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Osteoporosis is a bone fragility disease increasing with the aging of the population in many countries. The early diagnosis of osteoporosis is a major goal to prevent severe complications. For this aim, the investigation of trabecular bone micro-architecture provides relevant information to determine the bone strength. While the spatial resolution of clinical CT scanners is not sufficient to resolve the trabecular structure, new High Resolution peripheral Quantitative CT (HR-pQCT) systems have been developed to investigate bone micro-architecture in-vivo at peripheral sites (tibia and radius). Despite this considerable progress, the quantification of 3D trabecular bone micro-architecture in-vivo remains limited due to a lack of spatial resolution compared to the trabeculae size.

The objective of this thesis is to propose a joint super-resolution/segmentation approach for improving the quantitative analysis of in-vivo HR-pQCT images of the trabecular bone structure.

To begin with, we have investigated super-resolution methods for improving the image resolution. Super-resolution is a linear ill-posed inverse problem and one way to solve it is by using regularization methods. Approaches based on Total Variation (TV) and Higher Degree Total Variation (HDTV) were compared on 2D images of the trabecular bone. The minimization was made with a customized implementation of the state-of-the-art ADMM (Alternating Direction Method of Multipliers) method.

Afterwards, we have addressed the problem of the TV regularization parameter selection in the ADMM algorithm. An iterative method combining the Morozov principle and the Newton method was proposed in order to estimate the regularization parameter. This method was first compared with the Unbiased Predictive Risk Estimator (UPRE) method in the case of deconvolution. Then the Morozov principle was modified to be adapted to super-resolution and to obtain improved results compared to UPRE. The method provides a very good regularization parameter only in few iterations compared with the UPRE method that requires an extensive scanning of parameter values.

Furthermore, since our main goal is the quantification of the binary trabecular bone micro-structure images, we have developed a joint super-resolution/segmentation method. For this purpose, we proposed using a prior based on Total Variation with a convex relaxation (TVbox).The validation of the proposed methods was made on experimental micro-CT bone images after simulating the effect of blur, a loss of spatial resolution and degradation by noise. The results showed an improvement of the bone parameters and 3D connectivity with the TVbox method.

At the end of this research, we have investigated a semi-blind joint super-resolution/ segmentation approach aiming to estimate both the binary super-resolved image and the blurring kernel that is not known for the real HR-pQCT images. For this aim, we have used an alternated minimization scheme assuming that the images were blurred with a Gaussian blur. The first tests performed on a HR-pQCT experimental image for which a ground truth was available, showed better quantitative and visual results.

In conclusion, our work has shown that TV based optimization methods promise to improve the quantification of bone micro-architecture from HR-pQCT images.
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Résumé

L'analyse de la microstructure osseuse joue un rôle important pour étudier des maladies de l'os comme l'ostéoporose. Des nouveaux scanners périphériques haute résolution (HR-pQCT) permettent de faire des acquisitions de la micro-architecture osseuse in-vivo sur l'homme. Toutefois la résolution spatiale de ces appareils reste comparable à la taille des travées osseuses, ce qui limite leur analyse quantitative.

L'objectif de cette thèse est de proposer de nouvelles approches jointes super-résolution/ segmentation pour une analyse quantitative plus fine des images HR-pQCT in-vivo de la structure osseuse trabéculaire.

Dans une première étape nous nous sommes concentrés sur des méthodes de superrésolution afin d'améliorer la résolution des images. La super-résolution est un problème linéaire inverse mal-posé. Plusieurs stratégies de régularisation par variation totale (TV) et TV d'ordre plus élevé (Higher Degree TV) ont été comparées dans des images 2D d'os trabéculaire. Une méthode de minimisation de la fonctionnelle de régularisation par un algorithme de type ADMM (Alternating Direction Method of Multipliers) a été implémentée.

Ensuite, nous nous sommes intéressés aussi au choix des paramètres de régularisation pour la régularisation TV dans l'algorithme ADMM. Une méthode itérative combinant le principe de Morozov et la méthode de Newton a été développée pour estimer le paramètre de régularisation. Cette méthode a été comparée à la méthode UPRE (Unbiased Predictive Risk Estimator). Un principe de Morozov modifié permet d'améliorer les résultats obtenus avec UPRE. La méthode mise au point est rapide et ne requiert pas un balayage exhaustif des valeurs des paramètres.

Le but final étant la quantification de la micro-structure trabéculaire de l'os et nécessitant de binariser la structure osseuse, nous avons développé dans une deuxième étape une méthode de super-résolution/segmentation conjointe. Dans ce but, nous avons proposé un a priori basé sur la Variation Totale avec une relaxation convexe (TVbox). La validation des méthodes proposées a été faite sur des images expérimentales micro-CT après simulation de l'effet du flou, la perte de résolution spatiale et la dégradation par le bruit. Les résultats montrent une amélioration de paramètres quantitatifs de l'os et de la connectivité 3D avec la méthode TVbox.

Finalement, en vue de l'application à des images réelles HR-pQCT, nous nous sommes intéressés à une approche conjointe semi-aveugle super-résolution/segmentation qui vise à estimer à la fois l'image binaire super-résolue et le noyau de convolution. Dans ce but, un schéma de minimisation alterné a été utilisé en supposant que l'image est convoluée avec un noyau Gaussien. Cet approche a été validé sur des images de test et aussi sur une image expérimentale de HR-pQCT, pour laquelle la vérité terrain est disponible.

En conclusion, notre travail montre que les méthodes d'optimisation basées sur la régularisation TV sont prometteurs pour améliorer la quantification de la micro-architecture osseuse sur des images HR-pQCT. 
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RESUME ETENDU Introduction

L'ostéoporose est une maladie qui affecte les propriétés mécaniques des os et qui est caractérisée par une diminution de la densité minérale osseuse et par une altération de la micro-architecture trabéculaire osseuse. Cette maladie est responsable des fractures et des phénomènes de compression vertébrale qui peuvent conduire à une invalidité et à un décès. L'ostéoporose a attiré l'attention de nombreux cliniciens et chercheurs ces dernières décennies. Les statistiques montrent que 40% des femmes et 13% des hommes après 50 ans sont atteints d'ostéoporose et 24% des patients âgés meurent chaque année après une fracture de la hanche. De nos jours, le diagnostic de l'ostéoporose est basé sur une mesure de la densité minérale osseuse (BMD) par la technique de mesure d'absorption duale de rayon X (Dual X-ray absorptiometry). Cependant, cette technique ne peux estimer que 60 à 70% du risque de fracture. Par conséquent, de nouvelles techniques d'évaluation de la fragilité osseuse sont développées qui s'appuient sur une quantification de la microarchitecture osseuse.

La micro-tomographie par de rayons X fournit des images 3D avec une résolution spatiale plus élevée que les systèmes cliniques. Cette technique a été particulièrement utilisée pour l'analyse de la micro-architecture osseuse sur des échantillons osseux prélevés ou sur le petit animal [START_REF] Seeman | Bone quality-the material and structural basis of bone strength and fragility[END_REF], [START_REF] Peter | Synchrotron radiation micro-CT imaging of bone tissue[END_REF]]. La microarchitecture de l'os qui est un déterminant important de la résistance biomécanique est formée d'un arrangement complexe de petites structures appelées travées qui ont une épaisseur de l'ordre de 150 µm. Les images 3D de la micro-architecture obtenues par micro-tomographie X sont ensuite traitées pour extraire les descripteurs quantitatifs 3D de la micro-structure de l'os. L'analyse de la structure de l'os requiert une méthode de segmentation de l'image comme première étape pour extraire la structure osseuse du fond. Ensuite le calcul des paramètres morphométriques comme le rapport du volume osseux au volume total, l'épaisseur moyenne des travées mais aussi des paramètres topologiques comme la connectivité ou l'organisation de la micro-structure en tubes ou en plaques, peut être effectué [START_REF] Hildebrand | Direct Three-Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus[END_REF], [START_REF] Peyrin | Local plate/rod descriptors of 3d trabecular bone micro-CT images from medial axis topologic analysis[END_REF]]. De tel descripteurs ont été utilisés dans de nombreuses études mais limitées à l'analyse d'échantillons osseux ex-vivo. Alors que la résolution spatiale des scanners cliniques n'est pas suffisante pour résoudre la structure trabéculaire, de nouveaux systèmes High Resolution peripheral Quantitative CT (HR-pQCT) ont été commercialisés pour étudier la micro-architecture osseuse in-vivo du tibia et du radius [START_REF] Boutroy | In Vivo Assessment of Trabecular Bone Microarchitecture by High-Resolution Peripheral Quantitative Computed Tomography[END_REF]]. Les images 3D sont ensuite segmentées et les mêmes paramètres que ceux utilisées pour la micro-tomographie sont utilisés pour quantifier la micro-architecture des patients. Cependant, le résultat de la segmentation peut être décevant, compromettant la quantification ultérieure [START_REF] Tjong | The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure[END_REF]]. Ce problème est relié à la résolution spatiale limitée de la technique HR-pQCT qui est proche de l'épaisseur des travées.

Le but de cette thèse est d'améliorer la quantification de la micro-structure osseuse à partir d'images HR-pQCT in-vivo. La validation des approches proposées est effectuée sur des images expérimentales haute résolution de micro-CT d'échantillons d'os avec une résolution de 20 µm après simulation de l'effet de la perte de résolution spatiale et de la dégradation par le bruit. Une validation plus réaliste est accomplie sur des images ex-vivo HR-pQCT pour lesquelles l'image vraie correspondante est aussi disponible.

Le plan de la thèse est le suivant : Chapitre 1: Contexte médical Chapitre 2: Cadre théorique Chapitre 3: Super-résolution basée sur la Variation Totale Chapitre 4: Sélection du paramètre de régularisation Chapitre 5: Super-résolution/segmentation jointe Chapitre 6: Approche semi-aveugle Super-résolution/segmentation jointe Conclusion et perspectives Dans le premier chapitre, nous détaillons le contexte médical de la thèse, c'est à dire les maladies de la fragilité osseuse. Nous présentons en particulier les méthodes d'imagerie permettant d'étudier le tissu osseux. Dans ce cadre, la micro-CT est devenue une technique de base pour analyser la micro-architecture osseuse en 3D, sur des échantillons osseux ou des modèles animaux. Nous présentons rapidement la micro-CT synchrotron qui sera utilisée pour avoir des images de référence dans ce travail, puis la tomographie quantitative haute résolution (HR-pQCT) qui permet l'analyse du tissu osseux in-vivo sur des sites périphériques. Les principaux paramètres utilisés pour quantifier la micro-architecture osseuse sont ensuite décrits.

Dans le second chapitre, nous détaillons les aspects théoriques liés aux problèmes inverses et aux méthodes de régularisation, en particulier pour les applications comme la super-résolution et la segmentation. Le problème de super-résolution peut être vu comme un problème inverse linéaire mal posé comme d'autres problèmes d'analyse d'image, le débruitage et la déconvolution. Ce type de problème a été très étudié et nous résumons dans ce chapitre les notions fondamentales du domaine. Les méthodes de régularisation peuvent être utilisées pour obtenir des solutions stables. Nous présentons notamment l'approche variationnelle dans laquelle une fonctionnelle de régularisation est construite pour résoudre ce problème. Différents termes de régularisation sont présentés comme le terme de Variation Totale (TV) qui a été l'objet d'une grande attention ces dernières années. L'équilibre entre le terme d'attache aux données et la pénalisation de régularisation est contrôlé par un paramètre de régularisation qui est crucial et qui est difficile à choisir. Ce choix peut être basé sur le niveau de bruit ou non. Les méthodes de base du choix du paramètre sont décrites. Plusieurs méthodes peuvent être utilisées pour minimiser la fonctionnelle de régularisation. Nous insistons sur la méthode ADMM (Alternate Direction of Minimization method) qui fait partie des méthodes les plus actuelles. Nous terminons ce chapitre par des généralités sur la segmentation et sur les métriques qui permettent d'évaluer la qualité de l'image reconstruite.

Dans le chapitre 3, nous étudions des méthodes de super-résolution 2D basées sur la variation totale. Ce type de régularisation est très utilisé pour restaurer des images constantes par morceaux mais il crée des effets de marche d'escalier et nous utilisons aussi des termes de régularisation d'ordre plus élevé similaires au terme TV. Ces termes sont considérés car ils constituent les approches les plus utiles pour des approches mixtes superrésolution/segmentation avec des valeurs quasi-binaires. Nous étendons aussi la méthode de minimisation ADMM à la régularisation HDTV (Higher Degree TV) . Nous introduisons une formulation générale du terme de régularisation adapté aux deux méthodes TV et HDTV isotrope basée sur des opérateurs linéaires différentiels. Ces termes d'ordres plus élevés sont considérés car on s'attend à ce qu'il diminue les effets d'escalier qui détériorent la reconstruction.

Dans le chapitre 4, nous présentons une nouvelle méthode de choix du paramètre de régularisation pour la régularisation TV. Cette méthode est basées sur une estimation du niveau de bruit et elle généralise le principe classique de Morozov utilisé pour la régularisation de Tikhonov. Un principe modifié est présenté avec un algorithme très rapide de choix du paramètre basé sur ce principe. Cette méthode est évaluée sur différentes images tests ainsi que sur des images de la micro-architecture osseuse et comparée à une méthode d'estimation du paramètre de régularisation de la littérature, la méthode UPRE (Unbiased Predictive Risk Estimator).

Le chapitre 5 est consacré au problème 3D de super-résolution/segmentation jointe. Les problèmes de super-résolution et de segmentation sont souvent étudiés avec des approches variationnelles. Cependant, dans la plupart des cas ils sont considérés séparément. Dans ce chapitre, nous essayons de résoudre les deux problèmes en même temps avec une méthode variationnelle. La base de cette méthode est une convexification de la fonctionnelle de régularisation avec une terme de contrainte convexe additionnelle. La méthode de minimisation doit être modifiée pour inclure cette nouvelle contrainte. Des résultats sont présentés sur des volumes 3D de micro-architecture osseuse.

Le dernier chapitre présente une méthode semi-aveugle de super-résolution/segmentation. Un algorithme de minimisation alternée est utilisé pour restaurer les images haute résolution et les noyau de flou qui est supposé Gaussien. Cette approche est testée aussi sur des images réelles.

Nous terminons ce manuscrit avec des conclusions et des perspectives.

Chapitre 1 : Contexte médical

Tissu osseux

Les os forment le squelette qui est une partie du système locomoteur. Le squelette est responsable de la stabilité, du mouvement et de la forme du corps. De plus, les os stockent les minéraux comme le calcium et le phosphore. Les deux types de tissus osseux sont l'os cortical et l'os trabéculaire. L'os cortical est une coquille extérieure qui constitue 80% du squelette humain total et est localisé principalement à la périphérie du squelette. L'os cortical humain, organisé en ostéons, inclut un réseau complexe de canaux: les canaux Havers qui sont orientés longitudinalement et les canaux Volkmann qui sont orientés perpendiculairement.

L'os trabéculaire forme 70% du squelette humain central. Il est organisé de réseau en nid d'abeille constitué de travées verticales et horizontales. Au cours de la vie, l'ancien os est remplacé, renouvelé au cours d'un processus appelé remodelage, qui permet aux os de s'adapter aux contraintes mécaniques. Le remodelage osseux affecte 25% de l'os trabéculaire et seulement 2-3% de l'os cortical. Après reconstruction osseuse la concentration minérale dans certaines régions localisées augmente progressivement. L'os peut donc être vu comme un arrangement d'unité osseuses (BMU) avec différents degrés de minéralisation [START_REF] Meunier | Bone mineral density reflects bone mass but also the degree of mineralization of bone: Therapeutic implications[END_REF]].

Ostéoporose

L'ostéoporose est une maladie qui affecte essentiellement les personnes âgées. Elle est caractérisée par une décroissance de la densité osseuse (BMD) et une altération de la micro-architecture osseuse du tissu osseux trabéculaire. La conséquence directe de cette maladie est la fragilité osseuse et une augmentation du risque de fracture. Les fractures de la hanche ou le problème de compression vertébrale sur des patients âgés atteints d'ostéoporose peuvent conduire à une invalidité ou à la mort. L'organisation mondiale de la santé définit l'ostéoporose à partir d'une densité minérale osseuse qui est plus faible de 2.5 écart-type par rapport à la moyenne d'elle (d'adultes jeunes, en bonne santé) mesurée par absorption bi-photonique à rayons X (DXA). Cependant cette technique ne peut estimer que 60% à 70% des risques de fracture [START_REF] Peter | Synchrotron radiation micro-CT imaging of bone tissue[END_REF]]. Par conséquent, il devient de nécessaire de développer nouvelles methodes d'évaluation de la fragilité osseuse en particulier, en prenant en compte la micro-architecture osseuse.

Etude de la micro-architecture de l'os

L'analyse de la micro-structure trabécularie de l'os a un rôle important dans l'étude et dans le diagnostic des pertes de densité osseuse. L'histomorphométrie représente la technique conventionnelle d'évaluation de l'architecture de l'os mais d'autres techniques non destructives sont de plus en plus utilisées dans ce but. Si l'on considère les techniques d'imagerie par rayons X, une autre méthode d'évaluation de l'architecture de l'os est la micro-tomographie par rayons X, une technique non destructive d'imagerie 3D qui peut également fournir la densité volumique alternativement à la technique standard DXA [START_REF] Engelke | A system for dual energy microtomography of bones[END_REF]]. Des images de micro-CT améliorées, au sens du rapport signal sur bruit (SNR) avec une résolution très élevée (<1 µm) peuvent être obtenues en utilisant le rayonnement synchrotron à la place des sources de rayons X standards. La microtomographie par rayonnement synchrotron est souvent utilisée comme une technique de référence pour évaluer les modalités d'imagerie nouvelles. Toutefois, les systèmes de micro-CT pouvant atteindre des résolutions spatiales très élevées, sont réservés à des échantillons osseux ou au petit animal, mais ne sont pas adaptés pour imager l'os trabéculaire in-vivo chez l'homme. En revanche, de nouveaux systèmes de CT quantitative haute résolution (HR-pQCT), comme le système Scanco XtremeCT, peuvent fournir des images 3D de la micro-architecture osseuse de l'os pour les extrémités humaines (tibia et radius) à haute résolution (82 µm). Néanmoins, la taille de voxel restant très proche de la taille des travées osseuses, des études récentes ont montré que l'analyse des images HR-pQCT de l'os trabéculaire est biaisée par le manque de résolution des images [START_REF] Tjong | The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure[END_REF]].

Notre recherche a pour objectif d'améliorer la quantification de la micro-architecture de l'os à partir d'images HR-pQCT par des approches de super-résolution. Le problème sera formulé comme un problème inverse et résolu en incluant des différents termes de régularisation en 2D et en 3D. Un algorithme itératif de type ADMM sera implémenté. Les approches proposées seront validées d'abord sur des images micro-CT de super-résolution détériorées de façon artificielle et sous-échantillonnées avec la même résolution que les images réelles HR-pQCT. Des tests seront aussi effectués sur des images ex-vivo HR-pQCT pour lesquelles les images vraies de micro-tomographie sont disponibles.

Chapitre 2 : Cadre théorique

Problèmes inverses mal-posés

Les problèmes inverses linéaires rencontrés dans de nombreuses applications en science de l'ingénieur jouent un rôle très important en analyse d'image. Par exemple, les problèmes de déconvolution et de restauration sont cruciaux en imagerie médicale. Dans cette thèse, nous essayons d'inverser les problèmes mal posés de déconvolution et de super-résolution avec des approches de type variationnelle. Le cadre bayésien représente une autre voie pour formaliser et résoudre le même type de problèmes inverses mal-posés [Molina (1994), [START_REF] Ruiz | Variational Bayesian Blind Image Deconvolution: A review[END_REF]]. Le problème de super-résolution consiste à obtenir une ou un ensemble d'images hautes-résolution (HR) à partir d'une ou de plusieurs images de basse résolution [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF]]. Ces dernières années, de nombreuses approches de super-résolution ont été proposées.

Approches variationnelles de régularisation

Une méthode bien connue pour résoudre un problème inverse mal posé consiste à introduire une information à priori et à minimiser une fonctionnelle de régularisation incluant deux termes. Le premier terme est un terme d'attache aux données qui mesure l'adéquation entre les mesures et l'estimation de la fonction reconstruite. Le second terme impose un à priori sur la solution calculée et est appelé terme de régularisation. Un paramètre de régularisation équilibre les deux termes. Sa valeur a une grande influence sur l'image reconstruite [START_REF] Scherzer | Variational Methods in Imaging[END_REF]].

Les méthodes de régularisation diffèrent par le choix du terme de régularisation inclu dans la fonctionnelle à minimiser. Nous détaillons ici certains des termes de régularisation les plus utilisés ainsi que certaines fonctionnelles plus nouvelles. La régularisation par Variation Totale (TV) a été introduite par [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]] pour résoudre des problèmes de débruitage. Par la suite cette régularisation a été appliquée à des problèmes de reconstruction d'image [Combettes andPesquet (2004), Bioucas-Dias et al. (2006), [START_REF] Beck | Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems[END_REF]], d'inpainting [START_REF] Chan | Mathematical Models for Local Nontexture Inpaintings[END_REF]] de zoom [Chambolle (2004)]. Cette régularisation est basée sur le calcul de la norme L 1 du gradient de l'image. La régularisation TV est largement utilisée dans de nombreuses application du fait de sa convexité et de sa capacité à préserver les bords. Cependant, les résultats de régularisation TV présentent des effets de marche d'escalier. Différentes approches ont été proposées pour résoudre ces problèmes. Farsiu et al. ont introduit en 2004 une régularisation TV améliorée qui considère une TV bilatérale pour un problème de super-résolution [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF]]. Peyre et al. ont proposé un terme de régularisation TV non local appliqué pour les problèmes inverses comme la super-résolution, l'impainting ou l'échantillonnage compressé [START_REF] Peyré | Non-local Regularization of Inverse Problems[END_REF]]. Des études plus récentes sur cette méthode de régularisation mettent en jeu des dérivées d'ordre plus élevé pour atténuer l'effet de marche d'escalier comme dans [START_REF] Hu | Higher Degree Total Variation (HDTV) Regularization for Image Recovery[END_REF], [START_REF] Lefkimmiatis | Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications[END_REF]a, [START_REF] Lefkimmiatis | Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications[END_REF])b, Chan et al. (2000), [START_REF] Lysaker | Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional[END_REF], [START_REF] Yuan | Total-Variation Based Piecewise Affine Regularization[END_REF], [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF], [START_REF] Chan | Image Decomposition Combining Staircase Reduction and Texture Extraction[END_REF], [START_REF] You | Fourth-order partial differential equations for noise removal[END_REF], [START_REF] Lysaker | Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[END_REF], [START_REF] Steidl | A Note on the Dual Treatment of Higher-Order Regularization Functionals[END_REF]]. La minimisation de la fonctionnelle de régularisation peut être réalisée par le biais de différents algorithmes. Nous nous sommes particulièrement intéressés à la méthode Alternate Direction Method of Multipliers (ADMM) [START_REF] Boyd | Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[END_REF]), Esser (2009)]. Le principe de cette méthode est de construire un Lagrangien augmenté avec une variable duale qui prend en compte les contraintes sur la fonction à reconstruire, et d'utiliser des techniques de splitting des variables. La minimisation est effectuée de façon itérative sur la fonction à reconstruire, la fonction duale et la fonction splitée. Cette méthode est liée aux méthodes proximales. Ses propriétés de convergence ont été étudiées.

Déconvolution et super-résolution aveugle

Dans les problèmes de déconvolution et de super-résolution aveugles, l'image inconnue doit être reconstruite et dans le même temps le noyau de convolution doit être estimé. Une revue des méthodes variationnelles bayésiennes pour la déconvolution est présentée dans [START_REF] Ruiz | Variational Bayesian Blind Image Deconvolution: A review[END_REF]]. Dans le cadre des méthodes variationnelles, des fonctionnelles incluant le terme d'attache aux données ainsi qu'une terme de régularisation sur l'image f et un sur le noyau de convolution k peuvent être considérées.

