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Résumé détaillé

1 Électrodynamique quantique des circuits appliquée à la réso-
nance magnétique

"Photon" et "spin" sont deux notions fondamentales apparues dés le début de la mécanique quan-
tique et essentielles dans de nombreux domaines de recherche. La découverte par Rabi [1], Bloch [2]
et Purcell [3] que les spins peuvent absorber ou émettre un rayonnement micro-onde quand ils sont
couplés à un résonateur accordé à leur fréquence de précession de Larmor a donné par example
naissance à la résonance magnétique, un domaine de recherche qui englobe à la fois la résonance
magnétique nucléaire (RMN [4]) et la résonance paramagnétique électronique (RPE [5]). La résonance
magnétique permet ainsi l’identification de spins présents dans un échantillon et l’étude de leurs
interactions, donnant lieu à une compréhension plus profonde de la matière et de son organisation
au niveau atomique. Cette puissante technique de spectroscopie a aujourd’hui un large éventail
d’applications en biologie, chimie et science des matériaux, allant de la bio-imagerie non destruc-
tive à la découverte de médicaments [6]. Entre autres, elle a rendu possible le développement
de l’information quantique, où les spins sont utilisés comme qubits, les porteurs quantiques de
l’information [7].

Dans les expériences de résonance magnétique réalisées jusqu’à présent, les spins sont toujours
traités comme des objets quantiques pour expliquer les interactions entre spins, leur cohérence et
leurs mécanismes de relaxation, tandis que les champs micro-ondes utilisés pour les manipuler et
les détecter sont seulement considérés comme des objets classiques. Ce traitement semi-classique
de l’interaction spin-champ est justifié par deux éléments. Tout d’abord, le couplage des spins
au rayonnement est généralement si faible que la nature quantique du champ micro-onde a des
effets négligeables sur la dynamique des spins comparé à leur couplage aux vibrations du réseau
cristallin ou à d’autres spins voisins. Deuxièmement, à la température où la plupart des expériences
de résonance magnétique sont réalisées, les fluctuations micro-ondes du champ du vide sont
négligeables par rapport aux fluctuations thermiques du champ – et l’absence d’un détecteur micro-
onde suffisamment sensible empêche de toute façon leur détection. Ces deux derniers arguments
sont étroitement liés à la faible sensibilité des spectromètres RPE: le faible couplage des spins au
champ micro-onde nécessite l’utilisation d’un nombre conséquent de spins pour que le signal
collecté devienne comparable le bruit expérimental, lui-même généralement largement supérieur au
bruit quantique.

En revanche, dans le domaine de l’électrodynamique quantique en cavité (CQED [8]), les systèmes
individuels à deux niveaux (TLS) interagissent de manière cohérente avec le champ électromag-
nétique. Le TLS peut être implémenté par des circuits supraconducteurs non-linéaires, les qubits
"Josephson", interagissant avec des résonateurs micro-ondes à haut facteur de qualité dans une
architecture appelée circuit-QED (CQED [9, 10]), prometteuse pour le calcul quantique. Au sein de
CQED, de nouvelles techniques ont été développées pour la manipulation et la détection de l’état
quantique du champ micro-onde. En particulier, des amplificateurs micro-ondes à très faible bruit
ont été conçus pour la lecture des qubits Josephson. Ces amplificateurs paramétriques Josephson
(JPA) ajoutent le bruit minimum requis par la mécanique quantique, allant jusqu’à pouvoir amplifier
sans bruit une quadrature du champ [11, 12, 13]. Cette thèse rapporte l’application des concepts
et techniques de cQED à la détection RPE dans le but d’effectuer des expériences de résonance
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magnétique dans un nouveau régime, où les fluctuations quantiques du champ micro-onde ont
un impact majeur sur la sensibilité du spectromètre et sur la dynamique des spins.

La première partie du mémoire vise à fournir les outils conceptuels nécessaires à la compréhension
des expériences. Nous donnons une brève description des champs micro-ondes quantiques, des
résonateurs, et de leur interaction avec un TLS – l’essence même de cQED. Ceci nous permet de
présenter un traitement quantique de la détection d’un signal RPE. Nous présentons également les
spins utilisés dans nos expériences : des donneurs de bismuth implantés dans le silicium (Si:Bi).

Dans la deuxième partie de cette thèse, nous présentons la conception et l’implémentation d’un
spectromètre RPE à la sensibilité largement améliorée par les outils de CQED. Les éléments-clés de
notre dispositif sont l’utilisation de températures cryogéniques, de l’ordre de quelques millikelvins,
un résonateur supraconducteur de haut facteur de qualité et de petit volume de mode, fortement
couplé à des spins Si:Bi, et un JPA qui amplifie le signal émis par les spins. Le bruit de sortie du
spectromètre est entièrement dominé par les fluctuations quantiques du champ micro-onde, lui
permettant d’atteindre une sensibilité de détection limitée quantiquement. Nous démontrons une
sensibilité sans précédent de 2000 spins par séquence expérimentale [14], ce qui représente une
amélioration de quatre ordres de grandeur par rapport à l’état de l’art [15].

Les très basses températures utilisées dans nos expériences ont pour avantage supplémentaire de
polariser entièrement l’ensemble de spins lors de leur détection RPE. Néanmoins, elles peuvent
également augmenter de façon spectaculaire le temps de relaxation spin-phonon [16], conduisant
à des taux de répétition beaucoup trop faibles pour mettre en pratique nos expériences. Dans la
troisième partie de cette thèse, nous démontrons que le couplage des spins à un résonateur RPE de
haut facteur de qualité et de petit volume de mode conduit à exacerber la relaxation des spins par
émission spontanée de photons micro-ondes jusqu’à en faire le mécanisme de relaxation dominant,
avec un taux nettement supérieur au taux de relaxation par phonons. Ce phénomène, bien connu en
CQED et prédit par Edwin Purcell en 1946, est ainsi observé pour des spins électroniques pour la
première fois [17].

Comme déjà mentionné, les fluctuations du vide du champ micro-onde sont la seule source de bruit
de notre spectromètre. Bien que cela semble représenter une limite fondamentale à sa sensibilité, ce
seuil peut être surmonté en utilisant des états quantiques dits comprimés, bien connus en optique
quantique [18, 19, 20]. Pour de tels états quantiques du champ, le bruit sur une quadrature est
réduit au-dessous du niveau de vide alors que le bruit sur l’autre quadrature est augmenté afin
de respecter l’inégalité de Heisenberg. Nous rapportons dans la quatrième partie de cette thèse
l’utilisation d’états micro-ondes comprimés pour améliorer la sensibilité de notre spectromètre RPE
au-delà de la limite quantique.

2 Micro-ondes quantiques et dynamique de spins

Il existe plusieurs raisons justifiant un traitement quantique du champ micro-onde lors d’une
expérience de résonance magnétique. Un signal micro-onde classique de fréquence ω est décrit
par son amplitude A et sa phase φ, ou de manière équivalente par ses quadratures X = A cos(φ) et
Y = A sin(φ). Dans une description quantique, détaillée dans le ch. 2, les variances des quadratures1

du champ respectent l’inégalité de Heisenberg
√
〈∆X2〉〈∆Y 2〉 > 1/4. Par conséquent, même à des

températures suffisamment basses pour que le champ micro-onde soit dans son état fondamental,
des fluctuations persistent. En exprimant les fluctuations du champ pour une température T par la
quantité adimensionnelle neq(T ) = 〈∆X2〉, les fluctuations du vide se caractérisent par l’atteinte
d’un minimum neq = 1/4 (voir Fig.1a). Ces fluctuations du vide représentent donc une limite
fondamentale pour la sensibilité de nombreuses mesures, en particulier pour la spectroscopie RPE.

1réécrites dans des unités sans dimension, telles que ~ω(〈X2〉+ 〈Y 2〉) est égal à l’énergie du mode du champ
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FIGURE 1: Fluctuations quantiques et limite quantique à l’amplification a A des températures
kBT � ~ω, le champ micro-onde est refroidit dans son état fondamental : ses quadratures ont pour
variance

√
〈∆X2〉 =

√
〈∆Y 2〉 = 1/2, correspondant au minimum de fluctuations autorisées pour le

champ (disque bleu). b-c Un amplificateur paramétrique Josephson, implémenté ici par un résonateur
comprenant un réseau de SQUIDs et pompé en flux, peut être utilisé pour détecter des champs micro-
ondes quantiques. d Utilisé en mode non-dégénéré (ωp 6= 2ω), le JPA ajoute un demi-photon de bruit
(disque rouge) au demi-photon de bruit (disque bleu) correspondant aux fluctuations du vide à l’entrée
du JPA. e En mode dégénéré (ωp = 2ω), le JPA amplifie une quadrature aux dépends de l’autre; dans ce
cas l’amplification est sans bruit. Agissant sur le vide, le JPA crée un état comprimé, ayant des fluctuations
réduites en-dessous du niveau du vide sur une quadrature mais amplifiées sur l’autre (ellipse bleue).

Les développements réalisés par cQED fournissent les outils nécessaires pour détecter les fluctua-
tions micro-ondes quantiques. Comme plusieurs ordres de grandeur séparent la faible puissance des
signaux micro-ondes quantiques et le niveau de bruit typique des appareils de mesure à température
ambiante, il est nécessaire d’amplifier les signaux. Lors de l’amplification, la mécanique quantique
impose certaines contraintes sur le bruit namp ajouté à la quadratureX (également exprimé en unités
adimensionnelles). Cette théorie quantique de l’amplification est présentée au ch. 2. Les amplifica-
teurs paramétriques Josephson ont été conçus précisément pour ajouter le moins de bruit possible
et opérer près de la limite quantique. Ils sont donc des éléments-clés dans les mesures micro-ondes
de haute sensibilité. Dans ce travail, nous utilisons un JPA, représenté schématiquement Fig. 1c, et
dont la conception est expliquée au ch. 2. Notre JPA est constitué d’un résonateur comprenant un
réseau de SQUIDs et d’une ligne de pompe permettant de moduler le flux magnétique traversant
les SQUIDs. Un signal micro-onde de pompe de fréquence ωp ≈ 2ω envoyé sur cette ligne crée un
gain paramétrique pour un signal de fréquence ω. Ce JPA pompé en flux possède deux modes de
fonctionnement. Si ωp 6= 2ω (mode "non-dégénéré"), les deux quadratures du signal sont amplifiées
et namp = 1/4 de sorte que le bruit total détecté n = neq + namp sur une quadrature est n = 1/2.
Si ωp = 2ω (mode "dégénéré"), une seule quadrature est amplifiée, ce qui permet d’échapper à la
limite quantique à l’amplification avec namp = 0 et n = neq = 1/4. Les JPAs ont été utilisés pour
détecter l’état de qubits supraconducteurs [21], d’oscillateurs nanomécaniques [22], l’état de charge
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FIGURE 2: Description quantique de l’interaction spin-photon. Un ensemble de spins placé dans une
cavité de fréquence ω0 et de facteur de qualité Q = ω0/κ interagit avec une force d’interaction g avec le
champ micro-onde.

d’une boîte quantique [23], ainsi que pour améliorer la sensibilité de mesures de magnétométrie [24].
Fonctionnant à des fréquences gigaHerz, ils sont facilement utilisables pour l’amplification des
faibles signaux micro-ondes émis par les spins comme cela est montré dans la deuxième partie
de cette thèse. Ils peuvent également générer des états comprimés, qui ont moins de fluctuations
sur une quadrature que le vide, au prix de fluctuations accrues sur l’autre quadrature de sorte à
satisfaire l’inégalité de Heisenberg (voir Fig. 1d). Nous utilisons ces états pour effectuer des mesures
au-delà de la limite quantique dans la quatrième partie.

Les fluctuations quantiques du champ sont également essentielles pour décrire l’interaction entre
les spins et le champ micro-onde d’un résonateur de fréquence ω0 et de facteur de qualité Q. Le
paramètre-clé décrivant cette interaction est la constante de couplage spin-photon notée g, qui
est le produit du moment dipolaire magnétique d’un spin et les fluctuations du vide du champ
magnétique à l’emplacement du spin. Au ch. 3, nous utilisons le modèle de Jaynes-Cummings
pour décrire les expériences de résonance magnétique, où un ensemble de spins est placé dans
un résonateur micro-onde (voir Fig. 2). Contrairement à la plupart des expériences cQED, les
expériences de résonance magnétique ont lieu dans le régime de couplage faible où g � κ, avec
κ = ω0/Q. Nous montrons que dans cette limite, une description semi-classique de la dynamique des
spins est suffisante, pourvu qu’elle soit complétée par un mécanisme de relaxation supplémentaire:
l’émission spontanée de photons micro-ondes par le spin dans le résonateur, déclenchée par les
fluctuations quantiques de le champ. Le taux de relaxation de cet effet, appelé effet Purcell, est:

Γp = κ
g2

∆2 + κ2/4

où ∆ est le désaccord fréquentiel entre le spin et le résonateur. Bien que cette relaxation radiative
de spin ait toujours été négligée par rapport à d’autres mécanismes de relaxation de spins, nous
montrons dans la troisième partie qu’elle peut devenir le mécanisme dominant pour des spins
placés dans un résonateur à haut facteur de qualité et petit volume de mode. L’utilisation du modèle
de Jaynes-Cummings permet aussi d’exprimer le champ émis par les spins dans le guide d’onde
de détection: 〈X〉 = 2g/

√
κ〈S−〉 (voir ch. 3). La maximisation du signal de sortie est donc obtenue

dans les mêmes conditions que la maximisation de l’émission spontanée par l’effect Purcell, à savoir
l’utilisation d’un résonateur de petit mode volume et de haut facteur de qualité.

Dans cette thèse, nous présentons trois expériences de résonance magnétiques où l’impact des
fluctuations micro-ondes quantiques est mis en évidence. Pour réaliser nos expériences, nous
utilisons le spin des donneurs de bismuth du silicium. Ces donneurs sont des atomes du réseau
cristallin du silicium. A basse température, ils sont à l’état neutre grâce au piégeage d’un électron de
la bande de conduction du silicium (voir Fig. 3 a). Les propriétés-clés de ces systèmes sont leur long
temps de cohérence (pouvant atteindre des secondes [25]), et l’existence d’une séparation de 7.4 GHz
entre les niveaux de spin électronique à champ nul [26]. Il est donc possible de coupler des spins
Si:Bi à des résonateurs supraconducteurs en utilisant de faibles champs magnétiques (< 10 mT),
compatibles avec la plupart des matériaux supraconducteurs et en particulier l’aluminium utilisé
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FIGURE 3: RPE limitée quantiquement : principe et dispositif expérimental. a Un donneur de bismuth
dans le silicium est un atome de bismuth substitué dans le réseau cristallin du silicium. A l’état neutre, il
piège un électron de la bande de conduction, responsable du signal RPE. Les vingt niveaux d’énergie
des donneurs de bismuth à l’état neutre, représentes ici en fonction du champ statique magnétique
appliqué, sont le fruit d’une interaction hyperfine conséquente entre le spin S = 1/2 de l’électron piégé
et le spin nucléaire I = 9/2 de l’atome de bismuth. En particulier, il y a une levée de dégénérescence
de 7.4 GHz entre deux groupes de niveaux à champ nul. b Le résonateur RPE est un dispositif planaire
réalisé en aluminium et composé d’une capacité interdigitée placée en parallèle d’un fil inductif large de 5
microns et fabriqué directement sur le substrat de silicium implanté en atomes de bismuth. L’échantillon
comprend trois résonateurs quasi-identiques; il est mesuré via un porte-échantillon en cuivre assurant
un couplage capacitif aux lignes de mesures via des antennes micro-ondes. c Les spins, thermalisé à
20 mK, sont détectés via des impulsions micro-ondes envoyées au résonateur déclenchant l’émission
d’un écho de spin dans la ligne de détection micro-onde. Le signal d’écho de spin est amplifié d’abord
par un JPA puis par un HEMT à 4 K avant d’être amplifié et démodulé à température ambiante.

dans ce travail. Nous décrivons la structure et les propriétés des donneurs de bismuth dans le
silicium au ch. 4.
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3 Détection de signaux RPE avec une sensibilité limitée quan-
tiquement

Dans la deuxième partie de la thèse, nous présentons la conception et la réalisation d’un spectromètre
RPE dont la sensibilité est largement améliorée par l’utilisation des techniques et des concepts
cQED. Comme tous les spectromètres RPE existants, notre dispositif expérimental se compose
d’un résonateur de fréquence ω0 et de facteur de qualité Q couplé à un ensemble de spins dont la
fréquence de Larmor est accordée au résonateur par l’application d’un champ magnétique externe
B0. L’application d’impulsions micro-ondes à résonance génère une aimantation de spin transverse
qui conduit à l’émission de signaux micro-ondes généralement appelés "échos". La séquence de
RPE la plus connue, l’écho de Hahn, se compose d’une impulsion π/2 suivie après un délai τ d’une
impulsion π qui conduit à un rephasage des spins après un second délai τ et à l’émission d’un écho
de Hahn. La sensibilité d’un spectromètre est caractérisée par le nombre minimum de spins Nmin

détectables par écho de Hahn avec un rapport signal sur bruit (SNR) unité.

Sur la base des concepts introduits dans la première partie, nous dérivons au ch. 5 une expression
quantitative de Nmin, qui met en évidence les quantités à optimiser pour améliorer la sensibilité
d’un spectromètre RPE. Ainsi, la constante de couplage spin-photon g et le facteur de qualité du
résonateur Q doivent être maximisés; l’utilisation de températures cryogéniques conduit à une
polarisation accrue des spins et à un bruit réduit. Les spectromètres usuels utilisant des résonateurs
tridimensionnels à température ambiante ont une sensibilité typique de Nmin ≈ 1013 spins. Ce
nombre a été considérablement réduit en utilisant des résonateurs supraconducteurs de taille
micronique refroidit à 4 K et des amplificateurs possédant des températures de bruit de l’ordre de
4 K, donnant lieu à des sensibilités mesurées de Nmin = 107 spins [15].

Aux ch. 5-7, nous présentons notre implémentation d’un spectromètre RPE utilisant les outils de
cQED, et en particulier l’amplification micro-onde à la limite quantique. Le spectromètre est basé
sur un résonateur à éléments discrets supraconducteur de haut facteur de qualité, fabriqué sur
un substrat de silicium qui contient l’ensemble des spins Si:Bi. Le résonateur est placé dans un
porte-échantillon de cuivre et couplé capacitivement aux antennes d’excitation et de détection
(voir Fig. 3b). La géométrie du résonateur est conçue pour que le couplage spin-photon atteigne
g/2π ≈ 50 Hz et l’échantillon est thermalisé à 20 mK pour obtenir une polarisation de spin totale.
Le signal d’écho de spin est amplifié par un JPA, suivi d’une amplification supplémentaire à 4 K et à
température ambiante (voir Fig. 3c). Le ch. 5 décrit la conception et la mise en œuvre expérimentale
du spectromètre.

Nous utilisons ce dispositif expérimental pour effectuer une spectroscopie détaillée des spins Si:Bi
(voir Fig. 4a&c) ainsi que des mesures du temps de cohérence (voir Fig. 4b). Nous observons
une forme de ligne inhabituelle, où chaque résonance apparait sous la forme d’un double pic
asymétrique. Au ch. 6, nous soutenons que cette forme de raie est due aux contraintes mécaniques
induites dans le substrat par les contractions thermiques du film d’aluminium déposé sur le silicium.

Au ch. 7, nous caractérisons la sensibilité du spectromètre. Par des mesures précises du rapport
signal sur bruit (voir Fig. 4c-d), complétées par des simulations numériques, nous démontrons
une sensibilité sans précédent de 2000 spins détectables par écho avec un signal sur bruit unité.
Ceci représente une amélioration de quatre ordres de grandeur par rapport à l’état de l’art de la
détection RPE {[15], obtenue grâce à l’utilisation combinée de températures cryogéniques permettant
la polarisation totale des spins, le grand facteur de qualité et le petit volume de mode du résonateur,
et le JPA.
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FIGURE 4: RPE limitée quantiquement : principaux résulats. a Spectroscopie par écho de Hahn de deux
transitions consécutives des spins Si:Bi, mettant en évidence deux doublets asymétriques, au lieu des
deux raies gaussiennes attendues. b Un temps de cohérence T2 = 8.9 ms est mesuré à B0 = 5.13 mT.
c Séquence d’écho de Hahn mesurée à B0 = 5.13 mT. Les points bleus sont les points expérimentaux,
ajustés par un modèle numérique (ligne rouge continue) démontrant que 1.2× 104 spins sont excités par
la première impulsion π/2. d Le JPA apporte une amélioration d’un facteur dix du signal sur bruit.

4 Effet Purcell appliqué aux spins

Un autre élément-clé de la sensibilité est le taux de répétition de la mesure. Aux basses températures
où sont réalisées nos expériences, le taux de relaxation des spins peut devenir extrêmement faible,
limitant de fait la sensibilité absolue du spectromètre. Au ch. 8, nous proposons l’effet Purcell
comme mécanisme de relaxation universel, pouvant s’appliquer à n’importe quel type de spins [27],
apportant ainsi une solution au problème de la ré-initialisation des spins. Cet effet est induit par
les fluctuations quantiques du champ micro-onde de la cavité, comme évoqué plus tôt. L’émission
spontanée, renforcée par la concentration du champ permise par la cavité, offre aux spins un nouveau
canal de relaxation pour atteindre l’équilibre thermique lorsqu’ils sont accordés à résonance avec
la cavité. L’effet Purcell est employé couramment pour contrôler le temps de vie d’autres TLS,
notamment d’atomes [28] et d’hétérostructures semiconductrices [29] insérés dans des cavités micro-
ondes et/ou optiques. C’est aussi un des principes-clés pour la réalisation de sources de photons
uniques brillantes [30]. Pour des spins néanmoins, leur faible couplage au champ électromagnétique
de l’espace libre rend leur temps de relaxation par émission spontanée tout à fait négligeable
comparé aux autres mécanimes de relaxation possibles.

Cependant, nous montrons au ch. 8 que pour notre géométrie un taux Γp ≈ 3 s−1 est attendu. Une
mesure expérimentale du temps T1 en utilisant notre dispositif donne T1 = 0.35 s pour des spins
à résonance, comme illustré sur la Fig. 5b. Une conséquence directe est que toutes nos mesures
peuvent être répétées à un taux de 1 Hz; le spectromètre décrit au-dessus a donc une sensibilité
absolue de 1700 spins/

√
Hz.

Même si le temps T1 mesuré expérimentalement est similaire à celui attendu par la théorie, nous
réalisons deux expériences supplémentaires prouvant définitivement que l’effet Purcell est bien
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FIGURE 5: Observation de l’effet Purcell pour des spins a Un spin placé dans une cavité résonante peut
voir sa relaxation par émission spontanée devenir le mécanisme de relaxation dominant, devant d’autres
processus intrinsèques comme la relaxation par phonon. b Pour des spins Si:Bi accordés à résonance
en utilisant le setup de la Fig. 3, l’effet Purcell induit un temps de relaxation de T1 = 0.35 s. c Temps
de relaxation T1 en fonction de g2; la ligne continue est un ajustement linéaire. d Une augmentation de
T1 sur trois ordres de grandeur est démontrée en désaccordant les spins de moins de 0.2 mT, jusqu’à ce
qu’un processus non-radiatif devienne plus efficace que l’effet Purcell, et place une borne supérieure au
temps T1 de 1500 s.

le mécanisme de relaxation dominant dans notre dispositif. Premièrement, nous montrons que le
temps T1 varie linéairement en fonction de g−2 (cf Fig. 5c), conformément à l’expression de Γp à
résonance. Deuxièmement, la Fig. 5d démontre une variation lorentzienne de T1 en fonction du
désaccord ∆. En contrôlant ∆, T1 augmente de trois ordres de grandeur, jusqu’à un maximum de
1500 s. Au-delà, T1 devient indépendant de ∆, mettant en évidence qu’un autre mécanisme de
relaxation, non-radiatif, devient dominant.

Nous concluons cette troisième partie par une discussion brève des applications possibles de cette
émission spontanée assistée par cavité.

5 États comprimés et résonance magnétique

Dans un spectromètre RPE à la limite quantique, le bruit provient presque entièrement des fluctua-
tions quantiques du champ micro-onde. Il est possible de réduire ces fluctuations en utilisant des état
quantiques comprimés. Cette idée de mesures au-delà de la simple limite quantique a été proposée
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de bruit est réduit, comme illustré en d.

d’abord par Caves [18] pour des mesures d’interférométrie. Un état comprimé possède moins de
fluctuations que le vide sur une quadrature, l’autre quadrature ayant plus de fluctuations de sorte à
satisfaire l’inégalité de Heisenberg (voir Fig. 6a). Depuis, des champs optiques comprimés ont été
mesurés [19] et utilisés pour améliorer la sensibilité de la mesure dans diverses expériences, allant
des détecteurs d’ondes gravitationnelles [31] à la magnétométrie par gaz atomiques [32]. Ils ont été
aussi générés à des fréquences micro-ondes [33] et utilisés lors d’expériences fondamentales sur
l’interaction lumière-matière [34] ainsi que pour la détection de résonateurs nano-mécaniques [35].

Dans la quatrième partie de cette thèse, nous utilisons un champ micro-onde comprimé, schématisé
Fig. 6b pour améliorer la sensibilité de notre spectromètre au-delà de la limite quantique. Notre
expérience consiste à générer un état du vide comprimé en incidence du résonateur RPE lors de
l’émission d’un écho de Hahn par les spins. La quadrature comprimée est mise en correspondance
avec la quadrature d’émission de l’écho, ce qui mène à une réduction du bruit détecté. L’état
comprimé est généré par un deuxième JPA - noté SQZ - placé en amont du résonateur.

Les résultats principaux sont montrés Fig. 6. Premièrement, l’amplitude moyennée de l’écho est
conservée en présence de compression du vide (cf Fig. 6c). Cependant, les histogrammes de bruit
révèlent que le bruit est effectivement réduit pendant la détection (cf Fig. 6d). Le fait que le signal est
inchangé mais que le bruit diminue démontre une amélioration significative du signal sur bruit d’un
facteur 1.12. C’est aussi une preuve de principe qu’une détection RPE au-delà de la limite quantique
est possible. L’amélioration modeste du signal sur bruit est due au faible taux de compression atteint,
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principalement limité par les pertes micro-ondes présentes dans le dispositif. Nous concluons cette
partie en analysant les limites de cette mise en œuvre expérimentale d’états comprimés pour la
détection RPE, et il apparait qu’en principe une amélioration du signal sur bruit de 10 dB pourrait
être envisageable.
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Chapter 1

Introduction

1.1 Circuit quantum electrodynamics for magnetic resonance

Photons and spins are two fundamental concepts born in the early days of quantum mechanics
and are key in many active research fields. The discovery that spins can absorb or emit microwave
radiation when coupled to a resonator matched to their Larmor precession frequency by Rabi [1],
Bloch [2] and Purcell [3] gave birth to the field of magnetic resonance, which encompasses both
magnetic resonance of nuclear (NMR [4]) and electronic (ESR[5]) spins. Magnetic resonance made
it possible to identify spin species contained in a sample and study their interactions, leading
to a deeper understanding of matter and its organisation at the atomic level. These powerful
spectroscopy techniques have nowadays a wide range of applications throughout biology, chemistry
and materials science, ranging from non-destructive bio-imaging [36] to drug discovery [6]. Another
application is Quantum Information Processing (QIP), where the spins are used as "qubits", the
carriers of quantum information [7].

In all magnetic resonance experiments so far, independently of the application, spins are always
treated quantum mechanically for what regards spin-spin interactions, spin coherence and spin
relaxation phenomena, while the microwave fields used to manipulate and detect them are described
classically. This semi-classical treatment of the spin-field interaction is justified by two facts. First,
the spin-photon coupling is generally so weak that the quantum nature of the microwave field has
negligible effects on the spins dynamics compared to their coupling to the lattice vibrations or to
other neighboring spins. Second, at the temperature where most magnetic resonance experiments
are realized, the vacuum fluctuations of the microwave field are negligible compared to thermal
fluctuations; moreover, the lack of a microwave detector with high quantum-efficiency prevents
their detection. These two arguments are closely related to the poor sensitivity of ESR spectrometers:
it is because spins are weakly coupled to the microwave field that a successful detection requires a
large number of spins for the collected signal to overcome the experimental noise, which itself is
largely above the quantum noise limit.

In stark contrast, in the field of Cavity Quantum ElectroDynamics (CQED, [8]), individual two-level
systems (TLS) interact coherently with the electromagnetic field at the single-photon level. The TLS
can be implemented by superconducting non-linear circuits called Josephson qubits, interacting
with high-quality factor microwave resonators in an architecture called Circuit-QED (CQED, [9, 10])
which is promising for quantum computing. Within CQED, novel techniques have been developed
to engineer and detect the quantum state of the microwave field; in particular, ultra-low-noise
microwave amplifiers have been developed for the readout of Josephson qubits. These Josephson
Parametric Amplifiers (JPA) add as little noise to the signal as quantum mechanics allows, and they
are in fact able to amplify noiselessly one quadrature of the field [11, 12, 13]. This thesis reports
the application of cQED techniques and concepts to ESR in order to perform magnetic resonance
experiments in a novel regime where quantum fluctuations of the microwave field have a major
influence on the spectrometer sensitivity as well as on the spin dynamics.
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Chapter 1. Introduction

The first part of the manuscript aims at providing the conceptual tools needed to understand
the experiments. We give a brief account of the quantum description of microwave fields and
resonators, and of their interaction with TLS, which is the essence of cQED. This allows us to present
a quantum treatment of ESR spectroscopy detection. We also present the spin-system with which all
the experimental work was realized: bismuth donors in silicon.

In the second part of this thesis, we present the design and physical realization of a "circuit-QED-
enhanced" ESR spectrometer. It relies on a high-quality factor superconducting resonator of small
mode volume, strongly coupled to bismuth donor spins, and on a JPA that amplifies the spin signal.
The output noise of this spectrometer is entirely set by quantum fluctuations of the microwave
field; in that sense, it reaches the quantum limit of sensitivity. We demonstrate an unprecedented
sensitivity of 2000 spins per experimental sequence [14], which represents a four orders of magnitude
improvement compared to the state-of-the-art [15].

Performing ESR at millikelvin temperatures has the additional benefit that the spin ensemble is fully
polarized at thermal equilibrium. However, such low temperatures can also increase dramatically
the spin-lattice relaxation time [16] leading to impractically low repetition rates. In the third part of
this thesis, we demonstrate that the coupling of the spins to an ESR resonator of high-quality-factor
and small-mode-volume leads to a strong enhancement of the rate at which they relax to their
ground state by spontaneously emitting a microwave photon, to the point where it becomes a spin
relaxation mechanism more efficient than phonon emission. This phenomenon, well-known in
CQED and predicted by Purcell in 1946, is observed with spins for the first time [17].

As already discussed, the only remaining source of noise in our spectrometer is the vacuum
fluctuations of the microwave field. Although this seems to represent a fundamental limit for
sensitivity, it is known from quantum optics that this limit can be overcome using so-called quantum
squeezed states [18, 19, 20]. In such quantum states of the field, the noise on one quadrature is
reduced below the vacuum level whereas the noise on the other quadrature is increased to fulfill
Heisenberg uncertainty principle. We report in part four the use of microwave squeezed states to
enhance the sensitivity of our ESR spectrometer beyond the quantum-limit.

1.2 Quantum microwaves and spin dynamics

There are multiple reasons for a quantum treatment of microwave fields to become relevant in
magnetic resonance experiments. A classical microwave signal at frequency ω is described by
its amplitude A and its phase φ, or equivalently by its in-phase and out-of-phase quadratures
X = A cos(φ) and Y = A sin(φ). In a quantum-mechanical description outlined in ch. 2, the
quadrature1 variances are constrained by the Heisenberg inequality

√
〈∆X2〉〈∆Y 2〉 > 1/4. As a

consequence, even at low temperatures kBT � ~ω where the field is in its quantum-mechanical
ground state, fluctuations remain. Expressing the amount of fluctuations per quadrature for a
microwave field at temperature T by the dimensionless quantity neq(T ) = 〈∆X2〉, the vacuum
fluctuations are characterized by reaching the minimum value of neq = 1/4 (see Fig.1.1a). These
vacuum fluctuations thus represent a fundamental limit to the sensitivity of many measurements,
and in particular to ESR spectroscopy.

A major progress brought by cQED is to provide the tools needed to detect quantum microwave
fluctuations. As several orders of magnitudes separate the small power of the quantum microwave
signals and the noise figure of typical room-temperature measurement apparatus, it is essential
for the signal to be amplified. Upon amplification, quantum mechanics "takes its due a second
time", by imposing some constraints on the noise namp added to the quadrature X (also expressed
in dimensionless units). This quantum theory of amplification is presented in ch. 2. The Josephson
Parametric Amplifiers have been developed precisely to add as little noise as required by quantum

1re-written in dimensionless units, such that ~ω(〈X2〉+ 〈Y 2〉) equals the field mode energy
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FIGURE 1.1: Quantum fluctuations and quantum-limited amplification. a At temperatures kBT � ~ω,
the ground state of the microwave field is reached, with its quadrature variances given by

√
〈∆X2〉 =√

〈∆Y 2〉 = 1/2 imposing a minimum to the field fluctuations (blue shade). b-c A Josephson Parametric
Amplifier, here implemented by a flux-pumped SQUID resonator, can be used to detect quantum mi-
crowave fields. d When employed in non-degenerate mode (ωp 6= 2ω), the JPA adds half a noise photon
(red shade) to the half-noise photon (blue shade) arising from the input vacuum fluctuations. e When
operated in its degenerate mode (ωp = 2ω), it amplifies one quadrature at the expense of the other; in
this case the amplification is noiseless. Acting on a vacuum state, it produces a squeezed state, with
fluctuations deamplified for one quadrature but amplified on the other one (blue shade).

mechanics and are thus key novel tools in high-sensitivity microwave measurements. In this work,
we use a JPA whose design is explained in ch. 2 and is schematically shown in Fig. 1.1c. The JPA
is powered by a pump microwave signal at frequency ωp ≈ 2ω which modulates the magnetic
flux threading the loops of an array of SQUIDs embedded in a resonator, resulting in parametric
gain at ω. This flux-pumped JPA has two modes of operation. If ωp 6= 2ω ("non-degenerate mode"),
both signal quadratures are amplified equally with namp = 1/4 so that the overall detected noise
n = neq + namp for one quadrature is n = 1/2. If ωp = 2ω ("degenerate mode"), only a single
quadrature is amplified, allowing to evade the quantum limit for amplification so that namp = 0
and n = neq = 1/4. JPAs have been used to read-out the state of superconducting qubits [21], the
motion of nanomechanical oscillators [22], and the charge state of a quantum dot [23], as well as for
high-sensitivity magnetometry [24]. Working at gigaHerz frequencies, they are readily applicable to
the amplification of weak microwave signals emitted by spins as will be shown in part two of this
thesis. They can also generate squeezed states, which have less fluctuations on one quadrature, but
increased fluctuations on the other one to fulfill Heisenberg uncertainty principle (see Fig. 1.1d). We
use such states to perform measurements beyond the quantum-limit in part four.

Quantum microwave fluctuations are also key to describe the interaction between the spins and
the microwave field in a resonator of frequency ω0 and quality factor Q. The key parameter
describing this interaction is the so-called spin-photon coupling constant noted g, which is the
product of the spin magnetic dipole moment and the magnetic field vacuum fluctuations at the
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FIGURE 1.2: Quantum description of the spin-microwave interaction. An ensemble of spins placed
inside a cavity of frequency ω0 and quality factor Q = ω0/κ interact with strength g with the microwave
field.

spin location. In ch. 3, we apply the Jaynes-Cummings model to describe magnetic resonance
experiments, where an ensemble of spins is placed inside a microwave resonator (see Fig. 1.2).
Contrary to most cQED experiments, magnetic resonance takes place in the so-called weak-coupling
regime g � κ, where κ = ω0/Q is the resonator damping rate. In ch. 3, we show that in this limit the
semi-classical description of the spin dynamics is adequate, supplemented by an additional decay
channel: spontaneous emission of microwave photons into the resonator, triggered by the quantum
fluctuations of the field. The relaxation rate of this so-called Purcell effect is:

Γp = κ
g2

∆2 + κ2/4

where ∆ is the spin-resonator detuning. While this radiative spin relaxation has always been
neglected compared to usual T1 energy relaxation mechanisms, we show in part three that it can
become dominant for spins embedded in a small-mode-volume high-quality-factor resonator. The
application of the Jaynes-Cummings model also yields that the field radiated by the spins into the
detection waveguide is given by 〈X〉 = 2g/

√
κ〈S−〉 (see ch. 3); maximizing this output signal is

achieved under the same conditions as cavity-enhanced spontaneous emission, namely a resonator
of small-mode-volume and high-quality-factor.

In this thesis, we present three experiments in which the impact of microwave quantum fluctuations
on magnetic resonance experiments is highlighted. To perform our experiments, we use the spin
degree of freedom of bismuth donors in silicon; they consist of substitutional bismuth atoms in the
silicon lattice in their neutral state, where they trap a conduction electron (see Fig.1.3a). Key proper-
ties of these systems are their long coherence times (which can reach seconds [25]), and the existence
of a 7.4 GHz [26] zero-field splitting. This makes it possible to design superconducting resonators
which are resonant with bismuth donor spins at low magnetic fields (< 10 mT), compatible with
most superconducting materials and in particular aluminum as used in this work. We describe the
structure and properties of bismuth donors in silicon in ch. 4.

1.3 Electron spin resonance at the quantum-limit of sensitivity

In the second part of the thesis we present the design and realization of an ESR spectrometer with a
sensitivity enhanced by the use of cQED techniques and concepts. As all existing ESR spectrometers,
our setup consists of a resonator of frequency ω0 and quality factor Q coupled to an ensemble of
spins, whose Larmor frequency is tuned to ω0 by the application of an external magnetic field B0.
The application of microwave pulses at ω0 results in a transverse spin magnetization which leads
to the emission of microwave signals broadly known as "echoes". The most popular ESR sequence,
known as the Hahn echo, consists of a π/2 pulse followed after a delay τ by a π pulse which leads
to rephasing of the spins after a further delay τ and to the Hahn echo emission. The sensitivity
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FIGURE 1.3: Quantum-limited ESR : principle and experimental setup a A bismuth donor in silicon
consists of a substitutional bismuth atom in the silicon lattice. In its neutral charge state, it traps a
conduction electron that yields the ESR signal. The 20 energy levels of neutral bismuth donors, shown
here as a function of an applied static magnetic field, are the result of the large hyperfine interaction
between the S = 1/2 electron spin to the I = 9/2 nuclear spin of the bismuth atom; in particular there is
a 7.4 GHz separation between level multiplets at zero applied field. b The ESR resonator consists of an
interdigitated capacitor in parallel with a 5-µm-wide inductor, patterned in a superconducting thin film
of aluminum deposited on top of a silicon chip implanted with bismuth spins. The chip contains three
nearly identical resonators; it is enclosed in a copper sample holder coupled via microwave antennas to
the measurement waveguides. c The resonator with the Si:Bi spins is anchored at 20 mK (blue) and is
probed by microwave signals triggering the emission of an echo in the detection waveguide. The echo
signal is amplified successively by a JPA, a HEMT at 4 K before being amplified and demodulated at
room-temperature.

of a spectrometer is characterized by the minimum number of spins Nmin detectable in a single
Hahn-echo with a signal-to-noise (SNR) unity.

Based on the concepts introduced in the first part, we derive in ch. 5 a quantitative expression of
Nmin, which clearly shows which quantities need to be optimized to improve the sensitivity of an
ESR spectrometer. The spin-photon coupling constant g and the resonator quality factor Q should be
maximized; and low-temperatures lead to increased spin polarization and reduced noise. Regular
spectrometers using three-dimensional resonators and operating at room-temperature have a typical
sensitivity ofNmin ≈ 1013 spins. This number has been greatly improved by combining micron-scale
superconducting resonators operating at 4 K and the use of amplifiers with noise temperatures of
4 K, yielding reported sensitivities of Nmin = 107 spins [37].
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FIGURE 1.4: Quantum-limited ESR : main results. a Hahn-echo detected Si:Bi spectroscopy of two
consecutive transitions, evidencing asymmetric split peaks instead of the expected Gaussian lineshapes.
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spins are excited by the first π/2 pulse. d The JPA brings a ten-fold enhancement to the signal-to-noise
ratio.

In ch. 5-7, we present our implementation of an ESR spectrometer using the tools of cQED, and
in particular microwave amplification at the quantum limit. The spectrometer is based on a high-
quality factor superconducting lumped element resonator, deposited on top of a silicon substrate
which contains the ensemble of Si:Bi donor spins, enclosed in a copper sample holder, and coupled
to the detection waveguides by excitation and detection antennas (see Fig. 1.3b). The resonator
geometry is designed so that the spin-photon coupling reaches g/2π ≈ 50 Hz and the sample
is anchored at 20 mK to have full spin polarization. The spin-echo signal is amplified by a JPA,
followed by further amplification at 4 K and room-temperature (see Fig. 1.3c). Chapter 5 describes
the spectrometer design and experimental implementation.

In ch. 6, using Hahn-echo detected field sweeps (see Fig. 1.4a-c), we use this setup to perform
detailed spectroscopy of Si:Bi donors spins as well as coherence time measurements (see Fig. 1.4b).
We observe a peculiar line shape, with each Si:Bi resonance appearing as an asymmetric split peak.
In ch. 6 we argue that this line shape is caused by mechanical strain due to thermal contractions of
the deposited aluminum film onto the silicon substrate.

In ch. 7, we characterize the spectrometer sensitivity. By careful signal-to-noise ratio measurements
(see Fig. 1.4c-d) complemented with numerical simulations, we demonstrate an unprecedented
sensitivity of 2000 detectable spins per echo with SNR=1. This represents a four-order-of-magnitude
improvement compared to the state-of-the-art of inductive detection, obtained thanks to the com-
bined use of cryogenic temperatures allowing for the full polarization of the spins, the high quality
factor of the resonator, and the JPA.
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c Measured relaxation time T1 as a function of g2; the solid line is a linear fit. d A change in T1 by 3
orders of magnitude is demonstrated by detuning the spins by less than 0.2 mT, up until a non-radiative
relaxation process dominates the Purcell effect and effectively limits T1 to 1500 s.

1.4 The Purcell effect applied to spins

Another key aspect of the sensitivity is the repetition rate. At the low temperatures of our ex-
periments, the spin relaxation rate may become exceedingly low, limiting effectively the absolute
sensitivity of the spectrometer. In ch. 8, we use the Purcell effect to demonstrate a re-initialization
mechanism applicable to any spin system [27]. This effect arises from the quantum fluctuations
of the cavity field, as mentioned earlier. Cavity-enhanced spontaneous emission provides a new
way to reach thermal equilibrium for the spin ensemble. It strengthens the spontaneous emission
of microwave photons by the spin when it is tuned at resonance with the cavity and thus ensures
its eventual return to thermal equilibrium. The Purcell effect has been used extensively to control
the lifetime of other TLS such as atoms [28] and semi-conducting heterostructures [29] placed in
microwave and optical cavities. It is also a key concept in the realization of bright single-photon
sources [30]. For spins however, due to their very weak coupling to the free space electromagnetic
field, the estimated rate is usually so low that it is commonly dismissed as a possible source of
relaxation.

We show in ch. 8 that for our resonator characteristics, we expect Γp ≈ 3 s−1. An experimental
measurement of T1 using our setup yields T1 = 0.35 s for spins at resonance, as shown in Fig. 1.5b.
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FIGURE 1.6: Enhancing the sensitivity of ESR spectroscopy with squeezed vacuum states. a A
squeezed-state has reduced fluctuations on one quadrature compared to the vacuum level. b Sending a
squeezed vacuum state onto an ESR resonator can reduce the quantum noise in the detection during the
echo emission. c An echo signal measured with or without squeezing shows the same average signal
amplitude but has a reduced noise histogram as shown in d.

This has the direct consequence that all our measurements can be repeated at a 1-Hz-rate and thus
the spectrometer described above has an absolute sensitivity of 1700 spins/

√
Hz.

While the experimental T1 is in good agreement with the expected Purcell rate, we realize two
additional experiments providing direct evidence that the Purcell effect is the dominant relaxation
mechanism. First, we show that T1 depends linearly on g−2 (see Fig. 1.5c) as expected from the
expression of Γp at resonance. Second, Fig. 1.5d demonstrates the expected Lorentzian dependence
of T1 on ∆. By controlling ∆, T1 is tunable over three orders of magnitude, up to 1500 s, at which
point it stops increasing with |∆|, which shows that another relaxation mechanism, non-radiative,
then becomes dominant.

We conclude the third part of this thesis with a brief discussion of the potential applications of this
cavity-enhanced spin relaxation.

1.5 Squeezing-enhanced magnetic resonance

In a quantum-limited ESR spectrometer, the noise arises almost entirely from the microwave
field quantum fluctuations. It is possible to reduce these fluctuations using quantum-mechanical
squeezed states. The idea of performing measurement beyond the standard quantum limit with such
engineered states was first proposed by Caves [18] in the context of interferometric measurements.
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For squeezed states, the noise in one field quadrature is reduced below the vacuum level whereas
the other quadrature has more noise, to fulfill Heisenberg uncertainty principle (see Fig. 1.6a). Since
then, optical squeezed vacuum fields have been observed [19] and used to enhance the sensitivity in
a number of experiments, ranging from gravitational waves detectors [31] to atom-based magnetom-
etry [32]. They have also been produced at microwave frequencies [33] and used for fundamental
light-matter interaction studies [34] and enhanced sensing of a mechanical resonator [35].

In the fourth part of this thesis, we use a squeezed microwave field as depicted in Fig. 1.6b to
improve the sensitivity of the spectrometer beyond the quantum limit. Our experiment consists in
sending a squeezed vacuum state onto the input of the ESR resonator, while driving the spins with a
Hahn echo sequence. The squeezed quadrature is aligned with the quadrature on which the echo is
emitted, leading to reduced noise. The squeezed vacuum state is produced by a second JPA - called
the squeezer SQZ - placed at the cavity input.

The main results are shown in Fig. 1.6. First, the average echo amplitude is unchanged when the
squeezing is on (see Fig. 1.6c). However the noise histograms reveal that the noise has indeed been
reduced in the detection (see Fig. 1.6d). The fact that the signal is unaffected while the noise is
decreased demonstrates a net enhancement of the signal-to-noise ratio of the experiment by a factor
1.12. It gives a proof-of-concept that magnetic resonance beyond the standard quantum limit is
possible. The modest improvement in SNR is due to the limited degree of squeezing achieved, which
is in particular due to losses in the microwave setup. We conclude this part by a thorough analysis
of the experiment limitations, and we find that in principle, SNR enhancements as large as 10 dB
could be achieved in the future.
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Chapter 2

Quantum circuits and quantum noise

For our purpose to perform magnetic resonance with quantum microwave fields, a quantum de-
scription of the resonator and of the microwave field is needed. Such description has been used
extensively in the field of superconducting circuits and we give here only the results pertaining to
the experimental work detailed later on. First, we describe the principal properties of quantum mi-
crowave fields as well as the principal quantum states used later on. We then recall the quantization
of the mode of a LC resonator as well as of a microwave field propagating along a transmission
line. We finally give elements of input-output theory, which describes how the intra-cavity field of a
linear or non-linear resonator is related to the propagating modes of the transmission lines to which
it is coupled for measurement. In the second part of this chapter, we present the quantum theory of
linear amplifiers; in particular we derive the so-called quantum limit of amplification, which gives
the minimum amount of noise necessarily added by any amplifier to satisfy the basic principles of
quantum mechanics. We also describe the design and working principle of a Josephson Parametric
Amplifier, a device which reaches this quantum limit.

