N

N

Parallel Scheduling in the Cloud Systems: Approximate
and Exact Methods
Mohammed Albarra Hassan Abdeljabbar Hassan

» To cite this version:

Mohammed Albarra Hassan Abdeljabbar Hassan. Parallel Scheduling in the Cloud Systems: Approx-
imate and Exact Methods. Operations Research [math.OC]. Université de Lorraine, 2016. English.
NNT: 2016LORR0223 . tel-01496257

HAL Id: tel-01496257
https://theses.hal.science/tel-01496257
Submitted on 27 Mar 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01496257
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LORRAINE

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis a disposition de I'ensemble de Ila
communauté universitaire élargie.

Il est soumis a la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de réeférencement lors de
I'utilisation de ce document.

D'autre part, toute contrefacon, plagiat, reproduction illicite
encourt une poursuite penale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4

Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

UNIVERSITE
DE LORRAINE Ecole doctorale IAEM Lorraine

Parallel Scheduling in the Cloud
Systems : Approximate and Exact
Methods

THESIS

Submitted to the IAEM Lorraine Doctoral School In 15 December 2016

In Partial Fulfillment of the Requirements for the Degree of

Doctor of the Université de Lorraine

(Computer Sciences)
by

Mohammed Albarra HASSAN ABDELJABBAR HASSAN

Dissertation Committee

President : Prof. Ridha MAHJOUB Université de Paris-Dauphine, France
Reporters : Prof. Feng CHU Université d’Evry, France
Dr. Fatiha BENDALI Université de ClermontFerrand, France
Ezxaminers : Dr. Marie-Ange MANIER, Université de Technologie de Belfort-Montbéliard, France

Dr. Murtada ELBASHIR University of Gezira, Sudan

Supervisors : Prof. Imed KACEM Université de Lorraine, France
Prof. Izzeldin OSMAN University of Gezira, Sudan

Co-Supervisors : Dr. Sébastien MARTIN Université de Lorraine, France

Laboratoire de Concéption, Optimisation, et Modélisation des Systémes — EA 7306

Mis en page avec la classe thesul.

Acknowledgments

First and foremost, sincere gratitude is due to my Supervisors. Firstly, I would like to
thank my Supervisor in université de Lorraine Prof. Imed KACEM, your encouragement,
guidance and intellectual support from the initial to the final level of my PhD degree
enabled me to expand my knowledge by guiding me to develop new methods, and to
practice a lot of research skills, and to know new research directions. Your constant pursuit
for perfection, and valuable suggestions have guided me at every step of my research. It
was a great pleasure and honor to work with you. Particularly, I value your respect towards
professionalism and the desire to excel higher and higher. I owe you lots of gratitude for
having shown me how to be an ideal researcher, a good reviewer and a hard worker.

I'm profoundly indebted to my Co-Supervisor Dr. Sebastién MARTIN who was very
generous with his time and knowledge and assisted me in each step to complete this thesis.
I deeply appreciate your work attitude and your work efficiency. It was a great pleasure and
honor to work with you too. Your perpetual energy and enthusiasm in research extremely
motivated me in my studies. I shall be missing our regular meetings at 7 :30 AM.

It gives me great pleasure to acknowledge my Supervisor at University of Gezira Prof.
Izzeldin M.OSMAN; his advises, constant support, availability and bright inputs helped
me a lot to accomplish this work. He was always accessible and willing to help every young
scientist with their research every where, and every time.

I have been extremely lucky to have a supervisors like you all, you granted me much
of your time and you cared so much about my work, and responded to my queries and
questions so promptly. This thesis would not have been possible without your extraordi-
nary support. I learned a lot from you, but in fact this clearly shows that there is still a
lot to learn from you.

I also must thank again Prof. Imed KACEM he accepted me as a Ph.D fellow and
giving me an opportunity to pursue a doctorate degree in LCOMS. As well as funding all
costs of all international conferences, publications, and the traveling costs.

I also thank the thesis reporters and all jury members for the thorough and critical
judgment and evaluation of this thesis.

I would also like to thank all members, and Phd colleagues at LCOMS.

I acknowledge the University of Gezira for providing me with this scholarship to pursue
my doctorate studies especially Prof. Mohammed WARRAQ OMER, Prof. Abdelelah M.
ALHASSAN and Prof. Osman ELAMIN. I greatly appreciate all kinds of help received
from the staff members of the French embassy in Khartoum, espicially Pierre MULLER,

Jean-Noel BALEO, Geneviéve ICHARD, Abusufian ALT and Salma YAGI.

I also extend my gratitude to the staff members and friends from the IUT-Metz for
their help and support, especially Pierre, Frank, Zsuszana, Natali, Crystle and Nicolas,
Je vais manquer le diner annuel de Noél avec vous.

I deeply thank my wife Ebtihal MUSTAFA, who accepted my long hours at research,
and endured with open heart and mind and encouraged me at every step of my career
and life.

A special thanks goes to my brother Alfrazdaq and his family for living every moment
of this work with me, and for his warmest welcoming in Cork, and Dublin during holidays.

Finally and forever, I acknowledge moral and emotional support I received from my
mother, father, brothers during this challenging period and my life in general.

However, I'm the only person responsible for errors in this thesis.

il

Dedication

To my parents for their love, prays, and support. You put me through the best education
possible. | appreciate your sacrifices and | wouldn’t have been able to get to this stage

without you.

To my wife Ebtihal and my sons Mohammed, Alaa, you have persevered and endured a lot

during this period.

To my brothers and my sister for unending love and support.

il

iv

Table of contents

General Introduction 1
Chapitre 1
State-of-the-Art
1.1 Cloud Computing D
1.2 Scheduling problems o o0 6
1.3 Computational complexity, 8
1.4 Heuristics and meta-heuristics 9
1.4.1 Heuristics e e 9
1.4.2 Metaheuristics 9
Genetic algorithmo oo 10
1.5 Graph theory 12
1.6 Optimization problems, 12
1.6.1 Combinatorial optimization 13
1.6.2 Linear programmingot e e 14
1.6.3 Integer programmingo 14
1.7 Polyhedral approach 15
1.7.1 Elements of polyhedral theory 16
1.7.2 Cutting plane methods oL 17
1.8 Branch and cut algorithm 00000 19
Chapitre 2
Heuristics and Meta-heuristics Solutions 23
2.1 Introduction e 24
2.1.1 Literature Review o 25
2.2 Problem formulation 27

Table of contents

2.3 An existing algorithm L Lo 29
2.4 Genetic algorithm (GA) 29
2.4.1 Modeling the problem using Genetic Algorithm 31
Task Scheduling Genetic Algorithm (GATS) 31

Genetic Algorithm Based on Cut-point (GACP) 32

Genetic Algorithm Based on The List of Available Jobs (GAAV) . . 32

Genetic Algorithm (GAAV™T) oL 36
Experimental Results 37

Integral Linear Programming Solution (ILP) 39
Transformations Between Genetic Algorithms 40

