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Résumé 

 

Dans les années 1920, de nombreux modèles de spin ont été décrits et en particulier deux 

modèles bien connus qui sont le modèle d’Ising [1] et le modèle de Potts [2]. Plus tard, des modèles 

de spin que l’on peut qualifier d’exotiques ont été étudiés, faisant notamment apparaître un nouveau 

concept : la frustration géométrique. Ce concept traduit l’incapacité pour un système de satisfaire 

simultanément toutes ses interactions, et amène comme conséquence une grande dégénérescence 

du niveau fondamental. Ces modèles ont suscité un large intérêt dans le domaine de la matière 

condensée, lorsque cette frustration géométrique a pu être mise en évidence dans un système 

magnétique : le réseau pyrochlore de Dy2Ti2O7 [3]. Ces réseaux de spins étudiés au sein de matériaux 

bulk présentent des propriétés intéressantes (transitions de phases…) mais présentent certaines 

contraintes. Tout d’abord l’étude de ces systèmes n’est possible qu’à travers l’observation de 

grandeurs thermodynamiques (chaleur spécifique,…) ou à travers des techniques (diffraction de 

neutron, …) qui permettent de sonder les systèmes dans l’espace réciproque. Une contrainte 

supplémentaire intervient sur la topographie des systèmes. Pour l’étude de réseaux de spins dans 

des matériaux bulk, la topologie des réseaux est imposée par la cristallographie du matériau. Dans 

le but de passer outre ces contraintes, des nouveaux systèmes rendus possibles grâce à l’avancée 

technologique dans le domaine de la nano-fabrication ont été élaborés. En effet il a été montré par 

Wang et al [4] qu’il est possible de réaliser des réseaux de nano-aimants présentant les mêmes 

propriétés que certains modèles de spin et qu’il est possible d’avoir accès dans l’espace direct à l’état 

de chaque spin. Suite à cette expérience, les réseaux de spins artificiels ont été massivement étudiés, 

essentiellement pour observer et comprendre les effets de la frustration.  

Jusqu’à présent les nano-aimants réalisés présentent un comportement analogue aux spins 

d’Ising, où l’aimantation (dans le plan ou hors du plan) possède deux directions préférentielles. 

Cette particularité est l’une des principales motivations de la thèse, où l’idée est de réaliser en jouant 

sur l’anisotropie (de forme et magnéto-cristalline) un nouveau système où le nano-aimant ne 

représente plus un spin à 2 états mais un spin à 4 états. Ainsi plutôt que de modifier la topologie 

du système, comme d’autres groupes l’ont fait par le passé dans la communauté des réseaux de 

spins artificiels, c’est le spin lui-même qui est utilisé comme terrain de jeu. De cette manière le 

nouveau système de spins artificiels, décrit dans la thèse, n’est plus lié au modèle d’Ising mais à un 

modèle plus général qui est le modèle de Potts. Expérimentalement il existe quelques subtilités par 

rapport au modèle de Potts standard. Tout d’abord le nombre d’états possibles pour le spin est 

limité, et il est fixé pour notre étude à 4 états. Ensuite, dans le cas standard du modèle de Potts, les 

interactions entre les spins sont des interactions d’échanges, or dans nos réseaux expérimentaux les 

interactions entre nano-aimants sont de nature dipolaire. C’est pourquoi le modèle décrit par nos 

réseaux de spins artificiels n’est pas le modèle de Potts standard mais un modèle que l’on appelle 

le modèle de Potts dipolaire à 4 états. 

Dans ce contexte, le modèle de Potts a été décrit en prenant en compte des spins avec 4 

états confinés dans un plan, et en interaction via le couplage dipolaire. Premièrement le cas de deux 

spins d’Ising en interaction dipolaire a été décrit puis l’étude a été élargie au cas de deux spins à 4 

états (appelés spins de Potts). Pour les deux modèles (Ising et Potts), les niveaux d’énergies évoluent 

en fonction de l’angle entre les spins et l’axe entre les deux spins (angle alpha), et souligne le 

caractère anisotrope du couplage dipolaire. En revanche l’étude montre que le fait d’insérer 2 états 

supplémentaires pour le spin, élargit le nombre de configurations possibles faisant passer le nombre 

de niveaux d’énergies de 2 (spins d’Ising) à 6 (spins de Potts). Suite à cette étude, le cas d’une chaîne 
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infinie composée de spins de Potts a été étudié. A travers l’observation des énergies dipolaires 

associées à différentes configurations, ces énergies révèlent que le fondamental d’un tel système 

présente des propriétés différentes selon l’angle entre le spin et l’axe de la chaine (comportement 

similaire au cas de deux spins). Pour finir l’étude théorique sur les énergies dipolaires un réseau 

carré 2D de spins de Potts a été étudié, tout d’abord considéré infini puis fini (30x30 spins). Le 

principal objectif de cette étude est de déterminer le fondamental du réseau carré et de confirmer 

ou non une dépendance angulaire des propriétés associées à ce fondamental. Pour le réseau infini, 

la détermination de l’état fondamental s’est déroulée en plusieurs étapes. Premièrement des 

configurations simples: état ferromagnétique, état antiferromagnétique et état boucle, ont été 

observées dans le but d’entrevoir la dépendance du fondamental avec l’angle formé entre les spins 

et l’axe du réseau (angle alpha). Les résultats sont montrés dans la figure 1. 

  

Figure 1_ Energies dipolaire correspondants à 4 configurations simples en fonction de l’angle alpha (angle entre le spin et l’axe 
du réseau) pour un réseau infini. Les configurations simples sont définies à partir d’une maille élémentaire composée de 2x2 
spins et répétée une infinité de fois. Les courbes bleues, vertes, rouges, violettes représentent l’énergie dipolaire associée 
respectivement à la configuration antiferromagnétique, boucle, ferromagnétique et vague.          

En considérant uniquement ces 4 configurations simples, la configuration du fondamental 

dépend fortement de l’angle alpha, du fait qu’il présente une configuration antiferromagnétique 

(direction des spins proches de la direction du réseau), une configuration boucle (direction des 

spins proche de 45° par rapport à l’axe du réseau) et une configuration ferromagnétique (direction 

du spin intermédiaire). A travers ces 4 configurations une idée générale des propriétés du 

fondamental est dévoilée mais ceci ne suffit pas à établir précisément la configuration de l’état 

fondamental. Pour aller plus loin dans l’investigation du fondamental, les 256 configurations 

possibles ainsi que les énergies dipolaires associées, pour un réseau infini formé à partir d’une maille 

élémentaire (composée de 2x2 spins de Potts), ont été déterminées. Il en résulte que les trois 

configurations simples représentées dans la figure 1 sont celles de plus basses énergies. Pour vérifier 

ce résultat, des simulations Monte Carlo ont été réalisées et celles-ci confirment que le fondamental 

d’un réseau infini de spins de Potts est le même que celui déterminé à travers l’observation de 

configurations simples présenté dans la figure 1. Cette étude démontre qu’un réseau composé de 

spins de Potts est un système très riche, comme une simple rotation entre les spins et l’axe du 

réseau donne lieu à des propriétés différentes pour le fondamental. De plus l’apparition d’un ordre 

ferromagnétique dans un système dirigé par les interactions dipolaires est une propriété non 

commune et présente une motivation supplémentaire pour la réalisation expérimentale de ce 

système. Avant d’entreprendre la réalisation expérimentale, il est nécessaire de s’interroger sur le 
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comportement de ce modèle pour un réseau fini (influence des bords). Il est évident 

qu’expérimentalement le réseau infini n’est pas envisageable et une taille de réseau de 30x30 spins 

a été sélectionnée. Ce choix a été motivé par des tests préalables qui révèlent un bon compromis 

entre le temps de mesure pour l’observation et la précision des mesures pour ce système. L’étude 

théorique de ce réseau fini révèle que les bords n’influencent pas les configurations du fondamental 

déterminées précédemment pour les angles 0 et 45°. En revanche pour la plage d’angle où l’état 

ferromagnétique était le plus bas en énergie, un état d’encore plus basse énergie apparait composé 

de domaines ferromagnétiques suivant les bords du réseau (état de Landau). Toutefois il est à noter 

ici que la différence (en termes d’énergie) observée entre l’état ferromagnétique et l’état de Landau 

peut être vue comme minime par rapport aux autres niveaux d’énergies.  

Motivé par les propriétés démontrées à travers l’étude théorique décrite précédemment, la 

possibilité de réaliser expérimentalement ce système a été étudié. Pour ce faire des simulations 

micro-magnétiques menées à l’aide du logiciel Mumax3 [5] ont servi de base pour déterminer les 

conditions requises à la réalisation expérimentale. Jusqu’à présent dans les réseaux de spins 

artificiels, les nano-aimants réalisés présentaient une anisotropie de forme uniaxiale imposant deux 

directions préférentielles pour l’aimantation et reproduisant ainsi le comportement d’un spin 

d’Ising [4, 6, 7]. Cette anisotropie de forme n’est pas adaptée pour notre modèle et d’autres 

anisotropies de formes ont dû être trouvées. De ce fait, deux formes respectant la symétrie 

quadratique ont été étudiées pour représenter les nano-aimants : le carré et le disque. Pour s’assurer 

que l’aimantation sera bien uniforme dans les nano-aimants, une anisotropie magnéto-cristalline 

est ajoutée par l’intermédiaire du matériau magnétique sélectionné : une couche de fer avec une 

anisotropie quadratique. La position relative des axes d’anisotropies magnéto-cristallines par 

rapport au nano-aimant présente une importance pour le cas de la forme carré. Deux configurations 

ont été discutées dans cette thèse, l’une où les axes d’anisotropies sont alignés avec les diagonales 

du carré (carré 0°) et l’autre où les axes d’anisotropies sont parallèles aux côtés du carré (carré 45°). 

Le premier objectif de ces simulations micro-magnétiques était de déterminer sous quelles 

conditions l’aimantation présente une configuration monodomaine uniforme. Pour cela la 

stabilisation de cette configuration a été testée en fonction des dimensions des formes (longueur 

pour le carré et diamètre pour le disque) et de l’épaisseur du matériau magnétique (fer). Les résultats 

sont présentés dans la figure 2. 

 

Figure 2_ Diagramme de phase en énergie pour deux configurations magnétiques (monodomaine et vortex). Il est représenté la 
comparaison entre les énergies associées à l’état monodomaine et à l’état vortex en fonction de l’épaisseur du fer combiné avec la 
taille de la forme. Les lignes (noire, rouge et bleue) représentent les régions où les deux configurations possèdent les mêmes énergies 
(respectivement pour le carré 45°, le carré 0° et le disque). En dessous de ces lignes l’état monodomaine est celui de plus basse 
énergie. 
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Cette étude démontre que pour favoriser la stabilisation d’un état monodomaine, il est 

nécessaire de travailler avec une couche de fer présentant une épaisseur inférieure à 2.5 nanomètres 

pour le carré 45° et inférieure à 1.5 nanomètres pour les deux autres formes. Après une étude 

détaillée des configurations micro-magnétiques, la forme carré avec les axes d’anisotropie alignés 

dans les diagonales apparait comme la plus adaptée pour notre modèle. En effet cette forme ne 

révèle que 4 degrés de liberté pour l’aimantation (monodomaine avec 4 directions préférentielles) 

contrairement aux autres formes. Finalement un dernier point a été testé via ces simulations: la 

validité de l’approximation dipolaire. Il s’avère que l’énergie entre deux nano-aimants présente le 

même comportement que celui entre deux spins et donc que l’approximation dipolaire est justifiée.   

Les simulations micro-magnétiques montrent qu’un carré réalisé dans un film mince 

épitaxié de fer présente un comportement analogue à un spin de Potts. Suite à cette observation, il 

est nécessaire de déterminer quelle composition d’échantillon permet d’obtenir un film mince de 

fer présentant une bonne qualité cristalline donnant lieu uniquement à une anisotropie quadratique. 

Dans le but d’obtenir la meilleure qualité cristalline pour le film mince de fer, nous avons utilisé 

une méthode d’épitaxie par jet moléculaire sous ultra-vide. Basé sur des précédents travaux menés 

dans notre équipe [8],  un matériau composé de MgO/V/Fe/V/Au a été élaboré. Une étude 

magnétométrique prouve que cet échantillon présente uniquement une anisotropie quadratique 

(voir figure 3) et nous avons également démontré que les interfaces ne fournissent aucune 

anisotropie magnétique de surface pour le fer [9]. 

 

Figure 3_(a) Aimantation normalisée en fonction du champ magnétique appliqué dans le plan du film le long des directions 
[110] et [1-10] du fer. (b) Aimantation normalisée en fonction du champ magnétique appliqué dans le plan du film le long 
des directions [100] et [010] du fer. (c) Aimantation à rémanence normalisée en fonction de la direction du champ appliqué 
dans le plan du film de fer. 

Après avoir déterminé un échantillon adéquat à la réalisation expérimentale du modèle de Potts à 

4 états, les réseaux de spins artificiels ont été réalisés en utilisant la lithographie électronique. 

Ensuite l’observation des configurations magnétiques a été testée grâce à la microscopie à force 

magnétique. Les premières mesures montrent le comportement intrusif de la microscopie à force 
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magnétique lié au champ de fuite crée par la pointe. En effet l’utilisation d’une pointe standard ou 

d’une pointe bas moment perturbe les propriétés magnétiques des nano-aimants. Pour résoudre ce 

problème, une couche non magnétique supplémentaire a été déposée sur l’échantillon dans le but 

d’augmenter la distance entre la pointe (bas moment) et la couche magnétique. Premièrement, une 

couche de PMMA a été testée et fait apparaitre un contraste de charge perturbant la détection du 

signal magnétique. Nous avons finalement sélectionné une couche de 20 nanomètres d’aluminium. 

Et nous avons démontré que cette couche permet d’observer le contraste magnétique du fer dans 

les nano-aimants, tout en évitant l’influence de la pointe durant les mesures.  

 Historiquement, les réseaux de spins artificiels ont été introduits pour réaliser 

expérimentalement des modèles de la physique statistique. Et l’un des principales objectifs pour 

ces systèmes est de déterminer le meilleur protocole pour explorer l’espace des phases, pour 

confronter les résultats expérimentaux avec ceux du modèle de spin. Pour cela deux protocoles 

majeurs sont couramment utilisés dans la communauté des réseaux artificiels. Le premier présenté 

par Wang et al [4] consiste à désaimanter sous champ tournant les réseaux (AC désaimantation). 

Le second exposé plus récemment [10] implique une désaimantation thermique, soit en recuisant 

l’échantillon au-dessus de sa température de Curie, soit en considérant un régime super-

paramagnétique. Dans cette thèse la désaimantation sous champ tournant et la désaimantation 

thermique considérant un régime super-paramagnétique ont été utilisés. Le protocole consistant à 

chauffer au-dessus de la température de Curie a été abandonné à cause de problèmes d’inter-

diffusion entre les couches (V/Fe). La première étude menée sur ces désaimantations, portait sur 

la détermination thermique. En effet il n’est pas évident d’entrevoir s’il est possible ou non 

d’observer un renversement de l’aimantation dans les nano-aimants avec la température. Pour cela 

les réseaux ont été recuits à une température de 300°C, et il apparait que selon la taille des nano-

aimants ont peut effectivement observer un renversement de l’aimantation. En effet en dessous de 

500 nanomètres de côté, une température de 300°C est suffisante pour donner une énergie 

thermique supérieure à l’énergie de barrière intrinsèque qui sépare deux directions préférentielles 

pour l’aimantation. De ce fait pour l’étude portant sur les désaimantations, des carrés de 300 nm 

de long ont été sélectionnés. Ensuite les paramètres optimaux pour la désaimantation thermique 

ont été déterminés et en particulier le temps de recuit (5h), la rampe en température (montée et 

descente : 0.1°C/min) et la température (350°C). L’étude théorique menée sur le modèle de Potts 

dipolaire à 4 états montre que le fondamental de ce système est composé de trois configurations 

chacune correspondant à une plage d’angle particulière. De ce fait expérimentalement, trois réseaux 

ont été réalisés et qui sont différenciés par l’angle entre les spins et l’axe du réseau (angle alpha : 0°, 

22.5° et 45°). Chacun de ces réseaux correspondant à une configuration particulière pour le 

fondamental du modèle de Potts dipolaire à 4 états. Après avoir réalisé les deux désaimantations 

(en champ et thermique), les configurations magnétiques ont été enregistrées suite à des mesures 

en microscopie à force magnétique et de ces configurations différents paramètres ont été extraits 

comme l’énergie dipolaire des réseaux et les corrélateurs spin-spin. De plus pour chaque angle de 

réseau, trois périodes ont été réalisées qui sont 500 nm, 600 nm, 700 nm. Ces trois périodes ont 

pour but de démontrer l’importance des interactions dipolaires lors des désaimantations. Une 

première conclusion importante apparait suite aux deux désaimantations.  En effet les résultats 

montrent une réduction de l’énergie dipolaire lorsque la période du réseau décroît, comme 

représenté sur la figure 4 qui montre les résultats obtenus après la désaimantation thermique. 
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Figure 4_ Représentation des énergies dipolaires correspondantes aux configurations magnétiques expérimentales (points jaunes, 
points bleus et points bruns), superposées aux énergies théorique du fondamental déterminées pour le modèle de Potts dipolaire 
à 4 états.  

La réduction des énergies dipolaires lorsque la période des réseaux décroît prouve que suite à la 

désaimantation (sous champ ou thermique) les interactions dipolaires conduisent le système vers 

un état de basse énergie. Cependant bien que les énergies dipolaires montrent l’influence du 

dipolaire pour les deux désaimantations, l’unique observation des configurations ne le permet pas 

pour la désaimantation sous champ. En effet seule la désaimantation thermique fait apparaitre une 

nette différence entre les configurations selon la période des réseaux, ce qui tend à prouver que 

celle-ci est plus efficace que la désaimantation sous champ. Ce fait ce confirme en comparant les 

énergies dipolaires obtenues ainsi que les corrélateurs. De plus pour la période de 500 nm, les 

configurations obtenues après une désaimantation thermique présentent une forte signature de 

l’état fondamental attendu pour le modèle de Potts dipolaire à 4 états. En effet pour un angle alpha 

de 0°, le système expérimental présente de larges domaines anitferromagnétiques, pour 22.5° le 

système présente de larges domaines ferromagnétiques et pour un angle de 45° un grand nombre 

de boucles apparait dans le réseau. Ces configurations sont présentées dans la figure 5. 

 

Figure 5_ Configurations magnétiques obtenues après traitement des images données par les scans MFM. (a) réseau 0°, (b) 
réseau 22.5°, (c) réseau 45°. 

Cependant, les résultats de la désaimantation thermique font apparaitre une rémanence de l’état 

initial, qui dans notre cas est imposé saturé dans une direction préférentielle de l’aimantation. Cette 

rémanence est en fait responsable en partie des faibles énergies déterminées après la désaimantation 

thermique. De ce fait l’origine de cette rémanence a été déterminée et après une observation 
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détaillée des configurations, il apparait que cette rémanence est due à une distribution de la barrière 

d’énergie qui sépare deux directions préférentielles pour l’aimantation. Cette distribution donne 

lieu à des hard switchers thermiques qui ne se retournent pas à la même température que les autres 

nano-aimants, et donc restent en quelque sorte figés lors du recuit. Il s’avère donc ici que la 

température utilisée pour le recuit (350°C) n’est pas suffisante pour activer thermiquement tous les 

spins. Cependant avec notre protocole expérimental nous sommes limités à cette température et il 

faudrait donc trouver une alternative dans le but d’augmenter la température de recuit.  

 Cette thèse a permis de présenter un travail théorique et expérimental sur un nouveau 

système de spins artificiels: le modèle de Potts dipolaire à 4 états. L’étude théorique a démontré la 

richesse de ce modèle en montrant que suite à une simple rotation entre les spins et l’axe du réseau, 

le fondamental du système présente des propriétés drastiquement différentes (configuration 

ferromagnétique, configuration antiferromagnétique et configuration boucle). Après plusieurs 

études préalables (simulations micro-magnétiques et étude magnétométrique), le réseau 

expérimentale correspondant à ce modèle a pu être réalisé. Et suite à des désaimantations (en 

particulier thermique), il s’avère que ce système expérimental présente une forte signature du 

fondamental attendu pour le modèle de Potts dipolaire à 4 états. Cependant notre meilleur 

protocole de désaimantation ne semble pas suffisamment efficace pour activer thermiquement tous 

les spins du réseau. De ce fait il serait intéressant de déterminer un nouveau protocole et une idée 

intéressante serait d’effectuer un recuit à une température de 400°C en rotation. De cette manière 

si un champ magnétique se manifeste durant le recuit, la rotation permettra d’avoir un 

comportement du système isotrope par rapport à ce champ. Une autre façon d’améliorer la 

désaimantation serait d’augmenter les interactions dipolaires entre les éléments, par exemple en les 

rapprochant.   
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GENERAL INTRODUCTION 

 

 

Geometrical frustration 

Geometrical frustration is defined as the impossibility for a system to satisfy simultaneously 

all its interactions [1, 2]. In physical systems, one of the most famous example is a triangle lattice 

composed of Ising spins at its corners and antiferromagnetically coupled [3], as represented in the 

figure 1. In this system it appears that due to the antiferromagnetic coupling, it is not possible to 

orientate the spins in such way that the three pairwise interactions are satisfied and in the best case 

only two of them present antiferromagnetic configuration. This means that for this system which 

can take 8 configurations, 6 configurations correspond to the ground state and 2 configurations 

correspond to higher energy states. Through this example, it appears that geometrical frustration 

results from the competition between interactions and particular geometry lattice. Indeed if the 

triangle lattice is replaced by a square lattice, an antiferromagnetic coupling does not generate 

contradictory situations and so geometrical frustration does not occur. Moreover mixing triangle 

lattice and ferromagnetic coupling, all spins can satisfy this coupling and so once again geometrical 

frustration disappears. 

 

Figure 6_ Example of geometrical frustration: triangle lattice composed of Ising spins at its corners with 

antiferromagnetic coupling. Placing the first two spins antiparallel in order to satisfy the antiferromagnetic 

coupling is not a problem, but for the last spins, it is possible to satisfy only one of the two interactions. 

This contradiction appears as a frustration and leads to a degenerated ground state. The six ground states 

configurations are represented and the impossibility to satisfy all the interactions is illustrated by the red 

points. 

 

An interesting property of such a frustration comes from the degenerated ground state. Indeed if 

for example the triangular lattice is extended in the case of larger lattice (in repeating the triangular 

lattice), it appears that the number of possible configurations (Ω) increases exponentially with the 

size lattice. It leads to a massively degenerated ground state. This degenerated ground state impacts 

directly the entropy of the system (S) given by the Boltzmann’s relation S=kB.ln(Ω), where kB is the 

Boltzmann’s constant. As the ground state is degenerated, at zero temperature, Ω takes a value 

much higher than 1 and this intriguing fact leads to a violation of the third principle of 
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thermodynamics enounced by Planck which says: “The entropy of all systems in internal 

equilibrium is the same at absolute zero temperature, and may be taken to be zero.” [4]. This 

consequence of the geometrical frustration has been firstly observed in the case of the Ising model 

applied for planar triangle lattices by Wannier [5], where he determined the exact value of the 

entropy per spin at zero temperature and demonstrated that the value is not zero but a constant 

which is equal to S=0.3383R, where R is related to the ideal gas constant. Thus in geometrical 

frustrated systems, the system can in theory explore all the ground state configurations and so 

fluctuate at low temperature. This characteristic has been a strong surge of interest in the scientific 

community since its discovery, not only in the case of theoretical geometrical frustrated spin 

models, but also experimentally in condensed matter.      

Historically, the first example of geometrical frustration in condensed matter is found in the water 

ice whose entropy is non-null at zero temperature. This fact was revealed through the experiments 

made by Giauque et al. in 1933 [6] and explained by the Pauling’s description of this system in 1935 

[7]. The oxygen atoms in the hexagonal phase of water ice present 4 hydrogen atoms as first 

neighbors, and this hexagonal phase preserves the distance between oxygen-hydrogen in the water 

molecule. However this distance is smaller than half the distance between oxygen-oxygen. Hence 

some hydrogen atoms are close to an oxygen atom and some hydrogen atoms are further away 

from an oxygen atom. Thus in considering the displacement vectors of 4 hydrogen atoms around 

an oxygen atom, we can consider a two-in/two-out configuration where the two-in vectors are 

related to the hydrogen atoms close to the oxygen atom and where the two-out vectors are related 

to the hydrogen atoms away from the oxygen atom (see figure 2 (a)). This Pauling’s description of 

the water ice, which given rise to the ice rules, explains the non-zero entropy observed at zero 

temperature. Indeed this particular condition on the position of 4 hydrogen atoms relative to one 

oxygen atom, induced a large number of possible configurations for each tetrahedral site. Similarly 

to the triangle lattice composed of Ising spins, this degenerated state leads to a non-zero entropy 

at zero temperature. 

 

Figure 2_ (a) hexagonal phase of water ice where the hydrogen atoms are related to black points and the oxygen atoms are 
related to white open points. This configuration respects the two-in/two-out ice rules, as observed by the displacement vectors 
related to hydrogen atoms centered on an oxygen atom. (b) Spin ice example related to magnetic oxides such as the Dy2Ti2O7 
where rare earth ions match the displacement vectors of hydrogen atoms in the water ice.    

 

This peculiar behavior of water ice can also be found in magnetic materials. Indeed if we take a 

tetrahedral lattice composed of spins in ferromagnetic interactions, the minimum energy of this 

system is obtained for a configuration where two spins point within the tetrahedron and two spins 
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point abroad the tetrahedron (see figure 2 (b)). Thus if we compare these spins with the 

displacement vectors of the hydrogen atoms in the water ice, it appears by analogy an identical 

behavior for these two systems which respects the two-in/two-out ice rules, hence the name spin 

ice system. A first equivalence between magnetic systems and water ice was identified in the 

pyrochlore magnetic structure of Ho2Ti2O7, presented by Harris et al. [8]. Indeed in this material, 

the magnetic moments are disposed following tetrahedral meshes and these magnetic moments are 

ferromagnetically coupled. Thus it appears exactly the same behavior as this one describes just 

above, where in order to minimize the system energy, the magnetic moments in each tetrahedral 

meshes have to respect the two-in/two-out configuration. This analogy between water ice and 

pyrochlore magnetic structure of Dy2Ti2O7 was confirmed in 1999 by Ramirez et al. [9] who made 

heat capacity measurements and found good agreement with water ice behavior. This first 

observation of the frustration in a magnetic material has attracted a large interest and has given rise 

to a new research field which is the pyrochlore spin ice physics where the magnetic moments 

present in these magnetic materials are treated as spins, hence the name “spin ice system”. Studies 

on these spin ice systems have revealed interesting results as for example (in the case of Dy2Ti2O7) 

the presence of effective ferromagnetic interactions between nearest neighbors [8] induced by 

dipolar coupling [10] which give rise to the 2-in/2-out spins configurations. Although the 

pyrochlore spin ice systems present really interesting properties linked with the geometrical 

frustration, these magnetic properties are determined through thermodynamic quantities or via 

scattering techniques (in particular neutron scattering) but not by direct observations. One cannot 

probe the state of each spins in the direct space. Finally the spins are located on the lattices sites of 

the crystal structure so that the lattice is fixed and imposed by the crystallographic arrangement. 

Even if Nature provides a large variety of systems, being able to control the topology of the lattice 

and to observe in the direct space the magnetic degrees of freedom for each spins would be much 

simpler and efficient to study geometrical frustrations.  

 

Artificial spin ice 

Motivated by advancements in nanofabrication processes, and in particular in lithographic 

design, Wang et al. [11] created artificial spin systems by designing nano-islands via Ebeam 

lithography in magnetic thin films. It can be noticed here that, at the same time, other teams have 

designed independently artificial spin systems like Tanaka et al. [12]. These artificial spin systems 

allow to create lattices in tuning topology, size and shape, and so can be seen as a perfect playground 

for the frustrated systems. Moreover in playing with the size (combined with the shape) of 

nanomagnets and with magnetic properties of the thin magnetic layer, it is possible to design 

nanomagnets which can be considered classical spins and in particular Ising spins. Indeed both 

Ref. [11] and [12] show atomic force microscopy (AFM) and magnetic force microscopy scan 

(MFM) which reveal Ising spin behavior for specific size and shape of the nanomagnet. The 

nanomagnets present an almost uniform magnetization which can take two preferential 

orientations along the nanomagnet’s long axis. Uniform magnetization in ferromagnets is not 

obvious and domains with moments pointing in opposite directions can be stabilized due to the 

competition between the exchange interaction (short range interaction which tends to align the 

magnetic moments parallel to each other’s), and the dipolar interaction (long range interaction 

which can form domain walls in order to minimize the demagnetization field). Yet it appears that 

if the size of nanomagnet is small enough, the cost in energy for the domain walls can be higher 
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than that of the demagnetizing energy and thus the magnetization in nanomagnet remains uniform 

in its entire volume and the nanomagnet becomes a magnetic monodomain. Therefore the 

nanometric size of the objects secures uniform magnetization and therefore e-beam lithography is 

required.  

“Historically”, two main lattices have been realized by e-beam lithography in order to reproduce 

“spin ice” lattice: the square lattice designed by Wang et al. [11] and the kagome lattice designed by 

Tanaka et al. [12]. Wang et al [11] contribution is considered as pioneering since they showed a 

protocol to explore the frustration effects and noticed the analogue behavior between artificial spin 

systems and the ice like physics. In the following we focus on the work of Wang et al. [11] based 

on a square network of permalloy nanomagnets. In figure 3 are represented both topography 

(AFM) and magnetic configuration (MFM) of the network. It is important to note here that MFM 

is a powerful technique to characterize in direct space magnetization of each elements. Nevertheless 

MFM can perturb the magnetic configurations of the systems due to the interaction between the 

leakage field of the tip and the stray field related to the magnetization of the nanomagnets. But by 

selecting the tip moment according to the magnetic properties of the nanomagnets it is possible to 

avoid this situation.  

 

 

Figure 3_ (a) AFM image related to a square lattice composed of permalloy nanomagnets. The size of nanomagnets are 
220nmx80nmx25nm (L x l x h). (b) MFM image related to the magnetic contrast of square lattice. It appears a black/white 
contrast for each nanomagnet, which reveals a magnetic monodomain behavior for the magnetization in these nanomagnets. (c) 
As these nanomagnets can be behave as Ising spins, it appears 16 possible configurations for each vertex which reveal 4 
degeneracy energy levels, as represented here. The Type I and Type II respect the ice rules (two-in/two-out) and appear in 
majority in the MFM scan (magenta and blue). This majority seems to indicate that this system presents the same behavior as 
the ice-like physics shown in the pyrochlore spin ices. After Wang et al [11]     

As mentioned previously, the realization of these artificial spin ice systems was motivated by the 

possibility to probe the frustration effects. In this aim Wang et al proposed a protocol to drive its 

system towards the ground state: the AC field demagnetization. This demagnetization protocol is 

described in detail in the chapter 4, section 4.1.1. The general idea of this demagnetization is to put 

the sample in an oscillating external field which at the beginning is strong enough to saturate the 

lattice, then decreases slowly up to this field is comparable to the island switching field. Thus the 

nanomagnets flips are possible though being partially controlled by the interactions between 
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nanomagnets, and it is expected that if the demagnetization is really efficient, the system can reach 

its ground-state. Moreover as the magnetization in nanomagnets lays in-plane in Ref [11], the 

sample is rotated during this demagnetization protocol to favor in-plane isotropy. 

MFM image in the figure 3 (b) shows the magnetic configuration generated by the demagnetization 

protocol. It appears that particular configurations are favored. Indeed for each vertex (element 

which is made up of 4 first neighbors spins as represented in the figure 3 (c)), the topology of the 

lattice combined with the spin nature (Ising spin) give naturally 16 configurations which give in 

fact 4 different energy levels (see figure 3 (c)). In comparing the energy levels it appears that the 

lowest energy states are the vertex with a configuration respecting the ice rules (two-in/two-out 

spins), and experimentally it is effectively the ice like configurations which seem be favored (more 

than 70%) after the demagnetization. Thus this particular vertex majority indicates that this system 

presents the same behavior as the ice-like physics shown in the pyrochlore spin ices.  