2.1 Quantum microwaves and quantum circuits

In our experiment, the resonator circuit is coupled to external measurement fields via transmission
lines. At temperatures lower than ~ω/kB , the microwave fields residing in the resonator and
propagating fields in the transmission lines are cooled down to their ground state and thus require
a quantum mechanical description.

2.1.1 Quantum description of an electromagnetic mode : quantum noise and
quantum states

A good review of the quantization of electromagnetic modes and quantum states can be found in
[38]. We consider a given mode of the electromagnetic field, at frequency ω. Classically, this mode is
characterized by its complex amplitude A = |A|eiφ. It can be equivalently described by its in-phase
and out-of-phase quadratures usually defined as X = Re(A) and Y = Im(A). In the frame rotating
at frequency ω, the field can thus be represented in phase space as a point of polar coordinates
(|A|, φ) or cartesian coordinates (X,Y ) (see Fig. 2.1a). The choice of the quadratures is relative to the
phase reference. Choosing a phase reference different by an angle θ so that the microwave signal
has a phase φ− θ leads to the definition of new quadratures (Xθ, Yθ) related to (X,Y ) by:

Xθ = X cos(θ) + Y sin(θ) (2.1)
Yθ = −X sin(θ) + Y cos(θ) (2.2)
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In quantum physics, the field quantization is obtained by promoting the quadratures of the field
as quantum operators obeying the commutation relation

[
X̂, Ŷ

]
= i/2. X̂ and Ŷ are canonically

conjugate variables, and the commutation relation imposes the following Heisenberg uncertainty
relation for any pure state |Ψ〉 or statistical mixture of states described by a density matrix ρ:
〈∆X̂2〉〈∆Ŷ 2〉 ≥ |〈[X̂, Ŷ ]〉|2/4, i.e. :

〈∆X̂2〉〈∆Ŷ 2〉 > 1

16
(2.3)

where the notations 〈ô〉 and 〈∆ô2〉 stand respectively for the operator expectation value Tr(ρô) and
for its variance 〈ô2〉 − 〈ô〉2. Therefore no field can have a perfectly well-defined value for either of
its quadratures and these quantum fluctuations need to be taken into account in experiments that
aim at reaching ultimate measurement sensitivity.

The uncertainty on X̂ and Ŷ makes it impossible to have a point-like representation. Instead, one
needs to use a quasi-probability distribution such as the Wigner function distribution [39]. In the
following, we also represent states schematically by shading regions (X,Y ) such that |X −Xmax| 6√
〈∆X̂2〉/2, and equivalently for Y , with (Xmax, Ymax) being the position of the Wigner function

maximum. The field can be equivalently described by the annihilation and creation operators â†

and â defined as:

â = X̂ + iŶ (2.4)
â† = X̂ − iŶ (2.5)
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that obey the commutation relation [â, â†] = 1.

We now briefly describe the field states used in this thesis, their representation and their noise
properties. Note that we will restrict ourselves to the so-called Gaussian states, for which the
statistical distribution of the quadratures is a Gaussian. As a result they are fully characterized by
their mean value and variance, and we will now concentrate on these quantities.

Vacuum state

We first define the Fock states |n〉 as eigenstates of the number operator n̂ = â†â. The lowest-energy-
state n = 0 is called the vacuum state. It satisfies:

〈X̂〉 = 〈Ŷ 〉 = 0 (2.6)
〈∆X̂2〉 = 〈∆Ŷ 2〉 = 1/4. (2.7)

and thus reaches the minimal variance authorized by the Heisenberg uncertainty principle for a
state verifying 〈∆X̂2〉 = 〈∆Ŷ 2〉. In phase-space, using the Wigner function, the vacuum state is
represented by a disk centered on (0, 0) of radius 1/4 (see Fig. 2.1b). Its incompressible quantum
fluctuations set a limit on the signal-to-noise ratio of many experiments and are known as the
standard quantum limit. As will be explained in ch. 3, they also set the coupling strength between a
TLS and the microwave field.

Thermal state

We also need to describe electromagnetic modes that are in thermal equilibrium with a bath at
temperature T ; they are said to be "in a thermal state". Such a thermal state is a statistical mixture of
Fock states |n〉 with a Boltzmann distribution, and its mean-value and variance can be shown to be:

〈X̂〉 = 〈Ŷ 〉 = 0 (2.8)

〈∆X̂2〉 = 〈∆Ŷ 2〉 =
2nth + 1

4
, (2.9)

where nth is the mean thermal photon number occupying the field, which obeys:

nth =

[
exp

(
~ω
kBT

)
− 1

]−1

(2.10)

In phase-space, a thermal vacuum is represented by a disk centered on (0, 0) of radius
√

2nth + 1/4,
as shown in Fig. 2.1b. In the high temperature limit kBT � ~ω, the thermal state fluctuations are
simply given by kBT/2~ω and thus depend linearly on T (see Fig. 2.2). In the low temperature limit
kBT � ~ω, the field occupies mostly the |0〉 vacuum state and thus reaches the quantum limit with
〈∆X̂2〉 = 1/4.

Squeezed states

In this thesis we also encounter squeezed states of the field. Compared to the thermal and vacuum
states, they are non-isotropic with one quadrature Xθ having less fluctuations than the vacuum state,
while its other quadrature Yθ has increased fluctuations to fulfill Heisenberg uncertainty principle.
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The usual definition of these states makes use of a squeezing parameter ζ such that:

〈X̂θ〉 = 〈Ŷθ〉 = 0 (2.11)

〈∆X̂2
θ 〉 =

e−ζ

4
(2.12)

〈∆Ŷ 2
θ 〉 =

eζ

4
(2.13)

Their phase-space representation is an ellipsoid centered on (0, 0) (see Fig. 2.1c) with a phase-
dependent radius r(φ) since:

〈∆X̂2
φ〉 =

1

2

(
N +M cos(φ− θ) +

1

2

)
(2.14)

where N and M are defined as N = cosh(ζ)/2 − 1/2 and M = sinh(ζ)/2. A squeezed state has
minimal uncertainty in the sense of Heisenberg inequality (see Eq. 2.3). Even though it is abusively
called "squeezed vacuum", it is important to note that this state contains a finite number of photons
since it can be shown that 〈â†â〉 > N . Moreover, the stronger the squeezing, the larger N , and
thus the larger the energy of the state. A state with an infinitely squeezed quadrature X̂ would
have infinite energy. Since one of its quadratures has less fluctuations than the standard quantum
limit, squeezed states are very interesting for ultra-precise measurement and are a key resource in
quantum metrology [40]. In ch. 9, we make use of them to perform magnetic resonance spectroscopy
beyond the standard quantum limit.

Squeezed thermal states also exist. Similarly than for a squeezed vacuum state, one of their
quadrature has less fluctuations than a thermal state of thermal occupancy nth while the other one
has increased fluctuations. Eqs. 2.12-2.13 are modified as follows:

〈∆X̂2
θ 〉 = (2nth + 1)

e−ζ

4
(2.15)

〈∆Ŷ 2
θ 〉 = (2nth + 1)

eζ

4
(2.16)
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L

C

I(t)

V(t)

a b

FIGURE 2.3: LC oscillator. a Schematic. b Example of implementation: a superconducting planar
resonator comprising a interdigitated capacitance (orange) in parallel with a wire (inductance, blue).

while N and M are now defined as:

N =
1

2
[(2nth + 1) cosh(ζ)− 1] (2.17)

M =
1

2
(2nth + 1) sinh(ζ) (2.18)

Coherent states

Throughout this manuscript, the microwave signals that drive the spins are classical and can be
described by coherent states. Coherent states |α〉 are eigenstates of the operator â such that the
number of photons contained in this state is 〈α | â†â | α〉 = |α|2. For α = 0, the coherent state is the
vacuum state |0〉. Coherent states are characterized by their mean value 〈X̂〉 = Re(α), 〈Ŷ 〉 = Im(α),
and their variances 〈∆X̂2〉 = 1/4 and 〈∆Ŷ 2〉 = 1/4 which are identical to those of the vacuum state.
One can also have coherent thermal states whose fluctuations are then given by Eq. 2.9.

After having introduced various quantum states, we now discuss physical implementations of the
electromagnetic modes relevant for our work.

2.1.2 Lumped element LC resonator

The simplest implementation of an electromagnetic field mode is the lumped-element LC oscillator,
which is also highly relevant for the rest of this work as will be clear in the following. A good review
of the quantization of a simple LC resonator is given in [41, 42]. Consider an oscillator comprising
an inductor L in parallel with a capacitor C as schematized in Fig. 2.3a. We introduce the operator Φ̂,
describing the magnetic flux in the inductor, and q̂, describing the charge on the capacitor. Φ̂ and q̂
obey the conjugation relation [φ̂, q̂] = i~. The Hamiltonian of this harmonic oscillator is:

Ĥ(φ̂, q̂) =
φ̂2

2L
+
q̂2

2C
(2.19)

which may also be written as:
Ĥ = ~ω0

(
â†â+ 1

2

)
(2.20)

25



Chapter 2. Quantum circuits and quantum noise

where â and â† are linked to φ̂ and q̂ by:

â =
1√

2~Z0

(φ̂+ iZ0q̂) (2.21)

â† =
1√

2~Z0

(φ̂− iZ0q̂) (2.22)

with ω0 = 1/
√
LC being the resonator frequency and Z0 =

√
L/C the resonator impedance. The

voltage V̂ across the capacitor and the current Î flowing through the inductor are thus expressed in
terms of the bosonic operators as:

V̂ =
q̂

C
= iω0

√
~Z0

2
(â† − â) (2.23)

Î =
φ̂

L
= ω0

√
~

2Z0
(â+ â†) (2.24)

The eigenstates of Ĥ are the Fock states |n〉 and satisfy Ĥ|n〉 = ~ω0

(
n+ 1

2

)
|n〉. The rms vacuum

fluctuations of the voltage and the current when the resonator field is in its quantum ground state
are then:

δI2 = 〈0|Î2|0〉 =
~ω2

0

2Z0
(2.25)

δV 2 = 〈0|V̂ 2|0〉 =
~Z0ω

2
0

2
(2.26)

The rms voltage and rms current generate, respectively, a spatially dependent electric field Ê (r) =

iδE (r) (â− â†) in the space between the capacitor plates, and magnetic field B̂ (r) = δB (r) (â+
â†) around the inductor, with δE (r) and δB (r) their vacuum rms fluctuations at position r.
Throughout this thesis, the rms magnetic field vacuum fluctuations play an important role as they
are proportional to the coupling constant between the spins and the resonator. An example of a LC
resonator used in later chapters is depicted in Fig. 2.3b.

2.1.3 Lossless transmission line

dx

I(t,x)

V(t,x)

l dx

c dx

dx

dx

FIGURE 2.4: Transmission Line. Each infinitesimal part of a transmission line can be modeled as a LC.

A transmission line, for instance any coaxial cable, supports the propagation of electromagnetic
modes. A good overview of the quantization procedure for a transmission line is given in [43]. The
transmission line can be modeled as an assembly of elementary circuits, as shown in Fig. 2.4, where l
and c are the inductance and capacitance per unit-length. To analyze this circuit, a local flux variable
dependent on the position is defined as φ(x, t) =

∫ t
−∞ V (x, τ)dτ where V (x, t) is the local voltage
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on the transmission line at position x and time t. In each segment, the charge in the capacitor is
given by q(x, t) = cV (x, t), the voltage drop across the inductance l dx is −dx ∂x∂tφ(x, t), yielding
the flux through this inductance −dx ∂xφ(x, t) and the corresponding current I(x, t) = −∂xφ(x, t)/l.

The Lagrangian for an infinite line is given by L =
∫
dxLx, with the Lagrangian density Lx being:

Lx =
q2

2 c dx
− l dx I2

2
=
c

2
(∂tφ)2 − 1

2l
(∂xφ)2 (2.27)

The corresponding equation of motion for φ is then given by the wave equation lc ∂2
t φ− ∂2

xφ = 0,
with a propagation speed vt = 1/

√
lc. By differentiating with respect to the time, one finds a similar

expression for V (x, t). Without any boundary conditions, the solutions of this equation may be
expressed as a composition of right and left propagating waves:

V (x, t) = V⇀
(
t− x

vt

)
+ V↽

(
t+ x

vt

)
(2.28)

The solution for the current is related to V by l∂tI = −∂xV , thus:

I(x, t) = Z−1
c

[
V⇀

(
t− x

vt

)
− V↽

(
t+ x

vt

)]
(2.29)

where Zc =
√
l/c is the characteristic impedance of the line. The left and right propagating waves

are independent for an infinite transmission line. If the line is terminated by a load Zl at x = 0, they
are linked by the following equation of continuity for classical fields:

V⇀(t) + V↽(t) =
Zl
Zc

(V⇀(t)− V↽(t)). (2.30)

The microwave power transmitted to the right is then given by:

P = V × I =
1

Zc
[(V⇀)2 − (V↽)2]. (2.31)

We now turn to the quantum description of propagating fields. From the Lagrangian density, one
can extract the density Hamiltonian by noticing that the charge is the conjugate quantity of the flux:

∂Lx
∂(∂tφ)

= c∂tφ = cV = q (2.32)

and thus H =
∫
Hxdx, with:

Hx = ∂tφ
∂L

∂(∂tφ)
− Lx =

q2

2c
+

(∂xφ)2

2l
(2.33)

The field quantization is obtained by treating φ and q as quantum operators obeying:

[∂xφ̂(x, t), q̂(x′, t)] = ∂x[φ̂(x, t), q̂(x′, t)] = i~∂xδ(x− x′) (2.34)

Using expressions 2.28 and 2.29, one can express φ̂ and q̂ as a function of the voltage amplitude
operators V̂⇀(τ−) and V̂↽(τ+) where we set τ± = t ± x

vt
. Using the fact that left and right

fields for an infinite transmission line are independent, one can derive from Eq. 2.34 the following
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commutation relation for V̂
(τ):

[V̂
(τ), V̂
(τ ′)] = − i~
2
Zc∂τδ(τ − τ ′) (2.35)

To find the expression of the voltage as a function of annihilation and creation operators â
(ω),
Eq. 2.35 is expressed in the frequency domain, by defining:

V̂
(ω) =

∫ ∞

−∞
V̂
(τ)eiωτdτ. (2.36)

and thus:
[V̂
(ω), V̂
(ω′)] = 2π

~
2
Zcωδ(ω − ω′) (2.37)

One can notice that while V̂
(τ) is hermitian, V̂
(ω) is non-hermitian with V̂
(ω)† = V̂
(−ω).
To have [â
(ω), â
†(ω′)] = 2πδ(ω − ω′), we now define â
(ω) as:

â
(ω) =

√
2

~|ω|Zc
V̂
(ω) (2.38)

and thus one has by reverting to the time domain:

V⇀(x, t) =

∫ ∞

0

dω

2π

√
~ωZc

2
(â⇀(ω)e−iω(t−x/vt) + h.c.) (2.39)

V↽(x, t) =

∫ ∞

0

dω

2π

√
~ωZc

2
(â↽(ω)e−iω(t+x/vt) + h.c.) (2.40)

where h.c. stands for hermitian conjugate.

We are typically interested in a relatively narrow band of frequencies centered on ωa. In this case, it
is useful to work in the time-domain in a frame rotating at ωa. Using Eq 2.40 and assuming that the
only relevant frequencies are near ωa (performing the so-called rotating wave approximation), one
finds for x = 0:

V⇀(t) =

√
~ωaZc

2
(â⇀(t) + â⇀†(t)) (2.41)

where we have defined the annihilation and creation operators in the time domain to be:

â
(t) =

∫ ∞

0

dω

2π
â
(ω)eiωτ (2.42)

Instead of keeping the basis of "infinite-bandwidth" operators â(t), the notations can be further
simplified by introducing a new operator which defines propagating spatio-temporal modes of
finite temporal and spectral extension. We write

â =

∫
â(t)u(t)dt (2.43)

u(t) being the propagating signal mode temporal envelope, of bandwidth ∆ω, normalized so that∫
[u(t)]2dt = 1. With this definition, we define left and right modes â
 which obey [â
, â
†] = 1

and that are equivalent to the annihilation and creation operators used in 2.1.1. As a result, quantum
microwave fields propagating along a transmission line can be described using the results of 2.1.1.
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2.1.4 Probing and characterizing a resonator

ain,1

aout,1

ain,2

aout,2

E1

R

ZC ZC

CC1 CC2

V1(t) V2(t)

I1(t) I2(t)

L

C

A

I

κ2κ1

κint

κ1
κ2

ω0

κint

a

b c

Rext1L
C Cc1 Cc2

Rext2

R

FIGURE 2.5: Probing a LC resonator from the outside. a When a RLC circuit is coupled capacitively
to measurement lines of characteristic impedance Zc, the energy stored in the inductive and capacitive
elements can leak out with rate κint into the internal resistance, and with rate κ1 and κ2 into the
measurement lines. A master equation established for the intra-resonator field â(t) allows to link the
input and output field operators via these dissipation rates in an input-output framework. b Norton
equivalent circuit. c Quantum Optics equivalent representation.

The LC resonator used in our experiments is coupled to two transmission lines of characteristic
impedances Zc via two coupling capacitances Cc1 and Cc2, as shown in Fig. 2.5. We also introduce a
resistance R in the LC to model the internal losses of the resonator. In this paragraph, we would
like to provide a quantum description of the evolution of the intra-resonator field â in response to
external drives and internal losses. We first present a few results obtained by a classical description
of the system to define a number of useful quantities.

Coupling to a measurement transmission line

As the RLC circuit is coupled to input and output transmission lines, its frequency ω0 and its
characteristic impedance Z0 are slightly modified. Indeed, the admittance viewed from A (see
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Fig 2.5a) has two additional terms Zext,i=1,2 = Zc + 1/iCCiω:

Z−1
A =

1

R
+ i

(
Cω − 1

Lω

)
+

1

Zext1
+

1

Zext2
(2.44)

Z−1
A =


 1

R
+
∑

i=1,2

ZcC
2
Ciω

2
0

1 + (ZcCCiω0)2


+ i




C +

∑

i=1,2

CCi
1 + (ZcCCiω0)2


ω − 1

Lω


 (2.45)

In the limit ZcCCiω0 � 1 and in the vicinity of ω0, this corresponds to a R′L′C ′ circuit impedance
(see Figure 2.5b), with L′ = L and:

C ′ = C +
∑

i=1,2

CCi
1 + (ZcCCiω0)2

≈ C + CC1 + CC2. (2.46)

thus renormalizing slightly the resonator frequency in ω′0 = 1/
√

LC′ and its characteristic impedance
in Z ′0 =

√
L/C ′. In the following, we take into account this renormalization but keep the notations

ω0 and Z0. In addition, three dissipation terms corresponding to internal losses or losses via coupling
to the transmission lines can be identified:

1

R′
=

1

R
+

1

Rext,1
+

1

Rext,2
with

Rext,i

Zc
= 1 +

1

(ZcCCiω0)2
≈ 1/Z2

cC2
Ciω

2
0 (2.47)

The dissipation terms set the damping of the resonator motion via its quality factor Q−1 = R
√
L/C

(for a parallel RLC circuit), allowing us to identify three distinct contributions Q−1 = Q−1
ext,1 +

Q−1
ext,2 + Q−1

int given respectively by the internal losses Q−1
int = R

√
L/C ′ and the coupling to the

transmission lines Q−1
ext,i = Rext,i

√
L/C. The energy damping rate into each “port”, either internal

or external, is then defined as κ = ω0/Q.

This mapping is valid in the high-quality factor limit where ZcCCiω0 � 1. One interpretation is that
the coupling capacitances are acting as semi-reflecting mirrors: the strong impedance mismatch
between the transmission line and the LC oscillator ensures that the electromagnetic field is confined
inside the resonator.

Input-output theory

When probing the resonator with classical microwave fields, the input and output resonator fields
can be related using a scattering matrix approach [44]. Consider the two-port device comprising
the coupling capacitances and the RLC circuit, denoted by the grey box shown in Fig. 2.5, with
each port directly connected to the left and right transmission lines. An ideal voltage source E1

with a matched output impedance connected to the left transmission line generates a voltage V1(t)
and a current I1(t) on port 1 as well as a voltage V2(t) and a current I2(t) on port 2. As seen
above, V1(t) can be separated in two contributions: a right propagating term incident on the device
given by V⇀1 (t) = V1(t) + ZcI1(t) and a left propagating term outcoming of the device given by
V↽1 (t) = V1(t) − ZcI1(t), and similarly for V2(t). One can consider equivalently that the incident
term V⇀1 gives rise to a transmitted wave V⇀2 in the right transmission line and a reflected term
V↽1 in the left transmission line. The relation between the input and output power waves defined
as ain,j = V⇀j /

√
Zc and aout,i = V⇀i /

√
Zc can be expressed by the scattering matrix coefficient Sij :

Sij =
aout,i

ain,j
evaluated with ∀k 6= j, ain,k = 0 (2.48)

The device behavior is entirely characterized by knowledge of the S-matrix. This scattering matrix
approach has been extended to a quantum-mechanical description of the device by Gardiner and
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Collett [45]. This theory describes the very general case of a system of Hamiltonian Ĥ coupled to
different continuums of modes with coupling strengths κi.

In our particular case, the system is the LC resonator described by the intra-resonator field operator
â(t) introduced in Eq. 2.22 described in the Heisenberg picture. The two transmission lines provide
two baths, described by the propagating operators âin,i=1,2 introduced in Eq. 2.38. The coupling
rates κi can be identified to the energy damping rates introduced above if one performs a Markovian
approximation valid in the limit of coupling to a continuum of modes (see Figure 2.5c). In the
treatment introduced by Gardiner and Collett, the evolution of â(t) is given by the following master
equation (in the Heisenberg picture):

∂tâ(t) =
[â, Ĥ]

i~
− 1

2

(∑

i

κi + κint

)
â(t) +

∑

i

√
κiâin,i(t) +

√
κintâint(t) (2.49)

where [â, Ĥ]/i~ = −iω0 â for a LC oscillator. The terms
√
κi â

⇀
i (t) are the source terms and the

terms 1
2 (
∑
i κi + κint) â(t) are the damping terms. The internal losses are associated to an additional

port at thermal equilibrium. The classical continuity equation Eq. 2.30 translates into the important
following relation between input and intra-resonator field:

â⇀i (t) + â↽i (t) =
√
κiâ(t) (2.50)

External drive by coherent states

In our experiments, the resonators are driven by classical fields which can be described as coherent
states |αin,i〉. The incident power on the resonator is thus given by P = ~ω|αin,i|2. Under a classical
drive αin,i on port i, the mean-value of the intra-resonator 〈â〉(t) = α(t) is then given by Eq. 2.49:

∂tα(t) = −iω0α(t)− κ1 + κ2 + κint

2
α(t) +

√
κiαin,i(t) (2.51)

and thus by Fourier transform, one finds the steady state solution of α:

α(ω) =
2
√
κi

κ1 + κ2 + κint − 2i(ω − ω0)
αin,i(ω) (2.52)

At resonance, under a drive of power Pi the intra-cavity photon number n̄ = |α|2 is:

n̄ =
4κiPi

~ω0(κ1 + κ2 + κint)2
(2.53)

In the following chapters, we are also interested in the current flowing through the inductor and the
associated generated magnetic field. Upon an incident resonant signal of power P , they are given
by:

〈Î〉(t) = 2δI
√
n̄ cos(ω0t) (2.54)

〈B̂ (r)〉(t) = 2δB (r)
√
n̄ cos(ω0t) (2.55)

Measurements

In ch. 5, the frequency and coupling rates of the resonator are determined experimentally by
using a Vector Network Analyser (VNA). This apparatus measures the S-matrix components in
transmission (S21(ω) and S12(ω)) and in reflexion (S11(ω) and S22(ω)). The power waves ain,i and
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FIGURE 2.6: Transmission and reflexion measurements evaluated for κ1 = 0.2 κ2 and three values of
κint: κint +κ1 = κ2 (blue), κint +κ1 = 0.25 κ2 (green), κint +κ1 = 10 κ2 (red). a, b and c are respectively
the modulus (top) and argument (bottom) of S11(ω), S21(ω) and S22(ω)

aout,i introduced earlier to define the S-parameters can be replaced by the coherent signals αin,i and
αout,i. Eq. 2.50 yields the relation αin,i(ω) + αout,i(ω) =

√
κiα(ω), and thus one can compute the

dependencies of Sij(ω) expected for a LC resonator coupled to two transmission lines:

in transmission:

S21(ω) = S12(ω) =

√
κ2α(ω)− αin,2

αin,1

∣∣∣∣
αin,2=0

=
2
√
κ1κ2

κ1 + κ2 + κint − 2i(ω − ω0)
(2.56)

in reflexion:

Sii(ω) =

√
κiα(ω)− αin,i

αin,i

∣∣∣∣
αin,j=0

=
κi − κj − κint + 2i(ω − ω0)

κi + κj + κint − 2i(ω − ω0)
(2.57)

Depending on the relative strength of the internal damping rate κint compared to the external
coupling rate κc = κ1 + κ2, it is interesting to distinguish three regimes, as illustrated on Fig. 2.6. In
our experiment, the coupling to port 1 and 2 are asymmetric with κ1 � κ2. Seen from port 2, we
thus have:

• The under-coupled regime, where κint� κ2, κ1: (green curves) In reflexion on both ports,
only a small dip in amplitude is observed with a small phase shift in phase. The transmission
peak width is essentially set by κint.

• The critical coupling regime, where κint + κ1 = κ2: (blue curves). The reflexion on port 2
goes to 0 with a π-shift discontinuity. The transmission reaches

√
κ1/κ2. The reflexion on port

1 is in the under-coupled regime.

• The over-coupled regime, where κint + κ1� κ2: (red curves) For both reflexion measure-
ments only a slight dip in amplitude occurs, however the phase when reflecting on port 2
shifts by 2π while the shift on port 1 is less than π. The transmission at resonance is close to
2
√
κ1/κ2.
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In order to determine ω0, κ1, κ2 and κint experimentally on a two-port device with asymmetric
couplings, the measurement of at least two elements of the scattering matrix among S11(ω), S22(ω)
and S21(ω) is required. However, measuring the transmission S21(ω) generally only brings knowl-
edge of the total damping rate κ since exploiting the peak height to obtain the quantity

√
κ1κ2

requires prior precise calibration of the measurement lines. The best determination of the resonator
parameters is thus obtained by measuring and fitting S11(ω) and S22(ω) because they are in a sense
"self-calibrated" by the fact that |S11| = |S22| = 1 far from resonance. In the following, we also
measure single-port resonators, which are treated with the same formulas as already presented,
with κ1 = 0. It should also be noted that the S-parameters measured by the VNA are defined as the
conjugates quantities Sij(ω)∗ of what is derived here.

2.2 Amplification at the quantum-limit

Several orders of magnitude separate the small power of the quantum microwave signals that we
wish to detect and the noise level of typical room-temperature measurement apparatus. It is thus
essential to amplify the signals with as little noise as possible. Quantum mechanics imposes some
constraints on the minimum amount of noise that an amplifier has to add to the signal, as shown by
Haus and Mullen [46], and Caves [11]. While usual microwave amplifiers add in general much more
noise, novel amplifiers developed for cQED research and called Josephson Parametric Amplifiers
(JPA) do reach this quantum limit. In this section, we will give an overview of the theoretical aspects
of quantum-limited amplification, and we will also expose the working principle of the flux-pumped
JPA used in this work.

2.2.1 Input-output relations for linear amplifiers

A signal of frequency ω and of bandwidth ∆ω is emitted in a transmission line connected to a linear
amplifier with power gain G. The amplified signal then propagates via a second transmission line
to either a homodyne detection yielding the I and Q quadratures of the microwave signal, or a
frequency spectrum analyser. The signal being narrow-band, we can use the right-propagating
spatio-temporal modes defined in 2.1.1 to describe the input and output signals âin, â†in, âout, â

†
out,

and their associated quadrature operators.

The outcome of the measurement in the case of homodyne detection is directly linked to the
quadrature operators. Indeed, the signal is mixed with a strong microwave tone at frequency ω
and phase θ. By filtering the two output voltages using a low-pass filter (typically smaller than
2π/∆ω), one gets outcomes proportional to X̂out,θ and Ŷout,θ. For one quadrature, the averaged
signal is proportional to 〈X̂out,θ〉 and the variance to 〈∆X̂2

out,θ〉. When measuring the signal with a
spectrum analyser, set with a resolution bandwidth suited to the signal, the noise power detected in
the absence of signal is simply 〈X̂2

out,θ〉+〈Ŷ 2
out,θ〉. In the remainder of the chapter, we consider only

the quadratures X̂ and Ŷ related to X̂θ and Ŷθ by Eq. 2.2. We now derive the input-output relations
for linear amplifiers as well as their noise properties using these operators.

It is tempting to relate the output and input quadratures of a linear amplifier by defining X̂out =√
GXX̂in and Ŷout =

√
GY Ŷin. This definition is however incompatible with the commutation

relations for âout and âin, except if
√
GXGY = 1. Following Caves [11], two types of amplifiers are

usually distinguished.
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FIGURE 2.7: Linear amplifiers. a A linear amplifier of gain G and noise temperature TN is used to
detect a narrow-band signal. b-c Phase-preserving and phase-sensitive amplification in phase-plane
representation in the limit of high gain. The disks indicate the contour of the Wigner function. A phase
preserving amplifier degrades the SNR, with the added noise represented in red. In phase-sensitive
amplification, one quadrature is amplified at the expense of the other, but one can evade the noise added
by the Heisenberg uncertainty principle.

Phase-preserving amplification

Phase-preserving amplifiers have identical gain on both quadratures GX = GY = G. According to
the above discussion, one needs to introduce a mode b̂in internal to the amplifier that commutes
with âin to describe the amplification:

âout =
√
Gâin +

√
G− 1b̂†in (2.58)

with b̂in defined such that [b̂in, b̂
†
in] = 1 and [b̂in, â

†
in] = 0. By imposing 〈b̂in〉 = 0, one finds

〈X̂out〉 =
√
G〈X̂in〉 (2.59)

〈Ŷout〉 =
√
G〈Ŷin〉 (2.60)

which are the expected relations for the amplified signal.

Phase-sensitive amplification

A phase-sensitive device amplifies one quadrature at the expense of the other. We consider here
only amplifiers for which Gs = GX = 1/GY , so that the condition

√
GXGY = 1 is satisfied. In that

case, the input and output quadratures are linked by:

X̂out =
√
GsX̂in (2.61)

Ŷout =
1√
Gs

Ŷin (2.62)
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Interestingly, the phase-sensitive amplifier is just a particular case of the phase-preserving amplifier.
Writing âout =

√
GsX̂in + i 1√

Gs
Ŷin yields Eq. 2.58 by choosing b̂in = âin and

√
Gs =

√
G+

√
G− 1.

At large gains, one can identify
√
Gs = 2

√
G.

2.2.2 Quantum limits on the noise added by the amplifier

Phase-preserving amplifier

For a phase-preserving amplifier, one can derive from the input-output equations (Eq. 2.58) that the
outcoming noise referred to the input in the absence of a signal is:

〈∆X̂2
out〉+ 〈∆Ŷ 2

out〉
G

= 〈∆X̂2
in〉+ 〈∆Ŷ 2

in〉+

(
1− 1

G

)
(〈∆X̂2

b 〉+ 〈∆Ŷ 2
b 〉) (2.63)

where 〈X̂2
b 〉 are the internal mode fluctuations. We thus arrive to the important conclusion that the

output noise is the sum of two contributions : the input noise and the noise added by the amplifier
given by the internal mode fluctuations. We note n = 〈X̂2

out〉/G the noise detected on a single
quadrature and neq = 〈∆X̂2

in〉 and namp = 〈∆X̂2
b〉 its two contributions so that n = neq + namp.

For an incoming field in a thermal equilibrium state, the input noise neq is given by Eq. 2.10. The
vacuum state with fluctuations equaling the Heisenberg uncertainty relation neq = 1

4 is reached for
temperatures kBT � ~ω. While operating in this limit, the detected noise is purely of quantum
origin due to the incompressible fluctuations of the field, in opposition to being set by thermal
fluctuations.

The amplifier added noise is also bound by the Heisenberg uncertainty principle since 〈X̂2
b 〉〈Ŷ 2

b 〉 >
1
16 . Imposing that the added noise is phase-insensitive for a phase-preserving amplifier 〈X̂2

b 〉 =

〈X̂2
b 〉 > 1/4 [11], the quantum limit on amplifier-added noise is:

〈X̂2
out〉+ 〈Ŷ 2

out〉
G

>
G�1

〈X̂2
in〉+ 〈Ŷ 2

in〉+
1

2
(2.64)

showing that a phase-preserving amplifier adds at best the equivalent of half a photon (namp > 1/4)
of noise at the input in the case of large gains, as stated by Haus-Caves theorem. In terms of amplifier
noise temperature, this limit can be re-written as:

TN >
~ω

2kB(1− 1/G)
(2.65)

Phase-sensitive amplifier

A phase-sensitive amplifier can escape the quantum-limit on amplification since according to
Eq. 2.62:

〈∆X̂2
out〉

Gs
= 〈∆X̂2

in〉 (2.66)

The price to pay for this noiseless amplification is that we access only one quadrature of the field.
This does not necessarily constitute an issue if the output signal phase is constant and known, which

35



Chapter 2. Quantum circuits and quantum noise

is precisely the case for spin-echoes1. When one performs a noiseless amplification without thermal
population in the incoming waveguide, the measurement reaches the standard quantum limit with
〈∆X̂2

out〉/Gs = 1/4.

Note that in the absence of a signal, the de-amplified quadrature has less fluctuations than the input
state:

〈∆Ŷ 2
out〉 =

GS�1

〈∆Ŷ 2
in〉

4GS
� 1

4
(2.67)

creating a squeezed-state of squeezing parameter eζ = Gs. In ch. 9, we use a JPA to generate a
squeezed state and detect a signal below the standard quantum limit.

2.2.3 The flux-pumped Josephson Parametric Amplifier

In the last decade, various designs for an amplifier operating at the quantum limit have been
developed [47, 48, 49, 50, 51, 52, 53, 54]. These designs are based on Josephson junctions embedded
in superconducting resonators following pioneering work by Yurke et al. [12]. These elements
enable parametric amplification of a signal at frequency ωs ≈ ω0 by transfer of energy from a pump
at frequency ωp to the signal and to a complementary idler of frequency ωI . In the device used
in this thesis, the tunability of a variant of the Josephson junction, the SQUID (Superconducting
Quantum Interference Device), is used to modulate the resonator frequency at ωp ≈ 2ω0 and create
a three-wave mixing process with ωp = ωs + ωI [51, 52, 53, 54]. Due to the use of dissipationless
elements these amplifiers can add the minimum amount of noise allowed quantum mechanically
when operated in phase-preserving mode (ωs 6= ωI) and no noise in the amplified quadrature for
phase-sensitive amplification (ωs = ωI). In this paragraph, we only intend to give an overview
of the device operating principle. We refer the reader to [54, 55, 56] for more details and rigorous
demonstrations.

The SQUID, a flux-tunable inductance

ϕ1

ϕ2

2e

a b

I(t)

V(t)

I(t)

V(t)Ic

superconductor

superconductor

insulating barrier δ1 δ2

Φ

FIGURE 2.8: Josephson junction and its tunable equivalent: a SQUID. a A Josephson junction is
composed of an insulating barrier between two superconducting electrodes. The Josephson relations
describing the current and voltage for this element give rise to a non-linearity. b When two Josephson
junctions are inserted in a loop, they form a Josephson junction of characteristics tunable by the amount
of flux threaded through the loop.

A Josephson junction is made out of two superconducting electrodes separated by a thin insulating
barrier (see Figure 2.8). On each superconducting electrode, the electrons form a Cooper pairs
condensate described by a macroscopic quantum mechanical wavefunction of phase ϕ. Due to
the small thickness of the barrier, the wavefunctions of each condensate overlap allowing for the

1Indeed, for TLS, the phase of the spin-echo is set by the phases chosen for the drive pulses. For multi-level systems
however, the spin-echo phase may vary and this variation can be of interest. Retaining the phase information in such cases
prevents the use of phase-sensitive amplifiers.
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tunneling of Cooper pairs. The Josephson relations describing the current IJ of Cooper pairs across
the junction are [57]:

IJ = Ic sin(δ) (2.68)

V = ϕ0
∂δ

∂t
(2.69)

where δ = ϕ2 − ϕ1 is the phase difference across the junction, Ic is the junction critical current,
ϕ0 = ~/2e is called the reduced superconducting flux quantum, and V is the voltage across the
junction. From Eqs. 2.68 & 2.69, one gets:

dIJ
dt

=
Ic
√

1− (IJ/Ic)2

ϕ0
V. (2.70)

A Josephson junction thus behaves as a non-linear inductance LJ(IJ) with

LJ =
ϕ0

Ic
√

1− (IJ/Ic)2
≈ ϕ0

Ic

(
1 +

(IJ/Ic)
2

2
+O

[
(IJ/Ic)

4)
])

(2.71)

When two Josephson junctions are connected in a superconducting loop, as shown in Fig. 2.8b, they
form a SQUID[58]. The total current I through the SQUID is the sum of each branch current. In the
case of two junctions with identical critical current Ic, the current is expressed as:

I = Ic[sin(δ1) + sin(δ2)] = 2Ic cos
(
δ2−δ1

2

)
sin
(
δ2+δ1

2

)
(2.72)

where δ1,2 are the phase differences across each junction. Due to the flux quantization in the
superconducting SQUID loop, the phases δ1,2 are linked to the total magnetic flux Φtot threading the
SQUID by:

δ2 − δ1 = 2π
Φtot

Φ0
(2.73)

in which Φ0 = 2πϕ0. Φtot is the sum of the applied flux Φ and the flux generated by the circulating
current in the SQUID loop. The latter can be neglected for small SQUID loops, which we assume to
be the case in the following. The total current can then be expressed as:

I = 2Ic cos

(
π

Φ

Φ0

)
× sin(δ) (2.74)

with δ = (δ2 + δ1)/2. Thus a symmetric SQUID can be seen as a Josephson junction whose supercur-
rent is flux-tunable, with ISc (Φ) = 2Ic cos

(
π Φ

Φ0

)
. The SQUID is thus a tunable inductance:

LJ(Φ) =
ϕ0

ISc (Φ)
(2.75)

When the current I approaches the SQUID critical current ISc (Φ) however the non-linearity of the
SQUID Josephson junctions plays a role, as we will see in the following.

A tunable resonator for parametric amplification

The tunability of the SQUID inductance is exploited to provide parametric amplification. Consider a
resonator with the geometry shown in Fig. 2.9a: a capacitance Cg in parallel with an inductance
Lg and an array of N symmetric SQUID loops, probed via a transmission line of characteristic
impedance Zc coupled by a capacitance Cc to the resonator. As illustrated in Fig. 2.9a, the resonator
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FIGURE 2.9: Flux-pumped Josephson Parametric Amplifier. a The JPA comprises a geometrical induc-
tance and capacitance in parallel with an array of SQUIDs, it is probed in reflexion via a transmission
line capacitively coupled. b Modulation of the frequency of the resonator as a function of the SQUIDs DC
flux bias. c Phase-preserving amplification operation of the JPA: a pump applied at ωp ≈ 2ω0 amplifies
the signal and generates an idler signal. The idler signal can be removed by filtering. d Evidence of the
phase kick on the intra-cavity field induced by the non-linearity of the SQUID, extracted from [55].

is probed in reflexion: a circulator is needed to route the input signal to the resonator, and the output
signal towards the output line.

Using the results we derived in section 2.1.4, the resonator frequency is:

ω0(Φ)−2 = (C + Cc)(Lg +NLJ(Φ)) (2.76)

Denoting p = NLJ/(Lg + NLJ) the participation ratio of the Josephson inductance to the total
inductance, the Taylor expansion to the second-order in π Φ

Φ0
of the resonator frequency yields:

ω0(Φ)

ω0(0)
≈ 1− 1

4
p

(
π

Φ

Φ0

)2

(2.77)

The tunability of ω0 with respect to Φ is obtained by placing a flux line nearby the SQUIDs array
(see Figure 2.9a). For a resonator of bare frequency ω0(0)/2π = 8 GHz and characteristic impedance
Z0 = 100 Ω, the frequency tunability ranges over several hundreds of megaHertz as shown in
Fig. 2.9b.

According to Landau [59], modulating at a frequency close to 2ω0 the resonator frequency gives rise
to the phenomenon of parametric amplification. The amplifier thus consists in a tunable resonator
ω0(ΦDC), a pump signal sent through the flux-line at frequency ωp ≈ 2ω0, and an input port through
which a signal at a frequency ω ≈ ω0 is sent, with the reflected signal being amplified.

The JPA being composed of entirely dissipation-less elements and based on the simple parametric
amplification process, it reaches the quantum limit of amplifier-added noise discussed earlier. More
precisely, it can be used in either of the two modes of operation:

• Non degenerate operation (ωp 6= 2ωs):

In this case, gain at the idler ωI = ωp−ωs and the signal frequencies appear (see Figure 2.9c).
The power gain G achieved on the signal by this process increases as a function of the pump
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amplitude until it exceeds the damping occurring via the transmission line and enters an
auto-oscillation regime. Below this threshold, this system behaves as a phase-preserving
amplifier. As explained earlier, it amplifies each quadrature with half a photon of noise added.
In practice, in order to amplify a signal at ωs, a narrow-band filter is used to get rid of the idler
contribution (see Fig. 2.9).

• Degenerate operation (ωp = 2ωs):

In this case interferences between the idler mode and the input signal leads to a phase sensitive
amplification depending on the relative phase between the signal and the pump ∆φ:

G(∆φ) =

(
Gs −

1

Gs

)
cos2 ∆φ+

1

Gs
(2.78)

As discussed earlier, this degenerate amplifier does not add noise to the incoming signal and
amplifies noiselessly one of its quadratures. As a consequence, this device can also be used
to generate a squeezed vacuum state, as shown in ch. 9. A strong advantage of this device
compared to other designs is that the pump line is physically isolated from the input and
output line preventing any leakage of the strong pump tone and thus it can avoid spoiling the
produced squeezed vacuum state as well as saturating the next amplification stage.

Limitations

The limitations of this JPA design arise from the non-linearity of the Josephson junction [55, 54].
When the incoming signal amplitude increases, the AC currents flowing through the SQUIDs also
increase and eventually approach the SQUID critical current; the resulting Kerr effect leads to a
further shift of the resonator frequency which perturbs the parametric amplification process. As
a result, the phase response is distorted (see Fig. 2.9d), and the amplifier saturates. In our device,
this occurs even for input signal powers as low as -130 dBm. Compared to noisier amplification
schemes, all parametric amplifiers also suffer from a limited bandwidth. A strong effort is currently
made to circumvent these limitations by exploring different designs and pumping schemes [52, 60].

While the device presented here only provides a gain above 25 dB in a bandwidth limited to a
few megaHertz with an operating frequency tunable over several hundreds of megaHertz, it is
particularly suited for the amplification of weak and narrow-band signals, such as a narrow-line
ESR signal. We refer the reader to ch. 5 for a complete characterization of the device used in our
experiment.
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Spins in a cavity

In this chapter, we model the behavior and dynamics of an ensemble of spins coupled to one mode
of an electromagnetic resonator, such as a LC circuit for instance. We first give a brief account of
the spin dynamics in a classical drive field, as can be found for instance in magnetic resonance
textbooks. We then attempt to treat the same problem quantum-mechanically: first in the case where
only one spin is coupled to a cavity, then for a spin ensemble. The quantum treatment allows us in
particular to derive the cavity-induced spin relaxation rate which is the subject of ch. 8.

We restrict our study in this chapter to electronic spins 1/2. Our discussion can be trivially extended
to nuclear spins 1/2; for multilevel systems, our treatment applies to a two-level restriction of the
full energy spectrum.

3.1 Spin dynamics in a classical microwave field

3.1.1 Coherent spin evolution

Consider an electronic spin 1/2, submitted to a classical magnetic field B(t). The two systems
interact via the Hamiltonian Ĥ = −µ̂ ·B(t), which involves the spin magnetic dipole µ̂ = −γe~Ŝ.
Here γe = 28 GHz/T is the so-called gyromagnetic ratio, and Ŝ = (Ŝx, Ŝy, Ŝz) is the dimensionless
vectorial spin operator whose components obey the commutation relations [Ŝi, Ŝj ] = iεijkŜk. Using
the Ehrenfest theorem one readily derives the equation of motion of the expectation value of the
magnetic moment µ = 〈µ̂〉:

dµ

dt
= −γeµ×B(t). (3.1)

For an ensemble of N spins in a volume V , each magnetic moment µi adds up to a macroscopic
magnetic moment

∑
i µi. The detectable quantity is then the macroscopic magnetization per unit

volume defined by the vector:

M =
1

V

∑

i

µi (3.2)

that obeys:
dM

dt
= −γeM ×B(t). (3.3)

The coherent dynamics of the magnetization vectorM thus exclusively consist of rotations around
B(t); note in particular that the vector length does not change in this process. As a result, a good
representation for the magnetization vector evolution is given by the Bloch sphere: the end point of
the magnetization vector stays on a sphere of radius M .
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FIGURE 3.1: Spin dynamics. a Under a static magnetic fieldB0, the magnetization vectorM precesses
at frequency ω0 in the laboratory frame. b Rotating frame of an oscillating magnetic fieldB1. c In this
rotating frame, applying a short microwave pulse allows to rotate the magnetization vector.

When a static fieldB0 = B0ez is applied, the equation reduces to Ṁ = −ωsM × ez with ωs = γeB0.
The magnetization vector precesses aroundB0 at frequency ωs, the so-called Larmor frequency (see
Figure 3.1a).

Consider next the application of an oscillating microwave fieldB1(t) = 2 cos(ωt)B1ex orthogonal
toB0. In the frame rotating at ω around ez ,B1(t) is expressed as a time-independent component
B1 = B1ẽx if one neglects the fast-rotating terms in 2ω1 (see Fig. 3.1b). In the rotating frame
(ẽx, ẽy, ez), the equation of motion is:

d

dt
M̃x = ∆sM̃y (3.4)

d

dt
M̃y = −∆sM̃x − ω1Mz (3.5)

d

dt
Mz = ω1M̃y (3.6)

where ∆s = ω−ωs and ω1 = γeB1. A convenient representation for the magnetization vector in this
frame is given by the Bloch sphere. Under this drive, the magnetization vectorM rotates around
the vector ω1ẽx + ∆sez at an angular speed called the Rabi frequency:

ΩR =
√

∆2
s + ω2

1 . (3.7)

In the particular case of a resonant microwave excitation ∆s = 0, the magnetization vector precesses
at speed ω1 around B̃1. Thus, a microwave pulse applied for a duration τp rotates the Bloch vector
by an angle ω1τp around the axis set by B̃1 (see Figure 3.1c). In the following, we use mainly π/2
and π pulses of fixed lengths and adjust the drive power ω1 to perform the desired rotations. The
rotation axis is chosen by setting the phase of the microwave pulse: a microwave field with phase
χ, B1(t) = 2 cos(ωt + χ)B1 becomes B̃1 = B1 cos(χ)ẽx + B1 sin(χ)ẽy(r) in the rotating frame and
thus any rotation axis within the x̃− ỹ plane can be chosen. Rotation around ez can be performed
by decomposing the motion in two rotations in the x̃− ỹ plane. Such a control allows to bring the
magnetization vector to every point of the Bloch sphere.

