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professionnel que personnel pendant plus de trois ans. Sans eux, je ne serais certainement
pas en mesure d’atteindre mon objectif. Je vais garder dans mon cœur tout le meilleur
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de ma famille.
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Résumé

De nos jours, avec l’abondance croissante de données de très grande taille, les problèmes
de classification de grande dimension ont été mis en évidence comme un challenge
dans la communauté d’apprentissage automatique et ont beaucoup attiré l’attention des
chercheurs dans le domaine. Au cours des dernières années, les techniques d’apprentissage
avec la parcimonie et l’optimisation stochastique se sont prouvées être efficaces pour ce
type de problèmes. Dans cette thèse, nous nous concentrons sur le développement des
méthodes d’optimisation pour résoudre certaines classes de problèmes concernant ces deux
sujets. Nos méthodes sont basées sur la programmation DC (Difference of Convex func-
tions) et DCA (DC Algorithm) étant reconnues comme des outils puissants d’optimisation
non convexe.

La thèse est composée de trois parties. La première partie aborde le problème de la
sélection des variables. La deuxième partie étudie le problème de la sélection de groupes
de variables. La dernière partie de la thèse liée à l’apprentissage stochastique.

Dans la première partie, nous commençons par la sélection des variables dans le problème
discriminant de Fisher (Chapitre 2) et le problème de scoring optimal (Chapitre 3),
qui sont les deux approches différentes pour la classification supervisée dans l’espace
de grande dimension, dans lequel le nombre de variables est beaucoup plus grand que le
nombre d’observations. Poursuivant cette étude, nous étudions la structure du problème
d’estimation de matrice de covariance parcimonieuse et fournissons les quatre algorithmes
appropriés basés sur la programmation DC et DCA (Chapitre 4). Deux applications en
finance et en classification sont étudiées pour illustrer l’efficacité de nos méthodes.

La deuxième partie étudie la ℓp,0-régularisation pour la sélection de groupes de variables
(Chapitre 5). En utilisant une approximation DC de la ℓp,0-norme, nous prouvons que le
problème approché, avec des paramètres appropriés, est équivalent au problème original.
Considérant deux reformulations équivalentes du problème approché, nous développons
différents algorithmes basés sur la programmation DC et DCA pour les résoudre. Comme
applications, nous mettons en pratique nos méthodes pour la sélection de groupes de
variables dans les problèmes de scoring optimal et d’estimation de multiples matrices de
covariance.

Dans la troisième partie de la thèse, nous introduisons un DCA stochastique pour des
problèmes d’estimation des paramètres à grande échelle (Chapitre 6) dans lesquelles la
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4 Résumé

fonction objectif est la somme d’une grande famille des fonctions non convexes. Comme
une étude de cas, nous proposons un schéma DCA stochastique spécial pour le modèle
log-linéaire incorporant des variables latentes.

Abstract

These days with the increasing abundance of data with high dimensionality, high dimen-
sional classification problems have been highlighted as a challenge in machine learning
community and have attracted a great deal of attention from researchers in the field. In
recent years, sparse and stochastic learning techniques have been proven to be useful for
this kind of problem. In this thesis, we focus on developing optimization approaches for
solving some classes of optimization problems in these two topics. Our methods are based
on DC (Difference of Convex functions) programming and DCA (DC Algorithms) which
are well-known as one of the most powerful tools in optimization.

The thesis is composed of three parts. The first part tackles the issue of variable selection.
The second part studies the problem of group variable selection. The final part of the
thesis concerns the stochastic learning.

In the first part, we start with the variable selection in the Fisher’s discriminant prob-
lem (Chapter 2) and the optimal scoring problem (Chapter 3), which are two different
approaches for the supervised classification in the high dimensional setting, in which the
number of features is much larger than the number of observations. Continuing this study,
we study the structure of the sparse covariance matrix estimation problem and propose
four appropriate DCA based algorithms (Chapter 4). Two applications in finance and
classification are conducted to illustrate the efficiency of our methods.

The second part studies the ℓp,0 regularization for the group variable selection (Chapter
5). Using a DC approximation of the ℓp,0-norm, we indicate that the approximate problem
is equivalent to the original problem with suitable parameters. Considering two equiv-
alent reformulations of the approximate problem we develop DCA based algorithms to
solve them. Regarding applications, we implement the proposed algorithms for group fea-
ture selection in optimal scoring problem and estimation problem of multiple covariance
matrices.

In the third part of the thesis, we introduce a stochastic DCA for large scale parameter
estimation problems (Chapter 6) in which the objective function is a large sum of non-
convex components. As an application, we propose a special stochastic DCA for the
log-linear model incorporating latent variables.



PHAN Duy Nhat
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2008-2009 Master 1 en Mathématiques, Ecole normale supérieure de Hanoi,
Vietnam.
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Notation

Throughout the thesis, we use uppercase letters to denote matrices, and lowercase letters
for vectors or scalars. Vectors are also regarded as matrices with one column. The table
below summarizes some of the notation used in the thesis.

R set of real numbers
R+ set of nonnegative real numbers
R++ set of positive real numbers
R

n set of real column vectors of size n
R

m×n set of real matrices of size m - by - n
R

n
+ set of nonnegative real column vectors of size n

R
n
++ set of positive real column vectors of size n

In identity matrix of size n

‖ · ‖p ℓp-norm (0 < p <∞), ‖x‖p = (
∑n

i=1 |xi|p)1/p, x ∈ R
n

‖ · ‖ vector ℓ2-norm/Euclidean norm, ‖x‖ = (
∑n

i=1 |xi|2)1/2, x ∈ R
n

matrix ℓ2-norm/spectral norm, ‖X‖ = maxu∈Rn,‖u‖=1 ‖Xu‖, X ∈ R
m×n

‖ · ‖0 ℓ0-‘norm’, ‖x‖0 = |{i : xi 6= 0}|, ‖X‖0 = |{(i, j) : Xij 6= 0}|
‖ · ‖F Frobenius norm, ‖X‖F = (

∑m
i=1

∑n
j=1X

2
ij)

1/2, X ∈ R
m×n

〈 , 〉 scalar product, 〈X, Y 〉 =∑m
i=1

∑n
j=1XijYij, X, Y ∈ R

m×n

Xij element located at the position (i, j) of X
XIJ submatrix of X with row (resp. column) indices in I (resp. J)
XT transpose of a matrix X , (XT )ij = Xji

|X| absolute of X , |X|ij = |Xij| for all (i, j)
sgn(X) matrix of signs of X , (sgn(X))ij = sgn(Xij) = −1 if Xij < 0, 1 if Xij > 0, and 0

otherwise
diag(x) diagonal matrix whose the main diagonal is the vector x
λmin(X) the smallest eigenvalue of X
λmax(X) the largest eigenvalue of X
X−1 inverse of the matrix X
det(X) determinant of the matrix X
tr(X) trace of the matrix X ∈ R

n×n, tr(X) =
∑n

i=1Xii
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X ◦ Y Hadamard product between matrices X and Y , (X ◦ Y )ij = XijYij
X ⊗ Y Kronecker product between matrices X and Y
X ≻ 0 X is symmetric positive definite
X � Y Y −X is positive semi-definite matrix (all eigenvalues are nonnegative)
(x)+ positive part of x, (x)+ = x if x > 0 and 0 otherwise
S(X, Y ) soft-thresholding operator, S(X, Y )ij = sgn(Xij) (|Xij| − Yij)+
χC(·) the indicator function of C, χC(x) = 0 if x ∈ C and +∞ otherwise
∇f(x) the gradient of f at x
∇2f(x) the Hessian of f at x
∂f(x) the subdifferential of f at x



Introduction générale

Cadre général et nos motivations

L’émergence d’Internet ainsi que la croissance rapide de la science et de la technologie au
cours de ces dernières années ont stimulé l’énorme volume des ressources d’informations
disponibles, et il est encore en croissance à un rythme incroyablement rapide. Sans
surprise, nous somme confrontés à l’immense quantité de données généralement appelées
Big Data. Ainsi, les méthodes traditionnelles d’apprentissage et de fouille de données
(Machine Learning and Data Mining - MLDM) deviennent inefficaces pour le traitement
de ce genre de données. D’où, il est absolument nécessaire de développer des méthodes
efficaces et robustes.

Dans cette thèse, nous nous concentrons sur deux challenges en MLDM dans le contexte
du big data: apprentissage avec la parcimonie sur des données de très grande dimensions
et apprentissage stochastique sur une énorme quantité de données. L’apprentissage avec
la parcimonie permet d’avoir une meilleure interprétation et de réduise ”overfitting” en
supprimant les redondantes variables. Pour la conception de modèles d’apprentissage,
la modélisation parcimonieuse est basée sur la norme zéro (la norme zéro d’un vecteur
est définie comme le nombre de ses termes non nulles). C’est la façon la plus naturelle
pour aborder la sélection des variables en MLDM, mais le problème d’optimisation corre-
spondant est NP-difficile. C’est pourquoi, dans ces travaux, les problèmes d’optimisation
incluent des doubles difficultés. En effet, la première est de savoir comment traiter la
norme zéro et la seconde est causée par la non-convexité des problèmes originaux. La
difficulté de la norme zéro peut être surmontée par son approximation via une fonction
DC (Difference of Convex functions). Le problème résultant est encore difficile, mais il
possède des propriétés intéressantes et peut être ainsi résolu par les méthodes basées sur
l’optimisation DC. En outre, lorsque les données possèdent certaines structures de groupe,
nous sommes naturellement intéressés à la sélection de groupes importants de variables
plutôt que des individus. La régularisation générale est proposée pour obtenir la parci-
monie groupée. Egalement, la difficulté de cette régularisation peut être surmontée en
utilisant une approximation DC appropriée, le problème résultant est donc un problème
d’optimisation DC. Enfin, la présence de techniques d’optimisation stochastiques est jus-
tifié être efficaces en MLDM pour résoudre des problèmes avec un grand nombre de points
de données d’entrâınement. Mais le véritable challenge est des problèmes d’estimation des
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paramètres non-convexes dans lesquelles la fonction objectif est la somme d’une grande
famille des fonctions DC. Par conséquent, DCA stochastique est introduite afin d’obtenir
un faible coût de calcul à chaque itération.

Sur le plan algorithmique, la thèse a proposé une approche unifiée, fondée sur la program-
mation DC et DCA, des outils puissant d’optimisation non convexe qui connâıt un grand
succès, au cours de deux dernières décennies, dans la résolution de nombreux problèmes
d’application dans diverses domaines de sciences appliquées, en particulier en MLDM. De
nombreuses expérimentations numériques sur différents types de données (biologie, im-
age, finace, ...) réalisées dans cette thèse ont prouvé l’efficacité, la scalabilité, la rapidité
des algorithmes proposés et leur supériorité par rapports aux méthodes standards.

La programmation DC et DCA considèrent le problème DC de la forme

α = inf{f(x) := g(x)− h(x) : x ∈ R
n} (Pdc),

où g et h sont des fonctions convexes définies sur Rn et à valeurs dans R ∪ {+∞}, semi-
continues inférieurement et propres. La fonction f est appelée fonction DC avec les
composantes DC g et h, et g − h est une décomposition DC de f . DCA est basé sur la
dualité DC et des conditions d’optimalité locale. La construction de DCA implique les
composantes DC g et h et non la fonction DC f elle-même. Or chaque fonction DC admet
une infinité des décompositions DC qui influencent considérablement sur la qualité (la
rapidité, l’efficacité, la globalité de la solution obtenue,...) de DCA. Ainsi, au point de vue
algorithmique, la recherche d’une ”bonne” décomposition DC et d’un ”bon” point initial
est très importante dans le développement de DCA pour la résolution d’un programme
DC.

L’utilisation de la programmation DC et DCA dans cette thèse est justifiée par de multiple
arguments (Pham Dinh and Le Thi, 2014):

– La programmation DC et DCA fournissent un cadre très riche pour les problèmes de
MLDM: MLDM constituent une mine des programmes DC dont la résolution appro-
priée devrait recourir à la programmation DC et DCA. En effet la liste indicative (non
exhaustive) des références dans Le Thi (Website) témoigne de la vitalité la puissance
et la percée de cette approche dans la communauté de MLDM.

– DCA est une philosophie plutôt qu’un algorithme. Pour chaque problème, nous pou-
vons concevoir une famille d’algorithmes basés sur DCA. La flexibilité de DCA sur le
choix des décomposition DC peut offrir des schémas DCA plus performants que des
méthodes standard.

– L’analyse convexe fournit des outils puissants pour prouver la convergence de DCA dans
un cadre général. Ainsi tous les algorithmes basés sur DCA bénéficient (au moins) des
propriétés de convergence générales du schéma DCA générique qui ont été démontrées.

– DCA est une méthode efficace, rapide et scalable pour la programmation non convexe.
A notre connaissance, DCA est l’un des rares algorithmes de la programmation non
convexe, non différentiable qui peut résoudre des programmes DC de très grande dimen-
sion. La programmation DC et DCA ont été appliqués avec succès pour la modélisation
DC et la résolution de nombreux et divers problèmes d’optimisation non convexes dans
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différents domaines des sciences appliquées, en particulier en MLDM (voir par exemple
la liste des références dans Le Thi (Website)).
Il est important de noter qu’avec les techniques de reformulation en programmation
DC et les décompositions DC appropriées, on peut retrouver la plupart des algorithmes
existants en programmation convexe/non convexe comme cas particuliers de DCA.

En particulier, pour la communauté de MLDM, les méthodes très connus comme
Expectation–Maximisation (EM) (Dempster et al., 1977), Succesive Linear Approxi-
mation (SLA) (Bradley and Mangasarian, 1998), ConCave–Convex Procedure (CCCP)
(Yuille and Rangarajan, 2003), Iterative Shrinkage-Thresholding Algorithms (ISTA)
(Chambolle et al., 1998) sont des versions spéciaux de DCA.

Nos contributions

La thèse vise à développer de nouveaux modèles et méthodes pour cinq classes de
problèmes difficiles et importants en MLDM: analyse discriminante linéaire de Fisher
parcimonieuse, scoring optimal parcimonieuse, estimation de matrice de covariance parci-
monieuse, sélection de groupes de variables et des applications dans scoring optimal et
estimation de matrices de covariance, estimation des paramètres du modèle à variables
latentes. Nous commençons par décrire brièvement les principales réalisations de la thèse.

Dans le premier temps, nous considérons le problème de la classification supervisée
dans l’espace de grande dimension, dans lequel le nombre de variables est beaucoup
plus grand que le nombre d’observations. Dans de nombreuses applications telles que
la recherche d’information, la reconnaissance faciale et l’analyse des microarrays, nous
rencontrons souvent ce genre de problème. Parmi plusieurs méthodes de classification
dans la littérature, l’analyse discriminante linéaire (LDA) est considérée comme l’une des
méthodes les plus populaires en raison de son avantage de la réduction de dimension.
L’objectif principal de LDA est de trouver une transformation linéaire qui distingue au
mieux les différentes classes. La classification est alors effectuée dans l’espace transformé
en utilisant des mesures de distance. Il existe trois approches différentes pour aborder
LDA, qui sont basées sur la résolution du modèle normal, problème discriminant de Fisher
et le problème de scoring optimal, respectivement. Nous développons donc une nouvelle
approche pour la sélection des variables pour LDA basée sur le problème discriminant
de Fisher et la norme zéro. Pour aborder la norme zéro, nous étudions les approches
d’approximation DC. Parmi plusieurs fonctions induisant de la parcimonie existantes,
nous utilisons le Capped-ℓ1 et la fonction exponentielle concave par morceaux. Le choix
du Capped-ℓ1 est motivé par ses avantages tant sur le plan théorique qu’algorithmique.
De plus, la fonction exponentielle concave par morceaux a été montrée pour être efficace
via des résultats numériques dans de nombreux travaux. Les problèmes résultants sont
formulés sous forme de programmes DC, puis quatre shémas de DCA sont proposés. Les
résultats expérimentaux sur les deux données réelles et simulées démontrent l’efficacité
des algorithmes proposés par rapport aux certaines méthodes standards.

Le deuxième problème abordé dans cette thèse est la sélection des variables dans le
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scoring optimal en utilisant la régularisation ℓ2+ℓ0, appelé le problème de scoring optimal
parcimonieuse (SOS). La résolution de SOS comprend des doubles difficultés. La première
est la façon de traiter la norme zéro et la seconde est causée par la non-convexité du
problème original de scoring optimal. La difficulté de la norme zéro est surmontée en
utilisant deux approximations DC. Les problèmes d’optimisation résultants sont encore
difficiles, mais ils possèdent des propriétés intéressantes: quand wk est fixé, la solution
optimale du problème par rapport à la variable θk peut être calculée explicitement. Pour
chaque θk fixé, nous sommes confrontés à un programme DC par rapport à la variable
wk, donc nous sommes suggérés d’utiliser des schémas alternatifs basés sur DCA pour les
résoudre. Nous prouvons que les principaux algorithmes convergent vers un point critique
des problèmes approchés. Les performances des algorithmes proposés sont soigneusement
examinées en les comparant avec sept méthodes standards sur tous les deux données
simulées et réelles de grande dimension.

Toujours dans le cadre de la sélection des variables, nous considérons le troisième problème
- estimation de matrice de covariance parcimonieuse (SCME). L’objectif est d’estimer une
matrice de covariance parcimonieuse sur la base d’un échantillon de vecteurs Gaussiens.
Beaucoup d’analyses statistiques de données de grande dimension exige l’estimation d’une
matrice de covariance ou son inverse, telles que la gestion de portefeuille et de l’évaluation
des risques, l’analyse de l’indépendance et des relations d’indépendance conditionnelle en-
tre les composants dans les modèles graphiques, analyse en composantes principales, et
ainsi de suite. Le Capped-ℓ1 et la fonction exponentielle concave par morceaux sont
choisis de nouveau pour la modélisation parcimonieuse, cependant nous sommes toujours
confrontés à la difficulté de la non-convexité de la fonction log-vraisemblance négative.
Ainsi, nous proposons deux formulations DC du problème approché SCME basé sur deux
décompositions DC de sa fonction objectif. Le premier résultat est obtenu à partir d’une
décomposition DC naturelle tandis que le second est introduit pour exploiter de beaux
effets de décompositions DC. La complexité des deux schémas DCA correspondantes est
sensiblement différente. Selon nos expériences numériques, le rapport de gain en temps
de calcul entre les deux DCA est de 44 fois. En appliquant DCA à deux formulations
DC avec deux approximations, nous avons alors quatre algorithmes basés sur DCA pour
le problème approché SCME. Les résultats d’analyse de convergence spéciale de nos al-
gorithmes sont fournis. En outre, nous considérons deux applications importantes du
problème SCME dans nos expériences, qui sont respectivement l’analyse discriminante
quadratique en utilisant des matrices de covariance parcimonieuses estimées par les algo-
rithmes proposés et le problème d’optimisation de portefeuille.

Le quatrième problème abordé dans la thèse est la sélection de groupes de variables. La
nécessité de sélectionner des groupes de variables se pose dans de nombreux domaines
d’application tels que l’apprentissage, le statistique, la biologie computationnelle, le traite-
ment du signal, et d’autres domaines connexes. Nous étudions la ℓp,0-régularisation pour
obtenir la parcimonie groupée. En utilisant une approximation DC approprié du ℓp,0-
norme, nous indiquons que le problème approché est équivalent au problème original avec
les paramètres appropriés. En considérant deux reformulations équivalentes du problème
approché, nous développons des algorithmes basés sur DCA pour les résoudre. Lorsque
p = 1 (resp. p = 2), nos algorithmes comprennent un algorithme de ℓ1 perturbé (resp.
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algorithme de ℓ2,1 perturbé) et un algorithme de ℓ1 repondéré (resp. algorithme de ℓ2,1
repondéré). Il se trouve que, parmi les ℓp,0-régularisations, ℓ1,0 est la régularisation la
plus intéressante avec plusieurs avantages dans tous les deux aspects théoriques et com-
putationels. En ce qui concerne les applications, nous appliquons les algorithmes pro-
posés à la sélection de groupes de variables dans les problèmes de scoring optimal et
estimation de matrices de covariance. Dans la première application, la parcimonie est
obtenue en utilisant la ℓp,0-régularisation qui sélectionne les mêmes variables dans tous
les vecteurs discriminants. Les vecteurs discriminants parcimonieux résultant fournissent
une représentation de faible dimension plus interprétable des données. Dans la seconde
application, les matrices de covariance partagent certaines structures communes telles
que les emplacements ou les poids des éléments non nuls, nous combinons la ℓ0-norme et
la ℓp,0-norme pour obtenir la parcimonie sur chaque matrice de covariance et à travers de
multiples matrices de covariance, respectivement.

Finalement, nous analysons et appliquons le technique stochastique basé sur la program-
mation DC et DCA aux problèmes d’estimation des paramètres à grande échelle dans
lesquelles la fonction objectif est la somme d’une grande famille des fonctions DC. A
chaque itération, nous utilisons seulement un petit sous-ensemble des fonctions DC et
exécutons une itération du programme DC correspondante. Comme une application,
nous étudions la structure du modèle log-linéaire latent et proposons un schéma DCA
stochastique spécial dans lequel la solution à chaque sous-problème convexe peut être
explicitement calculée. Nous également étudions la programmation DC et DCA pour
résoudre directement le modèle log-linéaire latent. Les expériences numériques montrent
que nos algorithmes proposés offrent une bonne performance.

Organisation de la thèse

La thèse se compose en sept chapitres. Le premier chapitre décrit de manière succincte la
programmation DC et DCA. Il présente les outils théoriques et algorithmiques servant des
références aux autres chapitres. Les cinq chapitres suivants sont divisés en trois parties:
la première partie (Chapitres 2, 3 et 4) aborde le problème de la sélection des variables.
Plus précisément, nous présentons les approches basées sur DCA pour la sélection des
variables dans le problème discriminant de Fisher (Chapitre 2), le problème de scoring
optimal (Chapitre 3), et le dernier chapitre de cette partie (Chapitre 4) est consacré au
problème d’estimation de matrice de covariance parcimonieuse. Ensuite, la deuxième
partie (Chapitre 5), nous étudions le problème de sélection de groupes de variables et des
applications dans les problèmes de scoring optimal et d’estimation de multiples matrices
de covariance. La dernière partie traite un modèle à variables latentes en introduisant
un DCA stochastique appliqué au modèle log-linéaire incorporant des variables latentes
(Chapitre 6). Chapitre 7 fournit les conclusions et les perspectives de nos travaux.
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Chapter 1

DC programming and DCA

This chapter summarizes some basis concepts and results that will be the groundwork of
the thesis.

DC programming and DCA, which constitute the backbone of nonconvex programming
and global optimization, were introduced by Pham Dinh Tao in their preliminary form in
1985. Important developments and improvements on both theoretical and computational
aspects have been completed since 1993 throughout the joint works of Le Thi Hoai An
and Pham Dinh Tao. In this section, we present some basic properties of convex analysis
and DC optimization and DC Algorithm that computational methods of this thesis are
based on. The materials of this section are extracted from (Le Thi, 1994; Pham Dinh
and Le Thi, 1997; Le Thi and Pham Dinh, 2005).

Throughout this section, X denotes the Euclidean space R
n and R = R ∪ {±∞} is the

set of extended real numbers.

1.1 Fundamental convex analysis

A subset C of X is said to be convex if (1−λ)x+λy ∈ C whenever x, y ∈ C and λ ∈ [0, 1].

Let f be a function whose values are in R and whose domain is a subset S of X . The set

{(x, t) : x ∈ S, t ∈ R, f(x) ≤ t}
is called the epigraph of f and is denoted by epif .

We define f to be a convex function on S if epif is convex set in X×R. This is equivalent
to that S is convex and

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ S, ∀λ ∈ [0, 1]

The function f is strictly convex if the inequality above holds strictly whenever x and y
are distinct in S and 0 < λ < 1.
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The effective domain of a convex function f on S, denoted by domf , is the projection on
X of the epigraph of f

domf = {x : ∃t ∈ R, (x, t) ∈ epif} = {x | f(x) < +∞}

and it is convex.

The convex function f is called proper if domf 6= ∅ and f(x) > −∞ for all x ∈ S.

The function f is said to be lower semi-continuous at a point x of S if

f(x) ≤ lim inf
y→x

f(y)

Denote by Γ0(X) the set of all proper lower semi-continuous convex function on X .

Let ρ ≥ 0 and C be a convex subset of X . One says that a function θ : C 7→ R ∪ {+∞}
is ρ–convex if

θ[λx+ (1− λ)y] ≤ λθ(x) + (1− λ)θ(y)− λ(1− λ)
2

ρ‖x− y‖2

for all x, y ∈ C and λ ∈ (0, 1). It amounts to say that θ − (ρ/2)‖.‖2 is convex on C. The
modulus of strong convexity of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = X , is given by

ρ(θ, C) = sup{ρ ≥ 0 : θ − (ρ/2)‖.‖2 is convex on C}

One say that θ is strongly convex on C if ρ(θ, c) > 0.

A vector y is said to be a subgradient of a convex function f at a point x0 if

f(x) ≥ f(x0) + 〈x− x0, y〉, ∀x ∈ X

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and is denoted
by ∂f(x0). If ∂f(x) is not empty, f is said to be subdifferentiable at x.

We also have notations

dom ∂f = {x ∈ X : ∂f(x) 6= ∅} and range ∂f(x) = ∪{∂f(x) : x ∈ dom ∂f}

Proposition 1.1 Let f be a proper convex function. Then

1. ri(domf) ⊂ dom ∂f ⊂ domf
where ri(domf) stands for the relative interior of domf .

2. If f has a unique subgradient at x, then f is differentiable at x, and ∂f(x) =
{∇f(x)}.

3. x0 ∈ argmin{f(x) : x ∈ X} if and only if 0 ∈ ∂f(x0).
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Conjugates of convex functions

The conjugate of a function f : X 7→ R is the function f ∗ : X 7→ R defined by

f ∗(y) = sup
x∈X
{〈x, y〉 − f(x)}

Proposition 1.2 Let f ∈ Γ0(X). Then we have

1. f ∗ ∈ Γ0(X) and f ∗∗ = f .

2. f(x) + f ∗(y) ≥ 〈x, y〉, for any x, y ∈ X.
Equality holds if and only if y ∈ ∂f(x)⇔ x ∈ ∂f ∗(y).

Polyhedral Functions

A polyhedral set is a closed convex set having form

C = {x ∈ X : 〈x, bi〉 ≤ βi, ∀i = 1, . . . , m},

where bi ∈ X and βi ∈ R for all i = 1, . . . , m.

A function f ∈ Γ0(X) is said to be polyhedral if

f(x) = max{〈ai, x〉 − αi : i = 1, . . . , k}+ χC(x), ∀x ∈ X (1.1)

where ai ∈ X,αi ∈ R for i = 1, . . . , k and C is a nonempty polyhedral set. Notation
χC stands for indicator function of C and is defined by χC(x) = 0 if x ∈ C, and +∞
otherwise. It is clear that dom f = C.

Proposition 1.3 Let f be a polyhedral convex function, and x ∈ domf . Then we have

1. f is subdifferentiable at x, and ∂f(x) is a polyhedral convex set. In particular, if f
is defined by (1.1) with C = X then

∂f(x) = co{ai : i ∈ I(x)}

where I(x) = {i ∈ {1, . . . , k} : 〈ai, x〉 − αi = f(x)}.
2. The conjugate f ∗ is a polyhedral convex function. Moreover, if C = X then

domf ∗ = co{ai : i = 1, . . . , k}

f ∗(y) = inf

{
k∑

i=1

λiαi

∣∣∣
k∑

i=1

λiai = y,

k∑

i=1

λi = 1, λi ≥ 0, ∀i = 1, . . . , k

}

In particular,

f ∗(ai) = αi, ∀i = 1, . . . , k
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Difference of convex (DC) functions

A function f is called DC function on X if it has the form

f(x) = g(x)− h(x), x ∈ X

where g and h belong to Γ0(X). One says that g−h is a DC decomposition of f and g, h
are its DC components. If g and h are in addition finite on all of X then one says that
f = g−h is finite DC function on X . The set of DC functions (resp. finite DC functions)
on X is denoted by DC(X) (resp. DCf (X)).

Remark 1.1 Give a DC function f having a DC decomposition f = g − h. Then for
every θ ∈ Γ0(X) finite on the whole X, f = (g+θ)− (h+θ) is another DC decomposition
of f . Thus, a DC function f has finitely many DC decompositions.

1.2 DC optimization

General DC program

In the sequel, we use the convention +∞− (+∞) = +∞.

For g, h ∈ Γ0(X), a general DC program is that of the form

(P ) α = inf{f(x) = g(x)− h(x) : x ∈ X}

and its dual counterpart

(D) α∗ = inf{h∗(y)− g∗(y) : y ∈ X}

There is a perfect symmetry between primal and dual programs (P ) and (D): the dual
program to (D) is exactly (P ), moreover, α = α∗.

Remark 1.2 Let C be a nonempty closed convex set. Then, the constrained problem

inf{f(x) = g(x)− h(x) : x ∈ C}

can be transformed into an unconstrained DC program by using the indicator function χC,
i.e.,

inf{f(x) = φ(x)− h(x) : x ∈ X}
where φ := g + χC is in Γ0(X).

We will always keep the following assumption that is deduced from the finiteness of α

dom g ⊂ domh and domh∗ ⊂ dom g∗. (1.2)
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Polyhedral DC program

In problem (P ), if one of the DC components g and h is polyhedral function, we call
(P ) polyhedral DC program. This is an important class of DC optimization. It is often
encountered in practice and has worthy properties.

Consider problem (P ) where h is a polyhedral convex function given by

h(x) = max{〈ai, x〉 − αi : i = 1, . . . , k}

By Proposition 1.3, the dual problem (D) has the form

α∗ = inf{h∗(y)− g∗(y) : y ∈ X}
= inf{h∗(y)− g∗(y) : y ∈ co{ai : i = 1, . . . , k}}
= inf{αi − g∗(ai) : i = 1, . . . , k}

Note that, if g is polyhedral convex and h is not, then by considering the dual problem
(D) we have the similar formulation as above since g∗ is polyhedral.

Optimality conditions for DC optimization

A point x∗ is said to be a local minimizer of g − h if x∗ ∈ dom g ∩ domh (so, (g − h)(x∗)
is finite) and there is a neighborhood U of x∗ such that

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U. (1.3)

A point x∗ is said to be a critical point of g−h if it verifies the generalized Kuhn–Tucker
condition

∂g(x∗) ∩ ∂h(x∗) 6= ∅ (1.4)

Let P and D denote the solution sets of problems (P ) and (D) respectively, and let

Pℓ = {x∗ ∈ X : ∂h(x∗) ⊂ ∂g(x∗)}, Dℓ = {y∗ ∈ X : ∂g∗(y∗) ⊂ ∂h∗(y∗)}

Below, we present some fundamental results on DC programming (Pham Dinh and Le Thi,
1997).

Theorem 1.1 i) Transportation of global minimizers: ∪{∂h(x) : x ∈ P} ⊂ D ⊂ domh∗.
The first inclusion becomes equality if g∗ is subdifferentiable in D. In this case
D ⊂ (dom ∂g∗ ∩ dom ∂h∗).

ii) Necessary local optimality: if x∗ is a local minimizer of g − h, then x∗ ∈ Pℓ.

iii) Sufficient local optimality: Let x∗ is a critical point of g−h and y∗ ∈ ∂g(x∗)∩∂h(x∗).
Let U be a neighborhood of x∗ such that (U ∩ dom g) ⊂ dom ∂h. If for any x ∈
U ∩ dom g, there is y ∈ ∂h(x) such that h∗(y)− g∗(y) ≥ h∗(y∗)− g∗(y∗), then x∗ is
a local minimizer of g − h. More precisely,

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U ∩ dom g
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iv) Transportation of local minimizers: Let x∗ ∈ dom ∂h be a local minimizer of g−h. Let
y∗ ∈ ∂h(x∗) and a neighborhood U of x∗ such that g(x)−h(x) ≥ g(x∗)−h(x∗), ∀x ∈
U ∩ dom g. If

y∗ ∈ int(dom g∗) and ∂g∗(y∗) ⊂ U

then y∗ is a local minimizer of h∗ − g∗.

Remark 1.3 a) By the symmetry of the DC duality, these results have their correspond-
ing dual part. For example, if y is a local minimizer of h∗ − g∗, then y ∈ Dℓ.

b) The properties i), iii) and their dual parts indicate that there is no gap between the
problems (P ) and (D). They show that globally/locally solving the primal problem (P )
implies globally/locally solving the dual problem (D) and vice–versa. Thus, it is useful
if one of them is easier to solve than the other.

c) The necessary local optimality condition ∂h∗(x∗) ⊂ ∂g∗(x∗) is also sufficient for many
important classes programs, for example (Le Thi and Pham Dinh, 2005), if h is polyhe-
dral convex, or when f is locally convex at x∗, i.e. there exists a convex neighborhood U
of x∗ such that f is finite and convex on U . We know that a polyhedral convex function
is almost everywhere differentiable, that is it is differentiable everywhere except on a
set of measure zero. Thus, if h is a polyhedral convex function, then a critical point of
g − h is almost always a local solution to (P ).

d) If f is actually convex on X, we call (P) a “false” DC program. In addition, if
ri(domg) ∩ ri(domh) 6= ∅ and x0 ∈ domg such that g is continuous at x0, then 0 ∈
∂f(x0) ⇔ ∂h(x0) ⊂ ∂g(x0) (Le Thi and Pham Dinh, 2005). Thus, in this case, the
local optimality is also sufficient for the global optimality. Consequently, if in addition
h is differentiable, a critical point is also a global solution.

1.3 DC Algorithm (DCA)

The DCA consists in the construction of the two sequences {xk} and {yk} (candidates
for being primal and dual solutions, respectively) which are easy to calculate and satisfy
the following properties:

i) The sequences (g − h)(xk) and (h∗ − g∗)(yk) are decreasing.

ii) Their corresponding limits x∞ and y∞ satisfy the local optimality condition
(x∞, y∞) ∈ Pℓ ×Dℓ or are critical points of g − h and h∗ − g∗, respectively.

From a given point x0 ∈ dom g, the DCA generates these sequences by the scheme

yk ∈ ∂h(xk) = argmin{h∗(y)− 〈y, xk〉 : y ∈ X} (1.5a)

xk+1 ∈ ∂g∗(yk) = argmin{g(x)− 〈x, yk〉 : x ∈ X}. (1.5b)

The interpretation of the above scheme is simple. At iteration k of DCA, we replace the
second component h in the primal DC program by its affine minorant

hk(x) = h(xk) + 〈x− xk, yk〉, (1.6)



33

where yk ∈ ∂h(xk). Then the original DC program reduces to the convex program

(Pk) αk = inf{fk(x) := g(x)− hk(x) : x ∈ X}

that is equivalent to (1.5a). It is easy to see that fk is a majorant of f at xk. Similarly,
by replacing g∗ with its affine minorant

g∗k(y) = g∗(yk−1) + 〈y − yk−1, xk〉, (1.7)

where xk ∈ ∂g∗(yk−1), we lead to the convex problem

(Dk) inf{h∗(y)− g∗k(y) : y ∈ X}

whose solution set is ∂h(xk).

Convergence properties of DCA

Theorem 1.2 Suppose that the sequences {xk} and {yk} are generated by DCA. Then
we have

i) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)−h(xk+1) = g(xk)−h(xk) iff yk ∈ ∂g(xk)∩∂h(xk), yk ∈ ∂g(xk+1)∩∂h(xk+1)
and [ρ(g) + ρ(h)]‖xk+1 − xk‖ = 0. Moreover if g or h are strictly convex then
xk = xk+1.

In such a case DCA terminates at the kth iteration (finite convergence of DCA)

• h∗(yk+1)−g∗(yk+1) = h∗(yk)−g∗(yk) iff xk+1 ∈ ∂g∗(yk)∩∂h∗(yk), xk+1 ∈ ∂g∗(yk+1)∩
∂h∗(yk+1) and [ρ(g∗) + ρ(h∗)]‖yk+1 − yk‖ = 0. Moreover if g∗ or h∗ are strictly
convex, then yk+1 = yk.

In such a case DCA terminates at the kth iteration (finite convergence of DCA).

ii) If ρ(g) + ρ(h) > 0 (resp. ρ(g∗) + ρ(h∗) > 0)) then the series {‖xk+1 − xk‖2 (resp.
{‖yk+1 − yk‖2} converges.

iii) If the optimal value α of problem (P ) is finite and the infinite sequences {xk} and
{yk} are bounded then every limit point x∗(resp. y∗) of the sequence {xk} (resp. {yk}) is
a critical point of g − h (resp. h∗ − g∗).

iv) DCA has a linear convergence for general DC programs.

v) In polyhedral DC programs, the sequences {xk} and {yk} contain finitely many ele-
ments and DCA has a finite convergence. Especially, if h is polyhedral convex and h is
differentiable at x∗, then x8 is a local minimizer of (P ).

DCA’s distinctive feature relies upon the fact that DCA deals with the convex DC com-
ponents g and h but not with the DC function f itself. DCA is one of the rare algorithms
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for nonconvex nonsmooth programming. Moreover, a DC function f has infinitely many
DC decompositions which have crucial implications for the qualities (convergence speed,
robustness, efficiency, globality of computed solutions,...) of DCA. For a given DC pro-
gram, the choice of optimal DC decompositions is still open. Of course, this depends
strongly on the very specific structure of the problem being considered. In order to tackle
the large-scale setting, one tries in practice to choose g and h such that sequences {xk}
and {yk} can be easily calculated, i.e., either they are in an explicit form or their com-
putations are inexpensive. Very often in practice, the solution of (Dk) to compute the
sequence {yk} is explicit because the calculation of a subgradient of h is explicitly ob-
tained by using the usual rules for calculating subdifferential of convex functions. But
the solution of the convex program (Pk), if not explicit, should be achieved by efficient
algorithms well-adapted to its special structure, in order to handle the large-scale setting.

1.4 Special DCA and proximal operator

The general scheme of DCA requires to solve a sequence of the subproblems of the form
(1.5b) that might be not easy to solve. The design of an efficient DCA for a concrete
problem should be based is a special structure. How to exploit the nice effect of DC
decomposition is a crucial question to be studied for each DC program.

Before closing this chapter let us discuss the a special DC decomposition that can be very
efficiently in many practical problems. Consider the convex constrained DC program of
the form

min{f(x) = g1(x) + g2(x)− h(x) : x ∈ C}, (1.8)

where C ⊂ R
n is a convex set and g1, g2, h are convex functions.

We assume that there exists a nonnegative number ρ such that the function ρ
2
‖x‖2−g2(x)

is convex. In many practical problems that ρ exists and can be computed according to
the properties of the function g2. For instance, when g2 is twice continuously differen-
tiable. We now write the problem (1.8) in the form of DC program with the following
decomposition:

ḡ = χC(x) + g1(x) +
ρ

2
‖x‖2,

h̄ =
ρ

2
‖x‖2 − g2(x) + h(x).

The DCA applied to the problem (1.8) with above decomposition can be described as
follows:
SDCA (Special DCA): Let x0 ∈ R

n and set l ← 0.
Repeat
1. Calculate yl ∈ ∂

(
ρ
2
‖.‖2 − g2(.) + h(.)

)
(xl)

2. Calculate xl+1 by solving the convex problem

min{χC(x) + g1(x) +
ρ

2
‖x‖2 − 〈x, yl〉 : x ∈ R

n} (1.9)
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i.e., xl+1 = proxχC+g1
ρ (yl/ρ).

3. l ← l + 1
Until convergence of {xl}.
Here, proxϕρ stands for the proximal operator associated to ϕ defined by

proxϕρ (t) = argmin
x
{ϕ(x) + ρ

2
‖x− t‖2}.

Remark 1.4 i) When g1 ≡ 0, the proximal operator proxχC
ρ (yl/ρ) in the step 3 reduces

to the orthogonal projection PC(y
l/ρ) of yl/ρ on C. For certain cases of C, for example,

box and ball, Algorithm SDCA is greatly less expensive than other algorithms, because
the orthogonal projection on C in these cases is given in explicit form (see Le Thi et al.
(2014b); Pham Dinh and Le Thi (1998); Le Thi and Pham Dinh (1998)).

ii) In many application problems with sparsity-inducing norms, we will have g1(x) =

λ‖x‖1. Hence, the proximal operator prox
χC+λ‖.‖1
ρ (yl/ρ) can be computed by an inexpensive

algorithm. Especially, if C = R
n, xl+1 has a closed form:

xl+1 = S
(
yl/ρ, λ/ρ

)
, (1.10)

where S is a soft-thresholding operator.

iii) From Prop. 1 in Le Thi et al. (2014b), we obtain that ρ
2
‖x‖2− g2(x) is convex if ρ ≥

max{0, λmax(Hg2(x))} for all x ∈ C, where λmax(Hg2(x)) denotes the largest eigenvalue
of the Hessian matrix Hg2(x) of g2 at x.

iv) In practice, when g2 is differentiable and the computation of its gradient is not difficult,
and the proximal operator proxχC+g1

ρ (yl/ρ) can be inexpensively determined, the use of
SDCA is highly recommended.
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Part I

Variable Selection and Classification
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Chapter 2

Sparse Fisher Linear Discriminant
Analysis

Abstract: We consider the supervised pattern classification in the high dimensional setting, in
which the number of features is much larger than the number of observations. We present
a novel approach to the sparse Fisher linear discriminant problem using the ℓ0-norm. The
resulting optimization problem is nonconvex, discontinuous and very hard to solve. We overcome
the discontinuity by using appropriate approximations to the ℓ0-norm such that the resulting
problems can be formulated as DC (Difference of Convex functions) programs to which DC
programming and DC Algorithms (DCA) are investigated. The experimental results on both
simulated and real datasets demonstrate the efficiency of the proposed algorithms compared to
some state-of-the-art methods.

2.1 Introduction

The problem of classifying observations into Q classes (Q ≥ 2) has drawn considerable
attention from researchers in machine learning, as it has been applied in many fields
such as information retrieval or face recognition. In the literature, several notions have
been used to formalize this classification problem. Let X be an n × p data matrix
with observations xi (i = 1, ..., n) on the rows and features on the columns. Denote
ni the number of observations in the class Ci. We assume that the features have been
standardized to have mean 0 and variance 1. To obtain an optimal classification rule, we
need to know the class posterior probabilities Pr(k|x). We suppose that fk(x) is the class-
conditional density in the class k, and let πk be the prior probability of the class k, with

1. This chapter is published under the titles:
[1] Hoai An Le Thi and Duy Nhat Phan. DC Programming and DCA for Sparse Fisher Linear Discrim-
inant Analysis. Neural Computing and Applications (2016), doi: 10.1007/s00521-016-2216-9.
[2] Duy Nhat Phan, Manh Cuong Nguyen and Hoai An Le Thi. A DC Programming Approach for Sparse
Linear Discriminant Analysis. Advanced Computational Methods for Knowledge Engineering, Advances
in Intelligent Systems and Computing, Volume 282, pp. 65-74, Springer (2014).
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∑Q
k=1 πk = 1. Linear discriminant analysis (LDA) performs classification by assuming

that the data within each class are normal distributed.

fk(x) =
1

(2π)p/2|Σw|1/2
exp

{
−1
2
(x− µk)

TΣ−1
w (x− µk)

}
, (2.1)

where µk is the mean vector of the k-th class and Σw is the common within-class covariance
matrix. In practice µk, πk and Σw are unknown, but they can be estimated from the
training data by µk = 1/nk

∑
xi∈Ck

xi, πk = nk/n and

Σw =
1

n

Q∑

k=1

∑

xi∈Ck

(xi − µk)(xi − µk)
T . (2.2)

Various approaches have been presented for solving the classification problem. Among
these methods, Linear Discriminant Analysis (LDA) which was first introduced in Fisher
(1936) is regarded as one of the most popular methods because of its advantage of dimen-
sion reduction. The primary purpose of LDA is to find a linear transformation that best
discriminates between classes. The classification is then performed in the transformed
space using some distance metrics. There are three different approaches to tackle LDA,
which are based on solving the normal model, the Fisher’s discriminant problem and the
optimal scoring problem, respectively (Hastie et al., 1995; Mardia et al., 1979; Hastie
et al., 2009).

For the first approach, the LDA classification rule is obtained by using Bayes’s rule to
estimate the most likely class for a new observation, i.e., the predicted class for a new
observation x is

argmax
k
Pr(k|x), (2.3)

where a simple application of the Bayes’s theorem gives us

Pr(k|x) = fk(x)πk∑Q
l=1 fl(x)πl

. (2.4)

In comparing two classes k and l, it is sufficient to look at the log-ratio:

ln
Pr(k|x)
Pr(l|x) = ln

fk(x)

fl(x)
+ ln

πk
πl

= xTΣ−1
w µk −

1

2
µT
kΣ

−1
w µk + ln πk −

(
xTΣ−1

w µl −
1

2
µT
l Σ

−1
w µl + ln πl

)
. (2.5)

Therefore, the decision rule (2.3) is equivalent to

argmax
k

{
xTΣ−1

w µk −
1

2
µT
kΣ

−1
w µk + lnnk

}
. (2.6)

With the second approach, the main purpose of this method is seeking a low dimensional
projection of the observations such that the between-class variance is large relative to
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the within-class variance, i.e. we seek discriminant vectors w1, ..., wQ−1 that successively
minimize

min
wk∈Rp

{
−wT

k Σbwk : w
T
k Σwwk = 1; wT

k Σwwl = 0, l = 1, .., k − 1
}
, (2.7)

where Σb =
1
n

∑Q
k=1 nkµkµ

T
k is a standard estimate of the between-class covariance matrix.

The problem (2.7) is a generalized eigen problem which has at most Q − 1 non trivial
solutions, since Σb has rank at most Q − 1, and hence at most Q − 1 discriminant
vectors. A classification rule is obtained by computing Xw1, ..., XwQ−1 and assigning
each observation to its nearest centroid in this transformation space. We can use only
the first K ≤ Q− 1 discriminant vectors in order to perform reduced rank classification.

