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1.6.1 Modèles mécanistes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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ABSTRACT

Evapotranspiration (ET) and its two main components, soil evaporation and plant transpira-
tion, play a crucial role in the hydrological cycle, especially over semi–arid regions. Monitoring
soil evaporation at multiple scales is especially relevant to a multitude of agronomic, hydrologic,
meteorological and climatic applications, where remote sensing–based approaches have great po-
tential via two evaporation–related observable variables: the land surface temperature (LST)
and the surface soil moisture (SM).

The aim of this PhD was to try and improve the spatio–temporal representation of soil
evaporation by developing a multi–scale modeling approach that makes use of the synergy be-
tween readily available remote sensing data. A new methodology was developed to estimate
the soil evaporative efficiency or SEE (ratio of actual to potential soil evaporation) at 100 m to
40 km resolution by combining 40 km resolution microwave–derived SM, 100 m to 1 km resolu-
tion thermal–derived LST, 100 m to 1 km resolution reflectance–derived vegetation cover/surface
albedo and available meteorological data. The approach was tested over three different semi–arid
irrigated areas in Morocco, Mexico and Spain.

In a first step, a soil energy balance model (EBsoil) was proposed to improve the determination
of the dry/wet boundaries of a LST–based ET model. EBsoil outputs were validated against
in situ measurements of dry/wet soil temperatures over the Moroccan site. ET estimates were
subsequently derived either from remote sensing data solely or by using EBsoil and intercompared
at 100 m and 1 km resolutions with a reference ET over the Mexican site. Results showed that
integrating EBsoil improves ET estimates at a medium (1 km) resolution.

The next step consisted in looking into the temporal dynamics of SEE, using the global
modeling technique, approach used for a very small number of environmental contexts, with
even fewer models obtained that are able to reproduce the original dynamics. For the first time
ever, a four dimensional chaotic model was obtained for the daily cycle of SEE, able to reproduce
the dynamics of the variable with a good approximation in the phase domain.

In a final step, the two remote sensing approaches used in deriving SEE - as a function of LST
or SM - were combined within a disaggregation algorithm (DISPATCH) of SMOS (Soil Moisture
and Ocean Salinity) SM data. EBsoil was integrated in DISPATCH and a new algorithm was
developed: DISPATCH–E. An indirect validation of the SEE modeling approach was performed
by assessing DISPATCH–E’s results in terms of 1 km resolution SM estimates over the Spanish
site. Implementing EBsoil significantly improves the downscaled SM. Furthermore it provides
reference points for calibrating multi–resolution SEE models, as well as being an independent
way of assessing uncertainty in remotely sensed data.
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RESUME

L’évapotranspiration (ET) et ses deux composantes, l’évaporation du sol et la transpiration
des plantes, jouent un rôle crucial dans le cycle hydrologique, en particulier dans les régions semi–
arides. Le suivi de l’évaporation du sol à des échelles multiples est particulièrement intéressant
pour une multitude d’applications agronomiques, hydrologiques, météorologiques et climatiques,
pour lesquelles la télédétection a un grand potentiel via deux observables clés liées à l’évaporation:
la température de surface (Land Surface Temperature - LST) et l’humidité du sol en surface (Soil
Moisture - SM).

Cette thèse avait pour but d’améliorer la représentation spatio–temporelle de l’évaporation du
sol, par une modélisation multi-échelle capable d’utiliser la synergie des données de télédétection
disponibles. Une nouvelle méthodologie a été développée afin d’estimer l’efficacité évaporative
du sol ou SEE (Soil Evaporative Efficiency, définie comme le rapport entre l’évaporation du sol
réelle et celle potentielle), avec une résolution comprise entre 100 m et 40 km. Elle combine
l’humidité du sol dérivée à 40 km de résolution des données micro–ondes, la température de
surface, le couvert végétal et l’albédo de surface issues des capteurs optiques avec une résolution
spatiale variant de 100 m and 1 km, et des données météorologiques. Cette approche a été testée
sur des zones irriguées semi–arides au Maroc, au Mexique et en Espagne.

Dans une première étape, un modèle du bilan d’énergie du sol (EBsoil) a été proposé pour
estimer les limites humide/sèche d’un modèle de l’ET basé sur la LST. Les sorties du modèle
EBsoil ont été validées avec des mesures in situ de la température du sol réalisées au Maroc.
Les estimations de l’ET obtenues soit uniquement à partir des données de télédétection, soit en
utilisant EBsoil, ont ensuite été comparées avec une ET de référence sur le site mexicain pour
des résolutions de 100 m et 1 km. Les résultats ont montré que l’intégration de EBsoil améliore
les estimations de l’ET à la résolution de 1 km.

L’étape suivante s’est concentrée sur la dynamique temporelle de la SEE, en utilisant la
technique de la modélisation globale. Cette approche a été utilisée jusqu’à présent pour un
petit nombre de contextes environnementaux, avec encore moins de modèles obtenus qui sont
en mesure de reproduire la dynamique d’origine. Pour la première fois, un modèle chaotique
de dimension quatre a été obtenu pour le cycle journalier de la SEE, capable de reproduire la
dynamique de la variable avec une bonne approximation dans l’espace des phases.

Dans une dernière étape, les deux approches de télédétection utilisées pour calculer la SEE -
en fonction de la LST ou de la SM - ont été combinées dans un algorithme de désagrégation (DIS-
PATCH) des données SM SMOS (Soil Moisture and Ocean Salinity). EBsoil a été intégré dans
DISPATCH et un nouvel algorithme a été développé: DISPATCH–E. Une évaluation indirecte
de l’approche de modélisation de la SEE a été implémentée sur le site espagnol en comparant la
SM DISPATCH-E aux mesures in situ. L’intégration de EBsoil améliore significativement la SM
désagrégée à 1 km de résolution. De plus, elle fournit des points de référence pour l’étalonnage
des modèles multi–résolution de la SEE, ainsi qu’une évaluation indépendante de l’incertitude
des données de télédétection.
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1.1 Context

In the context of nowadays increasing population and growing economy, more and more
water resources are used for expanding irrigation over agricultural areas, as well as by different
industries, which demand more and more energy consumption. Concerns arise when dealing
with limited water resources given the circumstances of growing population, climate change and
increasing environmental issues. At a global scale, approximately 10% of the total fresh water
is needed per year to account for the needs of the entire Earth’s population (Oki and Kanae,
2006). It might not seem as a high percentage given the total available fresh water, but one must
keep in mind that there are areas where water scarcity is a real problem, affecting more than two
billion people worldwide. This entails a real problem, when considering that in order to meet
rising food needs (linked with a growing population), an increase of 70–100% in crop production
is needed over the next three decades, as reported by several organizations. Agriculture thus is
a notable constraint on water resources, as the relationship between water availability and food
production is crucial (FAO , 2009). 70% of total water is used for agriculture, with a 40% of the
total food supply being produced by irrigated agriculture.

The importance of water resources in agriculture is of particular interest over Mediterranean
countries, where up to 80% of the total water is used for irrigation (FAO , 2015; Garrido et al.,
2010). These areas are also the most prone to climate change (IPCC , 2013; Stocker et al.,
2014), while having only 1% of global fresh water resources. With the annual rainfall predictions
over the next decades being largely uncertain in terms of magnitude and spatial distribution
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(Solomon, 2007), IPCC also predicts that any changes in precipitation patterns can decrease
the productivity of rainfed agriculture by almost 50% by the end of 2020 (Bates et al., 2008).
Sustainable water use is a crucial matter, as mentioned by the Roadmap to a Resource Efficient
Europe (Comission, 2011), as part of the EU 2020 strategy. Water use efficiency in agriculture
is stronlgy linked to water scarcity and drought, as reported by EEA Report No. 1/2012.

Thus, on–farm irrigation management is required to be optimized, in this context of increasing
demands but diminishing resources. Since a mismatch is registered between irrigation needs and
the actual amount of water used for irrigation (Kharrou et al., 2013), optimization should be
achieved through adjusting irrigation to crop water requirements during the crop growth season.
Over irrigation should be avoided since it entails an increase in exported pollutants, combined
with an unnecessary increase of water use. On the other hand, under irrigation entails a dropping
in crop yield (Salvador et al., 2011). An increase in crop production yield could be achieved by
better managing irrigation and fertilization use (Mueller et al., 2012).

In this context, hydrology plays an important role, as a discipline that searches to understand
the effects of natural and man–made changes brought upon variables such as soil moisture,
precipitation, drainage, runoff. Since water is a renewable resource in the hydrological cycle,
a better understanding of all the fluxes that intervene in the hydrological cycle could improve
monitoring capabilities and provide an insight to a better management.

Monitoring water resources is therefore strongly linked with modeling hydrological fluxes
such as: soil infiltration, runoff and evapotranspiration. Currently, a multitude of large scale
modeling approaches exist, ranging from simple to more complex, that take into account other
factors such as vegetation. Historically, the first global scale modeling of hydrological fluxes is
based on a simple model, known as the “bucket” model (Manabe, 1969). This approach considers
the surface as a simple reservoir, where runoff and evapotranspiration take place above a certain
threshold value, estimated in connection with the amount of soil moisture present. Following
models (Deardorff , 1978; Mahrt and Pan, 1984; Sellers et al., 1986; Noilhan and Planton, 1989)
have taken into consideration the presence of vegetation in order to separately account for soil and
vegetation fluxes. Further approaches have considered the soil as a multi-layer system (Chanzy
and Bruckler , 1993) that model fluxes based on the Richards equation (Viterbo and Beljaars,
1995) and a dynamical representation of the vegetation (Calvet et al., 1998).

Evapotranspiration (ET) is one of the most important hydrological fluxes, having a high
importance especially over semi–arid regions, where it is by far the main outward flux. Be-
sides predicting soil water availability as previously mentioned, it plays a central role in flood
forecasting (Bouilloud et al., 2010), in rainfall forecasting (Findell et al., 2011), in projecting
changes in the manifestation of droughts (Sheffield and Wood , 2008) and heatwaves (Seneviratne
et al., 2006). In particular, it is the only hydrological flux linking both the energy and the wa-
ter balance. It does so through two main variables essential in its estimation: the land surface
temperature (the signature of ET, that intervenes in the energy balance) and the soil moisture
(a state variable that intervenes in the water cycle). Partitioning ET into its two main compo-
nents, soil evaporation (E) and plant transpiration (T) is essential in modeling land–atmosphere
interactions and vegetation water uptake. In the first stages of a growing crop, water is mostly
lost through E; however, once the crop is well developed and has a full soil coverage, T becomes
the main process. So, E is the part which is not used for crop productivity (Wallace, 2000),
whereas T is linked to the root zone water availability (Allen et al., 1998). Furthermore, since
this partitioning is currently highly uncertain and model–dependent, more in–depth knowledge
on this process could contribute to better constraining the physics of land surface models (Gut-
mann and Small , 2007). Unfortunately, field measurements of E and T are quite scarce. Having
accurate estimates at multiple scales (crop, catchment and mesoscale) and with a good tem-
poral resolution are undoubtedly essential in a better monitoring and management of resources
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(Williams et al., 2004; Kool et al., 2014). Partitioning ET into E and T is especially crucial in the
monitoring of plant water uptake and water stress (Porporato et al., 2001; Er-Raki et al., 2010),
in the framework of limited water resources. Evaporation in particular accounts for 20–40% of
global ET (Lawrence et al., 2007; Schlesinger and Jasechko, 2014) and it mostly comes from soil
moisture (Good et al., 2015). Since it is an essential boundary condition between soil and atmo-
sphere, a better representation of soil evaporation could not only help with a better monitoring
and management of water resources, but also with a better understanding of land–atmosphere
interactions (Feddes et al., 2001).

In this respect, remote sensing is of particular interest, being cost effective in monitoring
and mapping E and E–related variables (such as vegetation cover, land surface temperature and
soil moisture) over large areas. Moreover, remote sensing is a way of estimating E at muliple
resolutions. This is important since different scales are needed, depending on the application
domain of the variable of interest. More notably, crop yield and water consumption are evaluated
at field scale, surface runoff and flood risks at the watershed scale and atmospheric circulation
is dictated by surface fluxes at mesoscale. In this context, remote sensing is a way of coupling
available data at multiple resolutions with hydrological models. On the other hand, a deep
understanding of hydrological processes at a range of scales could help improve the quality of
available remote sensing data.

An overview of existing E modeling approches, remote sensing techniques and links with
other variables such as vegetation cover, soil moisture and land surface temperature are discussed
below.

1.2 Modeling approaches of soil evaporation

Modeling approaches of E can be roughly classified in three categories: mechanistic ap-
proaches, simplified formulations and phenomenological approaches. An overview of each ap-
proach is presented below.

1.2.1 Mechanistic models

These approaches consider the soil as a multi-layer system and proceed to theoretically rep-
resent the coupled mass and heat exchange between the soil layer and the atmosphere. Some
examples of mechanistic models can be found in Chanzy and Bruckler (1993), Bittelli et al.
(2008). Vapor fluxes at the interface between soil and atmosphere can be estimated by solving
the coupled mass and heat equation for all layers. Bare soil evaporation can then be computed
at a given height by reducing the top soil layer vapor flux using an aerodynamic resistance for
water vapor transfer. However, solving these equations demands knowledge on the soil hydraulic
properties on every soil layer. These soil hydraulic properties consist of:

• saturated hydraulic conductivity (kg·s·m−3)

• residual moisture content (m3·m−3)

• saturated moisture content (m3·m−3)

• various empirical shape parameters (Brooks and Corey , 1964; Campbell , 1974; Van Genuchten,
1980)

The main limitations of mechanistic models based on soil hydraulic properties are their sensi-
tivity to initial and boundary conditions as noted in Chanzy et al. (2008). Initial conditions refer
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in particular to the soil moisture profile, which cannot be measured over large areas with the
help of remote sensing, since remote sensing data are mostly provided for a surface layer only.
Boundary conditions involve the climatic conditions at the soil surface and the change in water
content or water potential with depth. Additionally, the computation time of such models is
quite long, and the numerical solution can sometimes be ill-conditioned, and therefore unstable.

The downsides of using soil hydraulic parameters are that they are very hard to measure, they
require quite expensive techniques, and most importantly, it is hard to apply them at integrated
spatial scales. To remove such limitations, a work–around has been introduced: pedotransfer
functions. Pedotransfer functions (Wösten, 1997; Cosby et al., 1984; Rawls and Brackensiek ,
1985; Vereecken et al., 1989; Twarakavi et al., 2009) translate readily available soil texture data
into soil hydraulic properties.

The main advantage of mechanistic models is their contribution in better understanding the
physical processes linked with E, such as vapor diffusion, capillary rise and gravity drainage.
However, they present a number of disadvantages that restrain their application over large areas.
Pedotransfer functions are very uncertain and have large variations in space (Soet and Stricker ,
2003). This is mainly due to soil structure (pore size, distribution, connectivity), presence of soil
aggregates and presence of biomass. These pedotransfer functions vary more within a texture
class than in–between classes (Gutmann and Small , 2007). Additionally, a high number of
parameters which cannot be measured directly at the application scale (Demaria et al., 2007)
are taken into account in mechanistic models, often leading to an overparameterization. An
additional empirical soil resistance can sometimes be required in order to accurately estimate E
(Bittelli et al., 2008).

To summarize, the high uncertainty of pedotransfer functions, the sensitivity to initial and
boundary conditions, and the overparameterization render mechanistic models impractical for
large scale applications. Therefore, simpler models have been developed.

1.2.2 Simplified models

Because of the difficulties and constraints that come with the implementation of mechanistic
models over large areas, an alternative approach has been developed, that estimates E as a
function of soil moisture. These simplified models are the most widely used approaches to
estimate E, with the E module of most land surface schemes being based on these approaches.

The first model, also known as the “bucket” model (Manabe, 1969; Robock et al., 1995),
calculated evaporation by using the following equation:

LEs = SEE ∗ LEp (1.1)

where LEs (W·m−2) is the latent heat flux, LEp (W·m−2) the potential heat flux, and SEE (-)
the soil evaporative efficieny. SEE is defined as the ratio of actual to potential evaporation and
in the “bucket” model it is expressed as:

SEE =
{

1, if SM > SMc

SM
SMc

, if SM < SMc

(1.2)

with SM the soil moisture, and SMc being equal to 75% of SMfc, where SMfc is the soil
moisture at field capacity.

Improvements have been made to the above model, by separating the two distinct compo-
nents: soil and vegetation, thus using a dual–source formulation (Shuttleworth and Wallace,
1985). Among these methods, four approaches are mostly used:
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• The rss (soil surface resistance) method:

LEs = ρCp
γ

esat(Ts) − ea
rss + rah

(1.3)

• The α method:

LEs = ρCp
γ

αesat(Ts) − ea
rah

(1.4)

• The β method:

LEs = β
ρCp
γ

esat(Ts) − ea
rah

(1.5)

• The “threshold” method:

LEs = min(LEp, LEmax) (1.6)

with rss (s·m−1) the resistance to vapor diffusion in large soil pores, α (-) a unitless factor
scaling the saturated vapor pressure down to the actual vapor pressure at the soil surface, β
(-) a unitless factor that scales potential evaporation down to actual evaporation, ρ (kg·m−3)
the air density, Cp (J·kg−1·K−1) the specific heat of air at constant pressure, γ (Pa·K−1) the
psychrometric constant, esat(Ts) (Pa) the saturated vapor pressure at soil temperature, ea (Pa)
the vapor pressure of air, rah (s·m−1) the aerodynamic resistance to heat transfer and LEmax
(W·m−2) the maximum soil-limited water flux from below the surface.

In literature, the “threshold” method is also known as the “Priestley–Taylor” or the “demand-
supply” method. LEp is calculated using the aerodynamic, Penman, or Priestley–Taylor meth-
ods. Various studies in literature are based on these models (Mahfouf and Noilhan, 1991; Lee
and Pielke, 1992; Ye and Pielke, 1993; Mihailovic et al., 1995; Dekic et al., 1995; Cahill et al.,
1999). There are two ways of deriving the rss, α , β and LEmax parameters: using a physical
approach, or an empirical approach. In the physical approach, the expressions are obtained
either by deriving Fick’s law of diffusion (Dickinson et al., 1986; Wetzel and Chang , 1988; Sak-
aguchi and Zeng , 2009), or by using thermodynamical considerations (Philip and de Vries, 1957).
Additional empirical parameters are introduced in addition to soil hydraulic parameters, intro-
duced by simplifications made to the theoretical diffusion equation. In empirical approaches,
ad–hoc expressions (Manabe, 1969; Noilhan and Planton, 1989) are introduced or curve–fittings
are made based on experimental data (Sellers et al., 1992). Even though studies have fostered
the appearance of many formulations, no general agreement regarding the best way to param-
eterize the evaporation process at extended spatial scales has been reached (Desborough et al.,
1996; Sakaguchi and Zeng , 2009). There are however three aspects that are generally agreed
upon: i) better soil moisture and E estimates might be obtained by using rather simple empirical
approaches rather than physical approaches (Dekic et al., 1995; Mihailovic et al., 1995; Yang
et al., 1998), ii) the β formulation appears to be more robust than the α formulation (Cahill
et al., 1999; Van den Hurk et al., 2000) and iii) even though all approaches are based on sur-
face soil moisture, the effects of soil surface state (e.g.: soil roughness, presence of stubble or
mulch, shrinkage cracks associated with clayey soils, soil heterogeneity) have not been thoroughly
investigated (Sakaguchi and Zeng , 2009).

Most of the evaporation modules implemented in the existing land surface models are based
on one of the four formulas presented above. Information regarding the simplified E modules
present in state–of–the–art land surface models is presented in Table 1.1.
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Table 1.1: A list of simplified E modules used by some of the most well-known land surface
models (Merlin 2016, Mémoire HDR).

Nature Name Evaporation module Formulation Model description

Empirical BUCKET Manabe (1969) β Robock et al. (1995)
Empirical CABLE Wang et al. (2011) threshold Kowalczyk et al. (November 2006)
Empirical CLASS V3 Lee and Pielke (1992) β Verseghy (1996)
Empirical CLSM Koster and Suarez (1996) rss Koster et al. (2000)
Empirical HTESSEL Balsamo et al. (2011) rss ECMWF 2006
Empirical IAP94 Sellers et al. (1992) rss Yongjiu and Qingcun (1997)
Empirical ICARE Sellers et al. (1992) rss Merlin et al. (2006a)
Empirical ISBA Noilhan and Planton (1989) α Noilhan and Mahfouf (1996)
Empirical LaD GFDL Manabe (1969) β Milly and Shmakin (2002)
Empirical LAPS Sun (1982) α,rss Mihailović (1996)
Empirical MOSAIC Koster and Suarez (1996) rss Koster and Suarez (1996)
Empirical Noah LSM Sellers et al. (1992) α,rss Niu et al. (2011)
Empirical SECHIBA Ducoudré et al. (1993) rss Ducoudré et al. (1993)
Empirical SEWAB Noilhan and Planton (1989) α Mengelkamp et al. (1999)
Empirical SiB2 Sellers et al. (1992) α,rss Sellers et al. (1996)
Empirical SSIB Camillo and Gurney (1986) α,rss Xue et al. (1991)
Empirical SWB Manabe (1969) β Schaake et al. (1996)
Empirical VIC Wood et al. (1992) β Wood et al. (1992)
Physical BASE Dickinson et al. (1986) threshold Desborough and Pitman (1998)
Physical BATS Dickinson et al. (1986) threshold Dickinson et al. (1993)
Physical BEST Dickinson et al. (1986) threshold Pitman et al. (1991)
Physical CAPS Mahrt and Pan (1984) threshold Chang et al. (1999)
Physical CLM Sakaguchi and Zeng (2009) α,rss Oleson et al. (2010)
Physical GISS Gardner and Hillel (1962) threshold Rosenzweig and Abramopoulos (1996)
Physical MIT Entekhabi and Eagleson (1989) β Entekhabi and Eagleson (1989)
Physical PLACE Wetzel and Chang (1988) threshold Wetzel and Boone (1995)
Physical SEtHyS Soarès et al. (1988) threshold Coudert et al. (2006)
Physical SiSPAT Philip and de Vries (1957) α Braud et al. (1995)
Physical SWAP Gusev and Nasonova (1998) β Gusev and Nasonova (1998)
Physical TOPLATS Milly (1986) threshold Famiglietti (1994)
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1.2.3 Phenomenological models

Phenomenological models differentiate themselves through the fact that they are neither built
on ad–hoc assumptions, nor derived from theory. Instead, they are based on observational data
(Sivapalan et al., 2003), still providing a physical or semi–physical interpretation of the model’s
parameters.

By modeling SEE instead of soil evaporation, one separates the two main factors controlling
E: the evaporative demand LEp and the soil water availability. This is only partially fulfilled,
since the LEp is linked to soil water availability (Merlin et al., 2011). However, this normalization
of LEs removes the first order effects of the evaporative demand on actual evaporation, while
fixing the physical limits between ∼ 0 and 1. SEE reaches the ∼ 0 value when the soil water
availability is insignificant, and the 1 value when the soil water availability is maximum.

SEE also helps with distinguishing the different evaporation cycles, which are linked either
to daily/seasonal/climatic variations in the evaporative demand, or to variations in soil water
availability due to rain/irrigation.

A first attempt to associate an experimental parameter of SEE to soil texture and aerody-
namic conditions was made by Komatsu in (Komatsu, 2003):

SEE = 1 − exp( SM
SMc

) (1.7)

with SMc being a soil parameter whose values depend on the soil type and wind speed. The
depth of the surface layer on which the analysis was performed was of several milimeters, which is
considerably thinner than the normal thickness of the top surface layer used in most land surface
models, which is of several centimeters. Finding a general way to parameterize SEE is oftenly
hindered by the drying (around noon) of the top few mm of soil, which prohibits E, independently
of the availability of soil water that is present underneath the surface (Mahrt and Pan, 1984;
Dickinson et al., 1986; Soarès et al., 1988; Wetzel and Chang , 1988; Van de Griend and Owe,
1994; Heitman et al., 2008; Shahraeeni et al., 2012). Therefore, a new way of deriving SEE with
a shape that adjusts with the depth of soil moisture readings was developed. Merlin et al. (2011)
have looked into the possibility of taking into consideration the soil moisture gradient in the
topsoil by introducing a simple parameterization that depends on potential evaporation. The
model was tested at two sites located in the south of France, at a daily time scale. Moreover,
in their latest study (Merlin et al., 2016), they developed a meta–analysis approach to represent
SEE over a large range of soil and atmospheric conditions, by using data collected at over 30
sites worldwide. A significant relationship has been observed between the semi–empirical E model
parameter and soil texture. The model was then compared to the evaporation module of several
land surface models such as ISBA (Interaction Sol–Biosphère–Atmosphère, Noilhan and Planton
(1989)), CLM (Community Land Model, Oleson et al. (2013)) and H–TESSEL (Hydrology–Tiled
ECMWF Scheme for Surface Exchange over Land, ECMWF (2014)), and the model was proven
to perform relatively well.

The main advantage of phenomenological models is their ability to use readily available
data, their potential coupling with remote sensing data making them adapted for large scale
applications, all the while being consistent with theoretical assumptions. However, the main
drawback is linked to their semi-empirical nature, combined with the use of effective parameters,
which makes it difficult to derive evolution scenarios.
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1.3 Remote sensing approaches for soil evaporation

Amongst all variables that can be derived from remote sensing, there are three in particular
that are pertinent to the estimation of E: vegetation index, land surface temperature and near
surface soil moisture. The methodologies based on each variable are described below.

1.3.1 Vegetation index–based approaches

Complementary to mechanistic and physical models, there is an extensive array of methods
to estimate E by using remote sensing data. One of the most popular methods is the FAO-56
(Allen et al., 1998; Allen, 2000; Allen et al., 2005; Simonneaux et al., 2008) approach, forced by
NDVI (Normalized Difference Vegetation Index) data (Bausch and Neale, 1989). The approach
uses meteorological measurements, a crop phenology that has been computed from NDVI–derived
fractional green vegetation cover (fvg), and a crop–specific coefficient in order to derive a potential
ET. The actual ET is then estimated as a function of this potential ET. In its dual–coefficient
form, the ET is constrained by soil moisture, based on a soil water budget model that requires a
priori knowledge of irrigation volumes and dates. So, even though a soil module can be integrated
in order to separate E and T, and express vegetation stress as a function of soil water availability,
the main method is still based on the following assumptions (Er-Raki et al., 2010):

• irrigation volumes and precipitation data are supposed to be known;

• T is considered either as its value at potential rate, or it is calculated via root zone soil
moisture (estimated using a soil model forced by available irrigation data);

• E is either set to a constant value, or it is calculated via near surface soil moisture (estimated
using a soil model forced by available irrigation data);

• drainage is often neglected in deep soil layers.

The compromise between the intricate parameterization of the model and the availability of
the input data has rendered this methodology very attractive from an operational stand point.
The downside of the FAO-56 method is its applicability over very large areas, since the coefficients
it uses are calibrated from field measurements, which are mostly impacted from a temporal and
spatial heterogeneity point of view (Long and Singh, 2010).

1.3.2 Temperature–based approaches

Land surface temperature (LST) is a pertinent variable to ET estimation, that can be derived
from remote sensing measurements. In non–energy–limited conditions, LST is a signature of ET
and soil water availability. It is available at different spatial resolutions, ranging from 90 m to
100 m and 1 km, from thermal sensors such as ASTER (Advanced Spaceborne Thermal Emission
and Reflection Radiometer), Landsat-8 and MODIS (Moderate-Resolution Imaging Spectrora-
diometer). Most of the operational applications in hydrology and water resources management
use thermal resolution data at a kilometric scale (Stisen et al., 2008; Tang et al., 2010). The
main reason behind this is data availability, which for the 1 km resolution MODIS data is one
or two times per day, whereas the revisit period for ASTER and Landsat is 16 days. This is a
rather long time period in comparison with the quick soil moisture changes that take place in
irrigated semi–arid regions.

There are two categories of ET models that use LST data: (1) the residual method and (2)
the evaporative fraction (EF) method. Residual methods consider ET as the residual term of
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the surface energy balance which is the available energy at the surface minus the sensible heat
flux. They can be either single–source, or double–source (in which case the sensible heat flux
is considered as a sum of two components - one corresponding to soil, and one to vegetation).
Some notable models that use this approach are TSEB (Two–Source Energy Balance, Norman
et al. (1995)), SEBS (Surface Energy Balance System, Su (2002)), TSTIM (Two Source Time
Integrated Model, Anderson et al. (1997)). One advantage of single–source residual approaches is
that they are computationally timesaving and that they require less ground–based measurements
than the dual–source counterpart, which require ancillary meteorological data and other surface
measurements, such as surface roughness, vegetation height and structure, atmospheric stability
(Li et al., 2009). Single–source algorithms offer good estimates of ET, with a relatively high
accuracy over homogeneous areas. However, over partially vegetated areas, dual–source models
are often required to separately model the heat and water exchanges between soil, vegetation
and atmosphere. The main disadvantage associated to residual methods (both single– or dual–
source) is having a sufficiently detailed parameterization of surface soil and vegetation properties
and the availability of input data such as ground–based measurements (wind speed, surface
roughness, vegetation height, fractional vegetation cover, humidity, albedo, air temperature, Li
et al. (2009)).

The second method considers ET as the available energy times EF (which, by definition, is
the ratio of latent heat to available energy). There are various models based on this method,
such as SEBI (Surface Energy Balance Index, Menenti et al. (1989)), S-SEBI (Simplified Surface
Energy Balance Index, Roerink et al. (2000)), SEB-1S (Monosource Surface Energy Balance
model, Merlin (2013)). The approach consists in determining the dry and wet edges of LST,
which, depending on the observation resolution, may or may not be present within the observation
scene. This has lead scientists to often refer to this approach as “contextual”. More about the
contextual approach can be found in (Kalma et al., 2008; Li et al., 2009), who offer a summary of
various existing contextual models. The physical borderlines of LST are determined as follows:
the extreme temperatures (Text) corresponding to fully dry and fully wet conditions for both soil
and vegetation are established in the space defined by LST and fvg (Long and Singh, 2012; Tang
et al., 2010; Merlin et al., 2013a) and/or the space defined by LST and α (Roerink et al., 2000;
Merlin et al., 2013a), where α is the surface albedo. The EF of a given data point located in
the LST − fvg or in the LST − α space is calculated as the ratio of two distances: the distance
separating the point from the line identified as the dry edge to the distance separating the dry
edge and the wet edge. From an operational point of view, contextual methods are very alluring
thanks to their image–based nature, making them easily transferable to different areas. One of the
most important advantages that these models present is that they do not require any calibration,
unlike residual methods (Jiang and Islam, 1999). The drawbacks, however, are linked to several
conditions that these models require: (1) a relative flat area of study, (2) uniform atmospheric
conditions, (3) the extreme temperatures be observed within the study domain at the thermal
sensor resolution (Long et al., 2011; Long and Singh, 2012; Long et al., 2012; Long and Singh,
2013; Timmermans et al., 2007; Yang and Shang , 2013). To summarize, image–based models
used for deriving Text are well adapted over semi–arid irrigated areas (Stefan et al., 2015), when
using high resolution data such that the high heterogeneity is resolved at the observation scale
(de Tomás et al., 2014). They are less adequate when using medium to low (∼1 km) resolution
thermal data, acquired over less heterogeneous rainfed areas.

However, the main problem with the majority of the models refers to ET partitioning, which
is currently highly uncertain and model–dependent: E is estimated to account for 28% to 56%
of the total ET globally (Lawrence et al., 2007). Both residual and EF–based approaches are
able to provide E estimates over bare soil. However, the retrieval issue is more complex over
mixed pixels. In reality, none of the temperature–based methods allows for an explicit decoupling
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between E and T over mixed pixels using only LST and vegetation index data. The reason behind
this is that there is an equifinality between the E and T rates, and the pixel LST. However,
some temperature–based methods provide supplementary assumptions on the modeling of T
(e.g. TSEB) in order to address the ET partitioning. Including information on soil temperature
(Moran et al., 1994) or on SEE (Merlin et al., 2012a) would be one possibility to remove the
equifinality issue. Since the spatial resolution of current thermal sensors ranges between 100 m
and 1 km, most pixels contain a fraction of bare soil and a fraction of vegetation. Therefore, any
improvement in E monitoring could contribute to further developments regarding the partitioning
of ET.

1.3.3 Soil moisture–based approaches

Soil moisture (SM) in the first 5 cm of the surface is one of the main variables controlling
evaporation, with many land surface models assimilating SM data in a corresponding surface
layer. For instance, the α and β simplified models of E (see Table 1.1) use a parameter to
represent the availability of SM for evaporation (Desborough et al., 1996). Soil moisture is
an essential hydrologic variable that not only controls evaporation, but also infiltration and
runoff. It also plays an important role in energy and carbon exchanges (Daly and Porporato,
2005). Compared to in situ measurements, SM observations derived from remote sensing can be
retrieved at a global scale, in a cost effective manner. Amongst all the electromagnetic spectra
that are sensitive to variations in soil moisture, the most encouraging is the microwave domain.
The low frequency band it possesses is especially sensitive to the water content present in both
the first few centimeters of soil and in vegetation (Schmugge et al., 2002), all the while being
independent of atmospheric conditions.

Two approaches based on microwave data can be distinguished: using passive and active
sensors, respectively. Active sensors (radars) emit a microwave energy pulse and measure the
intensity of the signal re-emitted by the target surface. The intensity of this signal is directly
linked to surface conditions, namely soil and vegetation water content and to the surface rough-
ness. Passive sensors (radiometers) measure the microwave radiation that is naturally emitted
by surfaces. Radiative transfer models link the energy absorbed by passive sensors to soil water
content.

Microwave observations have a resolution ranging from several tens of meters for active sensors
to several tens of kilometers for passive sensors. Notably, the high resolution achieved by active
sensors (ERS, ALOS, Sentinel–1) is due to the intensity of the signal being much higher than
the energy emitted by land surfaces that is measured by radiometers. ESA’s Sentinel–1 mission
(Torres et al., 2012), launched in 2012, is a C-band SAR (Synthetic Aperture Radar, operating
at a centre frequency of 5.405 GHz) that provides data at resolutions of ∼ 20 m, with a repeat
cycle of 6 days combining both ascending and descending overpasses. The main downside to
estimating SM from radar data is that currently, no operational SM product is available at
such a high resolution. SM data could be modeled using active remote sensing (Balenzano et al.,
2011), but the difficulty resides in modeling the impact of vegetation cover and surface roughness
on the backscattered signal (Satalino et al., 2014), in time and over extended areas. Therefore,
they often need site-specific calibration (Zribi et al., 2011). These effects are however diminished
with resolution. SM can be for example estimated from scatterometers, in particular the C-band
ASCAT (Advanced SCATterometer, Naeimi et al. (2009)) at a resolution of 50 km.

Nowadays, radiometers are the microwave sensors most widely used at a global scale in order
to derive SM. Two types of radiometers can be identified: L–band (functioning at a frequency
of 1.4 GHz) and C–band. Notable L–band radiometers include SMOS (Soil Moisture and Ocean
Salinity, Kerr et al. (2010)) and SMAP (Soil Moisture Active Passive, Entekhabi et al. (2010)),
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with AMSR–E (Advanced Microwave Scanning Radiometer–EOS, Njoku et al. (2003)) a C–
band radiometer. Because of the great size required for the antenna in order to have sufficient
sensitivity to capture signals, combined with a fixed weight for the payload, the resolution of
L–band data is limited to 30–60 km (Kerr et al., 2010; Njoku and Entekhabi , 1996; Schmugge,
1998). However, this resolution is too coarse for the majority of hydrological and agricultural
applications.

For the past ten years, approaches on combining active and passive remote sensing data
have been proposed in order to provide high resolution SM (Zhan et al., 2006; Das et al., 2014).
NASA’s SMAP mission was expected to combine L–band brightness temperatures and L–band
backscatter data in order to derive SM estimates (Entekhabi et al., 2010). However, a radar
failure occurred several months after its launch in 2015, and the predicted resolution of 9 km
(Das et al., 2014) wasn’t achieved.

On the other hand, optical (visible/near–infrared/thermal–infrared) sensors have the advan-
tage of providing data at high and medium resolutions. Optical data include LST and information
on vegetation cover, which are connected to soil water content (Fang et al., 2013). Even though
optical data could be used to derive SM, the main drawback in deriving a retrieval methodology
is given by the sensors’ sensitivity to meteorological conditions (cloud presence) and vegetation
cover. However, a synergy between the low resolution microwave and high resolution optical data
(Zhan et al., 2002) can be used in order to derive SM at various spatial scales.

There are mainly two distinct categories of methods based on the synergy between microwave
and optical data: purely empirical methods and methods based on the triangle/trapezoid ap-
proach. Empirical algorithms use a polynomial fitting between SM, LST and NDVI. The bright-
ness temperature can also be taken into account (Piles et al., 2011) to estimate SM at different
resolutions (10 km and 1 km) from SMOS data. The bias is overall reduced at the expense of
reduced spatio–temporal correlation between SMOS SM and in situ measurements.

Triangle– (Carlson et al., 1994) and trapezoid– (Moran et al., 1994) based approaches are
contextual ET models that regroup semi–physical evaporation–based methods. The polynomial
function is replaced by a physical model that interprets the SM variability through evaporation
(Merlin et al., 2008a,b): a spatial link is created between optical–derived SEE and surface SM.
In other words, they link variations in LST (signature of ET) to variations in soil water content
and vegetation cover (Carlson, 2007; Petropoulos et al., 2009). Compared to empirical algo-
rithms, their main assets reside in their self–calibrating nature and in the fact that the average
of estimated SM at high resolution is equal to the SM observations at low resolution.

An example of a trapezoid–based approach is the DISPATCH (DISaggregation based on
a Physical and Theoretical scale CHange) algorithm (Merlin et al., 2008b, 2012b, 2013b). It
combines optical and microwave data in order to derive SM at high resolution, by using a first
order Taylor series expansion of a SEE model. It employs two different SEE models: i) a
temperature–based one (in order to estimate SEE at high resolution from optical data) and ii)
a linear SM–based model, which connects the temperature–based SEE to SM. It could be a tool
to estimate the SEE at multiple scales by combining available SM and LST data.

1.4 Objectives

Looking at all the different methodologies that have been developed since the 1960s to esti-
mate soil evaporation, no consensus has been made with respect to the best approach of modeling
this variable at integrated spatial scales. On the other hand, taking into consideration the mon-
itoring capabilities of E–related quantities through remote sensing means, several studies have
shown the possibility to combine shortwave–derived vegetation cover, thermal–derived LST and
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microwave–derived SM in order to partition ET into soil evaporation and plant transpiration
and therefore successfully retrieve soil evaporation. Unfortunately, given the different spatial
resolution of SM and LST products, there is currently no quasi–instantaneous E model that
consistently combines these data.

The objective of this PhD thesis is to improve the spatio–temporal representation of soil
evaporation by deriving a model that is valid over a wide range of soils and atmospheric condi-
tions, and that can be coupled with readily available remote sensing data. This is a multi–scale
modeling approach based on a synergy between remote sensing data and existing phenomeno-
logical models. Three sites are used to validate the modeling approach developed in this thesis,
all representative of semi–arid conditions, located in Mexico, Spain and Morocco.

In a first step, improvements to the temperature–based contextual modeling approaches are
sought. Taking into account the limitations that arise when deriving the extreme temperatures
corresponding to fully dry and fully wet conditions (which may or may not be present at the
observation resolution) from satellite images, coupled with the necessity of a flat study area and
uniform atmospheric conditions, a new model is developed, that seeks to limit the impact of these
factors. The model computes the extreme temperatures independently of the spatial resolution of
LST data, by using an energy balance model forced by available meteorological data. A validation
in terms of extreme temperatures is performed in Morocco, Mexico and Spain. The impact of
the two different approaches for deriving (image– or model–based) extreme temperatures is then
assessed in term of ET estimates over the Mexican site.

Since in the first step efforts have been made to improve ET estimates from a spatial point
of view, in a second step, attempts have been made to characterize the temporal behavior of soil
evaporation (through the soil evaporative efficiency) for different soil types. Characterizing its
dynamics can be a difficult task. A new approach is used to do so, using the global modeling
technique (Mangiarotti et al., 2012a), which relies on the theory of nonlinear dynamical systems.
Instead of analytically solving differential or discrete equations, it uses the phase space in order
to represent, analyze and understand the temporal evolution of the observed behaviors. The
technique is applied for the first time to synthetic SEE series and it seeks to reproduce the daily
cycle of the SEE.

In a third step, the energy balance model developed at the first step has been introduced
in DISPATCH, and thus a new algorithm, DISPATCH–E, has been developed. It seeks to
characterize both the temporal and spatial behavior of the SEE, by combining both the LST–
and SM–based approaches, validating the technique through disaggregated SM estimates. In
this part, an indirect validation of the improvement of SEE models is performed in terms of
DISPATCH/DISPATCH–E outputs: downscaled SM products are compared against in situ mea-
surements over the Spanish site.

The following manuscript is structured in 6 parts:

• Chapter 2, that offers a detailed description of the three sites, in situ measurements and
remote sensing data

• Chapter 3, that presents the modifications made to a temperature–based model of evapo-
transpiration and validation results in terms of ET estimates

• Chapter 4, that presents the global modeling technique applied to a soil evaporative effi-
ciency series, in an attempt to characterize its temporal behavior

• Chapter 5, that presents an improved evaporation–based disaggregation scheme of soil
moisture data and validation results in terms of disaggregated SM products

• Chapter 6, that offers general conclusions and future perspectives
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• Annex, where additional papers to which I have contributed as co–author can be found

This PhD thesis plays a central role in the ANR JC MIXMOD–E project, project which
started in 2013 and will be finishing in 2017. The goal of this project is to improve the spatio–
temporal representation of E at multiple scales by deriving a new model with robust regional-
ization capabilities from readily available data, while also developing the first multi–resolution
remote sensing algorithm dedicated to E monitoring. It aims at developing a multi–scale mod-
eling approach based on the synergy between remote sensing, mechanistic and mathematical
approaches, using station–based or field campaign measurements and multi–sensor remote sens-
ing data.

An important collaboration to be mentioned is with the REC (Root zone soil moisture Es-
timates at the daily and agricultural parcel scales for Crop irrigation management and water
use impact - a multi–sensor remote sensing approach) project. It is a H2020 European project,
which started in 2015 and will be finishing in 2019. It is a collaboration between three institu-
tions: CESBIO (Centre d’Etudes Spatiales de la Biosphère) Toulouse, isardSAT Barcelona and
Université Cadi Ayyad Marrakech. The project aims at developing a new innovative operational
algorithm that would allow i) to obtain daily estimates of root zone soil moisture at the crop
field scale and ii) to quantitatively evaluate the different components of the water budget at the
field scale from readily available multi–sensor remote sensing data. The project will combine
active SAR data from Sentinel–1 with DISPATCH disaggregated SM data in order to derive SM
estimates at high temporal and spatial resolutions. My main role within this project is with im-
proving the DISPATCH algorithm. I have spent a total of 11 months at isardSAT in Barcelona
and 1 month at the Cadi Ayyad University in Marrakech as part of a one year secondment for
this project.
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INTRODUCTION (Français)

1.5 Contexte

Dans le contexte actuel de croissance de la population et de développement de l’économie, de
plus en plus des ressources en eau sont utilisées par les agriculteurs afin d’irriguer leurs terres,
mais aussi par différentes industries, augmentant toujours la demande en énergie. Des préoccupa-
tions se posent avec les ressources limitées en eau, compte tenu des circonstances de la croissance
démographique, du changement climatique et de l’augmentation des problèmes environnemen-
taux. À l’échelle mondiale, environ 10% de l’eau douce disponible est nécessaire chaque an afin
d’assouvir les besoins de la population (Oki and Kanae, 2006). Cela peut parâıtre faible en terme
de pourcentage, mais il faut garder à l’esprit qu’il existe des zones où la pénurie d’eau est un
problème réel, affectant plus de deux milliards de personnes dans le monde entier. Cela implique
un réel problème, lorsque l’on considère que, pour répondre aux besoins alimentaires croissants
(liés à une population croissante), une augmentation de 70 à 100% de la production agricole est
nécessaire au cours des trois prochaines décennies, selon plusieurs organisations environnemen-
tales. L’agriculture est donc une contrainte notable sur les ressources en eau, vu que la relation
entre la disponibilité de l’eau et la production alimentaire est cruciale (FAO , 2009). 70% de
l’eau totale est utilisée pour l’agriculture, dont 40% de l’offre totale de nourriture produite par
l’agriculture irriguée.

L’importance des ressources en eau dans le secteur agricole est d’un intérêt autant plus im-
portant pour les pays méditerranéens, où jusqu’à 80% de l’eau totale est utilisée pour l’irrigation
(FAO , 2015; Garrido et al., 2010). Ces zones sont aussi les plus sujettes au changement clima-
tique (IPCC , 2013; Stocker et al., 2014), tout en ayant seulement 1% des ressources mondiales
en eau douce. Avec les prévisions de précipitations annuelles au cours des prochaines décennies
étant largement incertaines en termes de magnitude et de la distribution spatiale (Solomon,
2007), le IPCC prévoit également que toute modification des régimes des précipitations peut
diminuer la productivité de l’agriculture irriguée de jusqu’à 50% à la fin de 2020 (Bates et al.,
2008). L’utilisation durable de l’eau est une question cruciale, comme mentionné par Roadmap
to a Resource Efficient Europe (Comission, 2011), dans le cadre de la stratégie de l’UE 2020.
L’utilisation efficace de l’eau dans l’agriculture est fortement liée à la pénurie d’eau et à la
sécheresse, tel que rapportée par EEA Report No. 1/2012.

Ainsi, la gestion de l’irrigation des fermes doit être optimisée, dans ce contexte où la de-
mande est croissante mais les ressources diminuent. Du fait de l’inadéquation observée entre les
besoins d’irrigation et la quantité réelle d’eau utilisée pour l’irrigation (Kharrou et al., 2013),
l’optimisation doit être obtenue en ajustant l’irrigation aux besoins en eau des cultures pendant
la saison de croissance des cultures. La sur–irrigation doit être évitée car elle entrâıne une aug-
mentation des polluants exportés, combinée à une augmentation inutile de l’utilisation de l’eau.
D’autre part, la sous-irrigation entrâıne une chute du rendement des cultures (Salvador et al.,
2011). Une augmentation du rendement de la production agricole pourrait être atteinte par une
meilleure gestion de l’irrigation et de l’utilisation de la fertilisation (Mueller et al., 2012).
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Dans ce contexte, l’hydrologie joue un rôle majeur, en tant que discipline qui cherche à com-
prendre les effets de la nature et les changements crées par l’homme apportées sur des variables
telles que l’humidité du sol, la précipitation, le drainage, le ruissellement. Puisque l’eau est une
ressource renouvelable dans le cycle hydrologique, une meilleure compréhension de tous les flux
qui interviennent dans le cycle hydrologique pourrait améliorer les capacités de surveillance et
de fournir un aperçu pour une meilleure gestion.

La surveillance des ressources en eau est donc fortement liée à la modélisation des flux hy-
drologiques telles que: l’infiltration dans le sol, le ruissellement et l’évapotranspiration. Actuelle-
ment, une multitude d’approches de modélisation à grande échelle existent, allant du plus simple
au plus complexe, qui prennent en compte d’autres facteurs tels que la végétation. Historique-
ment, la première modélisation à l’échelle mondiale des flux hydrologiques est basée sur un
modèle simple, connu sous le nom de modèle “bucket” (Manabe, 1969). Cette approche considère
la surface comme un réservoir simple, où le ruissellement et l’évapotranspiration prennent place
au–dessus d’une certaine valeur de seuil, estimée à partir de l’humidité du sol présente. D’autre
modèles futurs (Deardorff , 1978; Mahrt and Pan, 1984; Sellers et al., 1986; Noilhan and Planton,
1989) ont pris en considération la présence de la végétation afin de tenir compte séparément des
flux du sol et de la végétation. Enfin, d’autres approches ont considéré le sol comme un système
multi–couche (Chanzy and Bruckler , 1993) et modélisent ainsi les flux à partir de l’équation
de Richards (Viterbo and Beljaars, 1995) et d’une représentation dynamique de la végétation
(Calvet et al., 1998).

L’évapotranspiration (ET) est l’un des plus importants flux hydrologiques, ayant une grande
importance en particulier dans les régions semi–arides, où elle est de loin le principal flux vers
l’extérieur. Au–delà de prévoir la disponibilité en eau du sol tel que mentionné précédemment,
elle joue un rôle central dans la prévision des innondations (Bouilloud et al., 2010) et des pré-
cipitations (Findell et al., 2011), dans la projection des changements dans la manifestation des
sécheresses (Sheffield and Wood , 2008) et de canicules (Seneviratne et al., 2006). En particulier,
l’évapotranspiration est le seul flux hydrologique reliant à la fois les bilans d’énergie et d’eau.
Elle le fait à travers deux variables principales qui sont essentielles à son estimation: la tem-
pérature de surface (la signature de l’ET, qui intervient dans le bilan d’énergie) et l’humidité
du sol (une variable d’état qui intervient dans le bilan d’eau). La partition de l’ET dans ses
deux principales composantes, l’évaporation du sol (E) et la transpiration des plantes (T) est
essentielle dans la modélisation des interactions entre la terre et l’atmosphère et de l’absorption
de l’eau par la végétation. Dans les premières étapes de la croissance d’une culture, l’eau est
la plupart du temps perdue par l’E; cependant, une fois que la récolte est bien développée et a
une couverture complète du sol, T devient le principal processus. Ainsi, l’E est la partie qui ne
sert pas à la productivité des cultures (Wallace, 2000), alors que T est liée à la disponibilité de
l’eau en zone racinaire (Allen et al., 1998). De plus, étant donné que cette partition est actuelle-
ment très incertaine et dépendante du modèle utilisé, une connaissance plus approfondie sur ce
processus pourrait contribuer à mieux contraindre la physique des modèles de surface (Gutmann
and Small , 2007). Malheureusement, des mesures in situ de l’E et T sont assez rares. Avoir des
estimations précises à des échelles multiples (de la culture, de bassins et méso–échelle) et avec
une bonne résolution temporelle est sans aucun doute essentiel pour une meilleure surveillance et
gestion des ressources (Williams et al., 2004; Kool et al., 2014). La partition de l’ET dans E et
T est particulièrement cruciale dans le suivi de la consommation en eau des plantes et du stress
hydrique (Porporato et al., 2001; Er-Raki et al., 2010), dans le cadre des ressources en eau lim-
itées. L’évaporation en particulier compte pour 20 à 40 % de l’ET globale (Lawrence et al., 2007;
Schlesinger and Jasechko, 2014) et elle provient principalement de l’humidité du sol (Good et al.,
2015). Comme elle est une condition limite essentielle entre le sol et l’atmosphère, une meilleure
représentation de l’évaporation du sol pourrait non seulement aider à une meilleure surveillance
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et gestion des ressources en eau, mais aussi à une meilleure compréhension des interactions entre
la terre et l’atmosphère (Feddes et al., 2001).

A cet égard, la télédétection présente un intérêt tout particulier, étant rentable dans le suivi
et la cartographie de l’E et variables liées à l’E (telles que la couverture de la végétation, la
température de surface et l’humidité du sol) sur de grandes surfaces. De plus, la télédétection est
un moyen d’estimer l’E à des résolutions multiples. Ceci est important car des échelles différentes
sont nécessaires, en fonction du domaine d’application de la variable. Plus particulièrement, le
rendement des cultures et la consommation d’eau sont évalués à l’échelle du champ, le ruisselle-
ment et les risques d’inondation à l’échelle des bassins versants et la circulation atmosphérique est
dictée par les flux de surface à méso–échelle. Dans ce contexte, la télédétection est un moyen de
couplage des données disponibles à plusieurs résolutions avec des modèles hydrologiques. D’autre
part, une compréhension profonde des processus hydrologiques à différentes échelles pourrait con-
tribuer à améliorer la qualité des données de télédétection disponibles.

Un aperçu des approches existantes pour la modélisation de l’E, des techniques basées sur
la télédétection et des liens avec d’autres variables telles que la couverture de la végétation,
l’humidité du sol et la température de surface sont discutés ci–dessous.

1.6 Approches de modélisation de l’évaporation du sol

Les approches de modélisation de l’E peuvent être grossièrement classées en trois catégories:
les approches mécanistes, des formulations simplifiées et des approches phénoménologiques. Un
aperçu de chaque approche est présentée ci–dessous.

1.6.1 Modèles mécanistes

Ces approches considèrent le sol comme un système multi–couches et représentent théorique-
ment les échanges couplés de masse et chaleur entre la couche de sol et l’atmosphère. Quelques
exemples de modèles mécanistes peuvent être trouvés dans Chanzy and Bruckler (1993), Bittelli
et al. (2008). Les flux de vapeur à l’interface entre le sol et l’atmosphère peuvent être estimés en
résolvant l’équation couplée de masse et chaleur pour toutes les couches. L’évaporation du sol nu
peut alors être calculée à une hauteur donnée par la réduction du flux de vapeur de la couche de
sol supérieure à l’aide d’une résistance aérodynamique pour le transfert de vapeur d’eau. Cepen-
dant, la résolution de ces équations exige des connaissances sur les propriétés hydrauliques du
sol sur chaque couche de sol. Ces propriétés hydrauliques du sol se composent de:

• la conductivité hydraulique saturée (kg·s·m−3)

• le contenu d’humidité résiduelle (m3·m−3)

• le contenu d’humidité saturée (m3·m−3)

• divers paramètres empiriques de forme (Brooks and Corey , 1964; Campbell , 1974; Van
Genuchten, 1980)

Les principales limites des modèles mécanistes basés sur les propriétés hydrauliques du sol
sont leur sensibilité aux conditions initiales et limites comme indiqué dans Chanzy et al. (2008).
Les conditions initiales se réfèrent notamment au profil de l’humidité du sol, qui ne peut être
mesuré sur de grandes surfaces à l’aide de la télédétection, puisque les données de télédétection
sont principalement prévues pour une couche de surface seulement. Les conditions aux limites
portent sur les conditions climatiques à la surface du sol et le changement de teneur en eau ou le
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potentiel de l’eau avec la profondeur. En outre, le temps de calcul de ces modèles est assez long,
et la solution numérique peut être parfois mal conditionnée, et par conséquent instable.

Les inconvénients de l’utilisation des paramètres hydrauliques du sol résident en leur diffi-
culté à être mesurés, le cout des techniques à utiliser, et surtout, en leur inadaptabilité à être
appliqués à des échelles spatiales intégrées. Pour supprimer ces limitations, un contournement
a été introduit: les fonctions de pédotransfert. Les fonctions de pédotransfert (Wösten, 1997;
Cosby et al., 1984; Rawls and Brackensiek , 1985; Vereecken et al., 1989; Twarakavi et al., 2009)
traduisent les données de texture du sol facilement disponibles dans des propriétés hydrauliques
du sol.

Le principal avantage des modèles mécanistes est leur contribution à une meilleure compréhen-
sion des processus physiques liés à l’E, tels que la diffusion de vapeur, la remontée capillaire et
le drainage. Cependant, ils présentent un certain nombre d’inconvénients qui limitent leur ap-
plication sur de grandes surfaces. Les fonctions de pédotransfert sont très incertaines et ont
des grandes variations dans l’espace (Soet and Stricker , 2003). Ceci est principalement dû à
la structure du sol (taille des pores, distribution, connectivité), à la présence d’agrégats et à la
présence de la biomasse dans le sol. Ces fonctions de pédotransfert varient plus dans une classe de
texture qu’entre classes (Gutmann and Small , 2007). En outre, un grand nombre de paramètres
qui ne peuvent pas être mesurés directement à l’échelle de l’application (Demaria et al., 2007)
sont pris en compte dans les modèles mécanistes, qui conduit souvent à une sur–paramétrisation.
Une résistance du sol empirique supplémentaire peut parfois être nécessaire afin d’estimer avec
précision l’E (Bittelli et al., 2008).

Pour résumer, la grande incertitude des fonctions de pédotransfert, la sensibilité aux condi-
tions initiales et limites, et la sur–paramétrisation rendent impraticables les modèles mécanistes
pour les applications à grande échelle. Par conséquent, des modèles plus simples ont été dévelop-
pés.

1.6.2 Modèles simplifiés

En raison des difficultés et des contraintes qui viennent avec l’implémentation des modèles
mécanistes sur de grandes surfaces, une autre approche a été développée, qui estime l’E en
fonction de l’humidité du sol. Ces modèles simplifiés sont les approches plus largement utilisées
pour estimer l’E, avec le module de l’E de la plupart des modèles de surface en se basant sur ces
approches.

Le premier modèle, également connu sous le nom de modèle “bucket” (Manabe, 1969; Robock
et al., 1995), calcule l’évaporation en utilisant l’équation suivante:

LEs = SEE ∗ LEp (1.8)

où LEs (W·m−2) est le flux de chaleur latente, LEp (W·m−2) est le flux de chaleur potentielle,
et SEE (-) l’efficacité évaporative du sol (Soil Evaporative Efficiency). SEE est définie comme
étant le rapport entre l’évaporation réelle et celle potentielle. Dans le modèle “bucket” , elle est
exprimée comme:

SEE =
{

1, if SM > SMc

SM
SMc

, if SM < SMc

(1.9)

où SM est l’humidité du sol, et SMc est 75% de SMfc, où SMfc l’humidité du sol à la capacité
du champ.

Des améliorations ont été apportées au modèle ci–dessus, en séparant les deux éléments
distincts: le sol et la végétation, utilisant ainsi une formulation double source (Shuttleworth and
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Wallace, 1985). Parmi ces méthodes, quatre approches sont principalement utilisés:

• La méthode basée sur la rss (la résistance du sol en surface):

LEs = ρCp
γ

esat(Ts) − ea
rss + rah

(1.10)

• La méthode α:

LEs = ρCp
γ

αesat(Ts) − ea
rah

(1.11)

• La méthode β:

LEs = β
ρCp
γ

esat(Ts) − ea
rah

(1.12)

• La méthode du “seuillage”:

LEs = min(LEp, LEmax) (1.13)

avec rss (s·m−1) la résistance à la diffusion des vapeurs dans les grands pores du sol, α (-) un
facteur de mise à l’échelle sans unités de la pression de vapeur saturante jusqu’à la pression de
vapeur réelle à la surface du sol, β (-) un facteur de mise à l’échelle de l’évaporation potentielle
jusqu’à l’évaporation réelle, ρ (kg·m−3) la densité de l’air, Cp (J·kg−1·K−1) la chaleur spécifique
de l’air à pression constante, γ (Pa·K−1) la constante psychrométrique, esat(Ts) (Pa) la pression
de vapeur saturée à la température du sol, ea (Pa) la pression de vapeur de l’air, rah (s·m−1)
la résistance aérodynamique au transfert de chaleur et LEmax (W·m−2) le flux d’eau maximum
limitée par le sol en dessous de la surface.

Dans la littérature, la méthode du “seuillage” est également connue sous le nom “Priestley–
Taylor” ou la méthode “demande et offre”. LEp est calculée en utilisant les méthodes aérody-
namiques de Penman ou Priestley–Taylor. Diverses études dans la littérature sont basées sur
ces modèles (Mahfouf and Noilhan, 1991; Lee and Pielke, 1992; Ye and Pielke, 1993; Mihailovic
et al., 1995; Dekic et al., 1995; Cahill et al., 1999). Il y a deux façons de dériver les paramètres
rss, α, β et LEmax: en utilisant une approche physique, ou une approche empirique. Dans
l’approche physique, les expressions sont obtenues soit en dérivant la loi de diffusion de Fick
(Dickinson et al., 1986; Wetzel and Chang , 1988; Sakaguchi and Zeng , 2009), soit en utilisant
des considérations thermodynamiques (Philip and de Vries, 1957). Des paramètres empiriques
supplémentaires sont introduits en plus des paramètres hydrauliques du sol, obtenus grâce après
simplification de l’équation théorique de diffusion. Dans les approches empiriques, des expres-
sions ad–hoc (Manabe, 1969; Noilhan and Planton, 1989) sont introduites ou des ajustements
aux courbes sont faits en se basant sur des données expérimentales (Sellers et al., 1992). Même
si des études ont favorisé l’apparition de nombreuses formulations, aucun accord général sur la
meilleure façon de paramétrer le processus d’évaporation à des échelles spatialement étendues a
été atteint (Desborough et al., 1996; Sakaguchi and Zeng , 2009). Il y a cependant trois aspects
qui sont généralement convenus: i) des meilleurs estimation de l’humidité du sol et de l’E peu-
vent être obtenues en utilisant des approches empiriques simplifiées plutôt que des approches
physiques (Dekic et al., 1995; Mihailovic et al., 1995; Yang et al., 1998), ii) la formulation β
semble être plus robuste que la formulation α (Cahill et al., 1999; Van den Hurk et al., 2000) et
iii), même si toutes les approches sont basées sur l’humidité du sol en surface, les effets de l’état
de surface du sol (par exemple: la rugosité du sol, présence de chaume ou de paillis , les fissures
de retrait associés à des sols argileux, hétérogénéité du sol) n’ont pas été complètement étudiées
(Sakaguchi and Zeng , 2009).
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La plupart des modules d’évaporation implémentés dans les modèles de surface existants sont
basées sur l’une des quatre formulations présentées ci–dessus. Les informations concernant les
modules simplifiés de l’E présents dans l’état d’art des modèles de surface sont présentées dans
le Tableau 1.2.

Table 1.2: Une liste des modules simplifiés de l’E utilisés par certains modèles de surface les plus
connus (Merlin 2016, Mémoire HDR).

Caractère Nom Module d’évaporation Formulation Description du modèle

Empirique BUCKET Manabe (1969) β Robock et al. (1995)
Empirique CABLE Wang et al. (2011) seuillage Kowalczyk et al. (November 2006)
Empirique CLASS V3 Lee and Pielke (1992) β Verseghy (1996)
Empirique CLSM Koster and Suarez (1996) rss Koster et al. (2000)
Empirique HTESSEL Balsamo et al. (2011) rss ECMWF 2006
Empirique IAP94 Sellers et al. (1992) rss Yongjiu and Qingcun (1997)
Empirique ICARE Sellers et al. (1992) rss Merlin et al. (2006a)
Empirique ISBA Noilhan and Planton (1989) α Noilhan and Mahfouf (1996)
Empirique LaD GFDL Manabe (1969) β Milly and Shmakin (2002)
Empirique LAPS Sun (1982) α,rss Mihailović (1996)
Empirique MOSAIC Koster and Suarez (1996) rss Koster and Suarez (1996)
Empirique Noah LSM Sellers et al. (1992) α,rss Niu et al. (2011)
Empirique SECHIBA Ducoudré et al. (1993) rss Ducoudré et al. (1993)
Empirique SEWAB Noilhan and Planton (1989) α Mengelkamp et al. (1999)
Empirique SiB2 Sellers et al. (1992) α,rss Sellers et al. (1996)
Empirique SSIB Camillo and Gurney (1986) α,rss Xue et al. (1991)
Empirique SWB Manabe (1969) β Schaake et al. (1996)
Empirique VIC Wood et al. (1992) β Wood et al. (1992)
Physique BASE Dickinson et al. (1986) seuillage Desborough and Pitman (1998)
Physique BATS Dickinson et al. (1986) seuillage Dickinson et al. (1993)
Physique BEST Dickinson et al. (1986) seuillage Pitman et al. (1991)
Physique CAPS Mahrt and Pan (1984) seuillage Chang et al. (1999)
Physique CLM Sakaguchi and Zeng (2009) α,rss Oleson et al. (2010)
Physique GISS Gardner and Hillel (1962) seuillage Rosenzweig and Abramopoulos (1996)
Physique MIT Entekhabi and Eagleson (1989) β Entekhabi and Eagleson (1989)
Physique PLACE Wetzel and Chang (1988) seuillage Wetzel and Boone (1995)
Physique SEtHyS Soarès et al. (1988) seuillage Coudert et al. (2006)
Physique SiSPAT Philip and de Vries (1957) seuillage Braud et al. (1995)
Physique SWAP Gusev and Nasonova (1998) β Gusev and Nasonova (1998)
Physique TOPLATS Milly (1986) seuillage Famiglietti (1994)

1.6.3 Modèles phénoménologiques

Les modèles phénoménologiques se distinguent par le fait qu’ils ne sont ni construits sur des
hypothèses ad–hoc , ni dérivés de la théorie. Au lieu de cela, ils sont basés sur l’observation des
données (Sivapalan et al., 2003), en offrant une interprétation physique ou semi–physique des
paramètres du modèle.

