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Abstract

Elasticity, viscoelasticity and glass transition of glass-forming liquids and model

solids are investigated by computer simulations at equilibrium using the stress fluctua-

tion formalism. The model systems studied include Lennard-Jones systems at two and

three dimensions, a binary mixture of Lennard-Jones (LJ) particles constituting the

two-dimensional version of the well known glass-former Kob-Andersen model (KA2d

model), an AB13 binary mixture of repulsive particles and a ternary mixture of hard

spheres. Our studies aim mainly at the effect of the temperature T on the mechanical

properties of the systems under investigation, with special focus on phase transitions

such as the crystallisation, or the glass transition. Our results are presented in two

parts, namely static properties and time-dependent properties. The static properties

we studied are essentially the shear modulus G and the bulk modulus K. Using molec-

ular dynamics simulations provided by the LAMMPS code, we characterized G and K

of the glass-former KA2d model, and compared the results with a one-component LJ2d

system. While the latter shows a significant jump in G at the freezing transition, the

former displays a continuous cusp-type behaviour at the glass transition Tg, following

the law G(T ) ∝ (1−T/Tg)a with a ≈ 0.6, confirming qualitatively previous simulation

results carried out on KA3d system in 2013, but in contradiction to predictions based

on mode-coupling theory. We also compared the elastic constants of an LJ fcc crystal

with those of a more complex solid, the AB13 structure. This study shows that while

the non-affine contribution vanishes at zero temperature for the fcc structure, it is not

the case for the AB13 structure. This finding points out that we cannot use system-

atically the approximation of affine elasticity at T = 0 for crystals of more than one

component. In the part devoted to time-dependent properties, we investigated several

aspects and functions. First, we explored the sampling-time dependence of our static
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results, and show that this influences strongly the stress fluctuations. Second, equi-

librium dynamics are studied via the shear-stress autocorrelation and the shear-stress

mean square displacement, and the relation between them. The main focus, however,

is the shear-stress relaxation modulus G(t) and the associated dynamic moduli G′(ω)

and G′′(ω), with ω the frequency. These functions characterize the viscoelasticity of our

systems. Using a recently proposed formula (Wittmer et al., Phys. Rev. E 93 2016),

we are able to determine these functions quite accurately and study their behaviour in

liquid, crystal and glassy states.
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Chapter 1

Introduction

This thesis investigates mechanical properties such as elasticity, viscoelasticity, and

glass transition of model systems by means of molecular simulations.

Elasticity is one of the fundamental properties of materials. It shows the defor-

mation capability of a substance under the external force field. In macroscopic scale

and in the linear response regime, Hooke’s law is used to characterize the elasticity of

materials, by introducing the elastic constants. With the development of simulation

techniques, we are able to link microscopic aspects of materials with these macroscopic

constants. The fluctuation formalism method is one of them, in which the elastic con-

stants are related to the fluctuations of the stress tensor components. This approach

was first introduced by Squire et al. [1] to calculate the isothermal elastic constants

for argon crystal at finite temperatures by Monte Carlo (MC)simulations. The for-

malism was also used in Molecular Dynamics (MD) simulations by Barrat et al. [2] to

calculate elastic response of a binary alloy near the glass transition. The remarkable

advantage of this approach is that the unstrained systems are used, thus the elastic

constants can be obtained via equilibrium molecular simulations. In reference [1], the

constants are expressed by the sum of three contributions: the kinetic term, the Born

term and the stress-fluctuation term. The kinetic term is the ideal gas term. It is

zero for T = 0. The authors suggested that the fluctuation term arises only with

non zero temperatures. Thus at zero temperature, only the Born term would subsist,

leading to the well known formulas by Born and Huang [3] for the elasticity of solids

at T = 0. The issue was later discussed by Lutsko [4], who pointed out that even

at T = 0, the fluctuation term can be non zero if the solid is complex, for example
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having more than one atom per primitive unit cell. The Born term accounts for the

average stress resulting from an affine uniform microscopic strain field of the system in

response to a macroscopic strain. The fluctuation term, at T = 0, corresponds hence

to non-affine displacements of the particles in order to relax the internal stress. At

T > 0, it represents indeed the thermal fluctuations of the stress tensor elements. This

prediction was verified for model glassy systems at T = 0, where the fluctuation term

was found as important at half the magnitude of the Born term [5]. Another interest

of the method is that calculations can be done for P 6= 0 [6], making it an attractive

tool to study the elasticity of materials for T 6= 0, and P 6= 0. In crystals, there are

usually more than two independent elastic constants [7]. For isotropic bodies, there are

only two of them. The convenient set can be the so-called elastic moduli [8], consisting

of the bulk modulus K and the shear modulus G. Their macroscopic definitions are

well known: K = −(1/V )(∂P/∂V )T and G = δτ/δγ, where δτ is the average shear

stress and δγ a small shear strain. Their “microscopic” expressions are well defined too

within the stress fluctuation formalism and shall be explained in detail in the thesis.

Although this formalism was initially proposed for solids, the formulas for computing

the shear modulus G and the bulk modulus K are found to be valid for the liquid state,

where one obtains consistently G = 0 and K being the same expression as the one

obtained by Rowlinson in the context of an isotropic liquid state [9]. This observation

is important as one studies the liquid-solid phase transition, as we do in this thesis.

We are thus able to use the stress fluctuation formalism on both phases and through

the transition. Beyond characterizing G and K through a liquid-crystal transition, we

are also interested in low temperature crystals. We shall verify indeed that for simple

crystals, the non-affine contribution to the elasticity is zero, whereas for more complex

crystals, such as the AB13 system [10], this contribution is on the other hand non-zero,

as suggested by Lutsko.

All materials display some viscoelastic response. The mathematical formulation of

viscoelasticity theory makes it possible to predict the material response to any load

history. Viscoelasticity is beneficial in a number of fields of materials science, met-

allurgy, and solid state physics as it is causally connected to various microphysical

processes and can be used as an experimental probe of those processes [11]. The causal
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links between viscoelasticity and microstructure are exploited in the use of viscoelastic

tests as an inspection tool as well as in the design of materials [11]. In complex fluids,

viscoelasticity is also an important property [12, 13]. It can reveal different time scales

involved in the stress relaxation process. It is thus a precious probe of dynamics of

complex fluids. The shear relaxation modulus G(t) gives the measure of the viscoelas-

ticity of a system. This function can be measured in rheological experiments. More

usually, the dynamic moduli G′(ω) and G′′(ω) (with ω the frequency) are measured,

thanks to oscillatory stresses. As G′ and G′′ are related to G(t) in a simple way via

sine and cosine Fourier transformations, knowledge of one set leads to the other set.

As we know, computer simulations can bring a lot for the understanding of materials

properties. It is important that we can compute these functions by using statistical

physics tools. In liquids, it is well known [14] that G(t) is given by the shear stress

autocorrelation function (SACF), which can be computed by equilibrium molecular

dynamics simulations. For example, recently Heyes et al. [15] investigated the elas-

tic moduli, viscoelasticity properties of the Lennard-Jones fluid along the fluid-solid

coexistence line by equilibrium Molecular Dynamics simulation. For solids, however,

generally one cannot obtain G(t) directly from the SACF [16]. Recently, a formula [17]

has been proposed and tested for various model systems. It has been proven to be

robust and general for systems as different as permanent elastic bodies [17], or self-

assembled transient networks [18]. In this thesis, we shall apply this formula to our

model systems. Our aim is to compare the dynamic moduli in various states: liquids,

crystals and glasses, in order to reveal some general trends, related to different states.

The third topic of the thesis is the glass transition. Generally speaking, the glass

transition is a transition by which a liquid changes into an amorphous state without

crystallization. The most ordinary way of glass transition is quenching, namely, su-

percooling a liquid. By this method, lots of glassy substances can be obtained. The

remarkable phenomenon upon supercooling is that the viscosity increases dramatically

from the liquid side to glass. The glass is similar to the relevant liquid in structure. In

terms of mechanical properties, it is solid-like. The glass transition has attracted much

attention. Many models and theoretical approaches are proposed to explain it, such as

Adam-Gibbs model, Kob-Andersen model, random first order transition theory, and
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mode coupling theory. In opposition to the freezing transition, the glass transition is

continuous in specific volume change and the transition temperature Tg is cooling-rate

dependent. The Kob-Andersen (KA) model has been investigated extensively since

it was first proposed to test mode-coulping theory [19]. The KA model is a binary

mixture of Lennard-Jones (LJ) particles. Another popular glass-former is the poly-

disperse LJ systems [5]. With these LJ glasses, different aspects are studied, such as

static yield stress [20], aging effects [21], fluctuation dissipation ratio [22], single par-

ticle jumps [23], local elasticity map and plasticity [24]. The examined assumption

impact factors of glass transition contain static length scale [25], point-to-set length

scales [26], heterogeneity [27]. As we can see, the elasticity is not enough investigated

and we focus our investigations on this topic. As is well known, the shear modulus

is zero in liquids and non zero in solids (crystal or glass). This quantity can thus be

a signature of the glass transition, as an order parameter. This is for example the

criterion used in [28]. In this case, one can question about the nature of the change in

G at Tg, whether it is a continuous change, or a jump. Since there is still debate on

this question, we carry out investigations on KA2d model system with focus on this

topic.

In order to examine the above mentioned properties using the stress fluctuation

formalism, we choose a few simple model systems in this thesis. The glass transition is

especially studied with the KA2d system. The companion system, the monodisperse

LJ2d system, which crystallizes, is also studied for the sake of comparison. Two crystals

are investigated for their elasticity and viscoelasticity, the first one is the monodisperse

LJ3d system which forms a fcc crystal. The second is the AB13 system which forms

a cubic complex superlattice. These studies are done by using Molecular dynamics

simulations provided by the LAMMPS code [29]. To a minor extent, monodisperse

and polydisperse hard sphere fcc crystals are also studied by constant pressure Monte

Carlo simulations [30], in order to test the computation of the bulk modulus by volume

fluctuations.

The thesis is organized as follows: in chapter 2, we present the methodology used

in this thesis. After an overview of classical simulation methods, Monte Carlo and

Molecular Dynamics, we discuss the different statistical ensembles that are relevant
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to our studies. They are microcanonical (NVE), canonical (NVT) and isothermal and

isobaric (NPT) ensembles. A large portion of this chapter is devoted to the presentation

of the stress fluctuation formalism for the calculation of the elastic constants. Chapter 3

contains our results on static properties of the model systems we studied. Three topics

have been considered. The first is the calculation of bulk moduli of monodisperse and

polydisperse hard sphere crystals by volume fluctuations, the second is a study of a

glass former in two dimensions: 80-20 Kob-Andersen model, and the last topic concerns

shear stress fluctuations in simple and complex crystals. Chapter 4 investigates time-

dependent properties of our systems. Several questions have been examined. The

first is the sampling-time dependence of the stress fluctuations, then the shear-stress

autocorrelation function and the shear-stress mean-square displacement are considered.

The last part concerns the viscoelastic properties of our model systems, in liquid, glass

and crystal states. Conclusions are gathered in chapter 5.
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Chapter 2

Methodology

In this chapter we shall introduce the theoretical foundation of our work. First

we shall describe briefly the simulation methods, Monte Carlo (MC) and Molecular

dynamics (MD) simulations. A brief discussion on the relevant statistical ensembles

is given. Then we shall present the method of computing the elastic properties of a

model material using the stress fluctuation formalism.

2.1 Monte Carlo methods

Monte Carlo methods used in numerical analysis are mainly aimed at calculating

multivariable integrals. In molecular simulations, it is used to simulate statistical sys-

tems and produce a representative ensemble of configurations to reach thermodynami-

cal quantities without the necessity (or the possibility) of computing them analytically

[31].

2.1.1 Monte Carlo integration

Monte Carlo technique can be a method of integration. Take a simple integral for

example

F =

∫ x2

x1

dxf(x). (2.1)

This integral can be calculated approximately by

F ′ =
x1 − x2

N

N
∑

1

f(xi) (2.2)

6



where the points xi are evenly distributed in the range (x1, x2). As long as we select

enough points, that is, the number N is big enough, the F ′ will be sufficiently close to

the exact F . However, the points can be also selected randomly and in this case the

integral can be written as follows

F =

∫ x2

x1

dx
f(x)

ρ(x)
ρ(x) (2.3)

with ρ(x) an arbitrary probability density function (ρ(x) 6= 0). Consider conducting

lots of trials tr, and every time a random number ξtr is chosen from the distribution

ρ(x) in the interval (x1, x2). We obtain that

F = 〈f(ξtr)
ρ(ξtr)

〉trials (2.4)

where the brackets show an average over all trials. The probability density function

ρ(x) could be as simple as a uniform distribution (sample mean integration),

ρ(x) =
1

x2 − x1
, x1 ≤ x ≤ x2, (2.5)

following this, the integral can be approximated by

F ≈ x2 − x1

trmax

trmax
∑

tr=1

f(ξtr), (2.6)

where trmax is the total trial number. We notice that for a one-dimensional integration,

this method is not as efficient as many others (Simpson, Gauss, etc). But its use is

more indicated for multi-dimensional integrations.

2.1.2 Importance sampling

In Monte Carlo algorithms, lots of trials may give a very small contribution to the

Monte Carlo average if we use an uniform sample mean integration method (above).

Importance sampling techniques can solve this problem, by choosing random numbers

from a non-uniform distribution [30]. They concentrate the samplings in the regions

of interest which make important contributions to the integral and hence enhance the

overall efficiency. This technique is essential to molecular simulations. For example,

in the canonical ensemble (NV T ), if we want to calculate the average of a physical

quantity A, we write

〈A 〉NV T =

∫

dΓρNV T (Γ)A (Γ), (2.7)
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where Γ is a point of the phase space, and ρNV T (Γ) is the canonical distribution.

Comparing with eq.(2.1), we have f = ρNV TA . In general, the integrand f will be

important where ρNV T is important, and neglectable where ρNV T is neglectable. By

repeating the previous MC integration method we obtain the integral

〈A 〉NV T = 〈A ρNV T/ρ〉trials. (2.8)

if we choose ρ = ρNV T , we perform an efficient estimate of the integral. Then

〈A 〉NV T = 〈A 〉trials (2.9)

In order to generate a series of random states at the end of the simulations where every

state has appeared with the appropriate probability, a Markov chain of states of the

system is set up. This is done using the Metropolis algorithm below.

2.1.3 The Metropolis method

The Metropolis algorithm is used in molecular simulations. It generates a sequence

of states according to the equilibrium probability distribution of a given system. The

following gives a presentation according to Chandler’s book [32]. We only consider

the change of particle’s positions. Suppose a state m of the system, and ρm the equi-

librium probability, consistent with the Boltzmann distribution ρm ∝ exp (−βVm),

(β = 1/kBT , and Vm is the potential energy of the system at state m). If Tmn is the

transition probability (per unit time) that the system transit from state m to n, then

the kinetic equation for ρm writes

ρ̇m =
∑

n

(ρnTnm − ρmTmn) . (2.10)

At equilibrium, we have ρ̇m = 0 (the equilibrium state is a stationary solution of the

kinetic equation). From eq.(2.10), we see that this is the case when

ρnTnm = ρmTmn. (2.11)

Eq.(2.11) is referred to as the detailed balance condition. More precisely, we can write

Tmn

Tnm

=
ρn
ρm

= exp (−β∆Vmn) (2.12)
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where ∆Vmn = Vn − Vm. In practice, the Metropolis Monte Carlo (MMC) scheme

proposes

Tmn =











αnm if ρn ≥ ρm,

αnm
ρn
ρm

if ρn < ρm.
(2.13)

where αmn = αnm being the elements of a symmetric stochastic matrix. Here is an

MC step: suppose the system at state m, a trial move is made, by displacing one atom

randomly, tempting to bring the system to state n. If ∆Vmn ≤ 0, then the move is

accepted. If ∆Vmn > 0, then exp (−β∆Vmn) is compared to a random number ξ picked

up uniformly in [0, 1]. The move is only accepted when exp(−β∆Vmn) > ξ. In other

words, in the Metropolis algorithm, the acceptance probability for a move from state

m to state n is

P (m → n) = min (1, exp (−β (Vn − Vm))) (2.14)

It is important that the Markov chain generated in such a fashion is ergodic. That

means from any state, any other state should be reached after a finite number of trial

moves. An MC simulation contains a very large number of MC steps, typically more

than a million.

2.1.4 MC simulation of hard spheres

The hard sphere (HS) model is a simple model to represent dense fluids. The HS

potential is

βu(r) =











0 if r ≥ σ

∞ if r < σ
(2.15)

where σ is the HS diameter. This singular potential leads to a very simple Metropolis

MC algorithm. Consider the system be in state m. The state n consists of displacing

one particle i a small distance: ~r
(m)
i → ~r

(n)
i . Then, substituting eq.(2.15) in eq.(2.14),

the acceptance probability for a move from state m to state n is

P (m → n) =











1 if |~r(n)i − ~r
(m)
j | ≥ σ for all j 6= i

0 if |~r(n)i − ~r
(m)
j | < σ for one j 6= i,

(2.16)

i.e. it is an overlap test. The scheme is easily generalized to HS mixtures, where each

species has a diameter σµ. If the particle i belongs to species µ , its position is ~riµ.
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The MC acceptance probability is then

P (m → n)











= 1 if |~r(n)iµ − ~r
(m)
jν | ≥ σµν for all jµ 6= iν

= 0 if |~r(n)iµ − ~r
(m)
jν | < σµν for one jµ 6= iν,

(2.17)

where σµν = (σµ + σν)/2. This is the scheme we used in one of our studies in the next

chapter.

To end this section, we point out that the MC method is a powerful tool to study

equilibrium properties of a system. On the other hand, it does not follow the Newtonian

laws for the particles. That’s why the molecular dynamics method (following section)

is used when dynamic properties of a system are investigated.

2.2 Molecular dynamics

Molecular Dynamics simulation is a technique that computes the equilibrium and

transport properties of a classical many-body system. It generates the microscopic

information of the investigated system such as particles positions, velocities and so

on. This information can be converted to the macroscopic properties of the system by

statistical mechanics [30]. The motion of the constituent particles conforms to the laws

of classical mechanics. In the following, we display our equations in a 3d system.

2.2.1 Equations of motion

Consider a system ofN particles which interact with the pair potential u. The forces

imposed on particles derive from the potential energy (the system thus conserves the

total energy). All the particles move in all directions of the system. The Lagrangian

equation can be used to describe the motion of the particles. The equation (for the

variable qk(t)) is

d

dt
(∂L /∂q̇k)− (∂L /∂qk) = 0, k = 1, · · ·3N (2.18)

where qk are the set of coordinates of all the particles (k = 1, ...3N) and q̇k are the

time derivatives of qk (the momentum of the particles). The Lagrangian function

L ({q̇k, qk}) is

10



L = K − V (2.19)

with kinetic energy term K = (1/2)
∑3N

k=1 q̇
2
k/2m and potential energy term V . The

total potential is

V = (1/2)
N
∑

i=1

∑

j 6=i

u(rij) =
N−1
∑

i=1

∑

j>i

u(rij), (2.20)

where we have ~ri = (xi, yi, zi), x1 = q1, y1 = q2, z1 = q3, etc. The force on the particle

i is

~Fi = −~∇~riV . (2.21)

The force that atom j exerts on atom i is ~fij = −~∇~riu(rij). And for ~Fi we have

thus ~Fi =
∑

j 6=i
~fij = −

∑

j 6=i
~∇~riu(rij). According to Newton’s third law, ~fji = −~fij ,

meaning that each pair force needs only to be calculated once. If we take u to be the

Lennard-Jones potential, then the pair force is

−→
f ij,LJ =

48ǫ

σ2

[

(

σ

rij

)14

− 1

2

(

σ

rij

)8
]

−→r ij (2.22)

The equation of motion for the particle i is

m~̈ ir = ~Fi =
∑

j 6=i

~fij (2.23)

where the sum is over all N particles except i itself and m is the mass of the particle.

These equations must usually be integrated numerically.

2.2.2 Finite difference methods

In molecular simulations, usually, the equations of motion can only be solved nu-

merically because the force acting on particle i depends not only on its position ~ri but

also on the positions of other particles ~rj (j 6= i), and in a non-linear manner (see for

example eq.(2.22) for the Lennard-Jones pair force). An integrator is used to calculate

the trajectory step by step with a finite time increment δt. All the particles in a system

evolve with time. What we want to know is the trajectory of the system during a period

of time in the phase space. There are a lot of time integration algorithms to generate

the MD trajectory. The most popular ones are the Gear predictor-corrector algorithm
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and the Verlet algorithm. We first show the Gear predictor-corrector algorithm as in

[30]. It proceeds in two steps. The first one is the prediction step. Suppose that at

time t, the positions and velocities of the particles are known. Thus the accelerations

~ai(t) = ~Fi/m are known too. Suppose that we have also (a numerical estimate of)

the third time derivative of ~ri at t, ~bi(t) and the fourth derivative ~ci(t). For a 5-value

predictor-corrector algorithm, the predicted positions and velocities, etc, at time t+ δt

are given by a simple Taylor expansion

~rpi (t + δt) = ~ri(t) + ~vi(t)δt + ~ai(t)δt
2/2 +~bi(t)δt

3/3! + ~ci(t)δt
4/4!

~vpi (t + δt) = ~vi(t) + ~ai(t)δt+~bi(t)δt
2/2 + ~ci(t)δt

3/3!

~api (t + δt) = ~ai(t) +~bi(t)δt+ ~ci(t)δt
2/2

~bpi (t + δt) = ~bi(t) + ~ci(t)δt (2.24)

The second step is the correction step. We calculate the accelerations ~ai(t + δt) from

the new (predicted) positions {~rpi (t+ δt))}, then the difference ∆~ai = ~ai(t+ δt)−~ai(t).

Using this, the corrected quantities are

~rci (t+ δt) = ~rpi (t + δt) +G0∆~aiδt
2/2

~vci (t+ δt) = ~vpi (t + δt) +G1∆~aiδt/2

~bci(t+ δt ) = ~bpi (t+ δt) +G3∆~ai(3/δt)

~cci(t+ δt) = ~cpi (t+ δt) +G4∆~ai(12/δt
2) (2.25)

where, according to Gear, G0 = 19/120, G1 = 3/4, G3 = 1/2 and G4 = 1/12. The

corrected quantities allow to cumulate the statistics of the system, and constitute the

starting point of the next MD step.

