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Effets de la reproduction partiellement asexuée sur la dyna-

mique des fréquences génotypiques en populations majori-

tairement diploïdes

Les systèmes reproducteurs déterminent comment le matériel 

génétique est transmis d’une génération à la suivante […]. Les 

espèces qui combinent de la reproduction sexuée et asexuée/clo-

nale sont très répandues [… mais] l’effet de leur système repro-

ducteur sur leur évolution reste énigmatique et discuté.

L’objectif de cette thèse est de modéliser la dynamique des fré-

quences génotypiques d’une population avec une combinaison 

de reproduction sexuée et/ou clonale dans des cycles de vie prin-

cipalement diploïdes [. … Un] modèle du type chaine de Markov 

avec temps et états discrets sert de base mathématique pour 

décrire [leurs] changements […] au cours du temps.

Les résultats montrent que la reproduction partiellement asexuée 

peut en effet modifi er la dynamique de la diversité génomique 
par rapport à une reproduction strictement sexuée ou strictement 

asexuée. […]  L’histoire démographique a un rôle important pour 

les organismes partiellement clonaux et doit être prise en compte 

dans toute analyse […].

Cette thèse fait des recommandations pour la collecte des don-

nées et une hypothèse de base pour l’interprétation des données 

de génétique/génomique […]. Ces résultats ont des retombées 

dans plusieurs domaines, allant de la recherche fondamentale 

[…] à des applications en agriculture […], pêche […] et protection 

de la nature […].

Effects of partial asexuality on the dynamics of genotype frequen-

cies in dominantly diploid populations

Reproductive systems determine how genetic material is passed 

from one generation to the next, making them an important fac-

tor for evolution. Organisms that combine sexual and asexual/

clonal reproduction are very widespread [… yet] the effects of 

their reproductive system on their evolution are still controversial 

and poorly understood.

The aim of this thesis was to model the dynamics of genotype 

frequencies under combined sexual/clonal reproduction in domi-

nantly diploid life cycles [. … A] state and time discrete Markov 

chain model served as the mathematical basis to describe [their] 

changes […] through time. 

The results demonstrate that partial clonality may indeed change 

the dynamics of genomic diversity compared to either exclusively 

sexual or exclusively clonal populations. […] Time has a crucial 

role in partially clonal populations and needs to be taken into 

account in any analysis of their genomic diversity.

This thesis provides recommendations for data collection and a 

null hypothesis for the interpretation of population genetic/geno-

mic data […]. Moreover, it includes new methods for the analy-

sis of genotype-based population genetic Markov chain models. 

These results have a high potential relevance in several areas, 

ranging from basic research […] to applications in agriculture […], 

fi sheries […] and nature conservation […]. 
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Seht ihr den Mond dort stehen? 

Er ist nur halb zu sehen, 

Und ist doch rund und schön! 

So sind wohl manche Sachen, 

Die wir getrost belachen, 

Weil unsre Augen sie nicht sehn. 

 

Der Mond ist aufgegangen 

Matthias Claudius (1778) 
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A Foreword 

The work presented in this thesis was carried out during three years, from November 2012 

to October 2015, at the Institute for Genetics, Environment and Plant Protection (IGEPP), a 

part of the French National Institute of Agricultural Research (INRA) situated in Le Rheu near 

Rennes, Brittany. It was co-financed to equal parts by the Doctoral Studies Allowance 

Programme (ARED) of the Brittany Region, and the Department of Plant Health and 

Environment (SPE) of the INRA. The subject of the thesis was embedded in the collaborative 

research project CLONIX (ANR-11-BSV7-0007), financed by the French National Agency for 

Research (ANR). 

This document is structured as a thesis by publication based on four manuscripts of 

research articles. According to the French Government Resolution of 6th January 2005 (NOR: 

MENS0402905A) and the internal standards of the Life Agronomy Health (VAS) doctoral 

school, it includes a summary of at least ten percent of the text (by number of pages) in 

French. In addition, the abstract is provided in German. 

The progress of this thesis was reported twice to a thesis advisory committee, whose 

members were: Sophie ARNAUD-HAOND (Ifremer Sète), Stéphane DE MITA (INRA Nancy), 

Fabien HALKETT (INRA Nancy), Florent MALRIEU (François Rabelais University Tours), Jean-

Pierre MASSON (INRA Le Rheu), Denis ROZE (CNRS Roscoff), Jean-Christophe SIMON (INRA 

Le Rheu, senior advisor), Solenn STOECKEL (INRA Le Rheu, advisor) and Christian WALTER 

(Agrocampus Ouest Rennes, tutor). 

  

Official logo of the CLONIX project, designed by the author. 
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B Abstract – Résumé – Kurzfassung 

Abstract  Effects of partial asexuality on the dynamics of genotype frequencies  

in dominantly diploid populations 

Reproductive systems determine how genetic material is passed from one generation to 

the next, making them an important factor for evolution. Organisms that combine sexual 

and asexual/clonal reproduction are very widespread, both throughout the earth’s biomes 

and on the eukaryotic tree of life. However, the effects of their reproductive system on their 

evolution are still controversial and poorly understood. 

The aim of this thesis was to model the dynamics of genotype frequencies under combined 

sexual/clonal reproduction in dominantly diploid life cycles, with the view of establishing a 

reference for future field studies. This involves two subtypes of partially clonal reproduction: 

either both reproductive modes co-occur (“acyclic partial clonality”), or they alternate 

(“cyclic clonality”). For both, a state and time discrete Markov chain model served as the 

mathematical basis to describe changes of the genotype frequencies through time.  

The results demonstrate that partial clonality may indeed change the dynamics of genomic 

diversity compared to either exclusively sexual or exclusively clonal populations. Moreover, 

both subtypes have different effects under selectively neutral conditions: while acyclic 

partial clonality leads to increased variation in the frequency of heterozygous genotypes 

within the population, the patterns observed under cyclic clonality depend on the sampling 

time (before or after sexual reproduction) and show a stronger effect on allele frequencies. 

The dynamics of population heterozygosity were also slowed down under acyclic partial 

clonality, yet this effect did not generally lead to slower adaptation under selection. Time 

has a crucial role in partially clonal populations and needs to be taken into account in any 

analysis of their genomic diversity. 

This thesis provides recommendations for data collection and a null hypothesis for the 

interpretation of population genetic/genomic data from dominantly diploid partially clonal 

organisms. Moreover, it includes new methods for the analysis of genotype-based 

population genetic Markov chain models. These results have a high potential relevance in 

several areas, ranging from basic research, e.g. on the evolution of sex and speciation, to 

applications in agriculture (e.g. partially clonal crops, pests and pathogens), fisheries (e.g. 

primary producers and plankton) and nature conservation (e.g. threatened or invasive 

species).  

 

Keywords:  evolution, theoretical biology, genetic diversity, microsatellites, single 

nucleotide polymorphisms, genomics, apomixis, agamospermy, 

vegetative multiplication, parthenogenesis, mutation, genetic drift, 

demography, hybridization  
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Résumé  Effets de la reproduction partiellement asexuée sur la dynamique des 

fréquences génotypiques en populations majoritairement diploïdes 

Les systèmes reproducteurs déterminent comment le matériel génétique est transmis 
d’une génération à la suivante, de ce fait ils sont un facteur important pour l’évolution des 
organismes. Les espèces qui combinent de la reproduction sexuée et asexuée/clonale sont 
très répandues, pas seulement dans les biomes mondiaux mais également sur l’arbre de vie 
des eucaryotes. Pourtant l’effet de leur système reproducteur sur leur évolution reste 
énigmatique et discuté. 

L’objectif de cette thèse est de modéliser la dynamique des fréquences génotypiques d’une 
population avec une combinaison de reproduction sexuée et/ou clonale dans des cycles de 
vie principalement diploïdes, dans la perspective d’établir une référence pour des études de 
terrain. Deux formes de reproduction partiellement asexuée sont considérées : soit les deux 
modes de reproduction se produisent en parallèle (« asexualité partielle acyclique »), soit ils 
arrivent en alternance (« asexualité cyclique »). Dans les deux cas, un modèle du type chaine 
de Markov avec temps et états discrets sert de base mathématique pour décrire les 
changements des fréquences génotypiques au cours du temps. 

Les résultats montrent que la reproduction partiellement asexuée peut en effet modifier la 
dynamique de la diversité génomique par rapport à une reproduction strictement sexuée 
ou strictement asexuée. De plus, les deux formes ont des effets différents dans des 
conditions sélectivement neutres. L’asexualité partielle acyclique produit plus de variabilité 
dans la fréquence des génotypes hétérozygotes dans la population, tandis que les 
configurations observées sous asexualité cyclique dépendent du moment 
d’échantillonnage (avant ou après la reproduction sexuée) et on y observe des effets plus 
importants sur les fréquences alléliques. Par ailleurs, l’évolution de l’hétérozygotie au niveau 
de la population est ralentie avec l’asexualité partielle acyclique, même si cet effet ne mène 
pas pour autant à une adaptation généralement plus lente sous sélection. L’histoire 
démographique a un rôle important pour les organismes partiellement clonaux et doit être 
prise en compte dans toute analyse de leur diversité génomique. 

Cette thèse fait des recommandations pour la collecte des données et une hypothèse de 
base pour l’interprétation des données de génétique/génomique des populations chez les 
organismes principalement diploïdes avec une reproduction partiellement asexuée. Au- 
delà, elle contient des nouvelles méthodes pour l’analyse des modèles du type chaine de 
Markov basés sur les fréquences génotypiques en génétique des populations. Ces résultats 
ont des retombées dans plusieurs domaines, allant de la recherche fondamentale (par 
exemple sur l’évolution de la sexualité et la spéciation) à des applications en agriculture (par 
exemple plantes cultivées partiellement clonaux, pathogènes et ravageurs des cultures), 
pêche (par exemple producteurs primaires et plancton) et protection de la nature (par 
exemple espèces menacées ou invasives). 

mots clés :  évolution, biologie théorique, diversité génétique, microsatellites, 
polymorphismes nucléotidiques, génomique, apomixie, agamospermie, 
multiplication végétative, parthénogenèse, mutation, dérive génétique, 
démographie, hybridation  
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Kurzfassung Die Effekte partiell asexueller Reproduktion auf die Häufigkeitsdynamik 

von Genotypen in dominant diploiden Populationen 

Fortpflanzungssysteme bestimmen darüber, wie genetische Information von einer Gene-

ration zur nächsten weitergegeben wird. Sie sind somit ein wichtiger Evolutionsfaktor. 

Organismen, die sexuelle und asexuelle/klonale Fortpflanzung miteinander kombinieren 

können, sind sehr weit verbreitet, sowohl in den verschiedenen Biomen der Erde als auch 

im Stammbaum der Eukaryoten. Die evolutionären Auswirkungen ihres Fortpflanzungs-

systems sind jedoch noch immer umstritten und rätselhaft. 

Ziel dieser Doktorarbeit war es, die zeitliche Entwicklung der relativen Häufigkeiten von 

Genotypen in einer Population bei kombinierter sexueller und klonaler Vermehrung in 

dominant diploiden Lebenszyklen zu modellieren, um eine Referenz für zukünftige 

Feldstudien zu erhalten. Dies beinhaltet zwei Formen von partiell asexueller Reproduktion: 

entweder treten beide Fortpflanzungsmodi parallel auf (azyklische partielle Asexualität), 

oder in alternierenden Phasen (zyklische Asexualität). Bei beiden Formen dienten diskrete, 

endliche Markov’sche Ketten als Basis für die mathematische Beschreibung der 

Häufigkeitsdynamik verschiedener Genotypen über die Zeit. 

Die Ergebnisse zeigen, dass partiell asexuelle Fortpflanzung im Vergleich mit ausschließ-

lich sexueller oder ausschließlich klonaler Vermehrung in der Tat die zeitliche Entwicklung 

genomischer Diversität beeinflussen kann. Darüber hinaus haben beide Formen partieller 

Asexualität unter selektiv neutralen Bedingungen unterschiedliche Auswirkungen: 

Während die azyklische Form zu größerer Variabilität in der relativen Häufigkeit hetero-

zygoter Genotypen in der Population führt, hängen bei zyklischer Asexualität die 

Beobachtungen vom Zeitpunkt der Probennahme ab (vor oder nach der sexuellen Phase) 

und zeigen stärkere Folgen für die Häufigkeiten von Allelen. Auch verändert sich die 

Häufigkeit heterozygoter Individuen unter azyklischer partieller Asexualität langsamer, was 

jedoch unter Selektion nicht zu einer generell verlangsamten Anpassung führt. Die Zeit 

spielt in partiell klonalen Populationen eine Schlüsselrolle und sollte bei allen Analysen ihrer 

genomischen Diversität in Betracht gezogen werden. 

Diese Doktorarbeit beinhaltet Empfehlungen zur Probennahme bei populationsgene-

tischen/-genomischen Studien an partiell klonalen, dominant diploiden Organismen, sowie 

eine Referenz für deren Auswertung. Darüber hinaus umfasst sie neue Analysemethoden für 

Markov’sche Ketten, welche die Entwicklung der Frequenzen von Genotypen beschreiben. 

Diese Ergebnisse haben ein hohes Anwendungspotential in mehreren Gebieten, von der 

Grundlagenforschung (z.B. Fragen nach der Evolution der Sexualität und Artbildung) bis hin 

zu Landwirtschaft (z.B. partiell asexuelle Kulturpflanzen, Schädlinge und Pathogene), 

Fischerei (z.B. Primärproduzenten und Plankton) und Naturschutz (z.B. bedrohte oder 

invasive Arten). 

Schlüsselworte: Evolution, Theoretische Biologie, genetische Diversität, Mikrosatelliten, 

Einzelnukleotid-Polymorphismen, Genomik, Apomixis, Agamospermie, 

vegetative Vermehrung, Parthenogenese, Mutation, Genetische Drift, 

Demografie, Hybridisierung  
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C Thanks 

“Der Zufall kann große Dinge tun”, great things can be done by chance, was the inscription 

some former students left on a sculpture in the central courtyard of my school. Who would 

have thought that, one day, I would come to live in a small town in Brittany and work as a 

doctoral student for the French National Institute for Agricultural Research, on a topic that 

sounds like a sequel to my high school research project about asexual reproduction in 

higher plants! Chance indeed – or was it? Looking back, I feel that I have been extremely 

fortunate, and I would like to thank all people who – knowingly or unknowingly, willingly or 

unwillingly – have helped “chance” along, or at least did not slam the door in its face. 

First of all, I would like to thank my supervisors Jean-Christophe Simon and Solenn Stoeckel, 

for their willingness to take on the “adventure” of having a German PhD student and their 

good-humored support throughout these past three years. Especially without Solenn, this 

thesis project would never have been possible – not just because I would not have managed 

to rent a flat without the help of a native speaker. It is a comfort to know that, even more 

than 1 200 km from home, one can still find people who share the same crazy interest and 

enthusiasm for science, evolution and the role of asexual reproduction within it all. Come to 

think of it, it might even be easier to find them here than elsewhere. 

Being a doctoral student in France has some peculiarities, among them the “comité de 

these” (PhD committee) – I have felt extremely honoured, though also rather intimidated, 

to see six busy scientists from all over France leave their work just to come and talk with me 

about mine. I would like to thank Sophie Arnaud-Haond, Stéphane De Mita, Fabien Halkett, 

Florent Malrieu, Jean-Pierre Masson and Denis Roze for their interest, their patience, their 

helpful criticism and their ideas that have helped me to advance. Moreover, it appears that 

the thesis defense will follow the same principle, only with different people from a yet wider 

geographical area – I would like to thank Sylvain Glémin, Christoph Haag, Emanuelle 

Porcher, Denis Roze, Timothy Sharbel and David Causeur for having agreed to participate in 

my PhD jury. 

In addition to my PhD committee meetings, I have profited from numerous discussions 

during the annual meetings of the CLONIX project group, at the five international and two 

national (French) conferences where I was given the chance to present my work, with 

colleagues, former colleagues, former colleague’s colleagues and others. In alphabetical 

order, I would like to thank in particular: Jurgen Angst, Yoann Bourhis, Magda Castel, Judith 

Fehrer, Julie Jaqiéry, Melodie Kuenegel, Judith Lichtenzveig, Pierre Nouhaud, Nicolas 

Parisey, Sylvain Poggi, Christiane Ritz, Romuald Rouger, Myriam Valero and Karsten Wesche. 

Ingo Uhlemann inspired my first steps towards studying plant reproduction, Frank Richter 

may be held (partially) responsible for the profusion of ternary diagrams within this thesis, 

while the Ginko in the introduction appears in fond memory of Harald Walther. 

During my time in Le Rheu, I also had the chance to acquire some teaching experience: by 

co-supervising the Master thesis of Cédric Midoux and the research internships of Valentin 

Bahier, François Timon and Clément Barthélémy. I would like to thank Malika Aïnouche for 

giving me the opportunity to try my hand at a one-year teaching assistantship at the 
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Université Rennes 1, my colleagues Abdelkader Aïnouche, Julien Boutte, Abdelhak El 

Amrani, Morgane Gicquel, Helène Rousseau, Armel Salmon, Agnès Schermann, Cécile 

Sulmon and Michèle Tarayre-Renouard for their friendliness and support, and all students 

for their patience and resistance to my errors. Teaching lab courses in French about plant 

life cycles, morphology and ecology would not have been possible without first learning 

some French myself, and I would like to thank Xavier Ségalen, Annick Le Gall and Laetitia 

Burmalo for helping me to do so. Annick Le Gall has also earned my warmest thanks for 

proofreading the French translations within my thesis. 

Finally, I would like to thank those people who have made my life easier and the distance 

from home more bearable during the last three years: my tutor Christian Walter, whose 

advice I appreciated; Patricia Nadan, Pascale Leneve, Anne-Sophie Grenier and Géraldine 

Blondel, who helped me organize and find things; Akiko Sugio and Alexandre Robert-

Seilaniantz, for mental support; my colleagues at the IGEPP, for the comforting murmur on 

the corridor; my teachers and fellow students at the “La Flume” music school; and my friends 

from the local bike club “Le Rheu à vélo”. 

The last place is the place of honour – which goes, as always, to my family. 
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1 Task 

Organisms who may reproduce both sexually and asexually, called “partially asexual”, are 

extremely common on earth. However, most population genetic theory accounts only for 

either exclusively sexual or exclusively asexual reproduction. Though there are many 

empirical studies on partially asexual species, putting observations into context can 

therefore be difficult. Developing population genetic theory that accounts for both sexual 

and asexual reproduction may therefore help to understand the evolution of such 

organisms, and eventually the evolutionary history of their reproductive system itself. 

This thesis presents results from a mathematical model for the population genetics of 

partially asexual species. Its central question is,  

“How do the patterns and dynamics of genetic diversity change in partially asexual 

species, compared to their exclusively sexual/asexual counterparts?” 

Special attention is given to comparatively small populations, as there is both a special need 

(conservation genetics) and a special scarcity of appropriate theory for this case. 

Consequently, the model (modeled quantities, input parameters) is oriented towards the 

methods currently in use for such population genetic studies: it describes the dynamics of 

genotype frequencies at individual single-nucleotide polymorphism (SNP)/microsatellite 

loci, with and without selection. Though asexual reproduction may occur during both the 

haploid and diploid phase of a (sexual) life cycle, and though there are many instances of 

partially asexual polyploid species, the scope of this thesis is limited to populations of 

dominantly diploid (i.e. diplontic) organisms, as a basis for future development. 

In this thesis, modeling is used as a deductive tool, i.e. based on theory in contrast to 

empirical-based inductive models. The model results are thus intended to serve as a null 

hypothesis, to test if field data conform to preconceived ideas about the biology of the 

studied populations. Beside this direct application, the results are also discussed in the 

broader context of the evolution of reproductive systems. 
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Mission 

Les organismes également capables de reproduction sexuée et asexuée, appelés 

« partiellement asexuée », sont très répandus sur la Terre. Cependant, la plupart des théories 

en génétique des populations ne prend seulement en compte soit la reproduction 

exclusivement sexuée, soit exclusivement asexuée. Bien qu’il y ait beaucoup d’études 

empiriques sur les espèces partiellement asexuées, indiquer les résultats dans un contexte 

peut être difficile. Le développement de la théorie en génétique des populations qui inclut 

aussi bien la reproduction sexuée qu’asexuée pourrait en conséquence aider à comprendre 

l’évolution de tels organismes, et éventuellement l’histoire évolutive de ce système 

reproducteur en lui-même. 

Cette thèse de doctorat présente des résultats d’un modèle mathématique pour la 

génétique des populations des espèces partiellement asexuées. Sa question centrale est,  

« Comment les structures et les dynamiques de la diversité génétique changent-elles 

chez les espèces partiellement asexuées, par rapport à leurs pendants  

exclusivement sexués/asexués ? » 

Les égards sont focalisés sur des populations comparativement petites, comme il y a 

également un besoin particulier (méthodes génétiques pour la protection des espèces) et 

une rareté particulière de modèles pour ce cas spécifique. Le modèle (quantités 

représentées, paramètres d’entrée) est ainsi orienté vers des méthodes actuellement en 

cours d’utilisation pour certaines études de génétique des populations : il décrit les 

fréquences génotypiques à des loci uniques, tels que des polymorphismes nucléotidiques 

(SNP) ou microsatellites, avec et sans sélection. Même si la reproduction asexuée peut se 

dérouler également pendant la phase haploïde et diploïde d’un cycle de vie (sexué), et 

même s’il existe de nombreux exemples d’espèces partiellement asexuées polyploïdes, le 

cadre de cette thèse s’est limité aux populations principalement diploïdes (i.e. 

diplophasiques et haplodiplophasiques avec dominance de la phase diploïde) comme base 

à des développements futurs. 

Dans cette thèse de doctorat, la modélisation est utilisée comme outil de déduction, soit 

basé sur la théorie contrairement aux modèles inductifs basés sur des données empiriques. 

Les résultats du modèle sont ainsi destinés à servir comme hypothèse de base, afin de tester 

si des données du champ sont conformes à des idées préformées sur la biologie des 

populations étudiées. Au-delà de cette application directe, les résultats sont également 

discutés dans le contexte plus vaste de l’évolution des systèmes reproducteurs. 
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2 Context 

2.1 Genetic diversity – a key to success? 

Looking back through geological time, one has to acknowledge that most life forms known 

from fossils do not exist anymore. Taking seed plants as an example, the first fossils that can 

be assigned to current genera based on their morphology appear during the Tertiary (with 

few notable exceptions, e.g. Ginko which is known since the Jurassic; Taylor et al. 2008). 

Would extinct taxa have had more chance to survive if they had been more genetically 

diverse? Perhaps not – conditions have changed, evolution has moved on, and the early land 

plants of the Rhynie chert would today surely be overgrown and outcompeted by 

physiologically more intricate angiosperms (Channing & Edwards 2013). Or perhaps yes – 

though they may look somewhat different, modern angiosperms certainly draw on their 

genetic heritage from the early days of land plant evolution. We do not know how many of 

the extinct taxa really died out, and how many just changed beyond recognition. 

Genetic diversity may be an important asset for species’ survival by allowing the offspring 

to differ heritably from its less fit parents. However, this includes the risk that the offspring 

may be even less fit, turning each mechanism that increases offspring diversity into a 

double-edged sword. The diversity of reproductive systems among biota may, at least in 

part, be a direct result of this dilemma. In connection with information on the origin and 

prevalence of different reproductive systems, understanding their impact on genetic 

diversity (Duminil et al. 2007, 2009) may therefore tell us a great deal about how evolution 

works under different conditions.  

This thesis contributes to the debate on the importance of genetic diversity for the potential 

to evolve, by mathematically describing the dynamics of genetic diversity in populations 

with partially asexual reproduction. The effect of this reproductive system is controversial: 

asexual reproduction is sometimes seen as an evolutionary dead-end and hindrance to 

adaptation, yet it could also be a mechanism to escape extinction and even an ecological 

asset (e.g. Honnay & Bossuyt 2005, Silvertown 2008, Hörandl 2009, Van Drunen et al. 2015). 

Extending the theoretical basis of our understanding for evolution under partial asexuality 

and providing a reference for field studies may help to put this discussion on firmer ground. 

Today, the impact of a single species – ours – on the entire biosphere produces worrying 

results (Vitousek et al. 1997). Though our efforts to understand, predict and direct evolution 

may be first and foremost directed towards safeguarding the future of our own 

descendants, this goal cannot be reached without preserving a functioning environment for 

them to live in, including “friendly neighbors (and their kids)” from other species.  
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2.2 Reproduction and inheritance – an ancient quest 

Reproduction, the ability of organisms to give rise to something similar, though not 

identical to themselves, is one of the defining features of life (Trifonov 2011). In evolutionary 

biology, reproduction is especially important since it defines how genetic diversity is passed 

on through generations – to use a mathematical analogy, reproduction is the “recurrence 

equation” of the “sequence” of organisms through time.  

Human interest in reproduction and inheritance goes back at least until the earliest 

remaining records of Western natural philosophy and science. In the fourth book of his “On 

the generation of animals” (4th century BCE), the Greek philosopher Aristotle asked: “Again, 

for what reason is a child generally like its ancestors, even the more remote?” (Aristotle 

2002). This question has accompanied natural historians, researchers in medicine and 

biologists for generations, and it is only since the 19th century that answers are beginning to 

take shape (Jahn 2004). 

Different forms of reproduction are already distinguished in the works of Aristotle: 

according to the number of parents involved, reproduction may be biparental (two parents, 

typically dimorphic as a male and a female), uniparental (one parent) or abiogenetic (no 

parent). Though later research brought a lot of adjustments to Aristotle’s views – most 

notably about abiogenesis, which is now assumed to have happened only in the ancient 

past (Pasteur 1864, Woese 1987)– this basic system is still often used (and it leaves us with 

the intriguing question why there are rarely more than two parents, but see Bonen et al. 

2007). A more detailed review of reproductive systems from today’s perspective is given in 

chapter 3.1. 

The “laws” of inheritance were also always especially interesting for breeders of 

domesticated plants and animals. This context originally motivated Gregor Mendel’s famous 

experiments on garden peas and other plants (Mendel 1865). Though he never knew it, 

Mendel also inadvertently became the first “geneticist” to study inheritance under partial 

asexuality (Mendel 1869, Koltunow et al. 2011): to complement his experiments on garden 

peas and other plants, he tried to achieve artificial crosses with different species of 

hawkweeds (genera Hieracium and Pilosella, Asteraceae). Despite great efforts, which may 

even have contributed to Mendel’s deteriorating eyesight (Dostál 2015), he obtained only 

very few “hybrid” seeds due to extensive asexual seed production in his study species. He 

eventually died before bringing his experiments to a statistically satisfying result. 

Population genetics, the study of genetic diversity at the population level, was a direct 

result of the rediscovery of Mendel’s work at the beginning of the 20th century. One of its 

most important foundations, the Hardy-Weinberg equilibrium (Hardy 1908, Weinberg 

1908), is the direct extension of Mendel’s “laws” of inheritance to whole groups of 

organisms. The theoretical framework of population genetics, which draws heavily on 

mathematics and statistics, first permitted to discuss the quantitative outcomes of different 

reproductive systems in an evolutionary context and compare them with each other, as shall 

be done in this thesis.  
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Sadly, Mendel’s incomplete hawkweed results did not inspire a similar theoretical 

development as did his pea experiments, and the first mathematical models for the 

population genetics of partially asexual species only appeared in the 1970ies (Asher 1970, 

Marshall & Weir 1979; see chapter 3.2). Still today, the scarcity of methods that are adapted 

to partially asexual species make studying their population genetics challenging (Halkett et 

al. 2005, Arnaud-Haond et al. 2007). Methods in population genetics continue to evolve, 

especially as the sequencing of whole genomes steadily becomes cheaper and a wealth of 

new data becomes available (e.g. Brookes 1999, Vitti et al. 2013). Yet before theories that 

were developed based on exclusively sexual populations can be safely used also for partially 

asexual species, the underlying assumption that both systems are identical, at least in those 

respects on which the theory relies, has to be verified. Our results may prove highly useful 

for pinpointing such issues and finding a solution. 

Recently, the focus of research on reproduction and inheritance has somewhat shifted from 

the mechanism itself to understanding its environmental and genetic regulation and its 

evolutionary significance. Studies working on the regulation of different modes of 

reproduction showed that, though reproductive modes with identical outcomes for 

offspring diversity may have arisen multiple times in different evolutionary lineages, the 

mechanisms involved can sometimes be similar across large phylogenetic distances (e.g. 

Wang et al. 2004, Le Trionnaire et al. 2008, Sharbel et al. 2009, Hand & Koltunow 2014). These 

results make the question of the role of different reproductive systems and genetic diversity 

for the evolution of species more complex on the one hand, since different evolutionary 

backgrounds have to be taken into account, but on the other hand give more hope for 

resolving it by looking for similarities between the highly different cases. By developing a 

very basic and general model, which is not parameterized to fit only one species, we hope 

that our results will be widely applicable and allow such far-reaching comparisons. 

2.3 The evolution of (a)sex – an ongoing debate 

Why sexual and asexual reproduction co-exist is a long-standing question in evolutionary 

biology (e.g. Darwin 1860). Asexual reproduction does not need “costly” meiosis and no 

potentially dangerous search for a mating partner, does not disturb a functioning genotype 

by recombination, increases the chances of parental “selfish genes” to be transmitted and, 

compared to dioecy, does not produce a fraction of offspring that cannot give birth by itself 

(Maynard Smith 1978, Otto 2009). With all these advantages on its side, why does it not take 

over? Or, if sexual reproduction possesses some advantage that makes up for its “cost”, why 

is asexual reproduction still going on? These questions are especially striking with respect 

to partially asexual species, where both modes of reproduction not just exist in closely 

related taxa, but within the same individual. 

Both meiosis and mitosis are shared traits (synapomorphies) of the whole eukaryote clade 

and probably originated very early on in its history (Cavalier-Smith 2002, Bogdanov 2003, 

Wilkins & Holliday 2008). In theory, all eukaryotic organisms could therefore reproduce both 

sexually and asexually, thus making use of the relative advantages of either reproductive 
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system just as the situation calls for (compare Raven et al. 2004). However, not all of them 

do. Among those who have given up one or the other mode of reproduction at some point 

in their evolution, most appear to have opted for exclusive sexuality. Exclusively asexual 

reproduction is usually considered a recent and possibly short-lived “experiment” (but 

compare Neiman et al. 2009); whether or not “ancient asexual scandals” exist (Judson & 

Normark 1996, Signorovitch et al. 2015) can currently not be said with certainty, though it 

may be safe to assume that sexual reproduction is extremely rare in some species. 

Partially asexual species may be especially interesting in the “evolution of sex” debate, as 

they constitute a “natural laboratory” to study the relative merits of both reproductive 

modes. Studies that manipulate the frequency of asexual vs. sexual reproduction to see how 

it affects the populations, or that, conversely, change the environmental conditions to see 

how it affects reproduction, are still rare (Becks & Agrawal 2012). However, though both 

modes of reproduction may directly compete for the same resources within a single 

individual, this is not always the case (e.g. Yu et al. 2001, Van Drunen et al. 2015). Potential 

advantages of partial asexuality in itself, rather than just as a way to combine the advantages 

of sexual and asexual reproduction, make the situation more complex.  

By studying partial asexuality in its own right, we hope to draw attention to possible 

peculiarities of this reproductive system that might contribute to the “evolution of sex” 

debate. Partially asexual species have often been indiscriminately counted towards the 

“sexual camp” (e.g. Hartfield et al. 2012), even though previous studies already hinted 

otherwise (Marshall & Weir 1979, Berg & Lascoux 2000). We particularly concentrated on 

models of finite populations, including stochastic effects, and on providing not just static 

means and equilibria, but also a dynamic perspective. These two conditions have been 

suggested as important for models of the evolution of reproductive systems (Otto 2009), 

and even though we shall not directly address this question, our results may provide a basis 

for future development. The main goal of this thesis is to provide a reference and aid to the 

interpretation for future field studies – including experimental evolution – that may give 

new ideas and impulses for the ongoing debate. 

2.4 Partial asexuality – a pervasive phenomenon 

Partially asexual reproduction is extremely widespread in nature, both among unicellular 

and multicellular eukaryotes: it is common in protists (Speijer et al. 2015), fungi (Taylor et al. 

1999, 2015) and the different clades of “algae” (Collado-Vides 2001). Plants are particularly 

notorious for it (Fryxell 1957, Grant 1976, Durka 2002, Richards 2003, Hojsgaard et al. 2014): 

well over half of all angiosperm species in Central Europe possess at least one way of clonal 

reproduction (Klimeš et al. 1997, Klimeš & Klimešová 1999), and the situation for other plant 

groups may be similar (e.g. Shaw & Goffinet 2000). Partially asexual reproduction in animals 

is usually considered to be somewhat rarer – nevertheless, several animal clades such as 

rotifers, platyhelminths or arthropods (Normark 2003) include partially asexual species, and 

there appear to be even some among vertebrates (Neaves & Baumann 2011, Avise 2015). 

Evaluating the prevalence of (partial) asexuality in animals may be more challenging than in 
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other organisms, as it often occurs by mechanisms which are easily confounded with 

different forms of selfing/automixis (see chapter 3.2). 

Partially clonal species are directly important for human economy. In agriculture, one can 

encounter them in all capacities except as farm animals: there are partially clonal crop and 

fodder plants such as strawberries, potatoes and many species of grass (McKey et al. 2010); 

partially clonal pests, such as aphids; partially clonal parasites such as rust fungi; and partially 

clonal pathogens, such as oomycetes of the genus Phytophthora. Partially clonal trees such 

as willows or wild cherry are used in horti- and silviculture. In fishery, partially clonal species 

appear e.g. as sea grasses (e.g. used as building insulation material), different algae (e.g. for 

food) and zooplankton species such as the members of the genus Daphnia (nutrition for 

planktivorous fish). Yet the perhaps most direct impact on human life have several partially 

clonal pathogens (e.g. Leishmania, Plasmodium, Trypanosoma, Toxoplasma – Tibayrenc et al. 

1990). 

In most of these examples, the partially asexual reproductive system is directly important, 

either for the epidemiology of the “unwanted” or the propagation and harvesting of the 

“wanted”. As an example, though strawberries are grown for their berries (sexual 

reproduction), they are usually propagated from runners (asexual reproduction) rather than 

seeds. For potatoes, the organs of asexual reproduction (tubers) are the actual crop, though 

sexual reproduction is important for breeding new varieties. Clonal propagation has the 

advantage of maintaining the properties of hybrid cultivars, which makes it a highly 

desirable trait for practically all cultivated species. The development of techniques for 

“artificial” clonal propagation (e.g. by tissue culture in orchids, Philip & Nainar 1986, or 

nuclear transfer in livestock, Wilmut et al. 1997) has therefore recently been complemented 

by attempts to genetically modify exclusively sexual crop plants so that they become 

capable of asexual seed production (van Dijk & van Damme 2000). 

On a larger scale, partially clonal organisms dominate several of the earth’s biomes (Klimeš 

et al. 1997, Baird et al. 2009), including grasslands/seagrass meadows, coral reefs, 

mangroves and tundra. Though they may appear in many different ecological roles, partially 

clonal species are most often associated with ecosystem engineers and invasive species 

(Silvertown 2008). In fact, both roles may be linked, and by the reproductive system: as an 

example, the European beachgrass Ammophila arenaria L. is famous for its ability to colonize 

and stabilize sand dunes with its roots and rhizomes. Because of this “useful” property, the 

plant was actively introduced outside its native range, where it now proliferates (mainly 

clonally) and threatens autochthonous ecosystems (Hilton 2006). However, partially clonal 

species may also be rare or threatened themselves: in some cases such as Spiraea (Brzyski & 

Culley 2011, Dajdok et al. 2011) or Opuntia (Reyes-Agüero et al. 2006, Helsen et al. 2009), one 

partially clonal genus may contain both threatened and invasive species. A reference for the 

population genetics of small partially clonal populations is particularly interesting for 

conservation, as it can be applied to rare and threatened species as well as to newly 

introduced and potentially invasive clonal organisms. 

Several partially asexual species appear to be of (natural) hybrid origin, and/or are 

polyploid. It has been suggested that “accidental” inter-specific hybrids which show some 
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fitness advantage over their parents, but have a disturbed meiosis due to genomic 

incompatibilities, may “use” clonal reproduction to persist until eventually re-acquiring 

functional sexuality (Grant 1976, Chapman et al. 2003). Potentially improved colonizing 

abilities of partially or exclusively clonal (especially agamospermous) plants compared to 

their exclusively sexual relatives could lead to different distributional patterns 

(“geographical parthenogenesis” hypothesis, Hörandl 2006): As an example, the 

distributional range of clonal and partially clonal groups within Taraxacum and Rubus, 

compared to their exclusively sexual congeners, extends further north in Europe, which 

could be due to faster range expansion after the last glaciation. The results of this thesis may 

be partially applicable to such species as well, though polyploidy is not yet included in our 

model.  
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3 Current knowledge 

3.1 Reproductive systems – what is what 

Life on earth employs a kaleidoscopic diversity of reproductive systems, and research about 

them has produced an almost equal diversity of terms and, sometimes incongruent or even 

incompatible, definitions (compare e.g. Asher 1970, Grant 1976, Mogie 1986, de Meeûs et al. 

2007, Vallejo-Marín et al. 2010, Nougué et al. 2015). To avoid confusion, and without any 

guarantee for its completeness or usefulness in other contexts, we will give a short overview 

of the framework used in this thesis.  

The system in figure 3.1 is based on the effect of different reproductive modes on the 

genetic diversity of the resulting offspring, and secondarily on the developmental/ putative 

regulatory mechanisms involved. Per definition, asexual (synonymous to clonal) 

reproduction results in the offspring being identical to its parent except for mutations. In 

consequence, all reproductive modes that may involve some form of recombination, i.e. 

reassortment of chromosomes (typically, but not exclusively, by chromosome segregation 

during meiosis and subsequent fusion of gametes) and/or crossing-over (exchange of 

genetic material between chromosomes, genetic recombination in the narrow sense), are 

sexual. For some reproductive modes, e.g. central fusion (fusion of the products of meiosis I 

to reconstitute a diploid zygote-like cell), it may be difficult to ascertain whether or not 

crossing-over is possible; for others, such as post-meiotic duplication of the chromosomes, 

sexual reproduction may not involve an actual fusion of gametes (syngamy). 

 

 

Figure 3.1 A system of reproductive modes. syn. synonymous to; s.l. = sensu lato, in the broad 

sense; s.str. = sensu stricto, in the narrow sense; s.zool. = sensu zoologico, in the 

zoological sense; p.p. = pro parte, in part 

Asexual reproduction is sometimes treated as a form of growth, which especially suggests 

itself in cases of vegetative reproduction that occurs without any specialized structures. 
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However, in contrast to growth asexual reproduction may involve cell divisions other than 

“regular” mitosis and always results in (factually or potentially) physiologically independent 

copies of the whole parent organism, called ramets. Following common practice e.g. in 

human monozygotic twins, individuals are defined as ramets and not based on having 

unique genotypes (genets). A population is a group of conspecific individuals co-existing in 

space and time. 

Having thus clarified what is meant by sexual and asexual reproduction, respectively, partial 

asexuality (synonymous to partial clonality) requires that these two be combined in the 

individual’s life cycle. Similar to parallel and series connections in electric circuits, this may 

be achieved in two ways (compare figure 3.2): either the two modes of reproduction occur 

in parallel, or they succeed each other periodically. The second case, which typically involves 

several rounds of asexual reproduction that alternate with a single round of sexual 

reproduction, is generally referred to as cyclical parthenogenesis for historical reasons (first 

description in aphids: Bonnet 1745, Owen 1849). We will follow this nomenclature, though 

“cyclical asexuality” or “cyclical clonality” would be less ambivalent (“parthenogenesis” is 

used differently in a zoological vs. botanical context) and more appropriate according to our 

system. In contrast, the first case will be called acyclic partial asexuality, or just partial 

asexuality if the exclusion of the cyclical case is clear from the context. 

 

Figure 3.2 Asexual and sexual life cycles. I – exclusive asexuality; II – partial asexuality in the wide 

sense: IIa – acyclic partial asexuality or partial asexuality in the narrow sense, IIb – 

cyclical parthenogenesis; III – exclusive sexuality. Sexual reproduction: R – reduction 

(meiosis), Z – fertilization (syngamy). Asexual reproduction: C, which may represent 

several rounds of asexual reproduction under cyclical parthenogenesis. 

Les systèmes reproducteurs – quelques repères 

La vie sur terre utilise une diversité kaléidoscopique de systèmes de reproduction, et la 

recherche à leur sujet a produit une diversité presque égale des termes et des définitions 

parfois incongrues, voire incompatibles (voir par exemple Asher 1970, Grant 1976 Mogie 

1986, de Meeûs et al. 2007, Vallejo-Marín et al. 2010, Nougué et al. 2015). Pour éviter toute 

confusion, et sans aucune garantie quant à l'exhaustivité ou l'utilité dans d'autres contextes, 

nous allons donner un bref aperçu du cadre utilisé dans cette thèse. 

Le système de la figure 3.1 est basé sur l'effet des modes de reproduction différents selon 

la diversité génétique de la descendance, et secondairement selon les mécanismes 

impliqués du développement / de la régulation putative. Par définition, la reproduction 

asexuée (synonyme de clonale) mène à une progéniture identique à son parent à l'exception 
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des mutations. En conséquence, tous les modes de reproduction qui peuvent impliquer une 

certaine forme de recombinaison, que ce soit par réassortiment des chromosomes 

(généralement, mais pas exclusivement, par la ségrégation des chromosomes lors de la 

méiose et la fusion subséquente de gamètes) et / ou enjambement (échange de matériel 

génétique entre les chromosomes, recombinaison génétique au sens strict), sont sexués. 

Pour certains modes de reproduction, par exemple la fusion centrale (fusion des produits de 

la méiose I pour reconstituer une cellule diploïde pareille à un zygote), il peut être difficile 

de déterminer si l’enjambement est possible ; pour d'autres, comme la duplication post-

méiotique des chromosomes, il est possible que la reproduction sexuée n’implique pas une 

fusion réelle des gamètes (syngamie). 

La reproduction asexuée est parfois considérée comme une forme de croissance, ce qui est 

le plus évident dans les cas de la reproduction végétative qui se produit sans aucune 

structure spécialisée. Cependant, contrairement à la croissance, la reproduction asexuée 

peut entraîner des divisions cellulaires autres que la mitose « régulière » et se traduit 

toujours en copies (de fait ou potentiellement) physiologiquement indépendantes de 

l'organisme parent, appelées des « ramets ». Conformément à la pratique courante comme 

par exemple chez les jumeaux monozygotes humains, les individus sont définis comme 

ramets et non basés sur le fait d’avoir des génotypes uniques (« genets »). Une population 

est un groupe d'individus de la même espèce coexistant dans l'espace et le temps. 

Ayant ainsi clarifié ce que l'on entend, respectivement, par la reproduction sexuée et 

asexuée, l'asexualité partielle (synonyme de clonalité partielle) signifie que les deux sont 

combinés dans le cycle de vie de l'individu. Par analogie avec des circuits électriques en 

parallèle et en série, cela peut être réalisé de deux façons (à comparer avec la figure 3.2) : 

soit les deux modes de reproduction se produisent en parallèle, soit ils se succèdent 

périodiquement. Dans le deuxième cas, cela implique généralement plusieurs cycles de 

reproduction asexuée qui alternent avec un seul tour de reproduction sexuée, et est 

généralement appelé « parthénogenèse cyclique » pour des raisons historiques (première 

description chez les pucerons : Bonnet 1745, Owen 1849). Nous suivrons cette 

nomenclature, même si « asexualité cyclique » ou « clonalité cyclique » seraient moins 

ambivalents (« parthénogenèse » est utilisé différemment dans un contexte botanique ou 

zoologique) et plus appropriés en fonction de notre système. En revanche, le premier cas 

sera appelé asexualité partielle acyclique, ou seulement asexualité partielle si l'exclusion du 

cas cyclique est évidente à cause du contexte. 

3.2 Previous studies 

3.2.1. Selectively neutral diversity 

The first population genetic models for acyclic partially asexual species were primarily 

interested in its effect on population heterozygosity: Asher (1970) compared different forms 

of parthenogenesis in animals, but focused mainly on automixis and did not yet include 

combined sexual/asexual reproduction in their models. This was first done by Marshall & 

Weir (1979), who modeled the population genetic effect of combined agamospermy, selfing 
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and random mating in a population otherwise conforming to the Hardy-Weinberg 

assumptions, i.e. in the absence of mutation and genetic drift. They concluded that 

additional asexual reproduction has absolutely no effect on the equilibrium heterozygosity, 

which only depends on the relative rates of random mating and selfing, but could, however, 

considerably slow down the approach to this equilibrium. Probably because of this apparent 

indifference, no further models of partial asexuality were published for almost 15 years. 

Building directly on the results of Marshall & Weir (1979), Overath & Asmussen (2000a, b) 

wrote a model for the co-inheritance of “cytonuclear factors” (e.g. mitochondrial or plastid 

genes) under partial asexuality (even including tetraploidy), a line of research that 

apparently has not been further developed since. 

With the new technique of coalescence models (see chapter 3.1) and by integrating 

demography and population genetics, Orive (1993) analyzed populations with complex life 

cycles including clonality. Based on sample life cycles parameterized from field data, she 

showed that partial clonality can lower the inbreeding effective population size (i.e. 

individuals are on average more closely related) in partially clonal species compared to their 

exclusively sexual counterparts. Also using a coalescence model, Bengtsson (2003) 

postulated that partially clonal reproduction should only change the patterns of genetic 

diversity under very high rates of clonality. If very old, such populations would have highly 

divergent allelic copies within the same individual, even if sexual reproduction occurred at 

low rates. In a second model for shorter time spans, ignoring mutation, he also found a 

“memory effect” for past genotypic diversity in partially asexual populations. Ceplitis (2003) 

challenged the correctness of Bengtsson’s model, but nevertheless came to similar long-

term results (only high rates of clonality have an effect, which is similar to exclusive clonality) 

and did not look at the short-term model again. Yonezawa et al. (2004) further developed 

effective population sizes under partial clonality. 

The effect of partial clonality in finite-sized, subdivided populations with mutation on the 

population genetic parameters F"# and F#$ was first studied by Balloux et al. (2003), the first 
in a series of related articles (including de Meeûs & Balloux 2005, de Meeûs et al. 2006). In 

contrast to the first results of Marshall & Weir (1979), they concluded that the equilibrium 

heterozygosity (and more specifically, F"#) is affected by partial clonality, but – similar to the 
findings of Bengtsson (2003) and Ceplitis (2003) – only at nearly exclusive clonality. The 

results of research on expected patterns of genetic diversity under partial asexuality, and 

their potential for the estimation of rates of asexual reproduction from population genetic 

data, were subsequently summarized in Halkett et al. (2005). 

