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Abstract

In order to obtain more predictive and accurate simulations of mechanical behaviour
in the practical environment, more and more complex material models have been
developed. Nowadays, the characterization of material properties remains a top-priority
objective. It requires dedicated identification methods and tests in conditions as close
as possible to the real ones.

This thesis aims at developing an effective identification methodology to find the
material property parameters, taking advantages of all available information. The
information used for the identification is theoretical, experimental, and empirical:
the theoretical information is linked to the mechanical models whose uncertainty is
epistemic; the experimental information consists in the full-field measurement whose
uncertainty is aleatory; the empirical information is related to the prior information
with epistemic uncertainty as well. The main difficulty is that the available information
is not always reliable and its corresponding uncertainty is heterogeneous. This difficulty
is overcome by the introduction of the theory of belief functions. By offering a general
framework to represent and quantify the heterogeneous uncertainties, the performance
of the identification is improved.

The strategy based on the belief function theory is proposed to identify macro
and micro elastic properties of multi-structure materials. In this strategy, model and
measurement uncertainties are analysed and quantified. This strategy is subsequently
developed to take prior information into consideration and quantify its corresponding
uncertainty.

Key words : identification, full-field measurement, prior information, model
uncertainty, aleatory uncertainty, epistemic uncertainty, theory of belief functions.





Résumé

Afin d’obtenir des simulations plus prédictives et plus précises du comportement
mécanique des structures, des modèles matériau de plus en plus complexes ont été
développés. Aujourd’hui, la caractérisation des propriétés des matériaux est donc un
objectif prioritaire. Elle exige des méthodes et des tests d’identification dédiés dans
des conditions les plus proches possible des cas de service.

Cette thèse vise à développer une méthodologie d’identification efficace pour trouver
les paramètres des propriétés matériau, en tenant compte de toutes les informations
disponibles. L’information utilisée pour l’identification est à la fois théorique, expéri-
mentale et empirique: l’information théorique est liée aux modèles mécaniques dont
l’incertitude est épistémique; l’information expérimentale provient ici de la mesure
de champs cinématiques obtenues pendant l’essai et dont l’incertitude est aléatoire;
l’information empirique est liée à l’information à priori associée à une incertitude
épistémique ainsi. La difficulté principale est que l’information disponible n’est pas
toujours fiable et que les incertitudes correspondantes sont hétérogènes. Cette difficulté
est surmontée par l’utilisation de la théorie des fonctions de croyance. En offrant un
cadre général pour représenter et quantifier les incertitudes hétérogènes, la performance
de l’identification est améliorée.

Une stratégie basée sur la théorie des fonctions de croyance est proposée pour identi-
fier les propriétés élastiques macro et micro des matériaux multi-structures. Dans cette
stratégie, les incertitudes liées aux modèles et aux mesures sont analysées et quantifiées.
Cette stratégie est ensuite étendue pour prendre en compte l’information à priori et
quantifier l’incertitude associée.

Mots clés : identification, mesure en champ complet, information à priori,
incertitude modèle, incertitude aléatoire, incertitude épistémique, théorie des fonctions
de croyance.
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Chapter 1

Introduction

1.1 Background and motivation

Material characterizations are invaluable to engineers to find the best structures
that offer the required performance. More complex material models can provide more
predictive results and better performance in complicated and large-scale simulations.
However, we must carry out the identifications based on tests in which the experimental
conditions should be as close as possible to the real working conditions. This requires
more complex specimens and loading, and dedicated identification methods need to be
developed. Efficient and effective identification methodologies are increasingly required
to find the parameters describing mechanical properties from available information.

The available information used in identification comes from three sources: theoretical,
experimental, and empirical information. Identification methods should handle all the
information to extract the model parameters. The main difficulty is that information
and the corresponding uncertainty have different natures.

• Theoretical information is referred to the mechanical models which provide the
mathematical point of view to understand the real world. Theoretical information
is tainted with model uncertainty which comes from insufficient information or
approximation of the real model.

• Experimental information is related to the data measured during the experimental
tests. The measurement uncertainty is unavoidable due to the limitation of
measurement devices.



2 Introduction

• Empirical information can be explained as the prior information which should
be considered when it is available. Prior information usually comes from expert
opinions which accompany with subjective imprecision.

The identification methods for heterogeneous tests are regarded as inverse methods
which couple experiments and calculations. Ill-posedness (the solution may be non-
existent, non-unique, or discontinuous) is a typical feature for identification problems.
It is important to take prior information into consideration to overcome the ill-posed
characters. Meanwhile, quantification of uncertainty is significant for the identification
methods because it offers the knowledge of uncertainty on materials. One challenge
of this study is to propose a methodology that can handle the different natures of
uncertainty.

Uncertainty can be divided into two types [Helton and Oberkampf, 2004]: aleatory
uncertainty arising because systems are potentially various, such as geometry, material
property, and measurement uncertainty; epistemic uncertainty arising from lack of
knowledge or incomplete information, such as subjective uncertainty on a new material
properties due to poor understanding, model uncertainty due to physics simplification.

Historically, both aleatory and epistemic uncertainty can be represented by a math-
ematical structure provided by probability theory [Aprostolakis, 1990] [Parry and
Winter, 1981]. However, the discussion on the alternative representations of epistemic
uncertainty never stops. Moreover, many non-probabilistic methods have been pro-
posed as alternatives to probabilistic approaches when information is incomplete and
insufficient [Baudrit and Dubois, 2006] [Aven, 2011] [Zio and Pedroni, 2013], including
p-box, fuzzy set, random sets, possibility theory and theory of belief functions (evidence
theory), etc. The uncertainty treated in this thesis is diverse in sources and types.
Measurement and model uncertainties, which are treated in Chapter 5, correspond,
respectively, to aleatory and epistemic uncertainty. The uncertainty on prior informa-
tion, which is considered in Chapter 6, is interpreted as epistemic uncertainty. Thus,
multiple uncertainty representation methods are applied to encode the heterogeneous
uncertainties. A general framework should be developed to integrate, propagate and
quantify the uncertainty represented by the different methods. During this process,
computational efficiency should be paid special attention.

The context in which this work engages is the identification of elastic properties
from the full-field measurements. The full-field measurement technologies have been
developed for 20 years. They can provide very rich measurement data to execute
the identification from heterogeneous tests. Digital Image Correlation (DIC) is an
inherently contactless and non-intrusive measurement technique that uses the images
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acquired at different stages of tests. It can measure kinematic fields of surfaces (or in
volumes) of loaded specimens and structures. Thus, DIC has been chosen to obtain
the full-field measurements in this thesis, due to its efficiency and high tolerance to
aggressive conditions.

In this work, we consider two applications, identification of mono-structure and
multi-structure materials. The mono-structure materials are related to traditional
materials and they have been widely used in engineering. The multi-structure materials
(e.g composite materials, polycrystalline metals, porous materials, etc.) are becoming
a key research point due to their increasing applications. The characterization of the
two types of materials is very useful in practice.

1.2 Structure

This thesis is presented according to the following organisation:

• The first chapter presents the background of the study.

• In the second chapter, the full-field measurement techniques and deterministic
identification methods are presented and compared.

• In the third chapter, the uncertainty representation approaches, including prob-
abilistic and non-probabilistic approaches, are introduced and compared to
illustrate the reasons for selecting belief function theory. The non-deterministic
identification methods are discussed in this chapter.

• In the fourth chapter, the mechanical models used in this study are introduced.
The different natures of uncertainty in identification are analysed to choose
suitable uncertainty representation approaches. A general framework based on
likelihood-based belief functions is proposed.

• An identification strategy which can quantify both measurement and model
uncertainties are proposed in the fifth chapter. The presentation of this strategy
is explained in detail in the context of multi-structure materials. Illustrating
examples of identifying macro and micro properties of multi-structure materials
are provided to show the effectiveness and robustness of the proposed strategy.

• The sixth chapter introduces how to take prior information into account and
quantify its uncertainty in identification. Cooperating with the strategy in
the fifth chapter, prior information, model, and measurement uncertainties
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are all quantified within the same framework. Several numerical applications
in identifying the mono-structure and multi-structure materials properties are
illustrated in this chapter.

• Some conclusions are given in the seventh chapter.



Chapter 2

Identification of mechanical models

The study of this thesis is based on full-field measurements. The measurement
technologies and deterministic identification methods, which have been developed
significantly, will be introduced in this chapter. The non-deterministic identification
approaches from the full-field measurements have been paid very little attention until
now. A non-deterministic strategy from the full-field measurements will be proposed
from Chapter 4.

2.1 Full-field measurement technologies

The improvement of optical and image processing techniques makes non-contact
measurement more and more popular in material characterizations. The full-field
measurement techniques, which measure global quantities (a field record of displace-
ment, strain, temperature), offer a large amount of experimental data to be explored.
Compared with traditional measurement techniques, the rich experimental information
obtained from full-field measurements allows identifying the materials under heteroge-
neous conditions (e.g., complex specimen geometry, non-uniform loading, heterogeneous
material). In [Grédiac, 2004], full-field measurement techniques are classified into two
main categories: non-interferometric and interferometric methods. Non-interferometric
methods extract the spatial variation information of light intensity, including speckle
photography [Archbold et al., 1970], grid method [Parks, 1982], image correlation
[Peters and Ranson, 1982]; the interferometric methods extract the phase variation
information of signals, including speckle interferometry [Jones and Wykes, 1989], Moiré
interferometry [Asundi et al., 1989].

Digital Image correlation (DIC) is a vision-based measurement technique proposed
by [Peters and Ranson, 1982]. DIC requires no special light or surface preparation
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in many cases, as a result images can be obtained from a wide variety of sources,
including Conventional Charge-coupled Device (CCD) [Ackermann, 1984] [Nguyen
et al., 2016], high-speed video [Kirugulige et al., 2007], Scanning Electron Microscope
(SEM) [Sutton et al., 2006] [Jin et al., 2008] and Atomic Force Microscope (AFM) [Cho
et al., 2005] [Xu et al., 2008], Computed Tomography (CT) image [Verhulp et al., 2004],
X-ray tomography [Bay et al., 1999], etc. During two decades of development, a lot of
studies have been done to improve the accuracy in DIC. [Chen et al., 1993] applied
fast-Fourier transform to study crack-tip deformation fields. [Feissel et al., 2013] used
the diffuse approximation method to filter measurement error and reconstruct strain
fields. [Hassan et al., 2016] focused on the selection of subset size in DIC. [Réthoré
et al., 2008] combined extended finite element method (X-FEM) with digital image
correlation. The enrichment functions made it possible to describe the discontinuities
in displacement fields even when the mesh was coarse. In [Leclerc et al., 2009], DIC was
coupled with the finite element model (FEM) to enhance accuracy and robustness of the
identification. Multicamera systems make it possible to construct a three-dimensional
deformation field of a surface [Helm et al., 2001] [Verhulp et al., 2004]. The digital
volume correlation can be seen as an extension of digital image correlation. It can
reconstruct the interior kinematic fields in specimens [Bay et al., 1999].

In short, DIC has the following advantages:

• it is a non-contact measurement. It minimises the influence on the specimens in
a test;

• it is easy to use. It requires no special light and surface preparation in many
cases;

• it has high efficiency. The images can obtain simultaneously during the tests.

These advantages make DIC more and more popular. In the following section, the
principles of DIC will be introduced.

2.2 Measurement from digital image correlation

DIC relies on matching a reference image and deformed image obtained before and
after loading in a test. Here we take the two-dimensional DIC as an example to briefly
introduce its basic concepts. Considering two configurations respectively recorded
before and after a test, the first one is called "reference image", denoted f , and the
second one is "deformed image", denoted g. The configurations are stored as positive
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integers, which are the gray intensity of pixels. The selection of subsets is a necessary
step in DIC. Not only should the subset be large enough to have good intensity variation,
but also it needs to be small enough to follow the first-order displacement function
approximation used by DIC. DIC reconstructs a deformation field by matching the
subsets of the two images. The correlation coefficient is:

R =
M∑

i=−M

M∑
j=−M

(
f(xi, yj)− f̄

)(
g(x

′
i, y

′
j)− ḡ

)√∑M
i=−M

∑M
j=−M

(
f(xi, yj)− f̄

)2∑M
i=−M

∑M
j=−M

(
g(x

′
i, y

′
j)− ḡ

)2 ,
(2.1)

where f() and g() represent the gray intensity of a pixel in the reference and deformed
image, M is the number of subsets in horizontal and vertical directions. The relationship
between (xi, yj) in the reference image and (x

′
i, y

′
j) in the deformed image is characterized

by mechanical transformation functions which are usually approximated by polynomial
expressions [Bornert et al., 2009]. Here we make use of the linear assumption to link
(xi, yj) with the corresponding position (x

′
i, y

′
j):

x
′ − x = u+

∂u

∂x
dx+

∂u

∂y
dy,

y
′ − y = v +

∂v

∂x
dx+

∂v

∂y
dy,

(2.2)

where u and v are the displacement components at the center of the subset in x and y

direction. In the 2D case, the correlation coefficient R is a function of six independent
variables denoted by the vector:

u = (u, v,
∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y
)T .

The displacement field is obtained by maximising the correlation coefficient R with
respect to the six variables. For the 3D case, the correlation coefficient R depends on
12 variables. More detail of DIC can be found in [Michel et al., 2012] [Hassan et al.,
2016].

Measurement accuracy using DIC depends on image noise caused by camera sensors,
employed transformation functions, structure of the speckle patterns, subset size [Gao
et al., 2016] [Bornert et al., 2009] etc. In the literature, a number of algorithms
[Bruck et al., 1989] [Luu et al., 2011] [Pan, 2013] have been proposed to increase
the measurement accuracy. However measurement uncertainty is inevitable, and it is
often described by statistical properties of random error (e.g., Root-mean-square-error
[Bornert et al., 2009] [Luu et al., 2011], mean and standard deviation error [Pan, 2013]).
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The measurement data acquired from DIC are rich, have a high quality, and their
accuracy can be assessed. These features are helpful for improving the performance
of identification. Especially, the assessable accuracy is very significant to uncertainty
quantification in identification. Therefore, the full-field measurement from DIC is
selected as the experimental information.

2.3 Identification methods

Identification problems are a kind of inverse problems based on models characterised
by parameters. Forward problems focus on calculating the response given the excitation
and model parameters, while inverse problems focus on inferring and reconstructing the
excitation or model parameters based on the known or partially known measurement
of response. Consider a forward problem described by:

find u = u(θ) such that g(θ,u) = 0, with θ given , (2.3)

where u is the response (displacement in this thesis), θ is referred to the model
parameters. The identification formulation can be written as follows:

find θ ∈ Θ such that g(ũ,θ) = 0, (2.4)

where ũ is the measurement (observation) of u (or a part of u), and Θ denotes the
parameter space in which θ is sought. The formulation in Eq. (2.4) is often ill-posed
because it violates at least one of the Hadamard well-posedness conditions [Hadamard,
1902]: (1) a solution exists; (2) the solution is unique; (3) the solution’s behaviour
changes continuously with the data. The measurement and model uncertainties
will sharpen the non-existence or instability of Eq. (2.4). To solve an ill-posed
problem, a well-posed problem must be formulated. Several approaches are possible,
including relaxing some equations, reformulating a minimisation problem, adding prior
information, and reducing the size of the parameter space.

Full-field measurement techniques offer rich measurement information which is
helpful to overcome ill-posedness of identification. The rich data can reduce the size
of parameter space and sensibility to measurement uncertainty, which will make the
solution unique and stable. Recently, a lot of approaches focus on the exploitation of
full-field measurements to identify model parameters, including the Finite Element
Model Updating (FEMU) method [Kajberg and Lindkvist, 2004] [Azzouna et al., 2013]
[He et al., 2016], Constitutive Relation Error Method (CREM) [Latourte et al., 2008]
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[Florentin and Lubineau, 2010], Modified Constitutive Relation Error Method (M-
CREM) [Azzouna et al., 2015] [Huang et al., 2016], Equilibrium Gap Method (EGM)
[Claire et al., 2004] [Réthoré et al., 2009] [Périé et al., 2009]. The methods above
reformulate an identification problem as a minimization problem targeting to solve the
nonexistence problem. The Virtual Fields Method (VFM) [Grédiac, 1989] [Chalal et al.,
2006] relies on the principle of virtual work (PVW). It is a method based on the weak
form of equilibrium to induce an identification of the sought parameters. Tikhonov
regularization [Tikhonov and Arsenin, 1977] [Tikhonov, 1995] and Bayesian inference
[Tarantola, 2005] [Zhang et al., 2012] regularize identification problems by adding prior
information to solve the uniqueness and continuous problem. The approaches above,
except for Bayesian inference, belong to the deterministic strategy. The deterministic
approaches will be introduced in this chapter, while the Bayesian inference, as a
non-deterministic method, will be presented in Chapter 3.

2.3.1 Finite element model updating method

The Finite Element Model Updating (FEMU) method [Kajberg and Lindkvist, 2004]
[Azzouna et al., 2013] [He et al., 2016] is based on the Finite Element Model (FEM).
The FEMU minimises an objective function defined as the discrepancy between a
measured data and its prediction. There are two main ways to formulate objective
function. Firstly, the objective functions can be based on force data [Kavanagh and
Clough, 1971] [Pagnacco et al., 2007], corresponding to the "force balance method".
Secondly, the objective function is defined on displacement data [Collins et al., 1974]
[Farhat and Hemez, 1993], corresponding to the "displacement method". Moreover in
[Hoc et al., 2003] [Giton, 2006] [Guery et al., 2016], the objective functions of the force
balance and displacement methods are combined to form a mixed misfit function. The
minimisation problems of objective functions are solved by iterative procedures.

The FEUM can work for both point-wise and full-field measurements. Many inves-
tigations focus on the application of the FEMU to parameter identifications. [Fang
et al., 2008] identified the damage in a tested reinforced concrete frame using the
measurements from piezoelectric accelerometers. [Sun et al., 2015] proposed to identify
the temperature-dependent properties of a thermo-elastic structure using the frequency
measurement in an unsteady temperature environment. [Kajberg and Lindkvist, 2004]
focused on the identification of material subjected to large strains using the displace-
ment field measurement from Digital Speckle Photography (DSP) technology. In
[Azzouna et al., 2013], heterogeneous elastic properties were identified based on the
filtered full-field data using diffuse approximation algorithm. [He et al., 2016] applied
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the FEMU to determine constitutive properties of composite materials using the strain
fields measured by DIC.

2.3.2 Constitutive relation error method

The Constitutive Relation Error Method (CREM) was proposed in [Ladeveze and
Leguillon, 1983] [Ladevèze et al., 1999] for error estimation in the FEM. Then it was
widely used in model updating [Ladevèze et al., 1999] [Barthe et al., 2004] [Bouclier
et al., 2013]. The CREM assumes that the constitutive relation equation could be
inaccurate, which leads to the constitutive relation error, and therefore, has to be
relaxed. Then, a stress field, a displacement field and a set of material parameters are
sought as a trade-off of all the available data, enforcing the reliable data and relaxing
the non-reliable one. In the elastic case, this leads to the definition of the function:

J(u,σ,θ) =
1

2

∫
Ω

(
σ −C(θ)ε(u)

)
: C−1(θ) :

(
σ −C(θ)ε(u)

)
dΩ, (2.5)

where C is the elasticity tensor, u is the displacement field, ε(u) is the strain tensor
associated with u, and σ is the Cauchy stress tensor. The reliable equations define
the admissible spaces for both the displacement field and the stress field. Hence, u
is in kinematically admissible space, noted UAd, and σ is in a space called statically
admissible space, noted SAd. UAd and SAd are defined by:{

UAd = {u ∈ H1(Ω)|u = ũ on Ωm,u = u on ∂uΩ},
SAd = {σ ∈ Hdiv(Ω)|divσ = 0 on Ω, σ.n = f on ∂fΩ},

(2.6)

where ũ is the measurement on Ωm, Ωm denotes the measurement domain. Dirichlet
boundary condition is defined on ∂uΩ, Neumann boundary condition is defined on ∂fΩ.
CREM measures the energy discrepancy between the stress field and another stress
field evaluated from displacement field [Bonnet, 2012]. The minimisation of Eq. (2.5)
under the conditions of Eq. (2.6) can be solved by the alternate direction method:

(û, σ̂, θ̂) = min
θ

min
σ,u

J(u,σ,θ). (2.7)

The CREM has been used for the identification of elastic properties [Constantinescu,
1995] and nonlinear constitutive models [Latourte et al., 2008]. Recently the CREM
has been extended to a large number of applications. In [Deraemaeker et al., 2002],
the CREM was used with a reduction model to the updating of industrial structures
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with many degrees of freedom. [Faverjon and Sinou, 2008] applied the CREM to
detect the number of cracks in a beam. Moreover, both the crack positions and sizes
were estimated with satisfactory precision. [Florentin and Lubineau, 2010] presented
a variant of the CREM in which the construction of statically admissible fields was
optimised. This method was shown to be effective for the identification of heterogeneous
isotropic elastic properties. [Bouclier et al., 2013] proposed a real-time validation of
mechanical model based on the CREM and Proper Generalized Decomposition (PGD),
which was used to run a validation process quickly.

