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RESUME

Résumé

Cette thése comporte deux parties qui correspondent a deux domaines distincts : les
opérateurs aléatoires et les opérateurs périodiques en dimension 1.
Dans la premiere partie, nous prouvons une estimée de décorrélation pour un opérateur
aléatoire avec désordre hors diagonal en dimension 1. En se servant de cette estimée, nous
déduisons I'indépendance asymptotique des statistiques locales des valeurs propres prés
d’énergies distinctes positives dans le régime localisé. Finalement, nous donnons une dé-
monstration alternative de l'estimée de décorrélation pour le modéle d’Anderson discret
unidimensionnel.
La deuxieme partie de cette these est dédiée a un probléme de résonances pour l'opérateur
de Schrodinger discret en dimension 1 avec potentiel périodique tronqué. Précisément, nous
considérons 'opérateur sur la demi droite HY = —A+V et 'opérateur HY = —A+ Vo,
agissant sur (?(N) avec la condition au bord de Dirichet en 0 et L € N large. Nous étu-
dions les résonances de HY qui sont prés du bord du spectre essentiel de HY dans la limite
L — 400, donc compléter les résultats introduits dans [Klo| sur les résonances de 1'opéra-
teur HY.

Mots-clefs : Opérateurs de Schrodinger aléatoire, Estimées de décorrélation, Statis-
tiques spectrales, Opérateurs de Schroodinger périodique, Résonances.

Abstract

This thesis consists of two parts: the random and periodic operators in dimension 1.
In the first part, we prove the decorrelation estimate for a 1D lattice Hamiltonian with
off-diagonal disorder. Consequently, we deduce the asymptotic independence of the local
level statistics near distinct positive energies in the localized regime. Finally, we revisit a
known result on the decorrelation estimate for the 1D discrete Anderson model.
The second part of my thesis addresses questions on resonances for a 1D Schrédinger op-
erators with truncated periodic potential. Precisely, we consider the half-line operator
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HY = =A+V and H} = —A + V1) acting on (*(N) with Dirichlet boundary condi-
tion at 0. We describe the resonances of HY near the boundary of the essential spectrum
of HY as L — 400, hence complete the results introduced in [Klo| on the resonances of HY.

Keywords: Random Schrédinger operators, Decorrelation estimates, Spectral statis-
tiques, Periodic Schrédinger operators, Resonances.

trinh@math.univ-paris13.fr
LAGA-UMR 7539-Institut Galilée-Université Paris 13 Nord
99 avenue J.B. Clément, 93430, Villetaneuse
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2 CHAPTER 1. INTRODUCTION (FR)

Cette thése comporte deux parties qui correspondent a deux domaines distincts : les
opérateurs aléatoires et les opérateurs périodiques en dimension 1. La premiére partie
est dédiée a I’étude des estimées de décorrélation pour les opérateurs aléatoires discrets
en dimension 1. Dans la deuxiéme partie, nous étudions un probléme de résonances de

I'opérateur de Schrodinger en dimension 1 avec potentiel périodique tronqué.

1.1 Estimées de décorrélation

La premiére partie s’inscrit dans le cadre de la théorie des opérateurs de Schrodinger
aléatoires. Concrétement, on s’intéresse aux statistiques spectrales d’une famille de tels
opérateurs discrets unidimensionnels i.e. définis sur 'espace [2(Z).

Définissons 'opérateur que nous allons étudier dans cette partie : Soit {wy }nez une
suite de variables aléatoires indépendantes identiquement distribuées (i.i.d.) sur un espace
probabilisé complet (€2, B,IP), a valeurs dans R, de densité commune bornée et a support
compact. On suppose de plus que wy, € [ag, Bo] pour tout n € Z on 0 < ag < [p. On définit
ensuite l'opérateur aléatoire H, avec désordre hors diagonal en dimension 1 agissant sur
12(Z) : pour u = {u(n)}nez € 12(Z), on définit

(Hyu)(n) = wp(u(n) —u(n+1)) —wp—1(u(n — 1) —u(n)) (1.1.1)

Il est facile de voir que { Hy, }weq est une famille ergodique des opérateurs auto-adjoints
sur [2(Z). Donc, il existe un ensemble ¥ € R tel que o(H,,) = ¥ P—presque strement. On
appelle X le spectre presque sir de Uopérateur H,, (voir Section 2.2 pour plus de détails).
En d’autres termes, le spectre de H,, est une quantité déterministe méme si H,, dépend de
paramétres aléatoires. D’ailleurs, dans notre cas concret, on peut calculer explicitement le
spectre presque sir de 'opérateur H,, pour trouver 3 = [0,45y] (voir [Miall]).

Soit A := [—L,L] un "cube" dans Z, on définit l'opérateur du volume fini H,(A)
comme la restriction de H,, & A avec les conditions au bord périodique. Alors, H,(A) est
une matrice symétrique de taille |[A| = 2L+1. Donc, toutes ses valeurs propres sont réelles et
on les note (en les répétant selon leur multiplicité) £ (w, A) < Ea(w,A) < -+ < Ejp(w, A).
Notons que, bien que A soit un intervalle dans Z, nous allons I'appeler cube et parler de
"son volume" qui est juste son cardinal (le nombre de points dans A); en effet toutes les
notations basiques que nous allons introduire ci-aprés sont applicables pour les opérateurs
aléatoires discrets ou continus en dimension quelconque.

Maintenant, nous sommes prét a définir une quantité de base de la théorie des opérateurs

de Schrodinger aléatoires, la densité d’états intégrée de H,. La densité d’états intégrée
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N(E) en une énergie donnée E est la limite quand |A| tend vers I'infini du nombre de valeurs
propres de H,,(A) plus petites que E comptées avec multiplicité divisé par le volume du cube
|A|. Autrement, la densité d’états intégrée mesure le nombre moyen de niveaux d’énergie
situés en-dessous I’énergie donnée E par unité de volume dans la limite |A| — +oo.

<
N(E) = lim #{valeurs propres de H,(A) < E}
|A]=+o00 A

pour presque partout E.

Il est bien connu que, pour le modéle (1.1.1), la densité d’états intégrée est bien définie
partout sur R et absolument continue par rapport a la mesure de Lebesgue (voir Section
3.1). Nous pouvons alors définir la densité d’états v(E) de H, comme la dérivée de la
densité d’états intégrée N(FE). D’ailleurs, le support de N(E) coincide le spectre presque
str .
L’existence de N (F) implique que le nombre de valeurs propres dans un intervalle I = |[a, b]
borné est approximativement égale a |A|N(I) ou N(I) := N(b) — N(a) quand |A] est
suffisamment grand. Il en résulte que ’espacement moyen entre les valeurs propres de
H,(A) (la distance moyenne de Eji1(w, A) — E;(w, A)) quand |A| grand est de taille |A| 1.
Dong, les valeurs propres de H,,(A) sont trés proches les unes les autres quand |A| — +o0.
Naturellement, on voudrait comprendre mieux comment les valeurs propres de Hy,(A)
sont distribuées sur 'axe réel a la limite |A| — 400 en notant qu’elles sont des variables
aléatoires dépendantes les unes des autres. Ceci nous améne a étudier les statistiques spec-
trales locales prés d'une énergie de référence E.
Dans le cadre de cette thése, nous nous restreignons aux statistiques spectrales dans le
régime localisé. Tout d’abord, on définit le régime localisé I € ¥ de 'opérateur H,, comme
la région ot le spectre de H,, est discret et les vecteurs propres associés décroissent expo-
nentiellement vers 0 a l'infini. En dimension 1, on peut prendre I = ¥ (voir Section 3.3).
Puis, on prend une énergie F > 0 dans [ tel que v(E) > 0 ou v est la densité d’état de H,,
(on dit que E appartient au «bulk » du spectre de H, ). Alors, la statistique des niveaux

locaux au voisinage de E est le processus ponctuel suivant
Al

26 Eyw, A) =) e, (B w, A)(§) (1.1.2)
n=1
én(EuwaA) = |A|V(E)(EH(W7A) - E)

Un de résultats les plus remarquables dans les statistiques spectrales des opérateurs aléa-

toires, c’est que, localement, les valeurs propres d’un opérateur aléatoire dans le régime
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localisé sont distribuées de fagon poissonnienne [Mol81, Min96, GK14], ¢’est-a-dire, le pro-
cessus =(§, E,w, A) converge faiblement vers un processus de Poisson. Un tel résultat in-
dique ’absence de répulsion de niveaux d’énergie qui est une caractéristique du régime
localisé.

Nous présentons maintenant la question centrale dans cette partie de ma theése, les
estimées de décorrélation (D). Comme nous venons de le voir, les valeurs propres d'un
opérateurs aléatoires prés d’une énergie fixée E dans le régime localisé sont distribuées sur
I’axe réel comme les points d’un processus de Poisson. Alors, si I’on considére deux énergies
de références F # E’ dans le régime localisé au lieu d’une seul énergie et on prend les deux
processus ponctuels correspondants Z(&, F,w, A), Z(&, ', w, A). Tls convergent chacun vers
un processus de Poisson. Il est naturel de se demander si les limites ainsi obtenues sont
indépendantes 7
Cette question a été résolue affirmativement pour le modéle d’Anderson discret dans
[Klo11]. Un des ingrédients cruciaux pour démontrer ce résultat dans le cas du modéle
d’Anderson discret sont des inégalités qui s’appellent les estimées de décorrélation.

Dans cette partie de ma thése, nous étudions ce probléme pour I'opérateur avec désordre
hors diagonal (1.1.1). Concrétement, nous démontrons l'estimée de décorrélation suivante
pour les valeurs propres proches de deux énergies positives, distinctes dans le régime localisé
du modele (1.1.1) :

Theorem 1.1.1. [Tril/, Theorem 1.2] Soit E, E' deuz énergies positives, distinctes dans
le régime localisé. Soit B € (1/2,1) et a € (0,1). Alors, pour tout ¢ > 0, il existe C > 0
t.q., pour tout L grand et cL* <1< LY/¢, on a

L

. o(Hy(A)) N (B4 L7 (—1,1)) # 0 <l> (1.1.3)

o(Ho(A) A (B + LY (=1,1) £ 0 )

Gréce a l'estimée de décorrélation (1.1.3) ci-dessus, on déduit que les limites des statis-
tiques locales des valeurs propres du modeéle (1.1.1) prés deux énergies positives, distinctes
sont indépendantes. De plus, on montre qu’un tel résultat reste vrai pour non seulement

deux mais aussi n énergies positives et distinctes quelque soit n > 2.

Theorem 1.1.2. [Trilj, Theorem 5.1] Soit n = 2 et {E;}1<i<n une suite finie d’énergies
positives, distinctes dans le régime localisé t.q. v(FE;) > 0 pour tout 1 < i < n.
Alors, quand |A| — +oo, les n processus ponctuels (Z(§, Ej,w, N)) <;<, définis comme

dans (1.1.2) convergent faiblement vers n processus de Poisson indépendants.
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Au fait, Théoréme 1.1.2 est universel au sens que, quelque soit le modéle aléatoire Z.°%-
ergodique en dimension d quelconque, si l'estimée de Wegner (W), lestimée de Minami
(M) (c.f. Chapitre 3) et 'estimée de décorrélations sont connus pour ce modéle la, on a
[indépendance asymptotique des statistiques locales des valeurs propres prés des énergies
distinctes positives dans le régime localisé. Donc, la seule raison pourquoi on restreint sur
un modele aléatoire unidimensionnel vient de la difficulté de démontrer une estimée de
décorrélation en dimension supérieure.

D’ailleurs, notre stratégie pour prouver 'estimée de décorrélation (1.1.3) est adaptable
pour le modeéle d’Anderson discret aussi. Dans Section 4.5, en appliquant cette stratégie,
nous obtenons une démonstration alternative pour l'estimée de décorrélation du modéle
d’Anderson discret en dimension 1.

Finalement, nous voulons dire quelques mots sur le cas multi-dimensionnel. La seule
difficulté qui nous empéche d’étendre nos résultats au cas multidimensionnel, c¢’est que,
dans la preuve du Théoréme 1.1.1 nous nous sommes servis forcement une estimée pour les
composantes de chaque vecteur propre normalisé de H,(A) et une telle estimée n’est pas
du tout connue en dimension supérieure. Soit u un vecteur propre normalisé de I'opérateur
du volume fini H,(A). Alors, u € RIA et

el iy = D sl = 1.

jeA

En dimension 1, grace aux matrices de transfert, il est trés facile de démontrer qu’il y a
beaucoup composantes u; de u qui ne sont pas trop petites (voir Lemma 4.2.2 du chapitre
4). Précisement, soit 8 € (1/2,1). Dans un intervalle A C Z, il existe au moins un sous-
intervalle A; de taille |A|” tel que |u;| > e~ pour tout j € A.

Un tel résultat est classique pour les opérateurs aléatoires en dimension 1 mais est encore
un défi en dimension supérieure. On peut le considérer comme une version quantitative du
principe de continuation unique dans le cas discret unidimensionnel.

Ceci nous rappelle d'un article remarquable de Bourgain et Kenig sur la localisation du mo-
deéle de Bernoulli continu en dimension quelconque[BKO05]. Pour démontrer la localisation
presque siir au bord du spectre de cet opérateur, ils ont prouvé une version quantitative du
principe de continuation unique pour les solutions de I’équation de Schrodinger stationnaire
Hpé = B¢ ot Hg = —A 4V, est Popérateur de Schrodinger sur L?(R?) et

Vo(z) = Z ejp(z — j) ot £ sont v.a. Bernoulli i.i.d.
jeza
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La version classique du principe de continuation unique nous dit que si I'une solution
stationnaire ¢ de Hp s’annule dans un ouvert de R?, elle s’annule partout. La version
quantitative de Bourgain et Kenig donne beaucoup plus d’infos sur la taille de la fonction

¢ dans une boule d'unité :
/ &(x) P da > el il pour j € Z et 7] = +o0.
B(j,1)

D’ailleurs, les auteurs dans [BKO05] ont fait un commentaire qu’une inégalité pareille pour
la version discrete du modéle Bernoulli est encore inconnue et la question sur la localisation

pour le modéle de Bernoulli discret est donc toujours ouverte.

1.2 Résonances quantiques

La deuxiéme partie de ma thése est dédiée a I’étude des résonances de l'opérateur de
Schrédinger avec potentiel périodique tronqué.
Soit V un potentiel périodique et —A un Laplacien discret sur (?(Z). On définit 1'opérateur
de Schrédinger HZ := —A + V en dimension 1:

(H2u)(n) = (A +V)u) (n) = u(n — 1) +u(n + 1) + V(n)u(n), Vne Z.  (1.2.1)

Par ailleurs, on considére aussi 'opérateur H := —A+4V agissant sur /2(N) avec condition
au bord de Dirichet en 0.
Soit Y7 le spectre de Hy et X le spectre Hy. Voici la description du spectre de H® ou
o c {N,Z}:

q

m Yy = |J B, avec ¢ < pet By = [cq,dy|; le spectre Xy est absolument continu (a.c.)
j=1
et la résolution spectrale peut-étre obtenue par la décomposition de Bloch-Floquet.

m Yy = Yz U {'Uj};-”:l ol ¥z est le spectre a.c. de HN et {'Uj};.”:l sont des valeurs
propres simples associées a des vecteurs propres exponentiellement décroissants.

Soit L large, on définit:
HY = —A+ V1, sur I?(N) avec condition au bord de Dirichlet en 0.

I1 est facile de justifier que I'opérateur HEI est auto-adjoints. Donc, la résolvante z € CT
(z — HY)~L est bien définie sur CT. De plus, on peut démontrer que (c.f. [Klo, Theorem
1.1]), (z — HY)~! admet un prolongement méromorphe de CT & C\ ((—o0, —2] U [2, +00))

2 alQ

a valeurs dans l'ensemble d’opérateurs auto-adjoints de Iz, a ;..
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D’ailleurs, I’ensemble de poles d'un tel prolongement méromorphe appartient au demi-plan
inférieur {ImE < 0} et son cardinal est au plus L.
Les résonances de HE] sont alors définies comme étant les poles du prolongement ci-
dessus.
La distribution et I’asymptotique de résonances de H EI quand L — +oo ont été étudiées
intensivement dans larticle [Klo|. Tous résultats dans [Klo| sont prouvés sous I'hypothése
que les parties réelles de résonances sont éloignées du bord du spectre ¥z et £2, le bord
du spectre essentiel du Laplacien discret libre. Précisément, dans [Klo|, 'auteur a étudié
les résonances dans le domaine I — i{R™ ol I est un intervalle compact soit a l'intérieur
soit a 'extérieur du spectre Xyz.

Dans cette partie de ma thése, nous nous intéressons aux résonances de HLN dont les
parties réelles sont prés du bord de X7 i.e., on cherche les résonances dans le domaine

I —iR™ ou 'intervalle I contient les points au bord de X7 et la taille de I est petite.

1.2.1 L’équation de résonance et la stratégie pour étudier les
résonances

Soit L > 0 et Hy, I'opérateur HEI restraint sur l'intervalle [0, L] avec les conditions au
bord Dirichlet & L. On définit

m (\;)o<k<r la suite croissante des valeurs propres de Hp,.

m ay, = [px(L)]?
Alor, I'équation de résonance pour l'opérateur H§ est la suivante (c.f. [Klo, Théoréme
2.1]):

ou ¢ = (¢r(n))o<n<r est un vecteur propre normalisé associé & \.

L

SL(E) = Z )\ka_k 7= —e W), E =2cosf(F), (1.2.2)
=0

ot 'on choisit la détermination de 6(FE) t.q. ImO(E) > 0 et Ref(E) € (—m,0) quand

ImE > 0.

Soit Fy un point au bord du spectre Yy, et Ey € (—2,2). Notons que £2 sont les points du

bord du spectre essentiel du Laplacien libre ainsi que les points tournants de la fonction

0(F) dans I'équation (1.2.2).

Soit €1 > 0 un nombre fixé et suffisamment petit t.q. l'intervalle I = I, = [Ey, Fo+¢1] €

(—=2,2)NY¥yz et Eg+e; € ZDZ. Remarque que, quand ReE > 1, la description de résonance

peut-étre est trouvé dans |[Klo|. Il est suffisant de "résoudre" I'équation (1.2.2) dans le

rectangle Ry := I, — i[0, &3] ot 1, e sont deux petites, positives constantes. En dehors
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M AL AL

. n+1
2, )\; 2
D Mn C
1
_CO "EFQ
Ane
E F_€5

Figure 1.1: Rectangle B, .

de ce rectangle, tous les résulats dans [Klo| sont encore valides. Dans cette partie de ma

% oll € est un petit parameétre fixé.

these, nous utilisons toujours €1 < 2etegxe
Pour étudier les résonances prés du point Ey € 0¥z, on va se servir des asymptotiques
de deux paramétres A\, et ap pour simplifier I’équation 1.2.2 et on utilise une équation
approximative pour obtenir I'existence, 'unicité et les asymptotiques de résonances.

Notons que, si A est une valeur propre prés de Ey et A, € Y7, on a | A\ — Eo| < E—i Dans
[Klo], 'auteur a indiqué qu’il y a deux comportements possibles pour a; associée a une
valeur propre prés Fjy: soit ay est de taille %, soit aj devient beaucoup plus petit, sa taille
est @ De plus, le dernier cas est générique. Concernant ces deux cas, on propose

deux approches différentes pour étudier les résonances.

1.3 Résonances dans le cas générique

. Ae—E N .
Dans cette section, nous supposons que ajp = % quand A\ est prés du point

Ey € 0¥7 N (—2,2). Nous allons étudier I’équation de résonance (1.2.2) dans le rectangle
[Eo, Eo + €% —i[0,£%] ott & > 0 est petit.
L’approche utilisée pour étudier les résonances dans le cas présent est la suivante. Pour

chaque 0 < n < eL/C} avec C7 > 0 grand, nous cherchons les résonances dans le rectangle

B _ )\n—1+>\n )\n+)\n+1
n,e — 2 Y 2

Tout d’abord, nous montrons que, [ImSf(E)| est trés petite dans le rectangle A, . =
[A;m;’ A;+2A;+1} — i [Cpst

—1 [0, 55] avec la convention A_; = 2FEy — Ag.

5 T ,55} ou la constanteCy > 0 est grande (voir Figure 1.1).

Dongc, il n’y a pas de résonances dans A, .. Puis, dans M,,, le complément de A,, . dans

By, e, nous remplagons 'équation de résonances (1.2.2) par une équation beaucoup plus
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simple en appliquant le théoréme de Rouché. Ceci nous permet de démontrer I'existence
et I'unicité d’une résonance, disons z,, dans chaque M,,. Finalement, nous démontrons la
régularité des parameétres spectraux ax, A prés Fp et nous nous en servons pour obtenir
les asymptotiques de z, et sa partie imaginaire.

Voici le théoréeme principal qui décrit les résonances prées de Ey dans le cas générique.

Theorem 1.3.1. [Tria, Theorem 1.1] Soit Ey € (—2,2) Uextrémité gauche d’une bande
B; de ¥7. On numérote les paramétres spectraux N\, et aj dans B; comme ()\2)(, (a%)g ot
0 < ¢ <n; ( la numérotation locale par rapport a la bande B;).

Soit I = [Ey, Eo+¢1] et D = [Ey, Eo +¢1] —i[0,62] ot 1 < €2 et &3 < €° avec € > 0 petit.
Alors,

1. Pour chaque valeur propre o € I de Hyp, il y a une et une seule résonance z, dans

Mt An AL
Bng - |: 12 ) 2 +1:|

—1 [0,65} avec la convention )\i_l = 2Fy — \g. De plus,

Zn € My, = [A”‘l;)‘”, ’\“+2)‘"+1} —1 [0, CO”LJQI} avec Cy > 0 large. Par ailleurs, il n’y

a pas de résonances dans le rectangle [Ey — e, Eg| — i [O, Co "H].

LQ
2. On définit St (E) = SL(E) — )\iaﬁE et o = St (NY) + e~ - Alors, il existe
co>0tg co<|om| S5 et

Y (n+1)4
=N+ —+0| =]
Zn n + a, -+ <L5|Q{n|3>

3. Imz, satisfait

L5|O./n|3

et(n+1)?
CcL3

2
Par conséquent, il existe une constante C' > 0 t.q. < |Imzy| < C’%.

Comme nous venons de le voir dans le théoréme ci-dessus, chaque valeur proper )\il € ZOZ
prés Ey € 0Y7, génére une et une seule résonance z, de Hg et |Imz,| < Z—z Donc, quand
n < eL (loin du bord de ¥7), la taille de |Imz,| est 1 et on retrouve les résultats obtenus
dans [Klo|. Quand n est petit (prés du bord), |Imz,| devient beaucoup plus petit. Sa taille
varie entre % et %

Finalement, nous tournons notre attention vers les résonances en dessous R\ Xy. Rappelons
que Yy, le spectre de HY, est la réunion de Xy et ensemble des valeurs propres simples,
isolées de HN.

Soit I un interval compact dans (—2,2) et I C R\Xy. Alors, d’aprés [Klo, Théoréme 1.2],

il existe une constante ¢ > 0 t.q. H§ n’a pas de résonances dans le rectangle I — [0, .
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En fait, on peut démontrer que ce résultat reste encore vrai méme si 'intervalle I touche

le bord du spectre 7.

Theorem 1.3.2. [Tria, Theorem 1.2] Soit Ey € (—2,2) extrémité gauche d’une bande B;
de Y. Soit L € N* large. Alors, HEI n’a pas de résonances dans le rectangle [Eo — ¢, Fo| —

i[0, %] quand ¢ est suffisamment petit.

1.4 Reésonances dans le cas non-générique

Dans cette section, on étudie les solutions de I’équation de résonance (1.2.2) sous
I’hypothése que ap =< % quand la valeur propre A, associée est prés du point Ey €
0¥z N (—2,2). Sans perte de généralité, nous supposons que Ej est 'extrémité gauche
d’une bande B; de Y.

En posant z := L?(E — Ey), 'équation de résonance (1.2.2) peut s’écrire comme

fr(z)=> e _ 1 i) (1.4.1)

=0 S\k—z L

ou dy, := Lag, Ny := L2(\, — Ep).

Rappelons que |\ — Ep| est de taille f—z si A\ est prés de Ey et \, € sz. Donc, pres de
Ey, \p =< k% et ai, =< 1. Autrement, les parameétres dy, A\, sont de taille constante pres
de Ey. Le but maintenant est d’étudier les résonances rééchelonnées z dans le rectangle
D = [0,e1L%) —i[0,e9L?] ot £1 = €2 et g9 = £°. Soit (A)¢ les valeurs propres de Hj, dans
B;. Nous écrivons D comme la réunion de D}, = [A!, :\%_H] —i[0,e9L?] avec 0 < n < €L
et le rectangle R? = [0, \j] — i[0,£9L?]. Ensuite, nous étudions l'existence et 'unicité de

résonances dans chaque rectangle Dfl et dans le rectangle R'.

1.4.1 Domaine qui ne contient pas de résonances

On observe que, fr(z) est une fonction méromorphe sur C avec des poles {:\k} Donc,
| ()| doit étre grand prés de ces poles 1a. Dans chaque rectangle D! = [\ | ~fl+1]—i[0, 512
oun € [0,eL/Cy] avec C grand, fr a deux poles et dans R, fr, a un seul pole. On établit
ici une version quantitative pour cette observation et on se servira de ce lemme plus tard

pour décrire les régions ne contenant pas de résonances:

Lemma 1.4.1. [Trib, Lemma 3.2] Soit Ey € (—2,2) lextrémité gauche d’une bande B; de
7. Supposons que ()\é)g avec 0 < ¢ < n; sont les valeurs propres de Hy dans B;. Soit
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I =[FEy,Ey+¢e1] C By otieg < £2 avec € > 0 petit.
Pour chaque 0 < n < eL/Cy avec C; > 0 grand, on définit

fnp(2) == T4 i1 D fan(2) = fr(2) = far(2)

Ap—2 Apg1—2

ot z = L*(E — Ey) avec E € I —i[0,£°)].
Soit A, = % ou Kk est une grande constante.
Alors,

u |fn,L( IS % pour tout z € [/\Z n+1] + iR,

. J?;LL( ) < i1 +1)2 st z est réel et z € [)\ )\n—|—1]
m [Imf,p(2)] S H5E
Par conséquent, pour tout z € [\, A\ £ A,] —i[0, Ay,

1

LR =R

1
A, ™~ el

Note que, dans la définition de A, on choisit k suffisamment grand pour que 5\2 —A, > 0.

Le lemme ci-dessus montre qu’il n’y a pas de résonance dans A, N +A,,]—i[0, A,] pour
tout 0 < n < eL. De plus, une autre région de non résonances sera obtenue en établissant
quelques estimées sur Imf(z). Grosso modo, le lemme suivant décrit une région dans R,
ou |Imf(2)| est grande par rapport a la valeur absolue de la partie imaginaire du terme a
droite de (1.4.1):

Lemma 1.4.2. [Trib, Lemma 3.3/ On garde les notations et les hypothéses du lemme
1.4.1. Pour 1 < n < eL/Cy avec Cy > 0 grand, on pose D! = [)\Z n+1] —i[0,e7L?] et
xo = L2\ — AL). Alors, dans D.,, on a |Imf(2)] 2 ELL for all g—g < |Imz| < L2

Par ailleurs, 'assertion ci-dessus est encore valide dans le rectangle |0, 5\11} —1 [6%, 85[/2}.

En résumé, on obtient des zones de non résonances suivantes dépendantes de valeur de
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AN LA, AL - A,

n+1 A:H—l
A
AI“

E D C
0 “A,
F G _ 7
eL

—€5L2

2
Figure 1.2: Zone ne contenant pas de résonances quand A, < x—g

£

\i
)\n—i-l
Al Bl
D Q. ¢ a3
An - — - —— - E L D 4 — j
—A,
—e2L?

el

3 - 3
D3 93 0_3_____‘ _sLL
_51
_€4Lf

Figure 1.4: Zone ne contenant pas de résonances dans R’ := [0, \] — [0, L%¢]
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1.4.2 Existence de résonances

Dans cette sous-section, on démontrera que, dans le domaine QZ = [)\Z + Ay, N ntl —
Ay — i [O, x—%] ol zy = LQ(/\%Jrl ALY correspondant au cas ol n n’est pas trop grand
(n < b L) (c.f. Figure 1.3), il existe une et une seule résonance rééchelonnée z,. Par contre,
dans Q' = [0, )\6 —0)—i [ 75%} ott 1 > 0 est petit, il n’y a pas de résonance.
Finalement, dans Qi oun > LL, on peut démontrer 'existence de résonance. De plus, si
- ( Y appartient a fL(ABCD) ot ABCD = [N, + A, X! na1 — An] — 1[0, Ay

2
(c.f. la figure 1.2), la résonance rééchelonnée est unique, disons z, et |z,| < A, < o

le point —¢

Rappelons que, notre changement d’échelle est z = L?(E — Ey). Au milieu de chaque
bande du spectre, les parties imaginaires de résonances sont de taille % selon I'étude dans
[Klo|]. D’aprés nos résultats, quand on est prés du bord de ¥y, la largeur des résonances
devient beaucoup plus petite.

Tout d’abord, nous donnons le résultat de 'existence et I'unicité de résonances dans €2 :

Theorem 1.4.3. [Trib, Theorem 4.6/ Soit n < ﬁ avec 1 > 0 petit. Soit xg = /N\flJrl - AL
— Ay —i [0, ﬁ]
Alors, f, est une bijection de Q¥ sur fr(QF) et |f1(2)]

et une seule résonance rééchelonnée z, in Q. et |Imz,|

et Q. le rectangle [N + Ay, N nl

% Par conséquent, il existe une
n

En revanche, quand on est "trop proche" du bord du spectre Y7, il n’y a pas de

résonance:

Theorem 1.4.4. [Trib, Theorem 4.7] Soit 0 < 61 < 5\6 une petite constante. Soit QO le
rectangle |0, 5\6 — 0] —1 [O, i} (c.f. la figure 1.4).
Alors, f1, est bijective de Q' sur fr,(Q) et |f7(2)] > ¢ > 0. De plus, fr(Q)) ne contient

. —i6(Eq) X B .
pas le point —~——, donc, il n’y a pas de résonances dans ('

Finalement, on considére le domaine 2}, ou n > %:

Theorem 1.4.5. [Trib, Theorem 4.5] Suppose que n > nﬁ et xg = S\ZH — S\}L

Soit Q. le complément de deux carrés [N, Nl + A, —i[0, A,] et [~f1+1, ZH —A,]—1[0,Ay]
2

dans le rectangle [)\ )‘n+1] [ ,f—g] ( le domaine ABCHGFED dans la figure 1.2).