En modélisant la SEE au lieu de l’évaporation du sol, on sépare les deux principaux facteurs
qui contrôlent l’E: la demande évaporative LEp et la disponibilité en eau du sol. Ceci est
seulement partiellement satisfait, puisque la LEp est liée à la disponibilité en eau du sol (Merlin
et al., 2011). Cependant, cette normalisation de LEs supprime les effets de premier ordre de la
demande évaporative sur l’évaporation réelle, tout en fixant les limites physiques entre ∼ 0 et
1. SEE atteint la valeur ∼0 lorsque la disponibilité en eau du sol est insignifiante, et la valeur 1
lorsque la disponibilité en eau du sol est maximale.
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La SEE aide aussi à distinguer les différents cycles d’évaporation, qui sont liés soit à des
variations quotidiennes/saisonnières/climatiques de la demande évaporative, ou à des variations
de la disponibilité en eau du sol en raison de la pluie/irrigation.

Une première tentative d’associer un paramètre expérimental de la SEE à la texture du sol
et aux conditions aérodynamiques a été faite par Komatsu dans (Komatsu, 2003):

SEE = 1 − exp( SM
SMc

) (1.14)

avec SMc étant un paramètre du sol dont les valeurs dépendent du type de sol et de la vitesse
du vent. La profondeur de la couche de surface sur laquelle l’analyse a été réalisée était de
plusieurs millimètres, ce qui est beaucoup plus petit que l’épaisseur normale de la couche de
surface supérieure utilisée dans la plupart des modèles de surface, qui est de plusieurs centimètres.
Trouver une façon générale de paramétrer la SEE est pour la plupart du temps entravée par le
séchage (vers midi) de premières mm du sol, qui empêche l’E, indépendamment de la disponibilité
en eau du sol qui est présente sous la surface (Mahrt and Pan, 1984; Dickinson et al., 1986;
Soarès et al., 1988; Wetzel and Chang , 1988; Van de Griend and Owe, 1994; Heitman et al.,
2008; Shahraeeni et al., 2012). Par conséquent, une nouvelle méthode a été développé afin de
dériver la SEE avec une forme qui s’ajuste à la profondeur à laquelle des mesures d’humidité
sont effectuées. Merlin et al. (2011) se sont penchés sur la possibilité de prendre en considération
le gradient d’humidité du sol dans la couche supérieure en introduisant une paramétrisation
simple qui dépend de l’évaporation potentielle. Le modèle a été testé sur deux sites situés
dans le sud de la France, à une échelle de temps journalière. En outre, dans leur dernière
étude (Merlin et al., 2016), ils ont développé une méta–approche d’analyse pour représenter la
SEE pour une large gamme de sols et de conditions atmosphériques, en utilisant des données
recueillies dans plus de 30 sites dans le monde. Une relation significative a été observée entre
les paramètres semi–empiriques du modèle de l’E et la texture du sol. Le modèle a ensuite été
comparé au module d’évaporation de plusieurs modèles de surface, comme Noilhan and Planton
(1989)), CLM (Community Land Model, Oleson et al. (2013)) and H–TESSEL (Hydrology–Tiled
ECMWF Scheme for Surface Exchange over Land, ECMWF (2014)), et le modèle a été prouvé
comme fonctionnant de manière satisfaisante.

Le principal avantage des modèles phénoménologiques est leur capacité à utiliser les données
facilement disponibles et leur couplage potentiel avec des données de télédétection ce qui les rend
adaptés pour des applications à grande échelle, tout en étant compatible avec les hypothèses
théoriques. Cependant, le principal inconvénient est lié à leur caractère semi–empirique, combiné
avec l’utilisation des paramètres effectifs, ce qui rend difficile d’estimer des scénarios d’évolution.

1.7 Approches pour l’évaporation du sol basées sur la télédétec-
tion

Parmi toutes les variables qui peuvent être dérivées de la télédétection, il y en a trois qui
sont pertinentes pour l’estimation de l’E: l’indice de végétation, la température de surface et
l’humidité du sol en surface. Les méthodes basées sur chacune de ces variables sont décrites
ci–dessous.

1.7.1 Approches basées sur l’indice de la végétation

En complément des modèles mécanistes et physiques, il existe une vaste gamme de méthodes
pour estimer l’E en utilisant des données de télédétection. Une des méthodes les plus populaires
est l’approche FAO–56 (Allen et al., 1998; Allen, 2000; Allen et al., 2005; Simonneaux et al.,
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2008), forcée par des données de NDVI (Normalized Difference Vegetation Index) (Bausch and
Neale, 1989). L’approche utilise des mesures météorologiques, une phénologie des cultures qui
a été calculé à partir du fractionnaire du couvert végétal vert (fvg) dérivé de NDVI , et un
coefficient spécifique au cultures afin d’en tirer une ET potentielle. L’ET réelle est alors estimée
en fonction de cette ET potentielle. Dans sa forme en double coefficient, l’ET est limitée par
l’humidité du sol, sur la base d’un modèle du bilan d’eau du sol qui nécessite la connaissance a
priori des volumes d’irrigation et les dates. Donc, même si un module de sol peut être intégré
afin de séparer E et T, et d’exprimer le stress de la végétation en fonction de la disponibilité en
eau du sol, la principale méthode est toujours basée sur les hypothèses suivantes (Er-Raki et al.,
2010):

• les volumes d’irrigation et les données de précipitations sont censés être connus;

• T est considérée soit comme sa valeur au taux potentiel, soit elle est calculée via l’humidité
du sol en zone racinaire (estimée en utilisant un modèle de sol contraint par des données
d’irrigation disponibles);

• E est soit fixée à une valeur constante, soit elle est calculée par l’humidité du sol près de
la surface (estimée en utilisant un modèle de sol contraint par des données d’irrigation
disponibles);

• le drainage est souvent négligé dans les couches profondes du sol.

Le compromis entre le paramétrage complexe du modèle et la disponibilité des données
d’entrée a rendu cette méthodologie très intéressante d’un point de vue opérationnel. L’inconvénient
de la méthode FAO–56 est son applicabilité sur de très grandes surfaces, puisque les coefficients
qu’elle utilise sont calibrés à partir de mesures sur le terrain, qui sont principalement impactés
d’un point de vue temporel et d’hétérogénéité spatiale (Long and Singh, 2010).

1.7.2 Approches basées sur la température

La température de surface (Land Surface Temperature - LST) est une variable pertinente
pour l’estimation de l’ET, qui peut être obtenue à partir des mesures de télédétection. Dans des
conditions illimitées en énergie, la LST est une signature de l’ET et de la disponibilité en eau du
sol. Elle est disponible à des résolutions spatiales différentes, allant de 90 m à 100 m et 1 km,
à partir de capteurs thermiques tels que ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer), Landsat–8 et MODIS (Moderate-Resolution Imaging Spectroradiome-
ter). La plupart des applications opérationnelles dans la gestion de l’hydrologie et des ressources
en eau utilisent des données de résolution thermique à une échelle kilométrique (Stisen et al.,
2008; Tang et al., 2010). La principale raison derrière cela est la disponibilité de données. Pour
une résolution de 1 km, il est possible d’obtenir les données MODIS une ou deux fois par jour,
alors que la période de revisite pour ASTER et Landsat n’est que de 16 jours. Ceci est une
période de temps longue en comparaison avec les changements rapides d’humidité du sol qui ont
lieu dans les zones irriguées des régions semi–arides.

Il existe deux catégories de modèles de l’ET qui utilisent des données LST: (1) la méthode
résiduelle et (2) la méthode basée sur la fraction évaporative (Evaporative Fraction - EF). Les
méthodes résiduelles considèrent ET comme le terme résiduel du bilan d’énergie de la surface,
qui est l’énergie disponible à la surface moins le flux de chaleur sensible. Elles peuvent être soit
source unique, soit double source (dans ce cas, le flux de chaleur sensible est considéré comme
une somme de deux composantes - l’une correspondant au le sol, et l’autre à la végétation).
Certains modèles notables qui utilisent cette approche sont TSEB (Two–Source Energy Balance,
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Norman et al. (1995)), SEBS (Surface Energy Balance System, Su (2002)), TSTIM (Two Source
Time Integrated Model, Anderson et al. (1997)). Un avantage des approches résiduelles source
unique est qu’elles sont rapides d’un point de vue informatique et qu’elles nécessitent moins de
mesures in situ que les approches double source, qui nécessitent des données météorologiques
auxiliaires et d’autres mesures de surface, tels que la rugosité de la surface, la hauteur et la
structure de la végétation, ainsi que la stabilité atmosphérique (Li et al., 2009). Les algorithmes
source unique offrent des bonnes estimations de l’ET, avec une précision relativement élevée
sur les zones homogènes. Cependant, sur les zones partiellement couvertes par la végétation,
les modèles double source sont souvent nécessaires pour modéliser séparément les échanges de
chaleur et d’eau entre le sol, la végétation et l’atmosphère. Le principal inconvénient associé
aux méthodes résiduelles (soit source unique, soit double source) est d’avoir une paramétrisation
suffisamment détaillée des propriétés de surface des sols et de la végétation, et la disponibilité des
données d’entrée comme les mesures in situ (la vitesse du vent, la rugosité de surface, l’hauteur
de la végétation, la couverture végétale fractionnaire, l’humidité, l’albédo, la température de
l’air, Li et al. (2009)).

La seconde méthode considère l’ET comme l’énergie disponible fois EF (qui, par définition,
est le rapport entre la chaleur latente et l’énergie disponible). Il existe différents modèles basés
sur cette méthode, comme SEBI (Surface Energy Balance Index, Menenti et al. (1989)), S–
SEBI (Simplified Surface Energy Balance Index, Roerink et al. (2000)), SEB–1S (Monosource
Surface Energy Balance model, Merlin (2013)). L’approche consiste à déterminer les bords secs
et humides de la LST, qui, en fonction de la résolution de l’observation, peuvent ou non être
présents dans la scène d’observation. Cela a amené les scientifiques à se référer à cette approche
comme “contextuelle”. Des détails sur l’approche contextuelle peuvent être trouvée dans (Kalma
et al., 2008; Li et al., 2009), qui offrent un résumé des différents modèles contextuels existants. Les
limites physiques de la LST sont déterminées comme suit: les températures extrêmes (Text) pour
des conditions complètement sèches et entièrement humides associées au sol et à la végétation
sont établies dans l’espace défini par LST et fvg (Long and Singh, 2012; Tang et al., 2010; Merlin
et al., 2013a) et/ou l’espace défini par LST et α (Roerink et al., 2000; Merlin et al., 2013a), où α
est l’albédo de surface. L’EF d’un point donné situé dans l’espace LST −fvg ou l’espace LST −α
est calculé comme le rapport de deux distances: la distance séparant le point de la ligne identifiée
comme étant le bord sec et la distance séparant le bord sec et le bord humide. D’un point de vue
opérationnel, les méthodes contextuelles sont très séduisantes grâce à leur nature basée sur les
images, ce qui les rend facilement transférables à différents domaines. Un des avantages les plus
importants que ces modèles présentent est qu’ils ne nécessitent pas de calibration, contrairement
aux méthodes résiduelles (Jiang and Islam, 1999). Les inconvénients, cependant, sont liés aux
plusieurs conditions que ces modèles exigent: (1) une zone d’étude relativement plate, (2) des
conditions atmosphériques uniformes, (3) que les températures extrêmes soient observées sur
la zone d’étude à la résolution du capteur thermique (Long et al., 2011; Long and Singh, 2012;
Long et al., 2012; Long and Singh, 2013; Timmermans et al., 2007; Yang and Shang , 2013). Pour
résumer, les modèles basés sur les images utilisés pour dériver Text sont bien adaptés pour les
zones irriguées de régions semi–arides (Stefan et al., 2015), lors de l’utilisation des données de
haute résolution pour que la forte hétérogénéité soit résolue à l’échelle d’observation (de Tomás
et al., 2014). Ils sont moins adéquats lors de l’utilisation des données thermiques à des moyennes
résolutions (∼ 1 km), acquises sur des zones pluviales moins hétérogènes.

Toutefois, le principal problème avec la majorité des modèles se réfère à la partition de
l’ET, qui est actuellement très incertaine et dépendante du modèle choisi: l’E est estimée pour
tenir compte globalement de 28 % à 56 % de l’ET totale (Lawrence et al., 2007). Les deux
approches, résiduelles et basées sur EF, sont en mesure de fournir des estimations de l’E sur
le sol nu. Toutefois, la question de récupération est plus complexe sur les pixels mixtes. En
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réalité, aucune des méthodes basées sur la température permet un découplage explicite entre E
et T sur des pixels mixtes en utilisant uniquement les données LST et l’indice de végétation.
La raison derrière cela est qu’il y a une équifinalité entre les taux de l’E et de la T et la LST
du pixel. Cependant, certaines méthodes basées sur la température fournissent des hypothèses
supplémentaires sur la modélisation de T (par exemple TSEB) afin de répondre à la partition de
l’ET. En intégrant des informations sur la température du sol (Moran et al., 1994) ou sur la SEE
(Merlin et al., 2012a), il serait possible de supprimer la question de l’équifinalité. Etant donné
que la résolution spatiale des capteurs thermiques actuels est comprise entre 100 m et 1 km,
la plupart des pixels comprennent une fraction du sol nu et une fraction de la végétation. Par
conséquent, toute amélioration du suivi de l’E pourrait contribuer à de nouveaux développements
en ce qui concerne la partition de l’ET.

1.7.3 Approches basées sur l’humidité du sol

L’humidité du sol (Soil Moisture - SM) dans les 5 premiers cm de la surface est l’une des
principales variables qui contrôlent l’évaporation, avec de nombreux modèles de surface assimilant
les données SM dans une couche de surface correspondante. Par exemple, les modèles simplifiés
de l’E α et β (voir Tableau 1.2) utilisent un paramètre pour représenter la disponibilité de SM
pour l’évaporation (Desborough et al., 1996). L’humidité du sol est une variable hydrologique
essentielle qui ne contrôle pas seulement l’évaporation, mais aussi l’infiltration et le ruissellement.
Elle joue également un rôle important dans les échanges d’énergie et de carbone (Daly and
Porporato, 2005). Par rapport aux mesures in situ, les observations SM obtenues par télédétection
peuvent être récupérées à l’échelle mondiale, d’une manière rentable. Parmi tous les spectres
électromagnétiques qui sont sensibles aux variations de l’humidité du sol, le plus encourageant
est le domaine des micro–ondes. Sa bande basse fréquence est particulièrement sensible à la teneur
en eau présente dans les premiers quelques centimètres du sol et dans la végétation (Schmugge
et al., 2002), tout en étant indépendant des conditions atmosphériques.

Deux approches basées sur les données micro–ondes peuvent être distingués: en utilisant des
capteurs soit passifs soit actifs. Les capteurs actifs (radars) émettent une impulsion d’énergie
micro–onde et mesurent l’intensité du signal ré–émis par la surface cible. L’intensité de ce signal
est directement liée à la surface, à savoir à la teneur en eau du sol et de la végétation et à la
rugosité de surface. Les capteurs passifs (radiomètres) mesurent le rayonnement des micro–ondes
qui est naturellement émis par les surfaces. Les modèles de transfert radiatif relient l’énergie
absorbée par les capteurs passifs à la teneur en eau du sol.

Les observations micro–ondes ont une résolution allant de plusieurs dizaines de mètres pour
les capteurs actifs à plusieurs dizaines de kilomètres pour les capteurs passifs. Notamment,
la haute résolution obtenue par des capteurs actifs (ERS, ALOS, Sentinel–1) est en raison de
l’intensité du signal étant beaucoup plus élevé que l’énergie émise par les surfaces terrestres qui
est mesurée par les radiomètres. La mission Sentinel–1 de l’ESA (Torres et al., 2012), lancée en
2012, est un SAR en bande C (Synthetic Aperture Radar, fonctionnant à une fréquence centrale
de 5.405 GHz) qui fournit des données à des résolutions de ∼ 20 m, avec un cycle de répétition
de 6 jours combinant à la fois les passages ascendante et descendante. Le principal inconvénient
de l’estimation de SM à partir des données radar est qu’à l’heure actuelle, aucun produit SM
opérationnel est disponible à une telle haute résolution.

Les données SM peuvent être modélisées en utilisant la télédétection active (Balenzano et al.,
2011), mais la difficulté réside dans la modélisation de l’impact de la couverture végétale et
de la rugosité de surface sur la rétrodiffusion du signal (Satalino et al., 2014), dans le temps
et sur des zones étendues. Par conséquent, elles ont souvent besoin d’étalonnage sur des sites
spécifiques (Zribi et al., 2011). Ces effets sont cependant diminués avec la résolution. SM peut
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être par exemple estimée à partir de diffusiomètres, en particulier ASCAT en bande C (Advanced
SCATterometer, Naeimi et al. (2009)) à une résolution de 50 km.

Actuellement, les radiomètres sont les capteurs micro–ondes les plus largement utilisés à
l’échelle mondiale afin d’en tirer la SM. Deux types de radiomètres peuvent être identifiés: en
bande L (fonctionnant à une fréquence de 1,4 GHz) et en bande C. Quelques radiomètres notables
en bande L comprennent SMOS (Soil Moisture and Ocean Salinity, Kerr et al. (2010)) et SMAP
(Soil Moisture Active Passive, Entekhabi et al. (2010)), avec AMSR–E (Advanced Microwave
Scanning Radiometer–EOS, Njoku et al. (2003)) un radiomètre en bande C. En raison de la
grande taille requise par l’antenne afin d’avoir une sensibilité suffisante pour capter les signaux,
combinée à un poids fixe pour la charge utile, la résolution de données en bande L est limitée
à 30–60 km (Kerr et al., 2010; Njoku and Entekhabi , 1996; Schmugge, 1998). Cependant, cette
résolution est trop grossière pour la majorité des applications hydrologiques et agricoles.

Au cours des dix dernières années, des approches basées sur la combinaison de données de
télédétection active et passive ont été proposées dans le but de fournir SM à une haute résolution
(Zhan et al., 2006; Das et al., 2014). La mission SMAP de la NASA avait pour projet de combiner
les températures de brillance en bande L et les données de rétrodiffusion en bande L afin d’en
tirer des estimations de SM (Entekhabi et al., 2010). Cependant, une panne de radar a eu lieu
plusieurs mois après son lancement en 2015, et la résolution prévue de 9 km (Das et al., 2014)
n’a pas été atteinte.

D’autre part, les capteurs optiques (visible/proche–infrarouge/infrarouge thermique) ont
l’avantage de fournir des données à des résolutions élevées et moyennes. Les données optiques
comprennent la LST et des informations sur la couverture végétale, qui sont reliées à la teneur
en eau du sol (Fang et al., 2013). Même si les données optiques pourraient être utilisées pour
dériver la SM, l’inconvénient principal de dériver une méthode de récupération provient de la
sensibilité des capteurs aux conditions météorologiques (présence de nuages) et la couverture
végétale. Cependant, une synergie entre les données micro–ondes à basse résolution et les don-
nées optiques à haute résolution (Zhan et al., 2002) peut être utilisée afin de dériver la SM à
différentes échelles spatiales.

Il existe principalement deux catégories distinctes de méthodes basées sur la synergie entre les
données micro–ondes et les données optiques: méthodes purement empiriques et méthodes basées
sur l’approche du triangle/trapèze. Les algorithmes empiriques utilisent un raccord à partir des
polynômes entre la SM, la LST et le NDVI. La température de brillance peut également être
prise en compte (Piles et al., 2011) pour estimer SM à différentes résolutions (10 km et 1 km)
à partir de données SMOS. Le biais est globalement réduit au détriment de la réduction de la
corrélation spatio–temporelle entre le SM SMOS et les mesures in situ.

Les approches basées sur le triangle (Carlson et al., 1994) et le trapèze (Moran et al., 1994)
sont des modèles contextuels de l’ET qui regroupent les méthodes semi–empiriques basée sur
l’évaporation. La fonction polynôme est remplacée par un modèle physique qui interprète la
variabilité de la SM par l’évaporation (Merlin et al., 2008a,b): un lien spatial est créé entre la
SEE dérivée de l’optique et la SM de surface. En d’autres termes, ils relient les variations de la
LST (signature de l’ET) aux variations de la teneur en eau du sol et du couvert végétal (Carlson,
2007; Petropoulos et al., 2009). Par rapport à des algorithmes empiriques, leurs principaux atouts
résident dans leur auto–calibration et dans le fait que la moyenne de SM estimée à haute résolution
est égale aux observations SM à faible résolution.

Un exemple d’une méthode basée sur le trapèze est l’algorithme DISPATCH (DISaggregation
based on a Physical and Theoretical scale CHange, Merlin et al. (2008b, 2012b, 2013b)). Il
combine des données optiques et micro–ondes afin de dériver la SM à haute résolution, en utilisant
un développement de Taylor de premier ordre d’un modèle de la SEE. Il emploie deux modèles
SEE différents: i) un basé sur la température (afin d’estimer la SEE à haute résolution à partir des
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données optiques) et ii) un modèle linéaire de la SM, qui relie la SEE dérivée de la température
avec la SM. Il pourrait être un outil pour estimer la SEE à des échelles multiples en combinant
les données SM et LST disponibles.

1.8 Objectifs

En regardant les différentes méthodes qui ont été développées depuis les années 1960 pour
estimer l’évaporation du sol, aucun consensus n’a été fait par rapport à la meilleure approche de
modélisation de cette variable à des échelles spatiales intégrées. D’autre part, en tenant compte
des capacités de surveillance des quantités dérivées de l’E par des moyens de télédétection,
plusieurs études ont montré la possibilité de combiner le couvert végétal dérivé des courtes–ondes,
la LST dérivée du thermique et la SM dérivée de micro–ondes afin de partitionner l’ET dans
l’évaporation du sol et la transpiration des plantes afin de récupérer avec succès l’évaporation du
sol. Malheureusement, compte tenu de la résolution spatiale différente de la SM et des produits
LST, il n’y a actuellement aucun modèle quasi–instantané de l’E qui combine systématiquement
ces données.

L’objectif de cette thèse est d’améliorer la représentation spatio–temporelle de l’évaporation
du sol en dérivant un modèle qui est valable pour une large gamme de sols et de conditions
atmosphériques, et qui peut être couplé avec les données de télédétection facilement disponibles.
Ceci est une approche de modélisation multi–échelle basée sur une synergie entre les données de
télédétection et des modèles phénoménologiques existants. Trois sites sont utilisés pour valider
l’approche de modélisation développée dans cette thèse, tous représentatifs des conditions semi–
arides, situés au Mexique, en Espagne et au Maroc.

Dans une première étape, une amélioration des méthodes contextuelles basées sur la tem-
pérature est recherchée. Compte tenu des limitations qui apparaissent lors de la dérivation des
températures extrêmes à partir des images satellitaires dans des conditions entièrement sèches et
entièrement humides (qu’elles soient ou non présentes à la résolution d’observation), couplé à la
nécessité d’avoir une zone d’étude plate et des conditions atmosphériques uniformes, un nouveau
modèle est développé, afin de limiter l’impact de ces facteurs. Le modèle calcule les températures
extrêmes indépendamment de la résolution spatiale des données LST, en utilisant un modèle de
bilan d’énergie forcée par des données météorologiques disponibles. Une validation en termes de
températures extrêmes est effectuée au Maroc, au Mexique et en Espagne. L’impact des deux
approches différentes (basées sur les images et basées sur le modèle) pour dériver les températures
extrêmes est ensuite évalué en terme d’estimations de l’ET sur le site mexicain.

Comme dans un premier temps une étude a été menée afin d’améliorer les estimations de l’ET
d’un point de vue spatial, dans une seconde étape, des tentatives ont été faites pour caractériser le
comportement temporel de l’évaporation du sol (par l’efficacité évaporative du sol) pour différents
types de sols. Caractériser sa dynamique peut être une tâche difficile. Une nouvelle approche
est utilisée pour le faire, en utilisant la technique de modélisation globale (Mangiarotti et al.,
2012a), qui repose sur la théorie des systèmes dynamiques non linéaires. Au lieu de résoudre
analytiquement des équations différentielles ou discrètes, elle utilise l’espace de phase afin de
représenter, d’analyser et de comprendre l’évolution temporelle des comportements observés. La
technique est appliquée pour la première fois à une série synthétique de la SEE et elle cherche à
reproduire le cycle journalier de la SEE.

Dans un troisième temps, le modèle du bilan d’énergie développé à la première étape a été
introduit dans DISPATCH, et donc un nouvel algorithme, DISPATCH–E, a été développé. Il
cherche à caractériser à la fois le comportement temporel et spatial de la SEE, en combinant
les deux approches basées sur la LST et la SM, validant la technique par les estimations de SM
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désagrégées. Dans cette partie, une validation indirecte de l’amélioration des modèles de la SEE
est réalisée en termes de sorties de DISPATCH/DISPATCH–E: les produits SM désagrégés sont
comparés avec des mesures in situ sur le site espagnol.

Le manuscrit suivant est structuré en 6 parties:

• Chapitre 2, qui offre une description détaillée des trois sites, des mesures in situ et des
données de télédétection

• Chapitre 3, qui présente les modifications apportées à un modèle de l’évapotranspiration
basé sur la température et des validations des résultats en termes d’estimations de l’ET

• Chapitre 4, qui présente la technique de modélisation globale appliquée à une série d’efficacité
d’évaporation du sol, dans le but de caractériser son comportement dans le temps

• Chapitre 5, qui présente une méthode améliorée de la désagrégation des données d’humidité
du sol, basée sur l’évaporation, et les résultats de la validation en termes de produits SM
désagrégées

• Chapitre 6, qui offre des conclusions générales et perspectives d’avenir

• Annexe, où des articles supplémentaires dont j’ai contribué en tant que co–auteure peuvent
être trouvés

Cette thèse de doctorat joue un rôle central dans le projet ANR JC MIXMOD–E, projet qui a
commencé en 2013 et sera terminé en 2017. Le but de ce projet est d’améliorer la représentation
spatio–temporelle de l’E à des échelles multiples en dérivant un nouveau modèle avec des capacités
solides de régionalisation à partir de données facilement disponibles, tout en développant le
premier algorithme dédié au suivi de l’E à des résolutions multiples à partir de la télédétection.
Il vise à développer une approche de modélisation multi–échelle basée sur la synergie entre la
télédétection, les approches mécanistes et mathématiques, en utilisant des mesures issues des
stations ou des campagnes de terrain et des données de télédétection multi–capteur.

Une collaboration importante à mentionner a été réalisée avec le projet REC (Root zone soil
moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management
and water use impact - a multi–sensor remote sensing approach). C’est un projet européen
H2020, qui a commencé en 2015 et sera terminé en 2019. C’est une collaboration entre trois
institutions: CESBIO (Centre d’Etudes Spatiales de la Biosphère) Toulouse, isardSAT Barcelona
et Université Cadi Ayyad de Marrakech. Le projet vise à développer un nouvel algorithme
opérationnel innovant qui permettrait i) d’obtenir des estimations journalières de l’humidité
du sol en zone racinaire à l’échelle du champ et ii) d’évaluer quantitativement les différentes
composantes du bilan d’eau à l’échelle du champ en utilisant des données de télédétection multi–
capteur facilement disponibles. Le projet combinera les données actives SAR de Sentinel–1
avec les données désagrégées de DISPATCH afin de dériver la SM à des résolutions temporelles
et spatiales élevées. Mon rôle principal au sein de ce projet est d’améliorer l’algorithme de
DISPATCH. J’ai passé un total de 11 mois à isardSAT Barcelone et 1 mois à l’Université Cadi
Ayyad de Marrakech dans le cadre d’une mission longue durée d’un an pour ce projet.
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2.1 Introduction

The modeling approaches developed in this thesis have been tested over three sites, reflective
of the same climatic conditions: semi–arid areas, where irrigation is also present. Although ET
and SM estimates were validated over different sites, the common point between all three sites is
reflected by the analysis of extreme soil temperatures. Using three different study sites allowed
for an independent assessment of the methodology for computing extreme soil temperatures using
an energy balance model over semi–arid areas.

The three areas used as validation sites are:

• the Yaqui valley situated in the Sonora State (north–west Mexico), used for the comparison
of extreme soil temperatures issued using either satellite data or the energy balance model.
It also serves for the validation of evapotranspiration (ET) estimates;

• the R3 perimeter situated in the Haouz plain (central Morocco), used for the validation of
extreme soil temperatures estimated using the energy balance model with in situ measure-
ments;

• the Urgell region located in Catalonia (north–east Spain), used for the comparison of
extreme soil temperatures estimated using satellite data or the energy balance model.
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It also serves for the validation of disaggregated soil moisture (SM) products with in situ
measurements.

Different data have been used as an input to the different models present in this study. In
particular, remote sensing data have been used to i) derive ET estimates from a contextual
temperature–based model, and ii) disaggregate SMOS SM using a soil evaporative efficiency
(SEE) method and a similar contextual ET model. Meteorological data available over three
study sites have been used in order to force an energy balance model. In situ measurements
collected during different field campaigns were used as validation data of either ET, extreme
temperatures (Text), or SM products.

A detailed description of the study sites, along with the remote sensing and meteorological
data used (including data pre–processing) is offered below.

2.2 Sites and in situ data description

2.2.1 Yaqui site

The Yaqui valley, situated in the Sonora state in north–west Mexico, is a typical semi–arid
region, having a mean annual potential evapotranspiration of 2233 mm and a mean annual
precipitation of 290 mm (Chirouze et al., 2014). Most of the precipitation (approximately 240
mm) occurs during the monsoon season (June–September). The valley represents the largest
agricultural area in Sonora, with a total surface used for cultivation spanning 225 000 ha. It
is bounded by the Sierra Madre Mountains in the north–east and by the Sea of Cortez in the
south–west. The main crops consist of wheat (50 %), chilli pepper, beans, chickpea, potatoes,
broccoli, corn, safflower, and fruit trees (orange). Irrigation represents almost 90 % of the total
water consumption, with the Alvaro Obregon Reservoir (located on the Yaqui river) as the main
contributor.

2.2.1.1 In situ flux data

An experiment was performed, spanning a total of six months (December 2007 till May
2008), on an irrigated area of 4 km by 4 km situated within the Yaqui perimeter. Its goal was to
characterize, from a spatial variability point of view, the surface fluxes at different spatial scales,
ranging from the hectometric field scale to the kilometric scale, (Merlin et al., 2010a; Fieuzal
et al., 2011; Chirouze et al., 2014; Merlin, 2013). The flux data used in the evapotranspiration
validation analysis were provided by six micro–meteorological stations equipped with an eddy–
covariance flux measurement system that were set up in different fields (Merlin, 2013). Data from
these six stations were provided simultaneously with at least four ASTER overpasses. The latent
and sensible heat fluxes were evaluated using KH20 fast response hydrometers at a frequency
of 10 Hz, which were afterwards averaged on a 30 minute time period. The net radiation was
measured using CNR1 and Q7.1 radiometers, while the ground heat flux was acquired using
HUKSEFLUX HFP–01 plates (buried at a 0.05 m depth).

A visual representation of the Yaqui valley is presented in Figure 2.1.

2.2.1.2 Meteorological data

Apart from flux measurements, meteorological data, such as air temperature, relative air
humidity, solar radiation and wind speed, were acquired every half hour, by a station located
in the center of the region. The acquisitions were made at a 10 m height, from December 27th,
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Figure 2.1: The Yaqui site along with the six flux stations situated in the study area.

2007, till May 17th, 2008. Further details on the experiment can be found in Merlin (2013),
Chirouze et al. (2014), Fieuzal et al. (2011).

The area of interest is taken as a 16 km by 10 km area encompassing the 4 km by 4 km
perimeter in which measurements were taken.

2.2.2 Haouz plain (R3 perimeter)

The Haouz plain is situated in central Morocco (40 km east of Marrakech) and covers about
6000 km2 of almost flat surface. It presents a typical semi–arid Mediterranean climate, with a
mean annual precipitation of 250 mm, ocurring mostly from autumn till spring. The average
annual potential evapotranspiration is of 1600 mm. Approximately 85 % of available water is
used for agriculture, with flood irrigation being the most widely used method (Er-Raki et al.,
2007). The main crops in the R3 irrigated perimeter consist of wheat (generally sown between
mid November and mid Januray), with maize, beet and olive trees making up the rest. The
typical crop surface is of about 3–4 ha.

2.2.2.1 In situ temperature data

A field experiment was conducted in a maize parcel of the R3 perimeter, on the following
days in 2014: April 14th, April 22nd, April 30th, May 8th and May 16th. The experiment seeked
to perform measurements of the minimum and maximum soil temperatures (Ts,wet and Ts,dry)
that would further serve as reference for the direct validation of Text modeling approaches using
meteorological data. Since maize is sown in early April, the crop field was mostly representative
of bare soil conditions during the whole experiment.

Various atmospheric conditions were met during the experiment, the weather generally being
sunny, with one cloudy day (May 16th) and one post–rainy day (April 22nd). This allowed
testing the approach in different conditions.
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Temperature measurements were performed over two 2 m by 2 m soil plots. In order to
simulate the two extreme (fully dry and fully wet) conditions, one soil plot was kept fully dry,
while the soil moisture of the other soil plot was maintained equal to the soil moisture at satura-
tion (Stefan et al., 2015). The dry soil plot was kept dry by isolating it with a plastic sheeting,
burried at 15 cm. This was done in order to avoid water infiltrations from capillary rising. In
order to provide shelter against potential rainfalls, it was always covered by plasting sheeting
between sampling days. The wet soil plot was kept at saturation by irrigating it (continuously
and manually) from about 10–20 minutes before the start of the measurements until the time
of the last measurement, on each sampling day. In order to prevent flooding and runoff, water
was poured in sufficient quantity to reach soil saturation, but as slow as possible (Stefan et al.,
2015). An illustration of the 2 m by 2 m dry soil plot where the experiment took place is shown
in Figure 2.2.

Figure 2.2: The dry soil plot located in the R3 perimeter. A pit of 15 cm depth was dug
(a) and was kept fully dry by using a plastic sheeting to cover it in between experiments (b).
iButton sensors (c) and the handheld infrared thermometer (d) used to perform temperature
measurements are also illustrated.

Continuous measurements of Ts,wet and Ts,dry were taken between 10:00 AM and 12:00 AM
UTC (Coordinated Universal Time). The observation time was chosen to be compatible with the
overpass times of several thermal sensors: MODIS, ASTER, Landsat-7/Landsat-8. The actual
soil temperature measurements were taken by using two different means: DS1921G–F5 Ther-
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mochron iButton sensors (http://www.ibuttonlink.com/products/ds1921g) and OS532E–W8
handheld infrared thermometer.

The iButton sensors are a low–cost, self–sufficient system that keep track of the temperature
and store the readings in time. Aiming at having a high confidence in the experimental data,
and thus a better estimate of the measurements’ uncertainty, several Thermochron iButtons were
installed at each soil plot. Basically, iButtons were set up on acrylic glass plates (7 cm by 7 cm),
mounting up to three iButtons per plate. Two plates (six iButtons) were used to monitor Ts,dry,
since more variability was found in the dry soil temperature measurements. Only one plate was
used to estimate Ts,wet. All plates were planted very close to the soil surface, without having
direct exposure to the Sun. Thermochron data were registered every 5 minutes. Entries logged
by all Thermochron iButtons were averaged per soil plot, and per 30 minute bins, which were
then cumulated at 10:30 AM, 11:00 AM and 11:30 AM UTC (Stefan et al., 2015). Thus, a
total of three datasets (one for Ts,wet and two for Ts,dry) were obtained every measurement day.
The two distinct datasets obtained for Ts,dry were also averaged in order to have just one set of
measurements, as for Ts,wet.

The infrared thermometer provides non contact temperature measurements with an absolute
accuracy of 2–3 ◦C. It provides temperature reading at a glance, on a digital LCD display,
displaying both the current, the minimum and maximum, average or differential temperatures.
The range of the measurable target varies between ∼ 13 cm and ∼ 30 m. Emissivity can be
manually adjusted with a 0.01 step. Measurements were taken at a 10 minute time interval, with
three different readings for each soil plot, that were consequently averaged to obtain a single set
of Ts,dry and Ts,wet values. A visual representation of the (mean) measurements provided using
both sensors (iButton and infrared thermometer) over the dry and wet soil plots on April, 30th,
is presented in Figure 2.3.

Figure 2.3: Mean and standard deviation of the in situ measurements acquired over the wet
and dry soil plots in the R3 perimeter (April 30th, 2014). Measurements were acquired using
either iButton (here abbreviated as “iB”) sensors or the infrared thermometer (here abbreviated
as “trad”). Vertical lines mark the begining and ending of the experiment. The average of the
standard deviation of the instantaneous measurements is also computed.

By looking at results of this preliminary analysis, one can see that the infrared thermometer

33



readings are generally underestimated as compared to iButton readings, for both Ts,dry and
Ts,wet, which is to be expected since the emisivitty for the thermometer was set to 1. The
point is that they present larger variations. This behavior was observed for all the days where
the measurements were performed. The good confidence in the iButton sensors’ embedded
calibration is reflected by the soil Text measurements matching until 30 minutes before the start
of the experiment. The uncertainty in Ts,dry and Ts,wet was estimated by computing the average
on each soil plot of the standard deviation of instantaneous measurements acquired either with
the iButton sensors or with the infrared thermometer. The uncertainty for the iButton sensors
was found to be 1.40 ◦C and 0.74 ◦C for Ts,dry and Ts,wet, respectively. The uncertainty for the
infrared thermometer was found to be 2.27 ◦C and 0.90 ◦C for Ts,dry and Ts,wet, respectively.
Therefore, the temperature readings registered by the iButton sensors were used as a reference
when comparing model–derived extreme temperatures with in situ measurements, because less
uncertainty was found in the iButton readings than in the infrared thermometer readings.

2.2.2.2 Meteorological data

Meteorological data (wind speed, relative air humidity, air temperature, solar radiation) were
collected every 30 minutes at a 2 m height by a permanent wheather station located in an alfalfa
crop field. The station is located approximately 200 m away from the dry/wet soil plots (see
Figure 2.4).

Figure 2.4: The wet and dry soil plots along with the meteorological station located in the R3
perimeter.
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2.2.3 Urgell site

The Urgell region in Catalonia (north–east Spain) is a typical semiarid Mediterranean region,
with mild winters and warm summers. It presents two rainy seasons (autumn and spring) and
a very dry season (summer). The average yearly temperature is 16 ◦C, while the average yearly
precipitation is about 400 mm. The main irrigated crops found within the area are wheat, maize,
alfalfa and fruit trees (apple and pear). The dryland crops include barley, vineyards, olive and
almond trees.

2.2.3.1 In situ soil moisture data

A field experiment was conducted in 2011 and 2012 on a 20 km by 20 km area to gather the
0–5 cm soil moisture using the gravimetric technique. Ten days were sampled in 2011: on day
of year (doy) 97, doy 98, doy 146, doy 147, doy 165, doy 196, doy 228, doy 229, doy 244 and doy
277, and four days in 2012: doy 87, doy 103, doy 151 and doy 167. Measurements were taken
over four areas of 3 km by 3 km: two located in a dryland area and two in an irrigated area, with
ten points per sampling area. Three separate measurements per sampling point were performed,
which mounts to a total of 120 daily measurements within the entire area.

In order to derive soil texture, soil particle analysis was done at each sampling point location
(Merlin et al., 2013b). The data post-processing showed a mean clay fraction of 0.24 and a mean
sand fraction of 0.37. Since gravimetric measurements were performed, the approach described
in (Saxton et al., 1986) was then used to convert them to volumetric values.

The in situ measurements serve as a validation dataset for the downscaled soil moisture
products (see Chapter 5). Since they are point measurements, they were upscaled to a 3 km
resolution by using a simple average.

2.2.3.2 Meteorological data

Two distinct meteorological datasets were used over the Urgell area: provided by weather
stations and issued by an interpolation model. The meteorological variables that are of interest
are air temperature, relative air humidity, net radiation and wind speed. This section provides
a description of the dataset provided by weather stations. The description of the data provided
by the interpolation model can be found in Section 2.3.3.

The meteorological data provided by weather stations concern stations integrated in the
XEMA (Xarxa d’Estacions Meteorològiques Automàtiques i.e. Automatic Weather Station Net-
work), run by the Meteorological Service of Catalonia (SMC). As of December 31st, 2011, it
engulfs a total of 169 automatic weather stations. A list of the acquired data, along with the
individual acquisition height is provided in Table 2.1. Measurements are conducted on either an
hourly basis, or a 30 minutes basis, depending on each station.

The data used for implementation of the soil energy balance model over the Urgell site (see
Chapter 3) was provided by the Mollerussa (XI) weather station. This station is favorably
situated within the irrigated area and far enough from the mountains in order to rule out as
much as possible the topographic effects. It provides meteorogological data at a 2 m height,
every half hour. A visual representation of the study area, along with the in situ sampling areas
and the location of the XEMA meteorological stations is shown in Figure 2.5.

35



Table 2.1: List of variables and acquisition heights, as measured by the XEMA meteorological
stations

Variable Acquisition height (m)

Air temperature 1.5
Precipitation 1.4 (except stations situated over 1800 m altitude)

Relative air humidity 1.5
Wind speed and directionality 2/ 6 / 10

Radiance 2
Atmospheric pressure -

Snow thickness -

Figure 2.5: The Urgell 60 km by 60 km (encompassing the 20 km by 20 km area where in situ
measurements where performed) study area, alongside the in situ sampling areas and the XEMA
meteorological stations (with a 2 m acquisition height). The Mollerussa (XI) station whose data
was used in this study is shown in light blue.

2.3 Spatial data

Different spatial datasets are used in this thesis: remote sensing data, meteorological data
issued from an interpolation model and digital elevation data. First of all, an in–depth description
of the remote sensing data is offered. Two distinct remote sensing data types are used: issued
from optical (thermal and short–wave) and microwave sensors, which are both discussed below.
Then, an overview of the interpolation model (SAFRAN) used to derive meteorological data over
the Spanish site is presented. Digital elevation data is then described. In a final step, remarks
regarding the data processing are covered.
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2.3.1 Optical data

Short–wave data

Satellite surface reflectances (red and near–infrared bands) collected from ASTER and Formosat–
2 have been used in order to derive NDVI, fractional green (photosynthetically active) vegetation
cover (fvg) and surface albedo (α) over the Yaqui and Urgell regions. These data will be specif-
ically used as an input to the temperature–based model of ET presented in Chapter 3, in order
to derive extreme temperatures and ET estimates.

The Formosat–2 satellite is an Earth observation satellite belonging to the National Space
Organization of Taiwan, launched in 2004. It has an equator crossing time of 9:30 AM, providing
images at 8 m resolution on a daily basis.

ASTER is an imaging instrument onboard NASA’s Terra satellite. It has an equator crossing
time at 11 AM, with a 16–day revisit cycle. Its short–wave infrared sensor has a resolution
of 30 m. ASTER data are extracted over the 16 km by 10 km Yaqui and 60 km by 60 km
(encompassing the 20 km by 20 km area where in situ measurements were performed) Urgell
areas. Two cloud–free ASTER images were obtained over the Urgell site at approximately 11:00
AM UTC on August 16th and October 3rd, 2011. Seven cloud-free ASTER images were acquired
over the Yaqui area during the agricultural season of 2007–2008, at around 11:30 AM local solar
time on December 30th, February 23rd, March 10th , April 11th, April 27th, May 6th and May
13th.

The fractional green vegetation cover is obtained by using the Gutman and Ignatov (1998)
formula:

fvg = NDVI − NDVIs
NDVIvg − NDVIs

(2.1)

with NDVIvg corresponding to fully–covering green vegetation and NDVIs to bare soil or to bare
soil partially covered by senescent (non–photosynthetically active) vegetation. The values of
NDVIvg and NDVIs are set to the maximum and minimum value of the NDVI observed during
the agricultural season within the study domain. NDVI endmembers are estimated as 0.93 and
0.018, and 0.93 and 0.18 for the Urgell and Yaqui areas, respectively. The reason behind the
small value registered for NDVIs for Urgell is the presence of open water (reservoir of irrigation
water) in the region. NDVI is computed as the ratio of the difference between (re–sampled)
near–infrared and red reflectances to their sum.

Surface albedo (α) is computed as a weighted sum of (re–sampled) red and near–infrared
reflectances, using the coefficients provided by Weiss et al. (1999) and corroborated by Bsaibes
et al. (2009) and in Chirouze et al. (2014). It is derived over Urgell using ASTER data, while
over the Yaqui area from Formosat–2 data. The reason behind using Formosat–2 derived albedo
resides in the unusability of the ASTER shortwave infrared data on its seven overpass days over
the Yaqui site (Chirouze et al., 2014). Its high revisit cycle made it possible to use data collected
on the nearest date from each of the seven ASTER overpass dates in order to estimate both NDVI
and α from the red and near–infrared reflectances, aggregated at ASTER sensor resolution.

MODIS is another sensor which provides NDVI data that were used over Urgell, but as an
input to the SMOS SM downscaling algorithm (see Chapter 5). MODIS is the payload scientific
instrument onboard NASA’s Terra satellite (launched in 1999) and Aqua satellite (launched
in 2002) as part of the Earth Observing System (EOS) Programme. Data are captured in 36
spectral bands with wavelenghts ranging from 0.4 µm to 14.4 µm. The spatial resolution of the
products ranges from 250 m to 500 m and to 1 km, depending on the bands used, with a daily
time coverage.

The MODIS version–5 normalized difference vegetation index NDVI (MOD13A) was down-
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loaded using the NASA Land Processes Distributed Active Archive Center (LP DAAC). The
NDVI products are re–sampled on a 1 km grid, with a sinusoidal projection (Solano et al., 2010;
Wan, 2006, 1999). The NDVI product has a 16-day time coverage.

Thermal

ASTER also has a thermal sensor, consisting of five thermal bands, with a spatial resolution of
90 m. ASTER official surface kinetic temperature products (AST 08) were downloaded from the
Earth Observing System Data Gateway. The “temperature and emissivity separation” algorithm
(Gillespie et al., 1998; Schmugge et al., 1998) was used in order to retrieve the LST from ASTER
over the Yaqui and Urgell regions.

MODIS has a thermal sensor as well, which is used to derive the LST. The MODIS version–5
LST products onboard Terra (MOD11A1) and Aqua (MYD11A1) were downloaded using the
NASA Land Processes Distributed Active Archive Center (LP DAAC). The LST products, which
have a daily coverage, are also re–sampled on a 1 km grid, like the NDVI products.

2.3.2 Microwave data

SMOS soil moisture data were used in order to obtain high resolution soil moisture products
using DISPATCH (see Chapter 5). The primary goal of ESA’s SMOS satellite, launched in
November 2009, is to observe the soil moisture over Earth’s landmasses and the salinity over
Earth’s oceans. It is the second Earth Explorer opportunity mission designed as part of ESA’s
Living Planet Programme. The novelty of the SMOS mission is a new measuring technique
in the Earth observation domain: its payload incorporates for the first time in history a 2D
interferometric radiometer (operating at the lowest band in the microwave domain), on a polar
orbit. Microwave radiation is measured in L–band at a 1.4 GHz frequency (Kerr et al., 2001,
2010), with the help of its Microwave Imaging Radiometer using Aperture Synthesis (MIRAS)
instrument. SMOS has a global coverage and a 3–day equatorial revisiting period. It has two
overpasses at (local solar time) 6 AM (ascending orbit) and 6 PM (descending orbit). Depending
on the incidence angle, the spatial resolution of its products ranges from 35 to 55 km. The top
soil layer (5 cm) SM is retrieved with an accuracy of 0.04 m3·m−3 (Kerr et al., 2012).

The SMOS Level–3 1–day global SM product (MIR CLF31A/D), version 2.72 (in 220 repro-
cessing mode RE02) product is used in this study. They are available in a NetCDF format on
the EASE (Equal Area Scalable Earth) grid, with a grid spacing of approximately 25 km by
25 km. The Level–3 SM products are computed directly from Level–1 products by the CATDS
(Centre Aval de Traitement des Données SMOS). The approach for deriving SM from brightness
temperature observations is developed from the Level–2 retrieval algorithm (Wigneron et al.,
2007; Kerr et al., 2012). Both processing chains (Level–2 and Level–3) take into account mul-
tiangular observations of brightness temperatures in order to simultaneously retrieve SM and
vegetation optical depth at nadir, by using a standard iterative minimization of a cost function.
The main term of the cost function is given by the sum of squared weighted differences between
measured and modeled brightness temperatures, at a variety of incidence angles. The algorithm
then chooses the best set of parameters (SM and vegetation optical depth) that minimizes the
cost function (Kerr et al., 2012). The main difference between the two processing chains is that
while Level–2 takes into consideration multiangular observations retrieved the same day and by
the same orbit (ascending/descending), Level–3 takes into account multiangular observations of
several overpasses (a maximum of 3), over a 7–day time frame. The Level–3 products thus present
a better robustness (Al-Yaari et al., 2014). A detailed description of the Level–3 processor can
be found in the Algorithm Theoretical Baseline Document (Kerr et al., 2013) and in the Level–3
product data description (Kerr et al., 2014).

38



2.3.3 SAFRAN data

The second meteorological dataset (used in the downscaling of SMOS SM products, see
Chapter 5) is provided by the SAFRAN (Système d’analyse fournissant des renseignements at-
mosphériques à la neige) model. It is a mesoscale atmospheric analysis system for surface vari-
ables, originally developed to offer an investigation of the atmospheric forcing in mountainous
landscapes to be used in avalanche forecasting (Durand et al., 1993, 1999). Its application was
later extended to all France. A list of variables and the associated height at which they were
predicted is provided in Table 2.2.

Table 2.2: List of variables and acquisition heights, as estimated by SAFRAN

Variable Height (m)

Air temperature 2
Relative air humidity 2

Wind speed 10
Incoming solar radiation -

Incoming atmospheric radiation -
Cloudiness -
Snowfall -
Rainfall -

A homogeneity of the atmospheric variables over well defined areas is assumed in the model,
and the only possible variations are inflicted by topography. A homogeneous climate zone is
considered as an area containing at least two rain gauges and one meteorologic station. The
model takes into consideration all of the observed data and, for each variable (with the exception
of downward visible and infrared radiation and precipitation), it uses an optimal interpolation
method to estimate values at the considered altitudes. The observations used by SAFRAN are
available at 0, 6, 12 and 18 hours UTC. The data is then interpolated in time at an hourly time
step. The estimates are on a gridded dataset, at a 5 km resolution.

The incoming solar and atmospheric radiation and the precipitation are calculated in a dif-
ferent manner. A radiation model (Ritter and Geleyn, 1992) and previously analyzed variables
are used to estimate radiation. Precipitation rate is computed using daily rain gauges; it is
then interpolated on an hourly time step based on the evolution of relative air humidity: if the
relative air humidity is sufficiently high, then precipitation is expected to occur. A partitioning
based on air temperature is then used in order to separate snowfall from rainfall as follows: if air
temperature is higher than 0.5 ◦C, then the precipitation is considered as rainfall. Otherwise, it
is considered as snowfall.

SAFRAN was recently implemented over Urgell by meteorological analysis for screen level
variables (Quintana-Segúı et al.). The study showed that in north–east Spain, SAFRAN emulates
estimations in terms of temperature well, with no biases on the annual means. The mean RMSE
of temperature is of about 1.5 ◦C. The relative air humidity is also estimated with no bias and
with a mean RMSE of 7 %. There is a systematic negative bias of -0.2 m·s−1 and 1.3 m·s−1

RMSE detected in the wind speed estimations. In terms of radiation estimates, in north–east
Spain, visible radiation presents a 10 W·m−2 bias and a 114 W·m−2 RMSE. Infrared radiation
has a negative bias of -12 W·m−2 and a RMSE of 33 W·m−2. The results are equivalent with
results validated over France (Quintana-Segúı et al., 2008), proving that the model is robust.
However, statistics were performed over large areas. In specific areas (like the the chosen study
area in Urgell), results might be better or worse. The area of study considered in this analysis,
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which is flat, should be favorable to SAFRAN.

The data used in this study can be found at the HyMex database (http://mistrals.sedoo.
fr/10.14768/MISTRALS-HYMEX.1388).

The reason behind using SAFRAN data within DISPACTH is because they are spatialized
data, and the aim of this part is to characterize the soil evaporaive efficiency (through its link
with soil moisture) from a spatial point of view.

2.3.4 DEM data

Elevation data extracted from the GTOPO30 digital elevation model (DEM) are also required.
It is a model developed by the United States Geological Survey and it has a resolution of ∼ 1
km. It is split in 33 tiles, which are stored in the DEM file format. DEM data is used as an input
to DISPATCH and DISPATCH–E (see Chapter 5) to correct the MODIS LST for topography
effects.

2.3.5 Data pre–processing

This part deals with the pre–procesing applied to the SMOS, MODIS and SAFRAN datasets
that were used as an input to DISPATCH.

DISPATCH was applied to the SMOS Level–3 1–day global SM product (both ascending and
descending overpasses), MODIS version–5 LST products onboard Terra and Aqua – from one
day before up to one day after the SMOS overpass, and normalized difference vegetation index
NDVI – available each 16 days.

SMOS original datasets are downsampled in order to work at the radiometer resolution.
SMOS L3 products are provided on a 25 km grid, which can be up to half of the original SMOS
resolution (35–50 km). Following the SMOS re–sampling strategy described in (Merlin et al.,
2010b), re–sampled 40 km resolution SMOS data overlap four times over the area. The four SM
datasets that are obtained at a 40 km resolution are assumed to be independent.

A maximum of 24 SM–LST input datasets can be generated, depending on the user’s prefer-
ences. Four resampled SMOS datasets (for each ascending/descending orbit) can be used with six
MODIS LST datasets (3 consecutive days of MODIS acquisitions for both Terra and Aqua over-
passes). The downscaling relationship is applied to each input datasets, with 24 corresponding
disaggregated products, which are then combined to produce 3 final outputs: the disaggregated
SM dataset, the STD dataset, which is the standard deviation of the up to 24 disaggregated SM
fields, and the CNT dataset, which is the size of the number of fields or size of the aggregation
ensemble. The aggregation is done if at least 3 SM fields are generated, so the CNT values range
from 3 to 24. The final disaggregated soil moisture product is generated on the intersection of
these four SMOS grids.

All input data are extracted over MODIS tile(s) that encompass the user’s area of interest. A
visual representation of the 40 km SMOS SM data extracted over 1 MODIS tile (namely h18v04)
that encloses our study area is shown in Figure 2.6. SAFRAN 5 km resolution data is also shown.
In this study, SMOS data are extracted over a 200 km by 240 km area.

The pre–processing chain that is applied to the input dataset, that reprojects, resamples and
extracts data over MODIS tiles before DISPATCH is applied, is known as DISPATCH Input
Interface (Molero et al., 2016).

From an operational point of view, considering the small extent of the study area, modifica-
tions were made with respect to the input dataset. In order to save computational time, new
smaller grids were defined, and SMOS, MODIS, DEM and SAFRAN data were extracted over
these new grids. A visual representation of a new grid is shown in Figure 2.7.
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Figure 2.6: 40 km SMOS SM data corresponding to one MODIS tile that encompasses the 60
km by 60 km Urgell study area. SAFRAN 5 km resolution data is also shown.

Figure 2.7: An example of one of the new, smaller SMOS grids (amongst a total of four).
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A pre–processing of the SAFRAN data was also independently performed. Firstly, data close
to the two distinct MODIS overpasses were extracted: 10:00 AM and 11:00 AM, and 1:00 PM
and 2:00 PM, respectively. Data were then averaged (simple mean) in order to have estimates
at the corresponding MODIS overpass times: 10:30 AM (Terra) and 1:30 PM (Aqua).

The second step in the pre–processing consists in extracting the data corresponding to the
SMOS grids that cover the study area. Finally, the data were upscaled from 5 km (SAFRAN
resolution) to 40 km (SMOS resolution) by simple averaging.

2.4 Conclusion

Three different semi–arid regions have been used as study sites for the implementation of
different models, which provide estimates in terms of ET (Chapter 3) and SM (Chapter 5). The
common point between the three sites is given by estimates of the extreme soil temperatures,
which are derived from two different models: image–based (which uses solely remote sensing
data), and an energy balance model (which uses solely meteorological data). Using more than
one site in the comparison of extreme temperatures is a measure of the consistency in the es-
timates provided by the two models, in different surface and atmospheric conditions. In situ
measurements of E are missing, so a direct evaluation of the SEE models cannot be performed.
The approach in this thesis was to validate extreme soil temperatures as a proxy for the SEE
and to evaluate the DISPATCH output (SM) as an assessement of the SEE model.
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Chapter 3

Improving the wet and dry
boundaries of a contextual
evapotranspiration model
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3.1 Introduction

The objective of this PhD is to improve the representation of soil evaporation from a spatio–
temporal point of view, in a range of different soil and atmospheric conditions, by making use of
available remote sensing data. However, what is observed from remote sensing data is rather the
soil evaporative efficiency (SEE), defined as the ratio of soil evaporation to potential evaporation.
One way of deriving SEE by remote sensing means is from LST data, using the following formula
(Shuttleworth et al., 1989; Nichols and Cuenca, 1993):

SEE = Ts,dry − Ts
Ts,dry − Ts,wet

(3.1)
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where Ts,dry and Ts,wet are the soil temperatures corresponding to fully dry and fully wet con-
ditions, and Ts is the soil temperature derived from remote sensing data. The linearity between
SEE and Ts in Equation 3.1 was recently verified in (Merlin et al., 2016).

However, currently there are very few available ground measurements of E to be used for
validation purposes. Therefore, remote sensing approaches are mostly validated in terms of total
evapotranspiration (ET), whose ground measurements are more accesible via eddy covariance
techniques (see Chapter 2). There are two methodologies used in deriving ET through LST:
residual and contextual methods. Contextual methods such as SEB–1S (Merlin, 2013), S–SEBI
(Roerink et al., 2000), which calculate ET as the available energy times the evaporative fraction
(EF), are appealing because unlike residual methods, they do not require calibration. EF is
defined as the ratio of latent heat to available energy and can be estimated using the formula
(Roerink et al., 2000; Merlin, 2013):

EF = Tdry − T

Tdry − Twet
(3.2)

where T is the surface temperature corresponding to a given point in the space defined by LST
and the fractional vegetation cover (fvg) and/or the space defined by LST and the soil albedo
(α), and Tdry and Twet are the surface temperatures corresponding to fully dry and fully wet
conditions.

Note that Equations 3.1 and 3.2 are semi-empirical; they are not based on analitical compu-
tations that derive from physical equations.

An important step in contextual methods consists in determining the wet and dry edges of
the LST. These edges can be determined by computing the exreme temperatures (Text) that
correspond to fully dry and wet conditions for both soil and vegetation components in the space
defined by LST and fvg and/or the space defined by LST and α. The vertices of the obtained
polygons are subsequently joined by straight lines or curves in order to interpolate the wet and
dry edges. Contextual methods are very attractive because they can be easily transferred to
different areas thanks to their image–based nature. However, one of their main limitation is that
Text be actually observed at the thermal sensor resolution within a study domain characterized
by uniform atmospheric conditions.

By developing algorithms that estimate Text independently of the surface conditions (so in-
dependently of the contextual nature) within the study area, some of the limitations associated
to contextual methods could be dismissed. These models would estimate Text independently of
the spatial resolution of the LST data (Moran et al., 1994; Long and Singh, 2012) by running a
surface energy balance model forced by meteorological data.

This part mainly aims at developing a theoretical approach to estimate Text independently of
LST data, by using an energy balance model forced by available meteorological data. Estimates
in terms of Text (as calculated by the energy balance model) will then be compared with in situ
measurements (over the Moroccan site) and with image–based estimates provided by a contextual
model (over the Mexican and Spanish sites). Text estimates given either by the energy balance
model or by the contextual model will then be used as input in the same EF model in order to
derive ET estimates over the Mexican site.

First of all, a description of the contextual model (SEB–1S) used, along with the modifications
made to it are presented in Section 3.2. The soil energy balance model is then described in Section
3.3. Results in terms of Text and ET estimates are then presented in Section 3.4. A summary
and general conclusions can be found in Section 3.5. The article corresponding to this analysis
can be found in Section 3.6, providing a more detailed description of the soil energy balance
model, additional results in terms of ET validation with in situ measurements, as well as a
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mixed modeling approach that combines the energy balance model with the image-based model
in deriving Text.

3.2 A contextual method

3.2.1 SEB–1S overview

The contextual model chosen to derive ET is the SEB–1S model (Merlin et al., 2013a).
Being a contextual method as Gómez et al. (2005), (Sobrino et al., 2005), Sobrino et al. (2007),
Fan et al. (2007), Galleguillos et al. (2011a), Galleguillos et al. (2011b), SEB–1S derives the
evaporative fraction EF as the ratio of two distances: the distance separating a pixel in the
LST − α space from the dry edge, and the distance separating the dry and the wet edges. The
next step after the estimation of EF is to compute ET as EF multiplied by the available energy
(Rn−G), where Rn (W·m−2) is the surface net radiation and G (W·m−2) the ground heat flux.
A visual representation of the computation behind EF, as well as the interpretation behind the
edges of the polygon in the LST − α space is presented in Figure 3.1.

Figure 3.1: For a given point J in the LST − α space, the EF is calculated as the ratio of IJ
to IK. Underlying grey points correspond to 90 m resolution LST data acquired over Yaqui, on
April 27th, 2008.

The reason behind using SEB–1S to derive ET estimates is twofold: i) it provides a consistent
interpretation of the edges in both spaces and ii) it is based on a synergy between the two
LST − fvg and LST − α spaces with respect to the determination of extreme temperatures.
Therefore, SEB–1S builds upon the two commonly used contextual approaches, namely the
trapezoid method of Moran et al. (1994) and the S–SEBI method of Roerink et al. (2000).
Since the determination of exteme temperatures in either space is restricted if fully wet and dry
conditions are not met at the optical sensor resolution, a synergistic combination of the two
spaces can help improve the estimates (Merlin, 2013).
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3.2.2 Image–based extreme temperatures

Based on a synergy between the LST −α and the LST − fvg spaces, SEB–1S has a submod-
ule (hereby referred to as Text RS) that provides estimates of the extreme soil and vegetation
temperatures. A visual representation of the meaning behind the edges of the polygons in both
the LST − α and in the LST − fvg spaces is provided in Figure 3.2, for data gathered over the
Yaqui site on April 11th, 2008.

Figure 3.2: Meaning behind the edges of the polygons identified in the LST − α (a) and the
LST − fvg (b) spaces. Underlying grey points correspond to 90 m resolution LST data acquired
over Yaqui, on April 11th, 2008.

For each space, SEB–1S determines four Text and four polygon edges. However, in the
LST − fvg space, it identifies two extreme values for fvg (0 and 1), while in the LST − α space,
three extreme albedo values are identified: αs (corresponding to bare soil), αvg (corresponding
to green vegetation) and αvs (corresponding to senescent vegetation). The interpretation of the
edges thus slightly differs depending on the space.

For the LST − α space, the edges are interpreted as follows:

• (AB) – “bare soil”

• (BC) – “wet surface”

• (CD) – “full-cover vegetation”

• (DA) – “dry surface”

For the LST − fvg space, the edges are considered as:

• (AB) – “mixed soil and senescent vegetation”

• (BC) – “wet surface”

• (CD) – “full-cover green vegetation”
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• (DA) – “dry surface”

An important aspect to mention is the negative slope of the dry edge (AD). This is explained
by both radiative and convective controls in dry conditions (Roerink et al., 2000; Merlin et al.,
2013a). Assuming a constant global radiation and air temperature, there is a formal relationship
between surface temperature and albedo. For low albedo values (characteristic of open water
and irrigated lands), surface temperature is almost constant with increasing albedo. Beyond a
certain threshold, surface temperature decreases with increasing albedo; this is explained by the
fact that all energy is now used to heat up the surface (hence radiative and convective controls)
since soil moisture is so low that evaporation cannot take place. The reason behind the negative
slope corresponding to the wet edge (BC) identified in the LST − α space is the convective
control in wet conditions (Merlin et al., 2013a), consistent with the common interpretation of
the LST − fvg space.

