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INTRODUCTION 

I BACTERIA AND BACTERIOPHAGES 

I.I PSEUDOMONAS AERUGINOSA IS AN OPPORTUNISTIC PATHOGEN 

Pseudomonas aeruginosa is a gram-negative bacterium that can be naturally found in soil and 

water. This bacterium is able to colonize biotic and abiotic surfaces and to naturally resist 

different classes of antimicrobial agents. P. aeruginosa is a member of the normal microbial 

flora in humans. Representative colonization rates for specific sites in humans are up to 2% 

for skin, 3.3% for the nasal mucosa, 6.6% for the throat, and from 2.6 up to 24% for fecal 

samples (Morrison and Wenzel 1984). Generally it does not cause disease in healthy people 

or in people without injury. For instance, when the bacteria enter the lungs of healthy hosts, 

they are cleared rapidly, without the initiation of an inflammatory response, by a variety of 

innate host defense strategies such as mucociliary clearance or by the resident macrophages. 

In contrast to its harmless nature in healthy people and, more generally, in the environment, 

P. aeruginosa is an opportunistic pathogen. It dangerously affects people whose immune 

system is weakened by a disease, such as people with acquired immune deficiency syndrome, 

or burned patients, people with ulcers or intubated in intensive care units, those with 

postoperative infections and patients affected by cystic fibrosis (Bodey, Bolivar et al. 1983). 

Indeed, patients with impaired immunity have higher risks of contracting P. aeruginosa 

nosocomial infection (Morrison and Wenzel 1984). Colonization rates may exceed 50% 

during hospitalization, especially among patients with trauma, cutaneous wounds or breach in 

mucosal barriers due to mechanical ventilation, tracheostomy, catheters, surgery, or severe 

burns (Ohara and Itoh 2003; Thuong, Arvaniti et al. 2003; Erol, Altoparlak et al. 2004). 

Nosocomial infections, contracted from the environment or staff of a healthcare facility (by 
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contaminated equipment, bed linens, or air droplets), can be spread in the hospital 

environment, nursing home environment, rehabilitation facility, clinic or other clinical 

settings. Disruption of the normal microbial flora as a result of antimicrobial therapy has also 

been shown to increase colonization by P. aeruginosa (Takesue, Yokoyama et al. 2002). 

P. aeruginosa can establish two forms of interaction with its host: acute and chronic infection 

(Furukawa, Kuchma et al. 2006). Acute infections include acute pneumonia in hospitalized 

and, in particular, mechanically ventilated patients, skin infections and sepsis in patients with 

extensive burns, corneal infections in individuals wearing contact lenses, urinary tract 

infections in patients with catheters, bacteremia and sepsis in immunocompromised patients, 

particularly neutropenic patients receiving cytotoxic therapies, and post-surgical wound 

infections. 

P. aeruginosa is the principal pathogen in the lungs of patients with CF. In some cases, P. 

aeruginosa breaks down host defenses in tissues such as the lungs and disseminates in the 

bloodstream, leading to death of a patient within hours or days. Through the type III secretion 

system, P. aeruginosa is able to secrete a variety of extracellular toxins facilitating systemic 

dissemination via the bloodstream (Vance, Rietsch et al. 2005), and acute infections such as 

in pneumonia (Barbieri and Sun 2004; Matsumoto 2004). In contrast, persistent or chronic 

infection is characterized by pulmonary tissue damage and respiratory failure which even 

long-term antibiotic therapy does not eradicate, leading to the patient death in some cases 

(Burns, Ramsey et al. 1993; Høiby 1993). 

I.I.I THE GENETIC DIVERSITY OF P. AERUGINOSA 

The success of P. aeruginosa as a worldwide-spread bacterium and opportunistic pathogen is 

based on its broad genetic repertoire. 
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The complete bacterial genome of a species, the pan-genome, includes the "core genome" 

containing genes present in all strains, and the "dispensable genome" also called “accessory 

genome” containing genes present in a subset of strains (Medini, Donati et al. 2005). The P. 

aeruginosa pan-genome consists of a core genome of about 5000 genes (Valot, Guyeux et al. 

2015; van Belkum, Soriaga et al. 2015), and a dispensable genome of more than 40 000 

genes. Seventy-five percent of the latter are present only in a few clones or strains (Hilker, 

Munder et al. 2015). Several studies have described the population structure as non-clonal, 

panmictic with a few clones associated to diseases, environmental conditions or antibiotic 

resistance (Kiewitz and Tümmler 2000; Curran, Jonas et al. 2004). Studies of the diversity of 

strains present in CF patients in France showed that they are mostly non-clonal, apart from 

clone C and clone PA14 (Vu-Thien, Corbineau et al. 2007; Llanes, Pourcel et al. 2013). This 

suggested that there is continuous modification of bacterial genomes by genetic exchanges, 

while clones emerge in particular contexts due to evolutionary pressures. In contrast, in 

another study performed by Wiehlmann and colleagues, a representative strain collection of 

diverse habitats and geographic origin was typed to describe the global population structure of 

P. aeruginosa (Wiehlmann, Wagner et al. 2007). The majority of P. aeruginosa strains was 

shown to belong to a few dominant clones widespread in diseases and environmental habitats 

such as clone PA14 represented by the completely sequenced reference strain PA14 (Lee, 

Urbach et al. 2006), clone C (Larbig, Christmann et al. 2002), clone K (Klockgether, Reva et 

al. 2004), clone M (Römling, Wingender et al. 1994), clone TB (Tümmler, Koopmann et al. 

1991), clone CHA (Dacheux, Attree et al. 1999), and clone LES (Midlands and Liverpool 

epidemic strains) (Scott and Pitt 2004). 
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I.I.II EMERGENCE OF MULTIDRUG RESISTANT P. AERUGINOSA 

P. aeruginosa possess a high capability of developing resistance to antimicrobial agents, 

molecules able to kill or simply inhibit the growth of bacteria such as antibiotics and aseptics, 

commonly employed in hospitals. Thus, nosocomial infections due to an antimicrobial-

resistant P. aeruginosa spread are often difficult to eradicate. Even more problematic is the 

development of resistance during the course of therapy, a complication which has been shown 

to double the length of hospitalization and overall cost of patient care (Lister, Wolter et al. 

2009). P. aeruginosa can develop resistance to different classes of antibiotics such as 

carbapenems, aminoglycosides and fluoroquinolones (Ozer, Duran et al. 2012) either through 

the acquisition of resistance genes on mobile genetic elements such as plasmids, or through 

mutational processes that alter the expression and function of chromosomally encoded 

mechanisms (Lister, Wolter et al. 2009). 

Carbapenem-resistance may be related to decreased bacterial outer membrane permeability 

due, for example, to a loss or modification of porins or to overexpression of efflux pumps, or 

to expression of carbapenemases (Mesaros, Nordmann et al. 2007; Rodríguez-Martínez, 

Poirel et al. 2009). Indeed, several studies performed on P. aeruginosa coming from different 

sources and different countries such as Europe, Asia and South America have shown that 

some P. aeruginosa isolates present a set of genes encoding antibiotic-inactivation enzymes 

such as carbapenemases (Nordmann and Poirel 2002; Scheffer, Gales et al. 2010; 

Vitkauskienė, Skrodenienė et al. 2011; Correa, Montealegre et al. 2012; Llanes, Pourcel et al. 

2013). Many carbapenemase genes are carried by plasmids and are easily transferable. 

Aminoglycoside resistance may be due to aminoglycoside-modifying enzymes. High level of 

resistance to multiple aminoglycosides can also be associated with the acquisition of a 
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methylase gene, able to methylate the 16S rRNA in P. aeruginosa (Yokoyama, Doi et al. 

2003). 

Fluoroquinolone resistance among P. aeruginosa isolates has been linked mostly to mutations 

in chromosomal genes, with alterations in the fluoroquinolone targets DNA gyrase and 

topoisomerase IV, or overexpression of multidrug efflux pumps (Lister, Wolter et al. 2009). 

The simultaneous presence of aminoglycoside-modifying enzymes and chromosomal 

mutations in genes encoding the fluoroquinolone-target enzymes, leads to the emergence of 

multidrug-resistant P. aeruginosa (Carmeli, Troillet et al. 1999). Polymyxins are among the 

very few therapeutic options left against such strains (Levin, Barone et al. 1999). In the 

1970s, polymyxin B agents, antibiotics produced by a strain of Bacillus polymyxa, were 

employed to treat infections caused by gram-negative bacteria, including P. aeruginosa, but 

they were soon abandoned because of reported nephrotoxicity and neurotoxicity, and replaced 

by other, less toxic, antibiotics (Falagas and Kasiakou 2006). Another antibiotic belonging to 

the polymyxin group, polymixin E or colistin, is used in clinical practice as the emergence of 

multidrug-resistant organisms has renewed the interest in this mildly toxic therapeutic option 

(Sabuda, Laupland et al. 2008). 

The emergence and spread of multidrug-resistant P. aeruginosa strains has significantly 

increased during the past years and this can be attributed to the wide use of new generation 

antibiotics and to the action, at the genetic level, of horizontal transfer of plasmids carrying 

different combinations of antibiotic-resistance determinants (Poole 2005; Nordmann, Poirel et 

al. 2011). It constitutes a serious threat for future therapy (Barbier and Wolff 2010). 
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I.I.III BIOFILM FORMED BY P. AERUGINOSA IN PATIENTS 

The failure of antibiotic treatment of some chronic P. aeruginosa infections has been 

hypothesized to depend from two main events: the formation of a biofilm known, in general, 

to protect bacteria from environmental stressful conditions (Costerton, Stewart et al. 1999), 

and the selection, through prolonged use of antibiotics, of antibiotic-resistant variants. 

Biofilms constitute a protective mode of growth that allows survival in a hostile environment. 

The biofilms contain channels in which nutrients can circulate, and cells in different regions 

of a biofilm exhibit different patterns of gene expression (Davies, Chakrabarty et al. 1993). 

These sessile biofilm communities can give rise to non-sessile individuals, planktonic bacteria 

that can rapidly multiply and disperse (Figure 1) (Mizan, Jahid et al. 2015). 

 

FIGURE 1. HYPOTHETICAL DEVELOPMENT OF A BIOFILM. The mature biofilm is produced through 

different steps: 1) the planktonic bacterial cells attach on a surface; 2) the production of structures devoted to the 

attachment is arrested and the bacterial cells start to proliferate; 3) the bacterial cells produce an 

exopolysaccharide matrix and “communicate” with other bacterial cells through quorum sensing mechanism; 4) 

the mature biofilm is formed and 5) some cells disperse and colonize other free surfaces. Figure extracted and 

modified from (Mizan, Jahid et al. 2015). 
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Planktonic bacteria expose themselves to deleterious agents in their environment, such as 

phages or potent antimicrobial agents in a clinical setting. Thus, it is not surprising that 

chronic bacterial infections could involve bacterial biofilms, which are not easily eradicated 

by conventional antibiotic therapy. 

Analysis of quorum sensing signals released by the bacteria in the sputum of CF patients 

chronically infected with P. aeruginosa suggested that this bacterium exist in the form of 

biofilms (Singh, Schaefer et al. 2000). The factors responsible for the induction of biofilm 

formation in lungs of CF patients are still not completely clear. In patients affected by this 

disease, the transmembrane regulator chloride channel located at the apical membranes of 

epithelial cells is defective, thus the fluid present in the airways of CF people is characterized 

by high salt concentration; the salt is believed to inhibit the activity of antimicrobial peptides 

and proteins of the innate immunity present in the airways, therefore the bacterium become 

free to colonize the epithelium in the form of a biofilm (Welsh and Smith 1993). 

Antibiotic treatment during chronic P. aeruginosa infections of CF patients sometimes allows 

the disappearance of some symptoms usually associated with acute infections. This could be 

explained by the fact that planktonic cells released by the biofilm matrix and provoking the 

typical symptoms of acute infection, are susceptible to the antibiotic being used and can be 

killed. However, it is possible that the use of antibiotic could also select for planktonic cells 

resistant to antibiotics that can, in turn, colonize other parts of the epithelium giving rise to an 

antibiotic-resistant biofilm, determining the failure of the ongoing infection treatment 

(Costerton, Stewart et al. 1999; Singh, Schaefer et al. 2000; Drenkard and Ausubel 2002). 

Current knowledge about bacterial biofilms suggests that effective eradication depends upon 

the use of therapeutic agents able to penetrate the exopolysaccharide matrix, and promote the 

detachment of bacterial cells, thus impairing the emergence of antibiotic-resistant variants. 
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I.II BACTERIOPHAGES 

Bacteriophages (or phages) are the most abundant and most diversified microorganisms on 

Earth. They can be seen as obligate bacterial predators since they need bacteria for their 

multiplication, and can be found in all reservoirs populated by bacterial hosts including soil, 

aquatic environments (Srinivasiah, Bhavsar et al. 2008), human gut (Mills, Shanahan et al. 

2013) etc. 

Interactions between phages and their bacterial hosts are complex and play significant roles in 

shaping the structure of environmental microbial communities. Phage survival depends on its 

ability to infect the bacterial host. Adaptation to selective pressures such as host resistance, 

determines its abundance and diversification. Co-evolution of the phage tail fibers and 

bacterial receptors determines bacterial host ranges, mechanisms of phage entry, and other 

infection parameters. Phage host ranges have been shown to be highly variable in terms of 

specificity, ranging from phages with extremely narrow ranges of hosts within a single 

species to those that can infect bacteria across genera (Weitz, Poisot et al. 2013). 

In natural habitats, phages and bacteria are in a constant arms race that proceeds in continuous 

cycles of co-evolution. As soon as the bacteria develop mechanisms to prevent phage 

infection, for example, bacterial receptor modification and degradation of invading phage 

DNA (Labrie, Samson et al. 2010), phages can evolve mechanisms to target such resistant 

bacteria (Samson, Magadán et al. 2013). This arms race continues and become one of the 

major forces to both widen the genetic diversity and maintain the equilibrium within 

microbial communities. 
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I.II.I DISCOVERY OF PHAGES AND FIRST PHAGE THERAPY ASSAYS 

The very first evidences of an antibacterial activity that could be attributed to bacteriophages 

were obtained by Ernest Hankin. In 1896 this British bacteriologist reported the presence of 

an antibacterial agent in the water of two Indian rivers. The agent was able to pass through a 

porcelain filter, was inactivated by heat, and could impede the spread of a cholera epidemic 

(Hankin 1896). Twenty years later (in 1915), Frederick Twort, a medically trained 

bacteriologist from England, suggested that the antibacterial activity previously mentioned, 

could be due, among other possibilities, to the presence of a virus. Two years later (in 1917), 

Félix d’Hérelle, a French-Canadian bacteriologist working at the Pasteur Institute in Paris, 

reported the discovery of bacteriophages (see (Duckworth 1976) for an analysis of the 

controversy of who should be credited for the discovery of bacteriophages) and subsequently 

developed their therapeutic use (phage therapy). In 1915 d’Hérelle had been assigned to 

conduct an investigation on the dysentery outbreak among the French troops stationed at 

Maisons-Laffitte (on the outskirts of Paris). He filtered some patient fecal samples and 

incubated them with a Shigella strain isolated from the same patients, then he inoculated the 

mixture in rabbits in order to develop a vaccine against dysentery, and spread it also on agar 

plates to look at the bacterial growth; he observed that the bacterial growth on the plate was 

not uniform due to the presence of small, clear areas that he first called taches and only later 

plaques (Summers 1991). This discovery opened the way to a new therapeutic approach of 

bacterial infections. D’Hérelle was the first to use phages to successfully treat, in 1919, at the 

Necker-Enfants-Malades Hospital in Paris, five children affected by dysentery (Dublanchet 

and Fruciano 2008). However, the results of the treatment were published only later and were 

preceded by the first publication on the subject made by Richard Bruynoghe and Joseph 

Maisin in 1921, who used phages to treat a staphylococcal skin disease. After that, different 

treatment employing phages were performed and all were shown to be quite efficient in 
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eradicating the infection, such as those performed by d’Hérelle in India, on thousands of 

people affected by cholera or bubonic plague (Sulakvelidze, Alavidze et al. 2001). 

Despite its initial success, with the advent of the first antibiotics and, consequently, the 

discovery of several new molecules from 1940 to 1990, phage therapy was abandoned in 

Western Europe and the Americas, and re-considered only recently (Dublanchet and Fruciano 

2008; Abedon, Kuhl et al. 2011). However, it became a major anti-bacterial therapy in the 

former USSR and is still in use in Russia and different countries in Eastern Europe (Abedon, 

Kuhl et al. 2011). 

Phage therapy is also being considered to treat animal and plant infections. For instance, 

different strains of the bleeding canker bacterium, Pseudomonas syringae pv. actinidiae, 

devastating kiwi plantations in New Zealand, threatening to cause significant economic 

damage to the country. The group of Peter Fineran at the University of Otago published an 

investigation of more than 200 phages that show activity against this pathogen, laying the 

foundation for the design of a phage cocktail to deal with this problem (Frampton, Taylor et 

al. 2014). Further potential for the application of phages lies in aquaculture (Richards 2014), 

such as shrimp farming, where the current approach to fighting bacterial disease is an 

unsustainable release of antibiotics into the water. Moreover, phages can be used to treat farm 

animals carrying human pathogens as, for example, bacterial species of the genus 

Campylobacter, frequently responsible for human enteric disease with occasionally very 

serious outcomes (Adak, Meakins et al. 2005), therefore a lot of efforts are devoted to the 

isolation of bacteriophages for these bacteria (Sørensen, Gencay et al. 2015). 

I.II.II PHAGE LIFE STRATEGIES 

Phages are viruses composed of a genome made of a single- or double-strand DNA, or RNA 

molecule, packaged into a capsid and, in some cases possessing a tail and tail fibers. In this 
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manuscript I will discuss the largest group of bacteriophages, the Caudoviridae, which are 

constituted of a head containing the phage double-stranded DNA genome and a tail that, 

according to its characteristics allow the distinction of three phage families: the Myoviridae 

with long and contractile tail, the Siphoviridae with long non-contractile, flexible tail, and 

Podoviridae with short non-contractile tail (Figure 2) (Ackermann 2007). 

These phages are generally separated into “lytic” (alias “virulent”) and “lysogenic” (alias 

“temperate”), on the basis of their capacity to integrate their genome into the bacterial 

chromosome (Hobbs and Abedon 2016). Whatever the characteristics of the considered 

phages, a number of capacities are required for a successful life cycle: adsorption to the 

bacterial surface, injection of the nucleic acid into the cell, replication and expression of 

proteins encoded by the phage genome, assembly of the virion structure, cell lysis, release of 

phage particles and further opportunities for transmission of infection to another host. 

 

FIGURE 2. THREE TAILED PHAGE FAMILIES. Phages belonging to the Myoviridae family possess a 

contractile tail with terminal tail fibers; those belonging to the Podoviridae family have a short tail with tail 

spikes and those belonging to the Siphoviridae family possess a long flexible non-contractile tail. Figure 

extracted and modified from (Elbreki, Ross et al. 2014). 
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Adsorption is the first step of physical interaction between a phage and its host: a reversible 

adsorption on the cell surface is followed by a second irreversible and stable interaction 

between phage tail structures, such as tail fibers and the phage receptor. Then, the cell wall is 

permeabilized by the action of enzymes present in the viral capsid or on the phage tail, and 

the phage nucleic acid is internalized in the bacterial cell. At this stage, the phage can enter 

into different cycles according to its nature (lytic, temperate or pseudolysogenic). However, 

all the phages go through similar phases during their replication and virion maturation. After 

phage adsorption, the so-called latent period starts and ends with the cell lysis. During the 

latent period the phage DNA is replicated and phage proteins are expressed, resulting in the 

assembling of functional phage particles (eclipse period) which are, then, released during the 

rise period, basically consisting in the bacterial cell lysis. The number of phage particles 

released by each infected cell defines the phage burst size, and can be different not only 

considering phages belonging to the same genus, but also when the same phage is cultured on 

different bacteria. Phages can use different mechanisms to lyse the bacterial cells. For some of 

the tailed phages, cell lysis is accomplished through a two steps process mediated by two 

phage-encoded proteins: the holin, an enzyme that damage the bacterial membrane allowing 

the endolysin to hydrolize the peptidoglycan and release of the virions (Ackermann 1998). 

Lytic phages cannot integrate their genome into the bacterial chromosome and therefore can 

only perform a productive cycle after injection of their genome (Figure 3). In contrast, 

lysogenic phages have the possibility to enter a lysogenic cycle, during which the phage 

genome is integrated into the bacterial chromosome to become a prophage, and persist in a 

latent or dormant state that does not promote cell death or the production of phage particles 

(Figure 3). Some prophages persist as low copy number plasmids and do not integrate into the 

bacterial chromosome (for example, the coliphages P1 and N15) (Edlin, Lin et al. 1977; 

Ravin, Ravin et al. 2000). Prophages are replicated together with the bacterial host 
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chromosome, and this lysogenic state is maintained by the repression of the phage lytic genes. 

A switch to lytic production is initiated when stressful conditions (Little 1984) induce the 

excision of the phage genome, which is followed by the expression of lytic genes that 

promote DNA replication, phage particle assembly, DNA packaging and bacterial lysis. 

 

FIGURE 3. PHAGE LIFE STRATEGIES. Lytic cycle: the phage adsorbs on the bacterial surface and injects 

its DNA into the cell. The phage DNA is immediately replicated and the phage proteins are expressed in order to 

produce functional phage particles, then released at the end of the lytic cycle terminating with cell lysis. 

Lysogenic cycle: after adsorption and DNA injection in the host cell, a temperate phage can integrate its genome 

inside the bacterial chromosome becoming a prophage and entering a dormant state persisting until an external 

stress, inducing bacterial DNA damage, resume the phage lytic cycle. Pseudolysogeny: after adsorption and 

DNA injection in the host cell, the phage DNA remains in an episomal form, not integrating in the bacterial 

chromosome as a prophage nor entering in a productive lytic cycle. It has been frequently observed in starved 

cell and when the environmental conditions become again favorable for the host replication, the phage can enter 

a lytic cycle or lysogenic cycle according to the phage nature. 
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There exists a third, even if still poorly understood, phage life strategy called pseudolysogeny, 

represented by an unstable situation in which the virulent phage fails to finish the 

reproductive cycle and lyse the host or, in case of temperate phage, to become established as a 

prophage (Baess 1971). This phenomenon has been frequently observed under nutrient-

deprived conditions, when bacterial cells cannot support DNA replication or protein 

synthesis. The phage genome is maintained, until the nutritional status is restored, at which 

point it enters either a lysogenic or a lytic life cycle (Fuhrman 1999) (Figure 3). 