1This approximation is valid when the AC magnetic field acts just as a perturbation of the static field: B1 � B0. This
condition is always fulfilled in our experiments and we restrict our study to this regime. For an extended derivation, see [5].
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FIGURE 3.2: T2 and T1 processes. a A T2 process describes the decoherence of the spin and leads to a
fan-out of the spin transverse magnetization. b A T1 process describes the longitudinal relaxation of the
spin ensemble back to its thermal equilibrium.

3.1.2 Relaxation and decoherence

In addition to the coherent dynamics induced by microwave drives, the magnetization relaxes due
to its interaction with the environment. We will here only provide a phenomenological description
of these incoherent processes. More details will be given in ch. 4 for the specific case of Si:Bi spins.
Two different relaxation processes can be distinguished:

• Spin relaxation describes the loss of energy by the spin ensemble and the decay of its longitu-
dinal magnetization Mz back to its equilibrium state Mth, which is also the initial condition of
the Bloch equations. At finite temperature, the equilibrium is a statistical mixture of excited
and ground populations given by Boltzmann statistics. The overall equilibrium magnetization
is Mth = pM0, where p is the polarization and M0 = Nµ is the maximum spin polarization.
For an ensemble of spins-1/2 at temperature T , the polarization is given by the Curie law:
p = tanh(~ωs/kBT ). Energy relaxation consists in a progressive damping of the longitudinal
magnetization Mz towards Mth, in a characteristic time T1 which is called the spin relaxation
time.

• Spin decoherence: the relaxation of the transverse magnetization components Mx and My is
usually governed by completely different processes, and occurs on a time scale T2 generally
much shorter than its maximum value 2T1.

Longitudinal and transverse relaxation are included in Eq. 3.5 & 3.6 in the following way:

d

dt
M̃x = ∆sM̃y −

M̃x

T2
(3.8)

d

dt
M̃y = −∆sM̃x − ω1Mz −

M̃y

T2
(3.9)

d

dt
Mz = ω1M̃y −

Mz −Mth

T1
(3.10)
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static magnetic fieldB0 is applied to match the spin Larmor frequency to the RLC circuit. The inductive
element L is used to apply magnetic microwave pulses B1 to excite the spins as well as to detect the
transverse magnetization.

This set of equations is known as the Bloch equations. The steady-state M (s) reached under a
coherent drive in the drive rotating frame is thus:

M̃ (s)
x =

(T2∆s)(T2ω1)

1 + (T2∆s)2 + T1T2ω2
1

Mth (3.11)

M̃ (s)
y =

T2ω1

1 + (T2∆s)2 + T1T2ω2
1

Mth (3.12)

M (s)
z =

1 + (T2∆s)
2

1 + (T2∆s)2 + T1T2ω2
1

Mth (3.13)

For increasing drive powers, the transverse magnetization components M̃ (s)
x and M̃ (s)

y on resonance
(∆s = 0) reach a maximum when T1T2ω

2
1 = 1 before the overall magnetization vanishes for

saturating drive powers ω1 � 1/T1T2. When saturation is reached, the two spin-levels are equally
populated and essentially no longer interact with microwave fields.

Inhomogeneous and homogeneous broadening

Due to T2 relaxation processes, the spin resonance acquires a linewidth 1/T2. In addition to
this "homogeneous" broadening, the linewidth of a large ensemble of spins can also have an
"inhomogeneous" distribution that arises from the difference in local environments of each spin,
causing their Larmor frequency to have a distribution ρ(ωs).

An inhomogeneously broadened ensemble can be seen as a collection of homogeneously-broadenend
subsets, each described by the Bloch equations. Summing all inhomogeneously broadened contribu-
tions results in a decay of Mx,y at a rate 1/T ∗2 , with 1/T ∗2 = ∆ω being the width of ρ(ωs), which can
be much larger than 1/T2.

3.1.3 Inductive detection of magnetic resonance

Consider now the setup depicted in Fig. 3.3. The ensemble of spins is now embedded in a LC circuit
of frequency ω0 which generates the oscillating field B1(ω) at the spins location orthogonally to
the static magnetic fieldB0. B0 is chosen so that the spins Larmor frequency match the LC circuit
frequency: ωs ≈ ω0. The transverse components Mx and My expressed in the laboratory frame are
related to M̃x and M̃y by:

Mx + iMy = (M̃x + iM̃y)eiωst
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This precessing transverse magnetization gives rise to an induced electromotive force and hence to
an AC current flowing in the resonant detection circuit:

I(t) ∝ (M̃x + iM̃y)eiωst (3.14)

which allows spin detection. This "inductive detection" is the most widely used magnetic resonance
measurement method [4]. While the precise link between the measured current and the transverse
magnetization depends on the circuit geometry, the current is proportional to the filling factor of the
circuit, defined as:

η =

∫
sample

f(r)dr∫
detector

f(r)dr
(3.15)

where f(r) = B1(r)/max[B1(r)]. As the transverse magnetization cannot be larger than Mth, the
maximum current Im that can be measured is Im ∝ ηpM0.

The transverse magnetization can result from either a continuous or a pulsed excitation. In the
case of a continuous drive, the real and imaginary parts of the transverse magnetization induce a
phase shift and/or absorption of the incoming microwave signal, which can be detected by lockin
techniques. A transient transverse magnetization can also be induced by more or less complex pulse
sequences. We focus on the latter technique, pulsed ESR, in the rest of the thesis.

Free induction decay

Starting from equilibrium, applying a microwave pulse of tipping angle θ = π/2 brings the equilib-
rium magnetizationMth to the equator of the Bloch sphere,M = Mthẽy . Subsequently to the pulse,
the magnetization vector precesses at frequency ωs around ez with its transverse and longitudinal
component being damped respectively at rate T ∗2 and T1 for an inhomogeneous ensemble (Eqs. 3.9-
3.10, see Fig. 3.4). This oscillating magnetization induces a decaying rf current in the inductor called
the free-induction decay (FID) signal:

IFID(t) ∝ (M̃x + iM̃y)eiωste−t/T
∗
2 (3.16)

Spin-echo

Inhomogeneous broadening can be counteracted by a pulse sequence known as the Hahn echo [61]
which will be used extensively throughout this thesis. The principle of a Hahn echo is shown in
Fig. 3.4. A first π/2 pulse is applied to the spins along the x axis; the transverse magnetization along
y generated by this pulse decays in a characteristic time T ∗2 , due to inhomogeneous broadening.
After a delay τ � T ∗2 , a π pulse is applied along the y axis. Its action is equivalent to a time reversal
for the spins [61]: as a result, after another waiting time τ , the transverse magnetization comes back
to its initial value. This generates a signal in the detection circuit known as "spin-echo". Like the FID,
the echo amplitude is proportional to ηpM0. The echo signal itself decays with time constant T2 as a
function of time 2τ , due to spin decoherence, as already explained.

The spin-echo technique, in opposition to the FID detection, has for advantage that the signal is not
emitted next to a microwave pulse whose strength may prevent the detection of the echo.

3.2 Spin dynamics in a quantum microwave field

After having introduced basic ESR concepts in the previous section, we now turn to the quantum-
mechanical description of the spin-resonator interaction. Consider the system depicted in Fig. 3.5
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FIGURE 3.4: Free induction decay and echo. Starting from equilibrium, a π/2 pulse around ẽx brings
the magnetization vector to the equator of the Bloch sphere. Afterwards, in the laboratory frame the
transverse magnetization precesses aroundB0 while in the drive rotating frame it vanishes in a time T ∗

2

due to inhomogeneous broadening. A π pulse around the ỹ-axis applied after a delay τ refocusses the
magnetization at time 2τ , giving rise to an echo. Top-middle graphs: The black lines sketch the control
pulses while the colored lines represent the induced current in the resonator as well as the evolution of
the magnetization components (extracted from numerical simulations for typical ESR parameters). The
Bloch spheres illustrate the sequence at times indicated by dot-dashed grey lines

with N spins embedded into a resonator. As seen in 2.1.2, the LC resonator Hamiltonian is
Ĥc = ~ω0

(
â†â+ 1

2

)
. Its total damping rate κ = κint + κc consists of internal losses and coupling

to the measurement line, with κc = κ1 + κ2 the sum of the coupling rates to input and output
ports. The circuit inductance, through which flows a current Î = δI(â+ â†), generates an oscillating
magnetic field B̂1(r) = δB(r)(â+ â†) at the spin location.

3.2.1 One spin coupled to a harmonic oscillator

Interaction Hamiltonian

Let us first consider the case of a single spin of Hamiltonian Hs(B0) whereB0 = B0ez is the applied
static magnetic field. We isolate a two-level system {|g〉, |e〉} among the spin energy-levels, with
corresponding transition frequency ωs(B0) = (E|e〉 − E|g〉)/~.

We introduce the Pauli matrices (σ̂x, σ̂y, σ̂z), where :

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
and σ̂z =

(
1 0
0 −1

)
(3.17)
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FIGURE 3.5: The interaction between spins and resonator is described quantum-mechanically by a
spin-photon constant noted g, which is the product of the spin magnetic dipole moment and the magnetic
field vacuum fluctuations at the spin location.

One can also define σ̂± = 1
2 (σ̂x ± iσ̂y), whose matrix forms are:

σ̂+ =

(
0 1
0 0

)
and σ̂− =

(
0 0
1 0

)
(3.18)

In the basis {|e〉, |g〉}, the spin Hamiltonian reduces to:

Ĥs(B0) =
~ωs(B0)

2
σ̂z, (3.19)

The magnetic coupling of the spin to the resonator is described by the interaction Hamiltonian:

Ĥint = −~γeŜ · B̂1 = −~γeδB(r) · Ŝ(â+ â†) (3.20)

In the spin-basis restricted to {|e〉, |g〉}, Ĥ(eg)
int =

∑
i,j=e,g〈i

∣∣∣| Ĥint | j〉 |i〉〈j| ⊗ 1c , so that:

Ĥ
(eg)
int = ~(â+ â†)[gσ̂+ + g∗σ̂− + Diag(αe, αg)]

with:
g = −γe〈e | δB(r) · Ŝ | g〉 (3.21)

and αe = −γe〈e | δB(r) · Ŝ|g〉 and similarly for αg. The above expression can be simplified further
by the following procedure (see [62]). The eigenstates |e〉 and |g〉 are first redefined so as to have
g = g∗. Then, if the time-dependent Hamiltonian Ĥ

(eg)
int is treated as a perturbation of the static

Hamiltonian Ĥ0 = Ĥc + Ĥs, its expression in the interaction picture is Ĥint = Û0Ĥ
(eg)
int Û†0 , where

Û0 = exp(iĤ0t/~) is the interaction evolution operator. By expanding Û0 in series, Ĥint develops in:

Ĥint(t) = g[σ̂+âe
i(ωs−ω0)t + σ̂+â

†ei(ωs+ω0)t (3.22)
+σ̂−âe

−i(ωs+ω0)t + σ̂−â
†e−i(ωs−ω0)t] (3.23)

+Diag(αe, αg)[âeiω0t + â†e−iω0t] (3.24)

Ĥint(t) =
RWA

g[σ̂+âe
i(ωs−ω0)t + σ̂−â

†e−i(ωs−ω0)t] (3.25)

where we have applied the rotating wave approximation (RWA) to neglect terms in ±(ωs + ω0) be-
cause they rotate much faster than those having frequency ±(ωs−ω0). Reverting to the Schrödinger
picture yields the well-known Jaynes-Cummings Hamiltonian [63]:

Ĥ
(eg)
int = ~g(σ̂+â+ σ̂−â

†) (3.26)

The two remaining terms in the Hamiltonian describe respectively the absorption of a photon by the
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FIGURE 3.6: Weak and strong regime for a single-spin. The population of state |e, 0〉, obtained by solv-
ing Eqs. 3.30-3.33, presents oscillations when in the strong coupling regime (g > κ) and an exponential
decay of characteristic rate 4g2/κ in the weak coupling regime.

spin, and its emission; those are the basic processes on which the whole field of CQED is built. One
prominent phenomenon predicted by the Jaynes-Cummings Hamiltonian is that a spin placed in the
excited state can emit and re-absorb reversibly a single photon into an empty cavity at a frequency
g; this phenomenon is known as vacuum Rabi oscillations [39].

If the system were perfectly isolated from any environment, these oscillations could last indefinitely.
However several mechanisms limit the duration of these coherent exchanges: the resonator has a
damping rate κ, giving the characteristic lifetime for an intra-resonator photon of 1/κ and the spin
looses its coherence at a rate γ = 1/T2, as described in 3.1. Thus one distinguishes two regimes:

• Strong coupling regime when g � κ, γ: the excitations in the system are long-lived compared
to the Rabi period and one may observe Rabi oscillations [39], as shown in Fig. 3.6.

• Weak coupling regime when g � κ, γ: excitations decay faster than the coherent evolution
between spin and the cavity, thus Rabi oscillations are suppressed.

For an electronic spin-1/2 with γe/2π = 28 GHz/T located d = 10 µm away from a wire-like
inductance embedded in a resonator of frequency ω0/2π = 7 GHz and impedance Z0 = 50 Ω, g can
be estimated to:

g = γe|〈e | δB(r) · Ŝ|g〉| = γe
2
|δB⊥(r)| ≈ γe

2

µ0δi

2πd
=
γe
2

µ0ω0

2πd

√
~

2Z0
⇒ g/2π ≈ 13Hz (3.27)

This is much smaller than the damping rates of typical ESR resonant circuits, so that ESR experiments
are in the weak coupling regime. In the following, we will see that even in the weak coupling regime,
the quantum treatment of the spin-cavity interaction and of field relaxation via a transmission line
(see 2.1.3) yields interesting new effects.

Dynamics of the spin-cavity system coupled to a bath

In an ESR experiment, the spin-cavity system is driven and probed via a transmission line coupled
with rate κ1 to the cavity mode. Assuming a coherent state drive sent on port 1, as shown in Fig. 3.5,
the drive Hamiltonian is Ĥd/~ = i

√
κ1(βâ†e−iωdt + β∗âeiωdt), where β is the amplitude of the drive

and ωd the drive frequency. The Hamiltonian of the system in the frame rotating at ωd is:

Ĥ/~ = ∆0â
†â+

∆s

2
σ̂z + g(σ̂+â+ σ̂−â

†) + i
√
κ1(βâ† − β∗â) (3.28)
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where ∆0 = ω0 − ωd and ∆s = ωs − ωd. The state of the system |ψ〉 at time t is described by a matrix
density ρ(t). The system evolution can be described by a Lindblad equation written using ρ as:

ρ̇ = − i
~

[Ĥ, ρ] +
∑

α

Lα[ρ] (3.29)

where Lα[ρ] are called superoperators and are defined as LαρL†α − 1
2{L†αLα, ρ}. Each superoperator

is used to describe an interaction with the environment. The cavity leakage due to coupling to
the measurement lines or to internal losses is described by Lr =

√
κâ. Spin energy relaxation is

described by L1 =
√

Γ1σ̂− and spin decoherence by L2 =
√
γ/2σ̂z [64].

Eq. 3.29 fully characterizes the evolution of the system. It is valid both in the strong and weak
coupling regimes. In the latter however, it can be simplified to retrieve the classical Bloch equations,
supplemented by an additional effect of quantum origin : spin relaxation by the Purcell effect.

Purcell effect

To evidence cavity-enhanced spin relaxation by the Purcell effect, we now present a simple argument
found in [39]. Consider the undriven spin-cavity system, with the spin prepared at time t = 0 in
the excited state |e〉 and no photon in the cavity, and at zero temperature. The system evolution
can be written using only the basis composed of |g, 0〉, |g, 1〉 and |e, 0〉 states. Using Eq. 3.29 with
∆ = ∆0 − ∆s and ∆s = 0 (and neglecting non-radiative spin decoherence processes, i.e. taking
Γ1 = γ = 0) yields the following equations for the spin-cavity density matrix ρ:

ρ̇e0,e0 = −ig(ρe0,g1 − ρg1,e0) (3.30)
ρ̇g1,g1 = −κρg1,g1 + ig(ρe0,g1 − ρg1,e0) (3.31)

ρ̇e0,g1 = −
(κ

2
+ i∆

)
ρe0,g1 − ig(ρe0,e0 − ρg1,g1) (3.32)

ρ̇ = −
(κ

2
− i∆

)
ρg1,e0 + ig(ρe0,e0 − ρg1,g1) (3.33)

In the weak-coupling regime g � κ, the probability ρg1,g1 of finding a photon in the cavity decays
much faster than the rate at which the spin can transfer its excitation via Rabi oscillations. As a result
the cavity is nearly always empty ρg1,g1 ≈ 0. In this regime, one can also assume that the coherence
terms ρe0,g1 and ρg1,e0 follow adiabatically the variations of the excited state population [39] such
that ρ̇g1,e0 ≈ 0 and ρ̇e0,g1 ≈ 0. According to these three assumptions, Eqs. 3.32 & 3.33 yield:

ρe0,g1 =
−ig

κ/2 + i∆
ρe0,e0 (3.34)

ρg1,e0 =
ig

κ/2− i∆ρe0,e0 (3.35)

We now replace ρe0,g1 and ρg1,e0 in Eq. 3.30, leading to:

ρ̇e0,e0 = −g2

(
1

κ/2 + i∆
+

1

κ/2− i∆

)
ρe0,e0 (3.36)

We thus obtain that ρe0,e0 is exponentially damped, at the so-called Purcell rate given by:

Γp(∆) =
κg2

κ2/4 + ∆2
(3.37)
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This is illustrated in Fig. 3.6 where we show a numerical integration of Eqs. 3.30-3.33 both in the
strong and in the weak coupling regime. We stress that treating the resonator field quantum-
mechanically is essential to derive this Purcell effect, which is a direct manifestation of the action of
quantum fluctuations on the spin dynamics.

Resonator adiabatic elimination

A more rigorous treatment of the Purcell effect in a quantum optics theoretical framework, which
also takes into account the presence of a drive, relies on adiabatic elimination of the resonator-field
variables (see [64, 27, 65, 66] and references within). We summarize here the main results. First, one
separates the field operator from its mean value by writing:

â = α+ ĉ, with 〈ĉ〉 = 0 (3.38)

In the absence of the spin, the steady-state value of α is given by the input-output relations (see
Eq. 2.52): α = 2

√
κ1β/(κ + 2i∆0). In the limit g � κ, the adiabatic elimination of the resonator

operators ĉ and ĉ† then yields the following master equation in the drive rotating frame [65] for the
reduced spin density matrix ρ̃:

ρ̃ = −i[Ĥeff , ρ̃] + L1[ρ̃] + L2[ρ̃] + Lp[ρ̃], (3.39)

with the effective Hamiltonian Ĥeff being [64]:

Ĥeff/~ =
∆s − ξ

2
σ̂z + g(ασ̂+ + α∗σ̂−) (3.40)

where ξ = ∆g2

∆2+κ2/4 . The extra ξ term renormalizes slightly the spin frequency. As the correction is
only of order g2/κ, we neglect it in the following.

In addition to modifying Ĥeff , the adiabatic elimination of the resonator operator is responsible for
the appearance of a new spin superoperator Lp =

√
Γp(∆)σ̂− where Γp is the decay rate given in

Eq. 3.37 [64]. This novel relaxation channel is precisely the cavity-enhanced spontaneous emission,
i.e. the Purcell effect.

Within this approximation, the semi-classical equations of motion for the spin observables and the
intra-cavity field in the drive rotating frame can be derived from Eqs. 3.38-3.39. For the sake of
simplicity, we consider here that α is a real number; we write ω1 = −2gα so that:

d

dt
〈σ̂x〉 = ∆s〈σ̂y〉 − γ⊥〈σ̂x〉 (3.41)

d

dt
〈σ̂y〉 = −∆s〈σ̂x〉 − ω1〈σ̂z〉 − γ⊥〈σ̂y〉 (3.42)

d

dt
〈σ̂z〉 = ω1〈σ̂y〉 − [Γ1 + Γp(∆)](〈σ̂z〉+ 1) (3.43)

〈â〉 = α− i2g

κ+ 2i∆
〈σ̂−〉 (3.44)

with γ⊥ = γ + Γ1

2 +
Γp
2 . Eqs. 3.41-3.43 are thus identical to the Bloch equations (see Eqs. 3.9-3.10)

with only in addition a new T1 relaxation channel given by the Purcell effect.

Note that in presence of a finite photon thermal population in the resonator nth the Lindblad
operator Lp is changed into the sum of Lp+ =

√
Γpnthσ̂+ and Lp− =

√
Γp(nth + 1)σ̂−, which

describes spontaneous and stimulated emission as well as absorption. If no other relaxation process
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is present (Γ1 = 0), Eq. 3.43 is modified into [27]:

d

dt
〈σ̂z〉 = ω1〈σ̂y〉 − (2nth + 1)Γp(∆)

[
〈σ̂z〉+

1

2nth + 1

]
(3.45)

This implies that the relaxation is enhanced by a factor (2nth + 1) while the polarization is decreased
by the same factor.

In addition to showing cavity-enhanced spin-relaxation, Eqs. 3.41-3.43 also provide a way to compute
the signal emitted from the spin. We see that the intra-cavity field is changed by 2ig/(κ+ 2i∆)〈σ̂−〉
in the presence of the spin; the output signal leaking from the cavity is readily computed thanks to
input-output theory as 〈âout〉 =

√
κ〈â〉 (see Eq.2.50). We thus come to the conclusion that the spin

emits a microwave signal in the detection waveguide that is roughly given by 〈âout〉 = 2g〈σ̂−〉/
√
κ

at resonance (∆ = 0). This equation is the quantum-optics analog of the classical inductive detection
described in 3.1.3. The output signal is proportional to the spin transverse magnetization, to the
spin-photon coupling constant, and to 1/

√
κ.

3.2.2 Collective effects

We have seen up to now that a spin weakly coupled to a resonator is well described by the classical
Bloch equations, with an extra relaxation channel given by the Purcell spontaneous emission rate.
In the following we discuss the validity of this description for an ensemble of spins.

N identical spins model

We consider first the ideal case of N identical spins-1/2 with frequency ωs coupled with same
coupling constant g to the resonator. The system Hamiltonian is the sum of the Jaynes-Cummings
Hamiltonians associated with each spin, and is known as the Tavis-Cummings Hamiltonian [67]:

HTC/~ = ω0(a†a) +
ωs
2

N∑

j=1

σ̂(j)
z + g

N∑

j=1

(σ̂
(j)
+ â+ σ̂

(j)
− â†) (3.46)

where (j) refers to the operators of spin j. This Hamiltonian acts on Es ⊗ Ec, where Es is the 2N -
dimensional Hilbert state spanned by the states {|ε1, . . . , εn〉, εi = {gi, ei}} and Ec is the resonator
Hilbert space. Introducing the collective spin operators Ŝk =

∑N
j=1 σ̂

(j)
k , the Hamiltonian can be

rewritten as:
HTC/~ = ω0(a†a) +

ωs
2
Ŝz + g(Ŝ+â+ Ŝ−â†) (3.47)

A remarkable property of this Hamiltonian is that the total spin angular momentum Ŝ
2

= Ŝ2
x + Ŝ2

y +

Ŝ2
z is conserved in time since [HTC, Ŝ

2
] = 0. It is therefore interesting to introduce the basis |S,m〉

of joint eigenstates of Ŝ
2

and Ŝz , defined as:

Ŝ
2|S,m〉 = S(S + 1)|S,m〉 (3.48)
Ŝz|S,m〉 = m|S,m〉. (3.49)

S can take any positive values among {N/2, N/2 − 1, ...}; and m can take any values among
{−S,−S + 1, ..., S − 1, S}. Since S is conserved in time, the system dynamics is restricted to states
having the same S as the initial state. Within one S subspace, m + S describes the number of
excitations that can be exchanged with the resonator. For instance, emission of a photon takes
the system from |S,m〉 ⊗ |0〉 to |S,m− 1〉 ⊗ |1〉. Photon absorption or emission is thus impossible
for all states for which S = 0, meaning that they are strictly dark states. For other states, the

50



Chapter 3. Spins in a cavity

κ

ω0

S=N/2

m=N/2

m=N/2-1

m=N/2-2

m=-N/2

m=-N/2+1

m=-N/2+2

S=N/2-1

...

S=N/2-2
N-1 degenerate N(N-3)/2 degenerate

N
√

g

〉E|

〉B|

〉G|
trapped states

γ 

Γp(S+m)(S-m+1)

FIGURE 3.7: N identical spins. For a system of N identical spins, the system dynamics are confined to
fixed S manifolds, creating state-dependent coupling to the resonator and inducing non-exponential
relaxation most often towards trapped states.

coupling is dependent of (S,m) and is maximal for states within the S = N
2 manifold. In particular

this manifold comprises the ground state |G〉 = |g1, . . . , gn〉 and the one-excitation state |B〉 =
1√
N

∑
j |g1, . . . , ej , . . . , gn〉. One can observe that:

〈B, 0
∣∣∣ĤTC|G, 1〉 = ~g

√
N (3.50)

thus |B〉 and |G〉 can exchange one excitation with the resonator at an enhanced rate g
√
N . This

collective enhancement of the vacuum Rabi oscillations has been observed first for atoms [68], and
more recently with superconducting qubits [69] and spins [70]. By considering |B〉 and |G〉 as a
two-level-system, it led to the implementation of quantum memories with ensemble of spins [71].
The state of another qubit, such as a superconducting qubit, can be transferred to the ensemble so as
to be stored and thus benefit from the spin ensemble longer coherence time.

Another direct consequence of this model is the deep modification of the radiative properties of
an ensemble of identical spins compared to the single spin spontaneous emission case ([72], see
Fig. 3.7). Not only can |S,m〉 only relax towards |S,m − 1〉 but the emission takes place at a rate
Γp(S +m)(S −m+ 1) which depends very strongly on S and m. For instance, if the spin ensemble
initially starts from the fully excited state |E〉 = |e1, . . . , en〉 which corresponds to

∣∣N
2 ,

N
2

〉
, it will

desexcite itself within the S = N
2 manifold. As the transition probabilities are not constant (i.e.

for higher m the transition probabilities start as ∝ m but reach a maximum ∝ S2 when m goes
through zero before decreasing again), the relaxation towards state |G〉 is not a simple exponential
of rate Γp, but a much faster super-radiant pulse whose shape and properties have been studied in
detail [72, 73], and which corresponds to the operation of a maser in pulsed mode [74].

For other initial states comprised in manifolds S 6= N
2 , the excitation is also non-exponential and

strongly dependent on S : the |E〉 state has a super-radiant relaxation, much faster than Γp, whereas
states S = 0 do not relax radiatively at all. More importantly, the ground state |G〉 cannot be
reached any longer for any initial state within manifolds S 6= N

2 . They can only relax down to the
lowest-energy states of their S manifold, which have the form |S,−S〉, and which in general still
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FIGURE 3.8: Spin relaxation simulated for 5 spins starting from a disordered state. Black: ideal exponen-
tial Purcell relaxation (Γp = 1 s−1), blue 〈Ŝz〉. a Without inhomogeneous broadening, the relaxation goes
to a trap state b whereas for sufficiently large inhomogeneous broadening (spins spaced by 1 Hz), a fully
exponential decay is observed. Adapted from [27].

contain many spins in their excited state. One can say that the system becomes trapped in these
highly correlated states, instead of relaxing to its true ground state |G〉.
Summing up, we see that the radiative relaxation of an ensemble of identical spins seems to be
completely different from the single-spin case, where an exponential relaxation of rate Γp is predicted.
Since relaxation now depends on the initial state of the ensemble, and is in general not exponential,
a description by the Bloch equations with a single relaxation time T1 seems clearly impossible.

Collective or individual relaxation ?

The conclusions reached above on the radiative properties of an ensemble of identical spins heavily
rely on symmetry properties of the system Hamiltonian. It should thus not come as a surprise
that these conclusions are strongly altered when one takes into account two phenomena : spin
decoherence, and inhomogeneous broadening of the spin linewidth, both of them characterized by
a finite ensemble spin linewidth γ.

The rigorous treatment of the effects of inhomogeneous broadening and decoherence on the radiative
properties of a spin ensemble is a difficult theoretical problem, which has been addressed in a few
articles [75, 27, 76]. The outcome of all these works is that in the limit of strong decoherence
or inhomogeneous broadening, collective radiative effects are suppressed, and one recovers the
situation of a collection of spins radiating independently at a rate Γp. As a result, the spin ensemble
can now truly relax to its ensemble ground state (at rate Γp), and trapping in correlated states does
not occur any longer. To discriminate between the "independent" or "collective" radiative regime,
one has to consider a dimensionless parameter called the ensemble cooperativity defined as:

C =
2Ng2

κγ
(3.51)

Collective effects are found in the so-called strong collective coupling regime C � 1; independent
radiation from each spin at rate Γp is obtained in the so-called weak collective coupling regime
C � 1. In the remaining of this thesis, we will be in the latter regime.

52



Chapter 3. Spins in a cavity

A clear manifestation of these two situations is seen in Fig. 3.8, which is extracted from [27]. A
collection of 5 spins 1/2 is considered, starting at t = 0 from a fully unpolarized state. When all spins
have the same frequency, the spins relax towards a partially polarized state for which 〈Ŝz〉 ≈ 2.8,
much less than the true ground state for which 〈Ŝz〉 = 5. When some frequency inhomogeneity is
taken into account, the ensemble relaxes towards the true ground state, at a rate exactly given by
the single-spin Purcell rate, Γp.

Dynamics of the system

In the following, we will often need to simulate the dynamics of an ensemble of N spins when
coupled to the cavity. To treat numerically this problem, our collaborator Brian Julsgaard from
Aarhus University has written a code [77, 78] that we will use, based on the equations that are
presented in the following. Consider a spin ensemble with an inhomogeneous linewidth and
non-identical coupling strengths. The spin ensemble is divided intoM sub-ensembles regarded
each as homogeneous with coupling strength gm, spin resonance frequency ωd + ∆m and containing
Nm spins for m = 1, . . . ,M [77]. For each sub-ensemble, collective spin observables Ŝ(m)

k can be
introduced. The Hamiltonian of Eq. 3.46 expressed in the rotating frame in presence of a drive is
transformed into:

HTC/~ = ∆0(a†a) +
M∑

m=1

∆m

2
Ŝ(j)
k +

M∑

m=1

gm(Ŝ(m)
+ â+ Ŝ(m)

− â†) + i
√
κ1(βâ† − β∗â) (3.52)

Rewriting the master equation of Eq. 3.29 for these collective variables and assuming identical T1

and T2 processes for each sub-ensemble allows to derive the following equations for the mean-value
of each operator:

d

dt
〈â〉 =

√
κ1β − i∆0〈â〉 −

κ

2
〈â〉 − i

M∑

j=1

gm〈Ŝ(m)
− 〉 (3.53)

d

dt
〈â†〉 =

√
κ1β

∗ + i∆0〈â†〉 −
κ

2
〈â†〉+ i

M∑

j=1

gm〈Ŝ(m)
+ 〉 (3.54)

d

dt
〈Ŝ(m)
x 〉 = −∆s〈Ŝ(m)

y 〉 −
√

2gm〈Ŝ(m)
z 〉〈Ŷ 〉 − γ⊥〈Ŝ(m)

x 〉 (3.55)

d

dt
〈Ŝ(m)
y 〉 = ∆s〈Ŝ(m)

x 〉 −
√

2gm〈Ŝ(m)
z 〉〈X̂〉 − γ⊥〈Ŝ(m)

y 〉 (3.56)

d

dt
〈Ŝ(m)
z 〉 =

√
2gm〈Ŷ 〉〈Ŝ(m)

x 〉+
√

2gm〈X̂〉〈Ŝ(m)
y 〉 − Γ1(〈Ŝ(m)

z 〉 −Nm) (3.57)

where X̂ and Ŷ are the intra-resonator quadrature operators. This set of equations can be used to
compute numerically the evolution of the mean values for each sub-ensemble. To solve the complete
behavior of the system, spin ensemble and resonator, one needs to solve 3M + 2 differential
equations, three for each sub-ensemble and two for the resonator. Provided that M is not too
large, this can be done numerically. We use this approach in ch. 7 to simulate a complete spin-echo
sequence in our experiment.
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Chapter 4

Bismuth donors in silicon

In this third and last background part, we describe the spin system that we use throughout this
thesis: bismuth donors in silicon (Si:Bi). Group V donors in silicon were studied as early as 1954,
with pioneering works from Honig and Feher [79, 80] focusing extensively on phosphorus and
arsenic. The very long values reported for T1 (> 1000 s [81]) and T2 = 0.2 ms for Si:P lead already
in these early days to the idea of using the spin to store classical information [82]. Later on, Kane
extended this suggestion to building a quantum computer based on Si:P [83], triggering a renewed
intense interest in these systems, seen as "spins living in a semiconducting vacuum”.

Indeed, in the quest for ideal qubit candidates, the thoroughly-studied silicon appears, along
with carbon, as a promising host material since its main isotope 28Si has zero nuclear spin so that
an enriched 28Si sample would provide a magnetically-silent environment for donor spins. The
electronic spin 1/2 of a donor in silicon is seen as a particularly promising qubit candidate due
to its long-lived coherence and fast manipulation time. Bismuth 209Bi is the heaviest group V
donor in silicon (see Table 4.1); other donors include 31P, 33As, 121,123Sb. In early studies, bismuth
gathered less attention than phosphorus due to the latter simplicity and use in modern CMOS devices.
However, bismuth received renewed attention recently due to the existence of optimal working
points, where the Si:Bi frequency becomes insensitive to magnetic field fluctuations [84] leading
to the longest measured coherence times for electronic spins in the solid state [25]. In addition, its
large zero-field splitting makes it attractive for coupling to superconducting resonators which could
be useful for building a quantum memory for superconducting qubit states [85].

Donor 31P 33As 121Sb 121Sb 209Bi
ED (meV) 45.6 53.8 42.8 42.8 71.0
a0 (nm) 16.8 15.5 17.3 17.3 11.5
∆E (meV) 13.0 22.5 12.3 12.3 41
I 1/2 3/2 5/2 7/2 9/2
A (MHz) 118 198 186 101 1475.4

TABLE 4.1: Group V donors characteristics: ionization energy (ED), apparent Bohr radius (a0), nuclear
spin and hyperfine coupling constant (A). Extracted from [16, 86, 87, 88].

This chapter will present the essential information to understand the experimental work presented
in this thesis. When available we indicate references the reader may consult for more detailed
derivations and explanations. In what follows, we briefly present the electronic structure of Si:Bi
(see [89]) before describing its spin Hamiltonian, energy levels and ESR transitions (see the work
of Mohammady et al. [84]). We list the known relaxation mechanisms (see [81, 90]) as well as the
expected sources of decoherence (see [91]). Last we present the characteristics of the sample used in
our experiments.
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4.1 A substitutional donor in silicon

Silicon is a group IV semi-conductor which crystallizes in a diamond structure (see Fig. 4.1a). Each
Si atom forms a covalent bond with the four neighboring atoms in a tetrahedron geometry. The
associated Brillouin zone is shown in Fig. 4.1c. The calculation of the band structure of silicon
reveals it has an indirect band-gap Eg = 1.1eV at T = 300 K (see Fig. 4.1b). The conduction band is
six-fold degenerate with each minimum offset from the maximum of the valence band occurring
at the center of the first Brillouin Zone (Γ point) by ±0.85 2π/a along the vectors ±kx, ±ky , ±kz , a
being the lattice parameter (0.543 nm for silicon) as shown in Fig. 4.1c. Each minimum is referred to
as a silicon valley.

Bismuth donors are substitutional impurities in silicon. A Bi atom replaces a Si atom and four
of its valence electrons form covalent bonds with the electrons of the neighboring Si atoms (see
Fig. 4.1a). The fifth electron can be either ionized into the conduction band (state D+) or bound to
the Bi nucleus forming a “neutral donor” (state D0). The energy required to ionize the donor to the
conduction band is ED = −71 meV [88].

4.1.1 Electronic states

As ED � Eg, Si:Bi are shallow impurities. In this case, the donor wavefunction can be expressed
using combinations of the crystal Bloch wave functions using the framework of effective mass
theory (EMT) (developed by Kohn and Luttinger [92], see also [93]). The attractive potential V(r)
of the Bi nucleus is modeled as a Coulomb potential with V (r) = −e2/(εSir), where εSi is the
silicon dielectric constant. As it extends over many lattice sites, the donor electronic wavefunction
is only weakly confined (see Fig. 4.2a). EMT predicts a six-fold degenerate 1s ground state with
equivalent wavefunctions expressed as a product of the conduction-band Bloch functions φkµ(r)
and an hydrogen-like envelope function Fµ(r) at the µ-th conduction-band valley [94]:

Ψ(r) =
∑

µ

αµFµ(r)φkµ(r) (4.1)

The spatial extension of the hydrogenic envelope Fµ(r) is given by a parameter a0 called the Bohr
radius, shown in Table 4.1. The coefficients |αµ|2 give the probability of finding the donor electron
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FIGURE 4.2: Bismuth electronic states. a Illustrative schematic of the donor wave function and of the
Coulomb potential compared to the lattice parameter. b Six-fold degenerate ground states predicted by
effective mass theory and with an additional valley-orbit interaction perturbation.

in the µ-th valley and are called valley population. In this simplistic picture, EMT produces identical
results for all of the donors, with calculations indicating identical Bohr radii and ED = −31.3 meV.

This is in direct contradiction with the experimental results where instead of a single degenerate
state three distinct energy-levels are observed [87]. The discrepancy is explained by a break down
of the EMT approach in the vicinity of the donor nucleus. To correct this effect and take into account
the tetrahedral environment surrounding the donor in the central cell as well as the core and
valence electrons screening the Bi nucleus attractive potential, a phenomenological interaction called
“valley-orbit” is added as a perturbation of EMT [94]. With this improved model, the degeneracy
of the ground state is lifted, yielding three distinct 1s states labeled by their tetrahedral symmetry
group designation : a symmetrical ground-state A1, a three-fold degenerate level T2 and a two-fold
degenerate level E. The corresponding eigenstates may be written in the same manner as in Eq 4.1
with envelope hydrogenic functions (see Fig. 4.1.1a). Written in the valley basis {±kx,±ky, ±kz},
the states are:

A1 = 1√
6
{1, 1, 1, 1, 1, 1} T2z =

1√
2
{0, 0, 0, 0, 1,−1} (4.2)

T2x = 1√
2
{1,−1, 0, 0, 0, 0} Exy =

1

2
{1, 1,−1,−1, 0, 0} (4.3)

T2y = 1√
2
{0, 0, 1,−1, 0, 0} Ez =

1√
12
{−1,−1,−1,−1, 2, 2} (4.4)

This treatment yields different ionization energies and Bohr radii for the five silicon donors, in
agreement with measurements (see Table 4.1). Bismuth is the deepest donor, and its wavefunctions
are correspondingly more confined with a smaller Bohr radius. In the remaining part of this chapter,
we are mainly interested in the spin properties of the neutral Bismuth donor in its ground state A1,
but the properties of higher-energy states do play a role in the donors physics, as will be clear later.

Charge state

The charge state of the bismuth donors in silicon is found by calculating the position of the Fermi-
level as a function of temperature, see Neamen [95]. At zero temperature, for a n-type semiconductor,
all donors retain their electrons and thus the Fermi level energy will be situated mid-way through
the donor energy level A1 (see below) and the conduction band : EF = 1

2 (EC − EA1
). At slightly

higher temperature, the donors electrons start being excited to the conduction band and the fraction
of ionized donors is given by:

N+
D

ND
=

1

1 + 2e(EF−EA1
)/kBT

(4.5)
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where ND is the total concentration of donors and N+
D is the concentration of ionized donors. Since

the silicon gap is much larger than the ionization energy of the shallow donors, for low enough
temperatures (T < 400 K) the valence electrons can not be excited to the conduction band and thus
the concentration of free carriers in the conduction band n is only given by the concentration of
ionized donors: n = N+

D . The concentration of free carriers is also linked in case of non-degenerate
semi-conductors to the temperature by:

n = Nce
(EF−EC)/kBT , (4.6)

where Nc = 2(2πm∗kBT/h2)3/2 is the effective density of states in the conduction band with m∗

being the effective mass of an electron. Thanks to these two relations, Eq 4.5 may be rewritten to de-
termine n as a function of the temperature T , the donor ionization energy ED and the concentration
of donors:

n =
ND

1 + 2n/Nξ
(4.7)

where Nξ = Nce
−ED/kBT .

As the electrons are moving from the donor level to the conduction band as a function of temperature,
the Fermi energy tends to move downwards. Precise determination of the Fermi energy as a function
of n is given by Eq 4.6. One can then access the fraction of ionized donors by evaluating Eq 4.5. With
an ionization energy ED = 71 meV and for a concentration ND = 1016cm−3, bismuth donors are in
their neutral state up to T = 40 K, see Fig. 4.3b. In our experiments which take place at millikelvins
temperatures, all donors should be in their neutral state. However, note that other factors may
impact the charge states of donors, such as internal electric fields [96, 97] or bending of the energy
levels in presence of Schottky barriers; we will come back to this issue later in ch. 7.
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4.2 Spin levels and ESR-allowed transitions.

A neutral bismuth donor in silicon has spin properties arising from the coupling of the S = 1/2
electronic spin to the 209Bi I = 9/2 nuclear spin. When placed in an external magnetic fieldB, its
twenty energy levels are described by the following spin Hamiltonian that includes a Zeeman effect
for electronic and nuclear spin and an isotropic hyperfine coupling [98]:

Ĥ/~ = B ·
(
γeŜ ⊗ 1− γn1⊗ Ŝ

)
+AŜ · Î (4.8)

where γe/2π = 27.997 GHz/T and γn/2π = 6.962 MHz/T are the electronic and nuclear gyromag-
netic ratio and A/2π = 1.4754 GHz is the hyperfine coupling constant [26]. To understand this
system, we will follow the analysis made by Mohammady at al. in [84]. Assuming a static magnetic
field directed along z,B0 = B0ez , the Hamiltonian may be re-written as:

Ĥ0/~ = AŜz Îz +
A

2
(Ŝ+Î− + Ŝ−Î+) + ω0(Ŝz − δÎz) (4.9)

where ω0 = B0γe and δ = γn/γe ≈ 10−3. Due to the hyperfine coupling, the Hamiltonian is not
diagonal in the Zeeman basis spanned by {|ms,mi〉} with ms = ± 1

2 and mi = −9
2 . . . 9

2 and its
energy states are instead hybridized electro-nuclear states. The energy spectrum as a function of
magnetic field obtained from the Hamiltonian diagonalization is shown in Fig. 4.4.
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Hybridized eigenstates

To understand the spectrum in Fig. 4.4 and the spin properties of the eigenstates, one can notice
first that the projection m = mi + ms of the total angular momentum operator F̂ = Î + Ŝ onto
ez is a good quantum number since [Ĥ, Ŝz + Îz] = 0. If we then consider the application of the
Hamiltonian on a state of the Zeeman basis:

Ĥ0/~|±
1

2
,mi〉 =

(
±A

2
mi ±

ω0

2
+ ω0δmi

)
|±1

2
,mi〉+

A

2
Î±|∓

1

2
,mi〉 (4.10)

it appears that | 12 , 9
2 〉 and |− 1

2 ,− 9
2 〉 are unmixed eigenstates of the Hamiltonian since Î±|∓ 1

2 ,± 9
2 〉 = 0.

Their energies are:

E|± 1
2 ,± 9

2 〉 =
9

4
A± ω0

2
(1 + 9δ) (4.11)

These states are the only ones in the spectrum (see Fig. 4.4) to have a linear energy dependence on
B0. When |m| < 5, |± 1

2 ,mi〉 hybridizes with |∓ 1
2 ,mi±1〉. From these observations, the Hamiltonian

expressed in the Zeeman basis can be decomposed into two one-dimensional Hamiltonians acting
on bases

{|1
2
,

9

2
〉}and{|−1

2
,−9

2
〉} (4.12)

and nine two-dimensional Hamiltonians acting on subspaces labeled by m:

{|±1

2
,mi〉, |∓

1

2
,mi ± 1〉} = {|±1

2
,m∓ 1

2
〉, |m| 6 4} (4.13)

As explained in [84], the restriction of Ĥ0 to one of these two-dimensional bases is:

Ĥm/~ =
A

2
Rm[cos θmσ̂z + sin θmσ̂x]− A

2
ε1 (4.14)

where:

R2
m =

[
m+

ω0

A
(1 + δ)

]2
+ (25−m2) (4.15)

tan θm =
(25−m2)

1/2

m+ ω0

A (1 + δ)
(4.16)

ε =
1

2
+ 2ω0δm (4.17)

Since cos θmσ̂z + sin θmσ̂x = σ0θm , where σ0θm is the Pauli spin matrix in the rotated basis, the
eigen-energies are given by:

E
±

m =
A

2
(−ε±Rm) (4.18)

This expression is exact for all magnetic fields and for all m and yields the energy spectrum of
Fig. 4.4. The corresponding energy eigenstates are:

|±,m〉 = a±m|±
1

2
,m∓ 1

2
〉+ b±m|∓

1

2
,m± 1

2
〉 (4.19)

where

a±m =
1√
2

(1 + cos θm)1/2 = cos
θm
2

and b±m = ± 1√
2

sin θm(1 + cos θm)−1/2 = ± sin
θm
2

(4.20)

From this analysis, it appears that the eigenstates can be labeled in multiple ways: by order of

59



Chapter 4. Bismuth donors in silicon

increasing energy {|i〉, i = 1, . . . .20}, by the coupled basis {|±,m〉} and in the high-field limit by the
Zeeman basis {|ms,mi〉,ms = ± 1

2 ,mi = −9
2 . . . 9

2}, see Fig. 4.4. The correspondence between the
Zeeman basis and the coupled basis is realized by noticing that in the high-field limit, tan θm → 0

(Eq 4.17). Thus a
±

m → 1 and b
±

m → 0, meaning that the electro-nuclear eigenstates |±,m〉 converge
respectively to the Zeeman eigenstates |ms = ± 1

2 ,mi = m ∓ 1
2 〉 as expected when the hyperfine

term can be neglected with respect to the Zeeman terms.

Eigen-energies at low magnetic field

The following simplified expressions are readily obtained in the “low-field limit” ω0 = B0γe � A,
which will be the one relevant for our experiments:

E+
m = +

9

4
A+

m

10
ω0(1 + δ ∓ 10δ)B0 with m ∈ −5, ..5 (4.21)

E−m = −11

4
A− m

10
ω0(1 + δ ∓ 10δ)B0 with m ∈ −4, ..4 (4.22)

The field B0 is seen to lift linearly the nine-fold and eleven-fold degeneracy of the ground and
excited multiplet (see Fig. 4.4). Transitions from the ground to the excited multiplet have frequencies
centered on 5A/2π ≈ 7.37 GHz. In this low-field limit, the coefficients a

±

m and b
±

m describing the
mixing of the eigenstates are strongly dependent on m.

ESR-allowed transitions

As explained in ch.3 (see Eq. 3.20 and following for instance), spin transitions can be driven if and
only if 〈i|Ŝ|j〉 6= 0; in the following, we compute these matrix elements for Si:Bi.

Sx transitions allowed at large magnetic field.

In the high-field limit, the Bismuth donor spin eigenstates are well approximated by the Zeeman
basis and the allowed transitions are thus given by the usual selection rules |∆ms|= 1 and ∆mi = 0.
The 10 transitions |ms = 1

2 ,mi〉 ↔ |ms = − 1
2 ,mi〉 have a matrix element 〈1/2|Ŝx|−1/2〉 = 1/2, as

expected for an electronic spin 1/2 (see Figs. 4.5 & 4.6b).