A more direct and widely used method is the Verlet algorithm. We make sole

use of the equation of the motion, no need for the extra numerical coefficients. Its

velocity version (velocity Verlet) proceeds also by two steps. It has been shown to be

very stable, and is one of the most popular MD schemes. First, from the positions,

velocities , and the forces (thus the accelerations) of the particles at time t, we compute

the positions at time t+ δt and the velocities at time t+ δt/2,

~ri(t+ δt) = ~ri(t) + ~vi(t)δt+ ~ai(t)δt
2/2

~vi(t+ δt/2) = ~vi(t) + ~ai(t)δt/2, (2.26)
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then, using the new positions {~ri(t + δt))}, the forces (and the accelerations) at time

t+ δt are computed, and the velocities are advanced to t+ δt:

~vi(t+ δt) = ~vi(t+ δt/2) + ~ai(t+ δt)δt/2. (2.27)

The eqs.(2.26-2.27) constitute one step of the velocity Verlet algorithm. A comparison

of the two methods has been made in [30]. It appears that if the forces only depend

on the positions (not on the velocities) as in our systems, the velocity Verlet method

can be preferred, since for relatively large δt, it conserves better the total energy.

Furthermore, it is simple to implement.

Whatever the integrator, our aim is to accumulate the statistic information of the

system, and extract macroscopic properties. The results will depend on the ensemble

used. The following gives some basic information about statistical ensembles that are

relevant to our work.

2.3 Statistical ensembles

Statistical physics is used to study the thermodynamics of model materials. From

the microscopic movement of particles composing the systems, it provides us with the

relevant macroscopic properties . In the macroscopic world, the state of the system is

characterized by some macroscopic quantities such as temperature, volume and pres-

sure. In microscopic world, the classic statistical physics views systems as a mechanic

system containing a very large number of particles whose movements conform to the

Newtonian laws.

In statistical physics, ensembles are regarded as a large set of individual systems

which have the same properties and structures in given macroscopic conditions. In

our simulations, several ensembles are often encountered, including the microcanonical

ensemble, the canonical ensemble and the isothermal-isobaric ensemble.

2.3.1 Microcanonical ensemble

For the microcanonical ensemble, the number of the particles in the system, the

volume and the total energy of the system are fixed to specific values (it is the NVE
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ensemble). This is the natural ensemble for a standard MD simulation presented in

the section 2.2. The probability density for this ensemble is proportional to

δ (H (Γ)−E) (2.28)

in this expression, Γ represents the phase space and H (Γ) is the Hamiltonian. The

function describes the probability density of obtaining specific states of an N-particle

system in a space of volume V which have the desired energy E. The partition function

is as follows

QNV E =
∑

Γ

δ (H (Γ)−E) (2.29)

its expression for a classical N-particles continuous system is

QNV E =
1

N !

1

h3N

∫

drdpδ (H (r,p)− E) (2.30)

with h being the Planck constant. The correspondant thermodynamic potential is

(minus) entropy:

−S = −kB lnQNV E . (2.31)

If, in the MD simulations, we were able to compute QNV E, then according to eq.(2.31)

we can get access to the useful thermodynamics of our systems [33]. For example,

for the temperature, we have 1/T = ∂S/∂E|V and for the pressure, we have P/T =

∂S/∂V |E. However, in an MD simulation, we do not compute the partition function

QNV E , because we cannot possibly cover sufficiently the phase space in our runs. So

the entropy S is not computed. Nevertheless, many thermodynamic quantities can

be obtained by simply averaging their microscopic expressions during the run. For

example, the average kinetic energy is given by

EK = 〈K 〉MD , (2.32)

leading to, according to the equipartition principle [32], the temperature

T =
2

3kB
(EK/N) (2.33)

Eq.(2.33) is the standard way of calculating the temperature of our systems.

In the NVE ensemble, E is fixed during the MD run. This means that when one

starts a simulation, one has the initial configuration, consisting of the initial positions
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and initial velocities of the particles. If we set the initial velocities according to a

target temperature T0 by using the Maxwell-Boltzmann distribution, the initial posi-

tions usually do not correspond to the equilibrium situation. They do fix the total

energy, giving E = E0. During the MD run of equilibration, the system evolves to

the equilibrium state (maximum entropy) corresponding to given (E, ρ), during which

there is exchange between the kinetic energy and potential energy. Consequently, the

equilibrium temperature will not be the target temperature T0, but a different value.

This is a well-known difficulty of the standard MD simulation. It can be overcome

by rescaling the velocities regularly during the run (Andersen’s method), in order to

obtain an equilibrium configuration corresponding to the target temperature, meaning

that we run one kind of NVT MD for the equilibrium stage. Afterwards, NVE runs

can be carried out to study the system’s properties.

As the stress fluctuation formalism which we use is most directly case in the canon-

ical (NVT) ensemble, we give in the following some basis of this ensemble.

2.3.2 Canonical ensemble

For the canonical ensemble, the number of particles in the system and the temper-

ature of the system are specified. The probability density is proportional to

exp (−H (Γ) /kBT ) , (2.34)

the partition function is

QNV T =
∑

Γ

exp (−H (Γ) /kBT ) , (2.35)

the expression for an N-particle continuous system is

QNV T =
1

N !

1

h3N

∫

dNrdNp exp (−H (Γ) /kBT ) (2.36)

The corresponding thermodynamic potential is the Helmholtz free energy F

F = −kBT lnQNV T . (2.37)

It is also convenient to define the configuration partition function, or the configuration

integral:

ZNV T =

∫

dNr exp(−V /kBT ). (2.38)
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ZNV T is the relevant partition function, when we want to focus on the effects of particle

interactions. As we mentioned earlier, the standard MC simulations (see section 2.1)

are performed in the NVT ensemble. There is, of course, no question of calculating the

partition function QNV T , for the same reason as our not calculating QNV E. However,

we can compute plenty of physical quantities as MC averages, for example the energy,

and its fluctuations. The latter is of course related to the constant-volume heat capacity

of the system, as we shall see later.

Although the standard MD simulations are done in the NVE ensemble, nowadays

it is common practice to perform them in the NVT ensemble. This can be done

in several ways. One of them is the above-mentioned Andersen’s method. It however

does not correspond to any deterministic dynamics, as opposed to the extended system

Nose-Hoover method. In the latter, we consider the system in contact with a thermal

reservoir. An extra degree of freedom is introduced, which represents the reservoir.

Energy is allowed to flow between the system and the reservoir. The introduced degree

of freedom is expressed as s and the conjugate momentum is ps. An extra potential

energy is related to s as follows

Vs = (f + 1)kBT ln s (2.39)

Here f is the number of degrees of freedom and T is the specified temperature. The

relevant kinetic energy is

Ks =
1

2
Qṡ2 = p2s/2Q (2.40)

Here Q is the thermal inertia parameter. It controls the rate of temperature fluctua-

tions. The Lagrangian of the system is

Ls = K + Ks − V − Vs (2.41)

The equations of motion for the system can be derived

r̈ =
f

ms2
− 2ṡṙ

s
(2.42)

and

Qs̈ =
∑

i

mṙ2i s−
1

s
(f + 1)kBT (2.43)
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The Hamiltonian Hs for the extended system is conserved

Hs = K + Ks + V + Vs (2.44)

and the density function for the extended system is microcanonical

ρNV Es
(r,p, s, ps) =

δ(Hs − Es)
∫

drdpdsdpsδ(Hs − Es)
(2.45)

This NVT scheme is used in our simulations. The NVT ensemble is important for our

work. We shall show later how the stress fluctuation formalism is derived within this

ensemble. Before this, we present another useful ensemble to our work.

2.3.3 Isothermal-isobaric ensemble

The isothermal-isobaric ensemble (NPT ensemble), is convenient for many studies

because it fixes the temperature and the pressure of the system. This is similar to many

experimental approaches. For this ensemble, the probability density is proportional to

exp (− (H + PV ) /kBT ) (2.46)

The partition function is

QNPT =
∑

Γ

∑

V

exp (− (H + PV ) /kBT ) =
∑

V

exp (−PV/kBT )QNV T (2.47)

The expression for an N-particle system is

QNPT =
1

N !

1

h3N

1

V0

∫

dV

∫

drdp exp (− (H + PV ) /kBT ) (2.48)

The appropriate thermodynamic potential is the Gibbs free energy G

G = −kBT lnQNPT (2.49)

Again, we do not actually compute G in our simulations. But we do calculate the

averages and the fluctuations of physical quantities.

In order to perform MD simulations in fixed pressure P , we use extended system

methods. Andersen proposed coupling the system to an external variable V , which is

the volume of the simulation box. The coupling imitates the function of a piston on a

real system. The kinetic energy for the piston is

KV =
1

2
QV̇ 2 (2.50)
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Here Q is the mass of this piston. The extra potential energy for the system is

VV = PV (2.51)

Here P is the specified pressure. The kinetic energy and potential energy related to

the particles of the system are

V = V

(

V
1

3 s
)

(2.52)

K =
1

2
m
∑

i

v2i =
1

2
mV

2

3

∑

i

ṡ2i (2.53)

Here r = V
1

3 s and v = V
1

3 ṡ. The Lagrangian of the system is

LV = K + KV − V − VV (2.54)

The equations of motion for the system can be derived

s̈ =
f

mV
1

3

− 2ṡV̇

3V

V̈ =
P − P

Q
(2.55)

Here f is the force and P is the pressure. They are calculated using unscaled coordi-

nates and momenta. For the system, the Hamiltonian HV is conserved.

HV = K + KV + V + VV . (2.56)

Eq.(2.55) corresponds actually to the dynamics of a constant NPH ensemble (H =

E + PV is the enthalpy). In order to carry out NPT runs, this scheme is coupled to

the Nose-Hoover constant-temperature scheme shown earlier. This is the NPT-MD we

used, within LAMMPS [29].

To perform isothermal-isobaric (NPT) MC simulations, the scheme of section 2.1

is also modified. We recall [30] that the configuration integral in this case is,

ZNPT =

∫

dV

∫

dNr exp (−β(V + PV )) , (2.57)

with V the volume variable. By performing the scaling s = V −1/3r, we can rewrite

ZNPT as

ZNPT =

∫

dV V N

∫

dNs exp (−β(V + PV ))

=

∫

dV

∫

dNs exp (−β(V + PV ) +N lnV ) . (2.58)
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The new MC scheme then generates states consistent with the probability

ρNPT ∝ exp (−β(V + PV ) +N lnV ) , (2.59)

by setting H = V +PV −kBTN lnV and by consdering the ensemble {s1, · · · , sN , V } as
the (3N+1) variables to which to apply random changes and the Metropolis algorithm

P (m → n) = min (1, exp (−β (Hn −Hm))) (2.60)

where Hm = Vm + PVm − kBTN lnVm and similarly for Hn. Eq.(2.60) is used to our

investigation of HS systems under constant-NPT condition (see next chapter).

2.4 Simple averages and fluctuations

Our simulations lead us to calculate various physical quantities. Some are simple

averages, other are the fluctuations of relevant quantities which are related to the

response functions of our systems. As explained in [30], for the same thermodynamic

state, simple averages are independent of the ensemble used, whereas the fluctuations

depend on the ensemble. For example, if we take a system defined by its density

ρ = N/V and its temperature T in the NVT ensemble, at equilibrium, the energy is

given by

E = 〈H 〉NV T . (2.61)

Equivalently, we can run NVE simulations, with the same E, and we shall obtain the

(average)equilibrium temperature by eq.(2.33), which is the same as the one of our

NVT ensemble. This idea also applies to the calculation of the pressure P. Running

(equilibrium) NVT simulations gives the pressure P̄ . If we run NPT simulations, then

we shall obtain average volume V̄ . Again, if we have P̄ = P , then V̄ = V . More

precisely, here are some common simple averages

E = 〈H 〉

EK = 〈K 〉 = (1/2)
〈

∑

i

miv
2
i

〉

EP = 〈V 〉 =
〈

N−1
∑

i=1

∑

j>i

u(rij)
〉

T = (2/3)EK/NkB (2.62)
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for total energy, kinetic energy, potential energy and temperature respectively.

The pressure P is an important quantity in our studies. Its expression is well-known

for pairwise potentials. To show this, we start from the definition P = −(∂F/∂V )T .

As F = −kBT lnQNV T , we have

P =
kBT

QNV T

(

∂QNV T

∂V

)

T

(2.63)

From eq.(2.36) and eq.(2.38)we have

QNV T = A(T )ZNV T = A(T )

∫

dNr exp(−V /kBT ). (2.64)

where A(T ) = (2πmkBT/h
3)N/N ! is independent of the volume V. By the scaling

method ~r = V 1/3~s, we can rewrite ZNV T as

ZNV T = V N

∫

dNs exp(−V /kBT ). (2.65)

As V =
∑N−1

i=1

∑

j>i u(rij) =
∑N−1

i=1

∑

j>i u(V
1/3sij), we have

(∂V /∂V )T =
N−1
∑

i=1

∑

j>i

u′(rij)sij(1/3)V
−2/3 = (1/3V )

N−1
∑

i=1

∑

j>i

u′(rij)rij (2.66)

Using eq.(2.63) to eq.(2.66), we obtain finally,

P = ρkBT − (1/3V )

〈

N−1
∑

i=1

∑

j>i

u′(rij)rij

〉

. (2.67)

This is the famous virial expression for the pressure. The first term is the ideal gas

term, Pid, the second one is the “excess” term Pex, due to the interactions between the

particles.

Another common simple average we compute is the radial distribution function g(r),

which characterizes the local structure in our systems. The function ρg(r) represents

the probability density of finding a particle at r, given that another is at the origin.

Furthermore, in an isotropic system, g(r) is related to the thermodynamic quantities

of the system,

EP (isotropic)/N = 2πρ
∫

drr2g(r)u(r) (2.68)

P (isotropic) = ρkBT − (2π/3)ρ2
∫

drg(r)u′(r)r2. (2.69)
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This function will be studied in detail in the next chapter.

Now we turn to the fluctuations. The fluctuations depend sensibly on the ensemble.

Take for example the energy E. In an NVE ensemble, E does not fluctuate, i.e.

∆E ≡ 〈(H − E)2〉 = 0. On the other hand, we have [30]

∆ENV T = kBT
2CV > 0, (2.70)

where CV = (∂E/∂T )V is the specific heat capacity of the system. So the fluctuations

of E in the NVT ensemble is a way of calculating the constant-volume specific heat

capacity. (Functions like CV are often called “response functions”). Another example,

more related to our work, is the fluctuations of the volume V . Obviously, in an NVT

ensemble, ∆V = 0, whereas in an NPT ensemble, we have [30]

∆VNPT ≡
〈

(V − V̄ )2
〉

= V̄ kBTκT > 0, (2.71)

where κT = −V −1(∂V/∂P )T is the isothermal compressibility of the system. Using the

bulk modulus K = 1/κT , eq.(2.71) can be rewritten as

K =
V̄ kBT

∆VNPT
. (2.72)

We see that eq.(2.72) provides a means of computing the bulk modulus. Thus this

relation is very useful to our work, as shown in the next chapter.

2.5 Calculation methods of elastic properties

Here we present the basic formulas of the calculation of elastic properties by the

stress fluctuation formalism. We are in general situations of P 6= 0, and T 6= 0. The

simulations are equilibrium simulations, i.e. our systems are never actually deformed or

submitted to shear stress. On the other hand, we are restricted to pairwise potentials.

2.5.1 Elasticity of solids under pressure

The formalism is most conveniently derived in the canonical ensemble.

We follow the notations in [34]. Given a system (N, V, T ), let ~X be the initial

configuration, ~x the final configuration. The displacement gradient uαβ is

xα −Xα = uα( ~X); uαβ = ∂uα/∂Xβ (2.73)
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The conventional strain tensor is

ǫαβ =
1

2
(uαβ + uβα) (2.74)

The distance Rij = |~Ri − ~Rj | changes to rij according to

r2ij = Rij(1 + ǫT )(1 + ǫ)Rij

= Rij(1 + 2η)Rij

(2.75)

where

η =
1

2

(

ǫ+ ǫT + ǫT ǫ
)

(2.76)

is the Lagrangian strain. The free energy per unit of (the undeformed) volume f =

F/V0, can be expanded in powers of η:

f(~x, T ) = f( ~X, ηαβ , T )

= f( ~X, 0, T ) + Cαβ ηαβ +
1

2
Cαβχκ ηαβηχκ +· · ·

(2.77)

where Cαβχκ are the elastic constants.

The stress σαβ is related to the 1st derivative of f by

σαβ(~x) = det(h)−1 hαχ
∂f

∂ηχκ
(~x) hκβ (2.78)

where h = I + ǫ. And the stress-strain relation is:

σαβ = Bαβχκ ǫχκ (2.79)

where Bαβχκ are the Birch coefficients [34]. They are the elastic constants implied in

the Hooke’s law eq.(2.79).

In case σαβ( ~X) = −Pδαβ (isotropic initial stress), we have

Bαβχκ = Cαβχκ + P (δαβδχκ − γ̇αχγ̇βκ − δακδβχ) (2.80)

Obviously, if P = 0, we have B = C. This is often assumed in many textbooks on the

elasticity of the solids.

By the Voigt notation, we write 1 = xx, 2 = yy, 3 = zz, 4 = yz (or zy), 5 = zx (or

xz), 6 = xy (or yx). Thus, the strain tensor reads,

σ =









σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3









(2.81)
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And the stress tensor reads, by convention

ǫ =









ǫ1 ǫ6/2 ǫ5/2

ǫ6/2 ǫ2 ǫ4/2

ǫ5/2 ǫ4/2 ǫ3









(2.82)

Special case one: 3-dimensional Cubic lattice

For a cubic lattice, the B tensor is written as

B =



























B11 B12 B12 0 0 0

B12 B11 B12 0 0 0

B12 B12 B11 0 0 0

0 0 0 B44 0 0

0 0 0 0 B44 0

0 0 0 0 0 B44



























, (2.83)

where B44 = G is the shear modulus. The bulk modulus is given byK = (B11+2B12)/3.

The matrix inverse to B (the compliance tensor S) is thus (for cubic symmetry):

S = B−1 =



























b1 b2 b2 0 0 0

b2 b1 b2 0 0 0

b2 b2 b1 0 0 0

0 0 0 G−1 0 0

0 0 0 0 G−1 0

0 0 0 0 0 G−1



























(2.84)

where

b1 =
B11 +B12

(B11 −B12)(B11 + 2B12)

b2 = − B12

(B11 − B12)(B11 + 2B12)
.

(2.85)

Thus the Young modulus is

E =
1

b1
=

(B11 − B12)(B11 + 2B12)

B11 +B12
, (2.86)

and the Poisson ratio is given by

ν = −b2
b1

=
B12

B11 +B12
(2.87)
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General d-dimensional cubic (square) lattice (d=2, 3)

For a 2-dimensional system possessing 3 elastic constants (for example the square

lattice), the previous equations are easily rewritten accordingly, by suppressing the

z-component. We have thus B11, B12 and B66 as independent Hooke’s constants. It

is possible to summarise the general d-dimensional situations in a unique formulation.

Indeed, while the relation

G = B66 = C66 − P (2.88)

is d-independent, the relation

K =
1

d
[B11 + (d− 1)B12] =

1

d
[C11 + (d− 1)C12 + (d− 2)P ] (2.89)

depends on d. Of course, the compliance tensor is also affected. Thus, we have

b1 =
B11 + (d− 2)B12

B2
11 − (d− 2)B11B12 − (d− 1)B2

12

b2 = − B12

B2
11 − (d− 2)B11B12 − (d− 1)B2

12

.

(2.90)

with the Young modulus given by

E =
1

b1
=

B2
11 − (d− 2)B11B12 − (d− 1)B2

12

B11 + (d− 2)B12

, (2.91)

and the Poisson ratio given by

ν = −b2
b1

=
B12

B11 + (d− 2)B12
. (2.92)

While eqs.(2.88,2.89,2.91) allow to obtain K, G and E from the B constants, it is

also interesting to discuss the inverse problem : knowing these quantities from experi-

mental measures, how can we deduce the Bs? The answer is quite straightforward, by

inverting these equations, leading to

B11 = d.K
d.K + (d− 2)E

d2.K −E

B12 = d.K
d.K − E

d2.K −E

B66 = G.

(2.93)
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Isotropic d-dimensional systems

For an isotropic material, the Lamé coefficients λ and µ are usually introduced.

They are related to the C constants by

Cαβχκ = λδαβδχκ + µ(δαχδβκ + δακδβχ). (2.94)

Thus

Bαβχκ = (λ+ P )δαβδχκ + (µ− P )(δαχδβκ + δακδβχ) (2.95)

yielding B11 = λ+2µ−P , B12 = λ+P , and B66 = µ−P = G. These are d-independent

relations.

In terms of λ and µ, the bulk modulus K = −V ∂P
∂V

|T is given by

K =
1

d
(B11 + (d− 1)B12) = λ+ 2µ/d+ (d− 2)P/d, (2.96)

the shear modulus G is

G = µ− P. (2.97)

Inversely, we have λ = K−2G/d−P , µ = G+P . Thus, from eq.(2.95), we can express

the relevant Bs in terms of K and G:

B11 = K + 2(d− 1)G/d

B12 = K − 2G/d

B66 = G

(2.98)

Of course, here we have (B11 − B12)/2 = G = B66. In this case, the Young modulus

can be obtained from eq.(2.93) and eq.(2.98), leading to

E =
2d2K ·G

d(d− 1)K + 2G

= 2(µ− P )
d · λ+ 2µ+ (d− 2)P

(d− 1)λ+ 2µ+ (d− 3)P
,

(2.99)

and the Poisson ratio, from eq.(2.92), gives

ν =
d ·K − 2G

d(d− 1)K + 2G

=
λ+ P

(d− 1)λ+ 2µ+ (d− 3)P
.

(2.100)
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Two-dimensional triangular lattice

For a triangular lattice (2d), B is a 3×3 tensor. Only two independent B constants

exist. They are B11 = B22 and B12 = B21. For the shear modulus B66, we have

B66 = (B11−B12)/2. The other elements are zero. We see that the situation (concerning

the elasticity) is similar to the case of a two-dimensional isotropic solid (glass).

