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Résumé étendu

Cette thèse a pour obje
tifs d'étudier et de développer de nouvelles méthodes de pistage

radar d'une ou plusieurs 
ibles radars en 
ontexte Tra
k-Before-Dete
t par �ltrage par-

ti
ulaire.

Brève dé�nition du pistage dans un 
adre bayésien

La problématique du �ltrage et plus parti
ulièrement du pistage 
onsiste à estimer, à

partir de mesures su

essives, l'état d'une variable non observée � par exemple, dans le


as du radar, la position et la vitesse des 
ibles � dont on a néanmoins une idée a priori

de l'évolution au 
ours du temps � par exemple, on peut supposer qu'une 
ible est animée

d'un mouvement re
tiligne. C'est un problème extrêmement général et qui se retrouve

dans de nombreux domaines tels que la �nan
e, les télé
ommuni
ations, la télémétrie, et
.

Il existe plusieurs appro
hes pour résoudre 
e problème, néanmoins nous nous lim-

iterons dans 
ette thèse à l'appro
he bayésienne et plus parti
ulièrement aux modèles

de Markov 
a
hés à temps dis
ret. Ces modèles peuvent être globalement dé�nis de la

manière suivante

1

: l'état 
a
hé est dé�ni par une variable aléatoire, notée xk ; l'évolution

temporelle de l'état 
a
hé est modélisée par un pro
essus de Markov qui est entièrement

déterminé par sa densité à l'instant initial p (x0) et sa densité de transition p (xk | xk−1).
Cette dernière peut être dé�nie par l'équation :

xk = fk (xk,vk) , (1)

où fk (.) est une fon
tion non-linéaire 
onnue et vk un bruit blan
. D'autre part, l'observation
(ou la mesure), notée zk, est reliée à l'état 
a
hé par l'équation suivante (appelée équation

de mesure) :

zk = hk (xk) + nk, (2)

où hk (.) est une fon
tion non-linéaire 
onnue et nk un bruit blan
. Cette équation permet

notamment de 
al
uler la vraisemblan
e de l'observation sa
hant l'état 
a
hé p (zk | xk).
L'obje
tif est alors de 
al
uler à 
haque instant la densité p (xk | z1:k) (appelée densité

a posteriori) a�n de 
al
uler des estimateurs de l'état 
a
hé, tel que l'estimateur du

Maximum A Posteriori ou en
ore l'estimateur MMSE (Minimum Mean Square Error).

En règle générale on 
her
he à 
al
uler 
ette densité de manière séquentielle ; en e�et,

1

I
i, nous 
onsidérons un 
adre simple où les pro
essus étudiés peuvent être dé
rits à partir de densité

; il existe néanmoins des modélisations plus générales dont nous ne parlerons pas i
i.

1



2 Résumé étendu

dans le 
adre des modèles de Markov 
a
hés la densité p (xk | z1:k) s'é
rit à partir de la

densité à l'étape pré
édente à partir l'équation suivante :

p (xk | z1:k) =
p (xk | z1:k−1) p (zk | xk)

p (zk | z1:k−1)
, (3)

où :

p (xk | z1:k−1) =

∫
p (xk−1 | z1:k−1) p (xk | xk−1) dxk−1. (4)

De manière générale, l'Eq. (3) ne permet pas de 
al
uler la densité p (xk | z1:k) de manière

analytique, ex
epté dans le 
as du modèle linéaire et gaussien où la solution exa
te est

fournie par le �ltre de Kalman. Quand le modèle est toujours gaussien et que les fon
-

tions fk et hk ne présentent pas de fortes non-linéarités, des approximations du type

EKF (Extended Kalman Filter) et UKF (Uns
ented Kalman Fitler) peuvent être utilisées

[AMGC02℄.

Dans les autres situations � fortes non-linéarités et/ou bruits non-gaussiens�, il est sou-

vent né
essaire d'avoir re
ours à d'autres approximations pour obtenir des performan
es

a

eptables. L'une des solutions 
ouramment utilisée aujourd'hui est le �ltre parti
u-

laire. L'idée sous-ja
ente est d'approximer la densité 
ontinue p (xk | z1:k) par une densité
dis
rète, i.e. :

p (xk | z1:k) ≈
Np∑

i=1

wikδxi
k
(xk) , (5)

où δxi
k
(.) est la fon
tion de Dira
 
entrée en xik et les variables x

i
k sont appelées parti
ules

ave
 wik leur poids asso
ié. L'avantage d'une telle approximation est qu'elle permet un

fon
tionnement séquentiel, ainsi l'approximation parti
ulaire de la densité p (xk+1 | z1:k+1)
peut être obtenue par le mé
anisme � relativement simple à mettre en oeuvre � suivant :

� Chaque parti
ule xik+1 est tirée à partir de la parti
ule à l'instant pré
édent x
i
k suiv-

ant une densité q (xk+1 | xik, zk), appelée densité instrumentale dont le 
hoix est laissé

à l'utilisateur. En pratique, la densité a priori p(xk+1|xk) issue du modèle d'état est

souvent utilisée 
ar la densité instrumentale optimale fournie par p
(
xk | xik−1, zk

)

ne permet que rarement de tirer fa
ilement des é
hantillons à partir de 
elle-
i.

� Ensuite les poids des parti
ules sont mis à jour au moyen de l'équation suivante :

wik ∝ wik−1

p
(
xik+1 | xik

)
p (zk | xik)

q
(
xik+1 | xik, zk

) , (6)

qui fait intervenir la densité a priori p (xk+1 | xik) et la vraisemblan
e de la mesure


onditionnellement à l'état 
a
hé p (zk | xk).

Le pistage radar 
lassique

Le pistage radar 
onsiste à 
réer, à partir d'une su

ession de mesures temporelles, des


haînes d'états su

essifs 
ohérents de la 
inématique d'une 
ible. Pour un traitement
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radar 
lassique, 
es mesures temporelles 
orrespondent aux plots issus d'une étape préal-

able de déte
tion et d'extra
tion appliquée au signal radar brut. Au delà du 
haînage

proprement dit, l'étape de pistage permet également d'améliorer l'estimation des dif-

férents paramètres des 
ibles (tels que la position, la vitesse, et
.), estimation limitée lors

de l'étape préliminaire de déte
tion/extra
tion par les 
ara
téristiques du radar.

L'une des di�
ultés majeures du pistage radar tient tout d'abord à la stru
ture de la

mesure brute zk délivrée par le radar. En e�et, 
elle-
i peut être vue 
omme un tableau

multidimensionnel � dont 
haque axe représente un des paramètres mesurés, tels que dis-

tan
e, angle, Doppler, et
. � pouvant 
ontenir un nombre de 
ases (ou 
ellules) beau
oup

plus important que le nombre de 
ibles d'intérêt et qui par 
onséquent peut être poten-

tiellement di�
ile de traiter dans sa totalité, notamment dans le 
adre d'une appli
ation

temps réel. De 
e fait, la première étape d'un traitement radar 
lassique 
onsiste à seuiller

la mesure zk et à ne garder qu'un nombre limité de 
ases radar sus
eptibles de 
ontenir les

di�érentes 
ibles présentes. A partir de 
es 
ases radar, des plots de déte
tion � qui sont

une mesure bruitée des paramètres d'une 
ible potentielle � sont alors formés et permet-

tent ainsi de réaliser l'étape de pistage proprement dite, qui est notamment vouée à 
réer,

à partir des plots fournis au 
ours du temps, des 
haînes d'états su

essifs 
ohérents de

la 
inématique d'une 
ible, et dans le même temps à améliorer l'estimation des di�érents

paramètres d'état.

Dans l'appro
he 
lassique, la mé
onnaissan
e de l'origine des di�érents plots de déte
-

tion, qui peuvent être générés aussi bien par une des 
ibles présentes dans la fenêtre de

veille que par des fausses alarmes, 
onduit à la né
essité d'asso
ier 
haque plot mesuré à

une piste (existante ou nouvelle). Ce problème d'asso
iation plots/pistes ne présente pas

de di�
ultés lorsque l'on 
her
he à pister des 
ibles à fort Rapport Signal à Bruit (RSB)

; en e�et dans 
e 
as il su�t de 
hoisir un seuil de déte
tion élevé qui permet de limiter

très fortement le nombre de fausses alarmes et la 
omplexité du problème. Par 
ontre, si

l'on 
her
he à pister des 
ibles à faible RSB, il devient né
essaire de baisser le seuil de

déte
tion pour permettre la déte
tion des 
ibles. Cela 
onduit à augmenter sensiblement

le nombre de fausses alarmes et le problème d'asso
iation peut alors devenir beau
oup

plus di�
ile à résoudre.

L'appro
he Tra
k-Before-Dete
t

Comme nous venons de le voir, l'appro
he 
lassique n'est pas for
ément la plus adaptée

pour déte
ter et pister des 
ibles à faible RSB � bien qu'elle permette par ailleurs une

rédu
tion importante de la taille de la mesure zk. Par 
onséquent, une nouvelle appro
he,


onnue sous le nom de Tra
k-Before-Dete
t (TBD), a été proposée dont l'idée est simple :

il s'agit de ne plus travailler à partir des données seuillées 
omme dans l'appro
he 
lassique

mais dire
tement à partir des données radar brutes z1, · · · , zk. Le premier avantage est

la suppression du problème d'asso
iation. D'autre part toute l'information présente dans

les données est 
onservée laissant penser qu'il sera ainsi plus fa
ile de pister des 
ibles à

faible RSB dans 
e 
adre que dans le 
adre 
lassique.

Néanmoins, 
ette nouvelle appro
he n'est pas sans di�
ulté l'exploitation dire
te de

la mesure zk 
onduit à un modèle de mesure plus di�
ile à appréhender que dans le 
as
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lassique, modèle qui peut être dé�ni par l'équation suivante :

zk =

Nk∑

i=1

ρk,ie
jϕk,ih (xk,i) + nk, (7)

où :

� Nk est le nombre de 
ibles présentes dans la mesure.

� xk,i est l'état de la i
ième


ible.

� les paramètres ρk,i et e
jϕk,i

dé�nissent l'amplitude 
omplexe de la 
ible i, in
onnue
et possiblement �u
tuante (de manière aléatoire) au 
ours du temps.

� h (.) est la fon
tion d'ambiguïté de la forme d'onde radar qui est 
onnue.

Clairement, il s'avère que les 
ontributions des di�érentes 
ibles sont sommées et don


mélangées dans le ve
teur de mesure. Dans l'appro
he 
lassique 
e n'est généralement pas

le 
as dès lors que les 
ibles sont su�samment distantes pour être résolues en sortie de

�ltre adapté. On peut alors faire l'hypothèse qu'à un plot ne peut être asso
ié qu'une seule

piste. De plus, la fon
tion h (.) est souvent fortement non-linéaire, 
e qui rend di�
ile

l'utilisation de solutions telles que l'EKF ou l'UKF. En�n, la présen
e des paramètres

in
onnus et �u
tuants ρk,i et ϕk,i ne permet généralement pas de 
al
uler dire
tement la

vraisemblan
e de la mesure 
onditionnellement aux états des 
ibles p (zk | xk,1:Nk
).

Au vu de 
es di�
ultés, les premières solutions au problème de pistage dans le 
adre

du Tra
k-Before-Dete
t ont d'abord été proposées dans le 
as plus simple mono
ible �


'est-à-dire que l'on 
her
he à déte
ter l'apparition et/ou la disparition d'une et une

seule 
ible. Parmi 
es solutions on peut 
iter les solutions basées sur la transformée de

Hough [CEW94℄, 
elles basées sur la programmation dynamique [Bar85℄ ou en
ore 
elles

utilisant le �ltre parti
ulaire [SB01℄. Suite à 
es premières solutions du problème mono
i-

ble, d'autres solutions ont été proposées dans le 
adre plus général du pistage multi
ible

[KKH05℄. Dans 
ette thèse, nous nous intéresserons uniquement aux solutions parti
u-

laires (mono 
omme multi
ibles), sans perdre d'esprit que d'autres travaux devraient être

entrepris par la suite pour 
omparer les di�érentes solutions au problème TBD. L'obje
tif

est dans 
e travail de développer et d'étendre les solutions parti
ulaires existantes dans le


adre général du pistage mono ou multi
ibles en 
ontexte TBD. En pratique, le problème

mono
ible a d'abord été 
onsidéré.

Filtres parti
ulaires mono
ibles en Tra
k-Before-Dete
t

Filtre 
lassique et lois instrumentales

En TBD, la présen
e ou l'absen
e de la 
ible n'est pas 
onnue a priori et il est don


né
essaire de modéliser 
ette mé
onnaissan
e. Dans le 
adre bayésien des modèles de

markov 
a
hés étudiés dans 
ette thèse, la méthode 
lassique pour modéliser la présen
e

ou l'absen
e de la 
ible 
onsiste à utiliser une variable binaire sk qui prend la valeur

1 quand la 
ible est présente et 0 sinon [SB01℄. Ainsi, si on note xk l'état de la 
ible
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(représentant sa position et sa vitesse, et
.), l'obje
tif du pistage est alors d'estimer l'état

hybride (sk,xk) au 
ours du temps. Pour 
e faire, il est né
essaire de dé�nir la densité de

transition p (sk,xk | sk−1,xk−1) du modèle a priori. En règle générale, 
ette densité est

fa
torisée de la manière suivante :

p (sk,xk | sk−1,xk−1) = p (sk | sk−1) p (xk | xk−1, sk, sk−1) , (8)


e qui permet de modéliser le pro
essus (sk)k∈N 
omme une 
haîne de Markov à deux états,

indépendante de l'état xk. Ensuite, il reste à modéliser la densité p (xk | xk−1, sk, sk−1).
Bien qu'il y ait quatre 
as de �gure, dans les faits seuls les deux 
as suivants, qui 
orre-

spondent à une présen
e de la 
ible à l'instant k, sont né
essaires:

� le 
as sk = 1 et sk−1 = 0 qui 
orrespond à l'apparition ou à la naissan
e de la 
ible.

La variable xk est généralement initialisée uniformément dans l'espa
e d'état, pour

modéliser l'absen
e de 
onnaissan
e sur l'état de la 
ible.

� le 
as sk = 1 et sk−1 = 1 où la 
ible est déjà présente et qui modélise don
 son

évolution au 
ours du temps (par exemple, un mouvement re
tiligne).

A partir du modèle d'état ainsi dé�ni, un premier �ltre parti
ulaire a été proposé par

Salmond et al. [SB01℄ a�n d'approximer le �ltre bayésien théorique qui n'est pas 
al
u-

lable en pratique. Dans le 
adre du �ltre parti
ulaire, la densité instrumentale utilisée

pour é
hantillonner les parti
ules peut être 
hoisie par l'utilisateur. Même si la loi sou-

vent retenue est la loi a priori 
orrespondant au modèle d'état, qui ne prend pas en


ompte l'information fournie par l'observation 
ourante zk, il est tout à fait possible de

la prendre en 
ompte, notamment pour améliorer la performan
e du �ltre en propageant

les parti
ules de manière plus e�
a
e. En Tra
k-Before-Dete
t, le 
as réellement 
ri-

tique pour l'é
hantillonnage des parti
ules est l'initialisation (ou la naissan
e). En e�et,

à 
ause de l'a priori uniforme sur la densité p(xk|xk−1, sk = 1, sk−1 = 0), il est né
es-

saire d'é
hantillonner l'ensemble de l'espa
e d'état, 
e qui peut né
essiter un nombre

très important de parti
ules, généralement proportionnel au nombre de 
ases de résolu-

tion. Des appro
hes heuristiques ont été proposées dans la littérature a�n de résoudre


e problème en exploitant l'information fournie par l'observation 
ourante, notamment

par Salmond et al.. Toutefois les solutions proposées n'étaient pas né
essairement justi-

�ées théoriquement. Ainsi, nous proposons au 
hapitre 2 de nouvelles lois instrumentales

dérivées à partir d'approximations de la densité instrumentale optimale p
(
xk | xik−1, zk

)

� qui n'est pas 
al
ulable en pratique. Par exemple, le �ltre parti
ulaire développé par

Salmond et al. é
hantillonne la variable sk à partir de la loi a priori qui ne tient pas


ompte de l'observation zk. Nous montrons qu'il est en fait possible de prendre en 
ompte

l'observation en é
hantillonnant la variable sk à partir de la loi a posteriori p (sk | sk−1, zk).

Finalement, nous 
omparons sur simulation les lois instrumentales proposées ave



elles 
lassiquement utilisées dans la littérature. Ces simulations illustrent l'importan
e

de l'initialisation des parti
ules (notamment la position) et montrent qu'il peut être plus

intéressant d'utiliser une loi instrumentale di�érente de la loi a priori fournie par le modèle

d'état que de simplement augmenter le nombre de parti
ules.
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Modélisation alternative du problème TBD mono
ible

Dans 
ertains 
as de �gure, et notamment à faible RSB, le fait de 
ontinuer à initialiser

des parti
ules alors que le �ltre a déjà 
onvergé sur la 
ible peut biaiser l'estimation. Il est

don
 légitime de remettre en 
ause la né
essité d'initialiser des parti
ules quand le �ltre

a déjà 
onvergé, et 
e d'autant plus que l'initialisation des parti
ules est est relativement


oûteuse en temps de 
al
ul. Partant de 
e 
onstat, nous avons 
onsidéré une stratégie

alternative permettant d'e�e
tuer la déte
tion de l'apparition de la 
ible et sa disparition

ave
 des �ltres di�érents. Les prémi
es d'une telle solution se trouvent dans les travaux

de Kligys et al. [KRT98℄ qui proposent une modélisation du problème TBD 
omme un

problème de déte
tion de 
hangement : il s'agit alors d'estimer le plus rapidement possible

un 
hangement de densité de probabilité tout en minimisant la probabilité d'erreur. Dans

le 
as du TBD, le 
hangement survient quand la 
ible apparaît : on passe alors de la densité

de probabilité du bruit seul à une densité de probabilité dé
entrée par la 
ontribution de

la 
ible (voir Eq. 7). Néanmoins, la solution de Kligys et al. n'est pas développée

dans le 
adre des Modèles de Markov 
a
hés. Nous proposons don
 dans 
ette thèse une

solution originale adoptant 
ette modélisation du problème TBD 
omme un problème

de déte
tion de 
hangement et dérivons le �ltre parti
ulaire 
orrespondant. Ainsi, au


hapitre 3 le modèle d'état 
onsidéré modélise non plus l'évolution du 
ouple (sk,xk)
au 
ours du temps mais l'évolution du 
ouple (τb,xk) où τb est l'instant d'apparition de

la 
ible. Un modèle d'état similaire peut être 
onsidéré pour la disparition de la 
ible.

Dans les deux 
as, nous dérivons les équations des �ltres bayésiens 
orrespondants ainsi

que des approximations parti
ulaires pour 
ha
un d'eux. En�n, nous proposons un �ltre

parti
ulaire 
ombinant 
es deux �ltres a�n de gérer à la fois l'apparition et la disparition de

la 
ible. Les simulations e�e
tuées permettent de montrer l'intérêt de séparer la déte
tion

de l'apparition et de la disparition notamment au niveau de temps de 
al
ul du �ltre mais

également en matière d'estimation (surtout à faible RSB).

Cal
ul de la vraisemblan
e en Tra
k-Before-Dete
t

Un autre problème important qui se pose en TBD 
on
erne le 
al
ul de la vraisemblan
e

de la mesure 
onditionnellement à l'état des 
ibles p (zk | xk,1:Nk
), qui est né
essaire pour

la mise en oeuvre du �ltre bayésien. Or 
ette vraisemblan
e ne peut pas être 
al
ulée

dire
tement à partir de l'équation de mesure (7) du fait de la présen
e des paramètres

d'amplitudes ρk,i, ϕk,i qui sont in
onnus et peuvent �u
tuer d'itération à itération. En

radar, les �u
tuations du module ρk,i sont généralement modélisées par un des modèles

Swerling : pour le modèle Swerling 0, le module est supposé 
onstant et don
 non �u
tu-

ant, tandis que les modèles Swerling 1 et 3 modélisent des �u
tuations lentes (de rafale à

rafale) de l'amplitude 
ible, et les modèles de Swerling 2 et 4 modélisent des �u
tuations

rapides (d'impulsion à impulsion). La phase ϕk,i est quant à elle supposée uniformément

distribuée sur l'intervalle [0, 2π[. Dans la mesure où le modèle de mesure 
onsidéré est

développé au niveau de la rafale, nous ne 
onsidérons dans 
ette thèse que les modèles de

Swerling 0, 1 et 3, soit l'absen
e de �u
tuation ou une �u
tuation lente de la 
ible.

Plusieurs solutions ont été proposées dans la littérature pour s'a�ran
hir de 
es pa-

ramètres d'amplitude et ainsi permettre de 
al
uler la vraisemblan
e des observations
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p (zk | xk,1:Nk
). La première solution proposée [RRG05, DRC08, BDV

+
03℄ 
onsiste à tra-

vailler sur les modules des é
hantillons 
omplexes |zlk|2. En e�et, 
ette solution permet

de 
al
uler la vraisemblan
e de manière simple dans le 
as mono
ible. Par 
ontre, 
ette

solution 
onduit à perdre l'information de 
ohéren
e spatiale de la phase de la 
ible, i.e. le

fait que la phase de la 
ible est la même pour tous les é
hantillons de la mesure zk. Cette

perte d'information peut être préjudi
iable pour les performan
es 
omme démontré par

Davey et al. [DRC12℄. D'autre part, nous avons montré que l'extension de 
ette solution

au 
as multi
ible est loin d'être simple, sauf dans le 
as Swerling 1 où une expression

analytique de la vraisemblan
e peut être obtenue.

A�n de palier la perte de la 
ohéren
e spatiale sur le module, Davey et al. [DRC12℄

ont proposé dans le 
as mono
ible une autre appro
he qui 
onsiste à travailler dire
tement

à partir de la mesure 
omplexe zk et à marginaliser la densité p(zk|xk, ρk, ϕk) (qui peut
être obtenue fa
ilement à partir de l'Eq. (7)) par rapport à la variable ϕk, soit :

p (zk | xk, ρk) =
∫
p (zk | xk, ρk, ϕk) p (ϕk) dϕk, (9)

où p (ϕk) est la densité uniforme sur [0, 2π[. Contrairement à l'appro
he pré
édente, la


ohéren
e spatiale de la phase est i
i 
onservée. Davey et al. montrent alors que l'Eq. (9)

est 
al
ulable de manière analytique. Dans le 
as Swerling 0, la vraisemblan
e p (zk | xk)
né
essaire pour le �ltrage parti
ulaire est alors simplement obtenue en remplaçant la

variable ρk par la valeur du paramètre. Pour les modèles Swerling 1 et 3, il est né
essaire
de marginaliser également la densité p (zk | xk, ρk) par rapport au module ; dans 
e 
as,

au
une formule analytique n'a jusqu'alors été fournie.Suite à 
ette 
onstatation, nous

avons tout d'abord étendu l'appro
he proposée par Davey et al. pour les modèles de

�u
tuations Swerling 1 et 3 dans le 
as mono
ible. Nous montrons, dans le 
hapitre 4


ette thèse, que la marginalisation de la densité p (zk | xk, ρk) suivant le paramètre ρk est

al
ulable de manière exa
te pour les modèles Swerling 1 et 3. Dans un se
ond temps,

nous avons 
onsidéré le problème de la marginalisation des paramètres d'amplitude dans le


as multi
ible. Nous obtenons une expression analytique uniquement dans le 
as Swerling

1 ; pour les autres modèles de �u
tuations, nous proposons néanmoins des approximations

permettant le 
al
ul des vraisemblan
es en un temps raisonnable. En�n, nous montrons

par simulation l'intérêt d'utiliser la mesure 
omplexe zk au lieu des modules 
arrés dans

le 
as mono
ible pour les �u
tuations Swerling 1 et 3, et dans le 
as multi
ibles pour les

�u
tuations Swerling 0, 1 et 3.

Filtres parti
ulaires multi
ibles en Tra
k-Before-Dete
t

Pré
édemment nous avons donné un bref aperçu de la modélisation du problème Tra
k-

Before-Dete
t en mono
ible ave
 l'utilisation de la variable dis
rète sk. La modélisation

généralement utilisée dans le 
adre multi
ible suit une idée similaire ave
 l'introdu
tion

d'une variable alétoire supplémentaire modélisant le nombre de 
ible présent, sauf que

dans le 
as multi
ible 
e nombre n'est plus limité par 1. En notant Nk le nombre de 
ibles

à l'instant k, le but du pistage est alors d'estimer la densité p (Nk,xk,1:Nk
| z1:k) au 
ours

du temps.
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A partir de 
ette modélisation du problème multi
ible, Kreu
her et al. ont proposé un

�ltre parti
ulaire permettant d'approximer le �ltre bayésien théorique. Celui-
i é
hantil-

lonne pour 
haque parti
ule un nombre de 
ibles N i
k et les états des 
ibles asso
iés x

i
k,1:Nk

,


e qui permet d'é
rire l'approximation parti
ulaire de la manière suivante :

p (xk,1:Nk
, Nk | z1:k) ≈

Np∑

i=1

wikδxi

k,1:Ni
k

(xk,1:Nk
) . (10)

Malgré 
ette approximation parti
ulaire de la densité a posteriori, l'estimation du nombre

de 
ibles ainsi que de leur état reste di�
ile en pratique. En e�et, la densité a posteri-

ori est invariante par permutation des états de 
ibles � par exemple, pour deux 
ibles,

p (xk,1,xk,2 | z1:k) = p (xk,2,xk,1 | z1:k). Par 
onséquent, si les états des 
ibles xik,1:N i
k

pour


haque parti
ule ne sont pas ordonnés, il n'est pas possible d'estimer 
orre
tement l'état

des 
ibles 
orrespondantes. C'est pourquoi Kreu
her et al. pré
onise une étape sup-

plémentaire de 
lustering a�n d'ordonner les di�érents états des parti
ules en partition

représentant 
ha
une une 
ible. D'autre part, le fait de 
onsidérer des parti
ules multi
i-

bles implique que le poids de la parti
ule, obtenu par le produit des vraisemblan
es des

di�érents états é
hantillonnés par 
ette parti
ule, représente uniquement un 
omporte-

ment global de la parti
ule pour l'ensemble des états, mais ne re�ète pas la qualité des

di�érents états en parti
ulier. En pratique, on peut alors obtenir des parti
ules é
han-

tillonnant 
orre
tement un 
ertain nombre d'états et in
orre
tement d'autres états ; les

poids de 
es parti
ules ne permettront pas de distinguer les états 
orre
tement é
hantillon-

nés des autres états, 
e qui pourra 
onduire à une détérioration de la qualité d'estimation

du �ltre. Suite à 
es 
onstatations, nous proposons dans le 
hapitre 5 une modélisation

permettant de dé
oupler les di�érentes 
ibles quand 
elles-
i sont éloignées les unes des

autres ; on utilise alors simplement des �ltres di�érents et indépendants pour pister les

di�érentes 
ibles. Ainsi, l'étape de 
lusterisation n'est plus né
essaire et par 
onstru
-

tion les 
ibles sont indépendantes les unes des autres. Pour 
e faire, nous ne 
onsidérons

plus la variable Nk modélisant le nombre de 
ibles et pouvant varier au 
ours du temps,

mais plut�t un nombre 
onstant Nt de 
ouples (sk,l,xk,l) 
orrespondant à la modélisation

mono
ible du problème TBD ; Nt représente le nombre maximum de 
ibles que le �ltre

parti
ulaire peut gérer 
onjointement. Nous montrons qu'ave
 
ette modélisation, lorsque

les 
ibles n'interagissent pas entre elles, le �ltre bayésien peut être fa
torisé 
omme suit :

p (sk,1:Nt,xk,1:Nt) =
Nt∏

l=1

p (sk,l,xk,l) , (11)


e qui permet e�e
tivement l'emploi d'un �ltre par 
ible. Par 
ontre, lorsque des 
ibles

sont pro
hes, elles doivent être traitées 
onjointement. Il reste toutefois possible de traiter

séparément les groupes de 
ibles pro
hes et les 
ibles isolées.

De manière similaire au 
hapitre 3, nous proposons alors trois �ltres parti
ulaires,

l'un pour e�e
tuer la déte
tion de l'apparition de plusieurs 
ibles, le se
ond pour gérer

la disparition, et le dernier qui 
ombine 
es deux premières solutions pour gérer à la fois

l'apparition et la disparition. Cette appro
he est validée sur simulation en 
onsidérant

deux s
énarios simples, l'un où trois 
ibles à faible RSB sont présentes mais n'interagissent

pas entre elles et un autre où deux 
ibles à fort RSB se 
roisent.
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Contributions

Dans 
ette thèse nous nous sommes intéressés au problème du pistage mono
ible et mul-

ti
ible en 
ontexte Tra
k-Before-Dete
t par �ltrage parti
ulaire. Con
ernant le pistage

mono
ible, nous avons tout d'abord proposé de nouvelles lois instrumentales pour l'ini-

tialisation des parti
ules et montré par simulation qu'elles apportaient un gain signi�
atif

tant au niveau de la déte
tion que de l'estimation. Ces travaux ont fait l'objet d'une


ommuni
ation [LRLG12a℄. Par ailleurs, nous avons proposé une modélisation alternative

originale du problème TBD mono
ible basée sur l'instant d'apparition ou de disparition

de la 
ible. Ainsi, nous avons proposé trois �ltres parti
ulaires, le premier pour déte
ter

l'apparition de la 
ible, le se
ond pour déte
ter sa disparition, et le dernier qui 
ombine

les deux �ltres pré
édents pour gérer 
onjointement l'apparition et la disparition. Finale-

ment, nous montrons par simulation l'intérêt de séparer la déte
tion de l'apparition et de

la déte
tion notamment en matière de temps de 
al
ul mais également en 
e qui 
on
erne

l'estimation (surtout à faible RSB). Cette solution originale a été partiellement présentée

dans la 
ommuni
ation [LRLG12b℄.

Ensuite, nous nous sommes intéressés au 
al
ul de la vraisemblan
e en 
ontexte Tra
k-

Before-Dete
t. Nous avons étendu les travaux de Davey et al. permettant le 
al
ul de

la vraisemblan
e en tenant 
ompte de la 
ohéren
e spatiale des paramètres d'amplitude

pour des �u
tuations Swerling 0, à d'autres modèles de �u
tuations (Swerling 1 et 3) et

aux troix modèles de �u
tuation dans le 
as multi
ible. Ainsi, nous avons montré que

dans le 
as mono
ible, des expressions analytiques de la vraisemblan
e pouvaient être

obtenues pour les �u
tuations Swerling 1 et 3 ; dans le 
as multi
ible, nous obtenons

une expression analytique uniquement dans le 
as Swerling 1 ; néanmoins pour les autres

modèles nous proposons des approximations permettant de 
al
uler la vraisemblan
e en

un temps raisonnable. Ces travaux ont fait l'objet d'une première 
ommuni
ation en


onféren
e [LRG13℄ puis d'une publi
ation plus avan
ée a

eptée dans la revue IEEE

Transa
tions on Aerospa
e and Ele
troni
 Systems [LRLG16℄.

Finalement dans la dernière partie de 
ette thèse, nous nous sommes intéressés au

pistage multi
ible. Notre démar
he a 
onsisté à mettre en pla
e une solution permettant

d'une part d'exploiter au maximum l'indépendan
e des 
ibles entre elles a�n d'utiliser

autant que possible un �ltre par 
ible plut�t que des �ltres multi
ibles, et d'autre part,


omme pour le 
as mono
ible, de séparer la déte
tion de l'apparition et de la disparition.

Ainsi, nous avons montré qu'il était possible d'étendre la modélisation du problème mono-


ible au 
as multi
ible et que le �ltre multi
ible résultant pouvait être fa
torisé par un

produit de �ltres mono
ibles dès lors que les 
ibles sont su�samment éloignées les unes

des autres. Nous avons alors proposé 
omme dans le 
as mono
ible trois �ltres parti
u-

laires : un pour la déte
tion des apparitions, un se
ond pour la gestion des 
roisements

et des disparitions et en�n un dernier �ltre réunissant les deux �ltres pré
édents.
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Chapter 1

Radar signal pro
essing and Bayesian

�ltering tools

The whole 
lassi
 radar 
hain from the signal re
eption to the tra
king stage 
an be

de
omposed into three di�erent steps, as illustrated in Figure 1.1.

Figure 1.1 � Blo
k diagram of the 
lassi
 radar 
hain from the signal pro
essing stage

to the tra
king stage. The Tra
k-Before-Dete
t pro
essing takes pla
e after the signal

pro
essing stage.

The �rst stage, denoted here "radar signal pro
essing", is performed in order to im-

prove the target Signal to Noise Ratio (SNR), thus allowing to dete
t and estimate the tar-

get parameters (su
h as range, radial velo
ity, azimuth,...). In the 
lassi
 radar 
hain, the

"radar signal pro
essing" stage provides a measurement zk as an input to the "dete
tion

and hit extra
tion". This next step 
onsists �rst in thresholding the radar measurement

zk and then in extra
ting the potential target parameters from any signal sample (
alled

"hit") that passed the dete
tion threshold. At the end of this step, a set of dete
tion hits

Yk is provided to the tra
king step. This last stage takes advantage of some target motion

information (e.g. a linear traje
tory) to enhan
e the estimation of the target parameters

over time. Moreover it enables to dis
riminate over time the "hits" that 
ome from the

targets from the ones that are due to false alarms in order to form tra
ks.

In pra
ti
e, "the dete
tion and hit extra
tion" stage allows to dramati
ally redu
e

the amount of data to pro
ess � indeed the size of the measurement zk may be very

large (it is a multidimensional array that may 
ontain several tens of thousands of 
ells)

whereas, if the threshold is 
onveniently 
hosen to limit the false alarms, the set Yk is

11
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Figure 1.2 � General radar prin
iple. In bla
k the transmitted signal and red the signal

re�e
ted in all the dire
tions.

mu
h smaller � but in return some information is lost that may be detrimental, espe
ially

if some targets have a low SNR. A new framework, known as Tra
k-Before-Dete
t, has

therefore been proposed and 
onsists in jointly performing dete
tion and tra
king from

the measurement zk rather than from the set of dete
tion "hits", as illustrated in Figure

1.1. This framework will be at the heart of this thesis.

Before going further into the details of the Tra
k-Before-Dete
t strategy, we propose

�rst in this 
hapter to present some aspe
ts of the radar signal pro
essing theory and of

the Bayesian �ltering theory that will be useful along this manus
ript. In parti
ular, in

se
tion 1.1, we present the main signal pro
essing tools used to transform the re
eived

signal into the output measurements zk and the dete
tion hits Yk while in se
tion 1.2 we

outline the Bayesian �ltering tools that are used in the radar tra
king stage.

1.1 Radar signal pro
essing

1.1.1 General prin
iple

A RADAR (RAdio Dete
tion and Ranging) is an ele
tromagneti
 system 
onsisting of an

antenna that transmits a signal with a parti
ular waveform and then re
eives and dete
ts

the signal ba
ks
attered by any s
atterer present in the s
ene, among whi
h possibly one

or several targets (su
h as air
rafts, vessels, et
.). This prin
iple is illustrated in Figure

1.2. Then by measuring the duration τ of the round trip between the radar and the target,

it is possible to 
al
ulate the 
orresponding range R with the following relationship:

R =
cτ

2
, (1.1)

where c is the speed of the ele
tromagneti
 wave. Furthermore, due to the motion of

the target, the signal re
eived by the radar may be shifted in frequen
y 
ompared to the

transmitted one: this is the so 
alled Doppler e�e
t. The frequen
y shift between the

transmitted signal and the re
eived one is approximately equal to

2Ṙ
c
f0 where f0 is the

frequen
y of the transmitted signal and Ṙ the radial velo
ity. Therefore by measuring

this Doppler shift, it is possible to extra
t the radial velo
ity of the target.

This is basi
ally the very general radar prin
iple. However, in pra
ti
e measuring the

delay and Doppler is not as simple as it looks. Indeed, the transmitted signal will be
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attenuated, and only a portion of ba
ks
attered energy will be re�e
ted by the target

in the radar dire
tion. Therefore, at the re
eption side, the re
eived signal is passed

through a 
omplete re
eption 
hain that allows to re
over the ba
ks
attered signal with

some additive noise. Two questions 
an then be raised:

� Does the re
eived signal 
ontain one (or several) target 
ontribution(s) or only noise

?

� How to a

urately estimate the delay and Doppler parameters while the re
eived

signal is 
orrupted by noise ?

The �rst question 
orresponds to a dete
tion problem; the dete
tion theory [Kay98℄

provides a 
onvenient framework to solve this problem in a radar 
ontext, in the form of

the Neyman-Pearson 
riteria; that is to say maximizing the probability of dete
ting the

signal (if present) while ensuring a given false alarm probability. In many appli
ation, and

in parti
ular in radar, this dete
tion pro
edure involves the mat
hed �lter [Tur60, Woo53℄,

that will be presented in se
tion 1.1.3.

The se
ond question 
orresponds to an estimation problem whi
h is often solved using

the Maximum Likelihood 
riteria, i.e. �nding the value of the parameter maximizing the

likelihood that the signal o

urs with the 
orresponding parameter value. In pra
ti
e, this

maximization often leads to �nd the maximum output of the mat
hed �lter and is highly

related to the 
hara
teristi
s of the transmitted signal (in parti
ular the duration and the

frequen
y bandwidth). Thus, in paragraph 1.1.4 and 1.1.5, we expose very shortly the

tools used to study their properties and detail a very 
ommon signal used in radar.

Lastly, we would like to highlight that the purpose of this se
tion is not to extensively

study all the aspe
ts of the radar theory

1

but rather to provide a realisti
 but simple

model for the input data used to perform the radar tra
king stage, and in parti
ular the

Tra
k-Before-Dete
t methods that represent the heart of this work.

1.1.2 Radar signal

A radar signal is 
onstituted of two parts, �rst a baseband signal with bandB and duration

Tp and then a 
arrier f0 (usually su
h that B ≪ f0) allowing to 
arry the signal through

the air. The transmitted signal s(t) 
an be written in a 
omplex formalism as

s(t) = Eu(t)ej2πf0t, (1.2)

where u(.) is the 
omplex envelop of the baseband signal with energy equal to one and E is

the energy of signal s(.). At the re
eption side, if the transmitted signal has been re�e
ted

by a target (or any ba
ks
atter), the radar re
eives a signal sr(.) whi
h is an attenuated

repli
a of the transmitted signal delayed by the time τ (t) taken by the ele
tromagneti


wave to make the round trip between the radar and the target:

sr(t) = ρ′ejϕ
′

u (t− τ (t)) ej2πf0(t−τ(t)), (1.3)

where ρ′ejϕ
′
is a 
omplex 
oe�
ient of attenuation that is unknown and random:

1

Readers wishing to deepen the radar theory may refer to [Sko80, Rih69, Dar94, LC89℄
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� the phase ϕ′
is assumed to be uniformly drawn over [0, 2π);

� the modulus ρ′ is subje
t to random �u
tuations usually modeled in radar pro
essing

by a Swerling model that will be detailed in 
hapter 4.

τ(.) is a fun
tion of time t. Noti
ing that the signal re
eived at a given time t was re�e
ted

by the target at time t− τ(t)
2
, the fun
tion τ(.) veri�es the following relationship [Rih69℄:

cτ (t) = 2R

(
t− τ (t)

2

)
, (1.4)

with R(.) the range between the target and the radar with respe
t to time t. In pra
ti
e,

the fun
tion τ(.) may be di�
ult to 
al
ulate. Thus, it is generally approximated by its

Taylor expansion [Rih69℄. We 
onsider here an approximation of order one whi
h is the


ommon hypothesis made in radar � Note however that higher orders may be required

for highly manoeuvring targets. The Taylor polynomial of order 1 of τ(.) around time t0
su
h that τ0 = τ(t0) is given by [Rih69℄:

τ(t) = τ0 + τ̇0 (t− τ0) , (1.5)

where:

� τ0 =
2R0

c
, with R0 = R( τ0

2
).

� τ̇0 =
2Ṙ0

c
(1 + Ṙ0

c
)−1 ≈ 2Ṙ0

c
, with Ṙ0 = Ṙ( τ0

2
) the relative radial velo
ity between the

target and the radar. Note that the approximation of τ̇0 is valid for usual target

velo
ity verifying Ṙ0 ≪ c.

Then, by repla
ing τ (t) by its polynomial approximation, the re
eived signal sr(t) 
an be

rewritten as follows:

sr(t) = ρ′ejϕ
′

u ((t− τ0) (1− β)) e2πf0(1−β)(t−τ0), (1.6)

with β = 2Ṙ0

c
. The target motion indu
es a 
ompression/dilatation e�e
t on the baseband

signal and a Doppler shift both on the 
arrier. Fortunately, the time 
ompression dilata-

tion indu
ed by the fa
tor 1 − β over the baseband signal 
an be negle
ted as long as

2Ṙ0

c
≪ 1 and the only e�e
t to take into a

ount on the 
omplex envelop is then the delay

τ0. On the 
ontrary, the Doppler shift on the 
arrier must be taken into a

ount sin
e

the multipli
ation by f0 indu
es a fast phase rotation equal to −2πf0βt. For instan
e,

with f0 = 3GHz, Tp = 100µs and Ṙ0 = −300m.s−1
, the phase rotation after a duration

Tp is equal to −2πf0βTp = 216◦, whi
h may not be negligible depending on the signal


onsidered.

Finally, the re
eived signal sr(t) is passed through the re
eption 
hain that 
onsists, in

parti
ular, in demodulating � an intermediate step that 
onsists in removing the 
arrier

ej2πf0t � and in amplifying the re
eived signal, and be
omes:

sr(t) = ρejϕu(t− τ0)ej2πν0t + n(t), (1.7)
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where ν0 = −f0β is the Doppler shift, ϕ = ϕ′ + 2πf0 (1− β) τ0 a random phase, ρ the

ampli�ed modulus, and n(t) a stationary 
omplex Gaussian noise with auto
orrelation

fun
tion

γn(s) = E[n(t)n∗(t− s)] = 2σ2δ(s) (1.8)

due to the re
eption 
hain, where δ(s) is the delta mass Dira
 fun
tion at point zero.

Finally, the baseband signal in Eq. (1.7) is pro
essed by the radar pro
essing 
hain

in order to perform target dete
tion and parameter estimation. The basi
 tool of this

pro
essing 
hain is the mat
hed �lter.

1.1.3 The mat
hed �lter

The mat
hed �lter is widely used in many appli
ations, for instan
e radar, sonar, tele
om-

muni
ation, in order to dete
t a signal with a known waveform 
orrupted by noise.

Roughly speaking, the mat
hed �lter 
onsists in 
al
ulating the 
orrelation between the

re
eived signal and the known waveform; the dete
tion is then performed by 
omparing

the output signal with a given threshold γ.

1.1.3.1 Mat
hed Filter de�nition and properties

A �lter is 
alled a mat
hed �lter for a physi
al waveform u (t) with energy E if its impulse

response h (t) has the form [Tur60℄

hu(t) = Ku∗(ta − t), (1.9)

whereK and ta are arbitrary 
onstants. The mat
hed �lter impulse response is a 
onjugate

time-reversed version of the physi
al waveform u (t).

Then, for a re
eived signal of the form

r (t) = u (t− τ0) + n(t), (1.10)

where τ0 is here assumed to be known and n (t) is a stationary Gaussian 
omplex noise

with auto
orrelation fun
tion de�ned in Eq. (1.8), the output rMF,hu (.) of the mat
hed

�lter is obtained by 
onvolving the re
eived signal r (t) with the impulse response hu(t).
By setting ta = 0 and K = 1, this leads to

rMF,hu(τ) = (hu ⋆ r)(τ)

=

∫ ∞

−∞

u (t− τ0) u∗ (t− τ) dt
︸ ︷︷ ︸

rMF,u(τ)

+

∫ ∞

−∞

n(t)u∗ (t− τ) dt
︸ ︷︷ ︸

nMF (τ)

,
(1.11)

whi
h 
onsists of two terms rMF,u(τ) and nMF (τ). rMF,u(τ) is the auto
orrelation fun
tion
of the deterministi
 signal u (t) delayed by τ0, i.e. rMF,u(τ) = Ru (τ − τ0), where

Ru (τ
′) =

∫ ∞

−∞

u (t)u∗ (t− τ ′) dt.
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Therefore rMF,u(τ) is maximum for τ = τ0 and rMF,u(τ0) = E. The se
ond term nMF (τ)
is still a stationary Gaussian 
omplex noise with auto
orrelation fun
tion:

γnMF
(τs) = E[nMF (τ)n

∗
MF (τ − τs)]

=

∫ ∞

−∞

∫ ∞

−∞

E[n(t)n∗(s)]u∗ (t− τ) u (s− τ + τs) dtds

= 2σ2

∫ ∞

−∞

u (t) u∗ (t− τs) dt = 2σ2Ru (τs) .

(1.12)

This last equation means that even though the input noise is white, the output noise is,

in general, not white sin
e it depends on the signal auto
orrelation Ru (τs). Finally, by

de�ning the Signal to Noise Ratio (SNR) output as

SNR (τ) =
|rMF,u(τ)|2

E
[
|nMF (τ)|2

] , (1.13)

it 
an be easily shown that the mat
hed �lter is the linear �lter that maximizes the SNR

output for τ = τ0 [Tur60, LM04℄, given by

SNR (τ0) =
E

2σ2
. (1.14)

1.1.3.2 The Mat
hed Filter in the Dete
tion Theory framework

In order to illustrate the fundamental role played by the mat
hed �lter in the dete
tion

theory, let us 
onsider the following statisti
al hypothesis-testing problem [Tur60, Kay98℄

{
H0 : sr (t) = n (t) , t ∈ [0, Tr]
H1 : sr(t) = u(t− τ0) + n(t), t ∈ [0, Tr] .

(1.15)

where u(t) is any signal waveform assumed to be known, τ0 a delay also assumed to be

known and Tr is the time during whi
h the re
eived signal has been observed. The de
ision

over the hypotheses H0 and H1 
an lead to two types of errors:

� Either de
ide hypothesis H1 whereas hypothesis H0 is true. Su
h an error is 
alled

a false alarm and we denote by Pfa the 
orresponding probability of false alarm.

� Or de
ide hypothesis H0 whereas a target is present. This a miss dete
tion and its


orresponding miss dete
tion probability is denoted by Pmd. Lastly, the probability
of dete
tion PD is de�ned by PD = 1− Pmd.

These two de
ision errors behave in an opposite manner: trying to de
rease the Pfa
will lead to in
rease Pmd and re
ipro
ally. Therefore, a trade-o� must be found and the


lassi
 
riteria, 
alled the Neyman-Pearson 
riteria, 
onsists in maximizing the probability

of dete
tion PD while ensuring a given Pfa. The optimal dete
tor, for this 
riteria, is

provided by the Neyman-Pearson theorem [Tur60, Kay98℄; it 
onsists in 
omparing the

ratio between the likelihood of the signal sr (t) under hypothesis H1 and the likelihood
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of the same signal under hypothesis H0. Under a white Gaussian noise assumption, the

optimal dete
tor is provided by the following pro
edure [LC89℄

a

ept H1 if Re

(∫ Tr

0

sr(t)u
∗(t− τ0)dt

)
> γ, (1.16)

where Re (.) stands for the real part. Thus, the dete
tion s
heme 
onsists in 
omparing

the output of the mat
hed �lter sampled at τ = τ0 with a threshold γ 
al
ulated in order

to ensure the given Pfa.

1.1.3.3 The Mat
hed Filter in radar

In radar, the re
eived signal depends on unknown parameters (delay τ0, Doppler shift ν0,

omplex amplitude ρejϕ). As a 
onsequen
e, the de
ision problem be
omes a 
omposite

hypothesis-testing problem [Kay98℄, and pro
edure (1.16) 
annot be applied dire
tly. An

heuristi
 pro
edure, 
alled GLRT (Generalized Likelihood Ratio Test), was then proposed:

it 
onsists in estimating these parameters in the maximum likelihood sense and inje
ting

them in the likelihood ratio test. From Eq.(1.7), the radar 
omposite hypothesis testing

problem has the form

{
H0 : sr (t) = n (t) , t ∈ [0, Tr]
H1 : sr(t) = ρejϕu(t− τ)ej2πνt + n(t), t ∈ [0, Tr] ,

(1.17)

where (ϕ, ρ, τ, ν) are the unknown parameters. Using the GLRT heuristi
, and sin
e

the maximization over parameters (ρ, ϕ) 
an be easily obtained and does not depend on

parameter (τ, ν), the dete
tion test be
omes [LC89℄:

a

ept H1 if max
(τ,ν)

∣∣∣
∫ Tr
0
sr(t)u

∗(t− τ)e−j2πνtdt
∣∣∣
2

∫ Tr
0
|u(t− τ)|2 dt

> γ. (1.18)

Furthermore, if we de�ne by hu,ν (.) the impulse response of the �lter mat
hing the signal

u(t)ej2πνt, i.e.,
hu,ν (t) = u∗ (−t) ej2πνt, (1.19)

the dete
tion pro
edure 
an be �nally rewritten as

a

ept H1 if max
(τ,ν)

∣∣sr,MF,hu,ν(τ)
∣∣2

∫ Tr
0
|u(t− τ)|2 dt

> γ, (1.20)

whi
h 
onsists in 
omparing the maximum output of the mat
hed �lter in range and

Doppler with a given threshold. In pra
ti
e, the maximum is rarely available in 
losed

form; sear
h for the maximum may be then performed by applying several mat
hed �lters

adapted to di�erent Doppler hypotheses νi.

1.1.4 The ambiguity fun
tion

In the previous paragraph, the mat
hed �lter has been presented from a dete
tion point of

view. Nevertheless, in radar appli
ations, retrieving information on the target parameters
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τ0 and ν0 is also of interest. Estimating these parameters in the maximum likelihood sense

is equivalent to �nd the values (τ, ν) maximizing the mat
hed �lter output. Intuitively,

in order to obtain good estimation performan
e, the energy of the mat
hed �lter should


on
entrate in a narrow peak around (τ0, ν0). Of 
ourse, the output of the mat
hed-�lter

is dependent on the 
hoi
e of the waveform u (t) and, as a 
onsequen
e, the 
hoi
e of

the waveform impa
ts the estimation performan
e. It is thus of importan
e to study the

behaviour of the mat
hed �lter output for a parti
ular waveform u (t) with respe
t to

parameters τ and ν; this is provided by the ambiguity fun
tion.

In order to introdu
e the ambiguity fun
tion, let us rewrite the re
eived signal sr (t)
de�ned in Eq. (1.7) after a mat
hed �lter operation with impulse response hu,ν (.):

sr,MF,ν (τ) = (hu,ν ⋆ sr)(τ)
= ρejϕej2πντχu(τ − τ0, ν − ν0) + nMF,ν (τ)

(1.21)

where nMF,ν (τ) is the noise 
omponent after the mat
hed �ltering step and

χu(τ, ν) =

∫ +∞

−∞

u(t)u∗(t− τ) exp(−j2πνt)dt, (1.22)

The fun
tion χu(τ, ν) is 
alled the ambiguity fun
tion

2

[LM04, LC89℄. It 
orresponds to

the output of the mat
hed �lter in absen
e of noise. Its maximum is obtained at the origin

(i.e. τ = 0 and ν = 0) and 
orresponds to the energy of the signal u (t). Therefore, if we
want to a

urately estimate these parameters in presen
e of noise the waveform u (t) has
to be 
hosen su
h that it ensures the narrowest peak around the origin of the ambiguity

fun
tion.

Another important requirement for the radar is its 
apability to resolve 
lose targets.

This 
apability of a radar to resolve two 
lose targets is often measured with the delay

∆τ and Doppler ∆ν resolutions de�ned as follows:

|χu(∆τ , 0)|2 =
1

2
, |χu(0,∆ν)|2 =

1

2
, (1.23)

that 
orrespond to 3 dB losses along the range or along the Doppler axis. Note that

the resolution, both in delay and Doppler, is often approximated by the �rst null of the

ambiguity fun
tion sin
e it is easier to 
al
ulate and provides values quite 
lose to the

ones obtained by the a
tual de�nition. Finally, the range resolution ∆r and the range

rate (radial velo
ity) resolution ∆ṙ are related to the delay and Doppler resolutions by

the following relationships:

∆r =
c

2
∆τ and ∆ṙ =

c

2f0
∆ν . (1.24)

1.1.5 Pulse 
ompression and linear frequen
y-modulated pulse

Clearly two di�erent waveforms will provide two di�erent ambiguity fun
tions, as well

as their 
orresponding delay and Doppler resolutions. Delay and Doppler resolutions

2

Note that other de�nitions are possible, in parti
ular, using +τ and +ν rather than −τ and −ν in

the integral (1.22). However, it is only a 
onvention and it does not 
hange the results on the ambiguity

fun
tion, in parti
ular the ones provided by Levanon et al. [LM04℄ whi
h will be used in the sequel.
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often behave in an opposite manner, i.e. a better resolution in delay will lead to a

poorer resolution in Doppler and re
ipro
ally. To illustrate this, let us 
onsider the simple

following pulse:

uUP (t) =

{
1√
Tp
, if |t| ≤ Tp

2
,

0, otherwise,

(1.25)

denoted as unmodulated pulse (or 
onstant pulse). The ambiguity fun
tion for this signal

is provided by [LM04℄

χUP (τ, ν) =

{(
1− |τ |

Tp

)
sin(πTpν)
πTpν

, if |τ | ≤ Tp,

0, otherwise.
(1.26)

The zero-Doppler 
ut and the zero-delay 
ut are then obtained respe
tively by setting

ν = 0 and τ = 0 in Eq. (1.26), whi
h gives:

χUP (τ, 0) =

(
1− |τ |

Tp

)
, if |τ | ≤ Tp, zero elsewhere, (1.27)

χUP (0, ν) =
sin (πTpν)

πTpν
. (1.28)

The delay and Doppler resolution for the unmodulated pulse are respe
tively equal to:

∆τ,UP ≈ Tp and ∆ν,UP ≈
1

Tp
, (1.29)

leading to the 
orresponding range and range rate resolution,

∆r,UP ≈
cTp
2

and ∆ṙ,UP ≈
c

2f0Tp
, (1.30)

Thus one 
annot obtain simultaneously a good delay and a good Doppler resolution with

this single pulse. In addition, in a more general perspe
tive, for most of the signals used

in radar the delay resolution is related to the inverse signal bandwidth

3 1/B, i.e. higher
the bandwidth, smaller the delay resolution; on the 
ontrary the Doppler resolution is

related to the inverse of the integration duration, i.e. 1/Tp in the 
ase of the 
onstant

pulse.

Pulse 
ompression is a te
hnique widely used in radar and sonar in order to improve

the range resolution. The main idea is to in
rease the bandwidth of the unmodulated

transmitted signal. In the sequel, we outline this te
hnique for a 
ommon signal used in

radar, that is the Linearly Frequen
y Modulated (LFM) pulse signal (
ommonly known

as a 
hirp pulse) that 
onsists in sweeping linearly the frequen
y bandwidth B during the

pulse duration Tp [LM04℄:

uC(t) =

{
1√
Tp

exp(jπkt2), if |t| ≤ Tp
2
,

0, otherwise,

(1.31)

3

Note that the delay resolution of the 
onstant pulse seems to depend only on the pulse duration,

however it 
an be shown that for this signal the bandwidth is approximately equal to 1/Tp leading to the


orresponding delay resolution.
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Figure 1.3 � Comparison of the zero-Doppler 
ut |χC(τ, 0)| for a 
hirp signal (in blue) with

a time-bandwidth produ
t of BTp = 10, an unmodulated pulse (in red) with duration Tp
and an unmodulated pulse (in green) with duration BTp shorter than the two others.

with k = B
Tp

(k 
an also be negative). The ambiguity of the 
hirp signal is given by [LM04℄

χC(τ, ν) =





(
1− |τ |

Tp

)
sin

[
πTp

(
ν+B τ

Tp

)(
1−

|τ |
Tp

)]

πTp

(
ν+B τ

Tp

)(
1− |τ |

Tp

) , if |τ | ≤ Tp,

0, otherwise,

(1.32)

The zero-Doppler 
ut is obtained by setting ν = 0 in Eq. (1.32), i.e.

χC(τ, 0) =
sin
[
πBτ

(
1− |τ |

Tp

)]

πBτ
, if |τ | ≤ Tp, zero elsewhere. (1.33)

while the zero-delay 
ut is the same as the unmodulated pulse (see Eq. (1.28)). In �gure

1.3, the zero-Doppler 
ut of the ambiguity fun
tion of the LFM pulse is presented and


ompared �rst to an unmodulated pulse of same duration, and se
ond to an unmodulated

pulse of smaller duration enabling the same range resolution. It appears 
learly from this

�gure that the use of the frequen
y modulation allows to dramati
ally improve the delay

resolution and therefore the range resolution, when 
onsidering only the zero-Doppler 
ut.

It also illustrates the gain in energy enabled by the 
hirp 
ompared to an unmodulated

pulse of the same maximum power but with a duration BTp shorter and thus providing

the same range resolution as the 
hirp.

The delay resolution for the 
hirp is approximately

∆τ,C ≈
1

B
, (1.34)
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whi
h 
orresponds in range to

∆r,C ≈
c

2B
. (1.35)

Let us illustrate the gain between the 
hirp and the unmodulated pulse for typi
al radar

parameter values. For an unmodulated pulse of duration Tp = 100 µs and a 
hirp with

the same duration and a bandwidth B = 1 MHz, the widths of the zero-Doppler 
uts are

respe
tively equal to

∆r,UP ≈
cTp
2

= 15000 m, and ∆r,C ≈
c

2B
= 150 m.

The 
hirp thus provides an improvement of a fa
tor BTp 
ompared to the unmodulated

pulse (here indeed BTp = 100).
Note that until now, the delay and the Doppler has been studied independently. In

parti
ular, the 
ut for ν = 0 has been 
onsidered while in pra
ti
e this Doppler may

be di�erent from zero. Indeed if a mat
hed �lter is performed with the null Doppler

hypothesis, from equation (1.21) the ambiguity fun
tion will be shifted by the target

Doppler ν0. For the unmodulated pulse it has no 
onsequen
e sin
e the lo
ation of the

maximum in delay is τ = 0 whatever the value of ν0 (see Eq. (1.26)). On the 
ontrary, for

the 
hirp signal, a 
oupling is indu
ed between parameters τ and ν, so that the maximum

in delay does not o

ur at τ = 0 anymore but is shifted (for reasonable value of ν ) by

the quantity [LM04℄

τshift =
ν

k
=
νTp
B
. (1.36)

This 
oupling phenomenon is illustrated in Figure 1.4 where the maximum peak in delay

is shifted along the diagonal τ = ν
k
. Let us make the 
orresponden
e in term of range

shift, i.e.