Ref [11] reveals all the potential of lithography-patterns array to explore experimentally spin 

models, like spin ice model. Indeed in these systems it is possible to pattern practically any lattices 

and spins (nanomagnet with magnetic monodomain configuration) in dipolar interactions between 

them. Since artificial spin systems have attracted lots of curiosities, many lattices have been already 

designed: square lattice [11], kagome lattice [12, 13, 14, 15], lattices composed of perpendicular 

spins [16, 17] or more recently Shakti lattice [95]. 

 

Motivation and Overview of the Thesis 

In the 1920’s, lots of spin models have been described and in particular two well-known 

models which are the Ising model [18] and the Potts model [19]. Thereafter, “exotic” spin models 

have been studied as the triangle lattice composed of Ising spins antiferromagnetically coupled [3]. 

Thus a new concept appeared which is the geometrical frustration, characterized by a massively 

degenerated ground state. This concept of frustration has been a strong surge of interest, in 

particular (for the condensed matter field) when this frustration has been identified in magnetic 

systems as the pyrochlore magnetic structure of Ho2Ti2O7 [8]. But as explained previously, these 

spin lattices in bulk materials present some restrictions related to the lattice topology or related to 

the observation techniques. In order to overpass these restrictions, new systems have been 

introduced (in particular by Wang et al. [11]) where it appears that thanks to nanofabrication 

processes, it is possible to design artificial spin systems which can be related to particular spin 

models as the spin ice model. Thus these artificial spin systems have been massively studied, 

essentially to observe and to understand the frustration effects in these systems. Up to now in all 

the artificial spin systems found in the literature, it emerges that all the spins designed are Ising 

spins where the magnetization (in-plane or out-of-plane) in nanomagnets have two preferential 

orientations. This particularity is one of the main motivation of this thesis, where the idea is to 

make use of the anisotropy (shape and crystalline) in order to design a new system where the spin 

is not a 2-states spin but a 4-state spin. Thus instead of playing on the topology of the lattices, like 

other groups did in the past in the artificial spin systems community, it is the spin himself which is 

used as a playground. Thus this artificial spin system is no longer linked to Ising model but to a 

particular case of Potts model which is the 4-state Potts model. Moreover as the coupling present 

in these artificial spin lattices is given by the dipolar interactions between nanomagnets, this model 

can be called the Dipolar 4-state Potts model. The thesis is structured into five chapters. The first 



  

 

 

27 
 

two chapters will be focused on the theoretical concepts and the essential prerequisites for the 

experimental realization of the dipolar 4-state Potts model. Then the remaining three chapters will 

be focused on the experimental results, in presenting the realization of this model then the results 

obtained from two main demagnetization protocols, the AC field demagnetization and the thermal 

demagnetization. 

The first chapter focuses on the theoretical concepts related to the Potts model. First the “classical” 

Potts model [19] properties are exposed and a comparison with the Ising model is presented. The 

experimental realization proposed in this thesis, through an artificial spin system, is clearly 

pioneering for this spin model. Nevertheless comparison with classical Potts model is limited as, 

in our artificial spin systems, the number of states for the spin is fixed at a particular value which 

is 4 states and interaction between elements is generated by dipolar interactions. Moreover artificial 

spin lattices are 2D lattices and so the Potts model related to these lattices is in fact the planar Potts 

model. In the chapter 1, we theoretically study the behavior of two spins in dipolar interaction in 

the case of two Ising spins then in the case of two 4-state spins (called Potts spins). Then this study 

is extended for the case of an infinite 1D chain composed of Potts spins and finally extended for 

the case of a 2D lattice (infinite and finite) composed of Potts spins. Through these studies it is 

demonstrated that the 2D lattice composed of Potts spins is a very versatile system as the simple 

rotation between spins and the lattice axis gives rise to very different properties for the ground 

state. 

The second chapter focuses on the prerequisites for the experimental realization. As it does not 

exist in the literature a realization of artificial spin system where spins are different from Ising spins, 

it is essential to determine the right conditions to design a 4-state spin. Up to now Ising spin have 

been induced using an uniaxial anisotropy shape in designing an elongated shape [11, 12, 16]. 

Micromagnetic simulations made with Mumax3 reveal that a shape respecting the quadratic 

symmetry turns out to be a good candidate to form 4-state spin. Moreover in order to enhance the 

nanomagnet 4-fold anisotropy, a cubic anisotropy is added through the selected material. Several 

shapes are studied as a function of the magnetic material thickness and low thickness square shape 

nanomagnet with cubic anisotropy in diagonals is found to be the best candidate. In the last part 

of the second chapter, we discuss the validity of the dipolar approximation, where the spins are 

considered as magnetic dipoles only in dipolar interactions,  to represent real systems composed of 

nanomagnets where others energies are present, like the exchange energy. 

The third chapter focuses on the experimental realization of the artificial spin system. The choice 

of the selected magnetic material as support for the patterning of nanomagnets is explained. A 

complete magnetometric study of this material is presented [20]. Then the nanofabrication process 

is detailed and a particular attention is given for the choice of parameters concerning the Ebeam 

lithography.  Finally, the measurement technique used for the magnetic configurations observations 

and the procedure to extract information from experimental data are described. Perturbation of 

the magnetic configurations by the leakage field from the MFM tip [21] are especially highlighted 

and solutions to avoid this problem are demonstrated.  

The last two chapters focus on the experimental results. As mentioned previously in the 

introduction, two ways lead the system towards its ground state: AC field demagnetization [11] and 

thermal demagnetization. For the latest demagnetization process two protocols are possible. The 

first protocol introduced by Zhang et al. [15] is to anneal the sample above its Curie temperature 

and then cooled the system. This protocol is not considered in this thesis to avoid any multilayer 
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sample alteration with high temperature. The second protocol is based on the tuning between 

magnetic material and nanomagnet anisotropy in order to obtain an adequate Néel relaxation time 

[22, 23, 24]. The fourth chapter reports the results obtained from two demagnetization protocols 

(AC field demagnetization and thermal demagnetization) in the case of decoupled Potts spins 

lattices. Then in the fifth chapter, the results obtained from two demagnetization protocols are 

presented in the case of coupled Potts spins lattices. The two demagnetizations are compared and 

it is demonstrated that the magnetic states obtained are different depending on the demagnetization 

protocol. The experimental results are compared with our theoretical calculations presented in the 

first chapter. The two demagnetization processes lead the system towards a low energy state which 

is not so far from this one expected for the dipolar 4-state Potts model, but thermal 

demagnetization appears to be more efficient than the AC field demagnetization.   

At last, although a conclusion is given at each chapter, a general conclusion is reminded at the end 

of this manuscript, where it is also provided the perspectives for future works resulting of this 

thesis.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

29 
 

 

Bibliography 

[1] C.Lacroix, P.Mendels and F.Mila, Introduction to Frustrated Magnetism-Materials, 
Experiments, Theory. No. v, Spinger Berlin Heidelberg (2011) 
 
[2] B.Canals, « Modèles de spins topologiquement frustrés : une introduction », mémoire 
d’habilitaion à diriger les recherches, Université Joseph Fourier, Grenoble (2010) 
 
[3] E.Ising, “Beitrag zur Theorie des Ferromagnetismus”, Z. Phys. 31, 253-258 (1925) 

[4] S.Blundell and K.M.Blundell, Concepts in Thermal Physics. OUP Oxford (2010) 

[5] G.H.Wannier, “Antiferromagnetism. The triangular Ising net”, Phys. Rev. 79, 357-364 (1950) 

[6] W.F.Giauque and M.F.Ashley, “Molecular rotation in ice at 10°K. Free energy of formation and 

entropy water”, Phys. Rev. 43, 81 (1933) 

[7] L.Pauling, “The Structure and Entropy of Ice and of Other Crystals with Some Randomness of 

Atomic Arrangement”, J. Am. Chem. Soc. 57, 2680 (1935) 

[8] M.J.Harris et al, “Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2Ti2O7”, Phys. 

Rev. Lett. 79, 2554 (1997) 

[9] A.P.Ramirez et al, « Zero-point entropy in spin ice », Nature. 399, 333 (1999)  

[10] B.C den Hertog and M.J.P.Gingras, “Dipolar Interactions and Origin of Spin Ice in Ising. 

Pyrochlore Magnets”, Phy. Rev. Lett. 84, 3430-3433 (2000) 

[11] R.F.Wang et al, “Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale 

ferromagnetic islands,” Nature. 439, 303–306 (2006)  

[12] M.Tanaka et al, “Domain structures and magnetic ice-order in NiFe nano-network with 

honeycomb structure”, J. Appl. Phys. 97, 10J710 (2005) 

[13] F.Montaigne et al, “Size distribution of magnetic charge domains in thermally activated but 

out-of-equilibrium artificial spin ice”, Scientific reports. 4, 5702 (2014) 

[14] N.Rougemaille et al, “Artificial Kagome Arrays of Nanomagnets: A Frozen Dipolar Spin 

Ice”, Phys. Rev. L. 106, 057209 (2011) 

[15] S. Zhang et al, “Crystallites of magnetic charges in artificial spin ice”, Nature. 500, 553 (2013) 

[16] I.A Choar et al, « Nonuniversality of artificial frustated spin systems », Phys. Rev. B. 90, 064411 

(2014) 

[17] S.Zhang et al, “Perpendicular Magnetization and Generic Realization of the Ising Model in 

Artificial Spin Ice”, Phys. Rev. Lett. 109, 087201 (2012)  

[18] E.Ising, “Beitrag zur Theorie des Ferromagnetismus”, Z. Phys. 31, 253-258 (1925) 

[19] Potts, “Some generalized order-disorder transformations”, Proc. Comb. Phil. Soc. 48, 106 

(1952) 



  

 

 

30 
 

[20] D.Louis et al, «Interfaces anisotropy in single crystal V/Fe/V trilayer », J.M.M.M. 372, 233-

235 (2014) 

[21] A.Thiaville et al, “Measurement of the stray field emanating from magnetic force microscope 

tips by Hall effect microsensors”, J. Appl. Phys. 82, 3182 (1997) 

[22] L.Néel, “Théorie du trainage magnétique des ferromagnétiques aux grains fin avec applications 

aux terres cuites”, Ann. Géophys. 5, 99–109 (1949) 

[23] V.Kapaklis et al, “Melting artificial spin ice”, New J. Phys. 14, 035009 (2012) 

[24] A.Farhan et al, “Direct Observation of Thermal Relaxation in Artificial Spin Ice”, Phys. Rev. 

Lett. 111, 057204 (2013) 

[95] I.Gilbert et al, “Emergent ice rule and magnetic charge screening from vertex frustration in 

artificial spin ice”, Nature Physics. 10, 670-675 (2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

31 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

32 
 

1. THE DIPOLAR 4-STATE POTTS MODEL 

 

1.1 The Potts model 

Historically the Potts model [19] has been introduced as a generalization of the Ising model 

[18] to more than two values for the spin. Domb inspired by the works of Askin and Teller [25], 

proposed a model describing a system with q components for the spin, then Potts continued this 

work during his Phd [26] up to present the current Potts model. Up to now, this model has attracted 

large interest because it relates to many remarkable problems in lattice statistics and because it has 

been proved to be more general and richer than Ising model. Thus it appears in the literature a 

large number of publication on the subject (see Review F.Y.Wu [27]). As our work is a specific 

extension of Potts model, we just present below a general introduction to Potts model, in order to 

give only the fundamental principles of this model and to show some experimental applications. 

Originally, Domb proposed a system close to the Ising spin model, taking into account interacting 

spins which can be parallel or antiparallel but where the spins are confined in plane and can explore 

specific angles given by the equation (1-1): 

𝜃𝑛 =
2𝜋𝑛

𝑞
, n = 0,1, … q − 1 

Considering the nearest neighbors interactions, the most general form depends only on the angle 

between spins and thus the Hamiltonian of the system is given by the equation (1-2):  

ℋ = − ∑ 𝐽(𝜃𝑖 − 𝜃𝑗)

<𝑖,𝑗>

 

Where 𝐽(𝜃) is a 2π periodic even function.  

Thus Potts (under the supervision of Domb) used this equation (1-2) for the Hamiltonian and he 

defined the function 𝐽(𝜃) in the following way: 

𝐽(𝜃) = −𝐽1 cos 𝜃 

And so the critical point (where it occurs a transition between an ordered system and a disordered 

system) of this model on square lattice has been determined by Potts for q=2 (Ising model) and 

for q= 3, 4, but he mentioned that with the equation (1-3), this model for q>4 has no analytical 

solutions for the critical points [19] and so he introduced a simpler function to replace 

the equation (1-3) which is: 

𝐽(𝜃𝑖𝑗) = 𝐽2𝛿𝐾𝑟(𝜃𝑖 , 𝜃𝑗) 

With  

J2: interaction energy between adjacent spins 

δKr(ni ,nj): Kroenecher delta function which gives 1 if spins are in the same state and 0 if 

not. 

(1-1) 

(1-2) 

(1-3) 

(1-4) 
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Potts has introduced two definitions for the Hamiltonian which appear through the equations (1-

3) and (1-4). In reality these two equations correspond to two different models which are called the 

planar Potts (or vector Potts, or clock) model for the equation (1-3) and the “standard” Potts (or 

Ashkin-Teller-Potts) model for the equation (1-4). These two models are identical for 𝑞 = 2  (Ising 

model) and 𝑞 = 3 (by taking respectively J2=2J1 and J2=3J1/2) but differ for larger q. In the 𝑞 = ∞ 

limit, the planar Potts model becomes the XY model. 

In order to describe the behavior of Potts model as a function of temperature, in statistical Physics, 

Potts model probability function and Potts model partition function are fundamentals and the 

study of these functions have stimulated a large number of works [28]. As mentioned previously, 

Potts model for q=2, 3, 4 has been resolved and its critical point (for this 3 values of q) is now 

well-known in the field of statistical physics. However, for q>4 the resolution of this model appears 

more complex and thus it has attracted a great interest, and especially for mathematicians which 

have explored properties of this model (standard Potts model) through the Potts model partition 

function. That is why this function has been studied in a variety of ways as: 

 -the evaluation of the Tutte polynomial [29] 

-the approximation of this partition function using a simulation technique such as 

Metropolis Algorithm [30]   

This calculation (in particular simulation techniques) is not exact but it is an effective way for 

researchers to use the Potts model in order to investigate tricky applications, as for example the 

foams behavior as shown in the experiment described by Sanyal et al [31]. Thus in term of 

applications this Potts model turns out to be useful even for the “simplest case” where q=2 

(identical to Ising model), and in particular for magnetism. Indeed this model has in particular 

allowed to determine the critical temperature (called Curie temperature) at which a magnet loses its 

magnetism [32].  

Experimental realization of the Potts model (and spin systems in general) can be made based on 

the principle of universality “from which one is led to seek for real systems belonging to the same 

universality class, having the same set of critical exponents, as the spin model in question” (extract 

from Review F.Y.Wu [27]). Thus in our case, one of the possible systems which can be described 

by the Potts model is a system governed by Landau-Ginzburg-Wilson (LGW) Hamiltonian. And 

an example of this case is the transition occurring in monolayers in crystal surfaces, where Domany 

et al [33] have shown that adsorbed systems can be described by LGW Hamiltonians of the 

adatoms count as a lattice gas. Thus historically the experimental realization of the Potts model has 

been based on this principle of universality.  

More recently, with the growing interest of the frustrated systems, more experimental realizations 

of spin models have been explored, and in particular in an emergent sphere which is the artificial 

spins systems. Indeed thanks to Wang et al [11], it has been shown that it is possible to realize 2 

dimensions artificial spin systems thanks to Ebeam lithography in order to study problems of lattice 

statistics. These artificial spins systems are used to study a particular model which is the Ice model. 

However up to know, these experimental systems correspond to one particular case of the Potts 

model which is the planar 2-states Potts model, where the lattices can take several different 

topologies but where the spins are always Ising spins (q=2). My PhD work has been especially 

motivated by the fact that only Ising spins have been experimentally studied so far. Here a new 

artificial spins system where spins can take not only two but four states is realized which allows us 



  

 

 

34 
 

to study the 4-state planar Potts model. However we must notice that our new artificial spins system 

is particular since it relies on dipolar coupled spins whereas most statistical physics models treat 

exchange like interactions. 

  

 

1.2 The dipolar 4-state Potts model  

The general Potts model presented in the above section describes exchange coupled spins 

where the interaction strength is characterized by exchange energy (J) between two adjacent spins. 

But in the artificial spins systems, by nature, it is the dipolar interactions which coupled the spins 

between each other. In the so-called dipolar Potts model, the system is composed of magnetic 

moments 𝑚𝑖⃗⃗ ⃗⃗  , which can be regarded as spins, and which are coupled by dipolar coupling, and 

where the system energy is given by the following Hamiltonian:    

ℋ = −
µ0
4𝜋

3(𝑚𝑖⃗⃗ ⃗⃗  ⃗.𝑢𝑖𝑗⃗⃗⃗⃗⃗⃗ )(𝑚𝑗⃗⃗⃗⃗⃗⃗ .𝑢𝑖𝑗⃗⃗⃗⃗⃗⃗ )−𝑚𝑖⃗⃗ ⃗⃗  ⃗.𝑚𝑗⃗⃗⃗⃗⃗⃗ 

𝑎3
  ,      

Where 𝑢𝑖𝑗⃗⃗⃗⃗  ⃗ represents the unit vector between i and j magnetic moments, and a is the distance 

between them. Through the scalar products which appear in the equation (1-5), it appears a 

fundamental characteristic of the dipolar interaction which is an anisotropic behavior. Indeed due 

to the scalar products, it is expected different energy values according to the direction between the 

magnetic moments (spins). The dipolar Potts model does thus not obey equation 1-2. 

As mentioned in the introduction, up to now in the artificial spins systems, the spins are always 

Ising spins with two states (2 equivalent directions). So it is interesting to observe firstly the dipolar 

energy behavior for two Ising spins and then to extend this study in the case of two Potts spins 

with four states (4 equivalent directions) that we can call 4-state Potts spins. Indeed this study of 

two spins will allow to show the interest (and also the complexity) of a system where the spins are 

no longer Ising spins but 4-state Potts spins. 

Thus in the case of two Ising spins, the equation (1-5) gives the following relation: 

ℋ = ±
µ0.𝑚

2

4𝜋.𝑎3
(3cos2𝛼− 1) , 

Where α represents the angle between spin and axis between two spins, as represented in the figure 

1-1, and where “a” is the distance between two spins. 

 

 

Figure 1-1_ Alpha definition in the case of two Ising spins: angle between spin and the direction between two spins 

 

(1-5) 

(1-6) 
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It is possible to reduce the dipolar energy writing by normalizing this equation by the coefficient 
µ0.𝑚

2

4𝜋.𝑎3
. Indeed for this part and for all the calculations presented in this work, it is considered that 

the distance between two first neighbor spins is the same (called a) and that the moment m is the 

same for all spins. Now it is possible to represent the dipolar energy given by the equation (1-6) as 

a function of the alpha angle. 

 

Figure 1-2_ Dipolar energy calculated for two Ising spins as function of the angle alpha. Red line corresponds to ferromagnetic 
configuration and blue line corresponds to antiferromagnetic configuration. The configurations for two spins related to each curve 
in the case of alpha equal to 0° and 90° are represented. 

The figure 1-2 shows, as expected, a different behavior according to the angle range observed. For 

angle range from 0° to 54.7°, the system present a ferromagnetic coupling (red area) and so spins 

tend to form parallel configuration. For the angle range from 54.7° to 90°, the system presents an 

antiferromagnetic coupling, and so the spins tend to form antiparallel configuration. Moreover for 

an angle equal to 54.7°, it appears a singularity where the ferromagnetic and antiferromagnetic 

configurations are equivalent, which leads to an absence of coupling between spins. Thus in the 

simple case of two Ising spins in interactions via dipolar coupling, it appears two possible 

configurations according to the angle range which are parallel or antiparallel configurations. 

Now it is interesting to extend this study in the case of two Potts 4-state spins in order to determine 

the difference brings by these 4 states on the dipolar energy. In this case spins can take 4 directions, 

orthogonal to each other, and a simple example of their configurations is represented in the figure 

1-3. 

 

 

Figure 1-3_ Representation of the 4 states possible for a Potts spin and alpha definition in the case of two Potts spins  
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Thus in the case of two spins, 16 configurations are possible and the energies corresponding to 

these configurations are showed in the following equation: 

ℋ = [

−3cos2𝛼 + 1 −3sin 𝛼 cos 𝛼 3cos2𝛼 − 1 3 sin 𝛼 cos 𝛼
−3sin 𝛼 cos 𝛼 −3sin2𝛼 + 1 3sin 𝛼 cos 𝛼 3sin2𝛼 − 1
3cos2𝛼 − 1 3sin 𝛼 cos 𝛼 −3cos2𝛼 + 1 −3sin 𝛼 cos 𝛼
3sin 𝛼 cos 𝛼 3sin2𝛼 − 1 −3sin 𝛼 cos 𝛼 −3sin2𝛼 + 1

] 

This energy matrix sheds light on 6 different energy values which depend, as for the case of two 

Ising spins, on alpha angle. Thus at this step, it already appears that the fact to allow 4 states for 

the spin instead of 2 states brings more complicated system in term of coupling. Now it is 

interesting to represent these 6 energy levels as a function of the alpha angle in order to observe 

the coupling present in the system according to the angle range observed. 

 

Figure 1-4_ Dipolar energies for two Potts 4-state spins as function of the angle alpha. Red lines correspond to ferromagnetic 
configurations, blue lines correspond to antiferromagnetic configurations and green line correspond to perpendicular 
configurations. The configurations for two spins related to each curve in the case of alpha equal to 0° and 90° are represented. 

The figure 1-4 shows the 6 energy levels as function of the angle between spin and the axis between 

two spins. The red, blue and green curves correspond respectively to the energies related to 

ferromagnetic, antiferromagnetic and perpendicular configurations. Thus a first point to notice 

here is the apparition of supplementary coupling due to the possible configurations between spins, 

which is the perpendicular coupling. Moreover it appears that this perpendicular state, related to 

the perpendicular coupling, is the lowest in energy for an angle range from 29.3° to 60.7°, while 

for an angle range from 0° to 29.3° and from 60.7° to 90°, the system presents a ferromagnetic 

coupling between spins.  

To conclude, the dipolar 4-state Potts model presents several specificities:  

- Due to nature of the dipolar coupling, the coupling is anisotropic and depends on the 

direction between spins. This differs drastically from clock model or standard Potts model 

- A two spin system has 6 different energy level (compared to 2 for Ising model) 

- The coupling between two spins can be either ferromagnetic or perpendicular 

 

Now it is interesting to consider the case of an infinite 1D chain composed of Potts 4-state spins.    

(1-7) 
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1.3 The dipolar 4-state Potts model : Infinite 1D chain 

Now that the dipolar energy behavior in the case of two spins has been determined, it is 

possible to extend this study in the case of an infinite 1D chain of Potts 4-state spins. Obviously 

an infinite 1D chain leads to an infinite of configurations. In order to do a simple analytic analysis, 

we will essentially restrict ourselves to configurations with a period of two spins. And so the 

configurations selected in this part are those directly given by the 6 configurations determined in 

the case of two spins. Indeed to form the infinite 1D chain, it is selected a “unit mesh” composed 

of two spins and this unit mesh is repeated an infinite number of times. An example of this process 

is exposed in the figure 1-5, which represents the 1D chain with a unit mesh composed of two 

perpendicular spins. Considering 6 possible configurations between two Potts 4-state spins, it will 

also be the case for the infinite 1D chain. Note that this study does not give the fundamental state 

of the chain but it provides an indication of its behavior according to the alpha angle (angle between 

spins and chain axis) for the 6 energy levels corresponding to configurations with a period of 2.      

 

Figure 1-5_ 1D chain composed from two perpendicular spins repeated indefinitely  

Thus the aim of this study is to determine the dipolar energy per spin (total energy of the chain 

divided by the number of spins) as function of the alpha angle and this for the 6 imposed 

configurations. In the following, only the calculation of the dipolar energy corresponding to the 

configuration represented in the figure 1-5 is detailed and results are directly given for the other 

configurations. 

The first step to determine the dipolar energy is to identify the different coupling between two 

spins in function the distance between spins. This identification of the coupling according to the 

distance between spins is possible due to the periodicity of the chain. Thus these coupling are 

determined in the configuration represented in the figure 1-5 and are represented in the figure 1-6. 
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Figure 1-6_ Coupling identification between two spins according to the distance between them for the case of perpendicular 
chain. Pairs of blue spins or red spins represent spins in interactions via ferromagnetic coupling but with different dipolar 
energies. Pairs of spins composed of one blue and one red spin represent spins in interactions via perpendicular coupling. The 
energies given here correspond to the energies related to the possible pairs of spins.   

In order to determine the total energy of this chain, it is necessary to take into account all the pairs 

of spins in this chain. Thus the principle is to calculate the dipolar energy for all these pairs then to 

sum these energies. Obviously the dipolar energy determined for pairs of spins depends on the 

alpha angle but also on distance between spins.  

This relation for the distance between spins explains the factors present in the energies of the figure 

1-6. Indeed the dipolar energy depend on the distance between spins via the following relation: 
1 

𝑎3
 

. Here a  is normalized to 1 and this is why in the energies presented in the figure 1-6, it appears 

the factors 
1 

13
 for E1, 

1 

23
for E2 and 

1 

23
for E3. In fact, in the figure 1-6, it is represented the dipolar 

energies according to the configuration given by the pair of spins, and for this particular chain it 

exists only three possible configurations for pairs of spins which can be related to the distance 

between spins. If we observe spins with an odd distance between them (1, 3, 5, …), the relative 

alignment between them is perpendicular. Now for the case of spins with an even distance between 

them (2, 4, 6, …), they are parallel. However it is interesting to notice here, that for this particular 

configuration, it exists two energy levels related to the ferromagnetic coupling and this is why it 

appears two energies for the same distance between spins depending on the pair of spins observed 

(E2 for red or E3 for blue).  

It is now possible to calculate the total energy of the spin chain by independently calculating the 

three coupling energies and then summing them.  Let’s start by calculating the energy related to the 

spins with uneven distances. As the chain is infinite, each spin has the same interaction with its 

right neighbor and with its left neighbor, hence a factor 2 against the energy ℋ1 presented in the 

figure 1-6. 

ℋ1 = −3sin(𝛼) cos(𝛼) [
1

13
+
1

33
+
1

53
+⋯] =  −3 sin(𝛼) cos(𝛼)∑

1

(2𝑛 + 1)3
 

∞

0

 

Then we calculate the energy related to pairs of red spins. As for the previous case, due to the 

infinite chain a factor 2 against the energy ℋ2 is present in the following energy. Moreover in this 

case and for the case of pairs of blue spins, it is important to notice that for this chain only the half 

of spins are concerned, hence another factor which appears and which is ½.     

Thus the dipolar energy related to pairs of red spins is given by the following equation: 

(1-8) 
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ℋ2 =
1

2
(1 − 3𝑐𝑜𝑠2𝛼) [

1

23
+
1

43
+
1

63
+⋯] =

1

2
(1 − 3𝑐𝑜𝑠2𝛼)∑

1

(2𝑛)3
 

∞

1

 

And finally we calculate the energy related to pairs of blue spins: 

ℋ3 =
1

2
(1 − 3𝑠𝑖𝑛2𝛼) [

1

23
+
1

43
+
1

63
+⋯] =

1

2
(1 − 3𝑠𝑖𝑛2𝛼)∑

1

(2𝑛)3

∞

1

 

Now in order to determine the total energy of the chain per spin, the energies given by (1-8), (1-9), 

(1-10) are summed, hence the following relation for the total energy:  

ℋ = −
1

2
∑

1

(2𝑛)3

∞

1

− 3 sin(𝛼) cos (𝛼)∑
1

(2𝑛 + 1)3

∞

0

 

These two sums converge and can be expressed conveniently with the Riemann zeta function as: 

∑
1

(2𝑛+1)3
= 

7𝜁(3)

8
    ∞

0   (1-12)         and  ∑
1

(2𝑛)3
= 

𝜁(3)

8
    ∞

1    (1-13)     with  𝜁(3) ≈ 1.202  

 

Thus the total energy corresponding to this chain is given by the following equation (1-14): 

ℋ = −
𝜁(3)

16
(42 sin(𝛼) cos(𝛼) + 1) 

 

By the same way, it is possible to determine the dipolar energies corresponding to the 6 

configurations studied in this part, and it turns out that these 6 energies converge. These energies 

are represented in the following table: 

 

Now it is interesting to run the same study as this one done in the case of two spins, which means 

to represent these 6 energies as function of the alpha angle, as showed in the figure 1-7. 

(1-9) 

(1-10) 

(1-11) 

(1-14) 
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Figure 1-7_ Dipolar energies corresponding to 6 configurations (based on 6 possible configurations for two spins) as function 
of the alpha angle. Red curves correspond to parallel configurations (ferromagnetic configuration in the unit mesh), blue curves 
correspond to antiparallel configurations (antiferromagnetic configuration in the unit mesh) and green curves correspond to 
perpendicular configurations (perpendicular configuration in the unit mesh). The configuration related to each curve in the case 
of alpha equal to 45° is represented. 

In the figure 1-7, the green, red and blue curves correspond respectively to unit meshes where the 

configuration between the two spins is perpendicular, ferromagnetic and antiferromagnetic. Thus 

it appears that the results for the infinite 1D chain are really similar to those observed for the case 

of two spins, as the order of the energy levels remains the same. Indeed between these 6 

configurations, the ferromagnetic configuration for the spins composing the unit mesh is the lowest 

in energy for an angle range from 0° to 30.7°. And for an angle range from 30.7° to 45°, it is the 

perpendicular configuration for the spins composing the unit mesh which is the lowest in energy. 

Thus it appears a similar behavior between the energy levels related to two spins and the energy 

levels related to the infinite 1D chain composed of infinite repetitions of two spins (unit mesh). 

But the simple configurations, with a period of two spins, envisaged here are not necessarily the 

lowest energy one. We thus have tested numerically all the possible configurations having a 

periodicity of 2, 3, 4, 5, 6, 8 and 10 spins. The figure 1-8 (a) represents (in black) the smallest energy 

among the configuration related to the different periodicities layered on the smallest energies 

represented in the figure 1-7. In a small angular range (from 29.3 to 33.2), the smallest energy is 

neither the ferromagnetic nor the perpendicular configuration. Some of these lower energy 

configurations are represented in figure 1-8 (b).  
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Figure 1-8_ (a) Dipolar energy related to the infinite 1D chain as function of the alpha angle: the black curve corresponds to 
the smallest energy among the configuration related to different periodicities (2, 3, 4, 5, 6, 8, 10). The red curve and green curve 
are the smallest energies determined for a 1D chain with a periodicity of two spins (see figure 1-7). (b) Some of lower energy 
configurations for an infinite 1D chain with different periodicities (2, 3, 4, 5, 6, 8, 10). 

These identified configurations are not necessarily the 

ground state as the ground state might have a periodicity 

longer than 10 (or no periodicity!). Nevertheless, it is 

possible to explain qualitatively this zone of "complex" 

ground state. If we consider only the coupling between the 

closest neighbors, a transition from the ferromagnetic to 

the perpendicular state should occur at an angle of 29.3 

(just as for two spins). However, taking into account the 

coupling between the next neighbors (see sketch), it 

appears two type of ferromagnetic coupling and one of them has a high energy. It is only above 

33.2 degrees that the gain provided by the perpendicular configuration between first neighbors 

compensates this higher energy and that the ground state is the perpendicular state. In the 

intermediate angular range, a frustration arises between 1st and 2nd neighbor coupling and results in 

more complex patterns. 

