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Résumé étendu

Cette thése a pour objectifs d’étudier et de développer de nouvelles méthodes de pistage
radar d’une ou plusieurs cibles radars en contexte Track-Before-Detect par filtrage par-
ticulaire.

Bréve définition du pistage dans un cadre bayésien

La problématique du filtrage et plus particuliérement du pistage consiste a estimer, a
partir de mesures successives, 1’état d’'une variable non observée — par exemple, dans le
cas du radar, la position et la vitesse des cibles — dont on a néanmoins une idée a priori
de I’évolution au cours du temps — par exemple, on peut supposer qu’une cible est animée
d’un mouvement rectiligne. C’est un probléme extrémement général et qui se retrouve
dans de nombreux domaines tels que la finance, les télécommunications, la télémétrie, etc.

Il existe plusieurs approches pour résoudre ce probléme, néanmoins nous nous lim-
iterons dans cette thése a 'approche bayésienne et plus particuliérement aux modéles
de Markov cachés a temps discret. Ces modéles peuvent étre globalement définis de la
maniére suivante ' : 1’état caché est défini par une variable aléatoire, notée x;, ; I’évolution
temporelle de I’état caché est modélisée par un processus de Markov qui est entiérement
déterminé par sa densité a 'instant initial p (x¢) et sa densité de transition p (x | Xg_1).
Cette derniére peut étre définie par I’équation :

x, = f (le Vk) ) (1)

ou f, (.) est une fonction non-linéaire connue et v un bruit blanc. D’autre part, ’'observation
(ou la mesure), notée zg, est reliée a I’état caché par 1’équation suivante (appelée équation
de mesure) :

zj, = hy, (xx) + ny, (2)

ou hy, (.) est une fonction non-linéaire connue et ng un bruit blanc. Cette équation permet
notamment de calculer la vraisemblance de I'observation sachant I’état caché p (zy | xx).

L’objectif est alors de calculer a chaque instant la densité p (x; | z1.x) (appelée densité
a posteriori) afin de calculer des estimateurs de 'état caché, tel que l'estimateur du
Maximum A Posteriori ou encore I'estimateur MMSE (Minimum Mean Square Error).
En régle générale on cherche a calculer cette densité de maniére séquentielle ; en effet,

ei, nous considérons un cadre simple oi1 les processus étudiés peuvent étre décrits & partir de densité
; il existe néanmoins des modélisations plus générales dont nous ne parlerons pas ici.



2 Résumé étendu

dans le cadre des modeéles de Markov cachés la densité p (xy | z1.x) s’écrit & partir de la
densité a I’étape précédente a partir I’équation suivante :

P Xk | Z1—1) 0 (21 | X)
pos o) = G Ty @
p(Xk | Z1k-1) = /p(Xkl | Z1—1) P (Xk | Xp—1) dXp1. (4)

De maniére générale, I'Eq. (3) ne permet pas de calculer la densité p (xj | z1.,) de maniére
analytique, excepté dans le cas du modéle linéaire et gaussien ou la solution exacte est
fournie par le filtre de Kalman. Quand le modéle est toujours gaussien et que les fonc-
tions f, et hy ne présentent pas de fortes non-linéarités, des approximations du type
EKF (Extended Kalman Filter) et UKF (Unscented Kalman Fitler) peuvent étre utilisées
[AMGCO02|.

Dans les autres situations — fortes non-linéarités et /ou bruits non-gaussiens—, il est sou-
vent nécessaire d’avoir recours a d’autres approximations pour obtenir des performances
acceptables. L’une des solutions couramment utilisée aujourd’hui est le filtre particu-
laire. L’idée sous-jacente est d’approximer la densité continue p (xy | z1.x) par une densité
discréte, i.e. :

Np
p (Xk | Zl:k) ~ Z'wllgéx}c (Xk) ’ (5)
i=1

ou 5x;'€ (.) est la fonction de Dirac centrée en x; et les variables x¢ sont appelées particules
avec wi leur poids associé. L’avantage d’une telle approximation est qu’elle permet un
fonctionnement séquentiel, ainsi I’approximation particulaire de la densité p (Xx11 | Z1.541)
peut étre obtenue par le mécanisme — relativement simple & mettre en oeuvre — suivant :

e Chaque particule xj_, est tirée a partir de la particule a 'instant précédent x}, suiv-
ant une densité q (511 | X}, zx), appelée densité instrumentale dont le choix est laissé
a l'utilisateur. En pratique, la densité a priori p(xx,1|xx) issue du modéle d’état est
souvent, utilisée car la densité instrumentale optimale fournie par p (X;.C | xi |, zk)
ne permet que rarement de tirer facilement des échantillons a partir de celle-ci.

e Ensuite les poids des particules sont mis a jour au moyen de I’équation suivante :

wlzg X w]igflp (XkJFl ZI Xk) pz(Zk | Xk)? (6)
q (Xk+1 | X}, Zk)

qui fait intervenir la densité a priori p (x4 | %) et la vraisemblance de la mesure
conditionnellement a 1'état caché p (zy | xx).

Le pistage radar classique

Le pistage radar consiste a créer, a partir d'une succession de mesures temporelles, des
chaines d’états successifs cohérents de la cinématique d’une cible. Pour un traitement
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radar classique, ces mesures temporelles correspondent aux plots issus d'une étape préal-
able de détection et d’extraction appliquée au signal radar brut. Au dela du chainage
proprement dit, 1’étape de pistage permet également d’améliorer 'estimation des dif-
féerents paramétres des cibles (tels que la position, la vitesse, etc.), estimation limitée lors
de I'étape préliminaire de détection/extraction par les caractéristiques du radar.

L’une des difficultés majeures du pistage radar tient tout d’abord a la structure de la
mesure brute z; délivrée par le radar. En effet, celle-ci peut étre vue comme un tableau
multidimensionnel — dont chaque axe représente un des paramétres mesurés, tels que dis-
tance, angle, Doppler, etc. — pouvant contenir un nombre de cases (ou cellules) beaucoup
plus important que le nombre de cibles d’intérét et qui par conséquent peut étre poten-
tiellement difficile de traiter dans sa totalité, notamment dans le cadre d’une application
temps réel. De ce fait, la premiére étape d’un traitement radar classique consiste a seuiller
la mesure z; et a ne garder qu’un nombre limité de cases radar susceptibles de contenir les
différentes cibles présentes. A partir de ces cases radar, des plots de détection — qui sont
une mesure bruitée des parameétres d’une cible potentielle — sont alors formés et permet-
tent ainsi de réaliser 1’étape de pistage proprement dite, qui est notamment vouée a créer,
a partir des plots fournis au cours du temps, des chaines d’états successifs cohérents de
la cinématique d’une cible, et dans le méme temps a améliorer 'estimation des différents
parameétres d’état.

Dans 'approche classique, la méconnaissance de I’origine des différents plots de détec-
tion, qui peuvent étre générés aussi bien par une des cibles présentes dans la fenétre de
veille que par des fausses alarmes, conduit & la nécessité d’associer chaque plot mesuré a
une piste (existante ou nouvelle). Ce probléme d’association plots/pistes ne présente pas
de difficultés lorsque I'on cherche a pister des cibles a fort Rapport Signal & Bruit (RSB)
: en effet dans ce cas il suffit de choisir un seuil de détection élevé qui permet de limiter
trés fortement le nombre de fausses alarmes et la complexité du probléme. Par contre, si
I’on cherche & pister des cibles a faible RSB, il devient nécessaire de baisser le seuil de
détection pour permettre la détection des cibles. Cela conduit & augmenter sensiblement
le nombre de fausses alarmes et le probléme d’association peut alors devenir beaucoup
plus difficile a résoudre.

L’approche Track-Before-Detect

Comme nous venons de le voir, I’approche classique n’est pas forcément la plus adaptée
pour détecter et pister des cibles & faible RSB — bien qu’elle permette par ailleurs une
réduction importante de la taille de la mesure z,. Par conséquent, une nouvelle approche,
connue sous le nom de Track-Before-Detect (TBD), a été proposée dont I'idée est simple :
il s’agit de ne plus travailler & partir des données seuillées comme dans I’approche classique
mais directement & partir des données radar brutes zi,--- ,z;. Le premier avantage est
la suppression du probléme d’association. D’autre part toute 'information présente dans
les données est conservée laissant penser qu’il sera ainsi plus facile de pister des cibles a
faible RSB dans ce cadre que dans le cadre classique.

Néanmoins, cette nouvelle approche n’est pas sans difficulté 'exploitation directe de
la mesure z;, conduit & un modéle de mesure plus difficile & appréhender que dans le cas
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classique, modeéle qui peut étre défini par ’équation suivante :

Ng
Zp = Z pk,iej%@k,ih (Xk,i) —+ ng, (7)

i=1
ou :
e N, est le nombre de cibles présentes dans la mesure.
e x;; est Pétat de la 1% cible.

e les paramétres py; et e/#ki définissent 'amplitude complexe de la cible 4, inconnue
et possiblement fluctuante (de maniére aléatoire) au cours du temps.

e h(.) est la fonction d’ambiguité de la forme d’onde radar qui est connue.

Clairement, il s’avére que les contributions des différentes cibles sont sommeées et donc
mélangées dans le vecteur de mesure. Dans 1’approche classique ce n’est généralement pas
le cas dés lors que les cibles sont suffisamment distantes pour étre résolues en sortie de
filtre adapté. On peut alors faire I’hypothése qu’a un plot ne peut étre associé qu’une seule
piste. De plus, la fonction h (.) est souvent fortement non-linéaire, ce qui rend difficile
I'utilisation de solutions telles que 'EKF ou I'UKF. Enfin, la présence des paramétres
inconnus et fluctuants py; et ¢, ne permet généralement pas de calculer directement la
vraisemblance de la mesure conditionnellement aux états des cibles p (z | Xj.1.n,)-

Au vu de ces difficultés, les premiéres solutions au probléme de pistage dans le cadre
du Track-Before-Detect ont d’abord été proposées dans le cas plus simple monocible —
c’est-a-dire que l'on cherche & détecter l'apparition et/ou la disparition d’une et une
seule cible. Parmi ces solutions on peut citer les solutions basées sur la transformée de
Hough [CEW94|, celles basées sur la programmation dynamique [Bar85] ou encore celles
utilisant le filtre particulaire [SB0O1|. Suite & ces premiéres solutions du probléme monoci-
ble, d’autres solutions ont été proposées dans le cadre plus général du pistage multicible
[KKHO05]. Dans cette thése, nous nous intéresserons uniquement aux solutions particu-
laires (mono comme multicibles), sans perdre d’esprit que d’autres travaux devraient étre
entrepris par la suite pour comparer les différentes solutions au probléme TBD. L’objectif
est dans ce travail de développer et d’étendre les solutions particulaires existantes dans le
cadre général du pistage mono ou multicibles en contexte TBD. En pratique, le probléme
monocible a d’abord été considéré.

Filtres particulaires monocibles en Track-Before-Detect

Filtre classique et lois instrumentales

En TBD, la présence ou I’absence de la cible n’est pas connue a prior:i et il est donc
nécessaire de modéliser cette méconnaissance. Dans le cadre bayésien des modéles de
markov cachés étudiés dans cette thése, la méthode classique pour modéliser la présence
ou l'absence de la cible consiste a utiliser une variable binaire s, qui prend la valeur
1 quand la cible est présente et 0 sinon [SBO1]. Ainsi, si on note x; ’état de la cible
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(représentant sa position et sa vitesse, etc.), 'objectif du pistage est alors d’estimer 1’état
hybride (sg,xy) au cours du temps. Pour ce faire, il est nécessaire de définir la densité de
transition p (Sg, X | Sp—1,Xg—1) du modéle a priori. En régle générale, cette densité est
factorisée de la maniére suivante :

p(3k7xk | Skflaxkfl) = p(Sk | 8k71)p(Xk | Xk—1, Sk, 8k71)7 (8)

ce qui permet de modéliser le processus (sj), .y cOmme une chaine de Markov a deux états,
indépendante de I’état x;. Ensuite, il reste a modéliser la densité p (X | Xr_1, Sk, Sk—1)-
Bien qu’il y ait quatre cas de figure, dans les faits seuls les deux cas suivants, qui corre-
spondent, & une présence de la cible a 'instant k, sont nécessaires:

e le cas s = 1 et s,_1 = 0 qui correspond a I'apparition ou a la naissance de la cible.
La variable x; est généralement initialisée uniformément dans ’espace d’état, pour
modéliser 'absence de connaissance sur I’état de la cible.

e le cas s, = 1 et s, = 1 ou la cible est déja présente et qui modélise donc son
évolution au cours du temps (par exemple, un mouvement rectiligne).

A partir du modéle d’état ainsi défini, un premier filtre particulaire a été proposé par
Salmond et al. [SBO1| afin d’approximer le filtre bayésien théorique qui n’est pas calcu-
lable en pratique. Dans le cadre du filtre particulaire, la densité instrumentale utilisée
pour échantillonner les particules peut étre choisie par I'utilisateur. Méme si la loi sou-
vent retenue est la loi a priori correspondant au modele d’état, qui ne prend pas en
compte l'information fournie par I'observation courante zy, il est tout a fait possible de
la prendre en compte, notamment pour améliorer la performance du filtre en propageant
les particules de maniére plus efficace. En Track-Before-Detect, le cas réellement cri-
tique pour I’échantillonnage des particules est I'initialisation (ou la naissance). En effet,
a cause de 'a priori uniforme sur la densité p(xj|xx_1,5x = 1,551 = 0), il est néces-
saire d’échantillonner I’ensemble de l'espace d’état, ce qui peut nécessiter un nombre
trés important de particules, généralement proportionnel au nombre de cases de résolu-
tion. Des approches heuristiques ont été proposées dans la littérature afin de résoudre
ce probleme en exploitant 'information fournie par ’observation courante, notamment
par Salmond et al.. Toutefois les solutions proposées n’étaient pas nécessairement justi-
fiées théoriquement. Ainsi, nous proposons au chapitre 2 de nouvelles lois instrumentales
dérivées a partir d’approximations de la densité instrumentale optimale p (X;.C | xi |, zk)
— qui n’est pas calculable en pratique. Par exemple, le filtre particulaire développé par
Salmond et al. échantillonne la variable s, a partir de la loi a priori qui ne tient pas
compte de I'observation z,. Nous montrons qu’il est en fait possible de prendre en compte
I'observation en échantillonnant la variable s, a partir de la loi a posteriori p (sx | Sk—1, 2x)-

Finalement, nous comparons sur simulation les lois instrumentales proposées avec
celles classiquement utilisées dans la littérature. Ces simulations illustrent I'importance
de Dinitialisation des particules (notamment la position) et montrent qu’il peut étre plus
intéressant d’utiliser une loi instrumentale différente de la loi a priori fournie par le modéle
d’état que de simplement augmenter le nombre de particules.
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Modélisation alternative du probléme TBD monocible

Dans certains cas de figure, et notamment a faible RSB, le fait de continuer a initialiser
des particules alors que le filtre a déja convergé sur la cible peut biaiser I’estimation. Il est
donc légitime de remettre en cause la nécessité d’initialiser des particules quand le filtre
a déja convergé, et ce d’autant plus que I'initialisation des particules est est relativement
cotiteuse en temps de calcul. Partant de ce constat, nous avons considéré une stratégie
alternative permettant d’effectuer la détection de ’apparition de la cible et sa disparition
avec des filtres différents. Les prémices d'une telle solution se trouvent dans les travaux
de Kligys et al. [KRT98| qui proposent une modélisation du probléme TBD comme un
probléme de détection de changement : il s’agit alors d’estimer le plus rapidement possible
un changement de densité de probabilité tout en minimisant la probabilité d’erreur. Dans
le cas du TBD, le changement survient quand la cible apparait : on passe alors de la densité
de probabilité du bruit seul a une densité de probabilité décentrée par la contribution de
la cible (voir Eq. 7). Néanmoins, la solution de Kligys et al. n’est pas développée
dans le cadre des Modéles de Markov cachés. Nous proposons donc dans cette thése une
solution originale adoptant cette modélisation du probléme TBD comme un probléme
de détection de changement et dérivons le filtre particulaire correspondant. Ainsi, au
chapitre 3 le modéle d’état considéré modélise non plus ’évolution du couple (sg,xx)
au cours du temps mais ’évolution du couple (7,,xy) ot 7, est I'instant d’apparition de
la cible. Un modeéle d’état similaire peut étre considéré pour la disparition de la cible.
Dans les deux cas, nous dérivons les équations des filtres bayésiens correspondants ainsi
que des approximations particulaires pour chacun d’eux. Enfin, nous proposons un filtre
particulaire combinant ces deux filtres afin de gérer a la fois I’apparition et la disparition de
la cible. Les simulations effectuées permettent de montrer I'intérét de séparer la détection
de I'apparition et de la disparition notamment au niveau de temps de calcul du filtre mais
¢galement en matiére d’estimation (surtout a faible RSB).

Calcul de la vraisemblance en Track-Before-Detect

Un autre probléme important qui se pose en TBD concerne le calcul de la vraisemblance
de la mesure conditionnellement a I’état des cibles p (zj | xj1.n, ), qui est nécessaire pour
la mise en oeuvre du filtre bayésien. Or cette vraisemblance ne peut pas étre calculée
directement & partir de I'équation de mesure (7) du fait de la présence des paramétres
d’amplitudes pg;, pr; qui sont inconnus et peuvent fluctuer d’itération a itération. En
radar, les fluctuations du module py; sont généralement modélisées par un des modéles
Swerling : pour le modéle Swerling 0, le module est supposé constant et donc non fluctu-
ant, tandis que les modéles Swerling 1 et 3 modélisent des fluctuations lentes (de rafale a
rafale) de ’amplitude cible, et les modéles de Swerling 2 et 4 modélisent des fluctuations
rapides (d'impulsion & impulsion). La phase ¢y ; est quant a elle supposée uniformément
distribuée sur lintervalle [0, 27[. Dans la mesure ou le modeéle de mesure considéré est
développé au niveau de la rafale, nous ne considérons dans cette thése que les modéles de
Swerling 0, 1 et 3, soit ’absence de fluctuation ou une fluctuation lente de la cible.
Plusieurs solutions ont été proposées dans la littérature pour s’affranchir de ces pa-
ramétres d’amplitude et ainsi permettre de calculer la vraisemblance des observations
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p(2k | Xg1.v, ). La premiére solution proposée [RRG05, DRC08, BDV'03] consiste a tra-
vailler sur les modules des échantillons complexes |zL|2. En effet, cette solution permet
de calculer la vraisemblance de maniére simple dans le cas monocible. Par contre, cette
solution conduit a perdre 'information de cohérence spatiale de la phase de la cible, i.e. le
fait que la phase de la cible est la méme pour tous les échantillons de la mesure z;. Cette
perte d’information peut étre préjudiciable pour les performances comme démontré par
Davey et al. [DRC12|. D’autre part, nous avons montré que I'extension de cette solution
au cas multicible est loin d’étre simple, sauf dans le cas Swerling 1 ol une expression
analytique de la vraisemblance peut étre obtenue.

Afin de palier la perte de la cohérence spatiale sur le module, Davey et al. [DRC12]
ont proposé dans le cas monocible une autre approche qui consiste a travailler directement
a partir de la mesure complexe z; et & marginaliser la densité p(zg|Xx, pr, ¢x) (qui peut
étre obtenue facilement a partir de 'Eq. (7)) par rapport a la variable ¢y, soit :

p(zk | Xk, p1) = /P(Zk | Xk, i, 0x) P (0r) o, (9)

ol p(pg) est la densité uniforme sur [0, 27[. Contrairement a 'approche précédente, la
cohérence spatiale de la phase est ici conservée. Davey et al. montrent alors que I'Eq. (9)
est calculable de maniére analytique. Dans le cas Swerling 0, la vraisemblance p (zy | xx)
nécessaire pour le filtrage particulaire est alors simplement obtenue en remplacant la
variable py par la valeur du paramétre. Pour les modeéles Swerling 1 et 3, il est nécessaire
de marginaliser également la densité p (zy | Xy, px) par rapport au module ; dans ce cas,
aucune formule analytique n’a jusqu’alors été fournie.Suite & cette constatation, nous
avons tout d’abord étendu l'approche proposée par Davey et al. pour les modéles de
fluctuations Swerling 1 et 3 dans le cas monocible. Nous montrons, dans le chapitre 4
cette thése, que la marginalisation de la densité p (zy | Xx, px) suivant le paramétre py est
calculable de maniére exacte pour les modéles Swerling 1 et 3. Dans un second temps,
nous avons considéré le probléme de la marginalisation des paramétres d’amplitude dans le
cas multicible. Nous obtenons une expression analytique uniquement dans le cas Swerling
1 ; pour les autres modeéles de fluctuations, nous proposons néanmoins des approximations
permettant le calcul des vraisemblances en un temps raisonnable. Enfin, nous montrons
par simulation I'intérét d’utiliser la mesure complexe z; au lieu des modules carrés dans
le cas monocible pour les fluctuations Swerling 1 et 3, et dans le cas multicibles pour les
fluctuations Swerling 0, 1 et 3.

Filtres particulaires multicibles en Track-Before-Detect

Précédemment nous avons donné un bref apercu de la modélisation du probléme Track-
Before-Detect en monocible avec 1'utilisation de la variable discréte s;,. La modélisation
généralement utilisée dans le cadre multicible suit une idée similaire avec 'introduction
d’une variable alétoire supplémentaire modélisant le nombre de cible présent, sauf que
dans le cas multicible ce nombre n’est plus limité par 1. En notant NV, le nombre de cibles
a 'instant k, le but du pistage est alors d’estimer la densité p (Ny, Xk 1.n,, | Z1:4) au cours
du temps.
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A partir de cette modélisation du probléme multicible, Kreucher et al. ont proposé un
filtre particulaire permettant d’approximer le filtre bayésien théorique. Celui-ci échantil-
lonne pour chaque particule un nombre de cibles N} et les états des cibles associés xj, .y, ,
ce qui permet d’écrire 'approximation particulaire de la maniére suivante :

NP
p(xk,lszaNk | Zl:k) ~ szlﬁ(;x;c - (Xk,lsz)- (10)
i=1 Tk

Malgré cette approximation particulaire de la densité a posteriori, I’estimation du nombre
de cibles ainsi que de leur état reste difficile en pratique. En effet, la densité a posteri-
ort est invariante par permutation des états de cibles — par exemple, pour deux cibles,
P (Xp1,Xk2 | Z1:k) = D (Xk2, X1 | Z1.1). Par conséquent, si les états des cibles XZJ:N}; pour
chaque particule ne sont pas ordonnés, il n’est pas possible d’estimer correctement I’état
des cibles correspondantes. C’est pourquoi Kreucher et al. préconise une étape sup-
plémentaire de clustering afin d’ordonner les différents états des particules en partition
représentant chacune une cible. D’autre part, le fait de considérer des particules multici-
bles implique que le poids de la particule, obtenu par le produit des vraisemblances des
différents états échantillonnés par cette particule, représente uniquement un comporte-
ment global de la particule pour ’ensemble des états, mais ne refléte pas la qualité des
différents états en particulier. En pratique, on peut alors obtenir des particules échan-
tillonnant correctement un certain nombre d’états et incorrectement d’autres états ; les
poids de ces particules ne permettront pas de distinguer les états correctement échantillon-
nés des autres états, ce qui pourra conduire a une détérioration de la qualité d’estimation
du filtre. Suite & ces constatations, nous proposons dans le chapitre 5 une modélisation
permettant de découpler les différentes cibles quand celles-ci sont éloignées les unes des
autres ; on utilise alors simplement des filtres différents et indépendants pour pister les
différentes cibles. Ainsi, I’étape de clusterisation n’est plus nécessaire et par construc-
tion les cibles sont indépendantes les unes des autres. Pour ce faire, nous ne considérons
plus la variable NV, modélisant le nombre de cibles et pouvant varier au cours du temps,
mais plutot un nombre constant V; de couples (sy;, Xy;) correspondant a la modélisation
monocible du probléme TBD ; NN, représente le nombre maximum de cibles que le filtre
particulaire peut gérer conjointement. Nous montrons qu’avec cette modélisation, lorsque
les cibles n’interagissent pas entre elles, le filtre bayésien peut étre factorisé comme suit :

Ny
p <3k,1:Nt7 Xk,l:Nt) = Hp <5k,la Xk,l) ) (11)
=1

ce qui permet effectivement ’emploi d'un filtre par cible. Par contre, lorsque des cibles
sont proches, elles doivent étre traitées conjointement. Il reste toutefois possible de traiter
séparément les groupes de cibles proches et les cibles isolées.

De maniére similaire au chapitre 3, nous proposons alors trois filtres particulaires,
I'un pour effectuer la détection de I'apparition de plusieurs cibles, le second pour gérer
la disparition, et le dernier qui combine ces deux premiéres solutions pour gérer a la fois
I’apparition et la disparition. Cette approche est validée sur simulation en considérant
deux scénarios simples, I'un ot trois cibles & faible RSB sont présentes mais n’interagissent
pas entre elles et un autre ou deux cibles a fort RSB se croisent.
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Contributions

Dans cette thése nous nous sommes intéressés au probléme du pistage monocible et mul-
ticible en contexte Track-Before-Detect par filtrage particulaire. Concernant le pistage
monocible, nous avons tout d’abord proposé de nouvelles lois instrumentales pour ’ini-
tialisation des particules et montré par simulation qu’elles apportaient un gain significatif
tant au niveau de la détection que de l'estimation. Ces travaux ont fait ’objet d’une
communication [LRLG12al. Par ailleurs, nous avons proposé une modélisation alternative
originale du probléme TBD monocible basée sur I'instant d’apparition ou de disparition
de la cible. Ainsi, nous avons proposé trois filtres particulaires, le premier pour détecter
I’apparition de la cible, le second pour détecter sa disparition, et le dernier qui combine
les deux filtres précédents pour gérer conjointement ’apparition et la disparition. Finale-
ment, nous montrons par simulation I'intérét de séparer la détection de apparition et de
la détection notamment en matiere de temps de calcul mais également en ce qui concerne
I'estimation (surtout & faible RSB). Cette solution originale a été partiellement présentée
dans la communication [LRLG12b)].

Ensuite, nous nous sommes intéressés au calcul de la vraisemblance en contexte Track-
Before-Detect. Nous avons étendu les travaux de Davey et al. permettant le calcul de
la vraisemblance en tenant compte de la cohérence spatiale des paramétres d’amplitude
pour des fluctuations Swerling 0, & d’autres modéles de fluctuations (Swerling 1 et 3) et
aux troix modeéles de fluctuation dans le cas multicible. Ainsi, nous avons montré que
dans le cas monocible, des expressions analytiques de la vraisemblance pouvaient étre
obtenues pour les fluctuations Swerling 1 et 3 ; dans le cas multicible, nous obtenons
une expression analytique uniquement dans le cas Swerling 1 ; néanmoins pour les autres
modéles nous proposons des approximations permettant de calculer la vraisemblance en
un temps raisonnable. Ces travaux ont fait I’objet d’une premiére communication en
conférence [LRG13| puis d’une publication plus avancée acceptée dans la revue IEEE
Transactions on Aerospace and Electronic Systems [LRLG16].

Finalement dans la derniére partie de cette thése, nous nous sommes intéressés au
pistage multicible. Notre démarche a consisté a mettre en place une solution permettant
d’une part d’exploiter au maximum l’'indépendance des cibles entre elles afin d’utiliser
autant que possible un filtre par cible plutét que des filtres multicibles, et d’autre part,
comme pour le cas monocible, de séparer la détection de I'apparition et de la disparition.
Ainsi, nous avons montré qu’il était possible d’étendre la modélisation du probléme mono-
cible au cas multicible et que le filtre multicible résultant pouvait étre factorisé par un
produit de filtres monocibles dés lors que les cibles sont suffisamment éloignées les unes
des autres. Nous avons alors proposé comme dans le cas monocible trois filtres particu-
laires : un pour la détection des apparitions, un second pour la gestion des croisements
et des disparitions et enfin un dernier filtre réunissant les deux filtres précédents.
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Chapter 1

Radar signal processing and Bayesian
filtering tools

The whole classic radar chain from the signal reception to the tracking stage can be
decomposed into three different steps, as illustrated in Figure 1.1.

radar signal Zk ,. detection and Vi

. . . » radar tracking -
processing hits extraction

classic approach

> detection and tracking >

Track-Before-Detect framework

Figure 1.1 — Block diagram of the classic radar chain from the signal processing stage
to the tracking stage. The Track-Before-Detect processing takes place after the signal
processing stage.

The first stage, denoted here "radar signal processing", is performed in order to im-
prove the target Signal to Noise Ratio (SNR), thus allowing to detect and estimate the tar-
get parameters (such as range, radial velocity, azimuth,...). In the classic radar chain, the
"radar signal processing" stage provides a measurement z;, as an input to the "detection
and hit extraction". This next step consists first in thresholding the radar measurement
z; and then in extracting the potential target parameters from any signal sample (called
"hit") that passed the detection threshold. At the end of this step, a set of detection hits
Y, is provided to the tracking step. This last stage takes advantage of some target motion
information (e.g. a linear trajectory) to enhance the estimation of the target parameters
over time. Moreover it enables to discriminate over time the "hits" that come from the
targets from the ones that are due to false alarms in order to form tracks.

In practice, "the detection and hit extraction" stage allows to dramatically reduce
the amount of data to process — indeed the size of the measurement z, may be very
large (it is a multidimensional array that may contain several tens of thousands of cells)
whereas, if the threshold is conveniently chosen to limit the false alarms, the set ) is

11
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@ target

radar

Figure 1.2 — General radar principle. In black the transmitted signal and red the signal
reflected in all the directions.

much smaller — but in return some information is lost that may be detrimental, especially
if some targets have a low SNR. A new framework, known as Track-Before-Detect, has
therefore been proposed and consists in jointly performing detection and tracking from
the measurement z; rather than from the set of detection "hits", as illustrated in Figure
1.1. This framework will be at the heart of this thesis.

Before going further into the details of the Track-Before-Detect strategy, we propose
first in this chapter to present some aspects of the radar signal processing theory and of
the Bayesian filtering theory that will be useful along this manuscript. In particular, in
section 1.1, we present the main signal processing tools used to transform the received
signal into the output measurements z; and the detection hits )}, while in section 1.2 we
outline the Bayesian filtering tools that are used in the radar tracking stage.

1.1 Radar signal processing

1.1.1 General principle

A RADAR (RAdio Detection and Ranging) is an electromagnetic system consisting of an
antenna that transmits a signal with a particular waveform and then receives and detects
the signal backscattered by any scatterer present in the scene, among which possibly one
or several targets (such as aircrafts, vessels, efc.). This principle is illustrated in Figure
1.2. Then by measuring the duration 7 of the round trip between the radar and the target,
it is possible to calculate the corresponding range R with the following relationship:

cT

R=2, (1.1)

where c¢ is the speed of the electromagnetic wave. Furthermore, due to the motion of
the target, the signal received by the radar may be shifted in frequency compared to the
transmitted one: this is the so called Doppler effect. The frequency shift between the
transmitted signal and the received one is approximately equal to % fo where fy is the
frequency of the transmitted signal and R the radial velocity. Therefore by measuring
this Doppler shift, it is possible to extract the radial velocity of the target.

This is basically the very general radar principle. However, in practice measuring the
delay and Doppler is not as simple as it looks. Indeed, the transmitted signal will be
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attenuated, and only a portion of backscattered energy will be reflected by the target
in the radar direction. Therefore, at the reception side, the received signal is passed
through a complete reception chain that allows to recover the backscattered signal with
some additive noise. Two questions can then be raised:

e Does the received signal contain one (or several) target contribution(s) or only noise
?

e How to accurately estimate the delay and Doppler parameters while the received
signal is corrupted by noise 7

The first question corresponds to a detection problem; the detection theory [Kay98|
provides a convenient framework to solve this problem in a radar context, in the form of
the Neyman-Pearson criteria; that is to say maximizing the probability of detecting the
signal (if present) while ensuring a given false alarm probability. In many application, and
in particular in radar, this detection procedure involves the matched filter [Tur60, Woo53|,
that will be presented in section 1.1.3.

The second question corresponds to an estimation problem which is often solved using
the Maximum Likelihood criteria, i.e. finding the value of the parameter maximizing the
likelihood that the signal occurs with the corresponding parameter value. In practice, this
maximization often leads to find the maximum output of the matched filter and is highly
related to the characteristics of the transmitted signal (in particular the duration and the
frequency bandwidth). Thus, in paragraph 1.1.4 and 1.1.5, we expose very shortly the
tools used to study their properties and detail a very common signal used in radar.

Lastly, we would like to highlight that the purpose of this section is not to extensively
study all the aspects of the radar theory' but rather to provide a realistic but simple
model for the input data used to perform the radar tracking stage, and in particular the
Track-Before-Detect methods that represent the heart of this work.

1.1.2 Radar signal

A radar signal is constituted of two parts, first a baseband signal with band B and duration
T, and then a carrier f; (usually such that B < f;) allowing to carry the signal through
the air. The transmitted signal s(¢) can be written in a complex formalism as

s(t) = Bu(t)e?* /o, (1.2)

where u(.) is the complex envelop of the baseband signal with energy equal to one and E is
the energy of signal s(.). At the reception side, if the transmitted signal has been reflected
by a target (or any backscatter), the radar receives a signal s,(.) which is an attenuated
replica of the transmitted signal delayed by the time 7 () taken by the electromagnetic
wave to make the round trip between the radar and the target:

sp(t) = ple?¥u (t — 7 (t)) 2 folt=r®) (1.3)

P . . .
where p'e?? is a complex coefficient of attenuation that is unknown and random:

'Readers wishing to deepen the radar theory may refer to [Sko80, Rih69, Dar94, LC89]
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e the phase ¢’ is assumed to be uniformly drawn over [0, 27);

e the modulus p’ is subject to random fluctuations usually modeled in radar processing
by a Swerling model that will be detailed in chapter 4.

7(.) is a function of time ¢. Noticing that the signal received at a given time ¢ was reflected

by the target at time ¢ — 72 the function 7(.) verifies the following relationship [Rih69]:

- 2n (o 70), »

with R(.) the range between the target and the radar with respect to time ¢. In practice,
the function 7(.) may be difficult to calculate. Thus, it is generally approximated by its
Taylor expansion [Rih69]. We consider here an approximation of order one which is the
common hypothesis made in radar — Note however that higher orders may be required
for highly manoeuvring targets. The Taylor polynomial of order 1 of 7(.) around time ¢
such that 79 = 7(t¢) is given by [Rih69):

7(t) =70 + 7o (t — 7o), (1.5)
where:
o Ty = %, with Ry = R(%).

o Ty = %(1 + %)_1 R %, with Ry = R(Z) the relative radial velocity between the
target and the radar. Note that the approximation of 7y is valid for usual target
velocity verifying Ry < c.

Then, by replacing 7 (¢) by its polynomial approximation, the received signal s,.(¢) can be
rewritten as follows:

se(t) = p'e?u((t = 7o) (1 = §)) o=, (1.6)
with g = %. The target motion induces a compression/dilatation effect on the baseband
signal and a Doppler shift both on the carrier. Fortunately, the time compression dilata-
tion induced by the factor 1 — 3 over the baseband signal can be neglected as long as
% < 1 and the only effect to take into account on the complex envelop is then the delay
To. On the contrary, the Doppler shift on the carrier must be taken into account since
the multiplication by f, induces a fast phase rotation equal to —27 fy5t. For instance,
with f, = 3GHz, T,, = 100pus and Ry = —300m.s™ !, the phase rotation after a duration
T, is equal to =27 fy 81, = 216°, which may not be negligible depending on the signal
considered.

Finally, the received signal s,(t) is passed through the reception chain that consists, in
particular, in demodulating — an intermediate step that consists in removing the carrier
e?mfot —and in amplifying the received signal, and becomes:

sp.(t) = pe?fu(t — 79)e?*™" + n(t), (1.7)
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where vy = —fof is the Doppler shift, ¢ = ¢’ + 27 fy (1 — ) 70 a random phase, p the
amplified modulus, and n(t) a stationary complex Gaussian noise with autocorrelation
function

() = En(t)n*(t — s)] = 20%6(s) (1.8)

due to the reception chain, where d(s) is the delta mass Dirac function at point zero.
Finally, the baseband signal in Eq. (1.7) is processed by the radar processing chain
in order to perform target detection and parameter estimation. The basic tool of this
processing chain is the matched filter.

1.1.3 The matched filter

The matched filter is widely used in many applications, for instance radar, sonar, telecom-
munication, in order to detect a signal with a known waveform corrupted by noise.
Roughly speaking, the matched filter consists in calculating the correlation between the
received signal and the known waveform; the detection is then performed by comparing
the output signal with a given threshold ~.

1.1.3.1 Matched Filter definition and properties

A filter is called a matched filter for a physical waveform w (t) with energy E if its impulse
response h (t) has the form [Tur60]

ha(t) = Ku*(t, — 1), (1.9)

where K and t, are arbitrary constants. The matched filter impulse response is a conjugate
time-reversed version of the physical waveform u ().
Then, for a received signal of the form

r(t) =u(t — 1)+ n(t), (1.10)

where 7 is here assumed to be known and n (¢) is a stationary Gaussian complex noise
with autocorrelation function defined in Eq. (1.8), the output rypp, () of the matched
filter is obtained by convolving the received signal r (¢) with the impulse response h,(t).
By setting t, = 0 and K = 1, this leads to

TMF,hu<T> = (hgo*T)(T) -
= / u(t —m)u (t—71) dt—i—/ n(t)u* (t —7)dt, (1.11)
TM;;(T) nw:;(T)

which consists of two terms 75, (7) and np g (7). 7rp.(7) is the autocorrelation function
of the deterministic signal w (¢) delayed by 79, i.e. 7ppu(7) = Ry (T — 70), where

R, () = /OO w(t)u* (t —7")dt.

o0
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Therefore rpp,,(7) is maximum for 7 = 75 and 7y p,(70) = E. The second term njp(7)
is still a stationary Gaussian complex noise with autocorrelation function:

Tnar (TS) = nMF nMF TS)]

- / / (s)]ju* (t —7T)u(s — 7+ 75) dtds (1.12)
= u(t)u* (t —75)dt = 20°R,, (75) -

—00

This last equation means that even though the input noise is white, the output noise is,
in general, not white since it depends on the signal autocorrelation R, (75). Finally, by
defining the Signal to Noise Ratio (SNR) output as

|7“MF,u(T)|2

E [Jnar(r)[*]

it can be easily shown that the matched filter is the linear filter that maximizes the SNR
output for 7 = 7y [Tur60, LMO04]|, given by

SNR (1) = (1.13)

E

202

SNR (7p) = (1.14)

1.1.3.2 The Matched Filter in the Detection Theory framework

In order to illustrate the fundamental role played by the matched filter in the detection
theory, let us consider the following statistical hypothesis-testing problem [Tur60, Kay98|

Ho: s-(t)=n(t), t€[0,T,]
{%: so(t) = u(t — )+n() te[0,T). (1.15)

where u(t) is any signal waveform assumed to be known, 7y a delay also assumed to be
known and 7 is the time during which the received signal has been observed. The decision
over the hypotheses H,y and H; can lead to two types of errors:

e Either decide hypothesis H; whereas hypothesis H, is true. Such an error is called
a false alarm and we denote by Py, the corresponding probability of false alarm.

e Or decide hypothesis Hy whereas a target is present. This a miss detection and its
corresponding miss detection probability is denoted by P,,,. Lastly, the probability
of detection Pp is defined by Ppb =1 — P,4

These two decision errors behave in an opposite manner: trying to decrease the Py,
will lead to increase P,,; and reciprocally. Therefore, a trade-off must be found and the
classic criteria, called the Neyman-Pearson criteria, consists in maximizing the probability
of detection Pp while ensuring a given Pj,. The optimal detector, for this criteria, is
provided by the Neyman-Pearson theorem [Tur60, Kay98]|; it consists in comparing the
ratio between the likelihood of the signal s, (¢) under hypothesis H; and the likelihood
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of the same signal under hypothesis Hy. Under a white Gaussian noise assumption, the
optimal detector is provided by the following procedure [L.C89|

Ty
accept ‘H; if Re (/ sp(t)u*(t — To)dt) > 7, (1.16)
0

where Re (.) stands for the real part. Thus, the detection scheme consists in comparing
the output of the matched filter sampled at 7 = 7y with a threshold ~ calculated in order
to ensure the given Pry,.

1.1.3.3 The Matched Filter in radar

In radar, the received signal depends on unknown parameters (delay 7o, Doppler shift vy,
complex amplitude pe’#). As a consequence, the decision problem becomes a composite
hypothesis-testing problem [Kay98|, and procedure (1.16) cannot be applied directly. An
heuristic procedure, called GLRT (Generalized Likelihood Ratio Test), was then proposed:
it consists in estimating these parameters in the maximum likelihood sense and injecting
them in the likelihood ratio test. From Eq.(1.7), the radar composite hypothesis testing
problem has the form

{ Ho: s.(t)=n(t), t €]0,T,]

Hi o s.(t) = pedPu(t — 7)e?*™ +n(t), t € [0,T,], (1.17)

where (@, p,7,v) are the unknown parameters. Using the GLRT heuristic, and since
the maximization over parameters (p, p) can be easily obtained and does not depend on
parameter (7,v), the detection test becomes [LC89]:

Tr * —j2mvt 2
)fo se(t)ur(t — T)e 2y

accept H; if max > 7. (1.18)

(7:¥) S u(t — )P dt

Furthermore, if we define by h,,, (.) the impulse response of the filter matching the signal
u(t)e?®™t e, '
Bu, (t) = u* (=) e*™, (1.19)

the detection procedure can be finally rewritten as

2

s
accept H; if max } "’MFJM,V(T)‘

o) [0 fu(t — )| dt

> 7, (1.20)

which consists in comparing the maximum output of the matched filter in range and
Doppler with a given threshold. In practice, the maximum is rarely available in closed
form; search for the maximum may be then performed by applying several matched filters
adapted to different Doppler hypotheses v;.

1.1.4 The ambiguity function

In the previous paragraph, the matched filter has been presented from a detection point of
view. Nevertheless, in radar applications, retrieving information on the target parameters
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To and 1 is also of interest. Estimating these parameters in the maximum likelihood sense
is equivalent to find the values (7, ) maximizing the matched filter output. Intuitively,
in order to obtain good estimation performance, the energy of the matched filter should
concentrate in a narrow peak around (79, v). Of course, the output of the matched-filter
is dependent on the choice of the waveform w (t) and, as a consequence, the choice of
the waveform impacts the estimation performance. It is thus of importance to study the
behaviour of the matched filter output for a particular waveform w (t) with respect to
parameters 7 and v; this is provided by the ambiguity function.

In order to introduce the ambiguity function, let us rewrite the received signal s, (t)
defined in Eq. (1.7) after a matched filter operation with impulse response h,, (.):

Semry (T) = (hq,l/ * 5r)(7) (1.21)
= pel?e?™ T\ (T — T0,v — 1) + ey (T) :
where njp, (7) is the noise component after the matched filtering step and
+oo
Xo(T, V) = / u(t)u*(t — 7) exp(—j2mvt)dt, (1.22)

The function x,(7,v) is called the ambiguity function?|[LM04, LC89|. It corresponds to
the output of the matched filter in absence of noise. Its maximum is obtained at the origin
(i.e. 7 =0 and v = 0) and corresponds to the energy of the signal u (¢). Therefore, if we
want to accurately estimate these parameters in presence of noise the waveform w (¢) has
to be chosen such that it ensures the narrowest peak around the origin of the ambiguity
function.

Another important requirement for the radar is its capability to resolve close targets.
This capability of a radar to resolve two close targets is often measured with the delay
A, and Doppler A, resolutions defined as follows:

(A7, 0)F = % (0, A)]7 = % (1.23)
that correspond to 3 dB losses along the range or along the Doppler axis. Note that
the resolution, both in delay and Doppler, is often approximated by the first null of the
ambiguity function since it is easier to calculate and provides values quite close to the
ones obtained by the actual definition. Finally, the range resolution A, and the range
rate (radial velocity) resolution A, are related to the delay and Doppler resolutions by
the following relationships:

C C
A, = =A A= —A,. 1.24
r 9 Ta‘nd 7 2f0 v ( )

1.1.5 Pulse compression and linear frequency-modulated pulse

Clearly two different waveforms will provide two different ambiguity functions, as well
as their corresponding delay and Doppler resolutions. Delay and Doppler resolutions

2Note that other definitions are possible, in particular, using +7 and +v rather than —7 and —v in
the integral (1.22). However, it is only a convention and it does not change the results on the ambiguity
function, in particular the ones provided by Levanon et al. [LM04] which will be used in the sequel.
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often behave in an opposite manner, i.e. a better resolution in delay will lead to a
poorer resolution in Doppler and reciprocally. To illustrate this, let us consider the simple
following pulse:

L <X,
uyp(t) = {\/F 1< 3 (1.25)

0, otherwise,

denoted as unmodulated pulse (or constant pulse). The ambiguity function for this signal
is provided by [L.MO04]

N 7]\ sin(nTpv) .
xvp(T,v) = (1 TP) o i 7l < T, (1.26)
0, otherwise.

The zero-Doppler cut and the zero-delay cut are then obtained respectively by setting
v=0and 7 =0 in Eq. (1.26), which gives:

xvp(T,0) = (1 - ?) , if |7| < T, zero elsewhere, (1.27)
p
sin (7T,v)
_ sin(aTv) 1.28
xup(0,v) 7T (1.28)

The delay and Doppler resolution for the unmodulated pulse are respectively equal to:

1
A7—7Up ~ Tp and AU,UP ~ ?, (129)

p

leading to the corresponding range and range rate resolution,

cT

AT,UP ~ TP and AT'“,UP ~ (130)

c
2foT,’
Thus one cannot obtain simultaneously a good delay and a good Doppler resolution with
this single pulse. In addition, in a more general perspective, for most of the signals used
in radar the delay resolution is related to the inverse signal bandwidth® 1/B, i.e. higher
the bandwidth, smaller the delay resolution; on the contrary the Doppler resolution is
related to the inverse of the integration duration, i.e. 1/7, in the case of the constant
pulse.

Pulse compression is a technique widely used in radar and sonar in order to improve
the range resolution. The main idea is to increase the bandwidth of the unmodulated
transmitted signal. In the sequel, we outline this technique for a common signal used in
radar, that is the Linearly Frequency Modulated (LFM) pulse signal (commonly known
as a chirp pulse) that consists in sweeping linearly the frequency bandwidth B during the
pulse duration 7, [LMO04]:

L exp(jmkt?), if|t| <2,
uc(t) = VT p(ITkT) | l__2 (1.31)
0, otherwise,

3Note that the delay resolution of the constant pulse seems to depend only on the pulse duration,
however it can be shown that for this signal the bandwidth is approximately equal to 1/T), leading to the
corresponding delay resolution.
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1r —— Chirp
Constant Pulse
Constant Pulse BT), shorter

0.9r

0.8F

0.7

0.6

0.5F

(7.0}

0.4r

0.3

0.2r

0.1r

0
-1 -0.5

0.5 1

Heao b

Figure 1.3 — Comparison of the zero-Doppler cut |xc (7, 0)| for a chirp signal (in blue) with
a time-bandwidth product of BT, = 10, an unmodulated pulse (in red) with duration 7,
and an unmodulated pulse (in green) with duration BT, shorter than the two others.

with k = T% (k can also be negative). The ambiguity of the chirp signal is given by [LMO04|

A1\ sin|7Tp(v+B+ 1-L .
vetrny = { (1= F) e AL e

Ty (v+BE ) (1-) (1.32)
0, otherwise,
The zero-Doppler cut is obtained by setting v = 0 in Eq. (1.32), i.e.
sin [ﬂ'BT (1 — ?)]
Xc(1,0) = L= if |7] < T,, zero elsewhere. (1.33)

TBT

while the zero-delay cut is the same as the unmodulated pulse (see Eq. (1.28)). In figure
1.3, the zero-Doppler cut of the ambiguity function of the LFM pulse is presented and
compared first to an unmodulated pulse of same duration, and second to an unmodulated
pulse of smaller duration enabling the same range resolution. It appears clearly from this
figure that the use of the frequency modulation allows to dramatically improve the delay
resolution and therefore the range resolution, when considering only the zero-Doppler cut.
It also illustrates the gain in energy enabled by the chirp compared to an unmodulated
pulse of the same maximum power but with a duration BT, shorter and thus providing
the same range resolution as the chirp.
The delay resolution for the chirp is approximately

A’TC%

1
1.34
’ B’ ( )
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which corresponds in range to
c

Ao~ 55"
Let us illustrate the gain between the chirp and the unmodulated pulse for typical radar
parameter values. For an unmodulated pulse of duration 7}, = 100 us and a chirp with
the same duration and a bandwidth B = 1 MHz, the widths of the zero-Doppler cuts are
respectively equal to

(1.35)

T
A up & % = 15000 m, and A,¢ ~ % — 150 m.

The chirp thus provides an improvement of a factor BT, compared to the unmodulated
pulse (here indeed BT, = 100).