2.5.2 Stress fluctuation formalism for crystalline solids

Within the stress fluctuation formalism [8], we have, supposing the Hamiltonian

H = Σip
2
i /(2m)+Σi<ju(rij), the first term being the kinetic part, the second being the

potential energy part, (where Σi<j is a short-handed notation for ΣiΣj>i), and using

eqs.(2.75) - (2.80), the elastic constants C expressed as the sum of three terms:

Cαβχκ = CK
αβχκ + CB

αβχκ − CF
αβχκ (2.101)

where CK is the kinetic part

CK
αβχκ = 2kBTρ(δακδβχ + δαχδβκ) (2.102)

with the density ρ. The Born part is well-known:

CB
αβχκ =

1

V

∑

i<j

〈

(

u′′(rij)−
u′(rij)

rij

)

rαijr
β
ijr

χ
ijr

κ
ij

r2ij

〉

(2.103)

And the fluctuation part is

CF
αβχκ =

V

kBT
[〈σ̂αβ σ̂χκ〉 − 〈σ̂αβ〉 〈σ̂χκ〉] (2.104)

with the stress tensor element σ̂αβ given by, for pairwise potentials:

σ̂αβ =
1

V

[

∑

i<j

u′(rij)r
α
ijr

β
ij

rij
−
∑

i

pαi p
β
i

m

]

(2.105)

We note that in eq.(2.104), the fluctuation term is defined as the opposite of that in [8].

This choice is made for numerical convenience (see next chapter). We can split CF
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into “kinetic” and “configurational” parts:

CFK
αβχκ =

1

V kBT

[

∑

i

∑

j

〈

pαi p
β
i p

χ
j p

κ
j /m

2
〉

∑

i

〈

pαi p
β
i

〉

∑

j

〈

pχj p
κ
j

〉

/m2

]

= ρkBT (δακδβχ + δαχδβκ)

(2.106)

and

CFC
αβχκ =

1

V kBT

[

∑

i<j

∑

k<l

〈u′(rij)u
′(rkl)r

α
ijr

β
ijr

χ
klr

κ
kl

rijrkl

〉

+
∑

i<j

〈u′(rij)r
α
ijr

β
ij

rij

〉

∑

i<j

〈u′(rij)r
χ
ijr

κ
ij

rij

〉

]

(2.107)

As we can see, the 1st term in formula (2.107) implies 3-particle and 4-particle dis-

tribution functions. We have now C = CB − CFC + CKK with CKK = CK − CFK,

i.e.

CKK
αβχκ = ρkBT (δακδβχ + δαχδβκ) (2.108)

To split completely the “ideal gas” term and the “excess” term (due to the interactions),

we can rewrite C as

Cαβχκ = CB
αβχκ − CFC

αβχκ + CKK
αβχκ (2.109)

C id
αβχκ = CKK

αβχκ = ρkBT (δακδβχ + δαχδβκ) (2.110)

Cex
αβχκ = CB

αβχκ − CFC
αβχκ. (2.111)

As we shall see later, in most of our (dense) systems, the contribution of the ideal term

(proportional to T ) is negligible. The Born term is usually more important than the

fluctuation term, with the latter not at all neglectable, except for simple crystals at

T = 0.

As we always compute the bulk modulusK and the shear modulus G in our systems,

we give them specific expressions in the following.

Recalling that K = −V (∂P/∂V )T = [C11 + (d− 1)C12 + (d− 2)P ] /d, we can show

that after some algebra, the bulk modulus K can be expressed as

K = P +
〈χ〉
V

−
〈

δP 2
ex

〉

(
V

kBT
) (2.112)
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here the “hypervirial function” [30], also referred to as the “Born-Lamé coefficient” [35]

is

〈χ〉 = 1

d2

〈

∑

i<j

rij
d (riju

′(rij))

drij

〉

(2.113)

and we have P = Pid + Pex with Pid = ρkBT , and

Pex = 〈Pex〉 = − 1

d · V

〈

∑

i<j

riju
′(rij)

〉

(2.114)

is the “virial equation”. Thus δPex = Pex −Pex. We see that eq.(2.112) is an isotropic

expression, as expected, for the bulk modulus.

For the shear modulus G, we have

G = C66 − P = CB
66 − CFC

66 + CKK
66 − P

= CB
66 − CFC

66 − Pex

(2.115)

In general, this is not an isotropic property, depending on the symmetry of the crystal.

We shall examine it in more details later.

Coming back to K, and following our recent works, it is convenient to write

K = Pid + ηA,ex − ηF,ex (2.116)

where ηA,ex is the elastic bulk modulus corresponding to the excess affine elasticity of

the system. More precisely, we have

ηA,ex = Pex +
〈χ〉
V

(2.117)

and

ηF,ex = 〈δP 2
ex〉

V

kBT
(2.118)

For pairwise potentials and T > 0, obviously, 〈χ〉/V and Pex (thus the affine parts) can

be expressed from the radial distribution function (RDF) g(r) and the pair potential

u(r), i.e.
〈χ〉
V

=
ρ2

2d2

∫

dr Sd g(r) r
d (ru′(r))

dr
(2.119)

where Sd is the surface of a d-sphere (S3 = 4πr2, S2 = 2πr). and

Pex = −ρ2

2d

∫

dr Sd g(r) r u
′(r) (2.120)
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In a crystal at T = 0, eq.(2.113) can be simply written as

〈χ〉
V

=
ρ

2d2

∑

k

skrk
d (rku

′(rk))

drk
(2.121)

where rk are the coordination shells, and sk are the coordination numbers for each shell.

The summation terminates when rk ≥ rc, the cutoff distance of the pair potential u(r).

For example, the triangular lattice with lattice constant a, we have rk = (a,
√
3a, 2a, ...)

and sk = (6, 6, 6, ...). The lattice constant, related to the density by ρ = 2/
√
3a2, is of

course determined by the fixed pressure P , where for T = 0, P = Pex, from eq. (2.114)

is

Pex = − ρ

2d

∑

k

skrku
′(rk) (2.122)

In this way, we can compute ηA,ex at T = 0. However, ηF,ex cannot be computed using

(2.118). It will be estimated from extrapolation of low temperature results.

Now some details about G. The computation of G in a cubic crystal follows

eq.(2.115), with the symmetry C66 = C55 = C44 (numerically, it is possible to av-

erage these three elements). Next we turn to the case of a 2d triangular lattice. In

such a symmetry, we also have a second formula for the shear modulus, denoted by G2,

G2 = (C11 − C12)/2− P

= (CB
11 − CB

12 − CFC
11 + CFC

12 )/2− Pex

(2.123)

By denoting G1 the result given by eq.(2.115), we can write the averaged G as G2d =

(G1 +G2)/2. This averaging is applied to the study of low temperature monodisperse

2d LJ system, forming a triangular lattice [36].

2.5.3 Elastic moduli of the glassy state

The glassy phase is an isotropic solid. Its elastic moduli K and G fully characterize

its elasticity. For K, the equation is given by eq.(2.116), i.e. K = Pid + ηA,ex − ηF,ex.

As for G, starting from eq.(2.115), we can express it similarly as

G = µA,ex − µF,ex (2.124)

with

µA,ex =
〈

CB
66

〉

ang
− Pex =

d

d+ 2

(〈χ〉
V

− Pex

)

=
d

d+ 2
(ηA,ex − 2Pex) , (2.125)
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with
〈

CB
66

〉

ang
being the angular average of CB

66 in the d-space, and

µF,ex = CFC
66 =

V

kBT

〈

δσ̂2
xy,ex

〉

. (2.126)

We see from eq.(2.125) that ηA,ex and µA,ex are related. This is not the case for the

non-affine part of K and G, ηF,ex and µF,ex. These quantities, involving three- and

four-particles correlations, must be computed from the stress fluctuations. As the case

of ηF,ex, µF,ex given by eq.(2.126) can only be computed for T > 0. So its value at

T = 0 will be an extrapolation of the results for T > 0. We shall see that, depending

on the complexity of the crystal, it is not necessarily zero.

Our glass formers are often binary mixtures. We adopt here eqs.(2.119) and (2.120)

to the case of a binary mixture:

〈χ〉
V

=

2
∑

a=1

2
∑

b=1

ρaρb
2d2

∫

drSd(r)gab(r)r
d (ru′

ab(r))

dr
(2.127)

where a and b run over the species, and

Pex = −
2
∑

a=1

2
∑

b=1

ρaρb
2d

∫

drSd(r)gab(r)ru
′
ab(r) (2.128)

As for the equation of σ̂αβ , eq.(2.105), its extension to mixtures is straightforward,

since the sums run over each particle of the system.

2.5.4 Elastic moduli of the liquid state

In the liquid state, there is no well-defined displacement field for the particles. What

we know is K = −(1/V )(∂P/∂V )T > 0 and G = 0. It seems difficult to transpose

previous results to liquids, since they are based on explicit displacement fields. For the

compression modulus, Rowlinson [9] demonstrated eq.(2.112) for K via a discussion of

the fluctuations of Pex. The system was put in a cubic box of length L . One writes

for the particle i

riα = siαL (2.129)

where α = x, y, z (d = 3), (x, y for d = 2), the reduced coordinates 0 ≤ siα ≤ 1. As

the pressure P = −(∂F/∂V )T = Pid + Pex , with V = Ld, F the free energy, one can

show that Pid = ρkBT , and

Pex =
kBT

dLd−1Z

(

∂Z

∂L

)

T

(2.130)
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with Z the canonical configuration partition function, defined by eq.(2.38). This gives

the virial expression of P (see eq. 2.67). As the bulk modulus K = −V (∂P/∂V )T =

ρkBT − V (∂Pex/∂V )T , we need to differentiate once more the second member of

eq.(2.130) with respect to V (thus L). Using again the “trick” eq.(2.129) and after

some algebra, eq.(2.112) can be proven. We note that the proof can be extended to a

rectangular box with fixed aspect ratios.

In a liquid, obviously, G = 0. The fluctuation expression (2.124) is indeed consistent

with this fact. As Zwanzig showed [37], we have

〈δσ̂2
xy,ex〉 =

〈

σ̂2
xy,ex

〉

− 〈σ̂xy,ex〉2

=
1

V 2

〈

∑

i

xiF
y
i

∑

k

xkF
y
k

〉

= −kBT

V 2

〈

∑

i

∂

(

xi

∑

k

xkF
y
k

)

/∂yi

〉

= −kBT

V 2

〈

∑

i

xi∂

(

∑

k

∑

l>k

xklF
y
kl

)

/∂yi

〉

=
kBT

V 2

〈

∑

i

∑

j>i

x2
ij∂

2u(rij)/∂y
2
ij

〉

=
kBT

V 2

〈

∑

i

∑

j>i

x2
ij

[

u′

rij
+ (u′′ − u′

rij
)
y2ij
r2ij

]

〉

.

(2.131)

Note that in eq.(2.131), we assumed 〈σ̂xy,ex〉 = 0. This is true in a static liquid, and is

well verified in simulations. After spherical average (in the d-space), we obtain

〈

δσ̂2
xy,ex

〉

=
kBT

dV 2

〈

∑

i

∑

j>i

[

riju
′ + u′′ − u′

rij

]

r2ij
d+ 2

〉

=
kBT

d(d+ 2)V 2

〈

∑

i

∑

j>i

[

(d+ 1)riju
′ + u′′r2ij

]

〉

=
d kBT

(d+ 2)V

[

−Pex +
〈χ〉
V

]

(2.132)

Putting eq.(2.132) in eq.(2.124). One shows indeed G = 0 for liquids. We note that

using the radial distribution function g(r), we can also write, for a one-component

system

βV 〈δσ̂2
xy〉 =

ρ2

2d(d+ 2)

∫

dr Sd g(r)
[

(d+ 1)ru′(r) + r2u′′(r)
]

(2.133)
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and for mixtures

βV 〈δσ̂2
xy〉 =

∑

a

∑

b

ρaρb
2d(d+ 2)

∫

dr Sd gab(r)
[

(d+ 1)ru′
ab(r) + r2u′′

ab(r)
]

(2.134)

where a and b run over the species. Thus, in liquids, the fluctuation term does not

involve higher order (3 or 4) distribution functions.

2.5.5 Additional theoretical aspects

Before closing the section, we point out that the stress fluctuation formulas in

subsections 2.5.2 - 2.5.4 are obtained (and only valid) within the NVT ensemble, more

precisely, the NV γT ensemble, with γ the shear deformation fixed and equal to zero.

This is a consequence of the fluctuations being dependent on the ensemble used (see

Section 2.4). As the Lebowitz-Percus-Verlet transformation [38] relates the fluctuations

in different (conjugated) ensembles, the elastic moduli can be computed using other

ensembles than the one chosen here. This issue has been illustrated in some recent

works [16, 39].

It is also interesting to point out that the stress fluctuation equations for the elastic

moduli, both for the liquid and solid states, can be deduced from general thermostatis-

tical considerations, without introducing a local displacement field, as in ref.[1]. This

has been shown in detail in [40] for an isotropic system, where an affine canonical

transformation of the positions and the momenta of the particles was made, and the

shear modulus obtained via the second derivative of the free energy with respect to the

shear deformation, yielding the same equation as eq.(2.124).

2.6 Some technical issues

2.6.1 Periodic boundary conditions and minimum images method

In a molecular simulation, the number of particles is always limited. If we only

take one simulation box, there will be important surface effects. In order to calculate

macroscopic bulk properties of the model system studied, periodic boundary conditions

are to be applied [30]. In this way, a small number of particles is extended to an

infinite system. This can remove surface effects. As the Fig. 2.1 shows, the shaded box

32



represents the original simulation box, while the surrounding boxes are exact copies in

every detail. Whenever an atom leaves the simulation cell, it is replaced by another

with exactly the same velocity, entering from the opposite cell face so that the number

of atoms in the cell is conserved.

Fig. 2.1 A two-dimensional simulation box (shaded) containing 5 particles with its

nearest periodic images.

In simulations with relatively short range interactions, we only need the nearest

neighbours around the simulation box. We calculate the interactions between a particle

i in the box and all the other particles j within the range of the potential, by applying

the minimum image convention [30]. For a given range of the potential, with a cut-off

distance, the simulation box side must thus be larger than twice the cut-off distance.

2.6.2 Truncation of the pair potential and related corrections

In simulations, it is necessary to truncate the pair potential u(r) at some finite

distance r = rc (the cut-off distance), such that u(r) = 0 for r > rc. If there is discon-

tinuity of u(r) at the cut-off distance, then there must be an “impulsive correction”

to the virial expression of the pressure [41]. This can be avoided by shifting the pair

potential, imposing ush(r) = u(r) − u(rc) for r ≤ rc and ush(r) = 0 for r > rc. This
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shift will not alter the forces, so will not affect the particles trajectories. In this thesis,

we use indeed shifted pair potentials. However, this shift will not generally prevent

the first derivative of the potential, u′(r), to be discontinuous at the cut-off. As the

Born terms of the elastic constants involve second derivatives of the pair potential, it

is necessary to make another “impulsive correction” to these calculations. The issue

has been discussed in [42]. Relevant expressions will be given in Chapter 3.

To conclude this chapter, we point out that we have laid out here the theoretical

foundation for our applications in the next chapter (Ch.3). They are all concerned

with static properties. The time-dependent properties are all gathered in Chapter 4.
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Chapter 3

Static elastic properties

In this chapter, we gather static properties computed using the formalism of the

previous chapter. We have carried out three investigations. The first is the computation

of the bulk moduli of hard sphere crystals by volume fluctuations. The second is a study

of a two-dimensional glass-former: the Kob-Andersen 2d model. In the third part we

investigate stress fluctuations in model crystals, one is a simple LJ fcc crystal, the

other is an AB13 superlattice, formed by a binary mixture of repulsive particles, in the

proportion 1:13 of large and small spheres.

3.1 Bulk moduli of hard sphere crystals by volume

fluctuations

The bulk modulus is an important property of materials. From its definition,

K = −V ∂P
∂V

|T , it is possible to compute it by performing a finite (but small) pres-

sure change ∆P , and measure the change in volume ∆V , or vice versa. However, this

procedure can imply large numerical errors, especially in the regime where the pressure

is high, and where it is highly non-linear with respect to the volume change. Within

constant pressure simulations, it is possible to evaluate K from the volume fluctuations

during the simulation [30], via the relation K = kBT
〈V 〉

〈δV 2〉
, where kB is the Boltzmann

constant, 〈V 〉 is the average volume at the given thermodynamic state point (NPT )

and 〈δV 2〉 = 〈(V − 〈V 〉)2〉 is the variance of the volume (Notice that 〈...〉 indicates the
thermostatistical averages). This idea is shown to give accurate estimates of K, when

compared with other more elaborate stress-fluctuation approaches [35]. But the cases
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studied there involve situations with quite weak pressure. Here we apply this method

to a hard sphere solid, both monodisperse and polydisperse, up to high pressure, to

show first its feasibility and second its predictive power in general physically relevant

situations.

The hard sphere crystal phase has been well studied since long time [43]. The

analytical fit of the equation of state (EOS) βP (ρ), (β = 1/kBT ), proposed by Young

and Alder [44] has proven to accurately cover the whole solid region, and is robust

enough when compared to more recent simulations and EOS based on much larger

systems [45]. Once the EOS is known, the bulk modulus can be calculated by direct

derivative of P with respect to the density ρ. There exists another route to compute

the elastic constants, via the stress-fluctuation formalism [1]. This formalism has been

successfully implemented to model glass forming colloidal systems [39]. The special case

of hard spheres has been treated by Farago and Kantor [46] for the computation of its

elastic constants within the stress-fluctuation formalism. However, the implementation

of the method is quite elaborate. Furthermore, the formalism is limited to classical

pairwise potentials. This narrows its potential use for some real materials. If only

the bulk modulus is needed, then other more direct and simpler simulations can be

preferred. In the present work, we show that the widely used constant pressure (NPT )

simulations can indeed produce correctly the bulk modulus K. The method is mostly

interesting in cases where an accurate fit of the EOS does not exist, and where the

pressure varies quite non-linearly with the density, rendering a finite difference method

inaccurate.

3.1.1 Monodisperse hard sphere solid

The case of monodisperse hard sphere solid is well known. It will be used here

to check the relevance of the method. We perform constant pressure Monte Carlo

simulations [30, 41] of hard spheres solid, consisting of an fcc crystal. The simulation

box contains N = 864 hard particles of diameter σ. The reduced pressure P ∗ = βPσ3

varies from about 12 to 50. As P is proportional to T (at given ρ) for hard spheres, the

physical controlling parameter is indeed βP , instead of P and T separately. Although

the number of particles is not as large as in some recent simulations [45], it is significant
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enough for the purpose of the present work (cf. analysis in [41]). Starting from an

fcc crystal, with an initial volume V0, the system is equilibrated during 5 × 105 MC

cycles under the constant pressure P ∗
0 . Statistics are further gathered during typically

2 × 106 MC cycles. Information such as the average volume 〈V 〉, the volume variance

〈δV 2〉, and the volume distribution (V-histogram) are the main results we obtain. This

allows us to compare our simulation results with the EOS of ref. [44]. For the sake of

completeness, we display this EOS in the following form.

βP

ρ
=

3
∑

n=−1

any
n , (3.1)

where y = ρcp/ρ − 1 with the close-packing density ρcp =
√
2σ−3 (fcc structure), and

a−1 = 3, a0 = 2.566, a1 = 0.55, a2 = −1.19 and a3 = 5.95. The bulk modulus K is

thus given by the equation

βK

ρ
=

3
∑

n=−2

bny
n . (3.2)

The coefficients bn are given in Table 3.1.1. Following our simulation, the first di-

rect result is the average density ρ = N/ 〈V 〉. In Fig. 3.1, we plot ρ∗ = ρσ3 vs P ∗

and compare our results with eq.(3.1). We see that indeed, the agreement is excel-

lent. The (reduced) bulk modulus from simulations, K∗ = βKσ3, is plotted vs P ∗ in

Fig. 3.2. The simulation results are compared with eq.(3.2). Again, excellent agree-

ment is observed. However, unlike the average density ρ, the bulk modulus K-results

bear some non-negligible measurement uncertainty, which is represented by error-bars

in Fig. 3.2. They are estimated by standard deviations of K from several indepen-

dent runs. In Fig. 3.3, the volume histogram is shown for a relatively high pressure

P ∗ = 35.5. Indeed, the curve follows a Gaussian distribution, as it should, concerning

equilibrium fluctuations [47]. We stress that rather long runs are necessary in order

to have Gaussian-like volume histogram, meaning a correct sampling of the volume

fluctuations.

3.1.2 Polydisperse system

Having shown the feasibility of the method, we try to make some predictions with

it. To do this, we take a polydisperse hard sphere system, containing three components,
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NPT-mono
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Fig. 3.1 The reduced average density ρ∗ vs the reduced pressure P ∗ for monodisperse

and slightly polydisperse solids. In the monodisperse system, ρ∗ = ρσ3 and P ∗ = βPσ3.

In the polydisperse case, ρ∗ = ρσ̄3 and P ∗ = βP σ̄3. The continuous line is the analytical

EOS of the monodisperse system given by eq.(3.1). The dots represent NPT simulation

results of the monodisperse system. The dashed line is the analytical EOS of the

polydisperse system given by eq.(3.3), for P ∗ ≤ 20. The dotted line is its extrapolation

for P ∗ ≥ 20. The triangles represent NPT simulation results of the polydisperse

system.
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Fig. 3.2 The reduced bulk modulusK∗ vs the reduced pressure P ∗ for monodisperse and

slightly polydisperse solids. In the monodisperse system, K∗ = βKσ3 and P ∗ = βPσ3.

