(cos(s), sin(s))) =

Ki(R− αW)Ii ((R− αW)(cos(s), sin(s))) .

The second propagation method, the progressive midway, is as explained for the horizontal

case: a convex combination of the inverse cumulative histograms of the blending edge and the

second edge of the propagation area.

In practice we tested three curves: horizontal, vertical and circular arc. To simplify we trans-

formed the vertical and circular case to a horizontal edge problem. A pseudo-code of the algo-

rithm is provided in Algorithm . For this let us consider that I1 and I2 are two discrete im-

ages defined on Ω = {1, . . . ,M} × {1, . . . , N}. The blending edges can be taken along a hor-

izontal curve γ : {1, . . . , N} → Ω of length N defined as γ[j] = (x0, j) or along a vertical

curve γ : {1, . . . ,M} → Ω of length M defined as γ[j] = (j, x0) or along a circular curve

γ : {1, . . . , L} → Ω of length L defined as γ[j] = (M − x0 cos θ[j], N − x0 sin θ[j]) where

θ[j] =
(

j−1
L−1

)

π
2 , j ∈ {1, . . . , L} and x0 is the radius of the curve. The blending edges are then

defined as si[j] = Ii(γ[j]) i = 1, 2.



Algorithm : Generalized midway blending algorithm

 Input: Images to blend I1 and I2, band width W , reference position x0 of the

blending curve

 Output: Blended images Ĩ
: if edge-type 6= horizontal then

: I1 ← T (I1) {transform to a horizontal edge case}
: I2 ← T (I2) {transform to a horizontal edge case}
: x0 ← t(x0) {transform to the reference position of a horizontal edge case}
: end if

: Ĩ ← midway − blending(I1, I2,W, x0) {see Algorithm }
: if edge-type 6= horizontal then

: Ĩ ← T−1(Ĩ) {transform to the original edge case}
: end if

: return Ĩ

.. Colour midway blending

The first approach we considered for colour images was doing the transport on the grayscale image

and then applying the same deformation to each channel. Thus no color artifact appears. Never-

theless for each colour channel the signals of both images do not match perfectly and an edge is

still evident on the resulting colour image.

As a second alternative we considered treating each channel independently. This amounts to

apply a midway blending deformation for each channel separately. In this case the edges do match

perfectly but false colors may appear, each colour channel being processed independently from the

other ones. Indeed, the colour components of the RGB color representation are strongly correlated.

Thus, deforming each channel independently will not maintain this correlation. The solution is to

work with a different color space where the components are less correlated.

Instead of working with the RGB color spae we propose to use a DCT colour representation

which is similar to the HSV colour space but easier to implement. Let us suppose a colour image

I : Ω → [0, 255]3 defined in the RGB space. Than the DCT representation of I is obtained from

the RGB components applying the orthogonal linear map

T =





1/
√
3 1/

√
3 1/

√
3

1/
√
2 0 −1/

√
2

1/
√
6 −2/

√
6 1/

√
6



 .

Notice that the DCT representation of I yields negative values in its second and third components

(the first component is the average of the R, G and B channels up to a constant multiplier). Since

the signals are considered as histograms and their cumulative functions are used, negative values

are not desired. To avoid this after applying the orthogonal matrix T we substract its minimum

from each channel, so that it has no negative values.

Another approach one could consider is the PCA colour space where the colour representation

is not fixed and depends on the image. This approach yields a representation where the colour

components are decorrelated. However when using a PCA colour space each image has a different

diagonalization basis and the question that arises from this is what common basis should one

use to apply the transport between signals? We observed that for natural images the DCT colour



representation yields components that are in average almost decorrelated. This representation is

very close to the PCA colour space with the advantage that the same basis is used for all images.

Nevertheless to our application the patches we aim at stitching come from the same texture image.

Thus applying the PCA decomposition to both images yields an orthogonal transformation very

similar to the one that we would obtain if the PCA decomposition was applied to each image

separately. We compare the three approaches (RGB, DCT and PCA) in Figure ..

Input RGB DCT PCA

Figure 4.16 – Different colour representations used to stitch two texture patches with the midway ap­

proach. From left to right: input, output using the RGB representation (notice the appearance of the

colour artifacts along the stitching edge), output using the DCT representation and output using the

PCA representation.

.. Texture synthesis

This work is originally motivated by patch based texture synthesis methods. Up to now several

stitching techniques were used, among them the quilting method [], graph cuts [], Poisson

blending [], etc. However, these techniques do not yield an image deformation. They find the

”best way” of putting together the different pieces. Methods [] and [] tend to find the best

possible path in a given region without changing the content of the image. For instance in the

example of Figure . the stripes are not placed one in front of the other. The visual impression of

an existing edge between both images remains. A different approach would be to use the method

to seamlessly edit image regions [] to blend the patches. Still, one can notice that the edge is at-

tenuated but remains evident and the stripes do not match. In this chapter we aimed at ”matching

these stripes”. To that end we allow to stretch and/or dilate the images on their common edge as

illustrated in Figure . where one can observe how the stripes ”moved” and match.

In this section we detail the synthesis algorithm where the midway blending method is used. We

shall compare three stitching techniques: the Poisson editing methods [], the quilting method in

[] and the midway blending. In continuation, we shall compare two texture synthesis methods:

one using the quilting technique [] and another using the midway blending.

The image quilting method [] computes a new texture by rearranging seamlessly patches of

the input texture. The procedure to stitch a new patch in the sequentially built output texture is

achieved by computing an optimal boundary cut between the patch and the synthesis area thanks

to a linear programming optimization. This method is a sequential patch-based algorithm. I
and Ĩ denote the input and the output texture respectively. The output image Ĩ is constructed

patch by patch in a raster scan order. The goal of each iteration is to fill a patch of Ĩ that is

only partially defined on a region called overlap region. Note that there are three possible overlap

regions: vertical overlap for the first row, horizontal overlap for the first column, and L-shaped



overlap everywhere else. To complete the patch PA a patch PB of I that matches PA on the overlap

region is randomly selected. An optimal boundary cut between PA and PB is then computed

within the overlap region. This optimal boundary cut is used to construct the new patch P by

blending PA and PB along the cut. We now want to compare the results of this texture synthesis

method when replacing the stitching step by the midway blending. For details on the quilting

method please refer to Annex A... The synthesis algorithm using the midway blending is detailed

in Algorithm .

Algorithm : Texture synthesis

 Input: Sample texture I , patch size n, overlap size o

 Output: Synthesized texture Ĩ

: Initialize Ĩ with a seed patch (randomly taken from I)

: for each patch PA in Ĩ do

: Select a compatible patch PB ∈ I
: Construct P blending PA and PB using the midway blending algorithm (see

Algorithm ). Depending on the overlap type the (blending curve) can be a

horizontal, vertical or circular curve. (see Algorithm )

: Replace PA with P within Ĩ
: return Ĩ
: end for

. Experiments

.. Comparison of blending techniques

In this section we compare the blending methods that can be seen in Figures . to .. Given

two patches p1 and p2 we applied three different stitching techniques: the quilting method [],

Poisson blending [] and the midway blending. For each texture example we blended the two

patches along three different curves: horizontal, vertical and circular. For the quilting method

the circular curve corresponds to the l-shape overlap. To compare the circular curve and the L-

shape overlap we consider the same overlap size and the circular curve is taken such as its radius

is contained in the l-shape overlap. For the midway blending results the propagation step used is

the linear propagation approach. We noticed that the linear propagation yields better results for

natural images and the normalization artifact is not evident as in Figure ..

For the horizontal and vertical blending edges one can observe in general that the results are

comparable to the other methods and sometimes better when we can observe the quilting path or

where the Poisson blending “smoothes” the edge but this one is still evident. However some results

using the midway blending may present deformations that are too abrupt (Figure .) or may

present color artifacts (Figure .). For example in Figure . in the three fist examples one can

clearly notice the quilting path. In Figure . the first example is an evident case that shows the

advantages of the midway blending algorithm. This method tends to extend the structures when

it can. Figure . shows failure examples. These failures are colour artifacts or highly abrupt

deformations that are too evident. On the other hand, in the mentioned figures we attempted

blending of strongly dissimilar patches, so that fusing them is close to a mission impossible. For



the circular edges however the results are not as convincing as for horizontal or vertical edges. This

will depend on the curve γ used and the discretization of it. Nevertheless one can observe that

when used in patch-based texture synthesis since the patches are quite similar on the overlap zones

(it is intended to be this way) then using a circular curve is not problematic. One can also notice

fewer or less color artifacts for the same reason.

.. Comparison of texture synthesis results

In this section we evaluate the results of synthesizing textures with patch based approaches using

as stitching step the midway blending algorithm. We compare the results to [] in Figures .

to .. The synthesis algorithm is the same in both cases, only the stitching step is modified. To

compare the results the synthesized images are both initialized with the same seed patch and the

parameters are exactly the same (patch size n and overlap size o).

In general the results of both methods yield satisfying and comparable visual results. Thus

the midway blending approach could be a satisfying alternative to stitch patches together. This is

particularly so for textures having a dominant structure direction, as for example the wood texture

in Figure ..

An interesting aspect of the stitching method would be to relax the constraint on the resem-

blance of the patches on the overlap area. This could be interesting since as pointed out in Annex

A. when relaxing the error tolerance on the overlap resemblance of the patches more innovation

is introduced in the result. Increasing this tolerance error value permits to increase the number

of candidate patches used at an iteration of the synthesis method and so the chosen patch may

vary more. As a consequence the patches Pold and Pin might be more distant to each other on the

overlap area and so by just using the quilting method to stitch them the boundary might be no-

ticeable since the values of thoses pixel are not alterated. Nevertheless with the midway technique

a seamless fusion remains possible.

. Conclusion

In this chapter we have presented a method for stitching texture patches inspired in the midway

equalization algorithm []. This method consists in equalizing two images by transporting their

gray levels cumulative histograms to a common one, the midway histogram. The cumulative mid-

way histogram is the harmonic mean of the cumulative histograms of both images. The midway

blending algorithm proceeds in the same way. Thus we consider the two signals we aim at regis-

tering as two distributions. The signals s1 and s2 on the blending edge are handled as histograms.

The registered signals coincide with the midway signal defined as the histogram whose cumulative

function is the harmonic mean of the cumulative functions of s1 and s2. The midway blending

is composed of two steps. The first one consists in registering the signals obtained by restricting

both patches to their common boundary. The second one consists in propagating the two midway

deformations toward the interior of both patches. So far we have observed that the registration

step achieves satisfying results whereas the propagation step is sometimes more challenging. We

explored two approaches for this. The first one, the linear propagation, sometimes yields nor-

malization artifacts. The second approach, the progressive midway, has no normalization issues.

Nevertheless applying the second approach for natural images is too abrupt and the deformations

are sometimes too evident. However for the linear propagation the results on natural images are

satisfying and the normalization artifacts are almost invisible, unlike what we observed for the



synthetic image examples. The examples in section .. were designed to illustrate that using the

harmonic mean of the cumulative histograms does not always yield an intuitive solution.

In the first part of Section . we showed the result of blending two patches of the same texture

by different stitching techniques. We observed our results are generally comparable or better. The

quilting method [] does not modify the content of the image. Instead, it looks for the edge where

the patches best match. The Poisson editing method [] yields a solution which mitigates the

edges. Still, in challenging cases, both methods can leave behind conspicuous stitching edges. The

midway blending avoids such edges, but it may sometimes require a patch deformation that is too

abrupt. Besides color artifacts can be observed which are not present with the other techniques. In

the second experimental section we tried the proposed technique in a patch based texture synthesis

algorithm [] where we replaced the quilting step by the midway blending. We observed that the

results obtained with the midway blending are comparable to those obtained with the quilting

technique. Since for such algorithms the patches to blend are similar on the overlapping area the

artifacts caused by the attempts at blending too dissimilar patches no longer occur. We conclude

that our technique could be used as a stitching step for this kind of texture synthesis algorithms.

The method as we have seen has some limitations, such as the normalization issue for the linear

propagation. Other techniques could also be considered with the aim at stretching and/or expand-

ing the images on the overlap area. We showed that the proposed method can be use as a stitching

step in patch based texture synthesis methods and has room for improvement as for more complex

textures to blend. It is clear at this point that the deformation technique we introduced should

be explored further, and perhaps as generalized, by using other deformation and registration tools

such as optical flow.



Figure 4.17 – Some challenging examples blending patches which do not match. Comparison with two

other stitching methods. From left to right: input, Poisson blending [47], quilting method [15], midway

blending.



Figure 4.18 – Some challenging examples blending patches which do not match. Comparison with two

other stitching methods. From left to right: input, Poisson blending [47], quilting method [15], midway

blending.



Figure 4.19 – Some challenging examples blending patches which do not match. Comparison with two

other stitching methods. From left to right: input, Poisson blending [47], quilting method [15], midway

blending.



Figure 4.20 – Some nearly impossible examples blendig patches which do not match. Comparison with

two other stitching methods. From left to right: input, Poisson blending [47], quilting method [15],

midway blending.



Figure 4.21 – Synthesis results 1. From left to right: input, texture synthesis results using midway blend­

ing, quilting algorithm [15]. For each example the patch size is n = 40, the same seed patch was taken

to initialize the synthesized image, the overlap area is of size o = 0.45n and the band width isW = 10.