For the last one, the rationality of this method derives from the fact that LDA can also be
re-formulated as a regression problem via optimal scoring. This approach was discussed
in detail by Hastie et al. (1995). Let Y ∈ R

n×Q with Yik = 1 if xi ∈ Ck and 0 otherwise.
To find K discriminant vectors w1, ..., wK, the optimal scoring criterion successively solves
the problem

min
wk,θk

{
||Y θk −Xwk||22

}

subject to
1

n
θTk Y

TY θk = 1; θTk Y
TY θl = 0, l = 1, ..., k − 1,

(2.8)

where θk is a Q-vector of scores.

In this chapter, we are interested in the Fisher’s discriminant problem. To solve the gen-
eralized eigen problem (2.7), it typically requires the within-class covariance matrix Σw to
be nonsingular. However, this requirement is difficult to satisfy when the dimensionality
is high, because the matrix Σw is likely to be singular. In fact, in many applications such
as information retrieval, face recognition and microarray analysis, we often encounter
problems having a small number of observations but a very large number of features. In
such cases, the classical LDA includes two great challenges. The first challenge is the
singularity of the within-class covariance matrix of the features and the second one is the
difficulty in interpreting the classification rule.

Numerous methods have been proposed to overcome the first challenge (see e.g. (Hastie
et al., 1995; Bickel and Levina, 2004; Krzanowski et al., 1995; Xu et al., 2009)). These
approaches use positive definite estimates of the within-class covariance matrix to deal
with the singularity issue. Thus the problem (2.7) becomes

min
wk∈Rp

{
−wT

k Σbwk : w
T
k Σ̃wwk = 1; wT

k Σ̃wwl = 0, l = 1, ..., k − 1
}
, (2.9)

where Σ̃w is a positive definite estimate for the within-class covariance matrix. The
problem (2.9) is equivalent to the following problem (see (Witten and Tibshirani, 2011))

min
wk∈Rp

{
−wT

k Σ
k
bwk : w

T
k Σ̃wwk ≤ 1

}
, (2.10)
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where

Σk
b =

1

n
XTY (Y TY )−

1
2P⊥

k (Y TY )−
1
2Y TX. (2.11)

Here Y ∈ R
n×Q with Yij = 1 if i ∈ Cj and 0 otherwise, P⊥

1 = Ip (identity matrix), and
P⊥
k (k > 1) is an orthogonal projection matrix into the orthogonal space of the space

generated by {(Y TY )−
1
2Y TXwl : l = 1, ..., k − 1}.

For the second challenge, the most suitable approach is feature selection. A sparse classi-
fier leads to easier model interpretation and may reduce overfitting of the training data.
In the literature, there exist a number of works to extend LDA to the high-dimensional
setting in such a way that the resulting classifier involves a sparse linear combination
of the features. We here refer to the notable approaches. One of them is based on
soft-thresholding in order to obtain a sparse classifier (see e.g. Tibshirani et al. (2002,
2003); Guo et al. (2007); Shao et al. (2011)). Several authors use the ℓ1-norm to deal
with sparsity. More precisely, the ℓ1-regularization is added to the objective function of
the optimal scoring problem (2.8) (see e.g. (Grosenick et al., 2008; Leng, 2008; Clem-
mensen et al., 2011)), and/or the Fisher’s discriminant problem (2.10) (Trendafilov and
Jolliffe, 2007; Wu et al., 2009; Witten and Tibshirani, 2011). In particular, Witten and
Tibshirani (2011) proposed a biconvex formulation closely related to the sparse principal
components analysis proposal of Witten et al. (2009). Mai et al. (2012); Cai and Liu
(2011) developed direct approaches for sparse discriminant analysis. Mai and Zou (2013)
showed the connection between and the equivalence of three sparse discriminant analysis
methods proposed in Wu et al. (2009), Clemmensen et al. (2011) and Mai et al. (2012).

A natural way to deal with feature selection in machine learning is using the ℓ0-norm in
the regularization term for the problem (2.10). As a result, we propose the sparse Fisher
linear discriminant (SFLD) problem

min
wk∈Rp

{
−wT

k Σ
k
bwk + λk||wk||0 : wT

k Σ̃wwk ≤ 1
}
, (2.12)

where ||wk||0 denotes the ℓ0-norm of wk, i.e. the number of non-zero elements of vector
wk, and λk is a nonnegative tuning parameter.

Solving (2.12) is a formidable challenge since it is nonconvex, discontinuous and NP-hard.
Optimization methods involving the ℓ0-norm can be divided into three categories accord-
ing to the way to treat the ℓ0-norm: convex approximation, nonconvex approximation
and nonconvex exact reformulation. We refer to Le Thi et al. (2015) for an excellent
review on exact/approximation approaches to deal with the ℓ0-norm. The best known
and widely used convex approximation of ℓ0-norm is ℓ1-norm called Lasso (Tibshirani,
1996). For the problem (2.12), Witten and Tibshirani (2011) replaced the ℓ0-norm with
the ℓ1-norm and applied the minorization-maximization (MM) approach for solving the
resulting problem. This algorithm is in fact a version of difference of convex functions
algorithm (DCA). DC approximation approaches for the ℓ0-norm have been studied ex-
tensively on both theoretical and practical aspects for the problem of feature selection in
SVM (see e.g. (Le Thi et al., 2008, 2009, 2015; Collobert et al., 2006; Neumann et al.,
2005; Ong and Le Thi, 2013b)), and linear regression (see e.g (Chen et al., 2010; Gasso
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et al., 2009)). These works add the ℓ0-norm to a convex function and they only have a dif-
ficulty in treating the ℓ0-norm. In this chapter, solving (2.12) includes double difficulties.
The first is how to treat the ℓ0-norm and the second is caused by the non-convexity of
the original Fisher’s discriminant problem. To tackle the ℓ0-norm we investigate DC ap-
proximation approaches. Among several existing sparse inducing functions we are using
the piecewise linear function (called Capped-ℓ1) and the piecewise exponential concave
function introduced respectively in Peleg and Meir (2008) and Bradley and Mangasarian
(1998). This choice is motivated by the fact that the Capped-ℓ1 has been proved the-
oretically in Le Thi et al. (2015) to be the tightest approximation while the piecewise
exponential function has been showed to be efficient via the numerical results in numer-
ous works (see e.g. (Bradley and Mangasarian, 1998; Le Thi et al., 2008, 2015, 2014c;
Ong and Le Thi, 2013b)). The resulting problems are formulated as DC programs, and
then DCA are applied. We propose two DCA schemes for two different formulations of a
common model to both the approximation functions.

The rest of chapter is organized as follows. In Section 2.2, we illustrate how to apply
DCA to solve the problem (2.12). The numerical experiments are reported in Section 2.3.
Finally, the conclusions are given in Section 2.4.

We are now going to present solution methods based on DC programming and DCA for
solving the SFLD problem (2.12).

2.2 Solution methods via DC programming and

DCA

2.2.1 DC approximations of ℓ0-norm

In this chapter, we consider two DC approximations of the ℓ0-norm. For an α > 0, let
ηα,1 and ηα,2 be the functions given by

ηα,1(x) = 1− e−α|x|, ∀x ∈ R, (2.13)

and

ηα,2(x) = min{1, α|x|}, ∀x ∈ R, (2.14)

respectively. Their graphs are illustrated in Figure 2.1.

The first DC approximation of the ℓ0-norm called the piecewise exponential concave
function (Bradley and Mangasarian, 1998) is defined by

||wk||0 ≈
p∑

i=1

ηα,1(wki). (2.15)
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Figure 2.1: Graphs of approximation functions: Capped-ℓ1 and exponential function

The second DC approximation of the ℓ0-norm is the piecewise linear approximation pro-
posed in Peleg and Meir (2008). It is described as follows.

||wk||0 ≈
p∑

i=1

ηα,2(wki). (2.16)

For simplification, we use the common notation ηα to design both ηα,1 and ηα,2. Then,
the approximations (2.15) and (2.16) are rewritten as follows.

||wk||0 ≈
p∑

i=1

ηα(wki). (2.17)

Using the approximation (2.17), we can reformulate the SFLD problem (2.12) in the form

min

{
F (wk) = −wT

k Σ
k
bwk + λk

p∑

i=1

ηα(wki) : wk ∈ Ω

}
, (2.18)

where Ω =
{
wk ∈ R

p : wT
k Σ̃wwk ≤ 1

}
.

Note that ηα(wki) = ηα(|wki|) ∀wki ∈ R and ηα is increasing concave over [0,+∞], hence
we get another equivalent form of (2.18)

min

{
F̄ (wk, z) = −wT

k Σ
k
bwk + λk

p∑

i=1

ηα(zi) : (wk, z) ∈ Ω1

}
, (2.19)

where Ω1 = {(wk, z) : wk ∈ Ω, |wki| ≤ zi ∀i = 1, ..., p}.
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2.2.2 DCA for solving (2.18)

The approximation ηα can be presented as a DC function (Le Thi et al., 2008; Ong and
Le Thi, 2013b)

ηα(x) = g(x)− h(x), (2.20)

where g(x) = α|x|, h(x) = −1 + α|x|+ e−α|x| if ηα = ηα,1, and h(x) = −1 +max{1, α|x|}
if ηα = ηα,2. Note that the first DC decomposition g(x) is the same for the both ηα,1 and
ηα,2.

Then, the problem (2.18) can be rewritten as follows.

min {F (wk) = G1(wk)−H1(wk) : wk ∈ R
p} . (2.21)

where

G1(wk) := χΩ(wk) + λk

p∑

i=1

g(wki), (2.22)

and

H1(wk) := wT
k Σ

k
bwk + λk

p∑

i=1

h(wki) (2.23)

are clearly convex functions. According to the generic DCA scheme, at each iteration l,
we have to compute a subgradient vl ∈ ∂H1(w

l
k) and then solve the convex program of

the form (Pl), namely
min{G1(wk)− 〈vl, wk〉 : wk ∈ R

p}, (2.24)

For k = 1, , ..., K, DCA for solving (2.21) can be described as below.

DCA1 (DCA for solving (2.21))

Initialization: Let τ be a tolerance sufficient small, set l = 0 and choose w0
k ∈ Ω.

repeat
1. Compute vl ∈ ∂H1(w

l
k)

2. Solve the following convex problem to obtain wl+1
k

min
{
λkα||wk||1 − 〈vl, wk〉 : wT

k Σ̃wwk ≤ 1
}
. (2.25)

3. l ← l + 1.
until ||wl

k − wl−1
k ||2 ≤ τ

(
||wl−1

k ||2 + 1
)
or |F (wl

k)− F (wl−1
k )| ≤ τ

(
|F (wl−1

k )|+ 1
)
.

The implementation of DCA1 requires the computation of vl ∈ ∂H1(w
l
k) in step 1, which

depends on ηα. More precisely, when ηα = ηα,1, h is differentiable, so is h. Thus vl is
computed by

vli =

{
2〈Σk

bi, w
l
k〉+ λkα(1− e−αwl

ki) if wl
ki ≥ 0

2〈Σk
bi, w

l
k〉 − λkα(1− eαw

l
ki) if wl

ki < 0
i = 1, ..., p, (2.26)
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where Σk
bi stands for the ith row of Σk

b . When ηα = ηα,2, v
l is calculated as follows.

vli =

{
2〈Σk

bi, w
l
k〉+ sgn(wki)λkα if α|wl

ki| ≥ 1

2〈Σk
bi, w

l
k〉 otherwise

i = 1, ..., p, (2.27)

where sgn(wki) is the sign of wki, i.e., sgn(wki) = −1 if wki < 0, 1 if wki > 0, and 0
otherwise.

Remark 2.1 1. For solving the convex problem (2.25), we first solve the following
convex problem.

d̂ = arg min
d∈Rp

{
dT Σ̃wd+ λkα||d||1 − 〈vl, d〉

}
. (2.28)

Then, the solution to (2.25) is ŵk = 0 if d̂ = 0 and ŵk = d̂/
√
d̂T Σ̃wd̂ otherwise (see

(Witten and Tibshirani, 2011)).

2. The problem (2.28) can be solved by using DCA (see (Le Thi, 2000)) with special
DC components of its objective function as follows:

G(d) =
µ

2
‖d‖22 + λkα‖d‖1 − 〈vl, d〉,

H(d) =
µ

2
‖d‖22 − dT Σ̃wd,

are convex functions when µ is larger than or equal to the largest eigenvalue of Σ̃w.
At each iteration of this DCA, we can explicitly compute the solution to its convex
subproblem by a soft-thresholding. We also note that the coordinate descent approach
(see (Friedman et al., 2007)) and the alternating direction method of multipliers (see
(Boyd et al., 2011)) can deal with this problem.

3. In fact, when the diagonal estimate of the within-class covarince matrix is used, the
solution to the problem (2.28) is explicitly computed.

4. We observe that the problem (2.25) has ℓ1-perturbed form, hence this DCA scheme
can be seen as ℓ1-perturbed algorithm (see (Le Thi et al., 2015)).

Theorem 2.1 (Convergence properties of DCA1)
(i) DCA1 generates the sequence {wl

k} in Ω such that {F (wl
k)} is decreasing.

(ii) Every limit point w∗
k of the sequence {wl

k} is a critical point of the problem (2.21)

Proof : Observing that Ω is a compact set, (i) and (ii) are direct consequences of
convergence properties of general DC programs. ✷
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2.2.3 DCA for solving (2.19)

We are going to apply DCA to the problem (2.19). This problem can be written as a DC
program

min
{
F̄ (wk, z) = G2(wk, z)−H2(wk, z)

}
, (2.29)

where
G2(wk, z) := χΩ1(wk, z), (2.30)

and

H2(wk, z) := wT
kΣ

k
bwk + λk

p∑

i=1

(−ηα)(zi). (2.31)

DCA applied to (2.29) consist of first calculating a subgradient

(vl, z̄l) ∈ ∂H2(w
l
k, z

l), (2.32)

and then solving the following convex program at the each iteration.

(wl+1
k , zl+1) ∈ argmin

{
G2(wk, z)− 〈vl, wk〉 − 〈z̄l, z〉

}
(2.33)

When ηα = ηα,1, z̄
l is calculated by

z̄li = −λkα exp(−αzli) ∀i = 1, ..., p, (2.34)

and when ηα = ηα,2, we have

z̄li =

{
−λkα if zli ≤ 1/α,

0 otherwise,
∀i = 1, ..., p. (2.35)

We deduce from (2.34) and (2.35) that z̄li ≤ 0 ∀i = 1, ..., p. Thus, the problem (2.33) is
equivalent to 



wl+1

k ∈ arg min
wk∈Ω

{
−〈vl, wk〉 −

p∑
i=1

z̄li|wki|
}

zl+1
i = |wl+1

ki | ∀i.
(2.36)

Hence DCA applied on (2.29) is given by the algorithm below.

DCA2 (DCA for solving (2.29))

Initialization: Let τ be a tolerance sufficient small, set l = 0 and choose (w0
k, z

0) ∈ Ω1.

repeat
1. Compute vl = 2Σk

bw
l
k and z̄li ∈ λk∂(−ηα)(zli) according to (2.34) and (2.35).

2. Solve the following convex problem to obtain wl+1
k

min

{
−〈vl, wk〉 −

p∑

i=1

z̄li|wki| : wT
k Σ̃wwk ≤ 1

}
(2.37)
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3. Compute zl+1
i = |wl+1

ki | ∀i = 1, ..., p.
4. l ← l + 1.

until ||wl
k − wl−1

k ||2 ≤ τ
(
||wl−1

k ||2 + 1
)

or |F̄ (wl
k, z

l) − F̄ (wl−1
k , zl−1)| ≤

τ
(
|F̄ (wl−1

k , zl−1)|+ 1
)
.

Remark 2.2 The problem (2.37) has ℓ1-reweighted form, hence this DCA scheme can be
regarded as ℓ1-reweighted algorithm.

Theorem 2.2 (Convergence properties of DCA2)
(i) DCA2 generates the sequence {(wl

k, z
l)} in Ω1 such that {F̄ (wl

k, z
l)} is decreasing.

(ii) Every limit point (w∗
k, z

∗) of the sequence {(wl
k, z

l)} is a critical point of the problem
(2.29)

Proof : The Theorem is direct consequences of convergence properties of general DC
programs. ✷

2.3 Numerical experiments

We use the SFLD problem for supervised classification problems in high dimension. The
SFLD problem transforms the set of labeled data points in the original space into a
labeled set in a lower-dimensional space and selects relevant features. The classification
rule is obtained by computing Xw1, ..., Xws and assigning each observation to its nearest
centroid in this transformation space, i.e. the predicted class for a test observation x is

argmin
k
||xTW − µT

kW ||22 − 2 ln(nk), (2.38)

where the linear transformation W = [w1, ..., wK ] is computed by DCA1 or DCA2 and
the second term is an adjustment term for unequal class sizes.

2.3.1 Comparative algorithms

We denote by DCA1-PiE and DCA1-Capped-ℓ1 the DCA1 with ηα = ηα,1 and ηα =
ηα,2, respectively. The DCA2 with ηα = ηα,1 and ηα = ηα,2 are denoted by DCA2-PiE
and DCA2-Capped-ℓ1, respectively. We will compare our proposed Algorithms with the
methods proposed in Witten and Tibshirani (2011) (PLDA) and Guo et al. (2007) (RDA).
We also compare with the method proposed in Mai et al. (2012) (DSDA) for the binary
classification problems.
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2.3.1.1 Penalized linear discriminant analysis (PLDA)

PLDA used the ℓ1-norm instead of the ℓ0-norm in the problem (2.12), that is

max
wk∈Rp

{wT
kΣ

k
bwk − λk||wk||1 : wT

k Σ̃wwk ≤ 1}, (2.39)

The problem (2.39) is nonconvex. Witten and Tibshirani (2011) used the MM approach
for finding a local of this problem. In the experiments, the authors used the diagonal
estimate diag(σ2

1 , ..., σ
2
p) for Σ̃w, where σi is the within-class standard deviation for feature

i. The R package penalizedLDA is available from CRAN 2.

2.3.1.2 Shrunken centroids regularized discriminant analysis (RDA)

RDA is based on the same underlying model as LDA (see (Guo et al., 2007)) and it
regularizes the within-class covariance matrix used by LDA

Σ̃w = αΣw + (1− α)Ip, (2.40)

where 0 ≤ α ≤ 1. In order to perform feature selection, one can perform soft-thresholding
of the quantity Σ̃−1

w µk. That is, we compute

sgn(Σ̃−1
w µk)(|Σ̃−1

w µk| − δ)+, (2.41)

where δ is a nonnegative tuning parameter. The R package rda is available from CRAN.

2.3.1.3 Direct sparse discriminant analysis (DSDA)

Mai et al. (2012) developed DSDA for the binary classification setting. Let yi be equal
to n1/n (resp. n2/n) if the observation xi belongs to class 1 (resp. class 2). The solution
to DSDA is defined by

(β̂, β̂0) = arg min
(β,β0)

n∑

i=1

(yi − β0 −Xβ)2 + λ‖β‖1, (2.42)

where λ is a tuning parameter. Then the classification rule is to assign x to class 2 if

[x− (µ̂1 + µ̂2)]
T β̂ + β̂T Σ̂β̂

[
(µ̂2 − µ̂1)

T β̂
]−1

ln(n2/n1) > 0,

where µ̂1 and µ̂2 are the sample mean vectors of classes 1 and 2, respectively, and Σ̂ is
the pooled sample covariance matrix.

2. http://cran.r-project.org/

http://cran.r-project.org/
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2.3.2 Datasets

We evaluate the performance of DCA1-PiE, DCA1-Capped-ℓ1, DCA2-PiE and DCA2-
Capped-ℓ1 on three synthetic datasets and a collection of real world datasets. The de-
scription of three synthetic datasets are summarized in Table 2.1 and they are generated
as follows (see (Witten and Tibshirani, 2011)):

For the first setup S1, we generate a four classes classification problem. Each class is
assumed to have a multivariate normal distribution N(µk, I), k = 1, 2, 3, 4 with dimension
of p = 500. The first 25 components of µ1 are 0.7, µ2j = 0.7 if 26 ≤ j ≤ 50, µ3j = 0.7 if
51 ≤ j ≤ 75, µ4j = 0.7 if 71 ≤ j ≤ 100 and 0 otherwise. For each class, we generate 100
training samples, 100 tuning samples and 500 test samples.

The second simulation setup S2 includes two classes of multivariate normal distributions
N(µ1,Σ) and N(µ2,Σ), each of dimension p = 500. The components of µ1 are assumed
to be 0 and for µ2, µ2j = 0.6 if j ≤ 200 and 0 otherwise. The covariance matrix Σ is
the block diagonal matrix with five blocks of dimension 100 × 100 whose element (j, j′)
is 0.6|j−j′|. For each class, 50 training samples, 50 tuning samples and 500 test samples
are generated.

For the last setup S3, we generate a four-class classification problem as follows: i ∈ Ck

then Xij ∼ N((k − 1)/3, 1) if j ≤ 100, k = 1, 2, 3, 4 and Xij ∼ N(0, 1) otherwise, where
N(µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2. A total of 100
training samples, 100 tuning samples and 1000 test samples are generated with equal
probabilities for each class.

Table 2.1: Synthetic datasets used in experiments.
Datasets #Features #Train #Test #Classes

Simulation 1 (S1) 500 400 2000 4
Simulation 2 (S2) 500 100 1000 2
Simulation 3 (S3) 500 100 1000 4

The real world datasets consist of two real datasets from UCI Machine Learning Repos-
itory and NIPS 2003 Feature Selection Challenge (Internet Advertisement and Gisette),
seven real microarray gene expression datasets, and one dataset for handwritten character
recognition (MNIST). All the datasets are pre-processed by normalizing each dimension
of the data to zero mean and unit variance. The detailed information of these datasets
is summarized in Table 2.2.

The Colon Tumor dataset of intensities of 2000 genes in 22 normal and 40 tumor colon
tissues. It is published in Alon et al. (1999) and available at http://genomics-pubs.
princeton.edu/oncology/.

SRBCT (Khan et al., 2001) is the dataset of small, round blue cell tumors of childhood and
can be downloaded at http://research.nhgri.nih.gov/microarray/Supplement/.

http://genomics-pubs.princeton.edu/oncology/
http://genomics-pubs.princeton.edu/oncology/
http://research.nhgri.nih.gov/microarray/Supplement/
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The training and test set consist of 83 samples spanning four classes.

The high-dimensional dataset consisting of multi-spectral imaging of three penicillium
species: melanoconodium, polonicum and venetum. This data is studied in Clemmensen
et al. (2007).

Lung Cancer dataset, there are 181 tissue samples (31 MPM and 150 ADCA). Each
sample is described by 12533 genes. It is used in Gordon et al. (2002) and can be
downloaded at http://datam.i2r.a-star.edu.sg/datasets/krbd/.

Leukemia microarray dataset is published in Yeoh et al. (2002) and available at http://
datam.i2r.a-star.edu.sg/datasets/krbd/. The data consisted of 12558 gene expres-
sion measurements for 248 samples belong to six cancer classes.

Nakayama data consisting of 86 samples from 5 types of soft tissue tumors, each with
22283 gene expression measurements (Nakayama et al., 2007). This data is available at
Gene Expression Omnibus.

Sun data consisting of 180 samples and 54613 expression measurements (see (Sun et al.,
2006)). The samples are belong to four classes. It is available at Gene Expression Om-
nibus.

MNIST dataset is available at http://yann.lecun.com/exdb/mnist/. The training and
test sets consist of 60000 and 10000 images of size 28× 28 pixels, respectively.

Table 2.2: Real datasets used in experiments.
Datasets #Features #Samples #Classes
Internet Advertisement (ADV) 1558 3279 2
Colon Tumor (COL) 2000 62 2
SRBCT (SRB) 2308 83 4
Pencillium (PEN) 3754 36 3
Gisette (GIS) 5000 7000 2
Lung Cancer (LUN) 12533 181 2
Leukemia (LEU) 12558 248 6
Nakayama (NAK) 22283 86 5
Sun (SUN) 54613 180 4
MNIST (MNI) 784 60000/10000 10

2.3.3 Experimental setups

All algorithms are implemented in the R 3.0.2, and performed on a PC Intel i7 CPU3770,
3.40 GHz of 8GB RAM.

We use the same diagonal estimate Σ̃w as PLDA. Its advantage for the data in which the
number of features is much larger than the number of observations has been indicated in

http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://yann.lecun.com/exdb/mnist/
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Bickel and Levina (2004). Hence the solution d̂ to the problem (2.28) is explicitly defined
by

d̂i =
1

2σ2
i

S(vli, λkα) ∀i = 1, ..., d, (2.43)

where S is the soft-thresholding operator defined as

S(z, t) =





z − t if z > 0 and t < |z|,
z + t if z < 0 and t < |z|,
0 if t ≥ |z|.

(2.44)

The value of λk is taken as λk = λ.λk1, where λ
k
1 is the largest eigenvalue of Σk

b . This can
avoid penalizing each discriminant vector more than the previous discriminant vectors,
since the objective value of problem (2.12) without the zero-norm is equal to the largest
eigenvalue of Σk

b when the diagonal estimate of the within-class covariance matrix is used.
From which it follows that an eigenvector of the matrix Σk

b corresponding to the largest
eigenvalue is also a good starting point w0

k of DCA, which seems to be natural (see (Witten
and Tibshirani, 2011)).

The values of parameters λ and K (the number of used discriminant vectors) are chosen
through a sixfold cross-validation procedure on training set from a set of candidates. The
approximation parameter in (2.17) is fixed α = 5 as suggested in Bradley and Mangasarian
(1998). Concerning the parameter α, from the theoretical point of view, the larger α is,
the better approximation of the ℓ0-norm is. However, when we tried with larger α (up
to 100), the result is not improved. The stop tolerance of DCA is τ = 10−6. We select
relevant features as follows: feature i is deleted if |wki| < 10−6 for all k = 1, ..., K.

2.3.4 Numerical results on synthetic data

In this experiment, we generate training, tuning, and test sets in the same manner as
described in Sect. 2.3.2. The tuning sets are used to choose the parameters λ and the
number of discriminant vectors used K, while the test sets are used to measure the
accuracy of various classifiers trained on the training sets. We perform 10 trials for each
experimental setting. DSDA is only tested on the 2-class synthetic dataset S2.

The experimental results on synthetic data are given in Table 2.3. In this table, the
average of percentage of selected features and its standard deviation (FS), the average
of percentage of accuracy of classifiers and its standard deviation (ACC), the average
of CPU time in second and its standard deviation (CPU) over 10 trials, as well as the
number of discriminant vector used (K) are reported.

We observe from Table 2.3, in terms of feature selection, the DCA based algorithms give
better results than PLDA, RDA and DSDA. DCA1-Capped-ℓ1 gives the best results on
2/3 synthetic datasets. On average of 3 synthetic datasets, DCA1-PiE, DCA1-Capped-ℓ1,
DCA2-PiE and DCA2-Capped-ℓ1 respectively select 41.6%, 41.17%, 35.86% and 42.48%
of features while PLDA and RDA respectively select 46.93% and 49.45% of features.



53

Table 2.3: Comparative results of DCA1-PiE, DCA1-Capped-ℓ1, DCA2-PiE, DCA2-Capped-ℓ1, PLDA, RDA and DSDA on
synthetic data. Bold fonts indicate the best results in each row.

DCA1-PiE DCA1-Capped-ℓ1 DCA2-PiE DCA2-Capped-ℓ1 PLDA RDA DSDA

A
C
C S1 96.89 ± 0.035 96.66 ± 0.38 96.52 ± 0.28 96.45 ± 0.4 96.8 ± 0.39 96.34 ± 0.64 -

S2 98.1 ± 0.38 97.9 ± 0.44 98.1 ±0.38 98.03 ± 0.23 98 ± 0.43 94.8 ± 1.01 91.62 ± 1.12
S3 88.03 ± 1.61 87.51 ± 1.73 88.03 ±0.1.16 87.72 ± 1.12 87.31 ± 1.31 68.81 ± 1.6 -

Average 94.34 94.02 94.21 94.07 94.05 86.66 -

F
S

S1 43.76 ± 12.44 52.48 ± 9.99 26.54 ± 0.77 47.64 ± 1.53 54.94 ± 7.03 22.8 ± 0.95 -
S2 55.3 ± 2.68 45.64 ± 1.78 55.3 ± 2.68 51.76 ± 2.79 51.76 ± 2.79 79.68 ± 1.39 59.45 ± 10.29
S3 25.74 ± 1.38 25.4 ± 1.38 25.74 ± 1.38 28.04 ± 1.62 34.1 ± 1.38 45.86 ± 1.79 -

Average 41.6 41.17 35.86 42.48 46.93 49.45 -

C
P
U S1 0.022 ± 0.009 0.02 ± 0.008 0.06 ± 0.09 0.032 ± 0.01 0.017 ± 0.01 0.328 ± 0.015 -

S2 0.001 ± 0.003 0.002 ± 0.006 0.004 ±0.006 0.006 ± 0.008 0.002 ± 0.006 0.03 ± 0.004 0.1 ± 0.02
S3 0.004 ± 0.006 0 0.004 ± 0.006 0.01 ± 0.008 0.002 ± 0.006 0.034 ± 0.006 -

Average 0.009 0.007 0.023 0.016 0.007 1.131 -

K

S1 3 3 3 3 3 - -
S2 1 1 1 1 1 - 1
S3 1 1 1 1 1 - -
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The DCA based algorithms not only provide a good performance in terms of feature
selection, but also give a high accuracy of classifiers. DCA1-PiE gives the best accuracy
of classifiers on all the three synthetic datasets. On average of 3 synthetic datasets, DCA1-
PiE, DCA1-Capped-ℓ1, DCA2-PiE, DCA2-Capped-ℓ1, PLDA and RDA respectively give
the accuracy of classifiers 94.34%, 94.02%, 94.21%, 94.07%, 94.05% and 86.66%. On the
second synthetic dataset, the DCA based algorithms are also better than DSDA in terms
of accuracy of classifiers as well as feature selection.

In Table 2.3, we also see that DCA1-Capped-ℓ1 and PLDA are fastest on all the three
synthetic datasets.

2.3.5 Numerical results on real datasets

For the experiments on the first nine real datasets, we use the cross-validation scheme to
validate the performance of various classifiers. Each real dataset is split into a training
set containing 2/3 of the samples and a test set containing 1/3 of the samples. This
process is repeated 10 times, each with a random choice of training set and test set. The
parameter λ and the number of discriminant vectors K which is used are chosen via 6-fold
cross-validation.

The computational results given by DCA1-PiE, DCA1-Capped-ℓ1, DCA2-PiE, DCA2-
Capped-ℓ1, PLDA, RDA and DSDA are reported in Tables 2.4-2.5. We are interested in
the efficiency (the sparsity and the accuracy of classifiers) as well as the rapidity of the
algorithms. We notice that DSDA is only tested on the 2-class datasets.

We observe from computational results that:

Sparsity: On all the datasets, the classifiers obtained by the DCA based algorithms are
sparser than those obtained by PLDA, RDA and DSDA. DCA1-Capped-ℓ1 is the best on
5 out of 9 datasets and DCA1-PiE is the best on 2 out of 9 datasets. The DCA based
algorithms select from 0, 09% to 69.74% of features while PLDA and RDA choose from
15.36% to 100% of features. Overall, DCA1-Capped-ℓ1 realizes a better trade-off between
accuracy and sparsity than other algorithms. It suppresses considerably the number of
features (up to 99.9%) while the correctness of classification is quite good (from 72.33%
to 100%).

Accuracy of classifiers: In terms of the accuracy of classifiers, the DCA based algorithms
attain better than PLDA, RDA and DSDA on 6/9 datasets (the gains vary from 0.05 to
11.45%). More specifically, DCA1-Capped-ℓ1 is the best on 3/9 datasets, especially for
the very large SUN data (54613 features), this approach only selects 9.02% of features but
achieves the best accuracy of classifiers (72.33%). RDA is slightly better than the DCA
based algorithms on the dataset NAK (the gains is 0.62%). However, RDA selects much
more features than these approaches (the gain is 42.38% of features). On the two datasets
ADV and GIS which the number of observations are larger than the number of features,
RDA and DSDA are better than the DCA based algorithms. This can be explained
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Table 2.4: Comparative results of DCA1-PiE, DCA1-Capped-ℓ1, DCA2-PiE, DCA2-Capped-ℓ1, PLDA, RDA and DSDA in terms
of the average of percentage of accuracy of classifiers and its standard deviation (upper row), and the average of percentage of
selected features and its standard deviation (lower row) over 10 training/test set splits. Bold fonts indicate the best results in
each row.

Datasets DCA1-PiE DCA1-Capped-ℓ1 DCA2-PiE DCA2-Capped-ℓ1 PLDA RDA DSDA

ADV 94.17 ± 0.33 94.25± 0.29 94.17 ± 0.33 94.16 ± 0.28 94.23 ± 0.31 96.47 ± 0.26 96.1 ± 0.65
25.84 ± 0.36 30.02 ± 1.13 25.84 ± 0.36 22.52 ± 0.21 33.18 ± 0.78 27.14 ± 0.92 26.56 ± 1.62

COL 81.1 ± 4.89 81.57 ± 5.08 81.09 ± 4.89 82.52 ± 6.47 78.78 ± 6.54 71.07 ± 7.5 81.48 ± 6.36
0.12 ± 0.09 0.1 ± 0.04 0.16 ± 0.08 0.29 ± 0.1 21.7 ± 7.99 96.59 ± 0.45 1.11 ± 0.14

SRB 99.62 ± 1.15 99.27 ± 1.46 99.61 ± 1.15 98.92 ± 1.64 97.44 ± 3.66 99.29 ± 1.4 -
9.84 ± 17.39 23.93 ± 29.23 14.28 ± 21.23 17.82 ± 24.44 57.4 ± 6.37 15.36 ± 0.4 -

PEN 100 ± 0 100± 0 100± 0 96.66 ± 4.08 100± 0 96.66 ± 2.52 -
0.09 ± 0.01 61.59 ± 2.12 0.09 ± 0.01 5.18 ± 4.25 63.47 ± 3.02 94.28 ± 0.03 -

GIS 86.92 ± 0.47 87.45 ± 0.63 86.54 ± 0.66 86.88 ± 0.66 86.88 ± 0.63 84.52 ± 0.66 94.07 ± 0.33

28.51 ± 4.28 50.56 ± 5.18 22.6 ± 0.17 28.26 ± 0.21 28.27 ± 0.21 98.67 ± 0.16 35.31 ± 0.4

LUN 99.34 ± 0.81 99.34 ±0.81 99.34 ± 0.81 99.17 ± 0.83 99.17 ± 0.83 98.18 ± 1.38 94.86 ± 2.5
20.01 ± 1.21 12.31 ± 10.1 20.81 ± 0.77 17.94 ± 5.98 20.86 ± 2.83 98.67 ± 0.12 20.82 ± 3.41

LEU 96.87 ± 1.16 96.99 ± 1.32 96.87 ± 1.21 97.11 ± 1.33 96.86 ± 1.33 97.06 ± 1.59 -
29.36 ± 12.51 28.21 ± 13.97 35.55 ± 0.24 30.56 ± 1.57 35.21 ± 0.23 83.6 ± 0.06 -

NAK 87. 82 ± 6.18 89.23 ± 4.23 86.76 ± 7.08 87.1 ± 7.13 87.1 ± 7.13 89.85 ± 4.61 -
69.05 ± 8.82 57.61 ± 29.22 69.33 ± 5.58 69.74 ± 6.13 68.4 ± 7.12 99.99 ± 0.006 -

SUN 70.83 ± 4.07 72.33 ± 3.75 69.66 ± 4.72 69.66 ± 4.72 69.66 ± 4.72 67.67 ± 4.53 -
16.24 ± 14.33 9.02 ± 13.83 33.93 ± 1.21 33.17 ± 4.62 35.34 ± 0.81 100 ± 0 -
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Table 2.5: Comparative results of DCA1-PiE, DCA1-Capped-ℓ1, DCA2-PiE, DCA2-Capped-ℓ1, PLDA, RDA and DSDA in terms
of the average of CPU time in second and its standard deviation (upper row) over 10 training/test set splits, the number of
discriminant vectors used K (the data is projected onto a K-dimensional space) (lower row). Bold fonts indicate the best results
in each row.

Datasets DCA1-PiE DCA1-Capped-ℓ1 DCA2-PiE DCA2-Capped-ℓ1 PLDA RDA DSDA

ADV 0.001 ± 0.003 0.003 ± 0.006 0.007 ± 0.007 0.008 ± 0.008 0.004 ± 0.007 58.24 ± 1.05 7.19 ± 0.32
1 1 1 1 1 - 1

COL 0.024 ± 0.019 0.001 ± 0.003 0.033 ± 0.017 0.004 ± 0.006 0.01 ± 0.014 0.067 ± 0.009 0.25 ± 0.009
1 1 1 1 1 - 1

SRB 0.141 ± 0.026 0.048 ± 0.037 0.169 ± 0.046 0.061 ± 0.04 0.079 ± 0.01 0.082 ± 0.008 -
3 3 3 3 3 - -

PEN 0.046 ± 0.018 0.056 ± 0.023 0.051 ± 0.021 0.03 ± 0.01 0.033 ± 0.01 0.109 ± 0.009 -
2 2 2 2 2 - -

GIS 0.004 ± 0.006 0.008 ± 0.012 0.014 ± 0.008 0.013 ± 0.016 0.044 ± 0.083 829.918± 63.815 158.64 ± 9.37
1 1 1 1 1 - 1

LUN 0.12 ± 0.045 0.036 ± 0.016 0.095 ± 0.032 0.101 ± 0.052 0.063 ± 0.012 1.052 ± 0.036 19.02 ± 0.39
1 1 1 1 1 - 1

LEU 0.39 ± 0.306 0.27 ± 0.089 0.248 ± 0.016 0.38 ± 0.021 0.21 ± 0.013 1.71± 0.085 -
5 5 5 5 5 - -

NAK 0.971 ± 0.19 0.664 ± 0.246 0.907 ± 0.19 0.716 ± 0.19 0.749 ± 0.128 1.185 ± 0.972 -
4 4 4 4 4 - -

SUN 1.527 ± 1.007 0.738 ± 0.593 1.173 ± 0.23 0.961 ± 0.197 0.996 ± 0.156 6.819 ± 3.843 -
2 2 2 2 2 - -



57

−0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

1st Discriminant Vector

2n
d 

D
is

cr
im

in
an

t V
ec

to
r

 

 
1st Class
2nd Class
3rd Class
4th Class

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

2nd Discriminant Vector

3r
d 

D
is

cr
im

in
an

t V
ec

to
r

 

 
1st Class
2nd Class
3rd Class
4th Class

−0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

1st Discriminant Vector

3r
d 

D
is

cr
im

in
an

t V
ec

to
r

 

 
1st Class
2nd Class
3rd Class
4th Class

Figure 2.2: The SRBCT dataset was projected onto the first three sparse discriminant
vectors. The samples in each class are shown by using a distinct symbol.

that these approaches use the sample covariance matrix which can be appropriate for
these datasets. To sum up, when the number of features are much larger than the
number of observations, our proposed methods are especially more efficient than other
algorithms in classification of high dimensional data. Thus, the proposed methods are
highly recommended for this type of data.

Training time and discriminant vectors: Training time and the numbers of discriminant
vectors which are used are reported in Table 2.5. The DCA based algorithms and PLDA
run very fast and they are comparable. RDA and DSDA are much slower than the DCA
based algorithms (the ratios of gains are from 1.7 to 39660 times). The discriminant
vectors can be used to visualize the datasets such as in Figures 2.2-2.3.

The computational results of the MNIST dataset are reported on Table 2.6. Notably
in this dataset, RDA is not able to perform since the amount of RAM is insufficient.
From Table 2.6, we observe that the DCA based algorithms outperform PLDA in terms
of sparsity as well as accuracy of classifiers. As for the training time, all five algorithms
run very fast (less than 0.2 s).

2.4 Conclusion

We have proposed efficient approaches for solving the Sparse Fisher Linear Discrimi-
nant problem using the ℓ0-regularization. Among several sparse inducing functions of the
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Figure 2.3: The Sun dataset was projected onto the first two sparse discriminant vectors.
The samples in each class are shown by using a distinct symbol.

Table 2.6: Comparative results of MNIST dataset in terms of the number of selected
features, the percentage of accuracy of classifiers on the test set, and training time in
second. Bold fonts indicate the best results in each column.

Method Selected features (%) Accuracy of classifiers (%) CPU in second

DCA1-PiE 65.17 88.79 0.09
DCA1-Capped-ℓ1 65.94 88.77 0.15

DCA2-PiE 65.17 88.79 0.11
DCA2-Capped-ℓ1 65.94 88.77 0.13

PLDA 80.09 81.11 0.05

RDA - - -
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ℓ0-norm, we have used two appropriate approximations functions and reformulated the
resulting problems as DC programs. Overall, four DCA based algorithms have been devel-
oped in order to exploit the nice effect of DC decompositions/DC formulations on the one
part, and the efficiency of the approximate functions on the other part. The robustness
and the effectiveness of our DCA based algorithms have been demonstrated through the
computational results on both the simulated and real datasets. Their efficiency has been
compared with three standard algorithms which use the ℓ1-regularization (note again that
this is the first work investigating ℓ0-regularization for the SFLD problem).

The research developed in this chapter permitted us to highlight the following com-
ments/recommendations:

1. ℓ1-regularization versus ℓ0-regularization: similar to several works using ℓ0-
regularization in learning with sparsity; once again, our work proved that ℓ0-
regularization produces much better sparsity than ℓ1-regularization.

2. ℓ1-LDA (or more generally convex-LDA) versus ℓ0-LDA: unlike the convex regular-
ization approach for several learning problems (for instance, the feature selection
in SVM/linear regression, etc.) where convex regularizations result in convex op-
timization problems (which are so far easy to solve) and the convex-LDA problem
is still nonconvex and then difficult. Hence, the quality of solutions (the sparsity
and the accuracy of classifiers) depends on the efficiency of algorithms being in-
vestigated for these nonconvex programs. The same argument (both convex-LDA
and ℓ0-LDA are nonconvex) does not necessarily imply that ℓ0-LDA algorithms are
more time-consuming than the convex-LDA algorithms. Therefore, we recommend
to use ℓ0-LDA in high-dimensional data classification, not only when sparsity is
significantly desired, but also when high accuracy is requested.

3. PLDA, RDA and DSDA versus DCA: in our numerical experiments the DCA based
algorithms are most of the time better than PLDA, RDA and DSDA. This superi-
ority comes mainly from the arguments mentioned in (1) and (2) above. In another
hand, the estimation of the within-class covariance matrix used in each method
(Σ̃w) influences also on its efficiency. A more detailed comparative analysis can be
summarized as follows:
• PLDA versus DCA: these methods aim to solve the Fisher’s discriminant prob-
lem but with two different regularizations to deal with sparsity: ℓ1(PLDA) and
ℓ0(DCA). They use the same diagonal estimate matrix of the within-class covari-
ance matrix Σ̃w in the model, and their iterations are based on the same idea
(the MM method used in PLDA is a special version of the general DCA scheme).
Thanks to ℓ0-regularization, DCA always produce better sparsity than PLDA. By
the nice effect of DC decompositions/DC formulations of the resulting nonconvex
approximate problems, DCA give higher classification accuracy than PLDA. The
training time of PLDA and DCA are comparable, but thanks again to the effect
of DC decompositions, it is quite possible that DCA are faster than PLDA. Note
also that, when the number of features is much larger than the number of ob-
servations, the diagonal estimate matrix Σ̃w used in our DCA (and in PDLA) is
good, and therefore, DCA produce high classification accuracy. Moreover, with
this diagonal estimate matrix Σ̃w, DCA are explicitly computed at each iteration,
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and by the way, they are very fast. Hence, the use of DCA for this type of data
is highly recommended.
• RDA versus DCA: RDA does not solve the Fisher’s discriminant problem but
uses the classification rule (2.6) which requires the matrix inversion (compute
directly Σ̃−1

w ). Such a procedure is very time-consuming when the size of Σ̃w

(which is the number of features) is large. That is why DCA are always much
faster than RDA, and the gain is more important in high-dimensional datasets.
Note, however, that when the features are independent or when the number of
sample is greater than the number of features, the estimate diagonal matrix used
in DCA may not be appropriate, and then, it could happen that RDA produces
better sparsity (e.g., the synthetic dataset S1 having independent features) or
RDA gives better classification accuracy (e.g., the datasets ADV and GIS where
the number of samples is greater than the number of features). For such types of
data, the regularized matrix Σ̃w defined in (2.40) by RDA is more appropriate.
For other types of data, DCA considerably outperform RDA on both sparsity
and classification accuracy.
• DSDA versus DCA: for binary classification DSDA requires solving the problem
(2.42), while DCA’s iterations are explicitly defined in a very simple formulation.
That is why DCA are faster than DSDA. By the same argument mentioned
above concerning the efficiency of the estimate diagonal matrix used in DCA for
datasets having the number of samples greater than the number of features, it
could happen that DSDA gives higher classification accuracy than DCA (e.g., for
the datasets ADV and GIS). As for sparsity, DCA are always better than DSDA
which uses the ℓ1-regularization.

4. About the four versions of DCA for the SFLD problems: DCA1-Capped-ℓ1 is the
best, most of the time, on both sparsity and classification accuracy, and it always
realizes the best trade-off between sparsity and classification accuracy. This con-
firms once again the results developed in Le Thi et al. (2015): The Capped-ℓ1 is
the best nonconvex (DC) approximations, and the ℓ1-perturbed algorithm (DCA1)
is more efficient than the ℓ1-reweighted algorithm (DCA2).

As a part of future work, we plan to study more extensive applications of the SFLD
problem. We believe that the success of using DC approximation functions for the ℓ0-
norm motivates and opens up a new avenue for the sparse Linear Discriminant Analysis
(LDA) problem. In particular, we intend to apply different DC approximation functions
as well as further explore other models for the sparse LDA problem.



Chapter 3

Sparse Optimal Scoring Problem

Abstract: Linear discriminant analysis (LDA) is a standard tool for classification and dimension
reduction in many applications. However, the problem of high dimension is still a great chal-
lenge for the classical LDA. In this chapter we consider the supervised pattern classification in
the high dimensional setting, in which the number of features is much larger than the number
of observations and present a novel approach to the sparse optimal scoring problem using the
zero-norm. The difficulty in treating the zero-norm is overcome by using appropriate continuous
approximations such that the resulting problems are solved by alternating schemes based on DC
(Difference of Convex functions) programming and DCA (DC Algorithms). The experimen-
tal results on both simulated and real datasets show the efficiency of the proposed algorithms
compared to some state-of-the-art methods.