In the polydisperse case, K∗ = βKσ̄3 and P ∗ = βP σ̄3. The continuous line is given

by eq.(3.2). The circles (with error-bars) represent NPT simulation results of the

monodisperse system. The dashed line is the analytical expression for the polydisperse

system given by eq.(3.3), in the range 12 ≤ P ∗ ≤ 20. The dotted line is its extrapolation

for P ∗ ≥ 20. The triangles represent NPT simulation results of the polydisperse system

(error-bars, similar to the monodisperse case, are not shown).
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Table 3.1.1 Coefficients entering in Eqs.(3.1) and (3.2). {an} are taken from the work

of Young et al. [44], {bn} are computed using K = ρ∂P
∂ρ
. (b−2 = −a−1, b3 = −2a3, and

bn = (1− n)an − (1 + n)an+1 for n = −1 to 2).

n −2 −1 0 1 2 3

an 3 2.566 0.55 -1.19 5.95

bn -3 6 2.016 2.38 -16.66 -11.9

with the composition 1/3 for each of them, and diameters σ1 = (1− ǫ)σ0, σ2 = σ0 and

σ3 = (1 + ǫ)σ0. The mean diameter (the first moment of the size-distribution) σ̄ = σ0,

the polydispersity index I = σ̄2/σ̄2−1 = (2/3)ǫ2 (σ̄2 is the second moment of the size-

distribution). This system has been studied previously by one of us, in the framework of

the crystallisation [48]. Here we do not consider the fluid phase, because for this phase,

the well-known EOS by Mansoori et al. provides a quite accurate description of the

polydisperse fluid, at least up to the crystallisation densities. The crystallisation is out

of our scope too, because of the fractionation phenomenon accompanying the freezing

of polydisperse systems [48]. We thus limit ourselves to the crystal phase, in the same

range of the reduced pressure as for the monodisperse system, i.e. 12 ≤ P ∗ ≤ 50

(P ∗ = βP σ̄3). For low to moderate (reduced) pressure, i.e. 1.0 ≤ ρσ̄3 ≤ 1.2, an EOS

has been proposed by Bartlett [49], based on the hypothesis that the thermodynamics

of a polydisperse systems can be mapped to that of a binary mixture (through the

identification of the first three moments of the size distribution), and taking advantage

of the extensive simulations on binary hard sphere solid make by Kranendonk and

Frenkel [50, 51]. This EOS (eq.(34) of ref. [49]) leads naturally to a approximate

analytical expression for the bulk modulus K, which we shall test with our simulation

results. The EOS of ref. [49] contains 20 double-precision fitting coefficients. In the

case of a symmetric size-distribution, the number of coefficients is reduced to 9. This

number is still large, compared to the monodisperse case, showing the difficulty of

fitting the EOS of polydisperse high density systems. In the following, we display the
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EOS of ref. [49], in the case of symmetric size-distribution (relevant to our system).

βPpσ̄
3 = βPmσ̄

3 +
∑

i,j

Cij0 (ρσ̄
3)i (104 I)j (3.3)

wherePp stands for the pressure of the polydisperse system, Pm that of the monodis-

perse system (given by eq.(3.1) ) as a function of the dimensionless density ρσ̄3, the

coefficients Cijk are displayed in Table 3 of ref. [49], and I is the above-defined poly-

dispersity index. From eq.(3.3), the bulk modulus K is readily expressed to be

βKpσ̄
3 = βKmσ̄

3 +
∑

i,j

i Cij0 (ρσ̄
3)i (104 I)j (3.4)

where the Kp and Km stand respectively for the bulk modulus of the polydisperse

and monodisperse systems. Km is given by eq.(3.2). Our simulated system consists

always of N = 864 particles, with 288 particles for each species. In this work, a weak

polydispersity is taken, i.e. ǫ = 0.02. This will allow us to investigate how ρ and K

are sensitive to the polydispersity, at given P ∗. In Fig. 3.1, we plot ρ∗ = ρσ̄3 vs P ∗ for

the polydisperse system. Two points of observation can be made. First, ρ is indeed

sensitive to the polydispersity. At a given pressure, the density is sensibly lower in a

polydisperse system. This is consistent with the commonly known fact that the crystal

is destabilized by polydispersity (see e.g. ref [50]). The second observation is that the

EOS of ref. [49] coincide with our simulation results in the range of its initial domain

of fit. And not surprisingly, it deviates from simulation results outside this domain. So

extrapolation of this EOS is not correct. In Fig. 3.2, we have plotted K∗ = βKσ̄3 vs P ∗

for the polydisperse system. Here again, we see that the analytical expression eq.(3.4)

cannot be extrapolated beyond P ∗σ3 ≈ 20. On the other hand, at given P ∗, the value

of K∗ do not differ much with the monodisperse case. This result can be interpreted by

two opposite effects of the polydispersity. Actually, in a (slightly) polydisperse solid,

at given P ∗, 〈V 〉 is larger, but 〈δV 2〉 too. These two effects somehow compensate each

other in K. In Fig. 3.3, the volume histogram is shown at a rather high (reduced)

pressure P ∗ = 35.5. Compared to the monodisperse case, the distribution is shifted

to higher volumes, and is slightly broadened. Again, a fit with Gaussian distribution

represents accurately the histogram.
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Fig. 3.3 Volume-histogram at the reduced pressure P ∗ = 35.5 for monodisperse and

slightly polydisperse solids. The dots represent NPT simulation results of the monodis-

perse system. The triangles represent those of the polydisperse system. The continuous

and dashed lines represent fits by Gaussian distribution for respectively the monodis-

perse and polydisperse cases. V ∗ = V/σ3 for the monodipserse case, and V ∗ = V/σ̄3

for the polydisperse case. The histograms are scaled such that their maximum value is

one.
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3.1.3 Topical summary

In summary, we tested the feasibility of directly computing the bulk modulus from

NPT simulations, by taking the hard sphere solids. The method can cover a very large

range of the solid phase, including high pressure solid, where finite difference approach

is not appropriate. In the polydisperse case, we show first that the EOS is sensitive to

the polydispersity, and secondly, the EOS of Bartlett cannot be extrapolated beyond

its initial fitting range (of low to moderate pressures). By computing K up to P ∗ =

50, we demonstrate that these simulations can indeed provide correct K values for

high pressure polydisperse solids. Finally, we point out two opposite effects of the

polydispersity, rendering K much less sensitive to the polydispersity than the average

density does (at a given pressure). This method can find many applications for various

systems and situations, for example in the case of structural phase transition in metallic

systems, or in the case of self-organisation in complex liquids.

3.2 A glass former in two dimensions: 80-20 Kob-Andersen

model

3.2.1 Background

The classical 80-20 Kob-Andersen model (KA) [19], a binary Lennard-Jones (LJ)

bead mixture with a fraction f = 0.8 of large spheres, is an important numerical

reference model for the understanding of the glass transition in three dimensions [9,

12, 52–54]. Its recently proposed two-dimensional (2d) version, called below “KA2d

model”, has been much less investigated [55], despite the high experimental relevance

of 2d glass-forming systems [28, 56–60]. This may be due to the disappointing finding

reported in [55] that the standard KA fraction of large spheres did not show a glass

transition, but rather a crystal-like low-temperature phase. Various different fractions f

have thus subsequently been studied [55, 61–69] with the notable exception of [62] where

the classical 80-20 KA model has also briefly been considered in two dimensions. In the

present work we readdress some of the results reported in [55]. Here are general goals

of present work. One central point we want to make is merely that most computational

studies [55, 61–65, 67–69] compare configurations prepared and sampled at an imposed
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constant volume V and this in addition corresponding to an unrealistically large number

density ρ ≈ 1.2(in units of the large sphere’s diameter) [55]. Obviously, from the

experimental and application point of view one should rather control the pressure P

(or more generally the stress tensor) while the systems are quenched into the amorphous

state. Surprisingly, there exist at present only a few computational studies [8, 66] where

the 2d glass transition is investigated allowing the volume to fluctuate at an imposed

constant pressure. Following our recent study of the three-dimensional (3d) KA model

(KA3d) [70], the aim of the current work is thus to characterize the standard KA2d

model at a moderate pressure corresponding to a much smaller density ρ ≈ 1.0 in the

low-temperature limit. We show that under these conditions the KA2d model is in

fact a reasonably good glass-former, just as its 3d counterpart,and no indications of

a crystallization or other forms of long-range orientational correlations [69] have been

found. As a companion system we investigate in parallel a monodisperse Lennard-

Jones (mdLJ) system under the same external constraints. As one expects [36], this

model forms a triangular lattice below a freezing temperature Tf . We compare thus

various properties of the KA2d model glass with this reference. There exists a cusp-

singularity of shear modulus. The present study focuses on simple static and quasi-

static thermodynamic properties such as the number density ρ(T ), the compression

modulus K(T) or the shear modulus G(T) as a function of the temperature T on

both sides of the glass transition temperature Tg. The equilibrium shear modulus G is

obviously an important order parameter characterizing in general the transition from

the liquid/sol (G = 0) to the solid/gel state (G > 0) where the particle permutation

symmetry of the liquid state is lost for the time window probed [71, 72]. (Please

note that all reported shear moduli are quasi-static or transient in this sense.) As

in other related numerical studies [2, 8, 16, 40, 42, 70, 73] we shall determine the

only two relevant elastic moduli K(T) and G(T) using the stress-fluctuation formalism

[1, 4, 9, 30, 41]. In contradiction to the additive jump discontinuity predicted by the

mode-coupling theory [28, 53, 74, 75], we show that the shear modulus G(T) of the

KA2d model reveals a continuous cusp-singularity

G(T ) ≈ Gg(1− T/Tg)
α for T/Tg < 1 (3.5)
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with α ≈ 0.6. This result is in qualitative agreement with related numerical [2, 39] and

theoretical [76] work, albeit in conflict to some recent experimental work [28, 59].

We begin by presenting in subsection 3.2.2 the numerical model systems considered

and summarize the relevant stress-fluctuation relations for the determination of K(T )

and G(T ). We describe then in subsection 3.2.3 our simulation results and summarize

finally this work in subsection 3.2.4.

3.2.2 Algorithmic Details

Model Hamiltonians. For comparison we have studied two soft bead models. As

a reference we compute systems of monodisperse Lennard-Jones beads (mdLJ) [30], i.e.

we take advantage of a generic model for “simple liquids” [52] with a perfectly known

2d phase diagram [36]. Our system consists of N = 1250 particles interacting through

a shifted and truncated LJ potential. The central model of the present study is the 2d

version (KA2d) [55] of the standard 3d KA model [19]. It consists of a binary mixture

of LJ particles. We have sampled these model Hamiltonians by means of molecular

dynamics (MD) simulations [30, 41] using the LAMMPS code [29] and taking advantage

of the standard Nosé- Hoover thermostat and barostat provided by this algorithm.

The temperature coupling constant is set to 10 and the isobaric coupling constant to

25 (with both values in simulation units). A rectangular box with Ly =
√
3Lx was

used in order to be compatible with the triangular crystal phase of the mdLJ model.

For both models the average normal pressure P is kept at a constant P = 2 for all

temperatures considered as in [70]. For the mdLJ model we have carried out both

cooling and heating cycles. For the KA2d model the systems have been quenched

with a constant cooling rate of 10−5 starting from the liquid limit at T = 1. This

corresponds to the main rate discussed in [55]. We remind that areas of hexagonally

crystallized A particles in a matrix of amorphous AB material were observed for exactly

this rate and the standard fraction f = 0.8 of large spheres. Table 3.2.1 summarizes

some properties of the KA2d model discussed in the next section. We use stress-

fluctuation relations for elastic moduli. The compression modulus K(T ) and the shear

modulus G(T ) indicated in table 3.2.1 have been obtained using the relevant stress-

fluctuation relations for simulations at constant volume V and constant shear strain
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γ = 0 [1, 4, 30, 41, 70]. While the systems are quenched imposing a constant mean

pressure, i.e. the volume fluctuates while we cool, the elastic moduli are subsequently

determined for each T in the NVT-ensemble by switching off the barostat after some

tempering [8]. The compression modulus is given by the Rowlinson stress fluctuation

formula[35, 41]

K = ηA,ex − ηF,ex + Pid (3.6)

The first “affine” contribution ηA,ex is a sum of moments of first and second derivatives

of the pair potentials used. Characterizing the average energy change under an affine di-

latation strain it is related to the well-known “hypervirial” [30]. See [35, 70] for details.

The second contribution ηF,ex stands for the reduced fluctuation ηF,ex ≡ βV 〈δP̂ 2
ex〉 of the

instantaneous excess pressure P̂ex (with β being the inverse temperature) and the third

contribution Pid to the mean ideal pressure. As in related studies [2, 8, 16, 24, 40, 42, 70]

the shear modulus G may be obtained most readily using

G = µA,ex − µF,ex = µA − µF (3.7)

with µA,ex being the excess contribution to the affine shear elasticity µA = µA,id+µA,ex,

a simple average of moments of first and second derivatives of the pair potential char-

acterizing the mean energy under an affine pure shear strain. The second contribution

µF,ex ≡ βV 〈δτ̂ 2ex〉 stands for the excess contribution to the total shear stress fluctuation

µF = µF,id + µF,ex with τ̂ex being the excess contribution to the instantaneous shear

stress. Since for a shear strain at constant volume the ideal free energy contribution

does not change, the explicit kinetic energy contributions must be irrelevant for G. (An

ideal gas can not elastically support a finite shear stress.) As one thus expects, the

kinetic contributions µA,id = µF,id = Pid cancel and can be dropped when G is deter-

mined using the first equation of eq.(3.7). We note finally that since second derivatives

are relevant for ηA,ex and µA,ex, impulsive corrections must be taken into account for

the truncated and shifted potentials considered in the present work as stressed in [42].

Otherwise the shear modulus G, determined using eq.(3.7), does not vanish in the

liquid limit as it must.

3.2.3 Numerical results

Specific volume. As explained above, we impose a normal pressure P = 2 for all
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Table 3.2.1 Several properties of the KA2d model at pressure P = 2 as a function

of temperature T: number density ρ = N/V = 1/v, linear box size
√
3Lx = Ly,

Abraham parameter R = gmin/gmax [77], ideal pressure contribution Pid = Tρ to

the imposed normal pressure P = Pid + Pex, hypervirial contribution ηA,ex to the

compression modulus, compression modulus K obtained using the Rowlinson formula

eq.(3.6) [30, 35, 70], excess contribution µA,ex to the affine shear elasticity µA = µA,id+

µA,ex and shear modulus G obtained using the stress-fluctuation formula eq.(3.7). The

last five columns have the dimension energy per volume. The error bars for K and

G are of order one in these units, all other properties are known to higher precision.

Boltzmann’s constant is set to unity and all properties are given in LJ units [30].

T ρ Lx R Pid ηA,ex K µA,ex G

0.01 1.068 23.52 0.03 0.01 88.2 83.5 42.1 15.5

0.10 1.057 23.66 0.04 0.11 85.3 74.6 40.7 11.2

0.20 1.043 23.81 0.05 0.21 82.1 64.9 39.2 8.5

0.25 1.035 23.90 0.06 0.26 78.9 54.9 37.7 5.7

0.30 1.024 24.02 0.07 0.31 78.3 45.7 37.5 2.2

0.32 1.020 24.07 0.07 0.33 75.1 40.2 35.9 0.2

0.34 1.015 24.14 0.08 0.35 73.7 37.1 35.2 0

0.36 1.011 24.18 0.08 0.36 74.4 37.7 35.5 0

1.00 0.819 26.87 0.29 0.82 42.7 9.2 20.1 0

systems considered. If the systems are cooled down, the number density ρ(T ) must

thus increase (Table 3.2.1) and the specific volume v(T ) = 1/ρ(T ) per particle must

decrease. This is shown in Fig. 3.4 for both models. A jump singularity is observed

for v(T ) at the freezing temperature Tf ≈ 0.62 of the mdLJ model. This jump is

of course a consequence of the first order phase transition from the liquid phase to

the crystalline state [1, 33, 36]. At variance with this, the KA2d model changes more

gradually with linear slopes fitting reasonably both the low- and the high-T limits. The

observed (more or less) sudden change of the tangent slopes at the glass transition may

be used to operationally define Tg [12] by matching the indicated two lines as done in
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Fig. 3.4 Rescaled specific volume v(T ) vs. temperature T for both models considered.

The freezing temperature Tf ≈ 0.62 for the mdLJ model and the glass transition

temperature Tg ≈ 0.35 for the KA2d model are indicated by vertical lines.

various recent numerical studies [8, 55, 70]. Using this calorimetric criterion we obtain

Tg ≈ 0.35 for the KA2d model. This is slightly smaller than the corresponding value

Tg ≈ 0.41 for the KA3d model at P = 1 [70]. We remind that for the poly- disperse

purely repulsive LJ system (pdLJ) considered in [5, 42, 70, 78] the same criterion

yields a glass transition temperature of only Tg ≈ 0.26 at the same pressure P = 2.

In qualitative agreement with [61] this suggests that, having a much larger Tg, the

KA2d model should be a more promising numerical model for investigations of the

glass transition in two dimensions.

Radial distribution functions. One of the conclusions of [55] is that the KA2d

model with a fraction f = 0.8 of large spheres should crystallize instead of forming an

amorphous glass at low temperatures. In order to clarify this issue for our constant

pressure systems, we compare in the main panel of Fig. 3.5 the radial pair-distribution

function (RDF) of the mdLJ crystal at T = 0.3 (spheres) with the (total) RDF g(r) of

the KA2d system for T = 0.1(solid line). Whereas the former system becomes clearly
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crystal-like with long-range spatial correlations (at least if boundary conditions with

Ly =
√
3Lx are used), we find for the KA2d model that g(r) ≈ 1 for r > 4 as is

typical for an amorphous substance. The amorphous, non-crystalline behaviour is also

confirmed using the corresponding structure factor S(q) in reciprocal space (not shown)

and more readily by inspection of snapshots such as the one for T = 0.2 shown in the

inset of Fig. 3.5. We use R-parameter criterion. An additional empirical criterion

for the liquid-to-solid/glass transition has been proposed by Abraham [77]. It uses

the temperature dependence of the so-called R-parameter defined by R ≡ gmin/gmax

with gmax being the main peak of the radial pair-distribution function (RDF) and gmin

its subsequent minimum. As shown in Fig. 3.6, R(T) shows for the mdLJ model a

jump discontinuity at Tf ≈ 0.62 consistent with Fig. 3.4. Although the criterion was

suggested originally only for a one-component system, we extend it here to our binary

mixture in two ways by using either the total RDF g(r) sampled over all beads or the

RDF g11(r) considering only the large spheres. The R-parameter obtained from the

latter distribution is shown by the diamonds. The glass transition temperature may

be obtained by matching the low- and the high-temperature linear slopes indicated in

the figure. We get Tg ≈ 0.35 as above from the specific volume v(T ).

Compression modulus. We turn now to the two elastic moduli, the compression

modulus K(T ) and the shear modulus G(T ), which characterize completely the linear

elastic response of both models even in the triangular phase of the mdLJ model. The

temperature dependence of the compression modulus K (circles) and its contributions

ηA,ex (squares) and ηF,ex (triangles) is presented in Fig. 3.7. The affine hypervirial con-

tribution ηA,ex(T ) is seen in both cases to increase more or less linearly with decreasing

temperature. As seen in panel (b) for the KA2d model, one may determine again a

transition temperature from the intercept of the low- and the high-T tangent slopes.

This criterion suggests a glass transition temperature Tg ≈ 0.32 which is consistent,

albeit slightly smaller than the one obtained above. The excess normal pressure fluctu-

ation contribution ηF,ex(T) shows a striking peak at the freezing temperature Tf ≈ 0.62

of the mdLJ model and vanishes then rigorously for T → 0. Since in this limit the

ideal pressure contribution Pid vanishes also, the compression modulus K(T = 0) is

completely determined from the affine contribution ηA,ex. This is expected for sim-
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Fig. 3.5 Main panel: Radial pair-distribution function g(r) vs. distance r for two low-

temperature states of both models. While long-range correlations are visible for the

mdLJ model (small circles), no long-range order is seen for the KA2d model where

g(r) → 1. Inset: Snapshot for T = 0.2 ≪ Tg confirming the amorphous structure of

the KA2d model. Open/filled circles correspond to the large/small beads.
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ple lattice models with one atom per unit cell [73]: if the zero-temperature triangular

lattice is strained in an affine manner by changing the simulation box, all beads re-

main mechanically stable and there are no non-affine displacements relaxing the strain

energy. As seen in panel (b), this is different for the KA2D model where ηF,ex(T ) de-

creases below Tg ≈ 0.32 but does not vanish at T = 0 as indicated by the horizontal

arrow. As explained in detail, e.g., in section 4 of [40], the forces on the particles of

an affinely strained amorphous body do normally not vanish which leads to non-affine

displacements lowering the strain energy and, hence, the modulus. It is for this rea-

son that the affine contribution ηA,ex(T = 0) ≈ 88 only sets an upper bound to the

modulus K(T = 0) ≈ 84 with ηF,ex(T = 0) ≈ 4 measuring the energy reduction due

to the non-affine displacements. The compression modulus K(T) of the KA2d model

thus increases strongly below Tg ≈ 0.32 but does not reach ηA,ex(T ) as is the case for

the mdLJ model at T = 0.

Shear modulus as a function of temperature. Our numerical results for

µA,ex(T ), µF,ex(T ) and G(T ) are presented in panel (a) of Fig. 3.8 for the mdLJ model

and in panel (b) for the KA2d model. Note that the simple average µA,ex(T ) is con-

tinuous in both cases increasing monotonously with decreasing temperature, as may

be expected due to the increasing density, with similar (albeit not identical) numer-

ical values for all temperatures. (The observed change of the tangent slope for the

KA2d model is too weak to allow a precise determination of Tg.) For both models

the stress fluctuation contribution µF,ex(T ) to the shear modulus G is identical in the

liquid high-T limit to the affine shear elasticity µA,ex. This is expected from eq.(3.7)

and the fact that the shear modulus of a liquid must vanish. µF,ex(T ) shows a maxi-

mum at, respectively, Tf ≈ 0.62 for the liquid-solid and Tg ≈ 0.32 for the liquid-glass

transition. While µF,ex(T ) vanishes rigorously in the low-T limit for the mdLJ model

due to the simple triangular lattice adopted [73], µF,ex(T ) is seen to level off for the

KA2d model (horizontal arrow). In agreement with the discussion of the compression

modulus K above, this confirms that an affine shear does neither lead for an amor-

phous body to a mechanically stable configuration and a finite energy per volume

µF,ex(T = 0) ≈ µA,ex(T = 0)/2 of the strained ground state system can be relaxed

by non-affine displacements as discussed elsewhere [5, 16, 40, 42, 70, 73, 78]. As one
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Fig. 3.7 Compression modulus K(T) and its contributions ηA,ex(T ) and ηF,ex(T ) ac-

cording to the Rowlinson stress-fluctuation formal eq.(3.6) : (a) Data for the mdLJ

model. K(T ) vanishes at the phase transition at Tf ≈ 0.62. The stress fluctuation

contribution ηF,ex(T ) vanishes for T → 0. (b) Data for the KA2d model showing a

similar, albeit slightly smaller transition temperature Tg ≈ 0.32 as above. ηF,ex(T )

does not vanish for T → 0.
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expects for the mdLJ model, a clear jump singularity at Tf ≈ 0.62 is observed in

panel (a) for the stress fluctuation contribution µF,ex and (consequently) for the shear

modulus G = µA,ex − µF,ex. At striking variance with this a continuous behaviour is

observed for µF,ex(T ) and G(T) at the glass transition of the KA2d model. Confirming

qualitatively the cusp-singularity found in [70], a power law with G = Gg(1 − T/Tg)
α

and Gg ≈ 16.5, Tg ≈ 0.32 and α ≈ 0.6 seems to fit our data. This is better seen from

the zoom on the glass transition region given in the inset of Fig. 3.8 (b). We remind

that a slightly lower exponent α ≈ 1/2 was fitted for the KA3d model in our previous

work [70] as may be seen from the rescaled data (diamonds) included in the inset.