Sx transitions allowed at low magnetic field.

At lower magnetic field, states {|ms = 1
2 ,mi〉, |ms = − 1

2 ,mi〉} are progressively hybridized into
{|+,m〉, |−,m− 1〉} as depicted in Fig. 4.5. Correspondingly, the matrix element of these transitions
becomes smaller than 1/2 (see Fig. 4.6b). Their matrix elements are:

〈+,m|Ŝx|−,m− 1〉 =
1

2
a+
ma
−
m−1 =

1

2
cos

θm
2

cos
θm−1

2

and depend strongly on m at low magnetic field.

In addition to these 10 transitions, transitions between |−,m〉 and |+,m−1〉 become allowed because
of this hybridization due to the hyperfine interaction. The frequency and matrix-element of these
extra 9 transitions as a function of magnetic field have been plotted in Fig. 4.6c (blue arrows). Their
matrix elements are:

〈−,m|Ŝx|+,m− 1〉 =
1

2
b−mb

+
m−1 = −1

2
sin

θm
2

sin
θm−1

2

and go to zero at high field, as expected.

60



Chapter 4. Bismuth donors in silicon

ms = 1/2

ms = -1/2

mi

mi

mi-1

mi-1

mi+1

mi+1

High-field Low-fielda b

+, m+1 +, m +, m-1

-, m-2-, m-1-, m

hyperfine
coupling

FIGURE 4.5: Transitions schematic. a At high-field, the usual ESR transitions between levels |ms =
1
2
,mi〉 ↔ |ms = − 1

2
,mi〉 are allowed (brown arrows). At lower fields, the hyperfine coupling renders

the Zeeman basis (a) invalid to describe the hybridized electro-nuclear states (symbolized by the blue
ellipses) however an accurate description is given by the coupled basis |±,m〉 (b). b At low magnetic
field, in the coupled basis |±,m〉, the high-field ESR transitions are now labeled |+,m〉 ↔ |−,m − 1〉.
The mixing induced by the hyperfine term allows in addition the transitions |−,m〉 ↔ |+,m − 1〉, as
well as |+,m〉 ↔ |+,m− 1〉 and |−,m〉 ↔ |−,m− 1〉.

It is interesting to note that the transitions |+,m〉 ↔ |−,m−1〉 and |+,m−1〉 ↔ |−,m〉 (in the |m 6 4
manifold) are quasi-degenerate in frequency and that their matrix elements are complementary:
|a+
ma
−
m−1|+|b+m−1b

−
m|≈ 1/2. Thus, at any given magnetic field, only 10 transitions have a matrix

element greater than 1/4, see Fig. 4.6b & c (the associated pairs are denoted by a grey circle).

Sz transitions.

An unusual feature of Si:Bi (again, due to the hyperfine coupling) is the existence of 9 transitions that
can be driven by a microwave fieldB1 parallel to the static fieldB0. These Ŝz transitions connect
levels |+,m〉 and |−,m〉 in the coupled basis and their matrix element is given by:

〈+,m|Ŝz|−,m〉 =
sin θm

2
.

Even if these transitions are forbidden in the high-field limit, they have a sizeable matrix element in
the range [0, 0.4 T] and can thus be observed at low-field. They are shown in pink in Fig. 4.6a, and
their frequency and intensity dependence on B0 is shown in Fig. 4.6d. It is interesting to note that
each transition comes in-between two Ŝx transitions.

NMR transitions

In the above description, we have restricted ourselves to transitions whose frequencies lie in the
gigaHertz range. In addition, transitions between |±,m〉 and |±,m − 1〉 (with frequencies in the
MegaHertz range) are allowed, as shown in grey in Fig. 4.6a. At high fields, these transitions can
only be driven via the nuclear spin matrix element Ix; however at low field they acquire a sizeable
Sx matrix element:

〈+,m|Ŝx|+,m− 1〉 =
1

2
a+
mb

+
m−1 =

1

2
cos

θm
2

sin
θm−1

2
(4.23)

〈−,m|Ŝx|−,m− 1〉 =
1

2
a−m−1b

−
m = −1

2
cos

θm−1

2
sin

θm
2

(4.24)

These transitions can thus be driven faster than usual nuclear spin transitions, as demonstrated in
[85]
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|+,m〉 ↔ |−,m〉 (pink circle arrows, panel d). NMR-like transitions are shown with grey triangle arrows.
The additional grey level shows the position of the |+,−5〉 level at large B0. b-d Frequencies of ESR
allowed transitions as a function of B0. The curves coloring indicates the transition matrix element value.
The color scale is identical for all panels and given in inset of panel b. The grey circles in a and on the
right-side of panels b-c frames indicate degenerate transitions (see main text).

Clock-transitions

A striking feature of some group V donors in silicon is the existence of multiple df/dB0 = 0 sweet-
spots in their spectrum, due to the interplay between the hyperfine and Zeeman terms in their
Hamiltonians. Mohamady at al. predicted theoretically the existence of I − 1/2 sweet-spots, called
clock-transitions [84, 100]. Bismuth has eight minima in the f −B space, occurring for transitions
∆m = ±1 with m 6 0 as can be seen in Fig. 4.6b-c. These transitions are degenerate two-by-two,
giving rise to four clock-transitions (see Table 4.2). They were observed experimentally by Wolfowicz
et al. [25].

These features are very interesting for quantum information applications since the decoherence
arising from classical magnetic field noise is reduced at a clock-transition [101]. Phosphorus does
not possess any clock-transition due to its nuclear spin I = 1/2. While arsenic (75As, I = 3/2,
A = 0.198 GHz) and antimony (121Sb, I = 5/2, A = 0.186 GHz and 123 As, I = 7/2, A = 0.101GHz)
have the necessary nuclear spin to also possess clock-transitions, their weaker hyperfine coupling
constant implies that the clock-transitions occur at smaller frequencies (< 600 MHz)[25]. Thus
among the group V donors, Bismuth appears the optimal candidate for quantum information
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Transition label m m = −4 m = −3 m = −2 m = −1
Magnetic field (mT) 187.8 133.3 79.8 26.6
Frequency (GHz) 5.214 6.372 7.032 7.338

TABLE 4.2: Magnetic-field clock-transitions in Bismuth donors in silicon. The clock transitions occur
for transitions between pairs |+,m + 1〉 ↔ |−,m〉 and |+,m〉 ↔ |−,m + 1〉, with m < 0 for magnetic
fields lower than 0.2 mT and frequencies in the gigaHertz range. Adapted from [25].

storage, having four clock-transitions at gigaHertz frequencies.

4.3 Donors in strained silicon

We have so far discussed the spin Hamiltonian of bismuth donors in the case of an unperturbed
silicon lattice. The effect of strain on donors in Silicon has been first observed in [94] and has
triggered important theoretical work [94, 102, 103, 104, 105], with the perspective of providing a
precise control over the spin properties of donors in silicon [104, 106]. Here we provide a summary
of essential results needed for our experiments.

To understand the effect of stress, consider first a positive stress applied on the z-axis, which builds
a compressive strain in the z-axis and a tensile strain in the x-y axis. The influence of strain on the
donor eigenstates can be understood from their valley configurations: the valleys in the direction of
compressive strain experience a reduction in energy, leading to a higher valley population whereas
valleys in the direction of tensile strain exhibit an increased energy, leading to a lower population.
As a consequence, the ground state is no longer purely given by the singlet state A1 but should be
described as a mixture of the singlet with the doublet excited states Exy and Exyz [94]. The T2 states
are not involved since they involve combination of opposite pairs of valleys (see 4.1.1). This change
of ground state properties has two distinct effects on the spin Hamiltonian.

Hyperfine interaction

The hyperfine coupling between the electronic spin and the nuclear spin has two separate contri-
butions: an isotropic component (also called Fermi contact) which is directly proportional to the
quantum mechanical probability of finding the electron at the nucleus position ∝ |Ψ(rBi)|2, and an
anisotropic part due to dipolar interactions between both spins. The latter can be shown to be always
zero due to the 1s nature of states A1, E and T2 [107]. Due to the symmetry of the wavefunctions
described in section 4.1.1, only the symmetric A1 state has a non-zero contact hyperfine coupling.
Since strain mixes it with the other states, it leads to a reduced hyperfine interaction A. The exact
reduction depends on the amount of stress applied and can be derived in the case of high-strain with
density function theory [105] as well as a tight-binding model [105]. In the case of small strain, when
the lattice deformation is negligible, the reduction may be approximated via a valley repopulation
model based on EMT [94], giving:

A(x)

A(0)
∼ 1− x2

9
(4.25)

for small values of x, the so-called “valley strain” given by x = Ξus
′/∆E. ∆E is the splitting

between A1 and E states, Ξu is the deformation potential and s′ is the shear strain. The reduction of
the hyperfine parameter A has the overall effect of lowering the frequencies of the considered ESR
transitions.

Note also that the hyperfine coupling can be modified by Stark shift caused by applied electric
fields [108, 97, 109], a promising technique for the local control of donor spins in silicon [83].
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Quadrupolar interaction

In addition to modifying the hyperfine term of the spin Hamiltonian, stress also contributes to
the appearance of a quadrupolar interaction term [110, 111]. Indeed, with a nuclear spin I = 9/2,
Bismuth possesses an electric quadrupole moment Q. This quadrupole moment interacts with an
electric field gradient (EFG) generated by the electron wavefunction through the operator [112]:

Vαβ = 〈Ψ|ĤEFG
αβ |Ψ〉 (4.26)

ĤEFG
αβ =

e

4πε

3αβ − r2

r5
(4.27)

where α or β = x, y, z are the crystal axis. In the absence of strain, the fully symmetric ground state
A1 produces no EFG and thus has a vanishing quadrupolar interaction. In the presence of stress, the
mixing of A1 with the non-symmetric Exyz state produces an EFG so that a quadrupolar interaction
term appears in the spin Hamiltonian. In the case of a magnetic field B0 applied on the z direction
and a resulting EFG in the z direction, the quadrupolar Hamiltonian is:

ĤQI = Î ·Q · Î =
eQVzz

4I(2I − 1)
eQVzz(3Îz − I(I + 1)) (4.28)

This new term produces an energy shift of transitions between states having a different mi, which
is the case for all Ŝx-ESR transitions in the above discussion. Note that the sign of the energy shift
depends on the sign of the EFG and thus on the sign of the applied strain.

4.4 Relaxation times

4.4.1 T1 relaxation

Spin relaxation of shallow donors in silicon has been studied extensively in the 1950s and 1960s
experimentally [79, 113, 114, 80, 81, 114, 94, 115, 116, 117]. The measured relaxation times at
4 K surpassed tens of seconds, sparking strong theoretical efforts to understand and model the
underlying mechanisms [118, 119, 120, 121]. A variety of relaxation mechanisms were found to be
effective at different temperatures, magnetic field, impurity concentrations, and numbers of free
carriers. We only wish here to briefly summarize the known mechanisms and their dependence on
these parameters and give reported values in the case of bismuth donors.

Spin-lattice relaxation

The electronic spin of shallow donors can relax via exchange of energy with the lattice by emission
of phonons. As schematically shown in Fig. 4.7a, two types of processes are usually distinguished:
relaxation with conservation of the nuclear spin (∆ms = ±1, ∆mi = 0) with a characteristic time
labeled Ts, and diagonal relaxation with an additional nuclear spin flip (∆ms = ±1, ∆mi = ∓1)
with a characteristic time labeled Tx (see Fig. 4.7a). The "other” diagonal relaxation Tx′ involving a
double flip of the electron and of the nuclear spin (∆ms = ±1, ∆mi = ±1) is highly forbidden [114].

Consider two levels |g〉 and |e〉 from the Si:Bi energy spectrum and consider the relaxation between
|e〉 and |g〉. The levels are split by ~ω0 with respective populations ne and ng. If the system is excited,
the population difference n = ne−ng will progressively relax towards its thermal equilibrium value
Ne −Ng due to interactions with the lattice, Ne and Ng being respectively the thermal equilibrium
values of ne and ng. Defining We→g and Wg→e as the probabilities per second for a spin to relax
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FIGURE 4.7: Spin-lattice relaxation processes. a Subset of Si:Bi level schemes with the various spin-
lattice relaxation processes. b Direct, Orbach and Raman phonon relaxation mechanisms. c Relaxation
paths available to the spin system.

from level |e〉 to level |g〉 and vice-versa, the change in the excited state population writes:

dne
dt

= Wg→eng −We→gne (4.29)

(and a similar expression for ng ). The rate equation for the population difference n will then be
given by:

dn

dt
= 2(Wg→eng −We→gne) = (Wg→e −We→g)N − (We→g +Wg→e)n, (4.30)

where N = Ne +Ng = ne + ng is the total spin population.

The phonon radiation bath of the lattice can be described as an infinite set of harmonic oscillators of
characteristic energy ~ω, whose thermal occupancy is given by the Bose-Einstein factor:

p(~ω) = [exp(~ω/kBTph)− 1]−1 (4.31)

where Tph is the temperature of the crystal lattice. When the lattice is well coupled to the environ-
ment bath, the phonon equilibrium temperature is given by the system temperature T .

Direct-phonon process

If we consider the case of a resonant exchange of energy, where the system relaxes by emitting a
phonon of energy ~ω0 into a lattice mode of the same frequency, see Fig. 4.7b, we can evaluate the
transition probabilities as

We→g = K[p(~ω0) + 1]
Wg→e = Kp(~ω0)

(4.32)

where one can identify both spontaneous and stimulated emission, as well as absorption, K being a
coefficient independent of temperature. Hence, from Eq 4.30:

dn

dt
= KN −K[2p(~ω0) + 1]n (4.33)

At infinite time, the spin system is thermalized with the phonon bath, yielding the thermal popula-
tion difference:

n0 = N tanh

(
~ω0

2kBT

)

This allows to re-write Eq 4.30 in the well-known form dn
dt = −(n − n0)/T1 by identifying the

relaxation time T1 as T−1
1 = K coth

(
~ω0

2kBT

)
. In the high-temperature limit (~ω0 � kBT ) T−1

1 ∼
2KkBT/~ω0.. This linear dependence of the relaxation rate with temperature is characteristic of
direct phonon processes. At temperatures kBT < ~ω0 the relaxation rate saturates to T−1

1 = K.
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The value of K depends on the spin and material properties. In the case of shallow donors in silicon,
both Roth [120] and Hasegawa [121] have estimated theoretically K based on two different models
where the spin-lattice relaxation arises from the modulation of the spin-orbit coupling by crystal
strain.

From the formula derived by Hasegawa [121, 122], one can extract the following dependency for K
in the case of a Ts-type process:

K = c(∆E)−2ω5
0 , (4.34)

where ∆E is the energy difference between the first excited valley state and the ground state and
c is a coefficient factor expected to be similar for all shallow donors in silicon in the derivation of
Hasegawa [121].

Two-phonon relaxation processes

At higher temperatures, other processes involving two phonons need to be taken into account. These
processes are schematically shown in Fig. 4.7b. In the Orbach process, the two-phonon process is
mediated by the first excited valley state. The spin relaxes by absorbing a phonon of energy ∆E and
emitting a phonon of energy ∆E − ~ω0. In the case of a Raman process, the excited state is replaced
by a virtual state. Any phonon may absorbed or emitted, the only maching condition being that
|~ω1 − ~ω2| = ~ω0. At temperatures kBT � ~ω0, the temperature and frequency dependence of T1

is:

Orbach process [90]: T−1
1 ∝ a exp(−∆E/kBT )

Raman process [90]: T−1
1 ∝ bT 9 + b′ω2

0T
7

where a, b and b′ are temperature and frequency independent coefficients determined by the
underlying relaxation process [117] and are expected to be different for Ts or Tx processes. The
characteristic temperature dependence of the Orbach process on ∆E has been used to determine
experimentally its value in the case of shallow donors in silicon [115].

Depending on the coefficients a, b, b′ and c, the different processes are active in different temperature
ranges. In the case of bismuth, experiments have determined for the Ts relaxation that an Orbach
process is dominant down to 25 K [116, 26, 123]. At lower temperatures, a Raman process dominates,
with reported T 7 [116, 26, 123, 98] and T 9 dependences [25, 124]. Wolfowicz et al. [25] reported
T1 = 9 s at T = 4.2 K. Since all reported measurements were performed at temperatures higher than
4 K, the direct-phonon process has never been observed for bismuth.

On the other hand, phosphorus donors have been measured down to lower temperatures, where
the direct-phonon process is expected to dominate. Feher and Gere measured T−1

1 ≈ 2× 104 s−1 at
T = 1.2 K. A. Morello et al. reported more recently T1 values with the expected ω5

0-dependence at
40 mK: T−1

1 ≈ 0.015(ω0/γe)
5s−1T−5, where γe is the gyromagnetic ratio for phosphorus [122]. From

those measurements, one can estimate the coefficient c to be c ≈ 1.5 − 3.2 × 10−13s−1GHz−5eV2

(with ∆E = 13 meV for phosphorus). This coefficient c is expected to be similar for all shallow
donors in silicon, according to Hasegawa theory [121] and could give a first rough estimate for
the direct phonon relaxation of bismuth donors, yielding at zero temperature and ω0/2π = 7 GHz,
T1 ≈ 2× 105 s.

Phonon bottleneck

Up to now, we have assumed that the lattice is well coupled to the environment so that thermal
equilibrium is always ensured (see Fig. 4.7c). When this condition is not matched, the phonons
created by the spins relaxation will accumulate. This has the effect of slowing down the relaxation
since the spins see an effectively hotter lattice. This phenomenon is called a phonon bottleneck and
gives rise to a T 2 dependence for T1 [90]. Considering the low concentration of our sample, we do
not expect this effect to be relevant in our experiment.
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FIGURE 4.8: T1 dependence as a function of temperature. Above T = 25 K, an Orbach process
dominates whereas for lower temperature, a Raman process is observed. The experiment is realized
at B0 = 0.57 T, on the highest frequency transition at f = 9.76 GHz with a sample of concentration
[Bi] = 5× 1014cm−3. Extracted from [123].

Charge hopping and spin exchange mechanisms

Feher and Gere [81], in addition to measuring the dependence of Ts and Tx on temperature and
magnetic field for phosphorus donors in silicon, have studied the influence of donors and acceptors
concentration and above band-gap light on spin relaxation.

Shining above band-gap light on the sample increases the number of free carriers. Pines et al. [118]
proposed a spin-exchange mechanism where the conduction electrons collide with the impurity and
exchange their spin during the process. The conduction electron would then relax by interaction
with the lattice. This process is rapidly limited by the phonon bottleneck, except in the case of
double spin exchange for which the the spin of the conduction electron remains unaffected and thus
does not need to relax.

When the donor concentration is large, clusters of donor atoms form. In these clusters, the electron
wavefunction is no longer well confined and an impurity conduction band appears [81]. The
spin-exchange mechanism can take place through this impurity band instead of the conduction
band, making the clusters of donors fast relaxing impurities. Feher and Gere have observed that for
concentration of phosphorus donors higher than 1016cm−3, the relaxation time of the spin decreases
due to those fast relaxing impurities [81]. For bismuth, this effect should take place for higher
concentrations since the electron wavefunction is more confined than for phosphorus.

Last, in a highly-concentrated sample, large numbers of acceptors also speeds up spin relaxation [81].
The acceptors ionize a sizable fraction of the donors, allowing for electron hopping between donors
through the impurity band. This effect was predicted by Anderson and Mott [125] and is called an
impurity conduction process.

4.4.2 Coherence times

As seen in ch. 3, the coherence of a spin describes how long a superposition of states retains its
phase. This phase information is lost via interaction with the environment. Even if a Hahn-echo
sequence (see Fig. 4.9a) perfectly suppresses the effect of static field inhomogeneities, dynamic
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FIGURE 4.9: Measuring the coherence times. a Hahn-echo sequence. An intermediate π rotation
ensures the rephasing of the spins and the emission of an echo, it also refocus the dephasing due to
slow fluctuations of the environment. b A sequence with small refocusing pulses limit the environment
fluctuations due to flip-flops of resonant spins. c Dynamical decoupling sequence. Successive π rotations
are performed to refocus the dephasing due to dynamic fluctuations.

fluctuations of the magnetic environment during the evolving times τ of the sequence ultimately
lead to the disappearance of the echo signal, with a characteristic time called the coherence time
T2. The values obtained for T2 are governed by the dynamics of nearby magnetic impurities. For
bismuth donors in silicon, the relevant species are other bismuth spins and silicon-29, which have
a spin 1/2, present in 4.7% abundance in natural silicon (whereas 28Si has zero nuclear spin). At
sufficiently low temperatures (< 5 K), phonon-induced spin relaxation becomes so slow that its
effect on the bath dynamics can be neglected. Instead, the bath dynamics are governed by intra-bath
flip-flops due to the dipolar interactions between spins. The flip-flops are either between silicon-29
spins, non-resonant Bi spins or resonant Bi spins.

This last decoherence process deserves a separate discussion. During the Hahn-echo sequence, the
π pulse flips without distinction all resonant Bi spins. A given Si:Bi spin sees therefore its local
environment (consisting in other Si:Bi spins) changed after the π pulse, which leads to decoherence.
This effect is called "instantaneous diffusion”. The decoherence rate in this process depends linearly
on the donor concentration up to an intrinsic contribution T−1

2 int[5, 124]. This intrinsic contribution
is determined experimentally by measuring T2 for decreasing tipping angles of the refocusing pulse
which effectively flip increasingly smaller numbers of resonant spins (see Fig. 4.9b). At small donor
concentrations, other flip-flop processes become dominant. More details can be found in particular
in [126].

In natural silicon, T2int is eventually limited by flip-flops in the 29Si bath to 0.8 ms [124]. The T2

sensitivity to these flip-flops is proportional to df/dB. At the clock-transitions where the sensitivity
is canceled since df/dB = 0, the decoherence time is significantly increased. Wolfowicz et al. [25]
measured an enhancement of T2 from 0.8 ms to 90 ms by working at a clock transition in natural
silicon for a donor concentration [Bi] = 1× 1015cm−3). Instantaneous diffusion is also suppressed
at the clock transition.

In isotopically purified 28Si samples, the 29Si bath is eliminated and coherence is limited by resonant
Bi spins. Flip-flops between pairs not involving the probed spins may be suppressed once again by
working at the clock-transition. Wolfowicz et al. [25] measured an impressive value of T2CT = 2.7 s
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FIGURE 4.10: T2 at a clock transition in a isotopically purified 28Si and b natural abundance silicon
measured with a Hahn-echo sequence. Extracted from [25].

(once again with a low-concentrated sample [Bi] = 4 × 1014cm−3). The coherence in this case is
finally limited by flip-flops involving the probed spins. This process is not completely suppressed at
the clock-transition since it is a second order effect in d2f/dB2 and depends linearly on the donor
concentration [25].

The coherence time can also be improved by using dynamical decoupling sequences such as
the CPMG sequence [127, 128], see Fig. 4.9c. In natural silicon, Ma et al. [129] have measured
an enhancement by two orders of magnitude of the intrinsic coherence time T2int using a CPMG
sequence with 128 pulses.

4.5 Optical transitions via donor-bound exciton states

Silicon’s indirect bandgap prevents coherent optical manipulation of Si:Bi such as used for instance
in NV centers in diamond [130]. However, Yang et al. showed that optical photons can be used
to polarize and readout the spin state of donors in silicon, using bound exciton transitions [131].
Absorption of a photon creates an electron-hole pair which remains bound to the donor (D0X).
The D0X state decays back to the ionized donor state (D+) via Auger processes and comes back to
the neutral state (D0) via capture of another electron (see Fig. 4.11a). Frequency-selective optical
excitation enables selective polarization of the nuclear and electronic spin states [132], especially
when isotopically purified 28Si samples are used so that the lines become very well-resolved [131].
With phosphorus donors, Steger et al. achieved a remarkable electronic polarization of 97% and
nuclear polarization of 90% at 4.2 K [133]. The ejected Auger electron can also be detected via
photo-conductivity measurements, leading to very sensitive NMR experiments with low donor
concentrations [133].

Si:Bi possesses the same bound-exciton transitions as Si:P (see Fig. 4.11b). Using photoluminescence
spectroscopy, Sekiguchi et al. [134] observed the expected transitions between D0 and D0X states
(see Fig. 4.11c). They managed to resolve the zero-field hyperfine splitting, however the use of
a natural abundance sample prevented them from resolving the nuclear states. Repeating the
experiment with silicon-28 could provide a new way to initialize Si:Bi electronic and nuclear spins.

4.6 Fabrication

Bismuth impurities can be introduced during the silicon crystal growth to provide bulk-doped
natural silicon wafers or can be implanted in existing substrates, which is done in the case of already
grown isotopically enriched 28Si substrates. 28Si material can either be bulk samples (currently
available only thanks to the Avogadro project [135]) or an epitaxial layer grown on top of a natural
abundance silicon wafer. Due to the high atomic mass of bismuth (atomic weight = 209), the
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implantation process creates many lattice defects. An annealing step above 600oC is required to
heal the implantation damage and ensure that the implanted bismuth atoms are converted in
substitutional impurities. Studer et al. [136] reported a conversion yield of ≈ 100% with a two-step
annealing (3 min at 650oC followed by 10 min at 900oC).

Sample used in this work

The sample used in this thesis work is a 700 nm enriched 99.95% silicon-28 epitaxially grown layer
on a natural silicon (100) wafer. Bismuth implantation and sample characterization were carried out
by Weis et al. [137]. Bismuth atoms were implanted at different energies so as to obtain a box-like
profile at a depth comprised between 20 nm and 150 nm, see Fig. 4.12a. The peak concentration is
[Bi] = 9× 1016cm−3. Electrical activation measurements revealed a 60% conversion yield obtained
with an annealing step at 800oC for 20 min. Weis et al. measured an ESR linewidth of 12.2 µT
at B0 = 0.24 mT and a coherence time T2 = 0.7 ms measured on the |6〉 ↔ |15〉 transition (see
Fig. 4.12b).

a b

FIGURE 4.12: Characteristics of the sample fabricated by Weis et al. [137]. a Implantation profile
extracted by SIMS (Secondary ion mass spectroscopy). b T2 measured with a Hahn echo sequence at
B0 = 0.243 T.
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Chapter 5

Design and realization of a
spectrometer operating at the
quantum limit of sensitivity

While inductively-detected ESR spectroscopy has a wide range of applications, this technique has a
limited sensitivity since it relies on the detection of radiation emitted by the spins into the detection.
As spins interact rather weakly with the electromagnetic field, a successful detection requires a
large number of spins for the collected signal to overcome the experimental noise. This prevents the
use of conventional ESR to study nanoscale samples containing only a few spins, such as a single
protein molecule, or a nanoparticle. While alternative techniques such as STM tips [138], mechanical
resonators [139, 140], or more recently NV centers [141] have been developed to overcome this limit,
there is still a strong interest to increase the sensitivity of spectrometers based on inductive detection
due to their versatility [142, 143, 37, 15].

To enhance the signal of inductively detected ESR spectroscopy, resonator geometries maximizing
the coupling of the spins to the electromagnetic field are developed and when possible samples are
cooled down to increase the equilibrium polarization of the spin ensemble. Working at cryogenic
temperatures also allows to reduce considerably the part of the experimental noise arising from the
thermal fluctuations in the detection waveguide. To benefit entirely from this reduction, cryogenic
microwave amplifiers with improved noise figure can be used, such as the High Electron Mobility
Transistor (HEMT) amplifiers.

In this chapter, we describe the design and experimental realization of an ESR spectrometer based
on inductive detection via a high-quality factor superconducting micro-resonator, operating at
millikelvin temperatures, with the spin signal amplified by a JPA. In this way, the dominant
source of noise is the quantum fluctuations of the microwave field at 20 mK. The sensitivity of this
spectrometer will be characterized in ch. 7.

5.1 Nanoscale ESR

5.1.1 State-of-the-art

A number of techniques are currently investigated to push the sensitivity of ESR to the nanoscale,
using methods based on optically (ODMR) or electrically (EDMR) detected magnetic resonance, as
well as scanning probe setups.

ODMR relies on the spin-dependent photoluminescence occurring in certain systems, such as doped
pentacene single molecules [145] or individual NV centers in diamond [130]. Single spin sensitivity
can be reached, mainly thanks to the use of optical pumping creating a large spin polarization and
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100 nm

a b c d

FIGURE 5.1: Single-spin detection has been reached using alternative techniques to conventional ESR
spectroscopy. a Fluorescence map of a diamond comprising single NV centers, allowing for single-spin
ODMR. b Single Si:P donor detection with a SET. c Imaging of four BDPA molecules using a STM. d
Single-spin detection using a MRFM setup. Figures are extracted respectively from [130, 122, 144, 140].

to the detection of optical rather than microwave photons. In turn, these single emitters can be
used as very sensitive ESR sensors; for example NV centers were used to detect nearby spins with a
sub-nanometric precision [146].

In EDMR, the spin degree of freedom is converted to a charge degree of freedom. The charge
can then be very efficiently detected by charge sensors such as a quantum dot [147], a field-effect
transistor [148], a junction [149] or a single-electron transistor [122]. Since these sensors can detect
a single charge, the sensitivity is limited by the efficiency of the spin to charge conversion, which
can be of order unity for spins in semiconductors, as was demonstrated for electrostatically defined
quantum dots in GaAs [147] or in silicon [150], as well as individual dopants in silicon [151].
Transport measurements of a single molecular magnet inserted in a junction [149] or a transitor [152]
have also shown that the detection and manipulation of the nuclear spin of an individual metal
atom embedded in the single molecule magnet is possible.

The force acting on a spin placed in a magnetic field gradient can also be used to provide single-spin
detection [140]. When the magnetic field gradient is generated by the magnetic tip of an atomic force
microscope (AFM) cantilever, the very sensitive measurement of the cantilever displacement can be
harnessed to detect a single spin. Such a technique is called magnetic resonance force microscopy
(MRFM).

Single-spin sensitivity has also been reached using scanning tunneling microscopy (STM) where the
spin Larmor precession in a DC magnetic field induces a modulation in the tunneling current [138,
144]. In addition, with this technique the spin position can be determined precisely.

5.1.2 Pulsed inductive detection at the nanoscale

While the above methods have reached sufficient sensitivity to detect a very small number of spins,
they lack the versatility of conventional inductive detection discussed in ch. 3, relying either on a
conversion to another degree of freedom or a scanning probe setup. In the following, we provide a
quantitative analysis of the sensitivity of inductively detected ESR spectroscopy, and we show that
with an appropriate design and setup this sensitivity can be considerably improved compared to
the state-of-the-art of inductive detection.

Sensitivity of inductively-detected ESR spectroscopy

Our analysis of the sensitivity of inductive detection ESR spectroscopy is based on the concepts
presented in ch. 3. As in ch. 3 (and as shown in Fig. 5.2), we consider an ensemble of N spins
coupled to a resonator of frequency ω0 with identical coupling constant g. The resonator, of total
damping rate κ, is coupled to input and output transmission lines with coupling rate κ1 and κ2.
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FIGURE 5.2: ESR setup. A train of microwave pulses sent on port 1 of the resonator triggers the emission
of an echo by the spins. If κ1 � κ2, the echo is mainly emitted into the detection waveguide before being
amplified and detected via an homodyne setup that yields the quadratures I and Q of the signal.

The spins are probed by a Hahn-echo sequence (π/2 − τ − π − τ ) sent via port 1 that ultimately
triggers the emission of an echo. To maximize the efficiency of the emission into the detection line
connected on port 2, we assume κ2/κ ∼ 1 implying κ1 � κ2, approaching the situation frequently
encountered in ESR spectrometers which are measured in reflexion, i.e. with κ1 = 0.

To describe the evolution of the spins during the Hahn-echo sequence, we make the assumption that
the spins-resonator system is in the weak-cooperativity regime and we neglect transverse relaxation
(also called decoherence or T2 processes in ch. 3). Similarly to ch. 3, the spin ensemble is divided in
spin subsets (j) of detunings ∆(j) = ωs,(j) − ω0; for the sake of simplicity we assume here that the
shape of the distribution is a Lorentzian :

ρ(∆) =
w/2π

∆2 + w2/4
(5.1)

of linewidth w and central frequency ωs. The spin evolution can be described in the following way.
Starting from an equilibrium polarization p at time −2τ along the z-direction such that the collective
spin operators mean-values are:




〈Ŝx(−2τ − ε)〉 = 0

〈Ŝy(−2τ − ε)〉 = 0

〈Ŝz(−2τ − ε)〉 = −p
(5.2)

an ideal π/2 around the x-axis creates the transversal magnetization state:




〈Ŝx(−2τ + ε)〉 = 0

〈Ŝy(−2τ + ε)〉 = p

〈Ŝz(−2τ + ε)〉 = 0

(5.3)

Due to the spin ensemble inhomogeneity, the transverse magnetization decays in a time 1/w, but
the refocusing π pulse applied at t = −τ ensures that rephasing occurs at time t = 0. As seen in
3.1.1, for each spin subset, one has:

〈Ŝ(j)
− (t)〉 = − ip

2
e−i∆jt for t > −τ. (5.4)

The collective spin operator 〈Ŝ−〉 can be calculated from each spin contribution:

〈Ŝ−(t)〉 = −
∫
ρ(∆)

ip

2
e−i∆jt = − ipN

2
e−w|t|/2 (5.5)

The relation between the intra-resonator field and 〈Ŝ−〉 in the semi-classical approximation is given
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by Eq. 3.44. If the cavity resonance is matched to the spin frequency ω0 = ωs, it follows that the
output field of port 2 is given by:

〈âout〉 =
√
κ2〈â〉 = −√κ2

∫

∆

2gi

κ+ 2i∆
f(∆)〈Ŝ(j)

− 〉d∆ (5.6)

〈âout〉 = −
√
κ2gpN

κ+ w
×
{
ewt/2 t < 0
κ+w
κ−we

−wt/2 − 2w
κ−we

−κt/2 t > 0
(5.7)

Eq. 5.7 yields that the signal is emitted on the quadrature 〈X̂out〉 at resonance. Assuming that
the detection is achieved by a linear amplifier of power G and noise temperature TN followed
by homodyne detection yielding the quadratures I(t) and Q(t), one can set the phase of the local
oscillator so that the output field quadrature X̂out corresponds to the I quadrature for instance. As
seen in ch. 2, the echo is emitted on a mode characterized by an envelope function u(t), normalized
such as

∫
u(t)2dt = 1. To maximize the signal we choose u(t) ∝ 〈X̂out(t)〉 and using Eq. 5.7, we

obtain:

〈X̂out〉2 =

∫
〈X̂out(t)〉2dt =

2κ2g
2p2N2(κ+ 2w)

(κ+ w)2wκ
(5.8)

As seen in ch. 2, the noise n arises from both the electromagnetic fluctuations at thermal equilibrium
given by Boltzmann statistics neq = 1

4 coth(~ω/2kBT ), and the noise added by the amplifier namp =
1
2kBTN/~ω. In addition, the spins may also contribute to n due to their incoherent spontaneous
emission [153] into the detection waveguide. Their exact contribution nSE depends on the spins
state but an estimate is provided by nSE ≈ ΓpN/4. Overall one can write:

n = neq + namp + nSE. (5.9)

Finally, the signal-to-noise for the detection of a single-echo is characterized by:

SNR =
〈X̂out〉√

n
=

2gpn

κ+ w

√
1

w

√
κ2(κ+ 2w)

w κ
(5.10)

The sensitivity of the experiment can be defined as the number of spins detectable in a single-echo
with a signal-to-noise ratio of 1 and is thus given by:

Nmin =
SNR=1

√
n

gp

√
(κ+ w)2wκ

4κ2(κ+ 2w)

κ�w,κ≈κ2−−−−−−−→
√
n

2gp

√
κ

TE
(5.11)

where we have simplified the expression by assuming conventional ESR limit with κ� w and that
the echo duration was set by the inhomogeneity of the line TE ≈ 1/w as well as set κ2 ≈ κ.

Proposal for nanoscale sensitivity

For a conventional room-temperature spectrometer, where the resonators often have a three-
dimensional geometry, Eq. 5.11 yields Nmin = 1013 (see Table 5.1). This number results from
the weak spin-photon coupling achieved in the usual three-dimensional ESR resonators as well as
the low spin-polarization and large microwave noise inherent to room-temperature operation.

This figure of merit can be significantly improved by using micro-fabricated resonators [142, 143,
37, 15], as shown in Fig. 5.3, because the two-dimensional confinement of the microwave field at
the spin location increases g by several orders of magnitude. Operation at lower temperatures
also enhances considerably the sensitivity by increasing the spin polarization and allowing for the
use of better amplifiers. Sigillito et al. reported Nmin = 107 with a spectrometer built around a
thin-film superconducting resonator at 4 K and a HEMT amplifier ([15], see Table 5.1). The latter is
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a b

FIGURE 5.3: Examples of micro-resonators (a: extracted from [142], b: extracted from [37])

a commercially available low-noise amplifier operating at 4 K with reported noise temperatures
down to TN = 1 K[154].

To improve the sensitivity beyond this figure, our approach is to push these ideas even further.
We will work at temperatures T � ~ω/kB , so that neq = 1/4, arising solely from the vacuum
fluctuations of the field. In addition, we will use a JPA amplifier, for which namp = 1/4 in the case of
phase-preserving amplification and namp = 0 in the case of phase-sensitive amplification. Working
at X-band (7 GHz) and 20 mK, this results into a 2-orders of magnitude improvement on n compared
to the state-of-the-art.

Operating with higher quality factors also increases the sensitivity since Nmin ∝
√
κ. Thin-film

superconducting resonators can reach quality factors up to 105 − 106, and if they are made out of
Nb or NbTiN can withstand magnetic fields up to ≈ 1T (Nb, NbN [155, 156], NbTiN [157]). In our
experiment, we will use aluminum which can withstand only small magnetic fields up to ≈ 10 mT,
with Q ≈ 105. Combined with a micro-resonator geometry allowing low-power and fast spin
manipulation [15], this results in two orders of magnitude improvement on the sensitivity.

With these parameters, Eq. 5.11 predicts that a sensitivity Nmin = 4 × 102 should be reached.
While far from the sensitivities reached by the alternative methods discussed in 5.1.1, this would
nevertheless represent an interesting development for inductively-detected ESR spectroscopy, going
in the direction of "ESR at the nanoscale" while preserving its versatility and high-bandwidth.
Possible applications include ESR spectroscopy of single cells, nanoparticles and nanodevices.

T (K) p TN (K) nI g/2π (Hz) Q = ω0/κ Nmin

Conventional
spectrometer 300 7× 10−4 300 103 5× 10−3 2× 103 1013

Micro-resonator at
4 K [15]

4 8× 10−2 4 10 20 5× 103 107

This work 0.02 1 0.35 1/4 50 1× 105 4× 102

TABLE 5.1: Expected ESR sensitivities for a conventional spectrometer, a micro-resonator operated at
4 K and the work reported here using Eq. 5.11. The frequency is assumed to be ω0/2π = 7 GHz and
TE = 10µs.
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5.2 Experimental setup

We describe in the following the experimental implementation of an ESR spectrometer with a
quantum-limited sensitivity.

5.2.1 Low-temperature operation

The experiment is performed at 10 mK in a cryogen free dilution refrigerator fabricated by the
company Cryoconcept. This refrigerator has five stages at different temperatures (70 K, 4 K, 1 K,
100 mK and 12 mK) separated by radiation shields. Both the ESR resonator and the JPA are anchored
to the mixing chamber and thermalized at a temperature of 12 mK. The ESR resonator design
and implementation are described in the following section. As seen in Fig. 5.4, the resonator is
connected via its port 2 to the JPA described in ch. 2. A micrograph view of the JPA resonator with
its geometrical inductance and capacitance and its SQUIDs array patterned on top of a silicon chip is
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shown in Fig. 5.4a. The JPA chip is glued and bonded to a printed circuit board (PCB) inserted in an
aluminum box to protect the SQUIDs from stray magnetic fields and ensure the stability of the JPA,
(see Fig. 5.4a). Additional protection is provided by a two-layer mu-metal shielding (Cryoperm),
the first one having the same shape as the aluminum box, and the second one being a 15-cm long
cylinder at the bottom of which the JPA is placed.

The ESR measurements are performed via the microwave setup shown in Fig. 5.4b, with transmission
lines linking the room-temperature measurement apparatus to the resonator and the JPA. To prevent
heat transfer from higher to lower temperature stages, the transmission lines are made of CuNi
(or S-CN) coaxial cables from room-temperature to 4 K and of NbTi superconducting cables from
4 K to 12 mK. An experimental challenge, which is encountered in all cQED experiments, is to
prevent thermal or technical noise at microwave frequencies to reach the sample at 20 mK so that
the microwave field at 20 mK is truly in its ground state, while still being able to measure the signal
transmission.

For input lines (green and brown lines), the solution is to cool the microwave field along the
transmission line by inserting attenuators at low temperatures. Consider a cable with a 50 Ω
input impedance at room-temperature, yielding a number of propagating noise photons nth(T ) =
kBT/~ω = 900; inserting an attenuator A thermalized at a temperature T0 brings down the number
of propagating noise photons to nth/A while adding nth(T0) = coth(~ω/2kBT ) thermal photons.
Thus for the input lines shown in Fig. 5.4 attenuated by 20 dB at 4 K and by 20 dB at 20 mK, the
number of propagating noise photons incoming onto the resonator is nth = 0.2. In addition, the
asymmetry of the coupling antennas κ1 � κ2 ensures an additional attenuation (≈ 6 dB) leading to
nth = 0.05. This figure could be improved by adding an extra 10 dB at 20 mK.

For the output lines (red lines) however the signal cannot be attenuated without degrading the
signal-to-noise ratio of the measurement. To nevertheless protect the sample from thermal photons
and noise photons emitted by the amplifiers, microwave circulators are placed at 20 mK. Used as
shown in Fig. 5.4, they make it possible to let all the output signal propagate towards the amplifier
at 4 K, whereas the noise coming from the opposite direction is channeled to a cold 50 Ω load that
absorbs the noise. Commercial circulators have only 18 dB isolation, we thus use two circulators in
series (green and orange in Fig. 5.4) to isolate the JPA from the HEMT noise. As the noise temperature
of our HEMT is TH = 4.5 K, the number of propagating noise photons incoming onto the JPA is
estimated to nth = 0.01.

In order to characterize the JPA response without having to pass through the ESR resonator, an
additional input microwave line (brown in Fig. 5.4) is coupled via a 20-dB directional coupler to the
JPA input. The circulator shown in green in Fig. 5.4 is responsible for routing the signal outcoming
from the ESR resonator to the JPA and from the JPA to the output line (red) in addition to providing
thermal isolation. A double circulator (purple in Fig. 5.4) is inserted between the JPA and the
ESR resonator to protect the ESR resonator from the JPA amplified noise and prevent interferences
between the two devices.

The DC and AC bias lines needed to tune the JPA frequency and deliver the pump tone are shown
in purple. The DC bias is provided by a stable voltage source (Yokogawa 7651) and is filtered at
room-temperature and 4 K, where in addition a voltage divider (÷10) is placed. The AC pump tone
at ωp ≈ 2ωp (≈ 14 GHz in our experiment) is sent via a dedicated line attenuated by 20 dB at 4 K
and 20 mK, like the input signal line. Pump tone leakage to the ESR resonator is suppressed by a 4-8
GHz bandpass filter.

Low-noise signal amplification is done in several steps, and relies on the fact that the dominant
contribution comes essentially from the first amplifier of the chain, regardless of the noise of follow-
up amplifiers. Indeed two amplifiers of gain G1 and G2 with noise temperature TN,1 and TN,2 are
equivalent to an amplifier of gain G1G2 with noise temperature T1 + T2/G1. In our case, the JPA
provides ≈ 25 dB gain; it is followed at 4 K by a HEMT amplifier (LNF amplifier) that provides
GH = 42 dB with a noise temperature of TN,H = 4.5 K and finally at room-temperature by two
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microwave amplifiers providing in series a total gain GRT = 72 dB with a noise temperature
TRT = 1000 K, the overall noise temperature of the chain is:

TN = TN,JPA +
TN,H
GJPA

+
TRT

GJPAGH
(5.12)

In total, we see that the JPA contribution to the total noise figure of the amplification chain is close to
95%.

5.2.2 Room-temperature setup

The room-temperature microwave setup is depicted in Fig. 5.5. The ESR resonator and the JPA
can be characterized either by a commercial Vector Network Analyzer (VNA), or direct homodyne
demodulation followed by digitization with a rapid acquisition card. Microwave switches allow to
use either the VNA or homodyne setup on-demand.

For homodyne detection, a microwave source provides both a coherent signal sent towards the ESR
resonator or to the JPA as well as a continuous tone which serves as the local oscillator of an IQ
mixer to demodulate the output signal. The resulting I and Q quadratures are then amplified and
filtered in several stages before being recorded by a fast digitizer (Acqiris DC282) and transferred
to a computer for processing. The phase of the homodyne detection is set manually via a tunable
phase-shifter.

The microwave sources generating the JPA pump tone as well as the signal tone are synchronized via
a 1-GHz-synchronization loop in addition to the 10-MHz-synchronization loop running through ev-
ery instrument to improve phase stability even further, which is essential in particular for operating
the JPA in the degenerate mode.

5.2.3 JPA characterization

Phase-preserving and phase-sensitive gain.

We first study the dependence of the JPA resonator frequency on the DC magnetic flux Φ that threads
the SQUIDs loops. At Φ = 0, the JPA reflexion coefficient has a constant amplitude with a 2π-phase
shift (see Fig. 5.6a&b), yielding ωJPA/2π = 8.02 GHz and Q = 200 (using Eq. 2.57). Passing current
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FIGURE 5.6: Characterization of the flux-pumped JPA. a Linear response of the JPA as a function of
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without JPA pump (black diamonds). c Phase-preserving gain in optimized settings. d Phase-sensitive
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oscillations are due to the lab air conditioner system. f Finite dynamic range of the JPA.

in the JPA flux line changes Φ and thus ωJPA, as seen in Fig. 5.6a, which allows tuning the JPA to
the desired frequency ω0.

We set ω0/2π ≈ 7.3 GHz. Turning on the JPA pump at ωp ≈ 2ω0 with power Pp, the previously
flat reflexion coefficient now shows some amplification (see Fig. 5.6b). Taking the ratio of the
transmissions with the pump on and off yields a Lorentzian gain curve, with a measured gain of 17
dB for these operating conditions. Fine tuning of the parameters (ωp, Pp,Φ) allows to increase the
device gain up to 26 dB within a bandwidth of 1.7 MHz (see Fig. 5.6c).

Phase-sensitive amplification is measured by sending a continuous wave signal at ω0 and setting
ωp = 2ω0. Using the spectrum analyser, we record the output signal power with the JPA on and
off, with the gain given as G = Pout/Pout(JPAoff). Fig. 5.6d shows the dependence of G on the
phase difference between the pump and signal tone, behaving as expected from Eq. 2.78 with
deamplification for one quadrature and amplification by an extra 6 dB compared to the phase-
preserving amplification for the other quadrature.