3.1 Introduction

Among several classification methods in the literature the LDA based approach is re-
garded as one of the most popular and is known to be efficient for problems having a
small number of observations but a very large number of features. There are three differ-
ent approaches to tackle LDA, which are based on solving the normal model, the Fisher’s
discriminant problem and the optimal scoring problem, respectively (see Chapter 2 for
more details). In this chapter we do not directly consider the Fisher’s discriminant prob-
lem. Instead, we are interested in the optimal scoring interpretation of LDA and develop
a optimal scoring based approach, named the sparse optimal scoring problem.

Let X be an n×p data matrix with observations xi (i = 1, ..., n) on the rows and features

1. This chapter is published under the titles:
[1] Hoai An Le Thi and Duy Nhat Phan. DC Programming and DCA for Sparse Optimal Scoring
Problem. Neurocomputing 186: 170-181 (2016).
[2] Hoai An Le Thi and Duy Nhat Phan. A DC Programming Approach for Sparse Optimal Scoring.
Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, Volume 9078,
pp. 435-446, Springer (2015).
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on the columns. ni is denoted as the number of observations in the cluster Ci, i = 1, ..., Q.
We assume that the features have been standardized to have mean 0 and variance 1. Let
Y ∈ R

n×Q with Yik = 1 if xi ∈ Ck and 0 otherwise. To find the linear transformation W ,
the optimal scoring criterion successively solves the problem

min
wk,θk

{
||Y θk −Xwk||22

}

subject to
1

n
θTk Y

TY θk = 1; θTk Y
TY θl = 0, l = 1, ..., k − 1,

(3.1)

where θk is a Q-vector of scores.

LDA often performs quite well in simple and low-dimensional setting and it is known to
fail when the number of features p is larger than the number of observations n. However, in
many applications such as information retrieval, face recognition and microarray analysis,
we often encounter problems having a small number of observations but a very large
number of features. In such cases, one difficulty of the classical LDA is interpretation of
the classifier, since the classification rule involves a linear combination of all p features.
To overcome this, the most suitable approach is feature selection. A sparse classifier
leads to easier model interpretation and may reduce overfitting of the training data. In
the literature, several authors use the ℓ1-norm to deal with sparsity. More precisely, the
ℓ1-regularization is added to the objective function of the optimal scoring problem (3.1)
(see e.g. (Grosenick et al., 2008; Leng, 2008; Clemmensen et al., 2011)). Clemmensen
et al. (2011) replaced the ℓ0-norm with the ℓ1-norm and applied an alternating scheme
for solving the resulting problem.

The most natural way to deal with feature selection in machine learning is using the
ℓ0-norm in the regularization term. Using ℓ2 + ℓ0 regularization for the optimal scoring
problem (3.1) leads us to consider the sparse optimal scoring (SOS) problem defined by

min
wk,θk

1

2n
||Y θk −Xwk||22 + λ

[
1− γ
2
||wk||22 + γ||wk||0

]

subject to
1

n
θTk Y

TY θk = 1; θTk Y
TY θl = 0, l = 1, ..., k − 1.

(3.2)

Here γ ∈ [0, 1] and λ ≥ 0 are tuning parameters, and ||wk||0 denotes the ℓ0-norm of wk,
i.e. the number of non-zero elements of vector wk.

In this chapter, solving (3.2) includes double difficulties. The first is how to treat the
ℓ0-norm and the second is caused by the non-convexity of the original optimal scoring
problem. To tackle the ℓ0-norm we investigate DC approximation approaches. As the pre-
vious chapter, we use two sparse inducing functions: the piecewise linear function (called
Capped-ℓ1) and the piecewise exponential concave function introduced respectively in Pe-
leg and Meir (2008) and Bradley and Mangasarian (1998). Unfortunately, the resulting
optimization problems are still difficult but they enjoy some interesting properties: when
wk is fixed the optimal solution of the problem with respect to the variable θk can be
computed explicitly, while for each fixed θk we are faced on a DC program with respect
to the variable wk. We are then suggested to use alternating schemes based on DCA for
solving them.
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Our contributions are multiple. Using two DC approximations of the ℓ0-norm and consider
two DC formulations of each resulting approximate SOS problem we propose alternating
schemes for solving the four approximate problems. To deal with DC programs w.r.t wk

in each step of the alternating algorithms, we investigate four DCA schemes. We prove
that the main algorithms converge to a critical point of the approximate problems. The
performance of the proposed algorithms are carefully examined in comparing with seven
state of art methods on both simulated datasets and high-dimensional real datasets.

The rest of this chapter is organized as follows. In Section 3.2, we state the approximate
problems and present the alternating schemes for solving them as well as the way to
compute θk in these schemes. In Section 3.3 we show how to apply DCA on the non-
convex subproblems to compute wk in the alternating schemes. Section 3.4 is devoted
to the description of the main algorithms and their convergence analysis. The numerical
experiments are reported in Section 3.5 and Section 3.6 concludes the chapter.

3.2 Alternating schemes for the approximate sparse

optimal scoring problems

3.2.1 Approximate sparse optimal scoring problems

The discontinuity of the ℓ0-norm is overcome by using two DC approximations. For an
α > 0, let ηα,1 and ηα,2 be the functions given by

ηα,1(x) = 1− exp(−α|x|), ∀x ∈ R,

and
ηα,2(x) = min{1, α|x|}, ∀x ∈ R,

The Capped-ℓ1 approximation of the ℓ0-norm is defined by (Peleg and Meir, 2008)

||wk||0 ≈
p∑

i=1

ηα,1(wki), (3.3)

and the piecewise exponential concave approximation (Bradley and Mangasarian, 1998)
is

||wk||0 ≈
p∑

i=1

ηα,2(wki). (3.4)

For simplify the presentation, we use the common notation ηα to design both ηα,1 and ηα,2
and consider the resulting approximate problem of the SOS problem (3.2) in the form

min
(wk,θk)∈Rp×Ωk

{
1

2n
||Y θk −Xwk||22 + λ

[
1− γ
2
||wk||22 + γ

p∑

i=1

ηα(wki)

]}
, (3.5)
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where Ωk = {θk ∈ R
Q : θTkDθk = 1; θTkDθl = 0, l = 1, ..., k − 1} and D = 1

n
Y TY .

Observing that ηα(wki) = ηα(|wki|) ∀wki ∈ R and ηα is increasing concave over [0,+∞],
we can deduce another equivalent form of (3.5) (see (Le Thi et al., 2015) for more details)

min
(wk,zk)∈Λk,θk∈Ωk

{
1

2n
||Y θk −Xwk||22 + λ

[
1− γ
2
||wk||22 + γ

p∑

i=1

ηα(zki)

]}
, (3.6)

where Λk = {(wk, zk) ∈ R
p × R

p
+ : |wki| ≤ zki ∀i = 1, ..., p}. In the sequel we will inves-

tigate solution methods for solving the nonconvex problems (3.5) and (3.6).

For holding wk (resp. (wk, zk)) fixed, we can find an explicit solution θk. However, for
holding θk fixed, the resulting problems are still nonconvex. Hence we will investigate
alternating schemes based on DC programming and DCA for solving (3.5) and (3.6).

3.2.2 Alternating schemes for solving the approximate SOS
problems

The alternating scheme for solving the problem (3.5) consists of holding θk fixed and
optimizing with respect to wk, and then holding wk fixed and optimizing with respect to
θk. More precisely:

Starting with wk ∈ R
p and θk ∈ Ωk, at each iteration we perform two steps:

1. Fix θk and compute wk by solving

min
w∈Rp

{
1

2n
||Y θk −Xw||22 + λ

[
1− γ
2
||w||22 + γ

p∑

i=1

ηα(wi)

]}
. (3.7)

2. Fix wk and compute θk by solving

min
θ∈Ωk

{
||Y θ −Xwk||22

}
. (3.8)

Similarly, the alternating scheme for solving the problem (3.6) differs from the above
scheme only on the step 1:

Starting with (wk, zk) ∈ Λk and θk ∈ Ωk, at each iteration we perform two steps:
1. Fix θk and compute wk by solving

min
(w,z)∈Λk

{
1

2n
||Y θk −Xw||22 + λ

[
1− γ
2
||w||22 + γ

p∑

i=1

ηα(zi)

]}
. (3.9)

2. Fix wk and compute θk by solving (3.8).
We will show below how to compute θk in the step 2 of these alternating schemes.
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3.2.3 Compute θk in the alternating schemes

Let Qk−1 be the Q × (k − 1) matrix whose columns are the previous k − 1 solutions
θ1, ..., θk−1 consecutively. For solving (3.8), we state the following lemma.

Lemma 3.1 The problem (3.8) has a unique solution θ̂k = sk/
√
sTkDsk, where sk =

(I −Qk−1Q
T
k−1D)D−1Y TXwk.

Clemmensen et al. (2011) stated that θ̂k solves the problem (3.8), but they do not give
the proof. We will prove that this solution is unique.

Proof : We assume that θk is a solution of the problem (3.8). It follows that θk satisfies
the following KKT conditions:

2nDθk − Y TXwk + 2λ1Dθk +DQk−1λ2 = 0, (3.10)

θTkDθk = 1, (3.11)

θTkDQk−1 = 0, (3.12)

where λ1 ∈ R and λ2 ∈ R
k−1 are Lagrange multipliers. Multiplying (3.10) by θTk gives

n + λ1 =
1

2
θTk Y

TXwk. (3.13)

On the other hand, substituting (3.13) into the objective function of the problem (3.8),
we have

Fwk
(θk) = ||Y θk −Xwk||2 = n + wT

kX
TXwk − 4(n+ λ1). (3.14)

Thus, we only need to consider n+ λ1 > 0. From (3.10), solving for θk leads to

θk =
1

n + λ1
D−1(Y TXwk −

1

2
DQk−1λ2). (3.15)

The orthogonality constraints give

θTkDQk−1 = 0⇔ wT
kX

TY Qk−1 −
1

2
λT2Qk−1DQk−1 = 0

⇒ λ2 = 2QT
k−1Y

TXwk.

Inserting this expression for λ2 into equation (3.15) and simplifying gives

θk =
1

n+ λ1
(I −Qk−1Q

T
k−1D)D−1Y TXwk =

1

n+ λ1
sk, (3.16)

where sk = (I − Qk−1Q
T
k−1D)D−1Y TXwk. Finally, the constraint θTkDθk = 1 gives

n+ λ1 =
√
sTkDsk, then θ̂k = sk/

√
sTkDsk is unique solution of the problem (3.8). ✷

We are now going to develop DCA based algorithms for solving the subproblems in the
step 1 of alternating schemes.
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3.3 DCA based algorithms for solving nonconvex

subproblems in alternating schemes

3.3.1 DC formulations and DCA based algorithms for noncon-

vex subproblems (3.7) and (3.9)

The approximation ηα can be expressed as a DC function:

ηα(x) = g(x)− h(x), (3.17)

where g(x) = α|x|, h(x) = −1 + α|x| + exp(−α|x|) if ηα = ηα,1, and h(x) = −1 +
max{1, α|x|} if ηα = ηα,2.

Therefore, the objective function of the problem (3.7) can be rewritten as follows.

Fθk(w) := G1(w, θk)−H1(w), (3.18)

where

G1(w, θk) : =
1

2n
||Y θk −Xw||22 + λ

[
1− γ
2
||w||22 + γ

p∑

i=1

g(wi)

]
,

H1(w) : = λγ

p∑

i=1

h(wi),

are clearly convex functions. Hence a DC formulation of the problem (3.7) takes the form

min
w∈Rp
{G1(w, θk)−H1(w)}. (3.19)

According to the generic DCA scheme, DCA applied on (3.19) consists of computing, at
each iteration l, a subgradient vl ∈ ∂H1(w

l) and solving the convex program of the form
(Pl), namely

min
w∈Rp
{G1(w, θk)− 〈vl, w〉}. (3.20)

The algorithm is described as follows.

DCA1

Initialization: Let τ be a tolerance sufficient small, set l = 0 and choose w0 ∈ R
p.

repeat
1. Compute vl ∈ ∂H1(w

l).
2. Solve the following convex problem to obtain wl+1

min
w∈Rp

{
1

2n
||Y θk −Xw||22 + λ

[
1− γ
2
||w||22 + γα||w||1

]
− 〈vl, w〉

}
. (3.21)
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3. l ← l + 1.
until ‖wl − wl−1‖2 ≤ τ(‖wl−1)‖2 + 1) or |Fθk(w

l)− Fθk(w
l−1)| ≤ τ(|Fθk(w

l−1)|+ 1).

We see that the problem (3.21) has the ℓ1-perturbed form.

The implementation of DCA1 requires the computation of vl ∈ ∂H1(w
l) in the step 1,

which depends on ηα. More precisely, for ηα = ηα,1, v
l is computed by

vli =

{
λγα(1− exp(−αwl

i)) if wl
i ≥ 0

−λγα(1− exp(αwl
i)) if wl

i < 0
i = 1, ..., p. (3.22)

For ηα = ηα,2, v
l is calculated as follows.

vli =

{
sgn(wl

i)λγα if α|wl
i| ≥ 1

0 otherwise
i = 1, ..., p. (3.23)

Remark 3.1 For solving the convex problem (3.21), we use the coordinate descent method
(Friedman et al., 2007). This method is known to be one of the most efficient algo-
rithms for solving unconstrained convex problems whose objective function has the form:
quadratic + ℓ1. Its objective function is written as:

f(w) :=
1

2n

n∑

i=1

[
(Y θk)i −

∑

m6=j

Ximwm −Xijwj

]2
+
λ(1− γ)

2

∑

m6=j

w2
m

+
λ(1− γ)

2
w2

j + λγα
∑

m6=j

|wm|+ λγα|wj| −
∑

m6=j

vlmwm − vljwj.

Suppose that we have estimates wm = w̃m for m 6= j, and we wish to partially optimize
with respect to wj. The coordinate-wise update has the form

wj ←−
S
(

1
n

n∑
i=1

Xij

[
(Y θ)i −

∑
m6=j

Ximw̃m

]
+ vlj, λγα

)

1 + λ(1− γ) , (3.24)

where S(z, t) is the soft-thresholding operator with value

S(z, t) =





z − t if z > 0 and t < |z|,
z + t if z < 0 and t < |z|,
0 if t ≥ |z|.

The update (3.24) is repeated for j = 1, 2, ..., p, 1, 2, ... until

‖wk − wk−1‖2 ≤ ǫ or |f(wk)− f(wk−1)| ≤ ǫ,

where wk is the solution obtained at the k-th iteration.
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For designing a DC formulation of (3.9) we observe that the function ηα is concave on
[0,+∞] and then −ηα is convex on [0,+∞]. Therefore a DC formulation of (3.9) can be

min
(w,z)∈Rp×Rp

{
F̄θk(w, z) := G2(w, z, θk)−H2(w, z)

}
, (3.25)

where

G2(w, z, θk) : =
1

2n
||Y θk −Xw||22 +

λ(1− γ)
2

||w||22 + χΛk(w, z),

H2(w, z) : = λγ

p∑

i=1

(−ηα)(zi),

are clearly convex functions. Here χΛk is the indicator function on Λk, that is

χΛk(w, z) =

{
0 if (w, z) ∈ Λk,

+∞ otherwise.

Like DCA1, DCA applied on (3.25) consists of computing, at each iteration l, a sub-
gradient (vl, z̄l) ∈ ∂H2(w

l, zl), and then solving the following convex program to obtain
(wl+1, zl+1):

min
(w,z)∈Rp×Rp

{
G2(w, z, θk)− 〈vl, w〉 − 〈z̄l, z〉

}
. (3.26)

When ηα = ηα,1, z̄
l is calculated by

z̄li = − exp(−αzli)λγα ∀i = 1, ..., p, (3.27)

and for ηα = ηα,2, we have

z̄li =

{
−λγα if zli ≤ 1/α,

0 otherwise,
∀i = 1, ..., p. (3.28)

We deduce from (3.27) and (3.28) that z̄li ≤ 0 ∀i = 1, ..., p. Thus, the problem (3.26) is
equivalent to




wl+1 ∈ arg min

w∈Rp

{
1
2n
||Y θk −Xw||22 + λ(1−γ)

2
||w||22 −

p∑
i=1

z̄li|wi|
}

zl+1
i = |wl+1

i | ∀i.
(3.29)

DCA for solving (3.25) is described as follow.

DCA2

Initialization: Let τ be a tolerance sufficient small, set l = 0 and choose w0 ∈ R
p, z0i =

|w0
i | ∀i = 1, ..., p.

repeat
1. Compute z̄li ∈ λγ∂(−ηα)(zli).
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2. Solve the following convex problem to obtain wl+1

min
w∈Rp

{
1

2n
||Y θk −Xw||22 +

λ(1− γ)
2

||w||22 +
p∑

i=1

(−z̄li)|wi|
}

(3.30)

3. Compute zl+1
i = |wl+1

i | ∀i = 1, ..., p.
4. l ← l + 1.

until ‖(wl, zl)−(wl−1, zl−1)‖2 ≤ τ(‖(wl−1, zl−1)‖2+1) or |F̄θk(w
l, zl)−F̄θk(w

l−1, zl−1)| ≤
τ
(
|F̄θk(w

l−1, zl−1)|+ 1
)
.

In the step 2 of DCA2, we see that the problem (3.30) has the form of a ℓ1-regularization
problem but with different weights on components of |wi|. So DCA2 iteratively solves
the weighted-ℓ1 problem (3.30) with an update of the weights −z̄li at each iteration l.

Theorem 3.1 (i) DCA1 and DCA2 generate, respectively, the sequences {wl}l in R
p

and {(wl, zl)}l in Λk such that {Fθk(w
l)}l and {F̄θk(w

l, zl)}l are decreasing.
(ii) If the sequence {wl}l (resp. {(wl, zl)}l) is bounded, then every limit point w∗ (resp.
(w∗, z∗)) of the sequence {wl}l (resp. {(wl, zl)}l) is a critical point of the problem (3.19)
(resp. (3.25)).

(iii) In the case of Capped-ℓ1 (ηα = ηα,2), the sequence {wl}l and {(wl, zl)}l respectively
convergence to w∗ and (w∗, z∗) after a finite number of iterations. Moreover, the points
w∗ and (w∗, z∗) are critical points of the problems (3.19) and (3.25), respectively. If,
in addition,

w∗
i /∈

{
1

α
,− 1

α

}
∀i = 1, ..., p, (3.31)

(resp. z∗i 6= 1/α ∀i = 1, ..., p) then w∗ (resp. (w∗, z∗)) is in fact a local minimizer of
(3.19) (resp. (3.25)).

Proof : (i) and (ii) are direct consequences of convergence properties of general DC
programs while the first part of (iii) is a convergence property of a DC polyhedral program.

For the second part of (iii), observing that the second DC component of (3.19) (resp.
(3.25)) is a polyhedral function. If the condition (3.31) (resp. z∗i 6= 1/α ∀i = 1, ..., p)
holds, then H1 (resp. H2) is differentiate at w∗ (resp. (w∗, z∗)). Using the DCA’s
convergence property (v) in Theorem 1.2, we deduce that w∗ (resp. (w∗, z∗)) is a local
minimizer of (3.19) (resp. (3.25)) in the case of Capped-ℓ1. ✷

We can now describe our main algorithms based on alternating methods and DCA for
solving the approximate SOS problems.
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3.4 Description of the main algorithms and their

convergence properties

Finally, the alternating scheme based on DCA for solving the problem (3.5) can be
described as follows.

ADCA1 Alternating scheme based on DCA for the problem (3.5)

for k = 1 to K, compute k-th discriminant vector wk as follows:
Initialization: w0

k ∈ R
p, θ0k = s0k/

√
(s0k)

TDs0k, where s
0
k = (I−Qk−1Q

T
k−1D)D−1θ∗k

with θ∗k ∈ R
Q, and l = 0.

repeat
1. For fixed θlk, compute wl+1

k by DCA1 using wl
k as initial point.

2. For fixed wl+1
k , compute sl+1

k = (I −Qk−1Q
T
k−1D)D−1Y TXwl+1

k

and set θl+1
k = sl+1

k /
√
(sl+1

k )TDsl+1
k .

3. l ← l + 1.
until Stopping criterion.

end for

The stopping criterion of ADCA1 is given by

‖(wl
k, θ

l
k)− (wl−1

k , θl−1
k )‖2 ≤ τ(‖(wl−1

k , θl−1
k )‖2 + 1),

or
|F (wl

k, θ
l
k)− F (wl−1

k , θl−1
k )| ≤ τ(|F (wl−1

k , θl−1
k )|+ 1),

where F (wk, θk) is the objective function of the problem (3.5).

For each algorithm, we use two approximations of the ℓ0-norm (ηα,1 and ηα,2). We denote
by ADCA1-Exp (resp. ADCA1-Cap) ADCA1 using ηα = ηα,1 (resp. ηα = ηα,2).

Furthermore, the alternating scheme using DCA for solving the problem (3.6) is given
by the following algorithm.

ADCA2 Alternating scheme based on DCA for the problem (3.6)

for k = 1 to K, compute k-th discriminant vector wk as follows:
Initialization: w0

k ∈ R
p, θ0k = s0k/

√
(s0k)

TDs0k, where s
0
k = (I−Qk−1Q

T
k−1D)D−1θ∗k

with θ∗k ∈ R
Q, and l = 0.

repeat
1. For fixed θlk, compute (wl+1

k , zl+1
k ) by DCA2 using wl

k as initial point.
2. For fixed (wl+1

k , zl+1
k ), compute sl+1

k = (I −Qk−1Q
T
k−1D)D−1Y TXwl+1

k

and set θl+1
k = sl+1

k /
√
(sl+1

k )TDsl+1
k .

3. l ← l + 1.
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until Stopping criterion.
end for

The stopping criterion of ADCA2 is given by

‖(wl
k, z

l
k, θ

l
k)− (wl−1

k , zl−1
k , θl−1

k )‖2 ≤ τ(‖(wl−1
k , zl−1

k , θl−1
k )‖2 + 1),

or

|F̄ (wl
k, z

l
k, θ

l
k)− F̄ (wl−1

k , zl−1
k , θl−1

k )| ≤ τ(|F̄ (wl−1
k , zl−1

k , θl−1
k )|+ 1),

where F̄ (wk, zk, θk) is the objective function of the problem (3.6).

ADCA2 using ηα = ηα,1 (resp. ηα = ηα,2) is denoted by ADCA2-Exp (resp. ADCA2-Cap).

The convergence properties of ADCA1 and ADCA2 are given by Theorem 3.2 below.

Theorem 3.2 (i) ADCA1 generates the sequences {(wl
k, θ

l
k)}l in R

p × Ωk, k = 1, ..., K
such that {F (wl

k, θ
l
k)}l is decreasing.

(ii) If the sequence {(wl
k, θ

l
k)}l generated by ADCA1 is bounded, then every limit point

(w∗
k, θ

∗
k) of this sequence is a critical point of the problem (3.5).

Similarly, we have
(iii) ADCA2 generates the sequences {(wl

k, z
l
k, θ

l
k)}l in Λk × Ωk, k = 1, ..., K such that

{F̄ (wl
k, z

l
k, θ

l
k)}l is decreasing.

(iv) If the sequence {(wl
k, z

l
k, θ

l
k)}l generated by ADCA2 is bounded, then every limit point

(w∗
k, z

∗
k, θ

∗
k) of this sequence is a critical point of the problem (3.6).

Proof : The properties (i) and (iii) (resp. (ii) and (iv)) are proved analogously. There-
fore we give here the proof for (i) and (ii) only.

For (i), we assume that {(wl
k, θ

l
k)}l, k = 1, ..., K are generated by ADCA1. We have

{(wl
k, θ

l
k)}l in R

p × Ωk and

F (wl+1
k , θl+1

k )− F (wl
k, θ

l
k) = Fwl+1

k
(θl+1

k )− Fwl+1
k

(θlk) + Fθl
k
(wl+1

k )− Fθl
k
(wl

k).

By the Lemma 3.1, we have

Fwl+1
k

(θl+1
k )− Fwl+1

k
(θlk) ≤ 0. (3.32)

For fixed θlk, w
l+1
k is computed by DCA1 using wl

k as initialization, then we reduce from
(i) of Theorem 3.1 that

Fθl
k
(wl+1

k )− Fθl
k
(wl

k) ≤ 0. (3.33)

Thus, we have F (wl+1
k , θl+1

k )− F (wl
k, θ

l
k) ≤ 0.
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(ii) We assume that the sequence {(wl
k, θ

l
k)}l is bounded. Let (w∗

k, θ
∗
k) be a limit point of

{(wl
k, θ

l
k)}l. Thus, there exists a subsequence (wlt

k , θ
lt
k ) → (w∗

k, θ
∗
k) as t → +∞. We will

prove that (w∗
k, θ

∗
k) is a critical point of the problem (3.5), i.e.

∅ 6= ∂wk
G1(w

∗
k, θ

∗
k) ∩ ∂wk

H1(w
∗
k), (3.34)

{θ∗k} = arg min
θk∈Ωk

Fw∗

k
(θk). (3.35)

From the step 2 in ADCA1, we have θltk = sltk /
√
(sltk )

TDsltk , where sltk = (I −
Qk−1Q

T
k−1D)D−1Y TXwlt

k . Taking the limit as t → +∞, we get θ∗k = s∗k/
√
(s∗k)

TDs∗k,
with s∗k = (I − Qk−1Q

T
k−1D)D−1Y TXw∗

k. By Lemma 3.1, it follows that the condition
(3.35) holds.

Since {θlt−1
k }t is a subsequence of {θlk}l, {θlt−1

k }t is also bounded. Without loss of gen-
erality, we can suppose (by extracting a subsequence if necessary) that the sequence
θlt−1
k → θ∗∗k as t → +∞. We know that {F (wl

k, θ
l
k)}l is decreasing and it is bounded

below by 0. Besides, we have

F (wl
k, θ

l
k) ≤ F (wl

k, θ
l−1
k ) ≤ F (wl−1

k , θl−1
k ).

Thus, liml→+∞ F (wl
k, θ

l
k) = liml→+∞ F (wl

k, θ
l−1
k ) = inf l F (w

l
k, θ

l
k). Using the fact that F

is continuous, we get

F (w∗
k, θ

∗
k) = lim

t→+∞
F (wlt

k , θ
lt
k ) = lim

t→+∞
F (wlt

k , θ
lt−1
k ) = F (w∗

k, θ
∗∗
k ). (3.36)

According to Lemma 3.1, the problem minθk∈Ωk Fw∗

k
(θk) has a unique solution. Hence, we

deduce from (3.36) that θ∗∗k = θ∗k. From (ii) of Theorem 3.1, we have

∅ 6= ∂wk
G1(w

lt
k , θ

lt−1
k ) ∩ ∂wk

H1(w
lt
k ).

Therefore, there exists yltk such that

yltk ∈ ∂wk
G1(w

lt
k , θ

lt−1
k ) ∩ ∂wk

H1(w
lt
k ). (3.37)

From the computation of ∂wk
H1(w

lt
k ) it follows that the sequence {yltk }t is bounded. Thus,

without loss of generality, we can suppose that the sequence yltk → y∗ as t → +∞. We
have

yltk ∈ ∂wk
G1(w

lt
k , θ

lt−1
k )⇔ G1(w

lt
k , θ

lt−1
k ) +G∗

1(y
lt
k , θ

lt−1
k ) = 〈wlt

k , y
lt−1
k 〉, (3.38)

where G∗
1(., θ

lt−1
k ) is the conjugate function of G1(., θ

lt−1
k ) and

yltk ∈ ∂wk
H1(w

lt
k )⇔ H1(w

lt
k ) +H∗

1 (y
lt
k ) = 〈wlt

k , y
lt
k 〉. (3.39)

Taking t→ +∞ and using Lemma 2 in Pham Dinh and Le Thi (1997) we obtain

G1(w
∗
k, θ

∗
k) +G∗

1(y
∗
k, θ

∗
k) = 〈w∗

k, y
∗
k〉,

H1(w
∗
k) +H∗

1 (y
∗
k) = 〈w∗

k, y
∗
k〉,

and hence y∗k ∈ ∂wk
G1(w

∗
k, θ

∗
k) ∩ ∂wk

H1(w
∗
k). The proof of (ii) in then complete. ✷
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3.5 Numerical experiments

3.5.1 Comparative algorithms

We have four main algorithms based on alternating schemes and DCA, named ADCA1-
Exp, ADCA1-Cap, ADCA2-Exp and ADCA2-Cap. To demonstrate the usefulness of the
proposed ℓ0-sparse optimal scoring methods in view of many classification methods in
the literature we will compare our algorithms with the five state-of-the-art algorithms:
the SVM based method proposed in Fan et al. (2008) (S SVM) (note that SVM is the
most popular classification method), the three LDA based approaches proposed in Wit-
ten and Tibshirani (2011) (PLDA), Clemmensen et al. (2011) (SDA), Guo et al. (2007)
(RDA), and the sparse partial least squares discriminant analysis Chun and Keles (2010)
(SPLS DA). In thesemethods the ℓ1 regularization is used to deal with sparsity. We are
also interested in the comparison between the four versions of our algorithms to evaluate
the efficiency of the two DC approximations of the ℓ0-norm as well as the two different
DC formulations.

We also compare the proposed algorithms in this chapter with the ℓ0-sparse Fisher LDA
(DCA1-Cap) proposed in previous chapter and ℓ0-sparse multiclass support vector ma-
chine proposed in Le Thi and Nguyen (2013) (SMSVM-Cap).

3.5.1.1 Penalized linear discriminant analysis (PLDA)

PLDA penalized the objective function of the Fisher’s discriminant problem (2.7) with
the ℓ1 penalty on the discriminant vector, namely

max
wk∈Rp

{wT
kΣbwk − λk||wk||1 : wT

k Σwk = 1; wT
kΣwl = 0, l = 1, ..., k − 1}, (3.40)

where λk is a nonnegative tuning parameter. The problem (3.40) is nonconvex. Witten
and Tibshirani (2011) used the minorization-maximization approach for finding a local of
this problem. This algorithm is in fact a version of DCA. The R package penalizedLDA
is available from CRAN 2.

3.5.1.2 Sparse discriminant analysis (SDA)

SDA using the ℓ1-norm was proposed by Clemmensen et al. (2011), that is

min
wk,θk

{ 1
n
||Y θk −Xwk||22 + γwT

kΩwk + λ||wk||1}

subject to
1

n
θTk Y

TY θk = 1; θTk Y
TY θl = 0, l = 1, ..., k − 1,

(3.41)

2. http://cran.r-project.org/

http://cran.r-project.org/
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where Ω is a positive definite matrix, γ and λ are nonnegative tuning parameters. In
Clemmensen et al. (2011), the authors used an alternating scheme for finding a local
optimum of this problem. The R package sparseLDA is available from CRAN.

3.5.1.3 Shrunken centroids regularized discriminant analysis (RDA)

RDA is based on the same underlying model as LDA (see (Guo et al., 2007)) and it
regularizes the within-class covariance matrix used by LDA

Σ̃ = αΣ+ (1− α)Ip, (3.42)

where 0 ≤ α ≤ 1. In order to perform feature selection, one can perform soft-thresholding
of the quantity Σ̃−1µk. That is, we compute

sgn(Σ̃−1µk)(|Σ̃−1µk| − δ)+, (3.43)

where δ is a nonnegative tuning parameter. The R package rda is available from CRAN.

3.5.1.4 Sparse partial least squares discriminant analysis (SPLS DA)

SPLS DA used the lasso to promote sparsity of a surrogate direction vector c instead of
the original latent direction vector α, while keep α and c close (see (Chun and Keles,
2010)). That is, the first SPLS DA direction vector solves

min
α,c∈Rp

{
−καTMα + (1− κ)(c− α)TM(c− α) + λ||c||1 + γ||c||2

}

subject to αTα = 1,
(3.44)

where κ is a tuning parameter with 0 ≤ κ ≤ 1, and λ, γ are nonnegative tuning pa-
rameters. Performing the SPLS DA method obtains c1, ..., cs sparse surrogate direction
vectors. Then, we obtain a classification rule by performing standard LDA on the low
dimensional space (Xc1, ..., Xcs). The R package spls is available from CRAN.

3.5.1.5 Sparse support vector machines (S SVM)

S SVM use the ℓ1-regularization for the multi-class support vector machine. This method
is supported by the LIBLINEAR package (Fan et al., 2008). The R package LiblineaR
is also available from CRAN.

3.5.1.6 Sparse multiclass support vector machine (SMSVM-Cap)

Given n training observations (xi, yi), i = 1, ..., n, the classification rule of muticlass sup-
port vector machine (MSVM) is to classify an observation x to a class y defined by

y = argmax〈wk, x〉+ bk. (3.45)
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For the feature selection purpose, Le Thi and Nguyen (2013) proposes to use the ℓ0 − ℓ2
regularization for the MSVM model (Weston and Watkins, 1999), that leads to the so
called ℓ2-ℓ0-MSVM problem which is defined by

min
(w,b,ξ)∈Ω

C

n∑

i=1

∑

k 6=yi

ξik + β

Q∑

k=1

‖wk‖22 +
Q∑

k=1

‖wk‖0, (3.46)

where C, β are nonnegative tuning parameters, and

Ω =

{
(w, b, xi) ∈ R

Q×d × R
Q × R

n×Q
+ :

〈wyi − wk, xi〉+ byi − bk ≥ 1− ξik, ∀1 ≤ i ≤ n, 1 ≤ k 6= yi ≤ Q

}
.

Using the appropriate DC approximation functions of the ℓ0-norm, the resulting the
problems are the DC programs which are solved by DCA (Le Thi and Nguyen, 2013).

3.5.2 Datasets

We evaluate the performance of comparative algorithms on three synthetic datasets and a
collection of real world datasets. Three synthetic datasets are generated in the following
ways.

For the first setup S1, we generate a three classes classification problem. Each class is
assumed to have a multivariate normal distribution N(µk,Σ), k = 1, 2, 3 with dimension
p = 500. All elements on the main diagonal of covariance matrix Σ are equal to 1 and
all other elements are equal to 0.6. The first 35 components of µ1 are 0.7, µ2j = 0.7 if
36 ≤ j ≤ 70 and µ3j = 0.7 if 71 ≤ j ≤ 105 and 0 otherwise. For each class, we generate
100 training samples, 100 tuning samples and 500 test samples.

The second simulation setup S2 includes two classes of multivariate normal distributions
N(µ1,Σ) and N(µ2,Σ), each of dimension p = 500. The components of µ1 are assumed
to be 0 and for µ2, µ2j = 0.6 if j ≤ 200 and 0 otherwise. The covariance matrix Σ is
the block diagonal matrix with five blocks of dimension 100×100 whose element (j, j′) is
0.6|j−j′|. For each class, 100 training samples, 100 tuning samples and 10000 test samples
are generated.

For the last setup S3, we generate a three-class classification problem as follows: i ∈ Ck

then Xij ∼ N((k − 1)/2, 1) if j ≤ 100, k = 1, 2, 3 and Xij ∼ N(0, 1) otherwise, where
N(µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2. A total of 300
training samples, 300 tuning samples and 1500 test samples are generated with equal
probabilities for each class.

The real world datasets consist of two real datasets from UCI Machine Learning Reposi-
tory and NIPS 2003 Feature Selection Challenge (Internet Advertisement, Gisette), nine
real microarray gene expression datasets, and one dataset for handwritten character recog-
nition (MNIST). All the datasets are preprocessed by normalizing each dimension of the
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Table 3.1: Real datasets used in experiments.

Datasets #Features #Samples #Classes

Internet Advertisement (ADV) 1558 3279 2
Colon Tumor1 (COL) 2000 62 2
SRBCT2 (SRB) 2308 83 4
Pencillium (PEN) 3754 36 3
Gisette (GIS) 5000 7000 2
ALL/AML3 (ALL) 7129 72 3
Lung Cancer4 (LUN) 12533 181 2
Leukemia5 (LEU) 12558 248 6
MLL-Leukemia6 (MLL) 12582 72 3
Protaste (PRO) 12600 136 2
Ovarian Cancer7 (OVA) 15154 253 2
MNIST8 784 60000/10000 10

data to zero mean and unit variance. The detailed information of these datasets is sum-
marized in Table 3.1.

3.5.3 Experimental setups

The proposed algorithms were implemented in the Visual Studio 2012, and performed on
a PC Intel i7 CPU3770, 3.40 GHz of 8GB RAM.

In our experiments, the tuning parameters are γ, λ and α in (3.3) and (3.4). We fixed
α = 5 as suggested in Bradley and Mangasarian (1998), and γ, λ are performed by 5-
fold cross-validation procedure on training or tuning set from sets of candidates given by
Γ = {0.1, ..., 0.9, 1} and

Λ = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.012, 0.1, 0.15, 0.4, 0.6, 0.7, 0.9},

respectively. By this way, we avoid performing tuning parameter selection on a three-
dimensional grid.

The stop tolerance of DCA and ADCA is τ = 10−5 while the stop tolerance of the
coordinate descent method is ǫ = 10−4. The starting point (w0

k, θ
0
k) of ADCA is computed

by w0
k = 0 and θ0k = s0k/

√
(s0k)

TDs0k, where s
0
k = (I−Qk−1Q

T
k−1D)D−1θ∗k with each element

1. http://genomics-pubs.princeton.edu/oncology/

2. http://research.nhgri.nih.gov/microarray/Supplement/

3. http://www-genome.wi.mit.edu

4. http://datam.i2r.a-star.edu.sg/datasets/krbd/

5. http://datam.i2r.a-star.edu.sg/datasets/krbd/

6. http://research.dfci.harvard.edu/korsmeyer/Supp_pub/Supp_Armstrong_Main.html

7. http://datam.i2r.a-star.edu.sg/datasets/krbd/

8. http://yann.lecun.com/exdb/mnist/

http://genomics-pubs.princeton.edu/oncology/
http://research.nhgri.nih.gov/microarray/Supplement/
http://www-genome.wi.mit.edu
http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://research.dfci.harvard.edu/korsmeyer/Supp_pub/Supp_Armstrong_Main.html
http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://yann.lecun.com/exdb/mnist/
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of θ∗k is picked randomly in [−1, 1]. wl
k is a starting point of DCA at l-th iteration of

ADCA. We select relevant features as follows: feature i is deleted if |wki| < 10−6 for all
k = 1, ..., K.

3.5.4 Experiments on synthetic data

In this experiment, we generate training, tuning, and test sets in the same manner as
described in Sect. 3.5.2. The tuning sets are used to choose the parameters λ, γ and
the number of discriminant vectors used K, while the test sets are used to measure the
accuracy of various classifiers trained on the training sets. We perform 10 trials for each
experimental setting.

The experimental results on synthetic data are given in Table 3.2. In this table, the
average number (#FS) and percentage (%FS) of selected features (standard deviations),
the average percentage of accuracy of classifiers (ACC) and its standard deviation over
10 trials, the number of discriminant vectors used K (#DV), as well as training time in
second (CPUs) are reported.

We observe from Table 3.2, in terms of feature selection, the DCA based algorithms are
comparable and they give better results than PLDA, SDA, RDA, SPLS DA and S SVM.
ADCA1-Cap, ADCA2-Exp and ADCA2-Cap give the best results on the S2, S2 and S3
datasets, respectively.

The DCA based algorithms not only provide a good performance in terms of feature
selection, but also give a high accuracy of classifiers. ADCA1-Cap and ADCA2-Cap give
the best accuracy of classifiers on 2/3 synthetic datasets.

The training time of all the algorithms is quite small: less than 2 seconds (except for the
algorithm SDA).

3.5.5 Experiments on real datasets

For the experiments on the first eleven real datasets, we use the cross-validation scheme
to validate the performance of various classifiers. Each real dataset is split into a training
set containing 2/3 of the samples and a test set containing 1/3 of the samples. This
process is repeated 10 times, each with a random choice of training set and test set. The
parameter γ, λ and the number of discriminant vectors K which are used are chosen via
5-fold cross-validation.

The computational results given by ADCA1-Exp, ADCA1-Cap, ADCA2-Exp, ADCA2-
Cap, PLDA, SDA, RDA and SPLS DA are reported in Tables 3.3-3.4. We are interested
in the efficiency (the sparsity and the accuracy of classifiers), the number of discriminant
vectors used K, as well as the rapidity of these algorithms. The discriminant vectors can
be used to visualize the datasets such as in Figure 3.1.
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Table 3.2: Comparative results of ADCA1-Exp, ADCA1-Cap, ADCA2-Exp, ADCA2-Cap, PLDA, SDA, RDA, SPLS DA and
S SVM on the synthetic data. Bold fonts indicate the best results in each row.

ADCA1-Exp ADCA1-Cap ADCA2-Exp ADCA2-Cap PLDA SDA RDA SPLS DA S SVM

S1 ACC 100 (0) 100 (0) 100 (0) 100(0) 82.94 (9.77) 100 (0) 99.98 (0.04) 99.99 (0.02) 100 (0)
#FS 105.6 (3.28) 107.30 (1.55) 97.1 (2.68) 108.4 (4.17) 170.2 (19.93) 114.09 (13.1) 104.9 (0.3) 140.6 (62.72) 154 (4.75)
%FS 21.12 (0.67) 21.46 (0.31) 19.42 (0.56) 21.68 (0.83) 34.04 (3.98) 22.81 (2.62) 20.98 (0.06) 28.12 (12.54) 30.8 (0.95)
#DV 2 2 2 2 2 2 - - -
CPUs 1.15 (0.26) 1.32 (0.17) 0.79 (0.16) 1.02 (0.15) 0.42 (0.06) 4.93 (3.71) 0.17 (0.008) 0.11 (0.01) 0.23 (0.51)

S2 ACC 92.62 (1.15) 94.82 (0.58) 93.57 (0.71) 95.19 (0.53) 96.62 (0.45) 94.41 (0.64) 92.26 (1.58) 95.36 (1.68) 92.4 (0.82)
#FS 102.1 (4.76) 89.4 (4.35) 89.8 (3.05) 100.4 (3.29) 159 (9.34) 108.1 (4.57) 134.2 (13.64) 98 (21.12) 98.5 (6.92)
%FS 20.1 (0.95) 17.88 (0.87) 17.96 (0.61) 20.08 (0.65) 31.9 (1.86) 21.62 (0.91) 26.84 (2.72) 19.6 (4.22) 19.7 (1.38)
#DV 1 1 1 1 1 1 - - -
CPUs 0.1 (0.03) 0.05 (0.01) 0.11 (0.01) 0.05 (0.009) 0.19 (0.12) 0.36 (0.04) 0.03 (0.004) 0.03 (0.01) 0.11 (0.02)

S3 ACC 96.26 (0.65) 97.09 (0.56) 96.19 (0.81) 97.09 (0.65) 96.58 (0.34) 96.85 (0.59) 97 (0.6) 96.83 (0.14) 50.65 (1.68)
#FS 110.3 (4.9) 116.6 (5.4) 96.8 (6.4) 92.6 (4.29) 293.7 (7.53) 113.6 (5.44) 240.7 (8.1) 123.8 (5.77) 170.5 (8.08)
%FS 22.06 (0.98) 23.32 (1.08) 19.36 (1.28) 18.52 (0.85) 58.74 (1.5) 22.72 (1.08) 48.14 (1.62) 24.76 (1.15) 34.1 (1.61)
#DV 1 1 1 1 1 1 - - -
CPUs 0.91 (0.24) 0.37 (0.06) 0.67 (0.18) 0.31 (0.04) 0.49 (0.17) 11.64 (3.08) 0.03 (0.006) 0.02 (0.008) 0.12 (0.2.39)
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Table 3.3: Comparative results of ADCA1-Exp, ADCA1-Cap, ADCA2-Exp, ADCA2-Cap, PLDA, SDA, RDA, SPLS DA and
S SVM in terms of the average number of selected features and its standard deviation (upper row), and the average percentage
of selected features and its standard deviation (lower row) over 10 training/test set splits. Bold fonts indicate the best results in
each row.