Rshift = =
cτshift

2
=

c

2B
× νTp = −∆r

2Ṙ0f0Tp
c

, (1.37)

and illustrate it with a numeri
al example. For a target with radial velo
ity (or range

rate) Ṙ0 = −300 m.s

−1
and the following radar parameters: B = 1MHz (i.e. ∆r = 150m),

Tp = 100 µs (leading to BTp = 100) and f0 = 3GHz, the maximum of the mat
hed-�lter

(with hypothesis ν = 0) is shifted by

Rshift = 90 m,

i.e. 60% of the range resolution ∆r. Note that a small de
rease in energy is observed

along the diagonal τ = ν/k that is equal, near the origin, to [LM04℄

|χC(τpeak, ν)| = 1−
∣∣∣ ν
B

∣∣∣ , (1.38)

providing a negligible loss of 0.052 dB for the same numeri
al values as previously. Finally,

note also that for the same radial velo
ity and pulse duration, the loss observed with the


onstant pulse or any 
lassi
 phase 
ode would be greater that 3 dB. This means that,

when 
onsidering the 
hirp signal, a single mat
hed �lter at Doppler hypothesis ν = 0 is

su�
ient to get a high output energy, even for large target radial velo
ities. The pri
e to

pay for this 
heap pro
essing is a possible non negligible range bias.
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Figure 1.4 � 0.1 and 0.707 
ontours of the 
hirp ambiguity fun
tion with BTp = 10. For
a mismat
h Doppler ν the maximum in delay is shifted along the diagonal τ = ν

k
.

In summary, the 
hirp pulse allows to improve the resolution by a fa
tor BTp 
ompared

to the unmodulated pulse while ensuring the same amount of energy, at the pri
e of a


oupling between the delay τ and the Doppler ν. This 
oupling provides advantages and

drawba
ks: on one hand it indu
es an ambiguity between delay and Doppler parameters

that remains a

eptable for most appli
ations. On the other hand, it results in a good

toleran
e to Doppler shift, i.e. the loss indu
ed by a Doppler mismat
h when applying a

�lter mat
hed to hypothesis ν = 0 is small even for large Doppler shifts, allowing to use

a low 
ost pro
essing.

1.1.6 Coherent pulse train and Range-Doppler pro
essing

The Doppler resolution (and thus the velo
ity resolution) depends on the integration time.

For the parameters used in previous se
tion, the velo
ity resolution is approximately equal

to 500 m.s

−1
, whi
h is 
learly not a

eptable. A possible solution to get a good Doppler

resolution is then to transmit a long pulse. However, this leads to an una

eptable blind

range � indeed, during the transmission of the signal, the radar does not re
eive any signal

and therefore 
annot dete
t a target with a delay lower than Tp. A better solution 
onsists

in using a 
oherent pulse train, i.e. several identi
al pulses are transmitted at a given

repetition period Tr. For a 
oherent pulse train of length N , the 
omplex envelop of the

band limited signal is given by [LM04℄

uN (t) =
1√
N

N−1∑

k=0

u (t− kTr) , (1.39)
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Figure 1.5 � Pulse train of 3 pulses with pulse duration Tp and repetition period Tr.

where u (t) is any waveform with duration Tp. An example of a 
oherent pulse train is

presented in Figure 1.5. For su
h a pulse train, the range and Doppler pro
essing 
an

be de
oupled. Indeed as seen before, the range mat
hed �lter to the 
hirp will 
ompress

the signal whatever the Doppler. The �rst step of the Range-Doppler pro
essing 
onsists

then in performing a range mat
hed-�lter with the transmitted elementary pulse. The

signal after the range mat
hed-�lter 
an be expressed as follows [LC89℄:

sr,MF (τ) =
N−1∑

k=1

ej2πνkTr
∫ Tp

0

sr(t+ kTr + τ)u∗ (t) exp(j2πνt)dt. (1.40)

However, the use of a 
oherent pulse train is not without 
onsequen
es sin
e this 
reates

an ambiguity in delay every Tr, due to the periodi
ity of the transmitted signal: it is

impossible to know if the dete
ted target return 
omes from a target delayed by 0 ≤ τ ≤ Tr
or by a target delayed by mTr ≤ τ ≤ (m+ 1)Tr where m is any integer greater than one.

Therefore the delay is measured modulo Tr.
In a se
ond step, for ea
h delay τ , a Fast Fourier transform is performed in order

to 
oherently integrate the phases ej2πνkTr in (1.40) and thus provide an estimate of the

Doppler parameter ν. Sin
e the overall integration time 
onsidered by this range-Doppler

pro
essing is equal to the total duration of the pulse train NTr, the Doppler resolution

be
omes equal to

1
NTr

. However, sin
e the phases ej2πνkTr are ambiguous modulo

1
Tr
, the

Doppler measurement provided by the pulse train also be
omes ambiguous.

1.1.7 Phase array pro
essing

Range and Doppler parameters are not su�
ient to fully lo
ate a target: it is also ne
essary

to estimate its angular dire
tion. Phase array pro
essing [VT02℄ is a 
onvenient framework

to estimate the target azimuth and/or elevation. In the following, the prin
iple of the

latter for the 
ase of a linear array withNa isotropi
 elements uniformly spa
ed by distan
e

d is brie�y re
alled. Let us de�ne by pxm the position of the mth
element along the x-axis,

given by (assuming that the 
enter of the array is lo
ated at the origin)

pxm =

(
m− N − 1

2

)
d, m = 0, 1, · · · , Na − 1. (1.41)

This linear array is presented in Figure 1.6. For a target lo
ated at angle θT , range R0
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Figure 1.6 � Linear array along the x-axis with a target in the dire
tion θT .

from the radar with a Doppler shift ν0, the phase of the signal re
eived by ea
h elementary

antenna will di�er due to the di�erent travel time of the wave (as illustrated in Figure

1.6). Thus the signal re
eived by antenna m 
an be written as

sr,m (t) = ρejϕu (t− τ0) ej2πν0tej
2π
λ
pxm cos(θT ) + nm(t), m = 0, · · · , Na − 1, (1.42)

where nm (t) is a stationary 
omplex white Gaussian noise, and, for m 6= q, the noise pro-

esses nm (t) and nq (t) are assumed to be independent. Finally λ denotes the wavelength

of the transmitted wave (i.e. λ = c
f0

).

The di�erential phase ej
2π
λ
pxm cos(θT )

depends on the target dire
tion θT and on the

position of the elementary antenna. For instan
e, if a target is lo
ated in a dire
tion

θT = π/2, the di�erential phase will be the same on all antennas, while in a dire
tion

θT = 0, the di�erential phase between two 
onse
utive antennas will be equal to π.
The aim of array pro
essing is to re
over the target dire
tion from the phase di�eren
e

measured on ea
h re
eiving antenna. This 
an be done by applying a digital beamforming

at the re
eption that 
onsists in 
orrelating the antenna outputs with the steering ve
tor


orresponding to the dire
tion θ under test. This steering ve
tor 
onsists of the di�erential

phases for this dire
tion and is thus given by vθ =
1
Na

[
ej

2π
λ
px0 cos(θ), · · · , ej 2πλ pxNa−1

cos(θ)
]T
.

In pra
ti
e, the dire
tion θT is unknown and the radar will form the beam for some

dire
tions θ1, · · · , θNθ
. Let us de�ne sr (t) = [sr,0 (t) , · · · , sr,Na−1 (t)]

T
, and

n (t) = [n0 (t) , · · · , nNa−1 (t)]
T
. The signal after beamforming in dire
tion θi is then

obtained by

sr,θi (t) = vHθi sr (t) . (1.43)

After some 
al
ulations, it 
omes [VT02℄

sr,θi (t) = ρejϕu (t− τ0) ej2πν0tψθT (θi) + nθi(t), (1.44)

where ψθT (θi) = 2πd
λ

(cos (θT )− cos (θi)), nθi(t) = vHθin (t) is a 
omplex white Gaussian

noise and

Ψ (ψθT (θi)) =
1

Na

sin
(
Na

ψθT
(θi)

2

)

sin
(
ψθT

(θi)

2

) . (1.45)
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Figure 1.7 � Ψ (ψθ) : ψθT (θ) = 2πd
λ

(cos (θT )− cos (θ)), Na = 11, θT = π
2
.

This fun
tion is shown in Figure 1.7. The half beam-width is de�ned as |Ψ (ψθ3dB)|2 = 1/2
and is given, for Na > 30, by θ3dB ≈ 0.886 λ

Nd
. Finally, note that whereas the noise

pro
esses on ea
h elementary antenna are independent, this is not, in general, the 
ase

for the noise pro
esses nθi(t) and nθj (t) where the 
ovarian
e is equal to

cov
(
nθi(t), nθj(s)

)
= 2σ2vHθivθjδ (t− s) . (1.46)

1.1.8 Measurement model

Now that the radar pro
essing has been brie�y des
ribed, we 
an present the measurement

model (before the dete
tion stage) that will be used in the following of this do
ument.

Let us denote by TS the radar 
y
le duration, i.e. the duration during whi
h the radar

transmits the signal, re
eives it, and performs the signal pro
essing stage. Therefore,

denoting by k the time index, the radar provides a measurement zk every kTS. At the k−th
iteration ifNk targets have re�e
ted the transmitted signal, then from the previous se
tion,

it follows that the output signal after the radar pro
essing 
hain (re
eption beamforming,

range and Doppler mat
hed-�lters) 
an be expressed as

sr,MF,k (τ, ν, θ) =

Nk∑

i=1

ρk,ie
jϕk,iχu(τk,i − τ, νk,i − ν)Ψ

(
ψθk,i (θ)

)
+ nk(τ, θ, ν), (1.47)

where ρk,i and ϕk,i are the amplitude and the phase de�ned in paragraph 1.1.2, and τk,i,
νk,i and θk,i represent respe
tively the delay, Doppler and azimuth of the i − th target.

Obviously, parameters τk,i and νk,i are respe
tively related to the target range rk,i and
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the target range rate ṙk,i. In tra
king these unknown parameters will 
orrespond to the

hidden state

4 xk,i = [rk,i, ṙk,i, θk,i]
T
. Here parameters (τ, ν, θ) are 
ontinuous. However,

in pra
ti
e, the re
eption pro
essing is performed for several values of the parameter(
τ l, νl, θl

)
, l = 1, · · · , Nc where Nc is the number of test 
ells. Thus, denoting by zlk the

signal in 
ell l, it 
an be rewritten as

zlk =

Nk∑

i=1

ρk,ie
jϕk,ihl (xk,i) + nlk, (1.48)

where

hl (xk,i) = χu

(
2

c

(
rk,i − rl

)
,
c

2f0

(
νk,i − νl

))
Ψ
(
ψθk,i

(
θl
))
. (1.49)

Finally by 
on
atenating the signal samples zlk, the ambiguity fun
tion samples hl (xk,i)

and the noise samples nlk into ve
tors zk =
[
z1k, · · · , zNc

k

]T
, h (xk,i) =

[
h1k,i, · · · , hNc

k,i

]T

(where hlk,i = hl (xk,i)) and nk =
[
n1
k, · · · , nNc

k

]T
respe
tively, the measurement equation


an be rewritten in a 
ompa
t form as

zk =

Nk∑

i=1

ρk,ie
jϕk,ih (xk,i) + nk. (1.50)

Here nk is a 
ir
ular Gaussian 
omplex noise with a 
ovarian
e matrix Γ assumed to

be known and often equal to Γ = 2σ2INc , i.e. signal samples are independent. The

Equation (1.50) de�nes the raw radar measurement zk that will be used as the input of

the dete
tion and extra
tion stage (as illustrated in Figure 1.1 and detailed in the next

paragraph) for the 
lassi
 radar tra
king appli
ations and as the input of Tra
k-Before-

Dete
t appli
ations, that are at the heart of this work.

1.1.9 Dete
tion and "hit" extra
tion

The aim of the dete
tion and extra
tion stage is to dete
t potential targets and extra
t

their parameters from the raw radar data zk. This pro
ess is performed in two steps.

First the dete
tion stage that provides dete
tion "hits" and then the extra
tion stage

that aggregates dete
tion "hits" and extra
ts target parameters.

In all this do
ument, we will 
onsider a simple 
ase where the radar measurements are

only 
omposed of target signals and homogeneous additive noise with known varian
e.

More realisti
 
ases with heterogeneous noise and 
lutter will thus be out of our s
ope.

Under this restri
tion, the �rst dete
tion step simply 
onsists in 
omparing ea
h sample∣∣zlk
∣∣2 , l = 1, · · · , Nc with a threshold γ as in the dete
tion pro
edure de�ned in Eq. (1.20).

4

Note that this hidden state may possibly in
lude other hidden parameters. Moreover, these param-

eters may be expressed in another 
oordinate system (e.g. Cartesian 
oordinates). Indeed, the radar

measurements are intrinsi
ally de�ned in polar 
oordinates that do not allow to easily model the evolu-

tion of the target parameters over time, for instan
e a re
tilinear target motion is quite di�
ult to model

in polar 
oordinates while this kind of traje
tory is modeled by a linear equation in Cartesian 
oordinates.

This will be detailed in paragraphs 2.2 and 2.3.1.
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Figure 1.8 � Dete
tion pro
edure for radar measurement in range and azimuth.

Sin
e the noise is a 
ir
ular Gaussian noise with varian
e 2σ2
, the threshold γ is simply

provided by [Kay98℄

γ = −2σ2 ln (Pfa) . (1.51)

The probability of target dete
tion PD depends on the target SNR. The dete
tion pro
e-

dure is illustrated in Figure 1.8. Of 
ourse, in the presen
e of noise of unknown varian
e

of 
lutter, this simple dete
tion pro
edure would be repla
ed by an adaptive one, for

instan
e a 
lassi
 Constant False Alarm Rate (CFAR) dete
tor.

Then a simple pro
edure to extra
t the parameter would be to 
onsider as parameter

estimate the 
orresponding value (for instan
e

(
rl, ṙl, θl

)
with the example de�ned in

the previous paragraph) for any 
ell that ex
eeds the threshold. However, in pra
ti
e

further developments are required; indeed, re
all that if the target SNR is high, due

to the ambiguity fun
tion sidelobes, one single target may produ
e several 
ontiguous

dete
tion "hits". Thus, a 
lustering step is generally added in order to aggregate the

dete
tion "hits" that are likely to be generated by the same target. This aggregation step

is often based on an heuristi
 pro
edure. Then an estimation pro
edure is applied to ea
h

extra
ted hit in order to retrieve the 
orresponding parameter value (for instan
e, range,

Doppler, azimuth...).

Finally at the end of the dete
tion and "hits" extra
tion stage a set of dete
tion "hits"

is provided:

Yk = {yk,1, · · · ,yk,ND
} (1.52)
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where ea
h "hit" yk,l is possibly
5

related to a target state xk by the following equation:

yk,l = H(xk) +wk, (1.53)

withH a known fun
tion (possibly linear) andwk a Gaussian noise with 
ovarian
e matrix

Rk. Finally, as presented in Figure 1.1, the set Yk is provided to the tra
king stage in

order to form tra
ks and enhan
e the estimation of the target parameters.

1.1.10 Radar tra
king algorithms

1.1.10.1 Radar tra
king obje
tives

Ea
h measurement yk,i in the set of dete
tion Yk may either 
orrespond to an a
tual

target or to a false alarm. Therefore, one obje
tive of radar tra
king algorithms is to be

able to retrieve from the sets of dete
tion Yk the measurements that 
ome from the same

target in order to 
reate a tra
k, while dis
arding the false alarms. Moreover, the a

ura
y

of the target parameter estimation is limited by the radar 
hara
teristi
s, for instan
e the

range resolution ∆r (see paragraph 1.1.5). Therefore, a �ltering step is added to estimate

the target parameters from all measurements until k (i.e. Y1, · · · ,Yk), and thus improve

the parameter a

ura
y. More pre
isely, this step 
onsists in estimating the state of a

dynami
 system (that is unobserved and denoted as hidden state) from a sequen
e of

noisy measurements. In radar appli
ations, the hidden states are the target parameters

(e.g., position, velo
ity, et
.) and their temporal evolution 
an often be modelled by

a dynami
 equation where the state at 
urrent step depends to the ones at previous

iterations. The noisy measurement is the set of dete
tion hits Yk provided by the radar

or the measurement zk. Thus, by taking advantages of some prior knowledge on the

target motion, the �ltering step allows to aggregate the information provided by all the

noisy measurements until the 
urrent step (i.e. Y1, · · · ,Yk) and then to enhan
e the

estimation of the target parameters. Finally, sin
e the measurements are provided at

ea
h radar 
y
le (i.e. every TS), solutions proposed to perform the tra
king stage are

often sequential or, in other words, the previous estimated parameters are updated with

the new measurement instead of 
al
ulating again the estimation at ea
h iteration from

all the available measurements. A 
onvenient way to do so is the Bayesian framework,

and more pre
isely the Hidden Markov Models (HMM) that allow to sequentially estimate

hidden parameters from a measurement related to the hidden state. This framework will

be detailed in the next se
tion.

To sum up, the aim of the tra
king stage may be viewed as ful�lling the two following

tasks:

� 
reating or deleting tra
ks, either from the sets of dete
tion hits Y1, · · · ,Yk in 
lassi


radar tra
king or from the raw radar measurements z1, · · · , zk in the TBD frame-

work.

� estimating the tra
k parameters from the sets of dete
tion hits or from the raw radar

measurements.

5

Note that we use the term "possibly" sin
e a dete
tion hit may not 
ome from an a
tual target but

may rather be a false alarm. This un
ertainty on the measurement origin (a
tual target or not) may be

solved by the tra
king stage.
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1.1.10.2 Classi
 radar tra
king algorithms

In the radar tra
king 
ommunity these two problems refer to the Multiple-Target Tra
king

(MTT) problem [Bla86℄. The �rst proposed solutions used sequential analysis in order

to initialize or delete tra
k. Tra
ks were asso
iated via the nearest-neighbour asso
iation

rule that 
onsists in assigning dete
tion hits to existing tra
ks in a way that minimizes

a 
ertain distan
e 
riterion. However, this approa
h may lead to wrong asso
iations,

espe
ially when there are a lot of false alarms, and, as a 
onsequen
e, to poor tra
king

performan
e. Then, new algorithms were proposed in a Bayesian framework that are

able to deal with su
h situations. The �rst one was proposed by Singer et al. [SSH74℄

and is denoted as Multiple Hypothesis Tra
king (MHT). It is a measurement oriented

algorithm (i.e. hypotheses are 
al
ulated from the measurements) where the key idea

is to 
onsider all the possible hypotheses in order to initialize, to maintain or to delete

tra
ks, i.e. at a given instant k, any 
onsidered hit 
an be either allo
ated to an existing

tra
k, 
an initialize a new tra
k, or 
an be asso
iated to a false alarm. The solution

would then be provided by the most likely hypothesis. This approa
h leads to a number

of hypotheses that in
reases extremely rapidly with time, so that this approa
h leads to a


omplexity that may be di�
ult to handle in a reasonable time. Therefore, a suboptimal

approximation has been proposed by Reid [Rei79℄ in 1979 whi
h allows to make the MHT

feasible by pruning hypotheses with low probabilities.

An alternative approa
h was proposed by Bar-Shalom et al. [BST75℄ in 1975, known as

the Probabilisti
 Data asso
iation Filter (PDAF). Contrary to the MHT whi
h manages

the whole MTT problem (i.e. tra
k life stages and asso
iation problem), the PDAF is only

devoted to the asso
iation problem. As a 
onsequen
e, it assumes the number of targets

known (this is a target-tra
k oriented algorithm) and does not provide tra
k initialization

and termination. Note that the PDAF may fail when multiple tra
ks are 
lose sin
e it does

not 
onsider the possible intera
tion between them. To handle this situation, the Joint

PDAF (JPDAF) was then proposed [FBSS83℄. For su
h �lters, the tra
k initialization

and termination is often done by using the "M out of N" rule that 
onsists in initializing

a tra
k if a dete
tion is present in the validation gate [BS87℄ of a given initializing tra
k

at least M times over N iterations [Cas76, BSCS89℄. A similar rule is applied for the tra
k

termination.

Both the MHT and the PDAF solutions perform the tra
king itself for a given tra
k/hit

asso
iation thanks to a Bayesian �lter, usually the well-known Kalman �lter.

1.2 Bayesian �ltering

Most radar tra
king algorithms are derived from the Bayesian �ltering theory, and among

them the parti
le �lter that will thoroughly be used in this work. Thus, we present in

the sequel some aspe
ts of the general Bayesian �ltering theory. We will restri
t our

attention here to the dis
rete-time formulation of the �ltering problem. Let us denote

by (xk)k∈N the random state pro
ess that is hidden (or unobserved) and by (zk)k∈N∗

the measurement pro
ess (that is observed). We adopt the state-spa
e approa
h in a

parti
ular 
lass of models 
alled Hidden Markov Models (HMM) whi
h is based on a

dynami
 system modelled by a set of two equations [AM79℄:
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� one equation for the temporal evolution of the 
urrent hidden state xk from the

hidden state at the previous iteration xk−1 (state model).

� A se
ond equation that relates the noisy measurements zk to the 
urrent state xk
(measurement model).

Moreover, we shall assume that both models are available in a probabilisti
 form.

Then, in a Bayesian perspe
tive, the aim is to 
al
ulate some estimators of the state

xk [BS09℄. Most of the time, estimation is performed by one of the following well-known

estimators:

� the Minimum Mean Square Error Estimator (MMSE) x̂MMSE
k = E [xk | z1:k],

� the Maximum a posteriori (MAP) estimator x̂MAP
k = argmax

xk

p (xk | z1:k),

where the notation z1:k refers to the sequen
e (z1, · · · , zi, · · · , zk). Both approa
hes re-

quire the knowledge of the posterior density

6 p (xk | z1:k) whi
h is obtained for the HMM

by the Bayesian �lter.

1.2.1 Hidden Markov Models

Hidden Markov Models are a parti
ular 
lass of state-spa
e models where the density

p (xk | z1:k) 
an be 
omputed re
ursively from the density at previous step p (xk−1 | z1:k−1).
First, let us assume that the pro
ess (xk)k∈N takes its values in Rnx

and evolves a

ording

to the following equation:

xk = fk (xk−1,vk) , (1.54)

where fk is a known and possibly non-linear fun
tion and (vk)k∈N∗ is an independent and

identi
ally distributed (i.i.d.) noise sequen
e. x0 is assumed to be distributed a

ording

to a density p0(.). Under these 
onditions, the pro
ess (xk)k∈N is a Markov pro
ess of

order one, i.e.

p (xk | x0:k−1) = p (xk | xk−1) , forany k ≥ 1. (1.55)

In other words, the density of xk 
onditionally to x0:k−1 only depends on the state at

previous step xk−1. The measurement zk is related to the state xk by the following

measurement equation

7

:

zk = hk (xk) + nk, (1.56)

where hk(.) is a possibly non-linear fun
tion of the state xk at value in Rnz
(or in Cnz

),

and (nk)∈N∗
an i.i.d noise sequen
e. Moreover, it is assumed that noise samples nk and vk

are mutually independent. Then, the measurement zk 
onditionally to xk is independent

of z1:k−1, i.e.

p (zk|xk, z1:k−1) = p (zk|xk) . (1.57)

6

Note that here, we adopt the formalism of density with respe
t to some measure (in general, the

Lebesgue measure or the 
ounting measure). However, in some 
ases this density may not exist and one

must 
onsider the probability distribution. In order to avoid unne
essary 
omplexity, this latter will not

be treated here. A more general approa
h is presented in [DM04℄.

7

Note that we restri
t ourselves to additive noise in the measurement equation sin
e this latter is

generally used in radar tra
king and also be
ause non-additive models 
an lead to theoreti
al issues

whi
h are beyond the s
ope of this manus
ript.
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Figure 1.9 � Blo
k diagram of the Hidden Markov Model.

p (zk|xk) is 
alled the likelihood fun
tion and is entirely de�ned by the measurement

equation (1.56) and the statisti
s of nk. Moreover it is generally assumed to be easily


omputable. This may not always be the 
ase: the 
hapter 4 will be pre
isely dedi
ated

to the 
al
ulation of this latter in the Tra
k-Before-Dete
t framework. The diagram of

the Hidden Markov Model is shown in Figure 1.9.

1.2.2 Theoreti
al Bayesian �lter

For the HMMs de�ned in previous paragraph, it is possible to 
al
ulate re
ursively the

density p (xk | z1:k) from p (xk−1 | z1:k−1). Indeed, using the Bayes rule and the properties

of the HMM, p (xk | z1:k) 
an be rewritten as follows:

p (xk | z1:k) =
p (xk | z1:k−1) p (zk|xk)

p (zk | z1:k−1)
, (1.58)

where p (xk | z1:k−1) is obtained by the Chapman-Kolmogorov equation:

p (xk | z1:k−1) =

∫
p (xk−1 | z1:k−1) p (xk | xk−1) dxk−1, (1.59)

and 
orresponds to the predi
tion step, where the density of xk 
onditionally to the

previous measurements z1:k−1 is evaluated. Then, this density is updated with the new

observation zk via Eq. (1.58) where the normalized 
onstant is given by

p (zk | z1:k−1) =

∫
p (zk | xk) p (xk | z1:k−1) dxk. (1.60)

The re
ursion to obtain p (xk | z1:k) from p (xk−1 | z1:k−1) 
an be summarized as follows

p (xk−1 | z1:k−1)
prediction−−−−−→
Eq.(1.59)

p (xk | z1:k−1)
update−−−−−→
Eq.(1.58)

p (xk | z1:k) . (1.61)

In general, Eq. (1.59) and Eq. (1.60) 
annot be 
omputed analyti
ally and, as a 
onse-

quen
e, neither is the Bayesian �lter. However, the exa
t solution 
an be obtained when

the state and measurement models are linear and Gaussian � the solution being the very

well-known Kalman �lter [Kal60℄ � or when the state spa
e is dis
rete with a �nite number

of states [AMGC02℄.
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1.2.3 Linear Gaussian models: Kalman �lter

Linear Gaussian models are a parti
ular 
lass of HMM where the Bayesian �lter 
an be

solved exa
tly. For these models, the hidden pro
ess (xk)k∈N veri�es

xk = Fkxk−1 + vk, (1.62)

where Fk is a matrix of size nx×nx, and vk is a Gaussian noise with 
ovarian
e matrixQk.

The initial state x0 is also assumed to be Gaussian with mean m0 and 
ovarian
e matrix

Q0. The observed pro
ess (zk)k∈N is related to the state xk a

ording to the following

equation:

zk = Hkxk +wk, (1.63)

where Hk is a matrix of size nz × nx, and vk is a Gaussian noise with 
ovarian
e matrix

Rk. Lastly, it is also assumed that x0, (vk)k∈N∗
, (wk)k∈N∗

are mutually independent.

Under these 
onditions, all the densities at ea
h step of the Bayesian re
ursion de�ned

in Eq. (1.61) are Gaussian, i.e.

p (xk−1 | z:k−1) = N
(
xk−1;xk−1|k−1,Pk−1|k−1

)
, (1.64)

p (xk | z:k−1) = N
(
xk;xk|k−1,Pk|k−1

)
, (1.65)

p (xk | z1:k) = N
(
xk;xk|k,Pk|k

)
, (1.66)

where N (x;m,P) represents here the standard Gaussian density with mean m and 
o-

varian
e matrix P evaluated at point x. Then, the parameters of the aforementioned

densities (the mean and 
ovarian
e) 
an be 
omputed by applying the following set of

equations:

xk|k−1 = Fkxk−1|k−1, (1.67)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk, (1.68)

xk|k = xk|k−1 +Kkz̃k, (1.69)

Pk|k = (I−KkHk)Pk|k−1, (1.70)

where

z̃k = zk −Hkxk|k−1,
Sk = HkPk|k−1H

T
k +Rk,

Kk = Pk|k−1H
T
kS

−1
k ,

(1.71)

are respe
tively the innovation, the 
ovarian
e of the innovation and the Kalman gain.

Equations (1.67)-(1.70) de�ne the Kalman �lter [Kal60℄ whi
h is the optimal solution for

the Linear Gaussian models. Furthermore note that the parameters xk|k and Pk|k provide

dire
tly the MMS estimator x̂MMSE
k = xk|k = E [xk | z1:k] and its 
ovarian
e matrix

E

[(
x̂MMSE
k − xk

) (
x̂MMSE
k − xk

)T ∣∣∣ z1:k
]
= Pk|k,

where both are 
al
ulated via the 
lassi
 Bayesian s
heme:

xk−1|k−1
prediction−−−−−→
Eq.(1.67)

xk|k−1
update−−−−−→
Eq.(1.69)

xk|k,

Pk−1|k−1
prediction−−−−−→
Eq.(1.68)

Pk|k−1
update−−−−−→
Eq.(1.70)

Pk|k.
(1.72)
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Lastly, as a remark, note also that the 
al
ulation of the posterior 
ovarian
e matrix

Pk|k and the Kalman gain do not depend on the measurement zk and may therefore be


al
ulated o�-line.

The Kalman �lter is very popular and is extensively used sin
e it is very simple to

implement, has a very low 
omplexity and is quite robust. However, whereas the Kalman

�lter is optimal for the very spe
i�
 
ase of the Linear Gaussian model, it is not optimal

anymore when the Gaussian hypothesis and/or the linear assumption are violated. It

appears that the raw radar measurement equation (1.50) is not linear a

ording to the

target state. Sin
e Tra
k-Before-Dete
t methods seek pre
isely to tra
k targets from this

kind of measurements, this prevents to use the Kalman �lter in this 
ase (other reasons

exist and will be detailed in Chapter 2). Thus, other methods must be 
onsidered in the

TBD framework and we propose in the sequel to outline the parti
le �lter method that

will be extensively used throughout this thesis and 
an handle su
h non-linear and/or

non-Gaussian models.

1.2.4 Parti
le �lter

When the HMM is non-linear and/or non-Gaussian, the Bayesian �lter 
annot be 
om-

puted analyti
ally (see paragraph 1.2.2) and we must therefore resort to some approxi-

mations. When the noises (state and measurement) are still assumed Gaussian but the

fun
tions fk (.) and/or hk (.), in Eq. (1.54) and Eq. (1.56), are non-linear, extensions of

the Kalman �lter 
an be 
onsidered:

� the �rst extension, known as EKF (Extended Kalman Filter) [AMGC02℄, 
onsists

in lo
ally linearizing the fun
tions fk (.) and hk (.) and then applying the Kalman

re
ursion with the linearized equations.

� the se
ond extension, known as UKF (Uns
ented Kalman Filter) [WVdM00℄, uses a

set of points that are propagated deterministi
ally through the non-linear equations

and allow to estimate the parameters of the Gaussian approximation of p (xk | z1:k).

However, as for the Kalman �lter, these solutions may also fail for highly non-linear

fun
tion and/or non-Gaussian noise, then other solutions must be proposed to handle

su
h di�
ulties.

Another approa
h 
onsists in transforming the 
ontinuous state into a dis
rete state.

In su
h a strategy, the 
ontinuous density p (x) is approximated by a dis
rete measure

using a set of samples {xi}Np

i=1, often 
alled parti
les, and asso
iated weights {wi}Np

i=1, as

follows:

p (x) ≈
Np∑

i=1

wiδxi (x) , (1.73)

where δxi (x) is the delta mass Dira
 fun
tion at point xi. This is the main idea behind the

Monte Carlo methods and in parti
ular in the parti
le �lter: approximate a 
ontinuous

density by a dis
rete density whi
h is simpler to manipulate and in parti
ular from whi
h

quantities, like mathemati
al expe
tations, 
an be easily 
al
ulated.

Following this idea, grid-based methods were proposed [AMGC02℄ in order to ap-

proximate the posterior density with a �x and deterministi
 set {xi}Np

i=1 (
alled grid), for
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whi
h the Bayesian �lter 
an be exa
tly solved (see paragraph 1.2.2). However, when the

state-spa
e is large, su
h a method may require to use a lot of grid points xi to properly

dis
retize the whole state spa
e, and, as a 
onsequen
e, may lead to a prohibitive 
om-

putational time. Thus, a new solution, 
alled parti
le �lter, was proposed in the early

90s by Gordon et al. [GSS93℄, that 
onsists in using an adaptive and random grid rather

than a �x and deterministi
 grid. In the parti
le �lter, parti
les are adaptively drawn

with higher probability, thanks to a te
hnique 
alled Importan
e Sampling, in the areas

where the posterior density takes high values, whi
h prevents to dis
retize the whole state

spa
e.

The prin
iple of Monte Carlo methods and parti
ularly of Importan
e Sampling strat-

egy will be brie�y explained in the sequel. Then, a parti
ular attention is given to a Monte

Carlo te
hnique, 
alled Sequential Importan
e Sampling, that allows to approximate the

density p (xk | z1:k) by a dis
rete density in a sequential manner. Finally, we provide with

Algorithm 1.1 the s
heme of the generi
 parti
le �lter that will be used throughout this

thesis.

1.2.4.1 Monte Carlo prin
iple

Many appli
ations require the 
omputation of integrals of the form

I (Φ) = Ep(.) [Φ (x)] =

∫
Φ (x) p (x) dx, (1.74)

where Φ is a measurable bounded fun
tion and p (x) is a given probability density fun
tion.
Su
h integrals 
an seldom be 
al
ulated analyti
ally. Then Monte Carlo methods propose

to 
onstru
t an empiri
al estimator of the quantity I (Φ) from Np samples

(
x1, · · · ,xNp

)

independently drawn from p (x).
First, an empiri
al estimator of p (x) is provided by

p̂Np (x) =
1

Np

Np∑

i=1

δxi (x) . (1.75)

Then, by repla
ing the density p (x) by its empiri
al estimator p̂Np (x) in Eq. (1.74), an

estimator of I (Φ) is

ÎNp (Φ) =
1

Np

Np∑

i=1

Φ
(
xi
)
, (1.76)

This estimator is unbiased with varian
e

var(ÎNp (Φ)) = E[|ÎNp (Φ)− I (Φ) |2] = varp(.) (Φ) /Np (1.77)

where

varp(.) (Φ) =

∫
|Φ (x)|2 p (x) dx− |I (Φ)|2 < +∞. (1.78)

However, in many 
ases, it might be di�
ult to dire
tly draw samples a

ording to the

density p (x). In parti
ular, in the Bayesian framework, if we want to approximate the


lassi
 MMSE estimator E [xk | z1:k] dire
tly via the Monte Carlo prin
iple, this requires
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to be able to sample from the density p (xk | z1:k); this is often di�
ult to do. Thus a

method known as Importan
e Sampling was proposed in order to estimate the quantity

I (Φ) with a set of Np samples using a di�erent probability density fun
tion that allows

to draw samples easily.

1.2.4.2 Importan
e Sampling

The key idea of Importan
e Sampling 
onsists in rewriting Eq. (1.74) as a mathemati
al

expe
tation under another density q (.) 
alled the importan
e density or instrumental

density for whi
h samples 
an be easily drawn

8

. It requires as only 
ondition that the

support of p (.) must be in
luded in the support of q (.), i.e. if p (x) > 0 then q (x) > 0.
First, let us rewrite equation (1.74) as follows

I (Φ) =

∫
Φ (x) p (x) dx =

∫
Φ (x)

p (x)

q (x)
q (x) dx = Eq(.) [Φ (x) w̃ (x)] , (1.79)

where

w̃ (x) =
p (x)

q (x)
. (1.80)

The integral (1.74) has been rewritten as an expe
tation from another density q (.) rather
than p (.); then, for any Np samples

(
x1, · · · ,xNp

)
independently drawn from q (.), I (Φ)


an be estimated by

ÎNp,IS (Φ) =
1

Np

Np∑

i=1

w̃iΦ
(
xi
)

(1.81)

where

w̃i =
p (xi)

q (xi)
, i = 1, · · · , Np, (1.82)

are 
alled the importan
e weights. The estimator ÎNp,IS (Φ) is unbiased with varian
e

var(ÎNp,IS (Φ)) = E[|ÎNp,IS (Φ)− I (Φ) |2] = varq(.)

(
p

q
Φ

)
/Np (1.83)

where

varq(.)

(
p

q
Φ

)
=

∫
|Φ (x)|2

(
p (x)

q (x)

)2

q (x) dx− |I (Φ)|2 . (1.84)

Alternatively, I (Φ) 
an also be estimated by

ÎNp,IS,SN (Φ) =

Np∑

i=1

wiΦ
(
xi
)
, (1.85)

where the importan
e weights have been normalized, i.e.

wi =
w̃i

Np∑

j=1

w̃j

. (1.86)

8

However note that this 
hoi
e is, in fa
t, not trivial sin
e the varian
e of the estimator dire
tly

depends on the instrumental density q (.) and has therefore to be 
arefully made [DdFG01℄.
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Note that the weights wi 
an be 
omputed up to a 
onstant, i.e.

wi ∝ p (xi)

q (xi)
, i = 1, · · · , Np. (1.87)

Indeed, if these weights wi share a 
ommon 
onstant, it will be dis
arded through the

normalization. Note that in general ÎNp,IS,SN (Φ) is a biased estimator. An approximation

of the density p (.) as an empiri
al approximation p̂Np (.) is then obtained by

p̂Np (x) =

Np∑

i=1

wiδxi (x) . (1.88)

Importan
e sampling with this additional normalization step is 
alled self-normalized

importan
e sampling in the literature [Owe13℄.

1.2.4.3 Sequential Importan
e Sampling parti
le �lter

Importan
e sampling 
an be applied in order to approximate the density p (x0:k | z1:k)
when it 
annot be 
omputed analyti
ally. However, re
all that the Bayesian �lter presents

a re
ursive stru
ture. Thus it is interesting to take advantage of this property of the HMM

to 
ompute the density p (x0:k | z1:k) re
ursively. This is the purpose of the Sequential

Importan
e Sampling te
hnique that allows to sequentially approximate the posterior

density of all the previous states

9 p (x0:k | z1:k).
Let q (x0:k | z1:k) be an instrumental density from whi
h it is easy to draw samples and

let also assume that this latter fa
torizes as follows

q (x0:k | z1:k) = q (x0)

k∏

l=1

q (xl | x0:l−1, z1:l) . (1.89)

This fa
torization ensures that the importan
e weight of the ith parti
le

wik =
p (xi0:k | z1:k)
q (xi0:k | z1:k)

(1.90)


an be 
omputed re
ursively. Indeed, wik 
an then be rewritten as follows

wik =
p (zk | xi0:k, z1:k−1) p (x

i
0:k | z1:k−1)

p (zk | z1:k−1) q
(
xik | xi0:k−1, z1:k

)
q
(
xi0:k−1 | z1:k−1

)

=
p
(
xi0:k−1 | z1:k−1

)

q
(
xi0:k−1 | z1:k−1

) × p (zk | xik) p
(
xik | xik−1

)

p (zk | z1:k−1) q
(
xik | xi0:k−1, z1:k

)

= wik−1 ×
p (zk | xik) p

(
xik | xik−1

)

p (zk | z1:k−1) q
(
xik | xi0:k−1, z1:k

) .

(1.91)

9

Note that we present the method for the whole sequen
e x0:k sin
e the posterior density of the state

xk 
an be simply obtained through a marginalization.
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Finally, sin
e p (zk | z1:k−1) is a 
onstant independent of the parti
le sequen
e xi0:k, the

weights are proportional to

wik ∝ wik−1

p (zk | xik) p
(
xik | xik−1

)

q
(
xik | xi0:k−1, z1:k

) . (1.92)

In pra
ti
e, we are mainly interested by the posterior density of the state p (xk | z1:k)
rather than the density of all the states p (x0:k | z1:k). Therefore, in order to avoid storing

all the history of the parti
les {xi0:k}
Np

i=1, it is 
onvenient to 
hoose an instrumental density

that depends only on the previous state and the 
urrent measurement:

q
(
xik | xi0:k−1, z1:k

)
= q

(
xik | xik−1, zk

)
. (1.93)

In that 
ase, the only variables to store for time step k are xik−1 and zk, while all the

previous parti
le states and past measurements 
an be dis
arded. In the following, we

will always 
onsider instrumental densities that verify this 
ondition. Then, under this


ondition, the weights are �nally provided by

wik ∝ wik−1

p (zk | xik) p
(
xik | xik−1

)

q
(
xik | xik−1, zk

) . (1.94)

After the normalization, the posterior density p (xk | z1:k) 
an be approximated by

p (xk | z1:k) ≈
Np∑

i=1

wikδxi
k
(xk) . (1.95)

The Sequential Importan
e Sampling (SIS) parti
le �lter follows the two steps of the

Bayesian �lter de�ned in Eq. (1.61): �rst parti
les are propagated in the state spa
e via

the instrumental density de�ned in Eq. (1.93); then parti
les are updated a

ording to

Eq. (1.94). The me
hanism of the SIS parti
le �lter is illustrated in Figure 1.10. Finally,

using the estimated density, the 
lassi
 MMSE is simply obtained as

x̂k|k =

Np∑

i=1

wikx
i
k, (1.96)

and the 
ovarian
e matrix Pk|k = var (xk | z1:k) estimator as

P̂k|k =

Np∑

i=1

wik
(
xik − x̂k|k

) (
xik − x̂k|k

)T
. (1.97)

1.2.4.4 Degenera
y problem

Whereas theoreti
al results ensure that the approximated posterior density (1.95) 
on-

verges to the posterior density p (xk | z1:k) as Np → +∞ [CD02℄, in pra
ti
e, the number

of parti
les Np is always �nite. In that 
ase, the SIS parti
le �lter su�ers from a degen-

era
y phenomenon: after some iterations, one parti
le will present a weight very 
lose

to one while other parti
les will present negligible weights. This phenomenon 
annot be

avoided; indeed it has been proven that the varian
e of the weights 
an only in
rease over

time [DGA00℄. In pra
ti
e, this leads to two major problems:
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Figure 1.10 � Me
hanism of the SIS parti
le �lter with the two steps: propagation of the

parti
les with the prior density p
(
xk | xik−1

)
and then update with the measurement zk.

� First, after some iterations, the parti
le approximation will be a poor estimate of

the obje
tive posterior density, and therefore, the 
orresponding estimators will not

be a

urate.

� Computing resour
es are devoted to update the weights of a possibly large number of

parti
les whereas most of them have a negligible 
ontribution to the approximation

of the posterior density p (xk | z1:k).

In order to have an idea of the quality of the parti
le approximation of the posterior

density, it 
an be interesting to measure this degenera
y phenomenon. Several indi
ators

have been proposed in the literature, among whi
h the most popular is probably the

e�e
tive sample size Neff proposed in [LR98℄, based on the 
al
ulation of the varian
e of

the weights. In general, it 
annot be 
omputed exa
tly but an estimate is given by

Neff ≈
(

Np∑

i=1

(
wik
)2
)−1

. (1.98)

This indi
ator provides a good estimation of the number of parti
les that e�e
tively

parti
ipate in the estimation of the posterior density. For instan
e, when parti
les share

the same weights wik = 1/Np (that 
orresponds to a weight varian
e equal to zero), then

Neff = Np sin
e all parti
les 
ontribute equally to the estimation. On the 
ontrary, when

only one parti
le 
on
entrates all the weight (i.e. the parti
le has a weight equal to one

whi
h 
orresponds to a maximum varian
e), then Neff = 1.

However, although the indi
atorNeff allows to measure the degenera
y phenomenon, it

does not prevent from this issue. Thus, several solutions have been proposed to minimize

the degenera
y phenomenon among whi
h the most 
ommon is 
ertainly the addition of

a resampling pro
edure in the SIS parti
le �lter and, to a lesser extent, a 
areful 
hoi
e

of the instrumental density whi
h may sensibly redu
e the degenera
y phenomenon.
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1.2.4.5 Instrumental density

In the SIS parti
le �lter, the 
hoi
e of the importan
e density is left to the user. In

general, simply 
hoosing the prior density p
(
xk | xik−1

)
(from whi
h it is generally easy to

sample) as the importan
e density is enough to ensure a

eptable performan
e. In that


ase, the weight update equation (1.94) simply be
omes

wik ∝ wik−1p
(
zk | xik

)
, (1.99)

and only requires to 
al
ulate p (zk | xik), i.e. the likelihood of the observation 
ondition-

ally to the state xik.

However, in some appli
ations this simple 
hoi
e may lead to poor performan
e with

a severe degenera
y phenomenon. This is the 
ase for instan
e in Tra
k-Before-Dete
t

appli
ations, as will be shown in Chapter 2. Therefore, a more suitable 
hoi
e that takes

into a

ount the 
urrent measurement zk must be made. The optimal one, in the sense

that it minimizes the varian
e of the importan
e weights (and thus maximizes Neff), is

given by [DGA00℄

qopt
(
xk | xik−1, zk

)
= p

(
xk | xik−1, zk

)
, (1.100)

for whi
h the varian
e of the weights is zero. This density 
an be rewritten as follows:

qopt
(
xk | xik−1, zk

)
=
p (zk | xk) p

(
xk | xik−1

)

p
(
zk | xik−1

) , (1.101)

and requires the 
al
ulation of the density p
(
zk | xik−1

)
provided by:

p
(
zk | xik−1

)
=

∫
p (zk | x′) p

(
x′ | xik−1

)
dx′. (1.102)

In pra
ti
e, ex
ept for very spe
i�
 
ases, this integral is intra
table and, as a 
onse-

quen
e, so is the optimal density. Moreover, it might be di�
ult to draw samples from

this optimal importan
e density. Therefore, suboptimal approximations of the optimal

importan
e density have been proposed [AMGC02℄. However, the possible gain of using

su
h suboptimal approximations is not always justi�ed sin
e an additional 
omputational


ost is indu
ed by using su
h suboptimal approximations. Besides, in some appli
ations,

using more parti
les sampled with the prior is equivalent to using a more sophisti
ated

density with less parti
les [AMGC02℄.

1.2.4.6 Resampling

The use of a 
onvenient instrumental density may slow the degenera
y phenomenon, but

it 
annot avoid it totally. As a 
onsequen
e, other solutions must be used to prevent the

degenera
y phenomenon. A 
ommon te
hnique 
onsists in adding a resampling step in

the SIS parti
le �lter before any strong degenera
y o

urs, for instan
e when the e�e
tive

sample size Neff falls below a given threshold NT = βNp with 0 < β ≤ 1. The prin
iple

of resampling 
onsists in sele
ting parti
les with large weights and dis
arding parti
les

with small weights. In pra
ti
e, this is done by drawing independently Np parti
les from

the parti
le representation of the posterior density p (xk | z1:k) given by Eq. (1.95). As
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Figure 1.11 � Me
hanism of SIS parti
le �lter with resampling step: parti
les with large

weights are sele
ted while parti
les with small weights are dis
arded.

these new parti
les are sampled independently from the same density, they share the

same weight equal to 1/Np. The parti
le �lter with a resampling pro
edure is illustrated

in Figure 1.11. In pra
ti
e, several methods 
an be used to perform the resampling step,

in
luding multinomial resampling, residual resampling [LR98℄ and systemati
 resampling

[Kit96℄. The latter is one of the most popular sin
e it is easy to implement and requires to

draw only one single uniform variable [AMGC02℄. Note however that in some situations,

espe
ially when the varian
e of the importan
e density is small (or even equal to zero) �

this may be the 
ase for instan
e when the prior density provided by the state equation

is used as instrumental density and the varian
e of the state noise is very small � the

resampling step 
an indu
e a severe loss of diversity among the parti
les. Indeed, in

that 
ase, many drawn parti
les will share the exa
t same state, and no diversity will be

generated afterwards by the instrumental density, thus leading to an impoverishment of

the parti
le 
loud. Nevertheless, this e�e
t 
an be 
orre
ted by adding a regularization

step [MOLG01℄, where the key idea is to sample parti
les from a 
ontinuous density

rather than a dis
rete density in order to obtain a better exploration of the state spa
e.

In pra
ti
e, this is a
hieved by 
onvolving the dis
rete density with a 
ontinuous kernel.

This regularization step will not be 
onsidered in this thesis.

Finally, a des
ription of the generi
 parti
le �lter is given by Algorithm 1.1. This

algorithm will be used throughout this thesis.

1.3 Con
lusion

In this 
hapter, a brief overview of the radar 
hain from the signal pro
essing stage to

the tra
king stage has been �rst presented. In parti
ular, the fundamental role of the

mat
hed-�lter both in dete
tion and in estimation has been highlighted. Finally, at the

end of this se
tion, we spe
ify the measurements zk and Yk that are respe
tively provided

as an input to the tra
king stage in the TBD framework and in the 
lassi
 approa
h (see
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Algorithm 1.1 Generi
 parti
le �lter algorithm

Require: Parti
le 
loud

{
wik−1,x

i
k−1

}Np

i=1
at step k − 1,

1: for i = 1 to Np do

2: Propagation: draw parti
le xik a

ording to q
(
xk | xik−1, zk

)
.

3: Update: 
ompute weight a

ording to wik ∝ wik−1

p(zk|xi
k)p(xi

k
|xi

k−1)
q(xi

k
|xi

k−1,zk)
4: end for

5: Normalize weights: wik ←
wi

k∑Np
l=1 w

l
k

, i = 1, · · · , Np

6: Compute Neff a

ording to Eq. (1.98).

7: if Neff < βNp then

8: Resample Np parti
les from
∑Np

i=1w
i
kδxi

k
(xk)

9: Reset weights: wik ← 1
Np
, i = 1, · · · , Np

10: end if

11: return {wik,xik}
Np

i=1

Figure 1.1).

In a se
ond step, the Bayesian �ltering framework has been detailed and a spe
ial

attention has been given to the Hidden Markov Models that allow to re
ursively solve the

�ltering problem. For this model, we detailed more spe
i�
ally two solutions:

� The �rst one, known as Kalman �lter, that allows to exa
tly solve the Bayesian

�lter when the model is Gaussian and linear. It has been extensively used in a wide

range of appli
ations and in parti
ular in 
lassi
 radar tra
king appli
ations.

� And the se
ond one, known as parti
le �lter, that allows to handle more general

models than the Kalman �lter (i.e. non-linear or/and non-Gaussian models). The

latter will be intensively used and studied in the next 
hapters as a possible solution

of the Tra
k-Before-Dete
t problem.

This 
hapter has provided the main ingredients that will be used throughout the rest

of this do
ument, i.e. the measurement equation used in the TBD framework, based on

the radar signal pro
essing 
hain, and the parti
le �lter.
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Chapter 2

Monotarget Tra
k-Before-Dete
t

parti
le �lters

2.1 Introdu
tion

In the previous 
hapter, we have brie�y outlined the whole radar 
hain from the re
eption

of the signal to the tra
k management (i.e. formation, update, deletion). In parti
ular,

we have highlighted that the 
lassi
 tra
king stage is not performed from the raw data

zk but from a set of dete
tion hits Yk whi
h 
orrespond either to noisy measurements

of the a
tual target parameters or to false alarm measurements as illustrated in Figure

1.1. When the target Signal to Noise Ratio (SNR) is high, this pre-dete
tion step has no


onsequen
e and allows to dramati
ally redu
e the amount of data to pro
ess. Indeed,

in su
h a situation, the dete
tion threshold γ may be 
hosen relatively high in order to

strongly limit the false alarm rate while guaranteeing to dete
t the targets almost at ea
h

iteration, thus making the Multiple Target Tra
king (MTT) problem "easy" to solve.

However, when the appli
ation seeks to dete
t and tra
k low SNR targets, the MTT

problem may be
ome mu
h more tri
ky. Indeed, maintaining a high threshold will not

ensure anymore to dete
t the target at ea
h iteration sin
e, in this 
ase, the dete
tion

probability PD may be pretty small (low SNR). This is illustrated in Figure 2.1, where a

Figure 2.1 � S
heme of the pre-dete
tion step: where the target signal sample with a high

SNR target is kept, while the low SNR target sample is dis
arded.

signal sample due to a target with a low SNR is dis
arded, sin
e it does not ex
eed the

43
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threshold. As a 
onsequen
e, all the information provided by this target signal sample

is lost in the tra
king stage. Furthermore, the solution that 
onsists in de
reasing the

dete
tion threshold will make both the initialization and the asso
iation problem mu
h

more arduous to solve sin
e the set of dete
tion Yk would be of mu
h larger 
ardinality

and mostly 
onstituted, at ea
h iteration, of false alarm measurements.

As a result, a new framework, known as Tra
k-Before-Dete
t, was proposed to over-


ome the initialization and the asso
iation problem. The key 
on
ept of the Tra
k-Before-

Dete
t framework 
onsist in jointly performing the dete
tion and tra
king from the whole

raw measurements z1:k rather than the sets Y1:k in order to keep all the information pro-

vided by the measurement (sin
e no pre-dete
tion has been made). As a result, it allows

to postpone and then to enhan
e the dete
tion de
ision by exploiting all the information

provided by the raw data.

The �rst methods proposed to solve the Tra
k-Before-Dete
t in a monotarget setting

were based on the Hough transform [CEW94℄ or Dynami
 programming [Bar85℄. However,

although these methods are e�e
tive, they are not re
ursive and must pro
ess blo
ks of

data, therefore leading to an intensive 
omputational burden. Moreover, sin
e the s
ope

of this thesis is to study parti
le �lter solutions to the Tra
k-Before-Dete
t problem, we

do not 
onsider Hough transform and Dynami
 programming throughout this thesis.

In this 
hapter, we 
onsider the parti
le solution to the monotarget Tra
k-Before-

Dete
t problem proposed by Salmond et al. [SB01℄. First, we de�ne the state model and

the measurement model in se
tion 2.2 and 2.3. Then, we 
onsider the parti
le solution for

this model in se
tion 2.4. In Se
tion 2.5 we propose some 
ontribution on the instrumental

density in order to improve the �lter performan
e. Finally in se
tion 2.6 a modi�ed parti
le

�lter is presented and in se
tion 2.7 performan
es of the di�erent �lters are evaluated via

Monte Carlo simulations.

2.2 State model

2.2.1 General TBD model

Tra
k-Before-Dete
t solutions work on raw data z1:k where no pre-dete
tion step has been

made. At ea
h iteration step k, the presen
e of a target in the data zk is not a priori

known. In a Bayesian framework, the 
lassi
 method to deal with this ignoran
e 
onsists

in modelling a priori the presen
e or absen
e of the target by a variable sk that takes

value 1 if the target is present at step k, and 0 otherwise, and then 
onsidering as hidden

state the hybrid state (sk,xk) (where xk is the 
lassi
 target state, e.g. position, velo
ity,
et
.) [SB01℄.

Hen
e, the new hidden pro
ess (sk,xk)k∈N is Markovian and entirely de�ned by its

transition density

p (sk,xk | sk−1,xk−1) , (2.1)

and its density p0 (s0,x0) at step k = 0. In pra
ti
e, the transition density is often 
hosen

to fa
torize as follows:

p (sk,xk | sk−1,xk−1) = p (sk | sk−1) p (xk | sk−1, sk,xk−1) , (2.2)
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in order to simplify the implementation of the Bayesian Tra
k-Before-Dete
t solutions. In

this 
ase, the pro
ess (sk)k∈N is a two-state Markov 
hain with transition probabilities

Pb = p (sk = 1 | sk−1 = 0) , (2.3)

Pd = p (sk = 0 | sk−1 = 1) , (2.4)

where Pb is the probability of target "birth" (or appearan
e) and Pd is the probability of

target "death" (or disappearan
e), leading to the following transition matrix

Π =

[
1− Pb Pb
Pd 1− Pd

]
. (2.5)

Finally, at step k = 0, let us de�ne by P0 = p (s0 = 1). On the other hand, two transition

densities have to be spe
i�ed for the state xk:

� p (xk | sk = 1, sk−1 = 1,xk−1) the 
ontinuing density that models the target dy-

nami
. In order to alleviate the notation, it will be denoted as pc (xk | xk−1).

� p (xk | sk = 1, sk−1 = 0,xk−1) the birth density that models how the target appears

in the radar surveillan
e area. The dependen
e in xk−1 
an be always removed in

that 
ase sin
e xk−1 has no physi
al meaning. This density will be referred as pb (xk)
in the following.

Note that the densities p (xk | sk = 0, sk−1 = 1,xk−1) and p (xk | sk = 0, sk−1 = 0,xk−1)
that represent the state xk when it is absent from the radar surveillan
e area do not need

to be de�ned sin
e the state xk has no physi
al meaning when sk = 0.
In summary, the state model de�ned in Eq. (2.2) requires the knowledge of the two

transition probabilities Pb and Pd, the initial probability P0 and the two states densities :

the birth density and the prior target dynami
al density. This model is very general and


an handle non-linear target motion (in parti
ular for the target dynami
s). Note that,

throughout this thesis, for the sake of simpli
ity, a linear model for the target dynami


will be used.

2.2.2 Model used in this work

The performan
e of the Tra
k-Before-Dete
t algorithms proposed in this thesis will be

evaluated via Monte Carlo simulations. Therefore, in order to avoid prohibitive 
omputa-

tional time, we will restri
t our study to a target moving in a two dimensional spa
e. The

extension of the Tra
k-Before-Dete
t solutions to a target state xk with one or two addi-

tional dimensions is of 
ourse straightforward and does not lead to any theoreti
al issue

but will rather in
rease the 
omputational time required to evaluate the performan
e.

Thus, let us 
onsider a target evolving (when present) in the area de�ned in polar


oordinates by D = [rmin, rmax]× [θmin, θmax] whi
h 
orresponds to the surveillan
e area


overed by the radar under 
onsideration. The area D is illustrated in Figure 2.2. Then,

let us de�ne by xk = [xk, ẋk, yk, ẏk]
T
the target state ve
tor where (xk, yk) and (ẋk, ẏk)

represent respe
tively its position and its velo
ity in Cartesian 
oordinates. Note that

here, two systems of 
oordinates are used, polar and Cartesian, for the sake of 
onvenien
e.
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Figure 2.2 � Left: Surveillan
e area 
overed by the radar. Right: Area to initialize the

velo
ity 
omponents (ẋk, ẏk).

Indeed, the radar signal pro
essing stage is well suited to polar 
oordinates (the radar

naturally provides range and angle information, see se
tion 1.1) while linear motion is

easier to handle in Cartesian 
oordinates than in polar 
oordinates. Therefore, assuming

that the radar is lo
ated at the origin, we also de�ne by rk =
√
x2k + y2k the target range

with respe
t to the radar and by θk = arctan( yk
xk
) the target azimuth. The inversion

formulas are 
lassi
 and simply given by xk = rk cos (θk) and yk = rk sin (θk). In the same

manner, we de�ne by vnorm,k =
√
ẋ2k + ẏ2k the velo
ity norm and αk = arctan( ẏk

ẋk
) the

velo
ity dire
tion in polar 
oordinates. Finally, in the following, the two representations

will be used depending on the situation where they are the best suited.

The linear target dynami
al model is 
hosen as follows [BSLK01℄:

xk = Fxk−1 + vk, (2.6)

where

F =

[
FS 0
0 FS

]
with FS =

[
1 TS
0 1

]
,

and TS represents the sampling period of the measurements (or the duration of a radar


y
le). The noise vk is assumed white and Gaussian with 
ovarian
e matrix [BSLK01℄

Q =

[
QS 0
0 QS

]
, where QS = qS

[
T 3
S/3 T 2

S/2
T 2
S/2 TS

]
. (2.7)

Con
erning the birth density pb (.), the position (rk, θk) and the velo
ity (vk, αk) are
assumed to be distributed independently as follows:

� pb (rk, θk) = U (rmin, rmax)× U (θmin, θmax).
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� pb (vnorm,k, αk) = U (vmin, vmax)× U (0, 2π) (where vmin and vmax are the minimum

and the maximum velo
ity rea
hable by the target). The domain used to initialize

the velo
ity 
omponents is illustrated in Figure 2.2, of 
ourse vmin 
an be set to 0
if desired.

