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Résumé étendu

Cette thèse a pour objetifs d'étudier et de développer de nouvelles méthodes de pistage

radar d'une ou plusieurs ibles radars en ontexte Trak-Before-Detet par �ltrage par-

tiulaire.

Brève dé�nition du pistage dans un adre bayésien

La problématique du �ltrage et plus partiulièrement du pistage onsiste à estimer, à

partir de mesures suessives, l'état d'une variable non observée � par exemple, dans le

as du radar, la position et la vitesse des ibles � dont on a néanmoins une idée a priori

de l'évolution au ours du temps � par exemple, on peut supposer qu'une ible est animée

d'un mouvement retiligne. C'est un problème extrêmement général et qui se retrouve

dans de nombreux domaines tels que la �nane, les téléommuniations, la télémétrie, et.

Il existe plusieurs approhes pour résoudre e problème, néanmoins nous nous lim-

iterons dans ette thèse à l'approhe bayésienne et plus partiulièrement aux modèles

de Markov ahés à temps disret. Ces modèles peuvent être globalement dé�nis de la

manière suivante

1

: l'état ahé est dé�ni par une variable aléatoire, notée xk ; l'évolution

temporelle de l'état ahé est modélisée par un proessus de Markov qui est entièrement

déterminé par sa densité à l'instant initial p (x0) et sa densité de transition p (xk | xk−1).
Cette dernière peut être dé�nie par l'équation :

xk = fk (xk,vk) , (1)

où fk (.) est une fontion non-linéaire onnue et vk un bruit blan. D'autre part, l'observation
(ou la mesure), notée zk, est reliée à l'état ahé par l'équation suivante (appelée équation

de mesure) :

zk = hk (xk) + nk, (2)

où hk (.) est une fontion non-linéaire onnue et nk un bruit blan. Cette équation permet

notamment de aluler la vraisemblane de l'observation sahant l'état ahé p (zk | xk).
L'objetif est alors de aluler à haque instant la densité p (xk | z1:k) (appelée densité

a posteriori) a�n de aluler des estimateurs de l'état ahé, tel que l'estimateur du

Maximum A Posteriori ou enore l'estimateur MMSE (Minimum Mean Square Error).

En règle générale on herhe à aluler ette densité de manière séquentielle ; en e�et,

1

Ii, nous onsidérons un adre simple où les proessus étudiés peuvent être dérits à partir de densité

; il existe néanmoins des modélisations plus générales dont nous ne parlerons pas ii.

1



2 Résumé étendu

dans le adre des modèles de Markov ahés la densité p (xk | z1:k) s'érit à partir de la

densité à l'étape préédente à partir l'équation suivante :

p (xk | z1:k) =
p (xk | z1:k−1) p (zk | xk)

p (zk | z1:k−1)
, (3)

où :

p (xk | z1:k−1) =

∫
p (xk−1 | z1:k−1) p (xk | xk−1) dxk−1. (4)

De manière générale, l'Eq. (3) ne permet pas de aluler la densité p (xk | z1:k) de manière

analytique, exepté dans le as du modèle linéaire et gaussien où la solution exate est

fournie par le �ltre de Kalman. Quand le modèle est toujours gaussien et que les fon-

tions fk et hk ne présentent pas de fortes non-linéarités, des approximations du type

EKF (Extended Kalman Filter) et UKF (Unsented Kalman Fitler) peuvent être utilisées

[AMGC02℄.

Dans les autres situations � fortes non-linéarités et/ou bruits non-gaussiens�, il est sou-

vent néessaire d'avoir reours à d'autres approximations pour obtenir des performanes

aeptables. L'une des solutions ouramment utilisée aujourd'hui est le �ltre partiu-

laire. L'idée sous-jaente est d'approximer la densité ontinue p (xk | z1:k) par une densité
disrète, i.e. :

p (xk | z1:k) ≈
Np∑

i=1

wikδxi
k
(xk) , (5)

où δxi
k
(.) est la fontion de Dira entrée en xik et les variables x

i
k sont appelées partiules

ave wik leur poids assoié. L'avantage d'une telle approximation est qu'elle permet un

fontionnement séquentiel, ainsi l'approximation partiulaire de la densité p (xk+1 | z1:k+1)
peut être obtenue par le méanisme � relativement simple à mettre en oeuvre � suivant :

� Chaque partiule xik+1 est tirée à partir de la partiule à l'instant préédent x
i
k suiv-

ant une densité q (xk+1 | xik, zk), appelée densité instrumentale dont le hoix est laissé

à l'utilisateur. En pratique, la densité a priori p(xk+1|xk) issue du modèle d'état est

souvent utilisée ar la densité instrumentale optimale fournie par p
(
xk | xik−1, zk

)

ne permet que rarement de tirer failement des éhantillons à partir de elle-i.

� Ensuite les poids des partiules sont mis à jour au moyen de l'équation suivante :

wik ∝ wik−1

p
(
xik+1 | xik

)
p (zk | xik)

q
(
xik+1 | xik, zk

) , (6)

qui fait intervenir la densité a priori p (xk+1 | xik) et la vraisemblane de la mesure

onditionnellement à l'état ahé p (zk | xk).

Le pistage radar lassique

Le pistage radar onsiste à réer, à partir d'une suession de mesures temporelles, des

haînes d'états suessifs ohérents de la inématique d'une ible. Pour un traitement
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radar lassique, es mesures temporelles orrespondent aux plots issus d'une étape préal-

able de détetion et d'extration appliquée au signal radar brut. Au delà du haînage

proprement dit, l'étape de pistage permet également d'améliorer l'estimation des dif-

férents paramètres des ibles (tels que la position, la vitesse, et.), estimation limitée lors

de l'étape préliminaire de détetion/extration par les aratéristiques du radar.

L'une des di�ultés majeures du pistage radar tient tout d'abord à la struture de la

mesure brute zk délivrée par le radar. En e�et, elle-i peut être vue omme un tableau

multidimensionnel � dont haque axe représente un des paramètres mesurés, tels que dis-

tane, angle, Doppler, et. � pouvant ontenir un nombre de ases (ou ellules) beauoup

plus important que le nombre de ibles d'intérêt et qui par onséquent peut être poten-

tiellement di�ile de traiter dans sa totalité, notamment dans le adre d'une appliation

temps réel. De e fait, la première étape d'un traitement radar lassique onsiste à seuiller

la mesure zk et à ne garder qu'un nombre limité de ases radar suseptibles de ontenir les

di�érentes ibles présentes. A partir de es ases radar, des plots de détetion � qui sont

une mesure bruitée des paramètres d'une ible potentielle � sont alors formés et permet-

tent ainsi de réaliser l'étape de pistage proprement dite, qui est notamment vouée à réer,

à partir des plots fournis au ours du temps, des haînes d'états suessifs ohérents de

la inématique d'une ible, et dans le même temps à améliorer l'estimation des di�érents

paramètres d'état.

Dans l'approhe lassique, la méonnaissane de l'origine des di�érents plots de déte-

tion, qui peuvent être générés aussi bien par une des ibles présentes dans la fenêtre de

veille que par des fausses alarmes, onduit à la néessité d'assoier haque plot mesuré à

une piste (existante ou nouvelle). Ce problème d'assoiation plots/pistes ne présente pas

de di�ultés lorsque l'on herhe à pister des ibles à fort Rapport Signal à Bruit (RSB)

; en e�et dans e as il su�t de hoisir un seuil de détetion élevé qui permet de limiter

très fortement le nombre de fausses alarmes et la omplexité du problème. Par ontre, si

l'on herhe à pister des ibles à faible RSB, il devient néessaire de baisser le seuil de

détetion pour permettre la détetion des ibles. Cela onduit à augmenter sensiblement

le nombre de fausses alarmes et le problème d'assoiation peut alors devenir beauoup

plus di�ile à résoudre.

L'approhe Trak-Before-Detet

Comme nous venons de le voir, l'approhe lassique n'est pas forément la plus adaptée

pour déteter et pister des ibles à faible RSB � bien qu'elle permette par ailleurs une

rédution importante de la taille de la mesure zk. Par onséquent, une nouvelle approhe,

onnue sous le nom de Trak-Before-Detet (TBD), a été proposée dont l'idée est simple :

il s'agit de ne plus travailler à partir des données seuillées omme dans l'approhe lassique

mais diretement à partir des données radar brutes z1, · · · , zk. Le premier avantage est

la suppression du problème d'assoiation. D'autre part toute l'information présente dans

les données est onservée laissant penser qu'il sera ainsi plus faile de pister des ibles à

faible RSB dans e adre que dans le adre lassique.

Néanmoins, ette nouvelle approhe n'est pas sans di�ulté l'exploitation direte de

la mesure zk onduit à un modèle de mesure plus di�ile à appréhender que dans le as



4 Résumé étendu

lassique, modèle qui peut être dé�ni par l'équation suivante :

zk =

Nk∑

i=1

ρk,ie
jϕk,ih (xk,i) + nk, (7)

où :

� Nk est le nombre de ibles présentes dans la mesure.

� xk,i est l'état de la i
ième

ible.

� les paramètres ρk,i et e
jϕk,i

dé�nissent l'amplitude omplexe de la ible i, inonnue
et possiblement �utuante (de manière aléatoire) au ours du temps.

� h (.) est la fontion d'ambiguïté de la forme d'onde radar qui est onnue.

Clairement, il s'avère que les ontributions des di�érentes ibles sont sommées et don

mélangées dans le veteur de mesure. Dans l'approhe lassique e n'est généralement pas

le as dès lors que les ibles sont su�samment distantes pour être résolues en sortie de

�ltre adapté. On peut alors faire l'hypothèse qu'à un plot ne peut être assoié qu'une seule

piste. De plus, la fontion h (.) est souvent fortement non-linéaire, e qui rend di�ile

l'utilisation de solutions telles que l'EKF ou l'UKF. En�n, la présene des paramètres

inonnus et �utuants ρk,i et ϕk,i ne permet généralement pas de aluler diretement la

vraisemblane de la mesure onditionnellement aux états des ibles p (zk | xk,1:Nk
).

Au vu de es di�ultés, les premières solutions au problème de pistage dans le adre

du Trak-Before-Detet ont d'abord été proposées dans le as plus simple monoible �

'est-à-dire que l'on herhe à déteter l'apparition et/ou la disparition d'une et une

seule ible. Parmi es solutions on peut iter les solutions basées sur la transformée de

Hough [CEW94℄, elles basées sur la programmation dynamique [Bar85℄ ou enore elles

utilisant le �ltre partiulaire [SB01℄. Suite à es premières solutions du problème monoi-

ble, d'autres solutions ont été proposées dans le adre plus général du pistage multiible

[KKH05℄. Dans ette thèse, nous nous intéresserons uniquement aux solutions partiu-

laires (mono omme multiibles), sans perdre d'esprit que d'autres travaux devraient être

entrepris par la suite pour omparer les di�érentes solutions au problème TBD. L'objetif

est dans e travail de développer et d'étendre les solutions partiulaires existantes dans le

adre général du pistage mono ou multiibles en ontexte TBD. En pratique, le problème

monoible a d'abord été onsidéré.

Filtres partiulaires monoibles en Trak-Before-Detet

Filtre lassique et lois instrumentales

En TBD, la présene ou l'absene de la ible n'est pas onnue a priori et il est don

néessaire de modéliser ette méonnaissane. Dans le adre bayésien des modèles de

markov ahés étudiés dans ette thèse, la méthode lassique pour modéliser la présene

ou l'absene de la ible onsiste à utiliser une variable binaire sk qui prend la valeur

1 quand la ible est présente et 0 sinon [SB01℄. Ainsi, si on note xk l'état de la ible
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(représentant sa position et sa vitesse, et.), l'objetif du pistage est alors d'estimer l'état

hybride (sk,xk) au ours du temps. Pour e faire, il est néessaire de dé�nir la densité de

transition p (sk,xk | sk−1,xk−1) du modèle a priori. En règle générale, ette densité est

fatorisée de la manière suivante :

p (sk,xk | sk−1,xk−1) = p (sk | sk−1) p (xk | xk−1, sk, sk−1) , (8)

e qui permet de modéliser le proessus (sk)k∈N omme une haîne de Markov à deux états,

indépendante de l'état xk. Ensuite, il reste à modéliser la densité p (xk | xk−1, sk, sk−1).
Bien qu'il y ait quatre as de �gure, dans les faits seuls les deux as suivants, qui orre-

spondent à une présene de la ible à l'instant k, sont néessaires:

� le as sk = 1 et sk−1 = 0 qui orrespond à l'apparition ou à la naissane de la ible.

La variable xk est généralement initialisée uniformément dans l'espae d'état, pour

modéliser l'absene de onnaissane sur l'état de la ible.

� le as sk = 1 et sk−1 = 1 où la ible est déjà présente et qui modélise don son

évolution au ours du temps (par exemple, un mouvement retiligne).

A partir du modèle d'état ainsi dé�ni, un premier �ltre partiulaire a été proposé par

Salmond et al. [SB01℄ a�n d'approximer le �ltre bayésien théorique qui n'est pas alu-

lable en pratique. Dans le adre du �ltre partiulaire, la densité instrumentale utilisée

pour éhantillonner les partiules peut être hoisie par l'utilisateur. Même si la loi sou-

vent retenue est la loi a priori orrespondant au modèle d'état, qui ne prend pas en

ompte l'information fournie par l'observation ourante zk, il est tout à fait possible de

la prendre en ompte, notamment pour améliorer la performane du �ltre en propageant

les partiules de manière plus e�ae. En Trak-Before-Detet, le as réellement ri-

tique pour l'éhantillonnage des partiules est l'initialisation (ou la naissane). En e�et,

à ause de l'a priori uniforme sur la densité p(xk|xk−1, sk = 1, sk−1 = 0), il est nées-

saire d'éhantillonner l'ensemble de l'espae d'état, e qui peut néessiter un nombre

très important de partiules, généralement proportionnel au nombre de ases de résolu-

tion. Des approhes heuristiques ont été proposées dans la littérature a�n de résoudre

e problème en exploitant l'information fournie par l'observation ourante, notamment

par Salmond et al.. Toutefois les solutions proposées n'étaient pas néessairement justi-

�ées théoriquement. Ainsi, nous proposons au hapitre 2 de nouvelles lois instrumentales

dérivées à partir d'approximations de la densité instrumentale optimale p
(
xk | xik−1, zk

)

� qui n'est pas alulable en pratique. Par exemple, le �ltre partiulaire développé par

Salmond et al. éhantillonne la variable sk à partir de la loi a priori qui ne tient pas

ompte de l'observation zk. Nous montrons qu'il est en fait possible de prendre en ompte

l'observation en éhantillonnant la variable sk à partir de la loi a posteriori p (sk | sk−1, zk).

Finalement, nous omparons sur simulation les lois instrumentales proposées ave

elles lassiquement utilisées dans la littérature. Ces simulations illustrent l'importane

de l'initialisation des partiules (notamment la position) et montrent qu'il peut être plus

intéressant d'utiliser une loi instrumentale di�érente de la loi a priori fournie par le modèle

d'état que de simplement augmenter le nombre de partiules.
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Modélisation alternative du problème TBD monoible

Dans ertains as de �gure, et notamment à faible RSB, le fait de ontinuer à initialiser

des partiules alors que le �ltre a déjà onvergé sur la ible peut biaiser l'estimation. Il est

don légitime de remettre en ause la néessité d'initialiser des partiules quand le �ltre

a déjà onvergé, et e d'autant plus que l'initialisation des partiules est est relativement

oûteuse en temps de alul. Partant de e onstat, nous avons onsidéré une stratégie

alternative permettant d'e�etuer la détetion de l'apparition de la ible et sa disparition

ave des �ltres di�érents. Les prémies d'une telle solution se trouvent dans les travaux

de Kligys et al. [KRT98℄ qui proposent une modélisation du problème TBD omme un

problème de détetion de hangement : il s'agit alors d'estimer le plus rapidement possible

un hangement de densité de probabilité tout en minimisant la probabilité d'erreur. Dans

le as du TBD, le hangement survient quand la ible apparaît : on passe alors de la densité

de probabilité du bruit seul à une densité de probabilité déentrée par la ontribution de

la ible (voir Eq. 7). Néanmoins, la solution de Kligys et al. n'est pas développée

dans le adre des Modèles de Markov ahés. Nous proposons don dans ette thèse une

solution originale adoptant ette modélisation du problème TBD omme un problème

de détetion de hangement et dérivons le �ltre partiulaire orrespondant. Ainsi, au

hapitre 3 le modèle d'état onsidéré modélise non plus l'évolution du ouple (sk,xk)
au ours du temps mais l'évolution du ouple (τb,xk) où τb est l'instant d'apparition de

la ible. Un modèle d'état similaire peut être onsidéré pour la disparition de la ible.

Dans les deux as, nous dérivons les équations des �ltres bayésiens orrespondants ainsi

que des approximations partiulaires pour haun d'eux. En�n, nous proposons un �ltre

partiulaire ombinant es deux �ltres a�n de gérer à la fois l'apparition et la disparition de

la ible. Les simulations e�etuées permettent de montrer l'intérêt de séparer la détetion

de l'apparition et de la disparition notamment au niveau de temps de alul du �ltre mais

également en matière d'estimation (surtout à faible RSB).

Calul de la vraisemblane en Trak-Before-Detet

Un autre problème important qui se pose en TBD onerne le alul de la vraisemblane

de la mesure onditionnellement à l'état des ibles p (zk | xk,1:Nk
), qui est néessaire pour

la mise en oeuvre du �ltre bayésien. Or ette vraisemblane ne peut pas être alulée

diretement à partir de l'équation de mesure (7) du fait de la présene des paramètres

d'amplitudes ρk,i, ϕk,i qui sont inonnus et peuvent �utuer d'itération à itération. En

radar, les �utuations du module ρk,i sont généralement modélisées par un des modèles

Swerling : pour le modèle Swerling 0, le module est supposé onstant et don non �utu-

ant, tandis que les modèles Swerling 1 et 3 modélisent des �utuations lentes (de rafale à

rafale) de l'amplitude ible, et les modèles de Swerling 2 et 4 modélisent des �utuations

rapides (d'impulsion à impulsion). La phase ϕk,i est quant à elle supposée uniformément

distribuée sur l'intervalle [0, 2π[. Dans la mesure où le modèle de mesure onsidéré est

développé au niveau de la rafale, nous ne onsidérons dans ette thèse que les modèles de

Swerling 0, 1 et 3, soit l'absene de �utuation ou une �utuation lente de la ible.

Plusieurs solutions ont été proposées dans la littérature pour s'a�ranhir de es pa-

ramètres d'amplitude et ainsi permettre de aluler la vraisemblane des observations
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p (zk | xk,1:Nk
). La première solution proposée [RRG05, DRC08, BDV

+
03℄ onsiste à tra-

vailler sur les modules des éhantillons omplexes |zlk|2. En e�et, ette solution permet

de aluler la vraisemblane de manière simple dans le as monoible. Par ontre, ette

solution onduit à perdre l'information de ohérene spatiale de la phase de la ible, i.e. le

fait que la phase de la ible est la même pour tous les éhantillons de la mesure zk. Cette

perte d'information peut être préjudiiable pour les performanes omme démontré par

Davey et al. [DRC12℄. D'autre part, nous avons montré que l'extension de ette solution

au as multiible est loin d'être simple, sauf dans le as Swerling 1 où une expression

analytique de la vraisemblane peut être obtenue.

A�n de palier la perte de la ohérene spatiale sur le module, Davey et al. [DRC12℄

ont proposé dans le as monoible une autre approhe qui onsiste à travailler diretement

à partir de la mesure omplexe zk et à marginaliser la densité p(zk|xk, ρk, ϕk) (qui peut
être obtenue failement à partir de l'Eq. (7)) par rapport à la variable ϕk, soit :

p (zk | xk, ρk) =
∫
p (zk | xk, ρk, ϕk) p (ϕk) dϕk, (9)

où p (ϕk) est la densité uniforme sur [0, 2π[. Contrairement à l'approhe préédente, la

ohérene spatiale de la phase est ii onservée. Davey et al. montrent alors que l'Eq. (9)

est alulable de manière analytique. Dans le as Swerling 0, la vraisemblane p (zk | xk)
néessaire pour le �ltrage partiulaire est alors simplement obtenue en remplaçant la

variable ρk par la valeur du paramètre. Pour les modèles Swerling 1 et 3, il est néessaire
de marginaliser également la densité p (zk | xk, ρk) par rapport au module ; dans e as,

auune formule analytique n'a jusqu'alors été fournie.Suite à ette onstatation, nous

avons tout d'abord étendu l'approhe proposée par Davey et al. pour les modèles de

�utuations Swerling 1 et 3 dans le as monoible. Nous montrons, dans le hapitre 4

ette thèse, que la marginalisation de la densité p (zk | xk, ρk) suivant le paramètre ρk est
alulable de manière exate pour les modèles Swerling 1 et 3. Dans un seond temps,

nous avons onsidéré le problème de la marginalisation des paramètres d'amplitude dans le

as multiible. Nous obtenons une expression analytique uniquement dans le as Swerling

1 ; pour les autres modèles de �utuations, nous proposons néanmoins des approximations

permettant le alul des vraisemblanes en un temps raisonnable. En�n, nous montrons

par simulation l'intérêt d'utiliser la mesure omplexe zk au lieu des modules arrés dans

le as monoible pour les �utuations Swerling 1 et 3, et dans le as multiibles pour les

�utuations Swerling 0, 1 et 3.

Filtres partiulaires multiibles en Trak-Before-Detet

Préédemment nous avons donné un bref aperçu de la modélisation du problème Trak-

Before-Detet en monoible ave l'utilisation de la variable disrète sk. La modélisation

généralement utilisée dans le adre multiible suit une idée similaire ave l'introdution

d'une variable alétoire supplémentaire modélisant le nombre de ible présent, sauf que

dans le as multiible e nombre n'est plus limité par 1. En notant Nk le nombre de ibles

à l'instant k, le but du pistage est alors d'estimer la densité p (Nk,xk,1:Nk
| z1:k) au ours

du temps.
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A partir de ette modélisation du problème multiible, Kreuher et al. ont proposé un

�ltre partiulaire permettant d'approximer le �ltre bayésien théorique. Celui-i éhantil-

lonne pour haque partiule un nombre de ibles N i
k et les états des ibles assoiés x

i
k,1:Nk

,

e qui permet d'érire l'approximation partiulaire de la manière suivante :

p (xk,1:Nk
, Nk | z1:k) ≈

Np∑

i=1

wikδxi

k,1:Ni
k

(xk,1:Nk
) . (10)

Malgré ette approximation partiulaire de la densité a posteriori, l'estimation du nombre

de ibles ainsi que de leur état reste di�ile en pratique. En e�et, la densité a posteri-

ori est invariante par permutation des états de ibles � par exemple, pour deux ibles,

p (xk,1,xk,2 | z1:k) = p (xk,2,xk,1 | z1:k). Par onséquent, si les états des ibles xik,1:N i
k

pour

haque partiule ne sont pas ordonnés, il n'est pas possible d'estimer orretement l'état

des ibles orrespondantes. C'est pourquoi Kreuher et al. préonise une étape sup-

plémentaire de lustering a�n d'ordonner les di�érents états des partiules en partition

représentant haune une ible. D'autre part, le fait de onsidérer des partiules multii-

bles implique que le poids de la partiule, obtenu par le produit des vraisemblanes des

di�érents états éhantillonnés par ette partiule, représente uniquement un omporte-

ment global de la partiule pour l'ensemble des états, mais ne re�ète pas la qualité des

di�érents états en partiulier. En pratique, on peut alors obtenir des partiules éhan-

tillonnant orretement un ertain nombre d'états et inorretement d'autres états ; les

poids de es partiules ne permettront pas de distinguer les états orretement éhantillon-

nés des autres états, e qui pourra onduire à une détérioration de la qualité d'estimation

du �ltre. Suite à es onstatations, nous proposons dans le hapitre 5 une modélisation

permettant de déoupler les di�érentes ibles quand elles-i sont éloignées les unes des

autres ; on utilise alors simplement des �ltres di�érents et indépendants pour pister les

di�érentes ibles. Ainsi, l'étape de lusterisation n'est plus néessaire et par onstru-

tion les ibles sont indépendantes les unes des autres. Pour e faire, nous ne onsidérons

plus la variable Nk modélisant le nombre de ibles et pouvant varier au ours du temps,

mais plut�t un nombre onstant Nt de ouples (sk,l,xk,l) orrespondant à la modélisation

monoible du problème TBD ; Nt représente le nombre maximum de ibles que le �ltre

partiulaire peut gérer onjointement. Nous montrons qu'ave ette modélisation, lorsque

les ibles n'interagissent pas entre elles, le �ltre bayésien peut être fatorisé omme suit :

p (sk,1:Nt,xk,1:Nt) =
Nt∏

l=1

p (sk,l,xk,l) , (11)

e qui permet e�etivement l'emploi d'un �ltre par ible. Par ontre, lorsque des ibles

sont prohes, elles doivent être traitées onjointement. Il reste toutefois possible de traiter

séparément les groupes de ibles prohes et les ibles isolées.

De manière similaire au hapitre 3, nous proposons alors trois �ltres partiulaires,

l'un pour e�etuer la détetion de l'apparition de plusieurs ibles, le seond pour gérer

la disparition, et le dernier qui ombine es deux premières solutions pour gérer à la fois

l'apparition et la disparition. Cette approhe est validée sur simulation en onsidérant

deux sénarios simples, l'un où trois ibles à faible RSB sont présentes mais n'interagissent

pas entre elles et un autre où deux ibles à fort RSB se roisent.
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Contributions

Dans ette thèse nous nous sommes intéressés au problème du pistage monoible et mul-

tiible en ontexte Trak-Before-Detet par �ltrage partiulaire. Conernant le pistage

monoible, nous avons tout d'abord proposé de nouvelles lois instrumentales pour l'ini-

tialisation des partiules et montré par simulation qu'elles apportaient un gain signi�atif

tant au niveau de la détetion que de l'estimation. Ces travaux ont fait l'objet d'une

ommuniation [LRLG12a℄. Par ailleurs, nous avons proposé une modélisation alternative

originale du problème TBD monoible basée sur l'instant d'apparition ou de disparition

de la ible. Ainsi, nous avons proposé trois �ltres partiulaires, le premier pour déteter

l'apparition de la ible, le seond pour déteter sa disparition, et le dernier qui ombine

les deux �ltres préédents pour gérer onjointement l'apparition et la disparition. Finale-

ment, nous montrons par simulation l'intérêt de séparer la détetion de l'apparition et de

la détetion notamment en matière de temps de alul mais également en e qui onerne

l'estimation (surtout à faible RSB). Cette solution originale a été partiellement présentée

dans la ommuniation [LRLG12b℄.

Ensuite, nous nous sommes intéressés au alul de la vraisemblane en ontexte Trak-

Before-Detet. Nous avons étendu les travaux de Davey et al. permettant le alul de

la vraisemblane en tenant ompte de la ohérene spatiale des paramètres d'amplitude

pour des �utuations Swerling 0, à d'autres modèles de �utuations (Swerling 1 et 3) et

aux troix modèles de �utuation dans le as multiible. Ainsi, nous avons montré que

dans le as monoible, des expressions analytiques de la vraisemblane pouvaient être

obtenues pour les �utuations Swerling 1 et 3 ; dans le as multiible, nous obtenons

une expression analytique uniquement dans le as Swerling 1 ; néanmoins pour les autres

modèles nous proposons des approximations permettant de aluler la vraisemblane en

un temps raisonnable. Ces travaux ont fait l'objet d'une première ommuniation en

onférene [LRG13℄ puis d'une publiation plus avanée aeptée dans la revue IEEE

Transations on Aerospae and Eletroni Systems [LRLG16℄.

Finalement dans la dernière partie de ette thèse, nous nous sommes intéressés au

pistage multiible. Notre démarhe a onsisté à mettre en plae une solution permettant

d'une part d'exploiter au maximum l'indépendane des ibles entre elles a�n d'utiliser

autant que possible un �ltre par ible plut�t que des �ltres multiibles, et d'autre part,

omme pour le as monoible, de séparer la détetion de l'apparition et de la disparition.

Ainsi, nous avons montré qu'il était possible d'étendre la modélisation du problème mono-

ible au as multiible et que le �ltre multiible résultant pouvait être fatorisé par un

produit de �ltres monoibles dès lors que les ibles sont su�samment éloignées les unes

des autres. Nous avons alors proposé omme dans le as monoible trois �ltres partiu-

laires : un pour la détetion des apparitions, un seond pour la gestion des roisements

et des disparitions et en�n un dernier �ltre réunissant les deux �ltres préédents.
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Chapter 1

Radar signal proessing and Bayesian

�ltering tools

The whole lassi radar hain from the signal reeption to the traking stage an be

deomposed into three di�erent steps, as illustrated in Figure 1.1.

Figure 1.1 � Blok diagram of the lassi radar hain from the signal proessing stage

to the traking stage. The Trak-Before-Detet proessing takes plae after the signal

proessing stage.

The �rst stage, denoted here "radar signal proessing", is performed in order to im-

prove the target Signal to Noise Ratio (SNR), thus allowing to detet and estimate the tar-

get parameters (suh as range, radial veloity, azimuth,...). In the lassi radar hain, the

"radar signal proessing" stage provides a measurement zk as an input to the "detetion

and hit extration". This next step onsists �rst in thresholding the radar measurement

zk and then in extrating the potential target parameters from any signal sample (alled

"hit") that passed the detetion threshold. At the end of this step, a set of detetion hits

Yk is provided to the traking step. This last stage takes advantage of some target motion

information (e.g. a linear trajetory) to enhane the estimation of the target parameters

over time. Moreover it enables to disriminate over time the "hits" that ome from the

targets from the ones that are due to false alarms in order to form traks.

In pratie, "the detetion and hit extration" stage allows to dramatially redue

the amount of data to proess � indeed the size of the measurement zk may be very

large (it is a multidimensional array that may ontain several tens of thousands of ells)

whereas, if the threshold is onveniently hosen to limit the false alarms, the set Yk is

11
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Figure 1.2 � General radar priniple. In blak the transmitted signal and red the signal

re�eted in all the diretions.

muh smaller � but in return some information is lost that may be detrimental, espeially

if some targets have a low SNR. A new framework, known as Trak-Before-Detet, has

therefore been proposed and onsists in jointly performing detetion and traking from

the measurement zk rather than from the set of detetion "hits", as illustrated in Figure

1.1. This framework will be at the heart of this thesis.

Before going further into the details of the Trak-Before-Detet strategy, we propose

�rst in this hapter to present some aspets of the radar signal proessing theory and of

the Bayesian �ltering theory that will be useful along this manusript. In partiular, in

setion 1.1, we present the main signal proessing tools used to transform the reeived

signal into the output measurements zk and the detetion hits Yk while in setion 1.2 we

outline the Bayesian �ltering tools that are used in the radar traking stage.

1.1 Radar signal proessing

1.1.1 General priniple

A RADAR (RAdio Detetion and Ranging) is an eletromagneti system onsisting of an

antenna that transmits a signal with a partiular waveform and then reeives and detets

the signal baksattered by any satterer present in the sene, among whih possibly one

or several targets (suh as airrafts, vessels, et.). This priniple is illustrated in Figure

1.2. Then by measuring the duration τ of the round trip between the radar and the target,

it is possible to alulate the orresponding range R with the following relationship:

R =
cτ

2
, (1.1)

where c is the speed of the eletromagneti wave. Furthermore, due to the motion of

the target, the signal reeived by the radar may be shifted in frequeny ompared to the

transmitted one: this is the so alled Doppler e�et. The frequeny shift between the

transmitted signal and the reeived one is approximately equal to

2Ṙ
c
f0 where f0 is the

frequeny of the transmitted signal and Ṙ the radial veloity. Therefore by measuring

this Doppler shift, it is possible to extrat the radial veloity of the target.

This is basially the very general radar priniple. However, in pratie measuring the

delay and Doppler is not as simple as it looks. Indeed, the transmitted signal will be
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attenuated, and only a portion of baksattered energy will be re�eted by the target

in the radar diretion. Therefore, at the reeption side, the reeived signal is passed

through a omplete reeption hain that allows to reover the baksattered signal with

some additive noise. Two questions an then be raised:

� Does the reeived signal ontain one (or several) target ontribution(s) or only noise

?

� How to aurately estimate the delay and Doppler parameters while the reeived

signal is orrupted by noise ?

The �rst question orresponds to a detetion problem; the detetion theory [Kay98℄

provides a onvenient framework to solve this problem in a radar ontext, in the form of

the Neyman-Pearson riteria; that is to say maximizing the probability of deteting the

signal (if present) while ensuring a given false alarm probability. In many appliation, and

in partiular in radar, this detetion proedure involves the mathed �lter [Tur60, Woo53℄,

that will be presented in setion 1.1.3.

The seond question orresponds to an estimation problem whih is often solved using

the Maximum Likelihood riteria, i.e. �nding the value of the parameter maximizing the

likelihood that the signal ours with the orresponding parameter value. In pratie, this

maximization often leads to �nd the maximum output of the mathed �lter and is highly

related to the harateristis of the transmitted signal (in partiular the duration and the

frequeny bandwidth). Thus, in paragraph 1.1.4 and 1.1.5, we expose very shortly the

tools used to study their properties and detail a very ommon signal used in radar.

Lastly, we would like to highlight that the purpose of this setion is not to extensively

study all the aspets of the radar theory

1

but rather to provide a realisti but simple

model for the input data used to perform the radar traking stage, and in partiular the

Trak-Before-Detet methods that represent the heart of this work.

1.1.2 Radar signal

A radar signal is onstituted of two parts, �rst a baseband signal with bandB and duration

Tp and then a arrier f0 (usually suh that B ≪ f0) allowing to arry the signal through

the air. The transmitted signal s(t) an be written in a omplex formalism as

s(t) = Eu(t)ej2πf0t, (1.2)

where u(.) is the omplex envelop of the baseband signal with energy equal to one and E is

the energy of signal s(.). At the reeption side, if the transmitted signal has been re�eted

by a target (or any baksatter), the radar reeives a signal sr(.) whih is an attenuated

replia of the transmitted signal delayed by the time τ (t) taken by the eletromagneti

wave to make the round trip between the radar and the target:

sr(t) = ρ′ejϕ
′

u (t− τ (t)) ej2πf0(t−τ(t)), (1.3)

where ρ′ejϕ
′
is a omplex oe�ient of attenuation that is unknown and random:

1

Readers wishing to deepen the radar theory may refer to [Sko80, Rih69, Dar94, LC89℄
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� the phase ϕ′
is assumed to be uniformly drawn over [0, 2π);

� the modulus ρ′ is subjet to random �utuations usually modeled in radar proessing

by a Swerling model that will be detailed in hapter 4.

τ(.) is a funtion of time t. Notiing that the signal reeived at a given time t was re�eted

by the target at time t− τ(t)
2
, the funtion τ(.) veri�es the following relationship [Rih69℄:

cτ (t) = 2R

(
t− τ (t)

2

)
, (1.4)

with R(.) the range between the target and the radar with respet to time t. In pratie,

the funtion τ(.) may be di�ult to alulate. Thus, it is generally approximated by its

Taylor expansion [Rih69℄. We onsider here an approximation of order one whih is the

ommon hypothesis made in radar � Note however that higher orders may be required

for highly manoeuvring targets. The Taylor polynomial of order 1 of τ(.) around time t0
suh that τ0 = τ(t0) is given by [Rih69℄:

τ(t) = τ0 + τ̇0 (t− τ0) , (1.5)

where:

� τ0 =
2R0

c
, with R0 = R( τ0

2
).

� τ̇0 =
2Ṙ0

c
(1 + Ṙ0

c
)−1 ≈ 2Ṙ0

c
, with Ṙ0 = Ṙ( τ0

2
) the relative radial veloity between the

target and the radar. Note that the approximation of τ̇0 is valid for usual target

veloity verifying Ṙ0 ≪ c.

Then, by replaing τ (t) by its polynomial approximation, the reeived signal sr(t) an be

rewritten as follows:

sr(t) = ρ′ejϕ
′

u ((t− τ0) (1− β)) e2πf0(1−β)(t−τ0), (1.6)

with β = 2Ṙ0

c
. The target motion indues a ompression/dilatation e�et on the baseband

signal and a Doppler shift both on the arrier. Fortunately, the time ompression dilata-

tion indued by the fator 1 − β over the baseband signal an be negleted as long as

2Ṙ0

c
≪ 1 and the only e�et to take into aount on the omplex envelop is then the delay

τ0. On the ontrary, the Doppler shift on the arrier must be taken into aount sine

the multipliation by f0 indues a fast phase rotation equal to −2πf0βt. For instane,

with f0 = 3GHz, Tp = 100µs and Ṙ0 = −300m.s−1
, the phase rotation after a duration

Tp is equal to −2πf0βTp = 216◦, whih may not be negligible depending on the signal

onsidered.

Finally, the reeived signal sr(t) is passed through the reeption hain that onsists, in

partiular, in demodulating � an intermediate step that onsists in removing the arrier

ej2πf0t � and in amplifying the reeived signal, and beomes:

sr(t) = ρejϕu(t− τ0)ej2πν0t + n(t), (1.7)
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where ν0 = −f0β is the Doppler shift, ϕ = ϕ′ + 2πf0 (1− β) τ0 a random phase, ρ the

ampli�ed modulus, and n(t) a stationary omplex Gaussian noise with autoorrelation

funtion

γn(s) = E[n(t)n∗(t− s)] = 2σ2δ(s) (1.8)

due to the reeption hain, where δ(s) is the delta mass Dira funtion at point zero.

Finally, the baseband signal in Eq. (1.7) is proessed by the radar proessing hain

in order to perform target detetion and parameter estimation. The basi tool of this

proessing hain is the mathed �lter.

1.1.3 The mathed �lter

The mathed �lter is widely used in many appliations, for instane radar, sonar, teleom-

muniation, in order to detet a signal with a known waveform orrupted by noise.

Roughly speaking, the mathed �lter onsists in alulating the orrelation between the

reeived signal and the known waveform; the detetion is then performed by omparing

the output signal with a given threshold γ.

1.1.3.1 Mathed Filter de�nition and properties

A �lter is alled a mathed �lter for a physial waveform u (t) with energy E if its impulse

response h (t) has the form [Tur60℄

hu(t) = Ku∗(ta − t), (1.9)

whereK and ta are arbitrary onstants. The mathed �lter impulse response is a onjugate

time-reversed version of the physial waveform u (t).

Then, for a reeived signal of the form

r (t) = u (t− τ0) + n(t), (1.10)

where τ0 is here assumed to be known and n (t) is a stationary Gaussian omplex noise

with autoorrelation funtion de�ned in Eq. (1.8), the output rMF,hu (.) of the mathed

�lter is obtained by onvolving the reeived signal r (t) with the impulse response hu(t).
By setting ta = 0 and K = 1, this leads to

rMF,hu(τ) = (hu ⋆ r)(τ)

=

∫ ∞

−∞

u (t− τ0) u∗ (t− τ) dt
︸ ︷︷ ︸

rMF,u(τ)

+

∫ ∞

−∞

n(t)u∗ (t− τ) dt
︸ ︷︷ ︸

nMF (τ)

,
(1.11)

whih onsists of two terms rMF,u(τ) and nMF (τ). rMF,u(τ) is the autoorrelation funtion
of the deterministi signal u (t) delayed by τ0, i.e. rMF,u(τ) = Ru (τ − τ0), where

Ru (τ
′) =

∫ ∞

−∞

u (t)u∗ (t− τ ′) dt.
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Therefore rMF,u(τ) is maximum for τ = τ0 and rMF,u(τ0) = E. The seond term nMF (τ)
is still a stationary Gaussian omplex noise with autoorrelation funtion:

γnMF
(τs) = E[nMF (τ)n

∗
MF (τ − τs)]

=

∫ ∞

−∞

∫ ∞

−∞

E[n(t)n∗(s)]u∗ (t− τ) u (s− τ + τs) dtds

= 2σ2

∫ ∞

−∞

u (t) u∗ (t− τs) dt = 2σ2Ru (τs) .

(1.12)

This last equation means that even though the input noise is white, the output noise is,

in general, not white sine it depends on the signal autoorrelation Ru (τs). Finally, by

de�ning the Signal to Noise Ratio (SNR) output as

SNR (τ) =
|rMF,u(τ)|2

E
[
|nMF (τ)|2

] , (1.13)

it an be easily shown that the mathed �lter is the linear �lter that maximizes the SNR

output for τ = τ0 [Tur60, LM04℄, given by

SNR (τ0) =
E

2σ2
. (1.14)

1.1.3.2 The Mathed Filter in the Detetion Theory framework

In order to illustrate the fundamental role played by the mathed �lter in the detetion

theory, let us onsider the following statistial hypothesis-testing problem [Tur60, Kay98℄

{
H0 : sr (t) = n (t) , t ∈ [0, Tr]
H1 : sr(t) = u(t− τ0) + n(t), t ∈ [0, Tr] .

(1.15)

where u(t) is any signal waveform assumed to be known, τ0 a delay also assumed to be

known and Tr is the time during whih the reeived signal has been observed. The deision

over the hypotheses H0 and H1 an lead to two types of errors:

� Either deide hypothesis H1 whereas hypothesis H0 is true. Suh an error is alled

a false alarm and we denote by Pfa the orresponding probability of false alarm.

� Or deide hypothesis H0 whereas a target is present. This a miss detetion and its

orresponding miss detetion probability is denoted by Pmd. Lastly, the probability
of detetion PD is de�ned by PD = 1− Pmd.

These two deision errors behave in an opposite manner: trying to derease the Pfa
will lead to inrease Pmd and reiproally. Therefore, a trade-o� must be found and the

lassi riteria, alled the Neyman-Pearson riteria, onsists in maximizing the probability

of detetion PD while ensuring a given Pfa. The optimal detetor, for this riteria, is

provided by the Neyman-Pearson theorem [Tur60, Kay98℄; it onsists in omparing the

ratio between the likelihood of the signal sr (t) under hypothesis H1 and the likelihood
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of the same signal under hypothesis H0. Under a white Gaussian noise assumption, the

optimal detetor is provided by the following proedure [LC89℄

aept H1 if Re

(∫ Tr

0

sr(t)u
∗(t− τ0)dt

)
> γ, (1.16)

where Re (.) stands for the real part. Thus, the detetion sheme onsists in omparing

the output of the mathed �lter sampled at τ = τ0 with a threshold γ alulated in order

to ensure the given Pfa.

1.1.3.3 The Mathed Filter in radar

In radar, the reeived signal depends on unknown parameters (delay τ0, Doppler shift ν0,
omplex amplitude ρejϕ). As a onsequene, the deision problem beomes a omposite

hypothesis-testing problem [Kay98℄, and proedure (1.16) annot be applied diretly. An

heuristi proedure, alled GLRT (Generalized Likelihood Ratio Test), was then proposed:

it onsists in estimating these parameters in the maximum likelihood sense and injeting

them in the likelihood ratio test. From Eq.(1.7), the radar omposite hypothesis testing

problem has the form

{
H0 : sr (t) = n (t) , t ∈ [0, Tr]
H1 : sr(t) = ρejϕu(t− τ)ej2πνt + n(t), t ∈ [0, Tr] ,

(1.17)

where (ϕ, ρ, τ, ν) are the unknown parameters. Using the GLRT heuristi, and sine

the maximization over parameters (ρ, ϕ) an be easily obtained and does not depend on

parameter (τ, ν), the detetion test beomes [LC89℄:

aept H1 if max
(τ,ν)

∣∣∣
∫ Tr
0
sr(t)u

∗(t− τ)e−j2πνtdt
∣∣∣
2

∫ Tr
0
|u(t− τ)|2 dt

> γ. (1.18)

Furthermore, if we de�ne by hu,ν (.) the impulse response of the �lter mathing the signal

u(t)ej2πνt, i.e.,
hu,ν (t) = u∗ (−t) ej2πνt, (1.19)

the detetion proedure an be �nally rewritten as

aept H1 if max
(τ,ν)

∣∣sr,MF,hu,ν(τ)
∣∣2

∫ Tr
0
|u(t− τ)|2 dt

> γ, (1.20)

whih onsists in omparing the maximum output of the mathed �lter in range and

Doppler with a given threshold. In pratie, the maximum is rarely available in losed

form; searh for the maximum may be then performed by applying several mathed �lters

adapted to di�erent Doppler hypotheses νi.

1.1.4 The ambiguity funtion

In the previous paragraph, the mathed �lter has been presented from a detetion point of

view. Nevertheless, in radar appliations, retrieving information on the target parameters
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τ0 and ν0 is also of interest. Estimating these parameters in the maximum likelihood sense

is equivalent to �nd the values (τ, ν) maximizing the mathed �lter output. Intuitively,

in order to obtain good estimation performane, the energy of the mathed �lter should

onentrate in a narrow peak around (τ0, ν0). Of ourse, the output of the mathed-�lter

is dependent on the hoie of the waveform u (t) and, as a onsequene, the hoie of

the waveform impats the estimation performane. It is thus of importane to study the

behaviour of the mathed �lter output for a partiular waveform u (t) with respet to

parameters τ and ν; this is provided by the ambiguity funtion.

In order to introdue the ambiguity funtion, let us rewrite the reeived signal sr (t)
de�ned in Eq. (1.7) after a mathed �lter operation with impulse response hu,ν (.):

sr,MF,ν (τ) = (hu,ν ⋆ sr)(τ)
= ρejϕej2πντχu(τ − τ0, ν − ν0) + nMF,ν (τ)

(1.21)

where nMF,ν (τ) is the noise omponent after the mathed �ltering step and

χu(τ, ν) =

∫ +∞

−∞

u(t)u∗(t− τ) exp(−j2πνt)dt, (1.22)

The funtion χu(τ, ν) is alled the ambiguity funtion

2

[LM04, LC89℄. It orresponds to

the output of the mathed �lter in absene of noise. Its maximum is obtained at the origin

(i.e. τ = 0 and ν = 0) and orresponds to the energy of the signal u (t). Therefore, if we
want to aurately estimate these parameters in presene of noise the waveform u (t) has
to be hosen suh that it ensures the narrowest peak around the origin of the ambiguity

funtion.

Another important requirement for the radar is its apability to resolve lose targets.

This apability of a radar to resolve two lose targets is often measured with the delay

∆τ and Doppler ∆ν resolutions de�ned as follows:

|χu(∆τ , 0)|2 =
1

2
, |χu(0,∆ν)|2 =

1

2
, (1.23)

that orrespond to 3 dB losses along the range or along the Doppler axis. Note that

the resolution, both in delay and Doppler, is often approximated by the �rst null of the

ambiguity funtion sine it is easier to alulate and provides values quite lose to the

ones obtained by the atual de�nition. Finally, the range resolution ∆r and the range

rate (radial veloity) resolution ∆ṙ are related to the delay and Doppler resolutions by

the following relationships:

∆r =
c

2
∆τ and ∆ṙ =

c

2f0
∆ν . (1.24)

1.1.5 Pulse ompression and linear frequeny-modulated pulse

Clearly two di�erent waveforms will provide two di�erent ambiguity funtions, as well

as their orresponding delay and Doppler resolutions. Delay and Doppler resolutions

2

Note that other de�nitions are possible, in partiular, using +τ and +ν rather than −τ and −ν in

the integral (1.22). However, it is only a onvention and it does not hange the results on the ambiguity

funtion, in partiular the ones provided by Levanon et al. [LM04℄ whih will be used in the sequel.



Radar signal proessing 19

often behave in an opposite manner, i.e. a better resolution in delay will lead to a

poorer resolution in Doppler and reiproally. To illustrate this, let us onsider the simple

following pulse:

uUP (t) =

{
1√
Tp
, if |t| ≤ Tp

2
,

0, otherwise,

(1.25)

denoted as unmodulated pulse (or onstant pulse). The ambiguity funtion for this signal

is provided by [LM04℄

χUP (τ, ν) =

{(
1− |τ |

Tp

)
sin(πTpν)
πTpν

, if |τ | ≤ Tp,

0, otherwise.
(1.26)

The zero-Doppler ut and the zero-delay ut are then obtained respetively by setting

ν = 0 and τ = 0 in Eq. (1.26), whih gives:

χUP (τ, 0) =

(
1− |τ |

Tp

)
, if |τ | ≤ Tp, zero elsewhere, (1.27)

χUP (0, ν) =
sin (πTpν)

πTpν
. (1.28)

The delay and Doppler resolution for the unmodulated pulse are respetively equal to:

∆τ,UP ≈ Tp and ∆ν,UP ≈
1

Tp
, (1.29)

leading to the orresponding range and range rate resolution,

∆r,UP ≈
cTp
2

and ∆ṙ,UP ≈
c

2f0Tp
, (1.30)

Thus one annot obtain simultaneously a good delay and a good Doppler resolution with

this single pulse. In addition, in a more general perspetive, for most of the signals used

in radar the delay resolution is related to the inverse signal bandwidth

3 1/B, i.e. higher
the bandwidth, smaller the delay resolution; on the ontrary the Doppler resolution is

related to the inverse of the integration duration, i.e. 1/Tp in the ase of the onstant

pulse.

Pulse ompression is a tehnique widely used in radar and sonar in order to improve

the range resolution. The main idea is to inrease the bandwidth of the unmodulated

transmitted signal. In the sequel, we outline this tehnique for a ommon signal used in

radar, that is the Linearly Frequeny Modulated (LFM) pulse signal (ommonly known

as a hirp pulse) that onsists in sweeping linearly the frequeny bandwidth B during the

pulse duration Tp [LM04℄:

uC(t) =

{
1√
Tp

exp(jπkt2), if |t| ≤ Tp
2
,

0, otherwise,

(1.31)

3

Note that the delay resolution of the onstant pulse seems to depend only on the pulse duration,

however it an be shown that for this signal the bandwidth is approximately equal to 1/Tp leading to the

orresponding delay resolution.
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Figure 1.3 � Comparison of the zero-Doppler ut |χC(τ, 0)| for a hirp signal (in blue) with

a time-bandwidth produt of BTp = 10, an unmodulated pulse (in red) with duration Tp
and an unmodulated pulse (in green) with duration BTp shorter than the two others.

with k = B
Tp

(k an also be negative). The ambiguity of the hirp signal is given by [LM04℄

χC(τ, ν) =





(
1− |τ |

Tp

)
sin

[
πTp

(
ν+B τ

Tp

)(
1−

|τ |
Tp

)]

πTp

(
ν+B τ

Tp

)(
1− |τ |

Tp

) , if |τ | ≤ Tp,

0, otherwise,

(1.32)

The zero-Doppler ut is obtained by setting ν = 0 in Eq. (1.32), i.e.

χC(τ, 0) =
sin
[
πBτ

(
1− |τ |

Tp

)]

πBτ
, if |τ | ≤ Tp, zero elsewhere. (1.33)

while the zero-delay ut is the same as the unmodulated pulse (see Eq. (1.28)). In �gure

1.3, the zero-Doppler ut of the ambiguity funtion of the LFM pulse is presented and

ompared �rst to an unmodulated pulse of same duration, and seond to an unmodulated

pulse of smaller duration enabling the same range resolution. It appears learly from this

�gure that the use of the frequeny modulation allows to dramatially improve the delay

resolution and therefore the range resolution, when onsidering only the zero-Doppler ut.

It also illustrates the gain in energy enabled by the hirp ompared to an unmodulated

pulse of the same maximum power but with a duration BTp shorter and thus providing

the same range resolution as the hirp.

The delay resolution for the hirp is approximately

∆τ,C ≈
1

B
, (1.34)
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whih orresponds in range to

∆r,C ≈
c

2B
. (1.35)

Let us illustrate the gain between the hirp and the unmodulated pulse for typial radar

parameter values. For an unmodulated pulse of duration Tp = 100 µs and a hirp with

the same duration and a bandwidth B = 1 MHz, the widths of the zero-Doppler uts are

respetively equal to

∆r,UP ≈
cTp
2

= 15000 m, and ∆r,C ≈
c

2B
= 150 m.

The hirp thus provides an improvement of a fator BTp ompared to the unmodulated

pulse (here indeed BTp = 100).
Note that until now, the delay and the Doppler has been studied independently. In

partiular, the ut for ν = 0 has been onsidered while in pratie this Doppler may

be di�erent from zero. Indeed if a mathed �lter is performed with the null Doppler

hypothesis, from equation (1.21) the ambiguity funtion will be shifted by the target

Doppler ν0. For the unmodulated pulse it has no onsequene sine the loation of the

maximum in delay is τ = 0 whatever the value of ν0 (see Eq. (1.26)). On the ontrary, for

the hirp signal, a oupling is indued between parameters τ and ν, so that the maximum

in delay does not our at τ = 0 anymore but is shifted (for reasonable value of ν ) by

the quantity [LM04℄

τshift =
ν

k
=
νTp
B
. (1.36)

This oupling phenomenon is illustrated in Figure 1.4 where the maximum peak in delay

is shifted along the diagonal τ = ν
k
. Let us make the orrespondene in term of range

shift, i.e.

Rshift = =
cτshift

2
=

c

2B
× νTp = −∆r

2Ṙ0f0Tp
c

, (1.37)

and illustrate it with a numerial example. For a target with radial veloity (or range

rate) Ṙ0 = −300 m.s

−1
and the following radar parameters: B = 1MHz (i.e. ∆r = 150m),

Tp = 100 µs (leading to BTp = 100) and f0 = 3GHz, the maximum of the mathed-�lter

(with hypothesis ν = 0) is shifted by

Rshift = 90 m,

i.e. 60% of the range resolution ∆r. Note that a small derease in energy is observed

along the diagonal τ = ν/k that is equal, near the origin, to [LM04℄

|χC(τpeak, ν)| = 1−
∣∣∣ ν
B

∣∣∣ , (1.38)

providing a negligible loss of 0.052 dB for the same numerial values as previously. Finally,

note also that for the same radial veloity and pulse duration, the loss observed with the

onstant pulse or any lassi phase ode would be greater that 3 dB. This means that,

when onsidering the hirp signal, a single mathed �lter at Doppler hypothesis ν = 0 is

su�ient to get a high output energy, even for large target radial veloities. The prie to

pay for this heap proessing is a possible non negligible range bias.
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Figure 1.4 � 0.1 and 0.707 ontours of the hirp ambiguity funtion with BTp = 10. For
a mismath Doppler ν the maximum in delay is shifted along the diagonal τ = ν

k
.