ADCA1-Exp ADCA1-Cap ADCA2-Exp ADCA2-Cap PLDA SDA RDA SPLS DA S SVM

ADV 34.7 (3.16) 253.3 (22.85) 144.5 (7.68) 259.8 (25.6) 516.9 (12.16) 321.9 (30.9) 426 (10.58) 1542 (7.93) 347 (44.55)
2.22 (0.20) 16.11 (1.47) 9.27 (0.49) 16.67 (1.64) 33.17 (0.78) 20.66 (1.97) 27.34 (0.67) 99.03 (0.5) 22.27 (2.85)

COL 5.80 (1.47) 23.9 (9.4) 6.5 (2.5) 29.5 (3.17) 434 (159.84) 31.5 (3.07) 1936.3 (11.39) 35 (5.23) 26.8 (4.66)
0.29 (0.07) 1.19 (0.47) 0.32 (0.12) 1.47 (0.15) 21.7 (7.99) 1.57 (0.15) 96.81 (0.56) 1.75 (0.26) 1.34 (0.23)

SRB 54.08(7.25) 70.6 (6) 32.3 (2.86) 73.7 (8.36) 1324.9 (147.15) 77.9 (3.91) 281 (5.16) 563.6 (179.14) 99.25 (1.56)
2.37(0.31) 3.05 (0.26) 1.39 (0.12) 3.19 (0.36) 57.4 (6.37) 3.37 (0.16) 12.2 (0.22) 24.41 (7.76) 3.7 (0.25)

PEN 2(0) 22.0 (4.42) 4.2 (2.56) 23.8 (5.13) 2383 (113.44) 4 (0) 3539.3 (2.23) 2679.1 (297.13) 26.5 (3.47)
0.05 (0) 0.59 (0.12) 0.11 (0.06) 0.63 (0.13) 63.47 (3.02) 0.1 (0) 94.28 (0.06) 71.36 (7.91) 0.7 (0.09)

GIS 1015.7 (24.56) 1054.6 (25.49) 960.5 (25.26) 1262.1 (21.97) 1413.7 (10.19) 1562.3 (24.68) 4933.5 (8.2) 3884.5 (23.76) 1124.4 (21.44)
20.31 (0.49) 21.09 (0.5) 19.21 (0.5) 25.24 (0.43) 28.27 (0.21) 31.24 (0.49) 98.67 (0.16) 77.69 (0.47) 22.48 (0.42)

ALL 9.6 (1.57) 63.1 (11.4) 14.9 (2.36) 60.4 (5.06) 2701 (183.54) 71.4 (4.45) 7128.9 (0.3) 90.6 (15.23) 81.2 (7.85)
0.13 (0.02) 0.88 (0.16) 0.2 (0.03) 0.84 (0.07) 37.88 (2.57) 1 (0.06) 99.99 (0.004) 1.27 (0.21) 1.13 (0.11)

LUN 3.7 (0.43) 27.8 (2.44) 3.8 (0.6) 37.7 (4.73) 2614.2 (354.48) 47.2 (5.38) 12341.1 (19.66) 223.6 (14.45) 46.6 (5.23)
0.02 (0.003) 0.22 (0.01) 0.3 (0.004) 0.3 (0.03) 20.85 (2.82) 0.37 (0.04) 98.25 (0.15) 1.78 (0.11) 0.37 (0.04)

LEU 21.8 (2.61) 37.9 (5.65) 22.4 (1.68) 52.6 (9.11) 4421.9 (29.04) 44 (5.47) 10500.2 (6.66) 1438.8 (7.39) 313.1 (15.78)
0.17 (0.02) 0.3 (0.05) 0.17 (0.01) 0.41 (0.07) 35.21 (0.23) 0.35 (0.04) 83.61 (0.05) 11.45 (5.89) 2.49 (0.12)

MLL 96.3 (9.62) 132.6 (15.09) 103.1 (8.98) 150.5 (9.64) 6296.4 (147.73) 103.2 (3.69) 12581.3 (0.78) 456.7 (86.43) 142.9 (7.56)
0.76 (0.07) 1.05 (0.12) 0.81 (0.07) 1.19 (0.07) 50.04 (1.17) 0.82 (0.03) 99.99 (0.01) 3.62 (0.68) 1.13 (0.06)

PRO 69.8 (12.41) 45.5 (9.68) 51.6 (5.12) 55.9 (3.8) 75.4 (3.38) 68.7 (3.74) 12600 (0) 11174.9 (9.95) 76.4 (7.83)
0.55 (0.09) 0.36 (0.07) 0.4 (0.04) 0.44 (0.03) 0.59 (0.02) 0.54 (0.02) 100 (0) 9.32 (0.55) 0.6 (0.06)

OVA 4 (0.47) 27.7 (2.35) 4.1 (0.3) 28.2 (2.44) 4160.8 (80.6) 8.1 (1.13) 93.8 (8.58) 60.4 (14.8) 56.8 (9.48)
0.02 (0.003) 0.18 (0.01) 0.02 (0.001) 0.18(0.01) 27.45 (0.53) 0.05 (0.01) 0.62 (0.06) 0.39 (0.09) 0.37 (0.06)
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average of percentage of accuracy of classifiers and its standard deviation (first row) over 10 training/test set splits, the number
of discriminant vectors used K (the data is projected onto a K-dimensional space) (second row), and the average of training time
in second and its standard deviation (third row). Bold fonts indicate the best results in each row.

ADCA1-Exp ADCA1-Cap ADCA2-Exp ADCA2-Cap PLDA SDA RDA SPLS DA S SVM

ADV 96.94 (0.32) 97.27 (0.30) 97.28 (0.31) 97.27 (0.28) 94.23 (0.31) 97.23 (0.27) 96.45 (0.36) 97.14 (0.17) 97.25 (0.92)
1 1 1 1 1 1 - - -
2.89 (0.64) 2.41 (0.46) 2.31 (0.88) 2(0.3) 0.004(0.007) 47.97 (3.21) 62.55 (0.96) 31.74 (3.13) 2.03 (0.14)

COL 84.32 (4.49) 86.32 (5.94) 83.35 (3.86) 84.87 (5.81) 78.78 (6.54) 82.43 (7.89) 79.39 (5.8) 85.3 (4.89) 78.73 (4.62)
1 1 1 1 1 1 - - -
0.95 (0.5) 0.23 (0.23) 1.36 (0.76) 0.33 (0.24) 0.01 (0.001) 0.34 (0.03) 0.23 (0.01) 0.01 (0.01) 0.06 (0.01)

SRB 98.17 (2.60) 99.64 (1.12) 98.19 (3.72) 99.27 (1.54) 97.44 (3.66) 98.54 (1.78) 96.73 (4.69) 97.44 (3.99) 99.25 (1.56)
3 3 3 3 3 3 - - -
16.56 (3.22) 5.13 (1.01) 16.07 (3.74) 5.85 (1.58) 0.07 (0.01) 19.23 (6.81) 0.08 (0.01) 7.07 (2.08) 0.19 (0.01)

PEN 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100(0) 92.5 (10.83) 98.33 (3.33) 100 (0)
2 2 2 2 2 2 - - -
4.25 (1.95) 7.08 (1.88) 5.23 (1.96) 6.57 (4.91) 0.03 (0.01) 0.46 (0.36) 0.12 (0.01) 23.68 (3.62) 0.28 (0.03)

GIS 97.64 (0.24) 97.59 ( 0.23) 97.39 (0.26) 97.51 (0.22) 86.88 (0.63) 97.58 (0.25) 84.52 (0.65) 96.39 (0.25) 97.6 (0.29)
1 1 1 1 1 1 - - -
30.11 (16.02) 48.51 (5.97) 24.03 (9.17) 32.56 (1.22) 0.04 (0.08) 3665.69 (51.12) 829.91 (63.81) 256.59 (41.76) 14.62 (2.57)

ALL 95.43 (2.30) 97.06 (2.03) 94.58 (3.25) 95.83 (2.63) 92.13 (6.68) 95.83 (2.63) 95.44 (3.9) 96.26 (4.35) 94.88 (4.43)
2 2 2 2 2 2 - - -
39.55 (8.92) 48.8 (9.87) 58.25 (13.22) 52.66 (16.44) 0.05 (0.03) 52.2 (21.1) 0.42 (0.01) 31.24 (13.21) 0.47 (0.08)

LUN 98.67 (1.05) 98.84 (1.12) 98.17 (1.88) 98.17 (1.74) 99.16 (0.73) 98.66 (1.45) 98 (1.45) 97.84 (1.29) 98.67 (1.52)
1 1 1 1 1 1 - - -
41.88 (6.59) 33.86 (3.15) 53.52 (25.82) 44.89 (6.15) 0.06 (0.01) 6.25 (0.77) 1.07 (0.05) 0.21 (0.02) 0.90 (0.04)

LEU 94.69 (2.5) 95.52 (2.49) 94.08 (2.75) 95.05 (1.46) 96.86 (1.33) 95.88 (1.71) 98.42 (1.08) 92.25 (1.65) 96.49 (1.83)
5 5 5 5 5 5 - - -
284.41 (52.78) 106.05 (30.65) 205.98 (34.32) 117.65 (15.71) 0.21 (0.01) 53.17 (22.66) 1.66 (0.03) 168.37 (39.78) 2.23 (0.08)

MLL 97.08 (2.34) 97.92 (2.19) 95.41 (4.73) 94.58 (4.58) 88.67 (7.41) 95.41 (5.08) 82.06 (17.27) 95.81 (3.72) 97.11 (4.4)
2 2 2 2 2 2 - - -
159.85 (33.32) 163.18 (51.26) 170.74 (42.5 159.44 (59.59) 0.15 (0.04) 157.96 (74.33) 0.49(0.01) 99.09 (41.01) 0.87 (0.07)

PRO 81.52 (5.97) 81.51 (2.79) 78.21 (6.06) 80.83 (34.68) 78.17 (6.17) 79.76 (5.73) 87.91 (2.95) 82.62 (3.49) 80.5 (6.06)
1 1 1 1 1 1 - - -
57.21 (7.51) 30.58 (10.94) 63.77 (26.41) 27.11 (10.89) 1.73 (0.11) 14.3 (1.87) 0.77 (0.04) 0.31 (0.02) 0.62 (0.03)

OVA 100 (0) 100 (0) 100 (0) 100 (0) 89.57 (4.27) 100 (0) 99.64 (0.54) 99.05 (0.88) 100 (0)
1 1 1 1 1 1 - - -
64.32 (25.95) 31.7 (7.27) 80.51 (30.12) 33.39 (7.93) 4.71 (0.1) 2.08 (0.24) 2.03 (0.06) 0.38 (0.02) 1.47 (0.05)
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Figure 3.1: The penicillium data is projected onto the first two sparse discriminant vec-
tors. The samples in each class are shown by using a distinct symbol.

Comments on computational results:
Sparsity. In on all the datasets, the classifiers obtained by the DCA based algorithms
are sparser than those obtained by PLDA, SDA, RDA and SPLS DA. The ADCA1-
Exp approach is the best on 8 out of 11 datasets and ADCA2-Exp is the best on 2
out of 11 datasets. We also see that ADCA1-Cap achieves the best performance on the
PRO dataset. Especially, on some datasets such as the COL, PEN, ALL, LUN and
OVA datasets, ADCA1-Exp only selects a very small number of features (5.8, 2, 9.6, 3.7
and 4 features, respectively). ADCA1-Exp, ADCA1-Cap, ADCA2-Exp and ADCA2-Cap
respectively select from 0, 02% to 20.31%, 0.18% to 21.09%, 0, 02% to 19.21% and 0.18%
to 25.24% of features while PLDA, SDA, RDA, SPLS DA and S SVM respectively select
from 0.59% to 63.47%, 0.05% to 31.24%, 0.62% to 100%, 0.39% to 99.03% and 0.37% to
22.48% of features.

Accuracy of classifiers. The accuracy of classifiers of the DCA based algorithms attain
better than PLDA, SDA, RDA, SPLS DA and S SVM on 8/11 datasets. ADCA1-Cap is
the best on 6/11 datasets. ADCA1-Exp and ADCA2-Exp are the best on 3/11 datasets.
PLDA and RDA are slightly better than the DCA based algorithms on three datasets
(LUN, LEU and PRO). This can be explained by the fact PLDA and RDA select much
more features than the DCA based algorithms (the ratio is, respectively, 1042, 491 and
181 times on the LUN, LEU and PRO datasets).

Training time. Training time of the DCA based algorithms is quite small and acceptable:
less than 81 seconds (except for datasets LEU and MLL).

For the experiments on the MNIST dataset. his dataset is quite different, as it has a very
large number of observations (70000) while the number of features is not large (784). The
parameter γ, λ and the number of discriminant vectors K which are used are chosen via
5-fold cross-validation on the training set. The test set is used to measure the accuracy of
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Table 3.5: Comparative results of MNIST dataset in terms of the number (percentage)
of selected features #FS (%FS), the percentage of accuracy of classifiers (ACC) on the
test set, and training time in second. Bold fonts indicate the best results in each column.

Method #FS (%FS) ACC Training time

ADCA1-Exp 492 (62.75) 89.8 765.18
ADCA1-Cap 529 (67.47) 89.82 937.98
ADCA2-Exp 491 (62.62) 89.79 869.8
ADCA2-Cap 530 (67.6) 89.69 733.35

PLDA 610 (77.8) 81.59 100.84

SDA 641 (81.76) 87.43 317143.43
RDA - - -

SPLS DA 715 (91.19) 86.34 717.05
S SVM 655 (83.54) 89.07 464.06

various classifiers trained on the training set. The computational results are reported on
Table 3.5. Notably in this dataset, RDA is not able to perform since the amount of RAM
is insufficient. From Table 3.5, we observe that the DCA based algorithms outperform
PLDA, SDA, SPLS DA and S SVM in term of selected features and ADCA2-Exp is the
best. In term of accuracy, the DCA based algorithms are also better than the other
approaches. For the training time, PLDA is the fastest. Contrary to other datasets, here
DCA based algorithm require much more training time, since the number of samples is
very large.

Overall, the DCA based algorithms realize better a trade-off between accuracy and spar-
sity than the other algorithms. They suppress considerably the number of features (up
to 99.98%) while the correctness of classification is quite good (from 78.17% to 100%).

3.5.6 Comparison with ℓ0-sparse Fisher LDA and ℓ0-sparse

MSVM

Before finishing this chapter, we compare ADCA1-Cap with the sparse Fisher linear
discriminant analysis (DCA1-Cap) proposed in the previous chapter and the sparse mul-
ticlass support vector machine (SMSVM-Cap) using the ℓ2 + ℓ0 regularization (Le Thi
and Nguyen, 2013). The all three methods use the Capped-ℓ1 approximation function of
the ℓ0-norm.

The comparative results of ADCA1-Cap, DCA1-Cap and SMSVM-Cap are reported in
Table 3.6. We observe from this table that in terms of classification accuracy, ADCA1-Cap
is better than DCA1-Cap while DCA1-Cap outperforms SMSVM-Cap. More precisely,
ADCA1-Cap is the best on 10/14 datasets and DCA1-Cap is the best on 7/14 datasets in
terms of classification accuracy. In terms of the sparsity, ADCA1-Cap and SMSVM-Cap
give the best and second best results, respectively. Specifically, ADCA1-Cap, SMSVM-
Cap and DCA1-Cap are respectively the best on 8/14, 4/14 and 2/14 datasets with
respect to the sparsity. Concerning the running time, we notice that DCA1-Cap is the
fast, following by ADCA1-Cap, while SMSVM-Cap runs much lower than DCA1-Cap
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Table 3.6: Comparative results of ADCA1-Cap, DCA1-Cap and SMSVM-Cap. Bold fonts indicate the best results.

Accuracy of classifiers Number/percentage of selected features CPU time in second

ADCA1-Cap DCA1-Cap SMSVM-Cap ADCA1-Cap DCA1-Cap SMSVM-Cap ADCA1-Cap DCA1-Cap SMSVM-Cap

S1 100 (0) 100 (0) 99.99 (0.02) 107.3 (1.55) 110 (3) 115.4 (2.6) 1.32 (0.17) 0.012 (0.001) 66.6 (2.3)
21.46 (0.31) 22 (0.6) 23 (0.5)

S2 94.82 (0.58) 94.5 (0.8) 93.25 (0.5) 89.4 (4.35) 100.9 (6.5) 113.1 (3.9) 0.05 (0.01) 0.002 (0.001) 10.1 (0.3)
17.88 (0.87) 20.1 (1.3) 22.6 (0.7)

S3 97.09 (0.56) 96.66 (1.2) 50.77 (2) 116.6 (5.4) 114 (6.6) 135.3 (6.3) 0.37 (0.06) 0.005 (0.003) 41 (1)
23.32 (1.08) 22.8 (1.3) 27 (1.2)

ADV 97.27 (0.3) 94.25 (0.29) 96.14 (0.3) 253.3 (22.85) 467.71 (17.6) 46.5 (5.7) 2.41 (0.46) 0.003 (0.006) 10.4 (0.1)
16.11 (1.47) 30.02 (1.13) 2.9 (0.3)

COL 86.32 (5.94) 81.57 (5.08) 77.05 (6.1) 23.9 (9.4) 2 (0.8) 19 (2.5) 0.23 (0.23) 0.001 (0.003) 11.2 (1.9)
1.19 (0.47) 0.1 (0.04) 0.9 (0.1)

SRB 99.64 (1.12) 99.27 (1.46) 98.92 (1.6) 70.6 (6) 552.3 (674.62) 27.8 (3) 5.13 (1.01) 0.048 (0.037) 378.6 (28.8)
3.05 (0.26) 23.93 (29.23) 1.2 (0.1)

PEN 100 (0) 100 (0) 96 (5.8) 22.0 (4.42) 2312.08 (79.58) 31.5 (1.7) 7.08 (1.88) 0.056 (0.023) 89.1 (7.4)
0.59 (0.12) 61.59 (2.12) 0.84 (0.04)

GIS 97.59 (0.23) 87.45 (0.63) 97.04 (0.2) 1054.6 (25.49) 2528 (259) 627.1 (24.6) 48.51 (5.97) 0.008 (0.012) 4263 (2094.6)
21.09 (0.5) 50.56 (5.18) 12.5 (0.4)

ALL 97.06 (2.03) 96.24 (3.64) 92.27 (4.7) 63.1 (11.4) 2437.9 (268.14) 74.2 (7.8) 48.8 (9.87) 7.47 (0.05) 572.9 (283.2)
0.88 (0.16) 34.19 (3.76) 1.04 (0.1)

LUN 98.84 (1.12) 99.34 (0.81) 98.45 (1.8) 27.8 (2.44) 1542.81 (1265.83) 37.2 (4.7) 33.86 (3.15) 0.036 (0.016) 837.28 (201.73)
0.22 (0.01) 12.31 (10.1) 0.29 (0.03)

LEU 95.52 (2.49) 96.99 (1.32) 93.2 (3.1) 37.9 (5.65) 3549.38 (1748.89) 173.8 (28.54) 106.05 (30.65) 0.27 (0.089) 5482.48 (284.67)
0.3 (0.05) 28.21 (13.9) 1.38 (0.22)

MLL 97.92 (2.19) 98.48 (2.17) 92.85 (3.17) 132.6 (15.09) 6398 (388.61) 236.1 (8.26) 163.18 (51.28) 7.68 (0.13) 3719.3 (1725.52)
1.05 (0.12) 50.85 (3.08) 1.87 (0.06)

PRO 81.51 (2.79) 89.92 (2.1) 89.46 (4.3) 45.5(9.68) 5898.06 (2963.52) 26.4 30.58 (10.94) 0.82 (0.03) 486.9 (45.6)
0.36 (0.07) 46.81 (23.52) 0.2 (0.02)

OVA 100 (0) 100 (0) 100 (0) 27.7 (2.35) 4870.49 (2712.56) 30.1 (3.1) 31.7 (7.27) 1.36 (0.004) 3356.7 (146.6)
0.18 (0.01) 32.14 (17.9) 0.2 (0.02)
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and ADCA1-Cap. DCA1-Cap runs extremely quickly (less than 8s). This is explained
by using the diagonal estimate matrix of the within-class covariance matrix in the model,
hence DCA1-Cap is explicitly computed at each iteration. We also note that SMSVM-
Cap is very expensive when p is quite large, because its convex quadratic sub-problem
has 2Qp+Q + (Q− 1)n variables and 2(Q− 1)n+Qp constraints.

3.6 Conclusion

We have proposed efficient approaches for solving the Sparse Optimal Scoring (SOS) prob-
lem using the ℓ0 regularization. Among several sparse inducing functions of the ℓ0-norm
we used two appropriate approximations functions, and reformulated the SOS problem as
continuous nonconvex optimization problems. We proposed two DC formulations of the
approximate SOS problems and then investigated the alternating schemes based on DCA
for them. Overall, four DCA based algorithms have been developed in order to exploit
the nice effect of DC decompositions / DC formulations on one part, and the efficiency
of the approximate functions on another part. The research developed in this chapter
permitted us to highlight the following observations / recommendations:

• About the two DC formulations and their resulting DCA based algorithms: The second
formulation seems to be more complicated as it needs an additional variable z. However,
the use of z does not affect the complexity of DCA2: the two convex problems in DCA1
and DCA2 have the same form and the same dimension. Therefore, intuitively we can say
that DCA1 and DCA2 have the same complexity. Regarding the behavior of algorithms,
with the same approximate function, DCA2 seems to be more interesting in the sense
that DCA2 is a re-weighted ℓ1 type algorithm while DCA1 is simply a perturbed ℓ1 algo-
rithm (the coefficient of the ℓ1-term is fixed during DCA scheme). In fact, by updating
the coefficients of the ℓ1-term in the convex problem at each iteration, DCA2 likely fur-
nishes a better solution, consequently ADCA2 likely gives a better classification accuracy
than ADCA1. This observation and the numerical results on the synthetic data suggest
us to promote the use of DCA2 when we know that the data following a multivariate
normal / Gaussian distribution. Meanwhile, averagely speaking, DCA1 and DCA2 are
comparable on classification and CPU time. As for sparsity, it depends significantly on
the approximate function.

• About the two approximate functions and their resulting DCA based algorithms: Intu-
itively, as has been discussed in Le Thi et al. (2015), Capped-ℓ1 is more interesting than
the exponential approximation (Exp) since the resulting DCA has a finite convergence
and it gives in almost always cases a local minimum (whereas, theoretically, a solution ob-
tained by DCA using Exp is only a critical point). It is easy to check the local optimality
condition and in our experiments the DCA using Capped-ℓ1 gives a local minimum in all
test problems. This superiority of Capped-ℓ1 versus Exp is confirmed by the numerical
results in our experiments: generally speaking, in the same problem formulation, ADCA
with Capped-ℓ1 gives a better classification accuracy than ADCA using Exp. However,
like numerical results in numerous previous works (see e.g. (Le Thi et al., 2015, 2014a,
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2008; Ong and Le Thi, 2013a)), our numerical results show that Exp is more efficient than
Capped-ℓ1 when promoting sparsity (except for only one data set S3). Hence the users
are recommended to use Capped-ℓ1 (resp. Exp) when the classification accuracy (resp.
the sparsity of classifier) is the most important criterion in the considered classification
problem.

• Overall, the four versions of DCA based algorithms are comparable and the numerical
results showed that ADCA1-Exp seems to be the most promising algorithm that realizes
a good trade-off between accuracy and sparsity.

The efficiency of the four proposed methods have been compared with five standard al-
gorithms which use the ℓ1 regularization. The computational results show the robustness
and the effectiveness of the DCA based algorithms and their superiority with respect to
these standard approaches. It turns out that

• The ℓ0 sparse optimal scoring methods are more efficient than other algorithms in
classification of high dimensional data, especially when the number of features are much
larger than the number of observations. The use of the proposed methods is strongly
recommended for this type of data. It is worth noting that the SSVM is not suitable for
such a data. Indeed, as has been seen in our numerical experiments, SVM using convex
regularization like S SVM is not efficient to feature selection, and therefore nonconvex
approximations of the ℓ0 regularization is necessary to deal with sparsity. However, if
the sparse MSVM is also treated by the Capped-ℓ1 (SMSVM-Cap) and the exponential
concave function as we did on the optimal scoring methods, then the convex sub-problems
in DCA are quadratic which require second order methods (see (Le Thi and Nguyen,
2013)). Such methods are very expensive when p is quite large, because the convex
quadratic sub-problem has 2Qp+Q+(Q− 1)n variables and 2(Q− 1)n+Qp constraints
(note however that the sub-problems in our SOS methods have Kp(K < Q) variables).

• For any type of data, ℓ0 regularization produces much better sparsity than ℓ1 regular-
ization. Hence we suggest to use the ℓ0 sparse optimal scoring methods when the sparsity
is significantly desired.

For future works, we plan to study more extensive applications of the SOS problem. In
particular, we extend our works to more complex settings, such as the case where the
observations from each class are drawn from a mixture of Gaussian distributions resulting
in nonlinear separations between classes.





Chapter 4

Sparse Covariance Matrix
Estimation

Abstract: This chapter proposes a novel approach using the ℓ0-norm regularization for the sparse
covariance matrix estimation (SCME) problem. The objective function of SCME problem is
composed of a nonconvex part and the ℓ0 term which is discontinuous, and difficult to tackle
as well. Appropriate DC (Difference of Convex functions) approximations of ℓ0-norm are used
that result to approximation SCME problems which are still nonconvex. DC programming and
DCA (DC Algorithm), powerful tools in nonconvex programming framework, are investigated.
Two DC formulations are proposed and then corresponding DCA schemes are developed. Two
applications of the SCME problem are considered, that are classification via sparse quadratic
discriminant analysis and portfolio optimization. A careful empirical experiment are performed
through both simulated datasets and real datasets to study the performance of the proposed al-
gorithms. Numerical results showed their efficiency and their superiority compared with seven
state-of-the-art methods.

4.1 Introduction

The estimation of covariance matrix is a common statistical problem that emerges from
many scientific applications, and it quickly becomes an active and fast growing field of
research. Much statistical analysis of such high dimensional data requires estimating a
covariance matrix or its inverse. Several applications in numerous domains such as port-
folio management and risk assessment (Ledoit and Wolf, 2003, 2004; Jagannathan and

1. The material of this chapter is based on the following works:
[1] Duy Nhat Phan, Hoai An Le Thi and Tao Pham Dinh. A DC Programming Approach for Sparse
Estimation of a Covariance Matrix. Modelling Computation an Optimization in Information Systems
and Management Sciences, Advances in Intelligent Systems and Computing, Volume 359, pp. 131-142,
Springer (2015).
[2] Duy Nhat Phan and Hoai An Le Thi and Tao Pham Dinh. Sparse Covariance Matrix Estimation by
DCA based Algorithms. Submitted.
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Ma, 2003; Kourtis et al., 2012; Fan et al., 2013; Xue et al., 2012; Lai et al., 2011; Deng
and Tsui, 2013), high dimensional classification (Guo et al., 2007; Witten and Tibshirani,
2011; Tibshirani et al., 2003), analysis of independence and conditional independence
relationships between components in graphical models, statistical inference like control-
ling false discoveries in multiple testing (Leek and Storey, 2008; Efron, 2010), finding
quantitative trait loci based on longitudinal data (Yap et al., 2009; Xiong et al., 2011),
testing the capital asset pricing model (Sentana, 2009), ... have reported success sto-
ries of using covariance matrix estimation. For instance, principal component analysis
(PCA) applies the eigen-decomposition of the covariance matrix for dimension reduction.
In classification, linear discriminant analysis (LDA), quadratic discriminant analysis and
other procedures exploit the inverse of a covariance matrix to compute the classification
rule. In finance, portfolio optimization often uses the covariance matrix for minimizing
the portfolio risk. More notably, graphical models are especially of interest in the analysis
of gene expression data, since it is believed that genes operate in pathways, or networks.
Graphical models based on gene expression data can provide a powerful tool for visualiz-
ing the relationships of genes and generating biological hypotheses (Toh and Horimoto,
2002; Dobra et al., 2004; Schafer and Strimmer, 2005a,b).

Let Y = (Y1, ..., Yp)
T be a p-dimensional random vector with the covariance matrix Σ =

[Σij ]1≤i,j≤p, where Σij is the covariance between Yi and Yj. Suppose that we observe
a sample including n observational data points X1, ..., Xn from a multivariate normal
distribution N (0,Σ). The general purpose is to estimate Σ from this sample. This
amounts to minimizing the negative log-likelihood function Mardia et al. (1979), Chap. 4
defined by

ℓ(Σ) =
n

2

[
log det Σ + tr(Σ−1S) + p log 2π

]
, (4.1)

where S = 1/n
∑n

i=1XiX
T
i is the sample covariance matrix under the assumption that

the data is normalized to zero mean.

The problem is that with the increasing abundance of high-dimensional datasets, the
sample covariance matrix S becomes an extremely noisy estimator of the covariance
matrix, and besides, the number of parameters used to estimate grows quadratically with
the number of variables. Intuitively, the most suitable approach to cope with this problem
is finding an estimate of the covariance matrix which is as sparse as possible, since the
sparsity leads to the effective reduction in the number of parameters. In addition, the
sparsity is visualized by the so-called covariance graph (Chaudhuri et al., 2007). In the
covariance graph, each node presents a random variable in a random vector and these
nodes are connected by bidirectional edges if the covariances between the corresponding
variables are nonzero. Note that the two random variables Yi and Yj are marginally
independent if and only if the covariance between Yi and Yj is zero. Hence the zeros in a
covariance matrix correspond to marginal independencies between variables, and sparse
estimation of the covariance matrix is equivalent to estimating a covariance graph having a
small number of edges. Thus the sparsity of the covariance matrix or its inverse is useful
to improve the estimation accuracy and/or to explore the structure of the covariance
graphical model.
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In recent years, in connection with the Big data phenomenon, the sparse covariance matrix
estimation (SCME) problem attracts a lot of attention of researchers and constitutes a
challenge for the machine learning community. Existing methods for the SCME problems
follow two directions. The first direction is to estimate the sparse inverse covariance
matrix. A popular method in this direction consists in adding the lasso penalty (ℓ1-norm
regularization) on the entries of the inverse covariance matrix to the normal likelihood
(see e.g. (Meinshausen and Buhlmann, 2006; Yuan and Lin, 2007; Banerjee et al., 2008;
Friedman et al., 2008; Rothman et al., 2008; Danaher et al., 2014; Cai et al., 2011; Zhang
and Zou, 2014)). The second direction is to estimate directly the sparse covariance matrix.
In this chapter, we follow the latter one.

A natural way to deal with sparsity in machine learning is using the ℓ0-norm in the
regularization term that leads to the following mathematical formulation of the SCME
problem:

min
Σ≻0

{
log det Σ + tr(Σ−1S) + λ||Σ||0

}
, (4.2)

where λ is a nonnegative tuning parameter, the notation Σ ≻ 0 means that Σ is symmetric
positive definite, and ||Σ||0 denotes the ℓ0-norm of Σ, i.e. the number of nonzero elements
of matrix Σ. It is clear that the SCME problem is much more difficult than the classical
estimation of covariance matrix problem. In view of optimization, the SCME problem
includes a double difficulties: both the negative log-likelihood function and the ℓ0-norm
are nonconvex.

Note that the solution to (4.2) is positive definite. This property is crucial for any
covariance matrix estimator from both methodological and practical aspects. Positive
definite covariance matrices are required in all statistical procedures that use the normal
distribution (for example, the principal component analysis, the parametric bootstrap
method and the linear or quadratic discriminant analysis). Even some important statisti-
cal methods that do not use the normal distribution still need positive definite covariance
matrix estimators such as some portfolio optimization methods based on the celebrated
Markowitz model.

If S is nonsingular, then the problem (4.2) is equivalent to the following problem:

min
Σ�δIp

{
log det Σ + tr(Σ−1S) + λ||Σ||0

}
, (4.3)

for some δ > 0 (see Bien and Tibshirani (2011)). Here, Ip denotes the p × p identity
matrix, and the notation Σ � δIp means that Σ− δIp is symmetric positive semidefinite.
Note that if S is not full rank, we can replace S with S + ǫIp for some ǫ > 0. In this
setting, the observed data reside in a lower dimensional subspace of Rp, and the addition
of S and ǫIp means the dataset with points that are not completely included in the span
of the observed data is enhanced.

Optimization methods involving the ℓ0-norm can be divided into three categories accord-
ing to the way treating the ℓ0 -norm: convex approximation, nonconvex approximation,
and nonconvex exact reformulation. We refer to Le Thi et al. (2015) for an excellent
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review on exact/approximation approaches to deal with the ℓ0-norm. When the objec-
tive function (besides the ℓ0-term) is convex, convex approximation techniques result to
a convex optimization problem which is so far easy to solve. Unfortunately, due to the
non-convexity of the negative log-likelihood function, the SCME problem (4.2) remains
nonconvex with any approximation convex or nonconvex, of the ℓ0-norm. How to deal
with the ℓ0-norm and how to treat the nonconvexity of the negative log-likelihood loss
function are two crucial questions to be studied. Several works have been developed to
the SCME problem, but designing an efficient method for it is still a challenge in this
research field.

The approaches for solving the SCME problem can be divided into two groups: most of
them are included in the first group that we name convex approach. Here one seeks to
deter the non-convexity by replacing the negative log-likelihood function with a surrogate
convex loss function and using the ℓ1-norm or ℓ2-norm instead of the ℓ0-norm to deal with
sparsity (see e.g. Deng and Tsui (2013); Liu et al. (2014); Rothman et al. (2009); Rothman
(2012); Xue et al. (2012)). The resulting problems are then convex and so solvable, but it
is unsurprising that the quality of solutions can be not good. In the second group including
Bien and Tibshirani (2011); Lam and Fan (2009), the negative log-likelihood function is
keeped and the ℓ1-regularization is used to deal with sparsity. As mentioned above,
due to the non-convexity of the negative log-likelihood function, the resulting problem
is still nonconvex. In Bien and Tibshirani (2011) the authors applied the minorization-
maximization (MM) approach for solving the resulting problem. Previous works on sparse
optimization showed that the use of the ℓ1-norm as a convex approximation of the ℓ0-norm
is not a good way in general (see Le Thi et al. (2015) and references therein). Instead,
the approach approximating the ℓ0-norm by a nonconvex continuous function (actually
a DC function) is more suitable from theoretical perspective (Le Thi et al., 2015). The
advantage of the ℓ0-regularization versus the ℓ1-regularization in learning with sparsity
has been proved by several machine learning algorithms, however the difficulty caused by
the ℓ0-norm prevents researchers use the ℓ0-regularization.

Our contributions. In this chapter, taking into account the advantages of some DC
approximations of the ℓ0-norm developed in Le Thi et al. (2015), we seek the most natural
way to tackle the sparsity - the ℓ0-regularization, and use these DC approximations to
design two new models for the SCME problem. More precisely, we maintain the negative
log-likelihood function in the problem (4.3) and replace the ℓ0-regularization by these
DC approximations. The resulting approximate problems are far more difficult than the
existing models, but they are DC programs. With our best knowledge, this is the first
time in the literature the ℓ0-regularization is considered and its nonconvex approximations
are used for the SCME problem.
Furthermore, we tackle the resulting approximate SCME problem by DC programming
and DCA, powerful tools in nonconvex programming framework. Our motivation is based
on the fact that DCA is a fast and scalable approach which has been successfully applied
to many large-scale (smooth or non-smooth) non-convex programs in various domains of
applied sciences, in particular in data analysis and machine learning (see e.g. Collobert
et al. (2006); Krause and Singer (2004); Le Thi and Pham Dinh (2005); Le Thi et al.
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(2012, 2014b, 2007, 2008, 2014a); Pham Dinh and Le Thi (1997, 1998, 2014); Le Hoai
et al. (2013); Liu et al. (2005); Le Thi and Nguyen (2014) ) and the list of reference
on http://lita.sciences.univ-metz.fr/~lethi/DCA.html). We note in passing that
the MM based approach proposed in Bien and Tibshirani (2011) for the SCME problem
is also a version of DCA. Constituting the backbone of smooth/nonsmooth nonconvex
programming and global optimization, DC programming and DCA address general DC
programs of the form

α = inf{F (x) := G(x)−H(x) | x ∈ R
n} (Pdc),

where G,H are lower semi-continuous proper convex functions on R
n. Such a function

F is called a DC function, and G−H a DC decomposition of F while G and H are the
DC components of F . The general DCA scheme is a philosophy but not an algorithm.
There is not only one DCA but one family of DCAs for a considered problem. The main
feature of DCA is that it is constructed from DC components but not the DC function
F itself which has infinitely many DC decompositions, and there are as many DCA as
there are DC decompositions. Such decompositions play a critical role in determining
the speed of convergence, stability, robustness, and globality of sought solutions. Hence,
what is a ”good” DC decomposition is a crucial question when developing DCA for a DC
program. The design of an efficient DCA for a concrete problem should be based on its
special structure.

In this work, we propose two DC formulations of the approximate SCME problem based
on two DC decompositions of its objective function. The first results from a natural DC
decomposition while the second is introduced to exploit nice effects of DC decomposi-
tions. It turns out that the complexity of two corresponding DCA schemes are quite
different, because that convex subproblems in the second DCA scheme can be solved by
a very inexpensive algorithm. The ratio of gain between the two DCAs in terms of CPU
times in our numerical experiments is up to 44 times. Among various existing sparse in-
ducing functions, we are choosing, for implementing our algorithms, the piecewise linear
approximation (Capped-ℓ1) (Peleg and Meir, 2008) and the piecewise exponential approx-
imation (Bradley and Mangasarian, 1998). This choice is motivated by the fact that the
Capped-ℓ1 has been proved theoretically in Le Thi et al. (2015) to be the tightness ap-
proximation while the piecewise exponential function has been showed to be efficient via
the numerical results in numerous works (Bradley and Mangasarian, 1998; Le Thi et al.,
2008, 2015, 2014c; Ong and Le Thi, 2013b). Applying DCA on two DC formulations
with two approximations, we have then four DCA based algorithms for the approximate
SCME problem. Special convergence analysis results of our algorithms are provided. We
consider two important applications of the SCME problem in our experiments. The first
is the quadratic discriminant analysis using sparse covariance matrices estimated by the
proposed algorithms. The second is a portfolio optimization problem. Numerical exper-
iments are carefully achieved on several test problems on both simulated datasets and
real datasets with 11 algorithms including 7 state-of-the-art methods and the 4 proposed
DCA schemes.

The rest of the chapter is organized as follows. The DCA based methods for solving the
SCME problem is presented in Section 4.2. The numerical experiments are reported in

http://lita.sciences.univ-metz.fr/~lethi/DCA.html
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Section 4.3 and, finally, Section 4.4 concludes the chapter.

4.2 DCA for solving the sparse covariance matrix es-

timation SCME problem

4.2.1 The approximation SCME problem

The discontinuity of the ℓ0-norm is overcome by using a DC approximation function.
Define the step function s : R → R by s(t) = 1 for t 6= 0 and s(t) = 0 otherwise. Then
‖x‖0 =

∑n
i=1 s(xi). The idea of approximation methods is to replace the discontinuous

step function by a continuous approximation ηα, where α > 0 is a parameter controlling
the tightness of approximation. The approximation of the ℓ0-norm is then defined by

||Σ||0 ≈
∑

i,j

ηα(Σij). (4.4)

This leads to the approximation SCME problem of (4.3) which takes the form

min
Σ∈Ω

{
F (Σ) = log det Σ + tr(Σ−1S) + λ

∑

i,j

ηα(Σij)

}
, (4.5)

where Ω = {Σ ∈ S
p
++ : Σ � δIp}.

We consider in this work two approximation functions ηα,1 and ηα,2 given by

ηα,1(t) = 1− exp(−α|t|) ∀t ∈ R,

(the piecewise exponential concave approximation (Bradley and Mangasarian, 1998)) and

ηα,2(t) = min{1, α|t|} ∀t ∈ R,

(the Capped-ℓ1 (Peleg and Meir, 2008)). In the sequel, for the sake of convenience, we
use the common notation ηα to design both ηα,1 and ηα,2. It has been proved in Le Thi
et al. (2015) that ηα is a DC function verifying the Assumption 1 of Le Thi et al. (2015),
and with a suitable value of α the Capped-ℓ1 approximation SCME problem (say, (4.5)
when ηα = ηα,2) is equivalent to the original SCME problem (4.3).

We now investigate DCA for solving the nonconvex problem (4.5).

4.2.2 The first DCA scheme for solving the approximation
SCME problem (4.5)

The approximation ηα can be presented as a DC function:

ηα(t) = g(t)− h(t),with g(t) = α|t|, (4.6)
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and

h(t) = −1 + α|t|+ exp(−α|t|) if ηα = ηα,1, h(t) = −1 +max{1, α|t|} if ηα = ηα,2. (4.7)

In addition, we see that log det Σ is concave in Σ (Boyd and Vanderberghe, 1979) while
tr(Σ−1S) is convex. Indeed, we have

tr(Σ−1S) =

n∑

i=1

XT
i Σ

−1Xi,

and the function XT
i Σ

−1Xi is convex in Σ (Boyd and Vanderberghe, 1979). It follows
that tr(Σ−1S) is convex. Consequently, the following DC decomposition of F (Σ) seems
to be natural

F (Σ) = G1(Σ)−H1(Σ), (4.8)

where
G1(Σ) = tr(Σ−1S) + λ

∑

i,j

g(Σij) + χΩ(Σ),

and
H1(Σ) = − log det Σ + λ

∑

i,j

h(Σij),

are clearly convex functions. Now, the optimization problem (4.5) can be rewritten as:

min
Σ∈Rp×p

{F (Σ) = G1(Σ)−H1(Σ)}. (4.9)

According to the generic DCA scheme, at each iteration l, we have to compute V l ∈
∂H1(Σ

l) and then solve the convex program of the form (Pl), namely

min
Σ∈Rp×p

{F1(Σ) := G1(Σ)− 〈V l,Σ〉}. (4.10)

The computation of V l ∈ ∂H1(Σ
l) depends on ηα. More precisely, for ηα = ηα,1, V

l is
computed by

V l
ij = −

[
(Σl)−1

]
ij
+ sgn(Σl

ij)λα
(
1− exp(−α|Σl

ij|)
)
, (4.11)

where sgn(Σl
ij) is the sign of Σl

ij . For ηα = ηα,2, V
l is calculated as

V l
ij =

{
−
[
(Σl)−1

]
ij
+ sgn(Σl

ij)λα if α|Σl
ij| ≥ 1,

−
[
(Σl)−1

]
ij

otherwise.
(4.12)

For solving the convex problem (4.10), we have to use an iterative method in convex
programming. For instance, we use the generalized gradient descent (GGD) algorithm
(Beck and Teboulle, 2009) that iteratively solves the following problem at each iteration
k:

min
Σ�δIp

{
lk(Σ) :=

1

2ν
||Σ− Σl,k + ν[−(Σl,k)−1S(Σl,k)−1 − V l]||2F + λα||Σ||1

}
, (4.13)
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where t > 0 is a suitable stepsize. And then the problem (4.13) can be solved by the
alternating direction method of multipliers (ADMM) (Boyd et al., 2011). The augmented
Lagrangian function of this problem is

L1(X, Y, Z) =
1

2ν
||X − Σl,k + ν[−(Σl,k)−1S(Σl,k)−1 − V l]||2F + λα||Y ||1+

+〈Z,X − Y 〉+ ρ

2
||X − Y ||2F ,

and ADMM solves the following problems at each iteration i:

X i+1 = arg min
X�δIp

L1(X, Y
i, Z i),

Y i+1 = arg min
Y ∈Rp×p

L1(X
i+1, Y, Z i),

Z i+1 = X i + ρ(X i+1 − Y i+1).

Let S be the elementwise soft-thresholding operator defined by S(A,B)ij =
sgn(Aij)(|Aij| − Bij)+. Then, finally, DCA for solving (4.9) can be described as fol-
lows.

DCA1

Initialization: Σ0 � δIp, l = 0, τ > 0, and compute δ.
repeat
1. Compute V l ∈ ∂H1(Σ

l) according to (4.11) (resp. 4.12)) when ηα = ηα,1 (resp.
ηα = ηα,2).
2. Initialization (GGD): Σl,0 = Σl, k = 0, and ν, ǫ2 > 0.
repeat
- Compute ∆k = Σl,k + ν[(Σl,k)−1S(Σl,k)−1 + V l].
- Initialization (ADMM): Y 0 = S

(
∆k, λαν

)
, Z0 = 0, i = 0, and ǫ1, ρ > 0.

repeat
- Compute X i+1 = UDδU

T where Dδ = diag(max(Dii, δ)) and (∆k + νρY i −
νZ i)/(1 + νρ) = UDUT .
- Compute Y i+1 = S (X i+1 + Z i/ρ, λα/ρ).
- Compute Z i+1 = Z i + ρ(X i+1 − Y i+1).
- i← i+ 1.

until |lk(X i)− lk(X i−1)| ≤ ǫ1.
- Σl,k+1 = X i.
- k ← k + 1.

until ‖Σl,k − Σl,k−1‖1 ≤ ǫ2.
3. Σl+1 = Σl,k.
4. l ← l + 1.

until ||Σl − Σl−1||F ≤ τ
(
||Σl−1||F + 1

)
or |F (Σl)− F (Σl−1)| ≤ τ

(
|F (Σl−1)|+ 1

)
.

The complexity of one iteration of DCA1 is determined as follows. The computation of
the subgradient of H1 needs O(p3) operations. The combined GGD-ADMM for solving
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convex subproblem requires O
(
NGGD

iter ×NADMM1
iter × p3

)
operations, where NGGD

iter and
NADMM1

iter are the number of iterations of the GGD and ADMM algorithms, respectively.
Thus, the complexity of DCA1 is

O
(
NDCA1

iter ×NGGD
iter ×NADMM1

iter × p3
)
, (4.14)

where NDCA1
iter denotes the number of iterations of DCA1.

We remark that DCA1 might be quite expensive because we have to use two iterative
methods for solving the convex subproblem (4.10). This motivates us to consider another
DC formulation of the problem (4.5).

4.2.3 The second DCA scheme for solving the approximation
SCME problem (4.5)

Observing that the convex problem (4.10) is difficult due to the presence of the term
tr(Σ−1S) in G1, we seek another DC decomposition by moving tr(Σ−1S) to the second
DC component. We then propose the following second DC formulation of the problem
(4.5):

min
Σ∈Rp×p

{F (Σ) = G2(Σ)−H2(Σ)}, (4.15)

where

G2(Σ) =
µ

2
||Σ||2F + λ

∑

i,j

g(Σij) + χΩ(Σ), (4.16)

and

H2(Σ) =
µ

2
||Σ||2F − tr(Σ−1S)− log det Σ + λ

∑

i,j

h(Σij), (4.17)

are convex functions when µ is large enough. For estimating µ, we state the following
lemma.

Lemma 4.1 If µ ≥ 2||S||2δ−3, then H2(Σ) is convex.

Proof : Since the function − log det Σ + λ
∑

i,j h(Σij) is convex and the sum of two

convex functions is also convex, it is sufficient to show that µ
2
||Σ||2F − tr(Σ−1S) becomes

convex, i.e. µ is greater than the spectral radius of the Hessian matrix of Λ(Σ) = tr(Σ−1S).
We have

ρ(∇2Λ(Σ)) ≤ ||∇2Λ(Σ)||2, (4.18)

where ρ(∇2Λ(Σ)) and ||∇2Λ(Σ)||2 are the spectral radius and the spectral norm of the
Hessian matrix of Λ(Σ), respectively. The differential dΛ(Σ) of Λ(Σ) is defined by

dΛ(Σ) = tr
[
(dΣ−1)S

]
= tr

[
−Σ−1(dΣ)Σ−1S

]
= tr

(
−Σ−1SΣ−1dΣ

)
.
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Hence, we get the gradient of Λ(Σ) as follows

∇Λ(Σ) = d

dΣ
Λ(Σ) = −Σ−1SΣ−1. (4.19)

We recall the product rule for matrix derivatives

d

dΣ
f(Σ)g(Σ) =

(
g(Σ)T ⊗ Ip

) d

dΣ
f(Σ) + (Ip ⊗ f(Σ))

d

dΣ
g(Σ),

where f, g : Rp×p → R
p×p. Using this product rule, we have

d

dΣ
∇Λ(Σ) = −

[
(SΣ−1)T ⊗ Ip

] d

dΣ
Σ−1 −

(
Ip ⊗ Σ−1

) d

dΣ
SΣ−1.