Note that until now, the delay and the Doppler has been studied independently. In
particular, the cut for ¥ = 0 has been considered while in practice this Doppler may
be different from zero. Indeed if a matched filter is performed with the null Doppler
hypothesis, from equation (1.21) the ambiguity function will be shifted by the target
Doppler vy. For the unmodulated pulse it has no consequence since the location of the
maximum in delay is 7 = 0 whatever the value of vy (see Eq. (1.26)). On the contrary, for
the chirp signal, a coupling is induced between parameters 7 and v, so that the maximum
in delay does not occur at 7 = 0 anymore but is shifted (for reasonable value of v ) by
the quantity [LMO04]

v VI
Tshift = 2 = ?p- (1.36)

This coupling phenomenon is illustrated in Figure 1.4 where the maximum peak in delay
is shifted along the diagonal 7 = ¥. Let us make the correspondence in term of range
shift, .e.

CTshift c 2Ry foT),

5 —ﬁqup——Aric ,
and illustrate it with a numerical example. For a target with radial velocity (or range
rate) Ry = —300 m.s~! and the following radar parameters: B = 1MHz (i.e. A, = 150m),
T, = 100 s (leading to BT, = 100) and fo = 3GHz, the maximum of the matched-filter
(with hypothesis v = 0) is shifted by

Rshift - = (137)

Rgpipe = 90 m,

i.e. 60% of the range resolution A,. Note that a small decrease in energy is observed
along the diagonal 7 = v/k that is equal, near the origin, to [LMO04]

, (1.38)

v
|XC<Tpeak7V)| =1- ‘E

providing a negligible loss of 0.052 dB for the same numerical values as previously. Finally,
note also that for the same radial velocity and pulse duration, the loss observed with the
constant pulse or any classic phase code would be greater that 3 dB. This means that,
when considering the chirp signal, a single matched filter at Doppler hypothesis v = 0 is
sufficient to get a high output energy, even for large target radial velocities. The price to
pay for this cheap processing is a possible non negligible range bias.



22 chapter 1

— Diagonal 7 = %

0.2 0.4 0.6 0.8 1

,__v"‘]iﬂ ot

Figure 1.4 — 0.1 and 0.707 contours of the chirp ambiguity function with BT, = 10. For

a mismatch Doppler v the maximum in delay is shifted along the diagonal 7 = 7.

In summary, the chirp pulse allows to improve the resolution by a factor BT, compared
to the unmodulated pulse while ensuring the same amount of energy, at the price of a
coupling between the delay 7 and the Doppler v. This coupling provides advantages and
drawbacks: on one hand it induces an ambiguity between delay and Doppler parameters
that remains acceptable for most applications. On the other hand, it results in a good
tolerance to Doppler shift, i.e. the loss induced by a Doppler mismatch when applying a
filter matched to hypothesis v = 0 is small even for large Doppler shifts, allowing to use
a low cost processing.

1.1.6 Coherent pulse train and Range-Doppler processing

The Doppler resolution (and thus the velocity resolution) depends on the integration time.
For the parameters used in previous section, the velocity resolution is approximately equal
to 500 m.s—!, which is clearly not acceptable. A possible solution to get a good Doppler
resolution is then to transmit a long pulse. However, this leads to an unacceptable blind
range — indeed, during the transmission of the signal, the radar does not receive any signal
and therefore cannot detect a target with a delay lower than 7},. A better solution consists
in using a coherent pulse train, ¢.e. several identical pulses are transmitted at a given
repetition period 7). For a coherent pulse train of length N, the complex envelop of the
band limited signal is given by [LMO04]

=

uy (t) = ~ u(t—kT,), (1.39)

0

2=
i
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Figure 1.5 — Pulse train of 3 pulses with pulse duration 7}, and repetition period 7.

where w (¢) is any waveform with duration 7,. An example of a coherent pulse train is
presented in Figure 1.5. For such a pulse train, the range and Doppler processing can
be decoupled. Indeed as seen before, the range matched filter to the chirp will compress
the signal whatever the Doppler. The first step of the Range-Doppler processing consists
then in performing a range matched-filter with the transmitted elementary pulse. The
signal after the range matched-filter can be expressed as follows [LC89|:

N-1

Tp
Spmr (T) = Z eI 2mvkT / sp(t + kT, + 7)u”™ (t) exp(j2mvt)dt. (1.40)
0

k=1

However, the use of a coherent pulse train is not without consequences since this creates
an ambiguity in delay every T,, due to the periodicity of the transmitted signal: it is
impossible to know if the detected target return comes from a target delayed by 0 < 7 < T,
or by a target delayed by mT, < 7 < (m+ 1)T, where m is any integer greater than one.
Therefore the delay is measured modulo 7.

In a second step, for each delay 7, a Fast Fourier transform is performed in order
to coherently integrate the phases e/>™*T in (1.40) and thus provide an estimate of the
Doppler parameter v. Since the overall integration time considered by this range-Doppler
processing is equal to the total duration of the pulse train NT,, the Doppler resolution
becomes equal to ﬁ However, since the phases e/2™*Tr are ambiguous modulo T%, the
Doppler measurement provided by the pulse train also becomes ambiguous.

1.1.7 Phase array processing

Range and Doppler parameters are not sufficient to fully locate a target: it is also necessary
to estimate its angular direction. Phase array processing [VT02] is a convenient framework
to estimate the target azimuth and/or elevation. In the following, the principle of the
latter for the case of a linear array with IV, isotropic elements uniformly spaced by distance
d is briefly recalled. Let us define by p,  the position of the m'* element along the x-axis,
given by (assuming that the center of the array is located at the origin)

N -1
pa&m:(m_ 2 )dam:0a17”"Na_1' (141)

This linear array is presented in Figure 1.6. For a target located at angle 67, range R,
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target
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Figure 1.6 — Linear array along the z-axis with a target in the direction 0r.

from the radar with a Doppler shift 1, the phase of the signal received by each elementary
antenna will differ due to the different travel time of the wave (as illustrated in Figure
1.6). Thus the signal received by antenna m can be written as

Srm (t) = pejg}u (t — 7o) €j27ruotej277rpzm cos(0r) | Nw(t), m=0,--- N, —1, (1.42)

where n,, (t) is a stationary complex white Gaussian noise, and, for m # ¢, the noise pro-
cesses N, (t) and n, (t) are assumed to be independent. Finally A denotes the wavelength
of the transmitted wave (i.e. A =4 ).

The differential phase e’ X Prm cos(67) depends on the target direction 67 and on the
position of the elementary antenna. For instance, if a target is located in a direction
Oy = m/2, the differential phase will be the same on all antennas, while in a direction
O0r = 0, the differential phase between two consecutive antennas will be equal to 7.

The aim of array processing is to recover the target direction from the phase difference
measured on each receiving antenna. This can be done by applying a digital beamforming
at the reception that consists in correlating the antenna outputs with the steering vector
corresponding to the direction # under test. This steering vector consists of the differential

phases for this direction and is thus given by vy = N% [ej%pzo cos() ... ,ejQTwp“er COS(G)]
In practice, the direction f7 is unknown and the radar will form the beam for some
directions 6y, - ,6y,. Let us define s, (£) = [s,.0 (t),- -, Sp.n,-1 (£)]", and
n(t) = [ng(t), - ,nn,—1 (t)]". The signal after beamforming in direction 6; is then
obtained by
sro; (1) = vil's, (t). (1.43)

After some calculations, it comes [VT02]

Sr,0; (t) = pejsou (t - 7—0) ejzmj()thT (02) + ngi(t)7 (144)
where 1y, (6;) = 22 (cos (0r) — cos (6;)), ng,(t) = vgn (t) is a complex white Gaussian

noise and

2

. sin <Na ¢0T(9i)>
U (Yo, (6:) = .
T N, sin (%T(@z))

(1.45)

2
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| (1) |

Figure 1.7 — W (1) : g, () = &< (cos (67) — cos (0)), N, = 11, 6y = 2.

This function is shown in Figure 1.7. The half beam-width is defined as |W (¢, ,,)|* = 1/2
and is given, for N, > 30, by 0345 =~ 0.886]\%. Finally, note that whereas the noise
processes on each elementary antenna are independent, this is not, in general, the case
for the noise processes ny,(t) and ny, (t) where the covariance is equal to

cov (ng, (1), ne,(s)) = 20°vyve, 6 (t — s). (1.46)

1.1.8 Measurement model

Now that the radar processing has been briefly described, we can present the measurement
model (before the detection stage) that will be used in the following of this document.
Let us denote by T the radar cycle duration, ¢.e. the duration during which the radar
transmits the signal, receives it, and performs the signal processing stage. Therefore,
denoting by k the time index, the radar provides a measurement z; every kTs. At the k—th
iteration if Ny, targets have reflected the transmitted signal, then from the previous section,
it follows that the output signal after the radar processing chain (reception beamforming,
range and Doppler matched-filters) can be expressed as

Srmrk (T, 0, 0) Zpk eI Py u(Thi — Ty Vg — V)W (wg,m. (9)) + ng(7,0,v), (1.47)

where py ; and ¢y ; are the amplitude and the phase defined in paragraph 1.1.2, and 75,
v and 0 ; represent respectively the delay, Doppler and azimuth of the ¢ — th target.
Obviously, parameters 7;; and vj; are respectively related to the target range 7, and
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the target range rate ry ;. In tracking these unknown parameters will correspond to the
hidden state! x;; = [rm,?'“k’i,ﬁk,i]T. Here parameters (7,v,6) are continuous. However,
in practice, the reception processing is performed for several values of the parameter
(Tl, VL, 91) , l=1,---,N.where N, is the number of test cells. Thus, denoting by 2} the
signal in cell [, it can be rewritten as

Ny,
Z/l€ = Zpk7i6j<pk’ihl (Xk7l) + 77/2, (148)
i=1
where
2 c
h! (Xpi) = Xu | — (T/w' — Tl) ,— (I/]m‘ — I/l) 1 (wg,m. (01)) ) (1.49)
¢ 2fo
Finally by concatenating the signal samples 2}, the ambiguity function samples h' (xy ;)
and the noise samples n into vectors z, = [z}, ,zéVC}T, h(xy,) = [h}g,i, . ,hgﬂT
(where A ; = h' (x4;)) and n; = [ng, - ,ngC]T respectively, the measurement equation

can be rewritten in a compact form as

Ny,
Zp = Z pk,iejvk’ih (Xk,i> + ng. (150)

i=1

Here n; is a circular Gaussian complex noise with a covariance matrix I' assumed to
be known and often equal to T' = 20°Iy_, i.e. signal samples are independent. The
Equation (1.50) defines the raw radar measurement z; that will be used as the input of
the detection and extraction stage (as illustrated in Figure 1.1 and detailed in the next
paragraph) for the classic radar tracking applications and as the input of Track-Before-
Detect applications, that are at the heart of this work.

1.1.9 Detection and "hit" extraction

The aim of the detection and extraction stage is to detect potential targets and extract
their parameters from the raw radar data z,. This process is performed in two steps.
First the detection stage that provides detection "hits" and then the extraction stage
that aggregates detection "hits" and extracts target parameters.

In all this document, we will consider a simple case where the radar measurements are
only composed of target signals and homogeneous additive noise with known variance.
More realistic cases with heterogeneous noise and clutter will thus be out of our scope.
Under this restriction, the first detection step simply consists in comparing each sample
’zfc}z , l=1,--- N.with a threshold 7 as in the detection procedure defined in Eq. (1.20).

4Note that this hidden state may possibly include other hidden parameters. Moreover, these param-
eters may be expressed in another coordinate system (e.g. Cartesian coordinates). Indeed, the radar
measurements are intrinsically defined in polar coordinates that do not allow to easily model the evolu-
tion of the target parameters over time, for instance a rectilinear target motion is quite difficult to model
in polar coordinates while this kind of trajectory is modeled by a linear equation in Cartesian coordinates.
This will be detailed in paragraphs 2.2 and 2.3.1.
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Figure 1.8 — Detection procedure for radar measurement in range and azimuth.

Since the noise is a circular Gaussian noise with variance 202, the threshold v is simply
provided by [Kay98|

v =—20"In(Py,). (1.51)

The probability of target detection Pp depends on the target SNR. The detection proce-
dure is illustrated in Figure 1.8. Of course, in the presence of noise of unknown variance
of clutter, this simple detection procedure would be replaced by an adaptive one, for
instance a classic Constant False Alarm Rate (CFAR) detector.

Then a simple procedure to extract the parameter would be to consider as parameter
estimate the corresponding value (for instance (rl,'f’l,ﬁl) with the example defined in
the previous paragraph) for any cell that exceeds the threshold. However, in practice
further developments are required; indeed, recall that if the target SNR is high, due
to the ambiguity function sidelobes, one single target may produce several contiguous
detection "hits". Thus, a clustering step is generally added in order to aggregate the
detection "hits" that are likely to be generated by the same target. This aggregation step
is often based on an heuristic procedure. Then an estimation procedure is applied to each
extracted hit in order to retrieve the corresponding parameter value (for instance, range,
Doppler, azimuth...).

Finally at the end of the detection and "hits" extraction stage a set of detection "hits"
is provided:

yk = {yk,h”' 7Yk,ND} (152)
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where each "hit" yy; is possibly® related to a target state x; by the following equation:
Yir = H(xp) + wg, (1.53)

with H a known function (possibly linear) and wy, a Gaussian noise with covariance matrix
R;. Finally, as presented in Figure 1.1, the set ) is provided to the tracking stage in
order to form tracks and enhance the estimation of the target parameters.

1.1.10 Radar tracking algorithms
1.1.10.1 Radar tracking objectives

Each measurement yy,; in the set of detection ) may either correspond to an actual
target or to a false alarm. Therefore, one objective of radar tracking algorithms is to be
able to retrieve from the sets of detection ), the measurements that come from the same
target in order to create a track, while discarding the false alarms. Moreover, the accuracy
of the target parameter estimation is limited by the radar characteristics, for instance the
range resolution A, (see paragraph 1.1.5). Therefore, a filtering step is added to estimate
the target parameters from all measurements until & (i.e. Y, -+, Vi), and thus improve
the parameter accuracy. More precisely, this step consists in estimating the state of a
dynamic system (that is unobserved and denoted as hidden state) from a sequence of
noisy measurements. In radar applications, the hidden states are the target parameters
(e.g., position, velocity, etc.) and their temporal evolution can often be modelled by
a dynamic equation where the state at current step depends to the ones at previous
iterations. The noisy measurement is the set of detection hits ), provided by the radar
or the measurement z,. Thus, by taking advantages of some prior knowledge on the
target motion, the filtering step allows to aggregate the information provided by all the
noisy measurements until the current step (i.e. Yi,---,)x) and then to enhance the
estimation of the target parameters. Finally, since the measurements are provided at
each radar cycle (i.e. every Tg), solutions proposed to perform the tracking stage are
often sequential or, in other words, the previous estimated parameters are updated with
the new measurement instead of calculating again the estimation at each iteration from
all the available measurements. A convenient way to do so is the Bayesian framework,
and more precisely the Hidden Markov Models (HMM) that allow to sequentially estimate
hidden parameters from a measurement related to the hidden state. This framework will
be detailed in the next section.

To sum up, the aim of the tracking stage may be viewed as fulfilling the two following
tasks:

e creating or deleting tracks, either from the sets of detection hits ), --- , YV, in classic
radar tracking or from the raw radar measurements z,--- ,z; in the TBD frame-
work.

e estimating the track parameters from the sets of detection hits or from the raw radar
measurements.

®Note that we use the term "possibly" since a detection hit may not come from an actual target but
may rather be a false alarm. This uncertainty on the measurement origin (actual target or not) may be
solved by the tracking stage.
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1.1.10.2 Classic radar tracking algorithms

In the radar tracking community these two problems refer to the Multiple-Target Tracking
(MTT) problem [Bla86]. The first proposed solutions used sequential analysis in order
to initialize or delete track. Tracks were associated via the nearest-neighbour association
rule that consists in assigning detection hits to existing tracks in a way that minimizes
a certain distance criterion. However, this approach may lead to wrong associations,
especially when there are a lot of false alarms, and, as a consequence, to poor tracking
performance. Then, new algorithms were proposed in a Bayesian framework that are
able to deal with such situations. The first one was proposed by Singer et al. [SSH74|
and is denoted as Multiple Hypothesis Tracking (MHT). It is a measurement oriented
algorithm (i.e. hypotheses are calculated from the measurements) where the key idea
is to consider all the possible hypotheses in order to initialize, to maintain or to delete
tracks, i.e. at a given instant k, any considered hit can be either allocated to an existing
track, can initialize a new track, or can be associated to a false alarm. The solution
would then be provided by the most likely hypothesis. This approach leads to a number
of hypotheses that increases extremely rapidly with time, so that this approach leads to a
complexity that may be difficult to handle in a reasonable time. Therefore, a suboptimal
approximation has been proposed by Reid [Rei79] in 1979 which allows to make the MHT
feasible by pruning hypotheses with low probabilities.

An alternative approach was proposed by Bar-Shalom et al. [BST75] in 1975, known as
the Probabilistic Data association Filter (PDAF). Contrary to the MHT which manages
the whole MTT problem (i.e. track life stages and association problem), the PDAF is only
devoted to the association problem. As a consequence, it assumes the number of targets
known (this is a target-track oriented algorithm) and does not provide track initialization
and termination. Note that the PDAF may fail when multiple tracks are close since it does
not consider the possible interaction between them. To handle this situation, the Joint
PDAF (JPDAF) was then proposed [FBSS83|. For such filters, the track initialization
and termination is often done by using the "M out of N" rule that consists in initializing
a track if a detection is present in the validation gate [BS87| of a given initializing track
at least M times over N iterations [Cas76, BSCS89]. A similar rule is applied for the track
termination.

Both the MHT and the PDAF solutions perform the tracking itself for a given track /hit
association thanks to a Bayesian filter, usually the well-known Kalman filter.

1.2 Bayesian filtering

Most radar tracking algorithms are derived from the Bayesian filtering theory, and among
them the particle filter that will thoroughly be used in this work. Thus, we present in
the sequel some aspects of the general Bayesian filtering theory. We will restrict our
attention here to the discrete-time formulation of the filtering problem. Let us denote
by (Xi)ren the random state process that is hidden (or unobserved) and by (z)pen
the measurement process (that is observed). We adopt the state-space approach in a
particular class of models called Hidden Markov Models (HMM) which is based on a
dynamic system modelled by a set of two equations [AM79]:
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e one equation for the temporal evolution of the current hidden state x; from the
hidden state at the previous iteration xj_; (state model).

e A second equation that relates the noisy measurements z;, to the current state xj
(measurement model).

Moreover, we shall assume that both models are available in a probabilistic form.

Then, in a Bayesian perspective, the aim is to calculate some estimators of the state
x; [BS09]. Most of the time, estimation is performed by one of the following well-known
estimators:

e the Minimum Mean Square Error Estimator (MMSE) xMMSE = [ [x;, | z1.4],

e the Maximum a posteriori (MAP) estimator xM4” = argmax p (x}, | z1.1),
X
where the notation z refers to the sequence (zy,--- ,2;,--- ,2;). Both approaches re-

quire the knowledge of the posterior density® p (x, | z1.x) which is obtained for the HMM
by the Bayesian filter.

1.2.1 Hidden Markov Models

Hidden Markov Models are a particular class of state-space models where the density
P (Xk | z1.x) can be computed recursively from the density at previous step p (Xx_1 | Z1.5-1)-
First, let us assume that the process (xj)ren takes its values in R™ and evolves according
to the following equation:

X = fk (kal, Vk) y (154)

where fj, is a known and possibly non-linear function and (v),y. is an independent and
identically distributed (i.i.d.) noise sequence. X is assumed to be distributed according
to a density po(.). Under these conditions, the process (x;),oy is a Markov process of
order one, i.e.

p (Xk | Xou-1) = p (Xp [ Xp—1) , forany k > 1. (1.55)

In other words, the density of x; conditionally to xg.,_1 only depends on the state at
previous step Xp_;. The measurement z, is related to the state x; by the following
measurement equation”:

zi, = hy, (xp) + 0y, (1.56)

where hy(.) is a possibly non-linear function of the state x; at value in R™* (or in C"#),
and (ny)en+ an i.d.d noise sequence. Moreover, it is assumed that noise samples n; and vy
are mutually independent. Then, the measurement z; conditionally to x; is independent
of Z1.k—1, 1.€.

P (2k|Xks Z1k-1) = P (2k|Xk) - (1.57)

6Note that here, we adopt the formalism of density with respect to some measure (in general, the
Lebesgue measure or the counting measure). However, in some cases this density may not exist and one
must consider the probability distribution. In order to avoid unnecessary complexity, this latter will not
be treated here. A more general approach is presented in [DMO04].

"Note that we restrict ourselves to additive noise in the measurement equation since this latter is
generally used in radar tracking and also because non-additive models can lead to theoretical issues
which are beyond the scope of this manuscript.
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P (X | Xp—1)

o) »

p(zk | xk)

Zj; 1 Zj, Zj41

Figure 1.9 — Block diagram of the Hidden Markov Model.

p(zg|xg) is called the likelihood function and is entirely defined by the measurement
equation (1.56) and the statistics of ny. Moreover it is generally assumed to be easily
computable. This may not always be the case: the chapter 4 will be precisely dedicated
to the calculation of this latter in the Track-Before-Detect framework. The diagram of
the Hidden Markov Model is shown in Figure 1.9.

1.2.2 Theoretical Bayesian filter

For the HMMs defined in previous paragraph, it is possible to calculate recursively the
density p (xx | z1.x) from p (X;_1 | Z1.4—1). Indeed, using the Bayes rule and the properties
of the HMM, p (X | z1.x) can be rewritten as follows:

p(Xk | Z1:k—1)P(Zk|Xk)

Xg | Z1k) = , 1.58
TP P (1:5%)

where p (xy | z1.x—1) is obtained by the Chapman-Kolmogorov equation:
P (Xk | Z1k—1) = /p(xkl | Z1.6-1) D (X | Xp1) dXp—1, (1.59)

and corresponds to the prediction step, where the density of x; conditionally to the
previous measurements z.,_1 is evaluated. Then, this density is updated with the new
observation z; via Eq. (1.58) where the normalized constant is given by

p(zn | Z1k1) = /p(z;‘C | x1) p (Xk | Z11) dXg. (1.60)

The recursion to obtain p (xy | z1.x) from p (xx_1 | Z1.x—1) can be summarized as follows

update
(%K | Zr1) —— p (Xk | Z18) - (1.61)

) prediction
Eq.(1.59) FEq.(1.58)

p (kal \ Z1:k—1

In general, Eq. (1.59) and Eq. (1.60) cannot be computed analytically and, as a conse-
quence, neither is the Bayesian filter. However, the exact solution can be obtained when
the state and measurement models are linear and Gaussian — the solution being the very
well-known Kalman filter [Kal60| — or when the state space is discrete with a finite number
of states [AMGCO02].



32 chapter 1

1.2.3 Linear Gaussian models: Kalman filter

Linear Gaussian models are a particular class of HMM where the Bayesian filter can be
solved exactly. For these models, the hidden process (x),.y verifies

X = Fka,1 -+ Vi, (162)

where F, is a matrix of size n, X n,, and vy, is a Gaussian noise with covariance matrix Q.
The initial state xq is also assumed to be Gaussian with mean mg and covariance matrix
Qo. The observed process (zj)ren is related to the state x; according to the following
equation:

Zj — Hka + Wi, (163)

where H,, is a matrix of size n, X n,, and v, is a Gaussian noise with covariance matrix
Ry. Lastly, it is also assumed that xg, (Vg)ken+, (Wg)gen+ are mutually independent.

Under these conditions, all the densities at each step of the Bayesian recursion defined
in Eq. (1.61) are Gaussian, i.e.

p(Xpo1 | Zom1) = N (13 Xp—1pe—1, Pro1pp—1) (1.64)
p(xp | Zao1) = N (X5 Xpp—1, Prje—1) (1.65)
p(xk | Z21k) = N(Xk§xk|k>Pk|k) ; (1.66)

where N (x;m, P) represents here the standard Gaussian density with mean m and co-
variance matrix P evaluated at point x. Then, the parameters of the aforementioned
densities (the mean and covariance) can be computed by applying the following set of
equations:

Xpk—-1 = FrpXp_1pp-1, (1.67)
Puicr = FuPrpiFr + Qy, (1.68)
Xglk = Xglk—1+ K.z, (169)
Pyr = (I — K Hy) Prir-1, (1.70)
where .
zr = z — HpXpp—1,

K, = Py HIS '

are respectively the innovation, the covariance of the innovation and the Kalman gain.
Equations (1.67)-(1.70) define the Kalman filter [KKal60] which is the optimal solution for
the Linear Gaussian models. Furthermore note that the parameters x;;, and Py, provide
directly the MMS estimator xp/M5* = x;; = E [x | 21.4] and its covariance matrix

E [(fC;JCMMSE — x) (XM — Xk)T) Zl:k] = P,

where both are calculated via the classic Bayesian scheme:

prediction update
Xk—1|k—1 — Xk|k—1 E— XEk|k>
Eq.(1.67) Eq.(1.69) (1 72)
update '
Pipr-1 ——— Py
FEq.(1.68) FEq.(1.70)

prediction

P11



Bayesian filtering 33

Lastly, as a remark, note also that the calculation of the posterior covariance matrix
P, and the Kalman gain do not depend on the measurement z;, and may therefore be
calculated off-line.

The Kalman filter is very popular and is extensively used since it is very simple to
implement, has a very low complexity and is quite robust. However, whereas the Kalman
filter is optimal for the very specific case of the Linear Gaussian model, it is not optimal
anymore when the Gaussian hypothesis and/or the linear assumption are violated. It
appears that the raw radar measurement equation (1.50) is not linear according to the
target state. Since Track-Before-Detect methods seek precisely to track targets from this
kind of measurements, this prevents to use the Kalman filter in this case (other reasons
exist and will be detailed in Chapter 2). Thus, other methods must be considered in the
TBD framework and we propose in the sequel to outline the particle filter method that
will be extensively used throughout this thesis and can handle such non-linear and/or
non-Gaussian models.

1.2.4 Particle filter

When the HMM is non-linear and/or non-Gaussian, the Bayesian filter cannot be com-
puted analytically (see paragraph 1.2.2) and we must therefore resort to some approxi-
mations. When the noises (state and measurement) are still assumed Gaussian but the
functions f; (.) and/or hy (.), in Eq. (1.54) and Eq. (1.56), are non-linear, extensions of
the Kalman filter can be considered:

e the first extension, known as EKF (Extended Kalman Filter) [AMGCO02]|, consists
in locally linearizing the functions f; (.) and hy (.) and then applying the Kalman
recursion with the linearized equations.

e the second extension, known as UKF (Unscented Kalman Filter) [WVAMO00], uses a
set, of points that are propagated deterministically through the non-linear equations
and allow to estimate the parameters of the Gaussian approximation of p (xy | z1.).

However, as for the Kalman filter, these solutions may also fail for highly non-linear
function and/or non-Gaussian noise, then other solutions must be proposed to handle
such difficulties.

Another approach consists in transforming the continuous state into a discrete state.
In such a strategy, the continuous density p (x) is approximated by a discrete measure

Np

M often called particles, and associated weights {w'};”,, as

using a set of samples {x'},",

follows:
Np
p(x) ~ Z w'oyi (X), (1.73)
i=1

where 0, (x) is the delta mass Dirac function at point x. This is the main idea behind the
Monte Carlo methods and in particular in the particle filter: approximate a continuous
density by a discrete density which is simpler to manipulate and in particular from which
quantities, like mathematical expectations, can be easily calculated.

Following this idea, grid-based methods were proposed [AMGCO02| in order to ap-

proximate the posterior density with a fix and deterministic set {xi}jﬁ’l (called grid), for
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which the Bayesian filter can be exactly solved (see paragraph 1.2.2). However, when the
state-space is large, such a method may require to use a lot of grid points x’ to properly
discretize the whole state space, and, as a consequence, may lead to a prohibitive com-
putational time. Thus, a new solution, called particle filter, was proposed in the early
90s by Gordon et al. [GSS93|, that consists in using an adaptive and random grid rather
than a fix and deterministic grid. In the particle filter, particles are adaptively drawn
with higher probability, thanks to a technique called Importance Sampling, in the areas
where the posterior density takes high values, which prevents to discretize the whole state
space.

The principle of Monte Carlo methods and particularly of Importance Sampling strat-
egy will be briefly explained in the sequel. Then, a particular attention is given to a Monte
Carlo technique, called Sequential Importance Sampling, that allows to approximate the
density p (x | z1.x) by a discrete density in a sequential manner. Finally, we provide with
Algorithm 1.1 the scheme of the generic particle filter that will be used throughout this
thesis.

1.2.4.1 Monte Carlo principle

Many applications require the computation of integrals of the form

1@ =By 0 ()] = [ () dx. (1.74)

where @ is a measurable bounded function and p (x) is a given probability density function.
Such integrals can seldom be calculated analytically. Then Monte Carlo methods propose
to construct an empirical estimator of the quantity / (®) from NV, samples (Xl, e ,XNP)
independently drawn from p (x).

First, an empirical estimator of p (x) is provided by

N
. 1 &
by, (%) =+ D b (%) (1.75)
Pi=1
Then, by replacing the density p (x) by its empirical estimator py, (x) in Eq. (1.74), an
estimator of [ (®) is

N,
“ 1 L .
Iy, (®) = + > o (x), (1.76)
P =1
This estimator is unbiased with variance
var(Iy, (®)) = E[| Iy, (®) — I (®) [*] = var,(, (®) /N, (1.77)
where
vary (@) = [ [0 GO px)dx — 1@ < +cx. (1.78)

However, in many cases, it might be difficult to directly draw samples according to the
density p (x). In particular, in the Bayesian framework, if we want to approximate the
classic MMSE estimator E [xy | z1.] directly via the Monte Carlo principle, this requires
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to be able to sample from the density p (xx | z1.1); this is often difficult to do. Thus a
method known as Importance Sampling was proposed in order to estimate the quantity
I (®) with a set of N, samples using a different probability density function that allows
to draw samples easily.

1.2.4.2 Importance Sampling

The key idea of Importance Sampling consists in rewriting Eq. (1.74) as a mathematical

expectation under another density ¢ (.) called the importance density or instrumental

density for which samples can be easily drawn®. It requires as only condition that the

support of p (.) must be included in the support of ¢(.), i.e. if p(x) > 0 then ¢ (x) > 0.
First, let us rewrite equation (1.74) as follows

1@ = [ompix= o) Py dx =By [0 ()6 (x)],  (179)

q(x)
where x)
- P X
w(x) = ——=. 1.80
) =25 (1.80)
The integral (1.74) has been rewritten as an expectation from another density ¢ (.) rather
than p(.); then, for any N, samples (Xl, . ,XNP) independently drawn from ¢ (.), I (®)
can be estimated by
N,
> I i
In, 15 (D) = N, ;w d (x') (1.81)

where

wi:%, i=1,--- N, (1.82)

are called the importance weights. The estimator I n,.1s (@) is unbiased with variance

var(ly, rs (®)) = E[|Ly, 15 (®) — I (D) |*] = vary(, (gcp) /N, (1.83)

where )
p 2 (P (%) 2
vargy [ =P :/ P (x (—) q(x)dx —|I(P)|". 1.84
o (Lo) = [l (U3) apoax— @) (184
Alternatively, I (®) can also be estimated by

Iy, 1558 (@) = > w'd (x7) (1.85)
i=1
where the importance weights have been normalized, i.e.

wi= - (1.86)

-
P
Jj=1

8However note that this choice is, in fact, not trivial since the variance of the estimator directly
depends on the instrumental density ¢ (.) and has therefore to be carefully made [DdFGO1].
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Note that the weights w’ can be computed up to a constant, i.e.

., N,. (1.87)

Indeed, if these weights w’ share a common constant, it will be discarded through the
normalization. Note that in general Iy, ;s sn (®) is a biased estimator. An approximation
of the density p(.) as an empirical approximation py, (.) is then obtained by

PN, (x Zw i (X) . (1.88)

Importance sampling with this additional normalization step is called self-normalized
importance sampling in the literature [Owel3].

1.2.4.3 Sequential Importance Sampling particle filter

Importance sampling can be applied in order to approximate the density p (xox | Z1.)
when it cannot be computed analytically. However, recall that the Bayesian filter presents
a recursive structure. Thus it is interesting to take advantage of this property of the HMM
to compute the density p (Xg.x | z1.x) recursively. This is the purpose of the Sequential
Importance Sampling technique that allows to sequentially approximate the posterior
density of all the previous states’ p (xo.1, | Z1.1)-

Let ¢ (xo.x | z1.1) be an instrumental density from which it is easy to draw samples and
let also assume that this latter factorizes as follows

=

q (X0 | Z1k) = ¢ (%o Hq X | Xo1-1,Z11) - (1.89)
I=1

This factorization ensures that the importance weight of the i** particle

wi = p—(xg=k | Z14) (1.90)
q (XO:k ‘ Zl:k)

can be computed recursively. Indeed, w} can then be rewritten as follows

i p(Z | X(i):kazlzk—l)p(x(i):k | Z1:5—1)
Wi = i | i i
P (2k | Z1:0—1) ¢ (Xk | X0:k—11 Zl:k) q (XO:k—l \ Z1;k71)
b (X(i):kq | Zl:k—l) p(zs | x})p (XZ | Xifl)

= : : . 1.91
q (Xppoy | Zi—1) 2 (2 | Zr1) @ (XL | Xbpo s Z1k) (1.91)

p(zi | %) p (%, [ X1
P (21 | Z16-1) ¢ (XZ | Xézk,l,zlzk)

i
= Wp—y X

9Note that we present the method for the whole sequence xg.; since the posterior density of the state
Xy, can be simply obtained through a marginalization.
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Finally, since p (z; | z1.x_1) is a constant independent of the particle sequence x§ ., the
weights are proportional to

Pz | ) p (x| xi_,)

¢ (X [ X1 21%)

wi, o< wi_, (1.92)
In practice, we are mainly interested by the posterior density of the state p (xx | z1.x)
rather than the density of all the states p (xo.x | z1.x). Therefore, in order to avoid storing
all the history of the particles {x}. k}z |» it is convenient to choose an instrumental density
that depends only on the previous state and the current measurement:

q (X;€ | X015 Zl:k) =q (Xz | X1, zk) . (1.93)

In that case, the only variables to store for time step k are xi , and z;, while all the
previous particle states and past measurements can be discarded. In the following, we
will always consider instrumental densities that verify this condition. Then, under this
condition, the weights are finally provided by

i Pl x)p (X %)
k X wkfl i i .
q (Xk | X1, Zk)

After the normalization, the posterior density p (Xj | z1.1) can be approximated by

(1.94)

(XK | Z1.1) Zwch (xx) (1.95)

The Sequential Importance Sampling (SIS) particle filter follows the two steps of the
Bayesian filter defined in Eq. (1.61): first particles are propagated in the state space via
the instrumental density defined in Eq. (1.93); then particles are updated according to
Eq. (1.94). The mechanism of the SIS particle filter is illustrated in Figure 1.10. Finally,
using the estimated density, the classic MMSE is simply obtained as

Np
Xplk = ZwicX%a (1.96)
i=1

and the covariance matrix Pk|k = var (X, | z1.;) estimator as
. . \T

1.2.4.4 Degeneracy problem

Whereas theoretical results ensure that the approximated posterior density (1.95) con-
verges to the posterior density p (xx | z1.x) as N, — 400 [CD02], in practice, the number
of particles N, is always finite. In that case, the SIS particle filter suffers from a degen-
eracy phenomenon: after some iterations, one particle will present a weight very close
to one while other particles will present negligible weights. This phenomenon cannot be
avoided; indeed it has been proven that the variance of the weights can only increase over
time [DGAOO]. In practice, this leads to two major problems:



38 chapter 1

i i
Xk—1>Wr—1

il \\ﬁ“_p (zr | xx)
e @ . O . . L . b xl,w}\

Figure 1.10 — Mechanism of the SIS particle filter with the two steps: propagation of the
particles with the prior density p (Xk | X};_l) and then update with the measurement z,.

e First, after some iterations, the particle approximation will be a poor estimate of
the objective posterior density, and therefore, the corresponding estimators will not
be accurate.

e Computing resources are devoted to update the weights of a possibly large number of
particles whereas most of them have a negligible contribution to the approximation
of the posterior density p (xx | Z1.x)-

In order to have an idea of the quality of the particle approximation of the posterior
density, it can be interesting to measure this degeneracy phenomenon. Several indicators
have been proposed in the literature, among which the most popular is probably the
effective sample size Neg proposed in [LR98|, based on the calculation of the variance of
the weights. In general, it cannot be computed exactly but an estimate is given by

-1

N ~ (Z (w,g)2> . (1.98)

i=1

This indicator provides a good estimation of the number of particles that effectively
participate in the estimation of the posterior density. For instance, when particles share
the same weights wi = 1/N, (that corresponds to a weight variance equal to zero), then
Neg = N, since all particles contribute equally to the estimation. On the contrary, when
only one particle concentrates all the weight (i.e. the particle has a weight equal to one
which corresponds to a maximum variance), then Neg = 1.

However, although the indicator N.g allows to measure the degeneracy phenomenon, it
does not prevent from this issue. Thus, several solutions have been proposed to minimize
the degeneracy phenomenon among which the most common is certainly the addition of
a resampling procedure in the SIS particle filter and, to a lesser extent, a careful choice
of the instrumental density which may sensibly reduce the degeneracy phenomenon.
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1.2.4.5 Instrumental density

In the SIS particle filter, the choice of the importance density is left to the user. In
general, simply choosing the prior density p (xk | x};_l) (from which it is generally easy to
sample) as the importance density is enough to ensure acceptable performance. In that
case, the weight update equation (1.94) simply becomes

wh o wi_yp (2 | X3,) (1.99)

and only requires to calculate p (z, | x}), i.e. the likelihood of the observation condition-
ally to the state xt.

However, in some applications this simple choice may lead to poor performance with
a severe degeneracy phenomenon. This is the case for instance in Track-Before-Detect
applications, as will be shown in Chapter 2. Therefore, a more suitable choice that takes
into account the current measurement z, must be made. The optimal one, in the sense

that it minimizes the variance of the importance weights (and thus maximizes Neg), is
given by [DGAOO|

Qopt (Xk | Xzfpzk) =p (Xk | X1, Zk) ) (1.100)

for which the variance of the weights is zero. This density can be rewritten as follows:

p(zk | xi)p (x5 | X 1)

Gopt (X | Xjo_1:2) = : , (1.101)
/Y ( k—1 ) p (Zk | Xk_l)
and requires the calculation of the density p (zk | X};_l) provided by:

p(zk | X)) = /p(zk | x)p (x| xj,_,) dx'. (1.102)

In practice, except for very specific cases, this integral is intractable and, as a conse-
quence, so is the optimal density. Moreover, it might be difficult to draw samples from
this optimal importance density. Therefore, suboptimal approximations of the optimal
importance density have been proposed [AMGCO02|. However, the possible gain of using
such suboptimal approximations is not always justified since an additional computational
cost is induced by using such suboptimal approximations. Besides, in some applications,
using more particles sampled with the prior is equivalent to using a more sophisticated
density with less particles [AMGCO02].

1.2.4.6 Resampling

The use of a convenient instrumental density may slow the degeneracy phenomenon, but
it cannot avoid it totally. As a consequence, other solutions must be used to prevent the
degeneracy phenomenon. A common technique consists in adding a resampling step in
the SIS particle filter before any strong degeneracy occurs, for instance when the effective
sample size Neg falls below a given threshold Ny = 8N, with 0 < 8 < 1. The principle
of resampling consists in selecting particles with large weights and discarding particles
with small weights. In practice, this is done by drawing independently N, particles from
the particle representation of the posterior density p (xj | z1.x) given by Eq. (1.95). As
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Figure 1.11 — Mechanism of SIS particle filter with resampling step: particles with large
weights are selected while particles with small weights are discarded.

these new particles are sampled independently from the same density, they share the
same weight equal to 1/N,. The particle filter with a resampling procedure is illustrated
in Figure 1.11. In practice, several methods can be used to perform the resampling step,
including multinomial resampling, residual resampling [LRI8| and systematic resampling
[Kit96]. The latter is one of the most popular since it is easy to implement and requires to
draw only one single uniform variable [AMGC02|. Note however that in some situations,
especially when the variance of the importance density is small (or even equal to zero) —
this may be the case for instance when the prior density provided by the state equation
is used as instrumental density and the variance of the state noise is very small — the
resampling step can induce a severe loss of diversity among the particles. Indeed, in
that case, many drawn particles will share the exact same state, and no diversity will be
generated afterwards by the instrumental density, thus leading to an impoverishment of
the particle cloud. Nevertheless, this effect can be corrected by adding a regularization
step [MOLGO1], where the key idea is to sample particles from a continuous density
rather than a discrete density in order to obtain a better exploration of the state space.
In practice, this is achieved by convolving the discrete density with a continuous kernel.
This regularization step will not be considered in this thesis.

Finally, a description of the generic particle filter is given by Algorithm 1.1. This
algorithm will be used throughout this thesis.

1.3 Conclusion

In this chapter, a brief overview of the radar chain from the signal processing stage to
the tracking stage has been first presented. In particular, the fundamental role of the
matched-filter both in detection and in estimation has been highlighted. Finally, at the
end of this section, we specify the measurements z, and ), that are respectively provided
as an input to the tracking stage in the TBD framework and in the classic approach (see
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Algorithm 1.1 Generic particle filter algorithm

Require: Particle cloud {w]_,, Xiq}?fl at step k — 1,
: fori=1to N, do
2:  Propagation: draw particle x} according to ¢ (x | x}_;,2).

p(zrlxp )p (1)

—_

3:  Update: compute weight according to w? o w! e)”

p p g g k F=1 g (ki)
4: end for _
5: Normalize weights: w} < fffkw” i=1,---,N,

1=1"k
Compute Nog according to Eq. (1.98).
if Neg < BN, then
Resample N, particles from SV w,iéxi (xz)

1 ;o
Fp’ ’l—l,"',Np

Reset weights: w! <
10: end if

N
11: return {wj,x},”

Figure 1.1).

In a second step, the Bayesian filtering framework has been detailed and a special
attention has been given to the Hidden Markov Models that allow to recursively solve the
filtering problem. For this model, we detailed more specifically two solutions:

e The first one, known as Kalman filter, that allows to exactly solve the Bayesian
filter when the model is Gaussian and linear. It has been extensively used in a wide
range of applications and in particular in classic radar tracking applications.

e And the second one, known as particle filter, that allows to handle more general
models than the Kalman filter (i.e. non-linear or/and non-Gaussian models). The
latter will be intensively used and studied in the next chapters as a possible solution
of the Track-Before-Detect problem.

This chapter has provided the main ingredients that will be used throughout the rest
of this document, i.e. the measurement equation used in the TBD framework, based on
the radar signal processing chain, and the particle filter.
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Chapter 2

Monotarget Track-Before-Detect
particle filters

2.1 Introduction

In the previous chapter, we have briefly outlined the whole radar chain from the reception
of the signal to the track management (i.e. formation, update, deletion). In particular,
we have highlighted that the classic tracking stage is not performed from the raw data
z; but from a set of detection hits )} which correspond either to noisy measurements
of the actual target parameters or to false alarm measurements as illustrated in Figure
1.1. When the target Signal to Noise Ratio (SNR) is high, this pre-detection step has no
consequence and allows to dramatically reduce the amount of data to process. Indeed,
in such a situation, the detection threshold v may be chosen relatively high in order to
strongly limit the false alarm rate while guaranteeing to detect the targets almost at each
iteration, thus making the Multiple Target Tracking (MTT) problem "easy" to solve.
However, when the application seeks to detect and track low SNR targets, the MTT
problem may become much more tricky. Indeed, maintaining a high threshold will not
ensure anymore to detect the target at each iteration since, in this case, the detection
probability Pp may be pretty small (low SNR). This is illustrated in Figure 2.1, where a

Power 4

Target sample with high SNR
» rising the threshold
L

Threshold ~
2 . ; 5
with low Py, ¥ Target sample with low SNR
not present in the set V.

2 2
Signal samples |zi|

Figure 2.1 — Scheme of the pre-detection step: where the target signal sample with a high
SNR target is kept, while the low SNR target sample is discarded.

signal sample due to a target with a low SNR is discarded, since it does not exceed the

43
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threshold. As a consequence, all the information provided by this target signal sample
is lost in the tracking stage. Furthermore, the solution that consists in decreasing the
detection threshold will make both the initialization and the association problem much
more arduous to solve since the set of detection )} would be of much larger cardinality
and mostly constituted, at each iteration, of false alarm measurements.

As a result, a new framework, known as Track-Before-Detect, was proposed to over-
come the initialization and the association problem. The key concept of the Track-Before-
Detect framework consist in jointly performing the detection and tracking from the whole
raw measurements z., rather than the sets )., in order to keep all the information pro-
vided by the measurement (since no pre-detection has been made). As a result, it allows
to postpone and then to enhance the detection decision by exploiting all the information
provided by the raw data.

The first methods proposed to solve the Track-Before-Detect in a monotarget setting
were based on the Hough transform [CEW94| or Dynamic programming [Bar85|. However,
although these methods are effective, they are not recursive and must process blocks of
data, therefore leading to an intensive computational burden. Moreover, since the scope
of this thesis is to study particle filter solutions to the Track-Before-Detect problem, we
do not consider Hough transform and Dynamic programming throughout this thesis.

In this chapter, we consider the particle solution to the monotarget Track-Before-
Detect problem proposed by Salmond et al. [SBO1|. First, we define the state model and
the measurement model in section 2.2 and 2.3. Then, we consider the particle solution for
this model in section 2.4. In Section 2.5 we propose some contribution on the instrumental
density in order to improve the filter performance. Finally in section 2.6 a modified particle
filter is presented and in section 2.7 performances of the different filters are evaluated via
Monte Carlo simulations.

2.2 State model

2.2.1 General TBD model

Track-Before-Detect solutions work on raw data z;., where no pre-detection step has been
made. At each iteration step k, the presence of a target in the data z, is not a priori
known. In a Bayesian framework, the classic method to deal with this ignorance consists
in modelling a prior: the presence or absence of the target by a variable s, that takes
value 1 if the target is present at step k, and 0 otherwise, and then considering as hidden
state the hybrid state (sx,x;) (where x;, is the classic target state, e.g. position, velocity,
etc.) [SBO1].

Hence, the new hidden process (sg,Xy)
transition density

wen 18 Markovian and entirely defined by its

D (Sk, Xk | Sk—1,Xp—1) (2.1)

and its density po (so,Xo) at step & = 0. In practice, the transition density is often chosen
to factorize as follows:

p(3k7xk | Skflaxkfl) :p(Sk | 8k71)p(Xk | 8k71,8k7xk71)7 (2-2)
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in order to simplify the implementation of the Bayesian Track-Before-Detect solutions. In
this case, the process (sj),cy is a two-state Markov chain with transition probabilities

Pb:p<8k21|8k,120), (23)
Pd:p(8k20|8k_1:1), (24)

where P, is the probability of target "birth" (or appearance) and P, is the probability of
target "death" (or disappearance), leading to the following transition matrix

=P P
=" ] (2.5

Finally, at step k = 0, let us define by Py = p(sop = 1). On the other hand, two transition
densities have to be specified for the state xy:

o p(Xy|sk=1,8,1=1,%5_1) the continuing density that models the target dy-
namic. In order to alleviate the notation, it will be denoted as p. (xx | Xx_1).

e p(Xy | sk=1,s,_1=0,%,_1) the birth density that models how the target appears
in the radar surveillance area. The dependence in x;_; can be always removed in
that case since x;_1 has no physical meaning. This density will be referred as py, (xx)
in the following.

Note that the densities p (xy | sk = 0,551 = 1,X,_1) and p(xx | s =0, 851 = 0,X,_1)
that represent the state x;, when it is absent from the radar surveillance area do not need
to be defined since the state x; has no physical meaning when s, = 0.

In summary, the state model defined in Eq. (2.2) requires the knowledge of the two
transition probabilities P, and Py, the initial probability F, and the two states densities :
the birth density and the prior target dynamical density. This model is very general and
can handle non-linear target motion (in particular for the target dynamics). Note that,
throughout this thesis, for the sake of simplicity, a linear model for the target dynamic
will be used.

2.2.2 Model used in this work

The performance of the Track-Before-Detect algorithms proposed in this thesis will be
evaluated via Monte Carlo simulations. Therefore, in order to avoid prohibitive computa-
tional time, we will restrict our study to a target moving in a two dimensional space. The
extension of the Track-Before-Detect solutions to a target state x; with one or two addi-
tional dimensions is of course straightforward and does not lead to any theoretical issue
but will rather increase the computational time required to evaluate the performance.
Thus, let us consider a target evolving (when present) in the area defined in polar
coordinates by D = [Fynin, Tmaz) X [Omin, Omaz] Which corresponds to the surveillance area
covered by the radar under consideration. The area D is illustrated in Figure 2.2. Then,
let us define by X, = [z, @k, Y, Ux). the target state vector where (zy,yx) and (i, Ux)
represent respectively its position and its velocity in Cartesian coordinates. Note that
here, two systems of coordinates are used, polar and Cartesian, for the sake of convenience.
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Figure 2.2 — Left: Surveillance area covered by the radar. Right: Area to initialize the
velocity components (%, U ).