Conclusion L 44

Chapitre 3

Mathematical Formulations 47
3.1 Introduction 48
3.2 Problem Description e 49
3.3 Mathematical Formulations 50
3.3.1 Classical Formulation 50
3.3.2 Flow Formulation 52
3.3.3 Order Formulation 54
3.3.4 Interval Graph Formulation 55
3.4 Valid Inequalities e 58
3.4.1 Separation Algorithm for SPT Inequality 62
3.4.2 Reformulation of Interval Graph Formulation 62
3.5 Experimental Results 63
3.5.1 Conclusion e e 67

Chapitre 4

Polyedral study on interval graphs under m-clique free constraints 71
4.1 Introductiono 72
4.2 The polytopes of interval sub-graphs 74
4.2.1 Forbidden subgraphs inequalities 74
Bipartite Claw 75
Umbrella Inequalities 79
n-net Inequalities Lo 82

vi

n-tent Inequalities 0oL 84

Hole inequalities, 85

Clique inequalities Lo 87

Clique-Hole inequalities 89

4.3 Cutting plane algorithms o000 90
4.3.1 Bipartite claw separation L0000 90
Exact Separation (ExBC-Sep) 91

Heuristicl : Separation (HIBC-Sep) 92

Heuristic 2 : Separation (H2BC-Sep) 92

4.3.2 Umbrella separation 0o 92
Exact separation algorithmo 0L 93

H1U-Sep separation v ... 93

H2U-Sep Separation, 93

n-net separation Lo e 95

n-tent separationo 96

4.3.3 Hole separation 97
4.3.4 Clique separation e 97
4.3.5 Lazy constraint approach, 98

4.4 Application to URPMDC problem. 99
4.4.1 Mathematical formulation 99
4.4.2 Computational Results 102

4.5 Conclusion e e 103

Chapitre 5
Generalized Open Shop, and Open Shop Problems 107

5.1 Introduction 108
5.2 Generalized open shop problem with jobs disjunctive constraints 109
5.2.1 Integer linear programming formulation 109
5.2.2 Valid inequalities Lo 0oL 110
Sequence inequalities L L Lo 110

Previous job inequalities 111

Line job inequalities Lo oo 112

Logical implication inequalities 113

5.2.3 Experimental resultso Lo oo oL 113

5.3 Open shop problem 115

vii

Table of contents

5.3.1 Integer linear programming formulation 116
5.3.2 Valid inequalities 118
Sequence inequalities L. L Lo 118

Previous operations inequalities 119

Logical implication inequalities 120

5.3.3 Experimental results L. 121

54 Conclusion 122

Chapitre 6

General Conclusion and Perspectives 127

Bibliographie 131

viil

Résumé

Cette thése porte sur la résolution exacte et heuristique de plusieurs problémes ayant
des applications dans le domaine de 'Informatique dématérialisé (cloud computing). L'In-
formatique dématérialisée est un domaine en plein extension qui consiste & mutualiser les
machines/serveurs en définissant des machines virtuelles représentant des fractions des
machines/serveurs. Il est nécessaire d’apporter des solutions algorithmiques performantes
en termes de temps de calcul et de qualité des solutions. Dans cette thése, nous nous
sommes intéressés dans un premier temps au probléme d’ordonnancement sur plusieurs
machines (les machines virtuelles) avec contraintes de précédence, c-a-d., que certaines
taches ne peuvent s’exécuter que si d’autres sont déja finies. Ces contraintes représentent
une subdivision des taches en sous tachespouvant s’exécuter sur plusieurs machines vir-
tuelles. Nous avons proposé plusieurs algorithmes génétiques permettant de trouver rapi-
dement une bonne solution réalisable. Nous les avons comparés avec les meilleurs algo-
rithmes génétiques de la littérature et avons défini les types d’instances ol les solutions
trouvées sont meilleures avec notre algorithme. Dans un deuxiéme temps, nous avons
modélisé ce probléme a 'aide de la programmation linéaire en nombres entiers permet-
tant de résoudre a 'optimum les plus petites instances. Nous avons proposé de nouvelles
inégalités valides permettant d’améliorer les performances de notre modéle. Nous avons
aussi comparé cette modélisation avec plusieurs formulations trouvées dans la littérature.
Dans un troisiéme temps, nous avons analysé de maniére approfondie la sous-structure du
sous-graphe d’intervalle ne possédant pas de clique de taille donnée. Nous avons étudié
le polytope associé a cette sous-structure et nous avons montré que les facettes que nous
avons trouvées sont valides pour le probléme d’ordonnancement sur plusieurs machines
avec contraintes de précédence mais elles le sont aussi pour tout probléme d’ordonnance-
ment sur plusieurs machines. Nous avons étendu la modélisation permettant de résoudre
le précédent probléme afin de résoudre le probléme d’ordonnancement sur plusieurs ma-
chines avec des contraintes disjonctives entre les taches, c-a-d., que certaines taches ne
peuvent s’exécuter en méme temps que d’autres. Ces contraintes représentent le partage
de ressources critiques ne pouvant pas étre utilisées par plusieurs taches. Nous avons pro-
posé des algorithmes de séparation afin d’insérer de maniére dynamique nos facettes dans

la résolution du probléme puis avons développé un algorithme de type Branch-and-Cut.

X

Nous avons analysé les résultats obtenus afin de déterminer les inégalités les plus inté-
ressantes afin de résoudre ce probléme.Enfin dans le dernier chapitre, nous nous sommes
intéressés au probléme d’ordonnancement d’atelier généralisé ainsi que la version plus
classique d’ordonnancement d’atelier (open shop). En effet, le probléme d’ordonnance-
ment d’atelier généralisé est aussi un cas particulier du probléme d’ordonnancement sur
plusieurs machines avec des contraintes disjonctives entre les taches. Nous avons proposé
une formulation a l'aide de la programmation mathématique pour résoudre ces deux pro-
blémes et nous avons proposé plusieurs familles d’inégalités valides permettant d’améliorer
les performances de notre algorithme. Nous avons aussi pu utiliser les contraintes défi-
nies précédemment afin d’améliorer les performances pour le probléme d’ordonnancement
d’atelier généralisé. Nous avons fini par tester notre modéle amélioré sur les instances
classiques de la littérature pour le probléme d’ordonnancement d’atelier. Nous obtenons

de bons résultats permettant d’étre plus rapide sur certaines instances.
Résumé du chapitre 1 :