Moreover, by the product rule, we also obtain d
dΣ
Σ−1 = −Σ−1 ⊗ Σ−1 and

d

dΣ
SΣ−1 =

[
(Σ−1)T ⊗ Ip

] d

dΣ
S + (Ip ⊗ S)

d

dΣ
Σ−1 = (Ip ⊗ S)

(
−Σ−1 ⊗ Σ−1

)
.

Therefore, the Hessian of Λ(Σ) is

∇2Λ(Σ) =
(
Σ−1S ⊗ Ip

) (
Σ−1 ⊗ Σ−1

)
+
(
Ip ⊗ Σ−1

)
(Ip ⊗ S)

(
Σ−1 ⊗ Σ−1

)
.

Using the property (A⊗B)(C ⊗D) = AC ⊗ BD, we finally get

∇2Λ(Σ) = Σ−1SΣ−1 ⊗ Σ−1 + Σ−1 ⊗ Σ−1SΣ−1. (4.20)

We can deduce from (4.20) that ||∇2Λ(Σ)||2 ≤ 2||S||2δ−3, and then by (4.18) we have
ρ(∇2Λ(Σ)) ≤ 2||S||2δ−3. The lemma is then proved. ✷

Remark 4.1 From the Lemma 4.1, we can choose µ = 2||S||2δ−3.

Applying DCA on (4.15), we have to compute V l ∈ ∂H2(Σ
l) and then solve the convex

program of the form (Pl), say

min
Σ�δIp

{F2(Σ) :=
µ

2
||Σ||2F + λα‖Σ‖1 − 〈V l,Σ〉}. (4.21)

The computation of V l is given by, for ηα = ηα,1 :

V l
ij = µΣl

ij +
[
(Σl)−1S(Σl)−1

]
ij
−
[
(Σl)−1

]
ij
+ sgn(Σl

ij)λα
(
1− exp(−α|Σl

ij |)
)
, (4.22)

and for ηα = ηα,2:

V l
ij =

{
µΣl

ij +
[
(Σl)−1S(Σl)−1

]
ij
−
[
(Σl)−1

]
ij
+ sgn(Σl

ij)λα if α|Σl
ij| ≥ 1,

µΣl
ij +

[
(Σl)−1S(Σl)−1

]
ij
−
[
(Σl)−1

]
ij

otherwise.
. (4.23)
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For solving the convex subproblem (4.21), we use the ADMM algorithm. The augmented
Lagrangian function of (4.21) is

L2(Σ, X, Y ) =
µ

2
||Σ||2F − 〈V l,Σ〉+ λα||X||1 + 〈Y,Σ−X〉+

ρ

2
||Σ−X||2F .

More specifically, ADMM solves the following problems at each iteration k:

Σl,k+1 = arg min
Σ�δIp

L2(Σ, X
k, Y k) (4.24)

Xk+1 = arg min
X∈Rp×p

L2(Σ
l,k+1, X, Y k) (4.25)

Y k+1 = Y k + ρ(Σl,k+1 −Xk+1). (4.26)

Hence, DCA for solving (4.15) can be described as follows.

DCA2

Initialization: Σ0 � δIp, τ > 0, l = 0, and compute δ, µ.
repeat
1. Compute V l ∈ ∂H2(Σ

l) according to (4.22) (resp. 4.23)) when ηα = ηα,1 (resp.
ηα = ηα,2).
2. Initialization (ADMM): X0 = S

(
V l/µ, λα/µ

)
, Y 0 = 0, k = 0, and ρ, ǫ1 > 0.

repeat
1. Compute Σl,k+1 = UDδU

T where Dδ = diag(max(Dii, δ)) and (V l − Y k +
ρXk)/(µ+ ρ) = UDUT .
2. Compute Xk+1 = S

(
Σl,k+1 + Y k/ρ, λα/ρ

)
.

3. Compute Y k+1 = Y k + ρ(Σl,k+1 −Xk+1)
4. k ← k + 1.

until ‖Σl,k − Σl,k−1‖F ≤ ǫ1.
3. Σl+1 = Σl,k.
4. l ← l + 1.

until ||Σl − Σl−1||F ≤ τ
(
||Σl−1||F + 1

)
or |F (Σl)− F (Σl−1)| ≤ τ

(
|F (Σl−1)|+ 1

)
.

We observe that the convex subproblem (4.21) is easier to solve than the convex subprob-
lem (4.10) in DCA1. It requires only one iterative algorithm (ADMM) which is explicit
at each iteration. The complexity of DCA2 is

O
(
NDCA2

iter ×NADMM2
iter × p3

)
, (4.27)

where NDCA2
iter and NADMM2

iter denote the number of iterations of DCA2 and ADMM, re-
spectively.

4.2.4 Convergence analysis

Now we will prove the convergence properties of DCA1 and DCA2. For a DC program,
the convergence of DCA is guaranteed when the optimal value is finite and the sequence
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generated by DCA is bounded.

Lemma 4.2 The optimal value of the problem (4.5) is finite.

Proof : Since Σ is positive definite and S is positive semidefinite, then tr(Σ−1S) is
always nonnegative. On the other hand, λ

∑
i,j ηα(Σij) > 0 and log det Σ ≥ p log δ for all

Σ � δIp. Hence F (Σ) > p log δ for all Σ � δIp. The lemma has been proved. ✷

Lemma 4.3 Let A,B ∈ S
p
++ be the positive definite matrices. We have

(a) λmin(A+B) ≥ λmin(A) + λmin(B).
(b) λmin(AB) ≥ λmin(A)λmin(B).
(c) λmin(A⊗ B) ≥ λmin(A)λmin(B).

Proof : (a) The part (a) is a consequence of Theorem III.2.1 in Bhatia (1997).

(b) For any positive definite matrix A, we have

‖A‖ = λmax(A),

where ‖A‖ denotes the operator norm of A. Hence, we get

λmax((AB)−1) = ‖B−1A−1‖ ≤ ‖B−1‖‖A−1‖ = λmax(B
−1)λmax(A

−1).

Since the eigenvalues of the inverse matrix are the inverse of the eigenvalues, we obtain

1

λmin(AB)
≤ 1

λmin(A)λmin(B)
⇒ λmin(AB) ≥ λmin(A)λmin(B).

(c) First of all, we will show that λmin(A ⊗ Ip) = λmin(A) and λmin(Ip ⊗ B) = λmin(B).
Let A = Udiag(a1, ..., ap)U

T and B = V diag(b1, ..., bp)V
T be the eigendecomposition of

A and B, respectively. We have

A⊗ Ip = (Udiag(a1, ..., ap)U
T )⊗ Ip = (U ⊗ Ip)(diag(a1, ..., ap)⊗ Ip)(UT ⊗ Ip).

Note that UT ⊗ Ip = (U ⊗ Ip)T and diag(a1, ..., ap)⊗ Ip is a p2 × p2 diagonal matrix that
its diagonal entries are a1, ..., a1, ..., ap. Then, a1, ..., a1, ..., ap are also the eigenvalues of
A⊗ Ip. It follows that λmin(A⊗ Ip) = λmin(A). Similarly, we have

Ip ⊗B = (Ip ⊗ V )(Ip ⊗ diag(b1, ..., bp))(Ip ⊗ V T ).

Since Ip ⊗ V T = (Ip ⊗ V )T and Ip ⊗ diag(b1, ..., bp) is a p
2 × p2 diagonal matrix with the

diagonal entries b1, ..., bp, ..., bp, we get λmin(Ip ⊗ B) = λmin(B).
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On the other hand, we have A ⊗ B = (A ⊗ Ip)(Ip ⊗ B). Then, from the part (b) of the
lemma, we obtain

λmin(A⊗ B) ≥ λmin(A⊗ Ip)λmin(Ip ⊗ B) = λmin(A)λmin(B).

This completes the proof of Lemma 4.3. ✷

The convergence properties of DCA1 and DCA2 are given in the following theorem.

Theorem 4.1 Let {Σl} be the sequence generated by DCA1 (resp. DCA2), we have
(a) {F (Σl)} is decreasing.
(b) {Σl} is bounded.
(c)

∑+∞
l=0 ‖Σl − Σl+1‖2F < +∞, and hence ‖Σl − Σl+1‖F → 0 as l → +∞.

(d) The sequence {Σl}l has at least one limit point and every limit point of this sequence
is a critical point of the problem (4.9) (resp. the problem (4.15)).

Proof : (a) is direct consequence of convergence properties of general DC programs.

(b) First, we will prove that the level set L = {Σ ∈ Ω : F (Σ) ≤ F (Σ0)} is bounded,
∀Σ0 ∈ Ω. Assume that this level set L is not bounded. Then, there is a sequence
{Σ̄k} ⊂ L such that ‖Σ̄k‖F → +∞ as k → +∞. Let λ1(Σ̄

k), ..., λp(Σ̄
k) be the eigenvalues

of Σ̄k with λmax(Σ̄
k) := λ1(Σ̄

k) ≥ ... ≥ λp(Σ̄
k) := λmin ≥ δ. We have

‖Σ̄k‖F ≤
√
pλmax(Σ̄

k) =
√
pλ1(Σ̄

k).

Besides, we have ‖Σ̄k‖F → +∞ as k → +∞. Thus λ1(Σ̄
k) → +∞ as k → +∞. Since

tr((Σ̄k)−1S) is always nonnegative and λ
∑

i,j ηα(Σ̄
k) > 0, we have

F (Σ̄k) > log det(Σ̄k) =

p∑

i=1

log λi(Σ̄
k) ≥ log λ1(Σ̄

k) + (p− 1) log δ. (4.28)

It follows that F (Σ̄k) → +∞ as k → +∞. But, the fact that Σ̄k ∈ L implies F (Σ̄k) ≤
F (Σ0) for all k. Thus, we have a contradiction, i.e. the level set L = {Σ ∈ Ω : F (Σ) ≤
F (Σ0)} is bounded, ∀Σ0 ∈ Ω.

Since the sequence {F (Σl)} is monotonically decreasing, we have {Σl} ⊆ {Σ ∈ Ω :
F (Σ) ≤ F (Σ0)} for some Σ0 ∈ Ω. This and the boundness of the level set L imply (b).

(c) We will show that the first DC components (G1 and G2) are strongly convex. By the
definition of G2 := µ

2
||Σ||2F + λ

∑
i,j g(Σij) + χΩ(Σ), it is obviously that G2 is strongly

convex. As for G1, it is sufficient to show that tr(Σ−1S) is strongly convex. From the
proof of Lemma 4.1, we have

∇2Λ(Σ) = Σ−1SΣ−1 ⊗ Σ−1 + Σ−1 ⊗ Σ−1SΣ−1. (4.29)
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Applying Lemma 4.3, we get

λmin(∇2Λ(Σ)) ≥ λmin(Σ
−1SΣ−1 ⊗ Σ−1) + λmin(Σ

−1 ⊗ Σ−1SΣ−1)

≥ 2λmin(Σ
−1SΣ−1)λmin(Σ

−1)

≥ 2λ3min(Σ
−1)λmin(S) =

2λmin(S)

λ3max(Σ)
.

As mentioned in Section 4.1, we assumed that S is positive definite. If S is not full rank,
we replace S by S + ǫIp for some ǫ > 0. Thus λmin(∇2Λ(Σ)) ≥ 2λmin(S)

λ3
max(Σ)

> 0. So Λ is
strongly convex.

Let {Σl} be the sequence generated by DCA1. If {Σl} is generated by DCA2, then the
part (c) of the theorem will be proved analogously. Recall that Σl+1 is an optimal solution
of the problem

min
Σ∈Rp×p

{
G1(Σ)− 〈V l,Σ〉

}
,

where V l ∈ ∂H1(Σ
l). Then the first-order optimality condition holds at Σl+1, i.e, 0 ∈

∂G1(Σ
l+1)− V l and then

V l ∈ ∂G1(Σ
l+1). (4.30)

Hence, we have

G1(Σ
l) ≥ G1(Σ

l+1) + 〈V l,Σl − Σl+1〉+ ρ(G1)

2
‖Σl − Σl+1‖2F , (4.31)

where ρ(G1) is the modulus of the strong convexity of G1. Since V l ∈ ∂H1(Σ
l), we also

have

H1(Σ
l+1) ≥ H1(Σ

l) + 〈V l,Σl+1 − Σl〉. (4.32)

Combining (4.31) and (4.32), we have

G1(Σ
l) ≥ G1(Σ

l+1) +H1(Σ
l)−H1(Σ

l+1) +
ρ(G1)

2
‖Σl − Σl+1‖2F

⇒G1(Σ
l)−H1(Σ

l) ≥ G1(Σ
l+1)−H1(Σ

l+1) +
ρ(G1)

2
‖Σl − Σl+1‖2F

⇒F (Σl)− F (Σl+1) ≥ ρ(G1)

2
‖Σl − Σl+1‖2F .

Moreover, since G1 is strongly convex, ρ(G1) > 0. Hence, we obtain

‖Σl − Σl+1‖2F ≤
2

ρ(G1)

(
F (Σl)− F (Σl+1)

)
. (4.33)

Let N be a positive integer. Summing (4.33) from l = 0 to N , we get

N∑

l=0

‖Σl − Σl+1‖2F ≤
2

ρ(G1)

(
F (Σ0)− F (ΣN+1)

)
. (4.34)
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On the other hand, from the proof of Lemma 4.2 we see that F (ΣN+1) ≥ p log(δ). Com-
bining this and (4.34) we get

N∑

l=0

‖Σl − Σl+1‖2F ≤
2

ρ(G1)

(
F (Σ0)− p log(δ)

)
.

Taking the limit as N → +∞, we obtain

+∞∑

l=0

‖Σl − Σl+1‖2F < +∞, (4.35)

and hence liml→+∞ ‖Σl − Σl+1‖F = 0.

(d) is deduced from (b), Lemma 4.2 and the DCA’s convergence property (iii) of Theorem
1.2 in Chapter 1. ✷

4.3 Numerical experiments

4.3.1 Comparative algorithms

For each algorithm, we use two DC approximations of the ℓ0-norm. Hence we have
four DCA based algorithms: DCA1-CaP, DCA1-PiE, DCA2-CaP and DCA2-PiE, where
CaP and PiE denote the algorithm using the Capped-ℓ1 (ηα = ηα,2) and the piecewise
exponential approximation function (ηα = ηα,1), respectively. To study the performance
of the proposed algorithms, we compare our algorithms with seven standard methods
that cover all types of algorithms mentioned in Section 1.

– Methods follow the first direction - estimate the sparse inverse covariance matrix:
CLIME (Cai et al., 2011) and SPME (Zhang and Zou, 2014).

– Methods follow the second direction (estimate directly the sparse covariance matrix),
in the first group (the convex approach), i.e. they use surrogate convex loss func-
tions of the negative log likelihood function and the ℓ1-norm (resp. ℓ2-norm): PDSCE
(Rothman, 2012) (resp. PCME (Deng and Tsui, 2013)).

– Methods follow the second direction, in the second group - replace the ℓ0-norm by the
ℓ1-norm: SPCOV1 and SPCOV2 (Bien and Tibshirani, 2011).

Moreover, for the two real applications (classification and portfolio selection) we consider
in addition a method using the sample covariance matrix: the Quadratic Discriminant
Algorithm (QDA). We also compare the four DCA based algorithms to study the per-
formance of the two DC approximations of the ℓ0-norm as well as the two different DC
decompositions.
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4.3.1.1 Constrained ℓ1 mInimization approach to sparse precision Matrix
Estimation (CLIME)

CLIME (Cai et al., 2011) estimated an inverse covariance matrix Ω = Σ−1 by solving the
following problem

min
Ω∈Rp×p

{‖Ω‖1 : ‖SΩ− I‖∞ ≤ λ} , (4.36)

where λ is a tuning parameter. The convex program (4.36) can be further decomposed
into p vector minimization problems which is solved by the primal dual interior method.
The clime package for CLIME is also available from CRAN.

4.3.1.2 Sparse Precision Matrix Estimation via lasso penalized D-trace loss
(SPME)

SPME (Zhang and Zou, 2014) used a surrogate loss function instead of the negative log
likelihood function with the ℓ1 penalty on the precision matrix Θ = Σ−1, namely

min
Θ�ǫI

{
1

2
〈Θ2, S〉 − tr(Θ) + λ‖Θ‖1,off

}
, (4.37)

where λ is a tuning parameter and ‖Θ‖1,off =
∑

i6=j |Θij|. Zhang and Zou (2014) used the
alternating direction method of multipliers for solving the problem (4.37). The source
code of this method is available on the author’ homepage (https://math.cos.ucf.edu/
tengz/).

4.3.1.3 Positive Definite Sparse Covariance Estimators (PDSCE)

Rothman (2012) proposed the sparse covariance matrix estimator by solving the following
problem

min
Σ≻0

{
1

2
‖Σ− S‖2F − τ log det(Σ) + λ‖Σ‖1

}
, (4.38)

where λ is a tuning parameter and τ > 0 is fixed at a small value. The author developed
a blockwise coordinate descent algorithm to compute the solution to (4.38). The PDSCE
algorithm is included in PDSCE package of R software.

4.3.1.4 Penalized Covariance Matrix Estimation using a matrix logarithm
transformation (PCME)

The PCME method (Deng and Tsui, 2013) used an estimate of covariance matrix Σ̂ =∑∞
k=0

Âk

k!
≡ exp(Â), where Â solves the following problem

min
A∈Sp

{
tr(A) + tr[exp(−A)S] + λtr(A2)

}
, (4.39)

https://math.cos.ucf.edu/tengz/
https://math.cos.ucf.edu/tengz/
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where λ is a tuning parameter. The MATLAB code for PCME is available on http://

www.tandfonline.com/doi/suppl/10.1080/10618600.2012.715556.

4.3.1.5 Sparse estimation of a COVariance Matrix (SPCOV)

Bien and Tibshirani (2011) considered the negative log-likelihood function with ℓ1 penalty
on the entries of the covariance matrix, namely

min
Σ≻0

{
log det Σ + tr(Σ−1S) + λ||W ◦ Σ||1

}
, (4.40)

where W is an arbitrary matrix with nonnegative elements. The problem (4.40) is non-
convex. Bien and Tibshirani (2011) used the MM approach for solving this problem (that
is in fact a version of DCA). Denote by SPCOV1 (reps. SPCOV2) the MM approach for
solving the problem (4.40) with Wij = 0 if i = j and 1 otherwise (resp. with Wij = 0 if
i = j and Wij =

1
|Sij |

otherwise) (Bien and Tibshirani, 2011). The R package spcov for

SPCOV1 and SPCOV2 is available from CRAN (http://cran.r-project.org/).

4.3.2 Experimental setups

The proposed algorithms are implemented in R software and all algorithms are performed
on a PC Intel i7 CPU3770, 3.40 GHz of 8GB RAM.

In experiments, we set the stop tolerance τ = 10−4 for DCA based algorithms. The
parameters of GGD and ADMM are chosen as proposed in Bien and Tibshirani (2011).
The starting point Σ0 of DCA is the sample covariance matrix S. The values of pa-
rameter λ and approximation parameter of the Capped-ℓ1 are chosen through a 5-fold
cross-validation procedure on training set. The approximation parameter of the piece-
wise exponential approximation function is chosen α = 5 as suggested in Bradley and
Mangasarian (1998).

The cross-validation procedure is described as follows (Bien and Tibshirani, 2011). For
A ⊆ {1, ..., n}, let SA = |A|−1

∑
i∈AXiX

T
i , and Ac

i denotes the component of A. We
divide {1, ..., n} into 5 subsets, A1, ...,A5, and then compute

f(λ) =
1

5

5∑

i=1

ℓ
{
Σ̂λ(SAc

i
);SAi

}
, (4.41)

where Σ̂λ(SAc
i
) is an estimate of the covariance matrix Σ with the parameter λ and SAc

i
,

and ℓ
{
Σ̂λ(SAc

i
);SAi

}
= − log det Σ̂λ(SAc

i
) − tr

([
Σ̂λ(SAc

i
)
]−1

SAi

)
. Finally, we choose

λ̂ = argmaxλ f(λ).

http://www.tandfonline.com/doi/suppl/10.1080/10618600.2012.715556
http://www.tandfonline.com/doi/suppl/10.1080/10618600.2012.715556
http://cran.r-project.org/
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4.3.3 Numerical results on synthetic datasets

We evaluate the performance of DCA1-CaP, DCA2-CaP, DCA1-PiE and DCA2-PiE on
four synthetic datasets. We generate X = [X1, ..., Xn] from a multivariate normal distri-
butionNp(0,Σ), where Σ is a sparse symmetric positive definite matrix. We consider three
types of covariance graphs and a moving average model as follows Bien and Tibshirani
(2011):

Cliques model: Σ = diag(Σ1, ...,Σ5), where Σ1, ...,Σ5 are dense matrices.

Hubs model: Σ = diag(Σ1, ...,Σ5) again, however each submatrix Σk is zero except ele-
ments in the last row and the last column. This corresponds to a graph with five connected
components each of which has all nodes connected to one particular node.

Random model: in this model, we take Σij = Σji to be nonzero with the probability 0.02,
independently of other elements.

First-order moving average model: we generate Σi,i−1 = Σi−1,i to be nonzero for i =
2, ..., p.

In the first three cases, the nonzero entries of matrix Σ are randomly drawn in the
set {+1,−1}. In the moving average model, all nonzero values are set to be 0.4. In
this experiment, for each covariance model, we generate 10 training sets with size n =
200, p = 100.

To evaluate the performance of each method, we consider three loss functions which are
the root-mean-square error (RMSE), the entropy loss (EN), and the Kullback-Leibler loss
(KL), respectively.

RMSE = ||Σ̂− Σ||F/p,
EN = − log det(Σ̂Σ−1) + tr(Σ̂Σ−1)− p,
KL = − log det(Σ̂−1Σ) + tr(Σ̂−1Σ)− p,

where Σ̂ is a sparse estimate of the covariance matrix Σ.

The experimental results on synthetic datasets are given in Table 4.1. In this Table, the
average of root-mean-square error (RMSE), entropy loss (EN), Kullback-Leibler loss (KL),
number of nonzero elements (NZ), CPU time in seconds, and their standard deviations
over 10 samples are reported.

We observe from Table 4.1 that in the cliques model, DCA2-CaP gives the lowest root-
mean-square error while DCA2-PiE gives the best results in terms of the entropy loss and
Kullback-Leibler loss. We further note that in terms of the sparsity, the number of the
nonzero elements, the DCA based algorithms achieve much better performances than the
other six approaches.

For the hubs and random models, the best and the second best performing methods with
respect to the losses and the sparsity are DCA1-PiE and DCA2-PiE, respectively.
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Table 4.1: Comparative results in terms of the average of root-mean-square error (RMSE), entropy loss (EN), Kullback-Leibler
loss (KL), number of nonzero elements, CPU time in second (and their standard deviations) over 10 runs. Bold fonts indicate
the best result in each row.

DCA1-CaP DCA2-CaP DCA1-PiE DCA2-PiE SPCOV1 SPCOV2 CLIME PCME SPME PDSCE

C
liq

ue
s

RMSE 0.399 0.381 0.456 0.413 0.398 0.384 0.387 0.474 0.544 0.418
(0.003) (0.004) (0.01) (0.008) (0.0.004) (0.005) (0.004) (0.003) (0.005) (0.004)

EN 15.37 14.15 14.99 13.54 15.77 16.83 83.54 27.85 31.81 80.42
(0.95) (0.61) (1.07) (0.7) (0.57) (0.53) (3.32) (0.36) (0.62) (2.68)

KL 23.23 20.56 15.77 14.29 31.43 34.39 21.33 71.23 47.12 21.02
(4.11) (1.22) (1.28) (0.59) (2.23) (2.04) (0.32) (1.94) (1.33) (0.21)

NZ 2623 2419.6 1011.4 1018.2 3775.4 3565.8 8998.4 9847 2624.4 2755.6
(510.08) (209.34) (30.21) (18.59) (156.13) (94.57) (18.37) (15.72) (821.28) (72.65)

CPUs 338.3 70.77 130.97 114.06 180.04 112.99 687.95 223.87 33.51 2.72

(103.55) (14.08) (14.91) (61.96) (17.84) (8.9) (21.12) (1.36) (1.3) (0.06)

H
ub

s

RMSE 0.085 0.077 0.062 0.072 0.073 0.073 0.194 0.237 0.183 0.109
(0.004) (0.004) (0.008) (0.006) (0.0.003) (0.004) (0.084) (0.002) (0.007) (0.003)

EN 3.32 3.09 1.53 1.98 3.54 2.63 264.8 29.03 61.46 141.61
(0.25) (0.34) (0.23) (0.38) (0.27) ( 0.21) (56.5) (0.76) (1.53) (2.35)

KL 4.44 3.83 1.72 2.2 5.79 3.6 18.94 64.92 22.41 13.99
(0.38) (0.35) (0.27) (0.34) (0.73 ) (0.29) (3.85) (2.45) (0.82) (0.19)

NZ 552.6 530.2 301.2 328.4 879 582.2 1174 9493.8 4640 597.6
(25.02) (21.36) (5.38) (12.51) (33.06) (24.5) (124.21) (30.68) (1195.54) (30.56)

CPUs 96.1 53. 43 74.63 49.52 99.73 86.31 676.59 279.42 29.68 3.24

(7.29) (11.81) (7.77) (23) (6.42) (4.51) (26.89) (2.16) (0.83) (0.23)

R
an

do
m

RMSE 0.096 0.086 0.051 0.052 0.086 0.066 0.089 0.177 0.125 0.083
(0.001) (0.002) (0.003) (0.003) (0.0.002) (0.002) (0.002) (0.001) (0.003) (0.002)

EN 5.42 3.91 1.58 1.61 3.9 2.47 32 23,57 16.21 27.69
(0.43) (0.15) (0.21) (0.19) (0.16) (0.15) (4.06) (0.35) (0.63) (2.04)

KL 5.68 4.53 1.7 1.74 5.07 3.02 7.41 52.61 12.17 6.67
(0.42) (0.22) (0.24) (0.21) (0.49) (0.24) (0.16) (1.17) (0.49) (0.15)

NZ 527.2 604.2 287.8 289 791.2 518.4 8972.6 9349.6 5932.8 614.22
(26.73) (31.6) (4.68) (5.31) (46.64) (20.09) (449.65) (37.82) (943.41) (37.28)

CPUs 124.39 82.6 156.26 30.08 127.65 87.3 598.09 292.6 29.48 3.25

(14.64) (20.96) (35.89) (17.77) (9) (4.36) (7.82) (2.78) (0.36) (0.21)

M
ov

in
g

RMSE 0.009 0.01 0.015 0.012 0.038 0.015 0.025 0.05 0.044 0.021
(0.0007) (0.0004) (0.0008) (0.0008) (0.0007) (0.0009) (0.0007) (0.004) (0.0009) (0.001)

EN 1.02 1.14 2.05 1.51 7.95 2.29 41.23 30.64 171.97 82.13
(0.11) (0.09) (0.15) (0.15) (0.38) (0.17) (1.65) (11.84) (4.23) (3.5)

KL 1.09 1.18 2.48 1.66 11.71 2.84 15.21 43.44 37.23 20.65
(0.19) (0.15) (0.22) (0.21) (0.82) (0.25) (0.3) (8.2) (0.89) (0.63)

NZ 298.4 298.4 451.4 361.6 1380 591.8 9986.4 8440.66 4311 640
(1.2) (1.2) (26.3) (14.41) (53.4) (25.16) (6.24) (213.4) (2258.65) (30.24)

CPUs 48.91 6.67 86.4 27.81 110.86 78.98 679.42 258.07 29.45 8.85
(5.28) (1.39) (6.13) (4.1) (6.31) (6.59) (6.41) (27.93) (0.34) (0.41)
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Conversely, when using the moving model, DCA1-CaP outperforms the others with the
loss and the sparsity measures. However, it provides slightly smaller improvement than
DCA2-CaP. Here, notably the results obtained with DCA2-CaP and DCA2-PiE are still
superior to that of SPCOV1, SPCOV2, CLIME, PCME, SPME, and PDSCE.

Regarding the training time, DCA2-CaP and DCA2-PiE are remarkably faster than the
other algorithms in the nonconvex approach keeping the negative log-likelihood function,
say DCA1-CaP, DCA1-PiE, SPCOV1 and SPCOV2, as well as the two methods esti-
mating the inverse covariance matrix (CLIME and PCME). This can be explained by
the fact that DCA2-CaP and DCA2-PiE lead to the sequences of convex problems which
are easily solved by an explicit ADMM algorithm. As for the convex based approaches
SPME and PDSCE, not suprisingly, they are faster than the DCA based algorithms but
achieve much worse performances on all losses as well as sparsity. The ratio of gain of
DCA varies from 1.1 to 168.6 in terms of losses and from 2 to 20.6 in terms of sparsity.

4.3.4 Numerical results on real datasets

We illustrate the use of the sparse covariance matrix estimation problem via two real
applications: a classification problem and a portfolio optimization problem of stock data.
These applications require an estimate of the covariance matrix.

4.3.4.1 Sparse quadratic discriminant analysis

Let X be an n × p training data matrix with observations xi (i = 1, ..., n) on the rows
and features on the columns. We assume that the ni observations within the kth class
Ck are normal distributed N (µk,Σk). We denote the prior probability of the kth class by
πk. The quadratic discriminant function is

δk(x) = −
1

2
log det Σk −

1

2
(x− µk)

TΣ−1
k (x− µk) + log πk. (4.42)

Then the predicted class for a new observation x is argmaxk δk(x). The decision boundary
between each pair of classes k and l is described by a quadratic equation {x : δk(x) =
δl(x)}.

In practice we do not know πk, µk,Σk, and will need to estimate them using the training
data: πk = nk/n, µk = 1/nk

∑
xi∈Ck

xi, and a natural way to estimate the Σk is via

maximum likelihood. Let Sk = 1/nk

∑
xi∈Ck

(xi − µk)(xi − µk)
T is the sample covariance

matrix for the class k, the negative log likelihood for the data takes the form (up to a
constant)

1

2

Q∑

k=1

nk

(
log det Σk + tr(Σ−1

k Sk)
)
. (4.43)



107

Table 4.2: Two datasets from UCI repository used in experiments.

Data No. of features No. of samples No. of classes

Ionosphere 34 351 2
Waveform 2 40 5000 3

We propose to estimate Σ1, ...,ΣQ by minimizing the penalized negative log likelihood

min
Σk≻0,k=1,...,Q

Q∑

k=1

(
log det Σk + tr(Σ−1

k Sk) + λk||Σk||0
)
, (4.44)

where λ1, ..., λQ are nonnegative tuning parameters. We refer to this classification method
as sparse quadratic discriminant analysis.

Solving the problem (4.44) respect to Σ1, ...,ΣQ can be separated into Q independent sub-
problems of the same form. This leads to a potentially massive reduction in computational
complexity. Recently, Sun and Zhao (2015) has also proposed the sparse quadratic dis-
criminant analysis using a lasso penalty on the entries of the inverse covariance matrices.
This work can be viewed as applications of the methods proposed in Rothman (2012).

In our work, we directly estimate the covariance matrices Σ1, ...,ΣQ by using DCA1-
CaP, DCA2-CaP, DCA1-PiE and DCA2-PiE. To study the performance of the proposed
algorithms, we use SPCOV1, SPCOV2, CLIME, PCME, SPME and PDSCE to estimate
Σ1, ...,ΣQ. We also compare with the quadratic discriminant analysis (QDA) replacing
Σk in (4.42) by the sample covariance matrix Sk. Note that if Sk is singular, then we
replace it by Sk + ǫIp, where ǫ is chosen through a 5-fold cross-validation on a set of
candidates E = {10−4, ..., 10−8}.

For the experiment, we evaluate the proposed algorithms on three datasets: US Postal
Service (USPS) dataset and two datasets from UCI Machine Learning Repository (Iono-
sphere and Waveform 2).

The US Postal Service task is still one of the most widely used reference dataset for
handwritten digit recognition. Here we focus on a difficult sub-task, that of distinguishing
handwritten 3s and 8s. All images are of size 16×16 pixels. There are 658 threes and 542
eights in the training set, and 166 test samples for each. In our experiment we name this
data as 3s and 8s dataset. It can be downloaded at http://statweb.stanford.edu/

~tibs/ElemStatLearn/data.html. A random selection is showed in Figure 4.1. We
filter the data by replacing each non-overlapping 2 × 2 pixel block by its average. This
reduces the dimension of the feature space from 256 to 64.

The detailed information of Johns Hopkins University Ionosphere and Waveform 2
datasets is summarized in Table 4.2. We use the cross-validation scheme to validate
the performance of various approaches on these two datasets. The dataset is split into a
training set containing 2/3 of the samples and a test set containing 1/3 of the samples.
This process is repeated 10 times, each with a random choice of training set and test set.
The parameter λ1, ..., λQ are chosen via 5-fold cross-validation.

http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
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Figure 4.1: Examples of digitized handwritten 3s and 8s. Each image is a 8 bit, 16× 16
grayscale version of the original binary image.

Table 4.3: Digit classification results of 3s and 8s. Bold fonts indicate the best result in
each column.

Testing error (%) Training error (%) Training time (s)

DCA1-CaP 4.81 2.08 129.53
DCA2-CaP 2.71 1.91 34.97
DCA1-PiE 4.51 3.08 113.13
DCA2-PiE 3.01 2.16 39.5
SPCOV1 4.81 2 110.43
SPCOV2 4.51 3.16 87.39
QDA 6.32 2.16 -
CLIME 4.01 2.83 218.48
PCME 4.31 2.25 64.18
SPME 5.83 4.25 22.3
PDSCE 5.32 3.33 7.45
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Table 4.4: Comparative results of Ionosphere and Waveform 2 datasets in terms of the
average of percentage of testing errors, training errors, training time in second and their
standard deviations over 10 training/test set splits. The bold font indicates the best
result in each column.

Testing error (%) Training error (%) Training time (s)

Ionosphere DCA1-CaP 6.58 ± 2.16 7.82 ± 1.5 18.95 ± 7.57
DCA2-CaP 4.52 ± 1.66 6.23 ± 0.94 1.17 ± 0.15

DCA1-PiE 6.75 ± 1.68 8.47 ± 1.49 15.08 ± 4.41
DCA2-PiE 4.52 ± 1.62 6.58 ± 1.22 1.22 ± 0.23
SPCOV1 6.41 ± 2.03 5.89 ± 0.87 21.44 ± 16.21
SPCOV2 - - -
QDA 11.62 ± 3.38 3.33 ± 0.49 -
CLIME 10.96 ± 2.04 9.64 ± 1.19 33.96 ± 0.31
PCME 11.25 ± 1.37 10.68 ± 0.43 19.6 ± 2.38
SPME 7.17 ± 2.15 5.51 ± 0.68 8.62 ± 0.39
PDSCE 10.38 ± 2.82 11.34 ± 1.91 3.97 ± 0.13

Waveform 2 DCA1-CaP 14.33 ± 0.61 11.26 ± 0.68 12.3 ± 0.63
DCA2-CaP 14.31 ± 0.36 10.87 ± 0.54 1.38 ± 0.87
DCA1-PiE 14.27 ± 0.59 11.4 ± 0.69 13.5 ± 0.97
DCA2-PiE 14.37 ± 0.52 11.73 ± 0.67 1.37 ± 0.57

SPCOV1 14.91 ± 0.71 10.26 ± 0.24 9.75 ± 0.13
SPCOV2 14.84 ± 0.67 10.28 ± 0.19 11.31 ± 0.35
QDA 16.27 ± 0.57 9.09 ± 0.16 -
CLIME 15.42 ± 0.84 10.45 ± 0.43 77.38 ± 0.36
PCME 15.16 ± 0.73 9.79 ± 0.12 16.29 ± 0.78
SPME 15.57 ± 0.65 14.68 ± 0.48 14.32 ± 0.73
PDSCE 15.01 ± 0.93 10.89 ± 1.22 3.71 ± 0.11

The computational results are reported in Tables 4.3-4.4. In Table 4.3, the classification
results and the training time in second for 3s and 8s dataset are given, and we notice that
the testing and training errors obtained with DCA2-CaP are the lowest.

In Table 4 we reported the average percentage of the testing and training errors, the
training time in seconds as well as the standard deviations of Ionosphere and Waveform
2 datasets over 10 training/test set splits. We observe that, on the Ionosphere dataset,
DCA2-CaP and DCA2-PiE outperform DCA1-CaP, DCA1-PiE, SPCOV1, QDA, CLIME,
PCME, SPME and PDSCE in terms of the testing error. Notably in this dataset, SP-
COV2 is not able to perform since there exists some zero elements in the sample covariance
matrices. In the Waveform 2, the DCA based algorithms give slightly better testing error
than the other approaches, and DCA1-PiE has the smallest testing error. However, QDA
gives the best training error on both Ionosphere and Waveform 2 datasets. As for the
training time, DCA2-CaP is the fastest on the Ionosphere dataset while DCA2-PiE is
the best on the Waveform 2 dataset, and we further note that both of them are signifi-
cantly faster than the other approaches on these two datasets. On the 3s and 8s dataset,
DCA2-CaP and DCA2-PiE run slower than PDSCE but faster than the seven remaining
approaches.
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4.3.4.2 Portfolio optimization

In this section, we apply the sparse covariance matrix estimation problem on an appli-
cation of portfolio optimization. The celebrated Markowitz portfolio selection problem
(Markowitz, 1952) in finance is to construct the optimal mean-variance efficient portfolios
by minimizing the following quadratic optimization problem:

min
w∈Rp

{
wTΣw : wTµ = µ∗;w

Te = 1;w ≥ 0
}
, (4.45)

where e denotes the p-dimensional vector of ones and µ∗ is the expected rate of return
that is required on the portfolio. When short selling is allowed, the constraint w ≥ 0 in
the problem (4.45) can be removed.

In the recent literature, many works aim to find an estimate of the covariance matrix to
improve its portfolio strategy (see e.g. Ledoit and Wolf (2003, 2004); Jagannathan and
Ma (2003); Kourtis et al. (2012); Fan et al. (2013); Xue et al. (2012); Lai et al. (2011);
Deng and Tsui (2013)). We follow Jagannathan and Ma (2003); Kourtis et al. (2012); Fan
et al. (2013); Xue et al. (2012); Deng and Tsui (2013) to focus on the global minimum
variance portfolio is the minimum risk portfolio with weights that sum to unity, namely

min
w∈Rp

{
wTΣw : wTe = 1

}
. (4.46)

We expect that an accurate covariance matrix estimate will lead to a better portfolio strat-
egy. We use eleven different approaches to estimate Σ and to obtain w: our approaches
(DCA1-CaP, DCA2-CaP, DCA1-PiE, DCA2-PiE), SPCOV1, SPCOV2, CLIME, PCME,
SPME, PDSCE and the sample covariance matrix S.

We consider a stock dataset used in Deng and Tsui (2013) and it is also available from
Yahoo!Finance (http://finance.yahoo.com). This dataset is the weekly returns of 30
components of the Dow Jones Industrial Index. The dataset of adjusted close prices of
the weekly returns were extracted in the past three and a half years from January 8,
2007 to June 28, 2010. The dataset is divided in the same way as in Deng and Tsui
(2013). The first 50 observations of the weekly returns data is the training set, the next
50 observations is the tuning set, and the remaining data is the test set. The performance
of a portfolio w is measured by the realized return

R(w) =
∑

x∈Xts

wTx, (4.47)

the realized risk

σ(w) =
√
wTStsw, (4.48)

and the Sharpe ratio

S(w) =
R(w)

σ(w)
, (4.49)

where Xts is the test set and Sts is the sample covariance matrix of Xts.

http://finance.yahoo.com


111

Table 4.5: The comparison of the realized return, realized risk and Sharpe ratio. Bold
fonts indicate the best result in each column.

R(w) σ(w) Sharpe ratio Training time (s)

DCA1-CaP 0.2398 0.0303 7.9038 14.52
DCA2-CaP 0.2429 0.028 8.6613 0.33
DCA1-PiE 0.2441 0.0309 7.8788 4.51
DCA2-PiE 0.27 0.0303 8.886 0.22

SPCOV1 0.2398 0.0303 7.9038 14.57
SPCOV2 0.2567 0.0314 8.1566 4.66
S 0.0593 0.0348 1.7045 -
CLIME 0.1121 0.0237 4.73 13.77
PCME 0.2172 0.0307 7.07 0.65
SPME 0.2272 0.0302 7.51 1.09
PDSCE 0.1258 0.0343 3.67 0.61

In Table 5, the realized return, the realized risk and the Sharpe ratio of the eleven com-
parative methods DCA1-CaP, DCA2-CaP, DCA1-PiE, DCA2-PiE, SPCOV1, SPCOV2,
CLIME, PCME, SPME, PDSCE and S are presented. These results indicate that DCA2-
PiE is the best one. Although the realized risk produced by this approach is a little bit
greater than DCA2-CaP, its realized return achieves the highest value. Hence, it follows
that the largest Sharpe ratio is achieved by DCA2-PiE. We also notice that DCA2-PiE
and DCA2-CaP are respectively the fastest and the second fastest in training time.

The next experiment, we evaluate the performance of portfolios in different periods. This
experiment is the same as Deng and Tsui (2013) which is reviewed as follows: the first
50 observations of the weekly returns is the training set, the next 50 observations is the
tuning set, and the third 50 observations of the weekly returns is the test set. By changing
the starting week during the period from January 8, 2007 to August 20, 2007, we have
the 33 different consecutive test periods. The realized return, the realized risk and the
Sharpe ratio are calculated for each test period using the optimal portfolio w based on
the corresponding training set. The computational results are shown in Figures 4.2-4.4.

The results in Figures 4.2 and 4.3 show that the portfolios created by DCA2-CaP and
DCA2-PiE have higher realized returns than the other approaches and these two methods
also provide comparable realized risks with the others in almost all periods. Moreover,
the results in Figure 4.4 show that the Sharpe ratios of the portfolios produced by DCA2-
CaP and DCA2-PiE are larger than SPCOV1, SPCOV2, CLIME, PCME, SPME, PDSCE
and S. Thus, it is convincing to conclude that DCA2-CaP and DCA2-PiE result in better
portfolio strategies.

4.4 Conclusion

In this chapter, we have investigated DC approximation approaches and DCA for solving
the sparse covariance matrix estimation problem using the ℓ0-norm. We propose two
DC formulations for the approximation SCME problem and develop four DCA based
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Figure 4.2: The comparison of the realized return in different test periods.

algorithms, by using two appropriate DC approximation functions of the ℓ0-norm. The
robustness and the effectiveness of our DCA based algorithms have been demonstrated
through the computational results on both simulated and real datasets. The nice effect
of DC decomposition has been exploited: the second DC decomposition seems to be very
suitable since it leads to an efficient, fast and scalable DCA scheme. In the experimental
results, DCA2-CaP and DCA2-PiE have obtained the best performance in terms of most
of comparison criteria, and have taken the shortest time for training. The utility of
our approaches have been illustrated via two important applications: classification by a
quadratic discriminant function and portfolio optimization. Their superiority on seven
state-of-the-art algorithms are proved via various numerical experiments.

We are convinced that the approaches developed in this chapter bring to researchers and
practitioners new and efficient methods to treat an important and difficult problem that
can be used to many applications in various domains.

As a part of future work, we plan to study more extensive applications of the sparse
covariance matrix estimation problem.
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Figure 4.3: The comparison of the realized risk in different test periods.
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Chapter 5

Group Variable Selection:
Applications to Optimal Scoring and
Estimation of Multiple Covariance
Matrices

Abstract: The need to select groups of variables arises in many statistical modeling problems
and applications. In this chapter, we introduce a new regularization using the ℓp,0-norm for
enforcing group sparsity. Using a DC (Difference of Convex functions) approximation of the ℓp,0-
norm, we show that the approximate problem is equivalent to the original problem with suitable
parameters. Considering two equivalent formulations of the approximate problem we develop
DC programming and DCA (DC Algorithm) for solving them. When p = 1 (resp. p = 2),
our algorithms include ℓ1-perturbed algorithm (resp. ℓ2,1-perturbed algorithm) and reweighted-
ℓ1 algorithm (resp. reweighted-ℓ2,1 algorithm). It turns out that, among ℓp,0 regularizations,
the ℓ1,0 is the most interesting regularization with several advantages in both theoretical and
computational aspects. As applications, we implement the proposed algorithms for group variable
selection in optimal scoring problem and estimation of multiple covariance matrices. In the first
application, sparsity is obtained by using the ℓp,0-regularization that selects the same features in
all discriminant vectors. The resulting sparse discriminant vectors provide a more interpretable
low-dimensional representation of data. In the second application multiple covariance matrices
sharing some common structures such as the locations or weights of non-zero elements, we
combine the ℓ0-norm and the ℓp,0-norm for enforcing sparsity on each covariance matrix and
across multiple covariance matrices, respectively. The experimental results on both simulated
and real datasets demonstrate the efficiency of the proposed algorithms.

1. The material of this chapter is based on the following work:
[1] Hoai An Le Thi and Duy Nhat Phan. Efficient Nonconvex Group Variable Selection and Application
to Group Sparse Optimal Scoring. Submitted.
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5.1 Introduction

Variable selection plays an important role in many applications and has drawn increased
attention from many researchers. In the literature, the use of sparsity-inducing norms
is a powerful technique for variable selection in the high-dimensional settings. In this
direction, the ℓ0-norm has been studied extensively on both theoretical and practical as-
pects for individual variable selection in many practical problems. However, when the
data possesses certain group structures, we are naturally interested in selecting important
groups of variables rather than individual ones. For instance, in multi-factor analysis of
variance, a factor with several levels may be expressed through a group of dummy vari-
ables. In nonparametric additive regression, each component can be represented by a
linear combination of a set of basis functions. In genomic data analysis, the correlations
between genes sharing the biological pathway can be high. Hence these genes should be
considered as a group. In such cases, the selection of important factors/nonparametric
components/groups of genes amounts to the selection of groups of variables. In recent
years, there are many works based on regularization methods for group variable selection
in various application domains such as machine learning, statistics, computational biol-
ogy, signal processing, and other related areas. In this chapter, we introduce a natural
approach for enforcing group sparsity by using the ℓp,0-regularization with p ≥ 1.

We define the step function s : R → R by s(t) = 1 if t 6= 0 and s(t) = 0 otherwise.
Assume that x = (x1, ..., xd) ∈ R

d is partitioned into J non-overlapping groups x1, ..., xJ ,
then the ℓp,0-norm of x is defined by

‖x‖p,0 =
J∑

j=1

s(‖xj‖p).