Whether the weak difference of the exponents reflects a fundamental effect due to the

different spatial dimensions, as suggested by the recent work of Flenner and Szamel

[69], or whether it should merely be attributed to the small system sizes used, can

currently not be answered. Larger systems and, more importantly, longer trajectories

are warranted to clarify this question.

Sampling time dependence of stress fluctuations. As already emphasized

elsewhere [8, 16, 70], the convergence with sampling time of the stress fluctuation

relations for the elastic moduli eqs. (3.6) and (3.7) may be slow even for permanent

elastic networks and one thus has to check whether sufficiently large trajectories have

been used to determine reliable long-time estimates. The reason for this is that, while

the simple means ηA,ex and µA,ex converge essentially immediately, the stress fluctuation

contributions ηF,ex and µF,ex become sampling-time dependent properties η̄F,ex(∆t) and

µ̄F,ex(∆t) if sampled over trajectories of finite lengths ∆t. Please note that this has

apriori nothing to do with an insufficient equilibration or ageing of the systems, but

stems from the fact that the stress-fluctuations simply need time to explore the available

phase space. Our results for this topic will be shown in the next chapter, with other

time-dependent properties. We note here briefly that indeed, a strong dependence has

been observed, especially around the glass transition.

3.2.4 Topical conclusions

To summarize, we have investigated by means of molecular dynamics simulations

the glass transition of the two- dimensional version of the Kob-Andersen model with a
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Fig. 3.8 Affine shear elasticity µA,ex (squares), shear stress fluctuation µF,ex(triangles)

and shear modulus G = µA,ex−µF,ex (circles) vs. temperature T: (a) For mdLJ systems

G(T ) reveals a striking jump discontinuity at Tf ≈ 0.62. (b) The continuous increase

of G(T) for KA2d systems below Tg ≈ 0.32 shows a cusp-singularity with α ≈ 0.6.

µF,ex (triangles) does not vanish for T → 0. Inset: Zoom on the glass transition region

plotting G(T ) = Gg vs. x = T/Tg for the KA2d model (Tg = 0.32,Gg = 16.5) and the

KA3d model (Tg = 0.41, Gg = 24.5). The lines indicate equation eq.(3.5) with α = 0.6

for the KA2d model and α = 0.5 for the KA3d model.
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fraction f = 0.8 of large spheres (as in the standard 3d KA model [19]. In contrast with

other recent studies [55, 61–65, 67–69], one moderate mean pressure of order unity has

been imposed for all temperatures considered. We have compared our KA2d model

with a simple companion model provided by monodisperse LJ beads (mdLJ). Using

calorimetry (Fig. 3.4), the radial pair-distribution function (Fig. 3.5), the R-parameter

characterization of the radial pair-distribution function (Fig. 3.6), the compression

modulus K (Fig. 3.7) and the shear modulus G (Fig. 3.8) it has been demonstrated that

this KA2d version is a reasonably good glass-former with a glass transition temperature

Tg ≈ 0.3. Interestingly, as in [70] a slightly smaller glass transition temperature Tg

is fitted from the elastic moduli (Tg ≈ 0.32) as from the specific volume or the R-

parameter (Tg ≈ 0.35). We emphasized that the computation of the shear modulus

using the stress-fluctuation relation eq.(3.7) depends strongly on the sampling time ∆t.

This makes the determination of the equilibrium shear modulus of the amorphous solid

below Tg more delicate than the one of a simple crystal. As one expects, G(T ) reveals

for the mdLJ model a jump singularity at the freezing temperature Tf ≈ 0.6. More

importantly, we observe for the KA2d model a continuous cusp-singularity below the

glass transition temperature (Fig. 3.8 b) confirming thus recent numerical work using

similar glass-forming colloidal systems in two and three dimensions [70].

Discussions. We note here that all the presented plateau values G(T), especially

for the KA2d model [79], correspond strictly speaking to intermediate (albeit perhaps

rather large) shoulders of µA,ex−µ̄F,ex(∆t). Note that G(T ) is only finite below Tg ≈ 0.3

since on the time scale ∆t available numerically the particle permutation symmetry of

the liquid state is lost [71]. As discussed in [70], if trajectories of increasing lengths

are compared, G(T ) becomes monotonously smaller, Tg is shifted to smaller values and

the glass transition becomes sharper. The phenomenological exponent α(∆t) charac-

terizing the cusp-singularity eq.(3.5) should thus decrease somewhat with the sampling

time ∆t. It is thus possible that the jump discontinuity (α → 0) predicted by mode

coupling theory may be recovered by appropriately extrapolating α(∆t) for larger sam-

pling times ∆t.

It is of course necessary to investigate in future work larger systems. Prelimi-

nary tests with systems comprising N = 10000 particles suggest, however, that all
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the reported properties are system size independent, especially no indication for a

crystallization has been observed. Even more importantly, as already stated above,

future studies should focus on sampling time effects. This should also allow to verify

whether the amorphous low-temperature state (Fig. 3.5) remains stable and no addi-

tional static long-range correlations (of perhaps Kosterlitz-Thouless-type as suggested

in [69]) may become relevant. In view of recent experimental trajectory measurements

on 2d glass-forming colloidal systems [28, 58–60] it is also important to analyse the

Fourier transform of the displacement fields and other wavevector dependent static

and dynamical properties [69].

3.3 Shear stress fluctuations in simple and complex crystals

In this section we calculate the elastic constants of two model crystals, using the

stress fluctuation formalism. The two model are the Lennard-Jones system, and a

binary mixture of repulsive particles in 1:13 portion, the AB13 system. Our focus will

be mainly to point out the importance of the fluctuation terms in crystals, since this

term is usually neglected in classical calculations of the elasticity of crystals [7].

3.3.1 Lennard-Jones model system

The Lennard-Jones model is the most popular one in molecular simulations. At low

temperatures, it forms a fcc crystal [80]. It is the one used by Squire et al. for the first

calculation of the elastic constants in solids by the stress fluctuation formalism [1]. We

revisit here the model by considering it as a simple crystal.

Simulation details

In our molecular dynamics simulation, we use NPT and NVT ensembles. The

Lennard-Jones potential between a pair of particles at a distance r is

uLJ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

. (3.8)
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In practice, a shifted version is used:

uLJsh(r) =











4ǫ
[

(

σ
r

)12 −
(

σ
r

)6
]

− u0, r < rc

0, r ≥ rc

(3.9)

where rc is the cutoff distance of the potential, and u0 = uLJ(rc). All units are

reduced by σ, ǫ and m (m being the mass of a particle). We chose rc = 2.5 in our

simulations. For the heating or cooling or equilibrium processes, NPT ensemble is

used while for the statistical calculations NVT ensemble is used. At the beginning, the

configuration of our system is obtained at T = 0.4. Then we have done two types of

work including cooling and heating. The processes are as follows : First, cooling or

heating the system. We cool or heat the system from the initial configuration (T=0.4)

to the next temperature (for example, T = 0.3 or T=0.5) using NPT ensemble and

the cooling or heating rate is 10−5. The MD integration time step is 0.005 in reduced

units. Second, we equilibrate the system by 2×106 timesteps using NPT ensemble. In

order to keep the pressure at the fixed value (here 1.0), we calculate the average volume

during the equilibrium process and change the volume of the last configuration of the

equilibrium process to this average volume before running again 1×106 timesteps. The

MD integration time step is still 0.005 in reduced units. Third, we collect the statistics

by running 2 × 106 timesteps using NVT ensemble. The MD integration time step is

0.0025 in reduced units.

On the one hand, the cooling process of the configurations as the Table 3.3.1 shows.

At every temperature point, the same three steps are repeated. On the other hand,

we heat the configuration at T = 0.4 to the configuration at T = 0.5 and the heating

rate is 10−5, then we reproduce the same three steps as above. The same run is done

for other temperatures as the Table 3.3.1 shows. By checking the specific volume (see

below), we see that the melting temperature Tm is located at 0.8 < Tm < 0.85. Thus

more temperature points are examined in this range.

3.3.2 Numerical results

Specific volume. We first examine the evolution of the specific volume v = V/N

as a function of the temperature. From the graph Fig. 3.9, we can see that there is a
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Table 3.3.1 Lennard-Jones system. Temperature points studied by cooling or heating

a reference equilibrium system at T = 0.4 (crystal). The pressure is P = 1 throughout.

Process Temperature

Cooling 0.4 0.3 0.2 0.1 0.05 0.01

Heating 0.4 0.5 0.6 0.7 0.8 0.81

0.81 0.82 0.83 0.84 0.85 0.86

0.86 0.88 0.9 1.0 1.1 1.2
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N = 1372, P ~ 1.0, T = 0.01-1.2

Fig. 3.9 The specific volume as a function of the temperature for LJ model system.

The pressure is fixed at P = 1.

jump along the curve v(T ), which indicates the phase transition from crystal to liquid

for LJ model system. The melting (freezing) temperature is about Tm = 0.84.

Structural information. We studied the radial distribution function of the system

for several temperatures. From the graph Fig. 3.10, we can see that when T = 0.1,

the LJ model system shows that it has the regular long distance structure as the peaks
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Fig. 3.10 Radial distribution function for LJ model system at different temperatures

(T= 0.1, 0.83, 0.84,1.0), from the most structured to the less structured curves. Note

that the melting temperature is Tm = 0.84 (see Fig. 3.9).

indicate. When T = 1.0, the LJ model system shows that it is in disorder at long range

as the radial distribution function at long distances is close to 1. The radial distribution

function changes qualitatively from T = 0.83 to T = 0.84, which corresponds to the

phase transition. The temperature for the phase transition is about 0.84. This confirms

the results above based on the specific volume.

Elastic constants. For cubic crystals, only three of the Cαβχκ elastic constants

are nonzero and independent as follow : C11, C12, C44 where Voigt notation is used.

We refer to the work of B. Schnell et al.[8] and have obtained the elastic constants and

fluctuation terms of the elastic constants for LJ model system and their dependence on

temperature at NVT ensemble. The results are as follow. C11 is the average of Cxxxx,

Cyyyy and Czzzz and C12 is the average of Cxxyy, Cxxzz and Cyyzz. C44 is the average of

Cxyxy, Cxzxz and Cyzyz. During the calculation, impulsive correction is imposed on the
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elastic constants[42]. The impulsive correction formula is as follows :

CB
αβχκ = CBcut

αβχκ +∆CB
αβχκ, (3.10)

where CBcut
αβχκ are results without impulsive corrections, and ∆CB

αβχκ are the impulsive

corrections. For a cubic crystal, they can be written, in an “isotropic” approximation,

as

∆CB
44 = ∆µB,

∆CB
11 = 3∆µB,

∆CB
12 = ∆µB (3.11)

where

∆µB = − 8π3/2

5Γ(3/2)
(ρσ3)2

ǫ

σ3
f(rc)g(rc) (3.12)

with f(rc) = [1 − (r0/rc)
6]/r3 with r0 = 21/6 at which the potential uLJ is minimum.

The Γ(3/2) is a gamma function and equal to
√
π/2. f(rc) is the force strength between

particles at distance rc, the cutoff distance. g(rc) is the radial pair distribution function

at cutoff distance.

Our results for the elastic constants (in the solid range) are gathered in Fig. 3.11,

where we have plotted the elastic constants C11, C12 and C44 as functions of the tem-

perature, as well as their fluctuation contributions. Whereas the constants themselves

increase when the temperature is lowered, the opposite trend is observed for their fluc-

tuation contributions. We can see that all the fluctuation terms go to 0 when the

temperature decreases to 0. This result is obtained by making a linear extrapolation

of our results at low temperatures. When T = 0, according to the formulas given in

the previous section, the Born terms of the elastic constants are equal to the value

of the elastic constants. The results from the linear extrapolation for the Born terms

at low temperatures and the direct calculation at T = 0 are almost the same. Our

numerical results are also displayed in Table 3.3.2. We have compared our results with

some previous (few) calculations, for example in [1]. The agreement is excellent.

The shear modulus G can be computed by G = µ− P = C44 − P . From Fig. 3.12,

we can see that the shear modulus of the system decreases linearly when temperature

increases from 0.0 to 0.83, then it suddenly becomes zero at T = 0.84, which corresponds
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Fig. 3.11 The elastic constants and the fluctuation terms of the elastic constants for LJ

model system as a function of the temperature (in the solid region). The upper group

of three (curves with hollow shapes) represent the total elastic constants, in decreasing

order C11, C44 and C12. The lower group of three (curves with solid shapes) represent

the fluctuation parts, in decreasing order C11f , C12f and C44f . The pressure is P = 1.
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Table 3.3.2 Elastic constants and the relevant fluctuation terms of elastic constants at

different temperatures for LJ system (LJ3d) in solid state (fcc crystal). We recall that

P = 1 throughout, and the melting temperature is Tm = 0.84.

Fluctuation terms Elastic constants

T C11f C12f C44f C11 C12 C44

0.00 -0.03 -0.02 0.00 108.92 61.46 61.45

0.01 0.64 0.38 0.28 107.90 60.82 60.95

0.05 3.33 1.98 1.39 103.68 58.22 58.92

0.10 6.42 3.79 2.79 97.78 54.80 56.01

0.20 12.96 7.62 5.44 85.50 47.58 50.19

0.30 18.48 10.39 7.96 75.74 41.97 45.02

0.40 24.52 13.74 10.26 65.78 35.82 40.12

0.50 28.17 14.64 12.38 58.62 32.28 35.56

0.60 35.19 18.82 14.36 47.62 25.17 30.82

0.70 40.81 21.11 16.48 37.86 19.80 25.78

0.80 45.37 21.74 18.44 28.62 15.52 20.30

0.81 48.17 24.05 18.66 25.22 12.72 19.62

0.82 48.76 24.20 18.93 24.00 12.09 18.88

0.83 49.37 24.12 19.16 22.94 11.74 18.22
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Fig. 3.12 The shear modulus G as a function of the temperature for LJ model system.

The pressure is P = 1. Also plotted is the second “shear” modulus G′ defined by

G′ = (C11 − C12)/2− P .
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Fig. 3.13 The bulk modulus K as a function of the temperature for LJ model system.

The pressure is P = 1.

to the phase transition temperature. This result is consistent with the behaviour of the

specific volume. In an isotropic systems, a second formula for µ is µ′ = (C11 −C12)/2,

giving a second formula for G, i.e. G′ = µ′ − P = (C11 − C12)/2 − P . We show that

above the phase transition temperature, for the LJ liquid, G and G′ are both equal

to zero. While below this temperature, the curves are quite distinct, with G > 2G′.

This means that the LJ fcc crystal is quite anisotropic. The bulk modulus is calculated

by K = (C11 + 2C12 + P )/3. We have plotted in Fig. 3.13 its evolution with the

temperature, both at the solid and the liquid states. We can see that the bulk modulus

for the system decreases almost linearly when the temperature increases. But the slope

are quite different in each state, being strong in the solid, and quite weak in the liquid.

At T = 0, we have K ≈ 80, whereas at T = 0.8 (solid), K ≈ 20. In the liquid

side, T > 0.84, K does not exceed 10. At the transition, K is not well defined, so

its numerical value in the plot may be accidental. Our numerical results are shown in

Table 3.3.3. To summarize, we characterized the elastic properties of the LJ model
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Table 3.3.3 Shear modulus G, bulk modulus K and specific volume v for LJ3d model

system, as a function of the temperature. The “second” shear modulus, G′, is defined

by G′ = (C11 − C12)/2 − P . Results for T = 0 are extrapolations of T > 0 data. The

pressure is P = 1 throughout, and the melting temperature is Tm = 0.84.

T G G′ K v

0.00 60.45 22.73 77.61 0.92

0.01 59.94 22.54 76.85 0.92

0.05 57.92 21.73 73.71 0.92

0.10 55.01 20.49 69.46 0.93

0.20 49.19 17.97 60.55 0.94

0.30 44.01 15.88 53.56 0.96

0.40 39.13 13.99 46.14 0.98

0.50 34.55 12.17 41.39 0.99

0.60 29.83 10.24 32.98 1.02

0.70 24.78 8.04 26.15 1.04

0.80 19.31 5.55 20.22 1.08

0.81 18.63 5.26 17.22 1.08

0.82 17.89 4.97 16.39 1.09

0.83 17.23 4.61 15.80 1.09

0.84 -0.15 -0.15 13.71 1.22

0.85 0.07 -0.01 10.43 1.24

0.86 0.03 -0.05 11.54 1.25

0.88 0.01 0.03 10.31 1.26

0.90 0.04 -0.01 10.45 1.27

1.00 -0.01 0.07 8.59 1.33

1.10 0.01 0.11 6.48 1.40

1.20 0.04 -0.03 5.29 1.47
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system using the stress fluctuation formalism. These results will serve as references

when we tackle a more complex crystal, the AB13 superlattice.

3.3.3 AB13 model system

The superlattice formed by a binary mixture of hard spheres with a diameter ratio

of σB/σA = 0.58, with the composition of one A-particle for 13 B-particles is a quite

complex crystal [10]. The A particles form a simple cubic lattice. Inside each cube there

is a centered icosahedra of 13 B particles. Because of a rotational freedom, each unit

cell contains 8 cubes, that is 112 particles. This structure was found by experiments,

theory and simulations of colloids, at high packing fraction. We use here this crystal

as an example of complex crystals. In Figs. 3.14 and 3.15, the superlattice structure

at T = 0 is shown.

(a) (b)

Fig. 3.14 Basic units of the primitive cell of the AB13 superlattice.

Simulation details

Again, in our molecular dynamics simulations, we use NPT and NVT ensembles.

The potential between a pair of particles i and j, of species α and β, is

uαβ(riα,jβ) =











4ǫαβ

[

(

σαβ

riα,jβ

)12

−
(

σαβ

riα,jβ

)6
]

+ ǫαβ 0 < riα,jβ < r0αβ

0, riα,jβ > r0αβ

(3.13)

where r0αβ = 21/6σαβ is the position of the minimum of the LJ pair potential. Thus the

pair potential is purely repulsive. Both the potential and its first derivative are zero
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(a) (b)

Fig. 3.15 The primitive cell of the AB13 superlattice. (a) Front view. (b) Side view.

at the cutoff. Therefore no impulsive correction is needed here. We present the pair

potential in Fig. 3.16. The units correspond to the large spheres. We suppose the same

mass for both species mA = mB = 1, ǫAA = ǫBB = ǫAB = 1. σAA = 1, σBB = 0.58 and

σAB = (σAA + σBB)/2 = 0.79. The particle numbers are NA = 64, NB = 13NA = 832,

so the total number is N = 896. This potential is qualitatively close to hard sphere

potentials. But it is continuous, allowing normal MD simulations with the LAMMPS

code. The system is dense, under a pressure of P = 114 in order to stabilize the crystal

phase.

We follow the same procedure as the case of LJ system. Here the starting tempera-

ture is T = 1 (solid). It is cooled down to T = 0, and heated up to T = 3.5. Between 0

and 3.5, several temperatures have been examined (see Table 3.3.4). The pressure was

always fixed at the same value. So the heating and cooling are done using the NPT

ensemble (rate 10−5). The equilibration is done using NPT as well. The statistics are

gathered using the NVT ensemble.

3.3.4 Numerical results

We present the results in the same order as the LJ system.

First, we look at the specific volume. From the graph Fig. 3.17, we can see that

there is a jump point along the curve v(T ), which implies the phase transition from

crystal to liquid for AB13 model system. The melting temperature is about Tm = 2.1.
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Fig. 3.16 Potentials for AB13 model system. Species 1 stands for A particles, 2 for B

particles. Distances are measured by units of σA, potentials by ǫAA.

Table 3.3.4 AB13 system. Temperature points studied by cooling or heating a reference

equilibrium system at T = 1.0 (crystal). The pressure is P = 114 throughout.

Process Temperature

Cooling 1.0 0.8 0.6 0.4 0.2 0.1 0.05

Heating 1.0 1.2 1.4 1.6 1.8 2.0 2.02

2.02 2.04 2.06 2.08 2.1 2.2 2.3

2.3 2.4 2.5 3.0 3.5
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Fig. 3.17 Specific volume (v = V/N) as a function of temperature for AB13 system.

The pressure is fixed at P = 114. All units refer to the large spheres.
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Fig. 3.18 Radial distribution functions of AB13 system at temperature T = 0.1.

Next, we calculate the RDF for a few temperatures. Fig. 3.18 shows the RDFs

at very low temperature, T = 0.1. We see that the curves of different pairs have

pronounced peaks, and they subsist at long distances. This means that the system is

well structured (low temperature crystal).

In graph Fig. 3.19, the radial distribution functions for two higher temperatures

are displayed . When the temperature is 2.0, the number of peaks reduces and the

peaks become wider and lower than the T = 0.1 case, which reflects some disorder in

the system. But still, the RDFs are crystal-like. So we are close to the melting. When

the temperature is 2.1, the radial distribution functions of A particle and B particle

become about 1 at long range, which is the feature of a liquid. As a result, the system

undergoes the melting phase transition at this temperature. This is consistent with

the specific volume result.

Now we characterize the elastic constants for the solid state. As before, we have

three independent constants, the system being a cubic superlattice. From the graph

Fig. 3.20, we can see that all the elastic constants for AB13 model decrease linearly

when the temperature increases. Their values are much higher than the LJ system,

because of the very high pressure here. On the other hand, we have, as previously, C12
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Fig. 3.19 Radial distribution functions of AB13 system at two different temperatures

(2.0, 2.1).

close to C44, and C11 about two to three times larger.