A partir de cette double régularisation, un certain nombre d'approches utilisent une minimisation alternée par rapport à f et k [START_REF] You | A regularization approach to joint blur identification and image restoration[END_REF], [START_REF] Chan | Total variation blind deconvolution[END_REF]]. Ceci sera l'approche utilisée dans ce travail. Des résultats de convergence dans le cas de la déconvolution ont été établis pour une régularisation de type Sobolev mais les résultats dépendent de k et f , les premières grandeurs estimées [START_REF] Chan | Convergence of the alternating minimization algorithm for blind deconvolution[END_REF]]. Les conditions pour lesquelles une solution de norme minimum existe et est unique ont été étudiées dans la publication [START_REF] Justen | A non-iterative regularization approach to blind deconvolution[END_REF]]. Une méthode de résolution non itérative est aussi proposée par les auteurs. Une approche similaire basée sur une minimisation alternée et des opérateurs proximaux est présentée dans [START_REF] Abboud | A hybrid alternating proximal method for blind video restoration[END_REF]].

La plupart des approches variationnelles pour les problèmes de déconvolution sont des approches à un seul niveau et l'image et la PSF apparaissent dans un seule fonction objectif à minimiser. Des méthodes plus élaborées comme une optimisation à deux niveaux pour trouver la PSF ont été présentées dans [START_REF] Hintermüller | Bilevel optimization for calibrating point spread functions in blind deconvolution[END_REF]]. Au premier niveau, une méthode de variation totale est imposée. D'autre part une fonctionnelle objectif est considérée qui incorpore l'information statistique sur l'image et la PSF.

Segmentation

Il existe une grande quantité de travaux concernant le problème de segmentation, voir par exemple la revue de [Aubert and Kornprobst (2002)]. L'objectif est de trouver une partition de l'image entre différentes régions. Les approches classiques sont souvent classées en approches contours ou régions. Toutefois, les méthodes variationnelles sont de plus en plus utilisées en segmentation d'images. Des approches dans la littérature utilisent le contour actif géodésique et le formalisme level-set. D'autres approches sont basées sur la fonctionnelle Mumford-Shah avec comme inconnues la fonction intensité et les bords. Une des difficultés de cette méthode est d'approximer la fonctionnelle de régularisation. Le terme de régularisation inclut la mesure de Hausdorff de l'ensemble des bords qui étend la notion de bord à des ensembles non lisses. Des travaux ont montré que la fonctionnelle de Mumford Shah peut être utilisée pour la régularisation des problèmes inverses linéaires mal posés [Ramlau and Ring (2010), [START_REF] Jiang | Regularizing properties of the Mumford-Shah functional for imaging applications[END_REF]]. Ces publications sont très intéressantes car dans la plupart des cas, les problèmes de déconvolution et de super-résolution sont considérés séparément pour le problème de segmentation. Récemment, des chercheurs ont étudié ces problèmes inverses avec le modèle de Potts qui est un cas particulier de la fonctionnelle de Mumford Shah [Storath et al. (2014), [START_REF] Weinmann | The L1-Potts functional for robust jump-sparse reconstruction[END_REF]]. Ce travail utilise la norme L 0 du gradient de l'image ∇f 0 . Ce terme de régularisation est non convexe et la minimisation de la fonctionnelle de régularisation pose des problèmes de convergence et d'implémentation.

Chapitre 3 : Super-résolution basée sur la Variation Totale

Nous avons commencé notre recherche avec des techniques de restauration d'images pour la super-résolution.

Méthodes

Traditionnellement, la super-résolution requiert plusieurs images basse résolution [Chaudhuri (2002), [START_REF] Park | Super-resolution image reconstruction: a technical overview[END_REF]]. Notre objectif est d'améliorer la résolution d'images in-vivo et nous allons considérer le problème inverse de super-résolution à partir d'une seule image. Les images que nous utilisons montrent une structure quasi-binaire et nous nous sommes appuyés sur un a priori de variation totale (TV).

Cette méthode a été généralisée récemment avec les termes de plus haut degré (HDTV) en évitant l'effet de marche d'escalier [START_REF] Hu | Higher Degree Total Variation (HDTV) Regularization for Image Recovery[END_REF]]. Ces fonctionnelles de régularisation sont basées sur une norme mixte L 1 -L 2 ou L 1 -L 1 des dérivées d'ordre plus élevées de l'image [Lefkimmiatis et al. (2012)a, Hu andJacob (2012)]. Dans ces travaux, la fonctionnelle de régularisation HDTV est minimisée avec un algorithme majorationminimisation. Des méthodes numériques diverses ont été utilisées pour résoudre ce problème de déconvolution régularisé par un terme TV [Becker et al. (2011),van den Berg and[START_REF] Van Den Berg | Probing the Pareto Frontier for Basis Pursuit Solutions[END_REF]]. Cependant des expériences numériques ont montré que les algorithmes basés sur la méthode des multiplicateurs avec une direction alternée, Alternating Direction Method of Multipliers (ADMM), font partie de l'état de l'art [START_REF] Wang | A New Alternating Minimization Algorithm for Total Variation Image Reconstruction[END_REF], [START_REF] Yang | A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration[END_REF], [START_REF] Afonso | Fast Image Recovery Using Variable Splitting and Constrained Optimization[END_REF], [START_REF] Ng | Solving Constrained Totalvariation Image Restoration and Reconstruction Problems via Alternating Direction Methods[END_REF]]. Dans ce chapitre, nous étendons la méthode de minimisation ADMM à la régularisation HDTV isotrope. Nous introduisons une formulation générale du terme de régularisation adapté aux deux méthodes, TV et HDTV isotrope. Un gradient conjugué préconditionné est proposé pour contourner les effets produits par le sous-échantillonnage et le sur-échantillonnage.

Expériences numériques

Afin de comparer les performances des deux approches de régularisation, les méthodes sont testées sur des images d'os détériorées de façon artificielle. Une comparaison avec une interpolation bicubique est aussi présentée. Du fait de leur très grande qualité nous avons utilisé comme images originales des images synchrotron micro-CT. Nous avons choisi quatre coupes à partir d'échantillons osseux différents, de forme de cylindre de 10 mm acquis avec une taille de voxel de 10 µm. Les volumes osseux ont été reconstruits à partir de 1500 projections 2D en utilisant l'algorithme de rétroprojection filtré (FBP) [START_REF] Salomé | A synchrotron radiation microtomography system for the analysis of trabecular bone samples[END_REF]] puis sous échantillonné à 20 µm. Chaque région d'intérêt (coupe 2D) est artificiellement détériorée par un noyau Gaussien d'écart type σ blur = 4.85, souséchantillonnée par un facteur p = 4, puis bruitée avec un bruit Gaussien additif d'écart type σ = 1. La qualité de l'image obtenue a été mesurée avec le ratio PSNR. Comme notre but final est de quantifier la micro-architecture de l'os après segmentation, nous introduisons des paramètres supplémentaires calculées après segmentation. L'image est segmentée en appliquant le critère d'Otsu. Ensuite, nous calculons le coefficient de DICE, la surface osseuse (in mm 2 ), le nombre d'Euler (χ) qui reflète la connectivité. Pour chaque méthode, le paramètre de régularisation choisi µ est celui obtenu par un PSNR maximum. Pour une valeur donnée du paramètre de régularisation , l'algorithme ADMM a été appliqué pour obtenir le point selle du Lagrangien pour les régularisations TV et IHDTV et les valeurs de PSNR de l'images obtenues ont été calculées.

Résultats

Les résultats montrent que les méthodes basées sur la régularisation TV donnent des résultats similaires à celles basées sur IHDTV concernant le PSNR. Les coefficients DICE sont aussi très similaires. Cependant, les meilleurs résultats sont obtenus pour la surface osseuse pour la méthode TV. Le volume osseux et le nombre d'Euler sont des indicateurs important de la qualité osseuse. On peut voir que l'erreur est considérablement réduite par rapport à des images interpolés et encore d'avantage en comparaison avec l'image dégradée qui a la même résolution que celle utilisée dans les essais cliniques.

Conclusions

Dans ce chapitre, nous avons proposé d'améliorer la résolution spatiale d'images CT de la micro-structure d'os obtenues par techniques de super-résolution . Nous avons comparé l'interpolation standard avec des méthodes de super-résolution basées sur TV et sur la méthode récemment proposée de Isotropic Higher Order TV. Nous avons réécrit chaque terme de régularisation sous une forme similaire et présenté un schéma de minimisation efficace basé sur l'algorithme ADMM. La matrice hessienne en super-résolution n'a pas une structure circulante par blocs, et un algorithme de gradient conjugué préconditionné a été proposé pour accélérer les calculs. Une comparaison des approches de régularisation est faite sur des images basse résolution de la micro-strucutre de l'os en terme de PSNR, et de paramètres structuraux et de segmentation. Les deux méthodes TV améliorent les résultats de l'interpolation bicubique pour tous les critères. TV et IHDTV donnent des résultats similaires. Cependant, dans le contexte de la segmentation, TV est préférée car elle donne une image qui est plus proche d'un modèle constant par morceaux.

Chapitre 4 : Sélection du paramètre de régularization

Quand un problème inverse est résolu par des approches de régularisation, le paramètre qui équilibre les deux termes de la fonctionnelle a une très grande importance pour la qualité du résultat. Dans ce chapitre, nous nous intéressons au moyen de sélectionner ce paramètre de régularisation pour qu'il soit le plus proche possible du paramètre optimal. Nous proposons une méthode rapide et simple pour sélectionner ce paramètre de régularisation pour la restauration avec une régularisation TV d'une image f à partir d'une image bruitée, flou et sous-échantillonnée. Notre contribution dans ce domaine consiste à étudier une méthode itérative en utilisant une fonction modèle pour le terme de régularisation de Tikhonov [START_REF] Kunisch | Iterative choices of regularization parameters in linear[END_REF]].

Méthodes

Avec le principe de Morozov [Morozov (1984)], le paramètre de régularisation est choisi de telle sorte qu'il soit égal au niveau de bruit. Dans certains cas, l'utilisation du principe de Morozov peut ne pas conduire à un paramètre optimal. Comme suggéré dans [Kunisch (1993), [START_REF] Kunisch | Iterative choices of regularization parameters in linear[END_REF]], une équation de Morozov modifiée peut être plus efficace. Nous proposons une nouvelle méthode itérative pour estimer le paramètre de régularisation optimal dans les problèmes inverses linéaires avec un terme de régularisation TV. Pour un paramètre donné, la fonctionnelle de régularisation TV est minimisée avec un algorithme ADMM. Notre approche est basée sur le principe de Morozov classique et sur une version modifiée de ce principe. Les propriétés de convergence de la méthode de régularisation pour ce choix du paramètre de régularisation ont été démontrées. En s'appuyant sur les propriétés de régularité du Lagrangien augmenté, il a été montré que le terme d'attache aux donnée peut être approximé par une fonction modèle simple. Cette fonction modèle est obtenue à partir des images reconstruites pour deux valeurs du paramètres de régularisation. Une valeur approchée du paramètre est calculée à partir de la fonction modèle qui approxime ce terme d'écart aux données. Ensuite, la solution est améliorée avec une méthode de Newton itérative sur la base du principe de Morozov ou de sa version modifiée. Nous présentons aussi brièvement la méthode UPRE (Unbiased Predictive Risk Estimator) qui sera utilisé pour des comparaisons avec nos méthodes itératives. L'approche UPRE a été étudiée en détail pour sélectionner le paramètre de régularisation Tikhonov [Vogel (2002), [START_REF] Blu | The SURE-LET approach to image denoising[END_REF], Eldar (2009), [START_REF] Ramani | Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms[END_REF], [START_REF] Vaiter | Local behavior of sparse analysis regularization: Applications to risk estimation[END_REF]]. Récemment, la méthode UPRE a été étendue au terme de régularisation TV et à des problèmes de grandes dimensions [START_REF] Lin | UPRE method for total variation parameter selection[END_REF]].

Expériences numériques

Afin de montrer l'efficacité de la méthode pour choisir le paramètre de régularisation, nous avons considéré deux problèmes test, la déconvolution et la super-résolution. Dans le cas du problème de déconvolution l'image est floutée par une noyau Gaussien d'écart type σ blur et bruitée par un noyau Gaussien d'écart type σ. Différents valeurs de bruit et floutage ont été appliqués sur plusieurs type d'images. Dans le cas de la super-résolution, l'image est aussi sous-échantillonnée par un facteur p = 4, ce qui augmente le caractère mal posé du problème.

Conclusions

Les approches proposées ont été comparées avec celles basées sur la méthode UPRE pour la déconvolution et la super-résolution, pour des bruits et des niveaux de flou différents et pour différentes images. Dans le cas de la déconvolution, le principe de Morozov modifié est la méthode la plus efficace pour le niveau de flou le plus élevé. Sinon, le principe de Morozov permet une meilleure estimation du paramètre de régularisation optimal. Pour le cas de la super-résolution, la méthode UPRE améliore le principe de Morozov. Cependant, une estimation plus précise du paramètre de régularisation optimal est obtenue avec le principe de Morozov modifié, où le terme d'attache aux données est pondéré par un terme TV. Les schémas itératifs basés sur cette nouvelle fonction modèle présentés dans ce travail sont très rapides et permettent d'éviter un balayage complet de l'ensemble des valeurs du paramètres de régularisation.

Chapitre 5 : Super-résolution/segmentation jointe Dans ce chapitre, nous nous intéressons au problème conjoint de super-résolution et de segmentation, compte tenu que l'objectif final étant la quantification de la phase osseuse, il est nécessaire de disposer d'une image segmentée de l'os.

Méthode

Dans un problème de segmentation à deux phases, chaque voxel de l'image segmentée s se voit assigné à l'une ou l'autre des deux phases. Soit c 0 et c 1 le niveau de gris moyen de chaque phase. Une segmentation satisfaisante de l'image f est l'attribution d'un label tel que chaque voxel est assigné à une des phases dont le niveau de gris moyen est proche du niveau de gris correspondant de l'image f et ou les voxels voisins appartiennent le plus souvent à la même classe. On peut dont considérer la fonctionnelle suivante proposée par [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]]: 

R 0 [f (r) -c 0 ] 2 dr + R 1 [f (r) -c 1 ] 2 dr + ν|Γ| (1) où R 0 et

Expériences numériques

A partir de ce chapitre les méthodes proposées ont été appliqués sur des volumes 3D. La vérité terrain binaire, de taille 328 × 328 × 328, a été obtenue du volume micro-CT du synchrotron, présenté dans le chapitre 3, après avoir fait une segmentation avec la méthode d'Otsu. Cette référence a été floutée par une noyau Gaussien d'écart type σ blur = 2.425 et bruitée par un noyau Gaussien d'écart type σ = 0.01 et σ = 0.1. Pour chaque niveau de bruit, une comparaison entre les méthodes basés sur TV (TV et TVbox) et l'interpolation bicubique a été présenté en utilisant le coefficient DICE et les paramètres quantitatifs de l'os. Pour la méthode TVbox, un seuillage de 0.5 a été utilisé pour segmenter l'os dans les images quasi-binaires obtenues.

Résultats

Nous présentons les résultats obtenus pour des échantillons de taille 150×150×150 sur la Figure 1 pour σ = 0.1. A partir de ces images on peut voir que la méthode TVbox est meilleure pour retrouver la micro-architecture osseuse et que c'est la méthode à privilégier pour résoudre le problème. 

Conclusions

Dans ce chapitre, nous avons proposé une méthode de super-résolution/segmentation basée sur la régularisation par variation totale avec une contrainte convexe et une minimisation ADMM. Notre choix de paramètres de régularisation est basé sur une connaissance de la solution vraie du problème inverse. Nous comparons cette approche avec une méthode d'interpolation standard et une méthode de super-résolution TV sur les volumes basse résolution bruités, floutés en termes de coefficient DICE et de paramètres structuraux. De meilleurs résultats sont obtenus quand une contrainte convexe est incluse dans la fonctionnelle de régularisation TV. Nous observons que le volume osseux rapporté au volume total devient quasi exact et que la connectivité est aussi améliorée par rapport à l'image originale.

Chapitre 6 : Semi-aveugle super-résolution/segmentation jointe Dans le chapitre 5, nous avons montré qu'un a priori basé sur la régularisation TV avec une relaxation convexe de la contrainte binaire (TVbox) peut améliorer la quantification (en particulier la connectivité) des images de micro-CT expérimentales détériorées de façon artificielle quand le noyau de flou est connu. Cependant, si l'on considère des données réelles, le problème est plus complexe car le noyau de convolution n'est pas connu et peut être difficile à estimer. Plusieurs méthodes ont été proposée pour la restauration simultanée d'une image et de la PSF comme les méthodes bayésiennes [START_REF] Babacan | Variational Bayesian Blind Deconvolution Using a Total Variation Prior[END_REF], [START_REF] Molina | Blind deconvolution using a variational approach to parameter, image, and blur estimation[END_REF]], la régularisation de Tikhonov [START_REF] You | A regularization approach to joint blur identification and image restoration[END_REF]] ou la régularisation par variation totale (TV) [START_REF] Babacan | Variational Bayesian Blind Deconvolution Using a Total Variation Prior[END_REF], [START_REF] Chan | Total variation blind deconvolution[END_REF], [START_REF] Liao | Blind Deconvolution Using Generalized Cross-Validation Approach to Regularization Parameter Estimation[END_REF]]. Estimer l'image inconnue et une PSF connue partiellement correspond à une déconvolution semi-aveugle [START_REF] Galatsanos | Hierarchical Bayesian image restoration from partially known blurs[END_REF], Molina (1994)]. Nous nous sommes donc intéressé au problème semi-aveugle de super-résolution/segmentation jointe qui vise à estimer à la fois l'image segmentée super-résolue et le noyau de convolution partiellement connu. Des résultats préliminaires sur des images expérimentales HR-pQCT sont présentés.

Méthode

Dans une première approche, nous supposons que le noyau de flou est isotrope et peut être représenté par un noyau 3D Gaussien. Notre problème se ramène à trouver une image segmentée super-résolue et l'écart type σ du noyau Gaussien. Notre approche est basée sur le même à priori TVbox. Nous notons que la fonction de coût est convexe par rapport à f mais non convexe par rapport à la l'écart type σ. Pour trouver la solution {f , σ} nous alternons entre deux étapes de minimisation jusqu'à convergence. Un algorithme itératif est utilisé qui revient à fixer une des inconnues et à minimiser la fonction de coût par rapport à l'autre variable. Quand le noyau de convolution est fixé, la minimisation de la fonction de coût est équivalente à l'approche présentée au chapitre 5 qui s'appuie sur la méthode ADMM. Quand l'image segmentée restaurée est fixée à la solution ADMM seuillée obtenue à la première étape, une méthode de Newton est appliquée pour estimer σ. A la fin, une valeur optimum locale de σ est trouvée.

Expériences numériques

L'approche semi-aveugle est appliquée au même volume trabéculaire décrit aux chapitres

Données réelles

Nous avons exploité des données réelles d'échantillons osseux acquises à l'Université de San Francisco. Des images 3D de radius humain ont été acquise sur un système HR-pQCT à partir de 750 projections et reconstruites avec une taille de voxel de 82 µm. Les mêmes échantillons ont aussi été scannés en utilisant un système micro-CT qui fournit des images 3D de 24 µm. Les images HR-pQCT ont été recalées sur l'image de micro-CT ré échantillonnée à 41 µm.

Résultats

De bons résultats sont obtenus sur des images test détériorées de façon artificielle. Notre hypothèse gaussienne sur le noyau de convolution est valide dans ce cas. Pour des images réelles, seule l'approche semi-aveugle peut être appliquée. Les résultats montrent que pour le cas réel les autres paramètres devraient être pris en considération comme une ré-estimation des paramètres c 0 et c 1 de la contrainte convexe.

Conclusions

Dans ce chapitre, nous avons proposé une méthode semi-aveugle de super-résolution/ segmentation basée sur la régularisation par variation totale avec une contrainte convexe et une minimisation ADMM pour améliorer la quantification de la micro-architecture de l'os trabéculaire à partir de volumes HR-pQCT ou de micro-CT. Nous avons comparé les approches semi-aveugle TVbox avec la méthode standard d'interpolation en terme de DICE et de paramètres structuraux. Pour des images synchrotron micro-CT détériorées de façon artificielle, une comparaison avec la méthode TVbox est présentée. Nous montrons que notre méthode semi-aveugle améliore les paramètres structuraux comparés aux paramètres originaux et que nous pouvons estimer le noyau de convolution. Elle améliore clairement la méthode d'interpolation et pour des images artificiellement floutée, l'approche semiaveugle TVbox donne des résultats proches de ceux de la méthodes non aveugle. Ces résultats peuvent être un point de départ pour l'analyse des images réelles HR-pQCT pour lesquelles nous possédons une image de référence. Les résultats obtenus sur les données réelles doivent être améliorés. De nombreux aspects doivent être testés comme l'optimisation des paramètres de l'algorithme ou le choix de c 0 et c 1 pour la contrainte convexe. Un noyau anisotrope et variant spatialement peut aussi être considéré.

Conclusion et perspectives

Dans cette thèse, nous nous sommes intéressés à des méthodes susceptibles d'améliorer la quantification de la micro-architecture osseuse à partir d'images HR-pQCT. De façon spécifique, notre but était d'explorer les méthodes de super résolution en considérant que ces images étaient floues, bruitées et sous échantillonnées. De plus, compte tenu que le but final est d'obtenir des paramètres quantitatifs calculés sur une image binarisée de la micro-architecture osseuse, nous nous sommes intéressés au problème combiné de superrésolution et de segmentation. Pour cela, nous avons utilisé des approches variationnelles avec différents termes de régularisation. Nous nous sommes aussi intéressés au problème du choix du paramètre de régularisation. Les différentes approches ont été testées sur des images 2D et des volumes 3D, obtenus par simulations ou issus de données réelles d'échantillons osseux.

Dans un premier temps, nous avons étudié les méthodes de super-résolution 2D basées sur la variation totale TV. La méthode classique de régularisation TV a été étendue à une régularisation TV de plus haut degré car le terme TV du premier ordre crée des effets de marche d'escalier. Nous avons étendu la méthode de minimisation ADMM à la régularisation isotrope HDTV. Nous avons introduit une formulation générale du terme de régularisation pour les deux méthodes et nous avons présenté un algorithme de minimisation efficace. Ces termes ont été étudiés dans ce travail car ils constituent les approches les plus utiles pour des problèmes joints super-résolution/segmentation avec des valeurs quasi-binaires. Une comparaison des méthodes a été faite sur des images basse résolution de la structure osseuse en termes de PSNR et de paramètres structuraux et de segmentation. Les approches basées sur la variation totale ont amélioré les méthodes standards d'interpolation. Néanmoins, les méthodes TV et IHDTV ont montré des résultats de reconstruction similaires.

Nous avons présenté ensuite une nouvelle méthode de choix du paramètre de régularisation pour la régularisation TV. Cette méthode généralise le principe de Morozov classique. La convergence de la méthode de régularisation TV avec ce choix à postériori du paramètre de régularisation a été étudiée. L'algorithme qui permet de choisir le paramètre optimal est très rapide. Des comparaisons numériques ont été présentées avec d'autres méthodes comme UPRE. Plusieurs images et niveau de bruits ont été testés. De très bons résultats ont été obtenus avec notre méthode qui permet d'améliorer les approches existantes.

La partie suivante de ce manuscrit concerne le problème joint de super-résolution/ segmentation à 3 dimensions. Les problèmes de super-résolution et de segmentation sont souvent considérés de façon séparés. Dans cette partie, nous avons essayé de résoudre ces deux problèmes en même temps. La méthode a été basée sur une convexification de la fonctionnelle avec des contraintes convexes supplémentaires. La méthode de minimisation a dû être modifiée pour inclure cette contrainte convexe. Des résultats ont été présentés sur des volumes 3D. Les résultats de reconstruction et la connectivité ont été améliorés par cette nouvelle contrainte.