Through the dipolar energy between two spins and the dipolar energy for a particular infinite 1D 

chain, the behavior of these systems reveals a strong correlation between the properties shown and 

the angle between spin and the axis between spins. Now it is interesting to observe 2D lattices 

composed of 4-state Potts spins and to try to characterize its ground state thanks to the dipolar 

energy behavior. 
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1.4 The dipolar 4-state Potts model : 2D square lattice 

 

As represented in figure 1-8, the (infinite) square lattice of 4-state Potts model is defined 

by a lattice constant, a, which is just a scaling factor and the alpha angle between spins and lattice 

which is very important as, as we have seen before, it drastically changes the interactions between 

spins. 

 

Figure 1-9_ Convention used for the lattice parameters, where the angle between the spin and the lattice direction is called 
alpha, and the period, which is the distance between two spins, is called a. 

Calculating the energy of such a lattice requires summing an infinite number of configurations and 

issues related to the convergence of the sum can occur in the case of a long range interaction. This 

numerical aspect will be preliminary checked with two simple configurations before studying the 

nature of the ground state as a function of alpha. 

 

 

1.4.1 Numerical issues 

For evaluating the convergence issues, we will focus on two different configurations: the 

ferromagnetic and antiferromagnetic states. 

The ferromagnetic and antiferromagnetic configurations, are represented in the figure 1-10. 

 

Figure 1-10_ (a) Representation of an antiferromagnetic state ; (b) Representation of a ferromagnetic state 
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The method of calculation to determine the dipolar energies related to the ferromagnetic and 

antiferromagnetic state is similar to the one used for the 1D chain. Indeed the first step is to select 

a spin and to determine all the possible couplings with others spins, and so all the possible 

configurations for pairs of spins formed with the selected spins. In order to detail the calculation 

we take the ferromagnetic state as example. 

First an orthogonal base is defined where the base vectors represent the distances between two 

first neighbor spins (distance which is normalized to 1) and whose origin is a particular spin that 

we call (m00). Thus in the particular case of the ferromagnetic state all the spins are given, in 

Cartesian coordinates, by this equation: 

𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ = (
cos 𝛼

sin 𝛼
) .𝑚 

 

Where i and j represent the coordinates respectively along x and y axes and 𝑖, 𝑗 ≠ 0,0, and m the 

magnetization related to spins which is common for all spins. 

Now the dipolar energy between m00 and the others spins is calculated from the following equation: 

ℋ 𝑚00↔𝑚𝑖𝑗 = −
µ0

4𝜋. 𝑎3

3 (𝑚00⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑢𝑚00→𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ . 𝑢𝑚00→𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) − 𝑚00⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ 

𝑟𝑚00→𝑚𝑖𝑗
3

.
1

2
 

with𝑢𝑚00→𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  (𝑖
𝑗
)

1

√𝑖2+𝑗²
       and        𝑟𝑚00→𝑚𝑖𝑗

3 =
1

√𝑖2+𝑗²
3 

Thus it is possible to separate the terms appearing in the equation (1-16) and we obtain: 

            𝑚00⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑢𝑚00→𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ . 𝑢𝑚00→𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
𝑖𝑐𝑜𝑠 𝛼+𝑗𝑠𝑖𝑛 𝛼

√𝑖2+𝑗²
. 𝑚  

 

𝑚00⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑚𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ = 1.𝑚² 

hence 

ℋ 𝑚00→𝑚𝑖𝑗 = −
µ0𝑚²

4𝜋. 𝑎3
∑ ∑

3
𝑖2 + 𝑗²

(𝑖𝑐𝑜𝑠 𝛼 + 𝑗𝑠𝑖𝑛 𝛼)² − 1

√𝑖2 + 𝑗²
3

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

.
1

2
 

Where, in the case of infinite lattice, M tends towards infinity. 

And after the same normalization as used for the previous parts, the dipolar energy related to 

infinite lattice with ferromagnetic state is given by the equation (1-22):  

ℋ 𝐹𝑒𝑟𝑟𝑜 = −
1

2
∑ ∑

3(𝑖 cos 𝛼 + 𝑗 sin 𝛼)² 

√𝑖2 + 𝑗²
5 −

 1

√𝑖2 + 𝑗²
3

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 

 

(1-15) 

(1-16) 

(1-18) (1-17) 

(1-19) 

(1-20) 

(1-21) 

(1-22) 
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It emerges that the equation (1-22) is independent of the alpha angle and we can observe this fact 

in modifying this equation by the following way: 

Since i and j take all the possible values (infinite lattice), it is possible to replace i by j and j by –i:  

ℋ 𝐹𝑒𝑟𝑟𝑜 = −
1

2
∑ ∑

3(𝑗 cos 𝛼 − 𝑖 sin 𝛼)² 

√𝑖2 + 𝑗²
5 −

 1

√𝑖2 + 𝑗²
3

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 

 

Thus the sum of the equation (1-22) and (1-23) divided by 2 give the following equation: 

ℋ = −
1

4
∑ ∑ 3

(𝑖 cos 𝛼 + 𝑗𝑠𝑖𝑛 𝛼)2 + (𝑗 cos 𝛼 − 𝑖 sin 𝛼)2

√𝑖2 + 𝑗2
5

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

+
1

2
∑ ∑

 1

√𝑖2 + 𝑗²
3

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 

Then developing the equation (1-24), it is obtained the equation (1-25): 

(𝑖𝑐𝑜𝑠 𝛼 + 𝑗𝑠𝑖𝑛 𝛼)2 + (𝑗𝑐𝑜𝑠 𝛼 − 𝑖𝑠𝑖𝑛 𝛼)2 = 𝑖2 + 𝑗2 

And so the final expression for the dipolar energy related to the infinite lattice with ferromagnetic 

state is given by the equation (1-26): 

ℋ𝐹𝑒𝑟𝑟𝑜 = −
1

4
∑ ∑

 1

√𝑖2 + 𝑗²
3

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 

Equation (1-26) shows that the dipolar energy for the ferromagnetic state for 2D lattice is 

independent of the alpha angle.  

After a similar calculation, the dipolar energy related to antiferromagnetic state for an infinite lattice 

is given by the equation (1-27): 

ℋ𝐴𝑛𝑡𝑖𝑓𝑒𝑟𝑟𝑜 = −
1

2
∑ ∑ (−1)𝑖 .

3
𝑖2 + 𝑗2

(𝑖𝑐𝑜𝑠 𝛼 + 𝑗𝑠𝑖𝑛 𝛼)² − 1

√𝑖2 + 𝑗²
3

𝑀

𝑗=−𝑀

𝑀

𝑖=−𝑀

 

Contrary to the dipolar energy determined for ferromagnetic state, the equation (1-27) can’t be 

simplified in order to remove the angular dependence. And so we can observe two dipolar energy 

behaviors really different according to the concerned configuration.  

The sums involved in equations (1-26) and (1-27) must be convergent. Roughly speaking, with the 

increasing distance 𝑟 from the origin, the number of spin varies as 𝑟 with an interaction decreasing 

as 1 𝑟3⁄  so in the worst case (ferromagnetic configuration) the energy should converge as 1 𝑟⁄  (this 

is drastically different from the 3D case with a number of spin varying as 𝑟2which leads to no 

convergence). However, to compute numerically the sum, it is necessary to introduce a cut-off (in 

the framework of this PhD, we have not studied more efficient method like Ewald summation). In 

(1-23) 

(1-24) 

(1-25) 

(1-26) 

(1-27) 
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the following, we will address the effect of this cut-off values, in order to determine a reasonable 

compromise between speed and precision.  

In order to simplify the discussion, the results for only one alpha angle is presented here which is 

0°, but this study has been realized for one other angle (45°) and present the same results. We have 

also compared the evaluation of energy in an infinite lattice (with a cut-off) with the “exact 

calculation” of energy in a finite lattice. The advantage of this calculation is the accuracy of the 

energy determined, but obviously the disadvantage is the limitation of the lattice size (in our case 

450x450 spins). In comparing these two ways to determine the energies, it is expected that for a 

large number of spins the results are similar, but a difference should appear for small number of 

spins (we recall here that we are interested here in the energy per spin and not the total energy of 

the lattice).  

The two methods are compared (for our two reference configurations) in figure 1-11. In this figure 

the energy is plotted as a function of the finite lattice length, 𝐿. To be comparable, the cut-off value 

is expressed also in term of lattice length with the relation 𝐿 = 2𝑀 + 1. 

 

Figure 1-11_ Energies of ferromagnetic and antiferromagnetic state as function of lattice length. Green points: “exact” 
calculation and red points: analytical calculation. 

Firstly it is interesting to compare the two calculation ways in order to observe the edges influence 

on the energies. Indeed for the case where the length size is defined by the cut off (energies for 

infinite lattice) we consider that all spins have the same energies, but in the “exact” calculation we 

consider the energies of each spin and this one can be different due to the lattice edges. Thus the 

figure 1-11 shows that in the case of ferromagnetic state, the infinite lattice approach gives similar 

results as those observed for the “exact” calculation. This fact can be explained by the common 

configurations of all spins. Indeed as the spins are all in the same direction, the coupling between 

spins are identical. However in the case of antiferromagnetic states, the figure 1-11 shows that for 

small lattices (from 30x30 spins to 150x150 spins), a difference between the energies given by the 

two calculation ways occurs. And from size lattice of 150x150 spins the results between these two 
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calculation ways are similar. This difference present for the small lattices can be understand due to 

the edges lattices. Indeed for antiferromagnetic state, two coupling between spins are present (ferro 

and antiferro) and the presence of edges can favor one of these coupling, and so bring a difference 

in energy according to the spins observed. However even if it is possible to notice a difference 

between the energies, it remains that this difference is really weak and does not change drastically 

the energy behavior as function of the lattice length. 

Now we can study the main purpose of this section which is the dipolar energy convergence for 

ferromagnetic and antiferromagnetic state as function of the lattice length. In this aim the curves 

presented in the figure 1-11 are fitted, and we can observe a difference in the convergence 

according to the selected configuration.  Indeed it appears thanks to the fits that the dipolar energy 

related to ferromagnetic state (given by the equation (1-26)) converges as 
1

𝐿
 whereas the dipolar 

energy related to antiferromagnetic state (given by the equation (1-27)) converges as 
1

𝐿²
. The faster 

convergence of the antiferromagnetic is simply explained by alternating signs in the term of the 

sum or equivalently by the global zero magnetization of this configuration. The fits also give a very 

good estimation of the converged values which are:  

  -dipolar energy for an infinite lattice with ferromagnetic state: -2.258 

  -dipolar energy for an infinite lattice with antiferromagnetic state: -2.549 

In order to compare directly the convergence of the energies for the two configurations, we 

normalize these energies against the respective values determined for the infinite lattice. And so 

the energies represented in the figure 1-11 are divided by the energy values for infinite lattices and 

then represented in the same graphic, as showed in the figure 1-12.  

 

Figure 1-12_ Normalized energies as function of the lattice length for ferromagnetic and antiferromagnetic states. 

After the normalization, the figure 1-12 shows clearly the difference in the convergence of the 

dipolar energies according to the selected configurations. Moreover with this figure it appears that 

for these equations, a cut off equal to 250 (which corresponds to 500x500 spins lattice) seems an 

adequate agreement between time calculation and “quality” calculation. Indeed for this value the 

two energies are really close to those determined for infinite lattices (error less than 0.01%) and the 

time calculation remains reasonable. 
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Moreover these energies are also calculated for finite lattices by calculating the energies of each 

spin composing the lattices and the comparison between the two calculation ways allows to confirm 

the exactitude of our calculations. Indeed the “exact” calculation for the finite lattices is determined 

thanks to python program, but it is difficult to verify the validity of this program for big lattices. 

And thanks to the equations determined for these simple configurations, this python program is 

validated, and thus it will be possible to determine easily the dipolar energies related to various 

configurations for finite lattices. 

Thanks to this study carried out two simple configurations, the calculation methodology and the 

requirement to represent the dipolar energy according to the alpha angle are established. But it 

exists others interesting configurations which can be explored by the same method as this one 

showed for the ferromagnetic and antiferromagnetic state. Indeed as the lattice is infinite, it is 

complicated to determine the ground state of this one but it is possible to observe simple 

configurations which could be not so far away from this ground state. And so it is interesting to 

study these simple configurations in order to have an indication of the ground state behavior 

according to the alpha angle.  

 

1.4.2 Simple and 2 spins periodic configurations 

The main purpose of this section is to determine the behavior of the ground state for an 

infinite lattice according to the alpha angle. As it is not possible to determine directly this ground 

state, a way is to observe firstly the behavior of simple configurations. Towards this goal, a 

possibility to realize these simple configurations is to define (as for the infinite chain) a unit mesh 

composed by 2x2 spins and then to repeat this one an infinite number of times. Obviously 

“manually” it is not possible, for a reasonable time, to calculate all the energies related to the 256 

possible configurations for the unit mesh. Thus 4 simple configurations are selected and these 

configurations are chosen due to the type of coupling present in the unit mesh. Indeed thanks to 

the two spins study it appears that according to the alpha angle, some configurations that we know 

(see section 1.2) are lowest in energy. And so in observing the possible configurations for 2x2 spins, 

4 configurations seem to be advantageous in term of energy, and these 4 configurations are 

represented in the figure 1-13.    

 

Figure 1-13_ Unit meshes with the lowest energies for a lattice composed by 4 Potts 4-state spins. (a) antiferromagnetic state ; 
(b) loop state ; (c) wave state ; (d) ferromagnetic state.   
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Thus as expected the two configurations presented previously (ferro and antiferro) are part of the 

possible unit meshes. In using the same calculation as for the ferromagnetic and antiferromagnetic 

state, it is possible to determine the energies of these 4 infinite lattices. Then we suppose that the 

behavior of these 4 energies according to the cut off is similar to this one determined for the 

ferromagnetic and antiferromagnetic states, and so that taking a cut off equal to 250 we can 

consider that the energies are really close to their value for the infinite lattice. And so the energies 

as function of the alpha angle are represented in the figure 1-14. 

 

Figure 1-14_Dipolar energies related to 4 simple configurations as function of the alpha angle (cut off equal to 250 which 
means equivalent to 500x500 spins lattice). Simple configurations are defined from unit meshes which are ferromagnetic state 
(red), antiferromagnetic state (blue), loop state (green) and wave state (purple). 

Thus the figure 1-14 shows, through the energies of 4 simple configurations, that the ground state 

of infinite lattice should reveal different properties according to the alpha angle. Indeed in 

observing the figure 1-14, it appears that the dipolar 4-state square lattice is complex system as a 

simple rotation between spin and lattices directions give rise to very different properties. Thus with 

these 4 configurations we can observe that for spin directions close to the lattice direction, the 

ferromagnetic coupling between two adjacent spins tends to form lines of parallel spins and so to 

form a lowest energy state which is an antiferromagnetic state (blue curves). For spin directions 

close to 45 degrees from the lattices directions, the perpendicular coupling between two adjacent 

spins tends to form a “loop crystal” assuring a local flux closure. And for intermediate spin 

directions with the lattices directions, it is the ferromagnetic state which is the lowest energy state. 

An interesting point to notice here, is that the loop crystal phase can be consider as a generalization 

of the square ice proposed by Wang et al. [11], following a 2 in-2 out ice rule, but with a number 

of different configurations which is much higher. Moreover it seems that for a specific angle range 

(typically from 15° to 30°), with only dipolar interactions, the ferromagnetic state is the lowest in 

energy (for these 4 configurations). This observation is really interesting because “classically” in 

magnetism the dipolar interactions tend to form configurations which assure a flux closure, yet 

with this dipolar Potts model, it seems that ferromagnetic state can be one of the lowest energy 

states. 
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Thus the observation of the infinite square lattice composed of Potts 4-state spins reveals (through 

4 simple configurations) a really interesting behavior with just a rotation between spin and lattices 

directions. In this section, only 4 simple configurations are studied because the analytical calculation 

becomes really complex for more complicated configurations, but with just these 4 simple 

configurations, it is difficult to conclude on the ground state of infinite lattice, apart from the fact 

that this ground state should present an angular dependence. Thus a way to observe if it exists 

configurations which are lowest in energy as these 4 simple configurations, is to determine the 

energies related to all the possible configurations for lattices composed from a 2x2 spins unit mesh.  

In order to calculate the 256 energies, an alternative to the analytical calculation has to be found. 

And the way selected here is the use of the python program mentioned previously with some 

modifications. Indeed to realize the lattices, a unit mesh composed of 2x2 spins is defined and 

repeated a sufficient number of times to consider that the energies are these related to the infinite 

lattices. In this aim it is used the same calculation way as previously (“exact” calculation) with a cut 

off which corresponds to a 500x500 spins lattice. Thus the 256 possible configurations are 

generated by the program and the related energies are calculated. These energies as function of the 

alpha angle are represented in the figure 1-15. 

 

Figure 1-15_ Dipolar energies related to 256 configurations as function of the alpha angle (cut off equal to 250 which means 
equivalent to 500x500 spins lattice). The configurations are defined from unit meshes composed of 2x2 spins                                                                            
the lowest energy states as function of alpha are ferromagnetic state (red), antiferromagnetic state (blue), loop state (green). 

The figure 1-15 shows that in the particular case where the infinite square lattice is given by the 

repetition of unit mesh composed of 2x2 spins, the simplest configurations determined in the 

previous section are the lowest in energy. Indeed the 256 energies represented according to the 

alpha angle reveal that the antiferromagnetic state (blue curve), the ferromagnetic state (red curve) 

and the loop state (green curve) are the lowest energy states.  

This study seems to confirm that these 3 simplest configurations are good candidates to reveal the 

behavior of the ground state for the infinite square lattice. However with this study it is not possible 

to identify this ground state due to the particular way to generate the infinite lattice. Indeed the fact 

to impose a unit mesh composed of 2x2 spins limits the number of possible configurations for the 

lattice. A solution could be to increase the unit mesh size and to generate all the possible 

configurations, but for obvious reasons (time calculation) it is not possible to apply this solution. 
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Another way is actually to increase the unit mesh, but instead of generate all the possible 

configurations, it is used Monte Carlo simulations in order to reach a state close (or in the best case 

corresponding) to the ground state of the system.     

 

1.4.3 Monte Carlo simulations 

The previous considerations focus essentially on the low energy states of the system. In 

order to capture the thermodynamic of the system, it is necessary to take into account all the states 

and the partition function of the system. Even for system of few hundreds elements, it is not 

possible to consider all the states (especially for Potts spins with even more possible configurations 

than Ising spins). The Monte Carlo method is a widely used algorithm to solve this problem. An 

extensive and rigorous Monte Carlo study of the dipolar 4 Potts model is beyond the scope of this 

PhD work, however we present below some preliminary results. 

The infinite lattice is implanted here as a 30 x 30 lattice and taking into account periodical dipolar 

interactions up to 5 times the size of the lattice. At each Monte-Carlo step, 900 spins are 

consecutively chosen randomly. For each of these spins, the 4 energies corresponding to its 4 

different states are computed and one of them is selected according to a Boltzmann probability law 

(a spin can therefore rotate by 180 degree). For each temperature, after 100 Monte Carlo step 

thermalization, the energy is averaged over 100 supplementary Monte Carlo steps. Note that all 

these values have been chosen in order to achieve a reasonable computation time and that the 

results are therefore only indicative and should be confirm by "longer" simulations. Figure 1-16 

represents the results of this calculation for three different angles (4 different simulations for 22.5 

degree).  

 

Figure 1-16_Energy as a function of the temperature given by Monte Carlo simulations for three infinite lattices: 0° lattice, 
22.5° lattice and 45° lattice. Dashed lines represent the expected energies related to the ground state. 

As expected, the energy decreases with temperature, from 0 at high temperatures toward the 

ground state. For the 0 degree lattice, the antiferromagnetic ground state is perfectly achieved. For 

45 degree, the ground state is nearly achieved and the difference with the ground state is higher for 

the 22.5 degree angle. These differences originate from the presence of two or three domains of 

the ground state which cannot be removed at low temperature with the single spin flip algorithm 

that we have implemented. Nevertheless, the Monte-Carlo simulations perfectly reproduce the 

nature of the ground states that we have determined in the previous sections. 
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Considering the evolution toward the ground state, it appears as very regular for the 0 and 45 

degree with a maximum of specific heat around a reduced temperature around 1. For the 22.5 

degree geometry, some irregularities can be identified at reduced temperature about 0.5. This might 

be an indication of a two phase ordering of the system. These aspects have to be studied in more 

detail before any definitive conclusion. 

Thus this theoretical observation is really motivating for the realization of an experimental system 

which can match this dipolar Potts model. But experimentally, it is obvious that an infinite lattice 

is not practicable. And so a study of finite squares lattices is necessary, in order to observe the 

edges influence of these finite lattices on the energies represented in the figure 1-14. Experimentally 

finite lattices composed of 30x30 4-state Potts spins are designed (see section 3.3) and so this lattice 

size is used in the next section. 

 

 

1.5 Finite lattice 

Previous considerations deal with infinite lattices without border. However finite size 

effects are very important considering dipolar interactions and are responsible for effects like 

demagnetizing field, shape anisotropy, flux closure domains… In the following, finite lattice is 

studied and the study is concentrated on the size of the lattice which will be studied experimentally: 

30 x 30 spins.  

First one address the case of alpha=22.5 degrees which corresponds to a ferromagnetic ground 

state for the infinite lattice. Different Monte-Carlo simulations have been made in order to 

determine if it is indeed the case in a finite lattice. Figure 1-17 compares two configurations: the 

uniform ferromagnetic state and a low temperature configuration from Monte-Carlo simulations 

(selected among the smallest energy). The color code indicates the individual contribution of the 

spin to the total energy (blue for the lowest energies, red for the highest). The energy of the non-

uniform state is significantly reduced compared to the saturated state, which is consequently not 

the ground state for a finite lattice. 
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(a) E=-1.9766 (b) E=-2.0871 

 
 

Figure 1-17_ These two dipolar energies and these two configurations are determined for the case of alpha equal to 22.5°. (a) 

Dipolar energy and configuration related to a uniform ferromagnetic state. (b) Dipolar energy and configuration related to a low 

temperature configuration from Monte-Carlo simulations. 

The qualitative observation shows that: 

-The local spins arrangement is ferromagnetic. As exemplified in the figure 1-17 (b), this 

configuration is a multi-domain state with ferromagnetic domains separated by domain 

walls. 

-On the lattice borders, spins tend to be "parallel" to the borders. This is the cause of the 

energy reduction compared to the uniform state in which "perpendicular" spins increase 

significantly the total energy. This is analog to the reduction of surface magnetic charges 

(σ = �⃗⃗� . �⃗� ) which occurs for continuous ferromagnets. 

-The most common domain walls are 90 degree domain walls. There is a clear tendency for 

these walls to lie at 22.5 degree of the lattice (in figure 1-17 (b)). This is analog to the 

orientation of a 90 degree domain wall in continuous ferromagnets for reduction of bulk 

magnetic charges (𝜌 = ∆⃗⃗  × �⃗⃗� ). We can also note that some domain walls sit along the 

lattice directions.  

The single spin-flip Monte-Carlo method is not necessarily efficient to determine the ground state 

of a system with many local minima and long range interactions. Therefore, we tried to determine 

the ground state by applying different energy reduction schemes to different "classical" 

configurations. One of them is the border domains configuration, its optimal configuration is 

represented in figure 1-18 (a). It is interesting to note that contrary to the usual situation, a S 

configuration (two border domains with same orientation) is less energetic than a C configuration 

(opposite orientation minimizing the long range dipolar interaction). The energy of this 

configuration is not reduced compared to the previous multi-domain state obtained by Monte-

Carlo simulation. 
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(a) E=-2.0712 (b) E=-2.0875 

  

Figure 1-18_ These two dipolar energies and these two configurations are determined for the case of alpha equal to 22.5°.  (a) 

Dipolar energy and configuration related to the optimal border domains configuration determined thanks to Monte Carlo 

simulation. It is interesting to note that contrary to the usual situation, a S configuration (two border domains with same 

orientation) is less energetic than a C configuration (opposite orientation minimizing the long range dipolar interaction). (b) 

Dipolar energy and configuration related to the lowest energy realization of a vortex. 

Another "classical" configuration often encountered in finite size magnet is the vortex. Its lowest 

energy realization is represented in figure 1-18 (b). This configuration achieves a lower energy than 

our reference multi-domain configuration. This energy reduction is due to a compromise between 

the orientation of the four domain walls and the number of spins "perpendicular" to the borders. 

Actually another configuration, similar to the vortex, further minimizes the energy: the Landau 

state with an energy of -2.105. This configuration, represented in figure 1-19 (a), is actually the 

better one we have determined. It is however not possible to state definitively that is the ground 

state of the system. Nevertheless, we believe that this is a quite good overestimation of ground 

state energy for spins at 22.5 degrees from the lattice and if it exist other configuration with lower 

energy the gain would be marginal. 
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E=-2.1049 E=-2.4869 

  
Figure 1-19_ (a) Dipolar energy and configuration related to a similar vortex configuration: the Landau state. The dipolar 

energy and the configuration are determined for an alpha angle equal to 22.5° (b) Dipolar energy and configuration related to 

the lowest energy state for an alpha angle equal to 0°.  

We can now consider the case of others angles between directions of spins and lattice. A priori, 

the finite size effects should be negligible for low magnetization configurations like antiferromagnet 

and loop crystal. As exemplified in figure 1-19 (b) for the antiferromagnetic configuration (0 degree 

angle), if there is an energy increase due to spins normal to the lattice border, this energy increase 

is lower than the cost of a domain wall between two antiferromagnetic domains. We have verified 

with Monte-Carlo simulations and energy minimization from typical configurations that the 

antiferromagnet (alpha<15 deg.) and loop crystal (alpha > 29 deg.) are actually the ground state of 

the system. The figure 1-20 represents the energy of the ground state as a function of alpha, this 

energy is compared to the one of the simple configuration (antiferromagnet, ferromagnet, loop 

crystal).  

 

Figure 1-20_ The black curve represents the energy of the ground state as a function of alpha determined thanks to Monte 
Carlo simulations, and this energy is compared to the one of the simple configurations (antiferromagnetic state in blue dashed 
line, ferromagnetic state in red dashed line, loop crystal state in green dashed line). 
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It emerges in observing the figure 1-20, that for an alpha angle between 0° and 15° and for an alpha 

angle between 29° and 45°, the ground state present the same properties for the finite lattice as for 

the infinite lattice (respectively antiferromagnetic state and loop state). However for an alpha angle 

between 15° and 29° it exists, in the case of the finite lattice, lower energy state than the uniform 

ferromagnetic state observed for the infinite lattice. But it remains that the ground state is a multi-

domain ferromagnetic state.  

 

 

1.6 Summary 

Historically, in the 1920’s, lots of spin models have been described and in particular two 

well-known models which are the Ising model [18] and the Potts model [19]. However up to know 

in the artificial spin systems, all the nanomagnets designed in the arrays present themselves as 

classical Ising spins where the magnetization (in-plane or out-of-plane) in nanomagnets have two 

preferential orientations. Thus motivated by this observation, the idea was to design in playing with 

the anisotropy (shape and crystalline), a new system where the spin is not a 2-states spin but a 4-

state spin.   

In this context, this chapter has described briefly the “classical” Potts model with the general 

definition of the Hamiltonian related to this model, then a particular case was detailed which was 

the dipolar 4-state Potts model. Indeed in the artificial spin systems the number of states for the 

spin is fixed at a particular value (in this thesis 4 states) and the interaction between elements is 

generated by dipolar interactions, hence the spin model described. Moreover in the case of artificial 

spin systems the lattices are in two dimensions and so a supplementary condition on the spin model 

was introduced. Considering these properties linked to the nature of the artificial spin systems, the 

particular case of the Potts model described in this thesis was the dipolar planar 4-state Potts model. 

In this model it is considered spins with 4 states confined in a plane which interact between each-

other via dipolar interactions.  

Thus it was firstly described the behavior of two spins in dipolar interaction in the case of two 

Ising spins then in the case of two 4-state spins (called Potts spins). This study shows that the 

introduction of 2 supplementary states for the spins, induced a more complex behavior for the 

system. Indeed in comparing the case of two Ising spins with the case of two Potts spins, it appears 

that the Potts spin model presents six energies levels (against two for the Ising spin model) which 

correspond to three coupling (against two for the Ising spin model) which are ferromagnetic 

coupling, antiferromagnetic coupling and perpendicular coupling. Moreover for the two spin 

models, it is revealed that the behavior of energy levels is related to the angle between the spin and 

the axis between the two spins (called alpha angle), and so that according to this angle, the coupling 

present in the system is different.  

As this last observation was interesting, the study was extended in the case of an infinite 1D chain 

composed of Potts spins. And through the study of dipolar energy for an infinite 1D chain, the 

behavior of this system reveals a strong correlation between the properties shown and the angle 

between spin and the axis between spins (alpha angle). Indeed as for the case of two spins, it 

appears a different behavior for the system according to the alpha angle. However for this study 

only simple configurations was observed, like ferromagnetic state, antiferromagnetic state and 
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perpendicular state, but with these simple configurations it is demonstrated that according to the 

alpha angle, the configuration with the lowest energy is different.  

Then this study was extended to the case of 2D lattices composed of 4-state spins. For this study, 

the aim was to determine if it exists an angular dependence (linked to alpha angle) of the properties 

related to the ground state of this system, and if it exists this dependence, which configurations are 

favored according to this angle. As part of these questions, an infinite lattice was firstly studied. 

For that, the first idea was to simplify the problem in observing only two simple configurations 

which was ferromagnetic state and antiferromagnetic state. Thus the calculation of the dipolar 

energies related to these two configurations reveals an angular dependence clearly different. Indeed 

the ferromagnetic state shows a dipolar energy which is constant according to the angle between 

spins and the axis lattice (alpha angle), while the antiferromagnetic state shows a dipolar energy 

different according to the alpha angle. Thus the study was extended to the case of four simple 

configurations, which were ferromagnetic state, antiferromagnetic state, loop (or spin ice) state and 

wave state. And it appears that if it is considered only these four states, according to the alpha 

angle, the ground state present the properties of the antiferromagnetic state (spin directions close 

to the lattices directions), of the spin ice state (spin directions close to 45 degrees from the lattices 

directions) and of the ferromagnetic state (intermediate spin directions). Thus through the study 

of these four simple configurations, the behavior of the ground state was approached, but it was 

not enough to determine the ground state of a 2D infinite lattice. Thus another extension of this 

study was done in considering a unit mesh composed of 4 spins (2x2 spins) repeated an infinite 

times to obtain the infinite lattice. Creating the infinite lattice from this unit mesh, it was possible 

to determine all the possible configurations (256 configurations) and to determine the angular 

dependence of the dipolar energies related to these 256 configurations. And it appears that the 

three simple configurations studied previously (ferro, antiferro and spin ice states) remain the 

lowest energy states according to the alpha angle. Thus it seemed that these three configurations 

could be good candidates in order to describe the ground state of the infinite lattice. And in order 

to confirm this hypothesis, Monte Carlo simulations were preformed and it appears effectively that 

according to the alpha angle, the ground state shows the same properties as the antiferromagnetic 

state (spin directions close to the lattices directions), the spin ice state (spin directions close to 45 

degrees from the lattices directions) and the ferromagnetic state (intermediate spin directions). This 

observation reveals that the 2D lattice composed of Potts spins is a very versatile system as the 

simple rotation between spins and the lattice axis gives rise to very different properties for the 

ground state. This interesting properties has motivated the experimental realization of this spin 

model. But experimentally it was not possible to design an infinite lattice and so this “limitation” 

has motivated the study of a finite lattice, especially to determine the influence of the edges on the 

properties of the ground state. The choice of the number of spins composing the lattice was 

motivated by the experimental measurements, where it appears that a good compromise between 

time measurements and accuracy measurements is for a 30x30 lattice. And under this condition, a 

finite lattice composed of 30x30 spins was studied. This study reveals that for an alpha angle equal 

to 0° and 45° the ground state for the finite lattice presents the same properties as these for the 

infinite lattice. However for the part where the ferromagnetic state was the ground state for the 

infinite lattice, this study shows a lower energy state which is a Landau state composed of domains 

which follow the edges. But in term of dipolar energy, the difference between the ferromagnetic 

state and the Landau state can be considered as “reasonable”. Thus it was decided that, unless a 

perfect demagnetization, the ferromagnetic state can be a good indicator to determine the efficiency 

of the demagnetization performed on the experimental systems. 
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2. MICROMAGNETISM 

 

In order to realize experimentally the dipolar 4-state Potts model, a preliminary 

micromagnetic study is required in order to know if it is possible to design artificial spin with 

properties as close as possible to the "ideal" dipolar 4-state Potts model. Up to now in order to 

obtain a nanomagnet which can be analogue to an Ising spin, an uniaxial shape anisotropy was 

mainly imposed [11, 12] by designing an elongated shape. Perpendicular anisotropy (associated to 

the material) is another option which has been used for perpendicular Ising spins [16]. The uniaxial 

anisotropy combined with adapted magnetic material induces two nearly uniform magnetic states 

in nanomagnet which can be mapped onto an Ising spin. To realize the artificial Potts model, we 

envisage taking profit from the 4-fold anisotropy present in iron epitaxial thin films. But the proper 

anisotropy is only a necessary but not sufficient condition, and it is the micromagnetic study which 

will guide us to design an artificial Potts spin. 

