
HAL Id: tel-01498847
https://theses.hal.science/tel-01498847v1

Submitted on 30 Mar 2017 (v1), last revised 25 May 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Turn-taking enhancement in spoken dialogue systems
with reinforcement learning

Hatim Khouzaimi

To cite this version:
Hatim Khouzaimi. Turn-taking enhancement in spoken dialogue systems with reinforcement learning.
Artificial Intelligence [cs.AI]. Université d’Avignon, 2016. English. �NNT : 2016AVIG0213�. �tel-
01498847v1�

https://theses.hal.science/tel-01498847v1
https://hal.archives-ouvertes.fr

ORANGE LABS

ACADÉMIE D’AIX-MARSEILLE
UNIVERSITÉ D’AVIGNON ET DES PAYS DE VAUCLUSE

PhD THESIS

This dissertation is submitted for the degree of Doctor of Philosophy

SPECIALTY: Computer Science

Doctoral School 380 «Sciences et Agronomie»

Laboratoire d’Informatique (EA 931)

Turn-taking Enhancement in Spoken Dialogue
Systems with Reinforcement Learning

by

Hatim KHOUZAIMI

Publicly defended on June 6th 2016 in front of a jury composed of:

Dr Sophie ROSSET LIMSI, Orsay Rapporteur
Pr David SCHLANGEN Bielefeld University Rapporteur

McF Bassam JABAIAN CERI-LIA, Avignon University Examiner

McF Filip JURCICEK UFAL, Charles University, Prague Examiner
Pr Olivier PIETQUIN Google DeepMind Examiner

Dr Romain LAROCHE NADIA Team, Orange Labs Supervisor
Pr Fabrice LEFEVRE CERI-LIA, Avignon University Supervisor

��������������������������

��������������������

Laboratoire Informatique d’Avignon

2

Contents

I State of the art 21

1 Spoken dialogue systems and incremental processing 23

1.1 Human dialogue . 23
1.1.1 Dialogue acts . 23
1.1.2 Turn-taking in human dialogue . 24
1.1.3 Incremental speech processing in human dialogue 26

1.2 Spoken dialogue systems . 27
1.2.1 Towards a human-like interaction 28
1.2.2 Spoken dialogue systems architecture 29
1.2.3 Spoken dialogue systems evaluation 33

1.3 Incremental dialogue systems . 34
1.3.1 Principles . 34
1.3.2 Advantages of incremental processing 36
1.3.3 New challenges raised by incremental dialogue processing 37
1.3.4 Existing architectures . 39

2 Reinforcement learning in dialogue processing 43

2.1 Reinforcement Learning . 43
2.1.1 Reinforcement in biology . 43
2.1.2 Markov Decision Processes . 44
2.1.3 Reinforcement Learning . 45

2.2 Reinforcement learning in spoken dialogue systems 48
2.2.1 In the litterature . 48
2.2.2 Spoken dialogue systems at Orange and LIA 49
2.2.3 Dialogue simulation . 50

2.3 Reinforcement learning in incremental dialogue systems 51

II Contributions 55

3 Turn-taking phenomena taxonomy 57

3.1 Introduction . 57
3.2 Taxonomy presentation . 58
3.3 Discussion . 63

3.3.1 Dialogue initialisation . 64

3

3.3.2 Negative feedback . 65
3.3.3 Positive feedback . 65
3.3.4 Reference . 66
3.3.5 Ordered dialogue acts . 66
3.3.6 Synthesis . 67

3.4 Turn-taking phenomena in dialogue systems 67

4 Turn-taking decision module: the Scheduler 75

4.1 Description . 75
4.1.1 Overview . 75
4.1.2 Time sharing . 76
4.1.3 The Scheduler . 77

4.2 Illustration . 79
4.2.1 A textual dialogue system: CFAsT 80
4.2.2 A spoken dialogue system: Dictanum 81

4.3 Discussion . 83
4.3.1 Levels of incrementality . 83
4.3.2 Enhancing a traditional dialogue system’s turn-taking abilities at

a low cost . 84

5 Dialogue strategies 87

5.1 Utterance representation . 87
5.2 Elementary tasks . 88
5.3 Slot-filling strategies . 89

5.3.1 System initiative strategies . 90
5.3.2 User initiative strategies . 91
5.3.3 Mixed initiative strategies . 92
5.3.4 First efficiency comparison . 92

5.4 Incremental strategies . 94

6 Incremental dialogue simulation 99

6.1 Overview . 99
6.2 Incremental dialogue simulation . 100

6.2.1 User Simulator . 101
6.2.2 ASR output simulator . 102

6.3 Personal Agenda management simulated environment 104
6.3.1 The Service: personal agenda assistant 105
6.3.2 Simulator instanciation . 107

6.4 Functionning illustration . 109

7 Handcrafted strategies for improving dialogue efficiency 111

7.1 User and system initiative . 111
7.1.1 Strategies . 111
7.1.2 Experiments . 116

7.2 Incremental strategies . 117
7.2.1 TTP implementation . 117

4

7.2.2 Experiments . 119

8 Reinforcement learning for turn-taking optimisation 123

8.1 Reinforcement learning Model . 124
8.1.1 Background . 124
8.1.2 State representation . 124
8.1.3 Actions, rewards and episodes . 128
8.1.4 Fitted-Q Value Iteration . 129

8.2 Experiment . 130
8.2.1 Setup . 130
8.2.2 Results . 132

9 Experiment with real users 133

9.1 The Majordomo domain . 133
9.2 Experimental protocol . 134

9.2.1 Implementation . 134
9.2.2 Conduct of the dialogue . 135
9.2.3 Key Performance Indicators . 135

9.3 Results and discussion . 137
9.4 Discussion . 138

List of Figures 145

List of Tables 147

Bibliography 149

5

6

Acknowledgement

I would like to thank all the people that contributed, directly or indirectly, to create the
rich and interesting environment in which I had the chance to work on this thesis. First
of all, I would like to thank my supervisors Romain Laroche and Fabrice Lefèvre for
their help and their support. Romain provided valuable ideas and advice that helped
a lot along the way, as well as a refreshing point of view whenever I felt stuck. Fab-
rice was also very encouraging and his experienced eye raised critical questions which
always led to improved versions of my publications and my work in general. Also,
I would like to thank Sophie Rosset, David Schlangen, Bassam Jabaian, Filip Jurčíček
and Olivier Pietquin for being part of my jury.

During these three years, I had the chance to meet several other PhD students with
which I developed both professional and personal relationships. I would like to thank
Layla El Asri for her important and helpful advice, Tatiana Ekeinhor-Komi for always
maintaining the good mood and the fun, Emmanuel Ferreira for his help and for wel-
coming me during my stay at the LIA, Merwan Barlier for always sharing the novelties
in the field of artificial intelligence as well as interesting conferences, Nicolas Carrara
for the interesting technical discussions. Also, I want to thank Tianxiang Xia for the
great job he did during his internship with me at Orange.

It would not have been possible for me to complete this thesis without the help, the
trust and the autonomy I was given both at Orange and the LIA. The NaDia team I was
enrolled in at Orange were extremely supportive, very interested in my thesis topic and
very helpful and reactive when I needed advice concerning the dialogue solution we
are working with: Disserto. On the other hand, the researchers at the LIA were very
welcoming and interesting to work with.

Finally, I would like to thank my parents for their support during the course of this
thesis.

7

8

Abstract

Incremental dialogue systems are able to process the user’s speech as it is spoken (with-
out waiting for the end of a sentence before starting to process it). This makes them able
to take the floor whenever they decide to (the user can also speak whenever she wants,
even if the system is still holding the floor). As a consequence, they are able to perform
a richer set of turn-taking behaviours compared to traditional systems. Several con-
tributions are described in this thesis with the aim of showing that dialogue systems’
turn-taking capabilities can be automatically improved from data. First, human-human
dialogue is analysed and a new taxonomy of turn-taking phenomena in human con-
versation is established. Based on this work, the different phenomena are analysed and
some of them are selected for replication in a human-machine context (the ones that
are more likely to improve a dialogue system’s efficiency). Then, a new architecture for
incremental dialogue systems is introduced with the aim of transforming a traditional
dialogue system into an incremental one at a low cost (also separating the turn-taking
manager from the dialogue manager). To be able to perform the first tests, a simu-
lated environment has been designed and implemented. It is able to replicate user and
ASR behaviour that are specific to incremental processing, unlike existing simulators.
Combined together, these contributions led to the establishement of a rule-based in-
cremental dialogue strategy that is shown to improve the dialogue efficiency in a task
oriented situation and in simulation.

A new reinforcement learning strategy has also been proposed. It is able to au-
tonomously learn optimal turn-taking behavious throughout the interactions. The sim-
ulated environment has been used for training and for a first evaluation, where the new
data-driven strategy is shown to outperform both the non-incremental and rule-based
incremental strategies. In order to validate these results in real dialogue conditions, a
prototype through which the users can interact in order to control their smart home
has been developed. At the beginning of each interaction, the turn-taking strategy is
randomly chosen among the non-incremental, the rule-based incremental and the re-
inforcement learning strategy (learned in simulation). A corpus of 206 dialogues has
been collected. The results show that the reinforcement learning strategy significantly
improves the dialogue efficiency without hurting the user experience (slightly improv-
ing it, in fact).

9

10

Résumé

Les systèmes de dialogue incrémentaux sont capables d’entamer le traitement des paroles
de l’utilisateur au moment même où il les prononce (sans attendre de signal de fin de
phrase tel un long silence par exemple). Ils peuvent ainsi prendre la parole à n’importe
quel moment et l’utilisateur peut faire de même (et interrompre le système). De ce
fait, ces systèmes permettent d’effectuer une plus large palette de comportements de
prise de parole en comparaison avec les systèmes de dialogue traditionnels. Cette
thèse s’articule autour de la problématique suivante : est-il possible pour un système de
dialogue incrémental d’apprendre une stratégie optimale de prise de parole de façon
autonome? Tout d’abord, une analyse des mécanismes sous-jacents à la dynamique
de prise de parole dans une conversation homme-homme a permis d’établir une tax-
onomie de ces phénomènes. Ensuite, une nouvelle architecture permettant de doter
les systèmes de dialogues conventionels de capacités de traitement incrémentales de
la parole, à moindre coût, a été proposée. Dans un premier temps, un simulateur de
dialogue destiné à répliquer les comportements incrémentaux de l’utilisateur et de la
reconnaissance vocale a été développé puis utilisé pour effectuer les premier tests de
stratégies de dialogue incrémentales. Ces dernières ont été développées à base de règles
issues de l’analyse effectuée lors de l’établissement de la taxonomie des phénomènes
de prise de parole. Les résultats de la simulation montrent que le caractère incrémental
permet d’obtenir des interactions plus efficaces. La meilleure stratégie à base de règles
a été retenue comme référence pour la suite.

Dans un second temps, une stratégie basée sur l’apprentissage par renforcement a
été implémentée. Elle est capable d’apprendre à optimiser ses décisions de prise de
parole de façon totalement autonome étant donné une fonction de récompense. Une
première comparaison, en simulation, a montré que cette stratégie engendre des ré-
sultats encore meilleurs par rapport à la stratégie à base de règles. En guise de val-
idation, une expérience avec des utilisateurs réels a été menée (interactions avec une
maison intelligente). Une amélioration significative du taux de complétion de tâche a
été constatée dans le cas de la stratégie apprise par renforcement et ce, sans dégradation
de l’appréciation globale par les utilisateurs de la qualité du dialogue (en réalité, une
légère amélioration a été constatée).

11

12

Introduction

Context and thesis subject

Building machines that are able to vocally communicate with users is driven by the
desire to make human-computer interaction as natural and efficient as possible. Imple-
menting the way humans converse in a machine involves many issues: no more need
for traditional interaction devices like the keyboard, hands-free and eye-free interaction
(useful in many situations like cars for example), new communication paradigms where
a real human-human conversation is simulated...These issues are also emphasised by
the new technological trends in the modern world: Internet of Things (IoT), smart de-
vices...Also, recent advances (especially in the field of speech recognition) gave birth to
vocal agents both in academia and industry, even though this kind of systems belonged
exclusively to the science-fiction domain a few years ago. Nowadays, it is possible to
check for restaurants around, check one’s account or send a search query on the web
by uttering a few words only. Also, conversational agents are able to understand more
and more vocabulary and language variations.

Nevertheless, the ability of these systems to engage in a real and natural conver-
sation is still very limited. One of the main reasons is the oversimplified turn-taking
mechanism they use: when the user speaks, the system waits until the end of the user’s
utterance before processing the request. This mechanism hurts both the naturalness
and the efficiency of the dialogue.

Through several contributions, this thesis addresses the problem of turn-taking ca-
pabilities enhancement in dialogue systems. Reinforcement learning is applied to an
incremental dialogue system to make it able to optimise turn-taking decisions in an au-
tonomous fashion. First, simple hints and explanations are provided in the following in
order to give the reader a first intuition of what reinforcement learning and incremental
dialogue systems mean. The rest of this thesis clarifies these ideas by providing more
precise definitions and by grounding the manipulated notions in the current existing
literature.

Originally, a dialogue designates a sequence of communication acts between two or
more individuals through natural language, either spoken or written (from Greek, dia
means through and logos means speech), in order to achieve a task or to find an agree-
ment (this last point separates dialogues from conversations). With the emergence of

13

speech technologies, a research thread (to which this thesis belongs) developed ma-
chines that are able to substitute these individuals to a certain extent. They are made of
a set of elements that are interacting with each other following precise rules, generally
in the purpose of performing a specific task. As a consequence, they are referred to as
dialogue systems.

Incrementalism is a method of work aimed at achieving a given task gradually, step
by step. The adjective incremental designates any process that advances in that way.
At each step, each new laid brick is called an increment. How is that related to di-
alogue systems? In a nutshell, an utterance is incrementally processed if the listener
(the system) does not wait until its end before processing it (understanding it on the
fly instead). As a result, these incremental dialogue systems can also utter words or
sentences while the speaker is still holding the floor. Inversely, the user can interrupt
the incremental expression of the machine and the system will know when it was inter-
rupted.

In computer science, Learning refers to the field of Machine Learning which is the
science of building models that will drive algorithms to perform a certain task, and
calibrating them automatically from data. Reinforcement is borrowed from the field
of behavioural psychology. A behaviour can be strengthened in many ways, like be-
ing more frequently performed, for longer durations or after shorter delays for exam-
ple. This is generally due to a positive stimulus received by the agent under study, after
adopting this behaviour. Reinforcement Learning is a mathematical framework with
algorithms for solving problems through experience.

So, what is the point of applying reinforcement learning to incremental dialogue
systems? What is the problem to solve in such systems? Traditional dialogue systems
have only one kind of decision to make: what to say. Incremental dialogue systems, on
the other hand, are free to speak whenever they want, which adds an extra dimension
to the decisions it should make. In this thesis, decisions about the content of what the
system should say are not studied, only timing decisions are focused on. Reinforcement
Learning is therefore applied to investigate the following question: can an incremen-
tal dialogue system learn the proper timing for speaking in an autonomous fashion,
directly from its interactions with users?

Motivations

According to a study performed by Gartner Consulting, the market of artificial intel-
ligence applications was worth 5 billion dollars in 2014 with an exponential potential
growth given the forecasts, reaching a 42 billion dollars size in 2024. As far as personal
assistants are concerned, the market size should be multiplied by 13 by then. Therefore,
these technologies are on the way of becoming profoundly present in several aspects of
our every day life. In order for the vocal modality to be used in such a context, it has to
be a robust and comfortable way of human-machine interaction in the sense that:

14

• Conversational agents should be reactive enough for the conversation to be smooth
and not tedious like it is the case in currently deployed dialogue systems.

• Task-oriented dialogue systems should be efficient in such a way that users pre-
fer talking to their devices instead of using any other kind of human-machine
interface.

• Dialogue strategies should be robust to errors and misunderstandings. They
should be able to quickly recover from them in order to avoid desynchronisations
between the system and the user.

In traditional dialogue systems, the multiplication of dialogue turns degrades the
user experience because of the important silences at each floor transition (from the user
to the system and vice-versa). For the same reason, recovering from errors becomes
costly which leads to frustrating and tiresome interactions for the user. Moreover, the
sooner the error is identified, the lesser there is to unravel. In a world where humans
interact more and more with machines several times a day, it is crucial to make the user
experience more attractive.

Incremental processing is a powerful tool that enables dialogue systems to fix the
current turn-taking limitations. An incremental dialogue system is aimed to process the
user’s request very quickly as she speaks, which makes it able to provide fast answers
and fix errors in a reactive way. The user’s and the system’s speech are no longer
viewed as organised sequences of turns but as a continuous signal where two sources
are combined.

Nevertheless, the induced freedom in terms of time sharing between the user and
the system can lead to chaotic situations if it is not well managed. Humans use several
implicit rules to keep their conversations synchronised, therefore, it is interesting to
take a close look towards these mechanisms in order to better understand them. The
objective of such a study is to make dialogue systems designers aware of the panorama
of turn-taking behaviours that they might want to replicate given the task at hand. This
can hopefully lead to a first generation of handcrafted turn-taking strategies designed
to improve the dialogue efficiency.

Finally, reinforcement learning has been widely used during the last two decades in
order to prevent dialogue systems designers to have to set all the parameters. The idea
is to automatically optimise an important part of these parameters directly from data
with a twofold objective: the designer’s task is simplified and the parameter settings
are more accurate since they are estimated from real data. In this thesis, reinforcement
learning is not applied to classical dialogue management but it is used to optimise turn-
taking decisions. This approach is motivated by the fact that the obtained data-driven
strategies have the potential to offer better performances than handcrafted ones.

15

Objectives and contributions

The ecosystem in which this thesis took place is the product of the collaboration be-
tween academia (LIA) and industry (Orange Labs). As a consequence, the motivations
behind this work are twofold:

• Bringing theoretical insights which can strengthen our understanding of turn-
taking mechanisms in human conversation and help designing new algorithms
to enhance incremental dialogue systems turn-taking capabilities.

• Building a prototype using industrial tools in order to provide a proof of concept
and to demonstrate the advantages of the proposed methodology through real
interactions with users.

To do so, the following contributions have been made:

• New incremental dialogue architecture (Khouzaimi et al., 2014b): it transforms
a traditional dialogue system into an incremental one at a low cost. As a proof
of concept, it has been implemented in a textual (CFAsT) and a vocal dialogue
system (DictaNum, (Khouzaimi et al., 2014a)).

• New turn-taking phenomena taxonomy in human-human dialogue (Khouzaimi
et al., 2015c): separating turn-taking behaviours made it possible to make clear
choices about which ones should be implemented in an incremental dialogue sys-
tem in order to improve its efficiency.

• New incremental dialogue simulation framework (personal agenda management
domain): it is able to simulate incremental Automatic Speech Recognition (ASR)
instability (Khouzaimi et al., 2016a).

• Rule-based incremental strategy proposal (Khouzaimi et al., 2015a): it has been
implemented in simulation and combined with several slot-filling strategies. The
results show that the incremental strategy improves dialogue efficiency in terms
of dialogue duration and task completion.

• Data-driven strategy using reinforcement learning (Khouzaimi et al., 2015b): it
is implemented in simulation and shown to achieve better results than the rule-
based one.

• Real users experiment (Khouzaimi et al., 2016b): an incremental dialogue system
prototype (Majordomo domain) has been developed and used to test the previous
strategies with real users.

Outline

The first part of this thesis presents the current state of the art in the field of dia-
logue systems, incremental dialogue systems and turn-taking as well as reinforcement
learning and its application to human-machine dialogue. Chapter 1 introduces the

16

generic architecture of a dialogue system and recalls a brief history about each of its
components. Incremental dialogue systems are introduced and two different design
paradigms are presented. Finally, the basic theoretical background behind reinforce-
ment learning is provided.

Then the second part thoroughly describes the different contributions that have
been made during the course of the thesis. Chapter 3 introduces a new taxonomy of
turn-taking phenomena in human-human conversation. A deep analysis of its differ-
ent components is made following different study dimensions. Moreover, a discussion
is led in order to determine which phenomena are more likely to improve dialogue ef-
ficiency if implemented in an incremental dialogue system. Then Chapter 4 presents
a new architecture for transforming a traditional dialogue system into an incremental
one at a low cost as well as two applications that demonstrate its well functioning. This
architecture involves a new module called the Scheduler which is in charge of turn-
taking decisions. Combining the insights provided in these two chapters, Chapter 5
sheds light on how the selected phenomena from the taxonomy could be implemented
in the Scheduler in a task-oriented slot-filling task (three slot-filling strategies are also
presented).

In order to be able to generate important dialogue corpora, Chapter 6 introduces
a new framework for incremental dialogue simulation which is able to simulate in-
cremental ASR instability. A User Simulator communicates with an incremental dia-
logue system (composed of a Service for personal agenda management and a Sched-
uler) through an ASR Output Simulator. The strategies discussed in Chapter 7 are im-
plemented in this simulated environment and compared. Chapter 8 introduces a new
strategy that is learned automatically from simulated dialogues using reinforcement
learning. The results are compared to the ones offered by handcrafed strategies and
presented in Chapter 7.

Finally, Chapter 9 describes an experiment with real users where interactions take
place with a Majordomo agent: the users act as if they were interacting with their smart
home. A non-incremental strategy as well as a handcrafted incremental and a data-
driven ones are compared in order to validate the results obtained by simulation.

17

18

List of publications

(Khouzaimi et al., 2014a) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2014a. Dictanum
: système de dialogue incrémental pour la dictée de numéros. In Proceedings of the
TALN 2014 Conference.

(Khouzaimi et al., 2014b) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2014b. An easy
method to make dialogue systems incremental. In Proceedings of the 15th Annual
Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL).

(Khouzaimi et al., 2015a) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2015a. Dialogue
efficiency evaluation of turn-taking phenomena in a multi-layer incremental simu-
lated environment. In Proceedings of the HCI International 2015 Conference.

(Khouzaimi et al., 2015b) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2015b. Optimising
turn-taking strategies with reinforcement learning. In Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL).

(Khouzaimi et al., 2015c) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2015c. Turn-taking
phenomena in incremental dialogue systems. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP).

(Khouzaimi et al., 2016a) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2016a. Incremental
human-machine dialogue simulation. In Proceedings of the International Workshop on
Spoken Dialogue Systems (IWSDS).

(Khouzaimi et al., 2016b) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2016b. Reinforce-
ment learning for turn-taking management in incremental spoken dialogue systems.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI).

19

List of publications

20

Part I

State of the art

21

Chapter 1

Spoken dialogue systems and
incremental processing

1.1 Human dialogue

1.1.1 Dialogue acts

If I say This dog is big, I utter a few sounds that can be cast as words. How are these
words related to the real objects I refer to? How comes that a sequence of sounds can
have effects on others? I can give orders to somebody and make them performs the
actions I want as I can congratulate or insult someone and have an emotional impact
on her. Also, how comes an utterance can also be judged as a complete nonsense or as a
true or false assertion? These are a few questions raised in the philosophy of language.

In his book called How To Do Things With Words (Austin, 1962), J.L. Austin focuses
on the concept of speech act, the title of another book (Searle, 1969) by John R. Searle,
who completed this theory of language. Introducing these concepts is aimed towards
bringing answers to the previous questions. Saying My sister just arrived, one performs
a speech act that can be viewed from different points of view. Suppose that someone is
listening as this sentence is being uttered and that person does not speak English, then
obviously she only hears a sequence of noises which is the physical, low-level nature
of the speech act. When considered from that perspective, the latter is referred to as
a phonetic act. These sounds can then be put together to form a set of vocables and
words which constitute a phatic act. When the whole meaning of the sentence is taken
into account, the speech act is said to be a rhetic act. These three levels of analysis are
grouped into a bigger concept, the locutionary act.

When one focuses not only on the raw meaning of a speech act but on the message
that it contains, whether it is a warning or an encouragement for example, it is said to
be an illocutionary act as beyond the rhetic aspect, an illocutionary force is considered.
Nevertheless, in (Searle, 1968), Searle rejects this distinction between the rhetic and the
illocutionary act made by Austin. According to him, the limit between the two is not

23

Chapter 1. Spoken dialogue systems and incremental processing

justified hence rejecting the whole locutionary act concept. Instead, he suggests to adopt
a modified classification. These considerations are, however, beyond the scope of this
thesis as the philosophy of language will only be used as a tool to better analyse turn-
taking phenomena (see chapter 3). Therefore, only two concepts will be retained: the
phonetic act where the speech act is viewed as a succession of sounds and the illocu-
tionary act where the meaning is taken into account.

Moreover, saying something to somebody can have psychological effects on that
person: congratulating someone or insulting him can be rewarding or hurting, a strongly
grounded speech can be convincing, etc. These are referred to as perlocutionary acts.

To build a dialogue system, the traditional approach is to consider the user’s and
the system’s speech acts as illocutionary (and sometimes perlocutionary) acts. When
studying incremental dialogue systems, the phonetic act point of view comes into play.
In this thesis, this distinction will be clarified.

In the field of psycholinguistics, Herbert H. Clark brings another vision of dialogue
acts in his book Using Language (Clark, 1996). The communication channel is split into
two tracks, the communication track and the meta-communication track. The first one
is used when the speaker adds new information about the topic of the information
whereas the second one is used when she refers to the dialogue itself. For example,
saying OK, I see or nodding her head are meta-communicative acts.

In order to guide the user throughout the dialogue, correct potential errors and to
confirm some pieces of information, spoken dialogue systems use the meta-communica-
tion track. In this thesis, it is shown that incremental dialogue opens new possibilities
to make an even more subtle use of this track.

1.1.2 Turn-taking in human dialogue

Turn-taking is a sociological phenomenon that has been generalised to many differ-
ent situations: card games, road traffic regulation, CPU resource sharing... The term
turn-taking has been applied in that context for the first time both in (Yngve, 1970) and
in Ervin Goffman’s personal communications (June 5th 1970) independently. (Duncan,
1972) notices that beyond considerations of etiquette, it is difficult to maintain adequate mu-
tual comprehensibility when participants in a conversation are talking at the same time. In
(Sacks et al., 1974), Harvey Sacks describes the social organisation of turn-taking as an
economy where turns are valued, sought or avoided, depending on the situation at hand.
Then, in the rest of his paper, he focuses on the case of human conversation. Obviously,
this is subject to many contextual and cultural variations but the goal of the paper is to
meet the challenge of extracting a set of rules that would ultimately describe the human
turn-taking mechanisms in a general fashion.

For about six years, Harvey Sacks has been analysing conversation recordings and
he came up with a few rules that caracterise human conversation and turn-taking. One
of them is particularly interesting given the purpose of this thesis: Transition (from one

24

1.1. Human dialogue

turn to a next) with no gap and no overlap are common. Together with transitions characterized
by slight gap or slight overlap, they make up the vast majority of transitions.

In fact, this principle has been brought to light even earlier in (Sullivan, 1947) where
it has been noticed that the same turn-taking phenomena still hold over most of the
languages. Schegloff (1968) suggests that speaking one party at a time is one of the ba-
sic rules for conversations. Nevertheless, when analysing human conversation more
closely, it is shown that humans interrupt each other very frequently (Beattie, 1982;
Strombergsson et al., 2013). In this thesis, this idea is extended to human-machine dia-
logue and it is shown that it might be interesting to interrupt the speaker in some cases
in order to increase dialogue efficiency.

During the following decades, a few other attempts to come up with models and
classification of turn-taking phenomena in human dialogue have been made. In (Beat-
tie, 1982), a political interview between Margaret Thatcher and Jim Callaghan has been
analysed. As a result, the author introduced a classification of turn-taking phenomena
where each category is characterised by the answer to these three questions (resulting
in a general categorisation with five broad classes):

1. Is the attempted speaker switch successful?

2. Is there simultaneous speech?

3. Is the first speaker’s utterance complete?

If the listener manages to successfully take the floor and there is simultaneous speech
present, either the speaker’s utterance is complete which leads to an OVERLAP or not
which translates into a SIMPLE INTERRUPTION. On the contrary, if there is no simul-
taneous speech, either the speaker’s utterance is complete which leads to a SMOOTH
SPEAKER SWITCH, either a SILENT INTERRUPTION is involved. Finally, if the lis-
tener does not succeed in taking the floor, only one category is reported: BUTTING-IN
INTERRUPTION. In (Gravano and Hirschberg, 2011), this classification is extended by
introducing the following question: Is the listener’s utterance in response to the speaker’s
one and indicates only “I am still here/I hear you and please continue?”. As a consequence,
two new categories are introduced when the answer is yes and given the fact that there
is simultaneous speech or not: BACKCHANNEL and BACKCHANNEL WITH OVER-
LAP.

Optimising turn-taking means taking the floor at the right time. Humans are very
good at detecting the cues for these timings (Raux and Eskenazi, 2008; Jonsdottir et al.,
2008; Gravano and Hirschberg, 2011): prosodic features, lexical features, semantic fea-
tures, ...

Actually, humans even tend to start speaking before the end of their interlocutor’s
utterance, even interrupting him sometimes. A study led in (Strombergsson et al., 2013)
reports statistics about times and overlaps in human conversation both directly and
over the telephone. Given the type of question that is addressed to the listener, the
latter tends to respond more or less quickly, often inferring the end of the question and
starts uttering the response before its end.

25

Chapter 1. Spoken dialogue systems and incremental processing

In reality, human turn-taking involves even more complicated behaviours resulting
in intertwined turns between the speakers. Raux and Eskenazi (2009) tries to provide
a simple model with very few assumptions. It is a state machine where the following
states are considered (initially depicted in (Jaffe and Feldstein, 1970)):

• Only the user speaks.

• Only the system speaks.

• No one speaks because the user stopped talking.

• No one speaks because the system stopped talking.

• Both the user and the system speak after a user barge-in.

• Both the system and the user speak after a system barge-in.

In this framework, four basic turn-taking transitions are introduced: turn transitions
with gap, turn transitions with overlap, failed interruptions and time outs. This is a very low-
level model where only phonetic acts are considered (unlike the classification proposed
in (Beattie, 1982) for example where the intent of the listener when he tries to take the
floor is taken into account). A similar approach is used in (Wlodarczak and Wagner,
2013), but the situations identified are different:

• Within-speaker silence: The speaker stops for a while and then resumes his ut-
terance.

• Between-speaker silence: The most intuitive case of turn taking. The speaker
stops and after a moment of silence, the listener takes the floor.

• Within-speaker overlap: The listener either takes the floor or performs an inter-
vention that is not meant to interrupt the speaker and the latter keeps the floor.

• Between-speaker overlap: The listener starts speaking before the end of the speaker’s
utterance, hence resulting in an overlap and a turn transition.

• Solo vocalisation: On person speaks in an unilateral way.

1.1.3 Incremental speech processing in human dialogue

During a conversation, the listener does not wait for the speaker’s utterance to end be-
fore trying to understand it. It is processed incrementally and on top of the intuition
that people have related to this, a few studies provided convincing arguments support-
ing the idea. The most famous and convincing examples are eye-tracking based studies
(Tanenhaus et al., 1995; Eberhard et al., 1995; Arnold et al., 2000). Subjects are given an
image to look at through a head-mounted eye-tracking mechanism that records their
eye-gaze at a millisecond scale. Then, ambiguous and unambiguous sentences were
uttered, for example:

• Ambiguous version: Put the apple on the towel in the box.

26

1.2. Spoken dialogue systems

• Unambiguous version: Put the apple that is on the towel in the box.

For this example, when the users are provided with an image of an apple on a towel,
a towel with nothing on it and a box, their eye-gaze shows different patterns depending
on which version of the utterance they listen to. In the ambiguous case, they tend to
start by looking at the apple, then to the towel with nothing on it, then to the apple
again and finally at the box. In the unambiguous case, they directly look at the apple
and then to the box. Most importantly, these movements happen as the sentence is
uttered.

This is also pretty much related to the garden path sentence effect. Consider the
following sentence (taken from the related Wikipedia article): the government plans to
raise taxes were defeated. Most people feel the need to read it twice or even several times
before understanding its meaning. When one starts reading the government plans to
raise taxes, she automatically understands that taxes are planned to be raised by the
government but then comes the disturbing end of the sentence: were defeated. The only
solution is to parse plans as a noun and not as a verb. This is also an argument in favour
of human incremental processing.

Finally, when humans are reading a text, they tend to skip a few words with no loss
of the meaning. In (Ilkin and Sturt, 2011), the authors show that it is possible to predict a
few words while reading given the context and the sentence structure (eye-tracking has
also been used here). For example, when the readers reach the sentence The worker was
criticised by his boss, the word boss seems to be guessed ahead of time, again supporting
the idea of incremental processing.

1.2 Spoken dialogue systems

A spoken dialogue system (SDS) is an automated application that interacts directly
with a human being in natural language. Virtual assistants like Siri (Apple) or Cortana
(Microsoft) are good examples of SDSs. They are task-oriented since their goal is to help
the user achieve some task. There also exist a few SDSs that are only used for tutoring
(Jordan et al., 2015) or simply chatting and companionship (Sidner et al., 2013).

Historically, McCarthy and Hayes were the first to suggest the introduction of men-
tal qualities (intentions, belief, ...) in a dialogue system (Mccarthy and Hayes, 1969;
Mccarthy, 1979) in the 70’s. This started a new research thread aimed at describing the
internal state and the system’s behaviour in a humanlike fashion (Newell, 1980; Brat-
man, 1987; Cohen and Levesque, 1990; Sadek, 1991; Konolige and Pollack, 1993). In
Orange, a new dialogue system called ARTIMIS has been developed. It was based on
a new theory of interaction (Sadek, 1991) using the Belief-Desire-Intentions model in-
troduced in (Bratman et al., 1988). During the following years it has been improved
and enhanced with new capabilities: an action plan (Louis, 2002), a preference-based
operator (Meyer, 2006) and uncertainty management capacities (Laroche et al., 2008).

However, this approach that uses logic has been abandoned for two main reasons.

27

Chapter 1. Spoken dialogue systems and incremental processing

Firstly, it does not guarantee the VUI-completeness (Pieraccini and Huerta, 2005; Paek
and Pieraccini, 2008): it can lead to system behaviours that have not been specified in
advance by the designer, and secondly it requires an expertise in the logic field (which
considerably reduces the span of potential dialogue system designers). As a result, like
all the major actors in the field (Nuance, AT&T, SpeechCycle, etc.), Orange turned to a
new solution where the dialogue system is viewed as an automaton. This solution is
called Disserto which has proved to be simple, robust enough to allow the development
of widely deployed industrial dialogue systems and flexible enough to allow state-of-
the-art research. All the services developed in this thesis have been generated using
Disserto which will be presented more deeply later on.

1.2.1 Towards a human-like interaction

Traditional computer interfaces are presented in the form of controls in an application
(text boxes, buttons) or web pages. They are heavily used and they have been proven to
be efficient enough, providing an accurate way of human-machine interaction. So, why
building spoken dialogue systems? What are the advantages of the vocal modality?

An obvious motivation for building spoken dialogue systems is the quest for human-
likeness. In (Edlund et al., 2008), an interesting analysis of the way humans perceive di-
alogue systems they are interacting with is performed. These systems are complex and
humans keep a biased representation of them during the interaction (called metaphors
in the article). Two of them are the most common:

• Interface metaphor: The system is viewed as an interface just like non dialogue-
based systems. Users adopting this representation of the system tend to use vocal
commands instead of complete sentences. Moreover, they tend to remain silent
when the system tries to behave like a human, by saying Hi! for example.

• Human metaphor: In this case, the users tend to view the system as a real human,
therefore adopting a more natural way of communication. These users generally
have higher expectations of the system’s ability to answer their requests as well
as its ability to perform human-like turn-taking behaviours.