Figure 4.22 – Synthesis results 2. From left to right: input, texture synthesis results using midway blend­

ing, quilting algorithm [15]. For each example the patch size is n = 40, the same seed patch was taken

to initialize the synthesized image, the overlap area is of size o = 0.45n and the band width isW = 10.



Figure 4.23 – Synthesis results 3. From left to right: input, texture synthesis results using midway blend­

ing, quilting algorithm [15]. For each example the patch size is n = 40, the same seed patch was taken

to initialize the synthesized image, the overlap area is of size o = 0.45n and the band width isW = 10.



Figure 4.24 – Synthesis results 4. From left to right: input, texture synthesis results using midway blend­

ing, quilting algorithm [15]. For each example the patch size is n = 40, the same seed patch was taken

to initialize the synthesized image, the overlap area is of size o = 0.45n and the band width isW = 10.



Figure 4.25 – Synthesis results 5. From left to right: input, texture synthesis results using midway blend­

ing, quilting algorithm [15]. For each example the patch size is n = 40, the same seed patch was taken

to initialize the synthesized image, the overlap area is of size o = 0.45n and the band width isW = 10.





5 Can we emulate large textures?

In this chapter we aim at analyzing the limits of exemplar based texture methods

when using large natural texture images, a new problem which we might call Big

Exemplar Based texture synthesis. Unlike exemplar-based methods that use small

texture samples the goal is to synthesize large textures. We shall explore this problem

with the tools at reach, namely the best methods from the extensive literature, and

will not hesitate to combine them. To anticipate our conclusions, none of the exist-

ing methods manage by itself to satisfactorily emulate “big textures”. Yet, we’ll find

that a clever combination of these methods yields interesting-if not perfect-results.

Interestingly, the existing methods provide very good results on small crops of these

images. But we discovered with some dismay and shall illustrate on many examples

that “big textures” are very different from academic texture crops. They show drastic

local textural variations, even if their overall effect still is the one of a single texture.

This study is therefore a good tested to put on trial all existing exemplar-based texture

synthesis methods.

. Introduction

This chapter shows an extensive study on the limits of exemplar-based methods when used to

synthesize large natural textures. The goal of these methods is to create from a given sample decor

(for example a wood texture as in Figure .) new, different samples that are perceptually equivalent

to the input example. Current exemplar-based approaches use small input samples. When the

texture example is not stationary, non-parametric methods often end up in a garbage growing,

meaning that only a local piece of the texture is being reproduced to the detriment of the rest. The

parametric methods present a different problem in presence of a non-stationary texture: when the

input sample contains more than one texture global statistics are learnt on the input. It follows that

the result is a homogenization of the input sample. The texture images we try to synthesize in this

chapter are quite complex: large and non stationary.

We began by trying some of the exemplar based texture synthesis approaches (Efros and Free-

man [], Portilla and Simoncelli [], Galerne et al. [] and the multiscale locally Gaussian

method presented in Chapter ) on the following type of images: wood, stone and metal (Figures

., ., ., ., . and .). Among these textures the most challenging were the wood samples.

We observed that the synthesis results for the wood images were not satisfying. However for local

crops of these textures where no strong global organization were evident the results obtained are

impressive. One concludes obviously that, in spite of their perceptual unity, large textured images

are more than a texture in the usual academic sense. In Figures ., ., ., ., . different crops



of the inputs in Figures ., ., . are shown where one can clearly see that within a same texture

very different textures are present. Wood planks for example are non-stationary images, containing

several different textures and with very recognizable and unique structures such as ring and knots.

For other complex surfaces such as the stones and metals the exemplar based techniques seem to

give more satisfactory results. Again these textures are not as the academic textures considered for

the experiments done to evaluate their performance. These images are more complex as can be

seen in Figures ., . and . which are crops of the inputs in Figures ., ., ., ., . and ..

All the experiments done are showed in the following sections, including failures that permit to

discard certain techniques for certain texture. We follow by showing results of a combination of

the considered texture synthesis methods, there are two of them:

• The Efros and Freeman method [] combined to the locally Gaussian method

• The Portilla and Simoncelli method [] combined to the locally Gaussian method

Combining the methods yields better visual results in particular for the combination PS + LG.

Still this combination will not make it for big textures. We then show other emulation attempts,

like for example the application of geometric deformations to the inputs aiming at changing the

aspect of the salient structures. Randomly switching sub-parts of the input to partition the salient

structures and reorganize them in a way that in the outputs the repeated patterns are less evident.

As a last experiment we tried to vary the low frequency information while leaving unchanged the

high frequencies with the same purpose. In all three emulation attempts we observed interesting

behaviours for some of the textures.

This chapter is organized as follows. Section . describes the type of inputs we worked on. In

section . a description of some of the state of the art exemplar-based texture synthesis methods

is provided listing the pros and cons of each of them. In section . a first set of experiments are

showed on small crops of the big textures. All of the exemplar-based methods of section . are

tested on these images. They are tested separately and then some of them are combined. The re-

sults on these images are very satisfying. The same experiments are performed on the big texture

themselves to try to emulate the structures at low resolution. The results are not very satisfying

since the typical drawbacks of exemplar based methods arise (verbatim copies and garbage grow-

ing). This brings us to test other alternatives presented in Sections ., . and .. We try the

application of one and two dimensional anamorphosis to the inputs, a random combination of

slices of the input texture and the application of the [] method to randomize the low frequencies

of the input.

. Large natural textures

Wood, stone and metal textures In this section we present images of typical ”big textures”.

These images are of very high resolution(more than 1GB). For this reason the experiments were

sometimes done on zoomed out versions of these inputs. We considered three types of classic

natural textures: wood, stone and metals shown in Figures ., ., ., ., .. As a general remark

on these inputs one can notice that they hardly represent “real textures” in the academic sense.

Indeed we observe on different crops of the inputs, of size 500 × 500 pixels, that within one of

these large natural textures several different textures are present (Figures ., ., ., ., ., .,

., .). This is clearly not the case in the smaller academic textures.

Let us consider for instance the crops in Figure . which are very small portions (500 × 500
pixels) of the inputs in Figure . whose original size is of 7087 × 23633 pixels. The four crops



provided show four completely different textures. Still worse, these crops themselves are not sta-

tionary. This obviously illustrates how hard it will be to synthesize a new different textures from

such an example.

Among the inputs that we considered the more challenging ones are the wood textures. Strong

salient configurations are evident in these images that makes difficult to generate new variants

of these structures instead of mere “copies” of them. The stone and metal decors are in this sense

easier. They do not present strong salient patterns. Nevertheless they still are highly non stationary.

Figure 5.1 – Wood texture 1. The original input provided was of size 7087× 23622 pixels. For the exper­

iments the image was reduced by a zoom out of factor 16.

Figure 5.2 – Wood texture 2. The original input provided was of size 3500× 13500 pixels. For the exper­

iments the image was reduced by a zoom out of factor 16.

Figure 5.3 – Wood texture 3. The original input provided was of size 4000× 14000 pixels. For the exper­

iments the image was reduced by a zoom out of factor 16.

. Exemplar based texture synthesis methods

Exemplar-based texture synthesis is defined as the process of generating from an input texture

sample a perceptually equivalent larger one. Exemplar-based texture synthesis algorithms are com-

monly divided into two categories, the statistics-based methods and the non-parametric patch-

based methods. The first category models a given texture sample by estimating statistical parame-

ters that characterize the underlying stochastic process of the input. Although these methods can



Figure 5.4 – Wood texture 4. The original input provided was of size 3400× 14600 pixels. For the exper­

iments the image was reduced by a zoom out of factor 16.

Figure 5.5 – Stone textures 1, 2 and 3. The original inputs provided were of size 23622 × 23622, 6903 ×
9983 and 21260 × 21260 pixels (left to right). For the experiments the images were reduced by a zoom

out of factor 32, 8 and 32.

faithfully reproduce some of the global statistics of the sample and synthesize micro and pseudo-

periodic textures, they generally do not yield high quality visual results for more structured ones,

in particular when the sample is small and contains large objects. The second category rearranges

local neighbourhoods of the input sample in a consistent way. These methods provide efficient

algorithms able to reproduce highly structured textures. Even though they yield visual satisfac-

tory results, they often turn into practising verbatim copies of large parts of the input sample and

growing garbage.

Within these two groups we chose some of the state of the art methods to synthesize the given

decors in section .. These methods are:

• Portilla & Simoncelli [], denoted PS

• Galerne et al. [], denoted RPN

• Efros & Freeman [], denoted EF

• Multiscale locally Gaussian (Chapter ), denoted MSLG

We follow by giving a short explanation of these methods.

.. The Portilla and Simoncelli algorithm

The Portilla ans Simoncelli method [] is performed in two steps: analysis and synthesis. First,

the texture sample is characterized by a set of statistics estimated on the coefficients of its steer-

able wavelet decomposition []. The steerable pyramid is an overcomplete linear multi-scale and



Figure 5.6 – Metal texture 1 and 2. The original inputs provided were of size 23622× 23622 and 6000×
12390 pixels (left to right). For the experiments the images were reduced by a zoom out of factor 32 and

8 (left to right).

crop  crop  crop  crop 

Figure 5.7 – Four crops of different parts of Figure 5.1 at its original resolution. The cropped images are

of size 500× 500 pixels. Each one represents a different texture belonging to a single “big texture”.

multi-orientation image decomposition. The statistics extracted on the coefficients of this decom-

position are their autocorrelations, cross-correlations (inner and intra scales) as well as the statisti-

cal moments of order one, two three and four of the input sample’s values. Second, these statistics

are enforced on a white noise image obtaining like this a texture satisfying these constraints. To

this end the authors in [] suggest to project the synthesis image into the subspace of constraints

iteratively until a stabilization of the image observed. The final image may not have exactly the

same statistics as the input sample but reached a local minima where it stabilized. The synthesis

results in a pre-attentive examination are in general indistinct from the original samples. Never-

theless to an attentive examination the synthesis results on structured textures often present blur

and phantom effects. The structures are missed and the method tends to homogenize the output

texture. We follow by showing in Figure . four synthesis results. The two first examples (top row

in Figure .) represent two microtextures where the method yields excellent results. Nevertheless

for the last two examples (bottom row in Figure .) even though we recognize the nature of the

input sample in the synthesized image one can observe the strong structures are missing. In both

cases it is impossible to recover the lined up tiles.



Figure 5.8 – Four crops of different parts of Figure 5.2 at its original resolution. The cropped images are

of size 500× 500 pixels. Each one represents a different texture belonging to a single “big texture”.

Figure 5.9 – Four crops of different parts of Figure 5.3 at its original resolution. The cropped images are

of size 500× 500 pixels. Each one represents a different texture belonging to a single “big texture”.

.. Micro-texture synthesis by phase randomization

The random phase method [] synthesizes a texture by randomizing the phase of the Fourier

coefficients of the input sample. The results are very satisfying for textures that are characterized

by their Fourier modulus. This method will not grow garbage or verbatim copies of the input

sample. It is however limited to micro textures. It will fail synthesizing structured textures. We

follow by showing in Figure . four synthesis examples. The two first synthesis (top row in

Figure .) show outstanding results. These microtextures are indeed well represented by their

Fourier modulus. However this is not the case for the last two examples (bottom row in Figure

.). Clearly, the knowledge of the modulus of the Fourier coefficients of these textures is not

sufficient to recover the strong contrast of the inputs. For a detailed description of the method

please refer to [].

.. The Efros and Leung algorithm

The Efros and Leung algorithm relies on Claude Shannons’s Markov random field model for the

English language []. He proposed to use a Markov chain to model the underlying stochastic

process of a sequence of letters in a piece of English text. The same idea was used by Efros and

Leung in [] to synthesize a texture image by considering that a pixel value depends on the values

of its neighbouring pixels. The method is illustrated in Figure . and works as follows. For a given

input texture a new image is synthesized pixelwise. For a pixel p being synthesized the algorithm

finds all the neighbourhoods in the input image that are similar to the neighbourhood of p. Then

one of this neighbourhoods is randomly chosen and the central pixel value is affected to the pixel

being synthesized. The neighbourhood of p is a square patch centered in p and only the known

pixels of this patch are considered when comparing to the neighbourhoods of the input. In general



Figure 5.10 – Four crops of different parts of Figure 5.4 at its original resolution. The cropped images are

of size 500× 500 pixels. Each one represents a different texture belonging to a single “big texture”.

Figure 5.11 – Four crops of different parts of Figure 5.5 at its original resolution. The cropped images are

of size 500× 500 pixels. Each one represents a different texture belonging to a single “big texture”.

the visual results are very impressive most of all for structured textures. Nevertheless this algorithm

suffers from two important drawbacks: verbatim copies of the input and garbage growing (the

algorithm starts reproducing iteratively one part of the example and neglects the rest). We invite

the reader to refer [] for a detailed description of the method.

.. The Efros and Freeman algorithm

Efros and Freeman’s method [] is an extension of Efros and Leung’s method. It is based on the

same principle where the pixel values are conditioned to their neighbourhood values. Efros and

Freman propose to generate a new image patch by patch in a raster scan order. At each iteration a

patch that is only partially defined on a region called overlap region is completed. This is the patch

under construction. To do so a patch of the input image that matches the patch under construc-

tion on the overlap region is randomly selected (patch selection step). An optimal boundary cut

between the chosen patch and the one under construction is then computed within the overlap

region (stitching step). This optimal boundary cut is used to construct the new patch by blending

the chosen patch and the patch under construction along the cut. The results obtained are very im-

pressive, particularly for highly structured textures. The patch size being larger, the risk of garbage

growing is reduced comparing to the Efros-Leung algorithm. Nevertheless the risk of verbatim

copies remains ans is even amplified. Moreover, the respect of the global statistics of the input is

not guaranteed and this is quite visible when the input texture is not stationary (for example if

there is a change of illumination across the image). In Figure . we show four synthesis exam-

ples. For the first two microtextures (top row in Figure .) one can observe that the generated

image does not respect the global statistic of the input creating “stains” of different illuminations.