Indeed, the radar signal processing stage is well suited to polar coordinates (the radar
naturally provides range and angle information, see section 1.1) while linear motion is
easier to handle in Cartesian coordinates than in polar coordinates. Therefore, assuming
that the radar is located at the origin, we also define by 1, = /7 + y; the target range
with respect to the radar and by 6 = arctan(2:) the target azimuth. The inversion
formulas are classic and simply given by x; = 1 cos (0;) and y, = 75 sin (6;). In the same
manner, we define by vyorm i = \/:b% + y,ﬁ the velocity norm and «; = arctan(g—i) the
velocity direction in polar coordinates. Finally, in the following, the two representations
will be used depending on the situation where they are the best suited.

The linear target dynamical model is chosen as follows [BSLKO01]:
X = FXk,1 + Vi, (26)
where

[Fs 0] . 1T
L . )

and Ts represents the sampling period of the measurements (or the duration of a radar
cycle). The noise vy, is assumed white and Gaussian with covariance matrix [BSLKO1]

3 2
Q= [%S (SS] , where Qg = gs [;%g T%f] ) (2.7)

Concerning the birth density pj (.), the position (ry, 8x) and the velocity (vg, ay) are
assumed to be distributed independently as follows:

® Dy (Tk, ek) =U (Tmin7 Tma:v) x U (emmu 9ma:v)-
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® Do (Vnormks k) = U (Umin, Umaz) X U (0,27) (where vy, and vy, are the minimum
and the maximum velocity reachable by the target). The domain used to initialize
the velocity components is illustrated in Figure 2.2, of course v,,;, can be set to 0
if desired.

The choice of the uniform distribution both for the position and the velocity corresponds
to the least possible informative prior. It means that when a target appears in the radar
window, it can be located anywhere in the area D with a velocity vector in any direction.
The only a prior: information used is the constants v,,;, and v,,,, which can be easily
obtained by physical considerations (e.g. an aircraft has a limit velocity). However, if
some other informations are available about the target appearance area (e.g. an airport)
or direction, they should be taken into account in the prior birth density. Here, in order
to keep the model as general as possible, this case will not be considered.

2.3 Measurement model

2.3.1 Raw radar data

We consider here a measurement model based on the presentation detailed in chapter 1
paragraph 1.1.8 with only some slight differences. It is provided by:

zi, = sppe’?*h (x;,) + ny. (2.8)

The phase ¢y, is assumed to be uniformly drawn over the interval [0, 27) while the noise
n; is a zero-mean circular complex Gaussian vector with a known covariance matrix I'.
The first difference introduced here concerns the modulus p which is assumed constant
and unknown. This corresponds in the radar terminology to the Swerling 0 fluctuation
model [Sko80| — the other fluctuation models will be considered in chapter 4. The second
difference concerns the introduction of the variable s; in the measurement equation (2.8)
in order to take into account the presence or the absence of the target in the measurement
z;. Remark that when the target is absent, the measurement z; consists of noise only.

The function h(.) depends on the application considered: for instance, in optics, it
is often chosen with a Gaussian shape [TBS98]. Nevertheless, as we are here concerned
by a radar tracking application, this measurement function h (.) corresponds to the radar
ambiguity function. For the sake of simplicity and also for computational cost reasons, we
will restrict ourselves in this manuscript to the range and azimuth parameters. Of course
other parameters (e.g. Doppler) may be easily added to the model.

Thus, let us consider a radar transmitting a chirp signal with bandwidth B and pulse
duration 7}, (see paragraph 1.1.5) and receiving the backscattered signal via a linear array
with N, antennas spaced by d. In a first step, a beamforming operation is realized for
different directions

1
QU:0min+(v+§)A9, U:O,-'-,Ng—l, (29)

where Ay = 0.886fd is the half-power beam-width (see paragraph 1.1.7) and N, =

{W—‘ is the number of azimuth cells (here [.] is the ceiling function). The cor-

responding ambiguity function along the azimuth axis is then given by (see paragraph
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1.1.7):

hy(0x) = M (2.10)

where 1y, = 22¢ (cos (6;) — cos (6,)).
Then, for each direction 6, a range matched-filter is performed to the corresponding
received signal. The output signal is sampled at period 1/B leading to the following

ambiguity function along the range direction (see paragraph 1.1.5):

sin <7TBTU <1 —

hy(ry) = - T >> for |7,| < T, (2.11)

where 7, = 2 (ry — ry) /c and

1
Tu:Tmin+(u+§)Ar7 u=20,---,N, — 1, (2.12)

are the range cells corresponding to the sampling instants, with A, the range resolution
equal to 55 and N, = | mres=tmin | the number of range cells.

Finally, the overall ambiguity function in range and azimuth h (.) is a two dimensional
image consisting of N. = N,. x Ny cells where the value in the cell (u, v) is simply provided
by the product h¥(ry)hg(0;). For mathematical considerations, we rewrite the function
h(.) as a vector of size N, by using the following mapping: | = u + (v — 1) x N,, i.e.
the value of the [ — th component is given by h'(xy) = h¥(ry)hy(0r). A scheme of the
proposed mapping is given in Figure 2.3. Furthermore, for the sake of compactness, the
vector h(xy) will be denoted by hy in the sequel.

Note that here, since no Doppler measurement is considered, the ambiguity function
does not depend on the velocity parameters (i, ) and as a consequence neither does
the equation of the measurement (2.8). However, there is no difficulty to handle such a
situation where the measurement depends only on a subset of the state parameters. The
connection is ensured by the prior model (i.e. the target dynamical model) that links
velocity components with the position components, themselves related to the measurement
z;.. Note also that an additional Doppler shift measurement introduced in z; would provide
partial information on this target velocity, and thus could be exploited to enhance the
tracking filter.

2.3.2 Target Signal to Noise Ratio

An important notion that must be clearly defined is the target SNR (Signal to Noise
Ratio). A possible definition, from Eq. (1.14), is SNR = 10log, (%) First, note

that we implicitly made the hypothesis that the noise covariance matrix is T' = 20°I .,
i.e. noise samples are independent with the same variance. Second, remark that this
definition represents the maximum SNR reachable by the processing and is obtained
when the target is exactly located at the center of the cell, i.e. when hl(r,,0,) = 1;
for other target positions, the energy extracted by the processing will be lower due to a
target located outside the sampling grid. Clearly, performance of the Track-Before-Detect
algorithms will highly depend on the target SNR.
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Figure 2.3 — Mapping between indices (u,v) and [.

2.4 A particle filter solution for the Track-Before-Detect
problem

Previously, a state-space model has been set up in order to model the Track-Before-Detect
problem in the HMM framework. The aim is now to estimate recursively the posterior
density p (X, S | Z1.x). Since here the hidden state is hybrid (continuous variable x; and
discrete variable sy), it is convenient to reorganize the posterior density as follows:

p(Xk, Sk | Zl:k) = p(Sk | Zl:k)p<xk | 8k7Z1:k)- (2-13)

When s, = 0, the state x; is meaningless and independent from the measurements z.
so that the density p (x| sy = 0,21.5) does not need to be evaluated. On the contrary,
when s;, = 1, the posterior density p (x; | sp = 1, z1.) allows to calculate estimators Xy
and f’k‘k defined respectively in Eq. (1.96) and (1.97) while the posterior probability of
target existence P.j = p(sx = 1| z14) provides some information about the presence or
the absence of the target in the radar window.

2.4.1 The TBD particle filter

In practice, the conceptual Bayesian filter defined in paragraph 1.2.2 can be derived for
the proposed model but the exact solution is intractable. Therefore we must resort to
some approximations. Methods based on the EKF and the UKF would be inoperative,
essentially because the measurement equation (2.8) is highly non-linear and the birth
density py (x)) dramatically differs from a Gaussian density. In the other hand, due to
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the large size of the state space (essentially the space D), a grid-based approach seems
unrealistic to implement for real-time applications. In order to overcome these difficulties,
a solution based on the particle filter was proposed by Salmond et al. [SB01| and is detailed
in the sequel.

Let us assume that a set of particles {(s}_;,x}_;) ,w};_l}z’l, approximating the pos-
terior density p (sg_1,Xp_1 | Z1.x—1) at step k — 1, is available:

NP
p(Sp_1, X1 | Z1p1) = Zwi*15(82_17X2_1) (Sk—1,Xp_1) - (2.14)
i=1
The first step of the particle filter consists in drawing new particles (s, x}) from the
particles at previous step. In [SBO1|, this is done first by drawing variables s according
to the transition matrix IT defined in Eq. (2.5). Then states x, can be drawn conditionally
to s and s;_;. When s}, = 0, the state x} is meaningless and therefore does not need to
be sampled. On the contrary, when si = 1, two cases must be considered:

1. Birth case (i.e. si_; = 0): the particle state x}, is initialized with an instrumental
density gy (Xx | 2x). As will be seen in this chapter, the choice of the instrumental
density for the state initialization is crucial for the performance of the filter and is
a key point of the TBD particle filter solutions.

2. Continuing case (i.e. si_, = 1): the particle was already present at step & — 1 and
is propagated with an instrumental density q. (Xk | xi zk).

The different cases considered when sampling particle states xi according to st , and s,
are summarized in Table 2.1.

i i
S, =0 s, =1

st =0 | nothing to do | nothing to do

s}:C =1 @ (Xk | 1) e (Xk | Xﬁc—lv Zk‘)

Table 2.1 — Instrumental densities to sample x; depending on si and si_,.

The second step of the particle filter consists in calculating the particle weights w?,
provided by Eq. (1.94), that differ according to the values of si and si ;. Considering
the different possible cases, the weight expression is given by:

p(zx | si =0), if st =0,
. . Po(%}) i i el -
wh oc wi_; % qb(x};‘Zk)p(zk | s =1,%x}), if s;, =1 and s},_; =0, (2.15)

pe (i xi_y) Clxi). if sl — _
m]) (zg | s;, =1,x}), ifs), =1ands) ;| =1.

Then, weights are normalized and a resampling procedure is performed, if required, as in
the generic particle filter (see Chapter 1, Algorithm 1.1). A pseudocode of a single cycle
of the current particle filter, denoted here by Classic TBD Particle Filter, is described in
Algorithm 2.1.
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Algorithm 2.1 Classic TBD Particle Filter

Require: Particle cloud {(s}_;,x}_,) ,w,ifl}?fl at step k — 1,
1: for i =1 to N, do

2:  Draw s} according to the transition matrix defined in Eq. (2.5)

3: if s; =1 then

4 if si , =1 then

5: Draw x ~ q. (x5, | x}_;, z1)

6: else

7 Draw xi ~ g, (X | Zx)

8 end if

9: end if

10:  Update particle weight wi according to Eq. (2.15)

11: end for .

12: Normalize weights: w}, < —x*—,

- i=1,---,N,
13: Compute Nog according to ]ﬁ]& E1.98).
14: if Neg < SN, then
15:  Resample IV, particles
16:  Reset weights: wi < Nip, i=1,---,N,
17: end if
18: return {(si,x%),wi}

Finally, the probability of presence P, ; can be estimated from the set of particles

{(S}w X%) ) w}c}i:p1 by:

Np
B= s, 210
=1

while the target state x; can be estimated by:

1 S
K = = Y SiWiXg (2.17)
Pevk =1
and the posterior covariance matrix by:
e
A~ . . . ~ . N T
Pk\k = P— Z sﬁcw}g (XZ, — Xk|k) (X;C - Xk\k) . (2.18)
ek =1

2.4.2 Measurement likelihood

The calculation of the weights in Eq. (2.15) requires the likelihood function p (zy, | sk, Xx).
However, in the particular case of the TBD particle filter, this density is not directly
available since the measurement equation (2.8) depends on the unknown parameters p
and ¢, which correspond to the target amplitude parameters. In fact, only the density
p(zx | Sg = 1, Xp, ¢k, p) is directly provided from Eq. (2.8). This is a complex Gaussian
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density with mean s,pe/#*h;, and covariance matrix T, i.e.

1

e 1 = -
p(zk | Sk ,X/ﬁSOk,P) ﬂ_é\f det (F)

exp {— (Zk - Skpewkhk)H r (Zk - Skpej%hk)} ’
(2.19)

that expends as follows:

1
mNe det (T)
exp { —spp?hf' T hy, + 25, p/hf T~ 2| cos(or — C) }
(2.20)
where (; = arg(hf’T'z;). First note that when s; = 0 the likelihood in Eq. (2.20) is
independent from the parameters x, p and . Therefore the likelihood p (z | sp = 0, xy)
is a constant provided by

P (Zk|Sk, Xk, p, 1) = exp {—zy I 'z} x

p(zk | sx =0) ) exp {—z;T 'z} . (2.21)

1

~ alNedet (T’
On the contrary, when s, = 1, the likelihood in Eq. (2.20) is, of course, dependent on
the parameters p, @r, X;. Additional developments must then be performed in order
to evaluate the likelihood p(zy | sy = 1,x;). Several strategies have been proposed in
the literature to deal with the phase ;. As this chapter focuses on the TBD particle
filter, we will consider here only the best solution detailed in paragraph 2.4.2.1. Further
developments and details will be provided in chapter 4. Concerning the modulus p, we
will use the approach proposed by Kitagawa |Kit98| which is detailed in paragraph 2.4.2.2.

Let us finally note that in order to alleviate the notation, the likelihood p (zj | s, = 1,xy)
will be denoted by p(zj | xx) in the rest of the chapter since it depends on x; only
when s, = 1. Moreover, as the particle filter requires the calculation of the likelihood
p (2 | sk, Xx) only up to a constant, it is convenient to divide the expression in Eq. (2.20)
by the likelihood term p(zj | s, = 0) defined in Eq. (2.21). In the sequel, the likelihood
p(zg | x;) will be always calculated up to this constant term. Thus, in that case, the
weight equation (2.15) becomes

1, if 52 =0,
o P (i) (2 | %) ifsi =1landsi_, =0
wy, X wy,_q X qb(x};\'zk)'p BRI b e (222)
_pe(Xilxi)

qc(x;'€|x;;_l,zk)p(zk | xt), ifs,=1ands , =1.

2.4.2.1 Eliminating the random phase

The best way to eliminate the random phase ¢ consists in marginalizing it in the likeli-
hood defined in Eq. (2.20). This method was first proposed in [DRC12|. It leads to:

p(zi | xi) o exp { —p*h/ T "hy } Iy (2p |h/T'z]) (2.23)
where Ij (.) is the modified Bessel function of the first kind, i.e.
+o0 (:1:)21

IM@:E:éf. (2.24)

=0
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2.4.2.2 Dealing with the unknown parameter p

Contrary to the phase ¢, that randomly fluctuates from step to step, the parameter p is
in this chapter assumed constant. Thus it might be preferable to estimate it rather than
marginalize it (which leads to an intractable integral). The problem of state-space models
with unknown static parameter has been widely studied in the literature [Kit98, Sto02,
ADSTO04]|. A convenient solution, easy to implement, consists in introducing an artificial
Markovian dynamic on the static parameter p and adding it to the state vector xi, i.e.
Xy = [Th, Ths Yrs Uns 1) T - As the parameter p;, has been appended to the hidden state, its
evolution must be specified a priori. As for the position and the velocity, two cases must
be considered:

e The continuing case (i.e. s = 1 and s,_; = 1) where the parameter p; evolves
according to the following equation [ADST04],

Pk = Pr—1 + €k, (2.25)
where ¢, is a white Gaussian noise with a "small" variance 03 independent of v,.

e The birth case (i.e. s = 1 and s,_; = 0), where the parameter pj, is assumed
uniformly drawn over the interval [pmin, Pmaz)s %€ Do (Pr) = U (Pmins Pmaz) — NOtE
that we may sometimes replace p,;, and p,.. by their corresponding SNR value
(see paragraph 2.3.2), that is SNR,,;, and SNR,,4..

Moreover, as variable p has been added to the state vector x;, the "new" likelihood
p (zx | xx) can simply be calculated by replacing p by px in Eq. (2.23).

Finally, note that in most of the articles dealing with Track-Before-Detect particle
filters, the parameter p; is not assumed to be constant but rather directly a component
of the state vector with dynamic model (2.25). Here, we prefer to assume that p is an
unknown constant parameter, following the Swerling 0 model. We then use the proposed
method to estimate it but do not model it a priori that way. Obviously the difference
between the two approaches is just conceptual and in practice they are completely equiv-
alent.

2.4.2.3 Truncating the ambiguity function

The ambiguity function presents significant values only in a small subset of cells around the
target location while being negligible elsewhere. Therefore, in order to avoid unnecessary
computations, Salmond et al. [SBO1] have proposed to keep only a subset of cells Vy,
where the ambiguity function remains significant. For a state x; located in cell (ug, vy),
the set Vy, may be defined as

Vi, = {(u,v) | Jug —u| <, and |vg —v| < dp, }- (2.26)

From this definition, the ambiguity function will be calculated over Nj, =~ x Ns,, cells —
where N5, = 205, + 1 and N5h9 = 205, + 1 — rather than N, cells. In Figure 2.4, an
illustration of the subset V, is proposed. A problem arising from the direct calculation
of the likelihood (2.23) is the prohibitive computational cost induced by the large number
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v=1 Uk v= N,

Ug X,

u = N,

-« >
o, =2

Figure 2.4 — An example of the subset Vy, (in yellow), for a target located in cell (uy, vy),
with 0, = 2 and d, = 2.

of cells N, included in the measurement z,. Indeed, from a theoretical point of view, the
scalar product quantities hT'"'h;, and hfT "'z, in Eq. (2.23) must be evaluated over
the N, cells, i.e.

Ne Ne
h/ T 'h;, = Z conj(hL)hL and hiT 1z, = Zconj(hfk)éfg, (2.27)
I=1 =1

where the samples ﬁf,g and z! are respectively the components of vectors T'"'hy and I'"z,
and conj(.) is the complex conjugate operator. Fortunately, by truncating the ambiguity
function, the previous quantities are simply evaluated over the small subset Vx, , i.e.

hi T 'h, = Z conj(ht )AL and hi'T 1z, = Z conj(ht)2t, (2.28)

SV SV

Note that here index [ refers to the index (u, v) (as explained in paragraph 2.3.1 and Figure
2.3 for details). Thus, for instance, with J5, = 2 and d,, = 2, the previous quantities
are computed over only 25 cells, which is much smaller than the N, cells. Lastly, in
the following, h; will refer indifferently to the full ambiguity function or the truncated
ambiguity function as it does not change the presented algorithms.

2.5 Instrumental density

As outlined in paragraph 1.2.4.5, the instrumental density may impact dramatically the
performance of the particle filter. This is especially true in the TBD application for the
birth density which samples uniformly the position in the very large space D (see Figure
2.2).
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A first contribution of this work consists in studying the instrumental densities for
all the components of the state vector (sg,xy). For each of them, we derive the optimal
instrumental density' p(x; | X,_1,%;) and then propose some approximations that still
take into account the measurement z; for sampling the particle state (si,x%). Finally,
in section 2.7, the influence of the different instrumental densities is studied via Monte
Carlo simulations.

Let us first consider rapidly the instrumental density for the continuing case. The con-
tinuing particles are propagated via Eq. (2.6), which corresponds to a very classic model.
As we stressed in paragraph 1.2.4.5, taking the prior as instrumental density in such a
situation is enough to ensure good performance; using a more "sophisticated" instrumen-
tal density will induce an additional computational cost for only a small gain [AMGCO02].
Therefore, in the following, we choose as instrumental density for the continuing case the

prior, i.e. q.(Xk | Xp—1,2Zk) = Pe (Xk | Xp—1)-

2.5.1 Instrumental density for the initialization of the position
2.5.1.1 The optimal instrumental density

The initialization of the particle position is the key point of the Track-Before-Detect
particle filter. Indeed, the likelihood p(z | x;) in Eq. (2.23) highly depends on the
vector hy and, consequently, on the position (r,0x). Thus, simply using the prior, i.e.
the uniform distribution over the set D, as instrumental density will in one hand require
to use a lot of particles to properly sample the set D and, in the other hand, lead to a
large variance of the importance weights (i.e. small N.g) since the particles will be set
indifferently in the area whatever the value of the likelihood (high or low). Therefore,
another instrumental density should be proposed in order to "carefully" initialize the
particle positions.

To do so, we propose to start from the (intractable) optimal instrumental density and
then resort to some approximations. From paragraph 1.2.4.5 the optimal instrumental
density is given by p (Xx | Xx_1,2x). In the birth case considered here, this density does
not depend on the previous state x,_;. Moreover, in the sequel, we will consider the
target position in polar coordinates (i.e. (rg,0;)). Indeed, since the radar ambiguity
function is defined with these coordinates (see Eq. (1.49)) it simplifies the definition of
the instrumental density for initialization of the position. Thus, the instrumental density
for the position will be denoted as p; (7x, O | zx) while the prior density p, (zx, yx) will be
denoted as py (7%, 0x). In a similar way, in this section the likelihood will be defined with
the polar coordinates rather than with the Cartesian coordinates, and thus p (zy | x;) will
be denoted by p (zj | 7k, 0). Note that these two likelihoods represent the same quantity,
even if the velocity components are not, considered in the expression p (zy | 7k, 0x). Indeed,
recall that the measurement equation (2.8) does not depend on the velocity components
(Zk, Ur) (see section 2.3.1).

Using Bayes rule or Eq. (1.101), the optimal instrumental density in polar coordinates

'Recall from paragraph 1.2.4.5 that this density is often intractable and cannot be used in practice.
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can be simply rewritten as follows:

Py (T, Ok) D (2 | 7hy O)

oy (Tr, Ok | 21) = , 2.29
b (7x, Ok | 21) o (20) (2.29)
where,
Tmax Omax
P (zr) / / b (Tks On) P (Zk | T, Ok) dridOy,. (2.30)

This last term is, according to us, intractable and therefore so is the optimal instrumental
density. However, here, the independence with x;_; leads to the same optimal instru-
mental density for all the birth particles. It might then be still interesting to devote
some computational resources in order to approximate it. Thus, we propose here to use
a grid-based approach [AMGCO02|.

To this purpose, let us first discretize the space for the position D. We propose to
discretize each cell [ as follows:

T(l7p)zrl+pﬁ p:_(sru_5r+17"'707"'757“_1757’7

2.31
000 = 6, + gy, q =g, 89+ 1,0, 6 — 1,6, (2.31)

thus oversampling, in polar coordinates, the cell [, where §, and dy are some positive
integers. A scheme of the discretization for the cell [ is proposed in Figure 2.5.

»-
(i

axis

As, " (rtP), gt
(.0  2@a+D)
© LY
A, {:.[Lp:[],l_ﬂ[!_q:l]}
206, +1
(¢ }'

< <
(,.[I-—P)_ Hll.—a) ) (rthe=n), gU-u=“])

Tk
axis

Figure 2.5 — Scheme of the discretization for the cell [.

(r(l’p), 9(17‘1)) represents the points on the discrete grid, where the components of (I, p, q)
take values respectively in {1,---  N.}, {—6,, - ,+0,} and {—0dg,- -+, +0p}. Thus, from
the definition of the proposed grid, each cell [ is approximated with N5, = 20, + 1 samples
along rj axis and with N5, = 20y + 1 along 0, axis, so that the grid used to discretize the
space D is composed of N, x N5, x Ns, points.

Then, let us approximate the density pj (7x, 0x) over the proposed grid. Since the
prior birth density for position is uniform, each point in the grid has the weight m,
leading to the following approximation:

po (Ti, Ok) ~ NN5 N; Z Z Z Oyt ) (ks Ok) (2.32)
6

=1 p=—6, q=—0¢
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Finally, using Eq. (2.29), the approximation of the instrumental density pj, (7x, 0% | Zx) is

obtained by
oy

N, So
po (Tk, O | Zk) & Z Z Z Q&Z’q)fs(r(z,p),g(z,q)) (Tk, Or) (2.33)

=1 p=—6r q=—09

where
C}g{},q) o p (2 | rp), Q(UJ)) _ (2.34)

These weights cannot be computed directly since the likelihood p (z4 | r#),§¢:9) cannot
be calculated directly as explained in paragraph 2.4.2. Indeed, a marginalization must be
performed over the parameter pj, in the likelihood equation (2.23), leading to

p(z | T(l’p),ﬁ(l"”) = /pb (p)p (zx | p, r(l’p),ﬁ(l’q)) dp. (2.35)

Again the integral in Eq. (2.35) is intractable. However, it can be simply approximated
by a numerical integration, i.e.

1

N,—1
p (o [ r7.007) ~ - > p (o | o0, 007), (2:36)

P s=0

with IV, a positive integer and p® = pin, + Nip (Pmaz — Pmin), s=0,--+ N, — 1.

Although this method allows to approximate the instrumental density, in practice, it
is unrealistic to use such a density since it requires to calculate N, x N5 x N5, x N,
likelihoods p (zk | p%, rP)] 9(17‘1)) where N, may be very large. However, this approach can
be kept in mind to initialize the particles only in the interesting areas of the state space
and, for instance in the cells exceeding a given threshold v [RAGO04|. This approach is
developed in the next paragraph.

2.5.1.2 Approximating the instrumental density as a mixture

Let us define by
Diry = {(r1, 0k) | (11, 0x) € cell L and [2;]* > v}, (2.37)

the set of positions (ry, 0x) where the measurement |2.|* exceeds a given threshold v, and
Dy, its complement (i.e. D = Dy, (D, and Dy, UD;,, = ). Let us also define
Pp, . the probability that the position (ry,0;) belongs to the set Dy, (i.e. Pp, =
p((rk, 0k) € Diy) )y iy = {1 ] |2L]* > 7} the set of indexes where the signal exceeds the
threshold v and Nz, = = card (Zy ). Then the optimal instrumental density in Eq. (2.29)
can be rewritten as a mixture with two components:

Py (Tk: Ok | Zk) = Pp,_ oo (Tk, Ok | 2, (71, 0k) € Diy) +

(1 - P’Dkﬁ) Py (rka ek | Z, (Tka ek) € Dg,'y) P
(2.38)
where each density py (ri, Ok | 2k, (Tx, 0) € Dy) and py (rk, Oy | zg, (11, 01) € D,‘;,,Y) can be
approximated exactly in the same manner as py, (ry, 0y | zx) with the only difference that
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the former is calculated over the cells in 7, , while the latter is evaluated over the remain-
ing cells. This reorganization of the optimal instrumental density as a mixture can be
exploited to avoid calculating likelihoods p (zk | r(p), 9(“1)) in the non-interesting areas
of the measurement z;. To this purpose, we propose to remove the dependence on z; for
the remaining cells, leading to the following instrumental density:

@ (Tk; Or | Ze) = Pp,_po (Tk, Ok | 21, (71, 0k) € Diy) +

(1 — Ppkw) Do (Tk, 0 ‘ (Tk, Qk) € 'D]CC7,Y) ,
(2.39)
where py, (rk, O | (1, 0k) € Dfm) is simply the uniform distribution over the set Dy . As
the proposed instrumental density differs now from the prior, the particle weight requires
the calculation of the weighting term, provided by

Nz, .
P (T, Ok) - NcNérNé(gPDkwpb(Tk79k‘zk7(rk79k)epk,-y)’ if (k. O) € Dy (2.40)
— Y - ~ ‘ .
@ (Tx, Or|21) <1 - ]IV’”) TP if (rx,0r) € D,

Note that the proposed instrumental density g, (7%, 0k | zx) can be further simplified
by also removing the dependence on z; in the first mixture component. This approach
leads to the following instrumental density

¢! (rg, O | z) = Pp, 1y (11, Ok | (7k; Ok) € Diy) +
(1 - PDM) Dy (Tk, Ok | (i, Or) € le:,'y) )

(2.41)
with the corresponding weighting term
Nz, .
-, if (ry,0k) € Dy,
po (ri,Ok) | NePru, (700 € P (2.42)
U ry, Oplz) Nz : c .
Gl Oude) | (12 M) e it (a6 € D,

This expression leads to the heuristic solution proposed by Rutten et al. [RRGO5| (except
that they take a fix number of highest cells rather than the cells exceeding the threshold)
or in [RAGO4| where only the cells that exceed a given threshold are considered.

Note that in the solution proposed by Rutten et al. in [RRGO5], or if Pp,  is set
to 1 in the instrumental density in Eq. (2.38), only a fix number of cells, or only the
cells exceeding the threshold, will be considered to initialize the position of the particles.
However, we have seen in paragraph 1.2.4.2 that the support of the prior pj (y, ;) must
be included in the support of the instrumental density p (rg, 0 | zx). Therefore, stricto
sensu, from a theoretical point of view, the above instrumental densities should not be
used to sample the particle positions. Nevertheless, in practice, using such densities has
no noticeable consequence. Indeed, when a particle filter is implemented, the number of
particles N, is always finite. Therefore, even if the support of the prior is included in the
support of the instrumental density, it may be possible that some cells will not contain
any particle as for the densities that do not respect the condition on the support. Such an
instrumental density with Pp, =1 will be used in the section "Simulation and Results"
(i-e. section 2.7) with Pp, = 1.
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2.5.1.3 Calculation of the mixture probability and choice of the threshold

In the literature, the detection probability Pp,  in the mixture (2.41) is often chosen
to be equal to one, leading in practice to a mixture with only one component so that
the particle positions are initialized only in the cells exceeding v [RAG04|. However, the
probability Pp, _ is strictly lower than 1 for any v > 0. Thus, it might be interesting to
evaluate its actual value in order to be as close as possible to the optimal instrumental
density defined in Eq. (2.38).

First notice that the event {(ry,6x) € D} can be decomposed as

Ne

{0 00) € D} = | {40, 00) € el Y {1412 > 7} (2.43)

=1

where all the events in the decomposition are disjoint, i.e.

{{(:pk,yk) e cell 1} {|24* > 7}} N {{(xk,yk) € cell m} () {|="” > 7}} = o

for [ # m, since the target cannot be located in the cells [ and m simultaneously. Moreover,
by using a grid-based approach as in paragraph 2.5.1.1, the event {(r,0y) € cell [} can
be approximated as follows:

Or dp
{re. ) €cell = | | {(ra.00) = (v, 000}, (2.44)

p=—0r g=—0¢

where all the events {(rg, 6;) = (r"?),6(:9)} do not intersect and present the same prob-
ability ~———— (uniform prior). Then, it comes
ciVor Vs

P, , = v N N5 N Z Z Z (I2kf* >y [ 707, 000) (2.45)

=1 p=—0r g=—09

and if h' (x;) does not depend on [ (i.e, the calculation of the ambiguity function does
not depend on the cell index ), it simplifies as follows:

1
Pos = N, > D p(al >y [ 00). (2.46)

The probability p (‘22‘2 > | rp), 9(17‘1)) can be obtained as in Eq. (2.36), by marginal-
ization over the amplitude parameter, 7.e.

| Mol

p (17 >y 7P 000) = = > " p (|5 F >y | p%r P, 000). (2.47)
[

[e=]

The probability p (|2L|? > v | p*, 7P §¢9) can be easily computed since conditionally to
p k Y
('r(l’p),e( 7‘1) and p°,

a non-central chi-square distribution with two degrees



60 chapter 2

)\glpc,qﬁ) _ (e)Imt (L 07)1?

of freedom and non centrality parameter = ———5——. Then, denoting by

FX_21 < | )\Sf’c’q’s)> the inverse cumulative distribution function of this non central chi-square

distribution, the probability p (|z{|* >~ | r!?),0(:9) can be expressed as

(%‘ Az, (2.48)

Finally,

1 -
PDk,«, ~1— 7N5TN50NP Z Z Z FX21 (%

p=—6r g=—09 5=0

A (2.49)

Concerning the choice of the threshold v, the classic detection threshold defined in Eq.
(1.51) (i.e. v = —20?%log Py,) can be used in order to design the instrumental density.
Indeed, using such a threshold will lead to properly sample approximatively P, /N, cells
(i-e. cellsin Nz, ) while ensuring, if a target appears, that its position will be in Dy, , with
probability Pp, . Obviously, the lower the Py,, the smaller the set Dy, and accordingly
the computational time to calculate the instrumental density; but in return, the smaller
the probability Pp, . will be. Furthermore, note that the probability Pp, is highly
dependent on the target SNR prior. Indeed, for instance if a prior interval [ppin, Pmaz] 1S
chosen such that the corresponding SNR,,,;,, and SNR,,,., values are small, the probability
in Eq. (2.48) will be small, and, as a consequence, so will be the probability Pp, _; on the
contrary, if the prior interval corresponds to high values of SNR,,;, and SNR,,., values
are high, the probability Pp, =~ will be much greater. Therefore, in Figure 2.6, we show
the evolution of the probability

Or dg
p(lal>v1p)=1=> Y p(laP >~ p.rt?, 002 (2.50)

p=—0r qg=—0¢

according to the SNR = 10log;, (%) for different Py, rather than the evolution of the

probability PDm that depends on the choice of the prior interval [pmin, Pmaz]. We can
remark that for small SNR the probability p (|zf€|2 > | p) may become pretty small for
small Py,. Therefore it is then preferable to use a large enough Py, in order to ensure
that some particles are initialized in Dj _.

2.5.2 Instrumental density for the amplitude parameter
2.5.2.1 The optimal instrumental density

In the literature, the parameter p, is usually sampled according to the prior density
[RRGO5], i.e.:

e uniformly sampled in [pin, Pmaz] for the newborn particles;

e propagated according to equation (2.25) for continuing particles.
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Figure 2.6 — Probability p (|z;|> > 7 | p) provided in Eq. (2.50) according to the target
SNR for different probabilities of false alarm. This probability takes into account the
target position inside the resolution cell, and the corresponding losses. Therefore, this
probability is lower than the classic probability of detection Pp in radar, where the target
is assumed to be at the center of the resolution cell (i.e. no loss).

However, in practice, it may be inefficient because the interval [pin, Pmez] may be large
and the noise variance ai in Eq. (2.25) is often chosen to be small. Another instrumental
density may then be considered to initialize and/or propagate the amplitude parameter.

Concerning the birth amplitude parameter, the optimal instrumental density is given
by ps» (px | zx) and can be approximated using a grid-based approach as for the position
parameters (rg,0;). However, the weight calculation will require a marginalization over
the variables r;, and 6, leading, as in Eq. (2.35), to calculate N, x Nj x Nj, x N, likelihoods.
This cannot be used in practice. We rather propose to factorize the instrumental density
for position and amplitude as follows

@ (T, O, pi | 21) = ab (71, O | 1) @b (i | ks Ok, Z1) (2.51)

where the parameter p; is now sampled according to the position (7, 0;). Using the
same reasoning as in paragraph 2.5.1.1, the optimal instrumental density for amplitude
parameter is then obtained by

@ (P | 7, Ok, 21) = po (pr: | T, Ok, 216) < o (p1) P (2 | prey 7 Ok) (2.52)

and can be approximated by

Np—1

Db (pk | Tk, 0k7zk> ~ Z Clipéps (pk)7 (253)
s=0

where
Chp XD (zi | p°, 71, O0k) (2.54)
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N, is a positive integer and p® = ppip + Nip (Pmaz — Pmin), s = 0,---, N, — 1. Note
that N, can be different from the one defined in Eq. (2.36) but we have kept here the
same notation for the sake of simplicity. Furthermore, if the position of the particles are
sampled with the instrumental density defined in Eq. (2.39), then N, likelihoods for the
positions (r(lvp), 9(17‘1)) belonging to Dy, have been already calculated. Therefore, by taking
the same N, and storing the likelihoods p (zy | p*, r?), §0:9) for (r&») §09)) € Dy, no
extra calculation is needed. Of course, N, likelihood calculations would still be required
for particles belonging to Dj _ unless another instrumental density is used instead (e.g,
a prior distribution). On the other hand, the weighting term induced by the (possibly
different) instrumental density must be carefully calculated. If the amplitude parameter
is sampled from py, (px | 7%, Ok, Zx), the corresponding weighting term is then given by

Do (P | ks Ok) _ 1
@ (o | 7k Ok 2i)  Nop (pr | 7xy Ok 21)

(2.55)

2.5.2.2 An instrumental density based on an estimator of the amplitude

If the instrumental density g, (7%, by | 1) defined in Eq.(2.39) is not used, then it may be
preferable not to use the instrumental density p, (px | 7k, Ok, Zx) that requires to calculate
N, extra likelihoods per particle. Thus, we propose a different instrumental density that
exploits the measurement z; at a lower computational cost. This instrumental density is
composed of the two following densities for the birth and continuing cases:

@ (pw | Ty On 20) = N(Pk;ﬁb,aip), (2.56)
qg“ (pk ‘ pk*lurkhekhzk) - N (pk;ﬁmo-ip) 5 (257)

where p, and p. are some estimators of p; calculated from (ry, 6k, zx) for the birth case
and from (pg_1, g, Ok, 2zx) for the continuing case, and aap, aip are some variances defined
by the user. The weighting terms induced by these instrumental densities are given by

L \2
V210, , exp { (pr—po)” S;gp b) }
P

Py (pr)
es = bl (2.58)
qy t (Pk | Tk, eka Zk) Pmaz — Pmin
A \2 2
t Pe (pi | pr—1) _ @exp (P 2Pc) (o /?21%1) _ (2.59)
a (p | Pr—1,Tk> Ok, 1) o 207, 20,

Concerning the estimators, we choose a MAP approach leading to calculate p, and p,.

as
py = argmax (mgx o (pr) P (2 | Tk,ek,/)k,@k)) ; (2.60)
Pk k
peo = argmax (mgx Pe (Pr | pe—1) p (2 | Tk,ek,pk,sok)) : (2.61)
Pk k

Note that we choose to maximize first the likelihood p (zy | 7k, Ok, pr, pr) over the phase
or (see Eq. (2.19)) since the corresponding expressions (for birth and continuing cases)
allow to obtain a closed-form for the estimators, while using the likelihood expression
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defined in Eq. (2.23) does not (because of the Bessel function). The estimator p; is then
obtained by

( |hfT 'z,| b/ Tz,

WAT-'h, if prin < THr 1w < Pmazs

. hiT 'z
k
hHl"*lzk}

mazx f “7 > mazx

L p Y 1 th]__‘_lhk. — p ?
and p. by Y e
e+ 200 b Tz (2:63)

P 14 2020/ Thy,

Note that quantities |hf/I''z;| and h{/T'"'h; can be stored for each particle since they
are required to compute the particle weight via the likelihood p (z | x) (see Eq. (2.23)).

2.5.3 Instrumental density for the velocity

As seen in paragraph 2.3, the measurement equation (2.8) does not directly depend on
the velocity component (i, 7). Therefore, when the particle velocity components are
initialized at time step k, the measurement z, does not provide any information about
them and the prior must be used. This may be problematic in some cases: for instance,
if a target appears in the radar window with a high SNR and a particle is initialized very
close to the actual target position, the corresponding weight will be very high. Then the
resampling step will tend to select this particle more often than others, and the children
particles will share the same velocity components. However, this velocity sampled from
the prior may tend to propagate the particles in a wrong direction. In order to avoid
this last drawback, we propose a very simple strategy: instead of sampling the velocity
components at step k when the particle is initialized (birth case), we propose to sample it
at the next step k + 1. Then, if many particles have been resampled from the same birth
particle at step k, their velocity components at step k + 1 will be different and therefore
they will better explore the state space. Although there is no theoretical justification for
such a choice, the state model can be changed in order to allow the velocity component
of birth particles at step k to be initialized at step k + 1. Thus, we propose to add to the
state model a variable

O, if S = 0, (264)

that counts the number of iterations when the particle is alive, and we define the transition
density as follows:

{ ti1+1, ifs, =1,
ty =

D (ks Sky Xpe | tho1, Sk—1, Xk—1) = P (Sk | Sk—1) P (tk | tr—1, 5k) D (Xk | thy Xp—1) - (2.65)

First note that p (¢ | tx_1, sx) does not need to be sampled since the variable ¢; condi-
tionally to variable t,_; and s; is completely determined. Consequently, the transition of
the state x; now depends on the variable ¢, as follows

e {;, = 0 corresponds to the death case (i.e. the state is meaningless),
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e ¢, = 1 corresponds to the birth case with the density pj, (xz) (except for the velocity
components),

e the case t;, = 2 corresponds to the particles born at previous step,

e {; > 2 corresponds to the continuing case with the density p. (xx | Xx_1)-

Then it is now possible to initialize the velocity components at step ¢, = 2. This can be
done, for instance, by choosing as prior density

p (X |t = 2,Xx-1) = pe (P | pr—1) Po (k5 Yie) X . .
N <S€k; 1 + Ty, QS%> N <yk; Yr—1+ TsYr, %7%) :
(2.66)
Note that the position (zx,yx) is almost sampled according to the state equation (2.6)
except that the variances and the covariances for the velocity components in the matrix Q
are set to zero. Therefore, in order to avoid unnecessary complications, the same notation
Pe (Xi | Xi_1) is kept for both state models since they only differ by the initialization of
the velocity components (i.e. when t; = 2). Moreover, if the corresponding prior is taken
to propagate the position and the velocity of the particles, no additional weighting term
is induced in both cases.

2.5.4 Instrumental density for the presence variable

In the literature, the instrumental density is usually factorized in the same manner as the
prior density defined in Eq. (2.2):

Ge (Xg|Xp—1,21), if sp=1and s;_1 =1,
(413 (Xk‘Zk), if S — 1 and Sk—1 = 0,
(2.67)
leading to sample the variable s, from the prior transition matrix and, as a consequence,
independently from the particle state x; and the measurement z;. In this case, some
particles may be "killed" whereas they were located in informative areas of the state space,
while some others may be drawn in non informative areas. To avoid these drawbacks,
we propose to factorize the proposal density, taking into account the state x; and the
measurement z;, as follows:

q (Sk,Xk\Skthkfl,Zk) IP(Sk\Skfl) X {

qc (Xk‘|Xk‘—17 Zk‘) 9 if Sk‘—l - 1’ (268)

q <3k7Xk‘3k,17Xk,1, Zk) = p(sk|sk*17xk7 Zk) X { Qv (Xk;|zk‘) , 1f Sk—1 — 05

where p(sk|sk_1, Xk, Zx) is the posterior transition probability, proportional to:

p(sk = 1|sk_1, Xk, 21) X D (Zk|Xk) D (Sk = 1|sk_1), (2.69)
p(sk = 0|sk_1,Xk,2k) o< p(sp=0|sp_1). '

For a particle 4, the posterior transition probabilities are then given by:

Pyp(z|x},)
Pyp (zi|x}) +1— P’
. . . (1 — Pd)p (Zk|X2) . .
sp=1ls;, 1 =1,%X,2) = . ,if sy =1. 2.71
p( k | k—1 k k) (1 _Pd>p(zk|X2)+Pd k—1 ( )

p (52 = 1|Si:71 = OaX;m Zk) if 52,1 =0, (270)
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Note that in Eq. (2.67) the birth and the target dynamical densities depend on variables
sy and sg_; while they only depend on s;_; in Eq. (2.68). With a slight abuse of notation,
we have kept the same notation for the instrumental density in both cases since in practice
it does not change the way to sample the particles.

It resorts from this proposed strategy that the state x; is sampled first, i.e. before
drawing the variable s,. Then, if x; is drawn in an area of the state space presenting a
high likelihood, the corresponding posterior probability defined in Eq. (2.70) or (2.71)
will be high, leading to sample the variable s; in a more efficient manner than with the
prior. As the prior is not used here as instrumental density, different weighting terms are
induced, leading to the following expression of the particle weights:

p(st=0[sx_1 . ;
z(,k 7 z) 9 lf 82 = O’
p(8k70|8k_1,xk7zk) ( )
i i Py Po (X, i if st = L=
W), o W X . - . : 7L | X if s =1 and s =0
k k—1 p(si=1]si =0} ,21) Qb(x}c‘zk)p( k | k) ) k k—1 )
1-P, pe(xilxj_1) i e i i
~ . . X k- 7. | x if s =1 and s =1.
P15 =Lxan) - qo(xpixh k) (2 [ %) K k1

(2.72)
Note that we did not take into account the weighting term for state xj when s = 0 since
it is meaningless. Furthermore, contrary to the prior proposal that needs to calculate
the likelihood p (zg|xx) only for the particles with s, = 1, this new strategy requires the
likelihood computation for each particle in order to draw its state parameter s, according
to Eq. (2.70) and (2.71). Therefore an additional cost is induced which occurs mainly
when most of the particles share the state s, = 0. On the bright side, it should be stressed
that the proposed strategy computes the same number of likelihoods at each iteration,
leading to constant computational time per iteration, while for the classic approach this
cost depends on the number of particles in state s, = 1 and may thus highly vary.
Finally, a single cycle of the proposed particle filter, that we call the Posterior TBD
Particle Filter, is described in Algorithm 2.2.

2.6 Marginalized TBD particle filter

The Classic TBD particle filter samples the whole augmented state (sg,xy) whereas the
only particles that effectively participate to the estimation of x; are particles with state
si = 1. Particles with state s = 0 just allow to calculate the probability of presence pe,k.
However, we are mainly interested by the density p (xx | sy = 1,21.) and the probability
P, j, rather than the whole posterior p (sy, Xy | z1.4). Thus, following that idea, Rutten et
al. [RGMO04]| developed an approach where only the quantities of interest are calculated,
leading to a more efficient use of the particles.
To this purpose, the density p (s, Xy | z1.) is first rewritten as follows:

p(Sk,Xk | Zl:k) = p(Sk | Zl:k)p<xk | 8k7Z1:k)- (2-73)

By definition of sy,
p(sk=1]|2z1k) +p(sk =0]2z11) = 1. (2.74)

Therefore, only one of the two probabilities must be computed and p (sp = 1 | z1x) will be
considered in the sequel (i.e. the probability of existence P, ;). Moreover, in Eq. (2.73),
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Algorithm 2.2 Posterior TBD Particle Filter

Require: Particle cloud {(s}_;,x}_,) ,w,ifl}?fl at step k — 1.
1: for i =1 to N, do

2. if si_, =1 then

3 Draw xi ~ g, (Xk | xi zk)

4 Draw si according to Eq. (2.71)

5:  else

6: Draw x ~ g (xx | 1)

7 Draw si according to Eq. (2.70)

8: end if

9:  Update particle weight w according to Eq. (2.72)
10: end for

i

11: Normalize weights: w] + —x*

—. i=1,---,N,
12: Compute Neg according to ]ﬁ]& E1.98).

13: if Neg < SN, then

14:  Resample NNV, particles

15:  Reset weights: wi < NL,, i=1,---,N,

16: end if

17: return {(si,x%),wi}

the density p (x | sx = 1,2z1.%) can simply be decomposed as:

p(xp|sk=121,) = p(sk1=1|sc=1,214)p(Xx | 5 =1, 8,1 = 1,21.4)+

. 4

~
posterior continuing density

P(sk—1 =05, =1214)p (X | sk =1, 561 = 0,2Z1.4),

J

posterior birth density
(2.75)

which is a mixture with two components where:

e the first component p (xy | s = 1, sx_1 = 1,21.), that we call the posterior contin-
wing density, considers the case where the target is present at step £ — 1. In order
to alleviate the notation, it will be denoted as p. (xx | z1.x) in the sequel.

e the second component p (x| sp = 1,851 = 0,21), that we call the posterior birth
density, considers the case where the target shows up in the radar surveillance area
between steps k — 1 and k. It will be denoted as p, (X | z1.x) in the following.

Each of these two components can be computed using the classic recursion of the Bayesian

filter. For the first component, it comes:

P (z | Xk) pe (Xi | Z1:k-1)
Pe (Zk | Z1:1-1)

where p. (Xi, | z1._1) is the classic predicted density obtained via the Chapman-Kolmogorov
equation (1.59):

Pe (Xk | 21:6) = ; (2.76)

Pe (Xp | Zrp—1) = /p(xkl | sp =1,8,-1 = 1,21:6-1) Pe (X | Xp—1) dXp—1. (2.77)
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The density at previous step p (xx_1 | sk = 1, Sx_1 = 1,21.4_1) is still conditioned by s =
1, but, in practice, it is easy to show, using the definition of the prior model, that the
dependence with s, = 1 can be removed. Indeed, from a simple Bayes rule, it comes

p(Xp—1|sp=1,5-1=1,214-1) =
P (Xp—1 | sp—1=1L216—1)p (s =1 | sp—1 = L, Xp—1,2Z1.6—1)  (2.78)
p(sg=1]sp—1=1,214-1)

Since the process (si),cy is Markovian, the probabilities
p(sk=1]|sk1=1,%Xk-1,21.4-1) and p(sx = 1| sx_1 = 1,21.4_1) do not depend on x;_;
and z1.,_1. Therefore, they simplify in the last equation and it only remains the density
p(Xk_1 | Sk—1 = 1,21.,_1) where the dependency with s = 1 has been removed. Finally,
the Chapman-Kolmogorov equation (2.77) becomes

pe (Xk | Z1k1) = /p(Xk—1 | sk-1=1,Z18-1) Pe (Xi | Xp—1) dXp1, (2.79)

which only depends on the density at previous step and the transition probability
Pe (Xk | Xg—1) while the normalization term p. (zx | z1.,—1) in Eq. (2.76) is obtained by

pe (2 | 21 1) = / p (2 | %) pe (%6 | Z1e1) . (2.80)

In the same manner, the second component py, (X | z1.5) can be expressed as follows

p<Zk \ Xk>pb (Xk | Z1;k71)
Do (Zk \ Z1;k71)

po (Xi; | Z1:k) = (2.81)

where
P (Xp, | Zrg—1) = /pb (Xp—1 | s = 1 sp1 = 1, 20—1) oy (X | Xp—1) dXpoq. (2.82)
Here, since the density py, (X) | xx_1) does not depend on x;_1, it directly comes that

Py (Xk | Z1:p-1) = po (%) - (2.83)

Finally the normalization term py, (zy | z1.x—1) is equal to

polo | mas) = [ o %0 () i (2.84)

In practice, each density (continuing or birth) can be approximated by a particle filter.