Models for the population genetic effect of cyclical parthenogenesis are even rarer, and 

typically very much tailored towards the situation in particular species. In consequence, they 

may already involve additional parameters such as spatial substructure (i.e. several 

subpopulations connected by migration) or selfing, making comparison with other cases 

more difficult: Berg & Lascoux (2000) modeled sub-divided populations of daphnia in order 

to explain their differentiation from each other. Similarly, Prugnolle et al. (2005b, c) looked 

at cyclically parthenogenetic parasites (platyhelminths) but interpreted their results 

primarily in terms of selfing, migration and reproductive success (selection). The model for 

daphnia by Vanoverbeke & De Meester (2010) is somewhat different, focusing only on 
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genotype dynamics during a single asexual phase, but with (selective) environmental 

constraints. It demonstrated a pattern of “clonal erosion”, i.e. a successive loss of clonal 

lineages/genotypes. 

La diversité sélectivement neutre 

Les premiers modèles en génétique des populations pour des espèces partiellement 

asexuées acycliques s’intéressaient principalement à son effet sur l’hétérozygotie des 

populations : Asher (1970) a comparé différentes formes de la parthénogenèse chez les 

animaux, mais il s’est principalement occupé de l’autofécondation et n'a pas encore inclut 

la combinaison entre reproduction sexuée / asexuée dans son modèle. Cela a été fait en 

premier par Marshall & Weir (1979), qui ont modélisé l'effet en génétique de la population 

de la combinaison entre l’agamospermie, l’autofécondation et l'accouplement aléatoire 

pour une population qui était par ailleurs conforme aux hypothèses de Hardy-Weinberg, 

c’est-à-dire en l’absence de la mutation et de la dérive génétique. Ils ont conclu que la 

reproduction asexuée supplémentaire n'avait absolument aucun effet sur l'hétérozygotie 

d'équilibre, qui ne dépend que des taux relatifs d'accouplement aléatoire et 

d’autofécondation, mais qu’il pourrait toutefois ralentir considérablement l'approche de cet 

équilibre. Probablement à cause de cette indifférence apparente, aucun autre modèle de 

l'asexualité partielle n’a été publié pendant presque 15 ans. En se basant directement sur les 

résultats de Marshall & Weir (1979), Overath & Asmussen (2000a, b) ont écrit un modèle sur 

le co-héritage des « facteurs cyto-nucléaires » (par exemple des gènes mitochondriaux ou 

plastidiques) sous asexualité partielle (y compris même de la tétraploïdie), une ligne de 

recherche qui, apparemment, n'a pas encore été développée depuis. 

Avec la nouvelle technique de modèles de coalescence (voir chapitre 3.1) et en liant la 

démographie à la génétique des populations, Orive (1993) a analysé les populations avec 

des cycles de vie complexes, y compris la clonalité. Basée sur les cycles de vie d’exemples 

paramétrés à partir de données de terrain, elle a montré que la clonalité partielle peut 

réduire la taille effective de consanguinité de la population (c’est-à-dire que les individus 

sont en moyenne plus étroitement liés) en espèces partiellement clonales par rapport à leurs 

homologues exclusivement sexués. Également à l'aide d'un modèle de coalescence, 

Bengtsson (2003) a affirmé que la reproduction partiellement clonale ne devait pas modifier 

les schémas de diversité génétique excepté avec des taux de clonalité très élevés. Si elles 

sont très vieilles, ces populations auraient des copies alléliques très divergentes dans le 

même individu, même si la reproduction sexuée se produit à des taux faibles. Dans un 

deuxième modèle, pour des périodes plus courtes, en ignorant la mutation, il a également 

trouvé un « effet mémoire » pour la diversité génotypique précédente dans des populations 

partiellement asexuées. Ceplitis (2003) a contesté l’exactitude du modèle de Bengtsson, 

mais néanmoins il est arrivé à des résultats similaires à long terme (seuls les taux élevés de 

clonalité ont un effet, qui est similaire à la clonalité exclusive) et il n’a pas regardé le modèle 

à court terme de nouveau. Yonezawa et al. (2004) ont développé des tailles de population 

efficaces sous clonalité partielle. 

L'effet de la clonalité partielle en population de taille déterminée, subdivisée et avec de la 

mutation, sur les paramètres de génétique des populations F"# et F#$ a d'abord été étudié 
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par Balloux et al. (2003), le premier d'une série d'articles connexes (y compris de Meeûs & 

Balloux 2005, de Meeûs et al. 2006). Contrairement aux premiers résultats de Marshall & Weir 

(1979), ils ont conclu que l'hétérozygotie d'équilibre (et plus précisément, F"#) est affectée 
par une clonalité partielle, mais - similaire aux conclusions de Bengtsson (2003) et Ceplitis 

(2003) - seulement à clonalité presque exclusive. Les résultats de la recherche sur les 

tendances attendues de la diversité génétique sous asexualité partielle, et leur potentiel 

pour l'estimation des taux de reproduction asexuée à partir de données génétiques de la 

population, ont ensuite été résumés dans Halkett et al. (2005). 

Les modèles pour l'effet sur la génétique des populations de la parthénogenèse cyclique 

sont encore plus rares, et typiquement très spécialisés à la situation des espèces 

particulières. En conséquence, ils peuvent déjà contenir des paramètres supplémentaires, 

tels que sous-structure spatiale (c’est à dire plusieurs sous-populations liées par migration) 

ou l’autofécondation, rendant plus difficile la comparaison avec d'autres cas : Berg & 

Lascoux (2000) ont modélisés des populations des daphnies sous-divisées pour expliquer 

leur la différenciation. De même, Prugnolle et al. (2005b, c) ont regardé des parasites 

cycliquement parthénogénétiques (de plathelminthes) mais ont interprété leurs résultats 

principalement en termes d’autofécondation, migration et succès de la reproduction 

(sélection). Le modèle pour les daphnies par Vanoverbeke & De Meester (2010) est quelque 

peu différent, en se concentrant uniquement sur la dynamique des génotypes pendant une 

phase asexuée simple, mais avec des contraintes environnementales (sélectifs). Il a montré 

un modèle de « l'érosion clonale », c’est-à-dire une perte successive de lignées clonales / 

génotypes. 

3.2.2. Diversity under selection 

Selection in partially asexual species has received some attention in the context of the 

evolution of sex, although most models for this question only compared exclusive sexuality 

and exclusive asexuality directly. Modifier models, where the rate of asexual reproduction is 

not constant, but in fact controlled by each individual’s genotype at a single locus, play a 

great role in this respect (Marshall & Brown 1981, Roze 2009, Roze & Michod 2010). Another 

group of models looked at the fitness of multilocus genotypes assuming infinite population 

size and number of loci (no back mutation), or sexual reproduction partially or exclusively 

by selfing (Muirhead & Lande 1997, their model also includes cyclic parthenogenesis; Masel 

& Lyttle 2011, Marriage & Orive 2012). Models for single loci typically ignore mutation (but 

see Lokki 1976), look only at a specific selection scenario (but see Overath & Asmussen 1998) 

and are also focused on infinite populations (Marshall & Weir 1979). Ryndin et al. (2001) 

proposed a model for two (partially) linked loci in an infinite population without mutation 

under dynamically changing selection. However, a “simple” single locus model, describing 

the expected genotype frequency patterns (and their dynamics) under various selective 

scenarios for a finite population with mutation still seems to be missing. 

La diversité sous sélection 

La sélection chez les espèces partiellement asexuées a reçu une certaine attention dans le 

contexte de l'évolution du sexe, bien que la plupart des modèles de cette question ont 
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seulement comparé la sexualité exclusive à l’asexualité exclusive en direct. Des modèles 

avec des modificateurs, où le taux de reproduction asexuée n’est pas constant, mais en fait 

contrôlé par le génotype de chaque individu à un seul locus, jouent un grand rôle à cet égard 

(Marshall & Brown 1981, Roze 2009, Roze & Michod 2010). Un autre groupe de modèles a 

observé la valeur sélective des génotypes à multiples loci en supposant une taille infinie de 

la population et un nombre de loci infinie (pas de mutation de retour), ou la reproduction 

sexuée se fait partiellement ou exclusivement par autofécondation (Muirhead & Lande 1997, 

leur modèle comprend également la parthénogenèse cyclique; Masel & Lyttle 2011, Mariage 

& Orive 2012). Des modèles pour des loci uniques ignorent généralement la mutation (mais 

voir Lokki 1976), ne regardent seulement qu’un scénario de sélection spécifique (mais voir 

Overath & Asmussen 1998) et ne mettent également l'accent que sur les populations infinies 

(Marshall & Weir 1979). Ryndin et al. (2001) ont proposé un modèle pour deux loci 

(partiellement) liées dans une population infinie sans mutation sous un régime de sélection 

qui se change dynamiquement. Cependant, un modèle « simple » d’un seul locus, décrivant 

les résultats attendus pour les fréquences des génotypes (et leur dynamique) selon divers 

scénarios sélectifs pour une population finie avec de la mutation semble être encore à faire. 
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4 Approach 

The first step towards the description of the patterns and dynamics of genotype frequencies 

under partial asexuality is the development of a suitable mathematical model. The basis of 

the model we will use here was already established before (Stoeckel & Masson 2014); in the 

course of this thesis, the model equations were rearranged and considerably extended 

(cyclical parthenogenesis, multiple alleles, selection). The model is discussed in detail in the 

next chapter.  

Our model provides a lot of detail, but also produces a lot of data; to cope with this situation, 

we developed new techniques for the analysis and visualization of the model results, which 

are included in the first article: 

Article I:  Interpretation and approximation tools for big, dense Markov chain 

transition matrices in population genetics 

The core of our population genetic model is a large, square matrix that contains information 

on both the static (final, equilibrium) and the dynamic (short-term) behavior of the modeled 

genotype frequencies. Based on a specialized ternary (i.e. triangular) plot for population 

genetic data, called de Finetti diagram after its inventor, we developed concise and 

comprehensive methods to display the different aspects of the model results. In addition, 

we developed a method by which very big and memory intensive matrices can be reduced 

in size independently of their content, using an approximation algorithm that keeps their 

mathematical properties. 

The first article is followed by a short subchapter, which includes additional information 

about de Finetti diagrams and their potential as a teaching tool. 

The following part of the thesis presents the results from the analysis of our mathematical 

model. We first focused on evolution under neutral conditions, as including selection would 

be an extension of this case and best studied in comparison with it. Our findings constitute 

the second article: 

Article II:  Rare sex or out of reach equilibrium? The dynamics of %&'  in partially 

clonal organisms 

We modeled the neutral dynamics of genotype frequencies at a single locus over time. 

Compared to the exclusively sexual case, partial asexuality mainly affected the dynamics of 

heterozygosity within the population, which we described using the population genetic 

parameter F"# . We found that F"# increases its variation and needs longer to return to its 
equilibrium mean value under partial asexuality. 

The second article is followed by a subchapter that presents first results for multilocus 

simulations of a bottleneck effect in partially asexual species. 

In the course of preparing article II, we realized that its results would not be directly 

applicable to populations undergoing cyclical parthenogenesis. However, cyclical 

parthenogenesis is of special interest to the work group (studying aphids) in which this 
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thesis was prepared. Therefore the next step was to compare neutral genotype/ F"# 
dynamics under exclusively asexual, exclusively sexual and both kinds of partially asexual 

reproduction; the results form the next article: 

Article III:  Effects of complex life-cycles on genetic diversity: The case of cyclical 

parthenogenesis 

We compared the expected equilibrium distributions of F"# for four different reproductive 
systems, i.e. exclusive sexuality, exclusive clonality, acyclic partial clonality and cyclical 

parthenogenesis. For the latter case, we also took into account different numbers clonal 

generations and different sampling strategies (before sexual phase, after sexual phase). The 

results show that each case is distinct. 

The second part of the results deals with the genetic diversity at single loci under selection; 

again, acyclic partial asexuality is assumed to obtain the results presented in the next article: 

Article IV:  Partial clonality and the speed of adaptation 

We modeled genotype frequencies in partially clonal populations at loci under selection 

according to four different selection scenarios. The results show that partial clonality is 

hardly ever optimal for adaptation based on single loci, both in terms of speed and final 

mean population fitness.  

This manuscript is followed by a final subchapter that includes first steps towards an 

extension of the model to two loci. 

The thesis ends with a global discussion and conclusion. 

Approche 

La première étape vers la description des caractéristiques et de la dynamique des 

fréquences génotypiques sous asexualité partielle est l'élaboration d'un modèle 

mathématique approprié. La base du modèle que nous utiliserons ici a déjà été établie 

précédemment (Stoeckel & Masson 2014); dans le cadre de cette thèse, les équations du 

modèle ont été réorganisées et considérablement étendues (parthénogenèse cyclique, 

allèles multiples, la sélection). Le modèle est présenté en détail dans le chapitre suivant. 

Notre modèle fournit beaucoup de détails, mais produit également un grand nombre de 

données ; pour faire face à cette situation, nous avons développé de nouvelles techniques 

pour l'analyse et la visualisation des résultats des modèles, qui sont inclus dans le premier 

article : 

Article I :  Outils pour l’interprétation et l’approximation des matrices de 

transition grandes et denses des chaînes de Markov en génétique des 

populations 

Le cœur de notre modèle de génétique des populations est une grande matrice carrée, qui 

contient des informations à la fois sur le comportement statique (finale, d’équilibrium) et 

dynamique (à court terme) des fréquences génotypiques modélisées. À partir d’un 

diagramme ternaire spécialisé (c’est-à-dire triangulaire) adapté à des données de génétique 

des populations, appelé diagrammes de de Finetti d’après son inventeur, nous avons 
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développé des méthodes concises et copieuses pour exposer les différents aspects des 

résultats du modèle. En outre, nous avons développé une méthode par laquelle des matrices 

très grandes qui occupent beaucoup de mémoire peuvent être réduites en taille 

indépendamment de leur contenu, en utilisant un algorithme d'approximation qui 

maintient leurs propriétés mathématiques. 

Le premier article est suivi d'une courte section de chapitre, qui comprend des informations 

supplémentaires sur les diagrammes de de Finetti et leur potentiel en tant qu’outil 

d'enseignement. 

La partie suivante de la thèse présente les résultats de l'analyse de notre modèle 

mathématique. Nous avons d'abord mis l'accent sur l'évolution dans des conditions neutres, 

comme la sélection serait une extension de ce cas et étudié le meilleur en comparaison avec 

elle. Nos résultats constituent le deuxième article : 

Article II :  Sexe rare ou hors portée de l'équilibre ? La dynamique d’%&'  chez les 

organismes partiellement clonaux 

Nous avons modélisé la dynamique neutre des fréquences génotypiques à un seul locus au 

fil du temps. Par rapport au cas exclusivement sexué, l'asexualité partielle a principalement 

affecté la dynamique de l'hétérozygotie de la population, ce que nous avons décrits en 

utilisant le paramètre de génétique des populations F"# . Nous avons constaté que le F"# 
augmente sa variation et prend plus de temps pour revenir à sa valeur moyenne d’équilibre 

sous asexualité partielle. 

Le deuxième article est suivi d'un sous-chapitre qui présente les premiers résultats des 

simulations à multiples loci avec un effet de goulot d'étranglement chez les espèces 

partiellement asexuées. 

Au cours de la préparation de l'article II, nous avons réalisé que ces résultats ne seraient pas 

directement applicables à des populations subissant une parthénogenèse cyclique. 

Cependant, la parthénogenèse cyclique est d'un intérêt particulier pour le groupe de travail 

(qui fait des études sur les pucerons) dans lequel cette thèse a été préparée. Par conséquent, 

la prochaine étape était de comparer la dynamique neutre des génotypes / F"# sous 
asexualité exclusive, sexualité exclusive et les deux types de reproduction partiellement 

asexuée ; les résultats forment le prochain article : 

Article III :  Effets des cycles de vie complexes sur la diversité génétique : le cas de la 

parthénogenèse cyclique 

Nous avons comparé les distributions d'équilibre attendus du F"# pour quatre systèmes de 
reproduction différents, c’est-à-dire la sexualité exclusive, la clonalité exclusive, la clonalité 

partielle acyclique et la parthénogenèse cyclique. Pour ce dernier cas, nous avons 

également pris en compte les différents nombres de générations clonales et les différentes 

stratégies d'échantillonnage (avant la phase sexuée, après la phase sexuée). Les résultats 

montrent que chaque cas est différent. 
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La deuxième partie des résultats traite de la diversité génétique à un seul locus sous 

sélection ; nous supposons encore l'asexualité partielle acyclique pour obtenir les résultats 

présentés dans l'article suivant : 

Article IV :  La clonalité partielle et la vitesse d'adaptation 

Nous avons modélisé les fréquences des génotypes auprès des populations partiellement 

clonales à des loci sous sélection suivant l’un des quatre scénarios de sélection différents. 

Les résultats montrent que la clonalité partielle est rarement optimale pour l'adaptation 

basée sur des loci uniques, à la fois en termes de vitesse et de valeur sélective moyenne de 

la population au final. 

Ce manuscrit est suivi d'un sous-chapitre final qui comprend un premier pas vers une 

extension du modèle à deux loci. 

La thèse se termine par une discussion et une conclusion globale. 
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Part II Methods 

  



	

 38 

  



	

 39 

5 Mathematical model 

5.1 Model choice 

Mathematical models come in many different types; which one to choose depends on the 

nature of the system that is to be modeled (Otto & Day 2007). The basic dichotomies 

between different types of models (figure 5.1) are whether the range of possible values for 

the modeled variables (including time) is discrete (∈ ℕ  or ℤ) or continuous (∈ ℝ), and 
whether the value of the variables will be fully predictable (deterministic model) or to some 

extent random (stochastic model). The decision usually depends on the scale at which the 

natural system is analyzed: though most processes in nature are stochastic, they may appear 

deterministic at a higher scale because the emergent behavior is driven by the mean over 

many instances of the random lower-scale process. An example from population genetics 

would be the Hardy-Weinberg equilibrium: though each individual is assumed to mate 

randomly, the genotype and allele frequencies within the whole population remain 

constant. Deterministic models are often easier to treat mathematically, but may produce 

inaccurate results if applied to inherently stochastic systems. 

 

Figure 5.1  Schematic overview of different types mathematical models, with examples. 

Mathematical models in population genetics typically belong to either of two main groups: 

so-called “classic” models, which directly describe allele/genotype frequencies or derived 

quantities (e.g. the fraction of heterozygous genotypes or probabilities of identity between 

alleles) on a chronological time scale, or coalescent models. Classic models based on 

genotype frequencies are usually intuitive to construct, but may become very complex: for 

example, if the frequencies of all diploid genotypes that are possible based on a stretch of 

100 DNA base pairs should be modeled, the model would have 10100 variables. Therefore, 

classic population genetic models often look at some sort of subsystem, such as single loci 

with limited allelic diversity (e.g. Hardy 1908, Weinberg 1908, Wright 1921, de Finetti 1926, 

1927), or use some simplification, such as modeling randomly mating, exclusively sexual 

populations based on allele frequencies rather than genotype frequencies (since the latter 

can be derived from the Hardy-Weinberg equilibrium; Ewens 2004). Classic models for small, 

finite populations typically use Markov chain models (more details below), which can be 

approximated by a diffusion equation (stochastic differential equation, e.g. Ohta & Kimura 

1969) if the population size is big, or even by a deterministic model (e.g. Hardy 1908) if the 

population size (again as a simplification) is assumed to be infinite (Kimura 1964). 

Coalescent models (Kingman 1982a, b; Fu & Li 1999) avoid the complexity that limits classic 

population genetic models by not describing allele (or genotype) frequencies directly, but 
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concentrating only on those alleles – typically whole DNA sequences (haplotypes) – 

currently observed to reconstruct their hypothetical genealogy. This reconstruction is based 

on the paradigm that all alleles in a population are derived from a common ancestor (a 

concept similar to monophyly/paraphyly in biological systematics); “past” alleles who do not 

have descendants in the current population can thus be ignored (figure 5.2). Though the 

branching of different allelic lineages, on a reversed time scale equivalent to their merging 

or “coalescence”, is per se independent of mutation, infinite alleles / infinite loci mutation 

models play a large role in coalescence theory: assuming that each mutation creates a new 

allele (no back mutation) allows to distinguish a maximal number of allelic lineages and 

simplifies the derivation of analytical results. These results primarily describe populations in 

terms of time (“coalescence time” since the universal most recent common ancestor), by a 

reference population size and measures of allelic (lineage) diversity. Mathematically, 

coalescence theory typically uses stochastic models with discrete states but continuous 

time (i.e. Markov processes, Poisson process). 

 

Figure 5.2 Illustration of Kingman’s paint box analogy for coalescence (Kingman 1982a, b), with 

four allelic lineages distinguished by different alleles. MRCA: most recent common 

ancestor. 

This thesis uses a classic model of population genetics. Firstly, this is because the biological 

system we intend to model is less easily accessible with coalescence theory: individual 

SNP/microsatellite loci have only a limited allelic diversity (e.g. at most four alleles in the case 

of an SNP), and back mutations are known to occur (Hile et al. 2000, Estoup et al. 2002). 

Deriving analytical results with mutation among a finite number of alleles is easier in a time-

forward classical model; in coalescence theory, such mutation schemes are as yet only 

accessible by simulation (Wakeley 2009). Secondly, time-forward models can provide 

probabilistic predictions for directly observable quantities such as genotype frequencies, 
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which is especially practical for biological questions relating to a population’s future rather 

than its past, e.g. for studying adaptive processes or conservation genetics. Thirdly, since not 

much is known about the population genetics of partially asexual species in general, a 

classic population genetic model describing genotype frequencies can serve as a reference 

to check whether the results of other, more abstract models are consistent.  

5.2 Model assumptions and structure 

In terms of biology, our model describes the genotype frequencies within a single, isolated 

population with a finite, small constant number of individuals (ramets; see chapter 3.1). The 

individuals are monecious and diploid, and their genotype is based on a single genomic 

locus with two or more alleles. In the course of one generation, individuals may acquire 

potentially heritable mutations, usually with a symmetric mutation rate turning the current 

allele into any other. Then, offspring is produced either exclusively sexually by random 

mating (including selfing), exclusively asexually, or both in a set proportion (rate of 

asexuality), from which the requisite number is chosen to replace their parents at the next 

generation. If natural selection occurs, it mostly affects the reproductive success of the 

parent generation. This life cycle is schematically represented in figure 5.3. Cyclical 

parthenogenesis corresponds to several rounds of this cycle, each with either exclusively 

sexual or exclusively asexual reproduction. 

 

 

Figure 5.3  Schematic representation of the model life cycle. Step 0 (selection) is not included in 

the selectively neutral case; cyclic parthenogenesis corresponds to several exclusively 

asexual/sexual cycles. 

In terms of population genetics, our model is a “Wright-Fisher model”: there is no survival 

between generations (in contrast to the Moran model), and the potential number of 

offspring per individual is unlimited (in contrast to a general Cannings model; Ewens 2004, 
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compare Der et al. 2011 for a critical appraisal). These two assumptions primarily ease the 

mathematical description. Survival between generations could be easily introduced by a 

“survival rate”, which keeps a proportion of the offspring at each generation exactly identical 

(i.e. no mutation) to its “parent”, i.e. itself. To take limits in the production of sexual (e.g. 

number of seeds per plant) and asexual offspring (e.g. number of runners per plant) into 

account would increase computation time, as the multinomial distribution in our model 

(chapter 5.3) would have to be replaced by a more complicated hypergeometric 

distribution. We chose the Wright-Fisher model to start with the most “basic” approach, 

without introducing additional model parameters (survival rate, maximal number of 

descendants). 

In terms of mathematics, our model is a time and state discrete Markov chain. Markov chains 

are sequences of stochastic “experiments”: As an example (figure 5.4B), imagine a set of six 

unequally “loaded” dice, labeled one to six. To start the chain, the first die (e.g. number one) 

is rolled, and the next die is determined by the number which turns up – which might be 

number one again, which this time turns up a three so that the die is changed, and so on 

until we stop. The sequence of dice would be the sequence of states of our Markov chain, 

and the probabilities with which each die turns up different numbers would be its transition 

probabilities. In the case of our model, the states are different combinations of counts for 

each genotype – e.g. one individual aa, three individuals aA and six individuals AA (figure 

5.4C) – and the transition probabilities between different generations (or observations) are 

determined by the model parameters N  (population size), µ  (mutation rate), c  (rate of 
clonality, or fraction of asexual generations per cycle under cyclical parthenogenesis) and, if 

applicable, s (selection coefficient). 

 

 

Figure 5.4  Markov chains as sequences of stochastic experiments. A: a geometric progression (a 

sequence), B: six loaded dice (a Markov chain), C: our model (another Markov chain), D: 

general form of a Markov chain. M – transition matrix. 
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5.3 Model equations 

We modeled evolution in partially asexual populations by a Markov chain (Markov 1906). 

Markov chains are defined by their state space S and the pairwise transition probabilities 

p X456 X4  between all states X. Four our model, the state space depends on the genetic 

system that is modeled – number of loci ℒ, number of alleles 8, ploidy 9, population size N 
– and the transition probabilities depend on the model parameters – rate of clonality, 

mutation rate, population size etc. 

The state space of our Markov chain consists of all possible combinations of counts X =

(q<<, q<>, … )  with q<<< + q<><,> = N  for each genotype possible in the modeled genetic 

system. In general, the number of possible genotypes g is: 

1a 				g =
8<

9

ℒ

<D6

=
8< + 9 − 1 !

9! ∙ 8< − 1 !

ℒ

<D6

. 

However, for systems with multiple loci, it is necessary to treat each haplotype as a 

“composite” allele so that crossing-over can be correctly described, leading to the 

alternative equation: 

1b 				g =
8<

ℒ
<D6

9
=

8<
ℒ
<D6 + 9 − 1 !

9! ∙ 8<
ℒ
<D6 − 1 !

. 

In both cases, the number of states S  corresponds to: 

2 				 S =
g

N
=

N + g − 1 !

N! ∙ g − 1 !
. 

As an example, a single locus with two possible alleles {a, A} gives rise to three different 

genotypes {aa, aA, AA}, and a “population” of one single individual would thus have three 

model states to choose from: S	 = 	 1,0,0 , 0,1,0 , 0,0,1 . For two individuals, there are 

already six possible states in our model: S	 = 	 2,0,0 , 1,1,0 , 0,2,0 , 1,0,1 , 0,1,1 ,

0,0,2 . Dividing the combination of counts by the population size gives the corresponding 

vector of genotype frequencies ν = νLL, νLM, νMM .  

For each state, one can calculate different population genetic parameters such as the 

frequency of individual alleles (νL = 1 − νM ), the frequency of heterozygous genotypes 

(“heterozygosity”, H), the mean fitness of the population (Φ, based on the genotype fitness 

values φLL, φLM, φMM) or F"#. In the first three cases, this is simply done by multiplying the 
frequency of each genotype by its contribution to the parameter, e.g.: 

3a 				νL =
1
0.5
0

∙

νLL
νLM
νMM

;	 

3b 				H =
0
1
0
∙

νLL
νLM
νMM

;	 
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3c 				Φ =

φLL

φLM

φMM

∙

νLL
νLM
νMM

. 

In contrast, the value of F"#, a parameter that describes the relationship between observed 

and expected (assuming the Hardy-Weinberg equilibrium) heterozygosity (HT, HU), is given 
by the more complex expression: 

3d 				F"# = 1 −
HT
HU

= 1 −
νLM
2νLνM

. 

The transition probabilities p X456 X4  of our model are based on a multinomial 

distribution ℳ. In the simplest case, one could imagine that, at each time step, N	individuals 
are randomly chosen (with replacement) to produce one clonal descendant without 

mutation. In this case, the probability of each genotype in the offspring generation would 

depend only on its frequency in the parent generation: 

4a 				X456 ∼ ℳ N, ν4  

and consequently (subscripts ii/ij denoting different genotypes):  

4b 				p X456 X4 =
N!

q<<,456 !< ⋅ q<>,456 !<,>

	 ⋅ ν
<<,4

\]],^_`

<
⋅ ν

<>,4

\]a,^_`

<,>
. 

If we integrate other evolutionary processes into the model, the probability of each 

genotype in the offspring generation changes. The vector of genotype probabilities, for 

which we had entered ν4, will be transformed according to the action of each evolutionary 
process: one could imagine that the parent population first gives rise to a “virtual” infinite-

sized offspring population, where the frequency of each genotype corresponds to its 

probability, from which N  individuals are then chosen randomly to become the “real” 
offspring. To determine the effect of each evolutionary process on the genotype 

probabilities, we will therefore treat these probabilities like genotype frequencies in an 

infinite population. The order of the transformations corresponds to the order of 

evolutionary processes in our model as presented in figure 5.3. 

0 Selection 

To model selection, all genotype frequencies are multiplied by their fitness value, and the 

resulting vector is rescaled to sum to one: 

5a 				

νLL
νLM
νMM b

=
1

φLLνLL + φLMνLM + φMMνMM

φLLνLL
φLMνLM
φMMνMM 4

 

This generalizes to: 

5b 				νb = φ ⋅ ν4
c6 φ ∘ ν4  

where ⋅  denotes the dot product and ∘  the Hadamard (element-wise) product of the 
vectors. 



	

 45 

I Mutation 

Between two observations, each allele mutates with rate µ, and does not mutate with rate 

1 − µ. For the basic case of one locus with two alleles, this gives: 

6a 				

νLL
νLM
νMM "

=

1 − µ e µ 1 − µ µe

2µ 1 − µ µe + 1 − µ e 2µ 1 − µ

µe µ 1 − µ 1 − µ e

νLL
νLM
νMM b

 

For more alleles (k-alleles/Jukes-Cantor mutation model), let α = 1 − µ  and β =
h

ic6
 

(probability to mutate into one of n alleles), so that this generalizes to: 

6b 				

	ν<<," = αe ⋅ ν<<,b + ν>>,b ⋅ β
e

>
+ ν<>,b ⋅ αβ

>
+ ν>k,b ⋅ β

e

>,k

ν<>," = 2αβ ⋅ ν<<,b + ν>>,b + 2βe νkk,b
k

+ αe + βe ⋅ ν<>,b

	 +	 αβ + βe ⋅ ν<k,b + ν>l,b
k,l

+ 2βe ⋅ νkl,b
k,l

 

Asymmetric mutation rates are also possible – here, n − 1 of m alleles were “lumped” into 
one to reduce computational effort, giving two alleles A and a = “not A”: 

6c 				

νaa
νaA
νAA I

=

1 −
µ

n − 1

2

µ 1 −
µ

n − 1
µ2

2µ

n − 1
1 −

µ

n − 1
µ

µ

n − 1
+ 1 − µ 1 −

µ

n − 1
2µ 1 − µ

µ

n − 1

2

1 − µ
µ

n − 1
1 − µ 2

νaa
νaA
νAA 0

 

For a two-locus model, the entries in the mutation matrix are the product of the 

corresponding entries of the mutation matrices for each individual locus. The vector 

resulting from multiplication with the mutation matrix, ν"qrs , is then multiplied with another 

matrix to model crossing-over at rate r between the two loci in the two double heterozygote 
genotypes: 

6d 				

νLu/Mv
νLv/Mu
νLv/Lv
⋮ "qrq

=

1 − r r 0 ⋯
r 1 − r 0 ⋯
0 0 1 ⋯
⋮ ⋮ ⋮ ⋱

νLu/Mv
νLv/Mu
νLv/Lv
⋮ "qrs

 

II Allele segregation / Gamete formation 

The frequencies of haploid gamete genotypes simply correspond to the allele frequencies: 

7a 				
νL
νM ""

=
1 0.5 0
0 0.5 1

νLL
νLM
νMM "

 

This generalizes to: 

7b 					ν<,"" = ν<<," + 0.5 ν<>,"
>

 

for all alleles. 
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III Reproduction 

Under acyclic partial asexuality, a proportion c of the offspring is produced clonally and the 

rest by random mating; for cyclical parthenogenesis, c  is either zero (exclusively sexual 
reproduction) or one (exclusively asexual reproduction). For random mating, the genotype 

frequencies conform to the Hardy-Weinberg equilibrium based on the allele/gamete 

frequencies after mutation; for clonal reproduction, the genotype frequencies are only 

affected by mutation: 

8a 				

νLL
νLM
νMM """

= c

νLL
νLM
νMM "

+ (1 − c)

νL
e

2νLνM
νM
e

""

 

This generalizes to: 

8b 			
ν<<,456 = cν<<," + (1 − c)ν<,""

e

ν<>,456 = cν<>," + (1 − c)2ν<,""ν>,""
 

IV Genetic drift 

In analogy to the initial equations [4a], we can now write the final step of the model: 

9a 				X456 ∼ ℳ N, νLL, νLM, νMM """ , 

or in general  

9b 				X456 ∼ ℳ N, ν""" , 

which corresponds to the transition probabilities: 

10a 				p X456 X4 =
N!

qLL,456! ⋅ qLM,456! ⋅ qMM,456!
	 ⋅ νLL,"""

\zz,^_` ⋅ νLM,"""
\z{,^_` ⋅ νMM,"""

\{{,^_`  

and 

10b 				p X456 X4 =
N!

q<<,456 !< ⋅ q<>,456 !<,>

	 ⋅ ν
<<,"""

\]],^_`

<
⋅ ν

<>,"""

\]a,^_`

<,>
. 

The model description of Stoeckel & Masson (2014) for a single biallelic locus gives exactly 

the same results as equations [6]-[10], as the equations are only rearranged: 

1 					

pLL
i56 = 1 − µ epLL

i + µ 1 − µ pLM
i + µepMM

i

pLM
i56 = 2µ 1 − µ pLL

i + [µe + 1 − µ e]pLM
i + 2µ 1 − µ pMM

i

pMM
i56 = 1 − µ epMM

i + µ 1 − µ pLM
i + µepLL

i

 

This corresponds to equation [6a]. 

2 					

qLL
i56 = 1 − µ pLL

i + µpMM
i + 0.5pLM

i e

qLM
i56 = 2 1 − µ pLL

i + µpMM
i + 0.5pLM

i 1 − µ pMM
i + µpLL

i + 0.5pLM
i

qMM
i56 = 1 − µ pMM

i + µpLL
i + 0.5pLM

i e

 

This corresponds to equations [6a] and [7a] inserted into the last vector in equation [8a], so 

that  

3 					π<>
i56 = cp<>

i + 1 − c q<>
i  
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corresponds to the full equation [8a], and their equation: 

4 					P sLL, sLM, sMM rLL, rLM, rMM =
N!

sLL! ⋅ sLM! ⋅ sMM!
	 ⋅ πLL

i56 Çzz ⋅ πLM
i56 Çz{ ⋅ πMM

i56 Ç{{  

is exactly the same as equation [10a]. 

The basic equation of a Markov chain describes the probabilities x456 of all states at the next 

time step, given a transition matrix M and a vector of current state probabilities x4: 

11 				x456 = Mx4 

The transition matrix M, which is square and of dimension S  (number of model states), 

aggregates all transition probabilities of the chain so that columns correspond to X4 (and 

consequently sum to one) and rows correspond to X456  (and need not sum to one). The 

stochastic column vector x4  of dimension S  is typically a vector of zeros except for the 

entry corresponding to the current state X4, which equals one.  

The transition matrix M is the same for each generation under acyclic partial clonality, so 

that the transition probabilities after an arbitrary number of generations k after the current 
state can be calculated by matrix potentiation: 

12 				ν45k = Mkx4 

For cyclical parthenogenesis the transition matrix changes during each cycle, as there are 

two different rates of clonality. However, equation [12] can be used to construct a transition 

matrix that spans not just from one generation to the next, but across a whole cycle of k 
asexual and one sexual generation: 

13a 				MÜáL = MàD6
k MàDb 

13b 				MÜáv = MàDbMàD6
k  

Equation 13a  corresponds to observation after, equation 13b  to observation before the 
sexual generation. The differences between these two matrices and a transition matrix for 

acyclic partial clonality are discussed in detail in article III. 

According to matrix algebra, each transition matrix has S  different vectors (i.e. they cannot 
be transformed into each other by multiplication with a common factor or “scalar”) for which 

multiplication with the matrix does not change the relative value of the vector entries, but 

corresponds to a multiplication with a scalar λ: 

14 				λxä = Mxä 

These vectors xä  are called “eigenvectors”, and the associated scalars λ “eigenvalues” of 
the matrix. The eigenvector with the biggest absolute eigenvalue is the “dominant” 

eigenvector of the matrix; for our transition matrices, this is always an eigenvector with the 

eigenvalue one (according to the Perron-Frobenius theorem, Perron 1907). This dominant 

eigenvector is of special interest for the analysis of the model: it can be demonstrated (von 

Mises & Pollaczek-Geiringer 1929) that the repeated multiplication of any (non-zero) vector 

of dimension S  with the transition matrix M leads to a convergent result, which is equal to 
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the dominant eigenvector of the matrix. The eigenvector thus describes the probabilities of 

all model states after an infinite number of generations. 

5.4 Model analysis 

Improved hardware has made it possible to compute Markov chain models with many more 

states than in the early days of population genetic research. Yet it also opens up new 

possibilities for model analysis: calculation-intensive matrix algebra operations (e.g. matrix 

inversion, finding eigenvalues and eigenvectors) can now be executed in few 

seconds/minutes by a computer. We used the “classic”, well-studied example of an 

exclusively sexual population of fixed size and including mutation as a reference to explore 

these new possibilities, but also to probe its limits as the number of states increases (e.g. by 

increasing the population size). 

By translating concepts e.g. from network analysis into the context of our population 

genetic model, we found several new ways to display and analyze the results of our model. 

New plotting methods based on de Finetti diagrams allow a concise presentation of results 

across the complete state space of our model, by linking together genotype frequencies, 

allele frequencies and other population genetic parameters such as F"# . Passing from a 
“dense” (i.e. nonzero value in every cell) to a “sparse” approximate (i.e. only values which are 

noticeably different from zero are stored) matrix may make it possible to extend the state 

space of Markov chain models even further, or at least speed up calculations on computers 

with less memory. We provide an approximation algorithm that will keep the 

mathematically important properties of the original “dense” matrix. 

The methods presented in the following article will be used throughout the results part of 

this thesis. Depending on the research question, some were more helpful than others: the 

“most probable neighbor” and derived “landscape” method seem especially well-adapted 

to display the dynamic behavior of the Markov chain model, while the “eigenvector” and 

“time to” methods are more revealing for its long-term and limiting behavior. All results of 

the thesis were derived without the sparse approximation (either because of the chronology 

of the work, or because the number of states would still have been too large, e.g. for models 

with two loci), yet it may still be used in the future, e.g. as part of a data analysis program 

based on our results.  

Analyse du modèle 

Du matériel amélioré a permis de calculer les modèles de chaîne de Markov avec beaucoup 

plus d'états que dans les premiers jours de la recherche en génétique des populations. 

Pourtant, il ouvre aussi de nouvelles possibilités pour l'analyse des modèles : les opérations 

de calcul matriciel très exigeants en calcul (par exemple inversion d’une matrice, trouver des 

valeurs propres et vecteurs propres) peuvent désormais être exécutées en quelques 

secondes / minutes par un ordinateur. Nous avons utilisé l’exemple « classique » et bien 

étudié d'une population exclusivement sexuée à taille finie avec mutation comme référence 
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pour explorer ces nouvelles possibilités, mais aussi de sonder ses limites si le nombre d'états 

augmente (par exemple en augmentant la taille de la population). 

Par exemple, en traduisant des concepts de l'analyse de réseau dans le cadre de notre 

modèle de génétique des populations, nous avons trouvé plusieurs nouvelles façons 

d'afficher et d'analyser les résultats de notre modèle. De nouvelles méthodes de traçage 

basées sur les diagrammes de de Finetti permettent une présentation concise des résultats 

à travers l'espace des états complets de notre modèle, en reliant les fréquences 

génotypiques, les fréquences des allèles et d'autres paramètres de génétique des 

populations tels que le F"#. Passant d'une matrice « dense » (c’est-à-dire avec des valeurs non 
nulles dans chaque cellule) à une matrice « creuse » approximative (c’est-à-dire uniquement 

des valeurs qui sont sensiblement différentes de zéro sont stockées) peut permettre 

d'étendre l'espace d'état de modèles de chaîne de Markov encore plus, ou au moins 

d'accélérer les calculs sur les ordinateurs avec moins de mémoire. Nous fournissons un 

algorithme d'approximation qui va garder les propriétés mathématiquement importantes 

de la matrice d'origine « dense ». 

Les méthodes présentées dans l'article suivant seront utilisées tout au long de la partie 

« résultats » de cette thèse. En fonction de la question de recherche, certains étaient plus 

utiles que d'autres : le « voisin le plus probable » et la méthode « paysage » dérivée semblent 

particulièrement bien adaptés pour afficher le comportement dynamique du modèle de 

chaîne de Markov, tandis que les méthodes « vecteur propre » et « temps jusqu’à » sont plus 

révélatrices pour sa durée et son comportement en limite. Tous les résultats de la thèse ont 

été obtenus sans l'approximation « creuse » (soit à cause de la chronologie de l'œuvre, ou 

parce que le nombre d'états aurait toujours été trop grand, par exemple pour les modèles 

avec deux loci), mais il peut encore être utilisé dans l’avenir, par exemple dans le cadre d'un 

programme d'analyse de données basé sur nos résultats. 
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Article I  Outils pour l’interprétation et l’approximation des 

matrices de transition grandes et denses des chaines de 

Markov en génétique des populations 

Sommaire de l’article 

Contexte – Les chaînes de Markov sont un cadre commun pour des modèles d’état et temps 

discrets basés sur l'individu en évolution. Bien qu'ils aient joué un rôle important dans le 

développement de la théorie de base en génétique des populations, l'analyse des scénarios 

évolutifs plus complexes implique généralement une approximation avec d'autres types de 

modèles. Comme le nombre d'états augmente, les matrices de transitions grandes et denses 

impliquées deviennent de plus en plus difficiles à manier. Cependant, le progrès de la 

technologie en informatique continue de réduire les défis des mégadonnées, donnant ainsi 

de nouvelles possibilités pour les chaînes de Markov riches en états dans la théorie de la 

génétique des populations. 

Résultats – En prenant un modèle de génétique des populations à la base de fréquences 

génotypiques comme exemple, nous proposons un ensemble de méthodes pour faciliter le 

calcul et l'interprétation des matrices de transitions grandes et denses des chaînes de 

Markov. Avec l'aide de l'analyse de réseau, nous démontrons comment ces matrices peuvent 

être transformés en graphiques clairs et faciles à interpréter, offrant une nouvelle 

perspective même sur le cas classique de l’accouplement au hasard en population finie avec 

mutation. En outre, nous décrivons un algorithme pour économiser de la mémoire dans 

l'ordinateur en remplaçant la matrice d'origine avec une approximation « creuse » tout en 

préservant ses propriétés mathématiquement importantes, y compris un vecteur propre 

dominant (normalisé) correspondant étroitement. Une analyse de sensibilité globale des 

résultats d'approximation dans notre exemple montre qu’une réduction de la taille de plus 

de 90% est possible sans affecter de manière significative les résultats du modèle de base. 

Des implémentations de nos méthodes à titre d’exemple sont collectées dans le module 

mamoth écrit en Python. 

Conclusion – Nos méthodes aident à rendre le calcul des modèles stochastiques en 

génétique des populations impliquant matrices des transition grandes et denses possibles. 

Nos techniques de visualisation fournissent de nouvelles façons d'explorer ces modèles et 

de présenter leurs résultats de manière concise. Ainsi, nos méthodes contribueront à établir 

les chaînes de Markov riches en états comme un complément précieux à la diversité des 

modèles en génétique des populations actuellement employés, fournissant de nouveaux 

détails intéressants sur l'évolution dans, par exemple, des systèmes de reproduction non-

standard comme la clonalité partielle. 
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Markov chain transition matrices in population 

genetics 
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27/10/2015 Algorithms for Molecular Biology, accepted with minor revisions 

09/07/2014 older draft version in arXiv.org q-bio: http://arxiv.org/abs/1407.2548 

Abstract 

Background – Markov chains are a common framework for individual-based state and time 

discrete models in evolution. Though they played an important role in the development of 

basic population genetic theory, the analysis of more complex evolutionary scenarios 

typically involves approximation with other types of models. As the number of states 

increases, the big, dense transition matrices involved become increasingly unwieldy. 

However, advances in computational technology continue to reduce the challenges of "big 

data", thus giving new potential to state-rich Markov chains in theoretical population 

genetics. 

Results – Using a population genetic model based on genotype frequencies as an example, 

we propose a set of methods to assist in the computation and interpretation of big, dense 

Markov chain transition matrices. With the help of network analysis, we demonstrate how 

they can be transformed into clear and easily interpretable graphs, providing a new 

perspective even on the classic case of a randomly mating, finite population with mutation. 

Moreover, we describe an algorithm to save computer memory by substituting the original 

matrix with a sparse approximate while preserving its mathematically important properties, 

including a closely corresponding dominant (normalized) eigenvector. A global sensitivity 

analysis of the approximation results in our example shows that size reduction of more than 

90% is possible without significantly affecting the basic model results. Sample 

implementations of our methods are collected in the Python module mamoth. 

Conclusion – Our methods help to make stochastic population genetic models involving 

big, dense transition matrices computationally feasible. Our visualization techniques 

provide new ways to explore such models and concisely present the results. Thus, our 

methods will contribute to establish state-rich Markov chains a valuable supplement to the 

diversity of population genetic models currently employed, providing interesting new 

details about evolution e.g. under non-standard reproductive systems such as partial 

clonality.  

Keywords discrete stochastic model, sparse approximation, eigenvector, network 

analysis, population genetics, compositional data, de Finetti diagram 
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Background 

Natural systems often possess inherently discrete states in space, time or both. Atoms, 

molecules and cells, organs, individuals, populations and taxa usually appear as distinct 

entities; along the time axis, the radiation cycles we use as the basis for atomic clocks, 

neuronal action potentials, developmental stages in an organism’s life cycle, generations 

and the revolutions of the earth around the sun are examples for similar patterns. 

Modeling these discrete systems as such can have advantages over continuous 

approximations. One of the earliest examples comes from thermodynamics (Planck 1900), 

where heat emission spectra could only be predicted correctly if energy “comes in packets”, 

known as “quanta”. This discovery led to the new field of quantum mechanics, which 

provided the necessary theory for understanding the photovoltaic effect (Einstein 1905), 

thus proving essential for the invention of solar cells. In biology, the re-discovery of Mendel’s 

rules and thus of the “quantal” nature of genetic heritability, at about the same time as 

Planck's famous speech, has had a similar impact on the study of evolution as the latter's 

research has had on thermodynamics (Ewens 2004). While most of the objects of biological 

research have long been recognised as discrete (e.g., the word individual literally means not 

dividable, a notion very similar to that of a quantum), we still struggle with understanding 

the processes, such as evolution, linking them to potential emergent properties (analogous 

to the physicists' heat spectra) at higher levels. Mathematical models preserving the discrete 

nature of the biological system are thus an interesting field of study. 