The Modified Constitutive Relation Error Method (M-CREM) [Ladeveze, 1993]
[Calloch et al., 2002] is a variant form of the CREM. The idea is to redefine the sets
of reliable and less reliable equations. In particular, the measurements of either load
or displacement should be considered as less reliable and the corresponding equations
should be relaxed. The function is therefore modified by introducing a penalty term:

J(u,σ,θ) =
1

2

∫
Ω

(
σ−C(θ)ε(u) : C−1(θ) :

(
σ−C(θ)ε(u)dΩ+α· 1

2

∫
Ωm

||u−ũ||2dΩ,

(2.8)
where α is a positive weighting coefficient. It can be defined by L-curve [Calvetti et al.,
2000] or Morozov’s discrepancy principle [Anzengruber et al., 2014]. The M-CREM was
firstly used in dynamics [Ladeveze et al., 2006a] and transient dynamics [Allix et al.,
2003] [Feissel and Allix, 2007]. [Huang et al., 2016] focused on the identification of
elastic properties from DIC data in statics and the dealing of various kinds of boundary
conditions (unknown or known) was especially discussed.

2.3.3 Equilibrium gap method

The CREM derives from unreliable constitutive equation, while the Equilibrium
Gap Method (EGM) is based on relaxing the equilibrium equation:

divσ(u,θ) + f = 0. (2.9)

This method was proposed for identifying the elastic properties taking the form of a
scalar field C(x), i.e.

C(x) = C(x)C0, (2.10)

where C0 is a reference medium [Avril et al., 2008a]. It can identify the distribution of
elastic properties and its evolution during the test from measured displacement [Claire
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et al., 2002]. The objective function can be written as follows:

J(C) = αV (Ω)

∫
Ω

||divσ(u,C)+f ||2dΩ+βS(∂Ω)

∫
∂Ω

||C : ∇u ·n− t||2d∂Ω, (2.11)

where V is the domain volume and S is the area of the boundary ∂Ω, α and β are
the weight coefficients to be chosen, u is the displacement field, and u = ũ in the
measured domain Ωm. The second term of the right hand of the Eq. (2.11) corresponds
to information on the loading imposed by Neumann boundary condition.

In [Claire et al., 2004], the EGM was applied to identify the spatial distribution of
the damage variable D(x). The elastic tensors C(x) were represented by D(x):

C(x) = (1−D(x))C0, (2.12)

where 0 ≤ D(x) ≤ 1. In [Réthoré et al., 2009], the EGM was applied as a mechanical fil-
ter to reduce the uncertainty of measurement field from DIC. The correlation algorithm
was penalized by a minimisation of the equilibrium gap condition. In [Crouzeix et al.,
2009] an orthotropic variant of the the EGM was applied to identify the anisotropic
damage law of the composite material under a biaxial loading.

2.3.4 Virtual field method

The Virtual Field Method (VFM) is an approach based on auxiliary fields proposed
by [Grédiac, 1989]. This method is suitable for the case where the strain field ε is
experimentally known (possibly via differentiation of a measurement displacement field
ũ), and the loading conditions are assumed to be known [Avril et al., 2008a]. The
basic idea of VFM relies on the principle of virtual work (PVW), taking the form:

−
∫
Ω

σ : ∇u∗dΩ +

∫
∂Ω

t · u∗d∂Ω =

∫
Ω

ρü · u∗dΩ, (2.13)

where u∗ is a virtual displacement field. Based on constitutive model with parameter
θ to be identified, the stress field σ is expressed from the known strain ε, ρ is the
density, ü is the acceleration field. Then, particular virtual fields have to be chosen in
order to obtain as many equations as unknown material parameters. The virtual fields
can be construct by means of polynomial functions [Grédiac and Pierron, 1998], special
linear equations [Grédiac et al., 2002] over the whole specimen, piecewise polynomial
functions [Toussaint et al., 2006], or finite elements fields [Avril and Pierron, 2007].
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The VFM has been used in a large scope of applications, such as identifying linear
elastic parameters [Grédiac and Pierron, 1998] [Grédiac et al., 2002], visco-elastic
parameters [Giraudeau and Pierron, 2003], elastic-plastic parameters [Avril et al.,
2008b]. [Pierron et al., 2000] identified the four through-thickness parameters of thick
laminated composites based on four independent virtual fields. The solutions can be
directly obtained for the linear cases, and iteratively obtained for the non-linear cases.

2.3.5 Tikhonov regularization

Non-uniqueness and discontinuity are two frequent obstacles in parameter identifi-
cation problems. To solve this problem, it is a good choice to formulate and exploit
available prior information in addition to measurement information. Tikhonov regular-
ization technique [Tikhonov and Arsenin, 1977] [Tikhonov, 1995] takes prior information
into account by adding a stabilizing function to original the objective function:

J (θ) = J(θ) + αR(θ), (2.14)

where J(·) defines the discrepancy between the measurements and their predictions:

J(θ) = ||u(θ)− ũ||2. (2.15)

The coefficient α is the regularization parameter, and R(·) is the stabilizing function.
There are several choices of R(·). One choice can be written as follows:

R(θ) = ||θ − θ0||2, (2.16)

where θ will be close to the prior value θ0.
The choice of the coefficient α in Eq. (2.14) is a crucial point for Tikhonov regular-

ization. The rules of choice depend on three categories [Anzengruber, 2011]:

• only the noise level of measurements, e.g., the most common choice is α = c · δr,
where δ is the noise level, c and r are parameters to be chosen;

• only the measurement, e.g., L-curve method [Calvetti et al., 2000];

• both the measurement and its noise level, e.g., Morozov’s discrepancy principle
[Bonesky, 2008].
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2.4 Conclusion

In this chapter, we introduced some popular full-field measurement techniques and
parameter identification methods dedicated to this type of data. The identification
methods presented above are part of deterministic strategies. They focus on finding
the parameters that coincide best with the measurements. In this group, FEMU,
CREM, M-CREM, VFM, and EGM can hardly consider prior information, and most
cannot quantify the uncertainty of information. They can be coupled to Tikhonov
regularization techniques which consider prior information but fail to quantify uncer-
tainty. However, uncertainty is inevitable in identification problems, and it needs to
be managed. To quantify the uncertainty, it is necessary to research the uncertainty
nature, representation, and propagation. In the next chapter, we will discuss the uncer-
tainty in mechanical models, the representation approaches and the non-deterministic
identifications.



Chapter 3

Uncertainty representation
approaches

3.1 Uncertainty in mechanical models: Aleatory vs.
Epistemic Uncertainty

Even though it is often ignored, uncertainty is unavoidable in identification. On the
one hand, measurement uncertainty always accompanies the measurement processes.
On the other hand, information on features of the studied systems, such as geometry,
constitutive materials and boundary conditions, is usually partially unknown for
identification problems. In engineering practice, we usually construct some models with
simplified boundary conditions, loads or material properties. Under the simplification,
we can calculate plenty of mechanical problems. But the researchers should pay
attention to the confidence we have in our mechanical models and their ability to
simulate the real situations. All the mechanical models are based on the knowledge we
have. The unknown areas are so huge that we cannot ignore them. Therefore, there
has been an increasing interest in modelling uncertainty. Considering the different
natures and sources, uncertainty can be separated into two types: aleatory uncertainty
and epistemic uncertainty.

Aleatory uncertainty is underlying and intrinsic variability of physical quantities.
For example, measurement noise can be seen as aleatory uncertainty. It is the inher-
ent property of measurement devices. We normally see the aleatory uncertainty as
objective and irreducible. Aleatory uncertainty is often quantified by random variables
or probability distributions when sufficient information is available to establish the
probability distributions.
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In contrast with aleatory uncertainty, epistemic uncertainty results from the lack
of knowledge or incomplete information, e.g., lack of sufficient data in the statistical
process, fuzzy empirical opinion and limited understanding of the complex physical
phenomenon. Due to its subjective nature, epistemic uncertainty may be reduced
with additional information, e.g., more observations, better models, and more precise
knowledge.

In conclusion, aleatory uncertainty is due to variability, it is irreducible and objective;
in contrast, epistemic uncertainty is due to ignorance, it is reducible and subjective
[Zhang, 2005]. Considering the different natures of the two types of uncertainty, many
uncertainty representation methods have been proposed recently. In general, they are
separated into probabilistic approaches and non-probabilistic approaches.

3.2 Probabilistic approaches

Research on probability started in the 17th century. In general, probability is a
measure of the chance of an event. We have three choices to relate a real event to
probability [Pinsky and Karlin, 2010]: (1) equally likely property (2) long run frequency
of appearance (3) quantitative subjectivity. Next, we will talk about probability theory
in uncertainty representation and propagation.

3.2.1 Uncertainty representation in probability theory

Let Ω be the sample space of a random phenomenon, which contains all possible
outcomes. A real random variable X is a measurable mapping:

X : Ω 7→ A ⊆ R.

When A is continuous, the random variable is said continuous, otherwise it is said
discrete. A real random vector X is a measurable mapping:

X : Ω 7→ A ⊆ Rd,

where d ≥ 2. The real random vector can be considered as a vector whose components
are random variables. A random field H(x, ω) is a set of random variables indexed
by a continuous parameter x ∈ Rd, where ω ∈ Ω, and x describes the geometry
of a system [Sudret and Der Kiureghian, 2000]. Random fields are non-numerable
infinite and computationally intractable. Thus, several discretization methods for
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random fields have been developed in the literature including the midpoint method
[Der Kiureghian and Ke, 1988], the shape function method [Liu et al., 1986], the spatial
average approach [Vanmarcke and Grigoriu, 1983], the Karhunen-Loève Expansion
[Loeve, 1978], the expansion optimal linear estimation method [Li and Der Kiureghian,
1993], the orthogonal series expansion [Zhang and Ellingwood, 1994].

Plenty of probabilistic approaches for propagating uncertainty through mechanical
models have been developed targeting various interests. [Liu et al., 1986] obtained the
mean and variance of displacements and stresses for a non-linear dynamic structure.
The first-order reliability method was used in [Der Kiureghian and Ke, 1988] for
reliability analysis of structures with stochastically varying properties and subjected
to random loads. [Ghanem and Spanos, 1991] presented the spectral stochastic finite
element method to predict the whole Probability Density Function (PDF) of response
with high efficiency. In [Papadrakakis and Papadopoulos, 1996], the weighted integral
method and Monte Carlo simulation were used together to produce robust and efficient
solutions for the stochastic finite element analysis of space frames. The variability
of the displacement response and eigenvalues of structures with multiple uncertain
materials and geometric properties were studied using variability response functions in
[Graham and Deodatis, 2001].

3.2.2 Identification based on Bayesian Inference

The identification based on Bayesian inference is the most general non-deterministic
method using probability theory. Compared with the deterministic methods which
provide a single value, Bayesian identification provides a joint probability distribution
to represent the possible values of identified parameters. In identification, there is
always a discrepancy between the measurement and the predicted model (e.g. FEM)
because of measurement and model uncertainties:

ũ = u(θ) + emeas + emodel, (3.1)

where ũ is the measurement field, u(θ) is the predicted model, emeas is the measurement
error, emodel is the model error.

Measurement error, which is represented by a probability distribution, arises from the
finite accuracy of measurement devices. The model error comes from the simplification
or incomplete knowledge on the real system. In the Bayesian formulation, the model
error is encoded by a probability distribution as well. An advantage of Bayesian
inference is that prior information on material properties can be accounted using



18 Uncertainty representation approaches

a prior probability distribution. There are several principles to choose the prior
distribution [Zhang, 2010]:

• engineering judgement;

• maximum entropy principle;

• uniform distribution if there is no useful information.

The joint probability distribution of model parameters θ given the measurement
displacement fields ũ can be written by Bayes’ formula:

p(θ|ũ) = p(ũ|θ)p(θ)∫
p(ũ|θ)p(θ)dθ

, (3.2)

where p(θ) is the prior probability distribution which represents the prior informa-
tion, p(ũ|θ) is the likelihood which accounts for measurement information, p(θ|ũ) is
the posterior probability distribution which combines the prior information and the
measurement.

Several operations can be applied to the posterior distribution [Zhang, 2010]:

• normalization c =
∫
p(ũ|θ)p(θ)dθ;

• marginalization p(θi|ũ) =
∫
p(θ|ũ)dθ1...dθi−1dθi+1...;

• expectation of posterior distribution E(θ|ũ) =
∫
θp(θ|ũ)dθ;

• optimization of posterior distribution θ̂ = argmaxθ p(θ|ũ).

Bayesian identification has been used in several applications. [Gogu et al., 2010]
compared the least-square method with Bayesian inference for identifications based
on tests. They proved that Bayesian approach led to more accurate results for two
examples: identifying the elastic parameters of a three-bar truss from point-wise
strain measurements and identifying the elastic parameters of a composite plate from
natural frequency measurements. In [Chazot et al., 2012], poroelastic parameters were
characterised from point-wise pressure measurements based on Bayesian inference. The
literature addressing identification from the full-field measurement is rather rare. In
[Gogu et al., 2013], Bayesian inference was applied to identify elastic properties of a
multi-directional laminated plate using the full-field displacement measurements from
Moiré interferometry. Proper Orthogonal Decomposition (POD) was used to improve
computational efficiency. Finally, both properties and their uncertainty structures
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(e.g., mean values, standard deviations, correlation) were obtained. Compared with
the deterministic strategies, the Bayesian inference can identify the probability density
function of the parameters. The uncertainty quantification in Bayesian inference is
important for reliability-based designs.

As discussed in Chapter 1, one of the most commonly recognised distinctions in
uncertainty types is between aleatory and epistemic uncertainty. The most widely
used representation method for aleatory uncertainty is probability theory. However,
epistemic uncertainty derives from ignorance and incomplete information of the systems.
Scholars have debated a lot about using probability theory to represent uncertainty in
the presence of limited knowledge [Klir, 1989] [Ferson and Ginzburg, 1996] [Helton and
Oberkampf, 2004] [Oberkampf et al., 2004]. Thus, some alternative non-probabilistic
approaches have been proposed to represent epistemic uncertainty.

3.3 Non-Probabilistic approaches

3.3.1 Interval theory

An interval expresses the knowledge that the variable is comprised between two
values. Interval uncertainty can be characterised by characteristic function (membership
function) χI : R → {0, 1},

χI(x) =

{
1 I ≤ x ≤ I,

0 otherwise.
(3.3)

I and I are, respectively, the upper and lower limit of interval [I]. The binary operators
∗ ∈ {+,−,×,÷,max,min} between two intervals are defined as follows:

[I] ∗ [J ] = {x ∗ y|x ∈ [I], y ∈ [J ]}. (3.4)

If at least one of the matrix elements is an interval, then this matrix is an interval
matrix, noted as [A]. An n× 1 interval matrix is an interval vector [b] which is also
referred to as a box (2 dimensions), cube (3 dimensions) or hyper-cube (3 or more
dimensions). A linear interval equation with an n× n interval matrix [A] and an n× 1

interval vector [b] can be defined as follows:

Ax = b (A ∈ [A], b ∈ [b]). (3.5)
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In general, the solution set of Eq. (3.5) has a very complicated shape and is expensive
to compute. In practice, we want to find a set containing the solution set while still
small enough to be practically useful. The commonly used methods for linear interval
equations include the vertex method, the perturbation method, optimisation, and
Monte Carlo sampling.

3.3.1.1 Vertex method

The vertex method [Akpan et al., 2001] is also called the combinational method.
Considering the linear interval equations (3.5), the vertex points or extreme points of
the interval elements are denoted as:

âmij = {aij or aij}, m = 1, · · · , 2n×n ,

b̂qi = {bqi or b
q

i}, q = 1, · · · , 2n,
(3.6)

where âmij is the element of the vertex matrix Am and b̂qi is the element of the vertex
vector bq. The range of x can be determined by considering all possible combinations
of the bounds of the interval elements:

Âmx̂mq = b̂q, m = 1, · · · , 2n×n, q = 1, · · · , 2n, (3.7)

[xi, xi] = [min
m,q

(xmq
i ),max

m,q
(xmq

i )], (3.8)

where xmq
i is the element of the vector xmq. The vertex solution can be used for

monotonic systems. The computational effort increases exponentially with the number
of matrix interval elements.

3.3.1.2 Perturbation method

The perturbation method [Chen et al., 2002] [Chen and Yang, 2000] is based on
the first-order approximation of the output about the middle points of interval space.
Because of the first derivative information, the computational effort is smaller than
that of vertex solution. This method assumes that the uncertainty is small around the
middle points. For a linear equation:

A0x0 = b0, (3.9)
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where A0 is an n×n matrix, b0 is an n×1 vector, the perturbed system can be written
as follows:

(A0 +∆A)(x0 +∆x) = b0 +∆b. (3.10)

Expanding the perturbed system and neglecting the higher order part, we have:

∆x ≈ A−1
0 (∆b−∆Ax0), (3.11)

where ∆A and ∆b can be expressed as a first-order Taylor series:

∆A =
m∑
i=1

(αi − α0i)
∂A

∂αi

∣∣∣
αi=α0i

, (3.12)

∆b =
m∑
i=1

(αi − α0i)
∂b

∂αi

∣∣∣
αi=α0i

, (3.13)

where αi is the i-th uncertain parameter and α0i is its middle value. Substituting Eqs.
(3.12) and (3.13) into Eq. (3.11), we have:

∆x ≈
m∑
i=1

di(αi − α0i), (3.14)

where di is a vector such that:

di = A−1
0 (

∂b

∂αi

∣∣∣
αi=α0i

− ∂A

∂αi

∣∣∣
αi=α0i

x0). (3.15)

The upper and lower bounds for ∆xj (the j-th element of ∆x) can be written as:

∆xj ≈
m∑
i=1

dij(αi − α0i), if dij ≥ 0, αi = αi, else αi = αi, (3.16)

∆xj ≈
m∑
i=1

dij(αi − α0i), if dij ≥ 0, αi = αi, else αi = αi, (3.17)

where dij is the j-th element of di. The interval [x] can be approximated by:

[x] = x0 + [∆x]. (3.18)

Because it neglects higher order terms, the perturbation method cannot guarantee
the result to enclose the exact response range. It works only under the assumption of
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small perturbations. We can improve accuracy by keeping more terms in Eq. (3.11), for
example, second-order perturbation. But this modification entails much more complex
calculations. In [Gao et al., 2011] the perturbation and Monte Carlo methods were
mixed to deal with the hybrid probabilistic interval problem in static reliability analysis.
Because of coexistence of random variables and interval variables, the mean value and
standard deviation of structural response are represented by intervals. In [Xia et al.,
2013], a similar approach was used to analyse sound pressure in acoustic field in which
the intervals of expectation and variance of the responses were calculated.

3.3.1.3 Optimization

When equations are not monotonic, optimisation and Monte Carlo sampling are
general approaches for solving interval problems. The optimisation method finds the
bounds of the responses by two optimisations to calculate the minimal and maximal
responses under the condition that all variables are constrained to their corresponding
intervals. The performance of optimisation method depends on two aspects [Moens
and Hanss, 2011]:

• whether the actual bounds of the objective functions can be found;

• the computational efficiency to implement optimisation.

