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Equations paraboliques non linéaires
pour des problemes d’hydrogéologie et de transition de phase

Résumé

L’objet de cette these est d’étudier 'existence de solution pour une classe de systéemes
d’évolution fortement couplés, ainsi que la limite singuliere d’une équation aux dérivées par-
tielles d’advection-réaction-diffusion.

Au chapitre 1, nous décrivons brievement la dérivation d’un modeéle d’intrusion saline pour des
aquiferes confinés et non confinés. Dans ce but nous nous appuyons sur la loi de Darcy et la
loi de conservation de masse en négligeant ’effet de la dimension verticale.

Au chapitre 2, nous considérons un systéme qui généralise le modele d’intrusion saline dans des
aquiferes non confinés. C’est un systeme non linéaire parabolique dégénéré fortement couplé.
Apres avoir discrétisé en temps, gelé et tronqué des coefficients et finalement régularisé les
équations, nous appliquons le théoreme de Lax-Milgram pour prouver l’existence et 1'unicité de
la solution d’un probleme linéaire associé. Nous appliquons ensuite un théoreme du point fixe
pour démontrer I’existence d’une solution du probleme non linéaire approché. Nous obtenons
du plus une estimation d’entropie, qui permet en particulier de démontrer la positivité de la
solution. Finalement, nous passons a la limite dans le systeme et dans I’entropie pour prouver
I’existence de solution pour le probleme initial.

Au chapitre 3, nous montrons I’existence de solution pour un systeéme qui contient en particulier
le modele d’intrusion saline dans des aquiferes confinés. Ce systeéme est semblable au systeme
du chapitre 2, mais la pression intervient comme inconnue supplémentaire. Il se rajoute la
contrainte que la somme des hauteurs inconnues est une fonction donnée et la pression est en
fait un multiplicateur de Lagrange associé a cette contrainte. Nous obtenons de nouveau une
inégalité d’entropie et effectuons également une estimation sur le gradient de la pression.

Au chapitre 4, nous nous intéressons a la description d’interfaces abruptes qui se déplacent se-
lon un mouvement donné, par exemple le mouvement par courbure moyenne. Des singularités
peuvent apparaitre en temps fini ce qui explique la nécessité de définir une nouvelle notion
de surface. Dans ce chapitre, on introduit les notions de ”varifolds”, ou surfaces généralisées,
qui étendent les notions de ”manifolds”. A ces varifolds on associe une courbure moyenne
généralisée ainsi qu’une vitesse normale généralisée.

Au chapitre 5, nous considérons une équation d’advection-réaction-diffusion qui intervient dans
un systeme de chimiotaxie-croissance proposé par Mimura et Tsujikawa. I’inconnue est la den-
sité de population qui est soumise aux effets de diffusion et de croissance et qui a tendance a
migrer vers des forts gradients de la substance chimiotactique. Quand un petit parametre tend
vers zéro, la solution converge vers une fonction étagée; l'interface diffuse associée converge
vers une interface abrupte qui se déplace selon un mouvement par courbure moyenne perturbé.
Nous représentons ces interfaces par des varifolds définis a partir de la fonctionnelle de Lyapu-
nov du probleme d’Allen-Cahn. Nous établissons une formule de monotonie et nous montrons
une propriété d’équipartition de ’énergie. Nous prouvons de plus que le varifold est rectifiable
et que la fonction de multiplicité associée est presque partout entiere.

Mots clés. systemes paraboliques dégénérés fortement couplés, entropie, équations de réaction-
diffusion, perturbations singulieres, varifolds, intrusion saline, chimiotaxie.

AMS subject classifications. 35K57, 35K65, 35B10, 35D30, 35R35, 40Q20, 82B26, 37N10.
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Nonlinear parabolic equations
for hydrogeology and phase transition problems

Abstract

The aim of this thesis is to study the existence of a solution for a class of evolution systems
which are strongly coupled, as well as the singular limit of an advection-reaction-diffusion
equation.

In chapter 1, we describe briefly the derivation of a seawater intrusion model in confined
and unconfined aquifers. For this purpose we combine Darcy’s law with a mass conservation
law and we neglect the effect of the vertical dimension.

In chapter 2, we consider a system that generalizes the seawater intrusion model in uncon-
fined aquifer. It is a strongly coupled nonlinear degenerate parabolic system. After discretizing
in time, freezing and truncating the coefficients and finally regularizing the equations we ap-
ply Lax Milgram theorem to prove the existence of a unique solution for the elliptic linear
associated system. Then we apply a fixed point theorem to prove the existence of a solution
for the nonlinear approximated problem. We obtain in addition an entropy estimate, which
allows us in particular to prove the positivity of the solution. Finally, we pass to the limit
in the system and the entropy in order to prove the existence of a solution for the initial
problem.

In chapter 3, we prove the existence of a solution for a system that contains in particular
the seawater intrusion model in confined aquifers. This system is very similar to that introdu-
ced in chapter 2, only the pressure is a new unknown and we have the constraint that the sum
of the unknown heights is a given function. The pressure is the Lagrange multiplier associated
to the constraint. We obtain again an entropy estimate and we establish an estimate on the
gradient of the pressure.

In chapter 4, we are intrested in the study of sharp interfaces that moves by a certain flow,
by mean curvature flow for example. Singularities may occur in finite time which explains
the necessity of having a differnet notion of surfaces. In this chapter, we introduce the notion
of ”varifolds” or generalized surfaces that extend the notion of manifolds. To these varifolds
we associate a generalized mean curvature and a generalized normal velocity.

In chapter 5, we consider an advection-reaction-diffusion equation arising from a chemotaxis-
growth system proposed by Mimura and Tsujikawa. The unknown is the population density
which is subjected to the effects of diffusion, of growth and to the tendency of migrating
toward higher gradients of the chemotactic substance. When a small parameter tends to
zero, the solution converges to a step function ; the associated diffuse interface converges to
a sharp interface which moves by perturbed mean curvature. We represent these interfaces
by varifolds defined by the Lyapunov functional of the Allen-Cahn problem. We establish
a monotonicity formula and we prove a property of equipartition of energy. We prove also
the rectifiability of the varifold and that the multiplicity function is almost everywhere integer.

Key words. parbolic degenerate strongly coupled system, entropy, reaction-diffusion equa-
tion, singular limit, varifolds, seawater intrusion, chemiotaxis.

AMS subject classifications. 35K57, 35K65, 35B10, 35D30, 35R35, 49Q20, 82B26, 37TN10.
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Introduction

Cette these est consacrée a I’étude des systemes d’équations aux dérivées partielles non
linéaires qui interviennent dans des domaines variés dont en particulier I’hydrogéologie et les
transitions de phase. On s’intéresse a des problemes a frontieres libres, ou problemes d’in-
terfaces, ou 'interface s’exprime explicitement ou comme la limite d’une zone de transition
de phase.

Nous considérons tout d’abord des problemes liés a l'intrusion saline dans des aquiferes

cotiers. Il s’agit de la pénétration de I’eau de mer salée dans les aquiferes d’eau douce. Ce
comportement est di au fait que I’eau de mer a une densité et une pression plus élevées que
I’eau douce. Certaines activités humaines intensifient I'effet de 'intrusion saline comme le
pompage excessif ou la surexploitation de I’eau douce. Par conséquence, la dépression créée
par les volumes extraits peut provoquer une avancée du biseau salé dans les aquiferes et
I’eau salée peut méme atteindre les puits de pompage. C’est dans le but de maitriser ce
phénomene que 'on établit des modeles mathématiques qui sont étudiés a la fois analyti-
quement et numériquement.
En combinant la loi de Darcy et la loi de conservation de masse, on peut décrire 1I’évolution
des interfaces entre ’eau salée et ’eau douce et entre 'eau douce et le sol sous la forme
de systemes non linéaires fortement couplés. Les systemes considérés dans cette these sont
assez généraux puisqu’ils contiennent a la fois les problemes d’intrusion saline et d’autres
applications telles que 1’électrochimie et la dynamique des populations. On démontre ’exis-
tence d’une solution pour les systéemes considérés, en appliquant une méthode de point fixe
a un systeme régularisé et en passant ensuite a la limite en s’appuyant en particulier sur
une estimation d’entropie. L’unicité des solutions est encore ouverte.

Nous étudions également la limite singuliere d’une équation liée a la chimiotaxie. On
peut observer que la plupart des especes biologiques se déplacent par marche aléatoire ou
par un mouvement dirigé. Un exemple de mouvement dirigé est donné par la chimiotaxie,
ou les individus biologiques se concentrent vers les zones de plus fort gradient d’une sub-
stance chimique. Ici, la densité de substance chimique g. est considérée comme connue. Plus
précisément, nous étudions la limite singuliere de la solution u® de I’équation

1
Ot = Au® — V- (u°Vx(g)) + E—Zf(uf, ),

avec des conditions aux limites périodiques et une condition initiale. Le terme de croissance
f est donné par f(r,a) = r(1—7)(r— 3 +a). Dans le cas ol 'on néglige le terme d’advection
et ou a = 0, cette équation coincide avec ’équation d’Allen-Cahn qui a été tres étudiée dans
les dernieres décennies :

Opu® = Au® — éue(uE — 1) (u® — %)
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Quand e tend vers zéro, la solution u® converge vers une fonction étagée u qui prend les
valeurs 0 et 1. Des interfaces diffuses convergent vers des interfaces abruptes entre les régions
{u =0} et {u =1}. De nombreuses études ont montré que ces interfaces évoluent selon le
mouvement par courbure moyenne.

Nous étudions ici la limite singuliere au sens des ” Surfaces généralisées’ ou ” Varifolds’,
c’est-a-dire des surfaces ou des singularités peuvent se produire, pour le probleme de chi-
miotaxie.

Premiere partie : Probleme d’intrusion saline

Cette partie porte sur le probleme d’intrusion saline. Apres avoir dérivé formellement les
modeles, on montre ’existence de solution pour deux systemes qui généralisent des modeles
d’aquiferes non confinés et confinés.

Chapitre 1 : Dérivation formelle d’'un modele d’intrusion saline

Ce Chapitre est basé sur un article [43] du & Jazar et Monneau. On considére un écoulement
d’eau douce dans un milieu poreux saturé [9] dans le but de décrire un modele d’intrusion
saline. On suppose constantes les densités de ’eau douce et de I'eau salée et on applique
la loi de Darcy dans ’eau douce et dans 'eau salée; cette loi exprime le fait que la vi-
tesse est proportionnelle a la pression. On suppose aussi que le rapport entre I’épaisseur et
la longueur horizontale du milieu poreux tends vers zéro. En conséquence, on obtient des
modeles réduits de type Boussinesq. L’étude est faite dans les deux cas d’aquiferes confinés
et d’aquiferes non confinés.

Chapitre 2 : Existence de solution pour un systeme dégénéré
fortement couplé avec application a I’intrusion saline

Ce chapitre fait 'objet d’un article écrit en collaboration avec S. Issa, M. Jazar et R.
Monneau, soumis pour publication dans "ESAIM : Control, Optimisation and Calculus of
Variations”.

Le but de ce chapitre est de montrer I'existence d’une solution pour un systéme non linéaire
parabolique dégnéré et fortement couplé, qui contient en particulier le modele d’intrusion
saline dans des aquiféres non confinés; il est de la forme

m
o’ = div uiZAijVuj dans Qp, pouri=1,...,m. (1)
j=1

avec la condition initiale
u'(0,z) = ud(z) >0 p.p. dans , pouri=1,...,m. (2)

Le domaine considéré est le tore Q := TV = (R/Z)N avec N > 1, Qp := (0,T) x Q, T > 0
et m > 1 est un entier.

La matrice A = (A;j)i<i j<m satisfait une condition de positivité : on suppose qu'il existe
deux matrices m x m diagonales définies positives L et R et une constante dg > 0, telles que

¢'LARC > 6o|¢|>, pour tout ¢ € R™. (3)
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En général, ce type de systeme est difficile a étudier car en particulier le principe de maxi-
mum ne s’applique pas. De nombreux travaux ont porté sur 'existence de solutions pour
des systémes non linéaires fortement couplés, citons parmi eux [75} [74] 53], 47, 18, 17, 22].
Notre preuve d’existence est basée sur une estimation d’entropie qui nous permet de controler
le gradient de la solution et sa positivité. On montre que la solution u, au sens de distribu-
tions, satisfait une estimation d’entropie de la forme

Z/ u'(t2) +5OZ/ /Q|Vui|2§§/ﬂ\lf(u6), (4)

pour presque tout t; < to avec u'(ty) = u'(t2,-) et

alna pour a >0,
U(a) — - = 0 pour a =0, (5)
400  pour a <0,

h Z / ) < +o0. (6)

En fait nous ne disposons pas de suffisamment de régularité, ce qui nous amene a des ap-
proximations qui nous permettent d’obtenir un systeme linéaire discrétisé en temps dont on
vise a trouver des solutions points fixes. Finalement, nous démontrons I'existence de solution
pour le systéme initial en passant a la limite pour tous les parametres ajoutés.

Chapitre 3 : Existence de solution pour un systeme dégénéré
fortement couplé avec contrainte découlant d’un probleme d’in-
trusion saline

Ce chapitre fait ’objet d’un article écrit en collaboration avec M. Jazar et R. Monneau,
soumis pour publication dans ” Mathematical Models and Methods in Applied Sciences”.
Nous considérons un systéeme non linéaire parabolique dégénéré et fortement couplé avec
contrainte ; le modele d’intrusion saline dans des aquiféeres confinés en est un cas particulier.
Il est de la forme

Oyt = div <uiV (p + ZAijuj>> dans Qp, pouri=1,...,m,
N = ™
$ui(t,2) = f(2) dans O,

i=1

ol f est une fonction donnée telle que : il existe 0 < £; < fo < oo satisfaisant
01 < f(x) < fy, pour tout z € Qet f € H(Q). (8)
On impose des conditions aux limites periodiques et les conditions initiales

u'(0,2) = wuh(x) >0 p.p. dans , pouri=1,...,m,
p(0,2) = po(z) dans Q. (9)
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Dans le cas confiné , p est la pression définie sur 27, qui apparait comme un multiplicateur
de Lagrange de la contrainte sur u = (ui)lgigm, donnée dans la deuxieme ligne de .
Mentionnons qu’'un différent type de modele d’intrusion saline dans des aquiféeres confinés a
été étudié dans [61] [71] 23].

Notre but est de montrer I'existence, au sens de distributions, d'une solution ((u?)1<;<m,p)
telle que u = (u’)1<i<m est positive presque partout; de plus u satisfait une estimation
d’entropie, pour presque tout t1,ts € (0,7) avec u'(ty) = u'(ts,-), de la forme

> [ W) + 3 S N9y zriony < - [ V) + Coll 9y, (10
=1 =1 =1

3 A|7
ou V¥ est donnée par et Cp = W ; on montre de plus que p satisfait
190
203 | All* m
2 2
9Py < T2 9l e (1)
1

Pour obtenir ce résultat on suit la stratégie proposé dans le Chapitre 2.
Deuxieme Partie : Limites singulieres et chimiotaxie

Cette partie de la these correspond a des travaux réalisés en collaboration avec D. Hil-
horst.

Chapitre 4 : Les Varifolds : propriétés et définitions

Dans ce chapitre, on présente des notions de la théorie de la mesure géométrique [69],
qui permet de définir une ”surface généralisée” ou ”varifold” par une classe de mesures de
Radon ; ces mesures de Radon possedent des bonnes propriétés de compacité que nous ex-
ploitons dans I’étude des limites singulieres d’équations de réaction-diffusion. Cette théorie
associe a ce varifold des outils géométriques comme la ” courbure moyenne généralisée”.

Chapitre 5 : Limite singuliere au sens des varifolds d’un modele
de chimiotaxie-croissance

Dans ce chapitre on étudie la limite singuliere d’un modele d’advection-réaction-diffusion qui
décrit I’évolution de densités de bactéries. En 1996, Mimura et Tsujikawa [54] ont proposé
un nouveau modele de chimiotaxie-croissance. Ils supposent que le coefficient de diffusion et
le coefficient du terme chimiotactique sont tres faibles par rapport au terme de croissance.
IIs écrivent le systeme sous la forme

Dt = 2Auf — eV - (uFVx(q.)) + f(uF),
TO: = Age +u° — Yqe,

(MT*) {
oue > 0et 7> 0sont des petits parametres, v > 0, u. représente une densité de population,
ge est la densité d’une substance chimiotactique, Vx(¢:) est la vitesse du mouvement de u®
induit par la chimiotaxie et f est une fonction cubique de zéros stables 0 et 1, telle que
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1
/ f > 0; quand € — 0 une interface abrupte I'; se crée entre les régions ou la fonction
0

limite u prend les valeurs 0 et 1.

Nous rappelons tout d’abord une dérivation formelle de la loi du mouvement de I'; présentée
dans [10] ; il s’agit d’un mouvement par courbure moyenne perturbé.

Bonami, Hilhorst, Logak et Mimura [10, [I1] et Alfaro [I] ont considéré une variante du
systeme (MT¢), dans le cas ou 7 = 0 avec des conditions aux limites de Neumann ho-
mogenes ; ’équation pour la substance chimiotactique est alors elliptique. Ils démontrent en
particulier I'existence et 'unicité, locales en temps, de la solution classique du probleme a
frontieres libres limite et la convergence de la solution vers celle de ce probleme. En I’ab-
sence de 'effet chimiotactique, le probleme limite se réduit a I’équation de mouvement par
courbure moyenne et la convergence vers une solution classique sur de petits intervalles de
temps a été largement étudiée, on citera par exemple [16, 27, 28], 19].

En général des singularités peuvent se produire en temps fini ; ¢’est pourquoi il est nécessaire
de considérer des solutions faibles; la convergence vers une solution de viscosité a été
établie dans des divers travaux ou le terme chimiotactique n’intervient pas, notamment
pour I’équation d’Allen-Cahn, dans [8, 34, 42] et dans le cas d’une équation de chimiotaxie-
croissance dans [37]. On suppose ici que la densité de la substance chimiotactique ¢. est
donnée. On considere I’équation de réaction-diffusion-advection

1
o = Au® — V- (u*Vx(ge)) + E—Qf(ug,aa) in Qr :=Q x (0,7),

u(z,0) = uf(x) in Q,

(P)

olt  :=T" est le tore et f(r,a) =r(1—7r)(r — 1 + @). On étudie le comportement d’une
famille de solutions régulieres (uf).>o de (P°) quand € — 0 et 'on montre que u® converge
vers une fonction limite u, qui est une fonction étagée prenant les valeurs 0 et 1 presque
partout sur le domaine. L’interface I'y, qui sépare les deux régions, suit la loi du mouvement

v:h+(VM@-WV+%¢ZW, (12)

ou v est la vitesse normale de l'interface, h est le vecteur courbure moyenne de 'interface,
0 est la fonction de multiplicité qui est égale a 1 dans le cas d’une interface réguliere et v
est le vecteur normal a I'interface.

Notre but est de montrer la convergence vers 1’équation de mouvement sur un grand
intervalle de temps, tout en gardant des informations tangentielles de 'interface et en évitant
les ”annulations d’interfaces”. Pour cette raison, des notions de ”surfaces généralisées” ont
été introduites par Young dans [77] puis améliorées par Almgren [6] qui leur a donné le nom
de "varifolds” voir aussi [69] et [4].

Différents travaux ont porté sur le mouvement par courbure moyenne au sens des varifolds,
citons [13] [41] [55]. Les mouvements par courbure moyenne perturbés ont été également
étudiés dans ce sens par Mugnai et Réger [60] en dimensions d’espace 2 et 3, et par Takasao
et Tonegawa [70] dans le cas ou le terme de perturbation est un terme de transport plus
simple.

Nous étendons leurs résultats au probleme (P¢) en dimension d’espace arbitraire.

Dans ce but nous introduisons 1’énergie

|2 u
EWW?@C%”+WQ»M’
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olt W(r) := r?(1 —r)? est un potentiel double puits. Nous montrons que si cette fonction-
nelle est bornée a 'instant initial, elle reste bornée uniformément en € sur des intervalles de
temps arbitraires [0, 7.

Nous définissons de plus la fonction de ”discrepancy” pour tout ¢ € [0, 7]

e [ (eVeE W)
§t<u)._/g< Lol )m«.

Nous établissons une formule de monotonie similaire a celle démontrée par Ilmanen dans [41]
et nous montrons que la fonction de ”discrepancy” tend vers zéro quand € — 0, ce qui traduit
une sorte d’équipartition de 1’énergie. De plus nous montrons qu’une classe de mesures
de Radon associées a 'énergie E°(u®) sont rectifiables, de plus qu’ elles posseédent une
courbure moyenne généralisée et une vitesse généralisée qui satisfait et que la fonction
de multiplicité associée est presque partout entiere. Notre travail s’appuie essentiellement
sur des méthodes utilisées dans [41] [70] 60, [72].
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Chapter 1

Formal derivation of seawater
intrusion models

Abstract. Based on [43], we derive briefly two seawater intrusion models in confined and
unconfined aquifer. The porous medium is considered saturated and the fresh and saltwater
have constant densities. By neglecting the vertical dimension and combining Darcy’s law
with the mass conservation law we get two reduced model of Boussineq type [12].
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1.1 Introduction

Hydrogeology (hydro- meaning water, and -geology meaning the study of the Earth) is the
area of geology that deals with the distribution and movement of groundwater in the soil
and rocks of the Earth’s crust, commonly in aquifers.

The Organization of this chapter is as follows: In Section 1.2 we present some notions
and laws in hydrogeology such as Darcy’s law and the mass conservation law. In Section
1.3 we present a brief and formal derivation of the seawater intrusion model in unconfined
aquifers. Finally, Section 1.4 is devoted to the formal modeling of the seawater intrusion
problem in confined aquifers.

1.2 Definitions in hydrogeology

Intrinsic permeability:

The intrinsic permeability k& of a medium is a function of the size of pores and the degree
of interconnectivity. It only depends on the properties of the medium and does not depend
on the fluid. It is represented as a tensor with unit m?.

Porosity:

The porosity 6 is a measure of the empty spaces in a material, and is a fraction of the volume
of voids over the total volume; 6 € (0, 1]. In the case of a saturated medium, the volume of
empty spaces is equal to the volume of the fluid in the medium.

Dynamic viscosity:

The dynamic viscosity p is the proportionality coefficient of the force applied between two
layers of different speeds. With increased viscosity, fluid’s ability to flow decreases. Its unit
is Pa.s.

Specific weight:
The specific weight ~y of a fluid is the product of the density of the fluid p and the acceleration
gravity g,

Y=pg.

Hydraulic conductivity:
The hydraulic conductivity K is a property of both the medium and the fluid. It is expressed
as
_ oo
o

K
This property indicates the ability of a porous media to transfer a volume of a fluid.

Hydraulic head:

The hydraulic head h is a measure of the potential of the fluid at the measurement point.
It is formed of two components: the elevation component and the pressure component. It
is expressed as

h=z+~-.
v
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Effective velocity of the flow:
The effective velocity of the flow ¢ is expressed as

q=0v,
where v is the velocity of the flow.

Conservation of mass:
The conservation of mass during displacement is given by the following equation

9 (p0) +div(pq) = 0.

Darcy’s law [25]:
This law was formulated by Henry Darcy:

q=—K - -Vh.

Replacing the hydraulic conductivity K and the hydraulic head h in this equation we get
k
q= —;V(p +72).

The effective velocity q of the flow is thus related to the gradient of the pressure Vp through
the Darcy’s law.

Aquifer:

An aquifer is an underground layer through which water can easily move. Aquifers must be
both permeable and porous. From such layers, freshwater can be usefully extracted using a
well.

Unconfined aquifer:
Unconfined aquifers are those into which water seeps from the ground surface directly above
the aquifer.

Confined aquifer:

Confined aquifers are those in which an impermeable dirt/rock layer exists that prevents
water from seeping into the aquifer from the ground surface located directly above. Instead,
water seeps into confined aquifers from farther away where the impermeable layer doesn’t
exist.

Seawater intrusion [9]:

Seawater intrusion is the movement of saltwater into freshwater aquifers. It occurs in coastal
freshwater aquifers when the different densities of both the saltwater and freshwater allow
the ocean water to intrude into the freshwater aquifer. These areas are usually supporting
large populations where the demanding groundwater withdrawals from these aquifers is ex-
ceeding the recharge rate, which can lead to contamination of drinking water sources and
other consequences.
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Figure 1.1 — Unconfined aquifer

1.3 Seawater intrusion in unconfined aquifer

We consider the space coordinates (z, 2) € RY x IR where # represents the horizonal coor-
dinate, Z the vertical coordinate and N = 1,2. We assume that the interface between the
saltwater and the bedrock is given as {Z = b(Z)}, the surface of the soil as {Z = (i)}, the
interface between the saltwater and the freshwater, which are assumed to be unmiscible,
can be written as )

It ={(z2eRY xR, 2=},
and the interface between the freshwater and the dry soil can be written as

ri = {(35,2) ceRY xR, Z=h(i7) +g(£,az)}.

In addition we have that

b<j<h+g<f in R, (1.1)

and the fonctions b, g, h, f are smooth enough. Moreover, we define the open sets
ol = {(5:,5) eRN xR, §(i7)<z<h( i)+ i 5;)},
Ol = {(z,z) eRY xR, b(7)<Z< g(f,az)},

Of = {(5:,2) e RY x IR, 2<f(a?)},

to be the set of freshwater, the set of saltwater in the porous medium and the set of the
porous medium respectively.

The PDEs:
In what follows, we will index the parameters defined in Section 1.1 by «, where we set
a = f in the case of a freshwater, & = s in the case of a saltwater. The density of the fluid
« is given by
O i (7,3) e Q)
Pa (Ea z, 2) =
0 otherwise
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where pQ is the mass density of the fluid a which is supposed to be a constant and the
specific weight as

Yo = Pog’
where ¢° is the gravity constant. In what follows we suppose that § = 1 for simplicity.
We suppose that the flow velocity vector 7, satisfies:

divs 5F 4+ 9:02=0 on QF
for a=f,s
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p is continuous on T

vfp-n >0 across o0t N 8@?

| g <h; and b < i~L+§ everywhere,

(1.2)
with the following boundary condition
B(F,#,2) = { wh—2) i 2=h2)+5(ED) = [@) <h
0 otherwise (1.3)

h(t.7) + §(£,7) = f(2) if  f(7) < .
Explication of system (1.2)):
— The first equation is a consequence of the mass conservation law together with the

fact that § = 1 and the density p, is constant.

1k
— The second equation is a consequence of Darcy’s law with &g = ——

T
— The third, fourth, fifth and sixth equations imply that the interface f‘z moves by
the freshwater velocity and that the interface f‘g moves by the freshwater and the

saltwater velocities and that the two fluids move tangentially to {Z = b(#)}.

— The seventh line implies that we have some steady state. In fact, when we will be
able to consider an interface between freshwater and saltwater, it means we suppose
that we are in a state of equilibrium. At that moment, the pressure will be equal on
either sides of this interface which imlpies the continuity.

— The eighth condition concerns the exterior normal unit vector where the unit vector

7 is in the same direction as < —Vlf () > and it means that the freshwater can only
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go out of the soil (supposing that there is no sources). Note that on the interface
{(a?, 2) € RN xR, % =b(&)} we have that @, -2 = 0 since there is no freshwater
coming out from the impermeable rock.
— The final condition means that the saltwater in the soil is below the sea level which
is a natural condition.
System can be obtained naturally if we suppose that the atmosoheric pressure is zero
and when Fz has no contact with the sea, then its pressure is also zero.

New rescaling:
We suppose that there exists a small parameter € > 0 such that we have

Z=¢€z
t=t/e
7(@) = =f(z)
b(z) = eb(x) (1.4)
hl = Ehl
Rt (@,2) Ko (x,2)
Ra(Z,2) = Ral(x, 2)
\ re(x,2)  REE (2, 2)

The parameter € can be seen as the aspect ratio between the vertical dimension and the
horizontal dimension.
Therefore, we consider the following rescaling

i

(t,2) = eh?(t, z)
g(tj ~) = sga(t,:c)
p(t, &) = ep®(t, x) (1.5)
Ug(t,7) = eve (t, 1)
2(t, %) = 20" (t, x)

The vertical velocity is smaller than the horizontal velocity which is the Dupuit-Forchheimer
assumption [73, [44].
We suppose that we have these formal asymptotics:

5 = h+¢chy +e?hy +e3hg + - -

9 =gtep+etgpt--

P =ptepi +etps A

/Ug’s = ’Ug + 5212’1 + 52'()?!72 + -

ve" =i tevi+ 521)272 + -
Set

Q?gs = {(z,2) € RY xR, ¢°(t,z) < z < h¥(t,z) +¢°(t,2)},
Qy ={(z,2) € RY xR, bz)<z< g (tx)},
Q% = {(z,2) € RY xR, g(t.z) <z < h(t,z)+ g(t, z)},

and

QL ={(z,2) e R" xR, blz)<z<g(tz)}.

s =
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Using the new rescaling and substituting the formal asymptotics in (1.2]) we get

divy v + 0,02 =0 on Qf

vE =R (z,2)V,p on for a=fs

0.(p+722) =0 on Qf

v§(he 4+ 9z) —0;+hi+9: =0 across  {(,2) e RY xR, z=h(t,z)+g(t,z) < f(z)}
U9z —v;+ g =0 across {(z,2) e RN xR, z=g(t,z)< f(z)}

vIgy —vi+ g =0 across {(z,2)€ RY xR, z=g(tz)< f(z)}

vEhy —vZ =0 sur - {(z,2) eRY xR, 2z=bx) <g(t,z)}

p is continuous on I,

—vf - Vef+v*>0 on {z=h(tz)+gt z)=f(z)>gt )}

g<hyand b<h+g everywhere,

(1.6)
where we have used the second and third equations of (1.2]) and the new rescaling (|1.5)) to
get that

9:(P° + Yaz) = 0(e) = —e(rv (2, 2)) " {eva” + wZ (2, 2) Vo~ }
in Qtozs,
VoS + RE (1, 2)Vape = O(e) = er®*(z, 2) (k% (2, 2)) 10 °
(1.7)
with
Ral(x,2) = e (, 2) — (K3 (2, 2)) 7' REE (2, 2)RE0 (2, 2). (1.8)
For the sake of simplicity we assume that
’ys/ kX (x,2)dz = z - Id. (1.9)
0
We obtain for the leading order term
dans Qf (1.10)

T _zxT

vE = —RE (2, 2)VeD

which implies the second and third term in (|1.6). Now, integrating in z the third equation
of (1.6) over [z, h + g] and using the fact that « = s on [z,g] and o = f on [g, h + g] we get

vspo(t, ) +v¢(h(t,x) + g(t, z) — 2) for g(t,x) < z < h(t,z) + g(t,x)
p(t,x, z) =
'VSPO(t’x) + th(t7$) + 'Ys(g(tvx) - Z) for b(x) <z< g(t,x),
(1.11)
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with
hi—f(x) it ht,z) +g(tz) = f(z) <M
po(t,z) := (1.12)
0 otherwise.
Let
€ = P2 ¢ (0,1)  which give us that ~v, ' =1— (%;7%[) =1—¢p.
Vs s
We can write
Va(po+(1—e)(h+g) on
Vs 'Vap(t,) = (1.13)

Vo (po+ (1 —e)h+g) on QL.

Now, integrating the first equation of (1.6 on [g,h + ¢] and using the second equation
of (1.10) with [1.9)and (1.13) we obtain

hy =divy (hV4((1 —€y)(h+g))) on {h+g<f}.

Moreover, the ninth line of ([1.6)) implies that the forth line of (1.6]) still holdson {h + g = f > g}
with the condition that h; + ¢+ > 0 on {h+ g = f > g}. Which yields to

—gr <divy (hVa((1—e)(h+g))) on {h+g=f>g}.
Similarly, integrating the first line of on [b, g] we obtain that
gr =dive ((9 = b)Va((1—e)h+g)) on {g</f}.
Now, using the fact that when h+¢g =g = f < hy we have pg+ (1 —e¢)h +eog = h1 we get
g <dive ((9=0)Va((I —€)h+g)) on {ht+g=g=[f<m}.