In the original version of SEB–1S, the minimum vegetation temperature Tv,wet is set to the air
temperature Ta (Long and Singh, 2012; Jiang and Islam, 1999). The maximum soil temperature
Ts,dry is the same for both spaces and is set to the maximum surface temperature Tmax. The
other Text are estimated by combining the Text retrieved from the LST − α and LST − fvg
spaces separately. The minimum soil temperature Ts,wet is computed by extrapolating the wet
edge passing through the well-watered full-cover green vegetation index until the bare soil line.
The maximum vegetation temperature Tv,dry is computed by extrapolating the dry edge passing
through the well-watered full-cover green vegetation index until the bare soil line. This process
is undertaken for each space separately. Ts,wet and Tv,dry are then set to the average of the two
individual corresponding values retrieved in each space.

More specifically, the extreme soil and vegetation temperatures in the LST − α space are
given by:

• Tv,wet,1 (at α = αvg) is set to the air temperature Ta.

• Ts,dry,1 (at α = αs) is set to the maximum temperature Tmax observed within the study
area.

• Ts,wet,1 is defined as the intercept at α = αs of the line passing through the point (αvg, Ta)
and the point with α < αth,1 such that the slope of the line is maximum (meaning that all
the other data points with α < αth,1 are located above the wet surface edge). αth,1 is set
to αvg.

• Tv,dry,1 is defined as the intercept at α = αvs of the line passing through (αs, Ts,dry,1) and
the point with α > αvs such that the slope of the line is maximum (meaning that all the
other data points with α > αth,1 are located below the dry surface edge).

Regarding the LST − fvg space, extreme soil and vegetation temperatures are computes as
follows:

• Tv,wet,2 (at fvg = 1) is set to the air temperature Ta.

• Ts,dry,1 (at fvg = 0) is set to Tmax.

• Ts,wet,2 is defined as the intercept (at fvg = 0) of the line passing through the point (1, Ta)
and the point with fvg < fvg,avg such that the slope of the line is maximum (meaning that
all the other data points with fvg < fvg,avg are located above the wet surface edge). The
threshold value (fvg,avg) is set to 0.5.
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• Tv,dry,2 is defined as the intercept (at fvg = 1) of the line passing through the point (0,
Ts,dry,2) and the point with fvg > fvg,avg such that the slope of the line is maximum
(meaning that all the other data points with fvg > fvg,avg are located below the dry
surface edge).

To summarize:

Ts,dry = Ts,dry,1 = Ts,dry,2 = Tmax (3.3)

Tv,wet = Tv,wet,1 = Tv,wet,2 = Ta (3.4)

The final step in estimating the extreme Text consists in averaging the two distinct Text sets
obtained for each space:

Ts,wet = (Ts,wet,1 + Ts,wet,2)
2 (3.5)

Tv,dry = (Tv,dry,1 + Tv,dry,2)
2 (3.6)

3.2.3 Adjustments to the estimation of the image–based extreme tempera-

tures

Adjustments to the estimation (as originally implemented in SEB–1S) of the image–based Text
are performed in this study. SEB–1S was developed to be used with remote sensing data at high
resolution (∼ 100 m). Particular attention was given to enhancing the robustness of the SEB–1S
submodule that estimates extreme temperatures when using remote sensing data with a lower
spatial resolution (∼ 1 km). Adjustments primarily concern the image–based thresholds that
are taken into consideration when determining the wet and dry edges. An effort was made into
defining new thresholds such that the wet and dry edges are estimated with a better precision,
in the case when they are not necessarily representative of the extreme soil and vegetation
conditions.

Modifications concern the calculation of the minimum soil temperature and maximum vegeta-
tion temperature in both spaces. More specifically, the thresholds are now computed differently:

• αth,1 is now considered as the average between αvg and αs.

• a new threshold is defined for Tv,dry,1: αavg, which is the average of all α values within the
study area.

• fvg,avg is now computed for each day separately.

Choosing different threshold values was done in order to render the methodology more robust
when using 1 km resolution remote sensing data. In particular, the new thresholds are calculated
taking into account the surface conditions observed at a 1 km resolution. The thresholds used in
the original version of SEB–1S are suited for high resolution data, when there are enough points
in the LST −α and LST −fvg spaces to cover the real surface conditions; the same values might
not prove so robust at a low resolution.
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3.3 Modeling extreme temperatures

In order to estimate Text independently of remote sensing data, a different approach is sug-
gested. It consists in applying a soil energy balance (EBsoil) model forced by available meteoro-
logical data in order to compute soil Text. The goal is to use a minimum number of a priori input
parameters, hence, it is applied in bare soil conditions only. Vegetation Text are then estimated
from soil Text.

EBsoil runs an iterative loop on the soil temperature Ts (intialized to the air temperature
Ta) until thermal equilibrium is reached (Norman et al., 1995):

Rns −G = Hs + LEs (3.7)

where Rns (W·m−2) is the surface net radiation, G (W·m−2) is the ground heat flux, Hs (W·m−2)
the soil sensible heat flux and LEs (W·m−2) the soil latent heat flux.

rss is considered as a function of surface soil moisture (Sellers et al., 1992):

rss = exp(A−B
SM

SMfc
) (3.8)

where the two best fit parameters A (unitless) and B (unitless) are considered as 8 and 5 re-
spectively (Kustas et al., 1993; Crow et al., 2008). SM represents the surface (0 - 5 cm) soil
moisture, whereas SMfc the soil moisture at field capacity.

By prescribing a soil evaporation resistance rss equal to zero and infinity (in practice a very
large number), the minimum and maximum soil temperatures can be estimated for a given
atmospheric forcing. Note that a full description of the model can be found in the article Annex
B.

3.3.1 Different aerodynamic resistance formulations

One of the variables that intervene in the latent and sensible heat fluxes of the energy bal-
ance equation is the aerodynamic resistance. Several parameterizations of this variable exist in
literature. They fall into two broad categories: i) those based on the Monin–Obukhov similarity
theory (Monteith, 1973; Choudhury et al., 1986; Lee, 1997; Yang et al., 2001) and ii) those based
on a semi–empirical approach (Liu et al., 2006).

Several assumptions and simplifications concerning the stability effects can be considered,
which have a different impact when comparing estimates to measurements of rah (Liu et al.,
2006). Under stable conditions, the aerodynamic resistance can be effortlessly estimated, thanks
to the linearity of the functions of the stability parameters. However, difficulties arise under
non–stable conditions, induced by the non–linearity of these functions. In this case, iterative
algorithms were developped to predict the aerodynamic resistance, approach that is referred to
as the “Monin–Obukhov Similarity” method.

Two different formulations are chosen to be implemented within EBsoil, and their impact on
the estimation of Text is analyzed: one based on the Richardson number and one based on the
Monin-Obukhov length. The first formulation of the aerodynamical resistance (herein referred
to as rah,RI) is based on the Richardson number Ri (unitless), which represents the importance
of natural relative to forced convection. It is given by the formulation in Choudhury et al. (1986)
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as:

rah,RI = rah,SI
(1 +Ri)η

(3.9)

where η (unitless) being a coefficient equal to 0.75 in unstable conditions (Ts > Ta) and to 2 in
stable conditions (Ts < Ta).

rah,SI is a simple formulation of the aerodynamical resistance and it symbolizes the aerody-
namic resistance that neglects natural convection:

rah,SI =
log2 Zr

Z0m

k2ua
(3.10)

where Z0m (m) the roughness length for momentum transfer over bare soil, Zr (m) the reference
height at which the wind speed is measured, k (unitless) the von Kármán constant and ua (m·s−2)
the wind speed.

The bulk Richardson number is a measure of the influence of atmospheric stability on the
flux–gradient relationship in the surface layer:

Ri = 5gZr(Ts − Ta)
Tau2

a

(3.11)

where g (m·s−2) is the gravitational constant. This method is referred herein to as the“empirical”
method.

The second formulation of the aerodynamial resistance used in this study (herein referred to
as rah,MO), which takes into account the Monin–Obukhov length, is expressed as:

rah,MO =
log Zr

Z0m
− ψh

ku∗
(3.12)

where ψh (unitless) is the stability correction factor for heat transport and u∗ (m·s−1) the friction
velocity.

The stability correction factor for heat transport is defined as:

ψh = 2 log 1 + x2

2 (3.13)

where x is a function of the Monin–Obukhov length (Lmo) and of the reference height for wind
speed observations:

x = (1 − 16 Zr
Lmo

)0.25 (3.14)

3.3.2 Vegetation extreme temperatures

Once soil Text are obtained, two hypotheses are made in order to derive vegetation Text. As
in (Carlson et al., 1995; Prihodko and Goward , 1997; Bastiaanssen et al., 1998), the minimum
vegetation temperature Tv,wet corresponding to well–watered unstressed vegetation is set to Ta,
an assumption that is made in several models such as SEBAL (Bastiaanssen et al., 1998), S–
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SEBI (Roerink et al., 2000) and SEB–1S (Merlin et al., 2013a). It can also be considered as a
fraction of Ta, as in (Senay et al., 2013), who, after observing a systematic bias between Ts and
Ta, introduced a correction factor equal to 0.993. Note that by setting the minimum vegeta-
tion temperature to Ta, the roughness length for momentum transfer over full–cover unstressed
vegetation is implicitly constrained (Stefan et al., 2015).

The assumption made concerning the maximum vegetation temperature Tv,dry corresponding
to fully water–stressed vegetation is based on the observation that the lines (AD) and (BC) in
the LST − fvg space are practically parallel when using high resolution remote sensing data in
highly heterogeneous conditions, as noted in Merlin et al. (2013a). This leads to Tv,dry being
calculated as:

Tv,dry = Ts,dry − (Ts,wet − Tv,wet) (3.15)

This paralellity assumption implies that the difference between the aerodynamic resistances
corresponding to the water–saturated bare soil and to the full–cover unstressed vegetation is
almost equal to the difference between the aerodynamic resistances corresponding to the bone
dry bare soil and to the full–cover water stressed vegetation, respectively. Thus, we neglect the
influence of water stress on vegetation height. This translates into the decreasing rate in surface
temperature with increasing vegetation cover (and the related increase in roughness length for
momentum transfer from bare soil to full–cover vegetation) be almost the same for both dry and
wet surface edges (Stefan et al., 2015). In a similar manner as for the Tv,min = Ta strategy,
Equation 3.15 represents a constraint on the roughness length over full–cover water–stressed
vegetation.

One of the advantages of estimating Tv,wet and Tv,dry from Ta and soil Text is not needing
extra information on vegetation height information, nor on the zero plane displacement, on the
roughness length for momentum transfer and on the roughness length for heat transfer. The sole
parameter to be known is the roughness length for momentum transfer (Z0m) over bare soils,
whose range of values reported by literature is between 0.0006 an 0.035 m (Liu et al., 2007; Allen
et al., 2007; Timmermans et al., 2007; Yang et al., 2008; Long and Singh, 2012). In this study,
it is uniformly set to 0.001 m as in Yang et al. (2008).

3.4 Results

Results in terms of both soil Text and ET estimates are presented in this section. First of
all, in terms of soil Text, a validation of the extreme temperatures modeled using the energy
balance (Text EBsoil) is done against in situ measurements over the R3 perimeter. Secondly, a
comparison between modeled Text EBsoil and the image–based extreme temeperatures, derived
solely from remote sensing data (Text RS 90m, simulated using 90 m resolution ASTER data)
is performed over the Yaqui and Urgell areas. The soil Text modeled by the soil energy balance
model takes into account both formulations of the aerodynamical resistance: rah,RI and rah,MO.

The influence of model–derived and image-based Text is then assessed in terms of contextual
ET estimates, by separately injecting Text as inputs into the SEB–1S model. SEB–1S is then
applied to both 90 m resolution and 1 km resolution (aggregated) ASTER data.
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3.4.1 Evaluation of extreme soil temperatures

3.4.1.1 Validation with in situ measurements

A comparison between modeled soil Text and in situ measurements acquired over the R3
perimeter is shown in Figure 3.3. Soil Text are modeled using either rah,RI or rah,MO. Results
in terms of bias, correlation coefficient (R), slope of the linear regression and root mean square
error (RMSE) are presented in Table 3.1.

Figure 3.3: Soil Text simulated by EBsoil are plotted against the in situ measured Text, at the
two soil plots in the R3 perimeter. Both RI (a) and MO (b) formulations of the aerodynamic
resistance are taken into account when deriving modeled Text.

Table 3.1: Root mean square error (RMSE), bias, correlation coefficient (R) and slope of the
linear regression between soil Text (as given by EBsoil) and the soil Text observed in situ at the
two soil plots, located in the R3 perimeter. Modeled Text take into account either the RI or MO
aerodynamic resistance.

Time RMSE (◦C) Bias (◦C) R (-) Slope (-)
RI MO RI MO RI MO RI MO

10:30 a.m. 3.2 2.3 −1.8 −1.2 0.93 0.96 0.82 0.99
11:00 a.m. 3.3 2.3 −2.2 −1.7 0.97 0.98 0.79 0.94
11:30 a.m. 4.2 2.7 −2.5 −1.9 0.95 0.98 0.74 0.90

Mean 3.6 2.4 −2.2 −1.6 0.95 0.97 0.78 0.94

One can clearly see that the MO formulation of the aerodynamical resistance performs better.
The mean (average of the correlation values obtained at 10:30 AM, 11:00 AM and 11:30 AM)
correlation is increased from 0.95 (RI) up to 0.97 (MO) formulation, respectively. The mean
RMSE is equal to 2.4 ◦C for the MO formulation, compared to 3.6 ◦C for the RI formulation. In
terms of mean bias, the lowest value is also obtained for the MO formulation, with a reported
value of −1.6 ◦C, as opposed to −2.2 ◦C that is obtained for the RI formulation. A separate
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analysis showed that more bias is found for Ts,dry than for Ts,wet. It was also found that Ts,dry
is more weakly correlated with in situ measurements than Ts,wet. A possible explanation be-
hind this could reside in the Ts,dry measurements presenting greater variability than the Ts,wet
measurements, as explained previously in Section 2.2.2.

To sum up, in terms of direct validation with in situ measurements, soil Text simulated using
the MO formulation provide good estimates. Overall, the uncertainty in modeled Ts,dry is larger
than in modeled Ts,wet, which is to be expected considering the larger range of variation reported
for Ts,dry.

3.4.1.2 Consistency with image–based extreme temperatures

In this section, soil Text modeled by EBsoil are compared against image–based soil Text, issued
using the SEB–1S Text RS submodel, using 90 m resolution data. The analysis is performed over
the Yaqui and Urgell regions. Figure 3.4 plots model–derived (Text EBsoil) versus image–based
(Text RS 90m) soil Text for the Yaqui and Urgell areas separately, and using the RI and MO rah
formulations.

Table 3.2 provides the daily bias in Ts,wet and Ts,dry, respectively. The mean and standard
deviation of daily biases is also computed over the Yaqui region. The mean of daily biases is also
reported over the Urgell segion. The mean bias is systematically lower when using rah,MO, with
reported values over Yaqui of −3.4 (for Ts,dry) and 1.5 ◦C (for Ts,wet) compared to −7.7 and 2
◦C obtained when using rah,RI . Results are consistent over Urgell, with a mean bias of −5.8
(for Ts,dry) and 2.8 ◦C (for Ts,wet) for the MO formulation, as opposed to −8.0 and 3.9 ◦C for
the RI formulation. The robustness and precision of the image–based Text RS 90m over highly
heterogeneous irrigated areas is reflected by the consistency observed between model–derived and
image–derived soil Text. Both the physical approach based on the MO theory and the remote
sensing Text algorithm (that takes into account both LST − α and LST − fvg spaces) are hence
validated by obtaining such a consistency.

Figure 3.4: Soil Text simulated by EBsoil using either the RI(a) or MO (b) aerodynamic resistance
are plotted against the image–based Text for the Yaqui and Urgell regions separately.
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Table 3.2: Difference between the soil Text simulated by EBsoil with the RI and MO aerodynamic
resistance and the soil Text retrieved using 90 m resolution data, for the Yaqui and Urgell regions
separately.

Day Site Bias Ts,dry (◦C) Bias Ts,wet (◦C)
RI MO RI MO

30 December Yaqui −0.84 0.23 2.4 1.3
23 February Yaqui −3.0 −0.80 3.8 2.8

10 March Yaqui −7.7 −0.21 0.40 1.8
11 April Yaqui −9.0 −5.7 4.6 3.6
27 April Yaqui −14 −2.2 2.8 4.3
6 May Yaqui −10 −8.8 −2.8 − 3.9
13 May Yaqui −9.3 −6.0 2.6 0.90

16 August Urgell −8.3 −4.0 5.2 4.4
3 October Urgell −7.8 −7.6 2.6 1.3

All (mean) Yaqui −7.7 −3.4 2.0 1.5
All (σ) Yaqui 4.4 3.5 2.5 2.7

All (mean) Urgell −8.0 −5.8 3.9 2.8

As a step further, the methodology is also implemented using 1 km resolution (aggregated)
ASTER data over the two sites. Figure 3.5 shows side by side the LST −α and LST −fvg spaces
retrieved using either 90 m resolution (grey dots) or 1 km resolution (black dots) data acquired
over the Yaqui site on December 30th. The polygons obtained using modeled Text EBsoil (RI
and MO formulations) and image–based Text RS 90m and Text RS 1km are also shown.

Figure 3.5: Polygons obtained using either image–based Text RS 1km (blue) and Text RS 90m
(light blue), or model–derived Text EBsoil for the RI (magenta) and MO (red) aerodynamic
resistance are shown in the LST − α and LST − fvg spaces. The spaces correspond to either 1
km resolution data (black dots) or 90 m resolution data (grey dots) acquired over the Yaqui area
on December 30th.

54



A difference can be observed in the boundaries of the two spaces when looking at Figure 3.5.
At 90 m resolution, the polygons derived using Text RS 90m manage to capture quite well the
contour of the LST data points. Noticeable differences can be remarked when looking at the
other three polygons, especially in the LST −α space. The reason why these three polygons are
narrower and closer to the 1 km resolution data is that the albedo endmembers for Text EBsoil
and Text RS 1km are derived from 1 km resolution ASTER data. Between the two rah formula-
tions, the MO provides dry and wet edges closer to the polygon obtained with Text RS 90m, a
result expected since a better performance in terms of soil Text was reported by using the same
MO formulation. When compared to the Text RS 1km algorithm, which systematically under-
estimates the dry edge and overestimates the wet edge, the rah,MO significantly improves the
estimations. Therefore, the aerodynamic resistance plays a significant role in the computation
of physics–based Text, with the MO formulation improving the dry and wet edge estimation, as
compared to the RI formulation.

3.4.2 Application to evapotranspiration estimation at multiple resolutions

The idea behind using EBsoil to derive Text is to strip Text of their contextual nature, by
applying ET models to remote sensing data retrieved at multiple resolutions and over less het-
erogeneous areas. To quantitatively assess the impact of Text on 1 km ET estimates, SEB–1S
is applied to ASTER data aggregated at 1 km resolution, by using both the image–based and
model–derived Text as an input. For validation purposes, SEB–1S is first applied to 90 m res-
olution ASTER data, and the 90 m resolution ET is aggregated at 1 km resolution. The 90
m resolution ET estimates have been validated beforehand with in situ measurements (Merlin,
2013). The 90 m resolution ET estimates, aggregated at 1 km are chosen as reference to test the
impact of Text in terms of 1 km ET estimates.

The SEB–1S 1 km resolution simulated ET is plotted against the 1 km ET chosen as reference
over the Yaqui region, for all seven ASTER overpass dates in Figure 3.6. The reference is obtained
by aggregating the 90 m resolution ET estimated by SEB–1S using the Text RS 90m, given the
good results reported when analyzing the 90 m resolution estimates. SEB–1S uses as input either
the modeled Text (both rah,MO and rah,RI formulations), or the imaged–based Text RS 1km.

The mean and standard deviation of the RMSD, slope of the linear regression, bias and cor-
relation coefficient, between simulated and reference ET are shown in Table 3.3, for each Text
algorithm separately. The mean RMSD values are 56 W·m−2, 77 W·m−2 and 78 W·m−2 for
the Text EBsoil calculated with the MO and RI formulations, and for Text RS 1km, respec-
tively, with the MO formulation clearly outperforming the other two. However, the lowest mean
bias (-15 W·m−2) in ET is obtained for Text RS 1km compared to 23 W·m−2 and -27 W·m−2

for Text EBsoil with the MO and RI formulations, respectively. Both Text EBsoil algorithms
increase the mean correlation coefficient from 0.95 (for Text RS 1km) to 0.98.

The EBsoil algorithm with the rah,MO formulation improves ET predictions at 1 km resolu-
tion. Nevertheless, a more significant bias can be observed on the ET estimates computed using
the MO–derived and RI–derived Text. Because Text EBsoil are computed independently of the
LST data, this can influence the polygon not to be centered on the cluster points present in
the LST − α and LST − fvg spaces, which would introduce a bias in model–derived Text and,
thus on ET. The polygon obtained from Text RS 1km is however centered on the cluster points,
because the computation of Text is done using the observed LST data points, which lead to the
ET estimates derived from Text RS 1km to present a low bias. On the other hand, the mean
slope of the linear regression between modeled and reference ET is estimated as 1.7, explained
by the fact that Text RS 1km systematically overestimates the wet edge and underestimates the
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Figure 3.6: 1 km resolution ET estimates versus 90 m resolution simulated ET, aggregated at
1 km resolution, for the Yaqui site. The Text used as input to the SEB–1S consist of the Text
simulated by EBsoil with the RI (a) and MO (b) aerodynamic resistance, and the Text retrieved
from 1 km resolution data (c).
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Table 3.3: Mean and standard deviation (σ) of the root mean square difference (RMSD), bias,
correlation coefficient (R) and slope of the linear regression between the ET simulated at 1 km
resolution and the 90 m resolution simulated ET aggregated at 1 km resolution, for data over
the Yaqui region. The Text used as input to SEB-1S consist of Text simulated by EBsoil with the
RI and MO aerodynamic resistance and the Text retrieved from 1 km resolution data.

Date RMSD (W·m−2) Bias (W·m−2) R (-) Slope (-)
RI MO RS RI MO RS RI MO RS RI MO RS

All (mean) 77 56 78 −27 23 −15 0.98 0.98 0.95 1.4 1.1 1.7
All (σ) 34 21 17 72 53 44 0.01 0.01 0.01 0.22 0.12 0.19

dry edge, which means that the polygon boundaries are too close to the point cluster. The data
points are thus closer to the boundaries at 1 km resolution than at 90 m resolution, influencing
the range of variability and leading to slopes significantly larger than 1.

3.5 Summary and Conclusions

A complementary methodology for estimating Text independently of remote sensing data was
developed. Soil Text are computed using a soil energy balance (EBsoil) model with two different
formulations of the aerodynamic resistance: based on the Monin–Obukhov length (rah,MO) and
based on the Richardson formulation (rah,RI). Soil Text are derived from a rah formulation
considered in bare soil conditions only, while the majority of theoretical algorithms take into
account rah formulations for both soil and vegetation Su (2002); Allen et al. (2007); Long et al.
(2011); vegetation Text are derived from soil Text.

In a first step, a validation of soil Text calculated by EBsoil with in situ measurements
made over an irrigated area in Morocco is performed. This is the first time that soil Text have
been evaluated using in situ measurements, with results pointing out the rah,MO formulation
as the best choice, with a mean RMSE of 2.4 ◦C as opposed to 3.6 ◦C, obtained for the rah,RI
formulation. A important aspect to mention is that during the field experiment that took place
in Morocco for the in situ validation, by digging the two soil plots, the ground surface structure
was changed. This may potentially affect the surface roughness and thus the apparent roughness
length, parameters which intervene in the soil energy balance model. However, the soil surface
was made as flat as possible to mimic the surrounding bare soil field. As a step further, model–
derived soil Text are then compared against the image–based soil Text derived directly from SEB-
1S. The methodology is applied to 90 m resolution ASTER data over two semi–arid irrigated
areas in Mexico and Spain. Results are consistent with those obtained for the in situ validation,
with the MO formulation outperforming the RI formulation.

A second analysis is undergone regarding ET estimates, by looking at how the two differ-
ent algorithms of estimating Text influence ET calculations. SEB–1S is applied to both 90 m
resolution and 1 km resolution (aggregated) ASTER data using either the model–derived or
image–based Text as input. The 90 m resolution SEB–1S ET is used as reference against 1 km
resolution ET estimates, by simply aggregating it to 1 km. The reported RMSD between 1 km
resolution SEB–1S and aggregated 90 m resolution SEB–1S ET is 78 and 56 W·m−2, when using
the image–based and model–derived Text (with the rah,MO formulation), respectively.

A general conclusion that can be drawn by looking at the two different analyses is that Text
should be estimated a priori when contextual models are used with low resolution data. Never-
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theless, image–based Text provide accurate ET estimates when high resolution images are used in
highly heterogeneous (irrigated) landscapes. Taking this into account, the consistency between
model–derived and high resolution image–based Text provides a meaningful basis for developing
mixed modeling observational approaches. The soil energy balance model was successfully imple-
mented in a contextual ET model and it was shown to improve the accuracy in ET estimates at
multiple resolutions. Perspective–wise, this could have many potential applications. One could
imagine ways of improving the parameterization of the aerodynamical resistance by using remote
sensing data, since a good coherence was found between model–derived and image–based Text.
By increasing the accuracy in soil Text, since the Ts,wet and Ts,dry are the boundary conditions
used for deriving the LST–based SEE, this could provide a means for monitoring SEE by us-
ing optical/thermal remote sensing data. In that perspective, SEB–1S can be integrated within
DISPATCH, a disaggregation methodology of SMOS soil moisture (see Chapter 5).

3.6 Article
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Abstract: Due to their image-based nature, “contextual” approaches are very attractive
to estimate evapotranspiration (ET) from remotely-sensed land surface temperature (LST)
data. Their application is however limited to highly heterogeneous areas where the soil
and vegetation temperature endmembers (Tends) can be observed at the thermal sensor
resolution. This paper aims to develop a simple theoretical approach to estimate Tends
independently from LST images. Soil Tends are simulated by a soil energy balance model
forced by meteorological data. Vegetation Tends are obtained from soil Tends and air
temperature. Model-derived soil Tends are first evaluated with in situ measurements made
over an irrigated area in Morocco. The root mean square difference (RMSD) between
modeled and ground-based soil Tends is estimated as 2.4 ◦C. Model-derived soil Tends
are next compared with the soil Tends retrieved from 90-m resolution ASTER (Advanced
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Spaceborne Thermal Emission and Reflection Radiometer) data collected over two irrigated
areas in Mexico and Spain. Such a comparison reveals a strong consistency between
model-derived and high-resolution image-based soil Tends. A recent contextual ET model
(SEB-1S) is then applied to 90-m resolution and to 1-km resolution (aggregated) ASTER
data using the model-derived or image-based Tends as the input. The RMSD between 90-m
resolution SEB-1S and in situ ET is estimated as 65 and 82 W·m−2, and the RMSD between
1-km resolution SEB-1S and aggregated SEB-1S ET is estimated as 78 and 56 W·m−2

for the image-based and model-derived Tends, respectively. In light of the above results,
Tends should be estimated a priori when contextual models are applied to low resolution
images. Moreover, the consistency over highly heterogeneous areas between model-derived
and high-resolution image-based Tends provides a meaningful basis for developing mixed
modeling observational approaches.

Keywords: evapotranspiration; energy balance; temperature endmembers; SEB-1S;
ASTER; multi-resolution

1. Introduction

Crop evapotranspiration (ET) is by far the main outward water flux over semi-arid irrigated areas.
In the Mediterranean countries, for instance, ET can represent up to 80% of the consumptive uses of
water [1]. In those regions, accurate estimates of spatially-averaged ET are hence required for efficient
crop irrigation and water resources management. Remote sensing is in this regard one of the most
promising and cost-effective techniques for mapping and monitoring ET over broad areas. Especially
multi-sensor/multi-resolution remote sensing data have a strong potential to provide ET data at multiple
scales: the crop field scale where irrigation volumes are allocated and the regional scale where long-term
management decisions are made.

Among the considerable variety of existing approaches to estimate ET from remote sensing data, the
most widely-used approach is to force the FAO-56 method [2–4] with NDVI (Normalized Difference
Vegetation Index) data [5]. It consists of computing ET as a function of the potential ET derived
from meteorological measurements, a crop-specific coefficient and the crop phenology estimated from
NDVI-derived fractional green vegetation cover (fvg). The FAO-56 method forced by NDVI time series
has excellent operational application capabilities, notably due to a remarkable coherence between the
complexity of the model parameterization and the availability of input (meteorological and NDVI)
data. However, one main limitation of the FAO-56 method is that the coefficient(s) used (either in
its single-coefficient or dual-coefficient form) is calibrated using field measurements, which, given
the spatial and temporal heterogeneity in these coefficients, restricts its application to large areas [6].
Moreover, the soil moisture constraint on evapotranspiration in the dual-coefficient form is based on a
soil water budget model and a priori knowledge of irrigation volumes and dates.

Another remote sensing variable relevant to ET monitoring is the land surface temperature (LST). LST
is a signature of both ET and soil water availability, especially under non-energy-limited conditions. It
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is currently observed by thermal sensors, such as ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer), Landsat-8 and MODIS (Moderate-Resolution Imaging Spectroradiometer) at a
spatial resolution of 90 m, 100 m and 1 km, respectively. The operational use of thermal remote sensing
for hydrological and water resource management studies has focused on regional-scale applications at
the kilometric spatial resolution [7,8]. The reason is that the revisit time of high-spatial resolution sensors
(16 days for ASTER and Landsat) is relatively long compared to the quick soil moisture changes that
generally occur in irrigated semi-arid regions. The temporal frequency of 1-km resolution MODIS data
(one or two times per day) is instead very relevant for monitoring ET on an operational basis.

LST-based ET models fall into two broad ranges of models based on (i) the residual method and (ii) the
evaporative fraction (EF, defined as the ratio of latent heat to available energy) method. The first category
of models evaluates ET as the residual term of the surface energy balance, which is the available energy
at the surface minus the sensible heat flux, e.g., TSEB (Two-Source Energy Balance) [9] and SEBS
(Surface Energy Balance System) [10]. The second category evaluates ET as the available energy times
EF. The latter models are often called “contextual” because the methodology involves determining the
wet and dry boundaries of LST, which may or may not be present at the observation resolution within the
observation scene. An overview of these contextual models is presented in [11,12]. In practice, physical
boundaries of LST are estimated in a two-step procedure. First, the temperature endmembers (Tends)
corresponding to fully dry and wet conditions for both soil/vegetation components are located within
the space defined by LST and α [13,14] and/or the space defined by LST and fvg [8,14,15]. Then, the
vertices of the obtained polygons are connected by straight lines [16] or curves [17] to interpolate the
dry and wet boundaries over the full range of vegetation cover. Once the LST boundaries have been
determined, for any data point in the LST − α or in the LST − fvg space, EF is derived as the ratio of
the distance separating the point from the line identified as the dry edge to the distance separating the dry
edge and the line identified as the wet edge. In general, both submodels are fully independent, meaning
that the different Tends algorithms can be implemented using the same EF submodel. The contextual
nature of EF-based models is hence attributed to the Tends submodel.

EF-based ET models are very attractive for operational applications. Due to their image-based nature,
they are easily transferable to different areas. In particular, they do not require calibrating the, often
site-specific, surface resistances of residual-based methods [18]. The downside is the applicability of the
image-based Tends submodel, which requires: (i) uniform atmospheric conditions; (ii) a relatively flat
area; and above all; (iii) that the temperature endmembers be actually observed within the study domain
at the thermal sensor resolution [15,19–23]. In a nutshell, image-based Tends submodels should be quite
well adapted for semi-arid irrigated areas provided that the inherent high heterogeneity be resolved at
the observation scale, meaning that high-spatial resolution data are used [24]. In contrast, image-based
Tends submodels are likely to be inadequate for less heterogeneous rainfed areas and when using medium
to low (∼1 km) resolution thermal remote sensing data. Long and Singh offer an in-depth study of how
the determination of the image-based Tends impact the EF retrievals in terms of performance and error
propagation [21].

To remove some of the above limitations, attempts have been made to de-contextualize Tends
submodels, notably by developing Tends algorithms independent of the (contextual) surface conditions
within the study area and, hence, of the spatial resolution of input LST data [15,16]. Tends are
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thus modeled by running a surface energy balance model forced by meteorological data in both dry
and wet conditions and for soil and vegetation components separately. This involves implementing
aerodynamic resistances for four extreme surfaces: water-saturated bare soil, dry bare soil, well-watered
vegetation, fully-stressed vegetation. Note that the four modeled extreme conditions can be reduced
to two—fully dry bare soil and water-stressed vegetation—by setting the cold edge to air temperature
for all vegetation covers [15,18]. Whereas the parameterization of bare soil aerodynamic resistance
is relatively straightforward, the computation of canopy resistance is more complex, as it involves
additional parameters to determine the zero plane displacement, such as vegetation height [15,16,25].

In this context, this study aims to develop a simple theoretical approach to estimate Tends
independently from LST images. Soil Tends are simulated by a soil energy balance model, and two
formulations of aerodynamic resistance are tested over bare soil. Vegetation Tends are obtained from soil
Tends and air temperature. Model-derived soil Tends are first evaluated with the in situ measurements
made in an irrigated area in Morocco. They are next compared to the soil Tends retrieved from
90-m resolution ASTER data collected over two irrigated areas in Spain and Mexico using an algorithm
that combines both LST − α and LST − fvg spaces. Model-derived and image-based Tends are then
used as input to a contextual (SEB-1S, [14]) ET model, and results in terms of 90-m resolution and
1-km resolution ET estimates are evaluated over the Mexican site, where ground-based ET measurements
are available.

The three study sites in Morocco, Spain and Mexico and their associated experimental data are
described in Section 3. In Section 4, the SEB-1S modeling approach is reiterated, and the Tends models
forced by either meteorological data or remote sensing data are presented. In Section 5, Tends models
are intercompared, and the ET estimates are evaluated at 90-m and 1-km resolutions.

2. Sites and Data Description

The study is based on data collected over three irrigated semi-arid areas: an irrigation perimeter
situated in the Haouz plain in central Morocco (hereby referred to as “R3”), the Urgell area in
Catalonia, in northeastern Spain, and the Yaqui valley (Sonora State) in northwestern Mexico. A visual
representation of the three study sites is provided in Figure 1.

2.1. Site and In Situ Data Description

2.1.1. R3 Perimeter

The Haouz plain in central Morocco covers around 6000 km2. The climate is semi-arid, typically
Mediterranean, with an average annual precipitation of about 250 mm. About 85% of available water
is used for agriculture. The R3 irrigated perimeter, situated in the Haouz plain, includes mainly wheat,
olive trees, maize and beet. The typical size of crops is 3 up to 4 ha. Wheat is generally sown between
mid-November and mid-January, depending on climatic conditions and the start of the rainfall season.
Harvest usually occurs about 5 up to 6 months later, in May or June. More details about the description
of the R3 site can be found in [26,27].
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Figure 1. The three study sites included in this paper: (a) the R3 perimeter, (b) the Urgell
area and (c) the Yaqui valley.

A field experiment was conducted in a maize parcel of the R3 perimeter on five days: 14 April, 22
April, 30 April, 8 May and 16 May 2014. Maize was seeded in early April, so that the crop field was
mostly bare soil during the whole experiment. The experiment focused on measuring the minimum
and maximum soil Tends (Ts,wet and Ts,dry) to serve as a reference for the direct validation of Tends
modeling approaches using meteorological data. Weather conditions were mostly sunny, with one cloudy
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day (16 May) and one post-rainy day (22 April). The different atmospheric conditions met throughout
the campaign ensured testing the model in various conditions. The temperature measurements were
taken over two small soil plots (2 m by 2 m). One soil plot was kept fully dry, whereas the soil
moisture of the other soil plot was maintained equal to the soil moisture at saturation. The dry
soil conditions were fulfilled by isolating the respective soil plot with a plastic sheeting, buried at a
15-cm depth to prevent water infiltrations underneath from capillary rising. The dry plot was also
covered by plastic sheeting between two consecutive sampling days to protect the soil from possible
rainfall events before the experiments took place. On each sampling day, the saturated soil plot
was manually and continuously irrigated from about 10–20 min before the start of the temperature
measurements and until the time of the last measurement. Much attention was given to maintain
the soil plot as wet: irrigation water was poured in sufficient quantity to reach soil saturation, but
as slow as possible to avoid flooding and runoff. Figure 2 shows an illustration of the two 2 m by
2 m soil plots where the experiment was undertaken. Note that the soil surface structure was not
preserved during the re-filling of the soil pits, but the soil surface was made relatively flat to mimic
the surrounding (bare soil) corn field. Continuous measurements of Ts,wet and Ts,dry were taken
between 10:00 a.m. and 11:30 a.m. UTC (Coordinated Universal Time). The observation time is
compatible with the overpass times of ASTER, Landsat-7/Landsat-8 and MODIS thermal sensors. The
soil temperature for dry and wet soils were monitored using DS1921G-F5 Thermochron iButton sensors.
These sensors are rugged, low-cost and self-sufficient systems that record and store time and temperature.
They are equipped with a wide (from −40–85 ◦C) temperature range and fit for a moderately long
(from 1–255 min) logging rate. Their accuracy spans from ± 1 ◦C in the −30–70 ◦C range to
± 1.3 ◦C outside this range, with a field resolution of 0.5 ◦C ([28]). In order to increase the confidence
in the experimental data and to have a better estimate of the uncertainty in measurements, several
Thermochron iButtons were set up at each soil plot. In practice, iButtons were fixed on 7 cm by
7 cm acrylic glass plates, for a set of three iButtons per plate. Because more variability was found
in the dry soil measurements, two plates (six iButtons) were used to measure Ts,dry, whereas one plate
was used to estimate Ts,wet. The plates were buried very close to the soil surface, by making sure that
iButtons were not directly exposed to solar radiation. Thermochron data were logged at a 5-min time
interval. Entries registered by all Thermochron iButtons were averaged per soil plot, and per 30-min bin,
cumulated at 10:30 a.m., 11:00 a.m. and 11:30 a.m. UTC. This resulted in a total of three sets (Ts,wet
and Ts,dry) of values per day.

In addition to soil temperature measurements, meteorological data, such as air temperature, relative air
humidity, solar radiation and wind speed, were acquired every half hour by a permanent meteorological
station located in an alfalfa crop field about 200 m from the dry/wet soil plots. The acquisition height of
the meteorological measurements was 2 m.

Figure 3 illustrates the mean (the average of Thermochron iButton entries) soil temperature
measurements for wet and dry conditions (Ts,wet and Ts,dry, respectively) obtained on 8 May. The
reason why the wet and dry temperatures are very similar before 10:00 a.m. is that the sensors were
set up right before and removed right after each field experiment. They were not measuring soil
temperatures corresponding to wet and dry conditions, but they were stored in the same media (air)
and, thus, logging similar temperatures. Soil Tends measurements perfectly match until 30 min before
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the start of the experiment, which reflects excellent confidence in the iButtons’ embedded calibration.
By computing the average on each soil plot of the standard deviation of instantaneous measurements
during the experiment duration, the uncertainty in Ts,wet and Ts,dry is estimated as 0.90 ◦C and 1.1 ◦C for
wet and dry conditions, respectively.

Figure 2. Illustration of the dry soil plot in the R3 perimeter. (a) The pit was dug at a 15-cm
depth and (b) the soil plot was kept fully dry by covering it with a plastic sheeting in between
experiments.

Figure 3. Mean and standard deviation of the in situ measurements performed on 8 May on
the dry and wet soil plots of the R3 perimeter, Haouz plain. The two vertical lines stand for
the beginning and the end of the experiment.

2.1.2. Urgell Site

The Urgell area presents a semi-arid continental Mediterranean climate, with a mean yearly air
temperature of 16 ◦C, precipitation of 400 mm and a number of days with rain of 60. The area of
interest includes both irrigated crops consisting of wheat, maize, alfalfa and various fruit (apple and
pear) trees, as well as dryland crops, such as barley, olive trees, vineyards and almond trees [29]. The
Urgell experiment, conducted in 2011, focused on a 20 km by 20 km area, situated within the Urgell
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irrigation region. Meteorological data are continuously acquired over the area. The meteorological data
were collected by the automatic weather station of Golmes (WC) as part of the XEMA network operated
by the Meteorological Service of Catalonia (SMC). Air temperature, relative air humidity, solar radiation
and wind speed were recorded every 30 min at a 2-m height by the Golmes (WC) station.

2.1.3. Yaqui Site

The Yaqui valley in northwestern Mexico presents a semi-arid climate, with an average annual
potential evapotranspiration of 2233 mm and an annual precipitation of 290 mm [30]. The main crops
include wheat (about 50%), broccoli, beans, chili pepper, potatoes, chickpea, safflower, orange and corn.
Irrigation takes up to 90% of the total water expenditure.

The experiment was performed from December 2007–May 2008 on an irrigated area situated in the
Yaqui valley. Measurements were focused on a 4 km by 4 km area, while the study area in this paper
is defined as a 16 km by 10 km area containing the 4 km by 4 km Yaqui experimental area. Seven
micro-meteorological stations equipped with an eddy-covariance flux measurement system were set up in
different fields [14]. The six stations, providing data concurrently, with at least four ASTER overpasses,
are used in the ET validation analysis. The latent heat flux was measured with KH20 fast response
hygrometers at a frequency of 10 Hz and converted to the 30-min average. Meteorological data, including
air temperature, relative air humidity, solar radiation and wind speed, were acquired every half hour,
from 27 December 2007–17 May 2008 from a station located in the center of the region. The acquisition
height was 10 m. Further details on the experiment can be found in [14,30–32].

2.2. Remote Sensing Data

2.2.1. ASTER

ASTER is an imaging instrument on-board NASA’s Terra satellite, launched in 1999 and
having an equator crossing time at 11 a.m., with a 16-day revisit cycle. The ASTER
thermal sensor has five thermal bands, with a spatial resolution of 90 m. ASTER official
surface kinetic temperature products (AST_08) were downloaded from the Earth Observing
System Data Gateway and extracted over the 16 km by 10 km Yaqui and 20 km by 20 km
Urgell areas. Two cloud-free ASTER images were acquired over the Urgell site at around
11:00 a.m. UTC on 16 August and 3 October 2011. Seven cloud-free ASTER images were obtained
over the Yaqui area during the agricultural season of 2007–2008, at around 11:30 a.m. local solar time
on 30 December, 23 February, 10 March, 11 April, 27 April, 6 May and 13 May.

In order to test the contextual ET models at multiple resolutions, ASTER data are also used at a 1-km
(MODIS thermal) resolution by aggregating the original 90-m resolution ASTER temperature using a
simple average [31].

2.2.2. Formosat-2

The Formosat-2 satellite is an Earth observation satellite of the National Space Organization
of Taiwan, launched in 2004. Its high (8 m) resolution images are provided daily at 9:30 a.m.
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equator-crossing time. The reason behind using Formosat-2 derived albedo resides in the unusability
of the ASTER shortwave infrared data on its seven overpass days over the Yaqui site [30]. Its high
temporal resolution (one day revisit cycle) enabled us to use data collected on the nearest date from each
of the seven ASTER overpass dates in order to estimate both NDVI and α from the red and near-infrared
reflectances, aggregated at ASTER thermal sensor resolution.

2.2.3. LST, Fractional Green Vegetation Cover, NDVI and Surface Albedo

In order to retrieve the LST, the “temperature and emissivity separation” algorithm [33,34]
was applied.

Fractional green (photosynthetically active) vegetation cover and surface albedo are derived over the
Urgell and Yaqui study areas from satellite surface reflectances in the red and near-infrared bands. For
the Urgell area, reflectance data are obtained from 15-m resolution ASTER red and near-infrared data on
its two overpass days. For the Yaqui area, reflectance data are obtained from Formosat-2 data, available
on dates closest to the ASTER overpass dates. In both cases, surface reflectances are aggregated from
the observation resolution to ASTER thermal resolution (90 m) beforehand.

The Gutman and Ignatov (1998) formula is applied in order to obtain the fractional green vegetation
cover (fvg):

fvg =
NDVI − NDVIs

NDVIvg − NDVIs
(1)

with NDVIvg corresponding to fully-covering green vegetation and NDVIs to bare soil or to bare soil
partially covered by senescent (non-photosynthetically active) vegetation. In this study, NDVIvg and
NDVIs are set to the maximum and minimum value of the NDVI observed during the agricultural season
within the study domain. NDVI endmembers are estimated as 0.93 and 0.018, and 0.93 and 0.18 for the
Urgell and Yaqui areas, respectively. The reason behind the small value registered for NDVIs for Urgell
is the presence of open water (reservoir of irrigation water) in the region. NDVI is computed as the ratio
of the difference between (re-sampled) near-infrared and red reflectances to their sum.

Surface albedo (α) is estimated as a weighted sum of (re-sampled) red and near-infrared reflectances,
using the coefficients provided by [35] and corroborated by [36] and in [30].

3. Models

The main goal of this study is to assess the impact of different modeling approaches of Tends on
the ET estimated at multiple resolutions by a contextual model. Herein, the contextual model used for
the estimation of ET is the recently-developed SEB-1S model. Like a number of contextual models,
SEB-1S computes ET as EF times the available energy, with EF being estimated as the ratio of the
distance separating a pixel in the LST − α space from the line defined as the dry edge to the distance
separating the dry edge and the line identified as the wet edge. The dry and wet edges are defined
from Tends.

Two different approaches are investigated to estimate Tends using (1) available remotely-sensed data
(referred to as Tends_RS) and (2) a soil energy balance model forced by available meteorological data
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(referred to as Tends_EBsoil). The energy balance model offers the possibility to derive Tends estimates
independently of surface conditions and of the spatial resolution of remote sensing data.

3.1. SEB-1S: An EF Model (EF_SEB-1S)

SEB-1S relies on the same LST − α space as the one used in the Simplified Surface Energy Balance
Index (S-SEBI, [13]). It computes EF similarly to S-SEBI, as the ratio of the distance separating the point
from the dry edge to the distance separating the wet and dry edges [37–42]. However, SEB-1S provides
a different interpretation of the wet edge, which has proven to significantly improve ET estimates over
the Yaqui area [14]. Figure 4 presents a graphic illustration of the computation methodology applied
in SEB-1S.

Figure 4. For a given J point, EF is computed as the ratio of IJ to IK. Underlying grey points
correspond to 90-m resolution data acquired on 27 April, over the Yaqui area.

ET is defined as EF times the available energy (Rn − G), where Rn (W·m−2) is the surface net
radiation and G (W·m−2) the ground heat flux. Further details describing the methodology can be found
in [14].

3.2. Image-Based Tends Algorithm (Tends_RS)

The Tends_RS approach provides soil and vegetation Tends from a synergy between the LST − α

space and the LST − fvg space, as in the original version of the SEB-1S Tends submodule. Note that
previous studies [8,15,19,20,43] use only one space in the determination of the extreme temperatures.
Figure 5 illustrates side-by-side the SEB-1S interpretation of the edges and vertices of the polygon in
the LST − α space and the polygon in the LST − fvg space for data collected on 11 April, over the
Yaqui site.

In the LST − α space, SEB-1S identifies four Tends and three α endmembers (α_ends), which
correspond to bare soil (αs), green vegetation (αvg) and senescent vegetation (αvs) albedo. The edges
are interpreted as follows: [AB] as “bare soil”, [BC] as “wet surface”, [CD] as “full-cover vegetation”
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and [DA] as “dry surface”. In the LST − fvg space, SEB-1S identifies the same four Tends and both
fvg endmembers (0 and 1). The edges are interpreted as follows: [AB] as “mixed soil and senescent
vegetation”, [BC] as “wet surface”, [CD] as “full-cover green vegetation” and [DA] as “dry surface”.
The dry edge [AD] has a negative slope in both S-SEBI [13] and SEB-1S [14] models due to a radiative
and convective control in dry conditions, respectively. In SEB-1S, the wet edge BC identified in the
LST − α space has a negative slope, also, due to a convective control in wet conditions [14], consistent
with the common interpretation of the LST − fvg space.

Figure 5. (a) Interpretation of the edges and vertices of the LST −α and (b) the LST − fvg

polygons. Underlying points correspond to 90-m resolution data acquired on 11 April, over
the Yaqui site.

As in the original version of the SEB-1S Tends submodule, the minimum vegetation temperature
Tv,wet is set to the air temperature Ta. The maximum soil temperature Ts,dry is the same for both spaces
and is set to the maximum surface temperature Tmax. The other Tends are estimated by combining the
Tends retrieved from the LST −α and LST − fvg spaces separately. The minimum soil temperature for
each space is computed by extrapolating the wet edge passing through the well-watered full-cover green
vegetation index until the bare soil line. The maximum vegetation temperature is computed such that all
data points are located in between the dry [AD] and the wet [BC] edges. This process is first undertaken
for each space separately and then sets Tv,dry to the average of the two retrieved values. Please refer
to Appendix A for further details concerning the original version of the algorithm and the adjustments
made to it.

3.3. Model-Derived Tends (Tends_EBsoil)

A different methodology is proposed to estimate soil and vegetation Tends independently of
remotely-sensed data. A soil energy balance model forced by available meteorological data is used
to derive soil Tends. Two simple assumptions are then made for deriving vegetation Tends from
model-derived soil Tends. Alternative to the use of a complete surface energy balance model for both
soil and vegetation components, the energy balance is modeled herein for bare soil conditions only
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(and not for full-cover vegetation). The idea is to develop a meteorological-based approach for Tends
determination using a minimum number of a priori input parameters.

3.3.1. Soil Energy Balance Model

The maximum and minimum soil temperatures are modeled by setting the near-surface soil moisture
to zero and to the soil moisture at saturation respectively, as an input to an energy balance model for bare
soils (EBsoil). In practice, EBsoil operates an iterative loop on the soil temperature Ts (initialized to Ta),
until thermal equilibrium is established [9]:

Rns −G = Hs + LEs (2)

with Hs (W·m−2) being the soil sensible heat flux and LEs (W·m−2) the soil latent heat flux.
The latent heat flux is calculated as:

LEs =
ρCp
γ

esat(Ts)− esat(Ta)

rss + rah
(3)

with ρ (kg·m−3) being the air density, Cp (J·kg−1·K−1) the specific heat of air at constant pressure,
γ (Pa·K−1) the psychrometric constant, esat(Ts) (Pa) the saturated vapor pressure at soil temperature,
esat(Ta) (Pa) the saturated vapor pressure at air temperature, rss (s·m−1) the soil evaporation resistance
and rah (s·m−1) the aerodynamic resistance to heat transfer.
rss is given by the formulation in [44], as a function of soil moisture:

rss = exp(A−B
SM

SMfc

) (4)

where the two best fit parameters A (unitless) and B (unitless) are considered as 8 and 5,
respectively [45,46]. SM represents the surface (0–5 cm) soil moisture, whereas SMfc the soil moisture
at field capacity.

Given the constraint of Equation (2), EBsoil computes Ts,dry and Ts,wet by setting SM to 0 and
SMsat, respectively.

3.3.2. Aerodynamic Resistance Formulations for Bare Soil

The aerodynamic resistance that intervenes in the computation of the sensible heat flux, as well the
latent heat flux (see Appendix B) plays an essential role in the prediction of soil Tends. Different
parameterizations have been proposed based on the Monin-Obukhov (MO) similarity theory [47–50].
These parameterizations fall within three different categories: those that follow the MO similarity
theory, those that are based on empirical methods and, finally, the so-called semi-empirical ones [51].
Different formulations were developed with the purpose of saving computation time, by introducing
various assumptions and simplifications in regards to the stability effects, which perform differently
when comparing estimates to measurements of rah [51].

Under stable conditions, an exact solution of the aerodynamic resistance can be easily obtained due
to the linearity of the functions of the stability parameters. However, under non-stable conditions, these
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functions are highly non-linear, and an iterative algorithm is used in order to obtain the exact solution.
This method is known as the “MO similarity” method.

To assess the impact of rah on soil Tends, two different formulations are implemented within EBsoil.
The first formulation RI we consider in our implementation takes into account the Richardson number
Ri (unitless), which represents the importance of natural relative to forced convection and is expressed
as in [48]:

rah,RI =
rah,SI

(1 +Ri)η
(5)

with η (unitless) being a coefficient equal to 0.75 in unstable conditions (Ts > Ta) and to 2 in stable
conditions (Ts < Ta). We define a simple formulation, based on an “empirical" method, which represents
the aerodynamic resistance that neglects natural convection:

rah,SI =
log2 Zr

Z0m

k2ua
(6)

with Z0m (m) the roughness length for momentum transfer over bare soil, Zr (m) the reference height at
which the wind speed is measured, k (unitless) the von Kármán constant and ua (m·s−2) the wind speed.

The bulk Richardson number is a measure of the influence of atmospheric stability on the
flux-gradient relationship in the surface layer:

Ri =
5gZr(Ts − Ta)

Tau2a
(7)

with g (m·s−2) the gravitational constant. This method is referred herein to as the “empirical” method.
The second formulation takes into account the MO length, and is computed as:

rah,MO =
log Zr

Z0m
− ψh

ku∗
(8)

with ψh (unitless) the stability correction factor for heat transport and u∗ (m·s−1) the friction velocity.
For further details on the derivation of rah from the MO theory, please refer to Appendix C.

3.3.3. Vegetation Tends

Two assumptions are made for deriving vegetation Tends from model-derived soil Tends.
The minimum vegetation temperature Tv,wet corresponding to well-watered unstressed vegetation

is set to the air temperature [52–54]. This hypothesis is common to many models, such as
SEBAL (Surface Energy Balance Algorithm for Land) [54], S-SEBI [13] and SEB-1S [14]. The work
in [55] considers Tv,wet as a fraction of the air temperature, using a correction factor determined as
0.993. This correction factor was introduced after observing a systematic bias between Ts and Ta of
well-watered vegetation.

The maximum vegetation temperature Tv,dry corresponding to fully water-stressed vegetation is
estimated as:

Tv,dry = Ts,dry − (Ts,wet − Tv,wet) (9)
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by assuming that the dry and wet edges in the LST − fvg space are parallel. This is based on the
observation that the lines [AD] and [BC] in the LST − fvg space are practically parallel, especially
when using high-resolution remote sensing data in highly heterogeneous conditions [14]. From a
physical point of view, it is assumed that the water-saturated bare soil to full-cover unstressed vegetation
aerodynamic resistance difference is approximately the same as the bone dry bare soil to full-cover
water stressed vegetation aerodynamic resistance difference. In other words, the impact of water stress
on vegetation height is neglected, so that the decreasing rate in surface temperature with increasing
vegetation cover (and the related increase in roughness length for momentum transfer from bare soil to
full-cover vegetation) is practically similar for both dry and wet surface edges.

Figure 6. Schematic diagram presenting an overview of the models used (including inputs,
outputs and the relationships between them) and the validation strategy of temperature
endmembers (Tends) and ET estimates.
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Note that by setting the minimum vegetation temperature to Ta, the roughness length for momentum
transfer over full-cover unstressed vegetation is implicitly constrained. Equation 9 represents a similar
constraint on the roughness length over full-cover water-stressed vegetation (for Tv,dry estimation), which
is fully consistent with the Tv,min = Ta strategy.

Deriving vegetation Tends from soil Tends and Ta data provides the advantage of not requiring
the vegetation height information, as well as the zero plane displacement, the roughness length for
momentum transfer and the roughness length for heat transfer. The proposed approach only relies
on the roughness length for momentum transfer (Z0m) over bare soils, which can be uniformly set to
0.001 m [56]. The range of values of Z0m is typically considered between 0.0006 and
0.035 m [15,22,43,56,57].

3.4. Validation Strategy

Two validation strategies are applied, in terms of both Tends and ET estimates. Figure 6 offers
a schematic diagram of the models used, including corresponding inputs and outputs, alongside the
performed validations. First, the soil Tends simulated by EBsoil (soil Tends_EBsoil) are compared to the
soil Tends measured in situ (soil Tends_IS). Second, the soil Tends retrieved from remote sensing data at
90-m resolution (Tends_RS_90m) are compared to the soil Tends_EBsoil. Third, the soil Tends retrieved
from remote sensing data at 1-km resolution (Tends_RS_1km) are compared to the soil Tends_EBsoil.

Concerning ET estimates, first of all, a validation at 90-m resolution with in situ measurements is
presented. SEB-1S is then applied to 1-km resolution data, which were derived from the aggregation
(simple average) of 90-m resolution data. This 1-km resolution modeled ET is compared against the ET
simulated by SEB-1S at the original 90-m ASTER resolution and subsequently aggregated to 1 km.

4. Results and Discussion

In this section, the soil Tends simulated by the soil energy balance model (Tends_EBsoil) using the
RI or the MO rah formulation are evaluated against: (1) the in situ measurements (Tends_IS) in the R3
area; and (2) the soil Tends retrieved from 90-m resolution ASTER data (Tends_RS_90m) in the Yaqui
and Urgell areas. The model-derived and image-based Tends are then used separately as input to SEB-1S
when applied to 90-m resolution and to 1-km resolution (aggregated) ASTER data. The impact of Tends
on contextual ET estimates is finally discussed in terms of surface conditions and observation resolution.

4.1. Modeled Soil Tends

4.1.1. Direct Validation Using In Situ Measurements

When comparing the two sets of results, it is clear that the latter gives the best results in terms of root
mean square error (RMSE), bias, slope of linear regression and correlation coefficient (see Table 1). The
mean RMSE is equal to 2.4 ◦C for the MO formulation, compared to 3.6 ◦C for the RI formulation. The
lowest mean bias is also obtained for the MO formulation, −1.6 ◦C, as opposed to −2.2 ◦C for the RI
formulation. The mean correlation is increased from 0.95 (RI) up to 0.97 (MO formulation, respectively).
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It is found (not shown) that Ts,dry accounts for more bias than Ts,wet, and its correlation with in situ
measurements is slightly weaker than for Ts,wet. This is possibly due to the Ts,dry measurements, which
present greater variability than the Ts,wet measurements, as explained previously.

Table 1. Root mean square error (RMSE), bias, correlation coefficient (R) and slope of the
linear regression between soil Tends simulated by the energy balance model for bare soils
(EBsoil) with the RI and MO aerodynamic resistance and the soil Tends observed in situ at
the soil plots of the R3 perimeter.

Time RMSE (◦C) Bias (◦C) R (-) Slope (-)
RI MO RI MO RI MO RI MO

10:30 a.m. 3.2 2.3 −1.8 −1.2 0.93 0.96 0.82 0.99
11:00 a.m. 3.3 2.3 −2.2 −1.7 0.97 0.98 0.79 0.94
11:30 a.m. 4.2 2.7 −2.5 −1.9 0.95 0.98 0.74 0.90

Mean 3.6 2.4 −2.2 −1.6 0.95 0.97 0.78 0.94

Figure 7a,b plot the soil Tends modeled using the RI and MO version of rah, respectively.

Figure 7. The soil Tends simulated by EBsoil for the (a) RI and (b) MO aerodynamic
resistance are plotted against the soil Tends observed in situ at the two soil plots in the
R3 perimeter.

As the calculation of Tends depends on rah, which depends on wind speed, a sensitivity study of
simulated rah with respect to wind speed is also conducted (see Figure 8). It appears that a higher
sensitivity is obtained for wind speeds inferior to 2 m·s−1 and that Ts,dry is impacted slightly more than
Ts,wet. Both RI and MO formulations are similar in terms of Ts,wet sensibility to wind speed. However,
this is not the case for Ts,dry, as the RI formulation is more sensitive to wind speeds inferior to 1 m·s−1.
As wind speed decreases from 2 m·s−1, the resistance to heat transfer becomes very large and is no
longer representative of the turbulent processes occurring.
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Figure 8. Absolute value of the simulated to observed maximum (top) and minimum
(bottom) soil temperature difference as a function of wind speed for the RI and MO
aerodynamic resistance separately.

Results are consistent with those obtained in [57], stating that one of the parameters contributing to
important uncertainties in the estimation of aerodynamic resistances is the wind speed.

As a summary, the soil Tends simulated using the MO formulation compare quite well to in situ
measurements and seem to be relatively stable even in the conditions of low wind speeds. The uncertainty
in modeled Ts,dry is larger than in modeled Ts,wet, consistent with a significantly larger range of variation
of Ts,dry.

Figure 9. The soil Tends simulated by EBsoil for the (a) RI and (b) MO
aerodynamic resistance are plotted against the image-based Tends for the Yaqui and Urgell
regions separately.
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4.1.2. Consistency with Remotely-Sensed Soil Tends

The proposed two rah formulations are now implemented over the Urgell and Yaqui areas.
The soil Tends issued from the physical aerodynamic resistance model are compared to the soil
Tends derived by the SEB-1S Tends submodel from 90-m resolution ASTER data. Figure 9 plots
model-derived (Tends_EBsoil) versus image-based (Tends_RS_90m) soil Tends for the Yaqui and Urgell
areas separately.

Statistical results in terms of daily bias in Ts,wet and Ts,dry are provided in Table 2, while values of the
slope of the linear regression, correlation coefficient and RMSD between modeled and remotely-sensed
Tends can be found in Table 3, for each rah formulation. When analyzing the results obtained over
the Yaqui and Urgell areas combined, the MO rah formulation gives the best overall statistical results,
with a RMSD estimated as 4.1 ◦C, compared to 6.4 ◦C for the RI formulation. The consistency
obtained between model-derived and image-based soil Tends reflects the robustness and precision of
the image-based Tends_RS_90m over highly heterogeneous irrigated areas. Such a consistency is quite
satisfying, as it validates both the physical approach based on the MO theory and the remote sensing
Tends algorithm based on both LST − α and LST − fvg spaces.

Table 2. Difference between the soil Tends simulated by EBsoil with the RI and MO
aerodynamic resistance and the soil Tends retrieved from 90-m resolution data for the
minimum and maximum soil Tends, for the Yaqui and Urgell regions separately.

Day Site Bias Ts,dry (◦C) Bias Ts,wet (◦C)
RI MO RI MO

30 December Yaqui −0.84 0.23 2.4 1.3
23 February Yaqui −3.0 −0.80 3.8 2.8
10 March Yaqui −7.7 −0.21 0.40 1.8
11 April Yaqui −9.0 −5.7 4.6 3.6
27 April Yaqui −14 −2.2 2.8 4.3
6 May Yaqui −10 −8.8 −2.8 − 3.9
13 May Yaqui −9.3 −6.0 2.6 0.90

16 August Urgell −8.3 −4.0 5.2 4.4
3 October Urgell −7.8 −7.6 2.6 1.3
All (mean) Yaqui −7.7 −3.4 2.0 1.5

All (σ) Yaqui 4.4 3.5 2.5 2.7
All (mean) Urgell −8.0 −5.8 3.9 2.8

The approach is also implemented using 1-km resolution (aggregated) ASTER data over the two
sites. Figure 10 shows side by side the 90-m resolution (grey dots) and the 1-km resolution (black
dots) LST − α and LST − fvg spaces plotted for three ASTER overpass dates over the Yaqui site (30
December, 11 April and 6 May, respectively). The polygons obtained using Tends_EBsoil (RI and MO
formulations), Tends_RS_90m and Tends_RS_1km are overlaid on each space. The temporal variability
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in the boundaries of the two spaces can be explained by the presence or absence of vegetation and by
the change in vegetation color during the senescence period, as noted in [14]. Nonetheless, one observes
that the contour of 90-m resolution data points is relatively well represented by the Tends_RS_90m
polygons. The other three polygons (Tends_RS_1km and Tends_EBsoil for RI and MO formulations)
are significantly different, especially in the LST − α space. The albedo endmembers for Tends_EBsoil
and Tends_RS_1km are derived from 1-km resolution ASTER data. This is the reason why the three
polygons are narrower and closer to the 1-km resolution data points. However, the MO rah formulation
provides dry and wet edges closer to the Tends_RS_90m polygon than the RI rah formulation (consistent
with a better performance in terms of soil Tends). Moreover, the MO rah significantly outperforms
the Tends_RS_1km algorithm, which systematically underestimates the dry edge and overestimates
the wet edge. Consequently, one concludes that the major factor that contributes to the estimation
of physics-based Tends is the aerodynamic resistance and that the MO formulation appears to be a
better candidate than the RI formulation, especially for the dry edge determination. As the spatial
resolution of observation decreases, so does the number of data points within both LST − α and
LST − fvg spaces. A small number of data points represents a strong constraint on the image-based
determination of Tends. In fact, a larger domain size would be needed at 1-km resolution to capture
more variability in surface (especially dry and wet) conditions. However, the domain size is another
strong constraint on the contextual Tends algorithms, because the application of image-based methods
implicitly assumes that meteorological conditions are uniform within the study domain. In particular,
Tends are by definition zero-dimensional, that is Tends are not scale-dependent. Therefore, the relevance
of image-based methods over a given application domain is a compromise between an extent sufficiently
large to meet the heterogeneous requirement (so that dry and wet conditions can really be observed)
and an extent sufficiently small to meet the uniform atmospheric forcing requirement (so that Tends are
uniform, too). In this paper, image-based algorithms were applied to ∼10 km-sized areas to limit the
variability of atmospheric conditions within the study domain.