Nevertheless, it is also legitimate to raise the question whether human-likeness
should be a goal in the conception of dialogue systems or not. In (Edlund et al., 2008),
four kinds of objections to pursuing that goal are discussed. The first one is the feasi-
bility: is there any hope that someday, systems that behave exactly like humans could
be built? This has raised huge debates during the last decades. The second question is
utility: do people really need systems that imitate humans? Apart from the fact that it
would help us to better understand the way humans communicate, it is an interesting
application in the case of some applications like companionship and entertainment.
It is less obvious when it comes to task-oriented dialogue. The third point is related
to the concept of uncanny valley (Mori, 1970): as machine’s human-likeness increases,
they reach a point where they start behaving like humans without having the same
capacities which makes them disturbing for the user. The reason behind that is the con-
cept of symmetry (last brought up question in the paper): if machines have a similar

28

1.2. Spoken dialogue systems

behaviour to humans, then users are likely to push the human metaphor to the limit
by unconsciously thinking that machines really understand what they are saying, thus
expecting more complex reactions like the ones due to emotions for example. Never-
theless, by bringing even more improvements, this valley will be hopefully crossed and
human-like solutions that no longer have such problems will be built.

The multiplication of services and support platforms in modern society engenders
huge costs that dialogue systems can help to reduce. By analysing client paths while
requiring assistance from an expert, it is possible to identify commonly asked questions
and recurrent patterns. By gathering such information, it is also possible to design di-
alogue systems that can interact with users and respond to their requests without any
human intervention (of course, in the case the interaction fails, the client is redirected
to a human-operated service platform). This can dramatically reduce service and sup-
port costs and also improve the quality of service as it is accessible any time, with no
interruptions (unlike real platforms that are more often open at working time only).
Moreover, when a client calls, the answer is immediate and her call is no longer queued
causing waiting time (which she may pay for) with sometimes no answer in the end.

With the development of the IoT during the last few years, new human-machine
interactions can be imagined. For instance, the concept of Smart Home is currently mak-
ing its entry in the market of Artificial Intelligence through the contributions of several
companies and start-ups: Amazon Echo, etc. In this context, the advantage of speech
communication is clearly relevant as it is hands- and eyes-free. The user can command
her house from any room with no extra device needed. In some situations, her hands
are already occupied by some other task. For example, she can be cooking (Laroche
et al., 2013) while asking What should I put next in my salad? or Can you add milk to my
shopping list please?.

Finally, as talking agents and talking robots can also be designed for entertainment
and companionship (Gelin et al., 2010; Sidner et al., 2013) and the vocal modality is the
most natural way of interaction, it is very useful in this area.

1.2.2 Spoken dialogue systems architecture

The classic architecture of an SDS is made of five main modules (Figure 1.1):

1. Automatic Speech Recognition (ASR): transforms the user’s audio speech signal
into text.

2. Natural Language Understanding (NLU): outputs a conceptual representation of
the user’s utterance in text format.

3. Dialogue Manager (DM): given the concepts extracted from the user’s request, a
response (in a conceptual format too) is computed.

4. Natural Language Generation (NLG): transforms the concepts computed by the
DM into text.

29

Chapter 1. Spoken dialogue systems and incremental processing

User

ASR

NLU

DM

NLG

TTS

THE DIALOGUE

CHAIN

Audio signal Audio signal

Text Text

Concepts Concepts

Figure 1.1: The dialogue chain

30

1.2. Spoken dialogue systems

Figure 1.2: A 5-Best example corresponding to the sentence “I would like to book a flight from
New-York to Los Angeles”.

5. Text-To-Speech (TTS): reads the text outputted by the NLG by using a synthetic
voice.

Automatic Speech Recognition

Speech recognition technology is an old problem with long history. During the 1950s,
a group of researchers from Bell Labs developed the first technology that was able to
recognise digits from speech (in fact, speech perception has been under study since
the early 1930s). Then, during the second half of the last century, new advances have
made it possible to build ASR solutions with larger vocabulary and with no depen-
dence on the user. In the 1960s, Hidden Markov Models (HMMs) were proved to be
useful for speech recognition (Gales and Young, 2007) and they were the most popular
technique two decades later. Commercial products using ASR technology had to wait
until the 1990s to be finally released in the market as they reached an interesting vocab-
ulary scope (even though their accuracy and their delay were far behind the technology
available today). Performances kept improving slowly and gradually until 2009, when
Deep Learning algorithms were tested (Mohamed et al., 2009; Deng et al., 2013) intro-
ducing huge improvement; the Word Error Rate (WER) decreased by 30%. During the
last six years, research continued in that direction giving birth to accurate and reac-
tive speech recognition solutions (Google, Nuance, Sphinx, Kaldi...). These solutions
also provide results incrementally in a continuous fashion. Therefore, ASR is less and
less considered as a bottleneck in the development of spoken dialogue systems, and as
it will be shown later, the delays they offer make it possible to design reactive incre-
mental dialogue systems. Commercial off-the-shelf ASR solutions like Google ASR or
Nuance products are able to recognise almost every word in many languages, includ-
ing named entities. Finally, the ASR output is not only the text that the recognition
algorithm figures out to be the best match for the input audio signal, but a list of the N
most likely hypotheses and the corresponding confidence scores: it is called the N-Best.
For instance, a 5-Best example is represented in Fig. 1.2.

31

Chapter 1. Spoken dialogue systems and incremental processing

Natural Language Understanding

NLU is a sub-field of Natural Language Processing (NLP) which scope is wider than
the spoken dialogue field. Since the 1950s, researchers have been trying to develop
several models and ontologies in order to automatically process natural language with
several applications in sight: topic recognition, sentiment analysis, news filtering and
analysis, natural speech processing, etc. The ambition manifested during the 1950s
and the early 1960s quickly had to face reality as the expected objectives were far from
being reached. As a consequence, research in this area was significantly slowed down
between the 1960s and the 1980s. During the last decade, NLP research has found a
second wind thanks to new Machine Learning techniques, bringing them at the heart
of lucrative businesses like recommendation and digital marketing. NLU refers to the
set of techniques in order to make the machine understand the underlying structure
of a text in natural language. To do so, a lexicon as well as an ontology (concepts and
the links between them in a specific domain) should be built. Therefore, earlier NLU
solutions are based on a set of handcrafted parsing rules, however, new statistical-based
models (Macherey, 2009; Hahn et al., 2010) have been proven to be more robust and
easy to generalise over domains. Also Deep Learning has also been applied to NLP
showing interesting performances that NLU modules can benefit from (Bengio et al.,
2003; Collobert et al., 2011; Ferreira et al., 2015a,b, 2016).

Dialogue Management

As far as Dialogue Management is concerned, two decades ago, for the first time, dia-
logue has been modeled as Markov Decision Processes (MDPs) problem (see Sect. 2.1),
hence being solved using reinforcement learning (Levin and Pieraccini, 1997). The di-
alogue state contains all the information needed to determine what is the best action
to perform as well as the quality of that state (roughly speaking, to what extent it is
desirable for the system to be in that state). The possible actions in each state are the
dialogue acts that the system can make while being in that state. In 2007, in order to
represent the uncertainty over the user’s intent (due to ASR or NLU imperfections), di-
alogues have been cast as Partially Observable Markov Decision Processes (POMDPs)
(Roy et al., 2000; Williams and Young, 2007). This gave raise to the notion of belief track-
ing which objective is to keep a distribution over the possible user intents. Also, existing
dialogue systems are able to interact with the user in the domain they are built for only,
however, during the last few years, researchers have been pushing the boundaries of
domain extension methods (Gasic et al., 2013) and open-domain systems (Pakucs, 2003;
Galibert et al., 2005; Ekeinhor-Komi et al., 2014; Wang et al., 2014). Finally, it has been
shown that it is possible to use reinforcement learning to continously adapt to users
online (Ferreira and Lefèvre, 2015; Chandramohan et al., 2012b,a).

32

1.2. Spoken dialogue systems

Natural Language Generation

The NLG task is the inverse of the NLU one: it translates dialogue acts concepts into
sentences. It started being used in the 1990s for purposes like business and financial
news summary (Anand and Kahn, 1992). A few start-ups and big companies also pro-
vide automatic text generation solutions that are used to quickly produce reports or
official letters. The main challenge for such systems is to be able to generate a variety of
different words, expressions and sentences in order for them not to be repetitive and for
the result to be as realistic as possible. This is even more crucial when it comes to dia-
logue systems as they are supposed to simulate real conversations with the user, which
is a highly variable. Nevertheless, in practice, template-based generation methods are
the most widely used even though data-driven solutions are starting to reach mature
development (Mairesse et al., 2010; Mitchell et al., 2014; Manishina et al., 2016).

Speech Synthesis

During the 1930s, Bell Labs were not only interested in ASR but they also developed a
new approach for the reciprocal task: the TTS (also known as speech synthesis). The hu-
man speech is broken into small acoustic components that are sequentially pronounced
by the system. They built the first machine demonstrating this mechanism: the Voder
(Dudley, 1939). As far as this task is concerned, the challenge for the system is to sound
as human-like as possible, in terms of phoneme transitions, speech rate and prosody.
Two research threads tackle this problem in two different manners (Tabet and Boughazi,
2011): the first one uses corpus-based methods where the resulting audio is a combina-
tion of pre-recorded phonemes extracted from a corpus and the second one uses HMMs
to generate a completely synthetic voice. Even though substantial advances have been
accomplished since the Voder, including data-driven approaches (Yu et al., 2011), it is
still easy to distinguish between a synthesised and a real human voice.

1.2.3 Spoken dialogue systems evaluation

When building dialogue systems and improving them, it is necessary to determine met-
rics in order to measure their evolution. What makes a dialogue system better than
another one? What metrics should be taken into account while evaluating dialogue
systems? What are the most important characteristics of a dialogue system that should
be improved?

A distinction can be made between the evaluation of a dialogue system as a whole
(usability as it is called in (Möller et al., 2007)) and the evaluation of the different compo-
nents separately. In the second case, more standard metrics exist such as the Word Error
Rate (WER) for the ASR or the CER (Concept Error Rate) when it comes to evaluating
the NLU. However, all errors are treated the same whereas in reality, some of them have
more impact than others. This is a complex problem since even humans disagree when
it comes to assessing the gravity of each error (Rosset et al., 2013). Also, as far as the

33

Chapter 1. Spoken dialogue systems and incremental processing

DM is concerned, such metrics do not exist: the usability evaluation is preferred to a
local evaluation of the DM since they are very correlated (Dybkjaer et al., 2004). As a
consequence, many evaluation frameworks for dialogue systems have been developed
and used both in academia (Walker et al., 1997; Hone and Graham, 2000; Schmitt et al.,
2012) and industry (Evanini et al., 2008; Witt, 2011).

In the evaluation literature, a distinction is made between two kinds of metrics that
are usually used for evaluating dialogue systems: objective and subjective metrics. The
first category contains all the Key Performance Indicators (KPIs) that can be measured
by an algorithm by accessing the dialogue information and meta-information, whereas
the second one is made of the user’s appreciations of the dialogue quality or specific
characteristics like human-likeness or to what extent the user enjoyed the dialogue ex-
perience.

Objective metrics that are commonly used are the dialogues’ mean duration and
the task completion ratio. Generally speaking, these two metrics are correlated as the
user gets impatient when the dialogue lasts for too long (the user can also get impatient
for other reasons, like the repetition of the same system’s dialogue act several times).
Moreover, the user’s speech rate and the way they communicate introduces some vari-
ability when using these metrics. Finally, it is legitimate to ask the question: are shorter
dialogues the real desired objective? First, this depends on the type of dialogue system
at hand. If it is designed for entertainment or companionship, then there is no need
for seeking faster dialogue strategies. However, in the case of task-oriented dialogue,
looking for shorter dialogues makes sense as a measure of efficiency. In these situations
and especially for daily tasks, an efficiency threshold has to be necessarily reached in
order for people to use the dialogue system at hand.

Subjective metrics are generally gathered using a survey at the end of each dialogue
or by making experts rate dialogues afterwards. Several metrics can be collected this
way: the global quality of the dialogue, naturalness/human-likeness, reactivity, etc.
However, this also raises the problem of variability between users. Most often, they are
asked to evaluate the system on a Likert scale (1 to 5 or 1 to 10), but a user answering 4
could be equivalent to another user answering 3 or 5. Therefore, the absolute evaluation
is less significant than the relative one given a specific user.

1.3 Incremental dialogue systems

1.3.1 Principles

Most dialogue systems have a simple and rigid way of managing turn-taking. The
interaction mode they offer is similar to a walkie-talkie conversation as the system waits
for the user to finish her utterance before taking the floor and vice-versa (even though
some systems allow the user to interrupt them). Such systems will be referred to as
traditional dialogue systems in this thesis.

The first idea of incremental systems goes back to incremental compilers (Lock,

34

1.3. Incremental dialogue systems

1965). An incremental compiler processes each new instruction independently from the
previous ones. Therefore, a local modification of the code does not affect the whole re-
sult of the compilation. The idea of processing natural language in an incremental way
is first introduced in (Wirén, 1992) according to (Kilger and Finkler, 1995). Instead of
feeding modules with complete utterances, the input is pushed chunk by chunk (500ms
of audio signal, one word of a sentence...etc...) making the output change several times
before the end of the user’s utterance. Nevertheless, in his book Speaking: From Intention
to Articulation (Levelt, 1989), Levelt analysed the mechanisms underlying the way hu-
mans formulate their ideas in natural language and already reported that the processes
involved are incremental. The approach is closer to computational linguistics than psy-
cholinguistics. The second part of the dialogue chain (DM, NLG and TTS) is analysed
using a different terminology: the Conceptualizer, the Formulator and the Articulator.

As discussed in Sect. 1.1.3, in human-human conversation, the listener does not wait
for the speaker to finish his sentence before processing it; it processes it as it is spoken.
As a consequence, human beings perform a large panel of turn-taking behaviours while
speaking, like backchanneling (aha, yeah, ...) or barging-in.

To replicate these behaviours, a new generation of SDSs has been the focus of re-
search for the last few years. An SDS is said to be incremental when it is able to process
the user’s speech on the fly. The input signal is divided into small chunks and the grow-
ing sentence is reprocessed at each new chunk (Schlangen and Skantze, 2011). Table 1.1
gives an example illustrating the functioning of an incremental NLU module (in a hotel
room booking service). For the sake of simplicity, processing delays are neglected.

Time step NLU input NLU output

1 I empty

2 I won’t empty

3 I would empty

4 I would like to empty

5 I would like to cook a empty

6 I would like to book a room action: BOOK

7 I would like to book a room on May action: BOOK

8 I would like to book a room on May 7th action: BOOK
date: 05-07

9 I would like to book a room on May 17th action: BOOK
date: 05-17

10 I would like to book a room on May 17th and I will action: BOOK
date: 05-17

11 I would like to book a room on May 17th and I will action: BOOK
be driving date: 05-17

parking: YES

Table 1.1: Example of incremental NLU processing

35

Chapter 1. Spoken dialogue systems and incremental processing

This mechanism allows the system to react earlier, even before the end of the user’s
utterance. On the other hand, allowing the user to interrupt the system does not require
incremental capabilities; it has been successfully implemented in non-incremental dia-
logue systems (Lamel et al., 2000; El Asri et al., 2014).

1.3.2 Advantages of incremental processing

Before discussing the different reasons why incremental processing should be preferred
to rigid turn-taking, it is important to note that a few studies with real users have shown
that incremental dialogue systems offer a better user experience. For instance, in (Aist
et al., 2007), an ordinal regression has been performed between the user satisfaction and
several features with a flag for incremental processing among them. A significant corre-
lation between incremental processing and the global user satisfaction has been found.
Other studies also confirm the advantage of incremental speech processing (Skantze
and Schlangen, 2009; El Asri et al., 2014; Zhao et al., 2015).

As discussed in Section 1.2.1, human-likeness is a legitimate goal for dialogue sys-
tems (at least worth trying). When talking to each other, humans perform a rich set of
turn-taking phenomena (see Section 1.1.2) and in spite of the fact that they do not talk
in a rigid walkie-talkie manner, they manage to avoid desynchronisations and to keep
a conversation that is going forward. Replicating these behaviours from the machine’s
point of view can therefore be interesting. It might be expected that the user feels more
at ease while using a more human-like turn-taking mode hence pushing the human
metaphor even further.

The other aspect that is interesting about incremental dialogue is reactivity. As the
system processes the user’s request before its ends, it is possible to design accurate
end-point detection in order to detect the end of this request as soon as possible (Raux
and Eskenazi, 2008). Moreover, incremental dialogue systems can interrupt the user to
report a problem, like in the following example:

USER: I would like to book a room for tomorrow with ...

SYSTEM: Sorry, we are full tomorrow.

This can help the user get to her goal faster but one should be very careful about
the way it is implemented as there is a risk that user interruption actually harms the
user experience (even though the intent is to go faster, see Section 1.3.3). Nevertheless,
a corpus study led in (Ghigi et al., 2014) showed that when users are interrupted, they
tend to adopt a more sober way of expression, hence directly increasing the dialogue ef-
ficiency but also indirectly as the risk of misleading off-domain words and expressions
is reduced (Zhao et al., 2015).

Early barge-in both from the user and the system’s side is also a way to limit desyn-
chronisations. An example of a desynchronised dialogue could be (inspired by the
NUMBERS domain described in (Skantze and Schlangen, 2009)):

USER: 01 45 38 37 89

36

1.3. Incremental dialogue systems

SYSTEM: 01 45 28 37 89

USER: No, not 28 but 38

SYSTEM: Sorry, you mean 28 38

USER: What?

SYSTEM: 28 38 1 (The system understood “One” instead of “What?”)

In this example, the user could have reported the mistake earlier if he could barge-
in:

USER: 01 45 38 37 89

SYSTEM: 01 45 28...

USER: No, 38

SYSTEM: Ok. 01 45 38

USER: 31 89

SYSTEM: 31 89

Another interesting aspect about incremental dialogue systems is that they can lever-
age multimodality (Fink et al., 1998). In fact, there are two aspects of multimodality and
they can both benefit from incremental processing:

• Input multimodality: Most researchers in the community refer to this aspect
when talking about mutimodal systems. A system input can be multimodal in
the sense that it can handle speech input, but also text, gesture or eye-gaze for
example. The main challenge faced by this kind of setup is the problem of mixing
these inputs in order to infer the correct user intent. In the case of multimodal
systems, the world is considered as a flow of information coming from multiple
sources (Chao and Thomaz, 2012; Rosenthal et al., 2013). The different modali-
ties are not necessarily sampled with the same rate nor support the same delays,
therefore, it is important to find convenient ways to synchronise them.

• Output multimodality: The machine can also use different channels of informa-
tion while communicating (Matthias, 2009). For example, the speech modality can
be used at the same time as a moving avatar with facial expressions (the Furhat
for example (Skantze and Johansson, 2015)). It can also be coupled with the input
multimodality paradigm to create highly interactive interfaces (Johnston et al.,
2014).

1.3.3 New challenges raised by incremental dialogue processing

The first problem to consider when talking about incremental spoken dialogue systems
is the question of ASR latency, which is the time needed by the recognition algorithm
to provide the text output corresponding to an audio signal. As discussed earlier, the

37

Chapter 1. Spoken dialogue systems and incremental processing

ASR accuracy has been a bottleneck in the development of spoken dialogue systems for
many years but thanks to recent advances in this field, it is no longer the case. Similarly,
incremental dialogue systems require quick responses from the ASR but speech recog-
nition modules have been too slow for many years which was a limiting factor in the
development of incremental dialogue processing. But, in the last few years, ASR tech-
nology has become reactive enough (Breslin et al., 2013; Plátek and Jurčíček, 2014). Still,
it is important to be aware that there is a tradeoff between the accuracy, the vocabulary
size and the latency. Kaldi, which is an ASR solution designed by researchers (and
which is mostly used by them), makes it possible to design one’s own acoustic and lan-
guage model as well as setting one’s own parameters in order to control this tradeoff.
Off-the-shelf solutions like Google ASR do not give the user such possibilities (however,
accuracy and delays in open domain are well balanced for most applications).

If the successive partial results of an incremental ASR module are observed during
a user’s utterance, it is likely that the progression they follow is not monotonous. In
other words, a partial result is not guaranteed to be a prefix of results to come. The
following example showing successive ASR results illustrates this phenomenon:

1. Hum

2. I

3. Hum good

4. iPod

5. I would

6. I good bike

7. I would like

This phenomenon is called ASR instability (or stability depending on the sources)
(Selfridge et al., 2011). This factor is also related to the tradeoff between latency and
accuracy as preferring fast ASR over accurate ones can lead to very unstable results
(the system is not given enough time to compute accurate results most of the time, thus
ending up delivering wrong partial results frequently), and vice-versa.

This leads to one of the main challenges raised by incremental processing: the ability
to revise the current hypothesis. All the modules in the dialogue chain are impacted by
this problem. As an illustration, suppose that the user interacts with an incremental
personal assistant on her phone and makes the following request: Please call the number
01 45 80 12 35. The last digit is first understood as being 30 and then 35, therefore, if
the system is too reactive, there is a risk that it starts calling the wrong number and
maybe starts uttering the sentence: Ok, calling 01 45 80 12 30. Afterwards, the system
understands 35 instead of 30 hence needing a correction mechanism in order to stop the
TTS, to cancel the call, to perform a new one and to provide a new answer to the user.
Nevertheless, even though the system at hand is equipped with such a mechanism,
using it very often is not an optimal way of managing incremental input as it causes
extra delay as well as non-natural behaviour (stopping the TTS and starting again with

38

1.3. Incremental dialogue systems

another utterance). This introduces a similar tradeoff to the one discussed for the ASR
module but from the DM perspective: if decisions are taken too quickly, some of them
may be wrong hence activating the correction mechanism. On the other hand, if the
DM is slow to take action, then it lacks reactivity and there is no point for it to be
incremental. As a consequence, it is important to determine the right moment to stick
with the current partial utterance and to take action based on it (Raux and Eskenazi,
2008; Lu et al., 2011).

Incremental NLG also raises new problems which are illustrated in (Baumann and
Schlangen, 2013). In this paper, a system has to describe the trajectory of a car in a
virtual world. When the latter approaches an intersection where it has to turn right
or left (no road straight ahead), then the system utters something like The car drives
along Main Street and then turns...euh...and then turns right. In this example, the system
is sure that the car is going to turn which makes it possible for it to commit to the
first part of the sentence with no risk. However, this is not always the case as a new
chunk of information from the user can change the whole system’s response. In this
thesis, the NLG is not incremental as the DM’s response is considered to be computed
instantly at each new micro-turn (event though it is not necessarily stable and it can
vary from micro-turn to micro-turn). Finally, in purely vocal applications, computing
the NLG results incrementally does not make much sense as the user’s and the system’s
utterances do not overlap most of the time (Sacks et al., 1974). However, this is an
interesting behaviour as far as multimodal applications are concerned.

Building an incremental TTS module can also be very tricky. In order for the syn-
thetic voice to be the most human-like as possible, prosody should be computed ac-
curately and to do so, the sentence’s structure and punctuation have to be taken into
account. This information is no longer given in the case of incremental TTS or it arrives
too late. Baumann (2014) proposes a method for coping with the problem. It consists in
using both low-level and high-level information to predict the right prosody.

1.3.4 Existing architectures

Sequential paradigm

A general abstract model of incremental dialogue systems has been introduced in
(Schlangen and Skantze, 2011). In this approach, the dialogue chain is maintained and
each one of the five components is transformed into its incremental version. This view
of incremental dialogue systems will be referred to as the sequential paradigm.

Each module is composed of three parts, the Left Buffer (LB), the Internal State (IS)
and the Right Buffer (RB). As described in Section 1.2.2, each module is also charac-
terised by the type of input it processes as well as the type of output it computes. In
incremental dialogue, all these data flows have to be divided into small chunks which
are called Incremental Units (IU). For example, the audio signal that is given as an in-
put to the ASR module can be divided into 500ms chunks that are processed one by
one. Each IU is first added to the LB, then it is taken by the IS for processing and once a

39

Chapter 1. Spoken dialogue systems and incremental processing

result is available, a new IU of a new kind is outputted in the RB. The RB of one module
is the LB of the following one in the dialogue chain so the data propagation through the
dialogue system is insured.

Because of ASR instability, new IU in the LB does not necessarily imply that a new
IU will be pushed into the RB on top of the ones that already existed there. An example
given in (Schlangen and Skantze, 2011) is the following: suppose the user utters the
number forty which processed incrementally, then first the ASR outputs four and then
forty. As a consequence, the second hypothesis does not complete the first one but it
replaces it in the RB. This phenomenon will be discussed in more details in Chapter 6.

Adopting this paradigm is a natural way of enhancing traditional dialogue systems
with incremental capabilities. It is interesting from a computational and design point of
view as the different tasks are separated. Therefore, one is able to evaluate the different
components independently (Baumann and Schlangen, 2011) and have a global view to
determine which area still needs improvement.

Multi-layer paradigm

The problem of dialogue management in traditional dialogue systems can be formu-
lated as follows: at each dialogue turn, given the dialogue context (including the last
user’s utterance), what is the right dialogue act to perform? In the incremental frame,
this definition no longer holds as dialogue acts are no longer attached to dialogue turns.
Therefore, one way to tackle the problem is to split the dialogue management task in
two components, the high-level and the low-level handlers. This paradigm is directly
motivated by Austin’s, Searl’s and Clark’s contributions discussed in Section 1.1.1 as
the high-level module handles illocutionary acts (the communicative track) whereas
the low-level one manages phonetic acts (the meta-communicative track).

As reported in (Lemon et al., 2003), this approach is more in alignment with results
in the psycholinguistic field. The phenomena observed at the phonetic level are com-
plex, and the interaction happen on multiple levels, not always following the classical
dialogue chain. Having a separate module for handling these phenomena is therefore
a more natural paradigm.

Switching from the traditional dialogue management approach to the incremental
one is also a transition from discrete time to continuous time, from a synchronous to
an asynchronous processing (Raux and Eskenazi, 2007). The low-level module is con-
tinuously (approximated by a high frequency processing in computers) listening to the
outside world and waiting for events that might be interesting to communicate to the
high-level handler. In that case, the latter returns actions (dialogue acts) and it is the
role of the low-level module to choose whether to retrieve them to the user or not as
well as choosing the right moment in case it decides to speak.

Finally, starting from a traditional dialogue system, it is easier and more straight-
forward to transform it into an incremental one if one adopts this paradigm. Adding
an extra low-level module to the dialogue manager is enough (Selfridge et al., 2012).

40

1.3. Incremental dialogue systems

At each new incremental input, this module sends the whole partial utterance from the
beginning of the current turn to the dialogue manager and gets a response. Based on
that and eventually some other features, it decides whether to take the floor or not.
As most of the requests sent to the dialogue manager are “fake” as they are not meant
to be acted on, they should not affect the dialogue context. Therefore, either multiple
instances of the dialogue manager are used, either the dialogue context is saved and
restored at each new request, unless the low-level module decides to take the floor (see
Chapter 4 for additional explanations).

41

Chapter 1. Spoken dialogue systems and incremental processing

42

Chapter 2

Reinforcement learning in dialogue
processing

2.1 Reinforcement Learning

2.1.1 Reinforcement in biology

Reinforcement Learning (RL) is a sub-field of machine learning where an agent is put
into an environment to interact with, and figures out through the process of trial and
error what the best actions to take are, given a reward function to maximise (Sutton and
Barto, 1998) (see Figure 2.11).

Figure 2.1: The interaction cycle between the agent and the environment in reinforcement learning

It was first inspired by the field of animal psychology where living organisms are
considered as the agents. Rewards are associated with stimuli that the agent seeks like
food for example. Conversely, punishments are stimuli that it tries to avoid like impor-
tant heat for instance. In (Thorndike, 1898), hungry animals where put in enclosures
where the only way to escape and find food is to perform some simple act (pulling at a
loop of cord, pressing a lever, stepping on a platform...). If after a certain period of time

1This figure is taken from (Sutton and Barto, 1998).

43

Chapter 2. Reinforcement learning in dialogue processing

they were not able to escape, they are taken out of the box without being immediately
fed. This experiment showed how animals were able to learn what to do in order to
escape from the enclosure.

Similarities between reinforcement learning and neurons behaviours in the brain
were also discovered. In (Schultz et al., 1995; Schultz, 1998), similarly to the previous
experiment, monkeys were put in situations where the accomplishment of an action
is necessary to get food. Then the reaction of their dopamine neurons was analysed.
Among many other applications where reinforcement learning meets neuroscience,
(Doya, 2007) commented on this experiment: Although dopamine neurons initially re-
sponded to the rewards, when those rewards became fully predictable from preceding sensory
cues, such as light and sound, their reward responses went away. Instead, dopamine neurons
started to respond to reward-predictive sensory cues. If the reward is omitted after learning,
dopamine neuron firing was suppressed at the timing when reward delivery is expected. These
are interesting findings on their own, but most exciting for those who are familiar with rein-
forcement learning theory because it exactly matches what the TD error does.

2.1.2 Markov Decision Processes

The most common model consists in casting the problem as a Markov Decision Process
(MDP) which is a quintuple M = (S ,A, T , R, γ) where:

• S is the state space. At each time step t, the agent is in some state st ∈ S .

• A is the action space. At each time step t, the agent decides to take action at ∈ A.

• T is the transition model where each (s, a, s�) in SxAxS is associated with a real
number in [0, 1] corresponding to the probability P(st+1 = s�|st = s, at = a). A
more compact notation will be used in the following: T

a
ss� = T (s, a, s�).

• R is the reward model. Let r be the immediate reward due to taking action a in
state s, then R is the set of distributions of r for every (s, a) ∈ SxA. The following
notation will be used in the rest of this chapter: R

a
ss� = E[R(s, a, s�)|s, a, s�].

• γ ∈ [0, 1) is referred to as the discount factor. In the RL framework, the aim of the
agent is not to maximise the immediate reward but the expected return, where the
return Rt is defined as follows:

Rt = rt+1 + γrt+2 + γ2rt+3 + ...

=
∞

∑
k=0

γkrt+k+1 (2.1)

Therefore, when γ = 0, the agent maximises the immediate reward only and
when γ tends towards 1, the agent maximises the sum of all the future rewards.
In other words, the parameter γ controls how far-sighted is the agent in terms of
future rewards.

44

2.1. Reinforcement Learning

A policy π : S → A is a mapping between the state space and the action space.
An agent is said to follow the policy π when for each time t, it takes the action at =
π(st). A policy can also be stochastic, in which case, π(s, a) denotes the probability
of choosing action a when the agent is in state s. A key aspect of MDPs is the Markov
property. Being in state s is the only information available to predict the future, and
adding information about what happened during previous time steps has no power of
prediction. Therefore, given a policy, each state s ∈ S is associated with a value Vπ(s)
which is the expected return when in this state and following the policy π afterwards:

Vπ(s) = E[Rt|st = s, π] (2.2)

Another interesting quantity is the expected return knowing the current state but
also the next action, after which π is followed. This is referred to as the Q-function:

Qπ(s, a) = E[Rt|st = s, at = a, π] (2.3)

Given the definition of Rt, one can notice that

Vπ(st) = E[Rt|st, π]

= E[rt + γ
∞

∑
k=0

γkr(t+1)+k+1|st, π]

= E[rt + γRt+1|st, π]

= E[rt + γE[Rt+1|st+1, π]|st, π]

= E[rt + γVπ(st+1)|st, π] (2.4)

This is known as the Bellman equation for Vπ and it can also be written for the
Q-function, as follows

Qπ(st, at) = E[rt + γQπ(st+1, π(st+1))|st, at, π] (2.5)

2.1.3 Reinforcement Learning

A natural question that can be asked at this point is: how are these values computed?
In reinforcement learning, this is known as the evaluation problem. The transition model
T and the reward model R are the elements that define the dynamics of the MDP. If
they are known, Vπ can be directly computed:

45

Chapter 2. Reinforcement learning in dialogue processing

Vπ(s) = E[Rt|st = s, π]

= ∑
a∈A

π(s, a)E[Rt|st = s, at = a, π]

= ∑
a∈A

π(s, a)E[rt + γRt+1|st = s, at = a, π]

= ∑
a∈A

π(s, a) ∑
s�∈S

T
a

ss�(R
a
ss� + γE[Rt+1|st+1 = s�, π])

= ∑
a∈A

π(s, a) ∑
s�∈S

T
a

ss�(R
a
ss� + γVπ(s�)) (2.6)

It is possible to define an order over the policies. Saying that π1 is better that π2

means that for all the states s, Vπ1(s) ≥ Vπ2(s). It can be shown that there exists at least
one policy that is better than all the others: it is called the optimal policy (π∗). Vπ∗

will
be referred to as V∗ (same for all optimal policies) and it is defined as

∀s ∈ S , V∗(s) = max
π

Vπ(s) (2.7)

Similarly, one can define Q∗ as

∀(s, a) ∈ SxA, Q∗(s, a) = max
π

Qπ(s, a) (2.8)

The aim of reinforcement learning is to learn the optimal policy. Similarly to what
has been shown for Vπ, if the transition and the reward models are known, the Bellman
equation corresponding to V∗ (called the Bellman optimality equation) can be written with
respect to these models (similarly to 2.6):

V∗(s) = max
a

∑
s�∈S

T
a

ss�(R
a
ss� + γV∗(s�)) (2.9)

A similar form can be also be shown about the Q-function

Q∗(s, a) = ∑
s�∈S

T
a

ss�(R
a
ss� + γ max

a�∈A
Q∗(s�, a�)) (2.10)

A set of Dynamic Programming methods exists in order to efficiently solve these kinds
of equations and come up with the optimal policy given the transition and the reward
model (knowing Q∗ implies knowing π∗ as the latter is the greedy policy with respect
to the former Q-function, in the sense that π∗(s) = argmax

a
Q∗(s, a)). However, even

46

2.1. Reinforcement Learning

though this kind of approaches are theoretically interesting, they only have a few prac-
tical applications as most of the times, T and R are unknown. The agent learns directly
from interacting with the environment (model-free approach).

It is possible to try to learn T and R first and then applying a model-based algorithm
to figure out the optimal policy. Nevertheless, this is not necessary as most algorithms
compute the optimal policy by directly estimating the Q-function. This can be done
in a straightforward fashion by running several episodes2, computing the returns for
each state-action couple and for each episode, then using the mean return over all the
episodes as an estimate of Vπ or Qπ. Algorithms using this kind of approach belong to
the category of Monte-Carlo methods.

However, as the agent interacts with the environment, it encounters the following
dilemma which was originally faced in the bandit problem (Berry and Fristedt, 1985;
Bubeck and Cesa-Bianchi, 2012): how to manage the trade-off between exploration and
exploitation. While being at a state s ∈ S , the agent can choose one action among many.
Let us say that the Q-function is initialised as a zero function. Therefore, at the begin-
ning the agent has no preference and selects a random action. If this yields a positive
reward, then the agent has the choice between these two options to make the next de-
cision:

1. Making the same decision again as it already knows that it is likely to generate a
positive reward.

2. Picking another action because it may yield an even greater reward.

In the first case, the agent is exploiting its current knowledge of the environment
whereas in the second case, it is said to be exploring as it is increasing its knowledge
about the environment (with the risk of generating low or negative rewards in the
meanwhile). Because rewards are stochastic, it is not obvious to determine whether
sufficient data is available to trust our estimates and start exploiting most of the time.
This is a difficult problem and a simple way to deal with it is to use the ε-greedy ap-
proach, where the agent chooses a random action with a probability of ε and sticks to
the greedy action (with respect to the current estimated Q-function) the rest of the time.
Nevertheless, more robust solutions have already been suggested like Upper Confi-
dence Bound (UCB) (Auer et al., 2002) for the bandit problem and Upper Confidence
Reinforcement Learning (UCRL) (Auer and Ortner, 2005) for reinforcement learning.

On policy reinforcement learning algorithms keep evaluating the current policy and
at the same time, altering that policy in order to improve it. A naive approach would
be to fix the current policy and to perform as many evaluation iterations as necessary
in order to gain a certain confidence over the estimations of V or Q and then to derive a
new policy to follow, given these values. This is known as Policy Iteration but this is not
the most efficient way to proceed (so many iterations are needed). In fact, performing
only one evaluation iteration before the next policy improvement step can be shown to
be enough, keeping the convergence guarantees. This is referred to as Value Iteration.

2To keep things simple in this introduction to reinforcement learning, the MDP is considered to even-
tually stop.