Therefore, h and g satisfy the following system

b<g<h+g<f on [0,400) x RY

hy = dive (AVa(po + (1 = €o)(h + g))) on  {h+g</f}

gt = dive (9 =b)Ve(po+ (L —€)h+g)) on {g</f} (1.14)
—gr < divy (hVa(po + (1 —€0)(h+g))) on {h+g=f>g}

g <dive ((9=0)Ve(po+ (1 —€)h+g)) on {h+g=g=f<h}.

We remind that we can omit the pressure pg when f > hy.
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1.4 Seawater intrusion in confined aquifer

In the confined case, see the figure above, we have that 'L is time independent interface,
namely h; + g = 0. The procedure is exactly the same only the boundary condition (1.3)) is
replaced by

p(t, %, 2) = ysmax(0,hy —2) >0 for 2= f(z) and Z € RV\w,

where
w= {x RN, (h+§)(7) < f(:%)} .

Also the normalized pressure pg(z) is replaced by

max(0,h1 — (h+g)(z)) >0 for z € RM\w,

p(t,z) =
unknown for x € w.

In the confined case, system ([1.14)) is still satisfied, where p in particular solves
0=divy (h+9-b)Ve(p+(1—e)(h+g))+elyg—bVzg) on w

p(t,z) = pi(x) == max(0,h; — f(x)) >0 across Ow.
(1.15)
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Chapter 2

Existence result for degenerate
cross-diffusion system with
application to seawater intrusion

Abstrat. This chapter is the subject of a paper written in collaboration with S. Issa, R.
Monneau and M. Jazar, submitted for publication in ”ESAIM: Control, Optimisation and
Calculus of Variations”. In this paper, we study degenerate parabolic system, which is
strongly coupled. We prove general existence result, but the uniqueness remains an open
question. Our proof of existence is based on a crucial entropy estimate which both control
the gradient of the solution and the non-negativity of the solution. Our system is of porous
medium type and our method applies to models in seawater intrusion.
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2.1 Introduction

For the sake of simplicity, we will work on the torus Q := TV = (R/Z)", with N > 1.
Let Qp := (0,7) x Q with 7" > 0. Let an integer m > 1. Our purpose is to study a class of
degenerate strongly coupled parabolic system of the form

m
opu’ = div | uy AV in Qp, fori=1,...,m. (2.1)
j=1

with the initial condition
u'(0,z) = ub(z) >0 a.e. inQ, fori=1,...,m. (2.2)

In the core of the paper we will assume that A = (A;j)1<ij<m is a real m x m matrix
(not necessarily symmetric) that satisfies the following positivity condition: we assume that
there exists §g > 0, such that we have

¢TAE > 6pl€?,  forall € € R™. (2.3)

This condition can be weaken: see Subsection m Problem ([2.1)) appears naturally in the
modeling of seawater intrusion (see Subsection [2.1.2)).

2.1.1 Main results

To introduce our main result, we need to define the nonnegative entropy function W:

alna for a>0,
U(a) —— = 0 for a=0, (2.4)
400 for a <0,

C . .. 1
which is minimal for a = —.
e

Theorem 2.1.1. (Ezistence for system (2.1]))
Assume that A satisfies . Fori=1,...,m, let u} >0 in Q satisfying

Z/pr(ug) < o0, (2.5)
=1

where W is given in . Then there exists a function u = (u')1<i<m € (L*(0,T; H(Q)) N
C([0,7); (Whee(Q))))™ solution in the sense of distributions of ,, with u* > 0 a.e.
m Qp, fori=1,...,m. Moreover this solution satisfies the following entropy estimate for
a.e. t1,t2 € (0,T), with ut(ta) = u(ta,-):

g/ﬁqf(ui(tg))+50§;/:/Q,Wi‘z Sg/glq’(“%’)’ (2.6)

where U is given in .
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Here ||A|| is the matrix norm defined as

| All = sup [AE]. (2.7)
l¢l=1
Notice that the entropy estimate (2.6 guarantees that Vu! € L?(0,T; L?(£2)), and therefore
m
allows us to define the product v’ Z AijVuj in |D When our proofs were obtained, we
i=1

realized that a similar entropy estimate has been obtained in [30], [I7] and [24].

Remark 2.1.2. (Decreasing energy)
If A is a symmetric matriz then a solution u of system satisfies

d m m 1 o m |m ‘ 2
% Z Z /Q iAijuZU] = — Z /Q uZ Z A@-jVuJ
i=1 j=1 =1 J=1

2.1.2 Application to seawater intrusion

In this subsection, we describe briefly a model of seawater intrusion, which is particular
case of our system ([2.1).
An aquifer is an underground layer of a porous and permeable rock through which water can
move. On the one hand coastal aquifers contain freshwater and on the other hand saltwater
from the sea can enter in the ground and replace the freshwater. We refer to [9] for a general
overview on seawater intrusion models.
Now let v =1 —¢¢ € (0,1) where

o = Vs —Vf
Vs

with s and ~y are the specific weight of the saltwater and freshwater respectively.

dry soil /
z=g V

freshwater

saltwater

Figure 2.1 — Seawater intrusion in coastal aquifer

We assume that in the porous medium, the interface between the saltwater and the bedrock
is given as {z = 0}, the interface between the saltwater and the freshwater, which are
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assumed to be unmiscible, can be written as {z = g(¢,x)}, and the interface between the
freshwater and the dry soil can be written as {z = h(t,x) 4+ g(¢,x)}. Then the evolutions of
h and g are given by a coupled nonlinear parabolic system (we refer to see [43]) of the form

{ oh = div{hV(v(h+g))} in Qp,

Og = div{gV(vh+g)} in Qr, (2:8)

This is a particular case of (2.1)), where the 2 x 2 matrix

27
(Y o
satisfies (2.3)).

2.1.3 Brief review of the litterature

The cross-diffusion systems, in particular the strongly coupled ones (for which the equa-
tions are coupled in the highest derivatives terms), are widely presented in different domains
such as biology, chemistry, ecology, fluid mechanics and others. They are difficult to treat.
Many of the standard results cannot be applied for such problems, such as the maximum
principle. Hereafter, we cite several models where our method applies for most of them (see
Section for more generalizations on our problem).

In [66], Shigesada, Kawasaki and Teramoto proposed a two-species SKT model in one-
dimensional space which arises in population dynamics. It can be written in a generalized
form with m-species as

o' = A || B+ e | vl | = |ai =D byu! |u',  inQx(0,7), (2.10)

where u!, for i = 1,...,m, denotes the population density of the i-th species and f;, Qij,
a;, b;j are nonnegative constants. The existence of a global solution for such problem in
arbitrary space dimension is studied in [74], where the quadratic form of the diffusion matrix
is supposed positive definite. On the other hand, the two-species case was frequently studied,
see for instance [52] 45, [76l, 35, 67] for dimensions 1, 2, and [I7, [62] [63] (18] for arbitrary
dimension and appropriate conditions.

In [49], Lepoutre, Pierre and Rolland studied a relaxed model, without a term source of
the form

8tui =A [az(ﬂ)ul] s u = (ﬂi)ISiSIa fOI' 7 = 1’ e 717
az_éiAai:UiWith6i>0, fOl"i=1,--~,I,

in any dimension and for general nonlinearities a;, which are only assumed to be continuous
and bounded from below. They show the existence of a weak solution. Moreover, if the
functions a; are locally Lipschitz continuous then it is shown that this solution has more
regularity and then is unique.

Another example of such problems is the electochemistry model studied by Choi, Huan
and Lui in [2I] where they consider the general form

i auj i .
8t'u, = ZZ a’L‘g ( ] 6@) u = (u )1§i§m for i= 1,... ,m, (2.11)

/=1 j=1
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and prove the existence of a weak solution of under assumptions on the matrices
Ai(u) = (a (u))1<ij<m: it is continuous in w, its components are uniformly bounded with
respect to u and its symmetric part is definite positive. Their strategy of proof seeks
to use Galerkin method to prove the existence of solutions to the linearized system and
then to apply Schauder fixed-point theorem. Then they apply the results obtained to an
electrochemistry model.

A fourth example of cross-diffusion models is the chemotaxis model introduced in [50].
The global existence for classical solutions of this model is studied by Hillen and Painter in
[38] where they considered

ou = V-(Vu—x(u,v)Vov), t>0,2¢€
ov = MAU+Q(U,U), t>07$€Qa

on a C3- differentiable compact Riemannian manifold without boundary, where the function
u describes the particle density, v is the density of the external signal, the chemotactic
cross-diffusion y is assumed to be bounded, and the function g describes production and
degradation of the external stimulus. Another kind of chemotaxis model (the angiogenesis
system) has been suggested and studied in [24]:

ou = KAu—V-(ux(v)Vv), t>0,z€Q
v = —v"u, t>0,x €8,

where m > 1 and k is a constant.
Moreover, Alt and Luckhaus prove the existence in finite time of a solution for the
following elliptic-parabolic problem

b’ (u) — div(a’ (b(u), Vu)) = f'(b(u)), in Q x (0,T), (2.12)

where Q C RY is open, bounded, and connected with Lipschitz boundary, b is monotone
and continuous gradient and a is continuous and elliptic with some growth condition. This
problem can be seen as a standard parabolic equation when b(z) = z.

Another problem is the Muskat Problem for Thin Fluid Layers of the form

{ of = (1+R)6x(f8wf) +R8m(famg)a
0g = Ruax(gaa:f) + Ruax(98x9)~

It models, [31], the motion of two fluids with different densities and viscosities in a porous
meduim in one dimension, where f and g are the thickness of the two fluids and R, R, > 0
depending on the densities and the viscosities of the fluids. The authors in [31] studied
the classical solutions of such problem. Moreover, weak solutions are studied in [30] by
establishing two energy functionals and in [47] by using a gradient flow approach. Also
the existence of a weak solutions for a strongly coupled fourth order parabolic system are
established in [53], 48| [32].

2.1.4 Strategy of the proof

In , the elliptic part of the equation does not have a Lax-Milgram structure. Other-
wise, our existence result is mainly based on the entropy estimate . It is difficult to get
this entropy estimate directly (we do not have enough regularity to do it), so we proceed by
approximations.
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Approximation 1:
We discretize in time system (2.1)), with a time step At = T'//K, where K € N*. Then for
a given u” = (u"")1<i<m € (HY(Q))™, we consider the implicit scheme which is an elliptic
system:

ui,nJrl _ ui,n

N = div w1y " AVt (2.13)

j=1

Approximation 2:
We regularize the right-hand term of (2.13). To do that, we take n > 0 and 0 <e <1 < ¥,
and we choose the following regularization

ui,n+1 o ui,n

m
A7 = div { T (ub"+1) Z AijNVpy % pyxud™ L (2.14)

Jj=1

where T%¢ is truncation operator defined as

e ifa<e,
Ta):={ a ife<a</, (2.15)
£ ifa>¥,

and the mollifier p,(z) =7~ p (z/n) with p € C(RY), p > 0, [gv p =1 and p(—z) = p().
Now, with the convolution by p;, in (2.14)), the term Vpy * py * u?"t! behaves like w1,
Note that, considering the ZV- periodic extension on RY of /"1, the convolution p,xu?" "1
is possible over RYV.

Approximation 3:

Let § > 0. We will add a second order term like §Au’ to equation in order to obtain
an elliptic one. More specifically, we consider div (5Ts’e(ui)Vui) instead of §Au’, to keep
an entropy estimate.

Then we freeze the coeflicients u on the right-hand side to make a linear structure (these
coefficients are now called §7¢(v*"*1)), we obtain the following modified system:

i,n+1

ui,nJrl o ui,n ) m ) )
— Q- div { T (vinHly ZAiijn * pp w4 Sy . (2.16)
j=1
We will look for fixed points solutions v*"*! = 4" *1 of this modified system. Finally, we

will recover the expected result dropping one after one all the approximations.

2.1.5 Organization of the paper

In Section we recall some useful tools. In Section we study system . By

discretizing our problem on time, in Subsection we obtain an elliptic problem. We use
the Lax-Milgram theorem to show the existence of a unique solution to the linear problem
. We demonstrate, in Subsection the existence of a solution of the nonlinear
problem, using the Schaefer’s fixed point theorem.
Then we pass to the limit in the following order: (At,e) — (0,0) in Subsection [2.3.3
(¢,n) = (00,0) in Subsection[2.3.4land 6 — 0 in Subsection[2.3.5] Generalizations (including
more general matrices A or tensors) will be presented in Section We end with an
Appendix showing some technical results in Section [2.5
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2.2 Preliminary tools

Theorem 2.2.1. (Schaefer’s fixed point theorem)[33, Theorem 4 page 504]
Let X be a real Banach space. Suppose that

P X - X
is a continuous and compact mapping. Assume further that the set
{ue X, u=A0(u) forsome \e][0,1]}
1s bounded. Then ® has a fized point.

Proposition 2.2.2. (Aubin’s lemma) [65/
For any T >0, and Q =TV, let E denote the space

E:={ge L*((0,T); H(Q)) and d,g € L*((0,T); H ()},

endowed with the Hilbert norm

1
e = (Iol20:z:001 ) + 10692 0:7:00-129) -

The embedding
E — L*((0,T); L*(Q)) is compact.

On the other hand, it follows from [51, Proposition 2.1 and Theorem 3.1, Chapter 1]
that the embedding
E < C([0,T]; L*(Q)) is continuous.

Lemma 2.2.3. (Simon’s Lemma)[68]
Let X, B and Y three Banach spaces, where X — B with compact embedding and B — Y
with continuous embedding. If (¢™)n is a sequence such that

19" | a0, ) + 119" I L1 (0,7:x) + 10:9™ | 10,137y < C

where 1 < g < oo, and C' is a constant independent of n, then (g™), is relatively compact in
LP(0,T;B) for all1 <p<gq.

Now we will present the variant of the original result of Simon’s lemma [68, Corollary 6,
page 87]. First of all, let us define the norm H'”Var([ ap);y) Where Y is a Banach space with

the norm ||.|y. |
For a function g : [a,b) — Y, we set

1901V o) = sup S lg(ase) — glag)lly (2.17)
J

over all possible finite partitions:

a<ap<---<ap<b
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Theorem 2.2.4. (Variant of Simon’s Lemma)
Let X, B and Y three Banach spaces, where X — B with compact embedding and B — Y
with continuous embedding. Let (g"™)y, be a sequence such that

1™l 07) + 197 oo 758y + 19" | Vargoryyy < C- (2.18)

where 1 < q < oo, and C' is a constant independent of n. Then (g™), is relatively compact
in LP(0,T; B) for all1 <p<q.

Proof. Step 1: Regularization of the sequence

Let p € C2°(R) with p >0, [ p =1 and supp p C (—1,1). For € > 0, we set

pe(x) = e tp(e ).
We extend g" = ¢"(t) by zero outside the time interval [0,7). Because ¢ < +00, we see
that for each n, we choose some 0 < g, — 0 as n — +oo such that

19" = 9" a0y =0 as n— +oo, with g"=pe, xg" (2.19)

For any 0 > 0 small enough, we also have for n large enough (such that ¢, < J):

19"l L2 6,0—s:x) < 9" N prorix) < C

and
1065 21 575wy < 19" IVar oy < C (2.20)
Step 2: Checking ([2.20))

By (2.18) there exists a sequence of step functions f,, which approximates uniformly ¢g" on
[0,T) as n — 0, with moreover satisfies

”fn”Var([o,T);Y) - HgnHVar([O,T);Y)'

Therefore we get easily (for e, < 9)

[0t (e, *fn)”Ll((S,T_g;y) < anHVar([QT);y)

which implies , when we pass to the limit as 1 goes to zero.

Step 3: Conclusion

We can then apply Corollary 6 in [68] to deduce that g™ is relatively compact in LP(0,T; B)
for all 1 < p < ¢q. Because of , we deduce that this is also the case for the sequence
(9™)n, which ends the proof of the Theorem. [J

Besides the previous statement, several compactness results have been developed recently
for piecewise constant functions of time resulting from a time discretization, see [20], 29] and
[7, Proposition 3.3.1].

2.3 Existence for system (12.1))

Our goal is to prove Theorem [2.1.1]in order to get the existence of a solution for system

1)
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2.3.1 Existence for the linear elliptic problem ([2.16])

In this subsection we prove the existence, via Lax-Milgram theorem, of the unique solu-

tion for the linear elliptic system ([2.16]).
Let us recall our linear elliptic system. Assume that A is any m x m real matrix. Let

v = (VP e € (L2(Q))™ and u™ = (ub")1<i<m € (HY(Q2))™. Then for all At, ¢, ¢,
n, 0 >0, with e < 1 < £ and At < 7 where 7 is given in (2.22), we look for the solution
u™ = (uh ) <<, of the following system:

ui,n+1_uz,n )

Lo = div{J;em(v"H,unﬂ)} i D(Q),

(2.21)

. . m . .

T 00 = Tﬁvﬁ(vl’"”){ZlAinn*pn*u””“+5W’”+l},
J:

where T is given in (2.15)).

Proposition 2.3.1. (Existence for system )
Assume that A is any m X m real matriz. Let At, e, £, n, 0 >0, with e <1 < ¥, such that

2
At < 557772 =T, (2.22)
Co20* || Al
where
Co = IVl L1y (2.23)

Then for n € N, for a given v"*1 = (v"" )1,y € (LA(Q))™ and u™ = (u"™)1<i<m €
(HY(2))™, there exists a unique function u™t! = (u*"*1)1c,cp € (HY(Q))™ solution of
system . Moreover, this solution u™1 satisfies the following estimate

At
(1 - > [ n+1H(L2(Q) m + Ated HV“nHH ym S ™ |12 yym (2.24)

where T is given in .

Proof. The proof is done in four steps using Lax-Milgram theorem.
First of all, let us define for all u"*1 = (u*"*1)1<;< and ¢ = (¥')1<i<m € (H(2))™, the
following bilinear form:

a(un—l—l?w) — Z/ i,n+1 erAt Z/Taé zn+1)AZJ (vpr]*P *u]n—l-l) VQDZ

1,7=1

_’_At(;Z/TEZ i,n+1 Vui’”H-Vgoi,

which can be also rewritten as
a(unJrl’SO) — <un+1790>(L2(Q))m + At <T€’€(v"+1)ch,AVpn*pn*u”+1>

+AtS <T5’€(v"+1)V<p, Vu"+1>

(L2 ()™

)

(L2 ()™
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where (-, ) 12(q))m denotes the scalar product on (L2(Q))™ and T4 (v 1)V = (T (0P T Vi)

1<i<m’
Also we define the following linear form:

L(yp) = Z/Qui’”wi = (u",9) (r2()m
=1

Step 1: Continuity of a
For every n € N, u"*! and ¢ € (H'(Q))™, we have

N

(@™ o) < " 2@mllell 2 @pym + AL AV oy * py+ u™ | (L2@)ym Vel (2(0))m
FALS VU | r2()ym IVl (p20)ym

3max(1, Ate||All, Atse) ||| 1. yym 01l (yym-

IN

where ||A]| is given in (2.7) and we have used the fact that

HVPU*Pn*unHH(p(Q))m S HVUHHH( (2.25)

L2 (Q))m I

and
e<T%a)<?, forallacR. (2.26)

Step 2: Coercivity of a
For all p € (H(2))™, we have that a(y, p) = ao(y, ) + a1(p, @), where

ao(p,p) = H(PH?LQ(Q))T” + Ato <Ta7e(¢)v<‘0’ V(‘O>(L2(Q))m

and
a1(, ) = Bt (T(0)Vip, AV py % py 50

On the one hand, we already have the coercivity of ag:

(Z2(@)m

ao(e, %) > llelfraiym + AtellVellfragym-
On the other hand, we have
lar(p, @)l < AIAI IV, % oy * pll gaqyym 196l 22y

1 o'
< Atl||A <2a 1V 5 % pn % 2lI 2 0pym + 5 HWH?Lz(Q))m)

At2 AP CE Ated )
< WH@H(B(Q)W+T\|V<P|’(L2(Q))m,

where in the second line we have used Young’s inequality, and chosen oo = ||ZT| 7 in the third
line, with Cj is given in (2.23]) and ||A|| is given in (2.7]). So we get that
At Ated
loe) = (1= 5 ) Il + g 196l (2.27)

is coercive, since At < 7 where 7 is given in (2.22]).

Step 3: Existence by Lax-Milgram
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It is clear that L is linear and continuous on (H'(£2))™. Then by Step 1, Step 2 and Lax-
Milgram theorem there exists a unique solution, u"*!, of system ([2.21)).

Step 4: Proof of estimate (2.24)
Using (2.27) and the fact that a(u™*!, v 1) = L(u™*!) we get

At n 2 Ated n 2 in ,in
(1_27) Il 2 opm + 5= IV a@ym = (@0 2y
1, , 1y 12
< Sl 2 z2yym + B [Ju +1H(Lz(sz))mv

which gives us the estimate (2.24). O

2.3.2 Existence for the nonlinear time-discrete problem

In this subsection we prove the existence, using Schaefer’s fixed point theorem, of a
solution for the nonlinear time discrete-system given below. Moreover, we also show
that this solution satisfies a suitable entropy estimate.

First, to present our result we need to choose a function ¥, , which is continuous, convex

1
and satisfies that W7 ,(z) = To(z)’ where T is given in (2.15)). So let
%+aln5—% ifa<e,
1
V. (a)—— =< alna ife<a<ld, (2.28)
e
a? L :
g7 talntl —35 ifa> /.

Let us introduce our nonlinear time discrete system: Assume that A satisfies (2.3). Let

u® = (u)1<i<m = up = (u})1<i<m that satisfies

Cy = Z/ W o(uf) < +oo, (2.29)
=17

such that uf) >0in Qfori=1,...,m. Then for all At, e, ¢, n,d >0, with e < 1 < £ and
At < 1 where T is given in (2.22), for n € N, we look for a solution u" ™! = (u*"*1);<;<;, of
the following system:

ui,nJrl _ ui,n )
— - div{ ;M’a(unﬂ,unﬂ)} in D'(Q), forn >0
/ (2.30)
u0(z) = up(x) in Q,

where '];7&77,5 is given in system 1) and T=¢ is given in (2.15).

Proposition 2.3.2. (Ezistence for system @)

Assume that A satisfies . Let ug = (u})1<i<m that satisfies , such that uh > 0
a.e. i fori=1,...,m. Then for all At, e, £, n, § >0, withe <1 < ¥ and At < T where
T 18 given in , there exists a sequence of functions u™ ™t = (u*" 1)1 << € (Hl(Q))m
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for n € N, solution of system , that satisfies the following entropy estimate:

Z/ aﬂ zn+1 +5At22/vuz,k+l 2+5 AtZZ/’vpn*uzk+l2<Z/ séuo
i=1 k=0 i=1 k=0
(2.31)

where V., is given in .

Proof. Our proof is based on the Schaefer’s fixed point theorem. So we need to define, for
a given w = u" = (u"")1<i<m € (L2(Q))™ and v := v = (v )15, € (L2(Q))™, the
map P as:
o (LXQ)™ = (LA
v > u

where u := u"! = (u") icp = O(VT) € (HH(Q))™ is the unique solution of system

(2.21]), given by Proposition m

Step 1: Continuity of ®
Let us consider the sequence v such that

v € (LA(Q)™,
(2.32)
v — v in (L2(Q))™

We want to prove that the sequence uy = ®(vy) — u = ®(v) to get the continuity of ®.
From the estimate , we deduce that uy, is bounded in (H'(2))™. Therefore, up to a
subsequence, we have

up — u  weakly in (H'(Q))™,

and

up, — u strongly in (L?(Q))™,

where the strong convergence arises because €2 is compact. Thus, by the definition of the
truncation operator T5%, we can see that 7% is Lipschitz continuous together with (2.32)
yield to
T (i) — T (") in L*(Q), fori=1,...,m.
Now we have , ,
1 (2

up —w :
kAt = dlv{ e bnd (vk,ur)}  in D'(Q). (2.33)

This system also holds in H~1(Q), because J* e 05Uk, k) € L?*(Q). Hence by multiply-

ing this system by a test function in (H 1(9))m and integrating over  for the bracket
(-, ->H,1(Q)XH1(Q), we can pass directly to the limit in () as k tends to oo, and we get

ut — wt

At

= div{J!,, s(v,u)} in D'(Q). (2.34)

where we used in particular the weak L? - strong L? convergence in the product 7% (v;) Vuy,.
Then u = (u')1<i<m = ®(v) is a solution of system . Finally, by uniqueness of
the solutions of , we deduce that the limit u does not depend on the choice of the
subsequence, and then that the full sequence converges:

up — u strongly in  (L*(Q))™, with wu = ®(v).



2.3. Existence for system ([2.1)) 37

Step 2: Compactness of ¢
By the definition of ® we can see that for a bounded sequence (vi)x in (L2(2))™, ®(vi,) = ug,
converges strongly in (L?(€))™ up to a subsequence, which implies the compactness of ®.

Step 3: A priori bounds on the solutions of v = A®(v)
Let us consider a solution v of

v=A®(v) for some e ]0,1].

By (2.24) we see that there exists a constant Co = C(At,¢,...) such that for any given
w € (L?(Q))™, we have 1)l )y < Co lwll(12(q)ym- Hence v = A®(v) is bounded.

Step 4: Existence of a solution

Now, we can apply Schaefer’s fixed point Theorem (Theorem [2.2.1)), to deduce that ® has a
fixed point u"*! on (L?(€2))™. This implies the existence of a solution u"*! of system ([2.30)).

Step 5: Proof of estimate (2.31])
We have,

Z/ (Ut — W, (ut")
At

uz,n+1 _ ui,n , ) L
= Z / ( B Ve ) UL p(ut" )
=174
m ui,n—H _ ui, , A
Sy T
i=1 H-1(Q)xHY(Q)
— _Z< Tsé zn+1)vuzn+1+Teé( zn—i—l ZAHVPW*PW u],n+1 ‘I’” ( zn+1)vui,n+1
7=1
= -> 5/ |Vu””+1|2+/ZVpn*ul’”“Aiijn*uj’”“
i=1 Q Q55
<

m m
_25/ ’vui,n-‘rl’Q_é-OZ/ ]Vpn*ui’"+1|2,
i=1 /9 =179

where we have used, in the second line, the convexity inequality on W, ,. In the third line, we
wn+l _ in
used the fact that “————— € H~'(©) and VL (") = W/, (u'" 1) Vuin ! € L2(Q)
coming from the fact that ¥, € C1(R), [14, Proposition IX.5, page 155], \I/é”g(ui’”“) €
L>(Q) and Vub" 1 € L2(Q) for all i = 1,--- ,m. Thus, in the fourth line we use that u®"+!
is a solution for system where we have applied an integration by parts. In the fifth
line, we used the transposition of the convolution (see for instance [14, Proposition IV.16,
page 67]), and the fact that p,(z) = p,(—z) = py(z). Finally, in the last line we use that A
satisfies . Then by a straightforward recurrence we get estimate . This ends the
proof of Proposition O

>L2(Q)
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2.3.3 Passage to the limit as (At,e) — (0,0)

In this subsection we pass to the limit as (At,e) — (0,0) in system (2.30) to get the
existence of a solution for the continuous approximate system (2.37)) given below.
First, let us define the function ¥g as

( 400 if a <0,
1 0 if a =0,
Uoela) — — = (2.35)
¢ alna if0<a</,
@ talnl—Lt ifa>(

Now let us introduce our continuous approximate system. Assume that A satisfies (2.3)).
Let ug = (U%)lgigm satisfying

Cyi=Y) /Q W (1) < +oc, (2.36)
=1

which implies that u} > 0 a.e. in Q for i = 1,...,m. Then for all £, 5, § > 0, with
1 < £ < 400, we look for a solution u = (u')1<;<;, of the following system:

ot = div {ng 5(u)} in D' (Qr),
J&Z’m&(u) = T% ) Z AijVpyx pyxu? + 6Vl 3 (2.37)
j=1
u'(0,2) = up(x) in Q.

where T% is given in (2.15) for ¢ = 0, and we recall here Qp := (0,7 x .

Proposition 2.3.3. (Ezistence for system ((2.37))

Assume that A satisfies . Let ug = (u})1<i<m satisfying . Then for all £, n,
§ > 0 with 1 < £ < +oo there exists a function u = (u')1<i<m € (L2(0,T; HY(Q)) N
C([0,T); L2()))™, with u* > 0 a.e. in Qr, solution of system that satisfies the
following entropy estimate for a.e. t1,ts € (0,T) with u'(t1) = u'(t1,-)

m A ts m A to m A m ‘
/Z%Au’(m»m/ /ijhao/ /Z|Vpn*uz‘2 </Z\pw(ug>.
Q4 t1 Q4 t1 19— R

(2.38)

Proof. Our proof is based on the variant of Simon’s Lemma (Theorem [2.2.4]). Recall that

T
At = T where K € N* and T' > 0 is given. We denote by C' a generic constant independent

of Atand e. Foralln € {0,...,K —1}andi=1,...,m, set t, = nAt and let the piecewise
constant in time function:

UWA () == u™™"(z), for t € (tn,tnil], (2.39)

with USA(0, z) := u () satisfying (2.29).
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Step 1: Upper bound on HUNH(LQ(O,T;H%Q)))’”

We will prove that U2t = (Ui’At)lgiSm satisfies

/0 IVUA D)2 < C.

Foralln e {0,...,K —1} and i = 1,...,m we have

VU (t,2) = Vu' " (@), for t € (tn, tas1]-

Then
tnt1 i At 2 in+112
/t VU @020 = AUVE 2,
Hence
K—1
/0 VU ) 22y = Atkzonw'f“n%m)
ey
)

where we have used the entropy estimate (2.31) with C7 is given in (2.29)). Hence, using

Poincaré-Wirtinger’s inequality we can get similarly an upper bound on / HU Z’AtH (L2(@))m

independently of At (using the fact that / bntl — / / “9 by equation (2.30)) .

Step 2: Upper bound on HUAtH(Var([O,T);H—l(Q)))m

We will prove that

HUAtH(Var([o,T);Hfl(Q)))m <C.
We have fori=1,...,m
HUl’AtHVar([o,T);H—l(Q)) ~ [UP(tn1) Uz’At(tn)HH—l(Q)
KE-1 ‘
— Huz,n-l—l _ uz,nH i)
n=0
K1y int1 in
ub —ub
= At bl
nzo At e
K-1 m
< At Z Ts,é(ui,nJrl) ZAijvpn*pn*ujerl + 5vui,n+1
n=0 j=1 L2(Q)
K-1
< ary § Il Z [V w?™ | oy + 8 [ VU] 2
n=0 Jj=1
< C,
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where

1<i<m
J

and we have used in the last inequality the entropy estimate (2.31)), and the fact that

1Al = max > | Ay, (2.40)
=1

1
2

K-1 K—-1
i,n @M 2
At 2_:0 HVua +1HL2(Q) <VT (At Z:O HVU» +1HL2(Q))

Step 3: UYAt € LP(0, T,L%(Q)) with p > 2

The estimate gives us that U2 € L(0,T;LY()) N L*(0,T; HY(Q)) for i =
1,...,m. Using Sobolev injections we get H'(Q) — L***(N)(Q), with a(N) > 0, and then
UAt ¢ L2(0,T; L>T*(N)(Q)). Hence by interpolation, we find that U>?t € LP(0,T; L*(Q))

11 11 1 1
ith | —, 5 ) =(1- —, 5 P ey 1), ie. f
wit (p’2) ( 9)( ,2> +9<2’2+a(]\7)> and 6 € (0,1), i.e. for

4+ 4a(N)
= ——>=> 2 2.41
P=5Tamny) ~ (241)
Step 4: Passage to the limit as (At,e) — (0,0)
By Steps 1,2 and 3 we have

[Leind [P <C.

o2 T HUiAtHL?(O,T;Hl(Q)) + HUi’AtHVar([o,T);H—l(Q))

compact continous
c_> (%

Then by noticing that H'(Q) L*(Q) H~Y(Q), and applying the variant
of Simon’s Lemma (Theorem , we deduce that (U i’At)At is relatively compact in
L?(0,T; L?(2)), and there exists a function U = (U')1<j<m € (L2(0,T; H(2)))™ such
that, as (At,e) — (0,0), we have (up to a subsequence)

USAt 5 Ut strongly in L2(0,T; L*(Q)).
By Step 1, we have VU»*! — VU weakly in L?(0,T; L*(2)). Now system (2.30) can be

written as
UBAL(t + At) — UMA(t)
At

=div {Ji,, ;U (t+ At), U (t+ At))}  in D'(Qr).
(2.42)

Multiplying this system by a test function in D(Qr) and integrating over 7, we can pass
directly to the limit as (At,e) — (0,0) in (2.42]) to get

OU" = div | TONUY) | Y AijVpy* py + U7 + 6VU' in D'(Q7),
j=1

where we used the weak L? - strong L? convergence in the products such T (U»A) VU HA
to get the existence of a solution of system ([2.37)).