The ℓp,0-regularized problem takes the form:

min
{
f(x, y) + λ‖x‖p,0 : (x, y) ∈ K ⊂ R

d × R
m
}
, (5.1)

where λ is a nonnegative tuning parameter.

Let us mention some important applications of group variable selection corresponding to
the model (5.1).

Group variable selection in linear regression: Given n observations (xi, yi), i = 1, ..., n,
where yi is the response variable, xi = (x′i1, ..., x

′
iJ)

′ is the corresponding covariates with
J groups of predictors and xij is the dj-dimensional sub-covariate vector, j = 1, ..., J . Let
Xj = (x′1j , ..., x

′
nj)

′ be the n×dj design matrix corresponding to the j-th group and βj be
the vector of the regression coefficients in the j-th group. The problem of selecting the
important covariates and estimating the corresponding coefficient vector takes the form
of (5.1):

min

{
1

2n
‖y −

J∑

j=1

Xjβ
j‖22 + λ

J∑

j=1

s(‖βj‖p)
}
. (5.2)



119

Multi-task feature selection: Let T be the number of tasks. For the j-th task, the training
set Dj consists of nj labeled data points in the form of ordered pairs (xji , y

j
i ), i = 1, ..., nj,

with xji ∈ R
d and its corresponding output yji ∈ R. Multi-task learning aims to estimate

T functions fj(x) : Rd → R, j = 1, ..., T , which well fit the data and are statistically
predictive. Here, we focus on linear functions, i.e., fj(x) = wT

j x + bj . The multi-task
feature selection problem takes the form of (5.1):

min

{
T∑

j=1

nj∑

i=1

L(yji , wT
j x

j
i + bj) + λ‖|W‖p,0

}
, (5.3)

where L denotes the loss function, W = [w1, ..., wT ] ∈ R
d×T and ‖W‖p,0 denotes the

ℓp,0-norm of the matrix W , i.e., ‖W‖p,0 =
∑d

j=1 s(‖wj‖p) with wj is the j-th row of W .
In this problem, each row of W is regarded as a group. Note that the group variable
selection problem in multiclass SVMs is a special case of the problem (5.3) where L is
the hinge loss function given by

L(yji , wT
j x

j
i + bj) =

T∑

l=1,l 6=j

max
(
1− (wT

j x
j
i − wT

l x
j
i + bj − bl), 0

)
.

Group sparse principal component analysis (PCA): Let X ∈ R
n×d be a data matrix which

comprises n observations xi ∈ R
d, where d is the number of features. We assume that

the features have been centered to have mean 0. Denote by Ik the k× k identity matrix.
Zou et al. (2006) has transformed the PCA problem into a regression type optimization
problem.

min
A∈Rp×k

{
‖X −XAAT‖2F : ATA = Ik

}
, (5.4)

where the columns of A which minimize (5.4) are referred as the first k loading vectors
of PCA. One way to obtain sparse loading vectors is imposing the ℓp,0 penalty on the
regression coefficients.

min
A,B∈Rd×k

{
‖X −XBAT‖2F + λ‖B‖p,0 : ATA = Ik

}
, (5.5)

where the columns β1, ..., βk of B correspond to the required sparse loading vectors.

Group sparse Fisher linear discriminant analysis (LDA): Let {(xi, yi) : i = 1, ..., n} be
a set of labeled training data with observation vector xi ∈ R

d and label yi ∈ {1, ..., C}.
The original LDA formulation is known as the Fisher linear discriminant analysis (Fisher,
1936). Fisher criterion aims to find a linear transformation W ∈ R

d×L that maps the
data in the d-dimensional space to a L-dimensional space (L ≤ C − 1), in which the
between-class variance is maximized while the within-class variance is minimized, i.e.,

max
W∈Rd×L

{
tr
(
(W TΣwW )−1(W TΣbW )

)}
, (5.6)

where Σb and Σw are the between-class covariance matrix and the within-class covari-
ance matrix, respectively. We use the ℓp,0-regularization to select the same features in
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all discriminant vectors w1, ..., wL which are the columns of W . The resulting sparse
discriminant vectors can provide a more interpretable low-dimensional representation of
data. The regularized problem takes the form of (5.1):

min
W∈Rd×L

{
−tr

(
(W TΣwW )−1(W TΣbW )

)
+ λ‖W‖p,0

}
. (5.7)

Joint sparse compressed sensing: Compressed sensing aims to recover the sparse signal
w from a measurement vector b = Aw for a given matrix A. Compressed sensing can be
extended to the multiple measurement vector in which the signals are represented as a
set of jointly sparse vectors sharing a common set of the nonzero elements (Cotter et al.,
2005; Chen and Huo, 2006; Sun et al., 2009). Joint compressed sensing considers the
reconstruction of the signal represented by a matrix W , which is given by a dictionary
A and a multiple measurement vector B such that B = AW . Since there usually exists
noise in the data, the joint sparse compressed sensing can be formulated as the group
sparse optimization problem of the form (5.1):

min
W

{
‖AW − B‖2F + λ‖W‖p,0

}
. (5.8)

Other applications of group variable selection include multiple graphical models (Danaher
et al., 2014), multi-task reinforcement learning (Calandriello et al., 2014), etc.

Existing works considered group variable selection as a natural extension of variable se-
lection. The first approach, named the group Lasso (Yuan and Lin, 2006), is closely
connected to the Lasso (ℓ1-norm) approximation of the ℓ0-norm. Works in this direction
include ℓ∞,1-norm (Liu et al., 2009a; Quattoni et al., 2009; Zhang et al., 2010) and the
ℓ2,1-norm which was widely used for group variable selection in multi-task learning (Ar-
gyriou et al., 2008; Bi et al., 2008; Liu et al., 2009b; Obozinski et al., 2006, 2010; Zhang
et al., 2010; Nie et al., 2010; Lan et al., 2015), multiclass SVMs (Blodel et al., 2013),
PCA (Kha et al., 2015), Fisher LDA (Gu et al., 2011), optimal scoring (Leng, 2008; Mer-
chante et al., 2012), and compressed sensing (Sun et al., 2009). In general, these convex
regularization methods are not efficient, they may be not selection consistent and tend
to select non important groups in the model. The second approach deals with nonconvex
approximation and has been developed for the ℓ2,0-norm. More precisely, DC (difference
of convex functions) approximation approaches based on the smoothly clipped absolute
deviation penalty (SCAD) (Fan and Li, 2001) and the minimax concave penalty (MCP)
(Zhang, 2010) have been studied for the ℓ2,0-norm in linear regression problems (see e.g.
(Lee et al., 2016; Huang et al., 2012; Wang et al., 2007; Wei and Zhu, 2012)). These
works have proved that these DC approximation approaches for the ℓ2,0-norm are more
efficient than the methods using the ℓ2,1-norm.

In this chapter, we investigate DC approximation approaches for the general case, i.e. the
ℓp,0-norm with p ≥ 1. We consider the problem (5.1), where K is a compact polyhedral
convex set in R

d×R
m and f is a finite DC function on R

d×R
m. The chapter makes the

following contributions.
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Firstly, basing on the piecewise linear function (called Capped-ℓ1) introduced in Peleg and
Meir (2008), we approximate the ℓp,0-norm by a DC function. We prove that, with suitable
parameters, the nonconvex approximate problem is equivalent to the original problem
(5.1). This result gives an important mathematical foundation for our approximation
method.

Secondly, we develop solution methods based on DC programming and DCA (DC Al-
gorithms), a powerful technique in nonconvex optimization (Le Thi and Pham Dinh,
2005; Pham Dinh and Le Thi, 1997), for solving the approximate problem. Considering
two equivalent formulations of the approximate problem we propose two DCA. These
two DCA schemes can be viewed as an ℓp,1-perturbed algorithm and a reweighted-ℓp,1
algorithm. When p = 1 and p = 2, our algorithms include ℓ2,1-perturbed algorithm,
reweighted-ℓ2,1 algorithm, ℓ1-perturbed algorithm, and reweighted-ℓ1 algorithm with dif-
ferent weights on groups and the same weight on each group.

Among ℓp,0-regularizations, we show that the ℓ1,0-regularization is the most interesting
with several useful properties from both theoretical and computational aspects. The
DCA schemes for solving the resulting approximate problem iteratively solve an ℓ1-
perturbed/reweighted-ℓ1 problem which can be separated into independent sub-problems
in many applications. This interesting feature makes our proposed approach very efficient
in terms of computational complexity.

Finally, as applications, we consider the problem of group variable selection in optimal
scoring and estimation of multiple covariance matrices. We also perform a careful empir-
ical experiment to study the performance of the proposed approaches.

The rest of the chapter is organized as follows. In Section 5.2, we present the approximate
problems and show that these problems are equivalent to the original problem. We
illustrate how to apply DCA to solve the approximate problems in Section 5.3. The
application of the proposed algorithms for group variable selection in optimal scoring
is described in Section 5.4 while the application of the proposed algorithms for group
variable selection in estimation of multiple covariance matrices is described in Section
5.5. Section 5.6 concludes the chapter.

Throughout the chapter, for vectors u, v ∈ R
n, the inner product of u and v is defined as

〈u, v〉 =∑n
i=1 uivi. For every p ≥ 1, the ℓp-norm of vector u is ‖u‖p = (

∑n
i=1 |ui|p)

1
p . In

addition, if u is partitioned into J non-overlapping groups u1, ..., uJ , we recall that the
ℓp,0-norm of u is defined as

‖u‖p,0 =
J∑

j=1

s(‖uj‖p),

where s is the step function defined above. Similarly, the ℓp,1-norm of u is defined as

‖u‖p,1 =
J∑

j=1

‖uj‖p.

We denote the vector (‖u1‖p, ..., ‖uJ‖p) by |uJ |p. For A ∈ R
n×m, the Frobenius norm of
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A is given by ||A||F =
√∑

i,j A
2
ij .

5.2 DC approximate problems and the link with the

original problem

We consider the approximate problem of (5.1) which takes the form

min

{
F p
α(x, y) := f(x, y) + λ

J∑

j=1

ηα(‖xj‖p) : (x, y) ∈ K
}
, (5.9)

where ηα(t) = min{1, α|t|} is the Capped-ℓ1 function (Peleg and Meir, 2008), and α is a
tuning parameter such that ηα(t) approximates the step function s(t) as α tends to +∞.

Since ‖xj‖∞ ≤ ‖xj‖p ≤ ‖xj‖1 ∀p ≥ 1 and ηα is increasing on [0; +∞), we get

ηα(‖xj‖∞) ≤ ηα(‖xj‖p) ≤ ηα(‖xj‖1) ≤ s(‖xj‖p). (5.10)

This shows that, with the same parameter α, ηα(‖.‖1) is the closest to the step function
s. We also consider another equivalent form of the problem (5.9) as follows:

min

{
Fα(x, y, z) := f(x, y) + λ

J∑

j=1

ηα(zj) : (x, y, z) ∈ Kp

}
, (5.11)

where Kp = {(x, y, z) : (x, y) ∈ K, ‖xj‖p ≤ zj, j = 1, ..., J}. Indeed, the problems (5.9)
and (5.11) are equivalent in the following sense.

Proposition 5.1 A point (x∗, y∗) ∈ K is a global (resp. local) solution of the problem
(5.9) if and only if (x∗, y∗, |x∗J |p) is a global (resp. local) solution to the problem (5.11).
Moreover, if (x∗, y∗, z∗) is a global solution to (5.11) then (x∗, y∗) is a global solution to
(5.9).

Proof : Since ηα is an increasing function on [0,+∞), we have

Fα(x, y, z) ≥ Fα(x, y, |xJ |p) = F p
α(x, y) ∀(x, y, z) ∈ Kp.

Then the conclusion on global solutions is trivial. The result on local solutions can be
deduced from the following remarks. Let a = maxj

√
dj ≥ 1, where dj is the number of

variables of the j-th group. If 1 ≤ p < 2, we have

|‖xj‖p − ‖(x∗)j‖p| ≤ ‖xj − (x∗)j‖p ≤ d
1/p−1/2
j ‖xj − (x∗)j‖2. (5.12)

Combining d
1/p−1/2
j ≤ a and (5.12), we obtain

|‖xj‖p − ‖(x∗)j‖p| ≤ a‖xj − (x∗)j‖2 ∀j = 1, ..., J. (5.13)
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If p ≥ 2, we have

|‖xj‖p − ‖(x∗)j‖p| ≤ ‖xj − (x∗)j‖p ≤ ‖xj − (x∗)j‖2. (5.14)

From (5.13)-(5.14) and a ≥ 1, we have ‖|xJ |p − |x∗J |p‖2 ≤ a‖x− x∗‖2 ∀p ≥ 1. Therefore,
if (x, y) ∈ B((x∗, y∗), δ/

√
a2 + 1) then (x, y, |xJ |p) ∈ B((x∗, y∗, |x∗|p), δ). Moreover, if

(x, y, z) ∈ B((x∗, y∗, z∗), δ) then (x, y) ∈ B((x∗, y∗), δ). The proof is the complete. ✷

In this section, we introduce the following assumption:

Assumption 1 K is a compact polyhedral convex set. By Proposition 5.1, without the
generality, we can assume that Kp is a compact convex set.

Proposition 5.2 Under the assumption (1), with p = +∞. Then, there exists α0 such
that the approximate problem (5.9) is equivalent to the original problem (5.1) for all
α > α0.

Proof : Since the ℓ∞-norm is polyhedral convex function, K∞ = {(x, y, z) : (x, y) ∈
K, ‖xj‖∞ ≤ zj , j = 1, ..., J} is also a compact polyhedral convex set. We notice that the
(5.11) is an approximate problem of the following problem including the ℓ0 penalty on
the vector z.

min

{
f(x, y) + λ

J∑

j=1

s(zj) : (x, y, z) ∈ K∞

}
. (5.15)

Following the conclusion after Proposition 3 in Le Thi et al. (2015), there exists α0 such
that the problem (5.11) and (5.15) are equivalent for all α > α0. Moreover, we have

f(x, y) + λ

J∑

j=1

s(zj) ≥ f(x, y) + λ

J∑

j=1

s(‖xj‖∞) ∀(x, y, z) ∈ K∞.

It easily follows that the problem (5.15) is equivalent to the problem (5.1). By Propo-
sition 5.1, we have the equivalence between the problem (5.11) and the problem (5.9).
Hence, the approximate problem (5.9) is equivalent to the original problem (5.1). Thus,
Proposition 5.2 is proved. ✷

For p = +∞, we have proved that the approximate problem (5.9) is equivalent to the
problem (5.1) for all α > α0. We now have the general result for all p ≥ 1.

Proposition 5.3 Under the assumption (1), there exists α0 such that the approximate
problem (5.9) is equivalent to the original problem (5.1) for all α > α0 and p ≥ 1.
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Proof : From the inequality (5.10), we have

ηα(‖xj‖∞) ≤ ηα(‖xj‖p) ≤ s(‖xj‖p). (5.16)

Hence, we obtain

F∞
α (x, y) ≤ F p

α(x, y) ≤ f(x, y) + λ
J∑

j=1

s(‖xj‖∞) ∀(x, y) ∈ K. (5.17)

For p = +∞, by Proposition 5.2, the problems (5.9) and (5.1) are equivalent for all
α > α0. Hence, let (x

∗, y∗) be a common optimal solution, we have

F∞
α (x∗, y∗) = F p

α(x
∗, y∗) = f(x∗, y∗) + λ

J∑

j=1

s(‖(x∗)j‖∞)

= f(x∗, y∗) + λ

J∑

j=1

s(‖(x∗)j‖p).

Combining with (5.17), for all (x, y) ∈ K, we have

f(x∗, y∗) + λ
J∑

j=1

s(‖(x∗)j‖p) = F p
α(x

∗, y∗) ≤ F p
α(x, y)

≤ f(x, y) + λ
J∑

j=1

s(‖xj‖p).

Therefore, we can deduce that the approximate problem (5.9) is equivalent to the original
problem (5.1). This completes the proof of the Proposition 5.3. ✷

We are now going to develop DCA based algorithms for solving the approximate problems
(5.9)-(5.11).

5.3 Solution methods via DC programming and

DCA

5.3.1 DCA for solving the first approximate problem

Firstly, we consider the approximate problem (5.9) and introduce a DCA scheme that
includes algorithms of ℓ1-perturbed/ℓ2,1-perturbed types. The function ηα(t) can be ex-
pressed as a DC function:

ηα(t) = α|t| − r(t), (5.18)
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where r(t) = −1 + max{1, α|t|}. Hence, the objective function of the problem (5.9) can
be rewritten as a DC function:

F p
α(x, y) = G1(x, y)−H1(x, y), (5.19)

where

G1(x, y) = χK(x, y) + g(x, y) + λ‖x‖p,1

H1(x, y) = h(x, y) + λ
J∑

j=1

r(‖xj‖p),

and g, h are DC components of f , i.e., f = g−h. Hence a DC formulation of the problem
(5.9) takes the form

min
(x,y)
{G1(x, y)−H1(x, y)}. (5.20)

Following the generic DCA scheme, DCA for solving the problem (5.20) can be described
as follows.

DCA1

Initialization: Choose (x0, y0) ∈ K, l ← 0 and let τ be a tolerance sufficient small.
repeat
1. Compute (x̄l, ȳl) ∈ ∂h(xl, yl) and (vl)j ∈ λ∂r(‖(xl)j‖p), j = 1, ..., J .
2. Compute (xl+1, yl+1) by solving the problem:

min
(x,y)∈K

{
g(x, y)− 〈x̄l, x〉 − 〈ȳl, y〉+ λα‖x‖p,1 − 〈vl, x〉

}
. (5.21)

3. l ← l + 1.
until ‖(xl, yl)− (xl−1, yl−1)‖2 ≤ τ(‖(xl−1, yl−1)‖2 + 1) or |F p

α(x
l, yl)− F p

α(x
l−1, yl−1)| ≤

τ(|F p
α(x

l−1, yl−1)|+ 1)

Remark 5.1 We see that the problem (5.21) has the form of an ℓp,1-perturbed problem.
Thus, for p = 2, (5.21) is an ℓ2,1-perturbed problem. For p = 1, we have ‖x‖1,1 ≡ ‖x‖1
and the problem (5.21) can be rewritten as follows.

min
(x,y)∈K

{
g(x, y)− 〈x̄l, x〉 − 〈ȳl, y〉+ λα‖x‖1 − 〈vl, x〉

}
. (5.22)

This problem has the form of an ℓ1-perturbed problem which can be found in many previous
works (see e.g. (Le Thi et al., 2008, 2014a, 2015; Ong and Le Thi, 2013b)). Thanks to
the ℓ1-norm, if g(x, y) is separable in its variables, so is the problem (5.22). This leads to
a potential massive reduction in computational complexity. In many applications such as
multi-task feature learning, group sparse PCA, group sparse optimal scoring, joint sparse
compressed sensing, etc, it requires to estimate a row-wise sparse matrix W , meanwhile,
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its objective function can be separated in columns. Hence, the problem (5.22) can be
separated into independent sub-problems in these applications. Note, however, that the
problem (5.21) is not separable if p 6= 1. Thus we can say that the ℓ1,0 is the most
interesting regularization for DCA.

5.3.2 DCA for solving the second approximate problem

In the following, we introduce a DCA scheme for solving the problem (5.11) and in-
dicate its connection with reweighted-ℓp,1 procedure which includes reweighted-ℓ1 and
reweighted-ℓ2,1 as special cases. The problem (5.11) is a DC program of the form:

min
(x,y,z)

{G2(x, y, z)−H2(x, y, z)}, (5.23)

where

G2(x, y, z) = g(x, y) + χKp
(x, y, z),

H2(x, y, z) = h(x, y) + λ
J∑

j=1

(−ηα)(zj).

Let (xl, yl, zl) ∈ Kp be the current solution at iteration l. DCA applied to the DC program
(5.23) updates (xl+1, yl+1, zl+1) ∈ Kp via two steps:
– Step 1: compute (x̄l, ȳl) ∈ ∂h(xl, yl) and vlj ∈ λ∂(−ηα)(zlj) ∀j = 1, ..., J by

vlj =

{
−λα if zlj ≤ 1/α

0 otherwise.

– Step 2: compute

(xl+1, yl+1, zl+1) ∈ arg min
(x,y,z)∈Kp

{
g(x, y)− 〈x̄l, x〉 − 〈ȳl, y〉 − 〈vl, z〉

}
. (5.24)

Since vlj ≤ 0 ∀j = 1, ..., J , the (5.24) is equivalent to




(xl+1, yl+1) = arg min

(x,y)∈K

{
g(x, y)− 〈x̄l, x〉 − 〈ȳl, y〉+∑J

j=1(−vlj)‖xj‖p
}
,

zl+1
j = ‖(xl+1)j‖p ∀j = 1, ..., J.

Hence, DCA for solving the problem (5.11) can be described as follows.

DCA2

Initialization: Choose (x0, y0) ∈ K, l ← 0 and let τ be a tolerance sufficient small.
repeat
1. Compute (x̄l, ȳl) ∈ ∂h(xl, yl) and vlj ∈ λ∂(−ηα)(‖(xl)j‖p) ∀j = 1, ..., J .
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2. Compute (xl+1, yl+1) by solving the problem:

min
(x,y)∈K

{
g(x, y)− 〈x̄l, x〉 − 〈ȳl, y〉+

J∑

j=1

(−vlj)‖xj‖p
}
. (5.25)

3. l ← l + 1.
until ‖(xl, yl, |xlJ |p) − (xl−1, yl−1, |xl−1

J |p)‖2 ≤ τ(‖(xl−1, yl−1, |xl−1
J |p)‖2 + 1) or

|Fα(x
l, yl, |xlJ |p)− Fα(x

l−1, yl−1, |xl−1
J |p)| ≤ τ(|Fα(x

l−1, yl−1, |xl−1
J |p)|+ 1)

Remark 5.2 If the function f is convex, we can choose DC components of f as g = f
and h = 0. Then (x̄l, ȳl) = 0 ∀l. In this case, the problem in step 2 becomes

min
(x,y)∈K

{
f(x, y) +

J∑

j=1

(−vlj)‖xj‖p
}
. (5.26)

We see that (5.26) has the form of an ℓp,1-regularization problem but with different
weights on groups xj . Hence, DCA2 iteratively solves the weighted-ℓp,1 problem (5.26)
with weights (−vlj) being updated at each iteration l.

For p = 1, (5.26) becomes a group-weighted-ℓ1 problem. Moreover, if f(x, y) is separable,
problem (5.26) can be separated into independent sub-problems. This is the case in many
applications.

For p = 2, (5.26) becomes a weighted-ℓ2,1 problem and the DCA in this case is reweighted-
ℓ2,1 algorithm. Note that the adaptive group Lasso proposed in Wei and Huang (2010)
is also of this type. However, the adaptive group Lasso only processes in one step and
heuristically computes weights by (−vj) = 1/‖x̄j‖2 where x̄ is an initial estimate of the
solution.

5.4 Application to group variable selection in opti-

mal scoring problem

In this section, we consider the problem of group variable selection in linear discriminant
analysis (LDA). Instead of directly considering the Fisher formulation (5.6), we are in-
terested in the optimal scoring interpretation of LDA (Hastie et al., 1994, 1995). The
rationality of the optimal scoring method derives from the fact that LDA can also be re-
formulated as a multiple regression problem via optimal scoring. Generally, the problem
can be formulated as follows.

Let {(xi, yi) : i = 1, ..., n} be a set of labeled training data with observation vector xi ∈ R
d

and label yi ∈ {1, ..., C}. The data matrix is denoted by X = [x1; ...; xn] ∈ R
n×d. Let
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Y ∈ R
n×C with Yik = 1 if xi belongs to the k-th class and 0 otherwise. To find the

linear transformation W = [w1, ..., wL] ∈ R
d×L, that maps the data in the d-dimensional

space to an L-dimensional space (L ≤ C − 1), in which the between-class variance is
maximized while the within-class variance is minimized, the optimal scoring criterion
solves the problem

min
Θ∈RC×L,W∈Rd×L

{
1

2n
||YΘ−XW ||2F

}

subject to
1

n
ΘTY TYΘ = IL,

(5.27)

where IL is the L × L identity matrix. Hastie et al. (1994) proposed an algorithm for
solving the problem (5.27) described as below.

(1) Choose a score matrix Θ0 such that 1
n
ΘT

0 Y
TYΘ0 = IL.

(2) Compute Ŵ by solving the following problem

min
W∈Rd×L

{
1

2n
||YΘ0 −XW ||2F

}
. (5.28)

(3) Compute eigenvector matrix V and corresponding eigenvalues λ1, ..., λL of
ΘT

0 Y
TXŴ .

(4) Compute solution Θ∗ = Θ0V and W ∗ = ŴV .

The classification rule is to assign a new observation x to class y if

y = argmax
k
‖(x− uk)TW ∗D‖22,

where D is a diagonal matrix with k-th diagonal term Dkk = 1/
√
λ2k(1− λ2k) and uk is

the mean vector of class k.

In high-dimensional settings, there are many irrelevant and/or redundant features. In
addition, the classification rule involves a linear combination of the features. Hence, one
difficulty of the LDA is data interpretation. The most suitable approach to overcome
this difficulty is feature selection. The resulting sparse discriminant vectors can provide
a more interpretable low-dimensional representation of data.

In the optimal scoring problem, a feature j-th is selected if at least a component in the
row j-th of W is nonzero and vice versa. Therefore, it is reasonable to consider rows
of W as groups. Denote by wj (j = 1, . . . , d) the row j-th of W . In the step 2, using
ℓp,0-regularization for the problem (5.28) leads us to consider the group sparse optimal
scoring problem.

min
W∈Rd×L

{
1

2n
||YΘ0 −XW ||2F + λ‖W‖p,0

}
, (5.29)

where λ ≥ 0 is a tuning parameter, and the ℓp,0-norm of W is defined by ‖W‖p,0 =∑d
j=1 s(‖wj‖p), i.e., we consider W as a vector by concatenating its rows which are

regarded as groups.
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Observe that the problem (5.29) is a special case of (5.1) where the function f is given
by

f(W ) =
1

2n
||YΘ0 −XW ||2F ,

and the corresponding approximate problem takes the form:

min
W∈Rd×L

{
F p(W ) :=

1

2n
||YΘ0 −XW ||2F + λ

d∑

j=1

ηα(‖wj‖p)
}
. (5.30)

By Proposition 5.1, this problem is equivalent to

min
(W,z)∈Kp

{
F (W, z) :=

1

2n
||YΘ0 −XW ||2F + λ

d∑

j=1

ηα(zj)

}
, (5.31)

where Kp = {(W, z) : ‖wj‖p ≤ zj , j = 1, . . . , d}.

In the appendix A.1, we will prove that the optimal solution set of the problem (5.29) is
bounded. Hence, without loss of generality, we can only consider the problem (5.29) on
a box K = [−M,M ]d×L for sufficient large M . By Proposition 5.3, there exists α0 such
that the approximate problem (5.30) is equivalent to the original problem (5.29) for all
α > α0.

Here f is a convex quadratic function, and DC components of f are taken as g = f and
h = 0. According to DCA1 and DCA2 with p = 1, 2, we have four DCA based algorithms,
ℓ2,0(DCA1), ℓ2,0(DCA2), ℓ1,0(DCA1) and ℓ1,0(DCA2), described as follows.

ℓ1,0(DCA1) (DCA1 with p = 1 for solving (5.30))

Initialization: Choose W 0 ∈ K, l ← 0 and let τ be a tolerance sufficient small.
repeat
1. Set (vl)j ∈ λ∂r(‖(wl)j‖1), j = 1, ..., d as

(vl)lk =

{
sgn((wl)jk)λα if ‖(wl)j‖1 > 1/α

0 otherwise,
, k = 1, ..., L.

2. Compute W l+1 by solving the problem:

min
W∈K

{
1

2n
||YΘ0 −XW ||2F + λα‖W‖1,1 −

d∑

j=1

〈(vl)j , wj〉
}
. (5.32)

3. l ← l + 1.
until ‖W l −W l−1‖F ≤ τ(‖W l−1‖F + 1) or |F 1(W l)− F 1(W l−1)| ≤ τ(|F 1(W l−1)|+ 1)
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The problem (5.32) can be separated into L independent sub-problems of the same form:

min
wk∈[−M,M ]d

{
1

2n
||(YΘ0)k −Xwk||22 + λα‖wk‖1 − 〈vlk, wk〉

}
, (5.33)

where (YΘ0)k denotes the k-th column of YΘ0 and vlk = ((vl)1k, ..., (v
l)dk). Hence, for

solving the problem (5.32), we can solve L sub-problems in parallel. This shows the
efficiency of the ℓ1,0-regularization. For solving problem (5.33), we use the coordinate
descent method (Friedman et al., 2007).

ℓ1,0(DCA2) (DCA2 with p = 1 for solving (5.31))

Initialization: Choose W 0 ∈ K, l ← 0 and let τ be a tolerance sufficient small.
repeat
1. Set vlj = −λα if ‖(wl)j‖1 ≤ 1/α and 0 otherwise ∀j = 1, ..., d.
2. Compute W l+1 by solving the problem:

min
W∈K

{
1

2n
||YΘ0 −XW ||2F +

d∑

j=1

(−vlj)‖wj‖1
}
. (5.34)

3. l ← l + 1.
until ‖(W l, |W l

d|1) − (W l−1, |W l−1
d |1)‖ ≤ τ(‖(W l−1, |W l−1

d |1)‖ + 1) of |F (W l, |W l
d|1) −

F (W l−1, |W l−1
d |1)| ≤ τ(|F (W l−1, |W l−1

d |1)|+ 1)

The problem (5.34) can also be separated into L independent sub-problems of the same
form,

min
wk∈[−M,M ]d

{
1

2n
||(YΘ0)k −Xwk||22 +

d∑

j=1

(−vlj)|wj
k|〉
}

(5.35)

for which the coordinate descent method can be used.

The following result is a consequence of the convergence properties of DCA for DC poly-
hedral programs.

Theorem 5.1 The algorithm ℓ1,0(DCA1) (resp. ℓ1,0(DCA2)) terminates after a finite
number of iterations, and the solution W ∗ (resp. (W ∗, |W ∗

d |1)) given by ℓ1,0(DCA1) (resp.
ℓ1,0(DCA2)) is a critical point of the problem (5.30) (resp. (5.31)). Furthermore, if
‖(w∗)j‖1 6= 1

α
∀j = 1, ..., d, then W ∗ and (W ∗, |W ∗

d |1) are local solutions to (5.30) and
(5.31), respectively.
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Proof : Since the ℓ1-norm and the function
∑d

j=1−ηα(zj) are polyhedral convex, the
second DC component H1 (resp. H2) in (5.20) (resp. (5.23)) is polyhedral convex. There-
fore, both (5.20) and (5.23) are polyhedral DC programs. According to the convergence
property of polyhedral DC programs, ℓ1,0(DCA1) (resp. ℓ1,0(DCA2)) generates a sequence
{W l} (resp. {(W l, |W l

d|1)}) that converges to a critical pointW ∗ (resp. (W ∗, |W ∗
d |1)) after

a finite number of iterations.

If ‖(w∗)j‖1 6= 1
α
∀j = 1, ..., d, then the second DC component H1 (resp. H2) is

differentiable at W ∗ (resp. (W ∗, |W ∗
d |1)). Then W ∗ and (W ∗, |W ∗

d |1) are local solutions
to (5.30) and (5.31), respectively. ✷

ℓ2,0(DCA1) (DCA1 with p = 2 for solving (5.30))

Initialization: Choose W 0 ∈ K, l ← 0 and let τ be a tolerance sufficient small.
repeat
1. Set (vl)j ∈ λ∂r(‖(wl)j‖2), j = 1, ..., d as

(vl)j =

{
λα

‖(wl)j‖2
(wl)j if ‖(wl)j‖2 > 1/α

0 otherwise.

2. Compute W l+1 by solving the problem:

min
W∈K

{
1

2n
||YΘ0 −XW ||2F + λα

d∑

j=1

‖wj‖2 −
d∑

j=1

〈(vl)j, wj〉
}
. (5.36)

3. l ← l + 1.
until ‖W l −W l−1‖F ≤ τ(‖W l−1‖F + 1) or |F 2(W l)− F 2(W l−1)| ≤ τ(|F 2(W l−1)|+ 1)

Since f(W ) is not separable with respect to rows, the convex problem (5.36) cannot be
separated into independent sub-problems as the previous cases. Here we apply a block
coordinate descent algorithm for solving (5.36). We choose a row j to minimize, and
consider the other rows as fixed. The resulting problem is

min
wj∈[−M,M ]L

{
1

2n

n∑

i=1

||r(−j,i) −Xijw
j||22 + λα‖wj‖2 − 〈(vl)j , wj〉

}
, (5.37)

where r(−j,i) = (YΘ0)i −
∑

m6=j Ximŵ
(m). Combining the subgradient conditions with

basic algebra, we get the solution ŵj of the problem (5.37) without constraint as follows.

ŵj =

{
0 if ‖∑n

i=1 r(−j,i)Xij + n(vl)j‖2 ≤ nλα,
‖
∑n

i=1 r(−j,i)Xij+n(vl)j‖2−nλα

‖
∑n

i=1 r(−j,i)Xij+n(vl)j‖2

(∑n
i=1 r(−j,i)Xij + n(vl)j

)
otherwise.
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ℓ2,0(DCA2) (DCA2 with p = 2 for solving (5.31))

Initialization: Choose W 0 ∈ K, l ← 0.
repeat
1. Set vlj = −λα if ‖(wl)j‖2 ≤ 1/α and 0 otherwise ∀j = 1, ..., d.
2. Compute W l+1 by solving the problem:

min
W∈K

{
1

2n
||YΘ0 −XW ||2F +

d∑

j=1

(−vlj)‖wj‖2
}
. (5.38)

3. l ← l + 1.
until ‖(W l, |W l

d|2) − (W l−1, |W l−1
d |2)‖ ≤ τ(‖(W l−1, |W l−1

d |2)‖ + 1) of |F (W l, |W l
d|2) −

F (W l−1, |W l−1
d |2)| ≤ τ(|F (W l−1, |W l−1

d |2)|+ 1)

The problem (5.38) is also solved by a block coordinate descent algorithm. The update
with respect to the j-th row has the form

ŵj =

{
0 if ‖∑n

i=1 r(−j,i)Xij‖2 ≤ nλα(−vlj),
‖
∑n

i=1 r(−j,i)Xij‖2−nλα(−vlj)

‖
∑n

i=1 r(−j,i)Xij‖2

(∑n
i=1 r(−j,i)Xij

)
otherwise.

Theorem 5.2 a) The sequence generated by ℓ2,0(DCA1) has at least one limit point
and every limit point of this sequence is a critical point of the problem (5.30).

b) The algorithm ℓ2,0(DCA2) terminates after a finite number of iterations, and the
solution (W ∗, |W ∗

d |2) given by ℓ2,0(DCA2) is a critical point of the problem (5.31).
Furthermore, if ‖(w∗)j‖2 6= 1

α
∀j = 1, ..., d, then (W ∗, |W ∗

d |2) is a local solution to
(5.31).

Proof : a) (a) is a consequence of convergence properties of general DC programs and
the facts that the objective function of (5.30) is bounded below by 0 and the sequence
generated by ℓ2,0(DCA1) is bounded.

b) For p = 2, (5.23) is also a polyhedral DC program. Hence, ℓ2,0(DCA2) generates a se-
quence {(W l, |W l

d|2)} that converges to a critical point (W ∗, |W ∗
d |2) after a finite number

of iterations. Furthermore, if ‖(w∗)j‖2 6= 1
α
∀j = 1, ..., d, then the second DC component

H2 is differentiable at (W
∗, |W ∗

d |2). Therefore, (W ∗, |W ∗
d |2) is a local solution to (5.31). ✷
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5.4.1 Numerical experiments

5.4.1.1 Comparative algorithms

We will compare the proposed algorithms (ℓ1,0(DCA1), ℓ1,0(DCA2), ℓ2,0(DCA1) and
ℓ2,0(DCA2)) with the standard algorithms using the ℓ2,1-regularization: SOS GLASSO
(Leng, 2008; Merchante et al., 2012) and GS MSVM (Blodel et al., 2013). We also com-
pare the four DCA based algorithms to study the performance of the two regularizations
as well as the two different DC decompositions.

Sparse optimal scoring using group lasso (SOS GLASSO):

GLASSO used the ℓ2,1-norm instead of the ℓp,0-norm in the problem (5.29), that is

min
W∈Rd×L

{
1

2n
||YΘ0 −XW ||2F + λ‖W‖2,1

}
. (5.39)

In the experiments, this problem is solved by a block coordinate descent algorithm.

Group sparse multiclass support vector machine (GS MSVM):

LetW be a d×C matrix, where d and C represent the number of features and the number
of classes, respectively. Denote by wk ∈ R

d the k-th column of W . In multiclass support
vector machine, an observation x is classified to one of the C classes using the following
rule:

y = arg max
k∈{1,...,C}

wT
k x.

Given n training observations (xi, yi), i = 1, ..., n, the goal of Blodel et al. (2013) is to
estimate a row-wise sparse solution W by solving the following problem.

min

{
n∑

i=1

∑

k 6=yi

max(1− (wT
yi
xi − wT

k xi), 0)
2 + λ‖W‖2,1

}
. (5.40)

In Blodel et al. (2013), the authors use the block coordinate descent method for solving
this problem. The code is published at https://github.com/mblondel/lightning.

5.4.1.2 Datasets

The real world datasets consist of seven real microarray gene expression datasets, and
four face image datasets. The number of classes ranges from 3 to 10. All the datasets are
preprocessed by normalizing each dimension of the data to zero mean and unit variance.
The detailed information of these datasets is summarized in Table 5.1.

1. http://research.nhgri.nih.gov/microarray/Supplement/

2. http://www-genome.wi.mit.edu

3. http://datam.i2r.a-star.edu.sg/datasets/krbd/

4. http://research.dfci.harvard.edu/korsmeyer/Supp_pub/Supp_Armstrong_Main.html

5. http://featureselection.asu.edu/

https://github.com/mblondel/lightning
http://research.nhgri.nih.gov/microarray/Supplement/
http://www-genome.wi.mit.edu
http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://research.dfci.harvard.edu/korsmeyer/Supp_pub/Supp_Armstrong_Main.html
http://featureselection.asu.edu/
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Table 5.1: Real datasets used in experiments.

Datasets #Features #Samples #Classes Area

SRBCT1 (SRB) 2308 83 4 Microarray, Bio
Pencillium (PEN) 3754 36 3 Microarray, Bio
ALL/AML2 (ALL) 7129 72 3 Microarray, Bio
Leukemia3 (LEU) 12558 248 6 Microarray, Bio
MLL-Leukemia4 (MLL) 12582 72 3 Microarray, Bio
CLL-SUB-1115 (CLL) 11340 111 3 Microarray, Bio
TOX-1715 (TOX) 5748 171 4 Microarray, Bio
AR10P5 (AR1) 2400 130 10 Image, Face
PIX10P5 (PIX) 10000 100 10 Image, Face
PIE10P5 (PIE) 2420 210 10 Image, Face
ORL10P5 (ORL) 10304 100 10 Image, Face

5.4.1.3 Experimental setups

All algorithms are implemented in the R 3.0.2, and performed on a PC Intel i7 CPU3770,
3.40 GHz of 8GB RAM.

In our experiments, we use the cross-validation scheme to validate the performance of
various classifiers. Each dataset is split into a training set containing 2/3 of the samples
and a test set containing 1/3 of the samples. This process is repeated 10 times, each with
a random choice of training set and test set.

The tuning parameters are α, λ and L (number of used discriminant vectors). We fixed
α = 5, and λ, L were chosen via 5-fold cross-validation procedure on the training set from
the sets of candidates given by

Λ = {0.002, 0.004, 0.006, 0.008, 0.01, 0.014, 0.016, 0.018, 0.02, 0.024, 0.028, 0.032},

and L = {1, ..., C − 1}, respectively. By this way, we avoid performing tuning parameter
selection on a three-dimensional grid. The test set is used to measure the accuracy of
various classifiers given by the training procedure. The reported computational results
are the average results over 10 runs with different training sets.

The stop tolerance of DCA is τ = 10−5 while the starting point of DCA is zero. The
bound M is set to 103. We use the same stopping criterion of the (block) coordinate
descent method in Chapter 3 with tolerance 10−4.

5.4.1.4 Numerical results

The computational results (the average results on 10 runs with different training
sets) given by ℓ1,0(DCA1), ℓ1,0(DCA2), ℓ2,0(DCA1), ℓ2,0(DCA2), SOS GLASSO and
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Figure 5.1: The TOX dataset was projected onto the first three sparse discriminant
vectors. The samples in each class are shown by using a distinct symbol.

GS MSVM are reported in Tables 5.2-5.3. We are interested in the efficiency (the spar-
sity and the accuracy of classifiers), the number of used discriminant vectors L, as well
as the rapidity of these algorithms. The discriminant vectors can be used to visualize the
datasets such as in Figure 5.1.

Comments on computational results.

Sparsity: The classifiers obtained by ℓ1,0(DCA1), ℓ1,0(DCA2), ℓ2,0(DCA1) and ℓ2,0(DCA2)
are sparser than those obtained by SOS GLASSO and GS MSVM on 10/11 datasets.
SOS GLASSO is slightly better than the DCA based algorithms on one dataset (ORL).
ℓ1,0(DCA1), ℓ1,0(DCA2), ℓ2,0(DCA1) and ℓ2,0(DCA2) respectively select from 0.2%
to 7.01%, 0.09% to 3.7%, 0.19% to 14.29% and 0.41% to 9.79% of features while
SOS GLASSO and GS MSVM select from 0.91% to 14.63% and from 0.71% to 19.78% of
features, respectively. Comparing between the ℓ1,0-regularization and ℓ2,0-regularization,
we see that ℓ1,0(DCA1) and ℓ1,0(DCA2) select less features than ℓ2,0(DCA1) and
ℓ2,0(DCA2) on ten out of eleven datasets. We also observe that DCA1 and DCA2 are
comparable. More precisely, ℓ1,0(DCA2) is better than ℓ1,0(DCA1) on 9/11 datatsets
while ℓ2,0(DCA2) is better than ℓ2,0(DCA1) on 4/11 datasets.

Accuracy of classifiers: The DCA based algorithms not only provide a good perfor-
mance in terms of feature selection, but also give a high accuracy of classifiers. The
accuracy of classifiers attained the DCA based algorithms are better than SOS GLASSO
and GS MSVM on most of datasets. Comparing between the ℓ1,0-regularization and ℓ2,0-
regularization, ℓ1,0(DCA1) and ℓ1,0(DCA2) are better than ℓ2,0(DCA1) and ℓ2,0(DCA2)
on 7/11 datasets while ℓ2,0(DCA1) and ℓ2,0(DCA2) are better than ℓ1,0(DCA1) and
ℓ1,0(DCA2) on 3/11 datasets. On the remaining dataset (PEN), they obtain equal per-
formance. We also see that ℓ1,0(DCA1) and ℓ1,0(DCA2) are comparable. More precisely,
ℓ1,0(DCA1) is the best on 7/11 datasets and ℓ1,0(DCA2) is the best on 3/10 datasets.

Training time: ℓ1,0(DCA1) and ℓ1,0(DCA2) are remarkable faster than the other algo-
rithms (the ratios of gains are from 3 to 63 times). Especially, ℓ1,0(DCA1) and ℓ1,0(DCA2)
run much faster than the other algorithms on the datasets with large number of features
and large number of classes (face image datasets). This can be explained by the fact
that ℓ1,0(DCA1) and ℓ1,0(DCA2) lead to the sequences of convex problems which are
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Table 5.2: Comparative results of ℓ1,0(DCA1), ℓ1,0(DCA2), ℓ2,0(DCA1), ℓ2,0(DCA2),
SOS GLASSO and GS MSVM in terms of the average number of selected features and
its standard deviation (upper row), and the average percentage of selected features and
its standard deviation (lower row) over 10 training/test set splits. Bold fonts indicate the
best results in each row.

ℓ1,0(DCA1) ℓ1,0(DCA2) ℓ2,0(DCA1) ℓ2,0(DCA2) SOS GLASSO GS MSVM

SRB 42.8 (13.14) 35.1 (16.07) 90.24 (37.15) 87.1 (42.34) 100.3 (4.24) 123.3 (23.11)
1.85 (0.56) 1.52 (0.69) 3.9 (1.6) 3.77 (1.83) 4.34 (0.18) 5.34 (1)

PEN 7.7 (4.37) 3.5 (0.7) 7.4 (4.22) 14.8 (3.76) 41.6 (3.97) 48.3 (5.07)
0.2 (0.11) 0.09 (0.01) 0.19 (0.11) 0.49 (0.1) 1.1 (0.1) 1.28 (0.13)

ALL 31.9 (12.69) 31.8 (14.57) 52.5 (8.12) 70.8 (11.8) 83.8 (5.75) 366.5 (40.16)
0.45 (0.17) 0.44 (0.2) 0.73 (0.11) 0.99 (0.16) 1.17 (0.08) 5.14 (0.56)

LEU 88.6 (40.32) 97.1 (50.11) 50.1 (18.95) 109.4 (49.25) 243.9 (11.1) 2485.1 (1051.35)
0.7 (0.32) 0.77 (0.39) 0.39 (0.15) 0.87 (0.39) 1.94 (0.09) 19.78 (8.37)

MLL 35.1 (10.02) 32.4 (11.11) 56.9 (5.38) 51.4 (17.89) 126.6 (6.85) 162.43 (95.62)
0.27 (0.07) 0.25 (0.08) 0.45 (0.04) 0.41 (0.14) 1.01 (0.05) 1.29 (0.76)

CLL 40.1 (21.66) 35.6 (30.6) 79.3 (23.07) 83.3 (64.47) 103.8 (5) 80.7 (7.78)
0.35 (0.19) 0.31 (0.26) 0.69 (0.2) 0.73 (0.56) 0.91 (0.04) 0.71 (0.06)

TOX 129.9 (23.15) 132.2 (27.42) 164.6 (24.31) 226.7 (64.11) 269.8 (12.53) 262 (7.81)
2.25 (0.4) 2.29 (0.47) 2.86 (0.42) 3.94 (1.11) 4.69 (0.21) 4.55 (0.13)

AR1 168.3 (49.77) 88.8 (15.18) 342.1 (141.43) 231.6 (79.31) 351 (9.26) 302.8 (18.09)
7.01 (2.07) 3.7 (0.63) 14.29 (5.89) 9.65 (3.3) 14.63 (0.38) 12.61 (0.75)

PIX 116.1 (20.22) 19.9 (9.12) 200.9 (18.57) 435.7 (92.31) 281.9 (16.17) 209.2 (20.96)
1.16 (0.2) 0.19 (0.09) 2.01 (0.18) 4.35 (0.92) 2.81 (0.16) 2.09 (0.2)

PIE 91 (19.31) 30.5 (9.38) 201.9 (13.97) 237.1 (18.95) 281.3 (8.4) 65.3 (3.65)
3.76 (0.79) 1.2 (0.38) 8.34 (0.57) 9.79 (0.78) 11.62 (0.35) 2.69 (0.15)

ORL 327.5 (73.49) 254.4 (101.79) 315.9 (18.2) 276.8 (35.53) 236.8 (8.35) 353.1 (27.27)
3.17 (0.71) 2.46 (0.98) 3.06 (0.17) 2.68 (0.34) 2.29 (0.08) 3.42 (0.26)
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Table 5.3: ℓ1,0(DCA1), ℓ1,0(DCA2), ℓ2,0(DCA1), ℓ2,0(DCA2), SOS GLASSO and
GS MSVM in terms of the average of percentage of accuracy of classifiers and its standard
deviation (first row) over 10 training/test set splits, the number of used discriminant vec-
tors L (the data is projected onto an L-dimensional space) (second row), and the average
training time (in seconds) and its standard deviation (third row). Bold fonts indicate the
best results in each row.