Le dernier chapitre de cette thèse concerne une méthode semi-aveugle de segmentation et super-résolution conjointe. Un algorithme de minimisation alterné a été utilisé pour reconstruire les images et le noyau de convolution qui a été supposé Gaussien. Cette approche a été testée sur des images d'os issues du synchrotron ESRF. L'approche semiaveugle a amélioré les paramètres structuraux et a conduit à une très bonne estimation du noyau de convolution. Cette thèse a été un travail préliminaire sur le problème inverse difficile qui nous intéresse. De nombreux aspects restent à étudier. Une première extension possible de ce travail est l'utilisation de nouveaux terme de régularisation comme le terme de régularisation de Potts par exemple. Cela pose des problèmes difficiles de minimisation de la fonctionnelle de régularisation mais cela pourrait permettre d'améliorer les résultats de reconstruction. Une méthode de choix du paramètre de régularisation a été proposée pour la régularisation TV appliquée à la super-résolution. Cependant, il pourrait être intéressant d'étudier des méthodes adaptatives du choix du paramètre pour des problèmes de reconstruction plus difficiles. Dans ce travail, nous avons régularisé la fonctionnelle de régularisation avec des termes liés à l'image. Des fonctionnelles plus complexe peuvent être utilisées et le problème du choix des différents paramètres étudié plus précisément. La minimisation de la fonctionnelle de régularisation a été mise en oeuvre avec l'algorithme ADMM. La comparaison avec les méthodes proximales est une perspective de recherche intéressante. Une validation plus réaliste de la méhode de minimisation alternée doit être faite sur des images ex-vivo HR-pQCT pour lesquelles des images de référence de micro-CT sont disponibles. Le problème de super-résolution aveugle doit aussi être étudié sur des données simulées et des images réelles. Différentes approches mentionnées dans le chapitre bibliographique sur les problèmes inverse peuvent être comparées. Les approches non itératives de [START_REF] Ramlau | A Mumford-Shah level-set approach for the inversion and segmentation of X-ray tomography data[END_REF]] et la méthodologie bilevel sont des directions de recherches futures intéressantes.

Introduction

Osteoporosis is a disease that affects the strength of the bones and is characterized by a decrease of bone mineral density (BMD) and an alteration of the trabecular bone micro-architecture. Responsible for fractures and vertebral compression that can lead to invalidity and even cause death, osteoporosis or related bone loss diseases have been attracting the interest of many groups of clinicians and researchers from few decades ago. Statistics show that 40% of women and 13% of men over the age of 50 are diagnosed with osteoporosis and 24% of aged patients die every year after a hip fracture. Nowadays, the osteoporosis diagnosis is based on the measurement of BMD using dual X-ray absorptiometry (DXA) technique. However, this technique can estimate between 60% and 70% of the fracture risk. Thus, new bone fragility evaluation techniques that involve quantification of bone micro-architecture are being developed. X-Ray micro-CT provides 3D images at spatial resolution higher than clinical CT systems. It has been particularly used to analyze bone micro-architecture in the study of osteoporosis, a bone fragility disease, still difficult to diagnose [START_REF] Seeman | Bone quality-the material and structural basis of bone strength and fragility[END_REF], [START_REF] Peter | Synchrotron radiation micro-CT imaging of bone tissue[END_REF]]. Bone micro-architecture which is an important determinant of biomechanical strength is made of a complex arrangement of thin structures called trabeculae, having a thickness around 150 µm. The 3D images of bone micro-architecture obtained with X-Ray micro-CT are further processed to extract 3D quantitative descriptors of the bone micro-structure. Bone structure analysis requires an image segmentation method as a first step to extract the bone from the background. Then it is considered the calculation of 3D morphometric parameters such as bone volume to total volume ratio, mean trabecular thickness, mean trabecular spacing, but also topological parameters, such as connectivity or the micro-structure organization in plate or rods [START_REF] Hildebrand | Direct Three-Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus[END_REF], [START_REF] Peyrin | Local plate/rod descriptors of 3d trabecular bone micro-CT images from medial axis topologic analysis[END_REF]]. Such descriptors have been reported in many studies but limited to the analysis of ex vivo bone samples. While the spatial resolution of clinical CT scanners is not sufficient to resolve the trabecular structure, new High Resolution peripheral Quantitative CT (HR-pQCT) systems have been commercialized to investigate bone micro-architecture in-vivo at peripheral sites (tibia and radius) [START_REF] Boutroy | In Vivo Assessment of Trabecular Bone Microarchitecture by High-Resolution Peripheral Quantitative Computed Tomography[END_REF]]. The obtained 3D images are segmented and the same parameters as those used in X-ray micro-CT are calculated to quantify the bone micro-architecture of patients. However, the result of image segmentation can be poor, compromising the subsequent quantification [START_REF] Tjong | The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure[END_REF]]. This problem is related to the limited physical spatial resolution of the HR-pQCT which is close to the trabecular thickness.

The aim of this thesis is to improve the quantification of the trabecular bone microstructure from in-vivo HR-pQCT images. We propose the investigation of super-resolution methods and joint super-resolution/segmentation methods based on variational approaches. The proposed approaches validation is performed on experimental high-resolution micro-CT images of bone samples at 20 µm after simulating the effect of spatial resolution loss and degradation by blur and noise. Also, a more realistic validation is performed on exxxxiii In the first chapter, we detail the medical context of this thesis. The high quality bone micro-architecture images are acquired at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The bone micro-structure is presented together with investigation methods of this micro-architecture, and especially the HR-pQCT studies. The relevant parameters to quantify the structure are detailed.

In the second chapter, we present some aspects of the theoretical background regarding inverse problems and regularization methods, especially for image processing applications as super-resolution and segmentation. The super-resolution problem can be understood as an ill-posed linear inverse problem like the other image processing problems, the denoising or deconvolution. This type of problems has been much studied and we summarize in this chapter the basic definitions in the field. Regularization methods can be used to obtain stable solutions. We follow in this thesis a variational approach and a regularization functional is constructed to solve the problem. Different regularization terms are presented in this chapter. An example is the Total Variation (TV) term that has attracted much interest in recent years. The balance between the data term and the regularization penalization is controlled by a regularization parameter which is crucial and difficult to choose. This choice may be based on the noise level or not. The basic parameter selection methods are described. Moreover, several methods can be used to minimize the regularization functional. We focus here on the ADMM (Alternate Direction of Minimization method) which is among the state of the art methods. We end this chapter with generalities about segmentation and about metrics of image reconstruction quality.

In chapter 3, we investigate the super-resolution 2D methods based on TV. This type of regularization term is very useful to restore piecewise constant images but it is well-known to create staircasing effects. Therefore, we will try to use also higher order regularization terms similar to TV. These TV terms will be considered because they may represent more useful approaches for mixed super-resolution/segmentation problems with quasi-binary values. We extend the ADMM minimization method to isotropic HDTV (Higher Degree TV) regularization. Then, we introduce a general formulation of the regularization term suited to both methods, TV and isotropic HDTV based on linear differential operator. These higher order terms will be taken into account because they are expected to decrease the staircasing effects that deteriorate the reconstruction.

In chapter 4, we present a new method of choice for the TV regularization parameter. This method is based on an estimation of the noise level and it is a generalization of the classical Morozov principle used for Tikhonov regularization. A modified principle is presented together with a very fast algorithm to choose the parameter based on this principle. Comparison results are presented with other methods for choosing the regularization parameter like the Unbiased Predictive Risk Estimator.

Chapter 5 is devoted to the joint super-resolution /segmentation problem in 3D. The super-resolution and segmentation problems are often studied with variational approaches but in most cases they are considered separately. In this chapter, we try to solve both problems at the same time with a variational method. The basis of the method is a convexification of the regularization functional with additional box constraints. The minimization method must be modified to include this convex constraint. Results are presented on 3D micro-CT volumes.

The last chapter presents a semi-blind joint super-resolution/segmentation method. An alternate minimization algorithm is used to recover the images and the blur kernel which is assumed to be a Gaussian kernel. This approach is validated on test and real images.

We end the manuscript with some conclusions and perspectives.

Chapter 1

Medical context

Bone tissue

Bones form the skeletal system which is part of the locomotor or musculoskeletal system. The skeletal system is responsible for the stability, movement, shape and form of the body. Moreover, bones are storing minerals (as calcium and phosphorus), producing blood for the body and protecting vital organs. The most important bones with protecting functions are the skull for the brain and the rib cage for the heart and lungs.

The two types of bone tissue are the cortical and the cancellous (trabecular or spongy)

bone. The cortical bone, also called the compact bone, is a dense external shell that constitutes 80% of the total human skeleton and is located primarily in the peripheral skeleton. For each bone, the amount of each type of tissue can differ considering the function that bone has. The structure of the bone tissues is presented in Figure 1.1.

The compact bone is organized in osteons that are composed of successive concentric lamellae. This regularly arrangement contributes to the bone strength by resisting banding. Also, the compact bone is considered dense because the spaces between the osteons are filled with layers of hard bone matrix called interstitial lamellae. Osteons include also a complex network of canals: the Haversian canals which are longitudinally oriented through the center of osteons and the ones perpendicular to it, the Volkmann canals.

The trabecular bone forms 70% of the axial (central) human skeleton. It has the form of a honeycomb of vertical and horizontal bars called trabeculae. Here, in these regions, is located the red marrow. 

Bone modeling and remodeling

From birth to adulthood the skeletal is changing in form and gaining in mass (for example long bones are increasing in length and diameter). The process responsible for these changes is called bone modeling and is characterized by bone resorption and bone formation taking place on separate surfaces.

During lifetime, the old bones are replaced with the new ones through a process called bone remodeling, which allows bone to adapt to mechanical constraints. Thus the bones are sequentially resorbed and reconstructed. Bone remodeling has an annual turnover rate of about 25% in trabecular bone and only 2-3% in cortical bone. After bone reconstruc- Through a ruffled edge, these cells secret bone-resorbing enzymes that digest the bone matrix.

Osteoblasts are derived from mesenchymal stem cells and fulfil the bone formation function of refilling the cavities made by octeoclasts (bone matrix synthesis and its subsequent mineralization).

Lining cells cover the majority of adult skeleton surface in the absence of osteoblasts and osteoclasts.

Osteocytes are osteoblasts gradually integrated within the newly formed osteoid, which in the end becomes calcified bone. Osteocytes located deep into bone matrix maintain contact with the ones newly integrated in the osteoid. Furthermore, they preserve junction with osteoblasts and bone lining cells placed on bone surfaces, through an expended network of cell processes (canaliculi). They are considered ideally located to respond to alterations in physical forces upon the bone and to transduce messages to cells on the bone surface, guiding them to initiate resorption or formation responses.

Moreover, osteocytes can be found in the cortical tissue, spread within the concentric lamellae and in the trabecular bone. They form a complex network (see Figure 1.3) considered significant in maintaining the viability and structural integrity of the bone.

Bone matrix

Osteoids are made of noncollagenous proteins and type I collagen ( 94%). Mineral salt, a crystalline complex of calcium and phosphate (hydroxyapatite), is a component of the osteoid's matrix. Due to the presence of this salt, the bone presents the features of hardness and rigidity. The structure of a calcified bone is the following: 70 % inorganic 

Osteoporosis

Osteoporosis is defined by the World Health Organization (WHO) as a systemic skeletal disease characterized by low bone mass and micro-architectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk

[Consensus1991, Consensus1993].
Osteoporosis is a disease which in most of the cases affects the aged persons. After the age of 50, 40% of the women and 13% of the men are affected by osteoporosis. Also, 24%

of the aged patient die every year after having a hip fracture [START_REF] Peter | Synchrotron radiation micro-CT imaging of bone tissue[END_REF]].

The most frequent and important of the related fractures are shown in Figure 1.6 and In [Riggs and Melton III (1983)] are presented two distinct syndromes of the involutional osteoporosis (the common form of osteoporosis):

-Type I (postmenopausal): typically affects women within 15-20 years after their -Type II (age-related): can occur at any age but the predominant form is in both men and women age 70 and older; it is twice as common in women. In this case both cortical and trabecular bone are lost, resulting in hip fractures as well.

Osteoporosis is diagnosed (conform the World Health Organization) when the bone mineral density (BMD) is 2.5 standard deviations or more below the mean peak bone mass (average of young, healthy adults) as measured by dual X-ray absorptiometry (DXA).

This system is a two-dimentional, projection-based radiographic technique at two energy spectrum that measures integral BMD of both cortical and trabecular bone (areal BMD).

The number of standard deviations of the BMD is called T-score. However, the BMD can estimate between 70% and 75% of the variance in strength [START_REF] Ammann | Bone strength and its determinants. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA[END_REF]]. The remaining variance is due to bone macro-and microstructure, tissue composition and microdamage [START_REF] Seeman | Bone quality-the material and structural basis of bone strength and fragility[END_REF], [START_REF] Chapurlat | Bone microdamage: a clinical perspective[END_REF]]. Therefore, it becomes necessary to develop new bone fragility evaluation techniques in particular methods taking into account bone micro-architecture. 

Conventional investigation of bone micro-architecture

Histomorphometry represents the conventional evaluation technique of the bone architecture but other non-destructive image based techniques are more and more used for this purpose. Still, systems as micro-CT can not provide information about cellular function and remodeling activity, which continues to be the domain of bone histology [START_REF] Burghardt | Highresolution Computed Tomography for Clinical Imaging of Bone Microarchitecture[END_REF]].

Figure 1.11 shows the trabecular bone in a normal postmenopausal women and in a subject with postmenopausal osteoporosis. The loss of bone volume and trabecular connectivity is strongly associated with the latter case.

At the trabecular bone level, morphometric parameters such as the trabecular bone From the other measured parameters, we recall the Euler number [START_REF] Odgaard | Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions[END_REF]], that offers relevant information about the connectivity of the bone structure.

X-ray investigation of bone micro-architecture 1.4.1 Principle of X-ray CT

The principle of X-ray CT relies on a data acquisition step followed by a data processing step. During data acquisition, attenuations of X-ray beams passing through the body are measured on 1D or 2D detector, providing one projection. The X-ray source is then sequentially rotated and new measurements are collected. When a complete rotation angle of 180 o has been done, the data are processed through an image reconstruction algorithm based on Radon transform [START_REF] Feldkamp | Practical cone-beam algorithm[END_REF]] providing a digital image. The bone matrix is composed from calcium hydroxyapatite that assures a high contrast in CT images between soft and mineralized tissues.

Clinical CT and Quantitative CT

Clincal CT allows to obtain images up to a spatial resolution around 500 µm in the transverse direction. If it is well adapted for imaging bone at the organ level, its spatial resolution is limited for the quantification of bone trabeculae.

To measure volumetric BMD and to be able to characterize the bone geometry and density, 3D quantitative CT (QCT) can be used. Compared to DXA, this technique For this purpose, a calibration phantom made from objects with known hydroxyapatite (HA) concentrations, which is the major constituent of bone mineral, will be scanned together with the patient. The BM D tiss value of a given pixel will be calculated from the CT value, CT tiss , of the pixel by:

BM D tiss = CT tiss 200 CT 200 -CT 0 , (1.1)
where CT 200 and CT 0 are the measured CT values for HA concentration of 200 mg/cm 3 and water equivalent material without HA (HA=0 mg/cm 3 ) that compose the phantom.

In 2015, The International Society for Clinical Densitometry (ISCD) gave new official position regarding the use of QCT and pQCT. We recall herein the main of them:

-For density-based QCT measurements the in-scan calibration phantom can be replaced by asynchronous calibration if scanner stability is maintained.

-Femoral neck and total hip T-scores calculated from 2D projections of QCT data are equivalent to the corresponding DXA T-scores for diagnosis of osteoporosis in accordance with the WHO criteria.

-Total femur trabecular BMD measured by QCT predicts hip fractures as well as hip BMD measured by DXA in postmenopausal women and older men.

Micro-CT

An important alternative evaluation method of bone micro-architecture is the 3D Xray microtomography (micro-CT), a non destructive technique which provides 3D images with a high and isotropic spatial resolution in each direction. Moreover, this technique avoids sample preparation. CT systems having a spatial resolution between 1 and 100 µm are referred to as micro-CT systems and can evaluate ex-vivo the human bone microarchitecture. Moreover, these systems can offer the possibility of longitudinal in-vivo investigations in small animals, such as mice and rats.

The first micro-CT scanner developed for the evaluation of the three-dimensional microstructure of trabecular bone was described in [START_REF] Feldkamp | The direct examination of three-dimensional bone architecture in vitro by computed tomography[END_REF]]. Starting with the first commercially available bone micro-CT scanner in 1994, this technique became a standard in bone research [START_REF] Rüegsegger | A microtomographic system for the nondestructive evaluation of bone architecture[END_REF]].

A cone-beam with a polychromatic X-ray source is typically used for conventional laboratory micro-CT. For dedicated ex-vivo scanners the source and detector remain in a fixed position during the scan, while the specimen rotates in the field of view. Conversely, in the case of preclinical micro-CT systems for small animals, the x-ray source and detector are rotating and translating about the field of view while a fixed gantry is utilized.

There are many studies in the last two decades investigating the age and gender related changes on the bone structure using micro-CT images [START_REF] Hildebrand | Direct Three-Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus[END_REF], [START_REF] Ding | Age-related variations in the microstructure of human tibial cancellous bone[END_REF], [START_REF] Hulme | Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength[END_REF]]. In the clinical research, a minimally invasive bone biopsy is typically acquired from the iliac crest [START_REF] Jiang | Application of micro-ct assessment of 3-d bone microstructure in preclinical and clinical studies[END_REF]]. The trabecular microarchitecture of these type of samples it correlated to vertebral fractures, as shown in [START_REF] Ito | Analysis of trabecular microarchitecture of human iliac bone using microcomputed tomography in patients with hip arthrosis with or without vertebral fracture[END_REF], [START_REF] Genant | Severity of vertebral fracture reflects deterioration of bone microarchitecture[END_REF]]. Moreover, as presented in [START_REF] Akhter | Transmenopausal changes in the trabecular bone structure[END_REF]], the changes of the bone micro-structures caused by menopause may be observed on micro-CT scan of iliac crest (Figure 1.13). 

Synchrotron Micro-CT

Synchrotron Micro-CT technique is offering better image quality with higher signal to noise ratio (SNR) in smaller acquisition times compared to X-ray micro-CT. Thus Synchrotron micro-CT is often used as a reference technique to evaluate emerging imaging modalities.

A spatial resolution between 5-10 µm is appropriate to study bone micro-structure.

In 1989, Engelke was the first who showed the feasibility of 3D Synchrotron micro-CT of bone samples [START_REF] Engelke | A system for dual energy microtomography of bones[END_REF]]. In 1994, Bonse presented 3D images of iliac biopsies with a cubic voxel size of 8 µm [START_REF] Bonse | 3d computed X-ray tomography of human cancellous bone at 8 microns spatial and 10(-4) energy resolution[END_REF]].

At the European Synchrotron Radiation Facility (ESRF), Figure 1.14, located in Grenoble (France), Peyrin et al. developed a 3-dimensional synchrotron micro-tomography to study bone architecture [START_REF] Salomé | A synchrotron radiation microtomography system for the analysis of trabecular bone samples[END_REF]] at beamline ID 19. The setup of this beamline is presented in Figure 1.15.

The ESRF is the most intense source of synchrotron-generated light, producing Xrays 100 billion times brighter than the X-rays used in hospitals. The circumference of A synchrotron source like the ESRF is a third generation source, also as APS (Chicago, USA) and Spring'8 (Himeji, Japan). Other third generation sources but with a lower critical energy are Sincrotrone Trieste (Trieste, Italy), SLS (Zürich, Switzerland), ALS (Berkeley, USA), SOLEIL (Orsay, France) [START_REF] Peter | Synchrotron radiation micro-CT imaging of bone tissue[END_REF]].

Moreover, this technique makes it possible to quantify the local degree of mineralization in bones in three-dimensions simultaneously to the bone micro-architecture. The differences of the image's gray level intensity is associated to various stages of mineralization during bone remodeling process. This investigation method was proposed and compared to quantitative micro-radiography by [START_REF] Nuzzo | Synchrotron Radiation Microtomography Allows the Analysis of Three-Dimensional Microarchitecture and Degree of Mineralization of Human Iliac Crest Biopsy Specimens: Effects of Etidronate Treatment[END_REF]b] and also applied to study the effect of etidronate in osteoporosis treatment [START_REF] Nuzzo | Synchrotron Radiation Microtomography Allows the Analysis of Three-Dimensional Microarchitecture and Degree of Mineralization of Human Iliac Crest Biopsy Specimens: Effects of Etidronate Treatment[END_REF]a]. This technique typically provides in vivo 3D images of the bone at peripheral sites (radius and tibia) with an isotropic voxel size of 82 µm. The effective radiation doze is around 3-5 µSv [START_REF] Krug | High-resolution Imaging Techniques for the Assessment of Osteoporosis[END_REF]]. For comparison, a chest X-ray exposes patients to a radiation dose of 0.1 mSv. The average annual limit dose internationally recommended not to be exceeded for planned radiation exposure is of 20 mSv/year, measured over a period of five years [Wrixon (2008)].

The standard protocol recommended by SCANCO Medical AG is considered in many publications [START_REF] Boutroy | In Vivo Assessment of Trabecular Bone Microarchitecture by High-Resolution Peripheral Quantitative Computed Tomography[END_REF], [START_REF] Khosla | Effects of Sex and Age on Bone Microstructure at the Ultradistal Radius: A Population-Based Noninvasive In Vivo Assessment[END_REF]]. In the acquisition process the patient's forearm or ankle is immobilized in a carbon fiber shell (Figure 1.17) fixed within the gantry of the scanner.

A scout view, essentially a two-dimensional x-ray scan, is acquired to define the tomographic scan region (Figure 1.18). Burghardt et al., mentioning the studies published in [START_REF] Mueller | Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population[END_REF]], remarks that the default radius axial scan partially includes the reconstructions are also presented for the two identified bone tissues. Due to the fact that a global threshold is applied as segmentation method, for subjects with thin or highly porous cortical bone, incomplete and underestimated cortical structure can be extracted [START_REF] Davis | The Effects of Geometric and Threshold Definitions on Cortical Bone Metrics Assessed by In Vivo High-Resolution Peripheral Quantitative Computed Tomography[END_REF]]. Moreover, after binarization, quantitative parameters of trabecular bone architecture as the ones presented in section 1.4.6 can be computed. Nevertheless, by comparing this technique to micro-CT at higher spatial resolution, it was shown that some of these parameters were particularly sensitive to the segmentation [START_REF] Krause | Accuracy of trabecular structure by HR-pQCT compared to gold standard µCT in the radius and tibia of patients with osteoporosis and long-term bisphosphonate therapy[END_REF]]. Thus, methods for improving the segmentation were investigated [START_REF] Burghardt | A Local Adaptive Threshold Strategy for High Resolution Peripheral Quantitative Computed Tomography of Trabecular Bone[END_REF], [START_REF] Davis | The Effects of Geometric and Threshold Definitions on Cortical Bone Metrics Assessed by In Vivo High-Resolution Peripheral Quantitative Computed Tomography[END_REF]].

As in the case of QCT or ex-vivo micro-CT, the attenuation values of HR-pQCT images can be converted to hydroxypatite mineral densities using a beam-hardening correction and a phantom calibration procedure. Volumetric BMD, that can offers a better evaluation of the micro-structure, is determined independently for cortical and trabecular bone.