Table 3. Root mean square difference (RMSD), correlation coefficient (R) and slope of the
linear regression between the soil Tends simulated by EBsoil for the RI and MO aerodynamic
resistance retrieved from 1-m resolution data (RS_1km) and the soil Tends retrieved from
90-m resolution data, for the Yaqui and Urgell regions combined.

RMSD (◦C) R (-) Slope (-)
RI MO RS_1km RI MO RS_1km RI MO RS_1km

6.4 4.1 6.7 0.97 0.97 0.92 0.58 0.76 0.55

4.2. Application to ET Estimation at 90-m and 1-km Resolutions

One key advantage of model-derived Tends lies within the possibility to “de-contextualize” Tends
submodels, meaning to extend the applicability of the so-called contextual ET models to remote sensing
data at multiple spatial resolutions and to regions less heterogeneous than irrigated areas. In this study,
the performance of the Tends algorithms is assessed by applying SEB-1S to both 90-m resolution and
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1-km resolution data, using the model-derived or image-based Tends as input. The issue of the scale
mismatch between remotely-sensed and ground-based ET estimates [12] is addressed by the following
stepwise approach: 90-m resolution SEB-1S ET is evaluated with eddy covariance measurements, and
the 1-km resolution SEB-1S ET is compared to the 90-m SEB-1S ET aggregated at 1-km resolution.

Figure 11 plots the ET simulated by SEB-1S at 90-m resolution versus the ground-based observations
of the six stations of the Yaqui experiment. SEB-1S ET estimates are obtained using the available energy
(Rn−G) observed by the flux stations and either the model-derived (RI or MO rah formulation) or the
image-based Tends as input. The differences between the three simulation results (see the distribution
of points in Figure 11) indicate that ET is greatly influenced by EF, which strongly depends on Tends.
Moreover, the rah modeling approach for computing Tends has a significant impact on ET estimates.
The RMSD between modeled and ground-based ET is 65, 82 and 120 W·m−2 for Tends_RS_90m,
Tends_EBsoil with the MO rah formulation and Tends_EBsoil with the RI rah formulation, respectively.
Tends_RS_90m-based ET estimates are in good agreement with in situ measurements, especially given
the wide observation range of ET (0–700 W·m−2) [14]. The comparison between SEB-1S and in situ
ET is also undertaken using the available energy (Rn−G) modeled by SEB-1S. In this case, the RMSD
between modeled and ground-based ET is 85, 106 and 130 W·m−2 for Tends_RS_90m, Tends_EBsoil
with the MO rah formulation and Tends_EBsoil with the RI rah formulation, respectively. The RMSD
(65–85 W·m−2) of ET obtained when using image-based Tends as input is still in the range reported by
the published literature [58–61]. In the case of the Yaqui experiment, RMSD values tend to be high,
because most components of the energy budget are often large in semi-arid lands at low latitudes. In
addition, a fairly strong bias is present on net radiation, which tends to worsen ET estimations [30]. Note
that the significant difference in RMSD when using image-based versus model-derived Tends as input to
SEB-1S could be attributed to uncertainties in the vegetation Tends (simply derived from soil Tends and
air temperature). Nonetheless, the MO rah still provides acceptable ET estimates at 90-m resolution.

Figure 12 plots the ET simulated by SEB-1S at 1-km resolution (from aggregated ASTER data)
versus the 1-km resolution ET chosen as a reference over the Yaqui area, on all seven ASTER overpass
days. Given the good results obtained with Tends_RS_90m in terms of 90-m resolution ET estimates,
the reference dataset for evaluating the 1-km resolution ET models is obtained by aggregating the 90-m
resolution Tends_RS_90m-forced SEB-1S ET at 1-km resolution. The Tends used as input to SEB-1S
are either modeled using Tends_EBsoil with the RI or MO rah formulation, or retrieved from (1-km
resolution) remote sensing data using Tends_RS_1km. Statistical results, including RMSD, bias, slope
of the linear regression and correlation coefficient, between simulated, and reference ET is reported
in Table 4, for each Tends algorithm and for each observation day separately. The MO formulation
yet again gives the best results, with a mean RMSD of 56 W·m−2 compared to 77 W·m−2 for the RI
formulation. The mean RMSD obtained when using Tends_RS_1km is close to that obtained when using
the RI-derived Tends, which is 78 W·m−2. However, the lowest mean bias (15 W·m−2) in ET is obtained
for Tends_RS_1km compared to 23 W·m−2 and 27 W·m−2 for Tends_EBsoil with the MO and RI
formulations, respectively. The mean correlation coefficient is increased from 0.95 for Tends_RS_1km
up to 0.98 for both Tends_EBsoil algorithms.



Remote Sens. 2015, 7 10464

Figure 10. The LST − α and LST − fvg spaces corresponding to 1-km resolution data
(black dots) and 90-m resolution data (grey dots) are overlaid with the polygons built
using Tends_RS_1km (blue), Tends_RS_90m (light blue) and the Tends_EBsoil for the RI
(magenta) and MO (red) aerodynamic resistance. Results are shown over the Yaqui area (30
December, 11 April and 13 May, respectively).
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Figure 11. The ET simulated at 90-m resolution is plotted against station measurements for
data over the Yaqui region. The Tends used as input to the EF_SEB-1S model consist of
(a) the Tends retrieved from 90-m resolution data, (b) the Tends simulated by EBsoil with
the RI and (c) MO aerodynamic resistance.
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Figure 12. The ET simulated at 1-km resolution is plotted against the 90-m resolution
simulated ET, aggregated at 1-km resolution, for data over the Yaqui region, on the seven
ASTER overpass dates separately. The Tends used as input to the EF_SEB-1S model consist
of (a) the Tends simulated by EBsoil with the RI and (b) MO aerodynamic resistance, (c) the
Tends retrieved from 1-km resolution data, (d) the Tends simulated with the mixed modeling
approach using αends_1km and (e) the Tends simulated with the mixed modeling approach
using αends_90m.
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Table 4. Root mean square difference (RMSD), bias, correlation coefficient (R) and slope of
the linear regression between the ET simulated at 1-km resolution and the 90-m resolution
simulated ET aggregated at 1-km resolution, for data over the Yaqui region, on the seven
ASTER overpass dates separately. The Tends used as input to EF_SEB-1S consist of Tends
simulated by EBsoil with the RI and MO aerodynamic resistance and the Tends retrieved
from 1-km resolution data (RS).

Date RMSD (W·m−2) Bias (W·m−2) R (-) Slope (-)
RI MO RS RI MO RS RI MO RS RI MO RS

30th Dec 48 55 47 46 54 5.3 0.98 0.98 0.96 1.3 1.2 2.0
23 February 64 58 78 57 55 2.0 0.94 0.96 0.94 1.1 0.98 1.7
10 March 61 36 99 −46 31 −73 0.99 0.97 0.97 1.5 1.1 1.8
11 April 71 57 91 24 37 41 0.97 0.98 0.96 1.6 1.4 1.7
27 April 122 63 79 −102 57 24 0.99 0.99 0.98 1.6 1.2 1.7
6 May 127 95 82 −126 −93 −52 0.98 0.98 0.93 1.2 1.1 1.6

13 May 42 28 67 −38 23 −53 0.98 0.97 0.95 1.2 1.0 1.4

All (mean) 77 56 78 −27 23 −15 0.98 0.98 0.95 1.4 1.1 1.7
All (σ) 34 21 17 72 53 44 0.01 0.01 0.01 0.22 0.12 0.19

At 1-km resolution, the Tends_EBsoil algorithm with MO formulation improves ET predictions.
However, the presence of a significant bias can be observed on the ET estimates computed using the
MO-derived Tends, on 6 May. In fact, Tends_EBsoil are computed independently of the LST dataset and,
thus, can lead to the polygon not being centered on the cluster points in the LST − α and LST − fvg

spaces. This can introduce a bias in model-derived Tends and, as a result, in EF/ET. In contrast, the
polygon obtained from Tends_RS_1km is centered on the cluster points, because the computation of
Tends is made using the observed data points. Overall, the ET estimates derived from Tends_RS_1km
have a low bias. However, the mean slope of the linear regression between modeled and reference
ET is estimated as 1.7. This is due to the fact that Tends_RS_1km overestimates the wet edge and
underestimates the dry edge, which translates into the polygon boundaries being too close to the point
cluster. The data points are thus closer to the boundaries at 1-km resolution than at 90-m resolution,
influencing the range of variability and leading to slopes significantly larger than one.

SEB-1S, as a contextual model, performs well, provided that the extreme conditions associated
with fully dry and wet soil/vegetation components are encountered in the same image. Many studies
have documented the sensitivity of contextual models to the wet and dry edges. For instance,
Long et al. [19] indicated that SEBAL shows great sensitivity to extreme soil Tends, which implies that
the extreme conditions play a significant role in the estimation of ET. The dry and wet edges impact the
ET estimates in a similar manner: increasing Tends for the wet/dry extremes tend to increase ET based
on energy conservation. Yet the distance between the observed dry and wet edges depends the range of
EF, which is linked to the growth stage of vegetation and to the spatial representativeness of the study
area [8]. It also depends on the domain size. The impact of the domain size on ET estimates can reach
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50–80 W·m−2 [19]. When applied to moderate or low spatial resolution images, contextual models could
fail to discriminate extreme soil wetness conditions and, hence, to detect EF, especially for relatively
small study sites [20]. Conversely, deriving the physical boundaries independently of remote sensing
data could help improve ET estimates, especially by reducing the underestimation and overestimation of
the dry and wet edge, respectively. The theoretical approach developed herein, based on a simple soil
energy balance model and the MO rrah formulation, is well adapted for large-scale applications using
moderate to low resolution data.

4.3. A Mixed Modeling Remote Sensing Approach for Improved Tends and ET estimates

As the Tends_EBsoil with the MO formulation and the Tends_RS_1km provide complementary
results in terms of bias and slope of the linear regression between simulated and reference ET, a mixed
modeling approach is proposed for Ts,dry. The new formulation considers Ts,dry as the maximum
between the two estimates:

Ts,dry,MX = max(Tends_EBsoil, T ends_RS) (10)

Furthermore, a new constraint concerning the albedo endmembers is applied. It consists of
using either the 1-km resolution α endmembers (αends_1km) or the 90-m resolution α endmembers
(αends_90m) in the estimation of Tends_RS_1km. A comparison between the 1-km resolution
mixed-modeled and reference ET is also presented in Figure 12, for the Yaqui area, on all seven
ASTER overpass days, and using αends_1km (e) and αends_90m (f). Results in terms of RMSD, bias,
correlation coefficient and slope of the linear regression between simulated and reference ET are reported
in Table 5, for each of the two mixed Tends formulations (MX_αends_1km and MX_αends_90m,
respectively) and for the two previous configurations (MO-derived Tends_EBsoil and Tends_RS_1km,
respectively). The statistical results are presented for all seven ASTER overpass dates combined. Both
mixed modeling formulations significantly improve the results, with RMSD values of 43 W·m−2 and
52 W·m−2 (for MX_αends_90m and MX_αends_1km, respectively), as compared to 59 W·m−2 and
79 W·m−2 (for the MO_1km and RS_1km formulation, respectively).

Table 5. Root mean square difference (RMSD), bias, correlation coefficient (R) and slope of
the linear regression between the ET simulated at 1-km resolution and the 90-m resolution
simulated ET aggregated at 1-km resolution, for data over the Yaqui region, on all of
the seven ASTER overpass dates combined. The Tends used as input to EF_SEB-1S
consist of Tends simulated by EBsoil with the MO aerodynamic resistance, retrieved from
1-km resolution data (RS), simulated with the mixed modeling approach using αends_1km
(MX_αends_1km) and with αends_90m (MX_αends_90m).

Configuration RMSD (W·m−2) Bias (W·m−2) R (-) Slope (-)
MO 59 23 0.95 1.1
RS 79 −15 0.93 1.3

MX_αends_1km 52 25 0.96 1.1
MX_αends_90m 43 9.3 0.96 1.0
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As expected, when using the αends_90m as input to the Tends_RS_1km, the computed boundaries
are much closer to the boundaries estimated at 90-m resolution. This results in the lowest bias obtained
between the mixed-modeled ET at 1-km resolution (using MX_αends_90m derived Tends) and the 1-km
resolution reference ET. Nevertheless, the improvement provided by the αends_90m configuration is
relatively small, so that the MX_αends_1km strategy seems to be a good compromise in terms of ET
accuracy and data availability. Especially the MX_αends_1km does not require high (90 m) resolution
remote sensing data for calibrating αends.

5. Conclusions

This paper develops a simple theoretical approach to estimate Tends independently from LST images,
for use as input to contextual ET models. The soil Tends simulated by a soil energy balance model using
the RI and MO rah formulations are evaluated with in situ measurements made over an irrigated area
in Morocco. Results indicate that the MO formulation provides the best soil Tends estimates, with a
mean RMSE of 2.4 ◦C, compared to 3.6 ◦C for the RI formulation. Model-derived soil Tends are also
compared to the image-based soil Tends derived from the SEB-1S Tends submodel, which combines
both LST − α and LST − fvg spaces as additional constraints on wet and dry edges. The approach is
tested using 90-m resolution ASTER data over two semi-arid irrigated areas in Mexico and Spain. The
MO formulation still provides the best results, with an RMSD between simulated and image-based soil
Tends estimated as 4.1 ◦C and 6.4 ◦C for the MO and RI formulations, respectively.

The performance of Tends algorithms in terms of ET estimation is assessed by applying the
SEB-1S EF submodel to both 90-m resolution and 1-km resolution (aggregated) ASTER data using the
model-derived or image-based Tends as input. In the case of the theoretical Tends algorithm, vegetation
Tends are estimated from model-derived soil Tends and air temperature. The RMSD between 90-m
resolution SEB-1S and in situ ET is estimated as 65 and 82 W·m−2, and the RMSD between 1-km
resolution SEB-1S and aggregated 90-m resolution SEB-1S ET is estimated as 78 and 56 W·m−2 for the
image-based and model-derived Tends (MO formulation), respectively. In light of the above results, one
concludes that Tends should be estimated a priori when contextual models are applied to low resolution
images. Nonetheless, image-based Tends provide accurate ET estimates when high-resolution images
are used in highly heterogeneous (irrigated) landscapes. In these conditions, the consistency between
model-derived and high-resolution image-based Tends provides a meaningful basis for developing mixed
modeling observational approaches.

Regarding the estimation of ET using contextual models with image- and physics-based edge
determination, this study differs from previous studies in four main aspects: (1) Tends are derived
from a rah formulation for bare soil only, although most theoretical Tends algorithms are based on rah
formulations for both soil and vegetation [10,19,43]; (2) to the authors’ knowledge, this is the first time
that soil Tends have been evaluated using in situ measurements; (3) the image-based edge determination
relies on both the LST −α and LST − fvg spaces, while previous studies have been based on one space
only [8,15,19,20,43]; and (4) the sensitivity of ET simulations to observation resolution is assessed in
terms of image-based and physics-based edge determination.
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The successful implementation of a soil energy balance model in contextual ET models increases
the accuracy in ET estimates at multiple resolutions and has many other potential applications.
First, the consistency between model-derived and image-based Tends could lead to improving the
parameterization of aerodynamic resistance by remote sensing means. Secondly, the minimum and
maximum soil temperatures are the boundary conditions for LST-based soil evaporative efficiency (SEE,
being defined as the ratio of actual to potential evaporation) models [62,63]. Improving the accuracy in
soil Tends opens the path for monitoring SEE from optical/thermal remote sensing. Thirdly, LST-derived
SEE is tightly coupled to the near-surface soil moisture retrieved from microwave radiometers,
such as SMOS (Soil Moisture and Ocean Salinity), especially under semi-arid non-energy-limited
conditions [64]. The DISPATCH (DISaggregation based on a Physical And Theoretical scale
CHange; [29]) algorithm improves the spatial resolution of SMOS-like data by converting LST-derived
SEE into high resolution soil moisture fields. Any improvement in LST-based SEE models would
contribute to further developments of DISPATCH and to associated refinements of soil moisture
products. Last, but not least, remotely-sensed estimates of LST-derived SEE and microwave-derived
soil moisture data would be key for better constraining the partitioning of LST-derived ET into soil
evaporation and plant transpiration [65]. Such information is crucial for better quantifying crop water
needs and managing water resources over semi-arid areas.
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Nomenclature

α Surface albedo
αs Bare soil albedo
αvg Green vegetation albedo
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αvs Senescent vegetation albedo
αth,1 Threshold albedo, computed as the average between αvg and αs

αavg Average of all albedo values
αends_90m Albedo endmembers at 90-m resolution
αends_1km Albedo endmembers at 1-km resolution
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
Cp Specific heat of air at constant pressure (J·kg−1·K−1)
esat(T ) Saturated vapor pressure at temperature T (Pa)
εs Soil emissivity
η Stability coefficient
EF Evaporative fraction
ET Evapotranspiration (W·m−2)
ET_IS Evapotranspiration given by in situ measurements (W·m−2)
ET_90m_RS Evapotranspiration estimated at 90-m resolution, by using image-based

temperature endmembers as input (W·m−2)
ET_90m_EBsoil Evapotranspiration estimated at 90-m resolution, by using

model-derived temperature endmembers as input (W·m−2)
ET_1km_RS Evapotranspiration estimated at 1-km resolution, by using image-based

temperature endmembers as input (W·m−2)
ET_1km_EBsoil Evapotranspiration estimated at 1-km resolution, by using

model-derived temperature endmembers as input (W·m−2)
ET_1km_MX Evapotranspiration estimated at 1-km resolution, by using as input the

temperature endmembers derived from mixed-modeling (W·m−2)
fvg Fractional green vegetation cover
fvg,avg Average of all fractional green vegetation cover values
g Gravitational constant (m·s−2)
G Ground heat flux (W·m−2)
γ Psychrometric constant (Pa·K−1)
Hs Soil sensible heat flux (W·m−2)
k Von Kármán constant
LST Land surface temperature (◦C)
LEs Soil latent heat flux (W·m−2)
Lmo Monin–Obukhov length (m)
MO Monin–Obukhov
NDVI Normalized Difference Vegetation Index
ψh Stability correction factor for heat transport
ψm Stability correction factor for momentum transport
rah Aerodynamic resistance to heat transfer (s·m−1)
rah,RI Aerodynamic resistance to heat transfer based on the Richardson number

(s·m−1)
rah,MO Aerodynamic resistance to heat transfer based on the Monin–Obukhov length (s·m−1)
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rss Soil evaporation resistance (s·m−1)
ρ Air density (kg·m−3)
RI Richardson
Ri Richardson number
RMSD Root mean square difference
RMSE Root mean square error
Ra Incident atmospheric radiation at large wavelengths (W·m−2)
Rg Incident solar radiation at short wavelengths (W·m−2)
Rn Surface net radiation (W·m−2)
SEB-1S Surface energy balance-mono-source
σ Stefan–Boltzmann constant (W·m−2·K−4)
SM Surface (0–5 cm) soil moisture (m·3m−3)
SMfc Soil moisture at field capacity (m·3m−3)
SMC Meteorological Service of Catalonia
Ta Air temperature (◦C)
Tmax Maximum surface temperature (◦C)
Tends Temperature endmembers (◦C)
Tends_IS Soil temperature endmembers measured in situ (◦C)
Tends_RS_90m Soil temperature endmembers derived from 90-m resolution images(◦C)
Tends_RS_1Km Soil temperature endmembers derived from 1-km resolution images (◦C)
Tends_EBsoil Model-derived soil temperature endmembers (◦C)
Ts,dry Temperature of a fully dry bare soil (◦C)
Ts,dry,MX Maximum soil temperature, derived from the mixed modeling approach (◦C)
Ts,wet Temperature of a fully wet bare soil (◦C)
Tv,dry Temperature of fully water-stressed vegetation (◦C)
Tv,wet Temperature of well-watered vegetation (◦C)
ua Wind speed (ms−2)
u∗ Friction velocity (ms−2)
UTC Coordinated Universal Time
WC Automatic weather station of Golmes
XEMA Automatic weather station network
Z0m Roughness length for momentum transfer over bare soil (m)
Zr Reference height at which the wind speed is measured (m)

Appendix

A. Image-Based Temperature Endmembers Algorithm

Adjustments to the estimation of image-based Tends, as implemented in the original version of
SEB-1S, are made in this study. Especially, an effort is made to improve the robustness of the SEB-1S
Tends submodule when applied to remote sensing data collected at a spatial resolution significantly
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lower than 90 m. Modifications mainly consist of defining new image-based thresholds to estimate the
slopes of the wet and dry edges more accurately using data that are not necessarily representative of
extreme (wet/dry) soil and vegetation conditions. Below, we provide a summary of the methodology for
the estimation of minimum vegetation temperatures (Tv,wet,1 and Tv,wet,2), minimum soil temperatures
(Ts,wet,1 and Ts,wet,2), maximum soil temperatures (Ts,dry,1 and Ts,dry,2) and maximum vegetation
temperatures (Tv,dry,1 and Tv,dry,2) for the LST − α and LST − fvg spaces, respectively.

With respect to the LST − α space, no modification is made to the computation of the minimum
vegetation temperature Tv,wet,1 and the maximum soil temperature Ts,dry,1, respectively:

• Tv,wet,1 (if α = αvg) is set to the air temperature Ta;
• Ts,dry,1 (if α = αs) is set to the maximum temperature (Tmax) observed within the study area.

Several modifications are made in the estimation of Ts,wet,1 and Tv,dry,1:

• The minimum soil temperature Ts,wet,1 is defined as the intercept at α = αs of the line passing
through the point (αvg, Ta) and the point with α < αth,1, such that the slope of the line is maximum
(meaning that all of the other data points with α < αth,1 are located above the wet surface edge),
with αth,1 being the average between αvg and αs. In the original version of SEB-1S, this threshold
was set to αvg.

• The maximum vegetation temperature Tv,dry,1 is defined as the intercept at α = αvs of the line
passing through (αs, Ts,dry,1) and the point with α > αavg, such that the slope of the line is
maximum (meaning that all of the other data points with α > αavg are located below the dry
surface edge) with αavg being the average of all α values within the study area.

In a similar manner, regarding the LST − fvg space, Tv,wet,2 and Tv,dry,2 remain unchanged:

• Tv,wet,2 (if fvg = 1) is set to the air temperature Ta;
• Ts,dry,2 (if fvg = 0) is set to Tmax.

Several modifications are made in the estimation of Ts,wet,2 and Tv,dry,2:

• The minimum soil temperature Ts,wet,2 is computed as the intercept (at fvg = 0) of the line passing
through the point (1, Ta) and the point with fvg < fvg,avg, such that the slope of the line is
maximum (meaning that all of the other data points with fvg < fvg,avg are located above the
wet surface edge) with fvg,avg being the average of all fvg values within the study area. In the
original version of SEB-1S, the threshold value (fvg,avg) was set to 0.5. It is now computed for
each day separately.

• The maximum vegetation temperature Tv,dry,2 is defined as the intercept (at fvg = 1) of the line
passing through the point (0, Ts,dry,2) and the point with fvg > fvg,avg, such that the slope of the
line is maximum (meaning that all of the other data points with fvg > fvg,avg are located below the
dry surface edge).

Finally, as in the original version of SEB-1S, an estimation of the four Tends is given by averaging
the two Tends sets obtained for each space separately:



Remote Sens. 2015, 7 10474

Ts,dry = Ts,dry,1 = Ts,dry,2 = Tmax (11)

Ts,wet = (Ts,wet,1 + Ts,wet,2)/2 (12)

Tv,wet = Tv,wet,1 = Tv,wet,2 = Ta (13)

Tv,dry = (Tv,dry,1 + Tv,dry,2)/2 (14)

B. Energy Balance Model for Bare Soil

The net radiation at the soil surface is given by:

Rns = (1− αs)Rg + εs(Ra− σT 4
s ) (15)

Where αs (unitless) represents the soil albedo, Rg (W·m−2) the incident solar radiation at short
wavelengths, εs (unitless) the soil emissivity, set to 0.96, Ra (W·m−2) the incident thermal radiation
at large wavelengths, σ (W·m−2·K−4) the Stefan–Boltzmann constant and Ts (◦C) the soil temperature.

The soil heat conduction flux can be approximated as [10,66]:

G = 0.32Rns (16)

The soil sensible heat flux is computed as:

Hs =
ρCp(Ts − Ta)

rah
(17)

with ρ (k·g·m−3) being the air density andCp (J·kg−1·K−1) the specific heat of air at constant pressure.

C. Aerodynamic Resistance Modeling (MO Formulation)

The MO length Lmo is computed as follows:

Lmo = − ρCpTau
3
∗

Kg(H + 0.61CpTaLEs)
(18)

u∗ (ms−1) represents the friction velocity and is expressed as:

u∗ =
uak

log Zm

Z0m
− ψm

(19)

ψm represents the stability correction factor for momentum transport and is given by:

ψm =
ψh
2

+ 2 log
1 + x

2
− 2 arctanx+ 0.5π (20)

The stability correction factor for heat transport is expressed as:

ψh = 2 log
1 + x2

2
(21)

where x is a function of the MO length Lmo and of the reference height for wind speed observations:
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x = (1− 16
Zr
Lmo

)0.25 (22)
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4.1 Introduction

Soil evaporative efficiency (SEE), defined as the ratio of actual (LEs) to potential evaporation
(LEp), is a key variable in retrieving soil evaporation (E) by remote sensing means. Since SEE
is much more directly linked to remote sensing data than E is, various SEE models have been
developed in conjunction with two observable variables - land surface temperature (LST) and
surface soil moisture (SM). While the first part of this PhD focused on mapping evapotranspira-
tion at mulitple resolutions from an instantaneous LST–based model, this second part is aimed
at characterizing the temporal dynamics of SEE.

Characterizing SEE for various soil types is important, since soil texture plays an important
role in the dynamics of the daily SEE cycle (Komatsu, 2003; Chanzy and Bruckler , 1993). How-
ever, SEE models have been rarely tested for different soil types. In mechanistic models, the link
between SEE and soil texture is ensured through pedotransfer functions, which connect soil hy-
draulic properties with sand and clay percentages. Merlin et al. (2016) developed a meta–analysis
approach to represent SEE over a large range of soil and atmospheric conditions, by using data
collected at over 30 sites worldwide (article found in Annex). A significant relationship has been
observed between a semi–empirical E model parameter and soil texture.

In this part, attempts have been made to characterize the daily cycle of SEE for various
soil types, starting from synthetic SEE time series. One possibility of doing that is by using
the global modeling technique, which relies on the theory of nonlinear dynamical systems. This
technique is a fairly recent one, having been developed in the 1990s (Gouesbet and Letellier ,
1994; Letellier et al., 1995). Its application to the environmental dynamics is even more recent
(Maquet et al., 2007; Mangiarotti et al., 2014). It uses the phase space in order to represent,
analyze and understand the temporal evolution of the dynamical behavior. The representation in
the phase space is useful because it offers a geometrical representation of the dynamical behavior.
One important point of interest of the approach comes from the fact that, in principle, such a
phase space can be reconstructed from observational time series (Takens, 1981). In its work
(Lorenz , 1963), Edward Lorenz has shown that equations of a simplified atmosphere may lead to
unpredictable behaviors in the long term. One reason to use the global modeling approach when
studying SEE is that its dynamics is directly coupled to the atmosphere. Similar properties of
low predictability for the behavior of SEE as the ones obtained by Lorenz may thus be expected
from it. To study the temporal behavior of the SEE, it appears natural to use the theory of
nonlinear dynamical systems which is well adapted to such type of dynamics. There is a novelty
aspect related to this approach, since this technique has been used for a very small number of
environmental contexts, with even fewer models obtained that are able to reproduce the original
dynamics.

First of all, a description of the global modeling technique and an overview of the method
used, along with its limitations, are presented in Section 4.2. A description of the synthetic SEE
data and the model used to generate it is offered in Section 4.3. Results in terms of the global SEE
model and its validation are proposed in Section 4.4, with a summary and general conclusions
given in Section 4.5. The article based on this analysis can be found in Section 4.6, which is a
summary of the results obtained in terms of the SEE global model and its predictability in time.
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4.2 Global Modeling

The work of Henri Poincaré (1854 - 1912) is at the basis for the development of the theory
of nonlinear dynamical systems, making way for the emergence of the chaos theory (Letellier ,
2006). Poincaré used the phase space in order to develop new concepts such as recurrence maps
(nowadays known as Poincaré map), limit cycles and fixed points. These concepts and the whole
work of Poncaré have brought the fundamental concepts to understand, from a qualitative point
of view, how in a deterministic context, small differences in the initial conditions can lead to the
exponential divergence of the time evolution. With the development of digital computers in the
1960s, the first illustrations to Poincaré’s theory have increased. Amongst all, the most notable
one belongs to Edward Lorenz, who in 1963 discovered the first tridimensional autonomous
system, which is both deterministic and sensitive to initial conditions, making it unpredictable
in the long–term. As for more practical “applications”, the most notable onse are the first global
models obtained from experimental data (Letellier et al., 1995, 2009). Below, a description of the
concepts used in this approach, along with a presentation of the method and algorithm behind
the global modeling technique.

4.2.1 Concepts

Some concepts are required when using the theory of nonlinear dynamical systems, which are
presented below. A more in–depth description behind the notions and concepts can be found in
various works such as Abarbanel (1996), Bergé et al. (1998) and Letellier (2006).

Determinism

In order to understand and foresee the observed dynamical behaviors of systems, it is neces-
sary to identify the cause and effect links between observed phenomena. Determinism assumes
both the causality condition (every state is causally linked to the prior state) and the necessary
condition (the transition from one state to the next state is entirely determined and is given by
a unique relationship). By knowing the current state and the evolution laws, one can predict all
future states and also predict backward all past states.

Phase space

The phase space is a space that allows the representation of all possible states of a system.
In the theory of dynamical systems, it provides a geometrical representation of a deterministic
behavior. One important result of the theory of nonlinear dynamical system is that such a space
can be reconstructed for one given system from one single observable. This is guaranteed by a
theorem by F. Takens (Takens, 1981). In practice, the phase space can be reconstructed either
using differential coordinates (one variable and its successive derivatives), or delayed coordinates
(the same variable represented as a function of itself for various time delays).

Global modeling technique

The aim of most modeling techniques is to reproduce the observations. A valid model is
obtained when it is able to simulate the same temporal evolution as the observed system. They
are often referred to as “local” techniques because they are applied on a specific time window.
Global approaches however focus on finding the underlying dynamics of the sytem rather than
the temporal evolution itself (since observed temporal evolution is the result of specific initial
conditions). In practice, global modeling consists in projecting the experimental data, embedded
in a reconstructed space spanned by derivative or delayed coordinates, onto a basis of functions
(Gouesbet and Letellier , 1994; Aguirre and Billings, 1995; Mangiarotti et al., 2012a).

Phase portrait

Phase portraits are used in global modeling because they offer a geometrical representation of
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the dynamical behavior. Basically, a phase space portrait is a representation of the trajectories
of a dynamical system in the phase plane. There are two types of phase portraits: differential
portrait (based on the successive derivatives of the original system) and delayed portrait (based
on the delayed coordinates of the original system). These are, in principle, equivalent. In this
study, the first type of phase portrait was used, as it does not require any choice of parameters.

Chaos

Two conditions are required for chaos: 1) determinism and 2) high sensitivity to initial con-
ditions (Kaplan and Glasss, 1992). Most of the available methodologies are not able to verify
the underlying determinism of a system, even though they are able to extract geometrical and
dynamical nonlinear invariants. On the other hand, topological invariants are a more powerful
way of detecting the type of chaos associated to the system. However, their practical derivation
supposes being able to derive the deterministic component, in order to further apply the topo-
logical analysis. Global modeling is, in this context, a robust method of detecting the presence of
a deterministic component from real world observations (Freitas et al., 2009; Mangiarotti et al.,
2012b). Therefore, it can allow to get, all together in a single synthetic object, the necessary
conditions for chaos together with all the other properties of chaos (Mangiarotti et al., 2014).

(Chaotic/Strange) Attractor

When integrating the equations of a dynamical system, its trajectory (if not divergent) will,
after a given time corresponding to a transitory, tend to evolve towards a set of numerical values,
which is called an attractor. Attractors can be either fixed points, or limit cycles (of a given
period), or they can have a more complex aperiodic structure (known as chaotic attractors).
Chaotic attractors are represented by exponential diverging trajectories: two very close initial
trajectories will diverge exponentially and will present a fractal structure. Strange attractors
also exhibit a fractal structure but do not require the properties of a divergent trajectory.

Nonlinear invariants

A major difficulty in characterizing chaotic dynamics is the high sensitivity to initial con-
ditions. One must be able to find some properties that are not sensitive to initial conditions,
invariants that can be quantitatively estimated. Three types of nonlinear invariants can be
distinguished:

• dynamical invariants, which describe the stability of the dynamics (Chlouverakis and Sprott ,
2004; F. Grond , 2003, 2005; Wolf et al., 1985)

• geometrical invariants, linked to the self–similarity of attractors when changing scale within
the phase domain, (Grassberger and Procaccia, 1983; Kaplan and Yorke, 1979)

• topological invariants, which describe the structure of the attractor (Gilmore, 1998)

Embedding dimensions

The embedding dimension corresponds to the number of dimensions required to reconstruct
the dynamical behavior. It corresponds to the number of variables of the original dynamics.

4.2.2 Method formulation

Instead of solving the system analytically, the global modeling technique uses the phase space
to identify and study the associated dynamical behavior. In theory, it is possible to reconstruct
the phase space of a given behavior starting from a unique time series (Takens, 1981). In its
differential form, given a unique variable X1, the approach aims to obtain models whose canonical
form is:
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{
Ẋi = Xi+1, i = 1, ..., n− 1
Ẋn = F (X1, X2, ..., Xn)

(4.1)

where n is the model dimension and Xi the successive derivatives of the observed variable X1.
In practice, modeling the dynamical behavior comes back to obtaining an approximation of the
function F that allows to reproduce the observed dynamics in a satisfying way. Identifying this
function without any a priori knowledge is a difficult task. Therefore, strong tools are needed.
The tool used in this study is GloMo (Mangiarotti et al., 2012a, 2016). This tool has been
successfully tested on theoretical and experimental systems (Mangiarotti et al., 2012b). It was
also used to model a number of different environmental variables, such as cereal crop cycles
(Mangiarotti et al., 2014), karstic spring (Zhang et al., 2016) and plague epidemics (Mangiarotti ,
2015; Huc and Mangiarotti , 2016) to name a few.

4.2.3 Algorithm

The algorithm used to apply the global modeling to the individual series of SEE is GloMo
(Mangiarotti et al., 2012a). Its aim is to find a parameterization of the function F in Equation
4.1, using a Gram–Schmidt procedure, as in (Gouesbet and Letellier , 1994). The algorithm allows
any algorithm dimension with any polynomial degree.

GloMo provides an accurate estimate of the parameterization that will then be used to test
the integrability of the model. An interactive interface allows the user to add or remove poly-
nomial terms from the generic polynomial. After each change in terms, a new identification
can be performed and the reliability of the model with respect to numerical integrability tested.
Additional information about the suitability of the monomials is also provided after each run.
This is attained by removing monomials one by one and then proceed to compare the fittings to
the one obtained with all monomials. Such a suitability can reflect the contribution of a term
only in reference to the corresponding structure. Another structure can lead to different results.

The main difficulty of global modeling is that no information regarding the model structure
is available. In other words, what polynomial terms should be included in the model and which
ones should be neglected. If the chosen structure is not well adapted (that is if the chosen
structure does not correspond to the function F ) then the model will diverge. Selecting a proper
polynomial structure is in itself a difficult task because of all the possible combinations of terms.
For example, let us consider a system of dimension 3 - that is consisting of three variables X1,
X2 = Ẋ1 and X3 = Ẋ2.

If one decides to limit the models only to quadratic polynomials (i.e. a polynomial degree
equal to 2 at most), then there are ten possible terms for the global model: 1, X1, X2, X3, X1X2,
X1X3, X2X3, X2

1 , X2
2 and X2

3 ). That mounts to 210 possible models among which only one may
be the exact model (in some rare cases), and only a few ones may be a good approximation for
it. In degree 5, this number of possible models will be 256.

Another problem is observability. Depending on the original dynamical system and on the
chosen (or available) observed variable, one may provide a good observability of the dynamics
of the system. As a consequence, the function F may be more or less difficult to retrieve or to
approximate by a polynomial (Letellier et al., 1995). In some cases, it may be impossible to
obtain it. This point is of particular interest since the variable of interest, SEE, is defined in
such a way that observability problems may arrise. In particular, the potential evaporation LEp
is ∼ 0 during night–time, which might induce singularities in the model.
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4.3 Data description

Synthetic SEE series are generated using the TEC (Transfert Eau Chaleur, Chanzy and
Bruckler (1993)) model, for different soil textures. A brief description of the model and its
outputs is offered below.

4.3.1 Transfert Eau Chaleur (TEC) model

The Transfert Eau Chaleur (TEC) model (Chanzy and Bruckler , 1993) has been used in
order to derive our variable of interest, the soil evaporative efficiency. The TEC model is based
on the theory of soil heat and water flows in partially saturated media. It considers the soil as
a multilayer system and solves the coupled differential equations of heat and mass in order to
derive surface fluxes such as evapotranspiration, latent heat, radiance, soil moisture profiles and
soil temperature profiles. TEC is based on soil properties that are estimated using pedotransfer
functions in order to characterize the soil hydraulic properties, and uses a climatic forcing. These
pedotransfer functions are highly sensitive to initial soil water conditions and lower boundary
conditions. The four pedotransfer functions used by TEC in order to estimate soil hydraulic
properties are: Wösten (1997), Cosby et al. (1984), Rawls and Brackensiek (1985) and Vereecken
et al. (1989) and they are herein referred to as “wos”, “cos”, “bra” and “ver”, respectively.

4.3.2 TEC Outputs

The TEC outputs in terms of soil evaporation are different, depending on the formulation
of the pedotransfer function used. Simulations are generated at an hourly time step, using a
climatic forcing typical of a Mediterranean climate with heavy rain and long dryness periods
(Chanzy et al., 2008). Figure 4.1 is a visual representation of the soil evaporation (LEs) and
potential evaporation (LEp), obtained using the four different pedotransfer functions.

When using the Cosby et al. (1984) and Vereecken et al. (1989) pedotransfer functions, the
soil evaporation LEs seems to be overestimated as compared to simulations given by the Wösten
(1997) and Rawls and Brackensiek (1985) formulations. In addition, the formulation given by
Rawls and Brackensiek (1985) offers negative values of LEs. Therefore, simulations obtained
using the Wösten (1997) pedotransfer function have been chosen for further analysis.

Both LEs and LEp follow a daily cycle, with LEp reaching a peak around noon, with high
incoming solar radiation. LEs reaches its peak in the morning, due to capillary rise that happens
during the night, allowing a high moisture profile in the morning. Therefore, it is maximum in
the morning, and it decreases throughout the day with soil moisture. SEE follows the same
cycle as LEs, being maximum in the morning; it is not determined during night–time, when
the evaporative demand is 0. A visual representation of the daily cycles of LEs and LEp,
corresponding to TEC simulations using the Wösten (1997) pedotransfer function can be seen
in Figure 4.2. Very small negative values obtained sometimes for LEs and LEp can be observed
in the figure. This could be explained by dew and/or infiltration. In order to avoid potential
problems on SEE, these negative values have been removed when deriving the SEE series.
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Figure 4.1: Soil evaporation (LEs) and potential soil evaporation (LEp) as derived from TEC,
using four formulations of the pedotransfer functions: Wösten (1997) (a), Cosby et al. (1984)
(b), Rawls and Brackensiek (1985) (c) and Vereecken et al. (1989) (d)

Figure 4.2: Daily cycle of soil evaporation (LEs) and potential soil evaporation (LEp). Data was
generated using TEC, for the Wösten (1997) pedotransfer function.

Since soil texture is an important aspect in our modeling, four different soil types have been
considered in generating the outputs. Soil texture has a low influence on the daily dynamics
of LEp, but a higher influence on LEs estimates. A visual representation of LEs estimates
associated to the “wos” formulation is presented in Figure 4.3, for four different soil types.
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Figure 4.3: Evaporation (LEs) generated using TEC with the “wos” formulation of the pedo-
transfer function, using four different soil textures.

Soil texture clearly influences the magnitude of the LEs estimates, with higher estimates reg-
istered for a texture configuration consisting of a clay percentage of 27.2 % and a sand percentage
of 11 %. One can also observe that the daily dynamics obtained at night-time between days of
year 50 and 51 is irregular, presenting several oscillations, regardless of the texture used.

4.3.3 Data pre-processing

Our variable of interest, SEE is obtained from individual LEs and LEp series derived from
TEC. LEp is influenced by the incoming radiation. Therefore, by dividing LEs by LEp, one
neglects this meteorological component, which is supposed to be known. Already available sim-
ulations of LEs and LEp, given by the TEC model (Chanzy et al., 2008), were used to derive
the SEE, which was then used as input to GloMo.

The goal is to describe the temporal variability of soil evaporative efficiency for different soils.
Several steps of data–preprocessing have been used in order to derive time series which can be
further used in the global modeling approach. First of all, abnormal values of the SEE (inferior
to 0 or superior to 1) have been filtered out of the derived SEE series. Then, a cubic spline has
been applied to re–sample the original signal at an hourly time–step. The successive derivatives
necessary for the global modeling approach have been calculated using a Savitzky-Golay filter.
A visual representation of a SEE series after post–processing can be found in Figure 4.4.

The SEE series is characteristic of a clayey soil type, obtained over Avignon in southern
France. The climatic sequence used in TEC and corresponding to this location is typically
Mediterranean, with heavy rain and long periods of dryness (Chanzy et al., 2008). We can observe
that the SEE generally presents a daily cycle, peaking in the morning. However, important
irregularities can be observed. For example, for day of year 53, the SEE presents two cycles.
One possible explanation could be the clouds passing by, which would induce a change in the
evaporative demand. Day of year 56 also presents an additional small peak around noon. Days
of year 50 and 52, even though similar to each other, are very different from all other days; and
even though they are similar to each other, day of year 52 has a faster increase, with a shorter
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Figure 4.4: Original (circle) and processed (lines) SEE time series. The processed SEE time
series is used as input to the global modeling.

time for the maximum value. The passages between days of year 53 and 54 and between 57 and
58 are also very singular. One can say that only days of year 55 and 57 are similar to each other.

4.4 Application and Results

The global modeling technique was applied to the four different time series presented in Fig.
4.3 (corresponding to four different soil types). However, a model could be obtained for only one
series. This SEE time series is characteristic of a clayey soil (clay = 39.3%, sand = 4.95 %) and
it spans a total of nine days. The obtained model is presented below.

4.4.1 SEE Global Model

The global modeling approach was first applied in dimension 3, but no satisfying model
was obtained. A model of dimension 4 was obtained, which exhibits a complex behavior. The
canonical form of the model is:

˙SEE1 = SEE2
˙SEE2 = SEE3
˙SEE3 = SEE4
˙SEE4 = F (SEE1, SEE2, SEE3, SEE4)

(4.2)

The F function that corresponds to the obtained model can be written as:

F = a1SEE
2
4 +αa2SEE

3
4 + a3SEE3 + a4SEE3SEE4 + a5SEE3SEE

2
4 + a6SEE

2
3 + a7SEE

3
3

+a8SEE2+a9SEE2SEE4+a10SEE2SEE
2
4 +a11SEE2SEE3+a12SEE2SEE3SEE4+a13SEE

2
2
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+ a14SEE
2
2SEE4 + a15SEE

2
2SEE3 + a16SEE

2
2 + a17SEE1 + a18SEE1SEE

2
4 + a19SEE1SEE3

+a20SEE1SEE3SEE4+a21SEE1SEE
2
3+a22SEE1SEE2+a23SEE1SEE2SEE4+a24SEE1SEE2

SEE3 + a25SEE1SEE
2
2 + a26SEE

2
1 + a27SEE

2
1SEE3 + a28SEE

2
1SEE2 + a29SEE

3
1

(4.3)

The values obtained for parameters ai are reported in Table 4.1.

Table 4.1: Parameters obtained for the 4 dimensional model presented in Equation 4.3.

Parameter

a1 9.328630 a6 2.3951097 a11 4.7741240 a16 −11.8738967 a21 −3.6953403 a26 0.2203366
a2 −5.5659542 a7 −2.3068889 a12 −52.0660917 a17 −0.1187456 a22 2.0236262 a27 −1.6147321
a3 −2.2207074 a8 −0.4506487 a13 14.8157017 a18 −16.7687883 a23 −37.5016044 a28 −2.2573969
a4 3.9735013 a9 23.2924234 a14 −33.1414233 a19 2.1924822 a24 −7.7941180 a29 −0.2418988
a5 −24.0569615 a10 26.4741226 a15 −31.6852736 a20 −6.0891262 a25 −23.1251478

The fitting parameter α (associated to parameter a2) in Equation 4.3 is equal to 1 by default.
The 4 dimensional chaotic model obtained exhibits a transient dynamics that however, for long
time periods, converges towards a periodical solution. Modifying the fitting parameter to α
= 0.99258 allows to maintain the chaotic behavior for longer time periods. The model is a
reasonably good approximation of the original dynamics, as we can see from the original and the
model phase portraits for various projections of the phase space, presented in Figure 4.5.

One can see that the dynamics of all variables, with the exception of SEE4, can be repro-
duced with a good approximation by the model. In general, their maximum amplitudes are
slightly larger than the amplitudes of the original data, but the general form is reproduced. The
structure is well reproduced by the global model, even though slightly more dense than that of
the original model. Variable SEE4 is the only one that presents much larger amplitudes and a
rather spiky behavior as opposed to the original series. This is an indication that this variable
is less constraint than the other variables. As stated before, one of the difficulties in obtaining
a model is the observability of the system (Letellier et al., 2005), that depends on the variable
used to reconstruct the system’s dynamics. One possible explanation behind such a behavior
for the variable SEE4 can be explained, at least in part, by the definition of the SEE itself
(SEE = LEs/LEp). Because SEE is defined as the ratio of LEs over LEp, this divison could
pose a problem in the global modeling, since the variable of interest is the quotient of two com-
plex behaviors. This can reduce or even compromise the observability of the system. It can
also be one explanation as to why no global model was found for the three other SEE series,
characteristic of different soil textures.

An illustration of the model in the time domain is shown in Figure 4.6. In the time domain,
the obtained time series does not reproduce the original time series. This difference of time
evolution is completely expected and directly arises from the chaotic regime of the dynamics
that leads to the extremly rapid divergence between the observed and model time evolutions.
However, even taking this element into account, the model cannot be considered as satisfying.
In particular, the reproduced series presents faster oscillations than the daily signal. One would
expect to obtain a model whose behavior oscillates around a daily cycle (because the LEs signal
is directly related to the day–night cycle). The model does not reproduce the daily cycle, but
only faster variations. The reason is that the daily signal is not found (or almost not) in the
observed dataset itself. The observed signal sometimes exhibits a full daily cycle. But it also
shows very rapid, very irregular and complex changes (that are weakly predictable). And it is
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Figure 4.5: Original (black) and model (red) phase portraits for various projections of the phase
space.
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precisely these properties of the behavior that are found in the model.

Figure 4.6: Original (black) and reconstructed (red) SEE time series.

The daily cycle is expected to be obtained because we know it, but it is not obvious in the
original data either, which also presents several cycles per day. In particular, multimodal daily
cycles can be observed for days of year 53 and 51. An important element to keep in mind in
understanding the model’s dynamical behavior is that the model obtained is autonomous: no
forcing is used. In other words, there is nothing to synchronize the model on the daily cycle, a
fact which is contrary to other existing models that are usually used to model such dynamics.
The model is able to reproduce the complex dynamics of the behavior (see phases portraits) but
is also able to perform satisfying forecasts only on a short–time scale. Although not synchronized
to the observed signal, numerous properties of the complex behavior found in the original signal
can be retrieved in the model simulation: very quick increases sometimes, more progressive ones
other times, decreases in single or double stages, small oscillations during the night. Despite
this prediction ability at short time scales, the forecasts become obviously impossible at time
horizons larger than 3 hours. In order to have a comparison between the data and the model over
time, several succesive simulations were launched starting from different initial conditions, that
were then compared to the data. The SEE model obtained (Equation 4.3) is used to perform
the simulations. The model thus simulates the variables SEE1, SEE2, SEE3 and SEE4 and
then starting from the chosen initial conditions, one can look at the evolution of the predictions
either in the time domain (Figure 4.7) or in the phase domain (Figure 4.8).

Figure 4.7 is the visual representation of the predictability analysis, in the time domain. It is
the same as Figure 4.6, but predictions are made starting from different initial conditions. The
error between the prediction and the data is also shown. It shows that the model can qualitatively
anticipate complex incoming variations, even though it’s not in a completely systematic way.
Also, it shows that some behaviors are more difficult to predict than others. All in all, the model
appears to be quite effective when looking at both the time and the phase domain representations,
for sufficiently short prediction horizons (three hours in this case).

Figure 4.8 provides a visual representation in the phase space of the dynamics constructed
from the successive dynamical states experienced by the system, as well as a representation of
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Figure 4.7: Original (black) and reconstructed (red) SEE time series. The reconstructed SEE
corresponds to simulations starting from different initial conditions (red circles). The green
curves represent the error between the model and the original data.

the phase portraits of the error between the prediction and the data.
The low forecasting skills of the model at large time–scales can also be interpreted in a physical

way. An important observation is that the daily SEE series is different from one day to another
and also presents strong intraday variations, with the daily expected cycle being sometimes hard
to be observed. Intraday variability is very probably due to the presence of clouds that will
drastically change the atmospheric and the evaporative conditions (via the evaporative demand
LEp) and will “blur” the daily signal. This quick and unpredictable variability of the dynamics
seems to be well represented by the model. This is an important achievement of the global model,
since this type of behavior is particularly erratic and difficult to formulate in equations. The
model is able to retrieve this behavior (in an approximate way) but since this type of behavior is
weakly predictable (at least from a single variable), the resulting model is also very sensitive to
initial conditions. The global model thus has a high sensitivity to initial conditions, sensitivity
that is directly linked to cloud cover.

The predictability of such a cloud cover is very short–term, and therefore one cannot expect
to get better results with the obtained model. A prediction over a period of several days can
have only a statistical meaning.
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Figure 4.8: Phase portraits of the original (black) and reconstructed (red) SEE series for various
projections of the phase space. The reconstructed series corresponds to simulations starting from
different initial conditions (red circles). The green curves represent the phase portraits of the
error between the model and the original data.
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4.4.2 Model validation

From a predictability point of view, validating a model is a difficult task since most of the
environmental variables have a limited predictability in terms of dynamics. In order to validate
the model obtained, the forecasting error growth of the model can be estimated (Mangiarotti
et al., 2012b). Since a chaotic system is characterized by the high sensitivity to the initial
conditions, the error growth depends on the stability of the initial conditions as well as on the
model skills. Starting from different initial conditions, a large number of forecasts are launched,
for horizons spanning 9 hours. The forecasting error et(h) is defined as the error corresponding
to time t + h when predicting from time t for the horizon h. It is computed as the difference
between the prediction made at time t+h and the data at time t+h. So this error depends both
on the initial state of the system at time t, and on the prediction horizon h. This error growth
is represented by a two dimensional diagram in Figure 4.9.

Figure 4.9: Error growth et(h) (in color) as a function of t (expressed as the Day of Year - DoY
- in the abscissa) and the horizon of prediction h (expressed in hours, as the ordinate).

One can notice that as the prediction horizon increases, so does the error. Two different
patterns can be observed: 1) vertical traits, that correspond to errors caused by poor or unstable
initial conditions from which the prediction is made and 2) diagonal traits, that correspond to
poorly predictable approaching events.

The standard deviation of the error growth is plotted (in corresponding SEE units and in
percentage) as a function of the prediction horizon in Figure 4.10. The error level is an increasing
function of the forecasting horizon, with low values obtained at short horizons. Results show
that, for example, for a maximum error level of 40 % of the signal variance (corresponding to an
error of 0.1 in terms of SEE), the horizon of predictability is close to 3 hours, approximately one
third of the diurnal part of the day. If higher precision is expected, for example with an error level
of 20 % (corresponding to an error of 0.07 in terms of SEE), then the horizon of predictibility is
of ∼ 2 hours. If predictions are sought after 6 hours, then the error might be larger than 100 %
(corresponding to an error larger than 0.3 in terms of SEE) of the signal variance.
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Figure 4.10: The standard deviation of the error growth is plotted (in corresponding SEE units
and in percentage) as a function of the prediction horizon.

4.5 Summary and Conclusions

A four dimensional chaotic model was obtained for the daily cycle of soil evaporative efficiency.
This model is able to reproduce the dynamics of the variable with a good approximation in the
phase domain. The forecasting error growth study shows that the prediction horizon is of 2
hours for an error threshold equal to 20% of the signal variance, which is poor in terms of model
predictability. However, these results are interesting for various reasons. To the best of our
knowledge, it is the very first time that a chaotic model is obtained for the SEE. It also shows
that the SEE dynamics can be approximated by a low–dimensional autonomous model. From a
theoretical point of view, it is also interesting to note that only very few low-dimensional models
could be directly obtained for environmental dynamics, and that four–dimensional models are
even rarer. One of the difficulties in obtaining such a model is linked to the variable itself, as
the SEE is obtained as the quotient of two dynamical variables, which could lead to singularities
in the model. Moreover, the evaporative demand is not defined during night–time, which can
be another source of potential singularities in the model. Another difficulty is given by the
non–clear sky conditions and the influence on soil evaporation and evaporative demand. More
specifically, presence of clouds could be the reason behind the faster oscillations of the SEE series
observed some days, which is not representative of the daily SEE cycle. All this can affect the
observability of the variable and lead to difficulties in the model reconstruction. The ability
to obtain an autonomous model for soil–atmosphere transfers remains however encouraging as
it shows the ability to model this dynamics from a limited number of observed variables (here
one single variable). From the perspective of a multi–scale modelization of soil evaporation from
remote sensing data, the model’s skills, at this stage, remain however limited. Moreover, it seems
difficult, without any improvements, to model such dynamics from a spatially distributed point
of view. Data assimilation could be a potential lead into further investigating the model’s skills,
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by taking into account a forcing in terms of meteorological and soil moisture data. Nevertheless,
obtaining such an autonomous model is a feat in itself, considering all the restrictions mentioned
above.

4.6 Article
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Résumé. La modélisation des transferts sol-atmosphère s’appuie généralement sur des formulations considérant
la dynamique climatique comme un forçage. Dans cette étude, la modélisation par technique globale est appliquée
aux cycles journaliers d’Efficacité Évaporative du Sol (SEE) pour obtenir un modèle autonome, sans faire d’hy-
pothèse sur la structure algébrique du modèle. Un modèle en équations aux dérivées ordinaires de dimension
quatre est ainsi obtenu. Bien que le modèle converge vers un cycle limite, il présente néanmoins une dynamique
transitoire chaotique longue et en bonne cohérence avec les données originales.

Abstract. In Soil-Atmosphere transfer models, the climatic component is generally considered as an external
forcing. In the present study, the global modeling technique is applied to daily cycles of Soil Evaporative Efficiency
in order to obtain an autonomous model for this variable. A four-dimensional model of Ordinary Differential
Equations is obtained. Although converging to a limit cycle, the model exhibits a long chaotic transient which is
consistent with the original data.

1 Introduction

La compréhension de la dynamique du contenu en eau des sols est très importante. L’eau évaporée par
le sol joue en effet un rôle important dans le cycle de l’eau mais cette dynamique est difficile à quantifier
de manière spatialisée. D’un point de vue appliqué, la quantité d’eau évaporée dans les régions semi-arides
peut représenter ∼80% des ressources disponibles. Pour modéliser la dynamique de l’eau du sol, on fait
généralement appel à des modèles nécessitant de disposer d’un forçage climatique. Si l’on ne dispose pas
d’un tel forçage, ce qui est souvent le cas lorsqu’on s’intéresse à des dynamiques spatialement distribuées,
il peut alors être utile de disposer de modèles alternatifs ne nécessitant pas un tel forçage.

La technique de modélisation globale s’appuie sur la théorie des systèmes dynamiques non linéaires.
Plutôt que de chercher à résoudre les équations analytiquement, cette théorie privilégie le recours à
l’espace des phases pour étudier les comportements dynamiques. L’une des raisons de recourir à cette
théorie vient du fait qu’il est – en principe – possible de reconstruire un tel espace pour un comportement
dynamique donné à partir d’une série temporelle unique [1]. En pratique, ce résultat n’est toutefois pas
toujours garanti et cette possibilité tient en particulier à un problème d’observabilité [2] : en raison des
relations de nonlinéarités qui existent entre les variables d’un système étudié, les observables n’offrent pas
la même observabilité. La possibilité de reconstruire un comportement dynamique à partir d’une séries
de mesures observationnelles plutôt qu’une autre va donc dépendre de l’observable choisie.

La technique de modélisation globale a été développée au cours des années 1990 [3,4,5]. Son application
à des dynamiques environnementales est beaucoup plus récente [6]. Au cours des dernières années, des
développements méthodologiques ont permis de multiplier le nombre des modèles chaotiques pouvant être
obtenus directement à partir de séries observationnelles. Ces travaux ont notamment permis d’obtenir le
premier modèle faiblement dissipatif directement issu de mesures observationnelles [7] ; d’autres modèles
ont été obtenus pour les cycles de surfaces enneigées [8] ou pour la dynamique des épidémies de peste [9].

L’objectif de cette étude est de mettre en évidence la possibilité de recourir à la technique globale pour
modéliser la dynamique de l’eau dans le sol. Dans cette étude nous nous intéresserons plus spécifiquement
à l’Efficacité Évaporative du Sol car cette variable présente une dynamique plus directement liée aux
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propriétés du sol [10]. Dans le paragraphe suivant sont présentées les données synthétiques utilisées
dans cette étude ; le modèle TEC utilisé pour générer ces données y sera donc présenté auparavant. La
méthodologie sera présentée au paragraphe 3. Les résultats seront ensuite présentés au paragraphe 4.

2 Données

2.1 Modèle TEC

Le modèle Transfert Eau Chaleur (TEC) [11] a été utilisé pour générer la série temporelle de SEE
utilisée dans cette étude. Le modèle TEC est un modèle mécaniste s’appuyant sur un paramétrage phy-
sique et hydrologique pour décrire les processus impliqués dans l’évaporation du sol. Le sol est modélisé
par un système multi-couche dans lequel les flux de chaleur et de masse sont gouvernés par des équations
différentielles et d’où sont calculées l’évaporation potentielle du sol E0 (correspondant à une situation où
il serait suffisamment alimenté en eau), et l’évaporation effective E, et d’où la SEE peut directement être
déduite : SEE = E/E0.

2.2 Prétraitements

La variable SEE a été formulée pour tenter de s’affranchir de la composante météorologique (c’est
l’objet de la division par E0). Cette normalisation pose toutefois une double difficulté. D’un point de vue
algébrique, cette formulation est intéressante à première vue. Elle revient toutefois à considérer le quotient
de deux comportements dynamiques complexes qui peut réduire, voire compromettre l’observabilité du
système. D’un point de vue pratique, les variables E et E0 tendent vers zéro pendant la nuit. Pour cette
raison, seules les valeurs diurnes sont généralement prises en compte.

Pour la présente étude, nous nous sommes donc concentrés sur des séries temporelles pour lesquelles
les valeurs d’évaporation potentielles sont telles que E0 � 0. Ce critère nous a conduit à sélectionner
une série temporelle de SEE d’un longueur de neuf jours (Fig. 1) issue d’une simulation caractéristique
d’un sol argileux par le modèle TEC. Une spline cubique a d’abord été appliquée au signal pour le ré-
échantillonner à un pas de temps horaire. Les dérivées nécessaires à la technique de modélisation globale
ont été calculées en utilisant un filtre de type Savitzky-Golay [12].

Données originales

(a) X1 (b) X2

(c) X3 (d) X4

Figure 1. Séries temporelles originales d’Efficacité Évaporative du sol X1 = SEE issue du modèle TEC (cercles)
[11] ou filtrées (traits pleins) (a) ; et ses dérivées première X2 (b), seconde X3 (c) et troisième X4 (d).
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3 Méthodologie

La modélisation globale s’appuie sur l’espace des phases pour obtenir des équations de comportements
dynamiques directement à partir de séries temporelles de mesures [5]. Dans sa forme différentielle et
partant d’une variable observationnelle unique X1, cette technique vise à obtenir des modèles de forme
canonique {

Ẋi = Xi+1 pour i = 1..(n− 1)

Ẋn = F (X1, X2, ..., Xn),
(1)

où n est la dimension du modèle et les Xi les dérivées successives de la variable observée X1. En pratique,
modéliser un comportement dynamique par approche globale revient à obtenir une approximation de la
fonction F qui permette de reproduire la dynamique observée de façon satisfaisante.

Identifier cette fonction sans disposer de structure a priori est très difficile et nécessite de disposer
d’outils puissants. Les outils PoMoS et GloMo et la suite de leurs développements ont pu être testés avec
succès, notamment à la modélisation du système de Rössler à partir de sa variable z présentant un très
faible degré d’observabilité (voir [13] pour discussion). L’approche a également été appliquée à plusieurs
variables environnementales et les cas d’application apparaissent de plus en plus nombreux (voir par
exemple dans le présent ouvrage [14,15]).

4 Analyses

Les portraits de phases différentiels reconstruits à partir des séries temporelles tirées du modèle TEC
(voir section 2.1) sont présentées en Figure 2 suivant différentes projections. Visuellement, ces projections
exhibent des formes très distinctes les unes des autres.

La technique de modélisation globale a d’abord été appliquée en dimension trois puis en dimension
quatre. Aucun modèle de dimension n = 3 n’a pu être obtenu et un seul modèle de dimension n = 4 a
été obtenu. La fonction F de ce modèle prend la forme

F (X1, X2, X3, X4) = a1X
2
4 + α a2X

3
4 + a3X3 + a4X3X4 + a5X3X

2
4 + a6X

2
3 + a7X

3
3 + a8X2

+a9X2X4 + a10X2X
2
4 + a11X2X3 + a12X2X3X4 + a13X

2
2 + a14X

2
2X4 + a15X

2
2X3

+a16X
3
2 + a17X1 + a18X1X

2
4 + a19X1X3 + a20X1X3X4 + a21X1X

2
3 + a22X1X2

+a23X1X2X4 + a24X1X2X3 + a25X1X
2
2 + a26X

2
1 + a27X

2
1X3 + a28X

2
1X2 + a29X

3
1 ,

(2)

où les paramètres ai sont donnés en Table 1, et où le paramètre d’ajustement α (associé au coefficient a2)
est pris égal à un. Le modèle ainsi obtenu présente une dynamique transitoire chaotique. Néanmoins, pour
des temps longs, le modèle converge vers une solution périodique. Une légère modification du paramètre
d’ajustement tel que α = 0.99258 permet de préserver une dynamique chaotique sur des temps beaucoup
plus long. Il s’agit toutefois d’un chaos peu développé.

La dynamique du modèle global montre une bonne cohérence avec les données comme le montrent la
comparaison des portraits de phases originaux et modélisés (Fig. 2). La modélisation de la variable X4

présente toutefois des amplitudes beaucoup plus fortes que les observations, ce qui semble indiquer que
cette variable est moins bien contrainte que les autres variables.