47

Chapter 2. Reinforcement learning in dialogue processing

Also, the notion of iteration can be viewed differently given the approach and the al-
gorithm at hand. In order to refer to the general idea of intertwining evaluation and
control, the expression General Policy Iteration (GPI) is used.

In fact, it is also possible to evaluate V or Q in an even more fine-grained manner.
Instead of waiting until the end of the episode to update these values, it is possible
to do it after each new decision. That is what Temporal-difference (TD) methods do. In
comparison with the Monte-Carlo approach, the new sample for Vπ(s) or Qπ(s, a) is no
longer the real return obtained in the episode but an estimated one using the Bellman
equation. In the case of the sarsa algorithm3, the Q-function is updated as follows4 (αt

being a decreasing parameter with time):

Qt(st, at) = Qt(st, at) + αt[rt + γQt(st+1, πt(st+1))− Qt(st, at)] (2.11)

It is important to notice that at+1 is the action chosen by following the current es-
timated policy derived from Q (ε-greedy for example) and which will be actually fol-
lowed in the next step. The sarsa algorithm is therefore called an on-policy algorithm.
These conditions can be relaxed giving birth to another category of algorithms, the off-
policy ones. The most famous is Q-Learning5 (Watkins, 1989) where the Q-function is
updated as follows:

Qt(st, at) = Qt(st, at) + αt[rt + γ max
a

Qt(st+1, a)− Qt(st, at)] (2.12)

Here, the policy used for evaluation is not necessarily the one that is followed.

2.2 Reinforcement learning in spoken dialogue systems

2.2.1 In the litterature

Reinforcement learning has been first applied to dialogue systems in (Levin et al., 1997)
and since then, it has been the leading machine learning framework in the field. The
dialogue state at time t is generally determined by the history of dialogue acts since the
beginning of the dialogue. At each turn, the set of actions is made of all the possible
answers at that time.

Dialogue has first been cast as an MDP. For instance, one of the earliest applications
of this framework is described in (Singh et al., 1999). The system involved handles
a simple slot-filling task where it decides whether to ask for all the slots at once, to

3See (Sutton and Barto, 1998) for the algorithm description.
4At this point, V will no longer be used, as Q is the most commonly used in reality. V is mostly used

for pedagogical purposes.
5See (Sutton and Barto, 1998) for the algorithm description.

48

2.2. Reinforcement learning in spoken dialogue systems

ask for a specific slot or whether to perform a confirmation. In order to handle ASR
imperfections, Partially Observable Markov Decision Processes (POMDPs) (Roy et al.,
2000; Williams and Young, 2007; Young et al., 2010; Thomson and Young, 2010) can
be used. In this framework, the dialogue state is replaced by a distribution over all
possible states which is a more natural way of modeling uncertainty, however, they are
more complex and more difficult to scale (Lemon and Pietquin, 2007). Another interest-
ing approach that has been applied to dialogue systems is Hierarchical Reinforcement
Learning (Cuayáhuitl et al., 2007). It is meant to handle large state spaces with an im-
portant dimensionality, which is often the case in dialogue management. It requires
the dialogue to be cast as a Semi-Markov Decision Process (SMDP) (Bradtke and Duff,
1994; Barto and Mahadevan, 2003). Huge and complex state spaces are also dealt with
by using summary states in most cases, which can be built in several ways. Nevertheless,
new approaches using Deep Reinforcement Learning methods started being developed
very recently (Cuayáhuitl et al., 2015); instead of using handcrafted features for state
representation, raw data is directly fed to a deep neural network.

Also, it is noteworthy that even though the main focus in this thesis is dialogue
management, reinforcement learning has also been applied to the NLG task in order
to optimise information presentation (Walker, 2000; Rieser and Lemon, 2011) and even
TTS to decide what kind of prosody should be used (Bretier et al., 2010).

2.2.2 Spoken dialogue systems at Orange and LIA

Important research work has been accomplished at Orange during the CLASSiC project.
It was mainly focused on the problem of reconciling academic research with industrial
activity (Paek, 2007). A new reinforcement model has been developed (in the continu-
ity of work done by (Singh et al., 2002; Williams, 2008)): the Module Variable Decision
Process (MVDP) (Laroche, 2010). It has been implemented in an appointment schedul-
ing task hence giving birth to the first dialogue system learning on-line (directly from
experience) (Putois et al., 2010). In addition, other research efforts have been made in
order to make reinforcement results accessible directly in design mode.

During the course of this thesis, Orange has also focused on other aspects of dia-
logue such as reinforcement learning convergence speed (El Asri and Laroche, 2013),
interaction quality prediction (El Asri et al., 2012, 2014) as a well as reward function in-
ference and state space representation. In (El Asri et al., 2012; Asri et al., 2016), reward
shaping is used to learn a reward function directly from a corpus of dialogues with ex-
perts’ ratings. Moreover, a new framework called Genetic Sparse Distributed Memory
for Reinforcement Learning (GSDMRL) has been proposed (El Asri et al., 2016) which
purpose is to compute a state representation that is adapted to the utility function to
maximise.

Vocal assistants are becoming a part of our everyday life since their introduction in
the market. They are able to perform several tasks but they are still static and limited.
Therefore, Orange also investigates solutions to make dialogue systems able to manage
several tasks by merging dialogue models of different applications which also makes it

49

Chapter 2. Reinforcement learning in dialogue processing

easily extensible (Ekeinhor-Komi et al., 2014). Finally, designing systems that can listen
to human/human conversations and make decisions based on them is also a topic that
is addressed in this lab (Barlier et al., 2015). It is motivated by several applications like
connected houses, meeting rooms, call centers...

As far as LIA (Laboratoire Informatique d’Avignon) is concerned, several subjects
concerning human-robot interaction (mainly through dialogue) and Natural Language
Processing (NLP) are driving the research activity. Among them:

• Interactive Voice Response (IVR): The objective of the Port-MEDIA (Lefèvre
et al., 2012) project is to design robust multi-language and multi-domain mod-
els for IVR, an IVR being the interface between a user and a database (Jabaian
et al., 2013, 2016).

• Human-Robot interaction: The main objective of this research field is to de-
sign adaptive algorithms to improve the interaction between humans and robots.
These are mainly reinforcement learning algorithms. The robot performs poorly
at an early stage but with experience, through an error-trial process, it learns to
better itself and improve the interaction quality (Ferreira and Lefèvre, 2013; Fer-
reira and Lefèvre, 2015; Ferreira et al., 2015c).

• Automatic Speech Translation: French/English and English/French translation
algorithms have been built in collaboration with the LIG (Laboratoire Informa-
tique de Grenoble), based on the Mooses Toolkit. In 2001, the French/English al-
gorithm won second place in the international campaign WMT (Potet et al., 2011;
Rubino et al., 2012; Huet et al., 2013).

2.2.3 Dialogue simulation

A couple of decades ago, with the development of the dialogue systems research field,
the need for evaluation means in order to assess their quality started getting more and
more important. Therefore, researchers turn to user simulation methods (also referred
to as user modeling). In (Eckert et al., 1997), some of the advantages of these tech-
niques are depicted: the possibility to quickly generate corpora for machine learning
techniques at a low cost, easy modeling of different user populations and the possi-
bility of using the same user model across different concurrent dialogue systems for
comparison. Nevertheless, the authors recognise that user simulation cannot totally re-
place interactions with real users in the process of designing reliable dialogue systems:
we believe that tests with human users are still vital for verifying the simulation models.

Simulating users accurately is a challenging task as their behaviours vary consid-
erably from one person to another and the same user can change her preferences over
time (concept-drift) (Schatzmann et al., 2006). Evaluating a user simulator and whether
it handles such variability or not is a research track in itself (Pietquin and Hastie, 2013)
and the qualities required are of different kinds. The trained user simulator should be
consistent with the data that has been used for the training and the sequence of dialogue

50

2.3. Reinforcement learning in incremental dialogue systems

acts generated should be coherent. In addition, when it is used in turn to train a data-
driven dialogue strategy, the quality of the latter is also an evaluation criteria. Also, it
is important that the results obtained in simulation give strong indications about the
behaviours with real users.

User simulation is useful during the conception phase of a dialogue system. How-
ever, training the simulator from data needs the dialogue system to be conceived al-
ready. Therefore, trying to come up with a simple model with only a few parameters is
not always a bad idea as it has been proven to achieve good results as well (Schatzmann
et al., 2007).

User simulator is also quite similar to the dialogue management task. As a conse-
quence, it is legitimate to ask the following question: why not use reinforcement learn-
ing to train user simulators? The answer is that in the case of dialogue management,
it is easier to come up with a reasonable reward function: task completion, dialogue
duration, subjective evaluation...etc... When it comes to user simulation, the objective
function is how well a real user is imitated which is difficult to evaluate. Fortunately,
there exists a framework where the reward function is automatically inferred from data
which is particularly useful here: Inverse Reinforcement Learning (Russell, 1998; Chan-
dramohan et al., 2011; El Asri et al., 2012).

When it comes to incremental dialogue systems, the only existing user simulator
in our knowledge is the one described in (Selfridge and Heeman, 2012). Its state is
updated every 10 ms. However, the ASR instability phenomenon is not replicated, that
is to say that the ASR hypothesis construction is monotonous which introduces a certain
bias in comparison with incremental dialogue in real conditions: when a new audio
signal increment is heard by the ASR, the output can be partially or totally modified.
This simulator made it possible to simulate incremental dialogue processing for the
first time, nevertheless, only the case where a new increment is added to the output is
modeled.

2.3 Reinforcement learning in incremental dialogue systems

In the field of incremental dialogue and turn-taking management, supervised learning
is common. The main problem tackled by researchers is the identification of the exact
moments where the system should take the floor in order to achieve smooth turn-taking
(Raux and Eskenazi, 2008; Gravano and Hirschberg, 2011; Meena et al., 2013). Binary
classifiers are used and the features they use are of different natures: lexical, seman-
tic, prosodic...etc...However, a few papers tackled this problem by using reinforcement
learning.

Jonsdottir et al. (2008) used reinforcement learning while considering prosodic fea-
tures only. Backchanneling for example can be performed by humans independently
from the meaning. The cost function (negative reward) is taken as gaps and overlaps,
hence following Sack’s principle discussed in Section 1.1.2.

51

Chapter 2. Reinforcement learning in dialogue processing

Dethlefs et al. (2012) adopted a complementary approach where only the semantic
content of the user’s utterance is taken into account (hierarchical reinforcement learning
is used). In human conversation, it is more likely for the listener to react right after a
relevant information. Similarly, in the case of a restaurant finding spoken dialogue
system, the system should react right after understanding the restaurant’s type or price
range. In this work, the information pertinence is measured by the Information Density
(ID). Therefore, the higher ID during system actions, the more reward it gets.

Instead of trying to minimise gaps and overlaps, the reward function can be de-
signed in a way to optimise dialogue duration and task completion as in (Selfridge and
Heeman, 2010). The system in this paper learns optimal initial turn-taking, in the sense
that when a silence is detected, the dialogue participant that has the most relevant thing
to say takes the floor first (both dialogue participants are modeled). Like in the previous
paper, only semantic features are considered.

A third approach to optimise turn-taking in spoken dialogue systems is to directly
try to imitate human behaviours. In (Kim and Banchs, 2014) Inverse Reinforcement
Learning is used to infer a reward function directly from user trajectories in a collected
dialogue corpus. Therefore, the reward function automatically incorporates objective
and subjective dialogue quality criteria. The authors have made the choice not to con-
sider lexical and semantic features, but rather to limit their work to timing and prosody
signals.

52

State of the art conclusion

The previous two chapters provide an overview of the current state of art related to
dialogue systems in general, incremental dialogue systems as well as reinforcement
learning and its applications to human-machine dialogue. In Chapter 1, a few generic
notions about human dialogue and the philosophy of language are discussed before
providing a definition of what is a dialogue system as well as its different compo-
nents. Incremental dialogue is also defined afterwards and the different advantages,
challenges and architectural considerations that are associated with it are depicted. Re-
inforcement learning is then discussed in Chapter 2 and a state of the art relative to its
application to dialogue systems is provided. Both traditional and incremental dialogue
systems are covered.

The next chapters are dedicated to the contributions that have been made during the
course of this thesis. A turn-taking phenomena taxonomy in human dialogue has been
proposed and used to build a rule-based turn-taking strategy. Then, a new architecture
aimed at transforming a traditional dialogue system into an incremental one at a low
cost has been built. Also, an incremental user simulator has been implemented and
used to build an optimal turn-taking strategy using reinforcement learning, which has
been shown to outperform its rule-based counterpart. Finally, these results have been
validated in a live study with real users.

53

Chapter 2. Reinforcement learning in dialogue processing

54

Part II

Contributions

55

Chapter 3

Turn-taking phenomena taxonomy

3.1 Introduction

In Chapter 1, the reader is given some clues and some previous work references in
order to build a first intuition of what turn-taking is. Here, an analysis of turn-taking
in human conversation is performed. It is aimed to provide an answer to the four
following questions:

1. What phenomena characterise turn-taking in human conversation?

2. How can they be classified in order to clearly identify the similarities and the
differences between them?

3. What are the general categories that emerge from the general picture drawn by
this classification?

4. What phenomena are worth implementing in dialogue systems and why?

To do so, a new turn-taking phenomena taxonomy is introduced (Khouzaimi et al.,
2015c). Compared to the existing classifications presented in 1.1.2, it is aimed to go
further by using several levels of analysis hence providing a better grasp of the concept
of turn-taking by breaking it into small manageable pieces that can be implemented
and studied separately.

Each element of the proposed taxonomy will be referred to as a turn-taking phe-
nomenon (TTP). The analysis levels laid in the philosophy of language will be used here
while discussing the taxonomy: the locutionary, the illocutionary and the perlocution-
ary paradigms. Nevertheless, the locutionary act concept is subject to a few disagree-
ments between J. L. Austin and his successor, J. R. Searle. Looking deeper into a locu-
tionary act, it can be broken into three sub-levels: the phonetic, the phatic and the rhetic
which correspond to the verbal, the syntactic and the semantic levels. In (Searle, 1968),
the author argues that there is no distinction possible between the rhetic level and the
illocutionary one and therefore refuses the more general distinction between locution-
ary and illocutionary level. As a result, he suggests to adopt the four layer structure

57

Chapter 3. Turn-taking phenomena taxonomy

composed of: phonetic acts, phatic acts, propositional acts (the act of expressing the propo-
sition) and illocutionary acts. Nevertheless, the philosophical subtleties brought by these
considerations are beyond the scope of this thesis and the objective in this chapter is to
provide pragmatic criteria that will make it possible to distinguish the several TTP at
hand. Therefore, only the three following analysis levels have been taken from this the-
ory of language (as they are enough for this analysis): the phonetic, the illocutionary
and the perlocutionary levels.

Recall that at the perlocutionary level, the impact that a dialogue act is aimed to
have is considered, like convincing, congratulating or insulting for example. Here,
an extra dimension is also needed: what is the motivation behind a dialogue act? In
the taxonomy introduced in this chapter, some TTPs are exactly the same if viewed as
phonetic, illocutionary and perlocutionary dialogue acts, but the reasons why they are
performed are different. Making this distinction is interesting from a computational
point of view as it is directly correlated to the set of features that are considered by the
system in order to make turn-taking decisions.

3.2 Taxonomy presentation

Let us consider the three following dialogue situations:

Dialogue 1

HECTOR: I would like to try some exotic destination this summer where I can ...

TANIA: ... Have you ever been to India?

Dialogue 2

HECTOR: First you put the meat in the oven ...

TANIA: ...aha...

HECTOR: ...then you start preparing the salad...

Dialogue 3

HECTOR: What time is it please?

TANIA: It is half past two.

In all the dialogues, Hector initially has the floor and then Tania performs a dialogue
act. In dialogues 1 and 2, she does not wait for him to finish his utterance before doing
so, unlike in the last dialogue. Therefore, Tania can choose the timing of her interven-
tion at different stages in the progression of Hector’s utterance. The first criterion used
in the taxonomy introduced here corresponds to this decision. Moreover, in dialogues

58

3.2. Taxonomy presentation

1 and 3, Tania utters a complete sentence unlike in dialogue 2. The second criterion is
aimed to make the distinction between these kinds of behaviours performed by Tania.

More formally, turn-taking in dialogue refers to the act of taking the floor by one
participant (Tania in the previous examples), here called the Taker (T). Two cases can
be distinguished; either the other participant, here called the Holder (H), is already
speaking or not (the denomination Holder is more adapted to the case where it has the
floor, but it is kept as a convention for the other case).

The taxonomy introduced here is mainly aimed to enhance turn-taking behaviours
of dialogue systems and compared to several previous studies, the semantic level is
given more importance. Therefore, two dimensions are considered:

1. The quantity of information that H has already injected in the dialogue from

T’s perspective1: This measures how early in H’s utterance T chooses to perform
her dialogue act.

2. The quantity of information that T tries to inject by taking the floor: T’s dia-
logue act can consist on some implicit reaction (gestures, sounds like aha), a com-
plete utterance or something in between.

The different levels of information for each dimension are described in Table 3.1.

H_NONE No information given2

H_FAIL Failure to deliver any information
H_INCOHERENT Incoherent information
H_INCOMPLETE Incomplete information

H_SUFFICIENT Sufficient information
H_COMPLETE Complete utterance

T_REF_IMPL Implicit ref. to H’s utterance
T_REF_RAW Raw ref. to H’s utterance

T_REF_INTERP Reference with interpretation
T_MOVE Dialogue move (with improvement)

Table 3.1: Taxonomy labels

Table 3.2 describes the taxonomy where turn-taking phenomena (TTP) are depicted.
The rows correspond to the levels of information added by H and the columns to the
information that T intents to add. In order to describe each one of them in details, they
are discussed row by row. Moreover, these TTP are shown to fit into several categories
which are represented by different colors in the table and explained in Section 3.3.

H_NONE: H does not have the floor, therefore, T takes the floor for the first time
in the dialogue. This can be done implicitly by performing some gesture to catch H’s
attention or by clearing her throat for instance (FLOOR_TAKING_IMPL) or more ex-
plicitely either by providing a raw message (FLOOR_TAKING_RAW) like I would like
to talk to you or by providing more details about the reasons why T wants to start a
conversation (FLOOR_TAKING_INTERP): I am leaving tomorrow and I really have to talk

1Since T is making the turn-taking decisions, the analysis is performed from her perspective.

59

Chapter 3. Turn-taking phenomena taxonomy

T_REF_IMPL T_REF_RAW T_REF_INTERP T_MOVE

H_NONE FLOOR_TAKING_IMPL FLOOR_TAKING_RAW FLOOR_TAKING_INTERP INIT_DIALOGUE

H_FAIL FAIL_IMPL FAIL_RAW FAIL_INTERP FAIL_MOVE

H_INCOHERENCE INCOHERENCE_IMPL INCOHERENCE_RAW INCOHERENCE_INTERP INCOHERENCE_MOVE

H_INCOMPLETE BACKCHANNEL FEEDBACK_RAW FEEDBACK_INTERP BARGE_IN_CHANGE

H_SUFFICIENT REF_IMPL REF_RAW REF_INTERP BARGE_IN_RESP

H_COMPLETE REKINDLE_IMPL REKINDLE_RAW REKINDLE_INTERP END_POINT

Table 3.2: Turn-taking phenomena taxonomy. The rows/columns correspond to the levels of infor-
mation added by the floor holder/taker.

to you about the problem with my insurance. On the other hand, she can start speaking
normally (INIT_DIALOGUE).

H_FAIL: H takes the floor for long enough to deliver a message (or at least a chunk
of information) but T does not understand anything. This can be due to noise or to
the fact that the words and expressions are unknown to T (other language, unknown
cultural reference, unknown vocabulary...). T can interrupt H before the end of his
utterance as she estimates that letting him finish it is useless. This can be done implicitly
(FAIL_IMPL) using a facial expression (frowning), a gesture or uttering a sound:

H: Chaque heure passée ici...

T: ...what?

It can also be done by explicitly uttering that H’s utterance is not clear so far (FAIL_-
RAW):

H: <noise> has been <noise> from...

T: ...sorry, I can’t hear you very well! What did you say?

Moreover, T can interrupt H by trying to provide a justification to the fact that
H needs to repeat, reformulate or add complementary information in his sentence
(FAIL_INTERP). For example:

H: Freddy was at the concert and ...

T: ...who is Freddy?

Finally, T can also decide to move the dialogue forward without understanding H’s
utterance (FAIL_MOVE). This situation happens when T thinks that H’s utterance has
little chance to be relevant for her or when she thinks it is time to change the discussion
topic. For instance:

H: <noise> <noise>...

T: Well, I am not sure I understood your point but frankly speaking, I think we
should talk about these details later and focus more on the main problem.

60

3.2. Taxonomy presentation

H_INCOHERENCE: T understands H’s message and detects an incoherence in it, or
between that message and the dialogue context. H can make a mistake like I went swim-
ming from 10 am until 9 am, or, First, go to Los Angeles, then go south to San Francisco... He
can also be unaware of the dialogue context: You should take metro line A... when metro
line A is closed that day. Again, this can be done implicitly (INCOHERENCE_IMPL)
by adopting the same behaviours as in the case of H_FAIL, or explicitly (INCOHER-
ENCE_RAW).

H: Investing in risk-free instruments like stocks is one of the ...

T: ...that is nonsense.

T can also explain the reasons she thinks this is not coherent (INCOHERENCE_-
INTERP):

H: I will visit you on Sunday and then ...

T: ...but you are supposed to be traveling by then!

Finally, after an incoherence is detected, instead of waiting for H to correct the mis-
take, T can take the lead and propose another solution (or another topic) that seems
more relevant for her:

H: I think we should call him and...

T: No, we cannot call him because he left his phone here. Do you have his
email address, I am going to write a quick message for him.

H_INCOMPLETE: H’s utterance is still incomplete (and H is still holding the floor)
but all the information given so far is coherent. T can perform a backchannel by nod-
ding her head for example or by saying Aha or Ok for example (BACKCHANNEL).
This gives H a signal that he is being understood and followed, thus encouraging him
to keep on speaking. T can also choose to repeat a part of H’s sentence for confirmation
(FEEDBACK_RAW). If this part is correct, H continues to speak normally (or some-
times explicitly confirms by adding a yes to his sentence), otherwise he declares that
he disagrees with T’s feedback. Here is an illustration of this mechanism taken from
(Khouzaimi et al., 2014b):

H: 01 45

T: 01 45

H: 65 79

T: 67 79

H: No, 65 79

T: Sorry, 65 79

H: 98

T: 98

61

Chapter 3. Turn-taking phenomena taxonomy

H: ...

T: The dictated number is: 01 45 65 79 98. Is that correct?

H: Yes

Another kind of feedback is by adding some related information to H’s incomplete
utterance (FEEDBACK_INTERP), for example:

H: I went to see the football game yesterday...

T: ...yeah, disappointing

H: ...with a friend, but we did not stay until the end.

Also, an element in H’s partial utterance can make T react immediately and change
the conversation topic (BARGE_IN_CHANGE):

H: We went to this new restaurant down the street and...

T: Oh yeah. I have heard about it. Is it true that they make the best tapas in
town.

H_SUFFICIENT: H has not finished talking, yet, all the information that T needs to
answer has been conveyed. If H is listing a few options, T can perform a gesture mean-
ing that she is interested in the last option uttered (REF_IMPL). She can also do it ex-
plicitly (REF_RAW) (see (El Asri et al., 2014)):

H: Maybe we can schedule an appointment on Monday afternoon?...Tuesday
morning?...Wednesday afternoon?...

T: Ok. Fine.

T can also add comments related to her choice, once selecting an option (REF_-
INTERP):

H: We have apple juice...tomato juice...

T: Oh Yeah! That is my favorite, plus, my doctor advised me to have some
every day.

In the case of goal-oriented dialogues, H keeps talking even though he conveyed
all the necessary information for T to formulate an answer. T can choose to interrupt
him (BARGE_IN_RESP) thus making the dialogue shorter (this can be viewed as a rude
move in some cases):

H: I want to book a six-person table tomorrow at 6 please, I hope it is possible
since I have ...

T: Sure, no problem. Can I have your name please?

62

3.3. Discussion

H_COMPLETE: H has finished his utterance. If T thinks that some more informa-
tion needs to be provided, she can perform a gesture or adopt a facial expression to
communicate that (REKINDLE_IMPL), by explicitly warning him about the problem
(REKINDLE_RAW) by saying So? Please tell me more. or by being more specific about
the missing piece of information (REKINDLE_INTERP): Ok, and what is the destination
of the flight?. If all the necessary information has been provided by H, T can provide
new information to make the dialogue progress (END_POINT). The latter is the most
intuitive TTP that people have in mind when trying to model turn-taking.

H: How many friends of yours are coming with us tomorrow?

T: Two, hopefully.

3.3 Discussion

This taxonomy is aimed to clarify the notion of turn-taking, hence making it easier
to analyse such behaviours in the context of vocal dialogue systems. In human-human
conversation, this translates into a rich set of behaviours that are depicted and classified
given two criteria. Compared to existing classifications of turn-taking behaviours, the
focus is on the semantic content of H’s and T’s utterances (and other cues like gestures
and facial expressions) as well as the reasons that pushed T to take the floor given this
information.

As far as replicating TTPs in human-machine interactions is concerned, a big part of
research in incremental dialogue systems and turn-taking optimisation has mainly fo-
cused on endpoint detection (Raux and Eskenazi, 2008) and smooth turn-taking. There-
fore, their main objective is to replicate the phenomenon labeled here as BARGE_IN_RESP.
Some other studies focus on backchanneling and feedback, often neglecting the seman-
tic part of the dialogue participants utterances and focusing exclusively on prosody and
acoustic features (Baumann, 2008; Jonsdottir et al., 2008).

Beyond the fact that the taxonomy provided here is aimed to provide a more ex-
haustive list than existing classifications, it is also a tool to analyse the similarities and
differences between the TTP. The identified TTP can be classified in five categories ac-
cording to the type of situation in which they apply (referenced by different colors in
Table 3.2):

1. Dialogue initialisation (grey)

2. Negative feedback (red)

3. Positive feedback (blue)

4. Reference (yellow)

5. Ordered complete dialogue acts (green)

63

Chapter 3. Turn-taking phenomena taxonomy

In the following, each category is discussed separately. Before starting the analysis,
let us briefly recall the four different levels of analysis used here (see Chapter 1 for a
more complete review):

1. Phonetic level: The dialogue acts are considered as a sequence of sounds. This is
what a Voice Activity Detection (VAD) module would detect.

2. Illocutionary level: The message that can be extracted from this sequence of
sound is the focus here.

3. Perlocutionary level: Refers to the effect that the dialogue act is supposed to have
on the listener.

4. Reason behind the dialogue act: The reason that pushed T to perform this dia-
logue act (this notion have been added here to the traditional dimensions in the
philosophy of language, its relevance will be demonstrated during the following
analysis).

The following analysis is synthesised in Table 3.3, 3.4 and 3.5.

3.3.1 Dialogue initialisation

Four TTPs constitute this category: FLOOR_TAKING_IMPL, FLOOR_TAKING_RAW,
FLOOR_TAKING_INTERP and INIT_DIALOGUE. They should be distinguished from
REKINDLE TTPs as they take place at the very beginning of the dialogue or when
the dialogue participants stopped to interact for a long while (so that it is legitimate to
consider that they are engaging in a new interaction). Viewed as phonetic dialogue acts,
FLOOR_TAKING_IMPL involves implicit gestures and short sounds whereas FLOOR_-
TAKING_RAW involves longer sentences. In the case of FLOOR_TAKING_INTERP
and DIALOGUE_INIT, utterances are even longer in general. However, in some cases,
it is possible to inject new information in very short sentences, therefore the length of
the sentence cannot be used as a criterion to distinguish between these TTPs, except
between FLOOR_TAKING_IMPL and the rest. As an illustration, imagine that you ob-
serve people interacting using a language that is unknown to you. Imagine, that they
are silent and suddenly one of them utters a short sound. In that case, it is not obvious
whether he just called his interlocutor’s name or whether he actually uttered some new
piece of information.

Considering the illocutionary level, FLOOR_TAKING_IMPL and FLOOR_TAKING-
_ RAW introduce no new information apart from the fact that T wants to take the floor
(however, they are different at the phonetic level). FLOOR_TAKING_INTERP, on the
other hand, adds new information but which is not relevant to the main topic of the
conversation unlike INIT_DIALOGUE. As a consequence, viewed as a perlocutionary
act, INIT_DIALOGUE plays a double role: making H aware that T is starting an inter-
action (shared with FLOOR_TAKING_IMPL) and adding new information at the same
time. Finally, the reason why H performs FLOOR_TAKING_IMPL is the desire to start
a new interaction. INIT_DIALOGUE is also performed for the same reason but in ad-

64

3.3. Discussion

dition it is also aimed to announce the conversation subject and/or to make H aware of
some new piece of information.

3.3.2 Negative feedback

Negative feedback is communicated through one of the six following phenomena: FAIL-
_IMPL, FAIL_RAW, FAIL_INTERP, INCOHERENCE_IMPL, INCOHERENCE_RAW and
INCOHERENCE_INTERP. They all suggest that both participants have to take a step
back in order to clarify or to correct something in the dialogue. From a phonetic point
of view, as in 3.3.1, there is no rigourous distinction between these TTPs (unless the
implicit ones are only gestures or facial expressions), even though the implicit ones are
generally shorter than the explicit ones, which in turn are generally shorter than the
interpreted ones.

It is interesting to notice that, viewed as a phonetic and an illocutionary dialogue
act, FAIL_IMPL and INCOHERENCE_IMPL are the same or at least extremely hard to
distinguish. This is also true for FAIL_INTERP and INCOHERENCE_INTERP. These
dialogue acts translate into exactly the same signal sent by T, and only the dialogue
context makes it possible to separate them. At the perlocutionary level, they are quite
similar as they are both making H stop and take a step back in the dialogue. How-
ever, they are different as in the case of FAIL TTPs, where the goal is to make H repeat
the same sentence again (or rephrase it while keeping the same meaning), whereas in
the case of INCOHERENCE TTPs, T wants H to change his sentence and its meaning
because it is problematic.

Actually, the strong difference between FAIL and INCOHERENCE TTPs comes
from the fourth level that has been added to the analysis: the motivation behind be-
having as such. These kind of differences is what motivated adding this dimension
of analysis. As said earlier, the behaviour can be identical between the two categories
(frowning, or saying What? for example), but the core difference between them comes
from the fact that what pushes T to perform a FAIL TTP is the fact that she does not
understand what has been said by H so far, and she does not want to lose track of the
conversation, whereas in the case of an INCOHERENCE, she feels the need to notify a
problem.

3.3.3 Positive feedback

BACKCHANNEL, FEEDBACK_RAW, FEEDBACK_INTERP and REKINDLE are aimed
to give H a positive feedback in the sense that, unlike negative feedback, he is en-
couraged to keep the floor and to keep injecting new information. BACKCHANNEL
and REKINDLE are generally shorter from a phonetic point of view (they can be also
be gestures) but they are different as BACKCHANNEL involves an overlap whereas
REKINDLE is performed after H releases the floor. FEEDBACK_RAW and FEED-
BACK_INTERP are usually longer but there is no difference between them at this level
of analysis.

65

Chapter 3. Turn-taking phenomena taxonomy

At the illocutionary level, BACKCHANNEL, FEEDBACK_RAW and REKINDLE
are all close to the dialogue act I understand what you said so far, please continue (with a
few subtle differences, though). On the other hand, FEEDBACK_INTERP is richer as
new information is injected. At the perlocutionary level, T wants to have a double effect
on H:

1. Reassure him that his message has been understood so far.

2. Encouraging him to go on and add more information.

Finally, when considering the reasons that pushed T to perform these TTPs, REKIN-
DLE_IMPL, REKINDLE_RAW and REKINDLE_INTERP are different since T is sur-
prised that H’s utterance has already stopped. As a consequence, she feels the urge to
ask for more. The same distinction between IMPL, RAW and INTERP as in previous
TTPs applies here.

3.3.4 Reference

REF_IMPL, REF_RAW and REF_INTERP are the TTPs that constitute this group. The
phonetic analysis does not provide interesting insights apart from the fact that REF_IMPL
can be a gesture or a shorter speech act than REF_RAW and REF_INTERP. This category
is interesting from an illocutionary point of view as the message that T tries to send is
not present in her utterance but in H’s one.

From a perlocutionary perspective, these TTPs are aimed to make H stop and un-
derstand T’s answer from his own sentence. Finally, what pushes T to act this way is to
avoid repetition and be more efficient.

3.3.5 Ordered dialogue acts

In this last section, FAIL_MOVE, INCOHERENCE_MOVE, BARGE_IN_CHANGE,
BARGE_IN_RESP and END_POINT are discussed. The simplest way of viewing dia-
logue is by adopting the walkie-talkie paradigm. Time is shared between participants in
a sequential way where each one of them takes the floor and then releases it for the other
to speak. As described previously, this corresponds to the END_POINT phenomenon.
At the phonetic level, it is characterised by the absence of overlap (or very small over-
laps) and even a gap most of the time. On the other hand, no gaps are involved in
FAIL_MOVE, INCOHERENCE_MOVE, BARGE_IN_CHANGE and BARGE_IN_RESP
and overlaps are frequently observed.

From the illocutionary and perlocutionary point of view, FAIL_MOVE and INCO-
HERENCE_MOVE, BARGE_IN_CHANGE on the one hand and BARGE_IN_RESP and
END_POINT on the other hand form two groups. In the first one, while interrupting H,
T suggests to consider a new idea or a new topic therefore making H shift its attention
towards it. In the second group, the same conversation topic is developed. The phe-
nomena of the first group can be distinguished following the illocutionary dimension

66

3.4. Turn-taking phenomena in dialogue systems

since in the case of FAIL_MOVE, a misunderstanding is communicated whereas in IN-
COHERENCE_MOVE, T communicates that H’s utterance is problematic and finally,
none of these two problems is communicated during a BARGE_IN_CHANGE. As far
as the second TTP group is concerned, there is no difference between its two composing
phenomena at the illocutionary level, however, from the perlocutionary point of view,
T tries to inject new information in both cases but BARGE_IN_RESP comes with the ad-
ditional intent of making H stop talking. T is pushed to act as such whenever she thinks
that she has enough information to start uttering her next dialogue act. Therefore, the
motivation behind such a behaviour is to increase efficiency by suppressing an unnec-
essary part of H’s utterance hence gaining time. However, in some situations, barge-in
cannot be performed either because of real constraints (a real walkie-talkie conversation
for example) or because of social codes (politeness, timing allowed during an official
meeting or a hearing, etc.).

3.3.6 Synthesis

In Tables 3.3, 3.4 and 3.4, the previous analysis is synthesised in the form of a table. A
phonetic profile is associated with each phenomenon (it is not accurate nor it is always
respected, it is only aimed to give a general idea about how the TTP takes place in
time between H and T), as well as a description of the illocutionary and perlocutionary
levels. The elements motivating each phenomenon also appear in the table (x and y are
placeholders that are used to refer to the content of the dialogue acts).

3.4 Turn-taking phenomena in dialogue systems

In this section, the TTP that exist in traditional dialogue systems are first identified.
Incremental dialogue systems can extend this list to the other TTP in the taxonomy,
however, some of them are very complex to execute and some are unlikely to improve
the dialogue efficiency. The objective of this section is to discuss each of the previous
TTP in order to determine which of them are worth implementing in an incremental
dialogue system.