Let us assume that at step kK — 1 a set of N, . particles {w};_l, X2_1}£\ZC approximates the
posterior density p (xx | sy = 1,2;). By using Eq. (2.76), the posterior continuing density
can be approximated by a set of particles {X§;7C,w,i,c}j\fic sampled from an instrumental

density q. (xx | Xx_1,2r) where the unnormalized weights are equal to

~i  _ q De (X;'c,c ‘ X?c—l)

ke — W1 i i
4c (Xk,c | X} 152k

7 (zi | X},..) - (2.85)
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Concerning the birth posterior density, since alive particles x; ;, do not provide any in-
formation on the newborn particles, it can be directly estimated by a set of N,; particles

{x};7b,w,i7b}£v:”ib sampled from ¢, (X, | zx) where the unnormalized weights are calculated

from the following equation

i, = 2 ey, (2.56)
v (Xk,b | Zk)

Note that in Eq. (2.85) and in Eq. (2.86) we use the sign = rather than o, indeed, the
unnormalized weights are required to calculate other quantities that will be detailed in
the sequel. Obviously the normalized weights w}ﬁ and w,ivb are simply obtained through
a normalization.

In order to approximate the posterior mixture density defined in Eq. (2.75), both prob-
abilities p (sx—1 = 1| sx = 1,214) and p(sg_1 =0 | s = 1,2z1,) must also be calculated.
Again, using Bayes rule, it is easy to show that

p(skm1 =118, =1,214) o< (1 —Py) P.y_1pc(zg | Z1:6-1) , (2.87)
P(se—1 =0 sp=1,21.6) o< Py(1— Pej1)p (21 | Z1:p—1) - '

The calculation of the terms p, (zg | Z1.x—1) and p. (zg | Z1.x—1) is intractable. However
they can be approximated via a Monte Carlo integration [VGPO05| leading to the following
unnormalized probabilities,

~ N, ..
) 1= Py By 25
. N (2.88)
A~ Pb]-_Pe,k;—l - ~i
Pu(sk-1=0) = ( N ) Zwk,ba
p:b i=1

where ]567;?,1 is the approximated probability of existence at step & — 1 while C}, is a
normalization constant given by

Com 3y, e O 1001 o)
=1 k_lqc (Xi:,c | X;'c—la Zk)

Note that when the instrumental density is the prior, the constant C} does not need
to be calculated since it is equal to 1. Finally the two considered probabilities can be
approximated by

. ﬁu (Skfl = 1)
Sp_1 =118, = 1,Z . = = ~ )
p( k=1 | k ! k) Du (3]@71 = 1) + Pu (Skfl = 0) (290)

P(ske1=0]sp=1,214) =1—p (5521 =05, =1,21:1) -

The probability of presence P, at step k can be decomposed as follows [RGMO0A4]:

(1= Py) Pep—1pe (2 | 21:6—1) + Po(1 — Pej—1)pp (25 | Z1:5—1)
p(Zk | Zl:k—l)

Pek:

)

, (2.91)
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where

(2 | Z1kh-1) X (1 — Py) Pej—1pc (21 | Z1:0—1) + Po(1 — Pej—1)py (21 | Z1:5-1)

2.92
+P. o aPi+ (1 —Popq) (1 - B5). (292)

Here the used of o< means that p (zj | z1.x—1) is provided up to the constant p (zj | s, = 0)
(see paragraph 2.4.2). Finally, the probability of presence can be approximated by
[RGMO4]:

p _ ﬁu (Sk—l - 1) +Z§u (Sk—l = O)
e,k —

= i : i (2.93)
Du(Sk—1=1) 4+ Py ($k-1=0)+ P 1Pi+ (1 — Poj1) (1 — B)

Lastly, a single cycle of this particle filter, denoted by Marginalized TBD Particle
Filter, is described in Algorithm 2.3. Note that, as the strategy proposed in paragraph
2.5.4, this algorithm calculates always the same number of likelihoods p (z; | x%) and
initializes always the same number of particle IV, ;. Therefore, its computational cost is
constant at each iteration.

2.7 Simulations and results

In this section, we propose to illustrate the performance of the different TBD algorithms
proposed in this chapter via Monte Carlo simulation. As we have seen, the TBD particle
filters depend on many parameters. For the sake of clarity, we will focus here on the
key points of the TBD particle filters and in particular on the different instrumental
densities proposed in section 2.5. For each of them, we will study the impact on the filter
performance and the eventual gain compared to the instrumental densities proposed in
the literature. Moreover, as computational time may sensibly vary between the different
instrumental densities for a given number of particles, we will try to provide as much
as possible as a fairly evaluation of the possible gain in terms of performance with the
eventual additional computational time required to reach it.

2.7.1 Scenarios

For the simulation scenarios, we consider two scenarios with a number of iterations N;; =
100. The first scenario considers that the target is absent during all the experiment:
this will allow to evaluate the probability that the filter declares a detection whereas no
target is present (i.e. false alarm). The second scenario considers a target appearing at
step k, = 15 and disappearing at step k; = 75 in order to measure both the ability of the
different filters to truly detect the target and the accuracy of the corresponding estimator.
For each Monte Carlo run, the initialization of the target state for the position and the
velocity is done according to the birth density py (.) defined in section 2.2 (i.e. uniform
prior over D = [Fyins "maz) X [Omin, Omaz] for the position and over [V, Umaz] X [0, 27] for
the velocity), with the following parameters:

® Tmin = 30 km, T"maz = 36 km, emzn = 35° and Qmm = 550,

1 1

® Ui, — 100 m.s™" and v,,4, = 300 m.s™".
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Algorithm 2.3 Marginalized TBD Particle Filter

Require: Particle cloud {(s}_;,x}_,) ,wlifl}j\ff and probability P, ;_; at step k — 1.

10:
11:

12:

13:
14:

15:

16:

17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:

28:

1
2
3:
4

Reset C} < 0,
fori=1to N,. do
Draw X, . ~ ¢c (X& | X}_1, 21) A
Calculate the unnormalized weights @}, . with Eq. (2.85)
. o(xt|xi )
U
k k b1 (Xt o)
end for
fori=1to N,; do
Draw x;,, ~ qp (X1, | 2x) '
Calculate the unnormalized weights 1}, with Eq. (2.86)

end for

Calculate the unnormalized probabilities p, (sx_1 = 1) and p, (sx—1 = 0) with Eq.
(2.88)

Calculate the probabilities p(sg—1 =11 s =1,21.4) and p(sg_1 =0 sp =1,21.4)
with Eq. (2.90)

Calculate the probability of existence P, with Eq. (2.93)

70
wk,c

Normalize weights of the continuing particles: wi . < e t=1,-++ Ny,
’ 1=1 Wge
Normalize weights of the birth particles: w} , < ZNZ}%’ t=1,---,Npp
’ 1=1 Wi
Mix the birth and continuing particles to create a set of N,. + N,; particles

[, wi} oy
fori=1to N, .+ N,; do
if : < N, . then

4 7
Xp < X, |
w}C = p(sk*1 =1 ‘ Sk = 17Z1:k> wllc,c
else
1 (i—=Np,c)
A D — — (i—Np,e)
wh, <= P (sp—1 =0 s, = 1,z1;k)wk,b
end if
end for
3 3 i\ Np,c+N,
Resample N, . particles from {x},w;} 7" "
: i 1
Reset weights: w}, + N 1= 1,---,N,

i 1 Np.c
return (x .
{ ko Nw}i:l

Note that a small radar window has been taken in order to limit the computational time.
Indeed, the number of particles required is directly proportional to the overall number of
radar cells. Between the iterations k;, + 1 and k; — 1, the target state x; (for the position
and the velocity) evolves according to Eq. (2.6) with no noise process (i.e. uniform linear
motion) and Ts = 0.3 s (the time between two consecutive measurements).

The generation of the raw radar data is done according to Eq. (2.8) with T' = Iy, (i.e.

noise samples are assumed independent with noise 202 = 1). The function h (.),defined
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in paragraph 2.3, is used with the following parameters:

e For the range axis, a chirp signal is considered with B = 1 MHz, corresponding to
a range resolution A, = 150 m and 7, = 66.7 ps.

e For the azimuth axis, an antenna array is considered, composed of N, = 70 antennas
linearly spaced by d = A\/2, corresponding to a resolution (that does not depend on
the value of \) in azimuth Ay = 1.45°. Note that the maximum of the ambiguity
function in azimuth arises normally for such an array for the direction 7/2 whereas
here the interval [0, Omaz| 1S centered around /4. Therefore, in order to set the
maximum at /4, quantities 0 and 6, are just shifted from 7/4 in Eq. (2.10).

Finally, different SNR values (following the SNR, definition provided in paragraph 2.3.2)
will be considered in the simulations.

2.7.2 Methodology for the performance evaluation

All the proposed particle filters provide information about the target presence or absence
via the probability of presence F.; but do not take any decision about it. However,
the ability of the particle filter to provide useful information to take such a decision is
interesting to evaluate. We propose here to evaluate the performance in two steps:

e First in terms of detection, i.e. measuring the ability of the filter to effectively
detect the target.

e Second in terms of estimation in order to evaluate the accuracy of the estimator
when the TBD particle filter has converged on the true target state.

2.7.2.1 Detection procedure

In order to perform the detection stage, let us call d;i the decision variable at each
iteration £ of the ¢ —th Monte Carlo run, that takes value 1 if a target is declared present
by the filter, and 0 otherwise. A simple procedure to set the variable dﬂi consists in
comparing the probability of presence P, with a given probability Pr [RAGO04], leading

to )
1, if P&k > PT,

T _ 2.94
i {O, otherwise. (2.94)

In practice, especially when the target SNR is low, the variable Pevk can present large
fluctuations leading to a situation where most of the particles may be located near the
actual target position whereas ]567,1C decreases below the threshold and as a consequence
no detection is declared (i.e. dj ; = 0).

To avoid such a situation, we propose a detection scheme that is based on an adap-
tive threshold that depends on the previous detection dj_,; ( we call this procedure the
adaptive TBD target detection):

e = b i Fer>Fr (44.). (2.95)
! 0, otherwise.
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In practice, Pr (d;‘:‘ldl ; O) is chosen relatively high (e.g. 0.9) as it corresponds to the

case where the target has not been detected yet. Choosing a high threshold ensures that
the filter has converged on a true target with a good probability. On the contrary, when
the filter has already detected a track (i.e. d 4 = 1), the probability threshold can be
taken lower (e.g. 0.2) in order to deal with the possible fluctuations of the estimated
probability of presence.

2.7.2.2 Evaluation of the detection performance

We propose first to evaluate the detection performance by averaging the probability of
presence P, j at each iteration over Nj;c runs. This allows to evaluate the behavior of
the different filters without using a particular detection scheme. Note that averaging the
detection variable d;‘g‘;d provides performance with very similar behavior as the probability
of presence. Thus, in order to avoid unnecessary redundant results, we do not present
them here.

We also propose to measure the detection performance by providing the percentage
of time tp in which the target has been detected during time step ky and kg — 1. A
first solution would be to compute the average of the variable d “ from ky to kg — 1.
However, as it was stressed at the beginning of the section, such a method does not take
into account the possible divergence between the estimate state xx and the actual state
Xy; if the variable d « = 1 whereas the estimator X, is far away from the actual state,
it does not seem reasonable to count it as a detection. Thus, we define, for the ith Monte

Carlo run, an indicator of good estimate (for k € {ky, -+, kg — 1}) by
o ]-7 )A(k:|k S kaa
hi = { 0, otherwise. (2.96)

where the target is effectively considered as a detection (i.e. e,; = 1) if the estimated
state is located in the subset Vi, defined in Eq. (2.26) with 05, = 6y, = 2 (i.e. the
estimated target state Xy, is located in a vicinity of two range azimuth cells from the
actual target state x;). Finally, tp is simply obtained by

NMC kd 1
dTad 2.97
NMC ; k;d — ki £ Z (297)

In the same manner, we define the average time of bad-detection ¢,p, i.e. when the filter
declares a detection but the estimate is not relevant, by

N, kqg—1
tp = L XM:C i it (1= exg)- (2.98)
Nue = kb

Concerning the false alarm probability of the particle filter PﬁF , it is computed by
making the average of variable dj for the scenario where the target is assumed absent,

that is to say
Z L. (2.99)

Nye
PPF

fa NMC Z

i=1 zt
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2.7.2.3 Evaluation of the estimation performance

For the evaluation of estimation performance, the RMSE (Root Mean Square Error) in
position RMSEy, ,,,s and in velocity RMSE, ,; are computed between step ky and kg — 1
from the following formulas

Nuyre [ /A 2 ~ 2
Tk — Tk) + \Yklk — Yk
RMSEk,pos = NMC Tad Z dzazdekz ( | ) 9 ( | ) s (2100)
\ Z’L 1 d k"l =1 L
R 2 R 2

RMSE NXA:IC dye <Zbk|k ~ xk) - <yk|k _ yk> (2.101)

= ey 2.101

N \Zivwllchadezzl b 2

Note that here the RMSE represents an error over a single component (e.g. zy or yy),
hence the presence of the factor 1/2 in Eq. (2.100) and (2.101) in order to make the
average over the two components. The choice of this definition is arbitrary and, of course,
other definitions are possible. The most important is to be coherent with the definition, in
particular when the RMSE is compared to any theoretical bound (e.g. radar resolution,
Cramer-Rao bound, etc.). However, in the sequel, the RMSE of the different filters
are compared relatively with each other, therefore the factor 1/2 does not impact the
conclusions that can be made from the simulation results.

2.7.3 Influence of the instrumental density

We propose in this section to measure the impact of the different instrumental densities
proposed in section 2.5 for the initialization of the particle state. The classic Track-Before-
Detect particle filter described in section 2.4 is considered with the following parameters:
N, = 1500, 5 =1, B, = P; = 0.1, g5 = 0.01, v, = 100 m.s", vypee = 300 m.s,
SNR,in = 3 dB, SNR,,0, = 13 dB and 6, = d, = 2 (for the truncation of the ambiguity
function). Then, for each component of the state vector (i.e. position, velocity, ampli-
tude, presence), we compare the performance in detection and estimation for the different
instrumental densities outlined in section 2.5, for the initialization case, while assuming
that the other parameters are initialized according to the prior density. As already stated,
the prior p. (xx | Xx_1) is chosen to sample the continuing case.

Moreover, it is also important to compare the performance of the different instrumental
densities with respect to the computational time required to reach such performance.
To this purpose, the averaged Monte Carlo run duration is calculated over the N,/ ¢
simulations for all the instrumental densities, and normalized by the fastest one. Note
that this quantity should be subject to cautious interpretation since it clearly depends
on the scenario considered. Indeed, the instrumental densities for the initialization are
principally used when the filter has not converged yet to a target and many particles must
then be initialized. On the contrary, when the filter has converged to a target, most of the
particles are in tracking stage and the initialization densities only concern a few particles.
Therefore, the duration of the MC run will partly depend on the proportion of time when
the target is present. However, it still gives a good idea of the impact of the instrumental
density on the averaged MC run duration.



74 chapter 2

2.7.3.1 Influence of the Instrumental density for the position

The position (xg, yx) is probably the most important parameter to carefully initialize and
the performance is evaluated for the following instrumental densities derived from section
2.5.1:

1. The prior case where the particle position is simply drawn from the prior; it is
labelled as "Prior".

2. A second case, where the particle position is initialized uniformly over the cells
exceeding the threshold v corresponding to a probability of false alarm of 0.1. Note
that it corresponds, as we stated in paragraph 2.5.1.3, to choose Pp, = 1 for
the instrumental density ¢/ (.) defined in Eq. (2.41). This instrumental density is
labelled as "Threshold".

3. A third case where the particle position is sampled according to ¢“ (.) with P, = 0.1
while Pp, = 0.79 has been calculated from Eq. (2.46) with §, = 2, §p = 3 and
N, = 5. This density is labelled as "Mix U".

4. And lastly, the optimal mixture importance density ¢ (. | zx) specified in Eq. (2.39)
with the following parameters: Py, = 0.1, 6, = 2, 69 = 3, N, =5 and Pp, = 0.79.
This density is labelled as "Mix Opt".

In Figure 2.7 the averaged probability of presence is shown for target SNR of 7 dB,
while detection performance is presented in Table 2.2. Clearly, the density "Mix Opt"
outperforms the other instrumental densities in terms of detection although it induces a
slight increase of the probability of presence when the target is absent. Nevertheless, the

increase in terms of probability of false alarm is not significant, as demonstrated in Table
2.2.
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step k

Figure 2.7 — Averaged probability of presence P, for different instrumental densities in
position. SNR = 7dB, N, = 1500 and Py, = 0.1.

The performance reached in terms of RMSE in position and velocity is shown in Figure
2.8. Again, the instrumental density "Mix Opt" provides better performance than the
other instrumental densities during convergence. When the filter has converged, all the
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Prior Threshold Mix U Mix Opt
pPPE 3.67x 1073 | 2.69 x 1073 | 4.35 x 1073 | 4.23 x 1073
tp 70.6% 85.4% 84.2% 90%
tvp 0.41% 0.26% 0.36% 0.34%
relative MC run duration 1 1.06 1.09 2.61

Table 2.2 — Detection performance and relative averaged MC run duration for different
instrumental densities in position. SNR = 7dB, with N, = 1500 and Py, = 0.1

instrumental densities provide similar results. This demonstrates the requirement to use
a relevant instrumental densities to ensure a faster convergence of the filter on the target.

250

Prior
= = = Threshold

— = Mixl, Pp,, =079

200

150

—— Mix Opt, Pp, =0.79, N, =35

100

50

RMSE in position (m)

200

' — Prior
160 F = = = Threshold
—~ = Mixl, Pp,, =0.79

100 —&— Mix Opt. Pp, =079, N, =35

50

RMSE in velocity (m.s™)

step k

Figure 2.8 — Performance in estimation for different instrumental densities in position.Top:
RMSE in position. Bottom: RMSE in velocity. SNR = 7dB, N, = 1500 and Py, = 0.1.

Lastly, the relative averaged MC run durations for the different instrumental densities
are presented in the last row of Table 2.2. On the contrary, the cost induced by the
"Threshold" and "Mix U/" instrumental densities, is relatively small compared to the gain
in performance. Note that this conclusion should be moderated, as will be shown in

section 2.7.4.

2.7.3.2 Influence of the Instrumental density for the amplitude parameter

In this paragraph, the influence of the instrumental density for the initialization of the
amplitude parameter is evaluated.The following instrumental densities are considered:

1. The prior case where the particle amplitude is simply drawn from the prior. It
is labelled as "Prior". Moreover, we consider two different intervals [pmin, Pmaz], a
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first one where the parameter interval for parameter p corresponds to an interval
SNR = [3,20] (in dB) and a second one that corresponds to an interval SNR = [3, 13]
(in dB).

2. A second case where the amplitude is drawn according to the density based on the
MAP estimator and provided by Eq. (2.56). It is labelled as "MAP Init". Again
we consider two different intervals [pmin, Pmaz] With the same values as previously.

3. Lastly, the approximation of the Optimal instrumental density defined by Eq. (2.53),
with N, = 10 and SNR = [3,13]. It is labelled as "Discrete Init"

In Figure 2.9 the averaged probability of presence is shown for a target SNR of 7 dB.
Note first that the choice of the prior values SNR,,;, and SNR,,,, dramatically impacts

1
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0.7 l

n_? 0.6
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0.2 Discrete Init, N, = 10, SNR=[3, 13]
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step K

Figure 2.9 — Averaged probability of presence P, for different instrumental densities in
amplitude. SNR = 7dB, N, = 1500.

the performance of the "Prior" instrumental density, as well as the proposed instrumental
densities to a lesser extent. Globally, it seems that the gain in probability of presence when
the target is indeed present is obtained at the cost of an increase of the same probability
when the target is absent. This in turns can be observed on the false alarm probabilities
provided in Table 2.3.

Concerning the performance in terms of RMSE in position and velocity, it turns out
to be very similar in all cases. Thus, we do not provide a figure here.

Lastly, the relative averaged MC run durations for the different instrumental densities
are presented in the last row of Table 2.3. The extra computational time required for
"MAP Init" instrumental densities compare to the "Prior" densities is relatively small
with respect to the gain induced in terms of detection. However, this is not the case for
the "Discrete Init" where this gain appears small compared to the extra time required.

2.7.3.3 Influence of the Instrumental density for the velocity variable

Two instrumental densities have been proposed in paragraph 2.5.3 in order to sample the
velocity:
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Prior Prior MAP MAP Discrete
Init Init Init
SNR 3, 20] (3, 13] (3, 20] 3, 13] 3, 13]
PﬁF 1.45 x | 3.78 x | 1.61 x | 6.08 x | 4.04 X
1073 103 1073 1073 1073
tp 64.1% 81.3% 2% 85.4% 84.3%
tvp 0.16% 0.28% 0.19% 0.43% 0.34%
relative MC run duration | 1 1.08 1.12 1.16 1.30

Table 2.3 — Detection performance and relative averaged MC run duration for different
instrumental densities in amplitude. SNR = 7dB and N, = 1500.

1. The first density that uniformly samples the velocity components of a newborn
particle. It is labelled as "Prior".

2. And the second density that samples the velocity component uniformly at the next
step after the birth event. It is labelled as "Next step".

Results are shown in Figures 2.10 and 2.11. The density "Next step" provides a small
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Figure 2.10 — Averaged probability of presence P, j, for different instrumental densities in
velocity. SNR = 7dB, N, = 1500.

improvement compared to the density "Prior" both in terms of averaged probability of
presence and in estimation.

2.7.3.4 Influence of the Instrumental density for the presence variable

In this paragraph, the performance for three filters that use different strategies to sample
the variable s; are evaluated:

1. The first one, denoted by "Prior", that corresponds to the classic TBD particle
filter defined by Algorithm 2.1 where the variable s, is sampled according to the
transition probability matrix defined in Eq. (2.5).
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Figure 2.11 — Performance in estimation for different instrumental densities in velocity.

SNR = 7dB, N, = 1500.

2. The second one, labelled as "s; a posteriori" is defined by Algorithm 2.2 where the
variable s; is drawn according to the a posteriori transition probabilities defined in

Eq. (2.70) and (2.71).

3. The last one, denoted by "s; marginalized" is detailed in Algorithm 2.3 which
considers only particles with the state s, = 1. For this particular TBD filter, the

parameter N, . is set to 1000 particles.

In Figure 2.12 the averaged probability of presence is shown for a target SNR of 5 dB
— Note that here a smaller SNR has been taken in order to highlight the importance of the

choice of the sampling strategy for the variable sy.

Clearly, the filters "s, a posteriori"
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Figure 2.12 — Averaged probability of presence P, for different sampling strategies of the

variable s;. SNR = 5dB, N, = 1500.
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Figure 2.13 — Performance in estimation for different sampling strategies of the variable
sk. SNR = 5dB, N,, = 1500.

Prior s a posteriori | s; marginalized
PﬁlF 3.9x107* | 3.53 x 1073 3.43 x 1073
tp 56.6% 73% 75.1%
tvp 1.22% 1.67% 1.62%
relative MC run duration 1 1.48 1.34

Table 2.4 — Detection performance and relative averaged MC run duration for different
sampling strategies of the variable s;. N, = 1500 for a target SNR of 5dB

and "s; marginalized" provide much better performance than the classic particle filter
with a small advantage to the "s, marginalized" filter over the "s; a posteriori" filter.
Moreover, as stated in Table 2.4, the use of the two proposed densities slightly decreases
the probability of false alarm.

The performance in terms of RMSE in position and velocity is shown in Figure 2.13.
Whereas there is a gain by using the filters "s; a posteriori" and "s; marginalized", the
latter is not as important as for the detection.

Lastly, the relative averaged MC run durations for the different sampling strategies of
the variable s, are presented in the last row of Table 2.4. Obviously, the strategies "s; a
posteriori" and "s; marginalized" are more costly. However as it was said in paragraph
2.5.4 and in section 2.6, the two methods calculated the same number of likelihood at
each iteration (which is the most demanding part of the algorithm) and therefore better
utilize the computer resources than the prior instrumental density.
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Figure 2.14 — Comparison of the Averaged probability of presence P, j between the prior
instrumental density and the optimal one for several number of particles V,. SNR = 7dB.

2.7.4 Choice of the instrumental density

The aim of this paragraph is to demonstrate the benefit of using a suitable instrumental
density to initialize the particles compared to a one using the prior with a higher number
of particles. Performance are compared for the two following filters:

1. The first one uses the classic TBD particle filter defined by Algorithm 2.1 with
the filter parameters defined at the beginning of section 2.7.3; it initializes all the
state parameters with their prior densities. For this filter, the following number
of particles N, are considered: 1500, 2500, 5000, 7500. This filter is denoted as
"Prior".

2. For the second filter, each parameter of the state vector is sampled using the in-
strumental density providing the best performance in detection. Therefore, for the
presence parameter s, the marginalized TBD particle filter is chosen. For the
position, the "Mix Opt" instrumental is taken with the same parameters as in para-
graph 2.7.3.1. For the amplitude parameter, the instrumental density "MAP Init"
is chosen with SNR = [3,13]. The velocity is initialized at the next step after
the birth of the particle. Finally the following number of particles N, are consid-
ered: N, = 1500 and N, . = 1000, N, = 2500 and N,. = 1500, N, = 5000 and

N,. = 3000, N, = 7500 and N,,, = 5000.

Note that we choose an interval of SNR = [3,13] for the Amplitude parameter whereas
the performance is better with SNR = [3,20] for the instrumental density "MAP Init".
We made this choice in order to not penalize the prior density from which the results
are not good with an interval of SNR = [3,20] and thus make the simulation as fair
as possible. Results are provided in Figures 2.14 and 2.15, and in Table 2.5. For any
number of particles, the Optimal instrumental density outperforms the prior instrumental
density both in terms of target detection and estimation ; at the price of a slight increase
of the probability of false alarm. Moreover, it is interesting to notice that the Optimal
instrumental density is less sensitive to the number of particles than the prior. Indeed,
the performance for the Optimal instrumental density for N, = 1500, N, = 5000 and
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Figure 2.15 — Comparison of the Performance in estimation between the prior instrumental
density and the optimal one for several number of particles N,. SNR = 7dB.

Prior | Prior | Prior | Prior | Optimal | Optimal | Optimal
N, 1500 | 2500 | 5000 | 7500 1500 5000 7500
PJ{ZF (x1073) 3.95 3.42 3.05 3.42 6.99 6.55 6.85
tp 76.3% | 82.5% | 87.5% | 89.1% | 92.9% 93.2% 93.3%
1795) 0.34% | 0.28% | 0.21% | 0.22% | 0.25% 0.27% 0.25%
relative MC run dur. 1 1.45 2.55 4.7 2.98 4.77 6.77

Table 2.5 — Detection performance and relative averaged MC run duration between the
prior instrumental density and the optimal one for several number of particles V,. SNR =
7dB.

N, = 7500 are quite similar while it is sensibly different for the Prior density. Furthermore,
the relative averaged MC run durations for the different filter are presented in Table 2.5.
It demonstrates that using the Optimal density with a small number of particle is more
efficient both in terms of performance and in terms of computational time than using the
prior instrumental density with a higher number of particles.

2.7.5 Influence of the target SNR

Lastly, as Track-Before-Detect methods are expected to track low target SNR, it is impor-
tant to evaluate the performance according to the target SNR. Thus, the Optimal TBD
particle filter defined in the previous paragraph with N, = 7500 is applied for different
target SNR: 10dB, 7dB, 5dB and 3dB — Note that here we choose an important number
of particles (i.e. N, = 7500) since one of our objective is to see if TBD particle filter
are able to track very low target SNR. Results are provided in Figures 2.16 and 2.17,
and in Table 2.6. Clearly, performance highly depends on the target SNR and it seems
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difficult to jointly detect and track a target with an SNR below 5dB. Note that, this
conclusion does not mean that the TBD particle filter is not able to detect target with
very low SNR but rather that it cannot track it accurately. It should also be recalled
here that the SNR values indicated do not take into account losses due to the position of
the target in the cell: a target with indicated SNR of 5dB may in practice provide here a
peak at the output of the range/azimuth matched filter less than 3dB ! In that respect,
the probability of presence remains impressively hight at low SNR.
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Figure 2.16 — Comparison of the Averaged probability of presence P, for the Optimal
TBD particle filter with different target SNR. N, = 7500.
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Figure 2.17 — Comparison of the Performance in estimation for the Optimal TBD particle
filter with different target SNR. N, = 7500.
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target SNR 10 7 5 3
tp 98% | 93.2% | 81.9% | 36.5%
tvp 0.02% | 0.68% | 3.22% | 13.4%

Table 2.6 — Detection performance for different target SNR with the Optimal TBD particle
filter.

2.8 Conclusion

In this chapter, the classic solution for the monotarget Track-Before-Detect problem has
been presented. This solution consists in considering an hybrid hidden state (sg,xy),
where x;, is the classic target state while s; is a binary variable modelling the absence
or the presence of the target, in order to jointly detect and track a single target. For
this state-space model, the classic TBD particle filter approximation has been detailed
detailed in section 2.4. Two different cases are sampled by this particle filter: one case
concerns continuing particles, already alive at previous time step that are propagated ac-
cording to the target dynamical model; while the other case corresponds to the newborn
particles that must be initialized in the target space. We have shown in this chapter that
the instrumental density for this latter case must be carefully chosen. Thus, in section
2.5, for each parameter of the state vector, several instrumental densities, which take into
account the information of the measurement z, in order to initialize the different param-
eters, have been proposed. In particular, for the position and amplitude, the optimal
instrumental densities have been derived and several approximations provided. Concern-
ing the presence parameter s, we have shown that it can be sampled according to the
posterior probabilities rather than the prior ones. Another solution that uses particles in
a more efficient way by only considering particles with the state s, = 1 has been described
in section 2.6.

Finally, in section 2.7, Monte Carlo simulations have been used to provide performance
in detection and estimation for the different instrumental densities and the different par-
ticle filters presented in this chapter. These simulations have allowed to illustrate the
importance of using relevant instrumental densities, in particular for the position param-
eters where it dramatically increases the performance, both in detection and in estimation.
Moreover, simulation results also highlighted the importance of carefully dealing with the
presence parameter s since the Marginalized TBD particle filter and the one using the
posterior probabilities to sample s, outperform the classic TBD particle filter.
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Chapter 3

A novel approach for monotarget
Track-Before-Detect

3.1 Introduction

In the previous chapter, the classic monotarget TBD particle filters were detailed. These
classic methods manage both the detection of the target appearance in the radar window
and of its disappearance by the addition of a variable s, to the target state vector xy.
This model raised some questions that merit to be discussed:

e Is it appropriate to try to detect the appearance and disappearance of the target in
a single algorithm 7

e In particular for very low target SNR, does the initialization of newborn particles
(at each iteration) in the whole state-space disturb the estimation of the target state
when the particle filter has converged to the actual target state 7

e Lastly, and in the same manner, is it relevant to still initialize newborn particles,
that is the most costly part of the TBD particle filter, while the particle filter has
already converged to the actual target state 7

Therefore, the aim of this chapter is to try to provide some answers to these questions. To
this purpose, we develop an alternative approach to the monotarget TBD problem that
allows to manage separately the target appearance and disappearance. More precisely,
we propose to model the TBD problem using the quickest change detection framework
and then solve it using some particle filter solutions. The aim of quickest detection
methods is to detect, as quickly as possible, some (possible) changes in the distribution
of a random process while ensuring the smallest probability of error. The TBD problem
can be seen as a quickest change detection problem. Indeed, when no target is present in
the radar window, the measurement z, provided by the radar only contains noise, while
after the possible target appearance the measurement consists of the target contribution
plus noise. Kligys et al. in [KRT98| proposed a solution to the TBD problem in this
context. However, their solution is not developed in the particle filter framework that is
studied in this thesis. Thus, we propose, in this chapter, a new particle filter solution in
this particular framework.

85
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This chapter is organized as follows: in section 3.2 and 3.3, we define a state-model
for the target appearance and another one for the target disappearance in the Bayesian
change detection framework. Moreover, for each state-model, we propose several particle
filters in order to approximate the corresponding Bayesian filter. Then, in section 3.4, we
propose to combine the proposed solutions in order to detect both the target appearance
and disappearance. Finally, in section 3.5, we evaluate the performance of the particle
filters presented in this chapter compared to the classic TBD particle filters detailed in
the previous chapter.

3.2 A Bayesian solution for time appearance detection
in TBD

3.2.1 State model

The monotarget TBD problem can be seen as a quickest change detection problem
[KRT98|. Indeed, let us assume that the target appears at an unknown time step 7,
then until 7, the measurement z; only consists of noise while after 7, the measurement z
is constituted of the target contribution plus noise. The aim of the TBD application is
therefore to detect this change.

In the classic Bayesian quickest change detection framework |[TVO05], the problem is
solved by choosing a prior distribution on the time 7,. In our TBD application, the prior
model must be defined for the random process (7, Xy),cy and not only for the variable
Tp. This leads to specify the density p (7, Xo.x) for any k. This density can be rewritten
without loss of generality as

P (1o, Xo:) = p (1) p (Xowk | 78) - (3.1)
From this decomposition, this consists in defining a prior distribution for the time of
arrival 7, and for the evolution of the state x; knowing the variable 7,.
3.2.1.1 Time appearance model

The time appearance 7, is modeled as a geometric random variable, i.e.

0, 1 =0,

p(n=1i) = { B(l— Pyl i>1 (3.2)

where 0 < P, < 1 denotes the probability of birth. The geometric prior is often en-
countered in the literature [TV05] because it has interesting properties. In particular, by

defining
. 1, if Th S k,
b = { 0, otherwise, (3.3)

it. can be shown that (b;), oy is a Markov chain with the following transition probability

matrix
1-P B
m-[50 . o
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and also that p (by = 1 | by_; = 0) = B, i.e. knowing that the target has not yet appeared
at step k — 1, its probability to show up at step k does not depend on the time instant
and is equal to P,. The proof of these two statements is provided in Appendix A.

3.2.1.2 Target state model

Let us now specify the density p (xo.x | 7). Assuming k is greater than 7,, we can write

P (Xok | ) =P Xoer—1 | 7) P Xyt | oy X0i7y—1) - (3.5)

The interest of such a rewriting is to define the evolution of the process (xy),.y before
and after 7,. Indeed, as in Chapter 2 where the state x; is meaningless (or has no physical
meaning) when s, = 0, here the state x; has no signification before 7, and is not related
to the measurement equation (3.9). Thus, any prior model can be chosen in this case.

On the contrary, after 7, the state x; represents the state of an actual target and
therefore a prior model must be specified in order to model the state evolution. Since it
seems reasonable to assume that the evolution of the process after 7, does not depend on
the evolution of the process before 7, the density p (xo.x | 7,) becomes

p(Xok | ™) =P (Xom—1 | ) p (Xnyt | 78) - (3.6)

Thus, with this independence hypothesis, defining the prior model after 7, just consists
in specifying the density p (X,,.x | 7). In chapter 1, it has been stressed that the Bayesian
filter can be derived for the Hidden Markov Model where the hidden process is assumed
Markovian. Therefore, in order to adapt the Bayesian filter for our particular model, it is
convenient to assume that conditionally to 7, the evolution of process (xy),y, for k > 7,
is Markovian', i.e.

P | ) = p (%, [ 1) [ 20| moxica) (3.7)

i=Tp+1

Then, from Eq. (3.7), the process (xx),oy conditionally to 7, and for k > 7, is entirely
defined by the density at step 7, i.e. p(x,, | 7), which corresponds to the initialization
of the process, and by the transition probabilities p (x; | 7, %;_1).

By analogy with chapter 2, the density p(x,, | 7,) corresponds to the birth density
P (xx) while the transition probabilities p (x; | 7, %;_1) correspond to the continuing den-
sity pe (x; | x;—1). We can thus in a similar manner define

p(xi [ 7, %i-1) = N (% Fx;-1, Q) (3-8)

where F and Q are the matrices defined in section 2.2.

"Note that it does not mean that the entire process (X )pen is Markovian, even for k > 7,. In fact,
the considered process is only Markovian conditionally to the variable 7, (for & > 73,) but is generally not
Markovian without this conditioning by .
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3.2.2 Measurement model

The measurement model is the same as in section 2.3 with only some slight modification
in order to take into account the specificity of the proposed state model. Following 2.3,
the measurement equation becomes

(3.9)

{pej“’kh(xk) +n,, ifk>mn,
Zp — .
ny, otherwise,
where h (.) is the ambiguity function, ny is a zero-mean circular complex Gaussian vector
with a known covariance matrix I', ¢ is the random phase uniformly drawn over the
interval [0,27) and p is the constant modulus. Although Eq. (3.9) depends on the un-
known parameters p and ¢, the same methodology as in paragraphs 2.4.2.2 and 2.4.2.1
can be used in order to remove these parameters, thus allowing to calculate the measure-
ment likelihood p (zy | 7, xx) (see Eq. (2.23)) which is required in the Bayesian filter. In
the same manner, the density p (z | by = 0,%;) does not depend on the state x; and is
obtained by Eq. (2.21).
Lastly, note that an additional hypothesis is required in order to derive the Bayesian
filter for the proposed state space model. This last hypothesis consists in assuming that

p(Tb =k | bk—l = O,lek_l) = p(Tb =k | bk—l = O) . (310)

In other words, it means that the probability that the target appears at step k knowing
that it does not appear before is independent of the measurement z;.,_;. In fact, this
hypothesis is equivalent to the hypothesis that z;.,_; conditionally to by_; = 0 is inde-
pendent to the event {7, = k}. Indeed, by definition of the conditional probability, the
Eq. (3.10) is equal to

p(m=Fk,by_1 =0,21.4-1)

p (bk—l = 0, Zl:k‘—l)
p (T =k, z11 | byt = 0) (3.11)

P (Z1-1 | be—1 = 0)

p(my="Fk|by—1=0,21.4-1)

Therefore, by assuming that z;.,_; conditionally to by_; = 0 is independent to the event
{m, = k}, the numerator in Eq. (3.11) factorizes as follows:

p(Tb =k, Z1.p—1 \ by—1 = 0) = p(Tb =k \ b1 = 0)p(Z1:k71 | bp—1 = 0)7 (3-12)

thus leading to Eq. (3.10). This equivalent hypothesis seems reasonable to make since
knowing that the target has not appeared until £ — 1 (i.e. by_; = 0) there is no reason
that the measurements z;.;,_; should provide information about the target appearance at
step k.

3.2.3 Theoretical Bayesian solution

Our objective is now to derive the theoretical Bayesian recursion for the proposed model,
i.e. to calculate the density p (Xg, bx | z1.x) from the density p (Xx_1,b5_1 | Z1.5-1)-
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3.2.3.1 Calculation of the posterior state density
Following the same reasoning as in section 2.6, this density can be rewritten as follows:
P Xk, bk | Z1:k) = p (bk | Z1r) p (X | O, Z1k) - (3.13)

Since the state x; is meaningless when b, = 0, the only probabilities to calculate are the
probabilities p (by = 1| z1.x) and p (b, = 0 | 1) which are simply obtained by definition
of bk by

k

ple=1]z1) =) p(m=1i|2), (3.14)
i=1

p(bk = O | Zl:k) = 1 —p(bk = 1 | Zl:k) s (315)

and the density p (xx | by = 1,21.,). The latter can be written as

D (X, b =1 z1)
p(by=1]2z14)

Using the decomposition of event {by = 1} in Eq. (A.5) the numerator can be expanded
as

p(Xp | by = 1,214) = (3.16)

k k
p (X, b =1|214) = ZP(Xk,Tb =1i|2z1) = ZP(Tb =] z1k) P (Xe | T =4, Z11) -
i=1 i=1
(3.17)
Finally, dividing this expression by the probability p (b, = 1| z1.x) and using its decom-
position in Eq. (3.14), it comes

k

k .
Ty =1 | Z1. . .
p<Xk | by = 17Z1:k) = E pébb —1 || l'k))p(xk \ Ty = Z7Z1:k) = E QP (Xk | Ty = Z7Z1;k)7
— POk = 1| Z1k pay
(3.18)

1=

where

Cpm=ilzie)  p(=1|2Z14)
Qi = — = % .
plbr=12z11) YL p(n=1]211)

Clearly Zle ai; = 1. Note also that each oy ; corresponds to the probability that
the target appears at step ¢ knowing that the target is effectively present. Therefore,
the posterior density p (xx | by = 1,2z1.%) is a mixture density with k& components entirely
defined by the densities p (xx | 7, = 4, 21.,) and the weighting terms oy ;.

In a Bayesian perspective, our aim is to calculate recursively each density p (xx | 7 = 7, Z1.x)
and the weighting terms oy, ; for all ¢ € {1,...,k}. However, in the sequel, for the sake of
simplicity we will consider the probabilities p (7, = i | z;.;) rather than the quantities oy ;
which are simply obtained through a normalization.

Thus, let us assume that at step k— 1, for alli € {1,...,k—1}, p(7, =i | Z14-1) and
p(Xk_1 | 75 = 1,21._1) are available. The aim is now to calculate, for all i € {1,... &k},
p(m =1]2z1,) and p(xx | 7» = i, 21.,). The next paragraph is dedicated to the calcula-
tion of the density components p (x | 7, = 7, z1.,) while the paragraph 3.2.3.3 details the
calculation of the probabilities p (1, =i | z1.1).

(3.19)
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3.2.3.2 Calculation of the mixture components

Using Bayes rule and the properties of the state-space model, each mixture component
p(Xk | 7» = i,2z1%) can be rewritten as follows:

p(xp |7 =1, 216—1) p (25 | 7o =7, Xy)
p(zg | 7o =1,210-1)

, (3.20)

p(xXp |7 =1,214) =
where
pzg |7 =1,214-1) = /p(Zk | =14, Xp) p (X | T = 1, Z1.p—1) dXp,. (3.21)

The density p (xx | 7 = 7,21.5—1) can be obtained for ¢ € {1,...,k — 1} by the Chapman-
Kolmogorov equation:

p(Xk | ™ =1,Z141) = /p(Xk—l | % =4, Z1k-1) P (Xk | 7o = 0, Xp—1) dXp—1,  (3.22)

where the transition density p (x; | 7, = 4, X_1) corresponds, as already mentioned, to the
continuing density p. (X | Xx_1) in chapter 2. Thus, each component for: € {1,..., k—1}
is provided by the classic theoretical Bayesian filter detailed in paragraph 1.2.2 and can
by summarized as follows:

update

p (Xk | Ty = i, Zl:kfl) — D (Xk | Ty = i, Zl:k) . (323)

) prediction
Eq.(3.22) Eq.(3.20)

D (X1 | 7o =1, 2151

However, it remains to calculate the density p (xx | 7, = k, 21.1) which corresponds to
the target appearance at current step k. Since in this case, the state x; does not depend
on the previous measurement z._1, the equation (3.20) simplifies to

p(Xp | =Fk)p(zp | 7 =k, xp)

, 3.24
p(zg | 7=k, 210-1) (3:24)

p<Xk | Ty = k,ZLk) =

with
p (2 | 7y = b, 21 1) = / p (e | 7 = ) p (zk | 7 = kb x0) dx, (3.25)

where p (x| 7, = k) is the prior density for the target appearance and corresponds, as
already mentioned, to the birth density p, (xx) in chapter 2.
3.2.3.3 Calculation of the probabilities of appearance

Using Bayes rule, each probability p (7, = i | z1.) fori € {1,--- |k} can be rewritten from
the probability p (7, =i | z1.x-1) for i € {1,--- , k} as follows:

p(To="11210-1)D(Zk | T =1, Z1.5—1)
p(Zk | Zl:k—l)

p(m=ilzx) = , (3.26)
where each quantity p(zx | 7, = 7,21.4-1) can be obtained from Eq. (3.21) or from Eq.
(3.25) when i = k. However, only the probabilities p (7, = i | z1.,_1) fork € {1,--- |k — 1}
can be obtained from the mixture density posterior density at step k—1 (see Eq. (3.17 ) by
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replacing k by k—1 ). Therefore, to be able to calculate all the probabilities p (1, =i | z1.1)
at step k, it remains to evaluate the probability p (7, = k | z1.,_1) and the normalization
term p (z | Z1i)

Let us start with the probability p (7, = k | z1.x—1). By definition of variable b, the
event {7, = k} is included in the more general event {b;_; = 0}, therefore the probability
p(m = k| 21.5_1) can be rewritten as follows:

p(m=Fk|zik1) = p(m="kb,=0]214-1), (3.27
= pbr-1 =021 )p (o =k | bp—1 = 0,210-1),  (3.28)

where the probability p (7, = k | by_1 = 0,2z1.4_1) does not depend on the previous mea-
surements z.;_1 by hypothesis (see Eq. (3.10)) and is equal, from Eq. (A.8), to P,.
Finally the probability p (1, = k | z1.x_1) can be evaluated from the quantities at previous
iteration using the following relationship:

P (Tb = k‘ | Zl:k—l) =P (bk—l = 0 | Zl:k—l) Pb. (329)

Recall that the probability p (by_1 = 0 | z1.5_1) can be simply obtained from p (by_1 = 1 | Z1.x_1)
as follows: p (by—1 =0 2z14-1) =1 —p(bx—1 = 1| z14-1) (see Eq. 3.15).

Concerning the normalization term p (zy | zx_1), the same idea as previously is used,
i.e. we marginalize over by, which leads to

p(zg | 21k—1) =P (2k, b = 1| Z1k—1) + 0 (21, b, = 0 | Z14—1) - (3.30)

By using the decomposition of the event {b;, = 1} as in Eq. (3.17), the expression can be
rewritten as follows:

k

p(zr | 21x1) = ZP(Tb =i|zr1)p(Zk | b =4, Z001) +
i=1
p(br=0]2z14-1)p(Zk | bk = 0,2151) -
(3.31)
The probability p (by = 0 | z1.5—1) is simply obtained as in Eq. (3.15) by
k
Pk =0|2z141)=1—-pp =1|214-1) =1~ ZP(Tb =1 | Zyp_1). (3.32)
i=1

In the other hand, the quantity p(zx | by = 0,2z1.4_1) does not depend on z;;_; by
definition of the measurement model and is simply equal to p (z | by = 0) (see paragraph
3.2.2).

Finally, each probability p (7, = i | z1.,) can be evaluated with Eq. (3.26) where
p(zx | 7o =i,21.-1) and p (2 | z1.x_1) are provided respectively by Eq. (3.21) and Eq.
(3.31) while the probability p (7, = k | z1.5_1) is obtained with Eq. (3.29).

3.2.4 Particle filter approximation

In general, whereas the parameters of the posterior mixture density p (xx | by = 1, 21.%)
(i.e. the mixture components p (X | 7, = i,2Z1.)) can be calculated recursively, in prac-
tice the corresponding equations are intractable and we must therefore resort to some



92 Chapter 3

approximations. In the previous section, we demonstrated that the posterior density can
be written as mixture. Therefore, we propose to use this particular structure to propose a
particle approximation of the density p (xx | by = 1,21.). In practice, it means that each
mixture component will be approximated by a particle filter.

3.2.4.1 Approximation of the mixture components

From Eq. (3.20), each component p(xx | 7, = 7,2z1y) for all ¢ € {1,--- k— 1} follows
the classic Bayes filter recursion. Therefore, each of them can be approximated with a
particle filter.

To do so, let, for all i € {1, -+, k — 1},

Ny
P(Xp—1 | 7o =1, 2Z101) = Zw2717i5x2717i(xk—1)a (3.33)
n=1

be a particle approximation of the mixture component p (Xy_1 | 7» = 4,%1.5_1) at step
k—1, where N,,; is the number of particles used for the i mixture component. Then the
unnormalized weights of the particle approximation at step k are obtained, according to
Eq. (1.94), by

n pC(XZ,i | XZ—l,i>p<Zk‘ | 7 =1, Xz,i)

— 4
Whi = Wh-1 a(xq; | 1o =i, X35 2k)

: (3.34)

where q(xy; | 7 = i,X}_;,,2;) is the instrumental distribution used to propagate par-
ticle states x;; (as in chapter 2, the prior is often chosen in that case). Obviously, the
normalized weights wy,; are simply obtained through a normalization.

At this point, £k — 1 components have been updated. However recall that the mixture
is composed of £ components where the last one corresponds to the target appearance at
current step (i.e. 7, = k). Using Eq. (3.24), the density component p (x; | 7, = k, z1.1)
can be approximated by

Ny
P(xp | o=k, 214) = ng,k&g’k(xk), (3.35)
n=1

where the unnormalized weights are equal to

- pb(XZ,k)p(Zk | 7 =k, Xz,k)

- , 3.36
b= T [ = Roan) (3.36)

with q (x). | 7, = k,zx) an instrumental density used to initialize the particle state xj .
As in chapter 2, the choice of the instrumental density for the initialization is crucial
for the performance. Fortunately, all the developments made in Chapter 2 concerning
the instrumental density for position, velocity and amplitude parameters can be used
again here. Finally, the normalized weights wy, ; are, again, simply obtained through a
normalization.