The phase-stability of the setup and of the JPA is probed by monitoring overnight the gain in
degenerate mode. The pump phase is chosen so that the phase-preserving gain lies around G ≈ 0,
so that the gain is maximally sensitive to phase changes (see green arrow in Fig. 5.6d). Fig. 5.6e
shows overall phase drifts of 8◦, clearly due to temperature variations of the room-temperature
cables and setup since 15 min oscillations synchronous to the air conditioner system can be seen.
In the experiments, the gain is set to its maximal value, so that G is only quadratically sensitive to
phase shifts; 8◦drifts are then acceptable for our measurements.
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Dynamic range

To measure the JPA dynamic range, we measure the gain as a function of the power of the incident
signal in phase-preserving mode using the homodyne detection setup. Fig. 5.6f shows that the
JPA provides a constant gain only for low input powers, with the 1 dB compression point lying at
-132 dBm. Note that higher compression points have been obtained with different JPA designs and
parameter choices [60, 52, 158]

Signal-to-noise ratio improvement

To characterize the signal-to-noise improvement brought by the JPA over the follow-up amplifiers, we
perform measurements of the total output noise power in various configurations using a spectrum
analyzer. With both JPA and HEMT switched off, we measure -52 dBm. Switching the HEMT on
yields -43 dBm, indicating that the output noise is dominated by the HEMT noise and not by the
room-temperature amplifiers. Then, switching the JPA on still yields a 13 dB increase in the noise,
which confirms that the total output noise contribution is at 95% from the JPA, in agreement with
our expectations based on Eq. 5.12.

A more precise characterization of the SNR enhancement is done in the following way. A continuous
microwave signal at frequency ω0 is sent to the JPA. Fig. 5.7a shows the corresponding output power
spectrum (red curve) with both signal and idler mode visible. The JPA gain is given once again as
G = Pout/Pout(JPAoff) and is measured separately with a measurement bandwidth taken as small as
possible to remove any contribution of the noise (in contrast to the data shown in Fig. 5.7a). The
same experiment is then repeated without any input signal so as to obtain Pn, the noise power in
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the desired measurement bandwidth, chosen here to be 100 kHz. The amplitude signal-to-noise
ratio is then evaluated by SNR =

√
Pout/Pn and is shown in Fig. 5.7c.

The SNR can be related to the JPA gain in the following way. Consider the noise referred at the output
of the JPA: when the JPA is off, the noise arises from the HEMT, the room-temperature amplifiers (see
Eq. 5.12) and from the signal noise. We denote this contribution as nbg. For a gain G, the JPA adds
noise (G− 1)n where n = neq + namp. As the signal is amplified by

√
G, the SNR expressed at the

output of the JPA dependent on G according to:

SNR ∝
√

G

(G− 1)n + nbg
(5.13)

Fig. 5.7c shows that the measured SNR follow this expected dependence. The fit does not allow us
to determine independently n and nbg; however we obtain their ratio, nbg/n = 36, as observed in
similar setups [159].

Absolute calibration of the mean photon number in the ESR resonator was performed in a later run
(see Appendix A) and yields nth = 0.05± 0.05, which confirms that the dominant contribution of
noise in the setup is of quantum origin.

5.3 Design of a superconducting ESR resonator with high quality
factor and small mode volume

In the following, we describe the design of the high quality factor small-mode volume resonator
needed to obtain a high sensitivity before describing its experimental implementation and charac-
terization.

5.3.1 Design choices

Small mode volume

As explained in ch. 3, the spin-resonator coupling is given by:

g = γe|〈e|δB(r).Ŝ|g〉|, (5.14)

where |e〉 and |g〉 are the energy levels spanning the ESR transition to be probed and δB is generated
by the current fluctuations δI in the resonator inductance. We have δI = ω0

√
~/(2Z0), Z0 being the

resonator impedance. Maximizing g thus requires minimizing Z0 and bringing the spins as close as
possible to the inductance.

We thus choose to implant bismuth atoms very close to the surface (more precisely between 20
and 150 nm). One could also adopt a flip-chip configuration, where the sample containing the
spins is stacked on top of the microwave resonator patterned on a different chip, but generally an
incompressible gap of several hundreds of nanometers subsists at the interface.

To minimize the resonator impedance, a lumped-element geometry is particularly suited since it
can combine small inductors patterned in parallel with large interdigitated capacitors (see Fig. 5.8e);
simulations indicate that impedances as low as 15 Ω can be reached. Even larger capacitances could
be obtained by using conventional overlap capacitors, but they are in general more lossy than
interdigitated capacitances [160].
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High-quality factor

In our quest for a high-quality factor resonator, it is indeed important to minimize the resonator
internal losses, of associated damping rate κint. The value reached for κint is also key to determine
the choice of the coupling rates κ2 and κ1 since it is best to operate in the critical coupling regime.
Indeed, using Eq. 5.11, the setup sensitivity Nmin can be shown to be maximum when κ2 = κint

(assuming κ1 � κ2).

Owing to intensive research in the superconducting qubits community, the origin of the internal
losses of lumped-element interdigitated resonators are relatively well known. Resonators with
internal quality factors in the 106 range have been obtained [161]. Four different physical phenomena
leading to resonator internal losses have been identified : the motion of magnetic vortices trapped
in the superconducting thin films [162], the presence of out-of-equilibrium quasi-particles (i.e.,
non-superconducting charge carriers) [163], dielectric losses in general [164], originating mostly
from dirty interfaces and in particular from the substrate-metal interface which contributes the
strongest [165], and finally radiation from the resonator [166]. The latter can be suppressed by
enclosing the sample in a leak-tight metallic box, as shown in Fig. 5.8a [167]. The box is designed
so that all its modes have frequencies well above the planar LC resonator frequency. The best
quality factors are obtained with superconducting boxes since losses through the box walls surface
resistivity are then minimized [168]. However in the context of ESR measurements which necessitate
to apply magnetic fields, we chose to have the box made of oxygen-free-high-conductivity copper.

The coupling of the planar resonator to the measurement lines is obtained via capacitive coupling
to antennas fed through holes drilled in the box (see Fig. 5.8a). The resulting coupling rates κ1 and
κ2 are the sum of two contributions. The first one is a direct capacitive coupling of the resonator
electrical dipole to the antenna while the second one is an evanescent coupling mediated via the
first TE101 mode of the copper box (see Fig. 5.8c & d). As a result, the rates κ1 and κ2 are set by the
position of each antenna relatively to the resonator as well as their coupling to the box mode.

To control κ1 and κ2, the frequency and the quality factor of the copper box TE101 mode thus has to
be carefully designed. The box mode quality factor should be kept low so as to be well below its
internal quality factor. The internal quality factor of an OFHC copper box was found to be ≈ 6000;
we thus limit ourselves to Qbox ≤ 1000. The larger the detuning between the LC resonator and the
box TE101 mode, the weaker the coupling mediated by the box mode is. To obtain quality factors on
the order of 105 for the LC with ωLC/2π ∼ 7.4 GHz, we choose the dimensions of the box so that its
lowest-frequency mode mode is at ωTE101/2π = 8.9 GHz.

To be able to adjust the coupling rates κ1 and κ2 to κint at each run, we soldered the antennas on
SMA throughs which are then screwed in the cavity wall (see Fig. 5.8a). Depending on the insertion
of the SMA through in the wall, the antenna’s depth can be tuned over several millimeters, allowing
to tune κ1 and κ2 by ≈ ×50.

Finally, the resonator is made in a 50-nm-thick aluminum film. We chose this metal because it is well-
established that aluminum resonators can have quality factors reaching at least 106[161, 169, 170]
and contrary to niobium films in particular, aluminum can be processed by lift-off techniques and
removed by wet etchants which are harmless for the underlying silicon substrate. This is particularly
important in our case given that the dopant atoms are very close to the surface.

Since Si:Bi spins have a large zero-field splitting, several of the ESR transitions can still be tuned at
resonance with a static magnetic field below the 10 mT critical field of bulk aluminum provided that
the resonator frequency lies within 200 MHz of ωZFS. In the future, to study the clock-transitions
of bismuth located at larger magnetic field (see ch. 4) or other spin systems, materials sustaining
higher fields while maintaining high-quality factors could be used.
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Resonator A Resonator B Resonator C Copper box
lr 730 µm 720 µm 710 µm
ω0/2π 7.1915 GHz 7.2753 GHz 7.3332 GHz 8.52 GHz
κ1/2π 0.77 kHz 0.7 kHz 2.6 kHz 0.96 MHz
κ2/2π 16 kHz 5.8 kHz 24 kHz 8.1 MHz

TABLE 5.2: Simulated resonators characteristics.

5.3.2 Electromagnetic simulations

1.4 mm

1 
m

ml r

50 µm

5 µm

FIGURE 5.9: Resonator layout

The resonator geometry and coupling to the measurement lines
are designed using electromagnetic simulations realized with CST
microwave studio. A modeling tool allows to reproduce the geom-
etry of the copper sample holder (assuming perfect conductivity
for the walls), the antennas, the substrate silicon chip (with relative
dielectric constant εr = 11.5) as well as the superconducting res-
onator (modeled by a perfect electrical conductor of zero-thickness),
as shown in Fig. 5.8b. As the resonator is made of 50-nm-thick
aluminum and has lateral dimensions > 1 µm, kinetic inductance
contribution is negligible [171] and is not included in the simulation.
The sample holder and the resonator eigenmode frequencies can be
determined in the software by exciting ports placed on the antennas and analyzing the frequency
response, given as a S-parameters matrix.

The final geometry of the LC resonator is a 5-µm-wide inductive wire of length lr in parallel with
an interdigitated capacitance of 12 50-µm-wide fingers spaced by 50 µm (see Fig. 5.9). The width
and spacing of the fingers is chosen to minimize the dielectric losses [172]. The whole structure
fits in a rectangle of 1 mm by 1.4 mm. The bismuth implanted silicon sample at our disposal is
1-cm-long and 3-mm-wide, we can thus multiplex our measurements by placing 3 resonators of
slightly different frequencies, obtained by choosing three different values of lr: 710, 720 and 730 µm.
The resonators are separated by 1 mm and visualizing the simulated microwave electrical field (see
Fig. 5.8e) shows that there is very little cross-talk between them.

The simulated S-parameters are shown in Fig. 5.8f. Four resonances are visible, with the highest-
frequency one being the box TE101 mode (see Fig. 5.8c & d) and the lowest three the planar
resonators (see Fig. 5.8e). Fitting the simulated S-parameters for each resonator to the input-output
formulas (see Eq. 2.56), their frequency and coupling rates κ1and κ2 are extracted and given in
Table 5.2 , with all resonators reaching quality factors above 105.

5.3.3 Coupling to bismuth donor spins

To estimate the coupling constant of the resonator to spins, it is necessary to know the magnitude of
the magnetic field vacuum fluctuations. We proceed in three steps, explained below in details. First
we determine the resonator current fluctuations δI from CST simulations; then, we compute the
geometrical distribution of this current across the resonator inductance; finally, using the COMSOL
magnetic field solver, we compute the magnetic field. For this last step a magnetostatic solver is
sufficient since the length scales that come into play are very much smaller than the wavelength.

To estimate δI , we use CST to determine the magnitude of the AC current Isim cos(ω0t) that flows
through the resonator inductance for the simulated power Pin = 0.5 W. We find that Isim = 60 A.
Based on our knowledge of all the resonator κi (obtained from CST as explained above), we can
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derive the mean photon number corresponding to Pin using Eq. 2.55. This allows us to extract δI as:

δI = Isim/2
√
n̄ = 49 nA (5.15)

corresponding to a resonator impedance Z0 = 44 Ω.

The current distribution over the cross-section of a superconducting wire (see Fig. 5.10b) is given by
the following formulas [173]:

δJ(y) =





δJ(0) [1− (2y/wr)
2]−1/2 for |y| 6 |wr/2− λ2/(2b)|

δJ(wr/2) exp[−(wr/2− |y|)b/λ2] for |wr/2− λ2/(2b)| < |y| < wr/2
(1.165/λ)

√
wrb δJ(0) for y = wr/2

(5.16)

In these expressions y is the wire transversal coordinate indicated in Fig. 5.10a, wr = 5 µm is the
wire width, b = 50 nm is its thickness and λ = 90 nm is the penetration depth of the aluminum
film [174]. The normalization constant δJ(0) is determined by the condition

∫ wr/2
−wr/2 δJ(x)dx = δI .

We finally use δJ(y) to compute δB0(r), using the COMSOL magnetostatic solver. The result is
shown in Fig. 5.10c. The field δB(r) is located in the plane perpendicular to the resonator wire axis
(δBx(r) = 0), and importantly Fig. 5.10d shows that it is essentially along y for spins under the wire,
and essentially along z for spins outside the wire.

In our experiment, the static magnetic fieldB0 is applied parallel to the surface (see Fig. 5.10a) along
an axis eZ that can be decomposed along the orientations defined in Fig. 5.10a as:

B0 = B0eZ = B0 cos(θ)ex +B0 sin(θ)ey (5.17)

The field δB(r) can be decomposed in either basis:

δB(r) =




0
δBy
δBz




(ex,ey,ez)

=




δBz
− cos(θ)δBy
sin(θ)δBy




(eX ,eY ,eZ)

(5.18)

For Eq. 5.14 applied to bismuth donors, the coupling constant for a spin located at r = (x, y, z) is
thus:

g = γe

∣∣∣∣∣∣




δBz
− cos(θ)δBy
sin(θ)δBy


 .



〈i|ŜX |j〉
〈i|ŜY |j〉
〈i|ŜZ |j〉



∣∣∣∣∣∣

(5.19)

where |i〉 and |j〉 are two of the twenty energy levels of bismuth donors. A bismuth donor in silicon
possesses both Ŝx transitions probed by an AC magnetic field transverse toB0 and Ŝz transitions
probed by an AC magnetic field parallel toB0 (see ch. 4). Eq. 5.19 can be simplified in both cases:

• For Sx transitions, as |〈i|ŜX |j〉| = |〈i|ŜY |j〉| and |〈i|ŜZ |j〉| = 0, we have:

g =
SX

γe|〈i|ŜX |j〉|
√
δB2

z + (cos θ)2δB2
y (5.20)

• For Sz transitions, as |〈i|ŜX |j〉| = |〈i|ŜY |j〉| = 0, we have:

g =
SZ

γe|〈i|ŜZ |j〉| sin θ δ|By| (5.21)

A spin located outside the wire (|y| > wr/2) is probed by a microwave field essentially along z
(δBy ≈ 0) and thus its coupling to the resonator is only possible for a SX transition. In addition, the
coupling does not depend on θ sinceB0 is in any case orthogonal to δB.
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In contrast, a spin located below the wire (|y| 6 wr/2) is probed by a microwave field essentially
along y (δBz ≈ 0). As a result, the coupling to a SX transition is maximum when θ = 0 and fully
suppressed when θ = π/2, whereas the coupling to a SZ transition is suppressed when θ = 0 but
maximum for θ = π/2.

The coupling distribution for both transition types is computed using the bismuth implantation
profile and the δB(r) map and shown in Fig. 5.10e for a matrix element taken arbitrarily at 0.5 for
easy comparison. We show in red the contribution from spins located under the wire (|y| < wr/2)
and in blue the contribution from spins located outside the wire.

5.3.4 Experimental implementation

Fabrication

To obtain a high internal quality factor resonator, dielectric losses should be minimized. Lossy
dielectrics are found most notably at the metal-substrate interface; our fabrication process thus tries
to keep it as clean as possible. In particular it has been demonstrated that oxygen plasma cleaning
before metal deposition is essential to reduce the losses [175]:

• Substrate cleaning: 2 hours in a Piranha acid mixture at 80◦C, followed by 5’ in acetone before
rinsing with isopropanol and blowing dry.

• Resist coating: bi-layer MAA(200 nm) - PMMA(100 nm) with a 7-nm-thick aluminum layer
deposited by metal evaporation for charge evacuation during the E-beam lithography.

• E-beam lithography: the entire pattern is drawn with a 25keV electron beam in 15’.

• Resist development: 30” in MF-319 to remove the Al layer, before developing the resist with
a 40” dip in MIBK (dilution 2:1). Rinse in water and blow dry.

• Mask cleaning: 1’ in an oxygen plasma asher. The plasma parameters were chosen so that it
corresponds to the etching of 6-nm of the PMMA layer.

• Metal deposition: 50 nm of Al are deposited via a Plassys evaporator at a rate of 1 nm/s.

• Lift-off: 5’ in acetone before rinsing in isopropanol and blowing dry.

Other solutions to reduce the contribution of TLS is to deeply etch the substrate using the metallic
resonator as a mask [176]. Doing so removes the TLS lying underneath the edges of the metal where
the electrical field is the strongest and thus where the TLS contribute the most. However such a
solution would damage our substrate permanently.

Sample mounting and microwave setup

After fabrication, the chip is inserted in the copper box by gluing it to a sapphire plate with small
amounts of vacuum grease. The sapphire plate is then glued in the copper box sample groove, also
using vacuum grease (see Fig. 5.8a). The copper box is closed using an indium seal to ensure good
electrical contact between both parts and reduce losses. Finally, the copper box is mounted in a
couple of orthogonal Helmholtz coils that provide a 2D static magnetic fieldB0 (see Fig. 5.11) up to
10 mT each.

The final step to ensure a high-quality factor is to protect the superconducting thin films from
losses occurring through out-of equilibrium quasi-particles and vortices. Low-pass filters containing
infra-red absorptive material are put on each line to minimize the quasi-particles (see Fig. 5.4b).
The Helmholtz coils are inserted in a 1-mm-thick cryoperm magnetic shielding to minimize stray
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FIGURE 5.11: LC within its sample holder mounted inside a couple of Helmholtz coils

magnetic field which may introduce vortices in the film during cool down of the film through its
critical temperature.(see Fig. 5.11).

Microwave characterization

The characterization of the LC resonators is carried out in two steps. In the first step, we use two
extra microwave lines (see Fig. 5.4b) to measure all S-parameters and determine without ambiguity
κ1 and κ2. The fit of the measured S21, S11 and S22 to the input and output formulas given in
Eqs. 2.57 & 2.56 is shown in Fig. 5.12 for resonator B and the extracted values for κ1 and κ2 are
given in Table 5.3. The values are found to be approximately a factor 2 higher than estimated by the
CST simulations (see Table 5.2), meaning that the antennas are inserted a little deeper in the copper
box than in the simulation. Similar results are obtained for resonators A and C.

In what follows, we use the simplified setup shown in black in Fig. 5.4b, without the extra microwave
lines used for measuring the complete resonator S-parameters. Using only the transmission from
port 1 to port 2, we then can only determine the resonator frequency ω0 and total damping rate κ;
using the previously determined values of κ1 and κ2 yields κint. The measured values for ω0, κ and
κint determined in this setup and used in the following chapters are given in Table 5.3 for the three
resonators. All resonators are in the critical coupling regime, with Qint ≈ 2Q ≈ 5× 105.

Contrary to most usual ESR spectrometers, our ESR resonator has in addition a response in magnetic
field. When ramping the parallel static magnetic field applied on the resonator by one of the
Helmholtz coils (see Fig. 5.13), the resonator quality factor remains flat whereas the frequency of
the resonator decreases quadratically by nearly 1 MHz due to the increase of the thin-film kinetic
inductance, with in addition sudden jumps that we attribute to magnetic vortices entering the film.
We measured the critical field of the Al resonators to be ≈ 14 mT for a parallel magnetic field. The
dependence of the resonator in B0 thus requires us to systematically fit the resonator transmission
at each B0 to determinate its frequency.
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Resonator A Resonator B Resonator C
ω0/2π 7.14 GHz 7.246 GHz 7.305 GHz
κ1/2π 2.1 kHz 2.1 kHz 5.7 kHz
κ2/2π 31 kHz 9.2 kHz 50 kHz
Q 1.4× 105 3.2× 105 1.1× 105

Qint 4.0× 105 6.4× 105 6.8× 105

TABLE 5.3: Measured ESR resonator characteristics with coupling values agreeing within a factor 2 to
the simulated values. The copper box mode cannot be measured since at 20 mK its frequency lies outside
the circulator range.
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Internal losses

We have investigated experimentally the mechanisms at the ori-
gin ofQint in our experiment. If the dielectric losses are dominant
due to TLS lying at the metal-substrate interface, the internal qual-
ity factor is expected to be significantly lower when measured for
powers corresponding to intra-resonator photon number n̄ ∼ 1
than at high-powers when the TLS are saturated. We indeed mea-
sure a factor 2 reduction of Qint at low powers (see Fig. 5.14a),
indicating that dielectric losses contribute for half of the total
internal losses.

Fig. 5.14b shows that Qint can be improved if a non-zero mag-
netic field is applied while the Al film is undergoing its metal
to superconductor transition. This indicates that there is a small
residual magnetic field orthogonal to the field which creates vor-
tices in the film; its compensation thus reduces the number of
vortices and improves Qint [162].

To conclude, future improvements of Qint will take place by
simultaneously reducing dielectric losses, improving the magnetic shielding and removing any
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magnetic material close by the cavity and increasing the infra-red filtering.
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FIGURE 5.14: Internal quality factor dependence on a the intra-resonator photon number, indicating
that dielectric losses contribute for half of the internal losses; b Parallel magnetic field applied during
the Al transition to superconductor using one of the Helmholtz coils. A possible misalignement of the
mechanical parts probably gives rise to a small orthogonal component of unknown amplitude responsible
for the compensation of the stray magnetic field. The blue line is a polynomial fit to ω0/Qint.
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Chapter 6

ESR spectroscopy of Bismuth donors
in silicon

In this chapter, we characterize the Si:Bi spins using our setup. The sample we are using was already
studied by Weis et al.[137] with a conventional ESR spectrometer at 25 K (see 4.6). We first detail the
experimental implementation of Hahn-echo pulse sequences in our setup, before presenting results
on Si:Bi. Last, we measure the Si:Bi relaxation times.

6.1 Hahn-echo detected ESR

In all that follows, the spin signal is obtained by spin echoes generated via Hahn-echo sequences
π/2− τ − π − τ . We briefly outline here the main experimental specificities of our home-made high
quality factor low-temperature spectrometer.

6.1.1 Experimental techniques

Pulse generation

The first requirement is to be able to send microwave drive pulses to the spins with a sufficient
on/off ratio. The microwave setup of Fig. 5.5 modified to generate microwave pulses is shown
in Fig. 6.1. The pulses are shaped by microwave switches with an on/off ratio of 80 dB, in series
with the microwave source internal switch, which only allows square-shaped pulses to be sent. The
relative phases of the pulses are set by the analog phase modulation of the microwave source. All
the control pulses are generated by an arbitrary waveform generator (AWG5014 from Tektronix).

Two pulses of different powers can be generated using two switches in parallel, each in series with
a variable attenuator. By proper calibration of the microwave lines in our setup, we can estimate
the power incident on the ESR resonator Pin with an accuracy of 1 dB. In this setup we can deliver
pulses of power Pin up to −50 dBm.

Echo acquisition

The transmitted pulses and the echo signals are demodulated at ω0 and their I and Q quadratures
are detected using the setup shown in Fig. 5.5. To suppress residual DC offsets and drifts on the I
and Q channel, every pulse sequence is repeated twice with opposite phases on the excitation pulse
R±θ. This phase cycling protocol yields two echo signals with opposite phases taken in the same
conditions. The DC offset is then removed by taking the difference between the two time-traces
acquired on each sequence. The acquisition by the digitizer is also triggered by the AWG.
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FIGURE 6.1: Pulsed ESR implementation. a Two independent microwave pulses can be generated via
two microwave switches in parallel, each being in series with a tunable attenuator to control the pulse
input power Pin referred to port 1 of the resonator. The pulses’ phases are set via phase modulation of
the microwave source. All signals are controlled via an AWG generator. b Control signals for a Hahn-echo
sequence. The JPA is switched on only during the echo emission.

We also switch the JPA on only during the echo emission by pulsing the pump signal via the
microwave source internal switch. This is done to minimize the cryostat heating due to the pump
signal. The JPA is set for most of the data shown in the following chapter in phase-preserving
mode with a gain G ≈ 20 dB. To ensure that the idler mode is properly filtered out, we take
ωp/2− ω0 = 500 kHz and we set the detection bandwidth to be 100 kHz.

6.1.2 Hahn-echo sequence

Before moving on to the ESR spectroscopy, we first examine a single Hahn-echo sequence acquired
with resonator B. The transition |9〉 ↔ |10〉 is tuned at resonance by applying a magnetic field
B0 ≈ 5 mT. A π/2 pulse of power Pin and duration tπ/2 = 2.5 µs followed τ = 300 µs later by a π
pulse of same power Pin but of duration tπ = 5 µs leads to the emission of an echo at time 2τ . The
calibration of the power Pin for the π/2 and π pulses is realized by performing Rabi oscillations, as
will be explained in the following.

Fig. 6.2 shows the recorded amplitude for such a sequence. The output amplitude shows the two
drive pulses, followed after a time 2τ by an echo emitted by the spins. The drive pulse shape, far
from being square as the input pulse, appears asymmetric with a long-time exponential decay, due
to filtering by the resonator. The echo shape, of duration TE ≈ 50 µs, is also not Gaussian, due to
the convolution of the spin response with the drive pulses and the resonator filtering. The I and Q
quadratures of the echo are shown in the inset of Fig. 6.2, evidencing that the echo lies on a single
quadrature. In the following, we quantify the echo signal using either its integrated amplitude Ae
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FIGURE 6.2: Hahn-echo sequence. Recorded amplitude, showing the π/2 and π pulses (green lines
indicates the microwave switch control pulses) with their long ESR resonator-induced decay. At time 2τ ,
an echo of duration TE is detected, with its quadratures I andQ and amplitude shown in inset. (The data
in the inset is different from the blue points by a factor 3 in the averaging.). Data taken with resonator B
at B0 = 5.13 mT, with JPA off to avoid its saturation by the control pulses.

or its integrated quadrature AQ defined as:

Ae =
1

TE

∫ TE

0

A(t)dt (6.1)

AQ =
1

TE

∫ TE

0

Ĩ(t)dt (6.2)

where Ĩ(t) is either the I(or Q) quadrature if the demodulation local oscillator phase was set so
that the echo is emitted solely on I (or Q). It may also be the result of a post-acquisition numerical
rotation: Ĩ(t) = I(t) cosϕ+Q(t) sinϕ, where ϕ is chosen so that all signal lies on Ĩ(t).

6.1.3 Rabi oscillations

To calibrate drive pulses, we measure Hahn-echo detected Rabi oscillations. For that, we apply
a Hahn-echo sequence in which the tipping angle θp of the refocusing pulse is varied, either by
sweeping tp or Pin (see Fig. 6.3a). This results in the appearance of oscillations in the echo integrated
signal, as shown in Fig. 6.3b-d.

Indeed, consider the same spin ensemble as in 5.1.2, divided in spin subsets whose frequency is
distributed according to a distribution ρ(∆). An ideal π/2 applied around the x-axis at time t = −2τ
creates a transversal magnetization state aligned on the y-axis (see Eq. 5.3). The evolution of each
spin subset (j) of detuning ∆j at times −2τ 6 t < −τ is:





〈Ŝ(j)
x (t)〉 = p sin(∆j(t+ 2τ))

〈Ŝ(j)
y (t)〉 = p cos(∆j(t+ 2τ))

〈Ŝ(j)
z (t)〉 = 0

(6.3)
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Applying a pulse of tipping angle θp around the y-axis at time t = −τ leads to the following
evolution at times t > −τ for each spin subset:





〈Ŝ(j)
x (t)〉 = p sin(∆j(t+ 2τ)) cos θp

〈Ŝ(j)
y (t)〉 = p cos(∆j(t+ 2τ))

〈Ŝ(j)
z (t)〉 = p sin(∆j(t+ 2τ)) sin θp

(6.4)

Assuming that the tipping angle is identical for all spin subsets, one can show that the transverse
magnetization at time t = 0 is:

{
〈Ŝx(0)〉 = p

2 (1 + cos θp)
∑
j sin(2∆jτ)

〈Ŝy(0)〉 = p
2 (1− cos θp) + p

2 (1 + cos θp)
∑
j cos(2∆jτ)

(6.5)

If 2τ � T ∗2 , the sums
∑
j sin(2∆jτ) and

∑
j cos(2∆jτ) average to zero and as a result the spin echo

signal is proportional only to:
Ae ∝

p

2
(1− cos θp) (6.6)

which describes the oscillations pattern that can be seen directly in the integrated echo signal (see
Fig. 6.3a), allowing to determine the set of parameters Pin and tp corresponding to a π pulse.

Link between θp and g

The precise relation between the tipping angle θp, the incident power Pin and the spin-resonator
coupling constant g can be worked out by considering the action of the intra-resonator field on the
spins. For a coherent square pulse of duration tp applied at time t = 0 at resonance on port 1 of the
ESR resonator, the intra-resonator field evolution is given using Eq. 2.52 by:

〈â(t)〉 =





0 for t < 0√
n̄(1− e−κt/2) for 0 6 t < tp√
n̄(1− e−κtp/2)e−κ(t−tp)/2 for t > tp

(6.7)
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(see Fig. 6.2 & 6.4), where n̄ is the steady-state intra-resonator photon number linked to Pin by
n̄ = 4κ1Pin/(~ω0κ

2) (see Eq. 2.53). The integrated field amplitude is:

∫

t

〈â(t)〉dt =
√
n̄tp (6.8)

The resulting action of the excitation microwave field B̂1 = δB(â+ â†) on the spins is given using
Eqs. 3.41-3.44. In the semi-classical limit, for spins at resonance the rotation induced by a coherent
drive is given by ω1(t) = 2g〈â(t)〉. As a result, the spins undergo a Rabi oscillation of angle:

θp =

∫

t

ω1(t) = 2g
√
n̄tp. (6.9)

Fig. 6.3a shows very well-defined oscillations taken with resonator B , which show that θp = π
is obtained for tp = 5 µs with Pin = 1.9 ± 0.2 pW. Using the relation between Pin and n̄ and the
measured damping rates values given in Table 5.3, we can estimate g/2π = 50 Hz± 7 Hz, a value in
good agreement with the estimate given in 5.3.3. The precision on g is set by the 1 dB accuracy on
Pin.

In addition, the fact that well-defined oscillations are observed is a first clear indication that the
spins are coupled with a narrow g distribution to the resonator. Otherwise, each spin subset of
coupling gj would experience a different tipping angle θp,j . The measured Rabi oscillations would
then be a sum of oscillations largely spread in frequency and would thus lead to their averaging for
large tipping angles.

Ae ∝
p

2

∑

j

(1− cos θ(j)
p )→ p

2
(6.10)

Bandwidth issues

So far we have considered only spins at resonance. However, we will see below that in our
experiment the ESR linewidth is considerably broader than the resonator linewidth. As a result,
the pulse, whose bandwidth is eventually limited by the resonator, excites only a fraction of the
spins. Indeed, the power response functionR(ω) of a pulse of length tp incident on a resonator with
bandwidth κ at resonance is expressed as:

R(ω) =

[
2

sin(tp(ω − ω0)/2)

tp(ω − ω0)

]2

×Rcav(ω) =

[
2

sin(tp(ω − ω0)/2)

tp(ω − ω0)

]2

× 1

1 + 4
(
ω−ω0

κ

)2 (6.11)

For pulses of length tp � 2/κ, the excitation linewidth is set by the pulse length ∆ω/2π ≈ 1.2/tp,
whereas when tp � 2/κ the linewidth is set by κ (see Fig. 6.4a & b). On the latter case, the spins
excitation profile would have the same bandwidth were they a linear system. For large tipping angles

such an approximation is impossible, since the Rabi frequency varies in ΩR =
√

(ω − ω0)2 + Ω2
R,0

that makes an angle θ in the x-z plane, with tan θ = (ω − ω0)/ΩR,0 (see ch. 3). Therefore, the
larger is ΩR,0, the weaker is the tipping angle inaccuracy for spins whose frequency lies within the
resonator bandwidth. The exact excitation profiles can be computed using the Bloch equations and
are shown in Fig. 6.4c for a π tipping angle and considering different ratios of tpκ. Their bandwidths
appear similar to the corresponding pulse bandwidth and scale with the Rabi frequency ΩR,0, or
equivalently with the power P 1/2

in .

96



Chapter 6. ESR spectroscopy of Bismuth donors in silicon

ω/κ

tpκ = 25
tpκ = 5
tpκ = 1

tp
t

〈a〉
1

a b c

ω/κ

tpκ = 0.2

−2 0 2

1ℛ(𝜔 )

−2 0 2

Spin excitation 
profile 1

FIGURE 6.4: Pulse bandwidths. a Normalized temporal and b spectral response for a square pulse of
duration tp incident on a resonator of bandwidth κ. c Spin excitation profile for a π pulse applied with
different values of the ratio tpκ.

In principle, the refocusing pulse bandwidth of the Hahn-echo sequence should exceed the excitation
pulse bandwidth for the refocusing to be efficient. Otherwise, the spins whose frequency lies within
the excitation pulse bandwidth and therefore contribute to the echo signal are refocused by different
tipping angles leading to an averaging in the measured echo signal. This is illustrated in Fig. 6.3b-c,
where Rabi oscillations are performed by sweeping either the pulse power Pin or the refocusing
pulse length tp. The Rabi oscillations performed by sweeping tp appear less robust than those
performed by sweeping Pin with less oscillations being visible, due to their weaker Rabi frequency.
In the following we mainly use short pulses sequences with tpκ ∼ 1 such as shown in Fig. 6.2.

6.2 Strain-broadened transitions

Several ESR transitions can be tuned at resonance with the three resonators patterned on the Si:Bi
chip with a magnetic field B0 below the aluminum bulk critical field. The corresponding B0 and
matrix elements for all three resonators are given in Table. 6.1. We recall that, as explained earlier,
an interesting feature of bismuth donor spins is that they possess both Sx transitions that can be
probed with aB1 field perpendicular toB0 and Sz transitions that are probed via aB1 field parallel
toB0. In the following, we present spectroscopic measurements of these transitions.

Resonator C Resonator B Resonator A
Transitions Type B0 (mT) Mat. El. B0 (mT) Mat. El. B0 (mT) Mat. El.
|9〉 ↔ |10〉 Sx 2.84 0.47 5.18 0.47 9.24 0.47
|9〉 ↔ |11〉 Sz 3.20 0.30 5.85 0.30
|8〉 ↔ |11〉∗ Sx 3.67 0.42 6.71 0.42
|8〉 ↔ |12〉 Sz 4.30 0.41 7.88 0.41
|7〉 ↔ |12〉∗ Sx 5.19 0.37 9.56 0.37
|7〉 ↔ |13〉 Sz 6.56 0.46
|6〉 ↔ |13〉∗ Sx 9.00 0.32

TABLE 6.1: Expected ESR transitions below Al critical field for resonators A, B, C. Transitions |i〉 ↔ |j〉
noted with (∗) are doubly-degenerate with the corresponding transition |i+ 1〉 ↔ |j + 1〉 (see ch. 4). In
the table and in all the text, we denote them using the transition |i〉 ↔ |j〉. Since the sum of both matrix
elements is 0.5, only the matrix element corresponding to |i〉 ↔ |j〉 is given.
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FIGURE 6.5: First Sx and Sz ESR transitions for resonator C. a Frequency and power compensated
echo-detected field sweep for resonator C with θ = 0 and θ = π/2. The black line on top indicates the
resonator linewidth as well as the transition linewidth measured by Weis et al. [137]. b Rabi oscillations
as a function of θ at magnetic fields P1, P2 and P3 indicated with black points in panel a. The color axis
is the averaged echo amplitude Ae. Above the color-plots are extracted the ratio g(θ)/g0 (circles, squares
and diamond) from the Rabi oscillations, where g0 is taken to be g(θ = 0) for P1 and P2 but g(θ = π/2)
for P3. The solid lines give the expected variation (see text). c. Schematic ofB1 for spins located under
and outside the Al wire. d-f Schematic depicting the relative orientations ofB1 andB0 as a function of θ
while probing peak P1 (panel d), peak P2 (panel e) and peak P3 (panel f).

6.2.1 Doublet-shaped transitions

We start with the measurements performed using resonator C, whose frequency is closest to the
zero-field splitting. Using a Hahn-echo sequence such as shown in Fig. 6.2, we record the echo
signal Ae as a function of B0. Applying a magnetic field parallel to the superconducting resonator
increases the film kinetic inductance which decreases the resonator frequency as seen in ch. 5.
As a consequence, at each B0, the resonator transmission is measured, fitted, and the microwave
source adjusted to this frequency, using an automated routine; after that the echo sequence is run
as explained earlier. The power of the excitation and refocusing pulses are calibrated via Rabi
oscillations to ensure they correspond to π/2 and π pulses for each B0. We also set the repetition
rate well below the spin energy relaxation rate.

Fig. 6.5a shows the data for θ = 0 around the magnetic field B0 = 2.84 mT expected for the first

encountered Sx transition |9〉 Sx←→ |10〉. The line appears much broader than observed by Weis et al.
[137] with its FWHM linewidth being ∆B0 = 200 µT� 12.2 µT. It is also considerably broader than
the ESR resonator linewidth (which corresponds to ≈ 3 µT in magnetic field units). In addition, the
line appears to be split: two well-defined asymmetric peaks appear on each side of the expected
B0 field. Such a line splitting has never been reported so far in Si:Bi samples, most remarkably
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in measurements performed on the exact same sample in a conventional ESR spectrometer. We
denote P1 (P2) the low-field (high-field) peak, and we discuss the origin of this doublet shape in the
following.

To complement these data, we perform the exact same measurements but with θ = π/2, (pink
curve in Fig. 6.5a). P1 is seen to be fully suppressed, whereas P2 remains unchanged. The spins
contributing to P1 are thus not excited anymore when B0 is orthogonal to the wire, while P2 spins
are probed identically. In addition, a new peak (noted P3) is visible, at a magnetic field B0 close

to the one expected for the |9〉 Sz←→ |11〉 transition, with a linewidth similar to the other peaks but
remarkably without visible splitting.

To account for these experimental facts, our hypothesis is that the peaks P1 and P3 arise from spins
located under the Al wire, probed by an excitation fieldB1 mainly aligned on y (see Fig. 6.5c). When

θ = 0,B0 is orthogonal toB1 (see Fig. 6.5d) and thus the spins can only contribute to |9〉 Sx←→ |10〉
(i.e. P1); in reverse when θ = π/2, B0 is parallel to B1 (see Fig. 6.5f) and thus the spins can only

contribute to |9〉 Sz←→ |11〉 (i.e. P3). In contrast, spins located outside the wire are probed via an
excitation fieldB1 mainly aligned on z (see Fig. 6.5c), and thus whatever the orientation ofB0 they

systematically contribute to |9〉 Sx←→ |10〉 (i.e. P2) but never to the |9〉 Sz←→ |11〉 transition.

In order to test this hypothesis, we measure the Rabi oscillation frequency for varying angles θ. As
explained in ch. 5, we expect different angular dependence of g (see Eqs. 5.20 & 5.21) on θ:

• for a Sx transition, for spins located under the wire as g(θ) ∝ cos(θ)

• for a Sx transition, for spins located outside the wire as g(θ) = g(0)

• for a Sz transition, for spins located under the wire as g(θ) ∝ sin(θ).

and thus the Rabi-oscillations frequency should follow the expected 1/g(θ) dependence. Fig. 6.5b
shows the results. Very different angular dependences are indeed observed for the 3 peaks. On the
P1 peak, a 1/ cos θ dependence is found, while P3 has a 1/ sin θ dependence and P2 does not depend
on θ; this confirms our hypothesis for the peaks identification.

6.2.2 Rabi frequency dependence on B0

According to our previous discussion, there appears to be a correlation between the spins Larmor
frequency and their spatial location with respect to the resonator. Further insight in this direction is
obtained by doing systematic measurements of the Rabi frequency as a function of B0 along the

spectroscopy peaks. Fig. 6.6 shows the Rabi oscillations performed for transition |9〉 Sx←→ |10〉 for
resonator B with θ = 0: the recovered echo amplitude Ae is color-coded and plotted as a function
of the refocusing power Pin and the magnetic field B0. The overall amplitude of the oscillations
(shown in the top panel of Fig. 6.6) resembles the lineshape already observed with resonator C,
showing two very asymmetric peaks. The most remarkable feature however is the fact that the
frequency of the Rabi oscillations (see Fig. 6.6) shows a pronounced and non-trivial dependence on
B0.

Our interpretation of the observed dependence of g on B0 is based on the fact that g is proportional
to the amplitude of the B1 field generated by the resonator, which itself depends on the spatial
position relative to the resonator wire (see for instance Fig. 5.10 in ch. 5). As already discussed for
the explanation of the two-peak structure of the line, we are thus led to the conclusion that the
spin Larmor frequency is somehow correlated to their location relative to the resonator wire. From
our knowledge ofB1(r), we can go further and actually assess that within the P1 peak, "low-field"
spins are located closer to the wire edge where B1 is strongest (i.e. |y| just below wr/2) whereas
"high-field" spins are located in the middle of the wire (i.e. |y| � wr/2); for the P2 peak on the
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other hand, "low-field" spins are located far from the wire whereB1 becomes vanishingly small (i.e.
|y| � wr/2) whereas "high-field" spins are closer to the wire edge (i.e. |y| just above wr/2).

Thus the physical mechanism that explains the line broadening causes the spins located near the
edge of the aluminum wire to be far offset from their expected Larmor frequency, with positive
detuning for the spins lying below the edge of the wire (|y| < wr/2), and negative detunings for the
spins located on the side of the edge of the wire (|y| > wr/2). Spins located either far from the wire
or underneath its center lie closer in frequency to the expected ESR transition.

While we have not yet provided an explanation for the underlying physical mechanism causing
this effect, we can already note a beneficial consequence for our experiments. Since the resonator
line is much narrower than the overall spin distribution, we can effectively choose to drive and
measure ensembles of spins with very different couplings to the resonator simply by changing
B0. In particular, we can work with ensembles of spins with a coupling constant to the resonator
that is much better defined than in the absence of the line broadening mechanism, where the Rabi
oscillation pattern would in fact be an average over all Rabi frequencies observed in Fig. 6.6 and
thus lead to much less precise Rabi angles.
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6.2.3 Induced strain, a likely suspect

Clearly, the physical mechanism responsible for these phenomena has to be linked to the presence
of the aluminum wire on top of the substrate. A thorough and quantitative analysis was performed
by J. Pla and will be reported in [177]; as it is not the main topic of this thesis we will only briefly
summarize its main conclusions in the following.

The mechanisms at the origin of the broadening could be either:

• Magnetic field inhomogeneities: B0 could have a spatial dependence originating from its
expulsion from the superconducting thin films forming the resonator, due to the Meissner
effect. However such inhomogeneities would be proportional to the applied magnetic field.
As a similar or even slightly narrower linewidth is measured for resonator B and C for the

|9〉 Sx←→ |10〉 transition, this mechanism can be ruled out.

• Built-in electric fields: the aluminum/silicon interface beneath the resonator forms a Schottky
barrier which could lead to frequency shifts of the donor spin resonance. However induced
electrical fields would only induce a Stark shift of the hyperfine interaction or electron γe-factor,
altering only quadratically the spin frequency. As we observe simultaneously positive and
negative detunings, we can also rule out this mechanism.

• Induced strain. As aluminum and silicon have different coefficients of thermal expansion,
cooling the device from room-temperature to 20 mK induces strain in the silicon. As discussed
in ch. 4, strain can induced both hyperfine interaction shift as well as quadrupolar effects.
While we can rule out broadening due to the hyperfine interaction, quadrupolar interaction is
a likely candidate that can provide both positive and negative detunings [111] as observed in
our experiment.

We thus retain only the latter hypothesis. Through finite elements simulations, the strain in the
vicinity of the wire at 20 mK can be computed as shown in Fig. 6.7. The subsequent modification of
the donor wave-functions A1, E and T2 is computed using an effective mass theory model [109]. As
explained in ch. 4, the modification of the fully symmetric A1 ground state reduces the hyperfine
coupling A(ε) 6 A(0), but from the simulations only a small shift of the order of 0.8 µT is estimated.

The quadrupolar interaction, while zero in absence of stress, arises via the mixing ofA1 with the non-
symmetric Exyz state that induces a non-zero electrical field gradient (EFG). Linking the quadrupolar
factorQ involved in the quadrupolar Hamiltonian (see Eq. 4.28) to the EFG accurately is non-trivial,
due to the very complex structure of the donor and is the object of a detailed discussion in [177]. In
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particular, a significant part of the imprecision arises from the Sternheimer anti-shielding effect [178].
This phenomenon describes the re-arrangement of the inner electron shells in response to an external
EFG, with a resulting enhancement of the total EFG experienced by the nucleus. Q is thus multiplied
by a factor that can be considerable (≈ ×46 for Bi5+ ions [179]) but that is undetermined up to
now for Si:Bi donors. In the following an extra proportional correction onQ is added as a fitting
parameter to include this effect. Once the quadrupolar Hamiltonian is estimated (see Eq. 4.28), the
expected transition shift can be computed by adding the quadrupolar term to the Si:Bi Hamiltonian
of Eq. 4.8.

At each point (x, y, z) of the sample relative to the wire, one can thus estimate via the strain
simulation the expected ESR spectrum. The global expected ESR spectrum can thus be modeled by
summing all spins contributions, weighted according to the implantation profile of the bismuth
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atoms extracted by SIMS (see Fig. 4.12) and to the coupling constant g extracted from the simulation
of the δB excitation field.

The results of the full ESR spectroscopy of resonators B and C as well as the simulated ESR line-
shapes is shown in Fig. 6.8. While the model fails to account precisely for the peak broadening and
the asymmetry of the Sz transitions, it does capture most of the features of the ESR spectroscopy,
such as the Sx peak splitting and the θ-dependence. The best match between experimental data and
simulations required a correction factor of 400, it would be very interesting to test this determination
using other configurations. Nevertheless, we can conclude that quadrupolar effects due to strain
induced in the silicon by the aluminum wire is a very likely mechanism for the overall peak
broadenings observed in our experiment.

6.3 Relaxation times

We now characterize the relaxation and coherence times of the sample. For this purpose, we

concentrate on the transition |9〉 Sx←→ |10〉 tuned at resonance with resonatorB by applyingB0 = 5.13
mT and θ = 0.

6.3.1 Energy relaxation

We first measure the energy relaxation time T1 using inversion-recovery [5] as described in Fig. 6.9.
Starting from thermal equilibrium, a 5-µs-long π pulse is sent at resonance to invert the spin
polarization, after which the magnetization decays by T1 processes back to thermal equilibrium. To
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readout the remaining polarization after a time T , we employ once again a Hahn-echo sequence, with
a shorter bandwidth than the excitation pulse (tπ = 100 µs). At times T � T1, the measured spins
have relaxed back to equilibrium, and thus a steady-state echo is recorded, yielding AQ(T =∞).
At time T = 0, the polarization is fully inverted, thus the π/2 pulse of the Hahn-echo sequence
projects the magnetization vector on the opposite direction compared to the steady-state situation
so that the echo signal AQ(T = 0) has the opposite sign than AQ(T =∞). The T1 relaxation is thus
observed by measuring the decay from AQ(T = 0) to AQ(T =∞). For resonator B at B0 = 5.13 mT
and θ = 0, the decay is exponential with a characteristic time T1 = 0.35 s, as shown in Fig. 6.9c.

The shortness of this measured time compared to the values obtained in the literature at even higher
temperatures (see 4.4.1) is due to the Purcell effect induced by the high quality factor resonator, as
will be explained in ch. 8.

6.3.2 Coherence times

As already explained in ch. 4, the decoherence time T2 is characterized in ESR measurements by
sweeping the delay time 2τ between the initial π/2 pulse and the echo emission. Fig. 6.10 shows
such a measurement for resonator B at B0 = 5.13 mT and θ = 0, well fitted by an exponential decay
of characteristic time T2 = 8.9 ms. Whereas this value is characteristic of the long coherence times
readily obtained for donors in isotopically purified silicon samples, it is nevertheless surprisingly
long given the sample concentration. Indeed, measurements performed by Weis et al. [137] on the
same sample report T2 = 500 µs, more than an order of magnitude shorter than the data in Fig. 6.10.