Step 5: Recovering the initial condition
Let p € C2°(R) with p >0, [y p =1 and supp p C (—%, %) We set

pac(t) = At p(AEM), with p(t) = p(—t).
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Then we have
2
H@tU *pAtH(LQ(OTH Q)) Z/ Z’n+1 - ui7n)6tn+1 *ﬁAt
H=1(Q)
m K—-1 . in41 in ||2
ub —ub
RS ) SY PV TR (st
i1 n=0 70 bt llm-e
_ iK 1 ybmtl u, 2
i=1 n=0 H-1(Q)
K-1 m m ' . 2
< Z/ Tz—:f zn+1 ZAiijn*pn*uJ’n+1 +6vuz,n+1
n=0 i=1 " j=1
2
K—-1 m
< 20,50t ) / ZA”V/),, B AV
n=0 i=1 j=1
2 — 2 n+1||2 2 n+1||2
< 2 CylPAt ZO/Q{HAH 1V oy * o % u™* H(LQ(Q))W + 6% || Vut H(L2(Q))m}
K-1 )
< 2040500 {HA||2HVPn *UnHH%m(Q))m + 67 HV“nHH(m(Q))m}
n=0
b
where 6z, , is Dirac mass in t = t,41, C1 as in (2.29), C3 as in (2.36), Cy := fo
and we have used in the last line the entropy estimate (2.31]). Clearly, pa; * U — Ut

weakly in L2(0,T; H71(Q)) as (At,e) — 0. Similarly we have that pa; » U A - U
strongly in LZ(O,T; L2(Q)) since U — U’ in L?(0,T;L?*(Q)). Then we deduce that
Ul e {ge L*0,T; HY()); g+ € L*(0,T; H-*(2))}. And now U*(0,z) has sense, by Propo-
sition @, and we have that U*(0,z) = u}(z) by Proposition m

Step 6: Proof of estimate

By Step 4, there exists a function U? € L?(0,T; H(Q)) such that the following holds true

as (At,e) — (0,0)
Ui,At — Uz
VUi,At N VU’L
Vo, * U-At Vo, x U

in L?(0,T; L*()).

Now using the fact that the norm L? is weakly lower semicontinuous, with a sequence of
integers ng (depending on At) such that t,,41 — t2 € (0,7") and

Ui’At(tg) — Ui’At(th_H) — un2+1’

we get for t1 < to

to 9 to )
/ /WUzy g/ /[VU’] <
t1 Q 0 Q

lim inf
(At,e)—+(0,0)

/"2+1/ ’VUzAt’

liminf At
(At,e)—(0,0)

Z/ ’vuz,k+12

(2 43)
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and

/ /‘Vpn*U’ / /‘Vpn*UZ < Altlinlnf AtZ/|Vp *utFHLZ 0 (2,44)

Moreover, since we have U»* — U in L2(0,T; L?(Q)), we get that for a.e. ¢t € (0,T) (up
to a subsequence) U»At(t,-) — U'(t,-) in L?(). For such t we have (up to a subsequence)
UbAt(t,.) — Ui(t,-) for a.e. in Q. Moreover, by applying Lemma we get that for a.e.
€ (0,7)
Vo (U'(t)) < liminf W, (U"2(2)). 2.45
0e(U'(1) = Miminf e (U"T(E) (2.45)
Integrating over €2 then applying Fatou’s Lemma we get for a.e. t1 < to

m

U (U t5)) < 1 f U (UAHE)) < i ¢ / zn2+1
;/Q 0,0( (2))_/9(&1?—13%00) e (U (t2)) Atl?flm Z

=1

(2.43),(2.44) and (2.46) with the entropy estimate (2.31)) give us that for a.e. t; < t3 € (0,7

zmj/\Ilo,z(Ui(tg))+5§:/t2/QWU@"Q_HSOi/tQ/ ‘Vpn*Uif

m ng

< 1 f w2y 4 liminf  §AE / Vubkt)2
< Jmint S [ s e oad-S [0
m no
+ hmmf 50At22/ IV pyy Hu R 2
(Ate) i=1 k=0
m . .
< 3 [ty <3 [ oot
i=1 79 i=1 79
which is estimate (2.38]).
Step 7: Non—negativity of Ut
Let Q5(t) := {z € Q: U™ (t,x) < e} forallt € [0,T] and i = 1,--- ,m. By estimate (2.31)),
there ex1sts a positive constant C' independent of ¢ and Atf such that for alli =1,...,m we
have
¢ > / ‘Ils,f(Ui’At)
Q
2 / \PE,E(Ui’At)
HO)
1 1,At
— / 4 (U ) 4 U’ At lne
Qs (1) (& 2¢e 2
/ 1 (Ui,At)
> -+ +elne — -
Qf(t) e 2e 2

- / (Ui,At>271
T o Jew 22 2
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ie.
Ui,At 2 1
/ O ey d (2.47)
SHONES 2
Now by passing to the limit as (At,e) — (0,0) in (2.47) we deduce that / ’U"‘2 =0,
Q7 (1)

where Q7 (t) := {z € Q: U'(t,z) <0} for all t € [0,7] and i = 1,--- ,m, which gives us
that (UY)~ = 0 in L?(2), where (U?)~ = min(0,U?). O

Remark 2.3.4. (Another method following [51]])

Note that it would be also possible to use a theorem in Lions-Magenes [51, Chap. 3, Theorem
4.1, page 257]. This would prove in particular the existence of a unique solution for the
following system.:

8tui = div {Jei,é,nﬁ(v’ u)} n D/(QT),
T ms(vu) = T ZlAiijn * pp *ud + (5Vui} , (2.48)
j:
u'(0, z) = up(z) in  Q,

where TS is given in .

It would then be possible to find a fized point solution v = u of to recover a solution
of . We would have to justify again the entropy inequality .

2.3.4 Passage to the limit as (¢,7) — (o0,0)

In this subsection we pass to the limit as (¢,17) — (00,0) in system (2.37) to get the
existence of a solution for system (2.49)) given below (system independent of ¢ and 7).
Let us introduce the system independant of ¢ and 7. Asume that A satisfies (2.3). Let
ug = (Ué)lgigm satisfying (2.5). Then for all § > 0 we look for a solution u = (u)1<j<m of
the following system:
ot = div{u ZAijVu] + dut V! in D'(Qr),
j=1
u'(0,2) = ub(x) a.e. in .

Proposition 2.3.5. (Existence for system )

Assume that A satisfies . Let ug = (u})1<i<m satisfying . Then for all § > 0 there
exists a function u = (u')1<i<m € (L2(0,T; HY(Q)) N C([0,T); (WH2(Q)))™, with u® > 0
a.e. on Qp, solution of system , that satisfies the following entropy estimate for a.e.
t1,te € (0,T) with ul(ta) = u(ts,.):

m . t2 m . to m . m .
/Z\IJ(ul(tg))—f—é/ /Z\vw\%&o/ /Z{vulfg/z:qf(ug), (2.50)
@ i=1 b 2oy b 2y @ i=1
with U s given in .

Proof. Let C be a generic constant independent of £ and 7, and u’ := (u"*)1<;<, a solution
of system ([2.37]), where we drop the indices n and ¢ to keep light notations. The proof is

(2.49)
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accomplished by passing to the limit as (¢,77) — (00,0) in (2.37) and using Simon’s lemma
(Lemma [2.2.3)), in order to get the existence result.

Step 1: Upper bound on d;ul*

As in Step 3 of the proof of Proposition estimate (2.38) gives us that u* € LP(0, T, L*(2))

2
with p > 2 is given in (2.41)). Let ¢ = % > 1. It remains to prove that for ¢ =
p

1,...,m, Hﬁtui’g < C. We have
La(0,T;(W1e2) ()
. 1
. T q
ot (W leo(Q))) = </ H8 ubt ‘ >
10 Nnoorswroeyy = | - {|90]] ey
g :
= / div { T (u®t) Z AV py * py w5V
' = (Whe (@)
T m N\ @
< / / T (ub*) Z AV py * py w5V ubt
0 Q =
: . N
< / / ubt Z Aii NV py x pp % Wt + 6 ’Vui’z
0 Q =
m
< il A 3.0 5 ‘ il H il
- ‘ Y ori2@) jz; iV Py % Py X o orze) - lzome)
B L2(0,T;L2(92))
m
< i A |V 5 5 |[vut <cC
- ‘ b LP(0,T;L2(Q2)) 141l ]2 P x U L2(0,T;L2(2)) + “ L20,1;L2() | —

1 1 1
where we have used in the fifth line Holder’s inequality (since we have — = — 4 5) and in

q p
the last line the entropy estimate (2.38)).
Step 2: Passage to the limit as (¢,1) — (o0, 0)
In view of Step 1 of this proof and (2.38) we have that
‘ X ‘ X 4 Hatui,z <c,
LP(0,T5L2(%2)) L2(0,T3H(2)) La(0,T5(W=>=(Q)))

2
where p > 2 is given in (2.41)) and ¢ = % > 1. Then by noticing that H'(£2)
p

compact
—

continous

L2(Q) = (WL°(Q)), and applying Simon’s Lemma (Lemma 2.3), we deduce that
(u"?), is relatively compact in L2(0, T'; L?(€2)), and there exists a function u* € L?(0,T; H(2))
such that, as (¢,1) — (00,0), we have (up to a subsequence)

u* = u' strongly in L*(0,T; L*(Q2)).
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In addition, since u* — u’ a.e., u’ is nonnegative a.e. hence T%(u*) — ' strongly in
L?(0,T; L?(2)). Multiplying system ([2.37)) by a test function in D(Q27) and integrating over

Q7 we can pass directly to the limit as (¢,n) — (00,0), and we get

O’ = div UiZAijVUj + 6u' V! in D'(Qr).
j=1

where we used in particular the weak L? - strong L? convergence in the products such
T (u*)Vubt. Therefore, u = (u')1<;<m is a solution of system (2.49).

Step 3: Recovering the initial condition
Using Step 1 of this proof with the fact that WH1(0, T; (W1 (Q))) — C([0,T); (WL (Q)))
then u*(0,z) makes sense and u*(0,z) = u(z) for all i = 1,...,m, by Proposition

Step 5: Proof of the estimate ([2.50))
The proof is similar to Step 6 of the proof of Proposition O

2.3.5 Passage to the limit as 6 — 0

Proof. Let C be a generic constant independent of § and uw = (ui’é)lgigm a solution of
system . We follow the lines of proof of Proposition

An upper bound on ui"s and estimate allow us to apply Simon’s Lemma (Lemma
2.3), then (u*®)s is relatively compact in L?(0,T; L?(2)), and there exists a function u’ €
L?(0,T; H'(Q)) such that, as § — 0, we have (up to a subsequence)

u™® — o' strongly in L*(0,T; L3 (Q)),

and
m
out = div uiZAijVuj in D'(Qr).
j=1
Similarly to Step 4 of the proof of Proposition the initial condition is recoverd. Also
estimate can be easily obtained. O

Remark 2.3.6. (Passage to the limit as ({,7,0) — (c0,0,0))

It is possible to pass to the limit in system as (4,n,9) — (00,0,0) at the same time:
By using the entropy estimate and applying Simon’s Lemma on the sequence py, *ubt
instead of u*. Moreover, to get the entropy estimate it is sufficient to use the fact

that o, Wo,e(py*u*) < Jo py* Wo,e(u™).

2.4 Generalizations

2.4.1 Generalization on the matrix A

Assumption (2.3 can be weaken. Indead, we can assume that A = (A;;)1<; j<m is a real
m X m matrix that satisfies a positivity condition, in the sense that there exist two positive
definite diagonal m x m matrices L and R and dg > 0, such that we have

CPLARC > 6o|¢|?, forall ¢ € R™. (2.51)
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Remark 2.4.1. (Comments on the positivity condition )

The assumption of positivity condition , generalize our problem for A not necessarily
having a symmetric part positive definite. Here is an example of such a matriz, whose
symmetric part is not definite positive, but the symmetric part of L A R is definite positive
for some suitable positive diagonal matrices L and R.

We consider

1 —a .
A_<2a 1>wzth la| > 2.

Indeed,

ASym

AT+ 4
=

a
2
1 Y

1
a
2

2
satisfying det(A%Y™) =1 — az < 0. And let

2 0 10
L:<0 1> and R:b:(o 1).

2 —2a
B_L'A'R_<2a 1 >,

2 0
sym _
= (5)

On the other hand,
satisfies that

1s definite positive.

Proposition 2.4.2. (The case where L = 1I,)
Let A be a matrix that satisfies the positivity condition with L = Is. Then u is a
solution for system with the matrizv A = AR (instead of A) if and only if u' = Ry; '
is a solution for system with the matriz A.

Proposition 2.4.3. (The case where R = I5)

Let u"t! = (ut™ ) i< be a solution of system with a matriz A satisfying the
positivity condition with R = Iy and L a positive diagonal matriz. Then u™! satisfies
the following entropy estimate

N int1 ~ 3 ik+112
Z;/QL“\II&K(U ) + 5At1g1§nm{L,,}ZZ/Q]Vu ]

i=1 k=0

m n m
80A IS [V P <Y [ Lav )
Q =1/

1=1 k=0
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Proof. Similarly to Step 5 of the proof of Proposition [2.3.2] we have

- v ,E(ui7n+1) -V ,ﬂ(uim) - j,n in
Z/QLM( = A . < —/QZZLz‘z‘Aij(VPn*Pn*“J’ vttt
i=1 '

i=1 j=1

m
_5Z/Liivui,n+l‘2
=179

<
i=1 j=1
m .
_6Z/Liivuz,n+l‘2
=178
m .
< _50/van*uz7n+l|2
Q

=1

m
—§ min {L“}Z/ |Vui’n+1|2,
1<i<m ~ Jo

/Q Z Z(Vpn * uj’nJrl)LiiAij(V/)n

* ui,n+1)

where we have used, in the last line, the fact that the matrix A satisfies (2.51)) with R = I5.

Then by a straightforward recurrence we get (2.52). [

Corollary 2.4.4. Theorem still hold true if we replace condition by condition

2.51)).

2.4.2 Generalisation on the problem
The tensor case

Our study can be applied on a generalized systems of the form

i N 0 ; ol ‘
Oru :ZZZaT;k (fi(u )Aijklaxl> fori=1,...,m,
where f; satisfies

( fie C(R),

0< fila) <C(1+]al) for a € Rand C > 0,

0 < fi(a) for a € (0,a0] with ag > 0,
4
da < +o0 for all A > ayg.
\ ag fz(a)

An example for such f; is

fi(a) = max (O, min (a, M)) .

(2.52)
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Moreover, A = (Ajjk1)ijk1 is a tensor of order 4 that satisfies the following positivity
condition: there exists dg > 0 such that

D Agun' i GG = dolnfP¢)* for all p € R™, ¢ RV, (2.53)
oy

The entropy function W¥; is chosen such that ¥, is nonnegative, lower semi-continuous,

1
fi(a)

convex and satisfies that U7 (a) = for i = 1,...,m. Our solution satisfies the following

entropy estimate for a.e. t >0

Z/ +5OZ/ /IW’I2 < Z/ (). (2.54)

To get this entropy we can apply the same strategy announced in Subsection where
fi(u?) will be replaced by T=(f;(v*)) with T given in (2.15) and we use the fact that

/Z Oy, ”’“lax‘ = > ) <8;Lk> wm@/@(n)

2,7 7kl nEZN /Lv.] kl
= > ) mpui(n) Ajrngwi(n)
HEZN i7j7k7l
2 1~ 2 2
> do Z In|” [ul” = do [|Vull{r2(q)m
nezZN

The variables coefficients case

Here the coefficients A;j(x,u) may depend continuously of (z,u). Then we have to take
pn * (Aij(z,u)(Vpyxu?)) instead of A;;V(p,* p,*u’) in the approximate problem. We can
consider a problem

8tui = div ui Z Aij(l’, u)Vu + gi(% U)7
j=1

where the source terms are continuous with respect to the variable w and there exists a
positive constant ¢ such that

—clu| < gi(x,u) < (14 |ul).

Laplace-type equations
Moreover, our method applies to models of the form
o’ = A(a;(w)u’)  with u = (u")1<i<m, (2.55)
under these assumptions:

a;(u) >0 if v/ >0 forj=1,...,m,
a; is at most linear,
a; € Cl(R),

Sym ((2‘”) ) > ol with o > 0, (2.56)
,J

uj
Gai

au]'

are bounded from below for all 4,5 =1,--- ,m
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where Sym denotes the symmetric part of a matrix. We can consider a particular case of
m

2.55) where a;(u) = Z Ajju?. Then problem (2.55) can be written as
j=1

o’ = div uiZAijVuj + ZAijuj Vil 'y, (2.57)
j=1 ;

which can be also solved under these assumptions:
Ai; >0 for i,j=1,...,m,
Sym(A) > dol.

2.5 Appendix: Technical results

In this section we will present some technical results that are used in our proofs.

Proposition 2.5.1. (Recovering the initial condition)

Let Y be a Banach space with the norm ||.|y. Consider a sequence (gm)m € C(0,T;Y) such
that 0y(gm) is uniformly bounded in L(0,T;Y) with 1 < q < 0o, and (gm)y—o — go n Y.
Then there exists g € C(0,T;Y) such that g,, — g in C(0,T;Y) and

9jt=0 = 9o inY.

Proof. We have that for all s <t € (0,7)

lgm(t) = gm(s)lly =

g—1
< (t-9)"T 0-(gm)(r Niraory)y <@t —s)«C, (2.58)
where we have used in the second line Holder’s inequality, and the fact that (g, )- is uni-

formly bounded in L2(0,7;Y"). Since (2.58) implies the equicontinuity of (g, )m, by Arzela-
Ascoli theorem, there exists g € C(0,7T;Y) such that g,, — ¢ in C(0,7;Y). Moreover,

Taking s = 0 in (2.58) we get
g1
Hgm(t) - gm(O)HY <ta«C. (259)
By passing to the limit in m in (2.59)), we deduce that
g—1
lg(t) = golly <t « C
Particularly, for ¢ = 0, we have

19(0) = golly = 0.

This implies the result. [
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Lemma 2.5.2. (Convergence result)
Let (a.): a real sequence such that a. — ag as € — 0. Then we have

Woe(ap) < liminf W, ,(ac),
? e—0 ’

where W,y and Vo ¢ are given in (2.28) and (2.35) respectively.

Proof. Consider the case where ag = 0.

We suppose that the sequence (ac). € (—oo;2]. Let (b:). € (—o00;2] a sequence that
decreases to 0 as € — 0 with b > a.. Since ¥. , is decreasing on (—oo; é] we have U, ¢(a;) >
U, ¢(bs). Moreover, using the fact that ¥, ,(b.) — 0 = ¥ ,(0) we get the result.
Otherwise, when (a.). € (%, +00) the proof is the same as above but with taking b. < ac
since W, ¢ is nondecreasing in (é, +00).

For the other cases, ag < 0 and ag > 0, the result is easily obtained. [
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Chapter 3

Existence result for degenerate
cross-diffusion system with
constraint arising from a seawater
intrusion

Abstract: This chapter is the subject of a paper written in collaboration with R. Monneau
and M. Jazar, submitted for publication in ”Mathematical Models and Methods in Applied
Sciences”. We consider a degenerate strongly-coupled nonlinear parabolic system with con-
straint, which arises from seawater intrusion model in confined aquifers. The existence of a
nonnegative solution is obtained after establishing a suitable entropy estimate.
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3.1 Introduction

3.1.1 Physical motivation and previous work

Seawater intrusion is one of the major concerns commonly found in coastal aquifers.
It is the movement of seawater into the freshwater aquifers. In the modelling of such
phenomenon, Jazar and Monneau proposed in [43] two reduced models in confined and
unconfined aquifers, where the freshwater and the saltwater are assumed to be immiscible
and one of the dimension is negligible with respect to the tow others. In this paper, we
are concerned with the confined case (see Figure 3.1): we consider {z = 0} the interface
between the saltwater and the bedrock, {z = g(¢t,z)} the interface between the saltwater
and the freshwater and {z = h(t,z) + g(t,z) = f(x)} the interface between the freshwater
and the impermeable layer, where f(x) is a given function.

2=f(x) confihing ro
freshwater /
z=g(x)
saltwater

ST bl T 1T T

Figure 3.1 — Seawater intrusion in confined aquifer

Then the confined model reads

oh = div{hV (p+v(h+g))} in[0,00) x RV,
og = div{gV(p+rh+yg)} in [0,00) x RV, (3.1)
h+g = f(z) in [0,00) x RN,

where N = 2,3, p is the pressure on the top confining rock and v =1 — ¢y € (0,1) with

Vs — Vf
Vs

g =

and s and 7y are the specific weight of the saltwater and freshwater respectively.
In this paper, we show existence result for a more generalized model of the form

atui = div {’LLZV (p + ZAz]uj> } in QTv for i = 17 sy,
j=1

Sul(t,x) = f(x) in Qr,
i=1
u'(t,z) >0 for a.e. (t,x) in Qp,

(3.2)
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where Q7 := (0,T) x Q with 7> 0 and Q := TV = (R/Z)", with N > 1 and the initial
condition ' '
u'(0,z) = ug(z) >0 ae. inQ, fori=1,...,m, (3.3)

and
p(0,z) = po(x) in Q. (3.4)

Here, p appears as a Lagrange multiplier of the constraint on u = (u%);<i<m, given by
the second line of (3.2)).

The existence of a solution for (3.2) without the constraint and with p = 0 is studied by
many researchers with different settings, assumptions and particular cases [75] [74, 53], 47,
18, 177, 22]. The most relevant among them to the present paper is [3]. Let us mention that
a different kind of seawater intrusion model in confined aquifers, which consists in a coupled
system of an elliptic and a degenerate parabolic equation, has been studied in [61], [71], [23].

3.1.2 Main result

To introduce our main result, some definitions and assumptions are given.
The space H!(Q)/R:
We define H'(Q2)/R as the space of functions of H!(2), up to addition of constants. A
natural norm is

ol ut Il = |- 17 [ 7] (35)

D =inf|p—c =lp—— [ p . .
o) = g 1P e = [P ol Jo | g

The function V:

We define the nonnegative function ¥ as

alna for a >0,
= 0 for a=0, (3.6)
400 for a <0,

W) - -

1

which is minimal for a = —.
e
The positivity condition:
The real m x m matrix A = (A;j)1<ij<m is not necessarily symmetric and satisfies the
following positivity condition: there exists dg > 0, such that we have

ETAE > 60l¢?,  for all € € R™. (3.7)

This condition, as in [3], can be weaken: there exist two positive definite diagonal m x m
matrices L and R and dy > 0, such that we have

CTLARC > 6o|¢|?, forall ¢ eR™. (3.8)

In the core of this paper we will assume (3.7)) for the sake of simplicity.
Now we state our main result.

Theorem 3.1.1. (Existence for (3.2))
Assume that A satisfies and that there exist 0 < 1 < £y < oo such that

0 < f(x) <dly, forallzeQ and f € Hl(Q) (3.9)
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Fori=1,...,m, let ué >0 in Q satisfying

Z/ ) < +o0, (3.10)

where U is given in (@ Then there exists a function v = (u')1<i<m € L¥(Qr) N
(L2(0,T; HY(Q)) N C([0,T); (WL (Q2)))™, and a function p € L*(0,T; H'(Q)/R) such
that (u,p) is a solution in the sense of distributions of —, with u* > 0 a.e. in Qr,
fori=1,...,m. Moreover, u satisfies the following entropy estimate for a.e. t1,ts € (0,T),
with u'(ty) = u'(ta, )

Z/Q\I'(ui( Z HVu HL2 (t1,t2;L2(2)) < Z/ )+ Col ‘foLQ @) (3.11)
i=1

m6 || Al

225, and p satisfies

where Cy =

GlIA|Pm
VplRa < 2L |9 g 3.12)

Together and yield to
VDI 2 (11 0:22(0y) < C (80, £rs o m, AL | f 1l )
Here || A is the matrix norm defined as

Al = Elpl |AE]. (3.13)

m
Notice that (3.11) and (3.12) allow us to define the products ' ZAijVuj and u'Vp in

=1
B2).

Remark 3.1.2. (Decreasing energy)
If A is a symmetric matriz then a solution (u,p) of system (3.2 ' satisfies

d m m 1 o mo .
pn ;;/ﬂthjuzuj :—/Q ;uz‘qz‘ -

m
where ¢' = Z Az-jVuj.
j=1

3.1.3 Encountered difficulties and strategy of the proof

This system is difficult to handle: we don’t have a maximum principle, nor an entropy
estimate and it is a strongly coupled degenerate system.
To this end, we proceed by approximations. The approximate system is then non degenerate,
linear elliptic. We then pass to the limit in a way to preserve the obtained entropy.
We discretize in time our problem, we regularize the right hand side of , we add a term
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like 6Au and finally we truncate and freeze the coefficients. Therefore, an elliptic linear
approximate system is obtained of the form:

ui,nJrl _ ui,n ) ) )
T = div {FQ,W(U"H,U"H,}?"“)} in D/(Q),
(3.14)
Yuttti(z) = f(x) in Q,
j=1

where

m
sz7777 ( n—&—laun—l—l’pn—i-l) — Ts,Eg (vi,n+1) vpn—l—l + ZAijVPn * pn *uj,n—l-l + 5vui,n+1 ’

j=1
(3.15)
At = T/K is the time step with K € N*, n, § > 0, 0 < ¢ < 1, T is the truncation
operator defined as

e ifa<e,
T52(a) =4 a ife<a<d/ly, (3.16)
62 if a Z 52,

and the mollifier p,(z) =n""p (z/n) with p € CRN), p>0, [knp=1, [zn Vp=1 and
p(—z) = p(z). Note that we consider the Z"- periodic extension on RY of u/"*!. We will
look for fixed points solutions v*" 1 = ¢»"*1 of . Finally, we will recover the existence
result by passing to the limit in all parameters.

The organization of the paper is as follow: In Section [3.2]we present the proof of Theorem
We prove the existence via Lax-Milgram theorem of a solution for in Subsection
3.2.1L Then, in Subsection [3.2.2| we apply a fixed point theorem to get the existence of a
solution for the nonlinear problem and we establish an entropy estimate. In Subsection
we pass to the limit as (At,e) — (0,0) and in Subsection we end the proof by
passing to the limit as 7 — 0 then § — 0.

3.2 Proof of Main result

3.2.1 Existence for the linear elliptic problem (3.14))

Proposition 3.2.1. (Existence for system )
Assume that A is any m X m real matriz. Let At, e, n, § > 0, with 0 < ¢ < 1 such that

den?

<= (3.17)
203 || A|I?

Then for n € N, for a given v"*! = (v¥"*1)1 o, € (L?(Q))m and u™ = (u"™)1<i<m €
(Hl(Q))m, there exists a unique function (w1 p ) = (W) <iom, "L € (HY(Q))™
(HY()/R) solution of system , in the sense of distributions. Moreover, this solution
(untt p" ) satisfies the followmg estimate

» D
OAL
( ) | nHH?LQ(Q))m + 562AtHVU/n+1H?L2(Q))m+m€Atva||%2(Q)

< A5 " B papn + Cllo,moem 6 A 11 of319)



56 Chapter 3. Existence for seawater intrusion model in confined aquifer

Proof of Proposition [3.2.1]
In order to prove the existence of a solution (u™*1, p"*1) of (3.14)), it is sufficient to prove

the existence of a solution (@"*!,p"*1) of the following system
<,ELZ,TL+1 + f> _ui,n =
m ; ) n N f n 3
N = div {Fem’é(v + (u 4 m) D “)} in D'(Q),
(3.19)
Satntl(z) = 0 in Q,
j=1

where Feimﬁ is given in {D and f = (f,---, f). System 1' can be written as

— 1 (] n 75T Vel
A LT R S
1 : “
+—div { T2 (") | Y Ay Vpy « py x f + 0V f in D'(Q),
m o (3.20)
m .
St (z) = 0 in Q.
j=1

To this end, let us define for all (@"*1, p"*1) = (@)1 <j<m, p" 1) and (v, q) = ((¢")1<i<m, q) €
(HY(Q))™ x (H'(2)/R) such that Y7 " = 37", @™ = 0 in Q, the following bilinear

2

continuous form, obtained after multiplying the first line of system (3.20)) by d¢° + g, inte-
grating over () then summing over i:

b((an+17pn+1)’(%q)) — 5Z/Qai,n+1¢z‘
i=1
+ALY / T2 (VY pnt (6Ve! + Vi)
=1 Q
—i—AtZ/QTE’ZQ(v"’"H)ZAiijn*pn*uj’”Jrl(échi+Vq)
i=1 j=1

+OALY / T2 (Y atn Ll (§V el + Vq),
=1 Q

and the following linear continuous form:

m R S .
Y wn, i 2 7
K(p,q) ;l/gu @ m;l/gfso

At & / o i A
- T4 (phntl AiiNV pp* pp* F(OVO +V
m ; 0 ( ) Z iV oy * pyx f(6Vep q)

j=1

m -

SAL . ,
> [T v+ ) 321
=1 Q
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m
Note that we used the fact that Z/ uhg = / fq.
=179 &

Step 1: Existence by Lax-Milgram
It remains to prove the coercivity of b to get the existence, by Lax-Milgram theorem, of a

unique solution for system ([3.20)).
For all (p,q) = ((¢")1<i<m,q) € (H ()™ x (H'(Q)/R) with 31", ¢ = 0, we have that

Z/Ts,EQ(Ui,n-‘rl)(év(pi_{_vq)Q
Q

ij=1

_ - 712
b(,0), (9rq) = 52/9@ LA

m m
+At Z / T (05" Z AN py % pyx ' Vg
=174 j=1

+5AL Z / et (vhn 1) Z AN py % py * A
i=1 79

j=1
= bo((,9), (¢, 9)) + b1 ((v, ), (v, 9)),

where
(o). (0.) =33 [ 6P+ AY [ 19w (696 4 V)2
=1 =1
and

m m
bi((,9), (p.q) = At /Q T8 ("> " AV py * py * @' Vg
=1 7j=1

m m
+OAL Z / T (vhntl) Z AijN py % ppx @'V
i=1 79 j=1

On the one hand, we already have the coercivity of by:

bo((#,0): (9:0) = 8 @llirzqaym +medt | Vall7a i) + e8> At Vel [Eraaym -

On the other hand, we have
bilp. @)l < Aths [ Al Vi Vg * o x ell gy Vel 2oy
LA || [V, % g 2l 2(gyym V6] 2y

1 d
8182 LA Vit 1190 pu e ol + 5 1l

IA

1 c
+OALL || Al <26 1V * py % ‘P”?}}(Q))m + 2 ||V<P”?L2(Q))m>

02 At
2

met

At [|A]*
2

en?

< IVl r2@ym + IVal72) + llFz2cyym

€d

——— and
6 [|A]

where in the second line we have used Young’s inequality, and chosen ¢ =

_eym
G |[A]

in the third line, with ||A]| is given in (3.13]).
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So we get that

SAt 52At meAt
b((v,9), (p,q)) > <5 - 2) N7z pym+—5— IVl T2 pym+—5— I Vall72(y » (3-22)

is coercive, since At < 7.