A Bayesian solution for time appearance detection in TBD 93

3.2.4.2 Calculation of the probabilities of appearance

From Eq. (3.26), the computation of the probabilities of appearance p (7, =i | z1.;) re-
quire to evaluate the normalization terms p (zx | 7, = 4,21.4—1) and p (zx | Z1.x_1), and the
probabilities p (1, =i | z1.1) for i € {1,---  k}.

Concerning the probabilities of appearance p (1, = i | z1.,_1) fori < k—1, if an approx-
imation of the posterior p (xx_1 | by_1 = 1,214_1) defined in Eq. (3.18) is assumed avail-
able, then these probabilities have already been approximated at previous step; let us de-
note by p (7, =i | z1.,—1) their approximation. Then, the probability p (by_1 = 1| Z1.5-1)
can be simply approximated using Eq. (3.14) and is denoted by p (by_1 = 1 | z1.5—1). How-
ever, it still remains to approximate the probability p (1, = k | z1.x_1). From Eq. (3.29),
it can be simply done as follows:

pm=Fk|zie 1) =1 =pbr1=1]214-1)) P (3.37)
Concerning the normalization terms p (zj | 7 = 4,21.5-1), two cases must be consid-
ered, one for the index i € {1,--- |k — 1} and a second one for the case 7, = k. For each

index i € {1,--- ,k — 1}, from Eq. (3.21),

p(zr | 7o =10,2161) = /p(Zk | 7o =0, X%) p (Xk | 7o = 1, Z1p—1) dXy,
= Ep(xk‘Tb:ivzlzk—l) [p (Zk | Ty =1, Xk)] )
i.e. it corresponds to the expectation of p(zy | 7, = i,x;) with respect to the density
p (Xk|Tp = 1,21.5-1). Therefore, as this integral has the form of Eq. (1.74), it can be ob-
tained via a particle approximation of the predicted density p (xx | 7» = 4, Z1.4-1). This
approximation is not directly available but it is however possible to derive an approxima-
tion of the latter using the particle approximation at previous step p (Xx_1 | 7 = 7, Z1.5-1)

and the Chapman-Kolmogorov equation (3.22). A possible approximation was proposed
(in a completely different context) by Vermaak et al. in [VGP05| as

Np;
p Xk | o=, 20k 1) = D> af b (Xk), (3.38)
n=1

where the unnormalized predictive weights ay ; are equal to

p (Xzz | 7 =1, XZA,@-)

q (XZ,i | 7o =0, X}y, Zk)

, (3.39)

~n n
Qp; = Wr_1,

and the predictive weights aj ; are simply obtained through a normalization by the term

Np.i
Cri= > ay,. (3.40)
n=1

Then the approximation p(zx | 7, = i,21.5_1) of the density p(zg | 7, =4,21.4_1) is com-
puted by substituting in Eq. (3.21) the density p(xx | 7, =4,21.4_1) with its particle
approximation defined in Eq. (3.38), leading to

j2u

Np.i
p(zy | 7 =1, 21:6-1) = Z app (ze | 7 =1, %3;) - (3.41)

n=1
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Furthermore, by noticing that the unnormalized weights wy ; are related to the predictive
weights ay; through the following equation:

Wy = Cria ;p (Zk | 7 =1, Xz,i) ) (3.42)

the approximation can be rewritten as

P2k | 7o =14 21k-1) = 57— ) _ Wi, (3.43)

Note, however, that when the instrumental density is chosen to be the prior (i.e p(x; |
T, = 4,X);_)), then Cy; = 1 and the Eq. (3.43) is simply the sum of the unnormalized
weights.

Now, it remains to evaluate the normalization term p (zy | 7, = k, z1.,_1) for the case
m, = k. From Eq. (3.25), it is also an expectation with respect to the density p(xy |
T, = k). However, contrary to the previous case where a particle approximation of the
predicted density is required, here the classic importance sampling can be directly applied
since the density p (x; | 7, = k) is known in closed-form (i.e. it is the birth density defined
in paragraph 3.2.1.2 ). Thus, the integral (3.25) can be approximated as follows:

Np.k
) 1 & p (X 7 =Fk)p(zr | 7= k,xp,)
= l{} e = : :
= Np,k ;wk‘,kﬁ

where ¢ (xj, | 7 = k, z;) is an instrumental density and N, is the number of particles.

The whole normalization term p (zy | z1.x—1) can be simply approximated, using its
expression provided by Eq. (3.31). Then, each probability p(m, =i | z.) for all i €
{1, ..., k} is finally provided by

P(T=11214-1)D(2k | b =1, Z1.5—1)

P (2 | Z1g1) (3.45)

p(mp=1]2z14) =

3.2.4.3 Dealing with the increasing number of particles and resampling strate-
gies

As previously stated, the proposed particle filter is composed of several particle clouds
corresponding to each element of the mixture distribution. By definition of the density
p(xk | by = 0,21) in Eq. (3.18) the number of mixture components at time step k is k and
it thus increases with time. Therefore, if at each iteration a new component is initialized
with N, ; particles, the total number of particles will be incremented by N, ; and after
some iterations the computational cost of the algorithm will become prohibitive. Thus,
it is preferable to limit the number of particles. In the sequel, we propose two solutions:

e In the first solution, the number of particles remains the same and constant over
time for all the mixture components. Moreover, the mixture components are always
resampled separately.
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e This first solution may suffer from a degeneracy phenomenon, i.e. after some itera-
tions some of the component weights oy, ; may be pretty small, so that some compo-
nents are approximated with a particle filter while they do not really participate in
the approximation of the whole density p (x | by = 1,21.x). Therefore, we propose
a second solution that allows to resample over the whole density p (xx | by = 1,21.1)
rather than over the mixture components when a severe degeneracy is found over
the weight mixture components.

Constant number of particles per mixture component

The easiest way to deal with the increasing number of particles consists in limiting
the number of mixture components to an integer N,z mae and discarding the one with
the lowest probability p (7, = ¢ | z1.) if the number of components is equal to Nz maz-
Indeed, if all the mixture components have the same number of particles N, ,,,,, discarding
the component with the lowest probability allows to release N, ,.;, particles that can be
used to initialize the new component at next step. The maximum number of particles
Ny maz 18 then equal to Ny ez = Npmiz X Npiz maz- Before going further in the details of
the algorithm, let us first explain its general principle. To this purpose, let us assume that
at step k — 1, Ne—1.miz = Nmizmaz — 1 mixture components p (xx_1 | 7, = 4,21.4—1) have
been kept where their corresponding probability is p (7, = 4, 21.5_1). The general principle
of the proposed strategy is then the following:

e First, the particles of each remaining component p (xx_1 | 7, = 4,2Z1.x_1) are propa-
gated according to the instrumental density q. (Xx | xx—1) (often chosen to be the
prior).

e Then, a new component is created with N, ,,;, particles in order to approximate
the density p (x| 7, = k, z1.,). For this particle approximation, the particles are
sampled according to an instrumental density g, (X, | zx). Therefore, the number of
components is incremented by one, i.e. Nj iz = Ni—1,mis if the number of mixture
components is equal to Npiz maq-

e The weights for each of the Ny ,,;, mixture components are calculated via Eq. (3.34)
for the components present at previous step or via Eq. (3.36) for the new component,
thus also allowing to update the probability p(7, =1 | z1.x—1) at step k and the
probability p (b, = 1| z1.4).

o If the number of components Ny i, is equal t0 Nz maz, the mixture component

with the lowest probability p (7, =i | z1.,) is discarded, thus allowing to use its
Ny miz particles to initialize a new component at the next iteration. Therefore, the
number of components Ny, i, is now equal to Ny, — 1. Clearly, the only cases
where the number of components will not be equal to N,z ma. are the first iterations

ke {17 T 7Nmiz,ma:v - 1}

e Finally each remaining component is resampled if needed. Note that contrary to
the marginalized monotarget particle filter in section 2.6 where a resampling pro-
cedure must be performed at each step, here the resampling is optional and can be
performed according to the N.g of each component.
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Figure 3.1 — General scheme of the particle filter for time appearance detection with a fix
and constant number of particles per mixture component.

A general scheme of the proposed algorithm is presented in Figure 3.1, where the indexes
i1, -+, iy are the set of indexes corresponding to the time index of the Ny ,,;, remaining
mixture components.

We will now detail the computations required for the different components of this
particle filter. Let I, = {iy,--- ,iNk’mm} be the set of indexes corresponding to the
Ni.miz remaining mixture components {7, = 4} (I € {1, -+, Npmi.}). The particle
approximation of p (xj | by = 1,21.;) can be rewritten as follows:

P(xi | be =L zig) = Y Guap (%i | 7 = i, 20 (3.46)

i€l

where

~ ﬁTb:i 7z
oo Pn=ilo

- b . (3.47)
Zle[kp (Tb =1 I Zl:k)
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Then, if N iz = Nmiz.maz, the component with the smallest probability, corresponding
to index

bmin = argmin p (1, =i | z1.) (3.48)

is removed from the set I, i.e. the set I is now equal to

The posterior density then becomes

P(Xp | b = 1,214) = Z dﬁc,iﬁ Xk | 7o = 1, Z11) (3.50)
i€l
with . ,
d;g7i _ p (Tb =1 | Zl:k) (351)

Zlelk,minp (Tb = l | lek)’

calculated with the updated set Ij, (i.e. without the time index 4,,,). The proposed
Appearance Time TBD Particle Filter is finally summarized by Algorithm 3.1.

Concerning the estimation, for each mixture component p (X, | 7, = i, z1.;) the state xy,
and the posterior covariance matrix can be estimated using the classic estimator defined
in Eq. (1.96) and Eq. (1.97). They are respectively denoted by Xy, and f’k‘k, Finally,
the estimators over all the mixture components are simply obtained by:

L (3.52)
i€},

Pur = D GniPrp (3.53)
i€},

The probability of appearance p (b = 1| z;.1) can be approximated by:

Pbr=1]210) =Y H(m =1 218). (3.54)

i€l

Resampling over the whole density p(x; | by = 1,2z1)

The previous strategy allows to limit the number of particles but does not take into
account the component weights &y, ; in the resampling procedure. As a consequence, even
if the component with the smallest probability has been removed, some component weights
ay,; may still be pretty small and participate for a very little part in the estimation of
the state x; in Eq. (3.52). In fact, this can be seen as a degeneracy phenomenon (see
paragraph 1.2.4.4) where after some iterations, one of the mixture weights may be very
close to one while the others are almost zero. Therefore, some computational resources are
devoted to the calculation of the mixture components that do not actually participate to
the state estimation. To avoid this drawback, we propose in the sequel to take into account
the weight components in order to resample only the relevant mixture components.

The practical implementation explanation of this solution has been appended to Ap-
pendix B; in the sequel, we will only provide a general scheme of this solution and its
motivations.
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Algorithm 3.1 Appearance Time TBD Particle Filter

Np,mix
n=1

Require: mixture components {w,i_l,xz_u and probabilities p (7, =i | z1.5-1)
with ¢ € I at step k — 1.

1: fori € I, do

2 for n =1 to N, i, do

3 Draw x}; ~ q (x5 | 7 = 1, X} ;, 2).

4 Compute unnormalized weight wy; according to (3.34).

5. end for

6:  Compute Cy; according to (3.40).

7. Compute p (zy | 7, =4, 21.4-1) according to (3.43)

8

n
Wy 4

Normalisation: w,’ﬁ"i — —% , n=1...Npmiz-

El:p{mm /&)V;cz
: end for
10: for new mixture component at step k£ do
11: I, =14 U {k}
12: Nk,mix = Nk—l,mix +1
13:  for n =1 to Ny, do
14: Draw x} ;. ~ q (xx. | 7 = k, Z).
15: Compute unnormalized weight wy,, according to (3.36).
16: end for
17:  Compute p (zy | 7, = k, 2z1.5—1) according to (3.44)
18:  Compute p (1, = k | z1.5-1) according to (3.37).

Ne

. . w
19:  Normalization: w}, + —x—2— n=1... Npmiz-

l:p{mm @ik
20: end for

21: Compute p(z | z1.5—1) according to (3.31) where the sum is performed over Ij.
22: Compute p (1, =i | z1.) according to (3.45), for i € Ij.

23: if Nk,mix = Nmix,max then

24:  Find 4,3, according to (3.48).

25: Set [k: = [k \ {me}

26: Set Nk,mix = Nk,mix —1.

27: end if

28: for i € I, do

29:  Compute Neg; according to Eq. (1.98) for component p (xy | 7 = i, 21.5).

30:  if Nug; < Ny then

31: Resample N, ., particles.
32: Reset weights: wy; < Ny T L Npmiz-
33:  end if ’
34: end for
Np,mia

Ensure: {wp, xp 120", p(n=1]21x), i € I
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The central idea of the proposed method is to calculate an effective sample size number
over the whole density p (x| b = 1,2z1%) and then resample from this density rather
than from the mixture components. As a consequence, in the resampling procedure, the
particles belonging to a component with a high component weight &;; will be mostly
selected compared to particles belonging to a component with a small &;;, so that the
number of particles will be different for the different mixture components.

However, resampling over the overall density does not solve the problem of the increas-
ing number of particles. Thus we propose to use the same methodology as in the previous
paragraph (i.e discarding the mixture component with the lowest component weight dy, ;).
However, since the number of particles per component may be different, the procedure to
discard some particles in order to initialize new components has to be changed.

To this purpose, let us assume that Ny ,,;, mixture components are present respectively
with NN, ; particles per component. Then, we propose the following procedure:

e First, as in the previous paragraph, the total number of particles (denoted as Nl‘il,i)
is calculated and compared to the maximal number of particles N, 4.

e If the number N2} is equal to N, par, then as in the previous paragraph, the index
Tmin Of the mixture component with the lowest probability is considered. However,
here, since the number of particles is different between the components, two cases
must be considered:

— Either N,; . is equal to a number N, ;,; and then the component i,,, is
discarded, so that N, ;n;; particles can be used to initialize a new component
at next step.

— Or N, . is greater than N, ;,;;. Thus, the component 4,,, does not need
to be totally discarded. Indeed, the component i,,;,, can be kept by reducing
the number of particles from N,; . to Ny, .= — N, To this purpose,

pimin — IVp,init Particles are resampled from the component 4,,,.

In Figure 3.2 a block diagram of the procedure to discard N, ;,; particles in order to

initialize new components is proposed.

Although the procedures to discard N, ;,;; particles and to resample the mixture are
thus different from the previous algorithm working with a constant and fix number of
particles per component, for all the others steps they follow exactly the same scheme. That
is to say, at each new iteration of the algorithm the particles of the Ny_j x components?
are propagated and a new one is created. Then, the weights for each component are
calculated and the probabilities p (7, =i | z1.4—1) are updated. Finally, N, ;. particles
are discarded from one of the component (if needed) and the resampling procedure is
performed.

Now that the procedure to discard N, ;»;; has been detailed, it remains to explain how
the resampling procedure is performed. For the effective sample size number over the

2Note that it means that if resampling is performed over all the mixture components, the resulting par-
ticle approximation will be processed exactly in the same manner as the other components, see Appendix
B.
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Nimiz component

with time index i € I

Y
» rall r . all T
if Ny = Npmaa Compare N;:I:i if Ny < Np,max
“"itkl NIJ.“F":i.'
v Y
if A"\-p.i,,“,. > A'\'rp.mit if A'.-p,i'm”. = f\'rp-?l”if
find the index i,in nothing to do
L 4 A 4
Resample Npi,.... — Np.init Discard component
in component with index 7,,;, with index 4min

Figure 3.2 — Block diagram to discard N, ;,;; when the number of particles is different
between the mixture components.

whole density p (x | by = 1,21.1), we propose the following definition:

Niem (D<) (3.55)

N
1€y eff i

Then a resampling procedure can be performed if N, < Nfli, with N, = B No% and
0 < Bai < 1. However, for some reasons that will be detailed in the sequel, the resampling
procedure over all the components does not have to be performed at each iteration and
some restrictions have to be introduced. Indeed:

e If the resampling procedure over all the components is performed at each iteration
(i.e. Bay = 1), there is no interest in using the mixture structure detailed in this
chapter. Indeed, in such a situation, at the end of each iteration only one component
will be present. Therefore, at the next iteration only two components will be present,
the one from previous step and the new one sampling the event {7, = k}. However,
since a resampling procedure will be performed over this two components, it will
still remain one component (gathering the two components before the resampling
step) at the end of this step. As a consequence, performing a resampling over all
the mixture components only allows to consider two components. Moreover, in this
case, the structure of the particle filter is almost equivalent to the marginalized
particle filter detailed in section 2.6. Indeed, at the beginning of each iteration one
component is present, then a new one is created in order to sample the "birth"
case. Parameters and particle filters are updated and finally the two components
are resampled jointly in order to create one particle filter component gathering the
birth and the continuing particle.

e In the same manner, to avoid that the new mixture components are resampled too
quickly from the overall resampling procedure, it is necessary to limit the frequency
of this resampling procedure. Let us illustrate this with a generic example. Let us
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assume that in the resampling procedure over all the mixture components, Ngffmx =
kauNp init particles are resampled (with k. an integer greater than one). Moreover,
let us also assume that N, 4, can be factorized as Ny maw = Kmaz Np.init (Emaz > Kair)-
Then, if a resampling procedure over all the mixture components is performed, it will
remain Ny oo — Np ., particles allowing to initialize kyqp — ko new components.
However, in the next iterations, if the resampling procedure over all the mixture
components is performed too quickly, the particle filter will not have enough time
to initialize the k,,.. — ko new components. As a consequence, some particles
reserved to initialize new components will be practically never used by the particle
filter.

Therefore to avoid the two exposed problems, we propose the following strategies:

e First, gflf{k is compared to Nq‘% without any restriction, and the resampling over
all the mixture components is performed if Ngf{{k < Nq‘% Bau has to be chosen not
too high to avoid systematic resampling. This step is present in order to avoid a
severe degeneracy.

€
components: the resampling procedure will be performed if the total number of

particles Nl‘il,i is greater than a number N;m". If not, no resampling over all the
mixture components is done. Thus, if a resampling procedure over all the mixture
components was performed at previous step, at the next step the minimal number
of particles may not be reached since only one extra components will have been
initialized. As a consequence, this new component will continue to explore the state

independently from the other components. Of course, the number Ne“flf{k may still

o If NI, > N4 "an extra condition is considered for resampling over all the mixture

be compared to a number N7\" = 3., N in order to perform the resampling.

e Lastly, if the conditions N} > N7 and N&, < NJ4" are not reached, the mixture
components are resampled separately.

A block-diagram of this resampling procedure is proposed in Figure 3.3.

Of course, this strategy is heuristic and no optimality can be ensured; some other
strategies may outperform it. On the other hand, note also that the resampling step
for the target time appearance detection particle filter offers more possibilities than the
particle filters developed in Chapter 2.

3.3 Particle filter for target disappearance time detec-
tion

Until now, we have only considered the problem of target appearance detection. In a
similar way, the detection of the target disappearance can be done in the Bayesian quickest
change detection framework. This case is easier to solve since, as will be seen, no mixture
has to be considered. Moreover, it can be shown that, in this case, the model considered in
the Bayesian quickest change detection framework (with a geometric prior) is equivalent
to the one outlined in the chapter 2 with a particular choice of the transition probability
matrix [I. Therefore, in the following, only the key points of the algorithm will be detailed.
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if N2 = Nl if N2ff o < N§li

4 arall
Caleulate Ny

= arall AJITREn o arall ATHLIT
if Npy = Np if Nop < N,
Y Y
e . arall =~ Nmin
Check the condition or Nigrx = N7
on the minimum number
of particles

and N . < Nmin
eff.k T,k Resample over all

the mixture components

Y Y
Resample over all Resample each component
the mixture components independently

Figure 3.3 — Block-diagram of the resampling procedure that allows to resample over all
the mixture components.

3.3.1 State model

Let us define by 7, the time instant when the target disappears from the radar window.
As previously, we propose to consider a geometric prior for the time disappearance 7y,
provided by
. 0, 1 =0,
plra=1i)= { Pl = Pa)l, i > 1,
where 0 < P; < 1 denotes the probability of disappearance. Moreover, similarly to the
variable by introduced in paragraph 3.2.1.1, let us define the variable d;, as

dy — { 1, if 7y >k, (3.57)

(3.56)

0, otherwise.

Using the same calculation as for the variable b, in Appendix A, it is easy to show first
that

and secondly that the process (dj),.y is a two-state Markov chain with the following
transition probability matrix

P, 1-F;

where the state d;, = 0 is an absorbing state. Lastly, for the initialization step, p (dy = 1) =
1.

Hdk:[l 0 } (3.59)

Contrary to the appearance case where the prior model has been specified for the
random process (7y,Xy),cy, here it is unnecessary since the target is assumed present
at the initial step & = 0 and the evolution of the process x;, can be easily modeled
conditionally to the variable dj. Therefore, as in chapter 2, this amounts to define the
evolution of the hybrid process (xj,dy), oy rather than (xg,74),.y. Since the process
(dy) ey is Markovian, the entire process can also be assumed Markovian with the same
transition probability as in Eq. (2.2), i.e.

P (Xp, dig|xp—1, dg—1) = p (dis | di—1) p (Xk | di—1, die, Xi—1) , (3.60)
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where the transition probabilities for the variable d are provided by Eq. (3.59). Con-
cerning the transition probabilities p (xx | dx_1, dk, Xx_1), the only case to consider is the
case dp_1 = 1 and di = 1, that corresponds to the continuing density defined in Chapter
2, i.e.

p(Xp | deey = 1,dy = 1, %51) = pe (Xp, | Xp—1) - (3.61)
The other transition densities, either deal with the case d = 0 where the state x; is
meaningless or with the case dy_; = 0 and dy = 1 that cannot happen due to the

particular structure of the transition matrix Il : the target cannot appear anymore once
it has disappeared. Lastly, it remains to define the density p (xq | dy = 1) that corresponds
to the initialization of the process (the case dy = 0 does not need to be considered since
p(dy = 0) = 0). Contrary to the appearance case where the birth density is often chosen
to be non-informative (e.g. uniform), here the target is assumed present and therefore
it seems reasonable to assume that some information is available about the target state
location. For instance, we can choose as initial prior the following density,

p(XO ‘ d(] = 1) = N<X0;5(07P0)7 (362)

where Xj is the initial target state mean and Pg the initial covariance matrix. In practice,
X and Py may have been obtained from a previous detection procedure.

3.3.2 Measurement model

The measurement model is defined as in Chapter 2 (see section 2.3), i.e

Z, — dkpejsokh (Xk) + ng. (363)

3.3.3 Bayesian filter and particle filter approximation

The aim is now to compute recursively the density p (Xy, dy | 1) for any k& > 1, that is
to calculate the probability p (dy = 1 | z1.1) and the density p (x | dx = 1, 21.1).

Concerning the density p (x; | dp = 1,2z1.%), the Bayesian filter can be directly derived
via the equation

p(Xk | d, = 17Z1:k71)p<zk | dy, = 17Xk)
p(Zk | dy, = 17Z1:k71)

p(xx | dy, =1,21) = ; (3.64)

where the density p (xx | di, = 1,2z1.4-1) is obtained via the Chapman-Kolmogorov equa-
tion where the integration must be performed on x;_; and d_1, i.e.

p Xk | d =1,216-1) = Z /p<Xk7Xk17dk1 | di =1, 21.6-1) dXg_1. (3.65)

di—1

However, recall that if d, = 1 then dj_; = 1. Therefore the sum with respect to dj_;
must be done only for d_; = 1 and the Eq. (3.65) simplifies to

p(xp | dp=1,210-1) = /p<Xk1 | d = 1,dg—1=1,Z14-1) Pe (X | Xp—1) dxi—1.  (3.66)
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Moreover, as it was demonstrated with Eq. (2.78) and Eq. (2.79), the dependence with
dr = 1in Eq. (3.66) can be removed, leading to the classic Chapman-Kolmogorov equation
which depends only on the density at the previous step and the transition density, i.e

p(xk | dpy =1,21:6-1) = /p<Xk1 | di—1 =1, Z1.5-1) Pe (Xie | Xppo1) dXpp—1. (3.67)

Therefore, if a particle approximation {Xk, wy d} * of the posterior p (xz_1 | dp_1 = 1,21.6_1)
is available at step k — 1 (where N, 4 is the number of particles) i.e.

P (X1 | dip1 = 1,2160) = Zw/ﬁ,l’d(sngl (Xk—1) (3.68)

the unnormalized weights at step k are obtained, according to Eq. (1.94), by

pC(XZ | XZ—l)
QC(XZ | X1 zr)

p(zy | dp = 1,%3), (3.69)

wl?,d =Wk _14
where ¢.(X} | X}, 2zx) is any instrumental density (in practice the prior p. (xj | Xx_1) is
often chosen) and the normalized weights are simply obtained through a normalization.

Lastly, the normalization term p(zy | dy = 1,21.5_1), which is required to calculate the
probability p (dy, = 1| z1.), is provided by the following equation:

p(zy | dy =1,210-1) = /p(Xk | dp = 1,21-1) p(zx | dp = 1,xg) dXg. (3.70)

This normalization term can be approximated, using the same reasoning as the normal-
ization term p (zy | 7, = i,21.5_1) in paragraph 3.2.4.2, by the following estimator:

P(ze | dp = 1, Z1:6—1) Zwk & (3.71)

where

Zwk 1,d pexf | xj) (3.72)

qe(x3 | x3_ 1>Zk)

Lastly, it remains to calculate the probability p(dy, = 1| z1.,). Using Bayes rule, it
can be rewritten as follows:

p(dy =11 2z14-1)p (21 | dr = 1, 21.4-1)
p (2 | Z1:6-1) '

p(d=1]2z14) = (3.73)

Concerning the calculation of quantities p (dy =1 | z1.4—1) and p(zg | Z1.5-1), it is also
possible to marginalize over dj, as in Eq. (3.29) and Eq. (3.30). Then, it comes

pldy=12161) =p(de—1 =1|2z16-1) (1 = Fa), (3.74)
and

P (2 | Z1e—1) =P (di =1 | Z1g—1) P (21 | de = 1, Z134-1) + 5.75)
P(de =0 z1-1)p (21 | dr = 0,2141) '
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where p (zy | dy = 0,21._1) = p(2x | d = 0) is the likelihood for the case when no target

is present and is obtained by Eq. (2.21). Finally, the probability p (dy, = 1 | z1x) can be

estimated by

P(di=1]216-1)D(Zk | dp = 1,21:4-1)
ﬁ(Zk | Z1;k71) '

The algorithm scheme for target disappearance is finally explained by Algorithm 3.2.

(3.76)

ﬁ(dk =1 | Zl:k+1) =

Algorithm 3.2 Disappearance Time TBD Particle Filter

Require: {w&l’d,xzﬂ}gi’f, p(dy_1=1]|214_1) at step k — 1.
1: forn=1to N,4 do
2:  Draw x}! ~ ¢ (Xk | dp = 1,XZ_1,Zk).
3:  Compute unnormalized weight wy 4 according to Eq. (3.69).
4: end for
5: Compute C}, according to Eq. (3.72)
6: Compute p(z | dp = 1,2z1.5-1) according to Eq. (3.71).

7 E ,’I’I,:l...Nnd.

: Normalization: wy, ; < %
8: Compute p(zg11 | z1.1) according to Eq. (3.75).
9: Compute p(dy, = 1| z1x) according to Eq. (3.76).

10: Compute Neg according to Eq. (1.98).

11: if Ngg < Nt then

12:  Resample IV, ; particles

13:  Reset weights: wy ; <

14: end if

Ensure: {wgd,xg}nNi’f, pdpy =11 2z14).

1
Ly =1,...,N
Np.d ) y {Vp,d

3.4 Combination of particle filters for target appear-
ance and disappearance detection

The filters proposed in section 3.2 and 3.3 can only manage either the target appearance
or the target disappearance whereas in a TBD perspective it should be desired to manage
both the appearance and the disappearance. Therefore, we propose in the sequel to
combine the two filters by adding an additional detection stage. As long as no target
has been detected, Algorithm 3.1 or B.1 is applied to search for a target appearance. At
each step, the target detection is performed as in Chapter 2 by comparing the probability
p(by = 1| z1) to a given probability P;,;: if at time step k, p (b = 1| z1.x) > Pjpit, then
a target is declared present, and N, 4 particles are resampled from the mixture

P(xp | by =1,214) = Z@iﬁ (x% | 70 =1,21.1) ,
ielk

in order to initialize the disappearance particle filter {1/N,, 4, X} nNif withp (d =1 | z1x) =
1. This new particle filter is based on Algorithm 3.2 in order to detect the target dis-
appearance time. In the same manner, at each step the probability p (dy = 1| z1.x) is
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compared to a given probability Pieam. If p(di = 1| 21.%) < Piean, target disappearance
is declared and a new filter for target appearance detection is then initialized.

Of course, target disappearance might be erroneously declared. Therefore, if the cor-
responding tracking filter was simply deleted and a new one created to detect a target
appearance, all the information gathered on the target state would be lost. It might be
wiser to initialize one mixture component using the information carried by the particles
of the time disappearance filter, thus preserving the information gathered by this filter.
More precisely, let us assume that at step ky, target disappearance was declared. Then, in-
stead of initializing the new time appearance filter at the next step (i.e. considering {7, =
kq+1}), it might be more convenient to consider that a target has appeared at step k; with
DXk, | 7o = kg, 21k,) = D (Xp, | diy = 1,218,) and p (1, = ka | 21:x,) = D (diy, = 1| Z1a,)-
The required number of particles (N, i, for Algorithm 3.1 and N, ;,;; for Algorithm B.1
can simply be resampled from p (xy, | dr, = 1,21.,). For the next iterations, the proce-
dure is exactly the same as the two proposed algorithms for time appearance detection.

The resulting particle filter is called the Appearance Disappearance Detection (ADD)
TBD Particle Filter. It is detailed in Algorithm 3.3.

Algorithm 3.3 ADD TBD Particle Filter

1: target 1s_detected < false
2: for k =1 to N; {where N;; is the number of iterations of the algorithm} do
3: if target is_detected — false then

4: Compute p (b, = 1| z1x) with Algorithm 3.1 or Algorithm B.1.

5 if p(by =1|214) > Pyir then

6: target is _detected < true

7: Sample N, 4 particles from p (x| by = 1,2;.) to initialize a particle filter for
Algorithm 3.2.

8: Set p (dy = 1| z1.) = 1 for this filter.

9: end if

10: else

11: Compute p (dy, =1 | z1.) with algorithm 3.2.

12: if p(dy = 1| z1.1) < Pjearn then

13: target is _detected < false

14: Sample Ny iz Or Ny init particles from p (xy, | di, = 1, 21.%) to initialize a particle
filter p (x| 7 = k,Z1.4),

15: Set p(my =k | z1.6) = p (d = k | Z1:1).-

16: end if

17: end if

18: end for

3.5 Simulations and results

In this section, we propose to illustrate the performance of the different TBD algorithms
proposed in this chapter via Monte Carlo simulation. One of the main objective of this
section is to compare the performance with the classic particle filters detailed in Chap. 2 in
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order to measure the possible gain when separating the detection of the target appearance
and of the target disappearance as explained in introduction.

3.5.1 Scenario

We consider the same scenario as in chapter 2, that is to say a scenario with a number
of iterations N; = 100 where a target appears at step k, = 15 and disappears at step
kg = 75. For each Monte Carlo run, the initialization of the target state for the position
and the velocity at step k; is done according to the birth density p, (.) defined in section
2.2 (i.e. uniform prior over D = [Fmin, Tmaz] X [Omin, Omaz] for the position and over
[VUmins Umaz] X [0, 27] for the velocity), with the following parameters:

® 7in = 30 km, 7,0, = 36 km, 0,,;, = 35° and 6,4, = 55°,

1 1

® U,in = 100 m.s™ and v,,,, = 300 m.s™".

For the iterations after k;, the target state x; (for the position and the velocity) evolves
according to Eq. (2.6) with no noise process (i.e. uniform linear motion). The time
between two consecutive measurement is set to Ty = 0.3 s.

The generation of the raw radar data is done as in the previous chapter with I' = I,
(i.e. noise samples are assumed independent). The function h (.) is defined in paragraph
2.3 with the following parameters:

e For the range axis, B = 1 MHz, thus providing a range resolution A, = 150 m, and
T, =6.67x 107" s.

e For the azimuth axis, N, = 70 and d = \/2, corresponding to a resolution Ay =
1.45°.

Finally, for the parameter p several values (following the SNR definition provided in
paragraph 2.3.2) will be considered in the simulations.

3.5.2 Methodology for the performance evaluation

As in paragraph 2.7.2, we propose to evaluate the performance in two steps:

e In terms of detection, i.e. measuring the capability of the filter to effectively detect
the target as quickest as possible while ensuring the smallest probability of false
alarm.

e and secondly in terms of estimation, 7.e. estimating the accuracy of the estimator
when the TBD particle filter has detected the target.

To this purpose, we propose to use the same methodology as in the previous chapter. In
detection, it means measuring the averaged probability of presence P, ; over Ny;c Monte
Carlo runs, the average percent of time ¢, when the target is actually detected and t,p
the percent of time when it is badly detected (see 2.7.2.2). In estimation, performance is
evaluated with the RMSE in position and velocity from Eq. (2.100) and (2.101).



108 Chapter 3

3.5.3 Comparison between the ADD particle filter and the marginal-
ized particle filter

As we stressed in the beginning of the section, the aim is to see the possible gain by using
two different filters for the appearance and the disappearance compared to the classic
method of the previous chapter. To this purpose, we propose to compare the performance
of the following particle filter:

e The first one, denoted as "ADD Filter, N, i, constant", consists of the ADD TBD
particle filter 3.3 where the particle filter used to detect the target appearance is
the "Appearance Time TBD Particle Filter" (detailed by Algorithm 3.1), i.e. the
number of particles par mixture components is constant over time. Concerning the
Appearance Time TBD Particle the specific parameters for this filter are chosen

as follows: Nj iz = 1000, Npizmaez = 9, corresponding to a number of particle

N, = 5000 ; each component is resampled at each iteration (i.e. 5 = 1). Concerning

the Disappearance particle filter, the number of particle is set to N, 4 = 1500 and

the resampling procedure is also performed at each iteration.

e The second one, denoted as "ADD Filter, N, ., variable" consists of the same
filter as previously except that the particle filter used for the target appearance is
the "Resample All Appearance Time TBD Particle Filter" outlined in paragraph
3.2.4.3 and detailed in Appendix B by Algorithm B.1. For this filter the specific
parameters are used: N, nit = 1000, Np mae = 5000, N, = 3000, Np pmin = 4000,

e The last one, denoted as "Marginalized s,", consists of the Marginalized Particle
Filter detailed in the previous chapter by Algorithm 2.3. The specific parameters
of this filter are set with the following values: N, = 5000 and N, . = 4000, i.e. at
each iteration 1000 particles are initialized.

For all the filters, the probability P, and P, are set to 0.1. Concerning the instrumental
density gy (. | zx), it is chosen as follows:

e In position, the optimal mixture importance density ¢ (. | z;) specified in Eq. (2.39)
with the following parameters: Py, = 0.1, 6, = 2,9 = 3, N, =5and Pp, =1 (i.e.
particle positions are only initialized in the cells above threshold).

e In amplitude, the prior density is used (i.e. uniform prior). The interval for the
amplitude parameter p is set to [3,13] (in dB).

e For the velocity, the velocity of birth particles is initialized at the next step, see
paragraph 2.5.3 for details.

Concerning the continuing case or alive particle, the prior density is used for the filters.
Lastly, the probability Pj,;; and Py..n, they are set respectively to 0.9 and 0.2.

Results are provided in Figures 3.4, 3.5 and Table 3.1.

In detection, the figure 3.4 does not show significant differences between the different
particle filters, except that the "ADD Filter, N, ., variable" seems slightly better for
very low SNR (3dB) which is corroborated by the percent time of detection which a little
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Figure 3.4 — Averaged probability of presence P, with different target SNR (7dB, 5dB
and 3dB).

better for this filter. In contrast, some important differences can be observed in terms
of percent of bad detection t;,p that is more important for the "s, Marginalized" particle
filter for all the SNR. This point can be explained by the fact that the "s, Marginalized"
particle filter continues to initialize particle whereas the filter has already detected the
target. Therefore, in some situations, especially when the probability of presence P, is
not close to one, the birth particles may have a non negligible contribution to the target
state estimate, even if they are located far away from the actual target position, and thus
may lead to a bad detection. However, although the "s; Marginalized" particle filter has
a poorer percent of bad detection ¢, D, it has a better probability of false alarm.

In estimation, above a SNR of 7dB there is no difference between the different par-
ticle filters. By cons, from 5 dB and below, the ADD particle filter both for "N, i,
constant" and "N, ,;, variable" provide better performance for the estimation of the po-
sition. Again, it can be explained by the fact that the "s; Marginalized" particle filter
initializes particles even if it has detected the target. In velocity the "ADD Filter, N, iz
constant'" and "s, Marginalized" filters provide quite similar performance while the "ADD
Filter, N, i, variable" is less efficient.

Lastly, in terms of computational time, the "ADD Filter" both for "N, constant"
and "N, i, variable" is faster than the "s; Marginalized". This is not surprising since
most of the computational resources are devoted to the initialization of particles, so as
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Figure 3.5 - RMSE in position and in velocity for the proposed particle filters with different
target SNR (7dB, 5dB and 3dB).

"ADD Filter" does not initialize particles when the target is detected the computational
time is lower than the "s, Marginalized" that initializes particles whatever the target is
detected or not. Besides, the difference becomes lower with low target SNR since the
proportion of time where the filters try to detect the target becomes more important. In
fact, the gain in computational time is principally made during the period of time where
the target is detected by the filter.

In summary, this simulation has allowed to show the pertinence of separating the
detection of the target appearance and disappearance with two different filters. Indeed, it
allows to reduce the computational time when the target is detected since, in that case, no
particles are initialized without degrading the performance in detection and estimation.
Besides, performance is better for the "ADD Filter, N, ,,;, constant" both in detection
(in particular for the percent of bad detection ¢, D) and in estimation, but at a cost of a
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SNR (dB) 7 5 3

Filter 1 2 3 1 2 3 1 2 3
PﬁF (x1073) 4.8 6.53 2.71 4.8 6.53 2.71 4.8 6.53 2.71
tp 93.2% | 93.3% | 92.9% | 81.1% | 80.1% | 81.1% | 42.7% | 44% | 41.5%
tvp 0.03% | 0.04% | 0.13% | 0.16% | 0.20% | 0.98% | 0.55% | 0.85% | 1.99%
rel. MC run

duration 1.05 1 2.07 1.04 1 1.85 1.07 1 1.41

Table 3.1 — Detection performance and relative averaged MC run duration for the different
particle filters used in the simulation for different target SNR. Filter 1 refers to "AD Filter,
Ny miz constant", 2 to "AD Filter, N, ,,;, constant" and 3 to "s; Marginalized".

slight raise of the probability of false alarm. Furthermore, it seems that the resampling
strategy that consider N, ,,;, variable over time provides worse performance than the one
with N, i, constant. According to us, this conclusion should be taken with caution since
only one set of parameters has been tried, thus it may exist a better set of parameter or
even an other resampling strategy which is better.

3.6 Conclusion

In this chapter, we presented an alternative approach to the modeling of the monotarget
TBD problem. We shown that it is possible to model the monotarget TBD problem as a
quickest detection problem in a Bayesian framework both for the target appearance and
disappearance.

In the appearance case, we demonstrated, in section 3.2, that the posterior density
of the target state can be expanded as a mixture density. Moreover, in section 3.2.4, we
proposed several particle filter approximations, one that considers a constant number of
particles per mixture component and an other one that allows a variable number of parti-
cles. In the same manner, in the disappearance case which is easier than the appearance
case, we outlined the theoretical Bayesian filter and a particle filter approximation. More-
over, in section 3.4, in order to detect both the target appearance and disappearance, we
proposed a particle filter that combines the two previous particle filters.

Lastly, in section 3.5, a Monte Carlo simulation was performed to compare the novel
approach proposed in this chapter with the monotarget classic particle filters detailed in
the previous chapter. This simulation has allowed to show the benefit of using two different
particle filters for the target appearance and disappearance. Indeed, the simulation has
highlighted that initializing particles when the particle filter has converged to the actual
target state may disturb the target estimation and as a consequence the performance
in estimation. Moreover, it also highlighted that it sensibly increases the computational
time without providing significant gain in estimation or detection (except a slightly lower
probability of false alarm). Therefore, according to us, this chapter validates the idea of
using specific filters for the target appearance or disappearance. In particular, in chapter
D, this idea will be adapted to the multitarget setting.
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Chapter 4

Measurement equation and likelihood
calculation for Track-Before-Detect
applications

4.1 Introduction

This chapter deals with the calculation of the likelihood of the measurement condition-
ally to the target state in Track-Before-Detect context. Indeed, in section 1.2.1, we
explained that a particle filter requires the calculation (if possible not costly) of the like-
lihood p (zy | x). However, in Track-Before-Detect applications this likelihood cannot
be computed directly from the measurement equation (2.8) since this latter depends on
the target complex amplitude parameters py and ¢, that are unknown and may fluctuate
over time. Therefore, several strategies have been proposed in the literature in order to
release the calculation of the likelihood from these unknown parameters. The first ones
[RRG05, DRC08, BDVT03| consist in working on the squared-modulus of the complex
samples. Using such a strategy allows, in some cases, to calculate the likelihood in a
simple manner. On the other hand, it leads to some information loss on the target am-
plitude parameter. In particular, the spatial coherence of the phase, i.e. the fact that
the phase of the target amplitude takes the same value in all cells, is then lost, inducing
a possible performance degradation. This loss was shown in [DRC12] to severely degrade
the performance. Thus, in their article, Davey et al. [DRC12| have proposed a new strat-
egy that allows to keep all the information provided by the measurement by working on
the complex raw radar data z, rather than on the squared-modulus. In particular, this
solution allows to keep the spatial coherence of the amplitude parameters. However, in
their paper they only investigated the Swerling 0 fluctuation model and the monotarget
case.

Therefore, the objective of this chapter is to extend their work both for amplitude
fluctuations of type Swerling 0, 1 and 3 and for the multitarget case.

This chapter is organized as follows. In section 4.2 we present the state and measure-
ment models. Then in section 4.3 we present solutions for the likelihood computation
from complex and squared modulus measurements. In section 4.4 we derive, when pos-
sible, closed forms for the likelihood with Swerling fluctuations of type 0, 1 and 3 in the
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monotarget and multitarget cases; when not possible, we propose approximations to al-
leviate the computational time. Finally in section 4.5 we present simulation results that
show the gain both in detection and in estimation of the complex measurement method
over the squared modulus method.

4.2 Problem Formulation

The measurement model corresponding to the output signal z; was presented at the end
of the "radar signal processing stage" in chapter 1 section 1.1.8 (see also Figure 1.1). If
at a given time index k, N targets are present, the output signal (or raw radar data) zj
is provided by the following equation:

Ng

Z = Z pmej“”“vih(xk’i) —+ ng, (41)

i=1
where:

e h(xy ;) represents the possibly multidimensional ambiguity function of the i*" target
centered on the target state x; ;. For the sake of simplicity, h(xy ;) will be denoted
h;; in the sequel.

e 1, is a zero mean circular complex Gaussian vector with covariance matrix I'.

e ¢;; and pg,; are respectively the phase and the modulus of the it" target complex
amplitude. All variables ¢y 1.5, and py 1.y, are supposed mutually independent, and
independent from n; and xi 1.y, -

Each phase ¢y, ; is supposed to be unknown and uniformly distributed over the interval
[0,27) at each time step k. On the other hand, each modulus py ; is assumed to be drawn
from a generic density

Pri ~ Py, (pr), with pr € R, (4.2)

where 1J; is an unknown static parameter. Note here that these amplitude parameters
depend on the time instant k, due to the temporal fluctuation of the target amplitude. The
Swerling models are convenient in radar to statistically model these amplitude fluctuations
over time. The Swerling 0 model corresponds to a constant amplitude modulus (i.e. no
temporal fluctuation); the Swerling 1 and 3 models consider slow fluctuations (i.e. the
modulus fluctuates from burst to burst, where a burst corresponds to a train of pulses,
but it is constant from pulse to pulse) respectively modeled by a Rayleigh distribution
and a chi-square distribution with four degrees of freedom. Lastly, the Swerling 2 and 4
models consider respectively the same fluctuation densities as the Swerling 1 and 3 but
with fast fluctuations (i.e. from pulse to pulse). We do not consider these latter models
in this chapter and thus focus only on the Swerling fluctuation models of type 0, 1 and
3. The likelihood calculation for these models will be detailed in section 4.4.
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Figure 4.1 — Received signal (noise-free) corresponding to the I!* target at two adjacent
time steps k and k + 1, where dots represent the corresponding measured samples. py;
and @y, are the same for all cells of z;, (we denote this feature spatial coherence) but their
values change independently and randomly over time; there is no temporal coherence from
step k to step k + 1.

4.2.1 Temporal coherence versus spatial coherence

An important point to be stressed here is that variables py1.n, and ¢y 1.n, are spatially
coherent: this means that the complex target amplitude py ;e/#% is identical over all cells
where the signal ambiguity function spreads. Taking into account this information can
really increase the performance of the Track-Before-Detect algorithms [DRC12|. On the
contrary, these variables py 1.n, and ¢y 1., are not assumed coherent over time, i.e. from
time sample k to k+ 1, amplitude parameters fluctuate independently. As a consequence,
no information can be gathered over time on these parameters. These dependencies are
illustrated in Figure 4.1.

4.2.2 State of the art

The objective of this chapter is therefore to compute the measurement likelihood in a
general multitarget TBD context with unknown fluctuating amplitude parameters. Sev-
eral solutions have been provided in the literature, mainly in a monotarget setting.
The first solution that deals with the unknown complex amplitude considers a mono-
target setting and consists in working on the squared modulus of the complex signal
[BDV'03, SBO1, RAG04, RRG05, DRC08|. For such a radical solution that completely
discards the phase dependency, two strategies can be considered to deal with the modulus
fluctuation. The first one consists in marginalizing the whole likelihood with respect to the
density of the modulus fluctuation [DRCO08|. In practice, this leads to intractable integrals
that must be approximated numerically. The second strategy consists in marginalizing
independently the likelihood in each cell [RRGO5]. The advantage of this heuristic sec-
ond solution is that a closed form can be obtained for fluctuations of type Swerling 0,
1 and 3 [MBO08]|. On the other hand the spatial coherence of the modulus, i.e. the fact
that the modulus of the target amplitude takes the same value in all cells, is then lost,
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Swerling 0 Swerling 1 Swerling 3
Complex Monotarget Eq.(4.15) and
[DRC12]
measurement
Multitarget
Monotarget, | Eq.(4.25) and | Eq.(4.49) and | Eq.(4.52),
non coherent | [MBOS| [MBO08] Eq.(4.51) and
Squared IMBOS]
modulus Multitarget, Eq.(4.49) and
non coherent [BDV03]
Monotarget, | Eq. (4.4.2.1) | Eq. (4.4.2.1) | (4.4.2.1), and
coherent and [DRC12] | and [DRC12| | [DRC12]
Multitarget,
coherent

Table 4.1 — Summary of the state of the art for the likelihood computation with different
data types (complex measurements or squared modulus), different Swerling models (type
0, 1 and 3) and different number of targets (mono or multitarget). The squared modulus
measurement are splitted between coherent computation and non coherent computation.
Each filled cell contains the reference of the equation in this chapter that provides the
expression for the likelihood, and the citation of the corresponding paper.

inducing a possible degradation of performance. Note also that the spatial coherence of
the phase is lost for both strategies. This loss was shown in [DRC12] to severely degrade
the performance.

To avoid this last drawback, Davey et al. [DRCI12| have proposed a new strategy
that allows preserving the spatial coherence of the phase. Their solution consists in
directly working on complex measurements and marginalizing the complex likelihood of
the whole data over the phase. It provides better performance than solutions based on
squared modulus. However, they mainly investigated the case where the modulus does
not fluctuate (i.e. Swerling 0 case); for modulus fluctuations, they only provide a general
marginalization formula. One of the contributions of this chapter is an extension of their
work with complex measurements to fluctuations of type Swerling 1 and 3; we show that
closed-forms can be obtained for the monotarget likelihood in both cases.

Furthermore, all the previously discussed strategies with squared modulus or complex
measurements were proposed in a monotarget setting. In fact, to our knowledge, the
multitarget case has not been investigated in the literature, except for the Swerling 1 case
with squared modulus [BDV*03|. Thus, another contribution of this chapter consists in
considering the multitarget case both with squared modulus and complex measurements.
In the complex measurement case, we provide a closed-form expression for the likelihood in
the Swerling 1 case, and we propose in the other fluctuation cases some approximations
to alleviate the computational cost. In the squared modulus case, we show that, as
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soon as at least two targets are present, all phase dependencies cannot be removed from
the likelihood; in fact taking the squared modulus permits to remove only one phase,
so that other phases must be marginalized. In that latter case, we also propose some
approximations in order to reduce the computational complexity.

