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Je tiens à remercier les professeurs Abdessalem et Vodislav d’avoir accepté d’être rap-
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Abstract

La complexité et la dynamique de l’environnement dans lequel évolue chaque entreprise

requiert de la part de ses managers la capacité de prendre des décisions pertinentes

dans un laps de temps très court afin de maintenir ou accrôıtre son activité. Pour cela,

l’analyse des données générées par l’activité de l’entreprise peut être une précieuse source

d’information.

Ces dernières années, une nouvelle classe de systèmes d’aide à la décision est apparue

pour relever ce défi: L’Intelligence Opérationnelle (IO) [1]. Son objectif est de permet-

tre aux managers opérationels d’avoir une très bonne compréhension de la situation de

l’entreprise, à travers l’analyse de l’activité passée et présente.

Dans ce contexte, les notions de temps et de traçabilité sont primordiales dans la

compréhension de l’évolution de l’activité de l’entreprise à travers le temps.

Dans cette thèse, nous présentons Axway Decision Insight (ADI), une solution d’IO

développée par l’éditeur de logiciels Axway. Le composant clé de cette solution est

un SGBD orienté colonnes et bi-temporel développé en interne par l’entreprise pour

répondre aux besoins spécifiques de l’IO. Ses capacités bi-temporelles lui permettent de

gérer nativement aussi bien l’évolution des données dans la réalité modélisée (temps de

validité) que l’évolution des donnés dans la base de données (temps de transaction).

Nous commencerons par présenter la solution ADI en nous focalisant sur deux éléments

importants: 1) l’interface graphique qui permet la conception et l’utilisation d’ADI sans

écrire la moindre ligne de code. 2) L’approche adoptée pour modéliser les données bi-

temporelles.

Ensuite, nous présentons un benchmark pour ADI qui se base sur le benchmark pour

bases de données bi-temporelles TPC-BiH [2].

Après cela, nous présentons deux optimisations pour ADI. La première redéfinit une

requête bi-temporelle en: 1) un ensemble de requêtes continues pour calculer des aggrégations

et dont les résultats sont matérialisés, et 2) une requête qui accède aux résultats maté

rialisés. La deuxième optimisation ordonne l’exécution des opérateurs de jointure des

plans de requêtes en utilisant un modèle coût basé sur des statistiques des données bi-

temporelles.

Pour évaluer ces optimisations, nous avons effectué des expérimentations en utilisant

notre benchmark, et qui ont démontré leurs intérêts.
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Chapter 1

Introduction

1.1 Context

Companies are operating in very dynamic and complex environments that require from

their managers agility and ability to make proactive decisions, in order to maintain or

improve their business. The available information generated by company’s activities

is exploding due to the increasing use of various technologies such as automated data

collection, machine logs, emails, RFID, GPS, .... The ”data deluge” represents a gold

mine on which companies are sitting on. In consequence, there is a variety of decision

support systems for decision-makers. The choice of the adapted one depends on several

factors such as the nature of the activity or the range of the decision, e.g strategic or

operational decisions.

Decision-makers may rely on Business Activity Monitoring (BAM) [3] to take opera-

tional decisions. BAM aims to provide real-time access to critical business performance

indicators. Thus managers can have a deep insight of what is currently happening in

their business and then take rapid and effective decisions. BAM gathers its information

in real-time by analyzing data streams from multiple sources. BAM systems often relies

on technologies such as Complex Event Processing (CEP) [4], Data Stream Management

System (DSMS) or traditional Database Management System (DBMS). CEP aims to

detect interesting patterns of events, e.g. if events A and B happen simultaneously, then

C happens too. DSMS are intended to manage data streams and perform SQL-likree

queries on them. Nevertheless the BAM is limited because they only focus on real time

1
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information rather than using existing historical data and temporal data in their vari-

ous forms. They do not give managers the necessary hindsight to compare the current

organization activity behavior with its history. In consequence, it can be hard to detect

threats and opportunities.

Exploiting historical data is traditionally covered by tools and systems from the Business

Intelligence (BI) domain [5]. They enable managers to understand what happened in the

past and help them to prevent the mistakes in the future by taking relevant long term

and strategic decisions. A BI system accesses to historical and structured data sources

in a batch-loaded approach and compute performance indicators that are usually stored

in relational databases called data warehouses. This process is referred to as Extract,

Transform and Load (ETL). It appears that BI is not intended to real-time use-cases

since analyses can not be delivered in real-time. Besides, it does not offer enough agility

to meet manager’s needs to take operational decisions in very dynamic environments.

This information is not always well-exploited due to the lack of adapted Decision Sup-

port Systems (DSS). In this setting, a new class of systems has emerged in the decision

support system galaxy called Operational Intelligence (OI) [1] to meet the challenge of

capturing, storing, analyzing and visualizing efficiently historical and real-time data.

This class of systems is intended to help manager to take operational decisions and is

situated at the crossroads of

BI and BAM (Figure 1.1), aiming to answer questions that no one of them can easily

answer. This new DSS class does not intend to compete with existing systems, but

rather complete them. Thus OI enables organizations to:

• Handle both historical and real-time data within the same system which enables

managers to understand what happened and what is happening in their organiza-

tion.

• Benefit from both BAM’s agility to adapt to business evolution and BI’s analytical

capabilities.

• Early events detection to take immediate actions to address threats and opportu-

nities

• Higher operational performance: The improvement of the business decisions leads

to operational cost optimization, higher revenues.
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Chapter 1 - Introduction 3

Figure 1.1: OI at the crossroads of disciplines

• Better communication: Managers knows exactly what has happened and what is

happening in their business, and thus can better communicate and justify their

actions.

Splunk1, Vitria2 Axway3 are examples of companies that position theirself in OI.

All these functional features require to handle in an efficient way 2 temporal dimensions

which are the history of data as well as the evolution of the DB modifications.

1.2 Bi-temporal Capabilities: Interest For OI

Databases are intended to store organization’s knowledge concerning the real world.

Most of these databases are considered as static [6] because they only store a snapshot

of the world at a given time. As an example, let us consider the relation customers

(Table 1.1a). Let us suppose that the customer OneTwech’s balance has been updated

(Table 1.1b) from 400 to 300. From Table 1.1b, we do not know whether or not a change

has occurred and when (if any).

1http://www.splunk.com/
2http://www.vitria.com/
3https://www.axway.com/en/enterprise-solutions/operational-intelligence
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Table 1.1: Customer relation

(a) Before

customer Name balance

AxTech 100

OneTwech 400

Azeco 150

(b) After

customer Name balance

AxTech 100

OneTwech 300

Azeco 150

Classical databases systems are not intended to handle natively temporal data, but

rather data at a certain time, usually the most recent one. In consequence, temporal DBs

have been studied in the database community for more than three decades. Christian

Jensen has identified around 2000 scientific productions over the 80th and 90th [7]. This

includes among other things an encyclopedia [8], some books addressing the temporal

databases topic [9–11], etc. These works have been referenced by several bibliographies

such as [12].

Two main time aspects have been defined in the literature. They are orthogonal, which

means that there is no clear relationship between them.

• The valid time ”vt”, also called application time, of a fact is the time when it

is true in the modeled reality [13]. This time is intended to capture the history

evolution of the modeled reality.

• The transaction time ”tt”, also called system time, of a database fact is the time

when it is stored in the database [13]. It is intended to capture the history of

database changes. It is consistent with the serialization order of transactions and

is always provided by the DBMS. In consequence, the transaction times can not

be later than the DB’s current transaction time and can not be changed once a

fact is timestamped in the database as for vt.

OI’s capabilities that we have just detailed require to handle the history of business

data. Such DMBS are known as a bi-temporal DBMS (2TDBMS), i.e a DBMS that

natively supports both valid time and the transaction time.
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1.2.1 Motivating Example For Bi-temporality

As a toy example, let us consider the relation customers (Table 1.1a). Let us suppose

that the customer Webtech’s balance has been updated (Table 1.1b) from 200 to 300.

From Table 1.1b, we do not know if a change has occured and when (if any).

Suppose that its balance is equal to 400e at 14:00 the 1st of January, 2016. The day

will be omitted for clarity in the sequel. This information is stored in the DB as shown

in Figure 1.2a where the balance evolution through an one dimension diagram.

At 15:00, OneTwech places a new order costing 100e, and we assume that the balance

value in the DB is updated instantaneously to 300e (Figure 1.2b).

At 16:30, OneTwech places a new order costing 500e but it is rejected because its

balance is too low (300e).

Let us say that OneTwech refunded its balance with 200e at 16:00. We suppose that

the balance update process on the DB is instantaneous but for some reasons, it took 2

hours and the attribute is updated at 18:00 (Figure 1.2b).

Figure 1.2: OneTwech’s balance evolution

(a) at tt=vt=14:00: 400e

6

(b) at tt=vt=15:00: 100e

(c) new order rejected at 15:00 (d) At 18:00, balance= 500e from 16:00

When the manager analyzes its business activity sometimes later, he will notice that

OneTwech’s order was rejected. From her point of view, this rejection is invalid because

the balance account allows this order: Indeed 500e are available at this moment (Figure

1.2d). However she can not know the reason because of the lack of information.
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Figure 1.3: OneTwech’s balance bi-temporal evolution

(a) tt=15 : 00
(b) tt=16 : 00

(c) tt=18 : 00

This example motivates the need of handling bi-temporal data to take rapid and relevant

decisions.

Let us suppose now that we use a bi-temporal DB system and play the scenario again.

Figures 1.3 summarizes the same information with a 2-dimensional diagrams (for tt

and vt). Clearly, the manager can now access to all history of the balance and then

understands why the order has been rejected at 16:30.
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1.2.2 Temporal Queries

The support of bi-temporal data, and more generally temporal data, enables new classes

of queries [14]. We briefly discuss two of them:

• Time travel : One fixes both the valid time and the transaction to an instant. The

query in Figure 1.3c is an example of such class which returns the balance’s value

at vt=16:30 considering the DB at the tt=16:30.

• Time range: one fixes a temporal dimension to a particular instant, let us say the

transaction time, while the other can either be fixed to an interval or vary over all

the time domain. As an example let us consider Figure 1.4. The red line means

that we want to get the history of OneTwech’s balance considering the state of DB

at tt=18:30. The result is: {[14:00, 15:00[ → 400e, [15:00, 16:00[→ 200e, [16:00,

∞[→ 300e }.

Figure 1.4: Graphical representation of a time range query

1.2.3 Temporal Aggregation

The temporal extension of DBMS raises the issue of defining the temporal aggregation

computing contexts. As an example, let us consider Figure 1.5 that represents bal-

ance evolution of three customers according to the vt (tt is not considered to keep the
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presentation simple). Answering the following query can be complex:

What is the customer’s average balance value during the interval [14:00,

17:00[ ?

Should we compute the average for each instant of that period or at some given instants?

How should we handle data unavailability concerning AxTech?

Figure 1.5: The temporal aggregation range

In order to overcome some of these issues, we introduce the concept of Rhythm which

derives from the concept of granularity [15] and is similar to some concepts such as time

sequence attributes [13], time-series [16] or periodic attribute [17]. It is a partition of the

valid time domain into contiguous and equal-length time intervals. A rhythm is defined

by a couple (begin, duration) where begin is the reference time instant to be used for

partitioning the valid time domain and duration is the length of each interval.

As an example, the rhythm (00:00,1 hour) corresponds to the following partition:

[00 : 00, 01 : 00[∪[01 : 00, 02 : 00[∪ . . .

If we use this rhythm for the previous query, then one possible approach would be to

compute the aggregation at each hour during the interval [14:00, 17:00]. We assume

that customers with unavailability data are not considered for the aggregation. In con-

sequence the result of the query is: {14:00→ 275e, 15:00→ 200e, 16:00→ 195e, 17:00→

333,33e }
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1.3 Axway Decision Insight

1.3.1 The Project Genesis

The genesis of Axway Decision Insight takes place in 2008 (Figure 1.6) when a French

software editor Systar4 launched a new project under the name of Tornado [18]. This

latter was designed to be the company’s next generation product and positions the

company in the domain of OI. The project required more than 150.000 hours of R&D

up to 2013 and was released in early 2013. In 2014, Systar was acquired by Axway,

a top-5 French software editor5, that claims to be a leader in data government flow.

Tornado has been renamed to Axway Decision Insight (ADI) and became its spearhead

in OI market.

Figure 1.6: ADI project’s chronology

1.3.2 Capabilities

ADI provides consolidated views of traditional real-time analyses with complete tem-

poral historical analyses which help managers to have a deep understanding of what

happened and what is happening in their organization. This leads to a higher op-

erational performance allowing for example a revenue increase or an operational cost

reduction.

ADI’s 2TDBMS enables to support scenarii such as:

4http://www.systar.fr/
5http://www.truffle100.fr/2014/palmares.php
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• Replaying past situations with exactly the same information as when they occurred

live.

• Investigation for audit and traceability to provide:

– In-depth analysis of a situation that occurred in the past, which could include

answers to questions such as what happened, when, why and where specific

actions are taken.

– On demand simulations of the evolution of past situations;

– Parallel comparison of the evolution in time of two situations, such as a

present time process and the behaviour of the same process yesterday;

• Risk assessment evaluations, based on past of forecasted events and data.

1.3.3 Objectives

Since organization evolves in highly dynamic environments, decision-makers have to be

agile. In consequence ADI has been designed to meet that requirement, by enabling:

• Rapid time to value: Applications should be implemented in significantly shorter

time than traditional development cycles, typically under one month.

• Low total cost of ownership: ADI should achieve real-time monitoring with just

one single platform running on commodity hardware and without using any other

software.

• Adaptability to changing business environment: The ADI platform should easily

be adapted in production applications as long as business evolves, thanks to a

”code-free” approach. This means that a manager with limited technical skills in

computer science can easily adapt its applications using a convenient graphical

user interface (GUI) (Figure 1.7).

1.3.4 A Plug-and-Play Platform

ADI is a plug-and-play platform covering all the life-cycle of a monitoring application

(Figure 1.8) that does not require any additional software. The main steps to implement

an application are the following:
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Figure 1.7: Example of an ADI’s GUI

Figure 1.8: Application life cycle implementation

• Designing a data model : Decision Insight provides managers the possibility to

model the data of their business using the Entity-relationship formalism. This

formalism has the advantage of ignoring technical issues which corresponds to a

no-technical manager’s profil.

• Implementing data integration routes : Decision Insight provides several ready-to-

use connectors to access to a wide range of data sources such as databases or web

services.

• Implementing analyses : Managers may define their analyses thanks to a GUI tool

on the top of the data model. Besides they can add or update an analysis while

the application is in production.

• Designing dashboards : ADI provides managers with an interactive GUI that en-

ables them to monitor their business by exploring both real-time and historical

data (Figure 1.7). A dashboard is made up of one or more graphical elements

(diagrams, charts, datagrids, . . . ) referred to as pagelets in the sequel. Each

graphical element displays data returned by an underlying query. Managers can

design themselves their dashboards using graphical tools. The dashboards can be

updated while the application is running and see their modification instantly.
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1.3.5 Architecture

The ADI Architecture (Figure 1.9) is based on a service oriented, event-driven imple-

mentation using Java. It is structured into three loosely coupled functional layers:

Absorption Layer, Logical Layer and User Interface Layer.

The Absorption Layer : ADI uses unobtrusive, agentless technology to collect, process

and analyse real-time data as well as historical data. It is based on the Apache Camel

engine 6 that offers a wide range of possibilities to pull data from various types of sources.