This follows the fact that the input texture is not homogeneously illuminated. However for the

second example where this illumination effect is not evident the synthesis is excellent. The last two



Figure 5.12 – Four crops of different parts of Figure 5.5 at its original resolution. The cropped images are

of size 500× 500 pixels. Each one represents a different texture belonging to a single “big texture”.

Figure 5.13 – Four crops of different parts of Figure 5.6 at its original resolution. The cropped images are

of size 500× 500 pixels. Each one represents a different texture belonging to a single “big texture”.

examples (bottom row in Figure .) present impressive results recovering perfectly the strong

structures of the input. We invite the reader to refer to Annex A for a detailed description of the

method.

.. The multiscale locally Gaussian algorithm

The multiscale locally Gaussian method presented in Chapter  is a parametric patch based method.

The output image is constructed patch by patch, in a raster scan order. In contrast with the Efros

and Freeman work [] this method involves a multiscale local Gaussian model in the patch space.

Every patch used to construct the output texture is sampled form a multivariate Gaussian distribu-

tion (a different one for each patch). For a given patch p under construction the set of m patches

from the input texture that are similar (to the one under construction) to p on their overlap area

is used to estimate the parameters of the multivariate Gaussian distribution used to sample a new

patch. This is done for each patch in the output image. Figure . illustrates an iteration of the

method. The multiscale approach permits to use “different patch sizes” within one synthesis and

hence capture the details at different scales. The results are visually satisfying. The quality of the

results is higher than those of statistics based methods. Nevertheless, even though the patches gen-

erated do not exist in the input texture the risk of visual verbatim copy remains. Four synthesis

examples are shown in Figure . where once again we can notice, like for the Efros and Freeman

results, that when the input is not stationary the generated output might not respect the global

statistics of the input sample. For the other presented examples the results are excellent. For a

more detailed description and extensive results please refer to Chapters  and .



Figure 5.14 – Four crops of different parts of Figure 5.6 at its original resolution. The croped images are

of size 500× 500 pixels. Each one represents a different texture belonging to a single “big texture”.

Figure 5.15 – Synthesis results of the Portilla and Simoncelli method [50]. It is satisfactory for many small

grain textures (first row) but may miss the global structure (second row).

. Applying the classical methods

.. Experiment : exemplar-based methods

We started by applying the exemplar-based methods described in section . to small crops of the

provided inputs. In Figure . and Figure . one can observe these results.

In general when applying RPN and PS to the small crops the results obtained are too blurry.

In the case of EF and MSLG, for some inputs, satisfying results are observed. This is true especially

when the input is stationary. Otherwise garbage growing and verbatim copies are often a risk. One

can also observe that for some examples the result of the MSLG method might be slightly blurry.

In Figure ?? larger crops of the inputs are considered. These crops are taken on images of lower

resolution regarding the original inputs. For these examples it is evident that applying the PS or

RPN method will not work at all. On the other hand for the EF and LG algorithms the verbatim

copy and garbage growing is more evident and likely to happen, particularly when the inputs have



Figure 5.16 – Synthesis results of the RPN method [21]. This method works extremely well for a class of

“microtextures” including tissues and granular textures with no geometric structures [20].

strong isolated patterns, as it is the case with wood textures. We follow by showing a combination

of these methods on the same examples.

.. Experiment : combining exemplar-based methods

In this section we present some synthesis results when using a combination of different texture

synthesis methods. We apply them to the two sized crops of the different input images. The com-

binations considered are the following:

• The locally Gaussian method combined to the Efros and Freeman method denoted as LG+EF

• The locally Gaussian method combined to the Portilla and Simoncelli method denoted as

LG+PS

LG + EF The combination of the locally Gaussian method with the Efros and Freeman method

consists of two steps. The first step synthesizes the given input I with the locally Gaussian method

generating a new texture image that we denote Ilg . The second step consists in applying the Efros

and Freeman algorithm to the given input sample initializing the output image that we denote Ief

with the image Ilg . The method is basically the same as the one described in section .. The only

step of the algorithm that is modified is the patch selection step. In the method described in []

at each iteration the added patch was chosen among those (in the input sample) whose overlap

region was similar to the one of the patch under construction. When combining the methods

instead of only comparing the overlap areas we compare the entire patches. Initializing the output

with a first synthesis Ilg enables the method to use the whole patch under construction to find a

candidate in the input sample I . The candidate patch taken from I is then quilted in Ief in the



Figure 5.17 – Overview of the Efros and Leung algorithm [14]. Given a texture image (left) a new image

(right) is being synthesized a pixel at a time. For a pixel p being synthesized the method finds all neigh­

bourhoods in the left image that match the neighbourhood of p and then chooses randomly one of the

neighbourhoods and assigns its central pixel value to p. The image was taken from the work in [14].

corresponding position with the same stitching step as in []. This combination allows to recover

the lost resolution of the LG synthesis. However it is not capable of masking the garbage growing

effects as effectively LG+PS combination does.

LG + PS The combination of the locally Gaussian method with the Portilla and Simoncelli

method consists of two steps. A first step where given the input image I a new texture Ilg is

generated using LG. The second step uses PS where the initialization “noise image” is replaced by

Ilg . As explained in section . the statistics to impose are learnt on the input I . What follows is

a synthesis step where the output image is projected on the subspaces of constraints. There exist

several local solutions to this projection step. When initializing PS with the result of LG the ini-

tialization image is generally quite close to the images living in the sub-space of the whole set of

constraints. Thus the result obtained is improved compared to PS images starting from a random

noise image. Naturally fixing the initialization of the PS algorithm removes the randomness of the

generated texture. But this is not the case since the initialization is itself random as it is generated

from another random process.

We observed that combining EF to LG sometimes slightly improve the granularity of the result

but that if the result of the LG method diverged then applying EF would not mask these prob-

lems. However, the combination of PS with LG masks efficiently these drawbacks ans improves

significantly the quality of the synthesized image.

In Figures . and . one can observe that so far the combination LG+PS permits to emulate

all local textures with no definite global structure. That is for local synthesis combining these two

methods (LG and PS) is a good solution to synthesize locally the decors provided. These small

images are easy textures. We now move one step farther and attempt a synthesis of larger parts

of the original inputs (see Figure .). As expected the results are less satisfying than for local

synthesis.

In summary, LG+PS is a sophisticated method, more than any existing, and it works satisfacto-

rily for local textures with no strong global organization. Thus it makes correct and even amazingly

good imitations of small pieces of textures, yet remains unsatisfactory for large structured pieces of

wood. Thus another method must be considered for such images which in fact are more than a



Figure 5.18 – Synthesis results of the Efros and Freeman method [15]. Works for microtextures with a risk

of not respecting the global statistics (see the first experiment, top left). Works for macrotextures with

the risk of verbatim copy.

texture, as they have this non-stationary global organization with rings and knots, among other

special, very recognizable structures. In short, wood at a large scale is NOT a texture in the usual

sense and therefore imitations of it will either fail or tend to repeat the input. We therefore tried to

expand the method to capture a structure at low scale and scale up with details that we know how to

do deal with it. As we shall see, this will fail because it will fatally create repetitions.

.. Experiment : multiscale on the low resolution inputs

A last experiment was performed with the locally Gaussian algorithm using the multiscale ap-

proach (MSLG). The goal was to create a low resolution landscape on which details are progres-

sively added. The multiscale approach is a classic solution to contemplate details at different scales

within an image. This approach was applied on a low resolution version of the whole sample

images.

The existing methods are able to perform a correct synthesis on some details of the provided

examples at several scales. However due to the non stationarity of the provided textures, adapta-

tions of the methods should be considered. We observed that even using a multiscale approach

to create a low resolution landscape is not enough for the wood texture where large and special

global organizations are visible and difficult to synthesize without creating a verbatim copy effect

or garbage growing due to the strong non stationarity of this kind of images. Hence we decided

to see if some perturbations of the input might be enough to hide the resemblance applying some

geometric deformations on the inputs. This is presented in the following section.



Figure 5.19 – Overview of the multivariate Gaussian distribution of a patch. For the patch q (pink patch in

the output image) being synthesized the algorithm finds the m nearest neighbours in the input image

that matches q. Then, on this set of m patches a multivariate Gaussian distribution is estimated from

which a patch p is sampled and quilted in the output at the corresponding position.

. Masking repetitions with anamorphosis

As we have seen in the previous three experiments, applying and combining different exemplar

based texture synthesis methods works for local textures. For more complex images this is not the

case. The images are highly non stationary and this makes it very difficult. Even though we tried

synthesizing the inputs at lower resolution aiming at recovering a synthesized sample containing

the global arrangements to continue by adding progressively the details of the different scales, the

results were not satisfactory. The textures still retain a strong global organization at lower scales. If

the low resolution synthesized image contains some repetitions, for example, then it is not easy to

recover when scaling up in resolution. Thus we decided to change the strategy and aim at hiding

these undue repetitions. As a first alternative we considered applying different anamorphoses to

the inputs in order to deform the global organizations of the sample in a way that it is unrecog-

nizable from one synthesis to another. Yet, the deformation cannot be too brutal. For example

in a wood image, the deformation of a knot can be strong but should maintain it approximately

convex. Unfortunately, we observed that after deformation, these global configurations are still rec-

ognizable from one image to the other, in particular for wood textures. We tried several different

deformation functions that we separate in one dimensional anamorphoses and two dimensional

anamorphoses. Basically, the one dimensional anamorphosis will deform the input in one direc-

tion and the two dimensional anamorphosis in two directions. For the one dimensional case we

chose three simple functions to analyze their behaviours. For the two dimensional case we chose a

geometric deformation performed as a simulation of turbulence [].

Applying several different one dimensional and two dimensional anamorphosis to the wood



Figure 5.20 – Synthesis results of LG [8]. Works for microtextures with a risk of no respect of the global

statistics (see the first experiment, top left). Works for macrotextures with a lower risk of verbatim copy

than EF for this kind of textures.

samples is not enough to hide the repetitions among the different generated planks. This is ex-

plainable as human perception is invariant to a regular anamorphosis. If one observes the results

in Figures ., ., ., ., . “from farther” the different synthesis results look very much

alike. The one dimensional and two dimensional anamorphoses do not introduce much visual alter-

ation at this scale. Hence they do not succeed at hiding the repetitions.



input RPN PS EF LG

Figure 5.21 – 1) RPN loses line structures. PS homogenizes the input. EF verbatim copy. LG satisfying

for this input. 2) RPN loses line structures. PS homogenizes the input. EF satisfying for this input. LG

garbage growing. 3) RPN loses line structures. PS satisfying for this input. EF satisfying for this input.

LG garbage growing. 4) RPN loses line structures. PS homogenizes the input. EF garbage growing. LG

garbage growing. 5) RPN loses line structures. PS homogenizes the input and color artifact. EF verbatim

copy and garbage growing. LG verbatim copy.



input RPN PS EF LG

Figure 5.22 – 1) RPN and PS lose all geometric structures. PS creates some blur. EF and LG generate a risk

of verbatim copy and garbage growing. 2) RPN and PS lose all geometric structures. EF and LG generate

a risk of verbatim copy. 3) RPN loses all geometric structures. PS homogenizes the input and creates

some blur. EF generates a risk of garbage growing. LG loses some resolution. 4) RPN loses geometric

structures. PS homogenizes the input. EF is satisfying for this input. LG loses resolution.



input LG LG+EF LG+PS

Figure 5.23 – Both LG+EF and LG+PS present satisfying results. LG+PS is more accurate recovering the

original granularity of the input. 2) Both LG+EF and LG+PS present satisfying results. Although LG+PS

is more accurate recovering the original granularity of the input. 3) In this case the first LG synthesis

presented garbage growing. Combining PS to LG is better in recovering from this drawback compared

to LG+EF where the garbage growing remains a risk. 4) The first LG synthesis presented garbage grow­

ing (it is only the right part of the example that is emulated). The combination of PS with LG is once

again better for recovering these drawbacks compared to LG+EF. 5) You can see in LG+EF that the initial

LG synthesis did verbatim copies of the white stripes three times. Combination with EF does not remove

this. Combination with PS hides this drawback. 

input LG LG+EF LG+PS

Figure 5.24 – 1) The first LG synthesis presented garbage growing. It is noticeable in the result of LG+EF.