3.3.1.4 Monte Carlo sampling

The Monte Carlo sampling method takes samples from interval inputs and then
obtains the corresponding deterministic responses. If the number of samplings is large
enough, the responses will be close enough to the response boundaries. Since the
interval inputs have no probability information, the distributions used to sample are
arbitrary. In general, the uniform distribution is often chosen due to easier manipulation.
If some unusual distributions are chosen, Monte Carlo Markov Chains (MCMC) can be
used for drawing the values. The Monte Carlo sampling is easy to implement because
all computations are deterministic. The accuracy is improved with increasing number
of samplings. However, it is not computationally efficient. Moreover, the obtained
boundaries are always inner bounds of the real response.

3.3.1.5 Interval finite element method

The Interval Finite Element Method (IFEM) aims at propagating interval inputs
through a finite element model and obtaining the interval outputs. During assembling
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the stiffness matrix in FEM, the dependence problem is significant in interval formula-
tion. To overcome this problem, the Element-By-Element (EBE) method [Muhanna
and Mullen, 2001] [Zhang, 2005] can be used for assembling the stiffness matrix. The
basic idea of EBE is to detach the elements so that there are no connections between
elements to avoid element coupling in the element assembly procedure [Zhang, 2005].

The interval methods presented above have been applied widely in the IFEM. In
[Qiu et al., 2007], the vertex solution was extended to calculate the supremum and the
infimum of displacement, stress, and strain distribution. In [Chen et al., 2002] [Chen
and Yang, 2000], the perturbation method was used to obtain upper and lower bounds
of static displacements. [Zhang et al., 2010] made use of iteration method to propagate
interval inputs through a finite element model and obtain the interval displacements.

3.3.2 Lack-of-knowledge theory

The Lack-Of-Knowledge (LOK) theory [Puel, 2004] [Ladeveze et al., 2006b] [Louf
et al., 2010] has been proposed for comparing the response of the numerical model
with the real model. The LOK theory focuses on a quasi-identical structure Ω which is
an assembly of substructures E (E ∈ Ω). Let us take a static problem as an example
and consider an equation defined on a substructure E:

KEUE = FE, (3.19)

where KE is the stiffness matrix, FE is the force vector, UE is the displacement vector.
To illustrate the discrepancy between the numerical model and the real model, every
substructure E is associated with a pair of scalar internal state variables (m−

E,m
+
E),

such that:
(1−m−

E(θ))KE ≤ KE(θ) ≤ (1 +m+
E(θ))KE, (3.20)

where KE is the matrix of a real model, and KE is the matrix of the deterministic
numerical model. The parameter θ belongs to the space of random events. The pair of
variables (m−

E,m
+
E) which is positive is called the basic LOKs. The basic LOKs usually

follow given probability distributions. The process of propagation of the basic LOKs is
as follows:

• Define the basic LOKs of uncertainty inputs under given probability bounds;

• Propagate the basic LOKs throughout the numerical model;
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• Obtain the effective LOKs of an output of interest α(θ) under the same probability
bounds as input basic LOKs:

∆α−(θ) ≤ α(θ)− α ≤ ∆α+(θ), (3.21)

where α(θ) is the real outputs (e.g displacement, stress, or strain), and α is the
numerical outputs, the pair (∆α−(θ), α+(θ)) are the effective output LOKs.

3.3.3 Fuzzy set theory

Fuzzy set theory, which in some way extends interval theory, was proposed in [Zadeh,
1965]. The membership function of a fuzzy set associates each x ∈ X with a real
number in the interval [0, 1]:

µA(x) : X → [0, 1]. (3.22)

The value of µA(x) is the degree of membership of x in fuzzy set A. The definition gives
us a fuzzy logic: the nearer the value of µA(x) is to 1, the higher grade of membership
of x in A is. In this case, we have a graded possibility from true (1) to false (0). [Couso
and Sánchez, 2011] gave three interpretations of fuzzy sets:

• linguistic variables;

• ill-known or incomplete knowledge;

• conditional possibility measure.

In [Wehrle et al., 2011], different types of membership function of fuzzy sets have been
studied, including single membership function, interval membership function, triangular
membership function, trapezoidal membership function, and empirical membership
function, etc. The empirical membership function can be created from histograms with
the help of polynomial regression.

Fuzzy numerical operations can be performed using interval arithmetic operations
applied to each ω-level cut. So the problems in interval analysis, for example, overes-
timation and computational difficulty, exist in fuzzy operations. The transformation
method was introduced as a systemic discretization method for fuzzy uncertainty in
[Hanss, 2002]. The transformation method has two forms: general transformation
method and reduced transformation method. Based on the transformation method,
an approach of inverse fuzzy arithmetic was introduced in [Hanss, 2003a] and [Haag
and Hanss, 2012]. In [Chen and Rao, 1997], Taguchi’s robust philosophy was used to
reduce computation time in fuzzy operations.
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The Fuzzy Finite Element Analysis (FFEA) focuses on propagating the fuzzy-valued
inputs through finite element models to obtain the fuzzy-valued outputs. The steps of
FFEA [Moens and Hanss, 2011] [Akpan et al., 2001] [Chen and Rao, 1997] are:

1. discretize fuzzy-valued inputs using ω-level cuts;

2. apply interval finite methods to propagates the interval inputs through the finite
element model and obtain the interval outputs;

3. apply Zadeh’s extension principle to assemble interval outputs to fuzzy-valued
outputs.

Considering the complexity and monotonicity of finite element models, many strategies
focus on the second steps, interval propagation. In [Akpan et al., 2001], the vertex
method was used to implement interval propagation. In [Chen and Rao, 1997], a
modified Taguchi-oriented approach was used to propagate fuzzy variables. In [Hanss,
2003b], the extended transformation method was proposed for the non-monotonic finite
element models by adding more observation points to the search domain. Compared
with the extended transformation method, the reduced transformation method [Moens
and Hanss, 2011] [Hanss, 1999] is efficient to reduce computation for a monotonic finite
element model. Within the fuzzy finite elements model, an interdependency index was
introduced to quantify the interdependence between fuzzy-valued outputs [Giannini
and Hanss, 2008].

3.3.4 Possibility theory

Possibility theory is relevant to represent imprecise knowledge [Dubois et al., 2000].
Possibility theory starts from possibility distributions which contain equivalent informa-
tion with fuzzy sets. A possibility distribution is also a mapping π from some variables
x ∈ X to the unit interval:

π : X → [0, 1]. (3.23)

Similar to a fuzzy set, a possibility distribution describes the more or less plausible
values of some uncertainty variables [Baudrit and Dubois, 2006]. The value π(x) = 1

means x is the most plausible value; the value π(x) = 0 means x is the least plausible
value. If a possibility distribution π in Rm satisfies the relationship:

max
xj∈R,j ̸=i

π(x1, ..., xj, ..., xm) = πi(xi), xi ∈ R, i = 1, · · · ,m, (3.24)
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Fig. 3.1 Non-interactive possibility distribution

then π is a joint possibility and πi is the i-th marginal possibility distribution of π. If
a joint possibility distribution π satisfies:

π(x1, ..., xm) = min{π1(x1), ..., πm(xm)}, xi ∈ R, i = 1, · · · ,m, (3.25)

the marginal possibility distributions πi are said to be non-interactive. Fig. 3.1 is a
non-interactive joint possibility distribution in R2. In [Fullér and Majlender, 2004],
the interaction of a joint possibility distribution was investigated, and a quantity to
describe the degree of interaction was proposed.

Associated to a possibility distribution, there are two normalized functions, possibility
Π and necessity N , such that:

Π(A) = sup
x∈A

π(x), ∀A ⊆ X, (3.26)

and
N(A) = 1− Π(A) = inf

x/∈A
(1− π(x)), ∀A ⊆ X. (3.27)

The degree of possibility Π(A) and the degree of necessity N(A) jointly describe the
uncertainty in the proposition that the value x lies within a certain subset A.
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3.3.5 Probability box

Let P be a set of probability measures on some space Ω. The definition of upper and
lower probability can be written respectively as follows [Baudrit and Dubois, 2006]:

P (A) = sup
P∈P

P (A), ∀A ⊆ Ω, (3.28)

P (A) = inf
P∈P

P (A), ∀A ⊆ Ω. (3.29)

A probability box or p-box [Ferson et al., 2003] can be induced from lower and upper
probability, such that:

F (x) = P ((−∞, x]), ∀x ∈ R, (3.30)

F (x) = P ((−∞, x]), ∀x ∈ R. (3.31)

The interval [F , F ] is called a probability box. Both F and F are non-decreasing
functions. A probability box [F , F ] provides the left and right bounds of a cumulative
probability distribution, such that

F (x) ≤ F (x) ≤ F (x), ∀x ∈ R, (3.32)

where F denotes a cumulative probability function. The gap between F and F reflects
the incomplete nature of the knowledge. The probability box offers a useful tool to do
risk analysis on the conditions that:

• the parameters (mean, variance) of probabilistic models are imprecise (e.g., lie in
an interval);

• the probabilistic models rely on imprecise statistics (e.g., set-valued).

3.3.6 Random set theory

Random set theory serves for the random experiments with set-valued observations.
It is an extension of probability theory to set-valued rather than point valued mappings.
Consider a probability space (Ω, σΩ,P) and let Θ be a finite set. A finite random
set [Nguyen, 2006] with values in 2Θ is a mapping: X : Ω → 2Θ verifying some
measurability conditions. The random set theory provides a mathematical model which
can handle both aleatory and epistemic uncertainty.

Random set theory has been widely used in mechanical calculations. In [Nasekhian
and Schweiger, 2011], random sets were propagated through a finite elements model
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and the uncertainty of response was evaluated. In [Tonon, 2004], random set theory
was used to analysis the steady-state magnification factor of a linear mass-spring-
damper system considering imprecise and dissonant information. In [Zhang, 2012],
random sets were induced from the discretization of several p-boxes to do the structural
reliability assessment. In [Tonon et al., 1999] and [Tonon et al., 2006], random sets
were directly constructed from expert opinions to analyse aircraft crash reasons and
reliability bounds.

3.3.7 Theory of belief functions

The theory of belief functions is a general framework allowing us to treat imprecise
information. It comes from evidence theory introduced by [Shafer, 1976] in which it
was used to handle uncertainty from evidence.

3.3.7.1 Definition

Let Θ be a finite frame of discernment, a Basic Probability Assignment (BPA) can
be defined as a mapping m : 2Θ → [0, 1] that must verify two conditions:

m(∅) = 0, (3.33)∑
A⊆Θ

m(A) = 1. (3.34)

Any subset A of Θ such that m(A) > 0 is called a focal element of m. The value
m(A) represents the degree of belief (or confidence) attached exactly to the proposition
θ ∈ A. The belief and plausibility functions induced by m are defined as follows:

Bel(A) =
∑
B⊆A

m(B), ∀A ⊆ Θ, (3.35)

Pl(A) =
∑

B
⋂

A ̸=∅

m(B), ∀A ⊆ Θ. (3.36)

The quantity Bel(A) is the degree that the evidence supports the proposition θ ∈ A.
Pl(A) is the degree to which the evidence is not contradictory with the proposition
θ ∈ A. The difference between Bel(A) and Pl(A) corresponds the degree of ignorance.
It is easy to show that:

Pl(A) ≥ Bel(A), (3.37)

Pl(A) = 1−Bel(A). (3.38)
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Specially, the restriction of the plausibility function to singletons is called the contour
function:

pl(θ) = Pl({θ}), θ ∈ Θ. (3.39)

In [Denœux, 2014], the contour function was used to infer the parameter uncertainty
from observations based on likelihood-based belief functions.

3.3.7.2 Information merging

Information merging is a necessary step in uncertainty management and identification.
Considering two sources which generate two BPA m1 and m2 in the set Θ, there exist
several combination rules in the theory of belief functions. Here, three most common
used combination rules are introduced.

Dempster’s rule

If both sources are reliable and independent, then the induced mass functions m1

and m2 can be combined by Dempster’s rule:

m12 = (m1 ⊕m2)(A) =
1

1− k

∑
B

⋂
C=A

m1(B)m2(C), ∀A ⊆ Θ, A ̸= ∅, (3.40)

where
k =

∑
B

⋂
C=∅

m1(B)m2(C)

is the degree of conflict between m1 and m2. The degree of conflict is an important
by-product of Dempster’s rule. It can be used to normalise the combined BPA and
to assess the compatibility of two sources. In the real world, when combining two
sources of information, we may have two kinds of effect. On the one hand, there is a
potential benefit of using the right information to correct the wrong information. On
the other hand, there is a risk of using wrong information to impact correct information.
The degree of conflict makes it possible to indicate the risk of influence by wrong
information. Two incompatible sources often imply that at least one source is not
reliable.
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Disjunctive rule

If we only know that at least one source contains some true information, we can use
the disjunctive rule to do combination:

(m1 ∪m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Θ, A ̸= ∅. (3.41)

This operation is commutative and associative. It never generates conflict so that no
normalisation has to be performed. This rule can be used in case of heavy conflict
between the different pieces of evidence.

Intermediate rule

There is an intermediate rule between disjunctive rule and Dempster’s rule proposed
by [Dubois and Prade, 1986]:

(m1 ∗m2)(A) =
∑

B∩C=A

m1(B)m2(C) +
∑

B∩C=∅,B∪C=A

m1(B)m2(C), (3.42)

for any A ⊆ Θ, A ̸= ∅ and (m1 ∗m2)(∅) = 0. We can also see that no normalization
has to be performed with this rule.

3.3.8 Relation of the representation methods

The representation methods introduced in this section are the commonly used
frameworks to treat the imprecise and random nature of information. There are some
links among probability, fuzzy set theory, possibility theory, probability box, random
set theory, and theory of belief functions.

The function µA in fuzzy set theory and the distribution π in possibility theory con-
tains equivalent information. Thus, the two theories are considered as interchangeable.
Moreover, a possibility distribution can be seen as a particular case of belief function
theory where the focal elements are nested. In this case, Pl = Π and Bel = N [Baudrit
and Dubois, 2006].

The functions Pl and Bel in belief function theory can be seen as upper and lower
probabilities. They can induce a probability box [F , F ]. A probability box can thus be
regarded as a particular case of belief function.

The theory of belief functions and random set theory are mathematically equivalent
[Nguyen, 1978] [Nguyen, 2006]. They only hold different interpretations: focal elements
in the theory of belief functions are subsets induced by evidence, while the random
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sets are viewed as the outcomes of random experiments [Ben Abdallah et al., 2014].
Considering the strong relationship, in this thesis, we don’t take apart between them.

The random sets can be induced from possibility distributions [Ben Abdallah et al.,
2014] [Bellenfant et al., 2009], and p-boxes [Zhang, 2012] [Tonon, 2004] with the help
of the ω-level cuts. Considering Ω = [0, 1] and a possibility distribution π as shown in
Fig. 3.2, the ω-level cut to a possibility distribution can be written as:

Γ(ω) = {θ ∈ R|π(θ) ≥ ω},∀ω ∈ Ω. (3.43)

The mapping Γ defined in Eq. (3.43) is the random set induced by the possibility
distribution π. Similarly, Fig. 3.3 shows the random set induced by the p-box (F , F ):

Γ(ω) = {θ ∈ R|F (θ) ≥ ω and F (θ) ≤ ω},∀ω ∈ Ω, (3.44)

where Ω = [0, 1].
The theory of belief functions is an extension of probability theory. When all focal

elements are singletons, the indicators Pl and Bel are both probability measures, and
that is Bel = P = Pl.

3.4 Conclusion

In this chapter, probabilistic and non-probabilistic representations have been pre-
sented. Bayesian inference, a probabilistic approach, can identify material parameters
and quantify their uncertainty. However, few studies address material identification
problems based on non-probabilistic approaches. A more general framework should be
proposed to quantify the heterogeneous uncertainties in identification problems. The
theory of belief functions has clear advantages for handling uncertainty quantification.
Firstly, it offers complete tools to encode all kind of available information. On the
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one hand, the theory of belief functions allows us to represent subjective uncertainty
and incomplete information; on the other hand, it can be seen as a generalisation
of probability theory. Therefore, both aleatory and epistemic uncertainty can be
represented in the belief functions framework. Secondly, it includes various information
merging mechanisms which are suitable for practical scenarios. Thirdly, multiple
representations, such as Bel, Pl, and pl can be used to quantify uncertain results.
Therefore, we will apply belief function theory to manage uncertainty in identification
problems in this thesis.



Chapter 4

Mechanical model and Identification
framework

In this thesis, we focus on the identification of complex materials from full-field
displacement measurement taking into account uncertainty. In Chapter 2, we have
introduced several full-field measurement techniques, among which DIC is a widely
used technique due to its relative simplicity and excellent adaptation for analysing
the mechanical properties of complex materials. In this work, the full-field displace-
ment measurement is assumed to be obtained using DIC from CCD camera images.
The parameter identification is based on parametrized mechanical models. Thus,
the mechanical models used in this study will be introduced in this chapter. More-
over, the general framework for the identification of parameters and quantification of
heterogeneous uncertainties will be presented as well.

4.1 Mechanical model

In this section, we first introduce the equations of continuous mechanics that describe
the experiments. Then, the Finite Element Method (FEM) is briefly introduced and
the particular case of multi-scale modelling. The latter will be studied in terms of
identification in Chapter 5.

4.1.1 Continuous equations describing the experiment

Solid mechanics defines the behaviour of solid materials, e.g., motion and deformation
under external or internal loadings. Mechanical models normally contain the quantities
characterizing mechanical systems (e.g., geometry, loadings, mechanical property
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Fig. 4.1 Mechanical model for identification

including elasticity, elastoplasticity, viscoplasticity, damping, etc.) and their relations.
In this thesis, we aim at the identification of elastic material properties. Thus, we only
introduce the elastic mechanical model. Let us consider the solid structure as shown in
Fig. 4.1, which is defined as a 2D domain Ω. The model equations that govern the
behaviour of structures are particularised as follows:

• on Ω:

Equilibrium: divσ = 0, (4.1)

Kinematic compatibility: ε =
1

2
(∇u+∇Tu), (4.2)

Constitutive equation: σ = C(θ)ε, (4.3)

where u is the displacement field, ε is the strain field, σ is the stress field, C(θ)

is the elastic tensor field which can be described thanks to the parameters θ

determining the elastic properties;

• on ∂uΩ: u = ud, where ud is a known Dirichlet boundary condition;

• on ∂fΩ: σ · n = fs, where fs is a known Neumann boundary condition,
and we will assume in the following that ∂uΩ ∪ ∂fΩ = ∂Ω and ∂uΩ ∩ ∂fΩ = ∅;

• on Ωm: u = ũ, where ũ is the displacement related to the DIC measurement on
a sub-domain Ωm ⊂ Ω.

From Eqs. (4.1) to (4.3) and the boundary conditions on ∂uΩ and ∂fΩ, a well-posed
direct problem can be defined. Its solution is denoted:

u = u(θ). (4.4)
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The comparison of u(θ) with ũ on Ωm gives some information on θ and will be used
to perform the identification.

4.1.2 Finite Element Method

The Finite Element Method (FEM) is based on the discretization of Eq. (4.1). The
weak form of Eq. (4.1) can be written as follows:

W∗ =

∫
Ω

u∗ · div(σ)dΩ = 0, ∀u∗ ∈ H1
0 (Ω), (4.5)

where u∗ denotes a virtual displacement field, H1
0 (Ω) is a Hilbert space, σ is the stress

field which can be written in vector form (2D case):

σ = (σ11, σ22, σ12)
T .

The strain field in the 2D case can be written as:

ε = (ε11, ε22, ε12)
T .