User Interface Layer : The user interface layer allows any web browsers using Adobe

Flash technology to display information from the logical layer. This layer is fully inte-

grated to offer seamless and rich interaction with the analysts with visual data manip-

ulation, navigation, as well as analyses based on its needs.

Logical Layer : Decision Insight is based on a proprietary DBMS, implemented by Axway,

that is specifically designed to handle both real-time and historical data. This DBMS is

bi-temporal and column-oriented. The bi-temporality means that it supports the valid

time dimension to maintain the reality evolution and the transaction time dimension

to maintain the database evolution. The column-oriented property means that data is

stored according to columns, suitable for analytical use cases.

1.4 Thesis Challenges

When I started the thesis in December 2012, ADI was already implemented and started

to be marketed. The product was internally implemented without any academic support,

and this CIFRE contract was the first collaboration between Systar and a research

laboratory. One of the thesis challenges was to compare and eventually align the concepts

and vocabulary used in ADI with the state of art approaches at the international level.

This includes the temporal data modeling approach as well as the query representation

and processing. Beside there were also a concern about the positioning of ADI’s DBMS

compared with big software editors’ products such as Microsoft, Oracle, SAP, etc.

Another challenge was related to ADI’s DBMS performance issues. Supporting temporal

features requires storing the whole history of data and not only its last version. Besides,

6http://camel.apache.org/
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Figure 1.9: ADI’s architecture

ADI provides users with an interactive GUI to monitor their business. It requires from

the system to guarantee fast response time in order to avoid any GUI display lag which

would make the platform unpractical, and thus reduces its interest. In this thesis, we

mainly focus on the query engine part of ADI. Queries in ADI are specified through

a declarative interface, implemented as an API instead of implementing a SQL-like

language. This choice is mainly motivated by the fact that the DBMS is only intended

to be used within ADI platform and for some particular, well-defined use cases.

Last but not least, the development of a piece of code within ADI is not an easy task.

It has to deal with the code complexity induced by the platform complexity on which

more than 20 engineers work every days. A simple modification of the code requires a

wide variety of tests before to be pushed in the production platform.
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1.5 Thesis Contribution

We can summarize the thesis’s contribution in four points: The alignment of ADI with

respect to the state of art, the valorisation of ADI in the international academic com-

munity, the ADI benchmarking and finally query optimization.

ADI’s Alignment : This contribution consists in formalizing the existing product using

the state of art in the column-oriented database field as well as in the temporal database

field. Our studies concern the temporal extension of the entity-relationship model, the

relational model and temporal functional dependencies [19].

ADI’s Academic Valorisation: Despite the inherent difficulties to publish at the best

international level in the database community, we published a demo at ICDE 2015

conference [18], a A* conference in the field. We also have presented a demo and a full

paper at BDA 2015 conference7.

Bi-temporal DB Benchmark : We have proposed a Bi-temporal DB benchmark adapted

to OI use-cases to assess ADI performances. It is based on TPC-BiH [2], a bi-temporal

extension of the well-known TPC-H benchmark.

Query Plan Optimization: The main academic contribution of this thesis is the opti-

mization of bi-temporal queries. Up to now, ADI does not embed any cost-model based

query optimizer. In consequence, we have proposed an optimizer that estimates the size

of intermediate results generated by query plan’s operator.

We also have explained how the ADI’s bi-temporal query optimization module was

working. It implements an optimization that consists in redefining complex bi-temporal

queries into: 1) a set of continuous queries in charge of handling real time data streams

(whose results are materialized) and 2) a query that accesses materialized results of

the previous continuous queries. Thus, ADI can provide analysts with timely answers

through a convenient GUI [18].

1.6 Document Organization

The remainder of this thesis is structured as follows:

7http://bda2015.univ-tln.fr/
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• In Chapter 2, we introduce ADI. We first present its GUI that provides advanced

features saving users from using writing a piece of code. We focus on two of them

which are the ER editor used to design data models and the query editor used

to design bi-temporal queries. Then we introduce modeling approaches used to

handles bi-temporality and align it with the state of art. Then, we detail how data

is physically handled. Finally we present some alternative modeling approaches,

including conceptual and relational ones, that exist in the state of art.

• In Chapter 3, an adapted version of the TPC-BiH benchmark to OI use case is

presented. We first address existing proposals of temporal DB benchmarks. Then

we detail how we adapt the benchmark to meet ADI’s requirements.

• In Chapter 4, we present a query optimization that limits GUI display lag by

continuously precomputing queries’ aggregation operations as data is collected.

The experiments are conducted using the adapted TPC-BiH.

• In Chapter 5, we present a query plan cost-based optimizer for ADI. We first

describe ADI’s architecture to process data and queries. Then, we detail the

statistics about data we collect and formulas to estimate the result size of query

plan operators. Finally we detail the results of the experiments.
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Chapter 2

Axway Decision Insight

2.1 Context

Axway Decision Insight (ADI) is an OI solution that provides consolidated views of

traditional real-time analyses with complete temporal historical analyses. This product

helps managers to have a deep understanding of what happened and what is happening

in their organization and take relevant operational decisions. ADI’s main innovation is

a bi-temporal DBMS that has been specifically designed to meet OI requirements.

In this chapter, we introduce ADI’s GUI that helps users to easily design their appli-

cation. This includes the ER formalism to model applications as well as how to design

bi-temporal queries. Then we present the logical model behind the ADI and how it phys-

ically stores temporal data. Finally, we present some alternative approaches to model

temporal data at the conceptual level as well as at the logical one.

2.2 ADI: A Code-Free Platform

2.2.1 Conceptual Modeling

ADI provides managers with an ER graphical editor with bi-temporal capabilities to

implement their application (Figure 2.1). The choice of both a graphical editor and a

conceptual model is justified by the fact that managers have usually limited technical

skills need to quickly implement applications.

16
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The approach adopted to model temporal aspects is based on the usage of the classical

ER model. It is motivated by the fact that all implemented databases on ADI are fully

bi-temporal, and in consequence it is unnecessary to overload diagrams with additional

annotations or constructs. It also avoids users from mastering additional constructs that

are not contained in the original ER model.

Figure 2.1: ADI’s graphical user interface (GUI) to implement an ER diagram

2.2.2 Query Design in Decision Insight

Implementing queries using a SQL-based language can be a very difficult task, partic-

ularly for business managers with limited technical skills. ADI provides an advanced

graphical interface for rapid design of the complex queries related to OI. As an example

of such feature, let us consider the following query:

”What is the total revenue achieved by the company every day during the

current month (May 2015 in the example) considering the database at the

most recent state?”
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This query implementation is done in two steps. In the first step, the user implements

the temporal aggregation through the GUI shown in Figure 2.2:

• (A) indicates which rhythm (temporal granularity used to compute the aggrega-

tion) we want to link to the attribute. In our case we choose an one-day rhythm

as we want to know the company’s total revenue per day.

• (B) indicates the aggregation operation used to generate the analysis.

• (C) indicates the time-range to consider for the aggregation. In our example we

fix at the last day.

• (D) represents data sources used to compute the analysis, which is the attribute

”extendedPrice” of the LineItem.

In the second step, the user chooses the form and the content that will be displayed on

the ”pagelet”. Figure 2.4 is an example of ADI’s GUI to define the pagelet to display

the query result:

• (A) indicates graphical element type that the manager wants to display, namely a

historical curve.

• (B) indicates the time range of information to display on the pagelet. According

to the query, we choose to display the whole current month.

• (C) indicates the information to be displayed. Based on the provided information.

ADI creates a pagelet and an underlying on-demand query in charge of updating the

pagelet content (Figure 2.3).

2.3 ADI’s Physical Storage

ADI’s DBMS is a bi-temporal and column-oriented DBMS [20] which has the particu-

larity of being attribute timestamped oriented and state-based. In this section, we detail

the reasons for choosing a column-oriented approach and we also define the attribute-

timestamping and state-based approaches.
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Figure 2.2: ADI’s GUI to implement a temporal aggregation

Figure 2.3: Snapshot of a pagelet displaying the daily evolution of revenues

2.3.1 Motivations for a column-oriented DBMS

Column-oriented DBMS appeared in 90s as a response of an increasing need for storing

and analyzing very large volumes of data. The main difference between the classical

(row-oriented) DBMS and the column-oriented ones is how data is physically stored in

the system. A row-oriented DBMS stores data as rows of tuples. In a column-oriented,
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Figure 2.4: ADI’s GUI to implement a pagelet

data is stored by columns. We outline below three main reasons motivating the column-

oriented choice:

• The column-oriented databases are intended to perform analytical queries that

analyze data and give an insight into the business activity, e.g the number of

orders in pending status. The column-oriented database systems outperform row-

oriented database systems on analytical workloads such as those found in business

intelligence and decision support applications [21].

• The frequent evolution of OI applications, e.g GUI evolution, induces adding and

removing attributes dynamically. The row-oriented approach is not suitable in

this case because addition or deletion of an attribute affects the whole relation,

with performance impacts on the modified relation. However the column-oriented

approach does not suffer from this issue since each attribute is stored independently

of each other.

• The will to handle in an independent way the temporal evolution of attributes. In

the row-oriented approach, the update of an attribute value requires adding a new

tuple with the new value. This behavior causes both a storage overhead and an

increase in query execution time due to data duplication.

2.3.2 Attribute-Timestamping Approach

ADI’s DBMS adopts an attribute-timestamping approach, also known as the non first

normal form model. It consists in extending attributes from simple values to complex

values that incorporate temporal dimensions. Among the models of this approach, we
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can quote Gadia’s model [22], McKenzie’s model [23, 24] and Tansel’s one [25]. To il-

lustrate this approach, let us consider Gadia’s model. A bi-temporal relation scheme R

is defined as follows:

R = ({([Ts, Te]× [Vs, Ve]A1)}, ...{([Ts, Te]× [Vs, Ve]An)} (2.1)

Each tuple is composed of n sets. Each set element e is a triple of a transaction time

interval [Ts, Te], a valid time interval [Vs, Ve] and an attribute value e.Ai. An example

of such relation is depicted in (Figure 2.5). The attribute-value timestamping approach

Customer Balance Nation

[1,∞]x[1,∞] Axtech [1, 4]x[1,∞] 10 [1,5]x[1,∞] Spain
[5,∞]x[1,2] 10 [6,∞]x[1,2] Spain
[5,∞]x[3,∞] 30 [6,∞]x[3,∞] France

[2,∞]x[1,6] WebTech [4,2] x[1,6] 9 [2,∞]x[1,6] Germany
[3,∞] x[1,1] 9
[3,∞] x[2,6] 12

[3,4]x[1,6] Azco [3,4]x[1,6] 9 [3,4]x[1,6] France

[8,∞]x[4,∞] Jean Martin [8,∞]x[4,∞] 9 [8,∞]x[4,∞] France

Figure 2.5: Example of Gadia’s model relation

avoids any data redundancy because each attribute is handled separately. However this

approach induces a storage overhead because each attribute is overloaded with additional

temporal attributes. Besides, the models implemented using this approach may not be

adaptable to the existing relational structures or to query evaluation techniques that

suits for atomic values [26]. The choice of using either events or states to represent data

in temporal relations depends on its expected use in applications. In the conventional

relations, i.e relations with non temporal support, the reality is modeled as a single state

that represents the most recent data. It is then natural to consider the states as the

adapted approach to represent temporal relations. Yet, the event-based approach can be

adapted to some particular use cases. One of them is when the database is append-only,

i.e that once data is inserted in the DB, it can not be changed. In this case, data can be

stored as events. In consequence it might be interesting to use the event-based approach

to represent data as it is stored.
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2.3.3 State-based Modeling Appproach

The support of time-varying data leads to a representation dilemma due to the existence

of two opposite concepts: states and events [27, 28]. A state is something that lasts over

time. It corresponds for example to a fact that is true during a time interval, but is not

true before or after. An event however is instantaneous [13], i.e that occurs at a certain

instant and does not last. A state is delimited by events. It starts when an event occurs

and makes a fact true, and it ends when another event makes it false. In consequence a

state can be represented by its delimiting events Figure 2.6.

Snodgrass’ tuple timestamped representation scheme [29] is an example of state-based

Figure 2.6: The duality of states and events

relational model approach. The relation schema R is defined as follows:

R = (A1,A2, ..., An, Ts, Te, Vs, Ve)

A1, A2, ..., An are non temporal attributes. Ts and Te are the bounds of the transaction

time interval while Vs and Ve are the bounds of the valid time interval. Figure 2.7 is an

example of a Snodgrass’s proposal which adopts a state-based modeling approach.

The first tuple indicates that AxtTech’s balance is 10 starting with the timestamp 1

and is still true, and this information is recorded at 1 and logically deleted at 5. The

second tuple indicates that the balance is 10 from 1 to 3, fact known starting with the

timestamp 5 and is still current in the DB.

In the conventional relations, i.e relations with non temporal support, the reality is mod-

eled as a single state that represents the most recent data. It is then natural to consider

the states as the adapted approach to represent temporal relations. This approach is the
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Customer Balance Nation Vs Ve Ts Te

AxTech 10 Spain 1 ∞ 1 5

AxTech 10 Spain 1 3 5 ∞

AxTech 30 Spain 3 ∞ 5 6

AxTech 30 France 3 ∞ 6 ∞

WebTech 9 Germany 1 6 2 3

WebTech 9 Germany 1 6 2 3

WebTech 9 Germany 1 2 3 ∞

WebTech 12 Germany 3 6 3 ∞

Azeco 9 France 1 6 3 4

Jean Martin 9 France 4 ∞ 8 ∞

Figure 2.7: Example of Snodgrass’s modeling approach

most common approach and is also adopted by Oracle’s historical versionning module:

Workspace Manager1.

2.3.4 Translating an ER Diagram to a Column-store

In ADI, a column can either be an Entity-column, attribute-column or relationship-

column.

• Entity-column: This column stores the instances of an entity type of the ER model.

A record of this column is in the form of < key, intervalvt, instanttt >. key is a

surrogate attribute that uniquely identifies an instance of an entity type. The

attribute intervalvt is the lifetime of the instance and instanttt is the time when

the record is inserted into the DB.

• Attribute-column: It stores the values of an attribute of the ER model. A record of

this column is in the form of < key1, key2, ..., keyn, intervalvt, instanttt, value >.

The attributes keyi with i ∈ {1, ..., n} are the surrogate attributes that refer to

entity-columns to which the attribute belongs. The attribute intervalvt is the time

during which the record is valid, instanttt is the time when the record was inserted

in the DB. An attribute is monodimensional if n = 1, and is multidimensional if

n > 1.

• Relationship-column: It stores the value of a relationship of the ER model. A

record of this column is in the form of < key1, key2, intervalvt, instanttt >. key1

1http://www.oracle.com/technetwork/documentation/index-087067.html
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and key2 refer to the entity-types involved in the relationship while intervalvt and

instanttt are respectively the time during which the record is valid and the instant

the record is inserted in the DB.

2.3.5 Column Access API

The column store provides a catalog to get access to the desired column. For each

column, there is an API to manipulate them. It mainly consists of the four following

methods:

• create(surID1, ... surIDn, instanttt, intervalvt, value): It inserts a new record

to the column. ”surIDi” with i ∈ 1..n is a surrogate attribute [30] that uniquely

identifies real word entities. The number of surrogate attributes depends on the

column type, e.g an entity-column will only contain one surrogate attribute while a

relationship column will contain at least two of them. ”instanttt” is the tt instant

when data hold by the record was acquired by ADI and ”intervalvt” is the time

during which it is valid. The attribute ”value” concerns only attribute-columns.