The 
hoi
e of the uniform distribution both for the position and the velo
ity 
orresponds

to the least possible informative prior. It means that when a target appears in the radar

window, it 
an be lo
ated anywhere in the area D with a velo
ity ve
tor in any dire
tion.

The only a priori information used is the 
onstants vmin and vmax whi
h 
an be easily

obtained by physi
al 
onsiderations (e.g. an air
raft has a limit velo
ity). However, if

some other informations are available about the target appearan
e area (e.g. an airport)

or dire
tion, they should be taken into a

ount in the prior birth density. Here, in order

to keep the model as general as possible, this 
ase will not be 
onsidered.

2.3 Measurement model

2.3.1 Raw radar data

We 
onsider here a measurement model based on the presentation detailed in 
hapter 1

paragraph 1.1.8 with only some slight di�eren
es. It is provided by:

zk = skρe
jϕkh (xk) + nk. (2.8)

The phase ϕk is assumed to be uniformly drawn over the interval [0, 2π) while the noise
nk is a zero-mean 
ir
ular 
omplex Gaussian ve
tor with a known 
ovarian
e matrix Γ.

The �rst di�eren
e introdu
ed here 
on
erns the modulus ρ whi
h is assumed 
onstant

and unknown. This 
orresponds in the radar terminology to the Swerling 0 �u
tuation

model [Sko80℄ � the other �u
tuation models will be 
onsidered in 
hapter 4. The se
ond

di�eren
e 
on
erns the introdu
tion of the variable sk in the measurement equation (2.8)

in order to take into a

ount the presen
e or the absen
e of the target in the measurement

zk. Remark that when the target is absent, the measurement zk 
onsists of noise only.

The fun
tion h (.) depends on the appli
ation 
onsidered: for instan
e, in opti
s, it

is often 
hosen with a Gaussian shape [TBS98℄. Nevertheless, as we are here 
on
erned

by a radar tra
king appli
ation, this measurement fun
tion h (.) 
orresponds to the radar
ambiguity fun
tion. For the sake of simpli
ity and also for 
omputational 
ost reasons, we

will restri
t ourselves in this manus
ript to the range and azimuth parameters. Of 
ourse

other parameters (e.g. Doppler) may be easily added to the model.

Thus, let us 
onsider a radar transmitting a 
hirp signal with bandwidth B and pulse

duration Tp (see paragraph 1.1.5) and re
eiving the ba
ks
attered signal via a linear array

with Na antennas spa
ed by d. In a �rst step, a beamforming operation is realized for

di�erent dire
tions

θv = θmin + (v +
1

2
)∆θ, v = 0, · · · , Nθ − 1, (2.9)

where ∆θ = 0.886 λ
Nad

is the half-power beam-width (see paragraph 1.1.7) and Nθ =⌈
θmax−θmin

∆θ

⌉
is the number of azimuth 
ells (here ⌈.⌉ is the 
eiling fun
tion). The 
or-

responding ambiguity fun
tion along the azimuth axis is then given by (see paragraph
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1.1.7):

hvθ(θk) =
sin
(
Naψθv

2

)

Na sin
(
ψθv

2

) , (2.10)

where ψθv = 2πd
λ

(cos (θk)− cos (θv)).
Then, for ea
h dire
tion θv a range mat
hed-�lter is performed to the 
orresponding

re
eived signal. The output signal is sampled at period 1/B leading to the following

ambiguity fun
tion along the range dire
tion (see paragraph 1.1.5):

hur (rk) =
sin
(
πBτu

(
1− |τu|

Tp

))

πBτu
for |τu| ≤ Tp, (2.11)

where τu = 2 (rk − ru) /c and

ru = rmin + (u+
1

2
)∆r, u = 0, · · · , Nr − 1, (2.12)

are the range 
ells 
orresponding to the sampling instants, with ∆r the range resolution

equal to

c
2B

and Nr =
⌈
rmax−rmin

∆r

⌉
the number of range 
ells.

Finally, the overall ambiguity fun
tion in range and azimuth h (.) is a two dimensional

image 
onsisting of Nc = Nr×Nθ 
ells where the value in the 
ell (u, v) is simply provided

by the produ
t hur (rk)h
v
θ(θk). For mathemati
al 
onsiderations, we rewrite the fun
tion

h (.) as a ve
tor of size Nc by using the following mapping: l = u + (v − 1) × Nr, i.e.

the value of the l − th 
omponent is given by hl(xk) = hur (rk)h
v
θ(θk). A s
heme of the

proposed mapping is given in Figure 2.3. Furthermore, for the sake of 
ompa
tness, the

ve
tor h(xk) will be denoted by hk in the sequel.

Note that here, sin
e no Doppler measurement is 
onsidered, the ambiguity fun
tion

does not depend on the velo
ity parameters (ẋk, ẏk) and as a 
onsequen
e neither does

the equation of the measurement (2.8). However, there is no di�
ulty to handle su
h a

situation where the measurement depends only on a subset of the state parameters. The


onne
tion is ensured by the prior model (i.e. the target dynami
al model) that links

velo
ity 
omponents with the position 
omponents, themselves related to the measurement

zk. Note also that an additional Doppler shift measurement introdu
ed in zk would provide

partial information on this target velo
ity, and thus 
ould be exploited to enhan
e the

tra
king �lter.

2.3.2 Target Signal to Noise Ratio

An important notion that must be 
learly de�ned is the target SNR (Signal to Noise

Ratio). A possible de�nition, from Eq. (1.14), is SNR = 10 log10

(
ρ2

2σ2

)
. First, note

that we impli
itly made the hypothesis that the noise 
ovarian
e matrix is Γ = 2σ2INc ,

i.e. noise samples are independent with the same varian
e. Se
ond, remark that this

de�nition represents the maximum SNR rea
hable by the pro
essing and is obtained

when the target is exa
tly lo
ated at the 
enter of the 
ell, i.e. when hl(ru, θv) = 1;
for other target positions, the energy extra
ted by the pro
essing will be lower due to a

target lo
ated outside the sampling grid. Clearly, performan
e of the Tra
k-Before-Dete
t

algorithms will highly depend on the target SNR.
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Figure 2.3 � Mapping between indi
es (u, v) and l.

2.4 A parti
le �lter solution for the Tra
k-Before-Dete
t

problem

Previously, a state-spa
e model has been set up in order to model the Tra
k-Before-Dete
t

problem in the HMM framework. The aim is now to estimate re
ursively the posterior

density p (xk, sk | z1:k). Sin
e here the hidden state is hybrid (
ontinuous variable xk and

dis
rete variable sk), it is 
onvenient to reorganize the posterior density as follows:

p (xk, sk | z1:k) = p (sk | z1:k) p (xk | sk, z1:k) . (2.13)

When sk = 0, the state xk is meaningless and independent from the measurements z1:k
so that the density p (xk | sk = 0, z1:k) does not need to be evaluated. On the 
ontrary,

when sk = 1, the posterior density p (xk | sk = 1, z1:k) allows to 
al
ulate estimators x̂k|k

and P̂k|k de�ned respe
tively in Eq. (1.96) and (1.97) while the posterior probability of

target existen
e Pe,k = p (sk = 1 | z1:k) provides some information about the presen
e or

the absen
e of the target in the radar window.

2.4.1 The TBD parti
le �lter

In pra
ti
e, the 
on
eptual Bayesian �lter de�ned in paragraph 1.2.2 
an be derived for

the proposed model but the exa
t solution is intra
table. Therefore we must resort to

some approximations. Methods based on the EKF and the UKF would be inoperative,

essentially be
ause the measurement equation (2.8) is highly non-linear and the birth

density pb (xk) dramati
ally di�ers from a Gaussian density. In the other hand, due to
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the large size of the state spa
e (essentially the spa
e D), a grid-based approa
h seems

unrealisti
 to implement for real-time appli
ations. In order to over
ome these di�
ulties,

a solution based on the parti
le �lter was proposed by Salmond et al. [SB01℄ and is detailed

in the sequel.

Let us assume that a set of parti
les

{(
sik−1,x

i
k−1

)
, wik−1

}Np

i=1
, approximating the pos-

terior density p (sk−1,xk−1 | z1:k−1) at step k − 1, is available:

p (sk−1,xk−1 | z1:k−1) ≈
Np∑

i=1

wik−1δ(sik−1,x
i
k−1)

(sk−1,xk−1) . (2.14)

The �rst step of the parti
le �lter 
onsists in drawing new parti
les (sik,x
i
k) from the

parti
les at previous step. In [SB01℄, this is done �rst by drawing variables sik a

ording

to the transition matrix Π de�ned in Eq. (2.5). Then states xik 
an be drawn 
onditionally

to sik and s
i
k−1. When sik = 0, the state xik is meaningless and therefore does not need to

be sampled. On the 
ontrary, when sik = 1, two 
ases must be 
onsidered:

1. Birth 
ase (i.e. sik−1 = 0): the parti
le state xik is initialized with an instrumental

density qb (xk | zk). As will be seen in this 
hapter, the 
hoi
e of the instrumental

density for the state initialization is 
ru
ial for the performan
e of the �lter and is

a key point of the TBD parti
le �lter solutions.

2. Continuing 
ase (i.e. sik−1 = 1): the parti
le was already present at step k − 1 and

is propagated with an instrumental density qc
(
xk | xik−1, zk

)
.

The di�erent 
ases 
onsidered when sampling parti
le states xik a

ording to sik−1 and s
i
k

are summarized in Table 2.1.

sik−1 = 0 sik−1 = 1

sik = 0 nothing to do nothing to do

sik = 1 qb (xk | zk) qc
(
xk | xik−1, zk

)

Table 2.1 � Instrumental densities to sample xik depending on sik and s
i
k−1.

The se
ond step of the parti
le �lter 
onsists in 
al
ulating the parti
le weights wik,
provided by Eq. (1.94), that di�er a

ording to the values of sik and sik−1. Considering

the di�erent possible 
ases, the weight expression is given by:

wik ∝ wik−1 ×





p (zk | sik = 0) , if sik = 0,
pb(xi

k)
qb(xi

k|zk)
p (zk | sik = 1,xik) , if sik = 1 and sik−1 = 0,

pc(xi
k|x

i
k−1)

qc(xi
k|x

i
k−1,zk)

p (zk | sik = 1,xik) , if sik = 1 and sik−1 = 1.

(2.15)

Then, weights are normalized and a resampling pro
edure is performed, if required, as in

the generi
 parti
le �lter (see Chapter 1, Algorithm 1.1). A pseudo
ode of a single 
y
le

of the 
urrent parti
le �lter, denoted here by Classi
 TBD Parti
le Filter, is des
ribed in

Algorithm 2.1.
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Algorithm 2.1 Classi
 TBD Parti
le Filter

Require: Parti
le 
loud

{(
sik−1,x

i
k−1

)
, wik−1

}Np

i=1
at step k − 1,

1: for i = 1 to Np do

2: Draw sik a

ording to the transition matrix de�ned in Eq. (2.5)

3: if sik = 1 then
4: if sik−1 = 1 then
5: Draw xik ∼ qc

(
xk | xik−1, zk

)

6: else

7: Draw xik ∼ qb (xk | zk)
8: end if

9: end if

10: Update parti
le weight wik a

ording to Eq. (2.15)

11: end for

12: Normalize weights: wik ←
wi

k∑Np
l=1 w

l
k

, i = 1, · · · , Np

13: Compute Neff a

ording to Eq. (1.98).

14: if Neff < βNp then

15: Resample Np parti
les

16: Reset weights: wik ← 1
Np
, i = 1, · · · , Np

17: end if

18: return {(sik,xik) , wik}
Np

i=1

Finally, the probability of presen
e Pe,k 
an be estimated from the set of parti
les

{(sik,xik) , wik}
Np

i=1 by:

P̂e,k =

Np∑

i=1

sikw
i
k, (2.16)

while the target state xk 
an be estimated by:

x̂k|k =
1

P̂e,k

Np∑

i=1

sikw
i
kx

i
k, (2.17)

and the posterior 
ovarian
e matrix by:

P̂k|k =
1

P̂e,k

Np∑

i=1

sikw
i
k

(
xik − x̂k|k

) (
xik − x̂k|k

)T
. (2.18)

2.4.2 Measurement likelihood

The 
al
ulation of the weights in Eq. (2.15) requires the likelihood fun
tion p (zk | sk,xk).
However, in the parti
ular 
ase of the TBD parti
le �lter, this density is not dire
tly

available sin
e the measurement equation (2.8) depends on the unknown parameters ρ
and ϕk whi
h 
orrespond to the target amplitude parameters. In fa
t, only the density

p (zk | sk = 1,xk, ϕk, ρ) is dire
tly provided from Eq. (2.8). This is a 
omplex Gaussian
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density with mean skρe
jϕkhk and 
ovarian
e matrix Γ, i.e.

p (zk | sk = 1,xk, ϕk, ρ) =
1

πNc det (Γ)
exp

{
−
(
zk − skρejϕkhk

)H
Γ−1

(
zk − skρejϕkhk

)}
,

(2.19)

that expends as follows:

p (zk|sk,xk, ρ, ϕk) =
1

πNc det (Γ)
exp

{
−zHk Γ−1zk

}
×

exp
{
−skρ2hHk Γ−1hk + 2skρ|hHk Γ−1zk| cos(ϕk − ζk)

}
,

(2.20)

where ζk = arg(hHk Γ
−1zk). First note that when sk = 0 the likelihood in Eq. (2.20) is

independent from the parameters xk, ρ and ϕk. Therefore the likelihood p (zk | sk = 0,xk)
is a 
onstant provided by

p (zk | sk = 0) =
1

πNc det (Γ)
exp

{
−zHk Γ−1zk

}
. (2.21)

On the 
ontrary, when sk = 1, the likelihood in Eq. (2.20) is, of 
ourse, dependent on

the parameters ρ, ϕk, xk. Additional developments must then be performed in order

to evaluate the likelihood p (zk | sk = 1,xk). Several strategies have been proposed in

the literature to deal with the phase ϕk. As this 
hapter fo
uses on the TBD parti
le

�lter, we will 
onsider here only the best solution detailed in paragraph 2.4.2.1. Further

developments and details will be provided in 
hapter 4. Con
erning the modulus ρ, we
will use the approa
h proposed by Kitagawa [Kit98℄ whi
h is detailed in paragraph 2.4.2.2.

Let us �nally note that in order to alleviate the notation, the likelihood p (zk | sk = 1,xk)
will be denoted by p (zk | xk) in the rest of the 
hapter sin
e it depends on xk only

when sk = 1. Moreover, as the parti
le �lter requires the 
al
ulation of the likelihood

p (zk | sk,xk) only up to a 
onstant, it is 
onvenient to divide the expression in Eq. (2.20)

by the likelihood term p (zk | sk = 0) de�ned in Eq. (2.21). In the sequel, the likelihood

p (zk | xk) will be always 
al
ulated up to this 
onstant term. Thus, in that 
ase, the

weight equation (2.15) be
omes

wik ∝ wik−1 ×





1, if sik = 0,
pb(xi

k)
qb(xi

k|zk)
p (zk | xik) , if sik = 1 and sik−1 = 0,

pc(xi
k |x

i
k−1)

qc(xi
k|x

i
k−1,zk)

p (zk | xik) , if sik = 1 and sik−1 = 1.

(2.22)

2.4.2.1 Eliminating the random phase

The best way to eliminate the random phase ϕk 
onsists in marginalizing it in the likeli-

hood de�ned in Eq. (2.20). This method was �rst proposed in [DRC12℄. It leads to:

p (zk | xk) ∝ exp
{
−ρ2hHk Γ−1hk

}
I0

(
2ρ
∣∣hHk Γ−1zk

∣∣) , (2.23)

where I0 (.) is the modi�ed Bessel fun
tion of the �rst kind, i.e.

I0 (x) =
+∞∑

l=0

(
x
2

)2l

(l!)2
. (2.24)
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2.4.2.2 Dealing with the unknown parameter ρ

Contrary to the phase ϕk that randomly �u
tuates from step to step, the parameter ρ is

in this 
hapter assumed 
onstant. Thus it might be preferable to estimate it rather than

marginalize it (whi
h leads to an intra
table integral). The problem of state-spa
e models

with unknown stati
 parameter has been widely studied in the literature [Kit98, Sto02,

ADST04℄. A 
onvenient solution, easy to implement, 
onsists in introdu
ing an arti�
ial

Markovian dynami
 on the stati
 parameter ρ and adding it to the state ve
tor xk, i.e.

xk = [xk, ẋk, yk, ẏk, ρk]
T
. As the parameter ρk has been appended to the hidden state, its

evolution must be spe
i�ed a priori. As for the position and the velo
ity, two 
ases must

be 
onsidered:

� The 
ontinuing 
ase (i.e. sk = 1 and sk−1 = 1) where the parameter ρk evolves

a

ording to the following equation [ADST04℄,

ρk = ρk−1 + εk, (2.25)

where εk is a white Gaussian noise with a "small" varian
e σ2
ρ independent of vk.

� The birth 
ase (i.e. sk = 1 and sk−1 = 0), where the parameter ρk is assumed

uniformly drawn over the interval [ρmin, ρmax], i.e. pb (ρk) = U (ρmin, ρmax) � note

that we may sometimes repla
e ρmin and ρmax by their 
orresponding SNR value

(see paragraph 2.3.2), that is SNRmin and SNRmax.

Moreover, as variable ρk has been added to the state ve
tor xk, the "new" likelihood

p (zk | xk) 
an simply be 
al
ulated by repla
ing ρ by ρk in Eq. (2.23).

Finally, note that in most of the arti
les dealing with Tra
k-Before-Dete
t parti
le

�lters, the parameter ρk is not assumed to be 
onstant but rather dire
tly a 
omponent

of the state ve
tor with dynami
 model (2.25). Here, we prefer to assume that ρ is an

unknown 
onstant parameter, following the Swerling 0 model. We then use the proposed

method to estimate it but do not model it a priori that way. Obviously the di�eren
e

between the two approa
hes is just 
on
eptual and in pra
ti
e they are 
ompletely equiv-

alent.

2.4.2.3 Trun
ating the ambiguity fun
tion

The ambiguity fun
tion presents signi�
ant values only in a small subset of 
ells around the

target lo
ation while being negligible elsewhere. Therefore, in order to avoid unne
essary


omputations, Salmond et al. [SB01℄ have proposed to keep only a subset of 
ells Vxk

where the ambiguity fun
tion remains signi�
ant. For a state xk lo
ated in 
ell (uk, vk),
the set Vxk

may be de�ned as

Vxk
= {(u, v) | |uk − u| ≤ δhr , and |vk − v| ≤ δhθ} . (2.26)

From this de�nition, the ambiguity fun
tion will be 
al
ulated over Nδhr
× Nδhθ


ells �

where Nδhr
= 2δhr + 1 and Nδhθ

= 2δhθ + 1 � rather than Nc 
ells. In Figure 2.4, an

illustration of the subset Vxk
is proposed. A problem arising from the dire
t 
al
ulation

of the likelihood (2.23) is the prohibitive 
omputational 
ost indu
ed by the large number
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Figure 2.4 � An example of the subset Vxk
(in yellow), for a target lo
ated in 
ell (uk, vk),

with δhr = 2 and δhθ = 2.

of 
ells Nc in
luded in the measurement zk. Indeed, from a theoreti
al point of view, the

s
alar produ
t quantities hHk Γ
−1hk and hHk Γ

−1zk in Eq. (2.23) must be evaluated over

the Nc 
ells, i.e.

hHk Γ
−1hk =

Nc∑

l=1

conj(hlk)h̃
l
k and hHk Γ

−1zk =

Nc∑

l=1

conj(hlk)z̃
l
k, (2.27)

where the samples h̃lk and z̃
l
k are respe
tively the 
omponents of ve
tors Γ−1hk and Γ−1zk

and conj(.) is the 
omplex 
onjugate operator. Fortunately, by trun
ating the ambiguity

fun
tion, the previous quantities are simply evaluated over the small subset Vxk
, i.e.

hHk Γ
−1hk =

∑

l∈Vxk

conj(hlk)h̃
l
k and hHk Γ

−1zk =
∑

l∈Vxk

conj(hlk)z̃
l
k, (2.28)

Note that here index l refers to the index (u, v) (as explained in paragraph 2.3.1 and Figure
2.3 for details). Thus, for instan
e, with δhr = 2 and δhθ = 2, the previous quantities

are 
omputed over only 25 
ells, whi
h is mu
h smaller than the Nc 
ells. Lastly, in

the following, hk will refer indi�erently to the full ambiguity fun
tion or the trun
ated

ambiguity fun
tion as it does not 
hange the presented algorithms.

2.5 Instrumental density

As outlined in paragraph 1.2.4.5, the instrumental density may impa
t dramati
ally the

performan
e of the parti
le �lter. This is espe
ially true in the TBD appli
ation for the

birth density whi
h samples uniformly the position in the very large spa
e D (see Figure

2.2).
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A �rst 
ontribution of this work 
onsists in studying the instrumental densities for

all the 
omponents of the state ve
tor (sk,xk). For ea
h of them, we derive the optimal

instrumental density

1 p (xk | xk−1, zk) and then propose some approximations that still

take into a

ount the measurement zk for sampling the parti
le state (sik,x
i
k). Finally,

in se
tion 2.7, the in�uen
e of the di�erent instrumental densities is studied via Monte

Carlo simulations.

Let us �rst 
onsider rapidly the instrumental density for the 
ontinuing 
ase. The 
on-

tinuing parti
les are propagated via Eq. (2.6), whi
h 
orresponds to a very 
lassi
 model.

As we stressed in paragraph 1.2.4.5, taking the prior as instrumental density in su
h a

situation is enough to ensure good performan
e; using a more "sophisti
ated" instrumen-

tal density will indu
e an additional 
omputational 
ost for only a small gain [AMGC02℄.

Therefore, in the following, we 
hoose as instrumental density for the 
ontinuing 
ase the

prior, i.e. qc (xk | xk−1, zk) = pc (xk | xk−1).

2.5.1 Instrumental density for the initialization of the position

2.5.1.1 The optimal instrumental density

The initialization of the parti
le position is the key point of the Tra
k-Before-Dete
t

parti
le �lter. Indeed, the likelihood p (zk | xk) in Eq. (2.23) highly depends on the

ve
tor hk and, 
onsequently, on the position (rk, θk). Thus, simply using the prior, i.e.

the uniform distribution over the set D, as instrumental density will in one hand require

to use a lot of parti
les to properly sample the set D and, in the other hand, lead to a

large varian
e of the importan
e weights (i.e. small Neff) sin
e the parti
les will be set

indi�erently in the area whatever the value of the likelihood (high or low). Therefore,

another instrumental density should be proposed in order to "
arefully" initialize the

parti
le positions.

To do so, we propose to start from the (intra
table) optimal instrumental density and

then resort to some approximations. From paragraph 1.2.4.5 the optimal instrumental

density is given by p (xk | xk−1, zk). In the birth 
ase 
onsidered here, this density does

not depend on the previous state xk−1. Moreover, in the sequel, we will 
onsider the

target position in polar 
oordinates (i.e. (rk, θk)). Indeed, sin
e the radar ambiguity

fun
tion is de�ned with these 
oordinates (see Eq. (1.49)) it simpli�es the de�nition of

the instrumental density for initialization of the position. Thus, the instrumental density

for the position will be denoted as pb (rk, θk | zk) while the prior density pb (xk, yk) will be
denoted as pb (rk, θk). In a similar way, in this se
tion the likelihood will be de�ned with

the polar 
oordinates rather than with the Cartesian 
oordinates, and thus p (zk | xk) will
be denoted by p (zk | rk, θk). Note that these two likelihoods represent the same quantity,

even if the velo
ity 
omponents are not 
onsidered in the expression p (zk | rk, θk). Indeed,
re
all that the measurement equation (2.8) does not depend on the velo
ity 
omponents

(ẋk, ẏk) (see se
tion 2.3.1).

Using Bayes rule or Eq. (1.101), the optimal instrumental density in polar 
oordinates

1

Re
all from paragraph 1.2.4.5 that this density is often intra
table and 
annot be used in pra
ti
e.
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an be simply rewritten as follows:

pb (rk, θk | zk) =
pb (rk, θk) p (zk | rk, θk)

p (zk)
, (2.29)

where,

p (zk) =

∫ rmax

rmin

∫ θmax

θmin

pb (rk, θk) p (zk | rk, θk) drkdθk. (2.30)

This last term is, a

ording to us, intra
table and therefore so is the optimal instrumental

density. However, here, the independen
e with xk−1 leads to the same optimal instru-

mental density for all the birth parti
les. It might then be still interesting to devote

some 
omputational resour
es in order to approximate it. Thus, we propose here to use

a grid-based approa
h [AMGC02℄.

To this purpose, let us �rst dis
retize the spa
e for the position D. We propose to

dis
retize ea
h 
ell l as follows:

r(l,p) = rl + p ∆r

2(δr+1)
, p = −δr,−δr + 1, · · · , 0, · · · , δr − 1, δr,

θ(l,q) = θl + q
∆δθ

2(δθ+1)
, q = −δθ,−δθ + 1, · · · , 0, · · · , δθ − 1, δθ,

(2.31)

thus oversampling, in polar 
oordinates, the 
ell l, where δr and δθ are some positive

integers. A s
heme of the dis
retization for the 
ell l is proposed in Figure 2.5.

Figure 2.5 � S
heme of the dis
retization for the 
ell l.

(
r(l,p), θ(l,q)

)
represents the points on the dis
rete grid, where the 
omponents of (l, p, q)

take values respe
tively in {1, · · · , Nc}, {−δr, · · · ,+δr} and {−δθ, · · · ,+δθ}. Thus, from
the de�nition of the proposed grid, ea
h 
ell l is approximated with Nδr = 2δr+1 samples

along rk axis and with Nδθ = 2δθ + 1 along θk axis, so that the grid used to dis
retize the

spa
e D is 
omposed of Nc ×Nδr ×Nδθ points.

Then, let us approximate the density pb (rk, θk) over the proposed grid. Sin
e the

prior birth density for position is uniform, ea
h point in the grid has the weight

1
NcNδrNδθ

,

leading to the following approximation:

pb (rk, θk) ≈
1

NcNδrNδθ

Nc∑

l=1

δr∑

p=−δr

δθ∑

q=−δθ

δ(r(l,p),θ(l,q)) (rk, θk) , (2.32)
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Finally, using Eq. (2.29), the approximation of the instrumental density pb (rk, θk | zk) is
obtained by

pb (rk, θk | zk) ≈
Nc∑

l=1

δr∑

p=−δr

δθ∑

q=−δθ

ζ
(p,q)
k,l δ(r(l,p),θ(l,q)) (rk, θk) (2.33)

where

ζ
(p,q)
k,l ∝ p

(
zk | r(l,p), θ(l,q)

)
. (2.34)

These weights 
annot be 
omputed dire
tly sin
e the likelihood p
(
zk | r(l,p), θ(l,q)

)

annot

be 
al
ulated dire
tly as explained in paragraph 2.4.2. Indeed, a marginalization must be

performed over the parameter ρk in the likelihood equation (2.23), leading to

p
(
zk | r(l,p), θ(l,q)

)
=

∫
pb (ρ) p

(
zk | ρ, r(l,p), θ(l,q)

)
dρ. (2.35)

Again the integral in Eq. (2.35) is intra
table. However, it 
an be simply approximated

by a numeri
al integration, i.e.

p
(
zk | r(l,p), θ(l,q)

)
≈ 1

Nρ

Nρ−1∑

s=0

p
(
zk | ρs, r(l,p), θ(l,q)

)
, (2.36)

with Nρ a positive integer and ρs = ρmin +
s
Nρ

(ρmax − ρmin) , s = 0, · · · , Nρ − 1.

Although this method allows to approximate the instrumental density, in pra
ti
e, it

is unrealisti
 to use su
h a density sin
e it requires to 
al
ulate Nc × Nδr × Nδθ × Nρ

likelihoods p
(
zk | ρs, r(l,p), θ(l,q)

)
where Nc may be very large. However, this approa
h 
an

be kept in mind to initialize the parti
les only in the interesting areas of the state spa
e

and, for instan
e in the 
ells ex
eeding a given threshold γ [RAG04℄. This approa
h is

developed in the next paragraph.

2.5.1.2 Approximating the instrumental density as a mixture

Let us de�ne by

Dk,γ =
{
(rk, θk) | (rk, θk) ∈ 
ell l and |zlk|2 > γ

}
, (2.37)

the set of positions (rk, θk) where the measurement |zlk|2 ex
eeds a given threshold γ, and
Dck,γ its 
omplement (i.e. D = Dk,γ

⋂Dck,γ and Dk,γ
⋃Dck,γ = ∅). Let us also de�ne

PDk,γ
the probability that the position (rk, θk) belongs to the set Dk,γ (i.e. PDk,γ

=

p ((rk, θk) ∈ Dk,γ) ), Ik,γ =
{
l | |zlk|2 > γ

}
the set of indexes where the signal ex
eeds the

threshold γ and NIk,γ = 
ard (Ik,γ). Then the optimal instrumental density in Eq. (2.29)


an be rewritten as a mixture with two 
omponents:

pb (rk, θk | zk) = PDk,γ
pb (rk, θk | zk, (rk, θk) ∈ Dk,γ)+

(
1− PDk,γ

)
pb
(
rk, θk | zk, (rk, θk) ∈ Dck,γ

)
,

(2.38)

where ea
h density pb (rk, θk | zk, (rk, θk) ∈ Dk,γ) and pb
(
rk, θk | zk, (rk, θk) ∈ Dck,γ

)

an be

approximated exa
tly in the same manner as pb (rk, θk | zk) with the only di�eren
e that
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the former is 
al
ulated over the 
ells in Ik,γ while the latter is evaluated over the remain-

ing 
ells. This reorganization of the optimal instrumental density as a mixture 
an be

exploited to avoid 
al
ulating likelihoods p
(
zk | r(l,p), θ(l,q)

)
in the non-interesting areas

of the measurement zk. To this purpose, we propose to remove the dependen
e on zk for

the remaining 
ells, leading to the following instrumental density:

qb (rk, θk | zk) = PDk,γ
pb (rk, θk | zk, (rk, θk) ∈ Dk,γ) +

(
1− PDk,γ

)
pb
(
rk, θk | (rk, θk) ∈ Dck,γ

)
,

(2.39)

where pb
(
rk, θk | (rk, θk) ∈ Dck,γ

)
is simply the uniform distribution over the set Dck,γ. As

the proposed instrumental density di�ers now from the prior, the parti
le weight requires

the 
al
ulation of the weighting term, provided by

pb (rk, θk)

qb (rk, θk|zk)
=





NIk,γ

NcNδrNδθ
PDk,γ

pb(rk,θk|zk,(rk,θk)∈Dk,γ)
, if (rk, θk) ∈ Dk,γ,

(
1− NIk,γ

Nc

)
1

1−PDk,γ

, if (rk, θk) ∈ Dck,γ.
(2.40)

Note that the proposed instrumental density qb (rk, θk | zk) 
an be further simpli�ed

by also removing the dependen
e on zk in the �rst mixture 
omponent. This approa
h

leads to the following instrumental density

qUb (rk, θk | zk) = PDk,γ
pb (rk, θk | (rk, θk) ∈ Dk,γ)+

(
1− PDk,γ

)
pb
(
rk, θk | (rk, θk) ∈ Dck,γ

)
,

(2.41)

with the 
orresponding weighting term

pb (rk, θk)

qUb (rk, θk|zk)
=





NIk,γ

NcPDk,γ

, if (rk, θk) ∈ Dk,γ,
(
1− NIk,γ

Nc

)
1

1−PDk,γ

, if (rk, θk) ∈ Dck,γ.
(2.42)

This expression leads to the heuristi
 solution proposed by Rutten et al. [RRG05℄ (ex
ept

that they take a �x number of highest 
ells rather than the 
ells ex
eeding the threshold)

or in [RAG04℄ where only the 
ells that ex
eed a given threshold are 
onsidered.

Note that in the solution proposed by Rutten et al. in [RRG05℄, or if PDk,γ
is set

to 1 in the instrumental density in Eq. (2.38), only a �x number of 
ells, or only the


ells ex
eeding the threshold, will be 
onsidered to initialize the position of the parti
les.

However, we have seen in paragraph 1.2.4.2 that the support of the prior pb (rk, θk) must

be in
luded in the support of the instrumental density p (rk, θk | zk). Therefore, stri
to

sensu, from a theoreti
al point of view, the above instrumental densities should not be

used to sample the parti
le positions. Nevertheless, in pra
ti
e, using su
h densities has

no noti
eable 
onsequen
e. Indeed, when a parti
le �lter is implemented, the number of

parti
les Np is always �nite. Therefore, even if the support of the prior is in
luded in the

support of the instrumental density, it may be possible that some 
ells will not 
ontain

any parti
le as for the densities that do not respe
t the 
ondition on the support. Su
h an

instrumental density with PDk,γ
= 1 will be used in the se
tion "Simulation and Results"

(i.e. se
tion 2.7) with PDk,γ
= 1.
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2.5.1.3 Cal
ulation of the mixture probability and 
hoi
e of the threshold

In the literature, the dete
tion probability PDk,γ
in the mixture (2.41) is often 
hosen

to be equal to one, leading in pra
ti
e to a mixture with only one 
omponent so that

the parti
le positions are initialized only in the 
ells ex
eeding γ [RAG04℄. However, the

probability PDk,γ
is stri
tly lower than 1 for any γ > 0. Thus, it might be interesting to

evaluate its a
tual value in order to be as 
lose as possible to the optimal instrumental

density de�ned in Eq. (2.38).

First noti
e that the event {(rk, θk) ∈ Dk,γ} 
an be de
omposed as

{(rk, θk) ∈ Dk,γ} =
Nc⋃

l=1

{
{(rk, θk) ∈ 
ell l}

⋂{
|zlk|2 > γ

}}
(2.43)

where all the events in the de
omposition are disjoint, i.e.

{
{(xk, yk) ∈ 
ell l}

⋂{
|zlk|2 > γ

}}⋂{
{(xk, yk) ∈ 
ell m}

⋂{
|zmk |2 > γ

}}
= ∅,

for l 6= m, sin
e the target 
annot be lo
ated in the 
ells l andm simultaneously. Moreover,

by using a grid-based approa
h as in paragraph 2.5.1.1, the event {(rk, θk) ∈ 
ell l} 
an
be approximated as follows:

{(rk, θk) ∈ 
ell l} =
δr⋃

p=−δr

δθ⋃

q=−δθ

{
(rk, θk) =

(
r(l,p), θ(l,q)

)}
, (2.44)

where all the events

{
(rk, θk) =

(
r(l,p), θ(l,q)

)}
do not interse
t and present the same prob-

ability

1
NcNδrNδθ

(uniform prior). Then, it 
omes

PDk,γ
=

1

NcNδrNδθ

Nc∑

l=1

δr∑

p=−δr

δθ∑

q=−δθ

p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
, (2.45)

and if hl (xk) does not depend on l (i.e, the 
al
ulation of the ambiguity fun
tion does

not depend on the 
ell index l), it simpli�es as follows:

PDk,γ
=

1

NδrNδθ

δr∑

p=−δr

δθ∑

q=−δθ

p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
. (2.46)

The probability p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)

an be obtained as in Eq. (2.36), by marginal-

ization over the amplitude parameter, i.e.

p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
≈ 1

Nρ

Nρ−1∑

s=0

p
(
|zlk|2 > γ | ρs, r(l,p), θ(l,q)

)
. (2.47)

The probability p
(
|zlk|2 > γ | ρs, r(l,p), θ(l,q)

)

an be easily 
omputed sin
e 
onditionally to(

r(l,p), θ(l,q)
)
and ρs,

|zlk|
2

σ2
follows a non-
entral 
hi-square distribution with two degrees
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of freedom and non 
entrality parameter λ
(p,q,s)
nc =

(ρs)2|hl(rql ,θ
q
l )|2

σ2
. Then, denoting by

F−1
χ2

(
. | λ(p,q,s)nc

)
the inverse 
umulative distribution fun
tion of this non 
entral 
hi-square

distribution, the probability p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)

an be expressed as

p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
≈ 1− 1

Nρ

Nρ−1∑

s=0

F−1
χ2

( γ
σ2

∣∣∣λ(p,q,s)nc

)
. (2.48)

Finally,

PDk,γ
≈ 1− 1

NδrNδθNρ

δr∑

p=−δr

δθ∑

q=−δθ

Nρ−1∑

s=0

F−1
χ2

( γ
σ2

∣∣∣λ(p,q,s)nc

)
. (2.49)

Con
erning the 
hoi
e of the threshold γ, the 
lassi
 dete
tion threshold de�ned in Eq.

(1.51) (i.e. γ = −2σ2 logPfa) 
an be used in order to design the instrumental density.

Indeed, using su
h a threshold will lead to properly sample approximatively PfaNc 
ells

(i.e. 
ells in NIk,γ ) while ensuring, if a target appears, that its position will be in Dk,γ with
probability PDk,γ

. Obviously, the lower the Pfa, the smaller the set Dk,γ and a

ordingly

the 
omputational time to 
al
ulate the instrumental density; but in return, the smaller

the probability PDk,γ
will be. Furthermore, note that the probability PDk,γ

is highly

dependent on the target SNR prior. Indeed, for instan
e if a prior interval [ρmin, ρmax] is

hosen su
h that the 
orresponding SNRmin and SNRmax values are small, the probability

in Eq. (2.48) will be small, and, as a 
onsequen
e, so will be the probability PDk,γ
; on the


ontrary, if the prior interval 
orresponds to high values of SNRmin and SNRmax values

are high, the probability PDk,γ
will be mu
h greater. Therefore, in Figure 2.6, we show

the evolution of the probability

p
(
|zlk|2 > γ | ρ

)
= 1−

δr∑

p=−δr

δθ∑

q=−δθ

p
(
|zlk|2 > γ | ρ, r(l,p), θ(l,q)

)
(2.50)

a

ording to the SNR = 10 log10

(
ρ2

2σ2

)
for di�erent Pfa rather than the evolution of the

probability PDk,γ
that depends on the 
hoi
e of the prior interval [ρmin, ρmax]. We 
an

remark that for small SNR the probability p
(
|zlk|2 > γ | ρ

)
may be
ome pretty small for

small Pfa. Therefore it is then preferable to use a large enough Pfa in order to ensure

that some parti
les are initialized in Dck,γ.

2.5.2 Instrumental density for the amplitude parameter

2.5.2.1 The optimal instrumental density

In the literature, the parameter ρk is usually sampled a

ording to the prior density

[RRG05℄, i.e.:

� uniformly sampled in [ρmin, ρmax] for the newborn parti
les;

� propagated a

ording to equation (2.25) for 
ontinuing parti
les.
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Figure 2.6 � Probability p
(
|zlk|2 > γ | ρ

)
provided in Eq. (2.50) a

ording to the target

SNR for di�erent probabilities of false alarm. This probability takes into a

ount the

target position inside the resolution 
ell, and the 
orresponding losses. Therefore, this

probability is lower than the 
lassi
 probability of dete
tion PD in radar, where the target

is assumed to be at the 
enter of the resolution 
ell (i.e. no loss).

However, in pra
ti
e, it may be ine�
ient be
ause the interval [ρmin, ρmax] may be large

and the noise varian
e σ2
ρ in Eq. (2.25) is often 
hosen to be small. Another instrumental

density may then be 
onsidered to initialize and/or propagate the amplitude parameter.

Con
erning the birth amplitude parameter, the optimal instrumental density is given

by pb (ρk | zk) and 
an be approximated using a grid-based approa
h as for the position

parameters (rk, θk). However, the weight 
al
ulation will require a marginalization over

the variables rk and θk leading, as in Eq. (2.35), to 
al
ulateNc×Nδr×Nδθ×Nρ likelihoods.

This 
annot be used in pra
ti
e. We rather propose to fa
torize the instrumental density

for position and amplitude as follows

qb (rk, θk, ρk | zk) = qb (rk, θk | zk) qb (ρk | rk, θk, zk) , (2.51)

where the parameter ρk is now sampled a

ording to the position (rk, θk). Using the

same reasoning as in paragraph 2.5.1.1, the optimal instrumental density for amplitude

parameter is then obtained by

qb (ρk | rk, θk, zk) = pb (ρk | rk, θk, zk) ∝ pb (ρk) p (zk | ρk, rk, θk) , (2.52)

and 
an be approximated by

pb (ρk | rk, θk, zk) ≈
Nρ−1∑

s=0

ζsk,ρδρs (ρk) , (2.53)

where

ζsk,ρ ∝ p (zk | ρs, rk, θk) , (2.54)
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Nρ is a positive integer and ρs = ρmin + s
Nρ

(ρmax − ρmin) , s = 0, · · · , Nρ − 1. Note

that Nρ 
an be di�erent from the one de�ned in Eq. (2.36) but we have kept here the

same notation for the sake of simpli
ity. Furthermore, if the position of the parti
les are

sampled with the instrumental density de�ned in Eq. (2.39), then Nρ likelihoods for the

positions

(
r(l,p), θ(l,q)

)
belonging toDk,γ have been already 
al
ulated. Therefore, by taking

the same Nρ and storing the likelihoods p
(
zk | ρs, r(l,p), θ(l,q)

)
for

(
r(l,p), θ(l,q)

)
∈ Dk,γ, no

extra 
al
ulation is needed. Of 
ourse, Nρ likelihood 
al
ulations would still be required

for parti
les belonging to Dck,γ unless another instrumental density is used instead (e.g,

a prior distribution). On the other hand, the weighting term indu
ed by the (possibly

di�erent) instrumental density must be 
arefully 
al
ulated. If the amplitude parameter

is sampled from pb (ρk | rk, θk, zk), the 
orresponding weighting term is then given by

pb (ρk | rk, θk)
qb (ρk | rk, θk, zk)

=
1

Nρpb (ρk | rk, θk, zk)
. (2.55)

2.5.2.2 An instrumental density based on an estimator of the amplitude

If the instrumental density qb (rk, bk | zk) de�ned in Eq.(2.39) is not used, then it may be

preferable not to use the instrumental density pb (ρk | rk, θk, zk) that requires to 
al
ulate

Nρ extra likelihoods per parti
le. Thus, we propose a di�erent instrumental density that

exploits the measurement zk at a lower 
omputational 
ost. This instrumental density is


omposed of the two following densities for the birth and 
ontinuing 
ases:

qestb (ρk | rk, θk, zk) = N
(
ρk; ρ̂b, σ

2
b,ρ

)
, (2.56)

qestc (ρk | ρk−1, rk, θk, zk) = N
(
ρk; ρ̂c, σ

2
c,ρ

)
, (2.57)

where ρ̂b and ρ̂c are some estimators of ρk 
al
ulated from (rk, θk, zk) for the birth 
ase

and from (ρk−1, rk, θk, zk) for the 
ontinuing 
ase, and σ
2
b,ρ, σ

2
c,ρ are some varian
es de�ned

by the user. The weighting terms indu
ed by these instrumental densities are given by

pb (ρk)

qestb (ρk | rk, θk, zk)
=

√
2πσb,ρ exp

{
(ρk−ρ̂b)

2

2σ2
b,ρ

}

ρmax − ρmin
, (2.58)

pc (ρk | ρk−1)

qestc (ρk | ρk−1, rk, θk, zk)
=

σc,ρ
σρ

exp

{
(ρk − ρ̂c)2

2σ2
c,ρ

− (ρk − ρk−1)
2

2σ2
ρ

}
. (2.59)

Con
erning the estimators, we 
hoose a MAP approa
h leading to 
al
ulate ρ̂b and ρ̂c
as

ρ̂b = argmax
ρk

(
max
ϕk

pb (ρk) p (zk | rk, θk, ρk, ϕk)
)
, (2.60)

ρ̂c = argmax
ρk

(
max
ϕk

pc (ρk | ρk−1) p (zk | rk, θk, ρk, ϕk)
)
. (2.61)

Note that we 
hoose to maximize �rst the likelihood p (zk | rk, θk, ρk, ϕk) over the phase

ϕk (see Eq. (2.19)) sin
e the 
orresponding expressions (for birth and 
ontinuing 
ases)

allow to obtain a 
losed-form for the estimators, while using the likelihood expression
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de�ned in Eq. (2.23) does not (be
ause of the Bessel fun
tion). The estimator ρ̂b is then
obtained by

ρ̂b =





∣∣hHk Γ−1zk
∣∣

hHk Γ
−1hk

, if ρmin <

∣∣hHk Γ−1zk
∣∣

hHk Γ
−1hk

< ρmax,

ρmin, if

∣∣hHk Γ−1zk
∣∣

hHk Γ
−1hk

≤ ρmin,

ρmax, if

∣∣hHk Γ−1zk
∣∣

hHk Γ
−1hk

≥ ρmax,

(2.62)

and ρ̂c by

ρ̂c =
ρk−1 + 2σ2

ρ

∣∣hHk Γ−1zk
∣∣

1 + 2σ2
ρh

H
k Γ

−1hk
. (2.63)

Note that quantities

∣∣hHk Γ−1zk
∣∣
and hHk Γ

−1hk 
an be stored for ea
h parti
le sin
e they

are required to 
ompute the parti
le weight via the likelihood p (zk | xk) (see Eq. (2.23)).

2.5.3 Instrumental density for the velo
ity

As seen in paragraph 2.3, the measurement equation (2.8) does not dire
tly depend on

the velo
ity 
omponent (ẋk, ẏk). Therefore, when the parti
le velo
ity 
omponents are

initialized at time step k, the measurement zk does not provide any information about

them and the prior must be used. This may be problemati
 in some 
ases: for instan
e,

if a target appears in the radar window with a high SNR and a parti
le is initialized very


lose to the a
tual target position, the 
orresponding weight will be very high. Then the

resampling step will tend to sele
t this parti
le more often than others, and the 
hildren

parti
les will share the same velo
ity 
omponents. However, this velo
ity sampled from

the prior may tend to propagate the parti
les in a wrong dire
tion. In order to avoid

this last drawba
k, we propose a very simple strategy: instead of sampling the velo
ity


omponents at step k when the parti
le is initialized (birth 
ase), we propose to sample it

at the next step k + 1. Then, if many parti
les have been resampled from the same birth

parti
le at step k, their velo
ity 
omponents at step k + 1 will be di�erent and therefore

they will better explore the state spa
e. Although there is no theoreti
al justi�
ation for

su
h a 
hoi
e, the state model 
an be 
hanged in order to allow the velo
ity 
omponent

of birth parti
les at step k to be initialized at step k+1. Thus, we propose to add to the

state model a variable

tk =

{
tk−1 + 1, if sk = 1,
0, if sk = 0,

(2.64)

that 
ounts the number of iterations when the parti
le is alive, and we de�ne the transition

density as follows:

p (tk, sk,xk | tk−1, sk−1,xk−1) = p (sk | sk−1) p (tk | tk−1, sk) p (xk | tk,xk−1) . (2.65)

First note that p (tk | tk−1, sk) does not need to be sampled sin
e the variable tk 
ondi-

tionally to variable tk−1 and sk is 
ompletely determined. Consequently, the transition of

the state xk now depends on the variable tk as follows

� tk = 0 
orresponds to the death 
ase (i.e. the state is meaningless),
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� tk = 1 
orresponds to the birth 
ase with the density pb (xk) (ex
ept for the velo
ity

omponents),

� the 
ase tk = 2 
orresponds to the parti
les born at previous step,

� tk > 2 
orresponds to the 
ontinuing 
ase with the density pc (xk | xk−1).

Then it is now possible to initialize the velo
ity 
omponents at step tk = 2. This 
an be

done, for instan
e, by 
hoosing as prior density

p (xk | tk = 2,xk−1) = pc (ρk | ρk−1) pb (ẋk, ẏk)×
N
(
xk; xk−1 + TSẋk, qS

T 3
S

3

)
N
(
yk; yk−1 + TS ẏk, qS

T 3
S

3

)
.

(2.66)

Note that the position (xk, yk) is almost sampled a

ording to the state equation (2.6)

ex
ept that the varian
es and the 
ovarian
es for the velo
ity 
omponents in the matrixQ

are set to zero. Therefore, in order to avoid unne
essary 
ompli
ations, the same notation

pc (xk | xk−1) is kept for both state models sin
e they only di�er by the initialization of

the velo
ity 
omponents (i.e. when tk = 2). Moreover, if the 
orresponding prior is taken

to propagate the position and the velo
ity of the parti
les, no additional weighting term

is indu
ed in both 
ases.

2.5.4 Instrumental density for the presen
e variable

In the literature, the instrumental density is usually fa
torized in the same manner as the

prior density de�ned in Eq. (2.2):

q (sk,xk|sk−1,xk−1, zk) = p (sk|sk−1)×
{
qc (xk|xk−1, zk) , if sk = 1 and sk−1 = 1,
qb (xk|zk) , if sk = 1 and sk−1 = 0,

(2.67)

leading to sample the variable sk from the prior transition matrix and, as a 
onsequen
e,

independently from the parti
le state xk and the measurement zk. In this 
ase, some

parti
les may be "killed" whereas they were lo
ated in informative areas of the state spa
e,

while some others may be drawn in non informative areas. To avoid these drawba
ks,

we propose to fa
torize the proposal density, taking into a

ount the state xk and the

measurement zk, as follows:

q (sk,xk|sk−1,xk−1, zk) = p(sk|sk−1,xk, zk)×
{
qc (xk|xk−1, zk) , if sk−1 = 1,
qb (xk|zk) , if sk−1 = 0,

(2.68)

where p(sk|sk−1,xk, zk) is the posterior transition probability, proportional to:

p(sk = 1|sk−1,xk, zk) ∝ p (zk|xk) p (sk = 1|sk−1) ,
p(sk = 0|sk−1,xk, zk) ∝ p (sk = 0|sk−1) .

(2.69)

For a parti
le i, the posterior transition probabilities are then given by:

p
(
sik = 1|sik−1 = 0,xik, zk

)
=

Pbp(zk|xik)
Pbp (zk|xik) + 1− Pb

, if sik−1 = 0, (2.70)

p(sik = 1|sik−1 = 1,xik, zk) =
(1− Pd)p (zk|xik)

(1− Pd)p (zk|xik) + Pd
, if sik−1 = 1. (2.71)
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Note that in Eq. (2.67) the birth and the target dynami
al densities depend on variables

sk and sk−1 while they only depend on sk−1 in Eq. (2.68). With a slight abuse of notation,

we have kept the same notation for the instrumental density in both 
ases sin
e in pra
ti
e

it does not 
hange the way to sample the parti
les.

It resorts from this proposed strategy that the state xk is sampled �rst, i.e. before

drawing the variable sk. Then, if xk is drawn in an area of the state spa
e presenting a

high likelihood, the 
orresponding posterior probability de�ned in Eq. (2.70) or (2.71)

will be high, leading to sample the variable sk in a more e�
ient manner than with the

prior. As the prior is not used here as instrumental density, di�erent weighting terms are

indu
ed, leading to the following expression of the parti
le weights:

wik ∝ wik−1 ×





p(sik=0|sk−1)
p(si

k
=0|si

k−1,x
i
k
,zk)

, if sik = 0,

Pb

p(si
k
=1|si

k−1=0,xi
k
,zk)
× pb(xi

k)
qb(xi

k
|zk)

p (zk | xik) , if sik = 1 and sik−1 = 0,

1−Pd

p(sik=1|sik−1=1,xi
k,zk)
× pc(xi

k|x
i
k−1)

qc(xi
k
|xi

k−1,zk)
p (zk | xik) , if sik = 1 and sik−1 = 1.

(2.72)

Note that we did not take into a

ount the weighting term for state xik when s
i
k = 0 sin
e

it is meaningless. Furthermore, 
ontrary to the prior proposal that needs to 
al
ulate

the likelihood p (zk|xk) only for the parti
les with sk = 1, this new strategy requires the

likelihood 
omputation for ea
h parti
le in order to draw its state parameter sk a

ording
to Eq. (2.70) and (2.71). Therefore an additional 
ost is indu
ed whi
h o

urs mainly

when most of the parti
les share the state sk = 0. On the bright side, it should be stressed

that the proposed strategy 
omputes the same number of likelihoods at ea
h iteration,

leading to 
onstant 
omputational time per iteration, while for the 
lassi
 approa
h this


ost depends on the number of parti
les in state sk = 1 and may thus highly vary.

Finally, a single 
y
le of the proposed parti
le �lter, that we 
all the Posterior TBD

Parti
le Filter, is des
ribed in Algorithm 2.2.

2.6 Marginalized TBD parti
le �lter

The Classi
 TBD parti
le �lter samples the whole augmented state (sk,xk) whereas the
only parti
les that e�e
tively parti
ipate to the estimation of xk are parti
les with state

sik = 1. Parti
les with state sik = 0 just allow to 
al
ulate the probability of presen
e P̂e,k.
However, we are mainly interested by the density p (xk | sk = 1, z1:k) and the probability

Pe,k rather than the whole posterior p (sk,xk | z1:k). Thus, following that idea, Rutten et

al. [RGM04℄ developed an approa
h where only the quantities of interest are 
al
ulated,

leading to a more e�
ient use of the parti
les.

To this purpose, the density p (sk,xk | z1:k) is �rst rewritten as follows:

p (sk,xk | z1:k) = p (sk | z1:k) p (xk | sk, z1:k) . (2.73)

By de�nition of sk,
p (sk = 1 | z1:k) + p (sk = 0 | z1:k) = 1. (2.74)

Therefore, only one of the two probabilities must be 
omputed and p (sk = 1 | z1:k) will be

onsidered in the sequel (i.e. the probability of existen
e Pe,k). Moreover, in Eq. (2.73),
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Algorithm 2.2 Posterior TBD Parti
le Filter

Require: Parti
le 
loud

{(
sik−1,x

i
k−1

)
, wik−1

}Np

i=1
at step k − 1.

1: for i = 1 to Np do

2: if sik−1 = 1 then
3: Draw xik ∼ qc

(
xk | xik−1, zk

)

4: Draw sik a

ording to Eq. (2.71)

5: else

6: Draw xik ∼ qb (xk | zk)
7: Draw sik a

ording to Eq. (2.70)

8: end if

9: Update parti
le weight wik a

ording to Eq. (2.72)

10: end for

11: Normalize weights: wik ←
wi

k∑Np
l=1 w

l
k

, i = 1, · · · , Np

12: Compute Neff a

ording to Eq. (1.98).

13: if Neff < βNp then

14: Resample Np parti
les

15: Reset weights: wik ← 1
Np

i = 1, · · · , Np

16: end if

17: return {(sik,xik) , wik}
Np

i=1

the density p (xk | sk = 1, z1:k) 
an simply be de
omposed as:

p (xk | sk = 1, z1:k) = p (sk−1 = 1 | sk = 1, z1:k) p (xk | sk = 1, sk−1 = 1, z1:k)︸ ︷︷ ︸
posterior 
ontinuing density

+

p (sk−1 = 0 | sk = 1, z1:k) p (xk | sk = 1, sk−1 = 0, z1:k)︸ ︷︷ ︸
posterior birth density

,

(2.75)

whi
h is a mixture with two 
omponents where:

� the �rst 
omponent p (xk | sk = 1, sk−1 = 1, z1:k), that we 
all the posterior 
ontin-
uing density, 
onsiders the 
ase where the target is present at step k − 1. In order

to alleviate the notation, it will be denoted as pc (xk | z1:k) in the sequel.

� the se
ond 
omponent p (xk | sk = 1, sk−1 = 0, z1:k), that we 
all the posterior birth
density, 
onsiders the 
ase where the target shows up in the radar surveillan
e area

between steps k − 1 and k. It will be denoted as pb (xk | z1:k) in the following.

Ea
h of these two 
omponents 
an be 
omputed using the 
lassi
 re
ursion of the Bayesian

�lter. For the �rst 
omponent, it 
omes:

pc (xk | z1:k) =
p (zk | xk) pc (xk | z1:k−1)

pc (zk | z1:k−1)
, (2.76)

where pc (xk | z1:k−1) is the 
lassi
 predi
ted density obtained via the Chapman-Kolmogorov

equation (1.59):

pc (xk | z1:k−1) =

∫
p (xk−1 | sk = 1, sk−1 = 1, z1:k−1) pc (xk | xk−1) dxk−1. (2.77)
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The density at previous step p (xk−1 | sk = 1, sk−1 = 1, z1:k−1) is still 
onditioned by sk =
1, but, in pra
ti
e, it is easy to show, using the de�nition of the prior model, that the

dependen
e with sk = 1 
an be removed. Indeed, from a simple Bayes rule, it 
omes

p (xk−1 | sk = 1, sk−1 = 1, z1:k−1) =
p (xk−1 | sk−1 = 1, z1:k−1) p (sk = 1 | sk−1 = 1,xk−1, z1:k−1)

p (sk = 1 | sk−1 = 1, z1:k−1)
.

(2.78)

Sin
e the pro
ess (sk)k∈N is Markovian, the probabilities

p (sk = 1 | sk−1 = 1,xk−1, z1:k−1) and p (sk = 1 | sk−1 = 1, z1:k−1) do not depend on xk−1

and z1:k−1. Therefore, they simplify in the last equation and it only remains the density

p (xk−1 | sk−1 = 1, z1:k−1) where the dependen
y with sk = 1 has been removed. Finally,

the Chapman-Kolmogorov equation (2.77) be
omes

pc (xk | z1:k−1) =

∫
p (xk−1 | sk−1 = 1, z1:k−1) pc (xk | xk−1) dxk−1, (2.79)

whi
h only depends on the density at previous step and the transition probability

pc (xk | xk−1) while the normalization term pc (zk | z1:k−1) in Eq. (2.76) is obtained by

pc (zk | z1:k−1) =

∫
p (zk | xk) pc (xk | z1:k−1) dxk. (2.80)

In the same manner, the se
ond 
omponent pb (xk | z1:k) 
an be expressed as follows

pb (xk | z1:k) =
p (zk | xk) pb (xk | z1:k−1)

pb (zk | z1:k−1)
(2.81)

where

pb (xk | z1:k−1) =

∫
pb (xk−1 | sk = 1, sk−1 = 1, z1:k−1) pb (xk | xk−1) dxk−1. (2.82)

Here, sin
e the density pb (xk | xk−1) does not depend on xk−1, it dire
tly 
omes that

pb (xk | z1:k−1) = pb (xk) . (2.83)

Finally the normalization term pb (zk | z1:k−1) is equal to

pb (zk | z1:k−1) =

∫
p (zk | xk) pb (xk) dxk. (2.84)

In pra
ti
e, ea
h density (
ontinuing or birth) 
an be approximated by a parti
le �lter.