ℓ1,0(DCA1) ℓ1,0(DCA2) ℓ2,0(DCA1) ℓ2,0(DCA2) SOS GLASSO GS MSVM

SRB 100 (0) 100 (0) 99.1 (1.56) 99.64 (1.12) 99.61 (1.21) 97.47 (4.54)
3 3 3 3 3 -
0.94 0.93 (0.01) 30.81 (4.72) 25.48 (6.59) 15.17 (0.18) 71.93 (9.17)

PEN 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
2 2 2 2 2 -
1.76 (0.03) 2.63 (0.016) 13.27 (8.07) 12.66 (8.21) 18.52 (7.94) 111.08 (52.06)

ALL 95.89 (3.31) 96.24 (3.07) 95.37 (5.32) 95.76 (7.1) 95.34(2.42) 94.6 (3.43)
2 2 2 2 2 -
8.66 (0.06) 12.83 (0.06) 108.42 (31.32) 95.24 (21.17) 83.58 (10.89) 76.31 (12.08)

LEU 98.38 (1.29) 96.84 (0.85) 98.07 (1.18) 95.97 (1.55) 97.09 (1.64) 74.27 (5.47)
5 5 5 5 5 -
47.14 (0.88) 56.93 (1.3) 349.45 (107.35) 128.32 (108.93) 193.92 (62.45) 74.54 (191.96)

MLL 98.76(1.98) 97.12 (1.99) 95.86 (3.35) 94.87 (5.68) 97.08 (2.87) 88.67 (2.62)
2 2 2 2 2 -
28.44 (1.4) 28.14 (0.47) 406.58 (89.77) 337.22 (99.36) 252.2 (17.28) 318.75 (65.91)

CLL 86.47 (3.26) 85.99 (1.59) 84.28 (3.49) 77.31 (5.4) 78.88 (4.59) 64.72 (5.13)
2 2 2 2 2 -
21.98 (1.04) 32.72 (1.66) 304.79 (196.73) 310.78 (78.83) 279.57 (63.55) 164.45 (15.08)

TOX 91.92 (1.69) 92.45 (1.44) 94.73 (1.84) 91.92 (3.11) 92.45 (3.51) 92.98 (5.72)
2 2 2 2 2 -
8.21 (0.7) 8.1 (0.17) 88.91 (22.4) 36.12 (19.34) 83.76 (12.54) 339.39 (24.82)

AR1 97.24 (1.5) 96.57 (1.13) 98.38 (1.54) 96.67 (2.49) 97.5 (2.65) 94.56 (3.17)
9 9 9 9 9 -
3.23 (0.26) 3.94 (0.27) 203.22 (48.48) 152.53 (31.36) 140.64 (5.51) 376.05 (69.81)

PIX 98.51 (1.57) 98.51 (1.57) 95.1 (5.64) 99.14 (1.92) 97.84 (3.3) 96.47 (3.34)
9 9 9 9 9 -
79.08 (1.98) 78.11 (0.66) 3539.9 (283.71) 3998.36 (800.78) 2531.92 (256.66) 4271.62 (137.98)

PIE 100 (0) 100 (0) 99 (1.35) 99.71 (0.9) 100 (0) 98.57 (1.16)
9 9 9 9 9 -
3.23 (0.09) 3.11 (0.04) 103.94 (18.29) 86.96 (6.93) 63.84 (3.73) 23.36 (4.28)

ORL 98.84 (1.49) 98.81 (1.54) 96.21 (4.76) 94.66 (3.77) 98.77 (1.58) 94.92 (3.51)
9 9 9 9 9 -
85.09 (2.66) 99.79 (5.05) 3581.92 (1111.72) 2788.62 (524.3) 1085.26 (122.8) 4118.03 (271.39)
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separated into independent sub-problems. Moreover, the sub-problems at each iteration
are solved in parallel. We observe that SOS GLASSO runs faster than ℓ2,0(DCA1) and
ℓ2,0(DCA2) on 8/11 datasets. This is because SOS GLASSO only solves a convex prob-
lem while ℓ2,0(DCA1) and ℓ2,0(DCA2) have to solve several problems of the same type as
SOS GLASSO.

5.5 Application to estimation of multiple covariance

matrices

In recent years, much interest has focused on estimating a covariance matrix on the
basis of an n × d data matrix X , where n is the number of observations and d is the
number of features. Suppose that the observations x1, ..., xn ∈ R

d are independent and
identically distributed N (0,Σ), where Σ is a positive definite d × d matrix. A natural
way to estimate the covariance matrix Σ is via minimizing negative log-likelihood. The
resulting optimization problem is

min
Σ≻0

{
log det Σ + tr(Σ−1S)

}
, (5.41)

where S = 1/n
∑n

i=1 xix
T
i is the sample covariance matrix and the notation Σ ≻ 0 means

that Σ is symmetric positive definite.

As mentioned in Chapter 4, estimation of sparse covariance matrix plays an important
role in various areas of statistical analysis. In that chapter, we have used the ℓ0-norm in
the regularization term that leads to the following sparse covariance matrix estimation
problem:

min
Σ≻0

{
log det Σ + tr(Σ−1S) + ‖Σ‖0

}
, (5.42)

where λ is a non-negative tuning parameter and ||Σ||0 denotes the ℓ0-norm of Σ, i.e., the
number of nonzero elements of matrix Σ.

In this chapter we extend the results of Chapter 4 to deal with the case of multiple
classes. Suppose that we have a dataset with Q classes. For the k-th class, let Xk be
an nk × d matrix consisting of nk observations with the number of features d common
to all classes. Furthermore, we assume that the observations within each class are inde-
pendent and identically distributed according to N (0,Σk). Let Sk = 1

nk
(Xk)TXk be the

sample covariance matrix for the k-th class. The Q covariance matrices are estimated via
minimizing negative log-likelihood

min
{Σ}∈Ω

{
Q∑

k=1

nk

[
log det Σk + tr((Σk)−1Sk)

]
}
, (5.43)

where Ω = {{Σ} := {Σ1, ...,ΣQ} : Σk � δkI, k = 1, ..., Q}. Here, I denotes the d × d
identity matrix, and the notation Σk � δkI means that Σk − δkI is symmetric positive
semidefinite.
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We define the ℓp,0-norm of {Σ} by

‖{Σ}‖p,0 =
∑

i,j

s(‖(Σ1
ij, ...,Σ

Q
ij)‖p), (5.44)

where s is the step function defined by s(t) = 1 if t 6= 0 and s(t) = 0 otherwise. In
this chapter, we propose to estimate sparse multiple covariance matrices using the ℓ0+ℓp,0
regularization. The resulting group sparse multiple covariance matrix estimation problem
takes the form:

min
{Σ}∈Ω

{
Q∑

k=1

nk

[
log det Σk + tr((Σk)−1Sk) + λ‖Σk‖0

]
+ γ‖{Σ}‖p,0

}
, (5.45)

where λ and γ are non-negative tuning parameters. An ℓ0 penalty is applied to the
elements of the covariance matrices and an ℓp,0 penalty is applied to the (i, j) element
across all Q covariance matrices. The first regularization term encourages sparsity within
each covariance matrix Σk while the second one encourages a similar pattern of sparsity
across all the covariance matrices. This is referred as bi-level variable selection in the
estimation of multiple covariance matrices.

In the literature, there exists a number of methods that seek a sparse covariance matrix
or its inverse (see e.g. Meinshausen and Buhlmann (2006); Yuan and Lin (2007); Banerjee
et al. (2008); Friedman et al. (2008); Rothman et al. (2008); Danaher et al. (2014); Cai
et al. (2011); Zhang and Zou (2014); Deng and Tsui (2013); Liu et al. (2014); Rothman
et al. (2009); Rothman (2012); Xue et al. (2012); Bien and Tibshirani (2011); Lam and
Fan (2009)). These methods only estimate single sparse covariance matrix or its inverse.
We can apply these methods to separately estimate each covariance matrix Σk. However,
these approaches can be less accurate than the jointly approaches. Recently, Danaher
et al. (2014); Huang and Chen (2015); Guo et al. (2011); Lee and Liu (2015) have devel-
oped the methods based on group lasso or fused lasso for finding sparse multiple inverse
covariance matrices.

In this section, we apply the proposed algorithms to solve the problem (5.42). We also
study the convex approximation approaches of the ℓ0-norm and ℓp,0 which are the ℓ1-norm
(lasso) and the ℓ2,1-norm (group lasso), respectively. However, the resulting problem
is still non-convex, and then we apply DCA to solve this problem. Among the ℓp,0-
regularizations, we continue showing that ℓ1,0 is the most interesting group regularization
for DCA.

We observe that the problem (5.45) takes the form of (5.1) where the function f is given
by

f({Σ}) =
Q∑

k=1

nk

[
log det Σk + tr((Σk)−1Sk)

]
+ λ

Q∑

k=1

∑

ij

ηα(Σ
k
ij),

and the corresponding approximate problem is

min
{Σ}∈Ω

{
Fp({Σ}) = f({Σ}) + γ

∑

ij

ηα(‖(Σ1
ij , ...,Σ

Q
ij)‖p)

}
, (5.46)
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We note that log det Σk is concave function while tr((Σk)−1Sk) is convex in Σk. Hence we
also have a natural DC decomposition of f (see Chapter 4). However, in Chapter 4, we
have showed the efficient of the special DC formulation by moving tr((Σk)−1Sk) to the
second DC component. We have a special DC decomposition of the function f as follows:

f({Σ})) = g({Σ})− h({Σ}), (5.47)

where

g({Σ}) =
Q∑

k=1

µk

2
‖Σk‖2F + χΩ({Σ}) + λα

Q∑

k=1

‖Σk‖1,

h({Σ}) =
Q∑

k=1

[µk

2
‖Σk‖2F − nktr((Σ

k)−1Sk)− nk log det Σ
k
]
+ λ

Q∑

k=1

∑

ij

rα(Σ
k
ij),

are convex functions in {Σ} when µ1, ..., µQ are large enough. For estimating µ1, ..., µQ,
we have the following lemma.

Lemma 5.1 If µk ≥ nk‖Sk‖2δ−3
k for k = 1, ..., Q, then h({Σ}) is convex in {Σ}.

Proof : From the proof of Lemma 4.1, if µk ≥ nk‖Sk‖2δ−3
k then

µk

2
‖Σk‖2F − nktr((Σ

k)−1Sk)

is convex in Σk. Moreover, we note that

−
Q∑

k=1

nk log det Σ
k + λ

Q∑

k=1

∑

ij

rα(Σ
k
ij)

is convex. Hence h({Σ}) is convex since the sum of convex functions is also convex. The
proof of lemma is complete. ✷

Remark 5.3 From the Lemma 5.1, we can choose µk = nk‖Sk‖2δ−3
k , k = 1, ..., Q.

5.5.1 DCA for solving the problem (5.46) with p = 1

According to DCA1 with p = 1, at each iteration l, we have to compute {Dl} ∈ ∂h({Σl}),
{C l} ∈ ∂γ∑ij rα(‖((Σ1)lij , ..., (Σ

Q)lij)‖1), and {Σl+1} as a solution to the problem

min
{Σ}∈Ω

{
Q∑

k=1

[µk

2
‖Σk‖2F + λα‖Σk‖1 − 〈(V k)l,Σk〉

]
+ γα

∑

ij

‖(Σ1
ij , ...,Σ

Q
ij)‖1

}
, (5.48)
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where {V l} = {Dl} + {C l}. Computing {Dl} can be split into two parts as follows:
{Dl} = {Al}+ {Bl}, where

{Al} ∈ ∂
Q∑

k=1

[µk

2
‖(Σk)l‖2F − nktr(((Σ

k)l)−1Sk)− nk log det(Σ
k)l
]
,

{Bl} ∈ ∂λ
Q∑

k=1

∑

ij

rα((Σ
k)lij),

respectively computed by

(Ak)l = µk(Σ
k)l + nk[(Σ

k)l]−1Sk[(Σk)l]−1 − nk[(Σ
k)l]−1, (5.49)

(Bk)lij =

{
λαsgn(Σk)lij if α|(Σk)lij| ≥ 1

0 otherwise
. (5.50)

The computation of {C l} is defined by

(Ck)lij =

{
γαsgn(Σk)lij if α‖(Σ1)lij , ..., (Σ

Q)lij‖1 ≥ 1

0 otherwise
.

For computing {Σl+1}, we notice that
∑

ij ‖(Σ1
ij, ...,Σ

Q
ij)‖1 =

∑Q
k=1 ‖Σ‖1 is separable.

Hence the problem (5.48) can be separated into Q independent sub-problems of the same
form,

min
Σk�δkI

{
ℓk(Σ

k) :=
µk

2
‖Σk‖2F + λα‖Σk‖1 + γα‖Σk‖1 − 〈(V k)l,Σk〉

}
. (5.51)

For solving each convex sub-problem (5.51), we use the alternating direction method of
multipliers (ADMM) Boyd et al. (2011). The augmented Lagrangian function of this
problem is

L1(Σ
k, X, Y ) =

µk

2
‖Σk‖2F − 〈(V k)l,Σk〉+ (λ+ γ)α‖X‖1 + 〈Y,Σk −X〉+ ρ

2
‖Σk −X‖2F .

More specifically, ADMM solves the following problems at each iteration m:

Σk,l,m+1 = arg min
Σ�δkI

L1(Σ, X
m, Y m) (5.52)

Xm+1 = arg min
X∈Rp×p

L1(Σ
k,l,m+1, X, Y m) (5.53)

Y m+1 = Y m + ρ(Σk,l,m+1 −Xm+1). (5.54)

The solutions (5.52) and (5.53) can be explicitly computed as follows:

Σk,l,m+1 =UDδkU
T where Dδk = diag(max(Dii, δk)) and

((V k)l − Y m + ρXm)/(µk + ρ) = UDUT ,

Xm+1 =S
(
Σk,l,m+1 + Y m/ρ,

(λ+ γ)α

ρ

)
,
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where S be the elementwise soft-thresholding operator defined by S(A,B)ij =
sgn(Aij)(|Aij| −Bij)+. DCA for solving (5.46) with p = 1 is summarized in the following
algorithm.

ℓ0/ℓ1,0(DCA1) (DCA1 with p = 1 for solving (5.46))

Initialization: Choose {Σ0} ∈ Ω, l← 0, and τ, ǫ tolerances sufficient small.
repeat
1. Compute (V k)l = (Ak)l + (Bk)l + (Ck)l, where

(Ak)l = µk(Σ
k)l + nk[(Σ

k)l]−1Sk[(Σk)l]−1 − nk[(Σ
k)l]−1,

(Bk)lij =

{
λαsgn(Σk)lij if α|(Σk)lij | ≥ 1

0 otherwise
,

(Ck)lij =

{
γαsgn(Σk)lij if α‖(Σ1)lij , ..., (Σ

Q)lij‖1 ≥ 1

0 otherwise
.

2. For k = 1, ..., Q compute (Σk)l+1 by ADMM:
Initialization: m = 0, (Xk)0 = S

(
(V k)l, α(λ+ γ)

)
, Y 0 = 0.

repeat
+ Compute Σk,l,m+1 = UDδkU

T where Dδk = diag(max(Dii, δk)) and ((V k)l −
Y m + ρXm)/(µk + ρ) = UDUT ,

+ Compute Xm+1 = S
(
Σk,l,m+1 + Y m/ρ, (λ+γ)α

ρ

)
,

+ Compute Y m+1 = Y m + ρ(Σk,l,m+1 −Xm+1),
+ m← m+ 1.

until |ℓk(Σk,l,m)− ℓk(Σk,l,m−1)| ≤ ǫ
3. l ← l + 1.

until ‖{Σl}−{Σl−1}‖ ≤ τ(‖{Σl−1}‖+1) or |F1({Σl})−F1({Σl−1})| ≤ τ(|F1({Σl−1})|+
1)

5.5.2 DCA for solving the problem (5.46) with p = 2

According to DCA1 with p = 2, at each iteration l, we have to compute {Dl} ∈ ∂h({Σl}),
{C l} ∈∈ ∂γ∑ij rα(‖((Σ1)lij, ..., (Σ

Q)lij)‖2), and {Σl+1} as a solution to the following prob-
lem:

min
{Σ}∈Ω

{
ℓ({Σ}) :=

Q∑

k=1

[µk

2
‖Σk‖2F + λα‖Σk‖1 − 〈(V k)l,Σk〉

]
+ γα

∑

ij

‖(Σ1
ij , ...,Σ

Q
ij)‖2

}
,

(5.55)
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where {V l} = {Dl} + {C l}. Computing {Dl} can be split into two parts as follows:
{Dl} = {Al}+ {Bl}+ {C l}, where {Al}, {Bl} are respectively computed by using (5.49)
and (5.50), and

{C l} ∈ ∂γ
∑

ij

rα(‖((Σ1)lij, ..., (Σ
Q)lij)‖2),

computed by

(Ck)lij =

{
γα(Σk)lij/‖(Σ1)lij, ..., (Σ

Q)lij‖2 if α‖(Σ1)lij , ..., (Σ
Q)lij‖2 ≥ 1

0 otherwise
.

The problem (5.55) cannot be separated into independent sub-problems as the previous
case. Here we apply the ADMM algorithm for solving this problem. The augmented
Lagrangian function of the problem (5.55) is

L2({Σ}, {X}, {Y }) =
Q∑

k=1

[
µk

2
‖Σk‖2F − 〈(V k)l,Σk〉+ λα‖Xk‖1 + 〈Y k,Σk −Xk〉

+
ρ

2
‖Σk −Xk‖2F ] + γα

∑

ij

‖(X1
ij , ..., X

Q
ij )‖2.

More specifically, ADMM solves the following problems at each iteration m:

{Σl,m+1} = arg min
{Σ}∈Ω

L2({Σ}, {Xm}, {Y m} (5.56)

{Xm+1} = argmin
{X}

L2({Σl,m+1}, {X}, {Y m}) (5.57)

{Y m+1} = {Y m}+ ρ({Σl,m+1} − {Xm+1}). (5.58)

The solution (5.56) can be explicitly computed as follows, k = 1, ..., Q,

Σk,l,m+1 =UDδkU
T where Dδk = diag(max(Dk

ii, δk)) and(
(V k)l − (Y k)m + ρ(Xk)m

)
/(µk + ρ) = UDkUT .

The solution (5.57) can be computed as follows. We denote Xij = (X1
ij, ..., X

Q
ij ). Com-

bining the subgradient conditions with basic algebra, we have (Xij)
m+1 = 0 if

‖S
(
(Σij)

l,m+1 + (Yij)
m/ρ, λα/ρ

)
‖2 ≤ αγ/ρ, (5.59)

and otherwise (Xij)
m+1 satisfies

(
1 +

λγ

ρ‖(Xij)m+1‖2

)
(Xij)

m+1 = S
(
(Σij)

l,m+1 + (Yij)
m/ρ, λα/ρ

)
. (5.60)

Taking the norm of both sides, we obtain

‖(Xij)
m+1‖2 = ‖S

(
(Σij)

l,m+1 + (Yij)
m/ρ, λα/ρ

)
‖2 − αγ/ρ. (5.61)



144 Group Variable Selection

Substituting this expression for ‖(Xij)
m+1‖2 into Eq. (5.60) and simplifying gives

(Xij)
m+1 =

(
1− αγ/ρ

‖S ((Σij)l,m+1 + (Yij)m/ρ, λα/ρ) ‖2

)
S
(
(Σij)

l,m+1 + (Yij)
m/ρ, λα/ρ

)
.

For summary, we describe the algorithm for (5.46) with p = 2 in the algorithm below.

ℓ0/ℓ2,0(DCA1) (DCA1 with p = 2 for solving (5.46))

Initialization: Choose {Σ0} ∈ Ω, l← 0, and let τ, ǫ be tolerances sufficient small.
repeat
1. Compute (V k)l = (Ak)l + (Bk)l + (Ck)l with

(Ak)l = µk(Σ
k)l + nk[(Σ

k)l]−1Sk[(Σk)l]−1 − nk[(Σ
k)l]−1,

(Bk)lij =

{
λαsgn(Σk)lij if α|(Σk)lij| ≥ 1

0 otherwise
,

(Ck)lij =

{
γα(Σk)lij/‖(Σ1)lij , ..., (Σ

Q)lij‖2 if α‖(Σ1)lij, ..., (Σ
Q)lij‖2 ≥ 1

0 otherwise
.

2. Compute {Σl+1} by ADMM:
Initialization: m = 0, {Y 0} = 0, (Xij)

0 = 0 if ‖S
(
(Vij)

l, λα/maxk µk

)
‖2 ≤

αγ/maxk µk, and otherwise

(Xij)
0 =

(
1− αγ/maxk µk

‖S ((Vij)l, λα/maxk µk) ‖2

)
S
(
(Vij)

l, λα/max
k
µk

)
.

repeat
+ For k = 1, ..., Q compute Σk,l,m+1 = UDδkU

T with Dδk =
diag(max(Dk

ii, δk)) and
(
(V k)l − (Y k)m + ρ(Xk)m

)
/(µk + ρ) = UDkUT ,

+ Set (Xij)
m+1 = 0 if ‖S

(
(Σij)

l,m+1 + (Yij)
m/ρ, λα/ρ

)
‖2 ≤ αγ/ρ, and otherwise

(Xij)
m+1 =

(
1− αγ/ρ

‖S ((Σij)m+1 + (Yij)m/ρ, λα/ρ) ‖2

)
S
(
(Σij)

l,m+1 + (Yij)
m/ρ, λα/ρ

)
.

+ {Y m+1} = {Y m}+ ρ({Σl,m+1} − {Xm+1}),
+ m← m+ 1.

until |ℓ({Σl,m})− ℓ({Σl,m−1})| ≤ ǫ
3. l ← l + 1.

until ‖{Σl}−{Σl−1}‖ ≤ τ(‖{Σl−1}‖+1) or |F2({Σl})−F2({Σl−1})| ≤ τ(|F2({Σl−1})|+
1)
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Theorem 5.3 (Convergence properties of ℓ0/ℓ1,0(DCA1) and ℓ0/ℓ2,0(DCA1))
Let {{Σl}} be the sequence generated by ℓ0/ℓ1,0(DCA1) (resp. ℓ0/ℓ2,0(DCA1)), we have
(a) {F1({Σl})} (resp. {F2({Σl})}) is decreasing.
(b) {{Σl}} is bounded.
(c)

∑+∞
l=0 ‖{Σl} − {Σl+1}‖2F < +∞, and hence ‖{Σl} − {Σl+1}‖F → 0 as l → +∞.

(d) The sequence {{Σl}} has at least one limit point and every limit point of this sequence
is a critical point of the problem (5.46).

Proof : The theorem is proved analogously to Theorem 4.1. ✷

5.5.3 Group variable selection using ℓ1/ℓ2,1-regularization

In this section, we study the convex approximation approaches of ℓ0-norm and ℓp,0-norm
which are respectively ℓ1-norm (lasso) and ℓ2,1-norm (group lasso). By replacing the
ℓ0/ℓp,0-norm with the ℓ1/ℓ2,1-norm, the resulting problem is

min
{Σ}∈Ω

{
Q∑

k=1

nk

[
log det Σk + tr((Σk)−1Sk)

]
+ λ

Q∑

k=1

‖Σk‖1 + γ
∑

ij

‖(Σ1
ij , ...,Σ

Q
ij)‖2

}
.

(5.62)
This problem is still non-convex. We use DCA for solving it. Similar to the previous
section, (5.62) can be reformulated as the DC program

min
{Σ}
{F ({Σ} := G({Σ})−H({Σ})} , (5.63)

where

G({Σ}) =
Q∑

k=1

µk

2
‖Σk‖2F + χΩ({Σ}) + λα

Q∑

k=1

‖Σk‖1 + γα
∑

ij

‖(Σ1
ij , ...,Σ

Q
ij)‖2,

and

H({Σ}) =
Q∑

k=1

[µk

2
‖Σk‖2F − nktr((Σ

k)−1Sk)− nk log det Σ
k
]
.

DCA applied to DC program (5.63) is similar to ℓ0/ℓ2,0(DCA1). We simply replace the
computation of {V l} ∈ ∂H({Σl}) with {V l} = {Al} computed by (5.49). The DCA for
solving (5.63) is described as follows.

ℓ1/ℓ2,1(DCA) (DCA for solving (5.63))
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Initialization: Choose {Σ0} ∈ Ω, l← 0.
repeat
1. Compute {V l} ∈ ∂H({Σl}) with

(V k)l = µk(Σ
k)l + nk[(Σ

k)l]−1Sk[(Σk)l]−1 − nk[(Σ
k)l]−1.

2. Compute {Σl+1} by ADMM:
Initialization: m = 0, {Y 0} = 0, (Xij)

0 = 0 if ‖S
(
(Vij)

l, λ/maxk µk

)
‖2 ≤

γ/maxk µk, and otherwise

(Xij)
0 =

(
1− γ/maxk µk

‖S ((Vij)l, λ/maxk µk) ‖2

)
S
(
(Vij)

l, λ/max
k
µk

)
.

repeat
+ For k = 1, ..., Q compute Σk,l,m+1 = UDδkU

T with Dδk =
diag(max(Dk

ii, δk)) and
(
(V k)l − (Y k)m + ρ(Xk)m

)
/(µk + ρ) = UDkUT ,

+ Set (Xij)
m+1 = 0 if ‖S

(
(Σij)

l,m+1 + (Yij)
m/ρ, λ/ρ

)
‖2 ≤ λ/ρ, and otherwise

(Xij)
m+1 =

(
1− γ/ρ

‖S ((Σij)m+1 + (Yij)m/ρ, λ/ρ) ‖2

)
S
(
(Σij)

l,m+1 + (Yij)
m/ρ, λ/ρ

)
.

+ {Y m+1} = {Y m}+ ρ({Σl,m+1} − {Xm+1}),
+ m← m+ 1.

until Stopping criterion.
3. l ← l + 1.

until Stopping criterion.

The stopping criterion of ℓ1/ℓ2,1(DCA) is used as in ℓ0/ℓ2,0(DCA1)

Theorem 5.4 (Convergence properties of ℓ1/ℓ2,1(DCA)) Let {{Σl}} be the se-
quence generated by ℓ1/ℓ2,1(DCA), we have
(a) {F ({Σl})} is decreasing.
(b) {{Σl}} is bounded.
(c)

∑+∞
l=0 ‖{Σl} − {Σl+1}‖2F < +∞, and hence ‖{Σl} − {Σl+1}‖F → 0 as l → +∞.

(d) The sequence {{Σl}} has at least one limit point and every limit point of this sequence
is a critical point of the problem (5.63).

Proof : The theorem is proved analogously to Theorem 4.1. ✷

5.5.4 Numerical experiments

The numerical experiments aim to evaluate the performance of the three approaches:
ℓ0/ℓ1,0(DCA1), ℓ0/ℓ2,0(DCA1), and the standard approach based on the ℓ1 + ℓ2,1-
regularization model (5.62) (ℓ1/ℓ2,1(DCA)).
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Figure 5.2: Sparse multiple covariance matrices in Model 1

5.5.4.1 Experimental setups

The proposed algorithms are implemented in R software and all algorithms are performed
on a PC Intel i7 CPU3770, 3.40 GHz of 8GB RAM.

In experiments, we set the stop tolerances ǫ = τ = 10−4. The starting point {Σ0} of
DCA is the sample covariance matrices {S1, ..., SQ}. The values of parameter λ and γ
are chosen through a 5-fold cross-validation procedure on training set. The approximation
parameter α of the Capped-ℓ1 is set 1. Note that the ℓ1,0 regularization also promotes
sparsity within the group. Hence, we set λ = 0 in ℓ0/ℓ1,0(DCA1) to avoid performing
tuning this parameter.

5.5.4.2 Experiments on synthetic datasets

We evaluate the performance of ℓ0/ℓ1,0(DCA1) and ℓ0/ℓ2,0(DCA1) on two synthetic
datasets. We consider two types of covariance graphs with three-class:

Model 1: We generate a covariance matrix for the first class as follows. Σ1 =
diag(Σ1, ...,Σ5), where Σ1, ...,Σ5 are dense matrices. We create Σ2 by resetting one of
its 5 sub-network blocks to the identity, i.e., Σ2 = diag(I,Σ2, ...,Σ5). Resetting an addi-
tional sub-network block to the identity, we have Σ3 = diag(I, I,Σ3, ...,Σ5). A example
is showed in Figure 5.2.

Model 2: Σ1 = diag(Σ1, ...,Σ5) again, however each submatrix Σk is zero except the
elements in the last row and the last column. This corresponds to a sub-graph with
five connected components each of which has all nodes connected to one particular node.
Similarly to model 1, we create Σ2 = diag(I,Σ2, ...,Σ5) and Σ3 = diag(I, I,Σ3, ...,Σ5). A
example is showed in Figure 5.3.

The nonzero entries of matrices Σk, k = 1, 2, 3 are randomly drawn in the set {+1,−1}.
Finally, for each class we generate independent, identically distributed observations Xk =
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Figure 5.3: Sparse multiple covariance matrices in Model 2

[xk1, ..., x
k
nk
] from anN (0,Σk) distribution. In this experiment, for each model, we generate

10 training sets with size n1 = n2 = n3 = 200, d = 100.

To evaluate the performance of each method, we consider three loss functions which are
the average root-mean-square error (ARMSE), the average entropy loss (AEN), and the
average Kullback-Leibler loss (AKL), respectively.

ARMSE =
1

Q

Q∑

k=1

||Σ̂k − Σk||F/d,

AEN =
1

Q

Q∑

k=1

[
− log det(Σ̂k(Σk)−1) + tr(Σ̂k(Σk)−1)− d

]
,

AKL =
1

Q

Q∑

k=1

[
− log det((Σ̂k)−1Σk) + tr((Σ̂k)−1Σk)− d

]
,

where Σ̂k is a sparse estimate of the covariance matrix Σk.

The experimental results on synthetic datasets are given in Table 5.4. In this Table, the
average of root-mean-square error (ARMSE), entropy loss (AEN), Kullback-Leibler loss
(AKL), number of nonzero elements on each covariance matrix (NZ1, NZ2, NZ3) and
their sum (NZ), CPU time in seconds, and their standard deviations over 10 samples are
reported.
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Table 5.4: Comparative results of ℓ0/ℓ1,0(DCA1), ℓ0/ℓ2,0(DCA1), and ℓ1/ℓ2,1(DCA) in
terms of the average of root-mean-square error (ARMSE), entropy loss (AEN), Kullback-
Leibler loss (AKL), number of nonzero elements, CPU time in second (and their standard
deviations) over 10 runs. Bold fonts indicate the best result in each row.

ℓ0/ℓ1,0(DCA1) ℓ0/ℓ2,0(DCA1) ℓ1/ℓ2,1(DCA)

Model 1

ARMSE 0.381 (0.004) 0.415 (0.007) 0.445 (0.002)
AEN 12.97 (1.07) 17.53 (1.12) 18.08 (2.62)
AKL 17.31 (2.24) 18.58 (3.1) 31.86 (2.75)
NZ1 1903.2 (298.61) 2138.6 (313.7) 2242.4 (271.5)
NZ2 1781.6 (307.96) 2172.18 (281.6) 1464.6 (316.4)
NZ3 1728.2 (288.12) 2058.37 (215.5) 1918.8 (251.2)
NZ 5413 (892.69) 6369.15 (810.8) 5625.8 (839.1)
CPUs 642.11 (3.74) 3180.56 (7.92) 3471.66 (5.18)

Model 2

ARMSE 0.082 (0.003) 0.09 (0.007) 0.094 (0.005)
AEN 3.57 (0.52) 18.02 (1.31) 28.08 (2.16)
AKL 3.93 (0.56) 6.65 (1.66) 7.76 (1.82)
NZ1 352.8 (13.51) 394.18 (52.47) 448.6 (52.3)
NZ2 259 (13.61) 347.45 (38.52) 378.27 (36.1)
NZ3 255.8 (11.18) 359.72 (12.98) 264.61 (31.6)
NZ 867.6 (38.3) 1101.35 (103.97) 1091.48 (120)
CPUs 267.22 (39.33) 3843.57 (27.37) 5593.15 (24.61)

We observe from Table 5.4 that in the both models, ℓ0/ℓ1,0(DCA1) gives the best results
in terms of three losses. In terms of the sparsity, the number of the nonzero elements, this
approach also achieves better performances than the other approaches. The second and
third performing approaches with respect to the losses and the sparsity are ℓ0/ℓ2,0(DCA1)
and ℓ1/ℓ2,1(DCA), respectively.

Regarding the training time, ℓ0/ℓ1,0(DCA1) is much faster than the other algorithms.
This can be explained by the fact that ℓ0/ℓ1,0(DCA1) leads to the sequence of convex
problems which can be separated into the independent sub-problems.

5.5.4.3 Experiments on real datasets

We illustrate the use of the sparse covariance matrix estimation problem via a real ap-
plication: a classification problem based sparse quadratic discriminant analysis (SQDA).
This application requires estimates of the covariance matrices.

Let X be an n × d training data matrix with observations on the rows and features on
the columns. We assume that the nk observations xki (i = 1, ..., nk) within the k-th class
Ck are normal distributed N (µk,Σk). We denote the prior probability of the k-th class
by πk. The quadratic discriminant function is

δk(x) = −
1

2
log det Σk −

1

2
(x− µk)

TΣ−1
k (x− µk) + log πk. (5.64)

Then the predicted class for a new observation x is argmaxk δk(x). The decision boundary
between each pair of classes k and l is described by a quadratic equation {x : δk(x) =
δl(x)}.
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In practice we do not know πk, µk,Σk, and will need to estimate them using the training
data. In this work, we directly estimate the covariance matrices Σ1, ...,ΣQ by using
ℓ0/ℓ1,0(DCA), ℓ0/ℓ2,0(DCA), and ℓ1/ℓ2,1(DCA). Note that if Sk is singular, then we replace
it by Sk + ǫIp, where ǫ is chosen through a 5-fold cross-validation.

For the experiment, we evaluate the proposed algorithms on two datasets from UCI
Machine Learning Repository (Ionosphere and Waveform 2). We use the cross-validation
scheme to validate the performance of various approaches on these two datasets. The
dataset is split into a training set containing 2/3 of the samples and a test set containing
1/3 of the samples. This process is repeated 10 times, each with a random choice of
training set and test set. The parameter λ and γ are chosen via 5-fold cross-validation.

Table 5.5: Comparative results of Ionosphere and Waveform 2 datasets in terms of the
average of percentage of testing errors, training errors, training time in second and their
standard deviations over 10 training/test set splits. The bold font indicates the best
result in each column.

Testing error (%) Training error (%) Training time (s)

Ionosphere ℓ0/ℓ1,0(DCA1) 5.13 (1.3) 3.41 (0.48) 0.094 (0.02)
ℓ0/ℓ2,0(DCA1) 5.13 (0.54) 3.84 (0.72) 0.94 (0.01)
ℓ1/ℓ2,1(DCA) 6.79 (1.78) 4.27 (0.82) 0.97 (0.04)

Waveform 2 ℓ0/ℓ1,0(DCA1) 13.01 (0.25) 11.41 (1.3) 3.28 (1.14)
ℓ0/ℓ2,0(DCA1) 14.64 (0.38) 12.68 (0.32) 157.64 (23.99)
ℓ1/ℓ2,1(DCA) 15.6 (1.01) 14.57 (0.39) 259.28 (84.06)

The computational results are reported in Table 5.5. We observe that, on the Ionosphere
dataset, ℓ0/ℓ1,0(DCA1) and ℓ0/ℓ2,0(DCA1) are comparable and better than ℓ1/ℓ2,1(DCA)
in terms of the testing error and training error. On the Waveform 2, ℓ0/ℓ1,0(DCA1)
gives better testing error and training error than the both algorithms ℓ0/ℓ2,0(DCA1)
and ℓ1/ℓ2,1(DCA). In terms of training time, ℓ0/ℓ1,0(DCA1) is significantly faster than
ℓ0/ℓ2,0(DCA1) and ℓ1/ℓ2,1(DCA) on these two datasets.

5.6 Conclusion

We have intensively studied DC programming and DCA for group variable selection
problem including the ℓp,0-norm in the objective function. DC approximation approach
has been investigated from both a theoretical and an algorithmic point of view. Using
the Capped-ℓ1 approximation function, we have proved that the Capped-ℓ1 approximate
problem is equivalent to the original problem with suitable parameter α. Considering the
two equivalent formulations of the approximate problem we have developed DC program-
ming and DCA for solving them. When p = 1 and p = 2, the four DCA based algorithms
can be viewed as an ℓ2,1-perturbed algorithm, reweighted-ℓ2,1 algorithm, ℓ1-perturbed al-
gorithm, reweighted-ℓ1 algorithm with different weights on groups and the same weight
on each group.
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Concerning the group variable selection in optimal scoring, three of four DCA schemes
(ℓ1,0(DCA1), ℓ1,0(DCA2) and ℓ2,0(DCA2)) have the interesting convergence properties:
they converge after a finite number of iterations to local solution. We have also showed
several useful properties of the ℓ1,0-regularization for group variable selection. The
achieved solutions by nonconvex methods using the ℓ1,0-regularization are sparser than
that of the others. At each iteration, ℓ1,0(DCA1) and ℓ1,0(DCA2) solve independent
convex sub-problems in parallel. Numerical experiments confirm the theoretical results:
ℓ1,0(DCA1) and ℓ1,0(DCA2) have obtained the best performance in terms of accuracy of
classifiers and feature selection, and have taken the shortest time for training.

In the estimation problem of multiple covariance matrices, we use two regularization
terms in order to encourage simultaneously sparsity within each covariance matrix and
across all the covariance matrices. Among the proposed DCA schemes, ℓ0/ℓ1,0(DCA1) is
the best interesting. At iteration, this scheme solves independent convex sub-problems.
We also propose explicitly algorithms for solving the convex sub-problems. Numerical
experiments on both simulation and real datasets have shown that our methods are
promising.

For the future works, we plan to study group variable selection for other applications. We
believe that the success of the ℓ1,0-regularization motivates and opens up a new avenue
for the group variable selection problems.
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Part III

Stochastic Learning
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Chapter 6

Stochastic DCA and Application to
Latent Log-Linear Model

Abstract: In this chapter, we introduce stochastic DCA for minimizing a large sum of non-
convex functions, a problem of utmost importance in machine learning. With appropriate DC
components, we present two special versions of the stochastic DCA: stochastic proximal DCA and
stochastic proximal Newton DCA. We also show that stochastic gradient descent algorithm and
stochastic proximal descent algorithm are special versions of stochastic DCA. As an application,
we apply the proposed algorithm to a log-linear model incorporating latent variables. Parameter
estimation of this model often results in an optimization problem involving a rational function
of mixtures of exponential terms. It is a non-convex and large-scale problem which is very hard
to solve. Experiments on the some real datasets show the efficiency of the proposed algorithms.

6.1 Introduction

The increase of applications using big data causes the difficulty in computation, especially
when both the number of features and samples are large. Among methods proposed to
address this problem, stochastic has been recently widely used as an efficient technique.
In this chapter, we introduce a stochastic scheme based on DCA for solving a large sum
of non-convex functions:

min
Θ∈Ω

{
f(Θ) =

1

n

n∑

i=1

f i(Θ)

}
, (6.1)

where f i : Rd → R are DC functions, and Ω is a convex subset of Rd. Θ represents some
model parameters and each function f i measures the adequacy of the parameters Θ to
an observed data point indexed by i.

There are many application problems of the form (6.1) in machine learning, signal process-
ing and other domains. The problem (6.1) also arises in the minimization of an expected
loss that depends on Θ and some random vector. Hence, the objective function is either
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an expected loss with respect to a discrete distribution or is a finite sample approximation
to an expected loss. Let us mention some important application problems corresponding
to the model (6.1).

Sparse logistic regression problem: Given n data points (yi, xi)
n
i=1 where observation vector

xi ∈ R
d and label yi ∈ {−1, 1}. We consider the sparse logistic regression problem, which

can be formulated as follows:

min
Θ∈Ω

{
1

n

n∑

i=1

ℓ(yi, x
T
i Θ) + λ

d∑

i=1

ηα(Θi)

}
, (6.2)

where ℓ(y, xTΘ) = log(1 + exp(−yxTΘ)), and ηα is a DC approximation function of
the step function such as the Capped-ℓ1. This problem takes the form of (6.1) with
f i(Θ) = ℓ(yi, x

T
i Θ) + nλ

∑d
j=1 ηα(Θj).

Problem with many constraints: We consider the problem

min
x∈X

f(x)

subject to gi(x) ≤ 0, i = 1, ..., n,
(6.3)

where the number of constraints n is very large in many practical problems. One way
can tackle this problem is to use a penalty function. The resulting penalty problem takes
the form of (6.1):

min
x∈X

f(x) + τ
n∑

i=1

p(gi(x)), (6.4)

where τ is a positive penalty parameter and p is a penalty function such as the nondif-
ferentiable penalty p(t) = max{0, t}.

Minimizing an expected loss in stochastic programming: Considering the minimization
problem of an expected loss

min
Θ∈Ω

E[f(Θ, ξ)], (6.5)

where f is a function of Θ and a random variable ξ. When ξ has a discrete distribution
or we use the sample average approximation method, the problem can be rewritten of
the form (6.1):

min
Θ∈Ω

1

n

n∑

i=1

f(Θ, ξi), (6.6)

where ξ1, ..., ξn are independent samples of the random variables ξ.

Latent log-linear model: Let Dtrain = {(xi, yi)}Ni=1 be a set of labeled training data with
observation vector xi ∈ R

d and labels yi ∈ Y = {1, ..., Q}. A log-linear model with the
parameters (θi, λi) ∈ R

d × R, i = 1, ..., Q is a model for the class-posterior probabilities
of the form

P (y|x) = exp (〈x, θy〉+ λy)∑
y′∈Y exp (〈x, θy′〉+ λy′)

. (6.7)
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The predicted class for a new observation x is

argmax
y
P (y|x) = argmax

y
{〈x, θy〉+ λy}. (6.8)

Therefore, the decision boundary between each pair of classes i and j is described by
a linear equation {x : 〈x, θi − θj〉 + λi − λj = 0}. In the supervised learning setup
with the labeled data Dtrain, learning the log-linear model corresponds to maximizing the
conditional log-likelihood on Dtrain, namely

max

{
1

N

N∑

i=1

logP (yi|xi)
}
. (6.9)

In order to extend this model is to create a latent log-linear model by incorporating
a latent (or hidden) variable h (Deselaers et al., 2012). The latent log-linear model is
an extension of log-linear model to increase the flexibility of the model. The posterior
probability for a label y is defined by

PΘ(y|xi) =
∑

h exp(〈xi, θhy 〉+ λhy)∑
y′∈Y

∑
h exp(〈xi, θhy′〉+ λhy′)

, (6.10)

where h is a discrete latent variable and Θ = {(θhy , λhy)}. Then the classification rule is
to assign a new observation x to class argmaxy

∑
h exp(〈x, θhy 〉+ λhy). For learning model

parameters Θ, we minimize the negative conditional log-likelihood on Dtrain, namely

min
Θ

{
− 1

N

N∑

i=1

logPΘ(yi|xi)
}
. (6.11)

The problem (6.11) takes the form of (6.1) in which the DC function f i is defined by

f i(Θ) = log
∑

y∈Y

∑

h

exp
(
〈xi, θhy 〉+ λhy

)
− log

∑

h

exp
(
〈xi, θhyi〉+ λhyi

)
. (6.12)

Many other application problems in practice take the form of (6.1) such as sparse support
vector machine, deep neutral networks, regularized least squares, sensor networks, other
maximum likelihood problems, etc.

For solving the problem (6.1), batch approaches are more natural and well-known. How-
ever, when n is large, the above problem becomes more challenge in machine learning.
The per-iteration costs of the batch approaches might be more expensive because they use
all the functions f i. In the last few years, stochastic optimization techniques have proven
to be useful in machine learning for solving problems with a large number n of train-
ing data points (s.g. (Bottou, 2004, 1998; Duchi and Singer, 2009; Xiao, 2010; Mairal,
2013)). The typical stochastic optimization method is the stochastic gradient method. In
the context minimizing a differentiable function f without constraint Ω = R

d, the update
step of the stochastic gradient method is given by

Θl+1 ← Θl − γl∇f il(Θl), (6.13)
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where the index il is randomly chosen from {1, ..., n} and γl is a positive step size. At
each iteration, this method only involves the computation of the gradient ∇f il(Θl) corre-
sponding to one sample, hence its per-iteration cost is very cheap. Other works are closely
related to our works: online expectation-maximization algorithm (Cappé and Moulines,
2009), stochastic majorization-minimization algorithm (Mairal, 2013), stochastic succes-
sive minimization method (Razaviyayn et al., 2016), incremental method (Bertsekas, 2011;
Mairal, 2015).