INIT_DIALOGUE is a TTP that is involved in every dialogue system, including
traditional ones. FLOOR_TAKING TTPs are of limited interest when it comes to task-
oriented dialogue, therefore, they are not implemented in task-oriented dialogue sys-
tems. There are two ways of initialising the dialogue, the user initiative one (the user
starts speaking first like this is the case for Siri for instance) and the system initia-
tive way (the system delivers an initial prompt, when calling an IVR for example).
END_POINT is also necessary for any kind of dialogue, however, the way the dia-
logue participants exchange turns is not always the same given the situation at hand.
Humans are very good at detecting end of utterance clues beforehand, making them
achieve smooth turn-taking. Traditional dialogue systems, on the other hand, rely on
long enough silences as markers of end of turn. A research thread is dedicated to study-
ing methods of reducing these silences by considering different clues (prosodic, lexical

67

Chapter 3. Turn-taking phenomena taxonomy

TTP Phonetic act Illocutionary act Perlocutionary act Motivations

FLOOR_TAKING_IMPL I need your • Shift H’s attention • Desire to start
full attention towards T a conversation

FLOOR_TAKING_RAW I need your • Shift H’s attention • Desire to start
full attention towards T a conversation

FLOOR_TAKING_INTERP I need your • Shift H’s attention • Desire to start
full attention towards T a conversation
because of x • More efficiency

by providing
a justification

DIALOGUE_INIT I start this • Shift H’s attention • Desire to start
conversation and I towards T a conversation
inform you that x • Make H aware about x

of the dialogue
topic (x)

FAIL_IMPL I don’t understand • Make H stop • Fix desynchro-
what you are • Make H repeat nisation
talking about or reformulate

FAIL_RAW I don’t understand • Make H stop • Fix desynchro-
what you are • Make H repeat nisation
talking about or reformulate

FAIL_INTERP I don’t understand • Make H stop • Fix desynchro-
what you are • Make H repeat nisation
talking about or reformulate
because of x • Making H aware • More efficiency by

of what is providing more
preventing T precision about

from understanding the problem

FAIL_MOVE I don’t understand • Make H stop • Fix desynchro-
what you are • Shift H’s focus nisation
talking about, conversation

consider x towards x • Moving the
instead conversation

forward

INCOHERENCE_IMPL What you just said • Make H stop • Fix desynchro-
is problematic • Make H reconsider nisation

what he
just said

INCOHERENCE_RAW What you just said • Make H stop • Fix desynchro-
is problematic • Make H reconsider nisation

what he
just said

Table 3.3: Taxonomy labels (1/3)

68

3.4. Turn-taking phenomena in dialogue systems

TTP Phonetic act Illocutionary act Perlocutionary act Motivations

INCOHERENCE_INTERP What you just said • Make H stop • Fix desynchro-
is problematic • Make H reconsider nisation
because of x what he • More efficiency by

just said providing more
• Making H aware precision about

of the problem the problem
in his utterance

INCOHERENCE_MOVE What you just said • Make H stop • Fix desynchro-
is problematic • Make H reconsider nisation
because of x, what he • More efficiency by

consider y just said providing more
instead • Making H aware precision about

of the problem the problem
in his utterance • Moving the

• Shift H’s focus conversation
towards y forward

BACKCHANNEL I understand (and • Make H continue • More information
sometimes: I agree) from H

FEEDBACK_RAW I understood that • Make H continue • More information
you said x • Make H correct from H

in case of a • Desire to confirm
misunderstanding that H’s utterance

or not has been well
understood

FEEDBACK_INTERP I understood that • Make H continue • More information
you said x • Make H correct from H

that is related in case of a • Desire to confirm
to y misunderstanding that H’s utterance

or not has been well
understood

• Stronger confirmation
by adding related

information y

BARGE_IN_CHANGE I understood that • Shift H’s focus • More information
you said x, towards x about x

tell me more
about it

REF_IMPL Yes, x • Make H stop • Selecting an option
and understand • Less effort as x
T is referring to has already been
the last element uttered by H

he uttered (x)

Table 3.4: Taxonomy labels (2/3)

69

Chapter 3. Turn-taking phenomena taxonomy

TTP Phonetic act Illocutionary act Perlocutionary act Motivations

REF_RAW Yes, x • Make H stop • Selecting an option
and understand • Less effort as x
T is referring to has already been
the last element uttered by H

he uttered (x) • Desire to confirm
• Make H correct that the last option

in case of a has been well
misunderstanding understood

REF_INTERP Yes, x that • Make H stop • Selecting an option
is related to y and understand • Less effort as x

T is referring to has already been
the last element uttered by H

he uttered (x) • Desire to confirm
• Make H correct that the last option

in case of a has been well
misunderstanding understood

• Stronger confirmation
by adding related

information y

BARGE_IN_RESP x • Make H aware • Desire to move
of x the dialogue

forward
• More efficiency
because enough
information has

been provided before
the end of the

utterance

REKINDLE_IMPL The information you • Make H resume • Fix desynchronisation
gave is not

enough, please
provide more
information

REKINDLE_RAW The information you • Make H resume • Fix desynchronisation
gave is not

enough, please
provide more
information

REKINDLE_INTERP The information you • Make H provide • Complete
gave is not information x understanding

enough, please of H’s
provide utterance

information x

END_POINT x • Make H aware • Desire to move
of x the dialogue

forward

Table 3.5: Taxonomy labels (3/3)

70

3.4. Turn-taking phenomena in dialogue systems

and semantic) aiming for smoother turn exchange (Raux and Eskenazi, 2008; Gravano
and Hirschberg, 2011). However, even though they have been under study for many
years, there is still room for improvement. In the rest of this section, the remaining
TTPs are discussed from an implementation point of view. Our goal is to come up
with a list of TTPs that are the most likely to improve task-oriented dialogue. Similarly,
the REKINDLE TTPs correspond to dialogue management strategies that can be imple-
mented in any traditional dialogue system and as a consequence, it will not be consid-
ered here. Moreover, since this thesis focuses on task oriented dialogue, FAIL_MOVE,
INCOHERENCE_MOVE and BARGE_IN_CHANGE are not discussed neither since
they are aimed to change the discussion topic.

Before leading this discussion, it is important to notice that each TTP has two sym-
metric versions when it comes to human-machine dialogue: the one where H is the user
and T is the machine and the opposite case. Here, the goal is to study system decisions
therefore only one side is studied (even though BARGE_IN_RESP is implemented from
both sides). In order for both cases to be implemented, the incremental dialogue system
at hand should always be listening to the user, even though it has the floor (hence being
able to be interrupted). As a technical side note, current incremental dialogue systems
are used with a headphone for that reason: as the system keeps listening all the time,
it is a convenient way to prevent it from hearing itself while speaking (considering its
own sentence as a user input). In order to make them useful outside of labs, in more
realistic situations, it is necessary to build algorithms that suppress the TTS result from
the ASR input before feeding it to the latter (which raises a new challenge as it must
also be done incrementally). Moreover, in this thesis, the focus is on the vocal modality.
Therefore, no TTP based on gestures is considered for implementation.

Implementing a mechanism that mimics the FAIL TTPs is an interesting idea to ex-
plore. Users frequently use off-domain words and expressions (Ghigi et al., 2014) and
they are also often misunderstood by the ASR. As a consequence, making the system
barge-in when it does not understand the user’s partial utterance might have a positive
impact on the dialogue efficiency. It might be less tiresome for the user as she wouldn’t
have to repeat her whole sentence several times. Moreover, this reduces the dialogue
duration. FAIL_RAW is not easy to replicate by a machine and it is most of the time per-
formed with gestures and facial expressions at the same time. FAIL_INTERP is not easy
to implement either as giving the accurate reason why it did not manage to understand
the user’s utterance so far is not an obvious task. Implementing FAIL_RAW, on the
other hand, is much more realistic: when the system has no clue about the user’s utter-
ance after a long enough period of time, it simply declares that fact in a straightforward
fashion.

In some cases, the user is likely to utter a sentence that is not coherent for the system
or that is in contradiction with some data accessible by the latter (like when trying to
buy a movie ticket when all the seats are already sold). By definition, the INCOHER-
ENCE TTPs can help manage this case in a more efficient way. For the same reasons
as FAIL_RAW, INCOHERENCE_RAW is not easy to implement. Unlike FAIL TTPs,
it is not natural and more difficult to declare an incoherence without explaining the
underlying reasons. Therefore, INCOHERENCE_INTERP is more interesting TTP to

71

Chapter 3. Turn-taking phenomena taxonomy

implement.

BACKCHANNEL has already been implemented in a few incremental dialogue sys-
tems (Meena et al., 2013; Hastie et al., 2013) with the aim of increasing its grounding
capacities and its naturalness. This thesis focuses more on the efficiency aspect of in-
cremental dialogue than the human-likeness side of the problem. These are somehow
correlated, but as this is not a TTP that directly makes the dialogue more efficient (by
preventing and fixing errors), it will not be implemented. Moreover, as the first step of
the approach followed here is to use simulated dialogues, it is hard to evaluate this TTP
in such conditions. On the contrary, FEEDBACK_RAW provides a concrete opportunity
to correct errors. When T tries to repeat a part of H’s utterance and she succeeds, this
gives H a proof that T heard his sentence (even though, this does not necessarily mean
that T has correctly understood the message). If she fails, it is also interesting as H can
repeat or reformulate his utterance, hence avoiding a desynchronisation. This is clearly
interesting to be implemented in a dialogue system, yet, it can be very challenging. The
involved turn-taking mechanism is difficult to manage in the sense that the user should
not interpret the system’s intervention as a barge-in hence being interrupted. Moreover,
the system should be able to recognise whether the user ignored the feedback or tried
to correct its content. Therefore, this TTP has been implemented in simulation only.
Finally, FEEDBACK_INTERP requires high natural language language processing ca-
pabilities and access to an important knowledge base. Moreover, it is more likely to
complicate the dialogue and lead to errors compared to FEEDBACK_RAW. Therefore,
it has not been implemented here.

In (El Asri et al., 2014), REF_RAW has been implemented from the user’s point of
view: the system enumerates a list of alternatives and the user barges-in to select one of
them. This has been shown to significantly increase the dialogue quality (El Asri et al.,
2014). However, implementing it requires changing the dialogue management strategy
whereas, as discussed in Chapter 4, this thesis focuses on the impact of adding a turn-
taking layer on top of pre-existing dialogue management strategies. As a consequence,
REF_IMPL, REF_RAW and REF_INTERP are discarded in our study.

Finally, BARGE_IN_RESP is clearly worth implementing from both sides. From the
system’s perspective, taking the floor as soon as it has enough information to do so can
directly increase dialogue efficiency by reducing dialogue duration but also indirectly
by preventing the user from adding new misleading information (Ghigi et al., 2014).
From the user’s point of view, being able to take the floor before the end of the system’s
utterance can make the dialogue less tiresome. This is especially true for users that are
familiar with the system and as a consequence, they are able to predict the rest of the
systems dialogue acts ahead of time.

To summarise, four TTP requiring incremental dialogue processing have been se-
lected for rule-based3 implementation (one of them from both sides: system and user):

• FAIL_RAW (System side4)

3Interestingly, the reinforcement learning based strategy proposed in Chapter 8 leads to similar be-
haviours in an optimised fashion.

4System side means that the turn-taking decision is made by the system. In other words, T is the system.

72

3.4. Turn-taking phenomena in dialogue systems

• INCOHERENCE_INTEPR (System side)

• FEEDBACK_RAW (System side)

• BARGE_IN_RESP (System and user sides)

In Chapter 7, the details of the implementation, the rules chosen as well as a com-
parative study in a simulated environment are provided.

User side designates the opposite situation.

73

Chapter 3. Turn-taking phenomena taxonomy

74

Chapter 4

Turn-taking decision module: the
Scheduler

4.1 Description

4.1.1 Overview

A new incremental dialogue system architecture is introduced in this chapter. The five
modules forming the dialogue chain (see Chapter 1) are split in two groups: those form-
ing the client and those constituting the service. The ASR and the TTS are necessarily
included in the client and the DM in the service. The NLU and the NLG can fit in both
categories. This terminology is borrowed from the computer network field (Israel and
Mitchell, 1978) where the client can refer to the user and to the application that inter-
acts directly with the user in order to gather useful data for the interaction at the same
time. Similarly, the server refers to the application that is in charge of handling user’s
requests, as well as the remote machine it is deployed on. In the case of dialogue sys-
tems, both parts can be embedded in the same device and they can also be distributed
across two different machines.

Viewing traditional dialogue systems from this point of view translates into a ping-
pong game, where the client sends a request which is processed by the service, and
the latter sends a response back. The question tackled here is how to break this rigid
mechanism in order to make the system able to process the user’s speech incrementally.
This chapter shows how, by starting from this new view of dialogue systems instead
of the sequential one (dialogue chain), an incremental dialogue system can be derived
from a traditional one at minimal cost. In the resulting architecture, the turn-taking
decision maker is separated from the DM allowing an autonomous control of the nature
and timing of the incremental behaviour.

As illustrated in Fig. 4.1, a new interface is inserted between the client and the
service (Khouzaimi et al., 2014b). This new module is called the Scheduler (this denom-
ination is borrowed from (Laroche, 2010)). It can be deployed on the same machine

75

Chapter 4. Turn-taking decision module: the Scheduler

Figure 4.1: The Scheduler: an interface between the client and the service

as the client, as the service or in a dedicated server. The objective is to make the set
{Scheduler+Service} behave like an incremental dialogue system from the client’s point
of view, without modifying the initial functioning of the service. Therefore, this pro-
vides a framework that can transform any dialogue system in its incremental version
by adding a new layer.

The most classic approach of designing incremental dialogue systems consists in
transforming each module (or only some of them depending on the situation at hand)
into its incremental verison (Schlangen and Skantze, 2011). The alternative approach
presented here has the theoretical advantage of clearly separating turn-taking manage-
ment from the rest. Turn-taking strategies are conceived and formalised independently
from the task at hand: they can be reused as they are for different tasks. They can
also be manipulated separately and combined in order to form new complex strategies
given specific rules. As it will be seen along this thesis, turn-taking strategies will be
implemented exclusively in the Scheduler (the rest of the system remaining the same).
Our ultimate goal is to make this module learn optimal turn-taking behaviours by itself.
Nevertheless, this approach is not fully incremental compared to the one described in
(Schlangen and Skantze, 2011) as it will be shown later, which may lead to lower per-
formances in case the DM involves heavy computational operations.

4.1.2 Time sharing

In traditional dialogue systems, time is shared in an ordered and clear manner. The
dialogue is a simple sequence of turns T1, T2... a turn being the time interval in which
a user’s utterance followed by the system’s corresponding response takes place, or the
opposite (depending whether the system adopts a user initiative or a system initiative
strategy at each turn). For illustration and to simplify the notation, the system used
here is supposed to belong to the first category, therefore, each turn is divided into two
smaller time intervals, the user turn Tk,U and the system turn Tk,S: Tk = Tk,U ∪ Tk,S (the
union of the time intervals corresponding to consecutive user and system turns, Figure
4.2).

In this chapter, a few conditions are defined to precisely describe time allocation
between the system and the user. The activation time of a condition refers to the exact
moment when it goes from false to true. EndTurnCond is the condition that ends a user
turn, it is generally assimilated to a long silence (Raux and Eskenazi, 2008; Wlodarczak
and Wagner, 2013).

76

4.1. Description

Figure 4.2: Time sharing in traditional settings

Figure 4.3: Time sharing in incremental settings

In incremental settings, this time sharing formalism does not hold anymore and a
new condition should be defined: EndMicroTurnCond (with EndTurnCond ⇒ EndMicro-
TurnCond). The time interval separating two activation times of EndMicroTurnCond is
called a micro-turn. As a consequence, the turn Tk,U can be divided into nk,U micro-turns

µTk,U
i : Tk,U =

nk,U
�

i=1

µTk,U
i . The pth sub-turn of turn Tk,U is defined as Tk,U

p =
p
�

i=1

µTk,U
i (Fig-

ure 4.3).

The request that the user makes during Tk,U is referred to as Reqk and the corre-
sponding response is Respk. This architecture does not process incremental units like
in (Schlangen and Skantze, 2011), instead, at each new micro-turn, it will take the whole
information available since the beginning of the turn1 (at the pth micro-turn, all what
the user uttered during Tk,U

p). This partial request is called Reqk
p.

4.1.3 The Scheduler

During the pth micro-turn of the kth user turn, the client sends Reqk
p to the Sched-

uler. The latter has to decide whether to send it to the service or not and the cor-
responding condition is called ServiceReqCond. A good example is ServiceReqCond ←

(Reqk
p �= Reqk

p−1) as sending the same brequest twice is useless. Then, the service pro-

vides the corresponding response Respk
p and the Scheduler stores it. The key idea of

this architecture is that the Scheduler decides whether to retrieve this response to the

1This way of managing incremental dialogue is called restart incremental in (Schlangen and Skantze,
2011).

77

Chapter 4. Turn-taking decision module: the Scheduler

Scheduler ServiceClient

Req(1,1)

Req(1,1)

Req(1,2)

rollback + Req(1,2)

Resp(1,1)

Resp(1,1)

Resp(1.2)

Resp(1,2)

signal_ETC

commit

Resp(1,2)

Req(2,1)

Req(2,1)

Resp(2,1)

Resp(2,1)

Req(2,2)

rollback + Req(2,2)

Resp(2,2)

Resp(2,2)

Req(2,3)

EndMicroTurnCond

EndTurnCond

ServiceReqCond

CommitCond

EndMicroTurnCond

EndMicroTurnCond

EndMicroTurnCond

EndMicroTurnCond

ServiceReqCond

ServiceReqCond

ServiceReqCond

Figure 4.4: Incremental request processing with the Scheduler: the conditions on the left side trigger
the Client to send partial requests

Turn User sub-turn Input Real context Simulation context

T1 T1,U
1 Req1

1 ctxt(T0) ctxt(T0 + T1,U
1)

T1,U
2 Req1

2 ctxt(T0) ctxt(T0 + T1,U
2)

... ... ctxt(T0) ...

T1,U
n1,U Req1

n1,U ctxt(T0) ctxt(T0 + T1,U
n1,U)

COMMIT: ctxt(T1) = ctxt(T0 + T1,U
n1,U)

T2 T2,U
1 Req2

1 ctxt(T1) ctxt(T1 + T2,U
1)

... ... ctxt(T1) ...

Table 4.1: A double context: the real context and the simulation context.

78

4.2. Illustration

client (making it take the floor through the TTS) or not (waiting for more information
to come from the client). This decision can also be forced by the client when sending an
end of turn signal signal_ETC, like a long enough silence for instance. It is important to
note that the Scheduler is able to decide when to take the floor without waiting for sig-
nal_ETC, the corresponding condition is called CommitCond. The Scheduler functioning
over time is illustrated in Fig. 4.4 (dashed arrows represent the Scheduler’s response
to the client since they may or may not take place, given the Scheduler’s decision to
commit or not).

Incremental dialogue systems process growing utterances, and new coming infor-
mation can complete or even modify the meaning of the current sentence. Therefore,
they must be able to revoke the current hypothesis and create a new one when neces-
sary (Schlangen and Skantze, 2011). Here, most of the requests that are made to the
service are only aimed at seeing what would be its response for certain partial utter-
ances and they are discarded right after. However, they might modify the dialogue
state in the service which is a side effect to be avoided. As a consequence, two dialogue
contexts are maintained:

• The real context: The dialogue context as traditionally used in dialogue systems.
Contains the data and the variables that are aimed to last and be used in the rest
of the dialogue.

• The simulated context: A copy of the real context, at the pth micro-turn, Respk
p

could be useful for the dialogue or not. Therefore, only this context is modified at
the first place, the Scheduler decides later whether to keep the changes in the real
context or not.

These dialogue contexts are managed by two actions performed by the Scheduler:

• Commit: The Scheduler commits to a partial request and the corresponding re-
sponse when it decides to deliver the latter to the client, hence taking the floor
immediately and not waiting for any further information. In that case, the simu-
lated context is saved into the real context (thus becoming the new reference).

• Rollback (or cancel): The scheduler cancels the context changes when it decides
to discard the last response obtained from the service and that a new - potentially
more complete - partial request is received from the client (as shown in Figure
4.4). In that case, the real context is copied into the simulated one, rollbacking it
to its original state.

The way the real and the simulated context are managed through the commit and
the cancel actions is illustrated in Table 4.1.

4.2 Illustration

As a proof of concept, this section describes two instanciations of the previous abstract
architecture, both in the case of a textual and a spoken dialogue system.

79

Chapter 4. Turn-taking decision module: the Scheduler

4.2.1 A textual dialogue system: CFAsT

Figure 4.5: The incremental version of the CFAsT project. The traditional view is represented on
the left and the new incremental one is depicted on the left.

CFAsT stands for Content Finder AssistanT. This application, developed at Orange
Labs (Laroche, 2014, 2015), is aimed at automatically generating virtual assistants that
help the user efficiently find specific content in databases (given as input). At each
dialogue turn, the user provides some new information about his target and by using
a keyword spotting algorithm, the system keeps narrowing the set of possibilites. The
interface is made of a text box with a validate button. The dialogue service is deployed
as a web service on a servlet container and the client is a javascript web page loaded on
the user’s browser.

In order to make it incremental, a Scheduler has been deployed as a servlet on the
same container as the service and the javascript requests have been re-targeted towards
it (the service is no longer directly visible by the client). Moreover, as discussed earlier,
the dialogue context in the service have been duplicated. In this setup, EndTurnCond
corresponds to the event of clicking on validate (or hitting the carriage key). A word-
based micro-turn configuration has been implemented, therefore, EndMicroTurnCond is
the action of hitting the space bar (when hit several consecutive times, only the first
time is taken into account). Each request being different from the previous one, they
should all be sent to the service, thus, ServiceReqCond is true all the time.

80

4.2. Illustration

This implementation is aimed to provide a first proof of concept of the methodol-
ogy introduced here. However, signal_ETC is equivalent to CommitCond which in turn
is the same as EndTurnCond (the Scheduler never takes commit decisions by itself). The
resulting behaviour presents a noteworthy similarity with autocompletion in search en-
gines. The most staightforward way this mechanism is implemented is by continuously
proposing several hypotheses regarding what would the complete request be, regard-
ing the partial request typed so far. This does not require any request to the search
engine itself (which can be viewed as the Service in the architecture introduced here).
Another implementation (which lately started to be deployed) is by continuously up-
dating the search result which is quite similar to what the transformed CFAsT achieves.
By doing so, the system is more interactive and engaging for the user. It is also more
efficient since the user does not have to determine when to stop typing the request since
she can stop as soon as she spots interesting results.

4.2.2 A spoken dialogue system: Dictanum

Another proof of concept of the proposed architecture has been implemented using
speech. Inspired by (Skantze and Schlangen, 2009), it enables the user to perform
number dictation. This task can be encountered in several kinds of applicative do-
mains: phone numbers, credit cards,...Analysing human conversations in such situa-
tions shows that the number at hand is often broken into small pieces (a few digits
each) and a confirmation follows each one of them. Therefore, the number is incremen-
tally grounded so that in the case of a misunderstanding, only the last dictated part has
to be repeated. Traditional dialogue systems behave differently as they ask the user to
enter the whole number at once. This translates into long and tedious dialogues as only
one minor mistake is enough to make the user repeat the number from the beginning,
often for several times. For example:

SYSTEM: Welcome to the Dictanum service. Please dictate your number.

USER: 01 45 65 79 98.

SYSTEM: The dictated number is 01 45 67 79 98. Is that correct?

USER: No.

SYSTEM: Sorry. Let us try again. Please dictate your number.

USER: 01 45 65 79 98.

SYSTEM: The dictated number is 01 47 65 79 98. Is that correct?

USER: No.

SYSTEM: Sorry. Let us try again. Please dictate your number.
[...] (given that the user is patient enough not to hang up)

SYSTEM: The dictated number is 01 45 65 79 98. Is that correct?

USER: Yes.

81

Chapter 4. Turn-taking decision module: the Scheduler

SYSTEM: Thank you for using Dictanum. Bye.

With incremental dialogue processing, it is possible to design a strategy that is closer
to the human behaviour. To show that, a number dictation dialogue system called Dic-
tanum (described in (Khouzaimi et al., 2014a)) has been implemented using Disserto.
It performs turn-based dialogue hence asking the user for the whole number at once.
Here, the client is a web page displayed on the browser that uses Google API2 for both
the ASR and the TTS tasks and the service is a servlet deployed on a servlet container.
Solutions like Kaldi (Povey et al., 2011) and their adaptation to incremental processing
(Plátek and Jurčíček, 2014) offer more flexibility and can be better tuned according to
the task at hand, nevertheless, this requires building one’s own accoustic and language
models. Since ASR is not the main focus here, Google API has been used as a good off-
the-shelf solution which provides low recognition latencies and low word error rates
across a very large vocabulary.

Afterwards, the approach introduced here has been used to build the incremental
version of the system (like in the case of the CFAsT application, the Scheduler has been
deployed as a servlet on the same container as the service). To do so, two silence du-
ration thresholds have been defined: the short silence threshold δs and the long one ∆s

(δs ≤ ∆s). EndMicroTurnCond is triggered when a short silence is detected and similarly,
EndTurnCond corresponds to long silences. A feedback is delivered to the user in the
case of a short silence (repeating the last 4 digits). If the user ignores the feedback and
keeps dictating his number, the system keeps on adding digits to its list, however, if the
user starts his next utterance with No, the feedback content is deleted from the number.
Here is a dialogue example:

SYSTEM: Welcome to the Dictanum service. Please dictate your number.

USER: 01 45 (short silence)

SYSTEM: 01 45

USER: 65 79 (short silence)

SYSTEM: 67 79

USER: No, 65 79 (long silence)

SYSTEM: Sorry, 65 79

USER: 98 (short silence)

SYSTEM: 98

USER: ... (long silence)

SYSTEM: The dictated number is 01 45 65 79 98. Is that correct?

USER: Yes.

SYSTEM: Thank you for using Dictanum. Bye.

2https://cloud.google.com/speech/

82

4.3. Discussion

It is interesing to notice that if δs = ∆s, the user is likely to dictate his number in
one shot, never waiting for a feedback. Therefore, moving δs between 0 and ∆s creates
a continuum between the traditional and the incremental version.

Dictanum also offers the possibility for the user to interrupt the system during the
final feedback, in order to make local corrections. To do that, this feedback is sent to the
TTS in the following format: The dictated number is 01 <sep> 45 <sep> 65 <sep> 79 <sep>
98. Is that correct?. The latter pronounces the sentence chunk after chunk (chunks are
delimited using the separator <sep>), each chunk lasting for the same number of micro-
turns. This leads to the following kind of strategy (<sp> designates a short pause):

SYSTEM: The dictated number is: 01 <sp> 45 <sp> 67...

USER: No, 65.

SYSTEM: Sorry. The dictated number is 01 <sp> 45 <sp> 65 <sp> 79 <sp> 98. Is
that right?

USER: Yes.

SYSTEM: Thank you for using Dictanum. Bye.

To conclude, this section presents two situations where the architecture introduced
in this chapter have been implemented. They play the role of a proof of concept both for
textual and spoken dialogue systems. In the following, a more theoretical discussion is
led.

4.3 Discussion

4.3.1 Levels of incrementality

It appears that dialogue systems can be classified into four categories given the way
they integrate incremental behaviour. The first category is made of traditional systems
(Laroche et al., 2011). Then comes the second category where traditional systems locally
implements a few incremental behaviours. For instance, in (El Asri et al., 2014), the
system enumerates a list of options and the user selects the one that fits him best by
uttering Yes or Ok for example (REF_RAW in the taxonomy introduced in Chap. 3). The
architecture introduced in this thesis belongs to the third category where incremental
behaviour is obtained based on modules that are innately non-incremental (the service
in our case). Other examples are described in (Selfridge et al., 2012) and (Hastie et al.,
2013). Finally, the fourth category is made of incremental dialogue systems that are
constituted of fully-incremental modules. In (Schlangen and Skantze, 2011), an abstract
model for incremental architectures is presented where all the categories can fit, but
the work that has been pursued by the authors and their research groups later on goes
along with the spirit of this last category.

Categories 2, 3 and 4 embed different features related to incremental behaviour
(summarised in Fig. 4.2):

83

Chapter 4. Turn-taking decision module: the Scheduler

• TTS interruption after input analysis: The user has the ability to interrupt the
system (BARGE_IN_RESP from the user’s side) but also to perform brief feedback
(BACKCHANNEL or FEEDBACK TTP from the user’s side) without interrupting
the system’s sentence. All categories except the first one can easily embed this
feature.

• Link interruption time with TTS: Useful for simulating REF TTP (REF_IMPL,
REF_RAW and REF_INTERP from the user’s side). This has been successfully
implemented in a system that belongs to the second category in (El Asri et al.,
2014). Therefore, it can also be implemented in systems with a higher degree of
incrementality (categories 3 and 4).

• User interruption by the system: As it will be shown in the rest of this thesis,
interrupting the user can improve the dialogue efficiency in some cases (BARGE_-
IN_RESP from the system’s side). To do so, the sytem at hand must offer real
incremental capacities which is the case for categories 3 and 4 only.

• Better reactivity: One of the main advantages of incremental processing is de-
livering responses in a quicker fashion since the processing of the user’s request
starts earlier. Again, real incremental abilities are required which makes it a prop-
erty that is specific to categories 3 and 4 exclusively. This feature is particularly
useful to achieve accurate end point detection (END_POINT from the system’s
side).

• Optimal processing cost: The third category processes the user’s request in a
restart incremental way (sending the whole partial utterance at each new micro-
turn). This is not optimal as it is possible to process it chunk by chunk. Therefore,
this is an advantage that category 4 offers over all the others.

4.3.2 Enhancing a traditional dialogue system’s turn-taking abilities at a low
cost

Adopting the sequential paradigm described in Chapter 1 is a natural way of designing
incremental dialogue systems (Schlangen and Skantze, 2011). The dialogue chain is
kept unchanged, however, a substantial amount of work has to be done in order to
design an incremental version of each one of the modules. The approach introduced
in this chapter makes it possible to build an incremental dialogue system starting from
a traditional one instead of starting from scratch. Therefore, the development cost is
significantly reduced and moreover, the resulting incremental dialogue system benefits
from all the experience and the adjustments embedded in the original dialogue system.
In the following, the differences between the two approaches are reviewed as well as
the elements that are simplified with the new approach and the price one has to pay to
adopt it.

Incremental ASR is a prerequisite for the implementation of a Scheduler-based ar-
chitecture. Therefore, it is not simplified by this approach and an inaccurate, slow or
unstable ASR module still hurts the dialogue quality in the same way. In terms of NLU,

84

4.3. Discussion

two cases have to be distinguished: putting the Scheduler before the NLU or after it.
In the first case, it does not make sense to use an incremental NLU as the Scheduler
proceeds on a restart incremental fashion (sending the whole user’s partial utterance at
each micro-turn). However, in the second case, it is possible to benefit from the advan-
tages of incremental NLU (forming concepts in a really incremental way resulting in a
more efficient processing). In that case, the Scheduler receives a sequence of potentially
unstable sets of concepts.

The core difference between both approaches resides in the DM task. In a full-
incremental architecture, dialogue act and turn-taking decisions are intertwined. The
DM receives the input concepts chunk by chunk, and at each micro-turn, the new in-
formation can be viewed as the continuity of what has been understood so far, or as
a signal driving the DM to revoke the current hypothesis before taking a new action.
In the Scheduler-based approach, as the restart incremental paradigm is adopted, the
revoke mecanism is intrinsicly implemented as it is performed beforehand (the ASR
changing its best hypothesis is a case of revoke).

Incremental generation and synthesis (Baumann and Schlangen, 2013) bring other
challenges that are beyond the scope of this thesis. Nevertheless, the Scheduler-based
architecture could be extended in order to support these features. As discussed in
Chapter 1, since overlaps are generally limited in dialogue, incremental NLG and TTS
are interesting when some other source of information is involved, other than the user’s
speech. In a multi-modal situation for instance, the system can change its mind while it
is uttering a sentence based on some new data like a user’s gesture. Another example is
the case where a database access takes time and it is modified by a third agent while the
system speaks; this could lead to a system utterance like Well...let’s see...it costs 100$...oh,
no sorry, it is even cheaper, 80$ only.... In (Baumann and Schlangen, 2013), the system is
observing a car trajectory and uttering comments as it moves; once a turn is expected,
it starts announcing it but it has to wait until the car actually turns before specifying the
direction (left/right): The car drives along Main Street and then turns <hesitation> right. In
this case, the Scheduler should be given the capability to be triggered not only by new
ASR results, but it should react to new independant DM outputs also.

Features Category 1 Category 2 Category 3 Category 4

TTS interruption after input analysis - + + +
Link interruption time with TTS - + + +
User interruption by the system - - + +

Better reactivity - - + +
Optimal processing cost - - - +

Table 4.2: Available features for dialogue systems given the way they integrate incrementality

In summary, a new architecture has been presented in this chapter. It makes it possi-
ble to easily transform an existing traditional dialogue system into an incremental one.
Also, it comes with the advantage of clearly separating traditional dialogue manage-
ment from turn-taking management. This architecture will be used in the rest of this
thesis with the objective of designing strategies that will be embedded in the Scheduler
in order for it to make optimal turn-taking decisions.

85

Chapter 4. Turn-taking decision module: the Scheduler

86

Chapter 5

Dialogue strategies

This chapter sheds light on the most common way task-oriented dialogue systems ma-
nipulate concepts: slot-filling. Then several strategies that are used to get the right
information from the user are presented and discussed. Finally, based on the TTP tax-
onomy from Chapter 3, an abstract turn-taking strategy is introduced. It will be instan-
ciated later on in the thesis.

5.1 Utterance representation

When interacting with a dialogue system, the user’s utterance can be represented in
different manners. A simple way of encoding the different chunks of information that
it contains is by using a slot representation. For example, if the user says I would like to
buy the book Dracula by Bram Stoker, the NLU can output the following matrix:

ACTION: Buy
OBJECT: Book
TITLE: Dracula

WRITER: Bram Stoker

Each entry is called a slot and it represents a single concept in the utterance. It has
two attributes: the slot name (on the left) and the slot value (on the right). Of course,
depending on the application at hand, this matrix could be different; some slots could
be considered as non relevant hence being discarded, others could be combined and
new slots could be added. Therefore, while designing a dialogue system, a represen-
tation is chosen and one has to stick to it. This representation is widely used when it
comes to dialogue systems design since it is a simple and natural way of representing
information. It is well adapted to most tasks where the dialogue system plays the role
of an interface between a user and a database. The system expects a user’s request with
predefined slots and depending on the latter and the database content, a response is

87

Chapter 5. Dialogue strategies

computed and returned. This is the representation used in this thesis and Section 5.2
defines it more formally.

5.2 Elementary tasks

A task is associated with an objective that the user wants to achieve. For example:

• Checking a bank account

• Scheduling an appointment

• Finding a restaurant nearby

• Booking a hotel room

• Modifying a flight reservation

Some tasks involve retrieving information from a database and others make the sys-
tem modify the outside world (database modification, robot movement...). Moreover,
a task can involve several elementary tasks. An elementary task is defined as an atomic
action performed by the system, after the user has made a request with all the necessary
information. The task of scheduling an appointment could involve several elementary
tasks, for example:

1. Proposing a first time window (refused by the system).

2. Refusing a second time window that is proposed by the system.

3. Proposing a third time window (accepted by the system).

The way a task is organised in elementary tasks might affect the efficiency of its
execution. However, this is very dependent on the task at hand and as a consequence,
it is out of the scope of this thesis. The latter focuses on the way elementary tasks are
handled: the optimisation of elementary tasks using different dialogue strategies.

To complete an elementary task, the system requires information that can be repre-
sented as a slot matrix:

slot1 x1

slot2 x2

... ...
slotn xn

In this framework, a dialogue system is viewed as an automaton that is able to
perform different types of elementary tasks. Hence, a dialogue is a sequence of ele-
mentary tasks: ET1, ..., ETk, More precisely, before performing ETk, the system has
to understand the user’s request Xk = (x1, x2, ...) which is a vector containing the slot
values provided in her utterance (the size of the vector depends on the type of ele-
mentary task). Let Ck be the dialogue context when it is time to perform ETk, then

88

5.3. Slot-filling strategies

ETk = f (Xk, Ck), f being defined in the dialogue system. (Xk, Ck) is commonly referred
to as the dialogue state.