Now, it is interesting to examine the fluctuation terms. From the graph Fig. 3.21,

we see that these fluctuation terms almost increase linearly when the temperature

increases. Remarkably, their values don’t go to zero when the temperature reaches

zero. This is at odds with the situation of the fcc crystal. For C11 and C44, these

fluctuations are about 50, whereas for C12 it is actually negative! This shows the

importance of taking the fluctuations terms into account, when computing the elastic

constants, even at T = 0. In Table 3.3.5, detailed results for the AB13 solid are

gathered.

The shear modulus is of course examined. We recall that G = C44 − P , and the

alternative shear modulus is G′ = (C11 − C12)/2 − P . From Fig. 3.22, we see that

the shear modulus for AB13 system decreases when temperature increases from zero

to 2.0. Then it becomes zero when temperature is above 2.1, which means that the

melting transition happens at this temperature. This is again consistent with the

specific volume behaviour. If we compare G and G′, we see that they are very close,

with G slightly larger. This shows that the AB13 crystal is much more isotropic than
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Fig. 3.20 Elastic constants vs. temperature for AB13 crystal.
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Fig. 3.21 Elastic constants fluctuation terms vs. temperature for AB13 crystal.
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Table 3.3.5 Elastic constants and fluctuation terms of elastic constants at different

temperatures for AB13 model system in solid state (AB13 superlattice). The pressure

is P = 114. The melting temperature is Tm = 2.1.

Fluctuation terms Elastic constants

T C11f C12f C44f C11 C12 C44

0.0 37.41 -12.56 49.88 1603.74 600.84 538.41

0.05 53.15 -7.54 54.64 1579.67 592.86 531.20

0.1 68.89 2.52 59.40 1555.60 584.88 523.99

0.2 97.37 9.86 66.43 1513.31 565.63 511.11

0.4 158.40 41.34 80.88 1422.28 518.30 482.82

0.6 223.59 78.55 95.14 1325.24 464.71 454.16

0.8 280.68 106.39 110.23 1236.04 421.10 425.21

1.0 333.95 130.81 125.26 1155.05 382.71 398.09

1.2 410.07 178.18 138.03 1045.65 319.79 371.59

1.4 455.57 198.38 150.77 969.55 284.93 345.94

1.6 499.56 213.93 163.65 899.79 257.09 322.47

1.8 534.82 219.87 176.45 835.99 237.70 297.87

2.0 572.70 227.52 188.31 767.15 216.13 273.62
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Fig. 3.22 Shear modulus as a function of the temperature for AB13 system, in both

liquid and solid states. The pressure is fixed at P = 114. G is the real modulus, G′

comes from an alternative definition G′ = (C11 − C12)/2− P .

the fcc crystal.

The last elastic quantity shown is the bulk modulus K. From the graph Fig. 3.23,

we can see that the bulk modulus for the AB13 system decreases when the temper-

ature increases. There exists a singularity when temperature is about 2.1 (transition

temperature). Again, the slope in the solid is much larger than the one in the liquid.

At T = 0, this modulus is very important, K ≈ 1000, about ten times the pressure.

Near the transition, it is about 400, roughly four times the pressure. We also notice

very little variation of K just below and just above Tm. This should be related to the

more isotropic feature of the solid (than the fcc crystal). Numerical results for these

quantities are gathered in Table 3.3.6.

To summarize, our comparison of simple and complex crystals shows a difference

in behaviour of the fluctuation terms at low temperatures. We also detected a more

isotropic character of the AB13 superlattice. To our knowledge, the present results on
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Table 3.3.6 Shear modulus G, bulk modulus K, system volume V and box length L for

AB13 model system for 0 ≤ T ≤ 3.5. We recall that N = 896, P = 114, Tm = 2.1, and

G′ = (C11 − C12)/2− P . Results at T = 0 are extrapolations of the data for T > 0.

T G G′ K V L

0.00 424.45 387.50 973.12 173.06 5.58

0.05 417.24 379.45 959.78 173.45 5.58

0.10 410.03 371.40 946.44 173.84 5.58

0.20 397.15 359.88 919.51 174.65 5.59

0.40 368.97 338.14 857.58 176.38 5.61

0.60 340.42 316.52 789.47 178.24 5.63

0.80 311.47 293.73 730.66 180.25 5.65

1.00 283.99 272.07 678.19 182.32 5.67

1.20 257.70 249.04 599.71 184.68 5.69

1.40 232.18 228.55 551.06 187.18 5.72

1.60 208.48 207.36 509.32 189.75 5.75

1.80 184.06 185.33 475.07 192.69 5.78

2.00 160.75 164.85 430.36 196.05 5.81

2.02 158.47 161.69 424.43 196.15 5.81

2.04 155.63 159.48 439.01 196.49 5.81

2.06 152.25 157.07 407.50 196.79 5.82

2.08 149.88 154.17 377.94 197.23 5.82

2.10 1.30 -0.18 455.14 206.91 5.91

2.20 -0.92 -0.67 436.22 212.41 5.97

2.30 -1.50 -0.50 427.94 213.76 5.98

2.40 -0.83 -1.07 427.98 215.16 5.99

2.50 -2.82 -1.20 428.09 216.44 6.00

3.00 -1.82 -0.94 418.19 222.99 6.06

3.50 -0.18 -0.36 388.49 229.14 6.12
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Fig. 3.23 Bulk modulus vs. temperature for AB13 model

the elastic constants of AB13 crystal are the first ones. They will be completed with

time-dependent properties displayed in the next chapter.
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Chapter 4

Time-dependent properties

4.1 Introduction

In this chapter we investigate time-dependent properties. Some of them are numeri-

cal issues, such as the sampling time dependence of the physical quantities we compute,

especially the stress fluctuations. Others are the intrinsic dynamical properties of the

systems investigated, for example the shear-stress autocorrelation function C(t), the

shear-stress mean square displacement h(t), the shear-stress relaxation modulus G(t),

the relationship between them, and their behaviour with the thermodynamic condi-

tions. Another interesting property is the dynamic moduli, which can be obtained

by sine and cosine transforms of G(t). These are important mechanical properties of

materials that are accessible to the experiments. We shall show that they can also be

computed quite accurately and efficiently by our equilibrium MD simulations. Most

of the theoretical formalism is based on ref.[16–18, 40]. Our investigations are focused

on four systems: monodisperse two-dimensional Lennard-Jones (LJ2d) system, KA2d

system, monodisperse three-dimensional Lennard-Jones (LJ3d) system and the AB13

system.

4.2 Sampling-time dependence of the stress fluctuations

In the stress fluctuation formalism, the static shear modulus G is calculated ac-

cording to

G = µA − µF (4.1)
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with µA being the affine modulus, µF the fluctuation of the stress. We have, by

definition

µF = βV
〈

(τ̂ − 〈τ̂〉)2
〉

= βV
〈

τ̂ 2
〉

− βV 〈τ̂〉2 = µ̃F − µ∗ (4.2)

where µ̃F = βV 〈τ̂ 2〉, and µ∗ = βV 〈τ̂ 〉2 = βV τ 2. Now we show that µF depends on

the sampling time used. In order to explain this and simplify the notations, we define

a physical observable a, with instantaneous values â. If a is measured over a time

window ∆t, meaning n records at interval δt, then we can write the time-average of a

as

ā =
1

n

n
∑

i=1

âi (4.3)

where âi = â(ti) with ti = (i− 1)δt for i ranging from 1 to n. If we have m trajectories

of length n, then the expectation value of a is the ensemble average given by

E(a) = 〈ā〉 = 1

m

m
∑

j=1

¯̂aj (4.4)

where ¯̂aj denotes the time-average resulting from the number-j trajectory. For many

observables, the ensemble and the time averages commute. They are called “simple

averages”. Examples are the pressure P , the average shear stress τ , the affine shear

constant µA, and the mean value of τ̂ 2 denoted by µ̃F . On the other hand, the fluc-

tuations of the observables do depend on ∆t. They are thus not simple averages. To

show this, we imagine a long simulation run, consisting on N times δt. This trajectory

can be divided into m sub-trajectories each of length ∆t. The expectation value for

the fluctuations of a is

F l(a) =
〈

â2 − ā2
〉

=
1

m

m
∑

j=1

(â2j − ā2j ). (4.5)

Obviously, F l(a) will depend on ∆t (because the second term in eq. (4.5) depends on

∆t). It is actually a monotonically increasing function of ∆t, starting from zero when

∆t = 0. In practice, when we compute µF , we have â =
√
βV τ̂ . Thus

µF (∆t) = βV
〈

τ̂ 2 − τ̄ 2
〉

(4.6)

is an increasing function of ∆t (see Fig. 4.1).
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Fig. 4.1 The stress fluctuations µF (∆t) as a function of the sampling time ∆t (LJ2d

system).

Its statistical value can be estimated when µF (∆t) approaches its plateau-value

asymptotically. The real relaxation time of the system can be defined by t∗ such

that the plateau-value as close as 1%. Fig. 4.2 shows our results for LJ2d and KA2d

systems. We can observe that the time to reach the plateau depends on the system,

and on the thermodynamic state. For the LJ2d system, t∗ is quite short (about 100).

For the KA2d system, a binary mixture, it is certainly longer (more than 500 for the

temperatures investigated).

Our results for 3d systems are gathered in Figs. (4.3-4.4). In these systems, t∗

appears to be quite short, either for the crystal or the liquids states. For AB13, it is

of the order 10, for LJ3d system, about 100. Here the mixture reaches the plateau

faster than the one-component system. This may be explained by the important size-

disparity between the spheres, so that the small one have more freedom to move and

help relax the system faster.

From eq. (4.1) and eq. (4.6), we can write, for the shear modulus

G(∆t) = µA − µF (∆t) = µA,ex − µF,ex(∆t), (4.7)

as a function of the sampling time ∆t. Fig. 4.5 shows this behaviour. It is seen that

the shear modulus decays monotonously as a function of the sampling time for all
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Fig. 4.2 The stress fluctuations µF (∆t) as a function of the sampling time ∆t (LJ2d
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Fig. 4.3 The stress fluctuations µF (∆t) as a function of the sampling time ∆t (LJ3d

system).

cases considered. Ultimately, however, all data sets level off as emphasized by the

dashed horizontal lines. As may be seen from Fig. 4.5, much larger sampling times are

needed for reaching the plateau of the shear modulus for the KA2d model, especially
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Fig. 4.4 The stress fluctuations µF (∆t) as a function of the sampling time ∆t (AB13

system).

around Tg, than for the LJ2d model. One thus has to check whether sufficiently large

trajectories have been used to determine reliable long-time estimates. Please note that

this has apriori nothing to do with an insufficient equilibration or ageing of the systems,

but stems from the fact that the stress-fluctuations simply need time to explore the

available phase space. The elastic moduli G(T ) and K(T ) presented previously thus

stem from reasonable plateau values as one expects.

4.3 Shear-stress autocorrelation function

We study the shear-stress auto-correlation function (SACF) of the shear stress,

defined by, as in[16],

C(t) = β V 〈δτ̂ (t)δτ̂(0)〉 . (4.8)

This function is important. It allows a better theoretical understanding of the dynamics

in liquids[81], it leads to measurable quantities, such as the viscosity[14, 30], and to

the shear modulus [40].

Two comments on C(t) can be made. The first is the way we compute this cor-
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Fig. 4.5 Sampling-time-dependence of the shear modulus GF (∆t) = µA,ex − µ̄F,ex(∆t)

as a function of the sampling time ∆t for LJ2d and KA2d models and different tem-

peratures as indicated. In all cases we reach a horizontal plateau G(T ) for sufficiently

large ∆t as indicated by the dashed horizontal lines. (Here µ̄F,ex(∆t) is defined by

eq. (4.6), using only the excess shear stress, and µA,ex = µA − ρkBT ).

relation function. It is important to remind that the time-translational invariance is

always assumed. This means that we have

C(t) = β V
〈

δτ̂ (t+ t0)δτ̂(t0)
〉

, (4.9)

where the horizontal bar denotes the gliding average over the time-origins t0 taken

within the trajectory. The second comment remarks that C(t) is a correlation of the

stress fluctuations. Thus it depends on the sampling time ∆t. We can designate it

as C(t,∆t). What we expect is that if ∆t << t∗ (t∗ is a typical relaxation time),

then C(t) is not correctly evaluated. In practice, we divide a long trajectory into m

sub-trajectories of ∆t, (j = 1, ...m). Thus the function C(t) obtained from the jth

sub-trajectory is

Cj(t) = β V δτ̂(t+ t0)δτ̂(t0)j = β V τ̂(t + t0)τ̂ (t0)j − µ∗j (4.10)

where µ∗ = βV ¯̂τ
2
is obviously ∆t-dependent, since this time-average is taken within
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the time-interval ∆t. The final result C(t) is the ensemble average of Cj(t):

C(t) =
1

m

m
∑

j=1

Cj(t) =
1

m

m
∑

j=1

(

C̃j(t)− µ∗j

)

(4.11)

where C̃(t) = β V τ̂ (t+ t0)τ̂(t0) is the unshifted shear-stress SACF. At given ∆t, we

can commute the time and ensemble averages for C̃(t), it is thus a simple average.

Details for C̃(t). We denote f(t) =
√
βV τ̂ (t), the correlation time tk = kδt, the

correlation function F (k). The time-average in j-th sub-trajectory is

F (k)j = [f(t1,j)f(t1+k,j) + ...+ f(tn−k,j)f(tn,j)]/(n− k) (0 ≤ k ≤ n− 1) (4.12)

and the final correlation function is, by ensemble average,

F (k) =
∑

j

F (k)j/m =
∑

j

∑

i

f(ti,j)f(ti+k,j)/[(n− k) ∗m], (4.13)

as the sums commute. C̃ is indeed a simple average. On the other hand, its precision

can depend on ∆t. To show this, we suppose that we start with ∆t0, corresponding to

n0 data points, coming from one of the m0 sub-trajectories of a long run of N records.

Thus, we have

F0(k) =
∑

j

∑

i

f(ti,j)f(ti+k,j)/[(n0 − k) ∗m0]. (4.14)

If we set now m = m0 ∗ ns segments, each having n = n0 ∗ ns data points, then the

new estimate of F (k) is

Fs(k) =

∑

j

∑

i f(ti,j)f(ti+k,j)

(n− k) ∗m =

∑

j

∑

i f(ti,j)f(ti+k,j)

[(n0 − k/ns) ∗m0]
. (4.15)

Obviously, except for k = 0, we have Fs(k) different of F0(k). But the difference can

be numerically neglectable, if we ensure that for each k, there are at least 102 data for

the statistics, between the time and ensemble averages.

On the other hand, µ∗ is not a simple average. We have, for a given ∆t,

µ∗ =

∑

j µ∗j

m
=
∑

j

(

∑

i

f(ti,j)/n

)2

/m, (4.16)

showing that the sum over i (n terms) and the one over j (m terms) are not com-

mutable. Furthermore, µ∗ depends strongly on ∆t, being a maximum for ∆t = 1.δt,

and decreasing to its plateau value for n >> 1.
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From the above discussion, it is clear that the SACF, for a finite ∆t, should be noted

C(t,∆t). However, we can drop the second argument if ∆t is large enough (∆t >> t∗),

after the function has converged.

Fig. 4.6 - 4.9 show results on this topic. We see that indeed, they all depend on

∆t. But the convergence can be reached after a reasonable sampling time, of the

order ∆t ≈ 100, for the state points explored. Another observation is that clearly,

the crystals (LJ2d, LJ3d and AB13) show strong non monotonic SACF at short times,

whereas in the liquid, the function is a monotonic decreasing function of time. In the

low temperature glass (KA2d), the function is also monotonic, although less smooth as

in the liquid. Another general feature is that the function goes to zero at long times,

for all systems and all states. This means that it is impossible to predict the shear

modulus of a solid from this limit, as some authors believe [28].
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Fig. 4.6 The shear-stress autocorrelation function (SACF) of the LJ2d system as a

function of the time, for several sampling times ∆t. The left panel corresponds to a

low temperature crystal, T = 0.2, the right one to a liquid, T = 0.8.

The sequence µF (∆t) can be generated by C(t), as shown in [16]. We have (for

more details, see the next section),

µF (∆t)

µF

= 1− (2/∆t2)
1

µF

∫ ∆t

0

dt(∆t− t)C(t) ≡ 1− y(∆t) (4.17)

We can thus define a time θ such that µF (θ) is very close to µF , for example at 95%,

or y(θ) = 0.05.
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Fig. 4.7 The SACF of the KA2d system as a function of the time, for several sampling

times ∆t. The left panel corresponds to a low temperature glass, T = 0.1, the right

one to a liquid, T = 0.8.

-6 -4 -2 0 2 4 6
ln t

0

2

4

6

8

C
(t

, ∆
t)

∆t =1000
∆t = 100
∆t = 10
∆t = 1

C(t, ∆t) for LJ3d model systems
N = 1372, P = 1.0, T = 0.2

-6 -4 -2 0 2 4 6
ln t

0

5

10

15

20

25

C
(t

, ∆
t)

∆t = 1000
∆t = 100
∆t = 10
∆t = 1

C(t, ∆t) for LJ3d model systems
N = 1372, P = 1.0, T = 0.8

Fig. 4.8 The SACF of the LJ3d system as a function of the time, for several sampling

times ∆t. The left panel corresponds to a low temperature crystal, T = 0.2, the right

one to a liquid, T = 0.8.

In Fig. 4.10, the SACF C(t) and the function y(∆t) of the monodisperse LJ2d

system are presented, at the liquid and solid states, respectively. We see that for both

states, the C(t) curves decay to 0 quite quickly, in about one time unit. The “real”

relaxation time of the SACF, as suggested in ref[40], could be defined by the time for

which y(∆t) reaches 0.05 (the blue line in the inset), corresponding here to about 5

time units for the states explored. The functions, however, are much longer lasting

in the glass (the KA2d model), near Tg, as shown in Fig. 4.11. A good estimate of
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Fig. 4.9 The SACF of the AB13 system as a function of the time, for several sampling

times ∆t. The left panel corresponds to the AB13 superlattice, T = 2.0, the right one

to a liquid, T = 2.2.

the SACF relaxation time can again be obtained by the method suggested in ref[40].

Using this definition, we obtained results displayed in Table 4.1, where we see indeed

that the relaxation in the glass (near Tg) is about 500, compared to (about) 5 in the

crystal.

Table 4.1 Various relaxation times associated with the stress auto-correlation function

C(t). tC corresponds to C(tC)/C(0) = e−1, tC1 to C(tC)/C(0) = 0.05, and θ to

y(θ) = 0.05.

System LJ2d (liquid) LJ2d (crystal) KA2d (liquid) KA2d (glass)

T 0.7 0.6 0.4 0.3

tC 0.1 0.1 0.2 0.3

tC1 0.6 0.5 5.4 99

θ 6.4 5.4 32.5 500
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Fig. 4.10 The SACF C(t) and the function y(∆t) (inset) for the monodisperse LJ2d

system. The red (dashed) curve corresponds to a crystal (T = 0.6), while the black

(continuous) curve represents a liquid state (T = 0.7). The blue dash-dotted line in

the inset indicates the level y = 0.05.

4.4 The shear-stress mean-square displacement

In [17], we introduced the “mean square displacement” (MSD) of the shear-stress,

defined by

h(t) = βV
〈

[τ̂ (t)− τ̂(0)]2
〉

/2. (4.18)

It is straightforward to show that

h(t) = C̃(0)− C̃(t) = C(0)− C(t) (4.19)

As C̃(0) = µ̃F and C(0) = µF , we can invert eq. (4.19) to write

C̃(t) = µ̃F − h(t); C(t) = µF − h(t). (4.20)

Now we show that h(t) is a simple average. We have, for a given ∆t,

h(t,∆t) = βV
〈

[τ̂ (t+ t0)− τ̂ (t0)]2
〉

/2, for t ≤ ∆t (4.21)
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Fig. 4.11 The SACF C(t) and the function y(∆t) (inset) for the glass-forming KA2d

system. The red (dashed) curve corresponds to a glass (T = 0.3), near Tg = 0.32,

while the black (continuous) curve represents a liquid state (T = 0.4). For the liquid,

C(0) ≈ 34 (the upper black dot), while for the glass, C(0) ≈ 33 (the lower black dot).

The blue dash-dotted line in the inset indicates the level y = 0.05.

where the large bar denotes the gliding average over t0 within the a ∆t package. In

detail, for the j-th sub-trajectory, we have

h(k)j = [((f(t1+k,j)− f(t1,j))
2 + ... + (f(tn,j)− f(tn−k,j))

2]/(n− k) (0 ≤ k ≤ n− 1),

(4.22)

thus

h(k) =

∑m
j=1 h(k)j

m
, (4.23)

showing that the time-average and the ensemble average commute. On the other hand,

similarly to the C̃ function, the numerical precision may depend on ∆t chosen. But this

can be controlled ensuring enough statistics for each k value, as mentioned previously.

Figs. 4.12 - 4.15 show examples of h(t) function. We see that the function starts

at 0, and saturates at long times to its plateau value. For all curves but the third one,

the relaxation time tA is about 1. The evolution of h(t) is much slower for the KA2d

liquid and glass close to the glass transition temperature, and is oscillatory for the low

temperature AB13 crystal. The first observation can be understood by longer stress
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Fig. 4.13 The shear stress mean square displacement as a function of the time for the

KA2d model systems. Here, the first time point is t1 = 0.05 (except for T = 0.28,

where t1 = 0.1).

relaxation times in the system close to the glass transition. The second case, quite

intriguing, may be caused once again by the size disparity between the two species,
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causing faster time scales for the small spheres.