Alors, il existe au moins une résonance rééchelonnée dans 2, . Par ailleurs, si —%e_ZH(EO)

appartient au A'B'C'D' = f1,(ABCD) ot ABCD = [\L + Ay, X vt — Ap] — 1[0, Ay, il
existe une et une seule résonance rééchelonnée z, dans S, et

2
n n n
Imz,| < A, = = < .
I nl < An klnn kInL ™~ eL
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1.5 Questions ouvertes

1. Quant a la premiére partie, malgré notre effort, une estimée de décorrélation pour
les modeéles discrets en dimension supérieure reste encore un défi. Récemment, les
éstimées de décorrélations pour certains autres modéles discrets et continus sont
obtenus par la recherche de Shirley (c.f. [Shil5]). Nous pensons qu’il y a encore
des questions intéressantes & étudier sur ce genre des estimées en particulier et les

statistiques spectrales en général.

2. L’étude de résonances de I'opérateur discret associé a un potentiel périodique sur la
droite entiére est une question que nous poursuivons apres cette thése. Dans ce cas
1a, les valeurs de |5 (L)|? et |¢x(0)|? vont jouer un réle crucial.

Finalement, nous voulons également voir ce qui se passe pour les résonances loins du
bord du spectre Y7 mais preés les points +2, les points tournants de la fonction 0(FE)
définie dans (1.2.2). Notons que, quand on est loin du bord de ¥z, notre méthode
ne fonctionne pas. Dans ce cas 14, il faut utiliser et améliorer la méthode introduite

par Klopp [Klo].

Cette thése est organisé comme suit: La premiére partie de thése comporte 4 chapitres. Le
chapitre 2 est dédié a une introduction bréve de la motivation et les notions importantes
d’opérateurs aléatoires. Puis, nous introduisons la statistique spectrale dans le chapitre
3. Ensuite, nous parlons des estimées de décorrélations du modeéle (1.1.1) dans le chapitre
4. Les quatre premiéres sections de ce chapitre font partie de mon article [Tril4| publié
en 2014 sur Annales Henri Poincaré. Finalement, nous avons ajouté en plus la section
4.5 ot nous démontrons une solution alternative de 'estimée de décorrélation du modele
d’Anderson discret en dimension 1.

Les trois dernier chapitres, les chapitres 5-7 sont consacrés a la deuxiéme partie de these
sur les résonances. Dans le chapitre 5, nous faisons un résumé des résultats dans [Klo| sur
résonances. Le chapitre 6 est réservé a notre contribution récente a 1’étude de résonances
dans le cas générique. Finalement, nous étudions le cas non-générique dans le chapitre 7.

Les chapitres 6-7 font partie de deux articles |Tria] et [Trib].
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2.1 Where do random operators come from?

Let’s talk a little bit about physics (c.f. [Luc92], [Kir08]). Assume that we want to study
how an electron propagates in a metal tube which contains impurities. At sufficiently low
temperatures, the inelastic electron-phonon interactions are negligible. Then, only elastic
collisions which are either between electrons or between an electron and the potential of
the lattice are taken into account.

Neglecting the effect of Coulomb interactions between electrons, we are led to consider the

following stationary Schrédinger equation in L?(IR?%) for one electron:
Hu = (=A+V)u = Eu for u € L*(R%),d > 1 (2.1.1)

where —A is the Laplacian operator and V' is the potential representing interactions be-
tween the electron and atoms of the lattice.
In the case of perfect crystal (without impurities), the atoms or nuclei are distributed on
a periodic lattice, say Z?, in a regular way. If we assume that an electron at the point
x € R? feels a potential ¢f(x —1) due to an atom located at the point i € Z¢ where ¢ is the
charge or coupling constant and f is single site potential. Hence, our electron is exposed
to a total potential

Vie)=>_ qf(z—i).

€2

Then, the potential V' is periodic and the spectrum of the above operator H is well studied
by using the Floquet-Bloch theory.
In contrast, when materials contain impurities or defects, the potential V' is not periodic
anymore. It depends on the possibly complicated configuration of impurities. Then, it is
reasonable to consider V' as a random quantity.
Following are some important examples of forms of random potentials:
Alloy-type model potential:
It models an unordered alloy, i.e., a mixture of several materials whose atoms are located
at lattice positions. The type of atoms at each lattice point i is assumed to be random.

Hence, the potential V' is given by
V() =) gilw)f(z — ).
i€Zd

where ¢;(w) are random variables which are usually assumed to be independent and iden-
tically distributed (i.i.d.).
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Random displacement model:
By the random displacement model, we refer to a Schrodinger operator with the potential
of the form:

Vo) =q ) flo—i—w)

1€Z4

The above model appears in the case of pure materials where the atoms’ positions randomly
deviate from the ideal lattice randomly. Random variable w; in this case describes the
deviation of the i'" atom from the lattice position i.
Poisson random model:
To model an amorphous material like glass or rubber, one assumes that the atoms of the

material are located at random points in space. Then, the random potential is of the form:

Vo(@) = ¢ flo—w).

1€Z4

If we choose {w;};cza to be a Poisson point process in R?, the associated model is called
the Poisson random model.

In statistical mechanics, we also study discrete random models i.e., the random models
are defined on the space [?(Z4) instead of L?(IR?). Following are two examples of discrete
random models:

Discrete Anderson model:

The discrete Anderson model can be seen as a tight binding approximation of (2.1.1) in
which electrons can hop from atom to atom and are subject to an external random potential

modeling random environment:

Hy=—-A+V, (2.1.2)

where

e —A is the discrete Laplacian:

—Au(n) = Z w(m) for all n € Z%.

Im—nl|1=1

e 1/, is a multiplication operator:
(Vou)(n) = Vi (n)u(n)

where wy, :== V[,(n) are i.i.d. random variables.
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In dimension 1, the operator H,, defined in (2.1.2) is nothing but a tridiagonal matrix of
infinite length where the random variables w,, only appear on the main diagonal of this
matrix. That’s why we also call H,, the random model with diagonal disorder.

The following model is another example of discrete random operators but with off-diagonal
disorder:

Lattice Hamiltonian with off-diagonal disorder:

For u € Z%, one defines

(Mu)(x) = Y Ae)(ulx) —uly)) (2.1.3)
yeLtly—z|1=1
e={zy}

for all 2 € Z%, where e = {z,y} is an un-oriented edges satisfying |y — z|; = 22:1 |z —
yr| = 1. Here {7y(e)} are i.i.d. random variables. The model (2.1.3) appears in the descrip-
tion of waves (light, acoustic waves, etc) which propagate through a disordered, discrete
medium (c.f. [Miall| and references therein). We can see {y(e)} in this model as weights
of bonds of the lattice Z.
When d = 1, the random operator (2.1.3) can be rewritten in form of (1.1.1) introduced
in Chapter 1. The model (2.1.3) in dimension 1 is our main object to study in Chapter 4.
Throughout the thesis, whenever referring to the model (2.1.3) without other notifications,

we will always assume following conditions on r.v.’s y(e):

(A.1) Random variables {7(e)}.cz« have a common compactly supported bounded den-

sity p. Besides, the essential range of these r.v.’s is a finite interval
essRany(e) = [y ,7T] with 0 <7~ <77 <
where the essential range essRan of a function f : Q +— R is the set
essRanf .= {z e R| P (f_l(:z: — 8,x+6)) > 0 for all ¢ > 0}.
(A.2) The density p has a strictly positive lower bound in the sense that

p—:=ess inf p(s)>0.
s€[y=v]

2.2 Important quantities for random operators

In the present section, we only refer to discrete random operators but all definitions

and results in this section could be applied to continuous settings as well.
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2.2.1 Non random spectrum

Assume that H,, is a discrete self-adjoint random operator on [*(Z%) depending on a
collection of random variables w. For each configuration of w, we have a particular operator,
hence, we have a family of self-adjoint operators. Each of them has its own spectrum.
Nevertheless, under some quite general conditions, the spectrum of a random operator is
non-random i.e. H,, H, has the same spectrum w almost surely. Following [Pas80, KS81,
KMS82]|, we shall precise conditions under which H,, has the same spectrum w almost surely.
Given a probability space (2, F,P), we call a measurable mapping 7" : 2 — € is a measure
preserving transformation if P(T~'A) = P(A) for all A € F.

Let {7} }rezae be a family of measure preserving transformations, it is called ergodic iff
T 'A=Aforall k € Z* = P(A) € {0,1}.

Now, assume that {H,},cq is a family of self-adjoint operators on [2(Z%). This family is
ergodic w.r.t. the additive group Z% if there exists a family of unitary operators {U} kezd
acting on [2(Z%) such that

Hrp,, = Uy H,Uy.

In the case of the discrete Anderson model, {T}}recze and {Ug}reze are nothing but shift

and translation operators:

(Thw)i = wick;  (Ukp)(i) = (i — k), p € P(Z7).
Following is the basic result of non-random spectra for random operators:

Theorem 2.2.1 ([Pas80, KS81, KM8&2|). If H,, is an ergodic family of self-adjoint opera-
tors, then there is a (closed, non random) subset ¥ of R, such that o(H,) = % for P—a.s.
w.

Moreover, there are sets Yqc, Xsc, Ypp such that 04c(Hy) = Xae, 0se(Hy) = Xge, opp(Hy) =
Ypp. Here 04c, 05, 0pp stand for respectively the absolutely continuous, singular continuous

and pure point spectrum of H,,.

2.2.2 The integrated density of states

Consider a discrete ergodic random operator H,, on [*(Z%). We can think of the discrete
Anderson model as the typical example.
For any cube A € Z¢, we denote by H,(A) the operator H,, restricted on A with periodic

boundary condition. Then, H,(A) is nothing but a matrix acting on the finite dimensional
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space [2(A) = CA. For any number E € R, let Ny(E) be the number of eigenvalues of
H,(A) less than or equal to E. The function Nj(F) depends on the realization w. By

using the sub-additive ergodic theorem, following [Kir08|, one has

. NA(E)

NE) = T
exists w—a.s. for almost all £ € R and is w—independent.
One shows that N(FE) is independent of boundary conditions used to define it. We call
N(E) the integrated density of states (IDS) of H,. This quantity measures in some sense
the number of states below a reference energy per unit volume. It is easy to see that N(FE)
is nondecreasing and nonnegative. It thus can be viewed as the distribution function of
a nonnegative measure on the real line. Besides, the support of this measure happens to
equal the almost sure spectrum ¥ of H,. Hence, N(FE) is constant outside ¥ and the be-
havior of N(FE) as E approaches the boundary of ¥ from inside is an interesting question.
For example, let’s consider the d—dimensional discrete Anderson model. Then, near the
bottom Ey of its a.s. spectrum, it is well known that N(E) decay to 0 exponentially fast
like exp[—c(E — Eg)~%?] with some positive constant ¢. This asymptotic of N is called
the Lifschitz tail (c.f. [CL90| for a detailed discussion and especially Lifschitz’s intuitive
argument).
Another important question about IDS is its smoothness. It is a difficult one which at-
tracted much attention but we do not intend to discuss that topic in the present thesis.
We just want to mention that, as soon as a Wegner estimate (see Theorem 3.1.1 in Section
3.1) is known for H,, N(FE) is defined everywhere in R and absolutely continuous w.r.t.
Lebesgue measure with a bounded derivative v(F) called the density of states (DoS) of
H,,. Interested readers can find much further discussions and results in the smoothness of
IDS in e.g. [His08, Ves08, Kir08, CL90].
Finally, the definition of IDS and DoS for continuous random operators is similar provided
that, for A € R?, H,(A) is lower semibounded and has a discrete spectrum. Note that, in

the continuous case, the problem of boundary conditions is more complicated.
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3.1 The Wegner estimate

The term Wegner estimate refers to an upper bound on the probability that the finite-
volume random operator H,(A) has an eigenvalue in a given interval I. A good Wegner
estimate is one for which the upper bound depends linearly on the volume |A| and on the

length side of the interval:
P(oc(H,A) NI #0) < C|I|A

Such an estimate is a key ingredient to prove the Anderson localization as well as to study
the smoothness of IDS and the spectral statistics of random models.

Up to now, the good Wegner-type estimates have been obtained for many random Schrodinger
models both discrete and continuous ones under rather general conditions on the single-site
potential and on the randomness (c.f. [His08, Ves08| for detailed surveys).

As referred in Chapter 2, the spectral statistics for the lattice Hamiltonian with off-diagonal
(2.1.3) in dimension 1 will be studied in Chapter 4 and a Wegner-type estimate for (2.1.3)
will be used. For that reason, we would like to state here the Wegner estimate for (2.1.3)

in the present chapter:

Theorem 3.1.1. [Wegner estimate, [Miall, Theorem 2.1]] Pick A € Z% a large cube and
E > 0. Let I. = [E —¢, E+¢] where € is a small number between 0 and E. Denote by My
the operator M in (2.1.3) restricted to A with the periodic boundary conditions.

Then, we have
2d|[sp(s)lloo
€

P(o(Ma) N . £0) < “H

e|Al

forall N CZ and 0 < e < F.

3.2 Minami estimate

Minami estimate (M) is one the most crucial ingredients for studying spectral statistics
and an essential ingredient in our proof of decorrelation estimates (see Chapter 4). (M)
is well known for many discrete random models under assumptions of the regularity of
randomness. For examples, this estimate holds for the discrete Anderson model everywhere
in the almost sure spectrum and in any dimension (c.f. [Min96, GV07, BHS07, TV14]).
For the continuous models, Minami-type estimates have not been settled yet except for
random models in dimension 1. Actually, the authors in [Klo14] showed that, for some 1D

random Schrodinger operators, (W) implies (M) in the localized regime.
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Minami [Min96], for the first time, introduced an upper bound for the probability of having
two or more eigenvalues in a small interval of energies as a key to obtain the Poisson statistic
for eigenvalues of multi-dimensional discrete Anderson tight-binding model. That bound

is now widely known under the name Minami estimate:
P(#{o(Ha(A) N T} > 2) < C(|J]|A)

where H,, here denote the multi-dimensional Anderson tight-binding model.

It is worth mentioning that Minami estimate and localization properties imply the sim-
plicity of the spectrum.

Minami’s original proof of this estimate relies on finding a good upper bound on the av-
erage of the determinant whose entries are matrix elements of the imaginary part of the

resolvent:

Lemma 3.2.1. [Min96, Lemma 2] For any z € Cy, D € Z%, and z,y € D with x # y,

one has
ImGD(z;x,x) ]mGD(Z;%y)
det ( < 7T2||P||go

E
ImGP (z;y,2) ImGP(z;y,y)

Recently, a simpler and more transparent proof of (M) for the discrete Anderson model
is given by Combes, Germinet and Klein [CGK09]. Their proof bases on an averaging spec-
tral projections and rank one perturbation and requires not too much of the regularity of
the random variables {wy, },,c7¢. Moreover, that strategy can be adapted to other (discrete)

random models such as the lattice Hamiltonian with off-diagonal disorder (2.1.3):

Theorem 3.2.2. [Miall, Theorem 3.1] Pick A = [—L, L] C Z%. Let My be the lattice
Hamiltonian with off-diagonal defined in (2.1.3) restricted on A with periodic boundary
conditions. We assume the conditions (A1) and (A2) for r.v.’s y(e) of (2.1.3).

Then, there exists C' > 0 such that, for all intervals J = [a,b] C (0,+00), one has

P (trl (M) = 2) < Bollpllssllsp(s)lloc (|1A])? /a®.

3.3 The localized regime

We would like to begin this section with a phenomenal discovery in condensed-matter
physics by American physicist Philip Warren Anderson. For the first time, in the 1950s,

he suggested the occurrence of localized electronic states in disordered systems provided
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that the degree of randomness of the impurities or defects is sufficiently large. Such a phe-
nomenon is now widely known under the name Anderson localization. It is of importance
in different contexts, e.g., it plays a role in the conductive properties of semi conductor
materials, in the quantization of Hall conductance or in some subjects of optical crystals.
Anderson localization mathematically means that the spectrum of random operators is
almost surely pure point (consists of a dense collection of eigenvalues) corresponding to
exponentially decaying eigenfunctions. We define the localized regime (or a region of local-
ization) as the region in the almost sur spectrum where Anderson localization is exhibited.
Interested readers can find physical reviews of Anderson localization in [And58, Tho86].
For mathematical proofs of Anderson localization with "regular" random potentials, see
[GMP77, FS83, ASFHO1, GKO1]. For those of Anderson localization with singular random
potentials, see [CKM87, DSS02, BK05, GK13|.

For random operators in dimension 1, the knowledge of mathematicians about localized
regime is quite satisfactory. It is well known that Anderson localization occurs everywhere
within the almost sure spectrum of 1D random operators. In the other words, one dimen-
sional disordered systems ("thin wire with impurities") should have low or even vanishing
conductivity.

However, in higher dimensions, much less is known about localized regime. In these cases,

Anderson localization is only proven at low energies, high disorder or at the spectral edges:

e For the discrete Anderson model, let S_ and Sy be the infimum and supremum of 3.
Then, for some S_ < s_ < s; < Sy, the intervals I = [S_,s_) and I = (s, S4]
are contained in the localized regime H,,. Besides, one can pick / :=/1_U [, =X in
the high disordered case (c.f. [Kir08]).

e For random wave operator (2.1.3), Anderson localization is proved in the cases of
high frequencies/energies ([Far87, Far91]) and frequencies/energies near band edges
(c.f.[FK94] for discrete case and [FK96| for continuous case).

We have two powerful methods to prove the localization for multidimensional random
operators, the multiscale analysis and the fractional moment. The former is a technique
initially introduced by Frohlich and Spencer [FS83|, and simplified by von Dreifus and
Klein [vDK89|, and strengthened in various directions by Germinet, Klein |[GK01]. We
recommend |Kir08| to interested readers for a very detailed survey on this topic.

The fractional moment method was first developed by Aizenman and Molchanov [AM93]
for discrete Schrodinger operators . It was then extended to the continuous setting by
Aizenman, Elgart, Naboko, Schenker and Stolz in [AENT06].
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Throughout the present thesis, we use the following definition of the localized regime:

Proposition 3.3.1. [Klo11] Let I be the region of X where the finite volume fractional
moment criteria of [ASFHO1] for H,(A) are verified for A sufficiently large.

Then,

(Loc): There exists v > 0 such that, for any p > 0, there exists ¢ > 0 and Ly > 0 such
that, for L = Lg, with probability larger than 1 — L™P, if

1. opw is a normalized eigenvector of Hy,(AL) associated to an energy Ey o € 1,
2. Tnw € AL is a mazimum of x — |pp ()| in Af,

then, for x € Ar, one has
lonw(@)] < [~ VIT—mn0l

The point xy, ., s called a localization center for pn ., or Ep .

3.4 Poisson process (c.f. [DVJO08|)

Let M(R) be the space of all non-negative Radon measures on R. On this space, we
define a so-called vague topology as follows: We say that {1, }n>1 in M(R) converges to
m € M(R) vaguely iff

lim / F@)pn(dr) = / F@)u(dz)

n——+00

for all f belonging to C.I (R), the space of non-negative continuous functions with compact
support.
Now, we denote by M,(R) the sub-space of M(R) consisting of all integer valued Radon

measures on R. Any measure £ € M,(R) can be written as
E(dr) =) b (dx)
J

with a sequence §; having no finite accumulation points.

Definition 3.4.1. A point process is a random variable & = & which takes values in
M,(R). In addition, the intensity measure p(dz) of £ is defined as

w(A) =E[EY(A)] for any Borel set A .
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Consider a sequence {&,} of point processes defined on a probability space (92, F,P).
Following are equivalent conditions for the convergence of {£,} to a point process £ which
may be defined on another probability space (€, F,P) (c.f. [DVJ08]):

1. For any bounded continuous function ® on M,(R) one has

i [ a(6,P@) = [ o(o)Be)

n—oo

2. For any f € CF(R), set & (f) := [ f(x)&(dz), one has

lim Eple~ ()] = E@[e—é(f)].
n—oo
3. For any [ > 1,{k;j}1<j<; € N* and disjoint intervals {/;}<j<; such that P(&(01;) >
0) = 0, one has
lim P& (L) =kj,j=1,...,0) = P(&(Ij) = kj,j = 1,...,1).

n—oo

Now we define a Poisson point process (Poisson process for short).

Definition 3.4.2. Let (2, F,P) be a probability space. A point process & defined on this
probability space is called Poisson point process with intensity measure v if the following
two statements hold:

e For any bounded Borel set S C R, the random variable £(S) has a Poisson distribu-

tion with parameter v(S) i.e.,

k
P(¢(S) = k) = V(/i) e™S) for all k > 0.
e [f bounded Borel sets S1, ..., Sk in R are mutually disjoint, then the random variables

€(S1),...,&(Sk) are independent.
In particular, if the measure v happens to be the Lebesque measure on R, the point process

& 1s called the Poisson process with the intensity 1.

3.5 Local level statistics in the localized regime

Let’s consider an arbitrary Z?—ergodic, discrete random operator H,, on ZQ(Zd). The
very usual way to study various spectral statistics of this operator is to use the finite-
volume approximation operators. We restrict H,, on a cube A, say [—L, L]¢ with some

boundary conditions to get finite-volume operator denoted by H,(A), a symmetric matrix.
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Hence, H,(A) has only real eigenvalues and we study the properties of its eigenvalues in
the limit |A] — +oo.
Assume that the integrated density of states N(E) and the density of states v(E) exist for

the random operator Hy,,. Then, for any interval I = [a, ], for A sufficiently large, we have
#{ev. of H,(A) € I} < N(I)|A| where N(I) = N(b) — N(a). (3.5.1)

(3.5.1) yield that the mean spacing, the average distance between eigenvalues of H,,(A), in
I is of order |A|~1 as |A| large.
Now, pick a fixed, arbitrary energy F in >, the almost sure spectrum of H, such that

v(E) > 0. By the local level statistics near E, we mean the following point process

Al
=& E,w,A) = ngEwA £) (3.5.2)
where
En(E,w,A\) = |A|lv(E)(Ep(w,A) — E) are rescaled eigenvalues. (3.5.3)

For any Borelian set A C R, Z(A, E,w, A) is nothing but the number of &, which belongs
to A. On the other hand, we observe that &, € A iff E,, € E+ (v(E)|A|)"1A. Hence, if |A|
is large enough and v(E) > 0, only eigenvalues FE,, close to the fixed energy E are taken
into account in the point process (3.5.2). That’s why we call Z(¢, E,w, A) the local level
statistics near F.

Let’s take a look at the definition of rescaled eigenvalues &,(E,w,A). We knew that,
typically, consecutive eigenvalues of H,,(A) as |A| large are close to each other (the mean
spacing is in magnitude of |[A|~!). Hence, by multiplying eigenvalues by |A| as in the
definition of &, (F,w, A), we obtain a rescaled spectrum where the typical distance between
two rescaled eigenvalues is constant in magnitude. Such a rescaling procedure is very
natural and obviously makes the study of spectral statistics easier. Finally, there is a
"renormalization factor" v(E) > 0 appearing in the definition of &,(E,w, A) just because
we would like that, in the conclusion of Theorem 3.5.1, the limit of the point process
=(&, E,w,\) is a Poisson process with the intensity 1 instead of v(E).

Note that, to study the local level statistics near an energy E € Y7, we can also consider the
point process = defined in (3.5.2) with &,(F,w,A) = |A|(N(E,) — N(E)). The advantage
when considering this point process is that we do not need an assumption on the density
v anymore.

Following is one of the most striking results of local level statistics in the localized regime
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for discrete random operators. Roughly speaking, in the subregion of the localized regime
where the density of states v does not vanish, eigenvalues of H,(A) are distributed in

Poissonian way locally in the limit |A| — +o0.

Theorem 3.5.1. [Mol81, Min96, GK14] Consider a 72— ergodic random operator H,, on
2(Z%) or L*(RY) satisfying the independence at a distance (IAD):

(IAD): There exists Ry > 0 such that for dis(A,\") > Rq, the random Hamiltonians
H,(A) and Hy(N') are independent.

Let E be a fived energy in the localized regime of H,, (where (Loc) in Proposition 3.5.1
holds) such that v(E) > 0. In addition, assume that Wegner estimate and Minami estimate
hold in a neighborhood of E.

Then, when |A] — oo, the point process =(§, E,w, ) converges weakly to a Poisson
point process with the intensity 1 i.e., for (Uj)i<j<s, U;j C R bounded measurable and
UpnU; =0 1if j#37" and (kj)i<j<s € N, we have

lim [P
|[A]—+o0

J .
B H Uil eIl = .
' ’ . k’]’!
#{5: (B w,A) € Ujt =ky =1

This kind of result was first proved in 1981 by Molchanov [Mol81] for some one-
dimensional continuous random Schrédinger operator. His result was extended fifteen
years later by Minami [Min96| for the discrete Anderson model and Minami’s proof is in-
dependent of the dimension of phase space.

Recently, the results on local level statistics have been studied intensively and extended
in various directions by Germinet and Klopp [GK14]. In [GK14], the authors obtained a
general version of Poisson convergence which can be resumed as follows:

For any 7. ergodic random operator Hy, on I>(Z%) or L*(R%), the Poisson convergence
holds true whenever we have (IAD), (Loc), Wegner and Minami estimates.

Moreover, the authors in [GK14| weakened the condition v(F) in Theorem 3.5.1 and de-
rived a uniform Poisson convergence over small intervals of energy instead of some fixed

energy F.
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4.1 Definitions and statement of results

In the present chapter, we would like to study local level statistics of the lattice Hamil-
tonian with off-diagonal disorder (2.1.3) in dimension 1. In dimension 1, (2.1.3) can be

rewritten in the following form: for v = {u(n)},ez € [*(Z), set
(Hyu)(n) = wp(u(n) —u(n+ 1)) —wp—1(u(n — 1) —u(n)). (4.1.1)

Throughout the present chapter, we assume that w := {wp}nez are non-negative i.i.d.
random variables (r.v.’s for short) with a bounded, compactly supported density p.
In addition, from Section 4.1 to Section 4.2, we assume moreover that w, € [ag, fo] for all
n € Z where By > ag > 0. In Section 4.3, we will comment on relaxing the hypothesis of
the lower bound of r.v.’s w.
It is known that (see [Miall]):

e the operator H,, admits an almost sure spectrum > := [0,4[].

e H, has an integrated density of states defined as follows:

w—a.s., the following limit exists and is w independent:

N(E):= lim #{e.v. of H,(A) less than E}
[A|—=+o0 |A’

for a.e. B (4.1.2)

where H,(A) is the operator H,, restricted on the interval A C Z with some boundary

condition.

As a direct consequence of the Wegner estimate (see Theorem 3.1.1 in Section 3.1),

N(FE) is defined everywhere in R and absolutely continuous w.r.t. Lebesgue measure

with a bounded derivative v(FE) called the density of states of H,,,.
In the present chapter, we follow a usual way to study various statistics related to random
operators. We restrict the operator H,, on some interval A C Z of finite length with some
boundary condition and obtain a finite-volume operator which is denoted by H,,(A). Then,
we study diverse statistics for this operator in the limit when |A| goes to infinity.
Throughout this chapter, the boundary condition to define H,(A) is always the periodic
boundary condition. For example, if A = [1, N]|, the operator H,,(A) is a symmetric N x N

matrix of the following form:

WN + w1 —Ww1 0 S 0 —WN
—w1 W] +wy —wo ... 0 0
0 0 0 ... wy_2+wn_1 —WN_1

\ —WN 0 0o ... —WN_1 WN—1+ WN
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For L € N, let A = Ap := [—L, L] be a large interval in Z and |A| := (2L + 1) be its
cardinality.

We will denote the eigenvalues of H,(A) ordered increasingly and repeated according to
multiplicity by Ei(w,A) < Ea(w, A) < -+ < B (w, A).

Let I be the localized regime (the region of localization) in 3 where the finite-volume
fractional-moment criteria for localization are satisfied for the finite-volume operators
H,(A) when |A] is large enough (see Proposition 3.3.1 in Section 3.3 and [ASFHO1]| for
more details).

Pick E an energy in I with v(F) > 0 and define the local level statistics near E as in
Chapter 3:

A
2 B w, \) = Z(SwaA £) (4.1.3)
where
&n(E,w, A) = [A|V(E)(Ep(w, A) — E). (4.1.4)

From Theorem 3.1.1 and Theorem 3.2.2 in Chapter 3, Wegner estimate and Minami es-
timate for the model (4.1.1) do not hold at 0, the bottom of its almost sure spectrum .
Hence, we have to restrict ourselves to the study of the local level statistics Z(&, E,w, A)
with £/ > 0 in the localized regime.

For the model (4.1.1), it is known that the weak limit of the above point process is a

Poisson point process:

Theorem 4.1.1. [Miall] Assume that E is a positive energy in I with v(E) > 0.
Then, when |A| — oo, the point process Z(&, E,w,\) converges weakly to a Poisson

point process with the intensity 1 i.e., for (Uj)i<j<s, U;j C R bounded measurable and
UpnU;=01ifj#37" and (kj)i<j<s € N, we have

#{]agj(anaA)eUl} :kl J |U|k
' : : Uil =
#{7;&(E,w, A) € Uj} -

Recently, for the 1D discrete Anderson model, Klopp [Klol1]| showed moreover that if
we pick two fixed, distinct energies £ and E’ in the localized regime, the two corre-
sponding point processes =Z(&, E,w,A) and Z(&, E',w, A) converge weakly, respectively to
two independent Poisson point processes. In other words, the limits of Z(¢, E,w, A) and

Z(¢, B w, \) are stochastically independent.
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It is known that the above statement holds true if one can prove a so-called decorrelation
estimate.
That is exactly what we want to carry out here for the 1D discrete lattice Hamiltonian

with off-diagonal disorder (4.1.1). Our decorrelation estimate is the following:

Theorem 4.1.2. Let E, E' be two positive, distinct energies in the localized regime. Pick
g€ (1/2,1) and a € (0,1). Then, for any ¢ > 0, there exists C' > 0 such that, for L large
enough and cL®* <1 < LY/c, one has

p () oHA)N(E+LTH(=11))#0 | _ <i>
o(Ho(A)) N (B + L7H(=1,1)) # 0 L)
Thanks to Theorem 4.1.2, we can proceed as in Section 3 of [Klol1] to obtain the

asymptotic independence of the weak limits of Z(¢, E,w, A) and Z(&, E/,w, A) with E, E' >
0 for the model (4.1.1):

Theorem 4.1.3. Pick two positive, distinct energies E and E' in the localized regime such
that v(E) > 0 and v(E") > 0.