Moreover, a distinction can be made between two kinds of slots:

• Constrained slots: Some user’s inputs are considered valid (but not necessarily
correct) and others are not. If the slot at hand is a date and the user responds
something which is not a date, this response is not valid in which case it is sure
that the slot value is wrong. However, the validity of the response does not guar-
antee its correctness but it is noteworthy that if a generic ASR with an open gram-
mar domain is used, valid responses that are incorrect are quite rare. On the other
hand, if the ASR uses a grammar that is specific to the task at hand, they are more
likely to happen.

• Open slots: Every input from the user can be considered as a valid value. For
example, if the user is asked to utter a message that will be sent to some of his
friends later on, he can utter anything. Therefore, unless the system asks for a
confirmation, it cannot determine whether the user’s input is right or wrong.

The way these slots are communicated depends on the dialogue strategy, the way
the requests are formulated, the noise level and the NLU’s ability to recognise a large
variety of words and expressions. In Section 5.3, three different slot-filling strategies
are introduced and discussed.

5.3 Slot-filling strategies

Depending on the task, the dialogue system and the user, slots can be filled in different
ways in order to complete an elementary task. Three generic strategies are presented
here but before delving into that, the notion of initiative is introduced. Consider the
following dialogue between a customer that has just arrived to a hotel and the recep-
tionist:

CUSTOMER: Hi. I would like to book a room for tonight please.

RECEPTIONIST: Sure. Do you need a parking lot?

CUSTOMER: No. I came here by train.

RECEPTIONIST: All right. Would you like a smoking room?

CUSTOMER: No, I don’t smoke.

RECEPTIONIST: Ok. What about breakfast?

CUSTOMER: Yes, please. I will have it here.

RECEPTIONIST: Great, all set then! Let me get your key...

CUSTOMER: Thanks. When should I check out tomorrow?

RECEPTIONIST: Checkout is before 11:30am.

89

Chapter 5. Dialogue strategies

CUSTOMER: Ok. My train is leaving at 6:00pm, would it be possible to leave my
bag here and get it back by then?

RECEPTIONIST: Absolutely sir. No problem.

This dialogue can be split into three phases. First, the customer starts the conversa-
tion by making a request. It is a result of his own initiative and he is setting the subject
of the conversation. Then the receptionist provides an answer and takes the initiative
right after by starting to ask specific questions. When, all the necessary information for
the reservation is provided, the customer takes the initiative again to get some addi-
tional clarifications.

Such a distinction can also be made in the case of dialogue systems (Ferguson and
Allen, 2007). When using a system initiative strategy, the latter makes requests and asks
questions that the user should respond to in order to move the dialogue forward. Sym-
metrical strategies are called user initiative (the user leads the course of the dialogue).
Finally, strategies that involve both dialogue modes are called mixed initiative strategies.
These three dialogue strategies are presented and discussed in the following.

5.3.1 System initiative strategies

System initiative strategies can be compared to form-filling. The user is asked to fill
several slots in a progressive way. Slot values can be asked for one by one or subset
by subset. However, the one by one case is the most common and the most simple,
therefore, it will be implied when talking about system initiative strategies in the rest
of this thesis.

Formally, consider an elementary task ET that involves n slots: slot1, ..., slotn. Com-
pleting ET using the system initiative strategies consists on a dialogue with n sys-
tem questions (dialogue acts) called ASK(slot1), ..., ASK(slotn) followed by the n cor-
responding answers containing the required slot values x1, ..., xn. However, the way
errors are managed is different whether the slot at hand is open or constrained. First, it
is important to note that in this thesis, the ASR is supposed to run using an open gram-
mar (which means that most of the words in the ASR language can be recognised). So,
in the case of a constrained slot, errors are easier to spot since they generally gener-
ate an invalid slot value (an information that is not of the expected type, e.g. a date
when expecting a time window, a name when expecting a number, etc.). For example,
if the system asks for a date and the user responds May 4th but an ASR error occurs,
then this response is more likely to be understood as some utterance which has noth-
ing to do with a date like Mayflower or Make lower instead of another valid date like
May 5th. Therefore, errors are easy to spot in the case of a constrained slot (assuming
that an open grammar is used for the ASR). On the other hand, as far as open slots are
concerned (small message dictation, event description...), once the user provides an an-
swer, the system has no mean of checking whether an error occured or not (since every
input is valid). As a consequence, after the user provides an open slot slotk, the system
immediately asks for a confirmation CONFIRM(slotk) (relative to that slot only: Did
you say <slot>?). This is not the case for constrained slots and the system moves to the

90

5.3. Slot-filling strategies

next question as soon as a valid answer has been provided (the only confirmation is the
final one, concerning the whole elementary task).

The example below shows a subdialogue corresponding to an elementary task with
three slots, slot1 and slot3 are constrained whereas slot2 is open (Confirmation message
refers to the last confirmation request made by the system once it collected all the nec-
essary slot values, like Ok, so you want to book a non-smoking room for 2 nights starting
from tomorrow or You want to schedule an appointment with John on March 3rd at 2pm. Is that
right? for example):

SYSTEM: ASK(slot1)

USER: <noise>

SYSTEM: Sorry, I don’t understand. ASK(slot1)

USER: x1

SYSTEM: ASK(slot2)

USER: x̃2 (altered version of x2 due to ASR imperfections)

SYSTEM: Sorry. ASK(slot2)

USER: x2

SYSTEM: ASK(slot3)

USER: x3

SYSTEM: Confirmation message

USER: Yes

5.3.2 User initiative strategies

In this thesis, user initiative refers to the following strategy: in order to complete an
elementary task ET (involving n slots slot1, ..., slotn), the user is supposed to provide all
the slot values in a complete utterance. If there are missing slots in his request, he is
asked to repeat (or reformulate) it. The dialogue then looks like this:

SYSTEM: What can I do for you?

USER: x1, <noise>,...,xn

SYSTEM: Sorry, I don’t understand. What can I do for you?

USER: x1, x2,...,xn

SYSTEM: Confirmation message

91

Chapter 5. Dialogue strategies

5.3.3 Mixed initiative strategies

In noisy environments, the user initiative strategy can be very tiring to the user, espe-
cially when the number of slots is important. Another way to deal with incomplete
requests is to switch to the system initiative strategy to gather the missing slots, which
is somehow similar to the strategy described in (Lamel et al., 2000). Suppose that the
elementary task at hand ET involves n = 5 slots: slot1, ..., slot5. A mixed initiative
strategy dialogue looks like the following:

SYSTEM: What can I do for you?

USER: x1, <noise>,x3,<noise>,xn

SYSTEM: ASK(slot2)

USER: x2

SYSTEM: ASK(slot4)

USER: x4

SYSTEM: Confirmation message

As a side note, one can notice how the initiative strategy influences the way the
information is grounded. The whole request is always grounded at the end but the
system initiative and potentially the mixed initiative strategies perform separate slot
grounding.

5.3.4 First efficiency comparison

Let N be the number of turns in the dialogue that are performed to complete the ele-
mentary task ET (recall that a dialogue turn is made of a system and a user turn). Also,
suppose that for ET to be completed, ns slots have to be specified. The objective of this
preliminary study is to make a rough comparison between the previous strategies in a
simple fashion, therefore, the following simplifying assumptions are made:

• All the slots have the same probability of not being understood: perr.

• The fixed dialogue turns dedicated to greeting or saying bye for example are ir-
relevant for the comparison and are therefore neglected.

• Only constrained slots are considered (open slots are more rare and necessitate a
special treatment).

• As a consequence, errors are mostly due to invalid input (asked for again right af-
ter the request), so the answer to the final confirmation is considered to be always
positive.

92

5.3. Slot-filling strategies

System initiative: The ith slot requires Ni = 1 + ni
err dialogue turns, ni

err being the
number of errors that occured before the system considers that the slot value has been
understood. Therefore, Ni follows a geometric distribution with parameter 1 − perr:

P(Ni = k) = pk−1
err (1 − perr), ∀k ∈ N

∗ (5.1)

As a consequence, since N =
ns

∑
i=1

Ni:

E[N] =
ns

1 − perr
(5.2)

User initiative: Here, N = 1 + nerr but nerr corresponds to the number of user utter-
ances where at least one slot has been misunderstood. Therefore, N follows a geometric
distribution with parameter (1 − perr)

ns which leads to:

E[N] =
1

(1 − perr)ns
(5.3)

Mixed initiative: Let nmis be the number of missing (misunderstood) slots. Then by
reasoning similarly as in the user initiative case,

E[N|nmis] = 1 +
nmis

1 − perr
(5.4)

Moreover, nmis follows a binomial distribution with parameters perr and ns:

P(nmis = k) =

�

ns

k

�

pk
err(1 − perr)

ns−k (5.5)

Consequently,

E[N] = 1 +
perrns

1 − perr
(5.6)

Figure 5.1 compares the efficiency of these three slot-filling strategies with five slots
and under different noise conditions. E[N] is used as a proxy for efficiency and perr

represents the level of noise. It appears that the system initiative strategy is less efficient
when the noise level is low compared to the user initiative one. However, as the perr

grows, gathering the slots one by one appears to perform better. Finally, the mixed
initiative strategy performs best both in low and high noise situations.

93

Chapter 5. Dialogue strategies

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

Error probability (perr)

A
v

er
ag

e
n

u
m

b
er

o
f

tu
rn

s
(E

[N
])

System Initiative
User Initiative

Mixed Initiative

Figure 5.1: Slot-filling strategies efficiency comparison (ns = 5)

5.4 Incremental strategies

Incremental dialogue processing brings a new dimension (a new degree of freedom
in the decision) that can be exploited in order to improve the dialogue efficiency. In
Chapter 3, the following TTP have been selected for implementation: FAIL_RAW, IN-
COHERENCE_INTERP, FEEDBACK_RAW and BARGE_IN_RESP from the user’s and
the system’s perspective. In the following, the ways they can be implemented are pre-
sented.

The concept of elementary task has been proven to be useful for slot-filling strategies
analysis. As far as incremental strategies are concerned, analysis is made at a more
atomic level since only one dialogue turn is considered. In the following, the user is
supposed to have the floor and the system is waiting for her to provide ns slot. The DM
either uses the user initiative or the mixed initiative strategy; in the system initiative
strategy, the user’s utterances are too short for incremental processing to be relevant.

The reader should keep in mind that the architecture used here is the one intro-
duced in Chapter 4, therefore, the Scheduler module is in charge of making turn-taking
decisions. Moreover, as discussed in Chapter 1, another important aspect to consider is
ASR instability which is one of the major difficulties that incremental processing brings
(recall that as the user speaks, his current partial utterance is not necessarily a prefix of
the partial utterances to come). Nevertheless, early words in the user’s utterance are
more likely to stay unchanged than later ones (McGraw and Gruenstein, 2012). As a
consequence, making the Scheduler take decisions based on the whole current user’s
utterance is risky since it is likely to change. Therefore, a stability margin (SM) is taken
into account. It corresponds to the last part of the utterance that the Scheduler has to
discard before making decisions. SM can be expressed in time units (discarding the last
second for example) or a number of words or phonemes. The user’s request without

94

5.4. Incremental strategies

SM is called the last stable utterance.

The Scheduler can perform three kinds of actions:

• WAIT: Performed most of the time, it is chosen when the Scheduler decides not to
retrieve the service’s response at a certain micro-turn, hence waiting for the user
to provide more information during the following micro-turns.

• SPEAK: The Scheduler decides to commit to the current user’s utterance and to
provide the corresponding service’s response right away. This either translates
into a barge-in or an accurate end point detection.

• REPEAT: The Scheduler does not retrieve the last service’s utterance but the last
pronounced of the last user’s stable utterance only1. The objective is not to barge-
in, instead, the system performs a feedback that might trigger a reaction from the
user, but not necessarily.

Based on these three actions, the TTP selected in Chapter 3 have been implemented
as follows:

• FAIL_RAW: If the user has been holding the floor for too long without providing
a single slot value, it might be interesting for the system to interrupt her asking
for a reformulation or a repeat. This situation can happen for two main reasons:
the user uses off-domain words or expressions (mainly because she is not famil-
iar with the system) or her utterance has been altered because of noise and ASR
imperfections. The system can use several criteria in order to decide whether to
interrupt the user or not. For example, it can rely on a time threshold: if the user
speaks for a period that is larger than that threshold without providing any slot
value, then it performs a SPEAK. This duration can be replaced by a number of
words or phonemes for example. Consider the following dialogue where the user
tries to check his bank account in a noisy environment:

USER: <noise> like to <noise> number 58 45...

SYSTEM: ...Sorry, I don’t understand. What can I do for you?

USER: Check account number <noise> I repeat, check account 58 45 18 A.

SYSTEM: All right, you want to check the account number 58 45 18 A right?

USER: Yes.

The user is interrupted by the system at the first dialogue turn. If the latter didn’t
make such a decision, its response would have been the same (Sorry, I don’t un-
derstand. What can I do for you?) since an important part of the request was lost.
Therefore, the system barge-in spared the user some time and energy. In this
example, the second time the user tries to formulate his request, he does it in a
more concise way and repeats it as an effort to make himself clearer. This kind of
behaviour has been noticed as a result of a corpus study led in (Ghigi et al., 2014).

1This is a simple way of simulating feedback. In reality, any part of the last stable utterance could be
repeated.

95

Chapter 5. Dialogue strategies

• INCOHERENCE_INTERP: Some user’s requests can be problematic for the sys-
tem because they are not coherent with the current dialogue context. The user
might ask for a non existing information or try to perform some forbidden modi-
fication in the database for example. This can also be due to a transmission error
(noise, ASR imperfection...) or simply because the user is not well aware of the
dialogue context and the system’s constraints. However, if an open grammar do-
main is used, the first reason is less likely to be the cause of the problem (a trans-
mission error more often leads to a non understandable utterance by the system).
Consider the following example:

USER: I would like to book a room for tomorrow and I will be ...

SYSTEM: ...Sorry, we are full tomorrow.

In this situation, it is legitimate to interrupt the user as the system is sure that
the response would be the same even if it waits for the end of the request to take
the floor. Implementing this behaviour is very dependent on the domain. Given
the latter, a list of dialogue acts that indicate an incoherence should be identified
and as soon as the service’s response corresponding to the last stable utterance
belongs to that list, a SPEAK should be performed.

• FEEDBACK_RAW: Providing vocal feedback while the user is speaking can be
very useful in some situations, especially when open slots are involved. For the
sake of simplicity, only the last word of the last stable utterance is repeated in this
thesis but one can go further and try to repeat any part of the user’s current partial
request. It is used in (Skantze and Schlangen, 2009; Khouzaimi et al., 2014b) in the
case of numbers dictation (see Chapter 4 for an example).

However, implementing this TTP can be very challenging as the user must per-
ceive that even though the system speaks out, it does not plan to take the floor.
Moreover, negative reactions to a feedback like No, I said 45 52 must be clearly
separated from positive ones. For the reasons explained in Chapter 3, it will only
be implemented in simulation in this thesis.

• BARGE_IN_RESP (System): When the user has provided all the necessary in-
formation for the system to provide an answer, the latter can decide to take the
floor right away to improve the dialogue efficiency. The implementation of this
behaviour is similar to INCOHERENCE_INTERP. A list of dialogue acts has to
be determined in advance and as soon as the service’s response to the last stable
utterance belongs to that list, the Scheduler decides to SPEAK.

• BARGE_IN_RESP (User): This TTP does not involve the Scheduler as the deci-
sion to speak is made by the user. However, it is important that the system does
not allow user interruptions all the time, otherwise, none of the previous TTP im-
plementations are possible. Suppose that the ASR is always listening and as soon
as it detects a new input, if the system speaks, it releases the floor. Also, suppose
that the user is speaking and for some reason (previous TTP), the system decides
to interrupt him. During a little time window, both the user and the system are
speaking and as the system is speaking it is interrupted right away. A simple so-

96

5.4. Incremental strategies

lution that is adopted in this thesis is to define a time interval during which the
ASR is no longer listening after the system takes the floor. Of course, this is only
the case when a SPEAK is performed (the REPEAT action is not treated as such).

To conclude, this chapter clarified the way concepts are manipulated in most current
dialogue systems as well as a few DM strategies that will be used in the following. On
top of that, a few turn-taking behaviours (based on the TTP taxonomy introduced in
Chapter 3) and the way they can be implemented have been discussed. In the rest of
this thesis, they will be instanciated in two different domains in order to form a new
rule-based turn-taking strategy.

97

Chapter 5. Dialogue strategies

98

Chapter 6

Incremental dialogue simulation

Using dialogue simulation techniques is very common in the research community (Eck-
ert et al., 1997; Pietquin and Dutoit, 2006) for several reasons like: the ability to quickly
generate dialogue corpora that can be used to develop machine learning techniques, an
easy way to model different populations of users and the possibility to use the same
user simulator to test and compare concurrent dialogue strategies (see Chapter 2 for
more details). In this chapter, a new incremental dialogue simulation framework is in-
troduced (published is (Khouzaimi et al., 2016a)). Its novelty resides in the fact that it
is able to simulate the ASR instability phenomenon. First, it is presented in its most
generic and abstract form that can be used by the reader to instantiate his/her own
simulator that is adapted to any target domain. Then, these principles are applied in
order to implement a showcase simulated environment where the service is a personal
agenda manager.

Later on, this simulated environment is used for two main purposes. Firstly, the slot-
filling and the incremental dialogue strategies described in Chapter 5 are implemented
and compared. This somehow validates the preliminary efficiency analysis led in that
chapter. It also provides new analysis elements to go further and prepare a basis for
the experiments with real users. Secondly, it is a very useful tool for generating data
to train machine learning algorithms. In Chapter 8, it is used to train a reinforcement
learning algorithm which purpose is to optimise turn-taking decisions.

6.1 Overview

How to run dialogues with no users? The well-known answer is: by designing a User
Simulator (US). Rigorously, in the case of SDSs, a US should be able to process an in-
put audio signal and to output a new audio signal as well. Even though this method
has its merits (noise and ASR imperfections are naturally taken into account), it goes
against one of the main advantages of user simulation techniques which is the ability
to quickly generate an important number of dialogues. Also, making an ASR module
listen to a TTS and understand its message is not easy. Therefore, the user simulator

99

Chapter 6. Incremental dialogue simulation

elaborated here inputs and outputs text. An ASR output simulator is in charge of repli-
cating the ASR behaviour. Figure 6.1 gives an overview of how these parts fit together
in the whole architecture as well as the composition of the US. The latter is composed
of five modules: The Intent Manager, the NLU, the Verbosity Manager, the NLG and
the Patience Manager.

Figure 6.1: Simulated environment architecture

6.2 Incremental dialogue simulation

In a nutshell, at the pth micro-turn of the kth user turn µTk,U
p , the US generates a partial

utterance Reqk
p that is transformed into an N-Best (scorek

p,1, hypk
p,1), ..., (scorek

p,N , hypk
p,N),

which corresponds to the N recognition hypotheses that have the best confidence scores.
It corresponds to the whole utterance pronounced during the partial turn Tk,U

p (restart
incremental mode (Schlangen and Skantze, 2011)). On the other hand, either the US
receives an answer from the dialogue system at a certain micro-turn and it stops speak-
ing1, either it does not and it continues speaking if it has additional things to say (re-
leasing the floor otherwise). When the dialogue lasts for too long without achieving the
task at hand, the US can end the dialogue.

In the following, the role and the functioning of the US and the ASR output simula-
tor is discribed in an abstract fashion before being instanciated later on to give birth to
a personal agenda management simulated environment.

1This is of course an approximation of real barge-in cases since the overlap is neglected.

100

6.2. Incremental dialogue simulation

6.2.1 User Simulator

Intent Manager

The Intent Manager is in charge of computing the dialogue acts that the US performs.
It maintains an internal dialogue context and takes the dialogue acts coming from the
dialogue system as inputs. Thus, it can be viewed as a dialogue manager in itself but
with the difference that it is aimed to generate requests and to lead the dialogue instead
of serving a user (at least in task-oriented situations). Therefore, it is given a task or a
list of tasks to accomplish before it starts interacting with the dialogue system.

A common approach to design such a module is the agenda-based method (Wei and
Rudnicky, 1999; Schatzmann et al., 2007). Inspired by the latter, the approach adopted
in this thesis suggests that the tasks the Intent Manager should accomplish are given in
the form of a stack (LIFO structure): the action stack (AS). They are removed and exe-
cuted one by one and during each step, new actions could be added. The Algorithm 1
describes a function called run with AS as an argument and that is in charge of unstack-
ing all the corresponding actions and executing them by using the method perform().
The latter tries to execute the top element of the action stack which might lead to the
removal of the top element of the stack or the creation of new actions that are added
on top of AS (which justifies the fact that the whole stack is passed as an argument and
not the top element only). A loop is run over the elements of AS until it is empty.

Algorithm run(AS)
while AS.size > 0 do

perform(AS);
end

Algorithm 1: Intent Manager abstract algorithm

NLG and Verbosity Manager

The NLG module of the simulator transforms the Intent Manager’s output into a simple
and straightforward utterance. For example:

• Book a room for tomorrow.

• Record channel 2 from 6pm until 8pm.

• Delete the event football game from the agenda.

Compared to human/human conversations, limiting interactions to this kind of
simple utterances is not realistic. Therefore, they are enhanced in the Verbosity Man-
ager with prefixes like I would like to, Is it possible to...and suffixes like if possible, please...
In (Ghigi et al., 2014), a corpus study showed that users tend to go off-domain and to
repeat the same information several times in the same sentence. These behaviours are
also replicated in the Verbosity Manager: with a probability pod the NLU output is re-
placed with an off-domain sentence randomly picked in a predefined list, moreover,

101

Chapter 6. Incremental dialogue simulation

with a probability prep and given that the system just reported a misunderstanding, the
utterance is repeated twice (for example, Check my account, I repeat, check my account).

Timing and patience manager

When it comes to incremental processing, timing is key. However, the main objective of
simulation is to generate dialogues as fast as possible, hence, real time stamps cannot
be used. In order to approximate durations, the user’s and the system’s speech rates
are considered to be constant with value SR.

Users tend to get impatient, at various degrees, when dialogue systems take too
long to accomplish the task they are asked for. To simulate this behaviour, a duration
threshold is chosen at each new dialogue that will cause the user to hangup as soon as
it is reached. It is computed as follows

dpat = 2µpat.sigmoid(X) (6.1)

where X follows a Gaussian distribution of mean 0 and variance 1 and µpat is the
mean duration since

sigmoid(x) =
1

1 + e−x
(6.2)

6.2.2 ASR output simulator

The ASR output simulator generates an N-Best that is updated at each new micro-turn.
For instance, if at a certain point, the US uttered I would like to add the event birthday party
on..., a possible N-Best could be (the numbers between brackets represent ASR scores):

• (0.82) I would like to add the event birthday party on

• (0.65) I like to add the event birthday party on

• (0.43) I have had the event birthday party

• (0.33) I would like to add the holiday party

• (0.31) I like to add the holiday party on

More formally, at the pth micro-turn of the kth user turn µTk,U
p , the N-Best is an N-

uplet (scorek
p,1, hypk

p,1), ..., (scorek
p,N , hypk

p,N). At time t+1, a new word wt+1 is sent to the
ASR output simulator and the latter calculates a new associated N-Best. Therefore, at
this stage, the system has two N-Bests:

102

6.2. Incremental dialogue simulation

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Confidence score

D
en

si
ty

Bad recognition
Good recognition

Figure 6.2: ASR score sampling distribution (σcon f = 1)

• The word N-Best: It corresponds to the different hypotheses related to the last
word pronounced. In Figure 6.3, the top right box represents the word N-Best
associated with the word 6th.

• The utterance N-Best: It designates the N-Best associated with the whole partial
utterance pronounced so far. In Figure 6.3, the top left box is an a example of such
N-Best associated with the partial utterance I want to add the event birthday party on
January.

Both are combined to form the new utterance N-Best. In the following, the way
the word N-Best is calculated and the way it is incorporated into the partial utterance
N-Best are described.

In order to simulate noise and ASR imperfections, the ASR output simulator uses a
module called the Scrambler. It receives a word as input and performs one of the three
following operations in order to compute the output2:

• Replace the word with a different word taken randomly from a dictionary (prob-
ability: prepl)

• Add a new word (probability : padd)

• Delete the word (probability : pdel)

A Word Error Rate (WER) is given as a parameter to the ASR output simulator. It
controls the noise level that one wants to simulate. The algorithm used to generate the
N-Best associated with a single word is described below:

1. Determine whether wt+1 is among the N-Best or not with a probability that is
computed as follows: (1 - WER) + INBF.WER, where INBF (In N-Best Factor) is a
parameter between 0 and 1. If wt+1 is not in the N-Best, then the latter contains
only scrambled versions of this word and jump to step 4.

2The Scrambler always performs one these three operations. In other words prepl + padd + pdel = 1

103

Chapter 6. Incremental dialogue simulation

2. The first hypothesis is set to be wt+1 with a probability of (1-WER), otherwise, it
is a scrambled version of it.

3. If the the first hypothesis is not wt+1, then this word’s position is randomly chosen
between 2 and N. Moreover, the other hypotheses are scrambled versions of it.

4. The confidence score associated with the best hypothesis (score0) is sampled as
sigmoid(X) where X follows a Gaussian distribution. More precisely,
X ∼ N (cerr, σcon f) if the first hypothesis is wrong and X ∼ N (cright, σcon f) when
it is right (with cerr < 0 < cright). By taking the sigmoid, this leads to two distri-

butions3 (depicted in Figure 6.2 for σcon f = 1) with a mean on both sides of 0.5
and the same standard deviation for both (which is a growing function of σcon f

and which can be changed to simulate different levels of accuracy of the confi-
dence score model). Big σcon f values lead to spread recognition scores and small
differences between cerr and cright engender close scores for both cases: right and
wrong first hypothesis. Therefore, discriminative models are obtained for small
values of σcon f and high difference cright − cerr.

5. The scores for the other hypotheses are computed in an iterative way. For i be-
tween 2 and N, scorei is uniformly sampled in [0, scorei−1].

As already mentioned in this thesis, early partial utterances are not necessarily pre-
fixes of later ones with a true ASR system (ASR instability phenomenon). To replicate
this behaviour, a language model is needed to compute the scores corresponding to
the different hypotheses in the N-Best. Therefore, sentences that are more in alignment
with the model have higher scores thus being pushed to the top of this N-Best. Here,
the NLU knowledge is used as a proxy for the language model by making the follow-
ing assumption: the more an utterance generates key concepts once fed to the NLU, the more
it is likely to be the correct one. Therefore, as soon as a new concept is detected in hypk

p,i,

scorek
p,i is boosted as follows:

scorek
p,i ← scorek

p,i + BF.(1 − scorek
p,i)

where BF is the Boost Factor parameter. An illustration of this mechanism with
BF=0.2 is provided in Fig. 6.3.

6.3 Personal Agenda management simulated environment

So far, an abstract framework for simulating incremental dialogues has been described.
In this section, it is instanciated to be able to generate dialogues with an incremental
dialogue system which purpose is to help users manage their personal agenda. This
task will be used in Chapter 7 in order to run a few experiments regarding the dialogue

3Confidence score estimation is a complex problem and it is still a research topic (Jiang, 2005; Seigel and
Woodland, 2011). The simple model introduced here is inspired by (Pietquin and Beaufort, 2005). Also,
notice that the scores are between 0 and 1 but they do not sum up to 1 since they are not probabilities.

104

6.3. Personal Agenda management simulated environment

Old N-Best

I want...party on mary (0.7)

I want...party on January (0.65)

I want...party on very (0.55)

I want...party on scary (0.3)

I want...party on free (0.18)

New word N-Best

thrift (0.9)

6th (0.85)

split (0.5)

strength (0.3)

bath (0.1)

X

Combined N-Best

I want...party on mary thrift (0.63)

I want...party on mary 6th (0.595)

I want...party on January thrift (0.585)

I want...party on January 6th (0.5525)

I want...party on very thrift (0.495)

Step 1: Word N-Best integration

New concept (DATE)

Boosting score to

0.5525+0.2.(1-0.5525)

=0.642

New N-Best

I want...party on January 6th (0.642)

I want...party on mary thrift (0.63)

I want...party on mary 6th (0.595)

I want...party on January thrift (0.585)

I want...party on very thrift (0.495)

Step 2 : Boosting

Current sentence uttered : I want to add the event birthday party on January

New word added : 6th

Figure 6.3: An illustration of the incremental ASR output N-Best update (BF=0.2)

strategies introduced in Chapter 5 and in Chapter 8 to test a new reinforcement learn-
ing approach. First the Service (system side, Section 6.3.1) and its dialogue task are
presented, then the way the US (user side, Section 6.3.2) and the ASR output simulator
are instanciated is described.

6.3.1 The Service: personal agenda assistant

Dialogue Manager

A personal agenda assistant has been implemented as a new task for the experiments.
The user can add, move or delete events in his agenda. For instance, a request could be:

105

Chapter 6. Incremental dialogue simulation

I would like to add the event football game on March 3rd from 9 to 10 pm4. This is a slot-filling
task with four slots:

• ACTION: The type of action the user wants to perform. Can take three different
values: ADD, MODIFY or DELETE.

• DESCRIPTION: The description of the event.

• DATE: The date of the event.

• WINDOW: The time window of the event.

However, no overlap is tolerated between events in the agenda.

Each interaction between the US and the system is defined by a scenario. Here, the
US is given two lists of events: InitList and ToAddList. The first one contains the events
that already exist in the agenda before the dialogue and the second one contains the
ones that the US is supposed to add during the dialogue. Each event is associated with
a priority value and the US must prefer adding the ones with high priority first5. Its
aim is to make as many events with the highest priority values as possible fit in the
agenda.

Natural Language Understanding

A rule-based algorithm transforms the user’s utterance hypothesis into concepts. To
do that, a set of rules have been defined. Each rule transforms a word, a concept or
any combination of the two into a new concept. Three types of rules are used; they are
depicted in Table 6.1.

For instance, parsing the sentence I want to add the event birthday party on January 6th

from 9pm to 11pm is performed following these steps:

1. I want to ADD the TAG_EVENT birthday party on MONTH(January) NUM-

BER(6) from TIME(9,0) to TIME(11,0)

• add : [ADD]

• event : [TAG_EVENT]

• Regex(janvier|...|decembre) : MONTH($word)

• Regex([0-9]+) : NUMBER($word)

• Regex((([0-1]?[0-9])|(2[0-3]))h([0-5][0-9])?) : TIME($word)6

2. I want to ADD the TAG_EVENT birthday party on DATE(6,1)

WINDOW(TIME(21,0),TIME(23,0))

4The dialogues are actually in French but they are translated in English to ensure language coherence
in this thesis.

5To make the algorithms easier to understand, the larger priority value, the more important the event,
unlike common usage.

6Adapted to the french way of uttering time values.

106

6.3. Personal Agenda management simulated environment

Rule type Description Example

Tag Words are associated with labels remove : [DELETE]
Regular expressions Words matching a regular expression Regex([0-9]+) : NUMBER($word)

are transformed into concepts
Combine Words and concepts are mapped into a new concept Combine(NUMBER,MONTH) : DATE

Table 6.1: NLU rules types

• Combine(NUMBER,MONTH) : DATE(NUMBER,MONTH)

• Combine(from,TIME_1,to,TIME_2) : WINDOW(TIME_1,TIME_2)

3. I want to ADD EVENT(birthday party, DATE(6,1),

WINDOW(TIME(21,0),TIME(23,0)))

• Combine(TAG_EVENT,$x,on,DATE,WINDOW) : EVENT($x,DATE,WINDOW)

4. I want ACTION(ADD, EVENT(birthday party, DATE(6,1),

WINDOW(TIME(21,0),TIME(23,0))))

• Combine(ADD,EVENT) : ACTION(ADD,EVENT)

6.3.2 Simulator instanciation

The aim of the US is to make the biggest number possible of events with the highest
priority values taken from InitList and ToAddList fit in the agenda. To do so, the Intent
Manager executes the run() function (taking the action stack (AS) as an argument)
depicted in Algorithm 2 (an instance of the abstract function depicted in Algorithm 1)
where

• The manipulated structures are stacks and queues.

• If st is a stack, the top element is called st.top and st.removeTop() removes
it from st.

• If q is a queue, the next element is called q.next and q.removeNext() removes
it from q.

• The size of the structure x is called x.size.

• If m is a map, m.add(x,y) adds a new entry to m such that m(x) = y.

• AS is a stack of actions and each action a is a couple (a.action,a.event) where
a.action is an action type (ADD, MODIFY or DELETE) and a.event is an
event caracterised by a description, a date, a time window and a priority value.

• For each event e, e.alt refers to all its alternatives including itself7. Its priority
is called e.prio.

7The elements of e.alt share the same description and priority value but they have different dates
and time windows.

107

Chapter 6. Incremental dialogue simulation

Algorithm run(AS)
while AS.size > 0 do

altQ ← AS.top.event.alt
c ← empty map
M ← empty map
do

conflQ ← execute((AS.top.action,altQ.next))
if conflQ.size > 0 then

c.add(altQ.next,conflQ)
M.add(altQ.next, max

e∈conflQ
e.prio)

altQ.removeNext()

end

while altQ.size > 0 AND conflQ.size > 0
if conflQ.size > 0 then

ebest ← argmin(M)
if M(ebest) < AS.top.event.prio then

for e ∈ c(ebest) do

if e.alt.size > 1 then

for e’ ∈ e.alt-{e} do

AS.add((MOVE,e’))
end

else

AS.add((DELETE,e))
end

end

else

AS.removeTop()
if AS.top.action == MOVE then

AS.add((DELETE,AS.top.event))
end

end

else

AS.removeTop()
end

end
Algorithm 2: Intent Manager algorithm

108

6.4. Functionning illustration

Parameters Value Justification

pod 0.1 Based on the corpus study led in (Ghigi et al., 2014)
prep 0.3 Id.
SR 200 words per minute See (Yuan et al., 2006)
µpat 3 min Empirical given the task
prepl 0.7 Empirical (variable and difficult to estimate)

padd 0.15 Id.
pdel 0.15 Id.
N 5 Empirical (can be anything depending on the ASR configuration)
INBF 0.7 Tuned for a reasonable boosting effect with N=5
BF 0.2 Id.
cerr -1 Empirical (variable and difficult to estimate)
cright 1 Empirical (variable and difficult to estimate)

σcon f 1 Id.

SM 2 words that lasted for more than 0.6 seconds have 90% chance
of staying unchanged (McGraw and Gruenstein, 2012)
and SR = 200 wpm

WER Variable during the experiments

Table 6.2: User simulator and ASR output simulator values

• The function execute() communicates an intent to the NLG and gets the cor-
responding response through the NLU. If this response is a misunderstanding
declaration, then the same intent is sent again. If it is a declaration of conflict with
a set of other events, then a queue with all these events is returned. Finally, if no
conflict was detected, then this function returns an empty queue. This is how the
US updates AS.

The other parameters of the US and the ASR output simulator are set as shown in
Table 6.2.

6.4 Functionning illustration

The following illustration provides the reader with a global view of all the notions
introduced in this chapter through an application to a concrete interaction in the agenda
management domain. Consider the following scenario:

• InitList: {title: house cleaning, date: January 6th, window: from 18 to 20, priority: 3,
alternative 1: January 7th, from 6pm until 8pm, alternative 2: January 9th, from 10am
until 12am}

• ToAddList: {title: birthday party, date: January 6th, window: from 6pm until 11pm,
priority: 5}

AS initially contains the ADD action associated with the event birthday party since it
is the only event in ToAddList. Let e be this event. The function run() in Algorithm
2 is then run over this stack. Thus the first result generated by the Intent Manager
is the ADD action corresponding to the event birthday party. Once communicated to
the NLG, the latter outputs the sentence Add the event birthday party on January 6th from
6pm until 8pm which is in turn transfered to the Verbosity Manager. pod = 0.1 so there

109

Chapter 6. Incremental dialogue simulation

is a 10% chance that the result of the NLG is ignored and replaced by an off-domain
sentence. Suppose it is the case for this first trial then the ASR output simulator’s result
is also off-domain. As a consequence, the service responds by saying that the user’s
requests has not been understood which is recognised as a dialogue act by the NLU and
communicated to the Intent Manager. The function execute() then sends the same
intent once again to the NLG which generates the same utterance as it did the first time.
As the last system’s response is a misunderstanding declaration, the Verbosity Manager
has prep = 0.3 chance of repeating the same sentence twice. Suppose it is the case, then
the Verbosity Manager’s output is the following (a prefix and a suffix are also randomly
added by this module): Can you please add the event birthday party on January 6th from 6pm
until 8pm, I repeat, add the event birthday party on January 6th from 6pm until 8pm if it is
possible. The ASR output simulator generates an N-Best as it is described in Figure 6.3.