Step 2: Proof of estimate ([3.18))
Using (3.22) and the fact that b((a"*!,p), (a"*!,p)) = K((a"*, p)) together with Young’s

inequahty we get

OALN || 1112 £0? At n meAt 1112
(5= %) 1 s + S5 T s + 5 1927
n O\ —nt1112 55 At n maAt n
< Sl oy + 5 18 [ aapm + 5 V8 (g pym 1V 2
+C(lo,m e, 7,6, | AN |1 Fl7 0y
Now replacing @™+ by v — % f we get estimate (3.18]). (]

3.2.2 Existence for the nonlinear time-discrete problem

In this subsection we prove the existence, using Schaefer’s fixed point theorem, of a
solution for the nonlinear time discrete confined system (3.25)) given below.
For this purpose, let the function

%—i—alne—% ifa <e,
1 :
Ve p,(a)—— =4 alna if e <a</ly, (3.23)
e
2( +CL1H€2—* ifaZEQ,
which is continuous, convex and satisfies that ¥”, (x) = L where T%%2 is given in
£ fz Ts’[2 (.T) Y

(3.16). Let us introduce our nonlinear time discrete system: Assume that A satisfies (3.7)).
Let uo = (u"?)1<i<m = up = (u})1<i<m that satisfies

oy /Q g, () < +oc, (3.24)
=1

such that uy > 01in Q for i = 1,...,m. Then for all At, &, n, § > 0, with 0 < & < 1
and At < 7, for n € N, we look for a solution (u"™!,p"*1) = ((u*"*1)1<icpm, ") of the
following nonlinear system:

wn+1l _ in

= dv{F (et ) i D),

m (3.25)
S uittl(z) = fla) in 0

i=1

where f satisfies (3.9)).
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Proposition 3.2.2. (Existence for system ((3.25))

There exists a sequence of functions u™t! = (ui’”“')lgigm € (HY(Q)™ and a function
p"t e HYQ)/R such that (uT1 p"tY) is a solution of system , that satisfies the
entropy estimate

m ) ) meo>l . 2 ) mol . 2
i,n+1 e i,k+1 °0 i,k+1
Z/Q\IIE,KQ(U ) + 2AtZZHVU ‘LQ(Q)—i_ QAtZ vaﬂ o ’L2(Q)
i=1 i=1 k=0 i=1 k=0
< sV ey + 3 | Vernlu), (3.26)
i=1
with )
2 (1A
O =2 (” I” 5) . (3.27)
4 0o
Moreover, we have
z": |7+ 2 mB|Al’ Z": v *uk+1H2 L o8 m z": HW+1H2
12() ~ 2 ! (L2 (@)m 2 2 @)m
k=0 k=0 k=0
(3.28)
More precisely, together and imply that
n 2
AtY vakJrlHLQ(Q) < (8,80, 41, Lo, [ Al 1 f 1l 71 (c)- (3.29)

k=0

Proof of Proposition

Step 1: Existence of a solution for (|3.25]
We define, for a given w 1= u" = (u*")1<;<m € (L?(2))™ and v := v" ! = (v 1)), €
(L?(2))™, the map 6 as:

0 (LX) — (LHQ)"
v — u

where u = u"! = (v ) oy = O(0™T1) € (HY(Q))™ is such that (u, p" 1) is the unique
solution of system , given by Proposition Moreover, we can prove that 6 is
continuous using the fact that H'(Q) < L?(2) is compact and that we have . Also, 0
is a compact mapping and the set {u € X, u = A®(u) for some € [0,1]} is bounded.
Then  has a fixed point "+ on (L?(£2))™ by the Schaefer’s fixed point theorem, Theorem
2.2.1L This implies the existence of a solution (u™! p"*1) for system (3.25).
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Step 2: Proof of estimate (3.26))
Since ¥, 4, is convex we have

zn-‘,—l zn zn—‘rl zn
V4 - N j : 1
j:/ 82 t 5 2 /< )\I’/e,g( 'LnJr)

- e,lo (, 1,n+1 n+1 elo (, 1,n+1 i,n+1
Z 5% (u YV 40T (u )Vu
=179

+T€ 62 zn+1 ZAUan*P *uj n+1 \IJ'E'!Q(UZ’”H)VU””H
7j=1

= —Z 5/ (Va2 4 /ZV,O *u’”“AUVp * udm L —/QVp”'H-Vf
i=1

7=1

IN

-3 /Q T g3 /Q Vo 5P 4+ [V gy [IVE" ey - (3:30)
=1 =1

In order to estimate the last term in (3.30]) we take the sum on i of system (3.25) then we
multiply by p"*! and we integrate by parts,

m m m
OZZ/QTe,b(ui,n-‘rl) ’vpn—‘rl}2 + Z/QTa,b(ui,n—i-l ZAU V,On*p *ujn-‘rl) vpn—‘rl
i=1 1= j:1
+ 52/ Teég i,n+1 vui,n—H 'Vpn—H.

Therefore, using the fact that " | T (ub"+1) > £1 we get

Gl HVP”+1|@2(Q) < LAV ||V *py *“n+1H(L2(9))m HVP“HHL?(Q)
+la0v/m HV“nHH(m(Q))m [Vp 220

< AN (5 [T gy + 5 199 e
oo (& A Sy
< 1 gy + B 9
+5 LY A
where 7 = %Hfllllx/ﬁ and s = m which yeilds to
99 2y < A a2 4 2B ot (e

after a reccurence this yields to (3.28)).
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Now, using (3.31]) then applying Young’s inequality to the last term in (3.25) we get

vV 2m€2
Vi
562\/
\/7
V2m b ||Af 1|2
< \/E ( vaHL?(Q) +5 van *U H(LQ(Q))m)

2 a1
(9 Wy + 5 190 e

Y g + 3 190 g

A
IVl ey [V2" | 2y < Vamb 4] IV 1l 2oy [ Vg % "
()

IV A1l 2 Ve 2

IN

do
D) [Voy *u L2(Q))m

mé2 (| A?
28 (IAD L 5) 19412200 (3:32)
4 do

oV e l
where d = —2Y1 _ and ¢ = vh . Substituting (3.32) in (3.30) together with a
\/%62 ‘ A EQ vV 2m
reccurence yeild to ((3.26)). O

3.2.3 Passage to the limit as (At,e) — (0,0)

Let us define the function ¥y 4, as

400 if a <0,
] 0 ifa =0,
Vo, (a) = = = (3.33)
€ alna if 0 <a < /¥y,
\ 2e2—|—aln€2—— if a > ¥s.

Now let us introduce our continuous approximate system. Assume that A satisfies (3.7)).
Let ug = (ué)lgigm Satisfying

Cy = Z/Q\I/%(ug) < +o0, (3.34)
=1

which implies that u(i) >0a.e. in Qfori=1,...,m. Then for all , § > 0 we look for a
solution (u,p) = ((u')1<i<m,p) of the following system:

opu’ = div {uiv <p + > ANV py * pyx ! + 5Vui> } in D'(Qr),
j=1
Z u'(t,z) = f(x) in Qp,
{ _ui(t,x) > 0 for a.e. (t,x) in Qr.

(3.35)
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Proposition 3.2.3. (Ewistence for system (3.35))

Assume that A satisfies . Let ug = (u})1<i<m satisfying (m Then for all n, § > 0
there exists a function u = (u')1<j<m € L®(Q7)N(L2(0,T; HY(Q))NC([0,T); L*(Q)))™ and
a function p € L*(0,T; H'(Q)/R) such that (u,p) is a solution in the sense of distributions
of , with u* > 0 a.e. in Qp, fori = 1,...,m. Moreover, u satisfies the following
entropy estimate for a.e. t1,ta € (0,T) with u'(t2) = u'(ta,-)

- i 5 [ [« 02,00 [ [ i|2 - i
[ 3 wostweys [ [ S 1vaPa [T S Vol <CIvsIt [ Y vostub)
© =1 b 2y e 2y @ i=1
(3.36)
where Cs is given in and p satisfies
Gm([| A +96)?
IVplZ2e0) < QT IV ullf 2 yym - (3.37)
Together and yield to
vaHLQ(tl,tQ;L2(Q)) < 0(67 b1, o, HAH , 1, ”f”Hl(Q)) (338)
Proof of Proposition
Step 1: Passage to the limit when (At,e) — (0,0)
For all n € {0,..., K — 1} set t,, = nAt and let the piecewise constant in time functions:
ut(t, @) = (Wt 2)1<icm = (W (@) 1<icm,  for t € (tn, oy (3.39)
PRt x) == p" Tl (x), fort € (tn,tnyi1]. (3.40)

Using (3.26) we obtain that u®®* € L*(0,T; L*(Q)) N L*(0,T; H'(Q)) for i = 1,--- ,m.
Together with (3.26)) we can find a constant C' independent on ¢ and At such that

| <C,

i’AtHLoo(o,T;m(Q)) + H“i’Ath(O,T;Hl(g)) + H“i’mHvar([ogr);H—l(Q))

K-1
where the boundedness on Hui,AtHVar([O,T);H*l(Q)) = Z Hui7At(tn+1) —ui’At(tn)“H,l(Q)

n=0

can be obtained by substituting u»*t(t,1) — u***(t,) by the right hand side of the first
line of multiplied by At and then using (3.26) and (3.29)). Therefore, Lemma
implies that there exists a function u = (u’)1<j<m € (L2(0,T; H'(€2)))™ such that vt — u
strongly in L?(0,T; L*(Q)) as (At,e) — (0,0). Moreover, together with and
Poincarré-Wirtinger’s inequality imply that there exists a function p € L?(0,7; H'(Q2)/R)
such that p™* — p weakly in (L2(0,T; H'(Q)/R))™ as (At,e) — (0,0). Passing to the limit
as (At,e) — (0,0) in , by using in particular the weak L? - strong L? convergence in
the products, we obtain that (u,p) is a solution of the following system

i = div{Fgm(u,p)} in D' (Qr),

iui(t,x) = f(x) in Qrp, (3.41)
i=1
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where
. . m . .
Fy . 6(u,p) = 7%yt | Vp + Z AijN py * pp v + 6V
j=1

Step 2: Non-negativity of u
Let Q5 (t) := {x € Q:ubP(t x) < 5} forallt € [0,7] and i = 1,--- ,m. By estimate 1)

there exists a positive constant C independent of € and At such that for alli =1,...,m we
have
¢z [ W
5 (1)
1 7, At)2 )
= / f—i-u—ku“mlns—i
< () e 2e 2
1 7, At)2 1
> / f—i—(u ) +elne— -
f(t) (& 2¢e 2

- / (ui,At>2_1
T e 2 2

ie.
(ui,At)2 1
<C+-. 3.42
/Qi’(t) 2 2 242
Now by passing to the limit as (At,e) — (0,0) in (3.42) we deduce that / ‘u“Z =0,
Q- (1)

where Q7 (t) := {z € Q:u'(t,z) <0}, which gives us that (u')” = 0 in L*(Q2), where
(u*)” = min(0, u').

Note that the non-negativity of u?, ie. 0 < u’ < fy, implies that T (u’) = u’ for
i=1,---m.
Step 3: Recovering the initial condition
Let p € C°(R) with p >0, [ p =1 and supp p C (—3,3). We set

pac(t) = At p(At1), with p(t) = p(—t).

Then we have

m T ||K-1
_ 2 [RD) in =
HatUAt * pAtH(L%O,T;H*l(Q)))m = Z/ Z (u (R u” )5tn+1 * PAL
i=1 79 |[n=0 H-1(Q)
m K—-1 . in+l imn [|2
us —ub
N 50 S RPN [
i=1 n=0 "0 L H-1(Q)
m KoLy il i )2
— oAy Y e o
i=1 n=0 At H-1(Q)
K—1 m 4 m ' ' 2
< C3At Z Z/ T4 (ub" ) Z AiiN py * py T AL VYL v
n=0 i=1 "% j=1
K-1 , )
< 20300t {HAHQHVPn x|y + 0% [V [ L2 gpym + VM HVPnHHLz(Q)} ;

n=0
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where 4y, ., is Dirac mass in t = t,41, C3 := fOT p(t)dt. Now, using MI) and MI) we
obtain the uniform boundedness. Clearly, pas x Oyu™ — Oyu’ weakly in L?(0,T; H 1(Q))
as (At,e) — (0,0). Similarly we have that pas x ub®* — u? strongly in L2(0, T; L?(Q)) since
ubAt — o in L2(0, T; L?(Q2)). Then we deduce that v’ € {g € L2(0,T; H(Q)); dig € L?*(0, T;
H='(Q))}. And now u'(0,z) has sense, by Proposition and we have that u’(0,z) =
ul (z) by Proposition

Step 4: Estimates ((3.36) and ([3.37))
On the one hand, taking the liminf as (e, At) — (0,0) in (3.26]) and using the fact that the

norm L? is lower semicontinuous we obtain that u satisfies the following entropy estimate
for a.e. t1,t2 € (0,7)

S i I < i||2 Jo - i||2
/QZ Voo (u'(t2)) + 5 > IV 2ty + 50 > IVoyxu 22 toiz2())
i=1 =1

i=1

< sV ey + | 3 Vo ) (3.43)
=1

On the other hand, taking the sum over ¢ of (3.35)), multiplying by p and integrating over
Q) with an integration by parts we get

O || Al Vm [V py % py *UH(L2(Q))m HVPHB(Q)
L0V m || Vull r2)ym VPl 20
Lovm (6 + A IVull z2yym 1VPI 120
1 d
2/ (6 + 1) 5 19l + 5 19

Gm(||A] +6)
VPl 720 + 22—51 IVull2qyym

0 |Vpll2 0

IN 4+ A

IN

IN

=y
2

where we have used in the fourth line the Young’s inequality, chosed in the fifth line d =

4
, which yeild to (3.37]). O
Lav/m([|A]l +6)

3.2.4 Passage to the limit as n — 0 and 6 — 0

Proof of Theorem [3.1.1]

Step 1: Passage to the limit as n — 0
Let u” := (u")1<i<m be a solution of (3.35). This solution satisfies the fact that 0 <
ub < ly, for all i = 1,---,m. Therefore, we have that d;u" is uniformly bounded in
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L0, T; (Wh*(Q))). Indeed, we have

1
T 2
. /L 2
10| 20,5100 @) = < /0 ¢ ’”H(Wlmm)y)

1
2\ 2

< / / (T Z AiiN py * py x4+ VU + V'l

0 Q =

2\ 3

< / / ‘ul’”‘ ZAiijn*pn*uJ’" +(5‘Vu”7‘ + |Vp"|

0 ) =
< ||ul’nHL°O(O,T;L2(Q)) Z Az]VPn * Pn %yl

=t L2(0,T;L2(2))
+9 Huz’nHLw(o,T;m(Q)) HV“WHB(O,T;L?(Q)) + [Jutn ‘LOO(O,T;LZ(Q)) IV 20,7220

. m .

<l e o2y [ 140 D211V P0 % 4| 120 1120
j=1
+9 Hvul’nHL%o,T;L?(Q)) + HVanLQ(O,T;LQ(Q)O ’
where
m
[Alloe = max > |4y, (3.44)
7j=1
. o . . : . 1 1 1
and we have used in the third inequality Holder’s inequality (since we have 5= = + 5),
00

together with (3.36)), (3.37) which imply the uniform boundedness. Thus, we obtain

14| oo gy + HulmHL2(O,T;H1(Q)) + Hatuz’nHL%O,T;(Wlm(Q))') <G, (3.45)
where C' is independent of 7. Together with Lemma imply that we can find a function
u = (u')1<i<m € (L2(0,T;HY(2)))™ and a function p € L*(0,T; H'(Q)/R) such that, as
n — 0, " — u strongly in (L*(0,T;L*(Q)))", Vu" — Vu weakly in (L*(0,T; L*(Q2)))"
and p"7 — p weakly in L2(0,T; H'(2)/R).

Moreover, since the strong convergence in L?(Qr) implies the convergence almost every-
where in Q7, we get that u’ > 0 a.e. in Qp. Therefore, passing to the limit as n — 0 in
(3.41) we get that (u,p) is a solution of the following system

7

Oy’ = div | v | Vp+ Z AijVuj +0Vu! in D'(Qr),
j=1
m o (3.46)
Z u'(t,x) = f(x) in Qr
i=1
[ vi(2,0) = uf(x) in Q,

where the initial condition is recovered by Proposition since WHL(0,T; (W12°(Q))) —
C([0,7); (Wh>(Q))).
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Moreover, u satisfies for a.e. t1,to € (0,7

/QZ‘I’(Ui(t2)) Z V! HL2 (L) T 5 Z V! HL2(t1 t2:L2(9
=1
< Cs 9l + | S (). (3.47)
=1

and p satisfies

Gm(||A]l +9)?

2
IVDl7200) < 0

IV ul?2 ym < C(8, 80, €1, Lo, AN N F 1l 1 gy)- (3.48)

Step 2: Passage to the limit as § — 0

Similarly, by (3.47)), (3.48), Lemma and Proposition we can pass to the limit as
0 —0in system (3.46|) to get the existence result, announced in Theorem of a solution

for system (3.2)) that satisfies and (| - O
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Chapter 4

Useful tools in geometric measure
theory

Abstract: In this chapter we introduce the notion of varifolds, surfaces that may have
singularities. Moreover, we associate to these surfaces a generalized mean curvature vector
and a generalized velocity vector which coincide with the usual definitions in the case of a
smooth surface. Also tools in analysis and geometric measure theory will be presented.
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4.1 Introduction

Geometric measure theory is the study of geometric properties of sets through measure

theory. It allows to extend tools from differential geometry to a much larger class of surfaces
that are not necessarily smooth. Rectifiable sets, which are sets with the least possible
regularity required to admit approximate tangent spaces, the area formula, which generalizes
the concept of change of variables in integration, the coarea formula, which generalizes and
adapts Fubini’s Theorem to geometric measure theory and Radon measures are central in
this theory [69].
The organization of this chapter is as follows: In Section 4.2 we present some preliminaries
from measure theory such as Hausdorff measure, Radon measure, Radon-Nikodym derivative
and approximate tangent space. In Section 4.3 we introduce the space of functions of
bounded variation, as well as the area and co-area formulas. Section 4.4 is devoted to the
notion of measure-function pairs and their weak and strong convergence. We introduce
the notion of varifolds in Section 4.5 where we also define rectifiable and integral varifolds.
Moreover we associate a generalized mean curvature vector and a generalized velocity to
these varifolds. Finally, we present an overview of the link between the Allen-Cahn equation
and the mean curvature flow, and in particular the Brakke flow.

Let K € N and n € N be such that £k <n.

4.2 Preliminaries from measure theory

Definition 4.2.1. (Hausdorff measure)
The k-dimensional Hausdorff measure on R™ is defined by

HE(A) = lim HE(A)  for A C R,
6—0
where for each § > 0

) > diam C; \ ¥
H’g(A) = inf Z:lwk <2 J) ,
j:

where wy, is the volume of the unit ball in R* and the infimum is taken over all countable
collections C1,Ca,--- of subsets of R™ such that diam C; < 6 and A C U;’il Cj.

Theorem 4.2.2. (The case where k =n)
We have that

H"(A) = L"(A), for every A CR"
where L™ is the n-dimensional lebesgue measure on R™.

Definition 4.2.3. (Radon measures)

On a topological space 2 we say that a measure p is a Radon measure if:

1) w is a borel-reqular measure in the sense that each Borel set is p-measurable and for each
subset A C Q) there is a Borel set B D A such that u(B) = u(A),

2) u(K) < +oo for all compact subset K C Q (which enables us to integrate continuous
functions with compact support).
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Remark 4.2.4. (Identification with linear functionals)
We can identify the Radon measures on €0 with the non-negative linear functionals on
C.(2,R), so that we use the notation

M@—A¢w Jorall &€ Cu(,R).

Also note that we have for every open U C Q) that

/NU)=SMN{L¢du:¢€C%KLR%W!SlﬁwmmféciU}-

Theorem 4.2.5. (Compactness theorem)

Let {p;} be a sequence of Radon measures on ) such that sup; 1;(U) < 400 for all U C Q
with U compact. Then there exist a Radon measure i and a subsequence {py} such that
Wi — W in the sense that

Tim () = p(@)  for each ¢ € Cu(R).
i —00
Definition 4.2.6. (Density function)
The k-dimensional density of A C R™ at a € R™ is defined as

gk(A a) = lim w

r—0 wkrk

where By(a) is the closed ball of radius r and center a. Similarly, the k-dimensional density
of a measure p on R™ at a € R™ is given by

gk(u’ A,a) = lim M

lim o for A CR".

Theorem 4.2.7. (Radon-Nikodym derivative)
Let p11 and po be two Radon measures on 2 C R™. Then

i ) 12(B(2)

a7 056 (By(w)

exists pi-almost everywhere and is pi-measurable. Furthermore for any A C Q) we have

dp "
p2(A) = TQ dpn + ps(A),
A QR

where
s = p2l2

where z is a set of pi-measure zero (z is independent of A) and we denote us|z(B) =
wa(zN B) for all B C Q. pb is called the singular part of ua with respect to . Also we can
check that in the case where ps is absolutely continuous with respect to py (i.e. in the sense
that all the sets of 1 measure-zero also have py measure-zero and we note pa << 1), then
us =0 and

dpiz

wo(A) = | —duq.
(4) adpr
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Definition 4.2.8. (Approxzimate tangent space)

Let M be a HF-measurable subset of R™, 0 a positive locally HF-integrable function on M
and 0z x : R™ — R™ a function defined as n, \(y) = A1 (y — x) with y € R™ and X > 0. If
we have for all ¢ € C.(R™)

|, s ) =0w) [ o) aty

with P is a k-dimensional subspace of R™, then P is the approximate tangent space for M
at x© with respect to 8. We denote P as tan, M.

Definition 4.2.9. (Approximate tangent space for a Radon measure)

Suppose that i is a Radon measure on R", and for x € R", X\ > 0, let pi; » be the measure
given by piz \(A) = A\"Fu(z + MA). Suppose that for p—a.e. x there exist 6(z) € (0,00) and
a k—dimensional subspace P C R™ such that for all ¢ € C.(R")

timy [ 600) duaas) = 06e) [ o) ).

Then P is called the approzimate tangent space for p at x, and 0(x) is called the multiplicity
function.

In the next section we refer the reader to [36] for more details.

4.3 Preliminaries from analysis

Definition 4.3.1. (BV functions)
Let @ C R" and f € LY(Q). The function f is said to have bounded variation in Q if
Jo|Df] < 0o, where

/ |Df| = sup {/ fdivgdx; g € CH(Q;R™), |g(x)] < 1 for all x € Q} . (4.1)
Q Q

We define BV (Q) as the space of all functions in L*(Q) with bounded variation.

Definition 4.3.2. (The perimeter)
Let E be a Borel set and 2 an open set in R™. The perimeter of E in Q is defined as

Po(E) = /Q Dl (4.2)

where xg s the characteristic function of E.

Theorem 4.3.3. (Besicovitch covering theorem)

Suppose that B is a collection of closed balls in R™, let A be the set of centers, and sup-
pose that the set of all radii of balls in B is a bounded set. Then there are sub-collections
Bi,---, By C B with N = N(n) such that each B; is a pairwise disjoint (or empty) collec-
tion, and such that U;-VZIBJ- still covers A, namely that is A C U;VZI(UBGBJ.B).
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Theorem 4.3.4. (Area formula)
Let f : RE — R™ be a Lipschitz function. Then, for any L£¥—measurable set E C R*, the
function HO(E N f~Y(y)) is H*— measurable in R™ and

HOE N 171 (y)) dH () = / Jy f(x) dz,
R E

where Jy, denotes the k—dimensional Jacobian.

Theorem 4.3.5. (Co-area formula)
Let f: M +—— RY be a C' map with N < k and M is a k-dimensional C* submanifold of
R™. Then, if g is a non-negative H*-measurable function on M

kE_ k—N ;N
/M(JNf)gd’H _/RN /fl(y)gd’H ac (y). (4.3)

In particular if f € BV (Q) define F; = {x € Q; f(x) > t}. Then

/Qny\_/:OAyDXFt\ da dt. (4.4)

In the next section we introduce the notion of measure-function pair, see [39] for more
details.

4.4 Measure-function pairs

Definition 4.4.1. (Measure-function pair)

Let Q C R™ be an open subset. Let i be a positive Radon measure on . Suppose that
f: Q +—— R™ is well defined p—almost everywhere, and that f € L'(u,R™). Then we say
that (u, f) is a measure-function pair over §Q.

Definition 4.4.2. (Convergence of measure-function pairs)

Suppose { (i, fi)}; and (p, f) are measure-function pairs over 2 with values in R™. Suppose
that lim; oo pt; = 1, in the sense of Radon-measures on Q. Then we say (u;, fi) converges
to (i, f) in the weak sense in  and write that

(Nia fl) - (:ua f) U/E(lk’ly,

tiw [ fondpi = [ £-ndp, (4.5)
for all n € C.(2,R™).

Theorem 4.4.3. Let F' : R"™ —— [0, 4+00) be a continuous, conver function with super-linear

growth at infinity, that is:

F
m M = +00
PR
Suppose that {(pi, fi)}; are measure-function pairs over Q C R™ with values in R™. Suppose
that 1 is a Radon-measure on E and p; — p as i — oo. Then the following properties are

true:
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(1) if
sup/F(fi) dp; < 400, (4.6)

7

then some subsequence of {(i, fi)}; converges weakly to some (i, f) for some f in the sense

of .
(2) if [4-6) holds and (p;, f;) — (1, f) weakly then

liminf/F(f,-)dui > /F(f) dp.

1—00
(8) if F is strictly convex and for all i we have

/F(fi)d,u«i < 400, (4.7)

then the following are equivalent:
(i) (i, fi) — (p, f) strongly.
(i) (pi, fi) = (u, f) weakly and

[Pydu > [ )i (48)
For instance, we can choose F(y) = y?.

1 1
Proposition 4.4.4. Let p, ¢ € (1,00) such that — + — = 1. Suppose that {u;}, and p

p q
are Radon measures on Q0 and that f; € LP(ui;R™), f € LP(u;R™), g; € LY(ui; R™) and
g € Li(u;R™). Suppose further that (w;, fi) — (u, f) strongly with HfiHLp(M) is uniformly
bounded and (i, gi) — (1, g) weakly with |(gi|| 1o, is uniformly bounded. Then

(wis fi - gi) = ([ - g)  weakly
with || fi - gill 1) is uniformly bounded.

Next, we let k < n and we introduce the notion of varifolds, see [69].

4.5 Varifolds

First of all let the Grassmanian G(n, k) be the space of k-dimensional linear subspaces

of R". For S € G(n,k) we identify S with the orthogonal projection of R™ onto S. In the
case where k = n — 1 and for S € G(n,n — 1) we have the relation S = I — v ® v where v
is the unit orthogonal vector to S, I is the identity matrix and for vectors a and b in R™ we
define the matrix a ® b := (a;bj)1<i j<n-
We are interested in surfaces that may have singularities, that is why we will not restrict
ourselves to manifolds. We will consider instead a family of ”generalized surfaces” known
as k-varifolds which is a class of Radon measures (so that it has nice compactness proper-
ties) defined over all the linear k-subspaces (tangential information) at each point (spatial
information).
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Definition 4.5.1. (A general k-varifold)
Let Q C R™ be open and G(Q2) := Q x G(n, k). A general k- varifold in Q denoted V is a
Radon measure on Gy (§2);

V(g) = / o(x,8)dV(x,5) Yo € Co( G(Q)).
Gr(Q)

We denote the set of all general k-varifolds in Q by Vi(Q2). We denote by ||V|| the weight
measure of V.

IVl (6) = /G AW 8) e o) (4.9)

more precisely it is the projection of V to the measures on R™.

Theorem 4.5.2. (Countably k-rectifiable sets)

A set M C R™ is countably k-rectifiable, if and only if there exists a positive locally H*-
integrable function 6 on M with respect to which the approximate tangent space Tang,M
exists for Hr-a.e. x € M.

Definition 4.5.3. (A rectifiable k-varifold)

Let M be a countably k-rectifiable set and 0 a locally H* integrable function defined on
M which is positive H* a.e. in M. We say V = V(M,0) € Vi() is rectifiable if V =
9'H|kM ® 5Taan i.e.

V(g) = / oz, ) dV (z, §) = / o, Tang M)8(x) dH (z) Y € Col Gr()),
Gr(Q) M

where Tang M is the approzimate tangent space of M at x which exists H* a.e. on M and
which is represented by its orthogonal projection matriz onto Tan, M. The function 0 is

called the multiplicity of V. We denote the set of all rectifiable k-varifolds in Q by RV (Q).

Remark 4.5.4. (Rectifiable Radon measure)
A Radon measure pi on §) is rectifiable if there exists V€ RV () such that ||V = p.

Definition 4.5.5. (Integral k-varifolds)
Let V € RVy(Q) be as in the previous definition. If in addition € N for H* a.e. we say
that V is integral. We denote the set of all rectifiable k-varifolds in by IV ().

Examples:

Example 1: A 1-varifold associated to a line D C R3 is Vp = 7—[|1D ® dp, (0p is the Dirac
measure on G(3, 1)) which is a Radon measure on R? x G(3,1), in the sense that

Vp(d) = / oz, 5) dVp(z, S)
R3xG(3,1)
:/ $(x, ) d(Hp © 3p)(x, S)
R3xG(3,1)
_ / é(z, 5) dHLy (x) dbp(S)
R3xG(3,1)

— / oz, D) dH (),
D

for all ¢ € C.(R® x G(3,1)).
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Example 2: In the figure above, the curve N C R? is consisting of 4 line segments S, Sa, S3, S4
of directions Py, P», P3, Py. At each corner point we cannot define a tangent plane to the
curve; however several planes are going through these points. So we associate a Radon
measure to each such plane rather then defining a single tangent plane at each point (which
is the case for differentiable manifolds). Furthermore, a 1-varifold associated to N can be
the Radon measure Viy = Zle 7—[|15i ® dp, on R? x G(2, 1), similarly in the sense that

4
= X, 15 11‘
vN<¢>—Z§:;/&¢< P dH\ ()

Ezample 3: We associate to a k-submanifold M C R™ the k-varifold Vy; = H‘I“M ® OTan, M,
ie. Var(¢) = [y, ¢(x, Tan, M) dH*(z). Note that we have ||[Vas|| = H* | .

In what follows, we will associate to a varifold some geometric quantities which coincide
with those of a smooth surface in the case where our varifold is the one considered in Example
3, namely V = V.

To begin with, we introduce the notion of a first variation. It is a function which assigns
to any compactly supported C! vector field g on R™ the initial rate of change of the area of
M under a smooth deformation of R” with initial velocity g. Roughly, the first variation is
due to the mean curvature of M.

The formula involves the tangential gradient and the tangential divergence of g on M which
are defined by

k
Vmgi(z) :== Z(Drjgi(iﬁ)) -7 =Tan, M - Vg;, (4.10)

Jj=1

which is the projection of Vg; onto T'an,M and

k
divyrg(z) == Z(Dng(x)) -1 =Tang,M - Vg, (4.11)
i=1
where {71,792, -+, 7} is an orthonormal basis for T'an, M and D, is the directional deriva-

tive with respect to ;.

Definition 4.5.6. (The first variation of a C' submanifold)
Suppose M is a k—dimensional compact C' submanifold of R™. Let {¢t}0§t§1 be a 1 —

0
parameter family of diffeomorphisms M — R™ such that ¢g = Id and 9%t = g(z).