I.II.III THE IMPORTANCE OF PHAGE RESEARCH 

As previously mentioned, phage research has seen many peaks over the past century, 

particularly in relation with their use as therapeutic agents. The vast majority of clinical trials 

involving the use of phages have been conducted in Eastern Europe, especially in Poland, 

Georgia, and Russia, where phage therapy has been employed for decades without 

interruptions (Sulakvelidze, Alavidze et al. 2001); in the rest of the World, after the initial 

successes, phage research dedicated to clinical use was abandoned due to the discovery of 

antibiotics. It has regained some attention as a therapeutic approach against the problematic 

rise in antibiotic-resistant pathogens mostly in the past decade. 

Basic research on different aspects of bacteriophages life cycles and diversity has been 

abundant. The development of molecular biology and biotechnology techniques has 

contributed to, but also benefited from, the development of this research, as phages encode 

enzymes and promoters with peculiar characteristics that make them good tools for genetic 

manipulation (Haq, Chaudhry et al. 2012). 

Most of the research was performed on phages targeting gram-negative bacteria, in particular 

on Escherichia coli, as one particular strain of this bacterium became the main model 

organism for microbiology. Consequently, coliphages such as T phages (Demerec and Fano 
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1945) and lambda (Lederberg and Lederberg 1953) served as model phages in the 

development of molecular tools and the fundamental understanding of phage-host 

interactions. 

T-even phages (T2, T4 and T6) have been major model systems in the development of 

modern genetics and molecular biology since the 1940s. Coliphages T2 and T4 were 

fundamental for the recognition of nucleic acids as genetic material and for the definition of 

gene by mutational, recombinational, and functional analyses (Miller, Kutter et al. 2003). 

These phages were instrumental to demonstrate that the genetic code is constituted of triplets. 

The phages allowed the discovery of mRNA, of the importance of recombination in DNA 

replication, of light-dependent and light-independent DNA repair mechanisms, of restriction 

and modification of DNA, of self-splicing introns in prokaryotes, of translational bypassing 

etc (Brenner, Jacob et al. 1961; Crick, Barnett et al. 1961). 

One of the characteristics that make the phage T4 a good tool for molecular studies is the total 

inhibition of the host gene expression mediated by the phage during the infection. Studies 

performed to elucidate the virion assembly mechanisms, phage DNA replication and 

recombination led to important insights into macromolecular interactions between phage and 

host proteins (Alberts 1987; Alberts and Miake-Lye 1992) that constitute nowadays a 

standard reference for similar studies performed on phages belonging to different genera. 

T-even phages possess many proteins with redundant functions and this could explain their 

ability to exploit a broad range of potential hosts and to resist different sorts of antiviral 

mechanisms imposed by the host (Kutter, d'Acci et al. 1994; Abedon, Herschler et al. 2001). 

Phage T4 research led to the identification of several enzymes with widespread applications 

in genetic engineering, such as DNA and RNA ligase, polynucleotide kinase, and DNA 

polymerase. 
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T5 and T7 phages have been model phages for structural analyses and mechanisms of DNA 

injection into the bacteria, respectively. The overall structure of T5 has been revealed by cryo-

electron microscopy and image reconstruction. The early events of T5 capsid assembly have 

also been, even if partly, deciphered; the initial prohead I is assembled from a precursor 

protein possessing an N-terminal scaffolding domain which is cleaved by the T5-encoded 

head protease, yielding the mature prohead II (Huet, Conway et al. 2010). Packaging of DNA 

into prohead II is accompanied by expansion of the capsid, which involves large structural 

rearrangements of the coat protein subunits and allows accommodation of the full-length 

genome (Preux, Durand et al. 2013). The mature capsid is then decorated with some proteins, 

which bind as monomers to the center of the hexamers (Effantin, Boulanger et al. 2006). T5 

properties are generally applicable to the large Siphoviridae family of dsDNA tailed phages. 

As previously mentioned, T7 has mostly been studied to clarify the molecular mechanisms 

acting during phage interaction with the bacterial host. Details about the molecular interaction 

between the phage and its host during infection are provided in the following paragraph. 

I.II.IV MOLECULAR INTERACTION BETWEEN VIRULENT PHAGES AND BACTERIA DURING 

INFECTION 

Phage host range is defined by looking at which bacterial genera, species and strains a given 

phage is able to lyse (Kutter 2009). Bacteriophages generally target their hosts at the strain-

specific level. For this reason they have often been used as genotyping tools to classify 

bacterial strains at the subspecies level. 

In addition to the initial interaction between the tail and its receptor, bacteriophages rely on 

the action of bacterial proteins at different stages of their life cycle. For example, during a 

normal lytic infection cycle by phage T7, the viral genome is injected in two steps. In an 

initial phase after phage adsorption on the surface, only part of the viral genome enters the 
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bacterial cell (García and Molineux 1995). Transcription is started by the RNA polymerase of 

the host, recognizing strong promoters located at the very beginning of the phage DNA early 

region. After transcription and translation of the phage RNA polymerase, the remaining part 

of the phage genome is internalized (Figure 4) (García and Molineux 1999). The viral cycle 

proceeds using the phage-encoded RNA polymerase. 

 

FIGURE 4. PHAGE T7 DNA INJECTION IN THE HOST CELL. Three phage proteins, Gp14, Gp15 and 

Gp16, are ejected from the phage capsid and form a channel and a motor that allow the injection of ~ 1 kbp of 

phage DNA inside the host cell. The remaining phage DNA is pulled inside the cell after the action of the 

bacterial RNA polymerase (RNA pol). Figure extracted and modified from (Molineux and Panja 2013). 

The mRNAs of phage early genes produced by the host RNA polymerase code for several 

phage proteins involved in the shut-off of host defenses. Among them are the Gp0.3 coding 

for an anti-restriction protein (Studier 1975) or Gp0.7, a protein kinase that phosphorylates 

the β’ subunit of host RNA polymerase and affects its termination properties (Severinova and 

Severinov 2006). Once the T7 RNA polymerase is synthetized, middle and late regions are 

transcribed including the Gp2 gene encoding a potent inhibitor of host RNA polymerase 

(Hesselbach and Nakada 1977). 

More generally, phages use the bacterial machinery for their replication and gene synthesis 

and in some cases they might not find the perfect environment to perform a full productive 

cycle, thus initiating a pseudolysogenic stage. The pseudolysogenic life cycle will be 

described in more details in the paragraph “II.I PSEUDOLYSOGENY”. 



18 

 

I.III PHAGES EMPLOYED IN PHAGE THERAPY 

I.III.I PHAGES OF P. AERUGINOSA 

More than 97% of isolated phages active against P. aeruginosa strains belong to the 

Caudoviridae. The other phages that infect P. aeruginosa have single-stranded DNA genomes 

or RNA genomes and they will not be described in this manuscript. 

Given the wide distribution of P. aeruginosa clones, it is possible to imagine that their phages 

could be commonly found and distributed in few defined genera able to cover, when 

combined, a large host spectrum. To date, the characterized P. aeruginosa phages have been 

distributed in at least 7 genera of virulent phages (T7-like, ΦKMV-like, LUZ24-like, LIT1-

like, PB1-like, ΦKZ-like, JG004-like) and into a similar number of temperate genera 

(Ceyssens and Lavigne 2010). Within each genus, phages can show a different host spectrum 

according to the specificity of their tail receptor-recognizing proteins (Chaturongakul and 

Ounjai 2014). Although several studies performed using P. aeruginosa strains have shown 

that combining different phages allows to cover a large host range spectrum, almost 15% of 

clinical strains were shown to be resistant to all phages tested (Essoh, Blouin et al. 2013). 

THE MYOVIRIDAE 

The фKZ-like viruses are myoviruses also defined as giant phages due to the big size of their 

genome: the representative of this genus, the фKZ phage, possesses a genome of ~280 kbp in 

length (Mesyanzhinov, Robben et al. 2002). Like phage фKZ, phage EL possesses a genome 

of ~211 kbp in length and a similar morphology (Hertveldt, Lavigne et al. 2005). Phages of 

this genus have a broad host range and high burst size.  
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Phages belonging to the PB1-like genus present high similarities at genomic (>96%) and 

morphological level (Ceyssens, Miroshnikov et al. 2009). They have a wide host-range and 

have been shown to target LPS as receptor. 

The PAK-P1-like (Debarbieux, Leduc et al. 2010) and KPP10-like (Uchiyama, Rashel et al. 

2012) phages are worldwide spread genera. Previously, these two groups of phages 

constituted the Felix O1-like genus since they share structural characteristics and genome 

organization similar to that of the Salmonella phage Felix O1 (Whichard, Weigt et al. 2010). 

Performing a phylogenetic analysis of the sequenced genomes of phages belonging to the 

Felix O1 group, Henry and colleagues proposed to distinguish two main genera: the 

Pakpunaviridae, and the Kpp10viridae (Henry, Bobay et al. 2015). 

In contrast to the virulent behavior of the phages belonging to the four genera just described, 

phages belonging to the CTX genus are temperate myoviruses carrying the cholera-toxin 

(CTx) that provides the lysogen bacteria with new virulent characteristics (Hayashi, Baba et 

al. 1990). 

THE SIPHOVIRIDAE 

The siphoviruses of P. aeruginosa are mostly temperate phages. Phages D3112, B3, DMS3, 

PM105 and PA1Ø (genome sequences reported by (Wang, Chu et al. 2004), (Braid, Silhavy 

et al. 2004), (Budzik, Rosche et al. 2004), (Pourcel, Midoux et al. 2016) and (Kim, Rahman 

et al. 2012), respectively) are all Mu-like phages which replicate by transposition and are 

capable of transferring fragments of bacterial DNA from one strain to another (Harshey 

2014). This ability to carry fragments of bacterial DNA from a donor cell (the phage-infected 

cell) to a recipient (the cell infected by a phage released by a primarily infected cell) is called 

transduction. With the exception of phage PA1Ø (lacking phage repressor), they are all 

temperate. 
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The D3-like phages including phage D3 (Kuzio and Kropinski 1983) and PAJU2 (Uchiyama, 

Rashel et al. 2009), are temperate phages with similar virion structure, able to change the 

bacterial serotype upon lysogenization. 

The YuA-like phages carry anti-restriction genes enabling the phage DNA to be protected 

against the bacterial restriction endonucleases (Ceyssens, Mesyanzhinov et al. 2008). 

Apart from phage PA1Ø, two lytic phages belonging to the Siphoviridae family have been 

isolated: phage Kakheti25 isolated in Georgia (Karumidze, Thomas et al. 2012) and phage 

KPP23 isolated in Japan (Yamaguchi, Miyata et al. 2014). 

THE PODOVIRIDAE 

Most podoviruses of P. aeruginosa are lytic phages. ф-KMV-like phages possess unique 

characteristics: their packaged DNA possesses single-strand interruptions whose biological 

function is still unknown (Kulakov, Ksenzenko et al. 2009). ф-KMV-like phages encode an 

alginate-degrading enzyme located at the C-terminal of the tail spike protein providing the 

phage with the ability of penetrating deeply in biofilms (Glonti, Chanishvili et al. 2010) and 

making them suitable for therapeutic cocktail preparations. Phages belonging to this genus 

target the type IV pilus as a receptor (Chibeu, Ceyssens et al. 2009). The genome of all the ф-

KMV-like phages encodes an RNA polymerase responsible for the transcription of genes 

located in the middle and late region of their genome (Lavigne, Burkal'tseva et al. 2003). 

Phages of the LUZ24 genus do not encode an RNA polymerase, thus their multiplication 

relies entirely on the bacterial transcription machinery (Ceyssens and Lavigne 2010). 

Similarly to ф-KMV-like phages, their packaged genome possesses single-stranded DNA 

breaks (Essoh, Latino et al. 2015). 
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The LIT1-like phages are morphologically similar to the coliphage N4 and constitute another 

genus of the Podoviridae family; they are known to carry a large virion-associated RNA 

polymerase that is injected with the phage DNA inside the host cell (Wittmann, Klumpp et al. 

2015). 

A number of phages not yet assigned to a specific genus also belong to the Podoviridae. 

F116, a temperate generalized transducing phage, is particularly interesting as it possesses an 

alginate-degrading activity that it uses to reach its receptor, the type IV pilus (Byrne and 

Kropinski 2005). Despite the presence of an integrase encoding gene in its genome, this phage 

is believed to be carried by the host strain in a plasmid form, the so-called carrier state 

(Miller, Pemberton et al. 1977) discussed in “II.I PSEUDOLYSOGENY”. 

I.III.II SELECTION OF PHAGES FOR THERAPEUTIC USE 

The first steps in implementing a phage therapy protocol is phage isolation and selection 

according to the characteristics of the pathogen to be targeted (Gill and Hyman 2010; 

Goodridge 2010). The phage choice will be oriented by the therapeutic objectives. Pyophage 

or Intestiphage are multi-species phage cocktails that cover a wide host spectrum. They are 

commercialized in some countries to allow the simultaneous elimination of different bacterial 

targets (genera, species and strains) (Kutter, De Vos et al. 2010). A second approach targets a 

specific bacterial species either with a cocktail of well-characterized phages (Merabishvili, 

Pirnay et al. 2009; Gill and Hyman 2010), or with single phages. In the latter situation, also 

called “sur mesure” (Pirnay, De Vos et al. 2011; Ravat, Jault et al. 2015), single phages could 

be successful in eliminating particular strains. However, several studies have demonstrated 

that the use of a phage cocktail is advantageous not only to provide wider host range target, 

but also to prevent or delay the emergence of mutations in the bacterial population that can 
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result in the selection of phage‐resistant clones and consequent therapeutic failure (Tanji, 

Shimada et al. 2004; Gu, Liu et al. 2012). 

Three main characteristics define the suitability of a phage for therapeutic use: a strictly 

virulent behavior, the absence of encoded toxins, and the inability to perform generalized 

transduction. However, the virulent behavior of therapeutic phages does not ensure total 

safety of the treatment; indeed virulent phages could recombine with the host prophages 

forming chimeras with temperate properties. Chimera phages, such as the P. aeruginosa 

phage Ab31, isolated in Abidjan by our group (ANNEX I) (Essoh, Latino et al. 2015) do exist 

in nature although the frequency of such events has not been quantified. Phage Ab31 seems to 

derive from a recombination event between a phage similar to temperate P. aeruginosa phage 

PAJU2 and a phage similar to the lytic phage AF of P. putida (Latino, Essoh et al. 2014). In 

the ANNEX II, we show that phage Ab31 could select phage-resistant variants with genome 

rearrangements and phenotypic characteristic such as mucoidy that, in a phage therapy 

context, could give an unfavorable prognosis (Latino, Essoh et al. 2014). 

Some phages, such as the Shiga toxin-converting phages of E. coli (Tozzoli, Grande et al. 

2014), are known to encode toxins or other proteins that could somehow be acquired by the 

bacteria, producing a more virulent variant with a competitive advantage over other bacteria. 

Concerning this point, it is essential to sequence and annotate the phages that are going to be 

employed and try to assign functions to each of the genes. Once each phage has been 

sufficiently annotated and the absence of putative toxins or integrases has been confirmed, 

their behavior in vitro should be studied. 

Other secondary characteristics should also be considered when selecting phages for 

therapeutic purposes. Those with a broad host range would be good candidates for phage 

therapy as it would increase the chances to target different bacterial strains. Phages belonging 
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to P. aeruginosa PB1 and ф-KMV genera possess a wide host spectrum, and are commonly 

employed for the constitution of phage cocktails. PB1-like phages have been recently used to 

treat infections caused by P. aeruginosa in burn patients (Merabishvili, Pirnay et al. 2009) 

and in laboratory simulated chronic pneumonia conditions (Garbe, Wesche et al. 2010). 

However, it has been reported that isolated clinical P. aeruginosa strains are frequently 

resistant to such phages (Pleteneva, Shaburova et al. 2008; Ceyssens, Miroshnikov et al. 

2009). Phages belonging to the P. aeruginosa фKZ genus are also characterized by a broad 

lytic spectrum and have been commonly employed for the preparation of cocktails for 

therapeutic use (Krylov, Shaburova et al. 2013). Unfortunately they have been shown to be 

able to persist inside the bacterial host in a pseudolysogenic state and to perform generalized 

transduction (Krylov, Miroshnikov et al. 2010; Pleteneva, Burkal'tseva et al. 2011; Krylov, 

Kropinski et al. 2012). The persistence of phage DNA in a pseudolysogen host may favor its 

recombination with prophages carried by the infected host, producing a phage with 

undesirable characteristics. It may also induce a change in the bacterial phenotype: P. 

aeruginosa PAO1 pseudolysogenized by фKZ phages, converts to a mucoid phenotype, a 

characteristic very undesirable during the course of P. aeruginosa infection (Krylov, 

Miroshnikov et al. 2010). To safely use фKZ-like phages, it might be interesting to select 

mutants losing the ability to pseudolysogenize the host. Although фKZ-like phages and their 

variants seem to be good candidates for the constitution of phage cocktails due to their broad 

host spectrum, they should be avoided. 

The adsorption properties of phages are also important when it comes to use them to 

constitute a cocktail because of their strict correlation with selection of phage-resistant 

mutants. Synergy between phages takes into account the adsorption characteristics of each 

single phage constituting the cocktail (Schmerer, Molineux et al. 2014). For instance, one 

phage can synergistically affect the infection of a second phage impacting three main phases 
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of its infection cycle: adsorption rate, burst size or latent period. The synergy impacting the 

phage adsorption on the bacterial surface has been frequently observed, especially for phages 

carrying depolymerizing activity that can degrade the bacterial capsule (Azeredo and 

Sutherland 2008) allowing other phages to better adsorb and infect the host (Bull, Vimr et al. 

2010). At the same time, phages can also negatively interfere with each other; for example, 

during coinfection, one phage can strongly affect the burst size of a second phage. So, it is 

necessary when combining different phages, to carefully choose them according to their 

adsorption characteristics, such as the nature of their target receptor (LPS, type IV pilus, etc.), 

in order to lower the possibility of cross-resistant variant selection or phage interference. 

Studies on P. aeruginosa suggest the potential utility of phages to reduce or eliminate 

biofilms produced by different strains, including PAO1 (Pires, Sillankorva et al. 2011), and to 

prevent biofilm formation on medical devices, such as catheters (Fu, Forster et al. 2010). In 

particular, phages belonging to PB1-like, LIT1-like and ф-KMV-like genera have been shown 

to be efficient in the in vitro dissociation of P. aeruginosa biofilm (Alves, Perez-Esteban et al. 

2015). 

I.III.III PHAGE PROPHYLAXIS AND THERAPY TO TREAT P. AERUGINOSA INFECTIONS 

The advantages of using phages as a therapy to treat infections are numerous; indeed, phages 

are highly specific for the infecting bacterium, thus being harmless for the host; phages can be 

used to kill antibiotic resistant bacteria since resistance to phages and to antibiotics seems not 

to be mutually dependent; moreover it has been shown that the combination of both 

antimicrobials, phages and antibiotics, can have a synergistic effect on the eradication of 

infection (Torres-Barceló and Hochberg 2016); it is not necessary to administer high doses of 

phages, since phages multiply in the bacterial cells releasing new phage particles; this process 

continues until all the susceptible cells are completely destroyed. 
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Attempts to treat P. aeruginosa infections with phages have been shown to efficiently help to 

reduce the frequency of local nosocomial infections in clinical settings. Ahiwale and 

colleagues isolated the P. aeruginosa lytic phage BVPaP-3, able to efficiently disperse 

biofilm formed in vitro by a multidrug-resistant P. aeruginosa strain isolated in the hospital. 

Used at a multiplicity of infection (MOI) of 0.001, it behaved as a disinfectant to prevent 

biofilm formation on medical devices (Ahiwale, Tamboli et al. 2011). In a similar study, the 

frequency of hospital infections caused by P. aeruginosa was shown to drop from 40.8% to 

8.93% when virulent phages adapted to local P. aeruginosa were employed (Aslanov, Iafaev 

et al. 2003). 

Phages have been shown to be efficient not only as disinfectants, thus impeding the spread of 

P. aeruginosa nosocomial infections, but also as a therapeutic treatment. Different animal 

models have been developed to investigate the efficiency and safety of phage therapy. For 

instance, Wang and colleagues, showed that a virulent phage chosen among 29 phages 

isolated from hospital sewage, was able to reduce the mortality of mice infected 

intraperitoneally with an imipenem-resistant P. aeruginosa strain (Wang, Hu et al. 2006). 

KPP10-like and PAK-P1-like phages have been employed to conduct experiments in vivo, on 

mice model, to assess their efficacy in the treatment of induced murine gut-derived sepsis, or 

P. aeruginosa pulmonary infections, respectively (Watanabe, Matsumoto et al. 2007; 

Debarbieux, Leduc et al. 2010; Uchiyama, Rashel et al. 2012). Mice infected with P. 

aeruginosa strain PAK were shown to be cured when the lytic phage PAK-P1 was 

administrated a few hours after infection (Debarbieux, Leduc et al. 2010). In the course of the 

same study, different results were obtained when the phage was tested in vitro on CF P. 

aeruginosa strains derived from patients with primary colonization or chronic infection. 

Phage PAK-P1 effectively lysed 50% of the primary colonization strains, but it only 

moderately lysed 10% of the chronic ones. This could be related to the fact that phage PAK-
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P1 was isolated using a planktonic culture, and was thus not adapted to kill bacteria deriving 

from biofilm-like structure typical of chronic infections (Debarbieux, Leduc et al. 2010). In 

this case it is worth to mention that, although phages could give positive results in the 

treatment of P. aeruginosa infections, the choice of the phage should be rationalized 

according to the stage of infection. In chronically infected patients, it would be recommended 

to use phages carrying a depolymerizing activity able to lyse bacteria embedded in a biofilm 

(Hanlon, Denyer et al. 2001). 