Suppose that CommitCond in the Scheduler is true if and only if the response to the
last stable utterance is either a confirmation question or a conflict declaration (in other
words, all the slots have been successfully communicated to the system). Also, suppose
that this time, the best ASR hypothesis is 100% correct. Since SM=2, the Scheduler
decides to take the floor as soon as the users decides to utter Can you please add the event
birthday party on January 6th from 6pm until 8pm, I repeat.

Since the time window required to organise the birthday party is already taken by
the house cleaning event execute() returns a queue (conflQ) containing the latter
only, and the entry (e,conflQ) is added to c. The priority of the house cleaning event
is 3, therefore, the entry (e,3) is added to M. Therefore, ebest = e since it is the only
element in M. Its priority is lower than AS.top.event.prio. As a consequence, the
Intent Manager tries to move the house cleaning event (details about the sentence for-
mulation and management are no longer given) and it ends up to be successful using
the first alternative: January 7th, from 6pm until 8pm. By doing so, the event birthday party
is still in the stack and it is added facing no problem this time since the corresponding
time window has been freed.

To sum up, a new incremental dialogue simulation which supports dialogue insta-
bility has been introduced in detail in this chapter. Its different components have been
thoroughly described as well as the way they interact with each other to incrementally
send requests to the system and to process its responses. In the rest of this thesis, the
strategies formerly described are implemented and evaluated in this simulated envi-
ronment, then the latter is used to train a reinforcement learning turn-taking strategy.

110

Chapter 7

Handcrafted strategies for
improving dialogue efficiency

Several strategies for handling slot-filling dialogue tasks have been discussed in Chap-
ter 5. The hypothesis laid stipulates that they perform differently under different noise
conditions. A rough study has been made leading to a first model that made it possible
to derive the tendencies of these strategies in terms of dialogue duration as a function
of noise. In this chapter, the personal agenda simulated environment introduced in
Chapter 6 is used in order to validate these results.

On top of that, incremental processing offers a new degree of freedom that can be
used in order to derive new dialogue strategies. Inspired by the TTP taxonomy in-
troduced in Chapter 3, five turn-taking strategies have been selected for their a priori
potential to improve task oriented dialogue. Here, they are also implemented in the
simulated environment and mixed with the previous turn-taking strategies. The new
formed strategies are also compared in terms of dialogue duration and task completion
(published as (Khouzaimi et al., 2015a)).

The best strategy obtained in this chapter will serve as a baseline for the one elabo-
rated later (automatically learnt from data).

7.1 User and system initiative

7.1.1 Strategies

In Chapter 5, three slot-filling strategies have been addressed: SysIni, UsrIni and Mix-
Ini. Here, they are implemented in the personal agenda management simulated en-
vironment and compared. In the following, the way they are instanciated as well as
dialogue examples are provided.

• System Initiative (SysIni): Recall that while using this strategy, the system asks

111

Chapter 7. Handcrafted strategies for improving dialogue efficiency

the user for the different slot values one by one. The first slot the system asks
for is the action type: whether it is an ADD, a MODIFY or a DELETE action. To
improve the system’s performance, the order the remaining slots are asked for is
made dependent on this type of action.

In the case of an ADD action, the date and the slot are asked first. Therefore, in
the case of a conflict, there is no need to ask for the description. If no conflict is
detected, the description is asked for and as it is an open slot (anything could be
taken as a valid description), the user is asked for a confirmation of that particular
slot before moving to the general confirmation (related to the complete request
with all the associated slots).

As far as MODIFY actions are concerned, the description slot can also be an in-
valid utterance if the user provides a non existing event1. Therefore, as it involves
only one dialogue turn (instead of the two turns required to determine the date
and the time window) and as it is more natural to perform a MODIFY action by
asking which event is to be moved, the description slot is asked for first.

Finally, DELETE actions are the most simple as they require only one additional
slot: the description. The following dialogue illustrates the way these three types
of actions are handled in the context of a noisy environment where a few requests
fail to be communicated to the system.

SYSTEM: What kind of action do you want to perform?

USER: Add.

SYSTEM: Please specify a date.

USER: March <noise>.

SYSTEM: Sorry I don’t understand.

USER: March 6th.

SYSTEM: Please specify a time window.

USER: From 10am until 11am.

SYSTEM: Sorry. The time window on March 6th from 10am until 11am is
already taken by the event football game that is planned on March 6th

from 10am until 12am. Do you want to specify another date and time
window?

USER: Yes.

SYSTEM: Please specify a date.

USER: March 7th.

1In order to improve the dialogue efficiency, in the case of MODIFY and DELETE requests, only a prefix
of the description is necessary to identify an event. For instance, if the event Guitar lesson is planned in
the agenda, then the user saying Guitar is enough for the system to understand that she is refering to that
event. In the case it is a prefix of more than one event, the first one in the system’s internal list is taken.

112

7.1. User and system initiative

SYSTEM: Please specify a time window.

USER: From 10am until 11am.

SYSTEM: Please specify a description.

USER: Long list. (Recognition error: the user actually said Dentist).

SYSTEM: You said long list right?

USER: No.

SYSTEM: Please specify a description.

USER: Dentist.

SYSTEM: You said dentist right?

USER: Yes.

SYSTEM: Ok. So you want to add the event dentist on March 7th from 10am
until 11am. Is that right?

USER: Yes.

SYSTEM: Done. Would you like to perform other actions?

USER: Yes.

SYSTEM: What kind of action do you want to perform?

USER: Move2.

SYSTEM: Please specify a description.

USER: Guitar <noise>

SYSTEM: Please specify a new date.

USER: March 10th.

SYSTEM: Please specify a new time window.

USER: From 2pm until 3pm.

SYSTEM: Ok. So you want to move the event guitar lesson to March 10th

from 2pm until 3pm. Is that right?

USER: Yes.

SYSTEM: Done. Would you like to perform other actions?

USER: Yes.

SYSTEM: What kind of action do you want to perform?

USER: Delete.

2Move and modify actions are equivalent

113

Chapter 7. Handcrafted strategies for improving dialogue efficiency

SYSTEM: Please specify a description.

USER: Visit George.

SYSTEM: Ok. So you want to delete the event visit George that is planned
for March 9th from 6:30pm until 7:30pm. Is that right?

USER: Yes.

SYSTEM: Done. Would you like to perform other actions?

USER: No.

SYSTEM: Thank you. Bye.

As discussed in Chapter 5, this strategy is very tedious, however, it has the ad-
vantage of baby-stepping the dialogue and recovering from errors as soon as they
occur.

• User Initiative (UsrIni): In the case of ADD or MODIFY actions, the event de-
scription, its date and its time window should be provided in the user’s request,
otherwise, an error is reported. For DELETE actions, only the description is re-
quired. For example:

SYSTEM: What can I do for you?

USER: I would like to add the event dentist on March <noise> from 10am
until 11am.

SYSTEM: Sorry I don’t understand.

USER: I said, I want to add the event dentist on March 6th from <noise> until
11am.

SYSTEM: Sorry I don’t understand.

USER: Add the event dentist on March 6th from 10am until 11am.

SYSTEM: Sorry. The time window on March 6th from 10am until 11am is
already taken by the event football game that is planned on March 6th

from 10am until 12am. What can I do for you?

USER: I would like to add the event dentist on March 7th from 10am until
11am.

SYSTEM: Ok. So you want to add the event dentist on March 7th from 10am
until 11am. Is that right?

USER: Yes.

SYSTEM: Done. Would you like to perform other actions?

USER: Yes.

SYSTEM: What can I do for you?

114

7.1. User and system initiative

USER: I want to move the event guitar <noise> to March 10th from 2pm until
3pm please.

SYSTEM: Ok. So you want to move the event guitar lesson to March 10th

from 2pm until 3pm. Is that right?

USER: Yes.

SYSTEM: Done. Would you like to perform other actions?

USER: Yes.

SYSTEM: What can I do for you?

USER: Delete the event visit Georges.

SYSTEM: Ok. So you want to delete the event visit George that is planned
for March 9th from 6:30pm until 7:30pm. Is that right?

USER: Yes.

SYSTEM: Thank you. Bye.

Again, as pointed out in Chapter 5, with this strategy, the dialogue can progress
much faster if no errors occur. Nevertheless, unlike SysIni, when there is still
missing information (even one slot), the user has to repeat his request from the
start.

• Mixed Initiative (MixIni): As previously discussed, this strategy starts in a simi-
lar way as UsrIni. The action type slot is important to determine which other slots
should be gathered and how they should be processed. Therefore, if it is not de-
tected in the user’s utterance, the other slots are ignored and a misunderstanding
is reported. On the contrary, if it has been detected, the system spots all the other
slots present in the sentence and tries to gather the missing ones by switching to
the SysIni strategy. For example:

SYSTEM: What can I do for you?

USER: I would like to add the event dentist on March <noise> from 10am
until 11am.

SYSTEM: Please specify a date.

USER: <noise>.

SYSTEM: Sorry I don’t understand.

USER: March 7th.

SYSTEM: Ok. So you want to add the event dentist on March 7th from 10am
until 11am. Is that right?

USER: Yes.

115

Chapter 7. Handcrafted strategies for improving dialogue efficiency

By elaborating such a hybrid strategy, an a priori approach introduced in Chapter
5 showed that it allies both advantages of SysIni and UsrIni. In the following, the
simulated environment is used to validate this affirmation.

7.1.2 Experiments

For the experiments, three dialogue scenarios have been used. As described in 6.2.1, a
scenario is specified by two lists of events: InitList and ToAddList. The lists correspond-
ing to these three scenarios are given in Table 7.1.

Scenario Title (Priority) Date Window DateAlt1 WindowAlt1 DateAlt2 WindowAlt2

1-Init Guitar lesson(4) November 17th 14:00-15:30 November 15th 9:45-11:15

1-ToAdd Book reading(8) November 19th 10:30-12:30 November 14th 9:30-11:30 November 18th 16:30-18:30

Watch the lord of the rings(12) November 13th 9:30-12:30 November 15th 11:15-14:15

2-Init Guitar lesson(4) November 17th 14:00-15:30 November 15th 9:45-11:15

2-ToAdd Tennis(5) November 17th 13:15-15:15 November 19th 15:15-17:15

Gardening(9) November 18th 13:15-15:15 November 14th 12:30-14:30

3-Init Guitar lesson(4) November 17th 14:00-15:30 November 15th 9:45-11:15

Holidays preparation(1) November 16th 12:30-14:30 November 17th 12:15-14:15

House cleaning(6) November 13th 14:15-16:15 November 17th 15:30-17:30

3-ToAdd Give back book(7) November 16th 14:00-14:30 November 13th 14:00-14:30

Table 7.1: The three scenarios used in the simulation

The WER in real dialogue systems generally varies between 0.1 and 0.3. Here, it is
varied between 0 and 0.3 with a step of 0.03 in order to analyse the impact of noise on
the different strategies. For each noise level, the three scenarios are run 1000 times. The
mean duration of the dialogues, their task completion as well as the corresponding 95%
confidence intervals are depicted in Figure 7.1.

The results obtained here clearly validate the analysis led in Chapter 5, even though
the simplifying assumptions made in the latter are relaxed here. The graph in Figure

0 0.06 0.12 0.18 0.24 0.3
60

90

120

150

180

210

240

WER

M
ea

n
d

u
ra

ti
o

n
(s

ec
)

SysIni
UsrIni
MixIni

0 0.06 0.12 0.18 0.24 0.3
0.5

0.6

0.7

0.8

0.9

1

WER

M
ea

n
ta

sk
co

m
p

le
ti

o
n

ra
ti

o

SysIni
UsrIni
MixIni

Figure 7.1: Simulated mean duration (left) and dialogue task completion (right) for different noise
levels

116

7.2. Incremental strategies

5.1 is very similar to the ones depicted in Figure 7.1 which also confirms the well func-
tioning of the simulated environment. In low noise setups, SysIni is clearly less efficient
than UsrIni; the dialogues take twice more time to finish which in turn translates into
a lower task completion ratio. Nevertheless when the noise level reaches about 0.2,
SysIni offers better completion rates. The duration is still lower in spite of the correla-
tion between the two metrics. This is due to the fact that the durations distribution for
UsrIni is centered on short dialogues whereas the distribution for SysIni is centered on
average ones. Finally, MixIni is the best strategy since it allies both the advantages of
both UsrIni and SysIni.

7.2 Incremental strategies

Five TTP have been selected for implementation in Chapter 3: FAIL_RAW, INCOHER-
ENCE_INTERP, FEEDBACK and BARGE_IN_RESP both from the system’s and the
user’s point of view. Their generic implementation have been discussed in Chapter
5 and in the following, more specific implementation details in the personal agenda
management domain are provided.

7.2.1 TTP implementation

First, recall that as announced in Chapter 6, SM=2 and therefore, the last stable utter-
ance corresponds to the last user’s request without the last two words.

FAIL_RAW: Happens when the user speaks for too long with no key concept detected
in her speech. It depends on the system’s last question (the type of information it is
waiting for). For open questions (all the slots at once), this key concept is the action
type (ADD, MODIFY or DELETE). For the dates and the time windows, it corresponds
to the slot value whereas in the case of yes/no questions, it corresponds to the concepts
YES and NO. This TTP is not relevant when the user utters an event description since
it is an open slot. Let KeyConcept be a boolean indicating whether the key concept the
system is waiting for has been pronounced or not and let ∆t be the duration of the
user’s utterance so far. Therefore:

CommitCond = ¬KeyConcept ∧ (∆t ≥ ξ)

where ξ is set to 6 for open questions, 4 for date questions, 6 for time window ques-
tions and 3 for yes/no questions (values which showed empirical best values on the
task).

117

Chapter 7. Handcrafted strategies for improving dialogue efficiency

INCOHERENCE_INTERP: In this implementation, this event is triggered as soon as
the last stable utterance generates an overlap with an existing event in the agenda, or it
tries to move or delete a non existing event.

FEEDBACK: At each new micro-turn, given that no boosting is involved, the N-Best
best score relative variation is equal to the best score of the most recent word N-Best.
Therefore, as the word score is not accessible by the Scheduler, the ratio st/st−1 can be
used as a proxy for that value. Similarly, the score of the last word of the last stable
utterance can be estimated by st−SM/st−SM−1. Let persist be a boolean that determines
whether the last word of the last stable utterance has changed since it has first been
pronounced, then (0.7 being an empirical value):

CommitCond = persist ∧ (
st−SM

st−SM−1
≤ 0.7)

BARGE_IN_RESP (System): Depending on the last system’s dialogue act (apart from
dialogue acts reporting errors), the system can choose to barge-in once it has all the
information needed to provide an answer. Again, it should also wait for the SM.

BARGE_IN_RESP (User): When the user gets familiar with the system, it tends to
predict the system’s dialogue act before the system finishes its sentence. Unlike the pre-
vious phenomena, this one is due the user’s decision. Hence, it has been implemented
in the US: a barge-in point has been manually determined in advance for each system’s
dialogue act template. The following excerpt dialogue illustrates this behaviour:

SYSTEM: Hello. Welcome to...

USER: Add

SYSTEM: Please specify a date.

USER: <noise>

SYSTEM: Sorry, I don’t...

USER: July 7th

SYSTEM: Please specify a time...

USER: From 4pm until 6pm

SYSTEM: Sorry, this time window is already...

USER: Yes

SYSTEM: Please specify a date.

118

7.2. Incremental strategies

7.2.2 Experiments

In this experiment, the TTP described in Section 7.2.1 are used on the top of the slot-
filling strategies introduced in Section 7.1.1. Incremental processing is more useful
when the user makes long utterances. This is not the case in the SysIni strategy where
her utterances are very short. Therefore, incremental behaviours have only been added
to UsrIni and MixIni to form two new strategies: UsrIni+Incr and MixIni+Incr. The
associated performances are depicted in Figure 7.2.

0 0.06 0.12 0.18 0.24 0.3
60

90

120

150

180

210

240

WER

M
ea

n
d

u
ra

ti
o

n
(s

ec
)

UsrIni
MixIni

UsrIni+Incr
MixIni+Incr

0 0.06 0.12 0.18 0.24 0.3
0.5

0.6

0.7

0.8

0.9

1

WER

M
ea

n
ta

sk
co

m
p

le
ti

o
n

ra
ti

o
UsrIni
MixIni

UsrIni+Incr
MixIni+Incr

Figure 7.2: Mean dialogue duration and task completion for aggregated strategies.

0 0.06 0.12 0.18 0.24 0.3
75

90

120

150

180

210

240

WER

T
T

P
D

u
ra

ti
o

n
(s

ec
)

MixIni

FAIL_RAW

INCOHERENCE_INTERP

FEEDBACK_RAW

BARGE_IN_RESP (System)

BARGE_IN_RESP (User)

0 0.06 0.12 0.18 0.24 0.3
0.6

0.7

0.8

0.9

1

WER

T
T

P
T

as
k

co
m

p
le

ti
o

n
ra

ti
o

MixIni

FAIL_RAW

INCOHERENCE_INTERP

FEEDBACK_RAW

BARGE_IN_RESP (System)

BARGE_IN_RESP (User)

Figure 7.3: Mean dialogue duration and task completion for different turn-taking phenomena.

Adding mixed initiative behaviour or incrementality to UsrIni are both ways to im-
prove its robustness to errors. Figure 7.2 shows that incrementality is more efficient.
Most importantly, it is shown that MixIni and incremental behaviour can be combined
to form the best strategy.

As already mentioned in Chapter 3, the main objective of the TTP taxonomy is to
break human dialogue turn-taking into small pieces in order to get a better under-
standing of it. To illustrate this approach, a deeper look is taken at MixIni+Incr by iso-
lating its different components3: FAIL_RAW, INCOHERENCE_INTERP, FEEDBACK,

3One of the advantages of the Scheduler approach is that the different TTP are implemented as inde-

119

Chapter 7. Handcrafted strategies for improving dialogue efficiency

0 0.06 0.12 0.18 0.24 0.3
90

120

150

180

210

WER

T
T

P
D

u
ra

ti
o

n
(s

ec
)

MixIni
INCOHERENCE_INTERP

0 0.06 0.12 0.18 0.24 0.3
0.8

0.9

1

WER

T
T

P
T

as
k

co
m

p
le

ti
o

n
ra

ti
o

MixIni
INCOHERENCE_INTERP

Figure 7.4: INCOHERENCE_INTERP evaluated in a more adapted task

BARGE_IN_RESP (User) and BARGE_IN_RESP (System). The results reported in Fig-
ure 7.3 show that FEEDBACK contributes the most to improve the baseline followed by
BARGE_IN_RESP (User) and FAIL_RAW. INCOHERENCE_INTERP and BARGE_IN
_RESP (System) seem to have no effect. This is due to the fact that in general, to detect
an incoherence, one must wait until the end of the utterance (same requirement for de-
tecting all the information needed to barge-in and provide an answer). One might argue
that in some cases, the US tries to refer to a non existing event (in the case of a MODIFY
or DELETE action), therefore triggering an incoherence. However, as stated before, the
service is able to recognise an existing event even if only a prefix of its description is
recognised. As a consequence, INCOHERENCE_INTERP is rarely triggered before the
end of a request. Therefore, another scenario where that situation occurs more often
has been tested: the US has to try several time window alternatives to add an event
and only the fifth one is free. The results are shown in Figure 7.4: this time, INCOHER-
ENCE_INTERP has a visible added value.

This experiment raises an important point when it comes to studying efficiency in
task oriented dialogues as far as turn-taking mechanisms are concerned. The nature of
dialogue is very diverse, therefore, results and the following conclusions (whatever the
chosen metric is) should not be given separately from the nature of the task at hand. In
the previous example, INCOHERENCE_INTERP is shown to have no impact in some
kind of situations but it brings some improvement in other situations. Another exam-
ple is the feedback which is more likely to improve the baseline when open slots are
involved and especially long ones like this is the case in message dictation for example
(Send mom a message telling her that...) whereas it may have very limited impact in a train
booking dialogue for example, where only constrained slots come into play. It is one of
the motivations behind adopting a data-driven approach, so that the Scheduler figures
out by itself what are the appropriate behaviours given the situation at hand.

pendent decision makers that can easily be combined to form the aggregated strategies, but that can also
be isolated and analysed separately.

120

7.2. Incremental strategies

So far, a handcrafted turn-taking strategy has been implemented in the simulated
environment introduced in Chapter 6 along with several slot-filling strategies. These
first results show that there is room for dialogue efficiency improvement by enhancing
the system’s turn-taking capabilities. In the following, this handcrafted strategy is im-
proved using reinforcement learning and the results are validated in a live study with
real users.

121

Chapter 7. Handcrafted strategies for improving dialogue efficiency

122

Chapter 8

Reinforcement learning for
turn-taking optimisation

The experiments led in Chapter 7 showed that implementing incremental strategies in
the Scheduler can improve dialogue efficiency. However, this approach requires the
designer to handcraft the strategies most of the time in an empirical way. She has to
come up with rules that are adapted to the type of the task at hand and to manually
tune parameters. Moreover, the result is not guaranteed to be optimal.

In this chapter, a new approach is proposed where the Scheduler automatically
learns optimal turn-taking behaviours through interactions (published as (Khouzaimi
et al., 2015b)). Reinforcement learning is applied in order to make decisions at the
micro-turn level based on a new state representation model. A new simulation experi-
ment shows that the resulting strategy outperforms the handcrafted one from Chapter
7.

Turn-taking is most of the time locally optimised using supervised learning (Raux
and Eskenazi, 2009; Meena et al., 2013). The different moments when a participant
takes the floor (either interrupting the initial speaker or not) are treated independently.
By using reinforcement learning, no such assumption is made and it is possible to learn
different turn-taking behaviours according to the dialogue advancement. Moreover, the
purpose of such studies is to minimise gaps and overlaps. However, even though this
objective function is justified (Sacks et al., 1974), nothing proves that it leads to optimal
dialogues in every situation. Again, using reinforcement learning makes it possible to
avoid this second assuption too. Finally, it is also well adapted to learning from delayed
rewards which is interesting here since the dialogue quality is only available at the end
of the dialogue (or at the end of independent dialogue episodes like it is the case here).

123

Chapter 8. Reinforcement learning for turn-taking optimisation

8.1 Reinforcement learning Model

8.1.1 Background

This section recalls a few elements about reinforcement learning and MDPs (see Chap-
ter 2 for more details). The Scheduler will be modeled as an MDP: a tuple (S ,A, T , R, γ)
where

• S is the state space: all the states in which the agent could be.

• A is the action space: all the actions that it can perform.

• T is the transition model: the distributions over the state space where the random
variable is the next state s� ∈ S given that the agent is currently in state s ∈ S and
performs action a ∈ A.

• R is the reward model: the distributions over R where the random variable is
the immediate reward r ∈ R given that the agent is currently at state s ∈ S and
performs action a ∈ A.

• γ is a discount factor in [0, 1[. The more it is close to 1, the more the agent is
farsighted (maximising long term returns).

The time step at which the Scheduler is run is the micro-turn. Therefore, at each
new micro-turn, the Scheduler computes the current state and then makes a decision
(which action to perform). As discussed in Chapter 2, the state space representation
is a challenge in itself since it should embed all the necessary information while being
tractable. In the next section, a new state representation adapted to incremental pro-
cessing is introduced. It is general enough so that it can be easily implemented for any
slot-filling task.

8.1.2 State representation

At each new micro-turn µTk,U
i , the following features are used to describe the system

state (an interaction example where the features’ values are given is provided rightafter
in Table 8.1):

• SYSTEM_REQ: During the user dialogue turn Tk,U , the system is requiring a
particular information. For instance, after an open question, it is waiting for all
the slot values to be provided at once but it can also be waiting for a specific slot
value or a response to a confirmation. This feature refers to the information that
it is waiting for during Tk,U . It can take 6 different values1 in the personal agenda
management domain:

– General prompt: What can I do for you?

1The dialogue act Done. Would you like to perform other actions? is not a possible value since it is consid-
ered as a transition and not a part of the learning episode. For this specific dialogue turn, the Scheduler
always choses to WAIT.

124

8.1. Reinforcement learning Model

– Description question: Please specify a description.

– Date question: Please specify a date.

– Time window question: Please specify a time window.

– Description confirmation: You said <description> right?

– Confirmation: Ok. So you want to add the event <event>. Is that right?

• LAST_INCR_RESP: As described in Chapter 4, the Scheduler stores the last re-
sponse it gets from the service at each micro-turn. It is used as a second feature
which can take 11 different values, the 6 values possible for SYSTEM_REQ and
the five ones listed below:

– Conflict: Sorry. The time window <date> <time window> is already taken by the
event <event>. What can I do for you?

– Misunderstanding: Sorry I don’t understand.

– Yes or no misunderstanding: Sorry I don’t understand. Please answer this ques-
tion by saying yes or no.

– Not existing event: Sorry, the event <event> does not exist. What can I do for
you?

– Other operations: Done. Would you like to perform other actions?

The reason why this feature and SYSTEM_REQ have different values possible
even though they represent the same dialogue acts is that a single dialogue act can
be viewed differently. For example, the system response Sorry. The time window
<date> <time window> is already taken by the event <event>. What can I do for you? is
a conflict declaration from the LAST_INCR_RESP point of view but it is an open
question when viewed as a SYSTEM_REQ. Moreover, when the system declares a
misunderstanding, SYSTEM_REQ does not change (the system is still waiting for
the same information). LAST_INCR_RESP represents the reaction that the system
would have if interrupted at each micro-turn.

• NB_USER_WORDS: This feature is a counter of the number of words since the
last change of LAST_INCR_RESP (the number of words since the Service did not
change its mind about the response to deliver). It is equal to zero at the exact
micro-turn when the change happens and it is incremented until the next change.

• NORMALISED_SCORE: At each micro-turn, the ASR score is updated: most of
the time, it is multiplied by the ASR score corresponding to the new incoming
word (see Figure 6.3). Except from the cases where a boost comes into play, the
score keeps decreasing as the user speaks. To avoid penalising long sentences, the
score is normalised by taking the geometric mean over the words (this induces a
bias since the number of inputs that forms the current ASR hypothesis may not be
exactly the number of words because of the Scrambler’s additions and deletions).

If s is the current score for n number of words, NORMALISED_SCORE = s
1
n .

125

Chapter 8. Reinforcement learning for turn-taking optimisation

• TIME: Corresponds to the duration of the current episode in milliseconds.

It is noteworthy that the only domain-related features are SYSTEM_REQ and
LAST_INCR_RESP, therefore, in order to transpose this method to another domain, one
should only provide the list of alternatives for both features. This is due to the fact that,
instead of directly analysing the current partial utterance at each micro-turn, only the
response it generates once fed to the Service is taken into account, and this is proven
here to be a sufficient information.

A linear model is used to represent the Q-function (Sutton and Barto, 1998). First, it
has been noticed that 21 combinations between SYSTEM_REQ and LAST_INCR_RESP
are frequently visited (the others barely happen or not at all). Therefore, 21 features
are defined δ1,...,δ21 where δi = 1 if and only if the current state corresponds to the ith

combination, and 0 otherwise. The rare combinations are not included in the model
since they require maintaining heavier models with no real improvements over the
simpler ones.

The Q-function should clearly not be monotonous with respect to NB_USER_WORDS
since the user should not be interrupted too soon nor too late. It should be maximal
around some value, therefore, the Q-function should not be linear with respect to that
feature. Instead, NB_USER_WORDS is represented by three RBF functions φnw

1 , φnw
2

and φnw
3 centered in 0, 5 and 10 with a standard deviation of 2, 3 and 3. In other words

φnw
i = exp

�

(NB_USER_WORDS − µi)
2

2σ2
i

�

(8.1)

µ1 = 0, µ2 = 5, , µ3 = 10

σ1 = 2, σ2 = 3, σ3 = 3

These values are empirical but they give more flexibility for the model to approach
the true Q-function. Similarly, NORMALISED_SCORE is also represented using two
RBF functions φns

1 and φns
2 centered in 0.25 and 0.75 and with a standard deviation of

0.3 for both.

Finally, TIME is normalised so that it is near zero at the beginning of the episode and
around 1 when the duration reaches 6 minutes (the maximum duration due to patience
limit):

T = sigmoid

�

TIME − 180

60

�

(8.2)

There is no need to use RBFs for this last feature since the Q-function is supposed to
be monotonous with respect to it. The longer the dialogue, the more likely the user is
to hang up.

Therefore, the dialogue state is represented by the following vector

126

8.1. Reinforcement learning Model

T
u

rn
o

r
U

tt
er

an
ce

(w
it

h
sc

o
re

fo
r

u
se

r)
S

Y
S

T
E

M
_R

E
Q

L
A

S
T

_I
N

C
R

_R
E

S
P

N
B

_U
S

E
R

_W
O

R
D

S
N

O
R

M
A

L
IS

E
D

_S
C

O
R

E
T

IM
E

S
ch

ed
u

le
r’

s

m
ic

ro
-t

u
rn

ac
ti

o
n

T
1,

S
W

h
at

ca
n

I
d

o
fo

r
y

o
u

?

µ
T

1,
U

1
[0

.9
4]

I
O

p
en

q
u

es
ti

o
n

M
is

u
n

d
er

st
an

d
in

g
0

0,
94

30
0

W
A

IT

µ
T

1,
U

2
[0

.9
2]

I
w

o
u

ld
O

p
en

q
u

es
ti

o
n

M
is

u
n

d
er

st
an

d
in

g
1

0,
96

60
0

W
A

IT

µ
T

1,
U

3
[0

.8
1]

I
w

o
u

ld
li

k
e

O
p

en
q

u
es

ti
o

n
M

is
u

n
d

er
st

an
d

in
g

2
0,

93
90

0
W

A
IT

µ
T

1,
U

4
[0

.7
9]

I
w

o
u

ld
li

k
e

to
O

p
en

q
u

es
ti

o
n

M
is

u
n

d
er

st
an

d
in

g
3

0,
94

12
00

W
A

IT

µ
T

1,
U

5
[0

.6
5]

I
w

o
u

ld
li

k
e

to
ad

d
O

p
en

q
u

es
ti

o
n

D
at

e
q

u
es

ti
o

n
0

0,
92

15
00

W
A

IT

µ
T

1,
U

6
[0

.6
1]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
O

p
en

q
u

es
ti

o
n

D
at

e
q

u
es

ti
o

n
1

0,
92

18
00

W
A

IT

µ
T

1,
U

7
[0

.5
2]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

O
p

en
q

u
es

ti
o

n
D

at
e

q
u

es
ti

o
n

3
0,

91
21

00
W

A
IT

µ
T

1,
U

8
[0

.5
0]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

b
ir

th
d

ay
O

p
en

q
u

es
ti

o
n

D
at

e
q

u
es

ti
o

n
4

0,
92

24
00

W
A

IT

µ
T

1,
U

9
[0

.4
8]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

b
ir

th
d

ay
O

p
en

q
u

es
ti

o
n

D
at

e
q

u
es

ti
o

n
5

0,
92

27
00

W
A

IT

p
ar

ty

µ
T

1,
U

10
[0

.4
7]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

b
ir

th
d

ay
O

p
en

q
u

es
ti

o
n

D
at

e
q

u
es

ti
o

n
6

0,
93

30
00

W
A

IT

p
ar

ty
o

n

µ
T

1,
U

11
[0

.4
5]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

b
ir

th
d

ay
O

p
en

q
u

es
ti

o
n

D
at

e
q

u
es

ti
o

n
7

0,
93

33
00

W
A

IT

p
ar

ty
o

n
Ja

n
u

ar
y

µ
T

1,
U

12
[0

.2
2]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

b
ir

th
d

ay
O

p
en

q
u

es
ti

o
n

T
im

e
w

in
d

o
w

q
u

es
ti

o
n

0
0,

88
36

00
W

A
IT

p
ar

ty
o

n
Ja

n
u

ar
y

6
th

µ
T

1,
U

13
[0

.1
7]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

b
ir

th
d

ay
O

p
en

q
u

es
ti

o
n

T
im

e
w

in
d

o
w

q
u

es
ti

o
n

1
0,

87
39

00
W

A
IT

p
ar

ty
o

n
Ja

n
u

ar
y

6
th

fr
o

m

µ
T

1,
U

14
[0

.1
5]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

b
ir

th
d

ay
O

p
en

q
u

es
ti

o
n

T
im

e
w

in
d

o
w

q
u

es
ti

o
n

2
0,

87
42

00
W

A
IT

p
ar

ty
o

n
Ja

n
u

ar
y

6
th

fr
o

m
8p

m

µ
T

1,
U

15
[0

.1
5]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

b
ir

th
d

ay
O

p
en

q
u

es
ti

o
n

T
im

e
w

in
d

o
w

q
u

es
ti

o
n

3
0,

88
45

00
W

A
IT

p
ar

ty
o

n
Ja

n
u

ar
y

6
th

fr
o

m
8p

m
u

n
ti

l

µ
T

1,
U

16
[0

.1
1]

I
w

o
u

ld
li

k
e

to
ad

d
th

e
ev

en
t

b
ir

th
d

ay
O

p
en

q
u

es
ti

o
n

C
o

n
fl

ic
t

0
0,

87
48

00
S

P
E

A
K

p
ar

ty
o

n
Ja

n
u

ar
y

6
th

fr
o

m
8p

m
u

n
ti

l
11

p
m

T
2,

S
S

o
rr

y.
T

h
e

ti
m

e
w

in
d

o
w

o
n

Ja
n

u
ar

y
6

th

fr
o

m
8p

m
u

n
ti

l
11

p
m

is
al

re
ad

y

ta
k

en
b

y
th

e
ev

en
t

w
ri

ti
n

g
es

sa
y

th
at

is
p

la
n

n
ed

o
n

Ja
n

u
ar

y
6

th
fr

o
m

8p
m

u
n

ti
l

12
am

.
W

h
at

ca
n

I
d

o
fo

r
y

o
u

?

T
a

b
le

8
.1

:
D

ia
lo

gu
e

ex
am

pl
e

w
it

h
st

at
e

re
pr

es
en

ta
ti

on
fe

at
u

re
s’

va
lu

es
.

127

Chapter 8. Reinforcement learning for turn-taking optimisation

Φ(s) = [1, δ1, δ2, δ3, φnw
1 , φnw

2 , φnw
3 , φns

1 , φns
2 , T] (8.3)

8.1.3 Actions, rewards and episodes

The system can perform the action WAIT and the action SPEAK (see Chapter 7 for a
description of these actions). The action REPEAT, which consists on repeating the last
word of the last stable utterance (with no intention of interrupting the user), introduces
more complexity to the system for the following reasons:

• When performing a feedback, the speaker is not interrupted (total overlap) and
therefore, in the case of a right feedback (repeating the true word that the user
uttered), there is no visible impact on the dialogue duration. As a consequence,
in simulation mode, the optimal strategy would be to perform feedbacks all the
time which is of course not acceptable in real dialogue.

• Determining whether the user actually agreed with the feedback content and con-
tinued his sentence or whether he spotted an error and tried to correct it is a
complicated problem in itself. The FEEDBACK_RAW strategy implementation in
Chapter 7 used the simple assumption that if the user’s next word after the feed-
back is not a no, it means that the feedback content is confirmed. This is of course
an approximation that is aimed to make a first assessment of the potential of the
corresponding TTP but it is not always the case in real dialogue.

• The way user’s might react to a feedback is not certain. They might interpret such
a behaviour as an interruption which is not the desired effect.

As a consequence, the action REPEAT is not addressed here.