9t |10



4.5. Varifolds 75

Then we have J
k
— M
SHE(8(M))

- / divprg(z) dH*(z). (4.12)
t=0 M

Definition 4.5.7. (The first variation of a varifold)
For V. € Vi(Q) let 6V be the first variation of V' so we have

5V (g) ::/G(Q)Vg(x)-SdV(x,S) Vg € CH(Q;R™). (4.13)

Remark 4.5.8. Note that in the case where we have V. = Vi, see Example 3 above, the
first variation of Vi with respect to g € CL(Q;R™),

Varlg) = /G o V905 WVir(z.5)
k
_ / V(@) - 8 dHfy; © Sran, (. S)
Gr(Q)
N / Vg - Tang M dH"(z), (4.14)
M

wich coincides with .

Furthermore, we define the total variation ||[6V]| to be
16V || G =sup {6V (g); g € CL(R";R"),spt g C G and |g| <1}, V open G CR".

Now, consider the case where k = n —1 and let v(x) the normal to M at x € M. For all
i=1,--,n—1let v :(-1,1) — R™ be a C? curve such that v;(0) = z, v((—1,1)) C M
and 7/(0) = 7;. The normal curvature of M in the direction 7; is expressed as

ki :==~/(0) - v.

This can be also seen as the second fondamental form of M at z, see for instance [69]. The
mean curvature vector is then

n—1 n—1
h=>Y k=Y (v (0)w. (4.15)
i=1 =1

Note that v(v;(t)) - vi(t) = 0 for all t € (—=1,1) and ¢ = 1,--- ,n — 1. After differentiating
this relation with respect to ¢ we get

3E) V() + 240 v (a(0) = 0.
Setting t =0
V(0) - (@) = —7i - L(i®)lio = —7i - Dy

dt
Summing over ¢, multiplying by v(z) and using (4.15)) and (4.11) we obtain that

h = — (divyv) v.
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In the case where k£ < n — 1 we have that

n—k
h=— Z (divarve) Vo,
a=1
where vy, -+, v, are vector fields satisfying v, - v = dap and ve(z) € (Tan, M)+ for all

a, fe{l,-- ,n—k}

Definition 4.5.9. (Mean curvature vector)
Suppose M is an k—dimensional C? submanifold of R™ without boundary. Then the mean
curvature vector h of M is given by

/ divnrg(x) dHF () = — / (@) h(z) dHE(z) Yge CHQ:RY.  (4.16)
M M

Definition 4.5.10. (Generalized mean curvature vector)

Let V € Vi (). If the total variation ||V || of 6V is locally bounded and absolutely continu-
ous with respect to ||V, then by the Radon-Nikodym theorem, there exists a ||V|| measurable
vector field hy (.) such that

5V (g) = /Q g(x) - hy(x) d||V]| () Yg € CHQR™). (4.17)

The vector field hy (.) is called the generalized mean curvature vector of V.

Remark 4.5.11. In the case where V. = Vi; and using the fact that |Var|| = H* | we

obtain that s equivalent to .

Theorem 4.5.12. (Allard’s rectifiability theorem [{), page 450 5.5 (1)])
Suppose V € Vi(Q) and |0V || is a Radon measure on Q2. Then

V RVL(Q)).
\\{mEQ:limsupMO 7HVH|(BZ(Z))>O}XG(7LJ€) < k( )

WkT
Proposition 4.5.13. (Normal velocity for smooth hypersurface)
A smoooth family of hypersurfaces {Mt}tZO has a normal velocity v if and only if

d
il pdH" ! = /Mt (Vé-v—¢h-v+ ) dH" " (4.18)

holds for all ¢ € CL(Q2 x [0,00);RT) and t > 0, where h is the mean curvature vector of M;.

Proof.

We will present here a formal proof of in the case n = 2 and we refer the reader to
see [5].

Fix for the instance the time t. We denote v(z,t) the normal vector at the current point
(x,t), h(z,t) = kv(z,t) the mean curvature vector at this point and v(z,t) = c(z, t)v(x,t)
the normal velocity at the same point. Let 7 be a parametrization of M, (which is a curve
now). We parametrize My, then by 7.y, for £ small enough

Yere(s) = () +7(C, 8)r(v(s)), (4.19)
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where 7 is such that 7(0,s) = 0, 9pr(0,s) = c(y(s),t). In what follows we will denote v/(s)
instead of v(7(s),t). We have then

ot tayde = [ o+ L) | onn(s) do

Mg

— /gb(t +0,v(s) + (L, s)v(s)) ‘jgv(s) +rs(l,s)v(s) +rl, s)vs| ds

d d
= [ ol + 0309 D | £206) + (b 5Ils) = 9 ()
where we have used in the last inequality the fact that %1/(5) = —/ﬁ%'y(s). Furthermore,
we obtain
d d
— ot + 4, x)dx = / (01 + 1re(0, )1 (8)Vp — ¢re(0, 8)k) |[—(s)| ds
dﬁ MH—Z M*O dS
= O + vV — cro dx.
M
Which implies the desired result. (I

Proposition motivates the definition of generalized velocity for integral varifolds.

Definition 4.5.14. (L?-flow introduced in [59])

Let (Vi)ic(o,r) be an arbitrary family of integral varifolds such that V := L' ®V; defines a
Radon measure on Q2 x [0,T] and such that V; has a generalized mean curvature hy(t,.) €
L2(|Vi|| ,R™) for almost all t € (0,T).

If there exists a positive constant C' and a vector field v € L*(||V||,R™) such that

v(z,t) LT, ||Vil|  for p-almost all (z,t) € Q x [0,T] := Qr, (4.20)

and .
/0 | @+ Vn-v) d1Vil dt] < Clalleogay (4.21)

for all n € CHQr), then we call the evolution (Vi)eeo,ry an L?-flow. A function v €
L3(||V]|,R™) satisfying (4.20) and (4.21)) is called a generalized velocity vector.

Remark 4.5.15. This definition is based on : integrating in time and using
Holder’s inequality we obtain .

Definition 4.5.16. (Push forward of varifolds)

If N is a smooth Riemannian manifold and F' : M —— N is smooth, then F induces in a
natural way a strongly continuous mapping Fu of the k-dimensional varifolds in M into the
k-dimensional varifolds in N which has the property that Fu applied to the varifold associated
with a k-dimensional submanifold of M is the k-dimensional varifold in N associated to the
image of the submanifold under F.

In the case of general k-varifold V' we have that for all Borel subsets B of Gy(N)

FLV(B) = / JRDF(x) o S| dV (. S), (4.92)
[(0,8):(F @), DF()($)<B)

where Jy, denotes the k-dimensional Jacobian.

ds,
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4.6 Phase field and mean curvature flow

We say that a family of surfaces evolves by mean curvature flow if the normal velocity at
each point of the surface is equal to the mean curvature vector of the surface at this point.
This kind of geometric flow has been frequently studied with different approaches.

The phase field approach is based on an implicit description of the moving interface.
It involves the Allen-Cahn equation which has been introduced in order to study phase
separation problems [5]. Its link with the mean curvature flow have been studied several
years ago. Given a small parameter £ > 0, the Allen-Cahn equation is written as

1
on = Auf — S W'(w), (4.23)

where W is an equal double well potential.

Wi(r)

W(r)= 111 r(1-n?

(e
e
—

With the choice of W above, this equation will force to 0 the values of u® that are less than
1/2, and to 1 the values of u® that are greater than 1/2. As ¢ decreases the space domain
Q is gradually divided into two regions,where u® is close to 0 or 1. One expects that these
regions are separated by diffuse transition zones, also called interfaces. The thickness of
these transition zones will depend on the parameter ¢. As ¢ — 0, it is expected that the
interfaces become sharp, as shown in the figure below. It has been proved that these sharp

// ’/
y { u=1 phase A
i’ \
I Al S
,/5 _— o
)
\
\

>hase B

[
u=1 € phase A

interfaces move according to mean curvature flow [5 19, 26 28] 64]. One can interpret the
Allen-Cahn equation as the gradient flow of the functional

€|2 us
Emwiétw”+wivw. (4.24)

Let us also mention the result of Modica and Mortola [57] who proved that this functional
I'- converges to the perimeter function; let 0 < m < [Q| and X := {u € H(Q) : [u=m}.
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We can extend the functional E°(u) so that

I, <a|V2u\2 n M) dr  ifueX,

£

EE(u) = (4.25)

+o0 otherwise.
Then E¢(u) I- converges to E°(u) where

o Jo |Dul if u e BV(Q2) and W(u) =0 a.e. z € Q,
E(u) = (4.26)

400 otherwise,

with
o= /1 V2W (s) ds. (4.27)
0

Another approach is the Brakke flow. It is the study of mean curvature flow in the context
of non-smooth objects called varifolds [I3], defined in Section Brakke flows permit to
define the mean curvature flow beyond the time of occurence of the first singularity, since
they require very little smoothness. A Brakke flow is a family of rectifiable Radon measures
V; such that we have

d
G [edvil < [(Vo - e)avil.

for all ¢ compactly supported test functions where h is the generalized mean curvature
vector of the varifold V;. Brakke flows have helped to study the size and the nature of the
singular set [13].

Many studies deal with the convergence of the Allen-Cahn equation to a mean curvature
flow in the sense of Brakke [41] 55, [65]. It consists of combining the phase field approach
with Brakke flows. In order to avoid problems due to the cancellation of boundaries, one
not only considers the evolution of phase boundaries but also the evolution of the Radon

measures 9
dps = <5|V2“ - W(gu )) da.

These measures coincide with the surface measures associated with the phase boundaries and
they may be supported by additional hidden boundaries or may carry a higher multiplicity.

Phase separation as ¢ = 0
showing "hidden interface”

Phase separation for € =0
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Chapter 5

Singular limit in the sense of
varifolds of an
advection-reaction-diffusion
equation arising from a
chemotaxis-growth model

Abstract: This chapter is a joint work with D. Hilhorst. We study the singular limit of an
advection-reaction-diffusion equation arising from a chemotaxis growth model. We associate
to a family of diffuse interfaces a family of varifolds and we prove that the limit varifold is
rectifiable and will move by a perturbed mean curvature flow.
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5.1 Introduction

We consider an advection-reaction-diffusion equation which arises from a chemotaxis
growth model proposed by Mimura and Tsujikawa [54] of the form

1
Ou® = Au® — V- (u*Vx(g)) + ?f(ua,ea) in Qr :=Q x (0,7),

u®(z,0) = uf(z) in Q,

(P*)

where () := T" is the n-torus, 0 < ea < 1, flr,a) = r(l—r)(r—%—koz), X is a smooth function,
ue represents the population density and g, is the density of the chemotactic substance. The
population is subject to three effects: diffusion, growth induced by the nonlinear term and
a tendency of migrating towards higher gradients of chemotactic substance induced by the
advection term. We are interested in studying the behavior of the family of smooth solutions
{u}gcecy of (P:) as € — 0 and we expect that the limit solution u will be a step function
taking the values 0 or 1 almost everywhere on the domain, creating a sharp interface between
these two regions. This sharp interface, which we will denote by I';, obeys the law of motion,
which is expressed as a perturbed motion by mean curvature:

v=h+(Vx(q)-v)v+ %\@au, (5.1)

where v is the normal velocity to the interface, h is the mean curvature vector of the interface,
f is the multiplicity function which is equal to 1 in the case of a smooth interface and v is
the normal vector to the interface. We will suppose that ¢. is smooth and that there exist
C,>0and g € LP(0,T; W?P(Q)), with 1 < p < oo such that

ts[%%}(”%('at)HLOO(Q)"i_|’vqé7<'7t)”LOO(Q)+”AQ6<'7t)”LW(Q)+”VAQE('7t)HLOO(Q)) <Gy (5:2)
€0,

forall 0 <e <1 and
¢- — qin L*(Qr) as e — 0.

Problem (P¢) can be written in the form:
1
Ou® = Au® — 6—2(W/(u€) —ege(x, t,us, Vu)) (5.3)

where W(r) := 2r?(1 — r)? is an equal double well potential having two local minima at 0
and 1 and one local maximum at 3. Note that W’(r) := r(r — 1)(r — 1) and that we can
write the perturbation term as

1
“g. =~ V() - Yt — u'Ax(a.) + guau — ) (5.4)

We remark that one can find v € (0, %) and k£ > 0 such that

—_

W"(r) >k, forally < (5.5)

1
r——| < -

2172
The convergence result described above has been proved by Henry, Hilhorst and Schétzle
[37] in the sense of viscosity solutions; they introduced a new unknown function w and they
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considered the interface as a level-set of w. In addition, Mugnai and Réger [60] have proved
this convergence result, in the sense of varifolds in a slightly more general context in the
case of the space dimensions 2 and 3. Let us also mention the recent work of Takasao and
Tonegawa [70] in arbitrary space dimension where they took

1 -
—ge = —b-Vu,
g

with b € LL ([0, 00); (W'P(Q))") and proved the convergence in the sens of varifolds. Note

that the singular limit of a perturbed Allen-Cahn equation also in the case of chemotaxis
problems, has been proved by [10] and [I]; they prove the convergence to a classical solution
on a short time interval. In this chapter we will extend these results to the case that g. is
given by in arbitrary space dimension n > 2.

We define the energy functional

EE () ::/Q (; IVl + W(;‘E)) dz, (5.6)

and we will associate to u® a Radon measure ;7 on
W(us(t,.
dyis = <; IVl (L) + M) dz, (5.7)

W (us(t,.))

e 40) = [ ooy = [ o) (519 + ) de. orait o € Cu(0),

(5.8)
which will behave more or less like a surface measure and a Radon measure u® on Q7 as

1>
dyf = (‘; IVuE)? + WS”) dz dt. (5.9)

Let the discrepancy measure

des = (; IVl ()2 — VV(“Z”) dz. (5.10)

Moreover, we define the varifold Vi on Q2 x G(n,n — 1) as

Vu® Vu®
Ve ::/ <x,[—®> die, 5.11
t (77) Qm{vu€7£0} n ’v’U,E’ ]Vu‘f] Hy ( )

for all n € C.(2 x G(n,n — 1)), where [ is the identity matrix and for a vector a in R" we
define the matrix

a®a:=(aia;)1<ij<n-

Also note that we identify S € G(n,n — 1) with the corresponding orthogonal projection
matrix of R™ onto S and we denote S := I — v ® v, with v the unit normal vector to S. We
define the scalar product of two n X n matrices A and B by

A-B= Zn:zn:AUBU

i=1 j=1
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Since we have that ||[VF|| = puf, see for the definition of the weight measure, also this
varifold behaves like a surface measure but the test function takes an additional variable in
G(n,n — 1) which behaves as an approximate tangent space.

In addition, we set for all ¢ € [0, 7]

D?(t) := max {1,,@(9), sup “t(B(f)f} : (5.12)
B(z)cQ Wn—1T

where w,,_; denote the volume of the unit n—1 dimensional ball, B, (z) is the n-dimensional
ball of radius r and center x and for every open B C (),

4 (B) = sup { [ o@aiita). o€ C.BiR), ol < 1} ~ [

Also, we suppose that the following hypotheses, which will denote by (Hy), are satisfied:

u§ € C%(Q), (5.13)
sup E°(ug) < Eo, (5.14)
3
0<ug<1l, onf, foralle>0, (5.15)
gt HV%SHLW(Q) <¢p, fori={1,2,3}, (5.16)
there exists 0 < § < % such that
eIVl W)\ _ 1
— < = 5.17
sup ( 5 — | <5 (5.17)
there exists 0 < Dy < oo such that
D*(0) < Dy. (5.18)

Theorem 5.1.1. (Main result)

Letn > 2 and {u°},_..; a family of smooth solutions of (P-) where u®(x,0) = ug(x) satisfies
the hypotheses (Hg) for all 0 < e < 1. Then we have, up to a subsequence denoted again by
€, that:

(1) there exists a function w € BV (Qr;{0,1}) N L>(0,T; BV (QY)) such that
u® —u  strongly in L*(Qr) as e — 0. (5.19)
(ii) there exists a Radon measure u; such that
w; — ppin the sense of Radon measures, for allt € [0,T] as € — 0,
where p; s defined in (@

(iii) there exists a varifold Vi such that

Ve — Vi in the sense of varifolds, for allt € [0,T] as e — 0,
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where V£ is defined in . Moreover (Vi)e(o,1) s an L? — flow in the sense of Definition
4-0. 14}

(iv) the law of motion of Vi is given by
v=hy,+g, u— almost everywhere

where v is the generalized normal velocity of Vi, hy, is the generalized mean curvature vector
of Vi and g satisfies

/ n-gdy = lim/ —n-Vufg.dxdt for all n € CH(Qr;R™),
Qr e=20JQr
where g. is given in (5.4]). In addition, on 0 {u =1} we have
1
9= (Vx(a) -v)v+ 5v2aw,

where 0 is the multiplicity function and v is the inner normal vector to 0 {u = 1}.

In a forthcoming work, we will try to extend our convergence result to the case of a more
general function g..

The remainder of the chapter is organized as follows: In Section 5.2 we formally derive
the interface equation . In Section 5.3 we establish some uniform estimates such as the
uniform boundedness of u® and of the energy functional E°(uf). In Section 5.4 we prove
the convergence of u° to a phase indicator function, namely we prove [Theorem (1)].
Section 5.5 is devoted to the convergence of the diffuse surface area measure pj, namely
[Theorem (ii)]. In Section 5.6 we establish a monotonicity formula which is similar to
the one proposed by Ilmanen in [41] and we obtain an upper density ratio bound by using
techniques from [70]. In Section 5.7 we prove a clearing out lemma [41), 55, [70] which leads to
the vanishing of the discrepancy function as € — 0. The rectifiability almost everywhere of
the limit varifold is obtained in Section 5.8 by the Allard’s rectifiability theorem [4] where we
also deduce from the Radon-Nikodym theorem the existence of a generalized mean curvature
vector for the limit varifold. In Section 5.9 we prove that the multiplicity function is almost
everywhere integer-valued modulo division by o, where o is given in [72, [70, [40]. In
Section 5.10 we prove that the limit varifold is an L?-flow with generalized velocity v. We
end the proof of Theorem in Section 5.11 where we demonstrate that the interface
moves according to the perturbed mean curvature flow in arbitrary space dimension
generalizing the result obtained by Mugnai and Roger [60, Section 5.3] in the case of space
dimensions 2 and 3.

Note that in the proofs we will fix some constants 0 < €, < 1 for kK € N. These constants
will satisfy that ex1 < .

5.2 Formal derivation of the interface motion equation

In this section, for the sake of completeness, we recall below a formal analysis performed
by [1] (see also [2]), which allows to derive the interface equation (/5.1)).
Recall that the diffuse interface at time ¢ is I'f = {z € Q:u(z,t) = 3} with I'® :=
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Uo<t<7I'f. The limit interface at time ¢ will be denoted by I'y with I' := Up<;<7I';. Denote
also the signed distance function to I' as

A1) dist(z, ;) for x € QfF
x? = —
—dist(x, ) for x € Q,

where ;" and Q; are the regions outside and inside the interface I'; respectively.
Outer expansion: assume that, away from the interface I', the solution u® of (P¢) has the
expansions

W (1) = 1+ au;:(a:,t) + Ezuéf(:c,t) +-- %n Q% = Up<t<rQT x {t} (5.20)
0+ cuy (z,t) +euy (x,t) + - - in Q7 := Up<i<7Q™ x {t}.
Inner expansion: assume that near the interface I'
u(x,t) = Ug(x,t, &) + Uy (z,t,€) + 2Us(x, t, &) + -, (5.21)

where Uj(z,t,2), j = 0,1,2,---, are defined for z € Q, ¢t > 0, z € R and & := d(z,t)/e.
The stretched space variable & gives exactly the right spatial scaling to describe the rapid
transition between the regions {u® ~ 0} and {u® ~ 1}.
Normalization condition: we normalize Uy in such a way that

1

UO(x7t7 0) = 5

Matching conditions: to make the inner and outer expansions consistent, we require that

U0($,t,+00) = 17 Uk(xata +OO) = ’U/:(.T,t),

5.22
Uo(.iﬂ,t,—OO) :Oa Uk(x,t,—oo) :u];(xat)a ( )

for all k& > 1. The normalization condition and the matching condition for £ = 0 will
determine Uy uniquely, which will then determine Uj.

In what follows we will substitute the inner expansion into (P*¢) and we will collect
the e72 and e~! terms. To that purpose, we compute the necessary terms to obtain

d,d
Ot = 0o + =~ 0:Up + €Uy + 0,d O:Uy + -+

d
Vu® = VU, + V?@Uo +eVU +Vdo.Uy + - -
d Ad d|?
Auf = AUy + 2% -Vo.Uy + ('?ZU07 +0..Uy ’Z2| + AU,
Vd|?
+2Vd - Vo, Uy + 0, U1 Ad + 0., Uy . + .-
F(uf) = F(Up) + eF'(Uo)Us + O(?),
where F(u®) := —W/'(uf) and the functions U; (i = 0,1), as well as their derivatives, are

taken at the point (z,t,d(z,t)/€). Substituting in (P?) and collecting the ¢~2 terms yield
to
0.:Uo + f(Up) =0.
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In view of the normalization and matching conditions, we can now assert that Uy(z,t,z) =
Uo(z), where Uy(z) is the unique solution of the stationary problem

{ Uo" + f(Uy) =0

Up(—00) =0, Tp(0) =3, Up(+oo) = 1. (5.23)

This solution represents the first order approximation of the profile of a transition layer
around the interface observed in the stretched coordinates.
Next we collect the 7! terms. Recalling that V,Uy = 0 and that |Vd| = 1 near Ty, we get

0., U1 + f,(UU)Ul = Uol(atd — Ad + VX((]) . Vd) — OéUo(l — Uo). (5.24)
Now we introduce the solvability condition in the next lemma.

Lemma 5.2.1 (Solvability condition). Let A(z) be a bounded function on —oco < z < 00.
Then the problem

Ve + f'(Uo(2))y = A(z),  z€R
(5.25)
¥(0) =0, o€ L*R),
has a solution if and only if
/ AU (2)dz = 0. (5.26)
R
Moreover the solution, if it exists, is unique and satisfies
()| < O~ forzeR (5.27)

for some constant C > 0.

In view of Lemma the solvability condition for (5.24]) is given by
/ (UO/Q(Z)(ﬁtd — Ad+Vx(q) - Vd)(z,t) —aU,Up(1 — U())) dz =0,
R

for all (z,t) € Q7. Hence we get

U Uo(1 — Ug) d s(1—s)d
0 — Ad 4 Vx(q) - vd = IR U 02 o)dz_afy sl =s)ds,
fRUO/ dZ fRUO dZ

Moreover, multiplying equation (5.23)) by Uy’ and integrating over (—o0, z), we obtain

0 = /Z (U()”UO, + f(Uo)U()/) (S)ds

1
= 5U0"(2) = W(Us(2)),
where we have also used the fact that Uy(—oo) = 0 and Uy'(—oo) = 0. This implies that
Uo'(2) = V2W (U ()%,

and therefore

/U /Uo o(2))/2d>

R
No
= W (s)Y2ds = 22 s(l—s
;ﬂA (s)7"d 2A (=)
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It then follows that
dd = Ad+ Vx(q) - Vd + av/2. (5.28)

We are now ready to derive the equation of interface motion. Since Vd coincides with the
outward normal unit vector to the hypersurface I'y, we have did(x,t) = —uv,, where v, is
the normal velocity of the interface I'y. It is also known that the mean curvature k of the
interface is equal to Ad/(N — 1). Thus the equation of interface motion is given by:

vp=—(N=1)k+Vx(q)-v+av2 on Ty (5.29)
Note that this formulation is equivalent to (5.1) in the case of a smooth interface with

vp=0v-v,0 =1and T < T4z, where T}, is the maximal time before singularities occur.

5.3 A priori estimates

Proposition 5.3.1. (Boundedness on uf)
There ezists €1 = €1(c, Cq) such that for all 0 < e < €1 we have that

0<u"<1l+e inQr. (5.30)

Proof.
Let M =1 + ¢. Suppose that we have maxg, u® > M. Since u° is continuous in space and
time and since we have (5.15|) then there exists (xo,t9) € Qr such that u®(xg,t9) = M. In
addition,

max u(z,t) = max {m_a,xus(x,t)} > M, (5.31)
Qr t€[0,T] Q
and
maxu®(z,0) < 1 < M. (5.32)
Q

Then there exists t; € (0,7 such that

maxu®(x,t;) = M. (5.33)
Q

We choose ty = t; to be the smallest time such that (5.33|) is satisfied; then we have
Maxq, [o,) 4 (%, 1) = M = u(z0,tp). The maximum principle implies

1 1
0 < dpu (o, to) — Au(zo,t0) = —MAX(g:) + 5 M1 - M)(M = 5 +ea)
1 1
= —(14+¢)Ax(g:) — 6—2(1 + 6)(8)(5 +e+ea).(5.34)
In view of (5.2)) for ¢ small enough depending on a and Cy, the right-hand side becomes

negative which implies a contradiction and we have that v <14 ¢ on Q7.
Now since 0 is a subsolution, by the comparison principle u® > 0 on Q. O

Proposition 5.3.2. (Bounded measure)
For allt € [0,T] there exists 0 < ¢1 := ¢1(Ep, o, Cy, T') such that

Ef(uf) = ui (Q) < ¢y. (5.35)
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Proof.

/ £
iE‘E( f) = /é:Vu‘EV@u +W§u )6u5
Q

dt
o)
- [ “) - [ (a0 = TE) (-vata) v - wania)
/Q<A€— >ju€(1

0t u

< [ (o T )+/92( : W'(Q“E)f + [ <19 7
s [ e @@+ [ 5 (e - ) [ awera -y

< [ eIV [V o (e + 2w )

< <2 sup IVx(ge)]” + 2a2> E5(u”) +£C5(Co)

< CilonC)E () + Co(Cy) (5.36)

Therefore, Gronwall’s inequality implies

Proposition 5.3.3. (L2-bound on the perturbation term,)
Let g.(t, z,u®, Vu) be defined as in . Then, there ezists 0 < cg := ca(c1,Cq, o, T') such
that

1
sup / (90)*dx < ca. (5.37)
0<e<1 € JQr
Proof
1 1
L[ rae < s [ (19PN R AP + e -0
€JQr Qr €
T
< 6| sup|Vx(g)|® + 202 / E°(u®) +eC(Cy, T). (5.38)
Qr 0
which, by (5.35)), implies the result. O

We will denote
Jo 3= sup IVx(g:)? + 207, (5.39)
T

Remark 5.3.4. We remark that 1s exactly the hypothesis made by Mugnai and Réger
in a more general context in [60)].
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Lemma 5.3.5. Let u® be a solution of (P%) and let
ey Lo
we 1= —eAu® + gW (ue);

then we have

t 100\ 2
EE [uf(,1)] +5/ / (Auf— W )) <E+2 (5.40)
2 0 [¢) 3 2
for allt >0,
T 1
Be = / /(5(8tu5)2 + gwg) dx dt < cg + 2E), (5.41)
0 Ja
and
T 1 2
(= /0 /Q <\/§8tu€ + \/gwa> dx dt < cs. (5.42)
Proof.

We have that

d 154 13
@E (u)

W (uf
/ eVu*Vou® + (u) Ou®
Q 5
1(n,E
Q €
! € 2 / c c c
_ _/€<Au5_ W(Z)u )) _/6<AuE_W(2u )> 9o (, 4, V)
Q € Q € €
2
_/ E Auf — M +/ (g€(x7u57vu€))2>
Q2 g2 o 2
by integrating over [0,¢] we can get for any ¢ > 0 that

IN

which yields (5.40)). Moreover, we have that

1 ’ 2 _ 1 g € 2 _
5/0 /an - 6/0 /Q(gatu +ws) —Cs
T 1 T dq
_ €\2 =2 Y e, e
- /0 /Q(a(atu) +€wg)+2/0 9 )
T
_ / /(a@tuE)Q + éw?) +2EF (WS (T, ) — 2E°(uf(0,.)) < ca,
0 Q

which gives us that

T
1
/ /(a(uf)2 + —w?) < ¢y + 2E.
0 Jo €



5.4. Convergence of the phase function u° 91

5.4 Convergence of the phase function u°

We refer to Modica [56] for the results and the proofs presented in this section.

Theorem 5.4.1. There ezists a phase indicator function u € BV (Qr;{0,1})NL>(0,T; BV (Q2))
such that up to a subsequence

u® —u in LYQr) as e — 0. (5.44)

This result is a consequence of the three propositions below.

Proposition 5.4.2. (Convergence in L')
There exists a function u € L'(Qr) such that, up to a subsequence, u® — u in L'(Qr) as
e —0.

Proof.
Let ,
O(r) :/ VvW(s)/2ds,
0
and define
v° = P (u)
for each e.

Step 1. {v:}. is bounded in L'(Q7).

. L L 2 .
Since @ is increasing, it follows that 0 < ®(u®) < ®(2) = [; /W(s)/2ds so that ®(u®) is
bounded in L>®(Q7) and therefore in L'(Qr).

Step 2. {v°}_ converges strongly in L'(Qr).
We have that Vo (z) = ®'(u®(2))Vu(z), then we have

/Q|Vv5\ dr = /Q\/W’Y[u;d:c

€|2 €
. 1/ (ﬂw | +W(u)> i
2 Q 2 g
C1
< — 4
<9 (5.49)
where we have used Young’s inequality and (5.35)) . Similarly, d;v° = ®'(u®)dpus
|Opu|
|0 de = / W (u®) dx
‘/QT T \/i
€)2 €
< 1/ <5(8tu) + W (u )) de
2 Jor 2 €
S C(Cl,CQ,T, Eo), (5.46)

where we have used and (5.41). Hence, we deduce that {v°}, is uniformly bounded in
BV (Qr); therefore there exists a function v € BV (Q7) and a subsequence of {v°}_ which
we denote again by {v°}. such that v* — v in L}(Qr) as € — 0.

Step 3. {u}, converges strongly in L'(Qr).

Let @' be the inverse function of ® and define u(z) := ®~(v(x)). Since v* — v strongly
in LY(Qr) by Step 2 of this proof, it follows that v* — v a.e. in Q7 along a subsequence
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which we will denote again by {v¢}. Hence, since ®~! is continuous, ®~1(v¢) — ®~1(v) = u
a.e in Q7. Finally, using the uniform boundeness of u® = ®~1(v*) and Lebesgue dominated
convergence theorem we deduce that u® — u in L'(Q7) up to a subsequence.

Proposition 5.4.3. (Convergence of u¢ to a step function)
u=0 oru=1 for almost all (x,t) € Qr.

Proof.
We have that

/TW(ua) = s/OTEa(ua)—EQQ/TIWEI2

T
< 8/ Ef(uf) < qTe.
0
Therefore, by Fatou’s lemma and by using the fact that u* — u in L'(Q7) we get

W(u) < liminf W(u®) <0,

Qr =0 Jor

which implies that W(u) = 0 a.e. in Q7 so that u =0 or u =1 a.e. in Q7. O

In the next Proposition we say that v € W'(Qr) in the sense that u € L'(Qr),
O € LY (Qr) and Vu € L' (Qr). We will also denote by D the weak derivative as in (4.1);
in the case of ¢ € Wh1(Q) we have [, |D¢| = [, |V

Proposition 5.4.4. (BV bound on the limit)
Denote D' the full derivative in time and space in R™ x R so that

T
fQT |D'u| = fQT <<§9TZ’ g—;z, e ,%) ‘ in the case where u € WH1(Qr). We have that
/ |D'u| < e, (5.47)
T
and
)< .
max [ Dul(t.) <o (5.48)

with 0 < c3 := Cg(cl,CQ,T, E()) and 0 < ¢4 := 04(61).
Proof.
Recall that v* := ®(uf) with ®(r) = [; /W (s)/2ds. By Step 2 of Proposition

ve(t,.) — v(t,.) in L(Q) for almost every ¢ € [0, T]. Using the lower semicontinuity property
and a computation similar to ([5.45|)

D] < liminf | |Dvf| < 2. (5.49)
0 e—0 QO 2

By Proposition and the coarea formula (see Theorem |4.3.5) we have that for every
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t€[0,T]
/\Dv _ / o ({2 € Qo t) > 5)) ds
Q
®(1)
— / / Po({z € @ u(z,t) = 1})
= O(1)Po({z € Qu(x,t) =1})
= o) [ |pul. (5.50
where we have used the fact that
— [ 1Dxal =0,
Q
and Definition Therefore, (5.50) give us
1
Du| = / Dul. 5.51
[ 1pul= 555 [ 1o (551)
Substituting in (5.49) we obtain ([5.48]).
The fact that, v° — v strongly in L'(Qr) with (5.45) and (5.46) yield
/ |D'v| < hmmf/ |D'v®| < C(e1, ¢2,T, Ey). (5.52)
e—0
T Qr
Similarily, the coarea formula gives
+oo
Lol = [ Par (et € Qrivtet) > s)) ds
T
a(1)
- / Por(@n)+ [ Par({(et) € Qr s ulant) = 1)
= o()Po,({(z,t) € Qr : u(z,t) =1})
= @(1)/ |D'ul. (5.53)
Qr
We deduce also in view of ([5.52)) that
1
/QT ‘D'u’ = CI)(I)/QT ‘D/’U‘ < C(Cl,CQ,T,E(]). (5.54)
[l

5.5 Convergence of diffuse surface area measures

In the next Lemma we want to prove that the time derivative of the measure pj given

in (5.7) is controlled.