Although phages seem to represent a promising tool to fight some bacterial pathogens, as 

previously outlined, the use of chemotherapy (antibiotics) should not be abandoned. Phages 

used in combination with antibiotics, have been shown to have a synergistic effect on the 

killing of the bacteria and in the lowering of the resistant variants emergence (Torres-Barceló 

and Hochberg 2016). Alone or in association with antibiotics, phages seem to constitute a 

promising treatment for pathogens, but there are only few large-scale clinical studies 

performed to evaluate their safety and efficacy, according to modern rules. Although during 

almost a century, large amount of treatments were performed in Easter Countries, they were 

not conducted following the legislation dictating the rules to perform clinical trials. Moreover, 

most of the reports about the results obtained from these treatments were written in Russian 

and only few have been translated in English (N. Chanishvili 2012). 

In 2009 in the United Kingdom, a clinical trial to treat an antibiotic-resistant P. aeruginosa 

causing chronic otitis was conducted and reported to be effective and safe (Wright, Hawkins 

et al. 2009). Another clinical study, Phagoburn, evaluating the efficacy of the treatment of 

antibiotic-resistant infections of burn wounds, is ongoing in France, Belgium and Switzerland 

(Kingwell 2015). 
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II PHAGE-BACTERIA INTERACTIONS 

The interactions most frequently observed between bacteria and their predators are beneficial 

(synergistic) or adverse (antagonistic) ones. The beneficial interactions, including mutualism, 

can be observed in nature mainly between temperate phages and their hosts. For example, 

phage conversion, described as a change in the bacterial phenotype when lysogenized by a 

temperate phage, may result in an increased fitness of the host. Examples of this advantageous 

condition have been reported for various phages infecting E. coli (Edlin, Lin et al. 1977). An 

increased fitness of the host should also result in higher replication of the phage genome, and 

this might be considered a mutualistic interaction. Moreover, the establishment of a lysogenic 

interaction always confers immunity to the lysogenic cell against superinfection with the same 

or related phage types (Ackermann and DuBow 1987). In contrast, virulent phages mainly 

establish an antagonistic interaction, better known as predator–prey interaction, with their 

host. 

Overall, a description of phages as parasites of bacteria seems to be an oversimplification 

regarding the sophisticated and diverse interactions that they can have with their host. 

Interactions between bacteria and phages are complex and comprise a continuum from 

mutualistic to parasitic, even among the same set of actors at different stages of their life 

cycles (Dennehy 2014). In some cases, phages provide bacteria with critically important 

genes, including antibiotic resistance, metabolic and virulence genes (Chibani-Chennoufi, 

Bruttin et al. 2004; Comeau and Krisch 2005), and protect their host from infection by other 

viruses (Bondy-Denomy and Davidson 2014). Phages are also lethal parasites of bacteria, 

they modulate host populations and drive their diversification by selecting for resistant 

mutants in co-evolutionary arms race (Brockhurst, Buckling et al. 2005; Weitz, Hartman et al. 

2005; Rodriguez-Valera, Martin-Cuadrado et al. 2009; Dennehy 2012). 
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II.I PSEUDOLYSOGENY 

Much work has been devoted to characterizing classical phage-bacteria interactions, such as 

the lysis-lysogeny paradigm of temperate phages and the strictly lytic life cycle. However, it 

has long been known that other phage-bacteria interactions exist, most prominently 

pseudolysogeny, which has been described as an intermediate state between the lytic and 

lysogenic lifestyles (Ripp and Miller 1998; Abedon 2009). For historical and technical 

reasons, this strategy remains poorly understood. Given the significant ecological impacts of 

pseudolysogenic phages discussed below (Wommack and Colwell 2000; Paul 2008; Clokie, 

Millard et al. 2011; Łoś and Węgrzyn 2012; Maura and Debarbieux 2012), a better 

understanding of pseudolysogeny is sought. 

Pseudolysogeny is believed to play an important role in the long-term survival of phages as it 

might prevent poor replication or even degradation of the phage chromosome in a host that is 

too starved to support further steps in lytic or lysogenic development. In addition, it provides 

a transient intracellular refuge for the phage chromosome in environments characterized by 

low host densities and short capsid half-lives (Ripp and Miller 1998). Despite its ecological 

importance (Łoś and Węgrzyn 2012), few formal molecular evidences currently exist for the 

regulation of such a state and its possible impact on the physiology of the cell (Cenens, 

Mebrhatu et al. 2013). 

Until now, there is no literature about the molecular mechanism (phage-bacterial proteins 

interaction and regulation) that could constitute the basis for the establishment of 

pseudolysogeny with lytic phages. In contrast, for temperate phages, even if only in few 

cases, the regulation of carrier state, defined by Ackermann and DuBow (Ackermann and 

DuBow 1987) as lysogeny by a plasmid phage, has been reported. Cenens and colleagues 

identified in Salmonella Typhimurium phage P22 a locus, named pid, expressed only in what 



29 

 

they called “phage carrier cells” and able to specifically derepress the dgo-operon of the host 

involved in the galactonate metabolism (Cenens, Makumi et al. 2013). The reason why Pid 

would specifically target galactonate metabolism and whether or not this interaction is 

beneficial for the phage and/or the host so far remains unclear. 

II.I.I HISTORY ABOUT THE DEFINITION OF PSEUDOLYSOGENY 

The definition of pseudolysogeny has always been controversial and nowadays is still 

ambiguous. The first definition of pseudolysogeny, could be associated with the observations 

made by Delbrück in 1946 on “pseudolysogenesis”, during which the contaminating phage 

reproduced at the expense of phage-susceptible bacteria produced by mutation during growth 

of a phage-resistant culture (Delbrück 1946). These observations were in accordance with the 

hypothesis made by D’Herelle (1930) saying that in a “symbiose bactérie-bactériophage” 

there were bacteria covering a certain spectrum of susceptibility to phage action, while the 

phage population covered a considerable range of virulence. 

However, the first historical discussion about the concept of pseudolysogeny, mentioned as 

“carrier strain” was presented by Lwoff (Lwoff 1953). Lwoff pointed out the distinction 

between “lysogenic strains”, in which all the bacteria are lysogenic and perpetuate hereditarily 

the power to produce phage that cannot be eliminated by cultivating the strain in anti-phage 

serum, and “carrier strains”, also called “pseudolysogenic strains”, constituted of a mixture of 

bacteriophages and bacteria in a more or less stable equilibrium. The majority of the bacteria 

are phage-resistant, some are sensitive variants that could be infected by extrinsic phages and 

allow phage multiplication. In contrast to “lysogenic strains”, the “carrier strains” could lose 

their phage-producing power if treated with phage-antiserum or simply purified through 

colony re-isolation (Lwoff 1953). 
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Some years later Stent (Stent 1963) described the pseudolysogens as bacteria capable of 

adsorbing the phage they were carrying but being resistant to infection. Stent hypothesized 

that all the bacterial cells in the pseudolysogen population carried extracellular free phages on 

their surface and that phage multiplication was ensured by occasional phage-sensitive variants 

that appear during bacterial growth (Stent 1963).  

A more detailed description of pseudolysogeny was provided by Baess in 1971 (Baess 1971). 

Baess stated that in pseudolysogens, the phage DNA, possessed by a fraction of cells, is not 

integrated in the bacterial chromosome and cannot be induced applying the techniques 

commonly used for the prophage induction in “lysogenic strains”. Moreover, as previously 

observed by Lwoff, the pseudolysogens could be cured by culturing them in anti-serum 

against the bacteriophage or simply by purification through colony re-isolation (Baess 1971). 

Another, more complete, hypothesis about the mechanism underlying pseudolysogeny, was 

given a few years later by Ackermann and DuBow (Ackermann and DuBow 1987) and 

recently, even if under another name (carrier state*) by Abedon (Abedon 2009). 

Pseudolysogeny is a result of phage maintenance within a culture via lytic infection of only a 

portion of the bacteria present (Abedon 2009). The phage-resistant and phage-sensitive 

bacteria can differ for mutations in the bacterial chromosome or they can possess the same 

genome but be phenotypically different due to phage-dependent or phage-independent action. 

Abedon hypothesized that the infected bacterial cells could release soluble factors that can 

temporarily modify the surface of the sensitive bacteria increasing the number of cells that 

cannot support phage growth; this factor is then diluted as more bacteria became temporarily 

surface-modified (phage-resistant) and the bacteria can recover their susceptibility to phage 

allowing its multiplication. Alternatively, the modification of bacterial surface can be phage-

independent: the bacterium itself can modify the structure of phage receptors such as pili or 
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LPS by a reversible mechanism becoming temporarily resistant to phage attack (Abedon 

2009). 

II.I.II IMPACT OF PSEUDOLYSOGENY ON BACTERIAL POPULATIONS 

Several studies suggested that pseudolysogeny is connected to host physiology. For example, 

Ripp and Miller showed that the frequency of pseudolysogeny by some P. aeruginosa phages 

was inversely proportional to nutrient supplementation: they hypothesized that in starving 

conditions bacterial cells do not have enough energy to allow the phage to initiate infection 

cycle (Ripp and Miller 1998). In another example, the E. coli phage T4 was known to 

pseudolysogenize starved, slowly growing cells (Los, Wegrzyn et al. 2003; Golec, 

Karczewska-Golec et al. 2013). However, it would be incorrect to assume that 

pseudolysogens form only in starved cells. Moebus reported that mutants of the phage H24 

showed pseudolysogenic behavior at high nutrient concentrations and high phage densities 

(Moebus 1997). Similar results were obtained in other studies performed with phages 

targeting different hosts such as E. coli, Propionibacterium acnes, Campylobacter jejuni and 

Salmonella Typhimurium, where nutrient supplementation was not limited (Lood and Collin 

2011; Cenens, Mebrhatu et al. 2013; Kulikov, Golomidova et al. 2014; Brathwaite, Siringan 

et al. 2015). Moreover, pseudolysogeny could be favored in certain host strain rather than 

others. For instance, the ability of фKZ-phages to form pseudolysogens seems to depend on 

the bacterial strain being infected. Klylov and colleagues showed that the phage SER, a фKZ-

like phage, is able to lyse C8-14 strain, a bacterial strain isolated from a CF patient, with 

higher efficiency than phage фKZ, suggesting that SER could have lost its ability to 

pseudolysogenize this particular host (Krylov, Miroshnikov et al. 2010). These latter results 

are at odds with a scenario where pseudolysogeny is merely a consequence of nutrient 
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deprivation leading to a lack of molecular machinery to transcribe and translate phage genetic 

material. 

Collectively all the observations about pseudolysogeny suggest that it can occur in presence 

of sufficient phage replication machinery and that phages must be actively suppressing the 

transcription and translation of their own genes. This perspective presents a conundrum. In 

actively growing cells in high quality environments, pseudolysogenic phages will remain 

quiescent in host cells and reproduce later. In such situations, phages engaging in 

reproductive restraint would be at a competitive disadvantage to lytic phages that maximize 

their own reproductive effort over time. This conundrum may be resolved by the introduction 

of periodic environmental catastrophes that eliminate all free-living phages, but permit the 

survival of phages within hosts. In such situations, pseudolysogeny may be a bet-hedging 

strategy against phage population extinction in the event of a catastrophe (Evans and Dennehy 

2005). Bet-hedging theory addresses how individuals should optimize fitness in varying and 

unpredictable environments by sacrificing mean fitness to decrease variation in fitness 

(Olofsson, Ripa et al. 2009). In the case of pseudolysogeny, some phages in a population 

enter a protected state, at a cost to their own reproductive effort, in order to recolonize a 

habitat following an extinction event (Stewart and Levin 1984; Avlund, Dodd et al. 2009; 

Maslov and Sneppen 2015). 

A successful pseudolysogenic bet-hedging strategy requires that: 1) some members of the 

phage population temper their multiplication even during ideal conditions (i.e., induce 

pseudolysogeny); 2) the probability of pseudolysogeny is a function of the probability of an 

environmental catastrophe; 3) pseudolysogenic phages must prevent other phages from 

infecting and lysing these host cells (immunity); 4) reproductive restraint must be of sufficient 

duration for the host population to recover and for some host cells to be cured from infection. 
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A similar strategy is commonly observed with temperate phages for which lysogeny operates 

regardless of ambient conditions (Ptashne 2004; Kobiler, Rokney et al. 2005; Oppenheim, 

Kobiler et al. 2005; Amir, Kobiler et al. 2007; Joh and Weitz 2011). In the case of phage λ, 

the set point of the switch between lytic and lysogenic cycle varies with phage and host 

densities, such that frequency of lysogeny is directly proportional to host and phage density, 

but inversely proportional to environmental quality. One could imagine that virulent phages 

follow this strategy as well and that pseudolysogeny is an intermediate stage in a continuum 

between temperate and fully lytic phages. It is possible to assume that, although virulent 

phages do not possess the full suite of lysogenic tools (e.g. integrases, excisionases) as do 

temperate phages, they possess other tools, such as those that induce a transiently quiescent 

state and provide immunity to superinfection. This subject will be discussed in the following 

paragraph. 

II.II SUPERINFECTION EXCLUSION: A MECHANISM OF BACTERIAL IMMUNITY 

AGAINST PHAGES 

Traditionally, the immunity system of higher animals could be defined as adaptive (specific, 

acquired or anticipatory) or innate (aspecific and evolutionarily more primitive) (Turvey and 

Broide 2010). Concerning bacteria, the term immunity is used to describe the capacity to 

build resistance to a virus after a first encounter. Superinfection exclusion in lysogens can be 

considered as an adaptive immunity. Another adaptive system which does not rely on the 

continuous presence of the phage genome is the CRISPR-Cas system and it will be further 

described in another paragraph. 

Superinfection exclusion (Sie) systems are characterized by proteins able to block the entry of 

phages DNA into the bacterial cells preventing the infection by specific phages. Commonly, 
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these proteins are encoded by genes located on the prophages sequences integrated in the host 

chromosome but they can also be carried by virulent phages.  

Some of the most well-known and characterized Sie systems are those (Imm and Sp) carried 

by phage T4 (Lu and Henning 1994). The Imm protein acts at the level of the inner 

membrane, changing the conformation of the entry site of phage DNA, thus preventing its 

injection in the bacterial cell (Lu, Stierhof et al. 1993). The Sp protein has been shown to be 

able to block the action of the lysozyme, an enzyme carried on the tail of the phage T4. 

Lysozyme degrades bacterial peptidoglycan allowing the formation of a hole in the inner 

membrane and the consequent entrance of phage DNA (FIGURE 5) (Moak and Molineux 

2000). 

 

FIGURE 5. SUPERINFECTION EXCLUSION SYSTEM OF COLIPHAGE T4. Normal phage T4 

infection of the host cell (left); blocking of T4 DNA injection by the Imm system localized at the bacterial inner 

membrane (center); blocking of the phage peptidoglycan-depolymerazing activity mediated by the Sp protein 

(right). Figure extracted and modified from (Labrie, Samson et al. 2010). 

Figure 6 illustrates some of the mechanisms employed by phages to avoid superinfection by 

the same phage or other related ones. Temperate Salmonella phage P22 and E. coli phage P1 

have been shown to block phage DNA translocation into host cytoplasm by SieA and Sim 

systems, respectively, similar to the Imm system of phage T4 (Kliem and Dreiseikelmann 

1989; Hofer, Ruge et al. 1995). The lytic coliphage T5 encodes a protein called Llp able to 
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inactivate, through conformational change, the T5 receptor FhuA, making the receptor 

temporarily unavailable, and consequently the infected cells become resistant to 

superinfection by the same phage or other phages (Braun, Killmann et al. 1994; Decker, 

Krauel et al. 1994). As this mechanism is driven by a lytic phage, Decker and colleagues 

named it lytic conversion. Similarly, it is known that temperate phages are able to modify the 

bacterial surface by a mechanism named lysogenic conversion. For instance, the temperate P. 

aeruginosa phages D3 and D3112 have been shown to modify the host LPS and type IV pili, 

respectively, when lysogenizing the host (Kuzio and Kropinski 1983; Chung, Jang et al. 

2014). 

 

FIGURE 6. EXAMPLES OF SUPERINFECTION EXCLUSION MEDIATED BY DIFFERENT 

PHAGES. Phage P1 and phage P22 use a Sie system similar to the Imm system of phage T4, blocking DNA 

entrance modifying the site of phage DNA injection; phage T5 acts by changing the conformation of the phage 

receptor, impeding the first steps of infection (adsorption); phage T4 also possesses another Sie system, the Sp 

system, able to block the peptidoglycan degradation, mechanism that the phage uses to open a way through the 

bacterial wall and to access the inner membrane for injecting DNA. Figure extracted and modified from 

(http://viralzone.expasy.org/all_by_species/3971.html). 

One can imagine that all these mechanisms could act during pseudolysogeny in order to 

protect pseudolysogens from superinfection by the same phage or others that might infect and 

kill the cell. 

http://viralzone.expasy.org/all_by_species/3971.html
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Thus, it is of importance to clarify the molecular mechanisms underlying pseudolysogeny, 

annotate phage genomes to assign functions to phage ORFans and try to understand their 

possible involvement in the interaction with the bacterial machinery during the replication 

cycle.  
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II.III BACTERIAL RESISTANCE AGAINST PHAGES 

Resistance is defined as the bacterial capacity to survive phage infection. It can be 

accomplished by different mechanisms acting separately, sequentially or in association during 

the phage life cycle. 

Most often, resistant bacteria will be spontaneous mutants that cannot sustain viral infection, 

and this, in the majority of cases, involves the receptor. Immunity provided by phages is 

rather specific. Bacteria can protect themselves from invasive DNA using restriction-

modification systems or using the CRISPR-Cas system. The latter necessitate that the viral 

DNA has been encountered previously. 

II.III.I MUTATIONS OF PHAGE RECEPTORS 

A phage is generally able to infect a narrow host range within a microbial species. Such 

specificity in interaction of phages with bacterial cells is determined by specificity of 

adsorption, which in turn is dependent on the nature and structural peculiarities of receptors 

on the bacterial cell surface (Rakhuba, Kolomiets et al. 2010). 

Mutations that prevent phage attachment to the cell surface can consist in a lack of receptor 

expression, alteration or masking of receptors. The bacterial LPS and the extracellular 

appendages, such as pili or flagella, are good candidates for being recognized as receptors in 

gram-negative bacteria such as P. aeruginosa and, if modified, can constitute a barrier against 

phage infection (Wilkinson 1996). 

THE BACTERIAL LIPOPOLYSACCHARIDE 

LPS is a complex polymer made up of monosaccharides and fatty acids. Structurally, it is 

made of three parts: lipid A, core oligosaccharide and the O-antigen (Wilkinson 1996). 
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There are two types of LPS: the Smooth (S) type is characterized by typical LPS structure 

comprising lipid A, core and O-antigen chains, and the Rough (R) type that lacks O-antigen 

but contains lipid A and the core. Some bacteriophages adsorb to either LPS types. Phages 

specific for S-type LPS display an extremely narrow host range specificity determined by 

large variability of O-antigen structure in bacteria of different taxonomic groups. For 

example, the lytic coliphage G7C possesses a very narrow host range as it is able to recognize 

and infect only E. coli 4s strain by adsorbing on the O-acetylated O-antigen; in absence of this 

modification the bacterial cells become completely resistant (Knirel, Prokhorov et al. 2015). 

Phages, such as Salmonella phage SSU5 (Kim, Kim et al. 2014) and Pseudomonas phages 

φCTX and φPLS27 (Jarrell and Kropinski 1981; Nakayama, Kanaya et al. 1999), recognizing 

a conserved structure of the R-type LPS, show a broader host range since the structure of the 

LPS core is rather conservative in various species and genera of gram-negative bacteria. 

Most P. aeruginosa strains simultaneously produce two distinct O-antigen chains. One of 

these is a heteropolymer composed of repeated units of two to five distinct sugars and is 

termed O-specific antigen (OSA or B-chain). The other form of O-antigen contains a 

homopolymer of D-rhamnose. Since the latter structure is produced by the majority of P. 

aeruginosa strains, it has been named the common polysaccharide antigen (CPA or A-chain) 

(Figure 7) (King, Kocíncová et al. 2009).  

Multiple motifs on the LPS molecule of P. aeruginosa have been identified as receptors for 

various phages. The P. syringae phage A7 was found to bind and hydrolyze the D-rhamnose 

of A-chains in a P. aeruginosa mutant strain devoid of B-chains (Rivera, Chivers et al. 1992). 

In contrast, P. aeruginosa phage D3 has been shown to specifically adsorb on the B-chains, 

and lysogenization with this phage resulted in a loss of adsorption with the same phage during 

subsequent infection cycles (Holloway and Cooper 1962). This was due to alterations in the 

linkage stereochemistry between B-chains repeat units from α1 → 4 to β1 → 4, resulting in 
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serotype conversion and a modification of the D-fucose with the addition of an acetyl-group. 

Lysogenization by D3 also impeded the binding ability of the unrelated LPS-specific phage 

E79, a PB1-like phage (Kuzio and Kropinski 1983). 

 

FIGURE 7. DIVERSITY OF SURFACE LIPOPOLYSACCHARIDE GLYCOFORMS IN A SINGLE P. 

aeruginosa CELL. A-chains (or A-bands) are constituted of units of D-rhamnose reported in violet; short, long 

and very long B-chains (or B-bands) are constituted of repeated thrisaccharide units. CPA, common polymeric 

antigen; OSA, O-specific antigen. Figure extracted and modified from (Lam, Taylor et al. 2011). 

In P. aeruginosa serotype O5 strains such as PAO1, the B-chains are synthesized via the 

Wzy-dependent pathway, in which several integral inner membrane proteins work together to 

assemble the mature glycoform in P. aeruginosa PAO1 (Burrows, Charter et al. 1996). The 

starting point of LPS biosynthesis is characterized by the addition of the trisaccharide repeat 

units to the undecaprenyl-pyrophosphate (Und-PP) located in the inner leaflet of the inner 

membrane; the O-antigen flippase Wzx translocates the Und-PP-trisaccharide linked to the 

outer leaflet of the inner membrane. Periplasmic polymerization of trisaccharide repeat units 
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is then mediated by the O-antigen polymerase Wzy and this continues until the chain length 

regulator proteins Wzz1 and Wzz2 block the polymerization at specific lengths (Figure 8) 

(Daniels, Griffiths et al. 2002). Completed O-antigen chains are ligated to lipid A-core by the 

O-antigen ligase WaaL to form B-chains LPS (Abeyrathne, Daniels et al. 2005). 