Paramètres

a1 9.3283630 a6 2.3951097 a11 4.7741240 a16 -11.8738967 a21 -3.6953403 a26 0.2203366
a2 -5.5659542 a7 -2.3068889 a12 -52.0660917 a17 -0.1187456 a22 2.0236262 a27 -1.6147321
a3 -2.2207074 a8 -0.4506487 a13 14.8157017 a18 -16.7687883 a23 -37.5016044 a28 -2.2573969
a4 3.9735013 a9 23.2924234 a14 -33.1414233 a19 2.1924822 a24 -7.7941180 a29 -0.2418988
a5 -24.0569615 a10 -26.4741226 a15 -31.6852736 a20 -6.0891262 a25 -23.1251478

Table 1. Paramètres ai du modèle global présenté Eq. (1).
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Données originales

(a) projection (X1, X2) (b) projection (X1, X3) (c) projection (X1, X4)

(d) projection (X2, X3) (e) projection (X2, X4) (f) projection (X3, X4)

Modèle global

(A) projection (X1, X2) (B) projection (X1, X3) (C) projection (X1, X4)

(D) projection (X2, X3) (E) projection (X2, X4) (F) projection (X3, X4)

Figure 2. Portraits de phase du jeu de données original (a-f) et du modèle (A-F) suivant les projections corres-
pondant aux différentes combinaisons des axes (X1,X2,X3,X4).
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4.1 Validation

Dans les contextes de prévisibilité limitée comme c’est le cas pour un très grand nombre de dynamiques
environnementales, valider un modèle est toujours une tâche difficile. Pour valider le modèle obtenu ici,
on se propose de se baser sur les capacités prédictives du modèle en s’appuyant sur une statistique de la
croissance de l’erreur de prévision du modèle [16].

Pour cela, un grand nombre de prévisions est lancé, pour des horizons τ compris entre 0 et 9 heures,
à partir d’un ensemble de conditions initiales offrant une bonne couverture du jeu de données disponible.
L’erreur de prévision e(t, τ) dépend donc à la fois de l’état initial du système au temps t et de l’horizon de
prévision au temps t+τ . Cette erreur peut être représentée par le diagramme à deux dimensions présenté
en Figure 3. Plusieurs éléments peuvent y être observés à commencer par la croissance progressive de
l’erreur avec la croissance de l’horizon de prévision τ (présenté en ordonnée). On peut y noter deux types
de structures au sein de ce diagramme : (1) les structures verticales qui résultent de la difficulté d’effectuer
une prévision à partir d’une condition initiale donnée ; (2) les structures diagonales qui proviennent de la
difficulté de prévoir un événement particulier. (Attention, suivant la convention de représentation choisie,
les structures verticales et diagonales peuvent être inversées, voir [16] pour une interprétation détaillée
de ce type de figure). La croissance d’erreur peut être obtenue en faisant la statistique des erreurs en

Figure 3. Erreur de prévision e(t, τ) (en couleur) en fonction de la date t (tracée en ordonnée, exprimée en jour)
et de l’horizon de prédiction τ (tracé en abscisse, exprimé en heure).

fonction de l’horizon τ . La croissance d’erreur ainsi obtenue est présentée en Figure 4 en pourcentage
de la variance du signal. Ce graphe montre que la croissance d’erreur est très rapide puisqu’au bout de
3 heures, l’erreur atteinte est proche de 40% de la variance du signal. Si cette analyse de prévisibilité
permet d’apporter un premier élément de validation, d’un point de vue prévisionnel, le modèle ainsi
obtenu apparâıt néanmoins d’un intérêt très relatif.

Figure 4. Erreur de prédiction (rmse) exprimée en pourcentage de la variance du signal, en fonction de l’horizon
de prédiction τ (en heure). Pour un niveau d’erreur de 40% rmse, l’horizon de prévisibilité est de ∼3 heures.
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5 Conclusions

Un modèle autonome est obtenu pour les cycles journaliers de l’Efficacité Évaporative du Sol. Il s’agit
d’un modèle chaotique de dimension quatre. Ce modèle permet de reproduire la dynamique observée de
façon très cohérente. Ses capacité prédictives restent toutefois limitées à un horizon de prévisibilité de 3
heures (pour un seuil d’erreur de 40% de la variance du signal).

Les difficultés rencontrées pour obtenir ce modèle provient très vraisemblablement du choix de la va-
riable utilisée qui, construite comme le quotient de deux variables dynamiques, peut conduire à l’existence
de singularités. L’utilisation de cette variable se traduit vraisemblablement par une diminution du degré
d’observabilité du système modélisé qui peut gêner la reconstruction du modèle.

Le fait de pouvoir obtenir un modèle autonome pour les transferts Sol-Atmosphère reste toutefois
encouragent puisqu’il montre la possibilité de modéliser cette dynamique à partir d’un nombre restreint de
variables observées et laisse entrevoir la possibilité de modéliser cette dynamique de manière spatialement
distribuée, en s’appuyant par exemple sur des séries observationnelles issues de la télédétection spatiale.
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Chapter 5

Evaporation–based disaggregation of

soil moisture data
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5.1 Introduction

The objective of this PhD is to improve the representation of soil evaporation (E) from a
spatio–temporal point of view, in a range of different soil and atmospheric conditions, by making
use of available remote sensing data. By taking into account the monitoring capabilities of
E–related quantities through remote sensing means, several studies have shown the possibility
to combine shortwave–derived vegetation cover, thermal–derived land surface temperature and
microwave–derived soil moisture in order to partition evapotranspiration into soil evaporation and
plant transpiration and therefore successfully retrieve E. Under non–energy limited conditions,
soil moisture (SM) is amongst the main factors controlling soil evaporation, and therefore most of
the climatological, meteorological, hydrological and agricultural applications require SM data at
high resolution (HR). Since the resolution of the SM products retrieved from microwave sensors
ranges from 40 to 60 km (Njoku et al., 2003; Kerr et al., 2012), this resolution is too coarse for
most hydrological and agricultural applications. In this context, disaggregation methodologies
based on the synergy between microwave and optical data have been proposed in order to derive
HR SM products. Disaggregation methodologies distinguish themselves in two categories: purely
empirical (polynomial–based) and semi–empirical (based on the triangle/trapezoidal approach).

DISPATCH (Merlin et al., 2008b) is a semi–empirical–based algorithm that converts HR
MODIS–derived SEE fields into HR SM fields by expanding a first order Taylor series of a SEE
model around the low resolution (LR) SMOS SM. It relies on two different SEE models: a
temperature–based model, used to derive HR SEE from MODIS data, and a SM–based model,
used to link the temperature–based SEE to SM. More specifically, HR LST and NDVI data are
used to derive in a first step the low resolution extreme temperatures (Text), which are then
used to estimated HR SEE. A self–calibrated SM–based SEE model is then used to build a
downscaling relationship linking the disaggregated SM, SMOS SM and MODIS-derived SEE.

Since the current version of DISPATCH uses image–based Text, it can be considered a contex-
tual method. In an effort to remove the limitations that come with the contextual nature of the
algorithm, Text are now estimated by using a soil energy balance model (EBsoil, see Chapter 3)
forced by meteorological data in both dry and wet conditions. By introducing EBsoil forced by
meteorological data at low resolution in the estimation of Text, a new version of DISPATCH is de-
veloped, hereby addressed as DISPATCH–E. The goals behind the development of DISPATCH–E
are to improve both the physics as well as the robustness of the temperature–based SEE model
and hence the calibration strategy of the SM-based SEE model. SAFRAN meteorological data
are used as input to EBsoil.

In a first step, the description of the DISPATCH downscaling methodology is offered in Sec-
tion 5.2. A sensitivity analysis of DISPATCH to various factors is first presented in Section
5.3. The same section regroups summarized results that were obtained when applying DIS-
PATCH and DISPATCH–E in Spain. More specifically, the behavior of the temperature–based
SEE model as a function of SMOS SM is analyzed. A non–linear SM–based SEE model is
then fitted to the temperature–based SEE model and DISPATCH and DISPATCH–E are again
applied. Both DISPATCH and DISPATCH–E temperature–based SEE models are compared
in time with SMOS SM. As a final step, results in terms of disaggregated SM are compared
to in situ measurements over the Urgell area, to serve as validation of the methodology. The
non–linear SM–based SEE model is thus evaluated by validating the outputs of DISPATCH–E.
A summary and general conclusions can be found in Section 5.4. The article (in preparation)
corresponding to this analysis can be found in Section 5.5, providing additional results in terms
of extreme soil temperatures, DISPATCH’s sensitivity with respect to atmospheric conditions, a
comparison between the behaviors of the non–linear SM–based and the temperature–based SEE
models, as well as detailed statistics concerning the SM estimates.
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5.2 Methodology

5.2.1 DISPATCH

The approach used for disaggregating SMOS SM is based on the latest operational version
(Molero et al., 2016) of the improved DISPATCH algorithm, presented in (Merlin et al., 2013b).
DISPATCH relies on two different SEE models and a first order Taylor series expansion around
the coarse scale SM observations in order to convert 1 km resolution MODIS–derived soil tem-
perature fields into 1 km resolution SM fields. The input dataset is generated by taking into
account different combinations of SMOS SM (ascending 6 AM and descending 6 PM) and MODIS
(Terra overpass 10:30 AM and Aqua 1:30 PM from one day before until one day after the SMOS
overpass). That being said, an implicit assumption is made, that no rainfall occurs between the
SMOS and MODIS overpasses and that the MODIS spatial variability is similar to the actual
SM variability at the SMOS overpass time. The DISPATCH product is the average at 1 km
resolution of the disaggregated output ensemble.

The downscaling relationship is expressed as:

SMHR = SMLR + ∂SMmod

∂SEE
(SEELR) · (SEEHR − SEELR) (5.1)

Where SMHR represents the 1 km disaggregated SM, SMLR the SMOS observation,∂SMmod
∂SEE (SEELR)

the partial derivative of SM with respect to SEE, evaluated at SMOS scale, SEEHR the MODIS–
derived SEE, and SEELR its average within the SMOS pixel.

The temperature–based SEE is therefore used to derive SMHR from MODIS data, while the
SM–based model (partial derivative of SM with respect to SEE in Equation 5.1) is used to link
the temperature-based SEE to SM.

The main hyphothesis behind Equation 5.1 is that the relationship linking the SEE to SM is
valid across all scales. This is true if an implicit assumption of uniform meteorological conditions
at the SMOS pixel scale is made.

An overview of these models is offered below.

5.2.2 Temperature–based SEE model

The HR SEE is assumed to be constant during daytime, provided that clear sky conditions
are met (Shuttleworth et al., 1989; Nichols and Cuenca, 1993). It is estimated as:

SEEHR = Ts,dry − Ts
Ts,dry − Ts,wet

(5.2)

With Ts the MODIS-derived soil temperature. A linear relationship between soil temperature
and SEE is thus assumed, relationship which was recently verified by (Merlin et al., 2016) by
using a physically–based soil energy balance model for different soil types. Note that Equation 5.2
is consistent with the evaporative fraction models of contextual evapotranspiration approaches
(see Chapter 3).

The MODIS LST dataset is corrected beforehand for topographic effects (decrease of air
temperature with altitude) as follows:

TMODIS = TMODIS,init + γ(HHR −HLR) (5.3)
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Where TMODIS is the corrected MODIS LST, γ (◦C·m−1) the mean lapse rate (set to 0.006
◦C·m−1), TMODIS,init the original MODIS LST, HHR the elevation of the MODIS pixel and HLR

the mean elevation within the LR pixel.

The downscaling methodology decouples soil evaporation from the 0 - 5 cm soil layer and the
vegetation transpiration from the root zone soil layer by separating MODIS surface temperature
into soil and vegetation components. This partitioning approach is based on the “hourglass”
method presented in (Moran et al., 1994). Soil temperature is obtained through a linear de-
composition of the surface temperature into its two basic components: soil and vegetation. The
MODIS–derived soil temperature is given by the following relationship:

Ts = TMODIS − fvgTv
1 − fvg

(5.4)

Where fvg is the MODIS–derived fractional vegetation cover and Tv the vegetation temper-
ature. With respect to the vegetation temperature, the “hourglass” approach is used to estimate
it. By defining the LST − fvg space, up to four different zones can be distinguished by plotting
(see Figure 5.1) the diagonals of the polygon (Moran et al., 1994; Merlin et al., 2012a, 2014).
Therefore, up to four different formulations of the vegetation temperature can be expressed:

1. Evaporation-controlled zone

Tv = Tv,wet + Tv,dry
2 (5.5)

Where Tv,wet and Tv,wet are the vegetation temperatures corresponding to well watered
full cover vegetation and water–stressed senescent vegetation. The points associated to
this zone correspond to LSTs controlled essentially by soil evaporation, thus leading to an
optimal sensitivity to SM. This zone will be hereby referred to as Zone A.

2. Mixed surface (unstressed) zone

Tv = Tv,wet + Tv,dry,MODIS

2 (5.6)

Where Tv,dry,MODIS is the vegetation temperature complementary to SEE = 1 (Ts = Ts,wet).
This zone will be hereby referred to as Zone B.

3. Mixed surface (stressed) zone

Tv = Tv,wet,MODIS + Tv,dry
2 (5.7)

Where Tv,wet,MODIS is the vegetation temperature complementary to SEE = 0 (Ts =
Ts,dry). This zone will be hereby referred to as Zone C.

4. Transpiration controlled zone

Tv = Tv,wet,MODIS + Tv,dry,MODIS

2 (5.8)
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The points associated to this zone correspond to LSTs controlled primarily by vegetation
transpiration, leading to no sensitivity to SM. This zone will be hereby referred to as Zone
D.

Figure 5.1: The four different zones that can be distinguished in the LST − fvg space (Merlin
et al., 2012a).

The extreme temperatures are calculated either directly from remote sensing data (image–
based: DISPATCH), or by using a soil energy balance model (model–based: DISPATCH-E).
The image–based Text are estimated from the LST − fvg space, as in the original version of the
SEB–1S module, presented in Chapter 3. In an effort to improve the algorithm’s robustness,
the soil energy balance (EBsoil) model introducted in Chapter 3 was used in order to derive
Text independently of the surface conditions within the study area. The methodology behind the
derivation of model–based Text was presented in Section 3.3.
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5.2.3 Soil moisture–based SEE model

Besides the temperature–based SEE model, DISPATCH also uses a SM–based linear model.
A non–linear SM–based model is now introduced both in DISPATCH and DISPATCH–E, an its
impact on disaggregated soil moisture products is investigated. A description of both the linear
and non–linear SM–based SEE models is offered below. Several studies have reported a non–
linear behavior of the SEE with respect to SM (Komatsu, 2003; Lee and Pielke, 1992; Noilhan
and Planton, 1989). This non–linear behavior is a limitation of the relationship between SM
and its disaggregating parameters in the higher ranges that the linear model does not take into
account.

5.2.3.1 Linear model

SM is linked to SEE through a semi–empirical linear model (Budyko, 1956; Manabe, 1969):

SEEHR = SMHR

SMp
(5.9)

where SMp is a self–estimated parameter at LR:

SMp = SMLR

SEELR
(5.10)

Merlin et al. (2013b) have succesfully implemented this linear model, and its performance has
been thoroughly evaluated, by showing that the linearity hypothesis is adequate at kilometric
scales, while a potential robustness over non–linear models with errouneous behaviors can be
expected. In addition, the SMp parameter is calibrated from daily observed SEE and SM at
low resolution. Because of the linearity in Equation 5.9, there are direct compensations between
SEE and SMp, which are helpful in describing the real behavior of the SEE starting from a
range of different SMp values. Nevertheless, as several studies (Lee and Pielke, 1992; Chanzy
and Bruckler , 1993; Merlin et al., 2011) have proved, SEE has a strongly non–linear behavior
over the full SM range. This is a fundamental constraint of the SEE model in Equation 5.1, as
the derivative of SEE with respect to SM is influenced by the SM range, and generally decreases
with SM (Komatsu, 2003).

5.2.3.2 Non–linear model

Multiple non–linear models (Komatsu, 2003; Lee and Pielke, 1992; Noilhan and Planton,
1989) have been implemented in earlier versions of DISPATCH. The model described in (Ko-
matsu, 2003) has been proven to have a greater stability (already present in the linear mode),
with slope values more stable around 1, than the models in (Lee and Pielke, 1992; Noilhan and
Planton, 1989). The effects that the nonlinearity of the SEE–SM relationship could have on the
disaggregated SM products has also been thouroughly addressed, by concluding that a non–linear
model is a better choice when using HR (∼ 100 m resolution) data, since it increases the slope
of the linear regression between downscaled products and in situ measurements. This translates
into a better spatial representativeness of SM.

Amongst the three non–linear models, the one presented in (Komatsu, 2003) is of special
interest. The arguments behind this are linked to the the derivative ∂SMmod

∂SEE (SEELR):

• it is lowered with low SMLR values

124



• it is increased with high SMLR values

A small derivative at SMLR ∼ 0 means that the uniform 1 km SM data is approximately
equal to SMLR, which the models in (Lee and Pielke, 1992; Noilhan and Planton, 1989) do not
allow. In particular, when using the latter models, a large derivative is obtained, leading to
erroneous large disaggregated values.

This behavior can be observed when looking at Figure 5.2, which is a theoretical represen-
tation of the three non–linear models mentioned above (Komatsu, 2003; Noilhan and Planton,
1989; Lee and Pielke, 1992).

Figure 5.2: Visual representation of three non–linear SM–based SEE models.

Taking everything into account, the exponential form of (Komatsu, 2003) (hereby mentioned
as K03) is chosen as the non–linear SEE model to be calibrated:

SEEsim = 1 − exp( SM
SMc

) (5.11)

with SMc a semi-empirical parameter. In this analysis, it is supposed to be constant in space
(within each LR pixel) and it is calibrated at LR for each SMOS pixel from the times series of
SMOS, MODIS and SAFRAN data. An iterative loop is run on SMc (initialized at 0) until the
simulated SEE approaches the observed SEE, i.e. until the cost function ||SEEsim – SEEobs||2 is
minimum. SEEobs is considered as SEELR (computed as the spatial linear average of SEEHR).

5.2.4 DISPATCH–E

In order to remove some limitations that arise when estimating extreme temperatures from
medium and low resolution remote sensing data (and subsequently the limitations it implies on
disaggragated SM products), the soil energy balance model (EBsoil) introduced in Chapter 3 is
integrated within DISPATCH and a new version of DISPATCH is thus developed: DISPATCH–E.
Soil Text are now estimated independently of MODIS data, by using EBsoil, forced by SAFRAN
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meteorological data. SAFRAN data was aggregated from a 5 km original resolution to the SMOS
resolution, by using a linear average. An overview of both models (DISPATCH and DISPATCH–
E) is presented in Figure 5.3.

Figure 5.3: Schematic overview of DISPATCH (left) and DISPATCH–E (right).
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5.3 Results

A sensitivity analysis of DISPATCH is first presented. Then, the performance of DISPATCH–
E (DISPATCH coupled with EBsoil) is evaluated over the study area in terms of: SEE behavior
with respect to SMOS SM, and disaggregated SM values. The results of the calibrated non-
linear model are first presented: the temperature–based SEE estimates obtained from either
the MODIS– or EBsoil–derived extreme temperatures are compared to the SM–based SEE es-
timates. Then, the SMOS SM disaggregated by DISPATCH and DISPATCH–E in both linear
and non–linear modes is evaluated against the in situ measurements collected in 2011 and 2012.

5.3.1 DISPATCH/DISPATCH–E sensitivity analysis

An analysis of the sensitivity of DISPATCH and DISPATCH–E with respect to several pa-
rameters is shown in this section. In particular, their sensitivity with respect to two input
parameters is studied:

• the number of MODIS days chosen for the input LST dataset: 1 day (just two datatsets
corresponding to Aqua and Terra, on the same day as the SMOS overpass) or three days
(six datasets corresponding to Aqua and Terra from one day before until one day after the
SMOS overpass). Taking into account MODIS data from three consecutive days provides
better temporal coverage. However, the uncertainty in the methodology is lower when
using MODIS data corresponding to 1 day. This can be explained because the 3 day
derived product has an underlying assumption, that SM fields are temporally stable for
periods of at least one day around the SMOS overpass, which can sometimes be violated if
precipitation or irrigation take place.

• the CNT datatset (see Chapter 2, Section 2.3.5 for more details) that is taken into account
when generating the aggregated SM product. Different values are taken into consideration:
4, 8, 12. It represents the number of SM–LST combinations used by DISPATCH to produce
one output. Low values are associated with missing input data (due to SMOS RFI - Radio
Frequency Interference - contamination, cloud presence etc.). Using a low CNT value
means that the downscaled SM fields do not profit from the reduction in independent
random errors as result of averaging (Molero et al., 2016). However, the total number of
days taken into consideration when performing a temporal analysis drops with a high CNT
value.

Moreover, the influence of the partitioning method of Equation 5.4 is also evaluated, by
selecting LST points that correspond to different areas within the LST − fvg space (see Figure
5.1). In practice, the behavior of the temperature–based SEE estimates obtained using either
MODIS– or EBsoil–derived extreme temperatures is analyzed as a function of the SMOS SM.
Results are analyzed per individual SMOS pixel. As the behavior of SEE is heavily influenced by
the evaporative demand, which varies throughout the day (with a maximum value registered at
noon associated with higher incoming solar radiation), results are separated per MODIS overpass.

Figure 5.4 is a visual representation of the study area on which the downscaling algorithm is
applied. It engulfs 30 re–sampled 40 km by 40 km SMOS pixels. Six SMOS pixels in particular
(hereby numbered as 11, 12, 13, 21, 22 and 23) were chosen for analyses, which surround an area
of 20 km by 20 km, where the in situ measurements were performed. The 1 km resolution Terra
16-day NDVI on doy 161 in 2011 is also shown, where we can clearly distinguish the irrigated
and dryland areas.
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Figure 5.4: The Urgell study area on which both DISPATCH and DISPATCH–E were applied.

5.3.1.1 Influence of soil/vegetation partitioning

As a first analysis, the influence of the partitioning method described at Section 5.2.2 is
analyzed with respect to the SEE behavior. In practice, SEE is computed by taking into account
points corresponding to different areas of the LST − fvg polygon, as follows:
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• zones ABCD - all points within the LST − fvg space are considered.

• zones ABC - points corresponding to just three zones are considered, by excluding points
corresponding to zone D.

• zone A - points associated to just one zone are taken into account.

A hypothesis is made, that since LST points corresponding to zone A are controlled essen-
tially by soil evaporation, they have an optimal sensitivity with respect to SM, and thus the
corresponding SEE estimates should best describe the shape of the theoretical SEE with respect
to SM (values ranging from 0 to 1, with an inflexion point around 0.5 (Merlin et al., 2011)).

In order to have a more representative behavior of the SEE over the entire time series, the
analysis takes into account SEE values averaged per 0.01 SMOS SM bins, with at least 3 values
per bin. In a first step, the EBsoil model used to derive Text uses both the Monin-Obukhov (MO)
and Richardson (RI) formulations of aerodynamical resistance. Results are then analyzed and a
choice is made with respect to the best rah formulation to be used for future analyses.

Figures 5.5, 5.6 and 5.7 plot the temperature–based SEE against the SMOS SM, for the entire
times series, for 6 pixels surrounding the study area, for the Aqua overpass, and for the three
different LST − fvg zones respectively. Figures 5.8, 5.9 and 5.10 plot the same thing, but for the
Terra overpass. The number of MODIS days taken into account when running DISPATCH is 1
day, with a CNT value equal to 4.

Figure 5.5: The temperature–based SEE is plotted against the SMOS SM, for the entire time
series, for the Aqua overpass, for the ABCD zones defined in the LST −fvg space. Temperature–
based SEE is derived either from MODIS, or from EBsoil, with its two aerodynamic resistance
formulations: MO and RI. The number of MODIS days taken into account is equal to 1.
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Figure 5.6: Same as Figure 5.5, but for the ABC zones.

Figure 5.7: Same as Figure 5.5, but for zone A.
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Figure 5.8: Same as Figure 5.5, but for the Terra overpass.

Figure 5.9: Same as Figure 5.6, but for the Terra overpass.
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Figure 5.10: Same as Figure 5.7, but for the Terra overpass.

When individually analyzing the figures per MODIS overpass, one can notice that SEE be-
haves slightly different with respect to each zone. However, no significant contrast can be seen
between simulations for zone A and for the ABC zones, the sole difference being just some values
of the SEE estimates being slightly lower for the ABC zones. When looking at simulations for the
ABCD zones, one can notice that the number of SEE estimates is decreased for certain pixels,
even though the general shape of SEE with respect to SM is preserved. The same conclusion can
be drawn when analyzing results for the Terra overpass.

When comparing the results obtained for the same configuration (same zone) but for different
MODIS overpasses, one can observe a noticeable difference in the shape of the SEE. This can be
explained by taking into account the dependence of SEE with respect to evaporative demand. As
the evaporative demand changes throughout the day (thus having different evaporative demands
for the two MODIS overpasses), the shape of SEE also changes accordingly.

Hence, the hypothesis made in the begining was proven to be false, as there is no significant
difference between zone A, zones ABC and zones ABCD. Possible compensation effects might
occur, and thus the influence of the distribution of LST data points within the LST − fvg space
follows roughly the same pattern. However, in order to have a compromise between the LST
dataset used for deriving Text and a good representativity of the SEE with respect to SM, points
associated to zone D (controlled primarily by vegetation transpiration, leading to no sensitivity
to SM) are removed from the analysis. Hence, points only within the ABC zones will be used in
the next analyses.

When looking at the SEE estimates obtained using the image–based Text versus the model–
based Text, differences can be seen with respect to the range of values. The range of values
is increased for the EBsoil–derived SEE, while the MODIS–derived SEE exhibits a rather flat
behavior. This relatively flat behavior kept by the MODIS–derived SEE in the higher range of
SMOS SM could be explained by the poorer estimates of the MODIS–derived Ts,dry and Ts,wet,
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which are not reflective of the true extreme temperatures if the true wet and dry conditions
within the scene are not met at the 1 km resolution. At a 1 km resolution in fully dry con-
ditions, MODIS–derived Ts,wet tends to be overestimated, which results in a narrower polygon
and corresponding SEE values ∼ 0.5. In a similar manner, at a 1 km resolution in fully wet
conditions, MODIS–derived Ts,dry tends to be underestimated, which leads to SEE values ∼ 0.5.
Therefore, using MODIS data, which implies that extreme conditions are not well met at the
1 km resolution, the model gives estimates of SEE around 0.5, resulting in its relatively flat
behavior.

Hence, when deriving SEE using poorer estimates of Text, the range of values tends to be
smaller. An important aspect to mention is that the EBsoil–derived SEE computed from Text that
use the rah,MO formulation do not capture the same range as the EBsoil–derived SEE computed
from Text that use the rah,RI formulation. They also tend to produce very high estimates of the
SEE, not going below ∼ 0.5.

A different behavior is observed for each pixel, possibly due to different soil properties, veg-
etation covers, land use (irrigated/dry), and topography effects.

5.3.1.2 Influence of number of MODIS days and CNT

In an effort to increase the number of input datasets associated with a better temporal
coverage, DISPATCH and DISPATCH-E were run by taking into consideration 3 MODIS days.
The impact of the CNT value is then assessed, by taking into consideration three different values
in the aggregation of the HR SM products: 4, 8 and 12.

Figures 5.11 , 5.12 and 5.13 plot the temperature–based SEE against the SMOS SM, for the
entire times series, for the same 6 pixels, for the Aqua overpass and for three different CNT
values: 12, 8 and 4. The temperature–based SEE is estimated either from image–based Text, or
from EBsoil–derived Text, with its two aerodynamic resistance formulations. Figures 5.14, 5.15
and 5.16 plot the same, but for the Terra overpass.
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Figure 5.11: The temperature–based SEE is plotted against the SMOS SM, for the entire time
series, for the Aqua overpass, for the ABC zones defined in the LST − fvg space. Temperature–
based SEE is derived either from MODIS, or from EBsoil, with its two aerodynamic resistance
formulations: MO and RI. The CNT value considered is 12.
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Figure 5.12: Same as Figure 5.11, but for a CNT value equal to 8.

Figure 5.13: Same as Figure 5.11, but for a CNT value equal to 4.
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Figure 5.14: Same as Figure 5.11, but for the Terra overpass.

Figure 5.15: Same as Figure 5.12, but for the Terra overpass.

136



Figure 5.16: Same as Figure 5.13, but for the Terra overpass.

When taking into consideration a lower value for CNT, and thus a higher number of input
datasets, the number of datapoints in the SEE estimates is increased, while the shape of the SEE
tends to follow the same pattern. It is to be expected, since with an increasing CNT, less available
data to generate outputs is present (due to cloud presence, results won’t be generated on a daily
basis). The same conclusions with respect to the different shape per pixel, per MODIS overpass
and per image–based/model–derived Text are kept. A compromise between a good temporal
coverage and a higher uncertainty associated with the temporal stability assumption (that can
be infringed by precipitation and irrigation events), and the configuration of MODIS 3 days with
a CNT value equal to 4 is chosen for the next simulations. This configuration was also chosen
for the simulations performed in Section 4 of the article.

5.3.2 Temperature–based versus soil moisture–based SEE estimates

The observed (temperature–based) SEE and the simulated (SM–based) SEE against the
SMOS SM are shown in Figures 5.17 and 5.18, for the entire time series, for the same six pixels,
and for the Aqua and Terra overpasses separately. The SM–based model used to estimate SEE is
the non–linear one. The standard deviation within each bin is also computed. The temperature-
based SEE is used to fit the SM–based SEE, by calibrating the SMc parameter for each SMOS
pixel (11, 12, 13, 21, 22 and 23) covering the study area, as previously explained in Section 5.2.3.2.
The extreme temperatures used in deriving the temperature–based SEE are derived from either
MODIS images or EBsoil. The values of the calibrated SMc parameter are 0.22 m3·m−3 (for
Aqua) and 0.24 m3·m−3 (for Terra) when taking into account the MODIS–derived SEE as a
reference for the fitting. When taking into account the EBsoil–derived SEE as a reference, the
reported SMc values are 0.14 m3·m−3 (for Aqua) and 0.20 m3·m−3 (for Terra). These calibration
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values are estimated over pixel 22 (where in situ SM measurements are available) and used as a
proxy for other pixels when deriving SMHR.

Figure 5.17: The observed (temperature–based) SEE and the simulated (SM–based) SEE is
plotted against the SMOS SM, for the entire time series, for the Aqua overpass. The observed
SEE is derived either from MODIS, or from EBsoil. The SM–based SEE uses the non–linear
K03 model and is calibrated from the observed SEE.

With respect to the different behavior of the SEE as a function of SM, observed for different
pixels, extensive studies have been made which proved that the shape of SEE depends on soil
properties whose common proxy is given by sand and clay percentages (Merlin et al., 2016). The
pixels that have a high coverage consisting of crops are pixels 21 and 22, while the rest of the
pixels share a certain percentage between crops and grass/shrubs, with small scattered forests.
Irrigation is present for some of crops, which leads to poorer estimates of extreme temperatures in
fully dry conditions, and therefore the retrieved SEE. Pixels containing intense canopies present
poorer image–based estimates than pixels containing only grass or shrubs. Since mountainous
areas are also close to our study site (more specifically in the vecinity of pixels 11, 12 and 13),
topography effects could induce errors in the estimates. The nominal behavior of the SEE with
respect to SM should be observed over flat irrigated pixels, where the dominant land cover is
grass/shrubs (notably pixels 21 and 22). However, the best behavior is observed over pixel 13,
which is affected by topography and is half covered by forests. Topographic and cloud effects
tend to introduce a positive bias in SEE (attributed to los MODIS Ts), which translates into the
SEE not having values below 0.15-0.2.

138



Figure 5.18: Same as Figure 5.17 but for the Terra overpass.

5.3.3 Validation of disaggregation methodology

The performance of DISPATCH–E in terms of disaggregated SM values is evaluated in this
section. Figures 5.19 and 5.20 plot the SMOS SM and the DISPATCH–E outputs with respect
to in situ measurements, for Aqua and Terra overpass times respectively. The in situ point mea-
surements were aggregated at a 3 km scale by simple linear averaging. A combination between
either the MODIS–derived extreme temperatures and a linear/non–linear SEE(SM) model, or
the EBsoil–derived extreme temperatures and a linear/non–linear SEE(SM) model in the down-
scaling relationship is used in order to derive DISPATCH/DISPATCH–E outputs. As a reminder,
the “classical” DISPATCH case corresponds to MODIS–derived SEE, while DISPATCH–E cor-
responds to EBsoil–derived SEE. Both are tested in the linear and non-linear case scenarios.

Statistical results in terms of correlation coefficient, slope of linear regression, bias and RMSD
are reported in Table 5.1.

When looking at the LR SM and the HR SM compared with the 3 km in situ data, one ob-
serves that DISPATCH improves the fine–scale precision. When using MODIS–/EBsoil–derived
SEE in linear mode for the Aqua overpass, the reported correlation coefficients between HR SM
and in situ data are equal to 0.30 and 0.25 respectively, as opposed to -0.16 when comparing
SMOS SM with in situ data. Better values of these metrics are obtained for the Terra overpass,
with a correlation coefficient equal to 0.69 and 0.70, as opposed to the 0.47 correlation value
calculated for SMOS SM. Improvements are also made with respect to the slope of the linear
regression, whose value is increased from -0.063 to 0.16 and 0.10 (Aqua overpass, linear mode)
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Figure 5.19: The SMOS, DISPATCH and DISPATCH–E SM are plotted against 3 km aggregated
in situ measurements, for the Aqua overpass.

Figure 5.20: Same as Figure 5.19, but for the Terra overpass.

Table 5.1: Correlation coefficient, slope of the linear regression, bias and RMSD between SMOS
SM/DISPATCH SM/DISPATCH-E SM and 3 km in situ data are reported for each MODIS
overpass individually, as well as both overpasses combined. Both DISPATCH and DISPATCH-E
are tested in linear and nonlinear modes.

Pixel ID AQUA overpass TERRA overpass
SMOS MODIS-derived EBsoil-derived SMOS MODIS-derived EBsoil-derived

Linear Non–linear Linear Non–linear Linear Non–linear Linear Non–linear
R −0.16 0.30 0.61 0.25 0.53 0.47 0.69 0.75 0.70 0.74
S −0.063 0.16 0.66 0.10 0.41 0.19 0.45 0.70 0.50 0.56

Bias −0.065 −0.074 −0.081 −0.072 −0.075 −0.10 −0.10 −0.10 −0.095 −0.096
RMSD 0.096 0.096 0.099 0.095 0.093 0.14 0.13 0.12 0.12 0.12
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and from 0.19 to 0.45 and 0.50 (Terra overpass, linear mode). When looking at the performance
of the two temperature–based SEE models in linear mode, a similar performance in terms of
correlation and slope of linear regression, for both MODIS overpasses can be observed. With
respect to the bias, the negative bias present in the SMOS SM is also found in all disaggregated
SM products. The RMSD values seem to be consistent, independently of the SM resolution, with
lower values (∼0.09 m3·m−3) reported for the Aqua overpass, as opposed to the Terra overpass
(∼0.12/0.13 m3·m−3).

When comparing the linear and the non–linear modes, the non–linear SEE model significantly
enhances the correlation coefficient and the slope. The correlation coefficient is significantly
increased for the Aqua overpass: from 0.30 to 0.61 (MODIS–derived SEE) and from 0.25 to 0.53
(EBsoil–derived SEE). The values reported for the slope of the linear regression are also greatly
increased, from 0.16 to 0.66 (MODIS–derived SEE) and from 0.10 to 0.41 (EBsoil–derived SEE)
– for the Aqua overpass over a smaller SM range.

The non–linear mode leads to better results than the linear mode. Since in the non–linear
mode the partial derivative of SM with respect to SEE is decreased in the lower SM ranges
and increased in the higher SM ranges, this leads to an overall better precision and accuracy
of the corresponding disaggregated products when compared to the 3 km aggregated in situ
measurements.

An important aspect to mention is the negative values of disaggregated SM when using the
non–linear SEE(SM) model in the downscaling relationship. If we assume that the disaggregation
is efficient, then this could point out an underestimation of SMOS SM in very dry areas (with
SM close to zero). A negative bias in SMOS SM has been reported by various calibration and
validation studies (Collow et al., 2012; Zeng et al., 2015; Al Bitar et al., 2012; Djamai et al.,
2016). Biases in the brightness temperatures lead to biases in the retrieved SM. One possible
cause for the biases in brightness temperatures can be the RFI. According to Dente et al. (2012),
a positive bias in the observed brightness temperature would introduce a negative bias in the SM
products. Since SMOS SM is used when calibrating the SMc parameter, the parameter retrieval
is also affected by the negative bias. The downscaled SM data obtained in the non–linear mode
is thus affected by both potential bias in retrieved SMc values, as well as the negative bias in
SMOS data. The negative bias can also be partly induced by the difference in the sampling
depth between the SMOS measurements and the in situ measurements. The negative bias in the
SMOS SM is however found for large SM values; in the lower ranges of the SM, SMOS SM is
coherent with in situ measurements.

5.4 Summary and Conclusions

This part focuses on characterizing both the temporal and spatial behaviors of the soil evapo-
rative efficency (SEE), by combining both a LST– and a SM–based model of SEE. The technique
is validated with respect to SM estimates. DISPATCH is a downscaling algorithm that combines
the two LST– and SM–based SEE models in order to estimate 1 km resolution data from 40 km
resolution SMOS and 1 km resolution MODIS data. One model relies on a temperature–based
expression of the SEE in order to determine SEE estimates from MODIS images solely, while
the other model expresses SEE as a linear function of the SM. A new version (DISPATCH–
E) is developed, by making modifications to both the temperature– and SM–based models. A
soil energy balance (EBsoil) model is now used as an alternative temperature–based approach
to derive SEE. The goal behind using EBsoil is to enhance the physics and robustness of the
temperature–based SEE model and thus the calibration strategy of the SM–based SEE model.
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The methodology is tested by comparing the temperature–based and SM–based SEE esti-
mates, and disaggregated SM values derived by both DISPATCH and DISPATCH–E with in situ
measurements over a Spanish site. The behavior of the temperature–based SEE with respect to
SMOS SM is assessed independently for each SMOS pixel covering the study area. A compromise
between precision and robustness is obtained: the SEE estimates based on the MODIS–derived
extreme soil temperatures are more precise, while the EBsoil model provides more accurate SEE
estimates. With respect to SM estimates, SMOS SM and 1 km resolution disaggregated SM are
both compared to 3 km resolution in situ measurements. Statistics are greatly improved for the
downscaled SM products. Moreover, by integrating a non–linear SM–based SEE model, further
improvements are obtained for the downscaled SM products.

The potential of DISPATCH–E is strong when applied to areas representative of relatively
dry or relatively wet conditions, i.e. both wet and dry conditions are not met at the same
time: desert areas, temperate areas or rainfed areas. By taking into account the two separate
temperature–based models in future analyses, a better representation of SEE could potentially
be accomplished. Moreover, the SEE modeling based on the non–linear SM model could be
integrated into existing evapotranspiration models, which are based on a combination of thermal
and microwave data. From a downscaling point of view, disaggregation is a way of detecting a
bias in the low resolution SM data, which cannot be easily detected without taking into account
the spatial heterogeneity within the scene. Future studies could try and correct the bias reported
by literature in SMOS data and recalibrate the SM–based SEE model taking into consideration
new corrected data. Any improvement in the SEE model could lead to refinements of the SEE
estimates and of the associated HR SM products.

5.5 Article
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Abstract: Surface soil moisture (SM) is one of the main factors controlling soil evaporation under 10 

non-energy limited conditions. This has been the basis for developing DISPATCH (Disaggregation 11 

based on Physical and Theoretical scale Change). DISPATCH attempts to improve the resolution of 12 

SMOS (Soil Moisture and Ocean Salinity) soil moisture data using the soil evaporative efficiency 13 

(SEE, defined as the ratio of actual to potential soil evaporation) derived from MODIS (MODerate 14 

resolution Imaging Spectroradiometer) data. Specifically DISPATCH relies on two separate SEE 15 

models: a temperature-based SEE model driven by MODIS data and a SM-based SEE model driven 16 

by SMOS data. The objective of this paper is to improve the physics and calibration of both SEE 17 

models by integrating within DISPATCH a soil energy balance model forced by available 18 

meteorological data. The approach is tested using SAFRAN (Système d'analyse fournissant des 19 

renseignements atmosphériques à la neige) meteorological data and in situ SM measurements for 20 

validation over a mixed dry and irrigated area in Catalunya, Spain, in 2011 and 2012. As a first 21 



step, the temperature-based SEE model is temporally compared to SMOS SM for each SMOS pixel. 22 

The temperature-based SEE model generally has a better slope of the linear regression but worse 23 

root mean square difference (RMSD) and correlation coefficient when meteorological data are used 24 

as input. As a second step, the DISPATCH algorithm is run using the SM-based SEE model fitted 25 

to the temperature-based SEE model. The mean correlation and slope of the linear regression 26 

between disaggregated and in situ SM is increased from 0.65 and 0.41 to 0.72 and 0.54 when 27 

integrating meteorological data within DISPATCH, respectively, all the while keeping stable values 28 

of the RMSD. Such an algorithm (DISPATCH-E) is expected to significantly improve the 29 

robustness of the evaporation-based disaggregation of SMOS data in a range of SM conditions.      30 

Keywords: downscaling, disaggregation, soil moisture, SMOS, MODIS, evaporation  31 

 32 

1. Introduction 33 

Soil moisture (SM) is one of the main factors controlling the soil evaporation under non-34 

energy limited conditions. Hence, the majority of climatological, meteorological, 35 

hydrological and agricultural applications require high resolution (HR) SM data. Surface 36 

SM observations are nowadays provided on a global basis using remote sensing data. 37 

Among all existing satellites, passive L-band microwave sensors are widely used to derive 38 

SM thanks to the strong physical link between the brightness temperature and the 0-5 cm 39 

SM profile (Kerr et al. 2007, Wagner et al. 2007). The downside to the operational retrieval 40 

of SM from microwave is given by the low resolution (LR) of the products, which ranges 41 

from 40 to 60 km (Njoku et al. 2003, Kerr et al. 2012), a resolution that is too coarse for 42 

most hydrological and agricultural applications.  43 

On the other hand, optical sensors have the advantage of providing data at high and medium 44 

resolutions. In particular, Landsat and ASTER (Advanced Spaceborne Thermal Emission 45 



and and Reflection radiometer) have resolutions of several tens of meters, while MODIS 46 

(MODerate Resolution Imaging Spectroradiometer) has a resolution of 1 km.  Even though 47 

optical data could be used to derive SM, the main drawback in deriving a retrieval 48 

methodology is given by the sensors’ sensitivity to meteorological conditions (cloud 49 

presence) and vegetation cover.  50 

However, a synergy between the LR microwave and HR optical data (Zhan et al. 2002) can 51 

be used in order to derive SM at various spatial scales. This is achieved by using soil 52 

temperature and vegetation cover data (provided by the optical sensors), which are linked to 53 

the soil water content (Fang et al. 2013).  Most of the methods based on the synergy 54 

between microwave and optical data generally use the triangle (Carlson et al. 1994) or 55 

trapezoid approach (Moran et al. 1994), in which the variations in land surface temperature 56 

(LST) are linked to variations in soil water content and vegetation cover (Carlson 2007, 57 

Petropoulos et al. 2009).  58 

One category of methods that is based on the synergy between microwave and optical data 59 

regroups purely empirical algorithms, based on a polynomial fitting between LST, NDVI 60 

(Normalized Difference Vegetation Index) and SM. Studies like Piles et al. (2011) also take 61 

into account the brightness temperature in the polynomial fitting model in order to derive 62 

SM at 10 km and 1 km resolutions from SMOS observations. This approach was proven to 63 

reduce the bias but overall degrade the spatio-temporal correlation between SMOS SM and 64 

in situ measurements (Piles et al. 2011).  65 

Another category based on the triangle/trapezoid approaches is represented by semi-physical 66 

methods (evaporation-based). These methods replace the polynomial function with a 67 

physical model that uses evaporation to explain the variability of SM (Merlin et al. 2008). In 68 

particular, they represent the spatial link between optical-derived soil evaporative efficiency 69 

(SEE, defined as the ratio of actual to potential evaporation) and surface SM. Their main 70 



advantages over the polynomial fitting methods are that i) they are self calibrated and ii) the 71 

average of the estimated HR SM is equal to the LR observed SM.  72 

Merlin et al. (2012b, 2013) have improved the algorithm presented in Merlin et al. (2008). 73 

DISPATCH (DISaggregation based on a Physical and Theoretical scale CHange) converts 74 

HR MODIS-derived SEE fields into HR SM fields by expanding a first order Taylor series 75 

of a SEE model around the LR SMOS SM. The HR SEE fields are derived using HR LST 76 

and NDVI data and the low resolution extreme temperatures (Text) which are estimated from 77 

HR optical data. Optical data is then linked to SM by using a self calibrated SM-based SEE 78 

model. To sum up, DISPATCH relies on two different SEE models: a temperature-based 79 

model, used to derive HR SEE from MODIS data, and a SM-based model, used to link the 80 

temperature-based SEE to SM. The current version of DISPATCH is contextual, meaning 81 

that the MODIS-derived SEE is a function of Text, which are determined from the image-82 

based trapezoid method. Since contextual methods involve determining the wet and dry 83 

boundaries of LST, which may or may not be present within the scene at the observation 84 

resolution, limitations concerning the estimation of Text arise when fully dry and fully wet 85 

conditions are not met at the observation resolution. In particular, the image-based 86 

algorithms should provide good estimations of Text over semi-arid irrigated areas, when 87 

using HR data (de Tomas et al. 2014), such that three main requirements are fulfilled: i) the 88 

study area is relatively flat, ii) the atmospheric conditions are uniform and iii) extreme 89 

temperatures are actually observed at the thermal sensor resolution within the area of 90 

interest (Long & Singh 2011, Long & Singh 2012a, Long & Singh 2012b, Long & Singh 91 

2013, Timmermans et al. 2007, Yang & Shang 2013). The image-based Text algorithms are 92 

less adequate for homogeneous rainfed areas, when using medium (1 km) to low resolution 93 

thermal remote sensing data (Djamai et al. 2015b). 94 



In an effort to remove some of the above limitations, algorithms that estimate Text 95 

independently of surface conditions present within the study area (and hence independent of 96 

the spatial resolution of LST data) have been developed. Text are thus modeled by running a 97 

soil energy balance model forced by available meteorological data in both dry and wet 98 

conditions. (Stefan et al. 2015, Merlin et al. 2016). 99 

In this context, this study aims to develop a new version of the DISPATCH algorithm, 100 

named DISPATCH-E, by integrating a soil energy balance (EBsoil) model forced by 101 

meteorological data at low resolution in order to derive Text. EBsoil aims to improve the 102 

physics and robustness of the temperature-based SEE model and hence the calibration 103 

strategy of the SM-based SEE model.  104 

The approach is tested using SAFRAN (Système d'analyse fournissant des renseignements 105 

atmosphériques à la neige) meteorological data and in situ SM measurements for validation 106 

over a mixed dry and irrigated area in Catalunya, Spain, in 2011 and 2012. Firstly, the 107 

behavior of the temperature-based SEE model as a function of SMOS SM is analyzed. 108 

Secondly, the DISPATCH algorithm is run using the SM-based SEE model fitted to the 109 

temperature-based SEE model. Both DISPATCH and DISPATCH-E temperature-based 110 

SEE models are compared in time with SMOS SM. Thirdly, results in terms of 111 

disaggregated SM are then compared to in situ measurements.  112 

The study site along with all the data are presented in Section 2. In Section 3, the 113 

DISPATCH algorithm is briefly presented, along with the two SEE models (temperature-114 

based and SM-based) and the development methodology for DISPATCH-E. Section 4 115 

covers the results in terms of Text, SEE estimates and disaggregated SM. 116 

 117 

 118 

 119 



2. Data description 120 

2.1. Validation site and in situ data 121 

The study area is located in the Urgell region, in Catalunya, northeast of Spain. It presents a 122 

semiarid Mediterranean climate, with a mean yearly precipitation of 400 mm, 60 days of 123 

rain, and a mean yearly temperature of 16°C. Various irrigated crops (wheat, maize, alfalfa, 124 

apple and pear trees) and dryland crops (barley, olive trees, vineyards and almond trees) are 125 

present within the area.  126 

The Urgell field experiment, conducted in 2011 and 2012, focused on a 20 km by 20 km 127 

area to collect 0-5 cm soil moisture data using the gravimetric technique. The sampling 128 

spanned a total of ten days in 2011: on day of year (doy) 97, doy 98, doy 146, doy 147, doy 129 

165, doy 196, doy 228, doy 229, doy 244 and doy 277, and four days in 2012: doy 87, doy 130 

103, doy 151 and doy 167. The sampling covered a total of four areas, each of 3 km by 3 131 

km. Two are situated in the dryland area and two in the irrigated area, with ten points per 132 

sampling area. Three separate measurements per sampling point were performed, which 133 

means that a total of 120 measurements were taken within the entire area. As reported in 134 

Merlin et al. (2013), soil particle analysis at each sampling point, with a mean clay fraction 135 

of 0.24 and a mean sand fraction of 0.37, was used to derive soil texture. The approach 136 

described in Saxton et al. (1986) was then used to convert the gravimetric measurements to 137 

volumetric values.  138 

In situ measurements serve as a validation dataset for the downscaled SM products. Since 139 

they are point measurements, they were aggregated (simple average) to a 3 km resolution.   140 

2.2.  Remote Sensing data 141 

The SMOS Level-3 1-day global SM product (MIR CLF31A/D), version 2.72 (in 220 142 

reprocessing mode RE02) product is used. SMOS data are extracted over a 200 km by 240 143 

km area, and re-sampled at a resolution of ~40 km. 144 



The re-sampling methodology described in Merlin et al.  (2010c) and Molero et al. (2016) 145 

was used in order to obtain re-sampled SMOS data which overlap four times over the study 146 

area. The final downscaled soil moisture product is generated on the intersection of these 147 

four SMOS grids. 148 

The MODIS version-5 land surface temperature (LST) products onboard Terra 149 

(MOD11A1) and Aqua (MYD11A1) and normalized difference vegetation index NDVI 150 

(MOD13A) were downloaded using the NASA Land Processes Distributed Active Archive 151 

Center (LP DAAC). Both the LST and NDVI products are re-sampled on a 1 km grid.  152 

Elevation data extracted from the GTOPO30 digital elevation model (DEM) are also 153 

required.  154 

Fig. 1 shows the study area on which the downscaling algorithm is applied, consisting of 30 155 

re-sampled SMOS pixels (40 km by 40 km each). We focus our attention on six SMOS 156 

pixels in particular (hereby numbered as 11, 12, 13, 21, 22 and 23), which surround an area 157 

of 20 km by 20 km, where the in situ measurements were performed. A visual of the 1 km 158 

resolution Terra 16-day NDVI on doy 161 in 2011 is also represented, where we can clearly 159 

distinguish the irrigated and dryland areas.  160 



 161 

Fig. 1. Study area. 162 
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 164 

 165 



2.3. Meteorological data 166 

Meteorological data consisting of wind speed, relative air humidity, air temperature and 167 

solar radiation are given by the SAFRAN (Système d'analyse fournissant des 168 

renseignements atmosphériques à la neige) model, which is an atmospheric analysis system 169 

for surface variables (Quintana Segui et al. 2016).  It consists of daily data, at an hourly 170 

time-step. A pre-processing of the data was first performed, with data extracted at the two 171 

distinct MODIS overpasses as follows: data corresponding to 10:00 am and 11:00 am were 172 

averaged together in order to obtain values corresponding to the Terra overpass time over 173 

the area (10:30 am). Similarly, data from 1:00 pm and 2:00 pm were averaged together to 174 

obtain values corresponding to the Aqua overpass time (1:30 pm). The second step in the 175 

pre-processing consisted in extracting the meteorological data corresponding to the SMOS 176 

resampled grids that cover the study area. As a final step, the data, which are provided at a 177 

5 km resolution, were upscaled at the SMOS resolution by simple linear averaging.  178 

The data used in this study are available at the HyMex database 179 

(http://mistrals.sedoo.fr/10.14768/MISTRALS-HYMEX.1388).  180 

 181 

3. Methodology  182 

3.1. DISPATCH 183 

The operational version of the DISPATCH algorithm (Merlin et al. 2013) is fully described 184 

in Molero et al. (2016). Only the essential aspects are reminded herein. Briefly, DISPATCH 185 

converts high resolution (HR) MODIS-derived SEE (Soil Evaporative Efficiency) fields into 186 

HR SM fields by expanding a first order Taylor series of a SEE model around the low 187 

resolution (LR) SMOS SM value. Different combinations of SMOS SM (ascending 6 am 188 

and descending 6 pm) and MODIS (Terra overpass 10:30 am and Aqua 1:30 pm from one 189 



day before until one day after the SMOS overpass) data are used to generate an input 190 

ensemble. The DISPATCH product is the average at 1 km resolution of the disaggregated 191 

output ensemble. 192 

The downscaling relationship is written as: 193 

SMHR = SMLR + dSMmod/dSEE(SEELR) * (SEEHR-SEELR) (1) 194 

With SMHR being the 1 km disaggregated SM, SMLR the SMOS observation, 195 

dSMmod/dSEE(SEELR) the partial derivative of SM with respect to SEE, evaluated at SMOS 196 

scale, SEEHR the MODIS-derived SEE, and SEELR its average within the SMOS pixel. 197 

DISPATCH thus relies on two different SEE models: a temperature-based model, used to 198 

derive SEEHR from MODIS data, and a SM-based model (partial derivative of SM with 199 

respect to SEE in eq. (1) ), used to link the temperature-based SEE to SM. Both models are 200 

presented below. 201 

3.2. Temperature-based SEE 202 

The estimation of SEE at HR, supposed to be approximately constant during the day, given 203 

clear sky conditions (Shuttleworth et al. 1989, Nichols & Cuenca 1993, Crago & Brutsaert 204 

1996), is attained by: 205 

SEEHR = (Ts,dry – Ts)/(Ts,dry – Ts,wet) (2) 206 

Where Ts is the MODIS-derived soil temperature, Ts,dry the surface soil temperature 207 

corresponding to bone dry conditions (SEE = 0) and Ts,wet the surface soil temperature in 208 

fully humid conditions (SEE = 1). The assumed linear relationship between soil temperature 209 

and SEE in eq. (2) was recently verified using a physically-based soil energy balance model 210 

(Merlin et al. 2016). 211 



The soil temperature in eq. (2) is obtained by decomposing the MODIS LST into its two 212 

basic components – soil and vegetation. The partitioning method is based on the “hourglass” 213 

approach of Moran et al. (1994) and is fully described in Merlin et al. (2012). 214 

Note that MODIS LST is corrected beforehand for topographic effects (specifically decrease 215 

of air temperature with altitude) as in Merlin et al. (2013). 216 

3.2.1. Image-derived extreme temperatures 217 

The current version of DISPATCH estimates the extreme temperatures (Text) of eq. (2) using 218 

MODIS data solely. In practice, Ts,dry  and Ts,wet  are derived from the LST-fv (fractional 219 

vegetation cover) feature space (Molero et al. 2016):  220 

 Ts,dry is set to the maximum surface temperature.  221 

 Ts,wet is calculated by extrapolating the wet edge passing through the well-222 

watered full-covering green vegetation (having a temperature Tv,wet) until the 223 

bare soil line. Explicitly, it is the intercept at fv=0 of the line passing through the 224 

point (1,Tv,wet) and the point with fv<0.5, such that the slope of the line is 225 

maximum (all points with fv<0.5 being located above the wet edge). Tv,wet is set 226 

to the minimum surface temperature.  227 

The image-based model is well adapted for semi-arid irrigated areas, provided that HR data 228 

are used (de Tomas et al. 2014), such that the heterogeneity is resolved at the observation 229 

scale (Long & Singh 2011, Long & Singh 2012a, Long & Singh 2012b, Long & Singh 2013, 230 

Timmermans et al. 2007, Yang & Shang 2013).   They are less adequate for homogeneous 231 

rainfed areas, and when using medium (~1 km) to low resolution thermal remote sensing 232 

data, when the wet and dry conditions (Djamai et al. 2015b) are poorly estimated (Stefan et 233 

al. 2015). 234 



 235 

3.2.2. Modeling of extreme temperatures based on soil energy balance (EBsoil) 236 

In an effort to improve the algorithm’s robustness, a new approach is implemented in order 237 

to estimate extreme temperatures independently of the surface conditions within the study 238 

area. 239 

Extreme soil temperatures are estimated using a soil energy balance model (EBsoil) forced 240 

by meteorological data as in Stefan et al. (2015) and Merlin et al. (2016). 241 

By prescribing a soil evaporation resistance rss equal to 0 and infinity (in practice a very 242 

large number), the minimum and maximum soil temperatures are estimated for a given 243 

atmospheric forcing. More specifically, EBsoil initializes Ts with the air temperature Ta and 244 

iterates on Ts until thermal equilibrium is reached.  245 

More details about the EBsoil model can be found in Appendix A.  246 

Meteorological conditions within each SMOS pixel are supposed to be uniform, and the 247 

extreme temperatures, which are calculated using data at a 1 km resolution, but are defined 248 

at the SMOS resolution of 40 km, retain the uniformity hypothesis. 249 

 250 

3.3. SM-based SEE 251 

3.3.1. Linear model 252 

The current version of DISPATCH links the SM and the SEE using a semi-empirical linear 253 

model (Budyko 1956, Manabe 1969): 254 

SEEHR = SMHR/SMp (3) 255 

With SMp a parameter estimated at LR as: 256 

SMp = SMLR/SEELR (4) 257 



The performance of this model has been successfully assessed within DISPATCH in Merlin 258 

et al. (2013). The linearity assumption was proven to be adequate at the kilometric scale. 259 

Moreover, the reasons behind using a linear model as in eq. (3) were the potential robustness 260 

it could provide over a nonlinear model with an erroneous behavior, and that the SMp 261 

parameter calibration could contribute to the description of the real behavior of SEE (Merlin 262 

et al. 2013). However, SEE is known to have a strongly nonlinear behavior over the full SM 263 

range (Lee & Pielke 1992, Chanzy et al. 1993, Merlin et al. 2011), which represents a 264 

fundamental limitation of the SEE model in equation (3). In fact, the derivative of SEE with 265 

respect to SM is influenced by the SM range, and generally decreases with SM. (Komatsu 266 

2003). 267 

3.3.2. Nonlinear model 268 

Previous versions of the DISPATCH algorithm (Merlin et al. 2008, 2010a, 2012b) have 269 

tested a range of nonlinear models of SEE derived from Komatsu (2003), Lee & Pielke 270 

(1992) and Noilhan & Planton (1989). As reported in Merlin et al. (2010a), a greater 271 

stability (slope is more stable around 1) of the algorithm is obtained using the Komatsu  272 

(2003) model than with the other two models, stability which is already present in the linear 273 

mode. Merlin et al. (2013) have studied the impact of the nonlinearity effects on the 274 

disaggregated SM and they concluded that when using HR (~100 m) data to derive SEE, a 275 

nonlinear model is a more adequate choice, as it increases the slope of the linear regression 276 

between downscaled products and in situ measurements, thus improving the spatial 277 

representativeness of SM. 278 

Regarding nonlinear SEE representations, the model presented in Komatsu (2003) presents a 279 

particular interest, and the reason is twofold: i) it lowers the derivative in eq. (1) 280 

(dSMmod/dSEE) in the lower ranges of the SMLR and ii) it increases dSMmod/dSEE in the 281 

higher ranges of the SMLR. It is important not to have large values of the derivative at SMLR 282 



~0, as a small derivative implies uniform 1 km SM data be approximately equal to  SMLR, 283 

and in dry conditions will compensate for errors in the estimated Text. 284 

Especially, the models presented in Noilhan & Planton (1989) and Lee & Pielke (1992) do 285 

not allow a low derivative in the low ranges of the SMLR, as the simulated SEE slowly 286 

increases with SM in the lower ranges of SM. This implies that a very large derivative is 287 

obtained, leading to erroneous large disaggregated values.  288 

For the above mentioned reasons, the exponential form of Komatsu (2003) (hereby 289 

mentioned as K03) is chosen as a nonlinear SEE model:  290 

SEEsim = 1 – exp(SM/SMc) (5) 291 

where SMc is a semi-empirical parameter. In our case, SMc is supposed to be constant in 292 

space (within each LR pixel) and is calibrated at LR for each SMOS pixel from the times 293 

series of SMOS, MODIS and SAFRAN data.  294 

An iterative loop is run on SMc (initialized at 0) until the simulated SEE approaches the 295 

observed SEE. In other words, until the cost function ||SEEsim – SEEobs||
2
 is minimum. The 296 

observed SEE is the SEELR (spatial linear average of SEEHR). 297 

 298 

3.4. DISPATCH-E 299 

The introduction of the EBsoil model in the computation of Text allows for the development of a 300 

new version of DISPATCH, called DISPATCH-E (where E stands for evaporation). The goal is 301 

to improve the physics and robustness of the MODIS temperature-based SEE model and hence 302 

the calibration strategy of the (SMOS) SM-based SEE model. This could be of particular 303 

interest over areas that do not include both fully dry and fully wet conditions at the MODIS 304 

resolution, where and when the extreme temperatures may be poorly estimated from MODIS 305 

data alone. In practice, the extreme temperatures of the temperature-based SEE model are first 306 

estimated by the EBsoil model, independently of MODIS data. The SMc parameter of the SM-307 



based SEE model is then calibrated for each LR pixel from the time series of LR (aggregated) 308 

temperature-based SEE and LR SMOS SM. Note that EBsoil is forced at LR by using SAFRAN 309 

meteorological data aggregated (linear average) at SMOS resolution. A schematic diagram of 310 

both DISPATCH and DISPATCH-E methods is proposed in Fig. 2. 311 

 312 

Fig. 2. Schematic diagram of DISPATCH and DISPATCH-E. 313 

 314 

 315 



4. RESULTS AND DISCUSSION 316 

In this section, the performance of the EBsoil-DISPATCH coupling scheme (DISPATCH-E) is 317 

assessed for the study area in terms of extreme temperatures in dry/wet conditions, temperature-318 

based and SM-based SEE estimates, and disaggregated SM values. First, the extreme 319 

temperatures estimated by both EBsoil and the image-based algorithm are analyzed. Then, the 320 

temperature-based SEE estimates obtained from either the MODIS- or EBsoil-derived extreme 321 

temperatures are compared to the SM-based SEE estimates. Finally, the SMOS SM 322 

disaggregated by DISPATCH and DISPATCH-E in both linear and nonlinear modes is 323 

evaluated against the in situ measurements collected in 2011 and 2012.  324 

4.1.  Extreme soil temperatures 325 

Fig. 3 plots the MODIS-derived extreme soil temperatures with respect to the EBsoil-326 

derived extreme soil temperatures, for pixels 22 and 13, for the time series spanning 2011 327 

till April 2012, and for Aqua and Terra overpasses separately. These two pixels were 328 

chosen as they are representative of the wet and dry (mixed) conditions over the study area. 329 

 330 

 331 



 332 

Fig. 3. The MODIS-derived soil Text are plotted against the EBsoil-derived soil Text for two 333 

pixels representative of irrigated and mixed conditions. 334 

A strong consistency can be observed between modeled and image-based extreme 335 

temperatures, for both pixels. With respect to Ts,dry, the data points are generally more 336 



evenly scattered along the 1:1 regression line than the Ts,wet data points, which tend to be 337 

underestimated in the lower range when derived from MODIS images.  338 

Statistical results in terms of slope of the linear regression, correlation coefficient, RMSD 339 

and bias between modeled and remotely-sensed extreme soil temperatures are presented in 340 

Table 1.  341 

A correlation coefficient of 0.96 is obtained for pixel 22, for both MODIS overpasses and 342 

for both Ts,dry and Ts,wet. In the case of pixel 13, the correlation coefficient is slightly 343 

reduced from 0.96 (Ts,wet and Ts,dry respectively)  for the Aqua overpass to 0.95 and 0.94 for 344 

the Terra overpass. In addition, the RMSD between modeled and image-based temperatures 345 

is relatively low (near 3°C), compared to the range of Ts,wet and Ts,dry, which coupled with 346 

good correlations is characteristic of better accuracy. Irrigated pixel 22 presents both dry 347 

and wet conditions, so the estimation of extreme temperatures using solely MODIS data is 348 

more accurate than in the case of pixel 13, which is mostly represented by dry conditions. 349 