Correspondingly, the elastic tensor C(θ) in the 2D case is a 3× 3 matrix. By applying
the partial integral equation, we can transform it into the following form:

W∗ = −
∫
Ω

ε∗ · σdΩ +

∫
∂fΩ

u∗ · σ · ndS = 0, ∀u∗ ∈ H1
0 (Ω), (4.6)

where ε∗ is the virtual strain field associated with the virtual displacement field u∗.
Then Eqs. (4.2) and (4.3) are taken into account to have a weak form in terms of
displacements. Considering u∗ is null on ∂uΩ and considering the Neumann boundary
condition, the boundary terms is written as follows:∫

∂Ω

u∗ · σ · ndS =

∫
∂fΩ

u∗ · fsdS. (4.7)

To discretize Eq. (4.6), the division of the domain (called meshing) into elementary
polyhedrons (called finite elements) should be done firstly. Then the weak form can be
discretized and appears as a sum of elementary terms

W∗ =
nelt∑
e=1

(
W e

Ω −W e
BC

)
= 0, (4.8)
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with
W e

Ω =

∫
Ωe

ε∗ ·C(θ) · εdΩ, (4.9)

W e
BC =

∫
∂Ωe

u∗ · fsdS, (4.10)

where Ω is the integral domain, BC corresponds to the boundary conditions, Ωe is the
domain of finite element (Ωe ⊂ Ω), ∂Ωe is the boundary of Ω, if any, which locates
on the considered finite element. The number nelt is the number of finite elements
making up the mesh. The displacement fields of each element are represented by the
displacements in each node and corresponding approximation:

u(x) =

Nd∑
i=1

Ni(x)ui, (4.11)

where ui is the displacement of the node i, Ni(x) is the shape function corresponding
the node i. The shape functions depend only on the coordinates of the element nodes.
Substituting Eq. (4.11) into Eq. (4.8), we can transform the weak form into the
following discrete matrix form:

W∗ =
nelt

A
e=1

(U e
∗ )

T (KeU e − F e) = 0, ∀U e
∗ , (4.12)

where the symbol A is the operator that assembles the elementary matrices into a
global matrix. The vector U e

∗ collects the nodal components of the virtual displacement,
F e is the nodal force vector. The matrix Ke is the elementary matrix and can be
written as follows (for T3 elements with linear shape functions):

Ke = V eBeTCeBe, (4.13)

where V e is the elementary surface (volume), Be is the gradient matrix only associated
with the nodal coordinates, Ce is the matrix associated the material properties. Because
u∗ is totally independent from actual displacements, we can write Eq. (4.12) as follows:

nelt

A
e=1

(KeU e − F e) = 0. (4.14)
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Assembling the elementary local matrices and vectors, we can obtain a global system
matrix equation:

KU = F , (4.15)

where K is the stiffness matrix with 2n × 2n size, U is the vector of displacement
with size 2n× 1 and F is the vector of outsides force with size 2n× 1. The value n is
the number of nodes. Under the linear assumption, the nodal displacements can be
solved by inverting the system in Eq. (4.15). If the linear assumption is not satisfied,
such as in the elastoplastic or elastoviscoplastic problems, linearisation is necessary to
approximate the responses.

4.1.3 Multi-structural model and homogenization scheme

In Section 4.1.2, we presented the general mechanical model and its numerical imple-
mentation methods. Composite materials, which belong to multi-structure materials
need to be paid special attention because of their special properties. Therefore, multi-
structural models [Ladevèze and Nouy, 2003] [Kanouté et al., 2009] were proposed
to do high quality prediction and identification. For the multi-structural models,
macro-scale constitutive behaviour strongly depends on the topology and properties of
micro-structures. However, the micro-structures are usually geometrically complex and
heterogeneous. Considering the computational effort, analysing large structures on a
micro-structural level is an intractable problem. Therefore, the term Representative
Volume Element (RVE), as shown in Fig. 4.2, was proposed to approximate multi-
structural mechanics [Hill, 1963] [Hashin, 1983]. The micro-structures are normally
heterogeneous, and a local analysis is needed to determine the effective or average
elastic properties of the RVE. Then, the properties of the RVE are replaced by its
effective properties. Considering the RVE’s diversity, an idea for modelling RVE is

Fig. 4.2 Illustration of RVE

to describe the real micro-structures by several statistical factors. The statistical
factors are exacted from experimental observations, such as Electron Back-scatter
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Fig. 4.3 Statistical description of RVE

diffraction, X-ray and neutron diffraction method, and so on. In this thesis, we apply a
synthetic micro-structure generator tool developed in [Tschopp et al., 2008] to generate
synthetic RVEs. The computer-generated 2D dual-phase periodic micro-structure
contains ellipsoidal particles characterised by three factors:

• the area fraction, Af = Vp/V , with Vp the volume occupied by the ellipsoidal
particles and V the total volume of the RVE;

• the aspect ratio, Ar = a/b, with a the semi-major axis and b the semi-minor axis;

• the degree of alignment: axes orientation is random, perfectly aligned, or semi-
aligned, denoting Da as the orientation degree of ellipsoid, random orientation:
Da ∼ U([0◦, 180◦]), perfect aligned orientation: Da = Constant, semi-aligned
orientation: Da ∼ N (µDa, σ

2
Da).

The configurations, as shown in Fig. 4.3, are a set of synthetic RVEs generated under
Af = 45%, Ar = 1.92, and semi-aligned degree characterized by a Gaussian distribution
N (0◦, (10◦)2).

Considering the diversity of micro-structure types, there are many other selections of
statistical characterization factors, such as mean edge length [Kumar and Kurtz, 1995],
k-nearest neighbor distance [Holmes and Adams, 2002] and pore clustering [Bilger
et al., 2005]. Some overviews have been given by [Ohser and Mücklich, 2000] [Fritzen,
2011] [Torquato, 2013] .

An RVE gives a model to describe the micro-structures. Homogenization provides
an approach to approximate the multi-structural constitutive behaviour. In this thesis,
we apply an energy-based homogenization approach, in which the effective elastic
properties should make the strain energy of same size homogeneous material equal to
that of its corresponding RVE. The standard homogenization approach is to analyse
the RVE using either uniform traction or uniform displacement boundary conditions
[Hollister and Kikuchi, 1992]. These boundary conditions are applied to the RVE so as
to produce unit strains or stresses within the RVE as shown in Fig. 4.4. Taking unit
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y
1

y
2

Fig. 4.4 Uniform boundary conditions applied to RVE

strains in the 2D case as an example, the average strains can be chosen as:

ε11 = (1, 0, 0)T , ε22 = (0, 1, 0)T , ε12 = (0, 0, 1)T . (4.16)

The homogenized elastic tensor (determines the effective elastic properties of the RVE)
is given as follows [Sigmund, 1994] [Xia and Breitkopf, 2015]:

hCijkl =
1

V

∫
Ω

Cpqrsε
(ij)
pq ε(kl)rs dΩ, (4.17)

where ε
(ij)
pq (called the superimposed strain field) is the component of the strain tensor

corresponding the test under average strain εij, Ω is the domain of the RVE, V is
the volume of the RVE. Some more details about energy-based homogenization are
introduced in [Hashin, 1983] [Sigmund, 1994] [Xia and Breitkopf, 2015].

Following the asymptotic homogenization, when the aspect ratio between the macro
and micro scales is much smaller than 1, the dependence on local microscopic variables
can be considered periodic for a fixed macroscopic point [Xia and Breitkopf, 2015].
In [Andreassen and Andreasen, 2014], the homogenization method applied periodic
boundary conditions to an RVE when the aspect ratio was much smaller than 1. Under
the assumption of periodicity, the displacement field of the RVE cell subjected to a
given strain ε0ij can be written as the sum of a microscopic displacement field and a
periodic fluctuation field u∗

i [Michel et al., 1999]:

ui = ε0ijyj + u∗
i . (4.18)

Because of the unknown periodic fluctuation term u∗
i , Eq. (4.18) cannot be directly

imposed on boundaries. It needs to be transformed into a certain number of explicit
constraints between the corresponding pairs of nodes on the opposite surfaces of the
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Fig. 4.5 Uniform boundary conditions applied to RVE

RVE [Xia et al., 2003]: {
uk+
i = ε0ijy

k+
j + u∗

i ,

uk−
i = ε0ijy

k−
j + u∗

i .
(4.19)

The periodic u∗
i can be eliminated through the difference between the displacement:

uk+
i − uk−

i = ε0ij(y
k+
j − yk−j ) = wi, (4.20)

where superscripts “k+” and “k−” denote the pair of two opposite parallel boundary
surfaces that are oriented perpendicular to the k-th direction (k = 1, 2 in the 2D
case). Fig. 4.5 shows the 2D RVE case. The values yk+j and yk−j are the microscopic
coordinates of corresponding pairs of nodes. When the RVE is a parallelepiped, the
differences between yk+j and yk−j are constant.

In [Xia and Breitkopf, 2015], the finite element solution under periodic boundary
conditions was presented. The displacement vector U is decomposed into four parts:
U 1 denotes the given displacement; U2 denotes the displacement corresponding to
the interior nodes; U3 and U4 denote the displacement corresponding to the opposite
boundary nodes. They satisfy:

U4 = U3 +W , (4.21)

where W is obtained from Eq. (4.20). The equilibrium equation can be expanded to
K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K244




U1

U2

U3

U4

 =


F1

F2

F3

F4

 , (4.22)
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where F2 = 0, and F3 + F4 = 0 due to periodicity assumption. Then the equation
above reduces to:[

K122 K23 +K24

sym. K33 +K34 +K43 +K44

][
U2

U3

]
= −

[
K21

K31 +K41

]
U1−

[
K24

K34 +K44

]
W .

(4.23)

4.1.4 Multi-level Finite element method

The combination of homogenization and FEM yields the multilevel Finite Element
Method (FE2M) [Feyel and Chaboche, 2000] [Schmidt et al., 2015]. The FE2M model
can be separated into three steps:

1. localisation of RVE macroscopic strain state εM to obtain the microscopic stress
field εm;

2. finite element computation of the RVE under periodic boundary conditions;

3. homogenisation of microscopic stress field σm to obtain RVE macroscopic stress
state σM .

For non-linear models, the Newton-Raphson method can be used to implement the
FE2M scheme. For linear models, the homogenization step can be done firstly to get
the effective elastic tensors at macroscopic nodes.

Both mono-structural and multi-structural model apply mathematical point of view
to explain the real systems. During this process, simplification and approximation
are necessary due to variety and complexity of the real world. For example, the com-
plex micro-structure elastic properties are approximated by the simple homogenised
elastic tensors in the multi-structure model presented above. In addition, with the
development of computer technology, the majority of complex models are solved by
numerical methods (e.g. FEM). Computational implementations inevitably induce
numerical errors. Thus, there is always a discrepancy between predicted values and
real responses. This kind of uncertainty is called model uncertainty. Similar to mea-
surement uncertainty, the model uncertainty should also be considered and quantified
for identification problems. However, model uncertainty mainly arises from incomplete
information about the real world, and it is more epistemic than aleatory. Therefore, we
need to develop specific identification approaches to model uncertainty representation
and propagation.
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4.2 Prior information and inference challenge

It is often beneficial to formulate and exploit available prior information in addition
to experimental and theoretical information. Nevertheless, prior information is also
uncertain. It may come from early experiment results and conclusion, conjecture from
similar systems, or expert opinions. This information is often vague, non-specific and
dissonant. Its uncertainty is complex, various and non-uniform due to its multiple
sources. Similar to model uncertainty, prior information uncertainty is essentially
epistemic. The non-probabilistic approaches introduced in Chapter 3 can be used
to represent prior information uncertainty in different scenarios. Considering prior
information uncertainty and its description methods, it is necessary to develop an inte-
grated strategy to describe all uncertainties and then propagate them within a unified
framework. Meanwhile, the framework should also be compatible with measurement
and model uncertainties. In summary, we face the following four challenges:

• translation of available information (theoretical, experimental, empirical informa-
tion) into a mathematical language;

• aggregation of information from multiple sources into a single framework (infor-
mation merging);

• propagation (efficient enough with acceptable accuracy) of uncertain inputs
through the models to compute the uncertain outputs;

• exploitation and interpretation of uncertain analysis results.

These challenges can be overcome by the introduction of the theory of belief functions,
which constitutes a general framework to represent and quantify the heterogeneous
uncertainties. In the next section, an identification framework using likelihood-based
belief functions will be presented.

4.3 Identification framework using likelihood-based
belief functions

4.3.1 General framework and identification key-points

Consider the solid structure as shown in Fig. 4.1, and its constitutive behaviour
described by Eqs. from (4.1) to (4.3) with boundary conditions. As mentioned in
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Section 4.1.1, a direct problem can be constructed for this set of equations and its
solution is denoted:

u = u(θ). (4.24)

The relation between measured values ũ and predicted values u can be written as
follows:

ũ = u+ emeas + emodel, (4.25)

where emeas denotes the measurement error and emodel denotes the model error. The
Bayesian inference is a reference approach to manage uncertainties, when identifying
θ from Eqs. (4.24) and (4.25). Its main assumption is that emeas and emodel can be
described with probabilities, for example Pe(emeas + emodel), if both errors are dealt
with together. It allows us to define the likelihood function:

L(θ; ũ) = p(ũ|θ) = Pe(ũ− u(θ)), θ ∈ Θ, (4.26)

where Θ is the parameter space. Furthermore, any prior knowledge on θ is described
by a prior probability distribution: p(θ), θ ∈ Θ. Bayes’ theorem is then applied to
derive the posterior distribution of parameters θ to quantify uncertainty and handle
prior information. This posterior distribution is:

p(θ|ũ) = c · p(θ)L(θ; ũ), θ ∈ Θ, (4.27)

where c is a normalizing constant. The posterior distribution is considered as the
solution of the inverse problem and can be studied in terms of maximum a posteriori,
marginal distributions of some parameters, covariance, etc. Yet, the assumption that
all information can be described through probability distributions may be too strong.
The measurement error emeas is objective; it represents the intrinsic variability of
measurement experiments. Hence, it is reasonable to use a probability distribution to
represent emeas. In contrast, it is debatable to make the same assumption for emodel.
Model uncertainty may arise from approximation error, missing parameters or other
situations due to incomplete information. Unfortunately, we often lack information to
represent emodel by a probability distribution. For example, homogenization-induced
model uncertainty is one kind of model uncertainty which cannot always be represented
by probability approaches. We therefore aim at proposing a strategy similar to the
Bayesian inference but in the more general framework of belief functions.
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4.3.2 Likelihood-based belief functions

Firstly, we will focus on the way to build a likelihood function taking into account
both measurement and model errors and their natures. It will be applied directly
in Chapter 5. The likelihood-based belief functions give us a view to handle both
measurement and model uncertainties without assuming the model uncertainty to be
aleatory. It is an evidential likelihood-based approach, which was proposed by [Shafer,
1976] and justified by [Denœux, 2014]. If model uncertainty is neglected, the relation
between displacement measurement ũ and predicted values u(θ) can be written as
follows:

ũ = u(θ) + emeas. (4.28)

Then, the uncertainty about θ given experimental measurement is represented as
follows:

pl(θ; ũ) =
L(θ; ũ)

supθ L(θ; ũ)
, (4.29)

where pl(θ; ũ) is the contour function about θ. The paper [Denœux, 2014] has proved
that Eq. (4.29) can be derived form three basic principles: the likelihood principle,
compatibility with Bayes’ rule when a prior probability distribution is available and the
minimal commitment principle. Furthermore, the random set describing θ is consonant,
hence it is fully described by its contour function.

Model uncertainty normally comes from incomplete information. The interval
approach makes use of the two extreme values to encode uncertainty. It does not make
any assumption about the error distribution between the two extremes. Therefore, it is
suitable to represent the uncertainty due to incomplete information. Model uncertainty
can be written as:

emodel ∈ [emodel] = [emodel, emodel], (4.30)

where emodel and emodel denote, respectively, the lower and upper bounds of the interval.
Then the contour function of material parameters given the measurement ũ can be
written as:

pl(θ; ũ) =
L′(θ; ũ)

supθ L
′(θ; ũ)

, (4.31)

where
L′(θ; ũ) =

∫
[emodel]

L(θ; ũ)demodel. (4.32)
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4.3.3 Inference based on the theory of belief functions

We then have to adapt the Bayesian inference in order to merge prior and experimental
information. The prior information is considered as incomplete information in this work.
The uncertainty of prior information is epistemic; it can be represented by random
sets in the theory of belief functions. Then information merging is a necessary step to
combine all theoretical, experimental, and empirical information for the identification.
There are three information merging methods presented in Section 3.3.7.2. Considering
the purpose of the identification, we choose Dempster’s rule [Shafer, 1976] to combine
the information. Because Dempster’s rule concentrates the information, it is suitable
to let us find the optimum values. Chapter 6 is dedicated to this information merging.

4.4 Conclusion

In this chapter, we introduced background knowledge on material identification
including the mono-structural model, the multi-structural model, and the numerical
implementation methods FEM and FE2M. The different natures of measurement
uncertainty, model uncertainty, and prior information uncertainty have been introduced
to choose the suitable uncertainty representation approaches. A general framework
based on likelihood-based belief functions has been proposed to take prior information
into consideration and quantify all uncertainties.





Chapter 5

Identification with measurement and
model uncertainties

5.1 Background and motivation

In recent years, composite materials, a kind of multi-structure materials, have been
increasingly studied for their excellent performance in strength-to-weight ratio. To
provide accurate and predictive simulations of composite material behaviour, many
powerful tools have been proposed such as multi-structure model, homogenization
model, and FE2M as discussed in section 4.1. One prerequisite for applying these tools
is to offer effective and accurate characterizations of material properties. However,
unavoidable uncertainty is always an obstacle for identifying composite material prop-
erties. Besides measurement uncertainty, model uncertainty arising from simplification
and approximation of real composite materials brings in some discrepancy between
predicted values and actual responses in most situations as well. Considering the
complexity of the composite materials, dedicated identification methods are required
to quantify the unavoidable uncertainty.

In industrial practice, engineers often face two identification cases. In the first case,
composite materials are tested at the micro-scale (RVE scale). A specimen is then
only a sub-part of the composite material and cannot describe properly its variability
between RVEs. However, the homogeneous parameters of the whole material are the
targets of interest to be identified. The discrepancy between heterogeneous micro-scale
(sub-part) properties and homogeneous macro-scale (whole material) properties induce
model uncertainty to this identification problem. Partially unknown micro-structures
increase the model uncertainty. This case can be summarised into the case in which
tests and measurements are at micro-scale and property identifications are at macro-
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scale. In the second case, composite materials are suitable for an experimental test,
and only macro-structure displacement fields can be measured due to limitations of
measurement devices. However, heterogeneous parameters of the micro-structures
are the targets of interest to be identified. Similar to the first case, micro-structures
are often partially unknown as well. This case can be summarised into the case in
which tests and measurements are at macro-scale and property identifications are at
micro-scale. Both cases suffer from measurement and model uncertainties. In this
chapter, we will discuss how to handle these uncertainties in the identification problem.
The method presented is applied to the identification of composite material properties
accounting for measurement and model uncertainties. And, it has a potential to be
extended and applied to other identification cases suffering from uncertainty.

5.2 Identification strategy

As discussed in Section 4.3.2, measurement uncertainty is aleatory and typically
represented by probabilistic approaches, while the model uncertainty is epistemic and
represented by interval approaches. Likelihood-based belief function is applied to
handle both uncertainties. In order to numerically implement the identification scheme,
the FEM is needed to discretize the continuous mechanical model. Eq. (4.31) can be
rewritten as follows:

pl(θ; Ũ) =
L′(θ; Ũ)

supθ L
′(θ; Ũ )

, (5.1)

where Ũ is the vector of discrete measurement field data. The integrated likelihood
function in Eq. (4.32) can be rewritten as:

L′(θ; Ũ) =

∫
[Emodel]

L(θ; Ũ)dEmodel, (5.2)

where
Ũ = U (θ) +Emeas +Emodel.