 

FIGURE 8. SYNTHESIS OF B-CHAINS OF O-ANTIGEN BY THE Wzy/Wzx PATHWAY. 1) 

Biosynthesis of Und-PP by the action of the polyisoprenyl-phosphate hexose-1-phosphate transferase (PHPT) or 

polyisoprenyl-phosphate n-acetylhexosamine-1-phosphate transferase (PNPT) enzyme. The individual repeat 

unit is completed by glycosyltransferase enzymes. 2) This process is accomplished by Wzx, an integral 

membrane protein. 3) The polymerization reaction involves the transfer of growing polymer from its Und-PP 

carrier to the incoming Und-PP-repeat unit; polymerization is catalyzed by Wzy. The final player in the Wzy-

dependent pathway is the Wzz protein belonging to the polysaccharide copolymerase family which determines 

the length of the O-chain. Figure extracted and modified from (Whitfield 2010). 

BACTERIAL APPENDAGES: TYPE IV PILI 

Pili are one of the most common forms of bacterial surface appendages, involved in 

adherence and motility, and playing a role in the competence for DNA uptake (Burrows 

2012). Four sub-complexes form the major constituents of the type IV pili in P. aeruginosa 

PAO1 (Figure 9). In the outer membrane, a sub-complex composed of the secretin PilQ, an 

oligomer of 12-14 subunits (Collins, Ford et al. 2003; Burkhardt, Vonck et al. 2011), and its 
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pilotin protein PilF, form a pore through which the pilus is extruded (Koo, Burrows et al. 

2012). In the inner membrane is located a motor constituted of four proteins: PilC forms a 

platform to which three cytoplasmic ATPases (PilB, PilT and PilU) providing the energy for 

the extension and retraction of the pilus (Takhar, Kemp et al. 2013), are anchored. The inner 

membrane and outer membrane sub-complexes are connected by the alignment sub-complex 

constituted of proteins PilM, PilN, PilO and PilP (Sampaleanu, Bonanno et al. 2009) and a 

large protein, FimV possessing a periplasmic and a cytoplasmic domains connected by a 

transmembrane domain. The outer membrane sub-complex serves as a channel for the 

extrusion of the fourth sub-complex, the helical pilus fiber composed of the major pilin 

protein PilA, other minor pilins (FimU, PilV, PilW, PilX and PilE) and the non-pilin protein 

PilY1 (Nguyen, Sugiman-Marangos et al. 2015). 

 

FIGURE 9. TYPE IV PILUS IN P. aeruginosa. Only some of the proteins involved in the assembly of the 

Type IV pili are reported here. Figure extracted and modified from (Burdman, Bahar et al. 2011). 

Whereas the regulation of the transcription of pilus structural subunits is relatively simple, the 

mechanism of extension and retraction of the type IV pili is regulated by a complex system 

similar to that observed for the flagellar chemotaxis system of E. coli (Whitchurch, Leech et 
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al. 2004). There are several proteins involved in this regulation including PilJ, localized at the 

two cellular poles, and involved in the assembly/full extension of the pilus in response to 

environmental stimuli (DeLange, Collins et al. 2007). 

Type IV pili have been demonstrated to allow the adherence of P. aeruginosa cells to the host 

epithelium (Bucior, Pielage et al. 2012), and this is believed to constitute the first important 

step of host infection. Type IV pili defective mutants show reduction in the biofilm 

development as observed for P. aeruginosa PAO1 PilA mutants (Klausen, Heydorn et al. 

2003). It has been shown that type IV pili are also required for a form of surface-associated 

movement known as twitching motility. Twitching motility is thought to be a consequence of 

the extension and retraction of type IV pili, which propels the bacteria across a surface 

(Bradley 1980). 

Type IV pilus is known to be the receptor for Pseudomonas phages belonging to the ф-KMV 

genus (Chibeu, Ceyssens et al. 2009) and for some RNA phages, known to induce the pilus 

retraction after adsorption (Bradley 1972). Mutations in different genes involved in the 

biogenesis of the type IV pili are shown to affect the bacterial twitching motility but defects in 

type IV pili are not always associated with inhibition of phage adsorption (Whitchurch and 

Mattick 1994). The fact that twitching motility is not always associated with phage sensitivity 

suggests that the latter may not be directly dependent upon fimbrial function but may rather 

depend on its assembly/disassembly regulation. The pilT and pilU genes are known to 

regulate the extension and retraction of the type IV pili, and defective mutants are impaired in 

twitching on a semisolid surface. PilT and PilU mutants presented different pattern of 

susceptibility when infected with phages known to adsorb on type IV pilus (Whitchurch and 

Mattick 1994). Whitchurch and colleagues proposed that this was due to the impossibility for 

the mutants to retract their pili. The resulting hyperpiliated phenotype would allow phage 

adsorption but not the successive phases of infection, requiring pilus retraction. DeLange and 
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colleagues made similar observations with PilJ mutants (DeLange, Collins et al. 2007). 

Although impaired in their ability to twitch, the three PilJ mutants were still phage-sensitive. 

Moreover, the total amount of PilA proteins was comparable with that of the wild-type 

suggesting that the type IV pili was present but unable to retract (DeLange, Collins et al. 

2007). 

P. AERUGINOSA MUCOID PHENOTYPE 

P. aeruginosa is an opportunistic pathogen frequently responsible for mortality in CF patients 

(Govan and Deretic 1996). Colonization of CF airways by P. aeruginosa occurs early in the 

lifetime of the host and, eventually, a switch to a mucoid phenotype is observed (Mathee, 

Ciofu et al. 1999). This phenotype is caused by overproduction of alginate, an 

exopolysaccharide consisting of mannuronic and guluronic acid monomers. The expression of 

the corresponding operon is induced by AlgU, a sigma factor repressed, normally repressed 

(in non-mucoid conditions), by the MucA protein (Martin, Holloway et al. 1993; DeVries and 

Ohman 1994). 

Alginate is thought to have a protective function in a relatively harsh environment in which 

the bacteria are continually subjected to oxidative stress and attacks by the immune system 

(Krieg, Helmke et al. 1988; Simpson, Smith et al. 1988). The switch to a mucoid phenotype is 

also thought to promote persistence of P. aeruginosa in the airways of CF patients, and is 

usually coincident with a downturn in the prognosis of these patients (Koch and Høiby 1993). 

Mutations identified in mucoid P. aeruginosa isolated from CF patients have been shown to 

occur in gene mucA. The mutations are usually frameshifts that result in the formation of a 

truncated MucA protein which is no longer able to repress the activity of AlgU (Mathee, 

Ciofu et al. 1999). AlgU is also able to indirectly modulate the twitching motility by 

controlling the activity of LecB (Bazire, Shioya et al. 2010). Sonawane and colleagues 
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demonstrated that LecB is involved in multiple functions and affects the expression of PilJ 

(Sonawane, Jyot et al. 2006).  

The production of exopolysaccharide, including alginate, has been linked to the resistance to 

phage adsorption in different cases (Ohshima, Schumacher-Perdreau et al. 1988; Labrie, 

Samson et al. 2010). Temperate phages, induced from mucoid clinical isolates of P. 

aeruginosa, select for mucoid variants (Miller and Rubero 1984). In another study started as a 

phage typing experiment, Martin showed that lytic phages could select for mucoid variants 

growing from the edges of the lytic plaques. The phage-susceptibility of these variants was 

not completely abolished (Martin 1973). Scanlan and Buckling obtained similar results in a 

co-evolution experiment using P. fluorescens SBW25 and phage φ2, a lytic phage using LPS 

as a receptor (Scanlan and Buckling 2012). Garbe and colleagues observed that the P. 

aeruginosa phage JG024, a lytic PB1-like myovirus commonly used in cocktail preparation 

for phage therapy and adsorbing on LPS, infects mucoid P. aeruginosa PAO1 mutants with a 

reduced efficiency (Garbe, Wesche et al. 2010). 

In all cases the switch from a non-mucoid to a mucoid phenotype provides partial resistance 

to the phage likely due to the masking and reduction of the amount of LPS receptor available 

for the phage adsorption. 

II.III.II RESTRICTION MODIFICATION SYSTEM 

Restriction-modification systems are important components of prokaryotic defense 

mechanisms against invading genomes. They are generally constituted of two enzymatic 

activities: a restriction endonuclease and a methyltransferase. The restriction endonuclease 

recognizes and cleaves foreign DNA sequences at specific sites, while the methyltransferase 

activity ensures discrimination between self and nonself DNA, by transferring methyl groups 

to the same specific DNA sequence within the host's genome (Figure 10). 
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FIGURE 10. RESTRICTION-MODIFICATION SYSTEMS AS DEFENSE MECHANISMS. Restriction-

modification systems recognize the methylation status of incoming foreign DNA such as phage genomes. 

Methylated sequences are recognized as self, while recognition sequences on the incoming DNA lacking 

methylation are recognized as non-self and are cleaved by the restriction endonuclease (REase). The methylation 

status at the genomic recognition sites is maintained by the cognate methyltransferase (MTase) of the restriction-

modification system. Figure extracted and modified from (Vasu and Nagaraja 2013). 

The restriction-modification system could contribute to the colonization by bacteria of a new 

habitat containing phages (Sneppen, Semsey et al. 2015). However, this defense mechanism 

can be overcome by phages through a number of different kind of anti-restriction systems 

such as alterations in the orientation of the cleavage site (Meisel, Bickle et al. 1992) or 

incorporation of unusual bases in the DNA (Warren 1980). 

II.III.III THE CRISPR-CAS SYSTEM 

The prokaryotic system, based on a region of DNA called Clustered Regularly Interspaced 

Short Palindromic Repeats (CRISPR) and associated genes called cas (Jansen, Embden et al. 

2002), is capable of targeting DNA as a way of protecting the host against phages and other 

mobile genetic elements (Fineran and Charpentier 2012; Heler, Marraffini et al. 2014; Rath, 

Amlinger et al. 2015). It is a sophisticated “restriction system” which is genetically 
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programmed and keeps a “memory of past aggressions” (Bolotin, Quinquis et al. 2005; 

Mojica, Díez-Villaseñor et al. 2005; Pourcel, Salvignol et al. 2005; Barrangou, Fremaux et al. 

2007; Hale, Zhao et al. 2009). The “memory” is ensured by an approximately 30 bp long 

DNA sequence, called spacer, corresponding to a fragment of the genetic element to be 

neutralized (Figure 11). New spacers are added to one side of the CRISPR providing a 

chronological record of the viruses that the bacteria have previously encountered (Pourcel, 

Salvignol et al. 2005). CRISPR activity requires the presence of a set of CRISPR-associated 

(cas) genes, usually found adjacent to the CRISPR (Jansen, Embden et al. 2002). 

 

FIGURE 11. OVERVIEW OF CRISPR-Cas IMMUNITY TO VIRUSES OF BACTERIA AND 

ARCHAEA. During adaptation, the phage genome is recognized by cas proteins and a short sequence of the 

phage DNA (termed a protospacer) added to the leader end of the CRISPR array, resulting in a new spacer 

sequence and a duplicated repeat. Transcription of the CRISPR array from a promoter within the leader sequence 

results in a precursor CRISPR RNA (pre-cRNA) transcript. The pre-cRNA is matured into individual cRNAs by 

a process involving Cas proteins. The mature cRNAs form a ribonucleoprotein complex, which targets nucleic 

acids that are complementary to the spacer sequence in the cRNAs. Figure extracted and modified from (Fineran 

and Charpentier 2012). 



47 

 

The CRISPR-Cas mediated defense process can be divided into three stages: adaptation, 

characterized by the insertion of new spacers in the CRISPR locus; expression, during which 

the CRISPR is transcribed into a long precursor CRISPR RNA (pre-crRNA) subsequently 

processed into mature crRNA by Cas proteins; interference, during which the target nucleic 

acid is recognized and destroyed by the combined action of crRNA and Cas proteins (Figure 

11). 

The adaptation phase provides the genetic memory that is a pre-requisite for the subsequent 

expression and interference phases that neutralize the re-invading nucleic acids. The 

interference phase is currently the focus of intense technological developments worldwide, as 

the capacity to cut a genome in a programmable way at multiple places simultaneously opens 

unprecedented opportunities in terms of genome editing (Jiang and Marraffini 2015). 

Two different CRISPR-Cas systems have been observed in P. aeruginosa strains. Several 

studies have shown that in P. aeruginosa, CRISPRs carry mostly sequences of temperate 

phages (Cady, White et al. 2011; Essoh, Blouin et al. 2013). Essoh and colleagues showed 

that there was no link between natural resistance to multiple phages and the presence of 

CRISPR-cas systems (Essoh, Blouin et al. 2013) 
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GOAL OF THE WORK 

The main goal of this work was to characterize the resistance mechanisms active in P. 

aeruginosa against virulent bacteriophages and to evaluate the frequency of phage-tolerant 

variants emergence. We took advantage of the relatively low cost of Next Generation 

Sequencing (NGS) in order to identify the mutations responsible for the resistance in an 

experimental design reflecting real-life situation. As previously reviewed, many pathways 

associated with resistance have already been precisely characterized and resistant transposon 

mutants could be easily designed or ordered from mutant repositories. In the present work, the 

natural mutation responsible for resistance was identified by whole genome sequencing, used 

as an almost first-line assay, with no a priori on the underlying mutations. 

In the context of phage therapy, only virulent phages can be employed but it is interesting to 

question the behavior of the bacteria when challenged with different kind of viruses such as 

temperate phages. Temperate phages are well-known to be able to strongly modify the 

bacterial phenotype, influencing their virulence against, for example, the human host in the 

case of human pathogens. This is related to the capacity of these phages to integrate their 

genome into the bacterial chromosome or to transfer genetic material, and these are two of the 

main reasons that impede the use of temperate phages in the preparation of therapeutic 

cocktails. 

In order to provide additional evidences corroborating this assumption we performed a study 

on the selection of phage-tolerant variants by the temperate phage Ab31. The different 

phenotypes of phage-tolerant bacteria obtained after infection with Ab31 will be described 

here and detailed results are presented in ANNEX II (Latino, Essoh et al. 2014). Phage Ab31 

was isolated in Abidjan in the course of the study detailed in the ANNEX I (Essoh, Latino et 

al. 2015). From the same study, other phages were isolated and some of the virulent ones will 
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be described in the following paragraphs as they were later employed for selecting phage-

tolerant variants analysed in the present work and whose published results are reported in the 

ANNEX III (Latino, Midoux et al. 2016). 

Globally considered, all the results presented in this work will provide an idea of the complex 

interactions established between phages and bacteria and how the presence of phages with 

different behavioral characteristics can similarly shape the bacterial phenotype in a given 

environment. 
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RESULTS AND DISCUSSION 

Characterization of phage diversity in Abidjan and in-depth analysis of 

Ab31, a novel chimeric virus 

Given the importance of their distribution worldwide, a number of studies have been 

performed to understand the influence that phages can have on the evolution of microbial 

communities (Díaz-Muñoz and Koskella 2014). However, few have been devoted to the study 

of the phage diversity in a given environment. 

ANNEX I (Essoh, Latino et al. 2015) presents the work we performed in order to analyse the 

P. aeruginosa phage diversity in a given geographical region: several different phages were 

isolated from sewage water from five locations in the city of Abidjan, (Côte d’Ivoire) over a 

two-years-period, using a collection of P. aeruginosa strains with diverse genotypes. In total 

22 phages were isolated and distributed in different phage genera according to their genomic 

characteristics. Seventeen phages were shown to be virulent and were distributed into seven 

different genera, while five temperate phages were distributed into three genera. When tested 

on a panel of different P. aeruginosa strains derived from CF patients, virulent phages 

belonging to the same genus shared a similar host range. In contrast, the more diverse 

temperate phages showed differences in the host spectrum. This study showed that the phage 

diversity in a given location can be very high. A few isolation experiments using a large panel 

of bacterial strains allowed the isolation of virulent phages that belong to genera commonly 

employed for the constitution of cocktails for therapeutic use and covering a large host 

spectrum. 

Several phages have been included by Kropinski in newly described genera, such as Ab01 

(PAKpunavirus), Ab03 (Kpp10virus), Ab28 (Pbunalikevirus), Ab26 (Septima3virus) and 

Ab18 (Ab18virus). 
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I SELECTIVE PRESSURE IMPOSED ON P. AERUGINOSA BY A 

TEMPERATE PHAGE 

Among several temperate bacteriophages isolated by Essoh et al., ANNEX I, (Essoh, Latino et al. 

2015), Ab31 was characterized in more detail because it did not resemble any previously isolated 

bacteriophage (Latino, Essoh et al. 2014). 

I.I CHARACTERISTICS OF PHAGE AB31 

Electron microscopy performed on phage Ab31 showed that it belongs to the Podoviridae family 

sharing morphological characteristics with a virulent P. putida phage, phage AF (Figure 12) 

(Cornelissen, Ceyssens et al. 2012). 

 

FIGURE 12. ELECTRON MICROSCOPY OF PHAGE Ab31. The phage is constituted of an icosahedral head and 

a short tail with tail spikes. 

The plaques formed by phage AF on P. putida, are surrounded by a halo due to an 

exopolysaccharide-degrading activity carried by the tail spikes and able to cleave the O-antigen of 

the host LPS (Cornelissen, Ceyssens et al. 2012). Despite its morphological similarity with phage 

AF, the plaques formed by phage Ab31 were not surrounded by such a halo when the phage was 

spotted on P. aeruginosa susceptible strains, and sequence alignment of the tail spike protein of 

both phages showed similarities only in the N-terminal part. Conservation of the N-terminal part is 

necessary for association of the spikes with the tail structure, whereas the C-terminal part of the 

spike protein is involved in recognition and binding to the host surface. Thus, it illustrates the high 
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level of variability of tail spikes in phages belonging to the same genus (Steven, Trus et al. 1988; 

Cornelissen, Ceyssens et al. 2011) reflecting adaptation to hosts with different surface components. 

Looking at the Ab31 genome sequence it was possible to distinguish two main modules (Figure 13). 

 

FIGURE 13. ANNOTATION OF THE Ab31 GENOME. The Ab31 hypothetical terminal ends are at the 1 position. 

The morphogenesis module includes proteins similar to those encoded by phage AF (red), whereas the replication, 

recombination and lysis modules consist of genes similar to those of phage PAJU2 (blue). Genes encoding hypothetical 

proteins which have homologies with other phages are shown in purple color. Genes encoding hypothetical proteins of 

unknown function are shown in green color. 

The first region, showing homologies with the AF phage genome, covered the so-called late region 

and contained sequences encoding the structural proteins of the phage, such as those for capsid, tail-

to-head connector, tail and tail spikes. The second Ab31 genomic region encoded proteins involved 

in recombination and replication of the phage genome, constituting the so-called early/middle 

region. This region contained several genes that showed similarities with those of PAJU2 

(Uchiyama, Rashel et al. 2009), a temperate phage of P. aeruginosa, suggesting that, although 
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phage Ab31 showed a morphology similar to the virulent AF podovirus, it may behave as a 

temperate phage capable of lysogenizing P. aeruginosa strains. 

I.II BACTERIAL RESISTANCE AGAINST PHAGE AB31 

Phage Ab31 displayed a very narrow host range, being able to specifically infect the reference strain 

PA14, and Tr60 and Tr162, two strains genetically related to PA14, isolated from French CF 

patients in the same hospital. Several other strains possessing the same O-serotype or belonging to 

the PA14 clonal complex but isolated at other locations were found to be resistant to Ab31. 

In order to search for potential lysogens and evaluate the genotypic and phenotypic impact of 

infection on susceptible P. aeruginosa strains, some Tr60 and PA14 phage-tolerant variants were 

isolated and their genomes sequenced. The parental Tr60 strain was also sequenced and its genome 

assembled and compared with that of PA14. In Tr60, two genome modifications were identified: a 

deletion of 11 kbp corresponding to the prophage Pf1 sequence and a second deletion of 22 kbp 

shown to encode in PA14, among other proteins, a resolvase and a recombinase, commonly known 

to participate in DNA transfer. 

The genomes of two sequenced Ab31-tolerant variants (Tr60-10A and PA14-P1), suspected to 

contain phage DNA when analysed by PCR, surprisingly did not contain phage reads. A possible 

explanation could be that the phage genome did not integrate into the bacterial chromosome but was 

retained in a small proportion of cells after infection, representing what Ackermann and DuBow 

called a carrier state (Ackermann and DuBow 1987). Indeed, there is evidence that some of the 

putative lysogenic bacteria lost the phage genome after several replatings. In contrast, Tr60-100B 

was shown to possess Ab31 genome stably integrated into its chromosome as a true lysogen. The 

phage DNA integrated through a site-specific recombination process using a shared 64 bp sequence, 

as shown for PAJU2 (Uchiyama, Rashel et al. 2009). 
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In the course of the same study, mucoid variants of P. aeruginosa Tr60 and PA14 were obtained 

after infection of the host in liquid medium. These variants were stably resistant to the phage, 

although they were not lysogenic. Miller and colleagues showed that temperate phages with 

elongated heads and flexible tails (similar to PAJU2 virion), induced from CF-associated P. 

aeruginosa strains, were capable of converting non-mucoid strains to the mucoid phenotype (Miller 

and Rubero 1984). Sequencing of two Tr60-tolerant variants (Tr60-10A and Tr60-100A) with 

mucoid phenotype, revealed a deletion of 234 kbp identical in both variants. This region encodes 

several proteins that could be involved, directly or indirectly, in the regulation of alginate 

expression responsible for conversion to a mucoid phenotype (Wozniak and Ohman 1994; Qiu, 

Eisinger et al. 2007). 

Notably, the large deletion of 234 kbp included genes encoding proteins necessary to assemble a 

fimbrial organelle. This gene cluster which encodes components of the chaperone-usher pathway 

and a fimbrial unit, participates in biofilm formation (Ruer, Stender et al. 2007; Vallet-Gely, Sharp 

et al. 2007). Fimbriae could be involved in phage adsorption but further investigation is required to 

test this hypothesis. The deletion also contains two porins, and one member of the LamB/YcsF 

family protein. Previous studies have shown that an outer membrane porin encoded by the ompLC 

gene in Edwardsiella ictaluri is required for phage sensitivity (Hossain, Rahman et al. 2012), while 

LamB is the receptor for E. coli bacteriophage λ. LamB was shown to be sufficient to confer λ 

phage sensitivity upon transformation of the lamB gene into bacteria of different species (Randall-

Hazelbauer and Schwartz 1973). In conclusion, a number of proteins encoded by this deleted region 

might be responsible for the adsorption of phage Ab31 on the host surface and more work is 

necessary to identify the receptor for this phage. 