In summary, the hirp pulse allows to improve the resolution by a fator BTp ompared

to the unmodulated pulse while ensuring the same amount of energy, at the prie of a

oupling between the delay τ and the Doppler ν. This oupling provides advantages and

drawbaks: on one hand it indues an ambiguity between delay and Doppler parameters

that remains aeptable for most appliations. On the other hand, it results in a good

tolerane to Doppler shift, i.e. the loss indued by a Doppler mismath when applying a

�lter mathed to hypothesis ν = 0 is small even for large Doppler shifts, allowing to use

a low ost proessing.

1.1.6 Coherent pulse train and Range-Doppler proessing

The Doppler resolution (and thus the veloity resolution) depends on the integration time.

For the parameters used in previous setion, the veloity resolution is approximately equal

to 500 m.s

−1
, whih is learly not aeptable. A possible solution to get a good Doppler

resolution is then to transmit a long pulse. However, this leads to an unaeptable blind

range � indeed, during the transmission of the signal, the radar does not reeive any signal

and therefore annot detet a target with a delay lower than Tp. A better solution onsists

in using a oherent pulse train, i.e. several idential pulses are transmitted at a given

repetition period Tr. For a oherent pulse train of length N , the omplex envelop of the

band limited signal is given by [LM04℄

uN (t) =
1√
N

N−1∑

k=0

u (t− kTr) , (1.39)
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Figure 1.5 � Pulse train of 3 pulses with pulse duration Tp and repetition period Tr.

where u (t) is any waveform with duration Tp. An example of a oherent pulse train is

presented in Figure 1.5. For suh a pulse train, the range and Doppler proessing an

be deoupled. Indeed as seen before, the range mathed �lter to the hirp will ompress

the signal whatever the Doppler. The �rst step of the Range-Doppler proessing onsists

then in performing a range mathed-�lter with the transmitted elementary pulse. The

signal after the range mathed-�lter an be expressed as follows [LC89℄:

sr,MF (τ) =
N−1∑

k=1

ej2πνkTr
∫ Tp

0

sr(t+ kTr + τ)u∗ (t) exp(j2πνt)dt. (1.40)

However, the use of a oherent pulse train is not without onsequenes sine this reates

an ambiguity in delay every Tr, due to the periodiity of the transmitted signal: it is

impossible to know if the deteted target return omes from a target delayed by 0 ≤ τ ≤ Tr
or by a target delayed by mTr ≤ τ ≤ (m+ 1)Tr where m is any integer greater than one.

Therefore the delay is measured modulo Tr.
In a seond step, for eah delay τ , a Fast Fourier transform is performed in order

to oherently integrate the phases ej2πνkTr in (1.40) and thus provide an estimate of the

Doppler parameter ν. Sine the overall integration time onsidered by this range-Doppler

proessing is equal to the total duration of the pulse train NTr, the Doppler resolution

beomes equal to

1
NTr

. However, sine the phases ej2πνkTr are ambiguous modulo

1
Tr
, the

Doppler measurement provided by the pulse train also beomes ambiguous.

1.1.7 Phase array proessing

Range and Doppler parameters are not su�ient to fully loate a target: it is also neessary

to estimate its angular diretion. Phase array proessing [VT02℄ is a onvenient framework

to estimate the target azimuth and/or elevation. In the following, the priniple of the

latter for the ase of a linear array withNa isotropi elements uniformly spaed by distane

d is brie�y realled. Let us de�ne by pxm the position of the mth
element along the x-axis,

given by (assuming that the enter of the array is loated at the origin)

pxm =

(
m− N − 1

2

)
d, m = 0, 1, · · · , Na − 1. (1.41)

This linear array is presented in Figure 1.6. For a target loated at angle θT , range R0



24 hapter 1

Figure 1.6 � Linear array along the x-axis with a target in the diretion θT .

from the radar with a Doppler shift ν0, the phase of the signal reeived by eah elementary

antenna will di�er due to the di�erent travel time of the wave (as illustrated in Figure

1.6). Thus the signal reeived by antenna m an be written as

sr,m (t) = ρejϕu (t− τ0) ej2πν0tej
2π
λ
pxm cos(θT ) + nm(t), m = 0, · · · , Na − 1, (1.42)

where nm (t) is a stationary omplex white Gaussian noise, and, for m 6= q, the noise pro-
esses nm (t) and nq (t) are assumed to be independent. Finally λ denotes the wavelength

of the transmitted wave (i.e. λ = c
f0

).

The di�erential phase ej
2π
λ
pxm cos(θT )

depends on the target diretion θT and on the

position of the elementary antenna. For instane, if a target is loated in a diretion

θT = π/2, the di�erential phase will be the same on all antennas, while in a diretion

θT = 0, the di�erential phase between two onseutive antennas will be equal to π.
The aim of array proessing is to reover the target diretion from the phase di�erene

measured on eah reeiving antenna. This an be done by applying a digital beamforming

at the reeption that onsists in orrelating the antenna outputs with the steering vetor

orresponding to the diretion θ under test. This steering vetor onsists of the di�erential

phases for this diretion and is thus given by vθ =
1
Na

[
ej

2π
λ
px0 cos(θ), · · · , ej 2πλ pxNa−1

cos(θ)
]T
.

In pratie, the diretion θT is unknown and the radar will form the beam for some

diretions θ1, · · · , θNθ
. Let us de�ne sr (t) = [sr,0 (t) , · · · , sr,Na−1 (t)]

T
, and

n (t) = [n0 (t) , · · · , nNa−1 (t)]
T
. The signal after beamforming in diretion θi is then

obtained by

sr,θi (t) = vHθi sr (t) . (1.43)

After some alulations, it omes [VT02℄

sr,θi (t) = ρejϕu (t− τ0) ej2πν0tψθT (θi) + nθi(t), (1.44)

where ψθT (θi) = 2πd
λ

(cos (θT )− cos (θi)), nθi(t) = vHθin (t) is a omplex white Gaussian

noise and

Ψ (ψθT (θi)) =
1

Na

sin
(
Na

ψθT
(θi)

2

)

sin
(
ψθT

(θi)

2

) . (1.45)
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Figure 1.7 � Ψ (ψθ) : ψθT (θ) = 2πd
λ

(cos (θT )− cos (θ)), Na = 11, θT = π
2
.

This funtion is shown in Figure 1.7. The half beam-width is de�ned as |Ψ (ψθ3dB)|2 = 1/2
and is given, for Na > 30, by θ3dB ≈ 0.886 λ

Nd
. Finally, note that whereas the noise

proesses on eah elementary antenna are independent, this is not, in general, the ase

for the noise proesses nθi(t) and nθj (t) where the ovariane is equal to

cov
(
nθi(t), nθj(s)

)
= 2σ2vHθivθjδ (t− s) . (1.46)

1.1.8 Measurement model

Now that the radar proessing has been brie�y desribed, we an present the measurement

model (before the detetion stage) that will be used in the following of this doument.

Let us denote by TS the radar yle duration, i.e. the duration during whih the radar

transmits the signal, reeives it, and performs the signal proessing stage. Therefore,

denoting by k the time index, the radar provides a measurement zk every kTS. At the k−th
iteration ifNk targets have re�eted the transmitted signal, then from the previous setion,

it follows that the output signal after the radar proessing hain (reeption beamforming,

range and Doppler mathed-�lters) an be expressed as

sr,MF,k (τ, ν, θ) =

Nk∑

i=1

ρk,ie
jϕk,iχu(τk,i − τ, νk,i − ν)Ψ

(
ψθk,i (θ)

)
+ nk(τ, θ, ν), (1.47)

where ρk,i and ϕk,i are the amplitude and the phase de�ned in paragraph 1.1.2, and τk,i,
νk,i and θk,i represent respetively the delay, Doppler and azimuth of the i − th target.

Obviously, parameters τk,i and νk,i are respetively related to the target range rk,i and
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the target range rate ṙk,i. In traking these unknown parameters will orrespond to the

hidden state

4 xk,i = [rk,i, ṙk,i, θk,i]
T
. Here parameters (τ, ν, θ) are ontinuous. However,

in pratie, the reeption proessing is performed for several values of the parameter(
τ l, νl, θl

)
, l = 1, · · · , Nc where Nc is the number of test ells. Thus, denoting by zlk the

signal in ell l, it an be rewritten as

zlk =

Nk∑

i=1

ρk,ie
jϕk,ihl (xk,i) + nlk, (1.48)

where

hl (xk,i) = χu

(
2

c

(
rk,i − rl

)
,
c

2f0

(
νk,i − νl

))
Ψ
(
ψθk,i

(
θl
))
. (1.49)

Finally by onatenating the signal samples zlk, the ambiguity funtion samples hl (xk,i)

and the noise samples nlk into vetors zk =
[
z1k, · · · , zNc

k

]T
, h (xk,i) =

[
h1k,i, · · · , hNc

k,i

]T

(where hlk,i = hl (xk,i)) and nk =
[
n1
k, · · · , nNc

k

]T
respetively, the measurement equation

an be rewritten in a ompat form as

zk =

Nk∑

i=1

ρk,ie
jϕk,ih (xk,i) + nk. (1.50)

Here nk is a irular Gaussian omplex noise with a ovariane matrix Γ assumed to

be known and often equal to Γ = 2σ2INc , i.e. signal samples are independent. The

Equation (1.50) de�nes the raw radar measurement zk that will be used as the input of

the detetion and extration stage (as illustrated in Figure 1.1 and detailed in the next

paragraph) for the lassi radar traking appliations and as the input of Trak-Before-

Detet appliations, that are at the heart of this work.

1.1.9 Detetion and "hit" extration

The aim of the detetion and extration stage is to detet potential targets and extrat

their parameters from the raw radar data zk. This proess is performed in two steps.

First the detetion stage that provides detetion "hits" and then the extration stage

that aggregates detetion "hits" and extrats target parameters.

In all this doument, we will onsider a simple ase where the radar measurements are

only omposed of target signals and homogeneous additive noise with known variane.

More realisti ases with heterogeneous noise and lutter will thus be out of our sope.

Under this restrition, the �rst detetion step simply onsists in omparing eah sample∣∣zlk
∣∣2 , l = 1, · · · , Nc with a threshold γ as in the detetion proedure de�ned in Eq. (1.20).

4

Note that this hidden state may possibly inlude other hidden parameters. Moreover, these param-

eters may be expressed in another oordinate system (e.g. Cartesian oordinates). Indeed, the radar

measurements are intrinsially de�ned in polar oordinates that do not allow to easily model the evolu-

tion of the target parameters over time, for instane a retilinear target motion is quite di�ult to model

in polar oordinates while this kind of trajetory is modeled by a linear equation in Cartesian oordinates.

This will be detailed in paragraphs 2.2 and 2.3.1.
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Figure 1.8 � Detetion proedure for radar measurement in range and azimuth.

Sine the noise is a irular Gaussian noise with variane 2σ2
, the threshold γ is simply

provided by [Kay98℄

γ = −2σ2 ln (Pfa) . (1.51)

The probability of target detetion PD depends on the target SNR. The detetion proe-

dure is illustrated in Figure 1.8. Of ourse, in the presene of noise of unknown variane

of lutter, this simple detetion proedure would be replaed by an adaptive one, for

instane a lassi Constant False Alarm Rate (CFAR) detetor.

Then a simple proedure to extrat the parameter would be to onsider as parameter

estimate the orresponding value (for instane

(
rl, ṙl, θl

)
with the example de�ned in

the previous paragraph) for any ell that exeeds the threshold. However, in pratie

further developments are required; indeed, reall that if the target SNR is high, due

to the ambiguity funtion sidelobes, one single target may produe several ontiguous

detetion "hits". Thus, a lustering step is generally added in order to aggregate the

detetion "hits" that are likely to be generated by the same target. This aggregation step

is often based on an heuristi proedure. Then an estimation proedure is applied to eah

extrated hit in order to retrieve the orresponding parameter value (for instane, range,

Doppler, azimuth...).

Finally at the end of the detetion and "hits" extration stage a set of detetion "hits"

is provided:

Yk = {yk,1, · · · ,yk,ND
} (1.52)



28 hapter 1

where eah "hit" yk,l is possibly
5

related to a target state xk by the following equation:

yk,l = H(xk) +wk, (1.53)

withH a known funtion (possibly linear) andwk a Gaussian noise with ovariane matrix

Rk. Finally, as presented in Figure 1.1, the set Yk is provided to the traking stage in

order to form traks and enhane the estimation of the target parameters.

1.1.10 Radar traking algorithms

1.1.10.1 Radar traking objetives

Eah measurement yk,i in the set of detetion Yk may either orrespond to an atual

target or to a false alarm. Therefore, one objetive of radar traking algorithms is to be

able to retrieve from the sets of detetion Yk the measurements that ome from the same

target in order to reate a trak, while disarding the false alarms. Moreover, the auray

of the target parameter estimation is limited by the radar harateristis, for instane the

range resolution ∆r (see paragraph 1.1.5). Therefore, a �ltering step is added to estimate

the target parameters from all measurements until k (i.e. Y1, · · · ,Yk), and thus improve

the parameter auray. More preisely, this step onsists in estimating the state of a

dynami system (that is unobserved and denoted as hidden state) from a sequene of

noisy measurements. In radar appliations, the hidden states are the target parameters

(e.g., position, veloity, et.) and their temporal evolution an often be modelled by

a dynami equation where the state at urrent step depends to the ones at previous

iterations. The noisy measurement is the set of detetion hits Yk provided by the radar

or the measurement zk. Thus, by taking advantages of some prior knowledge on the

target motion, the �ltering step allows to aggregate the information provided by all the

noisy measurements until the urrent step (i.e. Y1, · · · ,Yk) and then to enhane the

estimation of the target parameters. Finally, sine the measurements are provided at

eah radar yle (i.e. every TS), solutions proposed to perform the traking stage are

often sequential or, in other words, the previous estimated parameters are updated with

the new measurement instead of alulating again the estimation at eah iteration from

all the available measurements. A onvenient way to do so is the Bayesian framework,

and more preisely the Hidden Markov Models (HMM) that allow to sequentially estimate

hidden parameters from a measurement related to the hidden state. This framework will

be detailed in the next setion.

To sum up, the aim of the traking stage may be viewed as ful�lling the two following

tasks:

� reating or deleting traks, either from the sets of detetion hits Y1, · · · ,Yk in lassi

radar traking or from the raw radar measurements z1, · · · , zk in the TBD frame-

work.

� estimating the trak parameters from the sets of detetion hits or from the raw radar

measurements.

5

Note that we use the term "possibly" sine a detetion hit may not ome from an atual target but

may rather be a false alarm. This unertainty on the measurement origin (atual target or not) may be

solved by the traking stage.
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1.1.10.2 Classi radar traking algorithms

In the radar traking ommunity these two problems refer to the Multiple-Target Traking

(MTT) problem [Bla86℄. The �rst proposed solutions used sequential analysis in order

to initialize or delete trak. Traks were assoiated via the nearest-neighbour assoiation

rule that onsists in assigning detetion hits to existing traks in a way that minimizes

a ertain distane riterion. However, this approah may lead to wrong assoiations,

espeially when there are a lot of false alarms, and, as a onsequene, to poor traking

performane. Then, new algorithms were proposed in a Bayesian framework that are

able to deal with suh situations. The �rst one was proposed by Singer et al. [SSH74℄

and is denoted as Multiple Hypothesis Traking (MHT). It is a measurement oriented

algorithm (i.e. hypotheses are alulated from the measurements) where the key idea

is to onsider all the possible hypotheses in order to initialize, to maintain or to delete

traks, i.e. at a given instant k, any onsidered hit an be either alloated to an existing

trak, an initialize a new trak, or an be assoiated to a false alarm. The solution

would then be provided by the most likely hypothesis. This approah leads to a number

of hypotheses that inreases extremely rapidly with time, so that this approah leads to a

omplexity that may be di�ult to handle in a reasonable time. Therefore, a suboptimal

approximation has been proposed by Reid [Rei79℄ in 1979 whih allows to make the MHT

feasible by pruning hypotheses with low probabilities.

An alternative approah was proposed by Bar-Shalom et al. [BST75℄ in 1975, known as

the Probabilisti Data assoiation Filter (PDAF). Contrary to the MHT whih manages

the whole MTT problem (i.e. trak life stages and assoiation problem), the PDAF is only

devoted to the assoiation problem. As a onsequene, it assumes the number of targets

known (this is a target-trak oriented algorithm) and does not provide trak initialization

and termination. Note that the PDAF may fail when multiple traks are lose sine it does

not onsider the possible interation between them. To handle this situation, the Joint

PDAF (JPDAF) was then proposed [FBSS83℄. For suh �lters, the trak initialization

and termination is often done by using the "M out of N" rule that onsists in initializing

a trak if a detetion is present in the validation gate [BS87℄ of a given initializing trak

at least M times over N iterations [Cas76, BSCS89℄. A similar rule is applied for the trak

termination.

Both the MHT and the PDAF solutions perform the traking itself for a given trak/hit

assoiation thanks to a Bayesian �lter, usually the well-known Kalman �lter.

1.2 Bayesian �ltering

Most radar traking algorithms are derived from the Bayesian �ltering theory, and among

them the partile �lter that will thoroughly be used in this work. Thus, we present in

the sequel some aspets of the general Bayesian �ltering theory. We will restrit our

attention here to the disrete-time formulation of the �ltering problem. Let us denote

by (xk)k∈N the random state proess that is hidden (or unobserved) and by (zk)k∈N∗

the measurement proess (that is observed). We adopt the state-spae approah in a

partiular lass of models alled Hidden Markov Models (HMM) whih is based on a

dynami system modelled by a set of two equations [AM79℄:
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� one equation for the temporal evolution of the urrent hidden state xk from the

hidden state at the previous iteration xk−1 (state model).

� A seond equation that relates the noisy measurements zk to the urrent state xk
(measurement model).

Moreover, we shall assume that both models are available in a probabilisti form.

Then, in a Bayesian perspetive, the aim is to alulate some estimators of the state

xk [BS09℄. Most of the time, estimation is performed by one of the following well-known

estimators:

� the Minimum Mean Square Error Estimator (MMSE) x̂MMSE
k = E [xk | z1:k],

� the Maximum a posteriori (MAP) estimator x̂MAP
k = argmax

xk

p (xk | z1:k),

where the notation z1:k refers to the sequene (z1, · · · , zi, · · · , zk). Both approahes re-

quire the knowledge of the posterior density

6 p (xk | z1:k) whih is obtained for the HMM

by the Bayesian �lter.

1.2.1 Hidden Markov Models

Hidden Markov Models are a partiular lass of state-spae models where the density

p (xk | z1:k) an be omputed reursively from the density at previous step p (xk−1 | z1:k−1).
First, let us assume that the proess (xk)k∈N takes its values in Rnx

and evolves aording

to the following equation:

xk = fk (xk−1,vk) , (1.54)

where fk is a known and possibly non-linear funtion and (vk)k∈N∗ is an independent and

identially distributed (i.i.d.) noise sequene. x0 is assumed to be distributed aording

to a density p0(.). Under these onditions, the proess (xk)k∈N is a Markov proess of

order one, i.e.

p (xk | x0:k−1) = p (xk | xk−1) , forany k ≥ 1. (1.55)

In other words, the density of xk onditionally to x0:k−1 only depends on the state at

previous step xk−1. The measurement zk is related to the state xk by the following

measurement equation

7

:

zk = hk (xk) + nk, (1.56)

where hk(.) is a possibly non-linear funtion of the state xk at value in Rnz
(or in Cnz

),

and (nk)∈N∗
an i.i.d noise sequene. Moreover, it is assumed that noise samples nk and vk

are mutually independent. Then, the measurement zk onditionally to xk is independent

of z1:k−1, i.e.

p (zk|xk, z1:k−1) = p (zk|xk) . (1.57)

6

Note that here, we adopt the formalism of density with respet to some measure (in general, the

Lebesgue measure or the ounting measure). However, in some ases this density may not exist and one

must onsider the probability distribution. In order to avoid unneessary omplexity, this latter will not

be treated here. A more general approah is presented in [DM04℄.

7

Note that we restrit ourselves to additive noise in the measurement equation sine this latter is

generally used in radar traking and also beause non-additive models an lead to theoretial issues

whih are beyond the sope of this manusript.
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Figure 1.9 � Blok diagram of the Hidden Markov Model.

p (zk|xk) is alled the likelihood funtion and is entirely de�ned by the measurement

equation (1.56) and the statistis of nk. Moreover it is generally assumed to be easily

omputable. This may not always be the ase: the hapter 4 will be preisely dediated

to the alulation of this latter in the Trak-Before-Detet framework. The diagram of

the Hidden Markov Model is shown in Figure 1.9.

1.2.2 Theoretial Bayesian �lter

For the HMMs de�ned in previous paragraph, it is possible to alulate reursively the

density p (xk | z1:k) from p (xk−1 | z1:k−1). Indeed, using the Bayes rule and the properties

of the HMM, p (xk | z1:k) an be rewritten as follows:

p (xk | z1:k) =
p (xk | z1:k−1) p (zk|xk)

p (zk | z1:k−1)
, (1.58)

where p (xk | z1:k−1) is obtained by the Chapman-Kolmogorov equation:

p (xk | z1:k−1) =

∫
p (xk−1 | z1:k−1) p (xk | xk−1) dxk−1, (1.59)

and orresponds to the predition step, where the density of xk onditionally to the

previous measurements z1:k−1 is evaluated. Then, this density is updated with the new

observation zk via Eq. (1.58) where the normalized onstant is given by

p (zk | z1:k−1) =

∫
p (zk | xk) p (xk | z1:k−1) dxk. (1.60)

The reursion to obtain p (xk | z1:k) from p (xk−1 | z1:k−1) an be summarized as follows

p (xk−1 | z1:k−1)
prediction−−−−−→
Eq.(1.59)

p (xk | z1:k−1)
update−−−−−→
Eq.(1.58)

p (xk | z1:k) . (1.61)

In general, Eq. (1.59) and Eq. (1.60) annot be omputed analytially and, as a onse-

quene, neither is the Bayesian �lter. However, the exat solution an be obtained when

the state and measurement models are linear and Gaussian � the solution being the very

well-known Kalman �lter [Kal60℄ � or when the state spae is disrete with a �nite number

of states [AMGC02℄.
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1.2.3 Linear Gaussian models: Kalman �lter

Linear Gaussian models are a partiular lass of HMM where the Bayesian �lter an be

solved exatly. For these models, the hidden proess (xk)k∈N veri�es

xk = Fkxk−1 + vk, (1.62)

where Fk is a matrix of size nx×nx, and vk is a Gaussian noise with ovariane matrixQk.

The initial state x0 is also assumed to be Gaussian with mean m0 and ovariane matrix

Q0. The observed proess (zk)k∈N is related to the state xk aording to the following

equation:

zk = Hkxk +wk, (1.63)

where Hk is a matrix of size nz × nx, and vk is a Gaussian noise with ovariane matrix

Rk. Lastly, it is also assumed that x0, (vk)k∈N∗
, (wk)k∈N∗

are mutually independent.

Under these onditions, all the densities at eah step of the Bayesian reursion de�ned

in Eq. (1.61) are Gaussian, i.e.

p (xk−1 | z:k−1) = N
(
xk−1;xk−1|k−1,Pk−1|k−1

)
, (1.64)

p (xk | z:k−1) = N
(
xk;xk|k−1,Pk|k−1

)
, (1.65)

p (xk | z1:k) = N
(
xk;xk|k,Pk|k

)
, (1.66)

where N (x;m,P) represents here the standard Gaussian density with mean m and o-

variane matrix P evaluated at point x. Then, the parameters of the aforementioned

densities (the mean and ovariane) an be omputed by applying the following set of

equations:

xk|k−1 = Fkxk−1|k−1, (1.67)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk, (1.68)

xk|k = xk|k−1 +Kkz̃k, (1.69)

Pk|k = (I−KkHk)Pk|k−1, (1.70)

where

z̃k = zk −Hkxk|k−1,
Sk = HkPk|k−1H

T
k +Rk,

Kk = Pk|k−1H
T
kS

−1
k ,

(1.71)

are respetively the innovation, the ovariane of the innovation and the Kalman gain.

Equations (1.67)-(1.70) de�ne the Kalman �lter [Kal60℄ whih is the optimal solution for

the Linear Gaussian models. Furthermore note that the parameters xk|k and Pk|k provide

diretly the MMS estimator x̂MMSE
k = xk|k = E [xk | z1:k] and its ovariane matrix

E

[(
x̂MMSE
k − xk

) (
x̂MMSE
k − xk

)T ∣∣∣ z1:k
]
= Pk|k,

where both are alulated via the lassi Bayesian sheme:

xk−1|k−1
prediction−−−−−→
Eq.(1.67)

xk|k−1
update−−−−−→
Eq.(1.69)

xk|k,

Pk−1|k−1
prediction−−−−−→
Eq.(1.68)

Pk|k−1
update−−−−−→
Eq.(1.70)

Pk|k.
(1.72)
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Lastly, as a remark, note also that the alulation of the posterior ovariane matrix

Pk|k and the Kalman gain do not depend on the measurement zk and may therefore be

alulated o�-line.

The Kalman �lter is very popular and is extensively used sine it is very simple to

implement, has a very low omplexity and is quite robust. However, whereas the Kalman

�lter is optimal for the very spei� ase of the Linear Gaussian model, it is not optimal

anymore when the Gaussian hypothesis and/or the linear assumption are violated. It

appears that the raw radar measurement equation (1.50) is not linear aording to the

target state. Sine Trak-Before-Detet methods seek preisely to trak targets from this

kind of measurements, this prevents to use the Kalman �lter in this ase (other reasons

exist and will be detailed in Chapter 2). Thus, other methods must be onsidered in the

TBD framework and we propose in the sequel to outline the partile �lter method that

will be extensively used throughout this thesis and an handle suh non-linear and/or

non-Gaussian models.

1.2.4 Partile �lter

When the HMM is non-linear and/or non-Gaussian, the Bayesian �lter annot be om-

puted analytially (see paragraph 1.2.2) and we must therefore resort to some approxi-

mations. When the noises (state and measurement) are still assumed Gaussian but the

funtions fk (.) and/or hk (.), in Eq. (1.54) and Eq. (1.56), are non-linear, extensions of

the Kalman �lter an be onsidered:

� the �rst extension, known as EKF (Extended Kalman Filter) [AMGC02℄, onsists

in loally linearizing the funtions fk (.) and hk (.) and then applying the Kalman

reursion with the linearized equations.

� the seond extension, known as UKF (Unsented Kalman Filter) [WVdM00℄, uses a

set of points that are propagated deterministially through the non-linear equations

and allow to estimate the parameters of the Gaussian approximation of p (xk | z1:k).

However, as for the Kalman �lter, these solutions may also fail for highly non-linear

funtion and/or non-Gaussian noise, then other solutions must be proposed to handle

suh di�ulties.

Another approah onsists in transforming the ontinuous state into a disrete state.

In suh a strategy, the ontinuous density p (x) is approximated by a disrete measure

using a set of samples {xi}Np

i=1, often alled partiles, and assoiated weights {wi}Np

i=1, as

follows:

p (x) ≈
Np∑

i=1

wiδxi (x) , (1.73)

where δxi (x) is the delta mass Dira funtion at point xi. This is the main idea behind the

Monte Carlo methods and in partiular in the partile �lter: approximate a ontinuous

density by a disrete density whih is simpler to manipulate and in partiular from whih

quantities, like mathematial expetations, an be easily alulated.

Following this idea, grid-based methods were proposed [AMGC02℄ in order to ap-

proximate the posterior density with a �x and deterministi set {xi}Np

i=1 (alled grid), for



34 hapter 1

whih the Bayesian �lter an be exatly solved (see paragraph 1.2.2). However, when the

state-spae is large, suh a method may require to use a lot of grid points xi to properly

disretize the whole state spae, and, as a onsequene, may lead to a prohibitive om-

putational time. Thus, a new solution, alled partile �lter, was proposed in the early

90s by Gordon et al. [GSS93℄, that onsists in using an adaptive and random grid rather

than a �x and deterministi grid. In the partile �lter, partiles are adaptively drawn

with higher probability, thanks to a tehnique alled Importane Sampling, in the areas

where the posterior density takes high values, whih prevents to disretize the whole state

spae.

The priniple of Monte Carlo methods and partiularly of Importane Sampling strat-

egy will be brie�y explained in the sequel. Then, a partiular attention is given to a Monte

Carlo tehnique, alled Sequential Importane Sampling, that allows to approximate the

density p (xk | z1:k) by a disrete density in a sequential manner. Finally, we provide with

Algorithm 1.1 the sheme of the generi partile �lter that will be used throughout this

thesis.

1.2.4.1 Monte Carlo priniple

Many appliations require the omputation of integrals of the form

I (Φ) = Ep(.) [Φ (x)] =

∫
Φ (x) p (x) dx, (1.74)

where Φ is a measurable bounded funtion and p (x) is a given probability density funtion.
Suh integrals an seldom be alulated analytially. Then Monte Carlo methods propose

to onstrut an empirial estimator of the quantity I (Φ) from Np samples

(
x1, · · · ,xNp

)

independently drawn from p (x).
First, an empirial estimator of p (x) is provided by

p̂Np (x) =
1

Np

Np∑

i=1

δxi (x) . (1.75)

Then, by replaing the density p (x) by its empirial estimator p̂Np (x) in Eq. (1.74), an

estimator of I (Φ) is

ÎNp (Φ) =
1

Np

Np∑

i=1

Φ
(
xi
)
, (1.76)

This estimator is unbiased with variane

var(ÎNp (Φ)) = E[|ÎNp (Φ)− I (Φ) |2] = varp(.) (Φ) /Np (1.77)

where

varp(.) (Φ) =

∫
|Φ (x)|2 p (x) dx− |I (Φ)|2 < +∞. (1.78)

However, in many ases, it might be di�ult to diretly draw samples aording to the

density p (x). In partiular, in the Bayesian framework, if we want to approximate the

lassi MMSE estimator E [xk | z1:k] diretly via the Monte Carlo priniple, this requires
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to be able to sample from the density p (xk | z1:k); this is often di�ult to do. Thus a

method known as Importane Sampling was proposed in order to estimate the quantity

I (Φ) with a set of Np samples using a di�erent probability density funtion that allows

to draw samples easily.

1.2.4.2 Importane Sampling

The key idea of Importane Sampling onsists in rewriting Eq. (1.74) as a mathematial

expetation under another density q (.) alled the importane density or instrumental

density for whih samples an be easily drawn

8

. It requires as only ondition that the

support of p (.) must be inluded in the support of q (.), i.e. if p (x) > 0 then q (x) > 0.
First, let us rewrite equation (1.74) as follows

I (Φ) =

∫
Φ (x) p (x) dx =

∫
Φ (x)

p (x)

q (x)
q (x) dx = Eq(.) [Φ (x) w̃ (x)] , (1.79)

where

w̃ (x) =
p (x)

q (x)
. (1.80)

The integral (1.74) has been rewritten as an expetation from another density q (.) rather
than p (.); then, for any Np samples

(
x1, · · · ,xNp

)
independently drawn from q (.), I (Φ)

an be estimated by

ÎNp,IS (Φ) =
1

Np

Np∑

i=1

w̃iΦ
(
xi
)

(1.81)

where

w̃i =
p (xi)

q (xi)
, i = 1, · · · , Np, (1.82)

are alled the importane weights. The estimator ÎNp,IS (Φ) is unbiased with variane

var(ÎNp,IS (Φ)) = E[|ÎNp,IS (Φ)− I (Φ) |2] = varq(.)

(
p

q
Φ

)
/Np (1.83)

where

varq(.)

(
p

q
Φ

)
=

∫
|Φ (x)|2

(
p (x)

q (x)

)2

q (x) dx− |I (Φ)|2 . (1.84)

Alternatively, I (Φ) an also be estimated by

ÎNp,IS,SN (Φ) =

Np∑

i=1

wiΦ
(
xi
)
, (1.85)

where the importane weights have been normalized, i.e.

wi =
w̃i

Np∑

j=1

w̃j

. (1.86)

8

However note that this hoie is, in fat, not trivial sine the variane of the estimator diretly

depends on the instrumental density q (.) and has therefore to be arefully made [DdFG01℄.
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Note that the weights wi an be omputed up to a onstant, i.e.

wi ∝ p (xi)

q (xi)
, i = 1, · · · , Np. (1.87)

Indeed, if these weights wi share a ommon onstant, it will be disarded through the

normalization. Note that in general ÎNp,IS,SN (Φ) is a biased estimator. An approximation

of the density p (.) as an empirial approximation p̂Np (.) is then obtained by

p̂Np (x) =

Np∑

i=1

wiδxi (x) . (1.88)

Importane sampling with this additional normalization step is alled self-normalized

importane sampling in the literature [Owe13℄.

1.2.4.3 Sequential Importane Sampling partile �lter

Importane sampling an be applied in order to approximate the density p (x0:k | z1:k)
when it annot be omputed analytially. However, reall that the Bayesian �lter presents

a reursive struture. Thus it is interesting to take advantage of this property of the HMM

to ompute the density p (x0:k | z1:k) reursively. This is the purpose of the Sequential

Importane Sampling tehnique that allows to sequentially approximate the posterior

density of all the previous states

9 p (x0:k | z1:k).
Let q (x0:k | z1:k) be an instrumental density from whih it is easy to draw samples and

let also assume that this latter fatorizes as follows

q (x0:k | z1:k) = q (x0)

k∏

l=1

q (xl | x0:l−1, z1:l) . (1.89)

This fatorization ensures that the importane weight of the ith partile

wik =
p (xi0:k | z1:k)
q (xi0:k | z1:k)

(1.90)

an be omputed reursively. Indeed, wik an then be rewritten as follows

wik =
p (zk | xi0:k, z1:k−1) p (x

i
0:k | z1:k−1)

p (zk | z1:k−1) q
(
xik | xi0:k−1, z1:k

)
q
(
xi0:k−1 | z1:k−1

)

=
p
(
xi0:k−1 | z1:k−1

)

q
(
xi0:k−1 | z1:k−1

) × p (zk | xik) p
(
xik | xik−1

)

p (zk | z1:k−1) q
(
xik | xi0:k−1, z1:k

)

= wik−1 ×
p (zk | xik) p

(
xik | xik−1

)

p (zk | z1:k−1) q
(
xik | xi0:k−1, z1:k

) .

(1.91)

9

Note that we present the method for the whole sequene x0:k sine the posterior density of the state

xk an be simply obtained through a marginalization.
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Finally, sine p (zk | z1:k−1) is a onstant independent of the partile sequene xi0:k, the

weights are proportional to

wik ∝ wik−1

p (zk | xik) p
(
xik | xik−1

)

q
(
xik | xi0:k−1, z1:k

) . (1.92)

In pratie, we are mainly interested by the posterior density of the state p (xk | z1:k)
rather than the density of all the states p (x0:k | z1:k). Therefore, in order to avoid storing

all the history of the partiles {xi0:k}
Np

i=1, it is onvenient to hoose an instrumental density

that depends only on the previous state and the urrent measurement:

q
(
xik | xi0:k−1, z1:k

)
= q

(
xik | xik−1, zk

)
. (1.93)

In that ase, the only variables to store for time step k are xik−1 and zk, while all the

previous partile states and past measurements an be disarded. In the following, we

will always onsider instrumental densities that verify this ondition. Then, under this

ondition, the weights are �nally provided by

wik ∝ wik−1

p (zk | xik) p
(
xik | xik−1

)

q
(
xik | xik−1, zk

) . (1.94)

After the normalization, the posterior density p (xk | z1:k) an be approximated by

p (xk | z1:k) ≈
Np∑

i=1

wikδxi
k
(xk) . (1.95)

The Sequential Importane Sampling (SIS) partile �lter follows the two steps of the

Bayesian �lter de�ned in Eq. (1.61): �rst partiles are propagated in the state spae via

the instrumental density de�ned in Eq. (1.93); then partiles are updated aording to

Eq. (1.94). The mehanism of the SIS partile �lter is illustrated in Figure 1.10. Finally,

using the estimated density, the lassi MMSE is simply obtained as

x̂k|k =

Np∑

i=1

wikx
i
k, (1.96)

and the ovariane matrix Pk|k = var (xk | z1:k) estimator as

P̂k|k =

Np∑

i=1

wik
(
xik − x̂k|k

) (
xik − x̂k|k

)T
. (1.97)

1.2.4.4 Degeneray problem

Whereas theoretial results ensure that the approximated posterior density (1.95) on-

verges to the posterior density p (xk | z1:k) as Np → +∞ [CD02℄, in pratie, the number

of partiles Np is always �nite. In that ase, the SIS partile �lter su�ers from a degen-

eray phenomenon: after some iterations, one partile will present a weight very lose

to one while other partiles will present negligible weights. This phenomenon annot be

avoided; indeed it has been proven that the variane of the weights an only inrease over

time [DGA00℄. In pratie, this leads to two major problems:
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Figure 1.10 � Mehanism of the SIS partile �lter with the two steps: propagation of the

partiles with the prior density p
(
xk | xik−1

)
and then update with the measurement zk.

� First, after some iterations, the partile approximation will be a poor estimate of

the objetive posterior density, and therefore, the orresponding estimators will not

be aurate.

� Computing resoures are devoted to update the weights of a possibly large number of

partiles whereas most of them have a negligible ontribution to the approximation

of the posterior density p (xk | z1:k).

In order to have an idea of the quality of the partile approximation of the posterior

density, it an be interesting to measure this degeneray phenomenon. Several indiators

have been proposed in the literature, among whih the most popular is probably the

e�etive sample size Neff proposed in [LR98℄, based on the alulation of the variane of

the weights. In general, it annot be omputed exatly but an estimate is given by

Neff ≈
(

Np∑

i=1

(
wik
)2
)−1

. (1.98)

This indiator provides a good estimation of the number of partiles that e�etively

partiipate in the estimation of the posterior density. For instane, when partiles share

the same weights wik = 1/Np (that orresponds to a weight variane equal to zero), then

Neff = Np sine all partiles ontribute equally to the estimation. On the ontrary, when

only one partile onentrates all the weight (i.e. the partile has a weight equal to one

whih orresponds to a maximum variane), then Neff = 1.

However, although the indiatorNeff allows to measure the degeneray phenomenon, it

does not prevent from this issue. Thus, several solutions have been proposed to minimize

the degeneray phenomenon among whih the most ommon is ertainly the addition of

a resampling proedure in the SIS partile �lter and, to a lesser extent, a areful hoie

of the instrumental density whih may sensibly redue the degeneray phenomenon.
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1.2.4.5 Instrumental density

In the SIS partile �lter, the hoie of the importane density is left to the user. In

general, simply hoosing the prior density p
(
xk | xik−1

)
(from whih it is generally easy to

sample) as the importane density is enough to ensure aeptable performane. In that

ase, the weight update equation (1.94) simply beomes

wik ∝ wik−1p
(
zk | xik

)
, (1.99)

and only requires to alulate p (zk | xik), i.e. the likelihood of the observation ondition-

ally to the state xik.

However, in some appliations this simple hoie may lead to poor performane with

a severe degeneray phenomenon. This is the ase for instane in Trak-Before-Detet

appliations, as will be shown in Chapter 2. Therefore, a more suitable hoie that takes

into aount the urrent measurement zk must be made. The optimal one, in the sense

that it minimizes the variane of the importane weights (and thus maximizes Neff), is

given by [DGA00℄

qopt
(
xk | xik−1, zk

)
= p

(
xk | xik−1, zk

)
, (1.100)

for whih the variane of the weights is zero. This density an be rewritten as follows:

qopt
(
xk | xik−1, zk

)
=
p (zk | xk) p

(
xk | xik−1

)

p
(
zk | xik−1

) , (1.101)

and requires the alulation of the density p
(
zk | xik−1

)
provided by:

p
(
zk | xik−1

)
=

∫
p (zk | x′) p

(
x′ | xik−1

)
dx′. (1.102)

In pratie, exept for very spei� ases, this integral is intratable and, as a onse-

quene, so is the optimal density. Moreover, it might be di�ult to draw samples from

this optimal importane density. Therefore, suboptimal approximations of the optimal

importane density have been proposed [AMGC02℄. However, the possible gain of using

suh suboptimal approximations is not always justi�ed sine an additional omputational

ost is indued by using suh suboptimal approximations. Besides, in some appliations,

using more partiles sampled with the prior is equivalent to using a more sophistiated

density with less partiles [AMGC02℄.

1.2.4.6 Resampling

The use of a onvenient instrumental density may slow the degeneray phenomenon, but

it annot avoid it totally. As a onsequene, other solutions must be used to prevent the

degeneray phenomenon. A ommon tehnique onsists in adding a resampling step in

the SIS partile �lter before any strong degeneray ours, for instane when the e�etive

sample size Neff falls below a given threshold NT = βNp with 0 < β ≤ 1. The priniple

of resampling onsists in seleting partiles with large weights and disarding partiles

with small weights. In pratie, this is done by drawing independently Np partiles from

the partile representation of the posterior density p (xk | z1:k) given by Eq. (1.95). As
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Figure 1.11 � Mehanism of SIS partile �lter with resampling step: partiles with large

weights are seleted while partiles with small weights are disarded.

these new partiles are sampled independently from the same density, they share the

same weight equal to 1/Np. The partile �lter with a resampling proedure is illustrated

in Figure 1.11. In pratie, several methods an be used to perform the resampling step,

inluding multinomial resampling, residual resampling [LR98℄ and systemati resampling

[Kit96℄. The latter is one of the most popular sine it is easy to implement and requires to

draw only one single uniform variable [AMGC02℄. Note however that in some situations,

espeially when the variane of the importane density is small (or even equal to zero) �

this may be the ase for instane when the prior density provided by the state equation

is used as instrumental density and the variane of the state noise is very small � the

resampling step an indue a severe loss of diversity among the partiles. Indeed, in

that ase, many drawn partiles will share the exat same state, and no diversity will be

generated afterwards by the instrumental density, thus leading to an impoverishment of

the partile loud. Nevertheless, this e�et an be orreted by adding a regularization

step [MOLG01℄, where the key idea is to sample partiles from a ontinuous density

rather than a disrete density in order to obtain a better exploration of the state spae.

In pratie, this is ahieved by onvolving the disrete density with a ontinuous kernel.

This regularization step will not be onsidered in this thesis.

Finally, a desription of the generi partile �lter is given by Algorithm 1.1. This

algorithm will be used throughout this thesis.

1.3 Conlusion

In this hapter, a brief overview of the radar hain from the signal proessing stage to

the traking stage has been �rst presented. In partiular, the fundamental role of the

mathed-�lter both in detetion and in estimation has been highlighted. Finally, at the

end of this setion, we speify the measurements zk and Yk that are respetively provided

as an input to the traking stage in the TBD framework and in the lassi approah (see
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Algorithm 1.1 Generi partile �lter algorithm

Require: Partile loud

{
wik−1,x

i
k−1

}Np

i=1
at step k − 1,

1: for i = 1 to Np do

2: Propagation: draw partile xik aording to q
(
xk | xik−1, zk

)
.

3: Update: ompute weight aording to wik ∝ wik−1

p(zk|xi
k)p(xi

k
|xi

k−1)
q(xi

k
|xi

k−1,zk)
4: end for

5: Normalize weights: wik ←
wi

k∑Np
l=1 w

l
k

, i = 1, · · · , Np

6: Compute Neff aording to Eq. (1.98).

7: if Neff < βNp then

8: Resample Np partiles from
∑Np

i=1w
i
kδxi

k
(xk)

9: Reset weights: wik ← 1
Np
, i = 1, · · · , Np

10: end if

11: return {wik,xik}
Np

i=1

Figure 1.1).

In a seond step, the Bayesian �ltering framework has been detailed and a speial

attention has been given to the Hidden Markov Models that allow to reursively solve the

�ltering problem. For this model, we detailed more spei�ally two solutions:

� The �rst one, known as Kalman �lter, that allows to exatly solve the Bayesian

�lter when the model is Gaussian and linear. It has been extensively used in a wide

range of appliations and in partiular in lassi radar traking appliations.

� And the seond one, known as partile �lter, that allows to handle more general

models than the Kalman �lter (i.e. non-linear or/and non-Gaussian models). The

latter will be intensively used and studied in the next hapters as a possible solution

of the Trak-Before-Detet problem.

This hapter has provided the main ingredients that will be used throughout the rest

of this doument, i.e. the measurement equation used in the TBD framework, based on

the radar signal proessing hain, and the partile �lter.
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Chapter 2

Monotarget Trak-Before-Detet

partile �lters

2.1 Introdution

In the previous hapter, we have brie�y outlined the whole radar hain from the reeption

of the signal to the trak management (i.e. formation, update, deletion). In partiular,

we have highlighted that the lassi traking stage is not performed from the raw data

zk but from a set of detetion hits Yk whih orrespond either to noisy measurements

of the atual target parameters or to false alarm measurements as illustrated in Figure

1.1. When the target Signal to Noise Ratio (SNR) is high, this pre-detetion step has no

onsequene and allows to dramatially redue the amount of data to proess. Indeed,

in suh a situation, the detetion threshold γ may be hosen relatively high in order to

strongly limit the false alarm rate while guaranteeing to detet the targets almost at eah

iteration, thus making the Multiple Target Traking (MTT) problem "easy" to solve.

However, when the appliation seeks to detet and trak low SNR targets, the MTT

problem may beome muh more triky. Indeed, maintaining a high threshold will not

ensure anymore to detet the target at eah iteration sine, in this ase, the detetion

probability PD may be pretty small (low SNR). This is illustrated in Figure 2.1, where a

Figure 2.1 � Sheme of the pre-detetion step: where the target signal sample with a high

SNR target is kept, while the low SNR target sample is disarded.

signal sample due to a target with a low SNR is disarded, sine it does not exeed the

43
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threshold. As a onsequene, all the information provided by this target signal sample

is lost in the traking stage. Furthermore, the solution that onsists in dereasing the

detetion threshold will make both the initialization and the assoiation problem muh

more arduous to solve sine the set of detetion Yk would be of muh larger ardinality

and mostly onstituted, at eah iteration, of false alarm measurements.

As a result, a new framework, known as Trak-Before-Detet, was proposed to over-

ome the initialization and the assoiation problem. The key onept of the Trak-Before-

Detet framework onsist in jointly performing the detetion and traking from the whole

raw measurements z1:k rather than the sets Y1:k in order to keep all the information pro-

vided by the measurement (sine no pre-detetion has been made). As a result, it allows

to postpone and then to enhane the detetion deision by exploiting all the information

provided by the raw data.

The �rst methods proposed to solve the Trak-Before-Detet in a monotarget setting

were based on the Hough transform [CEW94℄ or Dynami programming [Bar85℄. However,

although these methods are e�etive, they are not reursive and must proess bloks of

data, therefore leading to an intensive omputational burden. Moreover, sine the sope

of this thesis is to study partile �lter solutions to the Trak-Before-Detet problem, we

do not onsider Hough transform and Dynami programming throughout this thesis.

In this hapter, we onsider the partile solution to the monotarget Trak-Before-

Detet problem proposed by Salmond et al. [SB01℄. First, we de�ne the state model and

the measurement model in setion 2.2 and 2.3. Then, we onsider the partile solution for

this model in setion 2.4. In Setion 2.5 we propose some ontribution on the instrumental

density in order to improve the �lter performane. Finally in setion 2.6 a modi�ed partile

�lter is presented and in setion 2.7 performanes of the di�erent �lters are evaluated via

Monte Carlo simulations.

2.2 State model

2.2.1 General TBD model

Trak-Before-Detet solutions work on raw data z1:k where no pre-detetion step has been

made. At eah iteration step k, the presene of a target in the data zk is not a priori

known. In a Bayesian framework, the lassi method to deal with this ignorane onsists

in modelling a priori the presene or absene of the target by a variable sk that takes

value 1 if the target is present at step k, and 0 otherwise, and then onsidering as hidden

state the hybrid state (sk,xk) (where xk is the lassi target state, e.g. position, veloity,
et.) [SB01℄.

Hene, the new hidden proess (sk,xk)k∈N is Markovian and entirely de�ned by its

transition density

p (sk,xk | sk−1,xk−1) , (2.1)

and its density p0 (s0,x0) at step k = 0. In pratie, the transition density is often hosen

to fatorize as follows:

p (sk,xk | sk−1,xk−1) = p (sk | sk−1) p (xk | sk−1, sk,xk−1) , (2.2)
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in order to simplify the implementation of the Bayesian Trak-Before-Detet solutions. In

this ase, the proess (sk)k∈N is a two-state Markov hain with transition probabilities

Pb = p (sk = 1 | sk−1 = 0) , (2.3)

Pd = p (sk = 0 | sk−1 = 1) , (2.4)

where Pb is the probability of target "birth" (or appearane) and Pd is the probability of

target "death" (or disappearane), leading to the following transition matrix

Π =

[
1− Pb Pb
Pd 1− Pd

]
. (2.5)

Finally, at step k = 0, let us de�ne by P0 = p (s0 = 1). On the other hand, two transition

densities have to be spei�ed for the state xk:

� p (xk | sk = 1, sk−1 = 1,xk−1) the ontinuing density that models the target dy-

nami. In order to alleviate the notation, it will be denoted as pc (xk | xk−1).

� p (xk | sk = 1, sk−1 = 0,xk−1) the birth density that models how the target appears

in the radar surveillane area. The dependene in xk−1 an be always removed in

that ase sine xk−1 has no physial meaning. This density will be referred as pb (xk)
in the following.

Note that the densities p (xk | sk = 0, sk−1 = 1,xk−1) and p (xk | sk = 0, sk−1 = 0,xk−1)
that represent the state xk when it is absent from the radar surveillane area do not need

to be de�ned sine the state xk has no physial meaning when sk = 0.
In summary, the state model de�ned in Eq. (2.2) requires the knowledge of the two

transition probabilities Pb and Pd, the initial probability P0 and the two states densities :

the birth density and the prior target dynamial density. This model is very general and

an handle non-linear target motion (in partiular for the target dynamis). Note that,

throughout this thesis, for the sake of simpliity, a linear model for the target dynami

will be used.

2.2.2 Model used in this work

The performane of the Trak-Before-Detet algorithms proposed in this thesis will be

evaluated via Monte Carlo simulations. Therefore, in order to avoid prohibitive omputa-

tional time, we will restrit our study to a target moving in a two dimensional spae. The

extension of the Trak-Before-Detet solutions to a target state xk with one or two addi-

tional dimensions is of ourse straightforward and does not lead to any theoretial issue

but will rather inrease the omputational time required to evaluate the performane.

Thus, let us onsider a target evolving (when present) in the area de�ned in polar

oordinates by D = [rmin, rmax]× [θmin, θmax] whih orresponds to the surveillane area

overed by the radar under onsideration. The area D is illustrated in Figure 2.2. Then,

let us de�ne by xk = [xk, ẋk, yk, ẏk]
T
the target state vetor where (xk, yk) and (ẋk, ẏk)

represent respetively its position and its veloity in Cartesian oordinates. Note that

here, two systems of oordinates are used, polar and Cartesian, for the sake of onveniene.
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Figure 2.2 � Left: Surveillane area overed by the radar. Right: Area to initialize the

veloity omponents (ẋk, ẏk).

Indeed, the radar signal proessing stage is well suited to polar oordinates (the radar

naturally provides range and angle information, see setion 1.1) while linear motion is

easier to handle in Cartesian oordinates than in polar oordinates. Therefore, assuming

that the radar is loated at the origin, we also de�ne by rk =
√
x2k + y2k the target range

with respet to the radar and by θk = arctan( yk
xk
) the target azimuth. The inversion

formulas are lassi and simply given by xk = rk cos (θk) and yk = rk sin (θk). In the same

manner, we de�ne by vnorm,k =
√
ẋ2k + ẏ2k the veloity norm and αk = arctan( ẏk

ẋk
) the

veloity diretion in polar oordinates. Finally, in the following, the two representations

will be used depending on the situation where they are the best suited.

The linear target dynamial model is hosen as follows [BSLK01℄:

xk = Fxk−1 + vk, (2.6)

where

F =

[
FS 0
0 FS

]
with FS =

[
1 TS
0 1

]
,

and TS represents the sampling period of the measurements (or the duration of a radar

yle). The noise vk is assumed white and Gaussian with ovariane matrix [BSLK01℄

Q =

[
QS 0
0 QS

]
, where QS = qS

[
T 3
S/3 T 2

S/2
T 2
S/2 TS

]
. (2.7)

Conerning the birth density pb (.), the position (rk, θk) and the veloity (vk, αk) are
assumed to be distributed independently as follows:

� pb (rk, θk) = U (rmin, rmax)× U (θmin, θmax).
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� pb (vnorm,k, αk) = U (vmin, vmax)× U (0, 2π) (where vmin and vmax are the minimum

and the maximum veloity reahable by the target). The domain used to initialize

the veloity omponents is illustrated in Figure 2.2, of ourse vmin an be set to 0
if desired.

The hoie of the uniform distribution both for the position and the veloity orresponds

to the least possible informative prior. It means that when a target appears in the radar

window, it an be loated anywhere in the area D with a veloity vetor in any diretion.

The only a priori information used is the onstants vmin and vmax whih an be easily

obtained by physial onsiderations (e.g. an airraft has a limit veloity). However, if

some other informations are available about the target appearane area (e.g. an airport)

or diretion, they should be taken into aount in the prior birth density. Here, in order

to keep the model as general as possible, this ase will not be onsidered.

2.3 Measurement model

2.3.1 Raw radar data

We onsider here a measurement model based on the presentation detailed in hapter 1

paragraph 1.1.8 with only some slight di�erenes. It is provided by:

zk = skρe
jϕkh (xk) + nk. (2.8)

The phase ϕk is assumed to be uniformly drawn over the interval [0, 2π) while the noise
nk is a zero-mean irular omplex Gaussian vetor with a known ovariane matrix Γ.

The �rst di�erene introdued here onerns the modulus ρ whih is assumed onstant

and unknown. This orresponds in the radar terminology to the Swerling 0 �utuation

model [Sko80℄ � the other �utuation models will be onsidered in hapter 4. The seond

di�erene onerns the introdution of the variable sk in the measurement equation (2.8)

in order to take into aount the presene or the absene of the target in the measurement

zk. Remark that when the target is absent, the measurement zk onsists of noise only.