The displacement field u is replaced by the corresponding vector U whose components
are the FEM predicted values projected from the FE mesh to the measurement grid.
Besides U , the random field emeas is replaced by the random vector Emeas; the interval
[emodel] is replaced by the interval vector [Emodel]. Considering that the measurement



5.2 Identification strategy 49

error Emeas follows a probability distribution fe, Eq. (5.2) can be written as follows:

L′(θ; Ũ) =

∫
[Emodel]

fe(Ũ −U(θ)−Emodel)dEmodel. (5.3)

5.2.1 Interval fields

A conservative problem arises from the independence of vector components when
interval vectors are used to represented model uncertainty. In order to clearly illustrate
this problem, let us consider a beam under loading as shown in Fig. 5.1. The properties
of the beam are deterministic, while the uncertain load f is represented by an interval
[f, f ]. The shaded area corresponds to the displacement vectors between the superior

f

Fig. 5.1 Conservatism arising from independent components

and inferior boundaries of the beam deformation which can be described by an interval
vector. The dashed line corresponds to a curve located inside the interval vector,
however, it is not a possible response. Therefore, the interval vector contains some
impossible solutions.

5.2.1.1 Definition of interval field

In order to solve the problem presented above, we introduce a concept named interval
field, proposed by [Moens et al., 2011] and [Verhaeghe et al., 2013], to represent the
model uncertainty. An interval field is denoted as:

[U ] = Φ[η], (5.4)

where [U ] is an interval vector including n components, Φ is a matrix including nb

basis vectors:
Φ = (ϕ1, · · · ,ϕnb

).
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The interval vector [η] contains nb independent interval components:

[η] = ([η
1
, η1], · · · , [ηnb

, ηnb
])T .

When the components of [U ] are dependent, the number nb can be reduced to much
smaller value than n without missing information. The dependence among the com-
ponents of [U ] is expressed by matrix Φ. Since the model uncertainty comes from
incomplete information, the subjective knowledge may dominate representation of
model uncertainty. The freedom in choosing the basis vectors is ideal to reflect this
subjective knowledge. By introducing the interval field to express the model uncertainty,
Eq. (5.3) can be rewritten as follows:

L′(θ; Ũ) =

∫
[η]

fe(Ũ −U(θ)−Φη)dη, (5.5)

where fe is the probability distribution representing the measurement errors.

5.2.1.2 Likelihood for Gaussian distributions

Gaussian distributions are very common continuous probability distributions to
represented measurement error. When the measurement error follows a Gaussian
distribution Emeas ∼ N (0,D), the likelihood can be written as:

L′(θ) = A0

∫
[η]

exp
(
− 1

2

(
Ũ −U(θ)−Φη

)T
D−1

(
Ũ −U(θ)−Φη

))
dη. (5.6)

where D is the covariance matrix, A0 is a value only depending on D. After some
simple algebraic operations, we have:

L′(θ) = A0

∫
[η]

exp
(
− 1

2

(
Ũ −U(θ)

)T
D−1

(
Ũ −U(θ)

)
+

(
Ũ −U(θ)

)T
D−1Φη − 1

2
ηTΦTD−1Φη

)
dη. (5.7)

Let us note S such that:
S = ΦTD−1Φ. (5.8)

The eigenvalue decomposition of S can be written as follows:

ΨTSΨ = Υ, (5.9)
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where Ψ is an orthogonal matrix and Υ is a diagonal matrix with γi the i-th diagonal
term. Let us construct the vector x such that:

x = Ψ−1η = ΨTη. (5.10)

Then the likelihood can be written as:

L′(θ) = A0

∫
[x]

exp
(
− 1

2

(
Ũ −U(θ)

)T
D−1

(
Ũ −U (θ)

)
+

(
Ũ −U(θ)

)T
D−1ΦΨx− 1

2
xTΥx

)
|Ψ|dx. (5.11)

Let us denote:
ai =

√
γi,

(b1, · · · , bnb
) =

(
Ũ −U(θ)

)T
D−1ΦΨ,

δu2 =
(
Ũ −U(θ)

)T
D−1

(
Ũ −U(θ)

)
.

Finally the likelihood can be written as follows:

L′(θ) = A0 exp(−
δu2

2
)
( nb∏

i

exp(
b2i
2a2i

)
)( nb∏

i

∫
[xi]

exp(−1

2
(aixi −

bi
ai
)2)dxi

)
. (5.12)

The third term in the right hand term of Eq. (5.12) can be obtained using error
function [Andrews, 1997]:

erf(x) =
2√
π

∫ x

0

e−t2dt. (5.13)

In the case of Gaussian noise, the calculation of integration of likelihood can be
significantly reduced with the help of interval fields and the error function.

5.2.2 Identification of multi-structure materials

As presented in Section 5.1, we engage in two identification cases of multi-structure
materials: (1) test and measure at micro-scale and identify macro-scale properties (2)
test and measure at macro-scale and identify micro-scale properties. In this section,
we will present the identification processes in detail for the two cases.

5.2.2.1 Identifying macro-scale properties by micro-scale tests

In the first case, we assume that we can only do a tensile test to a material at
micro-scale, while its macro-scale properties need to be identified. The materials at
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the micro-scale are heterogeneous, but, their macro-scale properties can be considered
as homogeneous. The discrepancy between micro and macro scale induces model
uncertainty, which is represented by interval fields. Moreover, their micro-structures
are partially unknown. That means we only know the three statistical factors (Af ,
Ar, and Da introduced in Section 4.1.3), and their exact material distributions are
unknown. Besides model uncertainty, measurement uncertainty should be accounted
for as well. In this thesis, we assume that the measurement uncertainty follows a
Gaussian distribution.

Construction of the basis vectors used to define the interval field (Eq. (5.4)) plays an
important role in model uncertainty representation using interval fields. As mentioned
above, the choice of the basis vectors Φ reflect subjective opinions about the model
uncertainty. Furthermore, the choice of Φ should depend on practical situations. In
this chapter, model uncertainty is mainly induced by homogenising and partially
unknown micro-structures. Therefore, the basic vectors are chosen considering the
homogenization process and statistical descriptions of micro-structures. With the
statistical factors, it is possible to sample a group of micro-structures and extract the
basis vectors Φ by Proper Orthogonal Decomposition (POD). POD, also known as
Karhunen-Loève decomposition (KLD) or Principle component analysis (PCA) [Jolliffe,
2002], is capable of reducing a large number of interdependent variables to a much
smaller number of uncorrelated variables. Some introductions about POD are presented
in [Berkooz et al., 1993] [Newman, 1996] and [Liang et al., 2002]. We make use of its
variable reduction ability to extract the basis vectors of interval fields.

Assuming a set of statistical factors (Af , Ar, Da), a group of dual-phase materials
can be generated using the computational algorithms proposed in [Tschopp et al.,
2008]. We assume that the component material properties of the dual-phase materials
are known. For every micro-structure, the actual displacement denoted as an m× 1

vector U j under the given boundary conditions corresponding to the experiment can
be calculated using the FEM. The effective elastic parameters hθj can be obtained by
the homogenization scheme presented in Section 4.1.3, where j = 1, · · · , n corresponds
to the j-th micro-structure and superscript h means homogenised values. Then the
discrepancy between the displacements from heterogeneous materials U j and those
from homogenised materials U(hθj) with the same loading can be written as follows:

dU j = U j −U (hθj). (5.14)
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In [Kerschen et al., 2005], several means of computing the POD were presented. Here
we carry it out using singularvalue decomposition (SVD). Noting an m× n matrix:

dUdev = (dU1 − dU , dU2 − dU , · · · , dUn − dU), (5.15)

where

dU =
1

n

n∑
j=1

dU j (5.16)

is the average of dU j, j = 1, · · · , n. The SVD of dUdev can be written as follows:

dUdev = WSV T , (5.17)

where W is an m×m orthogonal matrix containing left singular vectors, S is an m×n

pseudo-diagonal matrix with diagonal entries containing singular values ϱi, i = 1, · · · , n,
and V is an n×n orthogonal matrix containing right singular vectors. A given number
of columns of matrix W can be used as basis vectors in Φ = (ϕ1, · · · ,ϕnb

). The choice
of the truncation number nb depends on the relative magnitudes of the singular values
ϱi, i = 1, · · · , n, and usually nb ≪ n. If dU j, j = 1, · · · , n, are correlated, the first
several singular values are much bigger than the others. In this case, we can say that
the first several basis vectors correspond to the majority of the energy. With the help
of the basis vectors, approximation of the discrepancy dU j can be obtained as follows:

dU j ≈ dU +

nb∑
i=1

ϕiηij, (5.18)

where
ηij = (dUj − dU)Tϕi. (5.19)

The values ηij can be used to estimate the interval vectors [η]:

[η
i
, ηi] = [min

j
(ηij),max

j
(ηij)], (5.20)

where i = 1, · · · , nb and j = 1, · · · , n. The interval field describing the model uncer-
tainty can be written as follows:

[dU ] = dU +Φ[η], (5.21)
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Fig. 5.2 FE2M scheme

where [η] = ([η
1
, η1], · · · , [ηnb

, ηnb
])T . Finally, the integrated likelihood function in Eq.

(5.5) can be written as follows:

L′(θ; Ũ) =

∫
[η]

fe(Ũ −U (θ)− dU −Φη)dη, (5.22)

where fe is the probability distribution representing the measurement errors. Finally,
we can substitute Eq. (5.22) into Eq. (5.1) to construct the contour function.

The discussion above presents how to choose the basis vectors Φ and the interval
vectors [η] based on the statistical factors and the homogenization method. When there
is not enough experimental data to estimate these factors, subjective prior opinions
can be used to directly choose the basis vectors.

5.2.2.2 Identifying micro-scale properties by macro-scale tests

In the second case, we assume that we can perform tensile tests to multi-structural
materials at their macro-scale, while the micro-scale properties are needed to be
identified. In this case, multi-structure mechanical simulations are implemented using
FE2M, whose implementation scheme is shown in Fig. 5.2. We can see that the
properties of macro-structures are obtained from homogenization of micro-structures.
The partial unknown micro-structures will induce model uncertainty.

Similar to the first case, model uncertainty is also represented by interval fields.
Considering the model uncertainty arising from partial unknown micro-structures, we
propose a process based on a POD on the elastic tensor and perturbation method to
construct interval fields. With a set of statistical factors (Af , Ar, Da), a group of micro-
structures can be drawn using the computational algorithms proposed in [Tschopp
et al., 2008]. For each micro-structure, the effective elastic tensors, denoted as hCj,
can be calculated with preliminary micro-scale θ0 using the homogenization method
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introduced in Section 4.1.3, where j = 1, · · · , n, corresponding the j-th micro-structure
and superscript h denotes that the values are obtained using the homogenization
method. In order to perform POD, each hCj is restored in a vector hcj of length 6.
Noting Cdev = (hc1 −h c,h c2 −h c, · · · ,h cn −h c), its SVD can be written as follows:

Cdev = WSV T , (5.23)

where hc =
1

n
(
∑n

j=1
hcj) is the average of hcj, j = 1, · · · , n. The basis vectors

χ = (χ1, · · · , χnb
) are chosen from the columns of the vector W . Similar to the first

case, the choice of truncation number nb depends on the relative magnitudes of the
singular values ϱi, i = 1, · · · , n. With the help of the basis vectors, approximation of
hcj is obtained as follows:

hcj ≈h c+

nb∑
i=1

χiαij, (5.24)

where
αij = (hcj −h c)Tχi. (5.25)

The values αij can be used to estimate the interval vector [αi]:

[αi, αi] = [min
j
(αij),max

j
(αij)], (5.26)

where i = 1, · · · , nb and j = 1, · · · , n. The effective elastic tensor interval can be
written as follows:

[c] =h c+ [∆c] =h c+ χ[α], (5.27)

where χ = (χ1, · · · ,χnb
) and [α] = ([α1, α1], · · · , [αnb

, αnb
])T .

The perturbation method proposed in [McWilliam, 2001] is employed to propagate
interval elastic tensors to interval displacement fields. Let us consider a matrix equation
that arises in static finite element analysis:

K0U0 = F0, (5.28)

where K0, U0 and F0 are the nominal matrix and vectors associated with the nominal
values (middle value) c0 of interval [c]:

c0 =
h c+

nb∑
i=1

χiα0i. (5.29)
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The scalar value α0i is the nominal value of interval [αi, αi]:

α0i =
αi − αi

2
, i = 1, · · · , nb. (5.30)

Under the assumption of small perturbation, the displacement of a perturbed system
can be approximated by [Chen et al., 2002]:

U = U0 +∆U ≈ U0 +K−1
0 (∆F −∆KU0), (5.31)

where ∆K and ∆F are respectively the small perturbations of the stiffness matrix K

and the load vector F . In this work, there is no perturbation in F and then ∆K is
expressed as follows:

∆K =

nb∑
i=1

(αi − α0i)
∂K

∂αi

|αi=α0i
, (5.32)

where αi is one of the uncertain variables, i = 1, · · · , nb. Considering the linear
assembling relationship between K and hc:

K(hc) = K(hc) +

nb∑
i=1

αiK(χi), (5.33)

it is easy to obtain:

∆K =

nb∑
i=1

(αi − α0i)K(χi). (5.34)

Substituting Eq. (5.34) into (5.31), the perturbation of displacement can be written
as follows:

∆U = −
nb∑
i=1

(αi − α0i)K
−1
0 K(χi)U0. (5.35)

Let us denote
Φ = (K−1

0 K(χ1)U0, · · · ,K−1
0 K(χnb

)U0),

[η] = α0 − [α],

where α0 = (α01, · · · , α0nb
)T . It should be noticed that the [α] are constructed based

on the centralized matrix Cdev. Hence, the nominal vector α0 is often very close to
zero, which allows us to perturb the system at original points. In this case, we have
c0 =

h c and [η] = −[α].
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The interval vector of displacement can be written as follows:

[U ] = U0 + [∆U ] = U0 +Φ[η]. (5.36)

Then the integrated likelihood function in Eq. (5.5) is:

L′(θ; Ũ) =

∫
[η]

fe(Ũ −U0(θ)−Φη)dη, (5.37)

where fe is the probability distribution representing the measurement errors. Finally,
we can substitute Eq. (5.37) into Eq. (5.1) to construct the contour function. The
scheme to calculate the contour function based on an integrated likelihood is shown in
Fig. 5.3.

Fig. 5.3 Algorithm for constructing contour functions

5.2.3 Exploitation of the contour function

We can calculate contour functions based on integrated likelihood functions. The
contour functions are capable of quantifying the uncertainty of parameters to be
identified. Four methods to exploit the contour functions are considered:

• Maximisation of the contour functions. We can search the arguments at which
the contour functions values are maximum. The maximisation of the contour
functions can serve for deterministic identification.
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• Cut of the contour functions at ω-level. This exploitation can provide set-valued
results, which can serve for non-deterministic identification.

• Marginalization of the contour functions. It is a good tool to visualise the
uncertainty when the number of parameters is larger than 2.

• Combination with other sources of information. The contours functions can be
combined with prior information to improve its precision as proposed in Chapter
6.

5.3 Numerical Application

In this section, we present two numerical applications to study the effectiveness and
efficiency of our method. The applications are limited to the 2D plate model and the
displacement measurement fields are simulated by the FEM or FE2M. Gaussian white
noise is added to the displacement fields to synthesise measurement noise.

5.3.1 Identifying macro-scale properties from micro-scale tests

5.3.1.1 Measurement and basis vectors

In this section, we choose a case of identifying the macro elastic properties of a
dual-phase 2D plate as shown in Fig. 5.4. The plate is loaded on the right by a force

1

1

y

x

f

Fig. 5.4 Physical model of tests at micro-scale

f whose horizontal projection is fx = f0y(1− y) and vertical projection is null. The
matrix phase (grey region) is denoted as material 1 and the reinforce phase (black
region) is denoted as material 2. We assume its statistical factors are known: Af = 45%,



5.3 Numerical Application 59

Ar = 1.92, and orientation degree Da follows N (0◦, (10◦)2). The elastic tensor in the
2D isotropic case can be written as:

C =

 C11 C12 0

C12 C22 0

0 0 C33

 =

 λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ

 . (5.38)

The parameters θ = {λ, µ} are the two Lamé parameters determining the elastic prop-
erties. Considering the plate as a dual-phase material, the heterogeneous parameters
are denoted by θ = {λ1, µ1, λ2, µ2}. The measurement is the displacement field on the
whole plate. It is created based on a reference finite element calculation with reference
values θ0 = {1, 1, 2, 2}. The displacement field is measured on the heterogeneous plate,
meanwhile the material model used for the identification is based on a homogeneous
isotropic plate in order to find the macro parameters. Therefore, model uncertainty is
mainly caused by simplification from a heterogeneous model to a homogeneous one.
We choose the effective elastic parameters based on the numerical homogenization
algorithm presented in Section 4.1.3 as the reference values. After homogenization,
the constitutive behaviour may no longer be isotropic. That means Eq. (5.38) is not
established. The identification frame still approximate the homogenised material to
be isotropic. Therefore, we calculate hθ = {hλ,h µ} via minimising a Frobenius norm
||hC −C(λ, µ)||F as follows:

hθ = argmin
λ,µ

∑
p

∑
q

(h
Cpq − Cpq(λ, µ)

)2
, (5.39)

where p and q are subscripts of components in a matrix, and Cpq(λ, µ) is defined in Eq.
(5.38).

As mentioned in Section 5.2.2.1, POD is applied to construct basis vectors Φ and
interval vectors [η]. In this example, N = 50 micro-structures are generated priorly.
Then the corresponding homogenised values {hλj,h µj} and actual displacement vectors
U j , j = 1, · · · , N , are calculated based on homogenization scheme and the FEM. After
performing a POD to dU j, we can obtain the basis vectors Φ and their corresponding
eigenvalues ϱ = {ϱ1, · · · , ϱN}. In order to determine the truncation number nb, the
energy proportion of a basis vector ϕi is defined as follows:

Epi = ϱi/

N∑
i=1

ϱi. (5.40)
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The first six Ep values are shown in Fig. 5.5. We can see that the first three singular
values correspond to the majority of the energy (75.75%). Therefore, it seems reasonable
to use the first three basis vectors to represent the interval fields, because the original
vectors are strongly correlated.
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Fig. 5.5 Energy proportion Ep

5.3.1.2 Identification results

A heterogeneous plate with the same statistical factors as those used to construct
the basis vectors is generated, as shown in Fig. 5.6(a), to represent a specimen at
micro-scale. The homogeneous macro elastics parameters are to be identified. The
measurement field Ũ is synthetic data created by the FEM. The FE mesh of the
heterogeneous plate is shown in Fig. 5.6(b). The measurement grids are 50 × 50

covering the whole plate, and a Gaussian white noise is added to simulate measurement
uncertainty. The standard deviation of the noise is 15% with respect to the average
displacement value. The reference values, homogeneous effective parameters, are
obtained by applying homogenization scheme to the FE mesh in Fig. 5.6(b). During
the identification process, the heterogeneous properties are not taken into account
which induces model uncertainty. In other words, the homogeneous FE mesh in Fig.
5.6(c) is used to establish prediction model U(θ).

We have illustrated two methods to establish contour functions. The one we proposed
is based on Eq. (4.31), where an integrated likelihood function is applied, and we note
it as the contour function plA. The other one serves as a comparison; it is based on
Eq. (4.29), where a standard likelihood function is used not taking into account the
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Fig. 5.6 Specimen to be tested and identified
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Fig. 5.7 Contour functions plA and plB

model error. We note it as the contour function plB. Both of them are calculated
based on one measurement and plotted in Fig. 5.7. Then we estimate the parameters
via maximising the contour functions plA and plB:

θ̂A = argmax
θ

plA, (5.41)

θ̂B = argmax
θ

plB. (5.42)

The estimators are also shown in Fig. 5.7. We can see that the estimators θ̂A (red
square) are closer to the reference values (black star) than θ̂B (blue triangle). It should
also be noticed that the contour function plA is a bit less convergent than the contour
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function plB, because the plA takes more uncertainty (model uncertainty) into account
than does the plB. A less convergent distribution is more likely to cover the reference
values.

In the belief functions framework, the ω-level cut defined in Eq. (5.43) is a tool to
discretize contour functions:

Γ(ω) = {θ ∈ Θ|pl(θ) ≤ ω}, 0 ≤ ω ≤ 1. (5.43)

It can provide set-valued results for identification problems given ω (0 ≤ ω ≤ 1). The
ω can explained as the degree of concentration of the set-valued results. It is clear that
with ω increasing, the size of obtained subset decreases. When ω = 1, the subset is
concentrated to a single value (peak point). The contour lines in Fig. 5.7 can be seen
as the cuts to the plA or the plB corresponding to various ω-levels. The scale on the
left of the figure shows the ω values.