Dans ce chapitre, nous avons proposé un état de 'art portant dans un premier temps
sur les problématiques de recherche opérationnelle que I'on peut trouver dans 1'Infor-
matique dématérialisée. Ensuite, nous avons rappelé quelques problématiques d’ordon-
nancement s’insérant dans le cadre de I'Informatique dématérialisée. Aprés cet état de
I’art thématique, nous nous sommes intéressés aux méthodes permettant de résoudre ces
problémes. En introduction aux méthodologies, nous avons décrit ce qu’est un probléme
d’optimisation combinatoire, la modélisation par les graphes et expliqué la difficulté de
résolution de certains problémes en définissant la complexité. Ensuite, nous avons com-
mencé par décrire les heuristiques et méta-heuristiques que sont les algorithmes gloutons,
les méthodes de recherches locales et les algorithmes génétiques. Puis, nous avons rappelé
les concepts de la programmation en nombres entiers. Ces concepts regroupent, la mo-
délisation, 'approche polyédrale, les algorithmes de type Branch-and-Bound et ceux de

type Branch-and-Cut.
Résumé du chapitre 2 :

Dans le chapitre 2 nous décrivons le probléme d’ordonnancement sur plusieurs ma-
chines avec contraintes de précédence et nous donnons une formulation a l'aide de la
programmation mathématique afin de comparer les heuristiques sur de petites instances.
Nous discutons ensuite des algorithmes heuristiques et méta-heuristiques proposés dans la
littérature et permettant de résoudre ce probléme. Nous proposons un nouvel algorithme

génétique basé sur 'affectation des jobs aux machines. Nous développons plusieurs va-

riantes basées sur cette idée, puis nous combinons plusieurs algorithmes génétiques dif-
férents afin d’améliorer la meilleure solution trouvée sur les instances de grandes tailles.
Nous finissons par comparer les différents algorithmes sur un ensemble d’instances générées
aléatoirement. Nous montrons que notre algorithme génétique obtient de bien meilleures

performances sur de nombreuses instances.
Résumé du chapitre 3 :

Dans ce chapitre, nous décrivons plusieurs formulations mathématiques données dans
la littérature. Nous proposons une nouvelle modélisation basée sur les graphes d’inter-
valles. Cette formulation posséde un nombre exponentiel de contraintes. Nous proposons
des séparations polynomiales pour ces inégalités nous permettant de résoudre efficacement
les instances testées. Cette modélisation obtient de trés bons résultats et outrepasse en
termes de performance toutes les modélisations proposées dans la littérature a I'excep-
tion de la formulation basée sur les ordres linéaires. Nous avons proposé de nombreuses
inégalités valides pour notre modéle basé sur les graphes d’intervalles nous permettant
d’obtenir de meilleurs résultats et des résultats compétitifs sur de nombreuses instances

en comparaison avec la formulation basée sur les ordres linéaires.
Résumé du chapitre 4 :

Dans le chapitre 4, nous avons analysé le probléme du sous-graphe d’intervalle sans
clique de taille supérieure & m. Ce sous-probléme se retrouve dans de nombreux pro-
blémes d’ordonnancement. Nous avons proposé des inégalités permettant de supprimer
les sous-graphes interdits définis dans la littérature. Pour chacune de ces inégalités nous
analysons leur aspect facial. Ces contraintes sont en nombres exponentiels et nous propo-
sons plusieurs séparations, exactes et heuristiques pour chacune d’entre elle. Nous finissons
par comparer les performances de chaque contrainte sur le probléme d’ordonnancement
sur plusieurs machines avec contraintes disjonctives. Cette comparaison nous permet de

définir les contraintes les plus intéressantes et la force des séparations proposées.
Résumé du chapitre 5 :

Dans ce chapitre, nous étudions deux problématiques qui sont des cas particuliers du
probléme d’ordonnancement sur plusieurs machines avec contraintes disjonctives. Le pre-
mier probléme consiste a définir le meilleur ordre des taches sur plusieurs machines tout en
respectant les contraintes disjonctives. Nous proposons une formulation par la program-
mation linéaire en nombres entiers pour résoudre ce probléme ainsi que des contraintes
spécifiques. Nous avons testé ce modéle en ajoutant les contraintes basées sur le sous-

graphe d’intervalle sans clique de taille m et nous comparons les résultats sur des ins-

xi

tances aléatoires. Le second probléme est celui de 'ordonnancement d’atelier (open shop)
largement étudié dans la littérature. Nous étendons le modéle précédent ainsi que les
contraintes proposées précédemment. Ce modéle se base sur 'ordre linéaire des taches
sur une machine et appartenant a la méme tache. Nous testons la performance de notre

modéle sur les instances utilisées dans la littérature.

Mots-clés: Ordonancement, programmation mathématique, heuristiques, Approche po-

lyédrale, Branch-and-cut.

xii

Abstract

The Cloud Computing appears as a strong concept to share costs and resources
related to the use of end-users. As a consequence, several related models exist and are
widely used (IaaS, PaaS, SaaS...). In this context, our research focused on the design
of new methodologies and algorithms to optimize performances using the scheduling and
combinatorial theories. We were interested in the performance optimization of a Cloud
Computing environment where the resources are heterogeneous (operators, machines, pro-
cessors...) but limited. Several scheduling problems have been addressed in this thesis.
Our objective was to build advanced algorithms by taking into account all these addi-
tional specificities of such an environment and by ensuring the performance of solutions.
Generally, the scheduling function consists in organizing activities in a specific system
imposing some rules to respect. The scheduling problems are essential in the management
of projects, but also for a wide set of real systems (telecommunication, computer science,
transportation, production...). More generally, solving a scheduling problem can be re-
duced to the organization and the synchronization of a set of activities (jobs or tasks)
by exploiting the available capacities (resources). This execution has to respect different
technical rules (constraints) and to provide the maximum of effectiveness (according to a
set of criteria). Most of these problems belong to the NP-Hard problems class for which
the majority of computer scientists do not expect the existence of a polynomial exact
algorithm unless P=NP. Thus, the study of these problems is particularly interesting at
the scientific level in addition to their high practical relevance. In particular, we aimed to
build new efficient combinatorial methods for solving parallel-machine scheduling prob-
lems where resources have different speeds and tasks are linked by precedence constraints.

In our work we studied two methodological approaches to solve the problem under the
consideration : exact and meta-heuristic methods.We studied three scheduling problems,
where the problem of task scheduling in cloud environment can be generalized as unrelated
parallel machines, and open shop scheduling problem with different constraints. For solv-
ing the problem of unrelated parallel machines with precedence constraints, we proposed a
novel genetic-based task scheduling algorithms in order to minimize maximum completion
time (makespan). These algorithms combined the genetic algorithm approach with differ-
ent techniques and batching rules such as list scheduling (LS) and earliest completion time
(ECT). We reviewed, evaluated and compared the proposed algorithms against one of the
well-known genetic algorithms available in the literature, which has been proposed for the

task scheduling problem on heterogeneous computing systems. Moreover, this compari-

xiil

son has been extended to an existing greedy search method, and to an exact formulation
based on basic integer linear programming. The proposed genetic algorithms show a good
performance dominating the evaluated methods in terms of problems’ sizes and time
complexity for large benchmark sets of instances. We also extended three existing math-
ematical formulations to derive an exact solution for this problem. These mathematical
formulations were validated and compared to each other by extensive computational ex-
periments. Moreover, we proposed an integer linear programming formulations for solving
unrelated parallel machine scheduling with precedence/disjunctive constraints, this model
based on the intervaland m—clique free graphs with an exponential number of constraints.
We developed a Branch-and-Cut algorithm, where the separation problems are based on
graph algorithms. We also worked to hybridize the meta-heuristic with the mathematical
program and improved our mathematical program by adding different classes and fami-
lies of valid inequalities to strengthen the model. We also studied the polytope associated
with our mathematical formulation. We discussed the separation algorithms associated
with the valid inequalities and used them within branch-and-cut algorithm to solve the
problem. Finally, we proposed a novel model for solving a generalized open shop task
scheduling problem, and then, we adapted the model to solve the task scheduling prob-
lem in an open shop environment. We also identified some classes of valid inequalities to

improve these models.