The funtion h (.) depends on the appliation onsidered: for instane, in optis, it

is often hosen with a Gaussian shape [TBS98℄. Nevertheless, as we are here onerned

by a radar traking appliation, this measurement funtion h (.) orresponds to the radar
ambiguity funtion. For the sake of simpliity and also for omputational ost reasons, we

will restrit ourselves in this manusript to the range and azimuth parameters. Of ourse

other parameters (e.g. Doppler) may be easily added to the model.

Thus, let us onsider a radar transmitting a hirp signal with bandwidth B and pulse

duration Tp (see paragraph 1.1.5) and reeiving the baksattered signal via a linear array

with Na antennas spaed by d. In a �rst step, a beamforming operation is realized for

di�erent diretions

θv = θmin + (v +
1

2
)∆θ, v = 0, · · · , Nθ − 1, (2.9)

where ∆θ = 0.886 λ
Nad

is the half-power beam-width (see paragraph 1.1.7) and Nθ =⌈
θmax−θmin

∆θ

⌉
is the number of azimuth ells (here ⌈.⌉ is the eiling funtion). The or-

responding ambiguity funtion along the azimuth axis is then given by (see paragraph
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1.1.7):

hvθ(θk) =
sin
(
Naψθv

2

)

Na sin
(
ψθv

2

) , (2.10)

where ψθv = 2πd
λ

(cos (θk)− cos (θv)).
Then, for eah diretion θv a range mathed-�lter is performed to the orresponding

reeived signal. The output signal is sampled at period 1/B leading to the following

ambiguity funtion along the range diretion (see paragraph 1.1.5):

hur (rk) =
sin
(
πBτu

(
1− |τu|

Tp

))

πBτu
for |τu| ≤ Tp, (2.11)

where τu = 2 (rk − ru) /c and

ru = rmin + (u+
1

2
)∆r, u = 0, · · · , Nr − 1, (2.12)

are the range ells orresponding to the sampling instants, with ∆r the range resolution

equal to

c
2B

and Nr =
⌈
rmax−rmin

∆r

⌉
the number of range ells.

Finally, the overall ambiguity funtion in range and azimuth h (.) is a two dimensional

image onsisting of Nc = Nr×Nθ ells where the value in the ell (u, v) is simply provided

by the produt hur (rk)h
v
θ(θk). For mathematial onsiderations, we rewrite the funtion

h (.) as a vetor of size Nc by using the following mapping: l = u + (v − 1) × Nr, i.e.

the value of the l − th omponent is given by hl(xk) = hur (rk)h
v
θ(θk). A sheme of the

proposed mapping is given in Figure 2.3. Furthermore, for the sake of ompatness, the

vetor h(xk) will be denoted by hk in the sequel.

Note that here, sine no Doppler measurement is onsidered, the ambiguity funtion

does not depend on the veloity parameters (ẋk, ẏk) and as a onsequene neither does

the equation of the measurement (2.8). However, there is no di�ulty to handle suh a

situation where the measurement depends only on a subset of the state parameters. The

onnetion is ensured by the prior model (i.e. the target dynamial model) that links

veloity omponents with the position omponents, themselves related to the measurement

zk. Note also that an additional Doppler shift measurement introdued in zk would provide

partial information on this target veloity, and thus ould be exploited to enhane the

traking �lter.

2.3.2 Target Signal to Noise Ratio

An important notion that must be learly de�ned is the target SNR (Signal to Noise

Ratio). A possible de�nition, from Eq. (1.14), is SNR = 10 log10

(
ρ2

2σ2

)
. First, note

that we impliitly made the hypothesis that the noise ovariane matrix is Γ = 2σ2INc ,

i.e. noise samples are independent with the same variane. Seond, remark that this

de�nition represents the maximum SNR reahable by the proessing and is obtained

when the target is exatly loated at the enter of the ell, i.e. when hl(ru, θv) = 1;
for other target positions, the energy extrated by the proessing will be lower due to a

target loated outside the sampling grid. Clearly, performane of the Trak-Before-Detet

algorithms will highly depend on the target SNR.
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Figure 2.3 � Mapping between indies (u, v) and l.

2.4 A partile �lter solution for the Trak-Before-Detet

problem

Previously, a state-spae model has been set up in order to model the Trak-Before-Detet

problem in the HMM framework. The aim is now to estimate reursively the posterior

density p (xk, sk | z1:k). Sine here the hidden state is hybrid (ontinuous variable xk and

disrete variable sk), it is onvenient to reorganize the posterior density as follows:

p (xk, sk | z1:k) = p (sk | z1:k) p (xk | sk, z1:k) . (2.13)

When sk = 0, the state xk is meaningless and independent from the measurements z1:k
so that the density p (xk | sk = 0, z1:k) does not need to be evaluated. On the ontrary,

when sk = 1, the posterior density p (xk | sk = 1, z1:k) allows to alulate estimators x̂k|k

and P̂k|k de�ned respetively in Eq. (1.96) and (1.97) while the posterior probability of

target existene Pe,k = p (sk = 1 | z1:k) provides some information about the presene or

the absene of the target in the radar window.

2.4.1 The TBD partile �lter

In pratie, the oneptual Bayesian �lter de�ned in paragraph 1.2.2 an be derived for

the proposed model but the exat solution is intratable. Therefore we must resort to

some approximations. Methods based on the EKF and the UKF would be inoperative,

essentially beause the measurement equation (2.8) is highly non-linear and the birth

density pb (xk) dramatially di�ers from a Gaussian density. In the other hand, due to
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the large size of the state spae (essentially the spae D), a grid-based approah seems

unrealisti to implement for real-time appliations. In order to overome these di�ulties,

a solution based on the partile �lter was proposed by Salmond et al. [SB01℄ and is detailed

in the sequel.

Let us assume that a set of partiles

{(
sik−1,x

i
k−1

)
, wik−1

}Np

i=1
, approximating the pos-

terior density p (sk−1,xk−1 | z1:k−1) at step k − 1, is available:

p (sk−1,xk−1 | z1:k−1) ≈
Np∑

i=1

wik−1δ(sik−1,x
i
k−1)

(sk−1,xk−1) . (2.14)

The �rst step of the partile �lter onsists in drawing new partiles (sik,x
i
k) from the

partiles at previous step. In [SB01℄, this is done �rst by drawing variables sik aording

to the transition matrix Π de�ned in Eq. (2.5). Then states xik an be drawn onditionally

to sik and s
i
k−1. When sik = 0, the state xik is meaningless and therefore does not need to

be sampled. On the ontrary, when sik = 1, two ases must be onsidered:

1. Birth ase (i.e. sik−1 = 0): the partile state xik is initialized with an instrumental

density qb (xk | zk). As will be seen in this hapter, the hoie of the instrumental

density for the state initialization is ruial for the performane of the �lter and is

a key point of the TBD partile �lter solutions.

2. Continuing ase (i.e. sik−1 = 1): the partile was already present at step k − 1 and

is propagated with an instrumental density qc
(
xk | xik−1, zk

)
.

The di�erent ases onsidered when sampling partile states xik aording to sik−1 and s
i
k

are summarized in Table 2.1.

sik−1 = 0 sik−1 = 1

sik = 0 nothing to do nothing to do

sik = 1 qb (xk | zk) qc
(
xk | xik−1, zk

)

Table 2.1 � Instrumental densities to sample xik depending on sik and s
i
k−1.

The seond step of the partile �lter onsists in alulating the partile weights wik,
provided by Eq. (1.94), that di�er aording to the values of sik and sik−1. Considering

the di�erent possible ases, the weight expression is given by:

wik ∝ wik−1 ×





p (zk | sik = 0) , if sik = 0,
pb(xi

k)
qb(xi

k|zk)
p (zk | sik = 1,xik) , if sik = 1 and sik−1 = 0,

pc(xi
k|x

i
k−1)

qc(xi
k|x

i
k−1,zk)

p (zk | sik = 1,xik) , if sik = 1 and sik−1 = 1.

(2.15)

Then, weights are normalized and a resampling proedure is performed, if required, as in

the generi partile �lter (see Chapter 1, Algorithm 1.1). A pseudoode of a single yle

of the urrent partile �lter, denoted here by Classi TBD Partile Filter, is desribed in

Algorithm 2.1.
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Algorithm 2.1 Classi TBD Partile Filter

Require: Partile loud

{(
sik−1,x

i
k−1

)
, wik−1

}Np

i=1
at step k − 1,

1: for i = 1 to Np do

2: Draw sik aording to the transition matrix de�ned in Eq. (2.5)

3: if sik = 1 then
4: if sik−1 = 1 then
5: Draw xik ∼ qc

(
xk | xik−1, zk

)

6: else

7: Draw xik ∼ qb (xk | zk)
8: end if

9: end if

10: Update partile weight wik aording to Eq. (2.15)

11: end for

12: Normalize weights: wik ←
wi

k∑Np
l=1 w

l
k

, i = 1, · · · , Np

13: Compute Neff aording to Eq. (1.98).

14: if Neff < βNp then

15: Resample Np partiles

16: Reset weights: wik ← 1
Np
, i = 1, · · · , Np

17: end if

18: return {(sik,xik) , wik}
Np

i=1

Finally, the probability of presene Pe,k an be estimated from the set of partiles

{(sik,xik) , wik}
Np

i=1 by:

P̂e,k =

Np∑

i=1

sikw
i
k, (2.16)

while the target state xk an be estimated by:

x̂k|k =
1

P̂e,k

Np∑

i=1

sikw
i
kx

i
k, (2.17)

and the posterior ovariane matrix by:

P̂k|k =
1

P̂e,k

Np∑

i=1

sikw
i
k

(
xik − x̂k|k

) (
xik − x̂k|k

)T
. (2.18)

2.4.2 Measurement likelihood

The alulation of the weights in Eq. (2.15) requires the likelihood funtion p (zk | sk,xk).
However, in the partiular ase of the TBD partile �lter, this density is not diretly

available sine the measurement equation (2.8) depends on the unknown parameters ρ
and ϕk whih orrespond to the target amplitude parameters. In fat, only the density

p (zk | sk = 1,xk, ϕk, ρ) is diretly provided from Eq. (2.8). This is a omplex Gaussian
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density with mean skρe
jϕkhk and ovariane matrix Γ, i.e.

p (zk | sk = 1,xk, ϕk, ρ) =
1

πNc det (Γ)
exp

{
−
(
zk − skρejϕkhk

)H
Γ−1

(
zk − skρejϕkhk

)}
,

(2.19)

that expends as follows:

p (zk|sk,xk, ρ, ϕk) =
1

πNc det (Γ)
exp

{
−zHk Γ−1zk

}
×

exp
{
−skρ2hHk Γ−1hk + 2skρ|hHk Γ−1zk| cos(ϕk − ζk)

}
,

(2.20)

where ζk = arg(hHk Γ
−1zk). First note that when sk = 0 the likelihood in Eq. (2.20) is

independent from the parameters xk, ρ and ϕk. Therefore the likelihood p (zk | sk = 0,xk)
is a onstant provided by

p (zk | sk = 0) =
1

πNc det (Γ)
exp

{
−zHk Γ−1zk

}
. (2.21)

On the ontrary, when sk = 1, the likelihood in Eq. (2.20) is, of ourse, dependent on

the parameters ρ, ϕk, xk. Additional developments must then be performed in order

to evaluate the likelihood p (zk | sk = 1,xk). Several strategies have been proposed in

the literature to deal with the phase ϕk. As this hapter fouses on the TBD partile

�lter, we will onsider here only the best solution detailed in paragraph 2.4.2.1. Further

developments and details will be provided in hapter 4. Conerning the modulus ρ, we
will use the approah proposed by Kitagawa [Kit98℄ whih is detailed in paragraph 2.4.2.2.

Let us �nally note that in order to alleviate the notation, the likelihood p (zk | sk = 1,xk)
will be denoted by p (zk | xk) in the rest of the hapter sine it depends on xk only

when sk = 1. Moreover, as the partile �lter requires the alulation of the likelihood

p (zk | sk,xk) only up to a onstant, it is onvenient to divide the expression in Eq. (2.20)

by the likelihood term p (zk | sk = 0) de�ned in Eq. (2.21). In the sequel, the likelihood

p (zk | xk) will be always alulated up to this onstant term. Thus, in that ase, the

weight equation (2.15) beomes

wik ∝ wik−1 ×





1, if sik = 0,
pb(xi

k)
qb(xi

k|zk)
p (zk | xik) , if sik = 1 and sik−1 = 0,

pc(xi
k |x

i
k−1)

qc(xi
k|x

i
k−1,zk)

p (zk | xik) , if sik = 1 and sik−1 = 1.

(2.22)

2.4.2.1 Eliminating the random phase

The best way to eliminate the random phase ϕk onsists in marginalizing it in the likeli-

hood de�ned in Eq. (2.20). This method was �rst proposed in [DRC12℄. It leads to:

p (zk | xk) ∝ exp
{
−ρ2hHk Γ−1hk

}
I0

(
2ρ
∣∣hHk Γ−1zk

∣∣) , (2.23)

where I0 (.) is the modi�ed Bessel funtion of the �rst kind, i.e.

I0 (x) =
+∞∑

l=0

(
x
2

)2l

(l!)2
. (2.24)
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2.4.2.2 Dealing with the unknown parameter ρ

Contrary to the phase ϕk that randomly �utuates from step to step, the parameter ρ is

in this hapter assumed onstant. Thus it might be preferable to estimate it rather than

marginalize it (whih leads to an intratable integral). The problem of state-spae models

with unknown stati parameter has been widely studied in the literature [Kit98, Sto02,

ADST04℄. A onvenient solution, easy to implement, onsists in introduing an arti�ial

Markovian dynami on the stati parameter ρ and adding it to the state vetor xk, i.e.

xk = [xk, ẋk, yk, ẏk, ρk]
T
. As the parameter ρk has been appended to the hidden state, its

evolution must be spei�ed a priori. As for the position and the veloity, two ases must

be onsidered:

� The ontinuing ase (i.e. sk = 1 and sk−1 = 1) where the parameter ρk evolves

aording to the following equation [ADST04℄,

ρk = ρk−1 + εk, (2.25)

where εk is a white Gaussian noise with a "small" variane σ2
ρ independent of vk.

� The birth ase (i.e. sk = 1 and sk−1 = 0), where the parameter ρk is assumed

uniformly drawn over the interval [ρmin, ρmax], i.e. pb (ρk) = U (ρmin, ρmax) � note

that we may sometimes replae ρmin and ρmax by their orresponding SNR value

(see paragraph 2.3.2), that is SNRmin and SNRmax.

Moreover, as variable ρk has been added to the state vetor xk, the "new" likelihood

p (zk | xk) an simply be alulated by replaing ρ by ρk in Eq. (2.23).

Finally, note that in most of the artiles dealing with Trak-Before-Detet partile

�lters, the parameter ρk is not assumed to be onstant but rather diretly a omponent

of the state vetor with dynami model (2.25). Here, we prefer to assume that ρ is an

unknown onstant parameter, following the Swerling 0 model. We then use the proposed

method to estimate it but do not model it a priori that way. Obviously the di�erene

between the two approahes is just oneptual and in pratie they are ompletely equiv-

alent.

2.4.2.3 Trunating the ambiguity funtion

The ambiguity funtion presents signi�ant values only in a small subset of ells around the

target loation while being negligible elsewhere. Therefore, in order to avoid unneessary

omputations, Salmond et al. [SB01℄ have proposed to keep only a subset of ells Vxk

where the ambiguity funtion remains signi�ant. For a state xk loated in ell (uk, vk),
the set Vxk

may be de�ned as

Vxk
= {(u, v) | |uk − u| ≤ δhr , and |vk − v| ≤ δhθ} . (2.26)

From this de�nition, the ambiguity funtion will be alulated over Nδhr
× Nδhθ

ells �

where Nδhr
= 2δhr + 1 and Nδhθ

= 2δhθ + 1 � rather than Nc ells. In Figure 2.4, an

illustration of the subset Vxk
is proposed. A problem arising from the diret alulation

of the likelihood (2.23) is the prohibitive omputational ost indued by the large number
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Figure 2.4 � An example of the subset Vxk
(in yellow), for a target loated in ell (uk, vk),

with δhr = 2 and δhθ = 2.

of ells Nc inluded in the measurement zk. Indeed, from a theoretial point of view, the

salar produt quantities hHk Γ
−1hk and hHk Γ

−1zk in Eq. (2.23) must be evaluated over

the Nc ells, i.e.

hHk Γ
−1hk =

Nc∑

l=1

conj(hlk)h̃
l
k and hHk Γ

−1zk =

Nc∑

l=1

conj(hlk)z̃
l
k, (2.27)

where the samples h̃lk and z̃
l
k are respetively the omponents of vetors Γ−1hk and Γ−1zk

and conj(.) is the omplex onjugate operator. Fortunately, by trunating the ambiguity

funtion, the previous quantities are simply evaluated over the small subset Vxk
, i.e.

hHk Γ
−1hk =

∑

l∈Vxk

conj(hlk)h̃
l
k and hHk Γ

−1zk =
∑

l∈Vxk

conj(hlk)z̃
l
k, (2.28)

Note that here index l refers to the index (u, v) (as explained in paragraph 2.3.1 and Figure
2.3 for details). Thus, for instane, with δhr = 2 and δhθ = 2, the previous quantities

are omputed over only 25 ells, whih is muh smaller than the Nc ells. Lastly, in

the following, hk will refer indi�erently to the full ambiguity funtion or the trunated

ambiguity funtion as it does not hange the presented algorithms.

2.5 Instrumental density

As outlined in paragraph 1.2.4.5, the instrumental density may impat dramatially the

performane of the partile �lter. This is espeially true in the TBD appliation for the

birth density whih samples uniformly the position in the very large spae D (see Figure

2.2).
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A �rst ontribution of this work onsists in studying the instrumental densities for

all the omponents of the state vetor (sk,xk). For eah of them, we derive the optimal

instrumental density

1 p (xk | xk−1, zk) and then propose some approximations that still

take into aount the measurement zk for sampling the partile state (sik,x
i
k). Finally,

in setion 2.7, the in�uene of the di�erent instrumental densities is studied via Monte

Carlo simulations.

Let us �rst onsider rapidly the instrumental density for the ontinuing ase. The on-

tinuing partiles are propagated via Eq. (2.6), whih orresponds to a very lassi model.

As we stressed in paragraph 1.2.4.5, taking the prior as instrumental density in suh a

situation is enough to ensure good performane; using a more "sophistiated" instrumen-

tal density will indue an additional omputational ost for only a small gain [AMGC02℄.

Therefore, in the following, we hoose as instrumental density for the ontinuing ase the

prior, i.e. qc (xk | xk−1, zk) = pc (xk | xk−1).

2.5.1 Instrumental density for the initialization of the position

2.5.1.1 The optimal instrumental density

The initialization of the partile position is the key point of the Trak-Before-Detet

partile �lter. Indeed, the likelihood p (zk | xk) in Eq. (2.23) highly depends on the

vetor hk and, onsequently, on the position (rk, θk). Thus, simply using the prior, i.e.

the uniform distribution over the set D, as instrumental density will in one hand require

to use a lot of partiles to properly sample the set D and, in the other hand, lead to a

large variane of the importane weights (i.e. small Neff) sine the partiles will be set

indi�erently in the area whatever the value of the likelihood (high or low). Therefore,

another instrumental density should be proposed in order to "arefully" initialize the

partile positions.

To do so, we propose to start from the (intratable) optimal instrumental density and

then resort to some approximations. From paragraph 1.2.4.5 the optimal instrumental

density is given by p (xk | xk−1, zk). In the birth ase onsidered here, this density does

not depend on the previous state xk−1. Moreover, in the sequel, we will onsider the

target position in polar oordinates (i.e. (rk, θk)). Indeed, sine the radar ambiguity

funtion is de�ned with these oordinates (see Eq. (1.49)) it simpli�es the de�nition of

the instrumental density for initialization of the position. Thus, the instrumental density

for the position will be denoted as pb (rk, θk | zk) while the prior density pb (xk, yk) will be
denoted as pb (rk, θk). In a similar way, in this setion the likelihood will be de�ned with

the polar oordinates rather than with the Cartesian oordinates, and thus p (zk | xk) will
be denoted by p (zk | rk, θk). Note that these two likelihoods represent the same quantity,

even if the veloity omponents are not onsidered in the expression p (zk | rk, θk). Indeed,
reall that the measurement equation (2.8) does not depend on the veloity omponents

(ẋk, ẏk) (see setion 2.3.1).

Using Bayes rule or Eq. (1.101), the optimal instrumental density in polar oordinates

1

Reall from paragraph 1.2.4.5 that this density is often intratable and annot be used in pratie.
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an be simply rewritten as follows:

pb (rk, θk | zk) =
pb (rk, θk) p (zk | rk, θk)

p (zk)
, (2.29)

where,

p (zk) =

∫ rmax

rmin

∫ θmax

θmin

pb (rk, θk) p (zk | rk, θk) drkdθk. (2.30)

This last term is, aording to us, intratable and therefore so is the optimal instrumental

density. However, here, the independene with xk−1 leads to the same optimal instru-

mental density for all the birth partiles. It might then be still interesting to devote

some omputational resoures in order to approximate it. Thus, we propose here to use

a grid-based approah [AMGC02℄.

To this purpose, let us �rst disretize the spae for the position D. We propose to

disretize eah ell l as follows:

r(l,p) = rl + p ∆r

2(δr+1)
, p = −δr,−δr + 1, · · · , 0, · · · , δr − 1, δr,

θ(l,q) = θl + q
∆δθ

2(δθ+1)
, q = −δθ,−δθ + 1, · · · , 0, · · · , δθ − 1, δθ,

(2.31)

thus oversampling, in polar oordinates, the ell l, where δr and δθ are some positive

integers. A sheme of the disretization for the ell l is proposed in Figure 2.5.

Figure 2.5 � Sheme of the disretization for the ell l.

(
r(l,p), θ(l,q)

)
represents the points on the disrete grid, where the omponents of (l, p, q)

take values respetively in {1, · · · , Nc}, {−δr, · · · ,+δr} and {−δθ, · · · ,+δθ}. Thus, from
the de�nition of the proposed grid, eah ell l is approximated with Nδr = 2δr+1 samples

along rk axis and with Nδθ = 2δθ + 1 along θk axis, so that the grid used to disretize the

spae D is omposed of Nc ×Nδr ×Nδθ points.

Then, let us approximate the density pb (rk, θk) over the proposed grid. Sine the

prior birth density for position is uniform, eah point in the grid has the weight

1
NcNδrNδθ

,

leading to the following approximation:

pb (rk, θk) ≈
1

NcNδrNδθ

Nc∑

l=1

δr∑

p=−δr

δθ∑

q=−δθ

δ(r(l,p),θ(l,q)) (rk, θk) , (2.32)



Instrumental density 57

Finally, using Eq. (2.29), the approximation of the instrumental density pb (rk, θk | zk) is
obtained by

pb (rk, θk | zk) ≈
Nc∑

l=1

δr∑

p=−δr

δθ∑

q=−δθ

ζ
(p,q)
k,l δ(r(l,p),θ(l,q)) (rk, θk) (2.33)

where

ζ
(p,q)
k,l ∝ p

(
zk | r(l,p), θ(l,q)

)
. (2.34)

These weights annot be omputed diretly sine the likelihood p
(
zk | r(l,p), θ(l,q)

)
annot

be alulated diretly as explained in paragraph 2.4.2. Indeed, a marginalization must be

performed over the parameter ρk in the likelihood equation (2.23), leading to

p
(
zk | r(l,p), θ(l,q)

)
=

∫
pb (ρ) p

(
zk | ρ, r(l,p), θ(l,q)

)
dρ. (2.35)

Again the integral in Eq. (2.35) is intratable. However, it an be simply approximated

by a numerial integration, i.e.

p
(
zk | r(l,p), θ(l,q)

)
≈ 1

Nρ

Nρ−1∑

s=0

p
(
zk | ρs, r(l,p), θ(l,q)

)
, (2.36)

with Nρ a positive integer and ρs = ρmin +
s
Nρ

(ρmax − ρmin) , s = 0, · · · , Nρ − 1.

Although this method allows to approximate the instrumental density, in pratie, it

is unrealisti to use suh a density sine it requires to alulate Nc × Nδr × Nδθ × Nρ

likelihoods p
(
zk | ρs, r(l,p), θ(l,q)

)
where Nc may be very large. However, this approah an

be kept in mind to initialize the partiles only in the interesting areas of the state spae

and, for instane in the ells exeeding a given threshold γ [RAG04℄. This approah is

developed in the next paragraph.

2.5.1.2 Approximating the instrumental density as a mixture

Let us de�ne by

Dk,γ =
{
(rk, θk) | (rk, θk) ∈ ell l and |zlk|2 > γ

}
, (2.37)

the set of positions (rk, θk) where the measurement |zlk|2 exeeds a given threshold γ, and
Dck,γ its omplement (i.e. D = Dk,γ

⋂Dck,γ and Dk,γ
⋃Dck,γ = ∅). Let us also de�ne

PDk,γ
the probability that the position (rk, θk) belongs to the set Dk,γ (i.e. PDk,γ

=

p ((rk, θk) ∈ Dk,γ) ), Ik,γ =
{
l | |zlk|2 > γ

}
the set of indexes where the signal exeeds the

threshold γ and NIk,γ = ard (Ik,γ). Then the optimal instrumental density in Eq. (2.29)

an be rewritten as a mixture with two omponents:

pb (rk, θk | zk) = PDk,γ
pb (rk, θk | zk, (rk, θk) ∈ Dk,γ)+

(
1− PDk,γ

)
pb
(
rk, θk | zk, (rk, θk) ∈ Dck,γ

)
,

(2.38)

where eah density pb (rk, θk | zk, (rk, θk) ∈ Dk,γ) and pb
(
rk, θk | zk, (rk, θk) ∈ Dck,γ

)
an be

approximated exatly in the same manner as pb (rk, θk | zk) with the only di�erene that
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the former is alulated over the ells in Ik,γ while the latter is evaluated over the remain-

ing ells. This reorganization of the optimal instrumental density as a mixture an be

exploited to avoid alulating likelihoods p
(
zk | r(l,p), θ(l,q)

)
in the non-interesting areas

of the measurement zk. To this purpose, we propose to remove the dependene on zk for

the remaining ells, leading to the following instrumental density:

qb (rk, θk | zk) = PDk,γ
pb (rk, θk | zk, (rk, θk) ∈ Dk,γ) +

(
1− PDk,γ

)
pb
(
rk, θk | (rk, θk) ∈ Dck,γ

)
,

(2.39)

where pb
(
rk, θk | (rk, θk) ∈ Dck,γ

)
is simply the uniform distribution over the set Dck,γ. As

the proposed instrumental density di�ers now from the prior, the partile weight requires

the alulation of the weighting term, provided by

pb (rk, θk)

qb (rk, θk|zk)
=





NIk,γ

NcNδrNδθ
PDk,γ

pb(rk,θk|zk,(rk,θk)∈Dk,γ)
, if (rk, θk) ∈ Dk,γ,

(
1− NIk,γ

Nc

)
1

1−PDk,γ

, if (rk, θk) ∈ Dck,γ.
(2.40)

Note that the proposed instrumental density qb (rk, θk | zk) an be further simpli�ed

by also removing the dependene on zk in the �rst mixture omponent. This approah

leads to the following instrumental density

qUb (rk, θk | zk) = PDk,γ
pb (rk, θk | (rk, θk) ∈ Dk,γ)+

(
1− PDk,γ

)
pb
(
rk, θk | (rk, θk) ∈ Dck,γ

)
,

(2.41)

with the orresponding weighting term

pb (rk, θk)

qUb (rk, θk|zk)
=





NIk,γ

NcPDk,γ

, if (rk, θk) ∈ Dk,γ,
(
1− NIk,γ

Nc

)
1

1−PDk,γ

, if (rk, θk) ∈ Dck,γ.
(2.42)

This expression leads to the heuristi solution proposed by Rutten et al. [RRG05℄ (exept

that they take a �x number of highest ells rather than the ells exeeding the threshold)

or in [RAG04℄ where only the ells that exeed a given threshold are onsidered.

Note that in the solution proposed by Rutten et al. in [RRG05℄, or if PDk,γ
is set

to 1 in the instrumental density in Eq. (2.38), only a �x number of ells, or only the

ells exeeding the threshold, will be onsidered to initialize the position of the partiles.

However, we have seen in paragraph 1.2.4.2 that the support of the prior pb (rk, θk) must

be inluded in the support of the instrumental density p (rk, θk | zk). Therefore, strito

sensu, from a theoretial point of view, the above instrumental densities should not be

used to sample the partile positions. Nevertheless, in pratie, using suh densities has

no notieable onsequene. Indeed, when a partile �lter is implemented, the number of

partiles Np is always �nite. Therefore, even if the support of the prior is inluded in the

support of the instrumental density, it may be possible that some ells will not ontain

any partile as for the densities that do not respet the ondition on the support. Suh an

instrumental density with PDk,γ
= 1 will be used in the setion "Simulation and Results"

(i.e. setion 2.7) with PDk,γ
= 1.
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2.5.1.3 Calulation of the mixture probability and hoie of the threshold

In the literature, the detetion probability PDk,γ
in the mixture (2.41) is often hosen

to be equal to one, leading in pratie to a mixture with only one omponent so that

the partile positions are initialized only in the ells exeeding γ [RAG04℄. However, the

probability PDk,γ
is stritly lower than 1 for any γ > 0. Thus, it might be interesting to

evaluate its atual value in order to be as lose as possible to the optimal instrumental

density de�ned in Eq. (2.38).

First notie that the event {(rk, θk) ∈ Dk,γ} an be deomposed as

{(rk, θk) ∈ Dk,γ} =
Nc⋃

l=1

{
{(rk, θk) ∈ ell l}

⋂{
|zlk|2 > γ

}}
(2.43)

where all the events in the deomposition are disjoint, i.e.

{
{(xk, yk) ∈ ell l}

⋂{
|zlk|2 > γ

}}⋂{
{(xk, yk) ∈ ell m}

⋂{
|zmk |2 > γ

}}
= ∅,

for l 6= m, sine the target annot be loated in the ells l andm simultaneously. Moreover,

by using a grid-based approah as in paragraph 2.5.1.1, the event {(rk, θk) ∈ ell l} an
be approximated as follows:

{(rk, θk) ∈ ell l} =
δr⋃

p=−δr

δθ⋃

q=−δθ

{
(rk, θk) =

(
r(l,p), θ(l,q)

)}
, (2.44)

where all the events

{
(rk, θk) =

(
r(l,p), θ(l,q)

)}
do not interset and present the same prob-

ability

1
NcNδrNδθ

(uniform prior). Then, it omes

PDk,γ
=

1

NcNδrNδθ

Nc∑

l=1

δr∑

p=−δr

δθ∑

q=−δθ

p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
, (2.45)

and if hl (xk) does not depend on l (i.e, the alulation of the ambiguity funtion does

not depend on the ell index l), it simpli�es as follows:

PDk,γ
=

1

NδrNδθ

δr∑

p=−δr

δθ∑

q=−δθ

p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
. (2.46)

The probability p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
an be obtained as in Eq. (2.36), by marginal-

ization over the amplitude parameter, i.e.

p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
≈ 1

Nρ

Nρ−1∑

s=0

p
(
|zlk|2 > γ | ρs, r(l,p), θ(l,q)

)
. (2.47)

The probability p
(
|zlk|2 > γ | ρs, r(l,p), θ(l,q)

)
an be easily omputed sine onditionally to(

r(l,p), θ(l,q)
)
and ρs,

|zlk|
2

σ2
follows a non-entral hi-square distribution with two degrees
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of freedom and non entrality parameter λ
(p,q,s)
nc =

(ρs)2|hl(rql ,θ
q
l )|2

σ2
. Then, denoting by

F−1
χ2

(
. | λ(p,q,s)nc

)
the inverse umulative distribution funtion of this non entral hi-square

distribution, the probability p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
an be expressed as

p
(
|zlk|2 > γ | r(l,p), θ(l,q)

)
≈ 1− 1

Nρ

Nρ−1∑

s=0

F−1
χ2

( γ
σ2

∣∣∣λ(p,q,s)nc

)
. (2.48)

Finally,

PDk,γ
≈ 1− 1

NδrNδθNρ

δr∑

p=−δr

δθ∑

q=−δθ

Nρ−1∑

s=0

F−1
χ2

( γ
σ2

∣∣∣λ(p,q,s)nc

)
. (2.49)

Conerning the hoie of the threshold γ, the lassi detetion threshold de�ned in Eq.

(1.51) (i.e. γ = −2σ2 logPfa) an be used in order to design the instrumental density.

Indeed, using suh a threshold will lead to properly sample approximatively PfaNc ells

(i.e. ells in NIk,γ ) while ensuring, if a target appears, that its position will be in Dk,γ with
probability PDk,γ

. Obviously, the lower the Pfa, the smaller the set Dk,γ and aordingly

the omputational time to alulate the instrumental density; but in return, the smaller

the probability PDk,γ
will be. Furthermore, note that the probability PDk,γ

is highly

dependent on the target SNR prior. Indeed, for instane if a prior interval [ρmin, ρmax] is
hosen suh that the orresponding SNRmin and SNRmax values are small, the probability

in Eq. (2.48) will be small, and, as a onsequene, so will be the probability PDk,γ
; on the

ontrary, if the prior interval orresponds to high values of SNRmin and SNRmax values

are high, the probability PDk,γ
will be muh greater. Therefore, in Figure 2.6, we show

the evolution of the probability

p
(
|zlk|2 > γ | ρ

)
= 1−

δr∑

p=−δr

δθ∑

q=−δθ

p
(
|zlk|2 > γ | ρ, r(l,p), θ(l,q)

)
(2.50)

aording to the SNR = 10 log10

(
ρ2

2σ2

)
for di�erent Pfa rather than the evolution of the

probability PDk,γ
that depends on the hoie of the prior interval [ρmin, ρmax]. We an

remark that for small SNR the probability p
(
|zlk|2 > γ | ρ

)
may beome pretty small for

small Pfa. Therefore it is then preferable to use a large enough Pfa in order to ensure

that some partiles are initialized in Dck,γ.

2.5.2 Instrumental density for the amplitude parameter

2.5.2.1 The optimal instrumental density

In the literature, the parameter ρk is usually sampled aording to the prior density

[RRG05℄, i.e.:

� uniformly sampled in [ρmin, ρmax] for the newborn partiles;

� propagated aording to equation (2.25) for ontinuing partiles.
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Figure 2.6 � Probability p
(
|zlk|2 > γ | ρ

)
provided in Eq. (2.50) aording to the target

SNR for di�erent probabilities of false alarm. This probability takes into aount the

target position inside the resolution ell, and the orresponding losses. Therefore, this

probability is lower than the lassi probability of detetion PD in radar, where the target

is assumed to be at the enter of the resolution ell (i.e. no loss).

However, in pratie, it may be ine�ient beause the interval [ρmin, ρmax] may be large

and the noise variane σ2
ρ in Eq. (2.25) is often hosen to be small. Another instrumental

density may then be onsidered to initialize and/or propagate the amplitude parameter.

Conerning the birth amplitude parameter, the optimal instrumental density is given

by pb (ρk | zk) and an be approximated using a grid-based approah as for the position

parameters (rk, θk). However, the weight alulation will require a marginalization over

the variables rk and θk leading, as in Eq. (2.35), to alulateNc×Nδr×Nδθ×Nρ likelihoods.

This annot be used in pratie. We rather propose to fatorize the instrumental density

for position and amplitude as follows

qb (rk, θk, ρk | zk) = qb (rk, θk | zk) qb (ρk | rk, θk, zk) , (2.51)

where the parameter ρk is now sampled aording to the position (rk, θk). Using the

same reasoning as in paragraph 2.5.1.1, the optimal instrumental density for amplitude

parameter is then obtained by

qb (ρk | rk, θk, zk) = pb (ρk | rk, θk, zk) ∝ pb (ρk) p (zk | ρk, rk, θk) , (2.52)

and an be approximated by

pb (ρk | rk, θk, zk) ≈
Nρ−1∑

s=0

ζsk,ρδρs (ρk) , (2.53)

where

ζsk,ρ ∝ p (zk | ρs, rk, θk) , (2.54)
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Nρ is a positive integer and ρs = ρmin + s
Nρ

(ρmax − ρmin) , s = 0, · · · , Nρ − 1. Note

that Nρ an be di�erent from the one de�ned in Eq. (2.36) but we have kept here the

same notation for the sake of simpliity. Furthermore, if the position of the partiles are

sampled with the instrumental density de�ned in Eq. (2.39), then Nρ likelihoods for the

positions

(
r(l,p), θ(l,q)

)
belonging toDk,γ have been already alulated. Therefore, by taking

the same Nρ and storing the likelihoods p
(
zk | ρs, r(l,p), θ(l,q)

)
for

(
r(l,p), θ(l,q)

)
∈ Dk,γ, no

extra alulation is needed. Of ourse, Nρ likelihood alulations would still be required

for partiles belonging to Dck,γ unless another instrumental density is used instead (e.g,

a prior distribution). On the other hand, the weighting term indued by the (possibly

di�erent) instrumental density must be arefully alulated. If the amplitude parameter

is sampled from pb (ρk | rk, θk, zk), the orresponding weighting term is then given by

pb (ρk | rk, θk)
qb (ρk | rk, θk, zk)

=
1

Nρpb (ρk | rk, θk, zk)
. (2.55)

2.5.2.2 An instrumental density based on an estimator of the amplitude

If the instrumental density qb (rk, bk | zk) de�ned in Eq.(2.39) is not used, then it may be

preferable not to use the instrumental density pb (ρk | rk, θk, zk) that requires to alulate

Nρ extra likelihoods per partile. Thus, we propose a di�erent instrumental density that

exploits the measurement zk at a lower omputational ost. This instrumental density is

omposed of the two following densities for the birth and ontinuing ases:

qestb (ρk | rk, θk, zk) = N
(
ρk; ρ̂b, σ

2
b,ρ

)
, (2.56)

qestc (ρk | ρk−1, rk, θk, zk) = N
(
ρk; ρ̂c, σ

2
c,ρ

)
, (2.57)

where ρ̂b and ρ̂c are some estimators of ρk alulated from (rk, θk, zk) for the birth ase

and from (ρk−1, rk, θk, zk) for the ontinuing ase, and σ
2
b,ρ, σ

2
c,ρ are some varianes de�ned

by the user. The weighting terms indued by these instrumental densities are given by

pb (ρk)

qestb (ρk | rk, θk, zk)
=

√
2πσb,ρ exp

{
(ρk−ρ̂b)

2

2σ2
b,ρ

}

ρmax − ρmin
, (2.58)

pc (ρk | ρk−1)

qestc (ρk | ρk−1, rk, θk, zk)
=

σc,ρ
σρ

exp

{
(ρk − ρ̂c)2

2σ2
c,ρ

− (ρk − ρk−1)
2

2σ2
ρ

}
. (2.59)

Conerning the estimators, we hoose a MAP approah leading to alulate ρ̂b and ρ̂c
as

ρ̂b = argmax
ρk

(
max
ϕk

pb (ρk) p (zk | rk, θk, ρk, ϕk)
)
, (2.60)

ρ̂c = argmax
ρk

(
max
ϕk

pc (ρk | ρk−1) p (zk | rk, θk, ρk, ϕk)
)
. (2.61)

Note that we hoose to maximize �rst the likelihood p (zk | rk, θk, ρk, ϕk) over the phase

ϕk (see Eq. (2.19)) sine the orresponding expressions (for birth and ontinuing ases)

allow to obtain a losed-form for the estimators, while using the likelihood expression
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de�ned in Eq. (2.23) does not (beause of the Bessel funtion). The estimator ρ̂b is then
obtained by

ρ̂b =





∣∣hHk Γ−1zk
∣∣

hHk Γ
−1hk

, if ρmin <

∣∣hHk Γ−1zk
∣∣

hHk Γ
−1hk

< ρmax,

ρmin, if

∣∣hHk Γ−1zk
∣∣

hHk Γ
−1hk

≤ ρmin,

ρmax, if

∣∣hHk Γ−1zk
∣∣

hHk Γ
−1hk

≥ ρmax,

(2.62)

and ρ̂c by

ρ̂c =
ρk−1 + 2σ2

ρ

∣∣hHk Γ−1zk
∣∣

1 + 2σ2
ρh

H
k Γ

−1hk
. (2.63)

Note that quantities

∣∣hHk Γ−1zk
∣∣
and hHk Γ

−1hk an be stored for eah partile sine they

are required to ompute the partile weight via the likelihood p (zk | xk) (see Eq. (2.23)).

2.5.3 Instrumental density for the veloity

As seen in paragraph 2.3, the measurement equation (2.8) does not diretly depend on

the veloity omponent (ẋk, ẏk). Therefore, when the partile veloity omponents are

initialized at time step k, the measurement zk does not provide any information about

them and the prior must be used. This may be problemati in some ases: for instane,

if a target appears in the radar window with a high SNR and a partile is initialized very

lose to the atual target position, the orresponding weight will be very high. Then the

resampling step will tend to selet this partile more often than others, and the hildren

partiles will share the same veloity omponents. However, this veloity sampled from

the prior may tend to propagate the partiles in a wrong diretion. In order to avoid

this last drawbak, we propose a very simple strategy: instead of sampling the veloity

omponents at step k when the partile is initialized (birth ase), we propose to sample it

at the next step k + 1. Then, if many partiles have been resampled from the same birth

partile at step k, their veloity omponents at step k + 1 will be di�erent and therefore

they will better explore the state spae. Although there is no theoretial justi�ation for

suh a hoie, the state model an be hanged in order to allow the veloity omponent

of birth partiles at step k to be initialized at step k+1. Thus, we propose to add to the

state model a variable

tk =

{
tk−1 + 1, if sk = 1,
0, if sk = 0,

(2.64)

that ounts the number of iterations when the partile is alive, and we de�ne the transition

density as follows:

p (tk, sk,xk | tk−1, sk−1,xk−1) = p (sk | sk−1) p (tk | tk−1, sk) p (xk | tk,xk−1) . (2.65)

First note that p (tk | tk−1, sk) does not need to be sampled sine the variable tk ondi-

tionally to variable tk−1 and sk is ompletely determined. Consequently, the transition of

the state xk now depends on the variable tk as follows

� tk = 0 orresponds to the death ase (i.e. the state is meaningless),
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� tk = 1 orresponds to the birth ase with the density pb (xk) (exept for the veloity
omponents),

� the ase tk = 2 orresponds to the partiles born at previous step,

� tk > 2 orresponds to the ontinuing ase with the density pc (xk | xk−1).

Then it is now possible to initialize the veloity omponents at step tk = 2. This an be

done, for instane, by hoosing as prior density

p (xk | tk = 2,xk−1) = pc (ρk | ρk−1) pb (ẋk, ẏk)×
N
(
xk; xk−1 + TSẋk, qS

T 3
S

3

)
N
(
yk; yk−1 + TS ẏk, qS

T 3
S

3

)
.

(2.66)

Note that the position (xk, yk) is almost sampled aording to the state equation (2.6)

exept that the varianes and the ovarianes for the veloity omponents in the matrixQ

are set to zero. Therefore, in order to avoid unneessary ompliations, the same notation

pc (xk | xk−1) is kept for both state models sine they only di�er by the initialization of

the veloity omponents (i.e. when tk = 2). Moreover, if the orresponding prior is taken

to propagate the position and the veloity of the partiles, no additional weighting term

is indued in both ases.

2.5.4 Instrumental density for the presene variable

In the literature, the instrumental density is usually fatorized in the same manner as the

prior density de�ned in Eq. (2.2):

q (sk,xk|sk−1,xk−1, zk) = p (sk|sk−1)×
{
qc (xk|xk−1, zk) , if sk = 1 and sk−1 = 1,
qb (xk|zk) , if sk = 1 and sk−1 = 0,

(2.67)

leading to sample the variable sk from the prior transition matrix and, as a onsequene,

independently from the partile state xk and the measurement zk. In this ase, some

partiles may be "killed" whereas they were loated in informative areas of the state spae,

while some others may be drawn in non informative areas. To avoid these drawbaks,

we propose to fatorize the proposal density, taking into aount the state xk and the

measurement zk, as follows:

q (sk,xk|sk−1,xk−1, zk) = p(sk|sk−1,xk, zk)×
{
qc (xk|xk−1, zk) , if sk−1 = 1,
qb (xk|zk) , if sk−1 = 0,

(2.68)

where p(sk|sk−1,xk, zk) is the posterior transition probability, proportional to:

p(sk = 1|sk−1,xk, zk) ∝ p (zk|xk) p (sk = 1|sk−1) ,
p(sk = 0|sk−1,xk, zk) ∝ p (sk = 0|sk−1) .

(2.69)

For a partile i, the posterior transition probabilities are then given by:

p
(
sik = 1|sik−1 = 0,xik, zk

)
=

Pbp(zk|xik)
Pbp (zk|xik) + 1− Pb

, if sik−1 = 0, (2.70)

p(sik = 1|sik−1 = 1,xik, zk) =
(1− Pd)p (zk|xik)

(1− Pd)p (zk|xik) + Pd
, if sik−1 = 1. (2.71)
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Note that in Eq. (2.67) the birth and the target dynamial densities depend on variables

sk and sk−1 while they only depend on sk−1 in Eq. (2.68). With a slight abuse of notation,

we have kept the same notation for the instrumental density in both ases sine in pratie

it does not hange the way to sample the partiles.

It resorts from this proposed strategy that the state xk is sampled �rst, i.e. before

drawing the variable sk. Then, if xk is drawn in an area of the state spae presenting a

high likelihood, the orresponding posterior probability de�ned in Eq. (2.70) or (2.71)

will be high, leading to sample the variable sk in a more e�ient manner than with the

prior. As the prior is not used here as instrumental density, di�erent weighting terms are

indued, leading to the following expression of the partile weights:

wik ∝ wik−1 ×





p(sik=0|sk−1)
p(si

k
=0|si

k−1,x
i
k
,zk)

, if sik = 0,

Pb

p(si
k
=1|si

k−1=0,xi
k
,zk)
× pb(xi

k)
qb(xi

k
|zk)

p (zk | xik) , if sik = 1 and sik−1 = 0,

1−Pd

p(sik=1|sik−1=1,xi
k,zk)
× pc(xi

k|x
i
k−1)

qc(xi
k
|xi

k−1,zk)
p (zk | xik) , if sik = 1 and sik−1 = 1.

(2.72)

Note that we did not take into aount the weighting term for state xik when s
i
k = 0 sine

it is meaningless. Furthermore, ontrary to the prior proposal that needs to alulate

the likelihood p (zk|xk) only for the partiles with sk = 1, this new strategy requires the

likelihood omputation for eah partile in order to draw its state parameter sk aording
to Eq. (2.70) and (2.71). Therefore an additional ost is indued whih ours mainly

when most of the partiles share the state sk = 0. On the bright side, it should be stressed

that the proposed strategy omputes the same number of likelihoods at eah iteration,

leading to onstant omputational time per iteration, while for the lassi approah this

ost depends on the number of partiles in state sk = 1 and may thus highly vary.

Finally, a single yle of the proposed partile �lter, that we all the Posterior TBD

Partile Filter, is desribed in Algorithm 2.2.

2.6 Marginalized TBD partile �lter

The Classi TBD partile �lter samples the whole augmented state (sk,xk) whereas the
only partiles that e�etively partiipate to the estimation of xk are partiles with state

sik = 1. Partiles with state sik = 0 just allow to alulate the probability of presene P̂e,k.
However, we are mainly interested by the density p (xk | sk = 1, z1:k) and the probability

Pe,k rather than the whole posterior p (sk,xk | z1:k). Thus, following that idea, Rutten et

al. [RGM04℄ developed an approah where only the quantities of interest are alulated,

leading to a more e�ient use of the partiles.

To this purpose, the density p (sk,xk | z1:k) is �rst rewritten as follows:

p (sk,xk | z1:k) = p (sk | z1:k) p (xk | sk, z1:k) . (2.73)

By de�nition of sk,
p (sk = 1 | z1:k) + p (sk = 0 | z1:k) = 1. (2.74)

Therefore, only one of the two probabilities must be omputed and p (sk = 1 | z1:k) will be
onsidered in the sequel (i.e. the probability of existene Pe,k). Moreover, in Eq. (2.73),
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Algorithm 2.2 Posterior TBD Partile Filter

Require: Partile loud

{(
sik−1,x

i
k−1

)
, wik−1

}Np

i=1
at step k − 1.

1: for i = 1 to Np do

2: if sik−1 = 1 then
3: Draw xik ∼ qc

(
xk | xik−1, zk

)

4: Draw sik aording to Eq. (2.71)

5: else

6: Draw xik ∼ qb (xk | zk)
7: Draw sik aording to Eq. (2.70)

8: end if

9: Update partile weight wik aording to Eq. (2.72)

10: end for

11: Normalize weights: wik ←
wi

k∑Np
l=1 w

l
k

, i = 1, · · · , Np

12: Compute Neff aording to Eq. (1.98).

13: if Neff < βNp then

14: Resample Np partiles

15: Reset weights: wik ← 1
Np

i = 1, · · · , Np

16: end if

17: return {(sik,xik) , wik}
Np

i=1

the density p (xk | sk = 1, z1:k) an simply be deomposed as:

p (xk | sk = 1, z1:k) = p (sk−1 = 1 | sk = 1, z1:k) p (xk | sk = 1, sk−1 = 1, z1:k)︸ ︷︷ ︸
posterior ontinuing density

+

p (sk−1 = 0 | sk = 1, z1:k) p (xk | sk = 1, sk−1 = 0, z1:k)︸ ︷︷ ︸
posterior birth density

,

(2.75)

whih is a mixture with two omponents where:

� the �rst omponent p (xk | sk = 1, sk−1 = 1, z1:k), that we all the posterior ontin-
uing density, onsiders the ase where the target is present at step k − 1. In order

to alleviate the notation, it will be denoted as pc (xk | z1:k) in the sequel.

� the seond omponent p (xk | sk = 1, sk−1 = 0, z1:k), that we all the posterior birth
density, onsiders the ase where the target shows up in the radar surveillane area

between steps k − 1 and k. It will be denoted as pb (xk | z1:k) in the following.

Eah of these two omponents an be omputed using the lassi reursion of the Bayesian

�lter. For the �rst omponent, it omes:

pc (xk | z1:k) =
p (zk | xk) pc (xk | z1:k−1)

pc (zk | z1:k−1)
, (2.76)

where pc (xk | z1:k−1) is the lassi predited density obtained via the Chapman-Kolmogorov

equation (1.59):

pc (xk | z1:k−1) =

∫
p (xk−1 | sk = 1, sk−1 = 1, z1:k−1) pc (xk | xk−1) dxk−1. (2.77)
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The density at previous step p (xk−1 | sk = 1, sk−1 = 1, z1:k−1) is still onditioned by sk =
1, but, in pratie, it is easy to show, using the de�nition of the prior model, that the

dependene with sk = 1 an be removed. Indeed, from a simple Bayes rule, it omes

p (xk−1 | sk = 1, sk−1 = 1, z1:k−1) =
p (xk−1 | sk−1 = 1, z1:k−1) p (sk = 1 | sk−1 = 1,xk−1, z1:k−1)

p (sk = 1 | sk−1 = 1, z1:k−1)
.

(2.78)

Sine the proess (sk)k∈N is Markovian, the probabilities

p (sk = 1 | sk−1 = 1,xk−1, z1:k−1) and p (sk = 1 | sk−1 = 1, z1:k−1) do not depend on xk−1

and z1:k−1. Therefore, they simplify in the last equation and it only remains the density

p (xk−1 | sk−1 = 1, z1:k−1) where the dependeny with sk = 1 has been removed. Finally,

the Chapman-Kolmogorov equation (2.77) beomes

pc (xk | z1:k−1) =

∫
p (xk−1 | sk−1 = 1, z1:k−1) pc (xk | xk−1) dxk−1, (2.79)

whih only depends on the density at previous step and the transition probability

pc (xk | xk−1) while the normalization term pc (zk | z1:k−1) in Eq. (2.76) is obtained by

pc (zk | z1:k−1) =

∫
p (zk | xk) pc (xk | z1:k−1) dxk. (2.80)

In the same manner, the seond omponent pb (xk | z1:k) an be expressed as follows

pb (xk | z1:k) =
p (zk | xk) pb (xk | z1:k−1)

pb (zk | z1:k−1)
(2.81)

where

pb (xk | z1:k−1) =

∫
pb (xk−1 | sk = 1, sk−1 = 1, z1:k−1) pb (xk | xk−1) dxk−1. (2.82)

Here, sine the density pb (xk | xk−1) does not depend on xk−1, it diretly omes that

pb (xk | z1:k−1) = pb (xk) . (2.83)

Finally the normalization term pb (zk | z1:k−1) is equal to

pb (zk | z1:k−1) =

∫
p (zk | xk) pb (xk) dxk. (2.84)

In pratie, eah density (ontinuing or birth) an be approximated by a partile �lter.

Let us assume that at step k− 1 a set of Np,c partiles

{
wik−1,x

i
k−1

}Np,c

i=1
approximates the

posterior density p (xk | sk = 1, zk). By using Eq. (2.76), the posterior ontinuing density

an be approximated by a set of partiles

{
xik,c, w

i
k,c

}Np,c

i=1
sampled from an instrumental

density qc (xk | xk−1, zk) where the unnormalized weights are equal to

w̃ik,c = wik−1

pc
(
xik,c | xik−1

)

qc
(
xik,c | xik−1, zk

)p
(
zk | xik,c

)
. (2.85)



68 hapter 2

Conerning the birth posterior density, sine alive partiles xik−1 do not provide any in-

formation on the newborn partiles, it an be diretly estimated by a set of Np,b partiles{
xik,b, w

i
k,b

}Np,b

i=1
sampled from qb (xk | zk) where the unnormalized weights are alulated

from the following equation

w̃ik,b =
pb
(
xik,b
)

qb
(
xik,b | zk

)p
(
zk | xik,b

)
. (2.86)

Note that in Eq. (2.85) and in Eq. (2.86) we use the sign = rather than ∝, indeed, the
unnormalized weights are required to alulate other quantities that will be detailed in

the sequel. Obviously the normalized weights wik,c and w
i
k,b are simply obtained through

a normalization.