• get(instantvt, surID, instanttt): It returns at most one record r, such that, its

surID matches the method parameter’s surID, r.intervalvt intersects instantvt

and it is the most recent with r.instanttt < instanttt. As an example let consider

(Figure 2.8) which represents the stored entries of an attribute column for a given

surrogate id, e.g surID = 1. A right arrow means that vte = ∞. The execution

of get(8, 7, 1) returns the result {(1, [1,∞[, 1)}

• scan(intervalvt, intervalsurID, instanttt): it returns all records, such that each

record r, r.surID ∈ {surID1, ..., surIDn}, r.intervalvt∩intervalvt 6= ∅}, r.instanttt ≤

instanttt. As an example, let us consider the example in Figure 2.8 that represents

an entity-column’s records. A segment means that the vt is a closed interval while a

right arrow means that it is a left-bounded one. The number on segments and right

arrows represent the record’s surID. If we consider the call ”scan([3, 9], [4, 8], 8)”,

then the predicate ”vt = [3, 9]” returns records that intersect the surface between

the two green vertical lines. The predicate ”tt=8” returns records below the orange

line. The surrogate predicate returns records whose surID ∈ [4, 8]. The result is
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a set of records in the form of (surID, intervalvt, instanttt) and is equal to {(5,

[1,5[, 1), (6,[3,7[,3), (7, [2,6], 6), (2, [8,12], 7) }.

Figure 2.8: An attribute-column’s entries

2.3.6 Physical Data Structures

ADI’s physical structure is inspired by the Cassandra system [31]: data from each col-

umn is stored in three distinct data structures: Alive Structure, memtable and SSTable

(Figure 2.9).

2.3.6.1 Alive

It is an in-memory data structure that contains live data, i.e newly added data with

vte = ∞ that is likely to be modified. Once this data is closed, i.e the vte is set to a

finite value, it is supposed that it will not be modified anymore, and is moved to the

memtable.

2.3.6.2 Memtable

It is an in-memory structure that contains data that have been recently closed. Once the

current memtable reaches a size threshold, it does no longer receive new data. A new

current memtable is created and starts to receive data. The former current memtable

becomes a pending memtable, and is asynchronously flushed as SSTables on disk.
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2.3.6.3 Sorted String Table (SSTable)

It is an immutable file stored on disk that contains serialized columns. Since an instance

can be modified and a SSTable is immutable, then information related to one instance

can be spread over several SSTables.

Some queries can require the access to several SSTables to build this result. The frag-

mentation of column data over several disk files can badly impact their execution time.

In order to avoid that, the column-store periodically merges SSTables into bigger size

ones and rebuilds the indexes. If this approach induces a CPU overhead, it enables

to reduce query execution time. The tasks of flushing memtables on disk and merging

SSTables are asynchronous to data insertion task in order to avoid to slow it down.

Figure 2.9: Physical data structure used by ADI

2.4 Alternative Temporal Modeling Approaches

In addition to the different temporal modeling approaches adopted in ADI, there are

alternative approaches that we detail in this section, e.g the temporal enhancement of
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Figure 2.10: STEER diagram Figure 2.11: timeER Plus diagram

the ER model.

2.4.1 ER Model Enhancement With New Constructs/Annotations

There is another approach to handle temporality in the ER model. It consists in en-

hancing the ER model with new syntactical constructs or annotations that catch the

temporal semantics. STEER [32], TERM [33] are examples of models that enhance

the ER model with additional constructs based on two approaches to extend the ER.

1) One approach consists in adding new annotations to ER constructs that catch time

semantics.2) The other approach consists in adding new constructs to the model that

catch time semantics. In order to exemplify these two approaches, let us consider that

the entity-type customer is bi-temporal as well as the attributes phone, address and

balance. We suppose that the attributes custId and name are not temporal. This can

be for example justified by the fact that it is not relevant to keep the history of these

attributes or that they are not supposed to evolve through the two dimensions. Figure

2.10 is an example of using the STEER model to represent the entity-type customer.

The approach consists in adding an additional construct (in grey) that is linked to the

entity-type’s temporal attributes. Figure 2.11 is an example of using the TimeER Plus

model [34] to represent the same entity-time, by adding the annotations ”VT” (valid

time), ”LT” (lifetime which is the valid time for entity-types) and ”TT” (transaction

time).
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2.4.2 Tuple-Timestamping Approach

In addition to the attribute-versioning approach, there is also the tuple-timestamping

approach. It consists in extending the conventional relation schema with temporal at-

tributes which avoids any need to redefine the existing attribute. The storage overhead

might be limited because the temporal attributes concern the whole tuple. However, it

may introduce data redundancy because attribute values change at different times [35].

Besides being a state-based modeling approach, the Snodgrass model (Figure 2.7) which

we introduced in the sub-section 2.3.3 is also a tuple-timestamping modeling approach.

The first tuple indicates that AxTech’s balance has the value 10 starting with the times-

tamp 1 and is still true, and recorded at 1 and logically deleted at 5. The second tuple

indicates that the balance has the value 10 starting with the timestamp 1 to 3, recorded

at 5 and is still current in the DB.

To the best of our knowledge, this is the most common approach among DBMSs with

temporal capabilities whether they are row-oriented such as Oracle or column-oriented

such as SAP Hana [36, 37].

2.4.3 Event-Based Modeling Approach

In addition to the state-based modeling approach that is adopted by ADI, there is an al-

ternative approach, although less widespread, which is the event-based modeling. Jensen

has proposed an event-based relational model [38, 39]. It consists in defining backlog

relations, i.e append-only relations that do not authorize tuple update.

In this model, a backlog relation schema R is defined as follows:

R = (A1,A2, ..., An, Vs, Ve, T , Op)

A1, A2, ..., An are non temporal attributes. The attributes Vs and Ve stores the bounds

of the vt interval. Attribute T stores the transaction time when the tuple was inserted

into the relation. Attribute Op indicates whether the tuple is inserted (”I”) or deleted

(”D”). A tuple that is inserted in the relation corresponds to an occurred event. It is

current in the relation until a matching deletion tuple with the same explicit and valid

attribute values is recorded. Concerning modifications, they are recorded by a pair of a

deletion tuple and insertion tuple with the same T value. Figure 2.12 is an example of
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such a relation. The first and the second tuples are examples of insertion tuples while the

second and the third tuples are a modification pair. The event-based modeling approach

Customer Balance Nation Vs Ve T Op

AxTech 10 Spain 1 ∞ 1 I

Webtech 9 Germany 1 6 2 I

Webtech 9 Germany 1 6 3 D

Webtech 9 Germany 1 2 3 I

Webtech 12 Germany 3 6 3 I

Azeco 9 France 1 6 3 I

Azeco 9 France 1 6 4 D

AxTech 10 Spain 1 ∞ 5 D

AxTech 10 Spain 1 3 5 I

AxTech 30 Spain 3 ∞ 5 I

AxTech 30 Spain 3 ∞ 6 D

AxTech 30 France 3 ∞ 6 D

Jean Martin 9 France 4 ∞ 8 I

Figure 2.12: Example of Jensen’s Backlog-Based relation

is adapted to some particular use cases such as when the database is append-only, i.e

that once data is inserted into the DB, it can not be changed.

2.4.4 Temporal Generalization, Temporal Specialization

2.4.4.1 Temporal Specialization

The valid time and the transaction time are usually considered to be orthogonal [40],

Usually there is no relationship between the valid time and the transaction time of any

fact in the DB. However in many practical applications there is a restriction relationship

between them. It is then possible to represent only one temporal aspect while the other

one can be deduced. This is what we call a temporal specialization [41]. The authors

defined 15 classes of specialization. One of them is the degeneration: a tuple’s valid

time is considered as valid when it is inserted into the DB. This means then vt and tt

of all tuples are identical. In consequence, it is sufficient to store timestamps of one of

the two temporal dimensions. Table 2.1b is an example of a specialized relation that is

equivalent to the original relation in Table 2.1a, where we only keep the tt dimension.
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Table 2.1: Specialization

(a) Before

customer Name balance Vs Ve Ts Te

AxTech 250 15:00 16:00 15:00 16:00
AxTech 500 17:00 ∞ 17:00 ∞

OneTwech 200 15:00 16:00 15:00 16:00
OneTwech 300 16:00 ∞ 15:00 ∞

(b) After

customer Name balance Ts Te

AxTech 250 15:00 16:00
AxTech 500 17:00 ∞

OneTwech 200 15:00 16:00
OneTwech 300 16:00 ∞

2.4.4.2 Temporal Generalization

If the temporal specialization aims to determine if there is any constraint between the

valid time and the transaction time and thus coupling them, temporal generalization aims

to decouple timestamps which enables to associate more than two temporal aspects to a

fact. As an example let us consider the case of processing orders by a company. When

an order is placed by a client, the company needs to check if it has the necessary funds

for that order. If this occurs, then company accepts the order and it becomes effective.

The order process concerns the reality, and thereby the valid time. The question is:

”what fact should we timestamp?”. Indeed several possibilities exist. If it is the fact

”the order is placed”, the valid time starts when the order is placed by the client and the

transaction time is when that fact is stored in the DB. If we consider the fact ”the order

is processed”, then it is valid when the company accepts the order, and the transaction

time starts when that fact is stored in the database. We can see that the choice of the

fact to store has an impact on the valid time and the transaction time. The question

is how to represent to the best these facts. One possible approach would be to add an

additional valid time timestamp to capture the fact that the decision to authorize an

order is made. This particular timestamp is also called decision-time in the literature

[42–45].
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2.5 Chapter Synthesis

In this chapter, we introduced ADI, the Axway’s OI platform, and its key component:

the DBMS. ADI is a code-free platform that proposes a convenient GUI to implement

and use OI applications since the majority of users have limited technical skills, e.g they

can implement their data models thanks to the ER formalism. The choice has been

made to not support a SQL-like language to implement queries, but rather an accessible

API to the GUI. This API works in a declarative fashion (describes ”what” and not

”how”), and is mainly motivated by the fact that the DBMS is only intended to queries

that can be implemented through the GUI.

ADI’s DBMS is a NoSQL bi-temporal and column-oriented DBMS, inspired by Cas-

sandra’s architecture, that has been specially designed to meet OI needs. Some choices

have been made to handle the bi-temporality:

• State-modeling approach: Tuples store the state of data during a period of time.

• Attribute-versionning approach: Each attribute of the data model is timestamped

with both one valid time and one transaction time dimension.

• Generalization, i.e handling more than one dimension per temporal aspect, as

well as Specialization, i.e expressing one temporal aspect while the other can be

deducted are not supported.

ADI’s physical storage adopts a three-layers architecture where: 1) Alive and theMemtable

are in-memory structures that respectively contains newly added data and future archived

data. 2) SSTable is an immutable on-disk structure used to store archived data.
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Chapter 3

Bi-temporal Database

Benchmarking

3.1 Context

OI systems are critical due to their role to monitor their business. Such systems face

several challenges: 1) They have to handle large volume of data, from fresh data to

historical data. 2) They have to guarantee fast response times, so that users benefit

from a ”fluent” GUI. Therefore, it is crucial to be able to evaluate the performances of

this kind of system. Since ADI is based on a bi-temporal database system, we consider

benchmarks for bi-temporal databases as a good solution to measure the performances

of our platform.

The widespread of temporal databases systems is mainly motivated by the need to

record data evolution, e.g for auditing purposes or for making business decisions. Several

vendors offer DBMS with temporal capabilities, e.g Oracle, SAP or Teradata. It appears

then that comparing these systems is crucial to choose the appropriate system.

In this chapter we address the topic of benchmarking bi-temporal DBMS. It is structured

as follows. First, we propose an overview of the main published works. Then we focus

on a particular benchmark called TPC-BiH [2] which is, as far as we know, the most

accomplished existing benchmark. Finally we propose an adaptation of that benchmark

to meet our requirements.

32
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3.2 Related Works

Benchmarking DBMS is an important topic addressed by the research community for

years. Some benchmarks are references in the database domain: we quote the bench-

marks proposed by TPC1, covering the main database use cases. TPC-C and TPC-E are

for example devoted to Online Transaction Processing (OLTP) use cases while TPC-H,

TPC-DS and TPC-DI are designed for online Analytical Processing (OLAP) use cases.

Benchmarking temporal databases is not a new problem and many researchers have

addressed it. In 1993, Jensen and al [46] proposed a functional benchmark that aims to

asset the systems to support different classes of temporal queries. Unfortunately, their

work does not include performance evaluation. In 1995, Duhman and al [47] proposed a

framework to benchmark temporal databases. They provides a cookbook to implement

a temporal benchmark, including requirements to build query workloads based on their

use cases as well as requirements for implementing a temporal data generator. In 1998,

Werstein [48] studied existing benchmarks at that time including TPC, the Wisconsin

benchmark, BAPco, etc. He concluded that temporal aspects are not well supported.

In the last three years two performance benchmarks focusing on bi-temporal DB and

based on the wildly used TPC’s benchmarks have been proposed: One of them [49]

was published at the VLDB TPCTC 2012 workshop2. The authors used the TPC-H

benchmark, a benchmark devoted to decision support workloads, as a starting point

and proposed a bi-temporal extension of it. They chose to extend a subset of relations

- part, supplier and partsupp- with a two temporal attributes to express bi-temporality

using Snodgrass modeling approach [50, 51]. This means that they adopt a tuple times-

tamping approach. They use data from TPC-H’s data generator to initially populate

the relations, then they use some functions to create the history for the three temporal

relations. Concerning the query workload, they listed some possible queries that can be

implemented. The second performance benchmark is introduced in the next section.

1http://www.tpc.org/
2http://www.tpc.org/tpctc/tpctc2012/default.asp
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3.3 TPC-BiH

Kaufmann and al proposed a benchmark called TPC-BiH [2] and based on the TPC-

H/TPC-C benchmarks, was published at the VLDB TPCTC 2013 workshop3. To the

best of our knowledge, it is the most complete bi-temporal benchmark. Unlike in the

previous benchmark, the data model is fully bi-temporal, i.e all relations are extended

with both valid time and transaction time. It also contains a data generator that works

in two steps. It first extends TPC-H data set with temporal data. Then it generates

a history of data thanks to a workload of 9 business transactions. Finally TPC-BiH

contains a workload of queries organized in 4 categories:Pure-Time, Pure-Key, Range-

Timeslice and Bi-temporal queries.

3.3.1 Data Model

Figure 3.1: TPC-BiH’s schema

The TPC-BiH’s database schema is almost the TPC-H’s database schema (see TPC-

H’s specifications on http://www.tpc.org/tpch/) with additional temporal attributes

to express bi-temporality: each of them is an interval. Each of the relations Part,

partsupp, customer, lineitem has one valid time attribute (e.g AVAILABILITY TIME)

3http://www.tpc.org/tpctc/tpctc2013/default.asp
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and one transaction time attribute. The relation Supplier is degenerated [13] since it is

a particular specialization where the valid time and transaction time are identical. In

consequence the relation contains only one temporal attribute which is the transaction

time attribute (SYS TIME). The relation Orders is a generalization because it contains

two valid time attributes (ACTIVE TIME and RECEIVABLE TIME) in addition to a

transaction time attribute (SYS TIME). Finally the relations Nation and Region are

not versioned and do not contain any additional temporal attributes. This is motivated

by the fact that information concerning nations and regions are time invariant.