Let us assume that at step k− 1 a set of Np,c parti
les

{
wik−1,x

i
k−1

}Np,c

i=1
approximates the

posterior density p (xk | sk = 1, zk). By using Eq. (2.76), the posterior 
ontinuing density


an be approximated by a set of parti
les

{
xik,c, w

i
k,c

}Np,c

i=1
sampled from an instrumental

density qc (xk | xk−1, zk) where the unnormalized weights are equal to

w̃ik,c = wik−1

pc
(
xik,c | xik−1

)

qc
(
xik,c | xik−1, zk

)p
(
zk | xik,c

)
. (2.85)
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Con
erning the birth posterior density, sin
e alive parti
les xik−1 do not provide any in-

formation on the newborn parti
les, it 
an be dire
tly estimated by a set of Np,b parti
les{
xik,b, w

i
k,b

}Np,b

i=1
sampled from qb (xk | zk) where the unnormalized weights are 
al
ulated

from the following equation

w̃ik,b =
pb
(
xik,b
)

qb
(
xik,b | zk

)p
(
zk | xik,b

)
. (2.86)

Note that in Eq. (2.85) and in Eq. (2.86) we use the sign = rather than ∝, indeed, the
unnormalized weights are required to 
al
ulate other quantities that will be detailed in

the sequel. Obviously the normalized weights wik,c and w
i
k,b are simply obtained through

a normalization.

In order to approximate the posterior mixture density de�ned in Eq. (2.75), both prob-

abilities p (sk−1 = 1 | sk = 1, z1:k) and p (sk−1 = 0 | sk = 1, z1:k) must also be 
al
ulated.

Again, using Bayes rule, it is easy to show that

p (sk−1 = 1 | sk = 1, z1:k) ∝ (1− Pd)Pe,k−1pc (zk | z1:k−1) ,
p (sk−1 = 0 | sk = 1, z1:k) ∝ Pb(1− Pe,k−1)pb (zk | z1:k−1) .

(2.87)

The 
al
ulation of the terms pb (zk | z1:k−1) and pc (zk | z1:k−1) is intra
table. However

they 
an be approximated via a Monte Carlo integration [VGP05℄ leading to the following

unnormalized probabilities,

p̂u (sk−1 = 1) =
(1− Pd) P̂e,k−1

Ck

Np,c∑

i=1

w̃ik,c,

p̂u (sk−1 = 0) =
Pb(1− P̂e,k−1)

Np,b

Np,b∑

i=1

w̃ik,b,

(2.88)

where P̂e,k−1 is the approximated probability of existen
e at step k − 1 while Ck is a

normalization 
onstant given by

Ck =

Np,c∑

i=1

wik−1

pc
(
xik,c | xik−1

)

qc
(
xik,c | xik−1, zk

) . (2.89)

Note that when the instrumental density is the prior, the 
onstant Ck does not need

to be 
al
ulated sin
e it is equal to 1. Finally the two 
onsidered probabilities 
an be

approximated by

p̂ (sk−1 = 1 | sk = 1, z1:k) =
p̂u (sk−1 = 1)

p̂u (sk−1 = 1) + p̂u (sk−1 = 0)
,

p̂ (sk−1 = 0 | sk = 1, z1:k) = 1− p̂ (sk−1 = 0 | sk = 1, z1:k) .

(2.90)

The probability of presen
e Pe,k at step k 
an be de
omposed as follows [RGM04℄:

Pe,k =
(1− Pd)Pe,k−1pc (zk | z1:k−1) + Pb(1− Pe,k−1)pb (zk | z1:k−1)

p (zk | z1:k−1)
, (2.91)
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where

p (zk | z1:k−1) ∝ (1− Pd)Pe,k−1pc (zk | z1:k−1) + Pb(1− Pe,k−1)pb (zk | z1:k−1)
+Pe,k−1Pd + (1− Pe,k−1) (1− Pb) . (2.92)

Here the used of ∝ means that p (zk | z1:k−1) is provided up to the 
onstant p (zk | sk = 0)
(see paragraph 2.4.2). Finally, the probability of presen
e 
an be approximated by

[RGM04℄:

P̂e,k =
p̂u (sk−1 = 1) + p̂u (sk−1 = 0)

p̂u (sk−1 = 1) + p̂u (sk−1 = 0) + P̂e,k−1Pd + (1− P̂e,k−1) (1− Pb)
(2.93)

Lastly, a single 
y
le of this parti
le �lter, denoted by Marginalized TBD Parti
le

Filter, is des
ribed in Algorithm 2.3. Note that, as the strategy proposed in paragraph

2.5.4, this algorithm 
al
ulates always the same number of likelihoods p (zk | xik) and

initializes always the same number of parti
le Np,b. Therefore, its 
omputational 
ost is


onstant at ea
h iteration.

2.7 Simulations and results

In this se
tion, we propose to illustrate the performan
e of the di�erent TBD algorithms

proposed in this 
hapter via Monte Carlo simulation. As we have seen, the TBD parti
le

�lters depend on many parameters. For the sake of 
larity, we will fo
us here on the

key points of the TBD parti
le �lters and in parti
ular on the di�erent instrumental

densities proposed in se
tion 2.5. For ea
h of them, we will study the impa
t on the �lter

performan
e and the eventual gain 
ompared to the instrumental densities proposed in

the literature. Moreover, as 
omputational time may sensibly vary between the di�erent

instrumental densities for a given number of parti
les, we will try to provide as mu
h

as possible as a fairly evaluation of the possible gain in terms of performan
e with the

eventual additional 
omputational time required to rea
h it.

2.7.1 S
enarios

For the simulation s
enarios, we 
onsider two s
enarios with a number of iterations Nit =
100. The �rst s
enario 
onsiders that the target is absent during all the experiment:

this will allow to evaluate the probability that the �lter de
lares a dete
tion whereas no

target is present (i.e. false alarm). The se
ond s
enario 
onsiders a target appearing at

step kb = 15 and disappearing at step kd = 75 in order to measure both the ability of the

di�erent �lters to truly dete
t the target and the a

ura
y of the 
orresponding estimator.

For ea
h Monte Carlo run, the initialization of the target state for the position and the

velo
ity is done a

ording to the birth density pb (.) de�ned in se
tion 2.2 (i.e. uniform

prior over D = [rmin, rmax]× [θmin, θmax] for the position and over [vmin, vmax]× [0, 2π] for
the velo
ity), with the following parameters:

� rmin = 30 km, rmax = 36 km, θmin = 35◦ and θmax = 55◦,

� vmin = 100 m.s

−1
and vmax = 300 m.s

−1
.
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Algorithm 2.3 Marginalized TBD Parti
le Filter

Require: Parti
le 
loud

{(
sik−1,x

i
k−1

)
, wik−1

}Np,c

i=1
and probability P̂e,k−1 at step k − 1.

1: Reset Ck ← 0,
2: for i = 1 to Np,c do

3: Draw xik,c ∼ qc
(
xk | xik−1, zk

)

4: Cal
ulate the unnormalized weights w̃ik,c with Eq. (2.85)

5: Ck ← Ck + wik−1

pc(xi
k,c|x

i
k−1)

qc(xi
k,c|x

i
k−1,zk)

6: end for

7: for i = 1 to Np,b do

8: Draw xik,b ∼ qb (xk | zk)
9: Cal
ulate the unnormalized weights w̃ik,b with Eq. (2.86)

10: end for

11: Cal
ulate the unnormalized probabilities p̂u (sk−1 = 1) and p̂u (sk−1 = 0) with Eq.

(2.88)

12: Cal
ulate the probabilities p̂ (sk−1 = 1 | sk = 1, z1:k) and p̂ (sk−1 = 0 | sk = 1, z1:k)
with Eq. (2.90)

13: Cal
ulate the probability of existen
e P̂e,k with Eq. (2.93)

14: Normalize weights of the 
ontinuing parti
les: wik,c ←
w̃i

k,c∑Np,c
l=1 w̃l

k,c

, i = 1, · · · , Np,c

15: Normalize weights of the birth parti
les: wik,b ←
w̃i

k,b
∑Np,b

l=1 w̃l
k,b

, i = 1, · · · , Np,b

16: Mix the birth and 
ontinuing parti
les to 
reate a set of Np,c + Np,b parti
les

{xik, wik}
Np,c+Np,b

i=1 :

17: for i = 1 to Np,c +Np,b do

18: if i ≤ Np,c then

19: xik ← xik,c
20: wik ← p̂ (sk−1 = 1 | sk = 1, z1:k)w

i
k,c

21: else

22: xik ← x
(i−Np,c)
b,k

23: wik ← p̂ (sk−1 = 0 | sk = 1, z1:k)w
(i−Np,c)
k,b

24: end if

25: end for

26: Resample Np,c parti
les from {xik, wik}
Np,c+Np,b

i=1

27: Reset weights: wik ← 1
Np,c

i = 1, · · · , Np

28: return

{
xik,

1
Np,c

}Np,c

i=1
.

Note that a small radar window has been taken in order to limit the 
omputational time.

Indeed, the number of parti
les required is dire
tly proportional to the overall number of

radar 
ells. Between the iterations kb+1 and kd− 1, the target state xk (for the position
and the velo
ity) evolves a

ording to Eq. (2.6) with no noise pro
ess (i.e. uniform linear

motion) and TS = 0.3 s (the time between two 
onse
utive measurements).

The generation of the raw radar data is done a

ording to Eq. (2.8) with Γ = INc (i.e.

noise samples are assumed independent with noise 2σ2 = 1). The fun
tion h (.),de�ned
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in paragraph 2.3, is used with the following parameters:

� For the range axis, a 
hirp signal is 
onsidered with B = 1 MHz, 
orresponding to

a range resolution ∆r = 150 m and Tp = 66.7 µs.

� For the azimuth axis, an antenna array is 
onsidered, 
omposed of Na = 70 antennas
linearly spa
ed by d = λ/2, 
orresponding to a resolution (that does not depend on

the value of λ) in azimuth ∆θ = 1.45◦. Note that the maximum of the ambiguity

fun
tion in azimuth arises normally for su
h an array for the dire
tion π/2 whereas

here the interval [θmin, θmax] is 
entered around π/4. Therefore, in order to set the

maximum at π/4, quantities θk and θv are just shifted from π/4 in Eq. (2.10).

Finally, di�erent SNR values (following the SNR de�nition provided in paragraph 2.3.2)

will be 
onsidered in the simulations.

2.7.2 Methodology for the performan
e evaluation

All the proposed parti
le �lters provide information about the target presen
e or absen
e

via the probability of presen
e Pe,k but do not take any de
ision about it. However,

the ability of the parti
le �lter to provide useful information to take su
h a de
ision is

interesting to evaluate. We propose here to evaluate the performan
e in two steps:

� First in terms of dete
tion, i.e. measuring the ability of the �lter to e�e
tively

dete
t the target.

� Se
ond in terms of estimation in order to evaluate the a

ura
y of the estimator

when the TBD parti
le �lter has 
onverged on the true target state.

2.7.2.1 Dete
tion pro
edure

In order to perform the dete
tion stage, let us 
all dTk,i the de
ision variable at ea
h

iteration k of the i− th Monte Carlo run, that takes value 1 if a target is de
lared present

by the �lter, and 0 otherwise. A simple pro
edure to set the variable dTk,i 
onsists in


omparing the probability of presen
e Pe,k with a given probability PT [RAG04℄, leading

to

dTk,i =

{
1, if P̂e,k > PT ,
0, otherwise.

(2.94)

In pra
ti
e, espe
ially when the target SNR is low, the variable P̂e,k 
an present large

�u
tuations leading to a situation where most of the parti
les may be lo
ated near the

a
tual target position whereas P̂e,k de
reases below the threshold and as a 
onsequen
e

no dete
tion is de
lared (i.e. dTk,i = 0).
To avoid su
h a situation, we propose a dete
tion s
heme that is based on an adap-

tive threshold that depends on the previous dete
tion dTk−1,i ( we 
all this pro
edure the

adaptive TBD target dete
tion):

dTadk,i =

{
1, if P̂e,k > PT

(
dTadk−1,i

)
,

0, otherwise.
(2.95)
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In pra
ti
e, PT

(
dTadk−1,i = 0

)
is 
hosen relatively high (e.g. 0.9) as it 
orresponds to the


ase where the target has not been dete
ted yet. Choosing a high threshold ensures that

the �lter has 
onverged on a true target with a good probability. On the 
ontrary, when

the �lter has already dete
ted a tra
k (i.e. dTadk−1 = 1), the probability threshold 
an be

taken lower (e.g. 0.2) in order to deal with the possible �u
tuations of the estimated

probability of presen
e.

2.7.2.2 Evaluation of the dete
tion performan
e

We propose �rst to evaluate the dete
tion performan
e by averaging the probability of

presen
e Pe,k at ea
h iteration over NMC runs. This allows to evaluate the behavior of

the di�erent �lters without using a parti
ular dete
tion s
heme. Note that averaging the

dete
tion variable dTadk,i provides performan
e with very similar behavior as the probability

of presen
e. Thus, in order to avoid unne
essary redundant results, we do not present

them here.

We also propose to measure the dete
tion performan
e by providing the per
entage

of time tD in whi
h the target has been dete
ted during time step kb and kd − 1. A

�rst solution would be to 
ompute the average of the variable dTadk,i from kb to kd − 1.
However, as it was stressed at the beginning of the se
tion, su
h a method does not take

into a

ount the possible divergen
e between the estimate state xk|k and the a
tual state

xk; if the variable d
Tad
k,i = 1 whereas the estimator x̂k|k is far away from the a
tual state,

it does not seem reasonable to 
ount it as a dete
tion. Thus, we de�ne, for the ith Monte

Carlo run, an indi
ator of good estimate (for k ∈ {kb, · · · , kd − 1}) by

ek,i =

{
1, x̂k|k ∈ Vxk

,
0, otherwise.

(2.96)

where the target is e�e
tively 
onsidered as a dete
tion (i.e. ek,i = 1) if the estimated

state is lo
ated in the subset Vxk
de�ned in Eq. (2.26) with δhr = δhθ = 2 (i.e. the

estimated target state x̂k|k is lo
ated in a vi
inity of two range azimuth 
ells from the

a
tual target state xk). Finally, tD is simply obtained by

tD =
1

NMC

NMC∑

i=1

1

kd − kb

kd−1∑

k=kb

dTadk,i ek,i. (2.97)

In the same manner, we de�ne the average time of bad-dete
tion tbD, i.e. when the �lter

de
lares a dete
tion but the estimate is not relevant, by

tbD =
1

NMC

NMC∑

i=1

1

kd − kb

kd−1∑

k=kb

dTadk,i (1− ek,i). (2.98)

Con
erning the false alarm probability of the parti
le �lter P PF
fa , it is 
omputed by

making the average of variable dk for the s
enario where the target is assumed absent,

that is to say

P PF
fa =

1

NMC

NMC∑

i=1

1

Nit

Nit∑

k=1

dTadk,i . (2.99)
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2.7.2.3 Evaluation of the estimation performan
e

For the evaluation of estimation performan
e, the RMSE (Root Mean Square Error) in

position RMSEk,pos and in velo
ity RMSEk,vel are 
omputed between step kb and kd − 1
from the following formulas

RMSEk,pos =

√√√√ 1
∑NMC

i=1 dTadk,i ek,i

NMC∑

i=1

dTadk,i ek,i

[(
x̂k|k − xk

)2
+
(
ŷk|k − yk

)2

2

]
, (2.100)

RMSEk,vel =

√√√√√√
1

∑NMC

i=1 dTadk,i ek,i

NMC∑

i=1

dTadk,i ek,i




(
ˆ̇xk|k − ẋk

)2
+
(
ˆ̇yk|k − ẏk

)2

2


.(2.101)

Note that here the RMSE represents an error over a single 
omponent (e.g. xk or yk),
hen
e the presen
e of the fa
tor 1/2 in Eq. (2.100) and (2.101) in order to make the

average over the two 
omponents. The 
hoi
e of this de�nition is arbitrary and, of 
ourse,

other de�nitions are possible. The most important is to be 
oherent with the de�nition, in

parti
ular when the RMSE is 
ompared to any theoreti
al bound (e.g. radar resolution,

Cramer-Rao bound, et
.). However, in the sequel, the RMSE of the di�erent �lters

are 
ompared relatively with ea
h other, therefore the fa
tor 1/2 does not impa
t the


on
lusions that 
an be made from the simulation results.

2.7.3 In�uen
e of the instrumental density

We propose in this se
tion to measure the impa
t of the di�erent instrumental densities

proposed in se
tion 2.5 for the initialization of the parti
le state. The 
lassi
 Tra
k-Before-

Dete
t parti
le �lter des
ribed in se
tion 2.4 is 
onsidered with the following parameters:

Np = 1500, β = 1, Pb = Pd = 0.1, qS = 0.01, vmin = 100 m.s

-1

, vmax = 300 m.s

-1

,

SNRmin = 3 dB, SNRmax = 13 dB and δhr = δhθ = 2 (for the trun
ation of the ambiguity

fun
tion). Then, for ea
h 
omponent of the state ve
tor (i.e. position, velo
ity, ampli-

tude, presen
e), we 
ompare the performan
e in dete
tion and estimation for the di�erent

instrumental densities outlined in se
tion 2.5, for the initialization 
ase, while assuming

that the other parameters are initialized a

ording to the prior density. As already stated,

the prior pc (xk | xk−1) is 
hosen to sample the 
ontinuing 
ase.

Moreover, it is also important to 
ompare the performan
e of the di�erent instrumental

densities with respe
t to the 
omputational time required to rea
h su
h performan
e.

To this purpose, the averaged Monte Carlo run duration is 
al
ulated over the NMC

simulations for all the instrumental densities, and normalized by the fastest one. Note

that this quantity should be subje
t to 
autious interpretation sin
e it 
learly depends

on the s
enario 
onsidered. Indeed, the instrumental densities for the initialization are

prin
ipally used when the �lter has not 
onverged yet to a target and many parti
les must

then be initialized. On the 
ontrary, when the �lter has 
onverged to a target, most of the

parti
les are in tra
king stage and the initialization densities only 
on
ern a few parti
les.

Therefore, the duration of the MC run will partly depend on the proportion of time when

the target is present. However, it still gives a good idea of the impa
t of the instrumental

density on the averaged MC run duration.
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2.7.3.1 In�uen
e of the Instrumental density for the position

The position (xk, yk) is probably the most important parameter to 
arefully initialize and

the performan
e is evaluated for the following instrumental densities derived from se
tion

2.5.1:

1. The prior 
ase where the parti
le position is simply drawn from the prior; it is

labelled as "Prior".

2. A se
ond 
ase, where the parti
le position is initialized uniformly over the 
ells

ex
eeding the threshold γ 
orresponding to a probability of false alarm of 0.1. Note
that it 
orresponds, as we stated in paragraph 2.5.1.3, to 
hoose PDk,γ

= 1 for

the instrumental density qU (.) de�ned in Eq. (2.41). This instrumental density is

labelled as "Threshold".

3. A third 
ase where the parti
le position is sampled a

ording to qU (.) with Pfa = 0.1
while PDk,γ

= 0.79 has been 
al
ulated from Eq. (2.46) with δr = 2, δθ = 3 and

Nρ = 5. This density is labelled as "Mix U".

4. And lastly, the optimal mixture importan
e density q (. | zk) spe
i�ed in Eq. (2.39)

with the following parameters: Pfa = 0.1, δr = 2, δθ = 3, Nρ = 5 and PDk,γ
= 0.79.

This density is labelled as "Mix Opt".

In Figure 2.7 the averaged probability of presen
e is shown for target SNR of 7 dB,

while dete
tion performan
e is presented in Table 2.2. Clearly, the density "Mix Opt"

outperforms the other instrumental densities in terms of dete
tion although it indu
es a

slight in
rease of the probability of presen
e when the target is absent. Nevertheless, the

in
rease in terms of probability of false alarm is not signi�
ant, as demonstrated in Table

2.2.

Figure 2.7 � Averaged probability of presen
e Pe,k for di�erent instrumental densities in

position. SNR = 7dB, Np = 1500 and Pfa = 0.1.

The performan
e rea
hed in terms of RMSE in position and velo
ity is shown in Figure

2.8. Again, the instrumental density "Mix Opt" provides better performan
e than the

other instrumental densities during 
onvergen
e. When the �lter has 
onverged, all the
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Prior Threshold Mix U Mix Opt

P PF
fa 3.67× 10−3 2.69× 10−3 4.35× 10−3 4.23× 10−3

tD 70.6% 85.4% 84.2% 90%

tbD 0.41% 0.26% 0.36% 0.34%

relative MC run duration 1 1.06 1.09 2.61

Table 2.2 � Dete
tion performan
e and relative averaged MC run duration for di�erent

instrumental densities in position. SNR = 7dB, with Np = 1500 and Pfa = 0.1

instrumental densities provide similar results. This demonstrates the requirement to use

a relevant instrumental densities to ensure a faster 
onvergen
e of the �lter on the target.

Figure 2.8 � Performan
e in estimation for di�erent instrumental densities in position.Top:

RMSE in position. Bottom: RMSE in velo
ity. SNR = 7dB, Np = 1500 and Pfa = 0.1.

Lastly, the relative averaged MC run durations for the di�erent instrumental densities

are presented in the last row of Table 2.2. On the 
ontrary, the 
ost indu
ed by the

"Threshold" and "Mix U" instrumental densities, is relatively small 
ompared to the gain

in performan
e. Note that this 
on
lusion should be moderated, as will be shown in

se
tion 2.7.4.

2.7.3.2 In�uen
e of the Instrumental density for the amplitude parameter

In this paragraph, the in�uen
e of the instrumental density for the initialization of the

amplitude parameter is evaluated.The following instrumental densities are 
onsidered:

1. The prior 
ase where the parti
le amplitude is simply drawn from the prior. It

is labelled as "Prior". Moreover, we 
onsider two di�erent intervals [ρmin, ρmax], a
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�rst one where the parameter interval for parameter ρ 
orresponds to an interval

SNR = [3, 20] (in dB) and a se
ond one that 
orresponds to an interval SNR = [3, 13]
(in dB).

2. A se
ond 
ase where the amplitude is drawn a

ording to the density based on the

MAP estimator and provided by Eq. (2.56). It is labelled as "MAP Init". Again

we 
onsider two di�erent intervals [ρmin, ρmax] with the same values as previously.

3. Lastly, the approximation of the Optimal instrumental density de�ned by Eq. (2.53),

with Nρ = 10 and SNR = [3, 13]. It is labelled as "Dis
rete Init"

In Figure 2.9 the averaged probability of presen
e is shown for a target SNR of 7 dB.

Note �rst that the 
hoi
e of the prior values SNRmin and SNRmax dramati
ally impa
ts

Figure 2.9 � Averaged probability of presen
e Pe,k for di�erent instrumental densities in

amplitude. SNR = 7dB, Np = 1500.

the performan
e of the "Prior" instrumental density, as well as the proposed instrumental

densities to a lesser extent. Globally, it seems that the gain in probability of presen
e when

the target is indeed present is obtained at the 
ost of an in
rease of the same probability

when the target is absent. This in turns 
an be observed on the false alarm probabilities

provided in Table 2.3.

Con
erning the performan
e in terms of RMSE in position and velo
ity, it turns out

to be very similar in all 
ases. Thus, we do not provide a �gure here.

Lastly, the relative averaged MC run durations for the di�erent instrumental densities

are presented in the last row of Table 2.3. The extra 
omputational time required for

"MAP Init" instrumental densities 
ompare to the "Prior" densities is relatively small

with respe
t to the gain indu
ed in terms of dete
tion. However, this is not the 
ase for

the "Dis
rete Init" where this gain appears small 
ompared to the extra time required.

2.7.3.3 In�uen
e of the Instrumental density for the velo
ity variable

Two instrumental densities have been proposed in paragraph 2.5.3 in order to sample the

velo
ity:
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Prior Prior MAP

Init

MAP

Init

Dis
rete

Init

SNR [3, 20] [3, 13] [3, 20] [3, 13] [3, 13]

P PF
fa 1.45 ×

10−3

3.78 ×
10−3

1.61 ×
10−3

6.08 ×
10−3

4.04 ×
10−3

tD 64.1% 81.3% 82% 85.4% 84.3%

tbD 0.16% 0.28% 0.19% 0.43% 0.34%

relative MC run duration 1 1.08 1.12 1.16 1.30

Table 2.3 � Dete
tion performan
e and relative averaged MC run duration for di�erent

instrumental densities in amplitude. SNR = 7dB and Np = 1500.

1. The �rst density that uniformly samples the velo
ity 
omponents of a newborn

parti
le. It is labelled as "Prior".

2. And the se
ond density that samples the velo
ity 
omponent uniformly at the next

step after the birth event. It is labelled as "Next step".

Results are shown in Figures 2.10 and 2.11. The density "Next step" provides a small

Figure 2.10 � Averaged probability of presen
e Pe,k for di�erent instrumental densities in

velo
ity. SNR = 7dB, Np = 1500.

improvement 
ompared to the density "Prior" both in terms of averaged probability of

presen
e and in estimation.

2.7.3.4 In�uen
e of the Instrumental density for the presen
e variable

In this paragraph, the performan
e for three �lters that use di�erent strategies to sample

the variable sk are evaluated:

1. The �rst one, denoted by "Prior", that 
orresponds to the 
lassi
 TBD parti
le

�lter de�ned by Algorithm 2.1 where the variable sk is sampled a

ording to the

transition probability matrix de�ned in Eq. (2.5).
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Figure 2.11 � Performan
e in estimation for di�erent instrumental densities in velo
ity.

SNR = 7dB, Np = 1500.

2. The se
ond one, labelled as "sk a posteriori" is de�ned by Algorithm 2.2 where the

variable sk is drawn a

ording to the a posteriori transition probabilities de�ned in

Eq. (2.70) and (2.71).

3. The last one, denoted by "sk marginalized" is detailed in Algorithm 2.3 whi
h


onsiders only parti
les with the state sk = 1. For this parti
ular TBD �lter, the

parameter Np,c is set to 1000 parti
les.

In Figure 2.12 the averaged probability of presen
e is shown for a target SNR of 5 dB

� Note that here a smaller SNR has been taken in order to highlight the importan
e of the


hoi
e of the sampling strategy for the variable sk. Clearly, the �lters "sk a posteriori"

Figure 2.12 � Averaged probability of presen
e Pe,k for di�erent sampling strategies of the

variable sk. SNR = 5dB, Np = 1500.
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Figure 2.13 � Performan
e in estimation for di�erent sampling strategies of the variable

sk. SNR = 5dB, Np = 1500.

Prior sk a posteriori sk marginalized

P PF
fa 3.9× 10−3 3.53× 10−3 3.43× 10−3

tD 56.6% 73% 75.1%

tbD 1.22% 1.67% 1.62%

relative MC run duration 1 1.48 1.34

Table 2.4 � Dete
tion performan
e and relative averaged MC run duration for di�erent

sampling strategies of the variable sk. Np = 1500 for a target SNR of 5dB

and "sk marginalized" provide mu
h better performan
e than the 
lassi
 parti
le �lter

with a small advantage to the "sk marginalized" �lter over the "sk a posteriori" �lter.

Moreover, as stated in Table 2.4, the use of the two proposed densities slightly de
reases

the probability of false alarm.

The performan
e in terms of RMSE in position and velo
ity is shown in Figure 2.13.

Whereas there is a gain by using the �lters "sk a posteriori" and "sk marginalized", the

latter is not as important as for the dete
tion.

Lastly, the relative averaged MC run durations for the di�erent sampling strategies of

the variable sk are presented in the last row of Table 2.4. Obviously, the strategies "sk a
posteriori" and "sk marginalized" are more 
ostly. However as it was said in paragraph

2.5.4 and in se
tion 2.6, the two methods 
al
ulated the same number of likelihood at

ea
h iteration (whi
h is the most demanding part of the algorithm) and therefore better

utilize the 
omputer resour
es than the prior instrumental density.
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Figure 2.14 � Comparison of the Averaged probability of presen
e Pe,k between the prior

instrumental density and the optimal one for several number of parti
les Np. SNR = 7dB.

2.7.4 Choi
e of the instrumental density

The aim of this paragraph is to demonstrate the bene�t of using a suitable instrumental

density to initialize the parti
les 
ompared to a one using the prior with a higher number

of parti
les. Performan
e are 
ompared for the two following �lters:

1. The �rst one uses the 
lassi
 TBD parti
le �lter de�ned by Algorithm 2.1 with

the �lter parameters de�ned at the beginning of se
tion 2.7.3; it initializes all the

state parameters with their prior densities. For this �lter, the following number

of parti
les Np are 
onsidered: 1500, 2500, 5000, 7500. This �lter is denoted as

"Prior".

2. For the se
ond �lter, ea
h parameter of the state ve
tor is sampled using the in-

strumental density providing the best performan
e in dete
tion. Therefore, for the

presen
e parameter sk, the marginalized TBD parti
le �lter is 
hosen. For the

position, the "Mix Opt" instrumental is taken with the same parameters as in para-

graph 2.7.3.1. For the amplitude parameter, the instrumental density "MAP Init"

is 
hosen with SNR = [3, 13]. The velo
ity is initialized at the next step after

the birth of the parti
le. Finally the following number of parti
les Np are 
onsid-

ered: Np = 1500 and Np,c = 1000, Np = 2500 and Np,c = 1500, Np = 5000 and

Np,c = 3000, Np = 7500 and Np,c = 5000.

Note that we 
hoose an interval of SNR = [3, 13] for the Amplitude parameter whereas

the performan
e is better with SNR = [3, 20] for the instrumental density "MAP Init".

We made this 
hoi
e in order to not penalize the prior density from whi
h the results

are not good with an interval of SNR = [3, 20] and thus make the simulation as fair

as possible. Results are provided in Figures 2.14 and 2.15, and in Table 2.5. For any

number of parti
les, the Optimal instrumental density outperforms the prior instrumental

density both in terms of target dete
tion and estimation ; at the pri
e of a slight in
rease

of the probability of false alarm. Moreover, it is interesting to noti
e that the Optimal

instrumental density is less sensitive to the number of parti
les than the prior. Indeed,

the performan
e for the Optimal instrumental density for Np = 1500, Np = 5000 and
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Figure 2.15 � Comparison of the Performan
e in estimation between the prior instrumental

density and the optimal one for several number of parti
les Np. SNR = 7dB.

Prior Prior Prior Prior Optimal Optimal Optimal

Np 1500 2500 5000 7500 1500 5000 7500

P PF
fa (×10−3) 3.95 3.42 3.05 3.42 6.99 6.55 6.85

tD 76.3% 82.5% 87.5% 89.1% 92.9% 93.2% 93.3%

tbD 0.34% 0.28% 0.21% 0.22% 0.25% 0.27% 0.25%

relative MC run dur. 1 1.45 2.55 4.7 2.98 4.77 6.77

Table 2.5 � Dete
tion performan
e and relative averaged MC run duration between the

prior instrumental density and the optimal one for several number of parti
les Np. SNR =
7dB.

Np = 7500 are quite similar while it is sensibly di�erent for the Prior density. Furthermore,

the relative averaged MC run durations for the di�erent �lter are presented in Table 2.5.

It demonstrates that using the Optimal density with a small number of parti
le is more

e�
ient both in terms of performan
e and in terms of 
omputational time than using the

prior instrumental density with a higher number of parti
les.

2.7.5 In�uen
e of the target SNR

Lastly, as Tra
k-Before-Dete
t methods are expe
ted to tra
k low target SNR, it is impor-

tant to evaluate the performan
e a

ording to the target SNR. Thus, the Optimal TBD

parti
le �lter de�ned in the previous paragraph with Np = 7500 is applied for di�erent

target SNR: 10dB, 7dB, 5dB and 3dB � Note that here we 
hoose an important number

of parti
les (i.e. Np = 7500) sin
e one of our obje
tive is to see if TBD parti
le �lter

are able to tra
k very low target SNR. Results are provided in Figures 2.16 and 2.17,

and in Table 2.6. Clearly, performan
e highly depends on the target SNR and it seems
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di�
ult to jointly dete
t and tra
k a target with an SNR below 5dB. Note that, this


on
lusion does not mean that the TBD parti
le �lter is not able to dete
t target with

very low SNR but rather that it 
annot tra
k it a

urately. It should also be re
alled

here that the SNR values indi
ated do not take into a

ount losses due to the position of

the target in the 
ell: a target with indi
ated SNR of 5dB may in pra
ti
e provide here a

peak at the output of the range/azimuth mat
hed �lter less than 3dB ! In that respe
t,

the probability of presen
e remains impressively hight at low SNR.

Figure 2.16 � Comparison of the Averaged probability of presen
e Pe,k for the Optimal

TBD parti
le �lter with di�erent target SNR. Np = 7500.

Figure 2.17 � Comparison of the Performan
e in estimation for the Optimal TBD parti
le

�lter with di�erent target SNR. Np = 7500.
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target SNR 10 7 5 3

tD 98% 93.2% 81.9% 36.5%

tbD 0.02% 0.68% 3.22% 13.4%

Table 2.6 � Dete
tion performan
e for di�erent target SNR with the Optimal TBD parti
le

�lter.

2.8 Con
lusion

In this 
hapter, the 
lassi
 solution for the monotarget Tra
k-Before-Dete
t problem has

been presented. This solution 
onsists in 
onsidering an hybrid hidden state (sk,xk),
where xk is the 
lassi
 target state while sk is a binary variable modelling the absen
e

or the presen
e of the target, in order to jointly dete
t and tra
k a single target. For

this state-spa
e model, the 
lassi
 TBD parti
le �lter approximation has been detailed

detailed in se
tion 2.4. Two di�erent 
ases are sampled by this parti
le �lter: one 
ase


on
erns 
ontinuing parti
les, already alive at previous time step that are propagated a
-


ording to the target dynami
al model; while the other 
ase 
orresponds to the newborn

parti
les that must be initialized in the target spa
e. We have shown in this 
hapter that

the instrumental density for this latter 
ase must be 
arefully 
hosen. Thus, in se
tion

2.5, for ea
h parameter of the state ve
tor, several instrumental densities, whi
h take into

a

ount the information of the measurement zk in order to initialize the di�erent param-

eters, have been proposed. In parti
ular, for the position and amplitude, the optimal

instrumental densities have been derived and several approximations provided. Con
ern-

ing the presen
e parameter sk, we have shown that it 
an be sampled a

ording to the

posterior probabilities rather than the prior ones. Another solution that uses parti
les in

a more e�
ient way by only 
onsidering parti
les with the state sk = 1 has been des
ribed

in se
tion 2.6.

Finally, in se
tion 2.7, Monte Carlo simulations have been used to provide performan
e

in dete
tion and estimation for the di�erent instrumental densities and the di�erent par-

ti
le �lters presented in this 
hapter. These simulations have allowed to illustrate the

importan
e of using relevant instrumental densities, in parti
ular for the position param-

eters where it dramati
ally in
reases the performan
e, both in dete
tion and in estimation.

Moreover, simulation results also highlighted the importan
e of 
arefully dealing with the

presen
e parameter sk sin
e the Marginalized TBD parti
le �lter and the one using the

posterior probabilities to sample sk outperform the 
lassi
 TBD parti
le �lter.
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Chapter 3

A novel approa
h for monotarget

Tra
k-Before-Dete
t

3.1 Introdu
tion

In the previous 
hapter, the 
lassi
 monotarget TBD parti
le �lters were detailed. These


lassi
 methods manage both the dete
tion of the target appearan
e in the radar window

and of its disappearan
e by the addition of a variable sk to the target state ve
tor xk.

This model raised some questions that merit to be dis
ussed:

� Is it appropriate to try to dete
t the appearan
e and disappearan
e of the target in

a single algorithm ?

� In parti
ular for very low target SNR, does the initialization of newborn parti
les

(at ea
h iteration) in the whole state-spa
e disturb the estimation of the target state

when the parti
le �lter has 
onverged to the a
tual target state ?

� Lastly, and in the same manner, is it relevant to still initialize newborn parti
les,

that is the most 
ostly part of the TBD parti
le �lter, while the parti
le �lter has

already 
onverged to the a
tual target state ?

Therefore, the aim of this 
hapter is to try to provide some answers to these questions. To

this purpose, we develop an alternative approa
h to the monotarget TBD problem that

allows to manage separately the target appearan
e and disappearan
e. More pre
isely,

we propose to model the TBD problem using the qui
kest 
hange dete
tion framework

and then solve it using some parti
le �lter solutions. The aim of qui
kest dete
tion

methods is to dete
t, as qui
kly as possible, some (possible) 
hanges in the distribution

of a random pro
ess while ensuring the smallest probability of error. The TBD problem


an be seen as a qui
kest 
hange dete
tion problem. Indeed, when no target is present in

the radar window, the measurement zk provided by the radar only 
ontains noise, while

after the possible target appearan
e the measurement 
onsists of the target 
ontribution

plus noise. Kligys et al. in [KRT98℄ proposed a solution to the TBD problem in this


ontext. However, their solution is not developed in the parti
le �lter framework that is

studied in this thesis. Thus, we propose, in this 
hapter, a new parti
le �lter solution in

this parti
ular framework.

85
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This 
hapter is organized as follows: in se
tion 3.2 and 3.3, we de�ne a state-model

for the target appearan
e and another one for the target disappearan
e in the Bayesian


hange dete
tion framework. Moreover, for ea
h state-model, we propose several parti
le

�lters in order to approximate the 
orresponding Bayesian �lter. Then, in se
tion 3.4, we

propose to 
ombine the proposed solutions in order to dete
t both the target appearan
e

and disappearan
e. Finally, in se
tion 3.5, we evaluate the performan
e of the parti
le

�lters presented in this 
hapter 
ompared to the 
lassi
 TBD parti
le �lters detailed in

the previous 
hapter.

3.2 A Bayesian solution for time appearan
e dete
tion

in TBD

3.2.1 State model

The monotarget TBD problem 
an be seen as a qui
kest 
hange dete
tion problem

[KRT98℄. Indeed, let us assume that the target appears at an unknown time step τb,
then until τb the measurement zk only 
onsists of noise while after τb the measurement zk
is 
onstituted of the target 
ontribution plus noise. The aim of the TBD appli
ation is

therefore to dete
t this 
hange.

In the 
lassi
 Bayesian qui
kest 
hange dete
tion framework [TV05℄, the problem is

solved by 
hoosing a prior distribution on the time τb. In our TBD appli
ation, the prior

model must be de�ned for the random pro
ess (τb,xk)k∈N and not only for the variable

τb. This leads to spe
ify the density p (τb,x0:k) for any k. This density 
an be rewritten

without loss of generality as

p (τb,x0:k) = p (τb) p (x0:k | τb) . (3.1)

From this de
omposition, this 
onsists in de�ning a prior distribution for the time of

arrival τb and for the evolution of the state xk knowing the variable τb.

3.2.1.1 Time appearan
e model

The time appearan
e τb is modeled as a geometri
 random variable, i.e.

p (τb = i) =

{
0, i = 0,
Pb(1− Pb)i−1, i ≥ 1,

(3.2)

where 0 < Pb < 1 denotes the probability of birth. The geometri
 prior is often en-


ountered in the literature [TV05℄ be
ause it has interesting properties. In parti
ular, by

de�ning

bk =

{
1, if τb ≤ k,
0, otherwise,

(3.3)

it 
an be shown that (bk)k∈N is a Markov 
hain with the following transition probability

matrix

Πbk =

[
1− Pb Pb

0 1

]
, (3.4)
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and also that p (bk = 1 | bk−1 = 0) = Pb, i.e. knowing that the target has not yet appeared
at step k − 1, its probability to show up at step k does not depend on the time instant

and is equal to Pb. The proof of these two statements is provided in Appendix A.

3.2.1.2 Target state model

Let us now spe
ify the density p (x0:k | τb). Assuming k is greater than τb, we 
an write

p (x0:k | τb) = p (x0:τb−1 | τb) p (xτb:k | τb,x0:τb−1) . (3.5)

The interest of su
h a rewriting is to de�ne the evolution of the pro
ess (xk)k∈N before

and after τb. Indeed, as in Chapter 2 where the state xk is meaningless (or has no physi
al

meaning) when sk = 0, here the state xk has no signi�
ation before τb and is not related

to the measurement equation (3.9). Thus, any prior model 
an be 
hosen in this 
ase.

On the 
ontrary, after τb the state xk represents the state of an a
tual target and

therefore a prior model must be spe
i�ed in order to model the state evolution. Sin
e it

seems reasonable to assume that the evolution of the pro
ess after τb does not depend on

the evolution of the pro
ess before τb, the density p (x0:k | τb) be
omes

p (x0:k | τb) = p (x0:τb−1 | τb) p (xτb:k | τb) . (3.6)

Thus, with this independen
e hypothesis, de�ning the prior model after τb just 
onsists
in spe
ifying the density p (xτb:k | τb). In 
hapter 1, it has been stressed that the Bayesian

�lter 
an be derived for the Hidden Markov Model where the hidden pro
ess is assumed

Markovian. Therefore, in order to adapt the Bayesian �lter for our parti
ular model, it is


onvenient to assume that 
onditionally to τb the evolution of pro
ess (xk)k∈N, for k ≥ τb
is Markovian

1

, i.e.

p (xτb:k | τb) = p (xτb | τb)
k∏

i=τb+1

p (xi | τb,xi−1) . (3.7)

Then, from Eq. (3.7), the pro
ess (xk)k∈N 
onditionally to τb and for k ≥ τb is entirely
de�ned by the density at step τb, i.e. p (xτb | τb), whi
h 
orresponds to the initialization

of the pro
ess, and by the transition probabilities p (xi | τb,xi−1).

By analogy with 
hapter 2, the density p (xτb | τb) 
orresponds to the birth density

pb (xk) while the transition probabilities p (xi | τb,xi−1) 
orrespond to the 
ontinuing den-

sity pc (xi | xi−1). We 
an thus in a similar manner de�ne

p (xi | τb,xi−1) = N (xi;Fxi−1,Q) , (3.8)

where F and Q are the matri
es de�ned in se
tion 2.2.

1

Note that it does not mean that the entire pro
ess (xk)k∈N
is Markovian, even for k ≥ τb. In fa
t,

the 
onsidered pro
ess is only Markovian 
onditionally to the variable τb (for k ≥ τb) but is generally not

Markovian without this 
onditioning by τb.
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3.2.2 Measurement model

The measurement model is the same as in se
tion 2.3 with only some slight modi�
ation

in order to take into a

ount the spe
i�
ity of the proposed state model. Following 2.3,

the measurement equation be
omes

zk =

{
ρejϕkh (xk) + nk, if k ≥ τb,

nk, otherwise,
(3.9)

where h (.) is the ambiguity fun
tion, nk is a zero-mean 
ir
ular 
omplex Gaussian ve
tor

with a known 
ovarian
e matrix Γ, ϕk is the random phase uniformly drawn over the

interval [0, 2π) and ρ is the 
onstant modulus. Although Eq. (3.9) depends on the un-

known parameters ρ and ϕk, the same methodology as in paragraphs 2.4.2.2 and 2.4.2.1


an be used in order to remove these parameters, thus allowing to 
al
ulate the measure-

ment likelihood p (zk | τb,xk) (see Eq. (2.23)) whi
h is required in the Bayesian �lter. In

the same manner, the density p (zk | bk = 0,xk) does not depend on the state xk and is

obtained by Eq. (2.21).

Lastly, note that an additional hypothesis is required in order to derive the Bayesian

�lter for the proposed state spa
e model. This last hypothesis 
onsists in assuming that

p (τb = k | bk−1 = 0, z1:k−1) = p (τb = k | bk−1 = 0) . (3.10)

In other words, it means that the probability that the target appears at step k knowing

that it does not appear before is independent of the measurement z1:k−1. In fa
t, this

hypothesis is equivalent to the hypothesis that z1:k−1 
onditionally to bk−1 = 0 is inde-

pendent to the event {τb = k}. Indeed, by de�nition of the 
onditional probability, the

Eq. (3.10) is equal to

p (τb = k | bk−1 = 0, z1:k−1) =
p (τb = k, bk−1 = 0, z1:k−1)

p (bk−1 = 0, z1:k−1)

=
p (τb = k, z1:k−1 | bk−1 = 0)

p (z1:k−1 | bk−1 = 0)
.

(3.11)

Therefore, by assuming that z1:k−1 
onditionally to bk−1 = 0 is independent to the event

{τb = k}, the numerator in Eq. (3.11) fa
torizes as follows:

p (τb = k, z1:k−1 | bk−1 = 0) = p (τb = k | bk−1 = 0) p (z1:k−1 | bk−1 = 0) , (3.12)

thus leading to Eq. (3.10). This equivalent hypothesis seems reasonable to make sin
e

knowing that the target has not appeared until k − 1 (i.e. bk−1 = 0) there is no reason

that the measurements z1:k−1 should provide information about the target appearan
e at

step k.

3.2.3 Theoreti
al Bayesian solution

Our obje
tive is now to derive the theoreti
al Bayesian re
ursion for the proposed model,

i.e. to 
al
ulate the density p (xk, bk | z1:k) from the density p (xk−1, bk−1 | z1:k−1).
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3.2.3.1 Cal
ulation of the posterior state density

Following the same reasoning as in se
tion 2.6, this density 
an be rewritten as follows:

p (xk, bk | z1:k) = p (bk | z1:k) p (xk | bk, z1:k) . (3.13)

Sin
e the state xk is meaningless when bk = 0, the only probabilities to 
al
ulate are the

probabilities p (bk = 1 | z1:k) and p (bk = 0 | z1:k) whi
h are simply obtained by de�nition

of bk by

p (bk = 1 | z1:k) =
k∑

i=1

p (τb = i | z1:k) , (3.14)

p (bk = 0 | z1:k) = 1− p (bk = 1 | z1:k) , (3.15)

and the density p (xk | bk = 1, z1:k). The latter 
an be written as

p (xk | bk = 1, z1:k) =
p (xk, bk = 1 | z1:k)
p (bk = 1 | z1:k)

. (3.16)

Using the de
omposition of event {bk = 1} in Eq. (A.5) the numerator 
an be expanded

as

p (xk, bk = 1 | z1:k) =
k∑

i=1

p (xk, τb = i | z1:k) =
k∑

i=1

p (τb = i | z1:k) p (xk | τb = i, z1:k) .

(3.17)

Finally, dividing this expression by the probability p (bk = 1 | z1:k) and using its de
om-

position in Eq. (3.14), it 
omes

p (xk | bk = 1, z1:k) =

k∑

i=1

p (τb = i | z1:k)
p (bk = 1 | z1:k)

p (xk | τb = i, z1:k) =

k∑

i=1

αk,ip (xk | τb = i, z1:k) ,

(3.18)

where

αk,i =
p (τb = i | z1:k)
p (bk = 1 | z1:k)

=
p (τb = i | z1:k)∑k
l=1 p (τb = l | z1:k)

. (3.19)

Clearly

∑k
i=1 αk,i = 1. Note also that ea
h αk,i 
orresponds to the probability that

the target appears at step i knowing that the target is e�e
tively present. Therefore,

the posterior density p (xk | bk = 1, z1:k) is a mixture density with k 
omponents entirely

de�ned by the densities p (xk | τb = i, z1:k) and the weighting terms αk,i.
In a Bayesian perspe
tive, our aim is to 
al
ulate re
ursively ea
h density p (xk | τb = i, z1:k)

and the weighting terms αk,i for all i ∈ {1, . . . , k}. However, in the sequel, for the sake of

simpli
ity we will 
onsider the probabilities p (τb = i | z1:k) rather than the quantities αk,i
whi
h are simply obtained through a normalization.

Thus, let us assume that at step k− 1, for all i ∈ {1, . . . , k− 1}, p (τb = i | z1:k−1) and
p (xk−1 | τb = i, z1:k−1) are available. The aim is now to 
al
ulate, for all i ∈ {1, . . . , k},
p (τb = i | z1:k) and p (xk | τb = i, z1:k). The next paragraph is dedi
ated to the 
al
ula-

tion of the density 
omponents p (xk | τb = i, z1:k) while the paragraph 3.2.3.3 details the


al
ulation of the probabilities p (τb = i | z1:k).
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3.2.3.2 Cal
ulation of the mixture 
omponents

Using Bayes rule and the properties of the state-spa
e model, ea
h mixture 
omponent

p (xk | τb = i, z1:k) 
an be rewritten as follows:

p (xk | τb = i, z1:k) =
p (xk | τb = i, z1:k−1) p (zk | τb = i,xk)

p (zk | τb = i, z1:k−1)
, (3.20)

where

p (zk | τb = i, z1:k−1) =

∫
p (zk | τb = i,xk) p (xk | τb = i, z1:k−1) dxk. (3.21)

The density p (xk | τb = i, z1:k−1) 
an be obtained for i ∈ {1, . . . , k− 1} by the Chapman-

Kolmogorov equation:

p (xk | τb = i, z1:k−1) =

∫
p (xk−1 | τb = i, z1:k−1) p (xk | τb = i,xk−1) dxk−1, (3.22)

where the transition density p (xk | τb = i,xk−1) 
orresponds, as already mentioned, to the


ontinuing density pc (xk | xk−1) in 
hapter 2. Thus, ea
h 
omponent for i ∈ {1, . . . , k−1}
is provided by the 
lassi
 theoreti
al Bayesian �lter detailed in paragraph 1.2.2 and 
an

by summarized as follows:

p (xk−1 | τb = i, z1:k−1)
prediction−−−−−→
Eq.(3.22)

p (xk | τb = i, z1:k−1)
update−−−−−→
Eq.(3.20)

p (xk | τb = i, z1:k) . (3.23)

However, it remains to 
al
ulate the density p (xk | τb = k, z1:k) whi
h 
orresponds to

the target appearan
e at 
urrent step k. Sin
e in this 
ase, the state xk does not depend

on the previous measurement z1:k−1, the equation (3.20) simpli�es to

p (xk | τb = k, z1:k) =
p (xk | τb = k) p (zk | τb = k,xk)

p (zk | τb = k, z1:k−1)
, (3.24)

with

p (zk | τb = k, z1:k−1) =

∫
p (xk | τb = k) p (zk | τb = k,xk) dxk, (3.25)

where p (xk | τb = k) is the prior density for the target appearan
e and 
orresponds, as

already mentioned, to the birth density pb (xk) in 
hapter 2.

3.2.3.3 Cal
ulation of the probabilities of appearan
e

Using Bayes rule, ea
h probability p (τb = i | z1:k) for i ∈ {1, · · · , k} 
an be rewritten from

the probability p (τb = i | z1:k−1) for i ∈ {1, · · · , k} as follows:

p (τb = i | z1:k) =
p (τb = i | z1:k−1) p (zk | τb = i, z1:k−1)

p (zk | z1:k−1)
, (3.26)

where ea
h quantity p (zk | τb = i, z1:k−1) 
an be obtained from Eq. (3.21) or from Eq.

(3.25) when i = k. However, only the probabilities p (τb = i | z1:k−1) for k ∈ {1, · · · , k − 1}

an be obtained from the mixture density posterior density at step k−1 (see Eq. (3.17 ) by
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repla
ing k by k−1 ). Therefore, to be able to 
al
ulate all the probabilities p (τb = i | z1:k)
at step k, it remains to evaluate the probability p (τb = k | z1:k−1) and the normalization

term p (zk | z1:k−1).
Let us start with the probability p (τb = k | z1:k−1). By de�nition of variable bk, the

event {τb = k} is in
luded in the more general event {bk−1 = 0}, therefore the probability
p (τb = k | z1:k−1) 
an be rewritten as follows:

p (τb = k | z1:k−1) = p (τb = k, bk = 0 | z1:k−1) , (3.27)

= p (bk−1 = 0 | z1:k−1) p (τb = k | bk−1 = 0, z1:k−1) , (3.28)

where the probability p (τb = k | bk−1 = 0, z1:k−1) does not depend on the previous mea-

surements z1:k−1 by hypothesis (see Eq. (3.10)) and is equal, from Eq. (A.8), to Pb.
Finally the probability p (τb = k | z1:k−1) 
an be evaluated from the quantities at previous

iteration using the following relationship:

p (τb = k | z1:k−1) = p (bk−1 = 0 | z1:k−1)Pb. (3.29)

Re
all that the probability p (bk−1 = 0 | z1:k−1) 
an be simply obtained from p (bk−1 = 1 | z1:k−1)
as follows: p (bk−1 = 0 | z1:k−1) = 1− p (bk−1 = 1 | z1:k−1) (see Eq. 3.15).

Con
erning the normalization term p (zk | zk−1), the same idea as previously is used,

i.e. we marginalize over bk, whi
h leads to

p (zk | z1:k−1) = p (zk, bk = 1 | z1:k−1) + p (zk, bk = 0 | z1:k−1) . (3.30)

By using the de
omposition of the event {bk = 1} as in Eq. (3.17), the expression 
an be

rewritten as follows:

p (zk | z1:k−1) =

k∑

i=1

p (τb = i | z1:k−1) p (zk | τb = i, z1:k−1) +

p (bk = 0 | z1:k−1) p (zk | bk = 0, z1:k−1) .
(3.31)

The probability p (bk = 0 | z1:k−1) is simply obtained as in Eq. (3.15) by

p (bk = 0 | z1:k−1) = 1− p (bk = 1 | z1:k−1) = 1−
k∑

i=1

p (τb = i | z1:k−1). (3.32)

In the other hand, the quantity p (zk | bk = 0, z1:k−1) does not depend on z1:k−1 by

de�nition of the measurement model and is simply equal to p (zk | bk = 0) (see paragraph
3.2.2).

Finally, ea
h probability p (τb = i | z1:k) 
an be evaluated with Eq. (3.26) where

p (zk | τb = i, z1:k−1) and p (zk | z1:k−1) are provided respe
tively by Eq. (3.21) and Eq.

(3.31) while the probability p (τb = k | z1:k−1) is obtained with Eq. (3.29).

3.2.4 Parti
le �lter approximation

In general, whereas the parameters of the posterior mixture density p (xk | bk = 1, z1:k)
(i.e. the mixture 
omponents p (xk | τb = i, z1:k)) 
an be 
al
ulated re
ursively, in pra
-

ti
e the 
orresponding equations are intra
table and we must therefore resort to some
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approximations. In the previous se
tion, we demonstrated that the posterior density 
an

be written as mixture. Therefore, we propose to use this parti
ular stru
ture to propose a

parti
le approximation of the density p (xk | bk = 1, z1:k). In pra
ti
e, it means that ea
h

mixture 
omponent will be approximated by a parti
le �lter.

3.2.4.1 Approximation of the mixture 
omponents

From Eq. (3.20), ea
h 
omponent p (xk | τb = i, z1:k) for all i ∈ {1, · · · , k − 1} follows

the 
lassi
 Bayes �lter re
ursion. Therefore, ea
h of them 
an be approximated with a

parti
le �lter.

To do so, let, for all i ∈ {1, · · · , k − 1},

p̂ (xk−1 | τb = i, z1:k−1) =

Np,i∑

n=1

wnk−1,iδxn
k−1,i

(xk−1), (3.33)

be a parti
le approximation of the mixture 
omponent p (xk−1 | τb = i, z1:k−1) at step

k−1, where Np,i is the number of parti
les used for the ith mixture 
omponent. Then the

unnormalized weights of the parti
le approximation at step k are obtained, a

ording to

Eq. (1.94), by

w̃nk,i = wnk−1,i

pc(x
n
k,i | xnk−1,i)p(zk | τb = i,xnk,i)

q(xnk,i | τb = i,xnk−1,i, zk)
, (3.34)

where q(xk,i | τb = i,xnk−1,i, zk) is the instrumental distribution used to propagate par-

ti
le states xnk,i (as in 
hapter 2, the prior is often 
hosen in that 
ase). Obviously, the

normalized weights wk,i are simply obtained through a normalization.

At this point, k − 1 
omponents have been updated. However re
all that the mixture

is 
omposed of k 
omponents where the last one 
orresponds to the target appearan
e at


urrent step (i.e. τb = k). Using Eq. (3.24), the density 
omponent p (xk | τb = k, z1:k)

an be approximated by

p̂ (xk | τb = k, z1:k) =

Np,k∑

n=1

wnk,kδxn
k,k
(xk), (3.35)

where the unnormalized weights are equal to

w̃nk,k =
pb(x

n
k,k)p(zk | τb = k,xnk,k)

q(xnk,k | τb = k, zk)
, (3.36)

with q (xk | τb = k, zk) an instrumental density used to initialize the parti
le state xnk,k.

As in 
hapter 2, the 
hoi
e of the instrumental density for the initialization is 
ru
ial

for the performan
e. Fortunately, all the developments made in Chapter 2 
on
erning

the instrumental density for position, velo
ity and amplitude parameters 
an be used

again here. Finally, the normalized weights wk,k are, again, simply obtained through a

normalization.



A Bayesian solution for time appearan
e dete
tion in TBD 93

3.2.4.2 Cal
ulation of the probabilities of appearan
e

From Eq. (3.26), the 
omputation of the probabilities of appearan
e p (τb = i | z1:k) re-
quire to evaluate the normalization terms p (zk | τb = i, z1:k−1) and p (zk | z1:k−1), and the

probabilities p (τb = i | z1:k−1) for i ∈ {1, · · · , k}.
Con
erning the probabilities of appearan
e p (τb = i | z1:k−1) for i ≤ k−1, if an approx-

imation of the posterior p (xk−1 | bk−1 = 1, z1:k−1) de�ned in Eq. (3.18) is assumed avail-

able, then these probabilities have already been approximated at previous step; let us de-

note by p̂ (τb = i | z1:k−1) their approximation. Then, the probability p (bk−1 = 1 | z1:k−1)

an be simply approximated using Eq. (3.14) and is denoted by p̂ (bk−1 = 1 | z1:k−1). How-
ever, it still remains to approximate the probability p (τb = k | z1:k−1). From Eq. (3.29),

it 
an be simply done as follows:

p̂ (τb = k | z1:k−1) = (1− p̂ (bk−1 = 1 | z1:k−1))Pb. (3.37)

Con
erning the normalization terms p (zk | τb = i, z1:k−1), two 
ases must be 
onsid-

ered, one for the index i ∈ {1, · · · , k − 1} and a se
ond one for the 
ase τb = k. For ea
h
index i ∈ {1, · · · , k − 1}, from Eq. (3.21),

p (zk | τb = i, z1:k−1) =

∫
p (zk | τb = i,xk) p (xk | τb = i, z1:k−1) dxk,

= Ep(xk|τb=i,z1:k−1) [p (zk | τb = i,xk)] ,

i.e. it 
orresponds to the expe
tation of p (zk | τb = i,xk) with respe
t to the density

p (xk|τb = i, z1:k−1). Therefore, as this integral has the form of Eq. (1.74), it 
an be ob-

tained via a parti
le approximation of the predi
ted density p (xk | τb = i, z1:k−1). This

approximation is not dire
tly available but it is however possible to derive an approxima-

tion of the latter using the parti
le approximation at previous step p (xk−1 | τb = i, z1:k−1)
and the Chapman-Kolmogorov equation (3.22). A possible approximation was proposed

(in a 
ompletely di�erent 
ontext) by Vermaak et al. in [VGP05℄ as

p (xk | τb = i, z1:k−1) ≈
Np,i∑

n=1

ank,iδxn
k,i
(xk), (3.38)

where the unnormalized predi
tive weights ãnk,i are equal to

ãnk,i = wnk−1,i

p
(
xnk,i | τb = i,xnk−1,i

)

q
(
xnk,i | τb = i,xnk−1,i, zk

) , (3.39)

and the predi
tive weights ank,i are simply obtained through a normalization by the term

Ck,i =

Np,i∑

n=1

ãnk,i. (3.40)

Then the approximation p̂ (zk | τb = i, z1:k−1) of the density p (zk | τb = i, z1:k−1) is 
om-

puted by substituting in Eq. (3.21) the density p (xk | τb = i, z1:k−1) with its parti
le

approximation de�ned in Eq. (3.38), leading to

p̂ (zk | τb = i, z1:k−1) =

Np,i∑

n=1

ank,ip
(
zk | τb = i,xnk,i

)
. (3.41)
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Furthermore, by noti
ing that the unnormalized weights w̃nk,i are related to the predi
tive

weights ank,i through the following equation:

w̃nk,i = Ck,ia
n
k,ip
(
zk | τb = i,xnk,i

)
, (3.42)

the approximation 
an be rewritten as

p̂ (zk | τb = i, z1:k−1) =
1

Ck,i

Np,i∑

n=1

w̃nk,i. (3.43)

Note, however, that when the instrumental density is 
hosen to be the prior (i.e p(xk |
τb = i,xnk−1)), then Ck,i = 1 and the Eq. (3.43) is simply the sum of the unnormalized

weights.