The Table 4.1 summarizes the state of the art for the likelihood computation with dif-
ferent data types (complex measurements or squared modulus), different Swerling models
(type 0, 1 and 3) and different numbers of target (mono or multitarget). The aim of this
chapter is to fill any empty cell in this table.

4.3 Likelihood calculation for Track-Before-Detect ap-
plications

In this section, we propose to develop the different methods presented in the previous
paragraph "State of Art". We first start by explaining how to calculate the likelihood
for Track-Before-Detect applications with the complex measurement and then with the
squared-modulus.

4.3.1 Likelihood computation with complex measurements
4.3.1.1 Likelihood from the measurement equation

As previously pointed out, the likelihood p (2 | Xx1.n,,), €. the likelihood of the observa-
tion conditionally to the target states cannot be calculated directly from the measurement
equation (4.1) since it depends on phase and amplitude parameters ¢y, 1.y, and pg 1.y, that
are unknown and not temporally coherent. Nevertheless, from this equation, it is possible
to calculate the likelihood of the measurement z; conditionally to the states xj 1.y, and
the amplitudes parameters ¢y 1., and pg1.n,, @€ P(Zg | Xk 18,5 Pr1:Ns PE1:N, ). Indeed,
since the noise n; is complex Gaussian, the corresponding density is then a complex

Ny
Gaussian density with mean p;, = Z pkviej“"’“’ihkvi and covariance matrix I':
i=1
1 H o
P (Zk | Xk, 1:Np Pl 1N s PR1iN,) = m exXp {— (zr —py) T ! (z1 — Hk)} . (43)

Then by developing Eq. (4.3), it comes

Hp—1
expi—z; I zk
p (Zk | Xk, 1:Ny» Pk,1:Ny, » SDk,lsz) = { u } XeXP{ Zﬂk Zh 1hk,i+

N N Ng
> 20k lhf T 2| cos (@ri — i) = D > 2pkipka DT hy| cos (@ri — @ri — ¢k,u)} ;
i=1 i=1 1=i11

(4.4)

where &, ; = arg (hgiF_lzk) and ¢ = arg (hgif_lhk7l).
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4.3.1.2 Marginalizing over the phase and modulus parameters

Since parameters ¢y 1.n, and py 1.y, are assumed to be random variables, it is possible to
write the joint likelihood of the measurement z; and the amplitude parameters condition-
ally to the target states xj 1.n,, that is given by

Py, (Ph1:Ns PR1NG Zk | Xk1oN,) = Py, (Pr1:Ns Pr1N, | Xh1i8,) X

p (Zk \ Xk,1:Ny,» Pk,1:Ny,» pk,l:Nk) .
(4.5)
From the hypotheses in the measurement model, the density of phases ¢ 1.y, and am-
plitudes py 1.5, Dorn, (Pk1:Ny» PEN, | Xk1:n,, ) does not depend on Xy 1.y, and expends as
follows

Porn, (Pr1Ng PRN | Xitny) = P (r1:8,) Porw, (PE1:N,) (4.6)
Ny,

= [ (eei) po, (ors)- (4.7)
i=1

Finally the likelihood py,.y, (2x | Xk1.n3,) can be obtained by marginalizing Eq. (4.5) over
parameters pi 1.n, and g 1.8,

Doy, (Zk | Xk,l:Nk) = //N p(Zk | Xk,1:Ni» Pk,1:Ny» (Pk,l:Nk) X
R4 x[0,2m) Nk

p ((pk,l:Nk> Doy, (pk,l:Nk) dSOk,lszd/)k,lsz-
(4.8)
First, notice that the spatial coherence is preserved in this formulation thanks to the
marginalization. However, this likelihood expression still depends on the static parameters
V1.n, that have been supposed unknown. It is possible to deal with these static parameters
by adding them in the state vector x; 1.y, as explained in paragraph 4.3.1.3.

Then, note that most of the Bayesian TBD algorithms require either to calculate the
likelihood ratio between the likelihood of the observation conditionally to the state vector
and the likelihood of the observation conditionally to the event that no target is present
(i.e. N = 0); or the likelihood can be calculated up to a constant (e.g. particle filters).
As a consequence, the constant term in Eq. (4.4), given by

p(zr | Ny =0) = exp {—zkl"_lzk}, (4.9)

1
e det (T)
which is the likelihood conditionally to the event that no target is present, does not
need to be calculated, providing directly the likelihood ratio or the likelihood up to this
constant. Note that, for the sake of clarity, this constant term will be always discarded
in the likelihood expression provided in the rest of the chapter.

At last, an important point is that Eq. (4.8) is often intractable, even for two targets,
and must then be computed numerically. However, in section 4.4.1.2, it will be shown
that a closed-form can be obtained for the particular Swerling 1 fluctuation model. For
other fluctuation models, the numerical implementation implies the evaluation of multiple
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integrals over several parameters and the computational cost may be rapidly prohibitive
in the multitarget case. Fortunately, target contributions can in many cases be separated
so that the multitarget likelihood becomes equal to the product of monotarget likelihoods
that can be computed in closed-form. This separation arises when targets do not interact
in the likelihood expression (4.4). This can be translated mathematically by the following
condition:

by T "hy,| =~ 0, for any (u,v), u# v, (4.10)

that allows to remove all cross terms in Eq. (4.4). In practice, this hypothesis may arise
for instance when I' = Iy, and targets are far away from each other. Indeed, for each
target the ambiguity vector hy; has only significant values in a few number of cells around
the target location and can be assumed equal to zero elsewhere, so that the ambiguity
vector can be truncated as explained in paragraph 2.4.2.3. Therefore, the scalar product
between ambiguity function hy, and hy, is approximately equal to zero for sufficiently
distant targets. Note however that when I" # I, condition (4.10) cannot be verified as
straightforwardly and should thus be carefully checked, even for distant targets. Indeed,
the inner product induced by matrix I'"! may mix the components of h;,, and hy, even
when they are located far apart from each other.

Finally, the expression of the likelihood Porx, (Zk | Xk,1:Ny s Pl 12N, s PR 1:N,,) becomes un-
der condition (4.10):

Pyy.n, (Z | Xk, 18,5 P, 12N PR 1NG,)

Ny, Ny,
o exp {—Z e Ty > 20 b T 2y cos (pr — fk,i)} (4.11)
=1

i=1

Ny,
o< H exp {—piith’iF_lhk,i + ka,i|th,iF_12k| cos (ki — 5;”)} ,
i=1

where the i term of the product, denoted by

B (Phis i) = exp {—pp DT hy s + 210 T 2] cos (s — i) b (4.12)

only depends on parameters py ; and ¢y ;. As variables py 1.y, and ¢ 1.y, are independent,
the joint density (4.8) then simply becomes

Nk rtoo p2r
P, (Zk[Xk1:8,) o H/o /0 Epni (P P )D(1 )P, (i) donidprg. (4.13)

i=1

Thus, everything happens as if each target is processed separately. This drastically allevi-
ates the computational complexity of integral (4.8) and allows processing distant targets
with parallel filters as we will see in chapter 5 which is dedicated to the Bayesian Multitar-
get Filter in Track-Before-Detect context. Of course, when condition (4.10) is not verified,
this simplification can be done only for separated targets, while targets that cannot be
separated must be processed by the same filter.

In the monotarget case, integral (4.8) becomes

+0o0 2
Py (Zklxk) X / / p (Zk|Xk,1:Nk7 Dk pk)p(%)p(l)k)d%d/?k- (4-14)
0 0
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Davey et al. [DRC12] have shown in this particular monotarget case that the marginal-
ization can be done over the phase ¢y, providing

27
Do (Zr | X, pr) < / (25| Xk, ks 1) D(Pk) A,
0

(4.15)
o< exp {—pih/ T 'hy } o (204 W T2 ]),
where Ij is the modified Bessel function of the first kind, i.e.
+oo (£)21
Ip(x) = 2 (4.16)
)

Then, the likelihood is obtained by integrating (4.15) over the generic density py (px) that
depends on the fluctuation model considered.

4.3.1.3 Dealing with the unknown static parameters of the modulus fluctua-
tion densities

In a Bayesian perspective, a possible solution to deal with these parameters consists in
choosing a prior density for each parameter ¢; (for instance a uniform prior over a given
interval [9; min, Ui maz), Where ¥ in and U, 4, are provided) and then in marginalizing
also over these parameters. Note that in a filtering perspective the likelihood p(zy, | Xk1:n,)
is calculated at each iteration step k. It might then be convenient to use the fact that the
parameters ).y, are constant in order to estimate them over time. In this perspective, the
problem of state-space models with unknown static parameters has been widely studied
in the literature [Kit98, Sto02, ADST04].

A popular solution consists in explicitly introducing artificial dynamics on the static
parameters [ADST04| and considering them as components of the state vector. Thus,
the new state vector for each target becomes xj ; = [xi;, ¥4 ]" where the evolution of
parameter vy ; is Markovian, i.e.:

Vi = Vg1 + €k (4.17)

with e ; a small Gaussian noise, and Jy; ~ po (¥). Then, since parameters 9y 1.y, belong
to the state vector, they do not need to be marginalized in the likelihood expression (4.8)
that becomes:

pﬁk,l:Nk (Zk | Xk,l:Nk) =P (Zk | X;c,l:Nk) : (4'18)
Finally, in order to alleviate the notations, we will denote by xj1.n, the state vector
containing the parameters Uy 1.n, (i.e. X, .y ). Thus, in the sequel, all the likelihood

expressions p (zy, | Xg 1.y, ) for the Swerling models studied in this chapter will be provided
with the randomized parameter 9y 1., .

4.3.2 Likelihood computation with squared modulus

In the previous section, the exact computation of the likelihood from complex measure-
ments has been presented. In this section, a different approach often considered in the
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literature, which consists in working only with the squared modulus of the complex data
[RRG05, DRC08, BDV*03], is exposed. This approach is interesting in applications where
only the squared modulus of the data is available but also because it allows to remove the
phase dependency in a monotarget setting. This simplifies in some extent the computa-
tions, at the cost of loosing the spatial coherence of the phase. Squared modulus were also
considered in an application involving two targets with Swerling 1 amplitude fluctuations
[BDV+03]. In this specific application, the spatial coherence of the target amplitude was
not considered, thus simplifying the computation at the cost of some information loss. We
will derive here the general multitarget likelihood in the squared modulus framework. It
differs from expressions obtained in the literature since it does not make any approxima-
tion and thus properly takes into account the spatial coherence of the complex amplitude.
Moreover we show that the squared modulus approach does not allow in the multitarget
setting to remove all phase dependencies. Thus, as with complex measurements, these
phase variables must be taken into account, for instance by marginalization.

First, let us assume, as in the literature [DRC12, BDVT03, SB01]|, that the covariance
matrix has the following expression T' = 20%Iy,, i.e. the complex noise samples ny, are
mutually independent. Note however that, since modulus pj 1.y, and phases ¢y 1.y, are
random variables and spatially coherent at time k, this hypothesis does not allow to
establish that signal samples from 2! are independent; these samples are independent
only conditionally to variables py 1.n, and ¢y 1.n,. Then, with a slight abuse of notation,
let us denote by |zx|* the vector of squared modulus of the complex signal : |z;|? =
(2212, .., |zp¢!]T. Since the noise samples z} are independent conditionally to variables
Pr1:N, and ¢y 1.n, , this property also holds for squared modulus of the noise samples |z§c|2,
thus allowing to expend the likelihood p(|zx|? | Xk.1.8,s Pr.1:N, Pk1:N,, ) as follows

Ne
P(12* | Xetvs Prtengs Pr8) = [ 2O | Xbnivis or1enes 9r1:80)- (4.19)
=1

The desired density p(|zg|* | Xk.1.n,) can be obtained from p(|zx|? | Xk 1.8, , Pk1:Ny > Ph 1N, )
exactly in the same way as with complex measurements, by marginalizing over all variables
pr1:N, and @i 1.y, Remark that the hypothesis of independence is absolutely necessary
here to establish Eq.(4.19). The condition I' = 20%Iy, can be generalized to diagonal co-
variance matrices, but the case where I' is not a diagonal matrix is much more complicated
even for two coupled variables: in that case, squared modulus samples are correlated, thus
leading to distributions with no closed-form, for instance multivariate Rayleigh distribu-
tion in the Swerling 1 case [Mal03]. Note also that in practice, this hypothesis is verified
with classic matched filtering in presence of white Gaussian noise and an appropriate sam-
pling rate, but it may not be verified anymore when modifying the reception processing,
for instance by applying classic weighting windows such as Hamming, Bartlett, Hann, etc.
[Har78| that modify the noise correlation after processing.

Before going further into the computation, we would like to highlight here an interest-
ing property that arises when considering squared modulus of complex data, and that has
never been discussed to our knowledge in the literature: although N, targets are present,
providing N, different and independent random phases ¢y, 1.n,, it is possible to show, by
changing the set of parameters, that the density p(|zL|? | X153, Pr1:8,,, Pr1.n, ) effectively
depends only on N; — 1 phase variables. Indeed the variable |z}|? can be defined up to
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. . / . .
an arbitrary phase ¢’ since |z}|? = |e?'zL|?, and we can write for instance

2

Ny,
‘ch}z = pk,lh’gc,l + Z /)k,iej%’ihgc,i + ”/2 (4.20)

=2
where all n/}, = nke /%11 are still independent circular symmetric complex Gaussian noise
samples, and phases ¢} ; = ¢p; — ¢p1 are still uniform variables distributed over the
interval [0,27). Thus, |2L|> only depends on Ny — 1 phase variables. Therefore, taking
the squared modulus of the complex signal leads to drop out the dependence of one and
only one phase. As a consequence, in a monotarget setting the density of |2}|* does not
depend any longer on the phase ¢, but only on the modulus; this is one of the main
reasons to use such a technique for the TBD monotarget algorithms. On the contrary, in
the multitarget setting, taking the squared modulus does not remove all dependencies on
the phases! This dependency remains present through coherent summations of the target
contributions in each cell. Discarding it may lead to loosing all the information provided

by the spatial coherence of the phase variables.

Conditionally to variables x 1.n,, pk.1.n, and <p§€7QZNk, each sample l%‘Q follows a non
central chi-square distribution with two degrees of freedom; indeed it corresponds to
the sum of the squares of two non-centered Gaussian variables. The density p(|zL]? |
Xk 1:Ny s Pk 1:Ng s 902,2:1\@) is thus provided by:

1 EAR 04 (902,2:1\/ s PE,1:N, )
p(|2’fg|2 | Xk, 1:Ny,» Pk,1:Ny, 902,2;1\/,6) = T‘Q CeXp {— 952 - Qk -
I ok (902,2:1\/,6, pk,l:Nk) |Zf€|2
0 o2 )
(4.21)
where +! ((pﬁw: Nys PR ;) is the non centrality parameter equal to
Ny 2
prahiy + Y o€ by (4.22)
i=2
’Vl (‘P;C,Q:Nkv/)k,lsz) = o2

At this step, mono and multitarget cases are different, and we will consider them sepa-
rately in the following. Finally, note that, as with complex measurements, the likelihood

12
can be computed up to a constant. Therefore terms # exp {—%} will be discarded in

the rest of the paper.

4.3.2.1 The monotarget case
In a monotarget setting, the non-centrality parameter in each cell becomes

Al
0-2

7 (pr) = (4.23)
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and does not depend on ;. The joint likelihood can then be obtained by marginalizing
Eq.(4.19) over the parameter py:

oo Ne

plzel? | %) / | IR (4.24)

where py, (pr) is the density for the parameter p;. As for complex measurements, this
marginalization allows preserving the spatial coherence of the parameter p;. Since integral
(4.24) is, to our knowledge, intractable for Swerling fluctuations models of type 1 and
3 (it consists in integrating N, Bessel functions), it must be in that case approximated
numerically. Note that we do not consider the Swerling 0 model here, since the integration
over the density py, (pr) just consists in replacing the parameter p; by a constant.

To avoid performing a numerical approximation, an heuristic solution was proposed
by Rutten et al. [RRGO5| that consists in first marginalizing independently each sample
of the signal |z;|* according to py(pr), i-e.

P14 | x0) = / P2 | oo )po, (1) dpe. (4.25)
0

Clearly the spatial coherence of py is lost since the integration is performed independently
for each measurement sample and not over the whole measurement vector. On the other
hand, the calculation of integral (4.25) can be done analytically for Swerling fluctuation
models of type 1 and 3, leading to simple closed-forms expressions. Then, the whole
likelihood is calculated by assuming that samples |z} |%, ..., |z, °|* are independent. Under
that assumption,

Ne
pllzl* [ x6) = [T p(41 | x0), (4.26)
=1

Recall that this is not true in general because of the spatial coherence of random variable
pr that tends to establish a dependency between neighbour measurement samples. Thus,
rigorously, measurement samples |2.|? are independent conditionally to the state x; and
the parameters p; and @i, but they are not generally independent conditionally to the
state x; only. In other words, if we know the values of the state x; and the parameters
pr and @y, then we know how the state and these parameters influence the different mea-
surement samples, so that the only unknown comes from the independent noise samples.
When we only know the state x; but not the parameters p; and ¢y, then we do not know
exactly the link between the different measurement samples, and they cannot be assumed
independent anymore.

It is finally interesting to observe here that, if a similar assumption was used in the
complex measurement case (i.e. independence of the amplitude parameters from sample to
sample, which resorts to removing the spatial coherence of the amplitude parameter), then
the likelihood for the complex measurement (without spatial coherence) would be equal
to the product of the sample likelihood for each complex sample and become identical to
the likelihood with squared modulus (still without spatial coherence). This comes from
the fact that when computing the likelihood for one single sample, the phase parameter
does not matter, or, in other words, does not provide any information.
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4.3.2.2 The multitarget case

As previously discussed, in the multitarget case the parameter ~' (¢2,2:Nkapk71:Nk) still
depends on the N, phase variables )} ,.n . The likelihood must thus be obtained by
marginalization over modulus py 1.n, and phases @272: Ny

N
12
p(lzel? | Xp1:8,) = //Nk . IHp(’Zk’ | Xk, 1: Ny s Pk, 1Ny P, 2:N,, )P0k 1., (PR, 1N ) X
R>0><[0727T) k™~ =1

p(SO%,Z:Nk)dpkﬂideSD;c,Q:Nk’
(4.27)
As in the monotarget case, this expression is to our knowledge intractable. The same
heuristic as in the monotarget case can be used: first marginalizing independently each
sample from ¢, and p 1.n, as in (4.25), providing

12
p(2L % | xk,1:0,) =/---/N PU2™ | Xk, 10N I 1N s Phe2:8, )P0 1., (P, 1:8 )P (P 2:0,.)
ROE x[0,2m) N1

dpk,l:deQD%,Z;Nka
(4.28)
and then approximating the whole likelihood as in Eq. (4.26). Note, however, that
contrary to the monotarget case there is in general no closed-form for the integral (4.28),
so that numerical integration must still be performed.

Finally, as with complex measurements, target contributions can often be separated
so that the multitarget likelihood then resorts to a product of monotarget likelihoods.
This separation is obtained under the condition hj ;hj ; = 0,for any i, j,7 # j that allows
to eliminate all cross terms in Eq. (4.22).

4.4 Likelihood computation for Swerling models

In this section, we will derive the measurement likelihood with three different Swerling
models: Swerling 0, Swerling 1 and Swerling 3. For each model, first the case of complex
measurements will be considered and second the case of squared modulus measurements.
Whenever closed-forms are not obtainable, we will propose approximations that allow to
compute the likelihood at a lower computational cost.

4.4.1 Complex measurements
4.4.1.1 Swerling 0 case

The modulus py; of each target is assumed constant and equal to an unknown constant
pi- This corresponds to the following generic fluctuation density for each target:

Po, (Pri) = 09, (Pryi) (4.29)

where 0y, (.) is the delta mass Dirac function at point J; and where the parameter v,
is thus equal to p;. Whereas parameters p;.y, are unknown, they can be added to the
state vector and treated exactly as the other state parameters, as it has been explained



Likelihood computation for Swerling models 125

in paragraph 4.3.1.3. Moreover, with this particular fluctuation density, the integration
over variables py 1.y, in Eq. (4.8) just consists in substituting each variable py,; by the
constant parameter p;. Since this parameter p; is a priori unknown, it is then replaced
by the dynamical parameter py,; as explained in section 4.3.1.3) (note here the slight
abuse of notation since p;; refers to the parameter p; evolving over time and not to
the value of the amplitude modulus at step k). Finally, the integral (4.8) that corre-
sponds to the complex measurement likelihood must just be computed over parameters
©k.1:N,- In the general multitarget case, this integral is, according to our knowledge, in-
tractable and must be approximated except for the particular single target case. A first
solution consists in calculating numerically the integral over the domain [0,27)"* but
this may become rapidly computationally demanding. Thus, we propose to replace the
intractable likelihood by its Laplace approximation that has been already successfully
used in particle filter application [MBQLG11]. Let Hy = [pihg1, ..., pn i, ] and let

Uy = Uy, (oran,) = €901, ..., e??N] T Equation (4.8) can be rewritten as follows:
p (Zk I Xk,l:Nk) X / ’ / exXp {Txk,lsz (ka,lsz)} dgpk,lsz' (430)
[0,27) Nk
where
Txk,lsz (gok,l:Nk) = = (Zk - Hk\I,k (gok,l:Nk))H Fil (Zk - Hk\pk (Sok,lsz)) . (431)

The integral (4.30) can be approximated using the Laplace method [MBQLG11|. Roughly
speaking, the Laplace method consist in using a polynomial approximation of the function
T, 1w, (-) of order one at its maximum, thus allowing to evaluate the integral (4.30). The
Laplace approximation can be then expressed as follows:

(2m) %

’det (—VQTX,M:N,C (@kJ;Nk))

pswo (Zk | Xk1:n,) A €xp {Txk,mk (Pr,1:3.) , o (4.32)

N

where @y 1.y, are the phases maximizing the function Ty, , . (.) and V2T (.) is the Ja-
cobian matrix calculated with the phases ¥y 1.n,. The phases @y 1.y, cannot be obtained
analytically even for two targets and an optimization method such as a gradient descent
must be used. However, the function in Eq. (4.31) has the particular structure of a
quadratic form in the variable W, therefore it is possible to use the classic least square
estimator

Uy = (HIT'H) HIT 'z, (4.33)

and to calculate a value close to the actual maximum by taking for each phase @ ; the
argument of the corresponding component Wy ;, i.e.

Ok = arg (\I!;”> ) (4.34)
Note that the maximum is not exactly reached with the estimator \T/k since it may not

respect the constraint that all its components have a modulus equal to one (i.e. Wy is not
a vector of phase as Wy (pr1.n,)). In practice, this estimator is in most of the situations
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close to the actual maximum. However, in some situations, for instance when components
hy 1.n, are almost colinear, the difference can be greater. In that latter case, an optimiza-
tion must be performed or the filter performance will be degraded. A compromise must
then be done between the quality of the estimate and the computational time required to
reach it.

4.4.1.2 Swerling 1 case

Each modulus py; follows a Rayleigh distribution:

2
Pk Pk,
Py, (pk,i) = Pswi (/)k,z) = 0—2 exp (—T) (4.35)
Pi

where o0, is the parameter of the Rayleigh distribution, assumed unknown, such that
Elp;;] = 2072, and corresponds to the generic parameter ; of the density in Eq. (4.2).
Obviously, as in the Swerling 0 case, this parameter can be added to the state vector.
Although the integral (4.8) with respect to the Swerling 1 densities for parameters py 1.y,
and with respect to variables ¢ 1.y, seems to be intractable, in practice the density
p(zr | Xk1.nv,) can be obtained using other probabilistic considerations. Indeed, in the
Swerling 1 model, since py; follows a Rayleigh distribution with parameter o, and ¢y ;
is uniformly distributed over [0, 27), each variable py ;e’#*i in the measurement equation
(4.1) is a zero-mean circular symmetric complex Gaussian variable with variance 20§i.
Therefore z;, which is then the sum of independent Gaussian vectors with zero-mean, is
a complex Gaussian vector with zero-mean and covariance matrix Xy, given by

Ni
Sy, =T+ 202 hy b (4.36)
=1

Clearly, this matrix is definite positive, so that the multi-target likelihood is finally given
in closed form by:

1

_ —zI¥ ! . 4.
" (ENk>eXp( z); Nkzk) (4.37)

Pswi (Zk | Xk,l:Nk) X
In practice, the computation of the likelihood requires the evaluation of det (X, ) and
¥} that can be computationally demanding since matrix X N, 1S a square matrix of size
equal to the length of the considered vector hy ;. Fortunately, these quantities can be

easily computed by using classic linear algebra formulas. Indeed, the matrix 3y, can be
written

Sy, =T +UVUH, 4.38
k

with U = [hg 1, -+, hy n, ] @ matrix with N, columns and V = diag (20/)1 PR ,20§Nk,k>.

Then using a classic matrix inversion lemma (see [Murl2], p. 117), it comes

Sy =r'-rlu(v'+uru) ufr (4.39)
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The inverse of matrix I' can be pre-computed, while V is a diagonal matrix and matrix
(V‘1 + UHI‘_lU) is an Ny-by-N; matrix of much smaller size than Xy, as long as the
number of targets N, remains small compared to the number of considered cells. In that
case its inversion implies a drastically reduced cost compared to the inversion of Xy, .
Furthermore, the computational cost of the determinant can also be reduced using the
matrix determinant lemma (see [Murl2|, p. 117)

det (Xy,) = det (V' + U"T7'U) det (V) det (T) . (4.40)

Note that no hypothesis was made here about the closeness of the targets and therefore
this closed-form expression is valid both for distant and close targets. Finally, for the
particular monotarget case, the likelihood simply becomes

(2 | %) 1 202 |hf T2 |? (4.41)
5 zy, | Xp) o ex ) :
POWLRER L T 902 T Ty \ 1+ 202, T Iy

4.4.1.3 Swerling 3 case

Each squared modulus pzi follows a chi-square distribution with four degrees of freedom,
so that the corresponding density for the modulus py; is provided by:

8 207,
P9, (Pri) = Psws (Pri) = y27 exp (——) , (4.42)

Pi Yp;

where the parameter v,,, assumed unknown, is such that E[,ozz] = v,,. Again, this pa-
rameter can be added to the state vector as for the Swerling 0 and 1 case.

According to our knowledge, no closed form can be obtained for Eq (4.8) in the Swerling
3 case and a numerical approximation must be done, implying the numerical computation
of Nj integrals over modulus pj1.n, and N} integrals over phases ¢y 1.n,. However, it is
possible to avoid the numerical integration over the parameters p ;.n, by approximating
the chi-square distribution by a Rice distribution; note indeed that the Swerling 3 model
can be viewed as an approximation of a Rice distribution [Ric07]. Using a Rice distribution
instead of the Swerling 3 model, the density of the modulus pj; becomes

205 (1 4 a? 1+a? 1+ a2
PRice (ki) = M exp (—a2 - /)&%) Ip (2(1 p@%) ) (4.43)

Vpi i i

where «a is the ratio between the dominant scatterer and the weaker ones. By choosing

a = /14 /2, it can be easily checked that densities of the squared modulus pi.; under
Swerling 3 and Rice models provide the same means and variances [Ric07]. Now consider
the complex amplitude pk7iej9"’€’i where py, ; is distributed according to the Rice distribution
(4.43). Recall first that this Rice distribution is the distribution of the modulus of a

. . . o Vpi . 2 o Vpi
complex Gaussian variable with mean pgyws,; = a, | ez and variance 2053 = oz

Then we can replace each variable p; ;e7#%i in (4.1) by a variable &, ;e/Y%i where the
variables & ; and 1)y, ; are respectively Gaussian and uniform, and such that £ ;m-ej Yk follows
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the same distribution as pmej*"’“vi. Conditionally to phases 1y 1.5, , the observation zj is a
complex Gaussian vector with mean

Ny

Ky sws = Z psws,ie’ iy
i=1

and covariance matrix

Ng
@y, =T+ ) 20%y5,hhf
i=1
The density is then given by
1 H o _
Drice (2 | Xk,l:Nkawk,l:Nk) X m exXp <— (Zk - Hk,sws) ‘I’Ni (Zk - Hk,sws)> .

(4.44)
Clearly, the computational cost of @]}i and det (®y, ) can be reduced as in the Swerling 1
case. Then, it just remains to marginalize (4.44) over the phases ¢y 1.y,. This marginal-
ization cannot be computed analytically and must then be calculated numerically, except
in the monotarget case.

In the particular monotarget case, a closed-form can be obtained both for the chi-
square distribution and the Rice distribution. For the chi-square distribution, the ex-
pression in Eq. (4.15) must be integrated over density (4.42). The following result (see
[GRO7], p. 1097 Eq. 6.663)

+00 _ 2 ﬁ 62
/0 2? exp (—az?) Iy (Bz) do = s (1 + @> exp (5) , (4.45)

where v € R% and 8 € R, is used with « = 2 + hfT'""'h; and 8 = 2 |h//T"'z;|. Then,
the likelihood for the chi-square Swerling 3 model in the monotarget case is given by

4 v, |hT g v, . |hZT g
psws (Zk | Xi) - <1+ p,k} k 7’9’ )exp< p,k} k 7’9’ )

(2 + v, xhfT-1hy) 2+ v, h{'T-hy 2+ v, hi'T-1hy
(4.46)
For the Rice distribution, it is possible to integrate Eq. (4.44) over the phase ¢, a
computation similar to the one providing Eq. (4.15), Then, the likelihood for the Rice
Swerling 3 model in the monotarget setting is equal to

(1+ a?)exp (—a?) Vpk }hll‘cHl"*lzk}2 +a? (1 + a?)
1+ a?+ v,;hi’T-'h, 1+ a?+ v,;hiT-'h,

<2a’hHI‘ 1Zk}\/ + a?) ypk> (4.47)

1+CL +I/pkh F 1hk

PRice (Zk | Xk) X X

4.4.2 Squared modulus measurements

As it has been shown, the likelihood computation with the squared modulus can be done
in two ways, either by taking into account the spatial coherence of the phases and mod-
ulus with Eq. (4.27) or by marginalizing independently in each cell with Eq. (4.28). As
these two cases are different, we treat them separately in the following.



Likelihood computation for Swerling models 129

4.4.2.1 The coherent case

In the coherent case, the likelihood is obtained according to Eq. (4.27) by replacing the
generic density p(px;) by the density of the fluctuation considered. However, according
to our knowledge, it cannot be done analytically for the Swerling models and the integral
must be approximated numerically. Moreover, note that it can be really intensive in
terms of computational resources especially when the number of targets is large since
the size of the integration domain increases exponentially with the number of targets.
For this reason, we propose an heuristic solution that consists in replacing the parameter

7 (PE1:N,» Pr2:N,) Dy its expectation

“E [pf] Pl
Ehl (Pk 1Ny s Pr2:N, )] = Z —

i=1

(4.48)

o

where E [p?] only depends on the parameter of the fluctuations density. Thus, integrals
(4.27) are simply the product of the densities in Eq. (4.19) for all the cells. This is a
strong approximation for the likelihood, but as it will be seen in section 4.5, it gives inter-
esting performance and it is really faster than the numerical integration which is costly in
terms of computational resources. In the monotarget case, the likelihood is given by Eq.
(4.24) that requires the integration only over parameter p, and therefore the numerical
approximation can be done with reasonable cost.

4.4.2.2 The non coherent case

The non coherent case consists in calculating Eq. (4.28) for each cell and then making the
product over the N.. In practice for the Swerling 0 case, it is not interesting because Eq.
(4.28) can be calculated directly; thus it is preferable to still use Eq. (4.27) to calculate the
likelihood since it takes into account the spatial coherence of variables ¢y, 2.n,. Neverthe-
less, for the Swerling 1 and 3 cases, probabilistic considerations can be used to calculate
Eq. (4.28). Indeed, in the Swerling 1 case Boers et al. [BDVT03| noticed that each
sample |zL|? follows an exponential distribution with parameter A =

20243, H k 202 |h |2’
so that

1 |Zk;|2
P2 | xp1m) = NP = ) (4.49)

For the Swerling 3 case, the integration over parameters py 1.y, can be avoided with
the Rice fluctuations. Indeed, by replacing each variable py ;e/#*¢ by a variable & ;e/¥%i,
each sample

EAs
0%+ Y Odws,; Wf
conditionally to variables v 1.n, follows a non central chi-square distribution with two
degrees of freedom and with non-centrality parameter

Ny,
l E AN
MSW&lhk;,l + uSW:’),ie]wk’lhk‘,i
=2
2 112
a +Zz 1O-SW31}hk}

(4.50)

/yéiice (,lvb;c,&Nk) -
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that does not depend on parameters pjq.n, anymore. The density of \22\2 conditionally
£0 U}, .y, i given by Eq. (4.21) where o2 is substituted by o + S 0%y3, ’hHQ
YV (Dl 2nys PritiNg) DY Yhice (Vh2:v, )- Finally the likelihood |2} |? is obtained by integrating
only over variables ¢ , . .

In the monotarget case, integral (4.25) can be computed analytically both for the Rice
distribution and the chi-square distribution. For the Rice distribution, no integration over
phase w,’g’l is required and the likelihood is provided by

and

2
PSW3 Rice (‘22‘ \ Xk) x
2’ ‘2

20%(1 + a?) exp (—a?) Vpk ]hﬁc\%;}c +20?%a* (1 + a?) I <2a {h“ {zfg‘ V(14 a?) Vp7k>
0 .

20204 a) 4 v [P\ 202 (14 a?) v ] L a vy Bl

(4.51)

hl 2+4 2 hl l
Vp,k| k:| g andﬁ: | kilzk|.

For the chi-square distribution, result (4.45) is used with a = 72—
P,

Then, integral (4.25) becomes

112
Psw3, x? (‘Zk} | Xk) X

(40'2)2 <1 N 1 Vp }hu }ZH ) exp (}22‘2 Vp,k ‘h2‘2 ) |
(102 o )\ 207 e ) 2 o

(4.52)

4.4.3 Summary

In this section, we have provided several solutions to compute the likelihood in a Track-
Before-Detect context for complex amplitude fluctuations of type Swerling 0, 1 and 3. For
the computation of the likelihood with the complex measurement, we have shown that a
closed-form can be obtained for all the Swerling fluctuations considered in the monotarget
case. In the multitarget case, a closed-form can be obtained only in the Swerling 1 case,
while in the other cases a numerical integration must be performed; however we propose
several methods in order to alleviate the time calculation. For the likelihood with the
squared modulus of the complex measurement, we have derived the right expression in
order to keep the spatial coherence information of complex amplitude parameters and
we have shown that only the dependency of one phase can be removed, however this
leads to an intractable integral for all the Swerling models. Then approximations must
be performed; we propose a few solutions for such approximations. Table 4.2 presents a
sum-up of the different techniques to calculate the likelihood with the existing methods
or those proposed in this chapter.

4.5 Simulation and Results

In this section, we first study the performance in detection and estimation of a single target
particle filter that considers either complex or squared modulus measurements. We show
the improvement of using complex measurements both in detection and in estimation only
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Swerling 0 Swerling 1 Swerling 3
Complex Monotarget Eq. (4.15) and | Eq. (4.41) Eq. (4.46),
measurement [DRC12] Eq. (4:47)
Multitarget Eq. (4.8), | Eq. (4.37) Eq. (4.8),
and 4.4.1.1 Eq. (4.44)
Monotarget, | Eq. (4.25) and | Eq. (4.49) and | Eq. (4.52),
non coherent | [MBO0S| [MBO08] Eq. (4.51) and
Squared IMBOS]
modulus Multitarget, | Eq. (4.28) | Eq. (4.49) and | Eq.  (4.28)
non coherent [BDV*03] and 4.4.2.2
Monotarget, | Eq. (4.4.2.1) | Eq. (4.4.2.1) | Eq. (4.4.2.1),
coherent and [DRC12| | and [DRC12| | and [DRC12|
Multitarget, | Eq. (4.27) | Eq. (4.27) | Eq. (4.27)
coherent, and 4.4.2.1 and 4.4.2.1 and 4.4.2.1

Table 4.2 — Summary of the likelihood computation with different data types (complex
or squared modulus measurements), different Swerling models (type 0, 1 and 3) and
different number of targets (mono or multitarget). The squared modulus measurement
case is splitted between coherent computation and non coherent computation. Each cell
contains the reference of the equation in this chapter that provides the expression for the
likelihood. When this expression previously appeared in the literature, the citation of the
corresponding paper is provided as well. Contributions of this chapter are highlighted in
bold and italic.

for the Swerling 1 and 3 model as Davey et al. have already shown the benefits of doing
so in the Swerling 0 case [DRC12|. Then, we study the behaviour of a simple multitarget
particle filter for two close targets. Performance are evaluated in terms of estimation of
the two target states and track loss for fluctuations of type Swerling 0, 1 and 3.

4.5.1 Single target simulation and results

4.5.1.1 Scenario of the simulation

We consider a scenario with 100 time steps. The target appears at time step k, = 10
and disappears at step k; = 75. At time step ky, the target state is initialized with the
prior distribution pj (.) defined in section 2.2 and until time step kq the state is propa-
gated according to Eq. (2.6) (with ¢; = 0). We also assume that the entire trajectory is
contained within area D (defined in section 2.2.2). The SNR of the target is fixed either
to 5, 7 or 10 dB and we consider fluctuations of type Swerling 1 and 3. Concerning the
measurement model, we use the one defined in section 2.3.
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4.5.1.2 Single target particle filter and performance evaluation

TBD particle filter For the simulations, we consider the TBD monotarget particle
filter described in section 2.6 (denoted as "Marginalized TBD Particle Filter"). More-
over, for the unknown static parameters 20’3 and v, that correspond respectively to the
parameter of the Swerling 1 and Swerling 3 fluctuation densities, we add them to the
state vector as explained in paragraph 4.3.1.3. Therefore, for each particle the modulus
parameter 2024, is simply propagated according to

204, = 204_1, + €k, (4.53)

where ¢, is Gaussian noise, with variance ¢,,. Finally, parameters JSJ, and 1y, are drawn
uniformly over the interval corresponding to a target SNR between SNR,,;,, and SNR,,,42
for the birth particles.

Concerning the other state parameters (i.e. the position and the velocity):

e For the continuing case, state parameters are propagated according to the prior (i.e.
Eq. (2.6)).

e For the birth case, the position is assumed to be initialized with the instrumental
density defined in Eq. (2.41) and that corresponds to initializing the position uni-
formly over the cells that exceed the threshold v = —20?log(Py,) (where Py, is
a given false alarm probability). Note that the approximation of optimal density
defined in Eq. (2.39) is not used here. Indeed, such a density cannot be used with
the squared-modulus measurements. Therefore, in order to make a fair comparison
between the particle filter that uses the squared-modulus measurements with the
one that uses the complex measurements, we choose an instrumental density that
can be used in both cases. Finally, for the velocity, it is simply assumed to be
initialized with the instrumental density defined in paragraph 2.5.3.

Performance evaluation As we explained in section 2.7, the "Marginalized TBD Par-
ticle Filter" does not take any decision about the presence or the absence of the target
in the radar window. In this case, we have already stressed that it is difficult to properly
measure the performance in estimation without making any decision about the target
presence or absence, and without taking into account the fact that the filter has effec-
tively converged to the actual target state. Therefore, we propose to use the methodology
developed in Chapter 2 that consists in:

e First using the variable di; detailed in Eq. (2.95) to make the detection.

e Then, using the indicator of good estimate ej; defined by Eq. (2.96) (for k €
{kp, -+ ,kqg—1}) in order to determine if the filter has converged on the actual
target state.

e Lastly, estimating the RMSE in position and velocity respectively with Eq. (2.100)
and (2.101).
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4.5.1.3 Simulations

For the simulation of the target scenario, the following parameters are used: T—0.3s,
Umin = 100m/8, Ve = 300m/s, SNR,,;, = 3dB, SNR,,0, = 13dB, ¢, = 1072, Py, = 0.1
and 02 = 0.05. The transition probabilities for the particle filter are set to P, = Py = 0.05.
The number of continuing particles is set to N, = 2000 and the number of newborn
particles to N, = 1000. Concerning the detection strategy, we choose T} (dx_1 = 0) = 0.9
and Th(dk,1 = 1) =0.2.

For the simulation of the radar measurements, the parameters used are: 7,,;, = 100 km,
Tmaz = 120km, O,n = —10°, 000 = +10°, N, = 40, Ny = 14, 0> = 0.5, B = 1 MHz,
T, =6.67 x 1075s, N, = 70, ¢ = 3 x 108 m.s~!. Note that a small radar window is chosen
here to avoid using an important number of particles and thus limit the computational
cost.

Three filters are used to detect and estimate the hidden target state xj, based on
different assumptions for the likelihood computation:

1. The first filter, labeled as "Coh Sq-Mod", considers squared modulus to compute the
likelihood and takes into account the spatial coherence of the amplitude parameter
pr: it corresponds to Eq. (4.24).

2. The second filter, labeled as "Non Coh Sq-Mod", considers squared modulus but
does not take into account the spatial coherence of the amplitude parameter p: it
corresponds to Eq. (4.25).

3. The third filter, labeled as "Coh Comp", considers complex measurements and
spatial coherence: it corresponds to Eq. (4.14).

Ny = 1000 Monte Carlo simulation were performed for performance measurement.

Detection performance In figures 4.2 and 4.3, we present the average of the proba-
bility of existence variable Pk,e which is measured at each step for the Swerling 1 and 3
models respectively. In both case, filters that use the complex measurement outperform
those that use squared modulus measurements. Furthermore, the difference between the
"Coh Sq-Mod" filter and the "Non Coh Sq-Mod" filter is quite small, therefore it seems
that taking into account the spatial coherence of the phase is more important than taking
into account the modulus information. Moreover, the "Non Coh Sq-Mod" filter requires
numerical approximation that leads to increase the computational time for a very small
gain in detection.

Estimation performance In figures 4.4 and 4.5, we present the result in terms of
RMSE in position and velocity for the Swerling 1 and 3 models respectively. As for all
the detection results, particle filters that used the complex measurement outperform filters
that work on squared modulus measurements. Moreover, note that the RMSE in position
seems to be better at the beginning which is not expected since the tracking alogrithm
should improve the RMSE. However, this can be explained by the fact that the RMSE
is calculated only over the iteration where the target has been detected (i.e. di = 1)
and at the beginning only a few simulations have detected the target (in particular for
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Figure 4.2 — Monte Carlo simulation results for the single target case with the Swerling
1 model. Average of the probability of existence variable Py .. SNR is equal to 5, 7 and

10 dB.

the SNR of 5dB or 7dB) — These detections correspond to favorable cases where the
target contribution is not disturb too much by noise. For the next iteration, the filter has
detected the target more often than at the beginning, therefore the RMSE is calculated
over more Monte-Carlo runs among which less favorable cases. In particular, the cases
where the target is located at the edge of the cell that induce a loss in SNR and as a
consequence an increase of the RMSE in position.
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4.5.2 Multitarget simulation and results
4.5.2.1 Multitarget scenario

We now consider a scenario with two targets present during all the experiment. Both
targets follow a uniform rectilinear trajectory. Target states x;; and x; o are uniformly
initialized over P x C such that:

e the two velocity vectors (@1, k1), (Tx2, Uk,2) form an angle of 7,

e the minimum distance between targets is reached at time step k. = 35 and is set to
dymin = 150 m, i.e. the minimum distance is equal to the range resolution.

An example of particular trajectories for the two targets is provided in Figure 4.6. Target

k=20
[ ]
Xpq1 Mo k=
3 : A°
L] .
" . Xk.,2
° i .
nd e .
= o e
4 o » = -
pe -’ dmin °
- at step k. = 35 @
. °

Figure 4.6 — An example of two trajectories where the two velocity vector form an angle
of 7 and where the minimum distance between the two targets is reached at k. = 35.

SNR are set to 10dB and we consider fluctuations of type Swerling 0, 1 and 3. Note that
here, we only consider a quite high SNR of 10 dB. Indeed, our main objective in the multi-
target case is to demonstrate the importance of taking into account the spatial coherence
in the very specific case where targets are close to each other and their contribution in
the likelihood mix rather than to determine the performance according to the SNR as in
the mono-target case. Considering low SNR target would make difficult to determine if
potential particle filter divergences are due to the low SNR or to the target contribution
mixing in the likelihood.

4.5.2.2 Multitarget particle filter

For the simulation, we consider here the particle filter proposed by Kreucher et al.
[KKHO05]. We assume that the number of targets is known since the objective here is
to measure the effect of the likelihood computation on the particle filter for two close
targets. Therefore, Ny, = 2 and the particle state is defined as x} .y = [x} ,x},]",
where XZJ and XZQ are the single state vectors of the first and second targets respectively
of particle p, p € {1,...,N,}. Note here that no presence variable is considered (the
presence of the two targets is known a priori by the filter) and thus this filter performs
tracking only but cannot perform detection. This choice was motivated in some extent by

the computational cost induced by a multi-target filter performing detection and tracking
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in a TBD framework and the difficulty to consider simple understandable performance
criteria in that case. In the following, we detail the instrumental density used in the
particle filter.

At step k = 0, each particle target state Xﬁi is initialized from the actual target state
according to the following procedure:

e For the position, a Gaussian noise with variance o2 is added to the actual target

range ro; = /o3, + y2, and a Gaussian noise with variance o} is added to the true

target bearing 6p,; = arctan <%>

e The velocity is initialized around the true velocity in Cartesian coordinates by
adding a Gaussian noise with covariance matrix o2I,.

For the particle propagation, we consider two cases:

e Either for each particle, state xj ., verifies (4.10). Then, the likelihood for each
target state XZZ- can be computed separately and we propose to use the Independent
Partition instrumental density (IP) [KKHO5], i.e. sample the state of the particles
according to the distributions defined by the likelihood of each target.

e Or hypothesis (4.10) is not verified for all the particles and (IP) cannot be used
any longer. In that latter case, we just propagate particles according to the prior
distribution Eq. (2.6).

4.5.2.3 Calculation of probability of track loss

The probability of track loss is evaluated from N,;c Monte Carlo simulation with the
following procedure: at each time step k and for each target, we compute the binary loss

variable
T

o Thi T Thi — Thi
1 if P >,

lei = ém — O ékz — Ok (4.54)

)

0 otherwise,

L

where 74 ; = /23, + U3 ;> Ok = arctan (i”;), P— |2 1 and o = 5.99 is the value
’ v
0

of the quantile function of the chi-square distribution with two degrees of freedom eval-
uated at 0.95. In other words, at each iteration, we check if the position estimator for
each target is located within the 0.95% confidence ellipse around the true target position.
Finally, a track is declared to be lost if at least one of the variables [ ; equals 1 during at
least five consecutive iterations. We define by f,, the loss variable for the m — th Monte

Carlo run that takes value 1 if the filter failed to track the two targets during all the experi-
Nye
1

ment and 0, otherwise. Then, the probability of track loss is given by onss = Z fm-
Nue “—~




Simulation and Results 139

4.5.2.4 Calculation of the Root Mean Square Error (RMSE)

The mean RMSE of the two targets is estimated from Njy;c Monte Carlo runs with the
following procedure: at each iteration, we obtain an estimator of the target state for each
target provided by

N
1 p

. b

Xppi = _Np pgl Xy 1 €4{1,2},

and we associate each estimator to a target such that the sum of the Euclidean distances
between the estimates and the actual state is minimum. Finally, the RMSE is computed
at each iteration k for simulations where both targets have not been declared lost (i.e.
la = 0 and [ 5 = 0) by taking the mean RMSE of the two targets over these simulations.

4.5.2.5 Simulations

The particle filter is performed with the following parameters: 7 = 1s, ¢; = 1073,
02=36x1073 05 =1.022x107%, 02 = 0.01 and 02 = 0.1. Parameters for the simulation
of the radar measurements are the same as for the monotarget simulation, except for
the radar window for which we take r,,;, = 100km, r,,,. = 150km, 6,,;,, = —20° and
Omin = +20°.

Then, as for the monotarget case, performance is evaluated for the three different
ways to calculate the likelihood already defined, i.e. "Coh Sq-Mod", "Non Coh Sq-Mod"
and "Coh Comp". A fourth one is also used and denoted by "Exp Sq-Mod" (Expectation
Squared Modulus) and corresponds to the case where the expectation of the non-centrality
parameter is taken to compute the likelihood. Note that for the Swerling 0 case there is
no interest of using the "Non Coh Sq-Mod" method since "Coh Sq-Mod" method requires
integration only over N, — 1 phases, therefore we replace this last method by the "Coh
Lap" (Coherent Laplace), where the likelihood is calculated via its Laplace approximation
(see 4.4.1.1).

When the particle states XZJ and XZQ are well separated, the likelihoods are calculated
in closed-form according to the corresponding monotarget likelihood expression. When
particle states are too close to each other to be assumed disjoint, the likelihoods are
computed according to the multitarget likelihood expressions. When this computation
requires a numerical integration, this integration is done over 10 points for each parameter.
This small number of integration points is explained by the overall computational cost
induced when several parameter dimensions are involved.