3.3.2 Data Generator

TPC-BiH contains a data generator that works in two steps. The first step consists in

generating an initial data set using TPC-H. The generated data is stored as 8 files; each

one containing one relation. Then the TPC-BiH data generator extends the initial data

with temporal data generated using the TPC-H’s temporal attributes. The second step

consists in generating a history by using a set of 9 update functions (New Order, Cancel

Order, Update Stock, ...). The generated data is stored in 8 files. Each file contains

the complete history of one relation. In each file, the tuples generated during the first

step of the TPC-BiH data generator are sorted according to the relation’s primary key

while the ones generated during the second step are sorted according to the transaction

to which they belong.

We can notice that the TPC-BiH’s model keeps some date attributes such as ”SHIP-

DATE”, ”COMMITDATE” or ”ORDERDATE” even if their information is supposed

to be catch by the temporal attributes. We suppose that this choice is motivated by the

desire to be backward compatible with TPC-H queries.

3.3.3 Queries

Introducing temporal dimensions expends the space of possible queries that can be

expressed depending on how each time dimension is restricted: One can set both the

valid time and transaction time to one instant or set one dimension to one instant

while varying the other all over the time domain... TPC-BiH covers the query space by

proposing a set of queries classified in four categories:
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• Pure-Time query: It captures the state of the database at a specific time: a time

dimension is fixed to a particular instant while the other one can either be fixed

to an instant or vary over all the time domain.

• Pure-Key query: it addresses the issue of retrieving the history of a specific tuple:

one time dimension is fixed to a specific instant while the other vary over all time

domain.

• Range-Timeslice query : It is a bi-temporal extended version of a TPC-H query.

• Bi-temporal query [14]: It is a query that stress the two time dimensions in the

same time.

3.4 Adaptation of TPC-BiH to ADI

The TPC-BiH can be seen as a general bi-temporal benchmark for decision support

systems. Yet it needs to be adapted to be implemented on ADI:

• TPC-BiH adopts a tuple-versionning approach (subsection 2.4.2) to introduce time

in the data model while ADI adopts an attribute-versionning approach.

• It uses both generalization and specialization modeling techniques which are not

supported by ADI.

• TPC-BiH’s authors do not address the DB populating strategy which may induce

performance issues.

In this section, we first present the adapted data model. Then we present our strategy

to populate the DB. Finally we present the workload of queries that suit to OI use cases.

3.4.1 Data Model

The schema we use in the benchmark is represented in (Figure 3.2) and is a little bit

different from TPC-BiH’s model (Figure 3.1). The generalization of ”orders” by keeping

two valid time dimensions ”active time” and ”receivable time” is replaced by another

modeling approach. It consists in catching its semantic by adding a new possible value
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”payable” to the attribute orderStatus that indicates that the order has been ordered

but not paid yet.

We have removed the attributes ”commitdate” and ”receiptdate” of lineitem and the

attribute ”orderDate” of orders because they are redundant with the valid time dimen-

sion.

We use Gadia’s attribute value timestamped representation that we have already intro-

duced (subsection 2.4.2). In consequence, if we consider the relation symbol Nation with

schema(Nation) ={nationkey, name, regionkey, comment}), then it would be defined

as schema(Nation) = {{(nationkey, T )}, {(name, T )}, {(regionkey, T ), {(comment, T )}}}

where T = (vt, tt) with vt and tt respectively a valid time and transaction time interval.

For shorthand, we use ”value” to designate the value of the attribute, ”vtb” and ”vte”

are the endpoints of vt, and ”ttb” and ”tte” are the endpoints of tt.

Figure 3.2: TPC-BiH’s adapted schema

3.4.2 Database Population

From the initial data produced by the TPC-BiH data generator, we generate a stream

of events (id; data; T). Each event corresponds to an update order addressed to the

database. ”Id” is the event type, e.g ”insert a new order” or ”insert a new customer”.
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Data is the information handled by the event and T is the timestamps when the event

occurred in the reality. The events are ordered according to the attribute T, so we can

simulate a real-time workload.

3.4.3 Queries

TPC-BiH defines 4 classes of temporal queries that cover a large workload of queries. In

the ADI case, we focus on a subpart of TPC-BiH’s query workload that is relevant to

us. It corresponds to implementable queries through ADI’s GUI which are Time Travel

queries and Range-Timeslice queries.

In ADI, queries are not specified using a SQL-like language. Instead, it proposes a

convenient GUI process to guide analysts to specify their queries. Nevertheless, for the

sake of simplicity, we use a pseudo-SQL formalism based on SQL:2011 [52] to express

bi-temporal queries in this chapter as well as in the following ones. In the sequel, all

aggregation queries use a one-day rhythm (01/01/1992, 1 day) represented by the relation

r day. It is defined over the relation symbol R day with schema(R day) = {b, e} where

”b” and ”e” are the attributes used to store respectively the beginning and the end of

the rhythm’s interval. For reasons of simplification, we assume that when we refer to an

instant, e.g 01/01/1992, we mean 01/01/1992:00:00.

3.4.3.1 Time Travel Queries

A time travel query of this class returns the snapshot of a temporal database at a certain

transaction time instant and a valid time instant. A time-travel query can either be a

selection or an aggregation query. Listing 3.1 is an example of a selection time travel

query. It considers the database at the most recent state (by default an SQL:2011 always

returns the most recent data), and returns orderkey, orderstatus and totalprice of valid

orders at the instant ”01/01/1992”. The predicate in the where clause (line 5) filters

the orders that are valid at that instant (the instant 01/01/1992 must be in the interval

[orderkey.vtb, orderkey.vte[).

1 SELECT orderkey.value ,

2 orderstatus.value ,

3 totalprice.value
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4 FROM Orders

5 WHERE orderkey.vtb <=01/01/1992 AND 01/01/1992 < orderkey.vte;

Listing 3.1: Time travel query

An aggregation query is presented in Listing 3.2. It returns the number of orders grouped

by customers that are processed by the company at the instant ”01/01/1992” (line 4)

considering the DB at the transaction time instant ”01/01/1993” (line 3). Line 5 enables

to get an order’s customer while line 6 enables to get the customer’s name that is valid

at the order creation.

1 SELECT count (*)

2 FROM Orders o, Customer c

3 WHERE o.orderkey.ttb <=01/01/1993 AND 01/01/1993 <o.orderkey.tte AND

4 o.orderkey.vtb <= 01/01/1992 AND 01/01/1992 <o.orderkey.vte AND

5 o.custkey.value == c.custkey.value AND

6 c.name.vtb <= o.orderkey.vtb AND o.orderkey.vtb < c.name.vte

7 GROUP BY c.name.value;

Listing 3.2: Time travel aggregation query

3.4.3.2 Range-Timeslice Queries

Unlike the previous class of queries, these queries concern a range of time. In this case,

the transaction time is always fixed to an instant while the valid time is fixed to an

interval. This is motivated by the fact that OI applications are more interested in data

evolution through the vt than the tt.

As for time-travel queries, there are two types of range-timeslice queries: a selection

query and an aggregation query. Listing 3.3 is an example of the first type of range-

timeslice queries. It considers the database at the most recent state, the query returns

the history of all new orders that have been placed during the interval ”[01/01/1991,

01/07/1991[”. The predicates in the where clause filters the relevant orders

1 SELECT orderkey.value ,

2 orderstatus.value ,

3 totalprice.value

4 FROM Orders
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5 WHERE 01/01/1991 <= orderkey.vtb AND orderkey.vtb < 01/07/1991;

Listing 3.3: Range timeslice query

Concerning the aggregation queries, we follow Kaufmann and al’s classification of time

ranges in temporal aggregations [36]:

• Instantaneous Aggregation

Considering the database at ”[tt Instant]”, an aggregation is performed at different

instants spaced by the rhythm’s period that belongs to a time interval ”[vt Interval]”.

As an example let us consider the query from Listing 3.4. Considering the most recent

state of the DB, it computes for each day at midnight during the period ”01/01/1992” to

”01/07/1992” (one week) the number of orders that are still processed by the company,

i.e the number of orders that intersect the instants {01/01, 01/02, 01/03, 01/04, 01/05,

01/06, 01/07, 01/08} (Figure 3.3). Line 3 enables to get the instants used to perform

the aggregation (dots in Figure 3.3). Line 4 enables to get for each of these instants the

orders that intersect it.

1 SELECT r_day.b,count (*)

2 FROM Orders , r_day

3 WHERE ’01/01/1992 ’<=r_day.b AND r_day.b<’01/07/1992 ’

4 orderkey.vtb <=r_day.b AND r_day.b<orderkey.vte

5 GROUP BY r_day.b;

Listing 3.4: Instantaneous Aggregation in range timeslice query

Figure 3.3: Instantaneous Aggregation

• Tumbling Window

In this case, the aggregation is performed on non-overlapping intervals, typically a

rhythm’s intervals. Listing 3.5 is an example of such aggregation type. Considering the
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most recent state of the DB, the query returns for each day of the period ”01/01/1992”

to ”01/07/1992” the number of new placed orders. Line 4 determines the aggregation

intervals (Figure 3.4), while line 5 determines for each of them, the new orders.

1 SELECT r_day.b,r_day.e,count (*)

2 FROM Orders , r_day

3 WHERE

4 ’01/01/1992 ’<=r_day.b AND r_day.b<’01/07/1992 ’ AND

5 r_day.b<= orderkey.vtb AND orderkey.vtb <r_day.e

6 GROUP BY r_day.b;

Listing 3.5: Tumbling Aggregation in range timeslice query

Figure 3.4: Tumbling window aggregation

• Landmark Window

The aggregation is performed on overlapping intervals that share the same interval

beginning time instant. Listing 3.6 is an example of a such an aggregation. Considering

the most recent state of the DB, the query computes the number of new placed orders

for the intervals [01/01/1992, 01/02/1992[, [01/01/1992, 01/03/1992[, ..., [01/01/1992,

01/07/1992[ (Figure 3.5). Line 4 determines the aggregation interval’s endpoints while

Line 5 determines the new orders per interval.

1 SELECT r_day.b,r_day.e,count (*)

2 FROM Orders , r_day

3 WHERE

4 ’01/01/1992 ’<=r_day.b AND r_day.b<’01/07/1992 ’ AND

5 ’01/01/1992 ’<=orderkey.vtb AND orderkey.vtb < r_day.e

6 GROUP BY r_day.e;

Listing 3.6: Landmark window Aggregation in range timeslice query
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Figure 3.5: Landmark window aggregation

3.5 Experiments

We have conducted some experiments on both ADI’s DBMS and a row-oriented DBMS

with bi-temporal capabilities which we call R-DBMS. The objective is twofold: 1) to

compare the performance of the two systems, and 2) to assess the impact of the database

design on the system performance.

For the purpose of these experiments, we consider a sub-part of the TPC-BiH benchmark

(Figure 3.6).

Figure 3.6: Conceptual Data Model

3.5.1 The Workload

We generate a stream of events corresponding to the period [01/01/1992, 01/01/1993[.

There are two types of events:

• The insertion (I) consists in inserting a new order into the database. As we have

limited the number of customers to 30, we do not consider their insertion.
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• The update (U) consists in updating an existing orders in the database. The

update concerns an order’s status, its priority number or its ship priority.

Concerning the queries, we implemented four queries, each of them corresponds to one

type we defined in the previous section, with some adaptations like: 1) the DB is consid-

ered at the most recent state. 2) We use an one-month rhythm (01/01/1992, 1 month)

for aggregation queries instead of an one-day rhythm:

• Q1: it is the Time Travel selection query defined in Listing 3.1. Instead of exe-

cuting it considering the vt instant at ”01/01/1992”, we choose a random instant

from the interval [01/01/1992, 01/01/1993[.

• Q2: It is the Time Travel aggregation query defined in Listing 3.2. As for Q1, we

choose a random instant from the interval [01/01/1992, 01/01/1993[.

• Q3: It is the Instantaneous Aggregation query defined in Listing 3.4 with a minor

adaptation. It returns the current the number of currently processed orders at the

begining of each month during the period [01/01/1992, 01/01/1993[.

• Q4: It is the Tumbling Window Aggregation query defined in Listing 3.4. It returns

the number of new orders per month during [01/01/1992, 01/01/1993[.

• Q5: It is the Landmark Window query Listing 3.5. It returns the number of new

orders each month since 01/01/1992.

3.5.2 Logical Data Models

We choose to use three approaches of DB logical design in our testbed, so-called model-

T, model-C and model-M in the sequel. The first two do not consider the temporal

characteristics of the workload while the the third one does.

3.5.2.1 Model-T

In this model, each entity-type of the conceptual model becomes a relation schema. Each

relation is timestamped with both the valid time and the transaction time.

The DB schema:
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• Order(orderKey, totalprice, orderpriority, orderstatus, customer).

• Customer(custKey, name, comment).

3.5.2.2 Model-C

In this model, we translate the conceptual model according to an attribute-versioning

and column-oriented target. Each entity type, relationship and attribute is stored in its

own relation. Each relation is timestamped with both the valid time and the transaction

time.

The DB schema:

• Order(orderKey)

• Order totalprice(orderKey,totalprice)

• Order priority(orderKey,orderpriority)

• Order status(orderKey, orderstatus)

• Customer(custKey)

• Customer name(custKey,name)

• Customer comment(custKey,comment)

• ordered by(orderKey, custKey)

3.5.2.3 Model-M

This approach considers the workload during the design by regrouping attributes that

are not updated in the same relation. In consequence the attributes status and priority

as well as the relationship is currently have their own relations.

• Order(orderKey, totalprice)

• Order priority(orderKey, priority)

• Order status(orderKey, orderstatus)
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• Customer(custKey, name, comment)

• ordered by(orderKey, custKey)

3.5.3 Physical Data Model

Each of the three logical models is implemented in R-DBMS. Besides the three previous

physical implementations, we also implement Model-T but without adding the temporal

dimensions to relations. We denote that implementation ”Model-WT” (WT stands for

without time). The goal of ”Model-WT” is to determine the overhead caused by the

R-DBMS temporal features.

3.5.4 Results

In this section we present the results of 3 experiments we conducted to compare the

performance of the different implementations we detailed in the previous section. The

value of parameters used in the three experiments are detailed in Table 3.1. #I,#U

and #Q are respectively the number of inserted orders, the number of updates and the

number of queries. Experiments were executed on a virtual machine using VMWare. It

runs on Windows 7 64 bits, is equipped with 12 GB of RAM and a Dual Core X5660

2.67Ghz.

Parameters Experiment 1 Experiment 2 Experiment 3

Constants
#I =20k #Q = 0 #Q = 2k
#Q = 0

Variables
#U #I #I

#U = #I*10 #U = #I*10

Table 3.1: Experiment Parameters

3.5.4.1 Experiment 1: Update performance

The table 3.2 shows the size of the generated database for each implementation in the

case of #Q=1000K. Concerning R-DBMS, we notice that the DB size in case of temporal

implementations on R-DBMS (model-T, model-C, model-M ), are very large compared

to model-WT ’s implementation and ADI by at least a factor of 10. It is due to the
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complexity of the storage structure. Indeed, if the model-WT implementation contains

2 relations and 4 indexes, the model-C implementation contains 24 relations and 64

indexes (Table 3.3). We also notice that for each R-DBMS implementation, half of the

Implementations Index size(Mo) Table size(Mo) Total(Mo)

ADI 10,5 42 52,5
Model-T 182 160 342
Model-C 198 185 383
Model-M 195 180 375
Model-WT 0,63 0,56 1,19

Table 3.2: Size of DBs in case of #U=1000K

Implementations Number of relations Number of indexes

Model-WT 2 4
Model-T 9 24
Model-M 15 40
Model-C 24 64

Table 3.3: Number of data structures in the DB

storage structure size is occupied by indexes while it is barely 20% in the case of ADI.