It is surprising that two seemingly independent Tr60-tolerant variants possessing the large deletion 

were selected after infection with the phage. Two hypotheses could be formulated to explain the 

origin of the deletion. The first hypothesis is that a variant subpopulation with the 234 kbp deletion 

preexisted in the Tr60 stock suspension, and that the phage infection led to its selection. Performing 
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PCR on about 100 isolated colonies or on the total DNA extracted from the Tr60 stock culture did 

not show any sign of these variants as preexistent. Another possible explanation involves the direct 

action of the phage on the bacterial chromosome. This hypothesis is supported by the finding that at 

both ends of the 234 kbp region present in the original Tr60 strain, there are sequences of 10 bp in 

length (ctcggcatga and ctcggcgatga) that differ by a single nucleotide insertion (Figure 14). Notably 

a similar sequence (c-cggcatga) was detected in the phage Ab31 genome at the end of the gene 

encoding an acetyl-transferase, upstream of the phage integrase (Figure 14). The 10 bp sequence 

“ctcggcgatga” constitutes the junction of the deleted region on the resistant bacterial genome 

(Figure 14). Moreover, the sequence upstream the 234 kbp region encodes several proteins involved 

in transposition, including a bacterial transposase. This suggests that the origin of the deletion in 

Tr60 was a recombination and/or transposition event in which the phage was also involved. 

 

FIGURE 14. SIMILAR SEQUENCE FOUND IN Ab31, Tr60, Tr60-10A AND Tr60-100A GENOMES. In Ab31 

genome this sequence is positioned between the acetyltransferase and integrase encoding genes; in Tr60 it could be 

found at the two flanking ends of the 234 kbp region, deleted in Tr60-10A and Tr60-100A; in the two Ab31-tolerant 

mutants, Tr60-10A and Tr60-100A a unique sequence was found where the 234 kbp region was missing. 

Large genomic deletions have been observed during early stage adaptation of P. aeruginosa in CF 

patients, but none were as large as 234 kbp, which represents about 3.6% of the genome (Cramer, 
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Klockgether et al. 2011; Rau, Marvig et al. 2012). Rau and colleagues described a deletion of 148 

kbp, encompassing the cupA cluster (Rau, Marvig et al. 2012). It is not known whether the presence 

of phages could play a role in the induction of such deletions. Ab31-tolerant strain PA14-P1 

showed no deletion corresponding to that which characterized Tr60-10A and Tr60-100A. In 

contrast, a number of indels were observed in different genes, but at this time it is impossible to 

know which one is responsible for phage resistance. 
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I.III AB31 IS A CHIMERIC PHAGE 

Phages AF and PAJU2 infect P. putida and P. aeruginosa, respectively. These bacterial species are 

closely related, and phage genome exchanges probably occurred during infection of a lysogenic 

host by a virulent phage similar to AF. As a result of their mosaic structure, some temperate phage 

genomes can migrate between unrelated bacteria (Krylov, Kropinski et al. 2012). Although 

genetically distant, phages AF and PAJU2 share a lambdoid genome organization which could 

favor genetic replacement (modular exchanges of gene blocks) (Brüssow and Hendrix 2002; 

Casjens 2005). Similar events seem to occur between D3112-like phages morphologically identical 

to phage lambda, and the transposable coliphage Mu belonging to the Myoviridae family (Braid, 

Silhavy et al. 2004). Several types of recombination events are thought to build phage genomes. 

Conserved sequences exist at gene boundaries that could serve to target homologous recombination 

at these positions, via transposition or site-specific recombination (Hatfull and Hendrix 2011). 

However a major contributor to phage genome building is illegitimate recombination, or 

recombination between short conserved sequences (a few bases), coupled with functional selection 

of genes (Juhala, Ford et al. 2000; Hatfull and Hendrix 2011). 

CONCLUSION 

This work revealed diverse aspects of phage/bacteria and phage/phage interactions and open the 

way to new investigations. Ab31 receptor is still unknown and it would be interesting to check 

whether Ab31 can induce large deletions in other experimental contexts. 
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II TOLERANT VARIANTS SURVIVING INFECTION WITH 

VIRULENT PHAGES 

II.I RATIONALE AND EXPERIMENTAL PROCEDURE 

In CF patients, failure of treatments of chronic infections is mainly due to the ability of P. 

aeruginosa to persist in a biofilm on the lung epithelial cell surface. There, the bacteria are 

embedded in an extracellular matrix constituted of polymers, proteins and DNA, which 

protects the bacteria not only from the antibiotic treatments, but also from the attack of innate 

or acquired immune system, (Høiby, Ciofu et al. 2010). When phage therapy is used against 

P. aeruginosa infection in vivo, the bacteria are adsorbed on a surface and display little 

movements. In these conditions, low phage titers can be employed thus preventing the sudden 

killing of a large proportion of bacteria and the release of high amount of toxins, such as LPS, 

that could induce a severe inflammatory response in the patient, aggravating the prognosis. 

The amount of phages will be sufficient to allow multiplication in the host, release of new 

phages and infection of adjacent bacterial cells. Moreover, as previously discussed in the 

“INTRODUCTION”, the combined use of phages targeting different receptors may help 

lowering the frequency of resistant variants appearance. Therefore, in this study, we have 

tried to reproduce the conditions of phage therapy in order to evaluate the frequency and 

characteristics of bacterial resistance. 

II.I.I GENETIC DIVERSITY OF PHAGES USED IN THIS STUDY 

In order to evaluate possible differences in the frequency of resistant variants appearance, four 

different virulent phages displaying various host ranges (Essoh, Latino et al. 2015) and using 

different receptors were used, alone or in combination of two or four. 
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We selected four phages that shared the ability to grow and kill a common host, P. aeruginosa 

strain PAO1: phages Ab05 (ф-KMV-like podovirus), Ab09 (LIT1-like podovirus), Ab17 

(KPP10-like myovirus) and Ab27 (PB1-like myovirus). Among the other phages we isolated, 

those belonging to the PAK-P1 genus were not able to grow on PAO1. Therefore, although 

employed in the preparation of therapeutic cocktail, we could not include a PAK-P1 

representative in the study presented in ANNEX III (Latino, Midoux et al. 2016). 

The genome organization of these four phages resembled that of their respective phage 

genera. 

PHAGE AB05 

As the other phages belonging to the ф-KMV genera, phage Ab05 presents a well-defined 

genome organization divided in three main parts: early genes, metabolic genes ending with a 

gene encoding an RNA polymerase (ORF31) and late genes, constituted of sequences 

encoding for virion proteins and the lysis cassette. This cassette formed of a pinholin 

(ORF49), endolysin (ORF50), and spanins (ORFs 51–52) is similar to the one described in 

other ф-KMV-like phages (Briers, Peeters et al. 2011). As reported for ф-KMV-like phages, 

the phage RNA polymerase is responsible for the transcription of genes encoded in the late 

region. The RNA polymerase is preceded by ORF 30 that showed a partial similarity with the 

bacterial RNA polymerase inhibitor found in ф-KMV-like phages by Klimuk et al. (Klimuk, 

Akulenko et al. 2013). 

PHAGE AB09 

Phage Ab09, similarly to other LIT1-like phages, encodes a virion-encapsulated RNA 

polymerase (ORF66) which allows transcription of early genes, and a second type of T7-like 

heterodimeric RNA polymerase (ORF18 and ORF19). Like phage LIT1, it carries the 
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rIIA/rIIB lysis inhibition cassette (ORF38 and ORF39), which is widely distributed among 

the genomes of phages infecting different host genera (Kushkina, Tovkach et al. 2013; 

Wittmann, Dreiseikelmann et al. 2014). This system enables a delay in the host lysis, 

providing this phage with the ability to produce phage particles in high amount compared to 

other phages, thus constituting a competitive advantage over the others. If this type of phage 

is integrated within a therapeutic cocktail product, it could be important to perform 

propagation separately, otherwise the phage might dominate the phage population. However, 

the role of such a cassette remains uncertain and several additional roles have been attributed 

to it. It may be involved in the host resistance mechanism of the abortive infection system, 

during which the phage can enter the bacterial cell but cannot complete its multiplication 

cycle (Labrie, Samson et al. 2010). 

PHAGE AB17 

Like all KPP10-like phages isolated in Abidjan in the course of this study, Ab17 possesses 

three tRNA, and a genome organization similar to phage KPP10. Interestingly, these phages 

present zones of variability probably due to horizontal genes transfer or recombination 

interspersed in highly similar genomic segments. Several regions of short insertion/deletions 

can be observed between the different phages, sometimes resulting in the fusion of two 

putative ORFs. Phage Ab17 presents the highest level of genome variability. In particular it 

lacks a 3271 bp region encompassing seven hypothetical ORFs (ORF34 to ORF40 in phage 

KPP10), and perfectly conserved in the other KPP10-like phages isolated in Abidjan. As a 

result, a putative RNA ligase (ORF91 in Ab17) is formed by the fusion of the beginning of 

ORF89 and ORF97. 
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PHAGE AB27 

In keeping with other phages of the PB1 genus (Ceyssens, Miroshnikov et al. 2009), the Ab27 

genome does not encode an RNA polymerase, thus transcription relies entirely on the host 

machinery. The genome encodes a DNA polymerase III alpha-subunit that catalyses the 

polymerization reaction of the host DNA polymerase III holoenzyme (Kelman and O'Donnell 

1995). The presence of phage-encoded DNA primase and helicase suggests that viral dsDNA 

elongation is performed by the phage, independently of the host replication machinery. 

Interestingly between ORF60 and ORF61, Ab27, as other PB1-like phages, carries a 30 bp 

sequence (GATGCCCCGGCGAACCGGGGCGGGGTGGTT) that is commonly found in 

several P. aeruginosa strains as a spacer in the CRISPR elements. The CRISPR-Cas system 

plays a role in P. aeruginosa resistance to bacteriophages and plasmids (Cady, White et al. 

2011), but is usually not associated with resistance to virulent phages. 

II.I.II CHOICES ABOUT THE INFECTION CONDITIONS 

We sought to test bacterial resistance to virulent phages in conditions that mimic the in vivo 

situation, and thus decided to perform phage infections on solid agar plates instead of liquid 

cultures, more commonly employed in the investigation of bacterial resistance. This should 

allow us to isolate different resistant variants that do not derive from a single parental clone, a 

situation commonly observed when isolating resistant variants from infections performed on 

planktonic cultures. Specifically, a planktonic P. aeruginosa PAO1 culture named PAO1Or, 

where “Or” stands for Orsay, the site where our laboratory is located, was infected at a low 

MOI of 0.1 (one phage for ten bacteria) and kept for 15 min at room temperature before 

plating in soft agar on LB solid medium, thus restricting diffusion of bacteria and newly 

produced phages. PAO1Or was grown from a single PAO1 colony. 
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II.I.III PHAGES COMBINATIONS 

Double infections were designed (Figure 15) by coupling a myovirus and a podovirus with 

different receptors and similar plaque morphology, in order to possibly avoid the overgrowing 

of one phage to the detriment of the other and, thus, the preferential selection of variants 

resistant to only one phage. 

 

FIGURE 15. DIFFERENT KINDS OF INFECTIONS PERFORMED IN THIS STUDY. Single phage 

infections (blue circles), double phage infections (red circles) coupling a myovirus Ab27 or Ab17 with a 

podovirus Ab05 or Ab09, respectively and multiple phage infection (green circle) performed by mixing the four 

different phages in a 1:1:1:1 ratio. All the infections were performed at an MOI of 0.1. 

Both Ab09 and Ab17 produced clear plaques on PAO1Or, whereas Ab27 gave tiny and turbid 

plaques, and Ab05 produced more or less clear plaques with a halo (Figure 16). 
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FIGURE 16. PLAQUES PRODUCED ON PAO1Or BY THE DIFFERENT PHAGES USED FOR THIS 

STUDY. 

As discussed in the “INTRODUCTION”, phages belonging to the ф-KMV genus, with some 

exceptions, are known to target the type IV pilus as a receptor (Chibeu, Ceyssens et al. 2009). 

In order to confirm that phage Ab05 also requires type IV pili for infection, we tested the 

phage on a panel of four different type IV pilus PAO1 transposon mutants (PilA, PilR, PilQ 

and PilY1) and all of them were shown to be completely resistant to the infection performed 

with this phage. 

In contrast, phages Ab09, Ab17 and Ab27 are known to belong to phage genera whose 

members target LPS as receptor to initiate the first steps of infection. Indeed, we showed that 

a PAO1 transposon mutant for the algC gene, known to encode a key enzyme that provides 

sugar precursors for the synthesis of alginate, LPS and other exopolysaccharides (Ma, Wang 

et al. 2012), thus completely devoid of LPS, was completely resistant to infection performed 

with the three phages. We decided to couple phage Ab09 and phage Ab17 on one end and 

phage Ab05 and phage Ab27 on the other end, to perform the double infections illustrated in 

Figure 15. 

II.II PHENOTYPE OF PHAGE-TOLERANT VARIANTS 

Using the approach described in “MATERIAL AND METHODS”, we were able to calculate the 

frequency of phage-tolerant variants for all the infection experiments we performed. Phage-
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tolerant variants arising after single phage infection were recovered at a frequency of 3.2x10
-5

. 

The frequency at which phage-tolerant variants were recovered after double or multiple 

infections was 4x10
-6

 and 3.8x10
-6

, respectively. We counted the number of phage-tolerant 

colonies growing on the plate 24 h after infection, divided by the total number of bacteria 

used for the infection. At this step, named P1 (first plating), we were not able to confirm the 

stability of the bacterial resistance to the phage. For this reason, we refer to them as tolerant, 

tolerance being defined as the capacity to survive the phage infection, whatever the 

mechanism the bacteria use as a defense. In general, we will name our variants phage-tolerant 

variants until the mechanism of resistance is established. We will refer to tolerant variants as 

resistant only if the change involves alterations of the bacterial surface, consequently 

impeding phage adsorption. 

The majority of PAO1Or variants recovered after Ab05, Ab09 and Ab17 single, double or 

multiple infections (32 variants) were tolerant to at least one phage. In contrast, none of the 

surviving bacteria (ten variants) recovered from infections with Ab27 alone turned out to be 

stably tolerant to Ab27. To test if phage Ab27 may select more easily for bacteria growing in 

planktonic culture, we performed liquid infections using different parameters such as 

temperature (30°C, 37°C, 42°C), MOI (0.1, 0.01, 0.001), infection timing (during bacterial 

exponential or stationary phase growth) or infecting the same culture with the phage every 24 

h, for a total of three infections (72 h culture). All our attempts for isolating Ab27-tolerant 

variants at P3 stage were unsuccessful. 

II.II.I COLONY MORPHOLOGY OF PHAGE-TOLERANT VARIANTS ON DIFFERENT MEDIUM 

For further studies we retained and analysed 32 variants shown to be stably tolerant to at least 

one of the four phages used in this work. In order to get additional information on their 

growth and metabolism we cultured these variants on a different medium, the Sheep Blood 
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agar, and looked at the colony morphology. We confirmed the existence of new phenotypic 

characteristics compared to the parental PAO1Or strain, not only in terms of growth 

characteristics, but also in terms of β-hemolytic activity. The β-hemolysis is usually tested by 

plating the bacteria on Sheep Blood agar plates (5%) and observing the edge of the colonies. 

Various species of streptococci, gram-positive bacteria, have been shown to carry this activity 

due to the production and secretion of streptolysins, peptides able to lyse the red blood cells 

(Nagamune, Ohnishi et al. 1996). Variants PAO1-02, PAO1-13 and PAO1-17 lacked the 

hemolytic ability displayed by the wild-type PAO1Or but, interestingly, the colonies of PAO1-

13 presented zones of reversion to the wild-type phenotype (Figure 17A). 

A mucoid phenotype was stably observed for PAO1-02, PAO1-06 and PAO1-13 (Figure 

17B). PAO1-17 was particularly interesting as it continuously produced three types of 

colonies on solid LB media, some being mucoid, some with a smooth appearance as seen in 

the control PAO1Or strain, and others with irregular transparent appearance (Figure 17C). 

When replated, the transparent colonies again produced the three types of colonies, whereas 

the others stably maintained their phenotype. 

In the course of this study, phage Ab09 was shown to select mainly for mutants with an 

increased capability to produce alginate, thus leading to the mucoid conversion of the parental 

phenotype.  
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FIGURE 17. A) PLATING OF SOME PHAGE-TOLERANT VARIANTS ON SHEEP BLOOD AGAR 

5%. B) MUCOID PHENOTYPE OF PAO1-06. C) IRREGULAR MORPHOLOGY OF PAO1-17 

COLONIES. In the picture are shown colonies with morphology similar to PAO1or and others with a transparent 

appearance. 

II.II.II CLUSTERING OF THE THIRTY-TWO VARIANTS ACCORDING TO THEIR PHAGE-

TOLERANCE PATTERN 

The 32 variants, shown to be stably tolerant to at least one phage at the P3 purification step, 

were clustered in five different groups according to their pattern of susceptibility to the four 

phages employed in this study, evaluated by plating efficiency (Table 1). 

The Group 1 contained all the variants showed to be susceptible to phage Ab05 and more or 

less tolerant to the phages Ab09, Ab17 and Ab27. In terms of plating efficiency, Group 1 

variants were shown to be completely susceptible to phage Ab05, although, on some of them, 

the phage produced turbid plaques smaller than those observed on the initial PAO1Or. 

Complete resistance to Ab17 and Ab27 was seen in all the variants. Only half of them resisted 

Ab09, while the other half displayed a reduction in the efficiency of plating of phage Ab09 

and the formation of smaller and less clear plaques. These variants were isolated mostly from 
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infection performed with phages Ab09, Ab17 or double infection with both of them. They 

displayed cross-resistance to phages using LPS as a receptor. 

Six Group 2 variants, of which three were mucoid, showed intermediate susceptibility 

patterns to the different phages. Although the mucoid phenotype seems to provide the bacteria 

with a strong protective barrier against several external factors (Hentzer, Teitzel et al. 2001; 

Leid, Willson et al. 2005), the alginate matrix does not totally inhibit phage adsorption, as 

turbid plaques can be observed for all phages. It may prevent entrance of phage DNA or 

release of phage particles as well as of extracellular toxins, responsible, for example, for the 

hemolytic activity displayed by the wild-type PAO1Or strain. 

The five Group 3 variants were resistant only to phage Ab05, whereas Group 4 variants 

displayed full resistance to phages Ab05 and Ab27, and reduced susceptibility to phage Ab17 

and Ab09, characterized by the production of small plaques instead of large, clear ones. 

Variant PAO1-30 was quite particular since, although completely resistant to phage Ab05, it 

displayed complete susceptibility to phage Ab09 and reduced efficiency of plating for phage 

Ab17; in contrast to the other variants of this group, PAO1-30 seemed not to completely 

inhibit the infection by phage Ab27; indeed, even with lower efficiency of plating and 

producing smaller plaques, phage Ab27 was able to productively infect this variant. 

Group 5 was characterized by variants able to resist infection by all phages used in this study. 
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 Infection 
PAO1Or 

variant 
Phage resistance Phage DNA

‡ 

 
  

Ab05 Ab09 Ab17 Ab27  

   PM EOP PM EOP PM EOP PM EOP  

G
ro

u
p

 1
 

Ab09, Ab17 01 N 100 - 0 - 0 - 0 - 

Ab09, Ab17 04 N 100 - 0 - 0 - 0 - 

Ab09, Ab17 05 N 100 - 0 - 0 - 0 - 

Ab09 07 N 100 - 0 - 0 - 0 - 

Ab17 09 N 100 - 0 - 0 - 0 - 

Ab17 12 N 100 - 0 - 0 - 0 - 

Ab17 14 s 100 s 100 - 0 - 0 - 

Ab09 15 s 100 s 2 - 0 - 0 - 

Ab17 18 s 100 s 20 - 0 - 0 - 

Ab09, Ab17 19 N 100 s 8 - 0 - 0 Ab09 

Cocktail* 21 s 100 s 20 - 0 - 0 - 

Ab05, Ab27 32 N 100 - 0 - 0 - 0 Ab27 

Ab05, Ab27 34 s 100 s 33 - 0 - 0 Ab27 

G
ro

u
p

 2
 

Ab09, Ab17 02
† 

s 100 s 100 N 100 - 0 - 

Ab09, Ab17 03 N 100 s 20 N 100 N 33 - 

Ab09, Ab17 06
† 

N 100 s 43 N 100 N 100 - 

Ab17 10 s 100 s 100 s 100 N 73 - 

Ab09 13
† 

s 100 s 100 N 100 s 100 - 

Ab09 17 s 100 - 0 N 100 - 0 Ab09 

G
ro

u
p

 3
 

Cocktail* 25 - 0 N 100 N 100 s 100 Ab05 

Ab05 26 - 0 N 100 N 100 N 100 Ab05 

Ab05 27 - 0 N 100 N 100 N 100 Ab05 

Ab05 28 - 0 N 100 N 100 N 100 - 

Ab05 29 - 0 N 100 N 100 N 100 Ab05 

G
ro

u
p

 4
 Cocktail* 24 - 0 s 100 s 100 - 0 Ab27 

Ab05 30 - 0 N 100 N 50 s 10 Ab05 

Ab05, Ab27 36 - 0 s 100 s 100 - 0 Ab27 

Ab05, Ab27 37 - 0 s 100 s 100 - 0 Ab05 

G
ro

u
p

 5
 Cocktail* 20 - 0 - 0 - 0 - 0 Ab17 

Cocktail* 22 - 0 - 0 - 0 - 0 Ab17 

Ab05, Ab27 33 - 0 - 0 - 0 - 0 Ab27 

Ab05, Ab27 35 - 0 - 0 - 0 - 0 - 

TABLE 1 CLUSTERING OF P3 PHAGE-TOLERANT VARIANTS ACCORDING TO THEIR 

TOLERANCE PATTERN AGAINST FOUR PHAGES USED IN THIS STUDY. PM, plaque morphology; 

EOP, efficiency of plating; N, normal plaque morphology compared to that observed on the control PAO1Or; s, 

small and turbid plaques; -, no plaques observed; 
† 

mucoid variant; 
‡
 detection by PCR; * the four phages were used 

for the infection in a form of a cocktail.  
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In general, the plaque enlargement occurs as a consequence of two distinct phenomena: a 

“diffusion” step that directly contributes to the growth of a plaque’s diameter, and an “infection” 

step, strictly dependent on the phage latent period and burst size (Abedon 2008). A change in 

plaque size not coupled with a decrease in the efficiency of plating as observed, for example, for 

phage Ab05, Ab09 and Ab27 when infecting the variant PAO1-13, could reflect a decrease in 

the diffusion ability of phages. This could be caused for instance by the production of a denser 

extracellular matrix such as alginate in mucoids. With some phages infecting, for example, the 

mucoid variants, we also observed the formation of more turbid plaques. Plaque turbidity could 

be due to the slowing down of the infection in terms of number of cells infected in a certain 

period of time (increase of latent period length, decrease of burst size). 