Keywords: scheduling, mathematical programming, heuristics, polyhedral study, Branch-

and-cut

xiv

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Table des figures

Task scheduling in cloud computing model.
Aconvex hull

Valid inequality, facet

Precedence Constraints Lo
Example of the GATS and GAAV encoding.
Counts of best results Lo
Genetic algorithms convergence.

Average Relatives Percentage Gap.

Classical Formulation Hlustration.
Job in position 7 must start its processing after job in position r — 1.

Flow Formulation Illustration.
Finding Path between sequences.
lustration for the Status of Inequalities (3.34)
An induced sub graph with it’s valid schedule
Schedule of three jobs. o

Cliques with 3, 4, 5 and 6 vertices.
Forbidden Subgraphs Characterization
Subsets of the complementary Bipartite Claw
Subsets of umbrella and its complementary
Hole free subgraphso
Coefficient of umbrella and its complementary edges
Basic edges for Bipartite Claw and Umbrella
Adding one vertex to 2-net to find 3-net 0L
Adding one vertex to 3-tent to find 4-tent. L.

XV

36

Table des figures

xXvi

4.10 Hole o e e 97
4.11 Clique of size 4. e 98
4.12 Schedule of 4 jobs on 3 machines oL 99
5.1 Different sequences of jobs on a machine 111
5.2 Sequence inequalities. 111
5.3 Previous job inequalities. Lo 112
5.4 Line job inequalities L 112
5.5 Open shop for three jobs 116
5.6 Example : previous job inequalities between operations 119
5.7 Logical implication on one machine. 120
5.8 Logical implication between operations. 120

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9

2.10

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2
2.3
5.4

Liste des tableaux

Processing Time L o 30
Average and Standard deviation for Instances Processing time 31
GATS vs GATS™, Crar Comparison v v v v v v v v v .. 33
Chromosome representation for GAAV 34
GAAV :Crossover Operator v v i 35
GAAV :Mutation Operator o 35
Results Obtained by the ILP 40
Makespan (C)yq.)for the proposed algorithms and GATS, (Low& Medium

Density) . . . o o oo e 41
The Average Relative Percentage Gap(ARPG) for the transformation pro-

cess between Genetic Algorithms L. 42
Best Makespan/ C,,,, obtained among All GAs Comparing to AVtoTS and

AVHLoTS o e 43
Results 66
Results e 68
Average Relative Percentage Gap between Optimal Solution and Obtained

Solution. L e 69
Results for 10 jobs with different methods 105
Results for 15 jobs with different methods 106
Results for hard instances with 15 jobs and different methods 106
Results of the generalized open shop model 114
Number of optimal solutions obtained. 123
Number of optimal solutions obtained. 124
Number of optimal solutions obtained. 125

Xvil

Liste des tableaus

5.5 Number of optimal solutions obtained.

Xviil

(zeneral Introduction

Cloud computing is a natural development of the previous models of distributed and
grid computing, beyond the technical innovations related to the idea of virtualization.
Cloud providers provide the computing as a services, it is called infrastructure as a service
(IaaS). Amazon Elastic Compute Cloud [13] is an example of TaaS. In cloud the providers
deliver physical resources as virtual machines with different capacities to remote users as
a service on pay-as-you-go basis. Remote users send their data (applications, programs,
etc) to the cloud, the scheduler needs to place these data to its proper virtual machines. In
scheduling theory, this problem belongs to the class of parallel machines and open shop.
When the capacity of machines is different, then it becomes more precisely an unrelated
parallel machines and a generalized case of open shop. In cloud computing most applica-
tions can be represented in a form of a directed cyclic graph (DAG). Therefore, precedence
constraints and disjunctive constraints are found. Cloud management is responsible for
resources allocation. When users send their applications (set of jobs with dependencies)
to the cloud the scheduler aims to assign each dependent job to its virtual machines ef-
ficiently. The allocation of jobs to virtual machines is a complicated process in the cloud
computing environment. Optimizing the maximum completion time normally affects the
performance of the whole system. The main advantage of job scheduling algorithms in
cloud environment is to achieve an excellent system throughput and high performance
computing.

Scheduling is the allocation of resources over time to perform a collection of tasks,
in which one or several objectives have to be optimized. From this general definition of
the term, we could deduce that, scheduling is an important decision making function.
We can say also, scheduling is a theory when it has a collection of principles, models
and techniques. Scheduling plays a crucial role in manufacturing, as well as in services
industries [113]. Effective scheduling becomes a necessity for survival in marketplace.
For example, services companies have to schedule activities in such a way as to use the

available resources in an efficient manner. Referring to Conway et al [!], scheduling is

General Introduction

classified according to four types of information : the operations to be processed, the
number and types of machines, the constraints that restrict the assignment of jobs and
the criteria by which the schedule can be evaluated. In the real life, there are tremendous
number of scheduling applications in manufacturing [6], production systems |7] and in
services industries [3], as well as in most information processing environment |1, 5|. The
journey of scheduling theory starts by Henry Gantt and other pioneers. Different directions
were pursued in academia and industry with an increasing amount of attention paid
to scheduling problems. As a consequence, different approaches have been developed to
solve the scheduling problems |3, 10, 11, 12|. These approaches, generally based on the
optimization techniques including heuristics, meta-heuristics (approximate methods) and
exact techniques, aim to design effective algorithms for attacking the considered scheduling

problems.

Most of scheduling problems belong to the NP-Hard problems class for which the
majority of computer scientists do not expect the existence of a polynomial exact algo-
rithm. Thus, the study of these problems is particularly interesting at the scientific level

in addition to their high industrial relevance.

Motivated by the optimization of the performances in cloud computing environment.
The scheduling problem in cloud is generalized as an unrelated parallel machine and open
shop scheduling problems according to the cloud environment. In this thesis, we propo-
sed different optimization methods (approximate, and exact) to handle such scheduling
problems. Our contribution is as follows :

- Several genetic algorithms have been proposed based on local search, list scheduling and
some batching rules.

- Several mathematical formulations are developed to solve the parallel-machine and open
shop scheduling problems.