The combination of PS with LG is once again better adding the unexplored zones of the input. 2) The

first LG synthesis presented garbage growing and low resolution. The combination LG + EF does not

recover from these drawbacks while the combination of PS with LG is very satisfying. 3) For this input

both results are satisfying. LG+PS has a better recovery of the stripes. 4) The input is a “global texture”

with conspicuous global geometric organization. We observe that even LG+PS fails to reproduce such

global structure.



input LG LG+EF LG+PS

Figure 5.25 – For all fur examples, the inputs are a “global texture” with conspicuous global geometric

organization. We observe that even LG+PS fails to reproduce these global structures.



input synthesis  synthesis  synthesis  synthesis 

Figure 5.26 – One observes in the different synthesis results the verbatim copies of some particular

global organizations from the input and the garbage growing. In some favourable cases the algorithm

avoids scanning the regions with these particular organization (synthesis 1).



input synthesis  synthesis  synthesis  synthesis 

Figure 5.27 – One observes in the different synthesis results the verbatim copies of some particular

global organizations from the input and the garbage growing.



input synthesis  synthesis  synthesis  synthesis 

Figure 5.28 – One observes in the different synthesis results that all of them are not able to recover

the central organization of the input sample. This is typically due to the garbage growing effect. The

algorithm is stuck in some zone of the input sample.



input synthesis  synthesis  synthesis  synthesis 

Figure 5.29 – One observes in the different synthesis results the verbatim copies of some particular

global organizations from the input and the garbage growing. In some favourable cases the algorithm

avoids scanning the regions with these particular organization (synthesis 3).

Figure 5.30 – One dimensional anamorphoses functions used to lightly deform the texture images aim­

ing at masking the evident salient structures.



Figure 5.31 – One dimensional anamorphism applied to a wood texture. For the parabola and affine

anamorphosis the global organizations of the input sample are slightly modified. For the sinusoid

anamorphosis a stronger deformation is noticeable. In general the deformed images remain very similar

to the input. Even for strong anamorphoses the risk of repetitions remains.



Figure 5.32 – One dimensional anamorphism applied to a wood texture. For the parabola and affine

anamorphosis the global organizations of the input sample are slightly modified. For the sinusoid

anamorphosis a stronger deformation is noticeable. In general the deformed images remain very similar

to the input. Even for strong anamorphoses the risk of repetitions remains.



Figure 5.33 – One dimensional anamorphism applied to a wood texture. For the parabola and affine

anamorphosis the global organizations of the input sample are slightly modified. For the sinusoid

anamorphosis a stronger deformation is noticeable. In general the deformed images remain very similar

to the input. Even for strong anamorphoses the risk of repetitions remains.



Figure 5.34 – One dimensional anamorphism applied to a wood texture. For the parabola and affine

anamorphosis the global organizations of the input sample are slightly modified. For the sinusoid

anamorphosis a stronger deformation is noticeable. In general the deformed images remain very similar

to the input. Even for strong anamorphoses the risk of repetitions remains.

Figure 5.35 – Two dimensional anamorphism applied to two different wood textures. The deformed

images remain very similar to the input.



. Random mosaics

Another approach we considered to avoid evident repetitions between synthesis and within one

same synthesized image is the random mosaic method. This experiment consists in slicing the in-

put image vertically (or horizontally), randomly permuting these slices and after blending together

the pieces using a stitching step to recompose a new texture image. The stitching technique can

for example use the approach of image editing in []. The advantage of this approach is that no

“unnatural” repetition of the global configurations will be observed since each part is used once.

We also hope that the slicing succeed to separate the salient structures but not up to the point

where the salient and less salient structures would be completely lost. This approach restricts the

new sample to have the same size as the input and the number of possible permutations is limited.

A possibility to overcome these limitations was to consider more than one input image in order to

generate one new texture. There is no reason to limit ourselves to the use of a single input sample

as it is done up to now in the exemplar-based methodologies.

The following experiences show three variants of this approach. The first one called the one

dimensional random mosaic consists in slicing the image in one direction direction (horizontal or

vertical). The second variant, the two dimensional random mosaic, consists in slicing the input

in both directions, thus generating patches that are put together after being randomly permuted.

This variant is suitable for textures that are isotropic like the stones and metal images that we

presented. For the wood textures this variant is not of interest since there is an evident dominant

direction and partitioning the image in both directions would completely alter the nature of the

input image. The last variant, the multi-random mosaic, consists in using several inputs and then

applying the one dimensional or two dimensional random mosaic, randomly permuting all the

pieces and constructing a new images by picking some of the pieces.

Applying the random mosaic algorithm yields very good results for the case of the stone and

metal textures. The generated images are all very different from one synthesis to another. Control-

ling the size of the slicing is important in order not to destroy the characteristic structures of these

images. However for the wood texture this approach is not suitable. All global organization are

lost and some of the salient structures are recognizable from one synthesis to another. For the case

where the random mosaic approach works one can as well observe that the generated textures look

different at all scales seeing the textures from far away still yields visual results that are different.

. Synthesizing low frequencies

One of the difficulties of the input images given in section . is to correctly synthesize their low

frequencies, i.e. their global organizations. We have seen with the previous experiments that using

a multiscale approach is not satisfactory, since repetitions are still visible at lower scales hence

propagated to the higher scales. Ideally we aim at generating a low resolution image having the

”natural” amount of global configurations on which we gradually add the correct granularity of

the different scales.

For this purpose we suggest to separate the input image I into two components: the low and

high frequency images. We denote by Gθ a Gaussian kernel and define as the low frequency image

ILF = I ∗Gθ and as the high frequency component IHF = I − I ∗Gθ. We follow by applying the

RPN method [] to the low frequency component ILF. In other terms, we add a random phase

σ to the Fourier transform ÎRPN ← ÎLFe
iσ where σ is a white noise image niformly distributed

over [−π, π]. This new low frequency image is denoted as ĨRPN. To recompose the new texture we

simply cumulate the low and high frequencies components Ĩ = ĨLF + IHF.



Figure 5.36 – Results applying the one dimensional random mosaic algorithm to stone and metal tex­

tures. From left to right: input, synthesis 1, synthesis 2 and synthesis 3.

Figure 5.37 – Results applying the one dimensional random mosaic algorithm to a wood texture. From

top to bottom: input, synthesis 1, synthesis 2 and synthesis 3.



Figure 5.38 – Results applying the one dimensional random mosaic algorithm to a wood texture. From

top to bottom: input, synthesis 1, synthesis 2 and synthesis 3.

Figure 5.39 – Results applying the one dimensional random mosaic algorithm to a wood texture. From

top to bottom: input, synthesis 1, synthesis 2 and synthesis 3.



Figure 5.40 – Results applying the one dimensional random mosaic algorithm to a wood texture. From

top to bottom: input, synthesis 1, synthesis 2 and synthesis 3.

Figure 5.41 – Results applying the two dimensional random mosaic algorithm to stone and metal tex­

tures. From left to right: input, synthesis 1, synthesis 2 and synthesis 3.



Figure 5.42 – Synthesis results after randomizing the low frequencies of the input sample. From left to

right: input, synthesis 1, synthesis 2 and synthesis 3. A strong correlation exists between the low and

high frequencies of these input images. Observing these results from far reduces this correlation.

We can conclude from Figure . that separating the high and low frequencies and random-

izing the low frequency component does not yield convincing results given that the low and high

frequencies of these images are highly correlated. Nevertheless this method works on these metal

examples at lower resolution inputs as can be observed in Figure . when seen from far.

. Mixing texture images

The last experiment that we considered consisted in mixing two texture images. Ideally one of the

textures denoted as I1 should be very sober and the second texture I2 would have no restriction.

Let us consider the case of wood textures. This could allow us to dispose of several sober images of

a same essence of wood on which we will add different particular structures taken from a second

image. This approach is clearly limited with respect to the number of images one can generate.

This approach is considered as a tool which allows us to add some variations on the generated

textures. To achieve the texture mixing we used the Poisson editing work described in [].

The goal of the Poisson editing technique [] is to seamlessly edit and clone selected regions

of an image. The mathematical tool at the heart of the approach is the Poisson partial differential

equation with Dirichlet boundary conditions. Given two images I1 and I2, the goal is to replace

a region of I1 with one of I2. The domain to replace in I1 is denoted by Ω and δΩ its boundary.

Then the solution that we denote as I minimizes the following equation

{

∇I(x) = div(~I2) if x ∈ Ω
I(x) = I1(x) if x ∈ δΩ.

Another application of the Poisson editing method [] is to add or remove details to an image

mixing their gradients retaining the stronger variation at each pixel of the image. This is what we

use to mix two different texture images

∇I(x) =
{

∇I1 if∇I1 ≥ ∇I2
∇I1 if otherwise.

(.)

In Figures . and . texture mixing results are shown. For each example two input textures

I1 ans I2 are provided where one is much sober than the other. The resulting image I is then



Figure 5.43 – Texture mixing results. Three different examples are shown. Each example corresponds to

three images: inputs I1 and I2 and I resulting from mixing I1 and I2.

obtained by applying (.). The results obtained are interesting. However the synthesized images

are still quite similar to the input ones.

. Conclusion

In this chapter we have presented an extensive analysis on how to imitate large natural textures and

explored the limitations of this endeavour. The texture images considered in this chapter were high

resolution photographies of different materials such as wood, metals and stones. The study shows

that, in spite of the remarkable progress that have been done in the area of exemplar-based texture

synthesis methods, they are posed for a very particular problem that is using stationary and small

samples of image textures. The existing methods are still incapable of dealing with such complex

textures containing strong global configurations and being non-stationary.

We have tested several methods and combination of methods. In general the results achieved

on small crops of the given input images are satisfying. In particular, the combination of the locally

Gaussian method with the Portilla and Simoncelli method yields satisfying results for small images.

For bigger images presenting strong global organizations all methods fail. They cannot work on

highly structured and non-stationary images. Insisting on using such exemplar-based methods

leads to repetitions of the conspicuous structures.

We tried other alternatives such as applying random permutations on different parts of the

input image or applying one dimensional and two dimensional geometric deformations to mask

the conspicuous structures but none of these successfully hide the repetitions to the human eye.

This conclusion is final in the case of the wood textures who have very strong salient configurations.



Figure 5.44 – Texture mixing results. Three different examples are shown. Each example corresponds to

three images: inputs I1 and I2 and I resulting from mixing I1 and I2.

The one dimensional and two dimensional random mosaic method returns satisfactory results on

some samples.

As a more general conclusion when trying to synthesize samples that are not stationary and

very large the exemplar-based methods fail. Patch based methods yield too many repetitions of the

salient structures. The risk of growing garbage exists due to the strong non-stationarity. Methods

like the Portilla and Simoncelli are limited by the large size of the input. Combining the Portilla and

Simoncelli algorithm with the locally Gaussian method works, up to a given resolution. Afterwards

the methods tend to homogenize the input; i.e. will start “mixing” the different structures present

destroying them. We deduced that using a single wood texture sample, it is almost impossible to

generate several different new images from this example. It is very difficult to randomly create

knots with just one example without repeating it. This is a big limitation for exemplar based

methods. The exemplar based methods usually work because the examples images present a lot of

auto similarities that can be used on the one hand to infer a stochastic process defining the texture

or on the other hand to estimate the models of a patch-based method.



A Efros and Freeman Image Quilting

Algorithm for Texture Synthesis

Exemplar-based texture synthesis is defined as the process of generating, from an

input texture sample, new texture images that are perceptually equivalent to the in-

put. Efros and Freeman’s method is a non-parametric patch-based method which

computes an output texture image by quilting together patches taken from the input

sample. The main innovation of their work relies in the stitching technique which

significantly reduces the transition effect between patches. In this paper, we propose

a detailed analysis and implementation of their work. We provide a complete math-

ematical description of the linear programing problem used for the quilting step as

well as implementation details. Additionally we propose a partially parallel version

of the quilting technique.

A. Introduction

Texture synthesis is a classical image processing problem that finds its applications in virtual real-

ity rendering (video games, animation movies, . . .). Given an input texture image, it consists in

producing output texture images that are both visually similar to and pixel-wise different from the

input, and having possibly a larger size. One can separate texture synthesis algorithms into two

categories, namely statistical constraint approaches and non-parametric patch-based methods, al-

though “hybrid” algorithms have been proposed recently [] and the algorithm we propose in

Chapter .

Statistical constraint texture synthesis algorithms model the texture based on statistical and/or

perceptual considerations. They generally involve two different steps, one for analysis and one for

synthesis. The analysis step consists in estimating a set of relevant statistics from the input tex-

ture image. The synthesis step computes an image that satisfies the statistical constraints estimated

during the analysis step. Following the seminal paper of Heeger and Bergen [, ], several meth-

ods are based on statistics of wavelet coefficients or more involved multiscale image representa-

tions [, , ]. Another approach initially proposed by van Wijk [] consisting in randomizing

the Fourier phase of an image has been extended to an exemplar-based synthesis method in [, ]

suitable for micro-textures (textures that do not present salient geometric patterns and that are not

constituted of individual discernible objects).

Non-parametric patch-based algorithms attempt at producing a new texture by arranging local

neighborhoods of the input texture in a consistent way. The first methods of this kind are sequen-

tial algorithms that create a new texture one pixel at a time [, ]. These algorithms represented



a breakthrough in the field since they are able to reproduce macro-textures with specific geometric

structures, see e.g. the IPOL paper []. Along with the method of Liang et al [] developed at the

same period, image quilting [], the algorithm investigated in this paper, computes the new tex-

ture by arranging seamlessly full patches of the input texture. The main innovation of this method

is the procedure to stitch a new patch in the sequentially built output texture to avoid disconti-

nuities as much as possible. This is achieved by computing an optimal boundary cut between the

patch and the synthesis area thanks to a linear programming optimization (see Section A. for de-

tails). Let us note that another solution of this “stitching step” is proposed in [?] using graphcuts.