In order to approximate the posterior mixture density de�ned in Eq. (2.75), both prob-

abilities p (sk−1 = 1 | sk = 1, z1:k) and p (sk−1 = 0 | sk = 1, z1:k) must also be alulated.

Again, using Bayes rule, it is easy to show that

p (sk−1 = 1 | sk = 1, z1:k) ∝ (1− Pd)Pe,k−1pc (zk | z1:k−1) ,
p (sk−1 = 0 | sk = 1, z1:k) ∝ Pb(1− Pe,k−1)pb (zk | z1:k−1) .

(2.87)

The alulation of the terms pb (zk | z1:k−1) and pc (zk | z1:k−1) is intratable. However

they an be approximated via a Monte Carlo integration [VGP05℄ leading to the following

unnormalized probabilities,

p̂u (sk−1 = 1) =
(1− Pd) P̂e,k−1

Ck

Np,c∑

i=1

w̃ik,c,

p̂u (sk−1 = 0) =
Pb(1− P̂e,k−1)

Np,b

Np,b∑

i=1

w̃ik,b,

(2.88)

where P̂e,k−1 is the approximated probability of existene at step k − 1 while Ck is a

normalization onstant given by

Ck =

Np,c∑

i=1

wik−1

pc
(
xik,c | xik−1

)

qc
(
xik,c | xik−1, zk

) . (2.89)

Note that when the instrumental density is the prior, the onstant Ck does not need

to be alulated sine it is equal to 1. Finally the two onsidered probabilities an be

approximated by

p̂ (sk−1 = 1 | sk = 1, z1:k) =
p̂u (sk−1 = 1)

p̂u (sk−1 = 1) + p̂u (sk−1 = 0)
,

p̂ (sk−1 = 0 | sk = 1, z1:k) = 1− p̂ (sk−1 = 0 | sk = 1, z1:k) .

(2.90)

The probability of presene Pe,k at step k an be deomposed as follows [RGM04℄:

Pe,k =
(1− Pd)Pe,k−1pc (zk | z1:k−1) + Pb(1− Pe,k−1)pb (zk | z1:k−1)

p (zk | z1:k−1)
, (2.91)
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where

p (zk | z1:k−1) ∝ (1− Pd)Pe,k−1pc (zk | z1:k−1) + Pb(1− Pe,k−1)pb (zk | z1:k−1)
+Pe,k−1Pd + (1− Pe,k−1) (1− Pb) . (2.92)

Here the used of ∝ means that p (zk | z1:k−1) is provided up to the onstant p (zk | sk = 0)
(see paragraph 2.4.2). Finally, the probability of presene an be approximated by

[RGM04℄:

P̂e,k =
p̂u (sk−1 = 1) + p̂u (sk−1 = 0)

p̂u (sk−1 = 1) + p̂u (sk−1 = 0) + P̂e,k−1Pd + (1− P̂e,k−1) (1− Pb)
(2.93)

Lastly, a single yle of this partile �lter, denoted by Marginalized TBD Partile

Filter, is desribed in Algorithm 2.3. Note that, as the strategy proposed in paragraph

2.5.4, this algorithm alulates always the same number of likelihoods p (zk | xik) and

initializes always the same number of partile Np,b. Therefore, its omputational ost is

onstant at eah iteration.

2.7 Simulations and results

In this setion, we propose to illustrate the performane of the di�erent TBD algorithms

proposed in this hapter via Monte Carlo simulation. As we have seen, the TBD partile

�lters depend on many parameters. For the sake of larity, we will fous here on the

key points of the TBD partile �lters and in partiular on the di�erent instrumental

densities proposed in setion 2.5. For eah of them, we will study the impat on the �lter

performane and the eventual gain ompared to the instrumental densities proposed in

the literature. Moreover, as omputational time may sensibly vary between the di�erent

instrumental densities for a given number of partiles, we will try to provide as muh

as possible as a fairly evaluation of the possible gain in terms of performane with the

eventual additional omputational time required to reah it.

2.7.1 Senarios

For the simulation senarios, we onsider two senarios with a number of iterations Nit =
100. The �rst senario onsiders that the target is absent during all the experiment:

this will allow to evaluate the probability that the �lter delares a detetion whereas no

target is present (i.e. false alarm). The seond senario onsiders a target appearing at

step kb = 15 and disappearing at step kd = 75 in order to measure both the ability of the

di�erent �lters to truly detet the target and the auray of the orresponding estimator.

For eah Monte Carlo run, the initialization of the target state for the position and the

veloity is done aording to the birth density pb (.) de�ned in setion 2.2 (i.e. uniform

prior over D = [rmin, rmax]× [θmin, θmax] for the position and over [vmin, vmax]× [0, 2π] for
the veloity), with the following parameters:

� rmin = 30 km, rmax = 36 km, θmin = 35◦ and θmax = 55◦,

� vmin = 100 m.s

−1
and vmax = 300 m.s

−1
.
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Algorithm 2.3 Marginalized TBD Partile Filter

Require: Partile loud

{(
sik−1,x

i
k−1

)
, wik−1

}Np,c

i=1
and probability P̂e,k−1 at step k − 1.

1: Reset Ck ← 0,
2: for i = 1 to Np,c do

3: Draw xik,c ∼ qc
(
xk | xik−1, zk

)

4: Calulate the unnormalized weights w̃ik,c with Eq. (2.85)

5: Ck ← Ck + wik−1

pc(xi
k,c|x

i
k−1)

qc(xi
k,c|x

i
k−1,zk)

6: end for

7: for i = 1 to Np,b do

8: Draw xik,b ∼ qb (xk | zk)
9: Calulate the unnormalized weights w̃ik,b with Eq. (2.86)

10: end for

11: Calulate the unnormalized probabilities p̂u (sk−1 = 1) and p̂u (sk−1 = 0) with Eq.

(2.88)

12: Calulate the probabilities p̂ (sk−1 = 1 | sk = 1, z1:k) and p̂ (sk−1 = 0 | sk = 1, z1:k)
with Eq. (2.90)

13: Calulate the probability of existene P̂e,k with Eq. (2.93)

14: Normalize weights of the ontinuing partiles: wik,c ←
w̃i

k,c∑Np,c
l=1 w̃l

k,c

, i = 1, · · · , Np,c

15: Normalize weights of the birth partiles: wik,b ←
w̃i

k,b
∑Np,b

l=1 w̃l
k,b

, i = 1, · · · , Np,b

16: Mix the birth and ontinuing partiles to reate a set of Np,c + Np,b partiles

{xik, wik}
Np,c+Np,b

i=1 :

17: for i = 1 to Np,c +Np,b do

18: if i ≤ Np,c then

19: xik ← xik,c
20: wik ← p̂ (sk−1 = 1 | sk = 1, z1:k)w

i
k,c

21: else

22: xik ← x
(i−Np,c)
b,k

23: wik ← p̂ (sk−1 = 0 | sk = 1, z1:k)w
(i−Np,c)
k,b

24: end if

25: end for

26: Resample Np,c partiles from {xik, wik}
Np,c+Np,b

i=1

27: Reset weights: wik ← 1
Np,c

i = 1, · · · , Np

28: return

{
xik,

1
Np,c

}Np,c

i=1
.

Note that a small radar window has been taken in order to limit the omputational time.

Indeed, the number of partiles required is diretly proportional to the overall number of

radar ells. Between the iterations kb+1 and kd− 1, the target state xk (for the position
and the veloity) evolves aording to Eq. (2.6) with no noise proess (i.e. uniform linear

motion) and TS = 0.3 s (the time between two onseutive measurements).

The generation of the raw radar data is done aording to Eq. (2.8) with Γ = INc (i.e.

noise samples are assumed independent with noise 2σ2 = 1). The funtion h (.),de�ned
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in paragraph 2.3, is used with the following parameters:

� For the range axis, a hirp signal is onsidered with B = 1 MHz, orresponding to

a range resolution ∆r = 150 m and Tp = 66.7 µs.

� For the azimuth axis, an antenna array is onsidered, omposed of Na = 70 antennas
linearly spaed by d = λ/2, orresponding to a resolution (that does not depend on

the value of λ) in azimuth ∆θ = 1.45◦. Note that the maximum of the ambiguity

funtion in azimuth arises normally for suh an array for the diretion π/2 whereas

here the interval [θmin, θmax] is entered around π/4. Therefore, in order to set the

maximum at π/4, quantities θk and θv are just shifted from π/4 in Eq. (2.10).

Finally, di�erent SNR values (following the SNR de�nition provided in paragraph 2.3.2)

will be onsidered in the simulations.

2.7.2 Methodology for the performane evaluation

All the proposed partile �lters provide information about the target presene or absene

via the probability of presene Pe,k but do not take any deision about it. However,

the ability of the partile �lter to provide useful information to take suh a deision is

interesting to evaluate. We propose here to evaluate the performane in two steps:

� First in terms of detetion, i.e. measuring the ability of the �lter to e�etively

detet the target.

� Seond in terms of estimation in order to evaluate the auray of the estimator

when the TBD partile �lter has onverged on the true target state.

2.7.2.1 Detetion proedure

In order to perform the detetion stage, let us all dTk,i the deision variable at eah

iteration k of the i− th Monte Carlo run, that takes value 1 if a target is delared present

by the �lter, and 0 otherwise. A simple proedure to set the variable dTk,i onsists in

omparing the probability of presene Pe,k with a given probability PT [RAG04℄, leading

to

dTk,i =

{
1, if P̂e,k > PT ,
0, otherwise.

(2.94)

In pratie, espeially when the target SNR is low, the variable P̂e,k an present large

�utuations leading to a situation where most of the partiles may be loated near the

atual target position whereas P̂e,k dereases below the threshold and as a onsequene

no detetion is delared (i.e. dTk,i = 0).
To avoid suh a situation, we propose a detetion sheme that is based on an adap-

tive threshold that depends on the previous detetion dTk−1,i ( we all this proedure the

adaptive TBD target detetion):

dTadk,i =

{
1, if P̂e,k > PT

(
dTadk−1,i

)
,

0, otherwise.
(2.95)
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In pratie, PT

(
dTadk−1,i = 0

)
is hosen relatively high (e.g. 0.9) as it orresponds to the

ase where the target has not been deteted yet. Choosing a high threshold ensures that

the �lter has onverged on a true target with a good probability. On the ontrary, when

the �lter has already deteted a trak (i.e. dTadk−1 = 1), the probability threshold an be

taken lower (e.g. 0.2) in order to deal with the possible �utuations of the estimated

probability of presene.

2.7.2.2 Evaluation of the detetion performane

We propose �rst to evaluate the detetion performane by averaging the probability of

presene Pe,k at eah iteration over NMC runs. This allows to evaluate the behavior of

the di�erent �lters without using a partiular detetion sheme. Note that averaging the

detetion variable dTadk,i provides performane with very similar behavior as the probability

of presene. Thus, in order to avoid unneessary redundant results, we do not present

them here.

We also propose to measure the detetion performane by providing the perentage

of time tD in whih the target has been deteted during time step kb and kd − 1. A

�rst solution would be to ompute the average of the variable dTadk,i from kb to kd − 1.
However, as it was stressed at the beginning of the setion, suh a method does not take

into aount the possible divergene between the estimate state xk|k and the atual state

xk; if the variable d
Tad
k,i = 1 whereas the estimator x̂k|k is far away from the atual state,

it does not seem reasonable to ount it as a detetion. Thus, we de�ne, for the ith Monte

Carlo run, an indiator of good estimate (for k ∈ {kb, · · · , kd − 1}) by

ek,i =

{
1, x̂k|k ∈ Vxk

,
0, otherwise.

(2.96)

where the target is e�etively onsidered as a detetion (i.e. ek,i = 1) if the estimated

state is loated in the subset Vxk
de�ned in Eq. (2.26) with δhr = δhθ = 2 (i.e. the

estimated target state x̂k|k is loated in a viinity of two range azimuth ells from the

atual target state xk). Finally, tD is simply obtained by

tD =
1

NMC

NMC∑

i=1

1

kd − kb

kd−1∑

k=kb

dTadk,i ek,i. (2.97)

In the same manner, we de�ne the average time of bad-detetion tbD, i.e. when the �lter

delares a detetion but the estimate is not relevant, by

tbD =
1

NMC

NMC∑

i=1

1

kd − kb

kd−1∑

k=kb

dTadk,i (1− ek,i). (2.98)

Conerning the false alarm probability of the partile �lter P PF
fa , it is omputed by

making the average of variable dk for the senario where the target is assumed absent,

that is to say

P PF
fa =

1

NMC

NMC∑

i=1

1

Nit

Nit∑

k=1

dTadk,i . (2.99)
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2.7.2.3 Evaluation of the estimation performane

For the evaluation of estimation performane, the RMSE (Root Mean Square Error) in

position RMSEk,pos and in veloity RMSEk,vel are omputed between step kb and kd − 1
from the following formulas

RMSEk,pos =

√√√√ 1
∑NMC

i=1 dTadk,i ek,i

NMC∑

i=1

dTadk,i ek,i

[(
x̂k|k − xk

)2
+
(
ŷk|k − yk

)2

2

]
, (2.100)

RMSEk,vel =

√√√√√√
1

∑NMC

i=1 dTadk,i ek,i

NMC∑

i=1

dTadk,i ek,i




(
ˆ̇xk|k − ẋk

)2
+
(
ˆ̇yk|k − ẏk

)2

2


.(2.101)

Note that here the RMSE represents an error over a single omponent (e.g. xk or yk),
hene the presene of the fator 1/2 in Eq. (2.100) and (2.101) in order to make the

average over the two omponents. The hoie of this de�nition is arbitrary and, of ourse,

other de�nitions are possible. The most important is to be oherent with the de�nition, in

partiular when the RMSE is ompared to any theoretial bound (e.g. radar resolution,

Cramer-Rao bound, et.). However, in the sequel, the RMSE of the di�erent �lters

are ompared relatively with eah other, therefore the fator 1/2 does not impat the

onlusions that an be made from the simulation results.

2.7.3 In�uene of the instrumental density

We propose in this setion to measure the impat of the di�erent instrumental densities

proposed in setion 2.5 for the initialization of the partile state. The lassi Trak-Before-

Detet partile �lter desribed in setion 2.4 is onsidered with the following parameters:

Np = 1500, β = 1, Pb = Pd = 0.1, qS = 0.01, vmin = 100 m.s

-1

, vmax = 300 m.s

-1

,

SNRmin = 3 dB, SNRmax = 13 dB and δhr = δhθ = 2 (for the trunation of the ambiguity

funtion). Then, for eah omponent of the state vetor (i.e. position, veloity, ampli-

tude, presene), we ompare the performane in detetion and estimation for the di�erent

instrumental densities outlined in setion 2.5, for the initialization ase, while assuming

that the other parameters are initialized aording to the prior density. As already stated,

the prior pc (xk | xk−1) is hosen to sample the ontinuing ase.

Moreover, it is also important to ompare the performane of the di�erent instrumental

densities with respet to the omputational time required to reah suh performane.

To this purpose, the averaged Monte Carlo run duration is alulated over the NMC

simulations for all the instrumental densities, and normalized by the fastest one. Note

that this quantity should be subjet to autious interpretation sine it learly depends

on the senario onsidered. Indeed, the instrumental densities for the initialization are

prinipally used when the �lter has not onverged yet to a target and many partiles must

then be initialized. On the ontrary, when the �lter has onverged to a target, most of the

partiles are in traking stage and the initialization densities only onern a few partiles.

Therefore, the duration of the MC run will partly depend on the proportion of time when

the target is present. However, it still gives a good idea of the impat of the instrumental

density on the averaged MC run duration.
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2.7.3.1 In�uene of the Instrumental density for the position

The position (xk, yk) is probably the most important parameter to arefully initialize and

the performane is evaluated for the following instrumental densities derived from setion

2.5.1:

1. The prior ase where the partile position is simply drawn from the prior; it is

labelled as "Prior".

2. A seond ase, where the partile position is initialized uniformly over the ells

exeeding the threshold γ orresponding to a probability of false alarm of 0.1. Note
that it orresponds, as we stated in paragraph 2.5.1.3, to hoose PDk,γ

= 1 for

the instrumental density qU (.) de�ned in Eq. (2.41). This instrumental density is

labelled as "Threshold".

3. A third ase where the partile position is sampled aording to qU (.) with Pfa = 0.1
while PDk,γ

= 0.79 has been alulated from Eq. (2.46) with δr = 2, δθ = 3 and

Nρ = 5. This density is labelled as "Mix U".

4. And lastly, the optimal mixture importane density q (. | zk) spei�ed in Eq. (2.39)

with the following parameters: Pfa = 0.1, δr = 2, δθ = 3, Nρ = 5 and PDk,γ
= 0.79.

This density is labelled as "Mix Opt".

In Figure 2.7 the averaged probability of presene is shown for target SNR of 7 dB,

while detetion performane is presented in Table 2.2. Clearly, the density "Mix Opt"

outperforms the other instrumental densities in terms of detetion although it indues a

slight inrease of the probability of presene when the target is absent. Nevertheless, the

inrease in terms of probability of false alarm is not signi�ant, as demonstrated in Table

2.2.

Figure 2.7 � Averaged probability of presene Pe,k for di�erent instrumental densities in

position. SNR = 7dB, Np = 1500 and Pfa = 0.1.

The performane reahed in terms of RMSE in position and veloity is shown in Figure

2.8. Again, the instrumental density "Mix Opt" provides better performane than the

other instrumental densities during onvergene. When the �lter has onverged, all the
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Prior Threshold Mix U Mix Opt

P PF
fa 3.67× 10−3 2.69× 10−3 4.35× 10−3 4.23× 10−3

tD 70.6% 85.4% 84.2% 90%

tbD 0.41% 0.26% 0.36% 0.34%

relative MC run duration 1 1.06 1.09 2.61

Table 2.2 � Detetion performane and relative averaged MC run duration for di�erent

instrumental densities in position. SNR = 7dB, with Np = 1500 and Pfa = 0.1

instrumental densities provide similar results. This demonstrates the requirement to use

a relevant instrumental densities to ensure a faster onvergene of the �lter on the target.

Figure 2.8 � Performane in estimation for di�erent instrumental densities in position.Top:

RMSE in position. Bottom: RMSE in veloity. SNR = 7dB, Np = 1500 and Pfa = 0.1.

Lastly, the relative averaged MC run durations for the di�erent instrumental densities

are presented in the last row of Table 2.2. On the ontrary, the ost indued by the

"Threshold" and "Mix U" instrumental densities, is relatively small ompared to the gain

in performane. Note that this onlusion should be moderated, as will be shown in

setion 2.7.4.

2.7.3.2 In�uene of the Instrumental density for the amplitude parameter

In this paragraph, the in�uene of the instrumental density for the initialization of the

amplitude parameter is evaluated.The following instrumental densities are onsidered:

1. The prior ase where the partile amplitude is simply drawn from the prior. It

is labelled as "Prior". Moreover, we onsider two di�erent intervals [ρmin, ρmax], a
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�rst one where the parameter interval for parameter ρ orresponds to an interval

SNR = [3, 20] (in dB) and a seond one that orresponds to an interval SNR = [3, 13]
(in dB).

2. A seond ase where the amplitude is drawn aording to the density based on the

MAP estimator and provided by Eq. (2.56). It is labelled as "MAP Init". Again

we onsider two di�erent intervals [ρmin, ρmax] with the same values as previously.

3. Lastly, the approximation of the Optimal instrumental density de�ned by Eq. (2.53),

with Nρ = 10 and SNR = [3, 13]. It is labelled as "Disrete Init"

In Figure 2.9 the averaged probability of presene is shown for a target SNR of 7 dB.

Note �rst that the hoie of the prior values SNRmin and SNRmax dramatially impats

Figure 2.9 � Averaged probability of presene Pe,k for di�erent instrumental densities in

amplitude. SNR = 7dB, Np = 1500.

the performane of the "Prior" instrumental density, as well as the proposed instrumental

densities to a lesser extent. Globally, it seems that the gain in probability of presene when

the target is indeed present is obtained at the ost of an inrease of the same probability

when the target is absent. This in turns an be observed on the false alarm probabilities

provided in Table 2.3.

Conerning the performane in terms of RMSE in position and veloity, it turns out

to be very similar in all ases. Thus, we do not provide a �gure here.

Lastly, the relative averaged MC run durations for the di�erent instrumental densities

are presented in the last row of Table 2.3. The extra omputational time required for

"MAP Init" instrumental densities ompare to the "Prior" densities is relatively small

with respet to the gain indued in terms of detetion. However, this is not the ase for

the "Disrete Init" where this gain appears small ompared to the extra time required.

2.7.3.3 In�uene of the Instrumental density for the veloity variable

Two instrumental densities have been proposed in paragraph 2.5.3 in order to sample the

veloity:
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Prior Prior MAP

Init

MAP

Init

Disrete

Init

SNR [3, 20] [3, 13] [3, 20] [3, 13] [3, 13]

P PF
fa 1.45 ×

10−3

3.78 ×
10−3

1.61 ×
10−3

6.08 ×
10−3

4.04 ×
10−3

tD 64.1% 81.3% 82% 85.4% 84.3%

tbD 0.16% 0.28% 0.19% 0.43% 0.34%

relative MC run duration 1 1.08 1.12 1.16 1.30

Table 2.3 � Detetion performane and relative averaged MC run duration for di�erent

instrumental densities in amplitude. SNR = 7dB and Np = 1500.

1. The �rst density that uniformly samples the veloity omponents of a newborn

partile. It is labelled as "Prior".

2. And the seond density that samples the veloity omponent uniformly at the next

step after the birth event. It is labelled as "Next step".

Results are shown in Figures 2.10 and 2.11. The density "Next step" provides a small

Figure 2.10 � Averaged probability of presene Pe,k for di�erent instrumental densities in

veloity. SNR = 7dB, Np = 1500.

improvement ompared to the density "Prior" both in terms of averaged probability of

presene and in estimation.

2.7.3.4 In�uene of the Instrumental density for the presene variable

In this paragraph, the performane for three �lters that use di�erent strategies to sample

the variable sk are evaluated:

1. The �rst one, denoted by "Prior", that orresponds to the lassi TBD partile

�lter de�ned by Algorithm 2.1 where the variable sk is sampled aording to the

transition probability matrix de�ned in Eq. (2.5).
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Figure 2.11 � Performane in estimation for di�erent instrumental densities in veloity.

SNR = 7dB, Np = 1500.

2. The seond one, labelled as "sk a posteriori" is de�ned by Algorithm 2.2 where the

variable sk is drawn aording to the a posteriori transition probabilities de�ned in

Eq. (2.70) and (2.71).

3. The last one, denoted by "sk marginalized" is detailed in Algorithm 2.3 whih

onsiders only partiles with the state sk = 1. For this partiular TBD �lter, the

parameter Np,c is set to 1000 partiles.

In Figure 2.12 the averaged probability of presene is shown for a target SNR of 5 dB

� Note that here a smaller SNR has been taken in order to highlight the importane of the

hoie of the sampling strategy for the variable sk. Clearly, the �lters "sk a posteriori"

Figure 2.12 � Averaged probability of presene Pe,k for di�erent sampling strategies of the

variable sk. SNR = 5dB, Np = 1500.
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Figure 2.13 � Performane in estimation for di�erent sampling strategies of the variable

sk. SNR = 5dB, Np = 1500.

Prior sk a posteriori sk marginalized

P PF
fa 3.9× 10−3 3.53× 10−3 3.43× 10−3

tD 56.6% 73% 75.1%

tbD 1.22% 1.67% 1.62%

relative MC run duration 1 1.48 1.34

Table 2.4 � Detetion performane and relative averaged MC run duration for di�erent

sampling strategies of the variable sk. Np = 1500 for a target SNR of 5dB

and "sk marginalized" provide muh better performane than the lassi partile �lter

with a small advantage to the "sk marginalized" �lter over the "sk a posteriori" �lter.

Moreover, as stated in Table 2.4, the use of the two proposed densities slightly dereases

the probability of false alarm.

The performane in terms of RMSE in position and veloity is shown in Figure 2.13.

Whereas there is a gain by using the �lters "sk a posteriori" and "sk marginalized", the

latter is not as important as for the detetion.

Lastly, the relative averaged MC run durations for the di�erent sampling strategies of

the variable sk are presented in the last row of Table 2.4. Obviously, the strategies "sk a
posteriori" and "sk marginalized" are more ostly. However as it was said in paragraph

2.5.4 and in setion 2.6, the two methods alulated the same number of likelihood at

eah iteration (whih is the most demanding part of the algorithm) and therefore better

utilize the omputer resoures than the prior instrumental density.
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Figure 2.14 � Comparison of the Averaged probability of presene Pe,k between the prior

instrumental density and the optimal one for several number of partiles Np. SNR = 7dB.

2.7.4 Choie of the instrumental density

The aim of this paragraph is to demonstrate the bene�t of using a suitable instrumental

density to initialize the partiles ompared to a one using the prior with a higher number

of partiles. Performane are ompared for the two following �lters:

1. The �rst one uses the lassi TBD partile �lter de�ned by Algorithm 2.1 with

the �lter parameters de�ned at the beginning of setion 2.7.3; it initializes all the

state parameters with their prior densities. For this �lter, the following number

of partiles Np are onsidered: 1500, 2500, 5000, 7500. This �lter is denoted as

"Prior".

2. For the seond �lter, eah parameter of the state vetor is sampled using the in-

strumental density providing the best performane in detetion. Therefore, for the

presene parameter sk, the marginalized TBD partile �lter is hosen. For the

position, the "Mix Opt" instrumental is taken with the same parameters as in para-

graph 2.7.3.1. For the amplitude parameter, the instrumental density "MAP Init"

is hosen with SNR = [3, 13]. The veloity is initialized at the next step after

the birth of the partile. Finally the following number of partiles Np are onsid-

ered: Np = 1500 and Np,c = 1000, Np = 2500 and Np,c = 1500, Np = 5000 and

Np,c = 3000, Np = 7500 and Np,c = 5000.

Note that we hoose an interval of SNR = [3, 13] for the Amplitude parameter whereas

the performane is better with SNR = [3, 20] for the instrumental density "MAP Init".

We made this hoie in order to not penalize the prior density from whih the results

are not good with an interval of SNR = [3, 20] and thus make the simulation as fair

as possible. Results are provided in Figures 2.14 and 2.15, and in Table 2.5. For any

number of partiles, the Optimal instrumental density outperforms the prior instrumental

density both in terms of target detetion and estimation ; at the prie of a slight inrease

of the probability of false alarm. Moreover, it is interesting to notie that the Optimal

instrumental density is less sensitive to the number of partiles than the prior. Indeed,

the performane for the Optimal instrumental density for Np = 1500, Np = 5000 and
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Figure 2.15 � Comparison of the Performane in estimation between the prior instrumental

density and the optimal one for several number of partiles Np. SNR = 7dB.

Prior Prior Prior Prior Optimal Optimal Optimal

Np 1500 2500 5000 7500 1500 5000 7500

P PF
fa (×10−3) 3.95 3.42 3.05 3.42 6.99 6.55 6.85

tD 76.3% 82.5% 87.5% 89.1% 92.9% 93.2% 93.3%

tbD 0.34% 0.28% 0.21% 0.22% 0.25% 0.27% 0.25%

relative MC run dur. 1 1.45 2.55 4.7 2.98 4.77 6.77

Table 2.5 � Detetion performane and relative averaged MC run duration between the

prior instrumental density and the optimal one for several number of partiles Np. SNR =
7dB.

Np = 7500 are quite similar while it is sensibly di�erent for the Prior density. Furthermore,

the relative averaged MC run durations for the di�erent �lter are presented in Table 2.5.

It demonstrates that using the Optimal density with a small number of partile is more

e�ient both in terms of performane and in terms of omputational time than using the

prior instrumental density with a higher number of partiles.

2.7.5 In�uene of the target SNR

Lastly, as Trak-Before-Detet methods are expeted to trak low target SNR, it is impor-

tant to evaluate the performane aording to the target SNR. Thus, the Optimal TBD

partile �lter de�ned in the previous paragraph with Np = 7500 is applied for di�erent

target SNR: 10dB, 7dB, 5dB and 3dB � Note that here we hoose an important number

of partiles (i.e. Np = 7500) sine one of our objetive is to see if TBD partile �lter

are able to trak very low target SNR. Results are provided in Figures 2.16 and 2.17,

and in Table 2.6. Clearly, performane highly depends on the target SNR and it seems
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di�ult to jointly detet and trak a target with an SNR below 5dB. Note that, this

onlusion does not mean that the TBD partile �lter is not able to detet target with

very low SNR but rather that it annot trak it aurately. It should also be realled

here that the SNR values indiated do not take into aount losses due to the position of

the target in the ell: a target with indiated SNR of 5dB may in pratie provide here a

peak at the output of the range/azimuth mathed �lter less than 3dB ! In that respet,

the probability of presene remains impressively hight at low SNR.

Figure 2.16 � Comparison of the Averaged probability of presene Pe,k for the Optimal

TBD partile �lter with di�erent target SNR. Np = 7500.

Figure 2.17 � Comparison of the Performane in estimation for the Optimal TBD partile

�lter with di�erent target SNR. Np = 7500.
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target SNR 10 7 5 3

tD 98% 93.2% 81.9% 36.5%

tbD 0.02% 0.68% 3.22% 13.4%

Table 2.6 � Detetion performane for di�erent target SNR with the Optimal TBD partile

�lter.

2.8 Conlusion

In this hapter, the lassi solution for the monotarget Trak-Before-Detet problem has

been presented. This solution onsists in onsidering an hybrid hidden state (sk,xk),
where xk is the lassi target state while sk is a binary variable modelling the absene

or the presene of the target, in order to jointly detet and trak a single target. For

this state-spae model, the lassi TBD partile �lter approximation has been detailed

detailed in setion 2.4. Two di�erent ases are sampled by this partile �lter: one ase

onerns ontinuing partiles, already alive at previous time step that are propagated a-

ording to the target dynamial model; while the other ase orresponds to the newborn

partiles that must be initialized in the target spae. We have shown in this hapter that

the instrumental density for this latter ase must be arefully hosen. Thus, in setion

2.5, for eah parameter of the state vetor, several instrumental densities, whih take into

aount the information of the measurement zk in order to initialize the di�erent param-

eters, have been proposed. In partiular, for the position and amplitude, the optimal

instrumental densities have been derived and several approximations provided. Conern-

ing the presene parameter sk, we have shown that it an be sampled aording to the

posterior probabilities rather than the prior ones. Another solution that uses partiles in

a more e�ient way by only onsidering partiles with the state sk = 1 has been desribed

in setion 2.6.

Finally, in setion 2.7, Monte Carlo simulations have been used to provide performane

in detetion and estimation for the di�erent instrumental densities and the di�erent par-

tile �lters presented in this hapter. These simulations have allowed to illustrate the

importane of using relevant instrumental densities, in partiular for the position param-

eters where it dramatially inreases the performane, both in detetion and in estimation.

Moreover, simulation results also highlighted the importane of arefully dealing with the

presene parameter sk sine the Marginalized TBD partile �lter and the one using the

posterior probabilities to sample sk outperform the lassi TBD partile �lter.
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Chapter 3

A novel approah for monotarget

Trak-Before-Detet

3.1 Introdution

In the previous hapter, the lassi monotarget TBD partile �lters were detailed. These

lassi methods manage both the detetion of the target appearane in the radar window

and of its disappearane by the addition of a variable sk to the target state vetor xk.

This model raised some questions that merit to be disussed:

� Is it appropriate to try to detet the appearane and disappearane of the target in

a single algorithm ?

� In partiular for very low target SNR, does the initialization of newborn partiles

(at eah iteration) in the whole state-spae disturb the estimation of the target state

when the partile �lter has onverged to the atual target state ?

� Lastly, and in the same manner, is it relevant to still initialize newborn partiles,

that is the most ostly part of the TBD partile �lter, while the partile �lter has

already onverged to the atual target state ?

Therefore, the aim of this hapter is to try to provide some answers to these questions. To

this purpose, we develop an alternative approah to the monotarget TBD problem that

allows to manage separately the target appearane and disappearane. More preisely,

we propose to model the TBD problem using the quikest hange detetion framework

and then solve it using some partile �lter solutions. The aim of quikest detetion

methods is to detet, as quikly as possible, some (possible) hanges in the distribution

of a random proess while ensuring the smallest probability of error. The TBD problem

an be seen as a quikest hange detetion problem. Indeed, when no target is present in

the radar window, the measurement zk provided by the radar only ontains noise, while

after the possible target appearane the measurement onsists of the target ontribution

plus noise. Kligys et al. in [KRT98℄ proposed a solution to the TBD problem in this

ontext. However, their solution is not developed in the partile �lter framework that is

studied in this thesis. Thus, we propose, in this hapter, a new partile �lter solution in

this partiular framework.

85



86 Chapter 3

This hapter is organized as follows: in setion 3.2 and 3.3, we de�ne a state-model

for the target appearane and another one for the target disappearane in the Bayesian

hange detetion framework. Moreover, for eah state-model, we propose several partile

�lters in order to approximate the orresponding Bayesian �lter. Then, in setion 3.4, we

propose to ombine the proposed solutions in order to detet both the target appearane

and disappearane. Finally, in setion 3.5, we evaluate the performane of the partile

�lters presented in this hapter ompared to the lassi TBD partile �lters detailed in

the previous hapter.

3.2 A Bayesian solution for time appearane detetion

in TBD

3.2.1 State model

The monotarget TBD problem an be seen as a quikest hange detetion problem

[KRT98℄. Indeed, let us assume that the target appears at an unknown time step τb,
then until τb the measurement zk only onsists of noise while after τb the measurement zk
is onstituted of the target ontribution plus noise. The aim of the TBD appliation is

therefore to detet this hange.

In the lassi Bayesian quikest hange detetion framework [TV05℄, the problem is

solved by hoosing a prior distribution on the time τb. In our TBD appliation, the prior

model must be de�ned for the random proess (τb,xk)k∈N and not only for the variable

τb. This leads to speify the density p (τb,x0:k) for any k. This density an be rewritten

without loss of generality as

p (τb,x0:k) = p (τb) p (x0:k | τb) . (3.1)

From this deomposition, this onsists in de�ning a prior distribution for the time of

arrival τb and for the evolution of the state xk knowing the variable τb.

3.2.1.1 Time appearane model

The time appearane τb is modeled as a geometri random variable, i.e.

p (τb = i) =

{
0, i = 0,
Pb(1− Pb)i−1, i ≥ 1,

(3.2)

where 0 < Pb < 1 denotes the probability of birth. The geometri prior is often en-

ountered in the literature [TV05℄ beause it has interesting properties. In partiular, by

de�ning

bk =

{
1, if τb ≤ k,
0, otherwise,

(3.3)

it an be shown that (bk)k∈N is a Markov hain with the following transition probability

matrix

Πbk =

[
1− Pb Pb

0 1

]
, (3.4)
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and also that p (bk = 1 | bk−1 = 0) = Pb, i.e. knowing that the target has not yet appeared
at step k − 1, its probability to show up at step k does not depend on the time instant

and is equal to Pb. The proof of these two statements is provided in Appendix A.

3.2.1.2 Target state model

Let us now speify the density p (x0:k | τb). Assuming k is greater than τb, we an write

p (x0:k | τb) = p (x0:τb−1 | τb) p (xτb:k | τb,x0:τb−1) . (3.5)

The interest of suh a rewriting is to de�ne the evolution of the proess (xk)k∈N before

and after τb. Indeed, as in Chapter 2 where the state xk is meaningless (or has no physial

meaning) when sk = 0, here the state xk has no signi�ation before τb and is not related

to the measurement equation (3.9). Thus, any prior model an be hosen in this ase.

On the ontrary, after τb the state xk represents the state of an atual target and

therefore a prior model must be spei�ed in order to model the state evolution. Sine it

seems reasonable to assume that the evolution of the proess after τb does not depend on

the evolution of the proess before τb, the density p (x0:k | τb) beomes

p (x0:k | τb) = p (x0:τb−1 | τb) p (xτb:k | τb) . (3.6)

Thus, with this independene hypothesis, de�ning the prior model after τb just onsists
in speifying the density p (xτb:k | τb). In hapter 1, it has been stressed that the Bayesian

�lter an be derived for the Hidden Markov Model where the hidden proess is assumed

Markovian. Therefore, in order to adapt the Bayesian �lter for our partiular model, it is

onvenient to assume that onditionally to τb the evolution of proess (xk)k∈N, for k ≥ τb
is Markovian

1

, i.e.

p (xτb:k | τb) = p (xτb | τb)
k∏

i=τb+1

p (xi | τb,xi−1) . (3.7)

Then, from Eq. (3.7), the proess (xk)k∈N onditionally to τb and for k ≥ τb is entirely
de�ned by the density at step τb, i.e. p (xτb | τb), whih orresponds to the initialization

of the proess, and by the transition probabilities p (xi | τb,xi−1).

By analogy with hapter 2, the density p (xτb | τb) orresponds to the birth density

pb (xk) while the transition probabilities p (xi | τb,xi−1) orrespond to the ontinuing den-

sity pc (xi | xi−1). We an thus in a similar manner de�ne

p (xi | τb,xi−1) = N (xi;Fxi−1,Q) , (3.8)

where F and Q are the matries de�ned in setion 2.2.

1

Note that it does not mean that the entire proess (xk)k∈N
is Markovian, even for k ≥ τb. In fat,

the onsidered proess is only Markovian onditionally to the variable τb (for k ≥ τb) but is generally not

Markovian without this onditioning by τb.
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3.2.2 Measurement model

The measurement model is the same as in setion 2.3 with only some slight modi�ation

in order to take into aount the spei�ity of the proposed state model. Following 2.3,

the measurement equation beomes

zk =

{
ρejϕkh (xk) + nk, if k ≥ τb,

nk, otherwise,
(3.9)

where h (.) is the ambiguity funtion, nk is a zero-mean irular omplex Gaussian vetor

with a known ovariane matrix Γ, ϕk is the random phase uniformly drawn over the

interval [0, 2π) and ρ is the onstant modulus. Although Eq. (3.9) depends on the un-

known parameters ρ and ϕk, the same methodology as in paragraphs 2.4.2.2 and 2.4.2.1

an be used in order to remove these parameters, thus allowing to alulate the measure-

ment likelihood p (zk | τb,xk) (see Eq. (2.23)) whih is required in the Bayesian �lter. In

the same manner, the density p (zk | bk = 0,xk) does not depend on the state xk and is

obtained by Eq. (2.21).

Lastly, note that an additional hypothesis is required in order to derive the Bayesian

�lter for the proposed state spae model. This last hypothesis onsists in assuming that

p (τb = k | bk−1 = 0, z1:k−1) = p (τb = k | bk−1 = 0) . (3.10)

In other words, it means that the probability that the target appears at step k knowing

that it does not appear before is independent of the measurement z1:k−1. In fat, this

hypothesis is equivalent to the hypothesis that z1:k−1 onditionally to bk−1 = 0 is inde-

pendent to the event {τb = k}. Indeed, by de�nition of the onditional probability, the

Eq. (3.10) is equal to

p (τb = k | bk−1 = 0, z1:k−1) =
p (τb = k, bk−1 = 0, z1:k−1)

p (bk−1 = 0, z1:k−1)

=
p (τb = k, z1:k−1 | bk−1 = 0)

p (z1:k−1 | bk−1 = 0)
.

(3.11)

Therefore, by assuming that z1:k−1 onditionally to bk−1 = 0 is independent to the event

{τb = k}, the numerator in Eq. (3.11) fatorizes as follows:

p (τb = k, z1:k−1 | bk−1 = 0) = p (τb = k | bk−1 = 0) p (z1:k−1 | bk−1 = 0) , (3.12)

thus leading to Eq. (3.10). This equivalent hypothesis seems reasonable to make sine

knowing that the target has not appeared until k − 1 (i.e. bk−1 = 0) there is no reason

that the measurements z1:k−1 should provide information about the target appearane at

step k.

3.2.3 Theoretial Bayesian solution

Our objetive is now to derive the theoretial Bayesian reursion for the proposed model,

i.e. to alulate the density p (xk, bk | z1:k) from the density p (xk−1, bk−1 | z1:k−1).
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3.2.3.1 Calulation of the posterior state density

Following the same reasoning as in setion 2.6, this density an be rewritten as follows:

p (xk, bk | z1:k) = p (bk | z1:k) p (xk | bk, z1:k) . (3.13)

Sine the state xk is meaningless when bk = 0, the only probabilities to alulate are the

probabilities p (bk = 1 | z1:k) and p (bk = 0 | z1:k) whih are simply obtained by de�nition

of bk by

p (bk = 1 | z1:k) =
k∑

i=1

p (τb = i | z1:k) , (3.14)

p (bk = 0 | z1:k) = 1− p (bk = 1 | z1:k) , (3.15)

and the density p (xk | bk = 1, z1:k). The latter an be written as

p (xk | bk = 1, z1:k) =
p (xk, bk = 1 | z1:k)
p (bk = 1 | z1:k)

. (3.16)

Using the deomposition of event {bk = 1} in Eq. (A.5) the numerator an be expanded

as

p (xk, bk = 1 | z1:k) =
k∑

i=1

p (xk, τb = i | z1:k) =
k∑

i=1

p (τb = i | z1:k) p (xk | τb = i, z1:k) .

(3.17)

Finally, dividing this expression by the probability p (bk = 1 | z1:k) and using its deom-

position in Eq. (3.14), it omes

p (xk | bk = 1, z1:k) =

k∑

i=1

p (τb = i | z1:k)
p (bk = 1 | z1:k)

p (xk | τb = i, z1:k) =

k∑

i=1

αk,ip (xk | τb = i, z1:k) ,

(3.18)

where

αk,i =
p (τb = i | z1:k)
p (bk = 1 | z1:k)

=
p (τb = i | z1:k)∑k
l=1 p (τb = l | z1:k)

. (3.19)

Clearly

∑k
i=1 αk,i = 1. Note also that eah αk,i orresponds to the probability that

the target appears at step i knowing that the target is e�etively present. Therefore,

the posterior density p (xk | bk = 1, z1:k) is a mixture density with k omponents entirely

de�ned by the densities p (xk | τb = i, z1:k) and the weighting terms αk,i.
In a Bayesian perspetive, our aim is to alulate reursively eah density p (xk | τb = i, z1:k)

and the weighting terms αk,i for all i ∈ {1, . . . , k}. However, in the sequel, for the sake of

simpliity we will onsider the probabilities p (τb = i | z1:k) rather than the quantities αk,i
whih are simply obtained through a normalization.

Thus, let us assume that at step k− 1, for all i ∈ {1, . . . , k− 1}, p (τb = i | z1:k−1) and
p (xk−1 | τb = i, z1:k−1) are available. The aim is now to alulate, for all i ∈ {1, . . . , k},
p (τb = i | z1:k) and p (xk | τb = i, z1:k). The next paragraph is dediated to the alula-

tion of the density omponents p (xk | τb = i, z1:k) while the paragraph 3.2.3.3 details the

alulation of the probabilities p (τb = i | z1:k).
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3.2.3.2 Calulation of the mixture omponents

Using Bayes rule and the properties of the state-spae model, eah mixture omponent

p (xk | τb = i, z1:k) an be rewritten as follows:

p (xk | τb = i, z1:k) =
p (xk | τb = i, z1:k−1) p (zk | τb = i,xk)

p (zk | τb = i, z1:k−1)
, (3.20)

where

p (zk | τb = i, z1:k−1) =

∫
p (zk | τb = i,xk) p (xk | τb = i, z1:k−1) dxk. (3.21)

The density p (xk | τb = i, z1:k−1) an be obtained for i ∈ {1, . . . , k− 1} by the Chapman-

Kolmogorov equation:

p (xk | τb = i, z1:k−1) =

∫
p (xk−1 | τb = i, z1:k−1) p (xk | τb = i,xk−1) dxk−1, (3.22)

where the transition density p (xk | τb = i,xk−1) orresponds, as already mentioned, to the

ontinuing density pc (xk | xk−1) in hapter 2. Thus, eah omponent for i ∈ {1, . . . , k−1}
is provided by the lassi theoretial Bayesian �lter detailed in paragraph 1.2.2 and an

by summarized as follows:

p (xk−1 | τb = i, z1:k−1)
prediction−−−−−→
Eq.(3.22)

p (xk | τb = i, z1:k−1)
update−−−−−→
Eq.(3.20)

p (xk | τb = i, z1:k) . (3.23)

However, it remains to alulate the density p (xk | τb = k, z1:k) whih orresponds to

the target appearane at urrent step k. Sine in this ase, the state xk does not depend

on the previous measurement z1:k−1, the equation (3.20) simpli�es to

p (xk | τb = k, z1:k) =
p (xk | τb = k) p (zk | τb = k,xk)

p (zk | τb = k, z1:k−1)
, (3.24)

with

p (zk | τb = k, z1:k−1) =

∫
p (xk | τb = k) p (zk | τb = k,xk) dxk, (3.25)

where p (xk | τb = k) is the prior density for the target appearane and orresponds, as

already mentioned, to the birth density pb (xk) in hapter 2.

3.2.3.3 Calulation of the probabilities of appearane

Using Bayes rule, eah probability p (τb = i | z1:k) for i ∈ {1, · · · , k} an be rewritten from

the probability p (τb = i | z1:k−1) for i ∈ {1, · · · , k} as follows:

p (τb = i | z1:k) =
p (τb = i | z1:k−1) p (zk | τb = i, z1:k−1)

p (zk | z1:k−1)
, (3.26)

where eah quantity p (zk | τb = i, z1:k−1) an be obtained from Eq. (3.21) or from Eq.

(3.25) when i = k. However, only the probabilities p (τb = i | z1:k−1) for k ∈ {1, · · · , k − 1}
an be obtained from the mixture density posterior density at step k−1 (see Eq. (3.17 ) by
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replaing k by k−1 ). Therefore, to be able to alulate all the probabilities p (τb = i | z1:k)
at step k, it remains to evaluate the probability p (τb = k | z1:k−1) and the normalization

term p (zk | z1:k−1).
Let us start with the probability p (τb = k | z1:k−1). By de�nition of variable bk, the

event {τb = k} is inluded in the more general event {bk−1 = 0}, therefore the probability
p (τb = k | z1:k−1) an be rewritten as follows:

p (τb = k | z1:k−1) = p (τb = k, bk = 0 | z1:k−1) , (3.27)

= p (bk−1 = 0 | z1:k−1) p (τb = k | bk−1 = 0, z1:k−1) , (3.28)

where the probability p (τb = k | bk−1 = 0, z1:k−1) does not depend on the previous mea-

surements z1:k−1 by hypothesis (see Eq. (3.10)) and is equal, from Eq. (A.8), to Pb.
Finally the probability p (τb = k | z1:k−1) an be evaluated from the quantities at previous

iteration using the following relationship:

p (τb = k | z1:k−1) = p (bk−1 = 0 | z1:k−1)Pb. (3.29)

Reall that the probability p (bk−1 = 0 | z1:k−1) an be simply obtained from p (bk−1 = 1 | z1:k−1)
as follows: p (bk−1 = 0 | z1:k−1) = 1− p (bk−1 = 1 | z1:k−1) (see Eq. 3.15).

Conerning the normalization term p (zk | zk−1), the same idea as previously is used,

i.e. we marginalize over bk, whih leads to

p (zk | z1:k−1) = p (zk, bk = 1 | z1:k−1) + p (zk, bk = 0 | z1:k−1) . (3.30)

By using the deomposition of the event {bk = 1} as in Eq. (3.17), the expression an be

rewritten as follows:

p (zk | z1:k−1) =

k∑

i=1

p (τb = i | z1:k−1) p (zk | τb = i, z1:k−1) +

p (bk = 0 | z1:k−1) p (zk | bk = 0, z1:k−1) .
(3.31)

The probability p (bk = 0 | z1:k−1) is simply obtained as in Eq. (3.15) by

p (bk = 0 | z1:k−1) = 1− p (bk = 1 | z1:k−1) = 1−
k∑

i=1

p (τb = i | z1:k−1). (3.32)

In the other hand, the quantity p (zk | bk = 0, z1:k−1) does not depend on z1:k−1 by

de�nition of the measurement model and is simply equal to p (zk | bk = 0) (see paragraph
3.2.2).

Finally, eah probability p (τb = i | z1:k) an be evaluated with Eq. (3.26) where

p (zk | τb = i, z1:k−1) and p (zk | z1:k−1) are provided respetively by Eq. (3.21) and Eq.

(3.31) while the probability p (τb = k | z1:k−1) is obtained with Eq. (3.29).

3.2.4 Partile �lter approximation

In general, whereas the parameters of the posterior mixture density p (xk | bk = 1, z1:k)
(i.e. the mixture omponents p (xk | τb = i, z1:k)) an be alulated reursively, in pra-

tie the orresponding equations are intratable and we must therefore resort to some
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approximations. In the previous setion, we demonstrated that the posterior density an

be written as mixture. Therefore, we propose to use this partiular struture to propose a

partile approximation of the density p (xk | bk = 1, z1:k). In pratie, it means that eah

mixture omponent will be approximated by a partile �lter.

3.2.4.1 Approximation of the mixture omponents

From Eq. (3.20), eah omponent p (xk | τb = i, z1:k) for all i ∈ {1, · · · , k − 1} follows

the lassi Bayes �lter reursion. Therefore, eah of them an be approximated with a

partile �lter.

To do so, let, for all i ∈ {1, · · · , k − 1},

p̂ (xk−1 | τb = i, z1:k−1) =

Np,i∑

n=1

wnk−1,iδxn
k−1,i

(xk−1), (3.33)

be a partile approximation of the mixture omponent p (xk−1 | τb = i, z1:k−1) at step

k−1, where Np,i is the number of partiles used for the ith mixture omponent. Then the

unnormalized weights of the partile approximation at step k are obtained, aording to

Eq. (1.94), by

w̃nk,i = wnk−1,i

pc(x
n
k,i | xnk−1,i)p(zk | τb = i,xnk,i)

q(xnk,i | τb = i,xnk−1,i, zk)
, (3.34)

where q(xk,i | τb = i,xnk−1,i, zk) is the instrumental distribution used to propagate par-

tile states xnk,i (as in hapter 2, the prior is often hosen in that ase). Obviously, the

normalized weights wk,i are simply obtained through a normalization.

At this point, k − 1 omponents have been updated. However reall that the mixture

is omposed of k omponents where the last one orresponds to the target appearane at

urrent step (i.e. τb = k). Using Eq. (3.24), the density omponent p (xk | τb = k, z1:k)
an be approximated by

p̂ (xk | τb = k, z1:k) =

Np,k∑

n=1

wnk,kδxn
k,k
(xk), (3.35)

where the unnormalized weights are equal to

w̃nk,k =
pb(x

n
k,k)p(zk | τb = k,xnk,k)

q(xnk,k | τb = k, zk)
, (3.36)

with q (xk | τb = k, zk) an instrumental density used to initialize the partile state xnk,k.

As in hapter 2, the hoie of the instrumental density for the initialization is ruial

for the performane. Fortunately, all the developments made in Chapter 2 onerning

the instrumental density for position, veloity and amplitude parameters an be used

again here. Finally, the normalized weights wk,k are, again, simply obtained through a

normalization.



A Bayesian solution for time appearane detetion in TBD 93

3.2.4.2 Calulation of the probabilities of appearane

From Eq. (3.26), the omputation of the probabilities of appearane p (τb = i | z1:k) re-
quire to evaluate the normalization terms p (zk | τb = i, z1:k−1) and p (zk | z1:k−1), and the

probabilities p (τb = i | z1:k−1) for i ∈ {1, · · · , k}.
Conerning the probabilities of appearane p (τb = i | z1:k−1) for i ≤ k−1, if an approx-

imation of the posterior p (xk−1 | bk−1 = 1, z1:k−1) de�ned in Eq. (3.18) is assumed avail-

able, then these probabilities have already been approximated at previous step; let us de-

note by p̂ (τb = i | z1:k−1) their approximation. Then, the probability p (bk−1 = 1 | z1:k−1)
an be simply approximated using Eq. (3.14) and is denoted by p̂ (bk−1 = 1 | z1:k−1). How-
ever, it still remains to approximate the probability p (τb = k | z1:k−1). From Eq. (3.29),

it an be simply done as follows:

p̂ (τb = k | z1:k−1) = (1− p̂ (bk−1 = 1 | z1:k−1))Pb. (3.37)

Conerning the normalization terms p (zk | τb = i, z1:k−1), two ases must be onsid-

ered, one for the index i ∈ {1, · · · , k − 1} and a seond one for the ase τb = k. For eah
index i ∈ {1, · · · , k − 1}, from Eq. (3.21),

p (zk | τb = i, z1:k−1) =

∫
p (zk | τb = i,xk) p (xk | τb = i, z1:k−1) dxk,

= Ep(xk|τb=i,z1:k−1) [p (zk | τb = i,xk)] ,

i.e. it orresponds to the expetation of p (zk | τb = i,xk) with respet to the density

p (xk|τb = i, z1:k−1). Therefore, as this integral has the form of Eq. (1.74), it an be ob-

tained via a partile approximation of the predited density p (xk | τb = i, z1:k−1). This

approximation is not diretly available but it is however possible to derive an approxima-

tion of the latter using the partile approximation at previous step p (xk−1 | τb = i, z1:k−1)
and the Chapman-Kolmogorov equation (3.22). A possible approximation was proposed

(in a ompletely di�erent ontext) by Vermaak et al. in [VGP05℄ as

p (xk | τb = i, z1:k−1) ≈
Np,i∑

n=1

ank,iδxn
k,i
(xk), (3.38)

where the unnormalized preditive weights ãnk,i are equal to

ãnk,i = wnk−1,i

p
(
xnk,i | τb = i,xnk−1,i

)

q
(
xnk,i | τb = i,xnk−1,i, zk

) , (3.39)

and the preditive weights ank,i are simply obtained through a normalization by the term

Ck,i =

Np,i∑

n=1

ãnk,i. (3.40)

Then the approximation p̂ (zk | τb = i, z1:k−1) of the density p (zk | τb = i, z1:k−1) is om-

puted by substituting in Eq. (3.21) the density p (xk | τb = i, z1:k−1) with its partile

approximation de�ned in Eq. (3.38), leading to

p̂ (zk | τb = i, z1:k−1) =

Np,i∑

n=1

ank,ip
(
zk | τb = i,xnk,i

)
. (3.41)
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Furthermore, by notiing that the unnormalized weights w̃nk,i are related to the preditive

weights ank,i through the following equation:

w̃nk,i = Ck,ia
n
k,ip
(
zk | τb = i,xnk,i

)
, (3.42)

the approximation an be rewritten as

p̂ (zk | τb = i, z1:k−1) =
1

Ck,i

Np,i∑

n=1

w̃nk,i. (3.43)

Note, however, that when the instrumental density is hosen to be the prior (i.e p(xk |
τb = i,xnk−1)), then Ck,i = 1 and the Eq. (3.43) is simply the sum of the unnormalized

weights.