While h(t) reaches the asymptote rapidly at t ≈ tA, the sampling-time dependent

stress fluctuation µF (∆t) reaches its plateau value µF much more slowly, at a time
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scale ∆t ≈ t∗. Remarkably, we can understand it by the relation between these two

time-dependent properties. Starting from µF , we have

µF (∆t) =

〈

(1/n)
∑

i

(ai − ā)2

〉

=
〈

a2 − ā2
〉

= (1/2n2)

〈

∑

i

∑

l

(ai − al)
2

〉

(4.24)

where 〈...〉 stands for the ensemble-average over the trajectories (of length n). The last

line can be written as

µF (∆t) = (1/n2)

〈

n
∑

i=l+1

n−1
∑

l=1

(ai − al)
2

〉

= (1/n2)

〈

n−1
∑

l=1

n−l
∑

k=1

(al+k − al)
2

〉

= (1/n2)

n−1
∑

k=1

n−k
∑

l=1

〈

(al+k − al)
2
〉

= (1/n2)

n−1
∑

k=0

(n− k)g(k) (4.25)

where “mean-square advance” g(k) = 〈(al+k − al)
2〉 is independent of l (time trans-

lational invariance). Noting g(k) = 2h(k) (the MSD of the shear stress) and supposing

δt << 1, we can write eq. (4.25) into an integral:

µF (∆t) = (2/∆t2)

∫ ∆t

0

dt(∆t− t)h(t) (4.26)

eq. (4.26) can give us a fair idea of t∗, knowing tA of the function h(t). For this, we

define y(∆t) = 1−µF (∆t)/µF , where µF is the plateau value of µF (∆t). According to

eq. (4.26), we have

y(∆t) = 1− (2/∆t2)

∫ ∆t

0

dt(∆t− t)h(t)/µF . (4.27)

Assuming t∗ is such that y(t∗) = 1%, and t∗ >> tA, from eq. (4.27), we obtain,

0.01 ≈ tA/t∗ (4.28)
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i.e. t∗ ≈ 100tA. So we have now an order of magnitude of t∗. As C(t) = C(0)− h(t).

For a given ∆t this implies C(t,∆t) = µF (∆t)− h(t), i.e.,

C(t,∆t) = (2/∆t2)

∫ ∆t

0

dt(∆t− t)h(t)− h(t). (4.29)

Thus we have a converged C(t) only if ∆t >> t∗. This fact is important, especially

when we want to compute the shear stress relaxation modulus G(t), as we shall see in

the next section.

4.5 The shear relaxation modulus

The shear relaxation modulus, G(t), is a central rheological property of materials.

It is defined by the linear response macroscopic relation

G(t) =
∂τ(t; γ)

∂γ
(4.30)

where γ is a small step strain imposed at t = 0, and τ(t) is the averaged stress incre-

ment of the system. G(t) gives the measure of the viscoelasticity of a system. It is

important that we can compute this function by using statistical physics tools. Pre-

viously, we showed that the static shear modulus G can be computed using the stress

fluctuations formalism, by Monte Carlo (MC) or molecular dynamics (MD) simula-

tions. This quantity is denoted by Geq here, to distinguish it from G(t). Obviously,

limt→∞G(t) = Geq. For an elastic body, Geq > 0, and for a fluid, Geq = 0. Given that

τ(t) = 〈τ̂(t)〉, what is the relation between G(t) and the SACF C(t), or C̃(t). Many

authors assumed G(t) = C̃(t) = C(t). We shall demonstrate that this is only true for

the fluids, where we have τ = 0 (at equilibrium), and Geq = 0. In more general case,

we start from

τ(t) =

∫ t

−∞

dsG(t− s)dγ(s)/ds

= G(t− s)γ(s)|t−∞ −
∫ t

−∞

dsdG(t− s)/dsγ(s) (4.31)
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where we have used integration by parts. Here we suppose γ(t) a step function (γ(t) = γ

for t ≥ 0 and γ(t) = 0 for t < 0),

τ(t) = G(0)γ −
∫ t

0

χ(s)ds · γ

=

[

Geq +

∫ ∞

t

χ(s)ds

]

· γ (4.32)

where, in the first line, we define χ(t) ≡ −G′(t) = G′(−t) is the response function

(or the “after-effect function”, and in the second line, Geq appears naturally as an

integration constant. As the response function is related to C(t) by χ(t) = −C ′(t)

(see [14]), we obtain

G(t) = C(t) +Geq (4.33)

or

G(t) = C̃(t) + µA − µ̃F . (4.34)

Furthermore, from eq. (4.33), we see that G(t) can be related to the stress MSD in a

very simple way:

G(t) = µA − h(t). (4.35)

Eq. (4.35) shows that G(t) can be evaluated from a simple averages µA and h(t). As

h(t) relaxes much faster than µF (∆t), eq. (4.35), G(t) relaxes actually much faster

than C(t) itself, reaching Geq faster than GF (∆t) = µA−µF (∆t). It also shows clearly

that G(0) = µA, the affine shear elasticity, which is always positive, either the system

is solid, or even liquid.

The Figs. 4.16 - 4.19 show the function G(t) as obtained from eq. (4.35) for our

model systems. The common feature is that all the curves shown (except one) reach

their limit values quite rapidly, at a time scale of 1. The exception concerns the low

temperature AB13 crystal, which oscillates for some time before being stabilized. This

is of course for the same reason as its h(t) curve.

To summarize, eq. (4.35) not only gives the function G(t) in a quite accurate way

(simple averages), it also provides the equilibrium shear modulus without the necessity

of long sampling times ∆t. So it is an advantageous way of studying the elasticity and

the viscoelasticity by simulations. However, some tests have to be done using eq. (4.34)

with converged C(t). The resulting G(t) seems quite comparable.
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4.6 Dynamic moduli

4.6.1 Definitions and simple models

In a simulation, the function G(t) can be collected from the dynamics of the sys-

tem. This quantity can also be measured in rheological experiments. However, more

frequently, people can use oscillatory stresses to measure the dynamic modulus G∗ (see

refs. [12, 13]). This quantity is frequency dependent G∗ = G∗(ω) with ω the angular

frequency. More precisely, if we impose an oscillatory shear strain (γ0 sin(ωt)), given,

in complex representation, by

γ(t) = γ0 exp(iωt), (4.36)

in the linear response regime the average shear stress will be

τ(t) = G∗(ω)γ(t) ≡ (G′(ω) + iG′′(ω))γ0 exp(iωt), (4.37)

The real part of G∗, G′(ω), is the storage modulus, corresponding to the part of the

response of the system in phase with γ(t), i.e. the elastic response; the imaginary part

G∗, G′′(ω), is the loss modulus, corresponding to the part that is dephased π/2 w.r.t.

γ(t), i.e. the viscous response.

The physical meaning of G′′ can be shown by computing the average power that the

stresses should provide to maintain the periodic oscillation of the system. We write,

per unit volume, this average as

PowerT = (1/T )

∫ T

0

τ(t) ∗ γ̇(t)dt, (4.38)

where T = 1/2πω is the period of the sollicitation γ(t). Using γ(t) = γ0 sin(ωt) and

τ(t) = Im(G∗.γ0 exp(iωt)) = G′ sin(ωt)+G′′ cos(ωt), we obtain PowerT = G′′.γ0.ω/2 ∝
G′′. As this is the power lost by the system, G′′ is indeed the “loss modulus”.

In order to relate G∗ with G(t), let’s consider first a viscoelastic liquid, with Geq =

0, and compute G∗
l (l for “liquid”). We start from the Boltzmann superposition

principle [13], which gives

τ(t) =

∫ t

−∞

Gl(t− t′)γ̇(t′)dt′. (4.39)
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From eq. (4.36), we obtain γ̇(t) = iωγ0exp(iωt). After a change of the variable in

eq. (4.39), by posing s = t− t′, we obtain

τ(t) = iωγ0exp(iωt)

∫ ∞

0

Gl(s) exp(−iωs)ds

= γ(t)ω

∫ ∞

0

Gl(s) (sin(ωs) + i cos(ωs)) ds (4.40)

By identification, we obtain

G′
l(ω) = ω

∫ ∞

0

Gl(t) sin(ωt)dt

G′′
l (ω) = ω

∫ ∞

0

Gl(t) cos(ωt)dt. (4.41)

In general situations where Geq 6= 0, eq. (4.41) is generalized to

G′(ω) = Geq + ω

∫ ∞

0

(G(t)−Geq) sin(ωt)dt

G′′(ω) = ω

∫ ∞

0

(G(t)−Geq) cos(ωt)dt. (4.42)

This shows that G′ corresponds to the Fourier-sine transform of G(t), and G′′ to its

Fourier-cosine transform. Their low frequency limits are well known:

lim
ω→0

G′(ω) = Geq

lim
ω→0

G′′(ω)/ω =

∫ ∞

0

(G(t)−Geq) dt =

∫ ∞

0

C(t)dt = η (4.43)

where we used eq. (4.33), and the Green-Kubo relation to obtain viscosity coefficient

η (see [14]) . For a liquid, η is the usual viscosity. For a solid, η represents the slope of

G′′ for ω → 0.

We can also draw some conclusions on the high frequency limit. Supposing, for

the stress ACF C(t), limt→∞C(t) = 0, and using C(0) = µF , from eq. (4.42) we can

deduce (by integration by parts),

lim
ω→∞

G′(ω) = µA = G(0)

lim
ω→∞

G′′(ω) = 0. (4.44)

This tells us that the system, either in liquid or solid states, possesses a high frequency

non-zero elasticity, given by the affine modulus µA. On the other hand, G′′ vanishes at

high frequencies.

98



Now we can compare these general trends with the ones obtained from two simple

classical rheological model, the Maxwell model and the Kelvin-Voigt (K-V) model [13].

They consist on the association of two elementary rheological elements, the elastic

element, a spring of constant G, and a viscous element of viscosity η. The Maxwell

model is a serial association and the K-V model a parallel association (see Fig. 4.20).

(a) Maxwell model (b) Kelvin-Voigt model

Fig. 4.20 Rheological models. σ is the shear stress, γ is the shear strain.

The elastic element obeys the equation σ = GγE (the index E stands for elastic),

the viscous one σ = ηγ̇V (index V for viscous). For the Maxwell model, we have

σ = σE = σV , γ = γE = γV , thus the rheological equation is:

σ̇

G
+

σ

η
= γ̇. (4.45)

To determine G(t), we can make a “relaxation” experiment: we set

γ(t) =











0 if t < 0,

γ0 if t ≥ 0,
(4.46)

and calculate σ(t) for t > 0 according to eq. (4.45), given that at t = 0+, it is the

elastic element which can react instantly: σ(0+) = GγE(0
+) = Gγ(0+) = Gγ0. The

solution is

G(t) = Ge−t/τM (t ≥ 0) (4.47)

with τM = η/G the Maxwell relaxation time. This result corresponds to a viscoelastic

fluid: Geq = limt→∞ = 0, and G(0) = G.
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The dynamic moduli can be obtained in two ways: a) by solving directly eq. (4.45),

using γ(t) = γ0e
iωt and σ(t) = G∗γ(t); b) by eq. (4.42). Both give

G′(ω) = G
(ωτM)2

1 + (ωτM)2
; G′′(ω) = G

ωτM
1 + (ωτM)2

. (4.48)

We see that G′(0) = G′′(0) = 0, limω→0G
′′(ω)/ω = GτM = η, limω→∞G′(ω) = G,

limω→∞G′′(ω) = 0. For ω < τM
−1, G′ < G′′ (the system is more viscous at low

frequencies), for ω > τM
−1, G′ > G′′ (the system is more elastic at high frequencies),

at ω = τM
−1, there is a crossover, G′ = G′′, thus τM

−1 is the characteristic frequency

of the system.

Fig. 4.21 shows G(t) and G∗ of the Maxwell model.
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Fig. 4.21 Rheological moduli of the Maxwell model, τM = η/G.

For the K-V model, we have γ = γE = γV , σ = σE + σV , thus the rheological

equation is:

Gγ + ηγ̇ = σ (4.49)

To determineG(t), we can again make the “relaxation” experiment, by solving eq. (4.49)

for t > 0, where γ̇ = 0. The solution is

G(t) = G; (t > 0) (4.50)

This result corresponds to a solid: Geq = limt→∞ = G. For this model, G(0) is

unphysical, because it is singular (looking at eq. (4.49) ).

The dynamic moduli can be obtained by solving directly eq. (4.49), using γ(t) =

γ0e
iωt and σ(t) = G∗γ(t). This gives

G′(ω) = G; G′′(ω) = GωτM , (4.51)
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Obviously, G′′ is unphysical at high frequencies, because it tends to infinity. By using

eq. (4.42), we can complete the singular part of G(t), to obtain

G(t) = GτMδ(t) +G = ηδ(t) +G. (4.52)

From eq. (4.52), we have the stress ACF, C(t = 0) → ∞, in contradiction to C(0) = µF

(finite) for any real system.

Fig. 4.22 shows G(t) and G∗ of the K-V model.
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Fig. 4.22 Rheological moduli of the Kelvin-Voigt model, τM = η/G.

Another measurable mechanical quantity is the compliance J∗ (see for example

ref. [13]), defined by γ(t) = J∗(ω)σ(t), where σ(t) = σ0e
iωt is imposed. Clearly J∗ =

1/G∗. It is customary to write J = J ′ − iJ ′′. For the Maxwell model, we have

J ′(ω) =
1

G
; J ′′(ω) =

1

GωτM
. (4.53)

Again, we see that for ω < τM
−1, J ′ < J ′′ (the viscosity dominates at low frequencies),

for ω > τM
−1, J ′ > J ′′ (the elasticity dominates at high frequencies).

Fig. 4.23a shows J∗ of the Maxwell model.

As for the compliance, we obtain, for the K-V model,

J ′(ω) =
1

G(1 + (ωτM)2)
; J ′′(ω) =

ωτM
G(1 + (ωτM)2)

. (4.54)

Fig. 4.23b shows J∗ of the K-V model. One can see that the J∗ moduli display

better (than G∗) the viscoelastic character of the solid represented by this model.
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Fig. 4.23 The compliance of the Maxwell and Kelvin-Voigt models, τM = η/G.

From the simulation data G′(ω) and G′′(ω), the expressions of J ′ and J ′′ are

J ′(ω) =
G′(ω)

G′(ω)2 +G′′(ω)2
; J ′′(ω) =

G′′(ω)

G′(ω)2 +G′′(ω)2
. (4.55)

These relations will be useful for us to convert our G∗ moduli to J∗ ones. Their limits

are obvious: J ′(0) = 1/Geq, J
′(∞) = 1/µA, and J ′′(0) = J ′′(∞) = 0. But J ′′ is not

zero for all ω (see the next sub-section). As J ′(0) must be finite, we shall only discuss

this quantity when our system is in solid state.

4.6.2 Simulation results

Turning to our systems, it is an easy task to calculate G∗ once G(t) is known. It

would be interesting to investigate how our G∗ compare with those predicted by the

simple rheological models. For the somewhat delocalization high frequency limit, we

use Filon’s method [30] to perform the sine and cosine transformations. Our results

are gathered in Figs. 4.24 - 4.31. The general features for the liquids seem to follow

qualitatively the Maxwell model, if we identify G in the Maxwell model with µA,

the high-frequency limit of our storage modulus G′. A “Maxwell time” (τM) can be

estimated from the maximum of G′′(ω) in our liquids. Once we have G and τM ,

theoretical fit can be done using eq. (4.48). The results are shown in Figs. 4.25, 4.27,

4.29 and 4.31. The overall agreement is remarkable. However, two differences can be

noted. The first is a peak of G′ at some intermediate frequency (resonance), absent

in the Maxwell model. The second difference is that for ω > 1/τM , our G′′ seem to
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decay faster than the Maxwell model, for all four liquid systems. These differences

show the limitation of such a simple rheological model, even for the liquid state. When

our systems are solids, the Maxwell model naturally fails, because the model gives

limω→0G
′(ω) = 0 always, instead of Geq > 0. And the K-V model does not apply to

our solids either, because, clearly we have two limit values for the storage modulus

(Geq and µA) instead of only one in the K-V model (see Fig. 4.22). Furthermore,

our G′′ are very different from G′′ by the K-V model, which is unphysical for high

frequencies. Nevertheless, we will (later) compare the compliance of our solids with

the K-V model, to see whether there is some agreement for certain frequency zones.

Another point about the dynamic moduli of our solids is that the loss modulus G′′ is not

at all negligible for some frequencies. Its maximum can even be as important as Geq.

This shows the potential importance of this quantity (representing the dissipation),

even for a solid. It highlights certainly the interest of our method, allowing accurate

computation of this quantity. Furthermore, we can see that G′′(ω) displays more

complex features for KA2d and AB13 solids than the LJ2d and LJ3d solids. This

can certainly be traced back to the former systems being binary mixtures, rather than

monodisperse systems, as the LJ2d and LJ3d systems.
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Fig. 4.24 Dynamic moduli of LJ2d model in the triangular crystal structure T = 0.6.

Two recording time intervals for the stress tensor are used to generate G(t), i.e. 5×10−3

(circles) and 2 × 10−4 (squares). This allows to cover both the low frequency and the

high frequency zones of the dynamic moduli.
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Fig. 4.25 Dynamic moduli of LJ2d model system in liquid state T = 0.8. The fit uses

τM = 0.10, G = µA and eq. (4.48).
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Fig. 4.26 Dynamic moduli of KA2d model system as a low temperature glass T = 0.1.
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Fig. 4.27 Dynamic moduli of KA2d model system in liquid state T = 0.8. The fit uses

τM = 0.091, G = µA and eq. (4.48).
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Fig. 4.28 Dynamic moduli of LJ3d model system in crystal state T = 0.8.
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Fig. 4.29 Dynamic moduli of LJ3d model system in liquid state T = 0.9. The fit uses

τM = 0.088, G = µA and eq. (4.48).
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Fig. 4.30 Dynamic moduli of AB13 model system in crystal state T = 2.0.
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Fig. 4.31 Dynamic moduli of AB13 model system in liquid state T = 2.2. The fit uses

τM = 0.031, G = µA and eq. (4.48).
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Fig. 4.32 Compliance moduli of the LJ2d model system at T = 0.6 (crystal). Two sets

of fit are performed using eq. (4.54). Both take the time τM = 0.22. For J ′
1 and J ′′

1 ,

G = Geq is used. For J ′
2 and J ′′

2 , G = µA is used, and J ′
2 is shifted by 1/µA.

Now it’s interesting to plot the compliance of our systems in the solid state, in

order to compare them with the predictions of the K-V model. They are displayed in

Figs. 4.32 - 4.35. Again, the time parameter τM can be extracted from the simulation

J ′′ curve, at its maximum, i.e. τM = 1/ωmax, where ωmax is the frequency for the

maximum of J ′′. This give τM = 0.22, 0.33, 0.14 and 0.063 for LJ2d, KA2d, LJ3d and

AB13 systems respectively. As for G to be used in eq. (4.54), we have the choice of

Geq, or µA, with Geq be the natural choice. The fit using Geq is satisfactory for the

mixtures (KA2d and AB13), for J ′′ overall and J ′ in the range ω < ωmax. Whereas for

the one-component systems, J ′′ is too large. If we use µA then J ′′ is well fitted, but J ′

must be shifted by 1/µA. These general trends could depend on temperature. Further

investigations are needed.
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Fig. 4.33 Compliance moduli of the KA2d model system, at T = 0.1 (glass). The fit

corresponds to τM = 0.33 and G = Geq in eq. (4.54).
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Fig. 4.34 Compliance moduli of the LJ3d model system, at T = 0.8 (crystal). Two sets

of fit are performed with the K-V model. Both using the time τM = 0.14. For J ′
1 and

J ′′
1 , G = Geq is used. For J ′

2 and J ′′
2 , G = µA is used, and J ′

2 is shifted by 1/µA.
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Fig. 4.35 Compliance moduli of the AB13 model system, at T = 2.0 (AB13 superlat-

tice). The fit (with the K-V model) corresponds to τM = 0.063 and G = Geq.

4.7 Topical conclusions

To summarize, we presented in this chapter general considerations on time de-

pendent properties. We first examined the sampling-time dependence of the stress

fluctuations. Then we studied the shear stress autocorrelation function C(t), the shear

stress mean square displacement h(t), the shear stress relaxation modulus G(t), and

the relations between them. The key relation G(t) = µA − h(t) is used to calculate

the shear stress relaxation modulus for our model systems at liquid and solid states.

The resulting curves show satisfactory accuracy, and allow for the computation of the

dynamic moduli. This quantity, of high experimental relevance, is shown to be now

available by equilibrium MD simulations.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we have studied elasticity, viscoelasticity, and glass transition of model

systems by computer simulations, using equilibrium stress and volume fluctuations.

The model systems considered are as follow: monodisperse hard sphere fcc crystal,

polydisperse hard sphere fcc crystal, a glass-former consisting of the two dimensional

Kob-Andersen model (KA2d system), its companion system, a monodisperse LJ2d

system. Then the monodisperse LJ3d system and a binary repulsive mixture AB13

system, forming respectively simple fcc and complex superlattice crystals, are studied.

From these systems we obtained some new and interesting results.

First, as a simple test of the relation linking the bulk modulus and the volume fluc-

tuations under constant pressure, we computed the bulk modulus of (slightly) polydis-

perse hard sphere crystals at high pressure by Monte Carlo NPT simulations [82]. We

showed that the equation of state proposed by Bartlett [49] is not valid for high pres-

sures, whereas our results give the effects of the polydispersity on the average density

and the bulk modulus. Furthermore, the volume distribution displays, as expected,

a Gaussian histogram, indicating good statistics of our simulations. This approach is

a relatively simple way to calculate the bulk modulus of general systems. It is thus

potentially interesting for various purposes (testing liquid theories, studying systems

near a phase transition, or under high pressure, etc).

Second, we investigated the two dimensional 80-20 Kob-Andersen model [83] under

constant moderate pressure with focus on the elastic moduli calculation. Our results
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show that the KA2d model is a reasonably good glass-former. We examined three ways

of determining the glass transition temperature Tg, and found that they give consistent

results. The shear modulus as a function of the temperature G(T ) has been charac-

terized. The result has been found to depend strongly on sampling time, with very

slow convergence near the glass transition. We observed a continuous cusp-type varia-

tion of G(T ) across the glass transition. This finding is in qualitative agreement with

recent numerical work using similar glass-forming colloidal systems in two and three

dimensions [70], but in contradiction with predictions from the mode-coupling theory.

Along with the KA2d model, we also investigated a simple companion model provided

by monodisperse 2dLJ beads, which crystallizes at low temperature. In contrast with

the KA2d model, we observed a discontinuous jump of G(T ) at the freezing transition.

Third, we investigated the shear stress fluctuations in simple and complex crystals

including Lennard-Jones (LJ3d) model systems and a binary AB13 model systems.