- The proposed interval subgraph mathematical model have been investigated with the
associated polytope and some facets are defined for this polytope.

- Several classes of valid inequalities have been derived.

- Several separation procedures are proposed to strengthen the model.

Many experimental computations have been applied for some generated benchmarks as

well as for some known benchmarks.

Outlines of the thesis

This thesis consists of five chapters where each one could be a self-contained chapter
based on the problem under the consideration and the combinatorial optimization methods
used. The reader can access the chapter with the corresponding method of his interest
directly. The manuscript is organized as follows :

Chapter 1 presents the preliminary and preparatory definitions and notations as a
conceptual framework. This chapter includes also some state of the art on cloud compu-
ting, scheduling problem and some definitions about complexity theory, polyhedral and
graph theory.

Chapter 2 focus on the approximate solutions of combinatorial problems. Greedy and
genetic algorithms for solving the task scheduling problems in cloud computing are pro-
posed in this chapter. Here, the problem is formulated as an unrelated parallel-machine
with precedences and disjunctive constraints. Moreover, some related work on this area
of research are presented and our results are compared with the existing works.

Chapter 3 presents the mathematical formulation of the studied problem. Our novel
mathematical model, which is based on interval and m-clique free subgraphs for solving the
unrelated parallel machines scheduling problem with precedence constraints is proposed.
We also compared the proposed model against different other mathematical formulations
found in the literature. At the end of this chapter computational experiments are presented
and analysed.

Chapter 4 investigates our mathematical model and studies its associated polytope.
We explore the subproblem of finding an interval graph and m-clique free subgraphs.
Moreover, we present some facet definitions and we also describe the exact and heuristic
separation algorithms to separate some forbidden subgraphs and we propose a branch-
and-cut algorithm based on families of strong valid inequalities presented in this chapter.

Chapter 5 discusses two problems. The first one is the Generalized Open Shop problem
and the second is the Open Shop scheduling problem. The structure of our model helps on
solving such problems. By applying the idea of interval graph to propose other mathema-
tical formulations for solving the considered problems, some classes of valid inequalities
are presented. Some separation algorithms are proposed as well.

Most of the results of these chapters have been published in journals, and international
conferences listed below :

Two articles in international journals :

— M-A. Hassan, I. Kacem, S. Martin, .M. Osman, Genetic Algorithms for Job sche-

General Introduction

duling in cloud computing. Studies in Informatics and Control, 2015, Vol. 24, No.
4, December 2015. PP. 387-399.

Mohammed-Albarra Hassan, ImedKacem, Sébastien Martin, Izzeldin M. Osman : m-
clique free Interval sub-graph : Polyhedral analysis and Branch and Cut. (submitted
to the Journal of Combinatoric Optinization (JOCO) in November 2016).

Four articles in international conferences :

One

Mohammed-Albarra Hassan, ImedKacem, Sébastien Martin, Izzeldin M. Osman :
Unrelated Parallel Machine Scheduling Problem with Precedence Constraints : Po-
lyhedral Analysis and Branch-and-Cut. ISCO 2016 : Lecture Notes of Computer
Science (SPRINGER) PP. 308-319 (DOI :10.1007/978-3-319-45587-727).

M-A. Hassan, I. Kacem, S. Martin, . M.Osman. Valid Inequalities for Unrelated
Parallel Machines Scheduling with Precedence Constraints. Proceedings of IEEE
CODIT’16, 6-8 April 2016, Saint Julian’s — Malta : pp.677 - 682 (DOT : 10.1109/Co-
DIT.2016.7593644).

M-A. Hassan, [. Kacem, S. Martin and I. M. Osman. Mathematical Formulations for
the Unrelated Parallel Machines with Precedence Constraints. Proceedings of 45th
International Conference on Computers & Industrial Engineering (CIE45), 28-30
October 2015, FRANCE.

Mohammed-Albarra Hassan Abdel-Jabbar, ImedKacem, Sébastien Martin : Unre-
lated parallel machines with precedence constraints : application to cloud compu-
ting. IEEE CLOUDNET 2014 Luxembourg : pp.438-442 (DOI : 10.1109/Cloud-
Net.2014.6969034).

poster in poster session :

Poster session presented at « TAEM Journée d’automne », 15 Octobre 2014 - Faculté

des Sciences & Technologies, Université de Lorraine, Nancy.

State-of-the-Art

Contents
1.1 Cloud Computingt v it i v i e 5
1.2 Scheduling problems 000000 6
1.3 Computational complexity v v v 8
1.4 Heuristics and meta-heuristics 9
1.4.1 Heuristics o 0 0 e e e e 9
1.4.2 Metaheuristics Lo 9
1.5 Graphtheory 0 i i i i i i i it ittt et e oo 12
1.6 Optimization problems 12
1.6.1 Combinatorial optimization 13
1.6.2 Linear programming oo 14
1.6.3 Integer programmingo 14
1.7 Polyhedral approach, 15
1.7.1 Elements of polyhedral theory 16
1.7.2 Cutting plane methods L. 17
1.8 Branch and cut algorithm 19

1.1 Cloud Computing

Cloud computing is a type of distributed and parallel system, which consists of physi-
cal and virtual resources. The physical resources in cloud shared virtually across a limited
number of virtual machines to the end users according to their demand [18]. These vir-

tual machines are dynamically presented as computing resources to the end user based on

Chapitre 1. State-of-the-Art

what is called a service level agreements (SLA), which is a determined contract between
end-user and service provider that defines the computing service expected from the ser-
vice provider. When the computing resources are allocated to the users, they access the
services such as applications and stored data from anywhere at any time. The request for
virtualized resources is described through a list of parameters describing the processing,
the memory and the disk needs. The hardware and software resources are allocated to
the cloud applications on-demand basis. Execution of a task has a cost and this may vary
depending on the resources allocated. Therefore, when the maximum completion time
is minimized, that means the performance of the whole system will be improved. Cloud
computing services are offered based on three-tier architecture. The challenge is that, for
the cloud service providers it is difficult to allocate the virtual machines dynamically and
efficiently |17, 18].

The cloud service providers receive simultaneously a lot of computing requests from
different users with different requirements and preferences (see Figure 1.1). Some tasks
need to use a lower cost and less computing resources, while some other tasks require
more computing resources and take more bandwidth and CPU. In a cloud computing
environment the tasks may be distributed across distinct computational resources nodes.
In order to allocate the tasks to these nodes, the available computing resources are de-
tected and analyzed. Hence, the quality of cloud computing service can be described by
network bandwidth, task costs and the completion time. The importance of task sche-
duling in cloud environment arises from the previous description. Scheduling algorithms
in cloud computing environment can be categorized into two main groups based on the
cloud mode : batch mode scheduling algorithms and online mode scheduling algorithms. In
batch scheduling algorithms, jobs are queued and collected into a buffer when they arrive
in the system. Then, the scheduling algorithms will start after a fixed period of time. In
the other mode, jobs are scheduled immediately when they are arrived to the system [17].
There are many different techniques used to allocate user requests to the cloud computing
resources in order to optimize some objectives that affect the performance of the cloud

services (See [15]).