Now, it remains to evaluate the normalization term p (zk | τb = k, z1:k−1) for the 
ase
τb = k. From Eq. (3.25), it is also an expe
tation with respe
t to the density p(xk |
τb = k). However, 
ontrary to the previous 
ase where a parti
le approximation of the

predi
ted density is required, here the 
lassi
 importan
e sampling 
an be dire
tly applied

sin
e the density p (xk | τb = k) is known in 
losed-form (i.e. it is the birth density de�ned

in paragraph 3.2.1.2 ). Thus, the integral (3.25) 
an be approximated as follows:

p̂ (zk | τb = k, z1:k−1) =
1

Np,k

Np,k∑

n=1

p
(
xnk,k | τb = k

)
p
(
zk | τb = k,xnk,k

)

q
(
xnk,k | τb = k, zk

)

=
1

Np,k

Np,k∑

n=1

w̃nk,k,

(3.44)

where q (xk | τb = k, zk) is an instrumental density and Np,k is the number of parti
les.

The whole normalization term p̂ (zk | z1:k−1) 
an be simply approximated, using its

expression provided by Eq. (3.31). Then, ea
h probability p (τb = i | z1:k) for all i ∈
{1, ..., k} is �nally provided by

p̂ (τb = i | z1:k) =
p̂ (τb = i | z1:k−1) p̂ (zk | τb = i, z1:k−1)

p̂ (zk | z1:k−1)
. (3.45)

3.2.4.3 Dealing with the in
reasing number of parti
les and resampling strate-

gies

As previously stated, the proposed parti
le �lter is 
omposed of several parti
le 
louds


orresponding to ea
h element of the mixture distribution. By de�nition of the density

p (xk | bk = 0, z1:k) in Eq. (3.18) the number of mixture 
omponents at time step k is k and
it thus in
reases with time. Therefore, if at ea
h iteration a new 
omponent is initialized

with Np,i parti
les, the total number of parti
les will be in
remented by Np,i and after

some iterations the 
omputational 
ost of the algorithm will be
ome prohibitive. Thus,

it is preferable to limit the number of parti
les. In the sequel, we propose two solutions:

� In the �rst solution, the number of parti
les remains the same and 
onstant over

time for all the mixture 
omponents. Moreover, the mixture 
omponents are always

resampled separately.



A Bayesian solution for time appearan
e dete
tion in TBD 95

� This �rst solution may su�er from a degenera
y phenomenon, i.e. after some itera-

tions some of the 
omponent weights αk,i may be pretty small, so that some 
ompo-

nents are approximated with a parti
le �lter while they do not really parti
ipate in

the approximation of the whole density p (xk | bk = 1, z1:k). Therefore, we propose

a se
ond solution that allows to resample over the whole density p (xk | bk = 1, z1:k)
rather than over the mixture 
omponents when a severe degenera
y is found over

the weight mixture 
omponents.

Constant number of parti
les per mixture 
omponent

The easiest way to deal with the in
reasing number of parti
les 
onsists in limiting

the number of mixture 
omponents to an integer Nmix,max and dis
arding the one with

the lowest probability p̂ (τb = i | z1:k) if the number of 
omponents is equal to Nmix,max.

Indeed, if all the mixture 
omponents have the same number of parti
lesNp,mix, dis
arding

the 
omponent with the lowest probability allows to release Np,mix parti
les that 
an be

used to initialize the new 
omponent at next step. The maximum number of parti
les

Np,max is then equal to Np,max = Np,mix ×Nmix,max. Before going further in the details of

the algorithm, let us �rst explain its general prin
iple. To this purpose, let us assume that

at step k − 1, Nk−1,mix = Nmix,max − 1 mixture 
omponents p (xk−1 | τb = i, z1:k−1) have
been kept where their 
orresponding probability is p (τb = i, z1:k−1). The general prin
iple
of the proposed strategy is then the following:

� First, the parti
les of ea
h remaining 
omponent p (xk−1 | τb = i, z1:k−1) are propa-
gated a

ording to the instrumental density qc (xk | xk−1) (often 
hosen to be the

prior).

� Then, a new 
omponent is 
reated with Np,mix parti
les in order to approximate

the density p (xk | τb = k, z1:k). For this parti
le approximation, the parti
les are

sampled a

ording to an instrumental density qb (xk | zk). Therefore, the number of


omponents is in
remented by one, i.e. Nk,mix = Nk−1,mix if the number of mixture


omponents is equal to Nmix,max.

� The weights for ea
h of the Nk,mix mixture 
omponents are 
al
ulated via Eq. (3.34)

for the 
omponents present at previous step or via Eq. (3.36) for the new 
omponent,

thus also allowing to update the probability p̂ (τb = i | z1:k−1) at step k and the

probability p (bk = 1 | z1:k).

� If the number of 
omponents Nk,mix is equal to Nmix,max, the mixture 
omponent

with the lowest probability p̂ (τb = i | z1:k) is dis
arded, thus allowing to use its

Np,mix parti
les to initialize a new 
omponent at the next iteration. Therefore, the

number of 
omponents Nk,mix is now equal to Nk,mix − 1. Clearly, the only 
ases

where the number of 
omponents will not be equal to Nmix,max are the �rst iterations

k ∈ {1, · · · , Nmix,max − 1}.

� Finally ea
h remaining 
omponent is resampled if needed. Note that 
ontrary to

the marginalized monotarget parti
le �lter in se
tion 2.6 where a resampling pro-


edure must be performed at ea
h step, here the resampling is optional and 
an be

performed a

ording to the Neff of ea
h 
omponent.
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Figure 3.1 � General s
heme of the parti
le �lter for time appearan
e dete
tion with a �x

and 
onstant number of parti
les per mixture 
omponent.

A general s
heme of the proposed algorithm is presented in Figure 3.1, where the indexes

i1, · · · , iN are the set of indexes 
orresponding to the time index of the Nk,mix remaining

mixture 
omponents.

We will now detail the 
omputations required for the di�erent 
omponents of this

parti
le �lter. Let Ik =
{
i1, · · · , iNk,mix

}
be the set of indexes 
orresponding to the

Nk,mix remaining mixture 
omponents {τb = il} (l ∈ {1, · · · , Nk,mix}). The parti
le

approximation of p (xk | bk = 1, z1:k) 
an be rewritten as follows:

p̂ (xk | bk = 1, z1:k) =
∑

i∈Ik

α̂k,ip̂ (xk | τb = i, z1:k) , (3.46)

where

α̂k,i =
p̂ (τb = i | z1:k)∑
l∈Ik

p̂ (τb = l | z1:k)
. (3.47)
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Then, if Nk,mix = Nmix,max, the 
omponent with the smallest probability, 
orresponding

to index

imin = argmin
i

p̂ (τb = i | z1:k) (3.48)

is removed from the set Ik, i.e. the set Ik is now equal to

Ik = Ik \ {imin} . (3.49)

The posterior density then be
omes

p̂ (xk | bk = 1, z1:k) =
∑

i∈Ik

α̂′
k,ip̂ (xk | τb = i, z1:k) , (3.50)

with

α̂′
k,i =

p̂ (τb = i | z1:k)∑
l∈Ik,min

p (τb = l | z1:k)
, (3.51)


al
ulated with the updated set Ik (i.e. without the time index imin). The proposed

Appearan
e Time TBD Parti
le Filter is �nally summarized by Algorithm 3.1.

Con
erning the estimation, for ea
h mixture 
omponent p̂ (xk | τb = i, z1:k) the state xk
and the posterior 
ovarian
e matrix 
an be estimated using the 
lassi
 estimator de�ned

in Eq. (1.96) and Eq. (1.97). They are respe
tively denoted by x̂k|k,i and P̂k|k,i. Finally,

the estimators over all the mixture 
omponents are simply obtained by:

x̂k|k =
∑

i∈Ik

α̂k,ix̂k|k,i, (3.52)

P̂k|k =
∑

i∈Ik

α̂k,iP̂k|k,i. (3.53)

The probability of appearan
e p (bk = 1 | z1:k) 
an be approximated by:

p̂ (bk = 1 | z1:k) =
∑

i∈Ik

p̂ (τb = i | z1:k) . (3.54)

Resampling over the whole density p (xk | bk = 1, z1:k)
The previous strategy allows to limit the number of parti
les but does not take into

a

ount the 
omponent weights α̂k,i in the resampling pro
edure. As a 
onsequen
e, even

if the 
omponent with the smallest probability has been removed, some 
omponent weights

α̂k,i may still be pretty small and parti
ipate for a very little part in the estimation of

the state xk in Eq. (3.52). In fa
t, this 
an be seen as a degenera
y phenomenon (see

paragraph 1.2.4.4) where after some iterations, one of the mixture weights may be very


lose to one while the others are almost zero. Therefore, some 
omputational resour
es are

devoted to the 
al
ulation of the mixture 
omponents that do not a
tually parti
ipate to

the state estimation. To avoid this drawba
k, we propose in the sequel to take into a

ount

the weight 
omponents in order to resample only the relevant mixture 
omponents.

The pra
ti
al implementation explanation of this solution has been appended to Ap-

pendix B; in the sequel, we will only provide a general s
heme of this solution and its

motivations.
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Algorithm 3.1 Appearan
e Time TBD Parti
le Filter

Require: mixture 
omponents {wik−1,x
n
k−1,i}

Np,mix

n=1 and probabilities p (τb = i | z1:k−1)
with i ∈ Ik−1 at step k − 1.

1: for i ∈ Ik−1 do

2: for n = 1 to Np,mix do

3: Draw xnk,i ∼ q
(
xk | τb = i,xnk,i, zk

)
.

4: Compute unnormalized weight w̃nk,i a

ording to (3.34).

5: end for

6: Compute Ck,i a

ording to (3.40).

7: Compute p̂ (zk | τb = i, z1:k−1) a

ording to (3.43)

8: Normalisation: wnk,i ←
w̃n

k,i
∑Np,mix

l=1 w̃l
k,i

, n = 1 . . . Np,mix.

9: end for

10: for new mixture 
omponent at step k do
11: Ik = Ik−1

⋃ {k}
12: Nk,mix = Nk−1,mix + 1
13: for n = 1 to Np,mix do

14: Draw xnk,k ∼ q (xk | τb = k, zk).
15: Compute unnormalized weight w̃nk,k a

ording to (3.36).

16: end for

17: Compute p̂ (zk | τb = k, z1:k−1) a

ording to (3.44)

18: Compute p̂ (τb = k | z1:k−1) a

ording to (3.37).

19: Normalization: wnk,k ←
w̃n

k,k
∑Np,mix

l=1 w̃l
k,k

, n = 1 . . . Np,mix.

20: end for

21: Compute p̂ (zk | z1:k−1) a

ording to (3.31) where the sum is performed over Ik.
22: Compute p̂ (τb = i | z1:k) a

ording to (3.45), for i ∈ Ik.
23: if Nk,mix = Nmix,max then

24: Find imin a

ording to (3.48).

25: Set Ik = Ik \ {imin}.
26: Set Nk,mix = Nk,mix − 1.
27: end if

28: for i ∈ Ik do
29: Compute Neff ,i a

ording to Eq. (1.98) for 
omponent p̂ (xk | τb = i, z1:k).
30: if Neff ,i < NT then

31: Resample Np,mix parti
les.

32: Reset weights: wnk,i ← 1
Np,mix

n = 1, · · · , Np,mix.

33: end if

34: end for

Ensure: {wnk,i,xnk,i}
Np,mix

n=1 , p̂ (τb = i | z1:k) , i ∈ Ik.
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The 
entral idea of the proposed method is to 
al
ulate an e�e
tive sample size number

over the whole density p̂ (xk | bk = 1, z1:k) and then resample from this density rather

than from the mixture 
omponents. As a 
onsequen
e, in the resampling pro
edure, the

parti
les belonging to a 
omponent with a high 
omponent weight α̂k,i will be mostly

sele
ted 
ompared to parti
les belonging to a 
omponent with a small α̂k,l, so that the

number of parti
les will be di�erent for the di�erent mixture 
omponents.

However, resampling over the overall density does not solve the problem of the in
reas-

ing number of parti
les. Thus we propose to use the same methodology as in the previous

paragraph (i.e dis
arding the mixture 
omponent with the lowest 
omponent weight α̂k,i).
However, sin
e the number of parti
les per 
omponent may be di�erent, the pro
edure to

dis
ard some parti
les in order to initialize new 
omponents has to be 
hanged.

To this purpose, let us assume thatNk,mix mixture 
omponents are present respe
tively

with Np,i parti
les per 
omponent. Then, we propose the following pro
edure:

� First, as in the previous paragraph, the total number of parti
les (denoted as Nall
p,k)

is 
al
ulated and 
ompared to the maximal number of parti
les Np,max.

� If the number Nall
p,k is equal to Np,max, then as in the previous paragraph, the index

imin of the mixture 
omponent with the lowest probability is 
onsidered. However,

here, sin
e the number of parti
les is di�erent between the 
omponents, two 
ases

must be 
onsidered:

� Either Np,imin
is equal to a number Np,init and then the 
omponent imin is

dis
arded, so that Np,init parti
les 
an be used to initialize a new 
omponent

at next step.

� Or Np,imin
is greater than Np,init. Thus, the 
omponent imin does not need

to be totally dis
arded. Indeed, the 
omponent imin 
an be kept by redu
ing

the number of parti
les from Np,imin
to Np,imin

− Np,init. To this purpose,

Np,imin
−Np,init parti
les are resampled from the 
omponent imin.

In Figure 3.2 a blo
k diagram of the pro
edure to dis
ard Np,init parti
les in order to

initialize new 
omponents is proposed.

Although the pro
edures to dis
ard Np,init parti
les and to resample the mixture are

thus di�erent from the previous algorithm working with a 
onstant and �x number of

parti
les per 
omponent, for all the others steps they follow exa
tly the same s
heme. That

is to say, at ea
h new iteration of the algorithm the parti
les of the Nk−1,mix 
omponents

2

are propagated and a new one is 
reated. Then, the weights for ea
h 
omponent are


al
ulated and the probabilities p̂ (τb = i | z1:k−1) are updated. Finally, Np,init parti
les

are dis
arded from one of the 
omponent (if needed) and the resampling pro
edure is

performed.

Now that the pro
edure to dis
ard Np,init has been detailed, it remains to explain how

the resampling pro
edure is performed. For the e�e
tive sample size number over the

2

Note that it means that if resampling is performed over all the mixture 
omponents, the resulting par-

ti
le approximation will be pro
essed exa
tly in the same manner as the other 
omponents, see Appendix

B.
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Figure 3.2 � Blo
k diagram to dis
ard Np,init when the number of parti
les is di�erent

between the mixture 
omponents.

whole density p̂ (xk | bk = 1, z1:k), we propose the following de�nition:

Nall
eff ,k ≈

(
∑

i∈Ik

α̂2
k,i

Neff ,i

)−1

. (3.55)

Then a resampling pro
edure 
an be performed if Nall
eff ,k < Nall

T,k, with N
all
T,k = βallN

all
p,k and

0 < βall ≤ 1. However, for some reasons that will be detailed in the sequel, the resampling

pro
edure over all the 
omponents does not have to be performed at ea
h iteration and

some restri
tions have to be introdu
ed. Indeed:

� If the resampling pro
edure over all the 
omponents is performed at ea
h iteration

(i.e. βall = 1), there is no interest in using the mixture stru
ture detailed in this


hapter. Indeed, in su
h a situation, at the end of ea
h iteration only one 
omponent

will be present. Therefore, at the next iteration only two 
omponents will be present,

the one from previous step and the new one sampling the event {τb = k}. However,
sin
e a resampling pro
edure will be performed over this two 
omponents, it will

still remain one 
omponent (gathering the two 
omponents before the resampling

step) at the end of this step. As a 
onsequen
e, performing a resampling over all

the mixture 
omponents only allows to 
onsider two 
omponents. Moreover, in this


ase, the stru
ture of the parti
le �lter is almost equivalent to the marginalized

parti
le �lter detailed in se
tion 2.6. Indeed, at the beginning of ea
h iteration one


omponent is present, then a new one is 
reated in order to sample the "birth"


ase. Parameters and parti
le �lters are updated and �nally the two 
omponents

are resampled jointly in order to 
reate one parti
le �lter 
omponent gathering the

birth and the 
ontinuing parti
le.

� In the same manner, to avoid that the new mixture 
omponents are resampled too

qui
kly from the overall resampling pro
edure, it is ne
essary to limit the frequen
y

of this resampling pro
edure. Let us illustrate this with a generi
 example. Let us
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assume that in the resampling pro
edure over all the mixture 
omponents, Nall
p,mix =

kallNp,init parti
les are resampled (with kall an integer greater than one). Moreover,

let us also assume thatNp,max 
an be fa
torized asNp,max = kmaxNp,init (kmax > kall).
Then, if a resampling pro
edure over all the mixture 
omponents is performed, it will

remain Np,max − Nall
p,mix parti
les allowing to initialize kmax − kall new 
omponents.

However, in the next iterations, if the resampling pro
edure over all the mixture


omponents is performed too qui
kly, the parti
le �lter will not have enough time

to initialize the kmax − kall new 
omponents. As a 
onsequen
e, some parti
les

reserved to initialize new 
omponents will be pra
ti
ally never used by the parti
le

�lter.

Therefore to avoid the two exposed problems, we propose the following strategies:

� First, Nall
eff ,k is 
ompared to Nall

T,k without any restri
tion, and the resampling over

all the mixture 
omponents is performed if Nall
eff ,k < Nall

T,k. βall has to be 
hosen not

too high to avoid systemati
 resampling. This step is present in order to avoid a

severe degenera
y.

� If Nall
eff ,k > Nall

T,k, an extra 
ondition is 
onsidered for resampling over all the mixture


omponents: the resampling pro
edure will be performed if the total number of

parti
les Nall
p,k is greater than a number Nmin

p . If not, no resampling over all the

mixture 
omponents is done. Thus, if a resampling pro
edure over all the mixture


omponents was performed at previous step, at the next step the minimal number

of parti
les may not be rea
hed sin
e only one extra 
omponents will have been

initialized. As a 
onsequen
e, this new 
omponent will 
ontinue to explore the state

independently from the other 
omponents. Of 
ourse, the number Nall
eff ,k may still

be 
ompared to a number Nmin
T,k = βminN

all
p,k in order to perform the resampling.

� Lastly, if the 
onditions Nall
p,k ≥ Nmin

p and Nall
eff ,k < Nmin

T,k are not rea
hed, the mixture


omponents are resampled separately.

A blo
k-diagram of this resampling pro
edure is proposed in Figure 3.3.

Of 
ourse, this strategy is heuristi
 and no optimality 
an be ensured; some other

strategies may outperform it. On the other hand, note also that the resampling step

for the target time appearan
e dete
tion parti
le �lter o�ers more possibilities than the

parti
le �lters developed in Chapter 2.

3.3 Parti
le �lter for target disappearan
e time dete
-

tion

Until now, we have only 
onsidered the problem of target appearan
e dete
tion. In a

similar way, the dete
tion of the target disappearan
e 
an be done in the Bayesian qui
kest


hange dete
tion framework. This 
ase is easier to solve sin
e, as will be seen, no mixture

has to be 
onsidered. Moreover, it 
an be shown that, in this 
ase, the model 
onsidered in

the Bayesian qui
kest 
hange dete
tion framework (with a geometri
 prior) is equivalent

to the one outlined in the 
hapter 2 with a parti
ular 
hoi
e of the transition probability

matrix Π. Therefore, in the following, only the key points of the algorithmwill be detailed.
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Figure 3.3 � Blo
k-diagram of the resampling pro
edure that allows to resample over all

the mixture 
omponents.

3.3.1 State model

Let us de�ne by τd the time instant when the target disappears from the radar window.

As previously, we propose to 
onsider a geometri
 prior for the time disappearan
e τd,
provided by

p (τd = i) =

{
0, i = 0,
Pd(1− Pd)i, i ≥ 1,

(3.56)

where 0 < Pd < 1 denotes the probability of disappearan
e. Moreover, similarly to the

variable bk introdu
ed in paragraph 3.2.1.1, let us de�ne the variable dk as

dk =

{
1, if τd ≥ k,
0, otherwise.

(3.57)

Using the same 
al
ulation as for the variable bk in Appendix A, it is easy to show �rst

that

p (dk = 0 | dk−1 = 1) = Pd (3.58)

and se
ondly that the pro
ess (dk)k∈N is a two-state Markov 
hain with the following

transition probability matrix

Πdk =

[
1 0
Pd 1− Pd

]
, (3.59)

where the state dk = 0 is an absorbing state. Lastly, for the initialization step, p (d0 = 1) =
1.

Contrary to the appearan
e 
ase where the prior model has been spe
i�ed for the

random pro
ess (τb,xk)k∈N, here it is unne
essary sin
e the target is assumed present

at the initial step k = 0 and the evolution of the pro
ess xk 
an be easily modeled


onditionally to the variable dk. Therefore, as in 
hapter 2, this amounts to de�ne the

evolution of the hybrid pro
ess (xk, dk)k∈N rather than (xk, τd)k∈N. Sin
e the pro
ess

(dk)k∈N is Markovian, the entire pro
ess 
an also be assumed Markovian with the same

transition probability as in Eq. (2.2), i.e.

p (xk, dk|xk−1, dk−1) = p (dk | dk−1) p (xk | dk−1, dk,xk−1) , (3.60)
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where the transition probabilities for the variable dk are provided by Eq. (3.59). Con-


erning the transition probabilities p (xk | dk−1, dk,xk−1), the only 
ase to 
onsider is the


ase dk−1 = 1 and dk = 1, that 
orresponds to the 
ontinuing density de�ned in Chapter

2, i.e.

p (xk | dk−1 = 1, dk = 1,xk−1) = pc (xk | xk−1) . (3.61)

The other transition densities, either deal with the 
ase dk = 0 where the state xk is

meaningless or with the 
ase dk−1 = 0 and dk = 1 that 
annot happen due to the

parti
ular stru
ture of the transition matrix Πdk : the target 
annot appear anymore on
e

it has disappeared. Lastly, it remains to de�ne the density p (x0 | d0 = 1) that 
orresponds
to the initialization of the pro
ess (the 
ase d0 = 0 does not need to be 
onsidered sin
e

p (d0 = 0) = 0). Contrary to the appearan
e 
ase where the birth density is often 
hosen

to be non-informative (e.g. uniform), here the target is assumed present and therefore

it seems reasonable to assume that some information is available about the target state

lo
ation. For instan
e, we 
an 
hoose as initial prior the following density,

p (x0 | d0 = 1) = N (x0; x̄0,P0) , (3.62)

where x̄0 is the initial target state mean and P0 the initial 
ovarian
e matrix. In pra
ti
e,

x̄0 and P0 may have been obtained from a previous dete
tion pro
edure.

3.3.2 Measurement model

The measurement model is de�ned as in Chapter 2 (see se
tion 2.3), i.e

zk = dkρe
jϕkh (xk) + nk. (3.63)

3.3.3 Bayesian �lter and parti
le �lter approximation

The aim is now to 
ompute re
ursively the density p (xk, dk | z1:k) for any k ≥ 1, that is
to 
al
ulate the probability p (dk = 1 | z1:k) and the density p (xk | dk = 1, z1:k).

Con
erning the density p (xk | dk = 1, z1:k), the Bayesian �lter 
an be dire
tly derived

via the equation

p (xk | dk = 1, z1:k) =
p (xk | dk = 1, z1:k−1) p (zk | dk = 1,xk)

p (zk | dk = 1, z1:k−1)
, (3.64)

where the density p (xk | dk = 1, z1:k−1) is obtained via the Chapman-Kolmogorov equa-

tion where the integration must be performed on xk−1 and dk−1, i.e.

p (xk | dk = 1, z1:k−1) =
∑

dk−1

∫
p (xk,xk−1, dk−1 | dk = 1, z1:k−1) dxk−1. (3.65)

However, re
all that if dk = 1 then dk−1 = 1. Therefore the sum with respe
t to dk−1

must be done only for dk−1 = 1 and the Eq. (3.65) simpli�es to

p (xk | dk = 1, z1:k−1) =

∫
p (xk−1 | dk = 1, dk−1 = 1, z1:k−1) pc (xk | xk−1) dxk−1. (3.66)
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Moreover, as it was demonstrated with Eq. (2.78) and Eq. (2.79), the dependen
e with

dk = 1 in Eq. (3.66) 
an be removed, leading to the 
lassi
 Chapman-Kolmogorov equation

whi
h depends only on the density at the previous step and the transition density, i.e

p (xk | dk = 1, z1:k−1) =

∫
p (xk−1 | dk−1 = 1, z1:k−1) pc (xk | xk−1) dxk−1. (3.67)

Therefore, if a parti
le approximation

{
xnk , w

n
k,d

}Np,d

n=1
of the posterior p (xk−1 | dk−1 = 1, z1:k−1)

is available at step k − 1 (where Np,d is the number of parti
les) i.e.

p (xk−1 | dk−1 = 1, z1:k−1) ≈
Np,d∑

n=1

wnk−1,dδxn
k−1

(xk−1) , (3.68)

the unnormalized weights at step k are obtained, a

ording to Eq. (1.94), by

w̃nk,d = wnk−1,d

pc(x
n
k | xnk−1)

qc(xnk | xnk−1, zk)
p(zk | dk = 1,xnk), (3.69)

where qc(x
n
k | xnk−1, zk) is any instrumental density (in pra
ti
e the prior pc (xk | xk−1) is

often 
hosen) and the normalized weights are simply obtained through a normalization.

Lastly, the normalization term p (zk | dk = 1, z1:k−1), whi
h is required to 
al
ulate the

probability p (dk = 1 | z1:k), is provided by the following equation:

p (zk | dk = 1, z1:k−1) =

∫
p (xk | dk = 1, z1:k−1) p (zk | dk = 1,xk) dxk. (3.70)

This normalization term 
an be approximated, using the same reasoning as the normal-

ization term p (zk | τb = i, z1:k−1) in paragraph 3.2.4.2, by the following estimator:

p̂ (zk | dk = 1, z1:k−1) =
1

Ck

Np,d∑

n=1

w̃nk,d, (3.71)

where

Ck =

Np,d∑

n=1

wnk−1,d

pc(x
n
k | xnk−1)

qc(xnk | xnk−1, zk)
. (3.72)

Lastly, it remains to 
al
ulate the probability p (dk = 1 | z1:k). Using Bayes rule, it


an be rewritten as follows:

p (dk = 1 | z1:k) =
p (dk = 1 | z1:k−1) p (zk | dk = 1, z1:k−1)

p (zk | z1:k−1)
. (3.73)

Con
erning the 
al
ulation of quantities p (dk = 1 | z1:k−1) and p (zk | z1:k−1), it is also

possible to marginalize over dk as in Eq. (3.29) and Eq. (3.30). Then, it 
omes

p̂ (dk = 1 | z1:k−1) = p̂ (dk−1 = 1 | z1:k−1) (1− Pd) , (3.74)

and

p̂ (zk | z1:k−1) = p̂ (dk = 1 | z1:k−1) p̂ (zk | dk = 1, z1:k−1)+
p̂ (dk = 0 | z1:k−1) p (zk | dk = 0, z1:k−1) ,

(3.75)
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where p (zk | dk = 0, z1:k−1) = p (zk | dk = 0) is the likelihood for the 
ase when no target

is present and is obtained by Eq. (2.21). Finally, the probability p (dk = 1 | z1:k) 
an be

estimated by

p̂ (dk = 1 | z1:k+1) =
p̂ (dk = 1 | z1:k−1) p̂ (zk | dk = 1, z1:k−1)

p̂ (zk | z1:k−1)
. (3.76)

The algorithm s
heme for target disappearan
e is �nally explained by Algorithm 3.2.

Algorithm 3.2 Disappearan
e Time TBD Parti
le Filter

Require: {wnk−1,d,x
n
k−1}

Np,d

n=1 , p̂ (dk−1 = 1 | z1:k−1) at step k − 1.
1: for n = 1 to Np,d do

2: Draw xnk ∼ q
(
xk | dk = 1,xnk−1, zk

)
.

3: Compute unnormalized weight w̃k,d a

ording to Eq. (3.69).

4: end for

5: Compute Ck a

ording to Eq. (3.72)

6: Compute p̂ (zk | dk = 1, z1:k−1) a

ording to Eq. (3.71).

7: Normalization: wnk,d ←
w̃n

k,d
∑Np,d

l=1 w̃l
k,d

, n = 1 . . . Np,d.

8: Compute p̂ (zk+1 | z1:k) a

ording to Eq. (3.75).

9: Compute p̂ (dk = 1 | z1:k) a

ording to Eq. (3.76).

10: Compute Neff a

ording to Eq. (1.98).

11: if Neff < NT then

12: Resample Np,d parti
les

13: Reset weights: wnk,d ← 1
Np,d

n = 1, · · · , Np,d

14: end if

Ensure: {wnk,d,xnk}
Np,d

n=1 , p̂ (dk = 1 | z1:k).

3.4 Combination of parti
le �lters for target appear-

an
e and disappearan
e dete
tion

The �lters proposed in se
tion 3.2 and 3.3 
an only manage either the target appearan
e

or the target disappearan
e whereas in a TBD perspe
tive it should be desired to manage

both the appearan
e and the disappearan
e. Therefore, we propose in the sequel to


ombine the two �lters by adding an additional dete
tion stage. As long as no target

has been dete
ted, Algorithm 3.1 or B.1 is applied to sear
h for a target appearan
e. At

ea
h step, the target dete
tion is performed as in Chapter 2 by 
omparing the probability

p (bk = 1 | z1:k) to a given probability Pinit: if at time step k, p (bk = 1 | z1:k) ≥ Pinit, then
a target is de
lared present, and Np,d parti
les are resampled from the mixture

p̂ (xk | bk = 1, z1:k) =
∑

i∈Ik

α̂ip̂ (xk | τb = i, z1:k) ,

in order to initialize the disappearan
e parti
le �lter {1/Np,d,x
n
k}

Np,d

n=1 with p̂ (dk = 1 | z1:k) =
1. This new parti
le �lter is based on Algorithm 3.2 in order to dete
t the target dis-

appearan
e time. In the same manner, at ea
h step the probability p (dk = 1 | z1:k) is
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ompared to a given probability Pdeath. If p (dk = 1 | z1:k) ≤ Pdeath, target disappearan
e
is de
lared and a new �lter for target appearan
e dete
tion is then initialized.

Of 
ourse, target disappearan
e might be erroneously de
lared. Therefore, if the 
or-

responding tra
king �lter was simply deleted and a new one 
reated to dete
t a target

appearan
e, all the information gathered on the target state would be lost. It might be

wiser to initialize one mixture 
omponent using the information 
arried by the parti
les

of the time disappearan
e �lter, thus preserving the information gathered by this �lter.

More pre
isely, let us assume that at step kd, target disappearan
e was de
lared. Then, in-
stead of initializing the new time appearan
e �lter at the next step (i.e. 
onsidering {τb =
kd+1}), it might be more 
onvenient to 
onsider that a target has appeared at step kd with
p̂ (xkd | τb = kd, z1:kd) = p̂ (xkd | dkd = 1, z1:kd) and p̂ (τb = kd | z1:kd) = p̂ (dkd = 1 | z1:kd).
The required number of parti
les (Np,mix for Algorithm 3.1 and Np,init for Algorithm B.1


an simply be resampled from p̂ (xkd | dkd = 1, z1:kd). For the next iterations, the pro
e-

dure is exa
tly the same as the two proposed algorithms for time appearan
e dete
tion.

The resulting parti
le �lter is 
alled the Appearan
e Disappearan
e Dete
tion (ADD)

TBD Parti
le Filter. It is detailed in Algorithm 3.3.

Algorithm 3.3 ADD TBD Parti
le Filter

1: target_is_detected← false

2: for k = 1 to Nit {where Nit is the number of iterations of the algorithm} do

3: if target_is_detected = false then

4: Compute p (bk = 1 | z1:k) with Algorithm 3.1 or Algorithm B.1.

5: if p (bk = 1 | z1:k) ≥ Pinit then
6: target_is_detected← true

7: Sample Np,d parti
les from p̂ (xk | bk = 1, z1:k) to initialize a parti
le �lter for

Algorithm 3.2.

8: Set p (dk = 1 | z1:k) = 1 for this �lter.

9: end if

10: else

11: Compute p (dk = 1 | z1:k) with algorithm 3.2.

12: if p (dk = 1 | z1:k) ≤ Pdeath then
13: target_is_detected← false

14: SampleNp,mix or Np,init parti
les from p̂ (xk | dk = 1, z1:k) to initialize a parti
le
�lter p̂ (xk | τb = k, z1:k),

15: Set p (τb = k | z1:k) = p (dk = k | z1:k).
16: end if

17: end if

18: end for

3.5 Simulations and results

In this se
tion, we propose to illustrate the performan
e of the di�erent TBD algorithms

proposed in this 
hapter via Monte Carlo simulation. One of the main obje
tive of this

se
tion is to 
ompare the performan
e with the 
lassi
 parti
le �lters detailed in Chap. 2 in
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order to measure the possible gain when separating the dete
tion of the target appearan
e

and of the target disappearan
e as explained in introdu
tion.

3.5.1 S
enario

We 
onsider the same s
enario as in 
hapter 2, that is to say a s
enario with a number

of iterations Nit = 100 where a target appears at step kb = 15 and disappears at step

kd = 75. For ea
h Monte Carlo run, the initialization of the target state for the position

and the velo
ity at step kb is done a

ording to the birth density pb (.) de�ned in se
tion

2.2 (i.e. uniform prior over D = [rmin, rmax] × [θmin, θmax] for the position and over

[vmin, vmax]× [0, 2π] for the velo
ity), with the following parameters:

� rmin = 30 km, rmax = 36 km, θmin = 35◦ and θmax = 55◦,

� vmin = 100 m.s

−1
and vmax = 300 m.s

−1
.

For the iterations after kb the target state xk (for the position and the velo
ity) evolves

a

ording to Eq. (2.6) with no noise pro
ess (i.e. uniform linear motion). The time

between two 
onse
utive measurement is set to TS = 0.3 s.

The generation of the raw radar data is done as in the previous 
hapter with Γ = INc

(i.e. noise samples are assumed independent). The fun
tion h (.) is de�ned in paragraph

2.3 with the following parameters:

� For the range axis, B = 1 MHz, thus providing a range resolution ∆r = 150 m, and

Tp = 6.67× 10−5
s.

� For the azimuth axis, Na = 70 and d = λ/2, 
orresponding to a resolution ∆θ =
1.45◦.

Finally, for the parameter ρ several values (following the SNR de�nition provided in

paragraph 2.3.2) will be 
onsidered in the simulations.

3.5.2 Methodology for the performan
e evaluation

As in paragraph 2.7.2, we propose to evaluate the performan
e in two steps:

� In terms of dete
tion, i.e. measuring the 
apability of the �lter to e�e
tively dete
t

the target as qui
kest as possible while ensuring the smallest probability of false

alarm.

� and se
ondly in terms of estimation, i.e. estimating the a

ura
y of the estimator

when the TBD parti
le �lter has dete
ted the target.

To this purpose, we propose to use the same methodology as in the previous 
hapter. In

dete
tion, it means measuring the averaged probability of presen
e Pe,k over NMC Monte

Carlo runs, the average per
ent of time tD when the target is a
tually dete
ted and tbD
the per
ent of time when it is badly dete
ted (see 2.7.2.2). In estimation, performan
e is

evaluated with the RMSE in position and velo
ity from Eq. (2.100) and (2.101).
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3.5.3 Comparison between the ADD parti
le �lter and the marginal-

ized parti
le �lter

As we stressed in the beginning of the se
tion, the aim is to see the possible gain by using

two di�erent �lters for the appearan
e and the disappearan
e 
ompared to the 
lassi


method of the previous 
hapter. To this purpose, we propose to 
ompare the performan
e

of the following parti
le �lter:

� The �rst one, denoted as "ADD Filter, Np,mix 
onstant", 
onsists of the ADD TBD

parti
le �lter 3.3 where the parti
le �lter used to dete
t the target appearan
e is

the "Appearan
e Time TBD Parti
le Filter" (detailed by Algorithm 3.1), i.e. the

number of parti
les par mixture 
omponents is 
onstant over time. Con
erning the

Appearan
e Time TBD Parti
le the spe
i�
 parameters for this �lter are 
hosen

as follows: Np,mix = 1000, Nmix,max = 5, 
orresponding to a number of parti
le

Np = 5000 ; ea
h 
omponent is resampled at ea
h iteration (i.e. β = 1). Con
erning
the Disappearan
e parti
le �lter, the number of parti
le is set to Np,d = 1500 and

the resampling pro
edure is also performed at ea
h iteration.

� The se
ond one, denoted as "ADD Filter, Np,mix variable" 
onsists of the same

�lter as previously ex
ept that the parti
le �lter used for the target appearan
e is

the "Resample All Appearan
e Time TBD Parti
le Filter" outlined in paragraph

3.2.4.3 and detailed in Appendix B by Algorithm B.1. For this �lter the spe
i�


parameters are used: Np,init = 1000, Np,max = 5000, Np,all = 3000, Np,min = 4000,
βall = 0.1, βmin = 0.5.

� The last one, denoted as "Marginalized sk", 
onsists of the Marginalized Parti
le

Filter detailed in the previous 
hapter by Algorithm 2.3. The spe
i�
 parameters

of this �lter are set with the following values: Np = 5000 and Np,c = 4000, i.e. at

ea
h iteration 1000 parti
les are initialized.

For all the �lters, the probability Pb and Pd are set to 0.1. Con
erning the instrumental

density qb (. | zk), it is 
hosen as follows:

� In position, the optimal mixture importan
e density q (. | zk) spe
i�ed in Eq. (2.39)

with the following parameters: Pfa = 0.1, δr = 2, δθ = 3, Nρ = 5 and PDk,γ
= 1 (i.e.

parti
le positions are only initialized in the 
ells above threshold).

� In amplitude, the prior density is used (i.e. uniform prior). The interval for the

amplitude parameter ρ is set to [3, 13] (in dB).

� For the velo
ity, the velo
ity of birth parti
les is initialized at the next step, see

paragraph 2.5.3 for details.

Con
erning the 
ontinuing 
ase or alive parti
le, the prior density is used for the �lters.

Lastly, the probability Pinit and Pdeath, they are set respe
tively to 0.9 and 0.2.
Results are provided in Figures 3.4, 3.5 and Table 3.1.

In dete
tion, the �gure 3.4 does not show signi�
ant di�eren
es between the di�erent

parti
le �lters, ex
ept that the "ADD Filter, Np,mix variable" seems slightly better for

very low SNR (3dB) whi
h is 
orroborated by the per
ent time of dete
tion whi
h a little
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Figure 3.4 � Averaged probability of presen
e Pe,k with di�erent target SNR (7dB, 5dB

and 3dB).

better for this �lter. In 
ontrast, some important di�eren
es 
an be observed in terms

of per
ent of bad dete
tion tbD that is more important for the "sk Marginalized" parti
le

�lter for all the SNR. This point 
an be explained by the fa
t that the "sk Marginalized"

parti
le �lter 
ontinues to initialize parti
le whereas the �lter has already dete
ted the

target. Therefore, in some situations, espe
ially when the probability of presen
e Pe,k is

not 
lose to one, the birth parti
les may have a non negligible 
ontribution to the target

state estimate, even if they are lo
ated far away from the a
tual target position, and thus

may lead to a bad dete
tion. However, although the "sk Marginalized" parti
le �lter has

a poorer per
ent of bad dete
tion tbD, it has a better probability of false alarm.

In estimation, above a SNR of 7dB there is no di�eren
e between the di�erent par-

ti
le �lters. By 
ons, from 5 dB and below, the ADD parti
le �lter both for "Np,mix


onstant" and "Np,mix variable" provide better performan
e for the estimation of the po-

sition. Again, it 
an be explained by the fa
t that the "sk Marginalized" parti
le �lter

initializes parti
les even if it has dete
ted the target. In velo
ity the "ADD Filter, Np,mix


onstant" and "sk Marginalized" �lters provide quite similar performan
e while the "ADD

Filter, Np,mix variable" is less e�
ient.

Lastly, in terms of 
omputational time, the "ADD Filter" both for "Np,mix 
onstant"

and "Np,mix variable" is faster than the "sk Marginalized". This is not surprising sin
e

most of the 
omputational resour
es are devoted to the initialization of parti
les, so as
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Figure 3.5 � RMSE in position and in velo
ity for the proposed parti
le �lters with di�erent

target SNR (7dB, 5dB and 3dB).

"ADD Filter" does not initialize parti
les when the target is dete
ted the 
omputational

time is lower than the "sk Marginalized" that initializes parti
les whatever the target is

dete
ted or not. Besides, the di�eren
e be
omes lower with low target SNR sin
e the

proportion of time where the �lters try to dete
t the target be
omes more important. In

fa
t, the gain in 
omputational time is prin
ipally made during the period of time where

the target is dete
ted by the �lter.

In summary, this simulation has allowed to show the pertinen
e of separating the

dete
tion of the target appearan
e and disappearan
e with two di�erent �lters. Indeed, it

allows to redu
e the 
omputational time when the target is dete
ted sin
e, in that 
ase, no

parti
les are initialized without degrading the performan
e in dete
tion and estimation.

Besides, performan
e is better for the "ADD Filter, Np,mix 
onstant" both in dete
tion

(in parti
ular for the per
ent of bad dete
tion tbD) and in estimation, but at a 
ost of a
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SNR (dB) 7 5 3

Filter 1 2 3 1 2 3 1 2 3

P PF
fa (×10−3

) 4.8 6.53 2.71 4.8 6.53 2.71 4.8 6.53 2.71

tD 93.2% 93.3% 92.9% 81.1% 80.1% 81.1% 42.7% 44% 41.5%

tbD 0.03% 0.04% 0.13% 0.16% 0.20% 0.98% 0.55% 0.85% 1.99%

rel. MC run

duration 1.05 1 2.07 1.04 1 1.85 1.07 1 1.41

Table 3.1 � Dete
tion performan
e and relative averaged MC run duration for the di�erent

parti
le �lters used in the simulation for di�erent target SNR. Filter 1 refers to "AD Filter,

Np,mix 
onstant", 2 to "AD Filter, Np,mix 
onstant" and 3 to "sk Marginalized".

slight raise of the probability of false alarm. Furthermore, it seems that the resampling

strategy that 
onsider Np,mix variable over time provides worse performan
e than the one

with Np,mix 
onstant. A

ording to us, this 
on
lusion should be taken with 
aution sin
e

only one set of parameters has been tried, thus it may exist a better set of parameter or

even an other resampling strategy whi
h is better.

3.6 Con
lusion

In this 
hapter, we presented an alternative approa
h to the modeling of the monotarget

TBD problem. We shown that it is possible to model the monotarget TBD problem as a

qui
kest dete
tion problem in a Bayesian framework both for the target appearan
e and

disappearan
e.

In the appearan
e 
ase, we demonstrated, in se
tion 3.2, that the posterior density

of the target state 
an be expanded as a mixture density. Moreover, in se
tion 3.2.4, we

proposed several parti
le �lter approximations, one that 
onsiders a 
onstant number of

parti
les per mixture 
omponent and an other one that allows a variable number of parti-


les. In the same manner, in the disappearan
e 
ase whi
h is easier than the appearan
e


ase, we outlined the theoreti
al Bayesian �lter and a parti
le �lter approximation. More-

over, in se
tion 3.4, in order to dete
t both the target appearan
e and disappearan
e, we

proposed a parti
le �lter that 
ombines the two previous parti
le �lters.

Lastly, in se
tion 3.5, a Monte Carlo simulation was performed to 
ompare the novel

approa
h proposed in this 
hapter with the monotarget 
lassi
 parti
le �lters detailed in

the previous 
hapter. This simulation has allowed to show the bene�t of using two di�erent

parti
le �lters for the target appearan
e and disappearan
e. Indeed, the simulation has

highlighted that initializing parti
les when the parti
le �lter has 
onverged to the a
tual

target state may disturb the target estimation and as a 
onsequen
e the performan
e

in estimation. Moreover, it also highlighted that it sensibly in
reases the 
omputational

time without providing signi�
ant gain in estimation or dete
tion (ex
ept a slightly lower

probability of false alarm). Therefore, a

ording to us, this 
hapter validates the idea of

using spe
i�
 �lters for the target appearan
e or disappearan
e. In parti
ular, in 
hapter

5, this idea will be adapted to the multitarget setting.
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Chapter 4

Measurement equation and likelihood


al
ulation for Tra
k-Before-Dete
t

appli
ations

4.1 Introdu
tion

This 
hapter deals with the 
al
ulation of the likelihood of the measurement 
ondition-

ally to the target state in Tra
k-Before-Dete
t 
ontext. Indeed, in se
tion 1.2.1, we

explained that a parti
le �lter requires the 
al
ulation (if possible not 
ostly) of the like-

lihood p (zk | xk). However, in Tra
k-Before-Dete
t appli
ations this likelihood 
annot

be 
omputed dire
tly from the measurement equation (2.8) sin
e this latter depends on

the target 
omplex amplitude parameters ρk and ϕk that are unknown and may �u
tuate

over time. Therefore, several strategies have been proposed in the literature in order to

release the 
al
ulation of the likelihood from these unknown parameters. The �rst ones

[RRG05, DRC08, BDV

+
03℄ 
onsist in working on the squared-modulus of the 
omplex

samples. Using su
h a strategy allows, in some 
ases, to 
al
ulate the likelihood in a

simple manner. On the other hand, it leads to some information loss on the target am-

plitude parameter. In parti
ular, the spatial 
oheren
e of the phase, i.e. the fa
t that

the phase of the target amplitude takes the same value in all 
ells, is then lost, indu
ing

a possible performan
e degradation. This loss was shown in [DRC12℄ to severely degrade

the performan
e. Thus, in their arti
le, Davey et al. [DRC12℄ have proposed a new strat-

egy that allows to keep all the information provided by the measurement by working on

the 
omplex raw radar data zk rather than on the squared-modulus. In parti
ular, this

solution allows to keep the spatial 
oheren
e of the amplitude parameters. However, in

their paper they only investigated the Swerling 0 �u
tuation model and the monotarget


ase.

Therefore, the obje
tive of this 
hapter is to extend their work both for amplitude

�u
tuations of type Swerling 0, 1 and 3 and for the multitarget 
ase.

This 
hapter is organized as follows. In se
tion 4.2 we present the state and measure-

ment models. Then in se
tion 4.3 we present solutions for the likelihood 
omputation

from 
omplex and squared modulus measurements. In se
tion 4.4 we derive, when pos-

sible, 
losed forms for the likelihood with Swerling �u
tuations of type 0, 1 and 3 in the

113
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monotarget and multitarget 
ases; when not possible, we propose approximations to al-

leviate the 
omputational time. Finally in se
tion 4.5 we present simulation results that

show the gain both in dete
tion and in estimation of the 
omplex measurement method

over the squared modulus method.

4.2 Problem Formulation

The measurement model 
orresponding to the output signal zk was presented at the end

of the "radar signal pro
essing stage" in 
hapter 1 se
tion 1.1.8 (see also Figure 1.1). If

at a given time index k, Nk targets are present, the output signal (or raw radar data) zk
is provided by the following equation:

zk =

Nk∑

i=1

ρk,ie
jϕk,ih(xk,i) + nk, (4.1)

where:

� h(xk,i) represents the possibly multidimensional ambiguity fun
tion of the ith target

entered on the target state xk,i. For the sake of simpli
ity, h(xk,i) will be denoted
hk,i in the sequel.

� nk is a zero mean 
ir
ular 
omplex Gaussian ve
tor with 
ovarian
e matrix Γ.

� ϕk,i and ρk,i are respe
tively the phase and the modulus of the ith target 
omplex

amplitude. All variables ϕk,1:Nk
and ρk,1:Nk

are supposed mutually independent, and

independent from nk and xk,1:Nk
.

Ea
h phase ϕk,i is supposed to be unknown and uniformly distributed over the interval

[0, 2π) at ea
h time step k. On the other hand, ea
h modulus ρk,i is assumed to be drawn

from a generi
 density

ρk,i ∼ pϑi (ρk) , with ρk ∈ R≥0, (4.2)

where ϑi is an unknown stati
 parameter. Note here that these amplitude parameters

depend on the time instant k, due to the temporal �u
tuation of the target amplitude. The

Swerling models are 
onvenient in radar to statisti
ally model these amplitude �u
tuations

over time. The Swerling 0 model 
orresponds to a 
onstant amplitude modulus (i.e. no

temporal �u
tuation); the Swerling 1 and 3 models 
onsider slow �u
tuations (i.e. the

modulus �u
tuates from burst to burst, where a burst 
orresponds to a train of pulses,

but it is 
onstant from pulse to pulse) respe
tively modeled by a Rayleigh distribution

and a 
hi-square distribution with four degrees of freedom. Lastly, the Swerling 2 and 4
models 
onsider respe
tively the same �u
tuation densities as the Swerling 1 and 3 but

with fast �u
tuations (i.e. from pulse to pulse). We do not 
onsider these latter models

in this 
hapter and thus fo
us only on the Swerling �u
tuation models of type 0, 1 and

3. The likelihood 
al
ulation for these models will be detailed in se
tion 4.4.
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Figure 4.1 � Re
eived signal (noise-free) 
orresponding to the lth target at two adja
ent

time steps k and k + 1, where dots represent the 
orresponding measured samples. ρk,l
and ϕk,l are the same for all 
ells of zk (we denote this feature spatial 
oheren
e) but their

values 
hange independently and randomly over time; there is no temporal 
oheren
e from

step k to step k + 1.

4.2.1 Temporal 
oheren
e versus spatial 
oheren
e

An important point to be stressed here is that variables ρk,1:Nk
and ϕk,1:Nk

are spatially


oherent : this means that the 
omplex target amplitude ρk,ie
jϕk,j

is identi
al over all 
ells

where the signal ambiguity fun
tion spreads. Taking into a

ount this information 
an

really in
rease the performan
e of the Tra
k-Before-Dete
t algorithms [DRC12℄. On the


ontrary, these variables ρk,1:Nk
and ϕk,1:Nk

are not assumed 
oherent over time, i.e. from

time sample k to k+1, amplitude parameters �u
tuate independently. As a 
onsequen
e,

no information 
an be gathered over time on these parameters. These dependen
ies are

illustrated in Figure 4.1.

4.2.2 State of the art

The obje
tive of this 
hapter is therefore to 
ompute the measurement likelihood in a

general multitarget TBD 
ontext with unknown �u
tuating amplitude parameters. Sev-

eral solutions have been provided in the literature, mainly in a monotarget setting.

The �rst solution that deals with the unknown 
omplex amplitude 
onsiders a mono-

target setting and 
onsists in working on the squared modulus of the 
omplex signal

[BDV

+
03, SB01, RAG04, RRG05, DRC08℄. For su
h a radi
al solution that 
ompletely

dis
ards the phase dependen
y, two strategies 
an be 
onsidered to deal with the modulus

�u
tuation. The �rst one 
onsists in marginalizing the whole likelihood with respe
t to the

density of the modulus �u
tuation [DRC08℄. In pra
ti
e, this leads to intra
table integrals

that must be approximated numeri
ally. The se
ond strategy 
onsists in marginalizing

independently the likelihood in ea
h 
ell [RRG05℄. The advantage of this heuristi
 se
-

ond solution is that a 
losed form 
an be obtained for �u
tuations of type Swerling 0,
1 and 3 [MB08℄. On the other hand the spatial 
oheren
e of the modulus, i.e. the fa
t

that the modulus of the target amplitude takes the same value in all 
ells, is then lost,
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Swerling 0 Swerling 1 Swerling 3

Complex

measurement

Monotarget Eq.(4.15) and

[DRC12℄

Multitarget

Squared

modulus

Monotarget,

non 
oherent

Eq.(4.25) and

[MB08℄

Eq.(4.49) and

[MB08℄

Eq.(4.52),

Eq.(4.51) and

[MB08℄

Multitarget,

non 
oherent

Eq.(4.49) and

[BDV

+
03℄

Monotarget,


oherent

Eq. (4.4.2.1)

and [DRC12℄

Eq. (4.4.2.1)

and [DRC12℄

(4.4.2.1), and

[DRC12℄

Multitarget,


oherent

Table 4.1 � Summary of the state of the art for the likelihood 
omputation with di�erent

data types (
omplex measurements or squared modulus), di�erent Swerling models (type

0, 1 and 3) and di�erent number of targets (mono or multitarget). The squared modulus

measurement are splitted between 
oherent 
omputation and non 
oherent 
omputation.

Ea
h �lled 
ell 
ontains the referen
e of the equation in this 
hapter that provides the

expression for the likelihood, and the 
itation of the 
orresponding paper.

indu
ing a possible degradation of performan
e. Note also that the spatial 
oheren
e of

the phase is lost for both strategies. This loss was shown in [DRC12℄ to severely degrade

the performan
e.

To avoid this last drawba
k, Davey et al. [DRC12℄ have proposed a new strategy

that allows preserving the spatial 
oheren
e of the phase. Their solution 
onsists in

dire
tly working on 
omplex measurements and marginalizing the 
omplex likelihood of

the whole data over the phase. It provides better performan
e than solutions based on

squared modulus. However, they mainly investigated the 
ase where the modulus does

not �u
tuate (i.e. Swerling 0 
ase); for modulus �u
tuations, they only provide a general

marginalization formula. One of the 
ontributions of this 
hapter is an extension of their

work with 
omplex measurements to �u
tuations of type Swerling 1 and 3; we show that


losed-forms 
an be obtained for the monotarget likelihood in both 
ases.

Furthermore, all the previously dis
ussed strategies with squared modulus or 
omplex

measurements were proposed in a monotarget setting. In fa
t, to our knowledge, the

multitarget 
ase has not been investigated in the literature, ex
ept for the Swerling 1 
ase
with squared modulus [BDV

+
03℄. Thus, another 
ontribution of this 
hapter 
onsists in


onsidering the multitarget 
ase both with squared modulus and 
omplex measurements.

In the 
omplex measurement 
ase, we provide a 
losed-form expression for the likelihood in

the Swerling 1 
ase, and we propose in the other �u
tuation 
ases some approximations

to alleviate the 
omputational 
ost. In the squared modulus 
ase, we show that, as
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soon as at least two targets are present, all phase dependen
ies 
annot be removed from

the likelihood; in fa
t taking the squared modulus permits to remove only one phase,

so that other phases must be marginalized. In that latter 
ase, we also propose some

approximations in order to redu
e the 
omputational 
omplexity.

The Table 4.1 summarizes the state of the art for the likelihood 
omputation with dif-

ferent data types (
omplex measurements or squared modulus), di�erent Swerling models

(type 0, 1 and 3) and di�erent numbers of target (mono or multitarget). The aim of this


hapter is to �ll any empty 
ell in this table.

4.3 Likelihood 
al
ulation for Tra
k-Before-Dete
t ap-

pli
ations

In this se
tion, we propose to develop the di�erent methods presented in the previous

paragraph "State of Art". We �rst start by explaining how to 
al
ulate the likelihood

for Tra
k-Before-Dete
t appli
ations with the 
omplex measurement and then with the

squared-modulus.

4.3.1 Likelihood 
omputation with 
omplex measurements

4.3.1.1 Likelihood from the measurement equation

As previously pointed out, the likelihood p (zk | xk,1:Nk
), i.e. the likelihood of the observa-

tion 
onditionally to the target states 
annot be 
al
ulated dire
tly from the measurement

equation (4.1) sin
e it depends on phase and amplitude parameters ϕk,1:Nk
and ρk,1:Nk

that

are unknown and not temporally 
oherent. Nevertheless, from this equation, it is possible

to 
al
ulate the likelihood of the measurement zk 
onditionally to the states xk,1:Nk
and

the amplitudes parameters ϕk,1:Nk
and ρk,1:Nk

, i.e p (zk | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
). Indeed,

sin
e the noise nk is 
omplex Gaussian, the 
orresponding density is then a 
omplex

Gaussian density with mean µk =

Nk∑

i=1

ρk,ie
jϕk,ihk,i and 
ovarian
e matrix Γ:

p (zk | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
) =

1

πNc det (Γ)
exp

{
− (zk − µk)

H
Γ−1 (zk − µk)

}
. (4.3)

Then by developing Eq. (4.3), it 
omes

p (zk | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
) =

exp
{
−zHk Γ−1

zk

}

πNc det (Γ)
×exp

{
−
Nk∑

i=1

ρ2k,ih
H
k,iΓ

−1
hk,i+

Nk∑

i=1

2ρk,i|hHk,iΓ−1
zk| cos (ϕk,i − ξk,i)−

Nk∑

i=1

Nk∑

l=i+1

2ρk,iρk,l
∣∣hHk,iΓ−1

hk,l

∣∣ cos (ϕk,i − ϕk,l − φk,il)

}
,

(4.4)

where ξk,i = arg
(
hHk,iΓ

−1zk
)
and φk,il = arg

(
hHk,iΓ

−1hk,l
)
.
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4.3.1.2 Marginalizing over the phase and modulus parameters

Sin
e parameters ϕk,1:Nk
and ρk,1:Nk

are assumed to be random variables, it is possible to

write the joint likelihood of the measurement zk and the amplitude parameters 
ondition-

ally to the target states xk,1:Nk
, that is given by

pϑ1:Nk
(ϕk,1:Nk

, ρk,1:Nk
, zk | xk,1:Nk

) = pϑ1:Nk
(ϕk,1:Nk

, ρk,1:Nk
| xk,1:Nk

)×
p (zk | xk,1:Nk

, ϕk,1:Nk
, ρk,1:Nk

) .