Now, it remains to evaluate the normalization term p (zk | τb = k, z1:k−1) for the ase
τb = k. From Eq. (3.25), it is also an expetation with respet to the density p(xk |
τb = k). However, ontrary to the previous ase where a partile approximation of the

predited density is required, here the lassi importane sampling an be diretly applied

sine the density p (xk | τb = k) is known in losed-form (i.e. it is the birth density de�ned

in paragraph 3.2.1.2 ). Thus, the integral (3.25) an be approximated as follows:

p̂ (zk | τb = k, z1:k−1) =
1

Np,k

Np,k∑

n=1

p
(
xnk,k | τb = k

)
p
(
zk | τb = k,xnk,k

)

q
(
xnk,k | τb = k, zk

)

=
1

Np,k

Np,k∑

n=1

w̃nk,k,

(3.44)

where q (xk | τb = k, zk) is an instrumental density and Np,k is the number of partiles.

The whole normalization term p̂ (zk | z1:k−1) an be simply approximated, using its

expression provided by Eq. (3.31). Then, eah probability p (τb = i | z1:k) for all i ∈
{1, ..., k} is �nally provided by

p̂ (τb = i | z1:k) =
p̂ (τb = i | z1:k−1) p̂ (zk | τb = i, z1:k−1)

p̂ (zk | z1:k−1)
. (3.45)

3.2.4.3 Dealing with the inreasing number of partiles and resampling strate-

gies

As previously stated, the proposed partile �lter is omposed of several partile louds

orresponding to eah element of the mixture distribution. By de�nition of the density

p (xk | bk = 0, z1:k) in Eq. (3.18) the number of mixture omponents at time step k is k and
it thus inreases with time. Therefore, if at eah iteration a new omponent is initialized

with Np,i partiles, the total number of partiles will be inremented by Np,i and after

some iterations the omputational ost of the algorithm will beome prohibitive. Thus,

it is preferable to limit the number of partiles. In the sequel, we propose two solutions:

� In the �rst solution, the number of partiles remains the same and onstant over

time for all the mixture omponents. Moreover, the mixture omponents are always

resampled separately.
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� This �rst solution may su�er from a degeneray phenomenon, i.e. after some itera-

tions some of the omponent weights αk,i may be pretty small, so that some ompo-

nents are approximated with a partile �lter while they do not really partiipate in

the approximation of the whole density p (xk | bk = 1, z1:k). Therefore, we propose

a seond solution that allows to resample over the whole density p (xk | bk = 1, z1:k)
rather than over the mixture omponents when a severe degeneray is found over

the weight mixture omponents.

Constant number of partiles per mixture omponent

The easiest way to deal with the inreasing number of partiles onsists in limiting

the number of mixture omponents to an integer Nmix,max and disarding the one with

the lowest probability p̂ (τb = i | z1:k) if the number of omponents is equal to Nmix,max.

Indeed, if all the mixture omponents have the same number of partilesNp,mix, disarding

the omponent with the lowest probability allows to release Np,mix partiles that an be

used to initialize the new omponent at next step. The maximum number of partiles

Np,max is then equal to Np,max = Np,mix ×Nmix,max. Before going further in the details of

the algorithm, let us �rst explain its general priniple. To this purpose, let us assume that

at step k − 1, Nk−1,mix = Nmix,max − 1 mixture omponents p (xk−1 | τb = i, z1:k−1) have
been kept where their orresponding probability is p (τb = i, z1:k−1). The general priniple
of the proposed strategy is then the following:

� First, the partiles of eah remaining omponent p (xk−1 | τb = i, z1:k−1) are propa-
gated aording to the instrumental density qc (xk | xk−1) (often hosen to be the

prior).

� Then, a new omponent is reated with Np,mix partiles in order to approximate

the density p (xk | τb = k, z1:k). For this partile approximation, the partiles are

sampled aording to an instrumental density qb (xk | zk). Therefore, the number of

omponents is inremented by one, i.e. Nk,mix = Nk−1,mix if the number of mixture

omponents is equal to Nmix,max.

� The weights for eah of the Nk,mix mixture omponents are alulated via Eq. (3.34)

for the omponents present at previous step or via Eq. (3.36) for the new omponent,

thus also allowing to update the probability p̂ (τb = i | z1:k−1) at step k and the

probability p (bk = 1 | z1:k).

� If the number of omponents Nk,mix is equal to Nmix,max, the mixture omponent

with the lowest probability p̂ (τb = i | z1:k) is disarded, thus allowing to use its

Np,mix partiles to initialize a new omponent at the next iteration. Therefore, the

number of omponents Nk,mix is now equal to Nk,mix − 1. Clearly, the only ases

where the number of omponents will not be equal to Nmix,max are the �rst iterations

k ∈ {1, · · · , Nmix,max − 1}.

� Finally eah remaining omponent is resampled if needed. Note that ontrary to

the marginalized monotarget partile �lter in setion 2.6 where a resampling pro-

edure must be performed at eah step, here the resampling is optional and an be

performed aording to the Neff of eah omponent.
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Figure 3.1 � General sheme of the partile �lter for time appearane detetion with a �x

and onstant number of partiles per mixture omponent.

A general sheme of the proposed algorithm is presented in Figure 3.1, where the indexes

i1, · · · , iN are the set of indexes orresponding to the time index of the Nk,mix remaining

mixture omponents.

We will now detail the omputations required for the di�erent omponents of this

partile �lter. Let Ik =
{
i1, · · · , iNk,mix

}
be the set of indexes orresponding to the

Nk,mix remaining mixture omponents {τb = il} (l ∈ {1, · · · , Nk,mix}). The partile

approximation of p (xk | bk = 1, z1:k) an be rewritten as follows:

p̂ (xk | bk = 1, z1:k) =
∑

i∈Ik

α̂k,ip̂ (xk | τb = i, z1:k) , (3.46)

where

α̂k,i =
p̂ (τb = i | z1:k)∑
l∈Ik

p̂ (τb = l | z1:k)
. (3.47)
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Then, if Nk,mix = Nmix,max, the omponent with the smallest probability, orresponding

to index

imin = argmin
i

p̂ (τb = i | z1:k) (3.48)

is removed from the set Ik, i.e. the set Ik is now equal to

Ik = Ik \ {imin} . (3.49)

The posterior density then beomes

p̂ (xk | bk = 1, z1:k) =
∑

i∈Ik

α̂′
k,ip̂ (xk | τb = i, z1:k) , (3.50)

with

α̂′
k,i =

p̂ (τb = i | z1:k)∑
l∈Ik,min

p (τb = l | z1:k)
, (3.51)

alulated with the updated set Ik (i.e. without the time index imin). The proposed

Appearane Time TBD Partile Filter is �nally summarized by Algorithm 3.1.

Conerning the estimation, for eah mixture omponent p̂ (xk | τb = i, z1:k) the state xk
and the posterior ovariane matrix an be estimated using the lassi estimator de�ned

in Eq. (1.96) and Eq. (1.97). They are respetively denoted by x̂k|k,i and P̂k|k,i. Finally,

the estimators over all the mixture omponents are simply obtained by:

x̂k|k =
∑

i∈Ik

α̂k,ix̂k|k,i, (3.52)

P̂k|k =
∑

i∈Ik

α̂k,iP̂k|k,i. (3.53)

The probability of appearane p (bk = 1 | z1:k) an be approximated by:

p̂ (bk = 1 | z1:k) =
∑

i∈Ik

p̂ (τb = i | z1:k) . (3.54)

Resampling over the whole density p (xk | bk = 1, z1:k)
The previous strategy allows to limit the number of partiles but does not take into

aount the omponent weights α̂k,i in the resampling proedure. As a onsequene, even

if the omponent with the smallest probability has been removed, some omponent weights

α̂k,i may still be pretty small and partiipate for a very little part in the estimation of

the state xk in Eq. (3.52). In fat, this an be seen as a degeneray phenomenon (see

paragraph 1.2.4.4) where after some iterations, one of the mixture weights may be very

lose to one while the others are almost zero. Therefore, some omputational resoures are

devoted to the alulation of the mixture omponents that do not atually partiipate to

the state estimation. To avoid this drawbak, we propose in the sequel to take into aount

the weight omponents in order to resample only the relevant mixture omponents.

The pratial implementation explanation of this solution has been appended to Ap-

pendix B; in the sequel, we will only provide a general sheme of this solution and its

motivations.
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Algorithm 3.1 Appearane Time TBD Partile Filter

Require: mixture omponents {wik−1,x
n
k−1,i}

Np,mix

n=1 and probabilities p (τb = i | z1:k−1)
with i ∈ Ik−1 at step k − 1.

1: for i ∈ Ik−1 do

2: for n = 1 to Np,mix do

3: Draw xnk,i ∼ q
(
xk | τb = i,xnk,i, zk

)
.

4: Compute unnormalized weight w̃nk,i aording to (3.34).

5: end for

6: Compute Ck,i aording to (3.40).

7: Compute p̂ (zk | τb = i, z1:k−1) aording to (3.43)

8: Normalisation: wnk,i ←
w̃n

k,i
∑Np,mix

l=1 w̃l
k,i

, n = 1 . . . Np,mix.

9: end for

10: for new mixture omponent at step k do
11: Ik = Ik−1

⋃ {k}
12: Nk,mix = Nk−1,mix + 1
13: for n = 1 to Np,mix do

14: Draw xnk,k ∼ q (xk | τb = k, zk).
15: Compute unnormalized weight w̃nk,k aording to (3.36).

16: end for

17: Compute p̂ (zk | τb = k, z1:k−1) aording to (3.44)

18: Compute p̂ (τb = k | z1:k−1) aording to (3.37).

19: Normalization: wnk,k ←
w̃n

k,k
∑Np,mix

l=1 w̃l
k,k

, n = 1 . . . Np,mix.

20: end for

21: Compute p̂ (zk | z1:k−1) aording to (3.31) where the sum is performed over Ik.
22: Compute p̂ (τb = i | z1:k) aording to (3.45), for i ∈ Ik.
23: if Nk,mix = Nmix,max then

24: Find imin aording to (3.48).

25: Set Ik = Ik \ {imin}.
26: Set Nk,mix = Nk,mix − 1.
27: end if

28: for i ∈ Ik do
29: Compute Neff ,i aording to Eq. (1.98) for omponent p̂ (xk | τb = i, z1:k).
30: if Neff ,i < NT then

31: Resample Np,mix partiles.

32: Reset weights: wnk,i ← 1
Np,mix

n = 1, · · · , Np,mix.

33: end if

34: end for

Ensure: {wnk,i,xnk,i}
Np,mix

n=1 , p̂ (τb = i | z1:k) , i ∈ Ik.
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The entral idea of the proposed method is to alulate an e�etive sample size number

over the whole density p̂ (xk | bk = 1, z1:k) and then resample from this density rather

than from the mixture omponents. As a onsequene, in the resampling proedure, the

partiles belonging to a omponent with a high omponent weight α̂k,i will be mostly

seleted ompared to partiles belonging to a omponent with a small α̂k,l, so that the

number of partiles will be di�erent for the di�erent mixture omponents.

However, resampling over the overall density does not solve the problem of the inreas-

ing number of partiles. Thus we propose to use the same methodology as in the previous

paragraph (i.e disarding the mixture omponent with the lowest omponent weight α̂k,i).
However, sine the number of partiles per omponent may be di�erent, the proedure to

disard some partiles in order to initialize new omponents has to be hanged.

To this purpose, let us assume thatNk,mix mixture omponents are present respetively

with Np,i partiles per omponent. Then, we propose the following proedure:

� First, as in the previous paragraph, the total number of partiles (denoted as Nall
p,k)

is alulated and ompared to the maximal number of partiles Np,max.

� If the number Nall
p,k is equal to Np,max, then as in the previous paragraph, the index

imin of the mixture omponent with the lowest probability is onsidered. However,

here, sine the number of partiles is di�erent between the omponents, two ases

must be onsidered:

� Either Np,imin
is equal to a number Np,init and then the omponent imin is

disarded, so that Np,init partiles an be used to initialize a new omponent

at next step.

� Or Np,imin
is greater than Np,init. Thus, the omponent imin does not need

to be totally disarded. Indeed, the omponent imin an be kept by reduing

the number of partiles from Np,imin
to Np,imin

− Np,init. To this purpose,

Np,imin
−Np,init partiles are resampled from the omponent imin.

In Figure 3.2 a blok diagram of the proedure to disard Np,init partiles in order to

initialize new omponents is proposed.

Although the proedures to disard Np,init partiles and to resample the mixture are

thus di�erent from the previous algorithm working with a onstant and �x number of

partiles per omponent, for all the others steps they follow exatly the same sheme. That

is to say, at eah new iteration of the algorithm the partiles of the Nk−1,mix omponents

2

are propagated and a new one is reated. Then, the weights for eah omponent are

alulated and the probabilities p̂ (τb = i | z1:k−1) are updated. Finally, Np,init partiles

are disarded from one of the omponent (if needed) and the resampling proedure is

performed.

Now that the proedure to disard Np,init has been detailed, it remains to explain how

the resampling proedure is performed. For the e�etive sample size number over the

2

Note that it means that if resampling is performed over all the mixture omponents, the resulting par-

tile approximation will be proessed exatly in the same manner as the other omponents, see Appendix

B.
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Figure 3.2 � Blok diagram to disard Np,init when the number of partiles is di�erent

between the mixture omponents.

whole density p̂ (xk | bk = 1, z1:k), we propose the following de�nition:

Nall
eff ,k ≈

(
∑

i∈Ik

α̂2
k,i

Neff ,i

)−1

. (3.55)

Then a resampling proedure an be performed if Nall
eff ,k < Nall

T,k, with N
all
T,k = βallN

all
p,k and

0 < βall ≤ 1. However, for some reasons that will be detailed in the sequel, the resampling

proedure over all the omponents does not have to be performed at eah iteration and

some restritions have to be introdued. Indeed:

� If the resampling proedure over all the omponents is performed at eah iteration

(i.e. βall = 1), there is no interest in using the mixture struture detailed in this

hapter. Indeed, in suh a situation, at the end of eah iteration only one omponent

will be present. Therefore, at the next iteration only two omponents will be present,

the one from previous step and the new one sampling the event {τb = k}. However,
sine a resampling proedure will be performed over this two omponents, it will

still remain one omponent (gathering the two omponents before the resampling

step) at the end of this step. As a onsequene, performing a resampling over all

the mixture omponents only allows to onsider two omponents. Moreover, in this

ase, the struture of the partile �lter is almost equivalent to the marginalized

partile �lter detailed in setion 2.6. Indeed, at the beginning of eah iteration one

omponent is present, then a new one is reated in order to sample the "birth"

ase. Parameters and partile �lters are updated and �nally the two omponents

are resampled jointly in order to reate one partile �lter omponent gathering the

birth and the ontinuing partile.

� In the same manner, to avoid that the new mixture omponents are resampled too

quikly from the overall resampling proedure, it is neessary to limit the frequeny

of this resampling proedure. Let us illustrate this with a generi example. Let us
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assume that in the resampling proedure over all the mixture omponents, Nall
p,mix =

kallNp,init partiles are resampled (with kall an integer greater than one). Moreover,

let us also assume thatNp,max an be fatorized asNp,max = kmaxNp,init (kmax > kall).
Then, if a resampling proedure over all the mixture omponents is performed, it will

remain Np,max − Nall
p,mix partiles allowing to initialize kmax − kall new omponents.

However, in the next iterations, if the resampling proedure over all the mixture

omponents is performed too quikly, the partile �lter will not have enough time

to initialize the kmax − kall new omponents. As a onsequene, some partiles

reserved to initialize new omponents will be pratially never used by the partile

�lter.

Therefore to avoid the two exposed problems, we propose the following strategies:

� First, Nall
eff ,k is ompared to Nall

T,k without any restrition, and the resampling over

all the mixture omponents is performed if Nall
eff ,k < Nall

T,k. βall has to be hosen not

too high to avoid systemati resampling. This step is present in order to avoid a

severe degeneray.

� If Nall
eff ,k > Nall

T,k, an extra ondition is onsidered for resampling over all the mixture

omponents: the resampling proedure will be performed if the total number of

partiles Nall
p,k is greater than a number Nmin

p . If not, no resampling over all the

mixture omponents is done. Thus, if a resampling proedure over all the mixture

omponents was performed at previous step, at the next step the minimal number

of partiles may not be reahed sine only one extra omponents will have been

initialized. As a onsequene, this new omponent will ontinue to explore the state

independently from the other omponents. Of ourse, the number Nall
eff ,k may still

be ompared to a number Nmin
T,k = βminN

all
p,k in order to perform the resampling.

� Lastly, if the onditions Nall
p,k ≥ Nmin

p and Nall
eff ,k < Nmin

T,k are not reahed, the mixture

omponents are resampled separately.

A blok-diagram of this resampling proedure is proposed in Figure 3.3.

Of ourse, this strategy is heuristi and no optimality an be ensured; some other

strategies may outperform it. On the other hand, note also that the resampling step

for the target time appearane detetion partile �lter o�ers more possibilities than the

partile �lters developed in Chapter 2.

3.3 Partile �lter for target disappearane time dete-

tion

Until now, we have only onsidered the problem of target appearane detetion. In a

similar way, the detetion of the target disappearane an be done in the Bayesian quikest

hange detetion framework. This ase is easier to solve sine, as will be seen, no mixture

has to be onsidered. Moreover, it an be shown that, in this ase, the model onsidered in

the Bayesian quikest hange detetion framework (with a geometri prior) is equivalent

to the one outlined in the hapter 2 with a partiular hoie of the transition probability

matrix Π. Therefore, in the following, only the key points of the algorithmwill be detailed.
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Figure 3.3 � Blok-diagram of the resampling proedure that allows to resample over all

the mixture omponents.

3.3.1 State model

Let us de�ne by τd the time instant when the target disappears from the radar window.

As previously, we propose to onsider a geometri prior for the time disappearane τd,
provided by

p (τd = i) =

{
0, i = 0,
Pd(1− Pd)i, i ≥ 1,

(3.56)

where 0 < Pd < 1 denotes the probability of disappearane. Moreover, similarly to the

variable bk introdued in paragraph 3.2.1.1, let us de�ne the variable dk as

dk =

{
1, if τd ≥ k,
0, otherwise.

(3.57)

Using the same alulation as for the variable bk in Appendix A, it is easy to show �rst

that

p (dk = 0 | dk−1 = 1) = Pd (3.58)

and seondly that the proess (dk)k∈N is a two-state Markov hain with the following

transition probability matrix

Πdk =

[
1 0
Pd 1− Pd

]
, (3.59)

where the state dk = 0 is an absorbing state. Lastly, for the initialization step, p (d0 = 1) =
1.

Contrary to the appearane ase where the prior model has been spei�ed for the

random proess (τb,xk)k∈N, here it is unneessary sine the target is assumed present

at the initial step k = 0 and the evolution of the proess xk an be easily modeled

onditionally to the variable dk. Therefore, as in hapter 2, this amounts to de�ne the

evolution of the hybrid proess (xk, dk)k∈N rather than (xk, τd)k∈N. Sine the proess

(dk)k∈N is Markovian, the entire proess an also be assumed Markovian with the same

transition probability as in Eq. (2.2), i.e.

p (xk, dk|xk−1, dk−1) = p (dk | dk−1) p (xk | dk−1, dk,xk−1) , (3.60)
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where the transition probabilities for the variable dk are provided by Eq. (3.59). Con-

erning the transition probabilities p (xk | dk−1, dk,xk−1), the only ase to onsider is the

ase dk−1 = 1 and dk = 1, that orresponds to the ontinuing density de�ned in Chapter

2, i.e.

p (xk | dk−1 = 1, dk = 1,xk−1) = pc (xk | xk−1) . (3.61)

The other transition densities, either deal with the ase dk = 0 where the state xk is

meaningless or with the ase dk−1 = 0 and dk = 1 that annot happen due to the

partiular struture of the transition matrix Πdk : the target annot appear anymore one

it has disappeared. Lastly, it remains to de�ne the density p (x0 | d0 = 1) that orresponds
to the initialization of the proess (the ase d0 = 0 does not need to be onsidered sine

p (d0 = 0) = 0). Contrary to the appearane ase where the birth density is often hosen

to be non-informative (e.g. uniform), here the target is assumed present and therefore

it seems reasonable to assume that some information is available about the target state

loation. For instane, we an hoose as initial prior the following density,

p (x0 | d0 = 1) = N (x0; x̄0,P0) , (3.62)

where x̄0 is the initial target state mean and P0 the initial ovariane matrix. In pratie,

x̄0 and P0 may have been obtained from a previous detetion proedure.

3.3.2 Measurement model

The measurement model is de�ned as in Chapter 2 (see setion 2.3), i.e

zk = dkρe
jϕkh (xk) + nk. (3.63)

3.3.3 Bayesian �lter and partile �lter approximation

The aim is now to ompute reursively the density p (xk, dk | z1:k) for any k ≥ 1, that is
to alulate the probability p (dk = 1 | z1:k) and the density p (xk | dk = 1, z1:k).

Conerning the density p (xk | dk = 1, z1:k), the Bayesian �lter an be diretly derived

via the equation

p (xk | dk = 1, z1:k) =
p (xk | dk = 1, z1:k−1) p (zk | dk = 1,xk)

p (zk | dk = 1, z1:k−1)
, (3.64)

where the density p (xk | dk = 1, z1:k−1) is obtained via the Chapman-Kolmogorov equa-

tion where the integration must be performed on xk−1 and dk−1, i.e.

p (xk | dk = 1, z1:k−1) =
∑

dk−1

∫
p (xk,xk−1, dk−1 | dk = 1, z1:k−1) dxk−1. (3.65)

However, reall that if dk = 1 then dk−1 = 1. Therefore the sum with respet to dk−1

must be done only for dk−1 = 1 and the Eq. (3.65) simpli�es to

p (xk | dk = 1, z1:k−1) =

∫
p (xk−1 | dk = 1, dk−1 = 1, z1:k−1) pc (xk | xk−1) dxk−1. (3.66)
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Moreover, as it was demonstrated with Eq. (2.78) and Eq. (2.79), the dependene with

dk = 1 in Eq. (3.66) an be removed, leading to the lassi Chapman-Kolmogorov equation

whih depends only on the density at the previous step and the transition density, i.e

p (xk | dk = 1, z1:k−1) =

∫
p (xk−1 | dk−1 = 1, z1:k−1) pc (xk | xk−1) dxk−1. (3.67)

Therefore, if a partile approximation

{
xnk , w

n
k,d

}Np,d

n=1
of the posterior p (xk−1 | dk−1 = 1, z1:k−1)

is available at step k − 1 (where Np,d is the number of partiles) i.e.

p (xk−1 | dk−1 = 1, z1:k−1) ≈
Np,d∑

n=1

wnk−1,dδxn
k−1

(xk−1) , (3.68)

the unnormalized weights at step k are obtained, aording to Eq. (1.94), by

w̃nk,d = wnk−1,d

pc(x
n
k | xnk−1)

qc(xnk | xnk−1, zk)
p(zk | dk = 1,xnk), (3.69)

where qc(x
n
k | xnk−1, zk) is any instrumental density (in pratie the prior pc (xk | xk−1) is

often hosen) and the normalized weights are simply obtained through a normalization.

Lastly, the normalization term p (zk | dk = 1, z1:k−1), whih is required to alulate the

probability p (dk = 1 | z1:k), is provided by the following equation:

p (zk | dk = 1, z1:k−1) =

∫
p (xk | dk = 1, z1:k−1) p (zk | dk = 1,xk) dxk. (3.70)

This normalization term an be approximated, using the same reasoning as the normal-

ization term p (zk | τb = i, z1:k−1) in paragraph 3.2.4.2, by the following estimator:

p̂ (zk | dk = 1, z1:k−1) =
1

Ck

Np,d∑

n=1

w̃nk,d, (3.71)

where

Ck =

Np,d∑

n=1

wnk−1,d

pc(x
n
k | xnk−1)

qc(xnk | xnk−1, zk)
. (3.72)

Lastly, it remains to alulate the probability p (dk = 1 | z1:k). Using Bayes rule, it

an be rewritten as follows:

p (dk = 1 | z1:k) =
p (dk = 1 | z1:k−1) p (zk | dk = 1, z1:k−1)

p (zk | z1:k−1)
. (3.73)

Conerning the alulation of quantities p (dk = 1 | z1:k−1) and p (zk | z1:k−1), it is also

possible to marginalize over dk as in Eq. (3.29) and Eq. (3.30). Then, it omes

p̂ (dk = 1 | z1:k−1) = p̂ (dk−1 = 1 | z1:k−1) (1− Pd) , (3.74)

and

p̂ (zk | z1:k−1) = p̂ (dk = 1 | z1:k−1) p̂ (zk | dk = 1, z1:k−1)+
p̂ (dk = 0 | z1:k−1) p (zk | dk = 0, z1:k−1) ,

(3.75)
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where p (zk | dk = 0, z1:k−1) = p (zk | dk = 0) is the likelihood for the ase when no target

is present and is obtained by Eq. (2.21). Finally, the probability p (dk = 1 | z1:k) an be

estimated by

p̂ (dk = 1 | z1:k+1) =
p̂ (dk = 1 | z1:k−1) p̂ (zk | dk = 1, z1:k−1)

p̂ (zk | z1:k−1)
. (3.76)

The algorithm sheme for target disappearane is �nally explained by Algorithm 3.2.

Algorithm 3.2 Disappearane Time TBD Partile Filter

Require: {wnk−1,d,x
n
k−1}

Np,d

n=1 , p̂ (dk−1 = 1 | z1:k−1) at step k − 1.
1: for n = 1 to Np,d do

2: Draw xnk ∼ q
(
xk | dk = 1,xnk−1, zk

)
.

3: Compute unnormalized weight w̃k,d aording to Eq. (3.69).

4: end for

5: Compute Ck aording to Eq. (3.72)

6: Compute p̂ (zk | dk = 1, z1:k−1) aording to Eq. (3.71).

7: Normalization: wnk,d ←
w̃n

k,d
∑Np,d

l=1 w̃l
k,d

, n = 1 . . . Np,d.

8: Compute p̂ (zk+1 | z1:k) aording to Eq. (3.75).

9: Compute p̂ (dk = 1 | z1:k) aording to Eq. (3.76).

10: Compute Neff aording to Eq. (1.98).

11: if Neff < NT then

12: Resample Np,d partiles

13: Reset weights: wnk,d ← 1
Np,d

n = 1, · · · , Np,d

14: end if

Ensure: {wnk,d,xnk}
Np,d

n=1 , p̂ (dk = 1 | z1:k).

3.4 Combination of partile �lters for target appear-

ane and disappearane detetion

The �lters proposed in setion 3.2 and 3.3 an only manage either the target appearane

or the target disappearane whereas in a TBD perspetive it should be desired to manage

both the appearane and the disappearane. Therefore, we propose in the sequel to

ombine the two �lters by adding an additional detetion stage. As long as no target

has been deteted, Algorithm 3.1 or B.1 is applied to searh for a target appearane. At

eah step, the target detetion is performed as in Chapter 2 by omparing the probability

p (bk = 1 | z1:k) to a given probability Pinit: if at time step k, p (bk = 1 | z1:k) ≥ Pinit, then
a target is delared present, and Np,d partiles are resampled from the mixture

p̂ (xk | bk = 1, z1:k) =
∑

i∈Ik

α̂ip̂ (xk | τb = i, z1:k) ,

in order to initialize the disappearane partile �lter {1/Np,d,x
n
k}

Np,d

n=1 with p̂ (dk = 1 | z1:k) =
1. This new partile �lter is based on Algorithm 3.2 in order to detet the target dis-

appearane time. In the same manner, at eah step the probability p (dk = 1 | z1:k) is
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ompared to a given probability Pdeath. If p (dk = 1 | z1:k) ≤ Pdeath, target disappearane
is delared and a new �lter for target appearane detetion is then initialized.

Of ourse, target disappearane might be erroneously delared. Therefore, if the or-

responding traking �lter was simply deleted and a new one reated to detet a target

appearane, all the information gathered on the target state would be lost. It might be

wiser to initialize one mixture omponent using the information arried by the partiles

of the time disappearane �lter, thus preserving the information gathered by this �lter.

More preisely, let us assume that at step kd, target disappearane was delared. Then, in-
stead of initializing the new time appearane �lter at the next step (i.e. onsidering {τb =
kd+1}), it might be more onvenient to onsider that a target has appeared at step kd with
p̂ (xkd | τb = kd, z1:kd) = p̂ (xkd | dkd = 1, z1:kd) and p̂ (τb = kd | z1:kd) = p̂ (dkd = 1 | z1:kd).
The required number of partiles (Np,mix for Algorithm 3.1 and Np,init for Algorithm B.1

an simply be resampled from p̂ (xkd | dkd = 1, z1:kd). For the next iterations, the proe-

dure is exatly the same as the two proposed algorithms for time appearane detetion.

The resulting partile �lter is alled the Appearane Disappearane Detetion (ADD)

TBD Partile Filter. It is detailed in Algorithm 3.3.

Algorithm 3.3 ADD TBD Partile Filter

1: target_is_detected← false

2: for k = 1 to Nit {where Nit is the number of iterations of the algorithm} do

3: if target_is_detected = false then

4: Compute p (bk = 1 | z1:k) with Algorithm 3.1 or Algorithm B.1.

5: if p (bk = 1 | z1:k) ≥ Pinit then
6: target_is_detected← true

7: Sample Np,d partiles from p̂ (xk | bk = 1, z1:k) to initialize a partile �lter for

Algorithm 3.2.

8: Set p (dk = 1 | z1:k) = 1 for this �lter.

9: end if

10: else

11: Compute p (dk = 1 | z1:k) with algorithm 3.2.

12: if p (dk = 1 | z1:k) ≤ Pdeath then
13: target_is_detected← false

14: SampleNp,mix or Np,init partiles from p̂ (xk | dk = 1, z1:k) to initialize a partile
�lter p̂ (xk | τb = k, z1:k),

15: Set p (τb = k | z1:k) = p (dk = k | z1:k).
16: end if

17: end if

18: end for

3.5 Simulations and results

In this setion, we propose to illustrate the performane of the di�erent TBD algorithms

proposed in this hapter via Monte Carlo simulation. One of the main objetive of this

setion is to ompare the performane with the lassi partile �lters detailed in Chap. 2 in
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order to measure the possible gain when separating the detetion of the target appearane

and of the target disappearane as explained in introdution.

3.5.1 Senario

We onsider the same senario as in hapter 2, that is to say a senario with a number

of iterations Nit = 100 where a target appears at step kb = 15 and disappears at step

kd = 75. For eah Monte Carlo run, the initialization of the target state for the position

and the veloity at step kb is done aording to the birth density pb (.) de�ned in setion

2.2 (i.e. uniform prior over D = [rmin, rmax] × [θmin, θmax] for the position and over

[vmin, vmax]× [0, 2π] for the veloity), with the following parameters:

� rmin = 30 km, rmax = 36 km, θmin = 35◦ and θmax = 55◦,

� vmin = 100 m.s

−1
and vmax = 300 m.s

−1
.

For the iterations after kb the target state xk (for the position and the veloity) evolves

aording to Eq. (2.6) with no noise proess (i.e. uniform linear motion). The time

between two onseutive measurement is set to TS = 0.3 s.

The generation of the raw radar data is done as in the previous hapter with Γ = INc

(i.e. noise samples are assumed independent). The funtion h (.) is de�ned in paragraph

2.3 with the following parameters:

� For the range axis, B = 1 MHz, thus providing a range resolution ∆r = 150 m, and

Tp = 6.67× 10−5
s.

� For the azimuth axis, Na = 70 and d = λ/2, orresponding to a resolution ∆θ =
1.45◦.

Finally, for the parameter ρ several values (following the SNR de�nition provided in

paragraph 2.3.2) will be onsidered in the simulations.

3.5.2 Methodology for the performane evaluation

As in paragraph 2.7.2, we propose to evaluate the performane in two steps:

� In terms of detetion, i.e. measuring the apability of the �lter to e�etively detet

the target as quikest as possible while ensuring the smallest probability of false

alarm.

� and seondly in terms of estimation, i.e. estimating the auray of the estimator

when the TBD partile �lter has deteted the target.

To this purpose, we propose to use the same methodology as in the previous hapter. In

detetion, it means measuring the averaged probability of presene Pe,k over NMC Monte

Carlo runs, the average perent of time tD when the target is atually deteted and tbD
the perent of time when it is badly deteted (see 2.7.2.2). In estimation, performane is

evaluated with the RMSE in position and veloity from Eq. (2.100) and (2.101).
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3.5.3 Comparison between the ADD partile �lter and the marginal-

ized partile �lter

As we stressed in the beginning of the setion, the aim is to see the possible gain by using

two di�erent �lters for the appearane and the disappearane ompared to the lassi

method of the previous hapter. To this purpose, we propose to ompare the performane

of the following partile �lter:

� The �rst one, denoted as "ADD Filter, Np,mix onstant", onsists of the ADD TBD

partile �lter 3.3 where the partile �lter used to detet the target appearane is

the "Appearane Time TBD Partile Filter" (detailed by Algorithm 3.1), i.e. the

number of partiles par mixture omponents is onstant over time. Conerning the

Appearane Time TBD Partile the spei� parameters for this �lter are hosen

as follows: Np,mix = 1000, Nmix,max = 5, orresponding to a number of partile

Np = 5000 ; eah omponent is resampled at eah iteration (i.e. β = 1). Conerning
the Disappearane partile �lter, the number of partile is set to Np,d = 1500 and

the resampling proedure is also performed at eah iteration.

� The seond one, denoted as "ADD Filter, Np,mix variable" onsists of the same

�lter as previously exept that the partile �lter used for the target appearane is

the "Resample All Appearane Time TBD Partile Filter" outlined in paragraph

3.2.4.3 and detailed in Appendix B by Algorithm B.1. For this �lter the spei�

parameters are used: Np,init = 1000, Np,max = 5000, Np,all = 3000, Np,min = 4000,
βall = 0.1, βmin = 0.5.

� The last one, denoted as "Marginalized sk", onsists of the Marginalized Partile

Filter detailed in the previous hapter by Algorithm 2.3. The spei� parameters

of this �lter are set with the following values: Np = 5000 and Np,c = 4000, i.e. at

eah iteration 1000 partiles are initialized.

For all the �lters, the probability Pb and Pd are set to 0.1. Conerning the instrumental

density qb (. | zk), it is hosen as follows:

� In position, the optimal mixture importane density q (. | zk) spei�ed in Eq. (2.39)

with the following parameters: Pfa = 0.1, δr = 2, δθ = 3, Nρ = 5 and PDk,γ
= 1 (i.e.

partile positions are only initialized in the ells above threshold).

� In amplitude, the prior density is used (i.e. uniform prior). The interval for the

amplitude parameter ρ is set to [3, 13] (in dB).

� For the veloity, the veloity of birth partiles is initialized at the next step, see

paragraph 2.5.3 for details.

Conerning the ontinuing ase or alive partile, the prior density is used for the �lters.

Lastly, the probability Pinit and Pdeath, they are set respetively to 0.9 and 0.2.
Results are provided in Figures 3.4, 3.5 and Table 3.1.

In detetion, the �gure 3.4 does not show signi�ant di�erenes between the di�erent

partile �lters, exept that the "ADD Filter, Np,mix variable" seems slightly better for

very low SNR (3dB) whih is orroborated by the perent time of detetion whih a little
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(a) SNR = 7dB.
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(b) SNR = 5dB.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

step k

A
ve
ra
g
e
P̂
e,
k

AD Filter, Np,mix constant

AD Filter, Np,mix variable

sk Marginalized

true state sk

() SNR = 3dB.

Figure 3.4 � Averaged probability of presene Pe,k with di�erent target SNR (7dB, 5dB

and 3dB).

better for this �lter. In ontrast, some important di�erenes an be observed in terms

of perent of bad detetion tbD that is more important for the "sk Marginalized" partile

�lter for all the SNR. This point an be explained by the fat that the "sk Marginalized"

partile �lter ontinues to initialize partile whereas the �lter has already deteted the

target. Therefore, in some situations, espeially when the probability of presene Pe,k is

not lose to one, the birth partiles may have a non negligible ontribution to the target

state estimate, even if they are loated far away from the atual target position, and thus

may lead to a bad detetion. However, although the "sk Marginalized" partile �lter has

a poorer perent of bad detetion tbD, it has a better probability of false alarm.

In estimation, above a SNR of 7dB there is no di�erene between the di�erent par-

tile �lters. By ons, from 5 dB and below, the ADD partile �lter both for "Np,mix

onstant" and "Np,mix variable" provide better performane for the estimation of the po-

sition. Again, it an be explained by the fat that the "sk Marginalized" partile �lter

initializes partiles even if it has deteted the target. In veloity the "ADD Filter, Np,mix

onstant" and "sk Marginalized" �lters provide quite similar performane while the "ADD

Filter, Np,mix variable" is less e�ient.

Lastly, in terms of omputational time, the "ADD Filter" both for "Np,mix onstant"

and "Np,mix variable" is faster than the "sk Marginalized". This is not surprising sine

most of the omputational resoures are devoted to the initialization of partiles, so as



110 Chapter 3

20 25 30 35 40 45 50 55 60 65 70
60

70

80

90

100

110

120

130

step k

R
M
S
E

in
p
o
si
ti
o
n
(m

)

AD Filter, Np,mix constant

AD Filter, Np,mix variable

sk Marginalized

20 25 30 35 40 45 50 55 60 65 70
40

50

60

70

80

90

100

step k

R
M
S
E

in
v
el
o
ci
ty

(m
.s

−
1
)

AD Filter, Np,mix constant

AD Filter, Np,mix variable

sk Marginalized

(a) SNR = 7dB.

20 25 30 35 40 45 50 55 60 65 70
80

100

120

140

160

180

200

220

step k

R
M
S
E

in
p
o
si
ti
o
n
(m

)

AD Filter, Np,mix constant

AD Filter, Np,mix variable

sk Marginalized

20 25 30 35 40 45 50 55 60 65 70
50

100

150

step k

R
M
S
E
in

v
el
o
ci
ty

(m
.s

−
1
)

AD Filter, Np,mix constant

AD Filter, Np,mix variable

sk Marginalized

(b) SNR = 5dB.

20 25 30 35 40 45 50 55 60 65 70
80

100

120

140

160

180

200

220

step k

R
M
S
E

in
p
o
si
ti
o
n
(m

)

AD Filter, Np,mix constant

AD Filter, Np,mix variable

sk Marginalized

20 25 30 35 40 45 50 55 60 65 70
50

100

150

step k

R
M
S
E
in

v
el
o
ci
ty

(m
.s

−
1
)

AD Filter, Np,mix constant

AD Filter, Np,mix variable

sk Marginalized

() SNR = 3dB.

Figure 3.5 � RMSE in position and in veloity for the proposed partile �lters with di�erent

target SNR (7dB, 5dB and 3dB).

"ADD Filter" does not initialize partiles when the target is deteted the omputational

time is lower than the "sk Marginalized" that initializes partiles whatever the target is

deteted or not. Besides, the di�erene beomes lower with low target SNR sine the

proportion of time where the �lters try to detet the target beomes more important. In

fat, the gain in omputational time is prinipally made during the period of time where

the target is deteted by the �lter.

In summary, this simulation has allowed to show the pertinene of separating the

detetion of the target appearane and disappearane with two di�erent �lters. Indeed, it

allows to redue the omputational time when the target is deteted sine, in that ase, no

partiles are initialized without degrading the performane in detetion and estimation.

Besides, performane is better for the "ADD Filter, Np,mix onstant" both in detetion

(in partiular for the perent of bad detetion tbD) and in estimation, but at a ost of a
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SNR (dB) 7 5 3

Filter 1 2 3 1 2 3 1 2 3

P PF
fa (×10−3

) 4.8 6.53 2.71 4.8 6.53 2.71 4.8 6.53 2.71

tD 93.2% 93.3% 92.9% 81.1% 80.1% 81.1% 42.7% 44% 41.5%

tbD 0.03% 0.04% 0.13% 0.16% 0.20% 0.98% 0.55% 0.85% 1.99%

rel. MC run

duration 1.05 1 2.07 1.04 1 1.85 1.07 1 1.41

Table 3.1 � Detetion performane and relative averaged MC run duration for the di�erent

partile �lters used in the simulation for di�erent target SNR. Filter 1 refers to "AD Filter,

Np,mix onstant", 2 to "AD Filter, Np,mix onstant" and 3 to "sk Marginalized".

slight raise of the probability of false alarm. Furthermore, it seems that the resampling

strategy that onsider Np,mix variable over time provides worse performane than the one

with Np,mix onstant. Aording to us, this onlusion should be taken with aution sine

only one set of parameters has been tried, thus it may exist a better set of parameter or

even an other resampling strategy whih is better.

3.6 Conlusion

In this hapter, we presented an alternative approah to the modeling of the monotarget

TBD problem. We shown that it is possible to model the monotarget TBD problem as a

quikest detetion problem in a Bayesian framework both for the target appearane and

disappearane.

In the appearane ase, we demonstrated, in setion 3.2, that the posterior density

of the target state an be expanded as a mixture density. Moreover, in setion 3.2.4, we

proposed several partile �lter approximations, one that onsiders a onstant number of

partiles per mixture omponent and an other one that allows a variable number of parti-

les. In the same manner, in the disappearane ase whih is easier than the appearane

ase, we outlined the theoretial Bayesian �lter and a partile �lter approximation. More-

over, in setion 3.4, in order to detet both the target appearane and disappearane, we

proposed a partile �lter that ombines the two previous partile �lters.

Lastly, in setion 3.5, a Monte Carlo simulation was performed to ompare the novel

approah proposed in this hapter with the monotarget lassi partile �lters detailed in

the previous hapter. This simulation has allowed to show the bene�t of using two di�erent

partile �lters for the target appearane and disappearane. Indeed, the simulation has

highlighted that initializing partiles when the partile �lter has onverged to the atual

target state may disturb the target estimation and as a onsequene the performane

in estimation. Moreover, it also highlighted that it sensibly inreases the omputational

time without providing signi�ant gain in estimation or detetion (exept a slightly lower

probability of false alarm). Therefore, aording to us, this hapter validates the idea of

using spei� �lters for the target appearane or disappearane. In partiular, in hapter

5, this idea will be adapted to the multitarget setting.
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Chapter 4

Measurement equation and likelihood

alulation for Trak-Before-Detet

appliations

4.1 Introdution

This hapter deals with the alulation of the likelihood of the measurement ondition-

ally to the target state in Trak-Before-Detet ontext. Indeed, in setion 1.2.1, we

explained that a partile �lter requires the alulation (if possible not ostly) of the like-

lihood p (zk | xk). However, in Trak-Before-Detet appliations this likelihood annot

be omputed diretly from the measurement equation (2.8) sine this latter depends on

the target omplex amplitude parameters ρk and ϕk that are unknown and may �utuate

over time. Therefore, several strategies have been proposed in the literature in order to

release the alulation of the likelihood from these unknown parameters. The �rst ones

[RRG05, DRC08, BDV

+
03℄ onsist in working on the squared-modulus of the omplex

samples. Using suh a strategy allows, in some ases, to alulate the likelihood in a

simple manner. On the other hand, it leads to some information loss on the target am-

plitude parameter. In partiular, the spatial oherene of the phase, i.e. the fat that

the phase of the target amplitude takes the same value in all ells, is then lost, induing

a possible performane degradation. This loss was shown in [DRC12℄ to severely degrade

the performane. Thus, in their artile, Davey et al. [DRC12℄ have proposed a new strat-

egy that allows to keep all the information provided by the measurement by working on

the omplex raw radar data zk rather than on the squared-modulus. In partiular, this

solution allows to keep the spatial oherene of the amplitude parameters. However, in

their paper they only investigated the Swerling 0 �utuation model and the monotarget

ase.

Therefore, the objetive of this hapter is to extend their work both for amplitude

�utuations of type Swerling 0, 1 and 3 and for the multitarget ase.

This hapter is organized as follows. In setion 4.2 we present the state and measure-

ment models. Then in setion 4.3 we present solutions for the likelihood omputation

from omplex and squared modulus measurements. In setion 4.4 we derive, when pos-

sible, losed forms for the likelihood with Swerling �utuations of type 0, 1 and 3 in the

113
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monotarget and multitarget ases; when not possible, we propose approximations to al-

leviate the omputational time. Finally in setion 4.5 we present simulation results that

show the gain both in detetion and in estimation of the omplex measurement method

over the squared modulus method.

4.2 Problem Formulation

The measurement model orresponding to the output signal zk was presented at the end

of the "radar signal proessing stage" in hapter 1 setion 1.1.8 (see also Figure 1.1). If

at a given time index k, Nk targets are present, the output signal (or raw radar data) zk
is provided by the following equation:

zk =

Nk∑

i=1

ρk,ie
jϕk,ih(xk,i) + nk, (4.1)

where:

� h(xk,i) represents the possibly multidimensional ambiguity funtion of the ith target
entered on the target state xk,i. For the sake of simpliity, h(xk,i) will be denoted
hk,i in the sequel.

� nk is a zero mean irular omplex Gaussian vetor with ovariane matrix Γ.

� ϕk,i and ρk,i are respetively the phase and the modulus of the ith target omplex

amplitude. All variables ϕk,1:Nk
and ρk,1:Nk

are supposed mutually independent, and

independent from nk and xk,1:Nk
.

Eah phase ϕk,i is supposed to be unknown and uniformly distributed over the interval

[0, 2π) at eah time step k. On the other hand, eah modulus ρk,i is assumed to be drawn

from a generi density

ρk,i ∼ pϑi (ρk) , with ρk ∈ R≥0, (4.2)

where ϑi is an unknown stati parameter. Note here that these amplitude parameters

depend on the time instant k, due to the temporal �utuation of the target amplitude. The

Swerling models are onvenient in radar to statistially model these amplitude �utuations

over time. The Swerling 0 model orresponds to a onstant amplitude modulus (i.e. no

temporal �utuation); the Swerling 1 and 3 models onsider slow �utuations (i.e. the

modulus �utuates from burst to burst, where a burst orresponds to a train of pulses,

but it is onstant from pulse to pulse) respetively modeled by a Rayleigh distribution

and a hi-square distribution with four degrees of freedom. Lastly, the Swerling 2 and 4
models onsider respetively the same �utuation densities as the Swerling 1 and 3 but

with fast �utuations (i.e. from pulse to pulse). We do not onsider these latter models

in this hapter and thus fous only on the Swerling �utuation models of type 0, 1 and

3. The likelihood alulation for these models will be detailed in setion 4.4.
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Figure 4.1 � Reeived signal (noise-free) orresponding to the lth target at two adjaent

time steps k and k + 1, where dots represent the orresponding measured samples. ρk,l
and ϕk,l are the same for all ells of zk (we denote this feature spatial oherene) but their

values hange independently and randomly over time; there is no temporal oherene from

step k to step k + 1.

4.2.1 Temporal oherene versus spatial oherene

An important point to be stressed here is that variables ρk,1:Nk
and ϕk,1:Nk

are spatially

oherent : this means that the omplex target amplitude ρk,ie
jϕk,j

is idential over all ells

where the signal ambiguity funtion spreads. Taking into aount this information an

really inrease the performane of the Trak-Before-Detet algorithms [DRC12℄. On the

ontrary, these variables ρk,1:Nk
and ϕk,1:Nk

are not assumed oherent over time, i.e. from

time sample k to k+1, amplitude parameters �utuate independently. As a onsequene,

no information an be gathered over time on these parameters. These dependenies are

illustrated in Figure 4.1.

4.2.2 State of the art

The objetive of this hapter is therefore to ompute the measurement likelihood in a

general multitarget TBD ontext with unknown �utuating amplitude parameters. Sev-

eral solutions have been provided in the literature, mainly in a monotarget setting.

The �rst solution that deals with the unknown omplex amplitude onsiders a mono-

target setting and onsists in working on the squared modulus of the omplex signal

[BDV

+
03, SB01, RAG04, RRG05, DRC08℄. For suh a radial solution that ompletely

disards the phase dependeny, two strategies an be onsidered to deal with the modulus

�utuation. The �rst one onsists in marginalizing the whole likelihood with respet to the

density of the modulus �utuation [DRC08℄. In pratie, this leads to intratable integrals

that must be approximated numerially. The seond strategy onsists in marginalizing

independently the likelihood in eah ell [RRG05℄. The advantage of this heuristi se-

ond solution is that a losed form an be obtained for �utuations of type Swerling 0,
1 and 3 [MB08℄. On the other hand the spatial oherene of the modulus, i.e. the fat

that the modulus of the target amplitude takes the same value in all ells, is then lost,
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Swerling 0 Swerling 1 Swerling 3

Complex

measurement

Monotarget Eq.(4.15) and

[DRC12℄

Multitarget

Squared

modulus

Monotarget,

non oherent

Eq.(4.25) and

[MB08℄

Eq.(4.49) and

[MB08℄

Eq.(4.52),

Eq.(4.51) and

[MB08℄

Multitarget,

non oherent

Eq.(4.49) and

[BDV

+
03℄

Monotarget,

oherent

Eq. (4.4.2.1)

and [DRC12℄

Eq. (4.4.2.1)

and [DRC12℄

(4.4.2.1), and

[DRC12℄

Multitarget,

oherent

Table 4.1 � Summary of the state of the art for the likelihood omputation with di�erent

data types (omplex measurements or squared modulus), di�erent Swerling models (type

0, 1 and 3) and di�erent number of targets (mono or multitarget). The squared modulus

measurement are splitted between oherent omputation and non oherent omputation.

Eah �lled ell ontains the referene of the equation in this hapter that provides the

expression for the likelihood, and the itation of the orresponding paper.

induing a possible degradation of performane. Note also that the spatial oherene of

the phase is lost for both strategies. This loss was shown in [DRC12℄ to severely degrade

the performane.

To avoid this last drawbak, Davey et al. [DRC12℄ have proposed a new strategy

that allows preserving the spatial oherene of the phase. Their solution onsists in

diretly working on omplex measurements and marginalizing the omplex likelihood of

the whole data over the phase. It provides better performane than solutions based on

squared modulus. However, they mainly investigated the ase where the modulus does

not �utuate (i.e. Swerling 0 ase); for modulus �utuations, they only provide a general

marginalization formula. One of the ontributions of this hapter is an extension of their

work with omplex measurements to �utuations of type Swerling 1 and 3; we show that

losed-forms an be obtained for the monotarget likelihood in both ases.

Furthermore, all the previously disussed strategies with squared modulus or omplex

measurements were proposed in a monotarget setting. In fat, to our knowledge, the

multitarget ase has not been investigated in the literature, exept for the Swerling 1 ase
with squared modulus [BDV

+
03℄. Thus, another ontribution of this hapter onsists in

onsidering the multitarget ase both with squared modulus and omplex measurements.

In the omplex measurement ase, we provide a losed-form expression for the likelihood in

the Swerling 1 ase, and we propose in the other �utuation ases some approximations

to alleviate the omputational ost. In the squared modulus ase, we show that, as
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soon as at least two targets are present, all phase dependenies annot be removed from

the likelihood; in fat taking the squared modulus permits to remove only one phase,

so that other phases must be marginalized. In that latter ase, we also propose some

approximations in order to redue the omputational omplexity.

The Table 4.1 summarizes the state of the art for the likelihood omputation with dif-

ferent data types (omplex measurements or squared modulus), di�erent Swerling models

(type 0, 1 and 3) and di�erent numbers of target (mono or multitarget). The aim of this

hapter is to �ll any empty ell in this table.

4.3 Likelihood alulation for Trak-Before-Detet ap-

pliations

In this setion, we propose to develop the di�erent methods presented in the previous

paragraph "State of Art". We �rst start by explaining how to alulate the likelihood

for Trak-Before-Detet appliations with the omplex measurement and then with the

squared-modulus.

4.3.1 Likelihood omputation with omplex measurements

4.3.1.1 Likelihood from the measurement equation

As previously pointed out, the likelihood p (zk | xk,1:Nk
), i.e. the likelihood of the observa-

tion onditionally to the target states annot be alulated diretly from the measurement

equation (4.1) sine it depends on phase and amplitude parameters ϕk,1:Nk
and ρk,1:Nk

that

are unknown and not temporally oherent. Nevertheless, from this equation, it is possible

to alulate the likelihood of the measurement zk onditionally to the states xk,1:Nk
and

the amplitudes parameters ϕk,1:Nk
and ρk,1:Nk

, i.e p (zk | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
). Indeed,

sine the noise nk is omplex Gaussian, the orresponding density is then a omplex

Gaussian density with mean µk =

Nk∑

i=1

ρk,ie
jϕk,ihk,i and ovariane matrix Γ:

p (zk | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
) =

1

πNc det (Γ)
exp

{
− (zk − µk)

H
Γ−1 (zk − µk)

}
. (4.3)

Then by developing Eq. (4.3), it omes

p (zk | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
) =

exp
{
−zHk Γ−1

zk

}

πNc det (Γ)
×exp

{
−
Nk∑

i=1

ρ2k,ih
H
k,iΓ

−1
hk,i+

Nk∑

i=1

2ρk,i|hHk,iΓ−1
zk| cos (ϕk,i − ξk,i)−

Nk∑

i=1

Nk∑

l=i+1

2ρk,iρk,l
∣∣hHk,iΓ−1

hk,l

∣∣ cos (ϕk,i − ϕk,l − φk,il)

}
,

(4.4)

where ξk,i = arg
(
hHk,iΓ

−1zk
)
and φk,il = arg

(
hHk,iΓ

−1hk,l
)
.
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4.3.1.2 Marginalizing over the phase and modulus parameters

Sine parameters ϕk,1:Nk
and ρk,1:Nk

are assumed to be random variables, it is possible to

write the joint likelihood of the measurement zk and the amplitude parameters ondition-

ally to the target states xk,1:Nk
, that is given by

pϑ1:Nk
(ϕk,1:Nk

, ρk,1:Nk
, zk | xk,1:Nk

) = pϑ1:Nk
(ϕk,1:Nk

, ρk,1:Nk
| xk,1:Nk

)×
p (zk | xk,1:Nk

, ϕk,1:Nk
, ρk,1:Nk

) .