The main issue is the achievement of four nearly uniform states. As a matter of fact, these states 

are required for mapping onto the spin model but also for generating a sufficient stray field to 

induce the dipolar coupling between the nanomagnets. This point is not trivial as nanomagnets 

tend to form multidomain or non-uniform magnetization patterns like vortex in order to decrease 

magnetostatic energy, even in the presence of cubic anisotropy [34, 35]. In this chapter, we will 

study the stability and relative energies of uniform and non-uniform states as function of the 

geometry of the nanomagnet.  

Another point is discussed in this chapter, which is the validity of dipolar approximation. Indeed 

the aim is to observe an experimental system composed of nanomagnets in order to design a spin 

model. Thus it is necessary to check if the spin model presented in the first chapter, where the 

spins are considered as magnetic dipoles only in dipolar interactions, is compatible with a real 

system composed of nanomagnets with spatial extension.  
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2.1 Micromagnetism introduction: contribution of 

Brown free energy 

As mentioned previously the support of this chapter is the micromagnetism. Indeed 

micromagnetic simulations are based on a theory developed in the 1940’s by W.F.Brown: the 

micromagnetism. This theory describes the properties of ferromagnetic environment [36] in taking 

the magnetization and also the different internal fields as continuous thermodynamic variables. In 

order to understand the different processes taking part in ferromagnetic environments as well as 

the difficulty to obtain a nanomagnet which can be considered as a macrospin (uniform 

magnetization in all the volume), it is essential to describe the different energies involved in the 

magnetization behavior for magnetic materials. 

This section is based on [37, 38, 39]. 

The magnetization behavior in magnetic material is fixed by the Brown free-energy minimization 

ETot. This energy is given in the following equation: 

𝐸𝑇𝑜𝑡 = 𝐸𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 + 𝐸𝑍𝑒𝑒𝑚𝑎𝑛 + 𝐸𝐷𝑖𝑝𝑜𝑙𝑎𝑟 + 𝐸𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 

Where it appears 4 energies which are exchange energy, Zeeman energy, dipolar energy and 

anisotropy energy. 

Thus in this section, the different energies reported in the equation (2-1) are described and we 

discuss the required compromises between these energies in order to minimize the Brown free-

energy.  

Exchange energy 

The exchange interaction, introduced by Heisenberg [40] as part of quantum mechanics, is an 

electrostatic interaction. It is induced by the overlapping of electronic waves functions related to 

atoms combined to the Pauli Exclusion Principle. This interaction, which is order of magnitude 

stronger than the others energies, is a short range interaction. This energy is given by the following 

equation:     

𝐸𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = ∫ 𝐴𝐸(∆
𝑀

𝑀𝑆
)²𝑑𝑉

𝑉

 

Where AE is the exchange stiffness and can take, regarding the nature of the material, a positive or 

negative value. This interaction is the source of the magnetic moments alignment.  

Furthermore, these magnetic orders exist up to a particular temperature. Indeed this interaction is 

in competition with the thermal agitation, which means that if the temperature increases, it will 

occur a reduction of the magnetization [41] up to “lose” the magnetization for a particular 

temperature which is the Curie temperature. 

Thus as part of the dipolar 4-state Potts model, a ferromagnetic material with a high exchange 

stiffness seems the most appropriate choice. Indeed this one via exchange interaction, will favor 

the apparition of domains within the magnetic moments are parallel between each other and 

therefore an uniform state. 

 

(2-1) 

(2-2) 
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Zeeman energy 

This energy appears when an external field (�⃗⃗� 𝑎𝑝𝑝) is applied on the magnetic material, and it is the 

result of the interaction between this magnetic field and the magnetization �⃗⃗� related to the material. 

Its expression is given by the following equation:  

𝐸𝑍𝑒𝑒𝑚𝑎𝑛 = −𝜇0∭�⃗⃗� (𝑟 ). �⃗⃗� 𝑎𝑝𝑝𝑑𝑉 = −𝜇0𝑀𝑠∭�⃗⃗� (𝑟 ). �⃗⃗� 𝑎𝑝𝑝𝑑𝑉 

Where 𝑀𝑠 is the spontaneous magnetization and where the integral takes into account all the 

volume related to the magnetic material. This energy tends to align the magnetic moments with the 

applied magnetic field.   

In this thesis, this energy is important only for the demagnetization protocol. Indeed as mentioned 

in the general introduction, one way to lead the artificial spin system towards its ground state, is 

the AC field demagnetization. And so in the following simulations reported in this chapter, which 

are focused on the determination of monodomain stability in nanomagnets, this energy will not be 

taking account. 

 

Dipolar energy 

The dipolar energy is the result of the interaction between magnetic dipoles, and this short range 

energy is order of magnitude smaller than the exchange energy. This one depends directly of a 

magnetic field (�⃗⃗� 𝑑), which is created by a magnetization distribution inside magnetic materials. The 

magnitude of this field is proportional to the magnetization inside material and its orientation is 

opposed at this one of the magnetization in order to close the magnetic flux.    

𝐸𝐷𝑖𝑝𝑜𝑙𝑎𝑟 = −
𝜇0
2
∭�⃗⃗� (𝑟 ). �⃗⃗� 𝑑𝑑𝑉 = −

𝜇0𝑀𝑠
2

∭�⃗⃗� (𝑟 ). �⃗⃗� 𝑑𝑑𝑉 

For the artificial spin, it will be favorable to minimize this energy (for example in playing with the 

shape of nanomagnet: in our case shape with cubic symmetry) in the aim to avoid the formation 

of domains in the nanostructure. But on the other hand, this energy is also the cause of the coupling 

between the nanomagnets and has to be high enough. 

 

Anisotropy Energy  

The anisotropy energy have different sources. In what follows, only one source is explained 

considering its importance in our study.  

-The magneto-crystalline anisotropy, which result of interactions between electronics orbitals of an 

atom and charge distribution of their environment. This energy depends directly on the material 

structure and on its symmetries. Its expression, for a cubic material, is given by this equation:  

𝐸𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 = ∫(𝐾1(𝑐𝑜𝑠²𝛼1𝑐𝑜𝑠²𝛼2 + 𝑐𝑜𝑠²𝛼2𝑐𝑜𝑠²𝛼3 + 𝑐𝑜𝑠²𝛼1𝑐𝑜𝑠²𝛼3)

+ 𝐾2𝑐𝑜𝑠²𝛼1𝑐𝑜𝑠²𝛼2 𝑐𝑜𝑠²𝛼3 +⋯)𝑑𝑉 

(2-3) 

(2-4) 

(2-5) 
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Where Ki are anisotropy constants and αi the angle between magnetization and crystallographic 

axes.  

The magneto-crystalline anisotropy shows that there are spatial directions where it is easier to 

magnetize a material and these directions are the easy magnetization axes. 

Although anisotropy energy is weaker than exchange energy, this one can be determinant for the 

magnetization direction. In our case, it is expected that the magnetization in nanostructure can take 

four directions. Thus, for the magneto-crystalline anisotropy, it will be wise to choose a material 

with a cubic anisotropy like iron, in order to stabilize four directions for the magnetization.  

With this preliminary study, it is possible to give some restrictions on the material and the shape 

of nanostructures which will describe experimentally the dipolar Potts model. Indeed with the 

minimization of those energies, it appears that a good candidate for the material should be a 

ferromagnetic material with cubic anisotropy and for the shape of nanostructures, squares or circles 

which have cubic symmetry should constituted favorable starting points for this experimental 

study.  

Now, to determine under which conditions on the material and on the shape, it is possible to design 

an artificial spin which respects all the properties expected by the spin model, a way is to use 

micromagnetic simulations.  

 

2.2 Micromagnetism as pathway to design artificial spin 

 In order to carry out micromagnetic simulations, the processing of the different 

equations governing the dynamic of the magnetization, impose to split the magnetic nanostructures 

in cells which can take several shapes (tetrahedral, orthorhombic, cubic…). In each cell, the 

parameters like magnetization, energy or effective field are fixed. According to the cells uniformity, 

two main micromagnetic models allow to describe the magnetization inside nanomagnets. The first 

is based on the finite elements method [42, 43, 44] and the second is based on the finite differences 

method [45, 46, 47, 48].  

As part of this thesis, the software used is an open-source-GPU accelerated micromagnetic 

simulation program: Mumax3 [49]. This program is based on a finite elements space discretization, 

as it is the case for a lot of micromagnetic simulation programs like “The object Oriented 

MicroMagnetic Framework” (OOMF). The main advantage related to Mumax3 is the use of GPU 

in order to make the calculations, which allows a time calculation shorter than the others softwares. 

In the aim to use the finite differences method, the space is discretized in a structured grid (2D or 

3D) composed of orthorhombic cells. Thus the volume quantities, like magnetization or effective 

field, are defined in the center of each cell while the coupling, like exchange, are defined at the 

interfaces between two cells. Moreover at each cells is associated a region with a value ranging from 

0 to 256. These regions are independent and for each number related to one region, it can 

correspond a different material (with different parameters). This software allows also to define a 

lot of shapes for the nanomagnets. In this aim the geometry is defined as a function f(x, y, z), which 

gives true if (x, y, z) are inside geometric shape and false in the contrary case. In order to determine 

the magnetization dynamic, Mumax3 calculates the evolution of the reduced magnetization 

�⃗⃗�  (𝑟 , 𝑡), where this reduced magnetization can presented a time and space dependence but where 

the amplitude is kept constant. Thus to determine the time and space dependence of the reduced 
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magnetization, the program calculates the time derivative of the reduced magnetization which 

represents the torque 𝜏 =
𝜕�⃗⃗⃗� 

𝜕𝑡
, where 𝜏  possesses three contributions which are: the Landau-

Lifshitz torque, the spin transfer torque of Zhang-Li and the spin transfer torque of Slonczewski. 

As part of this thesis, only the Landau-Lifshitz torque is relevant, the two other being related to 

electron transport phenomena. 

 

To make micromagnetic simulations, the first point is to fix the different parameters use for the 

magnetic material, like exchange stiffness, anisotropy constant, saturation magnetization and 

Landau-Lifshitz damping constant. In this aim all the simulations presented in this study have been 

realized with iron parameters with the values shown in the following table. 

 

 

 

Indeed, as mentioned previously, the selected material has to be ferromagnetic with cubic 

anisotropy and iron is a perfect material to respect those properties. The damping constant is 

nonrealistic but it is fixed at this value in order to increase the speed of convergence for our 

simulations. In the following section, the program code used in mumax3 is described. 

 

 

 

2.2.1 The program code 

In this section, the program code is briefly described in order to understand how are obtained 

the results shown in the next section. In this aim a standard simulation used for this thesis is used 

as example and the program is constructed step by step in detailing each step. 

1. Grid and cell: The grid defines the size of the box around the magnetic nanostructure and 

this size is defined by the number of cells that we choose. Then it’s necessary to select the 

cell’s size in meters. Grid and cell size must be set at the beginning of the script.  

 

An example for the script:  

Square grid with a length of 300 nm and a thickness of 2 nm:  
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Nx := 150 

Ny := 150 

Nz := 1 

sizeX := 2e-9 

sizeY := 2e-9 

sizeZ := 2e-9 

SetGridSize(Nx, Ny, Nz) 

SetCellSize(sizeX/Nx, sizeY/Ny, sizeZ/Nz) 

 

2. Material parameters: the material parameters define the parameters in the nanostructure 

use for describe the magnetization in the nanostructure. For mumax3 the vector’s origin 

is given by the grid center. 

 
 An example for the script:  

Iron parameter with two anisotropy axis directions along the diagonals of the grid: 
 

Msat  = 1700e3 

Aex   = 21e-12 

alpha = 0.2 

AnisC1 = vector (0.5, 0.5, 0)  

AnisC1 = vector (-0.5, 0.5, 0) 

Kc1 = 48e3 

 

3. Setting geometry: A magnet shape can be specified, other than the grid. If it’s the case, the 

magnetic material with the previous parameters is only in the shape and for the rest of the 

grid all the parameters (Msat, Aex…) take the value 0. In mumax3, without precision on 

the shape position, the shape is placed at the grid center. 
 
 An example for the script: 

Square shape which has the same size as the grid size. In this position, the anisotropy axes defined 

previously are in the diagonals of the square. 

a:=Rect (Nx*sizeX, Ny*sizeY) 

setgeom (a)  

 

4. Initial magnetization: At the simulation beginning, it is possible to set an initial magnetic 

configuration in the shape by assigning for example uniform, vortex or random 

magnetization.  
 
 An example for the script: 

Uniform magnetization along a shape diagonal as initial state. 

m = Uniform(1, 1, 0) 

Nx,y,z: cells number in x, y, z direction for the grid 

SizeX,Y,Z: cells size in x, y, z direction 

Sets the number of cells for X, Y, Z 

Sets the X, Y, Z cell size in meters 

Set the two anisotropy axes directions 

Sets the geometry to the given shape 

Sets a shape 
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5. Output quantities: Lots of quantities as magnetization, exchange energy, anisotropy energy, 

etc. can be output at the end of the simulation. Moreover those quantities can also be saved 

every period times during the simulation if we want a time dependence for those quantities. 
 
 An example for the script: 

Save (m) 

tableadd (E_total) 

tableadd (E_anis) 

tablesave () 

autosave (m, 10e-12) 

tableautosave (1e-9) 

run (20e-9) 

 

Now that the program code for mumax3 is described, it is essential to determine if mumax3 gives 

proper consideration to the cubic anisotropy. Thus, to check the cubic anisotropy, two simulations 

are realized: 

(a) Square with a length of 300 nm and only uniaxial anisotropy along a diagonal. 

(b) Square with a length of 300 nm and only cubic anisotropy along diagonals. 

For these two simulations, the magnetization is imposed uniform in one direction and the program 

reports the anisotropy energy related to this particular configuration. Then the magnetization 

rotates by one degree and the anisotropy energy is saved and this procedure is repeated for every 

angles (from 0° to 360°). For these simulations the magnetization is always imposed in-plane. 

 

Figure 7-1_ Anisotropy energies as function of the magnetization direction. The red points are the results related to a square 
with a cubic anisotropy defined in mumax3. The blue points are the results related to a square with a uniaxial anisotropy. 
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The figure 2-1 shows the anisotropy energy as a function of the uniform magnetization angle in 

the case where the square has cubic anisotropy (red curve) and uniaxial anisotropy (blue curve). 

And it appears a similar behavior for the energies, regardless the nature of the anisotropy related 

to the square. Indeed on this graphic, the two energy curves are minimum for two angles (45° and 

225°) which correspond at the angles where the magnetization is aligned with an easy magnetization 

axis (uniaxial axe in the diagonal square). Thus this figure reveals the presence of only one easy axis 

for the magnetization, regardless the nature of the anisotropy related to the square, while it is 

expected two easy axes in the case of the cubic anisotropy. With this study it appears that mumax3 

had a problem with the cubic anisotropy definition. This problem has been reported to MuMax 

authors and has been corrected in version 3.3. 

The easy way, to determine how mumax3 takes into account the cubic anisotropy, is to observe 

the magnetic configuration in a disc with cubic anisotropy when the initial magnetization is vortex. 

Indeed with cubic anisotropy, it should appear four domains in the disc and only two with uniaxial 

anisotropy. 

 

Figure 2-2_ Magnetic configuration obtained after relaxation from a disc with cubic anisotropy where the initial 
magnetization is vortex. These two figures are related to two versions of Mumax3: a) version 3.2 ; b) version 3.3. 

The figure 9 (a) shows the disc’s magnetic configuration after relaxation for the first version of 

mumax3, and this configuration shows two domains (represented in blue and yellow). However it 

was expected four domains for the equilibrium configuration, so we can conclude that for this 

version of mumax3, it exists a problem with the cubic anisotropy definition. We can observe in the 

configuration obtained with the latest version of mumax3 that this problem is solved (fig 9 (b)). 

Indeed with this latest version, the equilibrium state in the disc shows four domains, as expected 

for a disc with cubic anisotropy. 

After the description of mumax3 function and the verification of stability with cubic anisotropy 

definition, the next step is to realize “real” simulations in order to find under which conditions it’s 

possible to realize experimentally a spin with all the expected properties in order to match the 

dipolar 4-state Potts model. 
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2.2.2 The stability diagram of the monodomain state 

As exposed in the beginning of this part, the selected material for the micromagnetic 

simulations presented in this section is iron with cubic anisotropy. Generally in the nanostructures, 

the equilibrium state is not necessarily monodomain but can be more complex (Landau structures, 

vortices…). Up to now in the artificial spin systems, the spin model is related to Ising spins and in 

order to design this spin, one find in the literature that a magnet with typical size around a hundred 

nanometers combined with an uniaxial shape anisotropy (elongated shape) is a good candidate [11, 

12, 16]. In our case, where the aim is to design a spin with an uniform magnetization presenting 4 

preferential directions, this elongated shape is not adapted, however one can assume that the 

nanometric scale for the magnet remains an appropriate choice. Moreover as it is required 4 

preferential orientations for the magnetization in the nanostructure, the elongated shape seen in 

the literature is replaced by a shape presenting a cubic symmetry. Thus the cubic symmetry of the 

shape combined with the cubic anisotropy of Fe should allow the realization of an artificial spin 

which matches the spin used in the dipolar 4-state Potts model. Consequently, three shapes are 

selected for the simulations: a disc and two squares named square 0° and square 45° after the 

relative orientations of their borders with respect to the magnetic anisotropy axes (see figure 2-3).  

 

Figure 2-3_ Three possible candidates in order to design artificial spin which can match the properties expected to describe the 
dipolar 4-state Potts model. These three shapes are related to the position of the anisotropy axes of Fe.  (a) Square 45°: square 
with anisotropy axes in the diagonals. (b) Square 0°: square with anisotropy axes aligned with the edges of the square. (c) 
Disc: for this shape the position of the anisotropy axes are not important. 

As exposed in the literature [50], it exists several magnetic configurations for magnet. Depending 

of the size and thickness of nanomagnet, different magnetic configurations arise like single domain 

uniform, several uniform domains separate by domain walls [51] or vortex structure where the 

magnetization continuously curls around the center with the magnetization in-plane and in the 

center of the core the magnetization is perpendicular to the plane [52]. Micromagnetic simulations 

have been used in order to determine the stable configuration of thin nanomagnet as a function of 

different parameters (thickness, size or magneto crystalline anisotropy). An example is shown in 

the figure 2-4 (extracted of the Ref [53]) where it is studied the single domain to flux closure 

(vortex) transitions in thin ferromagnetic disks of Co, according to a variable uniaxial magneto 

crystalline anisotropy. 
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Figure 2-4 SD-V boundary for disks of diameter S and thickness t with varying uniaxial anisotropy (Ku=0 kJ/m3, Ku=10 
kJ/m3, Ku=20 kJ/m3,   and Ku=30 kJ/m3). Lines correspond to the analytical model, dots to micromagnetic simulations. 
The error bars estimate the inaccuracy of the simulation results introduced by the fact that the simulations were done on a finite 
grid in the (S, t) parameter space. The gray area shows the region in which the out-of-plane SD state prevails over the in-plane 
SD state. Figure and legend extracted from Ref [53]  

This figure 2-4 compares the stability of the single domain with the stability of the vortex state (as 

a function of the disk diameter and disk thickness). The results show that without uniaxial 

anisotropy the single uniform domain is stabilized for small thickness and small size of disks. 

Regarding the uniaxial anisotropy, the single uniform domain is stabilized by the anisotropy. The 

transition between single domain and vortex state results from the competition between the 

exchange energy in the vortex state and the dipolar energy of the single domain. Although the 

anisotropy studied is uniaxial (and not cubic as in our case), this approach is a good starting point 

for our study.  

Thus we have done a similar study where it is probed the influence of the size of the nanostructure 

combined with the thickness of the Fe layer on the stability of the uniform single domain. In our 

case the magneto crystalline anisotropy is cubic and its value is fixed at this one recorded in the 

literature for the iron and the three cases presented in the figure 2-3 are studied.  

For the three shapes, the magnetic state is firstly imposed like monodomain along the direction 

[110] which is related to an anisotropy axis direction, and we look at the equilibrium state’s total 

energy for the different shapes after relaxation (~20 nanoseconds with a "numerical" damping of 

0.2). And this for different thicknesses combined with different size of nanomagnets (widths). Then 

the same protocol is applied but with an initial magnetization which is imposed like vortex. Finally 

the energies related to uniform state and vortex state are compared at equilibrium.  
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Figure 2-5_ Stability diagram in energy for two magnetic configurations (monodomain and vortex state). It is represented the 
comparison between the energies related to monodomain state and vortex state according to the Fe thickness combined with the 
shape width. Thus it is reported the region where either configuration is the lowest in energy and this for the three shapes. The 
lines (black, red and blue) represent the region where the two configurations possess the same energy (respectively for square 45°, 
square 0°, and circle).   

In figure 2-5, the (black, red, blue) lines represent the borders where the two configurations possess 

the same energy (respectively for square 45°, square 0° and circle) according to the iron thickness 

and of the shape width. Below the curves the monodomain state is the lowest in energy and above 

the curves, it’s the vortex state which is the lowest in energy. It appears with this stability diagram, 

that if the aim is to stabilize the monodomain state, it is necessary to work with a thin film. 

Moreover, according to the shape, the required thickness is not the same. Indeed for the square 0° 

and the disc, the monodomain is stabilized against the vortex state for a Fe thickness around 1 nm 

(for a shape width up to 700 nm). However for the same shape width range, the square 45° shows 

monodomain state stabilized for a thickness around 2 nanometers. So it seems that experimentally, 

the square 45° is the easiest way to obtain a monodomain state. But it is important to notice here, 

that it is assumed that these two configurations are the most probable possibilities for the magnetic 

configurations, but it is possible that others configurations are stable or metastable.  

 

2.2.3 Internal magnetic configurations 

Thanks to the stability diagram presented in the previous section, it appears a possibility 

for disc, square 0° and 45° to possess monodomain state as the lowest energy state when the iron 

thickness is around 1 or 2 nanometers. Now it is possible to observe the micromagnetic 

configurations at equilibrium for those monodomains, and see if either appears more stable 

according to the shape. Thus, the micromagnetic configurations obtained with the previous 

simulations (with initial magnetization like monodomain) for an iron thickness of 1 nanometers 

and a length shape of 300 nanometers which are detailed. 
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Figure 2-6_ Micromagnetic configuration related to three cases. The figure at left represents the micromagnetic configuration 
corresponding to square where the anisotropy axes of Fe are aligned along the diagonals square. The center figure represents the 
micromagnetic configuration corresponding to square where the anisotropy axes of Fe are aligned with the edges square. The 
figure at right represents the micromagnetic configuration corresponding to disc. These micromagnetic configurations correspond 
to the configurations obtained from the previous simulations after relaxation for an Fe thickness of 1 nm and a shape width 
equal to 300 nanometers (length for square and diameter for disc). 

The figure 2-6 shows three different equilibrium configurations for the three shapes. 

1. For the square 45°, the equilibrium state stays monodomain (remanent 

magnetization equal to 0.99) in the same direction as the initial magnetization 

which is along a diagonal square. Moreover in this equilibrium state, the 

moments are all symmetric against the diagonal square and thus it exists only 

one way to obtain this equilibrium state.  

2. For the square 0°, the equilibrium state is mostly monodomain but this time 

the magnetization direction slightly rotates from the easy axis direction and two 

side domains are observed. Both aspects originate from the interplay between 

magnetocrystaline anisotropy and shape anisotropy which favors a 

magnetization along the square diagonals. Moreover micromagnetic 

simulations shows that the equilibrium state can take slightly different 

configurations with different orientations of the side domains. Thus the 

monodomain can be composed by C state formed of border domains 

antiparallel between each other or S state formed of border domains parallel 

between each other.  

3. For the disc, the equilibrium state is monodomain along the anisotropy axis as 

the initial magnetization but as for the Square 0° case, this monodomain can be 

composed by C state or S state.  

The occurrence of different configurations for the same global orientation of magnetization leads 

to internal degrees of freedom in the context of artificial spins. These internal degrees of freedom 

can enrich the physics of the system [54, 55]. However for the first studies on this new spin systems, 

it is preferable to avoid any supplementary degree of freedom (especially as these border domains 

can significantly affect the coupling between elements). 

Consequently the square 45° appears to be the best choice of shape, as it combines a better stability 

in the phase diagram (easiest to stabilize monodomain state) to a high remanence (absence of 

internal degree of freedom). 
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2.3 Validity of the dipolar approximation 

Now that the best condition to realize experimentally the spin is determined, it is useful to 

study the coupling between these two spins. Indeed in the first part of this work, the theoretical 

study concerned dipolar interactions between spins (magnetic dipole) possessing 4 states. But 

experimentally even if the magnetization in nanostructure is monodomain, the magnetic 

configuration is not really a magnetic dipole but it has a spatial extension and some deviation from 

the strictly uniform state. So in this section, it is shown how the micromagnetism changes the 

interaction behavior between two spins possessing 4 states. In this aim, it’s interesting to study the 

energy levels given by the micromagnetic simulations and to compare with the energy levels 

expected in the case of two magnetic dipoles.  

For these simulations, the energy of a system composed by two squares with a length of 300 

nanometers is determined. The magnetic material is a 2 nanometers layer of iron with cubic 

anisotropy (to stabilize monodomain state) and these anisotropy axes are aligned with diagonals 

squares. The initial magnetization is always uniform along a diagonal square and the magnetic 

configurations in a square can take 4 preferential directions which are the four directions along 

diagonals square. For these simulations the system probes the 16 possible configurations between 

the magnetic configurations squares and give the total energy for each equilibrium state. Moreover 

with the theoretical study, it is determined that the energy levels of a system composed by two 

spins with four states depend on the angle between the two spins. So in these simulations two angle 

are studied: 0 and 45 degrees. As squares stay in the same position against the anisotropy axes, to 

define the angle, it’s the position between two squares which is modified. Indeed the angle alpha 

defined in the chapter 1 is represented in these simulations as the angle between mondomain 

direction in a square and the axis between two centers squares. On the figure 2-7, it is represented 

the configurations for an angle of 0 degree and 45 degrees. 

 

Figure 2-7_ Configurations imposed for the micromagnetic simulations, where the distance center to center is the same for the 
two configurations. (a) Configuration related to an alpha angle equal to 0°, (b) Configuration related to an alpha angle equal 
to 45°.  

An automatic procedure probes the 16 magnetic configurations of these two configurations and 

gives the energy related to each configuration. Then these energies are normalized in order to be 

compared with the energies determined in the section 1.2 which were normalized by the coefficient  
µ0.𝑚

2

4𝜋.𝑎3
 , where « a » represents the distance between two spins. So for the simulations, the energies 
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given by mumax3 are divided by this term 
µ0.𝑚

2

4𝜋.𝑎3
 where “m” is equal to 𝑉 ∗ 𝑀𝑠 . After this 

renormalization, we can represent the energies given for two nanostructures and for two dipoles 

in the same graphic as showed in the figure 2-8. 

 

Figure 2-8_ Normalized energies as a function of period (given by micromagnetic simulations) for all the possible magnetic 
configurations between two nanostructures in the case of an alpha angle equal to 0° (a) and equal to 45° (b). The dashed lines 
represent the energies determined for a system composed by 4-state Potts spins (section 1.2).  

Results from micromagnetic simulations are compared to the punctual dipoles energies (dashed 

lines) and we observe the same number of energy levels as in dipolar approximation framework 

and the energy hierarchy is conserved. Thus the micromagnetism, regardless the distance, does not 

show others properties than a system composed of two punctual dipoles, and so it seems 

reasonable to assume that the fundamental state for the experimental system  should behave as 

expected in the first chapter.   

Quantitatively, the coupling between elements should converge towards the dipolar approximation 

in the limit of large distances. It is indeed the case and for distance above 800 nm there are virtually 

no differences as the dipolar interactions decrease in 1 𝑟3⁄ . For smaller distances, a difference exists 

and increases as the distance is reduced.  This effect is very low for alpha of 45° but is significant 

for alpha of 0° with a coupling increased by 50% for a distance of 500 nm.  This difference is 

simply explained by geometrical considerations as the distance between "closest moments" (the 

gap between elements) is smaller in the 0° geometry (77 nm at 0° versus 100 nm at 45° for 300 nm 

elements with a period of 500 nm). 

To conclude, taking into account the spatial extension and a realistic magnetization distribution 

does not change drastically the interaction between artificial spins compared to the dipolar model. 

The nature of the coupling is exactly the same (same number of energy levels with identical 

sequence). It is only for the smallest distances and for alpha equal to 0° that a significant 

quantitative difference appears. This difference is limited to the energy of the low energy 

configuration (parallel spins) so the structure of the coupling is slightly different. Experimentally 

we will have to keep in mind that the coupling can be more efficient (and the system more prone 

to evolve towards its ground state) for alpha equal to 0°. Note that these differences are limited to 

the nearest neighbor coupling as it is negligible for large distances. 
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2.4 Summary and perspectives 

Motivated by the properties shown by the dipolar 4-state Potts model in the case of systems 

composed by pure spins, the possibility to design experimentally this model was studied. In this 

aim, micromagnetic simulations have been selected as support in order to identify the conditions 

for the realization of this model. Up to now in the artificial spin systems, the nanomagnets designed 

could be count as Ising spins, thanks to an uniaxial shape anisotropy which imposes two 

preferential directions for the magnetization in nanomagnets [11, 12, 16]. Yet in this thesis, this 

solution could not be selected, due to the expected nature of the spin for the Potts model. In this 

aim several shapes were selected with one common property which is the respect of the cubic 

symmetry in order to stabilize the uniform monodomain in four preferential directions. Moreover 

due to a competition between exchange energy, dipolar energy and anisotropy energy, the mostly 

uniform monodomain configuration for the magnetization required for the realization of a Potts 

spin can be difficult to obtain experimentally. Thus added to the shape anisotropy (cubic 

symmetry), a particular crystalline anisotropy was selected which is the cubic anisotropy. In order 

to make the micromagnetic simulations, the material selected to respect the expected anisotropy 

was an iron layer. Two shapes were selected: a square and a disc, and for one of these shapes 

(square) the influence of the anisotropy axes was discussed. As one of the main purpose of this 

micromagnetic study was to determine under which conditions it is possible to obtain a 

nanomagnet with a uniform magnetization in its volume which can take 4 preferential directions, 

the stability of the monodomain state was studied. This study demonstrates that it is possible to 

obtain a uniform magnetization which can take 4 preferential directions in imposing as condition 

on the Fe layer a thickness around 2 nanometers.  

Then as the two shapes could reveal the expected properties for the experimental state, a detailed 

observation of the magnetic configurations inside the nanostructures was realized. And it appears 

that a square with anisotropy axes aligned with its diagonals present the most adequate 

configuration for the realization of the spin model. Indeed this shape combined with this position 

of the anisotropy axes shows only four freedom degrees for the magnetization contrarily to the 

disc or to a square with anisotropy axes parallel to its edges.  