When |A| — 400, the point processes Z(&, E,w,\), and Z(&, E',w,\) converge weakly
respectively to two independent Poisson processes on R with intensity the Lebesque measure.
That is, for (Uj)i<j<s, U;j C R bounded measurable and Uy NU; = O if j # j' and
(kj)1<j<s € N7 and (Ui<j<rs Up C R bounded measurable and U, N UL = 0 if j # '
and (K})1<j<r € N7, we have

( [ #{5;6(E,w,A) € U1} =k ) \

J ’

U5 oy 0 o

k]'| € ‘UJ‘HT€ |Ul| (415)
.7' ’L_l 'L.'

~~

p|{ HieEen ety —k Ll
#{j7§](E ,W,A) € Ul} = kl j=1

\ #0400 e U} =)
as |A] = +oo.

Moreover, in Section 4.4, we will generalize Theorem 4.1.3 by considering not only two
but any fixed number of distinct energies.

To prove Theorem 4.1.2 for the model (4.1.1), we follow the strategy introduced in [Klo11].

The key point of the proof of decorrelation estimates for the 1D discrete Anderson model
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in [Klol1] is to derive that the gradient with respect to w of two eigenvalues FE(w) and
E'(w) near two distinct energies E and E’ are not co-linear with a good probability. In the
discrete Anderson case, this statement will hold true if the gradients of F(w) and E’'(w)
are distinct. In deed, the gradients of F(w) and E’'(w) have non-negative components and
their ' —norm are always equal to 1. So, if they are co-linear, they should be the same.
Unfortunately, the /'—norm of the gradient of an eigenvalue of our finite-volume operator
H,(A) is not a constant w.r.t. w anymore (it is even not bounded from below by a positive
constant uniformly w.r.t. w). Moreover, to prove the above key point for the discrete
Anderson model, [Klol1] exploits the diagonal structure of the potential which can not
be used for the present case. So, a significant modification in the proof is needed to obtain
Theorem 4.1.2. This approach is contained in Lemma 4.2.3. Besides, in Section 4.5, we
show that that new approach can be adapted to the discrete Anderson model in dimension
1 as well.

In addition, Theorem 1.12 in [GK11b| implies directly the following result for the model
(4.1.1):

Theorem 4.1.4. [GK11b, Theorem 1.12] Pick 0 < Ey € I such that the density of states
v is continuous and positive at Fy.

Consider two sequences of positive energies, say (Ex)n, (E)y)a such that

1. By —— Ey and E;X E— E(),

A—7Z4 A—7Z4
2. |A|[N(Ep) — N(EY)| —— +oc.
A—7Z4

Then, the point processes =(&, Ex,w, A) and Z(&, E)y,w, A) converges weakly respectively to

two independent Poisson point processes in R with intensity the Lebesque measure.

In Theorem 4.1.4, instead of fixing two distinct energies £ and E’, one considers two
sequences of positive energies {Ex}, {E}} which tend to each other as [A] — oco. In
addition, one assumes that, the distance between two points processes =(§, Ep,w, A) and
Z(&, F),w,\) goes to infinity as [A| — co. Then, the asymptotic independence of two
point processes associated to Ej and E'\ is obtained.

Besides, it is known that the existence of an integrated density of states defined as in (4.1.2)
implies that the average distance (mean spacing) between eigenlevels is of order |A|~!.
Thus, according to Theorem 4.1.4, in the localized regime, eigenvalues separated by a
distance that is asymptotically infinite with respect to the mean spacing between eigen-
levels behave like independent random variables. In other words, there are no interactions

between distinct eigenvalues, except at a very short distance.
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Notation: In the present chapter, we use Dirac’s notations: If ¢ is a vector in a Hilbert
space H, we denote by |¢)(p| = (p, -)x¢ the projection operator on ¢. Besides, throughout
the present chapter, the symbol || || stands for the /2—norm || -||2 in some finite dimensional

Hilbert space.

4.2 Proof of Theorem 4.1.2

In the present section, we follow the strategy introduced in [Klo11] to prove the decor-
relation estimate in Theorem 4.1.2.
Pick two distinct, positive energies F, E’ in I (the localized regime). Let J, = E +
L7Y—-1,1] and J, = E' + L7[—1,1] with L large. We would like to begin this section
by proving some elementary properties of eigenvalues of H,(A) with an arbitrary interval
AeZ.

Lemma 4.2.1. Suppose that w — E(w) is the only eigenvalue of Hy,(A) in Jp. Then

1. F(w) is simple and w +— FE(w) is real analytic. Moreover, let w — p(w) denote the

real-valued, normalized eigenvector associated to E(w), it is also real analytic in w.

1 . L
2. |IVuEW)|1 = ZZ%A ITLy0|? where TL, = §|57 — 0y41) (0 — Oy1] s a projection

in 1?(A). Besides, we have E(w) € [0,4/3].
3. Hess,E(w) = (h)y,3 where

~1
= hypi= —4((Ho(A) = Bw)) 5, 95),
=y = (g, ) — iy = =M, (Typ) where I,y 1 is the orthogonal projection

on (p)*.

Proof of Lemma 4.2.1. (1) is true from the standard perturbation theory (c.f. [Kat95]).

Now we will prove (2). Starting from the eigenequation

Hy,(Mgp = E(w)ep, (4.2.1)
we have, for all v € A,
Ou, B(w) = (0w, (Ho(AN)p), @) + (Hu(A)p, Ou, )
- <8w7(Hw<A>>QOa ‘P) + <H ( ) wy P 90> +< ( ) aah,@)
= (0o, (Hy(A) @, ) + (O, Hu (M) @) + (M, ( )@, 0w, ©)
= (O, (Ho(M), ) + E(w) (D, 0, 9) + (0, 0, #))
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where the last two equalities come from the symmetry of H,(A) and (4.2.1).
Noting that

(O, 0, 0) + (0, 0, 0) = 200 llipl* =
Hence,
O, E(w) = (O, (Hu (M), 0) = 2(ILyp, ). (4.2.2)
On the other hand, it is easy to check that II, = I}, = H?y. Hence, II, is an orthogonal
projection and d,, E(w) = 2[[IL, ¢l
Thanks to (4.2.1) and (4.2.2), we have the following important equality:

D w0, BE(w) =2 wy (T, ¢) = E(w) (4.2.3)

yEA vyeEA

which characterize the form of our operator.
From (4.2.3) and ||| = 1, we infer that

0< Ew) =Y wyp(y) —o(y+1))* < 480 (4.2.4)
veA

Finally, we give a proof for (3). By differentiating both sides of (4.2.2) w.r.t. w,, we have
02 E(w) = 2(0., (Iyp), @) + 2(I1yp, .y, 0) (4.2.5)
2<H awﬁp @) + 2<H790> awy80> = 4<H,ng, 8ww90>-

Next, we will compute d,,. ¢.

Differentiating both sides of (4.2.1) with respect to w, to get

(O, Ho(N)) 0 + Hyy (M) 8o p = O E(w)p + E(w) 0o, 0
= 2(ILyp, p)p + E(w)00u, -

Therefore,
[Ho(A) = E(w)]0, 0 = 2{ILyp, )@ — (O, Ho(A)) o = 2<<H790, o) — Hvso)-

Observe that ¥, = (Ilyp, p)p — Ilyp € (p)t, and [H,(A) — E(w)] is invertible in the
subspace {¢)* of I2(A), we get

Ouyip = 2(Ho(d) = B@)) ™ (M2, 0)p — Thygo). (4.2.6)
From (4.2.5) and (4.2.6), we obtain

P E(w) = 4T, (Ho(A) — Ew) ™ (e, 0)e — ) ).
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Thanks to (4.2.6), we have 2(Hw(A) - E(w))i1 ((Hygo, ©yp — Hygo) is orthogonal to . We

therefore infer that

02 B(w) = ~4( (Hu(h) = E)) y, 1),

Repeating this argument, it is not hard to prove that

—1
0205 B(w) = —4((Hu(A) = E(w)) 4y, v5)
for all v, 8. So, we have Lemma 4.2.1 proved. O

Assume that E(w) is an eigenvalue of H,(A) with A = [-L,L]. Recall that w; €
(g, Bo] for all j € Z. From Lemma 4.2.1, we have F(w) € [0,405p]. Denote by u := u(w)
the normalized eigenvector associated to E(w). We would like to prove a "lower bound" for
u in the sense that there exists a large subset J in A such that the components (u(k))res

of w can not be too small.

Lemma 4.2.2. Pick € (1/2,1). Then, there ezists a point ko in A and a positive constant
k depending only on «q, By such that

(k) +u(k+1) > e L'/
for all |k — ko| < kLP when L is large enough.

Proof of Lemma 4.2.2. We rewrite the eigenequation corresponding to the

eigenvector u and eigenvalue F/(w) at the point n by means of the transfer matrix

) _ (S e (i |
u(n) 1 0 u(n —1)

Now, let T'(n, E(w)) and v(n) denote the transfer matrix

wp +wp—1 — B(w) —wp_1

Wn Wn
1 0

and the column vector (u(n + 1),u(n))? respectively.

Then, for all n greater than m we have

v(n) =T(n,Ew))---T(n—m+1,Ew))v(m).
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It is easy to check that the transfer matrices are invertible. Moreover, since E(w) € [0, 4]
and 0 < a9 < w; < Po, they and their inverse matrices are uniformly bounded by a
constant C' > 1 depending only on ag and fy.
Thus,

lo()] < P ™lo(m)|| = e o (m)|| = e [o(m)|

for all n,m in A with n =logC > 0.
Assume that ||v(ko)|| is the maximum of ||v(n)||. Hence,
1
lo(ko)|| 2 —=

V2L

from the fact that ZjeA |lv(5)||?> = 2. Thus, for any & > 0, the following holds true

1
||U(k‘)|| > _€—n|k—ko| > 6—2577[/3

V2L
for |k — ko| < kL7 and L sufficiently large.
In other words, we have
w2 (k) + ud(k + 1) > e 4L’

1
for all |k — ko| < xLP. So, by choosing r = 3 we have Lemma 4.2.2 proved. O
n

The following lemma is the main ingredient of the proof of the decorrelation estimate as

well as the heart of the present chapter:

Lemma 4.2.3. Let E # E’' be two positive energies in the localized regime and 8 € (1/2,1).
Assume that A = A, =: [—L, L] is a large interval in Z. Pick c1,ca > 0 and denote by P*
the probability of the following event (called (*)):
there exist two simple eigenvalues of H,(\), say E(w), E'(w) such that |E(w)—E|+|E'(w)—
F'| < e L and

[Ve(e1 Bw) = 2B/ @)l < ere™”.

Then, there exists ¢ > 0 such that
IED* < 6—0L2’8
< :

Remark 4.2.4. There is a slightly difference between the above lemma and Lemma 2./
in [Klo11] where ¢y = co = 1. In fact, in the proof of Theorem 4.1.2, we will use the
above lemma with c1,co are respectively %, % which are two distinct, positive numbers.
This difference results from the lack of the mnormalization of |VE(w)||1 for our model.
Moreover, we will see in Remark 4.2.12 at the end of this section that, for the model

(4.1.1), if c1 = ca, P* is equal to O for all L large.
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We will skip for a moment the proof of Lemma 4.2.3 and recall how to use the above lemma
to complete the proof of Theorem 4.1.2. This part can be found in [Klo11|. We repeat it
here with tiny but necessary changes adapted for the model (4.1.1).

Proof of Theorem /.1.2. Recall that E, E’ are two positive, fixed energies and J;, = F +
L7Y-1,1] and J; = E' + L7'[-1,1]. One chooses L large enough such that min{E —
L~V B — L7} > min{E,E'}/2 > 0.

Let ¢L® <1 < LY/c with ¢ > 0. From the Minami estimate, one has

P(#{o(Hu(A)) N Jp} = 2 or #{o(Hu (M) N JL} = 2)

Aol lollso(s)
S ningp, 2 (A" CULY

where C' is a constant depending only on E, E’, By and p.
Hence, it is sufficient to prove that Py < C(1/L)?e(108 L)? where

Py :=P(#{o(Hu(A)) N T} = 1; #{o(Hu(A)) N T} =1). (4.2.7)

The crucial idea of proving decorrelation estimates in [Klol1] is to reduce the proof of
(4.2.7) to the proof of a similar estimate where A; is replaced by a much smaller cube, a
cube of side length of order log L. Precisely, one has (c.f. Lemma 2.1 and Lemma 2.2 in
[Klo11]):

Py < C(I/L)* + C(1/D)P,

where | = C log L and
Py i P(#o(Hu(Ap) N J2) > 1 and #o(Ha () N T > 1)

where J;, = E+ L™1(—2,2) and j;: =E +L71(-2,2).
To complete the proof of Theorem 4.1.2, one need show that

P, < C(1/L)%". (4.2.8)
Thanks to the Minami estimate and the following inequality (see Lemma 2.3 in [Klo11] for

a proof)
C

dz’st(E(w), a(Hy(A))\ E(w)) ’

A rera 1) ST
| Hessu(E@)llimn e [/

[Hessw(Ew))lliemn < (4.2.9)

one infers that
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Hence, for € € (4L~1,1), one has

P, < CelPL™! + P, (4.2.10)
where P, = P(Qq(€)) with
o(Hu(Ap) N Jp = {E(w)}
Qo) = {E(w)} = O'(Hw(Al)) N(E —Ce, E+ Ce)
o(Ho(AD) N T} = {E'(w)}
{E'(w)} = 0(Hy(A7)) N (B — Ce, E' + Ce)

Next, one puts A := e‘lNﬁ and defines, for 7,7’ € Az

Q7 () = Qole) N {w | [Ty (BEw), E'(@))] = A}

where J, v (E(w), E'(w)) is the Jacobian of the mapping
(wry, wyr) = (B(w), E'(w)).
On the one hand, P, can be dominated as follows:

<Y P () + P

YEY
where P, is the probability of the following event

D:={we Qle) ||y (Ew), E'(w))] < Aforall v,7 € As}.
On the other hand, from Lemma 2.6 in [Klo11], it is known that

P27 (¢)) < CLA™ for all 7,7' € Ay

Hence,
P, < CPL2A 4P, (4.2.11)

Choose € := L™'\73, (4.2.10) and (4.2.11) yield that
P, < (/L)% + P, (4.2.12)

Finally, we will use Lemma 4.2.3 to estimate P,.

For each w € D, we rewrite the Jacobian J, . (E(w), E'(w)) as follows:

o, E(w) 8., E(w)

Do E@LE@ = ") o, Bw)

1
_ EW)E'w) @wﬂwﬁ(w} B e EW)

Wyl

(4.2.13)

El(w)wvawwE’(w) E’(w)wyﬁw B (w)
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if E(w) and E'(w) are non-zero.
Note that, from (4.2.3), one has

1 B 1 , B
Z~mwvﬁva(w) = Z~ E,(w)wvawwE (w) = 1.
vEA; vEA;

Hence, one can apply Lemma 2.5 in [Klol1| to (4.2.13) and deduce that

1 1 P
IVo(gBw) = ZE @)l <e
for any 1/2 < 8/ < .
Thus, Lemma 4.2.3 yields that, for L sufficiently large,

—cl*?

P, < 1Pe = O(L™™). (4.2.14)

From (4.2.12) and (4.2.14), (4.2.8) follows and we have Theorem 4.1.2 proved. O

Before coming to the proof of Lemma 4.2.3, we state and prove here a short lemma which

will be used repeatedly in the rest of this section.

Lemma 4.2.5. Pick A € Mat,(R) and b € R™ such that ||b]| < coe L°/2 where co, L are

fized, positive constants. Assume that the following system of linear equations
Ax =10

has a solution u satisfying ||u|| > e=L°/4,
Then,
| det A| < co max{1, ||adj(A)|[}e L /4

where adj(A) is the adjugate (the transpose of the cofactor matriz) of A.
Proof of Lemma 4.2.5. Assume by contradiction that
| det A| > comax{1, |[adj(4)|[}e"="/* > 0.

Consequently, A is invertible and u = A~'b is the unique solution of the system Az = b.
We therefore infer that
max{1, |ladj(A)

1}
.
et Al 2]

[l < JATHHIBI =

ladj(A)[[f[bll <

| det A|

Hence,
| det A| < comax{1, |[adj(A)[|}e " /2eL"/* = ¢y max{1, |adj(A)||}e ="/

which is a contradiction. ]
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To complete the present section, we state here the proof of Lemma 4.2.3.

Proof of Lemma 4.2.3. Let u := u(w) and v := v(w) be normalized eigenvectors associated
to E(w) and E'(w). By Lemma 4.2.1, we have

VoE(w) = (2IMul?)._, and VB @) = (2[Lel?).
We introduce the linear operator T from [?(A) to [2(A) defined as follows
Tu(n) =u(n) —u(n+ 1)

where u = (u(n)), € I>(A). Recall that A = A, = Z/LZ, i.e. we use periodic boundary
conditions here.

Assume that {w;} e belongs to the event (*). We thus have

e > ||Vy(aBEw) — B W)lh = Y [(VerTu(n)? — (VezTv(n))?|
=Y [VeaTu(n) = VeTo(n)|lveTu(n) + e Tu(n)].

Hence, e 17 > > oo [ Tu(n) — cTw(n)||Tu(n) + cTv(n)| with ¢ = \/cz//c1 > 0.
Then, there exists a partition of A = {—L,..., L}, say P C A and Q@ C A such that
PUQ=APNQ=0and

— forn € P,|Tu(n) — cT'v(n)| < e L°/2

— forn e Q, |[Tu(n) + cT'v(n)| < e=L°/2
From now on, we put v(n) := cv(n). This abuse of notation changes nothing thanks to the
linearity of the operator T

Hence, we obtain that

u(n) ="Tov(n e*ﬁ/ itn
{T() To(n) +0(e~L7/2)  ifnePp, 42.15)

Tu(n) = —Tv(n) + O(e"/2) ifne Q.
From Lemma 4.2.2, there exists c3 > 0 depending only on «g, Sy and an interval J of the

length ¢3L? such that
fu(R)? + fu(k + D? > 2672/ (4.2.16)

for all k € J.
Now, we decompose
PNJ= U'Pj and ONJ = UQj (4.2.17)



42 CHAPTER 4. DECORRELATION ESTIMATE IN DIMENSION 1

where P; and Q; are intervals in Z.

We will divide the rest of the proof into some lemmata. First of all, in the Lemma 4.2.6,
we show a restriction on the length of each interval P; and Q; in Z.. We will make use of
this lemma later to prove a “reduction" lemma (Lemma 4.2.10). Next, In Lemma 4.2.8,
with any four consecutive points in .J, we explain how to form an inhomogeneous 10 x 10
system of linear equations from (4.2.15) and eigenequations for u and v. Finally, we show
some restrictions on {w;}jea in Lemma 4.2.11. Thanks to this lemma and Lemma 4.2.10,

Lemma 4.2.3 follows.

Lemma 4.2.6. Assume that {w;}jen belongs to the event (*) defined in Lemma 4.2.5:
H,(A) has two simple eigenvalues E(w), E'(w) such that |E(w) — E|+ |E'(w) — E'| < e L’

and

IVu(c1 B(w) = eaE' ()|l < cre™.

Denote by u,v normalized eigenvectors associated to E(w), E'(w) respectively and consider
the decomposition {P;, Q;} in (4.2.17). Then, any Pj or Q; can not contain more than

four points.

Proof of Lemma 4.2.6. Thanks to the equivalent role of P and Q, it is sufficient to prove
Lemma 4.2.6 for {P;};.

Assume by contradiction that there exists an interval P; contain at least five consecutive
points, say Pj ={n—2,n—1,n,n+1,n+2,...,m} with m > n+ 2.

First of all, thanks to (4.2.15), we have

Tu(n —2) = To(n —2) + O(e™*12),
Tu(n —1) = To(n — 1) + O(e™*12).
Tu(n) = To(n) + O(e X"/2), (4.2.18)
Tu(n +1) = To(n+ 1) + O(e /).
Tu(n +2) = Tv(n +2) + O(e ="/2).

Next, consider the triple of consecutive points {n —2,n —1,n} € P;. Using the eigenequa-
tions for u and v at the point (n—1) and take the hypothesis | E(w)— E|+|E'(w)—E'| < e~ L’

into account, we deduce
Euln—1) =wp—1Tu(n — 1) —wp—oTu(n — 2) + 0(6_L6/2), (4.2.19)

E'v(n—1) =w,1Tv(n — 1) —wp_oTv(n — 2) + O(e’LB/2). (4.2.20)
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Hence, (4.2.19), (4.2.20) and the first two equations in (4.2.18) yield
Bu(n —1) = E'v(n — 1) + O(e £"/2). (4.2.21)
Similarly, we have
Eu(n) = E'v(n) + O(e_Lﬂ/Q). (4.2.22)
Combining (4.2.21), (4.2.22) and the second equation in (4.2.18), we obtain

(1 — g)u(n) = (1 — §>u(n — 1)+ O(e*LB/Z)

which implies that
Tu(n —1) < Ce L2 (4.2.23)

where C' is a positive constant depending only on E, E’, ay and fy.

Repeating again the above argument for other triples of consecutive points in P;, we obtain
Tu(n) < Ce L/ (4.2.24)

and
Tu(n+1) < Ce /2 (4.2.25)
On the other hand, we have the following eigenequations for u at the point n and n + 1
Eu(n) = w,Tu(n) — wp_1Tu(n — 1) + O(e_LB/Q),
Eu(n+1) = w1 Tu(n + 1) — w,Tu(n) + O(e /?),

Hence, combining the above equations and (4.2.23)-(4.2.25), we infer that there exists a

positive constant C' being independent of L such that
[u(m)]? + |u(n + 1) < Ce L

which contradicts (4.2.16) if we choose L large enough.
Hence, an interval P; or Q; can not contain more than four points in Z and we have

Lemma 4.2.6 proved. O]

From the proof of Lemma 4.2.6, we reach to the following conclusion:

Remark 4.2.7. If two consecutive points ordered increasingly belong to some interval P;
(n—2,n—1 for instance), the value of u at the latter point (n—1 in this case) is proportional

to the value of v at that point (as in (4.2.21)) up to an exponentially small error. Moreover,
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if we have three consecutive points ordered increasingly in some interval P; (n—2,n—1,n),
the middle point (n—1) always satisfies an inequality of the form (4.2.23). Finally, if three
points n — 2,n — 1,n belong to some Q;, we will have almost the same conclusion except
that E' need replacing by —E' in (4.2.21) and (4.2.22).

Lemma 4.2.8. Let J be the subinterval of A where (4.2.16) holds and n—2,n—1,n,n+1
be four consecutive points in J. Assume the same hypotheses as in Lemma 4.2.6 and
put U := (u(n —2),...,u(n +2),v(n —2),...,v(n + 2))t. Then, from (}.2.15) and the
eigenequations for u and v, we can form a 10 x 10 system of linear equations which admits

U as one of its solutions.

Proof of Lemma /.2.8. From (4.2.15), for each of these four points, we have an equation

of the form
Tu(k) = £Tv(k) + O X"/?), k=n—2,n+1 (4.2.26)

where the choice of (+) or (—) sign depends on whether k belongs to P or Q. So, we have
4 (inhomogeneous) linear equations in hand.

On the other hand, we have 6 eigenequations of eigenvectors v and v at the points n — 1, n
and n + 1. Hence, apparently, we have 10 linear equations corresponding to 10 variables
{u(n —2),...;u(n+2),v(n —2),...,v(n+ 2)}. However, there is a couple of things here
which should be made clearer.

First of all, to form our systems of linear equations, we use the following three eigenequa-

tions w.r.t. u
Bu(k) = wpTu(k) — wy_1Tu(k — 1) + O(e " /?) (4.2.27)

where k =n —1,n+ 1.
Next, we consider the eigenequations of v at k=n—1,n+1

E'v(k) = wpTo(k) — wy_1To(k — 1) + O(e /%), (4.2.28)

Instead of using directly (4.2.28) for our 10 x 10 systems of linear equations, we substitute
(4.2.26) into the right hand side of (4.2.28) to get

E'v(k) = 2wy Tu(k) F wp_1Tulk — 1) + O(e ="/2) (4.2.29)

and (4.2.29) will be used for our 10 x 10 systems of linear equations.

In Lemma 4.2.11, we will write down these 10 x 10 systems of linear equations as follows:
The first four equations come from (4.2.26). Then, we write down the equations in (4.2.27)
and (4.2.29). The fifth equation is (4.2.27) and the sixth is (4.2.29) with & = n. The
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seventh is (4.2.27) and the eighth is (4.2.29) with & = n + 1. Lastly, (4.2.27) and (4.2.29)
with £ =n — 1 are the ninth and the tenth equation in turn.

Finally, we make an important remark in case there exists an interval P; or Q; contains at
least two consecutive points of these four points, says j — 1, j. According to Remark 4.2.7,

we have

v(j) = i%u(j) +0(e ) (4.2.30)

where (4.2.30) takes (+) sign iff j — 1 and j € P.
Whenever (4.2.30) holds true, we will use it to replace (4.2.29) w.r.t. k = j in our systems
of linear equations. This replacement simplifies these 10 x 10 systems of linear equations

and makes them easier to analyze. O]

Definition 4.2.9. A point n € J is an interior point of J if the interval [n — 2,n + 2]
belongs to J.

Let n —2,n — 1,n,n + 1 be interior points in J. We consider all possible 10 x 10 systems
of linear equations which we can get from these points as in Lemma 4.2.8. We have four
points, each of them can belong to P or Q. Hence, the number of choices for four points’
belonging to P or Q equals 2 = 16 which is also the total number of 10 x 10 systems
of linear equations obtained in Lemma 4.2.8. Furthermore, we have the following useful

observation:

Lemma 4.2.10. Assume the same hypotheses as in Lemma 4.2.6. Letn—2,n—1,n,n+1
be interior points in J and {P;, Q;} be the decomposition in (4.2.17). Then, we will only
need to analyze 10 x 10 systems of linear equations corresponding to the following four

cases:

First case: n—2,n—1,n€P; andn +1 € Q;,
(] { { O
n—2n—1 n n+1

Second case: n —2,n—1¢€ Qj andn,n+ 1€ Pj,
OO o @
n—2n—1 n n+1

Third case: n—2,n—1¢€ Qj, ne€Pj andn+1¢€ Qjy1,
O @ @D
n—2n—1 n n+1

Forth case: n —2¢€ Qj, n—1€Pj, n€ Qj1 andn+1¢€ Pj.
(®] { © [ J
n—2n—1 n n+1
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Proof of Lemma 4.2.10. As mentioned above, we have a total of 16 systems of linear equa-
tions to analyze. Thanks to the equivalent role of P and Q, we only have to consider a
half of them. Apart from four cases listed above, the other cases are:

Fifth case: Assume that all of these four points belong to some P;.
o @ @@
n—2n—1 n n+1
Hence, From Lemma 4.2.6, n 4+ 2 € Q;. We consider four points n — 1,n,n 4+ 1,7 + 2 and
come back to First case.

Sixth case: Suppose thatn —2€ Q;, n—1,n € Pj, andn+1¢c Qjiq.
O @ @O
n—2n—1 n n+1
We consider the point n+ 2. If n+4 2 belongs to Q,;11, we consider four points n —1,n,n+
1,742 and come back to Second case because of the equivalent role of P and Q. Otherwise,
n + 2 belongs to Pj1. In this case, we consider four points n —1,n,n + 1,7 + 2 and come
back to Third case.

Seventh case: Assume thatn —2€ Qj, n—1€ Pj andn,n+1¢€ Q; 1.
o ° OO
n—2n—1 n n+4+1
In this case, we consider four points n —3,n — 2,n — 1,n. If n — 3 also belongs to Q;,
we come back to Third case. Otherwise, we come back to Forth case on account of the
equivalent role of P and Q.

FEighth case:  Suppose thatn —2 € QQj andn —1,n,n+1 € P; for some j.
OTRR SRR Y
n—2n—1 n n+1
If n+2¢€ Qj41, we consider four points n —1,n,n+ 1,7+ 2 and come back to First case.
Otherwise, n + 2 still belongs to P;, hence n + 3 € Q; ;1 according to Lemma 4.2.6. On
the other hand, n + 3 still belongs to J since n + 1 is the interior point of J. Hence, we
consider four points n,n + 1,n + 2,n 4+ 3 and come back to First case.
To conclude, we only need to analyze 4 special cases. The other cases can be reduced to

those ones. O]

Now, we come to the final stage in the proof of Lemma 4.2.3 where we deduce the restric-

tions on 1.v.’s wj.

Lemma 4.2.11. Assume that hypotheses of Lemma /.2.6 hold. Let J be the interval
defined in (4.2.15) and n—2,n—1,n,n+1 be four interior points of J. Assume that these
four points correspond to one of the four cases listed in Lemma 4.2.10. Then, one of the

following restrictions on r.v.’s holds true
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E+E
(i) fun = ==| < CeTVR,
E'+E
(1) |wn—1 — I ‘<Oe—LB/8
E— E')?
(1i1) |wp—1wn ( 1 ) SCe—Lﬁ/4

Proof of Lemma 4.2.11. For each of four cases in Lemma 4.2.10, we consider the corre-
sponding system of linear equations formed in Lemma 4.2.8 and compute its determinant.
This yields some restrictions on r.v.’s.

Recall that U := (u(n —2),...,u(n+2),v(n —2),...,v(n+2))%.