(4.5)

From the hypotheses in the measurement model, the density of phases ϕk,1:Nk
and am-

plitudes ρk,1:Nk
pϑ1:Nk

(ϕk,1:Nk
, ρk,1:Nk

| xk,1:Nk
) does not depend on xk,1:Nk

and expends as

follows

pϑ1:Nk
(ϕk,1:Nk

, ρk,1:Nk
| xk,1:Nk

) = p (ϕk,1:Nk
) pϑ1:Nk

(ρk,1:Nk
) (4.6)

=

Nk∏

i=1

p (ϕk,i) pϑi (ρk,i). (4.7)

Finally the likelihood pϑ1:Nk
(zk | xk,1:Nk

) an be obtained by marginalizing Eq. (4.5) over

parameters ρk,1:Nk
and ϕk,1:Nk

:

pϑ1:Nk
(zk | xk,1:Nk

) =

∫
· · ·
∫

R
Nk
≥0×[0,2π)Nk

p (zk | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
)×

p (ϕk,1:Nk
) pϑ1:Nk

(ρk,1:Nk
) dϕk,1:Nk

dρk,1:Nk
.

(4.8)

First, notie that the spatial oherene is preserved in this formulation thanks to the

marginalization. However, this likelihood expression still depends on the stati parameters

ϑ1:Nk
that have been supposed unknown. It is possible to deal with these stati parameters

by adding them in the state vetor xk,1:Nk
as explained in paragraph 4.3.1.3.

Then, note that most of the Bayesian TBD algorithms require either to alulate the

likelihood ratio between the likelihood of the observation onditionally to the state vetor

and the likelihood of the observation onditionally to the event that no target is present

(i.e. Nk = 0); or the likelihood an be alulated up to a onstant (e.g. partile �lters).

As a onsequene, the onstant term in Eq. (4.4), given by

p (zk | Nk = 0) =
1

πNc det (Γ)
exp

{
−zkΓ−1zk

}
, (4.9)

whih is the likelihood onditionally to the event that no target is present, does not

need to be alulated, providing diretly the likelihood ratio or the likelihood up to this

onstant. Note that, for the sake of larity, this onstant term will be always disarded

in the likelihood expression provided in the rest of the hapter.

At last, an important point is that Eq. (4.8) is often intratable, even for two targets,

and must then be omputed numerially. However, in setion 4.4.1.2, it will be shown

that a losed-form an be obtained for the partiular Swerling 1 �utuation model. For

other �utuation models, the numerial implementation implies the evaluation of multiple
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integrals over several parameters and the omputational ost may be rapidly prohibitive

in the multitarget ase. Fortunately, target ontributions an in many ases be separated

so that the multitarget likelihood beomes equal to the produt of monotarget likelihoods

that an be omputed in losed-form. This separation arises when targets do not interat

in the likelihood expression (4.4). This an be translated mathematially by the following

ondition: ∣∣hHk,uΓ−1hk,v
∣∣ ≈ 0, for any (u, v), u 6= v, (4.10)

that allows to remove all ross terms in Eq. (4.4). In pratie, this hypothesis may arise

for instane when Γ = INc and targets are far away from eah other. Indeed, for eah

target the ambiguity vetor hk,i has only signi�ant values in a few number of ells around

the target loation and an be assumed equal to zero elsewhere, so that the ambiguity

vetor an be trunated as explained in paragraph 2.4.2.3. Therefore, the salar produt

between ambiguity funtion hk,u and hk,v is approximately equal to zero for su�iently

distant targets. Note however that when Γ 6= INc , ondition (4.10) annot be veri�ed as

straightforwardly and should thus be arefully heked, even for distant targets. Indeed,

the inner produt indued by matrix Γ−1
may mix the omponents of hk,u and hk,v even

when they are loated far apart from eah other.

Finally, the expression of the likelihood pϑ1:Nk
(zk | xk,1:Nk

, ρk,1:Nk
, ϕk,1:Nk

) beomes un-

der ondition (4.10):

pϑ1:Nk
(zk | xk,1:Nk

, ρk,1:Nk
, ϕk,1:Nk

)

∝ exp

{
−

Nk∑

i=1

ρ2k,ih
H
k,iΓ

−1hk,i+

Nk∑

i=1

2ρk,i|hHk,iΓ−1zk| cos (ϕk,i − ξk,i)
}

∝
Nk∏

i=1

exp
{
−ρ2k,ihHk,iΓ−1hk,i + 2ρk,i|hHk,iΓ−1zk| cos (ϕk,i − ξk,i)

}
,

(4.11)

where the ith term of the produt, denoted by

Ξzk,xk,i
(ρk,i, ϕk,i) = exp

{
−ρ2k,ihHk,iΓ−1hk,i + 2ρk,i|hHk,iΓ−1zk| cos (ϕk,i − ξk,i)

}
, (4.12)

only depends on parameters ρk,i and ϕk,i. As variables ρk,1:Nk
and ϕk,1:Nk

are independent,

the joint density (4.8) then simply beomes

pϑ1:Nk
(zk|xk,1:Nk

) ∝
Nk∏

i=1

∫ +∞

0

∫ 2π

0

Ξzk,xk,i
(ρk,i, ϕk,i)p(ϕk,i)pϑi(ρk,i)dϕk,idρk,i. (4.13)

Thus, everything happens as if eah target is proessed separately. This drastially allevi-

ates the omputational omplexity of integral (4.8) and allows proessing distant targets

with parallel �lters as we will see in hapter 5 whih is dediated to the Bayesian Multitar-

get Filter in Trak-Before-Detet ontext. Of ourse, when ondition (4.10) is not veri�ed,

this simpli�ation an be done only for separated targets, while targets that annot be

separated must be proessed by the same �lter.

In the monotarget ase, integral (4.8) beomes

pϑ (zk|xk) ∝
∫ +∞

0

∫ 2π

0

p (zk|xk,1:Nk
, ϕk, ρk)p(ϕk)p(ρk)dϕkdρk. (4.14)
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Davey et al. [DRC12℄ have shown in this partiular monotarget ase that the marginal-

ization an be done over the phase ϕk, providing

pϑ (zk | xk, ρk) ∝
∫ 2π

0

p(zk|xk, ϕk, ρk)p(ϕk)dϕk,

∝ exp
{
−ρ2khHk Γ−1hk

}
I0

(
2ρk

∣∣hHk Γ−1zk
∣∣),

(4.15)

where I0 is the modi�ed Bessel funtion of the �rst kind, i.e.

I0 (x) =
+∞∑

l=0

(
x
2

)2l

(l!)2
. (4.16)

Then, the likelihood is obtained by integrating (4.15) over the generi density pϑ (ρk) that
depends on the �utuation model onsidered.

4.3.1.3 Dealing with the unknown stati parameters of the modulus �utua-

tion densities

In a Bayesian perspetive, a possible solution to deal with these parameters onsists in

hoosing a prior density for eah parameter ϑi (for instane a uniform prior over a given

interval [ϑi,min, ϑi,max], where ϑi,min and ϑi,max are provided) and then in marginalizing

also over these parameters. Note that in a �ltering perspetive the likelihood p(zk | xk,1:Nk
)

is alulated at eah iteration step k. It might then be onvenient to use the fat that the

parameters ϑ1:Nk
are onstant in order to estimate them over time. In this perspetive, the

problem of state-spae models with unknown stati parameters has been widely studied

in the literature [Kit98, Sto02, ADST04℄.

A popular solution onsists in expliitly introduing arti�ial dynamis on the stati

parameters [ADST04℄ and onsidering them as omponents of the state vetor. Thus,

the new state vetor for eah target beomes x′
k,i = [xTk,i, ϑk,i]

T
where the evolution of

parameter ϑk,i is Markovian, i.e.:

ϑk,i = ϑk−1,i + εk,i, (4.17)

with εk,i a small Gaussian noise, and ϑ0,i ∼ p0 (ϑ). Then, sine parameters ϑk,1:Nk
belong

to the state vetor, they do not need to be marginalized in the likelihood expression (4.8)

that beomes:

pϑk,1:Nk
(zk | xk,1:Nk

) = p
(
zk | x′

k,1:Nk

)
. (4.18)

Finally, in order to alleviate the notations, we will denote by xk,1:Nk
the state vetor

ontaining the parameters ϑk,1:Nk
(i.e. x′

k,1:Nk
). Thus, in the sequel, all the likelihood

expressions p (zk | xk,1:Nk
) for the Swerling models studied in this hapter will be provided

with the randomized parameter ϑk,1:Nk
.

4.3.2 Likelihood omputation with squared modulus

In the previous setion, the exat omputation of the likelihood from omplex measure-

ments has been presented. In this setion, a di�erent approah often onsidered in the
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literature, whih onsists in working only with the squared modulus of the omplex data

[RRG05, DRC08, BDV

+
03℄, is exposed. This approah is interesting in appliations where

only the squared modulus of the data is available but also beause it allows to remove the

phase dependeny in a monotarget setting. This simpli�es in some extent the omputa-

tions, at the ost of loosing the spatial oherene of the phase. Squared modulus were also

onsidered in an appliation involving two targets with Swerling 1 amplitude �utuations

[BDV

+
03℄. In this spei� appliation, the spatial oherene of the target amplitude was

not onsidered, thus simplifying the omputation at the ost of some information loss. We

will derive here the general multitarget likelihood in the squared modulus framework. It

di�ers from expressions obtained in the literature sine it does not make any approxima-

tion and thus properly takes into aount the spatial oherene of the omplex amplitude.

Moreover we show that the squared modulus approah does not allow in the multitarget

setting to remove all phase dependenies. Thus, as with omplex measurements, these

phase variables must be taken into aount, for instane by marginalization.

First, let us assume, as in the literature [DRC12, BDV

+
03, SB01℄, that the ovariane

matrix has the following expression Γ = 2σ2INc, i.e. the omplex noise samples nk are

mutually independent. Note however that, sine modulus ρk,1:Nk
and phases ϕk,1:Nk

are

random variables and spatially oherent at time k, this hypothesis does not allow to

establish that signal samples from zlk are independent; these samples are independent

only onditionally to variables ρk,1:Nk
and ϕk,1:Nk

. Then, with a slight abuse of notation,

let us denote by |zk|2 the vetor of squared modulus of the omplex signal : |zk|2 =
[|z1k|2, . . . , |zNc

k |2]T . Sine the noise samples zlk are independent onditionally to variables

ρk,1:Nk
and ϕk,1:Nk

, this property also holds for squared modulus of the noise samples |zlk|2,
thus allowing to expend the likelihood p(|zk|2 | xk,1:Nk

, ρk,1:Nk
, ϕk,1:Nk

) as follows

p(|zk|2 | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
) =

Nc∏

l=1

p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
). (4.19)

The desired density p(|zk|2 | xk,1:Nk
) an be obtained from p(|zk|2 | xk,1:Nk

, ρk,1:Nk
, ϕk,1:Nk

)
exatly in the same way as with omplex measurements, by marginalizing over all variables

ρk,1:Nk
and ϕk,1:Nk

. Remark that the hypothesis of independene is absolutely neessary

here to establish Eq.(4.19). The ondition Γ = 2σ2INc an be generalized to diagonal o-

variane matries, but the ase where Γ is not a diagonal matrix is muh more ompliated

even for two oupled variables: in that ase, squared modulus samples are orrelated, thus

leading to distributions with no losed-form, for instane multivariate Rayleigh distribu-

tion in the Swerling 1 ase [Mal03℄. Note also that in pratie, this hypothesis is veri�ed

with lassi mathed �ltering in presene of white Gaussian noise and an appropriate sam-

pling rate, but it may not be veri�ed anymore when modifying the reeption proessing,

for instane by applying lassi weighting windows suh as Hamming, Bartlett, Hann, et.

[Har78℄ that modify the noise orrelation after proessing.

Before going further into the omputation, we would like to highlight here an interest-

ing property that arises when onsidering squared modulus of omplex data, and that has

never been disussed to our knowledge in the literature: although Nk targets are present,

providing Nk di�erent and independent random phases ϕk,1:Nk
, it is possible to show, by

hanging the set of parameters, that the density p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕk,1:Nk
) e�etively

depends only on Nk − 1 phase variables. Indeed the variable |zlk|2 an be de�ned up to
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an arbitrary phase ϕ′
sine |zlk|2 = |eϕ

′
zlk|2, and we an write for instane

∣∣zlk
∣∣2 =

∣∣∣∣∣ρk,1h
l
k,1 +

Nk∑

i=2

ρk,ie
jϕ′

k,ihlk,i + n′l
k

∣∣∣∣∣

2

(4.20)

where all n′l
k = nlke

−jϕk,1
are still independent irular symmetri omplex Gaussian noise

samples, and phases ϕ′
k,i = ϕk,i − ϕk,1 are still uniform variables distributed over the

interval [0, 2π). Thus, |zlk|2 only depends on Nk − 1 phase variables. Therefore, taking

the squared modulus of the omplex signal leads to drop out the dependene of one and

only one phase. As a onsequene, in a monotarget setting the density of |zlk|2 does not

depend any longer on the phase ϕk but only on the modulus; this is one of the main

reasons to use suh a tehnique for the TBD monotarget algorithms. On the ontrary, in

the multitarget setting, taking the squared modulus does not remove all dependenies on

the phases! This dependeny remains present through oherent summations of the target

ontributions in eah ell. Disarding it may lead to loosing all the information provided

by the spatial oherene of the phase variables.

Conditionally to variables xk,1:Nk
, ρk,1:Nk

and ϕ′
k,2:Nk

, eah sample

|zlk|
2

σ2
follows a non

entral hi-square distribution with two degrees of freedom; indeed it orresponds to

the sum of the squares of two non-entered Gaussian variables. The density p(|zlk|2 |
xk,1:Nk

, ρk,1:Nk
, ϕ′

k,2:Nk
) is thus provided by:

p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕ′
k,2:Nk

) =
1

2σ2
exp

{
−|z

l
k|2

2σ2
− γl

(
ϕ′
k,2:Nk

, ρk,1:Nk

)

2

}

I0



√
γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
|zlk|2

σ2


 ,

(4.21)

where γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
is the non entrality parameter equal to

γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
=

∣∣∣∣∣ρk,1h
l
k,1 +

Nk∑

i=2

ρk,ie
jϕ′

k,ihlk,i

∣∣∣∣∣

2

σ2
.

(4.22)

At this step, mono and multitarget ases are di�erent, and we will onsider them sepa-

rately in the following. Finally, note that, as with omplex measurements, the likelihood

an be omputed up to a onstant. Therefore terms

1
2σ2

exp
{
− |zlk|

2

2σ2

}
will be disarded in

the rest of the paper.

4.3.2.1 The monotarget ase

In a monotarget setting, the non-entrality parameter in eah ell beomes

γl (ρk) =
ρ2k|hlk|2
σ2

(4.23)
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and does not depend on ϕk. The joint likelihood an then be obtained by marginalizing

Eq.(4.19) over the parameter ρk:

p(|zk|2 | xk) =
∫ ∞

0

Nc∏

l=1

p(|zlk|2 | xk, ρk)pϑk(ρk)dρk, (4.24)

where pϑk(ρk) is the density for the parameter ρk. As for omplex measurements, this

marginalization allows preserving the spatial oherene of the parameter ρk. Sine integral
(4.24) is, to our knowledge, intratable for Swerling �utuations models of type 1 and

3 (it onsists in integrating Nc Bessel funtions), it must be in that ase approximated

numerially. Note that we do not onsider the Swerling 0 model here, sine the integration

over the density pϑk(ρk) just onsists in replaing the parameter ρk by a onstant.

To avoid performing a numerial approximation, an heuristi solution was proposed

by Rutten et al. [RRG05℄ that onsists in �rst marginalizing independently eah sample

of the signal |zk|2 aording to pϑ(ρk), i.e.

p(|zlk|2 | xk) =
∫ ∞

0

p(|zlk|2 | ρk,xk)pϑk(ρk)dρk. (4.25)

Clearly the spatial oherene of ρk is lost sine the integration is performed independently

for eah measurement sample and not over the whole measurement vetor. On the other

hand, the alulation of integral (4.25) an be done analytially for Swerling �utuation

models of type 1 and 3, leading to simple losed-forms expressions. Then, the whole

likelihood is alulated by assuming that samples |z1k|2, . . . , |zNc

k |2 are independent. Under
that assumption,

p(|zk|2 | xk) =
Nc∏

l=1

p(|zlk|2 | xk), (4.26)

Reall that this is not true in general beause of the spatial oherene of random variable

ρk that tends to establish a dependeny between neighbour measurement samples. Thus,

rigorously, measurement samples |zlk|2 are independent onditionally to the state xk and

the parameters ρk and ϕk, but they are not generally independent onditionally to the

state xk only. In other words, if we know the values of the state xk and the parameters

ρk and ϕk, then we know how the state and these parameters in�uene the di�erent mea-

surement samples, so that the only unknown omes from the independent noise samples.

When we only know the state xk but not the parameters ρk and ϕk, then we do not know

exatly the link between the di�erent measurement samples, and they annot be assumed

independent anymore.

It is �nally interesting to observe here that, if a similar assumption was used in the

omplex measurement ase (i.e. independene of the amplitude parameters from sample to

sample, whih resorts to removing the spatial oherene of the amplitude parameter), then

the likelihood for the omplex measurement (without spatial oherene) would be equal

to the produt of the sample likelihood for eah omplex sample and beome idential to

the likelihood with squared modulus (still without spatial oherene). This omes from

the fat that when omputing the likelihood for one single sample, the phase parameter

does not matter, or, in other words, does not provide any information.
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4.3.2.2 The multitarget ase

As previously disussed, in the multitarget ase the parameter γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
still

depends on the Nk−1 phase variables ϕ′
k,2:Nk

. The likelihood must thus be obtained by

marginalization over modulus ρk,1:Nk
and phases ϕ′

k,2:Nk
:

p(|zk|2 | xk,1:Nk
) =

∫
· · ·
∫

R
Nk
≥0×[0,2π)Nk−1

Nc∏

l=1

p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕ′
k,2:Nk

)pϑk,1:Nk
(ρk,1:Nk

)×

p(ϕ′
k,2:Nk

)dρk,1:Nk
dϕ′

k,2:Nk
.

(4.27)

As in the monotarget ase, this expression is to our knowledge intratable. The same

heuristi as in the monotarget ase an be used: �rst marginalizing independently eah

sample from ϕ′
k,2:Nk

and ρk,1:Nk
as in (4.25), providing

p(|zlk|2 | xk,1:Nk
) =

∫
· · ·
∫

R
Nk
≥0×[0,2π)Nk−1

p(|zlk|2 | xk,1:Nk
, ρk,1:Nk

, ϕ′
k,2:Nk

)pϑk,1:Nk
(ρk,1:Nk

)p(ϕ′
k,2:Nk

)

dρk,1:Nk
dϕ′

k,2:Nk
,

(4.28)

and then approximating the whole likelihood as in Eq. (4.26). Note, however, that

ontrary to the monotarget ase there is in general no losed-form for the integral (4.28),

so that numerial integration must still be performed.

Finally, as with omplex measurements, target ontributions an often be separated

so that the multitarget likelihood then resorts to a produt of monotarget likelihoods.

This separation is obtained under the ondition hlk,ih
l
k,j ≈ 0, for any i, j, i 6= j that allows

to eliminate all ross terms in Eq. (4.22).

4.4 Likelihood omputation for Swerling models

In this setion, we will derive the measurement likelihood with three di�erent Swerling

models: Swerling 0, Swerling 1 and Swerling 3. For eah model, �rst the ase of omplex

measurements will be onsidered and seond the ase of squared modulus measurements.

Whenever losed-forms are not obtainable, we will propose approximations that allow to

ompute the likelihood at a lower omputational ost.

4.4.1 Complex measurements

4.4.1.1 Swerling 0 ase

The modulus ρk,i of eah target is assumed onstant and equal to an unknown onstant

ρi. This orresponds to the following generi �utuation density for eah target:

pϑi (ρk,i) = δϑi (ρk,i) , (4.29)

where δϑi (.) is the delta mass Dira funtion at point ϑi and where the parameter ϑi
is thus equal to ρi. Whereas parameters ρ1:Nk

are unknown, they an be added to the

state vetor and treated exatly as the other state parameters, as it has been explained
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in paragraph 4.3.1.3. Moreover, with this partiular �utuation density, the integration

over variables ρk,1:Nk
in Eq. (4.8) just onsists in substituting eah variable ρk,i by the

onstant parameter ρi. Sine this parameter ρi is a priori unknown, it is then replaed

by the dynamial parameter ρk,i as explained in setion 4.3.1.3) (note here the slight

abuse of notation sine ρk,i refers to the parameter ρi evolving over time and not to

the value of the amplitude modulus at step k). Finally, the integral (4.8) that orre-

sponds to the omplex measurement likelihood must just be omputed over parameters

ϕk,1:Nk
. In the general multitarget ase, this integral is, aording to our knowledge, in-

tratable and must be approximated exept for the partiular single target ase. A �rst

solution onsists in alulating numerially the integral over the domain [0, 2π)Nk
but

this may beome rapidly omputationally demanding. Thus, we propose to replae the

intratable likelihood by its Laplae approximation that has been already suessfully

used in partile �lter appliation [MBQLG11℄. Let Hk = [ρ1hk,1, . . . , ρNk
hk,Nk

] and let

Ψk = Ψk (ϕk,1:Nk
) = [ejϕk,1, . . . , ejϕk,Nk ]T . Equation (4.8) an be rewritten as follows:

p (zk | xk,1:Nk
) ∝

∫
· · ·
∫

[0,2π)Nk

exp
{
Υxk,1:Nk

(ϕk,1:Nk
)
}
dϕk,1:Nk

. (4.30)

where

Υxk,1:Nk
(ϕk,1:Nk

) = − (zk −HkΨk (ϕk,1:Nk
))H Γ−1 (zk −HkΨk (ϕk,1:Nk

)) . (4.31)

The integral (4.30) an be approximated using the Laplae method [MBQLG11℄. Roughly

speaking, the Laplae method onsist in using a polynomial approximation of the funtion

Υxk,1:Nk
(.) of order one at its maximum, thus allowing to evaluate the integral (4.30). The

Laplae approximation an be then expressed as follows:

pSW0 (zk | xk,1:Nk
) ≈ exp

{
Υxk,1:Nk

(ϕ̂k,1:Nk
)
} (2π)

Nr
2

∣∣∣det
(
−∇2Υxk,1:Nk

(ϕ̂k,1:Nk
)
)∣∣∣

1
2

, (4.32)

where ϕ̂k,1:Nk
are the phases maximizing the funtion Υxk,1:Nk

(.) and ∇2Υ (.) is the Ja-

obian matrix alulated with the phases ϕ̂k,1:Nk
. The phases ϕ̂k,1:Nk

annot be obtained

analytially even for two targets and an optimization method suh as a gradient desent

must be used. However, the funtion in Eq. (4.31) has the partiular struture of a

quadrati form in the variable Ψk, therefore it is possible to use the lassi least square

estimator

Ψ̂k =
(
HH
k Γ

−1Hk

)−1
HH
k Γ

−1zk (4.33)

and to alulate a value lose to the atual maximum by taking for eah phase ϕ̂k,i the

argument of the orresponding omponent Ψ̂k,i, i.e.

ϕ̂k,i = arg
(
Ψ̂k,i

)
. (4.34)

Note that the maximum is not exatly reahed with the estimator Ψ̂k sine it may not

respet the onstraint that all its omponents have a modulus equal to one (i.e. Ψ̂k is not

a vetor of phase as Ψk (ϕk,1:Nk
)). In pratie, this estimator is in most of the situations
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lose to the atual maximum. However, in some situations, for instane when omponents

hk,1:Nk
are almost olinear, the di�erene an be greater. In that latter ase, an optimiza-

tion must be performed or the �lter performane will be degraded. A ompromise must

then be done between the quality of the estimate and the omputational time required to

reah it.

4.4.1.2 Swerling 1 ase

Eah modulus ρk,i follows a Rayleigh distribution:

pϑi(ρk,i) = pSW1 (ρk,i) =
ρk,i
σ2
ρi

exp

(
−
ρ2k,i
2σ2

ρi

)
(4.35)

where σρi is the parameter of the Rayleigh distribution, assumed unknown, suh that

E[ρ2k,i] = 2σ2
ρi

and orresponds to the generi parameter ϑi of the density in Eq. (4.2).

Obviously, as in the Swerling 0 ase, this parameter an be added to the state vetor.

Although the integral (4.8) with respet to the Swerling 1 densities for parameters ρk,1:Nk

and with respet to variables ϕk,1:Nk
seems to be intratable, in pratie the density

p(zk | xk,1:Nk
) an be obtained using other probabilisti onsiderations. Indeed, in the

Swerling 1 model, sine ρk,i follows a Rayleigh distribution with parameter σρi and ϕk,i
is uniformly distributed over [0, 2π), eah variable ρk,ie

jϕk,i
in the measurement equation

(4.1) is a zero-mean irular symmetri omplex Gaussian variable with variane 2σ2
ρi
.

Therefore zk, whih is then the sum of independent Gaussian vetors with zero-mean, is

a omplex Gaussian vetor with zero-mean and ovariane matrix ΣNk
given by

ΣNk
= Γ+

Nk∑

i=1

2σ2
ρi,k

hk,ih
H
k,i. (4.36)

Clearly, this matrix is de�nite positive, so that the multi-target likelihood is �nally given

in losed form by:

pSW1 (zk | xk,1:Nk
) ∝ 1

det (ΣNk
)
exp

(
−zHk Σ−1

Nk
zk
)
. (4.37)

In pratie, the omputation of the likelihood requires the evaluation of det (ΣNk
) and

Σ−1
Nk

that an be omputationally demanding sine matrix ΣNk
is a square matrix of size

equal to the length of the onsidered vetor hk,i. Fortunately, these quantities an be

easily omputed by using lassi linear algebra formulas. Indeed, the matrix ΣNk
an be

written

ΣNk
= Γ +UVUH , (4.38)

with U = [hk,1, · · · ,hk,Nk
] a matrix with Nk olumns and V = diag

(
2σ2

ρ1,k
, · · · , 2σ2

ρNk
,k

)
.

Then using a lassi matrix inversion lemma (see [Mur12℄, p. 117), it omes

Σ−1
Nk

= Γ−1 − Γ−1U
(
V−1 +UHΓ−1U

)−1
UHΓ−1. (4.39)
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The inverse of matrix Γ an be pre-omputed, while V is a diagonal matrix and matrix(
V−1 +UHΓ−1U

)
is an Nk-by-Nk matrix of muh smaller size than ΣNk

as long as the

number of targets Nk remains small ompared to the number of onsidered ells. In that

ase its inversion implies a drastially redued ost ompared to the inversion of ΣNk
.

Furthermore, the omputational ost of the determinant an also be redued using the

matrix determinant lemma (see [Mur12℄, p. 117)

det (ΣNk
) = det

(
V−1 +UHΓ−1U

)
det (V) det (Γ) . (4.40)

Note that no hypothesis was made here about the loseness of the targets and therefore

this losed-form expression is valid both for distant and lose targets. Finally, for the

partiular monotarget ase, the likelihood simply beomes

pSW1 (zk | xk) ∝
1

1 + 2σ2
ρ,kh

H
k Γ

−1hk
exp

(
2σ2

ρ|hHk Γ−1
zk|2

1 + 2σ2
ρ,kh

H
k Γ

−1hk

)
. (4.41)

4.4.1.3 Swerling 3 ase

Eah squared modulus ρ2k,i follows a hi-square distribution with four degrees of freedom,

so that the orresponding density for the modulus ρk,i is provided by:

pϑi(ρk,i) = pSW3 (ρk,i) =
8ρ3k,i
ν2ρi

exp

(
−
2ρ2k,i
νρi

)
, (4.42)

where the parameter νρi , assumed unknown, is suh that E[ρ2k,i] = νρi . Again, this pa-

rameter an be added to the state vetor as for the Swerling 0 and 1 ase.

Aording to our knowledge, no losed form an be obtained for Eq (4.8) in the Swerling

3 ase and a numerial approximation must be done, implying the numerial omputation

of Nk integrals over modulus ρk,1:Nk
and Nk integrals over phases ϕk,1:Nk

. However, it is

possible to avoid the numerial integration over the parameters ρk,1:Nk
by approximating

the hi-square distribution by a Rie distribution; note indeed that the Swerling 3 model

an be viewed as an approximation of a Rie distribution [Ri07℄. Using a Rie distribution

instead of the Swerling 3 model, the density of the modulus ρk,i beomes

p
Rie

(ρk,i) =
2ρk,i(1 + a2)

νρi
exp

(
−a2 − ρ2k,i

(1 + a2)

νρi

)
I0

(
2a

√
ρ2k,i

(1 + a2)

νρi

)
, (4.43)

where a is the ratio between the dominant satterer and the weaker ones. By hoosing

a =
√
1 +
√
2, it an be easily heked that densities of the squared modulus ρ2k,i under

Swerling 3 and Rie models provide the same means and varianes [Ri07℄. Now onsider

the omplex amplitude ρk,ie
jϕk,i

where ρk,i is distributed aording to the Rie distribution
(4.43). Reall �rst that this Rie distribution is the distribution of the modulus of a

omplex Gaussian variable with mean µSW3,i = a
√

νρi
(1+a2)

and variane 2σ2
SW3,i =

νρi
(1+a2)

.

Then we an replae eah variable ρk,ie
jϕk,i

in (4.1) by a variable ξk,ie
jψk,i

where the

variables ξk,i and ψk,i are respetively Gaussian and uniform, and suh that ξk,ie
jψk,i

follows
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the same distribution as ρk,ie
jϕk,i

. Conditionally to phases ψk,1:Nk
, the observation zk is a

omplex Gaussian vetor with mean

µk,SW3 =

Nk∑

i=1

µSW3,ie
jψk,ihk,i

and ovariane matrix

ΦNk
= Γ +

Nk∑

i=1

2σ2
SW3,ihk,ih

H
k,i.

The density is then given by

p
Rie

(zk | xk,1:Nk
, ψk,1:Nk

) ∝ 1

det (ΦNk
)
exp

(
−
(
zk − µk,SW3

)H
Φ−1
Nk

(
zk − µk,SW3

))
.

(4.44)

Clearly, the omputational ost of Φ−1
Nk

and det (ΦNk
) an be redued as in the Swerling 1

ase. Then, it just remains to marginalize (4.44) over the phases ψk,1:Nk
. This marginal-

ization annot be omputed analytially and must then be alulated numerially, exept

in the monotarget ase.

In the partiular monotarget ase, a losed-form an be obtained both for the hi-

square distribution and the Rie distribution. For the hi-square distribution, the ex-

pression in Eq. (4.15) must be integrated over density (4.42). The following result (see

[GR07℄, p. 1097 Eq. 6.663)

∫ +∞

0

x3 exp
(
−αx2

)
I0 (βx) dx =

2

α2

(
1 +

β

4α

)
exp

(
β2

4α

)
, (4.45)

where α ∈ R
∗
≥0 and β ∈ R, is used with α = 2

νρ
+ hHk Γ

−1hk and β = 2
∣∣hHk Γ−1zk

∣∣
. Then,

the likelihood for the hi-square Swerling 3 model in the monotarget ase is given by

pSW3 (zk | xk) ∝
4

(2 + νρ,khHk Γ
−1hk)

2

(
1 +

νρ,k
∣∣hHk Γ−1zk

∣∣
2 + νρ,khHk Γ

−1hk

)
exp

(
νρ,k

∣∣hHk Γ−1zk
∣∣2

2 + νρ,khHk Γ
−1hk

)
.

(4.46)

For the Rie distribution, it is possible to integrate Eq. (4.44) over the phase ψ, a

omputation similar to the one providing Eq. (4.15), Then, the likelihood for the Rie

Swerling 3 model in the monotarget setting is equal to

p
Rie

(zk | xk) ∝
(1 + a2) exp (−a2)

1 + a2 + νρ,khHk Γ
−1hk

exp

(
νρ,k

∣∣hHk Γ−1zk
∣∣2 + a2 (1 + a2)

1 + a2 + νρ,khHk Γ
−1hk

)
×

I0

(
2a
∣∣hHk Γ−1zk

∣∣√(1 + a2) νρ,k

1 + a2 + νρ,kh
H
k Γ

−1hk

)
.

(4.47)

4.4.2 Squared modulus measurements

As it has been shown, the likelihood omputation with the squared modulus an be done

in two ways, either by taking into aount the spatial oherene of the phases and mod-

ulus with Eq. (4.27) or by marginalizing independently in eah ell with Eq. (4.28). As

these two ases are di�erent, we treat them separately in the following.
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4.4.2.1 The oherent ase

In the oherent ase, the likelihood is obtained aording to Eq. (4.27) by replaing the

generi density p (ρk,i) by the density of the �utuation onsidered. However, aording

to our knowledge, it annot be done analytially for the Swerling models and the integral

must be approximated numerially. Moreover, note that it an be really intensive in

terms of omputational resoures espeially when the number of targets is large sine

the size of the integration domain inreases exponentially with the number of targets.

For this reason, we propose an heuristi solution that onsists in replaing the parameter

γl (ρk,1:Nk
, ϕk,2:Nk

) by its expetation

E[γl (ρk,1:Nk
, ϕk,2:Nk

)] =

Nk∑

i=1

E [ρ2i ] |hlk,i|2
σ2

, (4.48)

where E [ρ2i ] only depends on the parameter of the �utuations density. Thus, integrals

(4.27) are simply the produt of the densities in Eq. (4.19) for all the ells. This is a

strong approximation for the likelihood, but as it will be seen in setion 4.5, it gives inter-

esting performane and it is really faster than the numerial integration whih is ostly in

terms of omputational resoures. In the monotarget ase, the likelihood is given by Eq.

(4.24) that requires the integration only over parameter ρk and therefore the numerial

approximation an be done with reasonable ost.

4.4.2.2 The non oherent ase

The non oherent ase onsists in alulating Eq. (4.28) for eah ell and then making the

produt over the Nc. In pratie for the Swerling 0 ase, it is not interesting beause Eq.

(4.28) an be alulated diretly; thus it is preferable to still use Eq. (4.27) to alulate the

likelihood sine it takes into aount the spatial oherene of variables ϕk,2:Nk
. Neverthe-

less, for the Swerling 1 and 3 ases, probabilisti onsiderations an be used to alulate

Eq. (4.28). Indeed, in the Swerling 1 ase Boers et al. [BDV

+
03℄ notied that eah

sample |zlk|2 follows an exponential distribution with parameter λlk = 1

2σ2+
∑Nk

i=1 2σ
2
ρi,k

|hl
k
|2
,

so that

p(|zlk|2 | xk,1:Nk
) =

1

λlk
exp

(
−|z

l
k|2
λlk

)
. (4.49)

For the Swerling 3 ase, the integration over parameters ρk,1:Nk
an be avoided with

the Rie �utuations. Indeed, by replaing eah variable ρk,ie
jϕk,i

by a variable ξk,ie
jψk,i

,

eah sample

|zlk|2

σ2 +
∑Nk

i=1 σ
2
SW3,i

∣∣hlk
∣∣2

onditionally to variables ψk,1:Nk
follows a non entral hi-square distribution with two

degrees of freedom and with non-entrality parameter

γl
Rie

(
ψ′
k,2:Nk

)
=

∣∣∣∣∣µSW3,1h
l
k,1 +

Nk∑

i=2

µSW3,ie
jψ′

k,ihlk,i

∣∣∣∣∣

2

σ2 +
∑Nk

i=1 σ
2
SW3,i

∣∣hlk
∣∣2 ,

(4.50)
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that does not depend on parameters ρk,1:Nk
anymore. The density of |zlk|2 onditionally

to ψ′
k,2:Nk

is given by Eq. (4.21) where σ2
is substituted by σ2 +

∑Nk

i=1 σ
2
SW3,i

∣∣hlk
∣∣2

and

γl
(
ϕ′
k,2:Nk

, ρk,1:Nk

)
by γl

Rie

(
ψ′
k,2:Nk

)
. Finally the likelihood |zlk|2 is obtained by integrating

only over variables ψ′
k,2:Nk

.

In the monotarget ase, integral (4.25) an be omputed analytially both for the Rie

distribution and the hi-square distribution. For the Rie distribution, no integration over

phase ψ′
k,1 is required and the likelihood is provided by

pSW3,Rie

(∣∣∣zlk
∣∣∣
2
| xk

)
∝

2σ2(1 + a2) exp
(
−a2

)

2σ2(1 + a2) + νρ,k
∣∣hlk
∣∣2 exp


νρ,k

|hlk|2|zlk|2
2σ2

+ 2σ2a2
(
1 + a2

)

2σ2 (1 + a2) + νρ,k
∣∣hlk
∣∣2




I0

(
2a
∣∣hlk
∣∣ ∣∣zlk

∣∣√(1 + a2) νρ,k

1 + a2 + νρ,k
∣∣hlk
∣∣2

)
.

(4.51)

For the hi-square distribution, result (4.45) is used with α =
νρ,k|hlk|2+4σ2

2νρ,kσ2
and β =

|hlk||zlk|
σ2

.

Then, integral (4.25) beomes

pSW3,χ2

(∣∣zlk
∣∣2 | xk

)
∝

(4σ2)
2

(
4σ2 + νρ,k

∣∣hlk
∣∣2
)2

(
1 +

1

2

νρ,k
∣∣hlk
∣∣ ∣∣zlk

∣∣

4σ2 + νρ,k
∣∣hlk
∣∣2

)
exp

(∣∣zlk
∣∣2

2σ2

νρ,k
∣∣hlk
∣∣2

4σ2 + νρ,k
∣∣hlk
∣∣2

)
.

(4.52)

4.4.3 Summary

In this setion, we have provided several solutions to ompute the likelihood in a Trak-

Before-Detet ontext for omplex amplitude �utuations of type Swerling 0, 1 and 3. For

the omputation of the likelihood with the omplex measurement, we have shown that a

losed-form an be obtained for all the Swerling �utuations onsidered in the monotarget

ase. In the multitarget ase, a losed-form an be obtained only in the Swerling 1 ase,

while in the other ases a numerial integration must be performed; however we propose

several methods in order to alleviate the time alulation. For the likelihood with the

squared modulus of the omplex measurement, we have derived the right expression in

order to keep the spatial oherene information of omplex amplitude parameters and

we have shown that only the dependeny of one phase an be removed, however this

leads to an intratable integral for all the Swerling models. Then approximations must

be performed; we propose a few solutions for suh approximations. Table 4.2 presents a

sum-up of the di�erent tehniques to alulate the likelihood with the existing methods

or those proposed in this hapter.

4.5 Simulation and Results

In this setion, we �rst study the performane in detetion and estimation of a single target

partile �lter that onsiders either omplex or squared modulus measurements. We show

the improvement of using omplex measurements both in detetion and in estimation only
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Swerling 0 Swerling 1 Swerling 3

Complex

measurement

Monotarget Eq. (4.15) and

[DRC12℄

Eq. (4.41) Eq. (4.46),

Eq. (4.47)

Multitarget Eq. (4.8),

and 4.4.1.1

Eq. (4.37) Eq. (4.8),

Eq. (4.44)

Squared

modulus

Monotarget,

non oherent

Eq. (4.25) and

[MB08℄

Eq. (4.49) and

[MB08℄

Eq. (4.52),

Eq. (4.51) and

[MB08℄

Multitarget,

non oherent

Eq. (4.28) Eq. (4.49) and

[BDV

+
03℄

Eq. (4.28)

and 4.4.2.2

Monotarget,

oherent

Eq. (4.4.2.1)

and [DRC12℄

Eq. (4.4.2.1)

and [DRC12℄

Eq. (4.4.2.1),

and [DRC12℄

Multitarget,

oherent

Eq. (4.27)

and 4.4.2.1

Eq. (4.27)

and 4.4.2.1

Eq. (4.27)

and 4.4.2.1

Table 4.2 � Summary of the likelihood omputation with di�erent data types (omplex

or squared modulus measurements), di�erent Swerling models (type 0, 1 and 3) and

di�erent number of targets (mono or multitarget). The squared modulus measurement

ase is splitted between oherent omputation and non oherent omputation. Eah ell

ontains the referene of the equation in this hapter that provides the expression for the

likelihood. When this expression previously appeared in the literature, the itation of the

orresponding paper is provided as well. Contributions of this hapter are highlighted in

bold and itali.

for the Swerling 1 and 3 model as Davey et al. have already shown the bene�ts of doing

so in the Swerling 0 ase [DRC12℄. Then, we study the behaviour of a simple multitarget

partile �lter for two lose targets. Performane are evaluated in terms of estimation of

the two target states and trak loss for �utuations of type Swerling 0, 1 and 3.

4.5.1 Single target simulation and results

4.5.1.1 Senario of the simulation

We onsider a senario with 100 time steps. The target appears at time step kb = 10
and disappears at step kd = 75. At time step kb, the target state is initialized with the

prior distribution pb (.) de�ned in setion 2.2 and until time step kd the state is propa-

gated aording to Eq. (2.6) (with qs = 0). We also assume that the entire trajetory is

ontained within area D (de�ned in setion 2.2.2). The SNR of the target is �xed either

to 5, 7 or 10 dB and we onsider �utuations of type Swerling 1 and 3. Conerning the

measurement model, we use the one de�ned in setion 2.3.
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4.5.1.2 Single target partile �lter and performane evaluation

TBD partile �lter For the simulations, we onsider the TBD monotarget partile

�lter desribed in setion 2.6 (denoted as "Marginalized TBD Partile Filter"). More-

over, for the unknown stati parameters 2σ2
ρ and νρ that orrespond respetively to the

parameter of the Swerling 1 and Swerling 3 �utuation densities, we add them to the

state vetor as explained in paragraph 4.3.1.3. Therefore, for eah partile the modulus

parameter 2σ2
k,p is simply propagated aording to

2σ2
k,p = 2σ2

k−1,p + ǫk, (4.53)

where ǫk is Gaussian noise, with variane σn. Finally, parameters σ2
0,p and ν0,p are drawn

uniformly over the interval orresponding to a target SNR between SNRmin and SNRmax

for the birth partiles.

Conerning the other state parameters (i.e. the position and the veloity):

� For the ontinuing ase, state parameters are propagated aording to the prior (i.e.

Eq. (2.6)).

� For the birth ase, the position is assumed to be initialized with the instrumental

density de�ned in Eq. (2.41) and that orresponds to initializing the position uni-

formly over the ells that exeed the threshold γ = −2σ2 log(Pfa) (where Pfa is

a given false alarm probability). Note that the approximation of optimal density

de�ned in Eq. (2.39) is not used here. Indeed, suh a density annot be used with

the squared-modulus measurements. Therefore, in order to make a fair omparison

between the partile �lter that uses the squared-modulus measurements with the

one that uses the omplex measurements, we hoose an instrumental density that

an be used in both ases. Finally, for the veloity, it is simply assumed to be

initialized with the instrumental density de�ned in paragraph 2.5.3.

Performane evaluation As we explained in setion 2.7, the "Marginalized TBD Par-

tile Filter" does not take any deision about the presene or the absene of the target

in the radar window. In this ase, we have already stressed that it is di�ult to properly

measure the performane in estimation without making any deision about the target

presene or absene, and without taking into aount the fat that the �lter has e�e-

tively onverged to the atual target state. Therefore, we propose to use the methodology

developed in Chapter 2 that onsists in:

� First using the variable dTk,i detailed in Eq. (2.95) to make the detetion.

� Then, using the indiator of good estimate ek,i de�ned by Eq. (2.96) (for k ∈
{kb, · · · , kd − 1}) in order to determine if the �lter has onverged on the atual

target state.

� Lastly, estimating the RMSE in position and veloity respetively with Eq. (2.100)

and (2.101).
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4.5.1.3 Simulations

For the simulation of the target senario, the following parameters are used: T=0.3 s,

vmin = 100m/s, vmax = 300m/s, SNRmin = 3 dB, SNRmax = 13 dB, qs = 10−3
, Pfa = 0.1

and σ2
n = 0.05. The transition probabilities for the partile �lter are set to Pb = Pd = 0.05.

The number of ontinuing partiles is set to Nc = 2000 and the number of newborn

partiles to Nb = 1000. Conerning the detetion strategy, we hoose Th(dk−1 = 0) = 0.9
and Th(dk−1 = 1) = 0.2.

For the simulation of the radar measurements, the parameters used are: rmin = 100 km,

rmax = 120 km, θmin = −10◦, θmax = +10◦, Nr = 40, Nθ = 14, σ2 = 0.5, B = 1MHz,

Te = 6.67× 10−5
s, Na = 70, c = 3× 108m.s−1

. Note that a small radar window is hosen

here to avoid using an important number of partiles and thus limit the omputational

ost.

Three �lters are used to detet and estimate the hidden target state xk, based on

di�erent assumptions for the likelihood omputation:

1. The �rst �lter, labeled as "Coh Sq-Mod", onsiders squared modulus to ompute the

likelihood and takes into aount the spatial oherene of the amplitude parameter

ρk: it orresponds to Eq. (4.24).

2. The seond �lter, labeled as "Non Coh Sq-Mod", onsiders squared modulus but

does not take into aount the spatial oherene of the amplitude parameter ρk: it
orresponds to Eq. (4.25).

3. The third �lter, labeled as "Coh Comp", onsiders omplex measurements and

spatial oherene: it orresponds to Eq. (4.14).

NMC = 1000 Monte Carlo simulation were performed for performane measurement.

Detetion performane In �gures 4.2 and 4.3, we present the average of the proba-

bility of existene variable P̂k,e whih is measured at eah step for the Swerling 1 and 3

models respetively. In both ase, �lters that use the omplex measurement outperform

those that use squared modulus measurements. Furthermore, the di�erene between the

"Coh Sq-Mod" �lter and the "Non Coh Sq-Mod" �lter is quite small, therefore it seems

that taking into aount the spatial oherene of the phase is more important than taking

into aount the modulus information. Moreover, the "Non Coh Sq-Mod" �lter requires

numerial approximation that leads to inrease the omputational time for a very small

gain in detetion.

Estimation performane In �gures 4.4 and 4.5, we present the result in terms of

RMSE in position and veloity for the Swerling 1 and 3 models respetively. As for all

the detetion results, partile �lters that used the omplex measurement outperform �lters

that work on squared modulus measurements. Moreover, note that the RMSE in position

seems to be better at the beginning whih is not expeted sine the traking alogrithm

should improve the RMSE. However, this an be explained by the fat that the RMSE

is alulated only over the iteration where the target has been deteted (i.e. dTk = 1)
and at the beginning only a few simulations have deteted the target (in partiular for
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Figure 4.2 � Monte Carlo simulation results for the single target ase with the Swerling

1 model. Average of the probability of existene variable P̂k,e. SNR is equal to 5, 7 and

10 dB.

the SNR of 5dB or 7dB) � These detetions orrespond to favorable ases where the

target ontribution is not disturb too muh by noise. For the next iteration, the �lter has

deteted the target more often than at the beginning, therefore the RMSE is alulated

over more Monte-Carlo runs among whih less favorable ases. In partiular, the ases

where the target is loated at the edge of the ell that indue a loss in SNR and as a

onsequene an inrease of the RMSE in position.
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Figure 4.3 � Monte Carlo simulation results for the single target ase with the Swerling

3 model. Average of the probability of existene variable P̂k,e. SNR is equal to 5, 7 and

10 dB.
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Figure 4.4 � Monte Carlo simulation results for the single target ase with the Swerling

1 model. Top: RMSE in position. Bottom: RMSE in veloity. SNR is equal to 5, 7 and

10dB.
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Figure 4.5 � Monte Carlo simulation results for the single target ase with the Swerling

3 model. Top: RMSE in position. Bottom: RMSE in veloity. SNR is equal to 5, 7 and

10 dB.
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4.5.2 Multitarget simulation and results

4.5.2.1 Multitarget senario

We now onsider a senario with two targets present during all the experiment. Both

targets follow a uniform retilinear trajetory. Target states xk,1 and xk,2 are uniformly

initialized over P × C suh that:

� the two veloity vetors (ẋk,1, ẏk,1), (ẋk,2, ẏk,2) form an angle of

π
4
,

� the minimum distane between targets is reahed at time step kc = 35 and is set to

dmin = 150 m, i.e. the minimum distane is equal to the range resolution.

An example of partiular trajetories for the two targets is provided in Figure 4.6. Target

Figure 4.6 � An example of two trajetories where the two veloity vetor form an angle

of

π
4
and where the minimum distane between the two targets is reahed at kc = 35.

SNR are set to 10dB and we onsider �utuations of type Swerling 0, 1 and 3. Note that
here, we only onsider a quite high SNR of 10 dB. Indeed, our main objetive in the multi-

target ase is to demonstrate the importane of taking into aount the spatial oherene

in the very spei� ase where targets are lose to eah other and their ontribution in

the likelihood mix rather than to determine the performane aording to the SNR as in

the mono-target ase. Considering low SNR target would make di�ult to determine if

potential partile �lter divergenes are due to the low SNR or to the target ontribution

mixing in the likelihood.

4.5.2.2 Multitarget partile �lter

For the simulation, we onsider here the partile �lter proposed by Kreuher et al.

[KKH05℄. We assume that the number of targets is known sine the objetive here is

to measure the e�et of the likelihood omputation on the partile �lter for two lose

targets. Therefore, Nk = 2 and the partile state is de�ned as x
p
k,1:Nk

= [xpk,1,x
p
k,2]

T
,

where x
p
k,1 and x

p
k,2 are the single state vetors of the �rst and seond targets respetively

of partile p, p ∈ {1, . . . , Np}. Note here that no presene variable is onsidered (the

presene of the two targets is known a priori by the �lter) and thus this �lter performs

traking only but annot perform detetion. This hoie was motivated in some extent by

the omputational ost indued by a multi-target �lter performing detetion and traking
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in a TBD framework and the di�ulty to onsider simple understandable performane

riteria in that ase. In the following, we detail the instrumental density used in the

partile �lter.

At step k = 0, eah partile target state x
p
0,i is initialized from the atual target state

aording to the following proedure:

� For the position, a Gaussian noise with variane σ2
r is added to the atual target

range r0,i =
√
x20,i + y20,i and a Gaussian noise with variane σ2

θ is added to the true

target bearing θ0,i = arctan
(
y0,i
x0,i

)
.

� The veloity is initialized around the true veloity in Cartesian oordinates by

adding a Gaussian noise with ovariane matrix σ2
vI2.

For the partile propagation, we onsider two ases:

� Either for eah partile, state x
p
k,1:2 veri�es (4.10). Then, the likelihood for eah

target state x
p
k,i an be omputed separately and we propose to use the Independent

Partition instrumental density (IP) [KKH05℄, i.e. sample the state of the partiles

aording to the distributions de�ned by the likelihood of eah target.

� Or hypothesis (4.10) is not veri�ed for all the partiles and (IP) annot be used

any longer. In that latter ase, we just propagate partiles aording to the prior

distribution Eq. (2.6).

4.5.2.3 Calulation of probability of trak loss

The probability of trak loss is evaluated from NMC Monte Carlo simulation with the

following proedure: at eah time step k and for eah target, we ompute the binary loss

variable

lk,i =





1 if


r̂k,i − rk,i
θ̂k,i − θk,i



T

P


r̂k,i − rk,i
θ̂k,i − θk,i


 > α,

0 otherwise,

(4.54)

where r̂k,i =
√
x̂2k,i + ŷ2k,i, θ̂k,i = arctan

(
ŷk,i
x̂k,i

)
, P =




1
∆r

0

0 1
∆θ




and α = 5.99 is the value

of the quantile funtion of the hi-square distribution with two degrees of freedom eval-

uated at 0.95. In other words, at eah iteration, we hek if the position estimator for

eah target is loated within the 0.95% on�dene ellipse around the true target position.

Finally, a trak is delared to be lost if at least one of the variables lk,i equals 1 during at

least �ve onseutive iterations. We de�ne by fm the loss variable for the m − th Monte

Carlo run that takes value 1 if the �lter failed to trak the two targets during all the experi-

ment and 0, otherwise. Then, the probability of trak loss is given by P̂loss =
1

NMC

NMC∑

m=1

fm.
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4.5.2.4 Calulation of the Root Mean Square Error (RMSE)

The mean RMSE of the two targets is estimated from NMC Monte Carlo runs with the

following proedure: at eah iteration, we obtain an estimator of the target state for eah

target provided by

x̂k,i =
1

Np

Np∑

p=1

x
p
k,i, i ∈ {1, 2},

and we assoiate eah estimator to a target suh that the sum of the Eulidean distanes

between the estimates and the atual state is minimum. Finally, the RMSE is omputed

at eah iteration k for simulations where both targets have not been delared lost (i.e.

lk,1 = 0 and lk,2 = 0) by taking the mean RMSE of the two targets over these simulations.

4.5.2.5 Simulations

The partile �lter is performed with the following parameters: T = 1 s, qs = 10−3
,

σ2
r = 3.6×10−3

, σ2
θ = 1.022×10−4

, σ2
v = 0.01 and σ2

n = 0.1. Parameters for the simulation

of the radar measurements are the same as for the monotarget simulation, exept for

the radar window for whih we take rmin = 100 km, rmax = 150 km, θmin = −20◦ and

θmin = +20◦.
Then, as for the monotarget ase, performane is evaluated for the three di�erent

ways to alulate the likelihood already de�ned, i.e. "Coh Sq-Mod", "Non Coh Sq-Mod"

and "Coh Comp". A fourth one is also used and denoted by "Exp Sq-Mod" (Expetation

Squared Modulus) and orresponds to the ase where the expetation of the non-entrality

parameter is taken to ompute the likelihood. Note that for the Swerling 0 ase there is

no interest of using the "Non Coh Sq-Mod" method sine "Coh Sq-Mod" method requires

integration only over Nk − 1 phases, therefore we replae this last method by the "Coh

Lap" (Coherent Laplae), where the likelihood is alulated via its Laplae approximation

(see 4.4.1.1).