(4.5)

From the hypotheses in the measurement model, the density of phases ϕk,1:Nk
and am-

plitudes ρk,1:Nk
pϑ1:Nk

(ϕk,1:Nk
, ρk,1:Nk

| xk,1:Nk
) does not depend on xk,1:Nk

and expends as

follows

pϑ1:Nk
(ϕk,1:Nk

, ρk,1:Nk
| xk,1:Nk

) = p (ϕk,1:Nk
) pϑ1:Nk

(ρk,1:Nk
) (4.6)

=

Nk∏

i=1

p (ϕk,i) pϑi (ρk,i). (4.7)

Finally the likelihood pϑ1:Nk
(zk | xk,1:Nk

) 
an be obtained by marginalizing Eq. (4.5) over

parameters ρk,1:Nk
and ϕk,1:Nk

:

pϑ1:Nk
(zk | xk,1:Nk

) =

∫
· · ·
∫

R
Nk
≥0×[0,2π)Nk

p (zk | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
)×

p (ϕk,1:Nk
) pϑ1:Nk

(ρk,1:Nk
) dϕk,1:Nk

dρk,1:Nk
.

(4.8)

First, noti
e that the spatial 
oheren
e is preserved in this formulation thanks to the

marginalization. However, this likelihood expression still depends on the stati
 parameters

ϑ1:Nk
that have been supposed unknown. It is possible to deal with these stati
 parameters

by adding them in the state ve
tor xk,1:Nk
as explained in paragraph 4.3.1.3.

Then, note that most of the Bayesian TBD algorithms require either to 
al
ulate the

likelihood ratio between the likelihood of the observation 
onditionally to the state ve
tor

and the likelihood of the observation 
onditionally to the event that no target is present

(i.e. Nk = 0); or the likelihood 
an be 
al
ulated up to a 
onstant (e.g. parti
le �lters).

As a 
onsequen
e, the 
onstant term in Eq. (4.4), given by

p (zk | Nk = 0) =
1

πNc det (Γ)
exp

{
−zkΓ−1zk

}
, (4.9)

whi
h is the likelihood 
onditionally to the event that no target is present, does not

need to be 
al
ulated, providing dire
tly the likelihood ratio or the likelihood up to this


onstant. Note that, for the sake of 
larity, this 
onstant term will be always dis
arded

in the likelihood expression provided in the rest of the 
hapter.

At last, an important point is that Eq. (4.8) is often intra
table, even for two targets,

and must then be 
omputed numeri
ally. However, in se
tion 4.4.1.2, it will be shown

that a 
losed-form 
an be obtained for the parti
ular Swerling 1 �u
tuation model. For

other �u
tuation models, the numeri
al implementation implies the evaluation of multiple
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integrals over several parameters and the 
omputational 
ost may be rapidly prohibitive

in the multitarget 
ase. Fortunately, target 
ontributions 
an in many 
ases be separated

so that the multitarget likelihood be
omes equal to the produ
t of monotarget likelihoods

that 
an be 
omputed in 
losed-form. This separation arises when targets do not intera
t

in the likelihood expression (4.4). This 
an be translated mathemati
ally by the following


ondition: ∣∣hHk,uΓ−1hk,v
∣∣ ≈ 0, for any (u, v), u 6= v, (4.10)

that allows to remove all 
ross terms in Eq. (4.4). In pra
ti
e, this hypothesis may arise

for instan
e when Γ = INc and targets are far away from ea
h other. Indeed, for ea
h

target the ambiguity ve
tor hk,i has only signi�
ant values in a few number of 
ells around

the target lo
ation and 
an be assumed equal to zero elsewhere, so that the ambiguity

ve
tor 
an be trun
ated as explained in paragraph 2.4.2.3. Therefore, the s
alar produ
t

between ambiguity fun
tion hk,u and hk,v is approximately equal to zero for su�
iently

distant targets. Note however that when Γ 6= INc , 
ondition (4.10) 
annot be veri�ed as

straightforwardly and should thus be 
arefully 
he
ked, even for distant targets. Indeed,

the inner produ
t indu
ed by matrix Γ−1
may mix the 
omponents of hk,u and hk,v even

when they are lo
ated far apart from ea
h other.

Finally, the expression of the likelihood pϑ1:Nk
(zk | xk,1:Nk

, ρk,1:Nk
, ϕk,1:Nk

) be
omes un-

der 
ondition (4.10):

pϑ1:Nk
(zk | xk,1:Nk

, ρk,1:Nk
, ϕk,1:Nk

)

∝ exp

{
−

Nk∑

i=1

ρ2k,ih
H
k,iΓ

−1hk,i+

Nk∑

i=1

2ρk,i|hHk,iΓ−1zk| cos (ϕk,i − ξk,i)
}

∝
Nk∏

i=1

exp
{
−ρ2k,ihHk,iΓ−1hk,i + 2ρk,i|hHk,iΓ−1zk| cos (ϕk,i − ξk,i)

}
,

(4.11)

where the ith term of the produ
t, denoted by

Ξzk,xk,i
(ρk,i, ϕk,i) = exp

{
−ρ2k,ihHk,iΓ−1hk,i + 2ρk,i|hHk,iΓ−1zk| cos (ϕk,i − ξk,i)

}
, (4.12)

only depends on parameters ρk,i and ϕk,i. As variables ρk,1:Nk
and ϕk,1:Nk

are independent,

the joint density (4.8) then simply be
omes

pϑ1:Nk
(zk|xk,1:Nk

) ∝
Nk∏

i=1

∫ +∞

0

∫ 2π

0

Ξzk,xk,i
(ρk,i, ϕk,i)p(ϕk,i)pϑi(ρk,i)dϕk,idρk,i. (4.13)

Thus, everything happens as if ea
h target is pro
essed separately. This drasti
ally allevi-

ates the 
omputational 
omplexity of integral (4.8) and allows pro
essing distant targets

with parallel �lters as we will see in 
hapter 5 whi
h is dedi
ated to the Bayesian Multitar-

get Filter in Tra
k-Before-Dete
t 
ontext. Of 
ourse, when 
ondition (4.10) is not veri�ed,

this simpli�
ation 
an be done only for separated targets, while targets that 
annot be

separated must be pro
essed by the same �lter.

In the monotarget 
ase, integral (4.8) be
omes

pϑ (zk|xk) ∝
∫ +∞

0

∫ 2π

0

p (zk|xk,1:Nk
, ϕk, ρk)p(ϕk)p(ρk)dϕkdρk. (4.14)
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Davey et al. [DRC12℄ have shown in this parti
ular monotarget 
ase that the marginal-

ization 
an be done over the phase ϕk, providing

pϑ (zk | xk, ρk) ∝
∫ 2π

0

p(zk|xk, ϕk, ρk)p(ϕk)dϕk,

∝ exp
{
−ρ2khHk Γ−1hk

}
I0

(
2ρk

∣∣hHk Γ−1zk
∣∣),

(4.15)

where I0 is the modi�ed Bessel fun
tion of the �rst kind, i.e.

I0 (x) =
+∞∑

l=0

(
x
2

)2l

(l!)2
. (4.16)

Then, the likelihood is obtained by integrating (4.15) over the generi
 density pϑ (ρk) that
depends on the �u
tuation model 
onsidered.

4.3.1.3 Dealing with the unknown stati
 parameters of the modulus �u
tua-

tion densities

In a Bayesian perspe
tive, a possible solution to deal with these parameters 
onsists in


hoosing a prior density for ea
h parameter ϑi (for instan
e a uniform prior over a given

interval [ϑi,min, ϑi,max], where ϑi,min and ϑi,max are provided) and then in marginalizing

also over these parameters. Note that in a �ltering perspe
tive the likelihood p(zk | xk,1:Nk
)

is 
al
ulated at ea
h iteration step k. It might then be 
onvenient to use the fa
t that the

parameters ϑ1:Nk
are 
onstant in order to estimate them over time. In this perspe
tive, the

problem of state-spa
e models with unknown stati
 parameters has been widely studied

in the literature [Kit98, Sto02, ADST04℄.

A popular solution 
onsists in expli
itly introdu
ing arti�
ial dynami
s on the stati


parameters [ADST04℄ and 
onsidering them as 
omponents of the state ve
tor. Thus,

the new state ve
tor for ea
h target be
omes x′
k,i = [xTk,i, ϑk,i]

T
where the evolution of

parameter ϑk,i is Markovian, i.e.:

ϑk,i = ϑk−1,i + εk,i, (4.17)

with εk,i a small Gaussian noise, and ϑ0,i ∼ p0 (ϑ). Then, sin
e parameters ϑk,1:Nk
belong

to the state ve
tor, they do not need to be marginalized in the likelihood expression (4.8)

that be
omes:

pϑk,1:Nk
(zk | xk,1:Nk

) = p
(
zk | x′

k,1:Nk

)
. (4.18)

Finally, in order to alleviate the notations, we will denote by xk,1:Nk
the state ve
tor


ontaining the parameters ϑk,1:Nk
(i.e. x′

k,1:Nk
). Thus, in the sequel, all the likelihood

expressions p (zk | xk,1:Nk
) for the Swerling models studied in this 
hapter will be provided

with the randomized parameter ϑk,1:Nk
.

4.3.2 Likelihood 
omputation with squared modulus

In the previous se
tion, the exa
t 
omputation of the likelihood from 
omplex measure-

ments has been presented. In this se
tion, a di�erent approa
h often 
onsidered in the
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literature, whi
h 
onsists in working only with the squared modulus of the 
omplex data

[RRG05, DRC08, BDV

+
03℄, is exposed. This approa
h is interesting in appli
ations where

only the squared modulus of the data is available but also be
ause it allows to remove the

phase dependen
y in a monotarget setting. This simpli�es in some extent the 
omputa-

tions, at the 
ost of loosing the spatial 
oheren
e of the phase. Squared modulus were also


onsidered in an appli
ation involving two targets with Swerling 1 amplitude �u
tuations

[BDV

+
03℄. In this spe
i�
 appli
ation, the spatial 
oheren
e of the target amplitude was

not 
onsidered, thus simplifying the 
omputation at the 
ost of some information loss. We

will derive here the general multitarget likelihood in the squared modulus framework. It

di�ers from expressions obtained in the literature sin
e it does not make any approxima-

tion and thus properly takes into a

ount the spatial 
oheren
e of the 
omplex amplitude.

Moreover we show that the squared modulus approa
h does not allow in the multitarget

setting to remove all phase dependen
ies. Thus, as with 
omplex measurements, these

phase variables must be taken into a

ount, for instan
e by marginalization.

First, let us assume, as in the literature [DRC12, BDV

+
03, SB01℄, that the 
ovarian
e

matrix has the following expression Γ = 2σ2INc, i.e. the 
omplex noise samples nk are

mutually independent. Note however that, sin
e modulus ρk,1:Nk
and phases ϕk,1:Nk

are

random variables and spatially 
oherent at time k, this hypothesis does not allow to

establish that signal samples from zlk are independent; these samples are independent

only 
onditionally to variables ρk,1:Nk
and ϕk,1:Nk

. Then, with a slight abuse of notation,

let us denote by |zk|2 the ve
tor of squared modulus of the 
omplex signal : |zk|2 =
[|z1k|2, . . . , |zNc

k |2]T . Sin
e the noise samples zlk are independent 
onditionally to variables

ρk,1:Nk
and ϕk,1:Nk

, this property also holds for squared modulus of the noise samples |zlk|2,
thus allowing to expend the likelihood p(|zk|2 | xk,1:Nk

, ρk,1:Nk
, ϕk,1:Nk

) as follows

p(|zk|2 | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
) =

Nc∏

l=1

p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
). (4.19)

The desired density p(|zk|2 | xk,1:Nk
) 
an be obtained from p(|zk|2 | xk,1:Nk

, ρk,1:Nk
, ϕk,1:Nk

)
exa
tly in the same way as with 
omplex measurements, by marginalizing over all variables

ρk,1:Nk
and ϕk,1:Nk

. Remark that the hypothesis of independen
e is absolutely ne
essary

here to establish Eq.(4.19). The 
ondition Γ = 2σ2INc 
an be generalized to diagonal 
o-

varian
e matri
es, but the 
ase where Γ is not a diagonal matrix is mu
h more 
ompli
ated

even for two 
oupled variables: in that 
ase, squared modulus samples are 
orrelated, thus

leading to distributions with no 
losed-form, for instan
e multivariate Rayleigh distribu-

tion in the Swerling 1 
ase [Mal03℄. Note also that in pra
ti
e, this hypothesis is veri�ed

with 
lassi
 mat
hed �ltering in presen
e of white Gaussian noise and an appropriate sam-

pling rate, but it may not be veri�ed anymore when modifying the re
eption pro
essing,

for instan
e by applying 
lassi
 weighting windows su
h as Hamming, Bartlett, Hann, et
.

[Har78℄ that modify the noise 
orrelation after pro
essing.

Before going further into the 
omputation, we would like to highlight here an interest-

ing property that arises when 
onsidering squared modulus of 
omplex data, and that has

never been dis
ussed to our knowledge in the literature: although Nk targets are present,

providing Nk di�erent and independent random phases ϕk,1:Nk
, it is possible to show, by


hanging the set of parameters, that the density p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
) e�e
tively

depends only on Nk − 1 phase variables. Indeed the variable |zlk|2 
an be de�ned up to
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an arbitrary phase ϕ′
sin
e |zlk|2 = |eϕ

′
zlk|2, and we 
an write for instan
e

∣∣zlk
∣∣2 =

∣∣∣∣∣ρk,1h
l
k,1 +

Nk∑

i=2

ρk,ie
jϕ′

k,ihlk,i + n′l
k

∣∣∣∣∣

2

(4.20)

where all n′l
k = nlke

−jϕk,1
are still independent 
ir
ular symmetri
 
omplex Gaussian noise

samples, and phases ϕ′
k,i = ϕk,i − ϕk,1 are still uniform variables distributed over the

interval [0, 2π). Thus, |zlk|2 only depends on Nk − 1 phase variables. Therefore, taking

the squared modulus of the 
omplex signal leads to drop out the dependen
e of one and

only one phase. As a 
onsequen
e, in a monotarget setting the density of |zlk|2 does not

depend any longer on the phase ϕk but only on the modulus; this is one of the main

reasons to use su
h a te
hnique for the TBD monotarget algorithms. On the 
ontrary, in

the multitarget setting, taking the squared modulus does not remove all dependen
ies on

the phases! This dependen
y remains present through 
oherent summations of the target


ontributions in ea
h 
ell. Dis
arding it may lead to loosing all the information provided

by the spatial 
oheren
e of the phase variables.

Conditionally to variables xk,1:Nk
, ρk,1:Nk

and ϕ′
k,2:Nk

, ea
h sample

|zlk|
2

σ2
follows a non


entral 
hi-square distribution with two degrees of freedom; indeed it 
orresponds to

the sum of the squares of two non-
entered Gaussian variables. The density p(|zlk|2 |
xk,1:Nk

, ρk,1:Nk
, ϕ′

k,2:Nk
) is thus provided by:

p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕ′
k,2:Nk

) =
1

2σ2
exp

{
−|z

l
k|2

2σ2
− γl

(
ϕ′
k,2:Nk

, ρk,1:Nk

)

2

}

I0



√
γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
|zlk|2

σ2


 ,

(4.21)

where γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
is the non 
entrality parameter equal to

γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
=

∣∣∣∣∣ρk,1h
l
k,1 +

Nk∑

i=2

ρk,ie
jϕ′

k,ihlk,i

∣∣∣∣∣

2

σ2
.

(4.22)

At this step, mono and multitarget 
ases are di�erent, and we will 
onsider them sepa-

rately in the following. Finally, note that, as with 
omplex measurements, the likelihood


an be 
omputed up to a 
onstant. Therefore terms

1
2σ2

exp
{
− |zlk|

2

2σ2

}
will be dis
arded in

the rest of the paper.

4.3.2.1 The monotarget 
ase

In a monotarget setting, the non-
entrality parameter in ea
h 
ell be
omes

γl (ρk) =
ρ2k|hlk|2
σ2

(4.23)
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and does not depend on ϕk. The joint likelihood 
an then be obtained by marginalizing

Eq.(4.19) over the parameter ρk:

p(|zk|2 | xk) =
∫ ∞

0

Nc∏

l=1

p(|zlk|2 | xk, ρk)pϑk(ρk)dρk, (4.24)

where pϑk(ρk) is the density for the parameter ρk. As for 
omplex measurements, this

marginalization allows preserving the spatial 
oheren
e of the parameter ρk. Sin
e integral
(4.24) is, to our knowledge, intra
table for Swerling �u
tuations models of type 1 and

3 (it 
onsists in integrating Nc Bessel fun
tions), it must be in that 
ase approximated

numeri
ally. Note that we do not 
onsider the Swerling 0 model here, sin
e the integration

over the density pϑk(ρk) just 
onsists in repla
ing the parameter ρk by a 
onstant.

To avoid performing a numeri
al approximation, an heuristi
 solution was proposed

by Rutten et al. [RRG05℄ that 
onsists in �rst marginalizing independently ea
h sample

of the signal |zk|2 a

ording to pϑ(ρk), i.e.

p(|zlk|2 | xk) =
∫ ∞

0

p(|zlk|2 | ρk,xk)pϑk(ρk)dρk. (4.25)

Clearly the spatial 
oheren
e of ρk is lost sin
e the integration is performed independently

for ea
h measurement sample and not over the whole measurement ve
tor. On the other

hand, the 
al
ulation of integral (4.25) 
an be done analyti
ally for Swerling �u
tuation

models of type 1 and 3, leading to simple 
losed-forms expressions. Then, the whole

likelihood is 
al
ulated by assuming that samples |z1k|2, . . . , |zNc

k |2 are independent. Under
that assumption,

p(|zk|2 | xk) =
Nc∏

l=1

p(|zlk|2 | xk), (4.26)

Re
all that this is not true in general be
ause of the spatial 
oheren
e of random variable

ρk that tends to establish a dependen
y between neighbour measurement samples. Thus,

rigorously, measurement samples |zlk|2 are independent 
onditionally to the state xk and

the parameters ρk and ϕk, but they are not generally independent 
onditionally to the

state xk only. In other words, if we know the values of the state xk and the parameters

ρk and ϕk, then we know how the state and these parameters in�uen
e the di�erent mea-

surement samples, so that the only unknown 
omes from the independent noise samples.

When we only know the state xk but not the parameters ρk and ϕk, then we do not know

exa
tly the link between the di�erent measurement samples, and they 
annot be assumed

independent anymore.

It is �nally interesting to observe here that, if a similar assumption was used in the


omplex measurement 
ase (i.e. independen
e of the amplitude parameters from sample to

sample, whi
h resorts to removing the spatial 
oheren
e of the amplitude parameter), then

the likelihood for the 
omplex measurement (without spatial 
oheren
e) would be equal

to the produ
t of the sample likelihood for ea
h 
omplex sample and be
ome identi
al to

the likelihood with squared modulus (still without spatial 
oheren
e). This 
omes from

the fa
t that when 
omputing the likelihood for one single sample, the phase parameter

does not matter, or, in other words, does not provide any information.
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4.3.2.2 The multitarget 
ase

As previously dis
ussed, in the multitarget 
ase the parameter γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
still

depends on the Nk−1 phase variables ϕ′
k,2:Nk

. The likelihood must thus be obtained by

marginalization over modulus ρk,1:Nk
and phases ϕ′

k,2:Nk
:

p(|zk|2 | xk,1:Nk
) =

∫
· · ·
∫

R
Nk
≥0×[0,2π)Nk−1

Nc∏

l=1

p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕ′
k,2:Nk

)pϑk,1:Nk
(ρk,1:Nk

)×

p(ϕ′
k,2:Nk

)dρk,1:Nk
dϕ′

k,2:Nk
.

(4.27)

As in the monotarget 
ase, this expression is to our knowledge intra
table. The same

heuristi
 as in the monotarget 
ase 
an be used: �rst marginalizing independently ea
h

sample from ϕ′
k,2:Nk

and ρk,1:Nk
as in (4.25), providing

p(|zlk|2 | xk,1:Nk
) =

∫
· · ·
∫

R
Nk
≥0×[0,2π)Nk−1

p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕ′
k,2:Nk

)pϑk,1:Nk
(ρk,1:Nk

)p(ϕ′
k,2:Nk

)

dρk,1:Nk
dϕ′

k,2:Nk
,

(4.28)

and then approximating the whole likelihood as in Eq. (4.26). Note, however, that


ontrary to the monotarget 
ase there is in general no 
losed-form for the integral (4.28),

so that numeri
al integration must still be performed.

Finally, as with 
omplex measurements, target 
ontributions 
an often be separated

so that the multitarget likelihood then resorts to a produ
t of monotarget likelihoods.

This separation is obtained under the 
ondition hlk,ih
l
k,j ≈ 0, for any i, j, i 6= j that allows

to eliminate all 
ross terms in Eq. (4.22).

4.4 Likelihood 
omputation for Swerling models

In this se
tion, we will derive the measurement likelihood with three di�erent Swerling

models: Swerling 0, Swerling 1 and Swerling 3. For ea
h model, �rst the 
ase of 
omplex

measurements will be 
onsidered and se
ond the 
ase of squared modulus measurements.

Whenever 
losed-forms are not obtainable, we will propose approximations that allow to


ompute the likelihood at a lower 
omputational 
ost.

4.4.1 Complex measurements

4.4.1.1 Swerling 0 
ase

The modulus ρk,i of ea
h target is assumed 
onstant and equal to an unknown 
onstant

ρi. This 
orresponds to the following generi
 �u
tuation density for ea
h target:

pϑi (ρk,i) = δϑi (ρk,i) , (4.29)

where δϑi (.) is the delta mass Dira
 fun
tion at point ϑi and where the parameter ϑi
is thus equal to ρi. Whereas parameters ρ1:Nk

are unknown, they 
an be added to the

state ve
tor and treated exa
tly as the other state parameters, as it has been explained
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in paragraph 4.3.1.3. Moreover, with this parti
ular �u
tuation density, the integration

over variables ρk,1:Nk
in Eq. (4.8) just 
onsists in substituting ea
h variable ρk,i by the


onstant parameter ρi. Sin
e this parameter ρi is a priori unknown, it is then repla
ed

by the dynami
al parameter ρk,i as explained in se
tion 4.3.1.3) (note here the slight

abuse of notation sin
e ρk,i refers to the parameter ρi evolving over time and not to

the value of the amplitude modulus at step k). Finally, the integral (4.8) that 
orre-

sponds to the 
omplex measurement likelihood must just be 
omputed over parameters

ϕk,1:Nk
. In the general multitarget 
ase, this integral is, a

ording to our knowledge, in-

tra
table and must be approximated ex
ept for the parti
ular single target 
ase. A �rst

solution 
onsists in 
al
ulating numeri
ally the integral over the domain [0, 2π)Nk
but

this may be
ome rapidly 
omputationally demanding. Thus, we propose to repla
e the

intra
table likelihood by its Lapla
e approximation that has been already su

essfully

used in parti
le �lter appli
ation [MBQLG11℄. Let Hk = [ρ1hk,1, . . . , ρNk
hk,Nk

] and let

Ψk = Ψk (ϕk,1:Nk
) = [ejϕk,1, . . . , ejϕk,Nk ]T . Equation (4.8) 
an be rewritten as follows:

p (zk | xk,1:Nk
) ∝

∫
· · ·
∫

[0,2π)Nk

exp
{
Υxk,1:Nk

(ϕk,1:Nk
)
}
dϕk,1:Nk

. (4.30)

where

Υxk,1:Nk
(ϕk,1:Nk

) = − (zk −HkΨk (ϕk,1:Nk
))H Γ−1 (zk −HkΨk (ϕk,1:Nk

)) . (4.31)

The integral (4.30) 
an be approximated using the Lapla
e method [MBQLG11℄. Roughly

speaking, the Lapla
e method 
onsist in using a polynomial approximation of the fun
tion

Υxk,1:Nk
(.) of order one at its maximum, thus allowing to evaluate the integral (4.30). The

Lapla
e approximation 
an be then expressed as follows:

pSW0 (zk | xk,1:Nk
) ≈ exp

{
Υxk,1:Nk

(ϕ̂k,1:Nk
)
} (2π)

Nr
2

∣∣∣det
(
−∇2Υxk,1:Nk

(ϕ̂k,1:Nk
)
)∣∣∣

1
2

, (4.32)

where ϕ̂k,1:Nk
are the phases maximizing the fun
tion Υxk,1:Nk

(.) and ∇2Υ (.) is the Ja-


obian matrix 
al
ulated with the phases ϕ̂k,1:Nk
. The phases ϕ̂k,1:Nk


annot be obtained

analyti
ally even for two targets and an optimization method su
h as a gradient des
ent

must be used. However, the fun
tion in Eq. (4.31) has the parti
ular stru
ture of a

quadrati
 form in the variable Ψk, therefore it is possible to use the 
lassi
 least square

estimator

Ψ̂k =
(
HH
k Γ

−1Hk

)−1
HH
k Γ

−1zk (4.33)

and to 
al
ulate a value 
lose to the a
tual maximum by taking for ea
h phase ϕ̂k,i the

argument of the 
orresponding 
omponent Ψ̂k,i, i.e.

ϕ̂k,i = arg
(
Ψ̂k,i

)
. (4.34)

Note that the maximum is not exa
tly rea
hed with the estimator Ψ̂k sin
e it may not

respe
t the 
onstraint that all its 
omponents have a modulus equal to one (i.e. Ψ̂k is not

a ve
tor of phase as Ψk (ϕk,1:Nk
)). In pra
ti
e, this estimator is in most of the situations
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lose to the a
tual maximum. However, in some situations, for instan
e when 
omponents

hk,1:Nk
are almost 
olinear, the di�eren
e 
an be greater. In that latter 
ase, an optimiza-

tion must be performed or the �lter performan
e will be degraded. A 
ompromise must

then be done between the quality of the estimate and the 
omputational time required to

rea
h it.

4.4.1.2 Swerling 1 
ase

Ea
h modulus ρk,i follows a Rayleigh distribution:

pϑi(ρk,i) = pSW1 (ρk,i) =
ρk,i
σ2
ρi

exp

(
−
ρ2k,i
2σ2

ρi

)
(4.35)

where σρi is the parameter of the Rayleigh distribution, assumed unknown, su
h that

E[ρ2k,i] = 2σ2
ρi

and 
orresponds to the generi
 parameter ϑi of the density in Eq. (4.2).

Obviously, as in the Swerling 0 
ase, this parameter 
an be added to the state ve
tor.

Although the integral (4.8) with respe
t to the Swerling 1 densities for parameters ρk,1:Nk

and with respe
t to variables ϕk,1:Nk
seems to be intra
table, in pra
ti
e the density

p(zk | xk,1:Nk
) 
an be obtained using other probabilisti
 
onsiderations. Indeed, in the

Swerling 1 model, sin
e ρk,i follows a Rayleigh distribution with parameter σρi and ϕk,i
is uniformly distributed over [0, 2π), ea
h variable ρk,ie

jϕk,i
in the measurement equation

(4.1) is a zero-mean 
ir
ular symmetri
 
omplex Gaussian variable with varian
e 2σ2
ρi
.

Therefore zk, whi
h is then the sum of independent Gaussian ve
tors with zero-mean, is

a 
omplex Gaussian ve
tor with zero-mean and 
ovarian
e matrix ΣNk
given by

ΣNk
= Γ+

Nk∑

i=1

2σ2
ρi,k

hk,ih
H
k,i. (4.36)

Clearly, this matrix is de�nite positive, so that the multi-target likelihood is �nally given

in 
losed form by:

pSW1 (zk | xk,1:Nk
) ∝ 1

det (ΣNk
)
exp

(
−zHk Σ−1

Nk
zk
)
. (4.37)

In pra
ti
e, the 
omputation of the likelihood requires the evaluation of det (ΣNk
) and

Σ−1
Nk

that 
an be 
omputationally demanding sin
e matrix ΣNk
is a square matrix of size

equal to the length of the 
onsidered ve
tor hk,i. Fortunately, these quantities 
an be

easily 
omputed by using 
lassi
 linear algebra formulas. Indeed, the matrix ΣNk

an be

written

ΣNk
= Γ +UVUH , (4.38)

with U = [hk,1, · · · ,hk,Nk
] a matrix with Nk 
olumns and V = diag

(
2σ2

ρ1,k
, · · · , 2σ2

ρNk
,k

)
.

Then using a 
lassi
 matrix inversion lemma (see [Mur12℄, p. 117), it 
omes

Σ−1
Nk

= Γ−1 − Γ−1U
(
V−1 +UHΓ−1U

)−1
UHΓ−1. (4.39)
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The inverse of matrix Γ 
an be pre-
omputed, while V is a diagonal matrix and matrix(
V−1 +UHΓ−1U

)
is an Nk-by-Nk matrix of mu
h smaller size than ΣNk

as long as the

number of targets Nk remains small 
ompared to the number of 
onsidered 
ells. In that


ase its inversion implies a drasti
ally redu
ed 
ost 
ompared to the inversion of ΣNk
.

Furthermore, the 
omputational 
ost of the determinant 
an also be redu
ed using the

matrix determinant lemma (see [Mur12℄, p. 117)

det (ΣNk
) = det

(
V−1 +UHΓ−1U

)
det (V) det (Γ) . (4.40)

Note that no hypothesis was made here about the 
loseness of the targets and therefore

this 
losed-form expression is valid both for distant and 
lose targets. Finally, for the

parti
ular monotarget 
ase, the likelihood simply be
omes

pSW1 (zk | xk) ∝
1

1 + 2σ2
ρ,kh

H
k Γ

−1hk
exp

(
2σ2

ρ|hHk Γ−1
zk|2

1 + 2σ2
ρ,kh

H
k Γ

−1hk

)
. (4.41)

4.4.1.3 Swerling 3 
ase

Ea
h squared modulus ρ2k,i follows a 
hi-square distribution with four degrees of freedom,

so that the 
orresponding density for the modulus ρk,i is provided by:

pϑi(ρk,i) = pSW3 (ρk,i) =
8ρ3k,i
ν2ρi

exp

(
−
2ρ2k,i
νρi

)
, (4.42)

where the parameter νρi , assumed unknown, is su
h that E[ρ2k,i] = νρi . Again, this pa-

rameter 
an be added to the state ve
tor as for the Swerling 0 and 1 
ase.

A

ording to our knowledge, no 
losed form 
an be obtained for Eq (4.8) in the Swerling

3 
ase and a numeri
al approximation must be done, implying the numeri
al 
omputation

of Nk integrals over modulus ρk,1:Nk
and Nk integrals over phases ϕk,1:Nk

. However, it is

possible to avoid the numeri
al integration over the parameters ρk,1:Nk
by approximating

the 
hi-square distribution by a Ri
e distribution; note indeed that the Swerling 3 model


an be viewed as an approximation of a Ri
e distribution [Ri
07℄. Using a Ri
e distribution

instead of the Swerling 3 model, the density of the modulus ρk,i be
omes

p
Ri
e

(ρk,i) =
2ρk,i(1 + a2)

νρi
exp

(
−a2 − ρ2k,i

(1 + a2)

νρi

)
I0

(
2a

√
ρ2k,i

(1 + a2)

νρi

)
, (4.43)

where a is the ratio between the dominant s
atterer and the weaker ones. By 
hoosing

a =
√
1 +
√
2, it 
an be easily 
he
ked that densities of the squared modulus ρ2k,i under

Swerling 3 and Ri
e models provide the same means and varian
es [Ri
07℄. Now 
onsider

the 
omplex amplitude ρk,ie
jϕk,i

where ρk,i is distributed a

ording to the Ri
e distribution
(4.43). Re
all �rst that this Ri
e distribution is the distribution of the modulus of a


omplex Gaussian variable with mean µSW3,i = a
√

νρi
(1+a2)

and varian
e 2σ2
SW3,i =

νρi
(1+a2)

.

Then we 
an repla
e ea
h variable ρk,ie
jϕk,i

in (4.1) by a variable ξk,ie
jψk,i

where the

variables ξk,i and ψk,i are respe
tively Gaussian and uniform, and su
h that ξk,ie
jψk,i

follows
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the same distribution as ρk,ie
jϕk,i

. Conditionally to phases ψk,1:Nk
, the observation zk is a


omplex Gaussian ve
tor with mean

µk,SW3 =

Nk∑

i=1

µSW3,ie
jψk,ihk,i

and 
ovarian
e matrix

ΦNk
= Γ +

Nk∑

i=1

2σ2
SW3,ihk,ih

H
k,i.

The density is then given by

p
Ri
e

(zk | xk,1:Nk
, ψk,1:Nk

) ∝ 1

det (ΦNk
)
exp

(
−
(
zk − µk,SW3

)H
Φ−1
Nk

(
zk − µk,SW3

))
.

(4.44)

Clearly, the 
omputational 
ost of Φ−1
Nk

and det (ΦNk
) 
an be redu
ed as in the Swerling 1


ase. Then, it just remains to marginalize (4.44) over the phases ψk,1:Nk
. This marginal-

ization 
annot be 
omputed analyti
ally and must then be 
al
ulated numeri
ally, ex
ept

in the monotarget 
ase.

In the parti
ular monotarget 
ase, a 
losed-form 
an be obtained both for the 
hi-

square distribution and the Ri
e distribution. For the 
hi-square distribution, the ex-

pression in Eq. (4.15) must be integrated over density (4.42). The following result (see

[GR07℄, p. 1097 Eq. 6.663)

∫ +∞

0

x3 exp
(
−αx2

)
I0 (βx) dx =

2

α2

(
1 +

β

4α

)
exp

(
β2

4α

)
, (4.45)

where α ∈ R
∗
≥0 and β ∈ R, is used with α = 2

νρ
+ hHk Γ

−1hk and β = 2
∣∣hHk Γ−1zk

∣∣
. Then,

the likelihood for the 
hi-square Swerling 3 model in the monotarget 
ase is given by

pSW3 (zk | xk) ∝
4

(2 + νρ,khHk Γ
−1hk)

2

(
1 +

νρ,k
∣∣hHk Γ−1zk

∣∣
2 + νρ,khHk Γ

−1hk

)
exp

(
νρ,k

∣∣hHk Γ−1zk
∣∣2

2 + νρ,khHk Γ
−1hk

)
.

(4.46)

For the Ri
e distribution, it is possible to integrate Eq. (4.44) over the phase ψ, a


omputation similar to the one providing Eq. (4.15), Then, the likelihood for the Ri
e

Swerling 3 model in the monotarget setting is equal to

p
Ri
e

(zk | xk) ∝
(1 + a2) exp (−a2)

1 + a2 + νρ,khHk Γ
−1hk

exp

(
νρ,k

∣∣hHk Γ−1zk
∣∣2 + a2 (1 + a2)

1 + a2 + νρ,khHk Γ
−1hk

)
×

I0

(
2a
∣∣hHk Γ−1zk

∣∣√(1 + a2) νρ,k

1 + a2 + νρ,kh
H
k Γ

−1hk

)
.

(4.47)

4.4.2 Squared modulus measurements

As it has been shown, the likelihood 
omputation with the squared modulus 
an be done

in two ways, either by taking into a

ount the spatial 
oheren
e of the phases and mod-

ulus with Eq. (4.27) or by marginalizing independently in ea
h 
ell with Eq. (4.28). As

these two 
ases are di�erent, we treat them separately in the following.
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4.4.2.1 The 
oherent 
ase

In the 
oherent 
ase, the likelihood is obtained a

ording to Eq. (4.27) by repla
ing the

generi
 density p (ρk,i) by the density of the �u
tuation 
onsidered. However, a

ording

to our knowledge, it 
annot be done analyti
ally for the Swerling models and the integral

must be approximated numeri
ally. Moreover, note that it 
an be really intensive in

terms of 
omputational resour
es espe
ially when the number of targets is large sin
e

the size of the integration domain in
reases exponentially with the number of targets.

For this reason, we propose an heuristi
 solution that 
onsists in repla
ing the parameter

γl (ρk,1:Nk
, ϕk,2:Nk

) by its expe
tation

E[γl (ρk,1:Nk
, ϕk,2:Nk

)] =

Nk∑

i=1

E [ρ2i ] |hlk,i|2
σ2

, (4.48)

where E [ρ2i ] only depends on the parameter of the �u
tuations density. Thus, integrals

(4.27) are simply the produ
t of the densities in Eq. (4.19) for all the 
ells. This is a

strong approximation for the likelihood, but as it will be seen in se
tion 4.5, it gives inter-

esting performan
e and it is really faster than the numeri
al integration whi
h is 
ostly in

terms of 
omputational resour
es. In the monotarget 
ase, the likelihood is given by Eq.

(4.24) that requires the integration only over parameter ρk and therefore the numeri
al

approximation 
an be done with reasonable 
ost.

4.4.2.2 The non 
oherent 
ase

The non 
oherent 
ase 
onsists in 
al
ulating Eq. (4.28) for ea
h 
ell and then making the

produ
t over the Nc. In pra
ti
e for the Swerling 0 
ase, it is not interesting be
ause Eq.

(4.28) 
an be 
al
ulated dire
tly; thus it is preferable to still use Eq. (4.27) to 
al
ulate the

likelihood sin
e it takes into a

ount the spatial 
oheren
e of variables ϕk,2:Nk
. Neverthe-

less, for the Swerling 1 and 3 
ases, probabilisti
 
onsiderations 
an be used to 
al
ulate

Eq. (4.28). Indeed, in the Swerling 1 
ase Boers et al. [BDV

+
03℄ noti
ed that ea
h

sample |zlk|2 follows an exponential distribution with parameter λlk = 1

2σ2+
∑Nk

i=1 2σ
2
ρi,k

|hl
k
|2
,

so that

p(|zlk|2 | xk,1:Nk
) =

1

λlk
exp

(
−|z

l
k|2
λlk

)
. (4.49)

For the Swerling 3 
ase, the integration over parameters ρk,1:Nk

an be avoided with

the Ri
e �u
tuations. Indeed, by repla
ing ea
h variable ρk,ie
jϕk,i

by a variable ξk,ie
jψk,i

,

ea
h sample

|zlk|2

σ2 +
∑Nk

i=1 σ
2
SW3,i

∣∣hlk
∣∣2


onditionally to variables ψk,1:Nk
follows a non 
entral 
hi-square distribution with two

degrees of freedom and with non-
entrality parameter

γl
Ri
e

(
ψ′
k,2:Nk

)
=

∣∣∣∣∣µSW3,1h
l
k,1 +

Nk∑

i=2

µSW3,ie
jψ′

k,ihlk,i

∣∣∣∣∣

2

σ2 +
∑Nk

i=1 σ
2
SW3,i

∣∣hlk
∣∣2 ,

(4.50)
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that does not depend on parameters ρk,1:Nk
anymore. The density of |zlk|2 
onditionally

to ψ′
k,2:Nk

is given by Eq. (4.21) where σ2
is substituted by σ2 +

∑Nk

i=1 σ
2
SW3,i

∣∣hlk
∣∣2

and

γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
by γl

Ri
e

(
ψ′
k,2:Nk

)
. Finally the likelihood |zlk|2 is obtained by integrating

only over variables ψ′
k,2:Nk

.

In the monotarget 
ase, integral (4.25) 
an be 
omputed analyti
ally both for the Ri
e

distribution and the 
hi-square distribution. For the Ri
e distribution, no integration over

phase ψ′
k,1 is required and the likelihood is provided by

pSW3,Ri
e

(∣∣∣zlk
∣∣∣
2
| xk

)
∝

2σ2(1 + a2) exp
(
−a2

)

2σ2(1 + a2) + νρ,k
∣∣hlk
∣∣2 exp


νρ,k

|hlk|2|zlk|2
2σ2

+ 2σ2a2
(
1 + a2

)

2σ2 (1 + a2) + νρ,k
∣∣hlk
∣∣2




I0

(
2a
∣∣hlk
∣∣ ∣∣zlk

∣∣√(1 + a2) νρ,k

1 + a2 + νρ,k
∣∣hlk
∣∣2

)
.

(4.51)

For the 
hi-square distribution, result (4.45) is used with α =
νρ,k|hlk|2+4σ2

2νρ,kσ2
and β =

|hlk||zlk|
σ2

.

Then, integral (4.25) be
omes

pSW3,χ2

(∣∣zlk
∣∣2 | xk

)
∝

(4σ2)
2

(
4σ2 + νρ,k

∣∣hlk
∣∣2
)2

(
1 +

1

2

νρ,k
∣∣hlk
∣∣ ∣∣zlk

∣∣

4σ2 + νρ,k
∣∣hlk
∣∣2

)
exp

(∣∣zlk
∣∣2

2σ2

νρ,k
∣∣hlk
∣∣2

4σ2 + νρ,k
∣∣hlk
∣∣2

)
.

(4.52)

4.4.3 Summary

In this se
tion, we have provided several solutions to 
ompute the likelihood in a Tra
k-

Before-Dete
t 
ontext for 
omplex amplitude �u
tuations of type Swerling 0, 1 and 3. For

the 
omputation of the likelihood with the 
omplex measurement, we have shown that a


losed-form 
an be obtained for all the Swerling �u
tuations 
onsidered in the monotarget


ase. In the multitarget 
ase, a 
losed-form 
an be obtained only in the Swerling 1 
ase,

while in the other 
ases a numeri
al integration must be performed; however we propose

several methods in order to alleviate the time 
al
ulation. For the likelihood with the

squared modulus of the 
omplex measurement, we have derived the right expression in

order to keep the spatial 
oheren
e information of 
omplex amplitude parameters and

we have shown that only the dependen
y of one phase 
an be removed, however this

leads to an intra
table integral for all the Swerling models. Then approximations must

be performed; we propose a few solutions for su
h approximations. Table 4.2 presents a

sum-up of the di�erent te
hniques to 
al
ulate the likelihood with the existing methods

or those proposed in this 
hapter.

4.5 Simulation and Results

In this se
tion, we �rst study the performan
e in dete
tion and estimation of a single target

parti
le �lter that 
onsiders either 
omplex or squared modulus measurements. We show

the improvement of using 
omplex measurements both in dete
tion and in estimation only
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Swerling 0 Swerling 1 Swerling 3

Complex

measurement

Monotarget Eq. (4.15) and

[DRC12℄

Eq. (4.41) Eq. (4.46),

Eq. (4.47)

Multitarget Eq. (4.8),

and 4.4.1.1

Eq. (4.37) Eq. (4.8),

Eq. (4.44)

Squared

modulus

Monotarget,

non 
oherent

Eq. (4.25) and

[MB08℄

Eq. (4.49) and

[MB08℄

Eq. (4.52),

Eq. (4.51) and

[MB08℄

Multitarget,

non 
oherent

Eq. (4.28) Eq. (4.49) and

[BDV

+
03℄

Eq. (4.28)

and 4.4.2.2

Monotarget,


oherent

Eq. (4.4.2.1)

and [DRC12℄

Eq. (4.4.2.1)

and [DRC12℄

Eq. (4.4.2.1),

and [DRC12℄

Multitarget,


oherent

Eq. (4.27)

and 4.4.2.1

Eq. (4.27)

and 4.4.2.1

Eq. (4.27)

and 4.4.2.1

Table 4.2 � Summary of the likelihood 
omputation with di�erent data types (
omplex

or squared modulus measurements), di�erent Swerling models (type 0, 1 and 3) and

di�erent number of targets (mono or multitarget). The squared modulus measurement


ase is splitted between 
oherent 
omputation and non 
oherent 
omputation. Ea
h 
ell


ontains the referen
e of the equation in this 
hapter that provides the expression for the

likelihood. When this expression previously appeared in the literature, the 
itation of the


orresponding paper is provided as well. Contributions of this 
hapter are highlighted in

bold and itali
.

for the Swerling 1 and 3 model as Davey et al. have already shown the bene�ts of doing

so in the Swerling 0 
ase [DRC12℄. Then, we study the behaviour of a simple multitarget

parti
le �lter for two 
lose targets. Performan
e are evaluated in terms of estimation of

the two target states and tra
k loss for �u
tuations of type Swerling 0, 1 and 3.

4.5.1 Single target simulation and results

4.5.1.1 S
enario of the simulation

We 
onsider a s
enario with 100 time steps. The target appears at time step kb = 10
and disappears at step kd = 75. At time step kb, the target state is initialized with the

prior distribution pb (.) de�ned in se
tion 2.2 and until time step kd the state is propa-

gated a

ording to Eq. (2.6) (with qs = 0). We also assume that the entire traje
tory is


ontained within area D (de�ned in se
tion 2.2.2). The SNR of the target is �xed either

to 5, 7 or 10 dB and we 
onsider �u
tuations of type Swerling 1 and 3. Con
erning the

measurement model, we use the one de�ned in se
tion 2.3.
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4.5.1.2 Single target parti
le �lter and performan
e evaluation

TBD parti
le �lter For the simulations, we 
onsider the TBD monotarget parti
le

�lter des
ribed in se
tion 2.6 (denoted as "Marginalized TBD Parti
le Filter"). More-

over, for the unknown stati
 parameters 2σ2
ρ and νρ that 
orrespond respe
tively to the

parameter of the Swerling 1 and Swerling 3 �u
tuation densities, we add them to the

state ve
tor as explained in paragraph 4.3.1.3. Therefore, for ea
h parti
le the modulus

parameter 2σ2
k,p is simply propagated a

ording to

2σ2
k,p = 2σ2

k−1,p + ǫk, (4.53)

where ǫk is Gaussian noise, with varian
e σn. Finally, parameters σ2
0,p and ν0,p are drawn

uniformly over the interval 
orresponding to a target SNR between SNRmin and SNRmax

for the birth parti
les.

Con
erning the other state parameters (i.e. the position and the velo
ity):

� For the 
ontinuing 
ase, state parameters are propagated a

ording to the prior (i.e.

Eq. (2.6)).

� For the birth 
ase, the position is assumed to be initialized with the instrumental

density de�ned in Eq. (2.41) and that 
orresponds to initializing the position uni-

formly over the 
ells that ex
eed the threshold γ = −2σ2 log(Pfa) (where Pfa is

a given false alarm probability). Note that the approximation of optimal density

de�ned in Eq. (2.39) is not used here. Indeed, su
h a density 
annot be used with

the squared-modulus measurements. Therefore, in order to make a fair 
omparison

between the parti
le �lter that uses the squared-modulus measurements with the

one that uses the 
omplex measurements, we 
hoose an instrumental density that


an be used in both 
ases. Finally, for the velo
ity, it is simply assumed to be

initialized with the instrumental density de�ned in paragraph 2.5.3.

Performan
e evaluation As we explained in se
tion 2.7, the "Marginalized TBD Par-

ti
le Filter" does not take any de
ision about the presen
e or the absen
e of the target

in the radar window. In this 
ase, we have already stressed that it is di�
ult to properly

measure the performan
e in estimation without making any de
ision about the target

presen
e or absen
e, and without taking into a

ount the fa
t that the �lter has e�e
-

tively 
onverged to the a
tual target state. Therefore, we propose to use the methodology

developed in Chapter 2 that 
onsists in:

� First using the variable dTk,i detailed in Eq. (2.95) to make the dete
tion.

� Then, using the indi
ator of good estimate ek,i de�ned by Eq. (2.96) (for k ∈
{kb, · · · , kd − 1}) in order to determine if the �lter has 
onverged on the a
tual

target state.

� Lastly, estimating the RMSE in position and velo
ity respe
tively with Eq. (2.100)

and (2.101).
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4.5.1.3 Simulations

For the simulation of the target s
enario, the following parameters are used: T=0.3 s,

vmin = 100m/s, vmax = 300m/s, SNRmin = 3 dB, SNRmax = 13 dB, qs = 10−3
, Pfa = 0.1

and σ2
n = 0.05. The transition probabilities for the parti
le �lter are set to Pb = Pd = 0.05.

The number of 
ontinuing parti
les is set to Nc = 2000 and the number of newborn

parti
les to Nb = 1000. Con
erning the dete
tion strategy, we 
hoose Th(dk−1 = 0) = 0.9
and Th(dk−1 = 1) = 0.2.

For the simulation of the radar measurements, the parameters used are: rmin = 100 km,

rmax = 120 km, θmin = −10◦, θmax = +10◦, Nr = 40, Nθ = 14, σ2 = 0.5, B = 1MHz,

Te = 6.67× 10−5
s, Na = 70, c = 3× 108m.s−1

. Note that a small radar window is 
hosen

here to avoid using an important number of parti
les and thus limit the 
omputational


ost.

Three �lters are used to dete
t and estimate the hidden target state xk, based on

di�erent assumptions for the likelihood 
omputation:

1. The �rst �lter, labeled as "Coh Sq-Mod", 
onsiders squared modulus to 
ompute the

likelihood and takes into a

ount the spatial 
oheren
e of the amplitude parameter

ρk: it 
orresponds to Eq. (4.24).

2. The se
ond �lter, labeled as "Non Coh Sq-Mod", 
onsiders squared modulus but

does not take into a

ount the spatial 
oheren
e of the amplitude parameter ρk: it

orresponds to Eq. (4.25).

3. The third �lter, labeled as "Coh Comp", 
onsiders 
omplex measurements and

spatial 
oheren
e: it 
orresponds to Eq. (4.14).

NMC = 1000 Monte Carlo simulation were performed for performan
e measurement.

Dete
tion performan
e In �gures 4.2 and 4.3, we present the average of the proba-

bility of existen
e variable P̂k,e whi
h is measured at ea
h step for the Swerling 1 and 3

models respe
tively. In both 
ase, �lters that use the 
omplex measurement outperform

those that use squared modulus measurements. Furthermore, the di�eren
e between the

"Coh Sq-Mod" �lter and the "Non Coh Sq-Mod" �lter is quite small, therefore it seems

that taking into a

ount the spatial 
oheren
e of the phase is more important than taking

into a

ount the modulus information. Moreover, the "Non Coh Sq-Mod" �lter requires

numeri
al approximation that leads to in
rease the 
omputational time for a very small

gain in dete
tion.

Estimation performan
e In �gures 4.4 and 4.5, we present the result in terms of

RMSE in position and velo
ity for the Swerling 1 and 3 models respe
tively. As for all

the dete
tion results, parti
le �lters that used the 
omplex measurement outperform �lters

that work on squared modulus measurements. Moreover, note that the RMSE in position

seems to be better at the beginning whi
h is not expe
ted sin
e the tra
king alogrithm

should improve the RMSE. However, this 
an be explained by the fa
t that the RMSE

is 
al
ulated only over the iteration where the target has been dete
ted (i.e. dTk = 1)
and at the beginning only a few simulations have dete
ted the target (in parti
ular for
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Figure 4.2 � Monte Carlo simulation results for the single target 
ase with the Swerling

1 model. Average of the probability of existen
e variable P̂k,e. SNR is equal to 5, 7 and

10 dB.

the SNR of 5dB or 7dB) � These dete
tions 
orrespond to favorable 
ases where the

target 
ontribution is not disturb too mu
h by noise. For the next iteration, the �lter has

dete
ted the target more often than at the beginning, therefore the RMSE is 
al
ulated

over more Monte-Carlo runs among whi
h less favorable 
ases. In parti
ular, the 
ases

where the target is lo
ated at the edge of the 
ell that indu
e a loss in SNR and as a


onsequen
e an in
rease of the RMSE in position.
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Figure 4.3 � Monte Carlo simulation results for the single target 
ase with the Swerling

3 model. Average of the probability of existen
e variable P̂k,e. SNR is equal to 5, 7 and

10 dB.
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Figure 4.4 � Monte Carlo simulation results for the single target 
ase with the Swerling

1 model. Top: RMSE in position. Bottom: RMSE in velo
ity. SNR is equal to 5, 7 and

10dB.



136 
hapter 4

20 25 30 35 40 45 50 55 60 65 70
0

100

200

300

400

500

600

step k

R
M
S
E

in
p
o
si
ti
o
n
(m

)

20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

step k

R
M
S
E

in
ve
lo
ci
ty

(m
.s

−
1
)

Coh Comp, 5dB

Coh Sq-Mod, 5dB

Non Coh Sq-Mod, 5dB

Coh Comp 7dB

Non Coh Sq-Mod 7dB

Coh Sq-Mod, 7dB

Coh Comp 10dB

Non Coh Sq-Mod 10dB

Coh Sq-Mod, 10dB
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4.5.2 Multitarget simulation and results

4.5.2.1 Multitarget s
enario

We now 
onsider a s
enario with two targets present during all the experiment. Both

targets follow a uniform re
tilinear traje
tory. Target states xk,1 and xk,2 are uniformly

initialized over P × C su
h that:

� the two velo
ity ve
tors (ẋk,1, ẏk,1), (ẋk,2, ẏk,2) form an angle of

π
4
,

� the minimum distan
e between targets is rea
hed at time step kc = 35 and is set to

dmin = 150 m, i.e. the minimum distan
e is equal to the range resolution.

An example of parti
ular traje
tories for the two targets is provided in Figure 4.6. Target

Figure 4.6 � An example of two traje
tories where the two velo
ity ve
tor form an angle

of

π
4
and where the minimum distan
e between the two targets is rea
hed at kc = 35.

SNR are set to 10dB and we 
onsider �u
tuations of type Swerling 0, 1 and 3. Note that
here, we only 
onsider a quite high SNR of 10 dB. Indeed, our main obje
tive in the multi-

target 
ase is to demonstrate the importan
e of taking into a

ount the spatial 
oheren
e

in the very spe
i�
 
ase where targets are 
lose to ea
h other and their 
ontribution in

the likelihood mix rather than to determine the performan
e a

ording to the SNR as in

the mono-target 
ase. Considering low SNR target would make di�
ult to determine if

potential parti
le �lter divergen
es are due to the low SNR or to the target 
ontribution

mixing in the likelihood.

4.5.2.2 Multitarget parti
le �lter

For the simulation, we 
onsider here the parti
le �lter proposed by Kreu
her et al.

[KKH05℄. We assume that the number of targets is known sin
e the obje
tive here is

to measure the e�e
t of the likelihood 
omputation on the parti
le �lter for two 
lose

targets. Therefore, Nk = 2 and the parti
le state is de�ned as x
p
k,1:Nk

= [xpk,1,x
p
k,2]

T
,

where x
p
k,1 and x

p
k,2 are the single state ve
tors of the �rst and se
ond targets respe
tively

of parti
le p, p ∈ {1, . . . , Np}. Note here that no presen
e variable is 
onsidered (the

presen
e of the two targets is known a priori by the �lter) and thus this �lter performs

tra
king only but 
annot perform dete
tion. This 
hoi
e was motivated in some extent by

the 
omputational 
ost indu
ed by a multi-target �lter performing dete
tion and tra
king
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in a TBD framework and the di�
ulty to 
onsider simple understandable performan
e


riteria in that 
ase. In the following, we detail the instrumental density used in the

parti
le �lter.

At step k = 0, ea
h parti
le target state x
p
0,i is initialized from the a
tual target state

a

ording to the following pro
edure:

� For the position, a Gaussian noise with varian
e σ2
r is added to the a
tual target

range r0,i =
√
x20,i + y20,i and a Gaussian noise with varian
e σ2

θ is added to the true

target bearing θ0,i = arctan
(
y0,i
x0,i

)
.

� The velo
ity is initialized around the true velo
ity in Cartesian 
oordinates by

adding a Gaussian noise with 
ovarian
e matrix σ2
vI2.

For the parti
le propagation, we 
onsider two 
ases:

� Either for ea
h parti
le, state x
p
k,1:2 veri�es (4.10). Then, the likelihood for ea
h

target state x
p
k,i 
an be 
omputed separately and we propose to use the Independent

Partition instrumental density (IP) [KKH05℄, i.e. sample the state of the parti
les

a

ording to the distributions de�ned by the likelihood of ea
h target.

� Or hypothesis (4.10) is not veri�ed for all the parti
les and (IP) 
annot be used

any longer. In that latter 
ase, we just propagate parti
les a

ording to the prior

distribution Eq. (2.6).

4.5.2.3 Cal
ulation of probability of tra
k loss

The probability of tra
k loss is evaluated from NMC Monte Carlo simulation with the

following pro
edure: at ea
h time step k and for ea
h target, we 
ompute the binary loss

variable

lk,i =





1 if


r̂k,i − rk,i
θ̂k,i − θk,i



T

P


r̂k,i − rk,i
θ̂k,i − θk,i


 > α,

0 otherwise,

(4.54)

where r̂k,i =
√
x̂2k,i + ŷ2k,i, θ̂k,i = arctan

(
ŷk,i
x̂k,i

)
, P =




1
∆r

0

0 1
∆θ




and α = 5.99 is the value

of the quantile fun
tion of the 
hi-square distribution with two degrees of freedom eval-

uated at 0.95. In other words, at ea
h iteration, we 
he
k if the position estimator for

ea
h target is lo
ated within the 0.95% 
on�den
e ellipse around the true target position.

Finally, a tra
k is de
lared to be lost if at least one of the variables lk,i equals 1 during at

least �ve 
onse
utive iterations. We de�ne by fm the loss variable for the m − th Monte

Carlo run that takes value 1 if the �lter failed to tra
k the two targets during all the experi-

ment and 0, otherwise. Then, the probability of tra
k loss is given by P̂loss =
1

NMC

NMC∑

m=1

fm.
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4.5.2.4 Cal
ulation of the Root Mean Square Error (RMSE)

The mean RMSE of the two targets is estimated from NMC Monte Carlo runs with the

following pro
edure: at ea
h iteration, we obtain an estimator of the target state for ea
h

target provided by

x̂k,i =
1

Np

Np∑

p=1

x
p
k,i, i ∈ {1, 2},

and we asso
iate ea
h estimator to a target su
h that the sum of the Eu
lidean distan
es

between the estimates and the a
tual state is minimum. Finally, the RMSE is 
omputed

at ea
h iteration k for simulations where both targets have not been de
lared lost (i.e.

lk,1 = 0 and lk,2 = 0) by taking the mean RMSE of the two targets over these simulations.

4.5.2.5 Simulations

The parti
le �lter is performed with the following parameters: T = 1 s, qs = 10−3
,

σ2
r = 3.6×10−3

, σ2
θ = 1.022×10−4

, σ2
v = 0.01 and σ2

n = 0.1. Parameters for the simulation

of the radar measurements are the same as for the monotarget simulation, ex
ept for

the radar window for whi
h we take rmin = 100 km, rmax = 150 km, θmin = −20◦ and

θmin = +20◦.
Then, as for the monotarget 
ase, performan
e is evaluated for the three di�erent

ways to 
al
ulate the likelihood already de�ned, i.e. "Coh Sq-Mod", "Non Coh Sq-Mod"

and "Coh Comp". A fourth one is also used and denoted by "Exp Sq-Mod" (Expe
tation

Squared Modulus) and 
orresponds to the 
ase where the expe
tation of the non-
entrality

parameter is taken to 
ompute the likelihood. Note that for the Swerling 0 
ase there is

no interest of using the "Non Coh Sq-Mod" method sin
e "Coh Sq-Mod" method requires

integration only over Nk − 1 phases, therefore we repla
e this last method by the "Coh

Lap" (Coherent Lapla
e), where the likelihood is 
al
ulated via its Lapla
e approximation

(see 4.4.1.1).