At each micro-turn, the system receives a reward −∆t which corresponds to the
opposite of the time elapsed since the micro-turn before. Moreover, there are two re-
warding situations where the system gets a reward of 150 (the reward the Scheduler
gets when an elementary task - see Chapter 5 - is completed):

• The system takes the floor to confirm that the task corresponding to the user’s re-
quests has been accomplished. Happens when the user says yes to a confirmation
question like in the following dialogue:

SYSTEM: Ok. So you want to add the event birthday party on January 6th

from 8pm until 11pm. Is that right?

USER: Yes.

SYSTEM: Ok, done. Is there anything else I can do for you?

• The system takes the floor to declare a conflict, for example: Sorry. The time win-
dow on March 3rd from 2pm until 5pm is not available since the event dentist is scheduled
on March 3rd from 2pm until 3pm. Even though the task has not been accomplished,

128

8.1. Reinforcement learning Model

the system has successfully done its job (all the information slots have been suc-
cessfully gathered and a response has been computed, even though an incoher-
ence is reported).

An episode is a portion of a dialogue that starts with an open question (where the
user is supposed to utter a complete request with all the necessary slot values) and ends
with either a new open question or a user hang up (open questions due to confirmation
failures do not start a new episode).

8.1.4 Fitted-Q Value Iteration

Fitted-Q iteration (Richard Bellman, 1959) has already been successfully applied to di-
alogue management in the traditional sense (Chandramohan et al., 2010). Here it is
applied to the problem of turn-taking2. Recall that the Bellman optimality equation
states that

Q∗(s, a) = E[R(s, a, s�) + γ max
a�

Q∗(s, a�)|s, a] (8.4)

Q∗ = T∗Q∗ (8.5)

The operator T∗ is a contraction (Bellman, 1957). As a consequence, there is a way
to estimate it in an iterative way: Value Iteration (Banach theorem). Each new iteration
is linked to the previous one as follows:

Qi = T∗Qi−1 (8.6)

However, an exact representation of the Q-function is assumed which is not possible
in the present case since the state space is infinite. Discretisation of continuous variables
is generally a poor option since it implies arbitrary choices of granularity and phase.
Also, it does not solve the curse of dimensionality (and may even make it worse). A
classical solution consists in using a linear representation of the Q-function:

Q̂(s, a) = θ(a)TΦ(s) (8.7)

where θ(a) is a parameter vector associated with action a. The aim of Fitted-Q algo-
rithm is to estimate the parameters that approximate the Q-function Q∗ best. Q̂ is the
projection of Q on the space of the functions that can be written as a linear combination
of the state vector’s components. Let Π be the corresponding projection operator, then

2Q-Learning has been tried at first but it learnt poorly (it needs very important amount of data to
converge). This is coherent with previous literature (Lemon et al., 2006). In (Daubigney et al., 2013),
Fitted-Q has been shown to perform better.

129

Chapter 8. Reinforcement learning for turn-taking optimisation

it can be shown that ΠT∗ is still a contraction and admits a unique fixed point that can
be iteratively computed as follows: Q̂θi(a) = ΠT∗Q̂θi−1(a) for each action a. Since the
transition probabilities of the MDP and the reward function are not known, a sampled
operator T̂ is used instead of T. For a transition (sj, aj, rj, s�j), it is defined as

T̂Q(sj, aj) = rj + γ max
a�

Q(s�j, a�) (8.8)

The Fitted-Q algorithm therefore estimates the θ vector using the iteration rule:
Q̂θi(a) = T̂Q̂θi−1(a) for each action a. To compute the projection, the least square esti-
mator is used:

θi(a) = argmin
θ∈Rp

N

∑
j=1

�

rj + γ max
a

[θi−1(a)Tφ(s�j)]− θ(aj)
Tφ(sj)

�2
(8.9)

where N is the number of transitions in the data batch. This is a classic least square
optimisation and θi can be computed as follows (since the matrix inversion does not
depend on i, it has to be performed only once):

θi(a) =

�

N

∑
j=1

φ(sj)
Tφ(sj)

�−1
N

∑
j=1

φ(sj)
�

rj + γ max
a

θi−1(a)Tφ(sj)
�

(8.10)

8.2 Experiment

8.2.1 Setup

The dialogue scenarios described in Chapter 7 are used here. During learning, the noise
level is fixed at 0.15. 50 parallel runs have been produced with 3000 episodes each
and the average curve is depicted in Figure 8.1. The θ parameters in the Q-function
model are initiated to zeros and updated every 500 episodes, therefore, the learnt strat-
egy reward evolution is representation by one average point in the middle of each 500
episodes interval. There are three phases to distinguish:

1. Pure exploration (Episodes 0-500): The actions are taken randomly with a prob-
ability of 0.9 for choosing WAIT and 0.1 for SPEAK. Picking equiprobable actions
results in the user being interrupted so often that the interesting scenarios are
very rarely explored.

2. Exploration/exploitation (Episodes 500-2500): An �-greedy policy is used with
respect to the current Q-function, with � = 0.1 (unlike the previous phase, when
a random action is picked, the actions WAIT and SPEAK are equiprobable).

3. Pure exploitation (Episodes 2500-3000): A 100% greedy policy is used.

130

8.2. Experiment

100 500 1,000 1,500 2,000 2,500 3,000
95

100

105

110

115

120

Number of episodes

R
ew

ar
d

Non Incremental
Incremental Baseline

Incremental RL

Figure 8.1: Learning curve (0-500: pure exploration, 500-2500: exploration/exploitation, 2500-
3000: pure exploitation) with WER= 0.15.

0 0.06 0.12 0.18 0.24 0.3
60

90

120

150

180

210

240

WER

M
ea

n
d

u
ra

ti
o

n
(s

ec
)

Non Incremental
Incremental Baseline

Incremental RL

0 0.06 0.12 0.18 0.24 0.3
0.5

0.6

0.7

0.8

0.9

1

WER

M
ea

n
ta

sk
co

m
p

le
ti

o
n

ra
ti

o

Non Incremental
Incremental Baseline

Incremental RL

Figure 8.2: Mean dialogue duration and task for the non-incremental, the baseline incremental and
the RL incremental (after convergence) strategies under different noise conditions.

131

Chapter 8. Reinforcement learning for turn-taking optimisation

8.2.2 Results

Three different strategies are compared:

• Non-incremental baseline: It corresponds to the MixIni strategy defined in Chap-
ter 7. The user is asked to provide all the information necessary to execute her
request and when there are still missing slots, the corresponding values are asked
for one after another.

• Incremental baseline: MixIni+Incr from Chapter 7 is selected as an incremental
baseline. It is identical to the non-incremental baseline with the difference that it
is enhanced with handcrafted turn-taking rules defined in Chapter 7.

• Incremental RL: It corresponds to the turn-taking strategy learned with reinforce-
ment learning on top of the MixIni strategy for dialogue management.

Like in Chapter 7, these strategies are compared under different levels of noise. The
non-incremental and the incremental baselines have already been compared in Chapter
7. In Figure 8.2, they are also compared to the new automatically learnt strategy. The
differences becomes clearer as the WER increases. For WER=0.3, the non-incremental
baseline reaches 3 minutes, the incremental baseline goes 10 seconds faster and the
incremental RL still improves it by an additional 20 seconds (17% gain in total). In terms
of task completion, the non-incremental baseline drops under 70%, the incremental
baseline shows a performance of 73% whereas the incremental RL keeps the ratio at a
level of 80%.

As a consequence, the reinforcement learning based strategy has been proven to im-
prove the dialogue efficiency, even better than the handcrafted baseline. The proposed
model was able to automatically learn optimal turn-taking decisions directly from in-
teractions. In the next chapter, an experiment involving real users is run in order to
validate these results.

132

Chapter 9

Experiment with real users

In spite of the efforts that have been made in order to approximate human-machine
dialogue through simulation, there are still many complex behaviours and subtleties
that could not be replicated. In this chapter the simulation results are tested with real
users in a real dialogue setup as a validation (Khouzaimi et al., 2016b). In the following,
the interaction domain is presented then the experimental protocol is described. Finally,
the result experiments are depicted and discussed.

9.1 The Majordomo domain

The prototype used for the experiment (called Majordomo) has been implemented as
a part of the VoiceHome1 project at Orange Labs. This project is aimed at exploring
the new opportunities that the use of the vocal modality to communicate with a smart
home can bring. For that reason and in order to show that the methodology presented
in this thesis is not domain dependent, this new task has been used for experiments
instead of the agenda management task (event though they are somehow quite similar).

Majordomo is able to schedule a set of tasks during a specific time window. These
tasks are depicted in Table 9.1.

However some tasks cannot be run simultaneously (in Table 9.1, the second column
shows which tasks cannot be scheduled at the same time as the one in the first column).
For example:

• The lawn cannot be mowed while watered.

• The heating cannot be activated when the windows are open.

• The swimming pool cannot be warmed and cleaned at the same time.

• When the calm mode is activated, no hoovering nor laundry are allowed.

1FUI project.

133

Chapter 9. Experiment with real users

Task Conflicting tasks
Alarm Laundry, Hoover

Heating Open windows, Air conditioning
Open windows Heating, Air conditioning
Absence mode Open windows

Laundry Alarm, Calm mode
Air conditioning Heating, Open windows

Swimming pool warming Swimming pool cleaning
Swimming pool cleaning Swimming pool warming

Calm mode Laundry, Hoover, Mow lawn
Mow lawn Water lawn
Water lawn Mow lawn

Record channel 1 Record channel 2, Record channel 3
Record channel 2 Record channel 1, Record channel 3
Record channel 3 Record channel 1, Record channel 2

Hoover Alarm, Calm mode
Run bath

Table 9.1: Majordomo tasks

This is a slot-filling task where the user is supposed to provide the following infor-
mation: the action type (ADD, MODIFY or DELETE), the task (see the list above), the
date and the time window.

9.2 Experimental protocol

9.2.1 Implementation

The Client (interface to the users) has been developed in the form of a website where
the users are supposed to read a few instructions before starting to interact with the
system. Google ASR has been chosen since it is a powerful off-the-shelf solution that
does not require to develop any acoustic nor language model, which is costly and not in
the focus of this work. It also has a powerful named entity recognition engine (NER, see
(Ben Jannet et al., 2015)) and it is able to provide incremental partial results. However,
it is still not able to provide the partial confidence scores (only the confidence score at
the end of the utterance is computed).

The implementation of the Service is similar to the personal agenda management
case described in the previous chapters. The only difference is that home tasks are ma-
nipulated instead of events. Therefore, an open slot has been replaced with a slot where
only a few alternatives are possible. Moreover, in the personal agenda management do-
main, no events can overlap whereas in the Majordomo domain some tasks can be run
at the same time as others and others cannot. This is encoded in a compatibility matrix
provided to the Service.

As far as the Scheduler is concerned, similarly to the strategies developed in the sim-
ulation case, a handcrafted (version presented in Chapter 7, with no FEEDBACK_RAW)
as well as a reinforcement learning strategy have been implemented. The reinforcement

134

9.2. Experimental protocol

learning strategy has been learnt in simulation (the US has also been ported to the new
domain) and tested directly with real users. Since Google ASR does not provide the
confidence scores incrementally, this feature has been removed from the model. Finally,
when transitioning from simulation to the real word, there is no need to estimate timing
from the number of words, therefore, real timestamps have been taken into account.

9.2.2 Conduct of the dialogue

Once the user decides to start a dialogue, the system displays the interface depicted in
Figure 9.1. A small briefing paragraph explains the task to accomplish which is also
synthesised in the form of a table. Ten different scenarios were designed and one of
them was picked randomly at each new interaction. Similarly, the dialogue strategy is
also picked randomly: the user can interact with the non-incremental strategy, with the
handcrafted incremental or the reinforcement learning incremental strategy, but she is
not aware which one is used for each dialogue.

When ready, the user clicks on the Start button. During the interaction, the ASR is
always on so the Client is always listening except in the system barges-in, in which case
it is disabled for two seconds. This is necessary in order to make the system take the
floor, otherwise, it will be immediately interrupted before the user even realises that
there is an intervention.

After the interaction, either the user ends the dialogue normally by saying Goodbye
or hangs up by clicking on the Hang up button.

9.2.3 Key Performance Indicators

In order to evaluate the three turn-taking strategies, dialogue duration and task com-
pletion have been computed (the tasks scheduled by the Majordomo are logged at the
end of the dialogue). In addition, the users filled a survey at the end of each dialogue
where they provided the following subjective Key Performance Indicators (KPIs) on
Lickert scales:

• Reactivity: The users are asked whether they found the system reactive or not.
There are 6 possible answers going from 1 (not reactive at all, very slow) to 6 (very
reactive).

• Reactivity impact: The system’s reactivity does not necessarily improve the dia-
logue quality since it can be perceived as too intrusive. The objective of this metric
is to assess the impact associated with the reactivity through 6 possible values go-
ing from 1 (very negative, hurts the dialogue quality) to 6 (very positive, significant
improvement of the dialogue quality).

• Realism: The users are asked whether the system acts like a human operator.
There are 6 possible answers going from 1 (no, not at all) to 6 (yes, clearly).

135

Chapter 9. Experiment with real users

Figure 9.1: The Majordomo interface

136

9.3. Results and discussion

• Efficiency: The users are asked to assess the dialogue efficiency by selecting one
of the 6 possible answers, going from 1 (very bad) to 6 (very good).

• Global quality: The users are asked how they globally appreciated the dialogue
on a scale from 1 (Very unpleasant experience) to 6 (Very enjoyable experience).

• Potential user: Finally, the users are also asked whether they would use the Ma-
jordomo at home (if it was a real commercialised product) on a scale from 1 (clearly
not) to 4 (absolutely).

9.3 Results and discussion

206 dialogues have been collected with the collaboration of 47 volunteer users (from Or-
ange Labs, LIA and personal network). 65 dialogues were run using the non-incremental
strategy (None), 65 using the handcrafted strategy (Handcrafted) and 76 using the rein-
forcement learning one (RL). The experiment results are depicted in Table 9.2.

Category KPI None Handcrafted RL

Objective
Duration (sec) 94.7 89.6 90.6

Task completion 0.60 0.63 0.75

Subjective

Reactivity 4.31 4.57 4.62
Reactivity quality 4.38 4.25 4.36
Human-likeness 3.63 3.66 3.74

Efficiency 4.22 4.20 4.36
Global quality 4.06 4.18 4.20
Potential use 2.66 2.68 2.82

Table 9.2: Global dialogue evaluation metrics

As far as the mean dialogue duration is concerned, the incremental strategies slightly
improve the dialogue duration (even though this is not statistically significant). At a
first glance, this improvement can be viewed as an obvious result since by construction,
incremental strategies are more reactive. Nevertheless, the user can also be interrupted
before she has provided all the information that she wanted which complicates the di-
alogue and makes it last longer like it is the case in the experiment led in (Ghigi et al.,
2014). Therefore, this result shows that the Majordomo successfully interrupted the
user on average. However, there is no visible change when comparing the Handcrafted
and the RL strategy.

The task completion ratio, on the other hand, has been significantly2 improved by
the RL strategy compared to None (by 15% with p = 0.030). Moreover, an important
difference has been reported between RL and Handcrafted (12%) even though it is not

2All the p-values are computed according to the Welch t-test since the number of samples is important
enough for the means to be considered as following a normal distribution (and since it is more powerful
than non-parametric tests). A binomial proportions test has also been run for task completion, leading to
very similar p-values.

137

Chapter 9. Experiment with real users

exactly statistically significant (p = 0.065). Finally, Handcrafted shows a minor improve-
ment over None (3%) with no statistical significance (p = 0.36). The Majordomo task
requires a certain level of engagement and focus in order to keep track of all what has
been accomplished so far, while keeping the final objective in mind. When interact-
ing with a reactive system that takes the floor in an intelligent way (to correct errors
hence fixing desynchronisations, to deliver a response when all the information has
been provided...) without overwhelming the user, the latter feels more engaged in the
conversation thus accomplishing the task more efficiently, even when a certain cog-
nitive load is involved. Another impact of such strategy as reported in (Ghigi et al.,
2014) is that when the users realise that they can be interrupted in case of a problem,
they tend to provide more concise and focused answers, which reduces the risk of a
misunderstanding.

The subjective metrics are the noisier ones. Therefore, except from the Reactivity
KPI where RL significantly improves it in comparison with None (p = 0.048), the other
p-values are above 0.05. Nevertheless, generally speaking, the metrics tend to favour
the RL strategy.

KPI None Handcrafted RL

Latency (ms) 1545 ± 61 1303 ± 78 588 ± 59
FC ratio No barge-in 0.31 ± 0.091 0.068 ± 0.023

Table 9.3: Local dialogue evaluation metrics

To complete this study, more local metrics have been investigated: the latency and
the false cut-in ratio. The latency is the mean delay involved in each human to machine
floor transition3 (549 transitions for None, 542 for Handcrafted and 727 for RL) whereas
the false cut-in ratio refers to the proportion over all the SPEAK decisions (Handcrafted :
99, RL : 456) of the ones where the system should have waited longer before taking the
floor (manually annotated). The results are reported in Table 9.3 (all the differences are
statistically significant with p < 0.000001). The Handcrafted strategy reduces the latency
by 200ms compared to None, however, it interrupts the user too soon one third of the
time thus being too aggressive. On the other hand, RL reduces the latency by 1 second
while maintaining a more reasonable false cut-in ratio. As a consequence, RL takes
more risk since it chooses to SPEAK more often and when it does, it is better managed
(significantly less frequent false cut-ins).

9.4 Discussion

In comparison with previous work (see Chapters 1 and 2), this is the first direct applica-
tion of reinforcement learning to turn-taking management in an incremental dialogue
system that is evaluated in real conditions. In many previous studies, an indirect way

3Estimated as the delay between the moment when the Scheduler delivers the last message and the mo-
ment when it received the last ASR output. Computing the real latency requires a Voice Activity Detection
(VAD) module in the Client which could slow it down.

138

9.4. Discussion

of testing dialogue strategies is used: controlled dialogue acts (Aist et al., 2007), a pos-
teriori evaluation using recordings of interactions (Meena et al., 2013), a posteriori com-
parison with human decision corpus (Jonsdottir et al., 2008; Dethlefs et al., 2012), etc...
As it is said in (Aist et al., 2007), the objective is to minimize variance due to extraneous fac-
tors such as interspeaker variability, acoustic noise, and so forth and concentrate specifically on
the difference between incremental processing and its nonincremental counterpart. However,
the price to pay to reduce variance is a certain bias due to the fact that the experiment
is not run in real conditions.

Some papers use handcrafted strategies (Raux and Eskenazi, 2009; Ghigi et al., 2014),
some collect annotated corpora on which they run supervised learning algorithms (Meena
et al., 2013) and others propose reinforcement learning based strategies (Jonsdottir et al.,
2008; Selfridge and Heeman, 2010; Dethlefs et al., 2012). However, to our knowledge,
live studies only fit in the first two categories and no purely autonomous system using
reinforcement learning has been tested with real users and directly evaluated by them,
in real dialogue conditions. More generally, previous work related to incremental di-
alogue processing and turn-taking optimisation can be split into two categories given
the metrics that are involved:

• Local metrics: These studies are based on the principle introduced in (Sacks et al.,
1974) and saying that gaps and overlaps should be minimised in order to achieve
smooth turn-taking. As a consequence, local metrics where only floor transitions
are considered are used, mainly the latency and the false cut-in ratio (Jonsdottir
et al., 2008; Raux and Eskenazi, 2012).

• Global metrics: Considering the overall dialogue quality can also be a way of
evaluating turn-taking strategies (Selfridge and Heeman, 2010; Ghigi et al., 2014).
Such an approach has the advantage of not having to make any assumption about
what would make the dialogue more appealing for the user. However, the metrics
involved are more difficult to measure since they are noisier.

In this thesis, global metrics were used for training then both global and local met-
rics were evaluated. Interestingly, it is shown that by optimising global KPIs, local ones
turn out to be improved as well. Finally, even though it has been shown that interrupt-
ing the user can hurt its opinion on the system in some cases (Hirasawa et al., 1999), the
results described above show that when it is done at the right moment, the system is
stignificantly more efficient while being judged slightly better from a subjective point
of view.

139

Chapter 9. Experiment with real users

140

Conclusion and future work

Viewed as a whole, the several contributions made in this thesis constitute a thorough
methodology to enhance turn-taking capabilities of spoken dialogue systems. First,
turn-taking mechanisms involved in human conversation are analysed which led to
the establishment of a new turn-taking phenomena taxonomy. Compared to existing
classifications in the literature, new analysis dimensions where the meaning behind the
dialogue participants’ behaviours, as well as the motivations behind them, are consid-
ered. This leads to a more fine-grained taxonomy which is relevant from the human-
machine dialogue point of view. In addition, this constitutes the starting point from
which the turn-taking phenomena that are the more likely to improve the dialogue ef-
ficiency are chosen.

An incremental dialogue system can be built from scratch using an incremental ver-
sion of each component in the dialogue chain. In this thesis, an alternative approach
is proposed: a dialogue system is split into a Client and a Service part, then a new
module, called the Scheduler, is inserted between the two. This new interface plays
the role of a turn-taking manager and makes the set {Scheduler+Service} behaves like
an incremental system from the Client’s point of view. Two advantages are associated
with this new approach: first, it makes it possible to transform an existing traditional
dialogue system into an incremental one at a low cost and second, the traditional dia-
logue management part is clearly separated from the turn-taking management one and
can be kept almost unchanged.

Based on this new architecture, an incremental dialogue simulator, unique of its
kind, has been implemented. It is able to generate dialogues in a personal agenda
management domain. A User Simulator, coupled with an ASR Output Simulator that
replicates ASR imprefections and instability, sends incremental requests to the Sched-
uler which decides when to take the floor to provide a response. A first simulation
study where several slot-filling strategies along with two turn-taking strategies (non-
incremental and handcrafted incremental) showed that the mixed-initiative one along
with incremental processing achieves the best performance in terms of dialogue dura-
tion and task completion.

Since handcrafting turn-taking strategies requires the designers to empirically set all
the parameters and doing so for each new condition (task, language, etc.), this approach
is not guaranteed to be optimal while requiring important labour and time resources.
On the other hand, data-driven techniques make it possible to build optimal strate-

141

Chapter 9. Experiment with real users

gies at lower costs. In the field of human-machine dialogue, reinforcement learning
has been proven to be particularly useful since no annotation effort is required (unlike
supervised techniques) and it is able to learn from delayed rewards (thus making it
possible to take the whole dialogue quality as a reward function). In this thesis, a new
reinforcement learning turn-taking strategy is proposed and trained using the previ-
ous dialogue simulator. In simulation, it has been shown to reduce dialogue duration
while improving the task completion ratio when compared to the non-incremental and
the handcrafted incremental baselines.

Finally, the previous strategies have been transposed to a new domain, the Mar-
jordomo, then they have been tested through real users interactions. The handcrafted
and the reinforcement learning strategies slightly reduce the dialogue duration, but the
latter significantly improves the task completion ratio (by 15% compared to the non-
incremental strategy). Also, compared with the handcrafted strategy, the data-driven
one takes more risk by deciding to speak before a user silence (hence significantly re-
ducing the response latency) while maintaining a low false cut-in rate of 6.8% instead
of 31%.

To conclude, from a general point of view, this thesis provides new evidence show-
ing the potential of incremental dialogue processing. More particularly, it goes a step
further by showing that optimal turn-taking can be learnt automatically during the in-
teractions. Also, the proposed architecture and the generality of the feature used for
learning makes it possible to easily transfer this work to any domain and to bootstrap
from existing dialogue systems.

During the course of this thesis, two questions were also tackled but due to time
constraints, they are still under investigation and there is still work to be done in order
to hopefully come up with interesting results. These questions are:

• How to adapt the exploration/exploitation mechanism in reinforcement learning
to the case of incremental processing?

• How to learn both optimal dialogue management and optimal turn-taking deci-
sions at the same time?

Exploration/exploitation: The exploration/exploitation dilemma in reinforcement learn-
ing is a research problem in itself. Inspired by the multi-armed bandit literature, the
most simple and naive approaches are �-greedy and Boltzmann exploration (Softmax)
(Sutton and Barto, 1998) (some other simple approaches also exist in the literature but
they are less used and they are based on similar ideas). A new approach (initially
proposed to solve the multi-armed bandit problem) called Upper Confidence Bound
(UCB) (Auer et al., 2002) is also frequently used since it improves the convergence rate.
This algorithm has also inspired other algorithms which are more adapted to reinforce-
ment learning like UCRL (Auer and Ortner, 2006). Nevertheless, incremental process-
ing raises a new challenge which is not tackled in existing approaches: in this case, the
optimal policy is not balanced when it comes to the number of times each action has
to be chosen. The action which consists in doing nothing (called WAIT in this thesis)

142

9.4. Discussion

and wait for further information coming from the ASR should be picked the majority of
the time. Therefore, incremental processing involves long episodes where the system
should perform one action most of the time and rarely pick an alternative action. As a
consequence, during the exploration process using existing methods, the agent rarely
performs the right decisions at the right time. Therefore, there is a need to come up
with a more adapted and more efficient way to deal with the exploration/exploitation
dilemma in this case. In Chapter 8, an �-greedy policy with a bias in favour of the WAIT
action has been proven to be successful in this case. However, there is no guarantee that
this is the optimal way to proceed and more importantly, it is likely that this method
would perform poorly if the micro-turn duration is increasing (imagine a setup with a
new micro-turn every millisecond). To investigate this problem, two ideas have been
proposed during this thesis:

• SMDP-based approach: Semi-Markov Decision Processes (SMDPs) (Bradtke and
Duff, 1994) are different from conventional MDPs in the sense that time is contin-
uous and the time interval between two decisions is not constant (the instants in
which the agent is asked to make decisions is defined by a separate process). This
is an interesting framework when it comes to incremental dialogue processing
and the idea is to cast the Scheduler as an SMDP that is asked to make decisions at
specific instants (the rest of the time, it is always picking the WAIT action). Most
of the time, when the WAIT action is picked, the state associated with the next
micro-turn is very similar to the state associated with the current state. There-
fore, the agent will be asked to make decisions only when the state varies in a
significant way or in other words, when the state variation given a specific met-
ric reaches a certain threshold. The investigated method tries to learn an optimal
value for this threshold in an online fashion.

• DPS-based approach: Direct Policy Search (DPS) consists in using classical op-
timisation methods directly over the policy space unlike conventional reinforce-
ment learning algorithms where a Q-function is computed and then the policy is
derived from it. The advantage of such methods is that they naturally embed the
mechanism described in the previous point: when two states are similar, a policy
is most likely to associate the same action to both of them.

DM-Scheduler co-learning: The approach depicted in Chapter 8 assumes that the
dialogue manager (in the Service) has a constant behaviour. However, a very active re-
search thread proposed many methods where this module is constantly improving its
decisions mostly using reinforcement learning. Considering that, a natural and legiti-
mate question comes into play: is it possible for both the turn-taking manager and the
conventional dialogue manager to simultaneously learn optimal behaviours from in-
teractions. Such a study can benefit from the large existing literature about multi-agent
collaborative learning (Claus and Boutilier, 1998; Panait and Luke, 2005; Vogel et al.,
2013).

143

Chapter 9. Experiment with real users

144

List of Figures

1.1 The dialogue chain . 30
1.2 A 5-Best example corresponding to the sentence “I would like to book a

flight from New-York to Los Angeles”. 31

2.1 The interaction cycle between the agent and the environment in rein-
forcement learning . 43

4.1 The Scheduler: an interface between the client and the service 76
4.2 Time sharing in traditional settings . 77
4.3 Time sharing in incremental settings . 77
4.4 Incremental request processing with the Scheduler: the conditions on the

left side trigger the Client to send partial requests 78
4.5 The incremental version of the CFAsT project. The traditional view is

represented on the left and the new incremental one is depicted on the left. 80

5.1 Slot-filling strategies efficiency comparison (ns = 5) 94

6.1 Simulated environment architecture . 100
6.2 ASR score sampling distribution (σcon f = 1) 103
6.3 An illustration of the incremental ASR output N-Best update (BF=0.2) . 105

7.1 Simulated mean duration (left) and dialogue task completion (right) for
different noise levels . 116

7.2 Mean dialogue duration and task completion for aggregated strategies. . 119
7.3 Mean dialogue duration and task completion for different turn-taking

phenomena. 119
7.4 INCOHERENCE_INTERP evaluated in a more adapted task 120

8.1 Learning curve (0-500: pure exploration, 500-2500: exploration/exploitation,
2500-3000: pure exploitation) with WER= 0.15. 131

8.2 Mean dialogue duration and task for the non-incremental, the baseline
incremental and the RL incremental (after convergence) strategies under
different noise conditions. 131

9.1 The Majordomo interface . 136

145

List of Figures

146

List of Tables

1.1 Example of incremental NLU processing 35

3.1 Taxonomy labels . 59
3.2 Turn-taking phenomena taxonomy. The rows/columns correspond to

the levels of information added by the floor holder/taker. 60
3.3 Taxonomy labels (1/3) . 68
3.4 Taxonomy labels (2/3) . 69
3.5 Taxonomy labels (3/3) . 70

4.1 A double context: the real context and the simulation context. 78
4.2 Available features for dialogue systems given the way they integrate in-

crementality . 85

6.1 NLU rules types . 107
6.2 User simulator and ASR output simulator values 109

7.1 The three scenarios used in the simulation 116

8.1 Dialogue example with state representation features’ values. 127

9.1 Majordomo tasks . 134
9.2 Global dialogue evaluation metrics . 137
9.3 Local dialogue evaluation metrics . 138

147

List of Tables

148

Bibliography

(Aist et al., 2007) G. Aist, J. Allen, E. Campana, C. G. Gallo, S. Stoness, M. Swift, and
M. K. Tanenhaus, 2007. Incremental understanding in human-computer dialogue
and experimental evidence for advantages over nonincremental methods. In Pro-
ceedings of the 11th Workshop on the Semantics and Pragmatics of Dialogue.

(Anand and Kahn, 1992) T. Anand and G. S. Kahn, 1992. Making sense of gigabytes:
A system for knowledge-based market analysis. In Proceedings of Innovative Appli-
cations of Artificial Intelligence (IAAI).

(Arnold et al., 2000) J. E. Arnold, J. G. Eisenband, S. Brown-Schmidt, and J. C.
Trueswell, 2000. The rapid use of gender information: evidence of the time course of
pronoun resolution from eyetracking. Cognition 76(1), B13–B26.

(Asri et al., 2016) L. E. Asri, B. PIOT, M. Geist, R. Laroche, and O. Pietquin, 2016. Score-
based inverse reinforcement learning. In Proceedings of International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2016).

(Auer et al., 2002) P. Auer, N. Cesa-Bianchi, and P. Fischer, 2002. Finite-time analysis
of the multiarmed bandit problem. Machine Learning Journal 47(2-3), 235–256.

(Auer and Ortner, 2005) P. Auer and R. Ortner, 2005. Online-regret bounds for a new
reinforcement-learning algorithm. In Proceedings of 1st Austrian Cognitive Vision
Workshop.

(Auer and Ortner, 2006) P. Auer and R. Ortner, 2006. Logarithmic online regret bounds
for undiscounted reinforcement learning. In Proceedings of Advances in Neural Infor-
mation Processing Systems (NIPS).

(Austin, 1962) J. Austin, 1962. How to Do Things with Words. Oxford University Press.

(Barlier et al., 2015) M. Barlier, R. Laroche, and O. Pietquin, 2015. Human-machine
dialogue as a stochastic game. In Proceedings of the 16th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (SIGDIAL).

(Barto and Mahadevan, 2003) A. G. Barto and S. Mahadevan, 2003. Recent advances
in hierarchical reinforcement learning. Discrete Event Dynamic Systems 13, 41–77.

149

Bibliography

(Baumann, 2008) T. Baumann, 2008. Simulating spoken dialogue with a focus on real-
istic turn-taking. In Proceedings of the 5th International Workshop on Constraints and
Language Processing (CSLP).

(Baumann, 2014) T. Baumann, 2014. Partial representations improve the prosody of
incremental speech synthesis. In Proceedings of Interspeech.

(Baumann and Schlangen, 2011) T. Baumann and D. Schlangen, 2011. Evaluation and
optimisation of incremental processors. Dialogue and Discourse 2, 113–141.

(Baumann and Schlangen, 2013) T. Baumann and D. Schlangen, 2013. Open-ended,
extensible system utterances are preferred, even if they require filled pauses. In Pro-
ceedings of the 14th Annual Meeting of the Special Interest Group on Discourse and Dia-
logue (SIGDIAL).

(Beattie, 1982) G. Beattie, 1982. Turn-taking and interruption in political interviews:
Margaret thatcher and jim callaghan compared and contrasted. Semiotica 39, 93–114.

(Bellman, 1957) R. Bellman, 1957. Dynamic Programming. Princeton University Press.

(Ben Jannet et al., 2015) M. A. Ben Jannet, O. Galibert, M. Adda-Decker, and S. Rosset,
2015. How to evaluate asr errors impact on ner? In Proceedings of Errors by Humans
and Machines in Multimedia, Multimodal, Multilingual Data Processing (ERRARE).

(Bengio et al., 2003) Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, 2003. A neural
probabilistic language model. The Journal of Machine Learning Research 3, 1137–1155.

(Berry and Fristedt, 1985) D. A. Berry and B. Fristedt, 1985. Bandit problems : sequential
allocation of experiments. Chapman and Hall London.

(Bradtke and Duff, 1994) S. J. Bradtke and M. O. Duff, 1994. Reinforcement learning
methods for continuous-time markov decision problems. In Proceedings of Advances
in Neural Information Processing Systems (NIPS).

(Bratman, 1987) M. Bratman, 1987. Intention, plans, and practical reason. Harvard Uni-
versity Press.

(Bratman et al., 1988) M. E. Bratman, D. J. Israel, and M. E. Pollack, 1988. Plans and
resource-bounded practical reasoning. Computational Intelligence 4, 349–355.

(Breslin et al., 2013) C. Breslin, M. Gasic, M. Henderson, D. Kim, M. Szummer,
B. Thomson, P. Tsiakoulis, and S. Young, 2013. Continuous asr for flexible incre-
mental dialogue. In Proceedings of ICASSP, 8362–8366.

(Bretier et al., 2010) P. Bretier, R. Laroche, and G. Putois, 2010. D5.3.4: Industrial self-
help system ("system 3") apdapted to final architecture. Prototype D5.3.4, CLASSIC
Project.

(Bubeck and Cesa-Bianchi, 2012) S. Bubeck and N. Cesa-Bianchi, 2012. Regret analysis
of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends
in Machine Learning 5, 1–122.

150

Bibliography

(Chandramohan et al., 2011) S. Chandramohan, M. Geist, F. Lefèvre, and O. Pietquin,
2011. User simulation in dialogue systems using inverse reinforcement learning. In
Proceedings of INTERSPEECH.

(Chandramohan et al., 2012a) S. Chandramohan, M. Geist, F. Lefèvre, and O. Pietquin,
2012a. Behavior specific user simulation in spoken dialogue systems. In Proceedings
of Speech Communication; 10th ITG Symposium, 1–4. VDE.

(Chandramohan et al., 2012b) S. Chandramohan, M. Geist, F. Lefèvre, and O. Pietquin,
2012b. Clustering behaviors of spoken dialogue systems users. In Proceedings of
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on,
4981–4984. IEEE.

(Chandramohan et al., 2010) S. Chandramohan, M. Geist, and O. Pietquin, 2010. Op-
timizing spoken dialogue management with fitted value iteration. In Proceedings of
INTERSPEECH 11th Annual Conference of the International Speech.

(Chao and Thomaz, 2012) C. Chao and A. L. Thomaz, 2012. Timing in multimodal
turn-taking interactions: Control and analysis using timed petri nets. Journal of
Human-Robot Interaction.

(Clark, 1996) H. H. Clark, 1996. Using Language. Cambridge University Press.

(Claus and Boutilier, 1998) C. Claus and C. Boutilier, 1998. The dynamics of reinforce-
ment learning in cooperative multiagent systems. In Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial In-
telligence, AAAI ’98/IAAI ’98.