There are some practical and theoretical advantages of stochastic over batch approaches
for solving the large-scale machine learning problems. However, in the fact that batch
approaches possess some intrinsic advantages. Motivated by this we combine the best
properties of the stochastic approach and one of the most powerful tools in optimization.
We introduce in this chapter a stochastic scheme based on DCA called stochastic DCA for
the problem (6.1) where Ω is a convex set in R

d and f is a large sum of DC functions f i. At
each iteration, the stochastic DCA requires to solve the convex surrogate problem of only
one small subset of the DC functions, which results in obtaining a low computation cost
per iteration. Secondly, we exploit the particular structure of the problem and provide
two special versions of the stochastic DCA: stochastic proximal DCA and stochastic
proximal Newton DCA. In many practical problems, these algorithms can provide an
explicit solution at each iteration. In some cases of objective functions, we also point out
that the stochastic gradient descent and stochastic proximal descent are special variants
of the proposed algorithms. Finally, we apply the stochastic DCA to solve the latent
log-linear model (6.11) and propose two DCA for this problem. In order to evaluate the
performance of the proposed methods, an empirical experiment is conducted.

The rest of the chapter is organized as follows. In Section 6.2, we present a genetic
stochastic DCA and show that the stochastic gradient descent algorithm is as a special
version of the stochastic DCA. We illustrate how to apply stochastic DCA to solve the
latent log-linear model in Section 6.3. The DCA based algorithms are also proposed
in Section 6.4. The numerical experiments are reported in Section 6.5 and Section 6.6
concludes the chapter.

6.2 Solution method based on DCA

6.2.1 Stochastic DCA

In this section, we introduce a stochastic DCA that exploits the structure of the objective
f being a large sum of n DC functions f i = gi−hi, where gi and hi are convex functions.
At each iteration l, a small number of functions is used, and an iteration of DCA is
performed. Every function f i is DC function, hence we have a DC decomposition of
1
|sl|

∑
i∈sl

f i as follows:

1

|sl|
∑

i∈sl

f i(Θ) = ḡl(Θ)− h̄l(Θ),
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where ḡl and h̄l are convex functions defined by

ḡl =
1

|sl|
∑

i∈sl

gi(Θ) and h̄l =
1

|sl|
∑

i∈sl

hi(Θ),

We propose a stochastic scheme that at each iteration l we randomly choose one small
subset of the indexes sl ⊂ {1, ..., n} and compute vl ∈ ∂h̄l(Θl), and then solve the
following convex problem:

min
Θ∈Ω

{
ḡl(Θ)− 〈vl,Θ〉

}
.

The generic stochastic DCA is described in Algorithm 6.1.

Algorithm 6.1 Generic stochastic DCA

Initialization: Choose Θ0 ∈ Ω.
For l = 0, 1, ... do

1. Randomly choose a small subset sl ⊂ {1, ..., n}.
2. Compute vl ∈ ∂ 1

|sl|

∑
i∈sl

hi(Θl).
3. Compute Θl+1 by solving the convex problem:

min
Θ∈Ω

{
1

|sl|
∑

i∈sl

gi(Θ)− 〈vl,Θ〉
}
. (6.14)

End for.

Remark 6.1 We consider an extension of the stochastic DCA (6.1). In the step 3, the
update rule of Θl+1 can be replaced with
• step 3’.

Θl+1 ∈ argmin
Θ∈Ω

{
1

l

l∑

i=1

[
ḡi(Θ)− 〈vi,Θ〉

]
}
. (6.15)

6.2.2 Special versions of stochastic DCA

In this section, we discuss about several versions of the stochastic DCA base on special DC
decompositions of f i. The proposed algorithms in this section is very useful in practice
because the solution to the convex problem (6.14) can be explicitly computed. We also
show some existing stochastic algorithms are special versions of our algorithm. We now
consider the first DC component gi expressed as follows:

gi(Θ) = gi1(Θ) + gi2(Θ), (6.16)

where gi1 and gi2 are convex functions.
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6.2.2.1 Stochastic proximal DCA

In order to discuss the first special version of (6.1), we assume that there exists a positive
number ρi such that ρi

2
‖Θ‖2 − gi1(Θ) is convex, for example, gi1 is differentiable with L -

Lipschitz gradient. Therefore, we can choose DC components of 1
|sl|

∑
i∈sl

f i by

ḡl(Θ) = ḡl2(Θ) +
ρ̄l
2
‖Θ‖2,

h̄l(Θ) =
ρ̄l
2
‖Θ‖2 − 1

|sl|
∑

i∈sl

gi1(Θ) +
1

|sl|
∑

i∈sl

hi(Θ),

where ḡl2(Θ) = 1
|sl|

∑
i∈sl

gi2(Θ) and ρ̄l = 1
|sl|

∑
i∈sl

ρi. Following the generic stochastic

DCA 6.1, at each iteration l we have to compute vl ∈ ∂h̄l(Θl) and

Θl+1 = argmin
Θ∈Ω

{
ḡl2(Θ) +

ρ̄l
2
‖Θ‖2 − 〈vl,Θ〉

}
= argmin

Θ∈Ω

{
ḡl2(Θ) +

ρ̄l
2
‖Θ− vl

ρ̄l
‖2
}

:= prox
ḡl2+χΩ

ρ̄l

(
vl

ρ̄l

)
,

where χΩ is defined by χΩ(t) = 0 if t ∈ Ω and 0 otherwise, and prox
ḡl2+χΩ

ρ̄l denotes the
proximal operator associated to ḡl2+χΩ. The first special version of the stochastic DCA is
described in Algorithm 6.2. We can call this algorithm as the stochastic proximal DCA.

Algorithm 6.2 Stochastic Proximal DCA (SPDCA)

Initialization: Choose Θ0 ∈ Ω.
For l = 0, 1, ... do

1. Randomly choose a small subset sl ⊂ {1, ..., n}.
2. Compute vl ∈ ∂h̄l(Θl).

3. Compute Θl+1 = prox
ḡl2+χΩ

ρ̄l

(
vl

ρ̄l

)
.

End for.

Remark 6.2 We consider a special case in which gi2 ≡ 0, i = 1, ..., n, hence ḡl2 ≡ 0. In

the step 3 of the algorithm (6.2), the proximal operator proxχΩ
ρ̄l

(
vl

ρ̄l

)
becomes a projection

of vl

ρ̄l
on Ω. When Ω falls into one of the following cases: a simplex, a ball, a box, a

hyperplane or the intersection of a box and a hyperplane, this projection is possible to be
explicitly computed.

In many practical problems such as regularization problems, we have Ω = R
d and gi2(Θ) =

λ‖Θ‖1. The proximal map prox
λ‖.‖1
ρ̄l

(
vl

ρ̄l

)
can be computed in closed form:

prox
λ‖.‖1
ρ̄l

(
vl

ρ̄l

)
= S

(
vl

ρ̄l
, λ/ρ̄l

)
,

where S is the elementwise soft-thresholding operator defined by S(v, w)j = sgn(vj)(|vj |−
wj)+.
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6.2.2.2 Stochastic gradient descent and incremental proximal methods are
special versions of SPDCA

When Ω = R
d, gi2 = 0, gi1, h

i are differentiable, and at each iteration we randomly choose
one index sl = {il}, we have

vl = ∇h̄l(Θl) = ρilΘl −∇f il(Θl).

Hence, the updated rule in step 3 can be rewritten as follows:

Θl+1 = Θl −
1

ρil
∇f il(Θl).

This is the updated rule of the stochastic gradient descent algorithm with the step-size
1
ρil

at the iteration l. Therefore, the stochastic gradient descent algorithm is a special

version of SPDCA.

When hi ≡ 0 and at each iteration we randomly choose one index sl = {il}, we have

vl = ρilΘl − ∇̃gil1 (Θl),

where ∇̃gil1 (Θl) is an arbitrary subgradient of gil1 at Θl. Hence, the updated rule in step
3 becomes

Θl+1 = argmin
Θ∈Ω

{
gil2 (Θ) +

ρil
2
‖Θ−Θl +

1

ρil
∇̃gil1 (Θl)‖2

}
.

This update rule can be rewritten as below.

Θl+1 = argmin
Θ∈Ω

{
gil2 (Θ) + gil1 (Θl) + 〈∇̃gil1 (Θl),Θ−Θl〉+

ρil
2
‖Θ−Θl‖2

}
.

This is the update rule of the incremental proximal method proposed in Bertsekas (2011)
for solving convex problems. The incremental proximal method is also special version of
SPDCA.

6.2.2.3 Stochastic Proximal Newton DCA

The second special version of Algorithm 6.1 comes from the assumption that

1

2
ΘTHiΘ− gi1(Θ),

is convex for some positive definite matrixHi. We have a DC decomposition of 1
|sl|

∑
i∈sl

f i

as follows:
1

|sl|
∑

i∈sl

f i(Θ) = ḡl(Θ)− h̄l(Θ), (6.17)
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where

ḡl(Θ) = ḡl2(Θ) +
1

2
ΘT H̄lΘ,

h̄l(Θ) =
1

2
ΘT H̄lΘ−

1

|sl|
∑

i∈sl

gi1(Θ) +
1

|sl|
∑

i∈sl

hi(Θ),

with ḡl2(Θ) = 1
|sl|

∑
i∈sl

gi2(Θ) and H̄l = 1
|sl|

∑
i∈sl

Hi is also a positive definite matrix.
According to the genetic stochastic DCA scheme, at each iteration l, we have to compute
vl ∈ ∂h̄l(Θl) and

Θl+1 = argmin
Θ∈Ω

{
ḡl2(Θ) +

1

2
ΘT H̄lΘ− 〈vl,Θ〉

}

= argmin
Θ∈Ω

{
ḡl2(Θ) +

1

2

(
Θ− H̄−1

l vl
)T
H̄l

(
Θ− H̄−1

l vl
)}

:= prox
ḡl2+χΩ

H̄l

(
H̄−1

l vl
)
,

where prox
ḡl2+χΩ

H̄l
denotes the proximal Newton operator associated to ḡl2+χΩ. Hence the

second special version of (6.1) is similarly to the algorithm (6.2) in which the step 3 is
replaced with the following rule:

3. Θl+1 = prox
ḡl2+χΩ

H̄l

(
H̄−1

l vl
)
.

The algorithm using this rule can be named as stochastic proximal Newton DCA. Note
that the positive definite matrix H̄l can be computed by using a quasi-Newton method.

6.3 Application to latent log-linear model

Latent variables have long been used to model observations in various models such as
hidden Markov models (see e.g. Juang and Rabiner (1985); Starner and Pentland (1995);
Durbin et al. (2002); Kim and Pavlovic (2006); Rabiner (1989)), hidden conditional ran-
dom fields (see e.g. Lafferty et al. (2001); Gunawardana et al. (2004); Wang et al. (2006);
van der Maaten et al. (2011); Quattoni et al. (2007)) and log-linear model incorporated
latent variables (see e.g. Deselaers et al. (2012); Heigold et al. (2008); Tsiligkaridis et al.
(2013)). Recently, there are some works on structural SVMs with latent variables (see
e.g. Yu and Joachims (2009); Ping et al. (2014)). These latent variables models are
motivated by numerous applications in areas, for examples, speech recognition, informa-
tion retrieval, natural language processing, object recognition, gesture recognition, object
detection, document-level sentiment classification and link prediction.

In this section, we apply the stochastic DCA for solving the latent log-linear model (6.11)
which is an extension of log-linear model by incorporating a latent variable. This problem
takes the form of (6.1):

min
Θ

{
f(Θ) =

1

n

n∑

i=1

f i(Θ)

}
, (6.18)
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where

f i(Θ) = log
∑

y∈Y

∑

h

exp
(
〈xi, θhy 〉+ λhy

)
− log

∑

h

exp
(
〈xi, θhyi〉+ λhyi

)
.

Every f i is DC function, hence the problem (6.18) is a DC programming. A natural DC
decomposition of f is

f(Θ) = G(Θ)−H(Θ), (6.19)

where

G(Θ) =
1

n

n∑

i=1

log
∑

y∈Y

∑

h

exp
(
〈xi, θhy 〉+ λhy

)
,

H(Θ) =
1

n

n∑

i=1

log
∑

h

exp
(
〈xi, θhyi〉+ λhyi

)
.

In Tsiligkaridis et al. (2013), the authors have proposed a concave-convex procedure
(CCCP) based on this DC decomposition and a proximal term (ProxCCCP) for solving
the problem (6.18). Note that CCCP is a special version of DCA.

In this section, we exploit the particular structure of the problem (6.18) and propose a
special stochastic DCA for solving it. At each iteration l, we randomly choose a small
subset of functions f i and perform one iteration of DCA. We consider a special DC
decomposition of 1

|sl|

∑
i∈sl

f i as follows:

ḡl(Θ) =
ρ̄l
2
‖Θ‖2,

h̄l(Θ) =
ρ̄l
2
‖Θ‖2 − 1

|sl|
∑

i∈sl

(
log
∑

y,h

exp(〈xi, θhy 〉+ λhy)− log
∑

h

exp(〈xi, θhyi〉+ λhyi)

)
,

are convex function when ρ̄l is large enough. For estimating ρ̄l, we state the following
lemma.

Lemma 6.1 If ρ̄l ≥ 2
|sl|

∑
i∈sl

(||xi||2 + 1) then h̄l(Θ) is convex.

Proof : We have

h̄l(Θ) =
ρ̄l
2
‖Θ‖2 − 1

|sl|
∑

i∈sl

log
∑

y,h

exp(〈xi, θhy 〉+ λhy) +
1

|sl|
∑

i∈sl

log
∑

h

exp(〈xi, θhyi〉+ λhyi).

Since the function 1
|sl|

∑
i∈sl

log
∑

h exp(〈xi, θhyi〉+λhyi) is convex and the sum of two convex
functions is also convex, it sufficient to show that

ρ̄l
2
‖Θ‖2 − 1

|sl|
∑

i∈sl

log
∑

y,h

exp(〈xi, θhy 〉+ λhy),
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becomes convex, i.e., ρ̄l is greater than the spectral radius of the Hessian matrix of

k̄l(Θ) :=
1

|sl|
∑

i∈sl

log
∑

y,h

exp(〈xi, θhy 〉+ λhy).

We have

∇2
(y,h)2 k̄

l(Θ) =
1

|sl|
∑

i∈sl

(
exp(〈xi, θhy 〉+ λhy)∑

y′,h′ exp(〈xi, θh′

y′ 〉+ λh
′

y′ )
− exp2(〈xi, θhy 〉+ λhy)

(
∑

y′,h′ exp(〈xi, θh′

y′ 〉+ λh
′

y′ ))
2

)
(xi, 1)(xi, 1)

T ,

and let (B, t) 6= (A, y), we also have

∇t,B∇y,Ak̄
l(Θ) = − 1

|sl|
∑

i∈sl

exp(〈xi, θAy 〉+ λAy ). exp(〈xi, θBt 〉+ λBt )

(
∑

y′,A′ exp(〈xi, θA′

y′ 〉+ λA
′

y′ ))
2

(xi, 1)(xi, 1)
T .

Hence we get the following inequality.

||∇2k̄l(Θ)||2 ≤
1

|sl|
∑

i∈sl

(
1 +

∑
A,y,B,t exp(〈xi, θAy 〉+ λAy ). exp(〈xi, θBt 〉+ λBt )

(
∑

y,h exp(〈xi, θhy 〉+ λhy))
2

)
||(xi, 1)(xi, 1)T ||2

≤ 2

|sl|
∑

i∈sl

(||xi||2 + 1).

On the other hand, the spectral radius of the Hessian matrix of k̄l(Θ) is smaller than
||∇2k̄l (Θ)) ||2. It follows that ρsl is larger than the spectral radius of the Hessian matrix.
The lemma has been proved. ✷

Remark 6.3 From the Lemma 6.1, we can choose ρ̄l =
2
|sl|

∑
i∈sl

(||xi||2 + 1).

Following the special stochastic DCA scheme, at each iteration l we have to randomly
choose sl ⊂ {1, ..., n}, compute vl ∈ ∂h̄l(Θl) and

Θl+1 = argmin
Θ

{ ρ̄l
2
‖Θ‖2 − 〈vl,Θ〉

}
=
vl

ρ̄l
.

Let δ be the function defined by

δ(y, xi) =

{
1 if y = yi

0 otherwise
. (6.20)

The computation of vl is described as follows.

vly,h = ρ̄l(θ
h
y )l −

1

|sl|
∑

i∈sl

exp(〈xi, (θhy )l〉+ (λhy)l)

×
(

1∑
y′,h′ exp(〈xi, (θh′

y′ )l〉+ (λh
′

y′ )l)
− δ(y, xi)∑

h′ exp(〈xi, (θh′

yi
)l〉+ (λh′

yi
)l)

)
(xi, 1).

(6.21)
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The stochastic DCA for solving (6.18) is described in the following algorithm.

SDCA: Stochastic DCA for solving (6.18)

Initialization: Choose Θ0.
For l = 0, 1, ... do

1. Randomly choose a small subset sl ⊂ {1, ..., n}.
2. Compute vl ∈ ∂h̄l(Θl) using (6.21).

3. Compute Θl+1 =
vl

ρ̄l
.

End for.

Founded on the results for the stochastic gradient descent (see Bottou (1998)), we prove
the convergence properties of SDCA.

Theorem 6.1 Assume that the data is bounded. If
∑+∞

l=1
1
ρ̄2
l

< +∞, then SDCA generates

the sequence {Θl}l such that
i) {f(Θl)}l converges almost surely.

ii) E

[∑+∞
l=1

1
ρ̄l
‖∇f(Θl)‖2

]
< +∞ if Esl[‖ 1

|sl|

∑
i∈sl
∇f i(Θl)‖2] ≤ A + B‖∇f(Θl)‖2 for

some A ≥ 0 and B > 0.

Proof : First of all, we prove that the gradient ∇f i(Θ) and Hessian functions ∇2f i(Θ)
are bounded. We have

∇(y,h)f
i(Θ) =

(
exp(〈xi, θhy 〉+ λhy)∑

y′,h′ exp(〈xi, θh′

y′ 〉+ λh
′

y′ )
− δ(y, xi) exp(〈xi, θhyi〉+ λhyi)∑

h′ exp(〈xi, θh′

yi
〉+ λh′

yi
)

)
(xi, 1),

and

∇2
(y,h)2f

i(Θ) = (1− exp(〈xi, θhy 〉+ λhy)∑
y′,h′ exp(〈xi, θh′

y′ 〉+ λh
′

y′ )
)
exp(〈xi, θhy 〉+ λhy)(xi, 1)(xi, 1)

T

∑
y′,h′ exp(〈xi, θh′

y′ 〉+ λh
′

y′ )

− δ(y, xi)(1−
exp(〈xi, θhyi〉+ λhyi)∑
h′ exp(〈xi, θh′

yi
〉+ λh′

yi
)
)
exp(〈xi, θhyi〉+ λhyi)(xi, 1)(xi, 1)

T

∑
h′ exp(〈xi, θh′

yi
〉+ λh′

yi
)

,

∇t,B∇y,Af
i(Θ) = −exp(〈xi, θ

A
y 〉+ λAy ). exp(〈xi, θBt 〉+ λBt )(∑

y′,A′ exp(〈xi, θA′

y′ 〉+ λA
′

y′ )
)2 (xi, 1)(xi, 1)

T

+ δ(y, xi)δ(t, xi)
exp(〈xi, θAyi〉+ λAyi). exp(〈xi, θByi〉+ λByi)(∑

A′ exp(〈xi, θA′

yi
〉+ λA′

yi
)
)2 (xi, 1)(xi, 1)

T ,
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for (B, t) 6= (A, y). Hence we obtain the following inequalities

‖∇f i(Θ)‖2 ≤ 2‖(xi, 1)‖2, (6.22)

and

||∇2f i(Θ)||2 ≤ (2 +

∑
y,A,t,B exp(〈xi, θAy 〉+ λAy ). exp(〈xi, θBt 〉+ λBt )

(
∑

y,h exp(〈xi, θhy 〉+ λhy))
2

+

∑
A,B exp(〈xi, θAyi〉+ λAyi). exp(〈xi, θByi〉+ λByi)

(
∑

h exp(〈xi, θhyi〉+ λhyi))
2

)||(xi, 1)(xi, 1)T ||2

≤ 4(||xi||2 + 1).

Therefore, we get

||∇2f(Θ)||2 ≤
1

n

n∑

i=1

||∇2f i(Θ)||2 ≤
4

n

n∑

i=1

(||xi||2 + 1). (6.23)

From the above results and similar arguments in Bottou (1998), the proof of theorem is
completed.

✷

6.4 DCA for solving the latent log-linear model

In this section, we propose two DCA for solving the problem (6.18). The first DCA bases
on the natural DC decomposition (6.19) while the second DCA bases on a special DC
decomposition of f . Firstly, the corresponding DC formulation of the problem (6.18) is

min
Θ
{f(Θ) = G(Θ)−H(Θ)} , (6.24)

According to the generic DCA scheme, DCA applied on (6.24) consists of computing, at
each iteration l, a gradient V l = ∇H(Θl) and solving the convex program of the form
(Pl)

min
Θ

{
G(Θ)− 〈V l,Θ〉

}
. (6.25)

The computation of V l = ∇H(Θl) is described as follows.

V l
y,h =

1

n

n∑

i=1

δ(y, xi) exp
(
〈xi, (θhyi)l〉+ (λhyi)l

)
∑

h′ exp
(
〈xi, (θh′

yi
)l〉+ (λh′

yi
)l
) (xi, 1). (6.26)

The algorithm is described as follows.

DCA1: DCA for solving (6.24)
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Initialization: Let τ tolerance sufficient small, set l = 0 and choose Θ0.
repeat
1. Compute V l = ∇H(Θl) by

V l
y,h =

1

n

n∑

i=1

δ(y, xi) exp
(
〈xi, (θhyi)l〉+ (λhyi)l

)
∑

h′ exp
(
〈xi, (θh′

yi
)l〉+ (λh′

yi
)l
) (xi, 1).

2. Solve the following convex problem to obtain Θl+1

min
Θ

{
1

n

n∑

i=1

log
∑

y∈Y

∑

h

exp
(
〈xi, θhy 〉+ λhy

)
− 〈V l,Θ〉

}
(6.27)

3. l ← l + 1.
until ||Θl −Θl−1|| ≤ τ (||Θl−1||+ 1) or |f(Θl)− f(Θl−1)| ≤ τ (|f(Θl−1)|+ 1).

For solving the convex subproblem (6.27), we use the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) optimization algorithm (Nocedal and Wright, 1999).

We remark that DCA1 might be quite expensive because we have to use an iterative
method for solving the convex subproblem (6.27). This motivates us to consider another
DC formulation of the problem (6.18) that the corresponding DCA scheme has explicit
solution at each iteration. We now consider a special DC decomposition of f(Θ) as
follows.

f(Θ) = G′(Θ)−H ′(Θ), (6.28)

where

G′(Θ) =
µ

2
||Θ||2 (6.29)

H ′(Θ) =
µ

2
||Θ||2 − f(Θ), (6.30)

are convex functions when µ is large enough. Hence we have a DC formulation below.

min
Θ
{F (Θ) = G′(Θ)−H ′(Θ)} . (6.31)

For estimating µ, we state the following lemma.

Lemma 6.2 If µ ≥ 2
n

∑n
i=1(||xi||2 + 1) then H ′(Θ) is convex.

Proof : This lemma is proved analogously to Lemma 6.1 by replacing the subset sl
with the set {1, .., n}. ✷
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Remark 6.4 From the Lemma 6.2, we can choose µ = 2
n

∑n
i=1(||xi||2 + 1).

Like DCA1, DCA applied on (6.31) consist of computing, at each iteration l, a gradient
V l = ∇H ′(Θl), and then solving the following convex problem to obtain Θl+1.

min
Θ

{
G′(Θ)− 〈V l,Θ〉

}
, (6.32)

whose solution is Θl+1 =
V l

µ
. The computation of V l is described as follows.

V l
y,h = µ(θhy )

l − 1

n

n∑

i=1

exp(〈xi, (θhy )l〉+ (λhy)l)

(
1∑

y′,h′ exp(〈xi, (θh′

y′ )l〉+ (λh
′

y′ )l)
− δ(y, xi)∑

h′ exp(〈xi, (θh′

yi
)l〉+ (λh′

yi
)l)

)
(xi, 1).

(6.33)

DCA for solving (6.31) is described as follows.

DCA2: DCA for solving (6.31)

Initialization: Let τ tolerance sufficient small, set l = 0, compute µ and choose Θ0.
repeat
1. Compute V l = ∇H ′(Θl) using (6.33).

2. Compute Θl+1 =
V l

µ
.

3. l ← l + 1.
until ||Θl −Θl−1|| ≤ τ (||Θl−1||+ 1) or |f(Θl)− f(Θl−1)| ≤ τ (|f(Θl−1)|+ 1).

The convergence properties of DCA1 and DCA2 are given in the following theorem.

Theorem 6.2 (i) DCA1 (resp. DCA2) generates the sequence {Θl}l such that {f(Θl)}l
is decreasing.

(ii) DCA2 generates the sequence {Θl}l such that
∑+∞

l=0 ‖Θl − Θl+1‖22 < +∞ and ‖Θl −
Θl+1‖ → 0 as l → +∞.

(iii) Every limit point of the sequence generated by DCA1 (resp. DCA2) is a critical
point of the problem (6.24) (resp. the problem (6.31)).

Proof : (i) and (iii) are consequences of convergence properties of general DC programs
and the facts that the objective function of (6.18) is bounded from below by 0.

(ii) From the step 1 of DCA2, we have V l = ∇H ′(Θl). It follows that

H ′(Θl+1) ≥ H ′(Θl) + 〈V l,Θl+1 −Θl〉. (6.34)
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By the step 3 of DCA2, we have V l = µΘl+1. Substituting this and G′(Θ) = µ
2
‖Θ‖22 into

(6.34), we obtain

H ′(Θl+1) ≥ H ′(Θl) + µ〈Θl+1,Θl+1 −Θl〉
⇒H ′(Θl+1) ≥ H ′(Θl)−

µ

2
‖Θl‖22 +

µ

2
‖Θl+1‖22 +

µ

2
‖Θl −Θl+1‖22

⇒H ′(Θl+1) ≥ H ′(Θl)−G′(Θl) +G′(Θl+1) +
µ

2
‖Θl −Θl+1‖22

⇒f(Θl)− f(Θl+1) ≥
µ

2
‖Θl −Θl+1‖22.

Moreover, µ > 0. Hence, we have

‖Θl −Θl+1‖22 ≤
2

µ
(f(Θl)− f(Θl+1)) . (6.35)

Let N be a positive integer. Summing (6.35) from l = 0 to N , we get

N∑

l=0

‖Θl −Θl+1‖22 ≤
2

µ
(f(Θ0)− f(ΘN+1)) . (6.36)

On the other hand, we have f(ΘN+1) ≥ 0. Combining this and (6.36) we get

N∑

l=0

‖Θl −Θl+1‖22 ≤
2

µ
f(Θ0).

Taking the limit as N → +∞, we obtain

+∞∑

l=0

‖Θl −Θl+1‖22 < +∞, (6.37)

and hence liml→+∞ ‖Θl −Θl+1‖2 = 0. ✷

6.5 Numerical experiments

We will compare the three proposed algorithms (one stochastic DCA scheme (SDCA) and
two DCA schemes (DCA1 and DCA2)) to the two methods that aim to solve the problem
(6.11) (L-BFGS (Nocedal and Wright, 1999) and ProxCCCP (Tsiligkaridis et al., 2013))
and another state-of-the-art method for the classification problems (Kernel SVM).

The L-BFGS procedure is a well known optimization technique that directly optimizes
the objective function of the problem (6.11). The L-BFGS procedure is performed by the
lbfgs package of R software.
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Table 6.1: Real Datasets.
Datasets #train #test #feature #class

isolet1 6,238 1,559 616 26
usps2 7,291 2,007 256 10
ijcnn13 49,990 91,701 22 2
webspam3 280,000 70,000 254 2

ProxCCCP is a modification of the concave-convex procedure (CCCP). Note that CCCP
is a special version of DCA. ProxCCCP added a proximal term to each convex subproblem
in CCCP, namely, at each iteration l, ProxCCCP has to solve the following problem

min
Θ

{
1

n

n∑

i=1

log
∑

y∈Y

∑

h

exp
(
〈xi, θhy 〉+ λhy

)
+ 〈∇Ecave(Θl),Θ〉+

cl
2
‖Θ−Θl‖2

}

where Ecave(Θ) = − 1
n

∑n
i=1 log

∑
h exp

(
〈xi, θhyi〉+ λhyi

)
. In the experiments, we set cl =

c = 5× 10−4 as suggested in Tsiligkaridis et al. (2013).

Kernel SVM uses the Radial Basis (Gaussian) kernel function. It is included in the
kernlab package of R software.

We have used four real-world datasets for our comparison, and their information is shown
in Table 6.1.

All algorithms are implemented in the R software, and performed on a PC Intel i7
CPU3770, 3.40 GHz of 8GB RAM.

We set τ = 10−5 for the stop tolerance of DCA. The starting point Θ0 = {(θhk)0 ∈
R

p, (λhk)0) ∈ R} of the algorithms is chosen as follows: (θhk)0 = Σ−1
k µk and (λhk)0 =

log(nk/n) − n/2 log(2π|Σk|) − 1/2µT
kΣ

−1
k µk, where Σk, µk and nk are respectively the

sample covariance matrix, mean vector and number of observations of the class k.

In all experiments, the number of latent variables is set to 10. We fix the number of indexes
at each iteration. The test set is used to measure the accuracy of various classifiers trained
on the training set.

The computational results of SDCA, DCA1, DCA2, L-BFGS, ProxCCCP and Kernel
SVM are given in Table 6.2. We are interested in the accuracy of classifiers as well as the
rapidity of the algorithms: the percentage of accuracy of classifiers and the training time
in second are reported.

Comments on computational results:

The classification accuracy of SDCA, DCA1 and DCA2 is better than that of the com-
pared algorithms on 3 out of 4 datasets. In comparison between stochastic DCA and

1. https://archive.ics.uci.edu/ml/datasets/ISOLET

2. http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html

3. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://archive.ics.uci.edu/ml/datasets/ISOLET
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 6.2: Comparative results of DCA1, DCA2, L-BFGS, ProxCCCP and Kernel SVM.
Bold fonts indicate the best results in each row.

SDCA DCA1 DCA2 L-BFGS ProxCCCP Kernel SVM

ACC (%)

isoslet 93.17 95 96.02 94.99 95.02 95.95
usps 91.85 92.28 93.67 90.88 91.13 94.12

ijcnn1 96.11 95.14 98.73 93.51 95.27 95.86
webspam 98.72 97.69 98.25 95.19 96.02 97.5

CPU (s)

isoslet 4.93 232.37 156.45 183.62 797.37 161.46
usps 2.38 36.02 28.16 32.89 392.97 33.68
ijcnn1 16.42 97.38 43.22 105.16 197.72 216.5
webspam 190.28 2938.8 1518.68 2483.91 2173.13 6838.54

DCA, DCA1 and DCA2 slightly outperform the stochastic DCA on the first two datasets
where the number of observations is not large enough. However, on the remaining two
datasets with a large number of observations, DCA1, DCA2 and the stochastic DCA are
comparable in term of the classification accuracy. The training time of the stochastic
DCA is quite short: less than 191 seconds. SDCA not only obtains the quite good results
in term of the classification accuracy, but also takes a short time on the all datasets.
More precisely, SDCA runs much faster than the other algorithms, and this can be ex-
plained by the fact that this approach leads to the sequence of the convex sub-problems
which only use one mall subset of observations and have explicit solutions. The second
best algorithm according to the running time is DCA2 in which the explicit solution is
computed at each iteration.

6.6 Conclusion

In this chapter, we have introduced a stochastic scheme based DCA for solving large
scale parameter estimation problems in which the objective function is a large sum of DC
functions. At each iteration, we only use one small subset of the DC functions and run
one iteration of the corresponding DC program. As an application, we have investigated
the structure of the the latent log-linear model and proposed a stochastic DCA for solving
it. At each iteration of this stochastic DCA, we can compute the explicit solution to the
convex sub-problem. We have also investigated DC programming and DCA for solving
the latent log-linear model. We propose two DC formulation of the latent log-linear model
and develop two DCA based algorithms.

The robustness and the effectiveness of our algorithms have been demonstrated through
the computational results on real datasets. The nice effect of DC decomposition has
been exploited: the second DC decomposition seems to be very suitable since it leads to
an efficient, fast and scalable stochastic DCA scheme. In the experimental results, the
stochastic DCA have obtained the quite good results in terms of accuracy of classifiers,
and have taken the shortest time for training. The second best algorithm in terms of the
training time is DCA2 which have achieved the best performance in terms of accuracy of
classifier.
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In future works, we plan to study the convergence properties of the generic stochastic
DCA and its variants. We will also apply the stochastic DCA for solving the other models,
especially, sparse SVM, spare logistic regression, sparse matrix factorization.



Chapter 7

Conclusion

In this thesis, we have analyzed how the problems of the sparsity in high dimensional
setting and the stochastic learning can be addressed from various aspects including theory,
algorithms and applications. The main algorithmic methodologies applied in the thesis
are DC (Difference of Convex functions) programming and DCA (DC Algorithms) which
are considered one of the state of the arts and powerful tools in optimization.

In the first part of the thesis, we introduced and evaluated a methodology supporting
variable selections by using DC programming and DCA. In particular, we have first
investigated DC programming and DCA for the sparse Fisher linear discriminant analysis
(SFLDA) problem using the ℓ0-regularization. In order to tackle the ℓ0-norm, we analyzed
DC approximation approaches, and among several existing sparse inducing functions
we decided to use the Capped-ℓ1 and the piecewise exponential concave function. The
resulting problems have been formulated as DC programs, and then DCA have been
applied. Consequently, we have proposed two DCA schemes for two different formulations
of a common model to both the approximation functions. The robustness and effectiveness
of our DCA based algorithms have been demonstrated through the experiments conducted
on both the simulated and real datasets, in which we compared our approaches with three
standard algorithms that use the ℓ1-regularization.

Next, we concentrated on investigating alternating schemes based on DC programming
and DCA for solving the sparse optimal scoring (SOS) problem. By using two DC
approximations of the ℓ0-norm and considering two DC formulations of each resulting
approximate SOS problem, we have proposed alternating schemes for solving the four
approximate problems. In accordance, four DCA schemes have been studied to deal with
DC programs w.r.t wk in each step of the alternating algorithms. The important point
here, is that we have proved that the main algorithms converge to a critical point of the
approximate problems. The efficiency of the four proposed methods have been compared
with five standard algorithms which use the ℓ1 regularization. The computational results
have showed that the proposed algorithms have produced much better sparsity as well as
higher classification accuracy than the standard algorithms on both simulated datasets
and high-dimensional real datasets. Besides, we have provided recommendations on how
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to best use the proposed algorithms. We have also compared the proposed methods for
SOS, SFLDA problems with the sparse multiclass support vector machine (SMSVM) us-
ing the ℓ0-regularization. Numerical results have showed that the proposed methods have
outperformed SMSVM.

Our third contribution lies in the investigation of the sparse covariance matrix estimation
(SCME) problem. Specifically, the capped-ℓ1 and piecewise exponential concave functions
are continued to be chosen for modeling the sparsity, however we face the difficulty in
the non-convexity of the negative log-likelihood function. Thus, we have proposed two
DC formulations of the approximate SCME problem based on two DC decompositions
of its objective function to overcome the problem. The first results are obtained from a
natural DC decomposition while the second is introduced to exploit nice effects of DC
decompositions. It turns out that the complexity of two corresponding DCA schemes is
significantly different and the ratio of gain between them in terms of CPU times in our
numerical experiments is up to 44 times. This is explained by the fact that the convex
subproblems in the second DCA scheme can be solved by an extremely inexpensive algo-
rithm. Applying DCA on two DC formulations with two approximations, we then have
four DCA based algorithms for the approximate SCME problem. Special convergence
analysis results of our algorithms have been provided. Additionally, we have considered
two important applications of the SCME problem in our experiments, which are respec-
tively the quadratic discriminant analysis using sparse covariance matrices estimated by
the proposed algorithms and the portfolio optimization problem. Numerical experiments
have been carefully achieved on several test experiments on both simulated datasets and
real datasets with eleven algorithms including seven state-of-the-art methods and the four
proposed DCA schemes.

In the second part of this thesis, we turned our attention to the problem of group variable
selection. We have studied the ℓp,0 regularization (p ≥ 1) for enforcing group sparsity.
Using a DC approximation of the ℓp,0-norm, we have indicated that the approximate
problem is equivalent to the original problem with suitable parameters. By considering
two equivalent formulations of the approximate problem we have developed DCA based
algorithms to solve them. Among ℓp,0 regularizations, we have show that the ℓ1,0 is the
most interesting regularization with several advantages in both theoretical and compu-
tational aspects. Regarding applications, we have implemented the proposed algorithms
for group variable selection in optimal scoring problem and multiple covariance matrices
estimation problem. In the first application, sparsity is obtained by using the ℓp,0 regular-
ization that can select the same variables in all discriminant vectors. The resulting sparse
discriminant vectors have provided a more interpretable low-dimensional representation
of data. In the second application where multiple covariance matrices share some com-
mon structures such as the locations or weights of non-zero elements, we have combined
the ℓ0-norm and the ℓp,0-norm to enforce sparsity on each covariance matrix and across
multiple covariance matrices, respectively.

Finally, we analyzed and applied the stochastic technique based DC programming and
DCA to large scale parameter estimation problems in which the objective function is a
large sum of DC functions. At each iteration, we only use one small subset of the DC
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functions and run one iteration of the corresponding DC program. We have also presented
two special versions of the stochastic DCA: stochastic proximal DCA and stochastic prox-
imal Newton DCA that regard some standard stochastic algorithms as special versions.
As application, we have investigated the structure of the the latent log-linear model and
proposed a special stochastic DCA in which the solution to each convex sub-problem can
be explicitly computed. We have also taken DC programming and DCA into account in
order to solve the latent log-linear model.

This thesis has explored some issues relating to modeling sparsity and stochastic learning,
and we believe several follow-up studies for the future can be derived from this research.
First of all, concerning variable selection, the DCA based approaches presented in this
thesis could be useful to develop efficient algorithms for other sparse optimization prob-
lems in high-dimensional setting. Moreover, in the scope of this thesis, we have just
studied the Fisher’s discriminant problem for the linear classification, so it is interest-
ing to extend the proposed techniques to more complex settings, such as the case where
the observations from each class are drawn from a mixture of Gaussian distributions re-
sulting in nonlinear separations between classes. We also plan to study more extensive
applications of these problems.

Regarding group variable selection, we believe that the success of the ℓp,0-regularization
motivate and open up a new avenue for the group variable selection problems. To be
more specific, we will study this regularization to other models such multiclass support
vector machine, principal component analysis, compressed sensing, etc. By considering
a common DC approximation of the ℓp,0-norm, we also intend to investigate the consis-
tency between global minimums (local minimums) of approximate and original problems.
Moreover, the combination of the ℓ0-norm and the ℓp,0-norm to obtain the sparsity at
both group and individuals in group levels will be more explored.

Last but not least, our research study on the stochastic schemes based on DCA is just
the beginning of the ongoing work. Therefore, in the future, the convergence properties
of the generic stochastic DCA and its variants will be investigated along with the update
rule (6.15). More concretely, we plan to study the stochastic DCA using this update
rule and others, as well as explore the use of the stochastic DCA for solving the other
models, especially, sparse SVM, spare logistic regression, sparse matrix factorization,
group variable selection in latent log-linear model.
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Appendix A

Appendix

A.1 Bounded optimal solution set of the problem

(5.29)

Let P be the optimal solution set of the problem (5.29). In the sequel, x1, x2, ..., xd denote
the columns of the data matrix X . We will prove that P is bounded.

Lemma A.1 Assume that W̄ ∈ P and let I = {i : w̄i 6= 0}. Then {xi}i∈I is linearly
independent.

Proof : We suppose that {xi}i∈I is not linearly independent. Therefore, there exists
i0 ∈ I such that xi0 can be represented by a linear combination of {xi}i∈I\{i0}. That is,
there exists δ = (δi)i∈I\{i0} ∈ R

|I|−1 such that

xi0 =
∑

i∈I\{i0}

δixi. (A.1)

Hence, we have

YΘ0 −XW̄ = YΘ0 −
d∑

i=1

xi(w̄i)T = YΘ0 −
∑

i∈I

xi(w̄i)T

= YΘ0 −
∑

i∈I\{i0}

xi(w̄i + δiw̄i0)T .

(A.2)

We define Ŵ ∈ R
d×L by

ŵi =

{
w̄i + δiw̄i0 if i ∈ I \ {i0}
0 otherwise.

177



178 Conclusion

By construction of Ŵ and (A.2), we obtain

YΘ0 −XW̄ = YΘ0 −
∑

i∈I\{i0}

xi(w̄i + δiw̄i0)T = YΘ0 −XŴ . (A.3)

Moreover, we notice that
∑d

i=1 s(‖ŵi‖p) ≤ |I| − 1 and
∑d

i=1 s(‖w̄i‖p) = |I|. Then

1

2n
‖YΘ0 −XŴ‖2F + λ

d∑

i=1

s(‖ŵi‖p) ≤
1

2n
‖YΘ0 −XŴ‖2F + λ|I| − λ

<
1

2n
‖YΘ0 −XW̄‖2F +

d∑

i=1

s(‖w̄i‖p).

This contradicts the hypothesis that W̄ is an optimal solution of the problem (5.29).
The proof of Lemma A.1 is then completed. ✷

Given I ⊂ {1, 2, ..., d}, XI denotes the n × |I| matrix whose columns are xi, i ∈ I and
WI denotes the |I| × L matrix whose rows is wi, i ∈ I. Let IW = {i : wi 6= 0} and λI
denotes the smallest eigenvalue of XT

I XI . We denote

S = {I ⊂ {1, 2, ..., d} : {xi}i∈I is linearly independent}.

It follows that ∀I ∈ S, XT
I XI ∈ R

|I|×|I| is positive definite, so λI > 0. Since S is a finite
set, then we obtain

λ0 = min{λI : I ∈ S} > 0.

Proposition A.1 The optimal solution set of the problem (5.29) is bounded, i.e., ∀ W ∈
P then

‖W‖F ≤
2‖YΘ0‖F√

λ0
.

Proof : By Lemma A.1, ifW is an optimal solution to the problem (5.29), then IW ∈ S.
We have

XW =
∑

i∈IW

xi(wi)T = XIWWIW .

Hence
‖XW‖2F = Tr(W T

IW
XT

IW
XIWWIW ) ≥ λIW ‖WIW ‖2F = λIW ‖W‖2F . (A.4)

Since W is an optimal solution to the problem (5.29), we have

1

2n
‖YΘ0 −XW‖2F + λ

d∑

i=1

s(‖wi‖p) ≤
1

2n
‖YΘ0‖2F .

Then, we get
‖YΘ0 −XW‖F ≤ ‖YΘ0‖F ⇒ ‖XW‖F ≤ 2‖YΘ0‖F (A.5)
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Combining (A.4) and (A.5), it follows that

√
λIW ‖W‖F ≤ 2‖YΘ0‖F . (A.6)

This leads to √
λ0‖W‖F ≤ 2‖YΘ0‖F ⇔ ‖W‖F ≤

2‖YΘ0‖F√
λ0

.

The Proposition A.1 has been proved. ✷



180 Conclusion



Bibliography

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., and Levine, A.
(1999). Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA,
96(12):6745–6750.

Argyriou, A., Evgeniou, T., and Pontil, M. (2008). Convex multi-task feature learning.
Machine Learing, 73(2):243–272.

Banerjee, O., Elghaoul, L. E., and D’Aspremont, A. (2008). Model selection through
sparse maximum likelihood estimation for multivariate gaussian or binary data. J.
Mach. Learn. Res., 9:485–516.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM J. Imag. Sci., 2:183–202.

Bertsekas, D. P. (2011). Incremental proximal methods for large scale convex optimiza-
tion. Mathematical Programming, 129(2):163–195.

Bhatia, R. (1997). Matrix Analysis. Springer-Verlag New York.

Bi, J., Xiong, T., Yu, S., Dundar, M., and Rao, R. B. (2008). An improved multi-task
learning approach with applications in medical diagnosis. In ECML PKDD, volume
5211, pages 117–132.

Bickel, P. J. and Levina, E. (2004). Some theory for fisher’s linear discriminant func-
tion, naive bayes, and some alternatives when there are many more variables than
observations. Bernoulli, 10(6):989–1010.

Bien, J. and Tibshirani, R. (2011). Sparse estimation of a covariance matrix. Biometrika,
98(4):807–820.

Blodel, M., Seki, K., and Uehara, K. (2013). Block coordinate descent algorithms for
large-scale sparse multiclass classification. Machine Learning, 93:31–52.

Bottou, L. (1998). Online Learning in Neural Networks, chapter Online Learning and
Stochastic Approximations, pages 9–42. Cambridge University Press, New York, NY,
USA.

181



182 Conclusion

Bottou, L. (2004). Stochastic Learning, pages 146–168. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, P. (2011). Distributed opti-
mization and statistical learning via the alternating direction method of multipliers.
Foundat. Trends Mach. Learn., 3(1):1–122.

Boyd, S. and Vanderberghe, L. (1979). Convex Optimization. Cambridge University
Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paolo,
Delhi.

Bradley, P. S. and Mangasarian, O. L. (1998). Feature selection via concave minimization
and support vector machines. In Proceeding of international conference on machine
learning ICML’98.

Cai, T. and Liu, W. (2011). A direct estimation approach to sparse linear discriminant
analysis. Journal of the American Statistical Association, 106(496):1566–1577.

Cai, T., Liu, W., and Luo, X. (2011). A constrained ℓ1 minimization approach to sparse
precision matrix estimation. Journal of the American Statistical Association, 106:594–
607.

Calandriello, D., Lazaric, A., and Restelli, M. (2014). Sparse multi-task reinforcement
learning. In NIPS.
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