When the parti
le states x
p
k,1 and x

p
k,2 are well separated, the likelihoods are 
al
ulated

in 
losed-form a

ording to the 
orresponding monotarget likelihood expression. When

parti
le states are too 
lose to ea
h other to be assumed disjoint, the likelihoods are


omputed a

ording to the multitarget likelihood expressions. When this 
omputation

requires a numeri
al integration, this integration is done over 10 points for ea
h parameter.

This small number of integration points is explained by the overall 
omputational 
ost

indu
ed when several parameter dimensions are involved.

Estimation performan
e The performan
e in terms of RMSE in position and velo
ity

is presented in �gures 4.8, 4.9 and 4.7 for the Swerling 0, 1 and 3 models respe
tively.

First we observe that in all 
ases, "Coh Comp" provides the best performan
e. Then,

the di�eren
e between the "Coh Sq-Mod" and "Non Coh Sq-Mod" is quite small so that it

does not seem relevant to take into a

ount the spatial 
oheren
e of parameters ρk,1:Nk
and

ϕk,1:Nk
with squared modulus (at least for relatively high SNR). An other important point

is to 
ompare the 
omputational time with respe
t to performan
e. Thus, in Swerling 0

the "Coh Lap" method is approximatively six times faster than "Coh Comp" with almost
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Figure 4.7 � Monte Carlo simulation results in a multi-target setting with the Swerling 3
model. Top: RMSE in position. Bottom: RMSE in velo
ity.
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Figure 4.8 � Monte Carlo simulation results in a multi-target setting with the Swerling 0
model. Top: RMSE in position. Bottom: RMSE in velo
ity.

the same performan
e. Likewise, in Swerling 1 and Swerling 3, the "Non Coh Sq-Mod"

method is approximatively 60 times faster than "Coh Sq-Mod". Finally, note that the

RMSE in velo
ity in
reases when targets are 
lose. This 
an be explained by the fa
t that

the likelihood does not depend dire
tly on the velo
ity.

Tra
k loss performan
e We present in Table 4.3 the probability of tra
k loss for

�u
tuations of type Swerling 0, 1 and 3. For all the Swerling models, the tra
k-loss is

Probability of tra
k loss

Swerling 0 Swerling 1 Swerling 3

"Coh Comp" 1.5× 10−2 1.6× 10−2 1× 10−2

"Coh Sq-Mod" 1.4× 10−2 3.1× 10−2 1.9× 10−2

"Non Coh Sq-Mod" not de�ned 4× 10−2 1.5× 10−2

"Exp Sq-Mod" 2.4× 10−2 6.9× 10−2 6× 10−2

"Coh Lap" 1.5× 10−2
not de�ned not de�ned

Table 4.3 � Estimated probability of tra
k loss for the di�erent multitarget parti
le �lters

with Swerling 0, 1 and 3 �u
tuations.

minimum for the "Coh Comp" method, but the "Coh Sq-Mod" and "Non Coh Sq-Mod"

methods are relatively 
lose to it. The poorest performan
e is obtained with the "Exp
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Figure 4.9 � Monte Carlo simulation results in a multi-target setting with the Swerling 1
model. Top: RMSE in position. Bottom: RMSE in velo
ity.

Sq-Mod" method where the likelihood is 
omputed with a rough approximation but has

the advantage to be mu
h more faster than "Coh Sq-Mod" and "Non Coh Sq-Mod".

4.6 Con
lusion

In this 
hapter, we have investigated di�erent methods for 
omputing the likelihood in a

radar Tra
k-Before-Dete
t 
ontext. In pra
ti
e, the likelihood of the 
omplex measure-

ment depends on the unknown 
omplex amplitude parameters of the targets that must be

marginalized. We have shown that 
losed-form expressions 
an be obtained in the mono-

target 
ase for the Swerling models 0, 1 and 3. In the multitarget 
ase, a 
losed-form

expression 
an be obtained only for the Swerling 1 
ase; for the others models, we propose

some possible approximations to alleviate the 
omputational time and it may be interest-

ing to investigate other approximations that may lead to faster 
omputational time while

preserving a

eptable performan
e. We have also 
onsidered the 
ase where the data are

the squared modulus of the 
omplex measurements. In that 
ase, no 
losed-form 
an

be obtained and approximations must be performed. Finally, we have demonstrated via

Monte Carlo simulation the bene�ts of taking into a

ount the spatial 
oheren
e of the


omplex amplitudes both in dete
tion and in estimation 
ompared methods that work on

the square modulus of the 
omplex signal. The main 
on
lusions that 
an be stated based

on this work are the following:

� In a TBD 
ontext, 
omplex measurements should be used whenever they are avail-

able sin
e it appears that the phases information is very important to improve the

performan
e.
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� Multitarget likelihood are not simple to 
ompute ex
ept for the parti
ular Swerling

1 
ase. Thus monotarget likelihood should be 
omputed whenever it is possible to

fa
torize the overall joint density.
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Chapter 5

Multitarget Bayesian �lter in

Tra
k-Before-Dete
t

5.1 Introdu
tion

In 
hapter 2, we outlined the 
lassi
 state model for the TBD problem in a monotarget

setting where a variable sk (taking value 0 or 1) is used to model the presen
e or the

absen
e of the target. It seems natural to extend the monotarget model to the multitarget

setting by 
onsidering a pro
ess (Nk,xk,1:Nk
)
k∈N where Nk is the number of targets and


an take values greater than one. In parti
ular, Kreu
her et al. follow this approa
h

[KKH05℄ to propose a multitarget parti
le �lter allowing to tra
k several targets in a

TBD 
ontext. However, their solution su�er from di�
ulties that may be hard to handle

in some situations ; in parti
ular it requires a 
lustering step in order to sample and

estimate the di�erent target states. Moreover, their solution does not fully exploit the

parti
ular stru
ture of the likelihood when targets are far apart from ea
h other (see

Eq.(4.13)).

Therefore, our main goal, in this 
hapter, is to propose an alternative strategy allowing

to pro
ess targets independently (i.e. one �lter per target) when they do not intera
t in

the likelihood. Thus, we propose, in se
tion 5.3 to 
onsider the following extension of

the monotarget model (sk,1:Nt,xk,1:Nt)k∈N � where Nt is the maximum number of targets

assumed known � from whi
h we show that ea
h target 
an be pro
essed independently

when they are far apart from ea
h other.

From this model, we then propose in se
tion 5.4 three di�erent parti
le �lters: A

�rst one for dete
ting the appearan
e of several targets, a se
ond one to manage the

disappearan
e of several targets and a last one that 
ombines the two previous parti
le

�lters in order to manage both the appearan
e and the disappearan
e of several targets.

Finally, in se
tion 5.5, we show via Monte Carlo simulations the ability of this strategy

to tra
k several targets in a TBD 
ontext on simple s
enarios.

5.2 Classi
 Multitarget Bayesian Filter

The measurement model for the multitarget 
ase has already been widely presented in

Chap. 4. Therefore, we only present here the multitarget state model, the theoreti
al

145
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Bayesian �lter and its parti
le approximation.

5.2.1 Multitarget State Model

In 
hapter 2 and 
hapter 3, the state model for the monotarget 
ase was extensively

detailed, while in 
hapter 4, Nk targets were 
onsidered in order to provide the multitarget

measurement equation (4.1) but no prior model was outlined. Thus, in this paragraph,

the state model (or prior model) will be detailed for the multitarget 
ase and 
lassi


assumptions made in the literature will be provided.

As in the monotarget 
ase where the presen
e or absen
e of the target is unknown, in

the multitarget 
ase the number of targets is unknown. It is then ne
essary to model this

ignoran
e. A natural solution is to 
onsider, as in the monotarget 
ase (see se
tion 2.2),

an hybrid pro
ess (Nk,xk,1:Nk
)
k∈N, where Nk ∈ N is the number of targets and xk,1:Nk

is the multiple target state ve
tor provided by the 
on
atenation of all individual target

state ve
tors xk,i, i ∈ {1, 2, · · · , Nk}, i.e. xk,1:Nk
=
[
xTk,1,x

T
k,2, · · · ,xTk,Nk

]T
. Note here that

the size of the state ve
tor is random sin
e it depends on the random variable Nk. Lastly,

when Nk = 0, the multiple target state ve
tor xk,1:0 is de�ned as the empty set ∅.

In a Bayesian perspe
tive, the pro
ess (Nk,xk,1:Nk
)
k∈N is assumed Markovian and its

joint density 
an be fa
torized as follows:

p (N0:k,x0:k,1:Nk
) = p (N0,x0,1:N0)

k∏

l=1

p
(
Nl,xl,1:Nl

| Nl−1,xl−1,1:Nl−1

)
. (5.1)

Thus, it is entirely de�ned by its transition probabilities p
(
Nk,xk,1:Nk

| Nk−1,xk−1,1:Nk−1

)

(that will be assumed independent from time index k in the sequel) and the density

p (N0,x0,1:N0) at step k = 0. In pra
ti
e, it is often 
onvenient to fa
torize the transition

probability as in the monotarget 
ase, �rst by 
onsidering the number of targets Nk

and then by expressing the evolution of pro
ess x0,1:Nk

onditionally to Nk and Nk−1.

Mathemati
ally, this leads to 
onsider a transition probability density with the following

form:

p
(
Nk,xk,1:Nk

| Nk−1,xk,1:Nk−1

)
= p (Nk | Nk−1) p

(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
. (5.2)

The pro
ess (Nk)k∈N is a Markov 
hain, whi
h allows to handle several target appearan
es

or disappearan
es at ea
h iteration. However, in pra
ti
e, a simpler model whi
h 
onsiders

the appearan
e or disappearan
e of only one target at ea
h iteration is often used [KKH05℄.

For this latter model, the pro
ess (Nk)k∈N is an integer-valued random walk: i.e.

Nk = Nk−1 + ǫk, (5.3)

where (ǫk)k∈N is an i.i.d sequen
e taking value −1, 0 or +1. Therefore, the probabilities

p (Nk = Nk−1 + 1 | Nk−1) = p (ǫk = +1) = Pb, (5.4)

p (Nk = Nk−1 − 1 | Nk−1) = p (ǫk = −1) = Pd, (5.5)

do not depend on Nk−1 and 
orrespond respe
tively to the 
lassi
 birth and death event

detailed in Chapter 2. In the same manner, the probability

p (Nk = Nk−1 | Nk−1) = 1− Pb − Pd (5.6)
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does not depend on Nk−1 and 
orresponds to the 
ase where non target has appeared or

disappeared.

Con
erning the transition density p
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
, one hypothesis of-

ten en
ountered in the literature 
onsists in 
onsidering that the di�erent target states

are independent. Thus, depending on the values of Nk and Nk−1, the transition density


an be expressed as follows:

p
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
=





Nk∏

l=1

pc (xk,l | xk−1,l), if Nk ≤ Nk−1

pb (xk,Nk
)

Nk−1∏

l=1

pc (xk,l | xk−1,l), if Nk > Nk−1,

(5.7)

where pc (.) and pb (.) are respe
tively the 
ontinuing and birth densities detailed in se
tion
2.2.

5.2.2 Theoreti
al Bayesian Filter

In the multitarget state, the theoreti
al Bayesian solution is not as simple as in the

monotarget 
ase (see se
tion 2.4) where the dis
rete parameter sk 
an only take two values

(0 and 1), sin
e here the dis
rete parameter Nk belongs to N. However, the multitarget

theoreti
al Bayesian �lter still follows the two-step re
ursion: propagation and update.

The aim here is to 
al
ulate re
ursively the posterior density p (xk,1:Nk
, Nk | z1:k). From

se
tion 1.2.2, this latter 
an be rewritten as follows:

p (xk,1:Nk
, Nk | z1:k) =

p (xk,1:Nk
, Nk | z1:k−1) p (zk | xk,1:Nk

)

p (zk | z1:k−1)
. (5.8)

This last equation allows to 
al
ulate the probability that exa
tly l targets are present

thanks to the following marginalization:

p (Nk = l | z1:k) =
∫
p (xk,1:l, Nk = l | z1:k) dxk,1:l, (5.9)

and, of 
ourse,

+∞∑

l=0

p (Nk = l | z1:k) = 1. (5.10)

Con
erning the predi
ted density p (xk,1:Nk
, Nk | z1:k−1), it is obtained by the Chapman-

Kolmogorov equation:

p (xk,1:Nk
, Nk | z1:k−1) =

+∞∑

Nk−1=0

∫
p
(
xk−1,1:Nk−1

, Nk−1 | z1:k−1

)
×

p (Nk | Nk−1) p
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
dxk−1,1:Nk−1

.

(5.11)
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5.2.3 Parti
le �lter approximation

A parti
le �lter approximation of the theoreti
al Bayesian �lter was proposed by Kreu
her

et al. in [KKH05℄. Their solution is a generalization of the 
lassi
 monotarget TBD parti-


le �lter detailed in se
tion 2.4: they 
onsider a set of Np parti
les

{(
N i
k,x

i
k,1:N i

k

)
, wik

}Np

i=1
,

where in that 
ase N i
k belongs to N, while in the monotarget 
ase the 
orresponding vari-

able sk 
ould only take values 0 and 1. Thus, an approximation of the posterior density

p (xk,1:Nk
, Nk | z1:k) is given by

p (xk,1:Nk
, Nk | z1:k) ≈

Np∑

i=1

wikδxi

k,1:Ni
k

(xk,1:Nk
) . (5.12)

Note here that this parti
le approximation 
ontains parti
les with di�erent dimensions

sin
e the number of targets per parti
le may be di�erent.

The �rst step in the sequential 
omputation of the posterior density p (xk,1:Nk
, Nk | z1:k)

from the density p
(
xk−1,1:Nk−1

, Nk−1 | z1:k−1

)
at step k−1 
onsists in drawing the variable

Nk for ea
h parti
le a

ording to an instrumental probability law q (Nk | Nk−1, zk) � in

pra
ti
e, this instrumental probability law is often 
hosen to be the prior. Re
all here that

in the proposed model Nk 
an take only three values

1

, i.e. Nk−1 − 1, Nk−1 or Nk−1 + 1.
Then, the parti
le states xi

k,1:N i
k

are propagated a

ording to an instrumental density

q
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1
, zk
)
. Whereas there is no restri
tion on the 
hoi
e of the

instrumental density, it seems reasonable to 
hoose an instrumental density that has the

same stru
ture as p
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
(de�ned in Eq. (5.7)). Under that

hypothesis the weights are updated a

ording to the following equation:

wik ∝ wik−1

p
(
N i
k | N i

k−1

)

q
(
N i
k | N i

k−1, zk
) ×





Nk∏

l=1

pc (xk,l | xk−1,l)

qc (xk,l | xk−1,l, zk)
, if Nk ≤ Nk−1,

pb (xk,Nk
)

qb (xk,Nk
| zk)

Nk−1∏

l=1

pc (xk,l | xk−1,l)

qc (xk,l | xk−1,l, zk)
, if Nk > Nk−1.

(5.13)

Finally, these weights are normalized and a resampling pro
edure is performed, if required,

as in the generi
 parti
le �lter (see Chapter 1, Algorithm 1.1). A pseudo
ode of a single


y
le of the 
urrent parti
le �lter, whi
h is 
alled the Classi
 Multitarget TBD Parti
le

Filter, is des
ribed in Algorithm 5.1.

5.2.4 The invariant permutation problem

An important feature that has not been dis
ussed yet 
ompli
ates the estimation of the

target states: the multitarget posterior density fun
tion is invariant under any permu-

tation of the target index [KKH05℄. For instan
e, if the multitarget state 
ontains two

1

As mentioned before, a more general law 
ould be 
onsidered for Nk. However, we restri
t here to

this 
ase to detail a quite simple parti
le approximation. The extension to a more 
ompli
ated model

for Nk 
an be derived from the proposed one. Note, nevertheless, that this kind of model may lead to

pra
ti
al issues; in parti
ular, it might be more di�
ult to initialize properly several new target states at

ea
h iteration.
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Algorithm 5.1 Classi
 Multitarget TBD Parti
le Filter

Require: Parti
le 
loud

{(
N i
k−1,x

i
k−1,1:N i

k−1

)
, wik−1

}Np

i=1
at step k − 1,

1: for i = 1 to Np do

2: Draw N i
k a

ording to the probability law p

(
Nk | N i

k−1

)

3: if N i
k > 0 then

4: Draw xi
k,1:N i

k

∼ q
(
xk,1:Nk

| N i
k, N

i
k−1,x

i
k−1,1:N i

k−1
, zk

)
.

5: end if

6: Update parti
le weight wik a

ording to Eq. (5.13)

7: end for

8: Normalize weights: wik ←
wi

k∑Np
l=1 w

l
k

, i = 1, · · · , Np

9: Compute Neff a

ording to Eq. (1.98).

10: if Neff < NT then

11: Resample Np parti
les

12: Reset weights: wik ← 1
Np
, i = 1, · · · , Np

13: end if

14: return

{(
N i
k,x

i
k,1:N i

k

)
, wik

}Np

i=1

individual target state ve
tors, the posterior density has the same values whatever the

order of the target state xk,1 and xk,2, i.e.

p (xk,1,xk,2 | z1:k) = p (xk,2,xk,1 | z1:k) . (5.14)

Therefore, the posterior parti
le approximation might provide parti
les with states xik,1:2 =[
(xik,1)

T , (xik,2)
T
]T

or xik,1:2 =
[
(xik,2)

T , (xik,1)
T
]T

as illustrated in Figure 5.1. This may not

be a problem as long as only the density is 
onsidered. However it may be
ome problemati


if one wants to estimate the multitarget states, for instan
e using a 
lassi
 estimator, as

follows:

x̂k,1:2 =

[
1

Np

Np∑

i=1

(xik,1)
T ,

1

Np

Np∑

i=1

(xik,2)
T

]T
. (5.15)

In order to properly estimate the individual target states, it is then ne
essary to sort the

parti
le state ve
tors and to partition the state ve
tors [KKH05℄ so that the individual

target states in a given partition all refer to the same individual target state. In pra
ti
e,

these partitions may be 
reated via a 
lustering algorithm (su
h as K-means [HF09℄) over

the parti
le state positions.

Moreover, sorting the parti
le states in ordered partitions may be ne
essary when

using more sophisti
ated instrumental densities than the prior. Now, the prior is not

very e�
ient in the multitarget 
ase be
ause it blindly samples the general target state

without 
onsidering the weight of ea
h individual state. Su
h a strategy tends to 
reate

parti
le states where some individual states sample e�
iently the real target state while

the others provide worse estimates. This will then spread the parti
le states over non

interesting areas of the multitarget state spa
e.

On the 
ontrary, using partitions enables to 
onsider spe
i�
 instrumental densities

that sample target states individually when target states are su�
iently far apart to be



150 
hapter 5

Figure 5.1 � Illustration of the invariant permutation problem. In green, parti
les with

parti
le target state xik,1:2 =
[
(xik,1)

T , (xik,2)
T
]T

while in magenta, parti
les with parti
le

target state xlk,1:2 =
[
(xlk,2)

T , (xlk,1)
T
]T
.


onsidered independent, or by smaller sets of partitions in the 
ase of 
lose targets. This

will thus improve the e�
ien
y of the target state sampling. Su
h a strategy was proposed

in [KKH05℄.

5.2.5 Instrumental densities for the multitarget parti
le �lter

As in the monotarget 
ase, the 
hoi
e of the instrumental density is 
ru
ial to obtain

a

eptable performan
e with as few parti
les as possible. In the multitarget 
ase, as

Kreu
her et al. mentioned in their paper [KKH05℄, the prior density 
orresponds to a

simple and "naive" solution in order to propagate the parti
les but, in the other hand, it

requires 
onsidering a very large number of parti
les in order to properly sample all the

possible 
ombinations between the individual target states.

Therefore, some instrumental densities were proposed in the literature to e�
iently

propagate the multitarget parti
le state. The �rst one was proposed by Orton et al.

[OF02℄ and is 
alled the Independent Partition (IP) method. It allows to propagate

partitions that do not overlap in an independent manner. The me
hanism 
onsists in

sampling ea
h parti
le target state in a partition a

ording to the prior pc
(
xk,t | xik,t−1

)

where t is the partition number. Then, a dis
rete density is 
onstru
ted from these parti
le

states where the weights are provided by the likelihood of the sole partition t, i.e.:

q (xk,t | zk) =
Np∑

i=1

bik,tδxi
k,t

(xk,t) , (5.16)

where,

bik,t ∝
∫ +∞

0

∫ 2π

0

Ξzk,xk,t
(ρk,t, ϕk,t)p(ϕk,t)p(ρk,t)dϕk,tdρk,t, (5.17)

and Ξzk,xk,t
(., .) is detailed in Eq. (4.12). Finally, Np states x

i
k,t are sampled from the den-

sity q (xk,t | zk). Note here that sin
e the prior is no longer used, an additional weighting
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term given by

1
bi
k,t

is indu
ed for ea
h partition in the 
al
ulation of the parti
le weights.

When some partitions overlap, Kreu
her et al. proposed an other method 
alled the

Coupled Partition (CP) method. For ea
h parti
le i in partition t in
luded in the set of R
overlapping partitions, M individual states are sampled from the prior pc

(
xk,t | xik,t−1

)
.

Then, a dis
rete density is built over the M sampled states in the same manner as in the

IP method, i.e.

q (xk,t | zk) =
M∑

m=1

bmk,tδxk,t
(xk,t) , (5.18)

where,

bmk,t ∝
∫ +∞

0

∫ 2π

0

Ξzk,xk,t
(ρk,t, ϕk,t)p(ϕk,t)p(ρk,t)dϕk,tdρk,t. (5.19)

Finally, the new state xik,t is sampled from the dis
rete density in Eq. (5.18). The main

di�eren
e with the IP method is that here the dis
rete density in Eq. (5.18) is 
al
ulated

for ea
h parti
le while in the IP method only one dis
rete density is 
omputed over all

the parti
les in the partition.

Lastly, an other important aspe
t that 
an be taken into a

ount via the instrumental

density is the management of target births and deaths. Indeed, we have seen in Chap. 3

that the solutions developed for the dete
tion of target appearan
e or target disappearan
e

are quite di�erent. In parti
ular, dete
ting a target appearan
e in a large radar window

seems more demanding than dete
ting the disappearan
e of a single established tra
k,

and in parti
ular it requires more parti
les. Therefore, most of the solutions proposed in

the literature 
onsider a two-layer parti
le �lter [GF11℄:

� a �rst �lter to dete
t target disappearan
es;

� a se
ond �lter to dete
t target appearan
es.

These two �lters are managed by two di�erent instrumental densities. As in the mono-

target 
ase, the most important di�
ulty 
onsists in 
onveniently sampling the positions

of the new targets at ea
h iteration. Gar
ia-Fernandez in [GF11℄ proposed to initialize

new pre-tra
ks only in the 
ells that ex
eed the threshold γ = −2σ2 log (Pfa). Then ea
h

initialized pre-tra
k is maintained during N b
it iterations; at the end of these N b

it iterations,

a statisti
al test is performed in order to de
lare if the tra
k is an a
tual tra
k or a false

tra
k. Then all the 
on�rmed pre-tra
ks are provided to the se
ond layer of the parti
le

�lter that propagates the parti
les using the IP or CP method and manages the tra
k

disappearan
es thanks to a statisti
al test.

5.2.6 Drawba
ks of the existing solutions

The above Bayesian modeling presents the advantage to be very general and 
an han-

dle almost all the situations en
ountered in the multitarget 
ase. However, the pra
ti
al

implementation of the parti
le approximation might require a very large number of par-

ti
les to ensure a

eptable performan
e. Indeed, if no e�ort is made to 
arefully sample

the individual target states, the parti
le approximation may require a lot of parti
les to

properly sample all possible 
ombinations of target states and numbers of targets.
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Con
erning the IP and CP methods, one major drawba
k of these two approa
hes

is the need for 
reating partitions via a 
lustering algorithm (for instan
e the K-means

algorithm) that may fail to properly sort out the di�erent partitions, in parti
ular in

the presen
e of newborn targets uniformly distributed in the radar window mixed with

already 
lustered existing targets. Moreover, the K-means algorithm requires the prior

knowledge of the number of 
lusters while this number is unknown, it is possible to use

well-known 
riterion su
h as AIC (Akaike Information Criterion) or MDL (Maximum De-

s
ription Length) in order to sele
t the number of 
luster in the K-means algorithm, but it

would in
rease the already very heavy 
ost. An other disadvantage of these instrumental

densities is the spe
i�
 resampling pro
edure performed for ea
h partition t from the dis-


rete density in Eq. (5.16). First, performing this resampling pro
edure at ea
h iteration

might be 
ostly. Then the weights of the dis
rete instrumental density are only 
al
ulated

from the 
urrent measurement zk and thus do not take into a

ount the parti
le weights

at previous step. For high target SNR this will have no 
onsequen
e. However at low

SNR, a noise disturban
e may lead to sample most of the parti
les in a wrong area of the

state spa
e.

Lastly, the independen
e of the targets is taken into a

ount only in the instrumental

densities but not in the stru
ture of the Bayesian �lter itself. Indeed, most proposed

solutions 
al
ulate a weight for the multitarget state ve
tor rather than a weight per indi-

vidual target state, even for su�
iently far away states that may be assumed independent.

This may lead to problemati
 
ases where some partitions of a multitarget parti
le prop-

erly sample some of the existing targets while the other partitions do not; the resulting

overall weight will tend to underestimate the importan
e of the well-�tting parti
les while

overestimating the importan
e of the mis�tting parti
les, and thus bias the estimation.

For instan
e, in the illustration presented in Figure 5.2, the 
ontribution of parti
le xik,1
to the target state estimation of xk,1 will be small (be
ause the overall weight is penalized

by the partition xik,2) even though it properly samples the target state xk,1.

5.3 A new approa
h for the multitarget Tra
k-Before-

Dete
t problem

The solution detailed in the previous se
tion 
onsiders the overall multitarget state. How-

ever, targets far away from ea
h other 
an be pro
essed independently. Therefore, the

aim of this se
tion is to propose a solution that 
onsists in using, whenever it is possible,

one parti
le �lter per target rather than an overall �lter that samples all target states.

A �rst solution was proposed by Vo et al. in [VVPS10℄. In this paper, the authors


onsider the TBD multitarget problem in the framework of the Random Finite Set (RFS)

theory. In parti
ular, Vo et al. show that, when 
onsidering a parti
ular stru
ture for

the likelihood of the measurement 
onditionally to the random target set, the posterior

likelihood 
an be fa
torized, thus allowing to pro
ess the targets independently. However,

the RFS framework used in that paper is not ne
essary to establish su
h a property. We

propose here an approa
h based on a probabilisti
 framework, and in parti
ular a new

model that allows to fa
torize the multitarget posterior density as the produ
t of the

individual target posterior densities. Finally, we have seen in Chap. 3 that it 
ould be
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Figure 5.2 � S
heme illustrating the fa
t that although parti
le single target states xk−1,1:2

are sampled independently, the resulting multitarget weight wik may be small if one of the

single parti
le target state is badly drawn.

interesting to separate the dete
tion of the target appearan
e from the dete
tion of the

target disappearan
e. We follow this idea in the multitarget setting.

5.3.1 A new Multitarget State Model

In se
tion 5.2, the number of targets was managed through a variable Nk belonging to

N. This would theoreti
ally allow to manage an in�nite number of targets. However,

in pra
ti
e, the number of targets may often be limited to a �nite number Nt (�rst a

very large number of targets is very unlikely, and se
ond the 
apa
ity of the re
eption


hain to pro
ess a large number of targets is usually limited). Furthermore, we saw in

the previous multitarget model that the targets are linked via the weight equation (5.13)

even if they are assumed to behave independently (see Figure 5.2). Therefore, we propose

a new approa
h that 
onsiders a 
olle
tion of individual TBD target states (i.e. (sk,xk))
rather than the overall multitarget state (Nk,xk,1:Nk

). This di�erent state model will

allow, under some 
onditions on the likelihood p (zk | xk,1:Nk
), to fa
torize the posterior

multitarget density as a produ
t of individual target state densities.

To this purpose, let us de�ne by (sk,1:Nt,xk,1:Nt) the hybrid multitarget pro
ess 
on-

stituted of a 
olle
tion of Nt single target states. The idea is now to derive the prior

model so that it fa
torizes as a produ
t of single prior models. The multitarget transition

density for this multitarget model 
an be fa
torized as in Eq. (2.2), leading to 
onsider

as transition density:

p (sk,1:Nt,xk,1:Nt | sk−1,1:Nt,xk−1,1:Nt) =

p (sk,1:Nt | sk−1,1:Nt) p (xk,1:Nt | sk−1,1:Nt, sk,1:Nt,xk−1,1:Nt) .
(5.20)

Then, by assuming as in the 
lassi
 multitarget prior model that the single target pro
esses
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(sk,i,xk,i) are independent for any k, the transition probability density fa
torizes as follows:

p (sk,1:Nt,xk,1:Nt | sk−1,1:Nt ,xk−1,1:Nt) =
Nt∏

i=1

p (sk,i | sk−1,i) p (xk,i | xk−1,i, sk,i, sk−1,i) ,

(5.21)

while the multitarget state density at step k = 0 is given by:

p (s0,1:Nt ,x0,1:Nt) =

Nt∏

i=1

p (s0,i) p (x0,i | s0,i) . (5.22)

5.3.2 Measurement equation and likelihood for distant target

The measurement equation for the proposed model is similar to the one detailed in se
tion

4.2 with the in
orporation of variables sk,1:Nt, i.e.

zk =

Nt∑

i=1

sk,iρk,ie
jϕk,ih (xk,i) + nk. (5.23)

Clearly the fa
torization of the likelihood in Eq. (4.13) also holds with the addition

of variables sk,1:Nt: by in
orporating the variable sk,1:Nt in Eq. (4.4), the measurement

likelihood is given by

p (zk | xk,1:Nk
, sk,1:Nt, ρk,1:Nk

, ϕk,1:Nk
) ∝ exp

{
−
Nk∑

i=1

sk,iρ
2
k,ih

H
k,iΓ

−1
hk,i+

Nk∑

i=1

2sk,iρk,i|hHk,iΓ−1
zk| cos (ϕk,i − ξk,i)−

Nk∑

i=1

Nk∑

l=i+1

2sk,isk,lρk,iρk,l
∣∣hHk,iΓ−1

hk,l

∣∣ cos (ϕk,i − ϕk,l − φk,il)

}
,

(5.24)

where ξk,i = sk,i arg
(
hHk,iΓ

−1zk
)
and φk,il = sk,isk,l arg

(
hHk,iΓ

−1hk,l
)
.

Let us de�ne, as in Eq. (4.12), the following fun
tion:

Ξ
zk,(sk,1:Nt

,xk,1:Nt)
(ρk,1:Nt, ϕk,1:Nt) = p (zk | xk,1:Nk

, sk,1:Nt, ρk,1:Nk
, ϕk,1:Nk

) . (5.25)

Then,

p (zk | xk,1:Nk
, sk,1:Nt) =

∫
· · ·
∫

Ξ
zk,(sk,1:Nt

,xk,1:Nt)
(ρk,1:Nt , ϕk,1:Nt)p(ϕk,i)p(ρk,i)dρk,1:Ntdϕk,1:Nt .

(5.26)

As in se
tion 4.3.1, under assumption

∣∣hHk,uΓ−1hk,v
∣∣ ≈ 0, for any (u, v), u 6= v, (5.27)

all the 
ross terms in Eq. (4.4) 
an be dis
arded, and the likelihood fun
tion 
an be

expressed as a produ
t of fun
tions that only depend on variables (sk,i,xk,i)
2

:

p (zk|sk,1:Nt,xk,1:Nt) ∝
Nt∏

i=1

gzk (sk,i,xk,i) , (5.28)

2

Note that, for the sake of simpli
ity, we do not 
onsider the additional stati
 parameter ϑi for the

density of amplitude ρk,i. The extension to this model does not present any di�
ulty.
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Figure 5.3 � Illustration of the non-intera
ting hypothesis for di�erent values of (xk,1,xk,2).
For the 
ouple (xk,1,xk,2) in red the hypothesis is veri�ed sin
e target states are far away

from ea
h other, while for the

(
x′
k,1,x

′
k,2

)
in green the hypothesis is not veri�ed sin
e

target states are too 
lose.

with

gzk (sk,i,xk,i) =

∫ +∞

0

∫ 2π

0

Ξ
zk,(sk,i,xk,i)(ρk,i, ϕk,i)p(ϕk,i)p(ρk,i)dϕk,idρk,i, (5.29)

and

Ξ
zk,(sk,l,xk,l)(ρk,l, ϕk,l) =



exp
{
−ρ2k,ihHk,iΓ−1hk,i + 2ρk,i|hHk,iΓ−1zk| cos (ϕk,i − ξk,i)

}
, if sk,i = 1,

1, if sk,i = 0.

(5.30)

Lastly, note that this fa
torization is only true for parti
ular values of target states

(sk,1:Nt ,xk,1:Nt) and might not be veri�ed for other 
ombinations

(
s
′

k,1:Nt
,x

′

k,1:Nt

)
. Indeed,

for instan
e, let us assume that the target state xk,1 belongs to a set Cxk,1
while the target

state xk,2 belongs to a set Cxk,2
. Thus, it may happen that some 
ouples (xk,1,xk,2) ∈

Cxk,1
× Cxk,2

verifying the non-intera
ting hypothesis in Eq. (5.27) allowing to fa
torize

the likelihood, while for some other 
ouples

(
x′
k,1,x

′
k,2

)
the non-intera
ting hypothesis

in Eq. (5.27) is not veri�ed. This point is illustrated in Figure 5.3. Therefore the


ondition of non-intera
ting target states in Cxk,1
and Cxk,2

should not be 
onfused with

Cxk,1

⋂ Cxk,2
= ∅ but 
an rather be de�ned as follows:

for any (xk,1,xk,2) ∈ Cxk,1
× Cxk,2

,
∣∣hHk,1Γ−1hk,2

∣∣ ≈ 0. (5.31)

5.3.3 Theoreti
al Bayesian �lter for non-intera
ting targets

The aim of this se
tion is to demonstrate that, when the likelihood pϑ1:Nt
(zk|sk,1:Nt,xk,1:Nt)


an be fa
torized as in Eq. (5.28) at ea
h iteration step k and for any value of (sk,1:Nt,xk,1:Nt),
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then the multitarget posterior density p (sk,1:Nt ,xk,1:Nt | z1:k) fa
torizes as a produ
t of sin-
gle target state posterior densities, i.e.

p (sk,1:Nt,xk,1:Nt | z1:k) =
Nt∏

i=1

p (sk,i,xk,i | z1:k) . (5.32)

This 
an be proved by a mathemati
al indu
tion. To this purpose, let us assume that

for any k ∈ N, the likelihood fa
torizes as in Eq. (5.28) for all possible values of

(sk,1:Nt ,xk,1:Nt). First, by de�nition of the state model in se
tion 5.3.1, we have

p (s0,1:Nt ,x0,1:Nt) =

Nt∏

i=1

p (s0,i,x0,i) . (5.33)

Thus, the property is veri�ed for k = 0. Now let us assume that the property (5.32) is

true for a given integer k. By de�nition of the Bayes �lter, the posterior density at step

k + 1 
an be rewritten as follows:

p (sk+1,1:Nt,xk+1,1:Nt | z1:k+1) =
p (sk+1,1:Nt,xk+1,1:Nt | z1:k) p (zk+1|sk+1,1:Nt,xk+1,1:Nt)

p (zk+1 | z1:k)
,

(5.34)

where the predi
tive density is obtained via the Chapman-Kolmogorov equation:

p (sk+1,1:Nt ,xk+1,1:Nt | z1:k) =
∑

sk,1,··· ,sk,Nt

∫
p (sk,1:Nt,xk,1:Nt | z1:k)×

p (sk+1,1:Nt,xk+1,1:Nt | sk,1:Nt,xk,1:Nt) dxk,1:Nt,

(5.35)

and the normalization term p (zk+1 | z1:k) is provided by

p (zk+1 | z1:k) =
∑

sk+1,1,··· ,sk+1,Nt

∫
p (sk+1,1:Nt,xk+1,1:Nt | z1:k)×

p (zk+1|sk+1,1:Nt,xk+1,1:Nt) dxk+1,1:Nt.

(5.36)

We will demonstrate that both the predi
tive density and the normalization 
an be fa
-

torized as a produ
t of single target state fun
tions whi
h will straightforwardly imply

that the posterior density at step k + 1 also fa
torizes.

Let us start with the predi
tive density at step k + 1. Using the fa
torization of the

posterior density in Eq. (5.32) at step k for the state xk,1 and the fa
torization of the

transition density in Eq. (5.20), this latter 
an be rewritten as follows:

p (sk+1,1:Nt,xk+1,1:Nt | z1:k) =
∑

sk,1,··· ,sk,Nt

∫
p (sk,1,xk,1 | z1:k) p (sk+1,1,xk+1,1 | sk,1,xk,1)×

p (sk,2:Nt,xk,2:Nt | z1:k) p (sk+1,2:Nt,xk+1,2:Nt | sk,2:Nt,xk,2:Nt) dxk,1:Nt.

(5.37)
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Then, the integration over xk,1 and sk,1 
an be separated from the variables (sk,2:Nt,xk,2:Nt)
leading to

p (sk+1,1:Nt,xk+1,1:Nt | z1:k) =
∑

sk,1

∫
p (sk,1,xk,1 | z1:k) p (sk+1,1,xk+1,1 | sk,1,xk,1) dxk,1

×
∑

sk,2,··· ,sk,Nt

∫
p (sk,2:Nt,xk,2:Nt | z1:k) p (sk+1,2:Nt,xk+1,2:Nt | sk,2:Nt,xk,2:Nt) dxk,2:Nt.

(5.38)

Finally, marginalizing over sk+1,2:Nt and xk+1,2:Nt , it 
omes

p (sk+1,1,xk+1,1 | z1:k) =
∑

sk,1

∫
p (sk,1,xk,1 | z1:k) p (sk+1,1,xk+1,1 | sk,1,xk,1) dxk,1, (5.39)

allowing to write the predi
tive density p (sk+1,1:Nt ,xk+1,1:Nt | z1:k), by substituting Eq.

(5.39) in Eq. (5.38), as follows:

p (sk+1,1:Nt,xk+1,1:Nt | z1:k) = p (sk+1,1,xk+1,1 | z1:k) p (sk+1,2:Nt,xk+1,2:Nt | z1:k) . (5.40)

This last equation indi
ates that the target state with index 1 is independent from the

other states. Of 
ourse, the reasoning from Eq. (5.37) to Eq. (5.40) 
an be iterated for

other targets. Thus, the predi
tive density 
an be rewritten as the produ
t of the single

state predi
tive density, i.e.

p (sk+1,1:Nt,xk+1,1:Nt | z1:k) =
Nt∏

i=1

p (sk+1,i,xk+1,i | z1:k) . (5.41)

In the same manner, using the fa
torization of the predi
tive density in Eq. (5.41)

and the likelihood in Eq. (5.28), the normalization term p (zk+1 | z1:k) also fa
torizes as

follows:

p (zk+1 | z1:k) =
Nt∏

i=1

∑

sk+1,i

∫
p (sk+1,i,xk+1,i | z1:k) gzk+1

(sk+1,i,xk+1,i) dxk+1,i. (5.42)

Therefore, using Eq. (5.42) and Eq. (5.41), the posterior density fa
torizes as

p (sk+1,1:Nt,xk+1,1:Nt | z1:k+1) =
Nt∏

i=1

p (sk+1,i,xk+1,i | z1:k) gzk+1
(sk+1,i,xk+1,i)∑

sk+1,i

∫
p (sk+1,i,xk+1,i | z1:k) gzk+1

(sk+1,i,xk+1,i) dxk+1,i

,

(5.43)

where 
learly

p (sk+1,i,xk+1,i | z1:k+1) =
p (sk+1,i,xk+1,i | z1:k) gzk+1

(sk+1,i,xk+1,i)∑
sk+1,i

∫
p (sk+1,i,xk+1,i | z1:k) gzk+1

(sk+1,i,xk+1,i) dxk+1,i

,

(5.44)

thus demonstrating the fa
torization of the posterior density at step k + 1.
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5.3.4 Theoreti
al Bayesian �lter for intera
ting targets

In the previous se
tion, we have derived the Bayesian �lter when targets do not intera
t.

Of 
ourse some targets may intera
t in the likelihood (e.g. when they 
ome su�
iently


lose to ea
h other). In this 
ase, the fa
torization of the whole posterior density in (5.32)


annot be used anymore. Fortunately, if some targets intera
t, it does not mean that all

the targets should be pro
essed jointly. In fa
t, it is reasonable to expe
t that only a small

group of targets intera
ts while the other targets 
an still be pro
essed independently. We

will formalize this more general 
ase in the following. However, sin
e the developments

are quite similar to the previous ones, we provide here only the main steps to extend

the fa
torization of the posterior density to groups of intera
ting targets. The 
omplete

development 
an be found in Appendix C.1.

Let us �rst de�ne the set of all target indexes INt = {1, · · · , Nt}, and Ng sets of target

indexes Iint,1, · · · , Iint,Ng su
h that

for any (l, m) ∈ {1, · · · , Ng} , Iint,l
⋂

Iint,m = ∅, (5.45)

and

INt =

Ng⋃

l=1

Iint,l. (5.46)

Moreover, let us assume that these sets Iint,1, · · · , Iint,Ng are su
h that, at ea
h iteration

step k, they verify the following hypothesis:

for any (l, m) ∈ {1, · · · , Ng}2 , for any (u, v) ∈ Iint,l × Iint,m,
∣∣hHk,uΓ−1hk,v

∣∣ ≈ 0. (5.47)

Then, using a similar proof as in the previous paragraph, the posterior multitarget

density 
an be fa
torized as follows:

p (sk,1:Nt,xk,1:Nt | z1:k) =
Ng∏

i=1

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
. (5.48)

On the other hand, the Bayesian �lter for a group of targets Iint,i 
an be obtained as

follows:

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
=

p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
∑

sk,Iint,i

∫
p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
dxk,Iint,i

,

(5.49)

where the fun
tion Gzk
(sk,I ,xk,I) (I is here any set of indexes) is equal to:

Gzk
(sk,I ,xk,I) =

∫
Ξ
zk,(sk,I ,xk,I)(ρk,I , ϕk,I)p (ρk,I) p (ϕk,I) dρk,Idϕk,I. (5.50)

Note that here all the 
ross terms hHk,uΓ
−1hk,v, provided that both u and v belong to I,

remain 
ontrary to fun
tion gzk (sk,i,xk,i) in Eq. (5.29) where these 
ross terms disap-

peared.



Parti
le �lter approximations 159

The possibility to fa
torize the posterior for groups of targets is one of the main

di�eren
e with the solution proposed by Vo et al. [VVPS10℄ where the fa
torization is

obtained only for single target states.

Let us �nally remark that if targets in group Iint have intera
ted until k−1 but do not
intera
t after iteration k, then the posterior density p (sk,Iint

,xk,Iint
| z1:k) do not fa
torize

as a produ
t of individual target states, i.e.

p (sk,Iint
,xk,Iint

| z1:k) 6=
NIint∏

l=1

p (sk,l,xk,l | z1:k) . (5.51)

This means that if targets have intera
ted in the likelihood, they are linked for any future

iteration k. Nevertheless, we 
ould expe
t that asymptoti
ally (i.e. when k → +∞), the

posterior density fa
torizes.

5.4 Parti
le �lter approximations

Let us now derive a parti
le �lter approximation for the parti
ular Bayesian multitarget

�lter presented in the previous se
tion. We propose three di�erent parti
le �lters:

� A �rst �lter that manages target disappearan
es. The idea 
onsists in using, when

ever possible, i.e. when targets do not intera
t in the likelihood, the monotarget

parti
le �lter outlined in se
tion 3.3; intera
ting targets will of 
ourse be managed

jointly.

� A se
ond �lter that manages target appearan
es. The key point here 
onsists in


onsidering that targets appearing in the radar window do not intera
t in the like-

lihood. This assumption implies that the instrumental density that samples the

parti
le positions should be 
arefully designed in order to e�e
tively provide non

intera
ting parti
le positions.

� Lastly, a third parti
le �lter that manages both target appearan
es and disappear-

an
es.

5.4.1 Disappearan
e multitarget dete
tion parti
le �lter

The pra
ti
al implementation of the disappearan
e multitarget parti
le �lter is quite long

and 
omplex and, in parti
ular the way to manage the intera
ting targets over time.

Therefore, in this se
tion we provide only the outline of our solution. The 
omplete

des
ription 
an be found in Appendix C.2.

5.4.1.1 Single and intera
ting targets parti
le �lters

Let us �rst detail the parti
le �lter that manages single target disappearan
e and group of

targets disappearan
e without taking into a

ount the fa
t that the target state status, i.e.

whatever the target state intera
ts with other targets or not, may 
hange over time. To

this purpose, let us assume that Nt targets are simultaneously tra
ked at the 
urrent time
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instant. If target states xk,1:Nt do not intera
t in the likelihood until k (i.e. hypothesis

in Eq. (5.27) is veri�ed), the whole likelihood fa
torizes as a produ
t of single target

state posterior densities (see Eq. (5.32)). Therefore, rather than approximating the

whole multitarget state posterior density with a parti
le �lter, as in se
tion 5.2.3, ea
h

single target state posterior density p (sk,i,xk,i | z1:k) 
an be approximated either by a

monotarget parti
le when it does not intera
t with the other target �lters or by a parti
le

�lter that manages a group of intera
ting targets otherwise.

Con
erning the parti
le �lter for single target state, several parti
le approximations


an be 
onsidered. We restri
t here our attention to the disappearan
e TBD parti
le �lter

detailed in se
tion 3.3, that provides the best performan
e.

Thus, de�ning Ising as the set of single targets and using su
h a parti
le approximation,

ea
h posterior density p (xk,i | z1:k) (for i ∈ Ising) 
an be approximated as follows:

p̂ (xk,i | sk,i = 1, z1:k) =

Np∑

p=1

wpk,iδxp
k,i

(xk,i) , (5.52)

where the weights wpk,i 
an be 
al
ulated using Eq. (5.44) leading to

wpk,i ∝ wpk−1,i

pc
(
x
p
k,i | xpk−1,i

)

qc
(
x
p
k,i | xpk−1,i, zk

)gzk
(
sk,i = 1,xpk,i

)
. (5.53)

The densities pc
(
x
p
k,i | xpk−1,i

)
and qc

(
x
p
k,i | xpk−1,i, zk

)
are respe
tively the 
ontinuing prior

density and instrumental density for the 
ontinuing 
ase. The probability p̂ (sk = 1 | z1:k)

an be 
al
ulated using Eq. (3.76) (where dk is repla
ed by sk).

In the 
ase of a group of intera
ting targets, the target states must be pro
essed

jointly as explained in se
tion 5.3.4. Thus, for ea
h intera
ting group of targets Iint,i, the
Bayesian �lter in Eq. (5.49) should be used. However, approximating su
h a Bayesian

�lter might be di�
ult due to a 
omplexity in
reasing with the number of targets. Indeed,

if for instan
e three targets intera
t, the �lter approximation will require the 
al
ulation

of 23 probabilities p (sk,Iint
| z1:k) and 23 densities p̂ (xk,Iint

| sk,Iint
= 1, z1:k). Therefore,

for the sake of simpli
ity, we propose to manage the group of targets by 
onsidering that

when targets intera
t: p (sk,Iint
= 1 | z1:k) = 1, i.e. none of the targets 
an die.

For ea
h group of targets Iint,i, we propose the following parti
le �lter approximation:

p̂
(
xk,Iint,i

| sk,Iint,i
= 1, z1:k

)
=

Np∑

p=1

wpk,Iint,i
δxp

k,Iint,i

(
xk,Iint,i

)
, (5.54)

where

wpk,i ∝ wpk−1,iGzk

(
sk,Iint,i

= 1,xk,Iint,i

)
. (5.55)

Note that in this last equation, we impli
itly used the prior distribution as instrumental

to propagate the target states xk,Iint,i
. Finally, weights are normalized and eventually a

resampling pro
edure is performed (if needed).
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5.4.1.2 Outline of the proposed parti
le �lter solution

The two parti
le �lters proposed in the previous se
tion assume that the status of ea
h

target - whether it belongs to a single tra
k or to a group of intera
ting targets - does not


hange. Of 
ourse, in real appli
ations, this status may 
hange over time.

Therefore, at ea
h iteration, the status of ea
h target must be updated in order to know

if the target should be pro
essed alone or jointly with some other targets. Furthermore,

the 
ase of targets that have intera
ted in the past should also be 
onsidered. Indeed, we

have seen that su
h targets will be linked for all the next iterations even if they do not

intera
t anymore. As a 
onsequen
e, for su
h targets, it should not be possible to use

the single target parti
le �lter, although it allows to dramati
ally simplify the multitarget

tra
king problem. In order to solve this problem, we propose the following approximation:

� The groups of intera
ting targets Iint,1:Ng are evaluated at ea
h iteration, using the

method provided in se
tion C.2.1.

� If a target (or a group of targets) previously intera
ted with some other targets

but does not at the 
urrent step, this target (or this group of targets) is pro
essed

independently from other targets with the method the method provided in se
tion

C.2.2.

In other words, this last point indi
ates that the intera
tions between targets are 
onsid-

ered only at the 
urrent time step; the past intera
tions are not taken into a

ount. Note

also the sets may di�er from iteration k and iteration k−1 but the only available densities

orrespond to groups de�ned at iteration k− 1.Thus, before performing the parti
le �lter

for the sets Ising and Iint,1:Ng , it is �rst ne
essary to reorganize the posterior parti
le den-

sities from the sets at previous iteration in order to obtain the densities for sets Ising and
Iint,1:Ng , i.e. p̂ (xk−1,i | sk−1,i = 1, z1:k−1), i ∈ Ising and p̂

(
xk−1,Iint,l

| sk−1,Iint,l
= 1, z1:k−1

)
,

l ∈ {1, · · · , Ng}. A method enabling this reorganization is provided in se
tion C.2.2.

Finally, the multitarget disappearan
e dete
tion parti
le �lter 
an be summarized as

follows:

� First, the sets Ising and Iint,1:Ng are evaluated with the method provided in se
tion

C.2.1.

� Then, posterior densities at previous step are reorganized in order to 
al
ulate the

densities p̂ (xk−1,i | sk−1,i = 1, z1:k−1), i ∈ Ising and p̂
(
xk−1,Iint,l

| sk−1,Iint,l
= 1, z1:k−1

)
,

l ∈ Iint,1:Ng .

� Lastly, the parti
le �lter re
ursion is performed for ea
h reorganized density.

5.4.2 Appearan
e Multitarget parti
le �lter

For the Disappearan
e Multitarget parti
le �lter detailed in the previous se
tion, we pro-

posed to use, when possible, a parti
le �lter per target. The same idea will be developed

for the Appearan
e Multitarget parti
le �lter. However some important di�eren
es with

the previous algorithm have to be taken into a

ount. Indeed, 
ontrary to the manage-

ment of target disappearan
es where parti
les are already 
on
entrated in the state-spa
e
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around the a
tual target states, in the appearan
e 
ase, the lo
ation of target appearan
es

is unknown, requiring to uniformly sample the whole state-spa
e. Besides, in Chapter 2,

we have seen that one of the deli
ate point for the TBD monotarget parti
le �lter was the

initialization of the target state (see se
tion 2.5). Therefore, here a parti
ular attention

should be given to the design of the instrumental density for initializing the parti
le target

states � with the additional di�
ulty that more than one target may appear in the radar

window.

In pra
ti
e, designing su
h an instrumental density in the general 
ase (for instan
e,

if several targets appear 
lose from ea
h other at the same time) may appear di�
ult

and it is often ne
essary to 
onsider some simplifying hypotheses. One possibility is to


onsider that new targets appear su�
iently apart from ea
h other so that they do not

intera
t in the likelihood. Gar
ia-Fernandez in [GF11℄ follows this hypothesis to design

an instrumental density in order to properly initialize the parti
le state of birth targets

(see se
tion 4.4.2 in [GF11℄). As we did in se
tion 2.5.1.2, he initializes parti
les in the


ells that ex
eed a given threshold γ 
al
ulated as γ = −2σ2 logPfa ( see Eq. (1.51)).

However, in his simulation, he 
hose a very small probability of false alarm Pfa = 2.10−5

in order to initialize only a few target states at ea
h iteration. Su
h a threshold makes

di�
ult to dete
t low SNR targets and as a 
onsequen
e to tra
k them. Thus, in order

to handle su
h low SNR targets, we propose some extension to his instrumental density

in order to manage a larger Pfa.
To this purpose, in the sequel, we will assume that newborn targets appear su�
iently

appart from ea
h other and thus do not intera
t in the likelihood. This hypothesis 
an

be exploited in two di�erent manners in the parti
le �lter framework:

� Either the Bayesian prior 
an be sele
ted in order to prevent that birth targets

appear in the same area and intera
t in the likelihood. We have not investigated

this solution here.

� Or the instrumental density 
an be 
hosen in su
h a manner that the parti
le target

states do not intera
t in the likelihood. This se
ond strategy will be 
onsidered in

the following.

5.4.2.1 Outline of the proposed solution

The main idea of the proposed solution 
onsists in using one parti
le �lter per target.

Therefore, in order to dete
t Nt targets, the parti
le posterior density approximation

should fa
torize as in Eq.(5.32), i.e.:

p̂ (sk,1:Nt,xk,1:Nt | z1:k) =
Nt∏

i=1

p̂ (sk,i,xk,i | z1:k) , (5.56)

where ea
h parti
le posterior density p̂ (sk,i,xk,i | z1:k) 
an be 
al
ulated with the algo-

rithm developed in Chap. 2 and 3. However, for the sake of simpli
ity, we will not 
on-

sider the solution based on the target appearan
e time in se
tion 3.3 sin
e, at this point,

it seems too 
omplex to manage multiple mixture posterior approximations. Instead,

we propose to use the monotarget parti
le �lter of se
tion 2.6 that allows to 
al
ulate

P̂ i
e,k = p̂ (sk,i = 1 | z1:k) and p̂ (xk,i | sk,i = 1, z1:k). It should be stressed that in Eq. (5.56)
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for any pair (l, m) of targets, none of the parti
les of target l 
an intera
t with parti-


les of targets m. Indeed, if this 
ondition is not veri�ed, then the two targets must be

pro
essed jointly and not independently. Thus, if parti
les belonging to �lters l and m

(with l, m ∈ {1, · · · , Nt}, l 6= m) are respe
tively denoted by

{
x
p
k,l

}Np

p=1
and

{
x
p
k,m

}Np

p=1
,

the previous 
ondition 
an be expressed as:

∀ (p, q) ∈ {1, · · · , Np}2 ,
∣∣hH

(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣ < γh. (5.57)

5.4.2.2 Managing the intera
tion between parti
les

A �rst solution to prohibit the intera
tion between parti
les belonging to di�erent �lters


onsists in keeping one of the intera
ting parti
le while "killing" the other intera
ting

parti
les by setting their weight to zero.

This solution is quite radi
al, but insures to avoid the intera
ting issue in all 
ases and

is very simple to implement.

Finding the intera
ting parti
les with Eq. (5.57) might be quite long sin
e it requires

to 
al
ulate the quantity

∣∣hH
(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣
for all the possible pairs of parti
les

for �lters l and m. Therefore, in order to limit the 
omputational resour
es devoted to

the 
al
ulation of intera
tions between parti
les, we propose to simplify this pro
edure

by working on the 
ell indexes (u, v) of the parti
le lo
ations rather than on the s
alar

produ
ts

∣∣hH
(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣
.

Let us de�ne, as in Eq. (2.26), the set of neighborhood 
ells around the parti
le target

state x
p
k,i as

Vxp
k,i

=
{
(u, v) | |upk,i − u| ≤ δhr , and |vpk,i − v| ≤ δhθ

}
, (5.58)

where

(
upk,i, v

p
k,i

)
is the 
ell lo
ation of parti
le x

p
k,i. Then, we de�ne the set of 
ells that

belong to the parti
le �lter approximating the state xk,i in su
h a manner:

Icell,i =

Np⋃

p=1

Vxp
k,i
. (5.59)

Then, two parti
le �lters l and m are de
lared to intera
t if the interse
tion between

sets Icell,l and Icell,m is not empty. Let us de�ne by I⋂,(l,m) the interse
tion between sets

Icell,l and Icell,m, i.e.

I
(l,m)⋂ = Icell,l

⋂
Icell,m. (5.60)

Finally, intera
ting parti
les for �lter l or m are killed as follows:

∀p ∈ {1, · · · , Np} , if
(
upk,l, v

p
k,l

)
∈ I(l,m)⋂

then wpk,l = 0. (5.61)

As some weights may have been set to zero, the weights wpk,l for �lter l must be renormal-

ized so that

∑Np

p=1w
p
k,l = 1.

5.4.2.3 Proposed instrumental density

The marginalized TBD parti
le �lter detailed in se
tion 2.6 
onsiders two 
ases in order

to propagate the parti
les: Np,c "
ontinuing" parti
les and Np−Np,c "newborn" parti
les.

Therefore, to extend the monotarget marginalized parti
les to the multitarget 
ase, two

instrumental densities have to be designed.
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Instrumental density for the 
ontinuing 
ase

The instrumental density for propagating the 
ontinuing parti
les is often 
hosen to

be the prior. However, using the prior density in the multitarget 
ase will not prevent

possible intera
tions between the parti
le target states sin
e, in that 
ase, the parti
les

for ea
h target state xk,i will be sampled independently. Therefore, further developments

should be made in order to propose an instrumental density that allows to prevent from

this issue. As proposed previously, when parti
les from di�erent parti
le �lters intera
t,

intera
ting parti
les for all intera
ting �lters ex
ept one 
an be killed. However, su
h

a strategy does not take into a

ount the information provided by the di�erent parti
le

�lters and in parti
ular the probability of appearan
e P̂ l
e,k. For instan
e, if one parti
le

belongs to a parti
le �lter with a high probability P̂ l
e,k and intera
ts with another parti
le

belonging to a parti
le �lter P̂m
e,k with a lower probability, it seems reasonable to keep the

parti
le belonging to the parti
le �lter with the highest probability P̂ l
e,k.

In order to take into a

ount the information provided by the di�erent parti
le �lters,

we propose to sample the 
ontinuing parti
les for the di�erent parti
le �lters in a sequen-

tial manner, i.e. one �lter after another starting with the �lter presenting the highest

probability of appearan
e P l
e,k−1 at previous step. This solution 
an be summarized as

follows:

1. Sort the probabilities P l
e,k−1 in des
ending order and get the set of ordered indexes

Ifilt,ց = {i1, · · · , iNt}.

2. Remove the �rst element i1 of the set Ifilt,ց = {i1, · · · , iNt}, i.e. Ifilt,ց = Ifilt,ց \
{i1}.

3. For ea
h �lter l in the set Ifilt,ց 
al
ulate I
(i1,l)⋂

with Eq. (5.60). If the set I
(i1,l)⋂

is

empty the two �lters do not intera
t and there is nothing to do. On the 
ontrary,

some parti
les of parti
le �lter i1 and l intera
t. Then, intera
ting parti
les of �lter
l are killed as follows:

� Find parti
les x
p
k,l for whi
h

(
upk,l, u

p
k,l

)
∈ I(i1,l)⋂

.