Estimation performance The performance in terms of RMSE in position and velocity
is presented in figures 4.8, 4.9 and 4.7 for the Swerling 0, 1 and 3 models respectively.
First we observe that in all cases, "Coh Comp" provides the best performance. Then,
the difference between the "Coh Sq-Mod" and "Non Coh Sq-Mod" is quite small so that it
does not seem relevant to take into account the spatial coherence of parameters pj 1.n, and
©r.1:n, With squared modulus (at least for relatively high SNR). An other important point
is to compare the computational time with respect to performance. Thus, in Swerling 0
the "Coh Lap" method is approximatively six times faster than "Coh Comp" with almost
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Figure 4.7 — Monte Carlo simulation results in a multi-target setting with the Swerling 3
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Figure 4.8 — Monte Carlo simulation results in a multi-target setting with the Swerling 0
model. Top: RMSE in position. Bottom: RMSE in velocity.

the same performance. Likewise, in Swerling 1 and Swerling 3, the "Non Coh Sq-Mod"
method is approximatively 60 times faster than "Coh Sq-Mod". Finally, note that the
RMSE in velocity increases when targets are close. This can be explained by the fact that
the likelihood does not depend directly on the velocity.

Track loss performance We present in Table 4.3 the probability of track loss for
fluctuations of type Swerling 0, 1 and 3. For all the Swerling models, the track-loss is

Probability of track loss
Swerling 0 | Swerling 1 | Swerling 3
"Coh Comp" 1.5x107%2 | 1.6 x 1072 | 1x 1072
"Coh Sq-Mod" 14%x107%2 | 31x107%2 | 1.9 x 1072
"Non Coh Sq-Mod" | not defined | 4 x 1072 | 1.5 x 1072
"Exp Sq-Mod" 24 x107% | 6.9 x 1072 6 x 1072
"Coh Lap" 1.5 x 1072 | not defined | not defined

Table 4.3 — Estimated probability of track loss for the different multitarget particle filters
with Swerling 0, 1 and 3 fluctuations.

minimum for the "Coh Comp" method, but the "Coh Sq-Mod" and "Non Coh Sq-Mod"
methods are relatively close to it. The poorest performance is obtained with the "Exp
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Figure 4.9 — Monte Carlo simulation results in a multi-target setting with the Swerling 1
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Sq-Mod" method where the likelihood is computed with a rough approximation but has
the advantage to be much more faster than "Coh Sq-Mod" and "Non Coh Sq-Mod".

4.6 Conclusion

In this chapter, we have investigated different methods for computing the likelihood in a
radar Track-Before-Detect context. In practice, the likelihood of the complex measure-
ment depends on the unknown complex amplitude parameters of the targets that must be
marginalized. We have shown that closed-form expressions can be obtained in the mono-
target case for the Swerling models 0, 1 and 3. In the multitarget case, a closed-form
expression can be obtained only for the Swerling 1 case; for the others models, we propose
some possible approximations to alleviate the computational time and it may be interest-
ing to investigate other approximations that may lead to faster computational time while
preserving acceptable performance. We have also considered the case where the data are
the squared modulus of the complex measurements. In that case, no closed-form can
be obtained and approximations must be performed. Finally, we have demonstrated via
Monte Carlo simulation the benefits of taking into account the spatial coherence of the
complex amplitudes both in detection and in estimation compared methods that work on
the square modulus of the complex signal. The main conclusions that can be stated based
on this work are the following:

e In a TBD context, complex measurements should be used whenever they are avail-
able since it appears that the phases information is very important to improve the
performance.
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e Multitarget likelihood are not simple to compute except for the particular Swerling
1 case. Thus monotarget likelihood should be computed whenever it is possible to
factorize the overall joint density.
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Chapter 5

Multitarget Bayesian filter in
Track-Before-Detect

5.1 Introduction

In chapter 2, we outlined the classic state model for the TBD problem in a monotarget
setting where a variable s, (taking value 0 or 1) is used to model the presence or the
absence of the target. It seems natural to extend the monotarget model to the multitarget
setting by considering a process (Ny, X 1:n,),cy Where Nj is the number of targets and
can take values greater than one. In particular, Kreucher et al. follow this approach
[KKHO5|] to propose a multitarget particle filter allowing to track several targets in a
TBD context. However, their solution suffer from difficulties that may be hard to handle
in some situations ; in particular it requires a clustering step in order to sample and
estimate the different target states. Moreover, their solution does not fully exploit the
particular structure of the likelihood when targets are far apart from each other (see
Eq.(4.13)).

Therefore, our main goal, in this chapter, is to propose an alternative strategy allowing
to process targets independently (i.e. one filter per target) when they do not interact in
the likelihood. Thus, we propose, in section 5.3 to consider the following extension of
the monotarget model (sk,1.n,, Xk,1:n, ) ey — Where N is the maximum number of targets
assumed known — from which we show that each target can be processed independently
when they are far apart from each other.

From this model, we then propose in section 5.4 three different particle filters: A
first one for detecting the appearance of several targets, a second one to manage the
disappearance of several targets and a last one that combines the two previous particle
filters in order to manage both the appearance and the disappearance of several targets.

Finally, in section 5.5, we show via Monte Carlo simulations the ability of this strategy
to track several targets in a TBD context on simple scenarios.

5.2 Classic Multitarget Bayesian Filter

The measurement model for the multitarget case has already been widely presented in
Chap. 4. Therefore, we only present here the multitarget state model, the theoretical
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Bayesian filter and its particle approximation.

5.2.1 Multitarget State Model

In chapter 2 and chapter 3, the state model for the monotarget case was extensively
detailed, while in chapter 4, N, targets were considered in order to provide the multitarget
measurement equation (4.1) but no prior model was outlined. Thus, in this paragraph,
the state model (or prior model) will be detailed for the multitarget case and classic
assumptions made in the literature will be provided.

As in the monotarget case where the presence or absence of the target is unknown, in
the multitarget case the number of targets is unknown. It is then necessary to model this
ignorance. A natural solution is to consider, as in the monotarget case (see section 2.2),
an hybrid process (Nk,xm:Nk)keN, where N;, € N is the number of targets and xy 1.n,
is the multiple target state vector provided by the concatenation of all individual target
state vectors Xg;, 4 € {1,2, -, Ni}, ioe. Xp1n, = [Xh 1, Xfo, - ,xiNk]T. Note here that
the size of the state vector is random since it depends on the random variable ;. Lastly,
when Nj = 0, the multiple target state vector xj 1.0 is defined as the empty set &.

In a Bayesian perspective, the process (Ng, X 1.5, ) ey 18 assumed Markovian and its
joint density can be factorized as follows:

k
p (NO:kaxo:k,l:Nk> N07X0 1:No Hp Ny, x0:N, | N171,X171,1:Nl,1) . (5.1)
=1

Thus, it is entirely defined by its transition probabilities p (Nk, X 1:N, | Ni—1, Xk_Ll:Nk_l)
(that will be assumed independent from time index %k in the sequel) and the density
p (No,X01:n,) at step & = 0. In practice, it is often convenient to factorize the transition
probability as in the monotarget case, first by considering the number of targets Ny
and then by expressing the evolution of process x¢ .y, conditionally to Nj and Nj_;.
Mathematically, this leads to consider a transition probability density with the following
form:

p (Nkaxk,lsz | Nkflaxk,lsz,l) :p(Nk | qu)p (Xk,l:Nk | N, Nkflaxkfl,lsz,l) . (5.2)

The process (Vi) is @ Markov chain, which allows to handle several target appearances
or disappearances at each iteration. However, in practice, a simpler model which considers
the appearance or disappearance of only one target at each iteration is often used [KKHO05|.
For this latter model, the process (Ny), oy is an integer-valued random walk: i.e.

Nk - Nk,1 -+ €L, (53)
where (€;),cy is an i.i.d sequence taking value —1, 0 or +1. Therefore, the probabilities

p(Ne=Np1+1[ Npa) = p (e = +1) = B, (5.4)
p(Nk:Nk_l—l | Nk—l) :p(ek:—l) :Pd, (55)

do not depend on N,_; and correspond respectively to the classic birth and death event
detailed in Chapter 2. In the same manner, the probability

pP(Npy=Ny_1| Nyo1) =1—F,— Py (5.6)
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does not depend on Nj_; and corresponds to the case where non target has appeared or
disappeared.

Concerning the transition density p (Xk,lsz | Ng, Ni_1, Xk_Ll:Nk:—l)’ one hypothesis of-
ten encountered in the literature consists in considering that the different target states
are independent. Thus, depending on the values of N, and N, _q, the transition density
can be expressed as follows:

Ny,
[T Pe (xia | x1-10), if Nj, < Ni—y
P (X1 | Niy Noot, Xe—100v, ) = 4 N
Do (Xk,Nk) H Pe (Xk,l | kal,l)a if N, > Ni_1,
=1
(5.7)

where p. (.) and py (.) are respectively the continuing and birth densities detailed in section
2.2.

5.2.2 Theoretical Bayesian Filter

In the multitarget state, the theoretical Bayesian solution is not as simple as in the
monotarget case (see section 2.4) where the discrete parameter s can only take two values
(0 and 1), since here the discrete parameter Ny belongs to N. However, the multitarget
theoretical Bayesian filter still follows the two-step recursion: propagation and update.
The aim here is to calculate recursively the posterior density p (xx1.n,, Nk | Z1.%). From
section 1.2.2, this latter can be rewritten as follows:

p<Xk,1:Nk7 Ny, \ Zl:kfl)p<zk | Xk,l:Nk)

p(Zk | Z1;k71) . (5.8)

p(Xk,lsza Nk | Zl:k) -

This last equation allows to calculate the probability that exactly [ targets are present
thanks to the following marginalization:

p(Nk =1 \ Zl:k) = /p<xk,1:laNk =1 \ Zl:k) dXp, 1.1, (5-9)
and, of course,
+o0
S p(Ne=1]21) =1 (5.10)
1=0

Concerning the predicted density p (Xx1.n,, Vi | Z1.k—1), it is obtained by the Chapman-
Kolmogorov equation:

P Xk, Ni | Z1e-1) = Z P (Xk—1,1:8 1 Moot | Zrg—1) ¥
Ny _1=0

(5.11)
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5.2.3 Particle filter approximation

A particle filter approximation of the theoretical Bayesian filter was proposed by Kreucher

et al. in [KKHO5|. Their solution is a generalization of the classic monotarget TBD parti-
o N

cle filter detailed in section 2.4: they consider a set of IV, particles { <N,§, X, 1-Ni) ,w,@} ’ ,

, AN i=1

where in that case N} belongs to N, while in the monotarget case the corresponding vari-

able s, could only take values 0 and 1. Thus, an approximation of the posterior density
p (Xk,1;Nk, Ny, \ Z1;k) is given by

NP
p(xk,lszaNk | Zl:k) ~ szlﬁ(;x;c LN (Xk,lsz)- (5-12)
i=1 Tk

Note here that this particle approximation contains particles with different dimensions
since the number of targets per particle may be different.

The first step in the sequential computation of the posterior density p (xx 1.3, Vi | Z1:%)
from the density p (kal,l;]vkil, N1 | zl:k,l) at step k—1 consists in drawing the variable
Ny, for each particle according to an instrumental probability law ¢ (Ny | Nx_1,2;) — in
practice, this instrumental probability law is often chosen to be the prior. Recall here that
in the proposed model N;, can take only three values', i.e. Ny_; — 1, Ny_1 or N1 + 1.
Then, the particle states XZ,LN,@ are propagated according to an instrumental density
q (Xk,lsz | Nk, Nk—1, Xk—1.1:N,_4 » zk). Whereas there is no restriction on the choice of the
instrumental density, it seems reasonable to choose an instrumental density that has the
same structure as p (Xk,I;Nk | Nk,qu,quJ:Nk,l) (defined in Eq. (5.7)). Under that
hypothesis the weights are updated according to the following equation:

Ny,
Pe (Xk,l | kal,l) if N, < Nj_;
i p(NEINL) i e (X | X1, 21). ) |
Wy X Wg_q Ni | Ni x N1
q (N} | Ni_y ) po (Xk,n;) Pe (Xt | Xp-11) if N, > Ny,
- -~ v RZ ) -1
b (Xk,Nk | Zk) P qc (XkJ | Xk_l,lazk)
(5.13)

Finally, these weights are normalized and a resampling procedure is performed, if required,
as in the generic particle filter (see Chapter 1, Algorithm 1.1). A pseudocode of a single
cycle of the current particle filter, which is called the Classic Multitarget TBD Particle
Filter, is described in Algorithm 5.1.

5.2.4 The invariant permutation problem

An important feature that has not been discussed yet complicates the estimation of the
target states: the multitarget posterior density function is invariant under any permu-
tation of the target index [KKHO05|. For instance, if the multitarget state contains two

1 As mentioned before, a more general law could be considered for Nj. However, we restrict here to
this case to detail a quite simple particle approximation. The extension to a more complicated model
for Ni can be derived from the proposed one. Note, nevertheless, that this kind of model may lead to
practical issues; in particular, it might be more difficult to initialize properly several new target states at
each iteration.
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Algorithm 5.1 Classic Multitarget TBD Particle Filter

. . . NP
Require: Particle cloud {(Nléfl’XZq,LN,g_l) ’wi*l}zﬂ at step k — 1,
1: for i =1 to N, do
2:  Draw N} according to the probability law p (N | Ni_;)
3: if Ny > 0 then
4: Draw XZ,LN;’ ~ q <Xk,1;Nk | N}, N’z—l’xz—l,lzN,i,l’ zk>.
5 end if
6:  Update particle weight w according to Eq. (5.13)
7: end for ,
8: Normalize weights: w! < %wl’ t=1,--- N,
9: Compute Nog according to ]i]_ci IEI.98).
10: if Ne.g < Nt then
11:  Resample N, particles
12:  Reset weights: w] < Nip, i=1,---,N,
13: end if
. . . NP
14: return {(Nlivxz,uvlg) ,w,@}iZI

individual target state vectors, the posterior density has the same values whatever the
order of the target state x;; and xy, 9, t.e.

P (X1, Xk | Z1k) = P (X2 X1 | Z1k) - (5.14)
Therefore, the posterior particle approximation might provide particles with states Xi,m =
[(X?l)T, (X272)T]T Or Xj, 1.5 = [(X};’Z)T, (X%l)T}T as illustrated in Figure 5.1. This may not
be a problem as long as only the density is considered. However it may become problematic

if one wants to estimate the multitarget states, for instance using a classic estimator, as
follows:

1 & 1 !
Xp12 = N Z(X;c,l)Ta N Z(XQ,Q)T : (5.15)
P = P =1

In order to properly estimate the individual target states, it is then necessary to sort the
particle state vectors and to partition the state vectors [KKHO05| so that the individual
target states in a given partition all refer to the same individual target state. In practice,
these partitions may be created via a clustering algorithm (such as K-means [HF09]) over
the particle state positions.

Moreover, sorting the particle states in ordered partitions may be necessary when
using more sophisticated instrumental densities than the prior. Now, the prior is not
very efficient in the multitarget case because it blindly samples the general target state
without considering the weight of each individual state. Such a strategy tends to create
particle states where some individual states sample efficiently the real target state while
the others provide worse estimates. This will then spread the particle states over non
interesting areas of the multitarget state space.

On the contrary, using partitions enables to consider specific instrumental densities
that sample target states individually when target states are sufficiently far apart to be
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radar window

Figure 5.1 — Illustration of the invariant permutation problem. In green, particles with
particle target state x} ., = [(x})7, (XZ,Q)T}T while in magenta, particles with particle

T
target state Xfﬁ,m = [<X272)T, (xﬁml)T} )

considered independent, or by smaller sets of partitions in the case of close targets. This
will thus improve the efficiency of the target state sampling. Such a strategy was proposed
in [KKHO05].

5.2.5 Instrumental densities for the multitarget particle filter

As in the monotarget case, the choice of the instrumental density is crucial to obtain
acceptable performance with as few particles as possible. In the multitarget case, as
Kreucher et al. mentioned in their paper [KKHO05|, the prior density corresponds to a
simple and "naive" solution in order to propagate the particles but, in the other hand, it
requires considering a very large number of particles in order to properly sample all the
possible combinations between the individual target states.

Therefore, some instrumental densities were proposed in the literature to efficiently
propagate the multitarget particle state. The first one was proposed by Orton et al.
[OF02] and is called the Independent Partition (IP) method. It allows to propagate
partitions that do not overlap in an independent manner. The mechanism consists in
sampling each particle target state in a partition according to the prior p. (xk,t | Xi,tq)
where ¢ is the partition number. Then, a discrete density is constructed from these particle
states where the weights are provided by the likelihood of the sole partition ¢, i.e.:

q (Xpt | z1) Zbkt (Xp.t) (5.16)

where,
—+o0
x / / Zarxi Pk ts Prt)D(Pr) PPt} APk 1P (5.17)
0 0

and Z,, x, (., .) is detailed in Eq. (4.12). Finally, N, states xj , are sampled from the den-
sity ¢ (X | zx). Note here that since the prior is no longer used, an additional weighting
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term given by is induced for each partition in the calculation of the particle weights.

1
o
When some kf)tartitions overlap, Kreucher et al. proposed an other method called the
Coupled Partition (CP) method. For each particle i in partition ¢ included in the set of R
overlapping partitions, M individual states are sampled from the prior p. (Xk,t | Xis,tfl)'
Then, a discrete density is built over the M sampled states in the same manner as in the

IP method, i.e.

M
q Xk | z1) Z T ) (5.18)
m=1
where,
—+00
[ OC/ / Ezk,xk,t(/)k,m@k,t)p(SOk,t)p(/)k,t)d@k,tdl)k,t- (5.19)
0 0

Finally, the new state Xi,t is sampled from the discrete density in Eq. (5.18). The main
difference with the IP method is that here the discrete density in Eq. (5.18) is calculated
for each particle while in the IP method only one discrete density is computed over all
the particles in the partition.

Lastly, an other important aspect that can be taken into account via the instrumental
density is the management of target births and deaths. Indeed, we have seen in Chap. 3
that the solutions developed for the detection of target appearance or target disappearance
are quite different. In particular, detecting a target appearance in a large radar window
seems more demanding than detecting the disappearance of a single established track,
and in particular it requires more particles. Therefore, most of the solutions proposed in
the literature consider a two-layer particle filter [GF11]:

e a first filter to detect target disappearances;
e a second filter to detect target appearances.

These two filters are managed by two different instrumental densities. As in the mono-
target case, the most important difficulty consists in conveniently sampling the positions
of the new targets at each iteration. Garcia-Fernandez in [GF11] proposed to initialize
new pre-tracks only in the cells that exceed the threshold v = —20%log (Py,). Then each
initialized pre-track is maintained during N}, iterations; at the end of these N}, iterations,
a statistical test is performed in order to declare if the track is an actual track or a false
track. Then all the confirmed pre-tracks are provided to the second layer of the particle
filter that propagates the particles using the TP or CP method and manages the track
disappearances thanks to a statistical test.

5.2.6 Drawbacks of the existing solutions

The above Bayesian modeling presents the advantage to be very general and can han-
dle almost all the situations encountered in the multitarget case. However, the practical
implementation of the particle approximation might require a very large number of par-
ticles to ensure acceptable performance. Indeed, if no effort is made to carefully sample
the individual target states, the particle approximation may require a lot of particles to
properly sample all possible combinations of target states and numbers of targets.
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Concerning the IP and CP methods, one major drawback of these two approaches
is the need for creating partitions via a clustering algorithm (for instance the K-means
algorithm) that may fail to properly sort out the different partitions, in particular in
the presence of newborn targets uniformly distributed in the radar window mixed with
already clustered existing targets. Moreover, the K-means algorithm requires the prior
knowledge of the number of clusters while this number is unknown, it is possible to use
well-known criterion such as AIC (Akaike Information Criterion) or MDL (Maximum De-
scription Length) in order to select the number of cluster in the K-means algorithm, but it
would increase the already very heavy cost. An other disadvantage of these instrumental
densities is the specific resampling procedure performed for each partition ¢ from the dis-
crete density in Eq. (5.16). First, performing this resampling procedure at each iteration
might be costly. Then the weights of the discrete instrumental density are only calculated
from the current measurement z;, and thus do not take into account the particle weights
at previous step. For high target SNR this will have no consequence. However at low
SNR, a noise disturbance may lead to sample most of the particles in a wrong area of the
state space.

Lastly, the independence of the targets is taken into account only in the instrumental
densities but not in the structure of the Bayesian filter itself. Indeed, most proposed
solutions calculate a weight for the multitarget state vector rather than a weight per indi-
vidual target state, even for sufficiently far away states that may be assumed independent.
This may lead to problematic cases where some partitions of a multitarget particle prop-
erly sample some of the existing targets while the other partitions do not; the resulting
overall weight will tend to underestimate the importance of the well-fitting particles while
overestimating the importance of the misfitting particles, and thus bias the estimation.
For instance, in the illustration presented in Figure 5.2, the contribution of particle X};’l
to the target state estimation of x;; will be small (because the overall weight is penalized
by the partition Xfw) even though it properly samples the target state x ;.

5.3 A new approach for the multitarget Track-Before-
Detect problem

The solution detailed in the previous section considers the overall multitarget state. How-
ever, targets far away from each other can be processed independently. Therefore, the
aim of this section is to propose a solution that consists in using, whenever it is possible,
one particle filter per target rather than an overall filter that samples all target states.
A first solution was proposed by Vo et al. in [VVPS10]. In this paper, the authors
consider the TBD multitarget problem in the framework of the Random Finite Set (RFS)
theory. In particular, Vo et al. show that, when considering a particular structure for
the likelihood of the measurement conditionally to the random target set, the posterior
likelihood can be factorized, thus allowing to process the targets independently. However,
the RFS framework used in that paper is not necessary to establish such a property. We
propose here an approach based on a probabilistic framework, and in particular a new
model that allows to factorize the multitarget posterior density as the product of the
individual target posterior densities. Finally, we have seen in Chap. 3 that it could be
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Figure 5.2 — Scheme illustrating the fact that although particle single target states x;_1 1.2
are sampled independently, the resulting multitarget weight wi may be small if one of the
single particle target state is badly drawn.

interesting to separate the detection of the target appearance from the detection of the
target disappearance. We follow this idea in the multitarget setting.

5.3.1 A new Multitarget State Model

In section 5.2, the number of targets was managed through a variable N, belonging to
N. This would theoretically allow to manage an infinite number of targets. However,
in practice, the number of targets may often be limited to a finite number N, (first a
very large number of targets is very unlikely, and second the capacity of the reception
chain to process a large number of targets is usually limited). Furthermore, we saw in
the previous multitarget model that the targets are linked via the weight equation (5.13)
even if they are assumed to behave independently (see Figure 5.2). Therefore, we propose
a new approach that considers a collection of individual TBD target states (i.e. (sx, X))
rather than the overall multitarget state (Ny,xj1.n,). This different state model will
allow, under some conditions on the likelihood p(zj | Xy 1.n, ), to factorize the posterior
multitarget density as a product of individual target state densities.

To this purpose, let us define by (sg1.n,, Xk 1.n,) the hybrid multitarget process con-
stituted of a collection of N; single target states. The idea is now to derive the prior
model so that it factorizes as a product of single prior models. The multitarget transition
density for this multitarget model can be factorized as in Eq. (2.2), leading to consider
as transition density:

p(Sk,I:N“Xk,I:Nt \ Skfl,lzN“kal,l:Nt) =

(5.20)

p<3k,1:Nt \ Skfl,l:Nt>p<Xk,1:Nt | Sk—1,1: Ny » Sk,l:N“kal,lth)-

Then, by assuming as in the classic multitarget prior model that the single target processes
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(Sk.i» X ;) are independent for any k, the transition probability density factorizes as follows:

Nt
p(sk,lthaxk,lth | Sk—1,1:Nt,Xk—1,1:Nt) = HP(Sk,z‘ | Sk—l,i)p(xk,i | Xk—1,iy Skyi Sk—m),
i=1

(5.21)
while the multitarget state density at step k£ = 0 is given by:
Nt
P (50,1:3,, X0,1:8, ) = Hp (50,i) P (X0, | S04) - (5.22)
i=1

5.3.2 Measurement equation and likelihood for distant target

The measurement equation for the proposed model is similar to the one detailed in section
4.2 with the incorporation of variables sy 1.n,, €.
N
Zj = Z Sk.iPki€ PEh (X ;) + 1. (5.23)
i=1
Clearly the factorization of the likelihood in Eq. (4.13) also holds with the addition
of variables sy 1.n,: by incorporating the variable s; 1.y, in Eq. (4.4), the measurement
likelihood is given by
Ny,
P (Zk | Xk, 1:Ny, > Sk,1:Nys Pk, 1:Ny s Pk, 1:N, ) OC XD {—Z sk,ipr i T hy i+
i=1

Ny,
ZQ‘Skvilgk,”th,iFilZH cos (¢r,i — Ekyi) —
=1

Ne Ny
Z Z 251,iSk,1Pk.iPk i T | cos (ori — o — ¢k,u)} )
i=1 I=i+1

(5.24)
where &.; = s.; arg (hgif_lzk) and @p ;i = SiiSkarg (hgif_lhkvl).
Let us define, as in Eq. (4.12), the following function:
i (st iy ) PEANG Pl liNg) = P (Zk | X 1Ny Sk 1:Nes PR, Ny 9B, 1N - (5.25)

Then,

P (2Zk | Xk1:N,s Sk,1:N,) = /---/Ezk,(sk,mt,xmm)(Pk,l:NtasDk,LNt)p(%,i)p(ﬂk,i)dﬂk,l:mdsﬁk,lth-
(5.26)
As in section 4.3.1, under assumption
’hguF’lhk,U’ ~ 0, for any (u,v), u # v, (5.27)
all the cross terms in Eq. (4.4) can be discarded, and the likelihood function can be
expressed as a product of functions that only depend on variables (s ;, xx ;)%
N

P (Zk| Sk, 1.0, Xk,1:0v,) O l_Igz,c (Skyis Xai) » (5.28)
i=1

2Note that, for the sake of simplicity, we do not consider the additional static parameter ¥J; for the
density of amplitude pj ;. The extension to this model does not present any difficulty.
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radar window

Figure 5.3 — Illustration of the non-interacting hypothesis for different values of (xj 1, Xy 2).
For the couple (x.1,Xy2) in red the hypothesis is verified since target states are far away
from each other, while for the (x} ;,x},) in green the hypothesis is not verified since
target states are too close.

with

+o00 2m
Gay, (Skir Xki) = / / Ezk,<5ki7xki)<pk,ia ©r,1)D(@r,0)P (ki) dpr,idpri, (5.29)
0 0 T

and

Ezk,(sk,l,xkyl) (pk,la ka,l) -
exp {—p ;T ™y + 2ppi Wil T " 2] cos (prs — &ra) f o i sk = 1, (5.30)

1 if s, = 0.

Y

Lastly, note that this factorization is only true for particular values of target states
(Sk,1:N;» Xk, 1., ) and might not be verified for other combinations (S;c,l:Ntv x}ml:Nt). Indeed,
for instance, let us assume that the target state x; 1 belongs to a set C, ; while the target
state x; 2 belongs to a set ka,2' Thus, it may happen that some couples (xj1,Xg2) €
Cx,., % Cx,, verifying the non-interacting hypothesis in Eq. (5.27) allowing to factorize
the likelihood, while for some other couples (xj ;,x},) the non-interacting hypothesis
in Eq. (5.27) is not verified. This point is illustrated in Figure 5.3. Therefore the
condition of non-interacting target states in Cy, , and Cx, , should not be confused with

Cy ﬂka’Q = & but can rather be defined as follows:

for any (xg1,%r2) € Cxy X Cxyss hﬁlf_lhk,Q‘ ~ 0. (5.31)

5.3.3 Theoretical Bayesian filter for non-interacting targets

The aim of this section is to demonstrate that, when the likelihood py,  (zk[sk 1.5, Xk 1:3,)
can be factorized as in Eq. (5.28) at each iteration step k and for any value of (sy 1.n,, Xk.1:n,),
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then the multitarget posterior density p (sk.1.n,, Xk 1:n, | Z1:x) factorizes as a product of sin-
gle target state posterior densities, i.e.

N
P (Sk, 180 Xpe, 1y | Z1k) = Hp(sk,i,xk,i | Z1k) - (5.32)
i=1

This can be proved by a mathematical induction. To this purpose, let us assume that
for any £ € N, the likelihood factorizes as in Eq. (5.28) for all possible values of
(Sk,1:Ny» Xk, 1:n, ). First, by definition of the state model in section 5.3.1, we have

N
p (30,1:Nt7 Xo,lth) = Hp (SO,i7 XO,i) . (5-33)
i=1

Thus, the property is verified for & = 0. Now let us assume that the property (5.32) is
true for a given integer k. By definition of the Bayes filter, the posterior density at step
k + 1 can be rewritten as follows:

p (3k+1,1:Nt7Xk+1,1:Nt | Zl:k)p (Zk+1|5k+1,1:Nt7Xk+1,1:Nt)
P (Zuy1 | Z1k)

p(8k+1,1:Nt,Xk+1,1:Nt | Zl:k+1) =

9

(5.34)
where the predictive density is obtained via the Chapman-Kolmogorov equation:
p(3k+1,1:Nt7Xk+1,1:Nt | Zl:k) = Z p<5k,1:N“Xk,1:Nt \ Zl:k) X
sk,17"'7sk,Nt (5.35)
p (3k+1,1:Nt7 Xk+1,1:N¢ | Sk,1:N¢» Xk,l:Nt) ka,l:Nta
and the normalization term p (zy,1 | Z1.x) is provided by
p(Zk+1 | Zl:k) = Z p(8k+1,1:Nt,Xk+1,1:Nt | Zl:k) X
Sk+1,15""" sSk+1,Ny (536)

p (Zk+1 |5k+1,1:Nt> Xk—}—Ll:Nt) ka+1,1:Nt-

We will demonstrate that both the predictive density and the normalization can be fac-
torized as a product of single target state functions which will straightforwardly imply
that the posterior density at step k + 1 also factorizes.

Let us start with the predictive density at step k + 1. Using the factorization of the
posterior density in Eq. (5.32) at step k for the state x;; and the factorization of the
transition density in Eq. (5.20), this latter can be rewritten as follows:

p(sk—l—l,l:Ntan—l—l,l:Nt | Zl:k) = Z /p(sk,laxk,l | Z1:k)p(5k+1,1,Xk+1,1 | Sk,1,Xk,1) X

Sk,1,"" 7sk,Nt

p(sk,zth,Xk,zth | Z1:k)p(Sk+1,2:Nt,Xk+1,2:Nt | Sk,Q:Ntaku:Nt) ka,l:Nt-

(5.37)
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Then, the integration over x; ; and s, ; can be separated from the variables (s 2.n,, Xk 2:n,)
leading to

p(SkJrl,lthanJrl,l:Nt \ Zl:k) = Z/p<3k,laxk,l | Zl:k)p<3k+1,laxk+1,1 \ Sk,17Xk,1) ka,1

Sk,1

X E p(sk,2:Nt7Xk,2:Nt | Zl:k)p<3k+1,2:Nt7Xk+1,2:Nt | 3k,2:Nt7Xk,2:Nt> ka,2:Nt-
Sk,2,""" »Sk,Ny

(5.38)

Finally, marginalizing over sj412.n, and Xz 2.n,, it comes

p(3k+1,1,Xk+1,1 \ Zl:k) = Z/p(sk,laxk,l \ Zl:k)p(SkJrl,lanJrl,l \ 8k,17Xk,1) ka,l; (5-39)

Sk,1

allowing to write the predictive density p (Sg+1.1:n,s Xk+1,1:N, | Z1:k), by substituting Eq.
(5.39) in Eq. (5.38), as follows:

D (Skt1,1:N0s Xt 1,1:N; | Z1:k) = D (k1,15 Xk 1,1 | Z1:k) P (Ske1,2:80, Kb 1,28, | Z1k) - (5.40)

This last equation indicates that the target state with index 1 is independent from the
other states. Of course, the reasoning from Eq. (5.37) to Eq. (5.40) can be iterated for
other targets. Thus, the predictive density can be rewritten as the product of the single
state predictive density, i.e.

N

p (5k+1,1:Ntan+1,1:Nt | 21.) = Hp (8k+1,i,Xk+1,i | Z1.5) - (5.41)
i=1

In the same manner, using the factorization of the predictive density in Eq. (5.41)
and the likelihood in Eq. (5.28), the normalization term p (zx.; | 1) also factorizes as
follows:

N
P (Zgs1 | 21k) = H Z /p(8k+1,i,Xk+1,i | Z1:k) Gzpoy (Sktiyis Xir1,i) AXpp1ie (5.42)

1=1 Sg41,

Therefore, using Eq. (5.42) and Eq. (5.41), the posterior density factorizes as

p(SkJrl,lthanJrl,l:Nt \ Zl:k+1) =

Nt
H p(SkH,z,XkH,z’ \ Z1;k)gzk+1 (8k+1,¢,Xk+1,¢)
paley ZSHM J 0 (Ski1s Xitsi | Z1ik) Gzsr (Skt1,is Xt 1,0) dXpog1i
(5.43)
where clearly

p (Sk+1,iuxk+1,i | Zl:k) Gz)41 (Sk+1,iaxk+1,i>

P (Sk+1,is Xk+1,i | Z1:k =
(Siatis Xirr | Zrin) 28k+1,¢ fp(5k+1,iaxk+1,i | Z1;k)gzk+1 (St 1> Xep1,d) AXpy1i

(5.44)
thus demonstrating the factorization of the posterior density at step k + 1.
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5.3.4 Theoretical Bayesian filter for interacting targets

In the previous section, we have derived the Bayesian filter when targets do not interact.
Of course some targets may interact in the likelihood (e.g. when they come sufficiently
close to each other). In this case, the factorization of the whole posterior density in (5.32)
cannot be used anymore. Fortunately, if some targets interact, it does not mean that all
the targets should be processed jointly. In fact, it is reasonable to expect that only a small
group of targets interacts while the other targets can still be processed independently. We
will formalize this more general case in the following. However, since the developments
are quite similar to the previous ones, we provide here only the main steps to extend
the factorization of the posterior density to groups of interacting targets. The complete
development can be found in Appendix C.1.

Let us first define the set of all target indexes Iy, = {1,---, N;}, and N, sets of target
indexes Iin 1, Iing, N, such that

for any (I,m) € {1+, Ng}, Linsa( ) Lintom = @, (5.45)
and
Ng
Iy, = UIint,l- (5.46)
=1
Moreover, let us assume that these sets i1, -+, ling,n, are such that, at each iteration

step k, they verify the following hypothesis:
for any (I,m) € {1,--- ,Ng}2, for any (u,v) € Lines X Lintm, }hﬁul"_lhk,v} ~ 0. (5.47)

Then, using a similar proof as in the previous paragraph, the posterior multitarget
density can be factorized as follows:

Ny

p <3k,1:Nw Xk, 1:Ny ‘ Zl:k) = Hp (Sk,fmt,w Xk Lint,i
=1

Zl:k) . (548)

On the other hand, the Bayesian filter for a group of targets I;,;; can be obtained as
follows:

- p (Skylint,ﬂxkvlint,i | Zlik—l) sz (8k7lint,i’xk7]int,i)
p (Skylint,ﬂxkvlint,i | Zl!k) - )

p (SkJmt,w Xk Iint,i | Zl!k—l) sz (SkJmt,w XkJmt,i) kaJmt,i

Sk, Iint i
(5.49)
where the function Gy, (sk.r, Xk ) (I is here any set of indexes) is equal to:
Gy, (Sk,1, X,1) = /Ezkv(sk,lyxk,1)<pk’l’ ok 0)P (1) P (Pr.1) dpr1depr 1. (5.50)

Note that here all the cross terms hﬁufflhk,v, provided that both u and v belong to I,
remain contrary to function g, (S, Xx;) in Eq. (5.29) where these cross terms disap-
peared.
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The possibility to factorize the posterior for groups of targets is one of the main
difference with the solution proposed by Vo et al. [VVPS10| where the factorization is
obtained only for single target states.

Let us finally remark that if targets in group I;,; have interacted until k£ —1 but do not
interact after iteration k, then the posterior density p (s 1,,,, Xk.1,,, | Z1.) do not factorize
as a product of individual target states, i.e.

Nlint

D (Sk L Xk I, | Z1:8) # H P (ki Xk | Z1k) - (5.51)
=1

This means that if targets have interacted in the likelihood, they are linked for any future
iteration k. Nevertheless, we could expect that asymptotically (i.e. when k — +00), the
posterior density factorizes.

5.4 Particle filter approximations

Let us now derive a particle filter approximation for the particular Bayesian multitarget
filter presented in the previous section. We propose three different particle filters:

e A first filter that manages target disappearances. The idea consists in using, when
ever possible, i.e. when targets do not interact in the likelihood, the monotarget
particle filter outlined in section 3.3; interacting targets will of course be managed
jointly.

e A second filter that manages target appearances. The key point here consists in
considering that targets appearing in the radar window do not interact in the like-
lihood. This assumption implies that the instrumental density that samples the
particle positions should be carefully designed in order to effectively provide non
interacting particle positions.

e Lastly, a third particle filter that manages both target appearances and disappear-
ances.

5.4.1 Disappearance multitarget detection particle filter

The practical implementation of the disappearance multitarget particle filter is quite long
and complex and, in particular the way to manage the interacting targets over time.
Therefore, in this section we provide only the outline of our solution. The complete
description can be found in Appendix C.2.

5.4.1.1 Single and interacting targets particle filters

Let us first detail the particle filter that manages single target disappearance and group of
targets disappearance without taking into account the fact that the target state status, i.e.
whatever the target state interacts with other targets or not, may change over time. To
this purpose, let us assume that NV, targets are simultaneously tracked at the current time
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instant. If target states xx 1.y, do not interact in the likelihood until & (i.e. hypothesis
in Eq. (5.27) is verified), the whole likelihood factorizes as a product of single target
state posterior densities (see Eq. (5.32)). Therefore, rather than approximating the
whole multitarget state posterior density with a particle filter, as in section 5.2.3, each
single target state posterior density p (sk;, Xy, | Z1.x) can be approximated either by a
monotarget particle when it does not interact with the other target filters or by a particle
filter that manages a group of interacting targets otherwise.

Concerning the particle filter for single target state, several particle approximations
can be considered. We restrict here our attention to the disappearance TBD particle filter
detailed in section 3.3, that provides the best performance.

Thus, defining I;,, as the set of single targets and using such a particle approximation,
each posterior density p (X, | z1.x) (for i € Iy,y) can be approximated as follows:

Np
P (Xni | sk =1,214) = Zwi;i(sxi’i (Xk,i) 5 (5.52)
p=1

where the weights wiyi can be calculated using Eq. (5.44) leading to

p p
» p Pec (Xk,i | qu,i)

g, (Xi,z‘ | XZ—l,z‘vZk

j o (ki =1,%3,) - (5.53)

The densities p, (XZJ. | XZ_LZ.) and g, (X%i | X} 145 z) are respectively the continuing prior
density and instrumental density for the continuing case. The probability p(sp = 1 | z1.x)
can be calculated using Eq. (3.76) (where dy, is replaced by sg).

In the case of a group of interacting targets, the target states must be processed
jointly as explained in section 5.3.4. Thus, for each interacting group of targets I, ,, the
Bayesian filter in Eq. (5.49) should be used. However, approximating such a Bayesian
filter might be difficult due to a complexity increasing with the number of targets. Indeed,
if for instance three targets interact, the filter approximation will require the calculation
of 2% probabilities p (sgr,,, | z1.x) and 2 densities p (x¢.1,,, | Sk.1,, = 1,Z14). Therefore,
for the sake of simplicity, we propose to manage the group of targets by considering that
when targets interact: p (sxz,,, = 1| 2z1.,) = 1, i.e. none of the targets can die.

For each group of targets I;,;,, we propose the following particle filter approximation:

Np
ﬁ (XkJmt,i | Skint,i — L, Zl!k) = sz’li”t’iangmm (XkJmt,i) ) (554)
p=1 ’
where
wz,i X wZ—l,iGZk (SkJmt,i = 17Xk7[int,i) : (555)

Note that in this last equation, we implicitly used the prior distribution as instrumental
to propagate the target states x; s, .. Finally, weights are normalized and eventually a
resampling procedure is performed (if needed).
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5.4.1.2 Outline of the proposed particle filter solution

The two particle filters proposed in the previous section assume that the status of each
target - whether it belongs to a single track or to a group of interacting targets - does not
change. Of course, in real applications, this status may change over time.

Therefore, at each iteration, the status of each target must be updated in order to know
if the target should be processed alone or jointly with some other targets. Furthermore,
the case of targets that have interacted in the past should also be considered. Indeed, we
have seen that such targets will be linked for all the next iterations even if they do not
interact anymore. As a consequence, for such targets, it should not be possible to use
the single target particle filter, although it allows to dramatically simplify the multitarget
tracking problem. In order to solve this problem, we propose the following approximation:

e The groups of interacting targets I, 1.n, are evaluated at each iteration, using the
method provided in section C.2.1.

e If a target (or a group of targets) previously interacted with some other targets
but does not at the current step, this target (or this group of targets) is processed
independently from other targets with the method the method provided in section
C.2.2.

In other words, this last point indicates that the interactions between targets are consid-
ered only at the current time step; the past interactions are not taken into account. Note
also the sets may differ from iteration k and iteration k—1 but the only available densities
correspond to groups defined at iteration k£ — 1. Thus, before performing the particle filter
for the sets I,y and Iin1.n,, it is first necessary to reorganize the posterior particle den-
sities from the sets at previous iteration in order to obtain the densities for sets I;,, and
Lintaings i€ D (Xp—1 | Sk—1 = 1,216-1), @ € Lying and p (Xp—1,1,,, | Sk—115000 = 1, Z10—1),
le{l,---,N,}. A method enabling this reorganization is provided in section C.2.2.

Finally, the multitarget disappearance detection particle filter can be summarized as
follows:

e First, the sets gy and I 1.n, are evaluated with the method provided in section
C.2.1.

e Then, posterior densities at previous step are reorganized in order to calculate the
densities p (Xp—1,; | Sk—1,; = 1, Z1:6-1), % € Lging and p (qu,lmt,l | Skt = 1, Z1k-1),
[ € Lint:n,-

e Lastly, the particle filter recursion is performed for each reorganized density.

5.4.2 Appearance Multitarget particle filter

For the Disappearance Multitarget particle filter detailed in the previous section, we pro-
posed to use, when possible, a particle filter per target. The same idea will be developed
for the Appearance Multitarget particle filter. However some important differences with
the previous algorithm have to be taken into account. Indeed, contrary to the manage-
ment of target disappearances where particles are already concentrated in the state-space
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around the actual target states, in the appearance case, the location of target appearances
is unknown, requiring to uniformly sample the whole state-space. Besides, in Chapter 2,
we have seen that one of the delicate point for the TBD monotarget particle filter was the
initialization of the target state (see section 2.5). Therefore, here a particular attention
should be given to the design of the instrumental density for initializing the particle target
states — with the additional difficulty that more than one target may appear in the radar
window.

In practice, designing such an instrumental density in the general case (for instance,
if several targets appear close from each other at the same time) may appear difficult
and it is often necessary to consider some simplifying hypotheses. One possibility is to
consider that new targets appear sufficiently apart from each other so that they do not
interact in the likelihood. Garcia-Fernandez in [GF11] follows this hypothesis to design
an instrumental density in order to properly initialize the particle state of birth targets
(see section 4.4.2 in [GF11]). As we did in section 2.5.1.2, he initializes particles in the
cells that exceed a given threshold « calculated as v = —202log Py, ( see Eq. (1.51)).
However, in his simulation, he chose a very small probability of false alarm Py, = 2.107°
in order to initialize only a few target states at each iteration. Such a threshold makes
difficult to detect low SNR targets and as a consequence to track them. Thus, in order
to handle such low SNR targets, we propose some extension to his instrumental density
in order to manage a larger P,.

To this purpose, in the sequel, we will assume that newborn targets appear sufficiently
appart from each other and thus do not interact in the likelihood. This hypothesis can
be exploited in two different manners in the particle filter framework:

e Either the Bayesian prior can be selected in order to prevent that birth targets
appear in the same area and interact in the likelihood. We have not investigated
this solution here.

e Or the instrumental density can be chosen in such a manner that the particle target
states do not interact in the likelihood. This second strategy will be considered in
the following.

5.4.2.1 Outline of the proposed solution

The main idea of the proposed solution consists in using one particle filter per target.
Therefore, in order to detect NN, targets, the particle posterior density approximation
should factorize as in Eq.(5.32), i.e.:

Ny
D (k1N X, | Z1k) = Hﬁ (Skyis Xni | Z1:%) 5 (5.56)
i=1

where each particle posterior density p(sy;, Xi; | Z1.x) can be calculated with the algo-
rithm developed in Chap. 2 and 3. However, for the sake of simplicity, we will not con-
sider the solution based on the target appearance time in section 3.3 since, at this point,
it seems too complex to manage multiple mixture posterior approximations. Instead,
we propose to use the monotarget particle filter of section 2.6 that allows to calculate
pezk =p(sg; =1|21x) and p (Xg; | Ski = 1,214). It should be stressed that in Eq. (5.56)
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for any pair (I,m) of targets, none of the particles of target [ can interact with parti-
cles of targets m. Indeed, if this condition is not verified, then the two targets must be
processed jointly and not independently. Thus, if particles belonging to filters [ and m

(with I,m € {1,--- Ny}, I # m) are respectively denoted by {XZJ};V; and {XZ,m};V;’
the previous condition can be expressed as:
V(p.q) € {L,--- N}, |h" (x ) T7'h (x{ )| < 7n- (5.57)

5.4.2.2 Managing the interaction between particles

A first solution to prohibit the interaction between particles belonging to different filters
consists in keeping one of the interacting particle while "killing" the other interacting
particles by setting their weight to zero.

This solution is quite radical, but insures to avoid the interacting issue in all cases and
is very simple to implement.

Finding the interacting particles with Eq. (5.57) might be quite long since it requires
to calculate the quantity ’hH (XZZ) I''h (sz)’ for all the possible pairs of particles
for filters [ and m. Therefore, in order to limit the computational resources devoted to
the calculation of interactions between particles, we propose to simplify this procedure
by working on the cell indexes (u,v) of the particle locations rather than on the scalar
products |h! (XZI) I''h (Xz,m) .

Let us define, as in Eq. (2.26), the set of neighborhood cells around the particle target
state xj ; as

Vi = {(u,v) | |up; — u| < 0., and |vp; —v| < Ong } (5.58)

where (ui o vii) is the cell location of particle x} ;. Then, we define the set of cells that
belong to the particle filter approximating the state x;; in such a manner:

NP
Leewi = | Var - (5.59)
p=1

Then, two particle filters [ and m are declared to interact if the intersection between
sets Teeny and ITeeyy, is not empty. Let us define by In ) the intersection between sets
Icell,l and Icell,ma i.e.

[gﬁn) = Leell,l ﬂ [cell,m- (560)
Finally, interacting particles for filter [ or m are killed as follows:
¥p e {1+ N}, if (uf,0f,) € 1™ then wf, = 0. (5.61)

As some weights may have been set to zero, the weights w} , for filter [ must be renormal-

ized so that Z;}V:pl wy, = 1.

5.4.2.3 Proposed instrumental density

The marginalized TBD particle filter detailed in section 2.6 considers two cases in order
to propagate the particles: N, . "continuing" particles and N, — N, . "newborn" particles.
Therefore, to extend the monotarget marginalized particles to the multitarget case, two
instrumental densities have to be designed.



164 chapter 5

Instrumental density for the continuing case

The instrumental density for propagating the continuing particles is often chosen to
be the prior. However, using the prior density in the multitarget case will not prevent
possible interactions between the particle target states since, in that case, the particles
for each target state x;; will be sampled independently. Therefore, further developments
should be made in order to propose an instrumental density that allows to prevent from
this issue. As proposed previously, when particles from different particle filters interact,
interacting particles for all interacting filters except one can be killed. However, such
a strategy does not take into account the information provided by the different particle
filters and in particular the probability of appearance Pék For instance, if one particle
belongs to a particle filter with a high probability pelk and interacts with another particle
belonging to a particle filter pe"ﬁc with a lower probability, it seems reasonable to keep the
particle belonging to the particle filter with the highest probability Pék

In order to take into account the information provided by the different particle filters,

we propose to sample the continuing particles for the different particle filters in a sequen-
tial manner, i.e. one filter after another starting with the filter presenting the highest
probability of appearance Pik_l at previous step. This solution can be summarized as
follows:

1. Sort the probabilities P!, ; in descending order and get the set of ordered indexes
Tpae~, = {in, - ying )

2. Remove the first element iy of the set Iy, = {41, - ,in}, Lec Traes, = i, \

{ir}

3. For each filter [ in the set I, calculate Igl’l) with Eq. (5.60). If the set [gl’l) is
empty the two filters do not interact and there is nothing to do. On the contrary,
some particles of particle filter ¢y and [ interact. Then, interacting particles of filter
[ are killed as follows:

e Find particles xj ; for which (uil,ug,l) € [gl’l).

e Set their weights to zero.

e Normalize the weights wy; such that Z;,V:”l wy, = 1.