Markov chains are a classical framework for modeling state and time discrete stochastic 

systems. Based on the assumption that the modeled system is memoryless (Markov property, 

Markov 1906), the basic model equation consists in multiplying a "start" vector, providing 

the state of the system at a given time, with a typically square "step" matrix. This matrix holds 

the transition probabilities, which depend on the model parameters and typically remain 

constant through time, between all possible states of the system within one time step. By 

analyzing the transition matrix, both the "short term" transient behavior and the "long term" 

limiting behavior of the model can be studied, thus putting the matrix at the center of 

attention for the biological interpretation of the results. Markov chains and other related 

forms of matrix-based models, such as Leslie models in population dynamics, are already 

widely in use (e.g. Feller 1971, Otto & Day 2007, Allen 2011), yet in many cases the number 

of modeled states is comparatively small and/or a major part of the transitions are 

considered impossible. The latter property leads to many zeros in the transition matrix, 

which then becomes sparse, as opposed to a dense matrix where zeros are rare. 

Computationally, sparse matrices are advantageous since memory may be saved by storing 

only those values which are different from zero. Special algorithms exist to carry out 

standard operations (e.g. matrix multiplication) directly on matrices stored in a sparse 

format (e.g. Davis 2006, 2011). 

In population genetics, state and time discrete Markov chains are known primarily by the 

example of the classic biallelic Wright-Fisher model (Ewens 2004), which uses a one-

dimensional random walk to describe the evolution of allele frequencies under genetic drift. 

For a population of N diploid organisms, the states of the Markov chain correspond to each 
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of the 2N + 1 possible combinations of counts of the two alleles that sum to the constant 

total 2N. Accordingly, a square transition matrix (assuming constant population size) would 

have (2N + 1)e entries. As the number of states further increases both with the population 

size and the complexity of the underlying genetic system (number of alleles and loci, table 

1), the dynamics of allele frequencies in bigger populations are typically approximated by a 

continuous diffusion process based on the Fokker-Planck / Kolmogorov equations (Feller 

1971), or even by deterministic equations assuming an "infinite" population size (e.g. as for 

the derivation of the Hardy-Weinberg equilibrium, Hardy 1908, Weinberg 1908). An 

alternative approach is coalescence theory, which uses re-defined discrete states and a 

reversed continuous time scale to specifically approximate certain aspects of the original 

state and time discrete Markov chain (e.g. Orive 1993a, Ceplitis 2003). While each of these 

approximations has its strengths and weaknesses (e.g. as discussed in Gale 1990, 

Greenbaum 2015), population genetic models that stay with the classic state and time 

discrete, chronological framework appear to be rare. One example is the model presented 

in (Stoeckel & Masson 2014): an extension of a classic biallelic Wright-Fisher model, it is 

based on genotype rather than allele frequencies. This design appears better adapted for 

the study of partially clonal populations, but also results in a bigger state space (e.g. for two 

alleles, combinations of the counts of each of three genotypes rather than those of the two 

alleles). The technical effort of storing and manipulating the big, dense transition matrices 

essential to such a model hardly seems to merit the results, which in turn have to be 

extracted from a great amount of data; adapted methods for interpretation and storage size 

reduction appear to be missing. 

In this article, we provide a set of methods for visualizing and interpreting both the transient 

and limiting behavior of population genetic models involving state-rich, irreducible, 

aperiodic and time-homogeneous Markov chains, based on the transition matrix and its 

dominant eigenvector, as well as a method for approximating a dense transition matrix by 

a sparse substitute. For the first part, we combine de Finetti diagrams (de Finetti 1927) with 

network analysis, extending both concepts to provide clear and informative diagrams for 

the analysis of population genetic processes. For the second part, we use a predefined 

threshold (minimal percentage of information contained in the transition matrix) to keep 

only the more probable transient behavior of the model, while at the same time ensuring 

that mathematically important matrix properties are kept. The model presented in (Stoeckel 

& Masson 2014) serves as an example to illustrate our methods. 

Model example 

The population genetic model of Stoeckel & Masson (2014) describes the evolution of 

genotype frequencies based on a single locus with two alleles a and A in a fixed-size 

population of diploid, partially asexual organisms. States are defined as assignations of the 

N individuals in the population on the three possible genotypes (aa, aA, AA). The transition 

probabilities between the states depend on a symmetric mutation rate µ and a constant rate 

of asexual reproduction c , defined as the probability that an individual in the next 
generation was derived clonally from a single parent. 
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Transition matrices M  resulting from this model are generally square, due to the fixed 
population size (a common feature of many population genetic models, compare (Ewens 

2004). They also have a density of one – transitions between all states are possible in one 

step, although some of them (e.g. all individuals aa to all individuals AA) are very unlikely. 

The corresponding Markov chain is thus irreducible (single communicating class, no 

absorbing states) and aperiodic (period of all states equals one, same state possible in 

consecutive time steps). Since the mutation rate µ is symmetric, i.e. changes from a to A are 

just as likely as the inverse, M is also partially symmetric: if the transition probabilities from 
one particular state to all others have been calculated, swapping the names of all alleles also 

gives a correct result (compare figure 1 and 2). The notation in this article assumes left-

stochastic matrices (columns represent the transition probabilities from one state to all 

others and thus sum to one), which implies that the limiting behavior of the Markov chain is 

described by its transition matrices' (normalized) right eigenvector v to the eigenvalue with 
the largest absolute value (and multiplicity one, Perron 1907): one. 

The number of states in this model, and thus the size of the transition matrix M, depends 
on the one hand on the population size and on the other hand on the complexity of the 

genomic system being modeled, in particular the number of different genotypes possible. 

For a given number of genotypes g, the cardinality of the state space S (respective number 
of rows and columns in the transition matrix) in a genotype-based discrete stochastic model 

is: 

	 S =
g

N
=

N + g − 1 !

N! ∙ g − 1 !
	

From this equation it follows that the number of states increases exponentially with 1 +

	(g − 1)/(N + 1)  for increasing N  and with 1 + 	N/g  for increasing g . For the number of 

possible genotypes, the ploidy level of the organism 9, the number of (partially linked) loci 

ℒ and their respective numbers of alleles 8<, with i ∈ 1…ℒ, need to be taken into account: 

g =
8<

9

ℒ

<D6

=
8< + 9 − 1 !

9! ∙ 8< − 1 !

ℒ

<D6

	

Examples for the size of the resulting transition matrices are given in table 1. From these 

numbers, it is clear that a realistic "base-by-base" model of a full genome is still far beyond 

the capacity of current computer technology; however, many cases (biallelic SNPs, unlinked 

loci or blocks of completely linked loci) can already be interpreted based on the very simple 

one-locus/two-alleles model (Brookes 1999). It remains the dependence of S  on the 

population size N, which is fortunately not so strong (for N > g − 1).  

To illustrate our methods, we will mostly use transition matrices derived for completely 
sexual populations (c = 0.0), a case for which both transient and limiting behavior are 
generally known and interpretations can be easily verified (de Finetti 1927, Ewens 2004). For 
the mutation rate, µ = 10cç  was chosen as a plausible value based on experimental  
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Table 1.  Examples of matrix size based on the Stoeckel-Masson model. Memory sizes are 

approximate and assume 64-bit accuracy. 

é	 9	 ℒ	 8	 è	 ê 	 memory use 

20	 2	 1	 2	 3	 231	 420 KB 

100	 2	 1	 2	 3	 5	151	 205 MB 

500	 2	 1	 2	 3	 125	751	 120 GB 

1000	 2	 1	 2	 3	 501	501	 2 TB 

20	 4	 1	 2	 5	 10	626	 865 MB 

20	 2	 2	 2	 9	 3	108	105	 75 TB 

20	 2	 1	 4	 10	 10	015	005		 730 TB 

20	 2	 2	 4	 100	 9.8×10eb	 6.5 × 1021 YB 

 

estimates (Drake 1991, Ellegren et al. 2003, Kronholm et al. 2010). N is either 5 ( S = 21), 20 

( S = 231) or 100 ( S = 5	151), for good visibility and easy reproducibility of the results. 

Our test of the sparse approximation method is based on the limiting distribution of F"#, a 
population genetic parameter of wide interest (e.g. as discussed in Wright 1922 under the 

name f, or in Halkett et al. 2005a) that was also analyzed in the original article describing our 

model example (Stoeckel & Masson 2014). For our example, the definition of F"# based on 

the allele (νL, νM) and genotype frequencies (νLL, νLM, νMM) is: 

F"# = 1 −
νLM
2νLνM

= 1 −
νLM

2(νLL + 0.5νLM)(νMM + 0.5νLM)
	

Results 

Working with big, dense transition matrices poses two connected problems: on the one 

hand, the storage size of the matrix may considerably slow down calculations or be 

altogether too big for the computer, on the other hand, the relevant information about the 

model may be difficult to extract from the great amount of data contained in the matrix. 

Visualization techniques for the interpretation of matrix data can, however, also help to find 

matrix properties which allow reducing the storage size, such as partial symmetry or the 

occurrence of many near-zero transition probabilities. We therefore start by describing the 

visualization techniques in the first part, and then move on to storage size reduction by 

sparse approximation in the second part of the results. 

Visualization 

An intuitive first step in analyzing the transient behavior of a Markov chain model is a 

diagnostic visualization of the transition matrix. By summarizing results in an accessible way, 

the resulting diagram may ideally also provide a basis for direct biological interpretation. 

With one exception (landscape plot), all the following visualization methods are available 

using the functions histogrid, histo3d and networkplot (with its support function percolation) 

in the mamoth module. 
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Heat map 

A heat map or histogram of the transition matrix, where the transition probabilities ó are 
symbolized by color / shade or height, is perhaps the easiest way to visualize it (figure 1). 

The resolution may be enhanced by an appropriate transformation of the range of values 

for ó, for example by using a negative logarithm ([0; 1] 	→ 	 [0;∞]) or a logit transformation 

([0; 1] 	→ 	 [−∞; 	∞]). 

For big matrices, heat maps can be costly to produce (memory size) and are often still not 

very clear, due to the large number of cases. However, they may help to recognize basic 

patterns (symmetries, groups of similar / more strongly connected states etc.) of potential 

value for finding more adapted visualizations / numerical methods. 

> In our example, the heat map shows that many of the transition probabilities in the matrix 

are, though not equal, very close to zero. After re-ordering the states, the partial symmetry 

of the matrix also becomes visible. 

 

Figure 1.  Heat maps of transition matrices for N = 5, µ = 10cç, c = 0.0. A. original probabilities, 

dense matrix B. logit(10)  transformed probabilities, dense matrix C. sparse 

approximate matrix of A, implicitly stored zero values in hatched grey D. as in B, with 

alternative state order, red lines connect identical values. 
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Network display 

The duality between matrices and graphs (e.g. Allen 2011, Aghagolzadeh et al. 2012) 

provides an alternative for the visualization and mathematical analysis of either structure. In 

a graph ù(û, ℰ), the states of a Markov chain are thus represented as nodes/vertices û and 

the transitions as (weighted and directed) edges ℰ  connecting them, which is especially 
useful for sparse transition matrices.  

For big, dense matrices, the number of edges in the resulting complete multidigraph (of 

edge multiplicity two) equals the number of entries in the transition matrix and is thus too 

big for easy interpretation. Concepts from network theory can be used to selectively display 

edges and summarize information about each state of the model system on the nodes. This 

leads to a variety of very clear synthetic representations constructed with different 

parameters and taking into account different time scales: from one generation (based on M) 

across t generations (based on M4) up to the long-time equilibrium (dominant eigenvector 

of M, v). 

To facilitate biological interpretation, we arranged the nodes of the network according to 

biological "meta data". For our model example where states represent distributions of 

individuals on three genotypes (aa, aA, AA) under a constant population size (compositional 

data), we placed the nodes in a de Finetti diagram (de Finetti 1927, see figure 2), a specialized 

ternary plot for population genetics. 

The following visualization techniques are based on selectively displaying the network's 

edges: 

Most probable neighbor – This is the analog to a nearest neighbor if distances (edge weights) 

represent probabilities. For each state i, there are one or several states j which have the 
highest probability to be the destination of a transition in the next time step; tracing these 

connections gives the expectation for the one-step transient behavior of the model. 

> In our example, the most likely state for the next generation (figure 2) is always on or very 

near to the Hardy-Weinberg Equilibrium, which is represented by the continuous black 

curve going through (1/4; 	1/2; 	1/4) in the diagram in figure 2A. 

Most probable path – This is the counterpart of a shortest path if distances (edge weights) 

represent probabilities. For each non-commutative pair of states i and j, there exists at least 

one series of consecutive edges connecting i  to j  along which the product of the edge 
weights is maximal. It can be determined by using an "ordinary" shortest path algorithm (e.g. 

Dijkstra 1959, Biswas et al. 2013) on a negative log transform of the transition matrix. The 

most probable path is the most likely trajectory of the model system to get from one state 

to another. 

> In our example (figure 2), a change from a population with only the aa genotype to one 

with only the AA genotype would closely follow the Hardy-Weinberg curve. 
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Figure 2.  Network display of transition matrices for N = 20, µ = 10cç, c = 0.0 . A. De Finetti 

diagram showing symmetry (dashed blue axis, red arrows corresponding to identical 

probabilities) and F"#  isocurves (gray and black) B. pstay  (node color), probability to 

stay at each node for one time step C. most probable path connecting (N, 0, 0) to 

(0, 0, N) D. most probable neighbors (directed edges) and in-degree (node color), i.e. 

for each node the most likely outbound transition at the next time step and the 

number of inbound most likely transitions from other states. Enlarged version in 

additional file 1. 

Flow threshold – Using the smallest probability along the most likely path between two 

nodes i and j as a threshold, very rare transitions can be excluded.  
> In our example (additional file 2), horizontal transitions along the base of the triangle, 

where no heterozygotes are produced despite of two homozygous genotypes being 

present in the population, would be excluded. 

The following visualization techniques are based on changing the appearance of the 

network's nodes: 

Degree – For each node in a graph representing a dense matrix, the number of incoming 

(in-degree) and outgoing (out-degree) edges is normally (approximately) equal to the 

number of nodes (matrix rows/columns). This method should therefore be used in 

connection with selective edge plotting and interpreted according to context. 

> In our example (figure 2), the nodes with the highest in-degree are nearest neighbors to 

the largest number of nodes; if all states were equally likely at the current generation, those 
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next to (0.25; 	0.5; 	0.25) on the Hardy-Weinberg curve would be the most likely in the next 
generation. 

Betweenness-centrality – Based on the same concept as the most probable path, this can be 

redefined as the number of most probable paths passing through each node when 

connections between each pair of nodes are considered. It can be derived in a similar way 

as the most probable path, by applying a standard algorithm developed for additive 

distances to a negative log transform of the multiplicative probabilities in M. Nodes with a 
high betweenness-centrality represent frequent transient states. 

> In our example, these are all the states along the Hardy-Weinberg curve except for the 

fixation states (additional file 3). 

Probabilities – For each state i  in the Markov chain model, several probabilities can be 
calculated – and displayed on the nodes – to describe both the transient and limiting 

behavior: 

pstay – probability to stay for one time step 

pstay i = p<,<, the probabilities on the matrix diagonal; for each state i this is the probability 

that the system remains at state i for the next time step ("stickiness"). This probability allows 
the easy detection of (near-)absorptive states. 

> In population genetics, the fixation states { N; 0; 0 , 0; 0; N } are typical examples (figure 
2). 

pout – probability to leave in one time step 

pout i = 1 − p<,<, the column sums of the matrix without the diagonal; for each state i this 

is the probability that the system changes state at the next time step ("conductivity"). Being 

the opposite of pstay, this probability allows the detection of states which are rarely occupied 

for consecutive time steps. 

> In our example, these are the states where the population consists of an approximately 

even mixture of both homozygotes (central basis of the triangle) or only of heterozygotes 

(top of the triangle; additional file 2). 

In contrast, the row sums of a left-stochastic matrix may exceed one and are thus not 

probabilities. As a result of the Markov property, a probability to arrive always depends on 

the state at the previous time step, which results in a number of possible definitions. 

p(i|j) – probability to arrive from state j in one time step 

p i j = p>,<, j ∈ S, all probabilities in one column of the transition matrix; the probability 

distribution (mean, variance, skew according to arrangement of nodes) for transitions 

starting from one particular state. This allows the prediction of the most likely states for the 

next time step. 

> In our example, the variance around the fixation states is much more limited than at the 

interior states of the triangle (additional file 3). 
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óin – probability to arrive in one time step 

pin i = 1/( S − 1) ∙ p>,<>  for i ≠ j, the row sums of the matrix divided by the number of 

other states; probability to arrive at state i if all previous states are equally likely. This shows 
states which are generally very likely destinations for one-step transitions. 

> In our example, these are the states around the Hardy-Weinberg curve (additional file 2). 

pin
ä – probability to arrive in an infinite run 

pin
ä i = p>,<> ∙ v>  for i ≠ j , the sum over the element-wise product of eigenvector and 

matrix row, without the diagonal; probabilities to arrive at state i if the likelihood of the 
previous states is distributed according to the limiting distribution. This shows the states 

which are the most frequent destination of transitions in an infinite run of the model. 

> In our example, these are the two states next to the fixation states where there is exactly 

one "foreign" allele (additional file 3). 

pä – limiting distribution / eigenvector-centrality 

pä i = v<, the eigenvector; probability to find the system at state i after infinitely many 
time steps, or proportion of time spent in each state averaged over infinitely many time 

steps (limiting distribution). This is the prediction for the most likely states independently of 

the start state. 

> As is well known for our example, these are the fixation states (additional file 2). 

Expected time to first passage – To calculate the expected time to arrive at a certain (group 

of) states from any other, the "target" states are considered absorptive (first passage time, 

Allen 2011). Based on the sub-matrix M′ including only the transition probabilities between 

non-target states, the times ttarget are ttarget = ®(I − M′)c6 where ® is a row vector of ones 

matching the dimension of M′ and I is the corresponding unit matrix. The first passage times 
of the target states are zero. 

> For our example, plotting the expected time to the fixation states shows that it depends 

predominantly on the current state's allele frequencies (additional file 3).  

Landscape plot 

Combining length and direction of the transitions in the most probable neighbor plot 

(figure 2) gives a three dimensional "landscape" illustrating the most probable dynamics of 

the Markov chain, similar to the "gravity well" plots known from physics. The expected 

changes in the genotype frequencies are thus represented in a more intuitive fashion, by 

imagining the population as a small ball rolling on a "landscape" from "hills" to "valleys". 

Elevations h are derived from the equality of potential and kinetic energy, which resolves to 

h = de ∙ 0.05 for a single time step, approximating gravitational acceleration by 10. For each 

model state/node, the distances d are given by the changes in genotype frequencies when 

moving to the most probable neighbor d = (Δaa)e + (ΔaA)e + (ΔAA)e. The "landscape" 

is subsequently drawn as a triangular grid, using the elevation at each state/node as support. 
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To improve readability, h can be rescaled by a constant factor and the landscape colored 
according to the relative elevation (taking the center of each triangle as reference). The 

resulting "landscape" shows only the (deterministic) expected dynamics of the Markov chain 

– one could imagine the accompanying stochastic effects as an "earthquake". 

> In our example, the expected dynamics of the genotype frequencies show convergence 

to the Hardy-Weinberg equilibrium (additional file 4). 

Note: because of its dependence on a function or matrix specifying the distances between 

states, and on the triangular grid-like structure of the state space, this method is not 

included in the mamoth source code. 

Approximation 

One major drawback of state-rich Markov chain models is that the transition matrix in its 

full form takes up a lot of memory space (table 1). Beside switching to one of the alternative 

model types mentioned in the introduction (diffusion approximation, coalescence process), 

there are multiple computational approaches to addressing this issue while keeping the 

original state and time discrete framework, including: 

• external memory: the whole matrix is stored on a (sufficiently large) hard drive, only 

parts are loaded into active storage when needed (analogous to Dongarra & 

Sorensen 1986) 

• iterative/selective matrix creation: the whole matrix is never stored, only parts are 
created when needed (e.g. in combination with algorithms such as Lehoucq et al. 

1997) 

• lumping states based on model properties: if a group of states has the same (sum of) 

transition probabilities leading into it and out of it to any other (group of) states and 

the same analytical meaning (e.g. same value of F"#) they can be combined into one 
(Kemeny & Snell 1976, Schapaugh & Tyre 2012); other algorithms of state 

aggregation, such as (Deng 2012), lead to an approximation of the original matrix 

• sparse approximation: turning a dense matrix into a sparse matrix by approximating 

very small matrix elements to zero (e.g. as in Kumar et al. 2009, Talwalkar 2010) 

Which of the first two options is more appropriate depends both on the available hardware 

and the nature of the task: if the whole matrix is needed repeatedly, storing it will save the 

time to recalculate despite increased memory access times, but if calculating the matrix 

elements is fast, the matrix is needed only once or only some parts of the matrix (e.g. the 

most probable neighbor of each state) are needed, storing the matrix as a whole would be an 

unnecessary effort. 

Because of the symmetry between the two allele frequencies in our model example, almost 

half of all states could be pairwise lumped, thus reducing matrix size to a little over a quarter 

of the original. The exception are the states on the symmetry axis of the de Finetti diagram 

(compare figures 1, 2), which do not have a "lumping partner". Symmetry with respect to the 

allele frequencies is often found in population genetics models (Ewens 2004). However, 

because of this dependency on model structure a size reduction algorithm based on 
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lumping would not be applicable to non-symmetric extensions of the original model, e.g. 

with an asymmetric mutation rate or directional selection. Allele frequencies would have to 

be analyzed jointly, as the new states retain only the ratio of both; once lumped, "unpacking" 

the states becomes difficult. 

The high number of very small values in the Markov chain transition matrix (figure 1) of our 

model example suggests that sparse approximation would be very effective. Moreover, as 

each column of the Matrix corresponds to a probability distribution (constant sum of one) 

which becomes less uniform as the number of states / population size increases (the 

expected convergence to a multinormal distribution with variance proportional to 1/N is 
the underlying principle of the well-known diffusion approximation), the proportion of very 

small transition probabilities is likely to augment as the matrix size increases. While sparse 

approximation is independent of model-specific properties such as symmetry and does not 

change the states as such, it has the disadvantage of changing the actual content of the 

transition matrix, potentially leading to the loss of relevant properties such left-stochasticity 

or irreducibility. 

The sparse approximation algorithm we propose ensures that the resulting sparse matrix 

still has all the properties relevant to its function in the Markov chain model. Additionally, it 

can be executed iteratively so that the complete dense matrix need not be stored. The 

algorithm iterates over all columns of the transition matrix M  and excludes (almost) all 

values which, in total, contribute less than a threshold value s ∈ [0,1] to the column sum: 

For all columns C< = M6… # ,< with i ∈ [1, S ]: 

1. create a permutation R of the row indices so that the corresponding entries are 
ranked according to size: 

R ← ordinalrank(j|1 ≥ C>
< ≥ 0)  

2. find the minimal rank (index of R) so the corresponding entries sum at least to the 

threshold value s:  

r ← min k  for C±≤
<±≤

±`
≥ s 

3. keep at least the two biggest values per column: 

r ← max 2, r   

4. keep all values of equal rank:  

while C±q_`
< = C±q

< ∶ r ← r + 1 

5. round all values with ranks greater then r to zero, but keep those on the main 
diagonal and the first lower and first upper diagonals:  

C±≤
< ← 0 for all k with k > r ∧ Rk ∉ i − 1, i, i + 1 	mod	 S  

6. rescale the column to sum to one:  

C< ← C</sum(C<). 
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Figure 3.  Illustration of the approximation algorithm (s = 0.99) for N = 20, µ = 10cç, c = 0.0 and 

the state (0,6,14). Reordering is based on the relative size of the column entries and 

their index in the original column, respectively. 

The first two steps, together with the rounding in step five, form the core of the algorithm 

(compare figure 3), steps three and four prevent distortions and steps five and six ensure the 

continued validity of essential Markov chain transition matrix properties: Irreducibility is 

assured by keeping at least one outgoing and one incoming transition probability per state 

in such a way that all states remain connected (step five, first lower and first upper diagonal), 

aperiodicity by keeping all probabilities to stay at the same state (step five, main diagonal), 

and the rescaling of each column ensures left-stochasticity of the matrix (step six). In 

contrast, the property that one-step transitions are possible between all states is 

deliberately given up. The sparse approximation algorithm is available as the appromatrix 

function in the mamoth module. 

Both the efficiency, i.e. the density or memory size of the resulting matrix, and the bias vary 

according to the value of ∂ and the distribution of values in the original matrix. If ∂ is low or 
the probability distribution in the column is far from uniform, more values will be discarded 

(compare figure 3). An appropriate value for s has to be determined heuristically by testing 
successively increasing values, up to the point where the bias due to the approximation no 

longer interferes with the interpretability of the model results. The sum of the differences 

between the entries of the approximate and original matrices has a theoretical upper limit 
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of 1 − s ∙ S , but the effect of this perturbation on the model output may be more 
complex. 

 

Figure 4.  Comparison of the limiting distribution of F"#  for N = 20, µ = 10cç, c = {0.0, 0.1} . A. 

probability distributions based on the original (filled symbols) and the approximate 

(unfilled symbols) matrix B. pairwise differences between probability distributions, 

biologically interesting distances marked by triangles. 

In our model example, we analysed the effect of sparse approximation on the equilibrium 

F"#  distribution derived from the dominant eigenvector of the transition matrix. The 
dominant eigenvector of either a sparse or dense matrix can be calculated with the eigenone 

function in mamoth, while a comparison between two vectors by a G-Test (correctly 

omitting infinity values from the test statistic) is implemented in the testvector function. A 

direct comparison between the "original" and "sparse approximate" equilibrium F"# 
distributions (figure 4) shows a very close fit which does not obscure the biologically 

relevant changes due to different rates of asexual reproduction. To test if the method gives 

similarly good results over a wider range of parameters (population size, mutation rate, rate 

of asexuality and approximation threshold), we performed a Global Sensitivity Analysis 

(GSA) (Morris 1991, Saltelli 2004, Wainwright et al. 2014) using different divergence statistics 

to compare the limiting distribution of F"# derived from original and sparse approximate 
matrix (R Core Team 2013, Pujol et al. 2015) and the density of the sparse matrix. 
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The results of the GSA show that all four model parameters may generally have non-

linear/interacting effects on the quality of the approximation, but in the mean these effects 

are not very strong (figure 5; the minimal upper bound of the parameters is one). Memory 

size reduction is highly efficient as the mean density of the sparse matrices was only ≈ 0.11. 

Individual densities ranged from ≈ 0.42 (small matrix, high threshold) to ≈ 0.03 (big matrix, 
low threshold), varying most strongly with the population size, though all four parameters 

have a significant influence. On our reference system (Intel Core i7-3930K 3.2 GHz processor 

with 64 GB RAM), calculating the sparse approximation based on the original matrix took on 

average 1.7 s for N = 50 (14.6 s to construct the original), and 31.3 s for N = 100 (221.7 s to 
construct the original). Finding the dominant eigenvector of sparse approximate and 

original matrix took on average 0.1 s (sparse) versus 51.7 s (original) for N = 50 and 2.4 s 

(sparse) versus 7869.1 s (2 h, 11 min, 9.1 s, original) for N = 100, so that in both cases less 
than one percent of the original runtime was needed with the sparse approximate matrix. 

 

Figure 5.  Global sensitivity analysis of original vs. approximate equilibrium F"#  distribution. 

Absolute mean µ∗ and standard deviation π of the elementary effects of population 

size N (pops), mutation rate µ (muts), rate of asexual reproduction c (asex) and sparse 

approximation threshold ∂ (thres) on the density of the sparse approximate matrix, 

and on different statistics comparing the limiting F"#  distributions derived from 

original and sparse approximate matrix. Based on 150 Morris samples from the 

parameter space: population size ( N = {10, 20, … , 100} ), mutation rate ( µ =

{10c6e, 10c66, … , 10c∫} ), rate of asexual reproduction ( ª = {0.1, 0.2, … , 1.0} ) and 

approximation threshold (s = {0.8, 0.82, … , 0.98}). Infinity values were omitted from 

the test statistic. 

The overall similarity of the original and approximate equilibrium F"#  distributions, 
measured with different divergence statistics (total distance, Kullback-Leibler divergence, 
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power divergence statistics, Cressie & Read 1984), is very high: e.g. the mean for the total 

distance forig − fapprox  is ≈ 0.06 . It is largely independent of the rate of asexual 

reproduction and depends most strongly on the approximation threshold and the mutation 

rate. In contrast, the maximal difference (Kolmogorov-Smirnov two-sample test statistic) 

between classes of the original and approximate equilibrium F"#  distribution is hardly 
affected by the mutation rate, but rather by approximation threshold (high mean effect) and 

rate of asexual reproduction (strong non-linearity/interaction). Though on average not 

significant, the Kolmogorov-Smirnov test gave p-values below 0.05 in 20% of the parameter 

sets sampled. Consequently, the same approximation threshold can be used to compare the 

overall shape of the distributions across the whole range of rates of asexual reproduction, 

but it may have to be adapted if mutation rate and population size differ strongly between 

the modeled scenarios. Care must be taken when individual classes within the distribution 

(e.g. long-term fixation probability) shall be compared as the probabilities derived from a 

sparse approximate matrix may then be significantly different from the original. 

In conclusion, sparse approximation using our algorithm has the advantage of being easily 

applicable to all transition matrices independently of the properties of the underlying 

model, and is well suited to provide an overview of the equilibrium F"# distribution under 
different rates of asexual reproduction in our model example. However, it needs an initial 

effort to verify the model results derived from the approximate matrix and to estimate their 

final bias. For fine-scale analyses, lumping states may provide an approximation-free 

alternative, but is not always possible as it depends on the model structure.  

Discussion 

As the technological obstacles of working with "big data" become smaller, new 

opportunities arise especially for stochastic models, e.g. in population genetics. Yet these 

opportunities also lead to new challenges: results need to be brought into an interpretable 

form, and the technological boundaries further pushed back to allow even more complexity. 

We developed methods to help with the computational analysis and interpretation of state-

rich time- and space-discrete Markov chain models in population genetics, focusing on the 

particularly challenging case of very dense matrices.  

Markov chain models are a versatile framework also for population genetic questions, and 

may often provide a first step in the development of analytic formulae (Ewens 2004). Further 

relevant parameters such as selection, migration or "unusual" reproductive systems can be 

easily included in such a model. Yet even for randomly mating population with genetic drift 

and mutation, a standard case of population genetics, a Markov chain model such as 

(Stoeckel & Masson 2014) may still yield additional information with the help of our 

visualization methods: In particular, the short-term dynamics, e.g. probabilistic trajectories 

connecting a current and a previous or predicted state, and the resulting variation around 

the expectation of convergence to the Hardy-Weinberg equilibrium are made visible. 

Especially for small populations, which are highly relevant e.g. for conservation genetics 

(Ellstrand & Elam 1993), and questions relating to development through time rather than 

just the long-term equilibrium, such Markov chain models may thus become valuable tools.  
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Though the size limitation for computational matrix analysis may never be completely 

removed, we showed that there are ways to circumvent it: even without access to 

specialized hardware, big, dense transition matrices may be manageable either by lumping 

states, or by approximating rare transitions to zero with our sparse approximation 

algorithm. In our model example, the approximation provided sufficiently accurate results 

for the limiting distribution of F"# . Though there is an initial effort of verification, the 
advantage of sparse approximate matrices is considerable as they can subsequently be used 

also on less powerful hardware e.g. to speed up or allow the calculation of eigenvectors on 

systems incapable of storing the full model. In our model example, the size reduction of 

sometimes more than 90% would e.g. make it possible to use the equilibrium ºΩæ 
distributions for the inference of model parameters in an analysis software without having 

to store a – necessarily incomplete – reference collection of pre-calculated distributions for 

very big matrices. Moreover, some of our visualization methods (e.g. most probable 

neighbor, pin , pstay , pout , p<,> ) can be used without ever storing the whole matrix, while 

providing even very powerful conclusions about model behavior. Our sparse approximation 

method is not intended to substitute other approaches, and we did not test if it outperforms 

the accuracy of other approximations (e.g. diffusion approximation) for any specific 

question. Rather, it is a supplement, allowing to keep the structure of the original Markov 

chain model with the corresponding interpretation techniques beyond the technical limit, 

and a potential reference for the existing methods. 

Individual-based models are becoming more and more popular in biology (Zipkin et al. 

2010, Black & McKane 2012), which will further increase the frequency of encountering 

computationally challenging cases such as the one we presented. In population genetics, 

modeling more complex evolutionary parameters such as life cycles and reproductive 

mechanisms, multi-dimensional fitness landscapes or dispersal may often lead to the 

necessity of extending the traditional models from allele frequencies (Ewens 2004) to 

genotypes. Due to the diploid/polyploid nature of most higher organisms, this will 

necessarily increase the size of transition matrices and equation systems to be analyzed. By 

presenting our approach, we hope to encourage and inspire others to extend and adapt our 

methods, thus further paving the way for the use of Markov Chain models with big, dense 

transition matrices.  

Conclusion 

We described and evaluated a set of tools, implemented in the Python module mamoth, for 

working with state-rich Markov chain models in population genetics. These tools ease the 

interpretation of model behavior by providing diagnostic visualizations of transition 

matrices, and allow substituting dense transition matrices with a sparse counterpart by 

applying an iterative approximation algorithm that is independent of model symmetry. 

Thus, our methods permit an advanced analysis of increasingly complex Markov chain 

models in population genetics, without giving up their space and time discrete structure. 

They may therefore contribute e.g. to the study of the population genetic consequences of 

partially clonal reproduction. 
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Additional Files 

Additional file 1 – Network display methods 1 

 

Figure A1. Enlarged version of figure 1. Network display of transition matrices for N = 20, µ =

10cç, c = 0.0. A. De Finetti diagram showing symmetry (dashed blue axis, red arrows 

corresponding to identical probabilities) and F"#  isocurves (gray and black) B. pstay 

(node color), probability to stay at each node for one time step C. most probable path 

connecting (N, 0, 0) to (0, 0, N) D. most probable neighbors (directed edges) and in-

degree (node color), i.e. for each node the most likely outbound transition at the next 

time step and the number of inbound most likely transitions from other states. 
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Additional file 2 – Network display methods 2 

 

Figure A2.  Network display of transition matrices for N = 20, µ = 10cç, c = 0.0 . A. pout  (node 

color), probability to leave this node in the next time step B. pä (node color), limiting 

probability of each state C. in-degree (node color) at flow between the fixation states 

(directed edges) D. pin (node color), probability to arrive each state if all previous states 

are equally probable.  

  



	

 74 

Additional file 3 – Network display methods 3 

 

Figure A3.  Network display of transition matrices for N = 20, µ = 10cç, c = 0.0. A. expected time 

to fixation (node color) according to start state B. p(i| 0, 15, 5 )  (node color), 

probabilities of each state if the previous state was (0,15,5)  C. pin
ä  (node color), 

probability to arrive at each state if the start state probabilities correspond to the 

limiting distribution D. betweenness-centrality (node color).  
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Additional file 4 – Landscape plot 

 

Figure A4.  Landscape plot of transition matrix for N = 20, µ = 10cç, c = 0.0. Elevation rescaled 

by factor 5, color according to relative elevation ("valleys": dark blue, "hills": light grey). 

The lowest elevation equals zero, the reference de Finetti triangle is offset to  

-0.3. 
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Additional file 5 – Visualization algorithm runtimes 

 

Table A5. Runtimes in seconds for creating each subfigure of figures 1, 2 and additional files 1-3. 

Means over three repetitions. Reference system: Intel Core i7-4850HQ 2.3 GHz 

processor, 16 Gb 1600 MHz DDR3 RAM. 

 

 

Visualization method subfigure runtime [s]

Histogram 1-A 0.001

Histogram, logit(10) 1-B 0.001

Histogram, sparse approximation 1-C 0.055

Histogram, logit(10) reordered 1-D 0.211

De Finetti diagram A1-A / 2-A 0.405

Most probable neighbor and in-degree A1-D / 2-D 0.160

Probability to stay A1-B / 2-B 0.231

Probability to arrive in an infinite run A3-C 0.281

Probability to arrive from specified state A3-B 0.288

Most probable path A1-C / 2-C 0.339

Expected time to fixation A3-A 0.380

Probability to arrive in one time step A2-D 0.409

Limiting distribution (eigenvector) A2-B 0.455

Probability to leave A2-A 0.482

In-degree at percolation A2-C 2.124

Betweenness-Centrality A3-D 19.063
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5.5 Digression: Extending the triangle 

As a visual representation of the connections between individual counts, genotype and 

allele frequencies, heterozygosity and F"#, de Finetti triangles could be a useful teaching tool 
in introductory courses on population genetics. The graphical display may provide an 

alternative access and could help to “popularize” otherwise somewhat abstract 

mathematical concepts for biology students. With this motivation, we wanted to see how 

the diagrams presented in article I could be extended, on the one hand to include more 

alleles/genotypes, on the other hand to include another F-statistics parameter, F#$. 

Adding a third allele to the de Finetti triangle turns it into an octahedron (figure 5.5), and 

the Hardy-Weinberg “curve” becomes a Hardy Weinberg “curved sheet”. The apex of this 

sheet would be higher “up” (more heterozygosity) than the apex of the two allele curve 

(max HU = 1 − 3 ∙ 1 3 e = 2 3 > 1/2), which illustrates that F"# 	= 	1 − HT/HU can only 

ever be minimal (equal minus one) for two equally frequent alleles. However, adding even 

mode alleles/genotypes is not practical: already for four alleles, the resulting diagram is 

difficult to imagine and cannot be projected on a plane anymore. A different approach to 

multiallelic de Finetti diagrams may be to “subsume” different alleles into two categories 

(e.g. selectively advantageous vs. disadvantageous); this corresponds to a “lumping” of 

states with respect to the mutation part of the model. 

 

Figure 5.5  Plan view of a de Finetti octahedron for three alleles a, α , A, including the three-

dimensional equivalent of the Hardy-Weinberg curve (orange). Heterozygous 

genotypes are arranged on the frontal (“upper”) triangular side, homozygous 

genotypes on the distal (“lower”, dashed lines) triangular side of the octahedron, three 

of the six enclosing triangular sides correspond to de Finetti triangles for one pair of 

alleles each. The hue (intensity of red) of the “Hardy-Weinberg sheet” corresponds to 

its distance from the base of the octahedron (expected heterozygosity; low/yellow to 

high/red). 
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Plotting F#$ on the de Finetti triangle is somewhat more complicated, since the “zero” line 

(mean allele frequencies over all subpopulations) shifts with the data. F#$ is calculated from: 

F#$ =
VarÇ¿v
Var4T4Ll

= 1 −
νL(1 − νL)

νL(1 − νL)
	

where VarÇ¿v is the variance of allele frequencies within each subpopulation, Var4T4Ll the 
variance of allele frequencies over all subpopulations (i.e. treating them as one big 

population), and νL in the second equality stands for the frequency of the a allele in our two-

allele example. While νL(1 − νL) for any νL has a simple geometric equivalent (red curve in 
figure 5.6; vertical arrows pointing towards it represent individual values), the  

 

 

Figure 5.6  Displaying F#$ on a de Finetti triangle. Green, blue and orange points and bars: allele 

frequency examples for one SNP in three pea aphid subpopulations on different host 

plants (with friendly permission of Pierre Nouhaud). Black dashed/dotted lines: Hardy-

Weinberg curve / F"#  isolines; red dashed line: mean of the allele frequencies; red 

curve: product of the allele frequencies νL 1 − νL = νLνM. Black vertical arrow: νL(1 −

νL) , denominator of the F#$  fraction (see text); Grey vertical arrows: νL(1 − νL)  for 

each subpopulation, the mean over their lengths gives the numerator of the F#$ 

fraction (see text). Here, the mean of the grey arrow lengths is about one third of the 

black arrow length; consequently, F#$ is about two thirds, which is in accordance with 

the exact calculation (F#$ value in plot). 
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mean νL(1 − νL) over the values for each subpopulation is not as easily derived for more 

than two subpopulations. Still, for two populations one can show e.g. that, if the overall 

mean allele frequency is close to 0.5, F#$  increases the more the subpopulation means 

diverge from this mean value (reaching F#$ = 	1  if a different allele is fixed in both 
subpopulations). 

In conclusion, higher-dimensional extensions of de Finetti diagrams to accommodate more 

alleles are not very practical, though they may help to understand how the range of F"# 

values changes compared to the simple two-alleles case. Though F#$ cannot be displayed 

on the de Finetti diagram in an equally unambiguous and concise way as F"#, the diagrams 
could serve to illustrate the complementarity (difference in heterozygosity vs. difference in 

allele frequencies) of both parameters. 

As an example for a ternary diagram, the de Finetti diagram also links the analysis of 

population genetic data to other domains of science, e.g. geology: genotype frequencies 

are a special kind of “compositional data” (i.e. they sum to a constant: one), and the 

development of statistical analysis tools (e.g. principal component analysis; Aitchison & 

Egozcue 2005) for such data are an emerging topic in statistics. Exchange between different 

subject areas may bring impulses for either field. 
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Part III Results 
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6 Selectively neutral diversity 

6.1 Neutral diversity under acyclic partial asexuality 

The typical aim of population genetic studies is to make inferences about a population’s 

ecology and evolution, such as spatial substructure and sources/directions of migration, 

population demography or selection for particular traits/loci. Currently, such studies are 

mostly based on data for single loci: besides AFLPs, which have a complex mutation pattern, 

do not allow the detection of heterozygosity and shall therefore not be treated here, the 

currently most popular techniques for population genetic studies are microsatellites (SSRs 

– short single sequence repeats) and single nucleotide polymorphisms (SNPs).  

The most important reference for the patterns of genetic diversity expected at single loci is 

the Hardy-Weinberg equilibrium (Hardy 1908, Weinberg 1908): due to random mating, at 

the population level the alleles at each locus should be randomly associated in the absence 

of all other evolutionary “forces” (e.g. mutation, genetic drift, but also migration, selection). 

Thus, if a locus is not in Hardy-Weinberg equilibrium, the action of at least one other 

evolutionary force can be deduced – but which one is often not clear. 

The reproductive system is another evolutionary “force” that may lead to deviations from 

the Hardy-Weinberg equilibrium: mating is not always random, and reproduction may even 

occur without it. This is the case for partially asexual species. An “update” of the Hardy-

Weinberg expectation, ideally already accounting for other “confounding factors” such as 

mutation and genetic drift due to a finite population size, could therefore greatly help in the 

analysis of single-locus population genetic data from populations with this reproductive 

system. However, such a reference might be dependent on the rate of clonality (compare 

Balloux et al. 2003, Bengtsson 2003, Ceplitis 2003, Stoeckel & Masson 2014), and, moreover, 

on time (compare Marshall & Weir 1979). In contrast to the previous studies (except Marshall 

& Weir 1979), we therefore analyzed the dynamics of F"# in partially clonal organisms.  

According to the relative strength of the three evolutionary processes included in our 

model, based on the parameters population size, mutation rate and rate of clonality, we 

found three domains for the dynamics of F"# : if either sexual reproduction (low rate of 

clonality) or mutation (high mutation rate) dominate the dynamics, F"# converges to zero 
(Hardy-Weinberg equilibrium), but if genetic drift dominates (small population size, high 

rate of clonality, low mutation rate), the population loses its genotypic diversity until only 

one genotype (heterozygous: F"# = −1, homozygous: fixation) is left. Populations with a 
higher rate of clonality generally take (non-linearly) longer until they have reached their 

expected mean F"# value after a deviation and show a greater variation about this mean. 

Therefore, in contrast to exclusively sexual populations which reach their expectation (F"# =

0) in only one time step, either time series data or information about the history of the 

population is necessary to correctly interpret instantaneous F"# values in partially asexual 
populations. 
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The dynamics of F"#  in partially asexual populations are thus different from those in 
exclusively sexual or exclusively asexual populations, and change with the rate of clonality. 

For a case of special interest in the “evolution of sex debate”, i.e. big, old exclusively asexual 

populations, we found that it would be indistinguishable from an exclusively sexual 

population, which is contrary to some of the previous models (“Meselson effect”, compare 

Bengtsson 2003, Ceplitis 2003; discussed in chapter 8.1.3). Besides a reference for the 

interpretation of F"# values in partially asexual species, this study also provides suggestions 

for data collection: firstly, because of the increased variation of F"#, more loci need to be 
sampled to have an equally accurate estimate of its mean value. Secondly, all samples (not 

only one per distinct “multilocus” genotype) should be included in the calculation of F"#. 
Finally, demographic bottlenecks should leave more persistent traces (negative values) in 

the genetic diversity / F"#  under partial asexuality than expected from exclusively sexual 
reproduction. This effect is further explored in chapter 6.2. 

La diversité neutre sous asexualité partielle acyclique 

L'objectif typique des études de génétique des populations est d’amener à des conclusions 

sur l'écologie et l'évolution d'une population, tels que sa sous-structure spatiale et des 

sources / directions de la migration, la démographie de la population ou de la sélection pour 

des traits / loci particuliers. Actuellement, ces études sont principalement basées sur les 

données concernant des loci uniques : outre les AFLP, qui ont un motif de mutation 

complexe ne permettant pas la détection d'hétérozygotie et par conséquent ne sont pas 

traitées ici, les techniques actuellement les plus populaires pour les études en génétique des 

populations sont les microsatellites (SSR – répétitions de séquences simples courtes) et les 

polymorphismes nucléotidiques simples (SNP). 

La référence la plus importante sur les motifs de diversité génétique attendus à un seul 

locus est l'équilibre de Hardy-Weinberg (Hardy 1908, Weinberg 1908) : en raison de 

l'accouplement aléatoire, au niveau de la population les allèles à chaque locus doivent être 

associés de façon aléatoire en l’absence de toutes les autres « forces » de l'évolution (comme 

par exemple mutation, dérive génétique, mais aussi migration et sélection). Ainsi, si un locus 

n’est pas en équilibre de Hardy-Weinberg, l'action d'au moins une autre force évolutive peut 

être déduite – mais il n’est pas souvent clair de déterminer celle dont il s’agit. 