The Figure 3.7 shows the time to execute the workload for each implementation. Con-

cerning R-DBMS, the performance of the implementations are similar except for Model-

WT. We suppose that the additional data structures used to handle bi-temporal data in-

duce an overhead. As regards ADI, it outperforms R-DBMS temporal implementations.

We suppose that, in addition to the data structure complexity of R-DBMS temporal,

the main reason behind the performance gap is the append-only strategy adopted by

ADI to store data on disk. This means that once a data is stored on disk, it can no

longer be modified.

3.5.4.2 Experiment 2: Performance of Insert Operation

Experiment 2 aims also to evaluate the write performance of the implemented systems.

Unlike the experiment 1, we choose here to vary the value of #I to generate 4 workloads.

We also constrain the value of #U to #I ∗ 10.
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Figure 3.7: Experiment 1: Execution time of workloads

The table 3.8 shows the size of the generated DBs for each implementation in case of

#I=90K. Note also that the size of the DB in case of model-T is about 15% smaller

than model-M ’s DB and about 20% smaller than Model-C.

The Figure 3.9 confirms that ADI implementations have better performances than R-

DBMS ones. Besides we can notice the difference in performances between temporal

R-DBMS implementations. It is due to the order insert cost. Indeed inserting an order

in the Model-T case consists in inserting one tuple in the relation order. In the Model-

C and Model-M cases, inserting an order consists in inserting respectively five and four

tuples in the DB.

Implementations Index size(Mo) Relation size(Mo) Total(Mo)

ADI K 8 33 41
ADI HVC 10 26 36
Model-T 108 100 208
Model-C 127 128 255
Model-M 121 118 239
Model-WT 2,06 2,06 4,12

Figure 3.8: Size of the DBs in the case of #I=50K

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI046/these.pdf 
© [A. Ait Ouassarah], [2016], INSA Lyon, tous droits réservés 



Chapter 3 - Bi-temporal DB Benchmarking 48

Figure 3.9: Experiment 2: Workload execution time

3.5.4.3 Experiment 3: Query execution performance

In this experiment we aim to evaluate the performances of ADI and R-DBMS in exe-

cuting queries. As we suppose that DB size may have an impact on the query execution

performances, we carry out four cases representing different DB sizes. The DB size is

determined by using the workload parameters #I and #U . We choose to vary the value

of #I from 10k to 40k and choose to constrain #U to #I ∗ 10. For each value of #I,

we execute the query workload. The result is represented in Figure 3.10.

Concerning R-DBMS implementations, we can notice that Model-T has very poor per-

formances compared to Model-C and Model-M. We suppose that Model-T bad perfor-

mances are due to the fact that the update of accbalance, phone or the relationship

belongs to causes a data duplication in the relation Customer which decrease the query

execution performance. However in the case of Model-M and Model-C, they are stored in

their own relations and do not affect the query execution performance. It appears that

both Model-M and Model-C have globally better performances than ADI. We assume

that the indexes enable fast data access.
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Figure 3.10: Experiment 3: Query execution time

(a) Q1 (b) Q2 (c) Q3

(d) Q4 (e) Q5

3.6 Chapter Synthesis

In this chapter, we presented a state of art of the bi-temporal benchmarks. To the best

of our knowledge, TPC-BiH [2] is the most complete one. We proposed a new version

of that benchmark that fulfills our requirements to assess ADI. Our main adaptations

concern the modification of the data model as well as the DB populating strategy.

We conducted some preliminary experiments with a twofold purpose: 1) Compare the

performance of ADI with another DBMS called R-DBMS. 2) Asses different temporal

database design strategies. The experiments learn us three important information: 1)

ADI has higher data insertion speed than R-DBMS. We suppose that it is due to the

fact that the first one adopts an append-only strategy to handle data on disk while

and have simpler index structures. 2) In the cases when a good temporal database

design is adopted, R-DBMS offers better query execution performances. In consequence

some query optimization work has been conducted to enhance ADI’s query execution

performances. In the following chapters, we introduce two of them. 3) Handling bi-

temporal data induces an important over cost.
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Chapter 4

Aggregation Precomputing

4.1 Context

BI systems are usually used to generate non-interactive reports which do not have real-

time (or near real-time) requirements. ADI however provides an interactive GUI that

enables managers to monitor their business. It offers the possibility to explore real-time

and other analyses computed over them. The underlying system must guarantee fast

response time of queries in charge of feeding the GUI with information. GUI display lag

makes the system unpractical.

In this chapter, we present a query processing optimization for ADI. It consists in pre-

computing query’s aggregation operations as data is collected in order to reduce the

GUI display lag.

This chapter is structured as follows. First, we introduce our query rewriting approach.

After that, we address the issue of materialized continuous query computation schedul-

ing. Then we point out how this approach has been implemented within ADI. The

following section is devoted to experiments using the adapted version of TPC-Bih pre-

sented in chapter 3. Finally, we present some related works to the optimization, including

materialized queries, data reduction, etc.

50
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4.2 ADI Pre-computing Approach

Business Activity Monitoring systems usually provide managers with features to build

so-called views1 to monitor their business through user-friendly GUI. Those views use

underlying queries to feed them with information to display. Consequently, they are

not intended to be executed only once and then deleted. They can be evaluated several

times, as long as the related view needs to be updated. In this section, we sketch the

main idea of our query rewriting technique. Without loss of generality, we are concerned

with the following class of temporal queries:

1 SELECT A1, A2, ..., An , Agg1 , Agg2 , ..., Aggk ,

2 Rhythm_Relation.vtb ,Rhythm_Relation.vte

3 FROM relation1 , relation2 , ..., relationJ ,

4 stream1 , stream2 , ..., streamK ,

5 Rhythm_Relation

6 WHERE tc1 AND tc2 AND ... AND tcn AND

7 c1 AND c2 AND ... AND cm

8 GROUP BY A1 , A2 , ..., An,

9 Rhythm_Relation.vtb , Rhythm_Relation.vte

Listing 4.1: Initial query Qt

where:

• A1, A2, . . . , An are attributes or derived attributes,

• Agg1, Agg2, ..., Aggk are aggregation functions, e.g., AVG, SUM, MIN.

• The WHERE clause is a conjunction of selection predicates and join predicates:

tcj predicates are over temporal attributes while ci are over non temporal ones.

• relation1, relation2, . . . , relationJ are relations from the accessed database (his-

torical data).

• stream1, stream2, . . . , streamK are data streams (live data)

• Rhythm Relation is the relation defined in the previous section.

1The term ”view” is used here is used as a synonym of interface (GUI) which is different from the
classical definition of ”view” in DB
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With ADI, such a query is used to feed an underlying GUI whenever it needs to be

updated, e.g due to a user interaction. Whenever the amount of data to be processed

exceeds some limits, GUI latency deteriorates. Therefore, to address the scalability

issue, we rely on data reduction techniques [53]. Intuitively, we compute as soon as

possible some partial answers allowing to efficiently answer a query asked by decision-

makers. In other words, instead of performing aggregations at query time, we propose

to perform them as soon as possible, when data arrives in the system. Thus, when a

query is executed, it simply accesses the results of the aggregations which requires fewer

I/O operations. This approach ensures that the most expensive I/O costs have been

performed before the information is asked by a decision-maker. Hence, at query-time,

the cost will be as low as possible, satisfying our major goal.

Given a bi-temporal query, we decompose this query as follows:

• one or more simple continuous queries (CQ) [54], and their results are materialized.

Such queries handle large volumes of data and do not affect historical data. They

are referred to as materialized continuous queries ;

• one elaborated temporal query, referred to as an on-demand query, in charge of

providing decision-makers with results is defined. Such a query accesses both

historical and live data, including previously materialized CQ’s results.

This approach has the advantage of providing a unified way to access both real-time

and historical information through temporal queries. The result of this approach is

equivalent to the result of the initial query against the same data. The reader is referred

to [55] for equivalence of continuous queries. This is out of the scope of this document.

4.2.1 Materialized Continuous Queries

For each aggregation Aggi in the initial query, we define one continuous query in charge

of reducing input data into pre-computed aggregates. This query is simple and handle

large volume of data, as in Listing 4.2.

1 SELECT A1, A2, ..., An , Aggi , vtb , vte

2 FROM relation1 , relation2 , ..., relationJ ,

3 stream1 , stream2 , ..., streamK , Rhythm_Relation

4 WHERE tc1 AND tc2 AND ... AND tcn AND
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5 c1 AND c2 AND ... AND cm

6 GROUP BY A1 , A2 , ..., An, Rhythm_Relation.vtb , Rhythm_Relation.vte

Listing 4.2: A materialized continuous query

where:

• Aggi is the aggregation operation performed by the query,

• relation1, relation2, ..., relationJ is the set of accessed relations

• vtb and vte are two time attributes representing the time interval during which

the computed result is valid,

• the result of this query is stored in a relation, thus becoming historical data.

Each continuous query is bound at its creation to a rhythm. For each interval of the

rhythm, the query returns one result that is stored in the DB. The choice of the rhythm

depends on the user’s needs. The more accurate is the expected result, the finer is the

rhythm’s granularity, and the higher is the CPU cost and memory utilization.

Whenever a continuous query is created, some new attributes linked to that query are

added dynamically to the database schema. This is intended to store the query results for

future use. As an example, let us consider an instantaneous aggregation range time-slice

query ( Listing 4.3) that returns the total revenue of orders that are processed by the

company every day at midnight during the period ”[1/1/1992, 1/7/1992]” considering

the most recent DB state. Lines 4 determines the aggregation instants, line 5 the relevant

orders and lines 6 & 7 determine the order’s totalprice value.

1 SELECT r_day.b,sum(totalPrice.value)

2 FROM Orders o, r_day r

3 WHERE

4 "1/1/1992" <=r.vtb AND r.vtb <1/7/1992

5 o.orderkey.vtb=<r_day.vtb AND r.b<o.orderkey.vte AND

6 o.totalprice.vtb <= o. orderkey.vtb AND

7 o.orderkey.vtb < o.totalprice.vte

8 GROUP BY r.vtb;

Listing 4.3: Example of an instantaneous Aggregation range time-slice query
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Our approach requires one continuous query to compute the total revenue per day (List-

ing. 4.4). We assume that the result is stored in an attribute called ”totalRevenueIn-

Process” in a relation called ”computations”

1 SELECT SUM(extendedPrice) as totalRevenueInProcess ,

2 r.vtb , r.vte

3 FROM Orders o, r_day r

4 WHERE

5 o.orderkey.vtb <=r_day.vtb AND r.b<o.orderkey.vte AND

6 o.totalprice.vtb <= o. orderkey.vtb AND

7 o.orderkey.vtb < o.totalprice.vte

Listing 4.4: The continuous query to compute the total value of in-processed orders

4.2.2 On-demand Queries

An on-demand query is a bi-temporal query executed against the database whenever

new information is required by decision-makers through their GUI.

1 SELECT A1, A2, ..., An

2 FROM relation1 , relation2 , ..., relationJ

3 WHERE tc1 AND tc2 AND ... AND tcn AND

4 c1 AND c2 AND ... AND cm;

Listing 4.5: On-demand query

According to the section 3.4.3, an On-demand Query can be one of the two following

types: the time travelqueries and the time slice queries.

If consider our example 4.3, then the underlying on-demand query would be Listing 4.6

where ”totalRevenueInProcess” is the relation that contains

1 SELECT totalRevenueInProcess.vtb ,

2 totalRevenueInProcess.vte ,

3 totalRevenueInProcess.value

4 FROM computations

5 WHERE

6 "01/01/1992" <= revenueInProcess.vtb AND

7 revenueInProcess.vtb <"01/07/1992"
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Listing 4.6: Example of an on-demand query

4.2.3 Computation Scheduling of Materialized Continuous Queries

The use of materialized views requires to consider the scheduling strategy to compute

its results. This strategy has to find a tradeoff between keeping views up-to-date as data

is collected and limits the number of refreshes to reduce the computation cost. Instead

computing a view for each single incoming update of entity, we prefer to refresh views

periodically or by bunch of updates. The real-time aspect induces computation deadline

constraints to ensure fresh information. The bi-temporality requires to consider the

semantics of the two temporal dimensions to choose the adapted computation strategy.

Indeed we have to determine the adequate instant when data is supposed to be available

in the database to trigger the computation. In the general case the two dimensions

are orthogonal, which means that there is no restrictions between the valid time and

the transaction time of any fact in the DB. However in many practical applications

there is a restriction relationship between them. For example, if we suppose that every

event that occurs in the reality is considered as valid when it is inserted in the DB,

then vte = tte. This topic has been addressed by Jensen and Snodgrass in bitemporal

relational databases [41] under the name temporal specialization relations. The authors

classify bitemporal relations into 15 classes of specialization.

In Decision Insight, we consider three types of events :

• Retroactively bounded events : It is the usual case. For each event, valid time and

transaction time have the following interrelationships 0 < tte − vte ≤ ∆t with

∆t > 0. In specific terms, the event occurs in reality at vte, then it is recorded in

DB at tte. ∆t is fixed by the user and represent the necessary time to collect it,

transfer it to the DB and record it.

• Delayed retroactive events : It corresponds to events whose temporal attributes

have the following interrelationships ∆t < tte − vte. This type of events occurs in

two cases: 1) when there is technical issue making difficult to deliver events to the

DB. 2) to correct previous events that have been recorded into the DB.
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• Predictive events : This case corresponds to events that are recorded into the DB

before they occurs in reality (tte ≤ vte), e.g a government tax rate modification

which is always announced before it is applied so that concerned people make

arrangements.

In order to handle these three types of events, ADI implements two different approaches:

Live Mode and Late Data Handler.

• Live Mode : This approach is the usual mode and is in charge of handling both

retroactively bounded events and predictive events. Concretely, considering a ma-

terialized continuous query, the condition to schedule its execution for an interval

of its rhythm is that all input data are available. Thus, for a rhythm interval

[vtbegin, vtend[, the system supposes that at tt = vtend +∆t all input data is avail-

able and schedules the computation. ∆t must smaller than vtend − vtbegin. Oth-

erwise, the computation task queue fill rate will be faster than the computation

rate. In ADI, ∆t is a platform parameter fixed by the user.

• Late Data Handler : This mode is dedicated to retroactive events. When such

type of events arrives, the system determines all materialized continuous query

and rhythm intervals impacted. Then it schedules their recomputation.

In the sequel, we restrict ourselves to the live mode.

4.3 Experiments

4.3.1 Database Populating

From the initial data produced by the TPC-BiH data generator, we generate a stream of

events < id, data, T >. Each event corresponds to an updating instruction addressed to

the database. id is the event type, e.g ”insert a new order” or ”insert a new customer”.

data is the information handled by the event and T is the timestamp when the event

occurred. The events are ordered according to the attribute T , so we can simulate a

real-time workload. The initial TPC-BiH dataset has a size of 400MB. The generated

data stream contains 3620761 events (Table 4.1). We also introduce a scaling factor
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Table 4.1: Number of operations per relation

Relation # of insertions (#I) # of updates (#U) # of deletions ((#D))
Region 5 0 0
Nation 25 0 0
Supplier 1000 0 0
Part 20000 49861 0
Customer 164668 253430 0
Partsupp 80000 352391 0
Orders 348026 681103 8452
LineItems 939670 699310 22820

”SF” to fix the rate of the data stream. For the initial data stream SF = 1. All data

streams with a higher SF are generated by duplicating SF times each event.