(Cohen and Levesque, 1990) P. R. Cohen and H. J. Levesque, 1990. Persistence, inten-
tion, and commitment. In Proceedings of Intentions in Communication.

(Collobert et al., 2011) R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. P. Kuksa, 2011. Natural language processing (almost) from scratch.
CoRR abs/1103.0398.

(Cuayáhuitl et al., 2015) H. Cuayáhuitl, S. Keizer, and O. Lemon, 2015. Strategic dia-
logue management via deep reinforcement learning. In Proceedings of NIPS Work-
shop on Deep Reinforcement Learning.

(Cuayáhuitl et al., 2007) H. Cuayáhuitl, S. Renals, O. Lemon, and H. Shimodaira, 2007.
Hierarchical dialogue optimization using semi-markov decision processes. In Pro-
ceedings of Interspeech.

(Daubigney et al., 2013) L. Daubigney, M. Geist, and O. Pietquin, 2013. Model-free
pomdp optimisation of tutoring systems with echo-state networks. In Proceedings
of the 14th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIG-
DIAL).

151

Bibliography

(Deng et al., 2013) L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer,
G. Zweig, X. He, J. Williams, Y. Gong, and A. Acero, 2013. Recent advances in deep
learning for speech research at microsoft. In Proceedings of IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP).

(Dethlefs et al., 2012) N. Dethlefs, H. W. Hastie, V. Rieser, and O. Lemon, 2012. Opti-
mising incremental dialogue decisions using information density for interactive sys-
tems. In Proceedings of EMNLP-CoNLL.

(Doya, 2007) K. Doya, 2007. Reinforcement learning: Computational theory and bio-
logical mechanisms. HFSP journal 1, 30–40.

(Dudley, 1939) H. Dudley, 1939. The vocoder. Bell Labs Record 17, 122–126.

(Duncan, 1972) S. Duncan, 1972. Some signals and rules for taking speaking turns in
conversations. Journal of Personality and Social Psychology 23, 283–292.

(Dybkjaer et al., 2004) L. Dybkjaer, N. O. Bernsen, and W. Minker, 2004. Evaluation
and usability of multimodal spoken language dialogue systems. In Proceedings of
Speech Communications, 33–54.

(Eberhard et al., 1995) K. Eberhard, M. Spivey-Knowlton, J. Sedivy, and M. Tanenhaus,
1995. Eye movements as a window into real-time spoken language comprehension
in natural contexts. Journal of Psycholinguistic Research 24(6), 409–436.

(Eckert et al., 1997) W. Eckert, E. Levin, and R. Pieraccini, 1997. User modeling for
spoken dialogue system evaluation. In Proceedings of Automatic Speech Recognition
and Understanding.

(Edlund et al., 2008) J. Edlund, J. Gustafson, M. Heldner, and A. Hjalmarsson, 2008.
Towards human-like spoken dialogue systems. Speech Communication 50, 630–645.

(Ekeinhor-Komi et al., 2014) T. Ekeinhor-Komi, H. Falih, C. Chardenon, R. Laroche,
and F. Lefèvre, 2014. Un assistant vocal personnalisable. In Proceedings of the 21st
Conf/’erence sur le Traitement Automatique des Langues Naturelles (TALN).

(El Asri et al., 2014) L. El Asri, H. Khouzaimi, R. Laroche, and O. Pietquin, 2014. Ordi-
nal regression for interaction quality prediction. In Proceedings of Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Conference on.

(El Asri and Laroche, 2013) L. El Asri and R. Laroche, 2013. Will my spoken dialogue
system be a slow learner ? In Proceedings of the 14th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (SIGDIAL).

(El Asri et al., 2012) L. El Asri, R. Laroche, and O. Pietquin, 2012. Reward function
learning for dialogue management. In Proceedings of STAIRS.

(El Asri et al., 2014) L. El Asri, R. Laroche, and O. Pietquin, 2014. DINASTI: Dialogues
with a Negotiating Appointment Setting Interface. In Proceedings of Proc. of LREC .

152

Bibliography

(El Asri et al., 2016) L. El Asri, R. Laroche, and O. Pietquin, 2016. Compact and in-
terpretable dialogue state representation with genetic sparse distributed memory. In
Proceedings of International Workshop Series on Spoken Dialogue Systems Technology
(IWSDS).

(El Asri et al., 2014) L. El Asri, R. Lemonnier, R. Laroche, O. Pietquin, and H. Khouza-
imi, 2014. NASTIA: Negotiating Appointment Setting Interface. In Proceedings of
LREC.

(Evanini et al., 2008) K. Evanini, P. Hunter, J. Liscombe, D. Suendermann,
K. Dayanidhi, and R. Pieraccini, 2008. Caller experience: A method for evaluat-
ing dialog systems and its automatic prediction. In Proceedings of Spoken Language
Technology Workshop, 2008. SLT 2008. IEEE.

(Ferguson and Allen, 2007) G. Ferguson and J. F. Allen, 2007. Mixed-initiative systems
for collaborative problem solving. AI Magazine 28.

(Ferreira et al., 2015a) E. Ferreira, B. Jabaian, and F. Lefèvre, 2015a. Online adapta-
tive zero-shot learning spoken language understanding using word-embedding. In
Proceedings of ICASSP.

(Ferreira et al., 2015b) E. Ferreira, B. Jabaian, and F. Lefèvre, 2015b. Zero-shot semantic
parser for spoken language understanding. In Proceedings of INTERSPEECH.

(Ferreira and Lefèvre, 2013) E. Ferreira and F. Lefèvre, 2013. Social signal and user
adaptation in reinforcement learning-based dialogue management. In Proceedings
of MLIS.

(Ferreira and Lefèvre, 2015) E. Ferreira and F. Lefèvre, 2015. Reinforcement-learning
based dialogue system for human–robot interactions with socially-inspired rewards.
Computer Speech & Language 34(1), 256–274.

(Ferreira et al., 2015c) E. Ferreira, G. Milliez, F. Lefèvre, and R. Alami, 2015c. Users’ be-
lief awareness in reinforcement learning-based situated human-robot dialogue man-
agement. In Proceedings of IWSDS.

(Ferreira et al., 2016) E. Ferreira, A. Reiffers-Masson, B. Jabaian, and F. Lefèvre, 2016.
Adversarial bandit for online interactive active learning of zero-shot spoken lan-
guage understanding. In Proceedings of IEEE International Conference on Acoustics
Speech and Signal Processing.

(Fink et al., 1998) G. A. Fink, C. Schillo, F. Kummert, and G. Sagerer, 1998. Incremental
speech recognition for multimodal interfaces. In Proceedings of IECON.

(Gales and Young, 2007) M. Gales and S. Young, 2007. The application of hidden
markov models in speech recognition. Found. Trends Signal Process. 1.

(Galibert et al., 2005) O. Galibert, G. Illouz, and S. Rosset, 2005. An open-domain,
human-computer dialog system. In Proceedings of INTERSPEECH.

153

Bibliography

(Gasic et al., 2013) M. Gasic, C. Breslin, M. Henderson, D. Kim, M. Szummer, B. Thom-
son, P. Tsiakoulis, and S. Young, 2013. Pomdp-based dialogue manager adaptation
to extended domains. In Proceedings of the 14th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL).

(Gelin et al., 2010) R. Gelin, C. d’Alessandro, Q. A. Le, O. Deroo, J.-C. Doukhan, Davi-
dand Martin, C. Pelachaud, A. Rilliard, and S. Rosset, 2010. Towards a storytelling
humanoid robot. In Proceedings of Workshop "Dialog with Robots", AAAI Fall Sympo-
sium.

(Ghigi et al., 2014) F. Ghigi, M. Eskenazi, M. I. Torres, and S. Lee, 2014. Incremen-
tal dialog processing in a task-oriented dialog. In Proceedings of Fifteenth Annual
Conference of the International Speech Communication Association.

(Gravano and Hirschberg, 2011) A. Gravano and J. Hirschberg, 2011. Turn-taking cues
in task-oriented dialogue. Comput. Speech Lang. 25(3), 601–634.

(Hahn et al., 2010) S. Hahn, M. Dinarelli, C. Raymond, F. Lefèvre, P. Lehnen, R. De
Mori, A. Moschitti, H. Ney, and G. Riccardi, 2010. Comparing stochastic approaches
to spoken language understanding in multiple languages. IEEE TASLP 19(6), 1569–
1583.

(Hastie et al., 2013) H. Hastie, M.-A. Aufaure, P. Alexopoulos, H. Cuayáhuitl, N. Deth-
lefs, M. Gasic, J. Henderson, O. Lemon, X. Liu, P. Mika, N. Ben Mustapha, V. Rieser,
B. Thomson, P. Tsiakoulis, and Y. Vanrompay, 2013. Demonstration of the parlance
system: a data-driven incremental, spoken dialogue system for interactive search. In
Proceedings of the 14th Annual Meeting of the Special Interest Group on Discourse and
Dialogue (SIGDIAL).

(Hirasawa et al., 1999) J. Hirasawa, M. Nakano, T. Kawabata, and K. Aikawa, 1999.
Effects of system barge-in responses on user impressions. In Proceedings of EU-
ROSPEECH.

(Hone and Graham, 2000) K. S. Hone and R. Graham, 2000. Towards a tool for the sub-
jective assessment of speech system interfaces (sassi). Natural Language Engineering 6,
287–303.

(Huet et al., 2013) S. Huet, E. Manishina, and F. Lefèvre, 2013. Factored machine
translation systems for russian-english. the Eighth Workshop on Statistical Machine
Translation, 152–155.

(Ilkin and Sturt, 2011) Z. Ilkin and P. Sturt, 2011. Active prediction of syntactic infor-
mation during sentence processing. Dialogue and Discourse 2, 35–58.

(Israel and Mitchell, 1978) J. E. Israel and J. G. Mitchell, 1978. Separating data from
function in a distributed file system. In Proceedings of Second International Symposium
on Operating Systems Theory and Practice.

154

Bibliography

(Jabaian et al., 2013) B. Jabaian, L. Besacier, and F. Lefèvre, 2013. Comparison and
combination of lightly supervised approaches for language portability of a spoken
language understanding system. Audio, Speech, and Language Processing, IEEE Trans-
actions on 21(3), 636–648.

(Jabaian et al., 2016) B. Jabaian, F. Lefèvre, and L. Besacier, 2016. A unified framework
for translation and understanding allowing discriminative joint decoding for multi-
lingual speech semantic interpretation. Computer Speech & Language 35, 185–199.

(Jaffe and Feldstein, 1970) J. Jaffe and S. Feldstein, 1970. Rhythms of dialogue. Academic
Press New York.

(Jiang, 2005) H. Jiang, 2005. Confidence measures for speech recognition: A survey.
Speech communication 45, 455–470.

(Johnston et al., 2014) M. Johnston, J. Chen, P. Ehlen, H. Jung, J. Lieske, A. Reddy,
E. Selfridge, S. Stoyanchev, B. Vasilieff, and J. Wilpon, 2014. Mva: The multimodal
virtual assistant. In Proceedings of the 15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue (SIGDIAL).

(Jonsdottir et al., 2008) G. R. Jonsdottir, K. R. Thorisson, and E. Nivel, 2008. Learning
smooth, human-like turntaking in realtime dialogue. In Proceedings of Intelligent
Virtual Agents (IVA 08, 162–175. Springer.

(Jordan et al., 2015) P. Jordan, P. Albacete, and S. Katz, 2015. Exploring the effects
of redundancy within a tutorial dialogue system: Restating students’ responses. In
Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and
Dialogue (SIGDIAL).

(Khouzaimi et al., 2014a) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2014a. Dictanum
: système de dialogue incrémental pour la dictée de numéros. In Proceedings of the
TALN 2014 Conference.

(Khouzaimi et al., 2014b) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2014b. An easy
method to make dialogue systems incremental. In Proceedings of the 15th Annual
Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL).

(Khouzaimi et al., 2015a) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2015a. Dialogue
efficiency evaluation of turn-taking phenomena in a multi-layer incremental simu-
lated environment. In Proceedings of the HCI International 2015 Conference.

(Khouzaimi et al., 2015b) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2015b. Optimising
turn-taking strategies with reinforcement learning. In Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL).

(Khouzaimi et al., 2015c) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2015c. Turn-taking
phenomena in incremental dialogue systems. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP).

155

Bibliography

(Khouzaimi et al., 2016a) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2016a. Incremental
human-machine dialogue simulation. In Proceedings of the International Workshop on
Spoken Dialogue Systems (IWSDS).

(Khouzaimi et al., 2016b) H. Khouzaimi, R. Laroche, and F. Lefèvre, 2016b. Reinforce-
ment learning for turn-taking management in incremental spoken dialogue systems.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI).

(Kilger and Finkler, 1995) A. Kilger and W. Finkler, 1995. Incremental generation for
real-time applications. Rapport technique, German Research Center for Artificial
Intelligence.

(Kim and Banchs, 2014) S. Kim and R. E. Banchs, 2014. Sequential labeling for tracking
dynamic dialog states. In Proceedings of the 15th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL).

(Konolige and Pollack, 1993) K. Konolige and M. E. Pollack, 1993. A representationalist
theory of intention. In Proceedings of the 13th International Joint Conference on Artifical
Intelligence (IJCAI).

(Lamel et al., 2000) L. Lamel, S. Rosset, J.-L. Gauvain, S. Bennacef, M. Garnier-Rizet,
and B. Prouts, 2000. The LIMSI ARISE System. Speech Communication 31(4), 339–354.

(Laroche, 2010) R. Laroche, 2010. Raisonnement sur les incertitudes et apprentissage pour
les systemes de dialogue conventionnels. Phd Thesis, Paris VI University.

(Laroche, 2014) R. Laroche, 2014. CFAsT : Content Finder AssistanT. In Proceedings
of the 21st Conférence sur le Traitement Automatique des Langues Naturelles (TALN).

(Laroche, 2015) R. Laroche, 2015. Content finder assistant. In Proceedings of the 18th
International Conference on Intelligence in Next Generation Networks (ICIN).

(Laroche et al., 2008) R. Laroche, B. Bouchon-Meunier, and P. Bretier, 2008. Uncer-
tainty management in dialogue systems. In Proceedings of European Conference on
Information Processing and Management of Uncertainty in Knowledge-Based Systems.

(Laroche et al., 2011) R. Laroche, G. Putois, P. Bretier, M. Aranguren, J. Velkovska,
H. Hastie, S. Keizer, K. Yu, F. Jurcicek, O. Lemon, and S. Young, 2011. D6.4: Final
evaluation of classic towninfo and appointment scheduling systems. Report D6.4,
CLASSIC Project.

(Laroche et al., 2013) R. Laroche, L. Roussarie, P. Baczyk, and J. Dziekan, 2013. Cooking
coach spoken/multimodal dialogue systems. In Proceedings of the IJCAI Workshop
on Cooking with Computers.

(Lefèvre et al., 2012) F. Lefèvre, D. Mostefa, L. Besacier, Y. Estève, M. Quignard,
N. Camelin, B. Favre, B. Jabaian, and L. M. Rojas-Barahona, 2012. Leveraging study
of robustness and portability of spoken language understanding systems across lan-
guages and domains: the portmedia corpora. In Proceedings of the Eight International
Conference on Language Resources and Evaluation (LREC’12).

156

Bibliography

(Lemon et al., 2003) O. Lemon, L. Cavedon, and B. Kelly, 2003. Managing dialogue
interaction: A multi-layered approach. In Proceedings of the 4th SIGDIAL Workshop
on Discourse and Dialogue.

(Lemon et al., 2006) O. Lemon, K. Georgila, J. Henderson, and M. Stuttle, 2006. An isu
dialogue system exhibiting reinforcement learning of dialogue policies: Generic slot-
filling in the talk in-car system. In Proceedings of the 11th Conference of the European
Chapter of the Association for Computational Linguistics, EACL ’06, 119–122.

(Lemon and Pietquin, 2007) O. Lemon and O. Pietquin, 2007. Machine learning for
spoken dialogue systems. In Proceedings of the European Conference on Speech Com-
munication and Technologies (Interspeech’07).

(Levelt, 1989) W. J. M. Levelt, 1989. Speaking: From Intention to Articulation. Cambridge,
MA: MIT Press.

(Levin and Pieraccini, 1997) E. Levin and R. Pieraccini, 1997. A stochastic model of
computer-human interaction for learning dialogue strategies. In Proceedings of In
EUROSPEECH 97.

(Levin et al., 1997) E. Levin, R. Pieraccini, and W. Eckert, 1997. Learning dialogue
strategies within the markov decision process framework. In Proceedings of Au-
tomatic Speech Recognition and Understanding, 1997. Proceedings., 1997 IEEE Workshop
on.

(Lock, 1965) K. Lock, 1965. Structuring programs for multiprogram time-sharing on-
line applications. In Proceedings of AFIPS ’65 (Fall, part I).

(Louis, 2002) V. Louis, 2002. Conception et mise en oeuvre de modèles formels du calcul
de plans d’action complexes par un agent rationnel dialoguant. Phd Thesis, Université de
Caen/Basse-Normandie, France.

(Lu et al., 2011) D. Lu, T. Nishimoto, and N. Minematsu, 2011. Decision of response
timing for incremental speech recognition with reinforcement learning. In Proceed-
ings of ASRU.

(Macherey, 2009) K. Macherey, 2009. Statistical methods in natural language understand-
ing and spoken dialogue systems. Phd Thesis.

(Mairesse et al., 2010) F. Mairesse, M. Gašić, F. Jurčíček, S. Keizer, B. Thomson, K. Yu,
and S. Young, 2010. Phrase-based statistical language generation using graphical
models and active learning. In Proceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, 1552–1561. Association for Computational Linguis-
tics.

(Manishina et al., 2016) E. Manishina, B. Jabaian, S. Huet, and F. Lefèvre, 2016. Auto-
matic corpus extension for data-driven natural language generation. In Proceedings
of the Language Resources and Evaluation Conference (LREC).

157

Bibliography

(Matthias, 2009) G. M. Matthias, 2009. Incremental speech understanding in a multi-
modal web-based spoken dialogue system. Mémoire de Master, Massachusetts Insti-
tute of Technology.

(Mccarthy, 1979) J. Mccarthy, 1979. Ascribing mental qualities to machines. In Pro-
ceedings of Philosophical Perspectives in Artificial Intelligence, 161–195.

(Mccarthy and Hayes, 1969) J. Mccarthy and P. J. Hayes, 1969. Some philosophical
problems from the standpoint of artificial intelligence. In Proceedings of Machine
Intelligence Journal, 463–502.

(McGraw and Gruenstein, 2012) I. McGraw and A. Gruenstein, 2012. Estimating
word-stability during incremental speech recognition. In Proceedings of the INTER-
SPEECH 2012 Conference.

(Meena et al., 2013) R. Meena, G. Skantze, and J. Gustafson, 2013. A data-driven model
for timing feedback in a map task dialogue system. In Proceedings of the 14th Annual
Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL).

(Meyer, 2006) G. Meyer, 2006. Formalisation logique de préférences qualitatives pour la
sélection de la réaction d’un agent rationnel dialoguant. Phd Thesis, Université de Paris
XI.

(Mitchell et al., 2014) M. Mitchell, D. Bohus, and E. Kamar, 2014. Crowdsourcing
language generation templates for dialogue systems. In Proceedings of the INLG and
SIGDIAL 2014 Joint Session.

(Mohamed et al., 2009) A. Mohamed, G. Dahl, and G. Hinton, 2009. Deep belief net-
works for phone recognition. NIPS 22nd workshop on deep learning for speech recogni-
tion.

(Möller et al., 2007) S. Möller, P. Smeele, H. Boland, and J. Krebber, 2007. Evaluating
spoken dialogue systems according to de-facto standards: A case study. Computer
Speech & Language 21, 26–53.

(Mori, 1970) M. Mori, 1970. The uncanny vally. In Proceedings of Energy.

(Newell, 1980) A. Newell, 1980. The knowledge level. AI Magazine 2, 1–20.

(Paek, 2007) T. Paek, 2007. Toward evaluation that leads to best practices: reconciling
dialog evaluation in research and industry. In Proceedings of the Workshop on Bridging
the Gap: Academic and Industrial Research in Dialog Technologies, 40–47. Association for
Computational Linguistics (ACL).

(Paek and Pieraccini, 2008) T. Paek and R. Pieraccini, 2008. Automating spoken dia-
logue management design using machine learning: An industry perspective. Speech
Communication 50, 716–729.

(Pakucs, 2003) B. Pakucs, 2003. Towards dynamic multi-domain dialogue processing.
In Proceedings of 8th European Conference on Speech Communication and Technology,
EUROSPEECH - INTERSPEECH.

158

Bibliography

(Panait and Luke, 2005) L. Panait and S. Luke, 2005. Cooperative multi-agent learning:
The state of the art. Autonomous Agents and Multi-Agent Systems 11, 387–434.

(Pieraccini and Huerta, 2005) R. Pieraccini and J. Huerta, 2005. Where do we go from
here? research and commercial spoken dialog systems. In Proceedings of the 6th
SIGDIAL Workshop on Discourse and Dialogue.

(Pietquin and Beaufort, 2005) O. Pietquin and R. Beaufort, 2005. Comparing asr mod-
eling methods for spoken dialogue simulation and optimal strategy learning. In
Proceedings of 9th European Conference on Speech Communication and Technology (Eu-
rospeech/Interspeech).

(Pietquin and Dutoit, 2006) O. Pietquin and T. Dutoit, 2006. A probabilistic framework
for dialog simulation and optimal strategy learning. IEEE Transactions on Audio,
Speech and Language Processing 14(2), 589–599.

(Pietquin and Hastie, 2013) O. Pietquin and H. Hastie, 2013. A survey on metrics for
the evaluation of user simulations. The Knowledge Engineering Review 28.

(Plátek and Jurčíček, 2014) O. Plátek and F. Jurčíček, 2014. Free on-line speech recog-
niser based on kaldi asr toolkit producing word posterior lattices. In Proceedings
of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIG-
DIAL).

(Potet et al., 2011) M. Potet, R. Rubino, B. Lecouteux, S. Huet, H. Blanchon, L. Besacier,
and F. Lefèvre, 2011. The liga (lig/lia) machine translation system for wmt 2011. In
Proceedings of the Sixth Workshop on Statistical Machine Translation, 440–446. Associ-
ation for Computational Linguistics.

(Povey et al., 2011) D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer,
and K. Vesely, 2011. The kaldi speech recognition toolkit. In Proceedings of IEEE
2011 Workshop on Automatic Speech Recognition and Understanding.

(Putois et al., 2010) G. Putois, R. Laroche, and P. Bretier, 2010. Enhanced monitoring
tools and online dialogue optimisation merged into a new spoken dialogue system
design experience. In Proceedings of the 11h Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL).

(Raux and Eskenazi, 2007) A. Raux and M. Eskenazi, 2007. A multi-layer architecture
for semi-synchronous event-driven dialogue management. In Proceedings of ASRU.

(Raux and Eskenazi, 2008) A. Raux and M. Eskenazi, 2008. Optimizing endpointing
thresholds using dialogue features in a spoken dialogue system. In Proceedings of
the 9th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL).

(Raux and Eskenazi, 2009) A. Raux and M. Eskenazi, 2009. A finite-state turn-taking
model for spoken dialog systems. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics, NAACL ’09, 629–637.

159

Bibliography

(Raux and Eskenazi, 2012) A. Raux and M. Eskenazi, 2012. Optimizing the turn-taking
behavior of task-oriented spoken dialog systems. ACM Transactions on Speech and
Language Processing 9(1), 1:1–1:23.

(Richard Bellman, 1959) S. D. Richard Bellman, 1959. Functional approximations and
dynamic programming. Mathematical Tables and Other Aids to Computation 13, 247–
251.

(Rieser and Lemon, 2011) V. Rieser and O. Lemon, 2011. Learning and evaluation of
dialogue strategies for new applications: Empirical methods for optimization from
small data sets. Computational Linguistics 37, 153–196.

(Rosenthal et al., 2013) S. Rosenthal, D. Bohus, E. Kamar, and E. Horvitz, 2013. Look
versus leap: Computing value of information with high-dimensional streaming ev-
idence. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI).

(Rosset et al., 2013) S. Rosset, D. Luzzati, C. Grouin, I. Vasilescu, M. Adda-Decker,
E. Bilinski, N. Camelin, J. Kahn, C. Lailler, and L. Lamel, 2013. Human annotation of
asr error regions: Is "gravity" a sharable concept for human annotators? In Proceed-
ings of Errors by Humans and Machines in Multimedia, Multimodal, Multilingual Data
Processing (ERRARE).

(Roy et al., 2000) N. Roy, J. Pineau, and S. Thrun, 2000. Spoken dialogue management
using probabilistic reasoning. In Proceedings of Proceedings of the 38th Annual Meeting
on Association for Computational Linguistics (ACL).

(Rubino et al., 2012) R. Rubino, S. Huet, F. Avignon, F. Lefèvre, and G. Linares, 2012.
Statistical post-editing of machine translation for domain adaptation.

(Russell, 1998) S. Russell, 1998. Learning agents for uncertain environments (extended
abstract). In Proceedings of the Eleventh Annual Conference on Computational Learning
Theory.

(Sacks et al., 1974) H. Sacks, E. A. Schegloff, and G. Jefferson, 1974. A simplest system-
atics for the organization of turn-taking for conversation. Language 50, 696–735.

(Sadek, 1991) M. D. Sadek, 1991. Attitudes Mentales et Interaction Rationnelle : vers une
théorie formelle de la Communication. Phd Thesis, Université de Rennes I, France.

(Schatzmann et al., 2007) J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and
S. Young, 2007. Agenda-based user simulation for bootstrapping a pomdp dialogue
system. In Proceedings of Human Language Technologies 2007: The Conference of the
North American Chapter of the Association for Computational Linguistics; Companion Vol-
ume, Short Papers.

(Schatzmann et al., 2006) J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young,
2006. A survey of statistical user simulation techniques for reinforcement-learning of
dialogue management strategies. The Knowledge Engineering Review 21.

160

Bibliography

(Schegloff, 1968) E. A. Schegloff, 1968. Sequencing in conversational openings. Amer-
ican Anthropologist 70, pp. 1075–1095.

(Schlangen and Skantze, 2011) D. Schlangen and G. Skantze, 2011. A general, abstract
model of incremental dialogue processing. Dialogue and Discourse 2, 83–111.

(Schmitt et al., 2012) A. Schmitt, S. Ultes, and W. Minker, 2012. A parameterized and
annotated spoken dialog corpus of the cmu let’s go bus information system. In Pro-
ceedings of the Eight International Conference on Language Resources and Evaluation
(LREC’12).

(Schultz, 1998) W. Schultz, 1998. Predictive reward signal of dopamine neurons. Neu-
rophysiol.

(Schultz et al., 1995) W. Schultz, R. Romo, T. Ljungberg, J. Mirenowicz, J. R. Hollerman,
and A. Dickinson, 1995. Reward-related signals carried by dopamine neurons. In
Proceedings of Models of Information Processing in the Basal Ganglia, 233–248. MIT
Press.

(Searle, 1969) J. Searle, 1969. Speech Acts: An Essay in the Philosophy of Language. Cam-
bridge University Press, UK.

(Searle, 1968) J. R. Searle, 1968. Austin on locutionary and illocutionary acts. The
Philosophical Review.

(Seigel and Woodland, 2011) M. S. Seigel and P. C. Woodland, 2011. Combining infor-
mation sources for confidence estimation with crf models. In Proceedings of INTER-
SPEECH.

(Selfridge and Heeman, 2010) E. Selfridge and P. A. Heeman, 2010. Importance-driven
turn-bidding for spoken dialogue systems. In Proceedings of ACL, 177–185.

(Selfridge et al., 2011) E. O. Selfridge, I. Arizmendi, P. A. Heeman, and J. D. Williams,
2011. Stability and accuracy in incremental speech recognition. In Proceedings of the
12th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL).

(Selfridge et al., 2012) E. O. Selfridge, I. Arizmendi, P. A. Heeman, and J. D. Williams,
2012. Integrating incremental speech recognition and pomdp-based dialogue sys-
tems. In Proceedings of the 13th Annual Meeting of the Special Interest Group on Dis-
course and Dialogue (SIGDIAL).

(Selfridge and Heeman, 2012) E. O. Selfridge and P. A. Heeman, 2012. A temporal sim-
ulator for developing turn-taking methods for spoken dialogue systems. In Proceed-
ings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue
(SIGDIAL).

(Sidner et al., 2013) C. Sidner, T. Bickmore, C. Rich, B. Barry, L. Ring, M. Behrooz,
and M. Shayganfar, 2013. Demonstration of an always-on companion for isolated
older adults. In Proceedings of the 14th Annual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDIAL).

161

Bibliography

(Singh et al., 2002) S. Singh, D. Litman, M. Kearns, and M. Walker, 2002. Optimiz-
ing dialogue management with reinforcement learning: Experiments with the njfun
system. Journal of Artificial Intelligence Research, 105–133.

(Singh et al., 1999) S. P. Singh, M. J. Kearns, D. J. Litman, and M. A. Walker, 1999.
Reinforcement learning for spoken dialogue systems. In Proceedings of Advances in
Neural Information Processing Systems (NIPS).

(Skantze and Johansson, 2015) G. Skantze and M. Johansson, 2015. Modelling situated
human-robot interaction using iristk. In Proceedings of the 16th Annual Meeting of
the Special Interest Group on Discourse and Dialogue (SIGDIAL).

(Skantze and Schlangen, 2009) G. Skantze and D. Schlangen, 2009. Incremental dia-
logue processing in a micro-domain. In Proceedings of ACL.

(Strombergsson et al., 2013) S. Strombergsson, A. Hjalmarsson, J. Edlund, and
D. House, 2013. Timing responses to questions in dialogue. In Proceedings of IN-
TERSPEECH Proceedings.

(Sullivan, 1947) H. Sullivan, 1947. Conceptions of Modern Psychiatry. Norton.

(Sutton and Barto, 1998) R. S. Sutton and A. G. Barto, 1998. Reinforcement Learning, An
Introduction. The MIT Press, Cambridge, Massachusetts, London, England.

(Tabet and Boughazi, 2011) Y. Tabet and M. Boughazi, 2011. Speech synthesis tech-
niques. a survey. In Proceedings of Systems, Signal Processing and their Applications
(WOSSPA), 2011 7th International Workshop on.

(Tanenhaus et al., 1995) M. K. Tanenhaus, M. J. Spivey-Knowlton, K. M. Eberhard, and
J. C. Sedivy, 1995. Integration of visual and linguistic information in spoken language
comprehension. Science 268, 1632–1634.

(Thomson and Young, 2010) B. Thomson and S. J. Young, 2010. Bayesian update of
dialogue state: A POMDP framework for spoken dialogue systems. Computer Speech
& Language 24(4), 562–588.

(Thorndike, 1898) E. L. Thorndike, 1898. Animal intelligence: An experimental study of
the associative processes in animals. Columbia University Press.

(Vogel et al., 2013) A. Vogel, M. Bodoia, C. Potts, and D. Jurafsky, 2013. Emergence of
gricean maxims from multi-agent decision theory. In Proceedings of Conference of the
North American Chapter of the Association of Computational Linguistics (NAACL).

(Walker, 2000) M. Walker, 2000. An application of reinforcement learning to dialogue
strategy selection in a spoken dialogue system for email. Journal of Artificial Intelli-
gence Research 12, 387–416.

(Walker et al., 1997) M. A. Walker, D. J. Litman, C. A. Kamm, and A. Abella, 1997.
Paradise: a framework for evaluating spoken dialogue agents. In Proceedings of the
eighth conference on European chapter of the Association for Computational Linguistics.

162

Bibliography

(Wang et al., 2014) Z. Wang, H. Chen, G. Wang, H. Tian, H. Wu, and H. Wang, 2014.
Policy learning for domain selection in an extensible multi-domain spoken dialogue
system. In Proceedings of the 19th Conference on Empirical Methods in Natural Language
Processing (EMNLP).

(Watkins, 1989) C. J. C. H. Watkins, 1989. Learning from Delayed Rewards. Phd Thesis,
King’s College.

(Wei and Rudnicky, 1999) X. Wei and A. Rudnicky, 1999. n agenda-based dialog man-
agement architecture for spoken language systems. In Proceedings of IEEE ASRU.

(Williams, 2008) J. D. Williams, 2008. The best of both worlds: unifying conventional
dialog systems and pomdps. In Proceedings of INTERSPEECH, 1173–1176.

(Williams and Young, 2007) J. D. Williams and S. Young, 2007. Partially observable
markov decision processes for spoken dialog systems. Computer Speech and Language
Journal.

(Wirén, 1992) M. Wirén, 1992. Studies in Incremental Natural Language Analysis. Phd
Thesis, Linkoping University, Linkoping, Sweden.

(Witt, 2011) S. Witt, 2011. A global experience metric for dialog management in spoken
dialog systems. SemDial.

(Wlodarczak and Wagner, 2013) M. Wlodarczak and P. Wagner, 2013. Effects of talk-
spurt silence boundary thresholds on distribution of gaps and overlaps. In Proceed-
ings of INTERSPEECH.

(Yngve, 1970) V. H. Yngve, 1970. On getting a word in edgewise. In Proceedings of
CLS-70.

(Young et al., 2010) S. Young, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thom-
son, and K. Yu, 2010. The hidden information state model: A practical framework for
pomdp-based spoken dialogue management. Computer Speech and Language 24(2),
150–174.

(Yu et al., 2011) K. Yu, H. Zen, F. Mairesse, and S. Young, 2011. Context adaptive
training with factorized decision trees for hmm-based statistical parametric speech
synthesis. Speech Communication 53(6).

(Yuan et al., 2006) J. Yuan, M. Liberman, and C. Cieri, 2006. Towards an integrated
understanding of speaking rate in conversation. In Proceedings of INTERSPEECH
Proceedings.

(Zhao et al., 2015) T. Zhao, A. W. Black, and M. Eskenazi, 2015. An incremental turn-
taking model with active system barge-in for spoken dialog systems. In Proceedings
of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIG-
DIAL).

163

Bibliography

164

Glossary

Automatic speech recognition (ASR): Module transforming the user’s speech into an
N-Best.

Client: Interface between the user and the system. In the case of spoken dialogue
systems, it contains the ASR and the TTS.

Confidence score: Positive real number associated with an ASR or a NLU output hy-
pothesis. The higher it is, the more likely this hypothesis is the correct one.

Dialogue manager (DM): Module computing the system’s response in the form of
concepts given a user’s request.

Dialogue system: System communicating with users through natural interaction us-
ing natrual language.

Incremental dialogue system: Dialogue systems which are able to process the user’s
speech as it is spoken, before the end of the sentence. They are able to take the floor
while the user is still speaking and inversely, the latter can also do so while the system
is speaking.

Micro-turn: Time interval between two updates of an incremental dialogue system.

N-Best: N ASR or NLU hypotheses that are associated with the N best confidence
scores.

Natural language generation (NLG): Module transforming the concepts computed
by the DM into text.

165

Bibliography

Natural language understanding (NLU): Module transforming the user’s sentences
in text format into concepts understandable by the DM.

Reinforcement learning: Machine learning framework where the learning agent learns
by trial and error while directly interacting with an environment.

Scheduler: Turn-taking management module inserted between the Client and the Ser-
vice. The set {Scheduler+Service} behaves like an incremental dialogue system from the
Client’s point of view.

Service: Backend part of a dialogue system. It contains the DM, it manages the back-
end I/O (database access, etc.) and depending on the architecture, it may also contain
the NLU and/or the NLG.

Spoken dialogue system (SDS): Dialogue system aimed to communicate through
speech. It uses an ASR and a TTS.

Turn-taking phenomenon (TTP): Behaviours and mechanisms through which the
conversation participants take turns in speaking during a conversation.

Text-to-speech (TTS): Module transforming text into a vocal signal. Also called speech
synthesis.

Turn-taking: The act of taking the floor during a conversation.

User simulator (US): System aimed to simulate user behaviours. It makes it possible
to quickly generate important dialogue corpora, which is especially interesting when
building machine learning algorithms.

166