Le système de reproduction est une autre « force » évolutive qui peut conduire à des écarts 

par rapport à l'équilibre de Hardy-Weinberg : l'accouplement n’est pas toujours aléatoire, et 

la reproduction peut se produire même sans elle. C’est le cas des espèces partiellement 

asexuées. Une « mise à jour » de l'espérance de Hardy-Weinberg, ayant idéalement déjà tenu 

compte d'autres « facteurs de confusion », tels que la mutation et la dérive génétique dues 

à une taille de population finie, pourrait donc grandement contribuer à l'analyse des 

données de génétique des populations sur un locus unique chez les populations avec ce 

système de reproduction. Cependant, une telle référence pourrait être dépendante du taux 

de clonalité (comparer à Balloux et al. 2003, Bengtsson 2003, Ceplitis 2003, Stoeckel & 

Masson 2014), et également du temps (comparer à Marshall & Weir 1979). Par contraste avec 

les études précédentes (à l'exception de Marshall & Weir 1979), nous avons dès lors analysé 

la dynamique de l’F"# chez les organismes partiellement clonaux. 
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Selon la force relative des trois processus évolutifs inclus dans notre modèle, basée sur les 

paramètres taille de la population, taux de mutation et taux de clonalité, nous avons trouvé 

trois domaines de la dynamique du F"#  : si la reproduction sexuée (faible taux de clonalité) 

ou la mutation (taux de mutation élevé) dominent la dynamique, F"#  converge vers zéro 
(équilibre de Hardy-Weinberg), mais si la dérive génétique est dominante (petite taille de la 

population, taux élevé de clonalité, faible taux de mutation), la population perd de sa 

diversité génotypique jusqu'à ce que seulement un génotype (hétérozygote: F"# = −1 , 
homozygote: fixation) y reste. Les populations avec un taux de clonalité supérieur prennent 

généralement (et de façon non-linéaire) plus de temps jusqu'à ce qu'ils aient atteint leur 

valeur F"# attendue en moyenne après une déviation et montrent une plus grande variation 
autour de cette moyenne. Par conséquent, contrairement aux populations exclusivement 

sexuées qui atteignent leur attente (F"# = 0) en une seule étape de temps, des données en 
séries chronologiques ou des informations sur l'histoire de la population sont nécessaires 

pour interpréter correctement les valeurs d’ F"#  instantanées dans les populations 
partiellement asexuées. 

La dynamique de l’F"# dans les populations partiellement asexuées est donc différente de 
celles des populations exclusivement sexuées ou exclusivement asexuées, et change avec 

le taux de clonalité. Dans le cas d'un intérêt particulier pour le débat sur « l’évolution du 

sexe », à savoir les grandes et anciennes populations exclusivement asexuées, nous avons 

trouvé qu'il serait impossible de le distinguer d’une population exclusivement sexuée, ce 

qui est contraire à certains des modèles précédents (« effet Meselson », comparer Bengtsson 

2003, Ceplitis 2003; voir chapitre 8.1.3). En plus d’une référence pour l'interprétation des 

valeurs d’ F"#  en espèces partiellement asexuées, cette étude fournit également des 
recommandations pour la collecte des données : d’abord, en raison de la variation accrue 

du F"#, plus de loci doivent être échantillonnés pour avoir une estimation aussi précise de sa 
valeur moyenne. Puis, tous les échantillons (non seulement un par génotype à multiples loci 

distinct) devraient être inclus dans le calcul de F"# . Enfin, les goulots d'étranglement 

démographiques devraient laisser des traces plus persistantes (valeurs négatives) dans la 

diversité génétique / F"# sous asexualité partielle que prévues à partir de la reproduction 

exclusivement sexuée. Cet effet est exploré dans le chapitre 6.2. 
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Article II Sexualité rare ou équilibre hors portée ? La dynamique 

d‘%&' chez les organismes partiellement clonaux 

Sommaire de l’article 

Contexte – Les organismes capables à la fois de la reproduction sexuée et clonale sont très 

répandus dans la nature, mais la façon dont leur système reproducteur influe sur la 

dynamique de leur diversité génétique reste mal comprise. Le coefficient de consanguinité 

F"#  est un indicateur classique pour les systèmes de reproduction non-standard, qui 

conduisent à des écarts par rapport à l’équilibre de Hardy-Weinberg (F"# = 0) attendu sous 
accouplement aléatoire dans des populations sexuées. Les modèles mathématiques 

incluant la clonalité prédisent des écarts seulement pour une reproduction sexuée 

extrêmement rare et seulement vers la moyenne d’F"# < 0. Pourtant, dans des espèces 

partiellement clonales, F"# ≠ 0  (positif ou négatif) cela est fréquemment observé, 
également dans les populations où la reproduction sexuée semble par ailleurs significative. 

La dynamique temporelle encore inconnue de l’F"# sous clonalité partielle pourrait fournir 
des explications supplémentaires pour ces départs. Nous avons étudié les effets conjoints 

de la clonalité partielle, de la mutation et de la dérive génétique avec un modèle de chaîne 

de Markov discret en temps et états pour comprendre la dynamique de l’F"# au fil du temps. 

Résultats – La clonalité partielle, même à des taux modestes, affecte la dynamique de l’F"#. 

La clonalité augmente non seulement la variation temporelle de l’F"#, mais réduit également 
son taux de variation au cours du temps. D'abord, pour des petites populations le temps 

pour atteindre la valeur moyenne finale F"#,ä  après une perturbation augmente 

approximativement comme une fonction hyperbolique avec le taux de clonalité. Puis, les 

valeurs négatives et positives peuvent survenir de façon transitoire, même à des taux 

intermédiaires de clonalité. La reproduction partiellement clonale par elle-même ralentit la 

convergence à F"# = 0 , mais ne provoque pas de départs de cette valeur. La mutation 

aléatoire dans des grandes populations conduit finalement à F"# = 0, même en l’absence 
de l'accouplement aléatoire. La décélération et l'inclinaison vers des valeurs légèrement 

négatives plutôt que positives proviennent donc principalement de l'interaction entre la 

clonalité partielle et la dérive génétique. 

Conclusion – Nos résultats plaident en faveur d'une interprétation dynamique de l’F"# en 
populations partiellement ou purement clonales. Les valeurs négatives ne peuvent pas être 

interprétées comme une preuve sans équivoque pour la rareté du sexe, mais aussi comme 

des taux intermédiaires de clonalité dans les populations de taille déterminées, générant 

des départs transitoires à partir d’F"# = 0. Des observations complémentaires (par exemple 
distribution des fréquences des génotypes à multiple loci, histoire de la population) ou des 

données en séries chronologiques peuvent aider à faire la distinction entre différentes 

conclusions possibles sur l'étendue de la clonalité, lorsque les valeurs moyennes déviant de 

zéro et / ou une grande variation de l’F"# à travers des loci sont observées.  
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Article II Rare sex or out of reach equilibrium? The dynamics of 

%&' in partially clonal organisms 

Katja Reichel1*, Jean-Pierre Masson1, Florent Malrieu2, Sophie Arnaud-

Haond3, Solenn Stoeckel1 
1 INRA, UMR1349 IGEPP, F-35650 Le Rheu, France, 2 Université de Tours, CNRS-UMR7350 LMPT, F-37200 

Tours, France, 3 IFREMER, UMR5240 MARBEC, F-34203 Sète, France 

12/2015  BMC Genetics, resubmission pending 

Abstract 

Background – Organisms capable of both sexual and clonal reproduction are very common 

in nature, yet how their reproductive system influences the dynamics of their genetic 

diversity remains poorly understood. The coefficient of inbreeding F"#	is a classic indicator 
for non-standard reproductive systems, leading to deviations from Hardy-Weinberg 

equilibrium (F"# = 0) expected under random mating in sexual populations. Mathematical 
models accounting for clonality predict deviations only for extremely rare sex and only 

towards mean F"# < 0 . Yet in partially clonal species, F"# ≠ 0  (positive or negative) is 
frequently observed, also in populations where sexual reproduction seems otherwise 

significant. The still unknown temporal dynamics of F"# under partial clonality may provide 
additional explanations for those departures. We studied the joint effects of partial clonality, 

mutation and genetic drift with a state-and-time discrete Markov chain model to 

understand the dynamics of F"# over time. 

Results – Partial clonality, even at modest rates, affects the dynamics of v. Clonality not only 

increases the temporal variation of F"#, but also reduces its rate of change over time. First, 

the time to reach the final mean F"#,ä  value after disturbance augments approximately 

hyperbolically with the rate of clonality in small populations. Secondly, both negative and 

positive F"#  values may arise transiently even at intermediate rates of clonality. Partially 

clonal reproduction by itself slows down convergence to F"# = 0 , but does not cause 

departures from it. Random mutation in large populations eventually leads to F"# = 0, even 
in the absence of random mating. The deceleration and skew toward slightly negative, 

rather than positive, F"#  values thus mainly derive from the interplay between partial 
clonality and genetic drift.  

Conclusion – Our results argue for a dynamical interpretation of F"# in partially and purely 
clonal populations. Negative values cannot be interpreted as unequivocal evidence for rare 

sex, but also as intermediate rates of clonality in finite populations, generating transient 

departures from F"# = 0 . Complementary observations (e.g. frequency distribution of 
multilocus genotypes, population history) or time series data may help to discriminate 

between different possible conclusions on the extent of clonality, when mean	F"#  values 

deviating from zero and/or a large variation of F"# over loci are observed. 

Keywords  Partial asexuality, parthenogenesis, mating system, inbreeding coefficient, 

heterozygote excess, genetic diversity   
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Background 

Reproductive systems impact the evolution of genetic diversity at the population level 

(Duminil et al. 2007, 2009), making them an important factor for considerations on the 

evolvability of species. Partially clonal species, i.e. species that are able to reproduce both 

sexually and clonally, are common across many phyla and ecosystems (de Meeûs et al. 2007) 

and represent an important part of the global biodiversity. They include many species 

whose evolution is closely linked to humans, such as cultivated species (McKey et al. 2010), 

pathogens (Tibayrenc & Ayala 2012), invasive species (Liu et al. 2006), and species 

threatened by extinction (e.g. Luijten et al. 1996, Sydes & Peakall 1998, Brzosko et al. 2002, 

Setsuko et al. 2004, Brzyski & Culley 2011). Partially clonal species are therefore frequently 

the subject of molecular analyses describing their genetic diversity (Schön et al. 2009), and 

the conclusions drawn depend on a correct understanding of the effects of their 

reproductive mode on the genetic composition of their populations. 

The interpretation of standard population genetic indices from partially clonal populations 

can be challenging, as expectations may depend on the rate of clonality, which is usually 

unknown in natural population. Conversely, the estimate of this rate on the basis of indirect 

approaches such as population genetics analysis remains elusive. One example of an index 

that has been suggested to change with the rate of clonality is F"#  (Balloux et al. 2003, 
Halkett et al. 2005). In diploid populations, it represents a correlation coefficient among 

homologous alleles within the same diploid individual at a particular locus, and depends on 

their tendency to be randomly associated (F"# = 0) or more likely identical (F"# > 0) or not 

identical (F"# < 0). F"# is defined either based on population heterozygosity (HU – expected 

heterozygosity, HT – observed heterozygosity) or allelic identities/homozygosity (F – allelic 

identity within individuals, Θ – allelic identity within the population; Balloux et al. 2003): 

F"# =
HU − HT
HU

≅
F − Θ

1 − Θ
	, F"# ∈ [−1,1]	

Results from both definitions differ only for loci with just a single allele remaining (fixation), 

where F"# is usually not defined.  

To date, only few mathematical models studying F"# at selectively neutral loci in partially 
clonal populations have been published. For partially clonal populations otherwise 

complying with the Hardy-Weinberg conditions, F"#  and the underlying genotype 
frequencies are thought to be identical to those expected for random mating, yet the 

approach to the Hardy-Weinberg equilibrium (HWE) is slowed down as the rate of clonality 

increases (Marshall & Weir 1979). If mutation and genetic drift are taken into account 

(Balloux et al. 2003), very high rates of sexual reproduction are supposed to eventually lead 

to strongly negative mean F"# values up to F"#,ä = −1 for completely clonal populations. In 

addition to this effect on the mean, a stochastic model (Stoeckel & Masson 2014) showed 

that also the shape of the expected final (i.e. equilibrium) distribution of F"#, measured by 
its variance, skewness and kurtosis, changes with the rate of clonality. Based on the results 

of (Balloux et al. 2003), F"# was suggested as an informative parameter to estimate the rate 
of clonality (Halkett et al. 2005, de Meeûs et al. 2006) in connection with other indices such 

as linkage disequilibrium or the frequency of repeated multilocus genotypes (Arnaud-
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Haond et al. 2007). However, using the mean of the final distribution provided by (Balloux 

et al. 2003) as a reference for the mean F"# values from field studies often pointed to rates of 

clonality that were at odds with other indices or even direct observation (Stoeckel et al. 2006, 

e.g. Motoie et al. 2013). 

While some previous theoretical studies appear to highlight negative F"# as a signature of 
nearly exclusive clonality (13,14,56), others underline the influence of clonality not only on 

the final distribution of F"#,ä	  but also on its temporal dynamics in natural population 

(15,16). We aimed to complement the results of these previous studies by describing the 

temporal changes of genotype frequencies over time under the influence of partial clonality, 

mutation and genetic drift. In particular, we looked at how quickly the steady state 

distribution of F"#  is reached after a disturbance (e.g. change of reproductive system, 
change in demography) depending on rate of clonality, mutation rate and population size. 

This information could help to explain the departures from F"# = 0  observed also in 
populations thought to have frequent sexual reproduction, which are otherwise 

unexpected.  

We used a stochastic model to follow the neutral dynamics of genotype frequncies in the 

basic case of a single locus in a diploid, isolated and panmictic population that combines 

random mating and clonality. To ease the discussion of the full model, we present our results 

using a “bottom-up” approach starting with the effects of each parameter in isolation, and 

subsequently connect these partial results to analyze the “complete” system with the joint 

effects of reproductive system, mutation and genetic drift. Finally, we discuss how our 

results may assist in the interpretation of field data, based on examples from a literature 

review, and provide methodological recommendations for data collection and analysis in 

partially clonal populations. 

Methods 

Mathematical Model 

The biological template for our model is a single population with a finite number of 

individuals. These individuals correspond to ramets, i.e. factually or potentially 

physiologically distinct units that may or may not be genetically identical or descended from 

the same parent. All individuals follow the same life cycle, which consists of a dominant 

diploid phase during which they can acquire heritable mutations (figure 1). All individuals 

subsequently produce offspring both clonally and by random mating (including selfing), 

hereafter referred to as sexuality, from which a fixed number (corresponding to the constant 

population size) survive randomly to replace their parents in the next generation.  
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Figure 1.  Schematic overview of the mathematical model (example for two alleles). In a 

dominantly diploid population of fixed size N, the number of individuals/ramets q with 

a certain genotype (here aa, aA, or AA) at a particular locus, observed at generation t, 

and the corresponding genotype frequencies ν = q/N may change due to mutation 

(here symmetrical from a to A and from A to a with rate µ; see equation I), reproduction 

(random mating at rate 1 − c; see equations II and III) or genetic drift (modeled by 

multinomial drawing of N individuals from the genotype frequency distribution; see 

equation IV), until observation at the next generation. 

We translated this system into a time and state discrete Markov chain model, conceptually 

similar to (Stoeckel & Masson 2014). Each time step of the model corresponds to one 

generation, i.e. the time between two consecutive observations of the population (figure 1). 

The model states represent all possible distributions of the N individuals on g genotypes: 
For a single locus with two alleles {a, A}, there are three different genotypes {aa, aA, AA}, and 

thus (N + 1)(N + 2)/2 states in the chain; for a greater number of alleles n, the number of 

genotypes corresponds to g = n(n + 1)/2 and the number of states to (N + g − 1)!/(N! ∙

(g − 1)!). At each time step, the population makes a transition from its current state to a 

next state (where current and next state can be the same), based on a vector of transition 

probabilities. These probabilities depend on the genotype frequencies ν<<, ν<>  (with the 

indices i ≠ j ≠ k ≠ l denoting different alleles) derived from the current state, and on the 

three constant model parameters population size N, mutation rate µ and rate of clonality c, 
according to the following equations (compare figure 1; all equations for the special case of 

two alleles are given in additional file 1, part 1.1):  

I Mutation. The theoretical frequencies ν<<,", ν<>," of each genotype after mutation are derived 

as: 
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I	

ν<<," = αeν<<,4 + αβ ν<>,4
>ƒ<

+	βe ν>>,4
>ƒ<

+ ν>k,4
k,>ƒ<

ν<>," = αe + βe ν<>,4 + 2αβ ν<<,4 + ν>>,4 +	 αβ + βe ν<k,4
kƒ<,>

+ ν>l,4
lƒ<,>

+ 2βe νkk,4
kƒ<,>

+ νkl,4
k,lƒ<,>

	

where α = 1 − µ, the probability that an allele does not mutate, and β = µ ⁄ (n − 1), the 

probability that an allele mutates into one of the n − 1 others during one generation. This 
corresponds to a classic k-alleles or Jukes-Cantor substitution model (Jukes & Cantor 1969). 

II Gamete formation (allele segregation). The gamete frequencies in the gamete pool after 

sexual reproduction ν<," are calculated as: 

II	ν<," = ν<<," +
1

2
ν<>,"

>ƒ<

	

There is no difference in the allele frequencies between sexes, mating types etc., and all 

individuals contribute equally to the gamete pool (pangamy). 

III Reproduction (clonality and syngamy). The genotype frequencies ν<<,""", ν<>,"""  after 

reproduction are calculated as: 

III
ν<<,""" = cν<<," + (1 − c)ν<,"

e

ν<>,""" = cν<>," + 2(1 − c)ν<,"ν>,"
		

based on the results from equations I and II. The rate of clonality c thus corresponds to the 
proportion of offspring per generation that is the result of clonal reproduction. The 

remainder of the offspring (“rate of sexuality” (1 − c) ) is derived from random mating 
including selfing (autogamy), assuming that all individuals have the same chance to mate 

(panmixis). 

IV Genetic Drift. The vector of genotype frequencies ν456 at the next generation, depending 
on the population size, is derived from: 

IV	ν456 =
X456
N

	where	X456	~ℳ(N, ν""")		

where X456  is the state of the model at the next generation, drawn from a multinomial 

distribution ℳ that is based on N, the population size counting all potentially reproducing 

individuals (mathematically the number of samples), and ν""" , the vector of genotype 
frequencies derived from equation III (mathematically the probabilities of the genotype 

“categories”). Transition probabilities P between any two model states X4, X456 can then be 
calculated based on: 

P X456 X4 =
N!

q<<,456!< q<>,456!<,>

ν
<<,"""

\]],^_`

<

ν
<>,"""

\]a,^_`

<,>

	

where q<<,456, q<>,456 ∈ ℕb are the natural numbers of individuals per genotype in the pre-

sumed next state X456 and therefore sum to N. Note that our description of genetic drift is 
based on genotype frequencies rather than allele frequencies. As explained in Ewens (2004), 

describing population genetic processes based on allele frequencies is a mathema-tical 
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convenience justified by HWE (i.e. assuming exclusively sexual reproduction), which assures 

that allele frequencies can always be directly translated into genotype frequencies. For 

partially clonal populations, we cannot automatically assume HWE and thus modeled all 

population genetic processes, including genetic drift, at the genotype level. 

Model analysis and identification of biological consequences 

We analyzed our model with several approaches. First, we studied the effect of each of the 

three model parameters (c, µ, N) on the genotype frequencies by itself. Setting the other two 

parameters to have no influence on the model result, i.e. c = 1, µ = 0 and/or N = ∞ (or no 
random drawing in equation IV), and substituting equation II into equation III, the model 

reduces to one equation per process, i.e. equation I for µ, equation III (with II) for c, and 

equation IV for N. For each equation/process, we then determined the steady states, i.e. 

those combinations of genotype frequencies for which q456 = q4, and derived the maximal 

expected convergence times tà, th  and t» . While t»  could only be approximated from 

numerical results (Markov chain first passage time approach), for c and µ convergence to 
the steady states is asymptotic as it can be described by geometric progressions (details of 

derivation in additional file 1, part 1.2). We therefore defined a universal “acceptable error” 

ε = 1 (2N), corresponding to one half the minimal change in genotype frequency that 

would be measurable by exhaustive sampling in a population of finite size N, below which 
the distance from the steady states has to pass (convergence criterion). Using the reference 

times tà, th and t» as a measure for the “strength” with which each process acts upon the 

genotype frequencies, we could then use this analytical basis to partition the parameter 

space of the full model into regions where either process dominates the genotype 

frequency dynamics.  

Secondly, we approached the full model for the case of two alleles, by following the 

dynamics of F"#  over time from three different start states for combinations of c, µ and N 
representative of the different regions of the parameter space. Aggregating the transition 

probabilities between all model states in a transition matrix M  (same current state per 
column, i.e. columns summing to one), the probability distribution of the model states (and 

consequently the probability distribution of F"#,4) at time t, given by the vector x4, is derived 

by matrix multiplication: 

x4 = M4xb	

where xb  describes the start state (vector of zeros except for a single one at Xb ). We 

illustrated the numerical result of our model using three start states: F"#,b ∈ {−1; 0; 1} under 

isoplethic (i.e. equally frequent, νL = νM = 1 n = 0.5) allele frequencies, standing for HWE 

(F"#,b = 0) and the most extreme deviations from it (complete homozygosity, F"#,b = 1 ; 

complete heterozygosity, F"#,b = −1). These states were chosen to represent the range of 

F"# values and not because of their biological significance or frequency in nature. Deviations 

from the final mean F"#,ä may derive from a recent change in the rate of clonality (e.g. from 

full sexuality with F"#,b = 0), full adaptation to past selection for (F"#,b = −1) or against 

(F"#,b = 1) heterozygotes, changes in population size (demographic bottleneck, founder 

event), secondary contact between two populations in which different alleles got fixed 
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(F"#,b = 1) or hybridization with subsequent reproductive isolation from the parents (F"#,b =

−1). Based on the transition matrix M, we also calculated the time to the final distribution of 
states (i.e. their “equilibrium” frequencies), which is also the time until the final distribution 

of F"#,ä (Markov chain mixing time, see additional file 1, part 1.5). 

To link our results with those obtained by previous authors, we calculated the final mean 

F"#,ä from equation 10 in Balloux et al. (2003), setting qÇ = 1, q = 0 (a finite population, 

no migration) and s = 1/N (random mating): 

F"#,ä =
1

(2N − 1) − 2N c(1 − µ)e
	

and the expected time to convergence of F"# iteratively from equation 5 in (Balloux et al. 

2003): 

1 − HT,456
1 − HU,456

=
F456
Θ456

= 1 − µ e
c +

1 − c

2N
(1 − c) 1 −

1

N
1

2N
1 −

1

N

F4
Θ4

+

1 − c

N
1

2N

	

In contrast to our model, both these equations do not contain the number of alleles, since 

they are based on an infinite alleles model, and treat the expected and observed hetero-/ 

homozygosity as continuous variables. 

Finally, to get a better idea how our theoretical results are comparable to those published 

for field data, we looked at the sampling effect of using different numbers of polymorphic 

loci L to estimate the mean F"# of the population at time t, F"#,4,Ã. Assuming that each locus 

represents an independent estimate of this mean (no confounding effect of linkage), and 

that the genotype frequencies are known exactly (exhaustive sampling of all 

individuals/ramets), it is derived as: 

F"#,4,Ã =
1

L
F"#,4,Õ

Ã

ÕDb
	

Both assumptions are usually violated (Halkett et al. 2005, Arnaud-Haond et al. 2007), so that 

our results represent a conservative estimate of the true error of this method. We randomly 

sampled both the steady state distribution F"#,ä and the instantaneous distribution F"#,Œb of 

a population that started 50 generations ago with all loci at HWE and equal allele 

frequencies (isoplethy for two alleles per locus), for the same parameter combinations that 

we previously used to illustrate the dynamics of the full model. Based on 105 random 

samples of size L , we then calculated the mean signed deviation of the sample means 

F"#,4from the true mean F"#,4: 

∆F"#,4 =

1

z6
F"#,4 − F"#,4

—“”,^‘—“”,^

1

ze
F"#,4 − F"#,4

—“”,^’—“”,^

	 , z6 + ze = 10Œ	

where z6  and ze  represent the number of positive and negative deviations, respectively. 
Loci at or near fixation are typically not used in population genetic studies, since they are 
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especially affected by genotyping errors. We therefore excluded all loci where the frequency 

of one allele exceeds 1 − 1/(2N)  (near fixation; see additional file 2, part 2.1 for the 

derivation of this value, and compare similar considerations in Graffelman & Camarena 

2008) from the calculation of values for this analysis. 

All computations were performed in Python 2.7 with 64 bit precision, using the modules 

numpy, scipy (Oliphant 2007), networkx (Hagberg et al. 2008) and matplotlib (Hunter 2007). 

We illustrate some of our results with de Finetti diagrams (de Finetti 1926, Reichel et al. 2014, 

figures 2A-4A), which are ternary plots of the genotype frequencies [νLL, νLM, νMM] at one 
locus with two alleles within a population (see additional file 2, figures 2-1 to 2-4 for more 

information). Details for the literature review in the discussion are given in additional file 3.  

Results 

The dynamics of F"# and the underlying genotype frequencies through time were affected 
by the rate of clonality. However, we found that this effect strongly depends on interactions 

with the mutation rate and population size. We therefore first present the dynamics due to 

each parameter by itself before analyzing the combination of the three evolutionary forces. 

Dynamics of genetic diversity due to each parameter 

Partial clonality, ª 

In this section, only reproduction may change the genotype frequencies (equation II and III, 

µ = 0, N = ∞), which corresponds to an infinite-sized and non-mutating population. Under 

exclusively sexual reproduction by random mating, F"# converges to zero in just one time 
step (figure 2), while exclusively clonal reproduction per se produces not change from the 

parental genotype frequencies and does not change F"#. Between these two extreme cases, 

there is still convergence towards F"# = 0 , though it takes longer as the rate of clonal 
reproduction increases (figure 2B). This result is independent of the number of alleles, as in 

fact the allele frequencies are not affected by either clonal reproduction or random mating 

in the absence of genetic drift and mutation.  

The maximal time tà  until convergence to F"# = 0, due to reproduction only, is directly 
dependent on the rate of clonal reproduction (derived in additional file 1, part 1.2; compare 

also equation 5 in Marshall & Weir 1979). It can be approximated as 

	tà = 1 + logà ε = 1 +
log ε

log c
		

with ε corresponding to a small error term, e.g. 1/2N, as its convergence is asymptotic. 

Between tà = 1  for exclusively sexual and tà = ∞  for exclusively clonal populations, the 

dependence of tà on c is not linear, but increases hyperbolically (figure 2B). Consequently, if 

the rate of clonal reproduction is low, the same increase in c leads to a much smaller increase 
in the time to convergence than if clonal reproduction were already comparatively frequent. 
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Figure 2.  Genotype dynamics due to reproduction (random mating and clonality) only. A: 

Convergence pattern for 0.0 ≤ c < 1.0 , based on figure A2-2 in additional file 2. 

Arrows indicate the direction of genotype frequency change over time, dark blue line 

indicates (stable) steady states where genotype frequencies do not change anymore. 

No genotype frequency changes due to reproduction for	c = 1.0. Discontinuous grey 

lines connect states of equal F"#  (dashed: F"# = 0 , dotted: F"# = ±	0.1, 0.2 … 1 ) B: 

Maximal expected convergence time tà in generations for each rate of clonality c. 

Mutation ÿ 

In this section, only mutation may change the genotype frequencies (equation I, c = 1, N =

∞), which corresponds to an infinite-sized population of non-reproducing and immortal 
single-celled individuals. Mutation not only introduces diversity in genotypically uniform 

populations by shifting genotype frequencies away from fixation (figure 3A). It also leads to 

a convergence to F"# = 0 (random association of alleles) if the alleles at both copies of a 
locus within an individual/cell mutate independently. Assuming equal mutation rates 

between all alleles, the genotype frequencies thus converge to HWE for isoplethic alleles 

(for two alleles, [0.25, 0.5, 0.25] or the vertex of the Hardy-Weinberg parabola in figure 3A; 

for n  alleles see additional file 1, part 1.3). However, we also show that other mutation 
models (e.g. step-wise mutation model for SSRs or transition/transversion models for SNPs, 

see additional file 1, part 1.3) only affect the final allele frequencies and not F"# as long as 
mutations are independent of the homologous allele (i.e. excluding for instance gene 

conversion). Increasing the mutation rate decreases the convergence time (figure 3B). 
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Figure 3.  Genotype dynamics due to mutation (k-allele/Jukes-Cantor model) only. A: 

Convergence pattern for 0.0	 < 	µ	 ≤ 	0.5, based on figure A2-3 in additional file 2. 

Arrows indicate the direction of genotype frequency change over time, red dot the 

(stable) steady state where genotype frequencies do not change anymore. No 

genotype frequency changes due to mutation for µ = 0.0. Discontinuous grey lines 

connect states of equal F"# (dashed: F"# = 0, dotted: F"# = ±	0.1, 0.2 … 1) B: Maximal 

expected convergence time th in generations for each rate of mutation µ and different 

numbers of alleles (red: 2, orange: 4, grey: 10, black: infinite). 

The maximal time th  until convergence to F"# = 0  and equal allele frequencies, due to 

mutation only, is directly dependent on the mutation rate. It can be approximated as 

th = 1 + log
6ch

i
ic6

ε = 1 +
log ε

log 1 − µ
n

n − 1
,
			

which simplifies for two alleles into 

th = 1 + log 6ceh ε = 1 +
log ε

log 1 − 2µ .
 

For the highest mutation rate we analyzed, µ = 0.5 (i.e. each allele has the same chance to 

mutate or not to mutate), the time to convergence th is thus only one generation. Natural 

mutation rates are typically much lower (Drake et al. 1998, Hile et al. 2000), ranging from 

10c∫ to 10c6Ÿ.	 Convergence due to mutation can therefore take very long: by setting ε =

0.005 and assuming a mutation rate of µ = 10cç, it would take up to around 2.6 ⋅ µc6 or 2.6 

million generations.  
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Genetic drift é 

In this section, only genetic drift may change the genotype frequencies (equation IV, c =

1, µ = 0), which corresponds to an exclusively clonal, non-mutating population of fixed size. 
Contrary to mutation and sexual reproduction, genetic drift does not lead to a universal 

convergence of F"# values, but instead to genotypic uniformity (figure 4A). Consequently, 

F"# either becomes −1 if the remaining genotype is heterozygous, or F"# cannot be defined 
if the remaining genotype is homozygous. Looking only at the allele frequencies, this leads 

to the somewhat unusual situation that not just one allele can be stochastically fixed in the 

population, but also two (or more, depending on the organism’s ploidy level) at equal 

frequencies (compare also explanation to equation IV in the description of our model).  

 

 

Figure 4.  Genotype dynamics due to random genetic drift only. A: Convergence pattern for 

0.0	 < 	N < 	∞, based on figure A2-4 in additional file 2. Arrows indicate the direction 

of genotype frequency change over time, green dots steady states where genotype 

frequencies do not change in the mean (unstable steady state, unfilled dot), or not at 

all (stable steady states, filled dots). No genotype frequency changes due to genetic 

drift for N = ∞. Discontinuous grey lines connect states of equal F"# (dashed: F"# = 0, 

dotted: F"# = ±	0.1, 0.2 … 1) B: Maximal expected convergence time t» in generations 

for population sizes from 1 to 100, for two different numbers of alleles (darker green: 

2, lighter green: 4). Results for four alleles are in part based on an extrapolation (dashed 

line) from numerical solutions for smaller population sizes. 

Which genotype is most likely to finally prevail depends on the initial genotype frequencies: 

If all genotypes are equally frequent (unstable steady state in figure 4A), all are equally 
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probable and no prediction can be made. Otherwise, the more frequent one genotype 

becomes, the less probable it is that it will yet be superseded by a currently rarer genotype. 

Once one genotype is completely lost from the population, it cannot reappear (still 

assuming the absence of sexual reproduction or mutation), therefore the convergence to 

genotypic uniformity is final (stable steady states in figure 4A). The time to convergence 

decreases with 1/N, the “quantum step size” of change in genotype frequencies (frequency 
equivalent of one individual) in a finite population.  

To link this result to the dynamics of F"# under genetic drift, we consider the frequencies of 

different genotypes at F"# = 0. For the example of two alleles, the heterozygous genotype 

is the most frequent if both allele frequencies νL, νM > 1/3 (see additional file 1, part 1.4 for 

n alleles), outside this range one of the homozygous genotypes dominates the population. 
If both alleles are nearly isoplethic, stochastically increasing heterozygosity and “drifting” 

towards negative F"#  is therefore most likely. For more than two alleles, though an even 
smaller excess of one allele compared to the others results in a homozygous genotype being 

the most frequent at F"# = 0, this effect can be outweighed by the cumulative frequency of 

all heterozygous genotypes (expected heterozygosity, max HU = (n − 1)/n ) still being 
larger than the cumulative frequency of all homozygous genotypes (expected 

homozygosity, 1 − HU) over an increasing range of allele frequencies. 

The maximal expected time t» required to reach genotypic uniformity, due to genetic drift 

only, is directly dependent on the population size, but also on the number of genotypes 

(maximum depending on the number of alleles; figure 4B). For small population sizes, t» 

always equals two for N = 2, grows approximately linearly with N (additional file 1, part 1.2), 
and the slope of the linear approximation increases with the number of genotypes/alleles. 

As an example, in a population of 100 individuals up to about 160 generations are required 

until only one genotype remains at a locus with two alleles, depending on the start state. 

Dynamics under mutation, genetic drift and partial clonality 

In this section, genotype frequencies will be affected by mutation, partial clonality and 

genetic drift together (equations I-IV, c ∈ [0, 1], µ ∈	]0, 0.5], N ∈ [1,∞[), corresponding to 

the full biological model. Consequently, the dynamics of genotype frequencies and F"# will 
follow a combination of the patterns we presented for each subsystem. Using the maximal 

convergence times tà, th, t»  as a measure of the relative “strength” of each process, the 

three-dimensional parameter space can be partitioned into different parts where either 

process dominates (figure 5): If tà ≪ th, t»  as is usually the case for strictly sexually 

reproducing populations, genotype frequencies quickly converge to HWE, i.e. F"#,ä ≅ 0. For 

th ≪ tà, t» , a situation that applies to very big, highly clonal populations, genotype 

frequencies converge to HWE and the final allele frequencies due to dominant mutation, so 

that F"#,ä ≅ 0 also in this case. Finally, if t» ≪ th, tà, as in smaller highly clonal populations, 

dominant genetic drift does not lead to convergence to F"#,ä = 0, but rather to a successive 

loss of genotypes and eventually to genotypic uniformity (fixation or F"#,ä = −1). Since 

both random mating and mutation lead to a random association of alleles, the relative 

“strength” of genetic drift determines the dynamics of F"# in (partially) clonal populations. 
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Figure 5.  Overview of the model parameter space. With regions where the genotype dynamics 

are dominated by either reproduction, mutation or genetic drift. Lines correspond to 

tà = th, tà = t», th = t» for two different numbers of alleles (black: 2 alleles, grey: 4 

alleles) and two different population sizes (continuous: N = 20 , dashed: N = 100). 

Labeled dots A-G indicate examples for which the dynamics of F"# are shown in figure 

6. 

Transitions between the predominance of either process are not abrupt, nor do different 

processes globally compensate each other, as each convergence pattern is different (figures 

2A-4A). Keeping population size and mutation rate constant (N = 100, µ = 10cç ) and 

successively increasing the rate of clonality (figure 6A-E, see also additional file 2 part 2.5) 

illustrates the changes in the dynamics of F"#  as genetic drift takes over: At low to 
intermediate rates of clonality (figure 6A,B; compare also with figure 5 to see how the range 

of c to which this applies increases with population size), the dynamics of F"#  are almost 

identical to those expected for a purely sexual population (c = 0, figure 6A). While the final 

mean F"#,ä  is yet hardly different from zero for intermediate rates of clonality ( c =

0.8:	F"#,ä ≈ −0.02, figure 6B), variation around the mean is already increased, and extreme 

initial F"#,b  values can be traced over a certain time. These tendencies – increasingly 

negative F"#,ä, increased variation of F"# values, and increased time/start value dependence 

– continue until tà  reaches t»  (c ≈ 0.97:	F"#,ä ≈ −0.14 , figure 6C) and then gain even 

further momentum as sexual reproduction becomes very rare (c = 0.99:	F"#,ä ≈ −0.33 , 

figure 6D).  
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Figure 6.  Dynamics of F"#  through time for six representative example parameter sets. Single 

loci with two alleles. Vertical lines represent tà  (continuous), t»  (dashed) and th 

(dotted), colors represent different start states (yellow: F"#,b = 1 for νL = νM, magenta: 

F"#,b = 0  for νL = νM , cyan: F"#,b = −1 ), with their respective F"#,4  distributions 

(shading), mean (continuous line) and 95% confidence intervall (dotted lines). Red 

triangles at t = 200 indicate the mean F"#,ä according to Balloux et al. (2003). Model 

parameters – A:	c = 0 ,	µ = 10cç ,	N = 100 ; B: 	c = 0.8 ,	µ = 10cç ,	N = 100 ; C: c ≈

0.97	(tà = t») ,	µ = 10cç ,	N = 100 ; D: c = 0.99 ,	µ = 10cç ,	N = 100 ; E: c = 1.0 ,	µ =

10cç,	N = 100; F: c = 1.0,	µ = 10ce,	N = 100; G: c = 1.0,	µ = 10c6,	N = 100. 
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Figure 7.  Dynamics of the probability of fixation pfix through time for six representative example 

parameter sets. Single loci with two alleles, colours represent different start states 

(yellow: F"#,b = 1 for νL = νM, magenta: F"#,b = 0 for νL = νM, cyan: F"#,b = −1). Model 

parameters – A:	c = 0 ,	µ = 10cç ,	N = 100 ; B: 	c = 0.8 ,	µ = 10cç ,	N = 100 ; C: c ≈

0.97	(tà = t») ,	µ = 10cç ,	N = 100 ; D: c = 0.99 ,	µ = 10cç ,	N = 100 ; E: c = 1.0 ,	µ =

10cç,	N = 100; F: c = 1.0,	µ = 10ce,	N = 100; G: c = 1.0,	µ = 10c6,	N = 100.  

Finally, for an exclusively clonal population with low mutation rate/small population size 

(c ≈ 1.0:	F"#,ä ≈ −1.00, figure 6E), F"# dynamics are governed by genetic drift: Loci with an 

initial F"#,b = −1 (one heterozygous genotype) are effectively “fixed” though there are two 

different alleles, loci starting from F"#,b = 1 at isoplethy rarely acquire any heterozygosity 

anymore, and loci starting from F"#,b = 0 at isoplethy show a wide variety of both positive 

and negative F"#  over the next generations, their mean converging to F"#,ä = −1.0. For 

these latter loci starting out with a high genotypic diversity and a heterozygote genotype 

being the most frequent, a marked difference in the positive and negative ranges of the F"# 
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distribution becomes apparent after some generations (t~50, figure 6E and D-B to a lesser 
extent): the positive values seem to “fade out”. The reason for this effect, which also explains 

the convergence to negative F"#,ä in highly clonal populations, is firstly the trend towards 

randomly increasing the frequency of the heterozygous genotype(s) at HWE and 

approximately isoplethic allele frequencies (see previous section and additional file 1, part 

1.4). Secondly, it is because the rate of fixation (of one allele) becomes strongly dependent 

on the initial F"#,b as sexual reproduction becomes rare (figure 7A-E; in plot E, the probability 

of fixation pfix for F"#,b = 0 starts to increase at t~50). Remarkably, the mean F"#,4 starting 

from F"#,b = 0 (as expected for hitherto not or rarely clonally reproducing populations) has 

not reached the final F"#,ä  even after 200 generations (while t» = 159 – convergence to 

drift steady states is slowed down by “weak” mutation) in our example.  

Highly clonal populations dominated by mutation rather than genetic drift present a very 

different picture (figure 6F,G, 7F,G: c = 1.0, µ = {10ce, 10c6}, N = 100, or simulation for 

the more realistic conditions c = 1.0, µ = 10c∫, N = 10∫ in additional file 2, part 2.5): As in 

predominantly sexually reproducing populations, F"#  values converge to only slightly 

negative final F"#,ä (figure 6G: F"#,ä ≈ −0.02) and the variation of F"# values is limited, with 

the convergence speed depending on th . Yet in contrast, the instantaneous F"#,4 

distributions appear more symmetrical as the fixation of single alleles is very rare (figure 

7F,G). If mutations between more than two alleles have to be taken into account, th 

increases and mutation is accordingly “weakened” in comparison to the other processes 

(figure 3B; figure 7F, difference between our result and the predicted F"#,ä  according to 

Balloux et al. 2003); however, as the generally close fit between the results of Balloux et al. 

(2003) between an infinite alleles model and our results suggests, increasing the number of 

alleles does not profoundly change the dynamics of F"# we illustrated here. 

Table 1. Convergence times under partial clonality for six representative example parameter 

sets. Population size N = 100 throughout. Columns: c – rate of clonality, µ – mutation 

rate, t»  – genetic drift maximal expected convergence time, tà  – reproduction 

maximal convergence time, th  – mutation maximal convergence time, t"  – 

convergence time to the mean F"#,ä based on the model in (Balloux et al. 2003), t"" – 

convergence time to the mean F"#,ä based on our model, t""" – convergence time to 

full final distribution of F"#,ä. Rows: example parameter sets (compare figure 6). Bold: 

min(tà, th). 

é = 100	 ª	 ÿ	 ‹›	 ‹fi 	 ‹fl 	 ‹Ω 	 ‹ΩΩ 	 ‹ΩΩΩ 	

A 0.0	 10cç	 159	 ®	 2.6×10ç	 1	 1	 2.6×10ç	

B 0.8	 10cç	 159	 ‡·	 2.6×10ç	 27	 27	 2.6×10ç	

C 0.97	 10cç	 159	 ®·‚	 2.6×10ç	 174	 177	 2.6×10ç	

D 0.99	 10cç	 159	 ·‡‚	 2.6×10ç	 464	 498	 2.6×10ç	

E 1.0	 10cç	 159	 ∞	 ‡. „×®‰„	 38	366	 ≫ 40	000	 2.6×10ç	

F 1.0	 10ce	 159	 ∞	 ‡„Ê	 234	 138	 264	

G 1.0	 10c6	 159	 ∞	 ‡·	 25	 14	 25	
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Figure 8.  Sampling error of the mean F"#,4,Ã according to number of loci. Mean signed deviation 

∆F"#  for each parameter set in figure 6, sampling from the F"#,Œb  distribution at 50 

generations after all loci were at F"#,b = 0  for νL = νM  (left/magenta), or the steady 

state distribution of F"# (F"#,ä, right/black). The bars for each parameter set are each 

based on 105 random samples of 5, 10, 25, 100, 1 000, 10 000 and 100 000 loci (left to 

right). Model parameters – A: c = 0 ,	µ = 10cç ,	N = 100 ; B: 	c = 0.8 ,	µ = 10cç ,	N =

100; C: c ≈ 0.97	(tà = t»),	µ = 10cç,	N = 100; D: c = 0.99,	µ = 10cç,	N = 100; E: c =

1.0 ,	µ = 10cç ,	N = 100 ; F: c = 1.0 ,	µ = 10ce ,	N = 100 ; G: c = 1.0 ,	µ = 10c6 ,	N =

100. 

The time until the exact final F"#,ä distribution is reached typically depends on th (table 1, 

additional file 1 part 1.5). However, the mean F"#,ä may be reached much earlier (figure 6, 

table 1). This can be explained by the different patterns of genotype frequency change due 

to mutation and sexual reproduction: reaching the exact final F"#,ä distribution also implies 

having reached the final allele frequencies (only due to mutation), while reaching the final 

mean F"#,ä  only requires having reached the final heterozygosity (due to mutation and 

sexual reproduction). When comparing different rates of clonality in populations with the 

same size and (natural) mutation rate, the increase of the conver-gence time to F"#,ä  is 

therefore directly related to tà until tà > th. Compared to the model in (Balloux et al. 2003), 

convergence times to F"#,ä in our model are consistently higher or equal. In our finite-alleles 

model, th  and consequently the convergence times to F"#,ä  would be lower, so that the 

increased times appear due to the discreteness of hetero-/ homozygosity only included in 

our model. 

The increase in the variation of F"# values accompanying a stronger influence of genetic 

drift also implies that estimating the exact mean F"#,4 derived from the full distribution of 

F"#,4 by the mean over a sample of several loci will become more inaccurate. Based on the 

same parameter sets as before, we show that this is indeed the case (figure 8). Moreover, 
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estimates taken from populations that have not yet reached their final distribution of F"#,ä 

may show greater deviations from their current exact mean F"#,4 value than expected for the 

final F"#,ä values (figure 8, left/magenta bars; note that the start state for all means taken at 

t = 50  was the same and does not contribute any additional variation). In some highly 

clonal populations (figure 8D,E at t = 50), the mean deviations from the current exact mean 

F"#,Œb based on ten loci even exceeded ±0.1. 

Discussion 

Our results on the dynamics of F"# in partially clonal populations add a new dimension – 

time – to the description of the final distribution F"#,ä  and its mean F"#,ä  derived from 

previous models (Balloux et al. 2003, Stoeckel & Masson 2014), thereby providing a missing 

link with the seminal results of Marshall & Weir (1979). In connection genetic drift and 

mutation, partial clonality may deeply change the dynamics of F"#  and the underlying 
genotype frequencies over time. We provide a classification of the pattern of genotype 

frequency change in partially clonal populations (dominated by random mating, genetic 

drift, or mutation, figure 5), and a way to estimate the time needed for convergence to the 

final mean F"#,ä  after a disturbance: Due to an increased “evolutionary memory” (sensu 

Bengtsson 2003, Desai 2009) for past genotypic diversity in partially clonal populations, 

population history (e.g. changes in demography, past selection, reproductive system) can 

produce a transient overrepresentation of F"#  values presumed to be very rare based on 

F"#, . The variation of F"#  is increased in partially clonal compared to exclusively sexual 

populations, so that the mean F"#,4,Ã obtained with the same (low) number of of loci has a 

greater error. Our findings suggest that the often reported negative mean F"#  are also 
compatible with intermediate rates of clonal reproduction and not necessarily a signature 

of (almost) exclusive clonality. We continue to discuss the mechanism behind the changed 

dynamics of F"#, its implications and the impact of our results on the interpretation of F"# in 
natural populations of partially clonal organisms. 

Why negative ºΩæ  in partially clonal populations? 

Our results on the dynamics of genotype frequencies due to each evolutionary process 

(model parameter) separately formally demonstrate that:  

• partially clonal reproduction, even with only rare sex ( c ∈ 0,1 , figure 2A and 

additional file 2, part 2.2), leads towards F"#,ä = 0, as clonal reproduction by itself 

(c = 1; additional file 2, part 2.2) does not change genotype frequencies  

• mutation, if acting independently at each allelic copy, leads towards F"#,ä = 0 

(figure 3A and additional file 2, part 2.3), and 

• genetic drift leads towards genotypic uniformity, i.e. either. F"#,ä = −1  (one 

heterozygous genotype remains) or fixation (one homozygous genotype remains) 

depending on the initial genotype frequencies (figure 4A). 

The first point has important implications for extending our model to include other 

reproductive modes such as selfing or preferential inbreeding: as reproduction by (partial) 
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clonality does not result in directed departures from F"# = 0, it does not counterbalance the 
homozygote excess expected for these cases (compare e.g. Wright 1921, Yaglom 1967, 

Marshall & Weir 1979). Compared to the standard expectation for exclusively sexual 

populations, clonality only slows down the approach to HWE (figure 2B), granting more 

influence to other processes such as mutation and genetic drift.  