4. Go back to step 2 and apply the same procedure.

Instrumental density for the birth case
For the birth case, we propose to extend the work on the instrumental densities for
the monotarget case developed in section 2.5. In the sequel, we consider that continuing
particles have been already propagated before initializing the birth particles. Once again,
the main difficulty is to manage the possible interactions between the particles of the
different filters.
As in the continuing case, we propose to initialize particle positions for the different
filters in a sequential manner. However, it is here preferable to initialize the different
particle filters in the ascending order of the probability of existence Pelyk. Indeed, in the
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birth case, it seems reasonable to promote the initialization of particles for particle filters
that have the smallest probability of appearance.

An important point to take into account is that continuing particles for the different
particle filters are already present in the radar window. Therefore, initializing randomly
the position of the birth particles in the set of cells Z; ., — where Zj, ., is the set off cells
that exceed the threshold v (see paragraph 2.5.1.2 for details) — may not prevent from
interaction between particles of the different filters; some birth particles of a given filter
may be initialized in a cell that contains continuing particles of an other filter.

To avoid such a situation, it is first necessary to find which cells in the set Z;, , belong to
which filters. Since continuing particles have been already propagated and do not interact
by construction, the set of cells I, 1» that exceed the threshold v and that belong to filter
[, is simply obtained as follows:

Logyy = Leeu, ﬂzlm (5.62)

Note that this set may be empty. Moreover, the set Z , may differ from the union of the
sets Ige”,l since some cells that exceed the threshold may not be considered by any filter.
In the sequel, we will denote by Zj, ;emaqin the set of cells exceeding the threshold v and not
belonging to any filter and by Nz, .-~ the number of remaining cells. Obviously, these
cells must be assigned to the different particle filters. We propose the following procedure:

1-p!,

e For each filter, calculate ayy; = W

e Randomly assign [Oéfilt,lNIk,remaiJ cells to each filter, such as each cell is assigned
to only one filter. It should be ensured if possible that at least one cell is assigned
to each filter.

e Add the cells randomly assigned to filter [ to the set Igell,l‘

Finally, the N, — N, . particles of each filter are initialized uniformly over the cells
Igell,l‘ The weighting term induced by this proposed instrumental distribution is given by:
Do (Tka ek) _ leell,l

@ (T, Ok |Z) Ne

(5.63)

where Np» is the number of cells in I, ,.
cell,l cell,

5.4.3 Overall TBD multitarget particle filter

In sections 5.4.1 and 5.4.2, two particle filters have been proposed in order to manage
respectively the disappearance and the appearance of multiple targets. We now propose to
combine the two previous particle solutions. We use here the same strategy as developed
in section 3.4 for the monotarget setting. The main difference between the two cases
concerns the management of the number of targets. In particular, one would like to
avoid that two different filters detect and track the same target. This may arise when
particles for an appearance detection filter are initialized near a target already tracked by
another filter. To overcome this problem, we assume, in the sequel, that the appearance
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multitarget particle filter cannot initialize and propagate particles in cells "belonging" to
the disappearance particle filter defined in Eq. (5.59).

Finally one iteration of the overall TBD multitarget particle filter can be summarized
as follows:

1. Apply the disappearance multitarget particle filter to update the tracked targets.
2. Determine the cells that are forbidden for the appearance multitarget particle filter.
3. Update the appearance multitarget particle filter.

4. Add any appearance filters with a probability of appearance P;k greater than Pj,;
to the set of disappearance multitarget particle filter.

5.5 Simulation and Results

In this section, we evaluate the ability of the overall TBD multitarget particle filter to
manage the appearance and disappearance of several targets on quite simple scenarios
via Monte Carlo simulations. For the first scenario we simply consider the appearance
and disappearance of three targets that do not interact while for the second scenario the
crossing of two targets is considered.

Asin chapter 2, both detection and estimation performance are evaluated. We propose
to evaluate the performance in detection by averaging the estimated number of targets
at each iteration over the Ny, Monte Carlo runs. The performance in estimation is
provided by calculating the RMSE between the estimate target states provided by the
particle filters and the actual target states. The computation of the RMSE requires
associating the estimated target states with the actual target states. This association is
performed so as to minimize the overall summation of all RMSE. If the estimated number
of targets is lower than the actual number of targets, all the estimated target states must
be used.

5.5.1 Non-interacting targets

We consider a scenario with N; = 100 iterations. Three targets are present during
the experiment: they appear respectively at ky; = 5, kyo = 10 and k3 = 15, and
they disappear respectively at kg1 = 75, kg2 = 80 and kg3 = 85. For each Monte
Carlo run, the initialization of the target state for the position and the velocity is done
according to the birth density p, (.) defined in section 2.2 (i.e. uniform prior over D =
[Tmins Tmaz) X [Omin, Omaz] for the position and over [Vin, Umaz] X [0, 27] for the velocity),
with the following parameters:

® Tpin = 30 km; Trmaz = 42 kma emzn = 30° and ema:r - 6007

1 1

® U,in = 100 m.s™ and v,,,, = 300 m.s™".

Between k; ;+1 and k4, —1 the target state x;; evolves according to Eq. (2.6) with no noise
process (i.e. uniform linear motion) and the time between two consecutive measurements
is TS = 0.3 s.
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Moreover, for each Monte Carlo run, the trajectories of the three targets are carefully
drawn so that the targets never interact.
The fluctuations model for each target is assumed to be the Swerling 0 model and their
SNR are set respectively to 5, 7 and 5dB.
We consider here the overall TBD multitarget particle filter detailed in section 5.4.3. This
filter has been tested over Nj;c = 2000 Monte Carlo runs with the following parameters :

e Both for the appearance and disappearance multitarget particle filters, we use the
following parameters : S = 1, gg = 0.01, Vpin = 100m.s7!, Ve = 300m.s 1,
SNR,.in, = 3 dB, SNR,,,4; = 13 dB and ¢, = 05, = 2.

e For the appearance multitarget particle filter, the number of targets /N, is set to
3 (i.e. at most three targets can be detected at the same time by the appearance
multitarget filter). For each individual particle filter: P, = 0.1, N, = 1500 and
N, = 500 (i.e. N,. = 1000). The instrumental density used to propagate the
particles is described in paragraph 5.4.2.3, with Py, = 0.1. To calculate the set
Vir in Eq. (5.59), we take 0y, = 0y, = 2 (i.e. no interaction between particles
in a neighbourhood of two range bearing cells). Lastly, a target is declared to be
detected if a filter has a probability of existence P!, greater than 0.9.

e For the disappearance multitarget particle filter, the number of targets /N, is set to
5 (i.e. at most five targets can be tracked disappearance multitarget particle filter)
For each individual particle filter: P; = 0.05 and N, = 1500. The instrumental
density used to propagate the particles is the prior p. (xx | xx_1). Two filters are
declared to interact if the distance between the predicted target state estimate is
lower than 500 m Lastly, a target is declared to have disappeared if a filter has a
probability of existence P/, lower than 0.2.

Figure 5.4 presents the RMSE for each target — Note that the RMSE is displayed with
respect to target life iteration, 7.e. the iterations during which the target is present —,
while Figure 5.5 displays the number of targets estimated by the particle filter. Clearly,
this solution enables the detection and tracking with some delay of several non interacting
targets. However, in Figure 5.4 it seems that the later the target appears the worst is
its RMSE, in particular for the velocity. It may be explained by the fact that as long as
the first target has not been declared to be detected by its tracking filter, this filter may
kill the particles of the other filters (due to the particular structure of the instrumental
density).
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5.5.2 Interacting targets

For this second scenario, the number of iterations is still set to N; = 100. Only two
targets are present that both appear at step k, = 5 and disappear at step kg = 95. The
two target states are drawn as in section 4.5.2.1 : the angle formed by the two velocity
vectors is /4 and the minimum distance between the two targets is d,,;,. Here targets
cross at step k. = 40. The fluctuation model for the two targets is assumed to be the
Swerling 1 model and their SNR, are set to 10 dB.

The overall TBD multitarget particle filter is run with the same parameters as in the
previous paragraph. Nj;c = 2000 Monte Carlo simulations were run.
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Figure 5.6 - RMSE for the two crossing targets.
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Figure 5.7 — Estimated number of targets. Scenario with two targets crossing.

of targets is presented in Figure 5.7. These two figures show that, in most cases, the
proposed solution is able to manage two interacting targets. However some undesirable
behaviors have been noticed:

e In Figure 5.7, the estimated number of targets is greater than two after iteration 70.
It means that for a small number of Monte Carlo runs, the filter output provided
at least three tracks for the two targets. In fact, it appears that when the targets
are close to one another, one particle filter diverges from its target and converges to
the other one. As a consequence, a new filter is initialized to track the target that
was lost, thus leading to three estimated tracks.

o After step k4, the estimated number of targets should be closer to zero than it is
in Figure 5.7 since at 10 dB the target disappearance should be easy to detect.
However, we have assumed in the case of interacting targets that when particle
filters are grouped (or linked), they cannot be killed; in other words they cannot
managed target disappearances. Therefore, if two filters have converged to the same
target they cannot be killed anymore since they will be interacting for the remainder
of the simulation. As it has just been said, this situation may arise for some Monte
Carlo runs and could explain the slow decreasing behavior of the estimated number
of targets after the target disappearances.

This two undesirable behaviors are not acceptable and should be managed by the
particle filter. This implies that an additional mechanism permitting to prune tracks
converging to the same target state is necessary.
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5.6 Conclusion

In this chapter, we have first presented the classic multitarget Bayesian filter in a TBD
context that process all targets jointly. Then, in section 5.3, we have proposed an other
state model that allows to process targets by independent filters when they are sufficiently
far apart from each other.

Then, in section 5.4, several particle filter approximations have been proposed. The
first particle approximation is dedicated to the appearance of several targets. The main
difficulty consists in initializing the particles of the different filters such that they do not
interact; we have proposed an instrumental density for that purpose. The second particle
filter concerns the disappearance of several targets. The difficult point is to manage the
interaction between targets. We have shown that when targets have interacted, they
cannot theoretically be considered as independent anymore and have to be processed
jointly. However, we have proposed an heuristic procedure in order to consider targets
independent even if they have interacted in the past. Finally, the last proposed filter is a
combination of the two previous ones that is able to handle the whole TBD multitarget
problem.

Lastly, in section 5.5, Monte Carlo simulations have been performed in order to show
the ability of this new approach to correctly track, in most situations, several targets.
In particular, it has been shown that our solution is able to detect (appearance and
disappearance) three targets at low SNR, that are far apart from each other and to manage
the crossing of two targets at a higher SNR. A few undesirable behaviours have however
been observed, implying that further developments and improvements should be brought
to the proposed solution.



Conclusion

The aim of this work was to study, develop and propose particle filter methods to detect
and track one or several targets in a Track-Before-Detect context.

First, the monotarget TBD problem has been thoroughly investigated. This was
motivated by two considerations:

e First, the fact that the monotarget particle filter solutions have not been extensively
studied in the literature; in particular the instrumental density for the initialization
of the birth particles was not deeply studied in the literature.

e Second, the constant concern that TBD multitarget particle filter solutions based
on multitarget particle states are too costly for practical applications and that one
should study instead multitarget solutions based on monotarget particle filters as
in the classic radar tracking framework where this approach has been successfully
used.

In chapter 2, the classic monotarget TBD particle filter generally used in the literature
has been studied and our work has focused on proposing some relevant instrumental
densities to initialize the particle state. To this purpose, we have considered the optimal
instrumental for the initialization of the particle state (which is intractable). It appears
that this instrumental density does not depend on the state at previous time step. Thus,
all the particles can be initialized from a unique instrumental density making interesting
to devote some resources to approximate this particular density. To this purpose, we
have proposed several approximations for the optimal instrumental density for the target
position using a grid-based approach as well as for the other state parameters such as the
amplitude parameter or the presence variable. Then, Monte Carlo simulations have been
performed to illustrate the benefits of using such instrumental densities compared to the
ones classically used in the literature.

The chapter 3 was motivated by the following questions

e is it relevant to try to detect both the appearance and the disappearance of a target
with the same particle filter ?

e is it relevant to still initialize particles whereas the particle filter has converged to
the actual target state ?

From these two questions, an alternative modeling to the monotarget TBD problem has
been proposed that considers the target appearance and disappearance as two differ-
ent problems. We have shown that the monotarget TBD problem can be derived as a
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Bayesian quickest change point detection problem that allows to consider the target state
and its time of appearance or disappearance rather than the presence variable. This has
enabled to derive two Bayesian filters, one for the appearance and another one for the
disappearance. Different particle filter approximations have been provided for these two
theoretical Bayesian filters. Moreover, we have also proposed a particle solution that com-
bines the particle filters previously developed in order to manage both the appearance
and the disappearance of a target. Some Monte Carlo simulations have been made in
order to evaluate the performance of our approach compared to the classic one showing
some benefits in particular in terms of bad detection rate. It also appears that not ini-
tializing particles when the particle filter has converged allows to substantially reduce the
computational cost without degrading the detection performance. This tends to confirm
the intuition that separating the appearance and disappearance detection problems can
be more efficient than solving both problems at once.

We focused in chapter 4 on another aspect of the TBD problem: the calculation of
the likelihood of the measurement z; conditionally to the target states. This computation
is of primary importance since it is required for the application of all particle filters. In
the TBD framework, this quantity cannot be calculated directly from the measurement
equation due to the presence of the unknown target amplitude parameters that may fluc-
tuate randomly and independently over time. A classic heuristic solution to deal with
these unknown amplitude parameters consists in considering the squared modulus of the
signal |z,|? rather than the complex measurement z;. In some cases such a strategy allows
to calculate easily the likelihood of the measurement conditionally to the target state —
these cases are the Swerling 0 monotarget case and the Swerling 1 multitarget state —
at the price of a loss of information; in particular the spatial coherence of the amplitude
parameters is lost. Moreover, in other situations, this heuristic solution may lead to in-
tractable expressions for the likelihood. In order to overcome these difficulties, Rutten et
al. have proposed a well-founded approach that consists in marginalizing the likelihood of
the measurement over the amplitude parameters while keeping all the information avail-
able. However, they have only investigated the Swerling 0 monotarget case. Thus, we
have extended this solution to the multitarget case and to other Swerling models. For
the monotarget case, we have shown that closed-forms can be obtained for the Swer-
ling 1 and 3 models. For the multitarget case, we have derived a closed-form expression
only for the Swerling 1 case, while for the other Swerling models we have proposed some
approximations in order to alleviate the computational time required to calculate the like-
lihood. Finally, the benefits of calculating the likelihood from the complex measurements
zj, rather than from squared modulus measurements |z,|? have been validated via Monte
Carlo simulations.

In the last part of this manuscript (chapter 5), we have tackled the multitarget TBD
problem. We have developed a multitarget particle solution that manages targets in-
dependently when they are far apart from each other rather than a particle filter that
considers the target state jointly. In this perspective, we have shown that it is possible to
model the multitarget state as a collection of individual target states (sj1.n,, Xk1:n,). By
taking advantage of the particular factorization of the measurement likelihood, the whole
multitarget posterior density also factorizes as a product of individual target posterior
densities, thus allowing to use one filter per target. Moreover we have also shown that
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this result can be generalized to groups of targets. Then, as in chapter 3, we have pro-
vided some particle filter approximations both for the multitarget appearance case and
the disappearance case. For the multitarget appearance case, the main difficulty concerns
the initialization of particle states in order to keep the particular structure of one filter per
target. To this purpose, we have proposed an instrumental density for the initialization
and the propagation of the particle target state that consists, roughly speaking, to kill
the interacting particles of the individual particle filters presenting the lowest probability
of appearance. For the multitarget disappearance case, the main difficulty consists in
managing the interactions between targets. We have proposed an heuristic solution that
enables to determine at each iteration if targets interact or not; interacting targets are
then processed jointly. Then, as in chapter 3, we combined the two previous particle
filters to manage both the target appearances and disappearances. Finally, the proposed
particle filter solution was tested via Monte Carlo simulations over two different scenarios.
The first one considers the appearance and disappearance of several targets at low SNR
that do not interact. Simulation results validated the ability of our solution to handle
such scenarios. The second scenario considers the crossing of two targets at a quite high
SNR of 10 dB. Here, simulations results have shown that our solution is able to track
crossing targets most of the time ; however in some cases the two filter converged to
the same target during the crossing, and they were not able to retrieve the two targets
afterwards. In that respect, the proposed solution should then be subject to additional
improvements. For instance, it may be interesting to develop a particle filter solution
that considers that targets may die when they interact or to propose a more sophisticated
instrumental density.

Before closing this manuscript, we provide, in the sequel, some perspectives and future
works:

e One important work that remains to be done is a comparison with the classic radar
tracking algorithms. Indeed, these classic algorithms are very robust and efficient
for sufficiently high SNR targets. The main contribution of the TBD method would
then be on the detection of low SNR targets. However it should be necessary to
quantify the detection gain provided by the TBD approach for this class of targets
compared to classic tracking algorithms.

e In all the manuscript, the Doppler parameter was not considered, for simplicity
purpose. Of course, this parameter should also be taken into account in a full TBD
solution and in particular, as for the other state parameters, it should be interesting
to develop a relevant instrumental density taking into account information provided
by the measurement to sample this parameter.

e In the measurement equation considered in this work, the noise covariance was
assumed to be known. In practice, this hypothesis is unrealistic and therefore,
it should be interesting to develop TBD solutions that can handle an unknown
covariance matrix, for instance by created an adaptive TBD filter that includes
an estimate of the noise and/or clutter covariance in the likelihood computation.
Moreover, the Gaussian hypothesis of the noise may be violated, in particular in
presence of clutter; of course the advantage of the particle filter solution is its ability
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to consider non gaussian densities, but still it would be important to try to adapt
the proposed TBD method to non gaussian noise or clutter model, also to evaluate
the robustness of the TBD approach to an erroneous statistical noise hypothesis.

e Concerning the processing itself, we have seen that the sample grid provided by the
matched filter preprocessing deteriorates somehow the detection performance at a
given time instant for targets located at the edge of the resolution cell. This problem
arises along all dimensions. Along the range dimension, it seems difficult to overcome
because of the analog to digital converter at the reception. However along the angle
dimension, it may be interesting to investigate the possibilityto discard sampled
directions and apply the phase array processing for each particle in its specific
direction. This would of course imply applying the TBD algorithms on reception
antenna raw data before the FFC processing. Note that a similar procedure could
also be applied along the Doppler dimension for pulse trains: for a given particle, the
Doppler steering vector considered would then be directly provided by the estimated
radial velocity corresponding to the particle state.

e In a similar idea, note that here only point targets were considered. Therefore, the
studying the behavior of TBD methods to extended targets, and extending TBD
methods to this kind of targets could be of interest.

e Finally, in this work, we have mainly considered simplified cases that permit a
better and easier understanding of the algorithmic issue, and also a reduction of
the computational cost. However, when considering cases, TBD methods should
process large data obtained from range/angle/doppler processing, thus representing
many resolution cells to sample. This will represent a very high computational
cost in terms of computational resources. Somehow, it will then be important to
consider specific computer architectures (e.g GPU) that may allow a complex TBD
processing on large amount of data.

Finally, it appears that the TBD approach may be a very powerful but very costly
method for radar tracking. Clearly it should not be applied to any radar situation: in
the presence of sufficiently strong targets, classic radar tracking will certainly perform
very well. It may on the contrary be of interest for tracking low SNR targets in surveil-
lance radar applications, provided that subsequent studies demonstrate an interesting
performance gain for detecting such targets over classic processing.



Appendix A

Properties of time of appearance 7,
with a geometric prior

When the time of appearance 7, is modeled by a geometric random variable, i.e.

. 07 1= 07
p (Tb s 'l) fd ) (Al)
B(1—PR)"t i>1,

where 0 < P, < 1 denotes the probability of birth, it has some interesting properties.
Indeed, by defining

1, ifTbS /{Z,

by, = (A.2)

0, otherwise,

it can be shown that (b;), oy is a Markov chain with the following transition probability
matrix

1-F B
L, = , (A.3)
0 1

and also that p (by = 1 | by_; = 0) = B, i.e. knowing that the target has not yet appeared
at step k — 1, its probability to show up at step k does not depend on the time instant
and is equal to B,.

By definition of by, the event {by = 1} can be expressed as follows

k
(o =1} =J{n=1}. (A.4)
i=1
Since the events {7, =i} are incompatible,
k
ple=1) = Y p(n=1i), (A.5)
i=1
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Moreover, for a time appearance variable 7, modeled by the geometric distribution (A.1),
using the definition of conditional probability, i.e.

p (bk - 17 bk*l - O)
p(br—1=0) ’
where p (by = 1,by_1 = 0) = p (7, = k) by definition of by, and noting that p (by_1 = 1) =

;:1127 (1, = 1), it comes

pby=1]by-1=0)= (A.7)

p (Tb = k‘) - Pb(l — Pb)kil

b :1 b, :0 = o
p (by, | br—1 ) 1—p(be_r=1) 1-— é‘:lle(l—Pb)l’l

—P.  (AS8)

This last equation indicates that knowing that the target has not yet appeared at step
k — 1, its probability to show up at step k£ does not depend on the time instant and is
equal to B,.

In other hand, it is easy to show that (b;), oy is @ Markov chain. Indeed, by definition
of by, the following property holds:

by =0= b; =0 forany i <k —1,, (A.9)
and, as a consequence,
pbr =0|b1g2,bp1=0)=p(bpr=0]br_1=0)=1—PF,. (A.10)
In the same manner, by definition of by,
b1 =1=b, =1, (A.11)
then whatever the sequence by._o,
pr =1]brx—2,bp1=1)=pbp=1|by_1=1)=1. (A.12)

Therefore, Eq. (A.10) and (A.12) demonstrate that the process (by), oy is Markov with
the transition probability matrix in Eq. (A.3). It can be remarked that the state by = 1
is an absorbing state, ¢.e. once entered in the state b, = 1, the state by = 0 cannot be
reach anymore. Lastly, note that from Eq. (A.1), the probability for the initial state is
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Particle filter for time appearance
detection in TBD

The aim of this appendix is to detail the practical implementation of the TBD particle
filter that allows to resample over all the mixture components and outlined in paragraph
3.2.4.3. To this purpose, let us first develop the particle approximation p (x| by = 1, z1.%)
in Eq. (3.46):

p(xp | by =1,214) = Z@k,zﬁ (X% | 5 =1, 21.8)

i€},

Ny i
= Y vt (50

’ielk n=1

(B.1)

Thus, it is possible to calculate the effective sample size Ngflf{k for the overall particle
approximation p (xy | by = 1,2;,) from the effective sample size measures Neg; of the
different mixture components using Eq.(1.98) as follows

-1

N, = Z Z (@kﬁiw/?,if
= Z d;i Z (w,’ii)Q (B.2)

where Neg; is the effective sample size of the mixture component i. Thus, by defining
Ngf,i the total number of particles at step k, i.e

N =" Ny, (B.3)
i€l

and by Ngfﬁﬁ = 5allN§l/i with 0 < B, < 1 the threshold for the resampling step, N

p,mix
particles are resampled from p (x| by = 1,21) if No% < N Concerning the number
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of particles Nglfmx, note that it must be chosen to be smaller than the maximum number
of particles N, ;4. in order to initialize new mixture components for the next iterations.

Finally after the resampling procedure the density can be rewritten as follows

Nall
p mix

p(xp | b =1,21.4)

Nall Z 5Xk €T Xk (B.4)

D,UT p—1

= p(xx | ™ € Ik, 211),

which is a "mixture" with one component (i.e. &jier, =1 ). The probability associated
to this mixture is

p(m €I | z1k) = Zp(Tb =1|2z15). (B.5)

i€l

For the next iteration, this component is processed as in paragraph 3.2.4.1 and the weight
equation (3.34) is almost the same except that 7, = i is replaced by 7, € I} in the equation.
As a consequence, a slight difference concerns the propagation of the particles that must
be, rigorously speaking, propagate according to Q(Xz,z‘elk | 7 € Ik, Xk—1cr,, 2r) rather
than ¢(xg; | 7 = 4,Xg—1,4,2). This density can be easily rewritten (following the same
reasoning as for the density p (x; | by = 1,214) in Eq. (3.16)) as a mixture:

q(m =1|z)

=7, Xp_ . B.6
ZG]k|Zk)q<Xk|Tb 1, X 1,Zk) ( )

n
q(Xk7’iEIk | Ty S [k7Xk*1,Tb€Ik7Zk
1€ly,

However, in practice, it is not convenient to sample according to a mixture and, moreover,
if the densities ¢ (xy | 7, =4, Xk_1,2;) are the same for all i € I, the mixture in Eq.
(B.6) simplifies to q (xx | 7, = i,Xx_1) (since the density can be removed from the sum
and the probabilities sum to one). Therefore, we propose to approximate the density

n
Q(Xk%gk | 7 € Iy, Xk—1mer,, Zk) bY

Q(Xg,ielk I ™ € I, Xk—1,m€I s Zk) ~ Q(Xg,ia” | Ty = lall Xk—1,iqn> Zk)> (B'7)
where
iqun = argmax p (1, =1). (B.8)
i€l

The same approximation can be used for the prior density p(x} ;e . | 7 € Ii, Xk-1ne1,)
which is required to evaluate the mixture component weight in Eq. (3.34) — note that it
leads to the weight equation (1.99) if the instrumental density is chosen to be the prior.
Thus, with this approximation, the mixture for 7, € I can be calculated exactly as a
mixture component with 7, = i,; and the algorithm is the same as the one in Algorithm
3.1 except that the number of particles per mixture component may be different: in
step "3:" of Algorithm 3.1 N, ;. is replaced by N,; the number of particles of the "
component (which may vary over time). In the same manner, for the creation of the
mixture in Algorithm 3.1, the number of particles N, i, in step ":14" is replaced by
Np.init. Note that here N, ;,;; is chosen to be constant at each iteration for a simple
implementation but it is not a requirement.

Furthermore, as it was stressed previously, the number N? = must be chosen below

p,mix
the maximum number of particles N, 4. Therefore, in the same manner, for a simple



181

and practicable implementation, we propose to choose N;lfnm = ko Np init Where kqy is an
integer strictly greater than 1 and N ez a8 Npmaz = Emaz Np,init, With ke, an integer
such k. > kq;. Thus, at the next iterations the particle filter can initialized k4. — kau
new mixture components with N, ;,;: particles.

However, as for Algorithm 3.1 the number of particles may be equal to N4, — in
particular, if no resampling procedure over all the mixture components has been per-
formed during k,,.. — kqy iterations. As a consequence, if nothing is done, no particle is
available to initialize a new mixture component for the next iteration. Therefore, in that
case it is necessary to remove N, ;,; particles from the density p (x | by = 1, 21.). To this
purpose, we propose to use the same strategy as previously, ¢.e. removing N, ;. particles
from the component with the lowest probability p(zx | z1.x_1). Nevertheless, contrary to
the previous algorithm, the number of particles in the mixture component 7,,;, may be
greater (strictly) than N, ;,;; — in practice, it will always be a multiple of N, ;. In that
case, the mixture does not need to be removed from the set [, and only N, ;,;; particles
can be removed from the mixture component i,,;,. Of course, if the mixture component
imin has Npini¢ particles, this mixture component is removed from the set .

Lastly, an other point has to be discussed, it concerns the minimum number of particles
from which the resampling procedure over all the mixture components must be performed.
Indeed, let us take the following example, at the first iteration (i.e. k = 1), a mixture
component is initialized with N, ;n; particles; thus if Neg is below N, ko X Ny init
particles will be resampled from this component (which is greater than N, ;,;;) whereas
this component may have a small probability p (7, =1 | z;) and does not need to be
sampled with so many particles. In the same manner, if §,; is chosen to be large, the
resampling procedure over all the mixture component will be performed almost at each
iteration. As a consequence, in the next iterations the algorithm will initialize only one
component and resample over all the components whereas if no resampling is performed
the algorithm can initialize k4 — ko components. To avoid such a situation, we propose
to use a two steps resampling procedure depending on the number of particles. First,
a severe degeneracy is checked with a [, chosen pretty small (e.g. [, = 0.1) and a
resampling procedure is performed if N4 < N#. On the other hand, the number of
particles is compared with a number of particles N;™". If the number of particles is lower,
no resampling over all the mixture components is done and each component is resampled
separately as in Algorithm 3.1. Whereas, when the number of particles is greater than
NJ"™ two possibilities can arise:

e Either, No% is lower than N\ = B No% where S, is chosen greater than fg.
Then the resampling procedure is performed over all the mixture components.

e Or, on the other hand, mixture components are resampling separately.

Finally, the proposed Resample All Appearance Time TBD Particle Filter is summa-
rized by Algorithm B.1.



182 Particle filter for time appearance detection in TBD

Algorithm B.1 Resample All Appearance Time TBD Particle Filter

Require: mixture components {w} , xz_l7i}nNﬁ’{' and probabilities p (1, =i | z1.x_1) with
1€ I, at step k — 1.

1: Updating mixture components {w,i_l,xz_lvi}gi’{ and probabilities p (1, =i | Z1.4-1)
from line 1 to 23 in Algorithm 3.1 where N, ,,;, is replaced by the corresponding
number of particles in each component.

2: Calculate Ng, according to Eq. (B.2) and N/

3: if N4, < Ng/j then

4:  Resample N, o from p (x| by = 1, 21.1).
5. Calculate iy according to Eq. (B.8).

6: else

7 if NO > Nt and NG < N7y then

8 Resample N, from p(xy | by = 1,21.1).
9 Calculate i, according to Eq. (B.8).

10: else

11: if No% = Npmas then

12: Find 4,,;, according to (3.48).

13: if Ny, .. = Npinit then

14: Set I, = Ik,min-

15: end if

16: for : € I do

17: if 7 =4, and Ny, . > Npini then
18: Resample N, ; — N, init particles.
19: Reset weights: wy; < m n=1,-,Nyi— Npinit
20: else

21: Calculate Np; = BN,;

22: if Neff,i < NTJ then

23: Resample N, ; particles.

24: Reset weights: wy; < Ny T 1, Nps.
25: end if

26: end if

27: end for

28: end if

29: end if

30: end if

Ensure: {wj},;, X}, nNi’{”", p(my=1]211), i € L.




Appendix C

Multitarget Bayesian filter and particle
filters

C.1 Theoretical Bayesian filter for interacting targets

The aim of this appendix is to demonstrate that, if the groups of targets L1, -+, Lins,n,
do not interact in the likelihood, the posterior multitarget density can be factorized as
follows:
Ng
P (Sk, 1N Xk 1:N; | Z1k) = Hp (Sk,lim,iaxk,lmt,i

i=1

Zl:k) . (Cl)

First, the Bayesian filter for each group of targets can be derived, using Bayes rule, as
follows:

p (skylint,ﬂxkvlint,i | Zl!k—l) p (Zk | Sk, Lint,ir Xk, Iint,i» Zl!k—l)

P (Zk | Zl:k—l)

p (SkJmt,kaJmt,i | Zl!k) = . (02)
It should be noted here that the conditioning over variables z;.;_; in the likelihood ex-
pression p (2 | Sk, Xk Iine.s Z1:k—1) cannot be removed since the conditioning is not
performed with respect to all the target states (s 1.n,, Xk 1:n,). In fact, zj is independent
from z;.,_1 only when

P(Zk | Sk,lzNuXk,lzNuzlzk—l) = p(Zk | Sk,lthan,lth)- (0-3)

Fortunately, it does not affect the derivation of the Bayes filter. Indeed, some simplifi-
cations arises allowing to easily calculate the likelihood p (Zk | Sk Line.s> Xk Lo Z1:k71)- To
this purpose, notice first that this likelihood can be rewritten as follows:

p (Zk \ Sk,lmt,iaxk,lim,mZl:kfl)

= E : /p(SkJNt\Iint,NXkJNt\Iint,i

Sk N \Lint i

Sk, Lint,ir Xk, Iint,is Z1;k71) X (C.4)

p (Zk | Sk,1:Ny» Xk,l:Nt) ka,INt\Im,i-
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This last equation can be further simplified using Eq. (C.1) since (sg,1y,\u0.0> Xk, I\ Ione.: )
and (Sk.z,,,,» Xk, 11,,.) are independent. Thus Eq. (C.4) becomes

D (Zk | kLo s X Lo 0 2101

= E p (Sk,INt\Iim,i,Xk,INt\Imt,i | Zl:k—l) p (Zk | Sk,1:Nt,Xk,1:Nt) ka,INt\Imm-
Sk IN, \int i

(C.5)
Furthermore, using Eq. (5.47), the Eq. (5.25) can be rewritten as follows:

—_—
—

‘_‘Zlm(sk,l:Nt ,Xk,lth) (pk,l:Nﬂ Spk,lth) =

=
2o\ Sk, Iy i

X T, ) (pk,fmt,i’ Spkvlint,i)Ezk7(

int,t

) (pk,INt \int,i» PhIn, \Lint i )
(C.6)

Sk IN \int i Xk IN \Ting i
Thus by defining for any set of indexes I the following function®

Gy, (Sk,1, Xk,1) = /Ezk(sk’bxw)(/)k,bS%,I)p (Pr,1) P (0r.1) dpr 1dipr 1, (C.7)
the likelihood p (z, | sk.1:n,, Xk1:n,) in Eq. (5.26) factorizes in the following manner:
p (Zk‘ | Sk,l:N”Xk,l:Nt) = sz (SkJmt,ivXkJmt,i) X sz (SkJNt\Imt,i’XkJNt\Imt,i) : (CS)

Therefore, by injecting Eq. (C.8) in Eq. (C.4), the likelihood p (zk | Sk Lo Xk Lis.0 Zl:kfl)
also factorizes as follows:

p (Zk‘ ‘ Sk, Lint,ir Xk, Iint,is Zl:kfl) = sz (Sk,fmt,mkamt,i) X

Z /p (SkJNt\Iint,i’XkJNt\Iint,i

Sk N \Lint i

Z1:k-1) Gy (k. \oness Xl \Lint.i) X I\

(C.9)
In the same manner, using the same reasoning as in Eq. (5.42) the normalization terms
p(zk | Z1.5—1) can be factorized as follows:

p(Zk | Zl:k—l) =

E /p (Sk,fmt,ivkamt,i

Sk, Lint i

E : /p(SkJNt\Iint,NXkJNt\Iint,i

Sk N \Lint i

Zl:kfl) sz (Sk,fmt,m Xk,fmt,i) dxk,fmt,i X

Zl:kfl) sz (SkJNt\Iint,N XkJNt\Iint,i) kaJNt\Iint,i'

(C.10)
Finally, injecting Eq. (C.9) and Eq. (C.10), the bayesian filter for the group of target
Lint; in Eq. (C.2) simplifies as follows:

p (Sk,fmt,m Xk Iint,i Zl:kfl) sz (Sk,fmt,m Xk,fmt,i)

p (Sk,fmt,ivkamt,i Zl:k‘) =
§ : p (SkJmt,kaJmt,i | Zl!k—l) sz (SkJmt,kaJmt,i) kaJmt,i

Sk, Lint i

(C.11)

'Note that here, contrary to the definition of function g,, (sk.i,Xx;) in Eq. (5.29) where there is no
cross terms hy! T~ 'hy,, in the definition of the following function all the cross terms remains.
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In fact, this last equation is quite similar to the Eq. (5.44) (i.e. the bayesian filter for a
single non interacting target) and demonstrates that factorization of the posterior density
P (Sk.1:N, Xk1:N, | Z1:x) can be extended to sets of indexes of non interacting targets, i.e.

Ny

p <3k,1:Nt7Xk,1:Nt \ Zl:k) = Hp (Sk,lim,iaxk,lmt,i

i=1

Z1) - (C.12)

C.2 Disappearance multitarget detection particle filter

The aim of this appendix is to detail the practical implementation of the disappearance
Multitarget detection particle filter outlined in section 5.4.1.2. The proposed solution
requires to determine at each iteration k the interacting sets l;,s,1.nv, and I,y in order to
reorganize the densities calculated at previous step for these sets.

C.2.1 Calculating the sets /;,, and [, 1.y, over time

In order to calculate the single target set I, and the sets of interacting group li, 1.n,,
let us first denote by I | - the group of interacting targets at iteration k — 1 (where
s4edVg

N, is the number of groups at iteration k — 1) and I, the index of single targets

(i.e. those targets that do not interact). At previous iteration k — 1, the available
particle approximations are p (kal,lft N Sko1,0-,, = L Z1_1) With i € {1, _ ,N;} and

D (Sk—11sXp—11 | Z1:4—1) With [ € [;mg- A first possible solution to calculate the interacting

groups at current step might be to propagate the particles of each target state xﬁ_u

(i € {1, -+, N;}) according to their prior p. (Xx | Xx_1), i.e.
Xi’i ~ De (Xk | Xifu) ) (C.13)

Then, two targets states x;; and xj ,, are declared “interacting” if
there exist (p,q) € {1,---,N,}?, such that Ih" (xp,)T"'h (xzm)’ > Y, (C.14)

where 7y, is a given positive threshold (eventually equal to zero).

In other words, two targets are declared to be interacting at step k if there exits at
least one particle XZJ and one particle Xim whose positions lead to overlapping ambiguity
functions. Note that here we consider interacting states as soon as one pair of particles
(p,q) interacts. Of course, this condition can be extended to a minimum number of
particles, i.e. two targets states can be considered interacting only if a significant minimal
number of pairs of particles interact.

However, such a solution might require to evaluate N, x N, (for two target states)
scalar products ’hH (XZZ) I''h (szm) }, for the two target case. As a consequence, if the
number of targets /V, is large, such a procedure might be costly in terms of computational
resources. Thus, in order to alleviate the number of scalar product evaluations, we propose
to perform the procedure on the estimated predicted target states X, rather than on
all particle target states. To calculate each predicted target states Xj,_1;, we propose a
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very simple solution based on the Eq. (1.67) of the Kalman filter equations. Thus, for
each target state x;; (1 € {1,---,N;}), the estimated predicted target state Xp,_1,; is
calculated as follows:

Xlkh—1,i = FXp_1jk—1, (C.15)

where F is the state matrix defined in Eq. (2.6) and Xj_q;_1, is the estimated target
state provided by Eq. (1.96). Finally, targets [ and m are declared to be interacting at
current step if

‘hH ()A(k“g,l,l) F_lh ()A(k“g,l,m)} > Yh- (016)

Now, it remains first to calculate the new interacting groups I, 1.n, and the single
target group Iy, and then to calculate the particle posterior density approximations for
the groups Iin 1.y, and g,

Concerning the calculation of the groups Ijn 1.y, and L, We propose a two-step
solution:

e First, find interactions between targets for all possible pairs of targets.
e Then regroup pairs of interacting targets in order to create the groups I 1. N,-

In order to detail our procedure, let us first define, for a matrix M of size N x M,
by M (n,:) the n-th row of the matrix and by M (:;m) its m-th column. To calculate
the interactions between pairs of targets, we propose to use a matrix M (of size N; x N;)
where each element ([, m) represents a possible interaction between two targets as follows:

1, if target [ and m interact,
M (l,m) = (C.17)
0, otherwise.

This matrix is symmetric and therefore, it is only necessary to consider the upper or lower
part of matrix M. Moreover, by convention we consider that a target cannot interacts
with itself, i.e M (m, m) = 0.

Lastly, it remains to calculate the interacting groups li,1.n, and the single target
group Igng from the matrix M. This can be done as follows:

e For each row [ of the matrix, find the indexes m such that M (l,m) = 1, then
regroup these indexes in a set I.,.

o If the set [, is empty, it means that the target state [ does not interact with any
target. Therefore the target [ is added to the set Ig,.

e If the set I., is not empty, two cases must be considered. In the first case, the
target [ already belongs to one of the sets I, 1.n,, referred by index i,;. Then the
sets Lingi,, and I,y are "merged", i.e. Lintiy, = Linti,, U Zeor- In the second case,
the target [ does not belong to any of the sets I 1.nv,. Therefore a new group of
interacting targets must be created, i.e. Linn,+1 = Lear |J{l}. Note that the target
must be added to the set [;,; n,41 since by convention it does belong to the set I.,.
Moreover the number of groups must be updated, i.e. N, = N, + 1.
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C.2.2 Reorganization of the particle posterior density at previous
step for the sets Iy,, and I;; 1.y,

The last step consists in reorganizing the particle posterior density approximations at
previous step: p(x;_q;— | sp_q - =1 2z1,-1) withi € {1,--- N, } and

D (Xp—1y | Sp—1 =1, Zl:k—71) with [ € I, to obtain the ones for the group I 1.n, and L.
Indeed, the considered multitarget particle filter considers multitarget states, i.e. one
particle samples all considered target states within a group. For target states originated
from different groups at step k—1 and gathered in the same group at step k, it is necessary
to resample the corresponding states so as to create new particles that sample the new

multitarget state. To this purpose, we propose the following rules:

e For any target index [ in Iy, if [ also belongs to I, , then the target was single

at previous step and is still single at current step. Therefore, there is nothing to do.

e In the same manner, for any groups of targets ;,,, if there exists a group of targets
Lt such that Iy == I, . (where == stands for the equality between sets),

there is nothing to do.

e In the other cases, the posterior density must be recalculated from the previous sets

Ii;t,l:Ng and I, . To this purpose, we simply propose to resample N, particles for
each target index [ in the new group Iy, from the density provided by the previous
sets I~ and [,

int,1:Ng sing*

The pseudo-code for the corresponding algorithm is detailed in Algorithm C.1.

C.2.3 Proposed solution for Disappearance multitarget particle
filter

In the previous paragraph, the tools to derive our particle filter solution for Disappearance
multitarget particle filter have been detailed. Now, it remains to expose the different steps
in order to perform a single recursion of our particle filter. Let us assume that at step
k — 1, the following quantities are available: p(x, , ;- | s, ;- = 1,2z151) with

int,i int,i
1 € {1, cee ,N;} and ﬁ(xk—l,l | Sk—1,1 = 1,Z1:k_1) with [ € Is_mg
The proposed solution can derived as follows:

e First, calculate matrix M with Algorithm.

e Then, calculate the new groups Iy 1.n, and Lgp,, from matrix M.
e Calculate the densities p (Xp—1,7,,; | Sk—1.1is = 1, Z1k—1) @ € {1,---, Ny} and
D (X1, | Sk—14 = 1,21:6-1) | € 5y from the ones with sets Ii;t LN and I,,.
sL-dVg

Update weights with Eq. (5.53) and Eq. (5.55).

Finally, each density is resampled if need.

In Algorithm C.2, we give a pseudo-code algorithm of the proposed particle recursion.
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Algorithm C.1 Calculation of the densities p (Xp—1,7,.., | Sk—1,1,00; = 1,Z1:6—1) 1 €
{1,---, Ny} and p (Xp—1; | sk—14 = 1,2Z1.4-1) | € Lsiny from the ones with sets I LN and
Liing:

Require: densities p (x,_ L, | ) Ll = = 1,z14-1) ¢ € {1, ’Ngf} and P (xx_1; |
Sp—10 = L, Z1—1) L € 1

sing? [lnt,l:Ng and [sing-

1: for [ € I,y do

2. if [ belongs to I, then

3: Keep the density p (xp—1; | sk—1; = 1, Z1.4-1)

4: else

5: Get the index 74, of the group I NG such that [ € [_t LN

6: Resample {kal l}p from density p(x,_, I, | Skoirn,, = =1,21.41)
) =1 mn z mn qu

7 Set p (Xk—1,1 | Sk—11 = 1,21.6-1) = N Zp 100 (Xk—1,1)

8: end if

9: end for

10: forie {1,---,N,} do
11:  Check if there is a group Ii;zti_ such that [, == IZ,:L i if so get the index iy

3 . . ’ g t’ g
12: if i, exists then

13: Set the density ]5 (Xk—lvfmt,i | Sk—1,Iint; — l,lek_l) = ]5 (Xk—l,l, . | Sk—1,1. - =
int,ig int,ig
17 Zl:k:fl)
14: else
15: Initialize new particle target state x}_, T = =[] (empty vector),p=1,--- N,
16: for [ € I;;; do
17: if [ belongs to I, then
18: Resample {kal’l}p:pl from density p(xg_1, | Sk—17=1,Z1.-1)
19: Concatenate the state xifu to xifl’lmm: Xifl,lmt,i = [xﬁflﬂmyi,){i%’l], p=
1,---,N,
20: else
21: Find index ¢,4; such that [ € [m“ :
N,
22: Resample {Xiq,l}p:pl from density p(kal,I{m | s 4 Ty = =1,21.41)
23: Concatenate the state xj_;, to x;_, ;. - Xifl,lmt,i = [xml’lmt’i,xifl’l], p=
1,---,N,
24: end if
25: end for
~ 1 N,
260 Set p(Xnttines | St = L) = 5 Xp0i 0 (Ketia)
27:  end if
28: end for
29: return P (X175, | Sk-100e; = L:Z1g-1), @ € {1,---, Ny} and and p (xz-1;

Sk—11 = 1,2Z1.4-1), | € Lging
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Algorithm C.2 Proposed disappearance multitarget particle filter.

Require: densities p(xkfuy-t, | Sp1y- = Lizag 1) i € {1,-- ,Ng_} and p (xg—1, |

int,i

Sp—10= 1, Z1k-1), P(Sky = 1| Z1), | € I,

1: Calculate matrix M.

A

10:
11:
12:
13:
14:
15:

: Calculate the new groups li,1.n, and L,y from matrix M with Algorithm 77.

Calculation of the densities p (Xp—1,7,: | Sk—1,1es = 1 Z1k—1) © € {1,---, Ny} and
D (X1, | Sk—14 = 1, 21:6-1) | € Iy from the ones with sets I;Lt’l:N_ and I, .
for [ € I, do ’
Propagate particles le ~ g (XM | xifu, zk)
Update weights wy , with Eq. (5.53)
Calculate p (sg; = 1| 1) with Eq. (3.76)
Calculate Nqg and resample if needed.
end for
for i € {1,---,N,} do
Propagate particles szfint,i ~ Hlelint,¢ De (XM | XZ—LI’ zk)
Update weights wy ;. . with Eq. (5.55)
end for
Calculate Nqg and resample if needed.
return p (Xp 1., | Sk1; = 1,21x), 0 € {1,--+ , Ny} and and p (Xgy | sg1 = 1,214),
P (ska =1 211), | € Ling
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Résumé : Cette thése s’intéresse a I'étude et au développement de méthodes de
pistage mono et multicible en contexte Track-Before-Detect (TBD) par filtrage particu-
laire. Contrairement a I'approche classique qui effectue un seuillage préalable sur les don-
nées avant le pistage, I’approche TBD considére directement les données brutes afin de
réaliser conjointement la détection et le pistage des différentes cibles. Il existe plusieurs so-
lutions a ce probléme, néanmoins cette thése se restreint au cadre bayésien des Modéles de
Markov Cachés pour lesquels le probléme TBD peut étre résolu a ’aide d’approximations
particulaires. Dans un premier temps, nous nous intéressons a des méthodes particulaires
monocibles existantes pour lesquels nous proposons différentes lois instrumentales perme-
ttant 'amélioration des performances en détection et estimation. Puis nous proposons
une approche alternative du probléme monocible fondée sur les temps d’apparition et de
disparition de la cible; cette approche permet notamment un gain significatif au niveau
du temps de calcul. Dans un second temps, nous nous intéressons au calcul de la vraisem-
blance en TBD — nécessaire au bon fonctionnement des filtres particulaires — rendu difficile
par la présence des parameétres d’amplitudes des cibles qui sont inconnus et fluctuants au
cours du temps. En particulier, nous étendons les travaux de Rutten et al. pour le calcul
de la vraisemblance au modéle de fluctuations Swerling et au cas multicible. Enfin, nous
traitons le probléme multicible en contexte TBD. Nous montrons qu’en tenant compte de
la structure particuliére de la vraisemblance quand les cibles sont éloignées, il est possible
de développer une solution multicible permettant d’utiliser, dans cette situation, un seule
filtre par cible. Nous développons également un filtre TBD multicible complet permettant
I’apparition et la disparition des cibles ainsi que les croisements.

Mots-clés : Pistage, Track-Before-Detect, filtre particulaire, calcul de vraisemblance.

Abstract: This thesis deals with the study and the development of mono and mul-
titarget tracking methods in a Track-Before-Detect (TBD) context with particle filters.
Contrary to the classic approach that performs before the tracking stage a pre-detection
and extraction step, the TBD approach directly works on raw data in order to jointly
perform detection and tracking. Several solutions to this problem exist, however this
thesis is restricted to the particular Hidden Markov Models considered in the Bayesian
framework for which the TBD problem can be solved using particle filter approximations.

Initially, we consider existing monotarget particle solutions and we propose several
instrumental densities that allow to improve the performance both in detection and in
estimation. Then, we propose an alternative approach of the monotarget TBD problem
based on the target appearance and disappearance times. This new approach, in par-
ticular, allows to gain in terms of computational resources. Secondly, we investigate the
calculation of the measurement likelihood in a TBD context — necessary for the deriva-
tion of the particle filters — that is difficult due to the presence of the target amplitude
parameters that are unknown and fluctuate over time. In particular, we extend the work
of Rutten et al. for the likelihood calculation to several Swerling models and to the mul-
titarget case. Lastly, we consider the multitarget TBD problem. By taking advantage
of the specific structure of the likelihood when targets are far apart from each other, we
show that it is possible to develop a particle solution that considers only a particle filter
per target. Moreover, we develop a whole multitarget TBD solution able to manage the
target appearances and disappearances and also the crossing between targets.
Keywords: Tracking, Track-Before-Detect, particle filter, likelihood calculation.