First case: Assume that three points n —2,n — 1,n € Pj and the other onen+1 € Q.
Since n —2,n — 1,n € Pj, two equations in (4.2.29) associated to n — 1,n will be replaced
by two equations of the type (4.2.30) with (+) sign in our system. Hence, according to

Lemma 4.2.8, U satisfies the following system of linear equations:

AU = by (4.2.31)

where by = (b‘é)lgjglo with ||bp]| < e~L7/2 and Ay is the 10 x 10 matrix of the block form
(A}|A3) with

1 -1 0 0 0
0 1 -1 0 0
0 0 1 -1 0
0 0 1 -1
0 —Wp—1 Wn—1 t+w, — F —Wp, 0
A= o 0 £ 0 0
El
0 0 —Wn Wn +Wnt1 — F —wnt
0 0 Wn, Wn+1 — Wn —Wn+1
~Wp—2 Wp-2+wp_1—F —Wn—1 0 0
0 £ 0 0 0

El
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and

-1 1 0 0 0)
0 -1 1 0 0
0 0 -1 1 0
0 0 0 1 -1

2|00 0 0
0 0 -1 0 0
0 0 0 0 0
0 0 0 E 0
0 0 0 0 0
0 -1 0 0 0)

Let adj(Ap) be the adjugate of Ag. It is easy to see that
max{1, [ladj(Ao)||} < Mo

where M is a positive constant depending only on E, E’, ay, (.

Hence, thanks to Lemma 4.2.5, we have
| det Ag| < Moe™X7/4,

By an explicit computation given in Appendix A, we have

4F

E'+FE
| det Ag| = E]E — F'|wp—2wnt1

4

wn_

‘ < Mye L7/4,
Therefore, from the fact that E, £’ > 0 and w; > ap > 0, the following condition on w

holds true with L sufficiently large:

E+F
4

wn | <ot (1)

Second case: n—2,n—1¢€ Q;j andn,n+1€ P;.

In the present case, since n —2,n —1 € Q;, we use (4.2.30) with (-) sign w.r.t. n —1 to
replace the equation in (4.2.29) w.r.t. n — 1 for our system of linear equations. Besides,
since n,n + 1 € P;, the equation in (4.2.29) w.r.t. n+ 1 will be replaced by (4.2.30) with
(+) sign at n + 1.

Hence, according to Lemma 4.2.8, we have the following 10 x 10 system of linear equations:

AU = by (4.2.32)
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where by = (b])1<j<10, [|b1]| < e X7/2 and A, = (A}|A2) with
1 -1 0 0 0
0 1 —1 0 0
0 0 1 —1 0
0 0 0 1 —1
0 —Wn—1 Wn-1 +w, — F —Wp, 0
A% = 0 Wn—1 Wp — Wn—1 —Wn 0
0 0 —Wn wp +wnt1 — E —wp4
E
0 0 0 Vol 0
—Wp—2 Wp—2+twp_1—F —Wn—1 0 0
E
0 T 0 0 0
1 -1 0 0)
0o 1 -1 0
0 0 -1 0
0 0 0 -1 1
0 O 0 0 O
A% = ,
0O 0 —FE 0 O
0 0 0 0 O
0 0 0 —-10
0 0 0 0
\0 -1 0 0)
Again, by using Lemma 4.2.5, we infer that
| det Ay| < Mye 2°/4
where M, = Ml(E, E/,Ozo,ﬂ()) > 0.
Compute the determinant of A; (See Appendix A), we obtain
4E E - E')? Y.
|det A1| = Ewn_zwn_H Wn—1Wn, — %‘ < Me L /4.
Hence, take wj = ag > 0 and E, E' > 0 into account, we have
E— FE' 2
Wn—1Wn — %’ < Ce L/ (I1)

as L sufficiently large.
Third case: n—2,n—1€ Qj,ne€Pjandn+1¢c Qji1.
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According to Lemma 4.2.8, we have
AU = by
where ||ba|| < e~L7/2 and Ay = (AL|A3) is the 10 x 10 matrix defined by

1 -1 0 0 0
0 1 -1 0 0
0 0 1 -1 0
0 0 0 1 -1
. 0 —Wn_1 Wn—1+w, — F —Wp, 0
Ay = 0 Wh—1 Wy, — Wn—1 —Wwp, 0
0 0 —Wn wp +wnt1 — E —wn4
0 0 —Wn Wn — Wn+1 Wn+1
—Wp—2 Wp—2+wp_1—F —Wn—1 0 0
FE
0 B 0 0 0
and
(—4 10 0 0)
0 -1 1 0 O
0 0 1 -1 0
0 0 0 -1 1
0 0 0 0 O
A% = ,
0 0 —-F 0 0
0 0 0 0 O
0 0 0 —-E 0
0 0 0 0 0
0 -1 0 0 0f

Lemma 4.2.5 implies that | det Ag| < Mge_LB/4 for some My > 0.

Then, by an explicit computation, we obtain

E'+F

’ det A2| = 4E‘E — E'|wn_2 Wn41 |Wn — 1 ‘ < .7\4267[?/4
which yields that
E'+FE
iy — 1’ ‘<CE—U74 (I11)

as L — +o0.
Forth case: Suppose thatn —2 € Qj, n—1€Pj, n€ Qjy1 andn+1¢€ Pji.

In this case, U satisfies the following system of linear equations:

AU = by
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where ||bg]| < e~ L7/2 and A3 = (AL|A2) is the 10 x 10 matrix defined by

1 -1 0 0 0
0 1 -1 0 0
0 0 1 —1 0
0 0 0 1 —1
Al o 0 —Wn-1 Wn—1+wn — E —Wn 0
5 0 —Wn—1 Wp—1 — Wn Wn, 0
0 0 —Wn wp +wnt1 — E —wp4
0 0 Wn Wn41 — Wp —Wn+1
—Wp—2 Wp—2+wp_1—F —Wn—1 0 0
Wn—2 Wp—1 — Wp—2 —Wn—1 0 0
and
(1 -1 0 0
0 -1 1 0
0 0 1 -1 0
0 0 0 -1 1
0 0 0 0 0
Ag =
0o 0 —F 0
0 0 0 0
0 0 0 —E 0
0 0 0 0 O
\0 -E' 0 0 0

Consequently, |det Ag| < Mse=L°/4 thanks to Lemma 4.2.5.

We compute
| det As| = EE'wn_s X wps1 X ‘4%_1 _(E'+ E)‘ x ‘4wn —(E+E).

Hence, at least one of the two following conditions on w must be satisfied:

EF'+FE
~Nwps — I ‘ <Ce L8 (1V)
/
— wn—E B gce*Lﬁ/&
From (/) — (IV), Lemma 4.2.11 follows. O

Lemmata 4.2.10 and 4.2.11 yield that if we consider any 4 consecutive interior points of .J,
we obtain at least one condition of the types (i) — (iii). Consequently, the random variables
{w;j}jen must satisfy at least |J|/8 = cL” conditions of the types (i) — (iii). From the

fact that wy, are i.i.d. and possess a bounded density, the conditions (i) — (¢i7) imply that
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the event (*) defined in Lemma 4.2.3 can occur for a given partition P and Q with a

probability at most e=L” for some ¢ > 0. Hence,
_ 23 _ =128 . ~
P < 2le ™ L e with0 < d< ¢

as the number of partitions is bounded by 2 and 8 > 1/2.
We thus have Lemma 4.2.3 proved. O]

Remark 4.2.12. Thanks to the equality (4.2.3), it is not hard to derive the following
estimate for the model (4.1.1),

AT < IVU(E@) - E@)] < (B - E@)l: (42:33)

provided that |E(w) — E| + |E'(w) — F'| < e L’ and AE = |E — E'|.

The above estimate reads that the I' —distance of the gradients of E(w) and E'(w) is bounded
from below by a positive term that is polynomially small w.r.t. the length of the interval A.
Now, let ¢c; = co 1n Lemma 4.2.5.

Under the hypotheses in Lemma 4.2.3, the estimate (4.2.33) implies that, for any {w;} ea

belonging to the event (*), we have
AFE 8
A2 < cemelM
25, Al

which is impossible when |A| sufficiently large. Hence, for ¢y = ca, P* is equal to O .
Finally, we would like to note that an estimate like (4.2.33) for the discrete Anderson
model holds true for two distinct energies sufficiently far apart from each other. This kind

of estimate enable us to prove the decorrelation estimate for the discrete Anderson model
in any dimension (c.f. Lemma 2.4 in [Klo11]). But it is not the case for the model (4.1.1).

4.3 Comment on the lower bound of the r.v.’s

In this section, we want to discuss how to relax the hypothesis on the lower bound of
random variables {w;};ez.
Assume that all r.v.’s w; are only non-negative instead of being bounded from below by
a positive constant. Precisely, assume that w; € [0, 8p] Vj € Z. In order to carry out our
proof, we have to assume an extra condition on the distribution function F'(¢) of random

variables {w;}; : for some 1 > 0, we have

F(t) =Pw; <t)<e (4.3.1)
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for all small positive ¢, where n is some positive number.
The condition (4.3.1) means that the distribution F'(¢) is exponentially small in a neigh-
borhood of 0.

Now, let A = [—L, L] be an interval in Z, we have

(log L)®

P(Fw, < e~ (08 L)" with vyeA) K (2L +1)e (4.3.2)

where ¢ is a fixed number in (0,1). Note that the right hand side of (4.3.2) converges to 0
as L — oo.
_pelies 1)°

Hence, with a probability greater than or equal to 1 — (2L + 1)e™" ,

we have

w; > e (080" 5 0 e [—L, ). (4.3.3)

We will use (7.1.11) to prove the following "lower bound" for normalized eigenvectors of
Hy(A).

Lemma 4.3.1. Pick 8 € (1/2,1) and a fived number ¢ € (0, 3). Let A = [—L, L] be a large
cube in 7. Suppose that E(w) is an eigenvalue of Hy,(A) and u := u(w) is its associated
normalized eigenvector.

_e(logm‘s

Then, with a probability greater than or equal to 1 — (2L + 1)e ,
there exists a point ko in A such that

u2(k) +u(k+1) > e L'/
for all |k — ko| < LP~¢ as L large enough.

Proof of Lemma 4.5.1. Consider {w;};en such that (4.3.3) holds true. Using the same

notations and proceed as in Lemma 4.2.2, for n,m € A, we have
v(n) =T(n, Ew))---T(n—m+ 1, E(w))v(m)

where T'(n, F(w)) and v(n) are the transfer matrix and column vector defined in the proof
of Lemma 4.2.2. Thanks to (4.3.3), the transfer matrices T'(n, E(w)) are well defined and

c(log L)’ where

invertible. Moreover, they and their inverse matrices are bounded by C7, :=e
¢ > 0 depends only on fj.

Thus,
lo()|| < CI " flo(m)|| = ecUes DIl |1y ()| (4.3.4)
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where n,m € A.

Assume that ||v(ko)l| is the maximum of ||v(n)||. Hence,

[v(ko) (4.3.5)

1
> _ -
H_\/ﬁ

as u is a normalized vector.
Pick x > 0 a fixed number and consider integers k such that |k —kq| < ~L°~¢. From (4.3.4)
and (4.3.5), we have the following inequality

L c(log L)® [k—ko L ex(logL)’LF~< < —kLP
||U(k3)” > e c(log of > e—cr(log > e K
V2L V2L

when L is sufficiently large.

Hence, by choosing x = 1/4, we have
W2(k) + 1tk +1) > e L2
which completes the Lemma 4.3.1. O

Roughly speaking, we obtained almost the same "lower bound" for the normalized eigen-
vectors of finite volume operators, but with a good probability instead of the probability
1 as in Lemma 4.2.2.
Now, let 8 be a fixed number in the interval (1/2,1).
One the one hand, thanks to Lemma 4.3.1, the argument in proof of Theorem 4.2.3 still
works out. In deed, in this case, we can proceed as in the proof of Lemma 4.2.3 to obtain
at least ¢LP~€ restrictions on r.v.’s w. Hence, the upper bound for the probability P* in
Lemma 4.2.3 is now

B .= 2L(6—ELB)CL‘9’€ — oL—cL?°
If we choose € in Lemma 4.3.1 small enough such that 28 — e > 1, the upper bound B is
exponentially small w.r.t. L. Hence, the Lemma 4.2.3 still holds true.
On the other hand, we observe that the upper bound of the probability that (4.3.3) fails,
the term (2L + 1)6_776(1()“)(s =0 (%) as L large.
Hence, we obtain again the decorrelation estimate. In other words, Theorem 4.1.2 and
Theorem 4.1.3 still hold true in this case.

4.4 More than two distinct energies

In this section, we would like to show that, following an argument in [Klo11|, we can
use Theorem 4.1.2 to prove the asymptotic independence for any fixed number of point

processes.
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Theorem 4.4.1. For a fized number n = 2, consider a finite sequence of fized, positive
energies { Ei}1<i<n in the localized regime such that v(E;) > 0 for all 1 <i < n.
Then, as |A| — +o00, n point processes Z(§, B, w, A) defined as in (4.1.3) converge weakly

to n independent Poisson processes.

Proof of Theorem 4.4.1. We will prove in detail the case of n = 3 with three distinct,
positive energies F, E', E".

Consider non-empty compact intervals (Uj)1<j<J, (U;)1<j<J/7(UJ/-/)1<j<J// in R and integers
(ki <<t (k;-)lgjgy, (k;’)lgngN as in Theorem 4.1.3 i.e. for k # j, U;NUy, = 0, UJ/ﬂU/{g =10
and UJ{’ nUl =0.

Using notations in [Klo11], one picks L and [ such that (2L + 1) = (20 + 1)(2{' + 1) where
cL® <1< L%/ ¢ for some o € (0,1) and ¢ > 0. Then, one decomposes

A= =L = | )

[y|<l

where Aj(y) := (21 + 1)y + A;.
Next, for A € A, U C R and E > 0, one defines the following Bernoulli r.v.

1 if H,(A’) has at least one eigenvalue
X(BE,UAN) = in E + (v(E)|A|)"'U, (4.4.1)

0 otherwise

and put X(E,U,l) = ZM@, X(E,U,A\i(7y)) where (20 + 1)(20" + 1) = (2L + 1) with
cL* <1< LY e

First of all, [Lemma 3.2, [Klo11]] is the first ingredient of the proof which tell us that we can
actually reduce our problem to consider eigenvalues of finite-volume operators restricted
on much smaller intervals. This lemma is still true in the n-energy case for all n > 2.
Then, to complete the proof of the stochastic independence w.r.t. three processes, one only

need show that the quantity

S(B, UL =k, ....S(E,Uyl) =k
Pl {w: S(E UL =K, ... S(EU.I)=F, (4.4.2)
S(E", UL L) =K . S(E U, 1) = kY,
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should be approximated by the product
S(E, U )= Kk S(EL UL = K
P w; : f x P w; : :
Y(E,Uspl)= ky S(EN UL = K,
S(E" UL D) = kY

E(EN, U{;”’ l) - kf}//

as L goes to infinity. Indeed, if the above statement is proved, Theorem 4.1.1 and Lemma
3.2 in |[Klo11]| yield immediately Theorem 4.4.1.

By a standard criterion of the convergence of point processes (c.f. e.g. Theorem 11.1.VIII,
[DVJ08|), the above statement holds true if the following quantity vanishes for all real

numbers ¢;, ¢, 7, when L goes to infinity:
E (6 S S UL~ S U ) - zj,’/_lt;c,z(E",U;;,,z)) B
E (e— S S(E, U],z)) B ( Sl (B UL )) E (6— Zj////zlt;’//E(E",UJ'-%l)) .

From the fact that {A(7)}},<; are pairwise disjoint intervals, operators { Hy, (A(7))}y<r

are independent operator-valued r.v.’s. We thus have

E(e—zj1 SEBUD=X0) 8 (B U ) ij/;lt;-’m(E",U;mz))

=K H o~ 22 X (BU; M () =325t X (B UL M (7)) =32 ot X (B UM (7))
IyI<V
_ H ]E’e—Zjth(E,Uj,Az(v))—Zj/t}/X(E’vUJ’-/,Az(v))—Zju i X (B Uji Au(y) |

Iy I<t

Our goal is to approximate terms of the form

! 1 7"
E (e— ST X (BU; M ()~ X0 X (B U Au(y) - S tqu(E”,U;?qu(v)))

by the product

J! J"
HEe—t X E U],Al H]Ee J/X E U /7Al HEe ]//X ’7U;;/7Al(’y))

J J'
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as L large enough with the remark that these r.v.’s are not independent.
To illustrate our computation for that, we will consider just three arbitrary Bernoulli r.v.’s
X; = X(E;,U;, \'), i € {1,2,3} and compute explicitly ]E(GZ?:l @ Xay,

Lemma 4.4.2. Let E1, Fo, E5 be three positive energies in the localized regime. Pick three
non-empty compact intervals {U;},_13 in R such that if E; = E; withi # j, U; and U; are
chosen to be disjoint sets. Assume that A’ is a sub-interval of A = [—L, L] such that |\'| =
2041 = O(L%) for some « € (0,1). Consider three Bernoulli r.v.’s X; := X (E;,U;, \)
defined as in (4.4.1), we have

E(eXim @iy = H E(e“X) + 0 ((1/L)*+7) (4.4.3)

for any 0 € (0,1) as L large enough .

Proof of Lemma /4.4.2. Put A := ]E(eZ?:laiXi), we have
’ Xi=1
A=P(X1=X2=X3=0)+ ) %P o
(X1 =X = X3 >§:j (x-ow%@)

Xi=X;=1
+ et 4 eXiap X;=1})
Z ( XkOk#Z]> ﬂ{ D

1<J
First of all, we rewrite

3
1
P(X;=Xo=X3=0)=1-— Z < 0\7;%)

e 5 ) e

1<J
and obtain that

3
i XZ:L
A=1+) (e 1)1@( onvj#)

=1

Xi=X;=1 -
+ aita; _ 1\P tT T 4 Z?:lai—lp X, =1}).
D (e ) ( XkO;k;éi,]) (e ) <Q{ )

i<j
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to get

’ X=X, =1
A=1+ “—P(X; =1)+ “— e —DP| " T
;«e JP(X; =1) Z( (e —1) (mwwg)

3 3
n (@flaz —1- (e 1>> P()(Xi=1).

=1

Xi=X,=1
Using a similar expansion for all terms of the form P ! S
Xp=0 k 7é 2

we obtain the following formula

3
A=14) (e = DP(X; =1)+ Y (" = 1)(e™ = DP(X; = X; = 1)
, =1 ) 1<j
+ e = DP(){xi =1}). (4.4.4)
=1 =1

On the other hand, from the observation that
Ee®% =1+ (e% — 1)P(X; = 1) Vj = {1,2,3},

we multiply the three equalities above to get

3 3
JTTECE X ) =1+ (e - DPX; = 1)
=1 1=1
3
+) (e = 1)(ev — DP(X; = DY, = 1) + [ [ (e = DP(X; = 1), (4.4.5)

i<j i=1



4.4. MORE THAN TWO DISTINCT ENERGIES

29

Hence, thanks to (4.4.4) and (4.4.5), we have

5(o550) - [

Z(e“i - -1 PX;=X;=1) -P(X; =1)P(X; =1)]
3

3 3
+ e =) [P(ﬂ{xj =11 - [[Px; =
j=1 j=1

=1
Theorem 4.1.2 and Theorem 3.1.1 yield, for any 6 € (0, 1),

P(X; = X; =1)+P(X; = D)P(X; = 1)
< C(/L)* (M) 1 1) < o(1/L)

and

3
P(({X: = 1}) + P(X) = DP(Xp = 1)P(X3 = 1)

<_C(l/L)2( Ues )" 4 (1/1)) < CU/L)

(4.4.6)

(4.4.7)

(4.4.8)

with L large enough. Note that C' is a positive constant depending only on {Ei}?:;l and

{Uity
From (4.4.6)-(4.4.8), Lemma 4.4.2 follows.

]

It is easy to see that the computation in Lemma 4.4.2 can apply to any finite number of

Bernoulli r.v.’s satisfying the hypotheses in Lemma 4.4.2. Hence, for each |y| < I, we have

]E (6_ Zj tj (EvUJ'?Al (’7))_Zj’ tj/X(E/aUJ/'/ 7Al(7))_2j” tj/’X(E”’UJl';/vAl (7)))

J"
= HEe S X(EU; A (y HEe 7 E U’,,Al HEG J”X(E// U/;/7Al( )

J"
x <1 +0(/L)"),

On the other hand, we also have similar formulas for [Ke™ 2t X (E ’Uj’A’(W)),
Fe~ 2 ty X(ELULM(D)) qnd Fe— 22t X (B U A(v))

We thus have
E (e_ >0 X (EU M ()= 2250 Uy X (B UL Ai(7) =32 t}'//X(E”,Uj-?/,Az(W)))

— 7Z'th(E7Uj7Al(7)) 72" t/'/X(ElvUI'UAl(’Y)) 723‘” t;'l”X(ENaUJ/';/:Al(’Y))
E@ J Ee 7 J Ee

< (L+0(/L)").
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We have an observation that |y| < I’ where ' = O(L/l). Hence, by multiplying all the

above equalities side by side over |y| < 1’, we obtain that:

! "
E <e— S GR(BU - S (E U )~ t;’,,E(E”,UjuJ))

is equal to the product of

E (e_ Z;-]:1 tjE(E,Uj,l)> E (e_ Z;f//:l t;,E(E’7Uj/7l)) E (e_ Zj,///zlt;',”E(E”»Uj"’l))

and an error term of the form (1 + z'*%)V/* with z = O(l/L).
Note that the above error term tends to 1 as L goes to infinity. Hence, the stochastic
independence for three point processes w.r.t. three positive, distinct energies is proved.

Finally, it is not hard to see that we can adapt this proof for n—energy case with any
n > 2. ]

4.5 An alternative proof of decorrelation estimates for
1D discrete Anderson model

In dimension 1, the discrete Anderson model can be defined as follows: for u € (*(Z),

set

(HAu)(n) = u(n — 1) + u(n + 1) + wpu(n) (4.5.1)

where w := {wy, }nez are i.i.d. random variables (r.v.’s for short) with a bounded, compactly
supported density p.

As mentioned in Section 4.1, the decorrelation estimate for the 1D discrete Anderson model
was settled in [Klo11] and that proof can not be applied to the lattice Hamiltonian with
off-diagonal disorder, the model (2.1.3). So, a new approach for proving decorrelation
estimates for (2.1.3) is necessary and its essence is presented in Lemma 4.2.3 of Section
4.2.

Does the above-mentioned approach also works on the 1D discrete Anderson model?

To answer this question, it suffices to check if the proof of Lemma 4.2.3 with ¢; = co = 1 still

holds or not for the 1D discrete Anderson model. Fortunately, the answer is affirmative:

Lemma 4.5.1. Let E # E’' be two positive energies in the localized regime and 5 € (1/2,1).
Assume that A = Ap =: [—L, L] is a large interval in Z. Denote by P* the probability of
the following event (called (*)):
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There exists two simple eigenvalues of Hy(A), say F(w), E'(w) such that |E(w) — E| +
|E'(w) — B'| < e and
5

IVo(Ew) = E'w))lh <e .

Then, there exists ¢ > 0 such that
IP)* < e—cLQﬂ
\ .

Proof of Lemma 4.5.1. Proceed as in the proof of Lemma 4.2.3, let u := u(w) and v :=
v(w) be normalized eigenvectors associated to eigenvalues E(w) and E'(w) of HA(A) with
A:=[-L,L].
It is easy to check that

D, E(w) = |u(n)|? for all n € A.

Under the assumption of Lemma 4.2.3 with ¢; = ¢ =1, i.e.,

B

IV(EW) = E'@)lh = 100, Ew) = 0,, E'(w)| < e,
neA
there exists a decomposition of A into P and Q such that PN Q = 0 and
— forn e P, |u(n) —v(n)| < e=L°/2,
— forn e Q, |u(n) +v(n)| < L2
Besides, when we use again transfer matrices associated to the 1D Anderson model, we

obtain the same lower bound for normalized eigenvectors of HA(A) i.e., there exists a
subinterval .J of the length O(L?) of A such that

u(k)? + [u(k + 1)2 > 2¢L°/3 (4.5.2)
for all £ € J. Then, we decompose
PNJ= UP]’ and 9N J = UQ]' (4.5.3)

where P; and Q; are intervals in Z.
As in the case of (2.1.3), we can easily show a restriction on length of the intervals

P; and Q;. To be precise, any P; or P; can not contain more than 3 points.

Lemma 4.5.2. Let E # E’' be two positive energies in the localized regime and 5 € (1/2,1).
Assume that A = A =: [—L, L] is a large interval in 7Z.
Pick c1,co > 0 and denote by P* the probability of the following event (called (*)):
There exists two simple eigenvalues of Hy,(A), say E(w), E'(w) such that |E(w) — E| +
|F'(w) — F'| < e L’ and

IVe(B(w) = E'(@)]1 < e
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Denote by u,v normalized eigenvectors associated to E(w), E'(w) respectively and consider
the decomposition {P;, Q;} in (4.5.3). Then, any Pj or Q; can not contain more than

three points.

Proof of Lemma 4.5.2. Because of the equivalent role of P and O, it suffices to prove the
present lemma for {P;}. Assume by contradiction that there exist four consecutive points

in J belonging to P;, say n — 2,n — 1,n,n + 1. The lower bound (4.5.2) implies that
lu(n — 12 + [u(n)|? > 2¢7 273,

W.o.l.g., we assume that |u(n)| > e=L7/6. Let’s consider three points n—1,n,n+1. Then,

eigenequations for v and v at n read that
w(n — 1) +u(n + 1) + (wn — B)u(n) = O(e L2, (4.5.4)

v(n—1)+v(n+1) + (wy — E'v(n) = 0(eL/2). (4.5.5)

Since {n — 1,n,n + 1} belongs to P;, (4.5.5) can be rewritten as
w(n —1) +un + 1) + (wp — ENu(n) = O(e L2, (4.5.6)
Hence, (4.5.6) and (4.5.4) yield that
E — E'|lu(n)] < Ce /2. (4.5.7)

However, when L large enough, the above inequality contradicts the assumption that

lu(n)| > e~L°/6. Hence, any P; or Q; can not contain more than three points. O

Remark 4.5.3. From (4.5.7), we observe that the situation where three points in the same
interval Pj and the absolute value of u at the middle point of these three points is not too
small can not happen either. In other words, under some additional assumption on values

of eigenvectors u, Pj even can not contain more than two points.

Lemma 4.5.4. Assume the same hypotheses in Lemma 4.5.2. In addition, assume that

there exist four points in J, says {n —2,n — 1,n,n + 1}, such that n —2,n — 1 € P;,
® @ O o

nn+1eQ; n—2n—1 1T n+1

Then, |E — E'| = 2 and we have at least one of following restrictions on random

variables {w;}jen

(I) [(wn+1 = E)(wni1 — E+1) —1] < CecL?/100,
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(II) |wn — E + 1| < CecL?/100
Proof of Lemma 4.5.4. We write down the eigenequations of v and v at point n — 1:
u(n = 2) + u(n) + (w1 — B)u(n — 1) = O(e L"/2), (4.5.8)
v(n —2) +v(n) + (wno1 — ENo(n — 1) = 0(e /). (4.5.9)
Since the hypotheses on u(j) and v(j), 7 =n — 2,n and (4.5.9), we have
u(n —2) —u(n) + (wp—1 — ENu(n — 1) = O(e_LB/Q). (4.5.10)
Combining (4.5.8) with (4.5.10), we infer that

u(n) + 2 2_ Eu(n —1) = O(e*Lﬁ/Q). (4.5.11)

Repeating the above argument for eigenequations of u,v at n, we obtain

E' - FE

;—uln) = O(e L7/2), (4.5.12)

u(n —1) +

Combining (4.5.11), (4.5.12) with the fact that |u(n — 1)|* + |u(n)|? > e L7/3 we infer
that |E — E'| = 2. To deduce some restrictions on random variables {w;};ea, we follow
the strategy in Lemma 4.2.8 to make a square system of linear equations from these four
points.

W.lo.g., let’s assume that £ — E' = 2.

First of all, we use (4.5.8), the eigenequation of u at n—1, and (4.5.11), the relation between
u(n) and u(n — 1), to form the first and second linear equation in our square system.
Then, we use (4.5.4), the eigenequation of u at n as the third linear equation.

Finally, consider the eigenequations of v and v at the point n + 1 which can be written as
u(n) +u(n +2) + (W1 — B)u(n +1) = O(eL°/2), (4.5.13)

—u(n) £u(n +2) — (Wps1 — Eu(n + 1) = O(e L12). (4.5.14)

To sum up, we obtain a 5 x 5 inhomogeneous system of linear equations

AU =b
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where U := (u(n —2),u(n —1),...,u(n+2)), b is a small vector in norm and A is the

following 5 x 5 matrix

1 w,1—F 1 0
0 —1 1 0 0
A = (aij)i<ij<s = 0 1 wp — F 1 0
0 0 1 wnst1 — B 1
0 1 E—wpy —2 +1

Applying Lemma 4.2.5 to the system AU = b, we infer that det A is exponentially small.

By an explicit computation, we obtain that

either
|det A| =2 |(wp, — B+ 1)(wp41 —E+1)—1| < Ce_CLﬂ/loo (1)
when as; = 1,
or
|det A| = 2|w, — E+ 1| < Cle—cL”/100 (1)
when as; = —1. =

Now, let’s consider four arbitrarily consecutive points in J, say n — 2,n — 1,n,n + 1.
The lower bound (4.5.2) yields that at least one of two numbers |u(n — 1)| and |u(n)| must
be greater than e~L"/6. Let’s assume that |u(n — 1)| is the one and we will see what can

be derived from three points n —2,n — 1, n.

Lemma 4.5.5. Assume the same hypotheses as in Lemma 4.5.2. Let n —2,n — 1,n be
three points in J such that |u(n —1)| > e L°/6,
Then, random variables {w;}jen satisfy at least one of conditions (1), (1) in Lemma 4.5./

or the following condition

E+ E
(117) +

8
Wn—1 — < Ce L /3.

Proof. Each point n — 2,n — 1,n can belong to either P or Q. So we have 2% = 8 con-
figurations for these points. By the equivalent role of P and O, we only need to consider
following 4 configurations for these three points:

First case: n—2¢e€Pj,n—1€ Q;, ne Pjand |u(n—1)] > e~L7/6
® O @
n—2p—-1 N
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Applying the eigenequation for v and v at n — 1, we have
u(n —2) + u(n) + (w1 — E)u(n — 1) = O(e £'/2) (4.5.15)

and
v(n —2) +v(n) + (wno1 — ENv(n — 1) = O(e /2. (4.5.16)

In the present case, (4.5.16) can be rewritten as
w(n —2) +u(n) — (w1 — Eu(n — 1) = 0(e"/2). (4.5.17)

Substitute (4.5.17) into (4.5.15), we infer that

(wn_l _E —; El) u(n —1) = O(e_Lﬁ/Q).