Unexpectedly, PCR amplification showed that phage DNA could still be detected at the P3 re-

isolation step in 15 of the 32 variants (Table 1), even when we treated them with a virucide in 

order to exclude the presence of phages bound to the bacterial surface. All these data suggested 

the existence of a pseudolysogenic stage (discussed later) as these phages are not temperate. 

We hypothesized that the resistance of phage-tolerant variants not containing phage DNA could 

have been due to modifications of the bacterial extracellular surface, altering or masking the 

phage receptor, thus inhibiting their binding. We performed adsorption assay on phage-free 

variants and evaluated the amount of unbound phages expressed as percentage of the initial 

amount of phages used for the assay. The results correlated well with the phage-tolerance 

pattern of the mutants suggesting that phage infection could be impaired at the level of phage 

adsorption to its receptor (Figure 18). For instance, group 3 variant PAO1-28 and group 5 

variant PAO1-35 which were tolerant to Ab05 did not significantly adsorb Ab05. Variant 

PAO1-28 adsorbed the three other phages and was susceptible to their infection, whereas variant 

PAO1-35, fully tolerant to phages Ab09, Ab17 and Ab27, adsorbed none of them. 
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FIGURE 18. PHAGE ABSORPTION ON SEVENTEEN VARIANTS DEVOID OF PHAGE DNA. Y-axis, 

percentage of unabsorbed phages at 16 min after infection. The standard deviation is the result of three independent 

assays. 

The different assays show that mutants display a large variety of phenotypic changes depending 

on the bacteriophage used. In order to identify the mutations conferring resistance, and to 

investigate in more details the presence of phage DNA, we performed draft whole genome 

sequencing on DNA extracted from 23 variants at the P3 purification step, distributed into the 

different groups and in addition used a candidate gene approach to find mutations in the mucoid 

variant PAO1-02. 

II.III A WIDE RANGE OF CHROMOSOMAL MUTATIONS IS SELECTED BY PHAGES 

To identify de novo mutations, we first sequenced the genome of the parental PAO1Or strain, 

prepared from the culture used to derive phage-tolerant variants. The PAO1Or sequencing reads 

were mapped against the sequence of the reference PAO1-UW (NC_002516) strain, allowing 

the assembly of the full genome and identification of differences (Figure 19).  

Compared to PAO1-UW (Stover, Pham et al. 2000), PAO1Or possessed a large inversion 

between rRNA sequences at position at position 727255 to 4788575 (Figure 19). 
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FIGURE 19. ALIGNMENT OF PAO1-UW AND PAO1Or GENOME SEQUENCES. The central block (light 

green) represents the inverted region in PAO1Or compared to PAO1-UW strain. 

Klockgether and colleagues showed that PAO1-UW possess a single copy of the Pf1 prophage 

and that two of the PAO1-derived reference substrains, MPAO1 and PAO1-DSM, possess a 

second additional copy in their genome (Klockgether, Munder et al. 2010). We found that 

PAO1Or also possess the two copies of the prophage Pf1 and the second copy, named RGP42 in 

MPAO1, is located at position 5 242 103 to 5 254 164 (Figure 19). PAO1Or possesses 63 SNPs 

or short indels events compared to PAO1-UW. As expected, some of these differences, 

including the inversion and the presence of an additional copy of the filamentous prophage Pf1, 

were previously reported by Klockgether and colleagues for both substrains MPAO1 and PAO1-

DSM, while others were specific to the PAO1Or substrain. 

The sequencing reads from each of the 23 sequenced phage-tolerant variants were mapped 

against the PAO1Or genome showing a uniform distribution with a mean coverage from 50 up to 

200 fold. 

Fourteen variants showed a single mutation in their genome, while six variants were shown to 

be double mutants. Two variants, PAO1-14 and PAO1-21, were shown to possess the same 

mutation, although isolated from two independent experiments. No mutations could be detected 

in variants PAO1-30, PAO1-32 and PAO1-34. An additional variant with a mucoid phenotype, 

PAO1-02, was analyzed by a candidate gene approach and this allowed to find a frameshift 
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mutation in the mucA gene. These results show that the approach we employed allowed us to 

characterize a large diversity of independent variants. 

Table 2 displays the position and nature of the mutations, as well as the percentage of 

sequencing reads containing a particular mutation. In twelve out of fourteen variants with a 

single mutation, the mutation was present in more than 98% of the reads, and usually 100%. 

Among these, more than 20% of reads were of phage origin in variants PAO1-19 and PAO1-20. 

No phage reads were detected in the ten others. The ratio of mutated reads was only 47% and 

81% in single mutation variants PAO1-17 and PAO1-26 respectively. Phage DNA was detected 

in both variants. In four (variants PAO1-22, PAO1-24, PAO1-33, PAO1-37) among the six 

variants with two mutations, one of the mutations was present only in a fraction of the 

population. Group 5 variant PAO1-33 showed two mutations at the same position in wzy, in 

equal proportion, the A(7) to A(8) variant and a A(7) to (6) variant in addition to a pilY1 

deletion. Curiously, both PAO1-33 and PAO1-37 were wzy-pilY1 double mutants. In these four 

cases, phage reads were detected. No phage reads were detected in the last two double mutants, 

variants PAO1-04 and PAO1-35. 
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 PAO1 

variant 

Phage 

resistance* 

Position on 

PAO1Or 
Mutation Locus tag 

Protein 

alteration
‡
 

% of reads 

representing 

 
      

Mutatio

n 
Phage

§
 Bacteria 

G
ro

u
p

 1
 

01 S R R R 1 976 849 A(7)  A(8) wzy  74/438 aa 100 0 98 

04 S R R R 
1 977 338 G(6)  G(5) wzy 224/438 aa 100 

0 99 
4 736 958 G  A migA Arg  His 100 

07 S R R R 1 977 338 G(6)  G(5) wzy 224/438 aa 98 0 98 

14 s s R R 1 976 849 A(7)  A(8) wzy 74/438 aa 100 0 98 

15 s R R R 1 986 619 G(9)  G(8) wbpL 88/339 aa 100 0 99 

18 s I R R 5 634 829 C  A wapH Arg  Leu 99 0 99 

19 S I R R 5 632 885 G  C dnpA 67/472 aa 100 24 [Ab09] 74 

21 s I R R 1 976 849 A(7)  A(8) wzy 74/438 aa 100 0 99 

32 S R R R  - - - - 0 85 [Ab27] 13 

34 s I R R - - - - 0 73 [Ab27] 25 

G
ro

u
p

 2
 

02 s s S R 4 683 540 G(3)  G(2) mucA 146/194 aa ‖‖
 

‖‖
 

‖‖
 

03 S I S I 4 487 654 C(5)  C(6) wzz2 228/443 aa 100 0 98 

06 S I S S 4 683 359 T(4)  T(3) mucA 253/194 aa 100 0 99 

10 s s s I 5 327 357 A  C pgi Thr  Pro 99 0 99 

13 s s S s 4 683 943 T  C mucA…algU - 100 0 99 

17 s R s R 1 977 343 C  A wzy 220/438 aa 47 2 [Ab09] 97 

G
ro

u
p

 3
 

26 R S S S 5 689 432 19 bp pilQ 180/714 aa 81 2 [Ab05] 97 

G
ro

u
p

 4
 24 R s s R 

1 976 849 A(7)  A(8) wzy 74/438 aa 40 
24 [Ab27] 72 

5 095 901 G  C pilR Arg  Pro 98 

30 R S I I - - - - 0 40 [Ab05] 57 

37 
R s s R 5 103 099 10 bp pilY1 816/1161 aa 67 

3 [Ab05] 96 
 1 977 570 A  G wzy Asp  Gly 100 

G
ro

u
p

 5
 

20 R R R R  5 688 665 555 bp pilQ 529/714 aa 100 35 [Ab17] 63 

22 R R R R 
5 095 650 C(2)  C(1) pilR 334/445 aa 97 

11 [Ab17] 88 
6 005 075 213 bp algC 797/868 aa 63 

33 R R R R 

1 976 849 A(7)  A(8) wzy  74/438 aa 49 

2 [Ab27] 98 1 976 849 A(7)  A(6) wzy 54/438 aa 49 

5 102 164 109 bp pilY1 501/1161 aa 100 

35 R R R R 
451 455 11 bp pilJ 751/682 aa 100 

0 98 
1 976 849 A(7)  A(8) wzy  74/438 aa 100 

TABLE 2 TWENTY-EIGHT MUTATIONS IDENTIFIED IN P3 PHAGE-TOLERANT VARIANTS BY 

COMPARISON WITH THE REFERENCE PAO1Or. 
*
Phage resistance pattern is reported in the order Ab05, Ab09, Ab17 

and Ab27. S, completely susceptible; R, completely resistant; I, reduced efficiency of plating; s, normal efficiency of plating 

but small and turbid plaques. Number of repeated nucleotides indicated in parentheses. 
‡
Length of the mutated protein/wild-

type. 
§
Phage found by sequencing indicated in square brackets. 

‖‖
Mutation found by PCR and Sanger sequencing of the mucA 

gene. Intergenic region (variant 13, group 2) indicated by ellipsis (…). 
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Three kinds of genetic alterations were found in the phage-tolerant variants: phase variation, 

deletions of more than 10 bp, and nucleotide substitutions. In total, thirteen genes (algC, 

dnpA, migA, mucA, pgi, pilJ, pilQ, pilR, pilY1, wzy, wzz2, wbpL, wapH) and the muA…algU 

intergenic region were affected in the 28 mutations detected (Table 2).  

II.III.I PHASE VARIATION MUTATIONS ARE REVERSIBLE 

Mutations in wzy were observed in 10 variants. In two instances, variants PAO1-17 and 

PAO1-24, slightly less than half of the bacteria were mutated. In both cases, one of the phages 

used in the infection was still present. In eight variants the wzy mutations occurred in an 

homopolymeric tract. The last two cases were point mutations. Mutations A(7) to A(8) at 

position 1 976 849 as well as A(7) to A(6) at the same position in variant PAO1-33, and G(6) 

to G(5) at position 1 977 338, were found in six, one and two instances, respectively (variant 

PAO1-33 showed both the A(7) to A(8) and A(7) to A(6) mutations, in equal amount). Single 

nucleotide indels were observed in pilR (C2 to C1), mucA (T4 to T3 and G3 to G2), wzz2 (C5 

to C6) and wbpL (G9 to G8) inducing a frameshift. This resulted in early termination of 

protein synthesis except for the T4 to T3 mutation in mucA which suppressed normal 

termination of translation resulting in the production of a longer MucA protein fused with the 

beginning of MucB. Natural mutations of mucA previously observed in strains isolated from 

CF patients were phase variation mutations (Spencer, Kas et al. 2003) or other frameshift 

mutations (Pulcrano, Iula et al. 2012), resulting in the production of truncated proteins as seen 

in PAO1-02. 

In total, 13 among the 28 mutations identified in the present study are predicted to be 

reversible at a high rate. Most of the mutations identified in this study occurred in genes (wzy, 

wzz2, wbpL, wapH, dnpA, migA, pgi and algC) involved in the LPS biosynthesis pathway. 

The mutant PAO1-01, PAO1-14, PAO1-21, PAO1-24, PAO1-33 and PAO1-35 and PAO1-04 

and PAO1-07 have the same kind of phase variation mutation in wzy gene, PAO1-15 
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possesses a phase variation mutation in the wbpL gene and PAO1-03 has a phase variation 

mutation in the wzz2 gene. Phase variation mutations in genes involved in the O-antigen 

production can temporarily confer to the mutants the resistance against the phages at a cost of 

losing the A- and/or B-chains of the O-antigen, that, however, in vitro and in absence of the 

human host cells, are not necessary. 

II.III.II DELETIONS 

Multiple components are involved in the type IV pilus biogenesis (Kim, Oh et al. 2006). We 

observed seven mutations affecting pilJ, pilR, pilQ and pilY1. Deletions were found in three 

structural genes. pilJ was missing 11 bp in variant PAO1-35. pilQ was missing 19 bp in 

variant PAO1-26 and 555 bp in variant PAO1-20. The pilY1 gene lacked 10 and 109 bp in 

variants PAO1-37 and PAO1-33 respectively. These deletions caused a frameshift and the 

creation of a premature stop codon, or suppressed some internal domains. The regulatory gene 

pilR lost one C in variant PAO1-22 and contained a missense mutation in variant PAO1-24. 

We also identified a deletion of 213 bp in the algC gene, in variant PAO1-22. Mutations in 

algC affect the biosynthesis of alginate, LPS and rhamnolipids, biosurfactants necessary for 

bacterial swarming motility and biofilm formation (Olvera, Goldberg et al. 1999). 

II.III.III NUCLEOTIDE SUBSTITUTIONS 

Eight variants showed a single nucleotide substitution. Two of them, PAO1-17 and PAO1-19, 

had non-sense mutations converting a Tyrosine in a stop codon and producing a shorter Wzy 

and DnpA proteins, respectively. Two variants showed non-synonymous mutations that 

changed the positively charged Arginine into the nonpolar Leucine in PAO1-18 WapH, or 

into the uncharged polar Proline in PAO1-24 PilR. A third non-synonymous mutation was 

observed in the double mutant PAO-37, affecting wzy and changing the negatively charged 
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Aspartate in the nonpolar aminoacid Glycine. PAO1-13 possessed a transversion of T into C 

in the promoter region of mucA, presumably affecting its expression. PAO1-10 and the double 

mutant PAO1-04 were shown to have a nucleotide substitution that led to the replacement of 

the positively charged Arginine and the uncharged Threonine with the positively charged 

Histidine and the uncharged Proline in Wzy and Pgi, respectively. In this case the aminoacid 

charge or polarity did not change but the substitution of this aminoacid could lead to 

conformational changes in the proteins, thus affecting their interactions with other proteins. 

The different mutations potentially affected the biosynthesis of membrane structures that 

participate in binding of phages to their receptor. Mutations in the gene cluster regulating the 

production of alginate were selected by Ab09, and could reduce the efficiency of infection of 

all the phages. The wzy, wzz2 or wbpL genes, are members of the heteropolymeric O-specific 

antigen biosynthesis cluster in PAO1 (Lam, Taylor et al. 2011). The migA gene encodes a 

rhamnosyltransferase involved in the LPS core capping, whereas dnpA is a de-N-acetylase, 

and pgi and wapH encode glycosyltransferases. Overall, the phage susceptibility pattern of 

each mutant correlated well with the nature of the mutated genes. Infection with Ab09, Ab17 

and Ab27 mainly selected mutations in genes regulating LPS biosynthesis, while Ab05 

selected mutations in genes involved in type IV pili synthesis. 

II.IV PERSISTENCE OF PHAGE DNA CONFERS IMMUNITY 

In eleven variants, phage DNA represented 2 to 85% of the total sequencing reads, and there 

was no evidence of insertion of the phage genome in any of the samples, thus confirming the 

pseudolysogenic nature of the variants. Interestingly, in three phage-tolerant variants (PAO1-

30, PAO1-32 and PAO1-34) no chromosomal mutation could be found but they possessed 

large amounts of phage DNA. PAO1-32 and PAO1-34 immune to Ab09, Ab17 and Ab27 
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contained Ab27 DNA whereas PAO1-30 immune to Ab05, Ab17 and Ab27 contained high 

levels of Ab05 DNA. 

II.IV.I PSEUDOLYSOGENIC PHAGES WITH TAIL FIBER MUTATIONS 

In the sequenced samples in which high numbers of phage DNA reads were present, it was 

possible to assemble the phage genome sequence. This led to the identification of several 

single nucleotide differences in tail fiber genes, as compared to the parental genotype. To 

check whether these mutations were already present in the phages used to infect bacteria, we 

analysed the affected regions by PCR and sequencing. In three pseudolysogens obtained 

independently, an Ab05 tail fiber gene displayed two SNPs, also observed in a fraction of the 

phages used to select for resistant bacteria (Figure 20). 

 

FIGURE 20. NEW MUTATIONS IN TAIL FIBER GENES OF PSEUDOLYSOGENIC PHAGES. The 

phage recovered from variants PAO1-26, PAO1-30 and PAO1-37 share mutations TA at position 37873 and 

AC at position 38368. The mutations were already present in the phage stock used for infections at almost 

equal frequency. The third shared mutation at position 1076 is not shown. Phage recovered from PAO1-26 has 

an additional mutation at position 37443. A fraction of phages recovered from both PAO1-26 and PAO1-30 

show an additional mutation at position 35108 and 38934, respectively (Table 3).  
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Similarly a single SNP was observed in an Ab17 tail fiber gene from variants PAO1-19, 

PAO1-20 and PAO1-22, and in the ribosome binding site of an Ab27 tail gene from variants 

PAO1-24, PAO1-32, PAO1-33 and PAO1-34 (Table 3). 

TABLE 3 MUTATIONS IDENTIFIED IN THE PHAGE GENOME RE-ASSEMBLED IN THE 

PSEUDOLYSOGEN VARIANTS. 

  

Variant Phage 

Position 

on 

phage 

genome 

Mutated 

reads 

(%) 

Gene Product Mutation 
Protein 

effect 

PAO1-26 

A
b

0
5
 

1076 99.4%   AG  

35108 66.0% ORF42 
putative internal (core) 

protein 
GA VI 

37443 97.9% ORF44 hypothetical protein AC HP 

37873 97.2% ORF45 putative tail fiber protein TA VD 

38368 97.5% ORF45 putative tail fiber protein TG LR 

PAO1-30 

 

1076 98.0%   AG  

37873 96.4% ORF45 putative tail fiber protein TA VD 

38368 97.5% ORF45 putative tail fiber protein TG LR 

38934 70.8% ORF46 putative tail fiber protein AG ND 

PAO1-35 

 

1076 97.4%   AG  

37873 98.4% ORF45 putative tail fiber protein TA VD 

38368 100.0% ORF45 putative tail fiber protein TG LR 

PAO1-37 

 

1076 97.7%   AG  

37873 97.8% ORF45 putative tail fiber protein TA VD 

38368 99.0% ORF45 putative tail fiber protein TG LR 

PAO1-19 

A
b

1
7
 47129 98.2% ORF80 putative tail fiber protein CT RW 

PAO1-20 47129 99.1% ORF80 putative tail fiber protein CT RW 

PAO1-22 
44765 65.1% ORF78 putative baseplate protein TG DE 

47129 98.3% ORF80 putative tail fiber protein CT RW 

PAO1-24 

A
b

2
7
 

36370 36.0%   G(9)G(10)  

PAO1-32 
26899 97.8% ORF48 hypothetical protein AG TA 

36370 35.3%   G(9)G(10)  

PAO1-33 

 

26899 99.5% ORF48 hypothetical protein AG TA 

36370 24.2%   G(9)G(10)  

36370 47.4%   G(9)G(11)  

41863 91.4% ORF63 putative tail fiber protein CT TI 

PAO1-34 
26899 31.3% ORF48 hypothetical protein AG TA 

36370 41.4%   G(9)G(10)  
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The presence of two or more phage populations in the stock prepared starting from the Ab05 

original homogeneous stock suggests that the mutations had spontaneously occurred during 

phage amplification. The presence of a fraction of the population with mutations in genes 

encoding tail fibers could explain why phage Ab05, in this specific case, did not adsorb 

completely on the bacterial surface even after 16 min as reported in (Figure 18). 

Heterogeneity in the adsorption characteristics of a bacteriophage population has been widely 

reported. For example, with the coliphage T4, it has been observed that a subset of the 

population had extremely slow adsorption kinetics or failed to adsorb at all (Storms and 

Sauvageau 2014). 

II.IV.II STABILITY OF THE PSEUDOLYSOGENIC STAGE 

We found that viable phages were released by pseudolysogens, sometimes at high titers, 

during overnight culture in LB medium. This demonstrated that a portion of the bacterial 

population could achieve a productive viral cycle, whereas the others resisted infection. To 

evaluate the dynamics inside pseudolysogen colonies, we measured the percentage of bacteria 

containing phage DNA and producing viable phages and evaluate for how long phage DNA 

was maintained. For this purpose, 1 µl of bacteria from the frozen P3 stock was spread on LB 

agar (P30), and 52 colonies were picked-up and deposited both on LB agar plates, and on LB 

agar plates covered with a lawn of soft agar containing PAO1Or (see PAO1-30 replatings as an 

example in Figure 21). After incubation at 37°C for 24 h, a lysis zone could be seen around 

phage-producing colonies on the lawn of PAO1Or. One phage-producing colony from the LB 

agar plate was then streaked onto a new LB plate and the procedure was repeated. It allowed 

the quantification of the fraction of pseudolysogenic cells contained in a single colony and the 

assessment of the stability of the pseudolysogenic state. The percentage of phage-producing 

colonies for each replating experiment until no more phage-producing colonies were detected, 

varied among the tested variants (Table 4). 
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FIGURE 21. REPLATINGS OF PHAGE-TOLERANT VARIANT PAO1-30. 

In addition, hybridization with phage DNA probes in a colony lift experiment showed that 

bacteria not releasing phages were devoid of phage DNA, allowing us to exclude the presence 

of colonies able to contain phage DNA without releasing functional phage particles. The 

presence of phage DNA and phage particles in important amounts, in variants following five 

up to ten colony replatings, and of bacteria devoid of phages, implied that there was a 

continuous lysis of some infected cells, production of cured progeny which became 

susceptible to phage infections, and amplification of phages by infection of these bacteria. 
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PAO1Or variant Replating 

 
P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P310 

19 4 0 - - - - - - - - - 

20 6 0 - - - - - - - - - 

22 44 0 - - - - - - - - - 

24 100 0 - - - - - - - - - 

26 54 0 - - - - - - - - - 

36 100 0 - - - - - - - - - 

37 46 0 - - - - - - - - - 

25 4 8 0 - - - - - - - - 

34 83 6 33 0 - - - - - - - 

33 40 12 62 0        

17 98 56 92 0 - - - - - - - 

32 38 31 44 69 38 0 - - - - - 

30 96 35 23 19 62 25 100 100 88 2 0 

TABLE 4 PERCENTAGE OF PHAGE-PRODUCING COLONIES DURING REPLATINGS OF PAO1Or 

VARIANTS CONTAINING PHAGE DNA. 