In general, lower values of the RMSD are obtained for the Terra overpass than the Aqua 350 

overpass. One reason could be the drying of the soil surface later in the day (near the Aqua 351 

overpass), so the minimum soil temperatures derived from the images might not be 352 

reflective of the fully humid condition. An additional explanation could be the advection 353 

effects, as the atmospheric conditions are more stable at 10:30 am (Terra overpass) than at 354 

1:30 pm (Aqua overpass). 355 

In general, the slope of the linear regression is closer to 1 when analyzing the results over     356 

the 13 pixel, which implies that the sensitivity of the modeling is closer to the observations.  357 

 358 



Pixel 

ID 

AQUA overpass TERRA overpass 

Ts,wet Ts,dry Ts,wet Ts,dry 

R S RMSD 

(°C) 

Bias 

(°C) 

R S RMSD 

(°C) 

Bias (°C) R S RMSD 

(°C) 

Bias (°C) R S RMSD 

(°C) 

Bias 

(°C) 

22 0.96 1.19 3.20 -0.67 0.96 1.05 3.57 -1.19 0.96 1.18 3.06 -0.89 0.96 1.04 3.41 -0.52 

13 0.96 1.08 3.78 -2.74 0.96 0.98 3.64 -1.46 0.95 1.06 3.13 -1.48 0.94 0.94 3.84 0.19 

 359 

Table 1. Correlation coefficient (R), slope of the linear regression (S), root mean square difference (RMSD) and bias between MODIS-360 

derived and EBsoil-derived soil Text, for AQUA and TERRA overpasses separately. 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 



All in all, consistent results over the two (irrigated and dryland) pixels are obtained, at the 369 

two MODIS overpass times, which reflects the robustness and precision of the EBsoil-370 

derived extreme temperatures over highly heterogeneous areas, and validates both the 371 

physical approach as well as the image-based algorithm.   372 

The sensitivity of the difference (noted as ΔTs) between Ts,dry and Ts,wet to atmospheric 373 

conditions (especially evaporative demand) is important to consider as it impacts the 374 

performance of DISPATCH. For instance, when ΔTs is  below the MODIS uncertainty 375 

threshold in LST (ranging from 1°C to 4.5° C according to Hulley et al. 2012, Wan et al. 376 

2002, Wan et al. 2004, Coll et al. 2005), disaggregation results are expected to be less 377 

reliable.  378 

As a step further, Fig. 4 plots ΔTs over the entire time series, for pixel 22, taking into 379 

account the two separate MODIS overpass times. 380 

 381 



 382 

Fig. 4. The difference (ΔTs) between Ts,dry and Ts,wet is plotted over the entire time series for pixel 383 

22, for Aqua and Terra separately. 384 

Therefore, the algorithm should be optimal in summer, when ΔTs reaches 15° C and minimal 385 

in winter. The physical reason is that during wintertime, the soil evaporation is controlled by 386 

potential evaporation (energy-limited evaporation), whereas during the summer season, it is 387 

controlled by soil moisture (moisture-limited evaporation). 388 



We can also note that the temperature-based models give different results in terms of ΔTs, 389 

with the EBsoil-derived ΔTs appearing to be more sensitive for the Terra overpass during 390 

summertime. The higher values of ΔTs obtained for the Terra overpass during summertime 391 

could be explained by the higher incoming solar radiation heating the soil around noon. 392 

There is also a noticeable difference between EBsoil-derived and MODIS-derived ΔTs in 393 

wintertime, when the EBsoil-derived ΔTs is inferior to the image-derived ΔTs. This could be 394 

explained by the soil temperatures in wintertime being controlled by potential evaporation, 395 

which in turn is influenced by the incoming net radiation, low in wintertime. As the 396 

incoming net radiation is an input to the energy balance model used in EBsoil, this directly 397 

impacts the ΔTs. 398 

4.2. SEE behavior 399 

Figures 5 and 6 show the observed (temperature-based) SEE and the simulated (SM-based) 400 

SEE against the SMOS SM, for the entire time series, for six pixels surrounding the study 401 

area, and for the Aqua and Terra overpasses separately. The SM-based model here is the 402 

nonlinear one. In order to have a more representative behavior of the SEE over the time 403 

series, the analysis takes into account SEE values averaged per 0.01 SMOS SM bins, with 404 

at least 3 values per bin. The standard deviation within each bin is also computed. The SM-405 

based SEE is fitted (via the calibration of the SMc parameter) to the temperature-based 406 

SEE, whose extreme temperatures are derived from either MODIS images or EBsoil, for 407 

each SMOS pixel (11, 12, 13, 21, 22 and 23) covering the study area. The values (estimated 408 

over pixel 22 and used as a proxy for other pixels when deriving SMHR) of the calibrated 409 

SMc parameter are 0.22 m
3
m

-3
 (Aqua overpass) and 0.24 m

3
m

-3
 (Terra overpass) when 410 

taking into account the MODIS-derived SEE as a reference for the fitting. When 411 

considering the EBsoil-derived SEE as a reference, the obtained SMc values are 0.14 m
3
m

-3
 412 

(Aqua overpass) and 0.20 m
3
m

-3
 (Terra overpass).  413 



 414 

Fig. 5. The observed (temperature-based) SEE and the simulated (SM-based) SEE is plotted 415 

against the SMOS SM, for the entire time series, for the Aqua overpass. The observed SEE 416 

is derived either from MODIS, or from EBsoil. The SM-based SEE uses the nonlinear K03 417 

model and is calibrated from the observed SEE. 418 



 419 

Fig. 6. Same as Fig. 5, but for the Terra overpass. 420 

By comparing the two temperature-based SEE, one observes that as opposed to the 421 

relatively flat behavior of the MODIS-derived SEE, the EBsoil-derived SEE’s range of 422 

values is wider.  The MODIS-derived SEE in the higher range of SMOS SM retains a rather 423 

flat behavior compared to the EBsoil-derived SEE. This could be explained by the poorer 424 

estimates of the MODIS-derived Ts,dry  and Ts,wet, which are not reflective of the true 425 

extreme temperatures under certain conditions. The SEE calculated from these estimates 426 

hence tends to maintain a smaller range of values. In addition, one observes that the SEE 427 

behavior is different for each pixel, possibly due to different soil properties, vegetation 428 

covers, land use (irrigated/dry), and topography effects. It is well known that the shape of 429 

SEE depends on soil properties, whose common proxy is given by sand and clay 430 

percentages (Merlin et al. 2016). Pixels 21 and 22 are mostly covered by crops, whereas the 431 

rest of the pixels share a certain percentage between crops and grass/shrubs, with small 432 



scattered forests. Some of the crops are irrigated, which makes the estimates of extreme 433 

temperatures in fully dry conditions, and therefore the retrieved SEE, poor. The image-434 

based estimates retrieved over intense canopies are also poorer with respect to estimates 435 

over grass or shrubs. Errors could also appear due to topography effects, caused by the 436 

mountainous areas close to our study site, close to pixels 11, 12 and 13, respectively. The 437 

nominal behavior of the SEE with respect to SM should be observed over flat irrigated 438 

pixels, where the dominant land cover is grass/shrubs (notably pixels 21 and 22). However, 439 

the best behavior is observed over pixel 13, which is affected by topography and is half 440 

covered by forests.  441 

One can see that there are no values of the SEE in the lower ranges (below 0.15-0.2), which 442 

could be explained by topographic and cloud effects that tend to induce a positive bias in 443 

SEE due to low MODIS Ts. 444 

Figures 7 and 8 show the simulated SEE as a function of the observed SEE, for the same 445 

pixels, and for Aqua and Terra overpasses respectively.  446 

 447 



Fig. 7. The simulated (SM-based) SEE is plotted against the observed (temperature-based) 448 

SEE, for the Aqua overpass. 449 

 450 

Fig. 8. Same as Fig. 7, but for the Terra overpass. 451 

Statistical results per SMOS pixel are reported in Table 2, in terms of correlation coefficient 452 

(R), slope of the linear regression (S), and RMSD. The metrics are computed using the SEE 453 

values averaged per 0.01 SMOS SM bins.  454 

Pixel ID AQUA overpass TERRA overpass 

MODIS case EBSoil case MODIS case EBsoil case 

R S RMSD R S RMSD R S RMSD R S RMSD 

11 0.72 2.08 0.12 0.73 1.46 0.17 0.69 2.44 0.14 0.77 1.40 0.12 

12 0.83 2.15 0.13 0.67 1.51 0.18 0.80 2.04 0.14 0.40 0.63 0.16 

13 0.93 1.71 0.09 0.87 1.46 0.13 0.83 1.73 0.12 0.49 0.75 0.15 

21 0.71 2.60 0.15 0.61 0.94 0.17 0.41 2.28 0.17 0.54 0.93 0.16 

22 0.64 2.27 0.16 0.33 0.60 0.22 0.68 3.03 0.17 0.54 1.20 0.18 



23 0.86 2.53 0.13 0.40 0.99 0.20 0.86 2.68 0.14 0.73 1.52 0.15 

Mean 0.78 2.22 0.13 0.60 1.16 0.18 0.71 2.36 0.15 0.58 1.07 0.15 

Table 2. Correlation coefficient (R), slope of the linear regression (S) and root mean square 455 

difference (RMSD) between simulated and observed SEE, for each pixel individually, and 456 

per Aqua/Terra overpasses separately. Mean metrics are also computed (average over the 457 

six pixels). 458 

The simulated (SM-based) versus observed (temperature-based) SEE gives comparable 459 

results for both formulations of the observed SEE (MODIS-derived or EBsoil-derived). 460 

However, for the MODIS-derived SEE scenario, better results are obtained in terms of R 461 

and RMSD, with reported mean values (average for all pixels) for the Aqua overpass of 462 

0.78 and 0.13 as opposed to 0.60 and 0.18 obtained for the EBsoil-derived SEE. For the 463 

Terra overpass, the mean R and mean RMSD are 0.71 and 0.15 for the MODIS-derived 464 

SEE, while for the EBsoil-derived SEE, they are equal to 0.58 and 0.15.  465 

The slope of the linear regression is however closer to 1 for the EBsoil-derived case 466 

scenario, with an average value for the Aqua and Terra overpasses of 1.16 and 1.07 as 467 

opposed to 2.22 and 2.36 in the MODIS-derived case.  468 

To sum up, the MODIS-derived SEE is more precise, with better mean correlation values, 469 

while the EBsoil-derived SEE has a better sensitivity, with mean slope values approaching 470 

1.  We accept a compromise between the increase in RMSD for the EBsoil case because of 471 

the improvement in the slope. 472 

 473 

4.3. Validation of SM disaggregation methodology 474 

In this section, we investigate the performance of DISPATCH-E in terms of disaggregated 475 

SM values. Figures 9 and 10 plot the SMOS SM and the DISPATCH-E output with respect 476 



to in situ measurements (aggregated at a 3 km scale by simple linear averaging), for Aqua 477 

and Terra overpass times respectively.  478 

In each case, the DISPATCH-E outputs consist in using either the MODIS-derived extreme 479 

temperatures and a linear/nonlinear SEE(SM) model, or the EBsoil-derived extreme 480 

temperatures and a linear/nonlinear SEE(SM) model in the downscaling relationship. The 481 

DISPATCH case corresponds to MODIS-derived SEE, while DISPATCH-E to EBsoil-482 

derived SEE. Both are tested in the linear and nonlinear case scenarios.  483 

 484 

Fig. 9. The SMOS, DISPATCH and DISPATCH-E SM are plotted against 3 km aggregated 485 

in situ measurements, for the Aqua overpass.  486 



 487 

Fig. 10. Same as Fig. 9, but for the Terra overpass. 488 

Statistical results in terms of correlation coefficient, slope of linear regression, bias, RMSD, 489 

unbiased RMSD (uRMSD) and the average of individual standard deviations (Mean_σ) are 490 

reported in Table 3.  491 

 492 

 493 

 494 



 495 

 AQUA overpass TERRA overpass AQUA TERRA combined 

SMOS MODIS-derived EBsoil-derived SMOS MODIS-derived EBsoil-derived SMOS MODIS-derived EBsoil-derived 

Linear 

mode 

Nonlinear 

mode 

Linear 

mode 

Nonlinear 

mode 

Linear 

mode 

Nonlinear 

mode 

Linear 

mode 

Nonlinear 

mode 

Linear 

mode 

Nonlinear 

mode 

Linear 

mode 

Nonlinear 

mode 

R -0.16 0.30 0.61 0.25 0.53 0.47 0.69 0.75 0.70 0.74 0.40 0.65 0.73 0.67 0.72 

S -0.063 0.16 0.66 0.10 0.41 0.19 0.45 0.70 0.50 0.56 0.16 0.41 0.69 0.43 0.54 

Bias -0.065 -0.074 -0.081 -0.072 -0.075 -0.10 -0.10 -0.10 -0.095 -0.096 -0.087 -0.089 -0.092 -0.085 -0.087 

RMSD 0.096 0.096 0.099 0.095 0.093 0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 

uRMSD 0.071 0.062 0.058 0.061 0.055 0.091 0.075 0.071 0.073 0.069 0.085 0.071 0.067 0.069 0.064 

Mean_σ 0.0093 0.016 0.044 0.017 0.030 0.011 0.016 0.044 0.019 0.032 0.011 0.017 0.042 0.018 0.030 

Table 3. Correlation coefficient, slope of the linear regression, bias, RMSD, unbiased RMSD (uRMSD) and the average of individual 496 

standard deviations (Mean_σ) between SMOS SM/DISPATCH SM/DISPATCH-E SM an 3 km in situ data are reported for each MODIS 497 

overpass individually, as well as both overpasses combined. Both DISPATCH and DISPATCH-E are tested in linear and nonlinear 498 

modes. 499 

 500 

 501 



When comparing the LR SM and the HR SM with the 3 km in situ data, one can see 502 

that DISPATCH improves the fine-scale precision. A correlation coefficient equal to 503 

0.30 and 0.25 when using Aqua MODIS/EBsoil-derived SEE (linear mode) is 504 

obtained, as opposed to -0.16 when comparing SMOS SM with in situ data. The 505 

values for the same metrics are better for the Terra overpass than for the Aqua 506 

overpass, with a correlation coefficient equal to 0.69 and 0.70, as opposed to the 0.47 507 

correlation value calculated for SMOS SM. Moreover the correlation seems to be 508 

stronger for days when rainfall occurred (doy 244 in 2011), proving that the algorithm 509 

is suited for detecting small scale changes, thanks to its 1 km disaggregation 510 

resolution.   511 

The slope of the linear regression is also improved from -0.063 to 0.16 and 0.10 512 

(Aqua overpass, linear mode) and from 0.19 to 0.45 and 0.50 (Terra overpass, linear 513 

mode).  514 

When comparing the two temperature-based SEE models (in linear mode), one can 515 

see a relative similar performance in terms of correlation and slope of linear 516 

regression, for both MODIS overpasses. In terms of bias, all disaggregated SM 517 

products retain the negative bias found in the SMOS SM. The RMSD values seem to 518 

be consistent, independently of the SM resolution, with lower values (~0.09 m3/m3) 519 

reported for the Aqua overpass, as opposed to the Terra overpass (~0.12/0.13 520 

m3/m3).   521 

When comparing the linear and the nonlinear modes, one can conclude that the 522 

nonlinear SEE model significantly improves the correlation coefficient and the slope. 523 

The correlation coefficient is significantly increased for the Aqua overpass: from 0.30 524 

to 0.61 (MODIS-derived SEE) and from 0.25 to 0.53 (EBsoil-derived SEE). The slope 525 

of the linear regression is also significantly improved, from 0.16 to 0.66 (MODIS-526 



derived SEE) and from 0.10 to 0.41 (EBsoil-derived SEE) – for the Aqua overpass 527 

over a smaller SM range.  528 

When looking at the statistics obtained when taking into account both Aqua and Terra 529 

overpasses, the trend remains the same. The correlation coefficient is improved from 530 

0.40 (SMOS SM) to 0.65 and 0.67 (MODIS/EBsoil-derived SEE) in linear mode. The 531 

correlation values obtained in nonlinear mode are 0.73 and 0.72 (MODIS /EBsoil-532 

derived SEE). Similarly, the slope is increased from 0.16 to 0.41 and 0.43 (MODIS- 533 

/EBsoil-derived SEE) in linear mode. In nonlinear mode, the slope is equal to 0.69 534 

and 0.54 (MODIS /EBsoil-derived SEE). The uRMSD values are systematically 535 

lower when using the EBsoil-derived SEE, with reported values (Aqua and Terra 536 

combined) of 0.069 (linear mode) and 0.064 (nonlinear mode), as opposed to 0.071 537 

and 0.067 when using the MODIS-derived SEE. In addition, the mean of individual 538 

standard deviations is consistently smaller in nonlinear mode when using EBsoil-539 

derived SEE as opposed to MODIS-derived SEE, with values of 0.030 (Aqua 540 

overpass) and 0.032 (Terra overpass) as opposed to 0.044  (Aqua and Terra 541 

overpasses respectively). 542 

Better results are reported in nonlinear mode than in linear mode. In fact, in the 543 

nonlinear mode, the partial derivative of SM with respect to SEE is diminished in the 544 

lower SM ranges and increased in the higher SM ranges, which entails an overall 545 

better precision and accuracy of the corresponding disaggregated products when 546 

compared to the 3 km aggregated in situ measurements.    547 

An important aspect to mention is the negative values of disaggregated SM when 548 

using the nonlinear SEE(SM) model in the downscaling relationship. If we assume 549 

that the disaggregation is efficient, then this could point out that SMOS underestimates 550 



SM in very dry areas (with SM close to zero). Various calibration and validation 551 

studies of SMOS SM products have reported a negative bias (Collow & Robock 2012, 552 

Zeng & all. 2015, Al Bitar et al. 2015, Djamai et al. 2016). The bias in retrieved SM is 553 

inflicted by biases in the brightness temperatures, which could be provoked by the RFI 554 

(Radio Frequency Interference) for instance. According to (Dente et al. 2012), a 555 

positive bias in the observed brightness temperature would imply a negative bias in the 556 

SM products. Since SMOS SM is used when calibrating the SMc parameter, the 557 

parameter retrieval is also affected by the negative bias. The downscaled SM data 558 

obtained in the nonlinear mode is thus affected by both potential bias in retrieved SMc 559 

values, as well as the negative bias in SMOS data. 560 

 561 

Summary and Conclusions 562 

DISPATCH provides 1 km resolution SM data from 40 km resolution SMOS and 1 563 

km resolution MODIS data by combining two SEE models based on either MODIS 564 

LST or SMOS SM. Both models are originally self-calibrated from MODIS and 565 

SMOS data alone. While the extreme temperatures of the temperature-based SEE 566 

model are determined from MODIS images, the SM-based SEE model is calibrated 567 

from quasi-simultaneous MODIS and SMOS observations by assuming a linear 568 

SEE(SM) representation. 569 

This paper develops a new version – named DISPATCH-E – of the DISPATCH 570 

method by integrating a soil energy balance (EBsoil) model forced by meteorological 571 

data at low (SMOS) resolution. EBsoil aims to improve the physics and robustness of 572 

the (MODIS) temperature-based SEE model and hence the calibration strategy of a 573 

(SMOS) SM-based SEE model. In practice, the extreme temperatures of the 574 



temperature-based SEE model are now estimated by EBsoil (independently of MODIS 575 

data), while the SM-based SEE model is now derived from the (observed) temporal 576 

behavior of the temperature-based SEE as a function of SMOS SM.  577 

The approach is tested by comparing the extreme temperatures in dry/wet conditions, 578 

temperature-based and SEE-based estimates, and disaggregated SM values obtained 579 

by DISPATCH and DISPATCH-E respectively, over a mixed irrigated/dry land area 580 

in Catalunya (Spain) during 2011 and 2012. SAFRAN meteorological data aggregated 581 

at SMOS resolution are used as an input to DISPATCH-E, and in situ SM 582 

measurements are used for validation at a 3 km resolution. 583 

Both DISPATCH and DISPATCH-E temperature-based SEE models are compared in 584 

time with SMOS SM, for each SMOS pixel independently. A compromise between 585 

precision and robustness is obtained: the SEE estimates based on the MODIS-derived 586 

extreme soil temperatures   are more precise than the SEE estimates based on the 587 

EBsoil-derived extreme soil temperatures, with a mean correlation coefficient (average 588 

of correlation coefficients corresponding to each pixel) equal to 0.78 (Aqua overpass) 589 

and 0.71 (Terra overpass) as opposed to 0.60 (Aqua overpass) and 0.58 (Terra 590 

overpass). However, the latter provides more accurate SEE estimates, with a mean 591 

slope of the linear regression (average of the values corresponding to each pixel) equal 592 

to 1.16 (Aqua overpass) and 1.07 (Terra overpass) as opposed to 2.22 (Aqua overpass) 593 

and 2.36 (Terra overpass). Results indicate that EBsoil is a robust method to estimate 594 

bone dry and fully wet soil temperatures within the 40 km SMOS pixel. Moreover, an 595 

independent estimation of Ts,dry and Ts,wet provides a useful assessment of the relative 596 

uncertainty in the temperature-based SEE at the time of MODIS overpass. 597 



In terms of disaggregated SM values, SMOS SM and 1 km resolution disaggregated 598 

SM are both compared to 3 km resolution in situ measurements. The correlation 599 

coefficient (for Aqua and Terra combined) is increased from 0.40 for the SMOS SM to 600 

0.65 and 0.67 for the disaggregated SM (obtained using either MODIS-derived or 601 

EBsoil-derived SEE).  602 

The integration of a nonlinear SM-based SEE model, fitted separately to the two 603 

temperature-based SEE models, significantly improves the statistics. For the Aqua 604 

overpass, correlations of 0.61 (MODIS-derived SEE) and 0.53 (EBsoil-derived SEE) 605 

are obtained as opposed to 0.30 and 0.25 obtained in the linear mode. For the Terra 606 

overpass, correlations of 0.75 (MODIS-derived SEE) and 0.74 (EBsoil-derived SEE) 607 

are obtained as opposed to 0.69 and 0.70 obtained in the linear mode. The slope of the 608 

linear regression is increased from 0.16 to 0.66 (MODIS-derived SEE) and from 0.10 609 

to 0.41 (EBsoil-derived SEE) – for the Aqua overpass. Coherent results are obtained 610 

for the Terra overpass: slope is increased from 0.45 to 0.70 (MODIS-derived SEE) and 611 

from 0.50 to 0.56 (EBsoil-derived SEE).  612 

DISPATCH-E has a strong potential when applied to areas representative of either 613 

fully dry or fully wet conditions (desert areas, temperate areas or rainfed areas). 614 

A better representation of SEE could potentially be achieved by taking into account 615 

the two separate temperature-based models in future studies. Additionally, the SEE 616 

modeling based on the nonlinear SM model could be integrated into existing 617 

evapotranspiration models, which are based on a combination of thermal and 618 

microwave data. 619 

From a downscaling point of view, disaggregation is a way of detecting a bias in the 620 

low resolution SM data, which is not easily distinguishable without taking into 621 



account the spatial heterogeneity within the scene. Future studies could try and correct 622 

the bias in SMOS data and recalibrate the SM-based SEE model taking into 623 

consideration new corrected data. Any improvement in the SEE model could lead to 624 

refinements of the SEE estimates and of the associated HR SM products. 625 

 626 

Appendix A 627 

The EBsoil model used in the computation of Ts,dry and Ts,wet - corresponding to rss  628 

equal to infinity and 0 respectively - iterates on Ts until thermal equilibrium is 629 

established: 630 

Rns – G = Hs + LEs (6) 631 

Where Rns (Wm
-2

) is the soil net radiation, G (Wm
-2

) the ground heat flux, Hs (Wm
-2

) 632 

the soil sensible heat flux and LEs (Wm
-2

) the soil latent heat flux.  633 

The soil net radiation is estimated as: 634 

Rns = (1- αs) * Rg + εs * (Ra – σTs
4
) (7) 635 

Where α s(unitless) is the soil albedo, Rg (Wm
-2

) the incident solar radiation at short 636 

wavelengths, εs (untiless) the soil emissivity, Ra (Wm
-2

) the incident thermal radiation 637 

at large wavelengths and  σ (Wm
-2

K
-4

) the Stefan-Boltzmann constant. 638 

The ground heat flux is approximated as: 639 

G = 0.32Rns  (8) 640 

The soil sensible heat flux is given by: 641 

Hs = ρ*Cp*(Ts - Ta)/rah (9) 642 

with ρ (kg*m
-3

) being  the air density, Cp (J*kg
-
1*K

-1
) the specific heat of air at 643 

constant temperature and rah (s*m
-1

) the aerodynamic resistance to heat transfer. 644 



The soil latent heat flux is calculated as: 645 

LEs = ρ*Cp* [esat(Ts) – esat(Ta)]/ [γ*(rss + rah)] (10) 646 

with esat(Ts) (Pa) being the saturated vapor pressure at soil temperature, esat(Ta) (Pa) 647 

the saturated vapor pressure at air temperature and γ (unitless) the psychrometric 648 

constant. 649 

The aerodynamic resistance in equations 9 and 10 is estimated using the Richardson 650 

formulation: 651 

rah = rah0/(1+Ri)
η
 (11) 652 

with Ri (untiless) being the Richardson number, η (unitless) a coefficient set to 0.75 in 653 

unstable conditions (Ts>Ta) and to 2 in stable conditions (Ts<Ta) and rah0 the 654 

aerodynamic resistance which neglects natural convection, expressed as: 655 

rah0 = log
2
(Zr/Z0m)/(k

2
ua) (12) 656 

Zr (m) is the reference height at which the wind speed was measured, Z0m (m) the 657 

roughness length for momentum transfer over bare soil, k (unitless) the von Kármán 658 

constant, and ua (m*s
-1

) the wind speed.  659 

The Richardson number reflects the influence of the atmospheric stability on the flux-660 

gradient relationship in the surface layer and is given by: 661 

Ri = 5*g*Zr*(Ts-Ta)/(Ta*ua
2
) (13) 662 

With g (m*s
-2

) being the gravitational constant. 663 
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Chapter 6

CONCLUSIONS AND

PERSPECTIVES

In the setting of nowadays’ increasing awareness of climate change and limited water ressources,
many research studies focus on developing models to estimate different hydrological variables that
are essential to a better management of Earth’s resources. A key variable in the hydrological
cycle, especially in semi–arid areas, is evapotranspiration (ET), with its two main components:
soil evaporation (E) and plant transpiration (T). Monitoring E at multiple scales is crucial to
many agronomic, hydrologic, meteorological and climatic applications. Remote sensing is in this
respect a promising approach to estimate E at multiple scales, on a global basis. Two E–related
variables that can be retrieved through remote sensing are essential in approaches based on re-
mote sensing: the land surface temperature (LST) - derived from thermal sensors such as MODIS
and ASTER, and surface soil moisture (SM) - derived from microwave sensors such as SMOS.

This PhD thesis focused on improving the spatio–temporal representation of soil evaporation
by deriving a multi–scale modeling technique based on a synergy between existing evaporation
models and remote sensing data. Amongst all the possible models that can be used to derive
soil evaporation, ranging from mechanistic and phenomenological models to remote sensing–
based approaches, one method was of particular interest: the so-called “contextual” approach.
Contextual approaches are derived from thermal remote–sensing and they estimate evaporation
as a function of LST. They can also be referred to as temperature–based approaches. Their
appeal lies within the possibility to be applied to different areas around the world, thanks to
the availability of input data. However, the main constraint of contextual methods lies within
determining the physical wet and dry boundaries of LST, which may not be present within the
scene at the thermal sensor resolution.

In this context, one major objective of this PhD was to introduce a new way of deriving the
wet and dry boundaries independently of remote sensing data and implicitly, of the observation
resolution of the thermal sensor. In practice, a soil energy balance model (EBsoil) forced by
meteorological data was introduced. The model was then tested over three different semi–arid
sites: Morocco, Mexico and Spain.

As a first step, EBsoil was implemented within a contextual ET model (SEB–1S). ET esti-
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mates derived either from remote sensing data solely or by using EBsoil were intercompared at
multiple resolutions with a reference ET over the Mexican site. Results indicated that integrating
EBsoil in SEB–1S improves ET estimates at a medium (∼ 1 km) resolution. This provided a
spatial characterization of ET from LST data. Note that these results could be applied to soil
evaporation through the soil evaporative efficiency (SEE), which is defined as the ratio of actual
to potential evaporation.

One limitation concerning EBsoil is related to wind speed, which intervenes in the compu-
tation of the aerodynamic resistance. More specifically, a sensitivity study showed that when
wind speed is inferior to 2 m·s−1, the extreme soil temperatures corresponding to wet and dry
conditions are impacted; this implies that the wet and dry boundaries that are then used in
estimating ET are also impacted. Future studies should keep this limitation in mind. Another
important limitation to bear in mind regarding the application of EBsoil is the availability and
accuracy of the atmospheric forcing at multiple resolutions.

The next step consisted in focusing on the temporal dynamics of SEE. Since SEE can be
retrieved from remote sensing data, either using LST or SM, there is a particular interest in
focusing on this variable, due to the synergy between the two modeling approaches. Therefore,
efforts have been made to characterize the temporal dynamics of SEE by using the global mod-
eling approach. There is a novelty aspect related to this approach, since this technique has been
used for a very small number of environmental contexts, with even fewer models obtained that
are able to reproduce the original dynamics. For the first time ever, a four dimensional chaotic
model was obtained for the daily cycle of SEE, able to reproduce the dynamics of the variable
with a good approximation in the phase domain. However, limitations regarding the model rep-
resentation in the time domain arise: the obtained time series does not reproduce daily cycles
and exhibits faster oscillations than the original series, which means multiple cycles per day.
Even though the difference is expected, due to the chaotic regime of the dynamics, the model
cannot be considered satisfying in the time domain, since the reproduced series presents faster
oscillations than the expected daily signal. The “nominal” behavior of the SEE (one smooth cy-
cle, with a maximum value registered in the morning) can be strongly affected by cloud presence,
which can induce oscillations in the daily cycle. These oscillations are then taken into account
in the global modeling approach, which may explain the faster oscillations of the reconstructed
SEE series. Moreover, in the modeling, values of the SEE during night–time were taken into
account. This implies values for a non–defined SEE (since the evaporative demand is equal to
0 at night), which could lead to singularities in the model. Nevertheless, one should keep in
mind that the global model obtained is autonomous, so no forcing was used, which means that
no information regarding meteorological data (cloud presence) are taken into consideration to
synchronize the model to the daily cycle. Future analyses could take the meteorological forcing
into account when applying the global modeling technique. Remote sensing data can be used to
derive SEE series as input to the approach. Coupling remote sensing data and meteorological
information could provide a way of modeling the SEE dynamics from a spatially distributed point
of view. The global modeling approach may be used to model the dynamics of the surface cover.
The model does not allow for long–term forecasting but it nonetheless allows the anticipation
of complex behaviors. It also provides a good representation of the dynamical behavior in the
phase space. Although it has no direct applicability (because of its low predictability), this result
is very encouraging because it proves that the global modeling approach is viable, since a model
could be obtained from a variable that doesn’t offer a good observability of the dynamics. A
future perspective could be choosing another variable or using multiple variables that could offer
a better observability of the dynamics, and thus better results in terms of predictability could
be obtained.

The two modeling approaches used in deriving SEE - as a function of LST or SM - were
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regrouped at the third step. DISPATCH is a disaggregation algorithm that provides high reso-
lution SM data. It is the only link between the two approaches of deriving SEE, because it uses
both a LST– and SM–based model in order to downscale SM data by combining microwave and
optical data. The EBsoil model developed at the first step was integrated within DISPATCH,
thus developing a new algorithm, DISPATCH–E. The influence of implementing EBsoil is as-
sessed in terms of SM products over the Spanish site. It is an indirect validation of the SEE,
because no available direct measurements of this variable are available to compare against. Nev-
ertheless, this indirect validation in terms of SM is an indication of the impact behind the SEE
modeling technique. Implementing EBsoil significantly improves the downscaled SM. It proves
to be a robust way of deriving downscaled SM products, as well as being an independent way of
assessing uncertainty in the satellite data.

Various research perspectives in connection with the work carried in this PhD thesis can be
considered for the future:

1. Further improvements to DISPATCH–E

2. Coupling DISPATCH–E with ET models including soil/vegetation components

1. Further improvements to DISPATCH–E
Regarding the possible developments of DISPATCH–E, meteorological data provided by an

interpolation model (namely SAFRAN) were used to force EBsoil and consequently in the deriva-
tion of high resolution SM products. Other meteorological data - issued from weather stations or
from ECMWF reanalysis could be used as an input to the soil energy balance model. This could
provide an independent assessement of the robustness of the methodology, as well as extending
its applications to a global scale. One should keep in mind though the uncertainty of the mete-
orological data. For example, SAFRAN data in the north–east of Spain (where DISPATCH–E
was applied) presents a mean RMSE of about 1.5 ◦C in temperature and of 7 % in relative air
humidity. There is a 1.3 m·s−1 RMSE in the wind speed estimations, and 114 W·m−2 RMSE
in visible radiation (Quintana-Segúı et al., 2008). This uncertainty in the data is expected to
influence the output of the EBsoil model, and therefore, the SEE estimates. Using large scale
data such as from ECMWF reanalysis is very attractive from the point of view of a global scale
application, but could present large uncertainties in the meteorological data, and subsequently,
on the SEE estimates. High resolution meteorological data should be used in order to account
for heterogeneities, which can be obtained by interpolating in situ measurements at a range of
spatial resolutions, or by atmospheric surface analysis at the atmospheric model grid resolution.

Moreover, the application of the original DISPATCH algorithm is limited by the contextual
nature of the SEE modeling as a function of LST (derived solely from satellite imagery). In
particular, DISPATCH works well in semi–arid areas, provided that the dry and wet bound-
aries of the LST can be observed. Therefore, its application is restricted in desert and rainfed
areas, where one of the two boundaries cannot be captured using medium resolution (∼ 1 km)
data. In this context, the new DISPATCH–E algorithm could be implemented over these areas
since the limitations regarding the wet and dry boundaries do not exist when using an en-
ergy balance model. For example, the SMELLS (Soil Moisture for dEsert Locust earLy Survey,
http://smells.isardsat.com/) project is an Innovators-III project funded by ESA to develop
innovative Earth Observation products and services in response to authoritative requirements
from end–user organisations. It investigates the use of soil moisture to preventive management
of desert locust in Africa. Desert locust have been linked to a variety of plagues, plagues which
might be forecasted by using high resolution soil moisture products. The project aims at imple-
menting an innovative approach to combine Sentinel–1 SAR data with thermal–disaggregated
SMOS soil moisture (derived from DISPATCH) to derive a high spatio–temporal resolution SM
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product. This is in order to provide a new tool for decision makers in the desert locust preven-
tive management system. Since the study area covers the western and northern Africa, which is
mostly a desert area, there are limitations regarding the DISPATCH SM product. This is ex-
plained by the wet boundary of the LST - fractional vegetation cover space retrieved from satellite
data being overestimated. DISPATCH–E could provide better disaggregated SM estimates, since
it estimates the boundaries independently of the remote sensing data.

Moreover, because DISPATCH–E estimates extreme temperatures independently of MODIS
data, one could identify the sensitivity of LST to SM by quantifying DISPATCH–E’s uncertainty
in given meteo/climatic conditions. This is essential in view of assimilating disaggregated SM
data in land surface models (Merlin et al., 2006b; Bandara et al., 2015; Dumedah et al., 2015).
Any advances in the LST–based SEE models would foster further developments of DISPATCH–E
and associated improvements in the refined soil moisture products.

In addition, another aspect that one could focus on is the impact of soil texture on SEE.
By trying and characterizing the hydrodynamical soil properties, one could study the impact
of soil variability on the DISPATCH–E output. The recent model developed in Merlin et al.
(2016) introduces a SEE model that is tightly linked to soil texture. The model was tested for
regionalization capabilities by using a parameterization depending on clay and sand percentages.
Moreover, the model could be calibrated by using thermal and microwave remote sensing data.
This model could be included at low resolution in DISPATCH–E: either using existing maps
of soil texture or by inverting the clay and sand percentages derived from observed (SMOS
and MODIS) data. Because a significant relationship was found between the strongly non–linear
behavior of SEE as a function of SM and soil texture, a possible approach to deriving soil texture
from multi–sensor/multi–spectral remote sensing could be developed.

2. Coupling DISPATCH–E with ET models including soil/vegetation components

By combining multiple (remote sensing and meteorological) data, one could improve the
multi–scale spatial representation of ET. In particular, DISPATCH–E has the potential to be
applied to other satellite data: C–band radiometers (AMSR–E, AMSR–2), scatterometers (AS-
CAT) and thermal sensors such as LANDSAT. Even though one might argue that disaggregated
data are less reliable than the observed data at high resolution, taking into account nowadays
limitations regarding the coarse resolution of SM products, disaggregation allows to extend appli-
cations of currently available remote sensing data. Also, multi–spectral based approaches allow
testing the complementarity of multi–source data before these data become available at high
resolution.

One main aspect to be taken into account is the partitiong of ET into E and T. Remotely–
sensed estimates of LST–derived SEE and microwave–derived SM data would be crucial in a
better constraining of the partitioning of LST–derived ET into soil evaporation and plant tran-
spiration (Merlin et al., 2014), which is key in enhacing water resource management over semi–
arid areas. In theory, combining LST and SM data should allow the decoupling over mixed pixels
through DISPATCH–E. It could also allow for the calibration of semi–empirical parameters of
E through remote sensing means. NDVI data from visible and near infrared sensors have been
extensively used to estimate ET on surfaces covered by vegetation, not specifically on bare or
partially covered soils (Allen et al., 1998). Methods based on thermal infrared do not allow for
a complete partition between E and T over mixed pixels by using only visible/near infrared and
LST data. The reason is because there is an equifinality between E and T rates and the LST in-
tegrated at the pixel scale. One solution to solve this equifinality problem would be to introduce
further data regarding the SEE derived from microwave data. Approaches combining thermal
infrared and microwave data have a great potential to constrain the E process (Chanzy et al.,
1995; Li et al., 2006). Combining LST and SM data would allow i) partitioning ET over mixed
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pixels and ii) calibrating semi–empirical parameters from remote sensing data. The derived E/T
products could be validated with in situ–derived measurements. In particular, eddy covariance
and/or lysimeter measurements of ET could be partitioned into E and T measurements using the
statistical method based on marginal distribution sampling - MDS (Béziat et al., 2009). Tran-
spiration measurements could also be taken separately, using a sapflow system, and further used
to validated the MDS method. Moreover, one could imagine a way of deriving in situ measure-
ments of the SEE. For that, one would need measurements of potential evaporation. This can
be measured indirectly, using climatic factors. Usually, a value can be calculated at a nearby
climate station on a reference surface, which can then be converted to potential evaporation
by multiplying it with a surface coefficient. Once both evaporation and potential evaporation
measurements are available, one could derive the SEE as the ratio of the two. This could help
directly validating the SEE products retrieved through remote sensing, at a range of scales.

DISPATCH–E therefore has a real potential of decoupling ET into its two main components.
It could provide a measure of the improvement of SEE modeling on SM estimates and reciprocally,
the improvement in SM products on the representation of multi–scale E. One could imagine the
possibility of deriving E products through DISPATCH–E, which would be a first, since currently
there is no remote sensing algorithm dedicated to monitoring this flux.
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CONCLUSIONS ET

PERSPECTIVES

Dans le cadre actuel de la sensibilisation aux changements climatiques et de la limitation des
ressources en eau, de nombreuses études de recherche se concentrent sur le développement de
modèles pour estimer les différentes variables hydrologiques qui sont essentielles à une meilleure
gestion des ressources de la Terre. Une variable clé dans le cycle hydrologique, en particulier
dans les zones semi–arides, est l’évapotranspiration (ET), avec ses deux composantes princi-
pales: l’évaporation du sol (E) et la transpiration des plantes (T). La surveillance de l’E à
des échelles multiples est cruciale pour beaucoup d’applications agronomiques, hydrologiques,
météorologiques et climatiques. La télédétection est à cet égard une approche prometteuse pour
estimer l’E à des échelles multiples, sur une base mondiale. Deux variables liées à l’E sont essen-
tielles dans les approches fondées sur la télédétection: la température de surface (Land Surface
Temperature - LST) - dérivée de capteurs thermiques tels que MODIS et ASTER, et l’humidité
du sol en surface (Soil Moisture - SM) - dérivée de des capteurs micro–ondes, tels que SMOS.

Cette thèse a porté sur l’amélioration de la représentation spatio–temporelle de l’évaporation
du sol en dérivant une technique de modélisation multi–échelle basée sur une synergie entre
les modèles d’évaporation existants et les données de télédétection. Parmi tous les modèles
possibles qui peuvent être utilisés pour calculer l’évaporation du sol, qu’ils soient mécanistes,
phénoménologiques ou basés sur la télédétection, une méthode dénote d’un intérêt tout partic-
ulier: l’approche dite“contextuelle”. Les approches contextuelles sont dérivées de la télédétection
thermique et elles estiment l’évaporation en fonction de la LST. Elles peuvent également être
appelées approches basées sur la température. Leur intérêt se trouve dans la possibilité d’être
appliquées à différentes régions du monde, grâce à la disponibilité des données d’entrée. Cepen-
dant, leur principale contrainte se situe dans la détermination des limites physiques humides
et sèches de la LST, qui peuvent ne pas être présentes sur la scène à la résolution du capteur
thermique.

Dans ce contexte, l’un des principaux objectifs de cette thèse était d’introduire une nouvelle
façon de dériver les limites humides et sèches indépendamment des données de télédétection et,
implicitement, de la résolution d’observation du capteur thermique. Dans la pratique, un modèle
de bilan d’énergie du sol (EBsoil) contraint par des données météorologiques a été introduit. Le
modèle a ensuite été testé sur trois sites semi–arides différentes, situés au Maroc, au Mexique et
en Espagne.

Dans un premier temps, EBsoil a été implémenté au sein d’un modèle contextuelle de l’ET
(SEB–1S). Les estimations de l’ET ont été obtenues soit uniquement à partir des données de

187



télédétection, soit en utilisant EBsoil pour ensuite être comparées à de résolutions multiples avec
une ET de référence sur le site mexicain. Les résultats indiquent que l’intégration du EBsoil
dans SEB–1S améliore les estimations ET à une résolution moyenne (∼ 1 km). Cela a fourni une
caractérisation spatiale de l’ET à partir des données LST. On notera que ces résultats pourraient
être appliqués à l’évaporation du sol grâce à l’efficacité évaporative du sol (Soil Evaporative
Efficiency - SEE), qui est définie comme étant le rapport entre l’évaporation réelle et l’évaporation
potentielle.

Une limitation concernant EBsoil est liée à la vitesse du vent, qui intervient dans le calcul
de la résistance aérodynamique. Plus précisément, une étude de sensibilité a montré que lorsque
la vitesse du vent est inférieure à 2 m·s−1, les températures du sol extrêmes correspondant aux
conditions sèches et humides sont impactées; cela implique que les limites humides et sèches qui
sont ensuite utilisées dans l’estimation de l’ET sont également impactées. Pour de futures études,
il est nécessaire de garder cette limitation à l’esprit. Une autre limitation importante à garder
en tête en ce qui concerne l’application du EBsoil est la disponibilité et la précision du forçage
atmosphérique à des résolutions multiples.

L’étape suivante s’est concentrée sur la dynamique temporelle de la SEE. Comme la SEE
peut être récupérée à partir des données de télédétection, soit en utilisant la LST, soit la SM,
il y a un intérêt particulier à se concentrer sur cette variable, en raison de la synergie entre les
deux approches de modélisation. Par conséquent, une étude de caractérisation de la dynamique
temporelle de la SEE en utilisant l’approche de modélisation globale a été menée. Cette technique
n’a été appliquée à ce jour qu’à un nombre très restreint de contextes environnementaux, avec
encore moins de modèles obtenus qui sont en mesure de reproduire la dynamique d’origine. C’est
pourquoi cette approche est nouvelle à son genre. Pour la première fois, un modèle chaotique
de dimension quatre a été obtenu pour le cycle journalier de la SEE, capable de reproduire la
dynamique de la variable avec une bonne approximation dans l’espace de phase. Cependant,
on observe des limitations relatives à la représentation du modèle dans le domaine temporel.
En effet, la série temporelle obtenue ne reproduit pas les cycles journaliers et elle montre des
oscillations plus rapides que la série originale, ce qui signifie des cycles journaliers multiples.
Cette différence est prévisible, du fait du régime chaotique de la dynamique. Cependant, comme
la série reproduite présente des oscillations plus rapides que le signal journalier prévu, le modèle
ne peut pas être considéré comme satisfaisant dans le domaine temporel. Le “comportement”
nominal de la SEE (un cycle lisse, avec une valeur maximale enregistrée le matin) peut être
fortement affectée par la présence de nuages, ce qui peut induire des oscillations dans le cycle
quotidien. Ces oscillations sont alors prises en compte dans l’approche de modélisation globale,
ce qui peut expliquer les oscillations plus élevées de la série SEE reconstruite. En outre, dans la
modélisation, les valeurs de la SEE au cours de la nuit ont été prises en compte. Cela implique
que l’on obtient des valeurs alors que la SEE n’est pas définie (car la demande d’évaporation est
égal à 0 dans la nuit), ce qui pourrait conduire à des singularités dans le modèle. Néanmoins, il
faut garder à l’esprit que le modèle global obtenu est autonome, ce qui signifie qu’aucun forçage
n’a été utilisé. Aucune information concernant les données météorologiques (présence de nuages)
n’est prise en considération pour synchroniser le modèle au cycle journalier. Les analyses futures
pourraient prendre le forçage météorologique en compte lors de l’application de la technique
de modélisation globale. Les données de télédétection peuvent être utilisées pour obtenir des
séries de la SEE comme entrée à l’approche. Le couplage des données de télédétection et des
informations météorologiques pourrait fournir un moyen de modélisation de la dynamique de la
SEE à partir d’un point de vue spatialement distribué. L’approche de modélisation globale peut
être utilisée pour modéliser la dynamique du couvert de surface. Le modèle ne permet pas des
prévisions à long terme, mais il permet néanmoins l’anticipation des comportements complexes.
Il fournit également une bonne représentation du comportement dynamique dans l’espace de
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phase. Bien qu’il n’a pas d’applicabilité directe (en raison de sa faible prévisibilité), ce résultat
est très encourageant car il prouve que l’approche de modélisation globale est viable, car un
modèle a pu être obtenu à partir d’une variable qui ne propose pas une bonne observabilité de
la dynamique. Une perspective future pourrait être de choisir une autre variable ou d’utiliser
plusieurs variables qui pourraient offrir une meilleure observabilité de la dynamique, et donc des
meilleurs résultats en termes de prévisibilité pourraient être obtenus.

Les deux approches de modélisation utilisées pour dériver la SEE - en fonction de la LST
ou de la SM - ont été regroupées lors de la troisième étape. DISPATCH est un algorithme
de désagrégation qui fournit des données SM à haute résolution. Il est le seul lien entre les
deux approches de dérivation de la SEE, car il utilise à la fois un modèle basé sur la LST et
un modèle basé sur la SM pour désagréger des données SM en combinant des données micro–
ondes et des données optiques. Le modèle EBsoil développé à la première étape a été intégré
au sein de DISPATCH, développant ainsi un nouvel algorithme, DISPATCH–E. L’influence de
l’implémentation du EBsoil est évaluée en termes de produits SM sur le site espagnol. Il s’agit
d’une validation indirecte de la SEE, car aucune mesure directe de cette variable n’est disponible
pour la comparaison. Néanmoins, cette validation indirecte en termes de SM est une indication
de l’impact derrière la technique de modélisation de la SEE. L’intégration du EBsoil améliore
significativement la SM désagrégée. Il se révèle être un moyen robuste de dériver des produits
de SM désagrégés, tout en étant une manière indépendante d’évaluation de l’incertitude dans les
données satellitaires.

Diverses perspectives de recherche en relation avec le travail effectué dans cette thèse peuvent
être envisagées pour l’avenir:

1. D’autres améliorations à DISPATCH–E

2. Un couplage entre DISPATCH–E et les modèles de l’ET incluant les composants sol/végétation

1. D’autres améliorations à DISPATCH–E
En ce qui concerne les développements possibles de DISPATCH–E, les données météorologiques

fournies par un modèle d’interpolation (à savoir SAFRAN) ont été utilisés pour forcer EB-
soil et par conséquent dans la dérivation de produits SM à haute résolution. Autres données
météorologiques - fournies par des stations météo ou issues de la ré–analyse de l’ECMWF pour-
raient être utilisées comme une entrée au modèle du bilan d’énergie du sol. Cela pourrait fournir
une évaluation indépendante de la robustesse de la méthodologie, ainsi que l’extension de ses
applications à l’échelle mondiale. Néanmoins, il faut garder à l’esprit l’incertitude des don-
nées météorologiques. Par exemple, les données SAFRAN dans le nord–est de l’Espagne (où
DISPATCH–E a été appliqué) présente une RMSE moyenne d’environ 1.5 ◦C de la température
et de 7 % en humidité relative de l’air. LA RMSE est de 1.3 m·s−1 dans les estimations de la
vitesse du vent, et de 114 W·m−2 pour le rayonnement visible (Quintana-Segúı et al., 2008). Il
est facilement prévisible que cette incertitude dans les données va influencer la sortie du modèle
EBsoil et, par conséquent, les estimations de la SEE. L’utilisation de données à grande échelle
tels que les données issues de la ré–analyse de l’ECMWF est très attrayant du point de vue d’une
application à l’échelle mondiale, mais ces données pourraient présenter de grandes incertitudes,
et par la suite, pourraient influencer les estimations de la SEE. Des données météorologiques à
haute résolution doivent être utilisées afin de tenir compte des hétérogénéités, qui peuvent être
obtenus par une interpolation de mesures in situ à une variété de résolutions spatiales, ou par
l’analyse de la surface atmosphérique à la résolution de la grille atmosphérique du modèle.

En outre, l’application de l’algorithme original DISPATCH est limitée par la nature con-
textuelle de la modélisation de la SEE en fonction de la LST (provenant exclusivement de
l’imagerie par satellite). En particulier, DISPATCH fonctionne bien dans les zones semi–arides, à
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condition que les limites sèches et humides de la LST puissent être observées. Ce qui signifie que
son application est limitée dans le désert et les zones pluviales, où l’une des deux limites ne peut
être capturée en utilisant des données à une résolution moyenne (∼ 1 km). Dans ce contexte,
le nouvel algorithme DISPATCH–E pourrait être implémenté dans ces zones puisque les limita-
tions concernant les limites humides et sèches n’existent pas lors de l’utilisation d’un modèle de
bilan d’énergie. Par exemple, le projet SMELLS (Soil Moisture for dEsert Locust earLy Survey,
http://smells.isardsat.com/) est un projet Innovateurs-III financé par l’ESA pour dévelop-
per des produits et des services innovants d’observation de la Terre en réponse aux exigences des
organisations utilisatrices. Il étudie l’utilisation de l’humidité du sol afin de prévenir les déplace-
ments du criquet pèlerin en Afrique. Le criquet pèlerin est lié à plusieurs variétés des pestes. Elles
pourraient ainsi être anticipées en utilisant des produits de l’humidité du sol à haute résolution.
Le projet vise à développer une approche innovante qui combine des données SAR de Sentinel–1
avec des données désagrégées de l’humidité du sol SMOS (dérivées de DISPATCH) pour dériver
un produit SM à haute résolution spatio–temporelle. Ceci dans le but de fournir un nouvel outil
au système de prévention du criquet pèlerin. Comme la zone d’étude couvre l’Afrique de l’Ouest
et du Nord, qui sont principalement des zones désertiques, l’utilisation du produit DISPATCH
SM s’en trouve limité. Ceci s’explique par la limite humide de l’espace LST - couvert végétal
estimée à partir des données satellitaires étant surestimée. DISPATCH–E pourrait fournir de
meilleures estimations SM désagrégées, car il estime les limites indépendamment des données de
télédétection.

De plus, parce que DISPATCH–E estime les températures extrêmes indépendamment des don-
nées MODIS, on pourrait déterminer la sensibilité de la LST à la SM en quantifiant l’incertitude
de DISPATCH–E dans des conditions météorologiques/climatiques données. Cela est essentiel
en raison de l’assimilation des données SM désagrégées dans les modèles de surface (Merlin et al.,
2006b; Bandara et al., 2015; Dumedah et al., 2015). Tout progrès dans les modèles de la SEE
basés sur la LST favoriserait d’autres développements de DISPATCH–E et des améliorations
associées dans les produits d’humidité du sol raffinés.

Enfin, un autre aspect sur lequel il est possible de se concentrer est l’impact de la texture du
sol sur la SEE. Grâce à une caractérisation des propriétés hydrodynamiques du sol, il est possible
d’étudier l’impact de la variabilité du sol sur les sorties de DISPATCH–E. Le modèle récemment
développé dans Merlin et al. (2016) présente un modèle de la SEE qui est étroitement liée à la
texture du sol. Il a été testé pour les capacités de régionalisation en utilisant une paramétrisation
en fonction de pourcentages d’argile et de sable. En outre, le modèle pourrait être étalonné à
l’aide des données de télédétection thermiques et micro–ondes. Ce modèle pourrait être inclus
à basse résolution dans DISPATCH–E: soit en utilisant les cartes existantes de la texture du sol
ou en inversant les pourcentages d’argile et de sable provenant de données observées (SMOS et
MODIS). Grâce à la relation significative trouvée entre le comportement fortement non linéaire
de la SEE en fonction de la SM et la texture du sol, une approche consistant à dériver la
texture du sol à partir des données de télédétection multi–capteurs/multi–spectrale pourrait être
développée.

2. Un couplage entre DISPATCH–E et les modèles de l’ET incluant les composants sol/végétation

En combinant les données multiples (météorologiques et de télédétection), il est possible
d’améliorer la représentation spatiale de l’ET à des échelles multiples. En particulier, DISPATCH–
E a le potentiel d’être appliqué à d’autres données satellitaires: radiomètres en bande C (AMSR–
E, AMSR–2), diffusiomètres (ASCAT) et capteurs thermiques tels que LANDSAT. Même si l’on
peut soutenir que les données désagrégées sont moins fiables que les données observées à haute
résolution, en tenant compte des limitations actuelles en ce qui concerne la résolution grossière
des produits SM, la désagrégation permet d’étendre les applications des données de télédétec-
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tion actuellement disponibles. En effet, des approches multi–spectrales permettent de tester
la complémentarité des données multi–source avant que ces données soient disponibles à haute
résolution.

Un élément principal à prendre en compte est la partition de l’ET dans E et T. Des estima-
tions à partir de la télédétection de la SEE basée sur la LST et sur la SM micro–onde seraient
cruciales pour mieux contraindre la partition de l’ET dérivée de la LST dans l’évaporation du
sol et la transpiration des plantes (Merlin et al., 2014), qui est la clé pour une meilleure ges-
tion des ressources en eau sur les zones semi–arides. En théorie, la combinaison des données
LST et SM devraient permettre le découplage sur les pixels mixtes à travers DISPATCH–E.
Cela pourrait également permettre la calibration des paramètres semi–empiriques de l’E par des
moyens de télédétection. Les données NDVI des capteurs visible et proche infrarouge ont été
largement utilisées pour estimer l’ET sur les surfaces couvertes par la végétation, et non unique-
ment pour des sols nus ou partiellement couverts (Allen et al., 1998). Les méthodes basées
sur l’infrarouge thermique ne permettent pas une partition complète entre E et T sur les pixels
mixtes lorsqu’on utilise seulement des données visibles/proche–infrarouge et la LST. En effet,
apparâıt dans ce cas une équifinalité entre les taux d’E et de T et la LST intégrée à l’échelle
du pixel. Une solution pour résoudre ce problème d’équifinalité serait d’introduire des données
supplémentaires concernant la SEE dérivée des données à micro–ondes. Des approches combi-
nant les données infrarouges thermiques et micro–ondes ont un grand potentiel pour limiter le
processus d’E (Chanzy et al., 1995; Li et al., 2006). La combinaison de données LST et SM
permettraient i) le partitionnement ET sur les pixels mixtes et ii) l’étalonnage de paramètres
semi–empiriques à partir des données de télédétection. Les produits dérivés d’E/T pourraient
être validés avec des mesures in situ dérivées. En particulier, l’ET issue de l’eddy covariance
et/ou de mesures lysimétriques pourraient être partitionné en mesures d’E et de T en utilisant la
méthode statistique basée sur l’échantillonnage de distribution marginale (marginal distribution
sampling) - MDS (Béziat et al., 2009). Les mesures de transpiration pourraient également être
prises séparément, à l’aide d’un système de sapflow, et ainsi être utilisées pour valider la méthode
MDS. De plus, on pourrait imaginer une façon de dériver des mesures in situ de la SEE. Pour
cela, il faudrait des mesures de l’évaporation potentielle. Cela peut être mesurée indirectement,
en utilisant des facteurs climatiques. De manière générale, une valeur peut être calculée à partir
d’une station climatique de proximité, sur une surface de référence, qui peut ensuite être con-
vertie en un potentiel d’évaporation en la multipliant par un coefficient de surface. Une fois les
mesures de l’évaporation et de l’évaporation potentielle disponibles, il est possible de dériver la
SEE comme le rapport entre les deux. Cela pourrait aider à valider directement les produits
SEE récupérés grâce à la télédétection, à une gamme d’échelles.

DISPATCH–E a donc un réel potentiel de découplage de l’ET dans ses deux principales com-
posantes. Il pourrait fournir une mesure de l’amélioration de la modélisation de la SEE sur
les estimations de la SM et réciproquement, l’amélioration des produits SM sur la représenta-
tion multi–échelle de l’E. On pourrait imaginer la possibilité d’en tirer des produits d’E par
DISPATCH–E, qui serait une première, car il n’y a actuellement aucun algorithme de télédétec-
tion dédié au suivi de ce flux.

191





Annex

193



RESEARCH ARTICLE
10.1002/2015WR018233

Modeling soil evaporation efficiency in a range of soil and
atmospheric conditions using a meta-analysis approach
O. Merlin1,2, V. G. Stefan1, A. Amazirh2, A. Chanzy3, E. Ceschia1, S. Er-Raki2, P. Gentine4, T. Tallec1,
J. Ezzahar2, S. Bircher1, J. Beringer5, and S. Khabba2

1CESBIO, Universit�e de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France, 2Facult�e des Sciences et Techniques, University
of Cadi Ayyad, Marrakech, Morocco, 3EMMAH, INRA, Universit�e d’Avignon et des Pays de Vaucluse, 84000, Avignon,
France, 4Department of Earth and Environmental Engineering, Columbia University, New York City, New York, USA,
5School of Earth and Environment, University of Western Australia, Perth, Australia

Abstract A meta-analysis data-driven approach is developed to represent the soil evaporative efficiency
(SEE) defined as the ratio of actual to potential soil evaporation. The new model is tested across a bare soil
database composed of more than 30 sites around the world, a clay fraction range of 0.02–0.56, a sand frac-
tion range of 0.05–0.92, and about 30,000 acquisition times. SEE is modeled using a soil resistance (rss) for-
mulation based on surface soil moisture (h) and two resistance parameters rss;ref and hefolding. The data-
driven approach aims to express both parameters as a function of observable data including meteorological
forcing, cut-off soil moisture value h1=2 at which SEE50.5, and first derivative of SEE at h1=2, named Dh21

1=2.
An analytical relationship between ðrss;ref ; hefoldingÞ and ðh1=2; Dh21

1=2Þ is first built by running a soil energy bal-
ance model for two extreme conditions with rss 5 0 and rss � 1 using meteorological forcing solely, and by
approaching the middle point from the two (wet and dry) reference points. Two different methods are then
investigated to estimate the pair ðh1=2; Dh21

1=2Þ either from the time series of SEE and h observations for a
given site, or using the soil texture information for all sites. The first method is based on an algorithm specif-
ically designed to accomodate for strongly nonlinear SEEðhÞ relationships and potentially large random
deviations of observed SEE from the mean observed SEEðhÞ. The second method parameterizes h1=2 as a
multi-linear regression of clay and sand percentages, and sets Dh21

1=2 to a constant mean value for all sites.
The new model significantly outperformed the evaporation modules of ISBA (Interaction Sol-Biosphère-
Atmosphère), H-TESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land), and CLM (Com-
munity Land Model). It has potential for integration in various land-surface schemes, and real calibration
capabilities using combined thermal and microwave remote sensing data.

1. Introduction

Evaporation accounts for approximately 20–40% of the global evapotranspiration [Lawrence et al., 2007; Schle-
singer and Jasechko, 2014] and originates mainly (65%) from soils rather than surface waters [Good et al., 2015].
As an important boundary condition between the soil and atmosphere, soil evaporation is explicitly repre-
sented in a range of agronomic, hydrological, meteorological and climate models at multiple scales: from the
crop field [e.g., Allen, 2000], to the catchment [e.g., Wood et al., 1992] and to the mesoscale [e.g., Sakaguchi and
Zeng, 2009]. Accurate estimations of soil evaporation are notably needed to quantify the partitioning of evapo-
transpiration into soil evaporation and plant evaporation and transpiration [Williams et al., 2004; Kool et al.,
2014]. Such partitioning is fundamental to monitor vegetation water uptake and stress [Porporato et al., 2001;
Er-Raki et al., 2010] within an environment of scarse water resources, and to better understand land-
atmosphere interactions [Feddes et al., 2001; Er-Raki et al., 2010]. This is especially true in sparsely vegetated
areas such as arid and semi-arid regions, and agricultural fields during bare or partially covered soil periods.

The evaporation of unsaturated soils is a complex process due to the coupling of the energy and mass
transfers at the soil-atmosphere interface, which involves liquid and vapor transport in the near-surface soil
pores, incident solar energy for phase change, and vapor transfer across the boundary layer [Philip and de
Vries, 1957; Milly, 1984; Chanzy and Bruckler, 1993; Bittelli et al., 2008; Smits et al., 2012; Or et al., 2013]. The
soil control on evaporation originates from two main processes: the difference in water vapor concentra-
tions (Cw) between the evaporative surface and atmosphere, and the soil vapor diffusion when the
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evaporative sources are located below the soil surface. The vapor diffusion depends on the depth, degree of
saturation and temperature of the evaporative site. Comprehensive physical models as those based on Philip
and de Vries equations can represent both temperature and water potential gradients as well as vapor diffu-
sion. Such models are driven by standard climatic conditions but are, however, very sensitive to soil hydraulic
properties (SHPs), initialization and bottom boundary conditions [Chanzy et al., 2008]. These characteristics
hamper the implementation of comprehensive models to represent large areas, as it requires numerous simu-
lation units and the capability of characterizing soil parameters in every unit. The most common alternative is
to use evaporation models related to the surface soil moisture. Considering the physical processes mentioned
above, soil moisture is only a proxy of the soil quantities that control the evaporation rate. For instance, we
have to consider all evaporation sites -which may be located at different levels in the soil- as well as the water
potential/water content relationships. These properties are linked to the soil surface wetness but can also be
governed by other factors such as the climatic demand or the soil surface structure. Moreover the thickness of
the layer considered to characterize moisture has also an impact on the evaporation models’ parameters.