_L5/6

Combining the above inequality and |u(n — 1)| > e , we deduce that

E+E
TR <o, (4.5.18)

Wn—1 —

Second case: n —2,n—1€ P;j, n€ Q; and |u(n —1)| > e L7/6
° ° o
n—2 n-1 n
Let’s take a look at the point n+ 1. If n+1 € Q, Lemma 4.5.4 implies the restrictions
of types (I)-(II) for (wj);.

Now, assume that n +1 € Pj41.
® @O @

n—2n—1 " n+1

In the present case, (4.5.8) and (4.5.9), the eigenequations of u,v at n — 1, can be

rewritten as
u(n — 2) + u(n) + (wn — E)u(n — 1) = 0(eL"/2), (4.5.19)

u(n —2) —u(n) + (wp, — ENu(n — 1) = O(e_LB/Q). (4.5.20)
Take (4.5.19) minus (4.5.20) to get

E' — FE

u(n) + u(n—1) = O(e_LB/Q). (4.5.21)

Similarly, using (4.5.15), (4.5.16) and eigenequations of u,v at n, we infer that

(wn _E +2 E/> u(n) = O(e= /). (4.5.22)
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Substitute (4.5.22) into (4.5.21) and use the hypothesis |u(n — 1)| > e=L°/6 we have

E+FE

|E— E| <Cce V', (IT1)

Wn_

Third case: n—2,n—1,n € P;
° ° )
n—2 np—-1 n
Then, the point n + 1 must belong to some Q;.
If [u(n)| > 6*L6/6, we consider points {n — 1,n,n + 1} and come back to Second case.
Otherwise, |u(n)| < e~L7/6 which yields lu(n + 1)] > e~L°/6. Let’s consider the point
n+2. If n+2 € Pj41, we consider the points {n,n+1,n+2} and come back to First case.
Otherwise, n+2 € Q;. Then, we can apply Lemma 4.5.4 to four points {n—1,n,n+1,n+2}
and obtain restrictions of types (I)-(II) for random variables.
Note that we need not use any conditions on values of u in this case.
Last case: n—2¢€ Qj, n—1,n € Pjy1
o ° °
n—2 n-1 n
Consider the point n+1. If n+1 € P, we consider the triple {n—1,n,n+ 1} and come
back to Third case. Otherwise, n+1 € Q. Hence, if |u(n)| > e~L°/6 we consider the triple
{n —1,n,n + 1} and come back to Second case. Now, let’s assume that |u(n)| < e=L°/6
Hence, |u(n+1)| > e~L°/6. Let’s take a look at the point n+2. If n+2 € P, we consider
{n,n + 1,n + 2} and come back to First case. Otherwise, n + 2 € Q and Lemma 4.5.4

yields restrictions on random variables. O]

From Lemmata 4.5.4 and 4.5.5, we see that if we consider any 6 consecutive points in
J, we obtain at least one condition of types (I)-(III). Consequently, the random variables
{w;}jen must satisfy at least |.J|/6 = cL” conditions of types (I)-(IIT). From the fact that
wy, are i.i.d. and possess a bounded density, (I)-(III) imply that the event (*) defined in
Lemma 4.2.3 can occur for a given partition P and Q with a probability at most e—eL”

for some ¢ > 0. Hence,
_o[28 728, ~
P <2k " L e with0 << e

as the number of partitions is bounded by 2% and 5 > 1/2.
We thus have Lemma 4.5.1 proved. O
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4.6 A little bit more about local level statistics

In Theorem 4.1.1 or 4.1.3, to get Poissonian statistics near an energy FE, we always
assume that the value of the density of states at this energy is positive. In other words, we
study local level statistics in the bulk of spectrum. Recently, Germinet and Klopp prove
in [GK11a| enhanced Wegner and Minami estimates in the strong dynamical localization
regime Ygpp, for discrete Anderson model which allows them to weaken the hypothesis
v(E) > 0 and study the spectral statistics near edges of spectrum for the same operator
in dimension 1.

The difference in their new Wegner and Minami type estimates is the replacement of

the length of interval I by the quantity N(/) as long as N(I) is not too small:

Theorem 4.6.1. [Theorem 2.1, [GK11af] Fiz & € (0,1). There exists constants ¢,C such
that for L > 1 the following holds

1. Let I C Ygpr, be a compact interval. Then
[Etrl; (Hu(A) — N(I)|AD| < Cexp(~cLS),
As a consequence, if N(I) > Cexp(—cLf), we get the Wegner estimate:
E (trl; (Hy)) < 2N(I)[A].
2. If N(I) > Cexp(—cL®), we get the Minami estimate
E [tr1; (Hy) (trlg (Hy) — 1)] < 2N(1)I]|A]%.

Thanks to Theorem 4.6.1, for the d-dimension Anderson model, they can prove Poisso-

nian statistics near an energy F € Ygpr, under the assumption
IN(E +¢) — N(E)| > ¢ ¥l "for ¢ small enough (4.6.1)

where p € (0,1/d).

Note that the above assumption is satisfied whenever v(E) > 0.

It is not hard to figure out that, by proceeding as in the proof of [Theorem 2.1, [GK11al|,
we can prove enhanced Wegner and Minami estimates for the model (4.1.1) wherever the
"usual" Wegner holds i.e., we have enhanced Wegner and Minami estimates everywhere in
the almost sure spectrum except at the energy 0.

On the other hand, in dimension 1, the Anderson localization appears everywhere in the
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spectrum of (4.1.1) and the strong dynamical localization regime Ygpr, coincides with the
almost sure spectrum.

Hence, we have the same Poissonian statistics and asymptotic independence as in Theorem
4.1.1 and Theorem 4.1.3 for (4.1.1) in dimension 1 but under a weaker assumption, the
hypothesis (4.6.1).

However, not as for the discrete Anderson model in dimension 1, we can not obtain the
spectral statistics at the bottom of spectrum 0 for the model (4.1.1) since the corresponding
Wegner estimate does not hold at 0 (See Theorem 3.1.1, Chapter 3).
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In this chapter, we would like to remind readers of some recent results obtained by
[Klo|Klopp on resonances of a 1D discrete, truncated periodic Schrédinger operator.
Let V be a periodic potential of period p and —A be the (negative) discrete Laplacian on
12(Z). We define 1D Schrodinger operators H% := —A + V acting on [>(Z):

(HZu)(n) = (A +V)u) (n) = u(n — 1) + u(n + 1) + V(n)u(n), ¥n € Z (5.0.1)

and HY := —A + V acting on [2(N) with Dirichlet boundary condition (b.c.) at 0.
Denote by Y7 the spectrum of H%Z and Xy the spectrum of HYN. One has the following
description for the spectra of H® where o € {N,Z}:

e Y is the union of disjoint intervals; the spectrum of H? is purely absolutely con-
tinuous (a.c.) and the spectral resolution can be obtained via the Bloch-Floquet
decomposition (see [vM76] for more details).

o Yy = Yz U {v;}, where ¥z is the a.c. spectrum of HY and {v;}7, are isolated
simple eigenvalues of HY associated to exponentially decaying eigenfunctions (c.f.
[Pav94]).

Next, we introduce some auxiliary operators which will be used in next sections.

First of all, we define the translates of H? restricted to the negative axis: Pick some j > 0.
On 13(Z_), where Z_ = {n < 0}, we consider H := —A + 7;V with Dirichlet boundary
condition at 0 where 7;V/(-) = V(- + j). It is well known that oess(H; ) = ¥z and it is
purely a.c. Moreover, H; may have discrete eigenvalues in R\Xz (c.f. |Tes00, Chapter
7]).

Next, we define the operator Hy” := HY = —A + V considered on 1?(N) with Dirichlet
boundary condition at 0. Its spectral properties are similar to those of Hj_. Note that the
number of eigenvalues of Ha“ and Hj_ outside Xz is finite.

Now, we pick a large natural number L and set:
HY = —A+ Vg, on 1?(N) with Dirichlet boundary conditions (b.c.) at 0.

Throughout the present chapter, L and j are always chosen such that L = j mod (p)
where p is the period of the potential V.

It is easy to check that the operator HE] is self-adjoint. Then, the resolvents z € C*
(z — HY)~! are well defined on C*. Moreover, one can show that z — (2 — HY)~!
admits a meromorphic continuation from C* to C\ ((—oo, —2] U [2, +00)) with values in

the self-adjoint operators from lgomp to 2 :
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Theorem 5.0.2. [Klo, Theorem 1.1] The resolvent z € C — (z — HY)™! admits a mero-
morphic continuation from Ct to C\ ((—oo, —2] U [2,4+00)) with values in the operators
from lgomp to ll20c'

Moreover, the number of poles of the meromorphic continuation in the lower half-plane
{ImE < 0} is at most equal to L.

Now, we define the (quantum) resonances of H N the main objet to study in the present
chapter, as the poles of the above meromorphic continuation. The resonance widths, the
imaginary parts of resonances, play an important role in the large time behavior of wave
packets, especially the resonances of the smallest width that give the leading order con-
tribution (see [SZ91] for an intensive study of resonances in the continuous setting and
[IK12, TK14b, IK14a| for a study of resonances of various 1D operators).

The distribution of resonances of HLN in the limit L — 400 was studied intensively in
[Klo|. All results proved in [Klo| assume that the real part of resonances are far from the
boundary point of the spectrum Y7 and far from the point 42, the boundary of the essen-
tial spectrum of free Laplacian —A. By "far", we mean the distance between resonances
and 0¥z and +2 is bigger than a positive constant independent of L.

In this chapter, we make a quick summary on what were known about the resonances far
from the boundary 0%y, of 37 and points +2 in [Klo|.

We will see in the chapters 6 and 7 that new phenomena will happen for resonances whose
real parts are near "singular" points which are boundary points of 7. Around these

points, we choose different approaches to get the description of resonances.

5.1 Resonance equation

Theorem 5.1.1. [Klo, Theorem 2.1] Consider the operator Hy, defined as HEI restricted
to [0, L] with Dirichlet b.c. at L and define

e Denote by \g < A\ < ... < A the Dirichlet eigenvalues of Hy;

o a)' =al(L) = |¢i(L)|* where ¢ is a normalized eigenvector associated to ;.

Then, an energy F is a resonance of HEI iff

L N
SpL(E) = Z )\la_l 7= —e~0(E) E =2cosf(F), (5.1.1)
=0
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where the determination of O(E) is chosen so that Im@(E) > 0 and Ref(FE) € (—m,0)
when ImE > 0.

Note that the map E + 6(E) can be continued analytically from C* to the cut plane
C\((—00,2] U[2,400)) and its continuation is a bijection from C\((—oc, 2] U [2,+00)) to
(—m,0) +iR. In particular, §(F) € (—m,0) for all £ € (—2,2).

In Theorem 5.1.1, by taking imaginary parts of two sides of the resonance equation, we
obtain that

L N
ImSL(E) = ImEY_ IAzi—ZEP = ¢/™F sin(Ref(E)). (5.1.2)
j=0

Note that, according to the choice of the determination #(E) in Theorem 5.1.1, whenever
ImE > 0, sin(Ref(E)) is negative and ImSg(E) > 0. Hence, all resonances of HY lie
completely in the lower half-plane {ImE < 0}.
According to the equation (5.1.1), resonances of H ]I-jl depend only on the spectral data of
the operator Hy, i.e., the eigenvalues and corresponding normalized eigenvectors of Hy,.
In order to solve the equation (5.1.1), it is essential to understand how eigenvalues of Hp,
(qualitatively or quantitatively) behave and what the magnitudes of a; := |¢;(L)|? are in
the limit L — +o0.
Before stating the properties of spectral data of Hy, one defines the quasi-momentum of
HZ.
Let V be a periodic potential of period p and L be large. For 0 < k£ < p — 1, one defines
fk = fk(E) to be a monodromy matrix for the periodic finite difference operators HZ,
that is,
k k

Th(E) = Trap14(E) = Thp1(E) ... Tu(E) = ( ZP(E) ZP<E) ) (5.1.3)

ay_1(E) ay 1(E)

where {Tj(E)} are transfer matrices of H%:

Ti(E) = (E I Vi 01> . (5.1.4)

Besides, for k € {0,...,p — 1} we write

[ a(E)  b(E)
Ty (E...To(E) = (akl(E> b“(E)) . (5.1.5)
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We observe that the coefficients of 7 :(F) are monic polynomials in E. Moreover, a];j (E)
has degree p and blg(E) has a degree p — 1. The determinant of Tj(E) equals to 1 for any [,
hence, det Ty, (E) = 1. Besides, k — T}(FE) is p—periodic since V' is a p—periodic potential.
Moreover, for j < k
Ti(E) = Tr j (E)T;(E)T, | (E).

Thus the discriminant A(E) = trT,(E) = alg(E) + blgfl(E) is independent of £ and so are
p(E) and p(E)~!, eigenvalues of T},(E). Now, one can define the Floquet quasi-momentum
E — 0,(E) by

A(E) = p(E) + p (E) = 2cos (phy(E)) . (5.1.6)
Then, one can show that the spectrum of H%, ¥, is the set {E||A(E)| < 2} and

9%z = {E||A(E)| = 2 and Ty(E) is not diagonal}.

Note that each point of 0¥z is a branch point of 6,(E) of square-root type.

FA(E)
2
Er / Ef |0 BN Ef E; / Ef
E
—2

Figure 5.1: Function A(E).

One decomposes Y7 into its connected components i.e.y = U§:1 B; with ¢ < p.
Let ¢; be the number of closed gaps contained in B;. Then, 6, maps B; bijectively into

2;11(1 + Cg)% + %[O, ¢i]. Moreover, on this set, the derivative of 6, is proportional to the
common density of states n(E) of H” and H":

0,(E) = mn(E).

One has the following description for spectral data of Hy,.
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Theorem 5.1.2. [Klo, Theorem 4.2/ For any j € {0,...,p—1}, there exists hj : ¥z — R |
a continuous function that is real analytic in a neighborhood of ZOZ such that, for L = Np+j,

1.

The function hj maps B; into (—(¢; + 1)m, (¢; + 1)) where ¢; is the number of closed
gaps in Bj;
the function 0, 1, = 0, — Lh—j] 18 strictly monotonous on each band B; of Yz,;

for 1 < i < g, the eigenvalues of Hy, in B;, the ith band of ¥y, says (Az)k are the
solutions (in Xz) to the quantization condition

km

At ke Z. (5.1.7)

6)p,L()‘i;) =

If X\ is an eigenvalue of Hy outside Yz for L = Np + j large, there exists Moo €
S5u Yi\Xz st [A = Aso] < e~°L with ¢ > 0 independent of L and .

When solving the equation (5.1.7), one has to do it for each band B;, and for each

band and each k such that Lk—fj € 0p,(B;), (5.1.7) admits a unique solution. But, it may

happens that one has two solutions to (5.1.7) for a given k belonging to neighboring bands.

Following is the description of the associated eigenfunctions.

Theorem 5.1.3. [Klo, Theorem 4.3] Recall that (\;); are the eigenvalues of Hy, in ¥y

(enumerated as in Theorem 5.1.2).

1. There are p+1 positive functions, say, fo+ and (f{)ogjgp_1, that are real analytic in

a neighborhood of %7, such that, for Eg € Yz such that 0p(Eo) € [mj/p,7(j+1)/p),
there exists V, a complex neighborhood of Ey, real constants my, L, I{g’L and /@ij
and a function 2, 1, real analytic V such that, for L = Np + k sufficiently large, for
AL €V, one has

(A
@F = E 00, P = 2o
SOZ(L)W — 4et(L=)bp(\) V foé)\l_)];j(/\l)Fp L), (5.1.8)

. Epr(N)
Fp1,jo(A) = 14 Kgm,, i (L — 5)0p,L(N)) + Lpfj,
where
o the constant ky 1, vanishes except if Ey is a bad closed gap;
e for m # w/, the entire function g, is given by
sin?(7z 4+ m)
2

z) = ;
gm(2) (rz 4+ m)sin“m
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e for some mj(Ep) € (—m,0) and rj(Ep) € R
1 1
=m,;(E O(—— d = k;(FE o{——1;
my,1, = m;(Ep) + (L—j) and kp, 1, = K;(Eo) + (L—j)’
e the sign £ is constant on every band of the spectrum Xz,
2. Let \ be an eigenvalue outside ¥z and ¢ is a normalized associated eigenvector, one
has one of the following alternatives for L = Np + j large
e [fAyg € ZN\E]._, one has
p(L)| = e and |(0)] =< 1;
o [fAyg € Z;\ZN, one has
(L) = 1 and |p(0)] < e;
o If Ay € Ej_ N XN, one has
lo(L)| <1 and |p(0)| < 1.
Let Bj be the set of bad closed gaps for j (c.f. [Klo, Proposition 4.1] for more details).

Then, there exists f real analytic on iZ\Bj such that, for eigenvalues, on this set,
in (5.1.8), one can take

— ~ -1

Forjo(A) =1+ —“z’L_(;) —~ <1 + 20(—??7) .
Remark 5.1.4. According to [Klo, Section 4/, we have the following behavior of aj asso-
ciated to A\, which is close to 0%y,
Let By € 0%z and L = Np+ j. We define dji1 = ajy1(Eo)(a)(Eo) — p ' (Ep)) +
bj+1(E0)a271(E0) where aj41, bj+1,a2,a271 are polynomials defined in (5.1.3) and (5.1.5).
Then, one distinguishes two cases:

1. If Clg,l(Eo) =0, then

A — E 1
o = or(D) = P i o) =
2. If a2_1(E()) £ 0, then
— if djy1 # 0, one has
Ak — Fol [Ax — Eol
D= M= Eol g 2 .
o (L)] L= and | (0)] I
—ifdjy1 =0, one has

1 AL —
or(D)f = and |y o) < D=0
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5.2 The resonance free regions

The first step to describe the asymptotic behavior of resonances as L — +oc is to deter-
mine a (L-dependent) resonance free region i.e., a region where we can find no resonances
for any L large enough. Obviously, one tries to find such a region as large as possible.
We would like to begin the present section with recalling general estimates for resonance
free regions stated in [Klo|. For the sake of simplicity, one omits the superscript N from
aJN in this section when one solves the resonance equation (5.1.1) except that there might

be a risk of confusion.

Theorem 5.2.1. [Klo, Theorem 3.1] Fiz 6 > 0. Then, there exists C' > 0 (independent
of V- and L) such that, for any L and | € {0,...,L} such that =4+ < N1+ N <
A1+ N <4 =6, the equation (5.1.1) has no solutions in the set

EeC: ReE € A1t )\z+1+)\zi|
U = ’ 202 (5.2.1)
0> C.05ImE > —a;d?|sin Ref(E)|
where the map E — O(E) is defined in Section 5.1 and

dp:=min(Ag1 — A, N — N1, 1), 05:= max [0'(E)|
|Bl<2-3

Theorem 5.2.1 gives us a quite general estimate on free resonance equation with no
restrictions on the quantities d; and a; except their being positive. Recall that a; = |¢;(L)|?
where ; is the associated normalized eigenvector of \;. We see that, the resonance free
region U; in 5.2.1 depends not much on the spectral data of Hy. The cost of such a
generality is, normally, that such a resonance free region is not at all optimal.

Following is another general estimate under an additional assumption on spectral data of

Hp: a < dl2

Theorem 5.2.2. [Klo, Theorem 3.2] Fiz § > 0. Pickl € {0,...,L} such that =446 <
A1+ N < Na1+ N <4—06. Then, there exists C > 0 (depending only on) such that, for
any L, if a; < dZQ/C’Q, the equation (5.1.1) has no solutions in the set

~ {EG(C; ReFE € [%,AZCGZ]U{AZ‘FCCWW}}
1=

—Ca; < ImFE < —aldlz/C

E e (C; ReE € |:/\l—1+)\l7 /\L+1+)\l:|
U { ‘ 2 2 (5.2.2)

—d%/C’ <ImE < —Caq
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Al—1 \ Al A1

Figure 5.2: The resonance free zones U; and (71.

Moreover, under the assumption a; < d?, one can resolve the resonance equation (5.1.1)
near an eigenvalue \; of Hy. Precisely, one proves that, in the rectangle R;, there exists

one and only one resonance and its asymptotic is given in the following theorem:

Theorem 5.2.3. [Klo, Theorem 3.3] Pick | € {0,...,L} such that —4 < M\_1+ N\ <
A1+ N < 4. There exists C > 1 (depending on (N_1 + N\;) and 4 — (N\jp1 + A;)) such
that, for any L, if a; < d%/C', the equation (5.1.1) has exactly one solution in the set

EeC; ReE e N+ Cql-1,1
R = + ReBE €N+ Cal ; e (5.2.3)
—Cap < ImE < —ayd; /C
Moreover, the solution of (5.1.1), say le, satisfies
N
a
AN =N+ l +0 ((0'dy1)?) (5.2.4)

Sri(N) + e

where Sp(N) == > )\;EIE.
]

According to the above theorem, one obtains the following asymptotic of the width of

the resonance le:

N._ ay sin(6(\;))
L ISLa(N) + cos(0(\))]? + sin2(B(\y))

Imz (14 0(1)). (5.2.5)

Note that, since \; € (—2,2), one has 0()\;) € (—m,0), hence, sin(6();)) < 0.

Theorem 5.2.4. [Klo, Theorem 1.2] Let I be a compact interval in (—2,2). Then
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1. If I C R\Xy, there exists a constant C' depending on I such that Hg has no reso-
nances in the rectangle {ReE € I,ImFE > —1/C} for all L large;

2. If I € EOZ, then, there exists a constant C' such that HE] has no resonances in the
rectangle {ReE € I,ImFE > —1/(CL)};

3. Fizx0<j<p—1and assume that INSy = [ NIy = {v;} for some isolated

eigenvalue v; of HY and I Ny = 0:

a) If IN Ej_ = (), the operator Hg with L = Np + 7 large has a unique resonance in
the rectangle {ReE € I, —c < ImE < 0} for some constant ¢ > 0; moreover, this
resonance, say z; is simple and satisfies Imz; =< —e Pl and |z — N| =< e~ Pl for
some p; > 0 independent of L;

b) If I N Ej_ # 0, HLN with L = Np + j large has no resonances in the rectangle
{ReE € I,—c < ImFE < 0}.

We see in the above theorem how the resonance free regions are affected by the nature
of the spectrum of H E]. Below a compact interval of sz N (—2,2), the width of resonance
free region is in magnitude of %, hence, so close to the real axis as L large. On the contrary,
below a compact interval outside the spectrum >y, we have to go down in the lower half-
plane much more deeply to track down very first resonances of H E].

Besides, according to the point (3) in Theorem 5.2.4, each discrete eigenvalue v; of H N
that is not an eigenvalue of Hj_ generates a resonance for HLN exponentially close to vj,
hence, exponentially close to the real axis. By contrast, when v; is a common eigenvalue
of HN and H I it may generate a resonance but such a resonance is much farther away

from the real axis (at a constant distance independent of L to the real axis).

5.3 Asymptotic of resonances

5.3.1 Location of resonances far from the real axis

According to [Klo, Theorem 5.1], in order to locate resonances under the line {Imz =

—e} for any ¢ > 0 fixed, it suffices to study the zeros of the function

_ ANy (N) | em
Eum:/LJL—+e”> (5.3.1)

AN-(\) E £\’

k

= +Z+4/(Z) -1
l@ A—FE 2 (2)




5.3. ASYMPTOTIC OF RESONANCES 79

where, in the second formula, the branch of the square root z — v/22 — 1 has positive
imaginary part for z € (—1,1).

The function Z,; is analytic in {ImFE < 0} and in a neighborhood of (-2, 2)Nyz. Moreover,
one can prove that if the potential V' is not identical to zero, the function =, has finitely
many zeros of finite multiplicity in {ImE < 0} and in (—2,2) N Sy (c.f. |Klo, Proposition
1.2]).

Hence, for any compact interval I in the (—2,2)N ZDZ and for any n > 0 sufficiently small,
one has:

In the strip I +i(—o0, —7], the resonances of HY lie in UD(E;, e ") where {E;} are zeros
of Z,. Besides, the number of resonances (counted with multiplicity) in D(E}, e MY s
equal to the order of I as a zero of Z; (c.f. [Klo, Theorem 1.4]).

Therefore, the total number of resonances below (—2,2) N Siz that do not tend to the real
axis as [ — +oo is finite. The only thing left to study now is the resonances closest to the

real axis.

5.3.2 Resonances closest to the real axis

In the present subsection, we make a quick summary of results in [Klo| on resonances
closest to the real axis. Let I be a compact interval in (—2, 2)ﬂfz. Then, roughly speaking,
each eigenvalue \; € I of H, except for some "special ones", generates a resonance E where
ImE| < 7.

Let’s us lay out this result in more detail. First of all, one introduces the following function

which will be useful for the description of the resonances: for j € {0,1,...,p—1}, one sets
N . EL(E) 1 ( _ iO(E))
c (F):=1i+ = ST (E)+e :
(E) mn; (E) mn; (E) \ "’/ (B)

J J

where n; is the density of states of Hj_.
It was shown in [Klo| that, for any compact interval [ in (—2,2) N Xz, there exists a
neighborhood of T such that, the function ¢ is analytic and has a positive imaginary part.
Moreover, the function ¢ takes the value i only at the zeros of =, (c.f. [Klo, Proposition
1.3]). We will see next that the zeros of ¢ — i play an important role in the description of
resonances closest to the real axis.

Next, pick a compact interval I C (-2, Q)HZDZ. Recall that Hy, is the operator H]I-EI restricted
to [0, L] with Dirichlet boundary condition at L and (\;)p<;<z, are the eigenvalues of Hp,

listed in the increasing order.
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For A\ € I, one defines the complex number

1 log L
cot Lo N+ ———cot™! ocN <)\l —1 o8 >1

~N o
4=t mn(\)L

where the determination of cot~! is the inverse of the determination z — cot(z) mapping
0,7) X (—00,0) onto CT\{i}.
Note that

~InLSL-mEN < -1 and1<L- Re(i}i1 — 2N

where the constants are uniform for [ such that A\; € I. Then, one obtains the following

asymptotic expansion in powers of L' for resonances z}\]:

Theorem 5.3.1. [Klo, Proposition 1.4] Let I C (—2,2) N Sz be a compact interval not
containing any zero of E — cN(E) —i. Then, one has

N

1
_ -1 _N
4=t ()L cot™"ec (M) + 0 (LQ)

where the remainder term is uniform in [.

Finally, near the zeros of ¢ — i, the resonances plunge more deeply into the the lower-

Coe InL.
half plane and their imaginary parts become of order at most +~:

Theorem 5.3.2. [Klo, Proposition 1.5/ Let Ey € (—2,2)NYy be the zero of E — N(E)—i
of order q.
Then, for o > 0, for L sufficiently large, if | is such that |\ — Eo| < L™, the resonance

N .
2z, satisfies

ImzN = :
T o) oL

2
InL
(14 0(1))

where the remainder term is uniform in | such that |N\; — Ep| < L™¢.
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Pick Ey € 0¥z N (—2,2) and L = Np+ j where p is the period of the potential V. To
fix ideas, let’s assume that Ej is the left endpoint of a band B; of Xy,
Recall that HY = —A + V1, on I2(N) with Dirichlet boundary conditions (b.c.) at
0 and Hj, is the operator HY restricted to [0, L] with Dirichlet b.c. at L. Let (Ag)x
be eigenvalues of Hy and we put, for each k, ar = |¢n(L)|> where ¢}, is a normalized
eigenvector associated to \j.
According to Remark 5.1.4, the parameter a;, associated to A\ € EOZ near Fy can have very

P‘LLEO‘ (the generic case)

different behaviors depending on the potential V: Either a; =<
or ap =< % (the non-generic one). In the present chapter, we study resonances of HEI near
0%z in the generic case.

For L = Np + j large, we define ag_l(E),ajH(E) and dj;1 as in (5.1.3), (5.1.5) and
Remark 5.1.4. We assume the following generic condition throughout this chapter, for

L= Np+j,
either (ay_;(Eo) # 0 and dj+1 # 0) or (ap_1(Fo) = 0 and aj1(Eo) #0).  (G)

Note that, since [Klo, Lemma 4.2|, for L = Np+ j large, 03z No(Hr) = { Ep; ag,l(Eo) =
aj+1(Ep) = 0 and bg(E) # 0}. Therefore, in the generic case, Ey is not an eigenvalue of
Hj when L is large.

Recall that all resonances whose real parts belong to a compact set in (—2,2) N EOZ were
well studied in [Klo|. Throughout this chapter, we will study resonances E of the resonance
equation (5.1.1) in the rectangle D = [Ey, Ey + £1] —i[0, 2] where €1 < €2 and &9 < £° with
e > 0 small. To study resonances below compact intervals inside ¥z, the author in [Klo]
introduced an analytical method to simplify and resolve the equation (5.1.1) (see [Klo,
Theorem 5.1]). Unfortunately, such a method was efficient inside ¥z but does not seem to
work near 0¥7. A different approach is thus needed to study resonances near 0%7. We
figure out that, near the boundary of ¥, the spectral data {\;}r, {ar}r possess special
properties. We exploit them to approximate Sy (FE). Concretely, for each eigenvalue \j of

Hp near 0%z, we approximate Sz(E) in a domain close to Ay by keeping the term A:‘f 5

and replacing the sum of the other terms by > %
ik

to describe resonances. For a domain farther from A, we use the (generic) behavior of

e Then, we use the Rouché’s theorem

spectral data again to show that there are no resonances there.
Surprisingly, this method has a flavor of the one used in describing resonances for opera-
tors with random potentials and resonances near isolated eigenvalues of HY with periodic

potentials (see Theorem 5.2.3). Nonetheless, in the present case, the situation is different
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in many aspects. The hypotheses in Theorem 5.2.3 obviously do not hold in our case and
a modification of the proofs in [Klo| could not be a solution either.

In the present chapter, we prove

Theorem 6.0.3. Assume that Ey € (—2,2) is the left endpoint of the ith band B; of 3.
We enumerate the spectral data N and aj, in B; as (X)), (a}); with 0 < € < n; (the (local)
enumeration w.r.t. bands of Xy,).