When we apply Eq. (5.22) to calculate integrated likelihood functions, there are two
parts in this formulation that modify the results corresponding to plB: the dU and
the integration. In order to illustrate the effects of the two parts, we construct two
contour functions as follows:

pldU (θ; Ũ) =
L′

dU (θ; Ũ)

supθ L
′
dU

(θ; Ũ)
, (5.44)

and

plint(θ; Ũ) =
L′
int(θ; Ũ)

supθ L
′
int(θ; Ũ)

, (5.45)

where
L′

dU (θ; Ũ) = fe(Ũ −U(θ)− dU), (5.46)

and
L′
int(θ; Ũ) =

∫
[η]

fe(Ũ −U(θ)−Φη)dη. (5.47)

Eq. (5.44) isolates the effect of dU , and Eq. (5.45) isolates the effect of integration.
Then we calculate and plot the contour function pldU in Fig. 5.8(a) and plint in Fig.
5.8(b). The estimators θ̂dU and θ̂int via maximising pldU and plint are respectively
defined as follows:

θ̂dU = argmax
θ

pldU , (5.48)
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Fig. 5.8 Contour functions pldU , plint and plB

and
θ̂int = argmax

θ
plint. (5.49)

The contour function pldU moves a bit toward the reference values compared to the
plB, and the shape of pldU is similar to that of plB. The contour function plint moves
toward the reference values, meanwhile it is fatter than the plB. We can say that the
part dU only influences positions of contour functions, and the integration influences
both position and shape.

We sum up the results via maximising the contour functions plA, pldU , plint, and plB

in Table 5.1. The ratio rHes in Table 5.1 is the ratio between two eigenvalues of the

Table 5.1 Results via maximising contour functions

θref plA pldU plint plB
λ̂ 1.3512 1.3428 1.4118 1.3651 1.4136
µ̂ 1.3709 1.3714 1.3684 1.3605 1.3679

rHes ∅ 27.88 48.39 28.84 49.94
dθ ∅ 0.0084 0.0393 0.0164 0.0624

Hessian matrix at maximum points defined as follows:

rHes =
γ1
γ2

, (5.50)

where γ1 the eigenvalue with maximum magnitude, and γ1 the eigenvalue with minimum
magnitude of the Hessian matrix at maximum points. The value dθ is the distance



64 Identification with measurement and model uncertainties

between estimators and the reference values, defined as follows:

dθ =

√
(λ̂− λref)2 + (µ̂− µref)2. (5.51)

The values in Table 5.1 are compatible with Figs 5.7 and 5.8. The ratios rHes reflect
the shapes of the contour functions at maximum points. The ratios rHes of plB and
pldU are similar, and the ratios of plA and plint are similar. This finding implies that
the integration influences the shapes of the contour functions. The maximum points of
plA, pldU , plint are closer to the reference values than that of plB, and the maximum
points of plA are the closest to the reference values. This can be explained by the fact
that both dU and integration make plA move to reference values.

5.3.1.3 Robustness with respect to measurement uncertainty
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Fig. 5.9 Estimators from different experimental measurements to one specimen

The discussion above only illustrates one realisation of measurement. In order to
show the robustness with respect to measurement uncertainty, 150 realisations of
Gaussian noise with same standard deviation as that in Section 5.3.1.2 are generated
and we add them to the displacement field to synthesise 150 measurements. This set-up
simulates the situations of 150 experiments for one specimen. Then we respectively
estimate the parameters, θ̂A and θ̂B via maximizing the contour functions plA and plB.
The estimators are shown in Fig. 5.9. We can see that the θ̂A (red squares) are closer
to the reference values located at the cross of the two dashed lines.
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In order to clearly show the distance between estimators and the reference values, we
calculate the distance dθ defined in Eq. (5.51) and plot their histograms in Fig. 5.10.
Let us note that dθA is associated with the contour functions plA, and dθB is associated
with plB. It is clear that the dθA are smaller than the dθB. This corresponds to the
fact that the θ̂A are closer to the reference values.
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Fig. 5.11 Probability of covering reference values at different ω-level cuts

We note that ΓA(ω) and ΓB(ω) are cuts of, respectively, the contour functions plA

and plB at ω-levels. For a group of measurement realisations, the probability of Γ(ω)
covering the reference values is

P (ω) = P (θref ∈ Γ(ω)). (5.52)
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Fig. 5.11 shows the covering probability PA(ω) and PB(ω) of the cuts respectively
to the plA and the plB at different ω levels. We can see that with ω decreasing, the
PA(ω) increases quickly. When ω is close to 0, it is almost certain that the ΓA(ω) will
cover the reference values. On contrast, the PB(ω) is almost stable to 0, which can be
explained by the fact that the ΓB(ω) do not cover the reference values. There are two
reasons of the different performances between the two methods. Firstly the positions
of the subsets from the contour functions plA are closer to the reference values, and
secondly, the subsets are larger.

5.3.1.4 Robustness with respect to material variability with reliable sta-
tistical factors

The discussion above concerns the scenario corresponding to multiple measurements
to one specimen. Here, we verify the robustness with respect to material variability
with the same statistical factors. 150 specimens are generated under the same statistical
parameters as the one used to construct the basis vectors, and their displacement fields
are measured. This simulation is extracted from a case where the material statistical
factors are known and reliable, and the macro elastic properties are to be identified.

In order to isolate the effect of material variability, measurement noise is not added
to measurement fields. The estimators θ̂A and θ̂B via maximising the contour functions
plA and plB are shown in Fig. 5.12. The black stars are reference values corresponding to
different specimens. It is clear that both the red squares and blue triangles distribution
are larger than those in Fig. 5.9. The estimators θ̂A (red squares) are closer to the
reference values (black stars) than the θ̂B (blue triangles).

Then, we calculate the distance dθ, between the estimators and their corresponding
reference values. The histograms of the dθ are shown in Fig. 5.13, which clearly shows
that the θ̂A are closer to θref than θ̂B. This means that the point estimators computed
by maximising the contour functions plA are better than those obtained from plB.

We still plot the covering probability PA(ω) and PB(ω) of the cuts respectively to
plA and plB at different ω-levels, as shown in Fig. 5.14. It is clear that the cuts from
the contour functions plA are more likely to cover the reference values for any cutting
levels. The reason is that contour functions plA are closer to reference values and the
cuts of the contour functions plA are larger.
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Fig. 5.12 Estimators from experimental measurements to different specimens

5.3.1.5 Robustness with respect to material variability with unreliable
statistical factors

As the statistical factors come from experimental observations or prior information,
they are uncertain. Especially for some new materials, their statistical factors come from
empirical knowledge. Therefore, the robustness with respect to unreliable statistical
factors should be studied. Considering a group of materials, we only have some
unreliable knowledge about their statistical factors. Then, we can make use of the
unreliable statistical factors to construct basis vectors and intervals to represent model
uncertainty and to perform identification from measurement.

Table 5.2 Specimens with unreliable statistical factors

Ar = 2.1, Da ∼ N (0◦, (10◦)2) Af = 0.45, Da ∼ N (0◦, (10◦)2) Af = 0.45, Ar = 2.1
Af = 0.40 Af = 0.50 Ar = 1.5 Ar = 2.5 Da ∼ N (0◦, (20◦)2)

As introduced in Section 4.1.3, three statistical factors are used to generate the
heterogeneous materials: area fraction Af , axis ratio Ar and degree of axis orientation
Da. The values Af = 0.45, Ar = 2.1 and Da ∼ N (0◦, (10◦)2) are used to construct basis
vectors. Thus, we consider three scenarios in which the three factors are unreliable:
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Fig. 5.14 Probability of covering the reference values at different ω-level cuts

• the area fraction Af = 0.45 is unreliable; it is uniformly sampled from the interval
[0.40, 0.50];

• the particle axis ratio Ar = 2.1 is unreliable; it is uniformly sampled from the
interval [1.5, 2.5];

• the particle axis orientation degree Da ∼ N (0◦, (10◦)2) is unreliable; it actually
follows a Gaussian distribution with more randomness N (0◦, (20◦)2);

Hence, perturbation between statistical factors constructing basis vectors and those
generating measured specimens are induced. In Table 5.2, the first and second column
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are specimens with perturbed Af ; the third and fourth column are specimens with
perturbed Ar; the fifth and sixth column are specimens with more random Da.

For each scenario, we generate 150 specimens and create the displacement mea-
surements from reference the FEM calculations. Measurement noise is not added
to the measurement fields to isolate the effect of unreliable statistical factors. The
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Fig. 5.15 Estimators under unreliable statistical factors

estimators via maximising the contour functions plA and plB are shown in Fig. 5.15.
The black stars correspond to the reference values; the red squares are the estimators
via maximizing the contour functions plA; the blue triangles are the estimators via
maximizing the contour functions plB. Compared with the other two statistical factors,
the unreliable Af makes the reference values more scattered. In other words, the
effective elastic properties are more sensitive to Af . In all the three scenarios, the red
squares are closer to the reference values than the blue triangles.

Then, we calculate the dθ for each specimen; the histograms of dθ are shown in Fig.
5.16. It clearly shows that the distances from the contour functions plA are smaller
than those from the contour functions plB in all three scenarios.

Next, we plot the covering probability PA(ω) and PB(ω) of the cuts to the contour
functions plA and plB at different ω-levels, as shown in Fig. 5.17. It is clear that, for
all three scenarios, the cuts to the plA are more likely to cover the reference values at
any ω-levels.

Based on the discussion above, we can conclude that with unreliable statistical
factors, the estimators via maximising the contour functions plA are closer to the
reference values than those obtained from the contour functions plB. The subsets
from cutting the plA have higher probability of covering the reference values, because
the subsets from cutting the plA are mostly larger than those obtained from the plB.
Moreover, the robustness on unreliable statistical is very important for effective elastic
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Fig. 5.16 Distance between estimators and reference values
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Fig. 5.17 Probability of covering the reference values at different ω-level cuts

parameter identification. When some statistical factors are missing, this advantage
allows us to assume some factors to construct the basis vectors and intervals and then
establish the contour functions.

5.3.2 Identifying micro-scale properties by macro-scale tests

5.3.2.1 Measurement and basis vectors

1

1

y

x

f

Fig. 5.18 Physical model of tests at macro-scale

In this section, we focus on the identification of the micro elastic properties from
macro displacement measurement fields. Considering a 2D multi-structural plate as
shown in Fig. 5.18. The left part of this figure is the macro-structure; it is considered
as an homogeneous plate. Its elastic properties are obtained from the homogenization
of the micro RVE structures (the right part of this figure) presented in Section 4.1.3.
In this example, the RVEs are dual phase: the matrix phase (grey region) is denoted as
material 1 and the reinforce phase (black region) is denoted as material 2. The RVEs are
described by known statistical factors: Af = 45%; Ar = 1.92, and orientation degree Da

following N (0◦, (10◦)2). We assume both material 1 and 2 are isotropic, linear elastic,
undergoing small deformation. The relative reference values of elastic parameters are
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the two Young modules θref = {Eref
1 , Eref

2 } = {1, 2}, and the Poisson’s ratio ν = 0.3

is known. The plate is loaded on the right by a traction f whose horizontal projection
is fx = f0y(1− y) and vertical projection is null. The displacement measurement fields
are created by FE2M calculations as shown in Fig. 5.2.

In order to construct basis vectors Φ and interval vectors [η] for interval displacement
fields, N = 50 micro-structures are generated. Then effective elastic tensors hCj,
j = 1, · · · , N , are calculated using the homogenization method. After performing a
POD to hCj , we can obtain the basis vectors χ and their corresponding singular values
V = {ϱ1, · · · , ϱN}. To determine the number of basis vectors nb, we still make use of
the quantity Epi = ϱi/

∑
ϱi. The quantities Ep of the first six basis vectors are shown

in Fig. 5.19. We can see that the first three singular values correspond to the majority
of the energy (89.84%). Fig. 5.19 implies that nb = 3 is enough to reconstruct the
interval fields.
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Fig. 5.19 Energy proportion Ep

Then, we plot the component distributions of both original and reconstructed elastic
tensors as shown in Fig. 5.20 for the 50 initial micro-structures. In this figure, only
the most important components C11 Vs C12, C11 Vs C22 and C11 Vs C33 are illustrated.
The other components are close to zero. We set the truncation number nb = 3 to
reconstruct the elastic tensors. We can see that the shapes of point distributions of the
reconstructed tensors are similar to those of the corresponding original elastic tensors.
This means that the dependence among the tensor components can be represented
by the first three POD modes. Therefore, nb = 3 is suitable to describe the interval
elastics tensors.
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5.3.2.2 Identification results

An RVE with same statistical factors as those to construct the basis vectors is
generated, as shown in Fig. 5.21, to be used as a reference micro-structure to create
measurement fields. The measurement grids are 50 × 50 covering the whole plate,
and a Gaussian white noise, whose standard deviation is 10% with respect to the
average displacement value, is added to displacement fields to simulate measurement
uncertainty. In order to simulate the extreme situation, the RVE structure is the
same for all the calculation elements of the macro-structure during implementation.
Thus, the reference micro-structure is unknown during identification, which will induce
serious model uncertainty.

(a) Micro-structure material (b) Micro-structure mesh

Fig. 5.21 Micro-structure of the reference specimen

Similar to the example in Section 5.3.1, we note the proposed contour function
from Eq. (4.31), based on an integrated likelihood function, as the contour function
plA. The contour function plB serves as a comparison, and it is constructed by Eq.
(4.29), based on a standard likelihood distribution. It should be noticed that a pre-set
micro-structure should be proposed to establish the contour function plB. In this
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example, the pre-set micro-structure used for the plB is shown in Fig. 5.22. We can
see that this pre-set micro-structure is different from the reference micro-structure,
even though they have been obtained with the same micro statistical factors.

(a) Micro-structure material (b) Micro-structure mesh

Fig. 5.22 Pre-set Micro-structure for the contour function plB
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Fig. 5.23 Contour functions plA and plB based on the same measurement

Both contour functions plA and plB for one measurement are shown in Fig. 5.23.
The cross points of the two dashed lines illustrate the reference values. We can see
that the estimators θ̂A (red point) via maximising the contour function plA are closer
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to the reference values than the θ̂B (blue point) via maximising the contour function
plB. The ratios rHes defined in Eq. (5.50) are respectively 2.3× 103 (contour function
plA) and 3.5× 103 (contour function plB) at the maximum points. This phenomenon
can be explained by the fact that the contour function plA is less convergent than
the contour function plB. The reason of different convergences is that the contour
function plA takes more uncertainty (model uncertainty) into account than plB. The
contour lines in Fig. 5.23 can be seen as the cuts to plA and plB at various ω-levels.
Compared with the example in the section 5.3.1, the contour functions in this example
are narrow and elongated in the parameter space. It is because the two micro-material
elastic properties compensate each other on the macro response. The inverse problem
is therefore not very well-posed.

5.3.2.3 Robustness with respect to measurement uncertainty
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Fig. 5.24 Estimators from different measurements to one specimen

To study the robustness with respect to measurement uncertainty, 150 realisations
of Gaussian noise with the same standard deviation as in Section 5.3.2.2 are generated,
and they are added to the synthetic displacement field. This set-up corresponds to
the situations of 150 experimental measurements with one simple specimen. Then,
we estimate parameters θ̂A and θ̂B via maximising the contour functions plA and plB,
respectively. The estimators are shown in Fig. 5.24. We can see that the θ̂A (red
points) are more scattered than the θ̂B (blue points). The reason for the relatively
small perturbation of blue points is that the measurement noise has smaller influence
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on the estimators compared to the model uncertainty when the contour function plB is
used for identification. On the other side, the red points are more scattered around
the reference values located at the intersection of the two dashed lines. This property
gives a potential of improving performance with multiple measurements. In order to
clearly quantify the distance between the estimators and the reference values, we use
the quantity dθ defined as follow:

dθ =

√
(Ê1 − Eref

1 )2 + (Ê2 − Eref
2 )2, (5.53)

to illustrate the distance between estimators and reference values. Fig. 5.25 gives
the histograms of dθA associated with the contour function plA and dθB associated
with the contour function plB. It is clear that the dθA values are smaller than dθB.
In this figure there are a lot of values of θ̂B located in the interval [0.67, 0.73]. These
values coincide with the blue points concentrated in the small box in Fig. 5.24. Fig.
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Fig. 5.25 Distance between estimators and reference values

5.26 shows the covering probabilities defined in Eq. (5.52). The quantities PA(ω) and
PB(ω) are respectively the covering probabilities of the cuts to plA and plB at various
ω-levels. We can see that with decreasing ω, the probability PA(ω) increases quickly.
When ω is close to 0, it is almost certain that the ΓA(ω) will cover the reference values.
On the contrary, PB(ω) is close to 0 for most ω-levels. This means that ΓB(ω) is not
able to cover the reference values at corresponding ω-levels. Closer positions to the
reference values and larger shapes are the two main reasons of the better performance
of the contour functions plA.
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Fig. 5.26 Probability of covering the reference values at different ω-level cuts

5.3.2.4 Robustness with respect to material variability with reliable sta-
tistical factors

In this section, we will verify the robustness with respect to material variability under
the same statistical factors. 150 specimens are generated with the same statistical
parameters as constructing the basic vectors, and their displacement fields are measured.
This simulation is extracted from a case in which the material statistical factors are
known and the micro-scale elastic properties are identified.

In order to isolate the effect of material variability, measurement noise is not added
to the measurement fields. The estimators θ̂A and θ̂B via maximising the contour
functions plA and plB are shown in Fig. 5.27. The black points located at the cross
of the two dashed lines are the reference values of the specimens. Compared with
the perturbation caused by measurement error, the perturbation caused by material
variability is more serious. It is clear that both θ̂A (red points) and θ̂B (blue points)
have wider distributions than those in Fig. 5.24. However, the red points are still
closer to the black points than the blue points.

In order to illustrate the distances between θ̂A, θ̂B and θref , we again calculate the
quantity dθ. The histograms of dθA and dθB are shown in Fig. 5.28. It is clear that
θ̂A are closer to θref than θ̂B. It can be explained by the fact that the point estimators
via maximising the contour functions plA are better than those via maximising the plB.
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We finally plot the covering probability PA(ω) and PB(ω) of the cuts to plA and
plB at various ω-levels, as shown in Fig. 5.29. It is clear that the cuts of the contour
function plA are more likely to cover the reference values for any cutting levels than
those obtained from plB.
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Fig. 5.29 Probability of covering the reference at different ω-level cuts

5.3.2.5 Robustness with respect to material variability with unreliable
statistical factors

Similar to the example in Section 5.3.1.5, three scenarios in which the three factors
(Af , Ar, Da) are unreliable are studied in this section. For each scenario, we generate
150 specimens and their loadings are simulated to create the measurements. The
estimators θ̂A and θ̂B via maximising the contour functions plA and plB are shown
in Fig. 5.30. The black points located at the cross of the two dashed lines are the
reference values. We can see from Fig. 5.30 that θB (blue points) are more spread
than θA (red points) in the case of unreliable statistical factors. The red points are
closer to the reference values in all three scenarios.

Then we calculate the distance dθ between the estimators and the reference values
for each specimen. The histograms of dθA and dθB from the contour functions plA and
plB are shown in Fig. 5.31. It clearly shows that the dθA are smaller than the dθB in
all three scenarios.

Then we plot the covering probability PA(ω) and PB(ω) of the cuts of plA and plB

at different ω-levels in Fig. 5.32. It is clear that for all three scenarios the cuts of the
contour functions plA are more likely to cover the reference values at any cutting levels.

Based on the discussion above, we can summarise the robustness of our method in
this application with unreliable statistical factors. The estimators via maximising the
contour functions plA are closer to the reference values than those obtained from plB.
The subsets from cutting the contour functions plA hold more possibility to cover the
reference values. Overall, the improvement of plA is obvious as compared to plB.
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Fig. 5.30 Estimators under unreliable statistical factors

5.3.3 Conclusion

In this section, we took both measurement and model uncertainties into account in
an identification problem. The measurement uncertainty was represented by probability
distributions and the model uncertainty was represented by interval fields. We presented
a POD-based approach for constructing basis vectors and interval vectors to model
the model error. Both the measurement uncertainty and the model uncertainty
were quantified by likelihood-based belief functions, in which contour functions were
constructed based on integrated likelihood functions. Point estimators were proposed
based on maximising the contour functions. The ω-level cuts to the contour functions
were used to provide set-valued results.