Many contributions have since improved the results of image quilting, at least regarding the com-

putational cost, and we refer to the state of the art [] for a more complete survey of this category

of texture synthesis algorithms. Let us also mention the recent paper [], based on [?, ], that

discusses and atempts to solve some limitations of these approaches.

The plan of the paper is as follows. Section A. describe in detail all the steps of the algorithm

and in particular gives a detailed mathematical description of the linear programing problem for

the computation of the minimum error boundary cut. Section A. gives implementation details

and discuss a parallelization of the Efros-Freeman algorithm which, to the best of our knowledge,

is a contribution of this paper. Section A. presents numerous experiments of our implementation

of the Efros-Freeman algorithm. This experimental section shows that this algorithm produces

most of the time visually good results. However, a set of failure cases shows that the shortcomings

of the Efros-Leung algorithm, that is, garbage growing and verbatim copy [, ], are also present

in the Efros-Freeman results, but only at a larger scale.

A. Algorithm Description

In [] the authors propose a sequential patch-based algorithm to synthesize textures. I0 and Is
denote the input sample and the output texture respectively. The output image Is is constructed

patch by patch in a raster scan order. The goal of each iteration is to fill a patch Pold of Is that is

only partially defined on a region called overlap region (see Figure A.). To do so a patch Pin of I0
that matches Pold on the overlap region is randomly selected. An optimal boundary cut between

Pold and Pin is then computed within the overlap region. This optimal boundary cut is used to

construct the new patch Pnew by blending Pold and Pin along the cut.

The whole image quilting algorithm is described in Algorithm  and the remaining of this

section will detail each step of the algorithm, namely the initialization, the patch search procedure

to select Pin, the computation of the minimum error boundary and the blending procedure along

the boundary.

A.. Initialization

The first step of the algorithm is to initialize Is. For that a random patch Pin of size wp × wp is

taken from I0 and placed at the top-left corner of Is.

A.. Patch Selection

Once the image has been initialized the algorithm synthesizes the remaining patches of Is sequen-

tially in raster scan order. At each iteration one has to fill a patch Pold of Is that is only defined on

an overlap region of width wo. Note that there are three possible overlap regions: vertical overlap



input iteration  iteration  iteration 

Figure A.1 – Three different iterations of the synthesis process are shown. At each iteration a patch is

being synthesized. This patch is represented by the pink square for the three cases.

(a) (b) (c) (d)

Figure A.2 – Quilting a square patch from the input texture into the synthesized texture. (a) sub­part of

the synthesized texture. The red dotted zone shows where the new patch will be quilted. (b) patch to

quilt in the red dotted zone shown in (a). (c) error surface between the patch in (b) and the red dotted

zone in (a). The red path shows the minimum error boundary. (d) the patch in (b) is quilted along the

minimum error boundary in the corresponding zone showed in (a).



Algorithm : Image Quilting

 Input: Sample texture I0, patch size wp, overlap size wo, tolerance parameter ε,

output/input size ratio r
 Output: Synthesized texture Is

: Initialize Is
: for each patch Pold in Is do

: Select a compatible patch Pin ∈ I0 using the Patch Selection algorithm (see

Algorithm )

: Compute minimum error boundary cut between Pold and Pin (see Algorithm )

: Construct the patch Pnew by blending Pold and Pin along the boundary cut (see

Equation (A.))

: Replace Pold with Pnew within Is
: end for

(a) Vertical overlap (b) Horizontal overlap (c) L-shaped overlap

Figure A.3 – Three overlap cases arises in the raster scan order: vertical overlap for the first row, horizon­

tal overlap for the first column, and L­shaped overlap everywhere else.

for the first row, horizontal overlap for the first column, and L-shaped overlap everywhere else (see

Figure A.).

To select a patch Pin of the input image I0 one computes the square distance between the

overlap region of the patch Pold of Is and the corresponding regions of all the patches of I0. The

minimal distance dmin is determined and Pin is randomly picked among all patches whose distance

to Pold is lower than (1 + ε)dmin where ε is the tolerance parameter.

To conclude this section let us give a detailed expression of the distance used to compare

patches. A patch of I0 is represented by the position of its top-left corner (m,n) ∈ {0, . . . ,M0 −
wp} × {0, . . . , N0 − wp}. The squared distance image D contains at each position (m,n) the

distance between Pold and the patch from I0 who’s top-left corner is (m,n) according to some

binary weight Q that equals one in the overlap region and zero otherwise. More precisely for all

(m,n) ∈ {0, . . . ,M0 − wp} × {0, . . . , N0 − wP }, one has

D(m,n) =

wp−1
∑

i,j=0

Q(i, j)(P (i, j)− I0(m+ i, n+ j))2. (A.)

The computation of the squared distance imageD is discussed in Section A.. and the whole patch

selection procedure is summarized in Algorithm .



Algorithm : Patch Selection

 Input: Sample texture I0, patch under construction Pold, patch size wp, tolerance

ε > 0, binary weight Q defining the overlap region

 Output: Patch position (m,n)
: Compute the squared distance image D (see Equation (A.)) containing the distances

between the patch Pold and all patches of I0.

: dmin ← min
(k,l)

D(k, l).

: Uniformly draw a patch position (m,n) among the set

{(k, l), D(k, l) < (1 + ε)dmin}.

A.. Minimum Error Boundary Cut

This step of the algorithm is the main contribution of the Efros-Freeman algorithm [].

The Patch Search step (see Section A..) gives a patch Pnew of I0 having coordinates (m,n)
that is similar to the partially defined current patch Pold in their overlap region. We recall that

the overlap regions that arise in the raster scan order are of three types: vertical, horizontal, and

L-shaped overlap. These three cases are illustrated in Figure A.. To get the final patch P one must

combine the patches Pold and Pnew. DenotingQ the binary weight for the overlap regions as in the

previous section, then, for any binary image M such that 0 ≤ M ≤ Q, P can be defined as the

combination

Pnew =MPold + (1−M)Pin.

The main idea of Efros and Freeman [] is looking for a binary shape M where the transition

between Pold and Pnew along the boundary of the shape is minimal. For simplicity, and to be

able to use linear programming, the authors do not allow for any shape, but only for the ones

whose boundaries are simple forward paths from one end to the other of the overlap region. This

results in two pieces of image that are sewn together along some general boundary path, hence the

algorithm name “quilting”. In the remaining of this section, we describe in details the computation

of the minimum error boundary cut for the three overlap cases, starting with the vertical and

horizontal cases.

Connected Paths and Boundary Error

In the following, we call a path of length ℓ ≥ 1 in {0, . . . , wp − 1}2 any ordered sequence γ =
(γ0, γ1, . . . , γℓ−1) of -connected pixels γk ∈ {0, . . . , wp− 1}2, that is, for all k ∈ {0, . . . , ℓ− 2},
max(|γ1k+1 − γ1k |, |γ2k+1 − γ2k |) = 1 (for convenience, within this section the first and second

coordinates of a pixel γk are denoted by γ1k and γ2k).

Let us recall that we use matrix coordinates for the pixels. Hence a path γ of length ℓ is said to

be vertical if for all k ∈ {0, . . . , ℓ− 2}, γ1k+1 − γ1k = −1 (vertical paths are oriented from bottom

to top), and horizontal if for all k ∈ {0, . . . , ℓ−2}, γ2k+1−γ2k = −1 (horizontal paths are oriented

from right to left).

Denoting by e(i, j) = (Pnew(i, j)−Pold(i, j))
2 the squared difference between the two patches

Pold and Pnew, the boundary error of a path γ of length ℓ is defined by

E(γ) =
ℓ−1
∑

k=0

e(γk).



Vertical Boundary Cuts

In this section we explain how the optimal boundary between Pold and Pnew is defined and com-

puted in the case of vertical overlap, that is when the overlap region is the rectangle {0, . . . , wp −
1} × {0, . . . , wo − 1}.

The optimal boundary is defined as the vertical path γ that minimizes the boundary error E(γ)
while joining both ends of the overlap regions. More precisely, define the admissible vertical paths

as

Γv = {γ = (γ0, . . . , γwp−1), ∀k, γ1k = wp − 1− k and γ2k ∈ {0, . . . , wo − 1}}
(one notices that paths of γ ∈ Γv are indeed vertical since γ1k+1 − γ1k = −1). Then an optimal

boundary is defined as any solution of the optimization problem

min
γ∈Γv

E(γ). (A.)

Problem (A.) is solved using dynamic programming. This is possible because Problem (A.)

verifies the principle of optimality: if (γ0, . . . , γwp−1) is an optimal solution of Problem (A.),

then, for all 0 ≤ r ≤ wp − 1, the subpath (γ0, . . . , γr−1) is an optimal vertical path to reach the

r-th point γr−1 starting from the bottom of the overlap region.

Let us now discuss in detail the dynamic programming method to solve Problem (A.). For all

points (i, j) ∈ {0, . . . , wp − 1} × {0, . . . , wo − 1}, denote by Γ
(i,j)
v the set of vertical paths γ that

start at the bottom side of the overlap region and end at the point (i, j), that is

Γ(i,j)
v = {γ = (γ0, . . . , γwp−1−i), ∀k, γ1k = wp−1−k, γ2k ∈ {0, . . . , wo−1}, and γwp−1−i = (i, j)}.

Now, for all points (i, j) ∈ {0, . . . , wp − 1} × {0, . . . , wo − 1}, define Ev(i, j) as the minimal

cumulative vertical error to reach (i, j) starting from the bottom side, that is,

Ev(i, j) = min
γ∈Γ(i,j)

v

E(γ).

Then, since

Γv =
⋃

j∈{0,...,wo−1}
Γ(0,j)
v ,

one has

min
γ∈Γv

E(γ) = min
j∈{0,...,wo−1}

Ev(0, j).

Now, remark that the last-but-one point of an optimal vertical path that ends at (i, j) is one of the

(at most) three points below (i, j), namely the points (i+1, j− 1), (i+1, j), (i+1, j+1) (there

can be only two neighboring points if (i, j) is at the border, that is, if j = 0 or j = wo−1). Hence,

for all i ∈ {0, . . . , wp − 2}, one has

Ev(i, j) = e(i, j) + min(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)), (A.)

where by convention, if one of the index j − 1 or j + 1 is not a valid index, the corresponding

term Ev(i + 1, j − 1) or Ev(i + 1, j + 1) is discarded from the minimum. Besides, for the last

line i = wp − 1, one simply has Ev(wp − 1, j) = e(wp − 1, j) since the paths are only made of

one pixel. Hence the dynamic programming procedure for solving Problem (A.) is to compute

the costsEv(i, j) line by line from bottom to top using Equation (A.) recursively, and then search

for the minimal value of the first line j∗ = argminj Ev(0, j). The full optimal path γ can then



be traced back starting from this coordinate (0, j∗) = (γ1wp−1, γ
2
wp−1). More precisely, if (i, j) are

the coordinates of the point γwp−1−i of the optimal path γ, then its preceding point γwp−1−(i+1)

is given by

γwp−1−(i+1) = argmin(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)).

In practice one stores the matrix Tv(i, j) = argmin(Ev(i+1, j−1), Ev(i+1, j), Ev(i+1, j+1))
while computing the vertical cumulative error Ev given by Equation (A.) in order to trace back

the path without additional computation since for i = wp − 2 to 0, γi = Tv(γi+1).

Horizontal Boundary Cuts

The case of horizontal overlap is just the symmetric case of vertical overlap one. Still let us intro-

duce the notation that will be necessary for dealing with the L-shaped overlap case. One defines

the set of horizontal paths as

Γh = {γ = (γ0, . . . , γwp−1), ∀k, γ2k = wp − 1− k and γ1k ∈ {0, . . . , wo − 1}},

and for all points (i, j) ∈ {0, . . . , wo − 1} × {0, . . . , wp − 1}, one defines

Γ
(i,j)
h = {γ = (γ0, . . . , γwp−1−j), ∀k, γ2k = wp−1−k, γ1k ∈ {0, . . . , wo−1}, and γwp−1−j = (i, j)}

the set of paths that start at the right side of the overlap region and end at (i, j), as well as

Eh(i, j) = min
γ∈Γ(i,j)

h

E(γ)

the minimal cumulative horizontal error to reach (i, j) starting from the right side of the overlap

region. Then Eh(i, wp − 1) = e(i, wp − 1), and for all j ∈ {0, . . . , wp − 2}, one has the recursive

relation

Eh(i, j) = min(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1))

which enables to compute Eh(i, j) for all (i, j) ∈ {0, . . . , wo − 1} × {0, . . . , wp − 1}. Since

min
γ∈Γh

E(γ) = min
i∈{0,...,wo−1}

Eh(i, 0)

the end point of the optimal horizontal path is (i∗, 0) where i∗ = argminiEh(i, 0) and the path

can be traced back thanks to the matrix Th(i, j) = argmin(Eh(i− 1, j+1), Eh(i, j+1), Eh(i+
1, j + 1)).

L-shaped Boundary Cuts

The case of L-shaped overlap regions is slightly more complex than the vertical and horizontal

cases since the geometry of the L-shape does not allow for a clear ordering of the pixels of the

path. The original paper [] only mentions that, in the L-shaped overlap case, “the minimal paths

meet in the middle and the overall minimum is chosen for the cut”. We propose below a rigorous

interpretation of this sentence.