There are numerous evaporation models that are based on soil moisture. They all try to represent the limita-
tion of evaporation by soil moisture (water) and evaporative demand, generally using empirical or semi-
empirical approaches [Viterbo and Beljaars, 1995; Pitman, 2003]. Historically, the evaporation module of the
so-called Bucket model [Manabe, 1969; Robock et al., 1995] has been:

SEE5h=hc (1)

with SEE being the soil evaporative efficiency defined as the actual to potential soil evaporation ratio, h (m3

m23) the surface soil moisture, and hc (m3 m23) a parameter equal to 0.75 times the soil moisture at field
capacity. Since the development of the Bucket model, various attempts have been made to improve the
above representation, notably by separating soil and vegetation components using dual-source formula-
tions [Shuttleworth and Wallace, 1985]. Soil evaporation is now typically modeled using one of the four fol-
lowing methods, namely the soil surface resistance (rss) formulation:

LEðrssÞ5
qCP

c
3

esatðTÞ2ea

rah1rss
(2)

the a formulation:

LEðaÞ5 qCP

c
3

aesatðTÞ2ea

rah
(3)

the b formulation:

LEðbÞ5b3
qCP

c
3

esatðTÞ2ea

rah
(4)

or the threshold (LEmax) formulation:

LEðLEmaxÞ5min ðLEp; LEmaxÞ (5)

with LE (W m22) being the soil latent heat flux, rss (s m21) the resistance to the diffusion of vapor in large
soil pores, a a factor (typically ranging from 0 to 1) that scales the saturated vapor pressure down to the
actual vapor pressure at the soil surface, b a factor (typically ranging from 0 to 1) that scales potential evap-
oration down to actual evaporation, q (kg m23) the density of air, CP (J kg21 K21) the specific heat capacity
of air, c (Pa K21) the psychrometric constant, esatðTÞ (Pa) the saturated vapor pressure at the soil surface,
T (K) the soil surface temperature, ea (Pa) the vapor pressure of air, rah (s m21) the aerodynamic resistance
to heat transfer, LEp (W m22) the potential soil evaporation, and LEmax (W m22) the maximum soil-limited
water flux from below the surface. Depending on the authors, the threshold method is also called demand-
supply or Priestley-Taylor method and LEp is estimated using the aerodynamic, Penman, or Priestley-Taylor
methods. The LEmax formulation is equivalent to the b formulation if LEmax is parameterized as a fraction of
LEp. Note that LE can also be modeled by combining both rss and a formulations:

LEðrss; aÞ5
qCP

c
3

aesatðTÞ2ea

rah1rss
; (6)
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or both b and a formulations:

LEðb; aÞ5b3
qCP

c
3

aesatðTÞ2ea

rah
: (7)

Comprehensive overview of the a, b, rss, and LEmax methods can be found in Mahfouf and Noilhan [1991],
Lee and Pielke [1992], Ye and Pielke [1993], Mihailovic et al. [1995], Dekic et al. [1995] and Cahill et al. [1999].
The form of a, b, rss or LEmax is obtained either physically or empirically. Physically based expressions are
derived from thermodynamical considerations [Philip and de Vries, 1957] or by simplifying the Fick’s law of
diffusion [e.g., Dickinson et al., 1986; Wetzel and Chang, 1988; Sakaguchi and Zeng, 2009]. All of them simplify
the physics underlying the evaporation process and require some empirism to overcome the assumptions.
For instance, simplifications of the theoretical diffusion equation require some empirical parameters in addi-
tion to SHPs [Sakaguchi and Zeng, 2009]. Empirical models are based on ad hoc expressions [e.g., Manabe,
1969; Noilhan and Planton, 1989] or curve fitting using limited experimental data [e.g., Sun, 1982; Sellers
et al., 1992]. Although many different formulations have been developed since the 60’s, there is still no con-
sensus on the best way to parameterize evaporation over large areas [Desborough et al., 1996; Sakaguchi
and Zeng, 2009]. Nevertheless the literature has indicated that (1) existing h-based formulations differ in
four main aspects: the h lower and upper threshold values, the nonlinearity of the relationship between
evaporation and h, the required input data other than h, and the sensing depth of h data, (2) simple empiri-
cal expressions may provide better evaporation simulations than physically derived formulations [Dekic
et al., 1995; Mihailovic et al., 1995; Yang et al., 1998], (3) the b formulation seems to be more robust than the
a one [Cahill et al., 1999; Van den Hurk et al., 2000], and (4) very little work has been done to evaluate the
above formulations with observations over a range of soil and atmospheric conditions.

Phenomenological models are distinct from the above simplified models because they are not derived from
theory and they are not built on ad hoc assumptions. Phenomenological models are based on observational
data rather than theoretical considerations [Sivapalan et al., 2003], but they provide a physical or semi-
physical interpretation of model parameters. Komatsu [2003] made a first attempt to relate an experimental
parameter to soil texture and aerodynamic conditions. However, their study was based on a surface layer of
several millimeters, which is much thinner than the top soil thickness (typically several cm) represented by
most land-surface models. Moreover, one major difficulty in parameterizing SEE with sufficient generality is
the drying (usually around noon) of the top few millimeters of soil which inhibits evaporation, regardless of
the availability of soil water underneath [Mahrt and Pan, 1984; Dickinson et al., 1986; Soarès et al., 1988;
Wetzel and Chang, 1988; Van de Griend and Owe, 1994; Heitman et al., 2008; Shahraeeni et al., 2012]. This was
the rationale for developing a new SEE formulation with a shape that adapts to the depth of h measure-
ments. The study in Merlin et al. [2011] provides an insight into ways of taking into account the soil moisture
gradient in the topsoil using a simple parameterization as a function of potential evaporation. Their SEE
model was evaluated at the daily time scale at two sites located in the same area (southwestern France).

In the vein of Komatsu [2003] and Merlin et al. [2011], this paper aims to develop a formulation of quasi-
instantaneous SEE that builds upon a multi-site data set including a range of soil and atmospheric condi-
tions. This study notably takes advantage of local, regional and global monitoring networks (e.g., AmeriFlux,
European Flux Database), which allow to improve models. A new evaporation model is evaluated in terms
of SEE estimates over the wide soil texture range observed within the multi-site data set, and is compared
with the evaporation modules of three reference land-surface schemes: ISBA (Interaction Sol-Biosphère-
Atmosphère) [Noilhan and Planton, 1989], CLM (Community Land Model) [Oleson et al., 2013], and H-TESSEL
(Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land) [ECMWF, 2014]. Note that all evaporation
modules are implemented in the same energy budget model, using the same forcing data, to ensure that
the four models are run in identical conditions.

2. Sites and Data Description

The data set comprises 34 sites distributed in 13 countries (see Table 1). Those sites were or have been
developed in the frame of national and international flux station networks (AmeriFlux, FluxNet, European
Flux Database, OzNet), long term observatories such as AMMA (African Monsoon Multidisciplinary Analysis),
HOBE (Danish Hydrological Observatory) and SudMed (South Mediterranean Observatory), or short term
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intensive field campaigns such as EFEDA (Echival Field Experiment in a Desertification Threatened Area), ReSeDa
(Remote Sensing Data Assimilation), Yaqui’08, HAPEX-Sahel (Hydrology-Atmosphere Pilot Experiment), IHOP
(International H2O Project), Monsoon’90 and the Southern Great Plains 1997 (SGP’97) experiment (references
are provided in Table 1). Among the 34 sites, 26 are located in agricultural fields (BELon, CHOe2, DEGeb, DEKli,
DESeh, DKVou, ESEFE, ESES2, FRAur, FRAvi, FRGri, FRLam, FRRe1, FRRe2, IECa1, ITBCi, ITCas, ITRo4, MOSR1,
MOSR2, MEYaq, NIMil, USArm, USIb1, USIHO, USSGP) and the rest over uncropped lands. The natural lands
include sand desert (NIHAP), savanna fallow (NISav) and degraded land (NIDeg) in Niger, native grass in Australia
(AUStu), grass for silage or hay in the USA (USDk1), short grass following fireforest in the USA (USFwf), and
sparse shrub in the USA (USMo1 and USMo7). As indicated in Table 1, the study sites cover a large range of sur-
face conditions, with sand and clay fractions ranging from 0.05 to 0.92 and from 0.02 to 0.56, respectively.

The data collected at the above-selected sites contain sand and clay fractions, and the following surface var-
iables measured at the hourly or subhourly time scale: near-surface soil moisture h, latent heat flux LE, sensi-
ble heat flux H, net radiation Rn, ground conduction G, and meteorological forcing composed of air
temperature Ta, wind speed ua, solar radiation Rg and air relative humidity ha at a reference height (typically
2 m). For the sites where a direct measurement of LE is unavailable, latent heat flux is estimated as the resid-
ual of the energy balance equation. For the sites where the four flux components (LE, H, Rn, G) are available,
H and LE are systematically corrected using the Bowen ratio method [Twine et al., 2000]. Note that h is gen-
erally measured at around 5 cm depth but it is located at a shallower or deeper depth at few sites (see Table
1). The ‘‘observed’’ SEE is derived from the ratio of observed evaporation to the potential evaporation,
defined as the evaporation based on equation (2) with no surface resistance (rss 5 0) but using other
observed variables (Rn,G,Ta,ua,ha).

One key aspect in this analysis is the identification of the periods when the sites can be considered as under
‘‘bare soil’’ conditions. In this study, a ‘‘bare soil’’ period is defined as a period of time when the plant transpi-
ration is either negligible or small compared to soil evaporation. Hence the term ‘‘bare soil’’ includes both

Table 1. Flux Sites Including One or Several ‘‘Bare Soil’’ Periods

Site Exp./Net. Lat;lon Land cover h (cm) fclay fsand Reference

AUStu OzFlux 217.15;133.35 grass 5 0.145 0.343 Beringer et al. [2011]
BELon GHGEurope 50.55;4.74 crop 5 0.20 0.075 Papale et al. [2006]
CHOe2 GHGEurope 47.29;7.73 crop 5 0.43 0.095 Alaoui and Goetz [2008]
DEGeb GHGEurope 51.10;10.91 crop 5 0.30 0.095 Kutsch et al. [2010]
DEKli GHGEurope 50.89;13.52 crop 5 0.557 0.215 Kindler et al. [2011]
DESeh GHGEurope 50.87;6.45 crop 5 0.122 0.168 Papale et al. [2006]
DKVou HOBE 56.04;9.16 crop 2.5 0.02 0.92 Bircher et al. [2012]
ESEFE EFEDA 39.07; 22.11 bare 10 0.20 0.19 Braud et al. [1993]
ESES2 GHGEurope 39.28; 20.32 crop 5 0.475 0.104 Kutsch et al. [2010]
FRAur GHGEurope 43.55;1.11 crop 5 0.323 0.206 B�eziat et al. [2009]
FRAvi GHGEurope 43.92;4.88 crop 5 0.328 0.132 Garrigues et al. [2015]
FRGri GHGEurope 48.84;1.95 crop 5 0.189 0.098 Van den Hoof et al. [2011]
FRLam GHGEurope 43.50;1.24 crop 5 0.543 0.12 B�eziat et al. [2009]
FRRe1 ReSeDa 43.79;4.74 crop 2.5 0.40 0.05 Olioso et al. [2002]
FRRe2 ReSeDa 43.79;4.74 crop 2.5 0.40 0.05 Olioso et al. [2002]
IECa1 GHGEurope 52.86; 26.92 crop 5 0.17 0.57 Walmsley et al. [2011]
ITBCi GHGEurope 40.52;14.96 crop 5 0.46 0.32 Denef et al. [2013]
ITCas GHGEurope 45.20;9.67 crop 5 0.22 0.25 Denef et al. [2013]
ITRo4 GHGEurope 42.37;11.92 crop 5 0.382 0.301 Marchesini et al. [2008]
MEYaq Yaqui’08 27.27; 2109.88 crop 5 0.44 0.36 Chirouze et al. [2014]
MOSR1 SudMed 31.67; 27.59 crop 5 0.47 0.185 Er-Raki et al. [2007]
MOSR2 SudMed 31.67; 27.61 crop 5 0.47 0.185 Jarlan et al. [2015]
NIDeg AMMA 13.65;2.64 bare 10 0.08 0.77 Pellarin et al. [2009]
NIHAP HAPEX 2.24;13.20 bare 5 0.057 0.93 Wallace et al. [1993]
NIMil AMMA 13.64;2.63 crop 10 0.08 0.77 Pellarin et al. [2009]
NISav AMMA 13.65;2.63 fallow 10 0.08 0.77 Pellarin et al. [2009]
USArm AmeriFlux 36.61; 297.49 crop 5 0.43 0.28 Fischer et al. [2007]
USDk1 AmeriFlux 35.97; 279.09 grass 10 0.09 0.48 Novick et al. [2004]
USFwf AmeriFlux 35.45; 2111.77 grass 2 0.13 0.30 Dore et al. [2012]
USIb1 AmeriFlux 41.86; 288.22 crop 2.5 0.35 0.10 Wu et al. [2012]
USIHO IHOP 36.47; 100.62 bare 5 0.28 0.58 Lemone et al. [2007]
USMo1 Monsoon’90 31.74; 2110.05 shrub 5 0.10 0.66 Santanello et al. [2007]
USMo7 Monsoon’90 31.72; 2110.01 shrub 5 0.06 0.80 Santanello et al. [2007]
USSGP SGP’97 35.54; 298.06 bare 5 0.24 0.26 Timmermans et al. [2007]
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actual bare soil conditions, and soils partially covered by mulch, crop residue, or sparse vegetation. Whereas
it is difficult to quantitatively assess the relative weight of evaporation and transpiration without any direct
measurement of the evaporation/transpiration partitioning [Wang et al., 2014], some indirect indicators can
be used like the Leaf Area Index (LAI), or in-field knowledge of agricultural practices like sowing, tillage and
harvest. The bare soil periods were extracted with as much accuracy as possible.

Several sites (ESEFE, NIHAP, USIHO, USSGP) have been monitored under real bare soil conditions in the
frame of short-term intensive field campaigns. Most of the sites though are equipped with long-term flux
stations located in agricultural fields for which the sowing, tillage and harvest dates have been recorded
across one or several growing seasons. Precise and multiannual field work information are available for 14
sites of the European flux database and 3 sites of the Ameriflux database (including all the other variables
required in this analysis). In practice, the soil is assumed to be approximately bare during 20 days after each
tillage, sowing or harvest date. In this paper, no distinction is made between the bare soil periods following
tillage, sowing and harvest. Such additional information might be used in future studies to help separate
the effect of soil roughness (after tillage) and the presence of crop residue (after harvest) on the soil evapo-
ration process. Different strategies have been adopted regarding the uncropped lands. The grassland site
AUStu is assumed to be bare when the satellite-derived vegetation index is minimum. The savanna fallow
NISav is assumed to be bare from the beginning of the Niger 2006 experiment until grass started growing
following the first monsoon rainfall events. The grassland site USDk1 is assumed to be bare during 20 days
after the annual or biannual harvest date. The sparsely vegetated grassland USFwf, the degraded land
NIDeg, and shrublands USMo1 and USMo7 are assumed to be approximately bare at all time (when flux
measurements are available).

3. Three Common Evaporation Models

The evaporation modules of three common land-surface schemes are described below. The soil evaporation
module of H-TESSEL was recently updated in Albergel et al. [2012]. The soil resistance is expressed as:

rss5
hfc2hres

h2hres
3rss;min for h > hres (8)

with rss;min (s m21) being the minimum soil resistance (set to 50 s m21) [ECMWF, 2014], hfc (m3 m23) the soil
moisture at field capacity, and hres (m3 m23) the residual soil moisture.

The soil evaporation module of ISBA is based on the a method [Noilhan and Planton, 1989]. It represents the
nonlinear behavior of a as:

a5
0:520:5cos ðph=hfcÞ; if h � hfc

1; if h > hfc

(
(9)

Regarding CLM, the soil evaporation module of the former version 3.5 [Oleson et al., 2007] was based on
both a and rss methods as in equation (6). The water activity a was obtained using the Kelvin equation
[Philip and de Vries, 1957]:

a5exp ½wg=ð13103Rwv TÞ� (10)

with g (m s22) being the gravitational constant, Rwv (J kg21 K21) the gas constant for water vapor, and w
(mm) the soil water matric potential of the surface soil layer computed as:

w5wsat3ðh=hsatÞ2bCH (11)

with wsat (mm) being the air entry pressure, hsat (m3 m23) the soil moisture at saturation, and bCH the Clapp
and Hornberger parameter [Clapp and Hornberger, 1978]. rss was derived from Passerat de Silans [1986] and
Sellers et al. [1992]:

rss5exp ðA2B h=hfcÞ (12)

with A and B being two best-fit parameters estimated as 8.206 and 4.255 respectively using FIFE’87 meas-
urements in Sellers et al. [1992]. Despite its empirical nature, the modeling approach of Passerat de Silans
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[1986] has been widely used in land-surface models [Sellers et al., 1992, 1996; Kustas et al., 1998; Vidale and
St€ockli, 2005; Gentine et al., 2007; Crow et al., 2008; Oleson et al., 2008; St€ockli et al., 2008]. The rss formulation
in equation (12) is referred to as S92 in the following.

The soil evaporation module of the last (4.5) CLM version [Oleson et al., 2013] combines both a and b meth-
ods as in equation (7). a is estimated as in equation (10) and b is expressed as in Lee and Pielke [1992]:

b5
½0:520:5cos ðph=hfcÞ�2; if h � hfc

1; if h > hfcif aesatðTÞ < ea

(
(13)

The pedotransfer functions (PTFs) used to estimate hfc, hres, wsat, hsat, and bCH from sand and clay fractions
are presented in Appendix A.

4. A Downward Modeling Approach of SEE

The rationale for choosing to model SEE instead of soil evaporation directly is that SEE, as a normalized vari-
able, helps disentangle the two main factors controlling soil evaporation: evaporative demand (or LEp) and
soil water availability. In particular, the SEE fosters the decoupling between the evaporation cycles associ-
ated with (1) the diurnal, seasonal and climatic variations of LEp and (2) the variations of soil water availabil-
ity due to natural (rainfall) and/or man-induced (irrigation) precipitations. Note that the formulation in SEE
only partly decouples the effect of soil water availability and LEp since the soil moisture profile changes
with LEp [Merlin et al., 2011], and LE and LEp are generally coupled (e.g., see complementary relationship in
Lintner et al. 2015]. Moreover, the advective part also contributes to SEE due to the drop in temperature
that reduces Cw at the evaporative surface [Chanzy and Bruckler, 1993]. Nonetheless, the normalization of
actual evaporation by the evaporative demand removes the first order effect of LEp on LE, and sets SEE to
lie between �0 and 1. The limits are theoretically reached when soil water availability is respectively negligi-
ble (h5hres; SEE � 0) and maximum (h5hsat; SEE51) regardless of the atmospheric evaporative demand.
Soil evaporation can then be estimated by multiplying the modeled SEE by LEp, which is derived from
meteorological data solely.

Another significant advantage of the formulation in SEE is the strong link with remote sensing variables
available in the thermal and microwave frequencies. In particular, the SEE-based representation of evapora-
tion is fully consistent with both the thermal-derived T normalized by wet/dry T endmembers [e.g., Nishida
et al., 2003; Stefan et al., 2015], and the h retrieved from microwave data [e.g., Pr�evot et al., 1984; Simmonds
and Burke, 1999; Zribi et al., 2011].

A new SEE model is developed based on a downward (data-driven) approach. The downward modeling
approach aims to minimize the number of model parameters while ensuring a sufficient flexibility of the
SEE formulation to cover a large range of soil and atmospheric conditions. In practice, the step-wise proce-
dure below is followed:

1. SEE is expressed based on equation (12), as a function of two parameters noted rss;ref 5exp ðAÞ and
hefolding5hfc=B,

2. rss;ref and hefolding are analytically expressed as a function of meteorological conditions, and of two obser-
vational parameters namely the cut-off soil moisture value h1=2 (m3m23) at which SEE50.5, and the first
derivative noted Dh21

1=2 (m3m23) of SEE at h1=2,
3. SEE is assumed to be a unique function of h, h1=2 and Dh21

1=2. The variabilities of SEE attributed to factors
other than h (e.g., soil texture) are therefore contained in h1=2 and Dh21

1=2,
4. a retrieval procedure of h1=2 and Dh21

1=2 is proposed for a given time series of SEE and h data (the calibra-
tion period should include significant variability in h i.e., at least one drying sequence),

5. variabilities in h1=2 and Dh21
1=2 are interpreted in terms of soil and atmospheric conditions, which can be

characterized by the soil texture, soil roughness, presence of stubble or mulch at the soil surface, shrink-
age cracks, etc. In this study, a focus is made on a texture-based calibration of h1=2 and Dh21

1=2 because
sand and clay fractions are relatively easy to obtain and are generally available at the site level.

The input/output data sets and the main steps of the modeling, calibration and validation approaches are
presented in the diagram of Figure 1. An analytical relationship between ðrss;ref ; hefoldingÞ and ðh1=2; Dh21

1=2Þ is
first built by running a soil energy balance model for two extreme conditions with rss 5 0 and rss � 1 using

Water Resources Research 10.1002/2015WR018233

MERLIN ET AL. MODELING SOIL EVAPORATION EFFICIENCY 3668



meteorological forcing solely, and by approaching the middle point from the two (wet and dry) reference
points. Two methods are then investigated to estimate the pair ðh1=2; Dh21

1=2Þ. The first method (site-specific
calibration) is based on the time series of SEE and h data for a given site, while the second method (texture-
based calibration) parameterizes h1=2 and Dh21

1=2 as a function of the clay and/or sand fractions for all sites.
The associated equations, figures and tables are also indicated in the diagram for clarity. The model devel-
opment is described below, along with the underlying assumptions.

4.1. rss-Based SEE Model
The energy balance of physically based land-surface schemes is generally represented using a resistance
network. Therefore, the rss-based formulation is preferred, as it facilitates the integration of the SEE model
in the majority of existing land-surface models. SEE is hence written as:

SEE5
esatðTÞ2ea

esatðTwetÞ2ea
3

rah;wet

rss1rah
(14)

with Twet being the temperature of a water-saturated soil (corresponding to rss 5 0), and rah;wet the associ-
ated aerodynamic resistance to heat transfer. Note that in the prospect of integrating the above formulation
in a given land-surface model, equation (14) can be inverted to express rss as a function of modeled SEE.

In equation (14), the variability of SEE attributed to soil water availability (via h and the soil properties
including soil texture, structure, and roughness) is assumed to be contained in rss. In this study, the general
form of the S92 rss formulation is used:

rss5rss;ref exp ð2h=hefoldingÞ (15)

with rss;ref 5exp ðAÞ (s m21) being the asymptotic value of rss for h � 0, and hefolding5hfc=B (m3 m23) the soil
moisture value at which rss5rss;ref=e. The exponential form of equation (15) is convenient for analytically
expressing the derivatives of rss and SEE.

4.2. Linear Approximation of SEE at the Mid-Value
Many studies have documented the strongly nonlinear behavior of SEE as a function of h [e.g., Chanzy and
Bruckler, 1993; Komatsu, 2003; Merlin et al., 2011]. Modeling a nonlinear phenomenon is challenging because
small uncertainties in model parameterization may have a large impact on predictions. As an attempt to
approximate SEE over its full range ½021�, SEE is approached linearly at the mid-value (0.5). The linear

Figure 1. Overview of the modeling, calibration and validation approaches including input/output data sets and the main equations,
figures and tables.
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approximation of SEEðhÞ at SEE50:5 sets two constraints on the model. First, the soil moisture value at
which SEE50:5 is noted h1=2:

SEEðh1=2Þ50:5 (16)

Second, the first derivative of SEE at h1=2 is set to the slope (Dh21
1=2) of the linear regression between SEE and

h observations: �
@SEE
@h

�
ðh1=2Þ5Dh21

1=2 (17)

The combination of the above two equations allows to estimate both rss;ref and hefolding parameters given a
time series of SEE and h observations (described in the following section). As an illustration of the approxi-
mation approach, Figure 2 plots the SEE simulated by the model in Merlin et al. [2011] as a function of h for
two different sets of parameters. In Merlin et al. [2011], SEE was written as:

SEE5
½0:520:5cos ðph=hsatÞ�P; if h � hsat

1; if h > hsat

(
(18)

with P being a semi-empirical parameter expressed as a function of the soil moisture sensing depth (L) and
LEp. The phenomenological expression in equation (18) is based on the observation that both L and LEp
have an equivalent impact on SEE, meaning that (1) SEE is controlled by the soil moisture profile within the
soil thickness L and (2) the soil moisture profile is affected by both L and LEp. This is consistent with the
recent study of Brutsaert [2014] who described the daily water flow in the soil profile by considering the soil
as an infinite domain during stage 1, and a layer of constant thickness whose lower boundary is a zero-flux
plane during stage 2. The decrease of SEE with increasing LEp is generally related to the formation of a dry
surface layer above the evaporative front [Fritton et al., 1967; Yamanaka et al., 1998], modifying the soil
moisture profile within the soil sensing depth. Figure 2 plots the SEE simulated with ðP1; hsat;1Þ5ð1; 0:40Þ
and ðP2; hsat;2Þ5ð4; 0:45Þ. One observes that h1=2 and Dh21

1=2 are different in both cases. The modeling strat-
egy aims to represent the nonlinear behavior of SEE within the full SEE range from h1=2 and Dh21

1=2 parame-
ters, and the exponential formulation in equation (15).

4.3. Analytical Expressions of rss;ref and hefolding

Parameters rss;ref and hefolding in equation (15) are analytically expressed as a function of h1=2; Dh21
1=2, soil tem-

perature (Twet and T1=2) and aerodynamic resistance (rah;wet and rah;1=2) values corresponding to rss 5 0 and
h5h1=2, respectively. A soil energy balance model [e.g., Norman et al., 1995; Merlin and Chehbouni, 2004] is
used to estimate both pairs ðTwet; rah;wetÞ and ðT1=2; rah;1=2Þ for a given meteorological forcing.

Briefly, rss;ref is derived by inverting equation (15):

rss;ref 5rss;1=2exp ðh1=2=hefoldingÞ (19)

with rss;1=2 being the soil resistance at h1=2 obtained by combining equations (14) and (16):

rss;1=252
esatðT1=2Þ2ea

esatðTwetÞ2ea
rah;wet2rah;1=2 (20)

hefolding is obtained by applying the first derivative at h5h1=2 to the soil energy balance equation:

hefolding5

rss;1=2

rss;1=21rah;1=2
ðesatðT1=2Þ2eaÞ1f ðh1=2Þ _esatðT1=2Þ

rss;1=21rah;1=2

rah;wet
ðesatðTwetÞ2eaÞ

3
1

Dh21
1=2

(21)

with _esat being the derivative of saturated vapor pressure with respect to T and f ðh1=2Þ expressed as:

f ðh1=2Þ52

rss;1=2rah;1=2

ðrss;1=21rah;1=2Þ2
ðesatðT1=2Þ2eaÞ

c1
rah;1=2

rss;1=21rah;1=2
_esatðT1=2Þ14 c

qCP
�rð12CGÞT 3

1=2rah;1=2
(22)
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with CG being the ratio of the
ground conduction to soil net
radiation. A presentation of the
soil energy balance model is pro-
vided in Appendix B and the ana-
lytical development of hefolding is
described in Appendix C.

4.4. Model Assumptions
In equations (20)–(22), a first guess
of T1=2 is given by:

T1=25ðTwet1TdryÞ=2 (23)

with Tdry being the T of a fully dry
soil (corresponding to rss � 1),
and a first guess of rah;1=2 is
given by:

rah;1=25rahðT1=2Þ (24)

with rahðT1=2Þ being the aerodynamic resistance estimated using the Richardson number (see equations
(B9) and (B11)) for atmospheric stability corrections at T5T1=2. Note that equations (23) and (24) are approx-
imations since an accurate determination of T1=2 and rah;1=2 would require an iterative process on rss;1=2 (and
rss;ref and hefolding), and thus multiple applications of the soil energy balance model. However, such approxi-
mations are considered to be valid at first order given that turbulent heat fluxes and surface temperatures
are near linearly related [e.g., Moran et al., 1994; Roerink et al., 2000; Merlin, 2013].

To assess the validity of the model assumptions, Figures 3b, 3e, and 3h compare the SEE simulated by the
S92 and new rss formulations as a function of observed h, for NIMil, FRAvi and FRLam data sets, respectively.
In general, the scatter in simulated SEE is reduced with the new formulation. This is consistent with the
assumed number (3) of degrees of freedom of the SEE model expressed as a function of h, h1=2 and Dh21

1=2

solely. Moreover, the behavior at around h5h1=2 of the SEE simulated using the new rss formulation is very
close to the mean regression defined by the pair ðh1=2;Dh21

1=2Þ. The linearity assumption SEEðTÞ implicitly
made in equation (23) can also be verified by investigating the relationship between simulated SEE and the
simulated temperature T normalized by Tdry and Twet:

Tnorm5
Tdry2T

Tdry2Twet
(25)

Figures 3c, 3f, and 3i plot simulated SEE versus simulated Tnorm for the S92 and new rss formulations sepa-
rately, and for NIMil, FRAvi and FRLam data sets, respectively. The physically based soil energy balance
model represents a quasi linear relationship between Tnorm and SEE for all three data sets, regardless the rss

formulation. Note that Tnorm slightly overestimates simulated SEE, especially at the mid values. This is due to
the impact of the dependence of rah on T2Ta (see equation (B11)) on modeled SEE. However, the mean
bias between Tnorm and simulated SEE is very small in all cases. The above verifications thus indicate that
the assumptions in equations (23) and (24) are deemed acceptable to approximate SEE at its mid value.

4.5. Retrieving h1=2 and Dh21
1=2 from SEE and h Data

An algorithm is proposed to retrieve both h1=2 and Dh21
1=2 from a given time series of SEE and h observations.

The retrieval of h1=2 and Dh21
1=2 is not a trivial task due to 1) the nonlinear behavior of SEEðhÞ, 2) uncertainties

in SEE and h observations, and 3) as mentioned before the possible impact of variability factors other than
h, such as the sensing depth of h measurements, soil moisture profile, soil roughness, presence of stubble
or mulch at the soil surface, shrinkage cracks, etc., which may significantly affect the observed relationship
between SEE and h. Nonetheless, the procedure described below is designed to provide a robust estimate
of h1=2 and Dh21

1=2 for strongly noised and nonlinear SEEðhÞ relationships.

Figure 2. The SEEðhÞ relationship is approximated at the midvalue (SEE50:5) by the tan-
gent defined by the pair ðh1=2;Dh21

1=2Þ, for two different scenarios 1 and 2.
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The main idea is to consider a regression between SEE and h around h5h1=2. A schematic representation
based on the AUStu data set is provided in Figure 4. First, the full SEE range ½021� is split into 20 0.05-wide
bins, and the SEE and h values falling into each SEE bin are averaged separately to provide a pair ðSEEk ; �hkÞ
per bin. Then, 10 regression segments are computed by joining the two points ðSEEk ; �hkÞ and ðSEEk110;

�hk110Þ for k51; . . .; 10. Next, the
slope (Dh21

1=2) of the mean regression
at around the mid-value (SEE50.5) is
estimated by taking the average of
the slope of the 10 distinct regression
segments, weighted by the number
of data points within each bin pair
(i.e., weights are computed as the
multiplication of the number of data
points within the two bins k and
k 1 10). Last, h1=2 is derived from D
h21

1=2 and the mean observed h. Note
that the average of multiple slopes is
more appropriate than using a single
slope centered on SEE50.5 as it
allows for a robust application to any
data set, including those with
observed h values mostly in the
lower or higher soil moisture range.

As an illustration, Figures 3a, 3d, and
3g plot observed SEE versus observed

Figure 3. (left) Observed SEE versus observed h, (middle) simulated SEE versus observed h, and (right) simulated SEE versus simulated
Tnorm, ranging from sandy to clayey soil conditions: (top) NIMil, (middle) FRAvi, and (bottom) FRLam data set.

Figure 4. Schematic representation of the retrieval of h1=2 and Dh21
1=2 from the

AUStu data set.
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h for NIMil, FRAvi and FRLam data sets respectively, ranging from sandy to clayey soil conditions. The retrieved
h1=2 and Dh21

1=2 significantly vary across the three sites.

5. Evaluation and Intercomparison of SEE Models

In this section, the SEE model based on the rssðh1=2;Dh21
1=2Þ formulation is evaluated using the bare soil data

collected at the 34 sites. First, h1=2 and Dh21
1=2 are retrieved for each data set, and the new rss formulation is

assessed using site-specific parameters. Second, a generic parameterization of ðh1=2;Dh21
1=2Þ is proposed as a

function of soil texture i.e., the clay and sand percentages. Third, the texture-based rss formulation is com-
pared with the PTFs of four common evaporation models in terms of SEE estimates. Note that only the data
with Rn2G > 100 W m22 and LEp> 100 W m22 are considered in this study to avoid large uncertainties in
SEE observations and to avoid energy limited conditions. The CG coefficient in equation (22) is set to the
minimum between 0.315 [Kustas et al., 1991] and the observed G to Rn ratio, and the CG values below 0.05
are set to 0.05 according to maximum and minimum values found in the literature [Su, 2002].

5.1. Site-Specific Calibration
The pair ðh1=2;Dh21

1=2Þ is retrieved using the algorithm described in section 4.5 for each site separately. To
assess the impact of a site-specific calibration of rss;ref and hefolding, SEE simulations are evaluated against
multi-site observations. Moreover, results are compared with the SEE simulated by the S92 rss formulation.
Figure 5 presents bar graphs of the root mean square difference (RMSD), mean bias (B), correlation coeffi-
cient (R) and slope of the linear regression (S) between simulated and observed SEE in both cases, and the
number of data samples for each site separately. The mean (weighted by the number of data samples per
site) RMSD is 0.27 instead of 0.34, the mean R is 0.52 instead of 0.43, the mean B is 0.03 instead of 0.24, and
the mean S is 0.70 instead of 0.37 for the calibrated new and S92 formulations, respectively. Statistics are
generally improved with the calibrated rss formulation. Especially, the mean bias is much reduced and the
slope of linear fit closer to 1. The strategy of approximating SEE at ðh1=2; 0:5Þ thus appears to be effective in
improving the representation of SEE over its full range. Note that a sensitivity analysis (not shown) revealed
that setting CG to a constant between 0.25 and 0.40 degrades the modeling results especially in terms of
correlation and slope of the linear regression between modeled and observed SEE.

When looking at individual sites in Figure 5, a degradation of RMSD, R and S can be observed. Notably the
statistics for CHOe2, ITBCi, and USIHO, and to a lesser extent for ESEFE and IECa1 indicate an increase of the
RMSD with the calibrated new (compared to S92) rss formulation. To help interpret those seemingly

Figure 5. Bar graph of the root mean square difference (RMSD), correlation coefficient (R), mean bias (B), and slope of the linear regression (S) between simulated and observed SEE for
the new rss with site-specific h1=2 and Dh21

1=2 parameters (black) and for the S92 rss (white). The number of data samples for each site is also illustrated.

Water Resources Research 10.1002/2015WR018233

MERLIN ET AL. MODELING SOIL EVAPORATION EFFICIENCY 3673



inconsistent results, Figure 6 presents bar graphs of the mean observed SEE (SEE), the standard deviation of
observed h (rh), the correlation coefficient between SEE and h observations (RSEE2h) and the number of data
samples (n) for each site separately. The correlation coefficient between SEE and h observations is poor with
0.14, 20.09, and 0.27 for CHOe2, ITBCi, and USIHO respectively, while the mean RSEE2h for all sites is esti-
mated as 0.46. In addition rh for ESEFE and IECa1 is very small (0.01) as compared with the mean rh (0.05)
for all sites, and the SEE for ESEFE, IECa1 and USIHO (0.29, 0.10 and 0.24 respectively) is relatively far from
the SEE mid value, as compared with the mean SEE (0.48) for all sites. Hence the poorer SEE statistics for
CHOe2, ESEFE, IECa1, ITBCi and USIHO are probably attributed to the limited range of soil moisture and
atmospheric conditions present in the respective data sets. A lack of variability in the surface conditions
encountered in the input data set weakens the robustness of the retrieval approach.

Figure 7 plots the SEE simulated using the site-specific ðh1=2;Dh21
1=2Þ as a function of observed SEE for differ-

ent ranges of clay fractions separately. When comparing the RMSD, R, B and S for each clay fraction range,
one observes that the performance of the SEE model is superior for low clay contents (fclay < 0:20) than for
relatively high clay content (fclay � 0:30). The effect is especially reflected in R and S, which both are about

Figure 6. Bar graph of the mean observed SEE (SEE), standard deviation of observed h (rh), and correlation coefficient between observed SEE and observed h (RSEE2h). The number of
data samples for each site is also illustrated.

Figure 7. The SEE simulated by the new rss model with site-specific calibration is plotted as a function of observed SEE for different ranges of clay fraction: (a) fclay< 0.10, (b)
0:10 � fclay < 0:20, (c) 0:20 � fclay < 0:30, (d) 0:30 � fclay < 0:40, and (e) fclay � 0:40. Each graph is a smoothed histogram of the bivariate (modeled versus observed) SEE data. Black
shading represents the maximum smoothed density of data points, while the individual points (ouliers) are plotted where the smoothed density is less than 10% of the maximum den-
sity. The root mean square difference (RMSD), correlation coefficient (R), mean bias (B), and slope of the linear regression (S) between simulated and observed SEE are also indicated for
each case.
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0.70 and 0.45, for the fclay < 0:20 and fclay � 0:30 case respectively. It is suggested that SEE is more difficult
to model from h data in clayey than in sandy soils, especially because of the ‘‘dynamic’’ formation of a dry
surface layer under relatively large evaporative demand conditions [Fritton et al., 1967; Yamanaka et al.,
1998]. Nevertheless, the ‘‘static’’ site-specific calibration of rss via h1=2 and Dh21

1=2 (compared to the default
S92 parameters) significantly reduces the bias between simulated and observed SEE for each clay fraction
range, and generally improves the R, S and RMSD across the multi-site data set. This is the rationale for
developing a texture-based calibration of h1=2 and Dh21

1=2 as a first guess of the variabilities in the parameters
rss;ref and hefolding.

5.2. Toward a Texture-Based Calibration
Given that h1=2 and Dh21

1=2 are semi-empirical parameters, and that SEE and h observations may not be avail-
able to retrieve the pair ðh1=2;Dh21

1=2Þ at all locations, a PTF is proposed. In practice, the parameters h1=2 and
Dh21

1=2 retrieved for each site separately are related to the site sand and clay fractions.

A significant correlation is found between retrieved h1=2 and soil texture with a correlation coefficient in the
range of 0.6–0.8 for both sand and clay fractions (see Table 2). Specifically, the R statistics estimated for sites
with n> 0 (34 sites), n> 100 (30 sites) and n> 500 (19 sites) is 0.62, 0.57 and 0.76 with clay fraction, and
20.65, 20.69 and 20.76 with sand fraction, respectively. Figure 8 plots retrieved h1=2 as a function of sand
and clay fractions for the 19 sites with n> 500. The soil moisture h1=2 at which SEE50.5 is an increasing
function of clay fraction and a decreasing function of sand fraction. This indicates that the hydric potential
curves that control evaporation according to h are shifted as a function of texture. The observed phenom-
enon is also consistent with Fick’s law, predicting that evaporation is inversely proportional to porosity and
depth of the vaporization front, which both increase with decreasing size of soil pores and particles [Or
et al., 2013]. Note that one site (ESES2) appears to significantly deviate from the linear regression based on
either clay or sand fraction (see Figure 8). As a crop rice field, ESES2 is flooded most of the time. When

Table 2. Slope and Intercept of the Linear Regression, and Correlation Coefficient Between Retrieved h1=2 and Clay and Sand Fractions,
Respectively for Site Data Sets Containing at Least 1, 101, and 501 Samples, Separately

n

Clay-Based Linear Fit Sand-Based Linear Fit

Slope
(m3 m23)

Intercept
(m3 m23) R

Slope
(m3 m23)

Intercept
(m3 m23) R

> 0 0.41 0.11 0.62 20.26 0.29 20.65
> 100 0.41 0.11 0.57 20.26 0.29 20.69
> 500 0.43 0.10 0.76 20.27 0.29 20.76

Figure 8. Semi-empirical parameter h1=2 retrieved for each site separately, as function of (a) sand and (b) clay fraction for data sets containing at least 500 samples (n> 500), including
the respective linear fits.
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discarding the specific case of ESES2
from linear regressions, the R between
retrieved h1=2 and clay and sand frac-
tion is 0.77 and 20.83, respectively.
To quantify the consequences of site
selection decisions, the 6 sparsely
vegetated (AUStu, NISav, USDk1,
USFwf, USMo1, USMo7) sites were
removed from the ‘‘bare soil’’ data-
base. The correlation between
retrieved h1=2 and clay/sand fraction
decreased from 0.76 down to 0.69
(absolute value for n> 500), indicat-
ing that site selection is a tradeoff
between total number of points
(including a range of clay/sand frac-
tions) and potential quality.

Three PTFs of h1=2 are tested, using
the multi-site data set with n> 500.
The clay-based h1=2 is:

h1=250:1010:43fclay (26)

and the sand-based model is:

h1=250:2920:27fsand: (27)

An interesting feature with the sand-based linear regression is that the extrapolated value of h1=2 at fsand 5 1
is �0. A third PTF (in the following referred to as ‘‘texture-based PTF’’) is built from the multilinear regression
of retrieved h1=2 with both clay and sand fractions:

h1=250:2010:28fclay20:16fsand (28)

Figure 9 plots modeled versus retrieved h1=2 for clay-based, sand-based and texture-based PTFs separately.
The multilinear regression of h1=2 including clay and sand fractions (texture-based PTF) improves the model
statistics: the R (and RMSD) between modeled and retrieved h1=2 is 0.76, 0.76 and 0.81 (and 0.065, 0.068 and
0.058 m3 m23) respectively. Although clay and sand fractions are somewhat correlated via the silt fraction
(fclay1fsand512fsilt in inorganic soils), it is suggested that both fractions provide complementary information
on soil water retention capacity, especially in the case where one of the fraction (fclay or fsand) is small. Con-
sequently, the PTF in equation (28) is used in the following to estimate h1=2 from site-specific textural
information.

Regarding Dh21
1=2, no significant correlation is obtained with either clay or sand fraction. The R estimated for

sites with n> 0, n> 100, and n> 500 is 0.06, 0.10 and 0.23 with clay fraction, and 20.04, 20.13 and 20.19
with sand fraction, respectively. Consequently, Dh21

1=2 is set to a constant equal to the mean value for all sites
with n> 500:

Dh21
1=258 m3m23 (29)

Note that the standard deviation of Dh21
1=2 across the 19 sites is about 4, which is relatively large compared

to the mean. The variability of Dh21
1=2 can be attributed to a number of factors such as the soil water availabil-

ity in deeper soil layers, atmospheric conditions (at interannual, seasonal, daily and hourly time scales), sur-
face state (roughness, presence of residus, etc.), and farming practices (e.g., ploughing) for crop sites during
the selected bare soil periods. Although the mean Dh21

1=2 may not be representative for all sites, equation
(29) is used in the following as a best first guess.

Figure 10 presents bar graphs of the RMSD, R, B and S between simulated and observed SEE for the new rss

with texture-based h1=2 (equation (28)) and Dh21
1=2 (equation (29)) as well as for the S92 rss formulation.

Figure 9. Modeled versus retrieved h1=2 for clay-based, sand-based and texture-
based (sand and clay together) PTF separately.
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Values are presented for each site separately, and additionally, the weighted mean (weighted by the num-
ber of data samples per site) is indicated. With respect to the latter, the RMSD is 0.31 instead of 0.34, R is
0.47 instead of 0.43, B is 20.01 instead of 0.24 and S is 0.51 instead of 0.37 for the texture-based new and
S92 formulation, respectively. As in case of site-specific h1=2 and Dh21

1=2 parameters (Figure 5), the new rss for-
mulation outperforms the S92 rss formulation when using h1=2 estimated by means of the texture-based PTF
together with the mean Dh21

1=2 of all sites with n> 500. To assess the information provided by sand fraction
and clay fraction separately and by multi-regressional use of the two in terms of SEE, metrics are also com-
puted using the PTFs h1=2ðfclayÞ in equation (26) and h1=2ðfsandÞ in equation (27). The (weighted mean) RMSD
is 0.32 and 0.34, R is 0.47 and 0.46, B is 0.03 and 0.05, and S is 0.52 and 0.49 for h1=2ðfclayÞ and h1=2ðfsandÞ,
respectively. Consistent with the assessment of the different PTFs per se, SEE estimations using PTFs based
on either clay or sand fraction provide relatively similar results, while the PTF based on both h1=2ðfclay ; fsandÞ
in equation (28) still provides best SEE estimates.

5.3. Comparison With Common Evaporation Models
The PTFs of equations (28) and (29) are compared in terms of SEE estimates with the PTFs of four common
evaporation models. Table 3 reports the RMSD, B, R and S between simulated and observed SEE for ISBA,
H-TESSEL, and CLM (version 4.5) evaporation modules, and for S92 and new texture-based (texture-based
h1=2 and mean Dh21

1=2) rss formulations. In each case, statistics are provided for five different clay fraction
ranges: fclay< 0.10, 0:10 � fclay < 0:20; 0:20 � fclay < 0:30; 0:30 � fclay < 0:40 and fclay � 0:40. The RMSD
and B are systematically improved by the new rss. Among the five models, the minimum and maximum

Figure 10. Same as for Figure 5 but for the new rss with h1=2 estimated using the texture-based PTF and the mean Dh21
1=2 of all sites with n> 500.

Table 3. Root Mean Square Difference (RMSD), Mean Bias (B), Correlation Coefficient (R) and Slope of the Linear Regression (S) Between Simulated and Observed SEE for the ISBA
(ISB), H-TESSEL (HTE), CLM (CLM) Evaporation Modules as Well as the S92 and New (in Bold) Texture-Based rss Formulations, for Different Ranges of Clay Fraction: fclay< 0.10 (1), 0:10
� fclay < 0:20 (2), 0:20 � fclay < 0:30 (3), 0:30 � fclay < 0:40 (4) and fclay � 0:40 (5)

fclay range

RMSD B R S

ISB HTE CLM S92 New ISB HTE CLM S92 New ISB HTE CLM S92 New ISB HTE CLM S92 New

1 0.41 0.49 0.39 0.32 0.30 0.29 0.09 0.20 0.16 0.13 0.41 0.51 0.53 0.57 0.64 0.21 0.89 0.64 0.49 0.65
2 0.42 0.48 0.42 0.31 0.30 0.34 0.18 0.18 0.19 20.06 0.58 0.53 0.60 0.66 0.62 0.45 0.92 0.94 0.60 0.73
3 0.42 0.51 0.51 0.38 0.38 0.30 0.34 0.33 0.26 0.16 0.41 0.36 0.39 0.54 0.50 0.27 0.43 0.49 0.47 0.59
4 0.53 0.57 0.56 0.41 0.32 0.41 0.39 0.37 0.28 20.08 0.23 0.28 0.33 0.34 0.43 0.19 0.39 0.48 0.27 0.44
5 0.42 0.48 0.48 0.38 0.42 0.28 0.32 0.30 0.20 20.09 0.05 0.11 0.14 0.20 0.36 0.02 0.07 0.12 0.12 0.46
All 0.44 0.51 0.47 0.36 0.34 0.32 0.26 0.28 0.22 0.01 0.34 0.36 0.40 0.46 0.51 0.23 0.54 0.53 0.39 0.58
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overall RMSD is estimated as 0.34 and 0.51 for the new rss and H-TESSEL, and the minimum and maximum
overall B is estimated as 0.01 and 0.32 for the new rss and ISBA, respectively. Regarding the correlation with
SEE measurements, the new rss outperforms the other four models with an overall R estimated as 0.51 com-
pared to 0.34, 0.36, 0.40 and 0.46 for ISBA, H-TESSEL, CLM and S92 model, respectively. Note that S92 has a
slightly larger R (0.54–0.66 versus 0.50–0.62) than the new rss for 0:1 � fclay < 0:3. This is probably due to a
slight increase in the uncertainty in h1=2 and Dh21

1=2 attributed to the PTFs of equations (28) and (29) applied
to a limited range of soil texture (0:1 � fclay < 0:3), over which the S92 rss formulation is deemed accepta-
ble. The overall S between simulated and observed SEE is 0.23, 0.55, 0.53, 0.39 and 0.58, for ISBA, H-TESSEL,
CLM, S92 and the new rss, respectively. S is systematically closer to 1 with the new rss than with S92 model.
The relatively good overall perfomance of H-TESSEL and CLM is attributed to a S close to 1 for low clay con-
tent (fclay < 0:2), while the S for both H-TESSEL and CLM decreases strongly for larger clay fractions down to
�0.1 for fclay> 0.4. For the entire texture range considered, the PTFs of equations (28) and (29) are more
robust in terms of SEE estimates than the PTFs of the other four evaporation models.

The evaluation of ISBA, H-TESSEL, and CLM evaporation modules and S92 rss formulation highlights a signifi-
cant bias in simulated SEE, especially for soils with a fclay> 0.2. These four models were not derived from
the data set used in the paper to derive the PTFs of equations (28) and (29), which most likely contributes
to the better results of the new rss formulation. The point is that the parameters of the ISBA, H-TESSEL and
CLM evaporation modules have pre-set values and, to date, there is no PTF for the A and B parameters in
S92. Systematic biases in modeled SEE can also result from differing depth of the top soil layer used to com-
pute evaporation compared to the observation depth. The depth of the top soil layer is 1 cm, 1.75 cm, 5 cm
and 7 cm in ISBA [Parrens et al., 2014], CLM [Tang and Riley, 2013a], S92 [Sellers et al., 1992] and H-TESSEL
[Albergel et al., 2012], respectively. Several studies have addressed the inconsistency of the sensing depth of
soil moisture observations (about 0–5 cm in this study) with the top soil layer of land-surface models [e.g.,
Parrens et al., 2014]. For instance, the soil layer used to calibrate the S92 rss formulation is 0–5 cm in Sellers
et al. [1992] and 0–1 cm in Van de Griend and Owe [1994], resulting in quite distinct values of A and B. In the
same vein, Merlin et al. [2011] investigated the effect of the top soil layer thickness on the exponent P of the
SEE formulation derived from Lee and Pielke [1992]. They found that P is an increasing (and quasi linear)
function of the top soil layer thickness, so that for a given h value, SEE is a decreasing function of the soil
moisture sensing depth. The shallow depth (1 cm and 1.75 cm) of the top soil layer in ISBA and CLM may
thus be (partly) responsible for the models overestimation. Given that in situ measurements are usually
available in the 0–5 cm soil layer or deeper, the models that use a soil layer shallower than the 5 cm depth
are difficult to evaluate, even though their validity over a wide range of soil types needs to be checked.

6. Summary and Perspectives

A meta-analysis data-driven approach is developed to represent SEE over a large range of soil and atmos-
pheric conditions. SEE is modeled using a soil resistance (rss) formulation based on surface soil moisture (h)
and two resistance parameters rss;ref and hefolding. The data-driven approach aims to express both parame-
ters as a function of observable data including meteorological forcing, cut-off soil moisture value h1=2 at
which SEE50.5, and first derivative of SEE at h1=2, named Dh21

1=2. An analytical relationship between ðrss;ref ;

hefoldingÞ and ðh1=2; Dh21
1=2Þ is first built by running a soil energy balance model for two extreme conditions

with rss 5 0 and rss � 1 from meteorological data solely, and by approaching the middle point from the
two (wet and dry) reference points. Two different methods are then investigated to estimate the pair ðh1=2;

Dh21
1=2Þ either from the time series of SEE and h observations for a given site, or using the soil texture infor-

mation for all sites.

The new model is tested across a bare soil database composed of more than 30 sites around the world, a
clay fraction range of 0.02–0.56, a sand fraction range of 0.05–0.92, and about 30,000 acquisition times
between 8 am and 6 pm local time. In an effort to test the regionalization capabilities of the model using
readily available data, a parameterization of h1=2 is proposed as a PTF of clay and sand percentages sepa-
rately as well as using both in multi-regressional fashion, and Dh21

1=2 is set to a constant mean value for all
sites with n> 500. The correlation coefficient between modeled and retrieved h1=2 is 0.76 (absolute value)
for both clay-based and sand-based PTFs, while the multilinear regression of h1=2 with both clay and sand
fractions (texture-based PTF) improves the correlation coefficient (0.81).
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The new PTF-based rss model is compared in terms of SEE estimates with the PTFs of the evaporation
modules of the ISBA, H-TESSEL, CLM surface schemes as well as the S92 rss formulation. All models are
forced by the same input data set including meteorological data, texture information, and the near-
surface (mostly 0–5 cm depth) soil moisture observations. The SEE simulated by ISBA, H-TESSEL, CLM and
S92 models generally overestimates observations, especially for soils with a clay fraction larger than 0.2.
In this texture range, the overestimation (about 0.30–0.40) is larger for ISBA, H-TESSEL and CLM, while the
S92 rss formulation tends to reduce the mean bias (about 0.20–0.30) between modeled and observed SEE.
The new texture-based rss formulation reduces the mean bias (0.0 in average) for all clay fraction classes.
Moreover, the nonlinearities of the SEEðhÞ relationship are relatively well represented by the new texture-
based rss across the entire texture range. The shallow depth (1 cm and 1.75 cm) of the top soil layer in the
ISBA and CLM models compared to the observation depth may be (partly) responsible for the models
overestimation. Nonetheless, the ad hoc nature of the evaporation formulations in ISBA, H-TESSEL and
CLM does not guarantee (in the absence of consistent validation) their validity over a wide range of soil
types.

While the rss formulation developed in this paper is mostly semi-empirical, the strength of the approach
relies on the capability to calibrate its parameters (h1=2 and Dh21

1=2) from observable variables (SEE, h, and
meterological data). Specifically, four main benefits can be identified for future researches and applications:

1. the soil evaporation formulation as a function of rss has clear physical meaning, and thus, enables the
implementation of the new evaporation model in a range of physically based land-surface models
[Pitman, 2003]. Moreover, the SEE formulation of soil evaporation is fully consistent with the evaporation
modules of operational models like the FAO-56 dual crop approach [Allen, 2000; Lhomme et al., 2015].

2. the proposed modeling framework is generic. It can be applied to characterize the variability of h1=2 and
Dh21

1=2 as a function of soil texture as it done in this paper. It can also be used to represent other variability
factors such as the presence of stubble or mulch [Sakaguchi and Zeng, 2009], soil heterogeneity [Or et al.,
2013], soil roughness, and shrinkage cracks in clayey soils. Further research is needed to account for the
impact of the (seasonal, daily, instantaneous) variability of evaporative demand on h1=2 and Dh21

1=2

through the time varying moisture profile in the top soil layer [Merlin et al., 2011].
3. such a meta-analysis data-driven approach is complementary to the upward modeling approaches based

on fine physical knowledge and discretization of the soil layer. In particular, a key issue would be to inter-
pret the variability of semi-empirical (but observed) h1=2 and Dh21

1=2 in terms of the physical (but poorly
observed in real field conditions) SHPs. Physically based soil water diffusion models [e.g., Tang and Riley,
2013b] will be very helpful in that direction.

4. given that a significant correlation exists between h1=2 and sand and clay fractions, one could imagine a
remote sensing approach for estimating surface soil texture from multi-sensor/multi-spectral remote
sensing. In practice, several issues will need to be addressed beforehand such as the estimation of SEE
from thermal infrared data [Chanzy et al., 1995; Stefan et al., 2015], the downscaling of microwave-
derived h [e.g., Merlin et al., 2013], and the partitioning between soil evaporation and plant transpiration
from available remote sensing data [e.g., Merlin et al., 2014].

Appendix A: PTF-Derived SHPs

Soil moisture at field capacity is estimated as in Noilhan and Mahfouf [1996]:

hfc50:0893ð100fclayÞ0:3496 (A1)

with fclay being the clay fraction.

The residual soil moisture is estimated as in Brisson and Perrier [1991]:

hres50:15fclay (A2)

The soil moisture at saturation is estimated as in Cosby et al. [1984]:

hsat50:48920:126fsand (A3)

with fsand being the sand fraction.
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Parameterized air entry pressure (in mm of water) at hsat is estimated as in Cosby et al. [1984]:

wsat52103exp ð1:8821:31fsandÞ (A4)

The Clapp and Hornberger parameter is estimated as in Cosby et al. [1984]:

bCH52:91115:9fclay (A5)

Appendix B: Soil Energy Balance Model

The evaporation model solves the classical energy budget equation over bare soil:

LE5Rn2G2H (B1)

with LE (W m22) being the soil latent heat flux, H (W m22) the soil sensible heat flux, Rn (W m22) the soil net
radiation and G (W m22) the ground conduction at 5 cm depth. Soil net radiation is expressed as:

Rn5ð12aÞRg1�ðRa2rT 4Þ (B2)

with a being the soil albedo (set to 0.20), Rg (W m22) the incoming solar radiation, � the soil emissivity (set
to 0.97), Ra (W m22) the atmospheric longwave radiation, r (Wm22K24) the Stephan-Boltzmann constant
and T (K) the soil skin temperature. Downward atmospheric radiation at ground level is expressed as:

Ra5�arT 4
a (B3)

with �a being the effective atmospheric emissivity, and Ta (K) the air temperature. The emissivity of clear
skies is estimated as in Brutsaert [1975]:

�a50:553ðea=100Þ1=7 (B4)

with:

ea5esatðTaÞðha=100Þ (B5)

with ha (%) being the air relative humidity and:

esatðTaÞ5611exp ½17:27 ðTa2273:2Þ=ðTa235:9Þ� (B6)

with Ta in K.

Ground conduction is estimated as a fraction of soil net radiation [Choudhury et al., 1987; Kustas and Daughtry,
1990]:

G5CGRn (B7)

with CG a coefficient. Sensible heat flux is expressed as:

H5qCP
T2Ta

rah
(B8)

with the aerodynamic resistance being estimated as in Choudhury et al. [1986]:

rah5
rah0

ð11RiÞg (B9)

with rah0 (s m21) being the neutral aerodynamic resistance, and Ri the Richardson number which represents
the importance of free versus forced convection, and g a coefficient set to 0.75 in unstable conditions
(T > Ta) and to 2 in stable conditions (T < Ta). The neutral rah0 is computed as:

rah05
1

k2ua

�
ln

�
Z

z0m

��2

(B10)

with k being the von Karman constant, ua (m s21) the wind speed measured at the reference height Z (m)
and z0m (m) the momentum soil roughness. At all sites, z0m is set to 0.001 m [Yang et al., 2008; Stefan et al.,
2015]. The Richardson number is computed as:
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Ri5
5gZðT2TaÞ

Tau2
a

(B11)

with g (m s22) being the gravitational constant.

The energy balance equation (B1) is solved by initializing the surface soil temperature T 5 Ta, and by looking
for the value of T which minimizes the cost function F(T):

FðTÞ5ðLE1H2Rn1GÞ2 (B12)

with LE being expressed as in equations (2)–(4) for the rss, a and b formulation, respectively.

Appendix C: Derivation of hefolding

hefolding is derived by applying the constraint @SEE=@hðh1=2Þ5Dh21
1=2 (equation (17)). The first derivative of

SEE is:

@SEE
@h

5
rah;wet

esatðTwetÞ2ea
3

�
_esatðTÞ
rss1rah

3
@T
@h

1
ðesatðTÞ2eaÞrss

ðrss1rahÞ2
3

1
hefolding

�
(C1)

with _esatðTÞ being the derivative of saturated vapor pressure with respect to T and @T=@h the derivative of
T with respect to h. As @T=@h is unknown, additional information is needed via the soil energy balance
model expanded from equation (B1):

qCP

c
esatðTÞ2ea

rss1rah
1qCP

T2Ta

rah
5ð12CGÞ½ð12aÞRg1�ðRa2rT 4Þ� (C2)

By applying the first derivative to equation (C2), it comes:

qCP _esatðTÞ
cðrss1rahÞ

@T
@h

1
qCPðesatðTÞ2eaÞrss

cðrss1rahÞ2
3

1
hefolding

1
qCP

rah

@T
@h

524ð12CGÞ�rT 3 @T
@h

(C3)

and then:

@T
@h

5
f ðhÞ

hefolding
(C4)

with f ðhÞ being defined in equation (22). Finally, an expression of hefolding is obtained in equation (21) by
inserting the above expression of @T=@h in equation (C1).
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The SMOS (Soil Moisture and Ocean Salinity) mission provides surface soil moisture (SM) maps at a mean reso-
lution of ~50 km. However, agricultural applications (irrigation, crop monitoring) and some hydrological appli-
cations (floods andmodeling of small basins) require higher resolution SM information. In order to overcome this
spatial mismatch, a disaggregation algorithm called Disaggregation based on Physical And Theoretical scale
Change (DISPATCH) combines higher-resolution data from optical/thermal sensors with the SM retrieved from
microwave sensors like SMOS, producing higher-resolution SM as the output. A DISPATCH-based processor has
been implemented for the whole globe (emerged lands) in the Centre Aval de Traitement des Données SMOS
(CATDS), the French data processing center for SMOS Level 3 products. This new CATDS Level-4 Disaggregation
processor (C4DIS) generates SMmaps at 1 km resolution. This paper provides an overview of the C4DIS architec-
ture, algorithms and output products. Differences with the original DISPATCH prototype are explained andmajor
processing parameters are presented. The C4DIS SM product is compared against L3 and in situ SM data during a
one year period over the Murrumbidgee catchment and the Yanco area (Australia), and during a four and a half
year period over the Little Washita and theWalnut Gulch watersheds (USA). The four validation areas represent
highly contrasting climate regions with different landscape properties. According to this analysis, the C4DIS SM
product improves the spatio-temporal correlation with in situmeasurements in the semi-arid regions with sub-
stantial SM spatial variability mainly driven by precipitation and irrigation. In sub-humid regions like the Little
Washita watershed, the performance of the algorithm is poor except for summer, as result of the weak
moisture-evaporation coupling. Disaggregated products do not succeed to have and additional benefit in the
Walnut Gulch watershed, which is also semi-arid but with well-drained soils that are likely to cancel the spatial
contrast needed by DISPATCH. Although further validation studies are still needed to better assess the perfor-
mance of DISPATCH in a range of surface and atmospheric conditions, the new C4DIS product is expected to pro-
vide satisfying results over regions having medium to high SM spatial variability.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Soil moisture (SM) is an essential component of thewater cycle that
impacts infiltration, runoff and evaporation processes. In addition, it
modulates the energy exchange as well as the carbon exchange at the
land surface (Daly & Porporato, 2005). SM has influence over a range
of spatial scales: the climatic (Douville, 2004; Laio, Porporato, Ridolfi,
& Rodríguez-Fernández, 2002), the meteorological (Dirmeyer, 2000;
Drusch, 2007), the hydrological (Chen, Crow, Starks, & Moriasi, 2011;
Draper, Reichle, De Lannoy, & Liu, 2012), the parcel and the local scale
(Guérif & Duke, 2000).

Current satellite missions provide surface SM observations at large
scales on a global basis. Passive microwave L-band observations are
widely used for surface SM retrievals, but in practice they constrain
the resolution of the retrievals to 30–60 km (Kerr & Njoku, 1990;
Njoku & Entekhabi, 1996; Schmugge, 1998) with current technology.
The Soil Moisture Ocean Salinity (SMOS) mission, launched in Novem-
ber 2009, incorporates an interferometric radiometer at L-band
(1.4 GHz) and provides SMwith a resolution of 30–55 km and a sensing
depth of 3–5 cm (Kerr et al., 2001, 2010). SMOS Level 2 (L2) and Level 3
(L3) SM products have been validated extensively on a regular basis
since the beginning of the mission (Al Bitar et al., 2012; Delwart et al.,
2008) and they have been assessed as suitable for hydro-climate appli-
cations (Lievens et al., 2015; Wanders, Bierkens, de Jong, de Roo, &
Karssenberg, 2014). However, most hydro-agricultural applications
need SM measurements of sub-kilometer spatial resolution with a still
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representative temporal coverage (Walker & Houser, 2004). We should
strive to provide a high resolution (HR) SMproduct thatwould enhance
the knowledge of the hydrological processes at local scale.

Different satellite-based approaches have been proposed to retrieve
SM. One of themost popular is the use of active sensors like the synthet-
ic aperture radars (SAR) (ERS, ALOS, Sentinel 1) or scatterometers
(ASCAT). These instruments provide observations with a variety of spa-
tial and time resolutions but they are influenced to a great extent by the
scattering produced by vegetation structure and surface roughness,
among other factors. Unlike active sensors, passive instruments are
much less sensitive to scattering but provide surface SM estimations
at coarse resolutions (N40 km). C- and X-band radiometers like
AMSR-E and WindSat have shown good results (Mladenova et al.,
2011), but because of the frequency used, their sensing depth is shallow
(~1 cm) and vegetation becomes rapidly opaque. In contrast, L-band ra-
diometer acquisitions from SMOS provide SM estimations for a much
wider range of vegetation conditions, with a sensing depth of around
5 cm and a revisit time of ~3 days. However, the spatial resolution pro-
vided is also coarse (35–55 km) as mentioned previously. The main
strategies to work around this issue while maintaining the benefits of
L-band consist of merging the L-band acquisitions with HR ancillary
data, namely radar and optical observations.