For each system, the pressure is fixed. The evolution of the systems with tempera-

ture is examined. We were able to locate the melting transition temperature by the

discontinuous jump of the elastic constants. This jump is consistent with the jump

in specific volume at the transition. In the low temperature region, the fluctuation

terms of elastic constants for these two model systems are scrutinized. While for the

simple fcc crystal, these terms go to zero for T = 0, they are notably non-zero for the

more complex AB13 crystal, contributing to about 10% for the shear modulus. This is

less than in a glass, but still significant. The degree of anisotropy of the two crystals

can be examined by looking at the two ways of computing the shear modulus, using

G = C66 − P , or G2 = (C11 − C12)/2 − P , by recalling that they are equal for an

isotropic system. We observe that the fcc crystal is quite anisotropic, with G ≈ 3G2.

On the other hand, the AB13 superlattice seems to be much more isotropic, since we

have in this case G ≈ G2, with G only slightly above G2 at very low temperatures.

Fourth, we examined the time dependent properties of our four model systems such

as the sampling time dependence of the stress fluctuations, the shear-stress autocorre-

lation function C(t), the shear stress mean square displacement h(t), the shear-stress

relaxation modulus G(t), the relationship between these functions, and their behaviour

with the thermodynamic conditions. The dynamic moduli, G′(ω) and G′′(ω), and the
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compliance moduli J ′(ω) and J ′′(ω), are also computed. From the sampling time ∆t

dependence of the stress fluctuations, we can see that the sampling time more than

100 in reduced units is sufficient for the LJ2d system, the AB13 system and the LJ3d

system, while it is more than 1000 for KA2d system at least, when the temperature is

close to Tg. Clearly, this glassy system (near Tg) evolves much more slowly than crystal

systems. As for the shear stress autocorrelation function C(t; ∆t), we have confirmed,

as expected, the sampling time dependence of this function. We note that in most

cases, ∆t ≈ 100 gives convergent C(t). For the shear stress mean square displacement

h(t), the AB13 system show oscillation at low temperature during the relaxation time.

The function is seen to be non-monotonic in the crystal, at low temperatures. This

feature has not been observed in the permanent elastic bodies [17]. The long-time

plateau value of h(t) increases with the increment of temperature at solid state while

the trend is the opposite at liquid state. This is not surprising since it corresponds to

µF . We note that h(t) is smoother than C(t), being a simple average. In general, it

indeed is a better function for the calculation of G(t) via G(t) = µA − h(t), as pointed

out in [17]. Here, for some state points, we have computed shear relaxation modulus

G(t). The function displays a rapid decrease from G(0) = µA (the affine elasticity), and

it reaches its equilibrium modulus Geq = µA − µF at long times. From G(t), we have

computed the dynamic moduli, and compared our results with the Maxwell and the

Kelvin-Voigt rheological models. The four systems studied have qualitatively the same

behaviour as the Maxwell rheological model when they are liquid (with some small

differences discussed in Chapter 4). At solid state, the AB13 system and the KA2d

system show more complicated features than the other two systems. We speculate

that the potentials for the AB13 system and the KA2d system are more complex and

they have two kinds of particles so that they have different response to the external

fields. Here, for the storage modulus G′, clearly the Maxwell model does not apply

since we have two distinct limit G′ values, i.e. G′
0 = Geq for ω = 0 and G′

∞ = µA for

ω → ∞, with G′
∞ > G′

0. Because of these two values, the Kelvin-Voigt model does not

apply either. Interestingly, we have again a peak of G′, at some intermediate frequency,

where G′
max > µA (resonance). As for the loss modulus G′′, while it is zero for low and

high frequencies, as expected, its value is by no means neglectable for some intermedi-
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ate frequencies, with its maximum even comparable in magnitude to Geq. This shows

that even in these simple model systems, the energy dissipation in the solid state can

be important for some frequencies. The chapter ends with a brief discussion on the

compliance moduli J ′ and J ′′ of our models in solid state.

5.2 Outlook

Many future extensions of our work are possible:

Concerning the elasticity, we can use the elastic constants to probe solid-solid phase

transitions under high pressure, or with temperature. More general potentials, such as

three-body, or EAM potentials should be examined. The viscoelastic functions, G(t),

G′ and G′′ can be calculated for many soft matter systems and, by comparison with ex-

perimental results, allow a better modelling of these systems. For the glass transition,

our study of the KA2d system must be carried further. For example, the trajectory

analysis can be implemented. More independent configurations should be used, in order

to reduce statistical errors in our moduli, especially near the glass transition. In par-

allel, it would be interesting to obtain similar expressions as G(t) = µA −h(t) for hard

sphere systems, since these systems are objects of many theoretical and experimental

investigations (hard sphere colloids).

114



Bibliography

[1] D. R. Squire, A. C. Holt, and W. G. Hoover. Isothermal elastic constants for

argon. Theory and Monte Carlo calculations. Physica, 42(3):388–397, 1969.

[2] J.-L. Barrat, J.-N. Roux, J.-P. Hansen, and M. L. Klein. Elastic response of

a simple amorphous binary alloy near the glass transition. EPL (Europhysics

Letters), 7(8):707, 1988.

[3] M. Born and K. Huang. Dynamical theory of crystal lattices. Clarendon Press,

1954.

[4] J. F. Lutsko. Generalized expressions for the calculation of elastic constants by

computer simulation. Journal of applied physics, 65(8):2991–2997, 1989.

[5] J. P. Wittmer, A. Tanguy, J.-L. Barrat, and L. Lewis. Vibrations of amorphous,

nanometric structures: When does continuum theory apply? EPL (Europhysics

Letters), 57(3):423, 2002.
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[70] J. P. Wittmer, H. Xu, P. Polińska, F. Weysser, and J. Baschnagel. Shear modulus

of simulated glass-forming model systems: Effects of boundary condition, tem-

perature, and sampling time. The Journal of chemical physics, 138(12):12A533,

2013.

[71] S. Alexander. Amorphous solids: their structure, lattice dynamics and elasticity.

Physics reports, 296(2):65–236, 1998.

[72] S. Ulrich, X. M. Mao, P. M. Goldbart, and A. Zippelius. Elasticity of highly

cross-linked random networks. EPL (Europhysics Letters), 76(4):677, 2006.

[73] J.-L. Barrat. Microscopic elasticity of complex systems. In Computer Simulations

in Condensed Matter Systems: From Materials to Chemical Biology Volume 2,

pages 287–307. Springer, 2006.

[74] G. Szamel and E. Flenner. Emergence of long-range correlations and rigidity at

the dynamic glass transition. Physical review letters, 107(10):105505, 2011.

[75] M. Ozawa, T. Kuroiwa, A. Ikeda, and K. Miyazaki. Jamming transition and

inherent structures of hard spheres and disks. Physical review letters, 109(20):

205701, 2012.

121



[76] A. Zaccone and E. M. Terentjev. Disorder-assisted melting and the glass transition

in amorphous solids. Physical review letters, 110(17):178002, 2013.

[77] F. F. Abraham. An isothermal–isobaric computer simulation of the supercooled-

liquid/glass transition region: Is the short-range order in the amorphous solid fcc?

The journal of chemical physics, 72(1):359–365, 1980.

[78] A. Tanguy, J. P. Wittmer, F. Leonforte, and J.-L. Barrat. Continuum limit of

amorphous elastic bodies: A finite-size study of low-frequency harmonic vibra-

tions. Physical Review B, 66(17):174205, 2002.

[79] F. Sausset, G. Biroli, and J. Kurchan. Do solids flow? Journal of Statistical

Physics, 140(4):718–727, 2010.

[80] J. P. Hansen and L. Verlet. Phase transitions of the Lennard–Jones system. Phys-

ical Review, 184:151, 1969.

[81] U. Balucani and M. Zoppi. Dynamics of the liquid state, volume 10. Clarendon

Press, 1995.

[82] D. Li and H. Xu. Testing a simple method for computing directly the bulk modulus

by NPT simulation: The case of polydisperse hard sphere solids. International

Journal of Modern Physics C, 26(05):1550057, 2015.

[83] D. Li, H. Xu, and J. P. Wittmer. Glass transition of two-dimensional 80–20 Kob–

Andersen model at constant pressure. Journal of Physics: Condensed Matter, 28

(4):045101, 2016.

122



Résumé de la thèse en français

0.1 Cadre général

L’élasticité et la viscoélasticité sont des propriétés essentielles de beaucoup de

matériaux, en état solide ou fluides complexes. Il est important de les connâıtre pour

de nombreuses applications pratiques. Ces grandeurs sont sensibles aux conditions

thermodynamiques, notamment la température et la pression. En outre, leur brusque

changement est souvent la signature d’une transition de phase. Ces aspects montrent

qu’il est souhaitable de pouvoir étudier ces propriétés par simulation sur ordinateur, afin

de modéliser les matériaux, et de prédire leur comportement dans des conditions poten-

tiellement difficiles d’accès par expérience. Dans cette thèse, l’élasticité, viscoélasticité

et la transition vitreuse de liquides vitrifiants et de solides modèles sont étudiés par

des simulations moléculaires à l’équilibre en utilisant le formalisme de fluctuation de

contraintes. Ce formalisme permet des études de l’élasticité et de la viscoélasticité sans

déformer le système, mais en utilisant les fluctuations des contraintes à l’équilibre. Bien

que proposé à la fin des années 1960 [1], il n’a réellement attiré l’attention des chercheurs

du domaine qu’à la fin des années 1980 [2,4]. Et certaines avancées théoriques sont sur-

venues assez récemment (dans les années 2000)[5,8,18]. Notre objectif est d’appliquer

ce formalisme à des systèmes modèles représentatifs de systèmes collöıdaux ou atom-

iques pour répondre à des questions d’ordre fondamental, surtout liées à des transitions

de phase. Les systèmes modèles étudiés sont composés de systèmes de Lennard-Jones

à deux et trois dimensions, un mélange binaire de Lennard-Jones (LJ) des particules

constituant la version 2d du modèle bien connu de Kob-Anderson (modèle KA2d), un

mélange binaire AB13 de particules répulsives et un mélange ternaire de sphères dures.

Nous étudions principalement l’effet de la température T sur les propriétés mécaniques
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des systèmes, en particulier les transitions de phase telles que la cristallisation ou la

transition vitreuse. Les résultats sont présentés en deux parties, à savoir les propriétés

statiques et les propriétés dépendantes du temps. La plupart des résultats sont obtenus

avec le code LAMMPS, de simulation en dynamique moléculaire à léquilibre.

Les propriétés statiques que nous avons étudiées sont, pour les systèmes isotropes

(verres et liquides), le module de cisaillement G et le module de compression K, et

pour les cristaux, les constantes élastiques. Ce sont des grandeurs sensibles à une tran-

sition de phase (solidification). Ainsi, nous examinons leur évolution en fonction de

la température, et leur comportement à une transition de phase. Ainsi, nous avons

montré une nette différence de comportement du module de cisaillement lors d’une

transition vitreuse et lors d’une cristallisation. Alors que dans le 2ème cas, il y a une

nette discontinuité de G, dans le 1er, l’évolution semble être continue. Un autre aspect

intéressant est la contribution de la partie non-affine à l’élasticité, qui est calculable

avec notre formalisme de fluctuation des contraintes (via le terme correspondant à ces

fluctuations). Ce que nous voulons examiner est d’une part l’évolution de cette con-

tribution en fonction de la température, et d’autre part son importance à température

nulle. Nos résultats montrent que pour le cristal simple (du type cfc), ce terme est

nul à T = 0, comme attendu, par contre, il est non nul pour un super-réseau du

type AB13, contribuant jusqu’à 10% de la valeur du module élastique. Pour un verre,

naturellement, ce terme est encore plus important (environ la moitié du module).

Dans la partie consacrée aux propriétés dépendantes du temps, nous avons étudié

plusieurs aspects et fonctions. Tout d’abord, nous avons exploré la dépendance du

temps d’échantillonnage de nos résultats statiques, et montré que cette influence est

forte pour les fluctuations de contrainte. Deuxièmement, la dynamique d’équilibre est

étudiée par le biais de l’autocorrélation des contraintes de cisaillement et déplacement

quadratique moyen de la contrainte, ainsi que la relation entre ces deux fonctions

temporelles. L’objet principal, cependant, est le module de relaxation de la contrainte

de cisaillement G(t) et les modules dynamique associée G′(ω) et G′′(ω), avec ω la

fréquence. Ces fonctions caractérisent la viscoélasticité de nos systèmes. En utilisant

une formule proposée récemment (Wittmer et al, Phys. Rev. E 2016), nous avons pu

déterminer ces fonctions avec précision et étudier leur comportement pour nos systèmes
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en états liquide, cristallin et vitreux.

0.2 Thèmes étudiés et résultats

Tout d’abord, comme un simple test de la relation reliant le module de compression

aux fluctuations de volume sous pression constante, nous avons calculé le module de

compression des cristaux de sphères dures polydisperses (légèrement) à haute pression

par des simulations Monte Carlo dans l’ensemble NPT [82] (voir Figure 1). Nous

avons montré que l’équation d’état proposée par Bartlett [49] n’est pas valable pour

des pressions élevées. En plus, nos résultats donnent les effets de la polydispersité sur

la densité moyenne et le module de compression. De plus, la distribution du volume

affiche, comme prévu, un histogramme gaussien, indiquant de bonnes statistiques de

nos simulations. Cette approche est un moyen relativement simple de calculer le mod-

ule de compression des systèmes généraux. Il est donc potentiellement intéressant à

diverses fins (test des théories des liquides, étude des systèmes près d’une transition de

phase, ou sous haute pression, etc.).
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(a) Densité versus la pression.
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(b) Module de compression.

Fig. 1 Densité et module de compression en fonction de la pression pour un cristal de

sphères dures monodisperse (ronds) et polydisperse (triangles) respectivement, obtenus

par des simulations Monte-Carlo à pression constante (ensemble NPT). Ces résultats

sont comparés aux équations d’état de Speedy[45] (continu) pour le cas monodisperse

et de Bartlett[49] (pointillés) pour le cas polydisperse.

Deuxièmement, nous avons étudié le modèle de Kob-Andersen à deux dimensions

dans une composition 80-20 [83], sous une pression modérée constante en mettant
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l’accent sur le calcul des modules élastiques. Nos résultats montrent que le modèle

KA2d est un excellent système vitrifiant. Nous avons examiné trois façons de déterminer

la température de transition vitreuse Tg, et nous avons trouvé qu’ils donnent des

résultats cohérents. Nous avons caractérisé G et K du modèle KA2d vitrifiant, et

comparé les résultats avec un système de LJ2d monodisperse (voir Figure 2). Alors

que ce dernier représente un saut significatif en G à la cristallisation, le système KA2d

affiche un comportement de type continu à dérivée divergente à la transition vitreuse

Tg, suivant la loi G(T ) ∝ (1 − T/Tg)
a avec a = 0, 6, confirmant qualitativement les

résultats des simulations sur le système KA3d en 2013, mais en contradiction avec les

prédictions basées sur la théorie de couplage de mode. Nous avons constaté que le

résultat dépend fortement du temps d’échantillonnage, que la convergence est lente

près de la transition vitreuse.
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Fig. 2 Structure et le module de cisaillement G pour le modèle KA2d.

Troisièmement, nous avons étudié les fluctuations de la contrainte de cisaillement

dans les cristaux simples et complexes en examinant les systèmes modèles Lennard-

Jones (LJ3d) et les systèmes binaires AB13. Pour chaque système, la pression est

fixée. L’évolution des systèmes à température est examinée. Nous avons pu localiser

la température de transition de fusion par le saut discontinu des constantes élastiques.

Ce saut est cohérent avec le saut dans le volume spécifique à la transition. Dans la

région basse température, les termes de fluctuation des constantes élastiques (élasticité

non-affine) pour ces deux systèmes modèles sont examinés. Alors que pour le cristal

cfc simple, ces termes vont à zéro pour T = 0, ils sont clairement non nuls pour le

cristal plus complexe, à savoir AB13, contribuant à environ 10% pour le module de
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cisaillement. Cette proportion est moins importante que dans un verre, mais encore

significative (voir Figure 3).

0 0,5 1 1,5 2 2,5
T

0

500

1000

1500

2000

E
la

st
ic

 c
on

st
an

ts

C11
C12
C44

Elastic constants_AB13
N = 896, P = 114, T=0.05~2.0

(a) Constantes élastiques du solide AB13.
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(b) Termes de fluctuation du solide AB13.

Fig. 3 Constantes élastique et termes de fluctuation du solide AB13 (super-réseau) en

fonction de la température.

Le degré d’anisotropie des deux cristaux peut être examiné en regardant deux

manières de calculer le module de cisaillement, en utilisant G = C66 − P , ou G′ =

(C11 − C12)/2 − P , en rappelant qu’elles sont égales pour un système isotrope. Nous

observons que le cristal cfc est tout à fait anisotrope, avec G ≈ 3G′. D’autre part,

le super-réseau AB13 semble beaucoup plus isotrope, puisque nous avons Dans ce cas

G ≈ G′, avec G seulement légèrement au-dessus de G′ à très basses températures (voir

Figure 4).

Comme dernier thème, nous avons examiné les propriétés dépendantes du temps de

nos systèmes modèles, telles que la dépendance au temps d’échantillonnage des fluc-

tuations de contraintes, la fonction d’autocorrélation de la contrainte de cisaillement

C(t), le déplacement carré moyen de la contrainte de cisaillement h(t), le module de

relaxation de contrainte de cisaillement G(t), la relation entre ces fonctions et leur com-

portement avec les conditions thermodynamiques. Les modules dynamiques de conser-

vation et de perte, ainsi que la complaisance sont également calculés. A partir de la

dépendance des fluctuations de contraintes en fonction du temps d’échantillonnage ∆t,

nous constatons que le temps d’échantillonnage supérieur à 100 (en unités réduites)

est suffisant pour le système LJ2d, le système AB13 et le système LJ3d, alors qu’il
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Fig. 4 Module de cisaillement G en fonction de la température des solides LJ3d (cfc)

et AB13 (super-réseau) respectivement. Deux modes de calcul sont représentés (voir

texte).

est supérieur à 1000 pour KA2d, lorsque la température est proche de Tg. De toute

évidence, ce système vitreux (près de Tg) évolue beaucoup plus lentement que les

systèmes cristallins. Quant à la fonction d’autocorrélation de la contrainte de ci-

saillement C(t,∆t), nous avons confirmé, comme prévu, la dépendance du temps

d’échantillonnage de cette fonction. Nous notons que dans la plupart des cas, ∆t ≈ 100

est suffisant pour la convergence de C(t). Pour le déplacement carré moyen h(t), le

système AB13 montre une oscillation à basse température pendant le temps de relax-

ation. La fonction se montre non monotone dans le cristal, à basses températures.

Cette particularité n’a pas été observée dans les corps élastiques permanents [17]. La

valeur du plateau à long terme de h(t) augmente avec l’augmentation de la température

à l’état solide tandis que la tendance est à l’opposé à l’état liquide. Cela n’est pas

surprenant puisqu’il correspond à la fluctuation des contraintes de cisaillement µF .

Ensuite, pour certains états thermodynamiques, nous avons calculé le module de re-

laxation de cisaillement G(t). Comme indiqué dans [17], cette fonction peut se calculer

via G(t) = µA − h(t), où µA est le module de l’élasticité affine. La fonction affiche une

diminution rapide de G(0) = µA, et il atteint son module d’équilibre Geq = µA − µF à

au temps long. A partir de G(t), nous avons calculé les modules dynamiques, et avons

comparé nos résultats aux modèles rhéologiques simples de Maxwell et de Kelvin-
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Voigt. Les quatre systèmes étudiés ont qualitativement le même comportement que le

modèle de Maxwell quand ils sont liquides (avec quelques petites différences discutées

au chapitre 4). A l’état solide, le système AB13 et le système KA2d présentent des car-

actéristiques plus compliquées que les deux autres systèmes, qui sont monodisperses.

Nous supposons cela peut s’expliquer par le caractère binaire de KA2d et AB13. Pour

nos solides, concernant le module de conservation G′, il est clair que le modèle Maxwell

ne s’applique pas puisque nous avons deux valeurs limites de G′ non nulles (à basse

et à haute fréquences). En raison de ces deux valeurs, le modèle de Kelvin-Voigt ne

s’applique pas non plus. Fait intéressant, nous avons de nouveau un pic de G′, à une

fréquence intermédiaire, où G′
max > µA (résonance). Quant au module de perte G′′,

alors qu’il est nul pour les fréquences basses et hautes, comme prévu, sa valeur n’est

nullement négligeable pour certaines fréquences intermédiaires, son maximum est par-

fois même comparable en ordre de grandeur à Geq. Cela montre que même dans ces

systèmes de modèles simples, la dissipation d’énergie à l’état solide peut être impor-

tante pour certaines fréquences. Le chapitre se termine par une brève discussion sur

les modules de complaisance de nos systèmes à l’état solide (voir Figure 5).
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Fig. 5 Les modules dynamiques du modèle KA2d en état liquide et solide respective-

ment. G′(ω) est le module de conservation, G′′(ω) est le module de perte.
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0.3 Perspectives

De nombreuses extensions futures de notre travail sont possibles:

Concernant l’élasticité, nous pouvons utiliser nos méthodes de calcul des constantes

élastiques pour étudier les transitions de phase solide-solide sous haute pression, ou en

fonction de la température. Des potentiels plus généraux, tels que des potentiels à trois

corps ou du type EAM devraient être examinée, afin d’étudier les propriétés élastiques

de matériaux plus réalistes, surtout en fonction de la température et de la pression.

Les fonctions viscoélastiques peuvent être calculées pour de nombreux systèmes de la

matière molle, pour des comparaisons avec les résultats expérimentaux, permettent

une meilleure modélisation de ces systèmes. Pour la transition vitreuse, notre étude du

système KA2d doit être poursuivie. Par exemple, l’analyse des trajectoires peut être

mise en œuvre. Plus de configurations indépendantes devraient être utilisées, afin de

réduire les erreurs statistiques dans nos modules, en particulier près de la transition

vitreuse. En parallèle, il serait intéressant d’obtenir des expressions similaires comme

G(t) = µA − h(t) pour les systèmes de sphères dures, puisque ces systèmes sont des

modèles théoriques et expérimentaux (collöıdes de sphères dures).
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