For example, Figure 1.20 illustrates a case where two subjects with the same areal BMD value actually present substantial differences in the micro-structure of the trabecular bone and in the aspect of the cortical bone. The bone connectivity of the subject B is strongly deteriorated compared to that of the subject A. This analysis was possible with the help of the resolution that HR-pQCT system holds for in-vivo examination. From the limitations of this technique we recall the fact that common and important sites for osteoporotic fragility fractures, as lumber spine or proximal femur, cannot be scanned in-vivo. Furthermore, the acquisition method does not take into account the differences in bone length, that may be a source of variability in cross-sectional studies [Boyd (2008)]. An important aspect, related to the resolution of the system, was discussed in [START_REF] Tjong | The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure[END_REF]]. Even though the resolution of HR-pQCT scanners is an improvement for in-vivo investigation, compared to the correspondent micro-CT images (for bone samples), 82 µm can introduce a not negligible bias in the quantification of the bone subjects. A better resolution makes the segmentation step easier and in the end the trabecular micro-structure is correctly quantified and not overestimated as shown in Figure 1.22. 

3D bone parameters

The same parameters presented in the section 1.3 can be extended for 3D CT bone images (see Figure 1.23 for a schematic illustration).

Other parameters considered are the Euler number (χ) [START_REF] Ohser | MILES FORMULAE FOR BOOLEAN MODELS OBSERVED ON LATTICES[END_REF]] and the density of connectivity (Conn.D in mm -3 ) that normalize the connectivity (β 1 ) by the total volume and:

β 1 = β 0 + β 2 -χ (1.2)
where β 0 , β 2 are the number of the connected components and the number of cavities [Odgaard (1997)].

In Figure 1.24 we present the standard quantitative HR-pQCT parameters that are (2010), [START_REF] Laib | Comparison of structure extraction methods for in vivo trabecular bone measurements[END_REF]] measured also for micro-CT images.

The structural model index (SMI), based on surface convexity, estimates the degree of the trabecular structure of rode-like or plate-like elements [START_REF] Hildebrand | Quantification of Bone Microarchitecture with the Structure Model Index[END_REF]]. Rods are elongated and cylindrical regions, whereas plates are extensive, flatter regions. SMI can take values between 0 and 4, 0 for a flat plane, 3 for cylindrical rods On the other hand, cortical bone parameters are analyzed, such as cortical thinning, cortical porosity [START_REF] Bousson | Cortical Bone in the Human Femoral Neck: Three-Dimensional Appearance and Porosity Using Synchrotron Radiation[END_REF]], and more recently studied, the cortical ultrastructure (merging of Haversian canals, clustering of osteons and the distribution of osteosyte lacunae).
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Chapter 2

Background

This chapter will shortly present the main theoretical background necessary to illustrate the problems encountered in the micro-CT and HR-pQCT bone image analysis and the proposed approaches to enhance the quantification of the trabecular bone microarchitecture.

Linear inverse problems in image restoration

Having a linear operator A defined as A : X → Y we say that we solve a direct problem if for a given element f ∈ X we find g ∈ Y g = Af,

(2.1) Sometimes, we know the output g ∈ Y and the operator A and we want to determine the input f . In this case we say that we solve the inverse problem. The theory was originally developed for Hilbert spaces like L 2 or Sobolev spaces. It was extended to Banach spaces useful for the TV regularization [START_REF] Scherzer | Variational Methods in Imaging[END_REF]].

The inverse problem defined above is said to be well-posed on the pair of spaces (X,Y ) [Hadamard (1902)] if the following three conditions are satisfied:

1. There exists a solution for all g ∈ Y 2. The solution is unique 3. The solution depends continuously on the output g. This implies that the operator A has to be bijective and A -1 has to be continuous. A solution can then be computed directly (provided that A -1 can be computed):

f = A -1 g, (2.2)
When the problem does not satisfy these conditions it is said to be ill-posed.

Linear inverse problems are encountered in many engineering applications and they play a major role in image processing. For example, image deconvolution and restoration problems are crucial in medical imaging or image and video coding. Such problems can be formulated as:

g δ = Af + w, (2.3)
where g δ represents the measured data, f the ideal image, w an additive noise corrupting the measurements with the noise level δ and A a linear transform like blurring by a given kernel or the composition of a smoothing operation and of an under-sampling operator. These problems are ill-posed and small changes in the data can have big effects on the solutions.

The solution of this type of problem is not necessarily unique. In the following, if it is unique, the solution of Af = g will be denoted f * and corresponds to the ground-truth.

Regularization methods

In this thesis, we try to inverse the ill-posed deconvolution or super-resolution problem with variational regularization approaches. The Baysian framework represents another way to formalize and solve the same types of ill-posed problems [Molina (1994), [START_REF] Ruiz | Variational Bayesian Blind Image Deconvolution: A review[END_REF]], that will not be described herein, but it is related to our variational approach.

A well-known way to solve an ill-posed inverse problem as (2.3) is by adding prior information and then constructing a regularization functional such as:

J(f ) = µ 2 Af -g δ 2 + R(f ) (2.4)
The functional J(f ) is composed of two terms. The first term is the data term, data fidelity term or also called misfit term and measures the distance between the estimate and the measurements. The second term imposes an a priori on the derived solution and is called the regularization term. µ is the regularization parameter and its value has a high influence on the image result, balancing the contribution of the two terms [START_REF] Scherzer | Variational Methods in Imaging[END_REF]].

By minimizing (2.4):

f (µ) ∈ arg min f J(f ).
(2.5)

we obtain the desired solution, the restored image obtained after applying the regularization method for a given parameter µ.

A good regularization method must be well-defined, stable and convergent [START_REF] Scherzer | Variational Methods in Imaging[END_REF]].

A regularization method is said to be convergent if f (µ) → f * , when δ → 0 for a proper choice of µ → 0.

A regularization method is called stable if for a fixed µ, f (µ) depends continuously on g δ .

The regularization methods differ through the regularization term included in the functional to be minimized. We detail next some of the most used regularization terms and some more recent ones.

Regularization term

Tikhonov and Sobolev regularization

The Tikhonov regularization [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF]] involves the L 2 norm of the image. The Sobolev regularization is based on the squared L 2 norm of the gradient of the image and is given by:

R Sobolev (f ) = Ω ∂f (r) ∂x 2 + ∂f (r) ∂y 2 dr ||∇f (r)|| 2 2 .
(2.6)

where r(x, y) represents the pixel location and Ω ⊂ R 2 .

The prior information assumed in this case is the uniform smoothness of the image.

Total Variation regularization

The Total Variation regularization was introduced in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]] to solve the noise removal problem. After that, the TV regularization was applied to problems like image reconstruction [START_REF] Combettes | Image restoration subject to a total variation constraint[END_REF], [START_REF] Bioucas-Dias | Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach[END_REF], [START_REF] Beck | Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems[END_REF]], inpainting [START_REF] Chan | Mathematical Models for Local Nontexture Inpaintings[END_REF]] and zooming [Chambolle (2004)].

This regularization is based on summing the L 2 norm of the spatial gradient of the image:

R T V (f ) = Ω ∂f (r) ∂x 2 + ∂f (r) ∂y 2 dr ∇f (r) 2 .
(2.7)

In fact, this regularization is defined for the space of bounded variation functions and it is only a semi-norm, as the Total Variation of a constant function is 0. This functional is convex but not differentiable. It is therefore difficult to minimize the regularization functional. One approach is to smooth the functional, replacing u by 2 + u 2 to obtain a differentiable penalty and then use the gradient descent method (or any smooth optimization method).

R T V, (f ) = Ω 2 + ∇f (r) 2 dr.
(2.8) TV regularization is widely used in many applications due to its convexity, invariance to image shifts and rotations and also for the ability to preserve edges. However, the TV regularization results present patchy or cartoon-like staircase artifacts. Different approaches were proposed in order to overcome these problems. Farsiu et al. introduced in 2004 an improved TV regularization considering the bilateral TV in the case of multi frame super-resolution [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF]]. Also, in [START_REF] Peyré | Non-local Regularization of Inverse Problems[END_REF]] a non-local TV regularization is applied for inverse problems like super-resolution, inpainting, compressive sensing. More recent studies of this regularization method involve higher order derivative to attenuate the staircase effect as in [START_REF] Hu | Higher Degree Total Variation (HDTV) Regularization for Image Recovery[END_REF], Lefkimmiatis et al. 

Higher Degree Total Variation regularization

A reinterpretation of the classical TV regularization based on mixed L 1 -L 2 or L 1 -L 1 norms of the image's directional derivatives is presented in [START_REF] Hu | Higher Degree Total Variation (HDTV) Regularization for Image Recovery[END_REF]]. It is the basis for a generalization to higher order TV regularization that will minimize the staircase artifacts.

Rotation steerability of directional derivatives

Considering the unit vector u 0 = (cos(θ), sin(θ)) as in Figure 2.2 the first degree directional derivative of a function f along u 0 is given by: D

(1)

θ f (r) = ∂ ∂γ f (r + γu θ ).
(2.9)

As mentioned in [START_REF] Hu | Higher Degree Total Variation (HDTV) Regularization for Image Recovery[END_REF]], the directional derivatives of continuously differentiable functions are rotation steerable [START_REF] Peyré | Non-local Regularization of Inverse Problems[END_REF], Chan et al. (2000)], in the sense that the derivative along any direction is a linear combination of the derivative in the x and y directions. To express the derivative along any direction we can use the formula:

D (1) θ f (r) = [cos(θ), sin(θ)] s T 1 (θ)   ∂f (r)/∂x ∂f (r)/∂y   h 1 (r)
.

(2.10)

where s T denotes the transpose of the vector s.

The second degree directional derivative of the function f can be expressed by using the equation (2.10) for D

(1)

θ f (r): D (2) θ f (r) = [cos(θ), sin(θ)] s T 1 (θ)   ∂D (1) θ f (r)/∂x ∂D (1) θ f (r)/∂y   = [cos 2 (θ), 2cos(θ)sin(θ), sin 2 (θ)] s T 2 (θ)      ∂ 2 f (r)/∂x 2 ∂ 2 f (r)/∂x∂y ∂ 2 f (r)/∂y 2      h 2 (r)
.

(2.11)

More generally, the n th degree directional derivative is rotation steerable and it can be written as:

D (n) θ f (r) = s T n (θ)h n (r) (2.12)
where s n (θ) is a vector of trigonometric polynomials and h n (r) the vector of partial derivatives of f of order n.

Isotropic HDTV Regularization

The L 1 norm of the gradient magnitude of f can be interpreted as the mixed L 1 -L 2 norm of directional derivative of f as shown below:

1 √ 2 Ω ∇f (r) 2 dr = Ω 1 2π 2π 0 D (1) θ f (r) 2 dθ dr D (1) θ f (r) L 2 [0,2π]
.

(2.13)

It combines the L 1 norm for the position and the L 2 norm for the angles.

The proof of this equivalence is presented in [START_REF] Hu | Higher Degree Total Variation (HDTV) Regularization for Image Recovery[END_REF]] and is based on the steerability property of the directional derivatives:

D (1) θ f (r) 2 L 2 [0,2π] = 1 2π 2π 0 s T 1 (θ)h 1 (r) 2 dθ = h T 1 (r) 1 2π 2π 0 s 1 (θ)s T 1 (θ)dθ h 1 (r) = h T 1 (r)   1 2π 2π 0   cos 2 (θ) sin(2θ)/2 sin(2θ)/2 sin 2 (θ)   dθ   1 2 I h 1 (r) = 1 2 h T 1 (r)h 1 (r) = |∇f (r)| 2 /2.
(2.14)

The isotropic n th degree TV penalty is defined as:

R (n) IHDT V (f ) = Ω D (n) θ f (r) L 2 [0,2π] dr (2.15)
Y. Hu and M. Jacob called this penalty (2.15) isotropic HDTV.

This penalty is invariant to rotations and translations and is also convex since it is obtained by summing the square magnitude of the function's directional derivatives along all directions and orientations. Due to the L 1 norm that preserves the directional derivatives in regions with high directional energy given by D

(n) θ f (r) L 2 [0,2π]
, this penalty preserves the image features and is expected to avoid staircasing effects [START_REF] Hu | Higher Degree Total Variation (HDTV) Regularization for Image Recovery[END_REF]].

By applying the steerability property of the directional derivatives we obtain:

D (n) θ f (r) L 2 = 1 2π 2π 0 D (n) θ f (r) 2 dθ = h T n (r) 1 2π 2π 0 s n (θ)s T n (θ) dθ h n (r).
(2.16)

We will use the notation C n as in [START_REF] Hu | Higher Degree Total Variation (HDTV) Regularization for Image Recovery[END_REF]] for the symmetric matrix between brackets, with the elements c i,j = 1 2π 2π 0 s i (θ)s j (θ)dθ. The Isotropic HDTV regularizer becomes:

R (n) IHDT V (f ) = Ω h T n (r)C n h n (r) dr.
(2.17)

In the case when n=2, the second-degree Isotropic Total Variation regularization we denote it simply R IHDT V and is given by:

C 2 = 1 2π 2π 0 s 2 (θ)s T 2 (θ) dθ = 1 8      3 0 1 0 4 0 1 0 3      (2.18)
where

s 2 (θ) = cos 2 (θ), sin(2θ), sin 2 (θ) T and h 2 (r) = ∂ 2 f (r) ∂x 2 , ∂ 2 f (r) ∂x∂y , ∂ 2 f (r) ∂y 2 T .
This first reinterpretation of the classical TV regularizer, the L 1 -L 2 mixed norms presented above, will encourage the joint sparsity of the directional derivatives, resulting in isotropic smoothing of the image.

Super-resolution

The super-resolution (SR) problem consists in obtaining one or a set of high-resolution (HR) images from one or a set of low-resolution (LR) images [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF]].

Thus, super-resolution problems can be classified into the following categories: singleinput single-output (SISO) super-resolution, multi-input single-output (MISO) super-resolution, which is the classical super-resolution and multi-input multi-output (MIMO) superresolution [Mohammad-Djafari (2008)].

In the last three decades, a variety of super-resolution methods have been proposed.

These super-resolution methods can be divided into two main classes: frequency domain methods and spatial domain methods.

The first paper published regarding super-resolution was [R. Y. Tsai (1984)] and considered the MISO case. They applied this technique for terrestrial photographs taken by Landsat satellites. Their model involved aliasing and translation of a constant scene. The solution proposed in [R. Y. Tsai (1984)] was a frequency domain method based on the shift property of the Fourier transform. This first approach did not consider the optical blur or a specific noise. After that, in [START_REF] Tekalp | High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration[END_REF]] is formulated this problem by including the point spread function of the imaging system and noise.

Nowadays, many of the publications on super-resolution are applying spatial domain methods due to the high flexibility in the choice of motion model, motion blur and optical blur, and the sampling process. Another important factor is that the constraints are much easier to formulate (e.q. Markov random fields).

In this thesis, we focus on variational approaches. Yet, to solve the super-resolution problem we may consider probabilistic methods [START_REF] Schultz | Extraction of highresolution frames from video sequences[END_REF]] [START_REF] Tom | Reconstruction of a High Resolution Image from Multiple Degraded Mis-Registered Low Resolution Images[END_REF]] [Mohammad-Djafari ( 2008)] [Mohamad-Djafari ( 2013)] and optimization methods like projection onto convex sets (POCS) [START_REF] Stark | High-resolution image recovery from image-plane arrays, using convex projections[END_REF]] [START_REF] Patti | High-resolution image reconstruction from a low-resolution image sequence in the presence of time-varying motion blur[END_REF]].

Many super-resolution methods were applied in medical and biological imaging [START_REF] Lehmann | Survey: interpolation methods in medical image processing[END_REF]] [ [START_REF] Schatzberg | Superresolution in diffraction tomography[END_REF]] or aerial and satellite imaging [START_REF] Shekarforoush | Subpixel image registration by estimating the polyphase decomposition of cross power spectrum[END_REF]] but also to embedded low resolution imaging devices, such as mobile phones [START_REF] Aguiar | Three-dimensional modeling from two-dimensional video[END_REF]].

This thesis focuses on the single image super-resolution case. The mathematical model is expressed by the same equation ( 2.3) but where g δ represents the low resolution image, f is the high resolution image we would like to obtain, A is a linear, non-invertible, blurring and down-sampling operator, and w is an additive Gaussian white noise. Thus, having the intensity measurements denoted by g δ , a low resolution blurred and noisy image, we aim to obtain the corresponding high resolution image, f . Figure 2.5: Top row: images zoomed from 128x128, 64x64, and 32x32 pixels to 1024x1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation [START_REF] Gonzalez | Digital image processing[END_REF]].

Blind deconvolution and super-resolution

In blind deconvolution and super-resolution problems, the unknown image must be recovered and at the same time the blurring kernel must be estimated. A review of variational bayesian blind image deconvolution is presented in [START_REF] Ruiz | Variational Bayesian Blind Image Deconvolution: A review[END_REF]].

In the framework of variational methods, the following functional considered can be written for blind deconvolution

J(A, f ) = k * f -g δ 2 + α 1 f -f 2 + α 2 k -k 2 (2.19)
where α 1 and α 2 are regularization parameters, k is the kernel, f the unknown image and g δ the data, and k, and f are first guess estimates.

Starting from this double regularization method, some approaches use an alternating minimization scheme with respect to f and k [START_REF] You | A regularization approach to joint blur identification and image restoration[END_REF], [START_REF] Chan | Total variation blind deconvolution[END_REF]].

It will be the approach followed in this work. Some convergence results can be found in for Sobolev regularization, but the result depends on k and f [START_REF] Chan | Convergence of the alternating minimization algorithm for blind deconvolution[END_REF]].

The conditions under which a minimum norm solution exists and is unique have been investigated in the work of [START_REF] Justen | A non-iterative regularization approach to blind deconvolution[END_REF]]. A non-iterative numerical scheme is also proposed by the authors. Similar alternating approaches based on alternating minimization with proximal operators are presented in [START_REF] Abboud | A hybrid alternating proximal method for blind video restoration[END_REF]].

Most existing variational approaches to blind deconvolution are single-level since the image and the PSF appear in a single objective function that has to be minimized. More elaborate methods with bilevel optimization for finding the PSF are presented in [START_REF] Hintermüller | Bilevel optimization for calibrating point spread functions in blind deconvolution[END_REF]]. In the lower level, the total variation model is imposed. In the upper level, an objective functional is considered, which incorporates the statistical information on the image and the PSF.

Optimization methods

Different optimization methods are used in this thesis. Recently, the proximal methods based on proximal operators have been much developed. These methods are used for sums of convex lower semi-continuous functions [START_REF] Combettes | A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery[END_REF], [START_REF] Combettes | A Proximal Decomposition Method for Solving Convex Variational Inverse Problems[END_REF]].

These methods have not been considered in this manuscript. The basic conjugate gradient method is often used in this work, and the minimization of the regularization functional is performed with the Alternate Direction Method of Multipliers (ADMM).

Conjugate gradient

The conjugate gradient method was developed by Magnus Hestenes and Eduard Stiefel in 1952 [START_REF] Hestenes | Methods of Conjugate Gradients for Solving Linear Systems[END_REF]] and it is a widely used algorithm for solving a linear system as:

Ax = b (2.20)
where A is a symmetric positive-definite matrix. It is an iterative method so it can be applied to sparse systems that are too large to be solved by direct methods such as the Cholesky decomposition. The conjugate gradient (CG) is a very effective method since at each iteration only a small number of vectors are necessary for the next update and have to be kept in memory. The name of the method derives from the fact that a sequence of conjugate (or orthogonal) vectors is generated. These vectors are the residuals of the iterates that can be interpreted also as the gradients of a quadratic functional, the minimization of which is equivalent to solving the linear system.

Starting with an initial guess of x (0) , at step i the iterate x (i) is updated by a multiple (α i ) of the search direction vector p (i) :

x (i) = x (i-1) + α i p (i) .
(2.21)

The corresponding residual r (i) = b -Ax (i) is updated as:

r (i) = r (i-1) -α i q (i) where q (i) = Ap (i) (2.22)
where α i = r (i-1) T r (i-1) /p (i) T Ap (i) .

The search direction is updated using the residual:

p (i) = r (i) -β i-1 p (i-1) (2.23)
where the choice β i = r (i) T r (i) /r (i-1) T r (i-1) ensures that p (i) and Ap (i-1) -or equivalently, r (i) and r (i-1) -are orthogonal [START_REF] Barrett | Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition[END_REF]].

To speed up the CG method we can use a preconditioner M, symmetric and positive definite, that can approximate A and is easier to invert it. The linear system Ax = b will be indirectly determined by solving:

M -1 Ax = M -1 b. (2.24)
The aim of using a preconditioner is to improve the condition number of a matrix that measures the sensitivity of a linear system's solution to errors in the data. Moreover, this number gives an indication of the results' accuracy from the matrix inversion and the linear equation solution. A condition number close to 1 indicates a well-conditioned matrix.

Figure 2.6 is presenting the pseudocode of the Preconditioned Conjugate Gradient Method when a preconditioner M is used. In the case when the preconditioner M = I we obtain the unpreconditioned version of the algorithm. In the pseudocode the instruction solve (line 3) has to be removed and z replaced by r (line 4, 6 and 9).

Geometric interpretation of the CG method and of other related methods can be found Figure 2.6: The pseudocode for the Preconditioned Conjugate Gradient Method [START_REF] Barrett | Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition[END_REF]]

in [Shewchuk (1994), [START_REF] Křížek | Geometric Interpretations of Conjugate Gradient and Related Methods[END_REF]] and are presented in Figure 2.7. As we have seen in Figure 2.7 (a) the linear problem (2.24) is equivalent to the mini-mization of the quadratic form:

J(x) = 1 2 x T Ax -b T x + c (2.25)
The optimality condition gradJ = 0 can be rewritten as Ax -b = 0 thus Ax = b for positive-define A. We recall in Figure 2.8 the graphical representation of a quadratic form for a positive or negative-define matrix. In the case of a singular and positive-indefinite matrix, we will have a set of solutions given by a line that runs through the bottom of the valley. For an indefinite matrix, methods like CG can't be applied. For an indefinite matrix [Shewchuk (1994)].

Majorization-Minimization Algorithm

Having a non-differentiable penalty, one approach to solve an optimization problem is to apply a majorization-minimization (MM) algorithm. This type of algorithm proposes first to find a new quadratic functional J (m) (f ) that depends on the current iterate f (m) and majorizes the original functional J(f ):

J(f ) ≤ J (m) (f ), ∀f ; J (m) (f (m) ) = J(f (m) ).
(2.26)

After that, the penalty to minimize will become the quadratic one, thus, a simpler functional for a minimization algorithm as conjugate gradient:

f (m+1) = arg min f J (m) (f ).
(2.27)

A frequent used MM algorithm is the Iterated Reweighted Least Square (IRLS) algorithm.

Alternating Direction Method of Multipliers

The minimization of the regularization functional is performed with the Alternate Direction of Minimization method [START_REF] Boyd | Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[END_REF], Esser (2009)].

The principle of the method is to construct an augmented Lagrangian with dual variable which takes into account the constraints on the function to reconstruct, and to use splitting techniques. The minimization is performed iteratively on the splitting and dual functions.

This method is linked with the proximal methods. Its convergence properties have also been studied [START_REF] Boyd | Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[END_REF]].

Segmentation

There is an enormous amount of work concerning the segmentation problem. Some review can be found for example in [Aubert and Kornprobst (2002)]. The segmentation step subdivides an image into its constituent parts or objects.

Some approaches in the literature use the geodesic active contour and level-set formalism. Others are based on the Mumford-Shah functional, with two unknowns: the intensity function and the edges. One of the difficulty of this method is to approximate the regularization functional. The latter involves the Hausdorff measure of the set of edges which extends the notion of length to nonsmooth sets.

Some work have shown that the Mumford Shah functional can be used for the regularization of linear inverse ill-posed problems [Ramlau and Ring (2010), [START_REF] Jiang | Regularizing properties of the Mumford-Shah functional for imaging applications[END_REF]].

These publications are very interesting for us because in most cases, the deconvolution or super-resolution problem are considered separately from the segmentation problem.

Recently, some researchers have studied these inverse problems with the Potts regularization which is a special case of the Mumford Shah functional [START_REF] Storath | Jump-Sparse and Sparse Recovery Using Potts Functionals[END_REF], Wein-mann et al. (2015)]. This work uses the L 0 norm of the gradient of the image f , ∇f 0 .