Over the past decade, various methods have been proposed to com-
bine active and passive sensors to produce HR SM (Das, Entekhabi, &
Njoku, 2011; Narayan, Lakshmi, & Jackson, 2006; Zhan, Houser,
Walker, & Crow, 2006). The NASA Soil Moisture Active Passive (SMAP)
mission, launched in 2015, intended to combine L-band brightness tem-
peratures (TB) andHR L-band radar backscatter data (Entekhabi, Njoku,
O'Neill, Kellogg, Crow, Edelstein, et al., 2010). Despite the radar failure in
July 2015, related previous studies showed that SM could have been de-
livered at 9 km and even 3 km resolution (Das et al., 2014).

Optical sensors (visible/near-infrared/thermal-infrared) can achieve
finer spatial resolutions. However, the quality of their observations is crit-
ically compromised by the presence of clouds. Examples of optical sensors
include the Landsat instruments and the Advanced Spaceborne Thermal
Emission and Reflection radiometer (ASTER), with data at ~100m resolu-
tion, and the MODerate resolution Imaging Spectroradiometer (MODIS),
with data at ~1 km resolution. Such data include soil temperature and
vegetation cover information, which are variables linked to soil water
content (Fang et al., 2013). The relationship between land surface tem-
perature (LST) and normalized difference vegetation index (NDVI) was
first formalized in the 90s with the triangle (Carlson, 2007; Carlson,
Gillies, & Perry, 1994) and the trapezoid (Moran, Clarke, Inoue, & Vidal,
1994) approaches.

Most of the methods for deriving HR SM from the synergy between
optical andmicrowave observations are based on the triangle/trapezoid
approaches. Chauhan, Miller, and Ardanuy (2003) stated that the rela-
tionship between LST, NDVI and SM can be formulated as a regression
formula specific to the region and climatic conditions. Later, Piles et al.
(2011) included SMOS TBs in the equation, which reduced the bias
but slightly degraded the spatio-temporal correlation between the ob-
tained HR SM and the in situ measurements. These empirical methods
need local calibration of the regression coefficients at low resolution
(LR) before applying them to the HR ancillary data. On the contrary,
semi-physical methods replace the polynomial function by physically-
basedmodels that use evaporation as a proxy variable for SMvariability.
Merlin, Walker, Chehbouni, and Kerr (2008) linked the SM to the soil
evaporative efficiency (SEE), defined as the ratio of actual to potential
soil evaporation. Kim and Hogue (2012) established a linear relation-
ship between the soil evaporative fraction of Jiang and Islam (2003)
and SM. Both approaches improved the satellite SM spatial variability
and showed better correspondence with ground measurements in the
area of study (SMEX04).

The semi-physical methods have three important advantages with
respect to the purely empirical methods: (i) the mean SM is preserved
across the merging process (which justifies calling it ‘disaggregation’

or ‘downscaling’), (ii) a physical link is established for HR between SM
and the evaporation/evapotranspiration rate and (iii) no local calibra-
tion or fit is needed. These are key factors in developing a robust and
global operational algorithm for HR SM.

Recent studies byMerlin et al. (2012); Merlin et al. (2013) have im-
proved the evaporation rate calculation and the evaporation-SM link of
Merlin et al. (2008). TheDISaggregation based on Physical And Theoret-
ical scale Change (DISPATCH) algorithm estimates SEE at high-
resolution from soil temperature and vegetation data for modeling the
spatial variations inside the microwave SM observation. In Merlin
et al. (2012), DISPATCH included corrections for the microwave sensor
weighting function and grid oversampling and provided an estimate
of the uncertainty in the output disaggregated data. Later, Merlin et al.
(2013) demonstrated that the linear approximation of the SEE\\SM
link model is suitable for kilometer scales and included soil tem-
perature corrections for elevation effects. Both studies were con-
ducted under semi-arid conditions, in a 500 × 100 km study area
within the Murrumbidgee river catchment, in southeastern
Australia, and in a 60 × 60 km study area east of Lleida in Catalunya,
Spain. They showed that DISPATCH improves the spatio-temporal
correlation with in situmeasurements, but that the accuracy of dis-
aggregated products is highly dependant on the SM-evaporation
coupling. The downscaled resolution of 1 km (Merlin, Al Bitar,
Walker, & Kerr, 2009; Merlin et al., 2013) and the combination of
satellite data from different time stamps in DISPATCH
(Malbéteau, Merlin, Molero, Rüdiger, & Bacon, 2016; Merlin et al.,
2012) have been considered as a good trade-off between spatial
representativeness and overall accuracy, given the current status
of the algorithm.

Recently, a new Level-4 (L4) processor (C4DIS) based on DISPATCH
has been implemented in the Centre Aval de Traitement des Données
SMOS (CATDS), the French ground segment for SMOS Level-3 and
Level-4 data. The aim is to disaggregate the SMOS CATDS Level-3 (L3)
1-day SMmaps to produce maps of SM at 1 km resolution for any part
of the globe on an operational basis. The ancillary temperature and veg-
etation data are retrieved from the MODIS mission.

This paper seeks (i) to provide an overview of the C4DIS architec-
ture, processing algorithms, output products, strengths andweaknesses
and (ii) to derive the first conclusions on the performance of the C4DIS
product depending on the climatic and landscape conditions. To do so,
we evaluate the C4DIS product against in situ data from the Murrum-
bidgee catchment and two additional contrasting networks. Former
versions of DISPATCH have so far been evaluated mostly in semi-arid
conditions (Malbéteau et al., 2016; Merlin et al., 2012, 2013). The Mur-
rumbidgee network belongs to these previous studies, and it is included
here to serve as a reference for the current version of DISPATCH and the
C4DIS processor and for the other validation areas. The two other in
situ networks considered in this study are located in the Little
Washita watershed in Oklahoma, USA, which exhibits sub-humid
conditions, and the Walnut Gulch watershed in Arizona, USA,
which exhibits semi-arid to arid conditions. Their relief, soil prop-
erties and land use differ from the Murrumbidgee's. The L4 disag-
gregated SM product is evaluated using in situ 0–5 cm and in situ
0–8 cm measurements taken at the same time as SMOS overpasses
(around 6 am, 6 pm) during the period 01/06/2010 to 31/05/2011
for the Australian network and 01/06/2010 to 31/12/2014 for the
USA networks. These networks have been providing ground SM
data in a continuous basis and have contributed to the validation
of different satellite missions, SMOS among them (Cosh, Jackson,
Bindlish, & Prueger, 2004; Jackson et al., 2010, 2012; Leroux et al.,
2013; Peischl et al., 2012).

It is important to note that the DISPATCH algorithmwill continue to
evolve. Validation activities on the Level-4 processor C4DIS will provide
valuable information for the improvement of the algorithm and pro-
cessing chain. This current study is conducted on the products of the
first version of the C4DIS processor.
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2. Input data collection

2.1. In situ measurements

Three validation networkswere selected for this work, theMurrum-
bidgee Soil Moisture Monitoring Network (MB) in Australia (Smith
et al., 2012) and two different USDA (United Stated Department of Ag-
riculture) networks: Little Washita (LW) in Oklahoma (Cosh, Jackson,
Starks, & Heathman, 2006) and Walnut Gulch (WG) in Arizona (Cosh,
Jackson, Moran, & Bindlish, 2008). They exhibit contrasted types of cli-
mate, soil properties, land use and spatial extension.

The MB network covers a large extension (82,000 km2) in southern
New South Wales. Its climate ranges from semi-arid in the west (aver-
age annual precipitation of 300 mm), to humid in the east (annual pre-
cipitation of 1900 mm at the Snowy Mountains). The MB has been
studied in previous DISPATCH campaigns (Malbéteau et al., 2016;
Merlin et al., 2012). It is included here for different reasons: it permits
to confront results with previous versions of the algorithm, it contains
within the Yanco area,which gathers the nominal landscape and climat-
ic conditions for DISPATCH (flat, semi-arid with low vegetation), and it
shows a variety of climate, soil and land use cases that can reveal the
usefulness of disaggregation.

The MB consists in 38 validation stations: 18 of them provide SM in-
tegrated over the first 8 cmof soil (Campbell Scientificwater content re-
flectometers) and the rest provide SM integrated over the first 5 cm of
soil (Stevens Hydra Probe). The stations are situated in four areas: 7 sta-
tions in the limits of the catchment near to regional centers; 5 stations in
Adelong Creek (145 km2), a grazing area with steep slopes; 13 stations
in Kyeamba creek (600 km2), a catchment with gentle slopes and graz-
ing and dairy land use; and finally, 13 stations in the Yanco region
(3000 km2).

Yanco soils are mainly silty-loam. The climate is semi-arid with an
average annual rainfall of about 400mm, withmost of the precipitation
occurring in winter and spring. The land use is divided into irrigation
and dry land cropping and pastures. This area has been extensively
monitored since 2001 (Smith et al., 2012) and has been used in a variety
of satellite validation campaigns (Mladenova et al., 2011; Panciera et al.,
2014; Peischl et al., 2012).

The USDA networks have been operating since 2002 and they have
been used in the validation of Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E) products (Jackson
et al., 2010), Aquarius (Bindlish, 2015), ASCAT (Leroux et al., 2013)
and SMOS products (Jackson et al., 2012). The probes are installed at a
depth of 5 cm, with an effective measurement depth between 3 and
7 cm (Stevens Hydra Probe).

LW is located in southwest Oklahoma and covers an area of about
610 km2. The climate is sub-humid with an average annual rainfall of
750 mm. Summers are hot and relatively dry while winters are short
and temperate. Autumn and spring are when most of the precipitation
occurs (Allen & Naney, 1991). The land use is mainly rangeland and
crops that include winter wheat and some corn and grasses. Soils in-
clude a wide range of textures, with large regions of sands, loams and
clays. The topography is moderately rolling with few hills.

WG occupies an area of 148 km2 in southeastern Arizona. The cli-
mate is semi-arid, with an average annual rainfall of 324 mm, lower
than in the Yanco region. Most of the rains occur in the form of small
scale high-intensity thunderstorms during the summer months as part
of the North American Monsoon System (Cosh et al., 2008). Soils are
mainly sands and gravel with good drainage. Desert shrubs and short
grasses dominate the landscape. The topography is considered as rolling
with significant rock cover. Although the climate class of WG is defined
semi-arid as the Yanco area, the contrasting landscape and precipitation
conditions make WG an interesting validation area (Table 1).

It is important to outline that the area extent covered by the net-
works is different so it may have an impact on the validation process:
the MB comprises multiple SMOS pixels through sparse stations and
more dense localized sites, the Yanco region covers approximately one
SMOS pixel, and the LW andWG cover around 1/4 and 1/16 of the sur-
face of one SMOS pixel. This does not affect the C4DIS processor, which
handles input larger surfaces, but it may affect the validation process
since the smaller networks may not be representative of the ~40 km
surface.

2.2. SMOS soil moisture data

The SMOS satellitewas launched inNovember 2009. SMOShas glob-
al coverage with a revisit period of 3 days at the equator, with all
together in the same line, if possible overpass at 6:00 am and
descending (D) overpass 6:00 pm local solar time. The SMOS
instrument is a passive 2D interferometer operating at L band
(1.4 GHz) (Kerr et al., 2001, 2010). The spatial resolution ranges from
35 to 55 km, depending on the incident angle. The goal is to retrieve
SM (first 5 cm) with a target accuracy of 0.04 m3/m3 (Kerr et al., 2012).

The C4DIS processor disaggregates the SM provided by the SMOS
Level-3 1-day global SM product (MIR CLF31A/D). In this paper, the ver-
sion 2.72 (in 220 reprocessingmode RE02) product is used. Level-3 (L3)
products are presented in NetCDF format on the EASE (Equal Area Scal-
able Earth) grid, with a grid spacing of ~25 × 25 km.

The L3 SM products are directly computed from the SMOS Level-1
products at the CATDS. The core of the algorithm for retrieving SM
from brightness temperatures is derived from the L2 retrieval algorithm
(Kerr et al., 2012; Wigneron et al., 2007). In both processing chains, SM
is derived from the combination of multiangular observations. While
the L2 chain considers only the multiangular observations of the same
day and orbit (ascending/descending), the L3 chain uses several over-
passes (3 at most) over a 7-day window. This results in more coverage
and robustness for the L3 products (Al-Yaari et al., 2014). Details on
the L3 processing algorithm can be found in the Algorithm Theoretical
Baseline Document (Kerr et al., 2013) and in the L3 data product de-
scription (Kerr et al., 2014).

2.3. MODIS temperature and vegetation data

TheC4DIS processor uses three ancillary products at 1 kmresolution.
Two of them are derived fromMODIS acquisitions: LST and NDVI. These
are necessary elements for the SEE calculation inside DISPATCH.

Table 1
Main characteristics of validation areas.

Murrumbidgee Yanco LW WG

Extension 82,000 km2 3000 km2 610 km2 148 km2

Climate Semi-arid (west) to humid (east) Semi-arid Sub-humid Semi-arid to arid
Annual precipitation 300–1900 mm 400 mm 750 mm 324 mm

Main precipitation periods Relatively constant at the basin scale Winter, spring Autumn, spring
Summer
(intense, localized)

Soils Clayey (west) to sandy (east) Silty-loam Sands, loams and clays Sands and gravel
Topography Diverse, mountains in the east Flat Moderate rolling Rolling
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The LST datasets are extracted from in the same line, if possible
MODIS/Terra LST and emissivity daily L3 global 1-km grid products
(MOD11A1) and version-5 MODIS/Aqua LST and emissivity daily L3
global 1-km grid products (MYD11A1). The NDVI dataset is extracted
from the version-5 MODIS/Terra vegetation indices 16-day Level-3
global 1-km grid product (MOD13A2).

The MODIS products are retrieved from the NASA Land Processes
Distributed Active Archive Center (LP DAAC). They are presented in si-
nusoidal projection at 1 km resolution (Solano, Didan, Jacobson, &
Huete, 2010; Wan, 1999, 2006). The disaggregation approach requires
the NDVI dataset acquired within the last 15 days and the LST datasets
of the day before, the same day and the day after. The MODIS products
are available between 1 and 9 days after the acquisition day.

2.4. Digital elevation model

The C4DIS processor requires elevation information, which is ex-
tracted from the GTOPO30 Digital Elevation Model (DEM) product
available in the WGS84 sphere at 30-arc sec resolution. The GTOPO30
product is distributed by the U.S. Geological Survey's EROS Data Center
(USGS, https://lta.cr.usgs.gov/GTOPO30).

3. The CATDS level-4 disaggregation (C4DIS) processor

The CATDS Level-4 (L4) Disaggregation (C4DIS) processor is the first
operational version of the DISPATCH algorithm. The C4DIS processor se-
lects the best algorithm and parameter configuration according to past
DISPATCH studies and the latest research (Merlin, Al Bitar, Walker, &
Kerr, 2010; Merlin, Chehbouni, Boulet, & Kerr, 2006; Merlin et al.,
2009; Merlin, Rüdiger, Richaume, Al Bitar, Mialon, Walker and Kerr,
2010; Merlin et al., 2012; Merlin et al., 2013). It also makes possible to
obtain disaggregated SM on a global and daily basis (under the assump-
tion of no cloud-covered scenes and availability of input data). The
C4DIS products have beenmarked as ‘scientific’products because the al-
gorithm is still evolving: their accesswill be granted on demand for spe-
cific areas of the world. In this and the following sections, we describe
both the DISPATCH prototype and the C4DIS processor.

3.1. DISPATCH algorithm

DISPATCH relies on a SEE term to model the spatial variability over
the low-resolution (LR) SMOS pixel. The first step is to account for the
SEE term at HR, described as a linear function of soil temperature:

SEEHR ¼ Ts;max–Ts;HR
� �

= Ts;max–Ts;min
� � ð1Þ

Soil (Ts,HR) and vegetation (Tv,HR) temperatures are derived from LST
and NDVI datasets as in Merlin et al. (2012), where the surface temper-
ature is partitioned into its soil and vegetation components according to
the trapezoid method of Moran et al. (1994). Soil temperature is calcu-
lated as follows:

Ts;HR ¼ TMODIS−fv;HRTv;HR
� �

= 1− fv;HR
� � ð2Þ

with TMODIS being the MODIS LST and fv the MODIS-derived fractional
vegetation cover. Here, the fractional vegetation cover is calculated as:

fv;HR ¼ NDVIMODIS–NDVIsð Þ= NDVIv–NDVIsð Þ ð3Þ

withNDVIMODIS being theMODISNDVI, NDVIs theNDVI for bare soil (set
to 0.15), and NDVIv the NDVI for full-cover vegetation (set to 0.90).

The vegetation temperature Tv,HR is calculated according to the
“hourglass” approach (Moran et al., 1994), as a function of the position
of the HR pixel in the LST-fv space, and the soil (Ts,min, Ts,max) and vege-
tation (Tv,min, Tv,max) temperature end-members (Merlin et al., 2012).

Given the minimum andmaximum LST values of the scene TMODIS,min

and TMODIS,max, and the fv values associated to the same pixels, fv,Tmin and
fv,Tmax, the following approximations hold (Merlin et al., 2013):

I). Tv,min = TMODIS,min

II). When the vegetation portion is low at TMODIS,min (fv,Tmin b 0.5),
then Ts,min = TMODIS,min

III). When the vegetation portion is considerable at TMODIS,min

(fv,Tmin N = 0.5), then Ts,min is set to the minimum value of the
Ts,HR derived from Eq. (2), with Tv,HR = Tv,min and fv,HR b 0.5

IV). When the vegetation portion is low at TMODIS,max (fv,Tmax b 0.5),
then Ts,max = TMODIS,max and Tv,max is set to the maximum value
of the Tv,HR derived from Eq. (2), with Ts,HR= Ts,max and fv,HR ≥ 0.5

V). When the vegetation portion is considerable at TMODIS,max

(fv,Tmax N = 0.5), then Tv,max = TMODIS,max and Ts,max is set to
the maximum value of the Ts,HR derived from Eq. (2), with
Tv,HR = Tv,max and fv,HR b 0.5

Note that LST has been preliminary corrected for elevation effects
(decrease of air temperature with altitude) by using the DEM informa-
tion at HR (Merlin et al., 2013):

TMODIS ¼ TMODIS�ori þ γ HHR–HLRð Þ ð4Þ

with TMODIS being the topography-corrected LST used in the previous
equations, TMODIS-ori the original MODIS LST, γ (°C m−1) the mean
lapse rate (set to 0.006 °C m−1), HHR the altitude of the MODIS pixel
and HLR the mean altitude within the LR pixel.

In a second step, the semi-empirical linear model of Budyko (1956)
andManabe (1969) is used to link the surface SM (0–5 cm) and the SEE
terms. According to Merlin et al. (2013), the linear model is a good ap-
proximation for kilometer scales so the SEE for each HR pixel can be
written as:

SEEHR ¼ SMHR=SMp ð5Þ

where SMp is a parameter estimated at LR at each execution from daily
SM and SEE observations as follows:

SMp ¼ SMLR=SEELR ð6Þ

with SMLR the radiometer-sensed SMand SEELR the average of the SEEHR
values inside the LR pixel.

The disaggregation is finished by applying a first order Taylor series
to the SM-SEE model at each HR pixel (downscaling relationship). The
corresponding disaggregated SM is:

SMHR ¼ SMLR þ SM’ SEELRð Þ � SEEHR−SEELRð Þ ð7Þ

with SM’(SEELR) the partial derivative of SM relative to SEE at LR (SMp).

3.2. DISPATCH operational implementation

Following themethodology introduced inMerlin et al. (2012), C4DIS
executes DISPATCH on a set of possible combinations of input datasets,
producing multiple HR outputs that are averaged together into a single
final disaggregated SM field (SM_HR). The rationale behind this is to ac-
count for the uncertainty of the approach and to reduce independent
random errors (Malbéteau et al., 2016; Merlin et al., 2012). The input
ensemble is formed by 4 downsampled instances of the original L3 SM
dataset and up to 6 LST datasets corresponding to 3 consecutive days
of MODIS acquisitions (Aqua and Terra overpasses). This means that
each SM_HR output comes from the composition of up to 24
DISPATCH outputs (up to 24 input SM-LST possible pairs).

SMOS original datasets are downsampled in order to work at the ra-
diometer resolution. SMOS L3 products are provided on a 25 km grid,
which can be up to half of the original SMOS resolution (35–50 km).
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The four SM datasets are derived from the original SMmap by sampling
the data at 50 km and are assumed to be independent. This is not totally
true, since grid cells depend on the surrounding cells from a radiometric
perspective, but helps to potentially reduce (and provide an estimate
of) random errors in the SM_HR data. Regarding the selection of 6
MODIS LST datasets from 3 consecutive days, it is assumed that SM
fields are spatially stable for periods of at least 1 day around the SMOS
overpass time. This 3-day derived product with daily estimated SMp is
referred as the ‘sm1k3d’ product in Malbéteau et al. (2016) and is the
one built by the C4DIS processor. The 3-day product has much better
temporal coverage than its 1-day counterpart (‘sm1k1d’), but the un-
certainty associated to the methodology is expected to be higher since
the temporal stability assumption can be often violated by precipitation
and irrigation events.

There is no dedicated dataset in the C4DIS product that specifies ex-
plicitly whether the 3-days stability condition is respected or not. In the
future, this will be achievable with the use of ancillary precipitation in-
formation, for example. Meanwhile, in addition to the SM_HR dataset,
two more datasets are produced as indicators of the aggregation of the
DISPATCH ensemble: the STD dataset, which is the standard deviation
of the up to 24 disaggregated SM fields, and the COUNT dataset, which
is the size of the ensemble. The aggregation is conducted if at least 3
SM fields are generated, so the COUNT values range from 3 to 24. In
this paper, we study the STD and the COUNT datasets as potential
sources of information for a future quality control flag (Section 5.5).

Finally, the current version of DISPATCH filters out any LST pixel
values that have associated QC flags different from 0 and 17, which cor-
respond tomaximumLST quality (error b 1K) andmaximumemissivity
error of 0.01 and 0.02 respectively (Solano et al., 2010; Wan, 2006).
Areas with more than 1/3 of their surface covered by clouds are also
discarded. Differences between the operational and the prototype ver-
sions of DISPATCH are summarized in Table 2.

3.3. Pre-processor

The C4DIS pre-processor prepares the input ensemble that is re-
quired byDISPATCH. The pre-processor uses theMODIS sinusoidal tiling
system as the execution reference, meaning that the processor is exe-
cuted for the SMOS and ancillary data contained within each MODIS
tile bounds. More information about the grid can be found in http://
modis-land.gsfc.nasa.gov/MODLAND_grid.html. The SMOS and ancil-
lary data inside the tile bounds are selected and re-projected to an
equal-spaced lat-lon WGS84 grid. Considering that ancillary products
are presented in different datums and grids, the choice of the WGS84
projection minimizes the total number of resampling operations.

The pre-processor is divided into modules for file format transfor-
mation, dataset extraction, re-projection and re-gridding. As explained
in the previous section, DISPATCH requires 4 subsampled instances of

SMOS data and up to 6 LST datasets. As a consequence, the re-
projection and re-gridding are sensible operations that deserve being
explained in detail.

The pre-processor outputs are re-projected to the sameWGS84 pro-
jection, but resampled to different resolutions: SMOS subsampled ras-
ters are provided on 0.4° grids while ancillary raster data are provided
on a 0.01° grid. The SMOS 0.4° grids are derived from an original global
grid at 0.2° by sliding a 0.4° window over it, so that the pixel centers are
coincident. Based on this, the SM values become representative of the
double of the original grid resolution 0.2°, which approximately
matches the average SMOS resolution. The disaggregation is only per-
formed in the intersection area between the 4 SMOS grids and the ancil-
lary data grid (Fig. 1).

3.4. Post-processor

The C4DIS post-processor transforms the DISPATCH outputs into the
CATDS format. It includes two significant transformations that impact
the disaggregated data. First, in the case that DISPATCH generates neg-
ative SM values (which is mathematically possible), the post-
processor clips them to 0 to respect physical meaning. Second, since
the outputs of DISPATCH are presented in local time and day, the
post-processor assigns to them the corresponding UTC time and day
to keep consistency with other SMOS products.

3.5. Assumptions and applicability domains of the algorithm

The application requirements of the C4DIS processor are directly
inherited from DISPATCH. The following considerations must be taken
into account:

Table 2
Main differences between the DISPATCH operational implementation in the C4DIS processor and the previous prototype versions.

C4DIS processor Merlin et al. (2013) Merlin et al. (2012)

SEE model Linear
(Budyko, 1956; Manabe, 1969)

Linear
(Budyko, 1956; Manabe, 1969)

Non-linear
(Noilhan & Planton, 1989)

Calculation of Tv “Hourglass” approach
(Moran et al., 1994)

“Hourglass” approach
(Moran et al., 1994)

“Hourglass” approach
(Moran et al., 1994)

Calculation of temperature end-members
(Ts,min, Ts,max, Tv,min, Tv,max)

Estimated by a simpler approach based
on the combination of LST and fv

Estimated by a simpler approach based on
the combination of LST and fv

Estimated by plotting MODIS LST against
MODIS albedo and NDVI within the LR pixel
(Merlin, Duchemin, et al., 2010)

Input SM data SMOS L3 SM SMOS L2 SM SMOS L2 SM
Input LST data “sm1k3d” mode

(3 × 2 input LST datasets)
“sm1k1d” mode
(1 × 2 input LST datasets)

“sm1k3d” mode
(3 × 2 input LST datasets)

Input DEM data GTOPO30 GTOPO30 Not implemented
LST filtering Yes, QC flags 0 and 17 Yes, QC flags 0 and 17 No
Cloud-free threshold 0.67 0.90 0.90
Sea-free threshold 0.90 0.90 Not implemented

Fig. 1. Simplistic representation of the relation between the SMOS subsampled grids (at
0.4°) and the re-projected ancillary data at 0.01°. The extent of the re-projected ancillary
image (LST, NDVI, etc.) matches the intersection of the four SMOS grids. The
disaggregation is only applied in this overlapping zone.
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- Cloud free conditions: soil temperature can only been retrieved from
optical sensors if clouds are not present. C4DIS products show data
gaps associated with clouds.

- Low vegetation cover: The LST-NDVI trapezoid describes a zone of
values where no useful disaggregated data can be produced since
LST is mainly controlled by vegetation transpiration, with no sensi-
tivity to surface SM (Merlin et al., 2013). Sites with partial fractional
vegetation cover at the 1 km resolution are desired.

- Moisture-driven evapotranspiration: the disaggregation relies on the
dependence established between LST, evapotranspiration and SM.
Some climates exhibit low dependency between those variables.
Typically, climates characterized as energy-limited, like humid cli-
mates, exhibit a weaker moisture-evaporation coupling.

- Medium to high spatial variability: theMODIS-derived SEE is comput-
ed with a polygon method that relies on LST and reflectance end-
members (Moran et al., 1994). In the current version, DISPATCH is
contextual and thus heterogeneous scenes with meaningful dry-
wet contrast are needed in order to ensure good end-members accu-
racy (Merlin, Al Bitar, Walker and Kerr, 2010). Note that LST end-
members could be estimated using available meteorological data
(Moran et al., 1994) independently from the surface (wet/dry) con-
ditions observed at the 1 km resolution within the LR pixel (Stefan,
Merlin, Er-Raki, Escorihuela, & Khabba, 2015).

- Accuracy of the SMp parameter: the SMp parameter is calculated at LR
scale by using a linear relationship that has been studied as suitable
for kilometer scales (Merlin et al., 2013). It is based on the assump-
tion that the sub-pixel variability of SMp atHR is negligible. Soil char-
acteristics (texture, porosity, etc.) may impact the relationship
between SEE and SM and thus SMp. Hence, the current versions of
C4DIS and DISPATCH should perform better in areas with homoge-
neous soil characteristicswhere the intra-pixel spatial SM variability
is mainly due to forcing agents, namely precipitation and irrigation.

- Mismatch of overpass times: the C4DIS processor uses MODIS LST
datasets at 6 different timestamps. This is based on the assumption
that the SM pattern is maintained over a period of 3 days, with no
rain events occurring in between.

- Mismatch of sensing depths: SMOS L-band SM estimations are repre-
sentative of the soil first 5 cm content, whileMODIS temperature ac-
quisitions are representative of the soil skin layer. DISPATCH
assumes that the soil skin temperature is correlated with the soil
evaporation process occurring in the 0–5 cm of soil (Merlin, Al
Bitar, Walker and Kerr, 2010).

3.6. Global product description

- Coverage, grid and resolution. C4DIS products are presented in a reg-
ular lat-lon grid at 0.01° resolution. The projection is divided in a
tiled grid that follows the MODIS sinusoidal tiling system, meaning
that the C4DIS tiles are centered at MODIS tiles and follow the
same name convention in (h,v) coordinates. Due to reprojection,
the tiles present different size. C4DIS products can be generated for
all emerged lands (tiles with more than 50% of land), but since
they are tagged as ‘scientific’ products, the tiles of interest have to
be delivered on demand. For this study, the following tiles have
been produced: (29,12) and (30,12) for the validation over the MB,
(09,05) for LW and (08,05) for WG. Fig. 2 and Fig. 3 show annual
averages of C4DIS products for the selected tiles. The extension and
border of the tiles are easily distinguishable.

- Availability and timeliness. The delivering of C4DIS products is deter-
mined by the availability and timeliness of the input datasets. The
limiting dataset is the MODIS MOD13A2 product (NDVI), which is
valid for a period of 15 days starting at its date of acquisition
(DoA) but can be delivered some days later. In consequence, C4DIS
products for dates DoA to DoA + 15 are produced at date

DoA + 25. In other words, each 16 days the C4DIS products for ac-
quisition dates between 25 to 10 days before are delivered.

- Datasets and quality control. We cannot provide a full-proof quality
flag given the current status of the processor and the algorithm. Nev-
ertheless, the output COUNT and STD datasets can help to assess the
quality of the SM_HR dataset. Combining these datasets with addi-
tional ancillary data like precipitation or MODIS/SMOS quality
flags, may help to build a quality control dataset in the future.

As introduced in Section 3.2, the COUNT field determines the
number of SM–LST combinations used by DISPATCH to produce one
output. Low COUNT values indicate missing input data as result of
diverse reasons: SMOS RFI contamination, MODIS cloudy scenes,
failures in the SMOS/MODIS acquisitions delivering, etc. SM_HR
fields generated when low COUNT values are present do not profit
from the reduction in independent random errors as result of
averaging. The STD field contains the per-pixel standard deviation
of the up to 24 disaggregated datasets with respect to the averaged
output SM_HR. Low values of STD are desirable since they reveal
temporal persistency of both temperature and moisture variables.
High values may indicate external forcing agents (precipitation and
irrigation) within the 3-days window.

4. Analysis methodology

Our analysis involves two main approaches: qualitative assessment
of disaggregated SMmaps and statistical evaluation. The statistical eval-
uation consists on comparing the L3 SMOS product (LR) and the L4
product (HR) against the in situ SM by using standard statistical metrics
(e.g. correlation, bias, etc.). This can be accomplished in the spatial or in
the time domain. We base the statistical evaluation on the assumption
that the 1 km pixel is more representative of the in situ measurement
than the whole LR pixel.

Fig. 2. Year averages of SMOS L3 and L4 disaggregated products (ascending orbit) for part
of the USA and for the period 06/2013 to 05/2014. The L4 figure includes only the tiles
(08,05) and (09,05), joined together. The black circles correspond, from left to right, to
the location of Walnut Gulch and Little Washita validation networks.
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In order to assess the relative spatial performance of both L3 and L4
products at HR, we directly compare the station measurements to the
satellite retrievals, without aggregating them at LR. In the subsequent
sections, MB refers to the whole Murrumbidgee network, including
Yanco area. Yanco only refers to the 12 stations contained in this region.

4.1. Data preparation

We filter L3 and L4 SM time series for radio frequency interference
(RFI) by removing pixels having more than 10% RFI probability. The
RFI information is extracted from the same CLF31A/D product and
accounts for the percentage of brightness temperatures acquisitions af-
fected by RFI presence (Kerr et al., 2013; Oliva et al., 2012). In addition,
regarding the in situ data,we only keep the SMvalues at the SMOS over-
pass times. Finally, we filter the three SM time series (in situ, L3 and L4)
for common dates with valid SM values (N0.0 m3/m3).

4.2. Analysis of the temporal and spatial variability of the in situ SM

As expected for any data disaggregation approach, the application of
DISPATCH is relevant when the SM spatial variability at the downscaled
resolution is larger than the output uncertainty. Since the current
version of DISPATCH relies on the spatial contrast of LST and SM of
the scene, a preliminary study on the spatial SM variability of the valida-
tion areas is desired. In homogeneous SM landscapes, the output uncer-
tainty is likely to be greater than the spatial gain provided at HR by
disaggregation.

Similarly, it is desirable that the evaluation include in situ time series
spanning the full range of SM conditions and seasonal changes. In other
words, the temporal standard deviation (σ) should be large enough so
that all the states of the SM variable are represented and no selection
bias is present. Additionally, stations exhibiting very different temporal
σ may suggest landscape spatial heterogeneity: soil characteristics like
texture, vegetation and topography affect the dry-down process, gener-
ating different extreme values in time.

Based upon the considerations discussed above, the evaluation of
the performance of the C4DIS products should include a preliminary as-
sessment of the spatial and temporal SM variability of the validation
networks. The performance of DISPATCH outputs over MB and Yanco
has been identified as rather satisfactory in recent studies (Malbéteau
et al., 2016; Merlin et al., 2012), which makes them good references
for spatial and temporal σ.

4.3. Classical metrics

Given the spatialmismatchbetween in situ and satellite estimations and
the spatial scarcity of ground stations, most classical satellite validation
campaigns only evaluate the temporal dimension, by means of metrics
like correlation (R), root mean square error (RMSE) and bias (B) (Albergel
et al., 2012; Albergel, Brocca, Wagner, de Rosnay, & Calvet, 2013;
Entekhabi, Reichle, Koster, & Crow, 2010; Al Bitar et al., 2012). In this
study, we use similar temporal analysis but we also include an evaluation
in the spatial domain sincedisaggregation techniques aimatproducingbet-
ter spatial representation. The spatial statistical analysis consists of comput-
ing the metrics between the satellite and in situ values for each day, then,
deriving the average of each metric for the whole period. We deliberately
establish a minimum of 5 points per day to compute the metrics.

Herein, instead of the RMSE, we use as error metric the standard de-
viation of the error (Eq. (8)) (Mood, Graybill, & Boes, 1974; Salkind,
2010),which is a non-biased estimation of the error and so it is not com-
promised by the bias in the mean and amplitude of the time series that
affects the RMSE. The relationship between both metrics is written in
Eqs. (9) and (10). Since we already use multiple terms to refer to differ-
ent standard deviationmeasures and datasets in this paper (σ, STD), we
will refer to this metric as unbiased-RMSE or ubRMSE (Entekhabi,
Reichle, et al., 2010). Given that the 1 kmpixels are in general heteroge-
neous and that the ground data also present measurement uncer-
tainties, the term ‘error’ has been replaced by ‘difference’ in these
metrics, i.e. RMSD and ubRMSD.

ubRMSD ¼ √ E SMsatellite–E SMsatellitef gð Þ– SMinsitu–E SMinsituf gð Þ½ �2
n o

ð8Þ

RMSD ¼ √ E SMsatellite–SMinsituð Þ2
n o

ð9Þ

ubRMSD ¼ √ ðRMSD2–B2Þ ð10Þ
where E{·} is the expectation operator, SMsatellite and SMinsitu the satel-
lite and the in situ SM time series.

We include one additional metric to assess the efficiency gained in
spatial representativeness: the slope (S) of the regression line between
in situ and satellite estimates:

S ¼ R � σsatellite=σ insitu ð11Þ

with σsatellite and σinsitu being the standard deviations of satellite and in
situ SM, respectively. The S metric can help to understand how much
better the SM redistribution is represented after the disaggregation
process. Whereas aggregation systematically decreases the σsatellite,
disaggregation specifically aims to improve the spatial representa-
tion of satellite SM by increasing the σsatellite at the level of σinsitu,
while keeping a significant R. Mathematically speaking, R is the
slope of the standardized regression line, and S is scaled by the σ
values of both data ensembles (Rodgers & Nicewander, 1988).
Since the σinsitu is fixed, S is more sensitive than R to changes in
σsatellite. In summary, an increase in random uncertainties (larger
ubRMSD, smaller R) in disaggregated SM might be acceptable if S is
closer to 1. Note that the random uncertainties in satellite SM can
be significantly reduced via the techniques of data assimilation in
land surface models, but the systematic errors associated with the
mismatch between data resolution and model application scale are
more difficult to take into account at HR (Merlin et al., 2006).

Finally, themetrics here (S, R, ubRMSD, B) assume that a linear rela-
tionship exists between the two datasets compared. This means that
they cannot replace the visual assessment of the data. In the general
case, both SMOS L3 and disaggregated SM may exhibit non-linear be-
havior with respect to in situ SM.

Fig. 3. Year averages of SMOS L3 and L4 disaggregated products (ascending orbit) for part
of Australia and for the period 06/2010 to 05/2011. The L4 figure includes part of the tiles
(29,12) and (30,12), joined together. The dotted line depicts the boundary of theMurrum-
bidgee catchment. The presence of clouds affects the L4 and not the L3 products,
preventing the first one to show lower average values of SM.
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4.4. Relative performance metrics

Comparing the improvement/degradation in statistics for different
cases of study (networks, filtering, time period, etc.) may be difficult:
we propose as solution to calculate their relative gains as introduced
inMerlin et al. (2015). Briefly, the gain is ameasure of the improvement
in the statistics obtained for the L4-in situ pair with respect to the L3-in
situ pair. The gain can range from −1 to 1, where positive values indi-
cate disaggregated data having better correspondence with in situ
than LR data. In this study, we keep the nomenclature of Merlin et al.
(2015) and we add a new gain term for the ubRMSD (see Table 3).
The gains are calculated as in Eq. (12) for in S and R metrics, and as in
Eq. (13) for B and ubRMSD.

GX ¼ − j1−XL4j−j1−XL3jð Þ= j1−XL4j þ j1−XL3jð Þ ð12Þ

GX ¼ − jXL4j−jXL3jð Þ= jXL4j þ jXL3jð Þ ð13Þ

where X designates the metric (S, R, B, ubRMSD), XL4 the value of the
metric when disaggregated SM is compared against in situ, and XL3 the
value of the metric when L3 SM is compared against in situ.

5. Results and discussion

This study seeks to provide a first assessment on the applicability
of the DISPATCH-based processor under different climatic and
landscape conditions. It also attempts to provide statistical guidelines
on the a priori suitability of a geographical area for the production
of meaningful C4DIS fields. The analysis spans the 01/06/2010 to
31/05/2011 period for the MB network and Yanco area and the
01/06/2010 to 31/12/2014 period for the LW and WG networks.
The SMOS data collected during the commissioning phase (until
31/05/2010) is discarded.

5.1. Preliminary analysis

In order to predict the performance of the processor, we conduct a
statistical analysis on the in situ SM data. We derive conclusions about
their temporal and spatial variabilities by looking at their distribution
of SM values and their distribution of ‘spatial σ’ and ‘temporal σ’. The
‘spatial σ’ (upper row in Fig. 4) is the standard deviation of the SM dis-
tribution on each day. The ‘temporalσ’ (middle row) is the standard de-
viation of the SM series of each station.

As stated in Section 4.2, we consider the in situ SM distribution char-
acteristics of MB and Yanco networks as reference in the present study.
The spatialσ plot shows narrower distributions for LW andWG, and the
mean value is much lower for the latter (0.03 m3/m3). This means that
the spatial variability at LW and WG seen at the satellite overpass
times is lower than in the reference cases, so we expect poorer perfor-
mances in the spatial domain.

In the temporal domain (middle row of Fig. 4), the mean variabil-
ity of LW andWG networks is lower than that of the Australian cases.

Fig. 4. Distribution of spatial and temporal standard deviations and SM values for the in situ samples of Yanco, MB, LW andWG (1st to 4th columns respectively) at the SMOS overpass
times. Number of bins of the histograms is 40. The median of the distributions is depicted in dashed line and the mean in solid line. The WG soil moisture maximum percentage is not
shown (right-down graph) for readability and it reaches 47% of the samples.

Table 3
List of performance metrics used in this
study, from (Merlin et al., 2015).

Gain(S) ……......... GEFFI

Gain(R) …….......... GACCU

Gain(B) ……......... GROBU

Gain(ubRMSD).... GubRMSD
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The SM distribution of WG (lower-right figure) shows a very strong
peak near zero that accounts for almost the half of the samples.
Under these conditions, we expect WG to be the network with
worst temporal performance of C4DIS products, while LW should be-
have similarly to MB and Yanco. It is important to mention that LW
andWG only represent a portion of a SMOS pixel and the in situ sam-
ples only concern some HR pixels in space, so the distributions
depicted here serve only as approximation.

5.2. Qualitative examples

The qualitative inspection of disaggregated SM maps for MB, Yanco,
LW andWG, shows that the L4 product is able to reveal spatial entities
like small and sparse water bodies.

Figs. 5 and 6 contain sample outputs of the C4DIS processor on
cloud-free days for the four areas. In the MB picture (Fig. 5), the Mur-
rumbidgee river is revealed thanks to disaggregation, while the south-
eastern region is empty due to clouds and the SMOS non-retrieved
pixels over themountains. In Fig. 6, disaggregation does not help reveal
the Little Washita river course but it does with the surrounding lakes.
The processor fails to display any spatial pattern inside the WG water-
shed. These maps are in agreement with the evaluation in the previous
section.

Yanco maps are a good example of the usefulness and relevance of
the C4DIS products when the algorithm assumptions are met. Fig. 7
shows the Yanco area with the limits of the Coleambally Irrigation
Area (CIA) units superimposed. At a first glance, the L4 SMmap reveals
the farms that are actually irrigated, while original SM map do not.

Fig. 6. Maps of L3 SM (CLF31A) and L4 disaggregated SM for LW (left column) and WG (right column) watersheds on 02/05/2011 and 01/05/2011 respectively. Solid black contours
correspond to watershed boundaries. In the left column, the bold dotted line in the middle of the watershed correspond to the Little Washita river and the bold dotted contours to
surrounding lakes.

Fig. 5.Maps of L3 SM (CLF31D) and L4 disaggregated SM for MB watershed on 22/11/2010 for the SMOS descending overpass.
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Finally, we show in Fig. 8 a series of C4DIS disaggregated outputs be-
tween the 4th and the 18th day of 2011. We can identify in detail the
areas affected by the floods that affected the states of New South
Wales and Victoria on those days. Likewise, we see how the dry-down
process is faster in some small areas than in others (west of Yanco).

5.3. Spatial evaluation

In this section, the L4 and L3 SM products are compared at HR on a
daily basis against the in situmeasurements.

Table 4 shows daily statistics averaged over the periods of analysis.
When comparing the statistics obtained for L3 and L4 products in MB
and Yanco networks, it is noted an important enhancement of the S
and the R values, ranging between 0.24–0.32 and 0.09–0.17, respective-
ly. Results are consistent with the conditions of the area, especially
those of Yanco (semi-arid climate with SM spatial heterogeneity domi-
nated by irrigation). Spatial B is maintained while ubRMSD increases
(around 0.02 m3/m3) which can be explained by the added uncertainty
when combining data from different sources.

LWandWGstatistics aremuchpoorer thanMBones: R andSnever ex-
ceed 0.11. The reasons for that can be found in both the algorithm and the
conditions of the validation area. First, the L3 statistics (R and S) are much
worse in the American than in the Australian networks, which may entail
uncertainty present in the LR product that is propagated to the L4 product.
Second, according to the preliminary statistical analysis (Section 5.1), the
spatial σ distribution of WG is narrower and span over lower values than
those of the Australian networks. The spatial variability cannot explain
however the poor statistics of LW, since here the mean spatial σ is similar
to the Australian ones (0.07m3/m3 for Yanco, 0.06m3/m3 forMB and LW).
Another important aspect to take into consideration is the mismatch be-
tween the validation extent and the SMOS resolution. LW and WG cover
onlypart of the surface of oneSMOSpixel (~1/4 and~1/12of its equivalent
surface, respectively), so the distribution of spatial σmay not be represen-
tative of the surface perceived by DISPATCH. All this suggests that a quali-
tative analysis of the area is strongly recommended.

The LW watershed has rolling relief and a variety of soil textures
and vegetation types, which are not considered in the soil tempera-
ture equations of DISPATCH. Moreover, its extension is around 4
times smaller than the Yanco area: we can think that a higher hetero-
geneity within the 1 km pixel would hamper R and S statistics as

Fig. 8.Maps of L4 disaggregated SM for MB on the first days of January 2011, showing the progression of floods that affected New SouthWales and Victoria states. The title of each image
contains the date and the SMOS overpass (‘A’ for ascending, ‘D’ for descending).

Fig. 7. Maps of L3 SM (CLF31D) and L4 disaggregated SM for Yanco area on 22/11/2010.
Black lines represent the contours of Coleambally irrigated farms.
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well. Most importantly, LW climate is defined as sub-humid, so we
can expect the link moisture-evaporation to be weak. Concerning
WG, the soils are of fast infiltration (sands and gravels), which re-
duces the apparent SM spatial contrast at the satellite overpass
times, a necessary condition for an accurate computation of the
DISPATCH SMp parameter.

The comparison of the results here with previous versions of the
algorithm can shed light on the pertinence of the choices made in
the algorithm since Merlin et al., 2012. Regarding the most recent
study, similar spatial statistics for MB and Yanco can be found in
Malbéteau et al., 2016, which proves that the performance of the
processor is coherent with that of the prototype algorithm. The re-
maining differences are originated by two factors. First, in our aim
to assess the qualities of the entire C4DIS processor, we use as LR
SM reference the original SMOS CLF31A/D product, while
Malbéteau et al., 2016 employed a reprojected form of the same
product used by DISPATCH, which was a reasonable choice from
the algorithm point of view. Second, the C4DIS post-processor
clips to zero the negative values produced by DISPATCH, a
module that was not still implemented at the time of Malbéteau
et al., 2016.

Another two former validation campaigns of DISPATCH
showed better correspondence with in situ measurements, but
they were accomplished for specific areas with known high-
evaporative demand and for no more than a dozen of dates. For
the Murrumbidgee catchment and AACES-I campaign (Merlin
et al., 2012), and the Catalunya campaign (Merlin et al., 2013),
summer 2010 and 2011 respectively, the correlation values
were close to the double of those obtained for MB in this study.
However, the AACES-based study also reported negative values
for those dates with very dry homogeneous SM scenes. This

confirms our hypothesis for WG, were the large number of ‘flat’
SM scenes is probably behind the unsatisfactory statistics. In the
same article of 2012, the AACES-II results (winter), allowed to
presum that the weak evaporation-SM coupling was behind neg-
ative R values. Our statistics for LW seem to confirm this point,
but since the mean R is higher, it suggests that the algorithm
might be useful for some periods of the year.

5.4. Temporal evaluation

For the temporal analysis, we consider the same period and datasets
as in Section 5.3. We compute statistics on the concatenation of all the
SM series within a network. Table 5 displays temporal statistics for the
four validation networks. Regarding Yanco and MB, the S metric is bet-
ter for theHR SMproduct (between 0.12 and 0.18 higher),which is con-
sistent with the spatial evaluation results. R is slightly degraded in
Yanco while maintained in MB. This, and the increase in ubRMSD, can
be explained by the temporal uncertainty induced by the processor
when considering as inputs observations acquired in different days
and times. These results are consistent with previous validation studies
of DISPATCH: Merlin et al., 2013 showed that the temporal S could in-
crease between 0.15 to 0.25 after disaggregation, while R being main-
tained or increased and ubRMSE increased.

In the case of LW, the disaggregated SM (L4) has a slightly better S
when compared to in situ SM than does L3 SM for both orbits (improve-
ment of +0.06 for A orbit and of +0.03 for D orbit). The same evalua-
tion holds for WG (improvement of +0.05 and of +0.08 for A and D
orbits respectively). Like in the Yanco case, disaggregation slightly de-
grades R and ubRMSD for both SMOS orbits, showing again the increase
of random uncertainties attributed to the models and data used by
DISPATCH.

Table 5
Temporal statistics of Yanco and for the period 01/06/2010 to 31/05/2011, and of LW andWG for the period 01/06/2010 to 31/12/2014. ‘L3’ refers to the comparison between L3 SM and in
situ SMand ‘L4’ refers to the comparison of L4 disaggregated SMand in situ SM. In the second column, ‘A’ stands for ascending orbit and ‘D’ for descending orbit. All the values are expressed
in m3/m3, except for R and Number of points, which are unitless, and RFI percentage, which is in %.

Yanco MB LW WG

L3 L4 L3 L4 L3 L4 L3 L4

S A 0.368 0.489 0.363 0.538 0.406 0.463 0.490 0.544
D 0.333 0.465 0.383 0.542 0.415 0.441 0.381 0.458

R A 0.432 0.370 0.321 0.377 0.468 0.434 0.468 0.436
D 0.369 0.356 0.361 0.368 0.460 0.410 0.352 0.366

B A 0.019 0.023 0.033 0.027 0.023 0.017 0.031 0.026
D 0.004 0.014 0.020 0.019 0.025 0.014 0.030 0.026

ubRMSD A 0.090 0.120 0.105 0.118 0.078 0.088 0.044 0.051
D 0.095 0.118 0.095 0.118 0.077 0.088 0.052 0.056

RFI perc. A 0.000 – 0.248 – 1.893 – 1.958 –
D 0.000 – 0.000 – 1.893 – 1.562 –

Nb points A 754 754 1429 9027
D 723 723 1409 9337

Table 4
Spatial statistics of Yanco andMB for the period 01/06/2010 to 31/05/2011 and of LWandWG for the period 01/06/2010 to 31/12/2014. ‘L3’ refers to the comparison between L3 SMand in
situ SMand ‘L4’ refers to the comparison of L4 disaggregated SMand in situ SM. ‘A’ stands for ascending orbit and ‘D’ for descending orbit. All the values are expressed inm3/m3, except for R
and Number of days, which are unitless.

Yanco MB LW WG

L3 L4 L3 L4 L3 L4 L3 L4

S A 0.064 0.309 0.086 0.403 0.003 0.047 0.004 0.110
D 0.080 0.378 0.195 0.430 0.031 0.046 0.017 0.111

R A 0.201 0.316 0.156 0.288 0.030 0.064 0.015 0.102
D 0.194 0.363 0.251 0.335 0.115 0.057 0.042 0.111

B A 0.018 0.021 0.031 0.035 0.023 0.016 0.031 0.026
D 0.006 0.011 0.016 0.020 0.023 0.012 0.029 0.026

ubRMSD A 0.072 0.094 0.082 0.103 0.063 0.076 0.030 0.037
D 0.077 0.091 0.080 0.100 0.062 0.076 0.033 0.040

Nb A 74 100 573 552
Days D 66 95 557 545
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According to our preliminary analysis on in situ temporal σ and SM
samples, WG should at least behave differently with respect to the
other networks (much narrower distribution of SM values, skewed to
the dry section of the range and lowerσ variability). However, no signif-
icant differences are found in the temporal statistics.

Differences can be appreciated more easily through qualitative in-
spection of scatter plots (Fig. 9). In Yanco and MB plots, the increase
in ubRMSD is observed in the more dispersed cloud of points, although
the distribution appears slightly closer and more symmetric around the
1:1 line. In the case of LW, we can see that for drier SM conditions
(b0.15m3/m3), disaggregated values are closer to in situ values and be-
come equally distributed around the 1:1 line. Since LW climate is sub-
humid, evapotranspiration processes aremainly energy-driven; howev-
er, we can expect them to bemoisture-driven during periodswith lower
water availability and higher temperatures like summer. This is con-
firmed in Fig. 10, which shows the scatter plot for LWsummers. Regard-
ingWG, the scatter plots show nomajor differences between L3 and L4
data. This is consistent with the very low spatial and temporal in situ σ:
DISPATCH is operating at the limit of its nominal range at 1 km resolu-
tion and the amount of information obtained is not more important
than the uncertainty introduced. It outlines also the importance of qual-
itative assessments: although LW and WG show similar global spatial
and temporal statistics, C4DIS disaggregated fields, which are not of in-
terest in WG, are valuable in the case of LW summers.

5.5. Analysis of the STD and COUNT datasets

As introduced in Section 3.6, the STD and COUNT datasets can
help derive conclusions on the quality of the SM_HR values. In this
section, we evaluate spatial and temporal statistics on SM samples
with different corresponding STD and COUNT values. We first select
the samples with values falling inside a given STD or COUNT range of
values; then, we compute statistics on the in situ, L3 and L4 values for
those samples. This analysis is conducted onMB and Yanco networks
as USDA networks still show low statistics after filtering for STD and
COUNT values. Herein, we use the gain metrics introduced in
Section 4.4, which will simplify the task of comparison between
bins of STD and COUNT.

Table 6 shows spatial statistics for MB and Yanco divided in 3 ranges
of STD (b0.03 m3/m3, 0.03–0.07 m3/m3, N0.07 m3/m3). Note that the
total number of days analyzed drops drastically when STD or COUNT

filtering is applied to spatial metrics. This is as expected since for a
given time stamp, the samples have STD and COUNT values that belong
to different bins andwe need at least 5 samples in the same bin to com-
pute statistics. C4DIS SM dataset exhibits the lowest correlation (S and
R) and the highest error (ubRMSD)with in situwhenmost of the pixels
have high STD (N0.07m3/m3). This seems plausible since large ubRMSD
values can be produced by forcing events (rain, irrigation) in the 3-days
windowof DISPATCH, so thefinal SM_HRvalueswould contain high un-
certainty. We cannot generalize any behavior in performances for the
medium and lower STD ranges (b0.07 m3/m3) since MB and Yanco
show different trends. If we consider only Yanco, which is a much
more homogeneous area in terms of climate and landscape properties,
we can conclude that, regardless of the bias, the rest of spatial metrics
are better as STD gets lower. Whether this is applicable to other homo-
geneous areas or not need to be the subject of additional studies.

Fig. 9. Scatterplots of original L3 SM (1st row) and L4 disaggregated SM(2nd row) versus in situmeasurements for both A andDorbits. The samples here correspond to theperiods 06/2010
to 05/2011 for MB and Yanco, and 06/2010 to 12/2014 for LW and WG. Dashed line represents the 1:1 slope and the solid line corresponds to the linear regression line (S statistic).

Fig. 10. Scatterplot of L3 SM (1st row) and L4 disaggregated SM (2nd row) against in situ SM
samples for LWnetwork for summer periods (June, July and Augustmonths of years 2010 to
2014). Dashed line represents the 1:1 slope and the solid line corresponds to the linear
regression line (S statistic).
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Spatial statistics are also filtered for COUNT values (Table 7). In this
respect, statistics are better for large values of COUNT (17–24 datasets).
However, the number of days used in this computation is low in the
same line, if possible so the results may not be accurate.

Regarding the temporal domain, Yanco shows a deterioration of the
metrics as STD increases (Table 8), which is consistent with the prelim-
inary in situ spatial analysis andwould bemainly due to the uncertainty
added when precipitation or irrigation take place in the 3-days window
of DISPATCH. Such trend is not revealed in the MB data (same table),
and conclusions are difficult to be derived given the high heterogeneity
within the network.

Concerning the COUNT dataset, Table 9 clearly shows that
temporal statistics improve as COUNT increases. This seems to
confirm that the methodology of averaging of the disaggregated
ensemble helps to reduce random uncertainties in the temporal
domain.

6. Conclusions

The C4DIS processor is the new SMOS L4 processor of the French
ground segment CATDS, which provides global maps of disaggregated

SM at 1 km resolution. The C4DIS processor is the operational version
of the DISPATCH prototype (Merlin et al., 2012, 2013). DISPATCH disag-
gregates LR SM observations using HR soil temperature data. It models
the physical link between soil temperature, evaporation and moisture
with a semi-empirical SEE model and a first-order Taylor series expan-
sion around the SM observation. The soil temperature is derived from
the combination of LST, NDVI and elevation information. The C4DIS pro-
cessor uses the SM dataset of the SMOS 1-day L3 CLF31A/D product
from CATDS, the LST dataset of the MODIS MOD11A1 and MYD11A1
products from LP DAAC services, the NDVI dataset from the MOD13A2
product from LP DAAC services, and the elevation dataset from the
GTOPO30 product from the USGS Eros Data Center.

In this study, the C4DIS products were evaluated for four different
geographical areas: the Murrumbidgee validation network and the
Yanco area for the period 06/2010 to 05/2011, and the Little Washita
andWalnut Gulch networks for the period 01/2010 to 12/2014. The ob-
jectivewas to provide a first assessment of the processor under different
climatic and land conditions. The performancewas assessed by compar-
ing the disaggregated (L4) and non-disaggregated (L3) SM datasets
against the in situ measurements in both the spatial and temporal
domains. The in situ SM data was statistically analyzed beforehand in

Table 6
Spatial statistics as a function of the values of the STD dataset for MB and Yanco areas from 01/06/2010 to 31/05/2011. Best statistics are outlined and in italics. Last line of Yanco table (in
bold) should not be considered because it refers to only one day of statistics.

STD Yanco MB

GEFFI GACCU GROBU GubRMSD Ndays GEFFI GACCU GROBU GubRMSD Ndays

b0.03 0.27 0.24 −0.22 0.05 11 0.15 0.11 −0.12 −0.04 45
0.03–0.07 0.13 0.06 −0.11 −0.10 39 0.17 0.05 −0.03 −0.07 108
N0.7 −0.47 −0.12 −0.42 −0.57 1 −0.02 −0.09 0.05 −0.28 16

Table 7
Spatial statistics as a function of the COUNT dataset for MB and Yanco areas from 01/06/2010 to 31/05/2011. Best statistics are outlined and in italics.

COUNT Yanco MB

GEFFI GACCU GROBU GubRMSD Ndays GEFFI GACCU GROBU GubRMSD Ndays

1–8 0.16 0.08 −0.16 −0.16 69 0.16 0.07 −0.05 −0.11 143
9–16 0.12 0.16 −0.15 −0.07 22 0.14 −0.01 −0.12 −0.15 51
17–24 0.44 0.29 −0.08 0.06 11 0.35 0.15 −0.24 −0.04 13

Table 8
Temporal statistics as a function of the STD dataset for MB and Yanco areas from 01/06/2010 to 31/05/2011. Best statistics are outlined and in italics.

STD Yanco MB

GEFFI GACCU GROBU GubRMSD Nsamples GEFFI GACCU GROBU GubRMSD Nsamples

b0.025 0.18 0.04 −0.30 −0.06 472 0.16 0.03 −0.81 −0.06 904
0.025–0.040 0.04 −0.06 −0.14 −0.11 813 0.11 0.01 0.03 −0.10 1459
0.040–0.055 0.03 −0.04 −0.41 −0.18 192 0.13 0.06 −0.12 −0.03 475

Table 9
Temporal statistics as a function of the COUNT dataset for MB and Yanco areas from 01/06/2010 to 31/05/2011. Best statistics are outlined and in italics.

COUNT Yanco MB

GEFFI GACCU GROBU GubRMSD Nsamples GEFFI GACCU GROBU GubRMSD Nsamples

1–8 0.08 −0.06 −0.21 −0.15 965 0.14 0.02 0.08 −0.08 1910
9–16 0.17 −0.02 −0.18 −0.12 386 0.19 0.02 0.04 −0.09 737
17–24 0.22 0.19 0.35 0.01 126 0.21 0.15 0.44 −0.03 191
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order to predict the suitability of the C4DIS processor for each area. We
also evaluated the output COUNT and STD datasets as potential sources
of information for quality assessment.

The evaluation of the disaggregated SM dataset in Murrumbidgee
and Yanco brought results in coherence with previous versions of
DISPATCH (Malbéteau et al., 2016; Merlin et al., 2012), and presented
improvements on the spatial correlation in the range 0.09–0.17. Similar
enhancements were present in the temporal domain. Additionally,
C4DIS SMmaps succeeded to reveal spatial heterogeneities (rivers, irri-
gation areas, floods).

Little Washita and Walnut Gulch showed very low spatial metric
values for both non-disaggregated and disaggregated SM fields, though
disaggregation slightly improved the statistics. For the Little Washita,
the scatter plots revealed that the performances were better in the dry
section of the SM range (b0.15 m3/m3) and during summers, meaning
that the improvement in spatial representation was possible under
moisture-driven evaporation periods. Visual assessment of C4DIS SM
maps showed that the disaggregated product was capable of revealing
the presence of water bodies in the surrounding areas namely lakes.

For the Walnut Gulch network, the poor spatial correspondence
with in situwas easily explained by the preliminary statistical analysis
that we conducted on in situ SMdata: this revealed very low spatial var-
iability (mean spatial σ was equal to 0.03 m3/m3), which is one of the
essential conditions for a good performance of the algorithm. The eval-
uation of this network brought to view that the algorithm needs to be
improved to adapt to all types of soil. AlthoughWalnut Gulchwatershed
also has amoisture-controlled evaporative profile (semi-arid to arid cli-
mate) like the Australian areas, the soil is mainly sandy with high infil-
tration rates, which obstructs the detection of surface SM variations by
the algorithm.

When evaluating the temporal behavior of the (non-disaggregated
and C4DIS) satellite SM series, we found an improvement of the slope
of the regression line betweenC4DIS and the in situdata. The correlation
was slightly hampered, especially in LW and WG, and the standard de-
viation of the differences also increased. This was likely to be caused by
the increase in uncertainty associated with the use of multi-satellite
data.

With the aim of making the C4DIS products useful in a global per-
spective, we evaluated how the other two output datasets, COUNT
and STD, could help in the future definition of a quality flag.We showed
that for a homogeneous area like Yanco, spatial and temporal metrics
were better as STD decreased. Consistently, large COUNT values helped
to decrease the random uncertainties and they improved temporal sta-
tistics. In this area, heterogeneity is mainly driven by precipitation and
irrigation, and STD was directly linked to such events. On the contrary,
STD and COUNT could not give sufficient information for quality control
in more heterogeneous areas (like the entire Murrumbidgee), so we
concluded that output C4DIS datasets must be combined with ancillary
information like precipitation or other heterogeneity-related data
sources to implement a good quality flag field.

In conclusion, the C4DIS processor performswell in regionswith SM
spatial variability mainly produced by external forcing agents (precipi-
tation or irrigation). Additionally, the degree of variability must be
enough so the application of a disaggregation technique is advisable.
These two characteristics are mainly conditioned by the climate
(semi-arid), soil properties (withmoderate drainage), and land proper-
ties (low topography, quasi-homogeneous land cover). The proper per-
formance of the processor can be predicted by looking at the in situ SM
variability and assessing qualitatively the enounced characteristics. The
C4DIS SM products can be evaluated by applying ordinary spatial and
temporal statistics, visual inspection of maps as well as using the STD
and COUNT datasets on homogeneous areas. In the future, including
meteorological forcing (solar radiation, air temperature, wind speed
and air humidity at 2 m; Stefan et al., 2015), precipitation (Djamai
et al., submitted for publication), soil texture (Merlin et al., submitted
for publication) and solar exposure (Malbéteau et al., submitted for

publication) as ancillary datawill help improveDISPATCH and elaborate
a quality control dataset that will enlarge the applicability areas of the
processor.
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Bandara, R., J. P. Walker, C. Rüdiger, and O. Merlin (2015), Towards soil property retrieval
from space: An application with disaggregated satellite observations, Journal of Hydrology,
522, 582–593.

Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag (1998), A remote
sensing surface energy balance algorithm for land (SEBAL) 1. Formulation, J. Hydrology,
212-213, 198–212.

Bates, B., Z. W. Kundzewicz, S. Wu, and J. Palutikof (2008), climate change and Water: tech-
nical Paper vi, Intergovernmental Panel on Climate Change (IPCC).

Bausch, W., and C. Neale (1989), Spectral inputs improve corn crop coefficients and irrigation
scheduling, Transactions of the ASAE (USA).
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