A separating path will start at the bottom side of the L-shape (that is, the points (i, j) with

i = wp − 1 and j ∈ {0, . . . , wo − 1}) and end at the right side of the L-shaped (that is, the points

(i, j) with i ∈ {0, . . . , wo − 1} and j = wp − 1). To restrict the geometry of admissible paths

(and allowing for dynamic programming), it is further required that an L-shaped path has to meet



at some diagonal point (i, i), i ∈ {0, . . . , wo − 1}, that the first part from the bottom side to this

diagonal point (i, i) is a vertical path, and that the remaining part from the diagonal point (i, i) to

the right side is a reversed horizontal path. More formally, for all indexes i ∈ {0, . . . , wo− 1}, one

defines

ΓiL = {γ = (γ0, . . . , γ2(wp−i)−1), (γ0, . . . , γwp−i−1) ∈ Γ(i,i)
v and (γ2(wp−i)−1, . . . , γwp−i−1) ∈ Γ

(i,i)
h },

and for all γ ∈ ΓiL we denote by γv and γh its associated vertical and horizontal paths of Γ
(i,i)
v and

Γ
(i,i)
h respectively. The set of the admissible L-shaped boundaries ΓL is then defined as the disjoint

union of the sets ΓiL, that is,

ΓL =

w0−1
⋃

i=0

ΓiL.

As before, we search for an optimal L-shaped boundary cut γ ∈ ΓL having minimal boundary

error

E(γ) =
ℓ(γ)−1
∑

k=0

e(γk),

where ℓ(γ) is the length of the path γ (which is equal to 2(wp − i) − 1 if γ ∈ ΓiL). The optimal

L-shaped boundary can be found in splitting the above sum into a vertical part and an horizontal

part, since for all γ ∈ ΓiL one has

E(γ) = E(γv) + E(γh)− e(i, i).

Hence one has

min
γ∈ΓL

E(γ) = min
i∈{0,...,wo−1}

min
γ∈Γi

L

E(γ)

= min
i∈{0,...,wo−1}

min
γ∈Γi

L

E(γh) + E(γv)− e(i, i)

= min
i∈{0,...,wo−1}

[(

min
γv∈Γ(i,i)

v

E(γv)
)

+

(

min
γh∈Γ(i,i)

h

E(γh)
)

− e(i, i)
]

= min
i∈{0,...,wo−1}

Ev(i, i) + Eh(i, i)− e(i, i),

whereEv andEh are the vertical and horizontal cumulative errors defined in the previous sections.

Hence,

min
γ∈ΓL

E(γ) = min
i∈{0,...,wo−1}

Ev(i, i) + Eh(i, i)− e(i, i).

The above equation enables us to determine the optimal position (i∗, i∗) on the diagonal of the

optimal path γ once the matrices Ev and Eh have been computed recursively. We can then trace

back the vertical part γv and the horizontal part γh of the optimal path γ using the matrices Tv
and Th. Let us remark that the “overall minimum” evoked in [] must not be interpreted as the

minimum of Ev(i, i) + Eh(i, i) but the minimum of Ev(i, i) + Eh(i, i)− e(i, i).



Algorithm : Minimum Error Boundary Cut

 Input: Output texture Is, patch Pold (from Is), patch Pin (from I0), patch size wp,
overlap size wo

 Output: Boundary cut γ
: Compute the squared difference e(i, j) = (Pnew(i, j)− Pold(i, j))

2

: switch (overlap type)

: case vertical:

: Compute the minimal cumulative vertical error Ev:

: Ev(wp − 1, j) = e(wp − 1, j), j ∈ {0, . . . , wo − 1}
: for i = wp − 2 to 0 do

: Ev(i, j) = e(i, j) +min(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)), j ∈
{0, . . . , wo − 1}

: Tv(i, j) = argmin(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)), j ∈
{0, . . . , wo − 1}

: end for

: Determine j∗ = argminj Ev(0, j)
: Trace back the path γ starting at γwp−1 = (0, j∗) using Tv: for i = wp − 2 to 0,

γi = Tv(γi+1)
: case horizontal:

: Compute the minimal cumulative horizontal error Eh:

: Eh(i, wp − 1) = e(i, wp − 1), i ∈ {0, . . . , wo − 1}
: for j = wp − 2 to 0 do

: Eh(i, j) = e(i, j) +min(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1)), i ∈
{0, . . . , wo − 1}

: Th(i, j) = argmin(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1)), i ∈
{0, . . . , wo − 1}

: end for

: Determine i∗ = argminiEh(i, 0)
: Trace back the path γ starting at γwp−1 = (i∗, 0) using Th: for j = wp − 2 to 0,

γj = Th(γj+1)
: case L-shaped:

: Compute the minimal cumulative vertical error Ev as in the vertical case

: Compute the minimal cumulative horizontal error Eh as in the horizontal case

: Determine i∗ = argmini(Ev(i, i) + Eh(i, i)− e(i, i)) (with i ∈ {0, . . . , wo − 1})
: Trace the vertical part of γ starting at (i∗, i∗) using Tv: for i = wp − i∗ − 2 to 0,

γi = Tv(γi+1)
: Trace the horizontal part of γ starting at (i∗, i∗) using Th: for j = wp − i∗ to

2(wp − i∗)− 1, γj = Th(γj−1)
: end switch

A.. Blending along the Cut

This is the last step of an iteration. Its goal is to construct the new patch Pnew by blending Pold and

Pin using the previously computed boundary cut. The boundary cut defines a binary maskM that



equals one on the left and/or top of the cut and zero otherwise. The patch Pnew can be defined as

Pnew =MPold + (1−M)Pin. (A.)

We noticed that the Matlab implementation of the authors proposes an optional smoothing of

the binary mask presumably to avoid noticeable transitions along the cut. We implemented this

option but we did not observe noticeable improvements. Since it is not discussed in the original

paper we do not use it for the experimental results of this paper.

A. Implementation

A.. Computing Patch Distances with FFT

In this section we explicit an algorithm to compute the squared distance between a patch Pold and

all the patches of the input texture I0 using Fast Fourier Transform (FFT), that is, to compute

the squared distance image D of Equation (A.) involved in the patch search algorithm (see Al-

gorithm ). To the best of our knowledge, regarding texture synthesis this acceleration was first

discussed by Kwatra et al. [?]. Recall that we consider a patch Pold of size wp ×wp and that I0 is of

size M0 ×N0. Hence the naive summation to compute

D(m,n) =

wp−1
∑

i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2

for all (m,n) ∈ {0, . . . ,M0−wp}×{0, . . . , N0−wp} requires aroundw2
pM0N0 operations with

wp = 40 pixels as a typical value. An important asset of the proposed FFT-based implementation

is that the computational cost is limited to two FFT calls for images of size M0 × N0 and is thus

independent of the patch width wp.

Let us first recall some notation. A patch of size wp × wp within an image is represented by its

top-left corner, hence all admissible patches of I0 have (m,n)-coordinates in the set {0, . . . ,M0−
wp} × {0, . . . , N0 − wp}.

Discrete Fourier Transform Given any image V ∈ RM0×N0 we denote by F(V) = V̂ the

discrete Fourier transform of V and F−1(V) = V̌ the inverse discrete Fourier transform of V
defined by

V̂ (k, l) =
1

M0N0

M0−1
∑

m=0

N0−1
∑

n=0

V (m,n)e
−2iπ

(

km
M0

+ nl
N0

)

and V̌ (k, l) =

M0−1
∑

m=0

N0−1
∑

n=0

V (m,n)e
2iπ

(

km
M0

+ nl
N0

)

.

Convolution Product Denote by V ∗W the convolution product between V and W , that is,

V ∗W (m,n) =

M0−1
∑

k=0

N0−1
∑

l=0

V (k, l)W (m− k, n− l),

where the indexes are (m − k, n − l) are understood modulo (M0, N0). With these conventions

for the DFT, one has F(V ∗W) = M0N0V̂ Ŵ , where the multiplication between images is the

componentwise product. However, recall that the FFTW library computes the Fourier transform



without normalization. Hence the operators that are computed are respectively M0N0F for the

forward transform and F−1 for the backward transform. Hence we have

V ∗W = F−1(F(V ∗W)) =
1

M0N0
F−1(M0N0F(V)M0N0F(W)).

This means that after multiplying the two FFTW forward transforms and performing the backward

inverse transform, one has to normalize in dividing by the size of the images.

Cross-correlation Let us denote by Γ(V,W) the cross-correlation between two images,

Γ(V,W)(m,n) =

M0−1
∑

k=0

N0−1
∑

l=0

V (k, l)W (m+ k, n+ l).

Note also Ṽ the symmetric of V with respect to the origin, that is, Ṽ (m,n) = V (−m,−n). Note

that one has Γ(W,V)(m,n) = Γ(V,W)(−m,−n), that is, Γ(W,V) = ˜Γ(V,W) and that the

cross-correlation is simply a convolution between the symmetric version of the first image and the

second image, that is,

Γ(V,W)(m,n) = Ṽ ∗W (m,n) = V ∗ W̃ (−m,−n).
Hence the computational cost for a cross-correlation image is the same as the one for a convolution

product, that is three FFT calls.

We need to compute the squared distance between a patch Pold and all the patches of I0 ac-

cording to some binary weight Q that represents the overlap region (that is a horizontal, vertical,

or L-shaped mask). More precisely for all (m,n) ∈ {0, . . . ,M0 − wp} × {0, . . . , N0 − wp}, we

want to compute

D(m,n) =

wp−1
∑

i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2.

Let us denote by Pext and Qext the extensions of Pold and Q into images of size M0 ×N0 by filling

the domain with 0-valued pixels, that is

Pext(m,n) =

{

Pold(m,n) if (m,n) ∈ {0, . . . , wp − 1} × {0, . . . , wp − 1},
0 otherwise,

and similarly for Qext. Then one has

D(m,n) =

=

wp−1
∑

i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2

=

M0−1
∑

k=0

N0−1
∑

l=0

Qext(k, l)(Pext(k, l)− I0(m+ k, n+ l))2

=

M0−1
∑

k=0

N0−1
∑

l=0

(

Qext(k, l)Pext(k, l)
2 − 2Qext(k, l)Pext(k, l)I0(m+ k, n+ l) +Qext(k, l)I0(m+ k, n+ l)2

)

=

wp−1
∑

i,j=0

Q(i, j)Pold(i, j)
2 − 2Γ(QextPext, I0)(m,n) + Γ(Qext, I

2
0)(m,n),



where the multiplications QextPext and I20 are componentwise.

Within our procedure, we will compare a patch Pold that is taken from the output image that

is only partially defined, and the binary weight Q representing the overlap region. Hence, if all the

undefined pixels of the output patch Pold are set to 0 (by initializing Is to 0), one has

∀(i, j) ∈ {0, wp − 1}2, Q(i, j)Pold(i, j) = Pold(i, j).

Consequently,
wp−1
∑

i,j=0

Q(i, j)Pold(i, j)
2 =

wp−1
∑

i,j=0

Pold(i, j)
2 = ‖Pold‖22

and QextPext = Pext, and thus Γ(QextPext, I0) = Γ(Pext, I0). Hence, the binary mask Q is only

influent when computing Γ(Qext, I
2
0), a computation that is done just once at the beginning of the

procedure since it does not depend on Pold.

In the end, the image D is simply given by

D = ‖Pold‖22 − 2Γ(Pext, I0) + Γ(Qext, I
2
0) (A.)

where the last image Γ(Qext, I
2
0) is computed once before running the algorithm and stored in

memory. Hence the cost for computingD is only three FFT calls for the computation of the cross-

correlation Γ(Pext, I0), and is even reduced to two FFT calls by storing the DFT of I0.

Note that the imageD is defined for all (m,n) ∈ {0, . . . ,M0− 1}×{0, . . . , N0− 1}, but the

squared distances for (m,n)-coordinates outside {0, . . . ,M0−wp}×{0, . . . , N0−wp} correspond

to patches of sizewp×wp that are defined by periodic boundary conditions and thus those patches

must be discarded when searching for the minimal distance.

Minimum distance Theoretically the results of the distance computation using the sum square

differences or the FFT are equal. But in practice, the computation using the FFT is subject to

rounding errors. Especially if there is a patch such that D(m,n) = 0, when adding positive

and negative terms in Equation (A.) the result might be negative due to numerical errors. This

rounding error problem leads to a negative minimal squared distance dmin, which leads to er-

rors in the patch search algorithm (Algorithm ) since then none of patches satisfy the condition

D(m,n) < (1 + ε)dmin. To avoid this, all squared distances D(m,n) smaller than 1 are set to

D(m,n) = 1 (the value 1 is smallest distance-value greater than 0).

A.. Parallelization

Although the Efros-Freeman algorithm was presented as a purely sequential algorithm, we found

out that the procedure can be partially parallelized, and thus the algorithm significantly accelerated

when running on multi-core platforms.

In general, non-parametric patch based methods can not be completely parallelized because

the sequential assignment of patches is strongly dependent of the previous synthesis steps. Nev-

ertheless, in the case of the quilting method, a new patch assignment is only correlated to some

previous synthesis steps and not all of them. To illustrate this let us consider the first few steps

of the algorithm. The first step of the algorithm adds the seed patch and the second step adds a

second patch on the right. When adding the third patch, the first patch of the second row can be

created at the same time since it only depends on the one that is on top of it and on its top-right.