Finally a last point remained to check: the validity of the dipolar approximation. And effectively 

the micromagnetic simulations reveal in the case of two nanomagnets that the coupling present the 

same behavior as this one revealed by the spin model.  

In all the simulations presented here, no effects of temperature are considered. Nevertheless these 

effects are very important as we envisage to drive the system towards its ground state thanks to 

thermal fluctuations. It would be highly desirable to estimate the energy barrier between the four 

equilibrium states in order to optimize it. This barrier should be high enough to assure the stability 

at room temperature during the observation but low enough to achieve thermal reversal at 

reasonable temperature. Unfortunately it is not easy to estimate the barrier height from standard 

micromagnetic simulations. It would require to introduce a fluctuating field and follow the time 

evolution of the system during periods of the order of the second while keeping a temporal 

precision below the nanosecond. This is currently numerically impossible even for small systems. 

An alternative is to apprehend precisely the energy landscape between stable minima to compute 

directly the smallest barrier height between them. To do so, a collaboration has been establish with 

V. Lomakin (University of California San Diego) to use its FastMag code which include a Nudged 

Elastic Band method to determine the saddle point between two configurations. Preliminary results 
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show that the magnetization reverses in our system by nucleation in a corner and propagation of a 

90 degree domain wall (figure 2-9). The barrier height associated to a 90 degree rotation is much 

smaller than the one associated to a complete reversal (which actually would take place by two 90 

degree rotation). A barrier height of 60kT (at room temperature) has been estimated but these 

values rely on low temperature magnetic parameters (which are not relevant in our case). First 

quantitative evaluation of the barrier height leads to values not compatibles with experiment. 

Further investigations are necessaries, particularly it is important to determine the magnetic 

parameters at the temperature of the thermal treatment. 

 

Figure 2-9_ 90° reversal process determined by FastMag for a square with a length of 300 nanometers patterned in a Fe layer 
with a thickness of 1.7 nanometers. The cubic anisotropy axes of the Fe are along the corner of the square. The four images 
represent different steps of the reversal process: (a) initial state where the magnetization is imposed along the x direction, (b) 
beginning of the nucleation in a corner, (c) propagation of the 90 degree domain wall, (d) final state where the magnetization is 
along the y direction (90° against the initial state). The red color corresponds to the spins along the x axis and the blue color 
corresponds to the spins along the y axis.     
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3. EXPERIMENTAL REALIZATION OF THE 

DIPOLAR 4-STATE MODEL 

 

3.1 Sample preparation 

In the first section, the interest of the dipolar Potts model has been shown and in particular 

the modification of the ground state properties when rotating the angle between the spins and the 

lattice axis. In the second section, micromagnetic simulation demonstrated that nanomagnets under 

specific conditions can effectively reproduce the properties expected for the Potts spins. Our 

micromagnetic study shows that one of the most important parameters to design an “ideal” Potts 

spin (monodomain state in 4 possible direction) are a nanomagnet thickness below 2.5 nanometers, 

the presence of a cubic anisotropy and an in-plane magnetization. Based on micromagnetic 

simulation, patterned 2 nm-thick thin film of iron has been proposed as a good candidate for our 

study.  

In order to get the best quality film (with high precision on the thickness and controlled crystalline 

structure), we used a molecular beam epitaxy method under ultra-high-vacuum. The set up I used 

is a Riber UHV-MBE with 2 electron-guns (for MgO and V deposition), 5 Knudsen cells (with Fe, 

Co, Ni, Au, and Cr). A reflection high-energy electron diffraction (RHEED) is used to control the 

crystal quality during deposition. The films were grown with the help of S. Andrieu and L. Pasquier. 

Further description of the techniques and the tools can be found in [56, 57]   

The growth of epitaxial thin film of iron requires to choose a proper buffer layer. Not only the 

crystalline structure of the buffer matters but also the electronic properties at the buffer/iron 

interface (and in fact at iron/capping layer interface too). Indeed as showed for example in [58] for 

the case of Fe/MgO, an hybridization of the Fe layer due to a chemical contamination with the O 

present in MgO modifies the anisotropy of the Fe layer, and so in our case a chemical 

contamination of the Fe layer could modify the properties expected which would be problematic 

for the realization of Potts spins. And even without chemical contamination, the magnetic 

properties of the deposited thin film can be disturbed due to another effect which is a magneto-

elastic effect linked with the strain during the deposition. Indeed as showed in the literature [59] , 

and in particular for the Co/Au multilayers, this effect can lead to pseudomorphic growth of the 

thin film on the surface of the bottom layer, and thus given an anisotropy different as this one 

expected for the bulk. A large number of studies on ferromagnetic/non-magnetic interface have 

demonstrated the impact of the interface on the magnetic properties of the ferromagnetic layer and 

even demonstrate that the interface can be used in order to tune the properties in the magnetic 

layer [60, 61, 62]. For our experimental study of the dipolar spin Potts model, it is important to 

obtain a magnetic layer with only in-plane magnetization and cubic anisotropy in order to stabilize 

four monodomain states in the final nanomagnets. Thus an ideal choice for the sample composition 

would be a stack which allows very similar features as bulk iron for a 2 nm thick film. 
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3.1.1 The buffer 

In order to determine the material composition, the first choice to do is to select a suitable 

buffer for this study with a negligible interface magnetic anisotropy. Based on previous works done 

in the laboratory, and in particular the thesis of Muriel Sicot, it appears that a Vanadium layer of 

20 nm grown on single-crystalline MgO (100) substrate is a perfect candidate to obtain a good iron 

growth. This choice is motivated by the presence of a limited parametric misfit which is for the 

V/Fe around 5.6% [63], and also by the fact that their surface energies are really close, which 

suggest a 2D growth type [56]. Moreover it has been shown in previous study [64] that the critical 

thickness for plastic relaxation during Fe growth on V at room temperature in the same MBE as 

this one used for this work, is lower than 1 monolayer. Yet the targeted Fe thickness for this work 

is around 2 nanometers (15 monolayers) which is significantly larger than this 1 monolayer. And 

the last point which is also in favor of the V use, is the fact that the interface anisotropy observed 

in the literature [65-67] is always reported around few merg/cm². Thus this V buffer seems to 

match our criteria for buffer layer.  

Thus the Vanadium deposited on the single-crystalline MgO (100) growths with the following 

epitaxial relation: V (001) [110]//MgO (001) [100], which means a growth at 45° angle between 

the V and MgO meshes. In our case the sample is grown on single-crystalline MgO (100) substrate 

using MBE with a base-pressure lower than 10-10 Torr and the bcc V (20nm) buffer layer is 

deposited at room temperature and annealed at 600°C. The annealing step is important in order to 

obtain the smoothest V surface possible, which is determinant in order to obtain a good epitaxial 

thin film of Iron. Usually the higher the annealing temperature is, the smoother the surface is. 

Nevertheless the V annealing temperature has been limited at 600°C because a surface 

reconstruction appears above 750°C due to a chemical contamination by oxygen absorption [68]. 

During the deposition, the growth and the crystalline quality is controlled by RHEED oscillations 

in-situ and the RHEED pattern for annealed V (at 600°C) along the (001) direction (figure 3-1) 

confirms a good crystalline quality of the V film. 

 

Figure 3-1_ RHEED patterns along the (001) bcc axis for annealed V (20nm) buffer layers deposited on MgO. 
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3.1.2 The iron deposition 

After the V buffer deposition and annealing, 2 nm of bcc Fe is deposited in the same MBE 

chamber. During the deposition the bcc Fe grows in such a way that the direction [100] of Fe is 

finally aligned with the direction [110] of the MgO substrate. This Fe layer is grown at room 

temperature, then annealed at 350°C. For the same reasons as for the V layer, this annealing is 

essential in order to have the best crystalline quality and thus to have a Fe layer presenting the 

expected anisotropy. Annealing temperature of the Fe layer is kept much below 600°C at which V 

and Fe interdiffuses.  The deposited thickness and crystalline quality of Fe has been controlled in-

situ during the annealing thanks to RHEED oscillations and RHEED patterns (figure 3-2). From 

the RHEED pattern, one can note that the expected crystalline structure is obtained although the 

quality is not optimum due to the limited annealing temperature. Especially atomic roughness exist 

at the Fe surface and generate some dotted spot on the RHEED pattern.  

 

Figure 3-2_ RHEED intensity oscillations recorded during the growth of Fe on V (001). In inset, RHEED patterns 
along the (001) BCC axis for (a) annealed Fe (20nm) buffer layers deposited on MgO. 

 

 

3.1.3 The capping 

After the deposition of the Fe layer, it is important to cover it in order to avoid oxygen 

contamination. But, as for the buffer layer, the interfaces between the Fe layer and this capping 

layer can significantly affect the magnetic properties of the iron layer. In the literature, most of the 

time, the capping layers used are noble metals (weak porosity for the O) like Au layer, Pt layer or 

Pd layer. In our case and for the convenience (availability of the material) it has been decided to 

use Au layer. But this layer must not be deposited directly on the Fe layer. Indeed it appears that 

the interface Fe/Au present a perpendicular magnetic anisotropy [59]. Yet this perpendicular 

anisotropy could modify the stability diagram shown in the figure 2-4 in favor of the vortex state 

which in our case would be a problem. Thus in order to avoid perturbations on the targeted 

magnetization behavior, we tested 2 layers that could be inserted between Fe and Au, namely MgO 

and V. As discussed previously, Fe/MgO possesses also strong perpendicular magnetic anisotropy 

[63], so we have selected the V layer for the intermediary layer between the Fe layer and the Au 

layer. The final stack of the sample stack is MgO/V/Fe/V/Au. 
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3.2 Magnetometric study 

Our sample composition includes two interfaces V/Fe. Yet, contrary to the interfaces 

MgO/Fe and Au/Fe, we should not find a significant value of the interface anisotropy for V/Fe 

interface. Although this interface has been widely studied [29, 69-71], we could not find any study 

providing a clear thickness dependence allowing to precisely determine this interface anisotropy 

value. Besides it is crucial to determine if with this composition, the sample obtained present 

effectively a cubic anisotropy and if it does not appear a supplementary anisotropy in the material 

due for example to a problem during the growth (crystallographic arrangement) or due to the 

interface anisotropies. This is why a detailed analysis of the magnetic properties is needed, and for 

this study the magnetization curves are measured using rotating sample vibrating sample 

magnetometer (VSM) and SQUID-VSM.  

In order to obtain the interface anisotropies and all the magnetic properties of the sample, we have 

realized a magnetometry study on epitaxial V/Fe (t)/V trilayer, for different Fe thicknesses. And 

so the Fe layers of thickness t ranging from 0.7 nm (5 atomic layers) to 5 nm (35 atomic layers) 

were grown on V (20 nm) buffer and capped with V (5 nm)/Au (5 nm).   

3.2.1 Fe volumic anisotropy 

First, the volume (“bulk”) magnetization of a V/Fe (2 nm)/V film has been probed under 

both for in-plane and out-plane magnetic field in order to determine the magnetic easy and hard 

axes directions. The two hysteresis loops are presented in the figure 3-3. 

 

Figure 3-3_ (a) Normalized magnetization versus field loop for in-plane along (100) Fe direction (black solid squares) and 
out-of-plane (open red circles) field respectively for a V/Fe (2 nm)/V stack. (b) Zoom of the main figure around zero field 
show square hysteresis cycle. 

The figure 3-3 shows normalized magnetization versus field loops for in-plane (black squares) 

magnetic field applied along Fe (100) direction and for out-of-plane (red circles) magnetic field. 

Thus it appears that the out-of-plane direction corresponds to a hard axis direction for the 

magnetization in the Fe layer. Moreover the figure 3-3 (b) shows clearly that the Fe (100) direction 

correspond to an easy axis direction. Indeed the black curve represent a square loop with full 

magnetization at remanence which is characteristic of magnetic easy axis. Thus thanks to the figure 

3-3 it can be conclude that, as expected for the Fe bulk, the magnetization in the Fe layer lies 
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preferentially in the film plane. Now let’s confirm the quadratic anisotropy of the Fe layer. In this 

aim the normalized remanent magnetization extracted from hysteresis loops obtained for in-plane 

applied field, where the field is applied in all sample directions from 0 to 360 degrees with a step 

of 1 degree, is plotted in the figure 3-4 (c). 

 

Figure 3-4_ (a) Normalized magnetization as a function of magnetic field applied in film plane along [110] and [1-10] 
directions. (b) Normalized magnetization as a function of magnetic field applied in film plane along [100] and [010] directions. 
(c) Normalized remanent magnetization as a function of field angle when applied in film plane demonstrates bulk cubic 
anisotropy. 

The figure 3-4 (c) reveals four lobes with full remanence in Fe (100) directions and a remanent 

magnetization close to 71% in Fe (110) directions. This behavior of the normalized remanent 

magnetization is characteristic of cubic anisotropy as expected for cubic Fe bulk magnetic 

anisotropy. Thus with this figure, it appears that our sample possesses effectively a cubic anisotropy 

where the easy axes for the magnetization are in the Fe (100) directions. No distortion of these 

four lobs (four-fold symmetry) is observed so we can attest that no supplementary anisotropy like 

a uniaxial anisotropy exist in our Fe (2 nm) film. Indeed magnetization loops obtained for [110] 

and [1-10] are identical (figure 3-4 (a)) and [100] and [010] are also identical (figure 3-4 (b)). One 

can concludes from these measurements that there is no other in-plane anisotropies in addition to 

the “bulk-like” cubic anisotropy in the Fe layer.  
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3.2.2 Thermal stability 

The thermal stability of the Fe film magnetic properties at high temperature is to be 

checked since annealing will be later used to reach ground states of the final Fe-based artificial 

spins system, as explained in details in the section 4.1.2. And so it is necessary that after an 

annealing, the sample keeps the magnetic properties shown here. In order to determine the thermal 

stability of this sample, it is annealed up to 400°C, cooled, and then the same magnetic 

measurements as those described in the previous section are realized. It appears that up to 400°C 

the material present the same magnetic properties before and after annealing.  

Thus thanks to these measurements, it seems that this MgO/V/Fe/V/Au respects the properties 

expected to design artificial spins system which can correspond to the dipolar Potts model. But in 

order to be sure, it is necessary to determine precisely the interface anisotropies V/Fe and Fe/V 

presents in the sample, hoping that these interface anisotropies can be considered negligible. And 

for that a first step is to characterize the Fe magnetization according to the Fe thickness.  

 

3.2.3 Magnetization versus Fe thickness 

A way to determine the magnetization in the Fe layer is to represent the product of the 

magnetization at saturation by the Fe thickness (t), which is the areal magnetization, as a function 

of the deposited Fe thickness (t). Indeed this representation is supposed to give a straight line goes 

through zero with a slope equal to the bulk Fe magnetization if there are not dead layers in the 

system. The term dead layer appoints an interfacial layer where the magnetization of the Fe is 

reduced when compared with the bulk magnetization. Thus the magnetization at saturation has 

been determined thanks to the magnetization versus field curves for the different Fe thicknesses, 

and represented in the figure 3-5. In this figure the magnetization at saturation values are obtained 

by divided the measured moment values by the Fe volume corresponding. 

 

Figure 3-5_ Areal magnetization (Ms*t) versus Fe thickness (t), and the linear fit corresponding with a slope of 1720 
emu/cm3 

The linear fit corresponding to the areal magnetization as a function of the Fe thickness presents 

a slop equal to 1720 emu/cm3, which is the value expected for bulk Fe. However this line does not 

cross zero for 0 nanometers but for 0.3 nanometer. This result shows a reduced Fe magnetization 

which occurs in average 2 atomic layers corresponding to the dead layers thickness. This result is 
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in concordance with a reduction of Fe magnetization at the V/Fe interface as reported in the 

literature. Indeed the literature explains this reduced Fe magnetization at this interface by 

roughness, intermixing and anti-parallel polarization, charge transfer of the V [69, 29, 72]. 

Moreover a study about V/Fe/MgO [64] where the Fe is grown on V with same conditions (same 

setup), has determined the same dead layer thickness while no dead layers were observed at 

Fe/MgO interface in Ref [73]. Therefore we can conclude that the reduction of the Fe 

magnetization in our V/Fe/V stack is mainly due to the bottom V/Fe interface. A possibility to 

explain this, is to compare the deposition processes for the two V layers. Indeed for the buffer 

layer (bottom interface), and contrary to the top layer (top interface), the V layer is annealed. Yet 

this annealing can be source of Oxygen contamination [70], which could explain why it is only at 

the bottom interface that the reduction of the Fe magnetization occurred.  

The representation of the areal magnetization as a function of the Fe thickness showed that in the 

following part, we may need to consider an effective thickness for the Fe (t-tdl) instead of the 

nominal deposited thickness (t).  

After the determination of the effective Fe thickness (t-tdl), it is possible to investigate in detail the 

role of the V/Fe and Fe/V interfaces on the Fe anisotropy, especially if they stabilize or destabilize 

in-plane Fe magnetization. 

 

3.2.4 Interfaces anisotropy 

The effective anisotropy constant is calculated from the anisotropy field Hkeff. This 

anisotropy field is extracted from the out-of-plane field hard axis loops and the effective anisotropy 

constant is given by:  

𝐾𝑒𝑓𝑓 =
1

2
 𝑀𝑠. 𝐻𝐾𝑒𝑓𝑓 

 

This effective anisotropy possesses various origins which are: the magnetic volume anisotropy (Kv) 

in the Fe layer, the interfaces anisotropy (ki), and the shape anisotropy for a thin film. Thus it is 

possible to write the effective anisotropy in CGS as follows [59]: 

𝐾𝑒𝑓𝑓 . (𝑡 − 𝑡𝑑𝑙) = (𝐾𝑣 − 2𝜋𝑀𝑠
2). (𝑡 − 𝑡𝑑𝑙) + 𝐾𝑖 

In the equation (3-2) a negative sign reflects the fact that the effective anisotropy tends to stabilize 
the in-plane Fe magnetization. Now it is interesting to plot the effective anisotropy times (t-tdl) as 
a function of (t-tdl), in order to quantify the different terms present in the equation (3-2) and thus 
determine the interfaces anisotropy. 

(3-1) 

(3-2) 
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Figure 3-6_ Effective anisotropy constant Keff times the corrected thickness t-tdl as a function of t-tdl at 300K for both V/Fe/V. 
The line is a fit using Eq. (3-2) where the negative slope corresponds to a magnetization 1720 emu/cm3 and the intercept 
corresponds to a value of Ki = 0± 0.1 erg/cm2 

In the figure 3-6, it appears that all the values are negative which confirms that the effective 

anisotropy favors in-plane Fe magnetization. The fit presented in the figure 3-6 uses the equation 

(3-2) with Kv-2πMs negative and an intercept equal to 0. Moreover if it is taken the value of this 

slope and that it is considered only the -2πMs term, it can be extracted a value for Ms which is 1720 

emu/cm3, and this value is in great agreement to the value measured in the figure 3-5. This 

observation confirms that Kv is small compared with the shape anisotropy [74, 75]. The intercept 

of this fit at zero thickness provide a direct determination of the value for the interfaces anisotropy. 

A value close to zero is extracted from figure 3-6. More precisely, taking into account the accuracy 

of our measurements and fit, we estimate the interface anisotropy as 0±0.1 erg/cm². This value 

relates to both V/Fe (bottom) and Fe/V (top) interfaces. Since the atomic arrangement at V/Fe 

and Fe/V are different, it is not sure that the both interfaces lead to zero anisotropy. Nevertheless 

for our purpose, the most important information is that no additional interface anisotropy exist in 

addition to the bulk Fe anisotropy.  

The above magnetic characterization confirms that MgO/V/Fe (2 nm)/V/Au stack is adequate to 

design an “ideal” Potts spin. It has an in-plane magnetization favorable for monodomain 

stabilization. Interface anisotropy is negligible so that it will not strongly affect the barrier height 

against spin reversal. Besides bulk-like cubic anisotropy is found which will help stabilizing the four 

possible monodomain states of the final nanomagnets. Finally thermal stability of the magnetic 

parameters have been demonstrated up to 400°C annealing. This fact is primordial because one of 

the main objective, as explained in the section 4.1.2, is to perform thermal demagnetizations to lead 

the system towards its ground state, and so it is essential that the system keeps the same properties 

after several annealing.  
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3.3 Samples overview 

Thanks to the magnetometry study, it is confirmed that a sample with the following 

composition, MgO/V/Fe/V/Au, is a good candidate in order to design artificial spins systems 

which could represent experimentally the Dipolar Potts model. Then it remains to select the Fe 

thickness in this material. By observing the results of micromagnetic simulations (stability diagram), 

it appears that a Fe thickness below 2.5 nanometers is required. Thus in order to favor the 

stabilization of monodomain state in nanomagnets while maintaining enough magnetic signal to 

be detected  during MFM measurements, we select a nominal Fe thickness of 2 nanometers for all 

the samples realized for this work. Considering the magnetic dead layers presence, the effective Fe 

thickness is in fact 1.7 nanometers.  

 
Figure 3-7_ Sample composition (applicable to all the samples used for the realization of artificial spins systems in this work).   
The mentioned thicknesses are the nominal thicknesses, and so the effective thickness of Iron is 1.7 nm. 

The experimental results shown in the chapter 4 are related to three different samples which have 

been realized in the same conditions (same setup) but at different dates. The common stack is 

detailed in figure 3-7. The first sample (sample #1) has been realized in November 2014, the second 

sample (sample #2) has been realized in January 2015 and the third sample has been realized in 

June 2015. It is assumed that these samples present the same properties but it is possible that it 

exists some minor differences between them. Note that for the preliminary tests described at the 

end of this chapter, previous samples made with the same setup and presenting the same properties 

have been used. Now that the adapted material to design an artificial Potts 4-state spins system is 

selected, it is possible to design the lattices. But before this realization, it is necessary to define the 

experimental parameters related to the theoretical parameters used to describe the dipolar Potts 

model. 
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3.4 Lattices and alpha definition 

For the experimental realization of arrays of “Potts spins”, with four preferential directions, 

it’s necessary to describe the different lattices which are studied as well as the alpha angle mentioned 

in the section1.2. Indeed in the previous chapters, it is shown that the behavior of the fundamental 

state changes drastically as a function of the angle alpha between the spin direction and the axis 

connecting two spins as shown in the figure 3-8. 

 

Figure 3-8_ Representation of the alpha angle in the case of two Potts spins 

Experimentally, in lattices, this angle is defined as the angle between the magnetization direction 

inside nanostructures and lattice axis. As shown in micromagnetic simulations, an easy way to 

stabilize monodomain configuration in nanostructures is to use thin Fe squares where the easy 

magnetization axes of Fe are placed along the squares diagonals. Thus in a lattice, the alpha angle 

represents the angle between the easy magnetization axes which is the magnetization direction and 

the lattice axis. 

 

Figure 3-9_Experimental definition of the alpha angle, which is defined as the angle between the [100] Fe direction and the 
lattice axis. (a) Representation of a 0° lattice, where the [100] Fe direction is aligned with the lattice axis. (b) Representation 
of a 45° lattice, where the [100] Fe direction generates an angle equal to 45° with lattice axis. 

It would be great to compare experimental fundamental states of a lattice for an infinity of angles 

to compare the results with these predict by the dipolar 4-state Potts model. But experimentally 

the system can’t be studied for an angle continuum and for an infinite lattice. Thus for the 

experimental study the choice is done to study three angles which are 0, 22.5 and 45 degrees, and 

to take squares lattices including 30x30 nanomagnets (squares). The choice of these angles is 

relevant in the way it’s expected different fundamental states for the three angles. The lattice size 

is selected for the convenience during the imagery. Indeed for time issues, it’s preferable to limit 

the necessary number of scans to observe an entire lattice. However, as observed in the stability 

diagram, the squares size composing the lattices should range between 100 nanometers and 1 

micrometers, in order to stabilize monodomains states in nanostructures. Experimentally (after 

several tests presented further in the manuscript) the ideal frame size to maximize magnetic 

contrast for the maximal number of squares in the field of view is 20 micrometers. Thus with a 

size of 30x30 squares, depending of the period lattice, the entire lattice can be observed with 

reasonable number of scans, typically four scans.  
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For the lattices realization, the choice is done to produce different square sizes in order to find 

which size shows the best agreement between MFM measurement and demagnetization efficiency. 

Indeed the larger is the square size, the larger the magnetic contrast is. Nevertheless as a function 

of the square size, the demagnetization parameters may be modified, for both field demagnetization 

and thermal demagnetization. Therefore testing several nanomagnet sizes is interesting in order to 

check which size is the most adapted ones. 

The last important parameter is the distance between nanostructures inside the lattice since 

neighboring nanomagnets interact through long range dipolar interactions. For the purpose of 

having the strongest coupling between nanomagnets, the lattice period which is defined as the 

distance center at center between two squares, must be the smallest possible. In order to observe 

the dipolar coupling influence in experimental results, different periods are realized and these lattice 

periods depend on the squares size. Finally, the different sizes of the nanostructures and the 

different periods of lattices are identical for the three studied angles.  

 

3.5 Nanofabrication 

3.5.1 Ebeam lithography 

To realize an artificial spin lattice, the use of Ebeam lithography is the best candidate, as 

this experimental technique allows to produce patterns with a nanometric resolution on 

micrometric scale [76]. The Ebeam lithography principle is the following: an electron beam 

controlled by a software (in our case RAITH 150) allows to draw patterns in an electron-sensitive 

resist. In our case the different patterns (lattices composed of squares) for the Ebeam lithography 

have been defined with the software Mathematica then imported in the lithography software.  

The use of an e-beam gives a really high resolution for the patterns, better than in photolithography 

where it’s use a photon beam which limits the resolution due to the wavelength. But this high 

resolution has a price which is the time. Indeed for the Ebeam lithography, the e-beam does not 

draw all the patterns at the same time but draw progressively the patterns one by one. As mentioned 

previously, in Ebeam lithography the use of photosensitive resist is necessary. This resist has the 

property to change its solubility or its speed chemical attack after an insolation by the e-beam, and 

this property allows to obtain the patterns by solubility difference. Indeed after insolation, 

according to the resist nature (positive or negative) the exposed resist is more (for negative resist) 

or less (for positive resist) soluble in the developer than the unexposed resist and so after a 

development of the resist, only the exposed areas stay (for positive resist and the other way for 

negative resist). 
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Figure 3-10_ Ebeam lithography process 

For the realization of our patterns, the resist used is a two-layer positive resist composed of 

PMMA/MMA, whose the superior layer is harder than the underlying layer. The use of this two-

layer resist present the advantage to create a “cap” profile which will favor a discontinuity in the 

aluminum layer deposited in the next step. Indeed when the patterns is drawn in the resist by 

Ebeam lithography, an aluminum layer is deposited and this layer is used as mask for the ionic 

etching. 

 

3.5.2 Aluminum mask deposition 

For the aluminum deposition, the experimental technique used is the thermal evaporation 

technique which is based on ebeam evaporation. Indeed the Aluminum is heated up to evaporation 

by ebeam evaporation in order to deposit some aluminum atoms on our sample. In our case an 

aluminum layer with a thickness of 60 nanometers is deposited on the surface of our sample. Then 

the resist is removed with acetone (lift-off) and thus at the end it appears on the surface of our 

sample, areas in aluminum which represent the desired patterns.  

 

3.5.3 Ionic etching 

After the aluminum deposition and the lift-off, the last step is to etch the sample. In order 

to etch the sample, the technique used is the ion beam etching (IBE). The principle of this 

technique is to send a directional beam composed of rare gas ions on the sample. During the 

etching, the whole sample surface is exposed, i.e. the magnetic layer as well as the area protected 

by the aluminum. In our case, the thickness of 60 nanometers for the aluminum layer has been 

chosen in order to insure that at the end of the etching, it remains aluminum in the protected areas 

while for the unprotected areas, the magnetic layer has been totally removed. So at the end of the 

etching, we can observe on the sample the nanostructures in the magnetic layer covered of 

aluminum and the material which separates these nanostructures will be only the substrate. Thus 

the last step should be the removing of the aluminum present on the top of the patterns. 

Unfortunately the usual aluminum removers (Remover PG…) are not adapted for our sample as 

they also attack vanadium (see figure 3-11). 



  

 

 

88 
 

 

Figure 3-11_ MEB image after chemical etching of the aluminum layer. The surface appears dirty due to the attack of the 
remover on the Vanadium layer.  

This “problem” is not studied in detail because the aluminum remaining at the end of the process 

does not prevent to observe, with magnetic force microscope (MFM), the magnetic contrast in the 

nanostructures. 

 

Figure 3-12_ Nano-structuration process used for the experimental realization of the artificial spin system 

 

3.5.4 Dose optimization 

 The quality of lattices depends strongly on the exposure dose used during the lithography 

process. The dose represents the quantity of charges by unit area. This factor is determined at the 

beginning of the lithography and depends on the resist, the size and the environment of the 

patterns. Thus in our case this factor will depend on the squares size composing the lattices, and 

also the period of the lattice, which can be incorporated in one parameter, the filling rate. The easy 

way to determine which dose is the most adapted for the different lattices, is to use a dose test. For 

that, the different lattices are realized with different doses on the same sample and then the lattices 

are observed with the scanning electron microscope (SEM) in order to determine which doses give 

the lattices expected (squares size and periods respected). The doses used for the realization of the 

lattices are calculated from a nominal dose, which is 120 µC/cm², at which it’s multiplied a dose 

factor. 
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For all the lattices, the nominal dose chosen is 120 µC/cm² and the dose factor varies from 0.8 to 

2.2 with 0.2 increments, and it’s observed for all the dose factors which dose is adapted. In the 

following images, we can observe an example corresponding to the lattice with a square size of 

1000 nm and a period of 2000 nm for three doses. 

 

Figure 3-13_ Comparison for a lattice obtained with different doses: (a) underexposed; (b) well exposed; (c) overexposed 

When the dose is too low, the square size is smaller than expected and the squares are not 

completely formed (figure 3-13 (a)), while when the dose is too strong, the square size is bigger 

than expected, decreasing in this way the period (figure 3-13 (c)). By doing the test dose for the 

different lattices and so the different filling rates, we can observe the minimal dose for which 

lattices are well defined (as expected) as a function of the filling rate. But before that it is required 

to set the filling rate related to each lattices. In our case the lattices are square lattices composed of 

30x30 squares. In this case the filling rate is given by the equation (3-3): 

𝜂 =
𝐿²

𝑐²
 

where L is the squares size composing the lattice and c is the period (distance center at center 

between two squares).  

Then in order to obtain a relation between the filling rate and the optimal dose, a test sample is 

realized where lattices with different filling rates are present. To be sure that the relation is valid 

for any parameters lattices, different square sizes and period are realized, and this for the three 

angles 0, 22.5 and 45°. The parameters used and the results related to the dose test are shown in 

the figure 3-14. 

(3-3) 
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Figure 3-14_ Dose factor as function of the filling rate (in percentage). The blue point correspond to the minimal dose for which 
the lattices are well defined. The dashed line corresponds to the fit of the blue points and which gives the relation corresponding 
to ideal dose. 

In the figure 3-14, it is represented the minimal factor dose for which the lattices present the 

parameters expected (square sizes and periods) according to the filling rate. In fitting this curve, a 

relation between the minimal factor dose corresponding to a well-defined lattice and the filling rate 

can be extracted: 

𝐷 =
2.05

1 + 0.011𝜂
 

, where D is a dose factor and η is the filling rate. 

Thus for our lattices, it is possible to calculate the filling rate and to find the factor dose adapted 

for the Ebeam lithography.   

 

3.6 Magnetic characterization and tip influence 

Now that the optimal conditions for the nano-structuration of our artificial spin system are 

defined and that the MEB imagery confirms the expected topography for the different lattices, a 

magnetic characterization is required. Indeed the aim of the realization of these lattices is to 

compare the fundamental states obtained experimentally with those expected by the spin model. 