1.2 Scheduling problems

Scheduling is a decision-making process, it is found in many real world applications.

such as manufacturing and services industries. It is the process of allocating resources to

1.2. Scheduling problems

; :, gy {ﬁ o s

Internet

Cloud Services

Software As a Services
(SaaS)

Platform as a Services Services Analvzer SLA Monitor Pricing
'aas E e
{Fass) Cust Profit Resource Discovery Accounting
Infrastructure as a Services = astomer reats and Monitoring

(IaaS) Task Scheduling Fnergy Monitor

Scheduling Optimization Algo.
GA,ACO.PCO, etc

s B
w i -~
p——

FIGURE 1.1 — Task scheduling in cloud computing model.

VM Monitor

Virtual Machines

tasks over a given time period aiming to optimize one, two, or multiple objectives. The
resources and tasks can take many different forms in services and in manufacturing. The
resources may be machines in a factory, processing units in a computing environment, etc.
The tasks may be operations in a production line, processing of a computer programs,
etc. In machine environment each task may have some constraints such as a precedence
constraints, a possible starting time and a due date. The objectives can also take many
different forms. One objective may be a single objective such as the minimization of the
completion time of the last task, and another may be bi-objective or multi-objectives.
Scheduling, as a decision-making process, plays an important role in computing environ-
ments, especially in cloud computing. Suppose that m machines M;(i = 1,...,m) have to
process n jobs J;(j = 1,...,n). A schedule is for each job an allocation of one or more

time intervals to one or more machines.

The classes of scheduling problems are specified in terms of a three-field classification
a|Bly where « specifies the machine environment, /3 specifies the job characteristics and ~
denotes the optimality criterion. Such a classification scheme was introduced by Graham
et al [66].

Chapitre 1. State-of-the-Art

1.3 Computational complexity

In this section, we present some definitions and principles about the computational
complexity. Complexity theory provides a mathematical framework in which computa-
tional problems are studied so that they can be classified as "easy" or "hard". A more
detailed presentation can be found in the book of Garey & Johnson [61|. The main issue
of the theory of complexity is to determine the required resources needed (time, storage
space) and to measure the performance of algorithms with respect to computational time.
The notations P, NP and co-NP are collections of decision problems : problems that can
be answered by 'yes’ or 'no’, like whether a given graph has a perfect matching or a Ha-
miltonian circuit. The optimization problem is not a decision problem, but often can be
reduced to it in a certain sense [19]. An easy way to characterize the class NP is : NP is
the collection of decision problems that can be reduced in polynomial time to the satisfia-
bility problem. However, Cook in [16] defined NP as the collection of all decision problems
for which each input with positive answer, has a polynomial-time checkable of correctness
of the answer (NP stands for nondeterministically polynomial-time). The NP-complete
problems are the problems that are the hardest in NP : every problem in NP can be
reduced to them. Next description clarify. Problem [[C Sigma* is said to be reducible
to problem A C Sigma* if there exists a polynomial-time algorithm that returns, for any
input w € ¥* an output x € ¥* with the property : w € [[& = € A. This implies that
if] is reducible to A and A belongs to P, then also [] belongs to P. Similarly, if] is
reducible to A and A belongs to NP, then also [] belongs to NP. A problem [] is said
to be NP-complete if each problem in NP is reducible to [[. An optimization problem is
NP-hard if the corresponding decision problem is NP-complete.

One of the most successful methods of attacking hard combinatorial optimization
problems is the genetic algorithm, which will be discussed in this chapter. Genetic algo-
rithm generally generates feasible solutions that are not guaranteed to be optimal. Any
approach without formal guarantee of performance can be considered as a "heuristic".
Such approaches are useful in practical situations if there is no better methods available.
Important classes of problems which are polynomially solvable are linear programming

problems [25] and integer linear programming problems with fixed number of variables

[27].

1.4. Heuristics and meta-heuristics

1.4 Heuristics and meta-heuristics

In this section, we present some definitions for heuristics and metaheuristics widely

used in combinatorial optimization.

1.4.1 Heuristics

Optimization techniques can be classified, in a heuristic, exact and approximation me-
thods. The heuristic methods try to find optimal solutions or near-optimal solutions in a
significantly reduced amount of time. The heuristic methods categorized into constructive
methods and local search methods. Constructive algorithms obtain solutions from scratch
by adding solution components to an initially empty list, until reaching the final solution.
Local search algorithms start from an initial solution and iteratively replace the current
solution by a better candidate from the neighbors of the current solution [22]|. As defined
in [18], a heuristic technique is a method, which tries to find good solutions at a reaso-
nable computation cost without being able to guarantee optimality. Unfortunately, it may
not even be possible to determine how close to the optimal solution a particular heuristic

solution is.

1.4.2 Metaheuristics

The term meta-heuristic refers to a certain class of heuristic methods. As Fred Glover
in [21], first used this term and defined it as follows : A meta-heuristic refers to a master
strategy that guides and modifies other heuristics to produce solutions beyond those that are
normally generated in a quest for local optimality. In another definition, "meta-heuristics
are solution methods that orchestrate an interaction between local improvement procedures
and higher level strategies to create a process capable of escaping from local optima and
performing a robust search of a solution space™ |23]. The heuristics guided by such a meta-
strategy may be high level procedures or may include nothing more than a description
of the strategies of moving from one solution to another with an associated evaluation
rule (called fitness). To distinguish between heuristics and metaheuristic concepts, we
can mention that heuristics are often problem dependent, heuristics normally defined
for a given problem to find optimal or near to the optimal solutions for the problem
under consideration, whereas the metaheuristics are problem independent techniques that

can be applied for a wide range of problems. As an example, when we use simulated

Chapitre 1. State-of-the-Art

annealing metaheuristic in scheduling, the decision of moving from current solution to
another candidate one will be done by metaheuristic procedure whereas this method does
not know nothing about scheduling. In the literature there is a vast amount of research

that used a heuristic and metaheuristics to attack scheduling problems.

Genetic algorithm

Holland in 1975 developed the idea of applying the principles of natural evolution to
optimization problems. This idea has been published in his book "Adaptation in natural
and artificial systems". He built the first genetic algorithm. Holland’s theory has been
further developed. Now, genetic algorithms (GAs) considered as a powerful tool for sol-
ving optimization problems. Genetic algorithms are based on the principle of genetics
and evolution. Todays, GAs are used to resolve complicated optimization problems, like
timetabling, job shop scheduling, games playing and others [19].

Now, we give a brief introduction to simple genetic algorithms and associated termi-
nology. GAs encode the decision variables of a search problem into finite length strings of
alphabets or digits of a certain cardinality. The strings which are candidate solutions to
the search problem are referred to as chromosomes. The chromosome represent a single
solution, the alphabets or digits are referred to as genes and the values of genes are called
alleles. For example, in scheduling problems, a chromosome represents a sequence and a
gene may represent a job, and an allele is a value of processing time taken by a specific
job.