Let I = [Ey, Ey+¢1] and D = [Ey, Ey + 1] — 1[0, g3] where g1 < €2 and e < & withe > 0

small. Then, we have

1. For each eigenvalue \., € I of Hy, there exists a unique resonance z, in Bne =

PV LA VA Y . . ) .
[ “ 12+ , +2 “] — 1 [0,55} with a convention that X' | := 2Ey — \g. Moreover,

Zn € My, = [/\"—1;)‘”, A"@‘"“} —1 [O,CO"L—*}] with Cy > 0 large. Besides, there are

no resonances in the rectangle [Ey — e, Ep) — i [O, Co "251]

2. Define S! (E) = Sp(E) — )\,.GEE and an = S' L (AL) + e~ ) Then, there exists
co >0 s.t co <lan] <& and

~J g

Y (n+1)4
L= 4 In v, 0.1
2 "+an+O<L5|an|3> (6.0.1)

3. Imz, satisfies

al sin(6(\%)) ((n + 1)4>
Imz, = 2+——">+0 % ]. 6.0.2
Consequently, there exists a large constant C' > 0 such that 51(3—23,1)2 < |[Imzy,| <
C(”+1)2
L3 -

The above theorem calls for a few comments. First of all, we see that, near 9%z, each
eigenvalue \!, € Z‘jz generates a unique resonance 2, which can be described by the formula
(6.0.1). Moreover, [Imz,| < Z—z Hence, when n < €L (corresponding to resonances far
from the boundary), |Imz,| is of order 7. However, when n is small i.e. A is close to the
boundary of the spectrum, |Imz,| becomes much smaller. Precisely, the magnitude of the

width of resonances varies from % to %
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. n+1
2, )\; 2
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1
_CO n;g
Ane
E F_€5

Figure 6.1: Rectangle B, .

Next, we turn our attention to resonances below R\Yy. Recall that Yy, the spectrum
of HY is the union of ¥y and isolated simple eigenvalues {v¢}¢ of the operator H N,
Let I be a compact interval in (—2,2) and I C R\Xy. Then, according to Theorem 5.2.4,
H7, has no resonances in the rectangle I — [0, ¢] for some constant ¢ > 0. In other words,
there exists a resonance free region of width at least of order 1 below the compact interval
I. This result is a direct consequence of the fact that dist(F,o(Hy)) and |Ime="(P)| are
lower bounded by a positive constant for £ € I C R\Xy N (—2,2).
In the present chapter, we extend the above result for compact intervals I which meet the

boundary of ¥y.

Theorem 6.0.4. Let Fy € (—2,2) be the left endpoint of the i-th band B; of 7. Pick
L € N* large. Then, HEI has no resonances in the rectangle [Ey — ¢, Fo] — i[0,€°] if € is
sufficiently small.

The structure of the present chapter is as follows. For each A, € I = [Ey, Eo+ ¢1] with

. . AZ _ )\’L AZ )\’L
2 we study the resonance equation (5.1.1) in the rectangle B, . = | = 12+ ) "+2 ntl | —

i [O, 55} (see Figure 6.1). First of all, we study the behavior of spectral data {\;}, {ax}
near the boundary point Ep in Section 6.1. Next, in Section 6.2, we show that, in A, .
where Cj ”L"';l < [ImE| < 5 with Cy > 0 sufficiently large, [ImSz(E)| will be too small. As

a result, there are no resonances in A, .. After that, we will state the proof of Theorem

g1 xe€

6.0.3 in Section 6.3. Finally, in the last section, Section 6.4, a proof for Theorem 6.0.4 is
given.
Notations: Throughout the present chapter, we will write C' for constants whose values

can vary from line to line. Constants marked C; are fixed within a given argument. We
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write a < b if there exists some C' > 0 independent of parameters coming into a,b s.t.

a < Cb. Finally, a < b means a S b and b < a.

6.1 Generic behavior of spectral data near the
boundary of the spectrum

Let B; be a band of Y7 and (\},),, be (distinct) eigenvalues of Hy, in B;. Pick Ey an
endpoint of B; and L = Np + j.
Then, according to Theorems 5.1.2 and 5.1.3, the spectral data i.e., the eigenvalues /\} e b;

and the associated a@, close to Ejy, can be represented as )\z = H;i <L7r—_£j> if L“Tej € 0, 1(B;)
and a@ = L%J.q()@ for some function ¢g. In the present section, we will study the smoothness
of the two functions 9;’ i and ¢ near 0, 1,(Ep) and Ep respectively. We will make use of
the results in this section to prove a good upper bound for the sum S ; (A;,) defined in
Theorem 6.0.3 for each A\, € B;. Such an estimate plays an important role in describing
the exact magnitude of the imaginary part of resonances near the boundary of 7. Finally,
we will study the behavior of eigenvalues inside B; and close to the boundary point Ej.
Recall that, for L = Np+j, 0, .(E) = 0,(F) — hi(_E]) where 6,(F) is the quasi-momentum
of H% and h;(E) is analytic in 5.7, and satisfies the following relation

gty _ 1(E) (p(B) = (E)) — by (B)a,(E)
aj11(E) (p(E) — a)(E)) — bj1(E)a)_, (E)
For 0 <m < p—1, we define hy,—1(F) in the same way

o2ihm 1 (E) _ am(E) (p(B) — ay(E)) — bm(E)ay (E)'

~ an(E) (p(B) — a)(E)) — bn(E)al)

—_

Here, p(E) = e (E) and ao_l,ag,aj+1,bj+1,am,bm are polynomials defined in (5.1.3),

P
(5.1.5), Chapter 5.

First of all, we prove the smoothness of H;i.

Lemma 6.1.1. Let Ey € 0¥y and B; be the band of Xy containing Ey. We put J =
Op.1. (B;). Then, 9;% is C% on J and its two first derivatives on J are bounded by a

constant independent of L. Besides, %H;i(x) =0 and f—;é’;i(a:) #0 at x =6, 1(Ep).

Proof of Lemma 6.1.1. Assume that L = Np + j where p is the period of the potential V'

and 0 < j < p— 1. Since Theorem 5.1.2, 8, 1, is continuous and strictly monotonous on
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B;. Hence, J is a compact interval.

We can assume that Ej is the left endpoint of the band B;. Pick z € J. Let u € B; such
that 0, r(u) = 2. Then, %9};2(:15) = m Note that 6, (u) is analytic and strictly
positive in the interior of the band B; (c.f. Theorem 5.1.2). Hence, it suffices to prove the
lemma for u near Ej.

It is well known that, for u near Ey, 0,(u) = mn(u) = cifu — Eo|~Y2(1 + o(1)) and
n'(u) = calu — Eo|~3/%(1 + o(1)) where n(u) is the density of state of the operator HZ and
c1,c2 # 0 (c.f. [Tes00]).

Put u = Ey + t? with ¢ > 0. From the definition of h;, we see that t — h;(Ey + tz) is
analytic near 0. Indeed, we put s(u) = aj4+1(u) (p(u) - ag(u)) - j+1(u)ag_1(u) where
p(u) = e Then, since p(Ey + t2) is analytic near 0, so is s(Fy + t2). We rewrite
s(Ep +t2) = a(t) +iB(t) where a(t) = cat™ (14 g1(t)) and 8(t) = cgt (1 + go(t)) with
Carcg 7# 0, k1, k2 € N and g1(t), g2(t) analytic near 0. W.o.l.g., assume that ¢, = cg = 1
and ki1 > ko. Hence,

ing(Eorety _ PET (L g1(0)? — (L4 92(0)* 4+ 208 (1+ g1 (1)) (1 + 2(1))
20 =e) (14 g1 (6)” + (1 + g2(1))” |

This formula implies directly that h;(Eg + t?) is analytic in ¢ near 0.

Consequently, ’(u) = O (|u — E0|_1/2) and h;(u) =0 (\E — Eo\_g/z).

Therefore, d(fpep () = clu—Ey|'?(14-0(1)) near 0p,1.(Eo) where ¢ # 0. In the other words,
di@p 7 (7) is continuous and bounded by a constant independent of L on J. Moreover,
&0 (@) =0at x = 6, 1(Ep).

Next, we study the second derivarive of 9;}4 () on the interval J. We compute

2 0 (u ! () + ;’<>
%eﬁ(:p):— b W+ 7 . (6.1.1)

(HL’L(U))?) (m(u) A} ))3

We observe that the numerator of the right hand side (RHS) of (6.1.1) is equal to ¢3|u —
Ey|~3/%2(140(1)) and the denominator of RHS of (6.1.1) is equal to c4|u— Eo|~%/2(1+0(1))

near Fy where c3,cq4 are non-zero. Hence, H;i(x) is C? on the whole interval J and

dci; . L( xr) # 0 at x = 0, 1(Lop). Moreover, its second derivative is bounded on J by a

positive constant independent of L. O

The following lemma will be useful for proving the smoothness of a; as a function of
Ak
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Lemma 6.1.2. Let Ey be one endpoint of a band B; of ¥y. For0 < m < p—1, we define,
on the band B;,

sin (h;(E))
E) = cos (hj(E) — ply(E) — 2hyp—1(E)) - ——L—=% 6.1.2
fm( ) COS( ]( ) p P( ) m 1( )) sin (p0p<E)) ( )
and vy, (E) =1 — cos (2hj(E) — 2hym—1(F)).
Then, &, and vy, are analytic near 0 as a function of the variable t = \/|E — Ey|. More-

over, vm(E) = vm,0 + Vm’2t2 + O(t3) where Um,0 15 equal to either 0 or 2, vy, 2 € R.

Proof of Lemma 6.1.2. W.o.l.g., we assume that Ej is the left endpoint of B;. Then,
we write £ = Fy + 12 for t > 0. Let’s consider the function &,(E) first. Note that
hj(Eo+t2), hm—1(Ep + t2) are analytic in ¢ near 0 (see the proof of Lemma 6.1.1). Hence,

we can write

hj (E() + tz) = hj (E()) + hj’lt + hj’2t2 + O(tg); (6.1.3)
hm—1(Eo + tz) = hm—1(E0) + hm—11t + hm_172t2 + O(t3) (6.1.4)

where h;(Ep), hm—1(Eo) belong to either 77 or § 4 7Z (see [Klo, Lemma 4.4]).
First case: Assume that hj(Ey) € T/.

By Taylor’s expansion for the sine function, we have
sin (h;(E)) = £ (hjt + hjat?) + O(£). (6.1.5)

W.o.Lg., assume that sin (h;(E)) = hjit + hj2t* + O().
Next, we write 0,(E) = Op0 + 0p1t + O(t?) where 0,0 = 0,(Ey) € 54 and 6,1 # 0.
Note that pd,(Eo), 2hm—1(Eo) € 7, hence, h;(Ey) — pby(Eo) — 2hpm—1(Ep) € wZ. Then,

Taylor’s expansion for the cosine function yields
2
cos (hj(E) = pbp(E) — 2hm—1(E)) = 1 F o (hj1 = plp1 — 2hm-11)* +O(t*). (6.1.6)

Hence, (6.1.5)-(6.1.6) yield
cos (hj(E) — pby(E) — 2hp—1(E)) - sin (hj(E)) = ehjit + ehjaot® + O(t%) (6.1.7)

where € = £1.
On the other hand, since pb,(Ey) € 7Z, we have

sin (py(E)) = 4ply 1t + O(%). (6.1.8)
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Thanks to (6.1.7)-(6.1.8), we infer that

sin (h())

= 2
Sin (phy(B)) ~ om0+ Emat £ O() (6:1.9)

Em(E) = cos (hj(E) — pOp(E) — 2hpm—1(E)) -
where &, 0 and &, 1 are independent of m.
Note that, all functions which we have considered so far are analytic in t. Hence, O(#?) in
(6.1.9) can be written in t2g(t) where g(t) is analytic near 0. Hence, the above asymptotic
shows that &, is analytic near 0 as a function of ¢.

Second case: hj(Ey) € § + nlL.

Note that, when we use the Taylor expansions in this case, the roles of the sine and the
cosine terms in &, (F) are interchanged. Hence, &,,(E) can be written in the same form
as in (6.1.9) but with different coefficients &, o and &y, 1. In this case &, 0 depends on m.
Hence, t +— &, (Eg + t?) is analytic near 0.

Finally, we consider the function v,,(E). Since hj, hy,—1 are analytic in ¢ near 0, so is
Vm. On the other hand, 2h;(Ep), 2hm—1(Eo) always belong to 7Z. Hence, from Taylor’s
expansion of the function cosine, it is easy to see that the the coefficient of order 1 in
Taylor’s expansion of v, (Eg-+t%) vanishes. Precisely, v, (E) = Vm,0+ I/m72t2 +O(t?) where

Um0 1s equal to either 0 or 2. ]
Now we prove the smoothness of a; as a function of .

Lemma 6.1.3. Let Ey be an endpoint of one band B; of Xy and L = Np + j. Assume
the condition (G). Then, for each eigenvalue N, near Ey, ap = L%jq()\k,) where ¢ is a C
function near Ey and q is bounded near Ey by a constant Cy, independent of L.

Consequently, for all M\, A, near Ey, we have

O.
L“mk — Al (6.1.10)

’ak - an| <

Proof of Lemma 6.1.5. Pick an eigenvalue A\, € sz close to Ey. Then, according to Theo-
rem 5.1.3, we have aj, = L%ﬂ()\k) where L = Np + j and

(B ; fe)\”
4(E) = L FHE) (H—.)
aj41(E) (a)(B) = p=!(E)) + bya(E)a)_, (B)[* b
(6.1.11)

To prove the present lemma, it suffices to show that the derivative ¢(E) is continuous

up to Ep and ¢'(E) is bounded near Ejy by a constant independent of L. Note that our
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function ¢(FE) depends on L.
We define, for 0 < m <p—1,

vm(E) = am(E) (ap(B) = p~H(E)) + bu(E)ap_ (E)

and ¥, (E) = Re (v, (E)) = am(FE) (ag(E) — cos(pﬁp(E))) + by (E)a? a,_1(E). Since 0,(E) —
0p(Eo) = c1|E— Eo|Y2(1+0(1)), 0,(E) = mn(E) = c2| E— Eo|"/?(140(1)) with c1, ¢z # 0
and sin (pf,(Ep)) = 0, we infer that 1, (E) is a C! function up to Ey. Consequently,
lum(E)|? = ¢2,(E) + a2,(E) sin? (pd,(E)) is C* on the band B; of 2.

W.o.l.g., assume that Ey is the left endpoint of the band B;. We write E = Ej + t2 for
t > 0. Then, p(Ep + t2) 6’ b(Eo + t2) are analytic in ¢ near 0.

Recall that f(FE Z |am (E)|? where ap,(E) = p(Evafz(E) = .2si;1}?;;f9§()E')) and
sin (h;(E))
i) mZO om0 cos (09 =) =21 ()| 55 )
5 I
+ Gl 2 lam(E)|? (1 — cos (2 (hi(E) — hm-1(F))))
9 21 2 < 2
= mmzo |am (E)[“m (E) mﬂ;}|am(E)| vin(E)
(c.f. [Klo, Section 4.1.4]).
We compute
1 .
o (E)[? = 152 (0(E)) (am () sin® (phy(E)) + ¢y, (E)) - (6.1.12)

Recall that, since (6.1.8), we can represent sin (pf,(E)) = £pb,1t + O(t3) with 6,1 # 0.

Next, since a,,(E) is a polynomial and 1,,,(E) is C! up to Ey, we can write
am(Eo + t*) = am(Eo) + al,(Eo)t* + O(t*); (6.1.13)

Um(Eo + t°) = ¥m(Eo) + ¥mat® + O(t%). (6.1.14)

Plugging (6.1.8), (6.1.13) and (6.1.14) in (6.1.12), we obtain

1
o (E)* = 5 (amo + am2t* + O(t)) (6.1.15)
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2
E
where a0 = 222(9201)’ Q2 = 4p202 ( 92 2 (Eo) + 2¢m(E0)¢m72). Hence,

f(Ey+1t*) = %2 (fo+ fot” + O(t)) (6.1.16)

p—1
where fo = 2}93—1921 S Y2, (Ep) and
Pt m=0

p—1 p—1
f2 2 3(92 ( 9 p,1 (Z Zwm(EO)wmQ) .
m=0 m=0
For 0 < m < p—1, let &,(F) be the function defined in (6.1.2), Lemma 6.1.2. Then,
Em(Eo + t2) is analytic in ¢ near 0 and we write &,(E) = &no + Emat + O(t?). Hence,
(6.1.15) yield

22 | (E)*6m(E) = tig (Bo + Bit + O(t%)) (6.1.17)

—1 —1

where [y = 2 Z O‘mOSmO and 1 =2 Z O‘mOEml
m=0
Note that all series expansions in ¢ which we have used so far are associated to analytic

functions in ¢. We thus can write O(t?) in (6.1.17) as Bot? + t3go(t) for some B € R and
go analytic near 0.

Now we put vy, (E) = 1 —cos (2h;(E) — 2hy—1(E)). Thanks to Lemma 6.1.2, we can write
Un(E) = Um0 + Vm2t? + O(t3). Then,

J
2> " |am(E)Prm(E) = %2 (70 +72t® + O(t%)) (6.1.18)

J
where vg = 2 Z Qm,0Vm,0-
m=0
To sum up,

F(E)F(E) = %2 (Bo+ 10+ Bt + (B2 + 72)t* + t21(1))

with g1(¢) analytic near 0.
Hence, for L = Np + j large, we have

1B+ P r e - | (5 B2 s (e B2 24 )
(6.1.19)
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where go(t) is analytic near 0. Moreover, g2(t) and its derivative are bounded by a constant
independent of L .

According to the condition (G), we distinguish two cases:

First case: Assume that ag_l(Eo) # 0 and dj41 = vj41(Ep) # 0.

lap—1(E)[? _ |l (B

First of all, in the present case, the function |aj+1(E)(a2(E)—p*1(E))+bj+1(E)ag_1(E)|2 o (B

is analytic in ¢ near 0.
Next, from the definition of a,,(E) and b,,(E) (see (5.1.5), Chapter 5), we have

=1. (6.1.20)

am(F) b (E)
1(E) bm-1(E)

oy —

Combining this with the hypothesis that agfl(Eo) # 0, we infer that there exists my €
{0,...,p—1} s.t. ¥ (Ep) # 0. Hence, fo > 0. Then, with L = Np + j sufficiently large,

we can represent )
-1 fB)\ t*
f(E) <1 + J) = im0 (6.1.21)

where the analytic function g3(¢) and its derivative are bounded by a positive constant in-
dependent of L. Moreover, fq , is lower bounded and upper bounded by positive constants
independent of L. Hence, ¢(E) can be written as t2gy,(t) where g(t) is analytic near 0.
The function gr,(t) does not vanish at 0 and max{|gz(¢), ¢} (t)|} < C with some C' > 0
independent of L.

Second case: Assume that agfl(Eo) =0 and aj+1(Ep) # 0

Since ag_l(Eo) = 0, the monodromy matrix Tp(Ep) defined in (5.1.3) is upper triangular
with eigenvalues p(Ey) = p~'(Ep) = £1. Hence, ap(Eo) — p~'(Ep) = 0. Then, ¢ (Eo),
hence oy 0, is equal to 0 for every 0 < m < p — 1. Consequently, fo=0o =~ =01 =0.

On the other hand, in the present case, fo = % Z 2 (Ep). Note that, by (6.1.20),
am(F) and a,,—1(F) can not vanish at Ey simultaneously. Therefore, fo is strictly positive
and 3 ;)
-1 f(E) 1
Byl 1+ -——= = 6.1.22
fE) ( L—J> fo,r +tga(?) ( )

where g4(t) is analytic near 0. Moreover, there exists C' > 0 independent of L such that

max{|g4(t)|,]g,(t)|} < C near 0 and % < far, <C.
a1 (B)[? _ e (®)P
|a,+1(B) (aQ(B)—p~1(E))+bys1(B)al_, (B))* — Tvi(B)f

We rewrite a)(E) — p~1(E) = a)(E) — cos (pi,(E)) + isin (pby(E)).

We put p(F) = ag(E) — cos(pdy(E)). We observe that ¢(E) is a C! function up to

Now we study the function
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Ey. On the other hand ¢(Ep) = 0 since a)(Ey) — p~'(Ep) = 0. Hence, ¢(E) = (E —
Eo) (¢'(Eo) + o(1)). Note that sin (pf,(E)) = c|E — Eo|"/>(1+0(1)) with ¢ # 0. Therefore,

a)(E) — p~Y(E) = &é|E — Eo|"?(1 4 o(1)) with & # 0.

On the other hand, a;41(Ep) # 0 and a)_;(E) has only simple roots. Hence lap (P)7

’ |UJ+1(E)|2 N
t2g5(t) where g5(t) is analytic near 0 and g5(0) # 0.

Combining this with (6.1.22), there exist C' > 0 independent of L and an analytic function
gr(t) near 0, g1,(0) # 0 such that q(E) = t>g1(¢) and max{|g(¢)|, |¢} (t)|} < C near 0.
To sum up, in both cases, ¢(E) = t?g;(t).

This implies directly that aj < A — EO'

in the generic case. Moreover, ¢'(E) = gr,(t)+54] (¢)
where F = Eg+t% and t > 0. Hence, q(E), as a function of E, is C' up to Ey. Besides, its
derivative near FEy is bounded by a constant CY;, independent of L. As a result, (6.1.10)

follows and we have the lemma proved. O

Remark 6.1.4. Assume that the boundary point Ey satisfies the condition ag_l(Eg) =
aj+1(Eo) = 0. Then, by [Klo, Lemma 4.2] and the fact that the monodromy matriz To(Ep)
defined in (5.1.3) is not diagonal, Ey is an eigenvalue of Hy for all L large. Note that
the hypothesis a;j1(Ey) = 0 and (6.1.20) imply that bj11(Eoy) # 0. Hence, “a” 11(( ))||2

c(1+ o(1)) near Ey with ¢ # 0. Combining this with (6.1.22), we infer that a; = + for
all eigenvalues N\, of Hy close to Ey. This (non-generic) case will be treated in Chapter
7. Besides, it is not hard to check that, from the proof of Lemma 6.1.3, we find again the

behavior of ay. stated in Remark 5.1.4 for both cases, the generic and non-generic one.

Finally, we state and prove an asymptotic formula for eigenvalues of Hj close to a

boundary point FEj.

Lemma 6.1.5. Let Ey € (—2,2) be the left endpoint of the ith band B; = [Ey, E1] of ¥y.
Let )\i < )\i . < )\i be eigenvalues of Hy, in l%i, the interior of B;.

Pick e >0 a small, ﬁxed number and e1 < 2. Let I = I, := [Ey, By +¢1] C (—2,2)NYz.
Assume that )\}€ 1s an eigenvalue of Hy, in I. Then, k < ecL and

3
No=FEy+g (@) +0 (% (%) ) (6.1.23)

where g is a real analytic function near 0, g(0) = ¢'(0) =0 and ¢"(0) # 0.

Consequently, for )\}; € EOZ close to Ey, )\i: — Fy < (kH (for k > 1, we will write

M — Ep < j]-j—z instead).
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Moreover, there exists a > 0 s.t. for any k #n < eL/C} where C; > 0 is a large constant,

we have
alk? — n?|

k2 — n?| . .
< X=Xl < =g

e < (6.1.24)

Proof of Lemma 6.1.5. To simplify notations, we will skip the superscript 7 in )\}; of Hy,

throughout this proof.
First of all, from the property of 6, and h; near Ej, we have, for any F near Ej,

0p,1(E) — 0,1 (Eo) = e(L)\/[E — Bo| (1+ 0(1)) (6.1.25)

where |c¢(L)| is lower bounded and upper bounded by positive constants independent of L.
Put L = Np + j where p is the period of the potential V and 0 < 57 < p — 1. According
to Theorem 5.1.2, 0, 1,(E) is strictly monotone on B;. W.o.l.g., we assume that 6, ,(F) is
strictly increasing on B;. Note that, in this lemma, we enumerate eigenvalues A\, in B; with
the index /¢ starting from 0. Then, we have to modify the quantization condition (5.1.7)
in Theorem 5.1.2 appropriately. Recall that the quantization condition is ), ,(\;) = L"Tej
where L”—_gj € 0p,1(B;) with { € Z. Assume that 6),(Eg) = “F with m € Z. Put { = AN +k
where A € Z and 0 < k < N — 1. We find A, k such that

(m T km + h;(Ep)

~- — Op.r(E0) = (A —m)—

> 0. 6.1.26
Np p Np ( )

It is easy to see that, for N large, the necessary condition is A —m > —1. Consider the
case A —m = —1. Then, (6.1.26) yields

km + hj(Ey) > N. (6.1.27)

According to [Klo, Lemma 4.7], h;(Ep) € 5Z. We observe that if h;(Ep) < 0, there does
not exist 0 < k < N — 1 satisfying (6.1.27). Hence, h;(Ep) € FN. We distinguish two
cases. First of all, assume that h;(Ep) € wN. Then, the first ¢ verifying (6.1.26) and
A € Yy is by = %%,L(EO) + 1. Next, consider the case hj(Ep) € § + 7N. Then, the first
¢ chosen is {y = % .1 (Eo) + % Put ¢ = g+ k and we associate £, to \g, the (k+1)—th

eigenvalue in B;. Then, we always have

(k+Dm o
0,1,(N\e) — 6, 1(Ey) = 1.2
b)) = Op (o) = —p—= + (6.1.28)
where ¢y = 0 if hj(Ey) € 7Z and ¢y = —7 otherwise.

Hence, (6.1.25) and (6.1.28) yield A\ — Ep < (kz;)Q for all A, € I with € small and L large.
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2
Consequently, k < eL and ¢, = A\, — Ey < (%

Next, we will find real analytic functions a, § and b such that

w(k + 1) + b(ty)
L—y

ty == Ak — Eo = a(ty,) 5 (
and a(0) # 0, 3(0) = 0 and p’(0) # 0.

In other words, we would like to solve the following equation:

t = a(t)B> (”(kzl_);fb(t)) (6.1.29)

~Y

2
where [t] < C (kH) <e2

First of all, we observe that the function ¢ : ¢ — ﬁ is real analytic near 0, ¢(0) = 0 and

-1

'(0) = ﬁ # 0. Hence, the inverse function ¢~ is well defined in a neighborhood of 0.

Now, by changing of variables # := ¢(t) and putting b = b o ¢, the equation (6.1.29) reads

. (w(k; 21_) j+ 5@)) (6.1.30)

Now we define 1, (f) = 3 (%) 52 (ij()> . Then, the equation (6.1.30)

is equivalent to

F— () = B <”(’“ *Lljjb(o)> |

Note that 1 (f) is real analytic in a neighborhood of 0, 11, (0) = 0. Note that

o (@) = 28 (ﬂk:zl_);b(t)) g <7r(l<:+ 1) +b(t)) (D)

(6.1.31)

L—j L—j
and B(0) = 0. Hence, [¢}(})| < + k%” S s
Consequently, |(Id—r) (0)] > % when L is large enough. This implies that (6.1.31) has a

unique solution £ near 0. As a result, the solution of (6.1.29) is also unique in the interval

’t‘ < foiuas k‘-l—l))

Note that ¥ (0) = 0, we obtain

Therefore,

3
k) ) (6.1.32)
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where g = ¢! o 2. Observe that g is real analytic around 0 and g(0) = ¢’(0) = 0.
Moreover, a direct computation implies that ¢”(0) # 0. Then, we can write g(z) =

cx? (1 + 2y(z)) with ¢ # 0,  analytic near 0 and

1

~(9(2) = g(v) = 2" =y + (@7 =)y (@) +¥* (v(2) =1 (v)).

[k?—n?|

Consequently, when L is large, |\, — Ay| < =z— for all k #n < eL/Cy where C1 > 0 is

a large constant.

]

Remark 6.1.6. For L large, the average distance between two consecutive, distinct eigen-

values (the spacing) is % Lemma 6.1.5 says that, the spacing between eigenvalues near

0%y, is much smaller, the distance between )\}; and )‘2:4—1 € I = [Ey, Ey + ¢1] where g1 < g2

has magnitude ngl. This fact implies that the number of eigenvalues in the interval I is

asymptotically equal to eL as L — +o00.

6.2 Small imaginary part

First of all, we prove the following lemma which will be useful when we estimate the

sum Sg(F).

Lemma 6.2.1. Pickn > 0 and Ey € 0Xy. For E € J := [Ey, Ey + n] + iR, we define

Sout(E) = >, x%g Then,
‘)\k—E0|>2?7

|[ImE|
2

1
|Sout(E)| S E and |ImSout(E)| S (6.2.1)

and

1
2
Proof of Lemma 6.2.1. Note that |\, — FE| > n for all [\ — Ey| > 2n and E € J. On the

other hand, ImSoyt(E) = ImE > P\Ica;—kEP and S! (E)= > ()\;—’CE)Q Hence,
|)\k—E0|>277 |)\k—E0‘>2’I7

we have the claim follow. ]

0 < Spu(E) < = for all E € [Eo, By + 1) - (6.2.2)

h

Now, we will prove that the imaginary part of S.(E) = ) x5 is small if [ImF] is
k=0
not too small.
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Lemma 6.2.2. Assume the same hypothesis of the boundary point Ey and we use the same
enumeration for eigenvalues in the band B; containing Ey as in Lemma 6.1.5.

Pick ¢ > 0 small, C1,L large and 0 < n < ¢L/Cy . Consider the domain A, . =
[ n712+ n’ n+2 n+l] _ I:COTL[—;17
Then, for all E € A, . with € sufficiently small, we have

5] where Cy s a large constant and /\"_1 = 2y — Xo.

[ ImSy(B)| < e. (6.2.3)

As a result, there are no resonances in A, ..

Proof of Lemma 6.2.2. Let E = x—iy € A, withy € [C’o%, 55] and r € [)‘:”;r)‘;, )‘LJFQ)‘;“].
Since Lemma 6.1.5, we can choose C] large enough so that )\ﬁl < FEg+ep foralln <eL/C)

and )\}; > FEg+ 2e1 if £ > eL and /\}'€ € B; where 1 =< ¢2. Hence, Lemma 6.2.1 yields that

ai Y a}cy
[ImSL(E)| < o0 _;)2 el > T te (6.2.4)
k=0
k#n

where {a%} are {aj} renumbered w.r.t. the band B;. For the sake of simplicity, we will
skip the superscript ¢ in )\2 and a}; throughout the rest of proof.