Among the evolutionary processes included in our model, genetic drift alone drives 

departures from F"# = 0 (figure 4A). Therefore the negative F"#,ä suggested as a signature 

of highly or exclusively clonal populations (Balloux et al. 2003, Halkett et al. 2005, de Meeûs 

et al. 2006) strongly depend on the relationship between population size and mutation rate 

(figure 5). Genotype frequency dynamics due to mutation will dominate highly clonal 

populations if genetic drift is comparatively weak (figure 5, top right part of the diagram), 

i.e. under very high mutation rates (figure 6F,G) or more commonly for very big populations 

(additional file 2, part 2.5), and lead to F"#,ä = 0 instead. Negative F"#,ä are only expected in 

smaller clonal populations, where the effects of genetic drift dominate genotype dynamics 

(figure 6D,E; figure 5, lower right part of the diagram). The “randomizing” effect of mutation 

on the association of alleles is weakened if the number of possible alleles increases (figure 

3B), but exists regardless of this number or the exact mutation scheme (e.g. Estoup et al. 

2002, Ellegren 2004 compare additional file 1, part 1.3), except if mutation depends on the 

alleles at other copies of the same locus within the same individual (e.g. as for gene 

conversion, McMahill et al. 2007, Flot et al. 2013, which specifically promotes homozygote 

excess and was not included in our model). According to our results, populations with 

mutation-dominated genotype dynamics (figure 5, upper part of the diagram) may 

distinguish themselves from their random mating-dominated counterparts (figure 5, left 

part of the diagram) by the rarity of loci that are fixed for one allele throughout the whole 

population rather than by a different mean F"#. 

Our results provide a complementary perspective to the previously proposed explanations 

of heterozygote excess in highly clonal populations: negative F"# values for clonal lineages 
have sometimes been associated with the independent accumulation of mutations on 

homologous chromosomes over long periods of time, commonly known as the “Meselson 

effect” (Welch & Meselson 2000, mathematical models in Bengtsson 2003, Ceplitis 2003). 

Here we show that these negative F"#  values do not appear at loci with a high rate of 
mutation and/or in very large ancient populations (figure 6; additional file 2, part 2.5). 

ºΩæ  dynamics in partially clonal populations: changes to time scale and variation 

between loci 

We demonstrated that the dynamics of genotype frequencies and F"# are slowed down in 
partially clonal populations, which therefore retain traces of their past for much longer than 

their exclusively sexual counterparts. This puts the appropriateness of the final F"#,ä 

(Balloux et al. 2003, Stoeckel & Masson 2014) as a reference into question: already for 

intermediate rates of clonality, the observed genotype frequencies may reflect population 

history rather than the present reproductive system and dynamics, depending on the time 

since the last disturbance (figure 6; additional file 2, part 2.5). For example, an almost 

exclusively clonal population of hybrid origin will maintain excess heterozygosity/lower F"# 
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for many generations; the re-establishment of expected heterozygosity after secondary 

contact will take much longer in a highly clonal population, even if the rare sexual 

reproduction is panmictic and pangamic; exclusively clonal populations that “lost sex” only 

recently may give the impression that they sometimes reproduce sexually just by inheriting 

the genotypic diversity of their ancestors.  

The deceleration of the dynamics of F"#  is connected to the hyperbolical increase of tà 
(figure 2B) and thus much stronger under high rates of clonality. We demonstrated that a 

comparison of the maximal expected convergence times tà, th, t»  can be an efficient 

means to predict the overall pattern of F"#  dynamics (figure 5-7, additional file 2, part 

2.5).The times tà and th can even be used to estimate convergence times of the complete 

model (table 1): While the time until the steady state distribution of F"#,ä is reached depends 

on th, the convergence time to the final mean F"#,ä	 can be estimated by the minimum of tà 

and th  (i.e. usually tà  in small populations). If t» ≪ min(tà, th) , loci with different initial 

genotype frequencies may not converge to the same final F"#,ä  value (convergence to 

genotypic uniformity), so that the expected final F"#,ä = −1  is not reached within 

biologically realistic time spans (figure 6E,7E, additional file 2). Though not yet included in 

our model, perenniality (partial survival of the population across generations, as in Orive 

1993) is expected to slow down F"# dynamics even further. If disturbances are sufficiently 
frequent, e.g. in very instable environments or in populations cyclically changing between 

exclusive sexual and clonal reproduction (Berg & Lascoux 2000, Allen & Lynch 2012), the final 

F"#,ä and F"#,ä based on the currently observed rate of clonality may even never be reached. 

Finally, during the approach to the final F"#,ä, loci may pass through intermediate states 

(genotype frequencies, F"# ; figure 6, additional file 2, part 2.5) that would be unusual 

according to F"#,ä. Even at rates of clonality which do not yet affect the expectations for the 

final F"#,ä , the variation of F"#  is increased compared to exclusively sexual populations 

(Balloux et al. 2003, Stoeckel & Masson 2014). Consequently, information about more loci is 

required to accurately estimate the mean F"#,4 in partially clonal compared to strictly sexual 

populations. We found that the variation of F"# observed during the approach to the steady 

state distribution may be even greater than predicted based on the final F"#,ä (figure 8). 

Application to field data 

We performed a literature analysis, which shows that a very wide variety of F"#  values, 
positive as well as negative, were found in partially clonal populations (figure 9; details in 

additional file 3). Field data may be influenced by technical biases, including sampling bias 

due to an unknown spatial structure of clones, missing rare genotypes due to non-

exhaustive sampling, genotyping errors (e.g. undetected null alleles for SSRs) or preferential 

sampling of loci with near-isoplethy (thus increasing the probability to find negative F"#). 
Moreover, biological processes that are not included in our model may have acted on the 

data we collected. We applied strict criteria to standardize the dataset we used and retain 

those that fit best our model, including only studies that did include repeated multilocus 

genotypes in their calculations, published F"# values (or HT and HU) per locus and (clearly 
isolated) population, and reported on organisms which life cycle fits with our model (i.e. 
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dominantly diploid, no cyclic clonality as e.g. in aphids). As only few studies matched these 

strict criteria (Duran et al. 2004, Nagamitsu et al. 2004, Stoeckel et al. 2006, Rougeron et al. 

2008, Villate et al. 2010, Corral et al. 2011, Jiang et al. 2011, Liu et al. 2011, Tesson et al. 2011, 

Vilas et al. 2011, Gao et al. 2012, McInnes et al. 2012, Tew et al. 2012, Barnabe et al. 2013, 

Motoie et al. 2013), we also kept some for which the mating system departed from random 

mating, considering that preferential inbreeding may increase the frequency of positive F"# 
values (compare Yaglom 1967, Marshall & Weir 1979) and preferential outbreeding has been 

shown to have very little effect on F"# (Navascués et al. 2009).  

 

Figure 9:  Examples for empirical F"# values of partially clonal populations compiled from field 

studies. Data for 54 populations (one per column) belonging to 15 species (seven 

angiosperms, six protists, a sponge and a nematode), based on 15 previous studies 

(see additional file 3) selected for their near fit with the assumptions of our model from 

a Web of Science search for [(microsatellite OR "SSR" OR "simple sequence repeat" OR 

"SNP" OR "single nucleotide polymorphism") AND (clonal OR asexual OR vegetative OR 

apomictic OR apomixis OR agamospermy OR parthenogenesis)]. All studies are based 

on SSR data; for populations 20-31, 39-42 and 49-50, F"#  values per locus were 

calculated from the reported HT and HU. Includes populations for which preferential 

inbreeding (populations 12-14) or outbreeding (self-incompatibility system, 

populations 16-19) is expected. Dotted lines separate three groups of populations 

according to the information given by the authors about their putative rate of clonality, 

i.e. rarely clonal, frequent clonality and sexuality (including unknown), or rarely sexual. 

Number of sampled loci indicated by numbers at the bottom of the plot, number of 

samples (individuals/ramets) indicated by the hue of each round dot (light grey: 10, 

black: > 100). Red lozenges indicate the mean F"#,4,Ã  over all sampled loci per 

population. 

The results of our study open up new explanations for the presence, but also the absence, 

of positive and negative F"# values (both at individual loci or the mean) in partially clonal 

populations. Values that should be rare based on the steady state distribution F"#,ä or its 

mean may transiently become highly probable already under intermediate rates of clonality: 

they can be due to the increased variation of F"# or echo a departure from equilibrium due 
to population history (e.g. demographic bottleneck, change in the rate of clonal 

reproduction). As an example of application of our results, in some wild cherry populations 
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(populations 17-19 in figure 9, Stoeckel et al. 2006), slightly negative mean F"#,4,Ã over loci 

would have suggested almost exclusive clonality when taking the final mean F"#,ä as the 

reference (e.g. F"#,4,Ã = −0.083  for the exhaustively sampled population 18 with N =

247, µ ∈ 10c∫, 10c6e	  suggests c ≈ 0.98). However, the proportion of repeated multilocus 

genotypes and inferences from parentage analysis suggested only an intermediate rate of 

clonality (c~0.5); based on this value, genotype dynamics would be dominated by random 

mating (tà ≈ 10). Even though Prunus avium is a very long-lived species with generation 

times of ~50  years, historical records of the studied populations indicate no major 

disturbances such as demographic bottlenecks (e.g. due to fires) during the past > 500 
years. Thus population history may not be the most likely explanation for deviations from 

the expected mean F"#,ä ≈ −0.002. Based on our results and taking into account that only 

nine loci were analyzed, observed F"# values and their negative mean would be thus best 

explained by the increased variation of F"#  expected already for intermediate rates of 
clonality. 

Our results also suggest ways to further improve the population genetic inferences in 

natural populations of partial clonal organisms, as proposed in (Halkett et al. 2005). 

Maximizing the number of loci studied by moving from population genetics to population 

genomics may help to improve the statistical basis of inferences of population parameters. 

Rather than focusing exclusively on the mean F"#,4,Ã over loci, the full distribution of F"#,4,Ã 

values per population should be reported and interpreted. Collecting time series of samples 

may also provide valuable information, as field data normally represent only a “snapshot” of 

genotype frequencies at a particular point in time, that may or may not be representative of 

the final distribution of F"#,ä. Using the Markov chain model implemented here, it is not only 

possible to statistically analyze example trajectories (e.g. as in figure 2-5 in additional file 2), 

but also to analytically derive the transition probabilities between two consecutive sets of 

genotype frequencies for a range of rates of clonality, based on population size, mutation 

rate and number of generations between the samples. Taking the temporal dynamics of F"# 
in partially clonal populations into account will help to improve the biological interpretation 

of F"#  values from field data, and could contribute to a refined, unified method for 
estimating the rate of clonality based on a collection of population genetic indices. 

Conclusions 

Our results allow reconciling predictions for F"#  under partial clonality from theoretical 

models, which suggest departures from F"# = 0 only at nearly pure clonality, with empirical 
data, also showing such departures under different conditions where sex is known or 

suspected to be more frequent. These results have three main implications for interpreting 

F"# in partially clonal populations:  

• non-negative F"#, including null values, are not a reliable indicator of the absence of 

clonal reproduction, 

• significant deviations from F"# = 0	 for multiple loci may either indicate a 

considerable rate of clonality or a transient departure from the expected equilibrium 

in populations even when subject to a modest rate of clonality, or result from the 
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interaction of partial clonality with another evolutionary process that 

increases/decreases heterozygosity within the population (e.g. non-random mating, 

Marshall & Weir 1979; gene conversion, McMahill et al. 2007, Flot et al. 2013) 

• Increasing the number of loci and studying time series rather than single snapshots 

of genetic data may improve the accuracy of DNA-based estimates of the rate of 

clonal reproduction in populations and species. 
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Appendix 

A1 Mathematical background 

A1.1 Model equations 

For compound equations describing the concatenation of at least two processes, substitute 

the variables for time t in the second equation by the result for time t + 1 from the first 
equation.  

Symbols and abbreviations 

 N … population size c … rate of asexual reproduction µ … mutation rate 

 n … number of alleles g … number of genotypes t…current generation 

 ν< … allele frequency ν<> … genotype frequency q<< = Nν<<, q<> = Nν<> 

 i ≠ j ≠ k ≠ l … indices referring to alleles α = 1 − µ β = µ (n − 1) 

 ℳ … multinomial distribution X … random variable P … probability 

 tà, th, t» … max. expected number of generations to convergence λ … eigenvalue 

 Á … allele substitution matrix J … matrix of ones I … identity matrix 

 H = ν<><,> = 1 − ν<<<  HU = 2 ν<ν><,> = 1 − ν<
e

<  ∀ … “for all” sign 

 ε … approximation bias, set to ε = 1/(2N) unless specified otherwise 

Mutation 

• n = 2: 

νLL
νLM
νMM 456

=

(1 − µ)e (1 − µ)µ µe

2(1 − µ)µ (1 − µ)e + µe 2(1 − µ)µ

µe (1 − µ)µ (1 − µ)e

νLL
νLM
νMM 4

	

• n > 2: 

ν<<,456 =				 ν<<,4 ⋅ α
e + ν>>,4 ⋅ β

e

>

+ ν<>,4 ⋅ αβ

>

+ ν>k,4 ⋅ β
e

>,k

	

ν<>,456 = ν<<,4 + ν>>,4 ⋅ 2αβ + νkk,4 ⋅ 2β
e

k

+ ν<>,4 ⋅ α
e + βe

	 + ν<k,4 + ν>l,4 ⋅ αβ + βe

k,l

+ νkl,4 ⋅ 2β
e

k,l

=	

Reproduction 

• n = 2: 

νLL
νLM
νMM 456

= c

νLL
νLM
νMM 4

+ (1 − c)

νL
e

2νLνM
νM
e

4

, allele frequencies 
νL
νM 4

=
1 0.5 0
0 0.5 1

νLL
νLM
νMM 4
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• n > 2: 

ν<<,456 = cν<<,4 + (1 − c)ν<,4
e = cν<<,4 + (1 − c) ⋅ ν<<,4 + 0.5 ν<>,4

>

e

	

ν<>,456 = cν<>,4 + 2(1 − c)ν<,4ν>,4 = cν<>,4 + 2(1 − c) ⋅ ν<<,4 + 0.5 ν<k,4
k

ν>>,4 + 0.5 ν>l,4
l

	

Genetic drift 

Note that all ν<<,456, ν<>,456 have to fulfill éÍÎÎ,Ï56	 = ÌÎÎ,Ï56 , éÍÎÓ,Ï56 = ÌÎÓ,Ï56 ∈ ℕb. 

• n = 2: 

νLL
νLM
νMM 456

= X/N	where	X ∼ ℳ N, νLL,4, νLM,4, νMM,4 ,  

i.e. for qLL,456, 	qLM,456, 	qMM,456 ∈ ℕb such that qLL,456 + qLM,456 + qMM,456 = N: 

P

νLL
νLM
νMM 456

νLL
νLM
νMM 4

=
N!

qLL,456 ! ⋅ qLM,456 ! ⋅ qMM,456 !
	 ⋅ νLL,4

\zz,^_` ⋅ νLM,4
\z{,^_` ⋅ νMM,4

\{{,^_` 	

• n > 2: 

ν<<
ν<>
⋮ 456

= X/N	where	X ∼ ℳ N, ν<<,4, ν<>,4, … , 

i.e. for q<<,456, q<>,456, … ∈ ℕb such that q<<,456< + q<>,456<> = N: 

P

ν<<
ν<>
⋮ 456

ν<<
ν<>
⋮ 4

=
N!

q<<,456 !< ⋅ q<>,456 !<,>

	 ⋅ ν
<<,4

\]],^_`

<

⋅ ν
<>,4

\]a,^_`

<,>

	

	

A1.2 Convergence times – individual parameters 

Reproduction 

As can be easily demonstrated from the reproduction equations in part A1.1, neither 

random mating nor asexual reproduction per se change allele frequencies, they only affect 

the proportion of heterozygous and homozygous genotypes. Let H4 denote the observed 

heterozygosity at time t , and HU  the expected heterozygosity at F"# = 0  (convergence 
domain) for a given set of allele frequencies. 

The sum over all equations ν<>,456 = cν<>,4 + 2(1 − c)ν<,4ν>,4  can be rewritten as H456 =

cH4 + (1 − c)HU. Inserting this result into the equation for F"# gives: 

F"#,456 =
HU − H456

HU
=
HU − (cH4 + (1 − c)HU)

HU
= c ⋅

HU − H4
HU

= c ⋅ F"#,4	
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This recursive relation can be rewritten as a geometric sequence, F"#,4DÔ = cÔc6 ⋅ F"#,4Db. By 

defining an “acceptable error” ε, we can also calculate the time tà  until it has converged 

arbitrarily close to F"# = 0 , starting from F"# = 1 , depending on c : ε = c4c6 , which 

transforms to tà = 1 + logà ε = 1 + log ε log c. For c = 0, tà = 1; in contrast, tà  is infinite 

(no convergence) if c = 1 . A good value for ε  may be 1/2N , half the frequency 
corresponding to one individual of the population (detection threshold for deviations from 

F"# = 0). 

Mutation 

For any n, mutation between genotypes can be described by a matrix similar to the one 
given in part A1.1 or table A1.3-1. Thus, the genotype frequency vectors issued from the 

mutation process converge to the matrix’ dominant eigenvector (eigenvalue 1), and the 

convergence can be approximated by a geometric sequence whose common ratio 

corresponds to the matrix’ second largest eigenvalue.  

For n = 2, the eigenvalues of the mutation matrix can be calculated “by hand”: λ = {1, 1 −

2µ, (1 − 2µ)e}, each with a multiplicity of one. The time to convergence, depending on µ, 

therefore approximately corresponds to th = 1 + log(6ceh) ε = 1 + log ε log(1 − 2µ) . 

Looking at the extreme values of µ,	th = 1 for µ = 0.5, and there is no convergence if µ = 0. 

For n > 2, the eigenvalues of the mutation matrix can be derived from the eigenvalues of 

the allele substitution matrix Á . If we first consider genotypes as ordered, rather than 
unordered, pairs of alleles, mutation between them is described by the Kronecker product 

of !  with itself. The eigenvalues of Á ⊗ Á  are given by the pairwise products λÁ,<λÁ,> 

(including i = j) of the eigenvalues of Á . For the Jukes-Cantor substitution model, as Á =

βJ + α − β I, the eigenvalues of the allele substitution matrix are λÁ = {α + n − 1 β, α −

β} = {1, 1 − µ
i

ic6
} with multiplicities {1, n − 1}. The eigenvalues of the mutation matrix are 

therefore λ = {1, 1 − µ
i

ic6
, (1 − µ

i

ic6
)e} , and their multiplicities 1, n − 1, n(n − 1) 2  

after adjusting for the “unorderedness” of the alleles within genotypes. 

Thus, for n > 2, the second largest eigenvalue reduces to (1 − nβ) = (1 − µ ⋅ n/(n − 1)), 

and its multiplicity increases to n − 1. Consequently, the more alleles there are, the longer 
it takes until mutation has reached its equilibrium. 

Genetic drift 

If we consider a Markov chain for the states of our model based only on multinomial 

drawing, all states where only one genotype exists are absorptive. The convergence time t» 
for genetic drift thus corresponds to the maximum of the expected time until absorption / 

the expected time until “fixation” of one genotype starting from any non-absorptive 

(transient) state. 

The vector of expected absorption times for a population can be calculated from its 

fundamental matrix, i.e. an identity matrix of corresponding size minus the part of the 

transition matrix describing only transitions between transient states. For the simplest case 

of N = 2 individuals, the fundamental matrix is 
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0.5 0 0
0 0.5 0
0 0 0.5

.	

The expected absorption times of the three transient states [0.5, 0.5, 0], [0.5, 0, 0.5] and 

[0, 0.5, 0.5]  are given by the column sums of the inverse of this matrix, i.e. (2, 2, 2) . 

Consequently, t»(N = 2) = 2 , which means that any initially genotypically diverse 
population would be expected to become uniform after (a maximum of) just two 

generations. 

As N  increases, the fundamental matrix is no longer diagonal and the calculation of t» 
becomes more complex. Also, the vector of expected absorption times is no longer uniform, 

but depends on each state’s distance to the nearest absorptive state, e.g. 

[0.9, 0.1, 0.0]	being closer to absorption than [0.4, 0.3, 0.3]. For a finite N, these distances 

are divided into quanta of 1/N  since there can be no fractional individuals; hence the 

dependence of t»  on N . Based on the numerical results displayed in table A1.2-1, the 

following linear approximations of this dependence can be made (note that t»  not just 

increases with N, but to a lesser extent also with g or n): 

t» n = 2; 	2 ≤ N ≤ 120 = 1.6N − 1	

t» n = 3; 	2 ≤ N ≤ 15 = 1.8N − 1.5	

t» n = 4; 	2 ≤ N ≤ 8 = 1.95N − 2. 

For infinite N, the underlying multinomial distribution turns into a multinormal, and genetic 
drift becomes a diffusion process.  

Table A1.2-1:  Numerical results for the drift convergence time t», i.e. the maximum of the expected 

times to absorption / “fixation” of a single genotype through genetic drift, for different 

population sizes N, numbers of alleles n and resulting numbers of genotypes g. 

m = 2, è = 3	 m = 3, è = 6 m = 4, è = 10 

é	 ‹›	 é	 ‹›	 é	 ‹›	 é	 ‹›	

2	 2.0	 20	 30.8	 2	 2.0	 2	 2.0	

3	 3.9	 30	 46.9	 3	 3.9	 3	 3.9	

4	 5.2	 40	 63.0	 4	 5.8	 4	 5.8	

5	 6.8	 50	 79.2	 5	 7.7	 5	 7.7	

6	 8.5	 60	 95.4	 6	 9.7	 6	 9.7	

7	 10.0	 70	 111.5	 7	 11.3	 7	 11.6	

8	 11.6	 80	 127.7	 8	 13.0	 8	 13.6	

9	 13.3	 90	 143.9	 9	 14.8	 −	 −	

10	 14.8	 100	 160.1	 10	 16.6	 −	 −	

15	 22.8	 120	 192.4	 15	 25.7	 −	 −	
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A1.3 Mutation and heterozygosity – multiple alleles, asymmetric mutation rate 

Multiple alleles 

Table A1.3-1:  Mutation rates between diploid genotypes at one locus with four possible alleles A, G, 

C and T (SNP), based on the Jukes-Cantor substitution model. Mutations from “column” 

to “row” genotype with α = (1 − µ), β = µ 3. Note that all columns sum to one. 

 Homozygote genotypes Heterozygote genotypes 

↲ AA GG CC TT AG AC AT GC GT CT 

AA Ûe Ùe Ùe Ùe ÛÙ ÛÙ ÛÙ Ùe Ùe Ùe 

GG Ùe Ûe Ùe Ùe ÛÙ Ùe Ùe ÛÙ ÛÙ Ùe 

CC Ùe Ùe Ûe Ùe Ùe ÛÙ Ùe ÛÙ Ùe ÛÙ 

TT Ùe Ùe Ùe Ûe Ùe Ùe ÛÙ Ùe ÛÙ ÛÙ 

AG 2ÛÙ 2ÛÙ 2Ùe 2Ùe Ûe + Ùe ÛÙ + Ùe ÛÙ + Ùe ÛÙ + Ùe ÛÙ + Ùe 2Ùe 

AC 2ÛÙ 2Ùe 2ÛÙ 2Ùe ÛÙ + Ùe Ûe + Ùe ÛÙ + Ùe ÛÙ + Ùe 2Ùe ÛÙ + Ùe 

AT 2ÛÙ 2Ùe 2Ùe 2ÛÙ ÛÙ + Ùe ÛÙ + Ùe Ûe + Ùe 2Ùe ÛÙ + Ùe ÛÙ + Ùe 

GC 2Ùe 2ÛÙ 2ÛÙ 2Ùe ÛÙ + Ùe ÛÙ + Ùe 2Ùe Ûe + Ùe ÛÙ + Ùe ÛÙ + Ùe 

GT 2Ùe 2ÛÙ 2Ùe 2ÛÙ ÛÙ + Ùe 2Ùe ÛÙ + Ùe ÛÙ + Ùe Ûe + Ùe ÛÙ + Ùe 

CT 2Ùe 2Ùe 2ÛÙ 2ÛÙ 2Ùe ÛÙ + Ùe ÛÙ + Ùe ÛÙ + Ùe ÛÙ + Ùe Ûe + Ùe 

 

The general equations for mutation (part A1.1, compare table A1.3-1 for n = 4) are: 

ν<<,456 = 	 ν<<,4 ⋅ α
e + ν>>,4 ⋅ β

e

>

+ ν<>,4 ⋅ αβ

>

+ ν>k,4 ⋅ β
e

>,k

	

ν<>,456 = ν<<,4 + ν>>,4 ⋅ 2αβ + νkk,4 ⋅ 2β
e

k

+ ν<>,4 ⋅ α
e + βe

= + ν<k,4 + ν>l,4 ⋅ αβ + βe

k,l

+ νkl,4 ⋅ 2β
e

k,l

	

If we sum the frequencies of all homozygous or heterozygous genotypes (e.g. sums over 

upper and lower part of table A1.3-1), we get: 

1 − H 456 = ν<<,456
<

	 = αe ν<<,4
<

+ n − 1 ⋅ βe ν<<,4
<

+ 2αβ ν<>,4
<,>

+ n − 2 ⋅ βe ν<>,4
<,>

	 = αe + n − 1 ⋅ βe ν<<,4
<

+ 2αβ + n − 2 ⋅ βe ν<>,4
<,>
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H456 = ν<>,456
<,>

= n − 1 ⋅ 2αβ ν<<,4
<

+
n − 1 n − 2

2
⋅ 2βe ν<<,4

<

+ αe + βe ν<>,4
<,>

	 +	2 n − 2 ⋅ αβ + βe ν<>,4
<,>

+
n − 2 n − 3

2
⋅ 2βe ν<>,4

<,>

= n − 1 ⋅ 2αβ + n − 1 n − 2 ⋅ βe ν<<,4
<

	 + αe + βe + 2 n − 2 ⋅ αβ + βe + n − 2 n − 3 ⋅ βe ν<>,4
<,>

	

As the equilibrium is reached if heterozygosity does not change anymore over time, i.e. 

transitions from homozygous to heterozygous genotypes are as frequent as the inverse, we 

can drop the time indices and write: 

2αβ + n − 2 ⋅ βe H = n − 1 ⋅ 2αβ + n − 1 n − 2 ⋅ βe 1 − H 	

After dividing both sides by β and re-substituting α = (1 − µ), β = µ (n − 1), we get: 

2 1 − µ + (n − 2) (n − 1) ⋅ µ H = 2 n − 1 ⋅ 1 − µ + n − 2 ⋅ µ 1 − H 	

This simplifies to: 

2 n − 1 − nµ n − 1 c6H = 2 n − 1 − nµ 1 − H 	

As n ≥ 2 and µ ≥ 0, the solution for H is: 

H = (n − 1) n	

This is exactly identical to the expected heterozygosity under n-allele HWE for isoplethic 

alleles. For an infinite number of alleles, H converges to one: 

lim
i→ä

H = lim
i→ä

(n − 1) n = 1.	

Asymmetric mutation rate 

To have “manually” verifiable results, we will again use a two-alleles model for illustration: 

Let a and A be two different alleles (DNA nucleotides, SSR copy numbers) with mutation rate 

µL for a → A and µM for A → a. This corresponds to the following mutation scheme: 

↲ a A 

a 1 − ÿı  ÿˆ 

A ÿı  1 − ÿˆ 

Mutations between the two alleles can then be described by the allele substitution matrix: 

Á =
1 − µL µM
µL 1 − µM

	

which has the dominant eigenvector (final allele frequencies):	
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νL,ä
νM,ä

=

µM

µL + µM
µL

µL + µM

, or	
νL,ä

νM,ä
=
µM

µL
.	

Assuming that each allele mutates independently, i.e. the mutation rates between 

genotypes are the product of the mutation rates between alleles, this corresponds to the 

following mutation scheme at the genotype level: 

↲ aa aA AA 

aa (1 − ÿı)
e ÿˆ(1 − ÿı) ÿˆ

e 

aA 2ÿı(1 − ÿı) ÿıÿˆ + (1 − ÿı)(1 − ÿˆ) 2ÿˆ(1 − ÿˆ) 

AA ÿı
e ÿı(1 − ÿˆ) (1 − ÿˆ)

e 

Treating the genotypes as “ordered” (i.e. “aA” ≠ “Aa”), the mutation rates in the genotype 

mutation scheme can be directly derived from those in the allele mutation scheme – they 

correspond to the Kronecker product of Á with itself: 

˜ = Á ⊗ Á =

(1 − µL)
e µM(1 − µL) µM(1 − µL) µM

e

µL(1 − µL) (1 − µL)(1 − µM) µLµM µM(1 − µM)

µL(1 − µL) µLµM (1 − µL)(1 − µM) µM(1 − µM)

µL
e µL(1 − µM) µL(1 − µM) (1 − µM)

e

	

To get from ˜ to the “true” genotype mutation scheme, rows 2 & 3 that describe mutations 
resulting in either of the two synonymous heterozygous genotypes have to be summed, 

and one of the two columns 2 or 3 describing mutations from each of the synonymous 

genotypes towards all others is then discarded. 

The eigenvector of the matrix ˜ equals the Kronecker product of the eigenvectors of ˜’s 

factors, the two identical matrices Á: 

νL,ä
νM,ä

⊗	
νL,ä
νM,ä

=

h{

hz5h{
hz

hz5h{

⊗

h{

hz5h{
hz

hz5h{

=
h{

¯

hz5h{
¯

hzh{

hz5h{
¯

hzh{

hz5h{
¯

hz
¯

hz5h{
¯

$

		

Lumping the synonymous heterozygous genotypes together by summing rows 2 & 3 (or 

columns 2 & 3 of the transposed vector) gives the final genotype frequencies expected 

under this asymmetric mutation scheme: 

νLL,ä νLM,ä νMM,ä $ =
µM

e

µL + µM
e

2µLµM
µL + µM

e

µL
e

µL + µM
e

$

	

Consequently, the final genotype frequencies will correspond to: 

νLL,ä νLM,ä νMM,ä $ = νL,ä
e 2	νL,äνM,ä νM,ä

e $	

or HWE for the final allele frequencies. The same procedure can be applied to any arbitrary 

allelic mutation scheme (numerically for higher numbers of alleles). Thus, independently of 

the actual mutation rates or the number of possible alleles, mutation schemes that act on 

each allele independently will lead towards a randomization of the combinations of alleles 

within individuals, i.e. HWE. 
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A1.4 Genetic drift and heterozygosity – multiple alleles 

Whether genetic drift tends to increase or decrease heterozygosity starting from F"# = 0 
depends on the nature (heterozygous or homozygous) of the most frequent genotype. We 

shall aim to find the range of allele frequencies for which a homozygous genotype is most 

frequent. 

(I) Without loss of generality, we may assume that ν6 ≥ νe ≥ νk	∀	k > 2, i.e. ν6 and νe are 
the frequencies of the two most frequent alleles (equality included).  

(II) As all allele frequencies must sum to one, it follows that ν6 + νe + νkk = 1. 

(III) As we are only interested in populations at F"# = 0 (i.e. in HWE), ν66 = ν6
e and ν6e =

2ν6νe.  

Because of (I), ν66 will be the frequency of the most frequent homozygote genotype, and 

ν6e will be the frequency of the most frequent heterozygous genotype in the population. 

With (III), a homozygous genotype will therefore be the most frequent if and only if ν6
e >

2ν6νe in a population with n ≥ 2 alleles at Hardy-Weinberg equilibrium. 

Since ν6 > 0 because of (I), we can divide both sides of the inequality by ν6 and arrive at 

the condition ν6 > 2νe. Following from (I) and (II), 2νe is minimal if all allele frequencies 

except ν6  are equal; thus we can substitute νe = (1 − ν6) (n − 1)  and resolve the 

inequality to ν6 > 2 (n + 1). Thus, for any given n, the most frequent genotype at F"# = 0 
will be homozygous if the frequency of the most frequent allele is greater than twice the 

frequency of the second-most frequent allele, and at least greater than 2 (n + 1). As n 
decreases whenever one allele is lost by genetic drift, this minimal frequency increases and 

the range where a homozygous genotype is favored decreases.  
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A1.5 Convergence times – full model 

Our model 

• Convergence time to the mean F"#,ä: 

Using the basic equation of our Markov chain model 

x4 = M4xb	

where xb is the start state vector, x4 the vector of state probabilities and M the transition 

matrix (based on N, µ, c), we iteratively calculated the difference between the mean F"#,4 for 

the two start states F"#,b = 1, νL = νM and F"#,b = −1 at each time step. We considered the 

mean F"#,ä converged when this difference passed below ε = 1/(2N). 

• Convergence time to full final distribution of F"#,ä: 

Similar to our derivation of th, the convergence time of the full model can be approximated 

using the transition matrices’ second largest eigenvalue (Markov chain mixing time 

approach), λe , which we derived numerically. The time to convergence is then t""" = 1 +

log˘¯ ε. Interestingly, we found that λe = (1 − 2µ) in all cases we tested. This appears to be 

a parallel to the model presented in Balloux et al. 2003 (see below – as explained in part A1.2, 

our value λe = (1 − 2µ) is a special case of (1 − µ
i

ic6
) which converges to (1 − µ) for n →

∞	as in the model from Balloux et al. 2003). 

Model from Balloux et al. 2003 

• Convergence time to the mean F"#,ä:  

Using the model equation (from Balloux et al. 2003, equation 5 & 6): 

F456
Θ456

= 1 − µ e
c +

1 − c

2N
(1 − c) 1 −

1

N
1

2N
1 −

1

N

F4
Θ4

+

1 − c

N
1

2N

	

where F4  represents the observed and Θ4  the expected homozygosity at time t , we 

iteratively calculated the difference between the mean F"#,4 for the two start states [F, Θ]b =

1, 0.5 (F"#,b = 1, νL = νM)  and [F, Θ]b = 0, 0.5 (F"#,b = −1)  at each time step. We 

considered the mean F"#,ä converged when this difference passed below ε = 1/(2N). 

Note that this equation does not have the structure of a geometric progression, so that the 

method used above (Markov chain mixing time) cannot be applied. 
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A2 Additional figures 

A2.1 Interpretation of de Finetti diagrams 

 

Figure A2-1.  Scheme showing how to read de Finetti diagrams. 

De Finetti diagrams are ternary plots that provide a compact and non-redundant 

representation of genotype (perpendicular distances from sides), allele (horizontal 

coordinate) and homo-heterozygote (vertical coordinate) frequencies for a single locus with 

two alleles. All combinations of genotype counts ( qLL, qLM, qMM , states of our model) 
correspond to discrete points on the de Finetti diagram, with the distance between 

neighboring states equal to 1/N. All states for which F"# = 0 are on a parabola passing 
through the fixation states (baseline corners of the triangle) that culminates at the genotype 

frequencies [0.25, 0.5, 0.25] (vertical height midpoint of the triangle). Points “above” the 

parabola have negative, “below” the parabola positive F"#  values. For each point, the 
diagram thus allows to simultaneously track e.g. the observed heterozygosity 

(perpendicular distance from baseline to point), the expected heterozygosity 

(perpendicular distance from baseline to the Hardy-Weinberg parabola for the given allele 

frequencies) and the maximum possible heterozygosity (perpendicular distance from 

baseline to the “upper” side of the triangle for the given allele frequencies), as well as fixation 

of an allele and the current number of homozygote/heterozygote genotypes (central part / 

sides / corners of the diagram). 

Due to the discreteness of individuals, the exact Hardy-Weinberg genotype frequencies 

cannot be reached for many combinations of allele frequencies. Instead, the states closest 

The de Finetti diagram
a visualisation of all possible compositions of a population out of different genotypes 
for one locus with two alleles (a, A) in a diploid organism

The corners of the triangle represent populations 
which consist of only one genotype. Here, it's aA.

States on the borders of the triangle only include
two genotypes. Here, these are aA and aa.

All states in Hardy-Weinberg equilibrium are
found on a parabola, which passes through the 
two corners on the triangle's base and the 
midpoint of its vertical height. 

Point of fixation for the a allele.

Allele frequencies can be read 
by projection on the base of 
the triangle.

Lines connecting points of equal FIS value, here 
for increments of 0.1, form a family of parabolas 
passing through the two base corners, with 
their vertices either above (FIS < 0) or 
below (FIS > 0) the height midpoint. 

4 aa

7 aA

9 AA

For the green example 
population at N = 20, 
one reads:
- 4 aa individuals
- 7 aA individuals
- 9 AA individuals
- 0.375 is the frequency 
  of the a allele 
  (15 out of 40 copies)
- thus, there are 
  25 copies of 
  the A allele
- FIS ≈ 0.25  

allele
frequencies
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to HWE possess slight homozygote or heterozygote excess. Near fixation, the expected 

heterozygosity and the maximum possible heterozygosity converge, so that excess 

heterozygosity is no longer distinguishable from HWE. This situation first occurs when the 

difference between maximum possible and expected heterozygosity passes below 1/N 

(frequency equivalent of one individual). The maximum possible heterozygosity equals 

max νLM = 2 1 − νL  if a is the most frequent allele, and the expected heterozygosity 

equals exp νLM = HU = 2νL 1 − νL , so that 1 N = 2(1 − νL)
e  and finally νL = 1 −

1/2N for the frequency of the most frequent allele. If any one allele exceeds this frequency, 

it is considered nearly fixed. A similar situation where expected and maximal heterozygosity 

become indistinguishable occurs when the number of different alleles goes towards 2N, its 

maximum in a finite population: if there are more than N nearly equally frequent alleles, the 

difference between maximum possible and expected heterozygosity passes below 1/N, i.e. 
graphically the vertex of the (multi-dimensional equivalent of the) Hardy-Weinberg 

parabola nearly “touches” the states where all individuals of the population are 

heterozygous. 

To visualize the expected changes in the three genotype frequencies (ternary plot 

coordinates) through time, starting from any possible combination of genotype counts 

(point/state), we constructed “de Finetti landscapes”, i.e. three-dimensional plots where the 

“height” of each point in the landscape is proportional to the sum of squared genotype 

frequency changes expected per time step when starting from the respective state. As in 

classical mechanics, the height of each point in the landscape is thus proportional to the 

square of the speed with which it is left. This is the basis for an analogy with the natural 

world that makes these plots intuitively interpretable: one can imagine a population as a 

small ball “rolling” from “hilltops” towards “valleys”, changing its genotype frequencies 

according to this displacement within the ternary plot. The point(s) with zero height thus 

correspond(s) to the final expected state(s) for the respective parameter combinations 

(reproductive mode, mutation and genetic drift). The flatter the landscape, the longer it 

takes to reach these states. 
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A2.2 De Finetti landscapes for reproduction 

 

Figure A2-2.  De Finetti landscapes for reproduction. Increasing the rate of clonality c flattens the 

landscape (increased time to final expected states), but does not change the final 

expected states (orange parabola: HWE, F"# = 0) except if the population is completely 

clonal c = 1.0. 

A2.3 De Finetti landscapes for mutation 

 

Figure A2-3. De Finetti landscapes for mutation. Decreasing the mutation rate µ  flattens the 

landscape (increased time to final expected states), but does not change the final 

expected states (orange dot: HWE, F"# = 0 for equal allele frequencies, νL = νM = 0.5) 

except if there is no mutation, µ = 0. 
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A2.4 De Finetti landscapes for genetic drift 

 

 

Figure A2-4.  De Finetti landscapes for genetic drift. Increasing the population size N increases the 

density of points with zero expected change in the diagram – for any state, the 

population is most likely to remain where it was (same genotype frequencies) in the 

next time step. However, genotype dynamics due to genetic drift can be explained by 

the variance Var(X) = 	 ν<<(1 − ν<<)< +	 ν<>(1 − ν<>)<,> 	 around this expectation, 

which is highest in the center (genotype frequencies [1/3, 1/3, 1/3]) and zero at the 

corners of the triangle. This means that the direction of random genotype frequency 

changes due to genetic drift is least predictable if all genotypes are equally frequent, 

and all random change will cease if the frequency of one genotype becomes one 

(“fixation” of a genotype). Note that the corresponding co-variances are usually non-

zero, as the genotype frequencies are interdependent. 
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A2.5 Example trajectories over time 

 

Figure A2-5.  Example trajectories over time for different parameter sets (c, µ, N). Legend see next 

page; overview of interpretation see table A2-1.  
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Figure A2-5.  Example trajectories over time for different parameter sets (c, µ, N). Color codes – 

start states: In light/dark green (lines/dots/stars), trajectories that started at F"#,b = −1 

(all individuals heterozygotes i.e both allele frequencies 0.5); in light/dark blue 

(lines/dots/stars), trajectories that started at F"#,b = 0  and νL,b = νM,b = 0.5  (Hardy-

Weinberg proportions, both allele frequencies 0.5); and in red and orange 

(lines/dots/stars), trajectories that started at F"#,b = 1  and νL,b = νM,b = 0.5  (all 

individuals homozygotes, both allele frequencies 0.5). Rows – parameter sets: A, 

exclusive sexuality, c = 0.0 ; B and C, partial clonality with c = 0.8  and c = 0.99 

respectively; D, exclusive clonality, c = 1.0, low mutation rate and small population; 

E, exclusive clonality, c = 1.0, high mutation rate and big population. Columns – 

diagnostic plots: Left: De Finetti diagrams showing one example trajectory (line) 

traced over 200 generations and ten example states at t = 10 (dots) per start state 

(colors/stars: start states). F"# were not calculated for states outside the vertical dashed 

black lines (near-fixation, frequency of one allele exceeds 1 − 1/(2N) ). Central: 

corresponding dynamics of F"#  over 200 generations illustrated by one example 

trajectory (thin/light line), the mean over 105 trajectories (heavy/dark line) and the 

range (shaded area delimited by dotted lines) for the three start states (stars); 

horizontal dashed grey line indicates F"# = 0; vertical black lines correspond to t = 10 

(dotted) and tà (solid). Right: corresponding fraction of trajectories at fixation for one 

allele, out of 105 trajectories over 200 generations for the three start states. 
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Table A2-1:  Effects of different rates of partial clonality on the dynamics of F"#. Text in italics refers 

to the illustration in figure A2-5. 
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A3 Literature review – references 

We conducted a Web of Science search with the exact search term [(microsatellite OR "SSR" 

OR "simple sequence repeat" or "SNP" or "single nucleotide polymorphism") AND (clonal OR 

asexual OR vegetative OR apomictic OR apomixis OR agamospermy OR parthenogenesis)], 

which yielded 5480 references. Screening the 2000 most recent references yielded 21 

studies that were accessible and reported relevant data (F"# values; no known population 
substructure, no filtering of repeated MLGs, no cyclical parthenogenesis, dominantly diploid 

life cycle). Six of these studies reported only mean F"# values over all loci, the remaining 15 
are listed below. 

 

Table A3-1:  References and supplementary data for the literature review. “PN” refers to the number 

of the dataset(s) in figure 9, *: F"# was calculated from HU and HT. 

Reference Details PN 

S. Duran, M. Pascual, A. Estoup, X. Turon (2004): Strong 

population structure in the marine sponge Crambe crambe 

(Poecilosclerida) as revealed by microsatellite markers 

Crambe crambe, 

Porifera 

Mediterranean + 

Atlantic 

1-11 

 

V. Rougeron, E. Waleckx, M. Hide, T. de Meeûs, J. Arevalo, A. 

Llanos-Cuentas, A.L. Bañuls (2008): A set of 12 

microsatellite loci for genetic studies of Leishmania 

braziliensis 

Leishmania braziliensis, 

Euglenozoa 

Peru 

12 

G. Motoie, G. E. M. Ferreira, E. Cupolillo, F. Canavez, V. L. 

Pereira-Chioccola (2013): Spatial distribution and 

population genetics of Leishmania infantum genotypes in 

São Paulo State, Brazil, employing multilocus microsatellite 

typing directly in dog infected tissues 

Leishmania infantum, 

Euglenozoa 

Brazil 

13-14 

T. Nagamitsu, M. Ogawa, K. Ishida, H. Tanouchi (2004): 

Clonal diversity, genetic structure, and mode of 

recruitment in a Prunus ssiori population established after 

volcanic eruptions 

Prunus ssiori, 

Angiospermae 

Japan 

16 

S. Stoeckel, J. Grange, J. Fernandez-Manjarres, I. Bilger, N. 

Frascaria-Lacoste, S. Mariette (2006): Heterozygote excess 

in a self-incompatible and partially clonal forest tree 

species – Prunus avium L. 

Prunus avium, 

Angiospermae 

France 

17-19 

J. M. Corral, M. Puente Molins, O. M. Aliyu, T. F. Sharbel 

(2011): Isolation and characterization of microsatellite loci 

from apomictic Hypericum perforatum (Hypericaceae) 

Hypericum perforatum, 

Angiospermae 

USA, Czech Republic, 

Germany 

20*-23* 

K. Jiang, H. Gao, N.-N. Xu, E. P. Keung Tsang, X. Chen (2011): 

A set of microsatellite primers for Zostera japonica 

(Zosteraceae) 

Zostera japonica, 

Angiospermae 

China, Taiwan 

24*-25* 

J. M. Tew, S. L. Lance, K. L. Jones, S. D. Fehlberg (2012): 

Microsatellite development for an endangered riparian 

inhabitant, Lilaeopsis schaffneriana subsp. recurva 

(Apiaceae) 

Lilaeopsis schaffneriana 

ssp. recurva, 

Angiospermae 

USA, Mexico 

26*-27* 
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W. Liu, Y. Zhou, H. Liao, Y. Zhao, Z. Song (2011): 

Microsatellite primers in Carex moorcroftii (Cyperaceae), a 

dominant species of the steppe on the Qinghai-Tibetan 

Plateau 

Carex moorcroftii, 

Angiospermae 

China 

28*-31* 

C. Barnabe, R. Buitrago, P. Bremond, C. Aliaga, R. Salas, P. 

Vidaurre, C. Herrera, F. Cerqueira, M.-F. Bosseno, E. Waleckx, 

S. F. Breniere (2013): Putative panmixia in restricted 

populations of Trypanosoma cruzi isolated from wild 

Triatoma infestans in Bolivia 

Trypanosoma cruzi, 

Euglenozoa 
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6.2 Multilocus simulation of a demographic bottleneck 

Co-authors: Clément Barthélémy, Romuald Rouger, Solenn Stoeckel 

A main result of the preceding article was that the dynamics of F"# are slowed down under 
partial asexuality, which means that extreme deviations from the mean will take longer to 

disappear. Demographic bottlenecks, a more or less abrupt diminution of the population 

size and subsequent re-expansion, are one way how such extreme deviations may arise: As 

an example, imagine a series of epidemics or storms which devastate a landscape, leaving 

only some random survivors. Over the subsequent years, the population grows again to its 

previous size, but the catastrophe leaves traces: genotypes/alleles may have disappeared, 

or randomly changed their frequencies. While the big partially clonal population that lived 

through the bottleneck may initially have had all loci in Hardy-Weinberg equilibrium with 

isoplethic alleles, this is most probably not the case during the size reduction. Our question 

is, how long does the recovery of F"# = 0  take, depending on the population’s rate of 
asexuality? 

 

Figure 6.1  Schematic representation of the simulated demographic bottleneck effect. Numbers 

below arrow: times (numbers of generations after the start) at which the distribution 

of F"# was sampled. 