In contrast to traditional optimization techniques, GAs work with coding of parame-
ters, rather than the parameters themselves. The general procedures of the GA are as
follows :

1. Initialization. The initial population of candidate solutions is usually generated ran-
domly across the search space. It can be binary or non-binary chromosomes.

2. Evaluation. Once the population is initialized or an offspring population is created,
the algorithm uses a fitness function to evaluate each chromosome in the population.

3. Selection. In the selection step, the algorithm works to prefer better solutions to worse
ones. The algorithm selects a chromosome to mate the reproduction.

4. Recombination. Recombination combines parts of two or more parental solutions to
create new ones. Here, the algorithm applies a genetic operator (crossover) on the selected
chromosomes.

5. Mutation. Select one solution and apply a small random change to this solution.

10

1.4. Heuristics and meta-heuristics

6. Replacement. Replace the current population with the temporary population.
If stopping condition is met, then STOP with the best chromosome as the final solution
for the problem. Otherwise, GOTO 2.

The determination of a population size is a crucial element in the GAs. In most of
GA applications, the population size can be considered as a constant. The initialization of
population performed by using some suitable heuristics that are relevant to the considered
problem or can be created randomly. Selecting a very small size of population increases
the risk of not converging to a global optimal solution. Large size of population increases
the chance to converge to obtain a good solution. The second operator of GAs is the
fitness function, GA uses this function to evaluate the solution for each chromosome,
then GA can determine if the chromosome can be kept or not. If the chromosome kept
then it produces a new offspring or will be eliminated. The most important operator is
the selection of chromosomes, which is ensure the convergence of the GA. When the
genetic algorithm capable to select the best chromosome, then it will have a population of
similar chromosomes, that led the GA to converge to a local optimum. Now, we give some
selection methods : roulette wheel selection, deterministic selection, ranking selection,
tournament selection and etc. In step four, the combination of two parents which combines
the features of two fittest chromosomes and carries these features to the next generation
by forming offsprings. Many well known crossover methods have been developed and
applied. One of them is the two-position crossover method, which consists in selecting two
crossover positions in two chromosomes and then making swapping segments between the
chromosomes. Also, there is another crossover method, which is multi-position crossover
method. This method changes the number of segments during the execution of GA. Shuffle
crossover method first shuffles the crossover positions in the two selected chromosomes.
Then, it exchanges the segments between the crossover positions and finally un-shuffles
the chromosomes. The uniform crossover method is a mix between one position and multi-
positions crossover methods. It produces two new children by exchanging genes in two
chromosomes randomly. The fifth operator in GA steps is the mutation, which exchange
one or more of the chromosome genes randomly to ensure search changement, which may

lead to the global optimum.

Finally, the last GA step is the stopping criterion. There are many methods, which
can be used for the stopping criteria. One of them is the mazimum number of generations.

The method based on the convergence is also used : the algorithm stops when the GA

11

Chapitre 1. State-of-the-Art

converges after all chromosomes have reached a certain degree of homogeneity or, by
another stopping criterion, after a chromosome with a certain level of fitness value is

found.

1.5 Graph theory

In this section, we will introduce some basic definitions and notations of graph theory
that will be used throughout the chapters of this dissertation. For more details, we refer
the reader to [19].

A graph is denoted G = (V, E') where V is the set of vertices or nodes and E is the
set of edges. If e € E is an edge with initial node v and terminal node v, we may also use
both notations uv or (u,v) to denote e.

The graphs considered here are directed, finite, loopless and may include multiple arcs.

A directed graph or digraph is denoted G = (V, A) where V is the set of vertices or
nodes and A is the set of arcs. If a € A is an arc with origin node u and destination node
v, we may also use both notations uv or (u,v) to denote a. The graph G is said to be
complete if there exists an arc between each pair of nodes (u,v).

A graph or undirected graph is a pair G = (V, E), where V is a finite set and F is a
family of unordered pairs from V. The elements of V' are called the vertices, sometimes
the nodes or the points. The elements of E are called the edges, sometimes the lines.

A graph G' = (V' E') is called a subgraph of a graph G = (V, E) if V! C V and
E' C E. If E' consists of all edges of G spanned by V', then G’ is called an induced
subgraph, or the subgraph induced by V’. In notation,

G[V'] := subgraph of G induced by V",
E[V’] := family of edges spanned by V’

The complementary graph or complement of a graph G = (V, E) is the simple graph

with vertex set V and edges all pairs of distinct vertices that are nonadjacent in G. In

notation, G := the complementary graph of G.

1.6 Optimization problems

In mathematics, optimization is a branch of applied mathematics. It derives its im-
portance from the wide variety of its applications and from the availability of efficient

algorithms that have been used to solve such problems. Mathematically, it refers to the

12

1.6. Optimization problems

minimization (or maximization) of a given objective function of several decision variables
that satisfy functional constraints |1 13]. For example, let us consider the optimization mo-
del, which addresses the allocation of limited resources among possible alternative uses in
order to maximize the total profit. Objective function, decision variables, and constraints
are three essential elements of any optimization problem. If the decision variables in an
optimization problem are restricted to integers, or to a discrete set of possibilities, there
is an integer or discrete optimization problems. The problem is a continuous optimization
problem, if there are no such restrictions on the variables. Some problems may have a
mixture of discrete and continuous variables, that depends on the nature of the problem.
We give the generic description of an optimization problem.

Given a function f(x) : R” — R and a set S C R", the problem of finding an z* € R that

solves

min,f(x) (1.1)
st. xes

is called an optimization problem (OP). We denote by f the objective function and by S
the feasible region. If S'is empty, the problem is called infeasible. If it is possible to find a
sequence z¥ € S such that f(2*) — —oo as k — 400, then the problem is unbounded. If
the problem is neither infeasible nor unbounded, then it is often possible to find a solution

x*esS.

1.6.1 Combinatorial optimization

Combinatorial Optimization is a subset of mathematical optimization that is related to
operations research, algorithm theory, and computational complexity theory. Its purpose
is to study the optimization problems where the set of feasible solutions can be represented
as a discrete one.

The combinatorial optimization problems are the problems, which are formulated as
follows. Let £ = {ey,...,e,} be a finite set where each element e; is associated with a
weight w(e;). Let F be a family of subsets of E. If F' € F, then w(F) = > _pw(e;)
denotes the weight of F. The problem consists in identifying an element F™* of F whose
weight is minimum or maximum. The set F represents the set of feasible solutions of the
problem. Such a problem is called combinatorial optimization problem.