And as part of this problematic, it is essential to have a direct access to the magnetic configurations 

in the lattices.  

In order to do that, the atomic and magnetic force microscopy (AFM, MFM), is commonly chosen 

as characterization technique for the artificial spin systems. In the nano-materials, nano-scale 

devices and particularly in the artificial spin systems, this technique has become standard 

characterization tool [77]. In the following, first we will discuss the magnetic contrast obtained on 

the nanostructures and we will confirm the monodomain magnetic configurations and its stability.   

(3-4) 
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During the scan with MFM, the tip acts like a magnetic dipole with a leakage field and this field 

interacts with the nanostructures magnetization. Reference in the literature [78] shows that this 

interaction can easily disturb the magnetic configurations present in nanomagnets. So a first 

question is to know if this interaction modifies the magnetic configurations in the nanostructures 

when the probe is scanning. To that purpose a sample we used square sizes between 100 and 1000 

nanometers with periods ranging from 200 nanometers for the smallest squares to 2000 

nanometers for the biggest.  

3.6.1 Standard tip 

First a standard tip is used for the MFM scanning. The magnetic material for the standard 

tip is made of a CoCr magnetic layer with a thickness of 50 nanometers. In the case of our 

nanostructures (square), The expected magnetic contrast observed in MFM for monodomain and 

vortex configurations is represented in the figure 3-15. 

 

Figure 3-15_ Magnetic contrast expected for two magnetic configurations shown by the MFM for a square. These images are 
given by micromagnetic simulations obtained from Mumax3. (a) Monodomain along a diagonal characterized by the presence 
of a white corner and a black corner. (b) Vortex configuration characterized by an alternation between white and black contrast. 

As it is observed in the figure 3-15, the magnetic contrast obtained for a monodomain is 

represented by a black corner and a white corner which describe the monodomain orientation. In 

MFM, according to the tip magnetization direction, a magnetic configuration in the nanostructure 

can take two opposites contrasts. Thus for a monodomain, the magnetization direction can be 

defined as from black corner to white corner or vice versa. For our study the choice is done to 

keep the same magnetization tip for all the measurements which, for a monodomain, fits a 

magnetization direction defined from black corner to white corner.   

In order to determine if it is possible to observe a magnetic contrast related to monodomain 

configurations in nanomagnets, the sample is saturated along an anisotropy axis before the MFM 

measurement, in order to know the initial magnetization direction in the nanomagnets. It has to be 

noticed here that as the saturation field related to the nanomagnets is not known, the maximum 

amplitude field available with our electromagnet is used (3600 Oe). It is reasonable to think that 

this field possesses an amplitude enough to saturate the lattices as the saturation field determined 

for the full film is only 50 Oe. Then the lattices are observed in MFM and the magnetic contrast 

obtained is analyzed. In the figure 3-16, the magnetic contrast related to a 45° lattice composed of 

300 nanometers squares is represented. 
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Figure 3-16_ MFM image obtained with a standard tip for a lattice composed of 300 nanometers squares and with a period 
of 700 nanometers. 

This contrast can be compared at the contrast expected for a square relevant a monodomain along 

a diagonal as shown in the figure 3-15. Thus it appears that the contrast obtained after an MFM 

measurement is different than that one expected for a monodomain. Moreover, some white trails 

appear on the MFM images revealing an interaction between the leakage field of the tip and the 

magnetization in the nanostructures. This result is similar for all the lattices, regardless of the 

squares size, the period or the angle lattice. Moreover different lift heights are tested and for all the 

heights, the results obtained are the same as those shown in the figure 3-16. Thus this measurement 

reveals that the leakage field generated by a standard tip interferes with the magnetization in the 

nanostructures, and that the magnetic configurations observed in the squares are not 

monodomains. In order to reduce the leakage field of the tip, a solution is the use of a low moment 

tip. 

 

3.6.2 Low moment tip 

Like for the test with a standard tip, the sample is saturated along an anisotropy axis 

direction but this time, for the MFM measurement, the tip used is a low moment tip which is made 

of CoCr with a thickness of 15 nanometers. Thus in decreasing the magnetic layer thickness of the 

tip, the interaction between the leakage field of the tip and the magnetization in the nanostructures 

is reduced. We can observe the magnetic contrast obtained with this tip for a lattice composed of 

300 nanometers squares with a period of 1.3 micrometers in the figure 3-17. 

600nm2.0µm
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Figure 3-17_ MFM images obtained with a low moment tip: Zoom of a lattice composed of 300 nanometers squares and with 
a period of 1.3 µm. This figure shows five consecutives scans of the same region in order to identify a possible perturbation 
during the measurement. Indeed a first scan present magnetic contrasts consistent with the presence of monodomains in the 
nanostructures. However the directions for these monodomains are not identical and it is assumed a perturbation of the magnetic 
configurations due to the leakage field of the tip. This is confirmed thanks to these 5 consecutives scans. 

First it appears that for this lattice the magnetic contrast in all the squares represent monodomains. 

However despite the saturation, the observed magnetic contrasts show different directions for the 

monodomains. This observation can be made for all the lattices, regardless of the squares size, the 

period or the angle lattice. It appears also that the larger is the squares size, the larger the number 

of squares showing magnetization along the saturation direction is. As the monodomain directions 

are different, two possible explanations can be given. The first is that the saturation field is not 

large enough to align all spins, and the second is that the leakage field of the tip can perturb the 

magnetic configurations of the nanomagnets. It turns out that the second hypothesis is the right 

one. In figure 3-17 several consecutives scan, reveal the tip influence on the magnetization in the 

squares. Indeed one can observe between the different scans a contrast modification for a same 

square, even observing a 90 degrees rotation between the first and the fifth scan.  

As a conclusion of this part, it is possible with a low moment tip to observe a magnetic contrast 

which is consistent with a monodomain in nanomagnets and this regardless of the square size, 

period or angle lattice. But the leakage field of the tip, during AFM scan, remains too strong in 

order to not disturb the magnetization in the nanomagnets.  
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3.6.3 Low moment tip combined with spacer layer at surface 

sample 

In order to do a MFM scan, the topography of the surface is firstly recorded in using a 

tapping mode where the distance between the tip and the surface is imposed by the interaction 

between the both. Then a second scan is done in following the surface previously recorded at a 

certain height (lift height) in order to quantify only the magnetic sample-tip interaction. Thus during 

a scan, it is possible to tune the lift height, but for the first AFM scan in tapping mode the distance 

between the tip and the surface of the sample is imposed. A solution to limit the tip-sample 

interaction during the tapping mode consists in increasing the distance between the tip and the 

magnetic layer by adding a supplementary layer on the sample as represented in the figure 3-18. 

Several materials were tested as spacer layer.  

 

 

Figure 3-18 During a MFM scan, it is possible to increase the distance during the magnetic measurement in playing with the 
lift height, but it is not possible to change the distance between the first scan (tapping mode) which gives the topography of the 
system. However this scan is necessary in order to determine which contribution is related to the topography and which 
contribution is related to the magnetic interactions. Thus a solution is to increase the distance between the tip and the surface 
sample with a spacer layer deposited at the top of the sample. This case is represented in this figure. 

 

3.6.3.1 Spacer layer of PMMA 

First, PMMA resist used during the Ebeam lithography is used because it is easily 

removable if needed after AFM/MFM measurements. For PMMA deposition, a thickness of 80 

nanometers is selected and a topography study is done with AFM in the aim to compare the 

nanostructures with and without the spacer layer of PMMA. In the figure 3-19, an AFM height 

profile for a square of 500 nanometers for the case with PMMA and without PMMA. It appears 

that with the spacer layer of PMMA, the squares are still identifiable with the AFM but the 

topography is smoother. This is expected since the resist is deposited by spin coating which is 

known to provide uniform coverage of thin film sample underneath. 
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Figure 3-19_ Height profile given by AFM measurement in the case of a square of 500 nanometers for a sample with and 
without the spacer layer of PMMA. 

Let’s now verify if it is possible to observe the magnetic contrast with 80 nm PMMA capping layer 

and if the PMMA layer prohibits the low moment tip influence on the squares magnetic 

configuration. In order to do that, after the PMMA deposition the sample is saturated along an 

anisotropy axis with a saturated field of -3000 Oe (same amplitude field as the measurements 

presented in the section 3.6.1 and 3.6.2). 

After the MFM measurement it appears that the contrast obtained is different from the contrast 

expected for monodomains or vortex. The contrast observed over the nanomagnets corresponds 

to an out-of-plane magnetization. However the previous MFM measurements have proven that 

the magnetization in nanomagnets lays in-plane. So the contrast may not be a magnetic one. To 

check it, a solution is to magnetize the tip in the opposite direction. The results are presented in 

the figure 3-20 (a). 

 

Figure 3-20_ (a) MFM images of a lattice (left image) and phase profiles (right image), related to the black lines present in 
the MFM images, in the case of a saturation field of -3000 Oe and for a tip magnetized in the opposite direction as usual. 
These three measurements allow to determine the contrast nature. Indeed if the contrast is magnetic, an inversion of the field tip, 
gives rise to an inversion of the contrast observed. (b) Comparison between phase profiles obtained for the same nanomagnets 
with and without the spacer layer of PMMA. The saturation field is the same for the two measurements (-3600 Oe). 
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After an inversion of the magnetization tip, the contrast obtained stays the same (see figure 3-20 

(a)). The fact that the contrast does not change with the tip magnetization shows that the contrast 

obtained is not a magnetic contrast. To confirm our conclusion on the non-magnetic nature of the 

contrast, we compare (figure 3-20 (b)) the phase profile for the same squares and same lift height, 

with and without PMMA, shown in figure 3-20 (b). The magnetic contrast (without PMMA) 

corresponds to a phase of around 0.2 degrees. With PMMA, the phase is much larger, around 0.5 

degrees, although it is expected to be much smaller for the same lift height (the Fe layer being two 

times further). This comparison confirms that the contrast observed with PMMA is not a magnetic 

contrast. 

 

Figure 3-21_ Phase obtained from MFM measurements as a function of the voltage applied on the tip (bias). The results 
presented here are the average values of the phases for the same lattice.   

In order to see if this contrast is a charge contrast, it is possible with the MFM to apply a bias to 

charge on the tip and thus compensate for eventual charges in the PMMA to have access only to 

the magnetic contrast. The phase is plotted as a function of the applied bias in Fig 3-21. The phase 

increases when the applied bias decreases, while the phase changes quasi-linearly from large 

negative bias to large positive bias. Phase of the order of magnetic contrast phase is obtained for a 

bias around 2000 mV. Similar results have been obtained for all the lattices, regardless of the square 

size, of the angle or of the period. We can definitively conclude that the contrast obtained after the 

PMMA deposition is a charge contrast. For the following experiments, we could apply a tip bias to 

measure the magnetic contrast. Nevertheless for each PMMA deposition, the bias required to 

observe the magnetic contrast is different and so for each PMMA depositions, a study as function 

of the bias would be necessary. This is particularly annoying since PMMA needs to be removed 

before each thermal demagnetization. So we choose to use another spacer layer.  
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3.6.3.2 Spacer layer of Aluminum 

Aluminum may be a better choice than PMMA as spacer layer. Indeed as mentioned 

previously aluminum remains on top of nanostructures at the end of the nanofabrication process 

and it does not seem to disturb the MFM measurements. The first test is made with 20 nm of 

Aluminum deposited by sputtering. The sample with Aluminum spacer layer is saturated along an 

anisotropy axis and then installed in the AFM/MFM. The topography of the nanostructures 

measured by AFM is shown in figure 3-22 (a) and it appears that the nanostructures obtained after 

the deposition of spacer layer of Aluminum, have the same shape as without the spacer layer but 

with a difference which is the presence of collars of about 10 nm height (see figure 3-22 (c)). This 

result is obtained regardless the size squares as well as the periods. The presence of these collars is 

not a problem for the MFM measurements since Aluminum is not magnetic.  

 

 

Figure 3-22_ Topographic and magnetic analyzed for a lattice after an aluminum deposition. The AFM (a) and the MFM 

(b) measurement corresponds to a zoom of a lattice composed of 300 nm squares with a period of 1 µm. The expected contrast 

according to the saturation direction is also represented at right. (c) Profile representing the height (z axis) as function of the 

lateral size (x axis) for the red line represented on the AFM image. 

Figure 3-22 (b) shows the MFM signal measured on a lattice composed by squares with a length of 

300 nanometers and a period of 1 micrometer. Obviously the 20nm aluminium spacer layer lowers 

the magnetic contrast as compared to the plane sample since the tip is further away from the Fe 

layer. As a consequence it is now necessary to process the MFM image. The procedure consists in 

superimposing first the MFM image on the AFM image. Then the transparency is adjusted to obtain 

the better contrast. 
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Figure 3-23_ Representation of the MFM image before (a) and after a processing (b). This processing is obtained by superposing 
the AFM image with the MFM image, then in adjusting the transparency. (c) Magnetic configuration obtained from a MFM 
measurement (b) and the results given by the Mathematica program (c). 

After this image processing, we get a better contrast and so, it is easier to set an orientation for the 

magnetization in the nanostructures. Thus just by looking at the magnetic contrast shown in the 

figure 3-23 (b), it seems that the magnetic configurations in the nanostructures fit monodomains. 

In order to automatically map the orientation of the nanomagnet moments, code has been 

developed under Mathematica software. The program identifies each square composing a lattice 

and determines the magnetic contrast in associating to each pixel a value +1 for a black pixel, -1 

for a white pixel and 0 when the program can’t identify the color of the pixel. Then for each 

nanomagnet, the program calculates the average value of the contrast for each corner of the squares 

and determines the difference between the opposite corners. Thus this program can identify the 

direction of the monodomain in each nanomagnet. Figure 3-23 (c) presents the spin orientation 

deduced from the MFM image in figure 3-23 (b). Most of the spins are nicely orientated along the 

saturation field direction.  

 

Approximatively five percent of the spins are not in the saturation field direction, and these spins 

don’t move even after consecutives scans. A hypothesis is that these spins have a coercive field 

higher than the other spins and larger than the saturation field due to some defects. In order to 

check that, the sample is saturated several times in different directions, and it appears that these 

spins, so-called “hard switchers”, stay in the same configurations as the one shown in the figure 3-

23. Even though this study shows the results for only one lattice, which is a lattice composed of 

300 nanometers squares where the angle is 45 degrees and where the period is equal to 1 

micrometer, this study is also done for different lattices and it appears that the results observed are 

similar for all the lattices including different angles, different square sizes and different periods. 

Indeed it appears a percentage of hard switchers close to 5 percent and this for all the lattices.  

The main result of this part is that aluminium spacer layer and image processing allows to identify 

the direction of the nanomagnet spins. The last point to check before the study of the magnetic 

behavior of our square lattices composed of artificial Potts spins is the presence of defect in our 

lattices (lattice distortion) which could affect the physics of our system.   
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3.7 Lattice distortion 

The theoretical considerations of chapter 1 are based on a perfect square lattice with 

identical elements. But contrary to the natural systems, artificial spin systems made by 

nanofabrication tools can differ from the ideal desired system. One can distinguish two kinds of 

differences: fluctuations of individual elements (due to local variations of material properties or 

fluctuation in the lithography process) or systematic differences. Among the possible systematic 

differences are distortions of the lattice. These distortions are not so trivial to characterize as the 

measuring tools can have similar distortions to the fabrication tools (using diffraction is an 

interesting alternative). The fact that minors distortions in artificial spins lattice can imposed 

particular configurations is well-known phenomenon. 

Since any distortion which transforms the square lattice in an orthorhombic or monoclinic lattice 

can affect significantly the physics of the system, we have tried to evaluate the distortion. The 

automatic determination of the element coordinates from the AFM images do not indicate any 

deviation from the ideal square lattice. This estimation has been determined after proper calibration 

of the AFM piezoelectric stage and verified by rotating the sample. But the determination of the 

distortion is limited by the pixel size of our AFM (512 pixels max). In order to increase the 

precision, the lattices related to the 500 nanometers period are imaged with SEM and we can 

observe these three images in the figure 4-24. It is important to note that the imaging field has been 

properly calibrated by displacement of an interferometric stage. 

 

Figure 4-24_ MEB images corresponding to lattices with 500 nm period:  (a) 45° lattice, (b) 22.5° lattice and (c) 0° lattice. 
The field of view used is: 25.6 µm, and the resolution is equal to 6.4 nm/pixels. 

If a distortion exists in these lattices, it should appear a length difference between the lattice edges, 

for example between horizontal edges and vertical edges for the 45° lattice. Thus in order to 

confirm or not the presence of distortions for each lattice, the length of two perpendicular edges 

are measured and the difference between these lengths is calculated. In these SEM images one pixel 

corresponds to 6.4 nanometers. The difference between different lengths is at maximum of one 

pixel. We can therefore conclude that the difference between orthogonal lengths is below 0.02%. 

We have checked that this value has no significant influence on the physics of the system. 

Similarly, we have also verified the angle between the borders of the lattice is 90 ± 0.03 degree. 
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3.8 Summary 

In the previous chapter micromagnetic simulations demonstrated that thin square 

nanomagnets can be used to mimic Potts spin under specific conditions. In the present chapter we 

tried to make such nanomagnets array. We carefully checked two main aspects: the magnetic 

properties of the sample selected and the MFM signal from the final nanomagnets. The first 

important point to take into account for the selection of the sample composition was the thickness 

imposed on the magnetic layer. To get monodomain nanomagnets, micromagnetic simulations set 

a maximum thickness of 2.5 nm. In order to avoid a lack of MFM signal, we choose a 2 nm Fe 

film. We selected the stack MgO/V/Fe (2 nm)/V/Au which shows only a cubic anisotropy and 

in-plane magnetization. We demonstrated that the interface provide zero surface magnetic 

anisotropy to the Fe layer [20]. The stack magnetic properties are not by several annealing up to 

400°C which is the thermal demagnetization.  

We described the lithographic method to obtain lattice of square nanomagnets.  First MFM 

measurements on the nanomagnets reveal the intrusive nature of the tip leakage field which can 

potentially change the magnetic properties nanomagnets, especially during the AFM scan in tapping 

mode. Both standard and low moment tip affect the nanomagnets. So we used a spacer layer on 

the sample to increase the gap between the (low moment) tip and the magnetic layer. PMMA spacer 

layer has been tested but induces a charge signal that hide the magnetic signal during MFM scan. 

We have finally selected a 20 nm aluminium layer as spacer layer and could demonstrate no 

influence of the AFM/MFM low moment tip on the nanomagnet. An image treatment procedure 

is described that will be used in the following to automatically extract the map of magnetization 

direction for the array of nanomagnet. Moreover after verification, we have confirmed that any 

distortions exist in our lattices which could affect the physics of our system. 
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4. DEMAGNETIZATION OF THE 4-STATE 

POTTS ARTIFICIAL SPINS 

 

4.1 Pathway to fundamental state : the demagnetization 

 

Artificial array of nanomagnets have been introduced to experimentally mimic the spin ice 

statistical physic model [11] by a magnetic array of interacting spins. One of the remaining issue in 

studies dealing with artificial spin systems is the lack of easy and efficient method to drive the 

system in its fundamental state. In this work and more generally in the artificial spin systems 

community, the term “demagnetization” does not holds the primary sense of demagnetization, i.e. 

method to zero the total magnetic moment of the magnetic system. Here demagnetization method 

means a method able to drive the system towards its energy ground state. This ground state can be 

a zero magnetization state in the case of non-interacting spins but the ground state for interacting 

spin can hold various moment values depending of the geometry of the lattice, as shown in our 

theoretical work in chapter I.  Up to now for Ising spins with an in plane magnetization, the main 

way to demagnetize the samples has been AC field demagnetization [11]. In this protocol it is 

applied an external magnetic field alternating between a positive and negative field while reducing 

its amplitude. However, experimentally it is difficult to drive the system in its ground state by using 

AC field demagnetization. Indeed during the field decay, the nanomagnets with the highest coercive 

field are the firsts to be frozen, and thereafter can’t flip anymore. Moreover energy barrier 

distribution may strongly affect the state obtained after AC demagnetization [79-81]. Indeed since 

the spin flips occur for an applied field comparable to the coercive field of nanomagnets, the energy 

barrier distribution will play a significant role in choosing the pathway during the demagnetization.   

As it seems difficult to improve the AC demagnetization protocol, another protocol has to be 

found in order to drive the system in its ground state. A possibility is to use nanomagnets which 

can be sensitive to thermal fluctuations. It has been heavily pursued by the community since few 

years [15, 23, 24, 82-88]. Indeed if the nanomagnets can be thermally activated, the system should 

gradually minimize its energy in accommodating pairwise interactions. To that purpose, two 

approaches were conducted: one considering superparamagnetic regime [23] and another one 

based on an annealing procedure above Curie temperature [15]. In our work, the first approach is 

selected because diffusion occurs at V/Fe interface around 600°C much below Fe Curie 

temperature (see section 3.1). The exact thermal demagnetization protocol used in our work is 

detailed in the section 4.1.2.1. Similarly to results obtained in Ref. [89], we will show in the following 

chapter that thermal demagnetization allows to reach states closer to the ground state than AC field 

demagnetization. 
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4.1.1 AC Field demagnetization 

4.1.1.1 Protocol 

For the AC field demagnetization, the protocol which is used is identical to the one presented in 

Wang et al experiment [11]. During AC field demagnetization, the sample is placed on a sample 

holder turning at a speed of 4000 rpm in the airgap of an electromagnet. The initial field applied is 

bigger than the system saturation field. Then the field alternates between a positive and negative 

field while reducing its amplitude as shown in figure 4-1 (a). Since the field amplitude is 

progressively reduced, the nanomagnets with the highest coercive field are the firsts to be frozen. 

They emit a magnetic field which is added to the local field senses by the adjacent nanomagnets, 

and at this step the correlations between elements emerge in the lattice. It is expected that at the 

end of the AC demagnetization, the system minimizes its dipolar energy.  

 

Figure 4-1_ (a) Field amplitude as function of time during the AC field demagnetization protocol. (b) Percentage of spins in 
the same direction as the saturation field according to the field amplitude. The field is applied along an easy axis in order to 
impose a particular direction for the spins. This study is carried out on a lattice composed by 300 nanometers squares for an 
angle of 45° and a period of 1 µm. 

In order to improve the AC demagnetization protocol, one can tune several parameters like 

rotation speed, initial field, field step and oscillation period. Several studies have studied the 

influence of these parameters in the case of artificial spins systems [90, 91, 92]. Through these 

studies, it emerges that the demagnetization is more efficient if it is done slowly with the smallest 

field step.  

To set the AC demagnetization parameters, we performed a first set of experiments in order to 

quantify the saturation field value. For this study different magnetic fields are applied along one 

easy axis and then, for each applied field value, the magnetic configuration of the lattice at 

remanence is imaged by MFM (using the procedure described in chapter 3). The figure 4-1 (b) 

shows the percentage of the spins aligned along the applied field direction as function of field 

amplitude. The percentage never perfectly reaches 100% probably because of some perturbations 

during the MFM scan. Nevertheless, looking at the reversal rate as a function of applied field, the 

saturation for a lattice composed of 300 nanometers squares with a period of 1 micrometer, is 

estimated to be around 200 Oe. As expected this value is larger than the one observed for the full 

film which is around 50 Oe. This fact can be explained by the change in reversal mechanism, the 
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influence of the defect density as well as the shape anisotropy present in the squared 

nanostructures.  

The value of saturation field of the nanomagnets can vary according to the studied lattice as it 

depends on nanomagnet volume and nanomagnet to nanomagnet distance. A solution would be 

to characterize independently all lattices but for obvious reasons of time, another solution is chosen 

which consists to test a field in particular and to observe if the different lattices are saturated. A 

field of 500 Oe has been selected and after MFM measurements, the experiments show that this 

field is adequate to saturate all the lattices. Therefore a field of 500 Oe has always been applied as 

initial field of any AC demagnetization we did.  

Finally, based on previous works of the team [83], the field step has been set at 0.01 Oe and an 

oscillation period equal to 2 seconds has been used. With these parameters the AC demagnetization 

time is 1666 minutes (1.5 days).  

 

4.1.1.2 Efficiency 

In order to analyze the AC demagnetization efficiency with our selected parameters, we 

checked the magnetic configuration after demagnetization for a lattice with small dipolar coupling 

between the nanomagnets. Theoretically, the spins are expected to be equally split between the four 

preferential directions reachable by each spin. We checked that for the three types of lattice that 

we are interested in: 0°, 22.5° and 45° lattice. They have been defined in chapter I and the 

experimental realizations are shown in figure 4-2. It is important to remind here that although the 

lattice angle changes, the Fe nanomagnets magnetization always points along one of the square 

diagonals which correspond to the [100] and [010] crystallographic direction for the Fe crystal.   

 

 

Figure 4-2_Nomenclature of spin directions for three lattices ((a) 0° lattice, (b) 22.5° lattice, (c) 45° lattice). Regardless of 
the angle lattice, the spin direction is always based on the crystallographic axes of Fe: [100] direction corresponds to North, 
[O-10] direction corresponds to East, [-100] direction corresponds to South and [010] direction corresponds to West. 
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To easily identify each spins and its direction, in the three type of lattice, we define the four possible 

directions and associate them to a color code (north, east, south and west), as described in figure 

4-2. We can now observe the spins repartition after field demagnetization. 

For this study two nominally identical samples (sample #1 and sample #2 mentioned in the section 

3.3), with the same composition and the same lattices, are AC field demagnetized. For one of the 

sample, the demagnetization and MFM measurements are realized twice in order to increase the 

statistic, and to see if for a same sample, two independent AC field demagnetizations give the same 

results or if the results are different. One can observe the results of these demagnetizations in the 

following table. 

 

The table represents the results for two different angles lattices which are 0 and 45 degrees where 

the squares have a size of 300 nanometers and where the period is 700 nanometers. For this period, 

we have considered the coupling as sufficiently “weak” to observe an equidistribution in the spins 

directions after demagnetization. Indeed, the experimental results presented in the table show that 

the spins repartition is distributed around 25%. However, the fluctuations are larger than expected 

for a totally random process (25 ± 3% with a 95% confidence for 900 spins). An example of spin 

map obtained on sample #1 after AC demagnetization in the case of 0° lattice is presented in figure 

4-3. The four colors are represented corresponding to the four directions of the nanomagnet spins. 

The four directions of spin are spread over the lattice but one can already guess some lines of 

aligned spin due to the dipolar interactions. Thus a favored local order can be found which shows 

the importance of the dipolar interactions even for the period of 700 nanometers. This order can 

explain the fluctuations observed in the spin repartitions.    
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Figure 4-3_Example of magnetic configuration (after processing) of a 0° lattice obtained after a field demagnetization. The 
lattice observed is composed by 300 nanometers squares and present a period of 700 nanometers. 

 

4.1.2 Thermal demagnetization 

4.1.2.1 Protocol 

For the thermal demagnetization, two ways are possible. The first used historically [15] consists of 

anneal the sample above the Curie temperature in order to obtain a true paramagnetic state. Then 

the sample is cooled up to the dipolar interactions become comparable to the thermal energy in 

order to drive the system in its fundamental state or at least in a low energy state. This protocol is 

not the ideal case to drive the system towards its ground state, as this process is irreversible. And 

we have demonstrated in previous work on Kagome lattices [84] that after this demagnetization 

protocol the system shows specific characteristic related to an out-equilibrium dynamic of the 

system. Moreover in our work, this first approach cannot be apply because diffusion occurs at 

V/Fe interface around 600°C much below Fe Curie temperature (see section 3.1). Moreover the 

Fe thickness is low and the anisotropy constant (shape anisotropy + magneto-crystalline 

anisotropy) is presumed weak enough to allow thermally activated reversal of magnetization for 

temperature much below the Curie temperature.  

Therefore we use the second usual thermal demagnetization protocol which is based on the 

hypothesis that a nanomagnet (with magnetic monodomain configuration) can spontaneously flip 

for another preferential direction after a certain period of time (so-called Néel relaxation time) [22]. 

Néel relaxation time is given by the following equation where it appears that this duration increases 

exponentially with the energy barrier related to the flip between the preferred magnetic 

orientations: 

𝜏 = 𝜏0. exp (
∆𝐸

𝑘𝐵𝑇
) 

where τ is the Néel relaxation time, τ0 is the characteristic time which depends on the magnetic 

material, ∆𝐸 is the energy barrier and 𝑘𝐵𝑇 is related to the thermal energy. In its simplest form 

(4-1) 
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associated to a coherent reversal, the energy barrier equals to the reversed magnetic volume V times 

the anisotropy constant K (∆𝐸 = K.V, in our case ∆𝐸 = 8.64. 10−18 𝐽). Thus, one can play with 

the temperature, anisotropy constant and nanomagnet volume in order to obtain a time of 

relaxation around minutes or seconds. In practice, a trade-off needs to be found between the three 

parameters. Indeed it is easy to change the temperature but the temperature increase can generate 

a sample destruction or contamination. The reduction of nanomagnet volume is limited by 

lithographic techniques resolution. Moreover decreasing the nanomagnets volume lowers the 

dipolar interactions between nanomagnets [93]. Finally the anisotropy constant cannot be tuned 

on a large range since we chose square shape (with low shape anisotropy anyway) and quadratic 

anisotropy Fe film (we could have lower it by alloying Fe with Co for instance film). For our sample, 

thickness of 2 nm, 300 nm square edge size combined with the small square shape anisotropy must 

favor low barrier height.  

In order to have an efficient thermal demagnetization, the choice of the oven is really important 

because during this demagnetization, it’s necessary to avoid any magnetic field. Indeed if an external 

field is present, the symmetry of the energy barrier between preferential directions for the 

magnetization will be break and so, one state could be favor. Most of the ovens use resistors with 

electrical circuits which produce magnetic fields. To avoid this problem, we have used a “home-

made” oven (developed by M. Hehn) where the heating system does not create magnetic field. 

Indeed for this oven, the sample is placed on a sample holder in copper and this sample holder is 

heated with a halogen bulb puts far away of the sample in order to avoid a magnetic field. Halogen 

bulb presents the advantage of a very weak magnetic field creation during the heating, but presents 

the disadvantage of limited annealing temperature. In our case the maximal temperature is 350°C. 

This temperature is below the Curie temperature of our sample, and so in all the conducted 

annealing Curie temperature cannot be reached. Furthermore during the annealing, the sample is 

under vacuum and thus the risk of oxidation by the top or the border of elements is limited.   

It is to be mentioned that our “home-made” oven carries an electromagnet without soft iron core, 

and so we can consider that when there is no electric current in the coil, the remnant field is equal 

to zero. For all the annealing processes presented in the thesis, the electric current in the coil is 

fixed at zero, and we checked with a Gauss-meter that the area where the sample is placed presents 

a magnetic field which is in the order of the earth’s magnetic field.  

 

 

4.1.2.2 Thermally induced magnetization reversal as a 

function of square size 

For this study, the sample is saturated along an easy axis (South direction) in order to set 

the initial magnetic configurations of the different lattices, and then the sample is heated at a 

temperature of 300°C during 2 hours (slightly below the oven maximum at 350°C). In figure 4-4 is 

shown the magnetic configuration measured after heating for two 45° lattices with the same period 

(1300 nm) with either 300 nanometers squares or 500 nanometers squares. For such large period, 

the dipolar coupling is considered weak enough to expect equi-distribution of the spins along the 

four directions after demagnetization. 
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Figure 4-4_ Magnetic configurations of 45° lattices obtained after a heating at 300°C during 2 hours. (a) Lattice composed 
by 500 nanometers squares and with a period of 1300 nanometers. (b) Lattice composed by 300 nanometers squares and with 
a period of 1300 nanometers. 

Here we studied a 10X10 spins representative portion of the lattice. Figure 4-4 (a) shows that the 

500 nanometers squares nanomagnets moments do not switch after 2 hours annealing at 300°C. 

96% of the spins still point along the saturation field direction, in the south direction (red arrow), 

instead of only 25 % as expected.  Most probably, the energy barrier inhibits temperature activation. 