� Set their weights to zero.

� Normalize the weights wpk,l su
h that

∑Np

p=1w
p
k,l = 1.

4. Go ba
k to step 2 and apply the same pro
edure.

Instrumental density for the birth 
ase

For the birth 
ase, we propose to extend the work on the instrumental densities for

the monotarget 
ase developed in se
tion 2.5. In the sequel, we 
onsider that 
ontinuing

parti
les have been already propagated before initializing the birth parti
les. On
e again,

the main di�
ulty is to manage the possible intera
tions between the parti
les of the

di�erent �lters.

As in the 
ontinuing 
ase, we propose to initialize parti
le positions for the di�erent

�lters in a sequential manner. However, it is here preferable to initialize the di�erent

parti
le �lters in the as
ending order of the probability of existen
e P l
e,k. Indeed, in the
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birth 
ase, it seems reasonable to promote the initialization of parti
les for parti
le �lters

that have the smallest probability of appearan
e.

An important point to take into a

ount is that 
ontinuing parti
les for the di�erent

parti
le �lters are already present in the radar window. Therefore, initializing randomly

the position of the birth parti
les in the set of 
ells Ik,γ � where Ik,γ is the set o� 
ells

that ex
eed the threshold γ (see paragraph 2.5.1.2 for details) � may not prevent from

intera
tion between parti
les of the di�erent �lters; some birth parti
les of a given �lter

may be initialized in a 
ell that 
ontains 
ontinuing parti
les of an other �lter.

To avoid su
h a situation, it is �rst ne
essary to �nd whi
h 
ells in the set Ik,γ belong to
whi
h �lters. Sin
e 
ontinuing parti
les have been already propagated and do not intera
t

by 
onstru
tion, the set of 
ells Iγcell,l, that ex
eed the threshold γ and that belong to �lter

l, is simply obtained as follows:

Iγcell,l = Icell,l
⋂
Ik,γ. (5.62)

Note that this set may be empty. Moreover, the set Ik,γ may di�er from the union of the

sets Iγcell,l sin
e some 
ells that ex
eed the threshold may not be 
onsidered by any �lter.

In the sequel, we will denote by Ik,remain the set of 
ells ex
eeding the threshold γ and not

belonging to any �lter and by NIk,remain
the number of remaining 
ells. Obviously, these


ells must be assigned to the di�erent parti
le �lters. We propose the following pro
edure:

� For ea
h �lter, 
al
ulate αfilt,l =
1−P l

e,k∑Nt
l=1 1−P

l
e,k

.

� Randomly assign

⌈
αfilt,lNIk,remain

⌉

ells to ea
h �lter, su
h as ea
h 
ell is assigned

to only one �lter. It should be ensured if possible that at least one 
ell is assigned

to ea
h �lter.

� Add the 
ells randomly assigned to �lter l to the set Iγcell,l.

Finally, the Np − Np,c parti
les of ea
h �lter are initialized uniformly over the 
ells

Iγcell,l. The weighting term indu
ed by this proposed instrumental distribution is given by:

pb (rk, θk)

qb (rk, θk|zk)
=
NI

γ
cell,l

Nc

, (5.63)

where NI
γ
cell,l

is the number of 
ells in Iγcell,l.

5.4.3 Overall TBD multitarget parti
le �lter

In se
tions 5.4.1 and 5.4.2, two parti
le �lters have been proposed in order to manage

respe
tively the disappearan
e and the appearan
e of multiple targets. We now propose to


ombine the two previous parti
le solutions. We use here the same strategy as developed

in se
tion 3.4 for the monotarget setting. The main di�eren
e between the two 
ases


on
erns the management of the number of targets. In parti
ular, one would like to

avoid that two di�erent �lters dete
t and tra
k the same target. This may arise when

parti
les for an appearan
e dete
tion �lter are initialized near a target already tra
ked by

another �lter. To over
ome this problem, we assume, in the sequel, that the appearan
e
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multitarget parti
le �lter 
annot initialize and propagate parti
les in 
ells "belonging" to

the disappearan
e parti
le �lter de�ned in Eq. (5.59).

Finally one iteration of the overall TBD multitarget parti
le �lter 
an be summarized

as follows:

1. Apply the disappearan
e multitarget parti
le �lter to update the tra
ked targets.

2. Determine the 
ells that are forbidden for the appearan
e multitarget parti
le �lter.

3. Update the appearan
e multitarget parti
le �lter.

4. Add any appearan
e �lters with a probability of appearan
e P l
e,k greater than Pinit

to the set of disappearan
e multitarget parti
le �lter.

5.5 Simulation and Results

In this se
tion, we evaluate the ability of the overall TBD multitarget parti
le �lter to

manage the appearan
e and disappearan
e of several targets on quite simple s
enarios

via Monte Carlo simulations. For the �rst s
enario we simply 
onsider the appearan
e

and disappearan
e of three targets that do not intera
t while for the se
ond s
enario the


rossing of two targets is 
onsidered.

As in 
hapter 2, both dete
tion and estimation performan
e are evaluated. We propose

to evaluate the performan
e in dete
tion by averaging the estimated number of targets

at ea
h iteration over the NMC Monte Carlo runs. The performan
e in estimation is

provided by 
al
ulating the RMSE between the estimate target states provided by the

parti
le �lters and the a
tual target states. The 
omputation of the RMSE requires

asso
iating the estimated target states with the a
tual target states. This asso
iation is

performed so as to minimize the overall summation of all RMSE. If the estimated number

of targets is lower than the a
tual number of targets, all the estimated target states must

be used.

5.5.1 Non-intera
ting targets

We 
onsider a s
enario with Nit = 100 iterations. Three targets are present during

the experiment: they appear respe
tively at kb,1 = 5, kb,2 = 10 and kb,3 = 15, and
they disappear respe
tively at kd,1 = 75, kd,2 = 80 and kd,3 = 85. For ea
h Monte

Carlo run, the initialization of the target state for the position and the velo
ity is done

a

ording to the birth density pb (.) de�ned in se
tion 2.2 (i.e. uniform prior over D =
[rmin, rmax] × [θmin, θmax] for the position and over [vmin, vmax]× [0, 2π] for the velo
ity),
with the following parameters:

� rmin = 30 km, rmax = 42 km, θmin = 30◦ and θmax = 60◦,

� vmin = 100 m.s

−1
and vmax = 300 m.s

−1
.

Between kb,i+1 and kd,i−1 the target state xk,i evolves a

ording to Eq. (2.6) with no noise
pro
ess (i.e. uniform linear motion) and the time between two 
onse
utive measurements

is TS = 0.3 s.
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Moreover, for ea
h Monte Carlo run, the traje
tories of the three targets are 
arefully

drawn so that the targets never intera
t.

The �u
tuations model for ea
h target is assumed to be the Swerling 0 model and their

SNR are set respe
tively to 5, 7 and 5dB.

We 
onsider here the overall TBD multitarget parti
le �lter detailed in se
tion 5.4.3. This

�lter has been tested over NMC = 2000 Monte Carlo runs with the following parameters :

� Both for the appearan
e and disappearan
e multitarget parti
le �lters, we use the

following parameters : β = 1, qS = 0.01, vmin = 100m.s

−1
, vmax = 300m.s

−1
,

SNRmin = 3 dB, SNRmax = 13 dB and δhr = δhθ = 2.

� For the appearan
e multitarget parti
le �lter, the number of targets Nt is set to

3 (i.e. at most three targets 
an be dete
ted at the same time by the appearan
e

multitarget �lter). For ea
h individual parti
le �lter: Pb = 0.1, Np = 1500 and

Np,b = 500 (i.e. Np,c = 1000). The instrumental density used to propagate the

parti
les is des
ribed in paragraph 5.4.2.3, with Pfa = 0.1. To 
al
ulate the set

Vxp
k,i

in Eq. (5.59), we take δhr = δhθ = 2 (i.e. no intera
tion between parti
les

in a neighbourhood of two range bearing 
ells). Lastly, a target is de
lared to be

dete
ted if a �lter has a probability of existen
e P l
e,k greater than 0.9.

� For the disappearan
e multitarget parti
le �lter, the number of targets Nt is set to

5 (i.e. at most �ve targets 
an be tra
ked disappearan
e multitarget parti
le �lter)

For ea
h individual parti
le �lter: Pd = 0.05 and Np = 1500. The instrumental

density used to propagate the parti
les is the prior pc (xk | xk−1). Two �lters are

de
lared to intera
t if the distan
e between the predi
ted target state estimate is

lower than 500 m Lastly, a target is de
lared to have disappeared if a �lter has a

probability of existen
e P l
e,k lower than 0.2.

Figure 5.4 presents the RMSE for ea
h target � Note that the RMSE is displayed with

respe
t to target life iteration, i.e. the iterations during whi
h the target is present �,

while Figure 5.5 displays the number of targets estimated by the parti
le �lter. Clearly,

this solution enables the dete
tion and tra
king with some delay of several non intera
ting

targets. However, in Figure 5.4 it seems that the later the target appears the worst is

its RMSE, in parti
ular for the velo
ity. It may be explained by the fa
t that as long as

the �rst target has not been de
lared to be dete
ted by its tra
king �lter, this �lter may

kill the parti
les of the other �lters (due to the parti
ular stru
ture of the instrumental

density).
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Figure 5.4 � RMSE for the three targets in the non-intera
ting target s
enario.
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Figure 5.5 � Estimated number of targets. S
enario with three non-intera
ting targets.
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5.5.2 Intera
ting targets

For this se
ond s
enario, the number of iterations is still set to Nit = 100. Only two

targets are present that both appear at step kb = 5 and disappear at step kd = 95. The
two target states are drawn as in se
tion 4.5.2.1 : the angle formed by the two velo
ity

ve
tors is π/4 and the minimum distan
e between the two targets is dmin. Here targets


ross at step kc = 40. The �u
tuation model for the two targets is assumed to be the

Swerling 1 model and their SNR are set to 10 dB.

The overall TBD multitarget parti
le �lter is run with the same parameters as in the

previous paragraph. NMC = 2000 Monte Carlo simulations were run.
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Figure 5.6 � RMSE for the two 
rossing targets.

Results in terms of RMSE are presented in Figure 5.6 while the estimated number
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Figure 5.7 � Estimated number of targets. S
enario with two targets 
rossing.

of targets is presented in Figure 5.7. These two �gures show that, in most 
ases, the

proposed solution is able to manage two intera
ting targets. However some undesirable

behaviors have been noti
ed:

� In Figure 5.7, the estimated number of targets is greater than two after iteration 70.
It means that for a small number of Monte Carlo runs, the �lter output provided

at least three tra
ks for the two targets. In fa
t, it appears that when the targets

are 
lose to one another, one parti
le �lter diverges from its target and 
onverges to

the other one. As a 
onsequen
e, a new �lter is initialized to tra
k the target that

was lost, thus leading to three estimated tra
ks.

� After step kd, the estimated number of targets should be 
loser to zero than it is

in Figure 5.7 sin
e at 10 dB the target disappearan
e should be easy to dete
t.

However, we have assumed in the 
ase of intera
ting targets that when parti
le

�lters are grouped (or linked), they 
annot be killed; in other words they 
annot

managed target disappearan
es. Therefore, if two �lters have 
onverged to the same

target they 
annot be killed anymore sin
e they will be intera
ting for the remainder

of the simulation. As it has just been said, this situation may arise for some Monte

Carlo runs and 
ould explain the slow de
reasing behavior of the estimated number

of targets after the target disappearan
es.

This two undesirable behaviors are not a

eptable and should be managed by the

parti
le �lter. This implies that an additional me
hanism permitting to prune tra
ks


onverging to the same target state is ne
essary.



172 
hapter 5

5.6 Con
lusion

In this 
hapter, we have �rst presented the 
lassi
 multitarget Bayesian �lter in a TBD


ontext that pro
ess all targets jointly. Then, in se
tion 5.3, we have proposed an other

state model that allows to pro
ess targets by independent �lters when they are su�
iently

far apart from ea
h other.

Then, in se
tion 5.4, several parti
le �lter approximations have been proposed. The

�rst parti
le approximation is dedi
ated to the appearan
e of several targets. The main

di�
ulty 
onsists in initializing the parti
les of the di�erent �lters su
h that they do not

intera
t; we have proposed an instrumental density for that purpose. The se
ond parti
le

�lter 
on
erns the disappearan
e of several targets. The di�
ult point is to manage the

intera
tion between targets. We have shown that when targets have intera
ted, they


annot theoreti
ally be 
onsidered as independent anymore and have to be pro
essed

jointly. However, we have proposed an heuristi
 pro
edure in order to 
onsider targets

independent even if they have intera
ted in the past. Finally, the last proposed �lter is a


ombination of the two previous ones that is able to handle the whole TBD multitarget

problem.

Lastly, in se
tion 5.5, Monte Carlo simulations have been performed in order to show

the ability of this new approa
h to 
orre
tly tra
k, in most situations, several targets.

In parti
ular, it has been shown that our solution is able to dete
t (appearan
e and

disappearan
e) three targets at low SNR that are far apart from ea
h other and to manage

the 
rossing of two targets at a higher SNR. A few undesirable behaviours have however

been observed, implying that further developments and improvements should be brought

to the proposed solution.



Con
lusion

The aim of this work was to study, develop and propose parti
le �lter methods to dete
t

and tra
k one or several targets in a Tra
k-Before-Dete
t 
ontext.

First, the monotarget TBD problem has been thoroughly investigated. This was

motivated by two 
onsiderations:

� First, the fa
t that the monotarget parti
le �lter solutions have not been extensively

studied in the literature; in parti
ular the instrumental density for the initialization

of the birth parti
les was not deeply studied in the literature.

� Se
ond, the 
onstant 
on
ern that TBD multitarget parti
le �lter solutions based

on multitarget parti
le states are too 
ostly for pra
ti
al appli
ations and that one

should study instead multitarget solutions based on monotarget parti
le �lters as

in the 
lassi
 radar tra
king framework where this approa
h has been su

essfully

used.

In 
hapter 2, the 
lassi
 monotarget TBD parti
le �lter generally used in the literature

has been studied and our work has fo
used on proposing some relevant instrumental

densities to initialize the parti
le state. To this purpose, we have 
onsidered the optimal

instrumental for the initialization of the parti
le state (whi
h is intra
table). It appears

that this instrumental density does not depend on the state at previous time step. Thus,

all the parti
les 
an be initialized from a unique instrumental density making interesting

to devote some resour
es to approximate this parti
ular density. To this purpose, we

have proposed several approximations for the optimal instrumental density for the target

position using a grid-based approa
h as well as for the other state parameters su
h as the

amplitude parameter or the presen
e variable. Then, Monte Carlo simulations have been

performed to illustrate the bene�ts of using su
h instrumental densities 
ompared to the

ones 
lassi
ally used in the literature.

The 
hapter 3 was motivated by the following questions

� is it relevant to try to dete
t both the appearan
e and the disappearan
e of a target

with the same parti
le �lter ?

� is it relevant to still initialize parti
les whereas the parti
le �lter has 
onverged to

the a
tual target state ?

From these two questions, an alternative modeling to the monotarget TBD problem has

been proposed that 
onsiders the target appearan
e and disappearan
e as two di�er-

ent problems. We have shown that the monotarget TBD problem 
an be derived as a

173
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Bayesian qui
kest 
hange point dete
tion problem that allows to 
onsider the target state

and its time of appearan
e or disappearan
e rather than the presen
e variable. This has

enabled to derive two Bayesian �lters, one for the appearan
e and another one for the

disappearan
e. Di�erent parti
le �lter approximations have been provided for these two

theoreti
al Bayesian �lters. Moreover, we have also proposed a parti
le solution that 
om-

bines the parti
le �lters previously developed in order to manage both the appearan
e

and the disappearan
e of a target. Some Monte Carlo simulations have been made in

order to evaluate the performan
e of our approa
h 
ompared to the 
lassi
 one showing

some bene�ts in parti
ular in terms of bad dete
tion rate. It also appears that not ini-

tializing parti
les when the parti
le �lter has 
onverged allows to substantially redu
e the


omputational 
ost without degrading the dete
tion performan
e. This tends to 
on�rm

the intuition that separating the appearan
e and disappearan
e dete
tion problems 
an

be more e�
ient than solving both problems at on
e.

We fo
used in 
hapter 4 on another aspe
t of the TBD problem: the 
al
ulation of

the likelihood of the measurement zk 
onditionally to the target states. This 
omputation

is of primary importan
e sin
e it is required for the appli
ation of all parti
le �lters. In

the TBD framework, this quantity 
annot be 
al
ulated dire
tly from the measurement

equation due to the presen
e of the unknown target amplitude parameters that may �u
-

tuate randomly and independently over time. A 
lassi
 heuristi
 solution to deal with

these unknown amplitude parameters 
onsists in 
onsidering the squared modulus of the

signal |zk|2 rather than the 
omplex measurement zk. In some 
ases su
h a strategy allows

to 
al
ulate easily the likelihood of the measurement 
onditionally to the target state �

these 
ases are the Swerling 0 monotarget 
ase and the Swerling 1 multitarget state �

at the pri
e of a loss of information; in parti
ular the spatial 
oheren
e of the amplitude

parameters is lost. Moreover, in other situations, this heuristi
 solution may lead to in-

tra
table expressions for the likelihood. In order to over
ome these di�
ulties, Rutten et

al. have proposed a well-founded approa
h that 
onsists in marginalizing the likelihood of

the measurement over the amplitude parameters while keeping all the information avail-

able. However, they have only investigated the Swerling 0 monotarget 
ase. Thus, we

have extended this solution to the multitarget 
ase and to other Swerling models. For

the monotarget 
ase, we have shown that 
losed-forms 
an be obtained for the Swer-

ling 1 and 3 models. For the multitarget 
ase, we have derived a 
losed-form expression

only for the Swerling 1 
ase, while for the other Swerling models we have proposed some

approximations in order to alleviate the 
omputational time required to 
al
ulate the like-

lihood. Finally, the bene�ts of 
al
ulating the likelihood from the 
omplex measurements

zk rather than from squared modulus measurements |zk|2 have been validated via Monte

Carlo simulations.

In the last part of this manus
ript (
hapter 5), we have ta
kled the multitarget TBD

problem. We have developed a multitarget parti
le solution that manages targets in-

dependently when they are far apart from ea
h other rather than a parti
le �lter that


onsiders the target state jointly. In this perspe
tive, we have shown that it is possible to

model the multitarget state as a 
olle
tion of individual target states (sk,1:Nt,xk,1:Nt). By
taking advantage of the parti
ular fa
torization of the measurement likelihood, the whole

multitarget posterior density also fa
torizes as a produ
t of individual target posterior

densities, thus allowing to use one �lter per target. Moreover we have also shown that
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this result 
an be generalized to groups of targets. Then, as in 
hapter 3, we have pro-

vided some parti
le �lter approximations both for the multitarget appearan
e 
ase and

the disappearan
e 
ase. For the multitarget appearan
e 
ase, the main di�
ulty 
on
erns

the initialization of parti
le states in order to keep the parti
ular stru
ture of one �lter per

target. To this purpose, we have proposed an instrumental density for the initialization

and the propagation of the parti
le target state that 
onsists, roughly speaking, to kill

the intera
ting parti
les of the individual parti
le �lters presenting the lowest probability

of appearan
e. For the multitarget disappearan
e 
ase, the main di�
ulty 
onsists in

managing the intera
tions between targets. We have proposed an heuristi
 solution that

enables to determine at ea
h iteration if targets intera
t or not; intera
ting targets are

then pro
essed jointly. Then, as in 
hapter 3, we 
ombined the two previous parti
le

�lters to manage both the target appearan
es and disappearan
es. Finally, the proposed

parti
le �lter solution was tested via Monte Carlo simulations over two di�erent s
enarios.

The �rst one 
onsiders the appearan
e and disappearan
e of several targets at low SNR

that do not intera
t. Simulation results validated the ability of our solution to handle

su
h s
enarios. The se
ond s
enario 
onsiders the 
rossing of two targets at a quite high

SNR of 10 dB. Here, simulations results have shown that our solution is able to tra
k


rossing targets most of the time ; however in some 
ases the two �lter 
onverged to

the same target during the 
rossing, and they were not able to retrieve the two targets

afterwards. In that respe
t, the proposed solution should then be subje
t to additional

improvements. For instan
e, it may be interesting to develop a parti
le �lter solution

that 
onsiders that targets may die when they intera
t or to propose a more sophisti
ated

instrumental density.

Before 
losing this manus
ript, we provide, in the sequel, some perspe
tives and future

works:

� One important work that remains to be done is a 
omparison with the 
lassi
 radar

tra
king algorithms. Indeed, these 
lassi
 algorithms are very robust and e�
ient

for su�
iently high SNR targets. The main 
ontribution of the TBD method would

then be on the dete
tion of low SNR targets. However it should be ne
essary to

quantify the dete
tion gain provided by the TBD approa
h for this 
lass of targets


ompared to 
lassi
 tra
king algorithms.

� In all the manus
ript, the Doppler parameter was not 
onsidered, for simpli
ity

purpose. Of 
ourse, this parameter should also be taken into a

ount in a full TBD

solution and in parti
ular, as for the other state parameters, it should be interesting

to develop a relevant instrumental density taking into a

ount information provided

by the measurement to sample this parameter.

� In the measurement equation 
onsidered in this work, the noise 
ovarian
e was

assumed to be known. In pra
ti
e, this hypothesis is unrealisti
 and therefore,

it should be interesting to develop TBD solutions that 
an handle an unknown


ovarian
e matrix, for instan
e by 
reated an adaptive TBD �lter that in
ludes

an estimate of the noise and/or 
lutter 
ovarian
e in the likelihood 
omputation.

Moreover, the Gaussian hypothesis of the noise may be violated, in parti
ular in

presen
e of 
lutter; of 
ourse the advantage of the parti
le �lter solution is its ability
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to 
onsider non gaussian densities, but still it would be important to try to adapt

the proposed TBD method to non gaussian noise or 
lutter model, also to evaluate

the robustness of the TBD approa
h to an erroneous statisti
al noise hypothesis.

� Con
erning the pro
essing itself, we have seen that the sample grid provided by the

mat
hed �lter prepro
essing deteriorates somehow the dete
tion performan
e at a

given time instant for targets lo
ated at the edge of the resolution 
ell. This problem

arises along all dimensions. Along the range dimension, it seems di�
ult to over
ome

be
ause of the analog to digital 
onverter at the re
eption. However along the angle

dimension, it may be interesting to investigate the possibilityto dis
ard sampled

dire
tions and apply the phase array pro
essing for ea
h parti
le in its spe
i�


dire
tion. This would of 
ourse imply applying the TBD algorithms on re
eption

antenna raw data before the FFC pro
essing. Note that a similar pro
edure 
ould

also be applied along the Doppler dimension for pulse trains: for a given parti
le, the

Doppler steering ve
tor 
onsidered would then be dire
tly provided by the estimated

radial velo
ity 
orresponding to the parti
le state.

� In a similar idea, note that here only point targets were 
onsidered. Therefore, the

studying the behavior of TBD methods to extended targets, and extending TBD

methods to this kind of targets 
ould be of interest.

� Finally, in this work, we have mainly 
onsidered simpli�ed 
ases that permit a

better and easier understanding of the algorithmi
 issue, and also a redu
tion of

the 
omputational 
ost. However, when 
onsidering 
ases, TBD methods should

pro
ess large data obtained from range/angle/doppler pro
essing, thus representing

many resolution 
ells to sample. This will represent a very high 
omputational


ost in terms of 
omputational resour
es. Somehow, it will then be important to


onsider spe
i�
 
omputer ar
hite
tures (e.g GPU) that may allow a 
omplex TBD

pro
essing on large amount of data.

Finally, it appears that the TBD approa
h may be a very powerful but very 
ostly

method for radar tra
king. Clearly it should not be applied to any radar situation: in

the presen
e of su�
iently strong targets, 
lassi
 radar tra
king will 
ertainly perform

very well. It may on the 
ontrary be of interest for tra
king low SNR targets in surveil-

lan
e radar appli
ations, provided that subsequent studies demonstrate an interesting

performan
e gain for dete
ting su
h targets over 
lassi
 pro
essing.



Appendix A

Properties of time of appearan
e τb
with a geometri
 prior

When the time of appearan
e τb is modeled by a geometri
 random variable, i.e.

p (τb = i) =





0, i = 0,

Pb(1− Pb)i−1, i ≥ 1,
(A.1)

where 0 < Pb < 1 denotes the probability of birth, it has some interesting properties.

Indeed, by de�ning

bk =





1, if τb ≤ k,

0, otherwise,
(A.2)

it 
an be shown that (bk)k∈N is a Markov 
hain with the following transition probability

matrix

Πbk =


1− Pb Pb

0 1


 , (A.3)

and also that p (bk = 1 | bk−1 = 0) = Pb, i.e. knowing that the target has not yet appeared
at step k − 1, its probability to show up at step k does not depend on the time instant

and is equal to Pb.

By de�nition of bk, the event {bk = 1} 
an be expressed as follows

{bk = 1} =
k⋃

i=1

{τb = i} . (A.4)

Sin
e the events {τb = i} are in
ompatible,

p (bk = 1) =

k∑

i=1

p (τb = i) , (A.5)

p (bk = 0) = 1− p (bk = 1) . (A.6)
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Moreover, for a time appearan
e variable τb modeled by the geometri
 distribution (A.1),

using the de�nition of 
onditional probability, i.e.

p (bk = 1 | bk−1 = 0) =
p (bk = 1, bk−1 = 0)

p (bk−1 = 0)
, (A.7)

where p (bk = 1, bk−1 = 0) = p (τb = k) by de�nition of bk, and noting that p (bk−1 = 1) =∑k−1
l=1 p (τb = l), it 
omes

p (bk = 1 | bk−1 = 0) =
p (τb = k)

1− p (bk−1 = 1)
=

Pb(1− Pb)k−1

1−∑k−1
l=1 Pb(1− Pb)l−1

= Pb. (A.8)

This last equation indi
ates that knowing that the target has not yet appeared at step

k − 1, its probability to show up at step k does not depend on the time instant and is

equal to Pb.
In other hand, it is easy to show that (bk)k∈N is a Markov 
hain. Indeed, by de�nition

of bk, the following property holds:

bk = 0⇒ bi = 0 forany i ≤ k − 1, , (A.9)

and, as a 
onsequen
e,

p (bk = 0 | b1:k−2, bk−1 = 0) = p (bk = 0 | bk−1 = 0) = 1− Pb. (A.10)

In the same manner, by de�nition of bk,

bk−1 = 1⇒ bk = 1, (A.11)

then whatever the sequen
e b1:k−2,

p (bk = 1 | b1:k−2, bk−1 = 1) = p (bk = 1 | bk−1 = 1) = 1. (A.12)

Therefore, Eq. (A.10) and (A.12) demonstrate that the pro
ess (bk)k∈N is Markov with

the transition probability matrix in Eq. (A.3). It 
an be remarked that the state bk = 1
is an absorbing state, i.e. on
e entered in the state bk = 1, the state bk = 0 
annot be

rea
h anymore. Lastly, note that from Eq. (A.1), the probability for the initial state is

p(b0 = 0) = 1.



Appendix B

Parti
le �lter for time appearan
e

dete
tion in TBD

The aim of this appendix is to detail the pra
ti
al implementation of the TBD parti
le

�lter that allows to resample over all the mixture 
omponents and outlined in paragraph

3.2.4.3. To this purpose, let us �rst develop the parti
le approximation p̂ (xk | bk = 1, z1:k)
in Eq. (3.46):

p̂ (xk | bk = 1, z1:k) =
∑

i∈Ik

α̂k,ip̂ (xk | τb = i, z1:k)

=
∑

i∈Ik

Np,i∑

n=1

α̂k,iw
n
k,iδxn

k,i
(xk).

(B.1)

Thus, it is possible to 
al
ulate the e�e
tive sample size Nall
eff ,k for the overall parti
le

approximation p̂ (xk | bk = 1, z1:k) from the e�e
tive sample size measures Neff,i of the

di�erent mixture 
omponents using Eq.(1.98) as follows

Nall
eff,k =


∑

i∈Ik

Np,i∑

n=1

(
α̂k,iw

n
k,i

)2



−1

=


∑

i∈Ik

α̂2
k,i

Np,i∑

n=1

(
wnk,i
)2



−1

=

(
∑

i∈Ik

α̂2
k,i

Neff ,i

)−1

,

(B.2)

where Neff ,i is the e�e
tive sample size of the mixture 
omponent i. Thus, by de�ning

Nall
p,k the total number of parti
les at step k, i.e

Nall
p,k =

∑

i∈Ik

Np,i, (B.3)

and by Nall
T,k = βallN

all
p,k with 0 < βall ≤ 1 the threshold for the resampling step, Nall

p,mix

parti
les are resampled from p̂ (xk | bk = 1, z1:k) if N
all
p,k ≤ Nall

T,k. Con
erning the number
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of parti
les Nall
p,mix, note that it must be 
hosen to be smaller than the maximum number

of parti
les Np,max in order to initialize new mixture 
omponents for the next iterations.

Finally after the resampling pro
edure the density 
an be rewritten as follows

p̂ (xk | bk = 1, z1:k) =
1

Nall
p,mix

Nall
p,mix∑

n=1

δxn
k,i∈Ik

(xk)

= p̂ (xk | τb ∈ Ik, z1:k) ,
(B.4)

whi
h is a "mixture" with one 
omponent (i.e. α̂k,i∈Ik = 1 ). The probability asso
iated

to this mixture is

p (τb ∈ Ik | z1:k) =
∑

i∈Ik

p (τb = i | z1:k) . (B.5)

For the next iteration, this 
omponent is pro
essed as in paragraph 3.2.4.1 and the weight

equation (3.34) is almost the same ex
ept that τb = i is repla
ed by τb ∈ Ik in the equation.
As a 
onsequen
e, a slight di�eren
e 
on
erns the propagation of the parti
les that must

be, rigorously speaking, propagate a

ording to q(xnk,i∈Ik | τb ∈ Ik,xk−1,i∈Ik , zk) rather

than q(xk,i | τb = i,xk−1,i, zk). This density 
an be easily rewritten (following the same

reasoning as for the density p (xk | bk = 1, z1:k) in Eq. (3.16)) as a mixture:

q(xnk,i∈Ik | τb ∈ Ik,xk−1,τb∈Ik , zk) =
∑

i∈Ik

q (τb = i | zk)
q (i ∈ Ik | zk)

q (xk | τb = i,xk−1, zk) . (B.6)

However, in pra
ti
e, it is not 
onvenient to sample a

ording to a mixture and, moreover,

if the densities q (xk | τb = i,xk−1, zk) are the same for all i ∈ Ik, the mixture in Eq.

(B.6) simpli�es to q (xk | τb = i,xk−1) (sin
e the density 
an be removed from the sum

and the probabilities sum to one). Therefore, we propose to approximate the density

q(xnk,τb∈Ik | τb ∈ Ik,xk−1,τb∈Ik , zk) by

q(xnk,i∈Ik | τb ∈ Ik,xk−1,τb∈Ik , zk) ≈ q(xnk,iall | τb = iall,xk−1,iall, zk), (B.7)

where

iall = argmax
i∈Ik

p (τb = i) . (B.8)

The same approximation 
an be used for the prior density p(xnk,i∈Ik | τb ∈ Ik,xk−1,τb∈Ik)
whi
h is required to evaluate the mixture 
omponent weight in Eq. (3.34) � note that it

leads to the weight equation (1.99) if the instrumental density is 
hosen to be the prior.

Thus, with this approximation, the mixture for τb ∈ Ik 
an be 
al
ulated exa
tly as a

mixture 
omponent with τb = iall and the algorithm is the same as the one in Algorithm

3.1 ex
ept that the number of parti
les per mixture 
omponent may be di�erent: in

step "3:" of Algorithm 3.1 Np,mix is repla
ed by Np,i the number of parti
les of the ith


omponent (whi
h may vary over time). In the same manner, for the 
reation of the

mixture in Algorithm 3.1, the number of parti
les Np,mix in step ":14" is repla
ed by

Np,init. Note that here Np,init is 
hosen to be 
onstant at ea
h iteration for a simple

implementation but it is not a requirement.

Furthermore, as it was stressed previously, the number Nall
p,mix must be 
hosen below

the maximum number of parti
les Np,max. Therefore, in the same manner, for a simple
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and pra
ti
able implementation, we propose to 
hoose Nall
p,mix = kallNp,init where kall is an

integer stri
tly greater than 1 and Np,max as Np,max = kmaxNp,init, with kmax an integer

su
h kmax > kall. Thus, at the next iterations the parti
le �lter 
an initialized kmax − kall
new mixture 
omponents with Np,init parti
les.

However, as for Algorithm 3.1 the number of parti
les may be equal to Np,max � in

parti
ular, if no resampling pro
edure over all the mixture 
omponents has been per-

formed during kmax − kall iterations. As a 
onsequen
e, if nothing is done, no parti
le is

available to initialize a new mixture 
omponent for the next iteration. Therefore, in that


ase it is ne
essary to remove Np,init parti
les from the density p (xk | bk = 1, z1:k). To this
purpose, we propose to use the same strategy as previously, i.e. removing Np,init parti
les

from the 
omponent with the lowest probability p̂ (zk | z1:k−1). Nevertheless, 
ontrary to

the previous algorithm, the number of parti
les in the mixture 
omponent imin may be

greater (stri
tly) than Np,init � in pra
ti
e, it will always be a multiple of Np,init. In that


ase, the mixture does not need to be removed from the set Ik and only Np,init parti
les


an be removed from the mixture 
omponent imin. Of 
ourse, if the mixture 
omponent

imin has Np,init parti
les, this mixture 
omponent is removed from the set Ik.

Lastly, an other point has to be dis
ussed, it 
on
erns the minimum number of parti
les

from whi
h the resampling pro
edure over all the mixture 
omponents must be performed.

Indeed, let us take the following example, at the �rst iteration (i.e. k = 1), a mixture


omponent is initialized with Np,init parti
les; thus if Neff ,1 is below Nall
T,1, kall × Np,init

parti
les will be resampled from this 
omponent (whi
h is greater than Np,init) whereas

this 
omponent may have a small probability p (τb = 1 | z1) and does not need to be

sampled with so many parti
les. In the same manner, if βall is 
hosen to be large, the

resampling pro
edure over all the mixture 
omponent will be performed almost at ea
h

iteration. As a 
onsequen
e, in the next iterations the algorithm will initialize only one


omponent and resample over all the 
omponents whereas if no resampling is performed

the algorithm 
an initialize kmax−kall 
omponents. To avoid su
h a situation, we propose

to use a two steps resampling pro
edure depending on the number of parti
les. First,

a severe degenera
y is 
he
ked with a βall 
hosen pretty small (e.g. βall = 0.1) and a

resampling pro
edure is performed if Nall
p,k ≤ Nall

T,k. On the other hand, the number of

parti
les is 
ompared with a number of parti
les Nmin
p . If the number of parti
les is lower,

no resampling over all the mixture 
omponents is done and ea
h 
omponent is resampled

separately as in Algorithm 3.1. Whereas, when the number of parti
les is greater than

Nmin
p two possibilities 
an arise:

� Either, Nall
p,k is lower than Nmin

T,k = βminN
all
p,k where βmin is 
hosen greater than βall.

Then the resampling pro
edure is performed over all the mixture 
omponents.

� Or, on the other hand, mixture 
omponents are resampling separately.

Finally, the proposed Resample All Appearan
e Time TBD Parti
le Filter is summa-

rized by Algorithm B.1.



182 Parti
le �lter for time appearan
e dete
tion in TBD

Algorithm B.1 Resample All Appearan
e Time TBD Parti
le Filter

Require: mixture 
omponents {wik−1,x
n
k−1,i}

Np,i

n=1 and probabilities p (τb = i | z1:k−1) with
i ∈ Ik−1 at step k − 1.

1: Updating mixture 
omponents {wik−1,x
n
k−1,i}

Np,i

n=1 and probabilities p (τb = i | z1:k−1)
from line 1 to 23 in Algorithm 3.1 where Np,mix is repla
ed by the 
orresponding

number of parti
les in ea
h 
omponent.

2: Cal
ulate Nall
eff ,k a

ording to Eq. (B.2) and Nall

T,k.

3: if Nall
eff ,k < Nall

T,k then

4: Resample Np,all from p̂ (xk | bk = 1, z1:k).
5: Cal
ulate iall a

ording to Eq. (B.8).

6: else

7: if Nall
p,k ≥ Nmin

p and Nall
eff ,k < Nmin

T,k then

8: Resample Np,all from p̂ (xk | bk = 1, z1:k).
9: Cal
ulate iall a

ording to Eq. (B.8).

10: else

11: if Nall
p,k = Np,max then

12: Find imin a

ording to (3.48).

13: if Np,imin
= Np,init then

14: Set Ik = Ik,min.
15: end if

16: for i ∈ Ik do
17: if i = imin and Np,imin

> Np,init then

18: Resample Np,i −Np,init parti
les.

19: Reset weights: wnk,i ← 1
Np,i−Np,init

n = 1, · · · , Np,i −Np,init.

20: else

21: Cal
ulate NT,i = βNp,i

22: if Neff ,i < NT,i then

23: Resample Np,i parti
les.

24: Reset weights: wnk,i ← 1
Np,mix

n = 1, · · · , Np,i.

25: end if

26: end if

27: end for

28: end if

29: end if

30: end if

Ensure: {wnk,i,xnk,i}
Np,mix

n=1 , p (τb = i | z1:k) , i ∈ Ik.



Appendix C

Multitarget Bayesian �lter and parti
le

�lters

C.1 Theoreti
al Bayesian �lter for intera
ting targets

The aim of this appendix is to demonstrate that, if the groups of targets Iint,1, · · · , Iint,Ng

do not intera
t in the likelihood, the posterior multitarget density 
an be fa
torized as

follows:

p (sk,1:Nt,xk,1:Nt | z1:k) =
Ng∏

i=1

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
. (C.1)

First, the Bayesian �lter for ea
h group of targets 
an be derived, using Bayes rule, as

follows:

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
=
p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)

p (zk | z1:k−1)
. (C.2)

It should be noted here that the 
onditioning over variables z1:k−1 in the likelihood ex-

pression p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)

annot be removed sin
e the 
onditioning is not

performed with respe
t to all the target states (sk,1:Nt,xk,1:Nt). In fa
t, zk is independent

from z1:k−1 only when

p (zk | sk,1:Nt,xk,1:Nt, z1:k−1) = p (zk | sk,1:Nt,xk,1:Nt) . (C.3)

Fortunately, it does not a�e
t the derivation of the Bayes �lter. Indeed, some simpli�-


ations arises allowing to easily 
al
ulate the likelihood p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)
. To

this purpose, noti
e �rst that this likelihood 
an be rewritten as follows:

p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)

=
∑

sk,INt
\Iint,i

∫
p
(
sk,INt

\Iint,i
,xk,INt

\Iint,i
| sk,Iint,i

,xk,Iint,i
, z1:k−1

)
×

p (zk | sk,1:Nt,xk,1:Nt) dxk,INt
\Iint,i

.

(C.4)
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This last equation 
an be further simpli�ed using Eq. (C.1) sin
e

(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)

and

(
sk,Iint,i

,xk,Iint,i

)
are independent. Thus Eq. (C.4) be
omes

p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)

=
∑

sk,INt
\Iint,i

∫
p
(
sk,INt

\Iint,i
,xk,INt

\Iint,i
| z1:k−1

)
p (zk | sk,1:Nt,xk,1:Nt) dxk,INt

\Iint,i
.

(C.5)

Furthermore, using Eq. (5.47), the Eq. (5.25) 
an be rewritten as follows:

Ξ
zk,(sk,1:Nt

,xk,1:Nt)
(ρk,1:Nt, ϕk,1:Nt) =

Ξ
zk,(sk,Iint,i

,xk,Iint,i)
(ρk,Iint,i

, ϕk,Iint,i
)Ξ

zk,
(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)(ρk,INt
\Iint,i

, ϕk,INt
\Iint,i

).

(C.6)

Thus by de�ning for any set of indexes I the following fun
tion

1

Gzk
(sk,I ,xk,I) =

∫
Ξ
zk,(sk,I ,xk,I)(ρk,I , ϕk,I)p (ρk,I) p (ϕk,I) dρk,Idϕk,I , (C.7)

the likelihood p (zk | sk,1:Nt,xk,1:Nt) in Eq. (5.26) fa
torizes in the following manner:

p (zk | sk,1:Nt,xk,1:Nt) = Gzk

(
sk,Iint,i

,xk,Iint,i

)
×Gzk

(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)
. (C.8)

Therefore, by inje
ting Eq. (C.8) in Eq. (C.4), the likelihood p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)

also fa
torizes as follows:

p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)
= Gzk

(
sk,Iint,i

,xk,Iint,i

)
×

∑

sk,INt
\Iint,i

∫
p
(
sk,INt

\Iint,i
,xk,INt

\Iint,i
| z1:k−1

)
Gzk

(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)
dxk,INt

\Iint,i
.

(C.9)

In the same manner, using the same reasoning as in Eq. (5.42) the normalization terms

p (zk | z1:k−1) 
an be fa
torized as follows:

p (zk | z1:k−1) =
∑

sk,Iint,i

∫
p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
dxk,Iint,i

×

∑

sk,INt
\Iint,i

∫
p
(
sk,INt

\Iint,i
,xk,INt

\Iint,i
| z1:k−1

)
Gzk

(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)
dxk,INt

\Iint,i
.

(C.10)

Finally, inje
ting Eq. (C.9) and Eq. (C.10), the bayesian �lter for the group of target

Iint,i in Eq. (C.2) simpli�es as follows:

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
=

p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
∑

sk,Iint,i

∫
p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
dxk,Iint,i

.

(C.11)

1

Note that here, 
ontrary to the de�nition of fun
tion gzk (sk,i,xk,i) in Eq. (5.29) where there is no


ross terms h
H
k,uΓ

−1
hk,v, in the de�nition of the following fun
tion all the 
ross terms remains.
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In fa
t, this last equation is quite similar to the Eq. (5.44) (i.e. the bayesian �lter for a

single non intera
ting target) and demonstrates that fa
torization of the posterior density

p (sk,1:Nt,xk,1:Nt | z1:k) 
an be extended to sets of indexes of non intera
ting targets, i.e.

p (sk,1:Nt,xk,1:Nt | z1:k) =
Ng∏

i=1

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
. (C.12)

C.2 Disappearan
e multitarget dete
tion parti
le �lter

The aim of this appendix is to detail the pra
ti
al implementation of the disappearan
e

Multitarget dete
tion parti
le �lter outlined in se
tion 5.4.1.2. The proposed solution

requires to determine at ea
h iteration k the intera
ting sets Iint,1:Ng and Ising in order to

reorganize the densities 
al
ulated at previous step for these sets.

C.2.1 Cal
ulating the sets Ising and Iint,1:Ng
over time

In order to 
al
ulate the single target set Ising and the sets of intera
ting group Iint,1:Ng ,

let us �rst denote by I−
int,1:N−

g
the group of intera
ting targets at iteration k − 1 (where

N−
g is the number of groups at iteration k − 1) and I−sing the index of single targets

(i.e. those targets that do not intera
t). At previous iteration k − 1, the available

parti
le approximations are p̂ (xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) with i ∈
{
1, · · · , N−

g

}
and

p̂ (sk−1,l,xk−1,l | z1:k−1) with l ∈ I−sing. A �rst possible solution to 
al
ulate the intera
ting

groups at 
urrent step might be to propagate the parti
les of ea
h target state x
p
k−1,i

(i ∈ {1, · · · , Nt}) a

ording to their prior pc (xk | xk−1), i.e.

x
p
k,i ∼ pc

(
xk | xpk−1,i

)
. (C.13)

Then, two targets states xk,l and xk,m are de
lared �intera
ting� if

there exist (p, q) ∈ {1, · · · , Np}2 , su
h that

∣∣hH
(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣ > γh, (C.14)

where γh is a given positive threshold (eventually equal to zero).

In other words, two targets are de
lared to be intera
ting at step k if there exits at

least one parti
le x
p
k,l and one parti
le x

p
k,m whose positions lead to overlapping ambiguity

fun
tions. Note that here we 
onsider intera
ting states as soon as one pair of parti
les

(p, q) intera
ts. Of 
ourse, this 
ondition 
an be extended to a minimum number of

parti
les, i.e. two targets states 
an be 
onsidered intera
ting only if a signi�
ant minimal

number of pairs of parti
les intera
t.

However, su
h a solution might require to evaluate Np × Np (for two target states)

s
alar produ
ts

∣∣hH
(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣
, for the two target 
ase. As a 
onsequen
e, if the

number of targets Nt is large, su
h a pro
edure might be 
ostly in terms of 
omputational

resour
es. Thus, in order to alleviate the number of s
alar produ
t evaluations, we propose

to perform the pro
edure on the estimated predi
ted target states x̂k|k−1,i rather than on

all parti
le target states. To 
al
ulate ea
h predi
ted target states x̂k|k−1,i, we propose a
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very simple solution based on the Eq. (1.67) of the Kalman �lter equations. Thus, for

ea
h target state xk,i (i ∈ {1, · · · , Nt}), the estimated predi
ted target state x̂k|k−1,i is


al
ulated as follows:

x̂k|k−1,i = Fx̂k−1|k−1,i, (C.15)

where F is the state matrix de�ned in Eq. (2.6) and x̂k−1|k−1,i is the estimated target

state provided by Eq. (1.96). Finally, targets l and m are de
lared to be intera
ting at


urrent step if ∣∣hH
(
x̂k|k−1,l

)
Γ−1h

(
x̂k|k−1,m

)∣∣ > γh. (C.16)

Now, it remains �rst to 
al
ulate the new intera
ting groups Iint,1:Ng and the single

target group Ising and then to 
al
ulate the parti
le posterior density approximations for

the groups Iint,1:Ng and Ising.
Con
erning the 
al
ulation of the groups Iint,1:Ng and Ising, we propose a two-step

solution:

� First, �nd intera
tions between targets for all possible pairs of targets.

� Then regroup pairs of intera
ting targets in order to 
reate the groups Iint,1:Ng .

In order to detail our pro
edure, let us �rst de�ne, for a matrix M of size N ×M ,

by M (n, :) the n-th row of the matrix and by M (:, m) its m-th 
olumn. To 
al
ulate

the intera
tions between pairs of targets, we propose to use a matrix M (of size Nt ×Nt)

where ea
h element (l, m) represents a possible intera
tion between two targets as follows:

M (l, m) =





1, if target l and m intera
t,

0, otherwise.
(C.17)

This matrix is symmetri
 and therefore, it is only ne
essary to 
onsider the upper or lower

part of matrix M. Moreover, by 
onvention we 
onsider that a target 
annot intera
ts

with itself, i.e M (m,m) = 0.
Lastly, it remains to 
al
ulate the intera
ting groups Iint,1:Ng and the single target

group Ising from the matrix M. This 
an be done as follows:

� For ea
h row l of the matrix, �nd the indexes m su
h that M (l, m) = 1, then
regroup these indexes in a set Icol.

� If the set Icol is empty, it means that the target state l does not intera
t with any

target. Therefore the target l is added to the set Ising.

� If the set Icol is not empty, two 
ases must be 
onsidered. In the �rst 
ase, the

target l already belongs to one of the sets Iint,1:Ng , referred by index ig,l. Then the

sets Iint,ig,l and Icol are "merged", i.e. Iint,ig,l = Iint,ig,l
⋃
Icol. In the se
ond 
ase,

the target l does not belong to any of the sets Iint,1:Ng . Therefore a new group of

intera
ting targets must be 
reated, i.e. Iint,Ng+1 = Icol
⋃ {l}. Note that the target

must be added to the set Iint,Ng+1 sin
e by 
onvention it does belong to the set Icol.
Moreover the number of groups must be updated, i.e. Ng = Ng + 1.
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C.2.2 Reorganization of the parti
le posterior density at previous

step for the sets Ising and Iint,1:Ng

The last step 
onsists in reorganizing the parti
le posterior density approximations at

previous step: p̂(xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) with i ∈
{
1, · · · , N−

g

}
and

p̂ (xk−1,l | sk−1,l = 1, z1:k−1) with l ∈ I−sing to obtain the ones for the group Iint,1:Ng and Ising.
Indeed, the 
onsidered multitarget parti
le �lter 
onsiders multitarget states, i.e. one

parti
le samples all 
onsidered target states within a group. For target states originated

from di�erent groups at step k−1 and gathered in the same group at step k, it is ne
essary
to resample the 
orresponding states so as to 
reate new parti
les that sample the new

multitarget state. To this purpose, we propose the following rules:

� For any target index l in Ising, if l also belongs to I−sing, then the target was single

at previous step and is still single at 
urrent step. Therefore, there is nothing to do.

� In the same manner, for any groups of targets Iint,l, if there exists a group of targets

I−int,m su
h that Iint,l == I−int,m (where == stands for the equality between sets),

there is nothing to do.

� In the other 
ases, the posterior density must be re
al
ulated from the previous sets

I−int,1:Ng
and I−sing. To this purpose, we simply propose to resample Np parti
les for

ea
h target index l in the new group Iint,m from the density provided by the previous

sets I−
int,1:N−

g
and I−sing.

The pseudo-
ode for the 
orresponding algorithm is detailed in Algorithm C.1.

C.2.3 Proposed solution for Disappearan
e multitarget parti
le

�lter

In the previous paragraph, the tools to derive our parti
le �lter solution for Disappearan
e

multitarget parti
le �lter have been detailed. Now, it remains to expose the di�erent steps

in order to perform a single re
ursion of our parti
le �lter. Let us assume that at step

k − 1, the following quantities are available: p̂(xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) with

i ∈
{
1, · · · , N−

g

}
and p̂ (xk−1,l | sk−1,l = 1, z1:k−1) with l ∈ I−sing.

The proposed solution 
an derived as follows:

� First, 
al
ulate matrix M with Algorithm.

� Then, 
al
ulate the new groups Iint,1:Ng and Ising from matrix M.

� Cal
ulate the densities p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) i ∈ {1, · · · , Ng} and

p̂ (xk−1,l | sk−1,l = 1, z1:k−1) l ∈ Ising from the ones with sets I−
int,1:N−

g
and I−sing.

� Update weights with Eq. (5.53) and Eq. (5.55).

� Finally, ea
h density is resampled if need.

In Algorithm C.2, we give a pseudo-
ode algorithm of the proposed parti
le re
ursion.
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Algorithm C.1 Cal
ulation of the densities p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) i ∈
{1, · · · , Ng} and p̂ (xk−1,l | sk−1,l = 1, z1:k−1) l ∈ Ising from the ones with sets I−

int,1:N−
g
and

I−sing.

Require: densities p̂ (xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) i ∈
{
1, · · · , N−

g

}
and p̂ (xk−1,l |

sk−1,l = 1, z1:k−1) l ∈ I−sing, Iint,1:Ng and Ising.
1: for l ∈ Ising do
2: if l belongs to I−sing then
3: Keep the density p̂ (xk−1,l | sk−1,l = 1, z1:k−1)
4: else

5: Get the index ig,l of the group I
−

int,1:N−
g
su
h that l ∈ I−

int,1:N−
g
.

6: Resample

{
x
p
k−1,l

}Np

p=1
from density p̂(xk−1,I−int,ig,l

| sk−1,I−int,ig,l

= 1, z1:k−1)

7: Set p̂ (xk−1,l | sk−1,l = 1, z1:k−1) =
1
Np

∑Np

p=1 δxp
k−1,l

(xk−1,l)

8: end if

9: end for

10: for i ∈ {1, · · · , Ng} do
11: Che
k if there is a group I−

int,i−g
su
h that Iint,i == I−

int,i−g
, if so get the index i−g

12: if i−g exists then

13: Set the density p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) = p̂ (xk−1,I
int,i

−
g

| sk−1,I
int,i

−
g

=

1, z1:k−1)
14: else

15: Initialize new parti
le target state x
p
k−1,Iint,i

= [ ] (empty ve
tor), p = 1, · · · , Np

16: for l ∈ Iint,i do
17: if l belongs to I−sing then

18: Resample

{
x
p
k−1,l

}Np

p=1
from density p̂(xk−1,l | sk−1,l = 1, z1:k−1)

19: Con
atenate the state x
p
k−1,l to x

p
k−1,Iint,i

: x
p
k−1,Iint,i

= [xpk−1,Iint,i
,xpk−1,l], p =

1, · · · , Np

20: else

21: Find index ig,l su
h that l ∈ I−int,ig,l
22: Resample

{
x
p
k−1,l

}Np

p=1
from density p̂(xk−1,I−int,ig,l

| sk−1,I−int,ig,l

= 1, z1:k−1)

23: Con
atenate the state x
p
k−1,l to x

p
k−1,Iint,i

: x
p
k−1,Iint,i

= [xpk−1,Iint,i
,xpk−1,l], p =

1, · · · , Np

24: end if

25: end for

26: Set p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) =
1
Np

∑Np

p=1 δxp
k−1,Iint,i

(
xk−1,Iint,i

)

27: end if

28: end for

29: return p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1), i ∈ {1, · · · , Ng} and and p̂ (xk−1,l |
sk−1,l = 1, z1:k−1), l ∈ Ising
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Algorithm C.2 Proposed disappearan
e multitarget parti
le �lter.

Require: densities p̂ (xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) i ∈
{
1, · · · , N−

g

}
and p̂ (xk−1,l |

sk−1,l = 1, z1:k−1), p̂ (sk,l = 1 | z1:k), l ∈ I−sing.
1: Cal
ulate matrix M.

2: Cal
ulate the new groups Iint,1:Ng and Ising from matrix M with Algorithm ??.

3: Cal
ulation of the densities p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) i ∈ {1, · · · , Ng} and
p̂ (xk−1,l | sk−1,l = 1, z1:k−1) l ∈ Ising from the ones with sets I−

int,1:N−
g
and I−sing.

4: for l ∈ Ising do
5: Propagate parti
les x

p
k,l ∼ qc

(
xk,l | xpk−1,l, zk

)

6: Update weights wpk,l with Eq. (5.53)

7: Cal
ulate p̂ (sk,l = 1 | z1:k) with Eq. (3.76)

8: Cal
ulate Neff and resample if needed.

9: end for

10: for i ∈ {1, · · · , Ng} do
11: Propagate parti
les x

p
k,Iint,i

∼∏l∈Iint,i
pc
(
xk,l | xpk−1,l, zk

)

12: Update weights wpk,Iint,i
with Eq. (5.55)

13: end for

14: Cal
ulate Neff and resample if needed.

15: return p̂ (xk,Iint,i
| sk,Iint,i

= 1, z1:k), i ∈ {1, · · · , Ng} and and p̂ (xk,l | sk,l = 1, z1:k),
p̂ (sk,l = 1 | z1:k), l ∈ Ising
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Résumé : Cette thèse s'intéresse à l'étude et au développement de méthodes de

pistage mono et multi
ible en 
ontexte Tra
k-Before-Dete
t (TBD) par �ltrage parti
u-

laire. Contrairement à l'appro
he 
lassique qui e�e
tue un seuillage préalable sur les don-

nées avant le pistage, l'appro
he TBD 
onsidère dire
tement les données brutes a�n de

réaliser 
onjointement la déte
tion et le pistage des di�érentes 
ibles. Il existe plusieurs so-

lutions à 
e problème, néanmoins 
ette thèse se restreint au 
adre bayésien des Modèles de

Markov Ca
hés pour lesquels le problème TBD peut être résolu à l'aide d'approximations

parti
ulaires. Dans un premier temps, nous nous intéressons à des méthodes parti
ulaires

mono
ibles existantes pour lesquels nous proposons di�érentes lois instrumentales perme-

ttant l'amélioration des performan
es en déte
tion et estimation. Puis nous proposons

une appro
he alternative du problème mono
ible fondée sur les temps d'apparition et de

disparition de la 
ible; 
ette appro
he permet notamment un gain signi�
atif au niveau

du temps de 
al
ul. Dans un se
ond temps, nous nous intéressons au 
al
ul de la vraisem-

blan
e en TBD � né
essaire au bon fon
tionnement des �ltres parti
ulaires � rendu di�
ile

par la présen
e des paramètres d'amplitudes des 
ibles qui sont in
onnus et �u
tuants au


ours du temps. En parti
ulier, nous étendons les travaux de Rutten et al. pour le 
al
ul

de la vraisemblan
e au modèle de �u
tuations Swerling et au 
as multi
ible. En�n, nous

traitons le problème multi
ible en 
ontexte TBD. Nous montrons qu'en tenant 
ompte de

la stru
ture parti
ulière de la vraisemblan
e quand les 
ibles sont éloignées, il est possible

de développer une solution multi
ible permettant d'utiliser, dans 
ette situation, un seule

�ltre par 
ible. Nous développons également un �ltre TBD multi
ible 
omplet permettant

l'apparition et la disparition des 
ibles ainsi que les 
roisements.

Mots-
lés : Pistage, Tra
k-Before-Dete
t, �ltre parti
ulaire, 
al
ul de vraisemblan
e.

Abstra
t: This thesis deals with the study and the development of mono and mul-

titarget tra
king methods in a Tra
k-Before-Dete
t (TBD) 
ontext with parti
le �lters.

Contrary to the 
lassi
 approa
h that performs before the tra
king stage a pre-dete
tion

and extra
tion step, the TBD approa
h dire
tly works on raw data in order to jointly

perform dete
tion and tra
king. Several solutions to this problem exist, however this

thesis is restri
ted to the parti
ular Hidden Markov Models 
onsidered in the Bayesian

framework for whi
h the TBD problem 
an be solved using parti
le �lter approximations.

Initially, we 
onsider existing monotarget parti
le solutions and we propose several

instrumental densities that allow to improve the performan
e both in dete
tion and in

estimation. Then, we propose an alternative approa
h of the monotarget TBD problem

based on the target appearan
e and disappearan
e times. This new approa
h, in par-

ti
ular, allows to gain in terms of 
omputational resour
es. Se
ondly, we investigate the


al
ulation of the measurement likelihood in a TBD 
ontext � ne
essary for the deriva-

tion of the parti
le �lters � that is di�
ult due to the presen
e of the target amplitude

parameters that are unknown and �u
tuate over time. In parti
ular, we extend the work

of Rutten et al. for the likelihood 
al
ulation to several Swerling models and to the mul-

titarget 
ase. Lastly, we 
onsider the multitarget TBD problem. By taking advantage

of the spe
i�
 stru
ture of the likelihood when targets are far apart from ea
h other, we

show that it is possible to develop a parti
le solution that 
onsiders only a parti
le �lter

per target. Moreover, we develop a whole multitarget TBD solution able to manage the

target appearan
es and disappearan
es and also the 
rossing between targets.

Keywords: Tra
king, Tra
k-Before-Dete
t, parti
le �lter, likelihood 
al
ulation.