Lemma 5.5.1. There exists a constant 0 < c¢5 := c5(T, Eo, c1,c2) such that we have for all

¢ e CHQ)

d . r
%Ut(‘ﬁ) = . < ¢ H¢||CI(Q) :

r

d
el duE
dt/quMt
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Proof.
For such ¢ we have that

d e _ i E €12 W(UE)
i [owi = 5 [o(5mwr+ ™)
! g
= /5¢Vuevatu5+¢w(u )Gtua
0 3
- ¢ / div(¢pVus)dus + ¢ / ¢<atumu _ (ue)? + 2 )

£
= —6/ VoVu©ou® —5/¢ (Orut)? /¢geatu

Therefore, using Young’s inequality

/OT jtui(@‘ ge/(]T/QIVsﬁllvufllatuEH216/;/ |¢>I+/ 0] (Buf)?.  (5.55)

Also, Young’s inequality together with (5.35)) and (5.41)) imply

T T Ous 2 Yut 2
[ [wsivations < [ [ 1vo (a( 4 V) < oy enen) 10l0no
0 Q 0 Q

(5.56)
We obtain the expected result by combining (5.37)), (5.41)), (5.55) and (5.56]). O

Proposition 5.5.2. (Convergence of the measures 5 )
There exist a family of Radon measures {Nt}tzo and a subsequence which we will denote
again by € such that for allt € [0,T]

w; — pt in the sense of Radon measures on ) as € — 0,

i-e. / o(x) dug (z) — / o(x) dug(z) as e — 0 for all ¢ € C.().
Q Q

In addition, the function

t— pi(¢) for all g € CH(QY),

is of bounded variation in (0,T).
Moreover, we have for all t € [0,T]

we > o|Du(.,t)]  as Radon measures on €2, (5.57)

with o 1s given in .

Proof. Let {¢)}22, C C1(Q) be a dense subset in C(£2). From Lemma we can see that
the function u$(¢x) is uniformly bounded in BV(0,7). Then, using a diagonal argument
we can find a function my(t) € BV (0,T) such that for all & € N, up to a subsequence

15 (o) — my(t) strongly in L'(0,T) as e — 0. (5.58)

Therefore, (5.58) is valid for almost every ¢ € (0,7). Denote by Sj the subset of [0, 7] where
my, has no discontinuities. Since my, is of bounded variation, S is at most countable and

wi (o) — my(t) for every t € [0, T]\Sk. (5.59)
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Since Sy is a countable subset of [0, 7] we can use again a diagonal argument with
and the compactness property of Radon measures (see Theorem to get that is
valid, up to a subsequence, for every t € [0,7] and that there exists a Radon measure p; on
Q2 such that lime_,o p5(¢r) = mi(t) = i (¢r) for every t € [0,T]. Therefore, since {¢x}72,
is dense in C(Q) we get that uf — ! as Radon measures for all ¢ € [0, 7.

Finally, to obtain we combine ((5.50)), (5.49) and (5.45). Therefore, we get

0’/ |Du| dx = 2/ |Dv| dz < 2liminf/ |Dvf| do < liminf ug () = u(2).
Q QO e—0 0 e—0

5.6 Upper density ratio bound

In what follows we assume that there exist 0 < 77 < T depending on € and Dy > 2Dy
such that
De(t) < D; forallte[0,T]. (5.60)

The continuity in time of u® implies the continuity of D®(t) together with the fact that
Dy > Dy imply the existence of such T7. In the end of this section we prove that Ty =T
and we fix D;.

Define p as the backward heat kernel

jz — y|?
1 “4(s—t) n
P(y,s)(ffat) == € , for z,y € R" and t < s.
(Am(s —1t)) =2

Note that the backward heat kernel is scaled with respect to time as in R*~! and not R™.
Simple computations yield to

_(z—vy)
Vap = 2(s _t)/u
[y @@ -y I
\E _< (s —1)2 _2(s—t)>’0’

[ - jz —yf’
Bap = (2(5 TP —t)2> &

P Bt N
T\ 2=t as—02)”

Therefore, we have

0, Agp=——"—, 5.61
and .
(a'p"”") +((I—-a®a) Vip)+dp=0, (5.62)
for any unit vector a. Let
- W) 1

L = Au® — ——— = O’ — Z9e-
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Lemma 5.6.1. For all ¢ € C*() we have

8/ LUV ¢ - Vut dr = / A¢du; — 8/ (VU @ Vs - V2¢) dz. (5.63)
Q Q Q

Proof.
For such ¢ we obtain

: e |Vur? | W(u)
/QAqu,ut = /ngqb( 5 + - >dm

f_E . 52_1 . £ 1(, €
- 2/Qv¢ v(|Ve]?) 5/QV¢ VW ()

n n 1
- _E/QZ Zaquﬁﬁmus 8§¢xju€ T /Q Vo Vu W' (uf)

i=1 j=1

B E/ izn:axj¢axjus 83231'331'”8 +€/ izn:axiaxjd)aﬂus ijus
Q- 0°

i=1 j=1 i=1 j=1

1
—/ V- VuEW’ (uf)
€Ja
1
= 5/V(b-VuaAua—l—s/V?qﬁ-Vug@Vua—6/Vqﬁ-VuEW’(ua).
Q Q Q

O

Lemma 5.6.2. [/1]
Let

) e eyl
py() == Wz exp 572 :

Then, p(y.s) = py, when r?2 =2(s —t). Let u be a Radon measure on R™ satisfying for some
D=0 (Br(z))
HDR(Z
— <D 5.64
wn_an_l —_ ( )

for R >0 and x € R™. Then we obtain the following:
(1) Forr >0 and for x € R",

[ #)duty) < .
(2) Forr, R >0 and for x € R",

2
/ pa(y) dpu(y) < 2"Le = D,
R™\Br(z)

(3) For 6 > 0 there is y1 > 0 depending only on n and & such that for x, xo € R™ and r > 0
satisfying |x — x| < y1r we have

/ Pro (y) du(y) < (1+5)/ Px(y) du(y) + 0 D.
RTL

n

(4) For 6 > 0 there is v2 > 0 depending only on n and § such that for x € R™ and r, R > 0
satisfying 1 < % <1+ v we have

| oW dnt) < 1+0) [ piw)dnty) + 5D,

n
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Lemma 5.6.3. (Huisken/Ilmanen monotonicity formula)
There exists a constant 0 < cg := cg(n) such that

d
dt

where

[ panite) < g [ e e [ U O 50+ o (By)),  (5:69)

1 _le—y?

ﬁ(y,s)(ma t) = P(y,s) (:L'a t)77($ - y) = —16 B 77(90 - y)v (5'66)

(A4n(s—1t)) =z

fort <s and x,y € Q with n a fized radially symmetric cut-off function

n(x)GCso(B%) with n =1 onBi,Ogngl. (5.67)
One can check that
Ply,s) (@, 1) dr < \/4m(s —t). (5.68)
Q
Proof.
Let
. Vuf
G
Also in view of (5.8))
) o [ _[elVur? W)
d = — d
at/p“t at/Qp< R

IN

1
/ Opdus + 5/ pVus - Vous + — / p W' (uf)opu®
Q Q €Jo

1
/&gﬁdui —8/ ﬁAuEE)tue—e/ VxﬁVueatuE—F/ pW' (u®)Opu’
Q Q Q € Ja
1 1
/ Op dg — 5/ pAUT (.Csus + gg> — E/ V.pVu® (Esug + gg>
9) Q € Q €
1
+5/ p (Au® — Lu®) <L',‘5u8 + gg>
Q 13
/@ﬁdui 8/ Ve pVus Lou® / VpVuge 8/ p(LEuF)? /ﬁgeﬁauE
Q Q Q Q
~ e\ 2 ~ e\2
[ i< [ 5+ TIVEV o [ o g e [ ST
Q Q p Q Q p

— / 9:p <L’€u5 1 Vab Vi )
Q p

€ . ~\2
/ (WZM + (I - v @ v7) - V2)) +atp> e |Vuf da
Q

0 = € 1 2~
_/Q(atp—i-Axp) d&; +25/Q(g‘5) F;
p 1
/Q 3= i+ e /Q<gs>2ﬁ + ¢ 15 (By (y)).

where we have used the fact that pf = e |[Vus|? — & together with (5.63), (5.61) and (5.62)

with a = 1#

U
Ve

&

and that p is uniformly bounded on {Vn # 0} since {Vn # 0} C
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Bi1\B: and we can always find a positive constant ¢ = ¢(n) such that "7 et < cfor any
2 4
1
£>0;i ticular for { = ———. O
in particular for 1605 =)
Next, we recall a further property stated by [70, (4.24)].

Theorem 5.6.4. If we have Oyu — Au = f on By x [0,2] then we have for j =0 or j =1
and for r € (1,00) that

18sull 1y o) + |V 20 iy S Cmr) (HfHLT(ng[O,Q}) + IVull (3, x[0,2)) (5-69)
+ llull By xj0,2) + (1 = 4) ||U(-70)Hw2m(32)) :
See [46, page 342, Theorem 9.1] for details.

In the next lemma we say that a function f € W2 (Qr) if it is such that f € L"(Qr),
0. € L'(Qr). Vf € L'(Qr) and V*f € L'(Qr).
Also we say that a function f € C'2'1(Qp) if it is such that

sup | f| + sup |f(xt1) =y, ta)]

Qr " wwen osti<i<T max {|z - y|?, b — tal7 }

< 00

Lemma 5.6.5. (Gradient bound)
There ezists a constant 0 < ¢y = c7(n, W, o, Cy, co) such that
Vus(z,t1) — Vut(y,t
sup ¢ |Vu©|+ sup € | (z,1) - y 21)|
Qx[0,T] x,y€Q, 0<t1 <ta<T max{y:n —y|2, |t — t2|1}

3
2

< c7. (5.70)

Proof.
We consider an arbitrary domain Bse(z0) X [to, to +2¢%] C € x [0,T]. The rescaled problem
becomes

o = Au® — W'(a°) — Vx(Ge) - Vi© — a°Ax(q=) + eau®(1 — @), on By x [0,2] (5.71)

where @ (z,t) := u®(ex+x0, %t +10) and ¢ := q-(ex+x0, %t +1o) for (z,t) € Bsx[0,2]. Let
¢ € C1(Bs) be a cut-off function such that ¢ = 1 on By and 0 < ¢ < 1 on Bs. Multiplying
(5.71) by @¢? and integrating over Bs we get

91 ~e22> _ [ wape—2 [ wevie-ve— [ wiaEs

8t<2/]35’u’¢ /BB|VU|¢ 2/Bsu¢Vu Vo BsW(u)uqb
- [ Vxia) viEEs - [ @@ raxa) vea [ @R -,

B5 B5 B5

Integrating in time over [0, 2] and using Young’s inequality we get

1 B 2 ~ 1 B 1 /2 .
/ |u€<.,2>|2¢2+// VaEP e < / |u5<.,o>|2¢2+// Va2 ¢
2 /s 0 JBs 2 /s 4 Jo JBs
2 1 2
14 / / (@) Vo[ + + / / V|2 62
0 JBs 4 Jo JBs

2
~\[2 /~e\2 2
+/0 /Bsw%ﬂ (@)’ + C(W, o, Cyo ).
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Therefore, we have

2 2 2
// ]VﬂE\dedt:// \Vﬂ5\2¢2da:dt§// \Vie|? ¢? dx dt < C(W,a, Cy, ).
0 By 0 JBy 0 JBs

(5.72)

Using Lemma for r = 2 we get
2
/ / (10 + |2 ") ddi < C(n, W0, Cy ) (5.73)
0 JBs

Now differentiating (5.71) with respect to x; we obtain

— (AX(G:))a; + eavils, (1 — i) — eiiiis, (5.74)

Using (5.72)), (5.73]) and (5.16]), the estimate (5.69) in Lemma applied to ([5.74) implies

2
/ / (|vata£|2 + \v?’aff) dx dt < C(n,W,a, Cy, co). (5.75)
0 Bs

Hence we deduce that

HvasHWQQ’I( < C(Wnaaactpc())'

B3x(0,2))

Using Sobolev inequality we get

V@] 2041 < C(W,n,a,Cy, o).
L n=T (B3x(0,2))
We argue similarly with r = % in (5.69) and we repeat this argument until r is large
enough so that W' (Bs x (0,2)) C C)"%(Bs x [0,2]) for some ball of radius s < 3, with
A=2-" 2 ifr> " 2 and 7 # N +2, see also [I5]. We choose A = 3. Since the domain
was arbitrgry we get th2e desired estimate by rescaling back. (I

Lemma 5.6.6. (Upper bound on the discrepancy)
There ezists 0 < €3 := ea(n, ¢z, Cy, o) such that for all 0 < e < ey we have

sup &5 <2712 (5.76)
z€N,t€[0,T]
e |Vus|? - W(w)
2 e

where £° 1=

Proof.
Let the arbitrary domain Bs(xo) x [0,T] C Qr. By rescaling our domain as in the proof of
Lemma the rescaled problem can be written as

O = AT —W' (@) — Vx(Ge) - V& — @ Ax(Gz) +eai(1—af), on Bs.1 x [0, 2T (5.77)

Define the function
_vaE?
2

¢ W (@) — G (@), (5.78)
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where

Notice that we have
0<Ge(a) < GW >0and G/ = ——. (5.79)

Now taking the gradient of (5.77) then multiplying by Va® we get

Vi -VoiaE = Vit - VAT — W' |ViE)? — Vx(G) @ Ve - V2 — V2ix(q.) - Vi @ Vie
—|V@E|? Ax(G.) — 6°VEE - VAX(G:) + ea |[VaE ] (1 — @) — eadr® |Vl |?
Vi - VAT — W Vi |* — V() ® Vi© - V2 — V2x(G.) - Vi @ Vi
+ea |ViE|* (1 — @) + e2C(cr, Cy) + €C(er, Cy) (5.80)

IN

A simple computation gives us
& = Va© - Vouu© — ut(W' + GL), (5.81)
VX(&) - VE = (Vx(G) ® Va©) - V2a© — (W' + GV X(g:) - Va©
A€ = Vi - V(ATF) + \v%ﬂ (W + G!) |V@E > — (W' + GL AT

Then we obtain after substituting ([5.80)) in that

O+ V() -VE—AE < GUIVEP+W'(W' +GL) — {v%ﬂz — V() - Vi @ Ve
tea |VE (1 — @) + (£2C(Cy) + eC() (W' + GL)
+£2C(c7,Cy) +3C(cr,Cy). (5.82)

Furthermore differentiating (5.78|) with respect to x;, taking the square, suming over i and
applying Cauchy-Schwarz inequality we get

2

SN on,@ tu | = Y (006 + (W + Gl )
i=1 \j=1 i=1
= |VEP +2(W' + GLVE-ViEd + (W + GL)? Vi |?
< v vraE]. (5.83)

Dividing (5.83) by |Va©|? on {|Va| > 0} and substituting the result in (5.82), we obtain

2(W' 4+ GYL)
Ve

tea |V * (1 — @) + eCla) (W + GL) + O(e%)  (5.84)

HE+Vx(G:) -VE—AE < —(GL?-W'G - V¢ - Ve + G VEE|

Let N :=supp,__, x[oc—27] (Wgsﬁ - W(&E)) which is bounded by (5.70) (here we suppose
also that it is positive) and ¢ € C°°(Bs.-1) be defined by

N on By 1\By.-
Sty = O Paer\ B (5.85)
0 on B,-1,
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with
0< ¢ <N, |Vé| <2N, |A¢| < 2ne’N. (5.86)
Let
C:=&— 0. (5.87)
Suppose for a contradiction that
sup £€>el2 (5.88)
B__1x[0,672T)

Due to the choice of ¢ and N we have that

¢<0 on (Bz.-1\By.-1) X [076_2T])
¢<e'™?  on Bs.1 x {0} by (5.17),
¢>e'?  on B.1 x [0,e2T7,

therefore there exists some interior maximum point of ¢ where
9C>0,V(E=0, A <0, and ¢ > /2. (5.89)

Combining ((5.84)), (5.87)) and (5.89)) we obtain

/ /
0 < Ad—Vx(i) Vé— (G2 — WG, — Ww Vi + @ Vi)
uE
+ea |VEEf (1 — @) +eC(a) (W + GL) + O(?). (5.90)

Now using (5.79), (5.86) and the fact that ]Vﬁ5]2 > 26 > 2¢ > 261/2 we get

1/2
0 < 2ne’N +22NC(Cy) — (GL)? = WGL+2v2 (|W'| + |GL]) e¥/4N — 87 |Va© |

tea |V [1 — @] +eCla) (|[W'] +|GL]) + O(e?). (5.91)
If @° € [ — 4,1 +1] we use the fact that |Va®|* = 2(¢ + W(@°) + Ge(@)) > W(a®) >
W (3 —~) > 0 which implies that

cl/2
GM@) Vi < ———  min  W(r)
4 rell—y,i4)

and together with (5.91)) yields a contradiction for sufficiently small ¢ depending on n, «
and Cy.
If ‘228 - %’ > ~v then we have

- 2 ~ ~ 1/2
(G = T and W(@)G () = = (W)
In the case where @ ¢ {0,1} we have also a negative term of order £'/2 which similarly
yeilds to a contradiction. Now consider the case where 4° = 0; then the estimate ((5.91)) can
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be written as

2 2 7 gl/? 3/4 gl/? ~g|2
0 < 2ne’N +2¢ NC’(Cq)—aﬁ—i—Q\@TXE N — - |V

£1/2
+ea |V > + C(a)e x -+ 0(£?)
£3/2 £5/4
2 1/2
e G o2
€16 3 |Vas|” + O(e), (5.92)

where we have used the fact that for sufficiently small € depending on o we have

1/2 1

/2
(3 3
- V@l |? + ea|VEE)? < e \Vas|?.

Since the right hand side of the inequality (5.92)) is strictly negative for ¢ small enough
we have reached a contradiction. A similar contradiction can be obtained in the case that
uf = 1.

Since ¢ = 0 on B.-1, G < £1/2 and the domain is arbitrary we get the result 1} by
rescaling back. O

Lemma 5.6.7. Let s, R, r be positive such that 0 < s — (g)2 < T and R € (0,%). Set

5=s5— (%)2 Then there exists cg := cg(n) > 1 such that, for any y € Q, we have

n—1
/Qﬁ<w> (. 8) dysi{w) < <m> {HEBr) + #5(By ()10} + esD(5)e .
(5.93)

See [70, Lemma 4.3] for the proof.

Lemma 5.6.8. Let v be defined as in . Assume that % — v < uf(y,s) < % + v with
s € (0,T1] and y € Q. Then, for any t € [0, T1] with max {0,s — 263/2} <t < s there exist
cg := cg(cg, D1,c7,m) > 1, 0 < 19 := cro(cs, D1,c7,n) < 1 and 0 < €3 := e3(c1,¢6,Cq, 0, T)
such that for all 0 < e < e3

1
c10 < WU%(BR(?J)% (5.94)
with R = co(s + 2 — t)1/2.

Proof.
We have that

/ p(y73+€2) (:E, S) dlui (':L‘) - / 7717—16 4e2 n(x — y) ( | 2 | _I_ ( )) dl‘
Q Q (
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where we have made the change of variable ez = z — y with 4(Z, s) = u(ex +y, s). Further-
more, the fact that % —v<u(0,s) < % + v implies that for every ro > 0

. 1 e~
a(0) — 2’ + Slelg [Vas| |Z| < v+ crro,
X

for all € B,,(0). Therefore, taking ro small enough we can always find a constant 0 <
c(er) < W(1/2) < 1 such that W(a®) > ¢(cr) on By, (0). We obtain

3 . s Wy,
/ P(y,s+e2) (T, 8) dug(x) > / C(n)W(a)dz > C(n,cr)w, =6 (C(n, c7) ?> > 511,
Q By (0)
(5.96)
with 0 < ¢11 = ¢11(n, ¢7) < 1. In addition, the monotonicity formula (5.65)), (5.68]), (5.76)),

and a computation similar to ((5.38]) give us

N 2ﬁ€—1/2
Vs—A

where f; o is given in 1) Multiplying 1' by ¢ 6=N | integrating over [t, s] and using
the fact that

(7N [ pdis@) =176 [ Gagia) N s
d\ Q 0 dX Jo

we get

e e /Q 5y ()

d . -
5 | P @) s @) < 30 [ e (a.0) i @) + Clers s, Cp, TI5.97)

S 1 S _
< (1) [ [ s ane e aver

A=t
+2C(c1, g, Cy, T)e¥ 2% (5.98)

For sufficiently small ¢ depending on Cy, «, c1, ¢g and T the right hand side can be made
negative we choose also € so that =" <5 /2 together with 1' yield to

- 1 -
/Q pii(@)> /Q Py () > 21, (5.99)

Applying Lemmal5.6.7, with & replaced by ¢, s replaced by s+¢2, r replaced by 1/8In(2cg Dy cl_ll)
(so that cgDje” 5 = 41) and R replaced by r(s + &% — t)1/2, we obtain

n—1
T 2 2 2
~ € < € —r?/16R —r?/8
/Qp(y,erEQ)(ﬂfat) dpi(z) < ( TwR) <Mt(BR(?/)) +cie ) + cgDqe , (5.100)

note that in view of s — t < 2¢%/2 we can have R < 1 /2 for sufficiently small ¢ depending
on Dy, ¢11, cs. Therefore, using /R = 1/(s 4+ €2 — t)1/2 > 1/(2 + 23/2)1/2 > 1/(/3£3/4)
together with ([5.99)) we get for £ small enough

n—1
r
(i) i(BRl) = en, (5.101)
which implies the result with c¢g = r and ¢jg = T'l*”(\/47r)"*1011. O

In the next Lemma we suppose that T} > 2¢3/2. This is not necessarily true in general and
we will discuss in the proof of Lemma [5.6.10| (i)] the case that T} < 23/2.
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Lemma 5.6.9. For any r € (¢3/4,1) and t € [2e3/2,T}), there exist 0 < 4 := e4(k, Cy, )
and 0 < c19 := c12(n, k, D1, cg, c10) such that for all 0 < & < &4,

g2 €
/ eVu” W) (z,t) do < crpe'/frm 1, (5.102)
B, (y) 2 9 N
Proof.
Let y € Q, r € (34, 1), to € [2¢*/2,T1]. Define
~ 1 1
A= {x € By, (y) : for tg—e¥? <t <y, 57 <uf(z,t) < 3 + ’y} , (5.103)
and .
A= {x € By rogessa(y) : dist(A, ) < 2(;953/4} . (5.104)

c|2 us e
Claim 1: [4np, ) (% _ M)+ (z,to) < cln, D, cg, cr)el/4rn—1.

Let F = {320953/4(37) tx € fl} F is a fine covering of A i.e. A C UperB. Indeed, let
z € A. Then,
4

Z € By, g.e3/4(y) and dist(A, 2) = inf |w — 2| < 2ce>/*.
weA

Thus, there exists #/ € A such that
‘a:/ — z’ < 20953/4.

Therefore, z € By, a/4 ().
Applying the Besicovitch covering theorem, Theorem [4.3.3 on F we get that there exists
a set of pairwise disjoint balls {320953/4 (wz)}fil with N(n) such that

A CUY Byg,sa(ri), witha; € A Vi=1,--- N, (5.105)

For each x; there exists t; such that

—_

1
to—e¥? <t; <ty and 5~ 7 Su(@t) <5+

Applying Lemma with s replaced by ¢;, y replaced by x;, t replaced by tg — 2¢3/2 and
R replaced by R; = co(t; +e% —to + 253/2)1/2 we obtain

c1oR} ™ < py o5 (Bri(wi)) fori=1,--- N. (5.106)
Now, using the fact that

co(e%? + e2)V2 < Ry < ¢g(263/2 + £2)1/2 < 2¢9e%/4, (5.107)

we obtain using ((5.106|) and (5.107])

N§0_253/2(320953/4(xi)) > N§0_253/2<BR1~(331‘))
> cpRM!
> c10c3—1(53/2+52)”;1
> o ledmD), (5.108)
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Also we have that By, .s/4(%i) C By, one34(y) for all i = 1,--- N. Indeed, let z €
Byyes/a(xi). Then, |2 — ;] < 2c9e®/%. Moreover, |z — y| < |z — 2| + |2 — y| < 2c9e®/* 4 2r,
which implies that 2 € B, 5. 3/4(y). For this reason together with (5.108) and the fact

that {B2ch3/4 (xl)}ji is a set of disjoint balls, we obtain

1

N
1 3(p_
Newoeg 'ea™™ < N e oo (Bygyesa (i)
=1
= My _ges/2(Uiz1 Bogyes/a (i)
S Hiyges2(Borgacyes/a(v) (5.109)

Combmlng m with ( ) and the fact that r > ¢3/4

L"(A) < Nuw, (100953/4)"
10 ngn 3/4 £

= €10 P — 23/2 (Bor i 200e3/4(Y))
< 10ncgwnwn,1D1€3/4(2r+20953/4)1171
€10
10" 1D
< COWnWp—1 163/4(24_209)71—17”1%—1. (5.110)

€10

Now, ) with (5.76]) imply

15 €
/ (6 - )> (x,t0) < L*(A)2e™ 12 < ¢(n, Dy, co, cr0)e /"1, (5.111)
ANB;(y) ¢ +

2

Claim 2"fBr(y)\A (E‘VSEF — M>+ (z,t0) < ¢(n, Dy, k:)gl/Qr”_l,

&g
Computing the gradient of our problem (P¢) we get

W//( )

% (Vu') = A(Vu') - Vut = V2x(g:) - Vu© = V2 - Vx(ge)

2
—VuAx(g:) — u*VAXx(q:) + %VuE — ?auEVus. (5.112)

Define ¢ € Lip(Ba,(y)) as

b(z) = 1 ifzx € By (y)\A4,
N0 it dist(x, B, (y)\A) > 3/,

such that
Vo] <2e73/% and 0<¢<1. (5.113)
Testing $*Vus to (5.112)) with an integration by parts we obtain
1
U r = — U T — 2 Q@ Vu® - Vu — — U i T
(;i Z Vs ¢2d v2€2¢2d ¢v¢ Vut v2€ W// Ev€2¢2d
/ #*V?x(q:) - VUt ® Vus — / $*V2uc - Vx(g:) ® Vus

- / 0 |Vur? Ax(ge) - / GV - VAX(ge)
Q Q

2
_|_/ a|Vu5|2¢2—a/us|Vu5|2¢2.
Q¢ € Ja
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Furthermore, we have that spt¢p N A = . Indeed, spt¢ C {z: dist(z, B,(y)\A4) < 53/4}
Also by the definition of A, dist(A, B.(y)\A) = inf ep, (yna dist(A,z) > 2coe®/* > £3/4,
which imply that spt¢ 1 A = (. Therefore, by the definition of A we get

1 1
u(z,8) > 3 +v or u(z,s) < 377 for z € spto, s € [to — >/, 1q).

Then, Young’s inequality together with (5.5)) imply

d

1 k
yvufy P*dr < —/ \v2u5\2¢2d:c+/ }V2u€|2¢2+4/ yw\?\vqﬂz—Q/ IVuE|? ¢? da
dt Q 4 0 Q g Q

2 €2 42 1 2 ]2 42 2 €2 42
+ [l v+ [V Pet s [ [9xa)l ves
1 1
+ [ AV o + 5 [ 9ot 5 [ @R VA

+/ g\V7f|2¢>2.
Q¢

Hence, for sufficiently small ¢ depending on C; and a we can have

d/ |Vul|? ¢ dm</ |Vul|? ¢ +165‘3/2/ |Vus)?. (5.114)

Since we have that

Ci(e!%(to” / ;Vu5\2¢2dx> = a0 d / 5 IV d
Q

k _ & 1
+5e - 22 (to—t) / - |Vu5|2 $? de,
9 Q 2
and multiplying (5.114) by e (07 45 integrating over [tg — £3/2, to] we obtain
1 2
— |Vu® ¢2 Ydxr < e 512 Vu 63/2,. q§2 x)dx
2
Q

to 1
+/ e‘fz(to_t)G/ IVl |? dadt. (5.115)
t, spto

o—e3/2 g3/2

Let )
M = sup / ~ |V (2, t) de.
spto

t€[to—e3/2 to]

Therefore, we have

1 k32
— |Vl (to, P ¢*(x) dx < [ e 77 + 2212 ) M. 5.116
2 k
Q
Noticing that spt¢ C Ba,(y) we get
eM < w,_1Dy(2r)"!

Then,

/B()\As\VUEP(a?,to)de/Q;\Vu€|2 $2(z, to) dx < 33k~ /2 Dywn_1(2r)"), (5.117)
Y
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for sufficiently small € depending on k, where we have used the fact that

he—1/2 1
= ke V2

for sufficiently small ¢ depending on k and that ¢ = 1 on B,(y)\A. Hence, Claim 1 and
Claim 2 imply the result (5.102)). O

Lemma 5.6.10. For t € [0,T1] with t < s and 0 < € < g4, there exists 0 < c¢13 =
c13(ci2,n, T) such that we have

¢ 1 e|Vue]?  W(ud) . i
/0 (2(5—)\)/Q< 2 ¢ +P(y,s)(fl%/\)dfc d\ < ci3et |loge|.  (5.118)

Proof. ,
Case i: Let t < 2¢2. For all s > t, we have in view of d5.68b and (|5.76I)

¢ 1 e|Vus]? W)\ 1
/0<2(3—A)/Q< T >+P(y,s)(37,)\)dx> dy < f S_)\d)\

A

< e %\/I(f Vs —1)
< e Vianvi
< 2ﬁe4 (5.119)

Case ii: Let t > 25% with s — ¢ > 25%

Then, we get by using ([5.76))

/t 1/ (€9), By (. N dzdA < /t (26)/ N T
25% 2(S_A) B 3(y) + Pl N 25% 2(3_)‘) B 3(y) (47T(S—)\))T

3
4 4
t 5_%
< L, (B 3)d)\
- /2% (4m)" T (s — N "T ~(B.y)
_1 3, t
< € 2s4n_ul)n/ 3 1 i
(Am) 2 Joez (s —N\) 2z
_1 3, 1
_ g 284njfn 2 |:(8_2€2) _(S_t) ;n
(4m) = 1—-n
_1 3,
< e 21wy 2
T oUn)"T (n-1D(s-t)"7
2
< Un .5 (5.120)
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Now, estimating outside the ball B 3 (y)
&g

t 1 ) )
/2 2(s — \) /Q\B L (€)1 Py (@, A) daz A

t 1 / _lz—y)?
< . . AN (¢°), dadA
/253 2(4m) T (s—>\)%1 Brw\B 3() ’
t 1 1
< _ _ e (), da | dedr
/25% 2(4m) "7 (s — N)" T Jo /B%(w\B%<y)m{z:e‘4(s—y'»ze} !
1
+ 1 e 16(s—X)
_ § (€°), dadldX
/e2 2(4m) " T (s— )\)%1 0 /B%(y)\B 3 "
3
e2

6_ 4(s—X\)

¢ d\
+/ 5 AT W/_l/ (&), dzdtdr
2¢2 2(4m) 2 (s = A) 2 Je 1CN JB, =)

-1 n—1
t T6(s—X) “\N) =z
/ e +(s—XN)2 O\
2

T,

< ¢(eiz,m)e s Sy

€2 (S—)\) 2

t 1 t 1
e326=2) d\ + / e d)\>
</25% 22% s—A

PN

< ¢(eiz,m)e

< c(clg,n,T)ei(l + [Ingl), (5.121)
where we have used (5.102) and the fact that
23/2
e 4(s—X) _— m . 3/2
, (nehYy=ae= | p 2 e Pdp<c(n)e 86=3 < ¢(n).
e 16(s—X) 4(5312”

3
2

Case iii: Let ¢ > 262 with s — ¢ < 2¢2.
In this case we will get

/ot (21_A> JRGIE A)dm) ar
_ /Os—zs <2(51_A> / (§9)4 Py (@A) dx> dr+ / ; (2(81_A) /Q (€, (@) dm) "

= I + Is. (5122)

Nite —~

If s — 252 < 52 the first term I; can be estimated as the ﬁrst case. If s — 252 > 52 then it
can be estlmated as the second case where we take t = 252 Now, to estimate the second

term I we use ) to get

1
I < 5_%\/47r

d\
o 5—25% VS — A

< ¢ 2\/ %3
< 2\/27r51. (5.123)
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Combining the three cases we obtain the desired result. O

Remark 5.6.11. (monotonicity formula)
We now have that for 0 < e < eyq, y € Q, to < t1 < s with to,t1 € [0,T] we have

t1 1
[ o+ [t [1€ldedt < [ pdui, + et el + 31~ to)fya Dy
Q o 2(s—1) Ja Q
+€(t1 — tQ)C(Cq) + C6(t1 — to)Dl, (5.124)

where fqq is given in (5.39).