The other 4% of spins can be either “hard switchers” which have not been affected by the 

saturation field, or nanomagnets with lower energy barrier which have switch during the heating 

process. Unfortunately the initial configuration (after saturation) has not been recorded with MFM. 

In the case of 300 nanometers squares, as shown in figure 4-5(b), much more spins are dispatched 

in the North, East and West direction after annealing. It is in line with the decrease of the magnetic 

volume and of the energy barrier as compare to 500 nm. Nevertheless we must point out that a 

large number of spins, around 50%, remain in same direction as the saturation field. As only a part 

of the lattice is studied, it’s not possible to conclude about the efficiency of this demagnetization 

with a temperature of 300°C, but this experiment clearly demonstrates that 300 nanometers squares 

are thermally activated at 300°C annealing. We tested others lattices and we observed that for a 

square size superior at 300 nanometers, a temperature of 300°C is too low to allow magnetization 

reversal thermally activated regardless of the angle or of the period.  

In the following, only studies of 30x30 squares with a length of 300 nanometers are reported. 

   

4.1.2.3 Efficiency 

Now that the proper nanomagnet size has been identified, one must do a similar study for 

the annealing parameters (time, temperature, temperature ramp) to optimize the demagnetization 

process. Unlike field demagnetization, no previous study of thermal demagnetization (below the 

Curie temperature) has been done in our team. Moreover, for thermal demagnetization, parameters 

are strongly correlated with the material used and the nanostructures patterned. To tune the 

annealing parameters, we use a lattice of 30x30 spins lattice with a period of 700 nanometers and 

an angle alpha equal to 45°. Again the period is large enough to consider the dipolar interaction as 

weak and equi-distribution of spins repartition is mostly expected after demagnetization process. 
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4.1.2.3.1 Heating time influence 

The first parameter which is checked is the heating time, and this study is done with the 

sample #1 mentioned in the section 3.3. For this study the temperature used for the heating is fixed 

at 300°C and the ramp temperature, which is the same for the temperature rise and for the 

temperature drop, is fixed at 10°C/min. Actually as it does not exist a cooling system in the oven, 

the fastest ramp for the temperature drop will be given by the thermic inertia of the oven. The 

sample is saturated along an anisotropy axis, in order to set the initial state before annealing. The 

summary of the different heating is represented in the following table.  

 

 

The spins repartition at remanence after thermal demagnetization is plotted as a function of the 

heating time in the figure 4-5 (a). Since we change the saturation direction between heating, in the 

figure 4-5 (a) and (b), the spins are not identified by their directions against the sample (N, E, S, 

W), but by their directions against the saturation direction used to obtain the initial state. Thus the 

black points represent the spins which stay in the same direction as the saturation field, the red and 

blue points represent the spins which have rotated 90° clockwise and counterclockwise, and the 

green points represent the spins which are opposite to the saturation direction. In this study, each 

heating time is done twice and the figure 4-5 (a) shows the average value for each heating time with 

the standard deviation. This spins repartition does not bring to light a difference according to the 

heating time for time larger than 1 hour. Only half hour shows a weak difference. After 

demagnetization a majority of spins (around 40%) stays in the saturation field direction, a minority 

of spins point in the opposite direction to the saturation (around 10%) and an equi-distribution is 

observed for the two directions transverses (around 25% each). Considering the fact that the 

heating time does not change the spins repartition obtained after the demagnetization, the average 

percentage of spins repartition is calculated including all the heating time (see figure 4-5 (b)). The 

same “40%, 25%, 25%, 10%” repartition is obtained.  
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Figure 4-5_ (a) Spins repartition obtained after thermal demagnetization as a function of the heating time. (b) Average spins 
repartition independently of the heating time. For these two graphics the spins are identified against the direction of the saturation 
imposed to obtain the initial state. 

 

The fact that we do not obtained an equi-distribution of the spins in the four direction can be 

explained by a distribution of energy barrier for the nanostructures. Indeed as the heating time has 

not or very weak effect from the point of view of the spins repartition, it is possible that only a 

part of the nanostructures are sensitive to this temperature while the others, so called “thermal 

hard switcher” or just “hard switcher”, are insensitive to it. The imbalance between the number of 

spins in different directions may also originate by a specific reversal process.  

In order to interpret the experimental results, it is useful to apprehend with a simple model the 

expected dynamic. Considering a single element (with no coupling nor applied field), it has four 

stable states, North, East, South, West, of equal energy. These states are separated by energy 

barriers which determine the transition rate between them. The characteristic time 𝜏 is simply 

related to the barrier height 𝐸𝑏 by 𝜏 = 𝜏0.exp(𝐸𝑏 𝑘. 𝑇⁄ ). In our system we can consider two 

different processes: 90 degree reversal (associated to characteristic time 𝜏) and 180 degree reversal 

(associated to characteristic time 𝜏′). These processes are graphically represented in figure 4-6.  

 

Figure 4-6_Characteristic times as function of the reversal process 
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Considering the proportion of spin (or the probability for a spin to be) in state N, it is therefore 

ruled by the following differential equation: 

𝑑𝑃𝑁
𝑑𝑡

= −
2

𝜏
𝑃𝑁 +

1

𝜏
𝑃𝑊 +

1

𝜏
𝑃𝐸 −

1

𝜏′
𝑃𝑁 +

1

𝜏′
𝑃𝑆 

 

The set of equation for all the states can be conveniently written in a matrix form by introducing 

the vector 𝐏 = (𝑃𝑁 , 𝑃𝐸 , 𝑃𝑆, 𝑃𝑊): 
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This matrix has a zero determinant and therefore it exists a non-zero solution in the permanent 

regime (𝑑𝐏 𝑑𝑡⁄ = 0) which is 𝐏(∞) = (
1

4
,
1

4
,
1

4
,
1

4
). 

The matrix possesses three eigenvalues: 0, −
4

𝜏
 and −2

𝜏+𝜏′

𝜏.𝜏′
 (2 times degenerated) and therefore the 

general solution writes:  

𝐏(∞) = (
1

4
,
1

4
,
1

4
,
1

4
) + 𝑨exp (−

4𝑡

𝜏
) + 𝑩exp (−2

𝜏 + 𝜏′

𝜏. 𝜏′
𝑡) 

 

For a system initially saturated in the North direction, its evolution is simply given by: 

 

𝐏(∞) = (
1
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1
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,
1
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1
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1
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1
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, −
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1

2
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1

2
, 0) exp (−2

𝜏 + 𝜏′
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We can consider two limiting cases which are relevant for our system: 

- Equal probability for 90 and 180 degree reversal (𝜏 = 𝜏′). In that case, the time evolution 

of states East, South and West is the same and governed by an unique time constant, 𝜏 4⁄  
(figure 4-7 (a)) 

(4-2) 

(4-3) 

(4-4) 

(4-5) 
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- No direct 180 degree reversal (𝜏 ≪  𝜏′). This situation is the one predicted by the 
micromagnetic simulations. In that case, the system first evolves toward states East and 
West and later towards state South. The two time constants associated with these 

phenomena are  𝜏 4⁄  and 𝜏 2⁄  (figure 4-7 (b)). 
 

 
Figure 4-7_ Time evolution of states North (blue curve), East (pink curve), South (yellow curve) and West (pink curve) in 
the case of: (a) two equal probability for 90 and 180 degree reversal: the time evolution is the same for the spin proportion in 
the East, West and South directions. (b) No direct 180 degree reversal: the time evolution is the same for the spin repartition 
in East and West directions (90° reversal) but is slower for the spin repartition in South direction (180° reversal). 

Are our experimental results well explained by this model? Obviously no. As a matter of facts, as 

the proportion of state is not dependent of the annealing time, one can expect that we have reached 

the permanent regime. But in the permanent regime we expect an equal repartition between the 

states. A simple way to explain this discrepancy is to consider that all the elements do not have the 

same energy barrier. The elements with a higher energy barrier, called hard switchers, cannot switch 

in the considered temperature range and the repartition observed would be a combination between 

"easy switchers" (equiprobable repartition) and "hard switchers" staying in the North direction. 

But such a scenario cannot explain the unbalance between East-West and South states. Considering 

that the system has actually reached the permanent regime, the unbalance can only be explained if 

some elements can switch from North to East (or West) but not from East (or West) to South. As 

there is no reason that the energy of South and North states are different (time reversal symmetry), 

we therefore have to consider non-reciprocal transition rate between North-South and East-West 

states.  

 

This non-reciprocal transition rate can be explained by a small energy difference between North-

South and East-West states du to symmetry breaking. Figure 4-8 shows such an example: a defect 

in an element corner lift the degeneracy between North-South and East-West directions. In this 

example, the difference in energy is 1.2 10-19 J (29 kT at room temperature). 
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Figure 4-8 Micro-magnetic configuration and related energy for square with a defect in a corner as function of the magnetization 
direction: (a) North direction, (b) West direction. 

This difference in energy, resulting in an effective uniaxial anisotropy, is far from negligible despite 

the small size of the defect. In real sample, it is possible that such defects are present and randomly 

distributed favoring one or the other direction from element to element. Another aspect, not easy 

to integrate in our simple picture, is that considering the reversal initiates in one of the element 

corner, a reversing from one direction to the other does not occur in the same corner of the element 

than the reciprocal reversing.  

 

 

4.1.2.3.2 Temperature influence 

As mentioned previously, it’s reasonable to think that in our lattices, it exists a potential 

barrier distribution for the nanostructures. Yet if it is the case, the number of “hard switchers” 

found after the heating should decrease by increasing temperature. Therefore, the same sample and 

the same protocol as for the previous study is used with now the highest temperature possible with 

our oven, i.e. 350°C. The sample is saturated along an anisotropy axis and then heated at a 

temperature of 350°C with a ramp temperature fixed at 10°C/min. For this study two heating are 

performed (on the same sample) with these parameters. The resulting spin repartition is shown in 

figure 4-6 and compared with 300°C annealing.  
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Figure 4-6_ Spins repartition for the same lattice (30x30 spins, square size: 300 nm, period 700 nm and alpha angle: 45°) 
related to two heating temperatures: 300°C and 350°C. The spins are identified against the direction of saturation used to 
obtain the initial saturated state. 

It turns out that increasing annealing temperature from 300°C to 350°C leads towards a much 

better equi-distribution of the spins directions. The proportions after 350°C annealing are very 

close of the expected 25% each. This result is in accordance with the presence of a potential barrier 

distribution for the nanostructures composing the lattice. While increasing the temperature, much 

more spins are thermally activated and can be reoriented. It would be good to further increase 

temperature to insure excitation of all spins in the lattice. Unfortunately with our oven, 350°C is 

the maximum temperature that we can reach and so it has not been possible to check higher 

temperature.  

Another parameter can be considered: the ramp temperature. If we consider that after the heating 

at 350°C the system is abruptly cooled down (quench), the spins will be frozen and the influence 

of the dipolar interactions should be significantly reduced. On the contrary, the longest dropping 

time should favor the best rearrangement of the spins (via dipolar interactions) and therefore favors 

the obtaining of ground state configuration. Unfortunately, for time reasons this parameter has not 

been checked for our demagnetization and the choice is done to select the slowest possible ramp 

with our equipment: 0.1°C/min.   
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5. EXPERIMENTAL DEMONSTRATION OF 

DIPOLAR 4-STATE POTTS MODEL: 

COUPLED POTTS SPIN LATTICE  

 

Up to know we only focus on weakly coupled spins repartition in order to optimize 

demagnetization efficiency. Let’s now observe the magnetic configurations obtained after 

demagnetization in the case of strongly coupled nanomagnets, and compare with our theoretical 

predictions detailed in chapter I. 2D dipolar Potts system is expected to possess very different 

ground state magnetic configuration depending on the angle between spins and lattice. Here we 

study only three angles which are 0, 22.5 and 45 degrees where the lowest energies states are 

respectively: antiferromagnetic state, spin ice state (by analogy with the square ice introduced by 

Wang et al: 2in-2out) and ferromagnetic state.  

For this chapter, only sample #3 is measured (see section 3.3).  On this sample, finite (30x30) 

square lattices with different orientations for spin direction and different periods are studied as 

summarized in the following table. 

 

All the demagnetizations discussed in this chapter are shown in the following table. 

 

Where: - Sat/Tdemag is related to thermal demagnetization performed from a saturated initial 

state. 

 -Hdemag is related to AC field demagnetization. 

 -Hdemag/Tdemag is related to thermal demagnetization performed after AC field 

demagnetization. 

 

The same protocol is used for Sat/Tdemag#1 and Sat/Tdemag#2, but the orientation of the sample in 

the oven is different (90° rotation between them). This rotation will be discuss in the section 5.2.  
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5.1 Coupled Potts spin lattice: qualitative study 

5.1.1 Magnetic configurations measured after AC field 

demagnetization 

In this section, the magnetic configurations shown are obtained after an AC field 

demagnetization with the same optimized parameters as defined previously: saturation field of 500 

Oe, a field step of 0.01 Oe and an oscillation period of 2 seconds. In figure 4-7 are presented the 

magnetic configurations extracted from MFM images for lattice periods of 500, 600 and 700 

nanometers and for the three lattice angles 0, 22.5 and 45 degree. Missing spins are located when 

the contrast is not good enough to determine the spin direction. 

The figure 5-1 (a) to (c), show the configurations resulting from the AC field demagnetization for 

the 0° lattices for three lattice period. The lowest energy state for a theoretical system composed 

by spins with only dipole-dipole interactions is an antiferromagnetic state. In our case a perfect 

antiferromagnetic state should be represented by alternate lines which would be red and blue if it 

is North and South or green and black if it is West and East. The experimental results of figure 5-

1 (a) to (c) are far away from a perfect antiferromagnetic state. Nevertheless small antiferromagnetic 

domains in the North-South and East-West directions are distributed over the whole lattice. It 

suggests the possibility to observe the behavior expected for the 0° lattice with a more efficient 

demagnetization procedure. The configuration of the three lattices (with 500, 600 and 700 nm 

period) show similar areas cover by anti-ferromagnetic domains.  

Figure 5-1 (d) to (f) show the three lattices (with 500, 600 and 700nm period) for the 22.5° case. 

From our calculation, the fundamental state must be a ferromagnetic phase. The experimental 

maps do not show this behavior over the whole maps.  Some ferromagnetic domains appear for 

the three periods but these domains are really small.  

The configuration expected for 45° lattice with only dipole-dipole interactions between spins is a 

spin ice state which in our case, for a perfect ground state, is represented exclusively by two spins 

in and two spins out for each vertex. In terms of graphic representation, this configuration is 

reflected by the presence of 4 different arrows (North, South, East and West) at each vertex, which 

must lead to the creation of succession of  “North, South, East, West loops” in the lattice. 

Experimental spin maps presented in figure 5-1 (g) to (i) show some “loops” which were never 

observed in the other lattice angles.  

As a conclusion at this section, AC field demagnetization locally drives the system in its ground 

state, for the three angles 0, 22.5 and 45 degrees. But the number of the ground state domains is 

small and their sizes very restricted. As we already tuned the AC demagnetization as much as we 

could, it is unlikely that we can ever reach the ground state with AC field demagnetization. As a 

consequence, as of now, we will focus on our optimized process of thermal demagnetization.  
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Figure 5-1_ Magnetic configurations extracted from MFM measurement for (a) to (c)  0°, (d) to (f) 22.5° and (g) to (i) 45° 
lattices as a function of the period (500, 600, 700 nm) obtained after AC field demagnetization. 
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5.1.2 Magnetic configurations measured after thermal 

demagnetization 

The magnetic configurations, which are shown in the figure 5-2, are related to the 

demagnetization Sat/Tdemag#1. After an initial saturation along an anisotropy axis, the lattices are 

submitted to a five hour heating at a temperature of 350°C, then the sample is cooled down 

following a temperature ramp of 0.1°C/min. After demagnetization, magnetic configurations of 

the different lattices are imaged by MFM and these MFM images are processed by the “home 

program” Mathematica (mentioned in section 3.6.3.2), in order to represent directly the spin maps 

of nanomagnets lattices.  Note that in the next paragraphs, the lattices have always been saturated 

in the East direction. 

As mentioned previously, the configuration expected for 0° lattice with only dipolar interactions 

between spins is an antiferromagnetic state. In figure 5-2 (a) to (c) are presented the spins maps 

extract from MFM measurement on 500, 600 and 700 nm period for the 0° lattice. First, it is 

obvious that the perfect ground state does not appear in any of these experimental spin maps 

regardless of the period. Nevertheless some zones of the map are covered with antiferromagnetic 

lines configurations. This result is not surprising as a perfect ground state can only be obtained 

when only one spin is fixed at the beginning of the cooling down procedure while the others are 

still free to switch. From there dipolar interactions will force the neighboring nanomagnets to 

minimize the dipolar energy. Thus an antiferromagnetic domain is formed which grows until the 

entire lattice is covered. In real life, and even with a thermal barrier distribution, there are no 

reasons why only one spin should be frozen at the first place. Therefore few anti-ferromagnetic 

domains independently grow without coherency leading to multiple domains, with various sizes 

and shapes, at the end of the demagnetization process. These antiferromagnetic domains seem 

more numerous along one direction which is North/South, i.e. at 90° from the initial saturation. 

This fact is especially prominent for the lattice with 500 nm period. For the periods 600 and 700 

nanometers, the antiferromagnetic domains, in North/South majority, are numerous but with small 

sizes. However for the period of 500 nanometers, these antiferromagnetic domains are less 

numerous but their sizes are clearly bigger than for the others periods. Another clear difference 

between the 500 nm period lattice and the two others, is the presence of big ferromagnetic domains 

whose spins point in the saturation direction (East). As the ferromagnetic state energy is just above 

the antiferromagnetic state in our calculations (see chapter I) some thermal hard-switchers may 

stay in the saturation direction and promote ferromagnetic ordering of the neighboring 

nanomagnets. The reminiscence of the saturated state is discussed in details in sections 5.2 and 5.5.  

The configuration expected for 22.5° lattice with only dipolar interactions between spins is a 

ferromagnetic phase.  For the three periods, ferromagnetic domains exist. Lots of small 

ferromagnetic domains can be seen for 600 and 700 nm period, while for 500 nm period they are 

less numerous but much bigger. These configurations seem to have been significantly driven by 

the dipolar interactions between nanomagnets and clearly different from the 0° lattice 

configurations. In the case of 500 nm, where the ferromagnetic domains are the biggest, only East 

and South directions cover most of the map and the East direction is the most extended one. It 

can be due, as discussed above, to the presence of thermal hard switchers. The prominence of 

these two directions is discussed quantitatively in details further in this manuscript.  

The configuration expected for 45° lattice with only dipolar interactions between spins is a spin ice 

state which in our case, for a perfect ground state, is represented exclusively by loops in the lattice. 
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Thus a first ground state indicator should be the number of “loops” present in the lattice. Figure 

5-2 (g) to (i) show the spin maps for 45° degree lattices with 500 up to 700 nm period. The numbers 

of loops are 71, 125 and 137 for 700, 600, 500 nm period respectively.  So we can conclude that 

thermally demagnetized magnetic configurations depend on the dipolar interaction intensity. The 

good comparison with our theoretical calculations could also have been made on the argument of 

vertexes. Indeed, the perfect ground state is also represented by vertex composed by two-in/ two-

out spins.  

 

 

 

Figure 5-2_ Magnetic configurations extracted from MFM measurement for (a) to (c)  0°, (d) to (f) 22.5° and (g) to (i) 45° 
lattices as a function of the period (500, 600, 700 nm) obtained after thermal demagnetization (heating at 350°C) performed 
from an initial saturated state in the East direction (green arrows). 
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The configurations presented in the figure 5-2 are related to the Sat/Tdemag#1. And the results show 

different magnetic behavior for our system according to the spins directions, as expected from our 

theoretical calculations. In order to confirm these results, the magnetic configurations obtained 

from Sat/Tdemag#1 are compared with those obtain from the Sat/Tdemag#2 (identical 

demagnetization protocol). The results for lattices with a period equal to 500 nm are presented in 

the figure 5-3. 

 

Figure 5-3_ Magnetic configurations extracted from MFM measurement for (a) to (c)  Sat/Tdemag#1, (d) to (f) 
Sat/Tdemag#2 as a function of the angle (0°, 22.5°, 45°). The two demagnetizations correspond to a thermal 
demagnetization (heating at 350°C) performed from an initial saturated state in the East direction (green arrows). The spins 
maps are represented as well as particular domains. For 0° the antiferromagnetic domains (blue) and the ferromagnetic domains 
(beige) are represented. For 22.5° the ferromagnetic domains are represented (beige). For 45° the spin ice domains (green) and 
the wave domains (pink) are represented. 

In the figure 5-3, the label (color as a function of the direction) for the spins is the same as previous 

spins maps, and the domains present in the different lattices are highlighted in order to make easier 

the comparison between the two thermal demagnetizations. For 0° lattices (Figure 5-3 (a), (d)), the 

antiferromagnetic domains (blue) and the ferromagnetic domains (beige) are represented. For 22.5° 

lattices (Figure 5-3 (b), (e)), the ferromagnetic domains (beige) are represented. And for 45° lattices 

(Figure 5-3 (c), (f)), the spin ice domains (green) and the wave domains (pink) are represented. 

Through the observation of the figure 5-3, we conclude that the results for the both thermal 

demagnetizations are really close.  

For the three lattices angles, the magnetic configurations are a combination of the lowest energy 

states determined in the section 1.5: for 0° lattices the magnetic configurations are composed of 

ferromagnetic and antiferromagnetic domains, for 22.5° lattices the magnetic configurations are 

composed of ferromagnetic domains and for 45° lattices the magnetic configurations are composed 

of spin ice domains, waves domains and ferromagnetic domains. Thus we conclude that two 

thermal demagnetizations performed with the same protocol give similar magnetic configurations 

which show different magnetic behavior according to the spins directions as expected from our 

theoretical calculations.  
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5.1.3 Thermal demagnetization performed after field 

demagnetization 

In the previous part, it has been shown that large ferromagnetic domains with spins 

pointing in the saturation direction remain after thermal demagnetization for the three lattice angle, 

although ferromagnetic state is not the ground state for 0° and 45°. It is therefore of interest to 

check the influence of thermal demagnetization on an AC field demagnetized lattice. For this 

analysis, only the results for the lattices with a period of 500 nanometers obtained from the 

Hdemag/Tdemag are shown in this section. The initial state of the sample which is selected is the same 

as the configurations present in the section 4.2.1 for AC field demagnetization. Thus the system 

first undergoes AC field demagnetization, then is heated at a temperature of 350°C during 5 hours 

and finally is cooled down with a ramp temperature equal to 0.1°C/min. 

 

 

Figure 5-4_ Magnetic configurations (corresponding to lattices with a period of 500 nm) obtained after a field demagnetization 
(Hdemag: from (a) to (c)) followed by a thermal demagnetization (Hdemag/Tdemag: from (d) to (f)). The configurations from 
(d) to (f) are compared with magnetic configurations induced by thermal demagnetization after saturation (Saturation/Tdemag: 
from (g) to (i)).  
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Comparison between spins map before and after thermal demagnetization (the initial state being 

an AC demagnetized state) is shown in figure 5-4. For the three angles, the configurations are closer 

to their fundamentals states after the thermal demagnetization. As an example, in the 45° case, the 

number of loops increases from 60 to 145 with thermal demagnetization. Mostly it seems that the 

ground state domains present in the initial state extend during the thermal demagnetization.  

Let’s now compare configurations induced by thermal demagnetization after saturation (figure 5-4 

(g) to (i)), so-called Saturation/Tdemag, and after AC demagnetization (figure 5-4 (d) to (f)), so-called 

Hdemag/Tdemag. For the 0° lattice, the antiferromagnetic domains are bigger for Saturation/Tdemag, but 

these domains are only along one direction which is North-South. For the configuration 

Hdemag/Tdemag, antiferromagnetic domains don’t show a preferential direction. Moreover the 

ferromagnetic domains present after the demagnetization Saturation/Tdemag are no longer visible in 

Hdemag/Tdemag. It confirms that these ferromagnetic domains originate from the saturation. They 

most probably remain in Saturation/Tdemag because of the weak energy difference between 

antiferromagnetic state energy and ferromagnetic state energy or because a large energy barrier to 

pass from one to the other. For the 22.5° lattice, since the initial state is already the expected ground 

state in Saturation/Tdemag it is not surprising that Saturation/Tdemag presents much larger 

ferromagnetic domains than Hdemag/Tdemag. Finally for the 45° lattice, the difference between the 

two demagnetizations is less evident. Saturation/Tdemag (137 loops) and Hdemag/Tdemag (145 loops) 

have similar number of loops. The main difference between Saturation/Tdemag and Hdemag/Tdemag 

consists, as in the 0° case, in the existence in Saturation/Tdemag of ferromagnetic domains with spins 

pointing along saturation field (East) and in the South direction. Nevertheless, as for the 0° lattice, 

it is not so simple to determine the best demagnetization process for the 45° lattice. One needs to 

quantify the energy of the final states.   

 

As a conclusion of this part devoted to the first observation of spin maps obtained after thermal 

demagnetization, different magnetic behaviors for 0° lattice, 22.5° lattice and 45° lattice, are clearly 

demonstrated, as expected from our theoretical calculations.  After the thermal demagnetization, 

we observe antiferromagnetic domains, ferromagnetic domains and spin ice type domains which 

are supposed to be the ground state for 0°, 22.5°, 45° respectively. These experimental results 

confirm that thermal demagnetization is efficient to reach low energy state, at least for the tested 

Potts spin lattice system. In the following we will compare in a more quantitative manner the 

experimental results and the theoretical predictions.    
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5.2 Discussion: Spins repartition and broken symmetry  

Our above qualitative studies have shed a light on the impact of the initial state on the 

thermal demagnetization to drive the system toward its ground state. It means that the sample 

history matters and so that the temperature is not strong enough to completely excite the system 

over all the thermal energy barriers. 

 

Figure 5-5_ Spins repartition (in percentage) for 45° lattices obtained after Sat/Tdemag#1(a), Sat/Tdemag#2 (b), Hdemag 
(c) and Hdemag/Tdemag (d). For (a), (b), (c) the spins are identified according to their directions against the saturation 
direction related to the initial state (East). For (d), as the configuration is obtained after a thermal demagnetization performed 
from Hdemag, the spins are identified according to their nominal directions (East, West, North, South). 

Now it remains a point to check that we have not used yet which is the imbalance between the 

four directions obtained after demagnetization for sample studied in section 5.1. In section 4.1, we 

used one sample hosting 700 nm period lattices. We used the weak coupling between the spins to 

demonstrate the good balance between the four directions found after demagnetization (almost 

25% of spins per direction). For the section 5.1, we used a second sample which is nominally the 

same but which host 500 nm, 600 nm and 700 nm period lattices. Surprisingly, in this second 

sample (supposed to be identical) the same demagnetization protocol leads to an unidirectional 

imbalance of the 4 directions. This Spin imbalance is highlighted in figure 5-5, which represents 

the spins repartition in 45° lattices for all the demagnetization protocols performed on the sample. 

For (a), (b) related to the thermal demagnetizations performed from an initial state saturated, the 

three periods 500, 600 and 700 nm are represented. And for (c), (d) related to AC field 

demagnetization and thermal demagnetization performed after the AC field demagnetization 
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(respectively), the period of 500 nm is represented.   Labels in the figure 5-5 (a, b, c) (opposite, 90° 

clockwise, etc.) refer to the direction of spins compared with the saturation field direction, as 

described in section 4.1.2.3.  

For this 45° lattice in both strongly coupled (500nm) and weakly coupled (700 nm) case, we 

theoretically expect spins equi-distribution for the ground state (each loop must contain the 4 spin 

directions in the strongly coupled case). Nevertheless for Sat/Tdemag (figure 5-5 (a) and (b)), a large 

number of spins are along the direction of the saturation field. This has been already discussed and 

originates from the choice of setting the system in a saturated state before the thermal 

demagnetization. In addition we observe an imbalance between the 90° counterclockwise spin and 

90° clockwise spin. This imbalance is certainly not expected neither explained at this stage. For 

Hdemag and Hdemag/Tdemag (figure 5-5 (c), (d)) a weak imbalance is also observed in favor of the 

direction East and South, as for the Sat/Tdemag. 

On this sample, we found that similar unidirectional imbalance exists for all the lattices regardless 

of the angle or of the period. Besides, it is especially pronounced for the Sat/Tdemag protocol. Three 

potential sources of the broken symmetry can be mentioned: presence of a remaining magnetic 

field during the heating, existence of an exchange bias in our sample, and influence of the MFM 

tip during the scan.  

Two independent annealing are performed (Sat/Tdemag#1 and Sat/Tdemag#2) and allow to check the 

presence of a magnetic field in the oven which could explain the two predominant directions. 

Indeed for these two thermal demagnetizations, the sample is saturated in the East direction then 

it is placed at the same position in the oven, except that the sample is rotated by 90° around the 

perpendicular direction to the sample. In figure 5-5 (a), (b) is shown the results related to these two 

thermal demagnetizations. In the figure 5-5 (a) the spins points mostly along the saturation 

direction (East direction) and toward the south direction. So maybe the oven contain a field 

pointing in the South direction. Figure 5-5 (b) shows similar diagram measured on the same sample, 

also saturated East but rotated by 90° in the oven during the thermal demagnetization. Comparison 

between figure 5-5(a) and 5-5(b) shows that the North-South asymmetry is identical whatever is 

the placement of the sample in the oven. Therefore we can conclude that the North-South 

asymmetry does not originate from a remanent magnetic field in the oven. This conclusion is also 

confirmed through the imbalance observed for AC field demagnetization, which is similar as this 

one for the thermal demagnetization. 

Unfortunately for time reasons, the hypotheses of exchange bias and the tip influence have not be 

checked. In order to determine the presence of an exchange bias in our sample, magneto-optical 

Kerr effect (MOKE) measurements could be done. However in the chapter III, the magnetometric 

study of the sample has not revealed this exchange bias, and if this supplementary anisotropy exists, 

this one is maybe appeared in our sample due to the heating. If the tip during the MFM scan 

induced this imbalance in the spins repartition, the inversion of the magnetization direction of the 

tip (against this one used for all the results presented in this chapter) should show an inversion in 

the imbalance (North favored). 

Nevertheless it remains that despite this not expected imbalance in the results, magnetic behaviors 

for 0° lattice, 22.5° lattice and 45° lattice are clearly different as expected from our theoretical 

calculations. We can now investigate more qualitatively the results obtained after demagnetizations.  
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5.3 Dipolar coupling effect 

The parameter that can be used to probe the demagnetization efficiency and verify our 

dipolar Potts model is the lattice energy. For non-interacting spins, the spins direction repartition 

should be 25% for the four possible directions, and the energy resulting of such lattice should be 

equal to 0. For dipolarly coupled spins, the efficient demagnetization should lead to states with 

energies calculated in the section 1.5 for a 30x30 spin lattice. The experimental dipolar energies 

discussed in the next sections are extracted from the magnetic configurations shown in the section 

5.1, in considering only dipolar interactions between nanomagnets.  

In this section the influence of the intensity of the dipolar coupling between elements (through the 

period) is probed, for AC field demagnetization and thermal demagnetization. 

 

Figure 5-6_ Experimental configurations energies obtained after two demagnetization protocols (AC field demagnetization 
and thermal demagnetization) according to the period of lattices for two angles lattices: (a) 45° and (b) 0°. The black points 
are related to the configurations obtained after AC field demagnetization (Hdemag) and the red points are related to the 
configurations obtained after thermal demagnetization (Sat/Tdemag#1). The dashed lines (green and blue) represent the 
dipolar energies for the perfect ground state (spin ice state and antiferromagnetic state) calculated for a lattice 30x30 spins. 