The term combinatorial refers to the discrete structure of the representation of the

feasible solution set JF. Generally, this structure is represented by a graph. The term

13

Chapitre 1. State-of-the-Art

optimization tells that we are looking for the best element in the set of feasible solutions.
This set may contain an exponential number of solutions. Thus, we cannot expect to solve
a combinatorial optimization problem by checking or enumerating all its solutions one by
one, which is not a reasonable option. Such a problem is then considered as a hard problem.
Many effective techniques and approaches have been developed to attack combinatorial
optimization problems. Some of these approaches use linear, integer programming, and
polyhedral approach and others based on graph theory. combinatorial optimization is

closely related to algorithm and computational complexity theory.

1.6.2 Linear programming

Linear programming deals with the OP with a linear function in the presence of li-
near inequalities. One of the most common optimization problems is linear optimization
or linear programming (LP). It is the problem of optimizing a linear objective function
subject to linear inequalities and equality constraints. Indeed, any combinatorial optimi-
zation problem can be reduced to solving a linear program. The standard form of the LP

is given below :

min, CTx
Az =b (1.2)

x>0,

where A € R"™*" b € R™, ¢ € R" are given and x € R” is the variable vector to be deter-
mined. A wide variety of real life problems can be formulated as linear integer optimization
problems. The combinatorial problems, such as the knapsack problem, resources alloca-
tion problem, TSP, network flow and graph problems, and many scheduling problems can

also be solved as a linear integer optimization problems [24].

1.6.3 Integer programming

When the variables are integer, we call the formulation of the problem as integer
programming. Integer programs are optimization problems that require some or all of

the variables to take integer values. This restriction on the variables usually makes the

14

1.7. Polyhedral approach

problems very hard to solve. A pure integer linear program is given by :

min, CTz
Az >b (1.3)

x > 0 and integral,

where A € R***, b € R”, ¢ € R* are given, and x € N* is the variable vector to be
determined.

A very common case occurs when the variables x; represent binary decision variables,
that is « € {0,1}". The problem is then called a 0 — 1 linear program (or discrete).
When there are both integer constrained variables and continuous variables, the problem
is called a Mized Integer Linear Program (MILP) :

min, CTx
Ax > b (1.4)
x>0

z; €N, forj=1,.,p

where A, b, ¢ are given data and the integer p (with 1 < p < n) is also part of the input.

1.7 Polyhedral approach

The development of polyhedral theory and the consequent introduction of strong va-
lid inequalities led to a resurgence of cutting plane methods. The polyhedral method was
initiated by Edmonds in 1965 for a matching problem. It consists in describing the convex
hull of problem solutions by a system of linear inequalities. The problem reduces then to
the resolution of a linear program. Normally, in most of the cases, it is not straightforward
to obtain a complete characterization of the convex hull of the solutions for a combinato-
rial optimization problem. However, having a system of linear inequalities that partially
describes the solutions polyhedron may often lead to solve the problem in polynomial
time. This approach has been successfully applied to several combinatorial optimization
problems. In this section, we present the basic notions of polyhedral theory. For detail,
the reader is invited to consult [19, 20, 22].

First, we will recall some definitions, propositions, and properties related to polyhedral

theory.

15

Chapitre 1. State-of-the-Art

Elements of (.5)

A}
.
\

Conv(S)

FIGURE 1.2 — A convex hull

1.7.1 Elements of polyhedral theory

Definition 1 Given a set S C R", a point x € R" is a of points of A if there exists a
finite set of points {x'}!_, in S and a X € Rt with Y _ N\ =1 and v = 3;_, N,

Figure 1.2 shows the convex hull of a set of integral points in R?. We see that conv(S)
can be described by a finite set of a linear inequalities and that max{cx : © € S} =
max{cx : x € conv(S)}. Moreover, the latter problem is a linear program.

Finding an inequality description of conv(S) is not easy and questions such as the
dimension of conv(S) and so on, are very important. In this section, we give some results

from linear algebra.

Definition 2 A set of points x1, ...,z € R™ is linearly independent if the unique solution
of S Nt = 00ds A = 0,i =1, k.

Note that the maximum number of linearly independent points in R" is n.

Definition 3 H C R" is a subspace if v € H implies \x € H for all \ € R* and x,y € H
implies x +y € H.

Definition 4 A polyhedron P C R"™ is the set of points that satisfy a finite number linear
inequalities ; that is, P = {x € R™ : Az < b}, where (A,b) is an m x (n+ 1) matriz.

16

1.7. Polyhedral approach

Valid proper face, facet

\ Valid proper face, but not facet

invalid

Valid

FIGURE 1.3 — Valid inequality, facet

Now, we describe the polyhedra by facets.

Given a polyhedron P = {z € R" : Ax < b}, the question is to find out which of
the inequalities a'z < b; are necessary in the description of P and which can be dropped.
Indeed, we will show that those necessary to describe P are the same, whatever the initial

inequality description of P.

Definition 5 The inequality mx < molor(m,mo)| is called a valid inequality for P if it is

satisfied by all points in P.

Note that (m,m) is a valid inequality if and only if P lies in the half-space{z € R™ :

mx < mo}, or equivalently if and only if max{rz : z € P} < .

Definition 6 If (7w, m) is a valid inequality for P and F = {x € P : nx = my}, F is
called a face of P, and we say that (w,mg) represents F. A face F is said to be proper if
F+#0 and F # P.

Definition 7 A face F of P is a facet of P if dim(F)=dim(P)-1.

1.7.2 Cutting plane methods

Many combinatorial optimization problems can be formulated as mixed integer linear

programming problems. Then, they can be solved by branch-and-cut methods, which

17

Chapitre 1. State-of-the-Art

are exact algorithms consisting of a combination of branch-and-bound algorithm with
a cutting plane method. These methods work by solving a sequence of linear program-
ming relaxations of the integer programming problem. Cutting plane methods improve
the relaxation of the problem to more closely integer programming problem and branch-
and-bound algorithms carry out by a sophisticated divide and conquer approach to solve
problems. Cutting plane algorithms for general integer programming problems were first
proposed by Gomory [27]. Thus, this method sometimes called "Gomory Cut", who pro-
ved that these algorithms terminate after a finite number of iterations with an optimum

solution.

Now, let P be a combinatorial optimization problem, F its basic set, w(.) the weight
function, and S the set of feasible solutions. The problem P consists in finding an element
of S whose weight is maximum /minimum. If F' C E, then the 0 — 1 vector zf" € R® such
that ¥ (e) = 1 if e € F and 2 (e) = 0 otherwise, is called the incidence vector of F. The
polyhedron P(S) = conva®|S € S is the polyhedron of the solutions of P or polyhedron
associated with P. P is thus equivalent to the linear program max{cx|z € P(S)}. Notice
that the polyhedron P(S) can be described by a set of a facet defining inequalities. And,
when all the inequalities of this set are known, then solving P is equivalent to solve a

linear program.

The objective of the polyhedral approach for combinatorial optimization problems
is to reduce the resolution of P to that of a linear program. In order to reduce P we
need a deep investigation of the polyhedron associated with P. It is genera