Proposition 5.6.12. Let c14 := c1a(n) > 1, c15 := c15(n, c6) and €5 := e5(cq, c13,Cq) > 0.
Suppose that for any 0 < tg < t1 < Ty with t1 — tg < 1 we have D%(t1) = c14D%(tg) et
SUPye(t,t) D7 (1) < c14D(to). Then, for all 0 < e < e5 we have

(t1 — to) fg,a > c15.

Proof.
In the case where /s — tg > % we have that

1 1
Py,s) (s to) dug S/ o iy < o1 Hi (BL(y) < e(n)D(to).
/ﬂ " O sy, (rs—te) T T (T

Otherwise, in the case where /s — tg < % we apply Lemma with r = 1 and R? = s—to,

Rn—le S

==

together with the fact that we can always find a constant ¢(n) > 0 such that

c(n), we get
[ Prvsto) i, < cmDlt). (5125)

Therefore, (5.125)) is true for any s > ¢y and for ¢* := ¢(n).

Now, let

1 < c14(n) := max { 2(471_1)7 (1+4c6+ c*)(‘llﬁ)% } |

Wn—1 Wp_1€ 4

By the definition of D?(t) we have three possible cases.
Case 1: D*(t1) = pg, (2).
By a computations similar to that in (5.43)) and (/5.38]) we have

i) < @ty [ [ @

S ,u,fo (Q) + 3(t1 — tO)fq,a S(up )Dg(t) + E(tl — to)C(Cq>, (5.126)
te(t,to

where f; o is given in (5.39). Using the fact that D°(t1) = c14D(t0), Supse(y,1,) D7 (1) <
c14D% (o), £— > 1 together with (5.126

4n71
cuD(to) = D*(t1) < ——p, (Q)

Wp—1

4n—1

Wp—1

< (Ds(to) + 3(t1 — t())quaCMDE(to) + E(tl — to)C(Cq)) .
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e(ti = 1)C(Cy) _

De (to) B
makes sense since we have by definition that De(t) > 1 for ever ¢t € [0,T]. Together with
< % we get that

Wn—-1 —

1
Then for sufficiently small € depending on C; we can choose 2 which

(t1 —to) fo, (5.127)

> —.
“ = 6eig

=

Case 2: There exists B, (y) C € such that D(¢1) = (Br(y)) and r >

€
—
Wp—1T" 150
In this case we have

Wp— n—
ot D (0) < wanar™ T D (0) = 5, (B (9) < 4, ().

Therefore, arguing similarly as in the case 1 we get (5.127]).

. 1
Case 3: There exists B, (y) C €2 such that D(t1) = mﬂfl(Br(y)) and r < .
The monotonicity formula (5.65)) together with (5.118)) yeild to

[ poaetdi, < [ ot di, +enst e

Q Q
+3 614(t1 — to)fq,aDe(to) + 5(t1 — to)C(Cq) (5.128)
+66(t1 - t()) (Ds(to) + 3014(t1 — to)fq7aDE(t0) + E(tl — tQ)C(Cq)) .

Forrgiwithrzzs—tl

(&

~5$,td62/ oz, t)du;, > —————ui (Br(y
J ez [ et di (B

De(tl)wn_le_%
(47r)nT_1
> (14" +c6)D%(to). (5.129)

N

Choosing € small enough depending on c13, cg and C; we can choose

1
eC(C)(1 + cg) + cr3e [Ine| < 5 (5.130)

Using (5.128)), (5.129) and ([5.130)) we get

1

> — 5.131
> = 6614(1 + Cﬁ) ( )

(t1 —to) fo,

Theorem 5.6.13. (11 =T )
Let 0 < Ty, <1 that satisfies Ty fqo < c15. Then we have

1+
D(t) < Dy c[lib] =Dy forallt € [0,T]. (5.132)
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Proof.

Suppose that there exists ¢ € [0, 7] such that (5.132)) fails. Then there must have 77 € (0,7))
[F-]+1

such that (5.132) is true for all ¢ € (0,T1) and D°(T1) = Docyy’” . We fix

[F]+1
Dy :=Dgcy

then we have D?(t) < D for all t € [0,T1].

Suppose that we have 77 < Tj. In this case we will have D*(T1) = c14Dg and sup,¢ 7,y D°(t) <
c14Dg and we can apply Proposition with tg = 0 and ¢; = T} to get that T1 fyo > c15
which contradicts the fact that 77 < T3, and the assumption that T} f, o < ci15. Therefore,

Ty > Ty.
Suppose that we have T, < T < 2T}. In this case we will have D*(T3) = 0%4D0,

Da(t) < ec14Dgy for all t € [O, Tb)

and
DE(t) < ¢3,Dy  for all t € [Ty, T1).

Therefore, there exists tg € [Tp,71) such that D*(t9) = c14Dg. Applying Proposition [5.6.12
with t; = 17 we also get a contradiction. By repeating the same argument we get a
contradiction. O

5.7 Vanishing of the discrepancy

Lemma 5.7.1. For any (2,t) € sptu there exist a sequence {(x;,t;)}io; and a subsequence
denoted again by  such that t; > 0, z; € Q, (zi,t;) = (2/,t') asi — oo and L — v <
uf(xg,t;) < %+'y for all i € N, where ~y is given in .

Proof.
Assume for a contradiction that there exists 0 < 79 < V/# and a neighborhood (B, (z') N
Q) x (' —r3,t' +1rd) of (a/,#') such that for small € we have for all (z,t) € (B, (2') N Q) x
(t' —r¢, ' +r2) we have

1 1
ua>§—|—’y or u5<§—fy. (5.133)

Computing the gradient of our problem (P¢) we get

B W (uf)

(V) = A(V) = = Vuf = Vix(q.) - Vo = VA - Vx(qe)

—VufAx(ge) — u*VAx(q) + %VUE - 2%uEVu£. (5.134)
Let ¢ € C?(B,, (")) such that

2
V| < o’ ¢lg,, =1, 0<¢p<1lon By (). (5.135)
3
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Testing $?Vu® to (5.134) with an integration by parts we obtain
d 1 1
i |2 Vue]? ¢* do = —/Q (V2uf|” 2 da — 2/Qq§Vq§ ® Vus - Vs — = /Q W (w®) |V [* ¢* da

- / PV (0:) - Vi @ Vi — / PV - Vx(ge) © Vs
Q [9]
—/Q<b2|Vu€!2AX(qa)—/erzuews-VAX(qe)
+/ a\VuEF(ﬁQ—m/uE\VuE\?(bQ.
0 e € Ja

Since u® > % + v or u® < L —~ we have that W”(uf) > k. Furthermore, Young’s inequality

2
implies
d 1 €2 42 2 ]2 .2 1 2 ]2 ;2 2 2k e(2 42
— [ SIVu[F¢?de < — | |[VZE| P da+ - | |VPuE|" 7 +4 | [Vo° [Vu]" — = | Ve ¢ da
dt QQ Q 4 0 Q 9 Q
1 2
+ [ 9@ e+ [+ [ [9xa) vl o
1 1
+ [ 1A v e + 5 [ veet e g [ @) vaxaP?
Q Q Q
+/ g|Vu€|2<;52.
Q¢
which implies

4
dt Jo

Lo e2 .2 —k / 2 o 16 / 2

= dr < — € — € 1
2]Vu\¢ TS 55 Q]VU\(]ﬁ—FTg Sptd)\Vu\, (5.136)
for sufficiently small € depending on C, . Since we have that

d [ sy [ 1 gy d [ 1
Cit<e€k2(t t+8)/§;2vu6|2¢2d$> — G:Q(t t-‘rg)dt/ﬂ2|vu6|2¢2dx

k &y 1
+f2652 (t t +T(2))/ - |Vu6|2 ¢2 dx,
3 Q 2

k /
multiplying (5.136) by e=2¢"! +75) and integrating over [t — 73, \] then multiplying by
k / 2
5 (A=t'+75)

e 2 give us
1 _k Oy 1
/ S IVeF (@) < e B (=trd) / 5 |Vu* ¢ (.t = 1) (5.137)
Q Q
A
L 16
+/ easlt ”’“3)2/ IVus|? . (5.138)
t’—r% Ty Jspto
Let )
M = sup / ~ |Vl (z, \) de.
€[t/ —r2,t'+73] J spte 2
Therefore, we have
1 _k—y 2
/|vu€|2¢2(x,A)dx§ 10 U 4 32— ) M. (5.139)
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Since e M is uniformly bounded we deduce that

e—0

lim sup g \Vul|? ¢ (2, \) dz = 0. (5.140)

1"2 2
Aeft/— -4, +rg]

Next, since our u® solution is continuous we assume that % +v <uf <1+¢on B(z) x
(t' — ¢, +1r2). Testing (uf — 1)¢? to (P?) we get

d 1 l(, E € €
s [ =12 = [ awr -0t =2 [ Wi - 16+ [ gt 1),

where
/Auu—l :—€/|Vu]¢ 25/¢V¢ Vuf(u® —1) <5/|V¢| (uf —1)*

Integrating over (¢ — r3,t' + r3) we get
€ € 2 42 € € 2 42
/(u—l)qbdx —/(u—l)¢dm <
2 Jo t=t'+r2 2 Ja t=t/—r2

t+r t—H“O t’—i—ro
5/ dt/ V| (uf —1)2 —/ dt/ W (uf) (uf — 1)¢? dx + dt/gs(ua—l)q§2.
t’—ro t’—r t’—ro Q

Hence,

t+r0
L at [ 0600 = D)6 < g2ty 10 = Dlisanie sty < VEelez).

Using the fact that
W (s)(s —1) > k(s — 1) > (W)W (s)

for some constant ¢(W) > 0 if % + v < s <1+ e. Therefore, we get

t’-i—?” 1
’ dt/ EW(ua)(ﬁzdl‘ < eV2e(W,y, ).
Q

t’—ro
t'+rd
/ dt/ W (uf)¢? doz — 0 when & — 0. (5.141)
t— Q

Thus (5.140) and (5.141)) led us to

t'+rd
/ 2 </¢2du§> dt — 0 when € — 0.
-0 \Ja
t'+rd
/ P (/(bzdut) dt — 0 when ¢ — 0.
¢—0 Q

This shows that (2/,t') ¢ sptu and we get a contradition. O

Then,
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Lemma 5.7.2. There exist 0 < 6y := dp(n,c7), 0 < no :=no(Cq, D1, ), 0 < 50 := (7, ¢7)
such that the following holds: If

/Q n(@ —y)pey,s) (z,t) dus(y) < do, (5.142)

forsome0 <t <s< % with s—t < ny and x € Q, then (a',t') ¢ sptu for allz’ € By, (x)NQY,

where t' = 2s —t and r = \/2(s — t).

Proof.
Assume for a contradiction that (2/,¢) € sptu. Then by Lemma there exists a sequence
{(zi, t;)}:2, and a sequence denoted for simplicity ¢ such that (x;,¢;) — (2/,t') as i — oo
and |uf(z;, t;) — %‘ < ~ for all i € N.
Let r; := 7pe, where 9 > 0 will be chosen later, and T; :=t; + r?.
We have that for y € B, (z;),

1

us(xi) tl) - 5

1
us(y,t;) — 3 <osupe |[Vu(z,t;)| +

e

< ey + - (5.143)

For this reason we can always find a positif constant ¢ such that for sufficiently small v > 0
depending on v, ¢7 and for y € B,,(z;) we have W (u(y,t;)) > c.

Furthermore, using the fact that pg () > / W dr forallt>0and 0 <e <1 we
Q

can always find a constant dy, depending on n and c7, satisfying

/B ( )n(y—xi)p(xi,m(y,ti)dui(y) >

1 —wiQ W (u?f ,ti
n_l/B()n(y—xi)eXp<—|y ‘) (W ly ))dyz

4r?

(4mr2) 2 i €
2
cn_l/ exp —M dy > dp. (5.144)
(4m13) 7 & /By, (a2) ar;
In addition, we choose ' — s = s — ¢ < 19 small enough depending on Cy, D1, a so that
]
3(ti — ) fa.aD1 +e(ti = )C(Ca) + co(ti =)Dy < .

Substituting in (5.124)) we get

€ € 1 do
/B ( )ﬂ(y—wz‘)/?(xi,m(y,ti) dpg, (y) < /B ( )W(y—l‘z‘)ﬂ(mi,m(y, s) dps(y) +c13e7 |Ine| +5-
Passing to the limit when ¢ — oo

8
o< /Q Ny — ") p vy (Y, 5) dps(y)- (5.145)

5 =
Assuming (5.142) and using Lemma (3) for any 0 > 0 we have
/Q 0y = 2)pg ) (Y, 8) dus(y) = /Q n(y = 2')pi (y) dps(y)
< (+0) [ ly =)o) i) + 6Dy

50(1 + 5) + (SDO-

IN
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Since 6 > 0 is arbitrary we can choose it such that do(1 + 0) + 6Dy < %0. Then we get a
contradiction

3 < | =)o) sl < -
Hence (2/,t") ¢ sptp. O

Lemma 5.7.3. (forward density lower bounds)
For T > 0, let & the constant introduced in Lemma[5.7.4 Then we have u(Z~(T)) = 0,
where

oS

: lim sup /Q (Y — ) py,s) (@, 1) dps(y) < 50} :

Z=(T) = q (z,t) € sptu, 0<t<
s\t

Proof. )
For 0 <7< %0 define

T
77— {(z,t) € spty, 0<t< 3 / (T = Y)p(y,s) (7, 1) dps(y) < do,for t < s < t+r} .
Q

If we take a sequence 7, > 0 with lim,, o0 7, = 0, then Z— C Uys_, Z™. Hence, we only
need to show u(Z7) = 0.
Let (x,t) € Z7 be fixed and we define

P(z,t) = {(:L",t’) g 2 | —x‘z <t —t| < T}.

We claim that P(x,t) N Z™ = (. Indeed, suppose for a contradiction that (2/,¢') € P(x,t)N
Z7. Assume ¢’ > t and put s = $(t +¢/). Thent < s < t+71, [z —2/| <yt —t] =
Y0/ 2(s —t) and

A Ny — ) py,s) (7, 1) dus(y) < do.

Hence by Lemmal5.7.2} (2, ") ¢ sptu, which contradicts (z/,t') € Z7. If t’ < t, by the similar
argument, we obtain (2/,t') ¢ sptu which is a contradiction. This proves P(z,t) N Z7™ = ().
For a fixed (wg,t9) € Q x (7, %), define

ZTE0t0 . 7T N (Bi(zo) x (to — 1, tog+ 7)) .

Then Z7 is a countable union of Z™%mtm with (z,,t,) spaced appropriately. Hence we
only need to show that p(Z7%0-%0) = (. Denote Z™%0:%0 by Z’. By the Besicovitch covering
theorem, for 0 < p < 1, we may find a covering of mq(Z’) := {x € Q: (z,t) € Z'} by a
collection of balls {By,(z;)};2, contained in Bj(zo) with intersection controlled by ¢(n),
where (z;,t;) € Z', r; < p, so that

> warf < e(n)L™ (By(xo)) .- (5.146)
i=1

For such covering, we find

7' CUE | By, (i) x (ti — rivg 2t + 7'2270_2) . (5.147)
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Indeed, if (x,t) € Z', then = € By, (x;) for some ¢ € N. Since P(z;,t;) N Z7 = (), we have
[t —ti| < |z —z:2 752 <Py 2

Therefore we obtain by (5.147)) and (5.146))

[o@) oo
w2 <Y u(Bri(w) x (6 =i S i+ 1857)) < Y 296 2D s
] =1

< 2¢(n)pyy *Drwy, ' L™ (Bi (o)) -
Letting p — 0 we get u(Z’) = 0. This concludes the proof. O

Proposition 5.7.4. (Vanishing of the discrepancy)
There exists a subsequence denoted again by € and a Radon measure || such that

;%/OT/qud\gﬂdt:/oT/Qdﬁdm

for all0 <T < oo and ¢ € C.(2 x [0,00)). Furthermore, we have
€] =0 on £ x(0,00). (5.148)

Proof.
Since we have that [£](Q) < pf(©2) < ¢ the compactness theorem for Radon measures
implies the existence of such |¢].
Once we prove that

limsup/ pdus(y) =0 (5.149)

s\t Q

for |¢]-almost all (z,t) we get the result: ([5.149) implies that [£| (2 x (0,T)\Z~(T")) = 0.
In addition, since we have that |{| < p by Lemma we get that |£] (Q x (0,7)) = 0.
The monotonicity formula implies

~—

s 1
/ﬁdui+/ /|§€|ﬁda:dt < /ﬁdMEJrClsE‘l‘ el +3sfgaD1
Q 0o 2(s—1) Ja Q
+esC(Cq) + cgsDy, (5.150)

/ G- /lfslpdxdt<+oo
0 _

Then passing to the limit ¢ — 0

/ / sty 1€l < o (5.151)

Now integrating over (y,s) € Q x (0,7") with respect to dus ds we get

/ ds/ d,us/ / p|d£| < 400. (5.152)

Which gives us by Fubini theorem that

[ faatgpmma) en <o @am

which yields to
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Therefore,
T 1
——pdus(y) ds < +o0, 5.154
|| sr=gidn (5.154)

for |¢|-almost all (z,t) € Q x (0,T).
For t < s define o :=log(s —t) and

) i= [ pnn).

Therefore, ([5.154]) can be written as

log(T—t)
/ h(t + ¢%) do < +oc. (5.155)

—00

This implies that & is small enough and we can find a decreasing sequence {o; };2; such that
for all ¢ we have

0; = —00, 0y — o041 < 0 and h(t+e%%) < 6. (5.156)

Using (5.124) with ¢ — 0, to = t + €%, t1 = t + €7 and the fact that p(y qeo)(7,1) =
P(z,t+2¢0)(Y; t + €7) we obtain

h(t+e%) = /Q Ny — 2)p(yiver) (T, 1) dpirer (y)
:th@—xm@H%«%t+wwmww@>
< /Qn(y — T)P(z,t42e7) (Y5 T+ €7) dpitieoi (y) + c(0)
= [ 0t = ) disens ) +<(6), (5.157)

where ¢(f) — 0 as § — 0 and R? = 2(2¢% — €%).
In addition,

h@‘Fén)=:/gn(y—lﬂpw¢+e%)ﬁﬁt)dume%(y)Z:/gﬁ(x—ﬂﬂpg(y)duue%(y)5297(5158)

where 7“1-2 = 2¢%. Note that we have R; > r; and R?/r? <2 —1~1since0<o—0;<80
and 6 can be made small enough. Furthermore, Lemma W (4) implies for any 6 > 0

/Q n(z —y)pki (y) dperesi (y) < (1 +0) /Q n(z — y)py (y) dpeyeoi (y) + 6D. (5.159)

By (5.157)), (5.158) and (5.159) we obtain

h(t +¢%) < (1 +6)0 + Do + c(9), (5.160)

which implies ([5.149)) since 6 and § are arbitrary. Il
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5.8 Rectifiability of the limit varifold

We will denote by p a measure on € x [0, 7] defined as
dp = lim dpg dt = dpy dt,
e—0

and
(spt p)e := {x € Q; (x,t) € sptu}.

Lemma 5.8.1. (The support of i)
For all t € (0,T] we have that

sptpue C (spt ). (5.161)

Proof.
First of all, corresponding to a ¢ € C1(£;RT) there exists a constant
0 < o := Co(Eo, 1, 2, Cg a, ||| o1gyy) such that

t
wi (@) — Co </ sup [Vx(g:(.,8))|* ds + t) is decreasing on [0, 7. (5.162)
0 Q
Indeed, by a similar computation as in (5.55)), (5.56) and (5.38) we get that

d oue)?  |Vue?) 1
i) < [ 1vel (e( Ll >+2€/Q<ga>2¢

< c(Bo, 1,02, Cgs |l o)) + 3(51;21) IVx(a:) I+ 20%) [|6ll o1 () 15 ()

< Gosup IVx(g)) + o (5.163)

Now, fix tg € (0,7T]. Suppose for a contradiction that we have = € spt u¢, and (z,ty) ¢ spt p.
This implies that there exists r > 0 such that we have p (B, (z) x (to — r%,t9 +r?)) = 0.
For this purpose, let ¢ € C(B,(z);RT) with ¢ = 1 on Bz (z). Since x € spt puy, we get that
pity (¢) > 0. Let h > 0 small enough using with tg — h < to we get

to
pto (9) < pitg—n(9) + Co/

sup [Vx(ge (-, $))* ds + Coh.
to—h

which can be written as

(1) > Mt (¢)

0
2

Nto—h(gb) > [t (¢) -0

where o(1) — 0 as h — 0, which implies that (z,t9) € sptu. Therefore, we get a
contradiction. O

Corollary 5.8.2. Let U C Q an open subset. There exists 0 < c16 := c16(n, D1,dp) such
that for every t € (0,T] we have

H L ((sptp)e NU) < ci6 lim inf f1,y2 (U). (5.164)
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Proof.

Let K C U be a compact subset and set X; := (spt u); N K. Similarly to (5.145) we have
that for (z,t) € X; and for r small enough

50 < /Q Poy (Ut — 12) dpt_ 2 (3): (5.165)

Now, let 0 < L < % we obtain using (|5.132)) that

n—1 5 \ﬂvfyl2
)3 [ et =@ < [ ()
N\Br(z) B1\Brr
1
S / / B |x—y\2 dlu’t—’l‘2 (y) de
0 B%\B,.Lﬂ{:v:e 4r2 Zf}
1 L2
e 1672 e 4
< [ B [ Byt
0 e 1l6r
1
1 1 162 n—
< Diywp—q <2n16 6,2 + (27“)”71 /L:) s"Tes ds>
4
n—1lon—1 % not —s
< Djwp_1r" 2 / s 2 e “ds.
L2
4
For sufficiently large L depending on n, D; and §y we have
_ do
/ Pty (st = 12) dpty_p2 (y) < 5 (5.166)
N\B,r(x)
Together (5.165)) and (5.166)) imply
) 1
V<[ bt =i a) € o (Brala). (5.167)
ByL(x) (4mr2) =z
Let B = {B,«L(l‘) cU;x e Xt} be a covering of X;. By the Besicovitch covering theorem,
there existe a constannt N depending only on n and a finite subcollection By, -+, By
such that
X, cuy P B (5.168)
Thus, we obtain using (|5.167))
N(n)
Mo (Xe) < w1 (rL)"! (5.169)
=1 B.,'L((E)GBZ'
N(n) -1
2wn an
< > > tupe(Bri(x) (5.170)
Dm0 g e,
N(n) 1
2wy _1 L™
< w%ut 2(U) (5.171)
i1 (4m) 2 do
Qw1 LN (n
= — ( ),ut_rz(U). (5.172)
(47) 2 o

Finally we get the desired result by letting r — 0.
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Proposition 5.8.3. (First variation)
For all n € CX(Q;R") we have

€ € € W/(us) € € €
Vi) = (n-Vu')(eAuw” — ——)dx + V- (VF @ v)dg
Q € QN{|Vus|£0}
/ R ALAC P (5.173)
QN{|Vus|=0} €

and for a.e. t

!(n,€
Vi) = lim 6V () = lim [ (- V) (et — L) g, (5.174)
e—

e=0 Jo S
Moreover, the total variation ||6V;|| is a Radon measure.

Proof.
Let n € C1(Q;R™). An integration by parts yields to

/(77~Vu€)Au8 = —/ V(n- Vu*)Vu®
Q Q
12
Q Q 2
Ve |?
- —/Vn-Vu5®Vu€+/div(n)| el (5.175)
Q Q 2
note that div(n) = Vn - I. Moreover,
€ € ! €
/ Vn-IW(u)d:c:—/ vn-IW(“)dx—/(n.qu)W(“)dx.
QN{Vus#£0} € QN{Vus=0} € Q €
(5.176)

The first variation of V¢ with respect to 7 is

Vi) = /Q oy V@) Sz 8)
xG(n,n—
- V(@) (I - v° @ v°) dyié ()
QN{|Vue|#£0}
12
= / Vn(z) - I EM-F}W(UE) dx
QN{|Vus|£0} 2 €

c|2
—/ Vn(x) - v° @v° sm + 1W(u‘E) dx
QN{|Vus|£0} 2 €
1

= / eVn - Vu® @ Vu© + / e(n- Vu®)Au® — / (n.Vu® )W’ (u°)
QN{|Vus|£0} QN{|Vus|#£0} € Jon{|Vus|#£0}
<2
1
—/ Vn-v*@v° gm—l—fW(ug) dz
QN Vs |40} 2 €
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1
= / e(n- Vu®)Au® — / (n.Vu®)W' (u°)
Qn{|Vue |0} € Jan{|Vus|£0}
Vu® Vu® 2

+/ eVn - ( ® ) Vu®

QN{|Vus|£0} [Vus| — [Vus| Ve
€ € g2 1

_/ V?] ) < Vua 2 VUE ) EIVU ’ _/ VU R (W(u5)>
QN{|Vus|#0} |Vus| — [Vuel 2 QN{|Vus|£0} €
1

1
= / e(n-Vu)Au® — — / (n.VuS)W'(u®) — / V- IW(u®)
QN{|Vus|#£0} € Ja € J{Vus=0}

1
+/ Vi - (vF @ VF) <6 V|2 — W(ua)> :
QN{|Vus|£0} 2 €

which yields to (5.173)). Proposition together with the dominated convergence theorem
imply

Iim/ & (., t)] de =0 for a.e. t > 0. (5.177)
)

e—0

For such ¢ the last two terms in (5.173) vanish as € — 0 since also we have u = ¢ |Vuf|* — .
Moreover, by (|5.40) and Fatou’s lemma we have

1(,,€ 2
liminf/ £ (Aus(.,t) - W) dr < oo fora.e. t>0. (5.178)
e—0 Q £

Choosing t that satisfies (5.177) and (5.178) we get for n € C(Q;R") such that supg, [n| < 1

1(n,€
oVi(n) = limoVS(n) =lim [ (n-Vu©) (sAuE—W?)> o

e—0 e=0 Jo

= (/Qs "7W|2>1/2 ( | (Aus . W;(f))?)”?

IN
=
=
=8

1/2 W (uf) 2\ 1/2
< liminf (/ € |Vu€]2> / € (Au8 - — ) < oo, (5.179)
e—0 0 0 £
which implies that the total variation ||0V;|| is a Radon measure. O

Proposition 5.8.4. (The rectifiability of the limit varifold)

Any convergent subsequence {V{}, .., satisfying and converges to the
unique varifold Vi associated with p,. Moreover, ||Vi|| = w¢ is rectifiable for a.e. t > 0,
namely

it = | 0, Pa,t) dpe,  for alln € Co(@ x G(m,n—1)),  (5.180)
Qn{|Vul£0}

with P := I — v ® v denotes the projection onto the tangential plane Tanguy and v denotes
the normal to P.

Proof.

Since [|[VF]| = ui together with (5.35) and the compactness theorem for Radon measures
there exists a subsequence denoted again {V}_ which converges to a varifold V; for all
t > 0. Moreover, since we have lim._,q | V|| = ||V4|| and by using Proposition we get
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Vil = pae-
The total variation ||6V;]| is a Radon measure for ¢ satisfying (5.177)) and (5.178|). Further-
more, using the fact that

Lt ({x € supportuy : limsup He(Br( )2 < s}) < 2" g™ (support pu)

rl0 Wn-1 rr

for any s > 0 (see [69, page 11 3.2(2)] for more details), and that H" !(support ;) < oo
by Lemma [5.8.1] and Corollary [5.8.2] we obtain

i <{:17 € supporty : lifg " (B (x)) = O}) =
T
Then V; can be written as

Vi = {{zeﬂ dimsup,. o r1="||Vi||(Br(x)) >0} X G(n n- 1)
which is rectifiable for ¢ satisfying (5.177)) and (5.178)) by the Allard’s rectifiability theorem
(Theorem [4.5.12). V; is determined uniquely by ||[V;|| = p so uy is rectifiable. Finally, any

converging subsequence satisfying ((5.178|) and (5.177) has the same limit V. U

Proposition 5.8.5. (Generalized mean curvature vector)
The limit varifold V; has a generalized mean curvature vector hy, for a.e. t > 0 and it
satisfies
W/ £ 2
/¢>th|2 ||V gnminf/ ed (AUE— (2“ )> dz < oo, (5.181)
Q e—0 Q E

for all ¢ € Ce(;RT).

Proof.
By the same calculation in (5.179)) we have for n € C(Q;R")

1/2 roeny 2\ /2
|0V ()] < </Q In|? dut> hg(?f <5 <AUE—VV€<2u)> ) : (5.182)

This implies that [[0V;|| << ||Vi|| = pt. Thus by the Radon-Nikodym theorem there exists
a ||Vi|| measurable vector field hy, such that

Vitn) = = [ b d Vil (5183)

Which can also be written as
tim [ (- %) <5Au€ _ Wif”) do = _/Q” hy, d Vil (5.184)
Now, let T": C}(%;R™) — R defined as T'(n) = [, - hv, dp for all n € C(;R™). Using

the fact that p is rectifiable we have that Cl(Q R™) — L?(uy;R™) is dense and therefore
there exists T = L?(juy; R") — R such that T(n) = T(n) for all n € CH(Q;RY). By (5
and 1) we get that T is linear and bounded then by the Riesz representation theorem
there exists a function h € L?(ju; R") such that T(n) = Jomn- hdp for all n € L2(u; R™).
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Which implies that hy, = h almost everywhere and hy, € L?(us; R™).