Interestingly, PAO1-30, which kept phage-producing cells for the longest time, showed peaks 

of abundance, reflecting a particular equilibrium between phage production and bacteria 

predation similarly to what was previously seen in liquid medium by Ripp and Miller (Ripp 

and Miller 1998). 
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II.IV.III HIGH FREQUENCY OF DOUBLE MUTANTS IS DUE TO PERSISTENCE OF PHAGE DNA 

The mixture of wild-type and mutant reads in some samples after three purification steps, 

always accompanied by phage DNA, and the high frequency of double mutants, suggested 

that immunity provided by the phage in a pseudolysogenic state allowed survival and 

subsequent emergence of mutations. To investigate this hypothesis, we tested whether new 

mutations would appear in response to the pressure imposed by phages. We went back to the -

80°C stocks of variants (P3), isolated new colonies and tested them for the presence of phage 

DNA by PCR, until a colony devoid of phage DNA was found. Phage susceptibility was re-

tested, and the mutations previously identified by whole genome sequencing were searched. 

Different situations existed when phage DNA was no longer present. The 19 bp PAO1-26 

pilQ microdeletion present in 81% of P3 bacteria (Table 2) was found in about two thirds of 

the colonies re-isolated after -80°C storage, and it was associated with resistance to Ab05. 

Similarly, upon re-isolation of PAO1-37, about 50% of colonies were stable wzy-pilY1 double 

mutants, devoid of Ab05 and displaying resistance to Ab05 and Ab27. In other variants, the 

phage susceptibility profile changed when additional colony re-isolation steps were 

performed, and new mutations could be found upon sequencing. All the variants re-isolated 

from the original frozen stock are listed in Table 5, with their resistance pattern and the 

identified mutations.  
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PAO1Or 

variant 

Resistance 

pattern
*
 

Sequencing 

method 

Position 

on 

PAO1Or 

Mutation
α
 

Mutation 

event 

Locus 

tag 

Protein 

alteration
‡
 

17_1 I R R R 

PCR 

candidate 

gene 

approach 

4 683 508 C(5)C(4) F mucA 146/194 aa 

1 977 343 CA TV wzy 220/438 aa 

20_1 R R R R Illumina 
1 976 837 CT TS wzy Ser  Phe 

5 688 664 555 bp D pilQ 529/714 aa 

22_1 R R R R Illumina 
1 976 848 A(7)A(8) F wzy 74/438 aa 

5 095 649 C(2)C(1) F pilR 334/445 aa 

24_1 R R R R 

PCR 

candidate 

gene 

approach 

1 976 848 A(7)A(6) F wzy 54/438 aa 

5 095 901 GC TV pilR Arg  Pro 

25_1 R S S S Illumina 5 096 064 AC TV pilR Thr  Pro 

30_1 R S S S 

PCR 

candidate 

gene 

approach 

5 688 968 TG TV pilQ Thr  Pro 

36_1 R R R R Illumina 
1 976 848 A(7)A(6) F wzy 54/438 aa 

5 071 804 GA TS pilC Arg  His 

TABLE 5 PHAGE-TOLERANCE PATTERN AND MUTATIONS IN SECONDARY ISOLATED 

VARIANTS. 
*
Phage resistance pattern is reported in the order Ab05, Ab09, Ab17 and Ab27. S, completely 

susceptible; R, completely resistant; I, reduced efficiency of plating; s, normal efficiency of plating but small and 

turbid plaques. αThe number of repeated nucleotides is indicated in parentheses. 
‡
Length of the mutated 

protein/wild-type. F, frameshift; TV, transversion; TS, transition; D, deletion. Underlined: previously seen 

mutation, as reported in TABLE 2. 

In the mucoid variant PAO1-17_1 devoid of phage Ab09, the mucA sequenced PCR product 

showed superimposition of two sequencing profiles indicating the presence of a new mucA 

frameshift mutation (a deletion of a single C in a stretch of five Cs present in the wild-type 

strain) in about half of the bacteria (Figure 22A). PAO1-20_1 acquired a mutation in wzy, 

providing resistance to LPS-dependent phages. By the same way, PAO1-22_1 showed a new 

mutation in wzy gene, losing the deletion in algC, previously identified in PAO1-22. For 

PAO1-24, after several steps of re-isolation, a colony, named PAO1-24_1, devoid of Ab27 

DNA was shown to resist all four phages. The pilR mutation was confirmed through PCR and 

DNA sequencing. Surprisingly, sequencing of a wzy PCR amplicon showed that the original 
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insertion of an additional A (A8) in a stretch of seven As residues in the wild-type wzy gene 

was rare and largely replaced by a deletion of one A (A6). The sequencing profile showed the 

superimposition of the A8 and A6 profiles (Figure 22B). 
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FIGURE 22. SUPERIMPOSITION OF SANGER SEQUENCING PROFILES OF PAO1-17_1 mucA 

GENE (A) AND PAO1-24_1 wzy GENE (B). 

We also sequenced the genome of two variants re-isolated from PAO1-25 and PAO1-36 and 

devoid of phage DNA (PAO1-25_1 and PAO1-36_1), and mutations were found in pilR, and 

wzy and pilC, respectively.  

All the mutations we identify by Illumina were confirmed by Sanger sequencing of the PCR 

amplification products. 
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Adsorption assay was performed with all the new mutants and showed that the ability of 

phages to adsorb on their surface was impaired (Figure 23). 

 

FIGURE 23. ADSORPTION EXPERIMENT PERFORMED ON SECONDARY ISOLATED MUTANTS. 

On the y-axis is reported the percentage of unabsorbed phages at 16 min after infection. The standard deviation 

is the result of three independent assays. PAO1 is SSSS, PAO1-17_1 is IRRR, PAO1-25_1 and PAO1-30_1 are 

RSSS, PAO1-20_1, PAO1-22_1, PAO1-24_1 and PAO1_36 are RRRR (TABLE 5), where resistance is reported 

against phages Ab05, Ab09, Ab17 and Ab27, respectively. 

All secondary-isolated variants possessing mutations in genes involved in the biogenesis of 

type IV pili were tested for their ability to twitch on LB agar plates. The twitching motility of 

all these variants was strongly defective when compared to the PAO1Or control (Figure 24). 
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FIGURE 24. TWITCHING MOTILITY ASSAY ON SECONDARY MUTANTS. Bacterial motility is 

expressed as the diameter (mm) of the growth zone at the bottom of the agar plate. The standard deviation is the 

result of three independent assays. 

In summary, it appears that a pseudolysogenic colony continuously evolves suggesting that 

the constant production of new functional phage particles eventually selects for new phage-

resistant variants. 

II.IV.IV PSEUDOLYSOGENY CONFERS IMMUNITY TO PHAGES 

Colony re-isolation was also performed for the three pseudolysogens for which no 

chromosomal mutation could be observed. A PAO1-30 colony devoid of Ab05 DNA and 

called PAO1-30_1 was isolated and still resisted Ab05. The pilQ, pilR and pilY1 genes 

involved in type IV pilus assembly were PCR-analysed in a candidate gene approach, and a 

new pilQ mutation was identified showing a substitution of a T by a G (Table 5). In contrast, 

PAO1-32 and PAO1-34 colonies devoid of Ab27 DNA recovered full susceptibility to all 

phages. This indicates that Ab27 conferred the observed superinfection exclusion. 

Interestingly, for these two variants, new mutants were not obtained during re-isolation of 

single colonies, which is compatible with the observation that it was not possible to isolate 
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variants selected by phage Ab27 in a single infection experiment, both on solid and liquid 

media. 

Given the fact that PAO1-30, although completely resistant to phage Ab05, was also partially 

resistant to phage Ab17 and Ab27, we hypothesized that the presence of the phage could have 

influenced somehow the structure of the receptor for these two phages, LPS in this specific 

case. 

II.V MUTATIONS AFFECT PHAGE RECEPTORS 

To confirm that the observed mutations were responsible for affecting the bacteriophage 

receptor, we investigated the phenotype of the three classes of mutants affected in (i) type IV 

pilus, (ii) alginate biosynthesis or (iii) LPS and complemented the mutated genes for some of 

them restoring the phage susceptibility. 

II.V.I PILUS TYPE IV MUTANTS ARE DEFECTIVE IN TWITCHING MOTILITY AND BIOFILM 

FORMATION 

The motility of all the variants was evaluated by performing a twitching assay on semisolid 

agar. Compared to the PAO1Or control, the diameter of the twitching zone was significantly 

reduced in all variants, but the strongest effect was observed with Ab05-tolerant variants 

(groups 3 to 5 in Table 1, i.e. variants PAO1-20, PAO1-22, PAO1-24 to PAO1-30, PAO1-33, 

PAO1-35 to PAO1-37), and with PAO1-32 and PAO1-34 (Figure 25). 
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FIGURE 25. TWITCHING MOTILITY OF PHAGE-TOLERANT VARIANTS AT P3. Ab05-tolerant 

variants are marked by an asterisk. Bacterial motility is expressed as the diameter (mm) of the growth zone at the 

bottom of the agar plate. The standard deviation is the result of three independent assays. 

We observed that the inhibition of twitching of Ab05-tolerant variants was accompanied by a 

decrease in biofilm formation, except for PAO1-20 and PAO1-33 (Figure 26). These variants 

presented deletions in pilQ and pilY1 genes, respectively. It might be possible that these 

mutations can impair the functions of the type IV pilus but not the development of biofilm. A 

decrease in the biofilm production was also observed for the mucoid variant PAO1-06. In 

contrast, PAO1-18, PAO1-19 and PAO1-32 were shown to produce biofilm in a significantly 

higher amount compared to wild-type PAO1Or. 

 

FIGURE 26. BIOFILM FORMATION ASSAY OF ORIGINAL (P3) PHAGE-TOLERANT VARIANTS. 

The amount of bacteria bound to the wells was evaluated by measuring the A595 of crystal violet resuspended in 

ethanol. The standard deviation is the result of three independent assays.  
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As previously indicated, the diameter of the twitching zone was significantly reduced in all 

variants compared to the PAO1Or control, but the strongest effect was observed with those 

bearing a mutation in Pil genes and/or resisting Ab05 infection (Figure 25). PAO1-32 and 

PAO1-34 were also affected in twitching although no Pil mutations could be observed. We 

speculate that this behavior may be related to a continuous cell death due to phage production. 

Indeed upon culture in LB broth the cells lysed totally after reaching an absorbance at 600 nm 

(A600) of 0.8. 

In order to prove that mutations in type IV pili were actually responsible for the bacterial 

resistance to phage Ab05, complementation assays were performed. Variants PAO1-24_1 and 

PAO1-25_1, pilR mutants, and variants PAO1-20_1, PAO1-26_1 and PAO1-30_1, pilQ 

mutants, were successfully complemented using respectively the full pilR or pilQ gene, and 

their susceptibility to phage Ab05 was restored. 

II.V.II THE MUCOID PHENOTYPE COULD BE REVERTED THROUGH COMPLEMENTATION 

To confirm that the observed mucA mutations were responsible for the mucoid phenotype, we 

tested whether the mutants could be complemented by the wild-type gene. A full mucA 

amplicon was cloned into an expression vector which was then introduced into PAO1-02, 

PAO1-06 and PAO1-13. In the three cases the transformants were no longer showing a 

mucoid appearance, whereas the vector alone was not reversing the mucoid phenotype. In 

addition, the mucA transformants recovered normal susceptibility to all phages. 
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II.V.III LIPOPOLYSACCHARIDE IS MODIFIED IN AB09-, AB17- AND AB27-TOLERANT 

VARIANTS 

As already mentioned in the “INTRODUCTION”, in strain PAO1, the O-antigen is produced 

via the wzy/wzx-dependent assembly pathway, allowing the production of B-chains (Islam and 

Lam 2014). The undecaprenyl-pyrophosphate-linked repeat units are translocated from the 

inner to the outer leaflet of the inner membrane by flippase Wzx (Marolda, Vicarioli et al. 

2004), where they are polymerized by Wzy. O-unit addition occurs at the reducing terminus 

of the growing chain, the length of which is regulated by the polysaccharide copolymerase 

Wzz, resulting in organism-specific preferred modal lengths. This polymerized glycan is then 

anchored to lipid A-core oligosaccharide by WaaL in the case of O-antigen to form a mature 

LPS molecule (Ruan, Loyola et al. 2012). The LPS A-chains consist in a succession of tri-D-

rhamose units, added on the L-rhamnose bound to the -glucose residue and WbpL is 

responsible for this reaction (Lam, Taylor et al. 2011). The same enzyme allows the formation 

of the acceptor for the consequent addition of the trisaccharide units by the Wzy enzyme 

ensuring the formation of the B-chains (Figure 27). A large number of genes, including wapH, 

dnpA and pgi, as explained above, are thought to play a role in the biosynthesis of the 

different glycoforms necessary to insure the production of LPS but their precise site of action 

has not been clarified yet.  
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FIGURE 27. SITE OF ACTION OF DIFFERENT PROTEINS KNOWN TO BE INVOLVED IN THE 

LIPOLYSACCHARIDE SYNTHESIS. The capped core form carrying the B-chains or A-chains and the 

uncapped core form of LPS are simultaneously present on the surface of P. aeruginosa PAO1. The role of WapH 

is hypothetical (Kocíncová, Ostler et al. 2012). 

In order to better assess the effect of the different mutations we observed in phage-resistant 

mutants, the LPS of eleven variants representative of each different mutation was extracted 

and then analyzed by SDS-PAGE (Figure 28). All the samples used for this analysis were 

prepared from P3 mutants (PAO1-04, PAO1-07, PAO1-01, PAO1-03, PAO1-10, PAO1-18 

and PAO1-15) or, for those that were shown to contain phage DNA (PAO1-37 and PAO1-

19), re-isolated colonies possessing the same mutation as the original P3 mutant but devoid of 

phage DNA (confirmed by PCR and sequencing). PAO1-20_1 and PAO1-36_1 were 

secondary mutants whose genome characteristics are reported in Table 5.  
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FIGURE 28. SDS-PAGE OF LIPOPOLYSACCHARIDE EXTRACTED FROM DIFFERENT 

MUTANTS. The mutated gene is reported in the bottom part of the picture. For wzy gene, the color represents a 

specific kind of mutation. Different amounts of samples were loaded on the two gels in order to discriminate the 

different bands: 12.5 µg of resuspended lyophilized bacteria were loaded on the top gel and 2.5 µg on the bottom 

one. WT, wild-type. 

THE WZY MUTANTS 

PAO1-04 and PAO1-07 possessing the same wzy mutation showed the same banding pattern 

of the O-antigen characterized by absence of B-chains. PAO1-04, with an additional mutation 

in migA gene, appeared to have converted all the core oligosaccharide in core +1 form. The 

absence of B-chains would explain why these bacteria completely resist phages Ab09, Ab17 

and Ab27. Accordingly, complementation of PAO1-04 and PAO1-07 for the wzy gene 

restored the susceptibility to the three phages. 

The LPS of PAO1-01 and PAO1-36_1 appeared to possess A-chains, but to be completely 

defective in B-chains. In both variants, mutations existed in the homopolymeric tracts of As 

located at the beginning of the coding sequence of wzy gene. These mutations induce a 
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frameshift producing a truncated protein of 74 and 54 aminoacids in PAO1-01 and PAO1-

36_1, respectively. Both possessed the same banding pattern concerning the core 

oligosaccharide but, compared to the wild-type PAO1Or, the core +1 form is present in higher 

amount. Both mutants could be successfully complemented by the wild-type wzy gene. 

The LPS of PAO1-20_1 presented a similar banding pattern for both O-antigen and core 

oligosaccharide compared to PAO1-01 and PAO1-36_1. Interestingly, the mutation in wzy 

involved a nucleotide substitution producing a Wzy protein with an aminoacid substitution at 

position 42 (Ser  Phe). The modification of the Wzy protein allowed the bacteria to be 

completely resistant to phages Ab09, Ab17 and Ab27. 

Islam and colleagues (Islam, Huszczynski et al. 2013) performed systematic site-directed 

mutagenesis of 83 periplasmic and cytoplasmic residue positions spanning the length of the 

Wzy protein of P. aeruginosa PAO1 in order to identify residues of functional importance for 

the polymerization of O-antigen. They did not obtain a mutant similar to mutant PAO1-20_1. 

As previously said, the mutation in PAO1-20_1 completely abolished the B-chains synthesis 

of O-antigen suggesting that the Serine, a polar residue, if exchanged with a hydrophobic 

residue as the Phenylalanine, can induce conformational change that alters the activity of the 

protein. 

An aminoacid substitution was also identified in PAO1-37 Wzy protein. In this case, an 

Aspartate residue (position 286) was replaced by a Glycine. The presence of this mutation 

seemed not to impede the production of the O-antigen and core oligosaccharide. Only a slight 

increase in the amount of core +1 form, A-chains and long and very long B-chains, could be 

observed compared to the wild-type PAO1Or. It is possible that the mutated protein directly 

plays a role in the bacterial resistance to phages. Indeed PAO1-37 appeared to be completely 

resistant to phage Ab27 and less susceptible to phages Ab09 and Ab17. Mutations of this 
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particular aminoacid have been described by Islam and colleagues (Islam, Huszczynski et al. 

2013). They found that a mutant Asp  Ala at position 286 could only partially restore B-

chains biosynthesis when used in the complementation assay in a mutant PAO1 lacking wzy 

gene. The defect could be fully complemented by the like-charge substitution Asp  Glu, 

resulting in a Wzy variant that recovered the wild-type activity. 

Mutants PAO1-20_1 and PAO1-37 could not be complemented by the wild-type wzy gene. 

THE WZZ2 MUTANT 

PAO1-03, possessing a frameshift mutation in wzz2 gene, presented a normal banding pattern 

concerning A-chains, short and long B-chains but lacked the very long B-chains (Figure 28). 

The core +1 form, as well as all the chains of the O-antigen possessed by this variant, seemed 

to be present in higher amount compared to the wild-type PAO1Or. The involvement of the 

Wzz2 in the synthesis of very long B-chains has been reported by Daniels and colleagues 

(Daniels, Griffiths et al. 2002). The lack of very long chains seemed to affect the infection by 

phages Ab09 and Ab27 reducing their efficiency of plating. 

THE PGI, WAPH, DNPA AND WBPL MUTANTS 

An aminoacid substitution replacing a Threonine with a Proline in the pgi gene of PAO1-10 

seemed to partially affect the production of short A- and B-chains, whereas long and very 

long chains were not affected. The amount of core +1 form was comparable with that of the 

wild-type PAO1Or. The uncapped core band was less intense whereas the band corresponding 

to the inner core is much more intense. The ability to produce clear plaques by phages Ab09 

and Ab17 was impaired. These phages produced turbid plaques but with the same efficiency 

with which they produced clear plaques on the wild-type PAO1Or. In contrast, the efficiency 

of plating was reduced for phage Ab27. The pgi gene has been shown to encode the 
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phosphoglucose isomerase enzyme involved in the reversible conversion of glucose-6-

phosphate in fructose-6-phosphate, and this, together with the activity of other enzymes, has 

been proposed to be one of the fundamental reactions necessary for the production of the 

monomers that constitute the LPS (Ye, Zielinski et al. 1994). 

PAO1-18 was shown to be completely resistant to phages Ab17 and Ab27, and to be partially 

resistant (reduced efficiency of plating) to phage Ab09. It possessed a mutation in wapH 

resulting in an aminoacid substitution (Arg  Leu). The LPS O-antigen banding pattern 

appeared to be somewhat similar to that of PAO1-01, PAO1-36_1 and PAO1-20_1, 

presenting A-chains, some long B-chains, but lacking the short ones. The core oligosaccharide 

was reduced to the inner core form and neither the uncapped core nor the core +1 forms could 

be detected. The role of WapH, a glucosyltransferase, has not been described yet, but 

Kocíncová and colleagues hypothesized that it could be involved in the transfer of α-glucose 

(II) to the inner core of the LPS (Kocíncová, Ostler et al. 2012). 

The inner core oligosaccharide was the only form present in the LPS of PAO1-19. The dnpA 

gene of this mutant produces a 67 aminoacids protein instead of the wild-type 472 aminoacids 

protein, leading to a complete lack of A- and B-chains of the O-antigen. This made it resistant 

to phages Ab17 and Ab27, and partially resistant to phage Ab09, in a way similar to PAO1-

18. DnpA, a de-N-acetylase enzyme, has been shown to play a role in non-inherited P. 

aeruginosa fluoroquinolone tolerance and to allow the increase of the persistence fraction of 

P. aeruginosa both in planktonic culture and in a biofilm model (Liebens, Defraine et al. 

2014). DnpA is part of the conserved core oligosaccharide biosynthesis gene cluster but 

Liebens and colleagues failed to identify the alterations in the core oligosaccharide when they 

analysed the LPS of a transposon mutant for this protein (Liebens, Defraine et al. 2014). Here, 

the PAO1-19 profile shown on Figure 28 is unique. 
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In contrast, PAO1-15, although lacking A- and B-chains, possessed a wild-type uncapped 

core oligosaccharide form. We identified a mutation in the wbpL gene (the corresponding 

protein is 88 aminoacids in length instead of 339 aminoacids), known to be required for the 

initiation of both A- and B-chains synthesis (Rocchetta, Burrows et al. 1998). This variant 

was totally resistant to phages Ab09, Ab17 and Ab27. 

Taking in consideration these different observations, we conclude that Ab09, Ab17 and Ab27 

require the presence of B-chains to infect PAO1Or. More specifically we think that Ab17 

necessitates the presence of short B-chains since it is not at all able to infect variants that lack 

them (PAO1-04, PAO1-07, PAO1-36_1, PAO1-01, PAO1-20_1, PAO1-18, PAO1-19 and 

PAO1-15) but it can infect PAO1-37 and PAO1-10 with the same efficiency, although 

producing smaller and more turbid plaques. In these two mutants the short B-chains are 

present even if in less amount compared to the wild-type PAO1Or. Another observation that 

can support this hypothesis is given by the fact that mutant PAO1-03 possessing an amount of 

short B-chains similar to that of the wild-type PAO1Or is normally susceptible to phage Ab17 

infection. 