We simulated a demographic bottleneck on a large scale: A population of initially/finally 105 

individuals suffered a linear decrease to only 100 individuals over ten generations, and 

afterwards underwent a symmetrical linear increase of its population size (figure 6.1). Each 

individual had 100 (physically unlinked, but co-inherited during asexual reproduction) 

selectively neutral polymorphic loci, each with either two (bi-allelic SNP), four (tetra-allelic 

SNP or SSR) or ten (typical SSR) possible alleles, among which mutation occurred with a 

symmetric rate µ = 10c∫ . Loci in populations with a high rate of asexuality were thus 

mutation-dominated (convergence towards F"# = 0) except at the nadir of population size. 

The distribution of F"# values, both among loci within the same simulation and between 100 
independent repeats, was recorded five (middle of decrease), ten (minimal population size), 

15 (middle of increase), 20 (end of demographic bottleneck, original population size), 50 and 

100 generations, and for exclusively asexual populations also 500 and 1020 generations 

after the start.  
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Figure 6.2  Distributions of F"#  (means over 100 independent simulations) during and after a 

demographic bottleneck, in populations with different rates of asexuality, for markers 

with a different maximal number of alleles. c:  rate of asexuality; “Générations” 

(generations): number of generations since the beginning of the simulation, popula-

tion sizes are NŒ = 50	050 , N6b = 100, N6Œ = 50	050, N‘eb = 10Œ . A: maximal two 

alleles per locus, B: maximal four alleles per locus, C: maximal ten alleles per locus. 

The results confirmed our expectations from small populations and single loci (figure 6.2): 

the higher the rate of asexual reproduction, the longer it takes until F"# = 0 is reached again 
after a demographic bottleneck. Under the set conditions, the demographic bottleneck 
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barely leaves a trace in F"# for exclusive sexuality and 50% asexuality except at the minimal 

population size, yet the predominantly negative F"# values observed there take at least until 

the end of the bottleneck (c = 0.8) or even after (c = 0.9) at higher rates of asexuality. At 

c ≥ 0.99, where the return to F"# = 0 depends (almost) completely on mutation, F"# even 
at first continues its negative trend into the population growth phase; respectively 100 and 

1020 generations are then not enough to eliminate the strong bias towards negative F"# 
values. Results are very similar across different numbers of alleles, yet the spread of the 

simulated F"# distributions is smaller with more alleles, i.e. the effect is easier to observe.  

This preliminary study is a persuasive illustration of the relevance of our results for single 

loci at a larger scale. Though this simulation involved multiple (neutral) loci, the results were 

well explicable based on the previously described single-locus model (article II). Moreover, 

it may have great importance for the interpretation of field data: while the methods 

currently used to detect demographic bottlenecks in population genetic data (e.g. 

BOTTLENECK, Piry et al. 1999) largely rely on allele frequencies rather than observed ºΩæ 
values, and may thus not be directly compromised by the effect we observed, the time scales 

for the detection (recent vs. historic bottleneck) may be different between exclusively sexual 

and partially asexual populations. However, a more detailed analysis of the compatibility of 

the currently available software with partial asexuality is still pending. 

A further integration of population genetic and demographic models would be especially 

interesting in the context of the next chapter, which deals with cyclical parthenogenesis: 

beside its peculiar alternation of sexual and asexual reproduction, this reproductive system 

is also usually characterized by strong population growth during the asexual phase, 

followed by a sudden diminution during the sexual phase. This dynamic is not yet integrated 

into the next article, but would certainly affect the results presented there. 

6.3 Neutral diversity under cyclical parthenogenesis 

Cyclic parthenogenesis is a form of partial asexuality that appears to be especially common 

among animals. It was first described for aphids (Bonnet 1745, Owen 1849), but is also found 

in other arthropods such as Daphnia (Decaestecker et al. 2009). In contrast to “acyclic” partial 

asexuality, which was the subject of the previous article, in this reproductive system clonal 

and sexual offspring are not produced simultaneously at a constant rate, but sequentially: 

typically, one generation of sexual reproduction is cyclically followed by several generations 

of asexual reproduction. The change between asexual and sexual reproduction may be 

linked to the seasonality of habitats (e.g. as in aphids and Daphnia), or the whole life cycle 

may be substructured by host changes, as for parasitic rust fungi (e.g. poplar leaf rust, Barrès 

et al. 2012) or parasitic flatworms (Prugnolle et al. 2005a). In plants, a similar situation could 

be found in partially clonal species with synchronized mass flowering, such as bamboo 

(Makita 1998; see also discussion in Muirhead & Lande 1997). 

Depending on the author’s views, previous studies have sometimes included cyclical 

parthenogenesis either with the acyclic case (e.g. Balloux et al. 2003 implicitly by comparing 

their results with those of Berg & Lascoux 2000) or treated it as equivalent to sexual 
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reproduction (e.g. Jaquiéry et al. 2014). In view of the results presented in article II, both 

these hypotheses seem questionable – however, they can be easily tested with our model. 

As a first step, we compared the equilibrium distributions of F"# across exclusive sexuality, 
exclusive asexuality, acyclic partial clonality and cyclic parthenogenesis, taking two different 

sampling schemes (directly before/after the sexual generation) and different cycle lengths 

(numbers of asexual generations) into account. To our knowledge, this is the first theoretical 

study establishing a reference for F"# under cyclical parthenogenesis. 

We found that all four reproductive systems produce different patterns of genetic diversity. 

Though the F"# distributions from cyclically parthenogenetic populations sampled directly 
after the sexual generation closely correspond to those expected for an exclusively sexual 

population, this similarity is lost during the asexual phase. Before sexual reproduction, the 

F"# distributions are more similar (but not identical) to their counterpart assuming acyclic 
partial clonality. The closeness of these similarities depends on the strength of genetic drift 

(number of clonal cycles) during the asexual phase. Looking directly at the genotype 

frequencies, it becomes clear why: though sexual reproduction regularly “resets” F"# to zero, 
it does not reset the change in allele frequencies during the asexual phase. 

Genotype frequency dynamics under cyclical parthenogenesis can be somewhat predicted 

from the results presented in article II for exclusively sexual and exclusively asexual 

reproduction: Cyclically parthenogenetic populations sampled at some time during the 

asexual phase are similar to “recently clonal” populations, which may retain their ancestral 

diversity over several generations. However, as a next step it would be interesting to look 

more closely at the dynamics of allele frequencies under cyclical parthenogenesis. The 

results of previous studies on spatially substructured populations (e.g. Berg & Lascoux 2000) 

suggest that population differentiation and F#$  values increase more quickly (for the 

connection between allele frequencies and F#$, see chapter 5.5). How many generations of 
clonality would be needed until clonal erosion (Vanoverbeke & De Meester 2010) could 

already happen by genetic drift alone? Moreover, the first results presented in article III do 

not yet take the characteristic population dynamics of partially clonal organisms into 

account (see chapter 6.2). By establishing cyclical parthenogenesis as a reproductive system 

in its own right, also distinct from acyclic partial asexuality, we hope that our results will 

increase the awareness of field biologists (sampling strategy) and the interest of 

theoreticians, leading to more development in this area. 

La diversité neutre sous parthénogenèse cyclique 

La parthénogenèse cyclique est une forme de l'asexualité partielle qui semble être 

particulièrement fréquente chez les animaux. Elle a été décrite pour la première fois chez les 

pucerons (Bonnet 1745, Owen 1849), mais se retrouve également dans d'autres arthropodes 

tels que les daphnies (Decaestecker et al. 2009). Contrairement à l'asexualité "acyclique" 

partielle, qui a fait l'objet de l'article précédent, dans ce système reproducteur la progéniture 

clonale et sexuelle ne se produit pas au même temps et à un taux constant, mais de manière 

séquentielle : généralement, une génération de la reproduction sexuée est cycliquement 

suivie par plusieurs générations de reproduction asexuée. Le changement entre la 

reproduction sexuée et asexuée peut être lié à la saisonnalité des habitats (par exemple 
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comme chez les pucerons et les daphnies), où le cycle de vie entier peut être sous-structuré 

par des changements d'hôte, comme chez les champignons parasitaires de la rouille (par 

exemple la rouille du peuplier, Barrès et al. 2012) ou chez les vers plats parasitiques 

(Prugnolle et al. 2005a). Chez les plantes, une situation similaire pourrait être trouvée dans 

les espèces partiellement clonales avec une floraison de masse synchronisée, comme le 

bambou (Makita 1998 ; voir également la discussion dans Muirhead & Lande 1997). 

Selon le point de vue de l'auteur, des études antérieures ont parfois inclus la 

parthénogenèse cyclique soit avec le cas acyclique (comme fait par exemple par Balloux et 

al. 2003 implicitement en comparant leurs résultats avec ceux de Berg & Lascoux 2000) soit 

traité comme équivalent à la reproduction sexuée (par exemple Jaquiery et al. 2014). 

Compte tenu des résultats présentés dans l'article II, ces deux hypothèses semblent 

discutables – cependant, elles peuvent être facilement testées avec notre modèle. Dans un 

premier temps, nous avons comparé les distributions d'équilibre de l’ F"#  à travers la 
sexualité exclusive, l’asexualité exclusive, la clonalité partielle acyclique et la 

parthénogenèse cyclique, prenant en compte deux plans d'échantillonnage différents 

(directement avant / après la génération sexuée) et des longueurs de cycle différentes 

(nombre de générations asexuées). À notre connaissance, cette étude est la première à 

établir une référence théorique pour l’F"# sous parthénogenèse cyclique. 

Nous avons pu constater que les quatre systèmes de reproduction produisent des motifs 

différents de diversité génétique. Bien que les distributions de l’ F"#  en populations 
cycliquement parthénogénétiques échantillonnées directement après la génération sexuée 

soient très proches à celles attendues pour une population exclusivement sexuée, cette 

similitude est perdue lors de la phase asexuée. Avant la reproduction sexuée, les 

distributions de l’ F"#  sont plus similaires (mais pas identiques) à leur homologue en 
supposant la clonalité partielle acyclique. La proximité de ces similitudes dépend de la force 

de la dérive génétique (nombre de cycles clonales) pendant la phase asexuée. Si on regarde 

directement les fréquences génotypiques, l’explication est claire : si la reproduction sexuée 

« réinitialise » régulièrement l’F"# et le remet à zéro, elle ne réinitialise pas le changement 
dans les fréquences des allèles pendant la phase asexuée. 

La dynamique des fréquences génotypiques sous parthénogenèse cyclique peut être 

prédite à peu près à partir des résultats présentés dans l'article II pour la reproduction 

exclusivement sexuée et exclusivement asexuée : les populations parthénogénétiques 

cycliques échantillonnées à un certain moment au cours de la phase asexuée sont similaires 

aux populations « récemment clonales », qui peuvent conserver leur diversité ancestrale 

durant plusieurs générations. Cependant, lors d'une prochaine étape, il serait intéressant de 

regarder de plus près la dynamique des fréquences alléliques sous parthénogenèse 

cyclique. Les résultats des études antérieures sur les populations avec sous-structure 

spatiale (par exemple Berg & Lascoux 2000) suggèrent que la différenciation des 

populations et les valeurs d’F#$ augmentent plus rapidement (pour la connexion entre les 

fréquences alléliques et l’F#$ , voir le chapitre 5.5). Combien de générations de clonalité 
seraient nécessaires jusqu'à ce que l'érosion clonale (Vanoverbeke & De Meester 2010) 

puisse déjà exister à cause de la dérive génétique seule ? En outre, les premiers résultats 

présentés dans l'article III ne prennent pas encore la dynamique caractéristique des 
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populations d'organismes partiellement clonaux en compte (voir chapitre 6.2). En 

établissant la parthénogenèse cyclique comme un système de reproduction à son propre 

intérêt, et également distinct de l'asexualité partielle acyclique, nous espérons que nos 

résultats vont augmenter sa prise en compte par les biologistes de terrain (stratégie 

d'échantillonnage) et l'intérêt des théoriciens, conduisant à plus de développement dans ce 

domaine. 
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Article III Effets des cycles de vie complexes sur la diversité 

génétique : le cas de la parthénogenèse cyclique 

Sommaire de l’article 

Les modèles neutres de la diversité génétique des populations en espèces avec des cycles 

de vie complexes sont souvent difficiles à anticiper. La parthénogenèse cyclique, 

caractérisant les organismes qui présentent plusieurs cycles de reproduction clonale suivie 

par un événement sexuel, est un tel cycle de vie. Plusieurs espèces, y compris les ravageurs 

des cultures (pucerons), les parasites humains (trématodes) ou des modèles en sciences de 

l'évolution (daphnies), pratiquent la parthénogenèse cyclique. Il est donc essentiel de 

comprendre l'impact d'un tel cycle de vie sur la diversité génétique des populations. Nous 

proposons un modèle de chaîne de Markov de la parthénogenèse cyclique permettant 

d'analyser les distributions exactes du F"# sous différents niveaux de clonalité. Notre analyse 
montre tout d'abord qu’un écart de la sexualité exclusive est observé après seulement 

quelques générations de clonalité, même si un grand nombre de générations de clones ne 

suffit pas pour la distribution de l’F"# exacte à converger vers des résultats à pleine clonalité. 
Puis, pour les nombres petits et modérés de générations clonales, l'événement sexuel de la 

parthénogenèse cyclique réinitialise la population à l'égard des prévisions à partir de la 

sexualité exclusive : mais ce n’est pas le cas lorsque le nombre de générations de clones dans 

le cycle précédent a été suffisant pour fixer une proportion importante des hétérozygotes 

dans la population. Enfin, la clonalité partielle acyclique, correspondant au cycle de vie où 

une proportion fixe des individus est produite par clonage à chaque génération, ne donne 

pas les mêmes effets sur la diversité génétique que la parthénogenèse cyclique par rapport 

au même taux de clonalité. Des simulations individus-centrées de populations plus grandes 

ont confirmé les résultats obtenus par notre modèle de chaîne de Markov. Cette étude 

fournit la première étape vers un outil d'inférence permettant de quantifier le niveau de 

clonalité chez les espèces qui se servent de la parthénogenèse cyclique.   
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Abstract 

Neutral patterns of population genetic diversity for species showing complex life-cycles are 

often difficult to anticipate. Cyclical parthenogenesis, characterizing organisms displaying 

several rounds of clonal reproduction followed by a sexual event, is one such life-cycle. 

Several species, including crop pests (aphids), human parasites (trematodes) or models in 

evolutionary sciences (Daphnia), are cyclical parthenogens. It is therefore crucial to 

understand the impact of such a life-cycle on population genetic diversity. We propose a 

Markov chain model of cyclical parthenogenesis permitting to analyse exact distributions of 

F"# under various levels of clonality. Our analysis firstly demonstrates that departures from 
full sexuality are observed after only few generations of clonality, yet a high number of 

clonal generations is not enough for the exact F"# distribution to converge towards results 
under full clonality. Secondly, for small to moderate numbers of clonal generations, the 

sexual event of cyclical parthenogenesis resets the population towards predictions under 

full sexuality; but not when the number of clonal generations in the preceding cycle was 

large enough to fix a substantial proportion of heterozygotes in the population. Finally, 

acyclic partial clonality, corresponding to the life-cycle where a fixed proportion of 

individuals reproduce clonally within each generation, does not yield the same effects on 

genetic diversity than cyclical parthenogenesis when compared at the same ratio of 

clonality. Individual-based simulations of larger populations confirmed the results obtained 

by our Markov chain model. This study provides the first step towards an inference tool 

permitting to quantify the level of clonality in species displaying cyclical parthenogenesis. 

 

Keywords  cyclical parthenogenesis, Markov chains, F"#  distribution, de Finetti 
diagrams 
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Introduction 

For decades, population genetic models using idealised populations have proven their 

efficiency to describe how genetic diversity should be distributed in natural populations 

according to a given range of assumptions (e.g. Hardy-Weinberg principle, Wright-Fisher 

model). When matching empirical data, such an approach has the great advantage of 

reducing the complexity of a biological system to a much more convenient approximation 

obeying to a known and fixed range of parameters (Hamilton 2009). Conversely, if deviations 

are observed, models may be refined by relaxing one or more assumptions in order to 

accurately describe the population genetics of the organism under scrutiny (e.g. mutation 

level, mating pattern). 

Strict sexuality is a very common feature of idealised model populations; however, clonality 

is also a widespread mode of reproduction across all kinds of organisms (de Meeûs et al. 

2007). Numerous field observations of intra-population genetic diversity in organisms using 

clonal reproduction showed strong deviations from predictions given by strictly sexual 

models (Ellstrand & Roose 1987, Delmotte et al. 2002, Papura et al. 2003, Stoeckel et al. 2006, 

Kanbe & Akimoto 2009, Allen & Lynch 2012, Aradottir et al. 2012). The main observed effects 

of clonal reproduction can be summarized as (1) a decrease in genotypic diversity, (2) an 

excess of heterozygotes resulting in strongly negative F"# , and (3) an increased linkage 
disequilibrium due to the non-independent segregation of alleles between loci (Halkett et 

al. 2005). 

Mathematical models and simulations relaxing the assumption of strict sexuality were 

developed in order to understand the effects of clonality on genetic diversity (Marshall & 

Weir 1979, Balloux et al. 2003, Bengtsson 2003, de Meeûs & Balloux 2004, de Meeûs & Balloux 

2005, Prugnolle et al. 2005b). Besides giving a precise description of the case of full clonality, 

these models agreed that the effect of clonality on parameters of genetic diversity is difficult 

to distinguish from strict sexuality for moderate to intermediate levels of clonality (de Meeûs 

et al. 2006). For instance, only a small amount of sexuality in a mainly clonal population 

maintains a high level of genotypic diversity (Bengtsson 2003). Similarly, mean F"# values 

obtained in mainly clonal populations are nearly indistinguishable from mean F"#  value 
obtained under panmixia (Balloux et al. 2003). Concerning linkage disequilibrium, the 

analytical exploration of models investigating the effects of clonality is complex (de Meeûs 

& Balloux 2004). Nevertheless, individual-based simulations highlighted the incoherent 

behaviour of several linkage disequilibrium estimators in response to increasing level of 

clonality (de Meeûs & Balloux 2004). Without finer predictions, the use of genetic diversity 

estimators in order to infer the level of clonality is therefore limited. 

The abovementioned models report the mean value for a parameter of interest (e.g. F"#); 
however, they fail to predict its full distribution, which would be a necessary prerequisite for 

any inferences from field data. Up to now, the probabilistic distribution could only be 

estimated using individual-based simulations, impeding the formulation of exact 

predictions (Balloux et al. 2003). Recently, Stoeckel & Masson (2014) proposed a stochastic 

model that permits an exact description of the full probabilistic distribution of F"# in partially 
clonal organisms. This approach confirmed the small, and nearly indistinguishable, 
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difference existing between moderate levels of clonality and strict sexuality concerning 

mean F"# values. Additionally, it permitted to highlight notable effects of moderate levels of 

clonality on both the probability of positive F"# and the dynamic of F"# from one generation 
to the next. 

To tackle the effects of partial clonality on genetic diversity, most of these models were 

designed to fit populations for which clonal and sexual reproduction co-occur in time. This 

type of life-cycle, thereafter referred to as Acyclic Partial Clonality (APC), is common in many 

plants for instance (Vallejo-Marín et al. 2010). However, many species, especially in the 

animal kingdom, use a variation of this life-cycle, conventionally called Cyclical 

Parthenogenesis (CP). In CP, clonal and sexual reproduction alternate in time with one to 

many generations of clonality followed by an event of sexual reproduction (figure 1). 

Analysing how CP impacts intra-population genetic diversity is particularly relevant given 

that crop pests (e.g. aphids), human parasites (e.g. trematodes) and classical biological 

models in evolution (e.g. Daphnia) are found among the organisms performing this life-

cycle. To date, models studying CP primarily focused on detecting the intra-population 

genetic effect of both migration and variance in reproductive success (Prugnolle et al. 

2005a, b) or on the amount of genetic differentiation between populations of cyclical 

parthenogens (Berg & Lascoux 2000). Complementarily, simulations on a limited number of 

neutral markers showed that the parthenogenetic phase reduces clonal diversity within 

populations and has an impact on mean F"#  when the number of parthenogenetic 
generations is high enough (Vanoverbeke & De Meester 2010). However, no model was 

designed to describe the exact probabilistic distribution of intra-population genetic 

diversity depending on the level of clonality in CP. 

In this paper, we aim to investigate the population genetic effects of various levels of 

clonality in CP using an adaptation of the stochastic model of (Stoeckel & Masson 2014). 

Firstly, we describe how genetic diversity is affected by the number of clonal generations in 

a cycle; our predictions are that increasing the number of clonal generations in a cycle will 

amplify departures from the full sexuality scenario while increasing convergence towards 

results under full clonality. Secondly, we quantify how genetic diversity seasonally varies in 

CP, the sexual event being supposed to reset genotype frequencies in the entire population 

to Hardy-Weinberg proportions. Thirdly, as APC model outputs are often used to discuss 

results obtained for cyclical parthenogens, probability distributions of genetic diversity 

under APC and CP for similar levels of clonality are compared. Finally, we test the level of 

clonality needed to empirically tell apart datasets produced under CP from full sexuality, full 

clonality or APC. 

Methods 

The model used in this study is a strict adaptation of the mathematical model developed 

by Stoeckel & Masson (2014). This model is based on a biallelic system (A and a) in a 

population of N  diploid individuals for which genotypic frequencies rather than allele 

frequencies are computed. The number of individuals of each possible genotype are rLL ∈

ℕ , rML ∈ ℕ  and rMM ∈ ℕ  respectively. Their frequency at a time t  is therefore p<>
4 = r<> N 

where i and j are alleles A or a. At each time step, genotypic frequencies are only modified 
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by the action of reciprocal mutation between the two alleles (occurring at a rate µ), genetic 
drift and reproductive mode. In APC, clonal reproduction occurs for each time step at a rate 

c. In CP, each time step either represents an event of strict clonal reproduction (c = 1) or an 

event of strict sexual reproduction (c = 0). The number of successive clonal generations in 

a cycle is nclonal and the number of sexual generations, nsex, is set to 1 as observed in most 
biological systems using CP (figure 1). Panmixia is assumed during sexuality. 

 

Figure 1.  Description of Acyclic Partial Clonality (APC) and Cyclical Parthenogenesis (CP). At t the 

population consists of 100 individuals of genotype AA (circle), Aa (square) and aa 

(triangle). In APC, a fraction c of the population reproduce clonally (black arrow) and a 

fraction 1 − c  reproduce sexually (grey arrow). In CP at t , the entire population 

undergo nclonal  events of clonal reproduction before a single event of sexual 

reproduction. CP before sex and CP after sex indicate the points at which we calculate 

the distribution of genetic diversity in the system. 

The genotypic frequencies at t + 1 as functions of genotypic frequencies at t under clonal 

(p<>
456 ) and sexual (q<>

456 ) reproduction were given, respectively, by equation 1 and 2 of 

Stoeckel & Masson (2014; see also supplementary information 1). 

Transition matrices 

In APC, the overall genotypic frequencies at t + 1 (π<>
456) are functions of p<>

456 and q<>
456 given 

the clonality rate c: 

π<>
456 = c	p<>

456 + 1 − c 	q<>
456		

(1; Stoeckel & Masson 2014) 

The transition probability from each current genotypic state rLL, rML, rMM  to each next 

state sLL, sML, sMM  is therefore calculated using the multinomial expression for every 
combination of two states: 

p sLL, sML, sMM |(rLL, rML, rMM) =
N!

sLL! sML! sMM!
πLL
456 Çzz πML

456 Ç{z πMM
456 ÇMM	

(2; Stoeckel & Masson 2014) 
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Knowing the probability distribution of all previous states in a column vector 

P4 rLL, rML, rMM , the probability distribution of the next states P456 sLL, sML, sMM 		can be 

written as the recurrence relation: 

P456 sLL, sML, sMM 	= PMáÜ ∙ P
4 rLL, rML, rMM 	

(3; Stoeckel & Masson 2014) 

where PMáÜ is the transition matrix from previous to next states. Obviously, this matrix must 
be orientated so that the sum of each column is  

p i|(rLL, rML, rMM)<D Çzz,Ç{z,Ç{{
Çzz,Ç{z,Ç{{ D»

= 1. 

In CP, the probabilities of transitions from previous to next states were computed separately 

for sexual (psex) and clonal (pclonal) modes of reproduction: 

psex sLL, sML, sMM |(rLL, rML, rMM) =
N!

sLL! sML! sMM!
qLL
456 Çzz qML

456 Ç{z qMM
456 ÇMM	

pclonal sLL, sML, sMM |(rLL, rML, rMM) =
N!

sLL! sML! sMM!
pLL
456 Çzz pML

456 Ç{z pMM
456 ÇMM	

(4) 

Recurrence equations were also expressed for each mating system: 

P456 sLL, sML, sMM 	= Psex ∙ P
4 rLL, rML, rMM 	

P456 sLL, sML, sMM 	= Pclonal ∙ P
4 rLL, rML, rMM 	

(5) 

While only one sexual event happens for each cycle of CP, nclonal  parthenogenetic 

generations occur. The probability distribution of the next states after nclonal 

parthenogenetic generations P45iclonal sLL, sML, sMM  can be inferred from the recurrence 
equation: 

P45iclonal sLL, sML, sMM 	= Pclonal
iclonal ∙ P4 rLL, rML, rMM 	

(6) 

Finally, the probability distribution of next states after nclonal parthenogenetic generations 

followed by one sexual generation (nsex = 1) is: 

P45iclonal5isex sLL, sML, sMM 	= Psex ∙ Pclonal
iclonal ∙ P4 rLL, rML, rMM 	

(7) 

Similarly, the probability distribution of next states after one sexual generation followed by 

nclonal parthenogenetic generations is: 

P45isex5iclonal sLL, sML, sMM 	= Pclonal
iclonal ∙ Psex ∙ P4 rLL, rML, rMM 	

(8) 

A graphical explanation of the ordering of matrix multiplication in equation 7 and 8 is given 

in supplementary information 2. 
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The transition matrix in equation (7), PÜá	after	sex = Psex ∙ Pclonal
iclonal , therefore permits to 

study genotypic frequencies of populations considered just after the sexual phase of CP (CP 

after sex). Similarly, the transition matrix in equation (8), PÜá	vU˙T˚U	ÇUÔ = Pclonal
iclonal ∙ Psex , 

permits to study genotypic frequencies of populations considered at the end of their clonal 

phase (i.e. before the sexual event, CP before sex; figure 1). 

Through generations (i.e. when t → ∞) , the probability distribution of next states 

P4 sLL, sML, sMM  will converge towards a stationary probability distribution (spd hereafter) of 
genotypic states. As all generated transition matrices belong to irreducible and ergodic 

Markov chains, the spd of genotypic states is given by the eigenvector corresponding to the 

largest eigenvalue as stated by the Perron-Frobenius theorem (Li & Schneider 2002). The 

transition matrices and resulting exact spd were calculated using Python 2.7 (Van Rossum 

2007), NumPy 1.9.1 (Van der Walt et al. 2011) and SciPy 0.15.0 (Oliphant 2007). 

Parameter sets 

The sets of parameters to be used for the calculation of each CP transition matrix were 

selected based on life-cycle descriptions of common cyclical parthenogens. The number of 

clonal generations in each cycle was set to nclonal ∈ 	 {1; 	9; 	99; 	999} permitting to study all 
cases from short cycles comprising only a few clonal events (e.g. Cynipidae, some aphid 

lineages) to long cycles comprising a large number of clonal events (e.g. assumed in 

permanent populations of cladocerans or monogonont rotifers). Comparisons of CP with 

APC are based on APC transition matrices with a rate of clonality c = nclonal/(nsex + nclonal) ∈

0.5; 0.9; 0.99; 0.999 . Additionally, transition matrices for full sexuality (c = 0 ) and full 

clonality (c = 1) were computed. The mutation rate was set to µ = 10cç and the population 

size to N = 200. 

Genetic diversity 

The probability of fixation (i.e. the probability of fixing genotypes aa or AA) as well as the 

probability of heterozygote fixation (i.e. the probability of fixing genotype Aa) were 

obtained from the spd of each scenario. Monomorphic markers being non-informative in 

empirical population genetics, states where an allele is fixed in the population were 

therefore removed from the spd in subsequent analyses. The stationary probability of each 

genotypic state was rescaled so the vectors of stationary probability sum to 1. 

Given the predicted response of the inbreeding coefficient to clonality, F"# was calculated 
for each genotypic state following Rousset (2002): 

F"# =
F − θ

1 − θ
	

where F  is the average allelic identity within individuals in the population and θ  is the 

average allelic identity between a pair of individuals in the population. The exact F"# 
distribution based on the spd of genotypic states was inferred for each scenario. The first 

four moments (i.e. mean, variance, skewness and kurtosis) of each exact F"#  distribution 

were calculated together with the probability of getting positive F"#  (table 1). For the 

purpose of visualisation, the exact F"# distribution was approximated using weighted kernel 
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density estimation, where each genotypic state represents a F"# observation weighted by 
its exact stationary probability. This weighted kernel density estimation used a Gaussian 

kernel function with a bandwidth set to 0.05. The F"#  density distribution was then 

estimated at 512 equally spaced points across the F"# range (i.e. [−1,1]) using the R function 
density (R Core Team 2013). 

Synthetic parameters such as F"# are almost always used in population genetics studies to 
describe a genetic dataset. Although convenient to use, summarizing the genetic 

information using such indices causes a loss of the information encompassed in a full 

dataset. In our case, the spd of genotypic states comprises the total genetic information 

available. The spd of genotypic states was therefore visualised using “de Finetti diagrams” 

(de Finetti 1927). The stationary probability of each genotypic state was represented by a 

colour scale, using the R package ggtern (Hamilton 2015). Pairwise divergence between 

scenarios were quantified using the Jensen-Shannon measure of divergence between pairs 

of spd (D˛#), where each genotypic state represented a discrete class. 

Discrimination between scenarios 

Full F"#  distributions, de Finetti diagrams and measures of divergence are all calculated 
based on the exact spd of genotypic states. Observing this spd in a biological system implies 

considering an infinite number of markers. Going one step further than only describing 

theoretical exact distribution of genetic diversity, we aimed to assess the level of clonality 

needed to correctly discriminate scenarios. 

Firstly, we tested whether discrimination between scenarios is possible given a fair number 

of loci. For each scenario, we sampled 10 000 genotypic states based on their stationary 

probability. Empirically, this procedure corresponds to the screen of 10 000 independent 

biallelic SNP in a “stationary population”. 10 000 loci are not enough to get a fine enough 

approximation of the exact spd of genotypic states; calculating divergence between 

scenario using such an estimation leads to an overestimation of D˛#. Kolmogorov Smirnov 

statistic (Dˇ#) based on F"# was therefore preferred over D˛# (based on genotypic states) in 

order to compare scenarios. To this aim, the F"# value of each sampled genotypic state was 

used to build the empirical cumulative distribution function (ecdf hereafter) of F"# for each 
scenario. Significant differences between pairs of scenarios were checked using a two-

sample Kolmogorov-Smirnov test, as implemented in the R library dgof (Arnold & Emerson 

2011). 

Secondly, we tested whether discrimination between scenarios was still possible given a 

greater population size. Unfortunately, the number of possible genotypic states increases 

exponentially when population gets larger; the calculation of the exact spd then becomes 

rapidly intractable for any computer (Reichel et al. submitted a). Individual-based 

simulations following our model were therefore launched to approximate the full F"# 
distribution of large population sizes. They were based on a population of 10 000 organisms 

using either CP or APC. The analysed parameter sets were identical to those for the exact 

distribution model, with µ = 10cç , nclonal ∈ {1; 	9; 	99; 	999}  in CP, c ∈

{0,5; 	0,9; 	0,99; 	0,999}  in APC, c = 0  for full sexuality and c = 1  for full clonality. Each 
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simulation comprised a single biallelic locus and was repeated 10 000 times. Initial alleles 

and genotypes were randomly assigned for each individual and repetition. F"#  values for 

each locus were calculated after a burn-in period of 10 000 generations. For APC, F"# values 
were acquired at generations 10 001. For CP, they were collected before and after the next 

sexual event (e.g. generation 10 009 and 10 010 if nclonal = 9 ). Significant differences 
between scenarios were checked by a two-sample Kolmogorov-Smirnov test as described 

earlier. A Kernel density estimation based on all repetitions (i.e. 10 000 F"# observations) was 

used to visualise the approximate F"# distribution for each simulation. 

Results 

Effect of clonality during cyclical parthenogenesis (CP) 

As expected for populations of finite size, modelled by discrete genotypic states, the mean 

F"# value in the full sexuality scenario is slightly negative (see supplementary information 4 

for an explanation), and the probability of getting negative F"# is higher than the probability 

of getting positive F"#  (table 1). Deviations from this baseline scenario were  
 

 

Figure 2.  Weighted kernel density estimation of full º!ê probability density function in function of 

levels and modes of clonality (é = 200, ÿ = 10cç). A: mclonal = 1 in CP and ª = 0.5 in 

APC; B: mclonal = 9 in CP and ª = 0.9 in APC; C: mclonal = 99 in CP and ª = 0.99 in APC; 

D: mclonal = 999 in CP and ª = 0.999 in APC. 
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Table 1.  Descriptive statistics of º!ê distribution in function of levels and modes of clonality (é =

200, ÿ = 10cç). In APC, ª is the fraction of individuals in the population reproducing 

clonally, in CP, ª	is the proportion of clonal generation in a cycle (ª = mclonal/(mclonal +

msex)); ó"#$%b is the probability of observing positive º!ê; ófixation is the probability of 

fixing one of the allele in the population and óhet  is the probability of fixing 

heterozygotes in the population. 

ª Mode ó"#$%b ófixation óhet Mean Variance Skewness Kurtosis 

0 Full sexuality 0.23906 0.99468 0 -0.00251 0.00371 2.78976 28.45313 

0.5 

APC 0.22437 0.99467 0 -0.00434 0.00432 2.35436 21.73083 

CP after sex 0.23910 0.99468 0 -0.00251 0.00371 2.78926 28.44413 

CP before sex 0.21360 0.99468 0 -0.00439 0.00627 2.42837 20.70856 

0.9 

APC 0.16736 0.99461 0 -0.01518 0.01083 1.51667 12.44997 

CP after sex 0.23994 0.99464 0 -0.00251 0.00372 2.77488 28.24919 

CP before sex 0.15258 0.99464 0 -0.01580 0.02008 1.68986 12.15171 

0.99 

APC 0.07512 0.99418 0 -0.08887 0.05072 -0.14673 7.55953 

CP after sex 0.24989 0.99439 0 -0.00251 0.00378 2.60582 26.45150 

CP before sex 0.06317 0.99439 0.00007 -0.09135 0.08699 0.32198 7.75835 

0.999 

APC 0.01109 0.99055 0.00153 -0.44071 0.18498 -0.08717 1.72032 

CP after sex 0.32637 0.99163 0 -0.00251 0.00419 1.44645 15.60082 

CP before sex 0.00136 0.99163 0.00356 -0.49267 0.21512 -0.06478 1.21910 

1 Full clonality 0.00000 0.49762 0.49762 -0.99471 0.00447 13.49324 188.08319 

visible in the results for CP before sex even in short parthenogenetic cycles (figure 2, green 

distributions). The probability of getting positive F"# started decreasing from nclonal = 1 and 

reached its smallest value for nclonal = 999 (table 1). As a result, the mean F"# also moved 

towards negative values. Contrastingly, the mode of the F"# distribution stayed unchanged 

for small to intermediate numbers of clonal generations (nclonal ∈ {1; 9; 99} ), therefore 
increasing the variance of the distribution (figure 2, table 1). In these scenarios, the skewness 

also decreased, driven by the increasing weight of the left tail of the distribution (figure 2 A, 

B and C). This negative tail can in fact be seen as the proportion of trajectories departing 

from F"# ≈ 0  towards heterozygous fixation in the population because of genetic drift 
affecting whole genotypes rather than single alleles during the parthenogenetic phase 

(figure 2). At intermediate levels of clonality (i.e. nclonal ∈ {9; 99}), these trajectories rarely 
have the time to reach heterozygous fixation, thus increasing the probability of transient 

states (i.e. negative tails, figure 2) without increasing the probability of heterozygous 

fixation (table 1). On the other hand, the increasing probability of getting negative F"# value 
was inversely correlated to the probability density around the mode of the distribution. This 

flattening of the distribution was quantified by the decrease of the kurtosis as the number 

of clonal generations in CP increased (table 1). 

Although the probability of heterozygote excess increased for intermediate numbers of 

parthenogenetic generations, cycles with long periods of clonality are needed for genetic 

drift to fix the heterozygote genotype in the population. At mclonal = 999, most trajectories 

departing from Hardy-Weinberg towards negative ºΩæ values reach heterozygous fixation, 

thus increasing the probability of getting ºΩæ  values equal to – 1  while decreasing the 
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probability of transient states (figure 2, table 1). A characteristic bimodal distribution was 

then observed (figure 2). The variance of this distribution stayed high, the mean ºΩæ value 
being comprised between the two modes of the distribution (table 1). Similarly, the 

skewness of the distribution remained negative, as the highest density of the distribution 

was still located around ºΩæ ≈ 0. Finally, bimodality also kept the kurtosis at low values. 

Despite the increase of the probability of fixing heterozygotes when the number of 

parthenogenetic generations reaches large values, this probability is still relatively small in 

comparison to the probability of homozygous fixation (table 1). Contrarily to the states of 

homozygous fixation (i.e. '̂ ˆ = 200 or 'ıı = 200), the state of heterozygous fixation (i.e. 

'̂ ı = 200) is regularly broken by sexual reproduction. The stationary probability of fixing 
homozygotes by genetic drift is therefore still largely dominant. Once sexual reproduction 

is totally removed from the system (full clonality scenario), the state where all individuals are 

heterozygous, i.e. heterozygotes are fixed, becomes as stable as states where homozygotes 

are fixed; the probability of completely heterozygous loci becomes as high as that of 

completely homozygous loci (table 1). Consequently, all moments of the ºΩæ  distribution 

change drastically, the mean ºΩæ comes close to the mode of the distribution, both located 

near – 1 (mean ºΩæ =– 0.99471), therefore causing the variance to be very small. The entire 

distribution is tightly grouped around the minimum ºΩæ value, and therefore right-skewed, 
causing high value of skewness and kurtosis. 

The representation of the spd using de Finetti diagrams complemented the description of 

the ºΩæ  distributions (figure 3). Graphically, de Finetti diagrams confirmed that deviations 
from full sexuality scenario were visible in CP before sex even in short parthenogenetic cycles. 

Measures of divergence between spd quantitatively validated the deviation (table 2). When 

mclonal = 1, all highly probable states are grouped along the ºΩæ isocline ºΩæ = 0 (figure 3, CP 

before sex, ª = 0.5); however, the spread of high probabilities around this isocline was larger 
than under full sexuality. The dispersal of the highest probabilities was amplified when 

mclonal = 9  (figure 3, CP before sex, ª = 0.9 ). For both mclonal = 1  and mclonal = 9 , the 
stationary probabilities of all genotypic states along a given isocline were approximately of 

the same order of magnitude. 

Table 2.  Jensen-Shannon measures of divergence (()æ) between pairs of exact spd of selected 

scenarios (é = 200, ÿ = 10cç). 

Reference scenario Test scenario mclonal 

1	 9	 99	 999	

Full sexuality; ª = 0 CP before sex 0.0235	 0.1634	 0.3523	 0.5193	

Full clonality; ª = 1 CP before sex 0.9823	 0.9786	 0.9196	 0.3460	

Full sexuality; ª = 0 CP after sex <0.0001	 <0.0001	 0.0013	 0.1880	

CP after sex CP before sex 0.0235	 0.1637	 0.3634	 0.6201	

APC; ª = mclonal/(mclonal + msex) CP before sex 0.0094	 0.0316	 0.0855	 0.1449	

APC; ª = mclonal/(mclonal + msex) CP after sex 0.0038	 0.0852	 0.2894	 0.6127	
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Figure 3.  De Finetti diagrams illustrating spd of genotypic states in function of modes and levels of 

clonality (N = 200, µ = 10cç). In APC, ª is the fraction of individuals in the population 

produced clonally, while in CP, ª is the proportion of clonal generations in a cycle (ª =

mclonal/(mclonal + msex)). Clarification on how to read de Finetti diagrams can be found 

in supplementary information 3.  
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Strong differences to this pattern occurred when increasing the number of clonal 

generations in the cycle. As typified when zooming in on the corner of the diagram for 

mclonal = 99, genetic drift “pulled” the highest stationary probabilities towards the loss of 

one genotype (i.e. the edge of the de Finetti diagram, figure 3, CP before sex, ª = 0.99). Here, 
stationary probabilities of states along the same isoclines cannot be considered 

equiprobable. In fact, the ºΩæ  distribution depicted in figure 2 relies entirely on the 
aggregated probabilities of the genotypic states for which one of the homozygote 

genotypes was lost. Interestingly, the stationary probabilities of each genotypic state not 

located on the edges of the diagram are small but approximately equal, irrespectively of 

their ºΩæ  value. This overall pattern was strengthened when the number of clonal 

generations reaches extreme values. For mclonal = 999 , the stationary probabilities of 
genotypic states combining together at least one copy of each genotype (i.e. interior of the 

de Finetti diagram) were almost negligible. 

Measures of divergence between the spd of full sexuality and CP before sex also indicated 

quick departure from the expectation for full sexuality (()æ = 0.0235 for mclonal = 1), and 

increased with the number of clonal generations in the cycle (()æ = 0.5193 for mclonal =

999) as expected. In fact, the spd of CP before sex slowly converges towards the spd of the 
full clonality scenario as the number of clonal generations increases in the cycle. However, 

the divergence was still high even when considering the longest cycle of CP in our analysis 

(()æ = 0.3460 for mclonal = 999). 

Effect of seasonality in CP 

The shape of the ºΩæ distribution radically changes just after the occurrence of the sexual 
event of CP (figure 2, red distributions). As expected, panmixia in the population resets the 

genetic diversity in the population close to the distribution observed under full sexuality for 

short to intermediate cycle length. When mclonal ∈ {1,9,99}, ºΩæ  distributions expected for 

completely sexual organisms are nearly undistinguishable from the ºΩæ  distribution for 
cyclical parthenogens collected after the sexual event (figure 2). Differences only start to 

appear when the number of clonal generations preceding the sexual event is high (mclonal =

999). In that case, the density around the mode of the distribution is smaller than in the full 
sexuality scenario and the distribution gets slightly more spread out. Both variance and 

kurtosis confirmed this visual interpretation but the most pronounced effect concerned the 

increased probability of getting positive ºΩæ (table 1). Interestingly, at any level of clonality 
considered, the probability of fixation stays the same after and before the sexual event of CP 

(table 1). 

Measures of divergence failed to discriminate between spd produced by the full sexuality 

scenario and CP after sex for mclonal ∈ {1; 9}  (()æ < 0.0001  in both cases, table 2). For 

mclonal = 99, the Jensen-Shannon index started to indicate divergence between the two 

distributions (()æ = 0.0013 , table 2). However, this divergence was very hard to notice 

graphically when looking at the corresponding de Finetti diagram (figure 3). At mclonal = 999, 

divergence between the two spd is stronger ( ()æ = 0.1880 ) and is also graphically 

noticeable on de Finetti diagrams (figure 3). The analysis of this diagram further permits to 
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explain the observed shape of the ºΩæ  distribution described earlier. The probability of 
heterozygote fixation before the sexual event following 999 clonal generations is high; in 

consequence, the state where both alleles are equifrequent after sexual reproduction (i.e. 

('ıı , '̂ ı , '̂ ˆ) = (50, 100, 50)) gets a high stationary probability. Additionally, multinomial 
sampling (genetic drift) randomly increases the probability of neighbouring states (e.g. 

('ıı , '̂ ı , '̂ ˆ) = (47, 101, 52)) explaining the high probability region in the centre of the de 

Finetti diagram (figure 3) and the increased variance of ºΩæ  (figure 2, table 1, CP after sex, 

mclonal = 999). 

At any level of clonality considered, the deviations from the full sexuality scenario obtained 

after vs. before sexual reproduction under CP are by no means comparable. Jensen-Shannon 

divergence between spd inferred just before and just after the sexual event of CP permitted 

to quantify this “seasonality effect” (table 2). For mclonal = {1,9,99} , levels of divergence 
inferred between these two spd are very close to the divergence calculated between CP 

before sex and the full sexuality scenario. For mclonal = 999 , the divergence between CP 
before and after sex become higher than the divergence observed between CP before sex 

and the full sexuality scenario (()æ = 0.6201 and 0.5193 respectively). 

Comparison between CP and APC 

Differences between ºΩæ distributions produced under APC or CP depend on both the time 
of sampling in CP (after or before sex) and the number of clonal generations in the cycle. At 

mclonal = 1  (or ª = 0.5 ), the ºΩæ  distribution under APC graphically represents an 
intermediate case between the two distributions obtained under CP after and before sex 

(figure 2, black distribution). For intermediate levels of clonality (mclonal ∈ {9; 99}  or ª ∈

{0.9; 0.99}) the ºΩæ distribution under APC is tightly related to the ºΩæ distribution under CP 

before sex (figure 2). Although variance of ºΩæ under APC is lower than under CP before sex 
(table 1), visual discrimination between the two distributions is difficult (figure 2). In 

contrast, strong differences between APC and CP before sex are noticeable when the level of 

clonality is high (mclonal = 999  or ª = 0.999 , figure 2). Main dissimilarities concern the 

probability of getting positive ºΩæ, which is almost ten times lower in CP before sex than in 
APC (0.00136 and 0.01109 respectively), and the probability of fixing heterozygote 

genotypes in the population, which is higher in CP before sex than in APC (table 1). 

Similarly to the ºΩæ  distributions, de Finetti diagrams and Jensen-Shannon indices of 

divergence all indicated that spd produced under APC at ª = 0.5 represent an in-between 

distribution between CP before and after sex when mclonal = 1 (figure 3, table 2). For mclonal ∈

{9; 99; 999} (or ª ∈ {9; 99; 999}), ()æ also validated that spd under APC were closer to spd 

under CP before sex than spd under CP after sex (table 2). However, the de Finetti diagrams 

showed more divergence between spd under APC and CP than anticipated based on the ºΩæ 
distributions. Visually, differences produced under APC and CP before sex appeared from 

mclonal = 9 (or ª = 0.9, figure 3). The increased variance of ºΩæ calculated in CP before sex was 

illustrated by the larger dispersion of high probabilities around the isocline ºΩæ = 0 . At 

mclonal = 99 (or ª = 0.99), the de Finetti diagrams obtained under APC did not show all the 
highest probabilities completely “pulled” towards the edge of the diagram as previously 

demonstrated under CP before sex. In APC, genotypic states along the same negative ºΩæ 
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isocline got stationary probabilities of approximately the same order of magnitude. This last 

instance is very representative of the possibility of getting two almost identical ºΩæ 
probability distribution despite getting strong differences in terms of genetic/genotypic 

diversity in the population. A similar pattern occurred at mclonal = 999  (or ª = 0.999 ). 
Interestingly, the more homogeneous stationary probabilities along the same isocline made 

the probability of getting states located in the middle of the diagram more likely in APC than 

in CP before sex. 