Our interpretation of this discrepancy is as follows. In Weis et al. measurements, T2 was shown
to be limited by instantaneous diffusion, caused by the unwanted spin flips of the neighboring
Si:Bi donors upon the application of the refocusing π pulse. In our experiment however, due to
the strain-induced line broadening discussed earlier and to the narrow resonator bandwidth, the
π pulses address only a small subset of the entire spin ensemble, which could lead to much less
pronounced instantaneous diffusion effects thus explaining the longer T2 measured. In order to test
this idea, we have performed T2 measurements using higher refocusing pulse powers, leading to
higher Rabi frequencies and thus larger number of spins being flipped. As qualitatively expected,
we see a reduction in T2 (see inset of Fig. 6.10), which we have however not attempted to account for
quantitatively. To conclude, it seems likely that our measured coherence time is at least partly limited
by instantaneous diffusion, as is often the case for measurements on ensembles of donors [126, 124].
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Chapter 7

Spectrometer sensitivity

In this chapter, we estimate the sensitivity Nmin of our spectrometer defined as the number of spins
that can be detected with a single Hahn-echo for a signal-to-noise ratio of 1. We first determine
the number of spins contributing to the signal, and we measure the SNR of an echo; this yields a
sensitivity of 2000 spins detectable with SNR= 1 in a single echo sequence. We also demonstrate
how CPMG sequences can be used to enhance further the sensitivity by a factor ≈ 10.

7.1 Determining the number of spins

We define the number of spins contributing to the echo signal Nspins as the number of spins excited
by the π/2 pulse. We estimate Nspins using resonator B and concentrating on the low-field peak
of transition |9〉 ↔ |10〉 tuned at resonance with B0 = 5.13 mT by two methods detailed in the
following.

7.1.1 Direct counting of the donors

A first method to evaluate the number of spins consists in using our knowledge of the bismuth
atoms implantation profile to count the number of atoms in the detection volume. Let us call Ntot

the number of spins contributing to the low-field peak of transitions |9〉 ↔ |10〉. As the resonator
linewidth is considerably smaller than the ESR linewidth (see Fig. 7.1), only a small fraction of the
spins Nspins = ξNtot contributes effectively to the signal. The π/2 pulse of the Hahn-echo sequence
shown in Fig. 6.2 being 5 µs long, we make the assumption that it excites spins with a frequency
response similar to the resonator response (see 6.1.3) and thus ξ is approximately given by:

ξ =

∫
ρLC(ω)ρESR(ω)dω (7.1)

where ρLC(ω) = 1/(1 + 4(ω − ω0)2/κ2) is the ESR resonator spectral response and ρESR(ω) is the
spins density profile.

To determine ρESR(ω), we use the measured spin-echo line and more precisely we will focus on the
low-field peak (P1) which has the advantage of corresponding to a well-defined detection volume:
the spins located exactly below the resonator wire. The measured spin-echo amplitude Ae(B0) does
not provide directly the spin density ρESR, because, as explained earlier, the spin-resonator coupling
is B0-dependent, which leads to a slight distortion of the curve since the detected signal is itself
proportional to g. Thus, ρESR is proportional to Ae(B0)/g(B0). B0 is converted to ω units using
the the |9〉 ↔ |10〉 transition frequency dependence on B0. The spectrum computed using the ESR
data acquired for resonator B and normalized using

∫
ρESR(ω)dω = 1 is shown in Fig. 7.1a. At
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FIGURE 7.1: Estimation of the number of spins. The spin density profile ρESR(ω) (red circles) is
extracted from measuringAe(B0) and g(B0) to be compared to the resonator bandwidth (dark blue). The
grey shade indicatesNtot the total number of spins comprising the low-field peak of transition |9〉 ↔ |10〉
and the blue shade indicates Nnum the number of spins comprising the spin ensemble numerical model.

field B0 = 5.13 mT, using the resonator linewidth determined in Table 5.3, we find from Eq. 7.1
ξ ≈ 1.6× 10−2.

To go further we need to evaluate the total number of spins Ntot. We estimate Ntot using the
implantation profile [Bi](z) measured by SIMS by Weis et al. (see section 4.6 and [137]) by:

Ntot =
1

9
wrlr

∫

z

[Bi](z)dz (7.2)

where wr and lr are the wire dimensions. A factor 1/9 is added since we are probing via the
transition |9〉 ↔ |10〉 only one of the 9 ground states of Si:Bi that we assume to be equally populated
at 20 mK. We find Ntot = 4.7× 106.

This estimate can be refined by considering that the number of spins may be less than the number
of implanted atoms for the following reasons. First, as explained in ch. 4, only 60% of the implanted
atoms become converted as donors following the post-implant annealing, as measured by Weis et
al. [137].

Second, the aluminum thin-film deposited directly on top of the silicon substrate can give rise to a
Schottky barrier in which donors may be ionized (see Fig. 7.2). The difference in the work function
of aluminum and silicon causes a band-bending responsible for the ionization of the donors over an
area called the depletion region. A simple model to estimate the depth of the depletion region is to
make the full-depletion assumption[180]. In this model, the donors are assumed to be ionized on a
depth zd and neutral for z > zd:

{
N+
D (z) = [Bi](z), z 6 zd

N+
D (z) = 0 z > zd

(7.3)

where N+
D (z) is the number of ionized donors. To determine zd, one has then to solve the Poisson

equation:

− d2φ

dx2 = ρ/εSi (7.4)

106



Chapter 7. Spectrometer sensitivity

Aluminium [Si:Bi]
8.1016  cm-3

depletion region

Silicon

Ef

EC
ED

+

+
+ +

φAl

φSi

85 nm

z

e-e-e-e- 0

FIGURE 7.2: Schottky barrier at the aluminum-silicon interface. A bending of the valence and conduction
band of silicon is observed due to the work function difference φAl − φSi between aluminum and silicon.
It is responsible for the ionization of the donors in the depletion region of depth 85 nm in our sample.

with ρ(z) = eN+
D (z), taking as boundary condition that the electrical field E = −dφdz is zero for

z > zd. Solving numerically φ(zd)− φ(0) = φSi − φAl yields zd ≈ 85 nm for φSi − φAl = 0.5 V [181].
Re-evaluating [Bi](z) using this estimate and taking into account the limited yield, we obtain
Ntot ≈ 1.5× 106 and thus:

Nspins = 2.4× 104 (7.5)

7.1.2 Estimate based on numerical simulations

To determine more accurately Nspins, we simulate numerically a Hahn-echo sequence and extract
the number of spins excited by the π/2 pulse, using the model described in ch. 3 and [77, 78, 182].
The spin ensemble is divided intoM sub-ensembles where each subset (m) contains Nm spins with
subset-dependent coupling constant gm and detuning to the resonator ∆m = ωm − ω0. The spin-
resonator dynamics can then be simulated by integrating numerically the equations of motion (see
Eqs. 3.41-3.44) for the resonator field and the spins collective components of all of the sub-ensembles.
We use for this purpose a Matlab code developed by our collaborator Brian Julsgaard.

As input to the simulation, we use the relaxation and decoherence times measured experimentally.
An important point for our sensitivity analysis is to determine precisely the size Nm of each subset.
For this purpose, we use the numerical simulations to reproduce the time-dependent absorption of
a microwave pulse, whose rich features are better suited than a simple echo sequence to assess the
model accuracy.

Modeling

While in our experiment strain induces a correlation between a spin frequency and its spatial
position and thus its coupling to the resonator (see ch. 5), we make the assumption that the
spectral window and thus spatial window probed by the resonator is narrow enough to neglect
this correlation. The spin-ensemble is then simply modeled by the joint distribution of a coupling
constant distribution ρ(gi) and a spin detuning distribution ρ(∆j) of total number of bins Mg ×M∆.
The two-dimensional distribution is weighted so that the sum of all the sub-ensembles (i, j) contains
∑Mg

i=1

∑M∆

j=1Ni,j = Nnum spins.
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FIGURE 7.3: Spin ensemble modeling a Coupling constant distribution extracted from δB(r) simula-
tions for |y| < wr/2 weighted by the ionized spin concentration z-profile and normalized to unity (red
line). The black circles show the discrete distribution used in the simulation, with Mg = 50. In inset is
shown the equivalent Gaussian distribution. b Tilted square distribution used in the simulation, with
M∆ = 450. The blue line indicates the resonator linewidth.

Determining the coupling constant distribution As the measurements we would like to repro-
duce were performed with the magnetic field B0 aligned along the wire, on the low-field peak P1 of
the transition |9〉 ↔ |10〉, the g distribution is extracted, similarly to section 6.1.3, from the simulation
of δB(r) for spins under the wire (|y| < wr/2) with a Sx transition matrix element 〈9|Ŝx|10〉 = 0.47,
taking into account the ionized spin concentration profile. The peak of the distribution now lies at
g/2π = 56 Hz, close to the value determined experimentally by Rabi oscillations (see Fig. 6.3). We
choose a discrete distribution with irregularly spaced Mg = 50 bins, as shown in Fig. 7.3a.

Simulations done in this chapter use this as-extracted distribution. Note that later on, in ch. 9, we
simulate the spin-echo at two different magnetic fields within P1 and thus probe spin subsets with
different Larmor frequency that have a different mean coupling constant g0 (see ch. 6). To capture
the difference in g when modeling the two different spin subsets, we simplify the as-extracted
distribution in a Gaussian distribution centered on g0 with a width ∆g that is phenomenologically
adjusted.

Determining the spin frequency distribution Simulating sequences as long as 1 ms requires a
small bin size for the spin frequency distribution; we choose 1 bin per 1 kHz, over a 450 kHz
range. The resonator linewidth being two orders of magnitude smaller than the spin linewidth, the
zero-order approximation would be to assume a square spin frequency distribution. We nevertheless
introduce a tilted square distribution to take into account more precisely the shape of the line, as
shown in Fig. 7.3b. The relative slope is derived from ρESR(ω).

Spin-decoherence rate and energy relaxation rate Spin decoherence is treated by including both
a spin dephasing rate γ⊥ = 1/T2 and a spin energy decay rate γ‖ = 1/T1. We use the experimental
measured coherence time T2 = 9 ms (see Fig. 6.10). The energy relaxation rate, on the other hand, is
due to Purcell relaxation (as will be explained ch. 8). As a result, spins detuned from the cavity have
a longer relaxation rate. This is captured by defining for each sub-ensemble:

γ
(i,j)
‖ = κ

g2
i

∆2
j + κ

4

. (7.6)
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Since γ⊥ � γ‖, the introduction of γ‖ is only important for describing the initial state of the ensemble.
Indeed, every experimental sequence is repeated several times at rate γrep (with γ−1

rep ≈3 to 10 s)
and the results are then averaged. This waiting time γ−1

rep is long enough compared to T1 to be
neglected for spins at resonance, however detuned spins have a longer T1 and thus do not fully relax
between two consecutive sequences, contributing less to the signal than spins at resonance. To take
into account this effect, we define an effective initial polarization S(i,j)

z (t = 0) for a sub-ensemble
depending on its relaxation time:

S(i,j)
z (t = 0) = −Ni,j ×

(
1− e−γ

(i,j)

‖ /γrep

)
(7.7)

Resonator and drive parameters The ESR resonators parameters κ1, κ2, κint and ω0 are taken
equal to the measured values (see Table 5.3). We make the assumption that all drives pulses are sent
at resonance. The incident power Pin is assumed identical to the value determined experimentally
within a 1-dB-error margin.

Absolute calibration of the spin density

The only free parameter in the model is thus the absolute scaling factor Nnum, whose exact deter-
mination is crucial to estimate the number of spins excited during the Hahn-echo sequence. To
calibrate Nnum, we measure the time-dependent absorption by the spins of a 500-µs-long pulse of
power Pin, as shown in Fig. 7.4a. The data are shown in Fig. 7.4b for unsaturated spins, and in
Fig.8.4c for saturated spins. When the spins are not saturated, the transmitted pulse shows two
prominent features that should be precisely reproduced by the simulations: the Rabi oscillation
transients at the beginning, which are characterized by an oscillation frequency ΩR, a decay time
and an initial amplitude, and the FID of the spins which gives rise to the emission of a microwave
signal even after the resonator field has decayed (see Fig. 7.4a). For comparison, and to provide
the scaling factor between numerical and experimental data, the transmission of a second pulse P
sent right after a strong microwave saturating pulse is also recorded. The sequence is acquired 1000
times with a repetition time γ−1

rep = 5 s.

We perform a numerical simulation of this experiment using the model described above. We find
that for the as-extracted g-distribution, Nnum = 2.0× 105 gives a good agreement with the FID decay
as well as the Rabi oscillations amplitude. To obtain the accurate Rabi oscillation frequency, we had
to scale Pin by a factor 1.1. By adjusting only those two independent parameters, the spin absorption
data is quantitatively reproduced (solid colored lines in Fig. 7.4b&c), which validates the model to
estimate the number of spins contributing to the signal1.

Comparison with the atom-counting estimate We can use the absolute scaling determined nu-
merically to evaluate the total number of spins Ntot that contribute to the low-field ESR peak P1.
As the absolute scaling Nnum is evaluated for spins lying in a bandwidth ∆ω/2π = 450 kHz (see
Fig. 7.1), we have:

Nnum = Ntot

∫ ∆ω/2

−∆ω/2

ρESR(ω)dω (7.8)

where ρESR(ω) is the spins spectrum determined from the ESR spectroscopy as explained in section .
We find Ntot = 1.2× 106, a value in very good agreement with the estimate Ntot = 1.5× 106 given
by the "atom-counting" method.

1In the case of a Gaussian g-distribution, the parameters g/2π = 56 Hz, ∆g = 1.5 Hz and Nnum = 1.8 × 105 with
ε = 0.85 gives a less but still correct agreement to the experimental data, with the Rabi oscillations damping not being
entirely captured (dashed line in Fig. 7.4b)
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FIGURE 7.4: Time-dependent absorption. a Experimental sequence consisting of a first 500-µs-long
pulse at power Pin, followed by a strong microwave pulse immediately followed by a second 500-µs-long
at same power Pin to remove the spins contribution. b-c Absorbed and saturated pulses taken with
average number of photons n̄ for the intra-resonator field, rescaled to the same amplitude as for the
curve corresponding to n̄ = 4.9 × 103(green) with additional offsets and averaged 1000 times. Open
circles: data. Solid-lines: numerical fit with as-extracted g-distribution. Black dashed line: numerical fit
with Gaussian g-distribution.

Reproducing a Hahn-echo sequence

We now simulate the full echo-sequence, keeping exactly the same model parameters. The input
power of the simulated π/2 and π pulses are calibrated by simulating Rabi oscillations. We find that
in the simulation the π pulse power is only 1 dB away from the experimental one, which further
confirms the validity of our model.

The spin echo sequence was acquired with the JPA off, in order to avoid its saturation by the drive
pulses. The output amplitude is scaled by comparing the theoretical and experimental decay of
the two excitation pulses. With only this adjustment factor the simulated echo is found to be in
quantitative agreement with the experimental data as shown in Fig. 7.5.

To evaluate the number of spins excited during the spin-echo sequence, we extract from the sim-
ulation the time-dependent mean spin polarization 〈Ŝz〉, as shown in Fig. 7.5. We consider more
particularly that the quantity 〈Ŝz(t > π/2)〉 − 〈Ŝz(t = 0)〉 is a direct estimate if the number of spins
excited by the Hahn-echo sequence. We find2 Nspins = 1.2× 104, confirming our previous estimate
of ξ ≈ 1.6 × 10−2. We thus come to the conclusion that Nspins participate to the echo shown in
Fig. 7.5.

2Using the Gaussian g-distribution, we find a similar number Nspins = 1.1× 104
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7.2 Characterization of the sensitivity

7.2.1 Single-echo signal-to-noise ratio

To obtain the setup sensitivity, we also need to characterize the SNR of a single echo. We study the
SNR for various JPA gains, using the homodyne detection setup and the JPA in phase-preserving
mode. We evaluate separately the signal and the noise by the following procedure. First, we choose
the local oscillator phase so that the echo lies entirely on the I quadrature. We then average 10
spin-echo signals yielding the averaged time-traces I(t) from which we compute the signal using
only a simple top-hat integration window such that:

S =
1

TE

∫ TE

0

Ī(t)dt. (7.9)

The noise is determined from 500 traces of the same duration acquired without any echo being
triggered (microwave drive pulses turned off) as:

N 2 =
1

TE

∫ TE

0

I2(t)dt. (7.10)

As shown in Fig. 7.6a, the resulting SNR= S/N follows the same dependence on the JPA gain as
determined using only the JPA. For the JPA in phase-preserving mode, at the optimal SNR value, the
single-echo SNR (orange curve in Fig. 7.6b) is increased by a factor ≈ ×7 compared to a single-echo
acquired with only the HEMT (grey curve in Fig. 7.6b) and reaches SNR= 4.

We now use the JPA in phase-sensitive (degenerate) mode, with the pump phase chosen so that the
I quadrature which is aligned with the echo is amplified. As the gain increases by 6 dB while only
increasing the noise power by 3 dB, the SNR is expected to increase by a factor

√
2 compared to the

non-degenerate mode of the JPA. We find experimentally a factor 1.7, probably due to the fact that
when the JPA is operated in phase-preserving gain, the necessity to filter the idler requires working
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slightly detuned from the top of the JPA gain curve and thus the gain improves by a little more than
6 dB when shifting to phase-sensitive operation.

Summing up, the best absolute SNR reached is 7± 1 (red curve in Fig. 7.6b) a factor ≈ ×11 better
than without JPA. The sensitivity of the spectrometer is thus:

Nmin =
Nspins

SNR
= 1.7× 103 (7.11)

spins detected in a single-echo with a SNR unity. As T1 was measured to be 0.3 s (see Fig. 6.9) in
these conditions, the SNR determination was done with the repetition rate set at γ−1

rep = 3T1 = 1 s
and thus the overall absolute sensitivity of the spectrometer is 1.7× 103 spins/

√
Hz.

Spins spontaneous emission noise

The interest of determining separately the noise from the signal is to be able to determine more
accurately the noise by accumulating more data, since every point can be acquired without having to
wait 3T1. The statistical uncertainty of the SNR thus comes solely from the signal with εSNR = 1/

√
10

for the above determination.

However such a determination neglects any noise emitted by the spins such as the spontaneous
emission noise nSE . To evaluate nevertheless this contribution, we perform once again numerical
simulations but include this time the quantum noise evaluation using the methods of [182]. The
numerical results are shown in Fig. 7.5 and predict an excess noise of ≈ 30 % during the echo
emission, that would scale down the measured SNR to 5.5 ± 1. Taking into account the fact that
this noise is proportional to the number of spins Nspins(this assumption was checked numerically)
being excited, the sensitivity reached with a SNR unity can be estimated to be Nmin = 1.8× 103 or
equivalently 1.8× 103 spins/

√
Hz.

Comparison to theoretical estimate

This experimentally determined sensitivity is in semi-quantitative agreement with the theoretical
estimate of section 5.1.2, which predicted Nmin = 400 for our parameters (see Eq. 5.11). The gain
of four-orders of magnitude compared to the state-of-the-art is consistent with the improvements
made on the spectrometer setup. Working at low-temperatures yields a complete polarization of the
spin ensemble, giving a factor 12 enhancement, but also permit to cool-down the microwave field to
its ground state. With a detection made by a JPA in phase-sensitive mode, the quantum fluctuations
are thus the dominant noise source, giving a factor ≈ 10 improvement on Nmin. Finally the choice of
a high-quality factor resonator, together with its small mode volume, gives a factor 20 improvement.

The remaining discrepancy between the theoretical estimate and our experimental determination
can be traced to various origins. First, the derivation of section 5.1.2 assumed that κ� w and that
the drive pulses were ideal; this is not the case in our experiment as explained earlier. Then, our
experiment suffers from microwave losses (resonator internal losses, circulators and filters insertion
loss, ...). In addition, our JPA is not perfect; in particular the contribution of the follow-up amplifiers
to the total output noise is not negligible. Finally, in the experiment the signal was defined with a
square time integration window (see Eq. 7.9), instead of the optimal output mode choice defined as
in Eq. 5.8.
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the echo (circle), well fit to an exponential of characteristic time TCPMG = 71.2 ms. e Experimentally
determined SNR enhancement obtained by averaging m echoes as a function of the number m of echoes
in the CPMG sequence (blue circles), showing a 12-fold improvement. In the absence of decoherence the
SNR should follow a

√
m-law (green curve). With damping (red, see text and Eq. 7.13), the SNR levels off

for higher m.

7.2.2 Sensitivity enhancement by CPMG echoes

The sensitivity can be further increased by using a Carr-Purcell-Meiboom-Gill (CPMG) sequence
[183]. As shown in Fig. 7.7a, adding m πy pulses after the initial echo generated by a πx− τ − πy − τ
Hahn-echo sequence allows to refocus the spins m more times and thus recover m extra-echoes
within a single sequence; all the echoes can then be averaged out to improve the SNR. Fig. 7.7b-c
shows that for our Si:Bi sample up to 650 echoes can be recovered. The echo signal is seen to decrease
exponentially with a characteristic damping time TCPMG = 71 ms, a value ten times bigger than the
time T2 measured in Fig.6.10.

In terms of sensitivity, the recovered echoes can simply be averaged to enhance the SNR. While
averaging m times the same signal yields a

√
m-enhancement, the echo damping levels off the

enhancement at high m. Indeed, consider the accumulation of m echoes emitted at a a period T
damped at rate TCPMG and acquired with the same noise N . The best SNR is obtained by weighting
each echo with an exponentially decreasing weight wi = αe−iT/TCPMG . The overall normalization
factor α for each weight is found by expressing that N(m) =

√∑
i w

2
iN 2

(1) = N (1) and thus

α2 1− e−2mT/TCPMG

1− e−2T/TCPMG
= 1. (7.12)

114



Chapter 7. Spectrometer sensitivity

It then comes that the signal is expressed as S(m) =
∑
i S(1)αe

−i2T/TCPMG so that the SNR enhance-
ment reads:

SNRm
SNR1

=

√
1− e−2mT/TCPMG

1− e−2T/TCPMG
−→

T�TCPMG

√
2T

TCPMG
(1− e−2mT/TCPMG) (7.13)

Eq. 7.13 yields that for small m, the SNR increases as
√
m but is bounded at TCPMG/2T for larger

values. We applied this averaging method to our experiment, as shown in Fig. 7.7e, demonstrating
a 12-fold improvement over the single-echo SNR. This has the direct consequence of improving the
sensitivity to Nmin = 150. Moreover as this technique does not require waiting a time 3T1 between
each echo, the absolute sensitivity is also improved to 150 spins/

√
Hz.

The sensitivity could be further increased if the CPMG damping was reduced, by for example using
more complicated sequences alternating π±y and π±x such as the CPMG XY-8 sequence[184] up
to the point where it becomes limited either by spin decoherence, or by pulse errors. We did not
investigate such techniques in our ESR spectrometer.

7.3 Conclusion

The analysis above demonstrates that the combined use of low-temperatures, high-quality factors,
small-mode volumes and quantum-limited amplifiers can dramatically enhance the sensitivity of an
ESR experiment, with a 4-orders of magnitude enhancement compared to the state-of-the-art. This
experiment places ESR in a new regime where the noise is no longer limited by thermal or technical
noise but by the quantum fluctuations of the electromagnetic field.

The achieved sensitivity for our resonator detection volume of ∼ 0.02 nl already enables ESR
experiments at the nanoscale. More versatility could easily be obtained by patterning the resonator
out of superconductors able to sustain higher magnetic fields (such as niobium) which would thus
allow to study a wider range of spin species. Applications include studying single cells, small
molecular ensembles, nanoparticles and nanodevices.

Finally, the sensitivity can be improved even beyond the above results. While the spin polarization
is now maximum, the other quantities entering into play in the sensitivity can still be improved.
Indeed, the quality factor can yet be increased by a factor of 2 or 3 if the losses were reduced to
the current state-of-the-art Qint > 106. A straightforward enhancement could also come from the
spin-photon coupling. While we reached g/2π ∼ 50 Hz with a 5 µm wide wire, nano-fabrication
techniques easily allow to scale down the wire transverse dimensions by a factor 100, which would
yield an enhancement of the same factor on g and thus allow to improve the sensitivity up to the
level of being able to detect only a few spins. Last, even if quantum fluctuations have become the
primary noise source in our experiment, decreasing the noise beyond the standard quantum limit is
possible with the use of squeezed quantum states as we will see in ch. 9.
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Chapter 8

Controlling spin relaxation with a
cavity

Coupling with the radiation is hopelessly inadequate as a relaxation mechanism

A. Abragam, on nuclear spins [4].

Understanding and controlling spin relaxation is essential in applications such as spintronics,
quantum information processing and magnetic resonance imaging. The energy relaxation time
T1 describes the return to equilibrium and has to be sufficiently long to permit coherent spin
manipulation since T2 6 2T1. However a too long T1 can become a major bottleneck, since the
return to equilibrium will be prohibitively long and limit the repetition rate of an experiment,
directly impacting factors such as the achievable sensitivity. An ideal situation would be to have the
ability to re-initialize the spins on-demand while having a long T1 to preserve the spin coherence.
This can be achieved in particular systems by an active reset. For example,NV centers have a
state-selective optical transition allowing to establish a spin polarization higher than 90% under
laser illumination [185]. Coupling to the environment via other degrees of freedom can also reset the
system: a neutral phosphorus donor in silicon can be initialized via its charge state when coupled to
a single-electron transistor [122] or by selective Auger photo-ionization when coupled to a donor
bound exciton [133].

For other spin systems, such active re-initialization schemes may not be available. This is particularly
an issue at ultra-low temperature since the spin-lattice relaxation times can become very long due to
the vanishing phonon density (see 4.4.1). For instance, T1 reaches up to thousands of seconds for
phosphorus donors at 1.2 K[16]. To shorten the spin relaxation times a number of in-situ methods
have been developed such as chemical doping [186] and gamma irradiation [187]. Nevertheless
such methods are not tunable and a too fast T1 relaxation will ultimately affect the coherence time
T2. In short, for systems without an active reset, an efficient, universal and tunable initialization
method for spin systems is still lacking.

In all listed spin relaxation phenomena, spontaneous emission of radiation is usually quickly
dismissed as a possible spin relaxation mechanism due to the very weak coupling of spins to their
electromagnetic environment. However, Purcell realized in 1946 that the spontaneous emission rate
can be dramatically enhanced by placing the quantum system in a resonant cavity [188]. This effect
has since then be used to control the lifetime of atoms [28] and semi-conducting heterostructures [29]
coupled to microwave or optical cavities and is essential for the realization of high-efficiency single-
photon sources [30]. In this chapter, we apply this idea to spins in solid to provide an on-demand
re-initialization scheme. We first review cavity-enhanced spontaneous emission implementations
before demonstrating experimentally the Purcell effect for bismuth donors in silicon. The last part
will discuss how this effect can be harnessed to control in-situ the spin relaxation.
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8.1 Cavity-enhanced spontaneous emission

As we have seen in ch. 3, spontaneous emission of radiation is due to the coupling of a two-
level-system (TLS) to the quantum fluctuations of the electromagnetic field. If the TLS is in free
space, an infinity of electromagnetic modes are available for the photon emission, resulting in
an irreversible incoherent process. E. Purcell predicted in 1946 that by placing the TLS inside a
cavity [188], spontaneous emission can be greatly inhibited or enhanced due to the modification of
the mode density. This effect is captured by the so-called Purcell rate whose expression was derived
in ch. 3 (see Eq. 3.37) and is a founding concept of the field of cavity Quantum Electrodynamics[189].
In his pioneering article of 1946, Purcell considered a nuclear spin embedded in a resonant structure,
such as the resonant RLC circuit used in NMR. Because nuclear spin spontaneous emission occurs
at a negligible rate due to the very weak coupling of the spin to the vacuum fluctuations, the first
experimental observation was done instead with atoms in a microwave cavity [28].

Even if we have already derived the Purcell formula using the formalism of CQED in ch. 3, it is
interesting to derive it here using other arguments to understand why it has not be observed up to
now for spins. We thus first derive the theoretical expressions for spontaneous emission rates both
for an electrical and a magnetic dipole before succintly recalling the Purcell effect. We review its
experimental realizations in systems with an electrical dipole and then consider its application to
spins.

8.1.1 Spontaneous emission into free space

The rate of spontaneous emission into free space Γ0 can be derived using the Weisskopf-Wigner
approximation, as explained for instance in [190]. Consider a spin with an energy splitting ~ωs
between its ground |g〉 and excited |e〉 state. As we have seen in ch. 3, its interacting Hamiltonian
with the electromagnetic radiation is Ĥint = −µ̂ · B̂(t). In the Heisenberg picture, the free-space
quantized magnetic field is the sum of the quantized field of each mode of wavevector k and
polarization state λ, B̂ =

∑
kλ B̂kλ with B̂k,λ being [38]:

B̂kλ = i

√
µ0~ωk

2V
ekλ

(
âkλe

−iωkt − h.c.
)

(8.1)

where ekλ are the two unit polarization vectors and V the quantization volume. We assume
implicitly in this expression that the electromagnetic field is slowly varying at the spin location
so that we can realize the dipole approximation eik·r ≈ 1. Following the same steps than in 3.2.1
for each mode (k, λ), the interaction Hamiltonian in the interaction picture after the rotating wave
approximation is:

Ĥint = ~
∑

kλ

(gkλσ̂+âkλe
−i(ωk−ωs)t + h.c.) (8.2)

where the coupling strength for each mode is now gkλ = 〈e | µ · ekλ | g〉
√
µ0ωk/(2~V ). We next

assume that at time t = 0, the spin is in its excited state while the elecromagnetic field is in its
ground state, so that the overall state of the system is written:

|Ψ(t)〉 = ce,0|e, 0〉+ cg,kλ|g, 1kλ〉 (8.3)

with ce,0(0) = 1 and cg,kλ. Using the Schrödinger equation |Ψ̇(t)〉 = − iĤint

~ |Ψ(t)〉, one can show that
the evolution of the coefficient ce,0 is given by the following differential-integral equation:

ċe,0 = −
∑

kλ

|gkλ|2
∫ t

0

e−i(ωk−ωs)(t−t
′)ce,0(t′)dt′ (8.4)
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Nuclear spin
1/2[188] Electronic spin 1/2[5] Sodium atom [28]

|23S〉 ↔ |22P 〉
ω0/2π 10 MHz 7 GHz 340 GHz
Interaction µ = µN µ = ~γeS, γe = 28 GHz/T d = 570D

Γ0 (s−1) 3× 10−28 1× 10−12 145

Γ1 at T = 4 K (s−1) 5× 10−24 2.4× 10−11 150

Γ1 at T = 300K (s−1) 4× 10−22 2× 10−9 6× 103

TABLE 8.1: Spontaneous emission rate at zero, helium and room temperature for various systems
emitting microwave radiation in free space. µN is the nuclear magneton, γe the electron gyromagnetic
ratio.

The sum over the wavevectors may be replaced by an integral over k-space, spanned by spherical
coordinates with the z-axis aligned on µ so that µ.k = dk cos θ:

ċe,0 =

∫ ∞

ω=0

ρ(ω)dω

∫ π

θ=0

∫ 2π

ϕ=0

sin θ dθ dϕ
∑

λ

|gωλ|2
∫ t

0

e−i(ω−ωs)(t−t
′)ce,0(t′)dt′ (8.5)

with the mode density ρ(ω) being ω2V
8π3c3 . In this coordinate system, one can show that |gωλ|2

simplifies to µ̃2 sin2(θ)µ0ωk/(2~V ) where µ̃ = |〈e | µ | g〉|. Next, as ce,0(t) is expected to decay at a
rate ∼ Γ0 much smaller than the frequency ω,

∫∞
0
e−i(ω−ωs)(t−t

′)ce,0(t′)dt′ can be approximated as
≈ πδ(ω − ωs)ce,0(t), doing the so-called Weisskopf-Wigner approximation [190]. Performing the
integration over θ, φ and ω, Eq. 8.5 thus yields:

ċe,0 = −µ0µ̃
2ω3

s

6π~c3
ce,0(t) (8.6)

Identifying the decay rate in Eq. 8.6 to Γ0/2, we find the usual expression of Γ0 for a magnetic dipole
into free space [4]:

Γ
(magn)
0 =

µ0µ̃
2ω3

s

3π~c3
(8.7)

The derivation for an electrical dipole d is similar: the interacting Hamiltonian is given by Ĥint =

−d̂ · Ê(t) and the free-space quantized electrical field Ê is linked to B̂ by Ek,λ = Bk,λ × ek/√µ0ε0.
Following the same steps, we obtain:

Γ
(elec)
0 =

d̃2ω3
s

3πε0~c3
(8.8)

Interestingly, if we consider a Bohr magneton µB and the dipole created by two elementary charges
separated by a Bohr radius d ∼ ea0 the ratio of their spontaneous emission is Γ

(elec)
0 /Γ

(magn)
0 =

c2d2

µ2 = 1
α2 where α is the fine structure constant, confirming that an electrical dipole is naturally

more strongly coupled to the field than a magnetic dipole.

These rates are derived under the assumption that there are no thermal photons populating the
electromagnetic field. If it is at thermal equilibrium at a temperature T , its thermal photon occupancy
is nth(T ) (see Eq. 2.10). As we have seen in ch. 3 (see Eq. 3.45), the resulting relaxation rate is modified
to Γ1(T ) = (2nth(T ) + 1)Γ0. Due to the ω3

s dependence and to the strength difference between
electric and magnetic dipole transitions, the spontaneous emission rates at 4 K and 300 K for a
Rydberg atom, an electronic spin, and a nuclear spin range from easily detectable values to the age
of the universe, as shown in Table 8.1.
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FIGURE 8.1: Experimental evidence of the Purcell effect with Rydberg atoms [28]. a Setup schematic. b
Ramp voltage tuning to detect |23S〉 or |22P 〉 levels. c Experimental signal showing the signal measured
when the cavity is off resonance (black) and on resonance (red). Figures extracted from [28, 192]

8.1.2 The Purcell effect

The Purcell effect dramatically enhances the spontaneous emission of a TLS since the resonant
structure in which it is embedded has a mode density peaked at ω0 which can be orders of magnitude
larger than the vacuum mode density. It can also inhibit the spontaneous emission when the cavity
is non resonant with the two-level system and acts as a filter [191]. In ch. 3, using cavity QED
formalism, we have shown that the cavity-enhanced spontaneous emission rate was (see Eq. 3.37):

Γp(∆) = κ
g2

∆2 + κ2/4
(8.9)

where κ is the cavity emission rate, ∆ the detuning between the cavity and the TLS, and g the coupling
constant. Instead of this formula, the Purcell effect is usually given by a parameter called the "Purcell
factor" defined by ηP = Γp(∆ = 0)/Γ0 and expressed as a function of a quantity called the resonator
mode volume, defined as Veff =

∫
V
|f(r)|2dr with f(r) a dimensionless function proportional to the

field mode amplitude at location r with maximal value 1. Eq. 8.9 gives Γp(∆ = 0) = 4g2/κ, where
the coupling constant can be expressed as g2 = µ̃2µ0ωs/2~Veff . Using Eq. 8.7, we then obtain that:

ηp =
3

4π2

Qλ3

Veff
(8.10)

where λ = 2πc/ωs, which precisely corresponds to the original Purcell formula [4]. At radio
frequencies, the Purcell factor can be very large. For a nuclear (electronic) spin inside an usual
NMR(ESR) cavity (Q = 1000, Veff = 1mm3), it is as large as ηP = 8×1012(2×104). Nevertheless, due to
the very weak values of the spontaneous emission rate in these systems, even the Purcell-enhanced
spontaneous emission remains usually negligibly small. In the optical domain, the achievable
Purcell factors are closer to unity because the cavity dimensions are usually larger than the emission
wavelength. However since relaxation times are already limited by spontaneous emission in free
space, the Purcell effect is readily observable.

8.1.3 Experimental realizations

The first experimental evidence of the Purcell effect came from the optical domain with observed
intensity and rate alterations in the fluorescence of dye molecules deposited on a thin dielectric
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layer over a metal substrate with both magnetic and electric dipoles [193]. A more quantitative
test of Purcell-enhanced relaxation was performed with sodium Rydberg atoms flying through
a microwave Fabry-Pérot cavity in 1983 in the Haroche group [28], see Fig. 8.1a. The transition
labelled |23S〉 ↔ |22P 〉 occuring at 340 GHz is tuned to resonance with a superconducting cavity
of quality factor Q ∼ 106. The experiment is realized at 4 K where the thermal occupation of the
intra-cavity field is below 2% and the spontaneous emisison rate into free space is Γ1 = 150 s−1

due to the large electrical dipole of the targeted transition. The sodium atoms are prepared in the
|23S〉 state and fly through the cavity one by one before being detected via state ionization. By
sweeping the voltage applied on the condenser plates realizing the ionization, the probabilities
for the atoms to be in the states |23S〉 or |22P 〉 are detected at different times, Fig. 8.1b. When the
cavity is resonant with the transition, the Purcell effect increases the probability for the atom to
decay to |22P 〉 during the time the atom spends in the mode. Thus a larger signal is detected at the
corresponding |22P 〉 voltage when the cavity is tuned at resonance, see Fig. 8.1c. The measured
spontaneous emission rate enhancement was in good agreement with the expected Purcell factor
ηP = 530. Purcell-inhibition was demonstrated a few years later also in the microwave domain with
a single electron in a Penning trap [194] and with Rydberg atoms [195]. Those results were the first
experimental milestones in the development of CQED.

Following this, cavity-enhanced and inhibited spontaneous emission were observed for systems
emitting radiation in the near-infrared and optical domains: caesium [196] and ytterbium [197]
atoms as well as dye molecules [198]. This last experiment pioneered the control of spontaneous
emission with microcavities, where the cavity characteristic size is comparable to the wavelength
of emission. Microcavities made out of semiconducting heterostructures [199] were then used
to control spontaneous emission of free excitons in GaAs quantum wells [29, 200] and later on
of quantum dots in InAs [30]. It made possible the development of ultra-bright single photon
sources by placing a single emitter in a nanostructure to increase both the spontaneous emission
rate and the collection efficiency. Various structures have been developed over the last fifteen years
for quantum-dots and optical defects based photon sources: micro-pillars [30], micro-disks [201],
photonics crystals [202, 203], as well as plasmonic structures such as gold particles [204].

8.1.4 Spontaneous emission with spins

Due to the very weak coupling of their magnetic dipole to vacuum fluctuations, spins have never
reached a regime where their dominant relaxation mechanism was spontaneous emission – even
though they are indeed placed in a cavity used for detection in magnetic resonance. Nevertheless

a b

FIGURE 8.2: Nuclear spin noise. a A sample of NaClO3 is embedded in a LCcircuit linked to a SQUID
amplifier. b Output power spectrum of the resonator showing the spin spontaneous emission noise.
Figures extracted from [187, 153].
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FIGURE 8.3: Experimental scheme. a To implement the Purcell effect, an ensemble of bismuth donors in
silicon is embedded in a cavity. b The cavity is implemented by a LC lumped element resonator (see
Fig. 5.9), whose inductive wire couples to the spins with a coupling constant distribution peaked at
56 Hz.

in 1985, Sleator et al. were able to detect the spontaneous emission of nuclear spins [187, 153]. A
sample of NaClO3 containing 35Cl nuclei is embedded in a resonator of frequency 30 MHz and
quality factor Q = 1000, Fig. 8.2a, yielding ηP = 1011 and a corresponding enhanced spontaneous
emission rate Γp = 10−16s−1. Even in the absence of any external radiofrequency drive, the nuclear
spins spontaneous emission results in voltage fluctuations in the readout circuit. When starting
from a saturated spin ensemble where Nspins/2 spins are in their excited state, the power emitted
by spontaneous emission is ~ωsΓpNspins/2. Due to the large number of spins N = 1021 in the
experiment, this power was large enough to be detected as an added bump in the resonator output
power spectrum, see Fig. 8.2b. Nevertheless the associated radiative relaxation rate T1 ≈ 3000 years
remained significantly larger than the non-radiative dominant relaxation times estimated to be on
the order of days in the experiment.

8.2 Experimental implementation for electronic spins

Here we reach the regime in which the Purcell effect is so strong that spontaneous emission becomes
an efficient relaxation mechanism for the spins to return back to equilibrium [27]. Our experiment is
suited to operate in this regime since on one hand Si:Bi are expected to have long phonon-limited
relaxation times at 20 mK (of order 105 s, see ch. 4). On the other hand, the steps undertaken in the
previous chapters to increase the ESR sensitivity, namely a small resonator mode volume and a high
quality factor, result in a large Purcell factor1 ηP ≈ 1× 1013 that lead to spontaneous emission times
on the order of seconds; thus making it possibly the dominant spin relaxation mechanism.

8.2.1 Cavity-spin system

The cavity is implemented by the aluminum superconducting resonators deposited at the surface
of the bismuth implanted sample, designed and characterized in ch. 5. In this section, we only
use resonators B and C, whose quality factors are in the 105 range (see Table 8.2). The quantum
fluctuations δB of the resonator field are responsible for the Purcell-enhanced spontaneous emission.
Without any intra-cavity thermal state, the cavity-enhanced spontaneous emission rate is simply
given by the Purcell formula at resonance Γp(∆ = 0) = 4g2/κ.

When a thermal state is present, the steady-state polarization of the ensemble is reduced and the
relaxation rate is increased by 2nth +1 (see Eq. 3.45). Considering our setup and the microwave lines

1We consider Q = 105, ω0/2π = 7.3 GHz. To evaluate Veff , we use the microwave fields simulations of Fig. 5.10 to
determine f(r) and we obtain Veff = 5× 104 µm3 = 0.05 pL.
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ω0/2π Q B0 Pin(π) κ1 n̄(π) g/2π T1

GHz mT pW s−1 Hz s
B 7.246 3.2× 105 5.13 1.9 5.8× 104 1.0× 106 50± 7 0.26± 0.08
C 7.305 1.1× 105 2.78 4.6 3.1× 105 7.4× 105 58± 7 0.75± 0.15

TABLE 8.2: Experimental values for resonators B & C. Resonator X, with frequency ω0 and quality
factor Q is resonant with transition |9〉 ↔ |10〉 at magnetic field B0. From Rabi oscillations, the input
power of a π pulse of duration 5µs can be determined. Knowledge of Q and κ1 the input coupling
rate allow to link Pin to n̄ the intra-cavity mean photon number for a π pulse and to the spin-resonator
coupling constant g0. The Purcell formula allows to estimate the expected enhanced spontaneous
emission time at resonance.

shielding (see ch. 5), we expect nth = 0.05 and additional measurements (described in Appendix A)
confirms nth = 0.05± 0.05. We can therefore expect T1 values given by:

T1 = Γ−1
p (0)/(2nth + 1) (8.11)

The experiments are realised on the low-field peak of the transition |9〉 ↔ |10〉, with the applied
magnetic field B0 aligned along the wire (θ = 0), see Table 8.2. As explained in ch. 6, this peak
originates from spins located under the wire. An estimate of the spin-coupling constant over this
spin sub-ensemble yields a distribution sharply peaked on g/2π = 56 ± 1 Hz, (see Fig. 8.3b and
5.3.3).

8.2.2 Experimental estimate of g

Rabi oscillations can be performed to obtain an independent estimate of g, see Fig. 8.4c. As explained
in 6.1.3, their frequency ΩR = 2g

√
n̄ directly yields g upon knowledge of the incident power Pin

and the measured input and output coupling rates. The precision of this determination is limited by
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FIGURE 8.4: Purcell-limited T1. a-b Data obtained with the static field B0 parallel to the inductor
(θ = 0). The symbols represent data for resonator B (green squares) and resonator C (brown circles)
a Rabi oscillations are driven by varying the cavity input power of the refocusing π pulse (5 µs-long)
applied τ = 300 µs after the first π/2 pulse. Solid lines are exponentially damped sinusoidal fits. b The
inversion-recovery sequence is used to measure the spin relaxation time T1 (see 6.3.1). Solid lines are
exponential fits to the data with time constant T1. The uncertainty is given by the standard deviation of
the exponential fit parameters.
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T1 (right axis). b Comparison of T1 measured with readout pulses of 5 µs (red squares) and 100 µs (blue
circles). The spin energy relaxation time T1 being of order 1 s, we choose a repetition rate γrep =0.04 Hz
sufficiently low to allow full relaxation of the spins in-between successive inversion recovery sequences.

the accuracy on Pin which we estimate to be of 30%. The values obtained for resonators B and C
(see Table 8.2) are in good agreement with the numerical estimate.

From the experimental determination of g, the measured resonator quality factors and nth, the
expected spontaneous emission rate at resonance can be estimated to be T1 = 0.26 ± 0.08 s for
resonator B and T1 = 0.74 ± 0.15 s for resonator C, see Table 8.2. We can also evaluate the spin-
ensemble cooperativity (see Eq. 3.51) to evaluate the relevance of collective radiation effects. Using
the numerical simulations of ch. 7 we find CB = 0.26 and CC = 0.09. Since both are below 1, we
thus expect that spins will relax independently from each other, with an exponential decay at rate
ΓP .

8.2.3 T1 at resonance

As explained in section 6.3.1, T1 is measured by the inversion-recovery sequence shown in Fig. 8.4c,
consisting in a π pulse followed after a varying delay T by a spin-echo readout sequence. The
resulting echo signal AQ(T ) comes from all spins whose frequency lies in the readout sequence
pulse bandwidth. To avoid an averaging effect on the measured T1 arising from its dependence on
∆, the detection bandwidth has to be small (see 6.1.3). For the narrowest bandwidth κ/2π = 23 kHz
of resonator B, Fig. 8.5a shows that pulses of 5µs are heavily filtered by the resonator and have a
bandwidth of 40 kHz whereas 100µs-long pulses have a reduced bandwidth of ≈ 10 kHz. In the
case of 100µs-long pulses, only spins with |∆|/2π ≤ 5 kHz contribute to the signal, corresponding
to a negligible dispersion of 5% for the Purcell relaxation times. Indeed, as illustrated in Fig. 8.5b,
no averaging effect is observed for a T1 measured with 100 µs-long pulses whereas a T1 acquired
with 5-µs–long pulses is 50% longer. Therefore we chose to use 100µs-long readout pulses although
the inversion pulse bandwidth is chosen to be large (tπ = 5µs) in order to maximize the inversion
efficiency.

The relaxation curves measured for resonators B and C are shown in Fig. 8.4c and are well fitted by
exponential decays. The extracted characteristic times yield T1 = 0.35± 0.1 s for resonator B and
T1 = 1.0± 0.2 s for resonator C. This is in close agreement with the predicted values (see Table 8.2).
Resonators B and C have a factor 3 difference in their quality factor, a factor that we retrieve in their
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relaxation times. From these results we can infer that cavity-enhanced emission is the dominant
spin relaxation mechanism in our experiment.

8.3 Controlling spin relaxation

We now show how the Purcell effect can provide a method to tune T1 in-situ and on-demand.
Indeed, the Purcell rate depends on three quantities that can be tuned experimentally:

• the cavity quality factor Q. At resonance, the Purcell rate is proportional to Q. This is
evidenced in our experiment by the dependence of the relaxation times measured at resonance
for resonators B and C on their quality factors. A dynamic control of the quality factor could
be achieved by using Josephson junction devices [205, 206]. We have not explored this option.

• the spin-cavity coupling constant g. At resonance, the Purcell rate is proportional to g2. In
our experiment, due to the strain applied by the aluminum wire on the silicon substrate, we
can access different subsets of spins coupled at different strengths to the resonator to probe
this dependence (see 6.2.2). In our setup, the coupling constant can also be altered in-situ by
changing the angle between the static fieldB0 and the microwave field δB, as will be shown
below.