More generally the synthesis of a new row of patches can be started as soon as two patches of the

previous row have been synthesized. This procedure is illustrated in Figure A..



iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

iteration 6 iteration 7 iteration 8 iteration 9 iteration Nit

Figure A.4 – Evolution of the synthesized image with the parallelization. New patches from two subse­

quent iterations are added simultaneously.

Let us discuss the acceleration induced by the parallelization. Suppose we synthesize an image

Is made of Nr × Nc patches where Nr is the number patch rows and Nc is the number of patch

columns. Without the parallelization the number of iterations Nit is Nit = NrNc. When paral-

lelizing the number of iterationsNit is reduced to 2(Nr−1)+Nc. This parallelization is especially

effective if one has as many processors available as patches to synthesize simultaneously in one iter-

ation. The maximal number of patches to synthesize simultaneously is equal to min (Nr,
⌊

Nc+1
2

⌋

),
where ⌊x⌋ = max(n ∈ N, n ≤ x), since within an iteration there is at most one new patch per

row and one new patch per pair of column.

The parallel version of the quilting algorithm is summarized in Algorithm . Let us notice

that for this parallelization to be valid the overlap size must satisfy wo ≤ wp/2 which is always the

case in practice.

Algorithm : Parallelization

 Input: Sample texture I0, Nr is the number patch rows, Nc is the number of patch

columns

 Output: Synthesized texture Is
: Nit ← 2(Nr − 1) +Nc

: Initialize Is
: for k = 1 to Nit − 1 do

: for i = max(0, ⌊k−Nc+1
2
⌋) to min(Nr − 1, ⌊k

2
⌋) do

: Is ← synthesize a new patch at position
(

i(wp − wo), (k − 2i)(wp − wo)
)







This loop is

run in parallel
: end for

: end for



Figure A.5 – Results representation. From left to right: texture sample, position map, synthesized image

and synthesis map. The synthesis map shows for each synthesized patch its position in the texture

sample. It allows then to identify exactly the verbatim copy regions (continuous color areas of the map).

A. Experiments

In this section texture synthesis results are shown using the algorithm described previously [].

Two apects of this method are emphasized. On the one hand the visual quality result and on the

other hand the tendency of the method to verbatim copy parts of the input sample. For this we

represent each result as shown in Figure A.: the input sample I0, the color map, the synthesized

texture Is and the synthesis map. The color map is an image of size equal to the size of I0 and

each of its pixels is assigned a different color. This allows to visualize each position of I0 with the

corresponding color of the color map. The synthesis map allows to identify from where comes

every patch copied in I0 and quilted in Is. This allows to easily identify verbatim copies. Each pixel

p
′

i in Is is assigned a pixel pj from I0. The synthesis map at position p
′

i is mapped to the value of

the color map at position pj .

Let us discuss the influence of the parameters. There are three of them: the patch size wp,

the overlap size wo and the tolerance parameter ε. The overlap size is expressed as the proportion

respect to the patch size. That is wo = 0.25 implicitly means wo = 0.25wp.

In Figures A. and A. successful results are shown for different type of textures. For each

example the patch size wp is adapted taking one of the following values {10, 20, 40, 80}. The

remaining parameters are fixed to wo = 0.25 and ε = 0.1.

In Figure A. three failure cases are shown. The first one is due to the patch size. When this

one is too small, in particular for macro textures, the algorithm fails to recover the details of the

different scales as can be seen in the first row examples’ in Figure A.. The second failure is the

verbatim copy effect. For some texture samples the verbatim copy zones are visually noticeable

and unnatural. This is illustrated in the second row examples’ in Figure A.. The last failure case is

the “growing garbage” drawback. This is when the method is stuck in a region of the input sample

repeating it on a large part of the output. This is due to the local aspect of the algorithm and it is

more noticeable when the texture examples are not stationary. This is also shown in Figure A. in

the last row. It is important to notice that the two last failure cases are more noticeable when the

output size - input size ratio is higher than two.

Influence of the patch size

First of all the patch size influence is analyzed and these results are shown in Figure A.. For this

wo = 0.25 and ε = 0.1 are fixed and the synthesis results for wp ∈ {10, 20, 40, 80} are compared.

This parameter clearly depends on the input sample. In general macro textures have details at

different scales. If the patch size chosen is not able to capture them all then the synthesis fails. A

second observation is that the larger the patch size is the larger the verbatim copy zones are. For



wp = 40, r = 2 wp = 80, r = 2 wp = 40, r = 2

wp = 40, r = 2 wp = 80, r = 2 wp = 40, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 80, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 80, r = 2

wp = 20, r = 2 wp = 20, r = 2 wp = 40, r = 2

wp = 20, r = 2 wp = 20, r = 2 wp = 40, r = 2

Figure A.6 – Successful results of Efros and Freeman image quilting algorithms. The small images represent

the example texture and the big ones the corresponding synthesis result. Each row of examples is fol­

lowed by a row containing the corresponding color and synthesis maps. For all examples the patch size

wp and the ratio r used is indicated. The overlap size is fixed to wo = 0.25 and the tolerance error to

ε = 0.1.



wp = 80, r = 2 wp = 40, r = 2 wp = 20, r = 2

wp = 80, r = 2 wp = 40, r = 2 wp = 20, r = 2

wp = 40, r = 2 wp = 40, r = 2 wp = 40, r = 2

wp = 40, r = 2 wp = 40, r = 2 wp = 40, r = 2

Figure A.7 – Successful results of Efros and Freeman image quilting algorithms. The small images represent

the example texture and the big ones the corresponding synthesis result. Each row of examples is fol­

lowed by a row containing the corresponding color and synthesis maps. For all examples the patch size

wp and the ratio r used is indicated. The overlap size is fixed to wo = 0.25 and the tolerance error to

ε = 0.1.



wp = 20, r = 2 wp = 40, r = 2 wp = 10, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 10, r = 2

wp = 80, r = 4 wp = 80, r = 4 wp = 40, r = 2

wp = 80, r = 4 wp = 80, r = 4 wp = 40, r = 2

wp = 20, r = 4 wp = 20, r = 4 wp = 40, r = 4

wp = 20, r = 4 wp = 20, r = 4 wp = 40, r = 4

Figure A.8 – Failures of Efros and Freeman image quilting algorithms. The small images represent the

example texture and the big ones the corresponding synthesis result. First row examples’ show failures

related to an incorrect patch size. Second row examples’ show the case of verbatim copy failures. Third

row examples’ show the case of growing garbage. For all examples the patch size wp and the ratio r
used is indicated.



smaller patches this effect is reduced, since more “similar” patches are available in patch search step

and then the set of candidate patches is larger allowing more variation.

Influence of the overlap size

The overlap size is an important parameter in this method. To analyze its influence wp = 40 and

ε = 0.1 are fixed and the results for wo ∈ {0.10, 0.25, 0.5} are compared. The general conclusion

is that for larger overlap sizes the transition from one patch to the other is satisfying on the cost of

growing garbage for some texture sample as can be seen in the two first examples in Figure A. for

wo = 0.50. On the other hand if wo is low the set of candidate patches is bigger and thus reduces

the verbatim copy effect on the cost of decreasing the visual quality of the results as can be seen in

the third example in Figure A..

Influence of the tolerance parameter

This last parameter is directly related to the verbatim copy effect. For this analysis wp = 40 and

wo = 0.25 are fixed and the results for ε ∈ {0.05, 0.1, 0.3, 0.5, 0.7} are compared. Increasing ε
implies having more candidate patches for the synthesis. This allows more variation when choosing

a patch in the image and this is directly seen in the synthesis maps of the examples in Figure A.

where for ε ∈ {0.5, 0.7} the patches are taken more “randomly” from the input sample thus

reducing the size of the verbatim copy regions. For some texture examples the visual quality of the

result can decrease. On the other hand, as expected, low values of ε leads to very large verbatim

copy areas.

A. Conclusion

In this paper we analyzed in detail Efros and Freeman’s texture synthesis algorithm []. Extensive

numerical experiments have been proposed to illustrate the performance of the method as well as

the influence of its parameters. We conclude from these experiments that in general, for the correct

set of parameters, the visual results are satisfying to the cost of verbatim copying large parts of the

input textures that might be visually disturbing. This is a common drawback of Efros and Leung’s

method []. Another issue that arises in [] is the garbage growing effect. This is especially

apparent when the input texture is not stationary. We also noticed that it is related to the raster

scan order used to synthesize the image, which propagates the errors. All these drawbacks are in

general more apparent when synthesizing an image significantly larger than the input. Hence, due

to the raster scan order, the quilting algorithm is not suitable to generate very large texture images

since the quality tends to decrease with the distance to the top left corner of the image.

We provide with this analysis a strategy to partially parallelize the method who was initially

introduced as essentially sequential. This allows a significant speed up when running with multi-

core processors.



input wp = 10 wp = 20 wp = 40 wp = 80

Figure A.9 – Patch size influence. Each couple of rows shows from left to right the input, the synthesis

results for wp = 10, 20, 40, 80 and the corresponding color and synthesis maps. For all examples wo =
0.25 and ε = 0.1.



input wo = 0.10 wo = 0.25 wo = 0.50

Figure A.10 – Overlap size influence. Each couple of rows shows from left to right the input, the synthesis

results forwo = 0.1, 0.25, 0.5 and the corresponding color and synthesis maps. For all exampleswp = 40
and ε = 0.1.



input ε = 0.05 ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7

Figure A.11 – Tolerance error influence. Each couple of rows shows from left to right the input, the syn­

thesis results for ε = 0.05, 0.1, 0.3, 0.5, 0.7 and the corresponding color and synthesis maps. For all

exampleswp = 40 andwo = 0.25.



[]



Bibliography

[] Cecilia Aguerrebere, Yann Gousseau, and Guillaume Tartavel. Exemplar-based texture syn-

thesis: the efros-leung algorithm. Image Processing On Line, :–, .

[] M. Ashikhmin. Synthesizing natural textures. In Proceedings of the  symposium on Inter-

active D graphics, pages –. ACM, .

[] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. Patchmatch: A

randomized correspondence algorithm for structural image editing. ACM Transactions on

Graphics-TOG, ():, .

[] Charles Bordenave, Yann Gousseau, and François Roueff. The dead leaves model: a general

tessellation modeling occlusion. Advances in Applied Probability, pages –, .

[] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via

graph cuts. IEEE Transactions on pattern analysis and machine intelligence, ():–,

.

[] Thibaud Briand, Jonathan Vacher, Bruno Galerne, and Julien Rabin. The heeger & bergen

pyramid based texture synthesis algorithm. Image Processing On Line, :–, .

[] A. Buades, M. Lebrun, and J.-M. Morel. Implementation of the “non-local bayes” image

denoising algorithm,”. Image Processing On Line, .

[] TM Caelli and B Julesz. Experiments in the visual perception of texture. Biol. Cybernetics,

:–, .

[] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse -d transform-

domain collaborative filtering. Image Processing, IEEE Transactions on, ():–, .

[] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Goldman, and Pradeep Sen. Image

melding: combining inconsistent images using patch-based synthesis. ACM Trans. Graph.,

():–, .

[] Jeremy S De Bonet. Multiresolution sampling procedure for analysis and synthesis of texture

images. In Proceedings of the th annual conference on Computer graphics and interactive

techniques, pages –. ACM Press/Addison-Wesley Publishing Co., .

[] Julie Delon. Midway image equalization. Journal of Mathematical Imaging and Vision,

():–, .



[] Julie Delon. Movie and video scale-time equalization application to flicker reduction. IEEE

Transactions on Image Processing, ():–, .

[] Alexei Efros, Thomas K Leung, et al. Texture synthesis by non-parametric sampling. In Com-

puter Vision, . The Proceedings of the Seventh IEEE International Conference on, volume ,

pages –. IEEE, .

[] Alexei A Efros and William T Freeman. Image quilting for texture synthesis and transfer.

In Proceedings of the th annual conference on Computer graphics and interactive techniques,

pages –. ACM, .

[] Vadim Fedorov, Gabriele Facciolo, and Pablo Arias. Variational Framework for Non-Local

Inpainting. Image Processing On Line, :–, .

[] Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, and Jean-François Aujol. Regularized dis-

crete optimal transport. SIAM Journal on Imaging Sciences, ():–, .

[] Sira Ferradans, Gui-Song Xia, Gabriel Peyré, and Jean-François Aujol. Static and dynamic

texture mixing using optimal transport. In International Conference on Scale Space and Vari-

ational Methods in Computer Vision, pages –. Springer, .

[] Lester R Ford and DR Fulkerson. Flow in networks. Princeton University Press, .

[] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. Micro-texture synthesis by phase

randomization. Image Processing On Line, , .

[] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. Random phase textures: Theory

and synthesis. Image Processing, IEEE Transactions on, ():–, .

[] Bruno Galerne, Arthur Leclaire, and Lionel Moisan. Microtexture inpainting through gaus-

sian conditional simulation. In  IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages –. IEEE, .

[] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis and the con-

trolled generation of natural stimuli using convolutional neural networks. arXiv preprint

arXiv:., .

[] Thierry Guillemot and Julie Delon. Implementation of the midway image equalization. Image

Processing On Line, :–, .

[] Baining Guo, Harry Shum, and Ying-Qing Xu. Chaos mosaic: Fast and memory efficient

texture synthesis. Microsoft research paper MSR-TR--, .

[] David J Heeger and James R Bergen. Pyramid-based texture analysis/synthesis. In Proceedings

of the nd annual conference on Computer graphics and interactive techniques, pages –.