Discrimination between scenarios 

At é = 200 , sampling 10 000 independently evolved loci based on their stationary 

probability was enough to statistically discriminate ºΩæ  distributions between scenarios 

(table 3).The ºΩæ ecdf obtained under CP before sex was significantly different from the ecdf 
of both the full sexuality and full clonality scenarios at any considered level of clonality. In 

contrast, a large number of clonal generations (mclonal = 999 ) were needed to detect 

significant differences between ºΩæ ecdf obtained under CP after sex and the full sexuality 

scenario. By extension, ºΩæ ecdf of CP before and after sex were also found to be significantly 

different, as were the ºΩæ ecdf under APC and under CP for any period of sampling (before or 

after sex) and level of clonality. Interestingly, the Kolmogorov-Smirnov statistic ((*æ ) 
between APC and CP before sex did not steadily increase with the number of clonal 

generations, as observed with the Jensen-Shannon index of divergence (table 2). However, 

correlation between the Kolmogorov-Smirnov statistic and Jensen-Shannon divergence 

was high (+² = 0.96, ó < 0.001 ), indicating that (*æ  between ºΩæ  ecdf may be a good 

approximation of ()æ between exact spd of genotypic states. 

Table 3.  Two-sample Kolmogorov-Smirnov test between empirical cumulative distribution 

functions (ecdf) of selected scenarios for é = 200  and ÿ = 10cç . The ecdf were 

obtained by sampling 10 000 genotypic states in the spd of each scenario. (*æ : 

Kolmogorov-Smirnov statistic; *: ó < 0.05; **: ó < 0.01; ***: ó < 0.001. 

Reference scenario Test scenario 
mclonal 

1	 9	 99	 999	

Full sexuality 

ª = 0 
CP before sex 

(*æ = 0.0404 
*** 

(*æ = 0.1378 
*** 

(*æ = 0.2868 
*** 

(*æ = 0.5540 
*** 

Full clonality 

ª = 1 
CP before sex 

(*æ = 0.9950 
*** 

(*æ = 0.9938 
*** 

(*æ = 0.9782 
*** 

(*æ = 0.5672 
*** 

Full sexuality 

ª = 0 CP after sex 
(*æ = 0.009 
(ó = 0.8127) 

(*æ = 0.0150 
(ó = 0.2106) 

(*æ = 0.0151 
(ó = 0.2043) 

(*æ = 0.097 
*** 

CP after sex 
CP before sex 

(*æ = 0.0436 
*** 

(*æ = 0.1369 
*** 

(*æ = 0.2853 
*** 

(*æ = 0.5447 
*** 

APC 

ª = mclonal/(mclonal + msex) 
CP before sex 

(*æ = 0.0224 
* 

(*æ = 0.0313 
*** 

(*æ = 0.0236	

** 
(*æ = 0.2615 
*** 

APC 

ª = mclonal/(mclonal + msex) 
CP after sex 

(*æ = 0.0262 
** 

(*æ = 0.1189 
*** 

(*æ = 0.2927 
*** 

(*æ = 0.5706 
*** 
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ºΩæ  distributions obtained from individual-based simulations at é = 10	000  naturally 

showed some divergence from full ºΩæ  distributions obtained at é = 200 (figure 4). This 
change is due to the randomizing effect of reciprocal mutations, whose number per 

generation increases with the number of individuals, thus impeding the fixation of a single 

genotype by genetic drift. The visual relationships between the distributions of different 

scenarios remain, however, the same as described for é = 200. Accordingly, two-sample 

Kolmogorov-Smirnov tests still permitted to detect significant differences between ºΩæ ecdf 
of different scenarios (table 4). Significant differences were even highlighted between 

scenarios of full sexuality and CP after sex from mclonal = 9 although no differences between 
the density functions were graphically noticeable (figure 4). 

 

Figure 4.  Weighted kernel density estimation of º!ê  based on 10 000 simulations, in function of 

levels and modes of clonality (é = 10	000, ÿ = 10cç). A: mclonal = 1 in CP and ª = 0.5 

in APC; B: mclonal = 9 in CP and ª = 0.9 in APC; C: mclonal = 99 in CP and ª = 0.99 in APC; 

D: mclonal = 999 in CP and ª = 0.999 in APC. 

Table 4.  Two-sample Kolmogorov-Smirnov test between empirical cumulative distribution 

functions (ecdf) of selected scenarios for é = 10	000  and ÿ = 10cç . The ecdf were 

obtained by simulating 10 000 º!ê  trajectories. In CP, º!ê  values were recorded after 

and before the next sexual event, following a burn-in period of 10 000 generations. For 
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APC, full sexuality and full clonality, º!ê  values were recorded at generation 10 001. 

(*æ: Kolmogorov-Smirnov statistic; *: ó < 0.05; **: ó < 0.01; ***: ó < 0.001. 

Reference scenario Test scenario 
mclonal 

1	 9	 99	 999	

Full sexuality 

ª = 0 
CP before sex 

(*æ = 0.0821 
*** 

(*æ = 0.2551 
*** 

(*æ = 0.4409 
*** 

(*æ = 0.5914 
*** 

Full clonality 

ª = 1 
CP before sex 

(*æ = 0.7141 
*** 

(*æ = 0.6787 
*** 

(*æ = 0.5800 
*** 

(*æ = 0.3981 
*** 

Full sexuality 

ª = 0 CP after sex 
(*æ = 0.0136 
(ó = 0.3443) 

(*æ = 0.0321 
*** 

(*æ = 0.0654 
*** 

(*æ = 0.0678 
*** 

CP after sex 
CP before sex 

(*æ = 0.0773 
*** 

(*æ = 0.2501 
*** 

(*æ = 0.4406 
*** 

(*æ = 0.5921 
*** 

APC 

ª = mclonal/(mclonal + msex) 
CP before sex 

(*æ = 0.0558 
*** 

(*æ = 0.0857 
*** 

(*æ = 0.0932 
*** 

(*æ = 0.0882 
*** 

APC 

ª = mclonal/(mclonal + msex) 
CP after sex 

(*æ = 0.0307 
*** 

(*æ = 0.1835 
*** 

(*æ = 0.3804 
*** 

(*æ = 0.5463 
*** 

Discussion 

Several studies have quantified and formalised the effect of clonality on genetic diversity in 

species for which sexual and clonal reproduction co-occur in time (Marshall & Weir 1979, 

Orive 1993, Balloux et al. 2003, Bengtsson 2003, de Meeûs & Balloux 2004, de Meeûs & 

Balloux 2005, Stoeckel & Masson 2014). Despite many examples of CP in the wild, analytical 

models or simulations looking at the effect of this reproductive system on parameters of 

genetic diversity are rarer (Berg & Lascoux 2000, Prugnolle et al. 2005a, b; Vanoverbeke & De 

Meester 2010). The model presented here provides the first full probability distributions of 

genetic diversity depending on level of clonality in cyclical parthenogenesis. 

Few generations of clonality cause departures from the assumption of full sexuality 

Our model first confirms results obtained by previous investigators showing that low levels 

of clonality has little effect on mean ºΩæ  value (Balloux et al. 2003). The novelty of our results 
lies in the fact that few generation of clonality, even when preceded by regular sexual 

events, are enough to substantially impact the full probability distribution of ºΩæ (CP before 
sex). The main effects of successive clonal generations can be summarized by a flattening of 

the distribution around ºΩæ = 0  together with a spread of the ºΩæ  distribution towards 

negative values, the extremity of this negative tail eventually reaching ºΩæ = −1  (i.e. 
heterozygote fixation) and causing the distribution to become bimodal. This result stresses 

once again the importance of taking the time of sampling into account when analysing 

population genetic datasets of cyclical parthenogens (Berg & Lascoux 2000). 

As intuited in previous studies (Pfrender & Lynch 2000, De Meester et al. 2006, Allen & Lynch 

2012), our model confirms that a single bout of sexual reproduction following a low number 

of clonal generations rearranges genetic diversity towards predictions under full sexuality 
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(CP after sex). However, this pattern is not entirely established when the number of clonal 

generations preceding the sexual event is large enough for genetic drift to shift genotypic 

frequencies away from distributions under full sexuality. Such neutral deviations predicted 

under CP may result, for example, in erroneous identification of loci as “outliers” and their 

over-interpretation as being under selective pressure. This slight effect may be difficult to 

observe with a limited number of classical population genetic markers (e.g. microsatellites), 

but it is particularly relevant for the analysis of large scale population genomic data from 

cyclical parthenogens (Orsini et al. 2011, Routtu et al. 2014).  

Long period of clonality is not equivalent to full clonality 

Although already few generations of clonality cause departure from full sexuality scenario, 

long periods of clonality following rare sexual events do not yield a similar distribution as 

full clonality. Under full clonality, when the effects of genetic drift dominate over those of 

mutation (e.g. é = 200 and ÿ = 10cç ), the ºΩæ  probability distribution is centred around 

ºΩæ = −1  (heterozygote fixation). Oppositely, in CP before sex, the ºΩæ  probability 

distribution at the end of the longest clonal phase investigated here (mclonal = 999) is still 

distinctively bimodal around ºΩæ = −1  and ºΩæ ≈ 0 . Simulations at é = 10	000  and ÿ =

10cç also confirmed this difference, although both distributions looked different due to the 

change in the mutation/drift balance. The contrasting ºΩæ distributions under full clonality 
versus long cycle of CP provide an additional and seducing population genetic tool to test 

the absence of sex in natural or experimental populations of putatively ancient asexuals 

(Danchin et al. 2011). 

CP and APC yield different distribution of genetic diversity 

Probability distributions of ºΩæ under CP after or before sex are different from those observed 

under APC. Furthermore, the ºΩæ  probability distribution obtained under APC does not 

represent an average situation between the two seasonal distributions of CP. The ºΩæ 
probability distribution under APC is closely linked to the distribution obtained under CP 

before sex. However, the flattening of the distribution and its spread towards negative ºΩæ 
values is quicker in CP before sex, where genetic drift only interacts with mutation, than in 

APC where low levels of sexual reproduction additionally reduce the effects of genetic drift 

(see also Reichel et al. submitted b).  

Because of the absence of an explicit model describing the effect of clonality on genetic 

diversity in CP, many studies had to rely on predictions from models of genetic diversity 

under APC to discuss their CP data outputs (Halkett et al. 2005b, Vorburger 2006, Kanbe & 

Akimoto 2009, Allen & Lynch 2012). Especially designed to fit the CP lifecycle, our model 

permits to refine these predictions and is particularly suited to test more precise hypothesis 

about genetic diversity in cyclical parthenogens. 

Discrimination between scenarios 

Two-sample Kolmogorov-Smirnov tests permitted to discriminate ºΩæ  ecdf obtained 

between most of the scenarios at both é = 200  and é = 10	000  (full sexuality, full 

asexuality, CP before sex, CP after sex and APC). Interestingly, significant divergence between 
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ºΩæ  ecdf produced by scenarios of full sexuality and CP after sex were only detected at 

mclonal = 999 for é = 200, whereas nine generations of asexuality were enough for é =

10	000. This result is attributable to the critical value of (*æ	being lower at é = 10	000 than 

é = 200 (critical (*æ(ó = 0.05) at é = 200: 0.136; at é = 10	000: 0.019). 

Although two-sample Kolmogorov-Smirnov tests based on ºΩæ probability distributions are 
highly informative in our case, comparing de Finetti diagrams between CP before sex and APC 

perfectly demonstrates that probability distributions of ºΩæ do not exhaustively describe the 
effect of clonality on genetic diversity. On the contrary, the Jensen-Shannon index of 

divergence (()æ ) uses the totality of the information comprised within the full spd of 

genotypic states to calculate the exact divergence between two scenarios. Unfortunately, 

()æ is, to date, difficult to compute when working on empirical datasets (see Methods). 

Nevertheless, our approach represents a new step towards inferring levels and modes of 

clonality in natural systems from population genetic data. To further achieve this goal, a 

likelihood ratio approach is currently under construction based on indices of divergence 

((*æ and/or ()æ) calculated between theoretical predictions and empirical data for which 

the mode and level of clonality are to be assessed. 

Conclusion and perspectives 

The model presented here permitted exact predictions of genetic diversity in a context of 

cyclical parthenogenesis. It also demonstrated the differences between cyclical 

parthenogenesis and other reproductive modes: full sexuality, full clonality, and acyclic 

partial clonality. We hope that this research will lead to further investigations to refine 

predictions of genetic diversity in populations of cyclical parthenogens taking into account 

other classical aspects of their life-cycles (e.g. population bottleneck following sexual 

reproduction, effect of selection). 
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Appendix 

Supplementary information 1 – Transition equations from Stoeckel & Masson (2014): 

Genotypic frequency at ‹ + 1  ( óÏ56 , superscript does not denote exponentiation) in 

function of genotypic frequencies at ‹ (óÏ) after a clonal event (ÿ is the reciprocal mutation 
rate): 

óıı
Ï56 = 1 − ÿ eóıı

Ï + ÿ 1 − ÿ óˆı
Ï + ÿeóˆˆ

Ï  

óˆı
Ï56 = 2ÿ 1 − ÿ óıı

Ï + ÿe + 1 − ÿ e óˆı
Ï + 2ÿ 1 − ÿ óˆˆ

Ï  

óˆˆ
Ï56 = ÿeóıı

Ï + 	ÿ 1 − ÿ óˆı
Ï + 1 − ÿ eóˆˆ

Ï  

 

Genotypic frequencies at ‹ + 1 (ÌÏ56) in function of genotypic frequencies at ‹ (óÏ) after a 
sexual event: 

Ìıı
Ï56 = 1 − ÿ óıı

Ï +
1

2
óˆı
Ï + ÿ	óˆˆ
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e

 

Ìˆı
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Supplementary information 2 – Explanation of matrix multiplication in eq. 7 and 8: 

Consider the two transition matrix -sex and -clonal for which each column obey to the 
expression ó .|('ıı , '̂ ı , '̂ ˆ)ÎD /00,/10,/11

/00,/10,/11 D›

= 1: 

 
-sex:  States at ‹ 

'ıı , '̂ ı , '̂ ˆ  
  A B C D 

St
at

es
 a

t 
‹
+
1

 
(∂
ı
ı
,∂
ˆ
ı
,∂
ˆ
ˆ
) A ósex 2|2  ósex 2|3  ósex 2|4  ósex 2|(  

B ósex 3|2  ósex 3|3  ósex 3|4  ósex 3|(  

C ósex 4|2  ósex 4|3  ósex 4|4  ósex 4|(  

D ósex (|2  ósex (|3  ósex (|4  ósex (|(  

 

-clonal:  States at ‹ 
'ıı , '̂ ı , '̂ ˆ  

  A B C D 

St
at

es
 a

t 
‹
+
1

 
(∂
ı
ı
,∂
ˆ
ı
,∂
ˆ
ˆ
) A óclonal 2|2  óclonal 2|3  ófi567ı5 2|4  óclonal 2|(  

B óclonal 3|2  óclonal 3|3  ófi567ı5 3|4  óclonal 3|(  

C óclonal 4|2  óclonal 4|3  ófi567ı5 4|4  óclonal 4|(  

D óclonal (|2  óclonal (|3  ófi567ı5 (|4  óclonal (|(  

 
The logical path needed to calculate the probability distribution of states after one sexual 

generation followed by one clonal generation is better understood through an example. In 
the case presented below we want to calculate the transition probability to state D from 
state B, this probability is equal to the expression: 
ó 3 → (

= ó/89 2|3 ófi567ı5 (|2 + ó/89 3|3 ófi567ı5 (|3 + ó/89 4|3 ófi567ı5 (|4
+ ó/89 (|3 ófi567ı5 (|(  

 
This probability is an entry in the matrix resulting of multiplication -fi567ı5 ∙ -/89  as shown 

below (and not -/89 ∙ -fi567ı5): 
     -sex A B C D 
     A ósex 2|2  ósex 2|3  ósex 2|4  ósex 2|(  

     B ósex 3|2  ósex 3|3  ósex 3|4  ósex 3|(  

     C ósex 4|2  ósex 4|3  ósex 4|4  ósex 4|(  

     D ósex (|2  ósex (|3  ósex (|4  ósex (|(  

-clonal A B C D  A B C D 
A óclonal 2|2  óclonal 2|3  óclonal 2|4  óclonal 2|(  A ó 2 → 2  ó 3 → 2  ó 4 → 2  ó ( → 2  

B óclonal 3|2  óclonal 3|3  óclonal 3|4  óclonal 3|(  B ó 2 → 3  ó 3 → 3  ó 4 → 3  ó ( → 3  

C óclonal 4|2  óclonal 4|3  óclonal 4|4  óclonal 4|(  C ó 2 → 4  ó 3 → 4  ó 4 → 4  ó ( → 4  

D óclonal (|2  óclonal (|3  óclonal (|4  óclonal (|(  D ó 2
→ (  

ó 3
→ (  

ó 4
→ (  

ó (
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Supplementary information 3 – de Finetti diagram 

 

 

Figure A1.  A de Finetti diagram is a classical ternary diagram which permits to simultaneously 

display the frequency of the three genotypes AA, Aa and aa. Here, the axis labels are 

adjusted for a population size of é = 200. The red dot represents the genotypic state 

'̂ ˆ, '̂ ı , 'ıı = 30, 70, 100 . The length of the red dotted lines permits to graphically 

infer the frequency of each genotype. Black dotted lines symbolises ºΩæ isocline, i.e. all 

possible states having the same ºΩæ value. 
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Supplementary information 4 – Explanation of the slightly negative mean ºΩæ  observed 

in finite full sexual populations 

 

In our exact population genetics model, the discrete nature of individuals 

(é, 'ıı , '̂ ı , '̂ ˆ) ∈ ℕ  has meaningful consequences on the distributions of individuals 

among the possible genotypes. Indeed, in the case where :ı² ∙ é  (i.e. proportion of 

homozygotes aa assuming Hardy-Weinberg proportions) is not a natural number, the 

population will not be in a state with precisely the Hardy-Weinberg proportions. Therefore, 

if evolutionary forces drive the population to HWE, it will oscillate by sampling the nearest 

discrete possible genotypic states which are more likely to yield negative ºΩæ values. This 

effect can be geometrically approached using de Finetti diagrams. Indeed, ºΩæ isoclines are 

convex functions toward lower ºΩæ values. As an example, imagine a population made of 

é = 200 individuals with 66 copies of the a allele (:ı = 0.33) and 144 copies of the A allele 

(:̂ = 0.67). In this case, the exact state at Hardy-Weinberg equilibrium would be (:ıı =

21.78;	 :̂ ı = 88.44;	 :̂ ˆ = 89.78 ) and cannot be reached in our model as in reality 
(individuals cannot be decimal quantities). The population will oscillate between the nearest 

genotypic states made of natural numbers which are (:ıı = 21;	 :̂ ı = 89;	 :̂ ˆ = 90) with 

ºΩæ = −0.0102 , (:ıı = 22;	 :̂ ı = 88;	 :̂ ˆ = 90 ) with ºΩæ = 0.0050  and (:ıı = 22;	 :̂ ı =

89;	 :̂ ˆ = 89) with ºΩæ = −0.0025 therefore causing negative ºΩæ on average. 

Thus, all along the isocline ºΩæ = 0  on the de Finetti diagram, the discrete nature of 

individuals results in sampling more genotypic states standing for slightly negative ºΩæthan 
for slightly positive ones. Taking into account within our model the discrete nature of 

biological systems makes our results differ from results obtained in earlier models based on 

allelic identities (Balloux et al. 2003) where allelic and genotypic frequencies are assumed to 

be continuous. 
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7 Diversity under selection 

7.1 Effects of selection under acyclic partial asexuality 

In the last chapter, we analyzed the genotype frequency dynamics at selectively neutral loci. 

But what happens if genotype frequencies within a partially asexual population are also 

subject to selection? Based on the results from article II, one could suppose that their 

dynamics are generally slower in (partially) asexual than in exclusively sexual populations, 

and that adaptation is therefore always fastest with sexual reproduction. Alternatively, the 

speed of adaptation may depend on the nature of the genotypes that are selected 

(for/against). As a third hypothesis, the speed of adaptation may always be optimal under 

partially asexual reproduction, based on a “best of both worlds” argument. 

We studied the genotype dynamics in acyclic partially asexual populations at a single locus 

under four basic selection scenarios: selection for a dominant or recessive “beneficial” allele, 

and selection for or against a heterozygous genotype. Selection was “non-lethal”, i.e. the 

selectively least advantageous genotype could still survive and reproduce (compare e.g. 

Lokki 1976), keeping the population size constant. We also included scenarios with multiple 

alleles where the genotype fitness is determined by the dosage of a single allele. For each 

selection scenario, we determined the genotype frequency combinations that would 

increase their probability compared to neutral expectations, i.e. whose observation might 

serve to distinguish neutral and selected loci. We also compared the expected time until a 

population first reaches maximal mean fitness (time to adaptation) across different rates of 

clonality. 

We found that the genotype frequency combinations that distinguish neutrality and 

selection not only depend on the selective scenario, but also on the rate of clonality. The 

same applies for the expected time to adaptation, which is generally quite long (hundreds 

to thousands of generations) except for small populations and very strong selection. 

However, exclusively sexual populations did not always have the shortest time to 

adaptation: depending on the selection scenario, the mutation rate and if the selectively 

most advantageous genotype(s) already existed in the population at the beginning of a 

selective sweep, exclusively asexual populations could also be faster to adapt. But for one 

exception (selection for heterozygous genotype, which did not yet exist at the beginning of 

the sweep) where rare sex was the fastest way to adapt, the times to adaptation of partially 

asexual populations were an intermediate between those of exclusive sexuality and 

exclusive asexuality. 

The methods that are currently used to detect selection from genomic data are very much 

oriented towards selection for or against dominant/recessive alleles (compare Vitti et al. 

2013). This article takes a wider view, considering selection at the genotype level, even 

though still at a single locus only. Preliminary studies also included intermediates between 

the different scenarios; it would be interesting to extend the analyses for such cases. 

Previous results for infinite populations (Marshall & Weir 1979, Overath & Asmussen 1998; 
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see also for a preliminary comparison between selection under partial asexuality and partial 

selfing), suggested that the characteristic genotype frequency combinations for partially 

asexual populations only change if the fitness of the heterozygous genotype is higher or 

equal compared to the fitnesses of the homozygous genotypes (the exclusion of equality in 

(Overath & Asmussen 1998) is probably an oversight). However, this distinction may become 

less clear in finite populations. 

This article draft does not yet include a detailed analysis of the dynamics/genotype 

frequency changes during the adaptive process (compare figures 6 and 7 in article II). These 

data will be important for understanding selective dynamics under cyclical 

parthenogenesis: As an example, under the dominant selection scenario (aa genotype less 

fit than the aA and AA genotypes) the genotype combinations that are expected to be more 

frequent than at neutrality are very different between exclusively sexual and the exclusively 

asexual populations. Depending on the number of asexual generations, and depending on 

the moment during the life cycle when a selectively advantageous/ disadvantageous 

mutation appears, this may lead to situations where the genotype frequency combinations 

that are increased under selection are highly different between cyclical parthenogenesis 

and exclusively sexual reproduction. 

Effet de la sélection sous asexualité partielle acyclique 

Dans le dernier chapitre, nous avons analysé la dynamique de fréquences de génotype aux 

loci sélectivement neutres. Mais qu'advient-il si les fréquences génotypiques dans une 

population partiellement asexuée sont également soumises à la sélection ? Basé sur les 

résultats de l'article II, on pouvait supposer que leurs dynamiques sont généralement plus 

lentes dans les populations (partiellement) asexuées que dans les exclusivement sexuées, et 

que l'adaptation est donc toujours la plus rapide avec la reproduction sexuée. 

Alternativement, la vitesse d'adaptation peut dépendre de la nature des génotypes 

sélectionnés (positivement / négativement). En une troisième hypothèse, la vitesse 

d'adaptation pourrait toujours être optimale avec la reproduction partiellement asexuée, à 

partir de l’argument que c’est la combinaison du « meilleur des deux mondes ». 

Nous avons étudié la dynamique de génotypes dans les populations partiellement 

asexuées acycliques à un seul locus selon quatre scénarios de base de la sélection : la 

sélection pour un allèle « bénéfique » dominant ou récessif, et la sélection pour ou contre 

un génotype hétérozygote. La sélection a été « non létale », c’est-à-dire que le génotype 

sélectivement moins avantageux pourrait encore survivre et se reproduire (comparer par 

exemple avec Lokki 1976), maintenant ainsi la taille de la population constante. Nous avons 

également inclus des scénarios avec plusieurs allèles où la valeur sélective de chaque 

génotype est déterminée par le dosage d'un seul allèle. Pour chaque scénario de sélection, 

nous avons déterminé des combinaisons de fréquences génotypiques qui augmenteraient 

leurs fréquences par rapport aux attentes neutres, c’est-à-dire dont l'observation peut servir 

à distinguer des loci neutres et sélectionnés. Nous avons également comparé le temps prévu 

jusqu'à ce qu'une population atteigne pour la première fois son maximum de la valeur 

sélective moyenne (temps d'adaptation) à travers différents taux de clonalité. 
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Nous avons constaté que les combinaisons des fréquences génotypiques qui distinguent la 

neutralité de la sélection ne dépendent pas seulement du scénario sélectif, mais aussi du 

taux de clonalité. Il en va de même pour la durée prévue pour l'adaptation, qui est 

généralement assez longue (des centaines de milliers de générations) à l'exception des 

populations moins grandes et de la sélection très forte. Cependant, les populations 

exclusivement sexuées ne présentent pas forcément des délais les plus courts dans 

l'adaptation : selon le scénario de sélection, selon le taux de mutation et selon le fait que si 

le génotype(s) sélectivement le(s) plus avantageuse(s) existai(en)t déjà dans la population 

au début d'un balayage sélectif, les populations exclusivement asexuées pourraient aussi 

s'adapter plus rapidement. Mais à une exception près (la sélection pour le génotype 

hétérozygote, qui n'existait pas encore au début du balayage) où le sexe rare est le meilleur 

moyen de s'adapter, la durée de l'adaptation des populations partiellement asexuées est un 

intermédiaire entre celui de la sexualité exclusive et de l’asexualité exclusive. 

Les méthodes qui sont actuellement utilisées pour détecter la sélection à partir de données 

génomiques sont très orientées vers la sélection pour ou contre des allèles dominants / 

récessifs (comparer Vitti et al. 2013). Cet article a une vision plus large, en tenant compte de 

la sélection au niveau du génotype, bien qu'encore à seulement un locus unique. Des études 

préliminaires incluent également des intermédiaires entre les différents scénarios ; il serait 

intéressant d'étendre les analyses pour de tels cas. Les résultats précédents des populations 

infinies (Marshall & Weir 1979, Overath & Asmussen 1998 ; le voir aussi pour une 

comparaison préliminaire entre la sélection sous asexualité partielle et autofécondation 

partielle) ont suggéré que les combinaisons des fréquences génotypiques caractéristiques 

pour les populations partiellement asexuées ne changent que si la valeur sélective du 

génotype hétérozygote est supérieure ou égale aux valeurs des génotypes homozygotes 

(l'exclusion de l'égalité dans Overath & Asmussen 1998 est probablement un oubli). 

Toutefois, cette distinction peut devenir moins prononcée dans les populations de taille 

finie. 

Ce projet d’article ne comprend pas encore une analyse détaillée de la dynamique / des 

changements des fréquences génotypiques au cours du processus d'adaptation (comparer 

les figures 6 et 7 de l'article II). Ces données seront importantes pour la compréhension de 

la dynamique sélective sous la parthénogenèse cyclique : par exemple, dans le scénario de 

sélection dominante (valeur sélective du génotype aa moins que ceux des génotypes aA et 

AA) les combinaisons de génotypes qui devraient être plus fréquentes que dans la neutralité 

sont très différentes entre les populations exclusivement sexuées et exclusivement 

asexuées. Selon le nombre de générations asexuées, et selon le moment du cycle de vie où 

une mutation sélective avantageuse / désavantageuse apparaît, cela peut conduire à des 

situations où les combinaisons de fréquences génotypiques qui sont augmentées sous 

sélection sont très différents entre la parthénogenèse cyclique et la reproduction 

exclusivement sexuée. 
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Article IV Clonalité partielle et vitesse d’adaptation 

Sommaire de l’article 

Détecter des loci sous sélection devient rapidement une application standard de la théorie 

de génétique des populations. Pourtant, pour trouver ce que l'on cherche, il faut savoir où 

chercher. Les systèmes de reproduction sont bien connus pour affecter la génétique des 

populations, et de fait les études précédentes ont montré que la clonalité partielle affecte la 

distribution d'équilibre et la dynamique de l’ºΩæ . Nous avons étudié la dynamique des 
fréquences génotypiques et la valeur sélective moyenne des populations lors de la sélection 

basée sur un seul locus, en prenant en compte des différents scénarios de sélection, de 

mutation et de dérive génétique. En particulier, nous avons comparé les équilibres 

(fréquences génotypiques, valeur sélective moyenne des populations) et la durée 

d’adaptation entre les différents taux de clonalité partiels. 

Nous avons constaté que différents scénarios de sélection peuvent changer leur 

« signature », à savoir les combinaisons de fréquences des génotypes qui sont censées être 

plus fréquentes sous sélection, en fonction du taux de clonalité. Cela est particulièrement 

visible dans les scénarios de sélection où les génotypes hétérozygotes ont des valeurs 

sélectives les plus élevées, et si la reproduction sexuée est rare. Pour la plupart des scénarios 

que nous avons analysés, le temps d'adaptation est optimal soit sous reproduction 

exclusivement sexuée soit exclusivement asexuée. La seule exception est la sélection d'un 

génotype hétérozygote pas encore présent dans la population, où le sexe rare accélère 

l’adaptation. 

Nous avons montré que ni la reproduction exclusivement sexuée ni la clonalité partielle est 

toujours la voie la plus rapide à l'adaptation. Nos résultats peuvent être utilisés pour adapter 

les méthodes de détection des loci sous sélection chez les espèces partiellement clonales, 

et pour améliorer l'interprétation des données de terrain. 
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Article IV Partial asexuality and the speed of adaptation 

Katja Reichel*, Jean-Pierre Masson, Solenn Stoeckel 

INRA, UMR1349 Institute for Genetics, Environment and Plant Protection, F-35650, Le Rheu, France 

unsubmitted draft 

Abstract 

Detecting loci under selection is rapidly becoming a standard application for population 

genetic theory. Yet to find what one is looking for, one has to know where to look. 

Reproductive systems are well known to affect population genetics, and indeed previous 

studies showed that partial clonality affects the equilibrium distribution and dynamics of 

ºΩæ. We studied the dynamics of genotype frequencies and population mean fitness during 
selection based on a single locus, taking different selection scenarios, mutation and genetic 

drift into account. In particular, we compared the equilibria (genotype frequencies, 

population mean fitness) and the time to adaptation across different rates of partial 

clonality. 

We found that different selection scenarios may change their “signature”, i.e. the 

combinations of genotype frequencies that are expected to be more frequent under 

selection, according to the rate of clonality. This is especially noticeable for selection 

scenarios where heterozygote genotypes have the highest mean fitness, and if sexual 

reproduction is rare. For most scenarios we analyzed, the time to adaptation is optimal 

either under exclusively sexual or exclusively asexual reproduction. The only exception is 

selection for a heterozygous genotype not yet present in the population, where rare sex 

speeds up adaptation. 

We showed that neither exclusively sexual reproduction nor partial clonality is always the 

fastest way to adaptation. Our results may be used to adapt methods for detecting loci 

under selection in partially clonal species, and improve the interpretation of field data.  

 

Keywords  selection, asexual reproduction, SNP, SSR, de Finetti diagram 
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Introduction 

Adaptive evolution, the process whereby organisms change in response to natural 

selection, is a major research topic in evolutionary biology at least since the work of Charles 

Darwin (1872, Grant & Grant 2003). Natural selection acts on phenotypes, increasing 

(positive selection) or decreasing (negative selection) their relative potential to survive 

and/or reproduce (fitness). The trait values that determine the fitness of an individual have 

a heritable and a non-heritable component. The chosen mode of reproduction can have a 

great impact on the way the heritable fitness component is passed on from one generation 

to the next; indeed, the discussion about the evolution of different reproductive systems is 

largely based on their potential to influence adaptive evolution, especially its speed (Otto 

2009). 

The evolution of reproductive systems is, however, not the only link between reproduction 

and adaptation. A great deal of research in evolutionary ecology is currently directed at 

finding the mechanisms underlying the heritable variability of selective traits (e.g. Jaquiéry 

et al. 2014, Lamichhaney et al. 2015): The aim is to connect environmental conditions to 

phenotypes and genotypes, so that adaptive evolution can be studied directly “in action”. 

Detecting candidate regions within genomes that may be involved in adaptive processes 

often relies on population genetic “signatures” of selection (Vitti et al. 2013) – typically, 

natural selection leads to the enrichment of a “beneficial” allele at a particular locus, which 

can then be detected e.g. as increased differentiation (high ºæ; ) between different 
populations. Yet other evolutionary processes, most notably reproduction, can modify the 

neutral reference (e.g. Stoeckel & Masson 2014) and potentially also the expected selection 

signatures. A sound theoretical reference, describing the patterns of genetic variation 

expected under different selection scenarios, could therefore prove essential for studying 

adaptation in populations with non-standard reproductive systems. 

We were interested in adaptive evolution in partially clonal populations, where each 

individual may reproduce both clonally and sexually by random mating. Although 

widespread both throughout the earth’s biomes and on the tree of life, partially clonal 

species have hitherto received comparatively little attention from theoretical population 

geneticists. They have repeatedly, though not consistently (e.g. Ryndin et al. 2001, Hartfield 

et al. 2012), been included in models about the evolution of sexual reproduction. Outside of 

this context, only few studies compared adaptive processes under combined sexual/clonal 

reproduction (e.g. Marshall & Weir 1979, Muirhead & Lande 1997, Overath & Asmussen 

1998). Most of these focused on some particular selection scenario and on the outcome of 

selective sweeps rather than on their dynamic, or did not include any evolutionary processes 

beside reproduction and selection. 

Recent research on the neutral variation of single loci (Reichel et al. submitted, Stoeckel & 

Masson 2014) showed that genotype frequency dynamics in finite partially clonal 

populations may differ from those under exclusive sexuality: attraction to the Hardy-

Weinberg equilibrium is slowed down, which grants more influence to evolutionary 

processes leading away from it (e.g. genetic drift). These results also raise new questions 

about adaptive evolution in partially clonal populations: Firstly, how do the expected 
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distributions of genotype frequencies (“signature”) and the mean fitness of the population 

change under different rates of partial asexuality? And secondly, if the neutral dynamics of 

ºΩæ/heterozygosity are slowed down in partially clonal populations, how does this affect the 
expected time until adaptation (i.e. maximal mean fitness of the population) under different 

selection scenarios? 

To answer these questions, we extended the Markov chain model of Reichel et al. 

(submitted) to include selection. We studied four different basic scenarios: selection for a 

recessive allele A (or against a dominant allele a), selection for a dominant allele A (or against 

a recessive allele a), selection for a heterozygous genotype aA and divergent selection for 

different homozygous genotypes aa and AA. For each scenario, we first compared the 

expected distribution of genotype frequencies to its neutral counterpart to see which 

combinations would become more/less frequent under selection. Secondly, we determined 

the expected final mean fitness of the population to see if different rates of clonal 

reproduction can lead to “better” adaptation, in terms of this parameter. Finally, we 

calculated the expected time to adaptation (maximal mean fitness) under different rates of 

asexuality for “hard” selective sweeps, starting from minimal mean fitness with all alleles 

present, and “soft” selective sweeps, starting from Hardy-Weinberg equilibrium with all 

alleles equally frequent; though the latter combination of genotype frequencies becomes 

less common at selectively neutral loci as the rate of clonality increases, it represents a 

situation where all genotypes are present prior to the selective sweep. Thus, we could 

compare the speed of adaptation in partially clonal populations under the different 

scenarios to the expectations for exclusively sexual or exclusively asexual reproduction. 

Methods 

The biological basis of our model is a single, isolated population of constant finite size é 
(Wright-Fisher model; compare Reichel et al. submitted). Individuals correspond to ramets 

(i.e. physiological rather than genetic units), are diploid and may undergo somatic 

mutations that can be passed on to their offspring at a mutation rate ÿ . For each new 

generation, a fraction ª of the offspring is formed by clonal reproduction (i.e. genetically 
identical to its parent except for somatic mutations), whereas the rest (no survival between 

generations) derives from sexual reproduction by random mating including selfing at rate 

1/é. 

We extended the Markov chain model for genotype frequencies in a small finite population 

described in Reichel et al. (submitted, based on Stoeckel & Masson 2014) by adding selection 

before mutation in the life cycle (figure 1). Biologically, this corresponds to selection acting 

mainly on the reproductive success (“seed census”) and less on the establishment of 

individuals (“adult census”, as discussed in Overath & Asmussen 1998). Equations I-IV from 

the original model are provided for reference in additional file 1. The general form of the 

new equation 0 for selection is: 

Íb = < ⋅ ÍÏ
c6 < ∘ ÍÏ  

where ÍÏ  is the vector of genotype frequencies observed at time ‹ , Íb  the vector of 

genotype frequencies after selection, < the vector of genotype fitness values, ⋅ denotes the 
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scalar product (sum over elementwise multiplication) and ∘ the Hadamard/Schur product 
(elementwise multiplication). 

 

Figure 1.  Schematic representation of the model life cycle. Steps I to IV (blue) are identical to the 

model in Reichel et al. (submitted), step 0 (green, selection) has been added. The 

haploid phase of the life cycle is between steps II and III. 

The different selection scenarios correspond to different parameterizations of the vector of 

genotype fitness values < ∈ 	 0, 1  in equation 0, as presented in table 1, based on a 

selection coefficient ∂	 ∈ 	 0, 1 . All asymmetries in the scenarios are formulated in favor of 
the A allele. As our definition of genotype fitness is relative (constant population size, 

rescaling by < ⋅ ÍÏ
c6  in equation 0) and the maximal genotype fitness is always one, 

selection “for” particular genotypes is exactly equivalent to selection “against” the others. 

Consequently, though the scenarios’ names are based on positive selection, the results 

apply equally for the complementary scenario of negative selection, e.g. selection for a 

recessive allele A is equivalent to selection against a dominant allele a. 

Table 1.  Overview of selection scenarios. Fitness values < for each genotype depending on the 

selection parameter ∂ . Initial states (Íıı , Íıˆ, Íˆˆ ) for hard selective sweeps; soft 

selective sweeps start from (é/4, é/2, é/4) for all scenarios. 

Scenario short <ıı <ıˆ <ˆˆ Initial state H 

Neutral N 1 1 1 any of below 

Recessive R 1 − ∂ 1 − ∂ 1 (é − 1, 1, 0) 

Dominant D 1 − ∂ 1 1 (é − 1, 1, 0) 

Overdominant O 1 − ∂ 1 1 − ∂ (é/2, 0, é/2) 

Underdominant U 1 1 − ∂ 1 (0, é, 0) 

For loci with more than two alleles, a stands for all alleles that are not the favored allele A. 

Consequently, Íıˆ is the sum of the frequencies of all genotypes that have exactly one A 

allele, and Íıı  is the sum of the frequencies of all (homozygous and heterozygous) 
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genotypes without the A allele. All subsumed genotypes have the same fitness value, i.e. a 

genotype’s fitness depends only on the number of A alleles it possesses. This means that 

mutation between A and “a” in becomes asymmetric, with ÿˆ→ı = ÿ and ÿı→ˆ = ÿ/(m −

1) , where ÿ  is the “global” mutation rate (assuming a k-alleles/Jukes-Cantor mutation 

model) and m the number of alleles. Equation I (mutation) thus becomes: 

Íıı
Íıˆ
Íˆˆ Ω

=

1 −
ÿ

m − 1

e

ÿ 1 −
ÿ

m − 1
ÿe

2ÿ

m − 1
1 −

ÿ

m − 1
ÿ

ÿ

m − 1
+ 1 − ÿ 1 −

ÿ

m − 1
2ÿ 1 − ÿ

ÿ

m − 1

e

1 − ÿ
ÿ

m − 1
1 − ÿ e

Íıı
Íıˆ
Íˆˆ b

 

All other model equations remain unchanged. 

Based on equations 0 to IV, we constructed the transition matrix = of the Markov chain 

model: this is a square matrix containing all transition probabilities ó(ÌÏ56|ÌÏ), where ÌÏ  

denotes the set of numbers of individuals Ì ∈ ℕb with Ì = é possessing each respective 

genotype (“state” of the Markov chain) at time ‹.  

The expected frequency with which each model state would be observed if all model 

parameters (selection scenario, ∂, ÿ, ª, é) had always been the constant (“equilibrium”) is 
derived from the dominant eigenvector of the transition matrix. The mean fitness of the 

population Φ and the mean frequency of the A allele Íˆ are derived by summing over the 
product of expected state frequency with the mean fitness / allele frequency for each state.  

The expected time to adaptation is calculated as the first passage time from a specified 

initial state until the population first reaches a state of maximal mean fitness (Φ = 1; all 

individuals have a genotype with < = 1). For each selection scenario, we looked at two 

particular initial states: a subscript ê denotes soft selection acting on a population in Hardy-

Weinberg equilibrium with equal allele frequencies (é/4,é/2, é/2 ), and a subscript > 
denotes hard selection acting on a population in which both alleles are present but which 

otherwise has the lowest possible mean fitness (see table 1). 

Results 

Expected genotype frequencies and population mean fitness 

Natural selection evidently changes the genotype frequencies, but which combinations 

become more or less common may depend on the rate of clonality as well (figure 2). Under 

the recessive scenario, a population exclusively of AA individuals would be both most fit and 

most likely under all rates of clonality; yet though its gain in probability is largest under 

exclusive asexuality, stochastic flux out of it (Φ < 1) is also greatest then (figure 2R).  
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Figure 2.  Equilibrium genotype frequencies under selection compared to neutral expectation. 

Neutrality and four selection scenarios (see table 1) with ∂ = 0.5  and five rates of 

partial clonality ª	(0.0, 0.5, 0.8, 0.99, 1.0)  in a population with é = 20  and m = 2 

alleles. Φ: mean population fitness at the equilibrium, Íˆ: mean frequency of allele A at 

the equilibrium. Colors: state probability at neutrality (orange/red, scale: probability) 

and combinations of genotype frequencies that are more probable (green), ca. equally 

probable (white) and less probable (blue) under selection than at neutrality (scale: 

difference in probability). De Finetti diagrams with genotype aa in the lower left corner 

(more information in additional file 2); red brackets enclose states of maximal mean 

fitness. Figures for ∂ = 0.5, é = 20, m = 10  and ∂ = 0.01, é = 100, m = 2  in 

additional file 3. 
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For the dominant scenario, any state where all individuals have at least one A allele has 

maximal mean fitness, but not all of them are more probable than under neutrality (figure 

2D). In an exclusively sexual population, the characteristic “pattern” looks almost identical 

to the recessive case, yet as sexual reproduction becomes less frequent the equilibrium 

mean frequency of the A allele diminishes. As ª comes close to one, the balance finally flips: 
the greatest increase in probability is then at a population where all individuals are 

heterozygous with one A allele. 

For the overdominant scenario, the state where all individuals are heterozygous with one A 

allele has the highest mean fitness (figure 2O). Still, this state is only reached at nearly 

exclusive clonality, otherwise it is not found any more often than under neutrality. Even 

though, the mean fitness at equilibrium augments already from ª ≥ 0 onwards, as the states 
with increased probability shift towards ever higher heterozygosity.  

For the underdominant scenario, any state without heterozygotes in the population has 

maximal mean fitness (figure 2U). However, only the fixation states noticeably increase their 

probability here. As the rate of asexuality increases, the differences between neutral and 

selection probabilities become greater. 

Augmenting the number of alleles makes the two symmetric selection scenarios (U and O) 

asymmetric, but otherwise hardly changes the patterns (appendix, figure A3.1). Increasing 

the population size “sharpens” the contours of the states with increased probability; yet 

lowering the selection coefficient generally decreases the probability differences between 

selective and neutral case, so that selection generally becomes harder to detect (appendix, 

figure A3.2).  

Expected time to adaptation 

Each selection scenario has a characteristic shape of the “time to adaptation” curve (figure 

3): for the recessive and underdominant cases, it curves upward (longer time to adapt) at 

high rates of clonality, while for the dominant and overdominant cases the lower rates of 

clonality take longest to reach a state of maximal mean fitness. The times to adaptation 

during a soft selective sweep are always shorter than or equal to those for the hard selective 

sweep. For the recessive and dominant case, the difference in time between fastest and 

slowest adapting rate of asexuality is simply smaller during a soft selective sweep. However, 

for the overdominant and underdominant cases, the shape of the curve is different under 

high rates of clonality and high selection coefficients: for hard selective sweeps, the time to 

adaptation increases as c	⟶	1.0, but for a soft selective sweep it decreases. Consequently, 
the time needed to form a new advantageous genotype (homozygote or heterozygote) 

from the alleles already present in the population increases the time to adaptation in those 

cases.  

Increasing the population size (figure 4) also increases the time to adaptation. While the 

principal pattern stays the same in the recessive and dominant cases, the times to 

adaptation in the overdominant case increase so dramatically, that it is safe to assume that 

the state of maximal mean fitness is only ever reached under very high rates of clonality.  
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Figure 3.  Time to maximal mean fitness under different rates of partial clonality. Four selection 

scenarios (see table 1). Colors (dark to light): selection coefficients 

∂	(0.5, 0.1, 0.01, 0.001), neutral case in light grey. Lines for higher ∂ may hide those for 

lower ∂ . Continuous lines: hard selective sweep, dashed lines: soft selective sweep. 

Population with é = 20, ÿ = 10c∫ and m = 2 alleles. 

For the underdominant case and high selection coefficients, the time to adaptation at first 

slightly augments with the rate of clonality, but then drops again for very high rates of 

clonality. As this pattern is similar for both soft and hard selective sweeps, it might be due 

to a sub-optimal “detour” of the adaptation process. Decreasing the mutation rate or 

increasing the number of alleles further increases the time to adaptation, but otherwise 

produces the same pattern.  

If the mutation rate is increased (figure 5), the situation changes dramatically. Now, the time 

to adaptation is always minimal in completely clonal populations, regardless of the selection 

scenario. Apparently, very frequent mutation randomizing the association of alleles can 

have the same benefit for the time to adaptation as – at least occasional – sexual 

reproduction.  
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Figure 4.  Time to maximal mean fitness under different rates of partial clonality. Four selection 

scenarios (see table 1). Colors (dark to light): selection coefficients 

∂	(0.5, 0.1, 0.01, 0.001), neutral case in light grey. Lines for higher ∂ may hide those for 

lower ∂ . Continuous lines: hard selective sweep, dashed lines: soft selective sweep. 