• the spin-cavity detuning ∆. The Purcell rate is strongly dependent on the spin-cavity detun-
ing which can be controlled by changingB0.

8.3.1 Tuning T1 via the spin-cavity coupling g0

Purcell-limited T1 dependence on B0

In our experiment, the spin frequency spread ∆ω is much larger than the resonator bandwidth κ.
By applying various magnetic fieldsB0, different spin subsets are brought to resonance. Since the
line inhomogeneity is due to the strain applied by the aluminum (see ch. 6), the spin frequency is
correlated to their spatial position with respect to the wire, which is also correlated to the spatial
dependence of δB(r) and thus to g. We evidenced this effect in 6.2.2 via the magnetic field B0

dependence of the Rabi oscillations frequency (see Fig. 8.6a). From this measurement, we estimate g
with values ranging from 20 to 90 Hz for B0 ranging from 4.9 to 5.4 mT for resonator B.

We measure T1 relaxation times with an inversion recovery sequence at various magnetic fieldsB0

on a range covering the entire spin frequency distribution (see Fig. 8.6b). As anticipated, we find a
strong dependence of T1 onB0, with values ranging from 1 to 8 s. To verify that T1 scales as g−2, we
plot (T1,i/T1,0) as a function of (gi/g0)−2 with T1,0 = T1(5.13 mT) and g0 = g(5.13 mT) and T1,i and
gi the values at different magnetic fields. The corresponding experimental data shown in Fig. 8.6c
demonstrate quantitatively that within the experimental errors bars T1 depends linearly on g−2 as
expected from the Purcell law.

If we focus on a single magnetic field B0 = 5.13 mT, we note that T1,0 = 1.4 ± 0.2 s which is a
factor 2 longer than expected for an estimated g0/2π = 56 Hz and a thermal photon occupancy
nth = 0.05. Two factors can explain this error. First, the measured quality factor was by mistake not
determined at the single-photon limit and thus could be wrong by a factor 2 (see 5.3.4). Secondly, g
is determined with two uncertainties: the input power Pin is known only at 1 dB precision and in
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dashed line on a). The uncertainties are determined from the σ-values extracted from the T1 and Rabi
oscillations fits. The solid red line is the demarcation y=x. All data was collected with resonator B, with
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this particular run the couplings κ1 and κ2 for each resonator were not determined, leading us to
rely on assumptions2 to estimate the intra-cavity photon number n̄.

In spite of this remaining uncertainty, we can still harness the linear dependence of T1 on g2 to
control T1: here we show that we can access values of T1 ranging over one order of magnitude.
We note that the spatial dependence of T1 could be evidenced more straightforwardly if the spin
ensemble was attached to the tip of a scanning probe, and could be displaced with respect to the
resonator.

2Compared to the couplings presented in Table 8.2, the chip was oriented differently and resonators B & A have reversed
positions with respect to the input and output antennas whereas resonator C had the same spatial position. Assuming a
posteriori that the losses were identical for each resonator, we can estimate κint = 3.1× 105s−1 by supposing the couplings
for resonator C are identical to Table 8.2. Then by assuming resonator B has the same asymmetry in coupling as resonator A
had, we can evaluate κ1 = 9.4× 103s−1 and are able to determine the intra-cavity photon number n̄ and thus determine
g0/2π = 56 Hz.
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Purcell-limited T1 dependence on θ

Our 2D coil magnet offers another method to control g in-situ. The experimental 2D-coils setup
allows to tiltB0 within the resonator plane with an angle θ with respect to the resonator wire. As a
consequence of the spin system isotropy, the spin quantization axis is always aligned alongB0. The
particular sub-ensemble of spins lying under the wire is excited by a fieldB1 mainly parallel to the
surface, with only a small out-of-plane component. By tuning θ, the quantization axis can be tuned
from being perpendicular toB1, a geometry that maximizes the coupling to the resonator, to being
parallel toB1 which leads to a vanishing coupling to the field. This θ-dependence of g0 is captured
in the following relation (see Eq. 5.20):

[g(θ)]2 = g2
y cos2(θ) + g2

z (8.12)

where gz ∝ δBz and gy ∝ δBy , see Fig. 8.7a. To experimentally test this expected θ-dependence, we
perform Rabi-oscillations at varying angles θ, as shown in Fig. 8.7b. We performed this experiment
on resonator C using the |9〉 ↔ |10〉 transition. The frequency of the Rabi oscillations is decreasing as
a function of θ, which indicates decreasing values of g(θ), as seen in Fig. 8.7c. For large angles θ, the
coupling becomes too small to detect a signal, explaining the disappearance of the Rabi oscillations.
A fit of g(θ) with Eq. 8.12 yields gy/2π = 55 Hz and gz/2π =17 Hz.

T1 relaxation curves as a function of θ are then measured with an inversion recovery sequence (see
Fig. 8.7d). Smaller values of T1 are measured for larger θ as expected from the reduced coupling
of the spin to the microwave field. Plotting 1/T1(θ) versus cos2(θ) shows a linear dependence (see
Fig. 8.7e). It follows the theory line given by the Purcell relation evaluated with the g(θ)-fit from
Fig. 8.7c (red solid line) and the measured quality factor for resonator C (given in Table 8.2).

Here, we have been able to control the relaxation time T1 by a factor 3 by tuning the spin-cavity
coupling constant. Larger tuning factors could be obtained with a betterB1 homogeneity over the
probed spin ensemble, which would allow to better alignB1 onB0 and thus to suppress completely
the spin-microwave coupling.

8.3.2 Tuning T1 via the spin-resonator detuning

Experimental protocol

According to Eq 8.9, T1 should strongly depend on the spin-cavity detuning if it is indeed limited by
the Purcell effect. To test this effect we introduce in the T1 measurement sequence a magnetic field
pulse of amplitude B∆ and of duration T between the spin excitation and the readout spin-echo
sequence (see Fig. 8.9a), which results in a temporary detuning ∆ of the spins given by ∆ = dωs

dB B∆.
As the spins are detuned from the resonator during this waiting period they have a smaller Purcell
decay rate leading to a reduced polarization decay during the time T . The decay of the echo signal
amplitude AQ as a function of T yields the detuned spins energy relaxation time.

The magnetic field pulseB∆ is implemented by applying a current pulse on one of the Helmholtz
coils used to apply the static fieldB0, see Fig. 8.8a. The pulse is output by a pulse generator with
50 Ω output impedance placed in parallel to the DC supply of one of the Helmholtz coils. To calibrate
the additional magnetic field pulse, the generator is used in continuous mode to realize a field sweep
echo spectroscopy yielding directly the voltage to B0 conversion factor, as seen in Fig. 8.8b. Note
that pulsing only one of the two coils also slightly modifies θ by less than 4o, which we neglect in
the following. The response time is determined to be on the order of 1 s by measuring the response
to a step pulse via the spin echo signal, see Fig. 8.8c.

To generate the magnetic field pulse, we use a square voltage biasing pulse, which generates a
magnetic field B∆ with transient exponential rising and falling periods tup and td (Fig. 8.9, red).
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wire, whose direction for the concerned spins is along y. b Rabi oscillations measured as a function ofB0

field orientation θ; the colour scale indicates the echo amplitude in arbitrary units. c The Rabi oscillations
in a are used to extract the spin-cavity coupling strength g (blue symbols, error bars are determined by
the 30% uncertainty on Pin). These data are fit to Eq 8.12 (red line); the non-zero value of g(π/2) is due to
the finite out-of-plane component of the microwave magnetic field. d Inversion recovery measurements
(error bars indicate the standard deviation of a measured echo) for different values of θ confirm that the
relaxation time T1 shown in panel e (error bars are estimates of the standard deviation of the fit) varies as
g2(θ). The red solid line in e is the Purcell rate predicted using the g(θ) dependence fitted from panel c.
All data were collected using resonator C atB0 = 2.8 mT, with characteristics given in Table 8.2.

To take into account the slow coil response, buffer delays of 1 s are added after ramping the coil
voltages up and down. The relaxation rate given by the Purcell effect will take values ranging from
T1(0)−1 to Γp = T1(0)−1 × 1

1+4(∆/κ)2 with soft transitions (Fig. 8.9, green). Those soft transitions
will cause additional unwanted decays of the spin polarization (Fig. 8.9, purple). The overall decay
for the polarisation during the pulse may then be written as:

p(t) =





0 for t = 0

1− e−
∫ t
0

Γp[∆(t′)]dt′ for 0 < t 6 tup

1− e−
∫ tup
0 Γp[∆(t′)]dt′ × e−Γp(∆)(t−tup) for tup < t 6 tup + T

1− e−
∫ tup
0 Γp[∆(t′)]dt′ × e−Γp(∆)T × e−

∫ t
tup+T

Γp[∆(t′)]dt′

for tup + T < t
1 t =∞

The polarisation measured with the spin-echo sequence can be expressed without knowledge
of tup and tdown by writing pm(T ) = pm(∞) − [pm(∞) − pm(0)]e−Γp(∆)T since pm(T = ∞) = 1.
The readout echo signal AQ(T ) being directly proportional to the polarization, it will decay as
AQ(T ) = AQ(∞) − [AQ(∞) − AQ(0)]e−Γp(∆)T and gives the expected exponential decay to be
measured. The quantity e−Γp(∆)T is accessed by computing [AQ(T )−AQ(∞)] / [AQ(0)−AQ(∞)].
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FIGURE 8.8: Coil calibration. a A comparison between the lineshape obtained by sweeping the output
of the pulse generator used in DC mode (blue points) with B0 = 2.82 mT to the lineshape obtained by
sweeping the DC coil bias (red points) yield the calibration of the magnetic field pulse. b (top panel)
The time response of the coil is probed by reading out the spin echo signal for various delay times T
(left panel) after a step command pulse rising the magnetic field from B1 to B2. At very short times
T � 0.01 s, an echo signal corresponding to the steady state A(B1) (right panel) is measured whereas
for longer times T >1 s the echo signal corresponds to the steady-state A(B2) signal. In-between, due to
the transient of the pulse, the readout does not occur at the same magnetic field as the excitation and
thus we measure an echo signal less than the steady-state situation. From this a transient time of 1 s is
inferred for the coils.

For the experiment to be successful, the loss of polarization during the buffer times should be
limited: AQ(T = 0) should be significantly smaller than AQ(T =∞). This signal loss is minimized
by purposely increasing the T1 at resonance, thanks to its angular dependence demonstrated earlier.
We set θ = π/4 and work on transition |9〉 ↔ |10〉 with resonator C so that T1(∆ = 0) = 1.68 s. For
values of ∆ ranging from 0.3 MHz to 4 MHz, AQ(0)/AQ(∞) varies from 0.2 to 0.5 since the coil
response time is now on the order of T1(0)−1, which leaves enough signal for the T1 measurements.

Spectral spin diffusion

Inversion recovery is not an ideal method to observe the long relaxation times we expect. Indeed,
when the spin linewidth is broader (∼ ×20) than the excitation bandwidth and the thermalization
time is very long, one can observe polarization mixing mechanisms [207, 4], spectral and spatial
spin diffusion being the most relevant to our case as the system is only constituted from one species.
For ∆/2π = (ωs − ω0)/2π = 3.8MHz > ∆ω, an inversion recovery sequence including a detuning
pulse (see Fig. 8.10a) yields a double exponential relaxation (Fig. 8.10d, green), which we attribute
to the existence of a spectral spin diffusion mechanism.

One way to prevent spectral spin diffusion is to suppress any polarization gradient along the spin
line by saturating the spins first to reach an incoherent mixed state with the population evenly
shared between excited and ground states [5]. This is difficult to achieve in our experiment since the
spin linewidth ∆ω is 20 times larger than the resonator bandwidth. The simplest saturation recovery
scheme (Fig. 8.10b) consists of sending a strong microwave tone at resonance, but a T1-relaxation
measured with this scheme still yields a double-exponential decay (Fig. 8.10d, orange), with time
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spin polarization. b Illustration of the evolution of the polarization during the sequence.

constants similar to the inversion recovery case. This implies that the saturation of the line is still
partial. To improve the saturation, one can sweep the magnetic field during the saturation pulse so
as to bring different subsets of the spin line to resonance and realize a full saturation. The adopted
sweep scheme is shown on Fig. 8.10c. The corresponding relaxation curve now fits well to a simple
exponential decay (Fig. 8.10d, blue), indicating the suppression of the spin diffusion effect.

One can further check the quality of the saturation by measuring the polarization across the full
spin linewidth immediately after saturation. To realize such scans (Fig. 8.10e), we apply the relevant
saturation pulse at ω0, then apply a magnetic field pulse B∆ = (ωs − ω0)/γe to measure the echo
signal AQ(ωs) at a different frequency ωs. When no saturation pulse is applied, the measured echo
signal AQ0(ωs) gives the full polarization −〈Sz(ωs)〉 = +1 (black curve) and shows the natural
spin linewidth. With an excitation pulse, the polarization is −〈Sz(ωs)〉 = AQ(ωs)/AQ0(ωs), where
AQ(ωs) is the measured echo signal. Thus −〈Sz(ωs)〉 = −1 indicates a full inversion, 〈Sz(ωs)〉 = 0
saturation and −〈Sz(ωs)〉 = +1 return to thermal equilibrium. The green, orange and blue curves
are taken after respectively a π pulse (a) and a saturation without field sweep (b) and with field
sweep (c). At resonance, one expects a change of Sz from -1 to +1 for a π pulse and from -1 to 0 for
a saturation pulse. Due to the coil transient time, all three curves show partial relaxation. If the
saturation was optimal and no partial relaxation was occurring, one should observe Sz = 0 for all
detunings ∆. Among the three sequences studied here, scheme (c) is the closest to saturating the line.
For scheme (b) the spin saturation bandwidth is of ≈ 250 kHz and for the inversion scheme (a) the
bandwidth ≈ 82 kHz is set by the resonator. This confirms that only in scheme c can spin diffusion
be fully suppressed as confirmed by the observed simple exponential decay and we therefore use it
to measure the ∆-dependent relaxation rates.

Experimental ∆-dependent relaxation

The magnetic field pulse is followed by a spin-echo sequence to readout the polarization of the
ensemble; the echo signal amplitude AQ as a function of T yields the spins energy relaxation time
while they are detuned by ∆.
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FIGURE 8.10: Spectral spin diffusion. a-c T1 measurement sequence when spins are detuned from
the cavity by applying a magnetic field B∆, providing a detuning ∆ = ωs − ω0 = 2πγeffB∆, with
γeff = df/dB(B0). a uses a π = 5µs pulse to realize a so-called inversion recovery sequence, b
and c are saturation recovery sequences: b uses a 1-s-long strong microwave pulse sent at cavity
resonance whereas c has in addition a magnetic field scan shown on the bottom part. Depicted in
orange is the expected magnetic field profile due to the the coil filtering, assuming the coil to be an
order-1 low-pass filter of bandwidth 1-Hz. d T1 measurements for sequence a (green), b (orange), c
(blue) for ∆/2π = 3.8 MHz. Fits (black lines): a & b have a double exponential decay whereas c is a
simple exponential. We attribute this double-exponential decay to spin diffusion. e Spectral profiles of
excitation pulses a (green), b (orange) & c (blue). The sequence is as follows: send the excitation pulse,
detune the spins and measure AQ(ωs). Black line is the reference profile without any excitation pulse,
yielding reference 〈Sz(ωs)〉 = −AQ0(ωs)/AQ0(ωs). When an excitation pulse is sent, one can access
〈Sz(ωs)〉 = −AQ(ωs)/AQ0(ωs). Note that neither the π profile or the saturation profile reach either the
full inversion +1 or full saturation 0 at resonance. This is an artefact due to the coil transient time.

As evident in Fig. 8.11b, we find that the decay of the echo signal is well fit by a single exponential
with a decay time increasing with |∆|. The extracted T1(∆) curve (see Fig. 8.11c) shows a remarkable
increase of T1 by up to 3 orders of magnitude when the spins are detuned away from resonance,
until it becomes limited by a non-radiative energy decay mechanism. The error bars come from the
accuracy of the relaxation rates fits.

The global fit shown on Fig. 8.11c is obtained by using equation T1(∆)−1 = Γp + ΓNR which may be
expressed as:
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shot standard deviation (s.d.), n=2001). c Measured T1 as a function of detuning ∆, error bars are fit
s.d. estimates, using resonator C and with θ = π/4. Blue points correspond to data acquired on the
left peak of transition |9〉 ↔ |10〉 (spins under the wire), the green point, to data acquired on the right
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peak of transition |8〉 ↔ |11〉(spins under the wire). The solid red line is a fit to the blue data points
with (Γp(∆) + ΓNR)−1, yielding Γ−1

NR = 1500± 100 s, grey area. These measurements are taken using
resonator C and with θ = π/4, which results in T1 = 1.68 s at ∆ = 0. In this experiment done in a
separate run, the quality factor of resonator C dropped from Q = 1.07 × 105 to Q = 8.9 × 104 due to
slightly higher losses, yielding the resonator bandwidth κ/2π = 82 kHz.

T1(0)−1

(
1 + 4

(
∆

κ

)2
)−1

+ ΓNR (8.13)

so that it involves only experimentally determined quantities. Indeed, κ is precisely determined by
measuring the quality factor of the resonator3 at low power; T1(0) is determined accurately by an
inversion recovery sequence, and ∆ has been determined by the precise calibration of the coil pulse.
The only remaining free parameter in the fit is thus ΓNR, yielding Γ−1

NR = 1500± 100 s.

Non-radiative decay

We now discuss the possible non-radiative decay mechanisms in light of what is known about the
relaxation of bismuth donors in silicon, as explained in ch. 4 (see 4.4.1). At the low temperatures of
our experiment, direct phonon relaxation should be the dominant process. As explained earlier, Si:Bi
energy levels are in general highly hybridized electro-nuclear spin states; as a result, their phonon
relaxation rates in general involve complex combinations of TS (electronic spin flip: ∆ms = ±1,
∆mi = 0) and TX (∆ms = ±1, ∆mi = ∓1) processes. However, the |9〉 ↔ |10〉 transition is
somewhat special from that respect, as the TX process is impossible and only the TS process can
contribute, which simplifies the discussion. In 4.4.1, we have derived by comparison to data on

3In this experiment done in a separate run, the quality factor of resonator C dropped from Q = 1.07 × 105 (given in
Table 8.2) to Q = 8.9× 104 due to slightly higher losses, yielding the resonator bandwidth κ/2π = 82 kHz.
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Si:P donors that a Ts relaxation time on the order of 105 s is expected at zero-temperature, which
turns out to be much larger than the 1500 s measured in our experiment. This seems to indicate
that phonon relaxation is not likely to explain ΓNR. In addition, for transition |8〉 ↔ |11〉, as level
|11〉 can relax to two ground states |7〉 and |9〉 with a different admixture of Tx and Ts processes,
a different relaxation rate would likely be expected, instead of what we have measured the same
non-radiative decay time (purple point shown in Fig. 8.11c). Note that another signature would also
be a minor dependence on strain, on the order of a factor unity. We can test this by measuring the
non-radiative decay for spins located outside the wire where the strain is different than under the
wire. The measured decay Γ−1

NR = 1800± 200 s (green point) is only slightly different than the value
Γ−1

NR = 1500± 100 s measured for spins under the wire (blue point), with a too large uncertainty for
the test to be conclusive.

We next discuss whether charge hopping (see 4.4.1) could explain our measured ΓNR. Indeed, inter-
estingly, for similar concentrations of Si:P as our sample concentration in Si:Bi, Feher et al. showed
that T1 at 1.25 K is decreased by several orders of magnitude compared to its low-concentration
value [16]. They have attributed the effect to the activation of a spin exchange mechanism by the
formation of clusters of Si:P donors at higher concentrations. It is difficult to estimate if this effect
is relevant in our experiment since on one hand Si:Bi is a deeper and more confined donor than
Si:P and thus the threshold concentration should be higher than for Si:P. On the other hand, charge
hopping is enhanced in presence of ionized donors [16], as is the case in the experiment since the
donors are partially ionized nearby the wire due to the Schottky barrier created in contact with the
aluminum (see Fig. 7.2). Charge hopping thus appears as one of the possible candidates to explain
our data.

Last, as we have seen above with the imperfections of the inversion recovery sequence, spin
diffusion mechanisms can occur. In the case of ΓNR, the mechanism would not be spectral spin
diffusion but spatial spin diffusion. The spins outside the detection volume of the resonator remain
polarized even after the microwave saturation and thus a polarization transfer to the saturated
probed ensemble of spins located near the wire could take place, appearing in the measurement as a
spin relaxation process. One very naive way of estimating this process is by using the measurements
we have realized for spectral spin diffusion, as the underlying mechanism is identical. In our
experiment, due to strain applied by the aluminum, the spatial and spectral distribution are linked:
the ∆ω/2π = 2 MHz broad linewidth of the left side peak of transition |9〉 ↔ |10〉 corresponds
approximately to spins under the wire which occupy a volume of width 5 µm. With a π-pulse of
bandwidth 100 kHz, the spectral spin diffusion process takes place approximately in 100 s. Thus, if
we were to saturate a spectral range of ∆ω/2π = 2 MHz one would roughly expect spin diffusion to
occur on a timescale of 2000 s, which is indeed of the same order of magnitude as Γ−1

NR.

To conclude, the lack of measured values for bismuth in conditions similar to our experiment, the
in-built strain and consequent broad spin linewidth as well as the ionized donors present in our
experiment make the identification of the non-radiative decay mechanism quite difficult. Given
the above discussion, we tentatively attribute this non-radiative decay to charge hopping spin
relaxation, and(or) to spin diffusion.

8.4 Conclusion

We have brought three independent experimental demonstrations that T1 in our experiment is
limited by spontaneous emission. T1 at resonance was found to quantitatively match the Purcell
formula; T1 was found to linearly depend on g−2; and T1 was changed by 3 orders of magnitude
by changing the spin-resonator detuning by only 2 MHz, again in quantitative agreement with
Purcell formula. This Purcell relaxation could be used as an efficient method to re-initialize any
spin in its ground state on-demand, which could be particularly useful in particular in Quantum
Information Processing. The Purcell effect could also be used for dynamic nuclear polarization
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in magnetic resonance[208, 209]. In such schemes, the polarization of a nuclear state is built by
cross relaxation on a electron-nuclear flip-flop transition. Cavity-induced relaxation would be an
alternative to existing relaxation mechanisms or enhance the relaxation rate of this transition to
improve the efficiency of the nuclear polarization.

Even if our experiment takes place at low magnetic fields and low temperatures, such limits are
not intrinsic to this scheme and the Purcell effect could be observed with a variety of other spin
systems. Larger magnetic fields are possible if one uses superconductors with higher critical fields
than aluminum. Resonators of high intrinsic quality factors have been demonstrated in a variety of
materials (Nb, NbN[155, 156], NbTiN[157]) up to 1 T. On the other hand, temperature is important
beyond the need for high quality factors. Spontaneous emission ensures relaxation to thermal
equilibrium; low temperatures are required at the frequencies (7 GHz) used in this work for thermal
equilibrium to correspond to a spin polarization higher than 99%. This limit could be lifted either
by working at higher frequencies or at the price of reduced spin polarization. Note that operation at
higher temperatures could make other relaxation mechanisms more efficient, reducing effectively
the interest of cavity-enhanced spontaneous emission.

On a more fundamental level, it is interesting to note that we reach here for the first time a regime
where the vacuum fluctuations of the microwave field can have a marked effect on spin dynamics. In
many systems (Rydberg atoms, quantum dots, ...), the observation of the Purcell-enhanced relaxation
of individual emitters was the first step towards the application of the full range of concepts and
ideas of cavity QED (strong coupling, ...), and it is tempting to assume that it will be the case as well
for spins in solids [189]. To pursue this aim, a higher Purcell rate could be achieved by increasing
the coupling of the spins to the microwave cavity. The wire dimensions could be reduced by a
factor 50, yielding an increase of g by the same factor and accessible T1 below the millisecond range.
In addition to permitting faster repetition rates and a higher sensitivity, this would considerably
enhance the cooperativity and allow to reach the regime of high cooperativity needed to observe
coherent interactions between cavity and spin [70].
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Squeezing-enhanced magnetic
resonance

Quantum mechanics, through the Heisenberg uncertainty principle, imposes a minimum amount of
noise in a measurement. When this limit is set by the vacuum fluctuations of the electromagnetic
field, the measurement is said to be performed at the standard quantum limit. Such performance
is routinely reached for optical measurements, and more recently for microwave measurements
thanks to the use of JPAs, as shown for example in ch. 7 for ESR measurements.

The standard quantum limit however is not as fundamental as the Heisenberg limits and can be
overcome through the use of squeezed states for example. For these field states, whose properties
were discovered in the 1970s by Stoler [210] and Yuen [211], the noise on one quadrature is reduced
below the vacuum level, whereas the other one is correspondingly more noisy as required by
Heisenberg uncertainty principle. In the optical frequency domain, where squeezing factors on
the order of 12 dB are now produced [212], squeezed states were first proposed by Caves [18] and
recently implemented [213, 31] to enhance the sensitivity of gravitational waves interferometric
detectors. They have also been used for increasing the sensitivity of a number of other experiments,
such as atomic absorption spectroscopy [214], atom-based magnetometry [32] and particle tracking
of living systems [215]. In the microwave domain, while squeezed states were generated as early
as 1989[12], it is only through more recent developments in CQED than a sufficient amount of
squeezing was observed [216] to realize fundamental studies of light-matter interaction [217, 34]
and enhanced sensing of a mechanical resonators [35].

In this chapter, squeezed microwave states are used for enhancing the sensitivity of ESR measure-
ments. We review briefly the applications of squeezed states before explaining how they can be
harnessed to enhance the sensitivity of an ESR experiment. We finally demonstrate the generation of
squeezed states via the flux-pumped JPA presented in ch. 5 and their use in our ESR spectroscopy
setup.

9.1 Squeezing-enhanced measurements

9.1.1 State-of-the-art

Squeezing for enhanced measurement sensitivity

The noise reduction provided by a squeezed state can be harnessed to increase the sensitivity of
a measurement [40]. Depending on the purpose, several schemes have been put forward [218].
A pioneering proposal due to Caves [18] suggests to use squeezed vacuum at one of the ports
of an optical interferometer, in order to enhance the sensitivity of phase detection. A prominent
motivation is the application of this idea to gravitational wave detectors. In this scheme, a Michelson
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(right) Demonstration of squeezing enhanced detector sensitivity on the GEO600 instrument. [213]

interferometer is used to detect the relative displacement of two heavy masses m as depicted in
Fig. 9.1. A laser beam, split in two via a beam splitter, bounces a number of times in each arm
between two reflecting mirrors, one being fixed while the other is attached to a mass m. Detecting
the light outcoming of each arm via photo-detectors thus yields information on the relative mass
displacement. To understand where the usefulness of squeezed states arises, it is important to
realize that the beam-splitter used to separate the laser in two coherent lights beams is actually a
four-port device, connecting two input modes to two output modes. The first input port is used
for the incoming light, while the second input port sees the vacuum state. Caves showed that the
sensitivity of the measurement is heavily linked to the vacuum fluctuations arising at this second
port [18]. Replacing the vacuum state by a squeezed vacuum state could thus improve the sensitivity
of the measurement, as was shown recently by the LIGO collaboration with ≈ 2.5 dB enhancement
over a large frequency range (see Fig. 9.1).

The use of squeezed-states for interferometric measurements generally relies on decreasing the
vacuum fluctuations at the dark port of a beam-splitter [19]. The general strategy in all measurement
is to adopt a scheme that combines the measured signal to the squeezed-state reduced vacuum
fluctuations without signal degradation. An interesting device in this context is the asymmetric
beam-splitter (known as directional coupler in microwave engineering), which allows to produce
arbitrarily displaced squeezed states with preserved noise reduction. In atomic-absorption mi-
croscopy [214], atom-based magnetometry [32] and particle tracking of living systems [215], a
displaced squeezed state is created via such an asymmetric beam-splitter to probe the system of
interest and improve the measurement sensitivity. Similarly, for enhanced mechanical resonator
sensing [35], a displaced microwave squeezed state is produced via a 20-dB coupler to probe the
opto-mechanical system. More complex schemes also exist, such as the two-modes squeezing
proposed for enhanced superconducting qubits readout [219, 220].
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Squeezing effects in light-matter interaction

When a squeezed state field is incident on a two-level-system, Gardiner showed that the damping
rates of the TLS are largely modified in presence of squeezing [221]. Consider a TLS described
by the Pauli operators σ̂i irradiated with a broad-band incident squeezed-state of parameters N
and M given in ch. 2. If the TLS decay is radiatively limited with a decay time γ in absence of
squeezing, Gardiner showed that the equations of motion for 〈σ̂x〉, 〈σ̂y〉 and 〈σ̂z〉 become in presence
of squeezing [221]:

〈 ˙̂σx〉 = −γ
(
N +M + 1

2

)
〈σ̂x〉 (9.1)

〈 ˙̂σy〉 = −γ
(
N −M + 1

2

)
〈σ̂y〉 (9.2)

〈 ˙̂σz〉 = −γ(2N + 1)〈σ̂z〉 − γ (9.3)

The consequences are dramatic for the transverse decay rates γx and γy since they are respectively
enhanced and inhibited by the same ratios than the amplified and squeezed quadratures. In the
same time, the longitudinal decay rate γz is increased by a factor 2N +1, with a reduced steady-state
polarization 1/(2N + 1), as would be the case if a thermal state with the same mean photon number
N was impinging on the TLS. These variations on the TLS fluorescence were recently observed
experimentally employing superconducting qubits [217, 34], as shown in Fig. 9.2.

9.1.2 Squeezed states for magnetic resonance

To understand how squeezed states can be harnessed to improve the sensitivity of an ESR mea-
surement beyond the vacuum fluctuations limit, consider the scheme depicted in Fig 9.3a. It is
very similar to the setup described in earlier chapters: a sample containing an ensemble of spins is
embedded inside a microwave resonator of frequency ω0 and cooled to millikelvin temperatures so
that the electromagnetic field reaches its ground state. By applying a static magnetic fieldB0, the
spins can be tuned to resonance with the ESR resonator. The latter is coupled with rate κc to a single
measurement line supporting incoming (âin) and outgoing (âout) field modes. After application of a
π/2− τ − π sequence to the spins, an echo is emitted at time 2τ in the output measurement line. The
echo is then amplified and detected at frequency ω0 by homodyne detection with a local oscillator
phase chosen so that the echo lies only on one of the two field quadratures I and Q, for instance I .

As explained in ch. 5, the use of a JPA operated in phase-sensitive mode in the detection chain
ensures that a major part of the noise detected on the I quadrature arises from the fluctuations of
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by amplification at higher temperatures and homodyne demodulation. With the squeezed quadrature
aligned along the echo emission quadrature, the SNR is improved beyond shot-noise.

the JPA input field âout. These fluctuations can be seen as the fluctuations of the âin mode reflected
by the resonator into the output mode. If the input field is cooled to the vacuum state, the detected
noise reaches the quantum limit. If âin is instead prepared in a squeezed-state whose squeezed
quadrature is aligned on the echo emission quadrature, the noise on the detected quadrature can
then be expected to be below the quantum limit (see Fig 9.3a), whereas the other quadrature on
the other hand, which has no spin signal at all, has increased noise. This results in an enhanced
sensitivity for the echo detection.

Note that this argument is valid only if:

• the echo just acts as a displacement operator on the squeezed state without impacting its noise
properties

• the squeezed state does not affect the average spin-echo signal.

Such a vision is valid for a weakly coupled spin ensemble. A more quantitative treatment can be
done by considering the spins-resonator coupling similarly to what is done in ch. 7. The following
derivation is the fruit of a collaboration with Aarhus University, with Alexander Holm-Kiilerich
and Klaus Mølmer, and we give in the following only the main ideas.

We recall first the resonator field equation of motion (see Eq 2.49):

˙̂a(t) = −i[â, Ĥsys]−
κ

2
â(t) +

√
κâin(t) (9.4)

where Ĥsys is the Tavis-Cummings Hamiltonian of Eq. 3.46. We consider the simple case where
the spin-cavity coupling is identical for each spin j so that gj = g. We treat the spin-echo sequence
similarly to ch. 7, with the spins brought to the equator of the Bloch sphere by the initial π/2
pulse at t = −2τ . Inhomogeneous broadening leads to the acquisition for each spin of a phase
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ϕj = ∆j(t+ 2τ), refocused by the π pulse applied at time t = −τ which then leads to the echo signal
at time t = 0.

We shall now describe the spin lowering and raising operators as oscillator annihilation ŝ†j and
creation ŝj operators obeying [ŝj , ŝ

†
k] = δk,j following the so-called Holstein-Primakov approxima-

tion [71, 222, 223, 224], valid when each spin of the ensemble is only weakly excited. Eq. 9.4 now
yields:

˙̂a(t) = −ig
∑

j

ŝj −
κ

2
â(t) +

√
κâin(t) (9.5)

Following a similar treatment that the derivations of Eqs. 3.41-3.44, the spin equations of motion are:

˙̂sj = −(γ + i∆j)ŝj − igâ+
√

2γFj(t) + αe−i∆jτδ(t+ τ) (9.6)

where the term αe−i∆jτδ(t+ τ) describes the spins initial coherent excitation giving rise to the echo
and Fj(t) is the quantum Langevin noise term associated to spin relaxation at the rate γ, with a zero
mean-value. Fourier transforming both equations1 yields:

− iωâ(ω) = −κ2 â(ω)− ig
∑

j

ŝj(ω) +
√
κâin (9.7)

− iωŝj(ω) = −(γ + i∆j)ŝj(ω)− igâ(ω) + αe−i∆jτ +
√

2γF̃j(ω) (9.8)

These equations can be solved, which yields:

â(ω) =
−ig∑j

αe−i∆jτ

γ+i∆j−iω − ig
∑
j

√
2γF̃j(ω)

γ+i∆j−iω +
√
κâin(ω)

κ
2 − iω + g2

∑
j

1
γ+i∆j−iω

(9.9)

To simplify this equation, we consider a Lorentzian distribution of width w: ρ(∆) = w/2π
∆2+w2/4 .

Replacing the sum by an integral, the denominator of Eq. 9.9 simplifies in:

κ

2
− iω + g2 wNspins

ω2 + w2/4
(9.10)

In the case of a spin ensemble such that is cooperativity C =
2g2

ens

κw � 1, the term g2 wNspins

ω2+w2/4 can be
neglected. Using the input-output equation âin + âout =

√
κâ (neglecting any internal losses), we

can now express the output field as:

âout(ω) = −i g
√
κ

κ/2− iω

∫

∆

ρ(∆)
αe−i∆τd∆

γ + i∆− iω −
ig
√
κ

κ/2− iω F̃tot(ω) +
κ+ 2iω

κ− 2iω
âin(ω) (9.11)

where we have defined the total spin noise Langevin term as F̃tot(ω) =
∫

∆
ρ(∆)

√
2γF̃ (ω,∆)d∆
γ+i∆−iω . The

first term, being the only one with a non-zero expectation value, describes the emission of the echo
signal into the measurement line. In the weak coupling limit, the spin noise term is also smaller
than the third term which describes the input field quantum fluctuations.

Eq. 9.11 confirms our earlier qualitative argument: the expectation value of the output field is
the echo signal unaffected by the quantum statistics of the input field ain; but its fluctuations are
governed by the input field, be it in the vacuum or in a squeezed state. We stress that throughout the
derivation we have used the weak coupling condition C � 1. Properly expressing the enhancement
of the SNR gained by having an incoming squeezed-state during the echo emission requires reverting
to the time-domain and choosing a mode filter function, as explained in ch. 5. Nonetheless, Eq 9.11

1The chosen convention in this manuscript is : f̃(ω) =
∫
dteiωtf(t) and f(t) = 1

2π

∫
dte−iωt f̃(ω).
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is sufficient to evidence that an input field with a quadrature squeezed by a factor ηS is expected to
enhance of the SNR by a factor

√
ηS .

9.2 Detecting and characterizing microwave squeezed states

9.2.1 Microwave squeezed-states

At microwave frequencies, a squeezed vacuum state can be generated by a parametric amplifier
used in phase-sensitive mode, as explained in ch. 2. If the parametric amplifier input field is a
thermal vacuum state of occupancy nth, we recall that for a gain G the squeezed state variances are
(see Fig. 9.4a):

〈∆X̂2
φ〉 =

(2nth + 1)G−1

4
(9.12)

〈∆Ŷ 2
φ 〉 =

(2nth + 1)G

4
. (9.13)

where X̂φ and Ŷφ are respectively the deamplified and amplified quadratures, relative to the choice
of the phase φ of the JPA pump tone compared to the detection quadratures X̂ and Ŷ .

Microwave squeezed states are well-known to be fragile, and in particular are susceptible to losses
encountered during their propagation. Attenuation by a factor η is generally modeled as the action
of a beam-splitter of finite transmission η, with the vacuum at the other port (see Fig. 9.4b). The
relations linking the input and output fields of a beam-splitter is:

b̂out = ηb̂1 + (1− η)b̂2. (9.14)

If on the port b̂2 is impinging a thermal state of occupancy nth identical to the squeezed state
〈∆X̂2

2 〉 = (2nth + 1)//4, then the outcoming squeezed state has a reduced degree of squeezing:

〈∆X̂2
φ,out〉/〈∆X̂2

2 〉 = G−1η + (1− η) < G−1η (9.15)
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9.2.2 Characterization of the flux-pumped JPA as a squeezing generator

To generate a microwave squeezed-state, we use the flux-pumped JPA presented in ch. 2 and
characterized in ch. 5. We first characterize the squeezed vacuum generated by the JPA with a
simplified setup that does not include the ESR resonator nor the spins (see Fig. 9.5a), very similar
to the one used in [216]. A second JPA device, noted SQZ, is operated in phase-sensitive mode to
generate a squeezed vacuum state (blue device), whose squeezed quadrature is set by its pump
tone phase φs. To characterize the emitted radiation noise properties of this state, we use the same
amplification chain described and characterized in ch. 5, comprising the same JPA device, noted
AMP (purple device) in the following, followed by amplification at 4 K and 300 K.

Using the AMP in phase-sensitive mode ensures noiseless amplification on one quadrature set by its
pump phase φA (see ch. 2) . Using homodyne detection, with a local oscillator phase φLO chosen
so that the amplified quadrature corresponds to the I quadrature, one can relate the quantum
fluctuations of the input AMP field quadrature X̂φA,in to the I quadrature noise 〈∆I2〉, see ch. 2.

When the SQZ pump is turned on with no incident signal, a squeezed vacuum state is generated at
the AMP input, replacing the vacuum state. If the relative pump phase φS − φA = π/2, the squeezed
quadrature is aligned on the amplification quadrature and thus I quadrature noise can be expected
to be below the quantum limit. For all phase settings, the noise is related to the variance of the
squeezed state by Eq. 2.14.

SQZ characterization

We first characterize the SQZ as explained earlier for the JPA, with the flux-tunability of its resonance
frequency and its average phase-dependent gain. Applying the same voltage to both flux-lines at
the same time, the reflexion coefficient shows the SQZ and AMP 2π phase shifts associated to their
respective resonance frequencies (see Fig. 9.6a). In the remainder of this chapter, we choose their DC
bias so that ω0/2π ≈ 7.3 GHz (grey dashed line in Fig. 9.6a).
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In addition, the phase-sensitive gains of both JPAs GA and GS are calibrated by measuring the
amplification of an input signal depending on its relative phase to the pump tone (see Fig. 9.6b).

Noise reduction characterization

We now wish to observe the noise reduction brought by the generated squeezed state. Time traces
of I(t) and Q(t) are obtained by digitizing the homodyne signal outputs. Without any input signal,
white noise traces such as shown in Fig. 9.6c are recorded and characterized either via their variance
〈∆I2〉 or a noise histogram. Similarly to ch. 2, we set the detection bandwidth to be significantly
smaller (300 kHz) than the JPA devices bandwidth (see Fig. 9.5c).

When the SQZ is on, 〈∆I2〉 is seen to depend on φS (see Fig. 9.6d) as expected from Eq. 2.14. It can
be reduced below the value measured in absence of squeezing, as shown by a narrower histogram
(see Fig. 9.6e). The total noise reduction is given by:

ηtot =
minφS [〈∆I2〉on]

〈∆I2〉off
(9.16)

and reaches ηtot = −3.4 dB (see Fig. 9.6d). One can also characterize the degree of squeezing ηS
achieved experimentally by subtracting the background noise 〈∆I2〉bg:

ηS =
minφS [〈∆I2〉on]− 〈∆I2〉bg

〈∆I2〉off − 〈∆I2〉bg
(9.17)
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The background noise is measured by switching both SQZ and JPA off and is mainly set by the noise
of the HEMT amplifier, as shown in ch. 5. For the data shown in Fig. 9.6d, ηS = −4.1 dB.

Limitations to squeezing

The data shown in Fig. 9.6d correspond to the maximum amount of squeezing obtained, far from
the 20 dB squeezing that one could naively expect from Eq.2.14, and we will now explain why.
Repeating the experiment for several SQZ gains settings, we notice that the degree of squeezing is
systematically smaller than the deamplification factor ηS 6 G−1

S , as shown in Fig. 9.7a. At low gains,
ηS depends linearly on G−1

S , as expected from Eq. 9.15 for degradation due to attenuation. Fitting
the linear dependence according to Eq. 9.15 yields a total microwave attenuation of η = −1.3 dB.
This value is compatible with the setup of Fig. 9.5b, where losses are mainly set by the circulator
insertion losses (2× 0.4 dB), the 1-m-long copper coaxial cables linking SQZ and AMP (≈ 0.3 dB) and
the on-chip losses (≈ 0.1 dB).

At high gains, a departure from linearity is observed, with an increase of ηS that we attribute to non-
linearity induced in the SQZ resonator by the Josephson junctions used to modulate the resonator
frequency (see ch. 2 and [55]). To confirm this hypothesis, we measure the output quadratures
〈X̂out〉 and 〈Ŷout〉 of a small input signal amplified by the SQZ in phase-sensitive mode as a function
of its input phase (see Fig 9.7b). When the phase runs from 0 to 2π, plotting 〈Ŷout〉 versus 〈X̂out〉
emulates the shape of the produced squeezed vacuum. When the SQZ is off, a perfect circle is
observed. As long as the squeezing factor varies linearly as a function of G−1

S , the squeezed vacuum
is ellipsoidal as expected (red curve). For higher gains, a progressive distortion of the ellipse (green,
blue and purple curves) is observed which eventually leads to the increase of ηS . In the following,
we thus choose moderate values of Gs which lead to the maximum ηS .

Noise reduction optimization

The total noise reduction factor ηtot is smaller than ηS because the total output noise is not only
due to the amplified quantum noise, but also contains a small "background" contribution from the
HEMT. This contribution can be minimized by working at high AMP gains. However, as shown in
ch. 5, the AMP eventually saturates at high intra-resonator photon number, once again due to the
non-linearity induced by the Josephson junctions. We have experimentally observed that even a
weakly distorted squeezed state impinging on the AMP can lead to its saturation for high GA. The
best achievable ηtot thus results from an exhaustive simultaneous optimization of GA and GS .
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The data shown in Fig. 9.6c-d are taken at the best settings found. It is comparable to other values
obtained with different JPAs designs in similar setups: -4.9 dB [216], and -3.1 dB [34].

9.2.3 Noise reduction below the quantum limit with an ESR resonator

Having thus characterized the squeezed state noise reduction and determined its limitations, we
include the ESR resonator in the setup. We place the ESR resonator between SQZ and AMP, as
depicted in Fig. 9.8a, so that the squeezed vacuum is sent on its second port, coupled to the input
line with rate κ2. We use the same sample and resonators as in the previous chapters. We choose
to perform all the following measurements with resonator C (ω0/2π = 7.305 GHz). As explained
above, any losses in the setup matter and we have to minimize the resonator internal losses. For
that purpose, we voluntarily largely over-couple the resonator via its port 2, with κ2 � κ1 + κint

and κint � κ1. The length of the coupling antennas is adjusted as shown in Fig. 9.8b to obtain
κ1 = 3× 103s−1, κ2 = 1.6× 106s−1 and κint = 6× 104s−1, values fitted from the measurement of

the full resonator scattering matrix. The losses in reflexion are thus
∣∣∣κ2−κ1−κint

κ2+κ1+κint

∣∣∣
2

= −0.7 dB (see
Fig. 9.8b).

The same optimization procedure described above is used to determine the best operating point
for SQZ and AMP with the spins detuned from resonance. For GS = 6 dB and GA = 18 dB, we find
ηS = −1.8 dB and ηtot = 0.77 (see Fig. 9.8c-d). Exploiting the linear dependence of ηS as a function
of G−1

S (see Fig. 9.8e), the losses between SQZ and AMP are estimated to η = −3.4 dB. This figure is
compatible with the higher complexity of the setup (comprising now 4 circulators, 2-m-long coaxial
cables, the JPA devices and the ESR resonator).
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To ensure that the squeezed quadrature variance 〈X̂2〉φS=0 is reduced below the vacuum fluctuations
level 〈X̂2

0 〉 = 1
4 , an absolute calibration of the unsqueezed field is needed. This calibration was

carried out by Philippe Campagne-Ibarcq using a transmon qubit, and is described in Appendix A.
It yields nth = 0.05 ± 0.05. As seen in ch. 2, the thermal vacuum fluctuations level is given
by 〈X̂2

th〉 = 2nth+1
4 and thus the squeezed quadrature variance is reduced below the vacuum

fluctuations level by a factor:

〈X̂2〉φS=π/2

〈X̂2
0 〉

= ηS
〈X̂2

th〉
〈X̂2

0 〉
= ηS(2nth + 1) (9.18)

Given that ηS = 0.66, we conclude that the field fluctuations are 0.73 ± 0.06 times the vacuum
fluctuations, thus reaching the regime of true quantum squeezing. It is comparable to other values
reached in the literature: for example Mallet et al. achieved a squeezing of 0.68 ± 0.09 times the
vacuum fluctuations [216].

9.2.4 Detection of displaced squeezed states

Finally, to validate our experimental setup and parameters, we simulate the echo emission by
sending a small coherent pulse through port 1 of the ESR resonator, as depicted in Fig. 9.9a. The phase
of the input pulse is set so that the detected signal lies entirely on the I quadrature, corresponding
also to the squeezed quadrature. The detected field amplitude with SQZ on and off for different
input powers is shown in Fig. 9.9a. For moderate signal amplitude, the noise histogram shows the
same noise reduction ηtot = 0.77 as without a coherent signal (Fig. 9.9b), as expected.

However for larger input signals, the SQZ on amplitude is a few percents lower than the SQZ off
one. We explain this signal degradation once again by the saturation of the JPA devices caused by
its Josephson junctions, as already shown in Fig. 9.7. Here, the non-linearity manifests itself in a
slightly different way: the output signal phase becomes dependent on the input field amplitude.
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The amplitude fluctuations of the displaced squeezed state being larger than the ones of a coherent
state of same average amplitude causes the observed difference. To avoid this detrimental effect in
our experiment we thus intentionally choose to limit the spin-echo amplitude, as explained below.

9.3 An ESR signal emitted in squeezed vacuum

9.3.1 Squeezing-enhanced ESR: proof-of-principle
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FIGURE 9.10: Hahn-echo field sweep with
calibrated π/2 and π pulses.

We now proceed to the demonstration of squeezing-
enhanced ESR detection. For this experiment, we use the
lowest-frequency spin transition |9〉 ↔ |10〉 and first char-
acterize the spin-echo with SQZ off. A Hahn-echo field
sweep is shown in Fig. 9.10.