When the partile states x
p
k,1 and x

p
k,2 are well separated, the likelihoods are alulated

in losed-form aording to the orresponding monotarget likelihood expression. When

partile states are too lose to eah other to be assumed disjoint, the likelihoods are

omputed aording to the multitarget likelihood expressions. When this omputation

requires a numerial integration, this integration is done over 10 points for eah parameter.

This small number of integration points is explained by the overall omputational ost

indued when several parameter dimensions are involved.

Estimation performane The performane in terms of RMSE in position and veloity

is presented in �gures 4.8, 4.9 and 4.7 for the Swerling 0, 1 and 3 models respetively.

First we observe that in all ases, "Coh Comp" provides the best performane. Then,

the di�erene between the "Coh Sq-Mod" and "Non Coh Sq-Mod" is quite small so that it

does not seem relevant to take into aount the spatial oherene of parameters ρk,1:Nk
and

ϕk,1:Nk
with squared modulus (at least for relatively high SNR). An other important point

is to ompare the omputational time with respet to performane. Thus, in Swerling 0

the "Coh Lap" method is approximatively six times faster than "Coh Comp" with almost
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Figure 4.7 � Monte Carlo simulation results in a multi-target setting with the Swerling 3
model. Top: RMSE in position. Bottom: RMSE in veloity.
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Figure 4.8 � Monte Carlo simulation results in a multi-target setting with the Swerling 0
model. Top: RMSE in position. Bottom: RMSE in veloity.

the same performane. Likewise, in Swerling 1 and Swerling 3, the "Non Coh Sq-Mod"

method is approximatively 60 times faster than "Coh Sq-Mod". Finally, note that the

RMSE in veloity inreases when targets are lose. This an be explained by the fat that

the likelihood does not depend diretly on the veloity.

Trak loss performane We present in Table 4.3 the probability of trak loss for

�utuations of type Swerling 0, 1 and 3. For all the Swerling models, the trak-loss is

Probability of trak loss

Swerling 0 Swerling 1 Swerling 3

"Coh Comp" 1.5× 10−2 1.6× 10−2 1× 10−2

"Coh Sq-Mod" 1.4× 10−2 3.1× 10−2 1.9× 10−2

"Non Coh Sq-Mod" not de�ned 4× 10−2 1.5× 10−2

"Exp Sq-Mod" 2.4× 10−2 6.9× 10−2 6× 10−2

"Coh Lap" 1.5× 10−2
not de�ned not de�ned

Table 4.3 � Estimated probability of trak loss for the di�erent multitarget partile �lters

with Swerling 0, 1 and 3 �utuations.

minimum for the "Coh Comp" method, but the "Coh Sq-Mod" and "Non Coh Sq-Mod"

methods are relatively lose to it. The poorest performane is obtained with the "Exp
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Figure 4.9 � Monte Carlo simulation results in a multi-target setting with the Swerling 1
model. Top: RMSE in position. Bottom: RMSE in veloity.

Sq-Mod" method where the likelihood is omputed with a rough approximation but has

the advantage to be muh more faster than "Coh Sq-Mod" and "Non Coh Sq-Mod".

4.6 Conlusion

In this hapter, we have investigated di�erent methods for omputing the likelihood in a

radar Trak-Before-Detet ontext. In pratie, the likelihood of the omplex measure-

ment depends on the unknown omplex amplitude parameters of the targets that must be

marginalized. We have shown that losed-form expressions an be obtained in the mono-

target ase for the Swerling models 0, 1 and 3. In the multitarget ase, a losed-form

expression an be obtained only for the Swerling 1 ase; for the others models, we propose

some possible approximations to alleviate the omputational time and it may be interest-

ing to investigate other approximations that may lead to faster omputational time while

preserving aeptable performane. We have also onsidered the ase where the data are

the squared modulus of the omplex measurements. In that ase, no losed-form an

be obtained and approximations must be performed. Finally, we have demonstrated via

Monte Carlo simulation the bene�ts of taking into aount the spatial oherene of the

omplex amplitudes both in detetion and in estimation ompared methods that work on

the square modulus of the omplex signal. The main onlusions that an be stated based

on this work are the following:

� In a TBD ontext, omplex measurements should be used whenever they are avail-

able sine it appears that the phases information is very important to improve the

performane.



Conlusion 143

� Multitarget likelihood are not simple to ompute exept for the partiular Swerling

1 ase. Thus monotarget likelihood should be omputed whenever it is possible to

fatorize the overall joint density.
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Chapter 5

Multitarget Bayesian �lter in

Trak-Before-Detet

5.1 Introdution

In hapter 2, we outlined the lassi state model for the TBD problem in a monotarget

setting where a variable sk (taking value 0 or 1) is used to model the presene or the

absene of the target. It seems natural to extend the monotarget model to the multitarget

setting by onsidering a proess (Nk,xk,1:Nk
)
k∈N where Nk is the number of targets and

an take values greater than one. In partiular, Kreuher et al. follow this approah

[KKH05℄ to propose a multitarget partile �lter allowing to trak several targets in a

TBD ontext. However, their solution su�er from di�ulties that may be hard to handle

in some situations ; in partiular it requires a lustering step in order to sample and

estimate the di�erent target states. Moreover, their solution does not fully exploit the

partiular struture of the likelihood when targets are far apart from eah other (see

Eq.(4.13)).

Therefore, our main goal, in this hapter, is to propose an alternative strategy allowing

to proess targets independently (i.e. one �lter per target) when they do not interat in

the likelihood. Thus, we propose, in setion 5.3 to onsider the following extension of

the monotarget model (sk,1:Nt,xk,1:Nt)k∈N � where Nt is the maximum number of targets

assumed known � from whih we show that eah target an be proessed independently

when they are far apart from eah other.

From this model, we then propose in setion 5.4 three di�erent partile �lters: A

�rst one for deteting the appearane of several targets, a seond one to manage the

disappearane of several targets and a last one that ombines the two previous partile

�lters in order to manage both the appearane and the disappearane of several targets.

Finally, in setion 5.5, we show via Monte Carlo simulations the ability of this strategy

to trak several targets in a TBD ontext on simple senarios.

5.2 Classi Multitarget Bayesian Filter

The measurement model for the multitarget ase has already been widely presented in

Chap. 4. Therefore, we only present here the multitarget state model, the theoretial

145
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Bayesian �lter and its partile approximation.

5.2.1 Multitarget State Model

In hapter 2 and hapter 3, the state model for the monotarget ase was extensively

detailed, while in hapter 4, Nk targets were onsidered in order to provide the multitarget

measurement equation (4.1) but no prior model was outlined. Thus, in this paragraph,

the state model (or prior model) will be detailed for the multitarget ase and lassi

assumptions made in the literature will be provided.

As in the monotarget ase where the presene or absene of the target is unknown, in

the multitarget ase the number of targets is unknown. It is then neessary to model this

ignorane. A natural solution is to onsider, as in the monotarget ase (see setion 2.2),

an hybrid proess (Nk,xk,1:Nk
)
k∈N, where Nk ∈ N is the number of targets and xk,1:Nk

is the multiple target state vetor provided by the onatenation of all individual target

state vetors xk,i, i ∈ {1, 2, · · · , Nk}, i.e. xk,1:Nk
=
[
xTk,1,x

T
k,2, · · · ,xTk,Nk

]T
. Note here that

the size of the state vetor is random sine it depends on the random variable Nk. Lastly,

when Nk = 0, the multiple target state vetor xk,1:0 is de�ned as the empty set ∅.

In a Bayesian perspetive, the proess (Nk,xk,1:Nk
)
k∈N is assumed Markovian and its

joint density an be fatorized as follows:

p (N0:k,x0:k,1:Nk
) = p (N0,x0,1:N0)

k∏

l=1

p
(
Nl,xl,1:Nl

| Nl−1,xl−1,1:Nl−1

)
. (5.1)

Thus, it is entirely de�ned by its transition probabilities p
(
Nk,xk,1:Nk

| Nk−1,xk−1,1:Nk−1

)

(that will be assumed independent from time index k in the sequel) and the density

p (N0,x0,1:N0) at step k = 0. In pratie, it is often onvenient to fatorize the transition

probability as in the monotarget ase, �rst by onsidering the number of targets Nk

and then by expressing the evolution of proess x0,1:Nk
onditionally to Nk and Nk−1.

Mathematially, this leads to onsider a transition probability density with the following

form:

p
(
Nk,xk,1:Nk

| Nk−1,xk,1:Nk−1

)
= p (Nk | Nk−1) p

(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
. (5.2)

The proess (Nk)k∈N is a Markov hain, whih allows to handle several target appearanes

or disappearanes at eah iteration. However, in pratie, a simpler model whih onsiders

the appearane or disappearane of only one target at eah iteration is often used [KKH05℄.

For this latter model, the proess (Nk)k∈N is an integer-valued random walk: i.e.

Nk = Nk−1 + ǫk, (5.3)

where (ǫk)k∈N is an i.i.d sequene taking value −1, 0 or +1. Therefore, the probabilities

p (Nk = Nk−1 + 1 | Nk−1) = p (ǫk = +1) = Pb, (5.4)

p (Nk = Nk−1 − 1 | Nk−1) = p (ǫk = −1) = Pd, (5.5)

do not depend on Nk−1 and orrespond respetively to the lassi birth and death event

detailed in Chapter 2. In the same manner, the probability

p (Nk = Nk−1 | Nk−1) = 1− Pb − Pd (5.6)
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does not depend on Nk−1 and orresponds to the ase where non target has appeared or

disappeared.

Conerning the transition density p
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
, one hypothesis of-

ten enountered in the literature onsists in onsidering that the di�erent target states

are independent. Thus, depending on the values of Nk and Nk−1, the transition density

an be expressed as follows:

p
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
=





Nk∏

l=1

pc (xk,l | xk−1,l), if Nk ≤ Nk−1

pb (xk,Nk
)

Nk−1∏

l=1

pc (xk,l | xk−1,l), if Nk > Nk−1,

(5.7)

where pc (.) and pb (.) are respetively the ontinuing and birth densities detailed in setion
2.2.

5.2.2 Theoretial Bayesian Filter

In the multitarget state, the theoretial Bayesian solution is not as simple as in the

monotarget ase (see setion 2.4) where the disrete parameter sk an only take two values

(0 and 1), sine here the disrete parameter Nk belongs to N. However, the multitarget

theoretial Bayesian �lter still follows the two-step reursion: propagation and update.

The aim here is to alulate reursively the posterior density p (xk,1:Nk
, Nk | z1:k). From

setion 1.2.2, this latter an be rewritten as follows:

p (xk,1:Nk
, Nk | z1:k) =

p (xk,1:Nk
, Nk | z1:k−1) p (zk | xk,1:Nk

)

p (zk | z1:k−1)
. (5.8)

This last equation allows to alulate the probability that exatly l targets are present

thanks to the following marginalization:

p (Nk = l | z1:k) =
∫
p (xk,1:l, Nk = l | z1:k) dxk,1:l, (5.9)

and, of ourse,

+∞∑

l=0

p (Nk = l | z1:k) = 1. (5.10)

Conerning the predited density p (xk,1:Nk
, Nk | z1:k−1), it is obtained by the Chapman-

Kolmogorov equation:

p (xk,1:Nk
, Nk | z1:k−1) =

+∞∑

Nk−1=0

∫
p
(
xk−1,1:Nk−1

, Nk−1 | z1:k−1

)
×

p (Nk | Nk−1) p
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
dxk−1,1:Nk−1

.

(5.11)
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5.2.3 Partile �lter approximation

A partile �lter approximation of the theoretial Bayesian �lter was proposed by Kreuher

et al. in [KKH05℄. Their solution is a generalization of the lassi monotarget TBD parti-

le �lter detailed in setion 2.4: they onsider a set of Np partiles

{(
N i
k,x

i
k,1:N i

k

)
, wik

}Np

i=1
,

where in that ase N i
k belongs to N, while in the monotarget ase the orresponding vari-

able sk ould only take values 0 and 1. Thus, an approximation of the posterior density

p (xk,1:Nk
, Nk | z1:k) is given by

p (xk,1:Nk
, Nk | z1:k) ≈

Np∑

i=1

wikδxi

k,1:Ni
k

(xk,1:Nk
) . (5.12)

Note here that this partile approximation ontains partiles with di�erent dimensions

sine the number of targets per partile may be di�erent.

The �rst step in the sequential omputation of the posterior density p (xk,1:Nk
, Nk | z1:k)

from the density p
(
xk−1,1:Nk−1

, Nk−1 | z1:k−1

)
at step k−1 onsists in drawing the variable

Nk for eah partile aording to an instrumental probability law q (Nk | Nk−1, zk) � in

pratie, this instrumental probability law is often hosen to be the prior. Reall here that

in the proposed model Nk an take only three values

1

, i.e. Nk−1 − 1, Nk−1 or Nk−1 + 1.
Then, the partile states xi

k,1:N i
k

are propagated aording to an instrumental density

q
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1
, zk
)
. Whereas there is no restrition on the hoie of the

instrumental density, it seems reasonable to hoose an instrumental density that has the

same struture as p
(
xk,1:Nk

| Nk, Nk−1,xk−1,1:Nk−1

)
(de�ned in Eq. (5.7)). Under that

hypothesis the weights are updated aording to the following equation:

wik ∝ wik−1

p
(
N i
k | N i

k−1

)

q
(
N i
k | N i

k−1, zk
) ×





Nk∏

l=1

pc (xk,l | xk−1,l)

qc (xk,l | xk−1,l, zk)
, if Nk ≤ Nk−1,

pb (xk,Nk
)

qb (xk,Nk
| zk)

Nk−1∏

l=1

pc (xk,l | xk−1,l)

qc (xk,l | xk−1,l, zk)
, if Nk > Nk−1.

(5.13)

Finally, these weights are normalized and a resampling proedure is performed, if required,

as in the generi partile �lter (see Chapter 1, Algorithm 1.1). A pseudoode of a single

yle of the urrent partile �lter, whih is alled the Classi Multitarget TBD Partile

Filter, is desribed in Algorithm 5.1.

5.2.4 The invariant permutation problem

An important feature that has not been disussed yet ompliates the estimation of the

target states: the multitarget posterior density funtion is invariant under any permu-

tation of the target index [KKH05℄. For instane, if the multitarget state ontains two

1

As mentioned before, a more general law ould be onsidered for Nk. However, we restrit here to

this ase to detail a quite simple partile approximation. The extension to a more ompliated model

for Nk an be derived from the proposed one. Note, nevertheless, that this kind of model may lead to

pratial issues; in partiular, it might be more di�ult to initialize properly several new target states at

eah iteration.
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Algorithm 5.1 Classi Multitarget TBD Partile Filter

Require: Partile loud

{(
N i
k−1,x

i
k−1,1:N i

k−1

)
, wik−1

}Np

i=1
at step k − 1,

1: for i = 1 to Np do

2: Draw N i
k aording to the probability law p

(
Nk | N i

k−1

)

3: if N i
k > 0 then

4: Draw xi
k,1:N i

k

∼ q
(
xk,1:Nk

| N i
k, N

i
k−1,x

i
k−1,1:N i

k−1
, zk

)
.

5: end if

6: Update partile weight wik aording to Eq. (5.13)

7: end for

8: Normalize weights: wik ←
wi

k∑Np
l=1 w

l
k

, i = 1, · · · , Np

9: Compute Neff aording to Eq. (1.98).

10: if Neff < NT then

11: Resample Np partiles

12: Reset weights: wik ← 1
Np
, i = 1, · · · , Np

13: end if

14: return

{(
N i
k,x

i
k,1:N i

k

)
, wik

}Np

i=1

individual target state vetors, the posterior density has the same values whatever the

order of the target state xk,1 and xk,2, i.e.

p (xk,1,xk,2 | z1:k) = p (xk,2,xk,1 | z1:k) . (5.14)

Therefore, the posterior partile approximation might provide partiles with states xik,1:2 =[
(xik,1)

T , (xik,2)
T
]T

or xik,1:2 =
[
(xik,2)

T , (xik,1)
T
]T

as illustrated in Figure 5.1. This may not

be a problem as long as only the density is onsidered. However it may beome problemati

if one wants to estimate the multitarget states, for instane using a lassi estimator, as

follows:

x̂k,1:2 =

[
1

Np

Np∑

i=1

(xik,1)
T ,

1

Np

Np∑

i=1

(xik,2)
T

]T
. (5.15)

In order to properly estimate the individual target states, it is then neessary to sort the

partile state vetors and to partition the state vetors [KKH05℄ so that the individual

target states in a given partition all refer to the same individual target state. In pratie,

these partitions may be reated via a lustering algorithm (suh as K-means [HF09℄) over

the partile state positions.

Moreover, sorting the partile states in ordered partitions may be neessary when

using more sophistiated instrumental densities than the prior. Now, the prior is not

very e�ient in the multitarget ase beause it blindly samples the general target state

without onsidering the weight of eah individual state. Suh a strategy tends to reate

partile states where some individual states sample e�iently the real target state while

the others provide worse estimates. This will then spread the partile states over non

interesting areas of the multitarget state spae.

On the ontrary, using partitions enables to onsider spei� instrumental densities

that sample target states individually when target states are su�iently far apart to be
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Figure 5.1 � Illustration of the invariant permutation problem. In green, partiles with

partile target state xik,1:2 =
[
(xik,1)

T , (xik,2)
T
]T

while in magenta, partiles with partile

target state xlk,1:2 =
[
(xlk,2)

T , (xlk,1)
T
]T
.

onsidered independent, or by smaller sets of partitions in the ase of lose targets. This

will thus improve the e�ieny of the target state sampling. Suh a strategy was proposed

in [KKH05℄.

5.2.5 Instrumental densities for the multitarget partile �lter

As in the monotarget ase, the hoie of the instrumental density is ruial to obtain

aeptable performane with as few partiles as possible. In the multitarget ase, as

Kreuher et al. mentioned in their paper [KKH05℄, the prior density orresponds to a

simple and "naive" solution in order to propagate the partiles but, in the other hand, it

requires onsidering a very large number of partiles in order to properly sample all the

possible ombinations between the individual target states.

Therefore, some instrumental densities were proposed in the literature to e�iently

propagate the multitarget partile state. The �rst one was proposed by Orton et al.

[OF02℄ and is alled the Independent Partition (IP) method. It allows to propagate

partitions that do not overlap in an independent manner. The mehanism onsists in

sampling eah partile target state in a partition aording to the prior pc
(
xk,t | xik,t−1

)

where t is the partition number. Then, a disrete density is onstruted from these partile

states where the weights are provided by the likelihood of the sole partition t, i.e.:

q (xk,t | zk) =
Np∑

i=1

bik,tδxi
k,t

(xk,t) , (5.16)

where,

bik,t ∝
∫ +∞

0

∫ 2π

0

Ξzk,xk,t
(ρk,t, ϕk,t)p(ϕk,t)p(ρk,t)dϕk,tdρk,t, (5.17)

and Ξzk,xk,t
(., .) is detailed in Eq. (4.12). Finally, Np states x

i
k,t are sampled from the den-

sity q (xk,t | zk). Note here that sine the prior is no longer used, an additional weighting
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term given by

1
bi
k,t

is indued for eah partition in the alulation of the partile weights.

When some partitions overlap, Kreuher et al. proposed an other method alled the

Coupled Partition (CP) method. For eah partile i in partition t inluded in the set of R
overlapping partitions, M individual states are sampled from the prior pc

(
xk,t | xik,t−1

)
.

Then, a disrete density is built over the M sampled states in the same manner as in the

IP method, i.e.

q (xk,t | zk) =
M∑

m=1

bmk,tδxk,t
(xk,t) , (5.18)

where,

bmk,t ∝
∫ +∞

0

∫ 2π

0

Ξzk,xk,t
(ρk,t, ϕk,t)p(ϕk,t)p(ρk,t)dϕk,tdρk,t. (5.19)

Finally, the new state xik,t is sampled from the disrete density in Eq. (5.18). The main

di�erene with the IP method is that here the disrete density in Eq. (5.18) is alulated

for eah partile while in the IP method only one disrete density is omputed over all

the partiles in the partition.

Lastly, an other important aspet that an be taken into aount via the instrumental

density is the management of target births and deaths. Indeed, we have seen in Chap. 3

that the solutions developed for the detetion of target appearane or target disappearane

are quite di�erent. In partiular, deteting a target appearane in a large radar window

seems more demanding than deteting the disappearane of a single established trak,

and in partiular it requires more partiles. Therefore, most of the solutions proposed in

the literature onsider a two-layer partile �lter [GF11℄:

� a �rst �lter to detet target disappearanes;

� a seond �lter to detet target appearanes.

These two �lters are managed by two di�erent instrumental densities. As in the mono-

target ase, the most important di�ulty onsists in onveniently sampling the positions

of the new targets at eah iteration. Garia-Fernandez in [GF11℄ proposed to initialize

new pre-traks only in the ells that exeed the threshold γ = −2σ2 log (Pfa). Then eah

initialized pre-trak is maintained during N b
it iterations; at the end of these N b

it iterations,

a statistial test is performed in order to delare if the trak is an atual trak or a false

trak. Then all the on�rmed pre-traks are provided to the seond layer of the partile

�lter that propagates the partiles using the IP or CP method and manages the trak

disappearanes thanks to a statistial test.

5.2.6 Drawbaks of the existing solutions

The above Bayesian modeling presents the advantage to be very general and an han-

dle almost all the situations enountered in the multitarget ase. However, the pratial

implementation of the partile approximation might require a very large number of par-

tiles to ensure aeptable performane. Indeed, if no e�ort is made to arefully sample

the individual target states, the partile approximation may require a lot of partiles to

properly sample all possible ombinations of target states and numbers of targets.
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Conerning the IP and CP methods, one major drawbak of these two approahes

is the need for reating partitions via a lustering algorithm (for instane the K-means

algorithm) that may fail to properly sort out the di�erent partitions, in partiular in

the presene of newborn targets uniformly distributed in the radar window mixed with

already lustered existing targets. Moreover, the K-means algorithm requires the prior

knowledge of the number of lusters while this number is unknown, it is possible to use

well-known riterion suh as AIC (Akaike Information Criterion) or MDL (Maximum De-

sription Length) in order to selet the number of luster in the K-means algorithm, but it

would inrease the already very heavy ost. An other disadvantage of these instrumental

densities is the spei� resampling proedure performed for eah partition t from the dis-

rete density in Eq. (5.16). First, performing this resampling proedure at eah iteration

might be ostly. Then the weights of the disrete instrumental density are only alulated

from the urrent measurement zk and thus do not take into aount the partile weights

at previous step. For high target SNR this will have no onsequene. However at low

SNR, a noise disturbane may lead to sample most of the partiles in a wrong area of the

state spae.

Lastly, the independene of the targets is taken into aount only in the instrumental

densities but not in the struture of the Bayesian �lter itself. Indeed, most proposed

solutions alulate a weight for the multitarget state vetor rather than a weight per indi-

vidual target state, even for su�iently far away states that may be assumed independent.

This may lead to problemati ases where some partitions of a multitarget partile prop-

erly sample some of the existing targets while the other partitions do not; the resulting

overall weight will tend to underestimate the importane of the well-�tting partiles while

overestimating the importane of the mis�tting partiles, and thus bias the estimation.

For instane, in the illustration presented in Figure 5.2, the ontribution of partile xik,1
to the target state estimation of xk,1 will be small (beause the overall weight is penalized

by the partition xik,2) even though it properly samples the target state xk,1.

5.3 A new approah for the multitarget Trak-Before-

Detet problem

The solution detailed in the previous setion onsiders the overall multitarget state. How-

ever, targets far away from eah other an be proessed independently. Therefore, the

aim of this setion is to propose a solution that onsists in using, whenever it is possible,

one partile �lter per target rather than an overall �lter that samples all target states.

A �rst solution was proposed by Vo et al. in [VVPS10℄. In this paper, the authors

onsider the TBD multitarget problem in the framework of the Random Finite Set (RFS)

theory. In partiular, Vo et al. show that, when onsidering a partiular struture for

the likelihood of the measurement onditionally to the random target set, the posterior

likelihood an be fatorized, thus allowing to proess the targets independently. However,

the RFS framework used in that paper is not neessary to establish suh a property. We

propose here an approah based on a probabilisti framework, and in partiular a new

model that allows to fatorize the multitarget posterior density as the produt of the

individual target posterior densities. Finally, we have seen in Chap. 3 that it ould be
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Figure 5.2 � Sheme illustrating the fat that although partile single target states xk−1,1:2

are sampled independently, the resulting multitarget weight wik may be small if one of the

single partile target state is badly drawn.

interesting to separate the detetion of the target appearane from the detetion of the

target disappearane. We follow this idea in the multitarget setting.

5.3.1 A new Multitarget State Model

In setion 5.2, the number of targets was managed through a variable Nk belonging to

N. This would theoretially allow to manage an in�nite number of targets. However,

in pratie, the number of targets may often be limited to a �nite number Nt (�rst a

very large number of targets is very unlikely, and seond the apaity of the reeption

hain to proess a large number of targets is usually limited). Furthermore, we saw in

the previous multitarget model that the targets are linked via the weight equation (5.13)

even if they are assumed to behave independently (see Figure 5.2). Therefore, we propose

a new approah that onsiders a olletion of individual TBD target states (i.e. (sk,xk))
rather than the overall multitarget state (Nk,xk,1:Nk

). This di�erent state model will

allow, under some onditions on the likelihood p (zk | xk,1:Nk
), to fatorize the posterior

multitarget density as a produt of individual target state densities.

To this purpose, let us de�ne by (sk,1:Nt,xk,1:Nt) the hybrid multitarget proess on-

stituted of a olletion of Nt single target states. The idea is now to derive the prior

model so that it fatorizes as a produt of single prior models. The multitarget transition

density for this multitarget model an be fatorized as in Eq. (2.2), leading to onsider

as transition density:

p (sk,1:Nt,xk,1:Nt | sk−1,1:Nt,xk−1,1:Nt) =

p (sk,1:Nt | sk−1,1:Nt) p (xk,1:Nt | sk−1,1:Nt, sk,1:Nt,xk−1,1:Nt) .
(5.20)

Then, by assuming as in the lassi multitarget prior model that the single target proesses
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(sk,i,xk,i) are independent for any k, the transition probability density fatorizes as follows:

p (sk,1:Nt,xk,1:Nt | sk−1,1:Nt ,xk−1,1:Nt) =
Nt∏

i=1

p (sk,i | sk−1,i) p (xk,i | xk−1,i, sk,i, sk−1,i) ,

(5.21)

while the multitarget state density at step k = 0 is given by:

p (s0,1:Nt ,x0,1:Nt) =

Nt∏

i=1

p (s0,i) p (x0,i | s0,i) . (5.22)

5.3.2 Measurement equation and likelihood for distant target

The measurement equation for the proposed model is similar to the one detailed in setion

4.2 with the inorporation of variables sk,1:Nt, i.e.

zk =

Nt∑

i=1

sk,iρk,ie
jϕk,ih (xk,i) + nk. (5.23)

Clearly the fatorization of the likelihood in Eq. (4.13) also holds with the addition

of variables sk,1:Nt: by inorporating the variable sk,1:Nt in Eq. (4.4), the measurement

likelihood is given by

p (zk | xk,1:Nk
, sk,1:Nt, ρk,1:Nk

, ϕk,1:Nk
) ∝ exp

{
−
Nk∑

i=1

sk,iρ
2
k,ih

H
k,iΓ

−1
hk,i+

Nk∑

i=1

2sk,iρk,i|hHk,iΓ−1
zk| cos (ϕk,i − ξk,i)−

Nk∑

i=1

Nk∑

l=i+1

2sk,isk,lρk,iρk,l
∣∣hHk,iΓ−1

hk,l

∣∣ cos (ϕk,i − ϕk,l − φk,il)

}
,

(5.24)

where ξk,i = sk,i arg
(
hHk,iΓ

−1zk
)
and φk,il = sk,isk,l arg

(
hHk,iΓ

−1hk,l
)
.

Let us de�ne, as in Eq. (4.12), the following funtion:

Ξ
zk,(sk,1:Nt

,xk,1:Nt)
(ρk,1:Nt, ϕk,1:Nt) = p (zk | xk,1:Nk

, sk,1:Nt, ρk,1:Nk
, ϕk,1:Nk

) . (5.25)

Then,

p (zk | xk,1:Nk
, sk,1:Nt) =

∫
· · ·
∫

Ξ
zk,(sk,1:Nt

,xk,1:Nt)
(ρk,1:Nt , ϕk,1:Nt)p(ϕk,i)p(ρk,i)dρk,1:Ntdϕk,1:Nt .

(5.26)

As in setion 4.3.1, under assumption

∣∣hHk,uΓ−1hk,v
∣∣ ≈ 0, for any (u, v), u 6= v, (5.27)

all the ross terms in Eq. (4.4) an be disarded, and the likelihood funtion an be

expressed as a produt of funtions that only depend on variables (sk,i,xk,i)
2

:

p (zk|sk,1:Nt,xk,1:Nt) ∝
Nt∏

i=1

gzk (sk,i,xk,i) , (5.28)

2

Note that, for the sake of simpliity, we do not onsider the additional stati parameter ϑi for the

density of amplitude ρk,i. The extension to this model does not present any di�ulty.
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Figure 5.3 � Illustration of the non-interating hypothesis for di�erent values of (xk,1,xk,2).
For the ouple (xk,1,xk,2) in red the hypothesis is veri�ed sine target states are far away

from eah other, while for the

(
x′
k,1,x

′
k,2

)
in green the hypothesis is not veri�ed sine

target states are too lose.

with

gzk (sk,i,xk,i) =

∫ +∞

0

∫ 2π

0

Ξ
zk,(sk,i,xk,i)(ρk,i, ϕk,i)p(ϕk,i)p(ρk,i)dϕk,idρk,i, (5.29)

and

Ξ
zk,(sk,l,xk,l)(ρk,l, ϕk,l) =



exp
{
−ρ2k,ihHk,iΓ−1hk,i + 2ρk,i|hHk,iΓ−1zk| cos (ϕk,i − ξk,i)

}
, if sk,i = 1,

1, if sk,i = 0.

(5.30)

Lastly, note that this fatorization is only true for partiular values of target states

(sk,1:Nt ,xk,1:Nt) and might not be veri�ed for other ombinations

(
s
′

k,1:Nt
,x

′

k,1:Nt

)
. Indeed,

for instane, let us assume that the target state xk,1 belongs to a set Cxk,1
while the target

state xk,2 belongs to a set Cxk,2
. Thus, it may happen that some ouples (xk,1,xk,2) ∈

Cxk,1
× Cxk,2

verifying the non-interating hypothesis in Eq. (5.27) allowing to fatorize

the likelihood, while for some other ouples

(
x′
k,1,x

′
k,2

)
the non-interating hypothesis

in Eq. (5.27) is not veri�ed. This point is illustrated in Figure 5.3. Therefore the

ondition of non-interating target states in Cxk,1
and Cxk,2

should not be onfused with

Cxk,1

⋂ Cxk,2
= ∅ but an rather be de�ned as follows:

for any (xk,1,xk,2) ∈ Cxk,1
× Cxk,2

,
∣∣hHk,1Γ−1hk,2

∣∣ ≈ 0. (5.31)

5.3.3 Theoretial Bayesian �lter for non-interating targets

The aim of this setion is to demonstrate that, when the likelihood pϑ1:Nt
(zk|sk,1:Nt,xk,1:Nt)

an be fatorized as in Eq. (5.28) at eah iteration step k and for any value of (sk,1:Nt,xk,1:Nt),
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then the multitarget posterior density p (sk,1:Nt ,xk,1:Nt | z1:k) fatorizes as a produt of sin-
gle target state posterior densities, i.e.

p (sk,1:Nt,xk,1:Nt | z1:k) =
Nt∏

i=1

p (sk,i,xk,i | z1:k) . (5.32)

This an be proved by a mathematial indution. To this purpose, let us assume that

for any k ∈ N, the likelihood fatorizes as in Eq. (5.28) for all possible values of

(sk,1:Nt ,xk,1:Nt). First, by de�nition of the state model in setion 5.3.1, we have

p (s0,1:Nt ,x0,1:Nt) =

Nt∏

i=1

p (s0,i,x0,i) . (5.33)

Thus, the property is veri�ed for k = 0. Now let us assume that the property (5.32) is

true for a given integer k. By de�nition of the Bayes �lter, the posterior density at step

k + 1 an be rewritten as follows:

p (sk+1,1:Nt,xk+1,1:Nt | z1:k+1) =
p (sk+1,1:Nt,xk+1,1:Nt | z1:k) p (zk+1|sk+1,1:Nt,xk+1,1:Nt)

p (zk+1 | z1:k)
,

(5.34)

where the preditive density is obtained via the Chapman-Kolmogorov equation:

p (sk+1,1:Nt ,xk+1,1:Nt | z1:k) =
∑

sk,1,··· ,sk,Nt

∫
p (sk,1:Nt,xk,1:Nt | z1:k)×

p (sk+1,1:Nt,xk+1,1:Nt | sk,1:Nt,xk,1:Nt) dxk,1:Nt,

(5.35)

and the normalization term p (zk+1 | z1:k) is provided by

p (zk+1 | z1:k) =
∑

sk+1,1,··· ,sk+1,Nt

∫
p (sk+1,1:Nt,xk+1,1:Nt | z1:k)×

p (zk+1|sk+1,1:Nt,xk+1,1:Nt) dxk+1,1:Nt.

(5.36)

We will demonstrate that both the preditive density and the normalization an be fa-

torized as a produt of single target state funtions whih will straightforwardly imply

that the posterior density at step k + 1 also fatorizes.

Let us start with the preditive density at step k + 1. Using the fatorization of the

posterior density in Eq. (5.32) at step k for the state xk,1 and the fatorization of the

transition density in Eq. (5.20), this latter an be rewritten as follows:

p (sk+1,1:Nt,xk+1,1:Nt | z1:k) =
∑

sk,1,··· ,sk,Nt

∫
p (sk,1,xk,1 | z1:k) p (sk+1,1,xk+1,1 | sk,1,xk,1)×

p (sk,2:Nt,xk,2:Nt | z1:k) p (sk+1,2:Nt,xk+1,2:Nt | sk,2:Nt,xk,2:Nt) dxk,1:Nt.

(5.37)
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Then, the integration over xk,1 and sk,1 an be separated from the variables (sk,2:Nt,xk,2:Nt)
leading to

p (sk+1,1:Nt,xk+1,1:Nt | z1:k) =
∑

sk,1

∫
p (sk,1,xk,1 | z1:k) p (sk+1,1,xk+1,1 | sk,1,xk,1) dxk,1

×
∑

sk,2,··· ,sk,Nt

∫
p (sk,2:Nt,xk,2:Nt | z1:k) p (sk+1,2:Nt,xk+1,2:Nt | sk,2:Nt,xk,2:Nt) dxk,2:Nt.

(5.38)

Finally, marginalizing over sk+1,2:Nt and xk+1,2:Nt , it omes

p (sk+1,1,xk+1,1 | z1:k) =
∑

sk,1

∫
p (sk,1,xk,1 | z1:k) p (sk+1,1,xk+1,1 | sk,1,xk,1) dxk,1, (5.39)

allowing to write the preditive density p (sk+1,1:Nt ,xk+1,1:Nt | z1:k), by substituting Eq.

(5.39) in Eq. (5.38), as follows:

p (sk+1,1:Nt,xk+1,1:Nt | z1:k) = p (sk+1,1,xk+1,1 | z1:k) p (sk+1,2:Nt,xk+1,2:Nt | z1:k) . (5.40)

This last equation indiates that the target state with index 1 is independent from the

other states. Of ourse, the reasoning from Eq. (5.37) to Eq. (5.40) an be iterated for

other targets. Thus, the preditive density an be rewritten as the produt of the single

state preditive density, i.e.

p (sk+1,1:Nt,xk+1,1:Nt | z1:k) =
Nt∏

i=1

p (sk+1,i,xk+1,i | z1:k) . (5.41)

In the same manner, using the fatorization of the preditive density in Eq. (5.41)

and the likelihood in Eq. (5.28), the normalization term p (zk+1 | z1:k) also fatorizes as

follows:

p (zk+1 | z1:k) =
Nt∏

i=1

∑

sk+1,i

∫
p (sk+1,i,xk+1,i | z1:k) gzk+1

(sk+1,i,xk+1,i) dxk+1,i. (5.42)

Therefore, using Eq. (5.42) and Eq. (5.41), the posterior density fatorizes as

p (sk+1,1:Nt,xk+1,1:Nt | z1:k+1) =
Nt∏

i=1

p (sk+1,i,xk+1,i | z1:k) gzk+1
(sk+1,i,xk+1,i)∑

sk+1,i

∫
p (sk+1,i,xk+1,i | z1:k) gzk+1

(sk+1,i,xk+1,i) dxk+1,i

,

(5.43)

where learly

p (sk+1,i,xk+1,i | z1:k+1) =
p (sk+1,i,xk+1,i | z1:k) gzk+1

(sk+1,i,xk+1,i)∑
sk+1,i

∫
p (sk+1,i,xk+1,i | z1:k) gzk+1

(sk+1,i,xk+1,i) dxk+1,i

,

(5.44)

thus demonstrating the fatorization of the posterior density at step k + 1.
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5.3.4 Theoretial Bayesian �lter for interating targets

In the previous setion, we have derived the Bayesian �lter when targets do not interat.

Of ourse some targets may interat in the likelihood (e.g. when they ome su�iently

lose to eah other). In this ase, the fatorization of the whole posterior density in (5.32)

annot be used anymore. Fortunately, if some targets interat, it does not mean that all

the targets should be proessed jointly. In fat, it is reasonable to expet that only a small

group of targets interats while the other targets an still be proessed independently. We

will formalize this more general ase in the following. However, sine the developments

are quite similar to the previous ones, we provide here only the main steps to extend

the fatorization of the posterior density to groups of interating targets. The omplete

development an be found in Appendix C.1.

Let us �rst de�ne the set of all target indexes INt = {1, · · · , Nt}, and Ng sets of target

indexes Iint,1, · · · , Iint,Ng suh that

for any (l, m) ∈ {1, · · · , Ng} , Iint,l
⋂

Iint,m = ∅, (5.45)

and

INt =

Ng⋃

l=1

Iint,l. (5.46)

Moreover, let us assume that these sets Iint,1, · · · , Iint,Ng are suh that, at eah iteration

step k, they verify the following hypothesis:

for any (l, m) ∈ {1, · · · , Ng}2 , for any (u, v) ∈ Iint,l × Iint,m,
∣∣hHk,uΓ−1hk,v

∣∣ ≈ 0. (5.47)

Then, using a similar proof as in the previous paragraph, the posterior multitarget

density an be fatorized as follows:

p (sk,1:Nt,xk,1:Nt | z1:k) =
Ng∏

i=1

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
. (5.48)

On the other hand, the Bayesian �lter for a group of targets Iint,i an be obtained as

follows:

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
=

p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
∑

sk,Iint,i

∫
p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
dxk,Iint,i

,

(5.49)

where the funtion Gzk
(sk,I ,xk,I) (I is here any set of indexes) is equal to:

Gzk
(sk,I ,xk,I) =

∫
Ξ
zk,(sk,I ,xk,I)(ρk,I , ϕk,I)p (ρk,I) p (ϕk,I) dρk,Idϕk,I. (5.50)

Note that here all the ross terms hHk,uΓ
−1hk,v, provided that both u and v belong to I,

remain ontrary to funtion gzk (sk,i,xk,i) in Eq. (5.29) where these ross terms disap-

peared.
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The possibility to fatorize the posterior for groups of targets is one of the main

di�erene with the solution proposed by Vo et al. [VVPS10℄ where the fatorization is

obtained only for single target states.

Let us �nally remark that if targets in group Iint have interated until k−1 but do not
interat after iteration k, then the posterior density p (sk,Iint

,xk,Iint
| z1:k) do not fatorize

as a produt of individual target states, i.e.

p (sk,Iint
,xk,Iint

| z1:k) 6=
NIint∏

l=1

p (sk,l,xk,l | z1:k) . (5.51)

This means that if targets have interated in the likelihood, they are linked for any future

iteration k. Nevertheless, we ould expet that asymptotially (i.e. when k → +∞), the

posterior density fatorizes.

5.4 Partile �lter approximations

Let us now derive a partile �lter approximation for the partiular Bayesian multitarget

�lter presented in the previous setion. We propose three di�erent partile �lters:

� A �rst �lter that manages target disappearanes. The idea onsists in using, when

ever possible, i.e. when targets do not interat in the likelihood, the monotarget

partile �lter outlined in setion 3.3; interating targets will of ourse be managed

jointly.

� A seond �lter that manages target appearanes. The key point here onsists in

onsidering that targets appearing in the radar window do not interat in the like-

lihood. This assumption implies that the instrumental density that samples the

partile positions should be arefully designed in order to e�etively provide non

interating partile positions.

� Lastly, a third partile �lter that manages both target appearanes and disappear-

anes.

5.4.1 Disappearane multitarget detetion partile �lter

The pratial implementation of the disappearane multitarget partile �lter is quite long

and omplex and, in partiular the way to manage the interating targets over time.

Therefore, in this setion we provide only the outline of our solution. The omplete

desription an be found in Appendix C.2.

5.4.1.1 Single and interating targets partile �lters

Let us �rst detail the partile �lter that manages single target disappearane and group of

targets disappearane without taking into aount the fat that the target state status, i.e.

whatever the target state interats with other targets or not, may hange over time. To

this purpose, let us assume that Nt targets are simultaneously traked at the urrent time
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instant. If target states xk,1:Nt do not interat in the likelihood until k (i.e. hypothesis

in Eq. (5.27) is veri�ed), the whole likelihood fatorizes as a produt of single target

state posterior densities (see Eq. (5.32)). Therefore, rather than approximating the

whole multitarget state posterior density with a partile �lter, as in setion 5.2.3, eah

single target state posterior density p (sk,i,xk,i | z1:k) an be approximated either by a

monotarget partile when it does not interat with the other target �lters or by a partile

�lter that manages a group of interating targets otherwise.

Conerning the partile �lter for single target state, several partile approximations

an be onsidered. We restrit here our attention to the disappearane TBD partile �lter

detailed in setion 3.3, that provides the best performane.

Thus, de�ning Ising as the set of single targets and using suh a partile approximation,

eah posterior density p (xk,i | z1:k) (for i ∈ Ising) an be approximated as follows:

p̂ (xk,i | sk,i = 1, z1:k) =

Np∑

p=1

wpk,iδxp
k,i

(xk,i) , (5.52)

where the weights wpk,i an be alulated using Eq. (5.44) leading to

wpk,i ∝ wpk−1,i

pc
(
x
p
k,i | xpk−1,i

)

qc
(
x
p
k,i | xpk−1,i, zk

)gzk
(
sk,i = 1,xpk,i

)
. (5.53)

The densities pc
(
x
p
k,i | xpk−1,i

)
and qc

(
x
p
k,i | xpk−1,i, zk

)
are respetively the ontinuing prior

density and instrumental density for the ontinuing ase. The probability p̂ (sk = 1 | z1:k)
an be alulated using Eq. (3.76) (where dk is replaed by sk).

In the ase of a group of interating targets, the target states must be proessed

jointly as explained in setion 5.3.4. Thus, for eah interating group of targets Iint,i, the
Bayesian �lter in Eq. (5.49) should be used. However, approximating suh a Bayesian

�lter might be di�ult due to a omplexity inreasing with the number of targets. Indeed,

if for instane three targets interat, the �lter approximation will require the alulation

of 23 probabilities p (sk,Iint
| z1:k) and 23 densities p̂ (xk,Iint

| sk,Iint
= 1, z1:k). Therefore,

for the sake of simpliity, we propose to manage the group of targets by onsidering that

when targets interat: p (sk,Iint
= 1 | z1:k) = 1, i.e. none of the targets an die.

For eah group of targets Iint,i, we propose the following partile �lter approximation:

p̂
(
xk,Iint,i

| sk,Iint,i
= 1, z1:k

)
=

Np∑

p=1

wpk,Iint,i
δxp

k,Iint,i

(
xk,Iint,i

)
, (5.54)

where

wpk,i ∝ wpk−1,iGzk

(
sk,Iint,i

= 1,xk,Iint,i

)
. (5.55)

Note that in this last equation, we impliitly used the prior distribution as instrumental

to propagate the target states xk,Iint,i
. Finally, weights are normalized and eventually a

resampling proedure is performed (if needed).
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5.4.1.2 Outline of the proposed partile �lter solution

The two partile �lters proposed in the previous setion assume that the status of eah

target - whether it belongs to a single trak or to a group of interating targets - does not

hange. Of ourse, in real appliations, this status may hange over time.

Therefore, at eah iteration, the status of eah target must be updated in order to know

if the target should be proessed alone or jointly with some other targets. Furthermore,

the ase of targets that have interated in the past should also be onsidered. Indeed, we

have seen that suh targets will be linked for all the next iterations even if they do not

interat anymore. As a onsequene, for suh targets, it should not be possible to use

the single target partile �lter, although it allows to dramatially simplify the multitarget

traking problem. In order to solve this problem, we propose the following approximation:

� The groups of interating targets Iint,1:Ng are evaluated at eah iteration, using the

method provided in setion C.2.1.

� If a target (or a group of targets) previously interated with some other targets

but does not at the urrent step, this target (or this group of targets) is proessed

independently from other targets with the method the method provided in setion

C.2.2.

In other words, this last point indiates that the interations between targets are onsid-

ered only at the urrent time step; the past interations are not taken into aount. Note

also the sets may di�er from iteration k and iteration k−1 but the only available densities
orrespond to groups de�ned at iteration k− 1.Thus, before performing the partile �lter

for the sets Ising and Iint,1:Ng , it is �rst neessary to reorganize the posterior partile den-

sities from the sets at previous iteration in order to obtain the densities for sets Ising and
Iint,1:Ng , i.e. p̂ (xk−1,i | sk−1,i = 1, z1:k−1), i ∈ Ising and p̂

(
xk−1,Iint,l

| sk−1,Iint,l
= 1, z1:k−1

)
,

l ∈ {1, · · · , Ng}. A method enabling this reorganization is provided in setion C.2.2.

Finally, the multitarget disappearane detetion partile �lter an be summarized as

follows:

� First, the sets Ising and Iint,1:Ng are evaluated with the method provided in setion

C.2.1.

� Then, posterior densities at previous step are reorganized in order to alulate the

densities p̂ (xk−1,i | sk−1,i = 1, z1:k−1), i ∈ Ising and p̂
(
xk−1,Iint,l

| sk−1,Iint,l
= 1, z1:k−1

)
,

l ∈ Iint,1:Ng .

� Lastly, the partile �lter reursion is performed for eah reorganized density.

5.4.2 Appearane Multitarget partile �lter

For the Disappearane Multitarget partile �lter detailed in the previous setion, we pro-

posed to use, when possible, a partile �lter per target. The same idea will be developed

for the Appearane Multitarget partile �lter. However some important di�erenes with

the previous algorithm have to be taken into aount. Indeed, ontrary to the manage-

ment of target disappearanes where partiles are already onentrated in the state-spae
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around the atual target states, in the appearane ase, the loation of target appearanes

is unknown, requiring to uniformly sample the whole state-spae. Besides, in Chapter 2,

we have seen that one of the deliate point for the TBD monotarget partile �lter was the

initialization of the target state (see setion 2.5). Therefore, here a partiular attention

should be given to the design of the instrumental density for initializing the partile target

states � with the additional di�ulty that more than one target may appear in the radar

window.

In pratie, designing suh an instrumental density in the general ase (for instane,

if several targets appear lose from eah other at the same time) may appear di�ult

and it is often neessary to onsider some simplifying hypotheses. One possibility is to

onsider that new targets appear su�iently apart from eah other so that they do not

interat in the likelihood. Garia-Fernandez in [GF11℄ follows this hypothesis to design

an instrumental density in order to properly initialize the partile state of birth targets

(see setion 4.4.2 in [GF11℄). As we did in setion 2.5.1.2, he initializes partiles in the

ells that exeed a given threshold γ alulated as γ = −2σ2 logPfa ( see Eq. (1.51)).

However, in his simulation, he hose a very small probability of false alarm Pfa = 2.10−5

in order to initialize only a few target states at eah iteration. Suh a threshold makes

di�ult to detet low SNR targets and as a onsequene to trak them. Thus, in order

to handle suh low SNR targets, we propose some extension to his instrumental density

in order to manage a larger Pfa.
To this purpose, in the sequel, we will assume that newborn targets appear su�iently

appart from eah other and thus do not interat in the likelihood. This hypothesis an

be exploited in two di�erent manners in the partile �lter framework:

� Either the Bayesian prior an be seleted in order to prevent that birth targets

appear in the same area and interat in the likelihood. We have not investigated

this solution here.

� Or the instrumental density an be hosen in suh a manner that the partile target

states do not interat in the likelihood. This seond strategy will be onsidered in

the following.

5.4.2.1 Outline of the proposed solution

The main idea of the proposed solution onsists in using one partile �lter per target.

Therefore, in order to detet Nt targets, the partile posterior density approximation

should fatorize as in Eq.(5.32), i.e.:

p̂ (sk,1:Nt,xk,1:Nt | z1:k) =
Nt∏

i=1

p̂ (sk,i,xk,i | z1:k) , (5.56)

where eah partile posterior density p̂ (sk,i,xk,i | z1:k) an be alulated with the algo-

rithm developed in Chap. 2 and 3. However, for the sake of simpliity, we will not on-

sider the solution based on the target appearane time in setion 3.3 sine, at this point,

it seems too omplex to manage multiple mixture posterior approximations. Instead,

we propose to use the monotarget partile �lter of setion 2.6 that allows to alulate

P̂ i
e,k = p̂ (sk,i = 1 | z1:k) and p̂ (xk,i | sk,i = 1, z1:k). It should be stressed that in Eq. (5.56)
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for any pair (l, m) of targets, none of the partiles of target l an interat with parti-

les of targets m. Indeed, if this ondition is not veri�ed, then the two targets must be

proessed jointly and not independently. Thus, if partiles belonging to �lters l and m

(with l, m ∈ {1, · · · , Nt}, l 6= m) are respetively denoted by

{
x
p
k,l

}Np

p=1
and

{
x
p
k,m

}Np

p=1
,

the previous ondition an be expressed as:

∀ (p, q) ∈ {1, · · · , Np}2 ,
∣∣hH

(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣ < γh. (5.57)

5.4.2.2 Managing the interation between partiles

A �rst solution to prohibit the interation between partiles belonging to di�erent �lters

onsists in keeping one of the interating partile while "killing" the other interating

partiles by setting their weight to zero.

This solution is quite radial, but insures to avoid the interating issue in all ases and

is very simple to implement.

Finding the interating partiles with Eq. (5.57) might be quite long sine it requires

to alulate the quantity

∣∣hH
(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣
for all the possible pairs of partiles

for �lters l and m. Therefore, in order to limit the omputational resoures devoted to

the alulation of interations between partiles, we propose to simplify this proedure

by working on the ell indexes (u, v) of the partile loations rather than on the salar

produts

∣∣hH
(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣
.

Let us de�ne, as in Eq. (2.26), the set of neighborhood ells around the partile target

state x
p
k,i as

Vxp
k,i

=
{
(u, v) | |upk,i − u| ≤ δhr , and |vpk,i − v| ≤ δhθ

}
, (5.58)

where

(
upk,i, v

p
k,i

)
is the ell loation of partile x

p
k,i. Then, we de�ne the set of ells that

belong to the partile �lter approximating the state xk,i in suh a manner:

Icell,i =

Np⋃

p=1

Vxp
k,i
. (5.59)

Then, two partile �lters l and m are delared to interat if the intersetion between

sets Icell,l and Icell,m is not empty. Let us de�ne by I⋂,(l,m) the intersetion between sets

Icell,l and Icell,m, i.e.

I
(l,m)⋂ = Icell,l

⋂
Icell,m. (5.60)

Finally, interating partiles for �lter l or m are killed as follows:

∀p ∈ {1, · · · , Np} , if
(
upk,l, v

p
k,l

)
∈ I(l,m)⋂

then wpk,l = 0. (5.61)

As some weights may have been set to zero, the weights wpk,l for �lter l must be renormal-

ized so that

∑Np

p=1w
p
k,l = 1.

5.4.2.3 Proposed instrumental density

The marginalized TBD partile �lter detailed in setion 2.6 onsiders two ases in order

to propagate the partiles: Np,c "ontinuing" partiles and Np−Np,c "newborn" partiles.

Therefore, to extend the monotarget marginalized partiles to the multitarget ase, two

instrumental densities have to be designed.
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Instrumental density for the ontinuing ase

The instrumental density for propagating the ontinuing partiles is often hosen to

be the prior. However, using the prior density in the multitarget ase will not prevent

possible interations between the partile target states sine, in that ase, the partiles

for eah target state xk,i will be sampled independently. Therefore, further developments

should be made in order to propose an instrumental density that allows to prevent from

this issue. As proposed previously, when partiles from di�erent partile �lters interat,

interating partiles for all interating �lters exept one an be killed. However, suh

a strategy does not take into aount the information provided by the di�erent partile

�lters and in partiular the probability of appearane P̂ l
e,k. For instane, if one partile

belongs to a partile �lter with a high probability P̂ l
e,k and interats with another partile

belonging to a partile �lter P̂m
e,k with a lower probability, it seems reasonable to keep the

partile belonging to the partile �lter with the highest probability P̂ l
e,k.

In order to take into aount the information provided by the di�erent partile �lters,

we propose to sample the ontinuing partiles for the di�erent partile �lters in a sequen-

tial manner, i.e. one �lter after another starting with the �lter presenting the highest

probability of appearane P l
e,k−1 at previous step. This solution an be summarized as

follows:

1. Sort the probabilities P l
e,k−1 in desending order and get the set of ordered indexes

Ifilt,ց = {i1, · · · , iNt}.