2 2
Note that A\, < (kJer,l) and ap < (kzg,l) for all 0 < k < eL. Hence,

any < an < n+1 <:
(An — )+ y? Y L
Hence, it suffices to show that the sum
aky <
S = Z st (6.2.5)
k;ﬁn

To simplify our notations, from now on, we will not write 0 < k£ < €L in the sum. We

upper bound S as follows

S < Z Z Ak_x 5 =51+ Sa. (6.2.6)

k#n, k#n,
Ak — x|<y A —z|>y

We will estimate Sy first. For any index £ of the sum Sy, we have, for Cy sufficiently large,

’)\k_)\n’ < ])\k—:c]—i—]x—)\n] < 2y.
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Hence, |k? — n?| < 2C L%y for some C' > 0. In the other words,
(n? —2CL%y), <k*<n?+4+20L%
with ()4 = max{z,0}. Hence,
1 Vn?+20L%y 1 \/n2+2CL%y
Y ) _
k=+/(n?—2CL2y) (n?=20L%y)+
1 3/2
S D <(n2 +20L%y)%% — (n? — QC’LQy)JF/ ) :
If n? < 2C L%y, the estimate (6.2.7) yields that
1
si< L gpr< g
Otherwise,
g < 1 (n?2+2CL%)3 — (n? — 2CL%y)3 < 1 L2yn* <
LS L3y (n2 +20L2y)3/2+ (nz _ 2C’L2y)3/2 ~ L3y nd ~ L
To sum up,
S1< Vit % <e (6.2.8)

Now, we will find a good upper bound for So. Repeating the argument as above, we only

need to consider the sum w.r.t. to indices k% > n? + %y[ﬂ or k? < n?— %yLQ. We split

and upper bound Sy by two sums S3 and Sy which correspond to these two possibilities of

index k.
el eL
ary ary
Sa = <K I
; Z A\ —x)2 ™ Z (Ae — An)2
k=y/n2+&yL? k=+/n2+LyL?
eL 12 el )
< yL < L
~Y > (k—n)2(k +n)2~"Y > (k —n)?
k=y/n?+ZyL? k=1/n?+ LyL?
eL—nm

1 1 1
SuL ), mSul : Sy -
h=/r2t LyL2—n Vit eyl —n o (B + by -2

Note that, for all a,b > 0, ﬁ_a < v/b. Hence,

SBSy-\/—\/%Sa

(6.2.9)
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Finally, we will estimate S;. We only need to consider the case y < C z—z Then,

nz_éy[g nQ—%yLQ
ary ary
Sy = <
kz_; (A — )2 — (A=)
aniyLQ
~ Y (n—k)2(n+ k)32~ 2
k=0 n— anéyLz
1 L2 L2
Note that n — y/n? — %yL2 = "Jr\/ig—*w > 5. Hence,
1
n
< < <
SiSyLy 5 Syl IS¢ (6.2.10)

2Cn

From (6.2.6) and (6.2.8)-(6.2.10), the estimate (6.2.5), hence, (6.2.3) follows.
Note that, since Ey € (—2,2), §(E) = arccos & is analytic and | sin(Ref(E))| 2 1 near Ey.
Consequently, for any E € [Ey, Eo + 1] — i[0, £°], there exists a constant ¢y > 0 such that

[Ime0E)| = MIE) | sin(Reb(E))| > co.

Hence, there are no resonances in A, .. L]

6.3 Resonances closest to the real axis

In the present section, we will give a proof for Theorem 6.0.3 which describes the
resonances closest to the real axis. To do so, we will apply Rouché’s theorem to show

: : : Mo1tAn AL AL
the existence and uniqueness of resonances in each rectangle M,, = 5, g

1 [0, Co nL"';l} for 0 < n < eL/Cy with Cp,Cy > 0 large. Next, we derive the asymptotic

formulae for resonances.

Corresponding to the case n = 0, we will apply Rouché’s theorem in the rectangle
[Eo — £, %] —1 [O, %} instead of [EO, @] —1 [0, %} . Next, we will prove that the
unique resonance zy in this rectangle stays close to )\6 at a distance % Consequently, there

are no resonances in [Ey — e, Ep] — i [O, Co ”Ltl] and zo belongs to [Eo, )‘%’JZFM] —1 [O, %}

Such a result is needed to study resonances below R\Xy in Section 6.4.
For that purpose, in Lemmata 6.3.2 and 6.3.3, we will use a different convention for )\i_l
from that in Theorem 6.0.3. Concretely, we put A\ | := 2(Fy —e) — A} instead of 2Ey — \}

in these lemmata.
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Note that, by Lemma 6.2.1, when we study the resonance equation near a boundary
point Ep, only eigenvalues inside the spectrum and near Ep need taking into account. In
order to simplify the notation and the presentation, we will prove our results for Ey =
inf ¥7. For an arbitrary Fy € 0%z, all proofs work with tiny modifications. Note that
when Ey = inf X7 and if we ignore eigenvalues of Hy, outside ¥z, on the band containing
Ep, two enumerations of eigenvalues (a usual one with increasing order and the other w.r.t.
to bands of ¥7) are the same. From now on, we will skip the superscript 7 in A?, a}; and

the sum S’ ; (F) defined in Theorem 6.0.3 can be written simply as

L
ay
Spp(E) = . 3.1
nilB) =3 (6.3.1)
k=0
k#n
In order to use Rouché’s theorem, we will need two following useful lemmata. Lemma 6.3.1
gives us an estimate on the sum S, r(\,) and Lemma 6.3.2 show that, in M,,, S, (E)
can be approximated by Sy, 1,(A,) with a small error.
Let’s take a look at the sum S, 1,(A,). First of all, the part of the sum w.r.t. k > eL is

bounded by a constant depending only on £. Next, from the asymptotic of a; and A\, near

n—1 el
0Y7, it is easy to check that, in the absolute value, the sums kzjo oy and ) > 1 Py
= =n-+

L e
are of the same order ”1% S0, oo if n s large (n = eL for example). However, we

note that these two sums have opposite signs. We can actually show that they will cancel
each other out to become very small (smaller than € up to a constant factor). To make
such a cancellation effect appear, the results on the smoothness of spectral data near 0%y

in Section 6.1 will be needed.

Lemma 6.3.1. Lete > 0 small and 0 < n < eL/Cy with Cy large. For E € C, let Sy, 1(E)
be defined as in (6.3.1).

|Sn,L<)‘n)| S - (6.3.2)

~ 2

€
Proof of Lemma 6.5.1. First of all, since Lemma 6.1.5, we can choose ('} chosen to be
large, we can assume that )\, < Eg+ e and A\ > Ep + 2¢; with some €1 < £2 for all
k > eL. Hence, Lemma 6.2.1 yield

2n el
1
Sur(n) S @ > Ok Sy 6.3.3
k=0 k=2n+1

k;zén



100 CHAPTER 6. GENERIC CASE

el
Next, we estimate the sum 7= ) )\ . Recall that |\, — \x| < ] and aj =< %2
k=2n+1
Hence,
2 el
L—2n-1)
L Z kz2—n2 (5 " LZ k—n k—i—n)
k=2n+1 2n+1
el 3n eL+n
n 1 1 n 1 1
= — — = — - — — 6.3.4
St 2 (k—n k:—l—n) 5+L< P2 k:) (6:3.4)
k=2n+1 k=n k=eL—n
N n
e+ — <e.
L
2n
Now we will show that |} | S e. We rewrite
1’3772
1
S = =S51+S
Z M — + Z A — L o2
First, we will estimate S7. Thanks to Lemma 6.1.3, we have
n
|S1] < 2Chp - T <e. (6.3.5)

Second, we consider the sum Ss.

n—1 n—1
1 1 e+ Xop—r — 20,
Sy =a + =a : 6.3.6
’ " (Z (Ak: — An Aok — /\n>> " kz_% (/\k - )\n)(/\Qn—k - )\n) ( )

k=0
Assume that L = Np+j with 0 <7 <p—1. By Lemma 6.1.1, foreach £ <0 <n—1, we

can write A\, = 9 (%) where ¢ (z) is a C? function near Ey. Moreover, its second derivative

near Ey is bounded by a constant independent of L. Hence, we can apply the Taylor’s

expansion of the order 2 for the function ¥ (z) to get

— n n — k)2
A+ Aanp — 2\, = o (%) 4o (%L k) — %) (E) ~0 (%) . (63.7)

By (6.3.6) and (6.3.7), we infer that

2 n—1 2 n—1

— k)2 n
< n
ISQlNL 2n—k) —n?2) LZ (n+k)( 3n—k)
/<3=0 k=0
n n—1 n—1 1
_ <
< (z LSt k) <- 639
0 k=0
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To sum up, thanks to (6.3.5) and (6.3.8), we have S, 1,(An)] S . O
For E € M,,, we compare S, 1(E) with Sy, 1,(Ay).

Lemma 6.3.2. Pick C1,Cy large, € > 0 small and 0 <n < eL/C].

Let M,, = [)‘”‘1;)‘", A”B‘"“] —1 [0, C’oﬁ] and Sy, 1,(E) be defined as in Lemma 6.5.1.
We use the convention A_1 = 2(Ep — &) — Xp.

Then, for all E € M,,, we have

n
‘SmL(E) - Sn,L()‘n)} fS L|E - )\n‘ 5 Z (6'3'9)
Proof of Lemma 6.3.2. By the definition of S,, ,(E), we have
S (E) — < —E <w-BS —%
k#n
(6.3.10)
First of all, we observe that
- — (k1) "\ (n—k+1)2
= <L <L <L 3.11
51 Z()\k— )2 Zn— 2(n+ k)2~ Zk2(2n—k)2N (6:3.11)
k= k=0 k=1
Next,
el eL—n k~+-n
= Z ()\k— SL Z k‘+n k:2k+2n S Lo (63.12)
k=n+1 k=n+1
Finally, put S = > m We can apply Lemma 6.2.1 to infer that S5 is bounded by a

k>eL
constant depending only on . Combining this with (6.3.10)-(6.3.12), the claim follows. [

Now we will make use of the above lemma to show the existence and uniqueness of

resonances in each rectangle M,, with 0 <n <eL/C.

Lemma 6.3.3. Pick C1,Cy > 0 large, ¢ > 0 small and 0 < n < eL/Cy. Assume that
M,, is the rectangle defined in Lemma 6.3.2 with the convention A\_; = 2(Fy — €) — Ag.
Let f(E) == SL(E) + e ) and g,(E) = g+ Snp(An) + e~ 0Ow) where S, 1.(E) is
defined in (6.3.1).

Then, f and g have the same number of zeros in My. As a result, there is a unique

resonance in M,,.
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Proof of Lemma 6.5.5. Note that if \; is an eigenvalue of Hj which stays outside Xz,
it is exponentially close to one of isolated simple eigenvalues of H(T or Hj* with L =
Np + j (see Theorem 5.1.2). Hence, we can choose € to be sufficiently small such that
[Eo — e, Ep) No(Hy) =0 for all L large.

Consequently, f and g are holomorphic in M,, for all 0 < n < eL/C}. Recall that, in the
present lemma, Mg = [Eo — €, )‘0‘5)‘1] — 1 [O, CO%}.

We will prove first that f and g have the same number of zeros in M,,.

First of all, since Lemma 6.3.2, for all £ € M,,, we have

[f(E) = gn(E)| < + [Sn,L(E) = Sn,L(An)]

o—i0(E) _ e—iQ(ReE)‘ "

o—i0(E) _ ,—i0(\n)

< LI\, — E| + ¢ WReE) _ o=i0(An) (6.3.13)

n—+1
7

Next we will check that, on the boundary v, = ABCD of M,, (see Figure 6.1), |gn(E)]| is
much larger than 7, hence, much larger than |f(E) — g, (&)|.

S LA, — E|+ ImE| + |ReE — N\ | S LA, — E| S

To do so, we estimate the imaginary part of g, (E),

aplmF )
(B = ‘(/\ RgE)Q L ImlE 0O sin(Ref(An)) (6.3.14)
-
ImE
> eI | sin(Ref(Mn))| — .
(An — ReF)2 +Im“FE
_p
We will now upper bound P on the boundary v, = ABC'D of M,,.
On the interval AB, F is real, hence, P = 0.
On AD, ReE = @ Then,
n+ 1)
(An — ReE)? +Im?E 2 (A — \p1)? 2 %
The same bound holds for £ € BC.
Note that, when n = 0, [\, — 1| = [Ao — (Eo — )| 2 £ > 5.
Finally, consider the interval C'D with [ImE| = Cj ”251,
1 2
(A = ReE)? + Im*E > Im*E = O&%.
To sum up, on the curve vy,
4
< anL ImE| o nt 1' (6.3.15)

~ (n+1)2 ™~ L
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From (6.3.14)-(6.3.15), there exists a constant ¢y > 0 such that
9n(E)| = [Imgn(E)| = co > [f(E) = ga(E)| on yn. (6.3.16)

Then, (6.3.13), (6.3.16) and Rouché’s theorem yield that f and g have the same number
of zeros in M,,.

We see that ¢, (F) = 0 admits the unique solution Z, in C given by:
Qnp

Sp.r(An) + e70(An)”

Let’s check that Z, belongs to M,,. Note that, by our convention for §(E), 6(\,) € [—, 0],

hence, Imz, is negative. Moreover, since |sin (#(\,))| > co > 0, we have

Zn = An + (6.3.17)

a, an (n+1)?

< m < a NEE (6.3.18)

Hence, Z, € M,,. This implies that the equation f(F) = 0 has a unique solution, say z,,

in M,, as well. In the other words, z, is the unique resonance in M,,. m

Finally, we complete the present chapter by giving a proof for the main theorem, The-

orem 6.0.3.

Proof of Theorem 6.0.3. First of all, Lemmata 6.2.2 and 6.3.3 yield that there is one and

only one resonance, say 2, in each rectangle B), . = [)‘"1;)‘", )‘"+2)‘ "*1} — [0, °] for any

1 <n <eL/C;. For n = 0, there is a unique resonance zy € [Eo —£, %} —1 [O, %}

Recall that we use the convention A\ := 2Ej — A9 in Theorem 6.0.3. Then, )“1;”\0 is

equal to Ey, not Fy —e. We will prove later that zp actually stays inside the rectangle
Mo = [Ep, 2521 ] —i [0, %].

We will now take one step further to say something about the magnitude of z, and its
imaginary part. Let Z, be the number defined in (6.3.17). Put a,, = Sy, (M) + e~ 100n),
Then, since Lemma 6.3.1, [Imay,| = [sin (6(A,)) | > co > 0 and |oy| S 2.

an
||

such that we can make sure that the resonance z, belongs to D, by Rouché theorem.

Let’s consider the square Dy, , = Z, + r[—1,1]? centered at %,. We will choose r <

Precisely, we find r such that
lgn(E)| > |f(E) — gn(E)| on the boundary of D,, ,. (6.3.19)

First, we rewrite g, (F) as follows

Qnp

~ 6.3.20
— E||An — Zn| ( )

- - E—z
190 (E)| = [9n(E) = gn(Zn)| = IE—ZnIIA = \an||| a
n

M B[
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Note that, for all £ € 0Dy, § < |E — Z,| < f Combining this and (6.3.18), we infer
that

A — E| < | Ay —Zp| +|E— 2

B ‘O‘n \/§ ’an’

Hence,
n(B)] > 122, (6.321)
dn = Ja, 9.

On the other hand, from (6.3.13), for all £ € 0D, ,,

N _ a
[f(E) = gn(E)] S LA — El S L(|An — Znl + |20 E[),SLM”‘. (6.3.22)
n

Hence, it suffices to choose r < |a"‘ such that |Z‘g| r>C L|a"‘ where C'is a large constant.
satisfies the above inequality with C' large
Hence, by Rouché’s theorem, the resonance z, belongs to D,, , and

Obviously, r = \a€|3 : (nj—:s)

Gn
Qp

- C .(n+1)4

S (6.3.23)
Hence, the asymptotic formula (6.0.1) follows

We now estimate the imaginary part of z,. Since (6.3.23), we have

‘Imn _ apsin (G(An))' _ O (n+ 1)4

. . 6.3.24
| S TP D 0524
Consequently, the asymptotic formula (6.0.2) for Imz, holds true and |[Imz,| < (nZ—?,l)Q
Moreover, there exists C' > 0 such that

Imz, | > (| |2L>3 <5 — M) > g(n+1)2

. 6.3.25
Finally, when n = 0, (6.3.23) yields |29 — Ao| < Hence, zp belongs to the rectangle
[EO,—AB;”I] —i[o,%].
[EO — &, )\é;/\i

1
L3
} On the other hand, 2y is the unique resonance in the rectangle

} —1 [O, gg} As a result, there are no resonances in [Ey — ¢, Fg| — i [O, %}
We thus have Theorem 6.0.3 proved. ]

6.4 Outside the spectrum

In the present section, we give a proof for Theorem 6.0.4 which describes a free resonance
region of HY below intervals which meet %7 from outside the spectrum Y



6.4. OUTSIDE THE SPECTRUM 105

Proof of Theorem 6.0.4. First of all, by Theorem 6.0.3, there are no resonances in [Ey — ¢, Fy|—
1 [O, %] with Cp > 0 large. Next, we will show that there are not resonances in R; =

[Eo — e, Ep] —i [%, 55] either. In order to do so, it suffices to prove that
ImSL(E)| Sein Ry. (6.4.1)

Note that Sy(E) is holomorphic in the domain Ry. Hence, [ImSy(E)| = —ImSy(E) is
a harmonic function in R. By the maximum principle for harmonic functions, it thus
suffices to prove (6.4.1) on the boundary v = ABCD of R (see Figure 6.2).

Let (M), be (distinct) eigenvalues of Hy, in the band B;. Reasoning as in Lemma 6.2.2,
we can assume that /\2 > Fy+ 2¢2 for all k > ¢L and /\}‘g € B; to get

el 7
ImSL(E)| < Z = a;)y2 oy +eforall z =z —iy € Ry with y > 0. (6.4.2)

Throughout the rest of the proof, we will skip the superscript 7 in )\}; and afc.
From (6.4.2), it suffices to show that

aky
S = < eonvy=ABCD. 6.4.3
First of all, we consider S on AB. On the interval AB, y = %% and = € [Ep —¢, Ep]. Then,
A — x| > |\ — Eo| 2 L2 >y foral el >k 2 +/C Comblnlng this with the fact that

Ae—E k2
akx”—ﬂxﬁ,wehave

ary 1 ag < 1 L < 1
= — — < = - S - 6.4.4
Z ()\k — ZL‘)2 + y2 L2 Z (/\k — ZE) ~ L Z kQ ~ L ( )
eL>k>\/Co eL>k>/Co eL>k>/Co
On the other hand, we see that
VCo Y 1 VCo 1 VCo 1
k 2
< - < - ) kEF< - 6.4.5
(Ak—x)2+y2_yzakNL ~ L (6.4.5)

Therefore, (6.4.4)-(6.4.5) yield S < + < £ on AB.
Next, on CD, y = ¢ and z € [Ey — ¢, Fy]. We will split S into two sums S; and S3. On

the one hand, we estimate

e2L—1 e2L—1 e2L—1

S1 = < = E < — k* < —= - (e°L)° S e 6.4.6
1 Z ()\k} — .I')Q -+ y2 - Y ak > 55[/3 ~ 85L3 (8 ) ~ € ( )
k=0 k=0 k=1
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On the other hand,

el
_ ary 5 1 <57 (L_i)< 3
52 Z(Ak—ﬂ yz )\k—x LZk?N 2L =L)~°

k=e2L =2
(6.4.7)

By (6.4.6) and (6.4.7), we infer that S < e on CD.
Note that |S| < e on BC according to Lemma 6.2.2. Finally, we consider the sum S
on the interval AD where z = Ey — e — 1y Wlth <y < ¢, In this case, |\, — 2| >
|z — Ey| — |\ — Eo| Z eforall 0 <k <ceL. Hence,

L L L
SVyiL<£€ a <€3§:k_2<53.(5L>3<86<€
k=0 (e =) ™ e k=0 ' i A |

To sum up, S, hence [ImSy(FE)|, is bounded by € up to a positive constant factor on R;.

Therefore there are no resonances in Rq and the claim follows. O]
EO — & EO
A B
_Co
L2
Ry
D 0_55

Figure 6.2: Free resonance region below [Ey — ¢, Ey
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Let Ey € (—2,2) be the left endpoint of the band B; of 37 and L = Np + j with
0 <7 <p-—1. In the present chapter, we consider the case that a; < % for all eigenvalues
Ak € ZSZ close to Ey. As mentioned in the previous chapters, this case corresponds to either
Ey € 0(Hp) for L large or ag_l(Eo) # 0 and dj41 = 0 (see Remarks 5.1.4 and 6.1.4). We
will study resonances in the domain D = [Ey, Ey + 1] — i[0, £2] where £1 < 2 and e < &°
with € > 0 small.
The asymptotic formula (??) leads us to make the rescaling z = L?(E— Ep) and track down
rescaled resonances z in the new region D = D, = [0,e1L?] — i[0,e2L?]. Corresponding
to this rescaling, we define rescaled eigenvalues \;, = L*(\;, — Ey) and @, = Lay. In the

variable z, the resonance equation (5.1.1) is rewritten as

fu(z) =) = % _ —%e"“’(’”. (7.0.1)

=0 >\k: — Z

Our goal is to describe solutions of (7.0.1) in the domain D. Let (AD)¢ with £ € [0,n; ] be
all (distinct) eigenvalues of Hy, belonging to [Ey, Ey + €1] C B;. Note that n; . < eL for L
large by Lemma 6.1.5. As in Chapter 6, we use the (local) enumeration w.r.t. bands of ¥y
to enumerate eigenvalues in the band B;. We renumber the corresponding a; in the same
way. Then, it suffices to study the rescaled resonance equation (7.0.1) in each rectangle
Di = [\ S\ZH] —4[0,e5L?] with 0 < n < eL/Cy with C; > 0 large and in the rectangle
R = [0,\] — [0, L]

Lemma 6.1.5 implies that, for all N, € B; and close to Ey, |A\i| = (k4 1)% (we will use
]Xk\ = k% when k > 1). Moreover, from our assumption on ay, the associated aj =< 1.
Note that, in the non-generic case, it is possible that Fog € o(Hp). Then, according to our
enumeration, 5\6 =0 and @, is still of order 1 (c.f. Remark 6.1.4).

In Section 7.1, we establish the subregions in D}, and R' which contain no resonances.
Next, in Section 7.2, we study the existence and uniqueness of resonances in the remaining

subregions.

7.1 Resonance free regions

First of all, we state and prove the following lemma which will be useful for estimating

fL(Z).
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Lemma 7.1.1. Pickn > 0 and Ey € 0¥y. For E € J := [Ey, Ey+n] + iR, we define

2 =L*(E — Fy) and fou(2) = > A,ﬁ‘—i Then,
‘Akao|>2?7
1 Imz
| fout(2)] < L and [Imfou(2)] < |772L3| (7.1.1)
and .
Proof of Lemma 7.1.1. We put Sout(E) = > .25 Then, the present lemma is a
|Ak7E()‘>27]
direct consequence of Lemma 6.2.1 and the fact that fout(2) = 7 Sout (E). O

7.1.1 Near the poles of f1(z)

For each 0 < n < eL/Cy with C7 > 0 large, the rectangle D,, contains S\n, 5\n+1, two
poles of the meromorphic function fr(z). Since the modulus of fr(z) is big near these
points, there are no resonances in those regions. Following is a quantitative version of this

observation.

Lemma 7.1.2. Let Ey € (—2,2) be the left endpoint of the band B; of Xy. Assume that
(AD)g with 0 < € < n; are (distinct) eigenvalues of Hy, in B;. Put I = [Ey, Eg+¢1] C B;
where 1 < €2 with € > 0 small. For each 0 < n < eL/Cy with Cy > 0 large, we define

fn,n(2) == ~‘5L§1 RS Far(2) = fr(2) = fa,L(2) (7.1.3)
Ap—2 A1 —2

where z = L*(E — Ey) with E € I —i[0,&%];

— _ Co(n+1)
Ay = m(ln(EnJrl)Jrl)

Then,
o |fop(z)] S RO o il 2 e [N L]+ iR,
° fyll,L(Z) = m if z is real and z € [)\317)\%—‘,—1}7
o [Imfor(z)] S L.

Consequently, for all z € ([5\%, A+ AL N[0, 51L2]) — 1[0, Ay],

1 1
> >
|fL(Z>’ ~Y An ETL'
Note that, in the definition of Ay, we choose Kk to be large so that 5\% — A, > 0. Besides,
N, NG+ A always belongs to [0,e1L7) unless n =0 and Ny = 0 i.e. Eq € o(Hyz) for any
L large.

where k is a large constant.

> (7.1.4)
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Proof of Lemma 7.1.2. We can choose C1 > 0 large enough such that A/, < Ey + e1 and
)\fc > FEg+ 21 if k > el and )\7,:C € B;. Then, Lemma 7.1.1 yield
In(n+1)+1

i 1
) ; % < -5 — (7.1.5)
_ g n
A [Eo, Eo+2¢e1] | k Z| !

Hence, it suffices to prove the same bound for the sum S where

nfl ELZ €L az

S = k4 _k_ —. G+ S,
Dot Dl
k=0 "'k k=n+2 "'k

Throughout the rest of the proof, we will omit the superscript ¢ to lighten the notation.
Recall that, by Lemma 6.1.5, |\, — Ap| < |k? — n?| for all k # n € [0,eL/C4]. Hence,

n—1 a n—1 n—1
k
]Sllg E ~ < E E
= e — 2 |>\ —)\k! — (n—k ”+k)
n
1 In(n+1)+1
< < . 1.
SD By IR (716)

Next, we will estimate the sum Ss.

el
Sl <
|2|—Z|A — 2™ Zk2 (n+1 2Nzkk+2n+2
k=n+2 k>n+2
+
1 _In(n+1)+1
- —. 7.1.7
kz_:k: n+1 ( )

Hence, (7.1.5)-(7.1.7) yield |f, 1.(2)] < n+1
Now, we will prove the second item of Lemma 7.1.2. Assume that z is real and z €

[An, Ant1]. Then, by Lemma 7.1.1, we have

. i |
forl2) < Z (A — 2)2 * e2L3

n—1 a el a 1
k k
<Y —E 4y —— + (7.1.8)
< (=M (A 2 efLd
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On the other hand, for z € [S\n, :\n+1] and n > 1, we have

n—1 n—1

s 1
I () > >
T L (R = N2 Y (= (0t k)
n n
1 1 1 1
2D iR a2 R 1.
~ Z k2(2n — k)2 ™ n? k2~ p2 (7.1.9)
k=1 k=1
Moreover, if z € [5\0, 5\1], it’s easy to see that
- ao
far(2) 2 RSP 2 L (7.1.10)

Thanks to (7.1.8)-(7.1.10), we infer that that ffl 1 (2) < m for all A, < 2 < Apg1.

Consequently, for z € [5\n, S\nﬂ] + R,

|Imz|

(n+1)?

Im f,,,(2)| < [Imz|f], [ (Rez) < (7.1.11)

Finally, consider z which belongs to the square [\, Ay +A,]—7[0, Ay or [Aps1—Ap, Apt1] —
i[0, A,]. W.o.l.g., assume that z € Ay, Ay + Ay] — [0, Ay].
Then, there exists C' > 0 such that

an dp+1

> L 1 C lnn+1> 1
|An — 2| | Any1 — 2|

= -5

_ £ > _ _—

| fr(2)

(7.1.12)

if the constant x in the definition of A,, is chosen to be large. O

7.1.2 Large imaginary part

For each n, another region no containing resonances can be obtained from an estimate
on Imf7(z). Contrary to the generic case, when z is not too close to the real axis, [Imfr(2)|
becomes large instead of being small w.r.t. ’%Im (e*ie(E)) } Consequently, there are no

resonances.

Lemma 7.1.3. We assume the same hypotheses and notations in Lemma 7.1.2 and put
xo = LA\ — A =< 2n+ 1.

Then, for 1 <n <eL/Cy, we have |Imfr(2)] 2 &%L for all g—é < |Imz| < L2
Besides, the above statement still holds in the region [0, S\Zﬂ —1 [i, €5L2}.
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Proof of the Lemma 7.1.3. Throughout the proof, we will skip all superscript ¢ in ;\ﬁl, al,
associated to eigenvalues in B;.

First of all, we have
el

an|Imz| ap+1/|Imz| ar|Imz|
Imfr(2)] > = 7.1.13
)2 2 e+ Gro— o+t 2 G —Reop P (19
k;énTnJrl
where z := Rez — S\n
Hence,
Imz| 1 1 1
I >—’ > .- > 7.1.14

22
for all f—é < |Imz| < eL.
Now, assume that L < [Imz| < £7L?, we will find a good lower bound for the last term
of RHS of (7.1.13). We compute

eL ~
A= Z ] ar|Imz|
— (A — Rez)? + [Imz|?
k#n,n+1
n—1 - el -
_ ) ar|Imz| N Z ) ag|Imz| (7.1.15)
= (e — Rez)? + [Imz|? Mty (A — Rez)? + |Imz|?

el

ar|Imz|
>
- k—2+2 Imz|2 + C(k —n)?(k +n)?

[Tmz| 2eL dt
> E > y1/2
v Ck2(k + 2n)% + |Tmz|2 ™~ 5,  Ct2(t+2n)2+y

where y := [Imz|? > 2L? > 1.
Let’s assume that n > 1. By the change of variables ¢ = y'/%u, we have

1 1 —1/4
B /QEL dt B _3/4/;ELy du
)y Blt2n)? +y Y oy-1a Cu(u+2ny= /42 + 1
Note that eLy /4 = —eL_ > £L — % for all [Imz| < £°L?. Hence, for 2¢ < 1073, we

v [Imz| — 2L

1000
A > y_1/4 du
~ 9 u?(u + 2ny=1/4)2 + 1

have

1 1000 d
> / “ . (7.1.16)
™ V/|Imz] J2 Cu?(u + 2ny=1/4)2 + 1
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n n
We observe that, if = is smaller than a positive constant, say « i.e., |[Imz| >
y/t /Imz]|

n? /a, the above integral is lower bounded by a positive constant Cy,. Then,

C 1 2
|Ia | 2 o7 when = < [Imz| < 5L%
mz| € o)

A >

Y

Note that, if eL > %2 Le,n < VeL, the above inequality holds true for all eL < Imz| <
eSL2.