This regularization term is non-convex and the minimization of the regularization functional sets convergence and implementation problems.

Metrics of image quality

Considering the type of images involved in the restoration process, different metrics were developed to measure the image quality improvement. We recall below some of the most frequently used metrics. For the next subsections the reference image is denoted as f * and the restored image as f . The total number of the image pixels is denoted with n.

Mean Squared Error (MSE)

The mean squared error (MSE) is based on the difference pixel by pixel (error) between two images, the reference image and the restored one. The computation of MSE is given by the expression:

M SE = 1 n n i=1 (f * i -f i ) 2 (2.28)
By this metric a smaller value of MSE is associated to a better restored image.

Peak Signal-to-Noise Ratio (PSNR)

The Peak Signal-to-Noise Ratio (PSNR) is another metric used to measure the image quality based on MSE and the dynamic of the reference image given by the difference between the maximum and the minimum value of the image:

P SN R = 10 log 10 (max(f * ) -min(f * )) 2 M SE (2.29)
This metric is measured in decibels and a better restored image will have a higher PSNR value.

Dice Similarity Coefficient

The DICE similarity coefficient (DSC) first proposed by [Dice (1945)], is based on the accuracy of the overlapping of two binary images (i.e. segmented images), denoted herein A and B:

DICE = 2 A ∩ B A + B (2.30)
A DICE value of 1 will represent a perfect overlap and a value of 0, no overlap. In the case of partial overlap, the DICE coefficient has the drawback of not accounting the way the images are overlapping and this must be interpreted by visual evaluation of the structures. Super-resolution is an active field of research [Chaudhuri (2002), [START_REF] Park | Super-resolution image reconstruction: a technical overview[END_REF]].

Traditionally, super-resolution requires several low-resolution images. As our aim is to improve the resolution of in-vivo images we will consider the inverse problem set with a single input image. Since the images we are interested in display quasi binary structures, we can strongly rely on a total variation (TV) prior model, thus improving the resolution from a single image.

The restoration of an image with an improved resolution from a single low-resolution image requires a model of the degradation the image undergoes during the acquisition process. Starting from a high-resolution image f , the low-resolution image g δ can be modeled as resulting from a blurring followed by a down-sampling, with some added random fluctuations to account for different sources of noise:

g δ = Af + w, (3.1)
where g δ ∈ R N denotes the N -pixels low-resolution image measured by the imaging system, f ∈ R N denotes an N = N × p d -pixels high-resolution image with super-resolution factor p in each of the d dimensions of the image, A is the linear operator accounting for blurring followed by down-sampling, and w is the (random) noise component.

Recovering a higher-resolution image f from the low-resolution image g δ amounts to solving a linear inverse problem. We consider maximum a posteriori restoration methods that estimate the high-resolution image f as the minimizer of a function of the form:

f (µ) = arg min f µ 2 Af -g δ 2 2 + R(f ) , (3.2)
where the first term of the sum corresponds to the negative of the log-likelihood under a white Gaussian noise hypothesis, R(•) is a regularization term (i.e., prior term) and µ is related to the noise variance and balances the relative weight of each of the two terms.

In the following work, we make the assumption that the blur operator is a shift invariant Gaussian taking into account the properties and the simplicity of this kernel. Although the model of the blur of the reconstructed CT images is not exactly the one proposed, we may find in the literature that it represents a good first estimation [START_REF] Chen | Three-dimensional point spread function measurement of cone-beam computed tomography system by iterative edgeblurring algorithm[END_REF]].

We have presented in section 2.2.1 some of the possible regularization methods applied until now to solve image reconstruction or restoration problems. We choose from these ones the classical TV approach and the recently generalized Isotropic High Degree Total Variation. In papers like [START_REF] Lefkimmiatis | Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications[END_REF]a, [START_REF] Hu | Higher Degree Total Variation (HDTV) Regularization for Image Recovery[END_REF]] the HDTV regularization functional is minimized with majorization-minimization algorithms.

Various numerical methods have been used to solve the TV regularized deconvolution problem [START_REF] Becker | NESTA: A Fast and Accurate First-Order Method for Sparse Recovery[END_REF], van den Berg and Friedlander ( 2008 

Total Variation Super-resolution

When a discrete image f is considered, the isotropic Total Variation method presented in section 2.2.1 can be rewritten under the form:

R TV (f ) = i D i f , (3.3)
where the sum is carried over all pixels of f and D i is the discrete gradient operator at pixel i. For 2D case and the i th pixel at the location (x, y), the first order finite difference operator D i is defined by

D i : R N → R 2 , D i f = (D x i f , D y i f ).
If we consider the image f to have different sizes in the two dimensions, N = N x N y , the horizontal and vertical difference operators are given by:

D x i f =    f x+1,y -f x,y x < N x 0 x = N x (3.4) D y i f =    f x,y+1 -f x,y y < N y 0 y = N y (3.5)
One drawback of TV is that it favors piecewise constant regions with disk-like shapes.

It is therefore not very well adapted to restore thin structures [START_REF] Lefkimmiatis | Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications[END_REF]a].

Higher Degree Total Variation Super-resolution

The isotropic higher degree total variation (IHDTV) of order 2 can be written in a continuous framework as:

R IHDTV (f ) = D (2) θ f (r) L 2 [0,2π] dr , (3.6)
with D

(2)

θ the directional derivative of order 2 in direction θ. This directional derivative can be expressed in 2D as a function of horizontal and vertical derivatives: 

D (2) θ f (x, y) = [cos 2 θ 2 cos θ sin θ sin 2 θ]      f xx f xy f yy      , (3.7) with f xx ≡ ∂ 2 f (x, y)/∂x 2 , f xy ≡ ∂ 2 f (x,
D (2) θ f (r) 2 L 2 [0,2π] = 1 2π 2π 0 D (2) θ f (r) 2 dθ . (3.8)
By integrating equation (3.7) over θ and applying a Cholesky factorization to the obtained matrix C 2 (2.18), the isotropic L 2 norm can be re-written under a simpler form, given here in the 2D case:

D (2) θ f (x, y) L 2 [0,2π] =      √ 6 4 0 1 2 √ 6 0 1 √ 2 0 0 0 1 √ 3           f xx f xy f yy      . (3.9)
In a discrete setting, this regularization functional can be written under a form very similar to standard total variation:

R IHDTV (f ) = i B i f (3.10)
where matrix B i stands for a linear operator both performing discrete second order derivatives at pixel i and applying the linear transform given in equation (3.9).

Minimization algorithm

Restoration of a high-resolution image f (µ) from a single low-resolution image requires solving an optimization problem of the form of equation (3.2). By introducing auxiliary

variables h i = (h 1 i , h 2 i ) ∈ R 2
, the minimization problem can be re-expressed as a constrained 2 + 1 minimization problem:

f (µ) = arg min f , {h i } µ 2 Af -g δ 2 2 + i h i , (3.11) s.t. h i = P i f , ∀i,
where matrices P i correspond either to the discrete gradient D i at pixel i in the case of R TV , or to B i when second order R IHDTV is considered.

The optimization problem (3.11) can be solved efficiently by finding the saddle point of the augmented Lagrangian using the alternating direction method of multipliers (ADMM) [START_REF] Yang | A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration[END_REF], [START_REF] Afonso | Fast Image Recovery Using Variable Splitting and Constrained Optimization[END_REF], [START_REF] Ng | Solving Constrained Totalvariation Image Restoration and Reconstruction Problems via Alternating Direction Methods[END_REF]]. The augmented Lagrangian associated to constrained problem (3.11) writes:

L A (f , {h i }, {λ i }) = µ 2 Af -g δ 2 2 + i h i + i β 2 h i -P i f 2 -λ t i (h i -P i f ) ,
(3.12)

with λ i ∈ R 2 the Lagrange multipliers for the i th equality constraint and β the Lagrangian parameter.

To find the saddle point of the augmented Lagrangian, the ADMM method alternates between three updates:

f k+1 = arg min f L A (f , h k i , λ k i ) h k+1 i = arg min h L A (f k+1 , h, λ k i ) λ k+1 i = λ k i -β(h k+1 i -P i f k+1 ) (3.13)
Thus the ADMM iterates become:

1. Update of the high-resolution reconstruction f , by (approximately) solving the linear system:

Hf k+1 = µA t g δ + i P t i (βh k i -λ k i ) ,
with H = µA t A + i βP t i P i .

2. Update of the auxiliary variables h i , by applying a soft-thresholding operator S β :

h k+1 i = S β P i f k+1 + λ k i /β , with S β (u) = max 1 -1 β u , 0 • u .
3. Update of the Lagrange multipliers λ i :

λ k+1 i = λ k i -β h k+1 i -P i f k+1 .
More details about how the updates were obtained can be found in the Appendix C.

The convergence of the ADMM algorithm is summarized by the following theorem [START_REF] Ng | Solving Constrained Totalvariation Image Restoration and Reconstruction Problems via Alternating Direction Methods[END_REF], [START_REF] Wang | A New Alternating Minimization Algorithm for Total Variation Image Reconstruction[END_REF]), Frick et al. (2011)]:

Theorem 3.4.1. The sequence (f k , {h k i }, {λ k i }) generated by the ADMM algorithm converges to a Kuhn-Tucker point (f (µ), {h * i }, {λ * i }) of the problem, which corresponds to a saddle point of the Lagrangian. With the augmented Lagrangian given in (3.12), the Karush-Kuhn-Tucker (KKT) conditions can be written as:

µA t (Af (µ) -g δ ) = -P t i (λ * i ), λ * i ∈ ∂ P i f (µ) 2 , h * i = P i f (µ) (3.14)
In our super-resolution problem, the hessian H that has to be inverted in the first update step is not shift invariant, thus it can not be diagonalized by Discrete Fourier Transform (DFT). In order to speed up the calculation, a diagonal preconditioner is used in the Fourier domain. Let S be the sub-sampling matrix, and W 0 = S t S. The hessian matrix can be decomposed into:

H = p d -1 s=0 H s W s , (3.15)
where H s are circulant matrices and W s shifted versions of W 0 . The chosen preconditioner M is the closest to matrices H s as measured by Frobenius norm: (3.17)

M = arg min X p d -1 s=0 X -H s 2 F . ( 3 
The Fourier transform mk at frequency k of the impulse response of shift-invariant operator M thus corresponds to the average of transfer functions hs,k . The inverse of the preconditioner is then readily obtained by element-wise inversion in Fourier domain.

Numerical experiments

In order to compare the performance of the two regularization schemes, the methods were tested on CT bone images artificially deteriorated. Also, a comparison with upsampling by bicubic interpolation is presented.

Considering the high quality of the parallel-beam synchrotron micro-CT images (see Figure 1.16) we have chosen four slices (Figure 3.1) from different human bone samples, cylinder core of 10 mm, at a voxel size of 10 µm. First, the bone volumes were reconstructed from 1500 2D projections using the Filtered back projection algorithm [START_REF] Salomé | A synchrotron radiation microtomography system for the analysis of trabecular bone samples[END_REF]] and further resampled at 20 µm. Each Region of Interest, that is a 2D gray level image in the range of (0, 255), was artificially deteriorated by a Gaussian blur denoted G, a sub-sampling operator, S, and an additive Gaussian noise. The process of obtaining the low resolution image is presented in Figure 3.2. The same steps were applied to all test images. The ADMM iterations were stopped

when f k-1 -f k 2 f k 2 < (3.18)
were the value of was chosen to ensure the convergence of the methods. The image quality obtained was measured with the Peak Signal-to-Noise Ratio (PSNR) defined as in (2.29). Since our final goal is to quantify bone micro-architecture after the segmentation of bone from background, we introduce additional parameters computed after segmentation.

The image is segmented by applying the Otsu threshold. Then, we calculate the DICE coefficient defined as in (2.30), the bone surface (in mm 2 ), and the Euler number (χ) 

Results and discussion

For each method studied, the regularization parameter µ is chosen to obtain the maximum PSNR. For a given value of the regularization parameter µ, the ADMM algorithm was applied to obtain the saddle point of the Lagrangian for TV and IHDTV regularization and the PSNR value of the obtained image was computed. The evolution of the PSNR as a function of µ is displayed in Figure 3.4 for the two methods in the case of test image 4.

From these curves the optimal regularization parameters can be estimated. We show in Figure 3.7 the influence of the regularization parameter µ and β. All images are at the final ADMM iteration when the stopping condition is achieved.

For two selected images (image 3 and 4), the ground truth, the low resolution and the images obtained with bicubic interpolation and super-resolution methods with the optimal regularization parameters are displayed in Figure 3.8 and Figure 3.9.

By visual inspection of these images it is clear that TV and IHDTV improve the results

given by interpolation. A more extensive comparison between the different methods is based on the quantitative parameters summarized in Figure 3.10 and in Table 1-4. We report the PSNR, the DICE coefficient, the bone surface and the Euler number. The results show that the TV based methods gives similar results considering the resolution as that used in clinical trials.

Conclusions

In this chapter, we proposed to improve the spatial resolution of bone micro-structure CT images by super-resolution techniques. We compared a standard interpolation method and super-resolution methods based on standard TV and the recently proposed Isotropic Higher Order TV scheme.

We recasted each regularization into a similar expression and derived an efficient minimization scheme based on ADMM algorithm. Since the hessian matrix in super-resolution problems does not have a block circulant with circulant block structure, a preconditioned conjugate gradient algorithm has been proposed to speed up the calculation. A comparison of the regularization approaches is done on noisy low-resolution images of the bone micro-structure in terms of PSNR, structural and segmentation parameters. Both TV methods surpass the results of bicubic interpolation with respect to all criteria. TV and IHDTV give similar results.

We continue our research in the framework of TV ADMM method considering that our final goal is the quantification of resulted binary images. Thus, in the context of segmen- 

Regularization Parameter Selection

When an ill-posed problem is solved by regularization approaches, the parameter that balances the two terms of the functional has a very important role in the quality of the solution. Thus, in this chapter we will focus on how we select the regularization parameter to be as close as possible to the optimal one.

We propose a fast and simple method to select the regularization parameter for the restoration with TV regularization of an image f from a blurred, noisy image g δ with various sub-sampling rates. Our contribution in this field is to design an iterative method following the idea of the model function for Tikhonov regularization from [START_REF] Kunisch | Iterative choices of regularization parameters in linear[END_REF]].

The outline of this chapter is the following. We start by a state of the art of the regularization parameter selection methods. In Section 4.2, we present the linear inverse problem studied, the Morozov discrepancy principle, a damped version of it, and some convergence results associated to our regularization parameter selection method and the ADMM/TV algorithm chosen to estimate the regularized solutions. In Section 4.3, the new method for the selection of the regularization parameter is presented. In Section 4.4, we detail the UPRE method that will be used for comparison. In Section 4.5, numerical results are given to demonstrate the effectiveness of the approach for deconvolution or super-resolution problems. Concluding remarks are given in the last section.

the following journal:

A. Toma, B. Sixou, F. Peyrin, ( 2015) "Iterative choice of the optimal regularization parameter in TV image restoration", Journal of Inverse Problems and Imaging, 9(4): 1171-1191

State of the art

In order to obtain a good reconstructed image, it is necessary to choose an optimal regularization parameter. A very common approach is to try various values until the reconstruction solution is satisfactory. For large scale problems, an exhaustive search with a grid of points of regularization parameters values is very slow. Several methods have been studied for the optimal selection of the regularization parameter for Tikhonov regularization. Approaches like the discrepancy principle and the Unbiased Predictive Risk

Estimator are based on a knowledge of the noise level δ [Vogel (2002), Morozov (1984), [START_REF] Blu | The SURE-LET approach to image denoising[END_REF], Eldar (2009), [START_REF] Ramani | Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms[END_REF]), Vaiter et al. (2013), [START_REF] Deledalle | Stein Unbiased GrAdient estimator of the Risk (SUGAR) for Multiple Parameter Selection[END_REF], [START_REF] Ramani | Regularization Parameter Selection for Nonlinear Iterative Image Restoration and MRI Reconstruction Using GCV and SURE-Based Methods[END_REF], [START_REF] Vonesch | Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint[END_REF]]. The L-curve method and the Generalized Cross-Validation can be used without the knowledge of this noise level [START_REF] Golub | Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter[END_REF], Hansen and O'Leary (1993)]. Furthermore, an iterative choice of the regularization parameters based on the Morozov discrepancy principle applied with a model function has been proposed in [START_REF] Kunisch | Iterative choices of regularization parameters in linear[END_REF]].

For TV regularization, fewer methods have been investigated. Regarding denoising problems, [START_REF] Aujol | Constrained and SNR-Based Solutions for TV-Hilbert Space Image Denoising[END_REF]] have proposed a method where the denoised result is close to the optimal, in the SNR sense. An extension of the Unbiased Predictive Risk Estimator to TV regularization has been shown to give a good estimate of the regularization parameter [START_REF] Lin | UPRE method for total variation parameter selection[END_REF]]. A method exploiting the Generalized Cross-Validation technique has been proposed in [START_REF] Liao | Selection of regularization parameter in total variation image restoration[END_REF]]. Babacan et al. [Babacan et al. (2008)a, Babacan et al. (2008)b] have studied a bayesian variational method for solving TV deconvolution and super-resolution problems. A new approach based on a proximal point method applied to the dual formulation of the TV regularization problem and the discrepancy principle has been proposed recently [START_REF] Wen | Parameter selection for totalvariation-based image restoration using discrepancy principle[END_REF]].

TV regularization, Morozov based principles and ADMM approach 4.2.1 Problem formulation

Let Ω be a bounded open domain with Lipschitz boundary. In the following, we consider a linear operator A : L 2 (Ω) → L 2 (Ω). We assume that A is injective and continuous.

We consider the regularization functional:

J µ,g δ (f ) = µ Af -g δ 2 2 + R T V (f ) (4.1)
where µ is a regularization parameter. The Total Variation regularization has been extensively studied in [START_REF] Scherzer | Variational Methods in Imaging[END_REF], [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]]. The following theorem summarizes the main convergence and stability results.

Theorem 4.2.1. Let A be a linear and bounded operator A : L 2 (Ω) → L 2 (Ω), satisfying Aq = 0 for all constants q ∈ L 2 (Ω). The space L 2 (Ω) is assumed to be endowed with its weak topology. Then:

-the TV semi-norm is convex and lower semicontinuous with respect to the weak topology on L 2 (Ω).

-the level sets {f ∈ L 2 (Ω), µ Af -g δ 2

2

+ R T V (f ) ≤ M } are sequentially pre-compact with respect to the weak topology on L 2 (Ω), for any positive numbers M and µ.

-consequently, the regularization with the TV semi-norm is well-defined, stable and convergent.

Let (g k ) be a sequence converging toward g δ , and f k be a minimizer of the regularization functional J µ,g k , the stability of the regularization method means that every convergent subsequence of (f k ) converges to a minimizer of J µ,g . Let (δ k ) be a sequence of positive numbers converging to 0, and (g k ) a sequence such that g-g k ≤ δ k , the TV regularization method is convergent and thus for a good choice of the parameter µ(δ k ), the sequence (f k ) has a convergent subsequence. The limit is a minimal norm solution [START_REF] Scherzer | Variational Methods in Imaging[END_REF]].

Morozov and modified Morozov principle, basic properties

With the Morozov discrepancy principle [START_REF] Engl | Regularization of Inverse Problems[END_REF]], the regularization parameter is chosen such that the discrepancy term is equal to the known noise level δ on the observed data, so that the following equation for µ holds :

Af (µ) -g δ = δ (4.2)
In some cases, the use of the Morozov discrepancy principle may not lead to an optimal regularization parameter. As suggested in [Kunisch (1993), [START_REF] Kunisch | Iterative choices of regularization parameters in linear[END_REF]], a damped Morozov equation may be more satisfactory. We have therefore considered the damped equation:

g δ -Af (µ) 2 + µ γ R T V (f (µ)) = δ 2 (4.3)
where the exponent γ has to be chosen.

We first study the range of the functions

P (f (µ)) = g δ -Af (µ) 2 and P γ (f (µ)) = g δ -Af (µ) 2 + µ γ R T V (f (µ))
. We define:

η = inf{ Af -g δ , f ∈ L 2 (Ω)} (4.4) and ν = inf{ Af C -g δ , f C = C on Ω, C ∈ R} (4.5)
We denote f 0 the value of f for which the minimum ν is obtained. We are first interested in some basic properties of P γ and P . The proofs are similar to the one given in [Kunisch (1993)], but some changes are necessary because of the use of the TV regularization term.

Lemma 4.2.2.

For γ ≤ -1, P γ (f (µ)) ≥ ν 2 as µ → 0. As µ → ∞, P γ (f (µ)) → η 2 .
The same results hold for P .

Proof. The minimum of J µ (f ) is obtained for f (µ) and R T V (f 0 ) = 0 thus:

Af (µ) -g δ 2 2 + µ -1 R T V (f (µ)) ≤ Af 0 -g δ 2 2 + µ -1 R T V (f 0 ) ≤ ν 2 2 + µ -1 R T V (f (µ)) consequently Af (µ) -g δ ≤ ν and R T V (f (µ)) ≤ µ Af 0 -g δ 2 2 . Therefore R T V (f (µ)) → 0 as µ → 0. Let < f > be the average value of f (µ) on Ω, (R T V (f (µ))-< f >) → 0 as µ → 0.
As the TV semi-norm is equivalent to the BV norm for functions with zero average value [START_REF] Scherzer | Variational Methods in Imaging[END_REF]], this result implies [START_REF] Scherzer | Variational Methods in Imaging[END_REF]]. The operator A is continuous on L 2 (Ω) and

(f (µ)-< f >) BV → 0 as µ → 0. Thus f (µ) →< f > in L 2 (Ω) since BV is continuously embedded in L 2 (Ω)
thus Af (µ) -g δ 2 → A < f > -g δ 2 as µ → 0. Consequently P γ (f (µ)) ≥ ν 2 as µ → 0 For > 0, we consider f such that Af -g δ ≤ η + . Af (µ) -g δ 2 2 + µ -1 R T V (f (µ)) ≤ Af -g δ 2 2 + µ -1 R T V (f ) ≤ (η + ) 2 2 + µ -1 R T V (f )
and thus for µ ≥ 1 and γ ≤ -1, µ γ < 2 µ and

Af (µ) -g δ 2 + µ γ R T V (f (µ)) ≤ (η + ) 2 + 2µ -1 R T V (f ) (4.6)
On the other hand, Af (µ) -

g δ 2 + µ γ R T V (f (µ)) ≥ η 2 .
Let µ 1 = 2R T V (f )/ 2 , then it follows from (4.6) that for µ ≥ µ 1 , P γ (f (µ)) ≤ η + 2 and thus P γ (f (µ)) → η 2 as µ → ∞. From the former results, it follows that P (f (µ)) ≥ ν 2 as µ → 0 and P (f (µ)) → η 2 as µ → ∞.

Convergence results

The convergence rates of regularized solutions for ill-posed operator equations require additional properties of the true solution f * of the equation Af = g such as source conditions. Convergence rates results can be obtained in terms of Bregman distance between the true and the regularized solution [START_REF] Burger | Convergence rates of convex variational regularization[END_REF], Resmerita (2005), [START_REF] Scherzer | Variational Methods in Imaging[END_REF]]. The Bregman distance is a measure of the difference between two elements in a Banach space [Kiwiel (1997), Bregman (1967)]. The use of this distance has now evolved as a standard tool for error measure. For a element ξ ∈ ∂R T V (v), where

∂R T V (v)
denotes the subdifferential of TV at v, the Bregman distance with respect to TV between u and v at ξ is defined by:

D ξ T V (u, v) = R T V (u) -R T V (v) -ξ, u -v .
In the following, we assume the standard source condition holds and τ ∈ L 2 (Ω) exists such that:

ξ = A(f * ) * τ ∈ ∂R T V (f * ) (4.7)
Some convergence results have been obtained for a priori choices of the regularization parameter [START_REF] Scherzer | Variational Methods in Imaging[END_REF], Grasmair (2011)] given by the following proposition:

Proposition 4.2.3. Assuming that the former source condition holds, for the choice 1/µ ∼ δ, the Bregman distance between the regularized solution and the ground truth is

D ξ T V (f (µ), f * ) = O(δ).
This control of the error in terms of Bregman divergence was extended by a l 2 control in the discrete setting [START_REF] Fadili | Stable Recovery with Analysis Decomposable Priors[END_REF]]. We present here some convergence rates results as the error level δ → 0. We develop an error estimation when the regularization parameter µ(g δ , δ) is chosen according to the modified Morozov principle (4.3). We first show that the TV norm of f (µ) is uniformly bounded if the modified Morozov principle is satisfied. Proof. From the definition of f (µ), we have:

Af (µ) -g δ 2 2 + µ -1 R T V (f (µ)) ≤ δ 2 2 + µ -1 R T V (f * ) (4.8) and therefore D ξ T V (f (µ), f * ) = O(δ min(1,2(γ+1)/γ) ).