4.3.2 Queries

We have implemented two examples of typical queries used in BAM. Those queries are

frequently executed by a GUI, requiring rapid response times.

4.3.2.1 Query 1

This first query, (Listing 4.7), aims at answering the following business question where

”[YEAR]” is a parameter:

”What is the sum of new revenues for the company every day from 1/1/1992

to 1/1/[YEAR] considering the most recent data?”

Lines 5 & 6 determine the rhythm intervals used to compute the aggregation. Lines 7

& 8 determine the new orders per interval while lines 9 & 10 determine the value of the

orders. We redefine this query as one materialized continuous query ”Q1-Cont” (Listing

4.8) and one on-demand query ”Q1-OnD” (Listing 4.9).

1 SELECT Ryhthm_1d.vtb as vtb , Ryhthm_1d.vte as vte ,

2 SUM(totalprice.value) as newRevenuePerDay

3 FROM Orders o, Ryhthm_1d r

4 WHERE

5 ’01/01/1992 ’<=r.vtb AND

6 r.vtb < ’01/01/[ YEAR]’ AND

7 r.vtb <= o.orderkey.vtb AND
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8 o.orderkey.vtb < r.vte AND

9 o.totalprice.vtb <= o.orderkey.vtb AND

10 o.orderkey.vtb < o.totalprice.vte

11 GROUP BY r.vtb;

Listing 4.7: Q1: New Revenue per day

1 SELECT SUM(totalprice.value) as newRevenuePerDay ,

2 r.vtb as vtb , r.vte as vte

3 FROM Orders o, Ryhthm_1d r

4 WHERE

5 r.vtb <= o.orderkey.vtb AND

6 o.orderkey.vtb < r.vte AND

7 o.totalprice.vtb <= o.orderkey.vtb AND

8 o.orderkey.vtb < o.totalprice.vte

Listing 4.8: Q1-Cont: New Revenue per day

1 SELECT vtb , vte , aggr as newRevenuePerDay

2 FROM NewRevenuePerDay n

3 WHERE

4 ’01/01/1992 ’ <= n.vtb AND

5 n.vtb < ’01/01/[ YEAR]’;

Listing 4.9: Q1-OnD: New Revenue per day

4.3.2.2 Query 2

The query given in the (Listing 4.10) aims at answering the following business question

where ”[YEAR]” is a parameter:

”What is the number of orders per status for every day at midnight from

1/1/1992 to 1/1/[YEAR] considering the most recent data?”

As for the Listing 4.7, the lines 5 & 6 determine the rhythm intervals for aggregation,

the lines 7 & 8 determine the relevant orders per rhythm interval while the lines 9 &

10 determine their status. We redefine this query as one materialized continuous query

”Q2-Cont” (Listing 4.11) and one on-demand query ”Q2-OnD” (Listing 4.12).
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1 SELECT r.vtb as vtb , r.vte as vte ,

2 COUNT (*) as numOrdersPerDayPerStatus

3 FROM Orders o, Ryhthm_1d r

4 WHERE

5 ’01/01/1992 ’=<r.vtb AND

6 r.vtb < ’01/01/[ YEAR]’ AND

7 r.vtb <= o.orderkey.vtb AND

8 o.orderkey.vtb < r.vte AND

9 o.orderstatus.vtb <= o.orderkey.vtb AND

10 o.orderkey.vtb < o.orderstatus.vte

11 GROUP BY r.vtb , o.orderstatus.value;

Listing 4.10: Q2: Number orders per status and per day

1 SELECT COUNT (*) as numOrdersPerDayPerStatus ,

2 r.vtb as vtb , r.vte as vte

3 FROM Orders o, Ryhthm_1d r

4 WHERE

5 r.vtb <= o.orderkey.vtb AND

6 o.orderkey.vtb < r.vte AND

7 o.orderstatus.vtb <= o.orderkey.vtb AND

8 o.orderkey.vtb < o.orderstatus.vte

9 GROUP BY r.vtb , o.orderstatus.value;

Listing 4.11: Q2-Cont: Number of orders per status and per day

1 SELECT vtb , vte , numberOrdersPerDayPerStatus

2 FROM Computations

3 WHERE ’01/01/1992 ’ <= vtb AND

4 vtb <’01/01/[ YEAR]’;

Listing 4.12: Q2-OnD: Number of orders per status and per day

4.3.3 Experimental Results

In this section we present the results of experiments conducted to assess the performances

of our approach. To do this, we compare system performances with and without our

optimization. We also show the overhead of our optimization. Experiments have been
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executed on a physical machine which runs an Ubuntu 10.04, equipped with 12GB of

RAM, an Intel i7 processor with 8 cores at 2.8GHz and a 4TB of RAID storage.

4.3.3.1 Response Time

In this test, we point out the interest of our approach in reducing ADI’s response time.

We run two experiments: in the first one, we fix SF to 1 and we evaluate the impact of

the time range size on the execution time of both Q1 and Q2. In the second one , we

fix the value of the parameter ”YEAR” to 1996 and we vary the value of SF .

Fixed Scalar Factor

We inject a stream concerning the period [1/1/1992, 1/1/1999[. At the beginning of

each new year of the simulation period, we execute once Q1 and Q2 using a new value

of the parameter ”[YEAR]”. We compare two versions of each query: the optimized

version, using our approach based on continuous queries (Q1-OnD and Q2-OnD), and a

classical version, where the result is computed whenever the query arrives (Q1 and Q2).

We collect the execution times of these queries and represent them on Figure 4.1. We

Figure 4.1: Query response time while varying window size

notice that optimized versions of queries outperform the rest by at least a factor of 100.

For each day of the query interval, Q1-OnD accesses one value which is the materialized

result of the underlying continuous query. Q1, however, accesses the original data, i.e
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about 200 items for per day.

Varying Scalar Factor

In this experiment, we assess our approach when we vary the data stream rate. The

experimental conditions are similar to the previous test. We vary the value of SF from

1 to 6. For each value of SF , we inject the stream that concerns the period [1/1/1992,

1/1/1996[. Following the injection, the queries Q1 and Q2 are successively executed

with and without optimization. The queries are executed with [YEAR]=1996.

Figure 4.2: Query response time while varying data stream rate: YEAR=1996

When the data stream rate increases, the query execution time of the non-optimized

queries increases, else it remains stable.

4.3.3.2 Precomputation Overhead

Previous tests demonstrate the advantage of our approach in reducing the response time

of the system. However it induces a CPU and disk storage overhead.

Fixed Scalar Factor

The experimental conditions are similar to the test for response time/fixed scalar factor,

except that we use only Q1. For each day of the simulated period, we collect the CPU
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time of Q1-Cont. We also collect the CPU time to execute Q1-OnD and Q1. Fig.4.3

shows the results of the experiment: one curve represents the CPU consumption of Q1,

while the other is the sum of the CPU consumption of Q1-cont and Q1-OnD.

Figure 4.3: Continuous query computation overhead

It appears that the optimized approach requires a CPU overhead throughout the sim-

ulation time. However, it smooths the CPU consumption curve and avoids peaks at

query time and thus system overload. We also notice that as from the 2000th day of

simulation, the CPU Q1 cost is at least 100 times greater than the CPU required to

compute Q1-cont and Q1-OnD. This means that for a query using a large time interval

(6 years), the overhead induced by our approach has no impact on query processing

performance.

Varying Scalar Factor

In this experiment we assess the cost of our approach as we vary the stream rate using

the parameter SF . For each stream, we first inject the data stream corresponding to

the period [1/1/1992, 1/1/1996[, then we execute Q1 with [YEAR]= 1996. We collect

the CPU time to perform Q1 and Q1-OnD. We also collect the average CPU time of

Q1-cont per day and the total sum of all CPU time consumption of Q1-cont during the

simulation. The results are represented in (Figure 4.4).
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Figure 4.4: CPU time as a function of scale factor. YEAR= 1996

Whenever SF >= 6, our approach does not have any CPU overhead compared to the

execution of Q1.

4.3.3.3 Concurrent Query Execution

In this test, we simulate several users interacting with the system. We have performed

two experiments: one where we vary the number of concurrent queries and another

where we vary SF for a given number of concurent queries (10).

Fixed Scalar Factor

In this experiment, we use a dataset where SF = 1. We first populate the system with

data corresponding to the period [1/1/1992, 1/1/1999[. After data injection, we execute

concurrently several instances of the query Q1 with [YEAR]=1999. Then we get the

CPU time required to execute them all. Fig.4.5 shows the results of this experiment

where we varied the number of simultaneous executed queries from 1 to 20.

As shown in Fig.4.5, our approach is quite adapted for execution of concurrent queries

because it limits the CPU consumption.
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Figure 4.5: Concurrent query execution

Varying Scalar Factor

In this experiment, we explore the impact of the data stream throughput on the execution

of concurrent queries. We first populate the system with data that corresponds to the

period [1/1/1992, 1/1/1996[. Then we execute 10 concurrent queries, corresponding to

10 users.

As in the previous test, we observe the advantage of the proposed optimization as all

the on-demand queries access the continuous queries’ results while in the not optimized

case, each query gets the original collected stream and computes the aggregation.

4.4 Related Works

Our optimization is at the crossroads of several topics. It includes query materialization,

data reduction.
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Figure 4.6: Concurrent query execution while varying SF

4.4.1 Postponing Query Processing

Postponing query processing when the system is at a lower load, e.g during the night,

is not a new idea, see for instance [56] in a BI context. However this approach is not

adapted to OI use cases because it is not intended to handle real-time data.

4.4.2 Load Shedding

When the input data of a DSMS exceeds its capacity, it is overloaded and its performance

can be deteriorated. One existing approach consists in limiting the data rate at the

system entrance to avoid any risk of system overloading [57]. The dropped data is lost

for ever and can not be used anymore. This approach is adapted for real-time workload

but not for historical workload.

4.4.3 Data Reduction

Data Reduction is the transformation of a large volume of data into a smaller one.

There are many works in literature concerning data reduction techniques [53] which

are widely used in the database systems to quickly get approximate answers from very
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large databases. Traditionally they are used in two fields: query optimization and data

warehouses.

The query optimizer needs to accurately evaluate the cost of alternative query plans to

determine the ”optimal” one to execute. Obviously the cost of searching an optimal

plan has to be efficient and much less important than the query execution cost. Since

the query execution plan cost depends on data characteristics, DBMS usually keeps

statistics of the stored data which avoid costly accesses to data during the optimization

process.

Data warehouses can be very large and thus querying them can take very long time.

It appears that sometimes the user needs to have a quick global overview of the DB

specially during the first phases of data exploration. Thus the answer speed is more

critical than its accurate. In consequence data reduction can be used to return rapid

results with a certain approximation.

Among these techniques, we can quote compression, sampling, aggregation,...

4.4.4 Combining Historical and Real-time Data

To the best of our knowledge, Chandrasekaran and Franklin were the first to address

the topic of combining real-time data with historical data [58] in the academic field.

They noted that the main performance issue for those systems was the I/O cost induced

by gathering historical data, which decreases drastically live data stream processing

performance. They proposed a framework using some data reduction techniques for

historical data to limit I/O cost (see also [53]). Their framework data reduction level to

be adapted with respect to current available resources. They defined three approaches

to perform data reduction techniques: OnWriteReplicate, OnReadModify and Hybdrid

approach.

The first approach is based on the fact that random disk I/Os are expensive. Data

reduction is performed continuously as soon as data is collected by the system. Thus at

query time, the global query can access pre-computed results when needed. Nevertheless,

pre-computed results can never be accessed by global queries.

The second approach consists in performing the data reduction at query time only. The

price to be paid can be very high for delivering timely information. The third approach

combines the two previous approaches and shares the work between data arrival and
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query time. In this approach there is a single copy of the stream stored on disk and

divided into separate batches. Each batch is divided into a fixed number of blocks.

Tuples are randomly inserted in different blocks of the current batch. Once one block

is filled, the entire run is flushed on disk. At query time, the system only accesses a

fraction of blocks of runs according to a sampling rate.

4.5 Chapter Synthesis

In this chapter, we proposed an optimization that is currently implemented in ADI and

which reduces the GUI display lag. It consists in pre-computing aggregation at data

arrival and materialize the results for future uses.

This optimization assumes there is a restrictive relationship between the vt and the tt

of an event. Indeed, an event that occurs at the instant vte will be inserted in the DB

at the instant tte such that 0 < tte − vte ≤ ∆t with ∆t > 0.

The experiments we conduced, using the adapted version of TPC-BiH presented in

Chapter 3, showed that ADI is able to deliver very fast responses with acceptable CPU

over cost.
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Chapter 5

Cost Based Optimizer

A query is transformed into an execution plan which is executed by the DBMS. The

classical process consists of the following steps. First the query is parsed in order to check

if it is well formulated according to the query language’s syntax rules. It is also validated

by checking if all attribute and relation names exist in the target DB. This query is then

transformed into an internal data structure that can either be a query tree or a graph

tree. Next, the DBMS has to define the execution plan for retrieving the query’s results.

A query can have multiple executions plans. Its objective is to find the adequate one.

This task is called query optimization. The term optimization is actually a misnomer

because the generated optimized plan is not the absolute most efficient one, but rather

the best one according to the optimization strategy. Optimizing a query execution plan

is a quite tough task. The main challenge is to find an efficient way to determine an

acceptable execution plan for a given query using the least possible resources. Indeed

an expensive approach that finds optimal solutions can not be interesting considering

the performance gains.

ADI’s query engine is based on a similar process and transforms a query expressed

withing a GUI into an execution plan. The current version of ADI does not embed a

query optimizer.

In this chapter, we introduce an ongoing work to implement a cost-based query optimizer

adapter for bi-temporal queries, the core of ADI’s query engine. We first define the main

topics that are involved in building a cost model optimizer. This includes the search

space, the optimization algorithm and the cost model. If the first two ones does not
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require taking into account the bi-temporal nature of the handled data, the third one

does. Indeed, a good cost model requires for example to keep relevant statistics on data

as well as good estimations of data access. Then we present the implementation of the

optimizer in ADI. Finally we conclude the chapter with some experiments that assess

the interest of the optimizer.

5.1 Problem Statement

There are several optimizations that can be considered while building an optimal exe-

cution plan. We can quote the choice of a suitable implementation for each operation,

the form of the execution plan, the order of operations to execute, etc. Optimizations

can be grouped into two main categories:

• The first one is based on heuristic rules, which consists in building a better exe-

cution plan using some common sense rules, e.g pushing top operators or avoiding

access to the same information several times.

• The second category is based on cost-based optimizations, which consists in com-

paring the estimation cost of several execution plans and chooses the least expen-

sive one.

In a first attempt to propose a query optimizer for ADI, we focus on determining the best

order to execute join operations [59–62] This include tuple materialization operation [21],

also called tuple reconstruction, which is specific to column-oriented DBMS. It consists

in reassembling the attribute’s columns that belong to the same entity-type. In our case,

we assimilate it to a join operation.

An execution plan can be defined as a tree (Figure 5.1) where the leafs are column access

operations (gets and scans cf 2.3.5) and the nodes are join operations. An enumeration

of all possible plans is unpractical, and some heuristics have to be applied to reduce the

search space.