Finally, we consider the case n > veL and find a lower bound for |Imf7(z)| in the domain
el <|Imz| < Where « is a large, fixed constant.

Thanks to the ﬁrst inequality in (7.1.15), we have

—_
3
,_.

3

A> |Imz| Z |Imz|
— (A — Rez)2 4 [Imz[2 ™ 7 (Ans1 — Ap)? + [Imz[?
n—1 ‘I ‘
mz
> 7.1.17
Nkz_o(n+1—k)2(n—|—1—|—k)2+|1mz|2 ( )
n+1 n+1
> |Imz| Z [Imz|
~ —~ (2n + 2 — k)%2k? + [Imz|?2 ~ n2k2 + Imz|2
n+1
_n U /
~ 242
n k:2 t +y

where 1 < % <y = |II;LIZ‘ < g Here, we choose o« > 3. Then, by the change of variables

t :=yju, we have

> - > (7.1.18)

o
VvV
| —
T~
3
&
5
Q
zw&
+:
e
| —
l\\Q
g
_ll:’&
—_
S|

1
eL
for all eL < |Imz| < %2

C

Thanks to (7.1.16)-(7.1.18), we conclude that |Imf7(z)| > I with eL < [Imz| < £°L? for
€

all n > 1.

Now, we consider the case Rez € [0,5\1]. For all 1 < |Imz| < £5L2, we proceed as in
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(7.1.15) and (7.1.16) to get

L

~ [Imz| c |Imz|
. . - __mal 7.1.19
[tmf1.(2)] = co Z a?kt + |Tmz|2 — 0 kz; o2kt 4 |Tmz|? ( )

co / i du 1

10000
> .
~ /|Imz| e O ut+1 7~ \/|Imz/ a? 4+1N °L

On the other hand, for 0 < |Imz| < 1, by putting ¢ := ﬁ > 1, we have
mz
elt elt
du t du 1
I >t —_— > — — > > . 7.1.20

1
Thanks to (7.1.19) and (7.1.20), [Imf(2)| 2 I for all 2= < [Imz| < ’L? and Rez €
[0, A\1]. Hence, the claim follows. O

We make a summary of obtained results on resonance free regions. Thanks to Lemmata
7.1.2 and 7.1.3, in D! or R, we obtain the resonance free regions greyed out in Figures
7.1-7.3. The white regions Q; and Q' in Figures 7.1-7.3 are the regions where we will

track down resonances in Section 7.2.
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Figure 7.1: Resonance free region as A,, < :—2
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Figure 7.2: Resonance free resonance as A, > =
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D3 o 0_3_____‘ _sLL
_51
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Figure 7.3: Resonance free region in R’

= [0, Ni] — 4[0, L]
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7.2 Resonances closest to the real axis

In the present section, for each band B; of Y7, we will study rescaled resonances in
QF, QL and O (see Figures 7.1-7.3).
Convention: Recall that we use the (local) enumeration (\));>¢ for (distinct) eigenvalues
in the band B; 3 Ey and the usual enumeration (Ay),; for eigenvalues of Hy outside the
band B; (written in increasing order and repeated according to their multiplicity). In the
proofs of all results stated in this section, we will suppress the superscript ¢ in )\k, dk in
order to lighten the notation. We will only specify the superscript ¢ in case there is a risk
of confusion. Note that, whenever we refer to \,,, \,+1 in this section, they are respectively
AL AL, the (n+ 1)—th and (n + 2)—th eigenvalues in the band B;. However, we will
always use the notations \; or A\ to refer to the eigenvalues with the usual enumeration

which does not depends on bands of ¥z. Finally, as an abuse of notations, Y and )
k#n k#n,n+1
stand for, respectively, > and )
AN, MeANL AL
When Fjy = inf X7 and we ignore eigenvalues outsider >z, two enumerations will be the

same and readers can actually think of this case while following our proof.

7.2.1 Resonances in 2/,

Recall that the region ¢, corresponds to the case A, < f—é with z¢g = )\n 41 — A\l which
is equivalent to k(n+1)(In(n+1)+1) 2 L (see Lemma 7.1.2 for the def. of A,). Then,
n > L with some small 7 < £.

The schema of studying resonances in €2/, is split into two steps:
In Step 1, we will show that the number of solution of the resonance equation (7.0.1) is
equal to that of the following equation by using Rouché’s theorem.
1

f(2) = fr(e) + ze ) =0 (72.1)
Hence, we reduce our problem to count the number of solutions of (7.2.1). Note that, this
number is exactly the cardinality of the set f, ! ({—%e_w(EO) }), the inverse image of the
number —+¢ (o),
Next, in Step 2, we partition €2, into two parts, the rectangles ABCD and EFGH. First
of all, we will show that the image of the boundary of the rectangle ABC'D under f7, is still

a simple contour and on this contour, |f} (z) Then, by the Argument Principal to

| 2
the holomorphic function f;, in !, we infer that f;, is a conformal map from ABCD onto

fL(ABCD) and its inverse is holomorphic as well. Hence, there is at most one resonance
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in this domain. The existence of that unique resonance depends on whether fr(ABCD)

e~ 0(Eo) o1 not.

contains the point —
Moreover, by studylng fL(EF GH), we can conclude that there is at least one resonance
which stays either in ABC'D or EFGH. Besides, if there is a resonance in ABCD, that
will be the unique resonance in €2,

Let’s start the present subsection with the proof of the statement in Step 1:

Lemma 7.2.1. The equations (7.0.1) and (7.2.1) have the same number of solutions in
Qi

Proof of Lemma 7.2.1. Define f(2) as in (7.2.1) and g(z) := f(2) + 1 e 0(E),
First of all, we observe that f and ¢ are holomorphic in Qi since 6(E ) is holomorphic in
(o, Fo + 2] + i { ;,0} for all Ey € (=2,2).

Moreover,

—zO(ReE) . e—iG(Eo)

C’ n? +Ce2<052
L3 L — L

where the constant C' is independent of €.

Hence, to carry out the proof of the present lemma, it suffices to show that
> 1 i
lf(2)] 2 7 on the contour 7, = 09;,.

Indeed, assume that we have such an estimate for f(z) on 7,. Then, |f(z) —g(2)| < |f(2)]
on 7,. Hence, thanks to Rouché’s theorem, f and g have the same number of zeros in the
domain €.

Moreover, observe that fr(z) is real iff z is real. Hence, for z € R,

FE) 2 i) =1 i (=) | = ILLUEO)I

Note that, sin(0(Ep)) # 0 since Ey € (—2,2).
Hence, to prove (7.2.1), it is sufficient to show that

[fL(2)] 2 — on 1 \R. (7.2.2)



118 CHAPTER 7. NON GENERIC CASE

We decompose the contour 7, into horizontal and vertical line segments as in Figure 7.1 .
First of all, on the segments AD, BC, DE,C'H, |f1(z)] is big (the zone near poles ), and

An+1 of fr(z)). More precisely, according to Lemma 7.1.2, on these segments,

1 In(n+1)+1 1
z 2 gt > 2.
fI 2 5 R Rt 2 (723)
Next, on the segment F'G, by Lemma 7.1.3, we have
1
Imfr(2)] 2 I (7.2.4)

Finally, we study fr(z) on EF and GH. It suffices to consider the segment E'F' as A and

An+1 play equivalent roles.
Let z € EF, hence, z = A\, — it with A, <t < ?—%
Then,

an, dn—l—lt
Imf;(2z)| > |[Im Z)|=— 4+ —= = 2 p(t
i f1 ()] 2 [t fo (2] = 3+ g 2 el

_t
()\n+17)\n)2+t2 ’

It’s easy to check that ¢/(t) = —% + [g\"“_;"))j;:]g < 0 for all t # 0. Hence, o(t) is
n+1—"An

where o(t) == 1 +

2
(strictly) decreasing in the interval [An, g—g} . Therefore,

2

L 1 1

sl 2 () 2 55 + _z L 725
g "L (1 + —(872)2) e

Thanks to (7.2.3)-(7.2.5), the claim in (7.2.2) follows and we have Lemma 7.2.1 proved. [

Now, we describe the image of the rectangles ABCD and FFGH. First of all, we

consider the rectangle ABC' D which is closer to the real axis.

Lemma 7.2.2. Let ABCD be the rectangle [N} + Ay, 5\31“ — Ap] +i[—A,,0] and v} be
its boundary.

Then, f1(v}) is a simple contour. Besides, we have |f}(2)| 2 2 on L.

~ n2

Proof of Lemma 7.2.2. First of all, on the horizontal segment AB where \, + A, < z <
5\n+1 — Ay, fr is real-valued and

ag 1 1
) => = 25250
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Hence, fr(z) is strictly increasing on AB. Then, fr, is injective and it transforms AB into

an interval [m!,m!l] in R. Note that, since Lemma 7.1.2, we have

mt = fr(n + Ap) (7.2.6)
gLn gLn+1 ~ N 1
=—+= = + A+ A S——<0
S VP SN, Jup Ot Bn) S =
if the constant x in the definition of A, is large enough.
Similarly, m! = frOnit — Ap) = A%L z IHTL for all n > %
Now, for z = 2 + iy € C, we have
/ ar ar
z) = —_— = = 7.2.7
i zk:w—z)? Zk:w-x—iy)? 20
4] 2
L i, (1+55)
M=) (1 i) (Ag — )2 2]
k et 1+ (55)
Note that, for any holomorphic function f, f'(z) = 8_£ = %8—5 with z = x + 7y. Hence,

C%RefL(Z) = C%Imf,;(z) = Re[f} (2)] and we put

N 1— (=¥
pla ) = Relf ()] = 3 ey (25 —. (7.2.8)
(A ll + (ky_x ]
) —pi(ay) ’

Next, we study fr on the line segment AD where z = z + iy with 2 = A\, + A, and
—A, <y <0. In the present case, the identity (7.2.8) reads

2
A2 2 i, 1= {5 )
/ ~ n k=
Relf1(2)] = an e > Tl — (7.2.9)
k—T

along the segment AD.
Note that, for any A, # \., we have (A, — z)? > n? > A2 for all z € AD. Recall that we

are considering the case that n > nﬁ.
Hence, all the terms in RHS of (7.2.9) are positive for all y € [-A,,,0]. This implies that

0 /
a—ylme(z) = Re[f1(2)] 2 = O —a2 ~n?
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Hence, along the segment AD, Im f1 (z) is strictly increasing in y = Imz. As a result, f7(z2)

is injective on AD and

0> Imfr(2) > Imfr(D) = Imfr(Ay + A —iA,,) (7.2.10)

oy @B 1 Se 1
24, kn (/\k — )\n>2 + A% Ay n? Ay

Note that, on AD, the n—th term
in Imfr(z). Precisely,

Nny 1 any 1
I (+o(mm) =7 im0 ()
mfp(z) = 2 + A2 i k21n’n y? + A2 * k21n? L

Hence, the monotonicity of Imf7(z) in y on AD just comes from that of y;ﬁ—ﬁ%.

Next, we will estimate Ref7,(z) on AD. For all —A,, <y <0, by Lemma 7.1.2, we have

?% is much bigger than the sum of the other terms

anl, ar(Mt1 — M —A)

Refr(z) = — = —|—Re
fL( ) A%+y2 ()\n+1 )\ _A ) fnL( )
1 Inn
=——4+0(— ). 7.2.11
5o () (7:2.11)
Hence, when we choose the constant x in the definition of A,, to be big enough, A~2 f_y

becomes the dominating term in RHS of (7.2.11). Then, Refr(z) < _A%L'

By the equivalent role between )\, and 5\n+1, we obtain a similar result for the image of
BC under fL, that is, the Imfr(2) is increasing in y = Imz € [—A,,, 0], Refr(2) < ALn and
2 2 5 . .

Finally, we consider f;, on CD = {z =z — iAy|z € [Ay + Ap, Anr1 — Ay}

Note that, in the present case, the function py(x,y) in (7.2.8) is strictly positive for any
k # n,n+1 and non-negative otherwise. Hence, Ref7(z) is strictly increasing in 2. Hence,

on CD,

1

_A_ = RefL(D) < RefL( ) < RefL( )

Moreover, we have the following estimate for |f] (2)|:

1
A,

)] 2 Relfl(2)] 2 — 2
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for all = € Ay 4+ Apy A1 — Ay

Finally, we give estimates on Imf(z) on C'D. First of all, on this segment, we have

dnAn an—HAn
(Ao = 2)2+ A2 (g1 —2)2 + A2

—Imf, 1(2) =
It’s easy to see that, as @ varies in [\, + Ap, App1 — Ay, 22 < —~Imfy, 1(2) S A%z'
On the other hand, for = € [an + Ay, 5\n+1 — Ay,

ag An
“Imfup(z) =D Y =, Y ="
_ 2 )2 2

k#n, n+1 )\k l‘ + A k#n,n+1 ()\k ZE) "

Note that, A >> . Hence, Im f(z) varies from —A%L to —% on the C'D.

To sum up, the holomorphlc function f7, is injective on each edge of the rectangle ABCD.
Hence, the image of each edge under f7 is a non self-intersecting continuous curve. Ob-
viously, since fr(AB) is a segment in the real axis, it does not intersect the other curves.
It’s easy to see that fr(AD) N fr(BC) = 0 as well. However, it’s not so evident that
fL(AD) and fr(CD) only intersect at fr,(D). In order to prove that it is necessary to use
the estimate on the derivative of fr(z). Note that |f](z)] 2 n2 on all edges of ABCD.
On the other hand, f7, is holomorphic in a neighborhood of the rectangle ABC'D. Hence,
fr is locally bi-holomorphic near any point on AB, BC', CD, DA. Hence, fL(AD) only
intersects fr,(CD) at fr,(D). Hence, fr(7}) is a simple contour and | f} (2)] 2 2 onvl. [

Lemma 7.2.3. Let ABCD be the rectangle [N, + A, 5‘314—1 — Ay] +i[—Ap, 0]
Then, the function fr(z) is a bijection from the rectangle ABCD onto fr,(ABCD) and its
inverse in A'B'C'D' = f,(ABCD) is holomorphic as well. Moreover,

1
If(2)] 2 ) for all z belonging to the rectangle ABCD.

Consequently, fr.(z) is a conformal map in the interior of the rectangle ABCD, hence, the
angles between boundary curves of A'B'C'D’ are all 90°.

Proof of Lemma 7.2.3. Denote by v} the boundary of the rectangle ABC'D. According to
Lemma 7.2.2, f1(7}) is a simple contour and f, is injective in v,.. Hence, for any interior
point w of f(ABCD), the contour fr,(v.}) travels counterclockwise around w exactly one
times. Hence, thanks to Argument Principle, the equation f7(z) = w in ABCD has the
unique solution. In other words, f7, is injective in the interior of the rectangle ABC'D. By

using Open Mapping Theorem, we infer that f7(z) is bijective from the rectangle ABC'D
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onto fr,(ABCD) and its inverse in fr,(ABCD) is holomorphic. Moreover, f;(z) # 0 for
all z in the rectangle ABC'D. Hence, by using the Maximum Modulus Principle for the
holomorphic function ﬁ, we have |f](z)| 2 & in ABCD.

The holomorphic function f;, is therefore a conformal map in the rectangle ABC'D and

the claim follows. OJ

We observe that the domain MNOP\A'B'C’'D’ is included in the image of EFGH
under fr.

Lemma 7.2.4. Put MNOP = [~k o]
A'B'C'D' = f(ABCD).
Assume that —+e~"0F0) € MNOP\A'B'C'D’. Then,

— 1 [O, w] with C > 0 large. Let

fL(EFGH) > MNOP\A'B'C'D".

We will skip the proof of Lemma 7.2.4 for a while and make use of this lemma to

describe resonances in the domain €2,.

Theorem 7.2.5. Assume that n > nﬁ and put xo = X%H — X\,
Let €, be the complement of two squares [Ay,, A}, + Ay ] +1i[—Ay, 0] and (X1, N}, 1 —An]+
i|[—Ap,0] in the rectangle [5\%,5@%1] + i [—?—E,O] ( the region ABCHGFED in Figure
7.1).

Then, there erxists at least one rescaled resonance in . Hence, |Imz| < % for all
resonances in 2.

Moreover, if—%e‘ia(EO) belongs to A'B'C'D’" = fr.(ABCD), the rescaled resonance, says

Zn, 1S unique and

2
n n n
[Tmzn| < An klnn kInL ™ eL

Proof of Theorem 7.2.5. Recall that, thanks to Lemma 7.2.1, the number of rescaled reso-
nances z is the cardinality of f,~ ! ({—%e‘ie(EO) }) Hence, for the existence of resonances,

we have to check if the point —%e*w(EO) belongs to /. Note that —%e*w(EO) always stays

inside the open rectangle MNOP = [_CLA,N C;A,j —1 [O, w} where C' > 0 is a big
i0(Eo)

constant. We consider two possibilities. First of all, assume that —%e‘ belongs to
A'B'C'D’'. Then, by Lemma 7.2.3, there exists one and only one rescaled resonance z,
in ABCD. When that case happens, [Imz,| < A, = = < . Remark that, this
case can not happen for all eL > n > nﬁ. For example, when n = €L i.e., the real part

of resonance is far from 90Xy by a constant distance, there are no rescaled resonances in
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ABCD from Theorem 5.2.4.

Now, assume that the other case happens i.e., —%e‘ie(EO) € MNOP\A'B'C'D'.

In this case, fr,(EFGH) contains MNOP\A'B'C'D’ by Lemma 7.2.4. Then, —1¢~*(F0)
stays in the image of FF'GH under f;. Hence, there exists a rescaled resonance in the
rectangle FF'GH and note that the imaginary part of such a rescaled resonance is smaller
than —g—é and bigger than —A,,. ]

Finally, to complete the subsection, we state here the proof of Lemma 7.2.4.

Proof of Lemma 7.2.4. Note that |Refr(z)| is bigger than CLATL on segments AD and BC'
if C' is large enough.
Then, the hypothesis that —+e (%) ¢ MNOP\A'B'C'D’ yields & < 2[5

Hence,
A, | sin(6(Ep))| 1 1
— <2 < K —.
w2 s I I nh,

By the open mapping theorem, the image of the open rectangle EFGH is still a bounded
domain in C. From the study of the curve fr(C'D) in Lemma 7.2.2, we know that, the

imaginary part of fr(C'D) increases from —AL to —%. Hence, it suffices to show that the

imaginary part of f7, on all parts of the boundary of EFGH except for C'D is smaller than

—ﬁ up to a constant factor.

First of all, by Lemma 7.1.3, Im f7(2) < _ELL on FG. Next, we consider segments ED and

CH. By symmetry, it suffices to study the image of fr on E'D.
Let z € ED. Then, z = x —iA,, with z € [S\n, 5\n + Ay,

anl\, ay
—Imfr(z) = —= + A — . 7.2.12
fL( ) ()\n—x)2+A,% nk#zn()\k—iUV‘i‘A% ( )

According to Lemma 7.1.2, the second term of RHS of (7.2.12) is bounded by %. On the
other hand, the first term is bigger than 26&1 > % since n > % Hence,

~TLA7’L
- Imfi(2) = = _ax>2 oy (1+0(

;L)) (7.2.13)

In

uniformly in = € [\, Ap+A,]. Since the function % is decreasing in x € [An, Ay —+

Ay], we infer that Im f7 (2) is strictly increasing, hence, fr(2) is injective on ED. Moreover,

1 1
n
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We consider now fr,(z) on the vertical segment EF where z = = + iy with x = A and
—28 <y < —Ay,. Then,

1
e ==t G (

Y ’ S (7.2.14)
DR )]

Hence,

2
- - 1 — [ —4%L
- %Ime<z> = —Relfj(2)] = 5 - Y —E—. (= 5 (7.215)

2 —
For k # n, let uy, == (;\;ﬁﬂn) and ¥ (uy) = (1+u 2. Then, P (ug) = (::4—13)3‘
Note that, in the present case,

)22 2
0 <y < (L) n* ( n ) ,
Hence, for any n < % with C' large and k # n, u; € (0,1/2].
Hence, 1(uy) is decreasing and % =1 (%) < Y(ug) < (0) =
Therefore, there exists a numeric constant y s.t.

1
o <s(y) < % (7.2.16)

pn?
(7.2.15) and (7.2.16) yield that

0 Co(éL)z
_ a—ylme(Z) > o

[
—52 (7.2.17)

for all n < EL with C7 = C1(a, g, p) large enough.

Hence, in the present case, Imfy(z) is decreasing in y. As a result, the function fr(2) is
injective on EF and |f}(z)| > [Re[f'(2)]
Besides, on E'F,

|Nn2

Imfy(2) > Imfr (N, —iA,) = Imfy(E) (7.2.18)
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and
2
Imfr(2) <Imfg <)\ — zg—L) Imfr(F) (7.2.19)
anel ag _ L 1
-T2 L 3 3 T2~ o
n el k;én (M — )2 + (!2)2 n el

By symmetry, we have the same conclusion for the image of GH under fr,.

To sum up, the images of ED,CH, EF, FG,GH under f; stay below the horizontal y =
—% in the complex plane with some positive constant C'. Hence, the claim follows. O]

7.2.2 Resonances in 0/ and ('

First of all, all sides of the rectangle Q% are included in horizontal and vertical segments
of . Hence, Lemma 7.2.1 still hold for %, We will prove the existence and uniqueness

of rescaled resonances in €2,.

Theorem 7.2.6. Pick n < % with n > 0 small. Let zg = 5\n+1 — S\n and Q% be the
rectangle [S\n + Ay, 5\n+1 — Ay 41 [—g, 0] in Figure 7.2.
Then, fr, is bijective from Qi on fr.(Q%) and |f}(2)

rescaled resonance z, in ), which satisfies

] pe nQ Moreover, there exists a unique

n?

|ImZz,| < I
Proof of Theorem 7.2.6. Let 7, be the boundary of Q%
It’s easy to check that, the monotonicity and the estimates we made for the real and
imaginary part of f1(z) and |f] ()| on AB, BC', AD in Lemma 7.2.2 still hold for A; By,
A1D1, B1Cq of the contour 4,. Now, we study the image of C1 Dy under fr. Let z =
z+ iy € C1Dy with & € [\, + Ap, A1 — Ap] and y = —Z—E
Note that, in the present case, A, > g Hence,|>\k — x| > |y| for all k. Moreover, for
k#mn,n+1, |\, —z| = n>> |y|. Then, since (7.2.8), we have

Z :

2

— n
k;ﬁn n+1 k x

for all z € C1D;.

Hence, Refr(z) is still strictly increasing in  on C D;. Finally, we compute the magnitude
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of Ime(Z) on OlDl.

1 1
—Imfr(z) > —Imf, 1(2) < |y ((Xn 2+ * g1 — )2 + y2)

| 1
R oy R I (7.2.20)

Hence, Imf7,(2) < _s%' Then, using the same argument as in Lemmata 7.2.2 and 7.2.3,

we infer that fy is bijective from Q) on fr,(Q%). Moreover, thanks to (7.2.20), we deduce
that the point — eﬂz(EO) belongs to f L(Q%) Hence, there exists a unique rescaled resonance

in Q;L [l

Finally, we show that, there are no rescaled resonances in R’

Theorem 7.2.7. Pick 0 < 61 < Xy and £ small, fizxed numbers.

Let Ey € (—2,2) be the left endpoint of the ith band B; of Sz. Let (X))}, be (distinct)
etgenvalues of Hy, in B;.

Let Q0 be the rectangle [0, Ny — 01] + i [—6%, O} in Figure 7.3.

Then, f1, is bijective from Q' on fr(Q) and |f}(z)| > ¢ > 0. Moreover, f(2) does not

. . —i0(Eg) . ;
contain the point —~5—, hence, there are no resonances in €)'

Proof of Theorem 7.2.7. Note that if Ey is an eigenvalue of Hy, for L large i.e., Fy = )\6,
we have R’ = (). Let’s assume now that Ey is not an eigenvalue of Hy, for L large.

First of all, we will check that the rescaled resonance equation (7.0.1) in ©° can be replaced
by fr(z) = —eimL(EO)

Indeed, along the segment A3Bs, fr(z) is real. Along B3C3, |fr(2)| is big. Along C3Ds,
IIm f7,(z)| is big. Hence, to prove Lemma 7.2.1 for ', it suffices to check that

1
f2(2)] 2 on AsDs

Put z =iy € A3Ds with 0 > y > —i. Assume that )\}; > FEy + 21 with g1 =< €2 for all
k > eL and )\}; € B;. Then, by Lemma 7.1.1, we have

eL X
ai \i 1
RefL(z) = #JFO(—). 7.2.21
H) kzzg (A1)? + 92 e1l ( )

For any \, ¢ B;, |5\k,| = L%\, — Ey| 2 L2. On the other hand, if \;, € B;, we have A, # Ey
and |\p| = L2 \y — Eo| > L2\, — Eo| 2 1. Hence, |\g| > &> |y| for all \. On the other
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hand, \i > 0 for all \i € B;. Consequently,

erzz—fx %xl. (7.2.22)
k

k<eL k<eL "k k=1
The estimates (7.2.21) and (7.2.22) yield Ref7,(2) =< 1 on A3D3. Hence, Lemma 7.2.1 holds
true for Q7.
Next, we will study the image of the contour A3B3C3D3 under fr,.
On A3Bs, fr(z) is real and strictly increasing. Hence

L
— < fr(z) < 7.2.23
25, S ZAk_“gl (72:23)
k=0
where C' is a positive constant.
L

Thanks to Lemma 7.1.1 and (7.2.22), it is easy to see that Z 4 — 1, Similarly, we have

L - ~; el ~i

ag ag ap, < 1 > 1
;Ak—)\%)+51 01 kz_;/\}g—)\fﬂr(h e1L 01

Hence, f.(z) < 1 on the interval AsBs.
Next, we consider the segment A3Ds. Since [\;| > 1> |y| for all A, € Xy, we have

L _ 1—- % L
0 k A2 k
a—ylme( z) = Relf} (2 Zp o2 ZF (7.2.25)
k=0 "'k [1 + i—J k=0 "'k
k
where z = iy with 0 > y > _ELL‘
We will show that, for all z = = + iy € Q,
L -
a
> = 1. (7.2.26)
k=0 ()\k - x)z + y2

Indeed, since ]Xk—m\ > |y| for all z = x+iy € Q¥ and all A\, € X7z, we have (Sxk—x)z—i—yQ =
(A, — )%, Then, argument as in (7.2.22), (7.2.24), we have (7.2.26) follow.
Consequently, Im f7,(z) is strictly increasing on A3D3 and |f] ()| 2 1 on AzDs.

Now, we give estimates on the real and imaginary parts of fr(z) on AsDs.

. L
0> Imfy(2) > Imfr(Ds) = Im/fr, (—giL) = —giL (Z %) = _giL. (7.2.27)
k=0 "k
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Besides, as we proved before, Refr(z) < 1 on A3Ds.
Similarly, we have the same conclusion for f7,(z) on BsCs.
Finally, we study fr, on C3D3. Let z € C3D3, 2 = x + iy where x € [0,5\6 — 61] and

Using the equation (7.2.8), we can check easily that Re[f](z)] is bigger than a positive

constant on C3D3. Hence, Refr(z) is strictly increasing in x. Consequently, on C3Ds,
1 < Refr(D3) < Refr(z) <Refr(Cs) < 1. (7.2.28)

Finally, we compute the magnitude of Imf;(z). For z = = + iy € C3D3, (7.2.26) yield

L -
Imfr(z) =y (Z o Z’;Q " y2> = —EiL. (7.2.29)

k=0

To sum up, fr, is bijective from Q' to fL(2) and |f}(z)| 2 1 for all z € Q. Moreover,
T fL@)

which implies that there are no resonances in ' O

there exists a positive constant ¢ such that dist(0, fr, (QZ ) > c. Hence, —



APPENDIX

DETERMINANT OF MATRICES A, A IN
CHAPTER 4

Compute the determinant of matriz Ag in (4.2.51). Put Ay = (a;;), we'll give here some
details of computing the determinant of Ag by hand (A mathematical software like Maple
or Mathematica might be useful for checking the final result of this computation).
First, expand this determinant by its sixth and last column and then by its first column
to get

‘ det A0| = cun_2| det Bo|

where By is the 7 x 7 matrix defined by

( 1 ~1 0 0 -1 1 0
0 1 -1 0 0o -1 1
—Wp—1 Wp_1+wn—F —Wn, 0 0 0 O
FE
0 Vo 0 0 0O -1 0
0 —Wn Wn, + Wn+1 — E —Wn+1 0 0
0 W, Wntl — Wn —wpt1 0 E'
E
— 0 0 0 -1 0 O
W /

Now, we compute the determinant of By.
Take the sixth row minus the fifth row and take the first row minus the last row. Next,

multiply the second row by E’ and take it minus the sixth row. Finally, expand the

129
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determinant of By by the forth, the fifth and the last column to get
| det A()| = wn_zwn+1| det O()|

where Cj is the 4 X 4 matrix defined by

E
1-— o -1 0 1
0 E' — 2w, —F—-F +2w, —F
—Wp—1 Wp-1+wn—F —Wn, 0
E
0 Vo 0 -1

Finally, by an explicit computation for the determinant of Cjy, we obtain that

4F
| det Ag| = FlE — F'|wp—ownt1

E’+E‘
Wy, — .

4

Compute the determinant of matriz Ay in (4.2.32). The determinant of Ay
can be computed as follows: First, expand this determinant by its sixth and last column
and then by its fifth and first column to get

| det Aj| = wp—2wp+1| det By

where Bj is the 6 x 6 matrix defined by

( 1 —1 0 1 -1 0 \
0 1 -1 0 -1 1
—Wp—] Wpe1t+wp—F —w, 0 0 0
Wn—1 Wn — Wn—1 —w, 0 —F
0 0 E 0 0 1
El
E
o 0 0O -1 0 0

Second, take the first row of matrix B plus its last row and take the second row plus the

fifth row, then expand the determinant of B; by its forth and sixth column to obtain

‘ det A1| = wn,gwnH] det 01|
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where (' is the following 4 x 4 matrix

E
1—— -1 0 -1
B
E
0 1 -1+ Vol -1
—Wp—1 Wp1t+twy, —F —Wn 0
Wn—1 Wn — Wn—1 —Wn —F'

Finally, by an explicit computation for the determinant of the matrix C7, we infer that

(E— E')?

4F
| det A1 = —wn—2wni1 [Wn-1wn — ——

El
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