It was shown that a few basis vectors were enough to construct the interval fields.
The conservation of independent interval vectors was largely reduced. Meanwhile,
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Fig. 5.31 Distance between estimators and reference values

the computational time for constructing the contour functions was reduced as well.
Owing to accounting for the model uncertainty, the contour distributions were more
spread than those constructed without considering the model uncertainty. Hence, the
set-valued results obtained by cutting the contour functions at ω-levels were larger
after taking the model uncertainty into account.
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Fig. 5.32 Probability of covering the reference values at different ω-level cuts

For both numerical examples, the results have shown that the estimators via max-
imising contour functions with the model uncertainty were closer to the reference
values. This advantage results in greater robustness even when the statistical factors
are unreliable. Meanwhile, the ω-levels cuts to the contour functions with the model
uncertainty were larger. As a result, they have a higher coverage probability. This
advantage also contributes to the robustness of the method.

We can also see that the contour functions were elongated and narrow in the
identification of micro-scale elastic parameters from macro-scale displacement fields
related to the ill-posedness of the inverse problem. The ω-level cuts to the contour
functions had a large span. In order to improve the performance of identification, we
can take available prior information into consideration. The next chapter will focus on
a methodology to take advantage of available prior information and simultaneously
quantify its uncertainty.



Chapter 6

Identification taking prior information
into consideration

6.1 Background and motivation

In Chapter 5, we have proposed a way to handle measurement and model uncer-
tainties. Identification problems are mostly ill-posed, and uncertainty exacerbates the
problems related to these issues (non-existence, non-uniqueness, and non-continuity).
To overcome these issues, especially the non-uniqueness and non-continuity, it is benefi-
cial to formulate and exploit available prior information. Nevertheless, the uncertainty
of prior information is complex and heterogeneous due to its multiple sources. Hence,
both the probabilistic approaches and the non-probabilistic approaches presented in
Chapter 3, should be considered to encode the prior information uncertainty in different
cases. Considering various prior information uncertainties and representation methods,
it is necessary to develop a new strategy to exploit and merge all available information
and quantify their uncertainty within a unified framework.

In this chapter, we face two challenges:

• taking the prior information into consideration;

• quantifying the heterogeneous uncertainties and propagating them.

The theory of belief functions constitutes an excellent framework to encode and
quantify both epistemic uncertainty and aleatory uncertainty. Moreover, it has a
comprehensive information fusion mechanism to perform combination and conditioning.
Thus, we explore the possibility of using belief functions to take prior information into
consideration for identification purposes.
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6.2 Identification strategy

In our framework, the purpose of identification is to find the parameters θ ∈ Θ

that are the most compatible with all available information, taking into account
uncertainty. As discussed in Chapter 1, the available information can be split into
theoretical, experimental and empirical information. We have discussed how to handle
the theoretical information and the experimental information using likelihood-based
belief functions in Chapter 5. With the help of Eq. (5.1), the contour functions can be
established using normalised and integrated likelihood function, denoted as plL(θ) in
this chapter. The information uncertainty is quantified by the contour function plL(θ),
which is equivalent to a possibility distributions and corresponds to a consonant random
set. The contour function encodes the knowledge on θ coming from the theoretical and
experimental information. In this section, we will deal with the empirical information
which is also called prior information.

6.2.1 Prior information

Prior information can be considered as background knowledge on the parameters θ

to be identified. It is often incomplete. Thus, the uncertainty on prior information is
epistemic, and it can be represented by random sets. The random sets can be defined
directly from subjective opinions or induced indirectly from other non-probabilistic
approaches, e.g., possibility distributions or p-boxes as presented in Section 3.3.8.

In the belief functions framework, discounting operations allow us to express our
degree of confidence in a source of information. Let us assume that, for instance, an
expert uses the possibility distribution shown in Fig. 6.1 to represent their opinion on
a parameter θ and we have a degree of confidence mΘ ∈ [0, 1] in this opinion. We can
then assign the value mΘ to the whole set Θ, i.e.:

P ({ω ∈ Ω|Γ(ω) = Θ}) = mΘ, (6.1)

where the mapping Γ is the ω-level cut and 0 ≤ mΘ ≤ 1. When mΘ = 0, we fully
trust the expert opinion; when mΘ = 1, we totally doubt it. The discounted possibility
distribution is shown in Fig. 6.2. We have finally a very versatile framework to describe
prior information.
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6.2.2 Information merging and posterior random set

Once all available pieces of information is defined, we have to merge them in order
to construct posterior information. The product rule of possibility theory provides a
combination mechanism by multiplying the possibility distributions and renormalising:

π1⊕2(θ) =
π1(θ)π2(θ)

supθ π1(θ)π2(θ)
. (6.2)

However, this rule can only be used with possibility distributions (consonant belief func-
tions), and it does not allow us to combine more general belief functions. Consequently,
we should think about other methods to overcome this limitation. Three commonly
used information merging methods have been presented in Section 3.3.7.2. Considering
the purpose of identification, we can choose Dempster’s rule to combine information.
Because Dempster’s rule concentrates information, it is suitable for searching the
optimum values. In section 3.3.7.2, this rule was defined for finite sets. Here, we
reformulate it in the infinite setting. Let us consider two random sets (Ωk, σΩk

, Pk,Γk),
k = 1, 2. Let Ω = Ω1 × Ω2 be the product space, P = P1 ⊗ P2 the product measure
on σΩ = σΩ1 ⊗ σΩ2 , and Γp the multi-valued mapping defined by: ∀(ω1, ω2) ∈ Ωp,
Γp(ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2). The combined random set is (Ω, σΩ, P,Γp). We can call
it the posterior random set. It induces the following belief and plausibility functions:
for any A ⊂ Θ,

Bel(A) =
P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) ⊆ A,Γp(ω1, ω2) ̸= ∅})

P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) ̸= ∅})
, (6.3)

Pl(A) =
P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) ∩A ̸= ∅})
P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) ̸= ∅})

. (6.4)

The degree of conflict is defined as:

k = P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) = ∅}). (6.5)
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It is a measure of the compatibility between the two sources of information. The
product rule of possibility theory and Dempster’s rule of belief functions framework are
two different combination mechanisms. The product rule can be easily implemented
but it has a limited scope, whereas Dempster’s rule is more complex but more general.
In this work we choose Dempster’s rule to combine prior information with theoretical
and experimental information.

We have presented the identification framework to take all available information into
account and aggregate the information to construct posterior random sets. In order to
implement this identification framework, attention should be paid to:

• the description approaches for multi-dimensional random sets;

• the numerical tools to implement Dempster’s rule;

• the exploitation of posterior random sets.

6.3 Numerical implementation

In order to implement the proposed identification strategy, a Monte Carlo approach
is considered, where the random sets are described through samples. We firstly have
to choose a way to describe multi-dimensional random sets with arbitrary shapes,
then implement Dempster’s rule-based inference and explore the samples of posterior
random sets.

6.3.1 Description of multi-dimensional random sets

Let us consider a 2D case to introduce the problem of description of multi-dimensional
random sets. As shown in Fig. 3.1, an ω-level cut of a non-interactive joint possibility
distribution of two variables can be expressed by a rectangle in R2. However, when the
joint possibility distribution is interactive, the subsets from the ω-level cut may not be
a rectangle as shown in Fig. 6.3. The shape of the subset is related to the dependence
between the two variables. With increasing dimension, the interval representation will
become more conservative. Moreover, the joint possibility distributions which come
from likelihood-based belief functions are likely to be interactive. So we should find a
strategy to describe domains with arbitrary shapes.

The methods to describe the multi-dimensional random sets should meet the following
requirements:

• capability to describe arbitrary shapes;
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Fig. 6.3 Domain to be described

• easy and accessible construction;

• computational efficiency within belief function inference.

There are two main classes of approaches to describe a geometric domain. The first
class of methods makes use of functions to parametrize a domain, e.g., regular shape
functions (triangle, square, ellipsoid, etc.) and the level set method. The second class
is based on discretization methods, which discretize a domain of interest into small
subdivisions and define a geometric domain by assigning a value (1, −1 or 0) to a
subdivision. Point clouds, belonging to the second class, are sets of data points in
coordinate systems, which allow us to make detailed scans of complex objects [Mitra
et al., 2004].

The parametrized function methods lead to difficult implementation of the Boolean
operations, which are necessary for the implementation. There are three reasons for
choosing point clouds to describe the domains. Firstly, the point clouds can be used
to describe any domains in arbitrary dimensions with the help of indicator functions.
Considering a domain A ⊆ Ω, for any point xi ∈ Ω,

vi =

{
1 if xi ∈ A,

0 if xi ̸∈ A,
(6.6)

where i = 1, 2, 3, · · · . Secondly, there are many methods and techniques to generate
point clouds, including grid sequences, random sequences and quasi-random sequences.
Thirdly, the intrinsic elements of point clouds are points which allow easily and fast
Boolean operations. Boolean operations are necessary and inevitable to implement the
inference based on belief functions (see Section 6.3.2).

Then, there are various techniques to generate point clouds. Regular grids have
been applied historically on discretized general domains [Thompson et al., 1998]. The
finer the grid is, the more accurate the discretization will be, but the higher the



88 Identification taking prior information into consideration

computational and storage cost will be as well. Furthermore, for high-dimensional
parameters spaces, the number of nodes of grid mesh tends to be unacceptable, due to
the curse of dimensionality.

Random sequences from random sampling are another way to generate point clouds.
It also requires computational effort in high-dimensional spaces. Latin hypercube
sampling (LHS) [McKay et al., 1979] [Saliby and Pacheco, 2002] is a variance reduction
technique, in which the selection of sample values is highly controlled, although still
allowing them to vary. There is only one sample value in each segment of each
dimension.
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Fig. 6.4 Ellipsoid described by point clouds

Quasi-random sequence methods [Caflisch, 1998] [Niederreiter, 2010] make use
of deterministic low-discrepancy sequences to generate sampling points. The low-
discrepancy sequences are usually more uniform than random ones. The use of low-
discrepancy sequences makes quasi-random sequences perform better than the classic
random sequences. Halton sequences [Halton, 1960] are particular low-discrepancy
sequences and will be used in this work.

After generating point clouds, the domains are described by their discretized indicator
functions defined by Eq. (6.6). Figure 6.4 presents a 2D ellipsoid described by point
clouds generated by a regular grid, LHS, and a Halton sequence. We use the estimator
of volume (surface) error to assess the point cloud performance:

ϵ =
|Nin/Ntotal − V|

V
, (6.7)

where Nin is the number of points inside the domain and Ntotal is the total number of
points of the point cloud. The value V is the relative volume (surface) of the domain
to be described with respect to the total volume described by the point cloud. One
hundred ellipsoids (hyper-ellipsoids) with different sizes and orientations in 2D, 3D,
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and 4D are described respectively by the point clouds generated by regular grids, LHS,
and standard Halton sequences. The relations between the number of points and the
error estimators are presented in Figs. 6.5, 6.6, and 6.7 for 2D, 3D and 4D cases
respectively. We can see that the Halton sequences have the best performance in all
three cases. Therefore, in this chapter, we will use point clouds generated using Halton
sequences to describe random sets.
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Fig. 6.5 Error Vs Point number: 2D
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Fig. 6.6 Error Vs Point number: 3D
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Fig. 6.7 Error Vs Point number: 4D

Point clouds are easy to manipulate. The coordinates of points can be stored in an
N ×D matrix X, where N is the number of points, and D is the number of dimensions.
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The values of the discretized indicator functions at each point of a domain can be
stored in an N × 1 vector V . The Boolean operators between two domains can be
implemented by performing Boolean operations on the components of their vectors.

6.3.2 Monte Carlo simulation of Dempster’s rule

Dempster’s rule can be implemented from samples based on Monte Carlo simulation
and ω-level cuts. Here, we make use of two random sets induced from possibility
distributions as an example to introduce the implementation of Dempster’s rule. This
method can be extended to random sets induced from other representation methods
such as p-boxes. Considering two random variables ω1 ∈ [0, 1], ω2 ∈ [0, 1] and two
possibility distributions π1(θ) and π2(θ) as shown in Fig. 6.8, the steps of the discrete
inference are listed as follows:

• sample ω1
1, · · · , ωNs

1 from [0, 1] and sample ω1
2, · · · , ωNs

2 from [0, 1];

• cut π1(θ) at ωi
1 level to obtain Γ1(ω

i
1), and cut π2(θ) at ωi

2 level to obtain Γ2(ω
i
2)

discretized using the point cloud, i = 1, · · · , Ns;

• collect the non-empty posterior subsets Γp(ω
i
1, ω

i
2) = Γ1(ω

i
1) ∩ Γ2(ω

i
2) ̸= ∅, i =

1, · · · , Ns.

1

π1(�) π2(�)

�

ω1

ω2

Γ1(ω1)

Γ2(ω2)

Γp(ω1,ω2)

Fig. 6.8 Combine information by Dempster’s rule

One question to address is to determine how many samples are sufficient to implement
this Monte Carlo simulation. This problem is studied on the reconstruction of the
posterior contour function on a scalar example. Consider two possibility distributions
π1(θ) and π2(θ) as shown in Fig. 6.9. If both ω1 and ω2 follow a uniform distribution
U([0, 1]), we have the following relation:

pl(θ) =
π1(θ)π2(θ)

p0
, (6.8)
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where pl(θ) = Pl({θ}) is the posterior plausibility of singleton θ that can be expressed
as follows:

pl(θ) = P
({

ω1 × ω2 ∈ Ωp

∣∣[Γ1(ω1) ∩ Γ2(ω2)
]
∩ {θ} ≠ ∅

})
, (6.9)

and p0 = P ({ω1 × ω2 ∈ Ω1 × Ω2|[Γ1(ω1) ∩ Γ2(ω2)] ̸= ∅}) is a constant. We can make
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Fig. 6.9 Possibility distribution to be combined

use of Eq. (6.8) to evaluate the numerical error in the application of Monte Carlo
simulation. The value p0 and pl(θ) can be estimated as:

p̂l(θ) =
#{1 ≤ i ≤ Ns|θ ∈ Γi

p}
Ns−∅

, p̂0 =
Ns−∅

Ns

, (6.10)

where Γi
p is the i-th subset, Ns−∅ is the number of non-empty subsets. The relative

numerical error can be written as:

ϵMC =

∫
|p̂0p̂l(θ)− π1(θ)π2(θ)|dθ

maxπ1(θ)π2(θ)
. (6.11)

Eq. (6.11) can be calculated by numerical integration using the rectangle rule. Samples
of each size are drawn 10 times. The errors as functions of sampling sizes are shown in
Fig. 6.10. The curve corresponds to the mean values of the errors; the vertical intervals
represent the standard deviations. As seen in this figure, the error is small when the
sampling number is larger than 5000. The accuracy will not improve significantly once
the sampling size is above 1× 104.

6.3.3 Exploring posterior random sets

We apply Monte Carlo simulation to implement Dempster’s rule to combine infor-
mation yielding set samples according to the posterior random set. After that, the
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Fig. 6.10 Numerical error of Monte Carlo Sampling

posterior random set needs to be exploited. There are several ways to take advantage
of the posterior random set:

• construct the posterior contour functions denoted as plP (θ), where θ ∈ Θ is the
parameters to be identified;

• search for the maximum of plP (θ);

• search the minimum-size subset with large enough Bel and Pl values;

• marginalization of plP , Bel and Pl;

• calculation of Bel and Pl of any subsets A ⊆ Θ.

In most identification cases, we focus on the first three problems. When the number
of parameters is larger than 2, we also need to compute the marginals to visualise the
results.

6.3.3.1 Posterior contour function

The construction of the posterior contour functions plP (θ) is an easy and direct way
to explore the posterior information from the set samples. It is computed based on Eq.
(6.10). Greater plP (θ) value corresponds to more possible θ. Consequently, the θ at
which plP (θ) is the greatest is the most possible value. Therefore, the equation:

θ̂P = argmax
θ∈Θ

plP (θ), (6.12)

can serve as a deterministic identification method to search for optimal values.
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6.3.3.2 Optimal subset with given Bl and Pl thresholds

To continue the exploitation of the posterior random set samples, we can find a
subset minimal size R ⊆ Θ with Pl(R) and Bel(R) larger than pre-set threshold
values δPl and δBel. This problem can be formalized as follows:

R̂ = arg min
R⊆Θ

V(R), V(R) =

∫
R

dθ, (6.13)

subject to: {
Pl(R) ≥ δPl,

Bel(R) ≥ δBel,

where V(R) is the volume of R. Because this is a constrained optimization problem, we
can use a penalty method to transform it into an unconstrained one. The reformulation
of the optimization problem can be written as:

R̂ = arg min
R⊆Θ

V ′(R), (6.14)

where

V ′(R) = V(R) + ϱPl ∗ φ
(
δPl − Pl(R)

)
+ ϱBel ∗ φ

(
δBel −Bel(R)

)
.

The quantities ϱPl and ϱBel are the penalty coefficients which should be large numbers,
i.e., 1× 103 in this chapter. The function φ(t) is a penalty function defined as:

φ(t) = max(0, t). (6.15)

In order to solve Eq. (6.14), the parametrization of R is a necessary step. There
are two clear choices for the parametrization of R: (1) by regular shape (ellipsoid,
rectangle,...) and (2) by point clouds. The first choice needs increasing parameters with
increasing dimensions, and the shapes of result domains must be regular. Parametriza-
tion of R using point clouds requires too many parameters. Beyond these two choices,
we propose to reparametrize R based on the POD basis vectors from samples of the
posterior random sets. This approach can give us domains with similar shapes as the
samples of the posterior random sets. The number of parameters does not depend on
dimension but on the number of basis vectors. The samples of the posterior random
sets can be considered as a group of snapshots by storing their discrete indicator
functions as vectors vi of size N , the number of points for i = 1, 2, 3, · · · ,M , where M
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is the number of samples from the posterior random sets. Then the N ×M matrix of
snapshots is written as follows:

V = [v1 · · · vM ]. (6.16)

Denoting by γi the eigenvalues of (V − v)T (V − v), with correspondingly eigenvectors
ϕi, where

v =
1

M

M∑
i=1

vi, (6.17)

then φi = (V − v)ϕi is the i-th POD basis vector. The target subsets can be
parametrized through their discrete indicator functions decomposed on the POD basis
vectors:

vPOD = 1δ

(
v +

n∑
k=1

αkφk

)
, (6.18)

where 1δ is a threshold function to ensure vPOD corresponds to an indicator function:

1δ(vi) =

{
1 if vi ≥ δ,

0 otherwise.
(6.19)

The number n of basis vectors is determined based on the energy proportion of
POD modes. Finally, Eq. (6.14) is transformed into a minimization with regard to
(α1, · · · , αn):

(α̂1, · · · , α̂n) = arg min
(α1,··· ,αn)

V ′(vPOD(α1, · · · , αn)
)
. (6.20)

6.4 Numerical Application

In this section, we present three numerical examples in which prior information is
taken into consideration. The first example deals with the identification of elastic
properties of a homogeneous 2D plate under loading. Classical Bayesian inference
is used as a comparison. The second example is concerned with the identification
of elastic properties of a heterogeneous 2D plate under loading. The third example
addresses the identification of micro-scale elastic properties from a macro-scale test.

6.4.1 Identifying homogeneous material

The elastic properties of a 2D homogeneous plate as shown in Fig. 6.11(a) need to
be identified. The mechanical behaviour of the plate is governed by Eqs. (4.1)-(4.3).
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(a) Physical model (b) FE mesh

Fig. 6.11 Homogeneous plate

We particularize Eq. (4.3) for an isotropic material as:

σ = λtr(ε)I + 2µε in all the domain, (6.21)

where I denotes the identity matrix and tr(A) is the trace of matrix A. The parameters
θ = {λ, µ} are the two Lamé parameters determining the plate elastic properties. The
plate is fixed on the left side and loaded on the right by a traction f whose horizontal
projection is fx = f0y(1 − y) and vertical projection is null. The relative reference
values are {λref , µref} = {1, 1}.