Proposed Morozov based regularization parameter selection methods

In this section, we detail two numerical schemes to choose the regularization parameter.

We assume that f (µ) is a minimum R T V norm solution and that it is unique. We first show, under restrictive conditions, the differentiability of the function f and of the value function E around µ, that are functional properties on which the iterative scheme relies.

Lipschitz continuity and differentiability of f (µ)

We consider here the function f : R → R N of the regularization parameter. The results in this section will be formulated in a discrete setting. They can be generalized to the continuous setting if the subdifferential of the discret TV semi-norm

D t i (∂ D i f (µ)
) is replaced by its continuous version. Proof. We first show that f is Lipschitz continuous around µ. Subtracting the KKT condition for µ + t and µ yields:

µA t A(f (µ + t) -f (µ)) ∈ tA t Af (µ + t) + tA t g δ - D t i (∂ D i f (µ + t) -∂ D i f (µ) ). (4.14)
Taking the inner product with f (µ + t) -f (µ), using the Schwarz inequality, considering that f is bounded and applying the monotonicity of the subdifferential, we obtain:

µ A(f (µ + t) -f (µ)) 2 ≤ C 1 |t| f (µ + t) -f (µ) (4.15)
where C 1 is a positive constant and

< ∂ D i f (µ + t) 2 -∂ D i f (µ) 2 , D i (f (µ + t) -f (µ)) >≤ C 1 |t| f (µ + t) -f (µ) (4.16) If A is injective, A(f (µ + t) -f (µ)) 2 ≥ α min (f (µ + t) -f (µ)) 2
, where α min is the minimum singular value of A t A and thus f is Lipschitz continuous around µ.

The regularization functional for the regularization parameter µ + t is minimized for f (µ + t) and thus:

(µ + t) Af (µ + t) -g δ 2 2 + R T V (f (µ + t)) ≤ (µ + t) Af (µ) -g δ 2 2 + R T V (f (µ)) (4.17)
and thus, there are constants C 2 , C 3 such that:

0 ≤ R T V (f (µ + t)) -R T V (f (µ)) ≤t Af (µ) -g δ 2 2 + µ( Af (µ) -g δ 2 2 - Af (µ + t) -g δ 2 2 ) ≤ t Af (µ) -g δ 2 2 + C 2 Af (µ + t) -Af (µ) ≤ C 3 √ t (4.18)
where we have used (4.15).

From (4.16), we can deduce that, for all i, as t → 0, D i f (µ + t) = 0 if and only if

D i f (µ) = 0
, and that the components of D i f (µ) and D i f (µ + t) have the same sign.

Therefore, as t → 0, we have,

R T V (f (µ + t)) -R T V (f (µ)) ∼ R T V (f (µ + t) -f (µ)), and
there is a positive constant C 4 such that

R T V (f (µ + t) -f (µ)) ≤ C 4 √ t (4.19)
Let BV (Ω) ♦ , the set of all functions of bounded variation with zero mean, then on BV (Ω) ♦ the TV and BV norm are equivalent [START_REF] Scherzer | Variational Methods in Imaging[END_REF]]:

R T V (f ) ≤ f BV ≤ C 2 R T V (f ) , ∀ f ∈ BV (Ω) ♦ (4.20)
This property is also verified for the discrete TV semi-norm. Let us denote ∆f = f (µ + t) -f (µ), and M : L 1 (Ω) → L 1 (Ω) the averaging operator of a function f . The operator M is linear and continuous. In a continuous setting, the operator M is defined by:

M (f ) = 1 Ω Ω f (x) , ∀f ∈ L 1 (Ω) (4.21)
where 1 Ω is the indicator function of the set Ω. Using the operator M we have:

f (µ + t) -f (µ) 1 ≤ M (∆f ) 1 + ∆f -M (∆f ) 1 (4.22)
Under the assumption that the operator A is injective on the set of constant functions, we obtain that there is a positive constant C 5 such that:

M (∆f ) 1 ≤ C 5 AM (∆f ) 2 (4.23)
Using (4.20) and (4.23), we get:

f (µ + t) -f (µ) 1 ≤ C 5 AM (∆f ) 2 + C 2 R T V (∆f -M (∆f )) ≤ C 5 AM (∆f ) 2 + C 2 R T V (∆f ) (4.24)
We now assume that the operator A commutes with M . It can be easily shown that it is the case for the convolution integral operator investigated in the following. Using the continuity of M , (4.15) and (4.19), we thus obtain that, as t → 0 there is positive constant D such that:

f (µ + t) -f (µ) 1 ≤ C 5 M A(∆f ) 2 + C 2 R T V (∆f ) ≤ D √ t (4.25)
We now demonstrate that under some restricted injectivity condition, the regularized solution is a differentiable function of the regularization parameter.

Proposition 4.3.2. Let us assume there exists a constant E > 0 such that the operator A is injective on the subset C of BV (Ω), defined by:

C = {g ∈ BV (Ω), D t i D i g D i g - D t i D i f (µ) D i f (µ)} ≤ E} (4.26)
Then, the regularized solution f is differentiable around the regularization parameter µ.

Proof. We now show that the function f is differentiable around µ and that its derivative is the unique solution ω of:

µA t Aω = A t g δ -A t Af (µ) a.e (4.27)
We assume that the operator A is injective on the subset C. Let = (f (µ + t) -f (µ)) -tω.

Dividing (4.14) by t and substracting (4.27), we obtain:

µA t A , = -A t A(f (µ + t) -f (µ)), + γ i , . (4.28) with γ i , = -(∂ D i f (µ + t) 2 -∂ D i f (µ)) 2 ), D i .
The optimality condition shows that as t → 0, f (µ + t) belongs to the set C. It is also the case for . By the Schwarz inequality:

µα min ≤ f (µ + t) -f (µ) + γ i (4.29)
where α min is the minimal singular value of µ+t) are equal for all i as t → 0. Therefore → 0 and f is thus differentiable around µ.

A t A restricted to C. When t → 0, γ i → 0, since D i f (µ) D i f (µ) and D i f (µ+t) D i f (

Differentiability of the value function E(µ)

In the following, we denote E(µ) the value obtained at the saddle point for

L A (f (µ), {h * i (µ)}, {λ * i (µ)}, µ). Proposition 4.3.3. The value function E(µ) is twice differentiable with E (µ) = g δ -Af (µ) 2 2 and E (µ) = Af (µ) -g δ , Af (µ)
, and E (µ) is a decreasing function.

Proof. The differentiability of E follows from its definition and from the differentiability of f (µ). Classical differentiability calculation rules gives:

∂E(µ) =µ Af (µ) -g δ , Af (µ) + g δ -Af (µ) 2 2 + D t i ∂ D i f (µ) 2 , f (µ) .
Taking into account the optimality condition, the first derivative of E(µ) is given by:

E (µ) = g δ -Af (µ) 2 2 . (4.30)
Thus, the second derivative of E(µ) is given by:

E (µ) = Af (µ) -g δ , Af (µ) . (4.31)
Using equation (4.27), E (µ) can be rewritten:

E (µ) = -ω, µA t Aω = -Aω, µAω (4.32) 
We obtain E (µ) ≤ 0. The function E (µ) is decreasing and the value function E(µ) is monotonically increasing and concave.

Proposed iterative scheme for the classical Morozov principle

In the framework of the Morozov discrepancy principle, the regularization parameter is chosen such that the discrepancy term is equal to the noise level δ, that is g δ -Af (µ) = δ.

This condition can be written 2E (µ) = δ 2 . In order to determine the regularization parameter and to solve the Morozov equation, we have used a two parameters model function. The approximate value of µ obtained is refined with a Newton method. Following the model function methodology in [START_REF] Kunisch | Iterative choices of regularization parameters in linear[END_REF]], it can be calculated a model function that preserves the main properties of E (µ).

Proposition 4.3.4. The discrepancy term E (µ) can be approximated by the decreasing function,

µ → aµ -2 + b, with (a, b) ∈ R 2 .
Proof. Upon differentiating the optimality condition with respect to µ, we obtain:

A t (Af (µ) -g δ ) + µA t (Af (µ)) = - d dµ D t i D i f (µ) D i f (µ) 2 . (4.33)
Taking the inner product of this equation with f (µ) and neglecting the second member, we obtain:

(Af (µ) -g δ ), Af (µ) + µ Af (µ), Af (µ) = 0 (4.34) This equation will be rewritten:

Af (µ) -g δ 2 + µ Af (µ), Af (µ) -g δ = µ Af (µ), -g δ + Af (µ) -g δ , -g δ (4.35)
If the right member is assumed constant, using (4.30) and (4.31), we get:

2E (µ) + µE (µ) = constant (4.36)
Solving this differential equation, we obtain a decreasing and convex model function depending on two real parameters a and b:

E (µ) = aµ -2 + b (4.37)
which describes the main properties of the function E (µ).

As expected, this model function is decreasing and the value function E(µ) is concave.

This model function yields an approximate value, µ approx , of the regularization parameter obtained with the equation:

2E (µ) = δ 2 (4.38)
In a second step, we define the function G(µ) by:

G(µ) = 2E (µ) -δ 2 (4.39)
In order to solve G(µ) = 0, given two initial guess values close to µ approx , µ 0 and µ 1 , a sequence of iterates (µ k ) k≥0 is generated for k ≥ 1 by:

µ k+1 = µ k - 2E (µ k ) -δ 2 2E (µ k ) (4.40)
where the value

f (µ k ) in E (µ k ) is approximated with f (µ k )-f (µ k-1 ) µ k -µ k-1
.

Proposed iterative scheme for the damped Morozov principle

With the damped Morozov principle [Kunisch (1993), [START_REF] Kunisch | Iterative choices of regularization parameters in linear[END_REF]], we have to consider the modified equation:

g δ -Af (µ) 2 + µ γ R T V (f (µ)) = δ 2 (4.41)
for a parameter γ. The first step of the iterative scheme is the same. For the Newton refinement step, we can redefine the function G(µ) as:

G(µ) = g δ -Af (µ) 2 + µ γ R T V (f (µ)) -δ 2 (4.42)
Theorem 4.4.1. The Unbiased Predictive Risk Estimator of the predictive risk for TV regularization is given by:

U P RE(µ) = p(µ) 2 N 2 + 2σ 2 N 2 tr(C T V (µ)) -σ 2 (4.46)
where σ 2 is the noise variance and tr(.) denotes the trace operator. The influence matrix C T V (µ) in the TV problem can be written as:

C T V (µ) = A(µA t A + L(f (µ))) -1 A t (4.47)
where the matrix L(f (µ)) is given by:

L(f (µ)) = D t x diag( 1 grad(f (µ)) 2 )D x + D t y diag( 1 grad(f (µ)) 2 )D y (4.48)
In order to avoid divergencies in the numerical tests, the norm of the gradient of the image at pixel i is approximated by: (D x i (f )) 2 + (D y i (f )) 2 + where is a smoothing constant.

For large scale problems the Singular Value Decomposition of A is not available and it is necessary to approximate the trace value tr(C T V (µ)) with an algorithm requiring only matrix-vector products. With the approach of [START_REF] Hutchinson | A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines[END_REF]], the trace of a smooth function F (M ) of a symmetric positive definite matrix M can be evaluatued with the unbiased trace estimator: E(u t F (M )u) = tr(F (M )) where u is white noise vector with standard deviation equal to σ u = 1 and E denotes the expected value function.

The choice of u that minimizes the variance in this estimator is the one for which the components of the vector are independant and take on the values of 1 and -1 with equal probability [Vogel (2002)]. The expectation value is evaluated with a number n u of the random variable realization. In order to approximate the trace of C T V (µ), we have to solve the linear system: (µA t A+L(f (µ))) -1 A t u = y for a given vector y which can be done with a conjugate gradient algorithm. In this work, in order to obtain the best reconstruction results, the U P RE(N iter , µ) was calculated as a function of the number of iterates N iter and as a function of the regularization parameter µ.

Numerical experiments

In order to show the effectiveness of our method for choosing the regularization parameter, we have considered two test problems: deconvolution and super-resolution. In the deconvolution case, the test image is blurred with a Gaussian kernel of standard deviation σ blur and corrupted by additive Gaussian noise of standard deviation σ. In the superresolution case, after the blur and the noise are applied, the image is also undersampled by a factor p, increasing the ill-posedness of the problem.

We start by finding the optimal regularization parameter that maximizes the PSNR of the resulting images defined as in (2.29). Thus, an extensive sweeping of the regularization parameter values is performed. The deteriorated image is restored with the ADMM algorithm for each value of the regularization parameter µ. The ADMM iterations are stopped

when f k+1 -f k 2 f k 2
< stop ADM M , where stop ADM M is a small positive constant.

In order to apply the classical and damped Morozov schemes described in section 4. 

(µ * ) ≥ δ 2 , µ * is not changed, otherwise it is decreased. If 2E (µ * * ) ≤ δ 2 , µ * * is not changed, otherwise it is increased.
An approximate value for the regularization parameter, µ approx , is obtained from the equation δ 2 = 2(a(µ approx ) -2 + b), where the noise level δ is evaluated with the standard deviation σ as δ 2 = N 2 σ 2 . Starting from this approximate solution, the Newton method is applied to refine it. Considering µ 0 = µ approx + 0.1 and µ 1 = µ approx , the iterative formula given by (4.40) is applied for the classical Morozov principle while (4.43) for the damped one. For each iteration of the Newton method, the ADMM algorithm is applied to obtain the solution f (µ) with the same value stop ADM M . The Newton iterations are

stopped when | Af (µ k )-g δ 2 -δ 2 δ 2 | < stop N ewton .

Results and discussion

Deconvolution problem

The test image f ∈ R N 2 (N=330) to be reconstructed is displayed in Figure 4.1.(a).

It is a slice of a bone synchrotron micro-CT sample at a voxel size of 20 µm [START_REF] Salomé | A synchrotron radiation microtomography system for the analysis of trabecular bone samples[END_REF]].

We first consider the application of the methods to the noisy and blurred image shown in Figure 4 A value stop ADM M = 5•10 -5 was considered to ensure the convergence of the regularization method.

We applied the Morozov principles to select the regularization parameter as described in section 4.5. With µ * = 0.1 and µ * * = 10, the values obtained with (4.37) for a and b are 5.36 • 10 3 and 7.26 • 10 5 , respectively. The approximate value for the regularization parameter was found to be µ approx =0.14. By applying the Newton scheme for the classical Morozov principle, we observed that the convergence was fast and only four iterations were necessary. A value stop N ewton = 0.001 was considered. The final value of the regularization parameter was found to be µ M = 0.34. The final image obtained with µ M is displayed To compare, the UPRE method was also implemented for selecting the regularization parameter. The trace of the influence matrix was calculated with 50 white noise vectors u.

The smallest value that gives a positive UPRE curve was chosen. The UPRE curves are rather noisy thus the mean and the standard deviation of µ and PSNR where estimated 

Super-resolution problem

In this section we investigate a more ill-posed problem, the super-resolution problem.

The standard deviation of the Gaussian blurring kernel was σ blur = 4.85 and a subsampling rate of p = 4 was applied to the images. An additional Gaussian noise with a standard deviation σ was added to the low-resolution image. The aim of the regularization approach is to estimate the high resolution image. Simulations were performed with several noise levels. To illustrate the method, we first detail the results obtained with σ = 6. When applying the damped Morozov method with γ = -1, the obtained regularization parameter is µ DM = 6.2. The evolution of the data term weighted with the TV norm of the image f is shown in Figure 4.5.(c) as a function of the regularization parameter. The corresponding PSNR value is 19.57 which is very close to the optimal one. We obtain thus a very good estimation of the optimal regularization parameter.

To compare, the evolution of the UPRE(µ) term for σ = 6 with = 0.05 is displayed in Table 4.2 summarizes the values of the regularization parameters and the PSNR obtained for different noise levels. For all these noise levels, the UPRE method gives a better estimation of the optimal regularization parameter than the classical Morozov method. Yet, the damped Morozov method is more effective than the UPRE approach for this super-resolution problem.

Super-resolution test problem for other images

To assess the potential of the proposed method in other domains of application, we 

Conclusions

In this chapter, we have proposed new iterative methods to determine the optimal regularization parameter in linear inverse problems with TV regularization. Then the solution is refined with a Newton iterative method on the basis of the Morozov principle or its damped version. This new approach has been compared with the one based on the UPRE, for deconvolution and super-resolution test problems, in the case of various noise and blur levels and for different images.

In the deconvolution case, the damped Morozov principle is the most efficient method for the highest blur level. Otherwise, the classical Morozov principle offers the best esti- + R TV (s) .

(5.3) Minimization problem (5.3) is NP-hard for general linear operators A. We therefore only perform approximate minimization by considering instead the following convex relaxation:

ŝ ∈ arg min s∈[c 0 ,c 1 ] N µ 2 As -g δ 2 2 + R TV (s) , (5.4)
where the set of two-phase volumes has been replaced by the convex set of graylevel volumes with graylevels in the range [c 0 , c 1 ].

The Alternating Direction Method of Multipliers

Restoration of a high-resolution image ŝ from a single low-resolution image requires solving an optimization problem of the form of equation (5.4). By introducing auxiliary variables, the minimization problem can be re-expressed as: The optimization problem (5.5) can be solved efficiently by finding the saddle point of the augmented Lagrangian using the alternating direction method of multipliers (ADMM), following the approach presented in chapter 3. The augmented Lagrangian associated to constrained problem (5.5) writes:

ŝ ∈ arg min s, {h i }, l∈[c 0 ,c 1 ] N µ 2 As -g δ 2 2 + i h i , ( 5 
L A (s, {h i }, l, {λ i }, λ C ) = µ 2 As -g δ 2 2 + i h i (5.6) + i β 2 h i -D i s 2 -λ t i (h i -D i s) +I C (l) + β 2 l -s 2 2 -λ t C (l -s)
with λ i the Lagrange multipliers for the i th equality constraint, λ C the Lagrange multiplier for convex constraint and I C (l) is the indicator function of the convex set C = [c 0 , c 1 ] N .

In this case we have to minimize the augmented Lagrangian L A (s, {h i }, l, {λ i }, λ C ) with respect to each of the 5 unknowns. We explain below how each minimization is made and after that a compact scheme of the ADMM TVbox method is presented.

The ADMM method alternates between five updates:

1. Update of the high-resolution reconstruction s, by (approximately) solving the linear system:

Hs k+1 = µA t g δ + i D t i (βh k i -λ k i ) + βl k -λ C k , with H = µA t A + βI + i βD t i D i .
2. Update of the auxiliary variables h i , by applying a soft-thresholding operator S β :

h k+1 i = S β D i s k+1 + λ k i /β , with S β (u) = max 1 -1 β u , 0 • u .
3. Update of the auxiliary variable l:

l k+1 = π C (s k + λ k C β ) ,
where π C is the projection on the convex set C.

4. Update of the Lagrange multipliers λ i :

λ k+1 i = λ k i -β h k+1 i -D i s k+1 .
5. Update of the Lagrange multiplier λ C :

λ k+1 C = λ k C -β l k+1 -s k+1 .
More details about how the updates were obtained can be found in the Appendix D.

For comparison purposes, we will also consider in the next part the 3D TV super-resolution without the box constraints that was detailed in chapter 3 for the 2D case. This appears as a special case of the algorithm just described.

Numerical experiments

We applied the two total variation based regularizations and the bicubic interpolation method to experimental data. Human bone samples (cylinder core of 10mm) were scanned with parallel-beam synchrotron micro-CT at 10 µm. To this aim, 1500 2D projections were acquired after rotating the sample. The 3D images were reconstructed using the Filtered back projection algorithm [START_REF] Salomé | A synchrotron radiation microtomography system for the analysis of trabecular bone samples[END_REF]] and further resampled at 20 µm. Due to the high signal to noise ratio of synchrotron CT images, the binary volume of the bone structure was obtained by simple thresholding with the Otsu's method. This binary image of size 328 × 328 × 328 is considered as the ground truth and is shown in regularization. An extensive sweeping of the regularization parameters was performed in order to pick the optimal one based on the known ground-truth. For each method, the regularization parameter µ chosen is the one that maximizes the DICE value between the binary ground truth and the segmented reconstructed volume obtained with the threshold 0.5. For a fixed regularization parameter, the β parameter is chosen beforehand by computing only a limited number of iterations and in order to have the fastest decrease of the regularization functional. For comparison reasons, the low resolution volume and the bicubic interpolation volume were segmented with Otsu's method, for both noise levels.

The performance of the methods was measured considering the DICE value and also the quantitative bone micro-architecture parameters such as the bone volume to total volume (BV/TV in %), the trabecular thickness (Tb.Th in µm), the trabecular separation (Tb.Sp in µm), the Euler number (χ), the density of connectivity (Conn.D in mm -3 ), described in section 1.4.6. Also, the structural model index (SMI) and a local topological analysis were performed determining the distribution of the plate-like elements and rode-like elements given by the parameters: the plates volume to bone volume (PV/BV in %), the rodes volume to bone volume (RV/BV in %) and the nodes volume to bone volume (NV/BV in %). TVbox method is the preferred method for solving our problem. The same conclusion can be taken from Figure 5.4 that shows a slice of the ground-truth volume, of the low resolution gray level volume and of the resulted binary volumes with the tested method.

Results and discussion

The quantitative results are summarized in The advantages of the TVbox method are more clearly showed in the higher noisy case (see Table 5.2 for σ = 0.1). The ability of the TVbox method to restore the connectivity, represented by the Conn.D parameter, can also be observed in Figure 5.3. Moreover, the estimation of the plate and rode elements distribution given by the SMI, PV/BV and RV/BV, is the closest to the reference values with the TVbox method. 

Conclusions

In this chapter, we proposed a super-resolution segmentation method based on the total variation regularization with convex constraint and ADMM minimization for improving the trabecular bone micro-structure quantification from micro-CT volumes. We compared this new approach with a standard interpolation method and TV super-resolution method on noisy, blurred, low-resolution volumes in terms of DICE and structural parameters.

Better results are obtained when a convex constraint is included in the TV regularization functional. We observe that in this case, all quantitative bone parameters are nearly well restored and improved compared to the original.

Chapter 6

Semi-Blind Joint Super-Resolution/Segmentation

Introduction

In chapter 5 we have shown that an a priori based on TV regularization with a convex relaxation of the binary constraint (TVbox) can improve the quantification (and especially the connectivity) of the artificially deteriorated experimental micro-CT bone images when the blur kernel is known.