 

In the figure 5-6, the points represent the energies corresponding to the experimental spin maps 

extracted from MFM measurements for the three periods and two angles: (a) 45° lattice and (b) 0° 

lattice. The black points correspond to the results obtained after an AC field demagnetization 

(Hdemag) and the red points correspond to the results obtained after a thermal demagnetization 

(Sat/Tdemag#1). The green and blue dashed lines represent the energies given by the calculation for 

a 30x30 spins lattice where the magnetic configurations are spin ice state and antiferromagnetic 

state respectively. Although the dependence of the magnetic configuration on the lattice period for 

the AC field demagnetization was unclear from the eye, one can observe that the energy clearly 
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decreases when the period decreases for the two demagnetizations. This analysis in terms of energy 

confirms that the dipolar fields play a significant role during the demagnetizations (field or thermal). 

Moreover the magnetic configurations obtained by thermal demagnetization are much lower in 

energy than the ones obtained by AC demagnetization, as suspected in the observations of the 

magnetic configurations shown in the section 5.1. These results presented for 0° lattices and 45° 

lattices are also valid for the 22.5° lattices. As the figure 5-7 shows that the best efficiency for the 

demagnetizations is obtained for the smallest period (500 nm), we can now compare the different 

demagnetization protocols mentioned in the section 5.1 in term of dipolar energies in focusing the 

study on the smallest period.  

 

5.4 Comparison between demagnetization protocols 

The results shown in this section correspond to the energies linked with the configurations 

represented in the section 5.1, for only lattices with a period of 500 nanometers. The energies 

extracted from spin maps given by MFM images (see figure 5-4) are presented in the figure 5-7 and 

compared with theoretical energy values. 

 

Figure 5-7_ Experimental configurations energies obtained after several demagnetization protocols for lattices with a period of 
500 nm, layered on the theoretical energies determined in the section 1.4.2. Three protocols are presented which are field 
demagnetization (Hdemag), thermal demagnetization with a ferromagnetic initial state (Saturation/Tdemag) and thermal 
demagnetization with an initial state obtained from field demagnetization (Hdemag/Tdemag). 

These three demagnetization protocols are the same as mentioned in the section 5.1: field 

demagnetization (red points, Hdemag), field demagnetization followed by thermal demagnetization 

(brown points, Hdemag/Tdemag) and saturation followed by thermal demagnetization (green points, 

Saturation/Tdemag#1). The results for Saturation/Tdemag#2 are really close to those observed for 

Saturation/Tdemag#1 and so are not represented to make the figure easier to read. In the following 

the label  Saturation/Tdemag makes reference to Saturation/Tdemag#1.    
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Interestingly, comparison of AC demagnetization (Hdemag) and thermal demagnetization after AC 

demagnetization (Hdemag/Tdemag) provides a direct quantification of the gain in energy induced by 

thermal demagnetization. So thermal demagnetization allows to form configurations closer from 

the ground state. In fact, figure 5-7 shows that lowest energies are always provided by the saturation 

then thermal demagnetization process (Saturation/Tdemag). Although it was difficult to deduce it 

from simple observation of the magnetic configuration in the case 0° and 45° lattice in section 5.1, 

it is now clear that performing thermal demagnetization on a saturated state is more efficient than 

on a AC demagnetized state. In the case of 22.5° lattice, it was intuitively expected. Indeed starting 

from a saturated state is the simplest way to get the ferromagnetic phase.  

For 0 degree, antiferromagnetic domains are theoretically lower in energy than the ferromagnetic 

domains (see red and blue curves in figure 5-7). Saturation/Tdemag shows large North-South 

antiferromagnetic domains and two large ferromagnetic domains in the saturation direction, i.e. at 

90° compared to the antiferromagnetic domains. Whereas Hdemag/Tdemag, shows antiferromagnetic 

domains in the two possible directions (North-South and East-West) and no ferromagnetic 

domains. It is therefore surprising that Saturation/Tdemag has lower energy than Hdemag/Tdemag, and 

domain walls between the domains may have a significant impact on this discrepancy.  

In order to confirm this hypothesis, we determine the energy of each spin and represent in figure 

5-8 a histogram showing the number of spins as a function of their energies, for a perfect 

antiferromagnetic state, a perfect ferromagnetic state, and for both Saturation/Tdemag and 

Hdemag/Tdemag cases. 
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Figure 5-8_ Histograms representing the number of spins as function of the energy for (a) antiferromagnetic state for a 30x30 

spins lattice, (b) ferromagnetic state for a 30x30 spins lattice, and for configurations obtained after two thermal 

demagnetizations with different initial states: (c) initial state: saturated, (d) initial state: state obtained from field 

demagnetization. The blue bars correspond to the spins composing the antiferromagnetic domains (blue spins in maps). The red 

bars correspond to the spins composing the ferromagnetic domains (red spins in maps). The Black bars correspond to the spins 

composing domain walls (black spins in map). The blue dashed line represents the energy for a perfect antiferromagnetic state 

in a 30x30 spins lattice and the red dashed line represents the energy for a perfect ferromagnetic state in a 30x30 spins lattice. 

In the figure 5-8, in both histogram and map, spins in antiferromagnetic domains are colored in 

blue, the spins in ferromagnetic domains in red and the others spins in black. Blue, resp. red dashed 

line in the histogram represents the calculated energy for a perfect antiferromagnetic state, resp.  

ferromagnetic state, in a 30x30 spins lattice. The diagram highlights the high energy of the black 

spins which are located between magnetically ordered domains (i.e. they constitute domain walls).  

In Saturation/Tdemag, where the initial state is a saturated state, the histogram shows two main peaks. 

The spins are mostly either in the antiferromagnetic state or in ferromagnetic state. In Hdemag/Tdemag, 

only one antiferromagnetic (blue) spins peak appears, above in energy a continuum of domain wall 

(black) spins exists up to positive energies. The average energy for the domain wall (black spins) 

evolves from -1.178 in Saturation/Tdemag to -0.959 for in Hdemag/Tdemag. As a consequence, when 

summing the energies of all blue, red and black spins, although Hdemag/Tdemag has more 

antiferromagnetically ordered spins, it has larger energy than Saturation/Tdemag because it holds 

more (and more energetic) black spins. This experience reveals the importance of the domain walls 

on the total energy of the system.  
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Besides, one can notice that, for the two demagnetizations, the energies corresponding to the spins 

composing the ferromagnetic state or antiferromagnetic state are in average lower than the energies 

expected for perfect ferromagnetic or antiferromagnetic states. This difference is not surprising 

and is explained by the small size of the domains observed which strengthens the side effects on 

the energies.  

For the lattice 45°, our previous qualitative study indicated that Hdemag/Tdemag (AC demagnetization, 

then thermal demagnetization) seemed more efficient than Saturation/Tdemag (saturation then 

thermal demagnetization). In particular the number of loops (revealing existence of ground state 

spin ice domain), is larger in Hdemag/Tdemag than in Saturation/Tdemag (see figure 5-4). Counter-

intuitively, the figure 5-7 shows that total energy of Saturation/Tdemag is lower than total energy of 

Hdemag/Tdemag. Similarly to the 0° case, this surprising result originates from the energy of spins 

between magnetically ordered zones of the lattice.  Indeed in Saturation/Tdemag, the spins between 

the spin ice domains present in majority two domains types which are ferromagnetic domains and 

wave domains (simple configuration mentioned in the section 1.4.2) as shown in the figure 5-3. 

The ferromagnetic domains are along two directions which are East (in majority) and South in 

minority, hence wave domains follow East-South direction. In Hdemag/Tdemag, the spins between the 

spin ice domains are more “disordered”, i.e. no specific order is found like ferromagnetic domains, 

wave domains or antiferromagnetic domains. Since ferromagnetic domains or waves domains have 

a much low energy than a disordered assembly of spins, and although the spin ice domains are 

more numerous in Hdemag/Tdemag, the total energy of Saturation/Tdemag is lower than the total energy 

of Hdemag/Tdemag. This confirms the important energy cost of domain wall in our demagnetized 

magnetic configuration.   

The qualitative study of the configurations combined with the quantitative study of the energies 

have shed light on the ability of thermal demagnetization to locally drive our experimental Potts 

spins system towards its fundamental state. Moreover the experimental system well reproduced our 

theoretical model presented in section 1.5. The spin lattice magnetic behavior strongly depends on 

the lattice angle alpha. We were able to demonstrate experimentally that, in a specific case (22.5° 

lattice) dipolar field can force a ferromagnetic order in a 2D system, which is a quite remarkable 

behavior.  
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5.5 Some insights in the demagnetization process 

A major limitation of our approach is that we only observe the final state of a complicated 

demagnetization process. However understanding and controlling this process is essential in order 

to decrease the gap between an artificial spin system and statistical physics. In the following lines, 

we will discuss some issues related to the phenomena which can occur during the demagnetization 

process. 

A first very simple observation is that our process is able to "heat" the system. This is clearly seen 

for the thermal demagnetization starting from a saturated state. The energy of the final state is 

lowered for 0 and 45 degree but increased at 22.5 degree (this is the case for the 500 nm period, 

for 600 and 700 nm the energy is increased for any angle). However, the effective heating is not 

high enough to reach a highly fluctuating high temperature state. As a matter of fact, the nature of 

the initial state clearly influences the final state. This has been discussed in detail in the section 5.4. 

The importance of the initial state during the thermal demagnetization is revealed through the 

number of spins which are modified (and not) by the thermal demagnetization after the AC field 

demagnetization: 50% in the same state as the initial state, 34% which have rotated by 90° and 16% 

which have rotated by 180°. The maximum effective temperature during the demagnetization is 

therefore not high enough to make all the spins flip. This is the notion of hard switchers already 

mention in the section 4.1.2.3. 

It is interesting to count the number of thermal hard switchers and to locate them on the spins 

maps in order to understand their impact on thermally demagnetized magnetic configurations. It 

is possible that this remanence of the saturation imposed the directions of the others spins, and in 

particular for the nearest neighbors, in order to minimize the dipolar energy between nanomagnets. 

In order to identify the thermal hard switchers, we look for the spins which keep the same direction 

before and after a thermal demagnetization (for Sat/Tdemag#1, Sat/Tdemag#2 and Hdemag/Tdemag) for 

500 nm period lattices. We count the number of unchanged spins and find the following percentage 

according to the lattice angle: 7% for 0° lattice, 29% for 22.5° lattice and 18% for 45° lattice. The 

fact that the proportion of hard switchers changes drastically according to the lattice angle is not 

expected for a point of view of single elements. The determination of the hard switchers is 

overestimated due to the demagnetization protocol where the initial state is saturated (2 out of 3 

of the demagnetizations used), and it is necessary to consider that within these unchanged spins 

most of them (in particular for 22.5°) may not be hard switchers. 

Nevertheless the hard switchers are identified in the spins maps related to the smallest lattice period 

(500 nm) for Sat/Tdemag#1 and Hdemag/Tdemag and represented for 45° lattices in the figure 5-14. 
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Figure 5-14_ Spins maps of the 45° lattices representing the regular spins (in black) which move before and after the thermal 
demagnetization and the thermal hard switchers (in red) for two thermal demagnetization protocols: (a) Sat/Tdemag and (b) 
Hdemag/Tdemag. The histograms show the number of spins according to their energies for regular spins and hard switchers 
and also the proportion of hard switchers in the lattices according to the considered energies. The dashed lines represent the 
proportion of hard switchers in the entire lattice (regardless of the energy). 

The hard switchers should favor the creation of ground state domains (loop domains for the figure 

5-14) around them and so present a low energy. This fact should be especially the case for thermal 

demagnetization performed after the AC field demagnetization (Hdemag/Tdemag) where the spins are 

more disordered than for the ferromagnetic state (Sat/Tdemag) where the spins are already in a low 

energy state. The observation of the spins maps seems confirm this hypothesis: the hard switchers 

in the configuration obtained after Sat/Tdemag are all in waves or ferromagnetic domains which are 

low in energy, but not in loop domains which are the lowest in energy. While the hard switchers in 

the configuration obtained after Hdemag/Tdemag seem be in majority in loop domains. But a detailed 

analysis of the energy shows through the histograms of the figure 5-14 that the hard switchers in 

the configuration obtained after Hdemag/Tdemag (figure 5-14 (b)) present all the possible energies in 

equivalent proportion, while the hard switchers in configuration obtained after Sat/Tdemag (figure 

5-14 (a)) are part of the low energy spins. It emerges that it is difficult to determine a local order 

given by the hard switchers. But it is important to keep in mind that the determination of the hard 

switchers is overestimated, and so it is possible that this local order induced by the “true” hard 

switchers is hidden.   
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Another issue is the "thermalization" of the system. It is clear that the system does not reach its 

ground state but does the final corresponds to any effective temperature? To answer this question, 

we can consider the energy as an indicator directly related to the effective temperature. To do so 

we compare the energy determined for the 500nm period for three angles with Monte-Carlo results 

(already presented in section 1.5). It is clear that in the case of thermal demagnetization, it is not 

possible to affect a shared effective temperature for different angles. In particular, the angular 

dependence is less pronounced in experimental data than for equilibrium Monte-Carlo simulations. 

For a more quantitative analysis, we represent in figure 5-15, the direct correspondence with the 

effective temperature for the different configurations. For a thermalized process, the effective 

temperature should be the same for any angle. 

 

Figure 5-15_ The dotted lines are guides to the eyes. They are computed from the energies at 0, 22.5 and 45 degrees. (a) 
Experimental energies related to a lattice period of 500 nm obtained after three demagnetization protocols according to the 
lattice angle. (b) Effective temperature related to the energies given in the figure 5-15 (a), which are expressed in reduced units.  

The comparison between the different angles relies on the fact that the coupling is the same, 

independently of the lattice angle. The micromagnetic simulations (section 2.3) have shown that is 

not exactly the case and that for a period of 500 nm, the coupling (expressed as the difference of 

energy between the two lowest energy states) is increased by quasi 50% at 0 degree compared to 

45 degree. This would induce a lowering of the effective temperature in the same proportion. This 

is not observed here.  

From the data, it is clear that the thermal demagnetization from the saturated state is the less 

coherent with a single effective temperature. This is not surprising as we already realized that these 

low energy states are achieved by keeping unchanged large domains of the initial saturated state. 

The corresponding configurations do not therefore correspond to thermal equilibrium states. For 

the two other protocols (field demagnetization and thermal demagnetization from a non-saturated 

state), the conclusion is less clear. The three configurations can be associated with a single 

temperature range, respectively 1.62 ± 0.07 and 1.01 ± 0.08. This is a strong indication but beyond 

energy to assess the validity of the effective temperature all other properties have to be mapped 

and moreover more configurations should be determined to increase the statistical relevance of the 

data. The effective thermalization of the artificial dipolar Potts system thus remains an open 

question.  
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5.6 Summary of chapters 4 and 5 

“Historically” the artificial spin systems have been introduced to realize experimentally 

models of the statistical physics. And one of the main issue of these systems is to find the best way 

to allow the system to explore its phase space, in order to compare the experimental behavior to 

this one expected by the spin model. In the community of artificial spin systems two main ways 

(called demagnetizations) have been explored in order to drive the system towards its ground state. 

The first, exposed historically by Wang et al [11], is the AC demagnetization. And the second 

exposed more recently [15, 23] is the thermal demagnetization. For this second protocol, two 

approaches are possible, one considering superparamagnetic regime [23] and another proposed by 

Zhang et al. [15] involving an annealing procedure above the Curie temperature. In this chapter, 

the AC demagnetization and the thermal demagnetization considering superparamagnetic regime 

were used, and their efficiencies were compared. 

One of the first questions of this chapter, was to know if the thermal demagnetization is possible 

for our experimental system described in the chapter III. Indeed one of the challenge for the 

community [23, 24] is to design nanomagnets which can be sensitive to thermal fluctuations. Thus 

the lattices were firstly heated at a temperature of 300°C, and it appears that according to the size 

of the nanomagnets, it can occur a magnetization reversal in the nanomagnets. Indeed for a size 

below 500 nanometers, the thermally activated reversal is possible. This means that for a size of 

nanomagnets around 300 nanometers, a temperature of 300°C is large enough to give a thermal 

energy higher than the intrinsic energetic barrier that separates two preferential directions for the 

magnetization. Thus in this chapter, only squares with a length of 300 nanometers were selected. 

Then the optimal parameters for the heating were determined and in particular the heating time (5 

hours), the ramp temperature (0.1°C/min) and the temperature (350°C). 

As the aim is to drive the system towards its ground state thanks to the demagnetization, the AC 

demagnetization and the thermal demagnetization were performed, and the magnetic 

configurations given by these two protocols were compared. The first chapter reveals that 

according to the angle between spin and the lattice axis (alpha angle), the dipolar 4-state Potts 

model shows different properties for its ground state, and in particular three configurations related 

to three angle ranges. Thus three angle lattices were designed which are 0°, 22.5° and 45° lattices. 

In order to characterize the configurations obtained after the demagnetizations, two parameters 

were recorded which are the direct observation of the magnetic configurations (spins map) and the 

dipolar energies related to these spins maps. Moreover these parameters were recorded for three 

periods of lattices which are 500, 600 and 700 nanometers in order to demonstrate that the 

demagnetization protocols were just a way to let the system gradually minimize its energy in 

accommodating pairwise interactions via the dipolar interactions.  

A first conclusion emerges regarding the results obtained according to the periods of the lattices. 

Indeed the results for the two demagnetization protocols show a reduction of the dipolar energy 

when the period of the lattice is reduced. This observation reveals that the demagnetizations 

performed (field and thermal) let effectively the system minimize its energy via the dipolar 

interactions between nanomagnets. However with the direct observation of the magnetic 

configurations (qualitative characterization), a significant difference according to the period 

appears only for the thermal demagnetization. Nevertheless regarding the results obtained with the 

two demagnetization protocols for the smallest period (500 nanometers), the results show for the 

both that the configurations obtained present a signature of the ground state shown by the dipolar 
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4-state Potts model. Indeed according to the alpha angle, the configurations present really different 

properties: for alpha equal to 0° antiferromagnetic domains appeared, for alpha equal to 22.5° 

ferromagnetic domains appeared, and for alpha equal to 45° loop crystal domains appeared. 

In observing the dipolar energies related to the magnetic configurations obtained after different 

demagnetization protocols (Sat/Tdemag, Hdemag, Hdemag/Tdemag) for the smallest period, it emerges 

clearly that the thermal demagnetization drives the system in a lower energy state than the AC field 

demagnetization. So the thermal demagnetization turns out to be, in our case, the best way to drive 

the system towards its fundamental. 

However the results obtained after Sat/Tdemag reveal a remanence of the initial state imposed in our 

system which is a saturated state. Moreover this remanence is in part responsible of the low energy 

states observed after the demagnetization. Thus the origin of this remanence was determined, and 

after a detailed observation it emerges that this remanence is due to a distribution of the energy 

barrier that separates the preferential states for the magnetization, which gives rise to the presence 

of hard switchers. So a thermal demagnetization was directly performed after a field 

demagnetization, in order to determine the influence of the initial state for the thermal 

demagnetization. And the thermal demagnetization performed from the saturated initial state gives 

configurations closer to the ground state expected by the spin model than the other thermal 

demagnetization. And thus it can be concluded that as the thermal demagnetization is not optimal, 

the ferromagnetic domains induced by the hard switchers, which are not so far in term of energy 

from the expected ground state for the three angle lattices, induce a low energy state. However it 

is important to keep in mind that if the efficiency of the thermal demagnetization can be improve, 

these hard switchers could be a limitation to drive the system towards its ground state.  
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6. Conclusions and Perspectives 

 

6.1 Conclusions 

Since 2006 [11], the lithographically-patterned arrays of nanomagnets have been a strong 

surge of interest as it has been demonstrated that these systems can be count as toy-spin models. 

Indeed the artificial spin systems propose quasi-limitless possibilities for the design of spins or 

arrays, and allow an observation in the direct space of the magnetic degrees of freedom. Generally, 

the nanomagnets interact with each-other in a magnetostatic framework, and through 

demagnetization protocols, like AC field demagnetization [11] or more recently thermal 

demagnetization [15], it is possible to visualize the phase spaces of these artificial spin systems.  

Up to know in the artificial spin systems, lots of topologies for the arrays have been designed [12, 

11, 16] but all the nanomagnets designed in these arrays present themselves as classical Ising spins 

where the magnetization (in-plane or out-of-plane) has two preferential orientations. This 

particularity was one of the main motivation of this thesis, where the idea was to designed in playing 

with the anisotropy (shape and crystalline), a new system where the spin is not a 2-states spin but 

a 4-state spin. Indeed historically, in the 1920’s, lots of spin models have been described and in 

particular two well-known models which are the Ising model [18] and the Potts model [19]. Thus 

during this thesis, the purpose was to design an artificial spin system which is no longer linked to 

the Ising model (as up to know in the artificial spin systems) but linked to the Potts model. 

In this context, the present thesis has described briefly the “classical” Potts model with the general 

definition of the Hamiltonian related to this model, then a particular case was detailed which was 

the dipolar 4-state Potts model. In this model it is considered spins with 4 states confined in a plane 

which interact between each-other via dipolar interactions. Thus a first comparison between two 

Ising spins and two Potts spins reveals that the introduction of 2 supplementary states for the spins, 

induced a more complex behavior for the system, as the introduction of two supplementary states 

for the spins induced new possible configurations and so new energy levels. Moreover the study of 

two Potts spins brings to light that the energy levels depend on the angle between the spin and the 

axis between the two spins (called alpha angle), and so that according to this angle, the ground state 

present in the system is different. Then the study was extended to the case of an infinite 1D chain 

then to the case of an infinite 2D lattice, both composed of Potts spins and a particular attention 

was given to the identification of the ground state for the infinite 2D lattice. In this aim, simple 

configurations were observed (like ferromagnetic state or antiferromagnetic state), then more 

complex configurations were observed (lattice formed by the replication of unit meshes composed 

of 2x2 spins) and finally configurations formed by the replication of unit meshes composed of 

30x30 spins. The observation of the dipolar energies related to the different configurations 

demonstrates that the ground state related to the infinite lattice composed of Potts spins is strongly 

related to the angle between the spins directions and the lattice axis. Indeed it appears that the 

lowest energy state determined take three different configurations according to the alpha angle: the 

antiferromagnetic state (for spin directions close to the lattices directions), the spin ice state (for 

spin directions close to 45 degrees from the lattices directions) and the ferromagnetic state (for 

intermediate spin directions). Moreover even if the ground state was not exactly determined, the 

indications given by the lowest energy states determined (and confirmed by Monte Carlo 
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simulations) reveal that the 2D lattice composed of Potts spins is a very versatile system as the 

simple rotation between spins and the lattice axis gives rise to very different properties for the 

ground state. These interesting properties have motivated the experimental realization of the 

dipolar 4-state Potts system. It was decided to design 30x30 lattices because of a compromise 

between time measurements and accuracy measurements. For this size lattice, Monte Carlo 

simulations have shown a similar ground state as the one observed for the infinite lattice except 

for 22.5°, where the lowest energy state determined is a Landau state composed of ferromagnetic 

domains which follow the edges.  

As it was the first time that an artificial 4-state spin system was designed, a preliminary study was 

realized, through micromagnetic simulations (via Mumax3 [49]), in order to determine the 

conditions for this realization. And it emerges that the realization of a 4-state spin is possible in 

taking a shape with cubic symmetry and in selecting for the magnetic layer a thin film with a cubic 

anisotropy. Thus the monodomain stabilization in several shapes was studied and a square designed 

in a thin film of iron with cubic anisotropy axes aligned with the diagonals of the square appears 

as the best candidate to obtain a uniform magnetization which can take 4 preferential directions. 

Moreover the simulations have also confirmed the validity of the dipolar approximation in showing 

that, in the case of two nanomagnets, the coupling present the same behavior (energy levels 

according to the configurations) as this one revealed by the spin model. 

The material selected for the experimental realization was a multilayer sample with the following 

composition: MgO/V (20 nm)/Fe (2 nm)/V (2 nm)/Au (20 nm), which reveals only a cubic 

anisotropy with a magnetization in-plane no disturbed by the interfaces V/Fe or after an annealing 

up to 400°C. Then some artificial 4-state spin lattices were designed in this sample and the magnetic 

configurations were probed in using a standard characterization technique: the magnetic force 

microscopy (MFM). Several tests have confirmed the intrusive nature of this technique, as it was 

shown in this thesis that the MFM scans (with standard tip and low moment tip) disturb the 

magnetic configurations in our lattices. And a solution was given, which consists in adding a 

nonmagnetic layer at the sample surface in order to increase the distance between the tip and the 

magnetic layer during the MFM scans. This solution is efficient but induces a reduction of the 

magnetic contrast observed in our lattices. 

One of the main issue of this thesis was to find a way to allow the system to explore its phase space, 

in order to compare the experimental behavior to this one expected by the spin model. In this aim 

two demagnetization protocols were used: the AC field demagnetization [11] and the thermal 

demagnetization [23]. Several sizes (200, 300, 500, 700, 1000 nm) for the nanomagnets were 

designed and after the two demagnetization protocols the results demonstrate that the best 

compromise between demagnetization efficiency and MFM measurements accuracy is obtained for 

a size of 300 nanometers. Thus only lattices composed of squares with a length of 300 nanometers 

and with three periods (500, 600 and 700 nm) were selected and their magnetic configurations 

given by the two demagnetization protocols were recorded. And as the dipolar 4-state Potts model 

reveals different properties according to the angle between spins direction and lattice direction 

(alpha angle), three lattices angles were designed: 0°, 22.5° and 45°.    

The dipolar energies related to the magnetic configurations given by the two demagnetization 

protocols, according to the lattices period, demonstrate the influence of the dipolar coupling. 

Indeed the results of the two demagnetization protocols show a reduction of the dipolar energy 

when the period of the lattices is reduced. This observation confirms that in our artificial spin 
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system, the demagnetizations are just a way to let the system gradually minimize its energy via the 

dipolar interactions. 

A detailed study of the magnetic configurations (and the related energies) obtained after the both 

demagnetizations for the lattices with a period of 500 nanometers reveals different properties 

according to the lattices angles which are in good agreement with the spin model. Indeed according 

to the lattice angle, different domains appears which represent the signature of the ground state 

given by the dipolar 4-state Potts model: for 0° lattice antiferromagnetic domains appear, for the 

22.5° lattice ferromagnetic domains appear and for 45° lattice spin ice domains appear. 

Nevertheless this study shows clearly that our system reaches a state closer to the ground state 

expected by the spin model after a thermal demagnetization than after an AC field demagnetization.  

 

 

6.2 Perspectives 

This PhD has presented the principle of the dipolar 4-state Potts model and proposed an 

experimental realization of the model. But the subject is far from being closed and different points 

remain to be studied and new aspects can also be considered. The biggest question mark is certainly 

about the dynamic of the system. Our results show that it exists a distribution of barrier height for 

the reversal and that the barrier height can even depend on the direction. But these conclusions are 

drawn from final frozen configurations and a "real-time" characterization of the high temperature 

behavior is clearly missing. This characterization could be obtained with XMCD-PEEM imaging. 

Even for an individual element such a dynamic study would be interesting as, to the best of our 

knowledge, up to now only 2 state systems have been studied. The impact of this dynamic on the 

ordering of the dipolar 4-state Potts model would be the ultimate goal. 

The understanding of the dynamic should lead to the optimization of the demagnetization protocol 

and so opening the way to more quantitative analysis. For example, in this work, we focused only 

on the 0, 22.5 and 45 degree lattices. It would be interesting to investigate intermediate angles and 

particularly the transition angles at which antiferromagnetic or loop state have the same energy 

than the ferromagnetic state (uniform or multidomain). The next step can also be to study other 

systems than the square lattice. We already showed that the 1D chain is an interesting system with 

a (small) angular range in which complex magnetic patterns can occur. Thanks to the versatility of 

lithography any other lattice can be considered (hexagonal lattice for instance or more exotic forms 

like Shakti lattices). 

 Another aspect is the potential use of this "artificial spins" as element of nanomagnet logic. A lot 

of work has been devoted to magnetic logic using nanomagnet coupled by dipolar interactions [94, 

95, 96]. An appropriate arrangement of the elements is able to realize some Boolean logic function. 

As we are able to make these 4-state nanomagnets and to control the interactions between them, 

there is maybe a possibility to build some 4 states logic gates! 
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Vers un nouveau système de spins artificiels: le modèle de Potts dipolaire à 4 
états 

 
Depuis la proposition en 2006 d’utiliser des nano aimants réalisés par des techniques top-down 

pour reproduire des « spins artificiels », l’étude des systèmes de spins artificiels a suscité un large intérêt. En 

effet la possibilité de pouvoir réaliser arbitrairement tous types de réseaux de spins artificiels et de pouvoir 

imager les configurations magnétiques de ceux-ci dans l’espace direct, offre un large terrain de jeu dans le 

domaine de la physique statistique. Jusqu’à présent seuls des réseaux de spins d’Ising, multi axes (réseaux 

kagomé ou carré avec une aimantation planaire) ou plus récemment uni axes (avec une anisotropie 

perpendiculaire), ont été étudiés. Cependant en physique statistique d’autres modèles de spins sont étudiés 

et notamment les modèles de Potts à q-états. Au cours de cette thèse nous avons étudié le cas d’un modèle 

de Potts à 4 états, ayant la particularité de posséder uniquement des interactions dipolaires entre les spins: 

le modèle de Potts dipolaire. Nous avons tout d’abord réalisé une étude théorique, montrant que sur un 

réseau carré, en fonction de l’angle entre les spins et ce réseau, le système possède des états fondamentaux 

très différents : un ordre antiferromagnétique, un ordre respectant les règles de la glace (2 in- 2 out) ou un 

ordre ferromagnétique. Dans une deuxième partie, nous avons exposé l’étude expérimentale du modèle de 

Potts dipolaire. Des réseaux formés d’aimants carrés ayant 300 nm de côté ont été réalisés par lithographie 

électronique, à partir d’une couche épitaxiée de Fer possédant une anisotropie quadratique. A température 

ambiante, ces plots possèdent une configuration magnétique monodomaine pouvant prendre 4 directions 

équivalentes, comme recherché pour le modèle de Potts dipolaire à 4 états. Un passage à 350°C (inférieure 

à la température de Curie) sous champ nul permet d’activer thermiquement la réorientation des spins afin 

qu’ils se rapprochent de l’état fondamental de l’assemblée de spins. Les configurations magnétiques 

observées après recuit, à l’aide d’un microscope à force magnétique, montrent l’importance du couplage 

dipolaire sur les états obtenus, ainsi que l’influence de l’angle entre les spins et l’axe du réseau. Les différentes 

configurations prédites théoriquement sont bien observées. 

Mots-clés : spin artificiel, interaction dipolaire, modèle de Potts. 

 

Towards a new artificial spin system: the dipolar 4-state Potts model 

Since the proposal in 2006 to use nanomagnets patterned by top-down techniques to mimic 
"artificial spins", the studies of artificial spin systems has attracted wide interest. As a matter of facts, the 
possibility to design "upon request" arbitrary network and the possibility to determine completely the "spin" 
configuration with magnetic imaging offer a wide playground for statistical physics. Up to now only Ising 
spin systems, multi axes with planar magnetization (on square or Kagome lattice) or more recently, single 
axis with perpendicular anisotropy, have been studied. However, beyond Ising spins, statistical physics and 
condensed matter physics have shown the interest of other spin models like q-state Potts models. In this 
thesis, we introduce the dipolar 4-state Potts model. It is shown that on a square lattice, depending on the 
angle between spins and lattice, the system present very different properties like antiferromagnetic order, 
spin ice state (2 in-2 out ice rule) and even dipolar ferromagnetism. This model has been realized 
experimentally. 300 nm square magnets are patterned from a 2 nm thick Fe layer with cubic anisotropy. At 
room temperature, the magnets present a uniform state with 4 equivalent directions. Upon heating at 350 
°C the magnets switch from one direction to another. It is therefore possible to simply drive the system 
toward its ground state. The magnetic configurations determined by magnetic force microscopy reveals the 
importance of the dipolar coupling as the different expected ground states (antiferromagnetic, spin ice and 
ferromagnetic) are indeed observed. It is noticeable that these very different properties are obtained with 
the same "spins" (magnetic elements) and same lattice.  

 

Key words : artificial spin, dipolar interaction, Potts model. 
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