This approach requires to consider three topics: the search space, the cost model and

the optimization algorithm We detail them in the next section.
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5.2 Related Work

5.2.1 Cost Model

The first proposal of a cost model based query optimized was introduced in the DBMS

System R [60] in 1979. Since then, there were an important research activity concerning

this topic to determine an accurate cost for a query during the optimization process. A

cost model relies on three different components:

• Data access cost which includes for example data search, data block loading, net-

work transfer, etc.

• Function processing cost like sorting, aggregation, etc.

• The size of results generated by different execution plan operators.

The first two components are rather related to the physical storage characteristics as

well as on algorithms used to handle data. These two components are common to all

DBMS types including bi-temporal ones, the third is related to data characteristics.

To the best of our knowledge, there are only two works that addressed the topic of

estimating execution plan’s intermediate results size for bi-temporal DB. 1) Segev and

al [63] have proposed a set of simple formulas to estimate selection and joins assuming

some data distribution hypothesis. 2) Slivinskas and al [64] have also proposed a cost

model for their bi-temporal middleware with some techniques to estimate results of

selections, joins, projections as well as aggregations. This includes the use of both

histograms and simpler formulas.

5.2.1.1 Search Space

A search space is defined as the set of all execution plans that produce the same result.

Each point of this space is a potential solution. The goal of the optimization is to find

the point in the solution space with the lowest cost. The point is that the combinatorial

explosion makes the exhaustive path of the whole space impossible. In consequence,

heuristics are usually used to reduce the search space. Solution trees can be of different

forms: left-deep tree (Figure 5.1-(a)), right-deep tree (Figure 5.1-(b)), zig-zag tree (Figure
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5.1-(c)) and bushy tree (Figure 5.1-(d)). The difference between a right-deep tree and

a left-deep tree is that in the first one all transient relations are consumed in pipeline

while in the second one they are stored. Bushy tree is simply a tree that not match

any of the three other forms. Right-deep tree and zig-zag trees are used in distributed

computing environments [65]. Steinbrunn and al [59] addressed the topic of reducing

Figure 5.1: Different types of tree queries

the search space. The idea is to determine the cases where an optimal solution from

the left-deep tree space search has great chances to be the global optimal solution of the

whole bushy-tree solution space.

5.2.1.2 Optimization Algorithm

There are several strategies to explore the solution space that have been surveyed by

Steinbrunn and al [59]. They can be divided into 4 classes.

• Deterministic Algorithms

A deterministic algorithm builds a solution in a deterministic way using an heuris-

tic or an exhaustive search. There are several algorithms of this class. We can

quote the dynamic programming approach (Algorithm 1) which is historically the

first algorithm used to optimize query plan in System-R [60]. The main disad-

vantage of this algorithm is its expensive consumption due to the generation of

partial solutions. In consequence it becomes very expensive to apply this algo-

rithm for queries with more than 10 relations to join. A more efficient variant

of the dynamic programming approach has been proposed by Vance and Maier

[61] that enables to efficiently handle queries with up to 18 relations. There are

also other algorithms such as Krishnamurthy-Boral-Zaniolo (KBZ) [62] and the

AB [66] algorithms.
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Algorithm 1 Dynamic programming algorithm

1: Input:relations
2: Output:optPlan
3: partialSolutions := getAttributeAccesses();
4: //return the set of the scan accesses of all involved attributes
5: for (int i=1;r <|relations |;i++) do
6: for all execPlan ∈ partialSolutions do
7: for all r ∈ relations do
8: if !(r ∈ optPlan) then
9: optPlan := optPlan + r;

10: end if
11: end for
12: end for
13: clean(partialSolutions);
14: //remove all elements with equivalent and optimal alternative.
15: end for

• Randomized Algorithms The solutions are seen as points in a space, which are

connected by edges. Each edge can be seen as a move, i.e a transformation of

a solution to another one according to some rules. The algorithms perform a

random walk through the solution space. The optimization ends once there is no

more possible authorized move by rules or all moves have been consumed.

Swap algorithm [67], for example, exchanges the position of two relations, while

3Cycle [68] performs a cyclic rotation of 3 relations.

• Genetic Algorithms [69]

A set of initial random population of solutions is used to produce a new generation

of members using genetic techniques such as random crossover and mutations.

The best members, according to a cost function, survive to the next generation.

The process ends once there is no more possible improvement or after reaching a

predetermined number of generations.

• Hybrid Algorithms

Hybrid algorithms combine deterministic approaches and randomized or genetic

approaches. The solutions obtained by using deterministic algorithms are used as

a starting point for genetic or randomized algorithms.
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5.3 Our Approach

In a first attempt to propose a query optimizer for ADI, we focus on a particular op-

timization called ”Join Ordering”. It consists in determining the ”optimal” order to

execute execution plan’s join operations. In our approach, the join operation includes

the tuple materialization operation [21], also called tuple reconstruction, which is spe-

cific to column-oriented DBMS. It consists in reassembling the attribute’columns that

belong to the same entity-type.

In this context, we define an execution plan as a tree where the nodes are join operations

and the leafs are scans (subsection 2.3.5). We do not consider the get operations because

they return at most a result of cardinality of 1. We choose to consider only left-deep

tree execution plan which limits the space search. Figure 5.2 gives a simple query’s

execution plan that join the attributes ”name”, ”custKey” and ”balance” of the relation

”Customers”.

Figure 5.2: A simple ADI execution plan

To compare an execution plan cost, we use a cost model that is only based on estimating

the size of results generated by the execution plan’s nodes. An execution plan’s cost
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is simply the sum of its node’s result estimation size. We assume that the bigger the

node’s results are the more expensive the execution plan is.

In this section, we define ADI’s execution plan’s operators: the scan and the join and

present our approach to estimate the results generated by these operators. Then, we in-

troduce our optimization algorithm. Finally we detail how the optimizer is implemented

within ADI.

5.3.1 Column Scan Estimation

The scan of a column C can be defined as σpvt∧ptt∧psurID∧pv(C) where pvt, ptt, psurID

and pv are respectively the valid time, transaction time, surrogate attribute and the

value predicates. We consider two assumptions:

• Data distribution does not depend on the transaction time. In consequence, the

transaction time predicate, ptt, is not considered in our estimation.

• The 3 dimensions (vt, surrogate and value) are independents, which means that

the distribution of data according to one dimension does not depend on the others.

Concerning the surrogate and the value dimensions, we adopt the classical approach.

For instance, we maintain for surrogate field of a column a width-balanced histogram. In

the sequel, we focus on the vt dimension.

The objective is to estimate the cardinality of a set of intervals of a column C that

intersect a given interval [Ib, Ie]. To do this, we use a formula proposed by Slivinskas

and al [64] which we detail in the current section. It simply takes into account the

trivial fact that the begin of an interval always precedes its end. Let us consider the

functions StartBefore(i, C) and EndBefore(i, C) that return respectively the number

of intervals from the column C that start and respectively end before the instant i.

Then the cardinality of a set of intervals of C that intersect the interval [Ib, Ie] can be

estimated as StartBefore(Ie, C)− EndBefore(Ib, C).

To compute the value of StartBefore(i, C) and EndBefore(i, C), we use two histograms

Hb and He to store respectively the distribution of interval’s begins and interval’s ends.

For a given histogram H, we define the following functions:
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• bb(i,H) and be(i,H) return respectively the start and the end of the ith histogram

bucket.

• bval(i,H) returns the value of the ith bucket.

• bNo(i,H) returns the bucket number that includes the instant ”i”.

The functions StartBefore (5.1) and EndBefore (5.2) are similar and are computed as

follow. First the bucket containing the attribute instant is found. Then we sum the

number values in all preceding buckets. We also add a fraction of the number of values

in the bucket containing instant, assuming that values are uniformly distributed within

the bucket. This approach is applicable for both height-balanced histograms, i.e where

each bucket has the same number of values, and width-balanced histograms, i.e where

each bucket is of the same length. In our case we adopt the second histogram type.

StartBefore(instant, C) =

bNo(instant,Hb)
∑

i=1

(bV al(i,Hb))+

instant− bb(bNo(instant,Hb), Hb)

be(bNo(instant,Hb), Hb)− bb(bNo(instant,Hb), Hb)
∗ bval(bN0(instant,Hb), Hb)

(5.1)

EndBefore(instant, C) =

bNo(instant,He)
∑

i=1

(bval(i,He))+

instant− bb(bN0(instant,He), He)

be(bN0(instant,He), He)− bb(bN0(instant,He), He)
∗ bval(bN0(instant,He), He)

(5.2)

As an example of this approach, let us consider two width-balanced histograms Hb (Fig-

ure 5.3a) and He (Figure 5.3b) that represent respectively the distribution of interval’s

begins and ends of a column C. Let us estimate the result size of the scan of C with

interval = [3/1/14T00:00:00, 6/01/14T12:00:00]. Then the estimation of the scan will

be StartBefore(interval.end, He)-EndBefore(interval.begin,Hb). According to the Figure

5.3a, StartBefore(interval.end,He) = 50+ 60+ 80+ 90+ 1
2 ∗ 60 = 310 (red buckets) and

EndBefore(interval.begin,Hb) = 50 + 50 = 100 (red buckets). Thus, the estimation of

the scan is equal to 310− 100 = 210.
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(a) Hb (b) He

Figure 5.3: vt’s histograms

5.3.2 Join Estimation

In ADI, a temporal join matches two tuples that satisfy at least a predicate over vt

interval fields. The Table 5.1, where i1 and i2 are temporal intervals, lists the pre-

defined predicates in the platform. We can notice the following relations between the

predicates:

• Bd(I1, I2) = Cb(I2, I1).

• Ed(I1, I2) = Ce(I2, I1)

• Inc(I1, I2) = Over(I2, I1)

• |Inter(I1, I2)| = |Bd(I1, I2)|+ |Ed(I1, I2)|+ |Over(I2, I1)|+ |Inc(I1, I2)|

There are two types of temporal joins :

• The simple temporal join is expressed in the form of r1 ⊲⊳pvt(a1.vt,a2.vt) r2 where pvt

is a temporal predicate, and a1 and a2 are respectively the join attribute of the

relations r1 and r2. For the sake of simplification, we express a simple temporal

join in the form of a1 ⊲⊳vt predicate(vt1,vt2) a2

• The composite temporal join is expressed in the form of r1 ⊲⊳pvt(a1.vt,a2.vt)AND(a1.surID=a2.surID)

r2, and involves both a temporal predicate over vt interval fields and an equality

predicate over surrogate fields. For the sake of simplification, we express a com-

posite temporal join in the form of a1 ⊲⊳vt predicate(vt1,.vt2)AND(surID1=surID2) a2

For each temporal join type, we propose an approach to estimate the result size of joining

two relations r1 and r2.
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Table 5.1: Time predicate’s definitions

Temporal Predicate Abbreviation Definition

Intersect(I1, I2) Inter (I1.b < I2.b)?I2.b < I1.e : I1.b < I2.e
Begin during(I1, I2) Bd I2.b ≤ I1.b < I2.e
End during(I1, I2) Ed I2.b < I1.e ≤ I2.e
Current at begin(I1, I2) Cb I1.b ≤ I2.b < I1.e
Current at end(I1, I2) Ce I1.b < I2.e ≤ I1.e
Included in(I1, I2) Inc I2.b ≤ I1.b AND I1.e ≤ I2.e
Overlaps(I1, I2) Over I1.b ≤ I2.b AND I2.e ≤ I1.e

5.3.2.1 Simple Temporal Join

We adopt an approach that is based on the histograms we defined for scan estimation

as well as some additional histograms.

For the sake of simplification, the subscript of histogram’s names refers to join attribute.

We assume that the two join attributes, let us say a1 and a2, have the same lifespan.

This means that:

{
n
⋃

i=0

t1i .vt\t
1
i ∈ a1} = {

m
⋃

j=0

t2j .vt\t
2
j ∈ a2} (5.3)

We also consider that all a1 and a2’s histograms are partitioned into the same buckets.

In the follows, we present the approaches for each temporal predicate.

• Current at begin ( |a1 ⊲⊳Cb(vt1,vt2) a2|): We assume that all a1’s tuples that inter-

sect a bucket’s interval will match a2’s tuples that start during the same bucket’s

interval. In consequence, we propose the formula defined in the equation 5.4. It

consists in crossing all buckets that exist during the join attribute’s lifespan. For

each one of them, we compute the product of the number a1’s tuples that intersect

that bucket’s interval, using StartBefore and EnfBefore, with the value of new

intervals of a2 during the bucket’s interval using the histogram Hb2.











































bNo(He1)
∑

i=1
(StartBefore(instante)− EndBefore(instantb)) ∗ bval(i,Hb2)

with

instantb = bval(i,Hb1)

instante = bval(i,He1)

(5.4)
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• Current at End ( |a1 ⊲⊳Ce(vt1,vt2)a2 |): We assume that all a1’s tuples that intersect

a bucket’s interval will match a2’s tuples that end during the same bucket’s interval.

The approach to estimate ja1 ⊲⊳Ce(vt1,a2.vt) a2j is very similar ja1 ⊲⊳Cb(vt1,vt2) a2j.

Indeed, the estimation formula 5.5 uses the histogram He2 instead of Hb2.











































bNo(He)
∑

i=1
(StartBefore(instante)− EndBefore(instantb)) ∗ bval(i,He2)

with

instantb = bval(i,Hb1)

instante = bval(i,He1)

(5.5)

• Included in ( |a1 ⊲⊳T
Inc in(vt1,vt2)a2

j ): We assume that all a1’s tuples that are

included in a bucket’s interval are included in a2’s tuple intervals that intersect

the same bucket’s interval.

In addition to the two histograms that we defined up to now, we define another

width-balanced histogram Hinc where each of its buckets contains the number of

the column’s included intervals in it. In consequence, the estimation is expressed

in 5.6.











































bNo(He2)
∑

i=1
(StartBefore(instante)− EndBefore(instantb)) ∗ bval(i,Hinc2)

with

instantb = bval(i,Hb1)

instante = bval(i,He1)

(5.6)

• Intersection: In the case of r1 ⊲⊳Inter(a1.vt,a2.vt) r2, the estimation is expressed in

5.7, based on the relation in subsection 5.3.2.

|r1 ⊲⊳Inter(a1.vt,a2.vt) r2| = |r1 ⊲⊳Bd(a1.vt,a2.vt) r2|+

|r1 ⊲⊳Ed(a1.vt,a2.vt) r2|+

|r1 ⊲⊳Over(a1.vt,a2.vt) r2|−

|r1 ⊲⊳Inc(a1.vt,a2.vt) r2|

(5.7)
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5.3.2.2 Composite Temporal join

This type of joins is usually used to join an entity-column with one of its member column,

i.e attribute or relationship. In consequence, there is a referential integrity constraint

on the surrogate ids, i.e for each join surrogate id of the member column, there is a

corresponding one in the entity-column. We also assume that a member value is always

defined over of the entity instance’s lifespan to which it belongs, e.g if an entity instance

is defined over [14:00, 16:00[, then the member value is defined over the whole interval.

Then, our estimation is:

|c ⊲⊳Tpvt(c.vt,m.vt)AND(c.surID=m.surID) m| = number tuples(c)∗val per SurID(m) (5.8)

c and m are respectively an entity-column and a member-column. The functions num-

ber Tuples and val per SurID returns the number of entity instances and the average

number of the member’s values per entity instance.

5.3.3 Implementation

5.3.3.1 Statistics Generation

Computing statistics can be very costly and may heavily impact the column store in-

sertion performances. In consequence, they are not computed as data is inserted in the

columns but rather at the flush (subsection 2.3.6) because it is a completely asynchronous

with data insertion. This approach implies that there are no available statistics for data

that has been flushed on the disk yet. We assume that statistics of on disk stored data

are enough representative.