Population with é = 100, ÿ = 10c∫ and m = 2 alleles. 

Discussion 

We analyzed adaptive evolution, based on a single locus under selection, in partially clonal 

populations. To our knowledge, this is the first such study that also accounts for mutation 

and genetic drift, and includes all four principal selection scenarios. Our results may serve as 

a reference for improving the detection of loci under selection in field studies of partially 

clonal organisms and widen the discussion about the speed of adaptation due to different 

reproductive systems. 

Our results suggest that partial clonality may indeed change the combinations of geno-

type frequencies that indicate selection at single loci: As an example, under exclusively 

sexual reproduction selection for a “beneficial” allele leads to increased fixation of this allele, 

regardless if its effect is dominant or recessive. In contrast, highly clonal populations show 

high heterozygosity rather than fixation if the “beneficial” allele is dominant, a “signature” 

similar to that of selection for the heterozygote genotype. Methods for the  
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Figure 5.  Time to maximal mean fitness under different rates of partial clonality. Four selection 

scenarios (see table 1). Colors (dark to light): selection coefficients 

∂	(0.5, 0.1, 0.01, 0.001), neutral case in light grey. Lines for higher ∂ may hide those for 

lower ∂ . Continuous lines: hard selective sweep, dashed lines: soft selective sweep. 

Population with é = 100, ÿ = 10ce	 and m = 2 alleles. 

 

detection of selection that are based on a comparison of allele frequencies (ºæ;) would miss 
such selection scenarios. Based on our expected distributions of genotype frequencies, it 

might be possible to develop new detection methods for selection candidate regions, that 

are not only better adapted for partially clonal species but could also pick up e.g. selection 

for heterozygosity or weak selection in exclusively sexual populations. 

During selective sweeps based on single loci under selection, partially clonal species are 

hardly ever fastest to reach maximal mean fitness – in most cases either exclusively sexual 

or exclusively asexual reproduction would take less long, with partial clonality somewhere 

in between. We did not find a direct relationship with the slowed-down dynamics of ºΩæ 
observed in the absence of selection. Adaptation under exclusive asexuality is sometimes 

slowed down because the most advantageous “recombinant” genotype does not arise, 

though all necessary alleles are available. This leads to a remarkable exception under 

selection for a heterozygous genotype, where adaptation is speeded up by rare sexual 

reproduction first creating the most fit genotype in an otherwise highly clonal population. 
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In general, the expected number of generations until the whole population has a maximal-

fitness genotype is very long, especially for hard selective sweeps. Populations that reached 

the maximal mean fitness are therefore probably rare in nature, in particular among big 

populations.  

The results of this study should not be over-interpreted in terms of evolutionary 

advantages/disadvantages of particular reproductive systems: at the present moment, it is 

not clear whether a higher speed of adaptation or a higher mean population fitness under 

some specific selection scenario are relevant criteria for the evolution of the whole 

reproductive system. Moreover, selection on only a single locus, without taking the whole 

genomic context into account, is certainly an over-simplification of the complexity of 

adaptive evolution. Still, we demonstrated that studying a variety of selection scenarios may 

lead to a more complete picture: perhaps the “mixture” of different selection scenarios 

throughout the evolutionary history of different taxa could also have contributed to the 

evolution of its reproductive system? Improving the population genetic tools to detect 

selection also in partially clonal populations will hopefully lead to a better understanding of 

field data, which may in turn provide more answers about the evolution of reproductive 

systems. 

Conclusion 

We provide expectations for the “signatures” of different selection scenarios at single loci 

under partial clonality, and for the times until all individuals within the population have a 

maximal-fitness genotype. Different rates of clonal reproduction change the genotype 

frequency combinations most likely to indicate selection. Adaptation in exclusively clonal 

populations may sometimes be speeded up by rare sex, but partial clonality is generally not 

the fastest way to adapt. 
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Appendix 

Additional file 1 – Model equations 

The following equations are based on two alleles; for more alleles, a stands for all alleles 

that are not A. 
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Additional file 2 – How to read de Finetti diagrams 

 

Figure A2.1:  Schematic explanation of a de Finetti diagram. For more than two alleles, a represents 

all alleles that are not A, i.e. the frequency of “aa” is a sum over the frequencies of 

several heterozygous and homozygous genotypes; the ºΩæ / Hardy-Weinberg 

parabolas are only valid for the two-allele case.  

  

The de Finetti diagram
a visualisation of all possible compositions of a population out of different genotypes 
for one locus with two alleles (a, A) in a diploid organism

The corners of the triangle represent populations 
which consist of only one genotype. Here, it's aA.

States on the borders of the triangle only include
two genotypes. Here, these are aA and aa.

All states in Hardy-Weinberg equilibrium are
found on a parabola, which passes through the 
two corners on the triangle's base and the 
midpoint of its vertical height. 

Point of fixation for the a allele.

Allele frequencies can be read 
by projection on the base of 
the triangle.

Lines connecting points of equal FIS value, here 
for increments of 0.1, form a family of parabolas 
passing through the two base corners, with 
their vertices either above (FIS < 0) or 
below (FIS > 0) the height midpoint. 

4 aa

7 aA

9 AA

For the green example 
population at N = 20, 
one reads:
- 4 aa individuals
- 7 aA individuals
- 9 AA individuals
- 0.375 is the frequency 
  of the a allele 
  (15 out of 40 copies)
- thus, there are 
  25 copies of 
  the A allele
- FIS ≈ 0.25  

allele
frequencies
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Additional file 3 – Supplementary figures 

 

Figure A3.1  Equilibrium genotype frequencies under selection compared to neutral expectation. 

Neutrality and four selection scenarios (see table 1) with ∂ = 0.5  and five rates of 

partial clonality ª	(0.0, 0.5, 0.8, 0.99, 1.0)  in a population with é = 20  and m = 10 

alleles. Φ: mean population fitness at the equilibrium, Íˆ: mean frequency of allele A at 

the equilibrium. Colors: state probability at neutrality (orange/red, scale: probability) 

and combinations of genotype frequencies that are more probable (green), ca. equally 

probable (grey) and less probable (blue) under selection than at neutrality (scale: 

difference in probability). De Finetti diagrams with genotype aa in the lower left corner 

(additional file 2); red brackets enclose states of maximal mean fitness.  
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Figure A3.2  Equilibrium genotype frequencies under selection compared to neutral expectation. 

Neutrality and four selection scenarios (see table 1) with ∂ = 0.01 and five rates of 

partial clonality ª	(0.0, 0.5, 0.8, 0.99, 1.0)  in a population with é = 100  and m = 2 

alleles. Φ: mean population fitness at the equilibrium, Íˆ: mean frequency of allele A at 

the equilibrium. Colors: state probability at neutrality (orange/red, scale: probability) 

and combinations of genotype frequencies that are more probable (green), ca. equally 

probable (grey) and less probable (blue) under selection than at neutrality (scale: 

difference in probability). De Finetti diagrams with genotype aa in the lower left corner 

(additional file 2); red brackets enclose states of maximal mean fitness.  
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7.2 Linkage  

Having so far looked only at single loci, we neglected one other effect of clonality on genetic 

diversity: the increase co-inheritance of genotypes at different loci, as measured by indices 

of linkage disequilibrium (Halkett et al. 2005). Linkage disequilibrium means that the 

association of alleles at two different loci is not random: as an example, consider two loci 

with two possible alleles a/A, b/B each. If the alleles are transmitted randomly and 

independently to the offspring, the frequencies of the four possible haplotypes 

(combinations of alleles at locus a and b) should equal the product of the allele frequencies 

at each locus (e.g. Íı5A = ÍıÍA). However, if the two loci are close to each other on the same 
chromosome (see figure 7.1), resulting in no segregation during meiosis and only a low 

probability of crossing-over changing the association of alleles, a situation called “physical 

linkage”, the haplotype frequencies will differ, i.e. be in linkage disequilibrium. Physical 

linkage is, however, not the only mechanism that leads to linkage disequilibrium: others 

include selection (“functional linkage”) and clonal reproduction. Because of this connection 

between linkage, selection and clonality, many population genetic models (e.g. Roze 2014) 

and theories (e.g. Felsenstein 1974) about adaptation under different rates of clonality 

involve at least two loci. 

 

Figure 7.1  A pair of homologous chromosomes, showing a double heterozygote genotype at two 

physically linked loci a and b. a/A, b/B: alleles; r: genetic distance between the two loci 

(effective rate of crossing-over). 

Under exclusively clonal reproduction, the offspring genotype is identical to that of its 

parent except for mutations, which means that only mutation may change the association 

of alleles at the two loci and lead to the disappearance of an initial linkage disequilibrium. 

Yet as we have seen for the association of alleles at single loci ( ºΩæ , article II), the 
randomization of initial non-random associations by mutation can take very long. Under 

partial asexuality, the different mechanisms of recombination (reassortment of 

chromosomes, crossing over) can contribute to this randomization, but may not be as 

effective as in an exclusively sexual population (compare de Meeûs & Balloux 2004). Here, 

we quantified the expected effect of partially clonal reproduction on the presence and 

strength of linkage disequilibrium. 

We compared the probability ófi6 that a pair of alleles at two different loci within the same 
chromosome of a diploid organism is co-transmitted to its offspring, under different rates of 
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partially clonal reproduction ª , to the expectation for ófi6  under exclusively sexual 
reproduction by random mating. In doing so, we took into account different “genetic 

distances” between the two loci, measured by the effective rate r of meiotic crossing-over 

(i.e. excluding double, quadruple etc. crossing-over events) between them, and symmetric 

mutation at rate ÿ at both loci.  

The equation for pco is one minus the probability of a mutation at either locus, minus the 

probability of a meiotic crossing-over between both loci, i.e. 

ófi6 = 1 − 2ÿ − 1 − ª ' 

This relationship is plotted in figure 7.2; note that mutation has only a very small influence 

on ófi6, so that the decay of linkage disequilibrium due to mutation only in exclusively clonal 

populations would take very long (similar to the results for ºΩæ, article II). 

 

Figure 7.2  Probability of the co-inheritance of the alleles at two loci with different genetic 

distance (effective rate of crossing-over ') under different rates of clonality ª. See text 

for details. 

Comparing ófi6  for arbitrary ª  to ófi6(ª = 0) for exclusively sexual reproduction gives the 
simple linear relationship 

'/89 = 1 − ª 'fi   or   ª = 1 − '/89/'fi  

As an example, two physically unlinked loci in a population with 60% clonal reproduction 

will show exactly the same pattern of co-inheritance as two loci in an exclusively sexual 
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population which have an effective rate of crossing over of 0.2, assuming the same mutation 

rate in each case (figure 7.2). Thus, the expectation for the behavior of different linkage 

disequilibrium estimators can be directly transferred from the usually better-known 

exclusively sexual case to the less well-known partially asexual case (figure 7.3; compare de 

Meeûs & Balloux 2004). 

 

Figure 7.3  Comparison of the two-locus linkage disequilibrium (ıA = ÍıA − (ÍıÍA)  (see Weir 

1996) for physically unlinked loci under (partial) asexuality (C,D) and corresponding 

physically (partially) linked loci under exclusive sexuality (A,B). A: ª = 0, ' = 0 B: ª =

0, ' = 0.3 C: ª = 1.0, ' = 0.5 D: ª = 0.4, ' = 0.5. Random start (orange stars) and 100 

simulations each, orange line corresponds to example population (green and blue line: 

genotype frequencies at locus a and b, respectively) shown in de Finetti diagram. 

Based on this result, it appears as though c in a partially clonal population could easily be 

measured by comparing the effective rates of crossing-over between pairs of loci under 

exclusively sexual reproduction (e.g. from crossing experiments as for the genetic mapping 

of genomes) to those observed “in the wild”, i.e. for the whole partially clonal population. 

However, firstly estimating '/89  will only be possible if sexual and clonal offspring can be 
easily distinguished (e.g. for plants with vegetative reproduction, but exclusively sexual 

seed formation). Secondly, estimating 'fi  from field data is usually not straightforward, as all 
parentage relationships would have to be known – this is effectively the same as already 

knowing the rate of clonality, at least for one generation. Substituting the effective rates of 

crossing-over by estimators of linkage disequilibrium (similar to the approach proposed in 

de Meeûs & Balloux 2004, Halkett et al. 2005) may improve the situation only partially: all 

estimators suffer from the problem that the linkage phase (i.e. which pair of alleles at the 

two loci a and b is actually on the same chromosome; alleles a+b vs. alleles a+B in figure 7.1) 

in double heterozygote genotypes is unknown. As the exact haplotype frequencies can 

therefore not be calculated (compare discussion in Weir 1996), estimators of linkage 

disequilibrium potentially introduce a significant error (compare results of de Meeûs & 

Balloux 2004). 

As we have also seen in previous multilocus simulation results (chapter 6.2), the changed 

pattern of co-inheritance due to partial asexuality appears not to affect the predicted 

outcome for the range of ºΩæ  values under neutral conditions: starting with a random 
association of alleles between loci (no linkage disequilibrium), the direction and strength of 
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subsequently acquired disequilibria is also random. For physically unlinked loci, the effect 

of partial asexuality on the genotype frequency / ºΩæ  dynamics at single loci and on the 
observed linkage disequilibrium should still be independent; a potential influence of co-

inheritance on the distribution of ºΩæ values across loci, in particular on its mean, has not yet 

been quantified (compare discussion about the reliability of the mean ºΩæ  across loci in 
article II). 

Our result also has implications for linkage disequilibrium-based methods to detect 

genomic regions under selection (compare Vitti et al. 2013): the higher the rate of clonality, 

the more difficult it will become to delimit selected regions as the “background” linkage 

disequilibrium in partially clonal populations is already high. In an extreme example, under 

exclusive clonality, a selective sweep caused by a beneficial mutation at one locus may lead 

to the predominance of the whole genome in which the mutation first occurred within the 

population. As the randomization of alleles at the non-selected loci by mutation is slow, the 

particular locus that caused the sweep would retrospectively be virtually undetectable. Time 

series data, as previously discussed for ºΩæ (article II), might also be helpful in this situation: 
by comparing allelic diversity before and after the sweep, at least some loci could be 

excluded. However, this assumes either luck or clairvoyance, as data collection would have 

to start before the actual event (selective sweep) takes place. 

To conclude, the pattern of linkage disequilibrium in partially asexual species, brought 

about by the en bloc inheritance of the parental genome under asexual reproduction, can 

be easily predicted based on a linear relationship to what is known about linkage in 

exclusively sexual populations. Applying this knowledge to estimate rates of clonality may 

be technically difficult, and partially clonal reproduction may interfere with linkage 

disequilibrium-based methods for detecting selection. Time series data could resolve some 

of these difficulties. 
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Part IV Discussion and conclusion 
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8 Synthesis 

8.1 Main findings 

8.1.1. General remarks 

Based on a mathematical model, this thesis demonstrated that the patterns and dynamics 

of genetic diversity in partially asexual populations are indeed generally different from those 

expected under exclusively sexual or exclusively asexual reproduction. Moreover, we 

described what these differences are and how they originate in a basic genetic system. The 

results and conclusions reached in this thesis are a step towards a general extension of 

population genetic theory for partially asexual species. 

This thesis showed that life cycles matter: Genotype frequency dynamics in populations 

that may produce sexual and asexual offspring in parallel are different from those of 

populations cyclically alternating between sexual and asexual reproduction. This adds 

another level of complexity to the development of population genetic theory for partially 

asexual species, as not only different rates of clonality, but also different partially asexual life 

cycles need to be accounted for (article III). 

Time is an important factor for the population genetics of partially asexual species. We 

advocate a dynamic view of population genetic processes, as it allows treating complex life 

cycles (such as cyclical parthenogenesis) as a composite of less complex parts (single steps 

of sexual/asexual reproduction). To interpret population genetic data, a description of short-

term change could be more helpful than long-term equilibria, since natural populations may 

often be confronted with an inconstant environment. 

The results of this thesis suggest that allele frequencies alone are not sufficient to describe 

some specific problems in population genetics. We based our model of the population 

genetics of partially asexual species on genotype frequencies, which allowed a description 

of genetic drift in populations without a universal gamete stage. Much of population 

genetics is currently dominated by an “allele frequency” view (compare e.g. Gale 1990, 

Ewens 2004, Wikipedia contributors 2015). This view may have to be revised to 

accommodate partial asexuality (see also Ceplitis 2003, Hartfield et al. 2015). 

Remarques générales 

Basée sur un modèle mathématique, cette thèse a démontré que les caractéristiques et la 

dynamique de la diversité génétique dans les populations partiellement asexuées sont en 

effet généralement différentes de celles attendues avec la reproduction exclusivement 

sexuée ou exclusivement asexuée. En outre, nous avons décrit ce que ces différences sont 

et comment elles se produisent dans un système génétique de base. Les résultats et les 

conclusions de cette thèse sont une étape vers une généralisation de la théorie de 

génétique des populations pour les espèces partiellement asexuées. 
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Cette thèse a montré que les cycles de vie sont importants : la dynamique de la fréquence 

du génotype dans les populations qui peuvent produire une descendance sexuée et 

asexuée en parallèle est différente de celles des populations qui alternent cycliquement 

entre la reproduction sexuée et asexuée. Cela ajoute un autre niveau de complexité à 

l'élaboration de la théorie de la génétique des populations pour les espèces partiellement 

asexuées, parce que les taux de clonalité sont non seulement différents, mais aussi les 

différents cycles de vie partiellement asexués doivent être pris en compte (article III). 

Le temps est un facteur important pour la génétique des populations des espèces 

partiellement asexuées. Nous préconisons une vision dynamique des processus de 

génétique des populations, car elle permet de traiter les cycles de vie complexes (comme la 

parthénogenèse cyclique) comme un composite de pièces moins complexes (les étapes 

simples de la reproduction sexuée / asexuée). Pour interpréter les données de génétique 

des populations, une description des changements à court terme pourrait être plus utile que 

les équilibres à long terme, étant donné que les populations naturelles peuvent souvent être 

confrontées à un environnement changeant. 

Les résultats de cette thèse suggèrent que les fréquences alléliques ne suffisent pas pour 

décrire certains problèmes spécifiques en génétique des populations. Nous avons basé 

notre modèle de la génétique des populations des espèces partiellement asexuées sur les 

fréquences génotypiques, ce qui a permis une description de la dérive génétique dans les 

populations sans phase gamétique universelle. Une grande partie de la génétique des 

populations est actuellement dominée par une vue centrée sur les fréquences alléliques 

(comparer par exemple Gale 1990, Ewens 2004, Wikipedia contributors 2015). Ce point de 

vue doit être révisé pour tenir compte de l’asexualité partielle (voir également Ceplitis 2003, 

Hartfield et al. 2015). 

8.1.2. Genotype frequency dynamics under partial asexuality 

In acyclic partially asexual populations, the attraction of the Hardy-Weinberg equilibrium is 

weakened. As the associations of alleles are only partially randomized at each generation, 

reaching complete randomness takes longer. This effect, which was first described by 

Marshall & Weir (1979), is the common cause of all changes in the genotype frequency 

dynamics of acyclic partially asexual populations, compared to their exclusively sexual 

(random mating) counterparts. It contrasts with the consequences of other deviations from 

random mating, such as partial selfing: there, the equilibrium for the association of alleles 

(heterozygosity) is shifted, but the speed of approach remains the same (Marshall & Weir 

1979). 

The observed changes in genotype frequency dynamics under partial clonality depend on 

evolutionary processes other than reproduction. The results of Marshall & Weir (1979) 

probably gave the impression that “nothing changes” if asexual reproduction is added to a 

randomly mating system, since the equilibrium stays the same. However, this is no longer 

true if other evolutionary processes leading away from the Hardy-Weinberg equilibrium (in 

our case, genetic drift and/or selection) are taken into account.  
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The relationship between the rate of asexuality and its effect on a population genetic 

parameter may differ. Consequently, not only populations with an extremely high rate of 

clonality are different from the exclusively sexual case. For the mean ºΩæ  at selectively 
neutral loci under acyclic partial clonality, we found a hyperbolical relationship (article II). 

Yet the times to adaptation under different selection scenarios echoed this pattern only in 

part (article IV). The probability of co-inheritance (chapter 7.2) appears to be linearly 

correlated to the rate of clonality, yet parameters measuring linkage disequilibrium may 

follow a different scheme (compare de Meeûs & Balloux 2004). As the concomitant effect of 

different evolutionary processes can be very different for populations that do not have to 

conform to the Hardy-Weinberg equilibrium, the effect of partial asexuality on each 

population genetic parameter should be modeled individually. 

Under selectively neutral conditions, partial asexuality increases the “evolutionary memory” 

of populations for past events that affected their genotypic diversity. We showed that 

bottleneck effects take much longer to wear off under partial asexuality (chapter 6.2), and 

that populations originating from hybridization or a highly homozygous population may 

take very long to reach their expected equilibrium distribution of ºΩæ  values (article II). In 
cyclically parthenogenetic populations, the number of asexual generations in each cycle 

and the sampling time determine how similar the observed distribution of ºΩæ values is to 
the expectation for exclusive sexuality (article III). 

Adaptation to selection at a single locus is neither always fastest in exclusively sexual 

populations, nor under partial asexuality. We showed that the rate of clonality that 

“optimizes” the time to adaptation depends on the selective scenario, the mutation rate and 

the genotypic diversity previous to a selective sweep (article IV). Moreover, selection may 

leave different signatures in exclusively sexual and partially asexual populations, which 

make it more difficult to be detected in genomic data: distances over which linkage 

phenomena can be observed are extended (chapter 7.2), and different genotype 

frequencies may be selectively enhanced (article IV). 

La dynamique des fréquences génotypiques sous asexualité partielle 

Dans les populations partiellement asexuées acycliques, l'attraction à l'équilibre de Hardy-

Weinberg est affaiblie. Comme les associations d'allèles ne sont que partiellement 

randomisées à chaque génération, atteindre la mixité aléatoire complète prend plus de 

temps. Cet effet, qui a d'abord été décrit par Marshall & Weir (1979), est la cause commune 

de tous les changements en dynamique des fréquences génotypiques des populations 

partiellement asexuées acycliques, par rapport à leurs homologues exclusivement sexués 

(avec accouplement aléatoire). Elle contraste avec les conséquences d'autres écarts par 

rapport à l'accouplement au hasard, comme l’autofécondation partielle : là, l'équilibre de 

l'association des allèles (hétérozygotie) est décalé, mais la vitesse de l'approche reste la 

même (Marshall & Weir 1979). 

Les changements observés dans la dynamique des fréquences génotypiques sous clonalité 

partielle dépendent de processus évolutifs autres que la reproduction. Les résultats de 

Marshall & Weir (1979) ont probablement donné l'impression que « rien ne change » si la 
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reproduction asexuée est ajoutée à un système d'accouplement au hasard, car l'équilibre 

reste le même. Toutefois, cela n’est plus vrai si d'autres processus évolutifs menant loin de 

l'équilibre de Hardy-Weinberg (dans notre cas, la dérive et / ou la sélection génétique) sont 

pris en compte. 

La relation entre le taux de l'asexualité et son effet sur un paramètre de génétique des 

populations peut différer. Par conséquent de ce résultat, les populations avec un taux de 

clonalité intermédiaire (et non seulement ceux avec un taux de clonalité extrêmement 

élevé, voir les exclusivement clonales / asexuées) peuvent également différer du cas 

exclusivement sexué. Pour la moyenne d’ºΩæ aux locus sélectivement neutres sous clonalité 
partielle acyclique, nous avons trouvé une relation hyperbolique (article II). Pourtant, les 

durées d'adaptation dans différents scénarios de sélection font en partie seulement l'écho 

de ce principe (article IV). La probabilité de co-héritage (chapitre 7.2) semble être 

linéairement corrélée aux taux de clonalité, mais les paramètres de mesure du déséquilibre 

de liaison peuvent encore suivre un régime différent (comparer de Meeûs & Balloux 2004). 

Comme l'effet concomitant des différents processus de l'évolution peut être très différent 

pour les populations qui ne se conforment pas nécessairement à l'équilibre de Hardy-

Weinberg, l'effet de l’asexualité partielle sur chaque paramètre de génétique des 

populations doit être modélisé individuellement. 

Dans des conditions sélectivement neutres, l’asexualité partielle augmente la « mémoire 

évolutive » des populations pour les événements passés qui ont affecté leur diversité 

génotypique. Nous avons montré que les effets de goulot d'étranglement prennent 

beaucoup plus de temps à se dissiper sous l'asexualité partielle (chapitre 6.2), et que les 

populations originaires de l'hybridation ou une population très homozygote peuvent 

prendre beaucoup de temps pour atteindre leur distribution des valeurs d’ºΩæ attendues à 
l'équilibre (article II). Dans les populations cycliquement parthénogénétiques, le nombre de 

générations asexuées dans chaque cycle et le moment d'échantillonnage déterminent le 

degré de similitude de la distribution observée des valeurs d’ºΩæ et des attentes à partir de 
la sexualité exclusive (article III). 

L’adaptation à la sélection à un seul locus n’est pas toujours la plus rapide, ni dans les 

populations exclusivement sexuées, ni sous asexualité partielle. Nous avons montré que le 

taux de clonalité qui « optimise » la durée de l'adaptation dépend du scénario sélectif, du 

taux de mutation et de la diversité génotypique avant un balayage sélectif (article IV). En 

outre, la sélection peut laisser des signatures différentes dans les populations exclusivement 

sexuées et partiellement asexuées, ce qui la rend plus difficile à détecter dans les données 

génomiques : les distances sur lesquelles les phénomènes de liaison peuvent être observés 

sont étendues (chapitre 7.2), et différentes fréquences génotypiques peuvent être 

augmentées de manière sélective (article IV). 
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8.1.3. Meselson effect  

The results for exclusively clonal populations presented in this thesis turned out to be 

different from those presented elsewhere. We therefore discussed partially asexual 

populations mainly with reference to exclusive sexuality. However, the genotype frequency 

dynamics in exclusively clonal populations are both interesting in themselves and as a 

reference for partially asexual populations, which is why they shall be discussed here. 

According to our model, genotype frequency dynamics in small exclusively clonal 

populations are dominated by genetic drift, and in large clonal populations by mutation. 

The distinction between sizes is based on the relation between population size and 

mutation rate (see article II). In the first case, exclusively asexual populations successively 

loose any initial genotypic diversity they may have had. It is this scenario which leads to 

highly negative mean ºΩæ values, modeled both by Balloux et al. (2003) (compare also their 
figure 6, which shows that the effective numbers of alleles and genotypes obtained by 

simulation converge to two and one, respectively; i.e. a single heterozygous genotype) and 

us. In the second case, all loci will eventually be at Hardy-Weinberg equilibrium (ºΩæ = 0) 
with the allele frequencies that result from the underlying mutation scheme: as an example, 

the observed homozygosity at each SNP in an exclusively clonal population should 

converge to 4 ∙ (1 4)e = 1/4 (or one half for a biallelic SNP), assuming the Jukes-Cantor (or 

k-alleles) mutation model. This means that very old, large and exclusively asexual 

populations should be virtually indistinguishable from exclusively sexual populations, 

based only on genetic data. 

This result contrasts with the popular “Meselson effect” hypothesis about genetic diversity 

in exclusively clonal populations. The hypothesis predicts that, as each allelic copy in an 

exclusively clonal population “accumulates” mutations independently and there is no 

genetic exchange between individuals, the two homologous allelic copies within each 

individual may become much more different than in an exclusively sexual population (Birky 

1996, Mark Welch & Meselson 2000). In consequence, very old and exclusively clonal 

populations should be completely heterozygous and have 2é  highly different alleles. A 
“Meselson effect” at almost exclusive clonality is part of the results of all coalescence models 

for the population genetics of partially clonal populations (Bengtsson 2003, Ceplitis 2003, 

Hartfield et al. 2015). 

What is the basis of this discrepancy? A comparison of our model with the published 

coalescence models of partial clonality reveals a number of differences in the assumptions. 

In the coalescence models, the population size is assumed to be comparatively large, while 

our model does not impose such limitations. The time scales considered for coalescence to 

the most recent common ancestor of all alleles/individuals may be much longer than those 

in our model, which is based only the common ecological definition of a population (see 

chapter 3.1) without making any specific asumptions about its origin. Finally, the mutation 

schemes are very different: our model assumes memory-less mutation between a finite 

number of alleles at a single SSP or SNP locus, i.e. including back mutations, whereas the 

coalescence models are based on infinite alleles / infinite loci assumption, i.e. no back 

mutations and/or homoplasy between alleles – which correspond to DNA sequences – are 
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possible. This difference between the mutation schemes appears to be the most likely 

explanation why our model does not produce a “Meselson effect”. 

We hold that none of the models proposed so far adequately describes sequence 

divergence in natural populations, as would be required to test the “Meselson effect” 

hypothesis. With our model of single loci, we cannot directly say how many “multilocus 

alleles” (haplotypes) there would be in an exclusively sexual or exclusively clonal population. 

Assuming that each locus has the same mutation rate, a sequence length/number of 

neutrally polymorphic loci of more than the inverse of the per-locus mutation rate would 

ensure that, at the equilibrium of the mutation process, each haplotype within a population 

is different from all others at least at one individual locus, with only a small chance to create 

the same haplotype by two independent mutations. However, this consideration applies 

regardless of the reproductive system. In contrast, the coalescence models with their infinite 

alleles/loci lead to the unrealistic result that, after a long enough time, two randomly picked 

sequences should be 100% divergent. However, as discussed by Birky (1996), sequence 

divergence can never exceed 75%, as there is a probability of 0.25 that two DNA bases are 

identical by chance. Though the probability of back mutations can be very low for some 

mutation processes, such as sequence inversions or deletions, these lead to homology 

problems (Rivas & Eddy 2008) and are usually not considered in population genetic studies.  

An “accumulation of mutations” scenario in exclusively clonal populations can be observed 

for one special case, a single clonal lineage of recent origin. Here, the results from our model 

and the coalescence models coincide, as back mutations will be rare within a short time 

span. However, the increasing divergence among the offspring haplotypes corresponds to 

the dynamics after a demographic bottleneck, i.e. it merely restores the equilibrium allelic 

diversity. Considering a finite alleles model, mutations cease to “accumulate” as soon as the 

associations between alleles (within & between loci) are “randomized”. 

8.2 Practical implications 

This thesis established a reference for the interpretation of genotype frequencies in partially 

asexual populations. However, it also showed that, based on the standards that have been 

developed for exclusively sexual populations, the sampling methods for partially asexual 

organisms should be adapted.  

In contrast to exclusively sexual populations, the changed genotype frequency dynamics 

and increased variation under acyclic partial asexuality make the expectations for ºΩæ less 
clear-cut and harder to test. Although it seems counter-intuitive (after all, “clones” should all 

be similar and thus provide no new information; compare “saturation” graph figure B1.1 in 

Arnaud-Haond et al. 2007), collecting more data is the primary solution for this problem. 

Especially when the rate of clonality is expected to be high, exhaustive sampling of 

individuals and analyzing as many polymorphic loci as possible would be ideal to make sure 

that the population’s genetic diversity is not underestimated. This may not be possible in all 

cases; still, the higher the precision of the measured data (e.g. mean ºΩæ), the more statistical 
power any test will have.  
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To compare field data to our results, ºΩæ  should be calculated with each sample/ramet 
included. Our model is based on single loci (equivalent to the “unlinked” loci in Balloux et al. 

2003), so that the overall frequencies of genotypes based on several loci (multilocus 

genotypes) cannot be inferred with it. Removing apparent “duplicates” from the data thus 

introduces a random bias, which may moreover increase with the rate of clonality (due to 

the increased probability of co-inheritance, chapter 7.2). 

Sampling time is important for population genetic studies of partially asexual organisms: 

for cyclical parthenogenesis, we demonstrated that data collected just before and just after 

the sexual generation may be widely different (article III). Consequently, the sampling time 

relative to the organism’s life cycle should be kept as similar as possible across different 

populations, and should be published with the results to allow repeatability and meta-

analyses. In acyclic partial asexuals, the relation between past demographic events (e.g. 

change of rate of asexuality, change of population size) and the sampling time will 

determine if population history has to be considered when interpreting the currently 

observed genotype frequencies. 

The time dependence of genotype frequencies under partial asexuality suggests another 

sampling technique: time series of data from the same population. Though population 

genetics is explicitly concerned with the change of genotype frequencies, time series and 

temporal comparisons are not very commonly used. Our results suggest that they may be 

particularly useful in partially asexual populations, to discriminate between historic and 

ongoing processes. With our model, it is possible to estimate an average rate of clonality 

based on two or more successive samples if the number of generations, population size and 

mutation rate stay constant.  

Finding a way to estimate the rate of clonality from population genetic data is a strong 

motive for the development of population genetic theory. This rate is often not directly 

observable, either because of technical constraints (e.g. parasites reproducing inside their 

host) or because the population size is too big. Our results at once give hope and point out 

potential pitfalls: though time series data may help to provide more reliable estimates, the 

increased sampling effort it requires both for reliably estimating genotype frequencies and 

for collecting the time series data itself may make this method either impractical or 

inaccurate. Combining estimates from multiple population genetic parameters, e.g. ºΩæ , 
linkage disequilibrium, clonal heterogeneity or frequency distribution of multilocus 

genotypes (compare Halkett et al. 2005, Arnaud-Haond et al. 2007), may be a way to improve 

accuracy. However, it could also be that the ranges for which the discriminative power of 

each parameter is lowest coincide (e.g. low rates of clonality – rare clonal offspring has to be 

found), so that some cases remain indistinguishable. 

8.3 Contribution to evolution of sex debate 

Though explaining the evolution of sex was not the primary aim of this thesis, we 

nonetheless produced some results that could be of interest in this context. The debate has 

traditionally revolved around models where each individual reproduces either only sexually 
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or only asexually (e.g. Agrawal & Chasnov 2001, Otto 2009), with one reproductive mode 

eventually taking over. However, this scenario may be rare in nature (Lovell et al. 2014); 

transitions from exclusively sexual to exclusively + partially asexual (e.g. Koltunow et al. 

2011) or from partially clonal to partially clonal + exclusively clonal (e.g. Jaquiéry et al. 2014) 

may be much more common. As our results showed, evolution in partially clonal organisms 

is generally different from evolution in exclusively sexual populations, and this difference 

should therefore be taken into account. Also considering the long history of mitosis and 

meiosis in the evolution of eukaryotes (Cavalier-Smith 2002), a different question could be 

asked: Why is it that some species, humans among them, appear to have entirely given up 

their inherited potential for asexual reproduction in the first place? Or to put it more 

polemically: Why should humans not be cloned? 

Partially asexual populations have already been used in experimental studies on the 

evolution of sex (e.g. Goddard et al. 2005, Becks & Agrawal 2012, Gray & Goddard 2012) 

though in some cases may have been confused with partial automicts (D’Souza & Michiels 

2007, 2010). However, the focus appears to have been more on “cylical parthenogenesis”-

like systems where sexual reproduction could be induced by an external signal. Other 

systems may be more difficult to handle, yet there is clearly a need for more field data also 

for them. Moreover, it would be interesting to know more about the exact mechanisms of 

the adaptation processes studied in such experimental examples – according to our results 

for the time to adaptation in partial asexuals based on single loci (article IV), the conclusion 

that “sex speeds up adaptation” may not be the whole truth. As suggested by (partially) 

asexual lineages that originated from hybridization (e.g. Beck et al. 2012), where the hybrid 

genotype had a selective advantage (“heterosis”) over its parents (Grant 1976, Hörandl 

2006), the advantageousness of a reproductive system could depend on the predominant 

selection scenario. 

Our results for a mutation model with a finite number of alleles could also be of interest in 

the discussion about the evolution of sex. As an example, the “Muller’s ratchet” hypothesis, 

which predicts that exclusively asexual populations may accumulate slightly deleterious 

dominant mutations by genetic drift, is based on the assumption that there is no back 

mutation. With back mutation, any slightly deleterious (almost neutral) mutation would be 

at least as likely (since also selected against) to disappear again, so that at any time the 

amount of slightly deleterious mutations within the genome should be limited. To our 

knowledge, such a scenario has not yet been modeled. 

In our finite-alleles mutation model, mutation and random mating are similar in that they 

both randomize the combinations of alleles within populations, except that random mating 

is faster and cannot create new alleles. However, mating need not be random – to use the 

“card game” analogy proposed by Otto (2009), “players” (organisms) may have some way to 

announce some of their “cards” to each other (e.g. morphology, behavior), so that only cards 

of the same color (species, ecotype) are swapped and the risk of dramatically decreasing the 

value of the hand (offspring fitness) is limited. Moreover, diploid or polyploid organisms 

have the chance to retain some (typically one half) of their parental “cards” (genes) or hide 

some that do not fit with the current hand (gene regulation). In contrast to incessantly 

randomizing mutation, sexual reproduction may have evolved initially as a way to keep 
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basic “functioning” genotypes together (speciation) and, on a larger scale, reduce the 

variation of offspring. A similar hypothesis was proposed by Gorelick & Heng (2011), yet 

again a mathematical description, including parameter ranges for which it might apply, is 

still missing. 

Changing scale from species to populations and individuals to cells, our results for cyclical 

parthenogenesis could appear in a new light: As suggested by Hastings (1991), even 

humans are cyclically parthenogenetic at the cell level, since our germ line cells undergo 

several rounds of mitosis before finally engaging in meiosis to form haploid germ cells. At 

the cellular vantage point, sex is only employed when useful – in multicellular life forms, 

only when a new organism is initiated (which raises the question why there are no natural 

chimaeras with somatic cells from different events of syngamy). Clearly, sex is also costly at 

the cellular level, and the multiple rounds of mitosis are an economical way to increase germ 

cell production. Cyclical parthenogenesis appears to be the repetition of this principle at a 

higher level, which may make “cost of sex” related models especially pertinent compared to 

other systems. For example, aphids or daphnia replicate organisms without sex while 

conditions are approximately constant and produce a sexual generation at the end of the 

season, thereby keeping the “cost” of reproduction low (Maynard Smith 1978). However, 

other cyclically parthenogenetic organisms such as trematodes use clonal reproduction to 

migrate between different hosts, thus potentially passing through highly different 

environments. To understand why only some species “transferred” the principle of cyclical 

parthenogenesis from the cellular to the individual level, it could be interesting to compare 

these different cases, especially with respect to demographic bottlenecks and selection 

(inconstancy of the environment). 

Eventually, the evolution or maintenance of sexual and/or asexual reproduction may have 

more than one reason, it may have different reasons in different circumstances/species, and 

it may not be connected to population genetic diversity at all – for the vegetatively and 

sexually reproducing European beachgrass (Ammophila arenaria; see chapter 2.4), 

vegetative reproduction could be primarily an ecological asset, since it allows it to inhabit 

an otherwise inaccessible habitat, sand dunes. Connecting ecology and evolution by 

uncovering the underlying functional genetics and physiological processes may help to 

extend our view and make the patterns clearer. We hope that the reference provided by our 

model may ease this process. 

  



	

 202 

8.4 Perspectives 

As we deliberately wanted to keep our model simple, we did not include a number of details 

which may be relevant to particular partially asexual species, including e.g. sexual 

reproduction other than random mating (in particular selfing – though a comparison with 

Marshall & Weir (1979) may give an idea of the result), survival between generations and 

limited numbers of offspring per parent. Similar to selfing, gene conversion would increase 

the number of homozygotes. Including mutation schemes with unequal mutation rates 

between (a finite number of) alleles may change the allele frequencies at the equilibrium of 

mutation, but otherwise would not significantly alter the results of our model, as discussed 

in article II. Additional mutation during meiosis may lead to a faster convergence of the allele 

frequencies to their equilibrium, but should have comparatively little impact on 

heterozygosity. We already provided the first steps for extending our model to multiple loci, 

including (partial) physical linkage/co-inheritance between loci (chapter 7.2). Extensions to 

multiple populations connected by migration already exist (e.g. Berg & Lascoux 2000, 

Balloux et al. 2003), though the range of different schemes of migration (island model, 

stepping-stone model; unequal population sizes) is not yet fully explored. These previous 

results suggest that the effect of acyclic partial clonality on the final mean ºæ;  is similar to 

that on the final mean ºΩæ  (i.e. only affected by very high rates of clonality, towards less 
differentiation), but that cyclical parthenogenesis can lead to increased inter-population 

differentiation (high ºæ;). 

An important step towards providing a population genetic reference for all partially asexual 

species would be an extension to other ploidy levels and life cycles. Dominantly haploid 

(haplontic) organisms, which typically reproduce clonally during their multicellular haploid 

phase, include Bryophytes and Ascomycetes. The latter include important plant pests and 

pathogens (e.g. Fusarium, Ascochyta, Ophiostoma, Cryphonectria), but also some species that 

are used by humans (e.g. several species of Penicillium). In dominantly haploid organisms, 

the most important signature of asexuality will be a changed pattern of linkage/co-

inheritance; a comparison with already existing models for viruses (e.g. Neher 2013) and 

models for the evolution of sex assuming haploidy (e.g. Roze 2014) may provide valuable 

leads. Combining the results for haplontic and diplontic partially asexual life cycles should 

lead to models for complex haplodiplontic life cycles with asexual reproduction during both 

phases, as observed for some algae (e.g. Couceiro et al. 2015). In contrast, population 

genetic models for polyploid partially asexual species have only little previous work to build 

on (Asher & Nace 1971, Overath & Asmussen 2000b), as the theory is still not even well 

developed for exclusively sexual polyploids (Dufresne et al. 2014). The first step toward such 

a model might be an inventory of the different mechanisms of inheritance (compare figure 

3.1) involved in polyploid sexual reproduction. 

The most important perspective of this thesis is, however, the application of its results for 

the collection and interpretation of field data in the many partially asexual species. We 

provided an example for the impact of our results on the interpretation of mean ºΩæ values 
(article II). As our model is deductive, its results cannot be “proven” or “disproven” by field 

data; rather, such comparisons will help us to understand if the evolution of a particular 
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population in nature is influenced only by its reproductive system, mutation, genetic drift 

and selection according to the assumptions of our model, or if other, as yet unexplored 

evolutionary processes (e.g. non-random mating, migration) play a role as well. In this way, 

we hope that our results may contribute to a better understanding of the role of different 

reproductive systems, and the importance of genetic diversity for evolution as such. 

Perspectives 

Comme nous voulions délibérément garder notre modèle simple, nous n'avons pas inclus 

un certain nombre de détails qui peuvent être pertinents pour certaines espèces 

partiellement asexuées, y compris par exemple la reproduction sexuée autre que 

l'accouplement aléatoire (en particulier l’autofécondation – même si une comparaison avec 

Marshall & Weir (1979) peut donner une idée du résultat), la survie entre les générations et 

un nombre limité d'enfants par parent. Semblable à l'autofécondation, la conversion 

génique augmenterait le nombre d'homozygotes. L’inclusion des régimes de mutation avec 

des taux de mutation inégaux entre (un nombre fini de) allèles pourrait modifier les 

fréquences des allèles dans l'équilibre de la mutation, mais autrement les résultats de notre 

modèle ne seraient pas modifiés de manière significative, comme indiqué dans l'article II. 

De la mutation supplémentaire lors de la méiose peut conduire à une convergence plus 

rapide des fréquences des allèles à leur équilibre, mais devrait avoir relativement peu 

d'impact sur l’hétérozygotie. Nous avons déjà fourni les premières étapes pour étendre 

notre modèle à des loci multiples, y compris la liaison physique / co-héritage (partielle) entre 

loci (chapitre 7.2). Des extensions à des populations multiples connectées par la migration 

existent déjà (par exemple Berg & Lascoux 2000, Balloux et al. 2003), bien que la diversité 

des schémas de migration (modèle en îles, modèle « stepping stone » ; tailles des 

populations inégales) n'ait pas encore été complètement explorée. Les résultats précédents 

suggèrent que l'effet de la clonalité partielle acyclique sur la moyenne finale de l’ºæ;  est 

similaire à celui de la moyenne finale de l’ºΩæ (c’est-à-dire seulement affectée par des taux 
de clonalité très élevés, vers moins de différenciation), mais que la parthénogenèse cyclique 

pourrait conduire à une augmentation de la différenciation entre populations (ºæ;  haute). 

Une étape importante vers une référence sur la génétique des populations de toutes les 

espèces partiellement asexuées serait une extension à d'autres niveaux de ploïdie et cycles 

de vie. Les organismes majoritairement haploïdes (haplophasiques / haplodiplophasiques 

avec dominance de la phase haploïde), qui se reproduisent généralement par clonage 

pendant leur phase haploïde multicellulaire, comprennent les bryophytes et les 

ascomycètes. Chez ces derniers sont inclus les ravageurs de plantes importants et des 

agents pathogènes (par exemple Fusarium, Ascochyta, Ophiostoma, Cryphonectria), mais 

aussi quelques espèces qui sont utilisées par les humains (par exemple, plusieurs espèces 

de Penicillium). Chez les organismes majoritairement haploïdes, la signature la plus 

importante de l'asexualité sera un changement des motifs de liaison / co-héritage ; une 

comparaison avec les modèles déjà existants pour les virus (par exemple Neher 2013) et les 

modèles pour l'évolution du sexe qui supposent l’haploïdie (par exemple Roze 2014) peut 

fournir des pistes précieuses. En combinant les résultats des cycles de vie partiellement 

asexués les haplophasiques et les diplophasiques devraient conduire à des modèles de 
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cycles de vie haplodiplophasiques complexes avec une reproduction asexuée pendant les 

deux phases, comme observé pour certaines algues (par exemple Couceiro et al. 2015). Par 

contre, les modèles en génétique des populations pour les espèces partiellement asexuées 

et polyploïdes n’ont pas encore fait l’objet de beaucoup de recherches sur lesquelles on 

pourrait se baser (Asher & Nace 1971, Overath & Asmussen 2000b), parce que la théorie 

concernant des polyploïdes exclusivement sexués n’est même pas encore tout à fait 

développée (Dufresne et al. 2014). La première étape vers un tel modèle pourrait être un 

inventaire des différents mécanismes de l'hérédité (comparer la figure 3.1) impliqués dans 

la reproduction sexuée des polyploïdes. 

La perspective la plus importante de cette thèse est cependant l'application de ses résultats 

à la collecte et à l'interprétation des données de terrain auprès de nombreuses espèces 

partiellement asexuées. Nous avons fourni un exemple de l'impact de nos résultats sur 

l'interprétation des valeurs moyennes d’ºΩæ (article II). Comme notre modèle est déductif, 
ses résultats ne peuvent pas être « prouvés » ou « réfutés » par des données de terrain ; ces 

comparaisons vont plutôt nous aider à comprendre si l'évolution d'une population 

particulière dans la nature est influencée seulement par son système de reproduction, sa 

mutation, sa dérive génétique et sa sélection en fonction des hypothèses de notre modèle, 

ou si d'autres processus évolutifs (par exemple accouplement non aléatoire, migration) 

encore inexplorés jouent également un rôle. De cette façon, nous espérons que nos résultats 

pourront contribuer à une meilleure compréhension du rôle des systèmes de reproduction 

différents, et de l'importance de la diversité génétique dans l'évolution en tant que telle. 
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