Since 7 in (5.183)) is arbitrary take 1 the approximation of hy, and replace it in ((5.182)) to
get

W/ € 2
/ IW(V))? d ||V < liminf/ € <Au€ — (2u )> dx < 00,
Q e—0 0 E

which is (5.181) with ¢ = 1. Now let ¢ € C.(Q;RT) and {¢x}, € C1(€;RT) an approxima-
tion of ¢. Doing the same calculation but with ¢gn instead of 7 then passing to the limit

as k — oo we obtain
1/2 1ooens 2\ /2
< </ | dut> lim inf <5¢ <Au€ v (2“ )> ) L (5.185)
Q e—0 E

'/Q¢77'h\/td,ut

Again using an approximation 7, € C1(€Q;R") of hy, and passing to the limit as k — oo we

get ([5.181]). O

5.9 Integrality of the limit varifold

We first present two propositions introduced in [70]. Proposition [5.9.1] states that if
some quantities are controlled, then we have a lower bound on a measure in terms of a sum
of densities of vertically aligned points; in the proof the authors decompose the domain
horizontally so that each separated domain contains approximately one sheet of diffused
interface. The original idea comes from [4] and it has first been used in the context of the
diffused interface problem in [40] in the elliptic case and in [72] in the parabolic case where
a time derivative term is added in the estimates. We omit the proof and we refer to [70] for
more details.

Proposition shows that the energy behaves more or less like a one-dimensional simple
ODE solution if certain quantities are controlled, see [40), [72], [70].

Proposition 5.9.1. (Densities of vertically aligned points[70, Subsection 7.1].)

Let 0 < R,Ey < 00, 0 < s <1 and N € N. Suppose that there exists 0 < o < 1 with the
following properties:

(1) Yis a finite subset of R™ that has no more than N+1 elements, and Y C {(0,---,0,z,) : z, € R}.
For some 0 < a < R we have |y — z| > 3a fory, z € Y with y # z.

(2) diamY < oR.

(3) We have ¥ € C*({y € R" : dist(y, Y) < R}).

(4) For allxz € Y and a <r <R,

W' (¥
/ & () + (1 — ()?) e |[VE[* + ¢ |V ‘qu - 5(2 )‘ dy < or™ 1, (5.186)
By ()
where )
e(w) = VL W) (5.187)
g g
andv = (vi, -+ ,vp) = gg‘

(5) For allxz €'Y,

n

R qr
/a — /BT(x) (), dy < o. (5.188)
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(6) Forallx € Y anda <r <R,

/ e|VU|? dy < Eor™™t. (5.189)
Br(x)
Then we have
1 1+s

3 n_1/ eo(T) < 5+ n_l/ | e (D), (5.190)

xEYa Ba(z) R {x:dlSt(Y,z)<R}
where )

A% W (W
e () = & - "4 i ).

Proposition 5.9.2. (The e-scale estimate [70, Proposition 7.2].)
Given 0 < s, b, 8 < 1, and 1 < ¢ < o0, there erist 0 < g, ex < 1 and 1 < L(n,W) < oo
with the following property:
Assume 0 < ¢ < e,, ® € C?(Bycr) and
3 |[VO(z) — VO(y)|

sup ¢ |V®| < ¢, sup €2 - <e¢, b<®(0)<1—0b,
Byer T,Yy€By. L lx —y|2

[, (@) (= )< [90P) de < ofdery™

and

sup (&), <& 7.

B4€L

Then for J := Bs.r, N {(0,---,0,2,)} we have

ingﬁzn@(x) >0 or supd,,®(z) <0, and [b,1—0b]C ®(J).
z€ zeJ

We also have

< s.

1
o — —wnfl(Ls)"*l /;EL (25

In what follows we will replace £ x (0,T") by B3(0) x (0,2). Let ¢t € [0,2] and define

Zy = {m € B3(0) :

1
u€($,t) - 2‘ S’Y}

Lemma 5.9.3. (Relation between the value of u® and the distance to the interface.)
There exist 0 < c17 := c17(n, k) and 0 < e¢ := €6(k, c7, 0, Cy) such that if (xo,to) € B1(0) x
(1,2) with

uf(z0,t0) < 1 —&° or uf(zo,to) > €°, (5.191)
where 0 < § < 1 satisfies

= <6< ! (5.192)
c17|Ineg| c17¢ |Ing|’ )

then, we have that for e < gg

dist(xo, Zy) < ci7de|lne|. (5.193)
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Proof.
Define 7 := ¢170 [Ine|. Consider the domain B.;(xg) x (tg — 272, t9) C B3(0) x (0,2) i.e.
since e < 1 and (zg,tg) € B1(0) x (1,2). We rescale the domain so that

Ol = AT — W (&) — Vx(Ge) - Vi — @ AX(G) + e (1 — &) on By x [—72,0], (5.194)
where @€ (z,t) 1= u(ex + 0,2t + 1) and G := q-(ex + 20, %t +to) for (x,t) € B; x [—72,0].

Next, for the comparison principle, we define the following problem

N (5.195)

AT = g\il on R™,
v(0)=1.

We can check that

U(x) = 1_ / e\/gy'x dy
{lyl=1}

|S™ |
is a solution for (5.195)) which can be also written as
~ k
Y= W / eV HE 01 =2 6, g, = leleosorginn =2, g,

2

where ¢; is the angle between z and y so that ﬁ -y = cos¢y. Thus, ¥ can be seen as a
radial solution which growth exponentially as |x| — oo and takes its minimum at 0. Hence,
¥ > 1 on R™. Then, we define a comparison function W(z,t) := \Ifexp( t). We can prove
that there exists ¢;7 depending on k and n such that W satisfies the followmg

OV =AU — on R" x (—00,0),
U(x,t) > exp('x‘ﬂt‘) on R x (—o0,0)\BI(0,0), (5.196)
v (0,0) =
By the definition of 7 we have 1—g%¢’/¢17 = 1— elene™ =, Now, suppose for a contradiction
that )
i€(0,0) <1—¢° and inf i (z,t) > = + 1. 5.197
#(0,0) and () > g+ (5.197)

Next, define ¢, := 1 — e?U which will satisfies according to (5.196))

k k

pe(,t) =1 -V <1—¢ Sear =0 < ; +7 < wuf, on J (B:(0) x (—7%,0)),  (5.199)
where 0y (B;(O) x (=72, 0)) represents the parabolic boundary and we also have
$=(0,0) =1 —2(0,0) = 1 — £° > @°(0,0). (5.200)
Thus, ¢, satisfies

Qe = A + §(1—¢)  on By(0) x (—7 0
Ge(z,t) — 0 (z,t) <0 on 9o (B;(0) x (—72,0)) (5.201)
¢:(0,0) — @°(0,0) >0
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Therefore, ¢. — u° has a parabolic interior positive maximum point where at this point we
have

0 < Oi(¢e — 1) — A(pe — @°)

k
= (L= 00) + W'(@) + Vx(@) - Vi© + @ Ax(ge) — cair’ (1 — i)
k
< —5(1 — ¢e) +ec(Cy, c7) + £2¢(Cy) + ec(a)
< —§8+fdcm@4@, (5.202)

where we have used the fact that W’ is increasing on [% + 7,1 + €], since here we have
W"” >k > 0, and that ¢. > 4° at the maximum point to obtain

W,(ﬂa) < W,(¢€) = W/(Qbs) - W/(l) < k(¢s - 1)-

Thus, since 0 < § < 1, (5.202)) implies a contradiction for sufficiently small £ depending on
a,Cy,c7 and k.
Similarily, we can prove that

1
sup uf(z,t) > = — 7, whenever uf(zg,t) > €°,
Bei(zg) X (to—€%72,t0) 2

which implies our result. U

Lemma 5.9.4. (The volume of the r-neighborhood of the interface.)
For tg € (1,2), and 0 < r < % define
1
6 —_—
U 2‘ < ’y} .

There exist 0 < c18 := c18(n, c7, W, D1) and 0 < g7 such that for 0 < e < e7 we have

ZT:tO = {,CC € B (0) : BT(x)Xi(IIg;TQ,tO)

[,n (Zﬁto) § C18T. (5203)

Proof.
Let 29 € Zyy,. For (z1,t1) € By(wo) X (to — r?,tg) with § — < u®(z1,t1) < 3 + 7, we have
by direct computation that

- e 4 - oy a
/m%mgmwnwm@z/‘ ——r n(er)W(a)dz > 3m (5.204)
Q B, 1(0) (4m) 2

for some constant 71 (n, W, c¢7), where we have made the change of variable ez = = — x1 with
w(Z,t1) = u(ex + x1,t1). We also used the fact that % —v <u(0,t1) < % + . Using ([5.124])
with to replaced by to — 212, y replaced by x; and s replaced by ¢, +&2, we get for a suitable
€ and r

/S;ﬁ(ﬁfl,tl‘l’EQ)(x’ tl) dl‘l’; (x) S /Qﬁ(mhtl‘i’EQ)(x’ to - 27‘2) d:ui()727~2 (.I) + m- (5205)
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Therefore,
2m < /Qﬁ(zl,tl-l—EQ)(watO = 2r%) dpi5, g2 (). (5.206)
Using ((5.132]) we can choose a suitably large c¢19(D7) such that
/ Posir ey (@ to — 202) djis._y a() < 1. (5.207)
Q\Bclgr(xl)
Finally, we obtain
m S / ﬁ(xl,t1+€2)(x7 t() - 2T2) du§O—2r2 (1’) (5208)
Bclgr(xl
Note that we have
5 < 1 < 1
p ) 2 ) —2r2) = n— - -1
(L2 =ty €2 — g+ 202)) 5 T

Together with the fact that B, 4,) C Bcg41)r(70) imply that

luio—Zr? (BCwT($0)) > 7717“n_1- (5.209)

Next, let B = {Be,or(z) : @ € Zy4,} which is a covering of Z, 4, by closed balls centered at
T € Zyy,. By the Besicovitch covering theorem, there exist a finite sub-collection B’ of N
balls such that
Zy 4y C | JBeror().
B/

Thus (5.209) implies

N7717’n_1 < ZM‘Z)*%Q (BCwT‘('T)) < /‘23727"2 (B3(0)) < 3n_1wn_1D1.
Bl

Then,

n—lD n . 9
L"(Zy4y) < N(cigr)"wy, < 3 1(c19)" (wp) -
m

which shows the statment of the Lemma. O

Proposition 5.9.5. (Small amount of energy on {u® < b or u® >1—b}.)
Let 0 < s < 1 be given. There exist 0 < b < 1 and 0 < eg := eg(W, c17,¢c18) such that we

have

/B1(0)><{t}ﬂ{u€§b or us>1-b} €
forallt € (1,2) and € < eg.

<s (5.210)

— I

Proof.
Let tp € (1,2) and 1 < J € N will be fixed later. Define for j =1,...,J,

Aj = {x € B3(0) : e <uf(z,tg) < eFT or 1wt <uf(z,tp) <1 —5%}
(5.211)
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In order to apply Lemma with 6 = 2% we choose J and € such that

1 1
ci7 |lne| < B and argy Ine| > 1, (5.212)
and we obtain
. ) 1‘
inf — =<7
B;(x)X(to—fQ,to) 2

where 7 = 017% |ln e| which implies that
Aj - Zgﬁto

again applying Lemma we obtain for all j =1,...,J

nea C18€17
L"(Aj) < 57 ellnel.
Now, let b satisfying £ ¢ (b,v/b] and % — b > v so that

Y = {:1: € B1(0) : ez < ut(z,t0) <b or 1—b<u(z,ty) <1-— 5%} C U;»JZIAJ-.
(5.213)
On A;, more precisly on {:c 1= 5# <wuf(x,tp) <1-— 52%} we apply Taylor-Lagrange
inequality to get

13 €2 W// 2
W) < (max ]W”}) (1 =) < (a1 (W) (5ﬁ) < c(W)eifl.
5 [—1,1] 2e 2e

1 1
Otherwise, on {a; ce2 <wuf(w,ty) < 5W} by using also the fact that W is symmetric with

respect to %, again Taylor-Lagrange inequality implies

W) _ W= _ (max ]W"‘> w < (a1 W) (52j1+1>2 < c(W)ew .

5 € — \[-1,1] 2 2¢e
Therefore,
W) _ [ W) 2
/ — < Z/ SC(W)CNclgﬂné“‘ZQ_]E
Y € j=1 Aj € j=1
J+1 B W.
< (W, eis,c17) |1n5]/ 27te? " dt = w(e%’lﬂ —e7)
1 In2
< (W, 18, c17)Vb. (5.214)

We can choose b so that (5.214) is smaller than 5. Similarly, we can apply Lemma m

with 6 = 2 and Lemma [5.9.4 with r = ¢j7¢ |Inel, to get that

3
/ W) < (W, c17,c18)e |Ing|, (5.215)
{1-veshe-blsi<t} ¢

which can be made smaller than i. Finally, using 0 < u®* <1+¢
51

W) _ cmy(3)2E < e(w)et <

/ S
e | : o
which is also true for sufficiently small €. (5.214)), (5.215)) and (5.216|) give the result. O

(5.216)
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Proposition 5.9.6. (Integrality of the limit varifold)
The multiplicity function defined as

B,
() = lim @)
r—=0 Wp_17™

satisfies that for almost every t > 0

afle(x,t) € N for pi-almost every x in €,

where o := fol V2W (s) ds.
Proof.

In what follows we let the sequence {g;};~, in a way that ¢; — 0 as i — oo. In what follows
we fix t € [0,7] such that Proposition holds true. For such ¢t we have by Young’s

inequality
W/ =
cp(t) :== sup/ i |Autt — (g ) “i| dr < oo.
g JQ &;
Define for any m € N the sets
W' (u . 1
Aj = {m eQ: ;i |Aut — # |Vui| < m s (Br(z)), forall 0 <r < 2} ,
By () i
(5.217)
Ap, = {z € Q: there exist x; € A;,, for infinitely many ¢ with z; — z}, (5.218)
and
A= U A, (5.219)

Claim 1: p(2\A) = 0.
Suppose that there exists a compact set K C Q\A such that p(K) > Sp(Q\A). Which
implies by using that K C Q\A,, for every m € N. Moreover we can always find an
open set Oy, such that K C O, and O,, N 4; ,, = 0 for large i. Let ¢, € Ce(Op; RT) such
that ¢, =1 on K and < ¢, < 1. Therefore, by using the Besicovitch covering theorem to
O\ A; 1, there exists ¢(n) such that for j large enough

K) < [ o= lim oyt < L0, (5.220)

i—00 Q\Aj,m
Now by taking m large enough we get Claim 1.
Thus, for u; a.e. x there exists m € N such that x € A,,. Also the rectifiability of
e implies that u; a.e. x has an approximate tangent space. We fix any such x, after a
sultable translation and rotation we may consider x = 0 with an approximate tangent space

= {x, = 0}. Now, let ®,,(z) = £ where r; is a sequence such that lim; ., 7; = 0. Then
the push forward of the varifold V}, see Definition

(@) 4Vi(d) = [p o, Tan, @, (M))8(®; 'z) dH" ()
= / ¢(x, Tan, Z) (riz) dH™ L (z)

— 9(0)/P¢(x,P)dH"—1(m), as i — 00, (5.221)
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and so lim;_oo(®y,)#V; = 0Vp, where Vp = H" 1| p@Jp is the unit density rectifiable
varifold derived from P. Since we have supposed that there exists m € N such that 0 € A,,,
by the definition of A,, we get that there exists a sequence x; € A; ;,, such that x; —; o0 0.
Hence, up to a subsequence we assume that

lim (@) 2V =0 Vp, (5.222)
1—00
L)
lim — =0, (5.223)
1—00 T
and .
g = — with lim & = 0. (5.224)
r; 1—00

Next, we rescale our coordinates as follow

T:=—,

x
ri
and we define ~

W (Z) = u® (1 T).

Similarly, ng is defined according to &; and 4. By (|5.148)) we obtain that

N . 1
dzZ = lim T
i—00 r?_

&

lim
1—00 Bg

€% (Bsy,;)| = 0. (5.225)
For y € By, 0 < r < 2, i large enough so rr; < % and 0 < ¢; < €5 we have that

7 1 . rrg 1 1 1
/ / = () + didr = / / — (&%) + dz dr < 2wpef + c12ef [Ing|, (5.226)
0 JBz(y) T 0 (riy) T

3
where we had used (5.76)) in the case where 7 € (0,¢/) and (5.102) in the case where

3
T € (¢/,rr;). Hence, (5.226) goes to 0 as i — oc.

Moreover, since x; € A; ,, together with ((5.223) and (5.132)

- W' (s L e €
o / (2 ) ‘VUEI dr = niQ
B3 ) ’r‘i BBri

15
which also vanishes as i — oo.

W' (us)

Ngi .
AT 22
i

Auti — |Vu| dx

m
n—2
%

IN

115 (B, (7)) < ma™ Yw, 1 Dyry (5.227)

Vi s
Now, let v = (v1, - ,1p) = %, and Vi to be the varifold defined in (5.11]) but
u K]
according to 4. Note that V' = (®,.,) 4 Vi

Claim 2: / (1 — (1) 2)& |Viis,|* dz — 0 as i — oco.
Bs
Define the continuous function ¢ : v € S"71/{£1} — 1 — 2. For all ¢ € C.(R")

Voo = [o@ - a7 @~ oveew)

.y / HENB((0, -, +1)) dH ()
;
0, (5.228)
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which implies our claim.
Now, fix a positive integer N such that we have
0e[(N—-1)o,No). (5.229)

For the sake of simplicity we will drop the tilde in what follows.
Let s > 0 arbitrary. Using ([5.226) with Proposition we can find 0 < b < 1 such

that )
. g4 €4
/ silVer| W) (5.230)
Bsn{us<b OT us>1—b} 2 €

for 0 < g; < €g. We now choose ¢ and L in Proposition [5.9.2] corresponding to s, b, and c7.
In what follows we choose R = 2 and a = Le; in Proposition Define

! E;
Gi = Ban{b<u"<1-0b}nN {x :/ gi |Aut — W(;L ) |Vut| + €7
By (x) &
(1= (r)))e: [V 2 < 015 (B () for e;L < 1 < 1} . (5.231)

Claim 3: p;'(Ba N{b <wu® <1-b}\G;) — 0.
The Besicovitch covering theorem implies that there exists N(n) such that

, N W' (ufi
pEn e <1-6) < T [l - U e
B3 7
+(1 = (vp))e; |[VuE)? da, (5.232)

which goes to 0 as ¢ — oo.

Claim 4: For z € G; and Le; < v < 1 we have u;'(B.(x)) > (0 — 28)w,_1r"" ! for suf-
ficiently large 1.

Define
W' (uf)

€
Multiplying (5.233)) by y-Vui&1, where &1 (y) is a smooth approximation of the characteristic
function xp,, and integrating by parts then letting &1 — x B, we get

d 1 1 . . € a2
o (Tnl /BTGE>+TH/B &8 +ehi(y - Vud)) g /8BT(y Vu®)* = 0.

Integrating over (Le;, ) and using the fact that z; € G; we obtain

h; == Au®i —

(5.233)

r T

QM dr (5.234)

Tnfl

o (Br(@))

v

wn—lDl(T — €Z‘L) — /

Le;
> o(1) —wnp—1D10, (5.235)

T=Leg;

then using the fact that Claim 4 is satisfied for r = ¢; L, with 2s replaced by s, according to
Proposition [5.9.2| and choosing Di1p < s we get the result.

Claim 5: #(P~Yz)NG;N{u¥ =(}) < N —1foreveryx € PNByand b< /¢ <1—b.
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Assume that Claim 5 is not valid and let Y be the set of an N elements. Choose R = 1,
¢ = u®, a = Le; we get by Proposition [5.9.1

E; (Lé.l)nlut (Bre,(y)) < s+ (1+s)p' ({7 : dist(Y, 2) < 1}), (5.236)

Also we have that
lim p5({z : dist(Y, 2) < 1}) = Owy,—1.
1—00

Claim 4 yields to
N(o —28)wp—1 < s+ (1 + s8)0w,—1 (5.237)

which is a contradiction for sufficiently small s depending on o, 6 and n.
Claim 6: § = (N — 1)o. We have that, as i — 00
P#f/fi(gb) = / ¢(P(x), P)|Ap—1Po (I —v@v)| du;’ — 0Vp, (5.238)
{zn<1}

where V7' := V& | {zn<1}xG(n,n—1) and the n — 1-dimensional Jacobian
|Jn—1Po (I —v@v)| = |v

Let B; the n — 1 dimensional ball of radius 1 and centered at the origin. Noticing that
PN By = B; we get

waf = OHN(By) = |0Ve| (Br)= lim ||Pui

() = Tim [ vl dpi

1—00 By

< g | f vl di + | vl dii
10\ J B1n{b<ufi<1-b}NG; B1n{b<ufi<1-b}\G;

c:
+/ |Vn| dpg'
Bin{ufi>1—b Or ufi<b}

< lim |Un | | VU] A/ 2W (ufi) do + 2s

10 J Bin{b<ufi <1-b}NG;

1-b

< lim / d’T/ lun| V2W (1) dH™ ! | + 25

=0 {uSi=T}NB1NG;

1-b

< lim V2W HO ({u" =7} NG; NP~ (2) N B1) dH" (z)dr + 2s

1— 00 b {anO}
< o(N = wp—1 + 2s. (5.239)

where we have used Claim 3, Claim 5, ([5.230)) the co-area formula, the area formula and
the fact that
2

i . W (usi
SV P+ = ( — Va2 () = QW%— -

g |[Vusi P W ()
2 E;

— |&5']. (5.240)

Since s > 0 is arbitrary Claim 6 is proved which ends the proof. O
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5.10 Existence of generalized velocity

We denote
dis = e |V (., t)]? de,

di® = e |Vue|? dz dt,
and for all n € C.(Q; G(n,n — 1))

V() = / (i, P (x, 1)) dfi.

Lemma 5.10.1. (Convergence of the approximate velocities)
Define for each 0 < e < 1 the approzimate velocity v¢ :— R™ by

8tU€ Vuc .
v° = (5.241)

0 otherwise.

Then there exists a function v € L*(u, R") such that
(%, v%) = (n,v)  weakly as measure-function pairs (5.242)

and such that we have

/ lv|? dp < liminf/ £(9uf)? da dt. (5.243)
T

e—0 T

Proof.
Noticing that ¢ = p + £° and since we have [£°| — 0 and p® — p as Radon measures on
Qr, we get that

i — p as Radon measure on Q7. (5.244)

Moreover, we have that (¢, v®) is a function-measure pair on Qp with

£\2
/ v°|? dji© :/ (O )2 e|Vus|? dedt < / e(0pu)? dwdt < ¢y + 2Ey.  (5.245)
T IVus|0 [ Vue| T

Then there exists a function v € L?(u, R™) such that we have ((5.242)), which is equivalent to

lim —5/ n - Vuowu dx dt = / n-vdug, (5.246)
T T

e—0

for all n € Ce(Qr; R™). O

Lemma 5.10.2. (Normal velocity)
For p-almost all (z,t) € Qr we have

v(x,t) L Tppy. (5.247)
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Proof.
Define for each ¢ the function

Ue(z,t,5) :=ve(x,t) forall (z,t,5) € Qr x G(n,n —1). (5.248)

Therefore, we get

/ @g(t,l’,S) df/g(t7$75) = / @g(t,ﬂ?,Pg) dﬂg((]?,t)
QTXG(n,nfl) T
= / v2(x,t) dif(x,t) < C(\ Ep), (5.249)
T

which implies that there exists a function © € L?(V;R") such that
(7,5.) = (v,9)
weakly as measure-function pairs. Moreover, let the function
h € C.(R™™) such that h(S) =1 for all projections S.

Therefore, using (5.180)) we obtain for all n € C.(Qp;R™)
| ntet) st Py dutet) = [ nlath(P)- o(t.z, Plo.t) dufa, 1)
T T
- 0, h(S) - i, 1, S) dV (2,1, 5)
QrXxG(n,n—1)

= lim n(x, t)h(S) - 0e(t, x, S) dV(x,t, S)
€20 JQrxG(n,n—1)

= lim n(z, t)h(P) - 0(x,t, P) du(x,t)
Qr

e—0

= lim n(w,t) - ve(z,t) dps(z,t)
e—0 Qr

_ / n(e,t) - o, t) du(z, b),

which implies that
0(t,x, P(x,t)) = v(z,t) foru-almost all (z,t) € Qr.

Also, we have for all n € C.(Q7;R™) that
T T
= / n(x,t)h(S) - Sov(t,x,S)dV(t,x,S)
QrxG(n,n—1)

= lim n(x,t)h(S) - Sve(t, z,5)dVE(t, x, S)
=0 QrxG(n,n—1)

= lim/ n(z, t)h(P°) - Pevs(z,t) di(z,t)
e—0 Q
T
0.
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This gives us that
P(x,t)v(z,t) =0 forp-almost all (z,t) € Qp,
which implies the result. O

Theorem 5.10.3. (L2-flow)
We have that v € L?(u; R™) is the generalized velocity of the family (Vi)te(o,r) in the sense

of definition ([4.5.14).

Proof.
We have that for all n € C1(Q7)

/T n <\/§8tua + \2%)2 = /T n <6(8tu5)2 + iwf) (5.250)
+2/T n Opu® <—5Au5 + iW’(u5)>

1
= / n (5(8tu5)2 + w?) dz dt + 2¢ Vn OwutVue
T € Qr

2
+2€/ NV Ooue Vu® + / n (O W (ue))
Qr € JQr

1
= / n (5(8tu5)2 + w?) dx dt — 2 o du’
T € Qr

—1-2/ eVn - OyueVue dx dt. (5.251)
T
Also, we have by Lemma [5.10.1
lim eVn - Osu:Vue dr dt = — lim eVn - ve |Vue |2 drdt = — Vn-vdu. (5.252)
e—0 QT e—0 QT QT

Therefore, we obtain by using (5.41)), (5.42)) together with (5.252)

[ @+ o) ] < clen B oy (5.259)
T

5.11 Convergence to a perturbed mean curvature flow

Theorem 5.11.1. (Convergence to perturbed mean curvature flow)
There exists a function g € L%(u;R™) such that up to a subsequence we have for all n €

Ce(QT;R™)
/ n-vduz/ n - (hv, +g) du, (5.254)

where

/ n-gdu = hH(l) —n - Vu®g. dx dt. (5.255)
Qr =0 JQr
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Proof.

Let
- Je

g€ L _g‘vua|1/€'

(5.256)

Then we get that

e)? 1
/ |G2? djif (. t) :/ %a\VUﬂQ dx dt = / (ge)? dx dt < co. (5.257)
Qr Qr &% [Vue| € Jor

Therefore, there exists a function g € L?(u; R"™) such that we have for all n € C.(Qr;R")

i [ negdi = [ u-gdp, (5.258)
e—0 QT T
which is equivalent to
lim —n - Vu®g.dip® = / n-gdu. (5.259)
e—0 QT T

Now multiplying our problem (P¢) with —n - Vu® and integrating over Qp we get

—5/ n-utVusdrdt = —5/ n - Vu®Au® +5/ n - VuEW' (uf) —/ gen - Vu© dx dt
Qr Qr Qr Qr

= / n - Vuw, — / gen - Vu© dx dt. (5.260)
T T

Now passing to the limit as € — 0 together with (5.246), (5.184) and ([5.255)) we get

| onevdu= [ o+ ) (5.261)
T T

O

Proposition 5.11.2. We have that

9= (Vx(q) - v)v+ %\/iow H" ! ae. on 0 {u=1},

\Y
where 0% denotes the reduced boundary, g is defined in (5.254), v = —ﬁ s the inner
u
normal to 0* {u = 1} and 0 is the multiplicity function.
Proof.
According to (5.255) we need to compute for all n € C.(Qr;R™)
/ —n-Vug.dedt = 5/ n-Vu® ® Vu© - Vx(q:) + 5/ n - VuuAx(q:)
Qr Qr Qr

—a/ n- Vuu (1 —uf)
T

= Il =+ 12 + 13, (5262)



5.11. Convergence to a perturbed mean curvature flow 137

where I;, I and I3 are the first, the second and the third term on the right-hand-side
respectively. We can also write

L =/ =1+ (P: = I)Vx(qe) dit°,
T
where P. := I — v®* ® v°. Moreover, we have
| ol di < 25up([Vx(02))(@r) < e(Cyre1,T).
T T

Thus, using the fact that 4 — p in the sense of Radon measures we deduce that there
exists a function b € L?(u;R™) such that

(—=Vx(qe), uf) — (b, ) weakly as measure-function pairs. (5.263)

Now we will prove that (P, i°) — (P, u) strongly as measure-function pairs. To this end
we first prove the uniform boundedness of P¢ in L?(fi¥; R™*"),

PP dif = uhy 5 O, u° Oy u” ? €12 ded
QT| " dp® = o ZZ i G| (Ve e |Vu©|® dx dt

i=1 j=1

= E/ (n IVuE|? 4 |Vuf)? — 2 \VUE\Q) dx dt
Qr
= e(n— 1)/ IVul)? < e(n, e, T), (5.264)
Qr
which implies that there exists Y € L?(u; R"*™) such that for all n € C.(Q7; R™ ™).

lim n - Pedp® = / n-Ydu. (5.265)
Q T

e—0
Now we prove that
Y(z,t) = P(x,t) for — p almost all(x,t) € Q.

Let h € C.(R"*™) such that h(S) = 1 for all projections S. Using (/5.180) we have for all
n € Ce(Qr; R™™)

| o Y@ oan = i [P0 P (5.266)
= lim h(S)n(z,t) - SdVe(z,t,S) (5.267)
e—0 QT *xG(n,n—1)
_ / h(S)n(z,t) - S dV (z,t, S) (5.268)
QT *xG(n,n—1)
_ / h(P)n(z,t) - Pz, ) dy (5.269)
_ / (1) - P, ) dp. (5.270)

T
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which implies that
Y(xz,t) = P(x,t) for — p almost all(x,t) € Q.

In addition, let ¢ € Co(Q7 x R™™) such that ¢(z,t,S) = |S|* for all projections. We obtain
that

lim [ |P°|?dif = lim o(x,t,8)dVe(z,t,5)
e=0Jor e—0 QrxG(n,n—1)

_/ é(z,t, ) dV (z,t, 5)

QT *xG(n,n—1)

= / |P|? dp. (5.271)
T

Therefore (P, i) — (P, p) strongly as measure-function pairs. We then obtain by Propo-
sition .44 that

/ —n - (P. — Id)Vx(qz) dji® =/ n- (P —1Id)bdp.

T

Now, by (5.2) we have g. is uniformly bounded in L°°(0,T; W2°°(12)). Using the fact that
W22(Q) — C1(Q) compactly then as ¢ — 0 we have for all t € (0,T)

ge(t,.) — q(t,.) strongly in C*(Q) ase — 0,
which implies that
Vx(g(t,.)) = Vx(q(t,.)) uniformly on 2 as e — 0.
Also, we have that in view of

e—0

i | < x(a.(0) -t )i = [ b6t nt..) d

which implies that
b= —Vx(q) on the support of u.

Now, estimating the second term I by using Holder’s inequality we get that
|I2‘ < \/EC(T%CD Cq)7

so that Iy vanishes as ¢ — 0.
Concerning the term I3, we let

. auf (1l —u®
fg = ETVUIE‘)VE on {VUE 7£ 0},
3
where v, = ‘gzs‘ Then we have
) 2(,,6\2 1 — uf 2
/ ol die = / (W) 2“) e |Vue|? da dt
T r 2|V

£\2 1 — us 2 €
= / aQ(U)(u)daﬁdt—/ 4042dedt <c(e1, T, ).
T € T €
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Thus, ﬁ is uniformly bounded in L?(fi°;R™) which implies the existence of f € L?(u;R")
such that we have as ¢ — 0

(fe, i) = (f, 1)  weakly as measure-function pairs.

Letting K (r) := [j as(1 — s)ds we can write
fedif = / an-Vutu (1 —u®)dedt = / n- VK (u®)dzdt.
Qr T T
Moreover, K (uf) — K(u) in L'(Qr), K(u®(t,.)) is uniformly bounded in BV (Q) (see the
proofs of Proposition and Proposition [5.4.4]) and
VEK(u(t,.)) - K(1)Vu(t,.) as Radon measures on €2, see (5.50).

Using the Lebesgue dominated convergence theorem we obtain that for all n € C.(Qp;R™)

f~ndu:K(1)/ 77~Vud:ndt:a\[20/ n - Vudzdt,

Qr T T

where o is given in (4.27). Now using the fact that du = 6o |Vu| dedt on 0* {u =1} we
deduce the result. O
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