ACM, .

[] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image analogies. In Pro-

ceedings of the th annual conference on Computer graphics and interactive techniques, pages

–. ACM, .

[] Bela Julesz. Visual pattern discrimination. Information Theory, IRE Transactions on, ():–

, .



[] Bela Julesz. Textons, the elements of texture perception, and their interactions. Nature,

():–, .

[] Bela Julesz. A theory of preattentive texture discrimination based on first-order statistics of

textons. Biological cybernetics, ():–, .

[] Bela Julész, EN Gilbert, LA Shepp, and HL Frisch. Inability of humans to discriminate be-

tween visual textures that agree in second-order statistics—revisited. Perception, ():–,

.

[] Bela Julesz, EN Gilbert, and Jonathan D Victor. Visual discrimination of textures with iden-

tical third-order statistics. Biological Cybernetics, ():–, .

[] Rabin Julien and Gabriel Peyré. Régularisation de wasserstein. application au transfert de

couleur. In GRETSI’, .

[] Rabin Julien and Gabriel Peyré. Synthese de textures par transport optimal. In GRETSI’,

.

[] Alexandre Kaspar, Boris Neubert, Dani Lischinski, Mark Pauly, and Johannes Kopf. Self tun-

ing texture optimization. In Computer Graphics Forum, volume , pages –. Wiley

Online Library, .

[] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture optimization for

example-based synthesis. In ACM Transactions on Graphics (TOG), volume , pages –

. ACM, .

[] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick. Graphcut textures: im-

age and video synthesis using graph cuts. In ACM Transactions on Graphics (ToG), volume ,

pages –. ACM, .

[] M. Lebrun, A. Buades, and J.-M. Morel. Implementation of the ”Non-Local Bayes” (NL-

Bayes) Image Denoising Algorithm. Image Processing On Line, :–, .

[] M. Lebrun, A. Buades, and J.-M. Morel. A nonlocal bayesian image denoising algorithm.

SIAM Journal on Imaging Sciences, ():–, .

[] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture synthesis. ACM Transac-

tions on Graphics (TOG), ():–, .

[] Elizaveta Levina and Peter J Bickel. Texture synthesis and nonparametric resampling of ran-

dom fields. The Annals of Statistics, pages –, .

[] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum. Real-time texture

synthesis by patch-based sampling. ACM Transactions on Graphics (ToG), ():–, .

[] G Matheron. Schéma booléen séquentiel de partition aléatoire. Rapport technique N-,

Centre de Morphologie Mathématique, École des Mines de Paris, , .

[] Enric Meinhardt-Llopis. Turbulence simulation: geometric deformations. http://dev.

ipol.im/~coco/ipol_demo/workshop_simu/, January .



http://dev.ipol.im/~coco/ipol_demo/workshop_simu/
http://dev.ipol.im/~coco/ipol_demo/workshop_simu/

[] Jean-Michel Morel and Guoshen Yu. Is sift scale invariant? Inverse Problems and Imaging,

():–, .

[] Donald F Morrison. Multivariate statistical methods. . New York, NY. Mc, .

[] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. ACM Transactions on Graphics

(TOG), ():–, .

[] G. Peyré. Texture synthesis with grouplets. IEEE Trans. Pattern. Anal. Mach. Intell., ():–

, .

[] Gabriel Peyré. Sparse modeling of textures. Journal of Mathematical Imaging and Vision,

():–, .

[] Javier Portilla and Eero P Simoncelli. A parametric texture model based on joint statistics of

complex wavelet coefficients. International Journal of Computer Vision, ():–, .

[] Julien Rabin, Julie Delon, and Yann Gousseau. Regularization of transportation maps for

color and contrast transfer. In  IEEE International Conference on Image Processing, pages

–. IEEE, .

[] Julien Rabin, Julie Delon, and Yann Gousseau. Transportation distances on the circle. Journal

of Mathematical Imaging and Vision, (-):–, .

[] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its

application to texture mixing. In Scale Space and Variational Methods in Computer Vision,

volume  of Lecture Notes in Computer Science, pages –. Springer Berlin / Heidel-

berg, .

[] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric

for image retrieval. International journal of computer vision, ():–, .

[] Jean Serra. Image analysis and mathematical morphology, v. . Academic press, .

[] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE

Mobile Computing and Communications Review, ():–, .

[] E. P. Simoncelli and B. A. Olshausen. Natural image statistics and neural representation.

Annual review of neuroscience, ():–, .

[] Eero P Simoncelli and William T Freeman. The steerable pyramid: a flexible architecture for

multi-scale derivative computation. In ICIP (), pages –, .

[] Guillaume Tartavel, Yann Gousseau, and Gabriel Peyré. Variational texture synthesis with

sparsity and spectrum constraints. Journal of Mathematical Imaging and Vision, ():–

, .

[] J. J. van Wijk. Spot noise texture synthesis for data visualization. In SIGGRAPH ’, pages

–, New York, NY, USA, . ACM.

[] Cédric Villani. Topics in optimal transportation. Number . American Mathematical Soc.,

.



[] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State of the art in example-based

texture synthesis. In Eurographics , State of the Art Report, EG-STAR, pages –. Euro-

graphics Association, .

[] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vector quantization.

In Proceedings of the th annual conference on Computer graphics and interactive techniques,

pages –. ACM Press/Addison-Wesley Publishing Co., .

[] Gui-Song Xia, Sira Ferradans, Gabriel Peyré, and Jean-François Aujol. Synthesizing and mix-

ing stationary gaussian texture models. SIAM Journal on Imaging Sciences, ():–, .

[] Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy principle and its

application to texture modeling. Neural computation, ():–, .



Titre : Synthèse de texture à partir d’exemples: modèles et applications

Mots clés : synthèse de texture à partir d’exemples, modèle Gaussien, patch, multi échelle, transport

optimal

Résumé : Cette thèse s’attaque au problème

de la synthèse de texture par l’exemple en utilisant

des modèles stochastiques locaux de patchs pour

générer de nouvelles images.

La synthèse de texture par l’exemple a pour

but de générer à partir d’un échantillon de tex-

ture de nouvelles images qui sont perceptuellement

équivalentes à celle de départ. Les méthodes peu-

vent se regrouper en deux catégories: les méthodes

paramétriques et les non paramétriques à base de

patchs. Le premier groupe a pour but de car-

actériser une image de texture à partir d’un en-

semble de statistiques qui définissent un processus

stochastique sous-jacent. Les résultats visuels de ces

méthodes sont satisfaisants, mais seulement pour

un groupe réduit de types de texture. La synthèse

pour des images de textures ayant des structures très

contrastées peut échouer. La deuxième catégorie

d’algorithme découpe, puis recolle de manière con-

sistente des voisinages locaux de l’image de départ

pour générer de nouvelles configurations plausibles

de ces voisinages (ou patchs). Les résultats visuels de

ces méthodes sont impressionnants. Néanmoins, on

observe souvent des répétitions verbatim de grandes

parties de l’image d’entrée qui du coup peuvent être

reproduites plusieurs fois. De plus, ces algorithmes

peuvent diverger, reproduisant de façon itérative

une partie de l’image de l’entrée en négligeant le

reste.

La première partie de cette thèse présente une

approche combinant des idées des deux catégories

de méthodes, sous le nom de synthèse locale-

ment Gaussienne. On préserve dans cette nouvelle

méthode les aspects positifs de chaque approche: la

capacité d’innover des méthodes paramétriques, et

la capacité de générer des textures fortement struc-

turées des méthodes non paramétriques à base de

patchs. Pour ce faire, on construit un modèle

Gaussien multidimensionnel des auto-similarités

d’une image de texture. Ainsi, on obtient des

résultats qui sont visuellement supérieurs à ceux

obtenus avec les méthodes paramétriques et qui sont

comparables à ceux obtenus avec les méthodes non-

paramétriques à base de patchs tout en utilisant une

paramétrization locale de l’image. La thèse s’attache

aussi à résoudre une autre difficulté des méthodes à

base de patchs: le choix de la taille du patch. Afin de

réduire significativement cette dépendance, on pro-

pose une extension multi échelle de la méthode.

Les méthodes à bases de patchs supposent une

étape de recollement. En effet, les patchs de l’image

synthétisée se superposent entre eux, il faut donc

gérer le recollement dans ces zones. La première

approche qu’on a considérée consiste à prendre en

compte cette contrainte de superposition dans la

modélisation des patchs. Les expériences montrent

que cela est satisfaisant pour des images de tex-

tures périodiques ou pseudo-périodiques et qu’en

conséquence l’étape de recollement peut être sup-

primée pour ces textures. Cependant, pour des im-

ages de textures plus complexes ce n’est pas le cas, ce

qui nous a menée à suggérer une nouvelle méthode

de recollement inspirée du transport optimal.

Cette thèse conclut avec une étude complète de

l’état de l’art en génération d’images de textures na-

turelles. L’étude que nous présentons montre que,

malgré les progrès considérables des méthodes de

synthèse à base d’exemples proposées dans la vaste

littérature, et même en les combinant astucieuse-

ment, celles-ci sont encore incapables d’émuler des

textures complexes et non stationnaires.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD  /  Saint-Aubin, France



Title : Exemplar based texture synthesis: models and applications

Keywords : exemplar based texture synthesis, Gaussian model, patch, multi scale, optimal transport

Abstract : This dissertation contributes to the prob-

lem of exemplar based texture synthesis by introduc-

ing the use of local Gaussian patch models to gener-

ate new texture images.

Exemplar based texture synthesis is the process of

generating, from an input texture sample, new tex-

ture images that are perceptually equivalent to the

input. There are roughly two main categories of al-

gorithms: the statistics-based methods and the non-

parametric patch-based methods. The statistics-

based methods aim at characterizing a given tex-

ture sample by estimating a set of statistics which

will define an underlying stochastic process. The

new images will then be samples of this stochas-

tic process, i.e. they will have the same statistics as

the input sample. The question here is what would

be the appropriate set of statistics to yield a cor-

rect synthesis for the wide variety of texture images?

The results of statistical methods are satisfying but

only on a small group of textures, and often fail

when important structures are visible in the input.

The non-parametric patch-based methods reorga-

nize local neighborhoods from the input sample in

a consistent way to create new texture images. These

methods return impressive visual results. Neverthe-

less, they often yield verbatim copies of large parts

of the input sample. Furthermore, they can diverge,

starting to reproduce iteratively one part of the in-

put sample and neglecting the rest of it, thus grow-

ing what experts call “garbage”.

In this thesis we propose a technique combining

ideas from the statistical based methods and from

the non-parametric patch-based methods. We call

it the locally Gaussian method. The method keeps

the positive aspects of both categories: the inno-

vation capacity of the parametric methods and the

ability to synthesize highly structured textures of

the non-parametric methods. To this aim, the self-

similarities of a given input texture are modeled with

conditional multivariate Gaussian distributions in

the patch space. A new image is generated patch-

wise, where for each given patch a multivariate

Gaussian model is inferred from its nearest neigh-

bors in the patch space of the input sample, and

hereafter sampled from this model. The synthesized

textures are therefore everywhere different from the

original. In general, the results obtained are visu-

ally superior to those obtained with statistical based

methods, which is explainable as we use a local para-

metric model instead of a global one. On the other

hand, our results are comparable to the visual re-

sults obtained with the non-parametric patch-based

methods. This dissertation addresses another weak-

ness of patch-based methods. They are strongly de-

pendent on the patch size, which has to be decided

manually. It is therefore crucial to fix a correct patch

size for each synthesis. Since texture images have,

in general, details at different scales, we extend the

method to a multiscale approach which reduces the

strong dependency of the method on the patch size.

Patch based methods involve a stitching step. In-

deed, the patches used for the synthesis process over-

lap each other. This overlap must be taken into

account to avoid any transition artifact from patch

to patch. Our first attempt to deal with it was to

consider directly the overlap constraints in the local

parametric model. The experiments show that for

periodic and pseudo-periodic textures, considering

these constraints in the parametrization is enough

to avoid the stitching step. Nevertheless, for more

complex textures it is not sufficient. This leads us to

suggest a new stitching technique inspired by opti-

mal transport and midway histogram equalization.

This thesis ends with an extensive analysis of the

generation of several natural textures. This study

shows that, in spite of remarkable progress for lo-

cal textures, the methods proposed in the exten-

sive literature of exemplar based texture synthesis

are still limited when dealing with complex and non-

stationary textures.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD  /  Saint-Aubin, France



	Introduction
	Locally Gaussian models
	Introduction
	The patch Gaussian model
	The locally Gaussian texture synthesis algorithm
	Experiments
	Conclusion

	Conditional Gaussian model: a multiscale algorithm
	Introduction
	Gaussian patches
	Conditional Gaussian models
	A multiscale generalization
	Experiments
	Conclusion

	Midway patch blending
	Introduction
	Optimal transport - midway equalization algorithm
	Midway blending
	Experiments
	Conclusion

	Can we emulate large textures?
	Introduction
	Large natural textures
	Exemplar based texture synthesis methods
	Applying the classical methods
	Masking repetitions with anamorphosis
	Random mosaics
	Synthesizing low frequencies
	Mixing texture images
	Conclusion

	Efros and Freeman Image Quilting Algorithm for Texture Synthesis
	Introduction
	Algorithm Description
	Implementation
	Experiments
	Conclusion

	Bibliography