However, when considering real data, the problem is more complex since the blurring kernel is not known and may be difficult to estimate. Several methods have been proposed for the simultaneous recovery of the image and of the point spread function (PSF), like bayesian methods [START_REF] Babacan | Variational Bayesian Blind Deconvolution Using a Total Variation Prior[END_REF], [START_REF] Molina | Blind deconvolution using a variational approach to parameter, image, and blur estimation[END_REF]], Tikhonov regularization [START_REF] You | A regularization approach to joint blur identification and image restoration[END_REF]] or Total Variation (TV) regularization [START_REF] Babacan | Variational Bayesian Blind Deconvolution Using a Total Variation Prior[END_REF], [START_REF] Chan | Total variation blind deconvolution[END_REF], [START_REF] Liao | Blind Deconvolution Using Generalized Cross-Validation Approach to Regularization Parameter Estimation[END_REF]]. Estimating the unknown image and some partially known PSF is referred to as semi-blind deconvolution [START_REF] Galatsanos | Hierarchical Bayesian image restoration from partially known blurs[END_REF], Molina (1994)].

Thus, we finally address the problem of semi-blind joint super-resolution/segmentation aiming at estimating both the segmented super-resolved image and the gaussian blurring kernel. Preliminary results on experimental HR-pQCT images are presented. the following article: Peyrin, F., Toma, A., Sixou, B., Denis, L., Burghardt, A., Pialat, J.-B.

"Semi-blind joint super-resolution/segmentation of 3D trabecular bone images by a TV box approach", EUSIPCO 2015, Nice, France, pp. 2811 -2815 6.2 Semi-Blind Joint Super-Resolution/Segmentation

Problem formulation

In the general case, solving the blind super-resolution problem requires estimating both f and the blurring operator from (3.1). In this first approach, we assume that the blur is isotropic and can be represented by a 3D Gaussian kernel:

α(x, y, z) = α σ (x)α σ (y)α σ (z) (6.1)
where α σ (x) is the 1D Gaussian kernel of standard deviation σ. The problem in now reformulated as a semi-blind problem:

{ f , σ} = arg min f ,σ {J(f , σ), f ∈ [c 0 , c 1 ] N , σ > 0}. (6.2)
where J(f , σ) includes the dependence of the blurring kernel on σ.

Alternating Minimization algorithm

We note that the cost function is convex with respect to f , but not convex with respect to the standard deviation σ. Thus, in order to find the solution { f , σ} that minimizes the cost function (6.2), we apply the alternating minimization scheme:

Step 0: Choose a starting sigma value σ (0) , t=0

Step 1: t=t+1, Refine the image:

f (t) = arg min f ∈[c 0 ,c 1 ] N µ 2 A (t-1) f -g δ 2 2 + ∇f 1 (6.3)
where A (t-1) is the direct operator at the step t-1.

Step 2:

f (t) 01 = threshold(f (t) ) (6.4)
Step 3: Refine the blur:

σ (t) = arg min σ A(σ)f (t)
01 -g δ 2 2 (6.5)

Step 4: Go to step 1 until convergence.

We perform the minimization of (6.3) with the TVbox ADMM scheme presented in chapter 5. At step 3, the Newton method is applied for obtaining the solution σ (t) . A local optimum is found since the regularization functional is not a convex function of σ.

Numerical experiments

Experiments on simulated images

We first consider simulations based on experimental micro-CT images of bone samples artificially blurred and under-sampled. For comparison reason we test the semi-blind TVbox approach on the same synchrotron micro-CT volume of the trabecular human bone presented in Figure 5.1 and deteriorated in the same way. Thus, we recall herein, that the ground-truth was blurred with a Gaussian kernel with a standard deviation σ = 2.425 

Experiments on real images

We present preliminary work on experimental data. 3D images of human radius samples were acquired on a HR-pQCT system from 750 projections and reconstructed at an isotropic voxel size of 82 µm. The same samples were also scanned using a micro-CT system providing 3D images at 24 µm. The HR-pQCT images were first rescaled to a resolution of 41 µm. In Figure 6.3, we show a slice imaged at 82 µm and at 41 µm.

The quality of the HR-pQCT image compared to the micro-CT image is lower, due to the blur, spatial resolution and noise. The histograms of these two volumes are shown in Figure 6.4. The bimodal aspect of the micro-CT image histogram assures that an Otsu threshold is sufficient as segmentation step. However, the same method can't be applied to the HR-pQCT image.

We observe that the two initial volumes are not completely overlapped (Figure 6.5) and also, as the images are taken from two different modalities, they must be firstly registered before overlapping them.

In the following subsection we explain the basic concepts of registration. 

Registration

Image registration is a process of spatially aligning a moving image I M to a fixed image I F . In this process, I M is deformed by using a transformation function T in order to We can see from Figure 6.5 that the images are slightly translated. As suggested in the Elastix implementation manual [START_REF] Klein | Elastix: the manual[END_REF]], we used a stochastic gradient descent optimizer and a B-Spline interpolator. As a final result of the registration we obtained the transformation parameters (six parameters for rigid-registration): u = (θ x , θ y , θ z , t x , t y , t z ) T (6.9)

where the first three parameters define the rotation angles around the three axes (in rad)

and the last three parameters, the translation vector. We then applied the transformation parameters to deform the low-resolution image in order to overlap it to the high-resolution image, for allowing comparative measures. Figure 6.7 presents the steps required in the case of image registration. We can observe that for the semi-blind TVbox case the bone structure is over-segmented and in some regions the connectivity is better restored. If for the test images this problem is solved by tunning the regularization parameter µ, for the real images the tunning task is more complex.

Results on real data

A possible improvement of the presented semi-blind TVbox method could be given by a re-estimation of the parameters c 0 and c 1 jointly with the standard deviation of the blur kernel, at each iteration of the algorithm. The assumption that the blur is a Gaussian kernel could also introduce errors in the semi-blind TVbox method. 

Conclusions

In this chapter, we proposed a semi-blind joint super-resolution/ segmentation method based on the Total Variation regularization with convex constraint and ADMM minimization for improving the trabecular bone micro-structure quantification from micro-CT volumes. We compared this semi-blind TVbox approach with the standard interpolation method in terms of DICE and structural parameters. For artificially deteriorated Synchrotron images a comparison with the non-blind TVbox method was performed. We showed that our semi-blind method improves the structural parameters compared to the original ones. It outperforms clearly the interpolation method. Preliminary results show that the approach can be applied to real HR-pQCT images for which we have a ground truth image. In further work, we shall address the optimization of the algorithm parameters and particularly the choice of c 0 and c 1 used for box constraints. We will also consider anisotropic and spatially varying blurring kernel. Other segmentation methods to obtain the binary version of the low resolution image and bicubic interpolation will be investigated.

Conclusions and perspectives

In this thesis, we have investigated methods to improve the quantification of the trabecular bone micro-structure from CT images. Specifically, our aim was to explore superresolution techniques by considering that the given CT image was blurred, under-sampled and noisy. In addition, since the final goal to apply quantification is to obtain a binary image of bone micro-architecture, we considered the combined super-resolution/segmentation problem. We used variational approaches with different regularization terms. Moreover, we have also addressed the problem of the regularization parameter choice. The various approaches are tested on 2D images and 3D volumes, obtained from simulations or real data from bone samples.

Firstly, we investigated super-resolution 2D methods based on TV. The basic TV regularization method was extended to higher degree TV regularization because the TV term can create staircasing effects. We expand the ADMM minimization method to isotropic HDTV (Higher Degree TV) regularization. Furthermore, we introduced a general formulation of the regularization term for both methods and derived an efficient minimization scheme. A comparison of the methods was performed on noisy low-resolution images of the bone micro-structure in terms of PSNR, structural and segmentation parameters. The TV based approaches improve standard interpolation methods. Yet, TV and HDTV give similar super-resolved images.

Moreover, we presented a new method to select the TV regularization parameter. This method generalizes the classical Morozov principle. The convergence of the TV with this a posteriori choice of the parameter was investigated. A very fast scheme to obtain this parameter was detailed. Numerical comparisons were presented with other methods like the Unbiased Predictive Risk Estimator. Several images and noise levels were tested. Very good results were obtained with our method which outerperformed the other approaches.

The next part of this manuscript was related to the joint super-resolution /segmentation problem in 3D. The super-resolution and segmentation problems are often considered as separate problems. Herein, we seek to solve both inverse problems at the same time.

The method was based on a convex additional box constraints(i.e., the solution must be in a convex set). The minimization method must be modified to include this convex constraint. Our results were presented on 3D volumes. The restored bone volumes and its connectivity were improved with this new constraint.

The last chapter of the thesis presented a semi-blind joint resolution/segmentation method. An alternate minimization algorithm was used to recover the images and the blur kernel which was assumed to be a Gaussian kernel. The approach was tested on synchrotron and on ex-vivo HR-pQCT trabecular bone images. The semi-blind approach improved the structural parameters and leaded to a good estimate of the blur kernel on test images.

This thesis was a preliminary work for the difficult problem under study. Many aspects remain to be investigated: A first possible extension of this work is the use of new regularization terms like the Potts regularization functional. This sets more difficult minimization problems for the regularization functional but may improve the reconstruction results. A good parameter choice scheme has been proposed for TV regularization applied to super-resolution. Yet, it may be interesting to study an adaptive method for more difficult reconstruction problems. In this work, we regularized the blind reconstruction functional with terms related to the input image. More complex functional may be used and the regularization parameter choice problem may be investigated more precisely. The minimization of the regularization functional was done with the ADMM algorithm. The comparison with the proximal methods may represent an interesting research perspective.

More realistic validation of the alternate minimization method presented has to be performed on ex-vivo HR-pQCT images for which the corresponding ground-truth micro-CT images are available. The blind super-resolution problem has to be studied on simulated data and real bone images. Different approaches mentioned in the bibliographic chapter for blind inverse problems may be compared. The approaches of [START_REF] Ramlau | A Mumford-Shah level-set approach for the inversion and segmentation of X-ray tomography data[END_REF]] and the bilevel methodology are very interesting directions for future research.

Indicator function

Let C R N be a convex set. The convex function I C is called the indicator function of the set C and is defined by:

I C = 0 x ∈ C ∞ x / ∈ C (B.7)
The subdifferential of the indicator function, I C , at x is known as the normal cone, N C (x), of C:

N C (x) = ∂I C (x) = g ∈ R N : g T x ≥ g T y, f or any y ∈ C (B.8)

Optimality condition

For a convex function f ,

f (x * ) = min x∈R n f (x) ⇔ 0 ∈ ∂f (x * ) (B.9)
The proof is based on the fact that if g = 0 is a subgradient means that for all y: f (y) ≥ f (x * ) + 0 T (y -x * ) = f (x * ) (B.10)

Soft-thresholding

Given the minimization problem: 

f (x) = min

Proximal operator

The proximal operator prox f : R N → R N of f : R N → R ∪ +∞ is defined by:

prox f (v) = arg min x (f (x) + 1 2 x -v 2 2 ) (B.13)
The proximal operator of the scaled function λf , where λ > 0 (also called the proximal operator of f with parameter λ)

prox λf (v) = arg min x (f (x) + 1 2λ x -v 2 2 ) (B.14)
Throughout this appendix, we make the convention that when we refer to the proximal operator of a function, the function is assumed to be closed proper convex. This linear system is solved using the PCG method. As first guess we consider f 0 = A t g δ . The implementation of ADMM was made in Matlab and to avoid the high dimension of the left-hand side matrix, a function is given as input parameter to the PCG Matlab function and all operations are made in the frequency domain.

Second update

The auxiliary variables, h i , are obtained from:

∂ h ( i h i + i β 2 h i -P i f 2 -λ t i h i ) = 0 (C.

8)

∂ h h i + β(h i -P i f ) -λ i = 0 (C.9)

∂ h h i β + h i = P i f + λ i β (C.10)
We distinguish two cases in the calculation of the subdifferential:

∂ h h i =    ∈ [-1, 1] h i = 0 h i h i h i = 0 (C.11)
Using (C.10) and (C.11) the update of the auxiliary variables, h i is rewritten as:

h i = S β (P i f + λ i /β) , (C.12)
where S β (u) = max 1 -1 β u , 0 • u is the soft-thresholding operator.

Third update

The Lagrangian multipliers, λ i , are given directly by:

λ k+1 i = λ k i -β h k+1 i -P i f k+1 (C.13)
Appendix D

TVbox ADMM Super-resolution/segmentation

This appendix comes to complete the description of the ADMM minimization method presented and applied in chapter 5 and 6. We detail herein how the updates of the TVbox ADMM joint super-resolution/segmentation approach were obtained. Having the following augmented Lagrangian: (D.4) As in the TV super-resolution case (Appendix C), this step is solved by the PCG method.

L A (

Second update

The auxiliary variables, h i , are updated as showed in Appendix C (second update), by a soft-thresholding operator. Starting from:

∂ h ( i h i + i β 2 h i -D i s 2 -λ t i h i ) = 0 (D.5)
we obtain: (D.6) where S β (u) = max 1 -1 β u , 0 • u is the soft-thresholding operator.

h i = S β D i s k+1 + λ k i /β ,

Third update

The auxiliary variable, l is related to the box constraints and it is obtained from: 

Fourth update

The Lagrange multipliers, λ i , are obtained from:

λ k+1 i = λ k i -β h k+1 i -D i s k+1 . (D.11)

Fifth update

The Lagrange multiplier, λ C , is:

λ k+1 C = λ k C -β l k+1 -s k+1 .
(D.12)
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 1 Figure 1: Comparison of 3D restoration methods for the noise level sigma=0.1.
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 1 Figure 1.1:The structure of the compact and trabecular bone tissues (http://higheredbcs.wiley.com/).

  Figure 1.2: Bone cells (http://www.uaz.edu.mx/histo/TortorAna/ch06)

Figure 1

 1 Figure 1.3: Scanning electron micrography showing the interconnected network (arrows) formed by two osteocytes (Ot) surrounded by bone matrix (B). Scale bar: 2 µm [Florencio-Silva et al. (2015)].
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  Figure 1.4: The bone cells involved in the remodeling process (http://www.iofbonehealth.org).

Figure 1

 1 Figure 1.5: Representation of the bone remodeling cycle in osteoporosis. Osteoporotic bone shows an increase in the length of the remodeling cycle and reduced capacity to lay down a new mineralized bone matrix. Abbreviations: BRU, bone remodeling unit; CL, cement line; LC, lining cells; OS, osteoid. (www.medscape.com)
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 16 Figure 1.6: Bone fractures areas in osteoporosis [Office of the Surgeon General (US) (2004)].

Figure 1 .

 1 Figure 1.7 presents the alteration of the trabecular micro-structure and the low bone mass in the case of osteoporosis localized at proximal femur. Compression fractures of thoracic vertebrae lead to loss of height and progressive thoracic kyphosis. Lower ribs eventually rest on ileac crests and downward pressure on viscera causes abdominal distention (see Figure 1.8) [Office of the Surgeon General (US) (2004)].
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 17 Figure 1.7: Osteoporosis Bone (https://www.informedhealth.org/osteoporosis.2610.en.html)

  Figures 1.9 and 1.10 present the distribution of the BMD in healthy woman aged 30-40 years and in women of different ages.
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 1 Figure 1.9: Distribution of bone mineral density in healthy women aged 30-40 years [Kanis (2002)]
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 1 Figure 1.10: Distribution of bone mineral density in women of different ages, and the prevalence of osteoporosis (blue). T score below -2.5 = osteoporosis [Kanis (2002)].
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 1 Figure 1.11: (a) Trabecular bone in a normal postmenopausal woman. Note well preserved trabecular connectivity. (b) Trabecular bone in a subject with postmenopausal osteoporosis demonstrating marked reduction in cancellous bone volume and loss of connectivity. (T: trabeculae; M: marrow) [Kulak and Dempster (2010)]
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 1 Figure1.12: The two steps of data acquisition and data processing in the first generation of X-ray CT.[START_REF] Peyrin | CT Imaging: Basics and New Trends[END_REF] 
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 1 Figure 1.13: A typical pre-and post-menopausal bone biopsy; histomorphometry (A and C) and micro-CT scan (B and D) from a single subject is shown. The micro-CT scan for post-menopausal shows greater trabecular spacing as compared to that of the premenopausal iliac crest bone biopsy [Akhter et al. (2007)].
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 1 Figure 1.14: The European Synchrotron Radiation Facility and the available beamlines (http://www.esrf.eu)

Figure 1 .

 1 Figure 1.16: A comparison of a slice of the same biopsy sample using a SR micro-CT (left) and a Desktop micro-CT (right) [Nuzzo et al. (2002)b]
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 1 Figure1.17: A typical setup of HR-pQCT for patient measurements. At top, the casts used for securing the forearm and lower leg is shown[START_REF] Cheung | High-Resolution Peripheral Quantitative Computed Tomography for the Assessment of Bone Strength and Structure: A Review by the Canadian Bone Strength Working Group[END_REF]].
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 1 Figure1.18: Scout acquisition used to define the HR-pQCT scan region for the distal radius (A) and distal tibia (B). The solid green region corresponds to the imaging location and consists of 110 slices spanning 9.02 mm longitudinally. In the radius the scan region is fixed 9.5 mm proximal from the mid-jointline, while in the tibia the scan region is 22.5 mm proximal from the tibial plafond[START_REF] Krug | High-resolution Imaging Techniques for the Assessment of Osteoporosis[END_REF]] .
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 1 Figure 1.19: Typical HR-pQCT images from the distal radius (A-C) and distal tibia (D-F).Images A and D correspond to the distal most slices of the scan, while images B and E correspond to the proximal most slices. Images C and F are 3D reconstructions of the extracted mineralized structure with the segmented cortical compartment highlighted in dark gray[START_REF] Krug | High-resolution Imaging Techniques for the Assessment of Osteoporosis[END_REF]].
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 1 Figure 1.20: (A, B) Cross-sectional HR-pQCT images through the distal radius show two individuals with identical areal BMD by DXA at the ultradistal radius but substantial differences in trabecular and cortical structure. (C, D) Three-dimensional renderings of the cortical and trabecular bone compartments and intracortical porosity (highlighted in red)[START_REF] Burghardt | Highresolution Computed Tomography for Clinical Imaging of Bone Microarchitecture[END_REF]].
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 1 Figure 1.21: Normal morphology and pathologic examples of HR-pQCT images of ultradistal tibia. a Normal tibial bone microstructure in a middle-aged woman; b-c postmenopausal osteoporosis; d premenopausal osteoporosis; e young patient with posttraumatic paralysis of lower limbs; f postmenopausal woman with type-2 diabetes mellitus and fractures; g renal osteodystrophy; h healing insufficiency fracture; i osteogenesis imperfecta (Sillence type I)[START_REF] Patsch | High-Resolution Imaging[END_REF] 

Figure 1 .Figure 1

 11 Figure 1.22: Representative images of the trabecular segmentation for both µCT and HR-pQCT images. (A) Grayscale images acquired by the respective scanners. (B) Trabecular segmentation of a single slice. (C) 3D representation of the trabecular volume [Tjong et al. (2012)]
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 1 Figure 1.24: HR-pQCT parameters with units [Cheung et al. (2013)]
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 1 Figure 1.25: Local topological analysis (LTA) of a distal radius trabecular bone (in purple:pixels of rod-like trabeculae; in green: pixels of plate-like trabeculae)[START_REF] Pialat | Local topological analysis at the distal radius by HR-pQCT: Application to in vivo bone microarchitecture and fracture assessment in the OFELY study[END_REF]].
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 2 Figure 2.1 presents the smoothing of the absolute value (red curve) in 1D for two different values. The blue curve is the absolute value of the [-5, 5] interval.
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 21 Figure 2.1: Smoothing of the absolute value in 1D

(

  2012)a,[START_REF] Lefkimmiatis | Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications[END_REF])b,Chan et al. (2000),[START_REF] Lysaker | Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional[END_REF],[START_REF] Yuan | Total-Variation Based Piecewise Affine Regularization[END_REF],[START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF],[START_REF] Chan | Image Decomposition Combining Staircase Reduction and Texture Extraction[END_REF],[START_REF] You | Fourth-order partial differential equations for noise removal[END_REF],[START_REF] Lysaker | Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[END_REF],[START_REF] Steidl | A Note on the Dual Treatment of Higher-Order Regularization Functionals[END_REF]].

Figure 2

 2 Figure 2.2: Unit vector in 2D

Figure 2

 2 Figure 2.3: Effects of reducing spatial resolution. A 1024x1024, 8-bit image down-sampledto size 32x32 pixels[START_REF] Gonzalez | Digital image processing[END_REF]].

Figure 2

 2 Figure 2.4: (a) 1024x1024, 8-bit image. (b) 512x512 image resampled into 1024x1024 pixels by row and column duplication. (c) through (f) 256x256, 128x128, 64x64, and 32x32 images resampled into 1024x1024 pixels[START_REF] Gonzalez | Digital image processing[END_REF]].

Figure 2

 2 Figure2.7: Geometrical interpretation of the conjugate gradient method[START_REF] Křížek | Geometric Interpretations of Conjugate Gradient and Related Methods[END_REF] 

Figure 2 . 8 :

 28 Figure 2.8: Graphical representation of: (a) Quadratic form for a positive-definite matrix. (b) For a negative-definite matrix. (c) For a singular and positive-indefinite matrix. (d)

Figure 2

 2 Figure2.9: The Dice similarity coefficient representing spatial overlap and reproducibility[START_REF] Zou | Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index[END_REF]].

  )]. Yet, extensive numerical experiments show that algorithms based on the Alternating Direction Method of Multipliers (ADMM) are the state-of-the-art methods[START_REF] Yang | A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration[END_REF],[START_REF] Afonso | Fast Image Recovery Using Variable Splitting and Constrained Optimization[END_REF],[START_REF] Ng | Solving Constrained Totalvariation Image Restoration and Reconstruction Problems via Alternating Direction Methods[END_REF]].In this chapter, we extend the ADMM minimization method to isotropic HDTV regularization. We introduce a general formulation of the regularization term suited to both methods, TV and isotropic HDTV. A specific preconditioned conjugate gradient is proposed to circumvent the shift-variant effects produced by sub-sampling and up-sampling operations.The validation of the proposed approaches is performed from 2D experimental high-resolution micro-CT images of bone samples at 20 µm after simulating the effect of blur, loss of spatial resolution and noise.The method and the results presented in this chapter have been published in the following article:A. Toma , B. Sixou , L. Denis, J.B. Pialat, F. Peyrin, "Higher order Total Variation super-resolution from a single trabecular bone image",ISBI 2014, Beijing, China, April 2014, pp 1152-1155 

  .16) Since M and H s are circulant, equation (3.16) can be diagonalized in Fourier domain:

Figure 3 .

 3 Figure 3.3 illustrates on image 4 (Figure 3.1(d)) the deterioration process step by step, considering a Gaussian point spread function of standard deviation σ blur = 4.85

FigureFigure 3

 3 Figure 3.2: Low-resolution image simulation

Figure 3 . 4 :

 34 Figure 3.4: Evolution of PSNR for TV and IHDTV methods (test image 4).

Figure 3 .

 3 Figure 3.5 shows the restoration of the image with TV ADMM iterations for the optimal parameters µ and β.Figure 3.5 (f) corresponds to the final ADMM iteration image for

  Figure 3.5 (f) corresponds to the final ADMM iteration image for which the stopping criteria value is = 5 • 10 -5 . For a fixed regularization parameter µ, the β parameter is chosen in order to have the fastest decrease of the regularization functional, as shown in Figure 3.6 for a given regularization parameter in case of image 3.

  Figure 3.5: The evolution of the image with the ADMM iterations for the optimal parameters µ and β.

Figure 3

 3 Figure 3.8: Comparison of experimental super-resolution results (image 3).

Figure 3

 3 Figure 3.9: Comparison of experimental super-resolution results (image 4).

Figure 3 .

 3 Figure 3.10: PSNR, DICE, Euler #, Bone surface for TV and IHDTV Super-resolution.

  If the regularization parameter is chosen according to the modified Morozov principle, µ > 2 1 γ+1 and γ < -1, the TV semi-norm of the regularized solution R T V (f (µ)) is uniformly bounded.

  Under the assumptions of Theorem 2.1, the regularized solution f is continuous around the regularization parameter µ.