The spin-resonance is found at the expected field B0 ≈
2.8 mT; however its shape is significantly different from
the one reported in previous chapters. In particular, the
double-peak structure is barely visible. This is due to a
combination of several factors. The Purcell relaxation time
T−1

1 = (2nth + 1)(4g2/κ) is now one order of magnitude
longer due to the lower resonator quality factor used. As
explained in ch. 8, T1 is longest on the upper field peak,
where it now reaches≈ 70 s, thus necessitating a repetition
time of ≈ 300 s to measure the whole spin resonance with-
out distortion. For practical reasons, we decided to per-
form this measurement with a shorter repetition time 15 s,
which leaves the low-field peak undistorted but strongly
reduces the upper-field peak. To minimize the amplitude
of the emitted echo signal for the reasons explained earlier,
we set B0 = 2.6 mT, on the "tails" of the low-field peak.

The experiment consists in repeating a spin-echo sequence (Rθ − τ − π − τ − echo) with the SQZ on
and off. To limit the spin-echo amplitude even further, we choose a Rabi angle Rθ ≈ π/3 for the
excitation pulse instead of a π/2 pulse. The SQZ pump is switched on during a time window of
200 µs around the expected echo emission at t = 2τ (see Fig. 9.11a-b). The phase of the excitation
pulse is set such that the echo signal lies entirely on the I quadrature, on which is also aligned the
squeezed quadrature.

To minimize setup drifts during the six-hour-long acquisition, we alternate echos acquired with SQZ
on and off and we use phase-cycling as shown in Fig. 9.11b. We acquire Navg = 2500 echos with SQZ
on and 2500 SQZ off. The quadrature voltage I(t) is digitized at a sampling rate of 1 pt/µs with an
acquisition bandwidth of 300 kHz. The data is recorded on a time window T = 200 µs centered on
the echo. The waiting time between each echo sequence is taken to be Trep ≈ 5T1 = 5 s. Time traces
of the digitized I(t) quadrature are shown in Fig. 9.11c with the echo barely visible in single-shots
traces. The averaged signals are computed as:

ĪON(t) =

Navg∑

i=1

I(1),i(t)− I(2),i(t)

2
and ĪOFF(t) =

Navg∑

i=1

I(3),i(t)− I(4),i(t)

2
(9.19)

where subscripts (j) are indicated in Fig. 9.11b. As can be seen in Fig. 9.11c, the averaged echoes for
SQZ on and off are identical, showing that JPA saturation effects have been indeed avoided.
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Noise histograms in Fig. 9.11d are computed from the bins {I(1),i(t)− ĪON(t),∀i,∀t} ∪ {I(2),i(t) +
ĪON(t),∀i,∀t}when the SQZ is on and {I(3),i(t)− ĪOFF(t),∀i,∀t} ∪ {I(4),i(t) + ĪOFF(t),∀i,∀t} and
are very close to the ones displayed obtained in Fig. 9.9b for a displaced vacuum squeezed state. In
particular the same noise reduction factor of ηtot = 0.77 is observed. To ensure the echo emission
is not affecting the noise properties, we have also computed the noise histograms and variances
keeping only identical stamping times t and found no variations (see Fig. 9.11c).

To compute the SNR for both echoes, we use the same procedure explained in ch. 5 where the mode
filter function u is chosen to be the echo signal u(t) ∝ [ION(t) + IOFF(t)]/2. For each echo (j) of each
sequence i, we can thus evaluate the signal and noise quantities as 〈I(j),i〉 and 〈∆I2

(j),i〉. Averaging
over all recorded echoes yields the noise and echo signal shown in Table 9.1, demonstrating a rms
noise reduction by 11%. Repeating the same procedure for the tophat u function of width 20 µs
centered on the echo used in ch. 7 yields similar results.

9.3.2 Absolute sensitivity

Similarly to the analysis done in ch. 7, the number of spins contributing to the signal Nspins can
de determined by numerical simulations. In ch. 7, the spin distribution at the peak of the spin
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u(t) Echo shape Tophat function
SQZ 〈I〉

√
〈∆I2〉 SNR 〈I〉

√
〈∆I2〉 SNR

OFF 0.179 0.202 0.886 0.161 0.202 0.797
ON 0.177 0.181 0.973 0.160 0.181 0.884
ON/OFF ratio 0.988 0.897 1.10 0.992 0.894 1.11

TABLE 9.1: Squeezing-enhanced SNR for the echo signal
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line (B0 = 2.8 mT) was found to be adequately modeled with a Gaussian distribution of g with
mean value g0/2π = 56 Hz and FWHM ∆g/2π = 1.5 Hz, as well as a square distribution of the
spin detuning of width largely exceeding the resonator bandwidth. Repeating the numerical
simulations for resonator B parameters, we find the number of excited spins at B0 = 2.8 mT to be
Nspins(2.8mT) = 1.2× 105.

As discussed in ch. 6, g depends on the magnetic field B0 due to the strain exerted by the aluminum
wire on the silicon introducing a correlation between the spin spectral distribution and the spin
spatial distribution (see Fig. 6.6 for example). We estimate the difference in g between 2.6 and
2.8 mT by comparing T1 at these two fields. As shown in Fig. 9.12a, we find T1(2.6 mT) = 0.9 s
and T1(2.8 mT) = 2.5 s, implying that g0(2.6 mT)/g0(2.8 mT) =1.7. Calibrating g by comparing
the Rabi oscillation frequency for same input power yields the same factor (not shown). Running
once again the numerical simulations with g0(2.6 mT)/2π = 93 Hz to simulate the echo emission at
B0 = 2.6 mT, we find that Nspins(2.6 mT) = 4.7× 103 reproduces the experimental echo amplitude
(see Fig. 9.12b). Associated to the SNR estimation above, this analysis yields a minimal number of
detectable spins in one echo sequence Nmin = 1.3× 104 with SQZ off, improved to 1.1× 104 with
the SQZ turned on. It corresponds equivalently to a reduction of the acquisition time by 24%.

Note that determining g using the Purcell relation with the experimentally determined nth and
κ yields the value g(2.8 mT)/2π = 65 Hz, 10% larger than estimated in ch. 6. We attribute this
difference to the better determination of κ due to the fact that we are now operating in the over-
coupled regime where κint has a minor contribution. In the previous measurements, κint may
have been under-estimated by a measurement at too high power that saturates the TLS lying at
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the metal-substrate interface and thus neglects their contribution to the resonator internal losses; a
measurement of κint at input powers corresponding to intra-cavity fields close to 1 photon would
have been preferable (see Fig. 5.14). With this newly determined value of g, the sensitivity reported
in ch. 7 becomes 1500 spins/

√
Hz instead of 1700.

9.3.3 Theoretical limit of a squeezing-enhanced ESR spectrometer

In our experiment, the achieved gain in sensitivity is limited by the finite degree of squeezing, due
to the technical issues detailed in section 9.2.2 (JPA non-linearity and microwave losses along the
squeezed-state propagation path). It is however interesting to discuss which would be the achievable
enhancement if ideal squeezing could be achieved, and propagation losses suppressed. In other
words, what is the theoretical achievable sensitivity of this scheme in the absence of technical
imperfections ?

Squeezing backaction on spin dynamics

A first unavoidable and so far overlooked limitation is the impact that quantum squeezing can
have on spin dynamics. As already explained in 9.1.1, it was predicted by Gardiner [221] and
recently observed [217, 34] that the radiative damping rates of a TLS are modified in the presence of
squeezing. As described by Eq. 9.3, shining a quantum squeezed state characterized by N and M
(see Eq. 9.3) modifies the spin dynamics in the following ways:

• the radiative relaxation rate is increased by (2N + 1) with the steady-state polarization being
reduced by the same factor.

• the radiative decoherence time is also impacted.

To measure these effects in our experiment, we compare the spin coherence and relaxation times
with and without squeezing. T2 is found to be unchanged by the squeezing, as shown in Fig. 9.13a,
which is understandable by the fact that it is limited by non-radiative processes (see ch. 6). In
contrast, we measure T1 = 0.45 s with SQZ on whereas T1 = 0.9 s with SQZ off as already mentioned.
This factor 2 reduction is explained by the fact that contrary to T2, T1 is limited by a radiative process
(spontaneous emission via the resonator) and is thus affected by squeezing according to Gardiner’s
theory. In addition, both measurements evidence a steady-state polarization reduction by the same
factor 2, again consistent with Gardiner’s theory. Interestingly, these observations provide us with
an independent characterization of the degree of squeezing of the field inside the ESR resonator, in
contrast with previous measurements which offer information of the squeezed state at the input of
the AMP. We find 2N + 1 = 2.0, yielding a larger degree of squeezing for the intra-cavity field than
for the field at the AMP input, qualitatively consistent with the additional losses occasioned by the
field propagation from the cavity to the AMP. Using Eq 9.13 with nth = 0.1, we find ηS = −4.8 dB
for the intra-cavity field, compatible with previous measurements. We can thus estimate the losses
between the resonator and the SQZ to be η1 = −0.5 dB and the losses between the resonator and
the AMP η2 = −2.9 dB. These asymmetric loss factors are somewhat surprising considering our
microwave setup; however we note that the relation between N and ηS is valid only for a perfectly
ellipsoidal squeezed state, which is probably not the case in our experiment.

Squeezing-induced spin de-polarization is a major concern for the experiment, as it reduces the
spin-echo signal by a factor 2, which would cause the signal-to-noise ratio to be in fact lower with
SQZ on than with SQZ off ! In our experiment, this effect was avoided by switching the squeezing on
only during the echo emission. This was possible because of the very large difference between the
duration of the echo (≈ 20µs) and the timescale on which the spin become de-polarized, which is
given by T1/(1+2N) = 0.45 s. However this strategy would not hold for larger degree of squeezing,
if the depolarization time becomes comparable to the echo emission time.

150



Chapter 9. Squeezing-enhanced magnetic resonance

a bτ

ππ/2 echo

τ T

ππ/2 echoπ

-1

0

1

6420
Delay T (s) 

T1 = 450 ± 40 ms  
  
  

T1 = 900 ± 50 ms

  
  
  

ec
ho

 s
ig

na
l (

a.
u.

)

ec
ho

 s
ig

na
l (

a.
u.

)

1.0

0.5

0.0

86420
Delay    (ms)τ

T2 = 2.6 ± 0.4 ms
T2 = 2.5 ± 0.2 ms

FIGURE 9.13: Influence of squeezing on spin coherence times. Coherence time T2 measured with a
Hahn-echo sequence (panel a) and energy relaxation time T1 measured with inversion-recovery (panel
b) for SQZ off (blue curves) and on (red curves). Solid lines are exponential fits. Both measurements
evidence a reduced steady-state polarization in presence of squeezing.

Spin spontaneous emission noise

Another effect limiting the efficiency of the scheme is the presence of extra-noise in the output field
due to spontaneous emission of the spins, as measured by Sleator et al. [153]. We can evaluate both
experimentally and numerically this noise for our parameters. Experimentally, its contribution can
be estimated by comparing the detected noise 〈∆I2〉AMP on − 〈∆I2〉bg when the spins are in their
ground state (reached after relaxing for 5T1) to the noise after inversion by a π pulse. We were unable
to measure a statistically significant difference to the level of 2%. Numerically, we use the code
developed by Brian Julsgaard and Kaus Mølmer [77] to compute the resonator operators second-
moments using the spins distribution given in section 9.3.2 and find the spontaneous emission noise
to be 0.16% of the vacuum fluctuations noise. The spin-noise contribution is thus negligible in our
experiment. However if larger degree of squeezing could be achieved, this contribution would
become significant and thus again limit the achievable sensitivity.

Squeezing enhancement in weak cooperativity regime

To conclude on the application of squeezing for magnetic resonance, we quantify in the following the
enhancement brought by the squeezing depending on the experiment parameters. The discussion is
limited to the case of weak cooperativity C � 1, which corresponds to the situation encountered in
ESR experiments.

We call E = N
(off)
min /N

(on)
min the ratio of the achieved sensitivity without squeezing to the sensitivity

with squeezing. To express the sensitivity with SQZ on, we consider separately the signal and
noise terms for a Lorentzian spin distribution of width w, a valid approximation for C � 1 (see
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section 9.1.2). We neglect for the moment the ESR resonator losses, assuming κint = κ1 = 0. We also
assume nth = 0 for simplicity.

From Eq. 5.7, assuming w � κ, in absence of squeezing, the amplitude of an echo emitted at t = 0 is
given by:

〈âout(t)〉 = −
√
κgpNspins

κ+ w
e−w|t|/2 (9.20)

We assume the dominant effect of squeezing on the echo signal to be the squeezing-induced
depolarization. To take into account this effect, we introduce a time dependent function p(t)
describing the fraction of spins contribution to the echo. From its initial value p(0) = p0, p decays
exponentially under the energy relaxation process after the refocusing π pulse at a rate Γ1 = ΓP
without squeezing and at rate Γ1 = ΓP (2N + 1) when squeezing is turned on during the echo
emission window ∆T . We then compute the quantity 〈âout(t)〉 using Eq. 2.43 with u being defined
as a tophat function of width ∆T around the echo emission time. To take into account the spin
spontaneous emission noise, we assume 〈X̂2

out〉 to be given by:

〈X̂2
out〉 =

1

4ηS
+ nSE (9.21)

with nSE evaluated as
∫
t
u(t)Γ1(t)p(t)

Nspins

2 . For this analysis, the interesting parameters are ηS
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the degree of squeezing, 2τ the sequence duration, TE the echo width, c = 4g2/κ the single-
spin cooperativity and Nspins. We then evaluate numerically E as a function of c and ηS from
the expressions derived for 〈X̂2

out〉 and 〈X̂out〉 (see Fig. 9.14). τ and TE are chosen similar to the
experiment, and Nspins sufficiently small to ensure C = cNspins � 1.

For small c, as the spontaneous emission and the squeezing back-action are negligible, E =
√
ηs as

expected. For larger values of c, their contribution becomes non-negligible, and the achievable gain
in sensitivity can be shown to be limited by:

Emax ηS (c) ∼
c�1

1/
√

2cNspins = 1/
√

2C (9.22)

given at an optimal squeezing degree. At a given ηS , as nSE ∝ c, E decreases from
√
ηS to 1 for

increasing c values.

Squeezing and resonator losses

We now come back to the impact of losses in the ESR resonator. In practice, there is an upper bound
to the internal quality factor achievable for the resonator Qint = ω0/κint and thus to maximize the
enhancement brought by the squeezing, one should minimize the losses in reflection and thus pick

a large coupling rate κ2 = ακint so as to maximize η =
(

1−α
1+α

)2

. However in case of a radiatively
limited energy relaxation time, one would also like to minimize the repetition time and thus have a
small coupling rate κ = (1 + α)κint.

This is a non-trivial optimization problem with optimization conditions that depends on the context
of the experiment:

• If the bandwidth κ has to be kept large, for instance to excite the whole spin linewidth
(κ� w) or to implement fast-manipulating pulses, then its optimization compared to κint is
unnecessary. The best enhancement brought by squeezing is then described by the previous
analysis, keeping in mind that ηS will be eventually limited by the resonator losses.

• If on the contrary no physical constraint exists on the choice of the resonator linewidth, then κ
should be optimized in such a way as to maximize the experimental sensitivity. We address
this optimization problem in the following.

We assume that the squeezing is always broadband compared to the ESR resonator. As the signal-to-
noise ratio scales like the square root of the number of repeated experimental sequences, to take into
account the impact of κ on the emission efficiency, the noise reduction efficiency and the repetition
rate, the quantity that should be optimized is the absolute sensitivityH = N

(on)
min /

√
Γ1 with SQZ on.

In the case where w � κ, we can distinguish several different limits:

• Without squeezing and Γ1� ΓP , then using Eq. 5.11 we getH1 =
√
nw

2gp
√

Γ1

κ√
κ2
∝ (1+α)

α1/2 .

The minimum ofH is thus reached for α = 1, i.e. a critically-coupled resonator.

• Without squeezing and Γ1 = ΓP , thenH2 =
√
nw

4g2p
κ3/2
√
κ2
∝ (1+α)3/2

α1/2 .

The optimum is reached for α = 1/2, once again close to critical-coupling.

• With squeezing and Γ1� ΓP : There is no back-action from the squeezing on the spins. Thus
inH1 only n = 1/4 should be replaced by n = 1

4 (η/ηS + 1−η) +nSE. The quantity to optimize

is then: H3 ∝
[(

4nSE + 1− (α−1)2

(α+1)2

)
(1+α)2

α

]1/2
and thus the best choice is again α ∼ 1.
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• With squeezing and Γ1 = ΓP . In this case, one should take into account the squeezing
back-action for the spins and use the above model. The sensitivity Nmin(ηS , c) is rescaled by√

1 + 1/α Nmin(ηs, c) in presence of losses. Knowing the intrinsic cint = 4g2TE/κint, one can
optimize the choice of κ2. For a given α, the cooperativity is expressed as c = cint/(1 + α)
and the best achievable squeezing is 1 − η(α). The optimal choice of α given cint is thus to
minimizeH(α, cint) =

√
1 + α N

(on)
min (cint/(1 + α), 1− η(α)).

For our experimental parameters, this optimization yields κ2 = 0.25 κint.

From this analysis, it appears that in most operating limits, the best choice is a critically coupled
ESR resonator. In that case, the resonator internal losses will unavoidably limit the noise reduction
obtained by squeezing to at most 3 dB, implying that squeezing factors above 10 dB would be
irrelevant for this application. As already stated, this conclusion is only valid if the resonator
linewidth can be chosen without any physical constraint (such as a finite spin linewidth, or pulse
bandwidth), in which case larger enhancement factors can be theoretically reached as discussed in
the previous paragraph.

9.4 Conclusion

We realized in this chapter a proof-of-concept demonstration that squeezed states can be used to
enhance the sensitivity of a magnetic resonance experiment and reduce the acquisition time. The
rms noise reduction achieved in our experiment is limited to 12%, due to a number of technical
issues. We note that intensive research in cQED aims at improving JPA devices [60] and developing
lossless circulators [225, 226], which will be directly applicable to our scheme, with the perspective
of gaining one order of magnitude on the acquisition time.

Without improving the efficiency of the restitution of the energy stored by the spins by the first
excitation pulse, by using CPMG sequences for example, further spectrometer sensitivity improve-
ments will then come from increases in the resonator-spin coupling constant, or smaller resonator
internal losses. We also note that other types of non-classical states could be useful for enhanced
magnetic resonance: Fock states, Schrödinger-cat states [227], which are readily generated using
circuit QED tools, are also known for their potential applications in quantum metrology. Further
work should aim at assessing their usefulness for magnetic resonance. Moreover, more elaborate
analysis than just measuring the variance could be useful, as was recently demonstrated in atomic
spin squeezing [228]. In a broad perspective, our results indicate that the whole arsenal of quantum
metrology deserves to be examined in view of its potential application in magnetic resonance.
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Chapter 10

Conclusion and future directions

10.1 Magnetic resonance with quantum microwaves

In this thesis, we have reported three experiments in which we perform magnetic resonance
spectroscopy in a novel regime where the microwave field, just like the spins, requires a quantum-
mechanical description.

So far, the microwave signals detected during ESR experiments had always been treated classically,
since the detected noise largely exceeded the field quantum fluctuations. In ch. 7, we demonstrated
that thanks to the use of low-temperatures and of a quantum-limited amplifier, the spectrometer
output noise could arise mainly from these quantum fluctuations. Combining this quantum-
limited sensitivity with high-quality-factor and small-mode-volume resonators, we demonstrated
an unprecedented sensitivity for our home-built ESR spectrometer of 1700 spins/

√
Hz using Si:Bi

spins. Using a CPMG sequence, we decreased this number to 150 spins/
√

Hz.

Entering the regime of quantum-limited noise opens the door to the use of quantum optics tech-
niques to increase the measurement sensitivity beyond the quantum-limit. In ch. 9, we realized
a proof-of-concept experiment where we used squeezed vacuum states to reduce the total spec-
trometer output noise power by 25%. This translates into a 12% enhancement on the sensitivity or
equivalently a 25% reduction in the acquisition time.

Besides being relevant for the spectrometer output noise, quantum microwave fluctuations can
also have a strong impact on the spin dynamics. In usual ESR experiments, the coupling constant
between each spin and the microwave field is too small for the effect to be relevant. However, we
showed in ch. 8 that for a spin placed at resonance in a high-quality-factor small-mode-volume
resonator, the spin energy relaxation could be made faster via spontaneous emission of microwave
photons. While the non-radiative relaxation time of Si:Bi spins was measured to be on the order
of 20 minutes, the Purcell effect decreased T1 to a few seconds. More generally, cavity-enhanced
spin relaxation can be used as a fast spin initialization method in several ESR experiments. For
future applications in quantum information, T1 can be controlled on-demand by changing the
spin-resonator coupling or detuning. This provides a new way to combine long intrinsic T1 times
with fast repetition rates.

10.2 Future research directions

The experimental results reported in this thesis open new possibilities both for magnetic resonance
and for quantum information.
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Beyond proof-of-concept quantum ESR

Our experimental setup reached record spin sensitivity, but with a very specific setup, since we
measured implanted donors in silicon, and we use superconducting resonators, amplifiers, at ultra-
low-temperatures, and with applied magnetic fields below 10 mT. An interesting research direction
is to use our setup to measure "real-world" samples with comparable sensitivites.

A first point to note is that in order to detect a wider range of spin species, higher magnetic fields
are required. A first objective would be to extend the setup to apply 0.2-0.3 T, which would enable
to perform X-band ESR measurements. Such magnetic fields could be applied to the resonator
without degrading its quality factor if the superconducting film had a higher critical field. Recently,
resonators made out of superconductors such as nobium, nobium nitride [155, 156] and nobium
titanium nitride [157] have demonstrated high quality factors up to 1 T. Further improvements can
be expected since it is a subject of intense research in the cQED community, with the perspective
of realizing hybrid devices combining superconducting qubits and for instance semiconducting
nanowires [229], electrostatically quantum dots [230, 231] or Si:P spins [232].

Although we have used implanted donors in silicon, which are a well-known model spin system,
other non-implanted spins could also be studied. The difficulty lies in having the spins a few tens
of nanometers away from the resonator wire without using implantation. Some spins, such as the
well-known organic compound 2,2-diphenyl-1-picrylhydrazyl (DPPH), widely used as a field and
signal calibration marker in ESR spectrometers [233] or the stable free radical 1,3-bisdiphenylene-2-
phenylallyl (BDPA), can be mixed with glassing mixtures and could be drop-cast on the chip [234] or
vapor-deposited [235]. Measuring low-concentrated samples of these radicals would already be a
proof-of-concept that our technique can be generalized.

Another topic where our experimental setup could be improved is the JPA. While the devices used
in this work suffered from limited bandwidth and dynamic range, recently developed devices have
reached much higher dynamic ranges (−100 dBm) and considerably larger bandwidths (1 GHz) [60].
Cascaded with HEMT amplifiers which have now demonstrated noise temperature of 1 K [154], they
could provide quantum-limited amplification without restricting the bandwidth or output power
level of the ESR spectrometer.

Low-temperatures are required both for having high spin polarization at gigaHertz frequencies and
ensuring that the microwave field is in its ground state. Commercial spectrometers already operate
at 4 K, where the use of frequencies > 100 GHz could allow for quantum-limited ESR. Keeping an
operating temperatures of 20 mK would permit working at similar frequencies than used in this
thesis and use lower magnetic fields than required for operation at 100 GHz.

Cavity-assisted dynamic nuclear polarization

Another promising research direction is to explore the applications of Purcell-enhanced spin relax-
ation to magnetic resonance. In particular, it seems interesting to envision how it could be applied
to Dynamical Nuclear Polarization (DNP) schemes [208, 209]. In such schemes, the polarization of a
nuclear state is built by cross-relaxation on a electron-nuclear flip-flop transition. Cavity-enhanced
relaxation could be an alternative to existing relaxation mechanisms or enhance the relaxation rate
of this transition to improve the efficiency of the nuclear polarization.

To give an example of implementation of cavity-assisted DNP, we briefly discuss preliminary results
obtained using our setup. As shown in Fig. 10.1, our goal was to transfer population from Si:Bi
state |8〉 into |9〉, using cavity-enhanced relaxation. The scheme consists in exciting the |8〉 ↔ |11〉
transition with the |9〉 ↔ |11〉 transition tuned at the resonator frequency so that spins undergo
Purcell-enhanced relaxation. The population in |9〉 is finally probed by measuring spin-echoes on
the |9〉 ↔ |10〉 transition. Fig. 10.1b shows the echo signal as a function of the resonator detuning to
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FIGURE 10.1: Cavity-assisted DNP using Si:Bi spins. a Working at θ = 45 ◦, transitions |8〉 ↔ |11〉,
|9〉 ↔ |11〉 and |9〉 ↔ |10〉 are allowed. To transfer population from |8〉 to |9〉, a saturation pulse is first
applied on |8〉 ↔ |11〉. The population stored in |11〉 then relaxes via the Purcell effect down to |9〉. b
Measuring the echo signal on transition |9〉 ↔ |10〉 shows that when the Purcell relaxation is tuned at
resonance, the echo signal is increased by 50%.

|9〉 ↔ |11〉. When it is at resonance, the Purcell rate is maximized and activates the transfer to |9〉.
Our results demonstrate a cavity-assisted hyperpolarization of ≈ 50% in |9〉.
Higher degrees of polarization are difficult to obtain in our setup. First, our device geometry with
its high quality factor does not allow to apply strong off-resonant pulses. This problem is avoided in
the above scheme by pulsing the magnetic field in order to bring the various transitions successively
in resonance with the resonator. However the slow response of the Helmholtz coils causes a partial
decay via the Purcell effect of any population stored in an excited state and thus limits the pumping
scheme efficiency. These issues could be solved with for example either a fast-tunable coil or a
frequency-tunable resonator, or an ENDOR-type cavity enabling the application of rf pulses to control
the nuclear states in addition to microwave pulses.

Beyond these technical considerations, the experiment described here is only one example for using
cavity-enhanced relaxation in DNP schemes. Depending on the spin systems, many others schemes
could be realized, provided that the relaxation transition can be sufficiently coupled to the cavity
microwave field to obtain Purcell-enhanced spontaneous emission.

Single-spin inductive detection

200 nm

i
δB

FIGURE 10.2: Al nanowire constric-
tion for single-spin sensitivity

A third promising perspective is to enhance the sensitivity of
our setup even further. Indeed, when the spin relaxation is set
by cavity-enhanced relaxation, the absolute sensitivity is given
by Nmin

√
Γp and thus scales as g2 instead of g. As explained

in this thesis, g is proportional to the magnetic field quantum
fluctuations; reducing the lateral dimensions of our inductance
wire by two orders of magnitude (down to 50 nm, see Fig. 10.2)
would thus increase g by the same amount. Reaching such a
coupling strength would put the detection of a single spin within
reach.

This goal is actively pursued in the group. Once achieved, such
exquisite sensitivity will enable for example the detection of
single magnetic entities, for instance individual molecular magnets.
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For quantum information purposes, achieving a ratio g/κ . 0.1 would allow the electronic spin to
interact strongly with incoming microwave photons. Applied to spin systems having both electronic
and nuclear spins coupled by hyperfine interaction, such as Si:Bi spins or NV centers in diamond,
the efficient detection of the electron spin opens the way to detection of the nuclear spin state.
Indeed, the coupling between electronic and nuclear spin yields ESR transitions whose frequencies
are nuclear spin state dependent, as seen in ch. 4 for Si:Bi spins. If only one of these transitions is
coupled to the resonator, its efficient readout would then permit to non-destructively measure the
nuclear spin state.

This enables in turn measurement-based entanglement schemes. Consider two spins coupled to two
resonators. If each nuclear spin state readout yields the same result when the spins are prepared
in the same state, then the simultaneous readout of both nuclear spins will not distinguish one
spin from the other, resulting into the creation of an entangled state. Such a scheme would be the
microwave transposition of the heralded entanglement scheme demonstrated on NV centers using
optical readout [236].

Si:Bi spins for quantum memories

Finally, we note that Si:Bi spins have specific properties which make them particularly well suited
for quantum memory implementation [71]. In this thesis we have already showed that they can be
readily coupled to superconducting resonators and that they have long coherence times. Additional
interesting features include the electrical control of the donor spin frequency, which has been
demonstrated only for Si:P so far [237].

In quantum memory proposals [78], the state of a superconducting qubit is stored in a spin ensemble,
mediated by an intermediate superconducting resonator. This requires that the spin ensemble is
strongly coupled to the resonator so that it can absorb efficiently the microwave field. Strong
collective coupling requires largely concentrated samples, which in general translates into lower
spin coherence times due to dipolar interactions, thus shortening possible storage times. The key
asset of Si:Bi is that seconds-long coherence times are possible even in highly concentrated samples
at the clock transitions. Memory reset could be achieved using the Purcell effect, as demonstrated in
this thesis.
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Appendix A

Thermal occupancy calibration

Due to imperfect filtering of the microwave probe lines and to the refrigerator finite base temperature,
one can never reach perfect electromagnetic vacuum. In this appendix, we describe the calibration
procedure used to place an upper bound on the average excitation number of the input modes b̂in(ω)
around the ESR resonator resonance frequency (typically |ω − ω0| 6 κc).

The method consists in replacing, in a separate cool-down of the refrigerator, the ESR resonator with
a transmon superconducting qubit [238] coupled to a microwave readout resonator with resonance
frequency ω1. The resonator-qubit system is in the so-called strong dispersive regime of circuit QED in
which photons in the resonator mode lead to dephasing of the qubit [239, 240]. Thus, by measuring
the dephasing rate of the qubit beyond the effect of population relaxation γφ = γ2 − γ1/2, where
γ2 = 1/T2 and γ1 = 1/T1, one can place an upper bound on the thermal photon number nth in the
readout resonator, and then on the occupation of the traveling modes b̂in.

Microwave setup and device

We calibrate the number of thermal photons using the squeezing experiment setup (see ch. 9) shown
in Fig. A.1a. The ESR resonator is replaced by the following device, studied in [241]. On a sapphire
chip, 4 lumped element microwave readout resonators, each one capacitively coupled to a transmon
qubit (see Fig. A.1), are coupled to a single transmission feedline. In the following, we consider only
the qubit-resonator system labeled cell 2 (the other ones are well out of resonance). The feedline is
connected to the setup depicted in Fig. A.1a at points A and B.

The readout resonator consists in an interdigitated capacitor made out of superconducting alu-
minum in parallel of an array of Josephson junctions (Fig. A.1). This array behaves as a non-linear
inductor and was originally designed to allow for a single-shot readout of the attached qubit. This
non-linearity is not relevant here and can anyway be neglected as the average photon number in
the resonator is well below one. Note that the readout resonator has a slightly different frequency
ω1/2π = 7.62 GHz than the ESR resonators, but we assume that the thermal equilibrium is similar
so that 〈b̂†in(ω)b̂in(ω)〉 = 〈b̂†in(ω1)bin(ω1)〉 for all relevant values of ω. This assumption is reasonable
given that |ω − ω1| � kBT , and the transmission of the microwave input lines is flat (±0.5 dB
variation) on this frequency range.

Note that in this geometry, the readout resonator thermal occupation is set by the average occupation
of right propagating modes b̂in through A and left propagating modes ĉin through B (see Fig. A.1d).
Internal losses of the readout resonator, that could act as a connexion to a fictitious cold reservoir,
are shown to be negligible on Fig. A.3d. The blue input line connected at B in Fig. A.1a, which
was originally designed to probe the ESR resonator in reflection on port 1, is less attenuated by 10
dB than the green line connected to A so that left propagating modes tend to increase the thermal
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FIGURE A.1: a Microwave setup used during the squeezing experiment (see ch. 9) b Optical micrograph
of the device used for estimating the number of thermally excited photons in b̂in. Four cells, each one
composed of a transmon qubit with an attached readout resonator are probed with a single microwave
feedline. c Zoom on one of the cells, showing the tunable transmon qubit (to the left) capacitively coupled
to the readout resonator (to the right), itself capacitively coupled to the feedline (to the top). d Simplified
electric circuit of the cell used for the calibration. The qubit contains a split Josephson junction and its
resonance frequency can be tuned by threading the loop with a magnetic flux ϕ. The resonator, which
contains an array of junctions, is slightly non linear. Thermal excitations in the resonator are due to both
right and left traveling modes b̂in and ĉin in the feedline.

occupation of the readout resonator. This issue does not arise with the ESR resonator since the
coupling rate through port 1 is negligible (κ1 � κ2). Thus, the calibration made here is conservative
and the estimation of the thermal occupation of b̂in should be considered as pessimistic.

The transmon qubit is made out of a smaller interdigitated capacitor in parallel with a split Joseph-
son junction that allows to tune its resonance frequency. A DC magnetic field is then applied
using a superconducting coil in order to operate the device at its sweet spot, where its frequency
ωq/2π = 6.23 GHz does not depend on the magnetic field fluctuations at first order (see Fig. A.2).

The coupling rate of the qubit and readout resonator is much smaller than the detuning ω1 − ωq so
that the system is described by the dispersive hamiltonian [240]

H = ~ω1(â†â+
1

2
) + ~ωq

σ̂z
2

+ ~χâ†âσ̂z. (A.1)

Here, σ̂z is the Pauli operator of the qubit and χ is the qubit state dependent shift of the readout
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FIGURE A.2: Two-tone spectroscopy of the qubit. Starting from thermal equilibrium, the qubit is shined
with a 5 µs-long saturating pulse (power -20 dBm referenced at refrigerator input) of frequency fexc and
then readout with an optimized pulse around ω1/2π (see text and Fig. A.3). The integrated signal S
reveals the qubit excited state occupation. One can vary the qubit resonance frequency by varying the
amplitude of the applied B-field (encoded in color). Inset: desaturated qubit resonance (power -30 dBm
at fridge input) at the sweet spot, showing that ωq/2π = 6.228 GHz.

resonator frequency, which provides us with a robust readout method of the transmon [242, 243].
Indeed, by probing the resonator with a microwave nearby its resonance frequency and integrating
a quadrature of the transmitted field, one gets a signal S depending linearly on 〈σ̂z〉. In prac-
tice, the power, length and frequency of the readout pulse was empirically adjusted to optimize
signal-to-noise ratio. It corresponds to few photons in the resonator (power 10 dB larger than for
1 photon characterization of the resonator on Fig A.3 d). Note that the JPA was turned off during all
measurements.

Thermal photon characterization

Rigetti et al. computed the dephasing rate of a qubit induced by thermally excited photons in the
readout resonator mode [244]. It reads

γphot =
κ

2
Re
{

((1 + 2i
χ

κ
)2 + 8i nth

χ

κ
)1/2 − 1

}
, (A.2)

where κ is the photon exit rate from the readout resonator, and nth = 〈a†a〉 is the mean number of
photons hosted by the resonator. Considering that γphot ≤ γφ = γ2 − γ1/2, we now measure the
qubit population and coherence relaxation rates γ1 and γ2 as well as all parameters entering the
expression (A.2) in order to place an upper bound on nth.

By applying π and π/2 excitation pulses (calibrated by recording Rabi oscillations of the qubit), we
first measure the qubit population relaxation rate γ1 = 0.41 µs−1 (see Fig. A.3 a) and coherence
relaxation rate γ∗2 = 1.1 µs−1 (see Fig. A.3 b). This last rate corresponds to a free-induction decay
measurement, and includes the effect of low-frequency noise, such as second order perturbation
of the fluctuations in the flux threading the qubit loop, along with high-frequency noise as in-
duced by thermally induced photons in the readout resonator. A Hahn-echo measurement would
rephase any low-frequency noise. As we measure γ2,echo ' γ∗2 (see Fig. A.3 c), we can state that
the dominant contribution is thermal dephasing ad thus the qubit pure dephasing rate is simply
γφ = γ2 − γ1/2 = 0.9 µs−1.
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FIGURE A.3: Qubit-resonator parameters characterization. For each measurement, the pulse sequence
is schematically represented at ωq (in purple, all rotations around σ̂y of the qubit) and at ωreadout ' ω1 (in
brown). a Population relaxation measurement yielding T1 = 2.4 µs, b Free induction decay measurement
yielding T ∗

2 = 0.9 µs (excitation pulses at ωq/2π+ 2 MHz). c Hahn-echo measurement yielding T2,echo =
0.9 µs. d Measured transmission coefficient SAB when the qubit is at thermal equilibrium (red dots),
right after an inverting π-pulse (yellow dots) and a qubit half-life later (green dots). Black lines: global
fit with parameters pπ = 0.66, χ/2π = 1.48 MHz and κint/κc = 0.14. For a, b and c the readout pulse
power is empirically adjusted to optimize signal to noise ratio and the transmitted field is integrated
over 5 µs. Only the quadrature S containing information on the qubit state is plotted. For d the readout
pulse power is low enough that readout resonator non-linearity is neglected and the transmitted field is
integrated over 0.2 µs in the stationary regime.

The last quantity needed to evaluate nth is the anharmonicity χ. To have a precise estimate of its
value, we detect the transmitted signal through the feedline for a probe pulse of low amplitude
(linear regime of the readout resonator) and integrate the signal over 0.2 µs� T1 in the stationary
regime of the resonator (signal during ring-up is discarded in order to avoid distortion of the signal).
The transmission coefficient from A to B then reads [245]

SBA(ω) = p
κint + 2i(ω − ωres − χ)

κint + κc + 2i(ω − ωres − χ)
+ (1− p) κint + 2i(ω − ωres + χ)

κint + κc + 2i(ω − ωres + χ)
, (A.3)

where κc (resp. κint) is the resonator photon exit rate into the feedline (resp. due to internal losses)
and p = 〈1− σ̂z〉/2 is the occupation of the ground state of the qubit. Note that the total photon exit
rate from the resonator κ = κint + κc = 2π × 3.25 MHz is determined independently by measuring
the ringdown time of the resonator.
We record this transmission coefficient at thermal equilibrium (p ' 1, red dots on Fig. A.3d), after
applying a π-pulse (p = pπ , yellow dots) and, for better precision, a duration t1/2 = ln 2 T1 after the
same pulse (p = pπ/2, green dots). If pπ can be roughly estimated given the drive pulse duration
and delay before signal integration, it is difficult to predict accurately its value due to the reduction
of T1 in presence of a field in the readout resonator [246]. We rather estimate it along with the
other parameters entering Eq. (A.3) by fitting these three curves altogether (black curves), which
yields pπ = 0.66, χ/2π = 1.48 MHz and κint/κc = 0.14. In this fit, we allow for a global scaling
factor accounting for the attenuation in the lines, and a small offset in the transmitted field complex
amplitude, attributed to impedance mismatch. From this calibration and using Eq. (A.2), we find
for the readout resonator
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nth = 0.5± 0.5. (A.4)

We thus conclude that the thermal occupancy of the transmission lines is also less than 0.1 and use
this number throughout the experimental results presented in ch. 5-9, since all are acquired with
only small changes in the microwave setup of Fig. A.1, with all probe lines having the same filtering.
Improving this figure would certainly require increasing the attenuation of the input lines as well as
adding extra-circulators on the output lines.
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Titre : Résonance magnétique avec des champs micro-ondes quantiques 

Mots clés : spins, RPE, détection, sensibilité, effet Purcell, états comprimés 

Résumé : Dans une expérience classique de 
résonance paramagnétique électronique (RPE), 
le couplage entre les spins et leur 
environnement électromagnétique est faible, 
limitant considérablement la sensibilité de la 
mesure. Grâce à l’utilisation combinée d'un 
amplificateur paramétrique Josephson et de 
micro-résonateurs supraconducteurs de hauts 
facteurs de qualité refroidis à quelques 
millikelvins, ce travail rapporte la conception 
et la mise en œuvre d’un spectromètre RPE 
dont la sensibilité de détection est limitée par 
les fluctuations quantiques du champ 
électromagnétique au lieu d’un bruit d’origine 
thermique ou technique. Des mesures de RPE 
pulsée sur un ensemble de donneurs Bismuth 
dans le silicium permettent de démontrer une 
sensibilité de 1700 spins détectés par écho de 
Hahn avec un signal-sur-bruit unitaire. La 
sensibilité est encore améliorée  en générant un 
état de vide comprimé dans le guide d'onde de  

détection, ce qui réduit les fluctuations 
quantiques  au-delà de la limite quantique. Le 
petit volume de mode du résonateur 
supraconducteur accroit également le couplage 
spin-résonateur jusqu'au point où les 
fluctuations quantiques ont un effet dramatique 
sur la dynamique des spins. En effet, 
l’émission spontanée de photons dans le 
résonateur micro-onde est considérablement 
renforcée par l'effet Purcell, ce qui en fait le 
mécanisme de relaxation de spin dominant. Le 
taux de relaxation est augmenté de trois ordres 
de grandeur lorsque les spins sont accordés à 
résonance, démontrant que la relaxation de 
spin peut-être contrôlée sur demande. Nos 
résultats fournissent une méthode nouvelle et 
universelle pour initialiser des systèmes de 
spin dans leur état fondamental, avec des 
applications en résonance magnétique et en 
information quantique. 

 

 

Title : Magnetic resonance with quantum microwaves 

Keywords : spins, ESR, detection, sensitivity, Purcell effect, squeezed-states 

Abstract : In usual electron-spin resonance 
(ESR) experiments, the coupling between spins 
and their electromagnetic environment is quite 
weak, severely limiting the sensitivity of the 
measurements. Using a Josephson parametric 
microwave amplifier combined with high-
quality factor superconducting micro-
resonators cooled at millikelvin temperatures, 
this work reports the design and 
implementation of an ESR setup where the 
detection sensitivity is limited by quantum 
fluctuations of the electromagnetic field instead 
of thermal or technical noise.  Pulsed ESR 
measurements on an ensemble of Bismuth 
donors in Silicon spins demonstrate a 
sensitivity of 1700 spins within a single Hahn 
echo with unit signal-to-noise (SNR) ratio. The 
sensitivity of the setup is improved one step 
further by generating squeezed vacuum in the 
detection waveguide, reducing the amount of  

noise beyond the quantum limit. The small 
mode volume superconducting microwave 
ESR resonator also enhances the spin-
resonator coupling up to the point where 
quantum fluctuations have a dramatic effect on 
the spin dynamics. As a consequence, the spin 
spontaneous emission of microwave photons 
in the resonator is dramatically enhanced by 
the Purcell effect, making it the dominant spin 
relaxation mechanism. The relaxation rate is 
increased by three orders of magnitude when 
the spins are tuned to resonance, showing that 
spin relaxation can be engineered and 
controlled on-demand. Our results provide a 
novel and general way to initialize spin 
systems into their ground state, with 
applications in magnetic resonance and 
quantum information processing. 

 


	Remerciements
	Résumé détaillé
	1 Électrodynamique quantique des circuits appliquée à la résonance magnétique
	2 Micro-ondes quantiques et dynamique de spins
	3 Détection de signaux RPE avec une sensibilité limitée quantiquement
	4 Effet Purcell appliqué aux spins
	5 États comprimés et résonance magnétique

	1 Introduction
	1.1 Circuit quantum electrodynamics for magnetic resonance
	1.2 Quantum microwaves and spin dynamics
	1.3 Electron spin resonance at the quantum-limit of sensitivity
	1.4 The Purcell effect applied to spins
	1.5 Squeezing-enhanced magnetic resonance

	I Background
	2 Quantum circuits and quantum noise
	2.1 Quantum microwaves and quantum circuits
	2.1.1 Quantum description of an electromagnetic mode : quantum noise and quantum states
	2.1.2 Lumped element LC resonator
	2.1.3 Lossless transmission line
	2.1.4 Probing and characterizing a resonator

	2.2 Amplification at the quantum-limit
	2.2.1 Input-output relations for linear amplifiers
	2.2.2 Quantum limits on the noise added by the amplifier
	2.2.3 The flux-pumped Josephson Parametric Amplifier


	3 Spins in a cavity
	3.1 Spin dynamics in a classical microwave field
	3.1.1 Coherent spin evolution
	3.1.2 Relaxation and decoherence
	3.1.3 Inductive detection of magnetic resonance

	3.2 Spin dynamics in a quantum microwave field
	3.2.1 One spin coupled to a harmonic oscillator
	3.2.2 Collective effects


	4 Bismuth donors in silicon
	4.1 A substitutional donor in silicon
	4.1.1 Electronic states

	4.2 Spin levels and ESR-allowed transitions.
	4.3 Donors in strained silicon
	4.4 Relaxation times
	4.4.1 T1 relaxation
	4.4.2 Coherence times

	4.5 Optical transitions via donor-bound exciton states
	4.6 Fabrication


	II Magnetic resonance at the quantum limit
	5 Design and realization of a spectrometer operating at the quantum limit of sensitivity
	5.1 Nanoscale esr
	5.1.1 State-of-the-art
	5.1.2 Pulsed inductive detection at the nanoscale

	5.2 Experimental setup
	5.2.1 Low-temperature operation
	5.2.2 Room-temperature setup
	5.2.3 jpa characterization

	5.3 Design of a superconducting esr resonator with high quality factor and small mode volume
	5.3.1 Design choices
	5.3.2 Electromagnetic simulations
	5.3.3 Coupling to bismuth donor spins
	5.3.4 Experimental implementation


	6 ESR spectroscopy of Bismuth donors in silicon
	6.1 Hahn-echo detected esr
	6.1.1 Experimental techniques
	6.1.2 Hahn-echo sequence
	6.1.3 Rabi oscillations

	6.2 Strain-broadened transitions
	6.2.1 Doublet-shaped transitions
	6.2.2 Rabi frequency dependence on B0
	6.2.3 Induced strain, a likely suspect

	6.3 Relaxation times
	6.3.1 Energy relaxation
	6.3.2 Coherence times


	7 Spectrometer sensitivity
	7.1 Determining the number of spins
	7.1.1 Direct counting of the donors
	7.1.2 Estimate based on numerical simulations

	7.2 Characterization of the sensitivity
	7.2.1 Single-echo signal-to-noise ratio
	7.2.2 Sensitivity enhancement by cpmg echoes

	7.3 Conclusion


	III The Purcell effect applied to spins
	8 Controlling spin relaxation with a cavity
	8.1 Cavity-enhanced spontaneous emission
	8.1.1 Spontaneous emission into free space
	8.1.2 The Purcell effect
	8.1.3 Experimental realizations
	8.1.4 Spontaneous emission with spins

	8.2 Experimental implementation for electronic spins 
	8.2.1 Cavity-spin system
	8.2.2 Experimental estimate of g
	8.2.3 T1 at resonance

	8.3 Controlling spin relaxation
	8.3.1 Tuning T1 via the spin-cavity coupling g0
	8.3.2 Tuning T1 via the spin-resonator detuning

	8.4 Conclusion


	IV Squeezing-enhanced magnetic resonance
	9 Squeezing-enhanced magnetic resonance
	9.1 Squeezing-enhanced measurements
	9.1.1 State-of-the-art
	9.1.2 Squeezed states for magnetic resonance 

	9.2 Detecting and characterizing microwave squeezed states
	9.2.1 Microwave squeezed-states
	9.2.2 Characterization of the flux-pumped jpa as a squeezing generator
	9.2.3 Noise reduction below the quantum limit with an esr resonator
	9.2.4 Detection of displaced squeezed states

	9.3 An esr signal emitted in squeezed vacuum
	9.3.1 Squeezing-enhanced esr: proof-of-principle
	9.3.2 Absolute sensitivity
	9.3.3 Theoretical limit of a squeezing-enhanced esr spectrometer

	9.4 Conclusion

	10 Conclusion and future directions
	10.1 Magnetic resonance with quantum microwaves
	10.2 Future research directions

	A Thermal occupancy calibration
	Bibliography