6.4.1.1 Measurement and prior information

We use synthetic displacements from a reference finite element analysis, as shown in
Fig. 6.11(b), as measurement values. The measurement grids are 10× 10 covering the
whole plate, and a Gaussian white noise is added to simulate measurement error. The
standard deviation of noise is 5% with respect to the maximum displacement value.
Based on Eq. (4.29), the uncertainty about θ from the measurements is represented
by a consonant likelihood-based belief function, whose contour function equals the
normalized likelihood function.

The prior information, from expert opinions, is expressed by possibility distributions,
denoted as π. In order to check the performance of this approach, two scenarios are
considered. In the first scenario, the expert opinions are relatively correct, hence the
possibility distributions are close to the reference values and plotted with solid lines
in Fig. 6.12. In the second scenario, the expert opinions are wrong, the possibility
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distributions do not cover the reference values, and are plotted with dashed lines in
Fig. 6.12. Then, we take a degree of confidence (or belief, or trust) into account.
Assume we have 80% confidence in the expert opinions for both scenarios. Based on
the introduction in Section 6.2.1, the possibility distributions of both scenarios are
transformed into the distributions shown in Fig. 6.13.
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Fig. 6.12 Prior information expressed using possibility distributions

0.9 1 1.1 1.2 1.3 1.4
0

0.2

0.4

0.6

0.8

1

Scenario 1

Scenario 2

π

λ

(a) Prior possibility distribution on λ

0.85 0.9 0.95 1 1.05
0

0.2

0.4

0.6

0.8

1
Scenario 1

Scenario 2

π

μ

(b) Prior possibility distribution on µ

Fig. 6.13 Discounted Possibility distributions

Because there is no other information, we can reasonably assume that the two
parameters are non-interactive. Using Eq. (3.25), we can construct a joint possibility
distribution about λ and µ shown as the square contour lines in Fig. 6.14 and 6.15.
It is clear that the prior possibility distribution in the second scenario is far from the
reference values and cannot provide any valuable correction. The ellipsoid contour
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lines in Fig. 6.14 and 6.15 are contour functions plL, which represent the theoretical
and measurement information.
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Fig. 6.14 Scenario 1: π and plL

0.9 1 1.1 1.2 1.3
0.85

0.9

0.95

1

1.05

0.4

0.5

0.6

0.7

0.8

0.9

1

μ

λ

plL

π

Ref.

Fig. 6.15 Scenario 2: π and plL

6.4.1.2 Information merging

Dempster’s rule detailed in Section 6.3.2 is chosen to combine the contour functions
plL and the possibility distributions π. We uniformly take Ns samples from [0, 1]× [0, 1]

to compute ω-level cuts to plL and π. After cutting the two distributions and intersecting
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the two groups of subsets, we obtain NS−∅ non-empty the samples of posterior random
set denoted as {Γi

p}, i = 1, ..., Ns−∅. Then the degree of conflict of each scenario can
be estimated by the following:

k̂ =
Ns −Ns−∅

Ns

. (6.22)

The degree of conflict in scenario 1 is k̂1 =
10000− 9796

10000
= 0.0204; the one in scenario

2 is k̂2 =
10000− 2004

10000
= 0.7996. If the degree of conflict k is too large, it can indicate

that at least one source of information is likely to provide wrong information. The value
k̂2 in scenario 2 is similar to the degree of confidence assigned to the prior information.
It reflects the fact that measurement information only overlaps the total set that we
add to express our disbelief in this expert opinions. In other words, there is no overlap
between the plL and the original possibility distributions. Considering the big conflict
in scenario 2, it is reasonable to consider there is at least one false information.

The value p̂lP in Eq. (6.23) is used as an estimator of the posterior contour functions:

p̂lP (θ) =
#{1 ≤ i ≤ Ns−∅|θ ∈ Γi

p}
Ns−∅

. (6.23)
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Fig. 6.16 Contour functions of posterior random sets

The posterior contour functions of the two scenarios are shown in Fig. 6.16. The
value θ̂P at which plP is maximum can be used as a point estimator. In scenario 1,
θ̂P = {1.0275, 1.0063}; in scenario 2, θ̂P = {1.0344, 1.0082}. We can see that, due to
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the correct prior information in scenario 1, θ̂P in scenario 1 is closer to the reference
values.

6.4.1.3 Comparison with Bayesian inference

In order to demonstrate the advantages of the inference based on the theory of belief
functions, we use Bayesian inference to deal with the same information:

• prior information is expressed as a subjective probability density function (PDF)
p(θ);

• measurement information is encoded by the likelihood function L(θ; Ũ);

• information is merged by the Bayes’ rule:

p(θ|Ũ) = cp(θ)L(θ; Ũ), (6.24)

where p(θ|Ũ ) is the posterior probability function, c is the normalising constant
defined as:

1

c
=

∫
Θ

p(θ)L(θ; Ũ)dθ. (6.25)

In this example, the prior information was first proposed in terms of possibility
distributions. In order to apply a Bayesian inference, they are transformed into
Gaussian PDFs p(θ). The mean of θ following p(θ) is the middle value of the core of
the possibility distribution. In order to encode our degree of confidence in the prior
information, the standard deviations of p(θ) should be such that P (Supp) = 1−m(Θ),
where Supp is the support of the possibility distribution.

The marginal distributions of prior PDFs, posterior PDFs, and likelihood functions
are shown in Fig. 6.17 (scenario 1) and Fig. 6.18 (scenario 2). The marginals of π,
plL and plP are calculated based on Eq. (3.24) and shown in Fig. 6.19 (scenario 1)
and Fig. 6.20 (scenario 2). We can see that, in scenario 1, both the posterior PDFs of
Bayesian inference and the posterior contour functions of belief functions framework
move towards the reference values. However, in scenario 2, the prior information is
relatively wrong, and the two methods display different results. The posterior PDFs of
Bayesian inference still averages the two informations. The wrong prior information
(blue dashed-dotted curve in Fig. 6.18) affects the measurement information. As a
consequence, the combined information p(θ|Ũ) is worse than the likelihood L(θ; Ũ).
In contrast, a degree of confidence is added to prior information in the inference based
on the theory of belief functions. Hence, the posterior contour function plP remains
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stable. The contour function plP is at least not worse than the contour function plL.
The reason why plP remains stable is that when we associate a degree of confidence
with the prior information. We do no further assumption: we just associate a degree
of confidence to the whole set Θ.
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Fig. 6.17 Marginal probability density distributions in scenario 1
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Fig. 6.18 Marginal probability density distributions in scenario 2

6.4.1.4 Exploration of the posterior random sets

For further exploitation of the posterior random set, we focus on finding a minimum
subset R described by its discrete indicator functions vPOD with Pl(vPOD) and
Bel(vPOD) larger than given threshold values δBel and δPl. As explained in Section
6.3.3.2, we make use of the basis vectors of the POD for the samples of posterior
random set to parametrize vPOD. Then, we need to determine the truncation number
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Fig. 6.19 Marginal plL, π and plP in scenario 1
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Fig. 6.20 Marginal plL, π and plP in scenario 2

n in Eq. (6.18) and the threshold δ for the 1δ in Eq. (6.19). In order to determine δ

and n, we induce the approximation error of the POD:

ϵPOD =
V(v − vPOD)

V(v)
, (6.26)

where V(v − vPOD) is the volume estimated using the point cloud of the difference
between the original v and the approximated vPOD, and V(v) is the volume of the
domains associated with v. Then the POD is performed on the samples of the posterior
random set in scenario 1, and Fig. 6.21 shows the energy proportion of the first ten
basis vectors. We can see that the first ten basis vectors corresponds to the majority
of energy proportion. We can thus make use of the first several basis vectors to
parametrize the target subsets.
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Then, we preliminarily fix δ = 0.5, and reconstruct 100 subsets using Eq. (6.18)
with different truncation numbers. The approximation errors are shown in Fig. 6.22.
In Fig. 6.21 and 6.22, we can see that the first 6 basis vectors represent more than
75% energy, and the approximation error does not decrease significantly when n ≥ 6.
Therefore, we choose n = 6. Next, we plot the approximation errors with different
thresholds δ, in Fig. 6.23. We can see that when δ = 0.5, the approximation error is
minimum. Unless otherwise mentioned, the value of δ is fixed to 0.5 in this chapter.
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Fig. 6.22 Approximation error VS truncation number

When choosing the truncation number n = 6, there are six variables αk, k = 1, · · · , 6
in Eq. (6.20) to parametrize the target subsets. Then, we sample a number of αk,
regenerate the corresponding subsets, and calculate their Bel, Pl and V values. These
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quantities corresponding to the two scenarios are shown in Fig. 6.24. The frontier
of the cloud of points in Fig. 6.24 can be seen as an approximation of the Pareto
frontier [Wilson et al., 2001]. The Pareto frontier [Wilson et al., 2001] is helpful to
solve multi-objective optimization by yielding the potentially optimal solutions. This
frontier reflects the relationship among the extreme values of Pl, Bel and V. The
points in Fig. 6.24(b) are all in the same plane (Pl = 1), because the posterior random
set in scenario 2 is consonant. To enhance the precision of the Pareto frontier, [Deb
et al., 2002] [Zitzler et al., 1998] [Knowles and Corne, 1999] offered some efficient
tools for various applications. Here, we can make use of the Pareto frontier to get
suitable initial values for finding the global minimum in Eq. (6.20). For example, we
set (1) δBel = 0.10 and δPl = 0.95; (2) δBel = 0.30 and δPl = 0.95 (3) δBel = 0.50 and
δPl = 0.95; the result subsets for the two scenarios are shown in Fig. 6.25. It is clear
that the sizes of the minimum subsets increase as the threshold increases. The subsets
in scenario 1 move toward the bottom left because of the influence of prior information
compared with those in scenario 2. In scenario 2, the prior information does not affect
the theoretical and measurement information, and the result subsets reflect the form
of the likelihood function. For the third group of thresholds, the result subset covers
the reference values in scenario 1. In this example, because the samples of posterior
random set are mostly consonant, the δBel is more important that δPl. The reason is
that the Pl reaches easily 1 for consonant random sets.

In order to illustrate the effect of prior information, we define the following estimator:

θ̂L = argmax
θ∈Θ

plL(θ). (6.27)
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The estimator θ̂L does not take into account the prior information. The estimator θ̂P

defined in Eq (6.12), θ̂L, and the reference values are shown in Fig. 6.25. It is clear
that θ̂P moves toward the reference values in scenario 1 due to the regularization of
prior information.
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Fig. 6.25 Result subsets and estimators
(1) δBel = 0.10 and δPl = 0.95; (2) δBel = 0.30 and δPl = 0.95;

(3) δBel = 0.50 and δPl = 0.95

6.4.2 Identifying heterogeneous material

6.4.2.1 Measurement and prior information

In this application, we want to identify the elastic properties of a heterogeneous plate
with an inclusion at its center as shown in Fig. 6.26. The matrix material is denoted
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Fig. 6.27 Marginal plL, π and plP

as material 1 (white area), and the inclusion material is denoted as material 2 (grey
area). The plate is loaded on the right by a traction f whose horizontal projection is
fx = f0y(1−y) and vertical projection is null. The Lamé parameters θ = {λ1, µ1, λ2, µ2}
determine its elastic properties. The parameters λ1 and µ1 correspond to the matrix
material; the parameters λ2 and µ2 correspond to the inclusion material. The relative



106 Identification taking prior information into consideration

reference values are {λref
1 , µref

1 , λref
2 , µref

2 } = {1, 1, 1.5, 1.5}. The measurement error is
a Gaussian white noise whose standard deviation is 5% with respect to the maximum
displacement value.

The prior information comes from the expert opinions and is represented by the
possibility distributions π shown in Fig. 6.27. Then a 80% degree of confidence is added
to it. Using likelihood-based belief functions, the joint contour function plL on the
theoretical and measurement information is constructed. In order to display plL clearly,
Fig. 6.27 presents its marginal functions. The level of convergence of plL and π are
similar in Fig. 6.27(a) and Fig. 6.27(d), indicating that the precision of measurement
and prior information are similar. On the other hand, the levels of convergence of plL
and π are clearly different in Fig. 6.27(b) and 6.27(c). The measurement information
in Fig. 6.27(b) is more precise for parameter µ1. The prior information in Fig. 6.27(c)
provides more precise information on parameter λ2.

6.4.2.2 Information merging

We use Dempster’s rule to combine information. The marginal posterior contour
functions plP are shown in Fig. 6.27. The plP are always more convergent than plL and
π. Therefore, when measurement information is more precise, the prior information’s
influence is small. When measurement information does not allow precise inference,
the prior information will induce regularization to measurement information.

6.4.2.3 Exploitation of the posterior random sets
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Fig. 6.28 Samples of Bel, Pl and V

After constructing the POD from the samples of the posterior random set, as
presented in Section 6.4.1.4, we choose the first six parameters to parametrize the target
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Fig. 6.29 Result subsets and estimators

subsets and fix δ to 0.5. Then, we sample a number of αk, regenerate corresponding
subsets, and calculate their Bel, Pl and V values. These quantities are shown in Fig.
6.28. Then we set δBel = 0.30 and δPl = 0.95; the minimum domains are shown in Fig.
6.29. The location of the maximum of plP is closer to the reference values than that of
plL. The reason for this improvement is the regularization by the prior information.
The shapes of the result subsets reflect the dependence between the parameters and
while their sizes reflect the precision of input information. More precise information
results in smaller subsets for the same threshold values. It should be noticed that the
shapes of the result subsets are no more regular, which indicates that the use of regular
shape functions as a parametrization of target subsets would not work here.

6.4.3 Identifying micro-scale properties by macro-scale tests

In this application, we continue to focus on the case introduced in Section 5.3.2
corresponding to the identification of micro-scale properties from a macro-scale test.
The multi-structure material, loading case, displacement measurement remain the same
as those in Section 5.3.2. We assume that all three statistical factors are reliable and
known. The parameters to be identified are the two micro Young module θ = {E1, E2}
and the reference values are {1, 2}. Following the approach presented in Chapter
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5, we take both measurement and model uncertainties into consideration. Both
uncertainties are quantified by likelihood-based belief functions. Because of the shape
of the contour function plL (plL was denoted as plA in Chapter 5), we cannot obtain
precise identification results. The estimators via maximising the plL are sensitive to
uncertainty. Therefore, we need to take advantage of the prior information.

The prior information, which comes from expert opinions, is expressed by possibility
distributions as shown in Fig. 6.30. We also assume that we have 80% degree of
confidence in the expert opinions. The joint contour function plL and the prior joint
possibility distribution π are shown in Fig. 6.31. Then, we combine plL and π using
Dempster’s rule and obtain samples from the posterior random set. The posterior
contour function plP is shown in Fig. 6.32. We can see that plP is more convergent than
plL. We can also see this improvement from the marginal posterior contour functions
in Fig. 6.33. It is clear that the prior information has concentrated the information
due to regularization.
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Fig. 6.30 Prior information

Then we perform a POD analysis on the samples of the posterior random set.
Following the presentation in Section 6.4.1.4, we choose the first six parameters
to parametrize the target subsets. Then, we sample a number of αk, regenerate
corresponding subsets, and calculate their Bel, Pl and V values. These quantities are
shown in Fig. 6.34. The points are almost situated in the plane Pl = 1. The reason for
this phenomenon is that most of the samples of the posterior random set are almost
consonant. Then, we study three values of thresholds: (1) δBel = 0.10, δPl = 0.95; (2)
δBel = 0.25, δPl = 0.95; (3) δBel = 0.30, δPl = 0.95. The result subsets for different
thresholds are shown in Fig. 6.35. For the three result subsets, the Pl values are,
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respectively, 0.995, 0.987 and 0.977. Because the samples of posterior random set are
almost consonant, the threshold δBel is more important than δPl.

6.5 Conclusion

In this chapter, we presented an identification strategy based on belief functions,
making it possible to use prior information and quantify its uncertainty. Point clouds
were used to describe multi-dimensional random sets. Dempster’s rule was applied
to combine prior information with theoretical and measurement information, and the
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Fig. 6.33 Marginal plL, π and plP

posterior random set was sampled and exploited. This approach allows us to encode and
propagate epistemic and aleatory uncertainty in a single framework. In this framework,
a degree of confidence makes it possible to express subjective confidence in information
sources. Due to the degree of confidence, when the prior information is wrong, it does
not affect the theoretical and measurement information. This is an advantage of our
approach as compared to Bayesian inference. Dempster’s rule needs more computation
time to combine information than the product rule, but, the posterior random set
from Dempster’s rule is more informative. The exploitation enables us to know the
compatibility between information sources. Moreover, the two quantities Bel and Pl

are available to quantify their uncertainty. Considering the various sources of prior
information, these quantities provide a new view to uncertainty analysis.
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Chapter 7

Conclusion

In this thesis, an effective identification methodology has been developed, taking
advantage of all available information including theoretical, experimental and empirical
information. This methodology has proved effective for estimating material property
parameters using full-field measurements from complex tests. During the identification
processes, heterogeneous uncertainties arising from unreliable information have been
studied for improving the performance of identification. The identification strategy
proposed in this thesis makes it possible to manage the heterogeneous uncertainties
with divergent natures and representation approaches in a unified framework based on
the theory of belief functions. Meanwhile, a method with high computational efficiency
has been developed to implement the strategy.

The uncertainty quantified in this thesis was classified into measurement uncertainty,
model uncertainty and prior information uncertainty with respect to the information
with which they were associated. Uncertainties were represented in different ways
according to their different natures. Measurement uncertainty arising from limitations
of measurement devices was considered as aleatory, and represented by probability
distributions; model uncertainty originating from simplification and approximation
of the real materials was considered as epistemic, and represented by intervals; prior
information uncertainty caused by subjective imprecision was considered as epistemic
as well and represented by random sets. In order to integrate all information and
obtain more precise and reasonable results, the identification strategy consists of:

1. likelihood-based belief functions to summarise the experimental information and
the theoretical information;

2. representation of the model uncertainty using interval fields to overcome the
dependence and conservativeness problems of pure interval analysis;
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3. proper orthogonal decomposition technique to construct basis vectors and interval
factors for interval fields;

4. Dempster’s rule to merge information and to account for prior information;

5. point clouds to describe multi-dimensional random sets;

6. deterministic and non-deterministic estimators to provide useful results for iden-
tification.

The following applications have been studied:

1. identification of the parameters of composite materials at macro-scale from the
tests and measurement fields at micro-scale;

2. identification of the parameters of composite materials at micro-scale from the
tests and measurement fields at macro-scale;

3. identification of the parameters of homogeneous and heterogeneous plates taking
considering of prior information;

4. identification of the parameters of composite materials at micro-scale from the
tests and measurement fields at macro-scale, accounting for prior information.

Applications 1 and 2 focused on modelling measurement and model uncertainties.
Both applications demonstrated that the estimators via maximising contour functions
in which the model uncertainty was considered were closer to the reference values than
those via maximising standard likelihood functions. This proved robust even when
the statistical factors of composite materials were unreliable. Meanwhile, the contour
functions accounting for the model uncertainty were less convergent. As a result, they
had greater coverage probability.

In applications 3 and 4, the prior information and its uncertainty were taken into
consideration. During this process, a degree of confidence allowed us to express
the subjective confidence in the sources of prior information. Due to the degree of
confidence, when the prior information was wrong, it could not affect the theoretical
and experimental information. This is an advantage of the inference based on the
theory of belief functions as compared to Bayesian inference.

In summary, the development and implementation of the proposed identification
strategy obviously improved the accuracy and robustness of parameter identification.
The presented identification method could be continuously explored to deal with more
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complex material models, such as non-linear ones. The computational complexity of
algorithms should also be given more attention. For modelling model uncertainty, other
methods for constructing interval fields should be investigated. Finally, the uncertainty
arising from unreliable boundary conditions should be studied in the future.
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