During the flush, we generate for each column and each SSTable (subsection 2.3.6) the

following statistics and timestamp them with the instant when the flush was launched:

• Hb and He to store respectively the vt intervals

• Hinc to store the distribution of the included intervals

• HsurID to store the distribution of of each surID field.
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Algorithm 2 Execution plan optimization algorithm

1: Input:initialExecutionPlan
2: Output:optimalExecutionPlan
3: optimalExecutionPlan := initialExecutionPlan;
4: Integer i:=0;
5: while i < MAX NUMBER MOVES do
6: newExecutionPlan := move(optimalExecutionPlan);
7: if cost(newExecutionPlan) < cost(optimalExecutionPlan) then
8: optimalExecutionPlan :=newExecutionPlan;
9: end if

10: i++;
11: end while

A scan operation may access to several SSTables which requires to combine their statis-

tics to estimate its result size. We choose to merge the histograms and in the case of

bucket overlapping, we keep the most recent ones according the query tt.

5.3.3.2 Solution Search Algorithm

We implemented a randomized algorithm (Algorithm 2). Considering an initial execution

query plan, we randomly generate at most MAX NUMBER MOV ES plans. At each

generation, we evaluate its cost. We compare its cost the best query plan’s cost and

keep the cheapeast one.

5.4 Experiments

For this ongoing work, we conducted some preliminary experiments to validate its in-

terest.

5.4.1 Query Plan

We use a simple Select-From query that only concerns the entity type order of the

TPC-H/TPC-BiH benchmark, and which aims at answering the following question ”Q”:

”What are the orders1 that have been placed every day from 1/1/1992 to

1/1/1995 considering the most recent data?”

1we display the attributes orderkey, orderstatus, custkey, totalprice
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Figure 5.4 is one possible ”Q”’s execution plan. As for the previous experiments (sub-

Figure 5.4: Q’s initial execution plan

section 4.3.1), we generate a stream of events <id, data, T> that consists of inserting

and updating orders. The order’s average lifespan is a random value from an uniform

distribution over the range [20 days, 40 days]. The initial data stream contains around

340000 events (Table 5.2). It corresponds to SF = 1, with ”SF” the scaling factor to

fix the rate of the data stream.

For the sake of simplicity, the update events concern the order’s vt update (40000 events)

and its attribute orderStatus update (300000 events). This means that for a given order,

its attribute orderStatus is updated on average 6 times.

Let us consider Y EAR = 1993, and the result size of Scan(C orders) (J1) is 100. We as-

sume that the orders’ lifespans are included within the interval [01/01/1992, 01/01/1993[.

This means that |J2 |= 600 since each order will match 6 values from orderstatus. |J3|
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will be 600 too because each tuple from J2 will match one tuple from S3. The same

reasoning applies to J4 and J5.

This query execution plan is not a good solution because J2 induces a raise of the

following joins’ result size. Optimizing this plan using our approach consists in pushing

up J2, so that J2 ’s previous operators will handle less data. Figure 5.5 is the optimal

execution plan produced by our optimization. J2 is pushed up to the top of the execution

plan. In consequence, the previous joins’s result are limited to 100 tuples.

Figure 5.5: Q’s optimal execution plan produced by our optimization

Table 5.2: Number of operations of the table orders

Relation # of insertions # of updates # of deletions
Orders 50000 340000 0
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5.4.2 Results

We conducted two experiments to assess the interest of our optimizer. The first one aims

to evaluate the optimization gain as we vary the data size accessed by the execution plan.

The second one focuses on the optimization gain as we vary a data characteristic (in our

case the number of orderStatus updates).

Concerning the first experiment, we performed two tests:

• Fixed Scalar Factor : We inject stream for the period [1/1/1992,1/1/1996[. Then

we execute ”Q” considering different values of the parameter ”[YEAR]” from

{1993, 1994, 1995, 1996, 1997, 1998, 1999}.

• Varying Scalar Factor : The experimental conditions are similar to the previous

test. We vary the value of SF from 1 to 5. For each value of SF, we inject

the stream for the period [1/1/1992,1/1/1993[. Then we execute ”Q” using the

parameter [YEAR]=1993.

For both tests, we collect the plan’s execution times and represent them on Figures

5.6a and 5.6b. ”Initial Plan” is the execution plan generated by ADI based on the

query, while ”Opt-Plan” is the one generated by the optimizer based on ”Initial Plan”

and is always optimal in these experiments (Figure 5.5). ”Opt-Plan” execution time

also includes the optimization process time, i.e optimal solution search time as-well-

as statistic uploading. The results show that the optimal plans require barely half of

the initial plan’s execution time. The optimization processing overhead is quite limited

and does not reach 500 ms. Concerning the second experiment, we vary the number

of the attribute orderstatus updates, #U , while the number of order insertions is fixed

to 30000. We inject data stream for the period [1/1/1992,1/1/1996[ and execution the

queries with YEAR=1996. Figure 5.7 shows the evolution of the query plan’s execution

time as we vary #U . #U = 0 means that the attribute orderstatus is not updated.

In consequence, J2 is equivalent to the other join operators and thus, the optimization

relevent. More we increase the number of updates, more efficient the optimization is.
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Figure 5.6: Data volume variation experiment

(a) Query execution time as function of YEAR (b) Query execution time as function of SF

Figure 5.7: Query execution time as function of #U

5.5 Chapter Synthesis

In this chapter, we presented ADI’s first query cost-based optimizer. It focuses on the

Join Ordering optimization which consists in ordering the execution of join operators

in an optimal way. The optimizer’s cost model relies on the size estimation of execution

plans’ operators’ results. Assuming that data distribution is not dependent on the tt

and that the 3 dimensions (vt, surrogate id and value) are independents, we define a

set of statistics, such as histograms, on data. We choose to compute them during the

data flush on disk since it does not affect ADI’s data insertion performances. We adopt

a Randomized optimization algorithm. We conducted some preliminary experiments to

assess the interest of our optimizer. The results shows that the optimizer was able to

divide by 2 the query execution time and the optimization time cost is acceptable.
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Chapter 6

Conclusion

6.1 Summary of Contributions

Axway Decision Insight [18], an Operational Intelligence platform developed by Axway,

enables decision-makers to make efficient operational decisions through analyzing bi-

temporal data.

Since the majority of ADI’s users have limited technical skills, the platform is code-

free, i.e its use does not require any piece of code. Instead, it provides a convenient

GUI that enables them to design their own applications and use them in an efficient

way. This includes designing data models using ER formalism, data integration and

designing queries with intuitive interfaces.

ADI’s key innovation is an embedded proprietary column-oriented DBMS that has been

specifically designed to meet OI requirements. It has the particularity of being natively

bi-temporal, i.e it supports two temporal aspects: the valid time and the transaction

time which enable to handle respectively the variation of data in the modeled reality

and data update in the DB.

We presented an adaptation of the bi-temporal database benchmark, TPC-BiH [2], for

OI use cases. It consists in adapting the data model as well as the database populating

strategy. We used this benchmark to compare the performance of ADI with a row-

oriented DBMS. The experiments showed that:
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• ADI has better data insertion performances thanks, in part, to its data append-only

strategy on disk.

• The row-oriented DBMS has better query execution performances thanks to the

extensive use of indexes.

We also used this benchmark to compare several implementation designs based on data

temporal characteristics [35]. The results confirms their importance during the design

process on the performances.

Then we presented an optimization that is currently implemented in ADI. It consists

in pre-computing all queries’ aggregation operations as input data is collected and then

materializing the results for future uses instead of computing them at query time [70].

This speeds up the GUI refresh and thus reduces GUI’s display lag. Our contribution

consisted first in aligning it with some existing approaches such asmaterialized views and

second, assessing it. The experiments using our adapted version of TPC-BiH show that

despite a computation CPU overhead, the proposed optimization improves the GUI’s

reactivity.

The last contribution concerns the setting up of the first ADI’s query cost-based opti-

mizer. It focus on a particular optimization, the join ordering [59], which consists in

determining the best join order to reduce the query execution time. Up to now, the

cost model focus on estimating the result’s size of the query’s execution plan’s opera-

tors. To do this, the optimizer maintains statistics data over such as histograms to store

data distribution over time. The preliminary experiments confirmed the interest of this

optimization and that the optimization overhead is very limited.

6.2 Discussion and Future Works

Our current benchmark allows to assess the interest of the aggregation pre-computing

optimization and its overcost, it does not assess the system’s responsiveness to compute

the aggregations and makes them available. Such a metric is more used in DSMS’s

benchmarks such as Linear Road [71].

Concerning the aggregation pre-computing optimization, we assume that events are

usually retroactively bounded (subsection 4.2.3), i.e vte < tte ≤ ∆t + vte with ∆t > 0.
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In practice, the value of ∆ is setted by the user. A small value of ∆t triggers premature

computations. In consequence, the arrival of new data causes new computations and

thus a CPU overcost. A bigger value reduces the re-computation risk, but raises the

system latency because it waits ∆t before triggering computations. One improvement

would be to set automatically the value of ∆t considering both latency and CPU overcost

constraints, i.e determine the relationship between the valid time and the transaction

of an event. We can base this improvement on temporal dependency works that aims to

determine the relationship between events.

The cost-model optimizer is an ongoing work and many features need to be implemented

to enhance its capabilities. Up to now, there are only statics on column’s surrogates and

valid time fields. One improvement is to define statistics, e.g histograms or dictionaries,

for value fields. This will allow the optimizer to handle selection operators. The cost

model that is based only on the size estimation of intermediate results generated by

the execution plan operators. The enhancement of the query engine, e.g to handle

distributed query executions or several implementations of a given operator, requires

to enhance the cost model in order to keep its accuracy. This requires to consider

additional metrics such as as transfer costs, algorithm costs, etc. More experiments

need to be performed to assess the optimizer. This includes using more complex queries,

a variety of data sets and comparing several optimization algorithms, see for instance

[59].
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of optimization search strategies for parallel execution spaces. In VLDB, volume 93,

pages 493–504, 1993.

[66] Arun N Swami and Balakrishna R Iyer. A polynomial time algorithm for opti-

mizing join queries. In Data Engineering, 1993. Proceedings. Ninth International

Conference on, pages 345–354. IEEE, 1993.

[67] Arun Swami and Anoop Gupta. Optimization of large join queries, volume 17.

ACM, 1988.

[68] Arun Swami. Optimization of large join queries: combining heuristics and combi-

natorial techniques. In ACM SIGMOD Record, volume 18, pages 367–376. ACM,

1989.

[69] David E Golberg. Genetic algorithms in search, optimization, and machine learning.

Addion wesley, 1989, 1989.

[70] Azhar Ait Ouassarah, Nicolas Averseng, Xavier Fournet, Jean-Marc Petit, Romain

Revol, and Vasile-Marian Scuturici. Bi-temporal Query Optimization Techniques in

Decision Insight. In (BDA 2015), 2015. URL https://hal.archives-ouvertes.

fr/hal-01170156.

[71] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S Maskey,

Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear road: a stream

data management benchmark. In Proceedings of the Thirtieth international confer-

ence on Very large data bases-Volume 30, pages 480–491. VLDB Endowment, 2004.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI046/these.pdf 
© [A. Ait Ouassarah], [2016], INSA Lyon, tous droits réservés 


	Notice XML
	Page de titre
	Acknowledgements
	Remerciements
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Chapter 1 Introduction
	1.1 Context
	1.2 Bi-temporal Capabilities: Interest For OI
	1.2.1 Motivating Example For Bi-temporality
	1.2.2 Temporal Queries
	1.2.3 Temporal Aggregation

	1.3 Axway Decision Insight
	1.3.1 The Project Genesis
	1.3.2 Capabilities
	1.3.3 Objectives
	1.3.4 A Plug-and-Play Platform
	1.3.5 Architecture

	1.4 Thesis Challenges
	1.5 Thesis Contribution
	1.6 Document Organization

	Chapter 2 Axway Decision Insight
	2.1 Context
	2.2 ADI: A Code-Free Platform
	2.2.1 Conceptual Modeling
	2.2.2 Query Design in Decision Insight

	2.3 ADI’s Physical Storage
	2.3.1 Motivations for a column-oriented DBMS
	2.3.2 Attribute-Timestamping Approach
	2.3.3 State-based Modeling Appproach
	2.3.4 Translating an ER Diagram to a Column-store
	2.3.5 Column Access API
	2.3.6 Physical Data Structures
	2.3.6.1 Alive
	2.3.6.2 Memtable
	2.3.6.3 Sorted String Table (SSTable)


	2.4 Alternative Temporal Modeling Approaches
	2.4.1 ER Model Enhancement With New Constructs/Annotations
	2.4.2 Tuple-Timestamping Approach
	2.4.3 Event-Based Modeling Approach
	2.4.4 Temporal Generalization, Temporal Specialization
	2.4.4.1 Temporal Specialization
	2.4.4.2 Temporal Generalization


	2.5 Chapter Synthesis

	Chapter 3 Bi-temporal Database Benchmarking
	3.1 Context
	3.2 Related Works
	3.3 TPC-BiH
	3.3.1 Data Model
	3.3.2 Data Generator
	3.3.3 Queries

	3.4 Adaptation of TPC-BiH to ADI
	3.4.1 Data Model
	3.4.2 Database Population
	3.4.3 Queries
	3.4.3.1 Time Travel Queries
	3.4.3.2 Range-Timeslice Queries


	3.5 Experiments
	3.5.1 The Workload
	3.5.2 Logical Data Models
	3.5.2.1 Model-T
	3.5.2.2 Model-C
	3.5.2.3 Model-M

	3.5.3 Physical Data Model
	3.5.4 Results
	3.5.4.1 Experiment 1: Update performance
	3.5.4.2 Experiment 2: Performance of Insert Operation
	3.5.4.3 Experiment 3: Query execution performance


	3.6 Chapter Synthesis

	Chapter 4 Aggregation Precomputing
	4.1 Context
	4.2 ADI Pre-computing Approach
	4.2.1 Materialized Continuous Queries
	4.2.2 On-demand Queries
	4.2.3 Computation Scheduling of Materialized Continuous Queries

	4.3 Experiments
	4.3.1 Database Populating
	4.3.2 Queries
	4.3.2.1 Query 1
	4.3.2.2 Query 2

	4.3.3 Experimental Results
	4.3.3.1 Response Time
	4.3.3.2 Precomputation Overhead
	4.3.3.3 Concurrent Query Execution


	4.4 Related Works
	4.4.1 Postponing Query Processing
	4.4.2 Load Shedding
	4.4.3 Data Reduction
	4.4.4 Combining Historical and Real-time Data

	4.5 Chapter Synthesis

	Chapter 5 Cost Based Optimizer
	5.1 Problem Statement
	5.2 Related Work
	5.2.1 Cost Model
	5.2.1.1 Search Space
	5.2.1.2 Optimization Algorithm


	5.3 Our Approach
	5.3.1 Column Scan Estimation
	5.3.2 Join Estimation
	5.3.2.1 Simple Temporal Join
	5.3.2.2 Composite Temporal join

	5.3.3 Implementation
	5.3.3.1 Statistics Generation
	5.3.3.2 Solution Search Algorithm


	5.4 Experiments
	5.4.1 Query Plan
	5.4.2 Results

	5.5 Chapter Synthesis

	Chapter 6 Conclusion
	6.1 Summary of Contributions
	6.2 Discussion and Future Works

	Bibliography