  3, we need to determine approximate values of the parameters a and b of the model function E (µ), by first choosing two values µ * and µ * * with µ * < µ * * . For each of the regularization parameters, µ * and µ * * , the blurred noisy image is restored with the ADMM algorithm and the values E (µ * ) and E (µ * * ) are calculated. If 2E

  .1.(b) where σ blur = 1.2 and σ = 4.3. The noise level δ is evaluated as δ 2 = N 2 σ 2 = 2 • 10 6 . The noisy blurred image has a PSNR=24.89. The evolution of the PSNR of the image restored with the ADMM algorithm as a function of µ is displayed in Figure 4.2.(b).From this curve, the optimal value of the regularization parameter is µ OP T = 0.7 and the optimal PSNR of the reconstructed image is P SN R(µ OP T ) = 32.32.

  Figure 4.1: (a). Ground truth -Bone image; (b). Blurred and noisy image (σ = 4.3, σ blur = 1.2.); (c). Restored image with µ M ; (d). Restored image with µ U P RE .

Figure 4

 4 Figure 4.2: Deconvolution applied to the bone image for σ = 4.3 and σ blur = 1.2: (a). The evolution of the data term for the classical Morozov method; (c). The evolution of the modified data term for the damped Morozov method; (b). and (d). The evolution of PSNR and UPRE as functions of the regularization parameter µ.

Figure 4

 4 Figure 4.3: Evolution of UPRE as a function of N iter and µ for deconvolution case, σ = 4.3, σ blur = 1.2 -Bone image.

  Figure 4.4.(a) and 4.4.(b) display the high resolution and low resolution images.Figure 4.5.(b) displays the evolution of the PSNR for σ = 6. The best PSNR is 19.57. In this case, the optimal regularization parameter is µ OP T = 6.2. The regularization parameter estimated with the classical Morozov principle is µ M = 2.22, yielding a PSNR of 19.07, far from the optimal value. The evolution of the data term for this case is displayed in Figure 4.5.(a).

Figure 4

 4 Figure 4.5.(d). The regularization parameter obtained is µ U P RE = 13.48 with a PSNR of

Figure 4

 4 Figure 4.5: Super-resolution applied to the bone image for p = 4, σ = 6 and σ blur = 4.85: (a). The evolution of the data term for the classical Morozov method; (c). The evolution of the modified data term for the damped Morozov method; (b). and (d). The evolution of PSNR and UPRE as function of the regularization parameter µ.

  For a given regularization parameter, the TV regularization functional is minimized with the classical ADMM algorithm. Our approach is based on the classical Morozov principle or on a damped version of this principle. The convergence properties of the regularization method for this choice of the regularization parameter have been demonstrated. Based on the regularity properties of the Augmented Lagrangian value function, it was shown that the data term can be approximated by a simple model function. This model function for the data term of the regularization functional is first obtained from the reconstructed images with two different regularization parameters. An approximate value of the regularization parameter is calculated with the model function approximating the discrepancy term.

  Figure 4.6: (a). Ground truth -Cameraman image; (b). Low resolution blurred and noisy image (p = 4, σ blur = 4.85, σ = 4.3); (c). Restored image with µ DM ; (d). Restored image with µ U P RE .
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 444 Figure 4.7: (a). Ground truth -Cameraman image; (b). Low resolution blurred and noisy image (p = 4, σ blur = 4.85, σ = 6); (c). Restored image with µ DM ; (d). Restored image with µ U P RE .

  .5) s.t. ∀i, h i = D i s, and l = s.

  Fig. 5.1. The low resolution volumes were obtained considering a sub-sampling rate of p = 2. For the blurring operation, we have used a Gaussian point spread function of standard deviation σ blur = 2.425. We tested two additive Gaussian noise levels with standard deviations σ = 0.01 and σ = 0.1.

Figure 5 . 1 :

 51 Figure 5.1: The reference binary volume.

  Figure 5.2: Comparison of 3D restoration methods for the noise level σ = 0.01.

  Figure 5.3: Comparison of 3D restoration methods for the noise level σ = 0.1.

  Figure 5.4: Slice of the restored volumes for the noise level σ = 0.1.

  and down-sampled at 40 µm (p=2). A Gaussian noise level with standard deviation σ n = 0.1 was added to the image. The method was tested on a Volume of Interest (VOI) of (328) 3 voxels. Considering the bimodal histogram of the ground truth volume, the binary version of it was obtained with Otsu's method. 3D rendering of the ground-truth and low resolution volume crops are shown in Figure6.1 (a) and (b).We recall in Figure6.1 the resulted volumes obtained with bicubic interpolation, classical TV and the non-blind version of TVbox presented in chapter 5. The proposed semiblind super-resolution/segmentation TVbox method was applied to the low-resolution volume. The parameters µ and β from step 1 were chosen based on the ground-truth and on the cost function as explained in subsection 5.3. Slices of these volumes are displayed in Figure6.2. Quantitative parameters as the DICE coefficient, the BV/TV, the Euler number and the density of connectivity are presented in

  semi-blind TVbox regular.

Figure 6 . 1 :

 61 Figure 6.1: Comparison of 3D restoration methods on experimental synchrotron volume.

  semi-blind TVbox regular.

Figure 6 . 2 :

 62 Figure 6.2: Slice of the restored experimental synchrotron volume.

Figure 6 . 3 :

 63 Figure 6.3: Slice of a) HR-pQCT volume at 82 µm and b) micro-CT volume scaled at 41 µm.

Figure 6 . 4 :

 64 Figure 6.4: Normalized histograms of a) HR-pQCT volume at 82 µm and b) micro-CT volume scaled at 41 µm

Figure 6 . 6 :

 66 Figure 6.6: The basic registration components [Klein et al. (2010), Klein and Staring (2015)]

Figure 6 . 7 :

 67 Figure 6.7: Registration schema of HR-pQCT images and micro-CT images.

Figures 6

 6 Figures 6.8(a) and (b) show a region of interest (ROI) within the micro-CT image resampled at 41 µm and the original HR-pQCT image at 82 µm. With real data, only the semi-blind TVbox approach could be applied. Figures 6.8(c) and (d) show the bicubic interpolated slice and a first result of the super-resolved TVbox image with the up-sampledfactor p=2. The best results were obtained with the initial value of the σ (0) =0.5. We may note that the DICE index is increased with the TVbox method (0.7 versus 0.61) compared to bicubic interpolation.

  (a) Ground-truth micro-CT slice (b) HR-pQCT slice (c) Bicubic interpolation (d) semi-blind TVbox regular.

Figure 6 . 8 :

 68 Figure 6.8: Slice of the restored HR-pQCT volume.

  x * = S λ (y), where S λ (y) is the soft-thresholding operator:i -λ y i > λ 0 -λ ≤ y i ≤ λ y i + λ y i < -λ(B.12) 

∂

  l (I C (l) + β 2 ls 2 2 -λ t C (ls)) = 0 (D.7) ∂ l I C (l) + 2β(ls) -λ C 16), eq. (D.9) it reduces to the projector operator, π C , on the convex set C:l k+1 = π C (s k + λ k

  

  R 1 sont les régions de chacune des deux phases et où |Γ| dénote le périmètre de la frontière entre les deux régions R 0 et R 1 .

	Dans sa forme discrète, on est conduit au problème de minimisation suivant:
		arg min s∈B		µ 2	f -s 2 2 + R TV (s)	(2)
	où B = {c 0 , c 1 } N est l'ensemble des N -voxels des volumes des deux phase et µ = 2|c 1 -
	c 0 |/ν.					
	Afin d'effectuer une super-résolution/segmentation jointe, nous considérons le problème
	d'optimisation suivant:					
		arg min s∈B	µ 2	As -g δ 2 2	+ R TV (s) .	(3)
	où g δ représente l'image sous-échantillonnée, floutée et bruitée.
	Ce problème de minimisation est très complexe pour des opérateurs linéaires très généraux
	A. Nous avons donc effectué une minimisation approchée en considérant une relaxation
	convexe:	ŝ ∈ arg min s∈[c 0 ,c 1 ] N	µ 2	As -g δ 2 2	+ R TV (s) ,	(4)
	où l'ensemble des volumes à deux phases est remplacé par l'ensemble convexe des images
	à niveaux de gris dans [c 0 , c 1 ].				
	Cette méthode sera dénotée dans la suite TVbox, compte tenu de la contrainte sur les
	bornes.					

  y)/∂x∂y and f yy ≡ ∂ 2 f (x, y)/∂y 2 . The regularization term R IHDTV defined in equation (3.6) involves an isotropic L 2 norm corresponding to the integrated square magnitude of the directional derivative over all orientations:

Table 3 .

 3 1: Quantitative parameters (image 1 -tb317).

	Parameter	Reference Bicubic interpolation TV IHDTV
	PSNR	-	16.633	20.719 20.237
	DICE	1	0.698	0.861	0.865
	Euler no.	37	14	22	25
	Bone surface (mm 2 )	2.266	3.781	2.689	2.759

Table 3 .

 3 

	Parameter	Reference Bicubic interpolation TV IHDTV
	PSNR	-	16.962	22.052 20.935
	DICE	1	0.762	0.904	0.902
	Euler no.	19	13	15	16
	Bone surface (mm 2 )	2.216	3.222	2.488	2.555

2: Quantitative parameters (image 2 -tb331).

Table 3 .

 3 

	Parameter	Reference Bicubic interpolation TV IHDTV
	PSNR	-	15.03	20.55 19.02
	DICE	1	0.80	0.9201 0.9202
	Euler no.	15	12	17	15
	Bone surface (mm 2 )	4.04	5.69	4.49	4.54
	Table 3.4: Quantitative parameters (image 4 -calca47b).
	Parameter	Reference Bicubic interpolation TV IHDTV
	PSNR	-	18.95	22.36 22.54
	DICE	1	0.654	0.811 0.809
	Euler no.	68	48	60	60
	Bone surface (mm 2 )	3.95	7.23	5.336 5.489

3: Quantitative parameters (image 3 -tb332). values of . The bone volume and the Euler number are important indicators of bone strength. It can be seen that the error is considerably reduced with respect to the interpolated image and even more by comparison to the degraded image, which is at the same

  Table 4.1. For low blur, the classical Morozov principle is better than the damped one. On the contrary, for high blur level, the damped Morozov principle improves the results obtained with the classical Morozov principle. The UPRE method is efficient except for the highest noise level case.

Table 4

 4 

	.1: Comparison of regularization parameter selection methods for deconvolution
	case -Bone image.

  In most cases, the UPRE method provides better results than the classical Morozov method. Yet, the damped Morozov method leads to a more accurate estimation of the optimal regularization parameter. It should be emphasized that the methods developed with the classical and damped Morozov principles are very fast and do not rely on an extensive sweeping of the regularization parameter values.

	σ = 1 PSNR 21.38 22.28 198.4 22.25 ± 0.01 18.26 19.93 ± 0.01 13.2 19.17 ± 0.07 σ = 4.3 σ = 6 µ µ PSNR µ PSNR classical Morozov 25.43 Method 3.45 19.49 2.22 19.07 damped Morozov 141.5 10.94 20.06 6.2 19.57 UPRE(µ) UPRE(N iter , µ) 199.6 22.25 ± 0.005 18.36 19.92 ± 0.02 13.48 19.14 ± 0.09 optimal 158.7 22.28 11.5 20.06 6.2 19.57 Table 4.2: Comparison of regularization parameter selection methods for super-resolution case -Bone image. made additional experiments on the usual Cameraman (N=512) and Lena (N=512) images. The simulation parameters of the super-resolution problem where: p=4, σ blur = 4.85 and two noise levels σ = 4.3 and σ = 6. The results are summarized in Table 4.3 and Table 4.4. Resulting images are displayed σ = 6 Method µ PSNR µ PSNR classical Morozov 3.15 23.74 1.95 23.38 damped Morozov 13.34 24.11 7.58 23.72 UPRE(µ) 19.91 23.99 ± 0.05 12.24 23.50 ± 0.06 UPRE(N iter , µ) 18.94 24.01 ± 0.04 10.91 23.58 ± 0.06 optimal 10.97 24.14 5.83 23.74 Table 4.3: Comparison of regularization parameter selection methods for super-resolution case -Cameraman image. σ = 4.3 σ = 6 Method µ PSNR µ PSNR classical Morozov 2.48 23.51 1.73 23.23 damped Morozov 13.11 23.77 7.89 23.42 UPRE(µ) 17.55 23.63 ± 0.03 11.33 23.17 ± 0.18 UPRE(N iter , µ) 17.19 23.65 ± 0.04 11.34 23.18 ± 0.15 optimal 8.85 23.83 4.63 23.53 Table 4.4: Comparison of regularization parameter selection methods for super-resolution in Figures 4.6 -4.9. σ = 4.3 case -Lena image.
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	01

.1: Quantitative parameters for the noise level σ = 0.01 Crops of size 150 × 150 × 150 of the resulted binary volumes are shown in Figure 5.2 for

  Table 5.1. From this table we can see the efficiency of the TV regularization methods. The TV methods outperforms clearly the interpolation method which gives poor estimates of the structural parameters. The DICE, Euler number, density of connectivity, BV/TV, Tb.Th, SMI, PV/BV and RV/BV are all improved with the TV based regularization approaches. The best reconstruction results and structural parameters are obtained with additional box constraint (TVbox method).

Table 5

 5 

	1

.2: Quantitative parameters for the noise level σ = 0.1

  Table 6.1.

	Parameter	Ref. Low resolution Bicubic Interpolation TVbox semi-blind TVbox
	DICE	1	-	0.773	0.908	0.915
	Euler no.	-1211	4888	11201	-722	-753
	dconn (mm -3 )	4.86	16.61	11.98	4.20	4.22
	BV/TV (%)	11.07	16.48	16.38	11.50	11.45

Table 6.1: Quantitative parameters.

  APPENDIX C. TV ADMM SUPER-RESOLUTION(µA t A + i βP t i P i )f = µA t g δ +

	P t i (βh k i -λ k i )	(C.7)
	i	

  s, {h i }, l, {λ i }, λ C ) =

							µ 2	As -g δ 2 2	+	i	h i +
										+I C (l) +	β 2	l -s 2 2 -λ t C (l -s)
	First update						
	∇ s (	µ 2	As -g δ 2 2 +	i	[	β 2	h i -D i s 2 2 -λ t i (h i -D i s)] +	β 2	l -s 2 2 -λ t C (l -s)) = 0 (D.2)
			µA C = 0	(D.3)
			(µA t A +						

i β 2 h i -D i s 2 -λ t i (h i -D i s) (D.1) t (Asg δ ) + i [βD t i (D i sh i ) + (λ t i D i ) t ] + β(s -l) + λ i βD t i D i + βI)s = µA t g δ + i D t i (βh i -λ i ) + βl -λ C

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI019/these.pdf © [A. Toma],[2016], INSA Lyon, tous droits réservés

et 5 pour comparaison avec l'approche non-aveugle TVbox. Un sous échantillonage de 2 et un noyau Gaussien de σ = 2.4 sont étudiés. Un bruit Gaussien avec une déviation standard de 0.1 est appliqué à l'image quasi-binaire. Des indicateurs de la segmentation comme le DICE ou des paramètres quantitatifs de l'os sont calculés. Le paramètre de régularisation est optimisé par rapport à l'image idéale.
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Combining the modified Morozov Principle and (4.8), we obtain:

) is thus uniformly bounded.

Proposition 4.2.5. If the regularization parameter is chosen according to the modified Morozov principle, the Bregman distance between the true solution and the regularized solution is given by D ξ T V (f (µ), f * ) = O(δ min(1,2(γ+1)/γ) ).

Proof. From the proof of Proposition 3.41 in [START_REF] Scherzer | Variational Methods in Imaging[END_REF]], it can be shown that if assumption (4.7) holds, then there exist β 1 ∈ [0, 1[, β 2 ≥ 0 and ξ ∈ ∂R T V (f * ) such that:

With the choice of µ(g δ , δ) according to the modified Morozov principle:

and thus

(4.12)

The modified Morozov principle implies µ γ R T V (f (µ)) ≤ δ 2 and we obtain

and with (4.9), it results that:

From an approximate value calculated with the model function of the classical Morozov principle, the optimal regularization parameter can be obtained with the Newton method by defining a sequence (µ k ) k≥0 , given µ 0 and µ 1 , two initial guess values close to µ approx and applying: Proof. With the value function

, and E (µ) given by (4.30), G(µ) can be rewritten as:

The first derivative of G(µ) is given by:

If γ is large and negative, and µ large enough, G (µ) = 2E (µ), and the exact Morozov principle is recovered. We know that E (µ) ≤ 0 and that E (µ) is decreasing. It follows from (4.45), that for γ = -1, the function G is strictly decreasing. For γ < -1 and µ > 2 1/(γ+1) , G (µ) < 0 and the function G is also strictly decreasing.

This result implies that, if it exists, the solution to G(µ) = 0 that solves the damped Morozov principle is unique.

Unbiased Predictive Risk Estimator method

In this section, we first briefly summarize the Unbiased Predictive Risk Estimator (UPRE) method for the TV regularization that will be used for comparison with our iterative methods. The UPRE approach has been studied in detail for optimal parameter selection for Tikhonov problems [Vogel (2002), [START_REF] Blu | The SURE-LET approach to image denoising[END_REF], Eldar (2009), [START_REF] Ramani | Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms[END_REF]), Vaiter et al. (2013)]. The predictive error for the parameter µ is defined as

In the framework of the UPRE method, the optimal parameter µ is the minimizer of the predictive risk p(µ) 2 N 2 , where N 2 is the total number of pixels in the image. Recently, the UPRE method has been extended to TV regularization and to large-scale problems [START_REF] Lin | UPRE method for total variation parameter selection[END_REF]]. As detailed in [START_REF] Lin | UPRE method for total variation parameter selection[END_REF]], the optimal parameter is the minimizer of the Unbiased Predictive Risk Estimator which has the same functional form as the one for the Tikhonov regularization:

Chapter 5

Joint Super-Resolution/Segmentation

In chapter 3 we have seen that super-resolution methods followed by simple thresholding are improving the bone quantitative analysis. As the trabecular bone images are presenting quasi-binary structure and in the end we are interested in the segmentation of it, we turned our attention to joint super-resolution/segmentation methods to solve our problem in one step. This chapter is organized as follows. We start by presenting the state of the art of joint restoration/segmentation methods. In the second section we formulate the joint segmentation/super-resolution problem as a linear inverse problem, following the approach of [START_REF] Paul | Coupling Image Restoration and Segmentation: A Generalized Linear Model/Bregman Perspective[END_REF]]. In the next section, we detail how to perform the minimization of the regularization functional using the Alternating Direction Method of Multipliers (ADMM). Then, the validation of the proposed approach is performed on experimental high-resolution micro-CT volumes of bone samples at 20 µm after simulating the effect of a loss of spatial resolution and degradation by noise and blur. Concluding remarks are given in the last section. 

State of the art

Image segmentation has been widely studied in the literature, see for example [START_REF] Chan | Image processing and analysis: variational, PDE, wavelet, and stochastic methods[END_REF], [START_REF] Chan | Active contours without edges. Image processing[END_REF], [START_REF] Cremers | A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape[END_REF], [START_REF] Goldstein | Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction[END_REF]]. Image super-resolution is also an active research field [Babacan et al. (2008)b, Ren et al. (2013)]. Yet, in most studies, image restoration (denoising, deblurring, super-resolution) and image segmentation are considered separately. Recent work on convex relaxation of segmentation problems have proved that some segmentation models could be exactly computed by resorting to techniques similar to total variation denoising methods [START_REF] Chan | Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models[END_REF], [START_REF] Goldstein | Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction[END_REF]]. This bridges the gap between the families of segmentation methods and restoration methods and offers attractive theoretical guarantees of global minimization, thus segmentation results that are independent from the initialization. By generalizing these segmentation methods to linear degradations such as blur, it is possible to perform joint restoration and segmentation, as shown in a very recent work [START_REF] Paul | Coupling Image Restoration and Segmentation: A Generalized Linear Model/Bregman Perspective[END_REF]].

Since the images we are interested in display quasi-binary structures, we can strongly rely on a total variation (TV) prior model and consider single-image super-resolution.

We compare segmentation of a grayscale volume obtained by a TV regularized superresolution method with joint segmentation / super-resolution on 3D volumes simulated from a ground-truth segmentation obtained with high-resolution micro-CT.

In a two-phase segmentation task, each voxel of the segmented image s is assigned to one of the two phases. Let c 0 and c 1 be the average graylevels of each phase. A satisfying segmentation of image f is a labelling such that each voxel is assigned to a phase whose average graylevel is close to the corresponding graylevel of image f and where neighbor voxels most often belong to the same class. One can thus consider the following functional first proposed by [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]

where R 0 and R 1 are the regions of each of the two phases and |Γ| denotes the perimeter of the boundary between regions R 0 and R 1 .

Joint Super-Resolution/Segmentation

Convex formulation

In discrete form, minimizing the cost function (5.1) corresponds to the following minimization problem:

where B = {c 0 , c 1 } N is the set of all N -voxels two-phase volumes and µ = 2|c 1 -c 0 |/ν.

In order to perform joint super-resolution and segmentation, we consider the following Appendix A

The L p norm

Considering a vector x = (x 1 , x 2 , ...x N ) the l p norm of x is denoted x lp or x p and is defined as:

The most used norms are:

When x is a matrix of size M x N, the norms defined above treat the matrix as a vector of size MN:

Considering p = 2 in equation (A.5) we obtain the Frobenius norm. Moreover, in the continuous case the is replaced by and the notation used is L p . However, the l 0 norm is not defined in the continuous domain, The equivalent norm is the . ∞ The finite dimensional case is a special case of the function case, with a well chosen integration measure. The set of L p -functions (where p>=1) generalize the L 2 -space. For a function f to be in L p it should be p-integrable.

On a measure space X, the L p norm of a function f is:

The L p -functions are the functions for which this integral converges. For p = 2, the space of L p -functions is a Banach space.

Appendix B Convex analysis

The line segment between x and y is given by all the points: 

In the case when the inequality (B.3) is strict, the function f is said to be strictly convex.

The function f : R N → R is differentiable if its derivative exists at each point x in its domain.

Let f : R N → R ∪ +∞ be a closed proper convex function, which means that its

is a nonemplty closed convex set. The effective domain of f is the set of points for which f takes on finite values:

If f is convex and differentiable, then its gradient at x is a subgradient and even more is its only subgradient (i.e. ∂f (x) = ∇f (x)). Conversely, if f is convex and ∂f (x) = g, then f is differentiable at x and g = ∇f (x).

As illustrated in Figure B.2, a function f can have more that one subgradient at a point x. Also the subgradients can exist even when f is not differentiable at x.

Figure B.2:

The given convex function f is differentiable in x 1 but not in x 2 . At the point x 1 , the g 1 (which is the derivative of f in x 1 ) is the unique subgradient at x 1 . At the point x 2 , f has many subgradients from which two are shown, g 2 and g 3 [START_REF] Boyd | Convex Optimization[END_REF]] A function f is called subdifferentiable at x if there exists at least one subgradient at x. The set of subgradients of f at the point x is called the subdifferential of f at x, and is denoted ∂f (x). A function f is called subdifferentiable if it is subdifferentiable at all x ∈ domf .

The subdifferential ∂f (x) is always a closed convex set, even if f is not convex. In addition, if f is continuous at x, then the subdifferential ∂f (x) is bounded.

A point x * is a minimizer of a function f (not necessarily convex) if and only if f is subdifferentiable at x * and 0 ∈ ∂f (x * ), i.e. g = 0 is a subgradient of f at x * .

The proximal operator of the indicator function, I C is reduces to Euclidean projection onto C:

The proximal operator prox λf and the subdifferential operator ∂f are related as follows:

TV ADMM Super-resolution

This appendix comes to complete the ADMM minimization method described in chapter 3 and 4. We detail herein how the updates of the TV ADMM super-resolution approach are obtained. Having the following augmented Lagrangian:

) the first order optimality conditions of its saddle point are given by:

We recall that for f and b ∈ R N :

First update

From the first KKT optimality condition, the super-resolved image, f k+1 , is obtained: 
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