2. Remove the �rst element i1 of the set Ifilt,ց = {i1, · · · , iNt}, i.e. Ifilt,ց = Ifilt,ց \
{i1}.

3. For eah �lter l in the set Ifilt,ց alulate I
(i1,l)⋂

with Eq. (5.60). If the set I
(i1,l)⋂

is

empty the two �lters do not interat and there is nothing to do. On the ontrary,

some partiles of partile �lter i1 and l interat. Then, interating partiles of �lter
l are killed as follows:

� Find partiles x
p
k,l for whih

(
upk,l, u

p
k,l

)
∈ I(i1,l)⋂

.

� Set their weights to zero.

� Normalize the weights wpk,l suh that

∑Np

p=1w
p
k,l = 1.

4. Go bak to step 2 and apply the same proedure.

Instrumental density for the birth ase

For the birth ase, we propose to extend the work on the instrumental densities for

the monotarget ase developed in setion 2.5. In the sequel, we onsider that ontinuing

partiles have been already propagated before initializing the birth partiles. One again,

the main di�ulty is to manage the possible interations between the partiles of the

di�erent �lters.

As in the ontinuing ase, we propose to initialize partile positions for the di�erent

�lters in a sequential manner. However, it is here preferable to initialize the di�erent

partile �lters in the asending order of the probability of existene P l
e,k. Indeed, in the
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birth ase, it seems reasonable to promote the initialization of partiles for partile �lters

that have the smallest probability of appearane.

An important point to take into aount is that ontinuing partiles for the di�erent

partile �lters are already present in the radar window. Therefore, initializing randomly

the position of the birth partiles in the set of ells Ik,γ � where Ik,γ is the set o� ells

that exeed the threshold γ (see paragraph 2.5.1.2 for details) � may not prevent from

interation between partiles of the di�erent �lters; some birth partiles of a given �lter

may be initialized in a ell that ontains ontinuing partiles of an other �lter.

To avoid suh a situation, it is �rst neessary to �nd whih ells in the set Ik,γ belong to
whih �lters. Sine ontinuing partiles have been already propagated and do not interat

by onstrution, the set of ells Iγcell,l, that exeed the threshold γ and that belong to �lter

l, is simply obtained as follows:

Iγcell,l = Icell,l
⋂
Ik,γ. (5.62)

Note that this set may be empty. Moreover, the set Ik,γ may di�er from the union of the

sets Iγcell,l sine some ells that exeed the threshold may not be onsidered by any �lter.

In the sequel, we will denote by Ik,remain the set of ells exeeding the threshold γ and not

belonging to any �lter and by NIk,remain
the number of remaining ells. Obviously, these

ells must be assigned to the di�erent partile �lters. We propose the following proedure:

� For eah �lter, alulate αfilt,l =
1−P l

e,k∑Nt
l=1 1−P

l
e,k

.

� Randomly assign

⌈
αfilt,lNIk,remain

⌉
ells to eah �lter, suh as eah ell is assigned

to only one �lter. It should be ensured if possible that at least one ell is assigned

to eah �lter.

� Add the ells randomly assigned to �lter l to the set Iγcell,l.

Finally, the Np − Np,c partiles of eah �lter are initialized uniformly over the ells

Iγcell,l. The weighting term indued by this proposed instrumental distribution is given by:

pb (rk, θk)

qb (rk, θk|zk)
=
NI

γ
cell,l

Nc

, (5.63)

where NI
γ
cell,l

is the number of ells in Iγcell,l.

5.4.3 Overall TBD multitarget partile �lter

In setions 5.4.1 and 5.4.2, two partile �lters have been proposed in order to manage

respetively the disappearane and the appearane of multiple targets. We now propose to

ombine the two previous partile solutions. We use here the same strategy as developed

in setion 3.4 for the monotarget setting. The main di�erene between the two ases

onerns the management of the number of targets. In partiular, one would like to

avoid that two di�erent �lters detet and trak the same target. This may arise when

partiles for an appearane detetion �lter are initialized near a target already traked by

another �lter. To overome this problem, we assume, in the sequel, that the appearane
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multitarget partile �lter annot initialize and propagate partiles in ells "belonging" to

the disappearane partile �lter de�ned in Eq. (5.59).

Finally one iteration of the overall TBD multitarget partile �lter an be summarized

as follows:

1. Apply the disappearane multitarget partile �lter to update the traked targets.

2. Determine the ells that are forbidden for the appearane multitarget partile �lter.

3. Update the appearane multitarget partile �lter.

4. Add any appearane �lters with a probability of appearane P l
e,k greater than Pinit

to the set of disappearane multitarget partile �lter.

5.5 Simulation and Results

In this setion, we evaluate the ability of the overall TBD multitarget partile �lter to

manage the appearane and disappearane of several targets on quite simple senarios

via Monte Carlo simulations. For the �rst senario we simply onsider the appearane

and disappearane of three targets that do not interat while for the seond senario the

rossing of two targets is onsidered.

As in hapter 2, both detetion and estimation performane are evaluated. We propose

to evaluate the performane in detetion by averaging the estimated number of targets

at eah iteration over the NMC Monte Carlo runs. The performane in estimation is

provided by alulating the RMSE between the estimate target states provided by the

partile �lters and the atual target states. The omputation of the RMSE requires

assoiating the estimated target states with the atual target states. This assoiation is

performed so as to minimize the overall summation of all RMSE. If the estimated number

of targets is lower than the atual number of targets, all the estimated target states must

be used.

5.5.1 Non-interating targets

We onsider a senario with Nit = 100 iterations. Three targets are present during

the experiment: they appear respetively at kb,1 = 5, kb,2 = 10 and kb,3 = 15, and
they disappear respetively at kd,1 = 75, kd,2 = 80 and kd,3 = 85. For eah Monte

Carlo run, the initialization of the target state for the position and the veloity is done

aording to the birth density pb (.) de�ned in setion 2.2 (i.e. uniform prior over D =
[rmin, rmax] × [θmin, θmax] for the position and over [vmin, vmax]× [0, 2π] for the veloity),
with the following parameters:

� rmin = 30 km, rmax = 42 km, θmin = 30◦ and θmax = 60◦,

� vmin = 100 m.s

−1
and vmax = 300 m.s

−1
.

Between kb,i+1 and kd,i−1 the target state xk,i evolves aording to Eq. (2.6) with no noise
proess (i.e. uniform linear motion) and the time between two onseutive measurements

is TS = 0.3 s.
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Moreover, for eah Monte Carlo run, the trajetories of the three targets are arefully

drawn so that the targets never interat.

The �utuations model for eah target is assumed to be the Swerling 0 model and their

SNR are set respetively to 5, 7 and 5dB.

We onsider here the overall TBD multitarget partile �lter detailed in setion 5.4.3. This

�lter has been tested over NMC = 2000 Monte Carlo runs with the following parameters :

� Both for the appearane and disappearane multitarget partile �lters, we use the

following parameters : β = 1, qS = 0.01, vmin = 100m.s

−1
, vmax = 300m.s

−1
,

SNRmin = 3 dB, SNRmax = 13 dB and δhr = δhθ = 2.

� For the appearane multitarget partile �lter, the number of targets Nt is set to

3 (i.e. at most three targets an be deteted at the same time by the appearane

multitarget �lter). For eah individual partile �lter: Pb = 0.1, Np = 1500 and

Np,b = 500 (i.e. Np,c = 1000). The instrumental density used to propagate the

partiles is desribed in paragraph 5.4.2.3, with Pfa = 0.1. To alulate the set

Vxp
k,i

in Eq. (5.59), we take δhr = δhθ = 2 (i.e. no interation between partiles

in a neighbourhood of two range bearing ells). Lastly, a target is delared to be

deteted if a �lter has a probability of existene P l
e,k greater than 0.9.

� For the disappearane multitarget partile �lter, the number of targets Nt is set to

5 (i.e. at most �ve targets an be traked disappearane multitarget partile �lter)

For eah individual partile �lter: Pd = 0.05 and Np = 1500. The instrumental

density used to propagate the partiles is the prior pc (xk | xk−1). Two �lters are

delared to interat if the distane between the predited target state estimate is

lower than 500 m Lastly, a target is delared to have disappeared if a �lter has a

probability of existene P l
e,k lower than 0.2.

Figure 5.4 presents the RMSE for eah target � Note that the RMSE is displayed with

respet to target life iteration, i.e. the iterations during whih the target is present �,

while Figure 5.5 displays the number of targets estimated by the partile �lter. Clearly,

this solution enables the detetion and traking with some delay of several non interating

targets. However, in Figure 5.4 it seems that the later the target appears the worst is

its RMSE, in partiular for the veloity. It may be explained by the fat that as long as

the �rst target has not been delared to be deteted by its traking �lter, this �lter may

kill the partiles of the other �lters (due to the partiular struture of the instrumental

density).
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Figure 5.4 � RMSE for the three targets in the non-interating target senario.
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Figure 5.5 � Estimated number of targets. Senario with three non-interating targets.
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5.5.2 Interating targets

For this seond senario, the number of iterations is still set to Nit = 100. Only two

targets are present that both appear at step kb = 5 and disappear at step kd = 95. The
two target states are drawn as in setion 4.5.2.1 : the angle formed by the two veloity

vetors is π/4 and the minimum distane between the two targets is dmin. Here targets

ross at step kc = 40. The �utuation model for the two targets is assumed to be the

Swerling 1 model and their SNR are set to 10 dB.

The overall TBD multitarget partile �lter is run with the same parameters as in the

previous paragraph. NMC = 2000 Monte Carlo simulations were run.
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Figure 5.6 � RMSE for the two rossing targets.

Results in terms of RMSE are presented in Figure 5.6 while the estimated number
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Figure 5.7 � Estimated number of targets. Senario with two targets rossing.

of targets is presented in Figure 5.7. These two �gures show that, in most ases, the

proposed solution is able to manage two interating targets. However some undesirable

behaviors have been notied:

� In Figure 5.7, the estimated number of targets is greater than two after iteration 70.
It means that for a small number of Monte Carlo runs, the �lter output provided

at least three traks for the two targets. In fat, it appears that when the targets

are lose to one another, one partile �lter diverges from its target and onverges to

the other one. As a onsequene, a new �lter is initialized to trak the target that

was lost, thus leading to three estimated traks.

� After step kd, the estimated number of targets should be loser to zero than it is

in Figure 5.7 sine at 10 dB the target disappearane should be easy to detet.

However, we have assumed in the ase of interating targets that when partile

�lters are grouped (or linked), they annot be killed; in other words they annot

managed target disappearanes. Therefore, if two �lters have onverged to the same

target they annot be killed anymore sine they will be interating for the remainder

of the simulation. As it has just been said, this situation may arise for some Monte

Carlo runs and ould explain the slow dereasing behavior of the estimated number

of targets after the target disappearanes.

This two undesirable behaviors are not aeptable and should be managed by the

partile �lter. This implies that an additional mehanism permitting to prune traks

onverging to the same target state is neessary.
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5.6 Conlusion

In this hapter, we have �rst presented the lassi multitarget Bayesian �lter in a TBD

ontext that proess all targets jointly. Then, in setion 5.3, we have proposed an other

state model that allows to proess targets by independent �lters when they are su�iently

far apart from eah other.

Then, in setion 5.4, several partile �lter approximations have been proposed. The

�rst partile approximation is dediated to the appearane of several targets. The main

di�ulty onsists in initializing the partiles of the di�erent �lters suh that they do not

interat; we have proposed an instrumental density for that purpose. The seond partile

�lter onerns the disappearane of several targets. The di�ult point is to manage the

interation between targets. We have shown that when targets have interated, they

annot theoretially be onsidered as independent anymore and have to be proessed

jointly. However, we have proposed an heuristi proedure in order to onsider targets

independent even if they have interated in the past. Finally, the last proposed �lter is a

ombination of the two previous ones that is able to handle the whole TBD multitarget

problem.

Lastly, in setion 5.5, Monte Carlo simulations have been performed in order to show

the ability of this new approah to orretly trak, in most situations, several targets.

In partiular, it has been shown that our solution is able to detet (appearane and

disappearane) three targets at low SNR that are far apart from eah other and to manage

the rossing of two targets at a higher SNR. A few undesirable behaviours have however

been observed, implying that further developments and improvements should be brought

to the proposed solution.



Conlusion

The aim of this work was to study, develop and propose partile �lter methods to detet

and trak one or several targets in a Trak-Before-Detet ontext.

First, the monotarget TBD problem has been thoroughly investigated. This was

motivated by two onsiderations:

� First, the fat that the monotarget partile �lter solutions have not been extensively

studied in the literature; in partiular the instrumental density for the initialization

of the birth partiles was not deeply studied in the literature.

� Seond, the onstant onern that TBD multitarget partile �lter solutions based

on multitarget partile states are too ostly for pratial appliations and that one

should study instead multitarget solutions based on monotarget partile �lters as

in the lassi radar traking framework where this approah has been suessfully

used.

In hapter 2, the lassi monotarget TBD partile �lter generally used in the literature

has been studied and our work has foused on proposing some relevant instrumental

densities to initialize the partile state. To this purpose, we have onsidered the optimal

instrumental for the initialization of the partile state (whih is intratable). It appears

that this instrumental density does not depend on the state at previous time step. Thus,

all the partiles an be initialized from a unique instrumental density making interesting

to devote some resoures to approximate this partiular density. To this purpose, we

have proposed several approximations for the optimal instrumental density for the target

position using a grid-based approah as well as for the other state parameters suh as the

amplitude parameter or the presene variable. Then, Monte Carlo simulations have been

performed to illustrate the bene�ts of using suh instrumental densities ompared to the

ones lassially used in the literature.

The hapter 3 was motivated by the following questions

� is it relevant to try to detet both the appearane and the disappearane of a target

with the same partile �lter ?

� is it relevant to still initialize partiles whereas the partile �lter has onverged to

the atual target state ?

From these two questions, an alternative modeling to the monotarget TBD problem has

been proposed that onsiders the target appearane and disappearane as two di�er-

ent problems. We have shown that the monotarget TBD problem an be derived as a

173
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Bayesian quikest hange point detetion problem that allows to onsider the target state

and its time of appearane or disappearane rather than the presene variable. This has

enabled to derive two Bayesian �lters, one for the appearane and another one for the

disappearane. Di�erent partile �lter approximations have been provided for these two

theoretial Bayesian �lters. Moreover, we have also proposed a partile solution that om-

bines the partile �lters previously developed in order to manage both the appearane

and the disappearane of a target. Some Monte Carlo simulations have been made in

order to evaluate the performane of our approah ompared to the lassi one showing

some bene�ts in partiular in terms of bad detetion rate. It also appears that not ini-

tializing partiles when the partile �lter has onverged allows to substantially redue the

omputational ost without degrading the detetion performane. This tends to on�rm

the intuition that separating the appearane and disappearane detetion problems an

be more e�ient than solving both problems at one.

We foused in hapter 4 on another aspet of the TBD problem: the alulation of

the likelihood of the measurement zk onditionally to the target states. This omputation

is of primary importane sine it is required for the appliation of all partile �lters. In

the TBD framework, this quantity annot be alulated diretly from the measurement

equation due to the presene of the unknown target amplitude parameters that may �u-

tuate randomly and independently over time. A lassi heuristi solution to deal with

these unknown amplitude parameters onsists in onsidering the squared modulus of the

signal |zk|2 rather than the omplex measurement zk. In some ases suh a strategy allows

to alulate easily the likelihood of the measurement onditionally to the target state �

these ases are the Swerling 0 monotarget ase and the Swerling 1 multitarget state �

at the prie of a loss of information; in partiular the spatial oherene of the amplitude

parameters is lost. Moreover, in other situations, this heuristi solution may lead to in-

tratable expressions for the likelihood. In order to overome these di�ulties, Rutten et

al. have proposed a well-founded approah that onsists in marginalizing the likelihood of

the measurement over the amplitude parameters while keeping all the information avail-

able. However, they have only investigated the Swerling 0 monotarget ase. Thus, we

have extended this solution to the multitarget ase and to other Swerling models. For

the monotarget ase, we have shown that losed-forms an be obtained for the Swer-

ling 1 and 3 models. For the multitarget ase, we have derived a losed-form expression

only for the Swerling 1 ase, while for the other Swerling models we have proposed some

approximations in order to alleviate the omputational time required to alulate the like-

lihood. Finally, the bene�ts of alulating the likelihood from the omplex measurements

zk rather than from squared modulus measurements |zk|2 have been validated via Monte

Carlo simulations.

In the last part of this manusript (hapter 5), we have takled the multitarget TBD

problem. We have developed a multitarget partile solution that manages targets in-

dependently when they are far apart from eah other rather than a partile �lter that

onsiders the target state jointly. In this perspetive, we have shown that it is possible to

model the multitarget state as a olletion of individual target states (sk,1:Nt,xk,1:Nt). By
taking advantage of the partiular fatorization of the measurement likelihood, the whole

multitarget posterior density also fatorizes as a produt of individual target posterior

densities, thus allowing to use one �lter per target. Moreover we have also shown that



Conlusion 175

this result an be generalized to groups of targets. Then, as in hapter 3, we have pro-

vided some partile �lter approximations both for the multitarget appearane ase and

the disappearane ase. For the multitarget appearane ase, the main di�ulty onerns

the initialization of partile states in order to keep the partiular struture of one �lter per

target. To this purpose, we have proposed an instrumental density for the initialization

and the propagation of the partile target state that onsists, roughly speaking, to kill

the interating partiles of the individual partile �lters presenting the lowest probability

of appearane. For the multitarget disappearane ase, the main di�ulty onsists in

managing the interations between targets. We have proposed an heuristi solution that

enables to determine at eah iteration if targets interat or not; interating targets are

then proessed jointly. Then, as in hapter 3, we ombined the two previous partile

�lters to manage both the target appearanes and disappearanes. Finally, the proposed

partile �lter solution was tested via Monte Carlo simulations over two di�erent senarios.

The �rst one onsiders the appearane and disappearane of several targets at low SNR

that do not interat. Simulation results validated the ability of our solution to handle

suh senarios. The seond senario onsiders the rossing of two targets at a quite high

SNR of 10 dB. Here, simulations results have shown that our solution is able to trak

rossing targets most of the time ; however in some ases the two �lter onverged to

the same target during the rossing, and they were not able to retrieve the two targets

afterwards. In that respet, the proposed solution should then be subjet to additional

improvements. For instane, it may be interesting to develop a partile �lter solution

that onsiders that targets may die when they interat or to propose a more sophistiated

instrumental density.

Before losing this manusript, we provide, in the sequel, some perspetives and future

works:

� One important work that remains to be done is a omparison with the lassi radar

traking algorithms. Indeed, these lassi algorithms are very robust and e�ient

for su�iently high SNR targets. The main ontribution of the TBD method would

then be on the detetion of low SNR targets. However it should be neessary to

quantify the detetion gain provided by the TBD approah for this lass of targets

ompared to lassi traking algorithms.

� In all the manusript, the Doppler parameter was not onsidered, for simpliity

purpose. Of ourse, this parameter should also be taken into aount in a full TBD

solution and in partiular, as for the other state parameters, it should be interesting

to develop a relevant instrumental density taking into aount information provided

by the measurement to sample this parameter.

� In the measurement equation onsidered in this work, the noise ovariane was

assumed to be known. In pratie, this hypothesis is unrealisti and therefore,

it should be interesting to develop TBD solutions that an handle an unknown

ovariane matrix, for instane by reated an adaptive TBD �lter that inludes

an estimate of the noise and/or lutter ovariane in the likelihood omputation.

Moreover, the Gaussian hypothesis of the noise may be violated, in partiular in

presene of lutter; of ourse the advantage of the partile �lter solution is its ability
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to onsider non gaussian densities, but still it would be important to try to adapt

the proposed TBD method to non gaussian noise or lutter model, also to evaluate

the robustness of the TBD approah to an erroneous statistial noise hypothesis.

� Conerning the proessing itself, we have seen that the sample grid provided by the

mathed �lter preproessing deteriorates somehow the detetion performane at a

given time instant for targets loated at the edge of the resolution ell. This problem

arises along all dimensions. Along the range dimension, it seems di�ult to overome

beause of the analog to digital onverter at the reeption. However along the angle

dimension, it may be interesting to investigate the possibilityto disard sampled

diretions and apply the phase array proessing for eah partile in its spei�

diretion. This would of ourse imply applying the TBD algorithms on reeption

antenna raw data before the FFC proessing. Note that a similar proedure ould

also be applied along the Doppler dimension for pulse trains: for a given partile, the

Doppler steering vetor onsidered would then be diretly provided by the estimated

radial veloity orresponding to the partile state.

� In a similar idea, note that here only point targets were onsidered. Therefore, the

studying the behavior of TBD methods to extended targets, and extending TBD

methods to this kind of targets ould be of interest.

� Finally, in this work, we have mainly onsidered simpli�ed ases that permit a

better and easier understanding of the algorithmi issue, and also a redution of

the omputational ost. However, when onsidering ases, TBD methods should

proess large data obtained from range/angle/doppler proessing, thus representing

many resolution ells to sample. This will represent a very high omputational

ost in terms of omputational resoures. Somehow, it will then be important to

onsider spei� omputer arhitetures (e.g GPU) that may allow a omplex TBD

proessing on large amount of data.

Finally, it appears that the TBD approah may be a very powerful but very ostly

method for radar traking. Clearly it should not be applied to any radar situation: in

the presene of su�iently strong targets, lassi radar traking will ertainly perform

very well. It may on the ontrary be of interest for traking low SNR targets in surveil-

lane radar appliations, provided that subsequent studies demonstrate an interesting

performane gain for deteting suh targets over lassi proessing.



Appendix A

Properties of time of appearane τb
with a geometri prior

When the time of appearane τb is modeled by a geometri random variable, i.e.

p (τb = i) =





0, i = 0,

Pb(1− Pb)i−1, i ≥ 1,
(A.1)

where 0 < Pb < 1 denotes the probability of birth, it has some interesting properties.

Indeed, by de�ning

bk =





1, if τb ≤ k,

0, otherwise,
(A.2)

it an be shown that (bk)k∈N is a Markov hain with the following transition probability

matrix

Πbk =


1− Pb Pb

0 1


 , (A.3)

and also that p (bk = 1 | bk−1 = 0) = Pb, i.e. knowing that the target has not yet appeared
at step k − 1, its probability to show up at step k does not depend on the time instant

and is equal to Pb.

By de�nition of bk, the event {bk = 1} an be expressed as follows

{bk = 1} =
k⋃

i=1

{τb = i} . (A.4)

Sine the events {τb = i} are inompatible,

p (bk = 1) =

k∑

i=1

p (τb = i) , (A.5)

p (bk = 0) = 1− p (bk = 1) . (A.6)
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Moreover, for a time appearane variable τb modeled by the geometri distribution (A.1),

using the de�nition of onditional probability, i.e.

p (bk = 1 | bk−1 = 0) =
p (bk = 1, bk−1 = 0)

p (bk−1 = 0)
, (A.7)

where p (bk = 1, bk−1 = 0) = p (τb = k) by de�nition of bk, and noting that p (bk−1 = 1) =∑k−1
l=1 p (τb = l), it omes

p (bk = 1 | bk−1 = 0) =
p (τb = k)

1− p (bk−1 = 1)
=

Pb(1− Pb)k−1

1−∑k−1
l=1 Pb(1− Pb)l−1

= Pb. (A.8)

This last equation indiates that knowing that the target has not yet appeared at step

k − 1, its probability to show up at step k does not depend on the time instant and is

equal to Pb.
In other hand, it is easy to show that (bk)k∈N is a Markov hain. Indeed, by de�nition

of bk, the following property holds:

bk = 0⇒ bi = 0 forany i ≤ k − 1, , (A.9)

and, as a onsequene,

p (bk = 0 | b1:k−2, bk−1 = 0) = p (bk = 0 | bk−1 = 0) = 1− Pb. (A.10)

In the same manner, by de�nition of bk,

bk−1 = 1⇒ bk = 1, (A.11)

then whatever the sequene b1:k−2,

p (bk = 1 | b1:k−2, bk−1 = 1) = p (bk = 1 | bk−1 = 1) = 1. (A.12)

Therefore, Eq. (A.10) and (A.12) demonstrate that the proess (bk)k∈N is Markov with

the transition probability matrix in Eq. (A.3). It an be remarked that the state bk = 1
is an absorbing state, i.e. one entered in the state bk = 1, the state bk = 0 annot be

reah anymore. Lastly, note that from Eq. (A.1), the probability for the initial state is

p(b0 = 0) = 1.



Appendix B

Partile �lter for time appearane

detetion in TBD

The aim of this appendix is to detail the pratial implementation of the TBD partile

�lter that allows to resample over all the mixture omponents and outlined in paragraph

3.2.4.3. To this purpose, let us �rst develop the partile approximation p̂ (xk | bk = 1, z1:k)
in Eq. (3.46):

p̂ (xk | bk = 1, z1:k) =
∑

i∈Ik

α̂k,ip̂ (xk | τb = i, z1:k)

=
∑

i∈Ik

Np,i∑

n=1

α̂k,iw
n
k,iδxn

k,i
(xk).

(B.1)

Thus, it is possible to alulate the e�etive sample size Nall
eff ,k for the overall partile

approximation p̂ (xk | bk = 1, z1:k) from the e�etive sample size measures Neff,i of the

di�erent mixture omponents using Eq.(1.98) as follows

Nall
eff,k =


∑

i∈Ik

Np,i∑

n=1

(
α̂k,iw

n
k,i

)2



−1

=


∑

i∈Ik

α̂2
k,i

Np,i∑

n=1

(
wnk,i
)2



−1

=

(
∑

i∈Ik

α̂2
k,i

Neff ,i

)−1

,

(B.2)

where Neff ,i is the e�etive sample size of the mixture omponent i. Thus, by de�ning

Nall
p,k the total number of partiles at step k, i.e

Nall
p,k =

∑

i∈Ik

Np,i, (B.3)

and by Nall
T,k = βallN

all
p,k with 0 < βall ≤ 1 the threshold for the resampling step, Nall

p,mix

partiles are resampled from p̂ (xk | bk = 1, z1:k) if N
all
p,k ≤ Nall

T,k. Conerning the number
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of partiles Nall
p,mix, note that it must be hosen to be smaller than the maximum number

of partiles Np,max in order to initialize new mixture omponents for the next iterations.

Finally after the resampling proedure the density an be rewritten as follows

p̂ (xk | bk = 1, z1:k) =
1

Nall
p,mix

Nall
p,mix∑

n=1

δxn
k,i∈Ik

(xk)

= p̂ (xk | τb ∈ Ik, z1:k) ,
(B.4)

whih is a "mixture" with one omponent (i.e. α̂k,i∈Ik = 1 ). The probability assoiated

to this mixture is

p (τb ∈ Ik | z1:k) =
∑

i∈Ik

p (τb = i | z1:k) . (B.5)

For the next iteration, this omponent is proessed as in paragraph 3.2.4.1 and the weight

equation (3.34) is almost the same exept that τb = i is replaed by τb ∈ Ik in the equation.
As a onsequene, a slight di�erene onerns the propagation of the partiles that must

be, rigorously speaking, propagate aording to q(xnk,i∈Ik | τb ∈ Ik,xk−1,i∈Ik , zk) rather

than q(xk,i | τb = i,xk−1,i, zk). This density an be easily rewritten (following the same

reasoning as for the density p (xk | bk = 1, z1:k) in Eq. (3.16)) as a mixture:

q(xnk,i∈Ik | τb ∈ Ik,xk−1,τb∈Ik , zk) =
∑

i∈Ik

q (τb = i | zk)
q (i ∈ Ik | zk)

q (xk | τb = i,xk−1, zk) . (B.6)

However, in pratie, it is not onvenient to sample aording to a mixture and, moreover,

if the densities q (xk | τb = i,xk−1, zk) are the same for all i ∈ Ik, the mixture in Eq.

(B.6) simpli�es to q (xk | τb = i,xk−1) (sine the density an be removed from the sum

and the probabilities sum to one). Therefore, we propose to approximate the density

q(xnk,τb∈Ik | τb ∈ Ik,xk−1,τb∈Ik , zk) by

q(xnk,i∈Ik | τb ∈ Ik,xk−1,τb∈Ik , zk) ≈ q(xnk,iall | τb = iall,xk−1,iall, zk), (B.7)

where

iall = argmax
i∈Ik

p (τb = i) . (B.8)

The same approximation an be used for the prior density p(xnk,i∈Ik | τb ∈ Ik,xk−1,τb∈Ik)
whih is required to evaluate the mixture omponent weight in Eq. (3.34) � note that it

leads to the weight equation (1.99) if the instrumental density is hosen to be the prior.

Thus, with this approximation, the mixture for τb ∈ Ik an be alulated exatly as a

mixture omponent with τb = iall and the algorithm is the same as the one in Algorithm

3.1 exept that the number of partiles per mixture omponent may be di�erent: in

step "3:" of Algorithm 3.1 Np,mix is replaed by Np,i the number of partiles of the ith

omponent (whih may vary over time). In the same manner, for the reation of the

mixture in Algorithm 3.1, the number of partiles Np,mix in step ":14" is replaed by

Np,init. Note that here Np,init is hosen to be onstant at eah iteration for a simple

implementation but it is not a requirement.

Furthermore, as it was stressed previously, the number Nall
p,mix must be hosen below

the maximum number of partiles Np,max. Therefore, in the same manner, for a simple
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and pratiable implementation, we propose to hoose Nall
p,mix = kallNp,init where kall is an

integer stritly greater than 1 and Np,max as Np,max = kmaxNp,init, with kmax an integer

suh kmax > kall. Thus, at the next iterations the partile �lter an initialized kmax − kall
new mixture omponents with Np,init partiles.

However, as for Algorithm 3.1 the number of partiles may be equal to Np,max � in

partiular, if no resampling proedure over all the mixture omponents has been per-

formed during kmax − kall iterations. As a onsequene, if nothing is done, no partile is

available to initialize a new mixture omponent for the next iteration. Therefore, in that

ase it is neessary to remove Np,init partiles from the density p (xk | bk = 1, z1:k). To this
purpose, we propose to use the same strategy as previously, i.e. removing Np,init partiles

from the omponent with the lowest probability p̂ (zk | z1:k−1). Nevertheless, ontrary to

the previous algorithm, the number of partiles in the mixture omponent imin may be

greater (stritly) than Np,init � in pratie, it will always be a multiple of Np,init. In that

ase, the mixture does not need to be removed from the set Ik and only Np,init partiles

an be removed from the mixture omponent imin. Of ourse, if the mixture omponent

imin has Np,init partiles, this mixture omponent is removed from the set Ik.

Lastly, an other point has to be disussed, it onerns the minimum number of partiles

from whih the resampling proedure over all the mixture omponents must be performed.

Indeed, let us take the following example, at the �rst iteration (i.e. k = 1), a mixture

omponent is initialized with Np,init partiles; thus if Neff ,1 is below Nall
T,1, kall × Np,init

partiles will be resampled from this omponent (whih is greater than Np,init) whereas

this omponent may have a small probability p (τb = 1 | z1) and does not need to be

sampled with so many partiles. In the same manner, if βall is hosen to be large, the

resampling proedure over all the mixture omponent will be performed almost at eah

iteration. As a onsequene, in the next iterations the algorithm will initialize only one

omponent and resample over all the omponents whereas if no resampling is performed

the algorithm an initialize kmax−kall omponents. To avoid suh a situation, we propose

to use a two steps resampling proedure depending on the number of partiles. First,

a severe degeneray is heked with a βall hosen pretty small (e.g. βall = 0.1) and a

resampling proedure is performed if Nall
p,k ≤ Nall

T,k. On the other hand, the number of

partiles is ompared with a number of partiles Nmin
p . If the number of partiles is lower,

no resampling over all the mixture omponents is done and eah omponent is resampled

separately as in Algorithm 3.1. Whereas, when the number of partiles is greater than

Nmin
p two possibilities an arise:

� Either, Nall
p,k is lower than Nmin

T,k = βminN
all
p,k where βmin is hosen greater than βall.

Then the resampling proedure is performed over all the mixture omponents.

� Or, on the other hand, mixture omponents are resampling separately.

Finally, the proposed Resample All Appearane Time TBD Partile Filter is summa-

rized by Algorithm B.1.
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Algorithm B.1 Resample All Appearane Time TBD Partile Filter

Require: mixture omponents {wik−1,x
n
k−1,i}

Np,i

n=1 and probabilities p (τb = i | z1:k−1) with
i ∈ Ik−1 at step k − 1.

1: Updating mixture omponents {wik−1,x
n
k−1,i}

Np,i

n=1 and probabilities p (τb = i | z1:k−1)
from line 1 to 23 in Algorithm 3.1 where Np,mix is replaed by the orresponding

number of partiles in eah omponent.

2: Calulate Nall
eff ,k aording to Eq. (B.2) and Nall

T,k.

3: if Nall
eff ,k < Nall

T,k then

4: Resample Np,all from p̂ (xk | bk = 1, z1:k).
5: Calulate iall aording to Eq. (B.8).

6: else

7: if Nall
p,k ≥ Nmin

p and Nall
eff ,k < Nmin

T,k then

8: Resample Np,all from p̂ (xk | bk = 1, z1:k).
9: Calulate iall aording to Eq. (B.8).

10: else

11: if Nall
p,k = Np,max then

12: Find imin aording to (3.48).

13: if Np,imin
= Np,init then

14: Set Ik = Ik,min.
15: end if

16: for i ∈ Ik do
17: if i = imin and Np,imin

> Np,init then

18: Resample Np,i −Np,init partiles.

19: Reset weights: wnk,i ← 1
Np,i−Np,init

n = 1, · · · , Np,i −Np,init.

20: else

21: Calulate NT,i = βNp,i

22: if Neff ,i < NT,i then

23: Resample Np,i partiles.

24: Reset weights: wnk,i ← 1
Np,mix

n = 1, · · · , Np,i.

25: end if

26: end if

27: end for

28: end if

29: end if

30: end if

Ensure: {wnk,i,xnk,i}
Np,mix

n=1 , p (τb = i | z1:k) , i ∈ Ik.



Appendix C

Multitarget Bayesian �lter and partile

�lters

C.1 Theoretial Bayesian �lter for interating targets

The aim of this appendix is to demonstrate that, if the groups of targets Iint,1, · · · , Iint,Ng

do not interat in the likelihood, the posterior multitarget density an be fatorized as

follows:

p (sk,1:Nt,xk,1:Nt | z1:k) =
Ng∏

i=1

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
. (C.1)

First, the Bayesian �lter for eah group of targets an be derived, using Bayes rule, as

follows:

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
=
p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)

p (zk | z1:k−1)
. (C.2)

It should be noted here that the onditioning over variables z1:k−1 in the likelihood ex-

pression p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)
annot be removed sine the onditioning is not

performed with respet to all the target states (sk,1:Nt,xk,1:Nt). In fat, zk is independent

from z1:k−1 only when

p (zk | sk,1:Nt,xk,1:Nt, z1:k−1) = p (zk | sk,1:Nt,xk,1:Nt) . (C.3)

Fortunately, it does not a�et the derivation of the Bayes �lter. Indeed, some simpli�-

ations arises allowing to easily alulate the likelihood p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)
. To

this purpose, notie �rst that this likelihood an be rewritten as follows:

p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)

=
∑

sk,INt
\Iint,i

∫
p
(
sk,INt

\Iint,i
,xk,INt

\Iint,i
| sk,Iint,i

,xk,Iint,i
, z1:k−1

)
×

p (zk | sk,1:Nt,xk,1:Nt) dxk,INt
\Iint,i

.

(C.4)
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This last equation an be further simpli�ed using Eq. (C.1) sine

(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)

and

(
sk,Iint,i

,xk,Iint,i

)
are independent. Thus Eq. (C.4) beomes

p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)

=
∑

sk,INt
\Iint,i

∫
p
(
sk,INt

\Iint,i
,xk,INt

\Iint,i
| z1:k−1

)
p (zk | sk,1:Nt,xk,1:Nt) dxk,INt

\Iint,i
.

(C.5)

Furthermore, using Eq. (5.47), the Eq. (5.25) an be rewritten as follows:

Ξ
zk,(sk,1:Nt

,xk,1:Nt)
(ρk,1:Nt, ϕk,1:Nt) =

Ξ
zk,(sk,Iint,i

,xk,Iint,i)
(ρk,Iint,i

, ϕk,Iint,i
)Ξ

zk,
(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)(ρk,INt
\Iint,i

, ϕk,INt
\Iint,i

).

(C.6)

Thus by de�ning for any set of indexes I the following funtion

1

Gzk
(sk,I ,xk,I) =

∫
Ξ
zk,(sk,I ,xk,I)(ρk,I , ϕk,I)p (ρk,I) p (ϕk,I) dρk,Idϕk,I , (C.7)

the likelihood p (zk | sk,1:Nt,xk,1:Nt) in Eq. (5.26) fatorizes in the following manner:

p (zk | sk,1:Nt,xk,1:Nt) = Gzk

(
sk,Iint,i

,xk,Iint,i

)
×Gzk

(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)
. (C.8)

Therefore, by injeting Eq. (C.8) in Eq. (C.4), the likelihood p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)

also fatorizes as follows:

p
(
zk | sk,Iint,i

,xk,Iint,i
, z1:k−1

)
= Gzk

(
sk,Iint,i

,xk,Iint,i

)
×

∑

sk,INt
\Iint,i

∫
p
(
sk,INt

\Iint,i
,xk,INt

\Iint,i
| z1:k−1

)
Gzk

(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)
dxk,INt

\Iint,i
.

(C.9)

In the same manner, using the same reasoning as in Eq. (5.42) the normalization terms

p (zk | z1:k−1) an be fatorized as follows:

p (zk | z1:k−1) =
∑

sk,Iint,i

∫
p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
dxk,Iint,i

×

∑

sk,INt
\Iint,i

∫
p
(
sk,INt

\Iint,i
,xk,INt

\Iint,i
| z1:k−1

)
Gzk

(
sk,INt

\Iint,i
,xk,INt

\Iint,i

)
dxk,INt

\Iint,i
.

(C.10)

Finally, injeting Eq. (C.9) and Eq. (C.10), the bayesian �lter for the group of target

Iint,i in Eq. (C.2) simpli�es as follows:

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
=

p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
∑

sk,Iint,i

∫
p
(
sk,Iint,i

,xk,Iint,i
| z1:k−1

)
Gzk

(
sk,Iint,i

,xk,Iint,i

)
dxk,Iint,i

.

(C.11)

1

Note that here, ontrary to the de�nition of funtion gzk (sk,i,xk,i) in Eq. (5.29) where there is no

ross terms h
H
k,uΓ

−1
hk,v, in the de�nition of the following funtion all the ross terms remains.
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In fat, this last equation is quite similar to the Eq. (5.44) (i.e. the bayesian �lter for a

single non interating target) and demonstrates that fatorization of the posterior density

p (sk,1:Nt,xk,1:Nt | z1:k) an be extended to sets of indexes of non interating targets, i.e.

p (sk,1:Nt,xk,1:Nt | z1:k) =
Ng∏

i=1

p
(
sk,Iint,i

,xk,Iint,i
| z1:k

)
. (C.12)

C.2 Disappearane multitarget detetion partile �lter

The aim of this appendix is to detail the pratial implementation of the disappearane

Multitarget detetion partile �lter outlined in setion 5.4.1.2. The proposed solution

requires to determine at eah iteration k the interating sets Iint,1:Ng and Ising in order to

reorganize the densities alulated at previous step for these sets.

C.2.1 Calulating the sets Ising and Iint,1:Ng
over time

In order to alulate the single target set Ising and the sets of interating group Iint,1:Ng ,

let us �rst denote by I−
int,1:N−

g
the group of interating targets at iteration k − 1 (where

N−
g is the number of groups at iteration k − 1) and I−sing the index of single targets

(i.e. those targets that do not interat). At previous iteration k − 1, the available

partile approximations are p̂ (xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) with i ∈
{
1, · · · , N−

g

}
and

p̂ (sk−1,l,xk−1,l | z1:k−1) with l ∈ I−sing. A �rst possible solution to alulate the interating

groups at urrent step might be to propagate the partiles of eah target state x
p
k−1,i

(i ∈ {1, · · · , Nt}) aording to their prior pc (xk | xk−1), i.e.

x
p
k,i ∼ pc

(
xk | xpk−1,i

)
. (C.13)

Then, two targets states xk,l and xk,m are delared �interating� if

there exist (p, q) ∈ {1, · · · , Np}2 , suh that

∣∣hH
(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣ > γh, (C.14)

where γh is a given positive threshold (eventually equal to zero).

In other words, two targets are delared to be interating at step k if there exits at

least one partile x
p
k,l and one partile x

p
k,m whose positions lead to overlapping ambiguity

funtions. Note that here we onsider interating states as soon as one pair of partiles

(p, q) interats. Of ourse, this ondition an be extended to a minimum number of

partiles, i.e. two targets states an be onsidered interating only if a signi�ant minimal

number of pairs of partiles interat.

However, suh a solution might require to evaluate Np × Np (for two target states)

salar produts

∣∣hH
(
x
p
k,l

)
Γ−1h

(
x
q
k,m

)∣∣
, for the two target ase. As a onsequene, if the

number of targets Nt is large, suh a proedure might be ostly in terms of omputational

resoures. Thus, in order to alleviate the number of salar produt evaluations, we propose

to perform the proedure on the estimated predited target states x̂k|k−1,i rather than on

all partile target states. To alulate eah predited target states x̂k|k−1,i, we propose a
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very simple solution based on the Eq. (1.67) of the Kalman �lter equations. Thus, for

eah target state xk,i (i ∈ {1, · · · , Nt}), the estimated predited target state x̂k|k−1,i is

alulated as follows:

x̂k|k−1,i = Fx̂k−1|k−1,i, (C.15)

where F is the state matrix de�ned in Eq. (2.6) and x̂k−1|k−1,i is the estimated target

state provided by Eq. (1.96). Finally, targets l and m are delared to be interating at

urrent step if ∣∣hH
(
x̂k|k−1,l

)
Γ−1h

(
x̂k|k−1,m

)∣∣ > γh. (C.16)

Now, it remains �rst to alulate the new interating groups Iint,1:Ng and the single

target group Ising and then to alulate the partile posterior density approximations for

the groups Iint,1:Ng and Ising.
Conerning the alulation of the groups Iint,1:Ng and Ising, we propose a two-step

solution:

� First, �nd interations between targets for all possible pairs of targets.

� Then regroup pairs of interating targets in order to reate the groups Iint,1:Ng .

In order to detail our proedure, let us �rst de�ne, for a matrix M of size N ×M ,

by M (n, :) the n-th row of the matrix and by M (:, m) its m-th olumn. To alulate

the interations between pairs of targets, we propose to use a matrix M (of size Nt ×Nt)

where eah element (l, m) represents a possible interation between two targets as follows:

M (l, m) =





1, if target l and m interat,

0, otherwise.
(C.17)

This matrix is symmetri and therefore, it is only neessary to onsider the upper or lower

part of matrix M. Moreover, by onvention we onsider that a target annot interats

with itself, i.e M (m,m) = 0.
Lastly, it remains to alulate the interating groups Iint,1:Ng and the single target

group Ising from the matrix M. This an be done as follows:

� For eah row l of the matrix, �nd the indexes m suh that M (l, m) = 1, then
regroup these indexes in a set Icol.

� If the set Icol is empty, it means that the target state l does not interat with any

target. Therefore the target l is added to the set Ising.

� If the set Icol is not empty, two ases must be onsidered. In the �rst ase, the

target l already belongs to one of the sets Iint,1:Ng , referred by index ig,l. Then the

sets Iint,ig,l and Icol are "merged", i.e. Iint,ig,l = Iint,ig,l
⋃
Icol. In the seond ase,

the target l does not belong to any of the sets Iint,1:Ng . Therefore a new group of

interating targets must be reated, i.e. Iint,Ng+1 = Icol
⋃ {l}. Note that the target

must be added to the set Iint,Ng+1 sine by onvention it does belong to the set Icol.
Moreover the number of groups must be updated, i.e. Ng = Ng + 1.
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C.2.2 Reorganization of the partile posterior density at previous

step for the sets Ising and Iint,1:Ng

The last step onsists in reorganizing the partile posterior density approximations at

previous step: p̂(xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) with i ∈
{
1, · · · , N−

g

}
and

p̂ (xk−1,l | sk−1,l = 1, z1:k−1) with l ∈ I−sing to obtain the ones for the group Iint,1:Ng and Ising.
Indeed, the onsidered multitarget partile �lter onsiders multitarget states, i.e. one

partile samples all onsidered target states within a group. For target states originated

from di�erent groups at step k−1 and gathered in the same group at step k, it is neessary
to resample the orresponding states so as to reate new partiles that sample the new

multitarget state. To this purpose, we propose the following rules:

� For any target index l in Ising, if l also belongs to I−sing, then the target was single

at previous step and is still single at urrent step. Therefore, there is nothing to do.

� In the same manner, for any groups of targets Iint,l, if there exists a group of targets

I−int,m suh that Iint,l == I−int,m (where == stands for the equality between sets),

there is nothing to do.

� In the other ases, the posterior density must be realulated from the previous sets

I−int,1:Ng
and I−sing. To this purpose, we simply propose to resample Np partiles for

eah target index l in the new group Iint,m from the density provided by the previous

sets I−
int,1:N−

g
and I−sing.

The pseudo-ode for the orresponding algorithm is detailed in Algorithm C.1.

C.2.3 Proposed solution for Disappearane multitarget partile

�lter

In the previous paragraph, the tools to derive our partile �lter solution for Disappearane

multitarget partile �lter have been detailed. Now, it remains to expose the di�erent steps

in order to perform a single reursion of our partile �lter. Let us assume that at step

k − 1, the following quantities are available: p̂(xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) with

i ∈
{
1, · · · , N−

g

}
and p̂ (xk−1,l | sk−1,l = 1, z1:k−1) with l ∈ I−sing.

The proposed solution an derived as follows:

� First, alulate matrix M with Algorithm.

� Then, alulate the new groups Iint,1:Ng and Ising from matrix M.

� Calulate the densities p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) i ∈ {1, · · · , Ng} and

p̂ (xk−1,l | sk−1,l = 1, z1:k−1) l ∈ Ising from the ones with sets I−
int,1:N−

g
and I−sing.

� Update weights with Eq. (5.53) and Eq. (5.55).

� Finally, eah density is resampled if need.

In Algorithm C.2, we give a pseudo-ode algorithm of the proposed partile reursion.
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Algorithm C.1 Calulation of the densities p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) i ∈
{1, · · · , Ng} and p̂ (xk−1,l | sk−1,l = 1, z1:k−1) l ∈ Ising from the ones with sets I−

int,1:N−
g
and

I−sing.

Require: densities p̂ (xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) i ∈
{
1, · · · , N−

g

}
and p̂ (xk−1,l |

sk−1,l = 1, z1:k−1) l ∈ I−sing, Iint,1:Ng and Ising.
1: for l ∈ Ising do
2: if l belongs to I−sing then
3: Keep the density p̂ (xk−1,l | sk−1,l = 1, z1:k−1)
4: else

5: Get the index ig,l of the group I
−

int,1:N−
g
suh that l ∈ I−

int,1:N−
g
.

6: Resample

{
x
p
k−1,l

}Np

p=1
from density p̂(xk−1,I−int,ig,l

| sk−1,I−int,ig,l

= 1, z1:k−1)

7: Set p̂ (xk−1,l | sk−1,l = 1, z1:k−1) =
1
Np

∑Np

p=1 δxp
k−1,l

(xk−1,l)

8: end if

9: end for

10: for i ∈ {1, · · · , Ng} do
11: Chek if there is a group I−

int,i−g
suh that Iint,i == I−

int,i−g
, if so get the index i−g

12: if i−g exists then

13: Set the density p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) = p̂ (xk−1,I
int,i

−
g

| sk−1,I
int,i

−
g

=

1, z1:k−1)
14: else

15: Initialize new partile target state x
p
k−1,Iint,i

= [ ] (empty vetor), p = 1, · · · , Np

16: for l ∈ Iint,i do
17: if l belongs to I−sing then

18: Resample

{
x
p
k−1,l

}Np

p=1
from density p̂(xk−1,l | sk−1,l = 1, z1:k−1)

19: Conatenate the state x
p
k−1,l to x

p
k−1,Iint,i

: x
p
k−1,Iint,i

= [xpk−1,Iint,i
,xpk−1,l], p =

1, · · · , Np

20: else

21: Find index ig,l suh that l ∈ I−int,ig,l
22: Resample

{
x
p
k−1,l

}Np

p=1
from density p̂(xk−1,I−int,ig,l

| sk−1,I−int,ig,l

= 1, z1:k−1)

23: Conatenate the state x
p
k−1,l to x

p
k−1,Iint,i

: x
p
k−1,Iint,i

= [xpk−1,Iint,i
,xpk−1,l], p =

1, · · · , Np

24: end if

25: end for

26: Set p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) =
1
Np

∑Np

p=1 δxp
k−1,Iint,i

(
xk−1,Iint,i

)

27: end if

28: end for

29: return p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1), i ∈ {1, · · · , Ng} and and p̂ (xk−1,l |
sk−1,l = 1, z1:k−1), l ∈ Ising
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Algorithm C.2 Proposed disappearane multitarget partile �lter.

Require: densities p̂ (xk−1,I−int,i
| sk−1,I−int,i

= 1, z1:k−1) i ∈
{
1, · · · , N−

g

}
and p̂ (xk−1,l |

sk−1,l = 1, z1:k−1), p̂ (sk,l = 1 | z1:k), l ∈ I−sing.
1: Calulate matrix M.

2: Calulate the new groups Iint,1:Ng and Ising from matrix M with Algorithm ??.

3: Calulation of the densities p̂ (xk−1,Iint,i
| sk−1,Iint,i

= 1, z1:k−1) i ∈ {1, · · · , Ng} and
p̂ (xk−1,l | sk−1,l = 1, z1:k−1) l ∈ Ising from the ones with sets I−

int,1:N−
g
and I−sing.

4: for l ∈ Ising do
5: Propagate partiles x

p
k,l ∼ qc

(
xk,l | xpk−1,l, zk

)

6: Update weights wpk,l with Eq. (5.53)

7: Calulate p̂ (sk,l = 1 | z1:k) with Eq. (3.76)

8: Calulate Neff and resample if needed.

9: end for

10: for i ∈ {1, · · · , Ng} do
11: Propagate partiles x

p
k,Iint,i

∼∏l∈Iint,i
pc
(
xk,l | xpk−1,l, zk

)

12: Update weights wpk,Iint,i
with Eq. (5.55)

13: end for

14: Calulate Neff and resample if needed.

15: return p̂ (xk,Iint,i
| sk,Iint,i

= 1, z1:k), i ∈ {1, · · · , Ng} and and p̂ (xk,l | sk,l = 1, z1:k),
p̂ (sk,l = 1 | z1:k), l ∈ Ising
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Résumé : Cette thèse s'intéresse à l'étude et au développement de méthodes de

pistage mono et multiible en ontexte Trak-Before-Detet (TBD) par �ltrage partiu-

laire. Contrairement à l'approhe lassique qui e�etue un seuillage préalable sur les don-

nées avant le pistage, l'approhe TBD onsidère diretement les données brutes a�n de

réaliser onjointement la détetion et le pistage des di�érentes ibles. Il existe plusieurs so-

lutions à e problème, néanmoins ette thèse se restreint au adre bayésien des Modèles de

Markov Cahés pour lesquels le problème TBD peut être résolu à l'aide d'approximations

partiulaires. Dans un premier temps, nous nous intéressons à des méthodes partiulaires

monoibles existantes pour lesquels nous proposons di�érentes lois instrumentales perme-

ttant l'amélioration des performanes en détetion et estimation. Puis nous proposons

une approhe alternative du problème monoible fondée sur les temps d'apparition et de

disparition de la ible; ette approhe permet notamment un gain signi�atif au niveau

du temps de alul. Dans un seond temps, nous nous intéressons au alul de la vraisem-

blane en TBD � néessaire au bon fontionnement des �ltres partiulaires � rendu di�ile

par la présene des paramètres d'amplitudes des ibles qui sont inonnus et �utuants au

ours du temps. En partiulier, nous étendons les travaux de Rutten et al. pour le alul

de la vraisemblane au modèle de �utuations Swerling et au as multiible. En�n, nous

traitons le problème multiible en ontexte TBD. Nous montrons qu'en tenant ompte de

la struture partiulière de la vraisemblane quand les ibles sont éloignées, il est possible

de développer une solution multiible permettant d'utiliser, dans ette situation, un seule

�ltre par ible. Nous développons également un �ltre TBD multiible omplet permettant

l'apparition et la disparition des ibles ainsi que les roisements.

Mots-lés : Pistage, Trak-Before-Detet, �ltre partiulaire, alul de vraisemblane.

Abstrat: This thesis deals with the study and the development of mono and mul-

titarget traking methods in a Trak-Before-Detet (TBD) ontext with partile �lters.

Contrary to the lassi approah that performs before the traking stage a pre-detetion

and extration step, the TBD approah diretly works on raw data in order to jointly

perform detetion and traking. Several solutions to this problem exist, however this

thesis is restrited to the partiular Hidden Markov Models onsidered in the Bayesian

framework for whih the TBD problem an be solved using partile �lter approximations.

Initially, we onsider existing monotarget partile solutions and we propose several

instrumental densities that allow to improve the performane both in detetion and in

estimation. Then, we propose an alternative approah of the monotarget TBD problem

based on the target appearane and disappearane times. This new approah, in par-

tiular, allows to gain in terms of omputational resoures. Seondly, we investigate the

alulation of the measurement likelihood in a TBD ontext � neessary for the deriva-

tion of the partile �lters � that is di�ult due to the presene of the target amplitude

parameters that are unknown and �utuate over time. In partiular, we extend the work

of Rutten et al. for the likelihood alulation to several Swerling models and to the mul-

titarget ase. Lastly, we onsider the multitarget TBD problem. By taking advantage

of the spei� struture of the likelihood when targets are far apart from eah other, we

show that it is possible to develop a partile solution that onsiders only a partile �lter

per target. Moreover, we develop a whole multitarget TBD solution able to manage the

target appearanes and disappearanes and also the rossing between targets.

Keywords: Traking, Trak-Before-Detet, partile �lter, likelihood alulation.