To go further in the identification of the phage receptors, we tested the susceptibility of a 

PAO1 migA transposon mutant to the three phages: the mutant was completely resistant to 

Ab09, partially resistant to Ab27 and completely susceptible to Ab17. MigA is a 

rhamnosiltransferase, an enzyme able to link L-rhamnose to the α-glucose (II) of the core 

oligosaccharide (Figure 27). Defects in or absence of this enzyme, results in the lack of 

uncapped oligosaccharide form on the bacterial surface, without interfering with the addition 

of one O-antigen unit or the complete A- and B-chains owing to the action of WapR (Figure 

27) (Kocíncová, Ostler et al. 2012). 
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It seems that, like phage Ab17, phage Ab09 also requires short B-chains for the initiation of 

the infection since is able to infect with different efficiencies mutants PAO1-03, PAO1-10 

and PAO1-37. However, the infection can occur even if the short B-chains are absent but only 

if the inner core is directly accessible on the bacterial surface, thus in total absence of the O-

antigen, like for the mutants PAO1-18 and PAO1-19. All the other mutants are completely 

resistant to phage Ab09 lacking completely the short B-chains and inner core form (PAO1-04, 

PAO1-07, PAO1-36_1, PAO1-01, PAO1-20_1 and PAO1-15). It is possible that Ab09 needs 

to bind to the inner core for close association with the membrane and injection of the DNA. 

The fact that it is a podovirus (short tail) may explain the difference in comparison to Ab17 

and Ab27, two myoviruses. 

II.V.IV THE LIPOPOLYSACCHARIDE OF PSEUDOLYSOGENS 

In order to investigate the basis for resistance of pseudolysogens to different phages, we 

analysed their LPS. The three pseudolysogens devoid of detectable mutations seemed to have 

lost the very long and part of the long B-chains of the O-antigen. Although not as well 

separated as in the control wild-type PAO1Or, faint aggregations of bands could still be 

observed for all the samples at the level of short B-chains. The pattern is close to that of Wzy 

mutants, but it is difficult to understand how the presence of Ab27 or Ab05 DNA might lead 

to such an inhibition.  
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FIGURE 29 SDS-PAGE ANALYSIS OF THREE LPS EXTRACTED FROM PSEUDOLYSOGENS 

COMPARED WITH THE WT PAO1Or. Different amounts of samples were loaded on the two gels in order to 

discriminate the different bands: 12.5 µg of lyophilized bacteria were loaded on the gel shown on top and 2.5 µg 

on the bottom one. 
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GLOBAL DISCUSSION 

I PSEUDOLYSOGENY ALLOWS SELECTION OF MUTANTS 

In our experimental model, pseudolysogeny appears to be a frequent outcome of infection by 

the four virulent phages, providing immunity to the bacteria, and allowing emergence of 

mutations in genes involved in receptor synthesis. In the present investigation, we might even 

be underestimating the frequency of pseudolysogeny as we started the analyses after three 

replatings for purification purposes. The frequency of single mutants was on the order of one 

per 10
5
 plated bacteria but, surprisingly, we observed that double mutants could be recovered 

at a frequency of 10
-6

, which is far higher than expected if these were present at the onset of 

infection. We show that selection of a second mutation takes place in pseudolysogenic 

colonies that can constitute a reservoir for bacteriophages exerting a permanent pressure on 

the bacteria. 

I.I CONDITIONS FAVORING THE APPEARANCE OF PSEUDOLYSOGENS 

Five sectors have been identified in a phage plaque. Layer V, the more external, is constituted 

by uninfected bacterial cells replicating normally and benefiting of the fresh media 

surrounding them. In layer IV, more internal, bacteria replicate, phages are present and diffuse 

through the extracellular environment. Layer III is constituted of infected cells that are not 

lysed yet and layer II is the turbid one, where most of the infected cells are lysed. Layer I in 

the middle of the plaque contains no more infected or susceptible bacteria, but rather phage 

particles and resistant variants (Abedon 2008). It is possible that in the middle of a plaque, the 

medium has lost most of its nutritive components used by the bacteria to replicate and allow 

phage amplification. 
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In order to isolate phage-tolerant variants, we performed infections on plates using the 

approach described in ANNEX III: phages and bacteria are mixed and plated on the agar layer, 

phage-infected cells allow phage multiplication and plaques formations, the infection 

propagates and the plaques enlarge until all the susceptible bacteria present on the plate, with 

the exception of those that are phage-tolerant, are lysed. Thus we can imagine that bacteria on 

the plate passed through all the steps of plaques formation being subjected to different 

medium composition and variable amount of phages. In this situation, the only surviving 

bacterial cells are those that are phage-tolerant because they possess mutations in phage 

receptor and/or have been pseudolysogenized by the phage. We cannot predict whether the 

pseudolysogens appear early during the plaque formation, thus in the layer I, or during the 

plaque enlargement, for example in layers II or III. However, it would be plausible to think 

that pseudolysogeny occurs when the amount of phages and resistant mutants is higher than 

the total amount of susceptible bacteria allowing phages to be protected against extinction. 

I.II PSEUDOLYSOGENY CONTRIBUTES TO THE SELECTION OF 

SINGLE/DOUBLE MUTANTS 

In this study we observed that the selection of single and/or double mutants could be 

influenced by the appearance of pseudolysogenic cells. We propose a model in which a 

pseudolysogenic cell, containing several phage genome copies, forms, after several rounds of 

division, a colony containing bacteria cured of the phage and bacteria in which the phage lytic 

cycle is resumed, producing new phages (Figure 30). The cured bacteria become prey for 

further amplification and production of new pseudolysogens in which phage growth is stalled. 

However, in the present study the phage/host equilibrium is not stable. The relative efficiency 

of reactivation of the phage cycle and production of cured bacteria determines the duration of 

the pseudolysogeny stage. 
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FIGURE 30. MODEL OF PSEUDOLYSOGENY EVOLUTION. Continuous production of cured bacteria 

and release of phages from reactivated lytic cycle in pseudolysogenic cells leads to the emergence of mutations. 

Single mutants (left) or double mutants (right) selected by bacteriophage (phage A) resulted from the activation 

of a lytic cycle in a wild-type pseudolysogen or in a pseudolysogen already containing a mutation, previously 

selected by another phage using a different receptor for infection (phage B), respectively. 

I.III IMMUNITY PROVIDED BY THE PSEUDOLYSOGENIC PHAGE 

Temperate phages are able, through lysogenization, to provide the host with immunity to 

superinfection mediated by immunity genes and this characteristic is supposed to differentiate 

true lysogeny from pseudolysogeny (Wommack and Colwell 2000). The present 

pseudolysogens demonstrate inhibition of superinfection by the same phage and, more 

interestingly, by phages of different genera, which bind to different receptors. Performing 

LPS analysis on three pseudolysogens in which we did not detect mutations, PAO1-30, 

PAO1-32 and PAO1-34, we found that the structure of their O-antigen is altered when 

compared to wild-type PAO1Or. 
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There are often several genes located in the early region of the phage genome, whose function 

is unknown and that may play an important role during the first steps of infection modulating 

the bacterial metabolic machinery. In the case of our pseudolysogenic phages, these genes 

might alter the bacterial LPS biosynthetic pathway making the receptor temporarily 

unavailable, and consequently allowing the infected cells to become resistant to 

superinfection by the same phage or other phages. Particularly interesting is the case of the 

variant PAO1-30. This variant is pseudolysogen for the phage Ab05 and it demonstrates 

superinfection inhibition for the same phage but also for phages Ab17 and Ab27. 

In general, in phages belonging to the same genus, the early genes region can present high 

level of divergence as seen, for example, in ф-KMV-like phages (Klimuk, Akulenko et al. 

2013). One interesting example is provided by the P. aeruginosa LKA1 phage, whose early 

region encodes 18 small proteins with currently no similarity to other gene products in the 

GenBank database. In the same way, phage Ab05 possesses an early region encoding several 

proteins with unknown function. It is tempting to speculate that they might play a role in the 

regulation of the maintenance of pseudolysogeny in the host population and more generally 

allow the bacteria to switch between one phage life strategy and another one according to the 

environmental conditions. They might also modulate the production of LPS protecting the 

bacteria from the infection with the other phages. 
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II RED QUEEN DYNAMICS/ARM RACE CO-EVOLUTION 

Studies performed in chemostats have addressed the co-evolution dynamics of phage and 

bacteria in controlled growth conditions (Buckling and Rainey 2002; Betts, Kaltz et al. 2014). 

Generally, when preys and predators are left to evolve for a long time two possible outcomes 

are predictable: the Arms race, the fittest genotype survives and this limits the diversity, or the 

Red Queen dynamics, where the frequency-dependent selection leads to constant production 

of new mutants, thus maintaining diversity (Dennehy 2012). 

In our assay, which takes place in a micro community, after several rounds of co-evolution, 

the population of free phages fluctuates, to the extent that they may seem to almost disappear 

within the colony. A large diversity of resistant mutants is selected, and eventually the colony 

will be phage-free. Reversion to wild-type phenotype is observed for alginate and LPS 

mutants so that new preys will emerge. 

II.I FITNESS COST LINKED TO ACQUISITION OF PHAGE-RESISTANCE 

A large proportion of the phage-tolerant variants that we isolated possessed frameshift 

mutations known as phase variation (Henderson, Owen et al. 1999). Frameshift mutations, 

allow bacteria to adapt to different kind of environments and are reversible when the selective 

pressure is no longer applied (Segura, Hurtado et al. 2004). 

Frameshift mutations that we identified occurred in the wzy/wzx-dependent pathway 

responsible for the synthesis of O-antigen (Islam and Lam 2014) and in genes involved in the 

alginate biosynthesis regulation. Both wild-type and mutant forms of wzy and mucA genes 

were simultaneously found in the presently described mutants, suggesting that the mutation 

can reverse at a high rate. Constant variations in LPS and alginate biosynthesis pathways may 

help P. aeruginosa face aggressions or environmental changes. This might be one explanation 
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for the “colonial dissociation” frequently observed with P. aeruginosa, characterized by 

colonial differences of a single strain (Zierdt and Schmidt 1964). 

It may be worth to mention that, with one exception (PAO1-22), all the mutations occurring in 

the type IV pilus biosynthetic genes were deletions not likely to revert back to the wild-type 

genotype. Most probably the lack of type IV pili, even in absence of phages targeting the pilus 

as a receptor, does not affect the surviving and the normal growth of the bacteria. In contrast, 

the mutations occurring in LPS biosynthesis genes could seriously impact the surviving of the 

bacteria and can require a high fitness cost that induces the bacteria to revert back to the wild-

type phenotype as soon as the selective pressure imposed by the phage is no longer present. 

The failure to isolate stable Ab27-tolerant variants could be due to high fitness cost associated 

with the acquisition of phage-tolerance through alteration of the phage receptor. The selection 

of small-colony phage-tolerant variants has been documented with phages E79 

(Hosseinidoust, Tufenkji et al. 2013), KTN6 and KT28 (Danis-Wlodarczyk, Olszak et al. 

2015), and PB1 (Lim, Phang et al. 2016) all belonging to the PB1-like genus. The small 

colony variants isolated during the course of those studies showed impaired biofilm 

formation, decreased twitching motility, reduced elastase and pyocyanin production, higher 

susceptibility to the antibiotic ciprofloxacin and exhibited higher surface hydrophobicity than 

the wild-type strain, indicative of changes in the LPS (Lim, Phang et al. 2016). Although all 

these alterations could allow the bacteria to resist the phage, they could impair the growth and 

survival of the bacteria in absence of the applied selective pressure (phage), or they could be 

highly reversible mutations that, when the phage is no longer present (P3 stage), allow the 

bacteria to switch back to the wild-type phenotype.  
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II.II PSEUDOLYSOGENIC MUTANT PHAGES 

We observed, with three phages, the presence of new phage genotypes in pseudolysogens, all 

three showing one or two SNPs in a tail fiber gene. The mutations were present in a 

subpopulation of phages used to derive the resistant mutants, and may have been selected 

during co-evolution of phages and bacteria. No particular behavior of these phages as 

compared to the parental ones, such as plaque morphology, and growth characteristics could 

be demonstrated. However, it is possible that these phages are capable of inducing a 

pseudolysogenic stage at a higher frequency as compared to the ancestral phage. Our results 

confirm that success in infection is not sufficient for phage survival, as phages are dependent 

upon the survival of their host population (Chaturongakul and Ounjai 2014), and therefore 

phage-host relationships can be seen as not merely parasitic but as mutualistic (Williams 

2013). 

It is argued that in an environment of homogeneous mixing, such as a liquid culture, a phage 

should evolve toward a high adsorption rate to maximize its fitness (Shao and Wang 2008). 

But not all hosts are equally worth infecting. Unlike phage T7, whose productive infection is 

independent of host physiological state (Schrader, Schrader et al. 1997), most phages rely on 

the exponentially growing bacterial cells for productive infections (Adams 1959). Because 

natural bacterial populations are mostly in stationary phase or follow an alternation of 

exponential and stationary phases, it is easy to imagine that phages regularly have to cope 

with bacterial hosts in various physiological states, constituting uncertain environments. 

By definition, strictly lytic phages cannot become prophages. Therefore, it is not clear how 

these viruses survive an adverse environment like the stationary phase. At least three 

scenarios are possible. (1) Pseudolysogeny, in which the infecting phage genome is not 

integrated into the bacterial genome but stays in the cytoplasm as an episome (Ripp and 
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Miller 1998). (2) The production of virions with different adsorption rates by a single 

genotype (diversified bet-hedging). Such phenomenon has already been observed in early 

phage literature: Schlesinger (Schlesinger 1932) reported the existence of a small 

subpopulation of phages with very low adsorption rates, referred to as the “residual fraction” 

and measured its proportion (0.3%). Those phages could be seen as a form of dormancy that 

allows phages to survive harsh seasons like stationary phase. (3) Selection of a phage 

genotype with an intermediate adsorption rate (conservative bet-hedging). As reported by 

Gallet and colleagues (Gallet, Lenormand et al. 2012) high adsorption rate would be favorable 

for phage multiplication during bacterial exponential growth, while lower adsorption rate will 

provide phages an advantage in presence of stationary phase host. Since during bacterial 

growth the bacterial cells are not synchronized one could imagine that mixed phage 

population with different adsorption rates could constitute an advantage allowing the phages 

to be protected from extinction. 

We were able to find, in the case of Ab05, only the mutant phage in the pseudolysogens that 

were analysed (PAO1-26, PAO1-30 and PAO1-37), thus we could hypothesize that this 

constitute the slowly adsorbing phage faction and that this characteristic can somehow favor 

the appearance of pseudolysogen allowing phage to be protected from extinction. Additional 

experiments are needed to verify this hypothesis, as the mutant phage appears to produce 

normal plaques on PAO1. 
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CONCLUSIONS 

Phage therapy is considered as a promising complementary approach to fight antibiotic 

resistant strains (Abedon, Kuhl et al. 2011). Either readymade cocktails or ”sur- measure” 

phages will be used to treat patients, similarly to what is still done in several countries of 

Eastern Europe. It is important to investigate the risks linked to the use of phages, particularly 

in the selection of bacterial mutants that could show deleterious characteristics 

(Hosseinidoust, Tufenkji et al. 2013), or drive the expression of undesirable bacterial 

virulence factors (Olszak, Zarnowiec et al. 2015). 

The different phenotypic assays that we performed showed that, depending on the phage used, 

the selected mutants, obtained at a high frequency, display a large variety of phenotypic 

changes related to membrane permeability and cell motility. Hosseinidoust et al. 

(Hosseinidoust, Tufenkji et al. 2013) described such phenotypes induced by two phages 

which use type IV pilus and LPS as receptors, but in the course of their study they could not 

identify the mutations (Hosseinidoust, Tufenkji et al. 2013). We took advantage of Illumina 

sequencing technology to identify bacterial mutations at a relatively low cost and were able to 

perform an original work going further on the analysis of phenotypic and genotypic traits 

selected by the phages. 

Phenotypic changes have been shown to alter bacterial virulence (Lyczak, Cannon et al. 

2000). In the same way, the phage-resistant phenotypes selected by phages used in this study 

could seriously affect the outcome of treatment in the context of phage therapy. Indeed, we 

showed that phage Ab09 often selects for mutants with a mucoid phenotype, related to an 

increased capability to produce alginates. In the context of CF infection, mucoidy has been 

shown to favor the formation of protected colonies with increased resistance to opsonization, 
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phagocytosis and destruction by antibiotics (Pritt, O'Brien et al. 2007). This suggests that 

Ab09-like phages should be used with caution. 

In the course of the same study, we isolated reversible phase variation mutations mainly in 

genes encoding enzymes for the LPS synthesis, and irreversible deletions in genes for the type 

IV pilus biogenesis. As previously mentioned, the adherence step of P. aeruginosa cells to the 

epithelium appears to be the most important and critical stage of the infection process. Since 

the pilus is responsible for the initial contact between the bacterium and the epithelial cell 

surface (Bucior, Pielage et al. 2012), successful blocking of bacterial adherence, through 

mutations in genes regulating the expression of the type IV pilus, could results in prevention 

of infection (Hahn 1997), thus making the ф-KMV phages good candidates for the 

constitution of phage cocktails for phage therapy treatment. In contrast, the high reversibility 

of phase variation mutations that we identified in most of the genes involved in LPS 

biosynthesis, selected by phages targeting LPS as a receptor, make such phages less suitable 

for phage therapy. Moreover, it has been reported that alterations of a single chain or both A- 

and B-chains of the O-antigen of P. aeruginosa PAO1 can give rise to mutants with increased 

cytotoxicity mediated by the type III secretion system (TTSS) (Augustin, Song et al. 2007). In 

addition, changes in O-antigen expression in PAO1 affects the size and protein content of 

outer membrane vesicles and favors the formation of a robust biofilm (Murphy, Park et al. 

2014). 

The approach we used allowed us to demonstrate the central role played by pseudolysogeny 

during lytic phage infections. This role had previously been underestimated for a number of 

reasons and now it opens up a new area of phage research at a time when our appreciation of 

the impacts of microorganisms on ecosystem function and biological processes is rising. 
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In summary, in a phage therapy context, it is very important to study the effect each phage can 

have on the bacterial strain causing a disease, alone or in combination with other phages in the 

form of a cocktail. It is also necessary to consider that pseudolysogeny plays an important role 

in the persistence of phages in the bacterial population, acting in the selection of phage-

tolerant variants and allowing phage-bacteria co-evolution. 

All these evidences support the idea that it is better not to abandon the use of antibiotics, as it 

has already been proposed (Torres-Barceló and Hochberg 2016), since together with phages 

they can complement each other in the killing of the pathogenic bacterial strain. 
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PERSPECTIVES 

NEW INSIGHTS INTO PSEUDOLYSOGENY 

The tremendous impact of bacteriophages, the biosphere's most numerous organisms, on the 

ecology and evolution of bacteria is increasingly recognized, but most knowledge is limited to a few 

well-studied model organisms in highly controlled and restricted laboratory conditions. Hence, the 

lytic and lysogenic life cycles of organisms, such as phage λ or phage T4, have been exceptionally 

well-characterized. However, since the 1920s, other phage lifestyles were suspected to exist, 

namely pseudolysogeny, where phage DNA is neither transcribed nor integrated into the host 

genome following infection. In addition, the number and diversity of newly isolated phages let 

imagine that multiple types of interactions may exist with their host. 

Pseudolysogeny is poorly studied because it is technically difficult to study at the single cell level 

and is believed to be a consequence of host starvation. Recent studies, however, show that 

pseudolysogeny is probably widespread, and can occur even in healthy, actively growing hosts. It is 

likely that pseudolysogeny, like lysogeny, is a bet hedging strategy against host and phage 

extinction. Pseudolysogens are resistant to phage attack, but can be cured of infection, thus 

providing additional sensitive hosts on which phage infections can be sustained. As such, 

pseudolysogeny can drive bacterial co-evolution and facilitate horizontal gene transfer of genes 

increasing bacterial fitness.  

The recent development of new technologies such as fluorescent time-lapse imaging and RNA-Seq 

provide new tools to overcome the difficulties associated with studying pseudolysogeny. Herein 

two hypotheses are proposed regarding the induction of pseudolysogeny: i) the frequency of 

pseudolysogeny depends on the multiplicity of infection (i.e., ratio of phage:host) and ii) expression 

of a phage transcription inhibitor induces and maintains pseudolysogeny. A model is introduced 

where a phage transcription inhibitor inducing pseudolysogeny is rapidly degraded in healthy cells 
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but accumulates in slowly growing and/or multiplying infected cells. This inhibitor, either alone or 

in conjunction with a bacterial surface-receptor altering protein, provides superinfection immunity 

to pseudolysogenic cells. Pseudolysogeny in this manner is an evolved bacteriophage strategy that 

results in i) phage persistence; ii) bacterial host persistence; and iii) bacterial host diversification 

and co-evolution rather than a side-effect of host starvation. We are developing a project aiming to 

establish the conditions inducing pseudolysogeny and to analyse the molecular players, either 

bacterial or phagic, that act to maintain this stage. These studies would open up a new area of phage 

research and clarify aspects of pseudolysogeny that could play crucial roles in shaping microbial 

communities in various environments. 

PHAGE-RESISTANCE IN ANOTHER P. AERUGINOSA STRAIN 

In order to assess if the same virulent phages used to select P. aeruginosa PAO1 phage-resistant 

variants, are able to select similar variants in another P. aeruginosa strain, we chose PcyII-10 strain 

isolated from a burned patient of the Percy Hospital (Clamart, France) and showing high 

susceptibility to many phages. We performed infections at different MOI and isolated a collection 

of about 40 different variants tolerant at least to one phage used for the infection. We started the 

phenotypic characterization and we selected 10 phage-tolerant variants that are being presently 

sequenced. Preliminary results showed that, similarly to what was observed for Ab05-infected 

PAO1Or variants, phage Ab05 was able to pseudolysogenize PcyII-10 at high frequency and select 

for variants with reduced efficiency of biofilm production and twitching motility. Concerning the 

infection performed with the phage Ab09, mucoid variants could be selected; surprisingly, other 

variants selected by this phage were able to tolerate also the infection with phage Ab05 suggesting 

that these variant may possess alterations of the pilus type IV structure, other than those allowing 

the tolerance to phage Ab09. We hypothesized that the phage may have selected for variants with 

large genomic deletions, similar to those selected by the temperate phage Ab31, encompassing 

genes for the biosynthesis of receptor for both phages. Preliminary PCR analysis performed on one 
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of these variant showed that as a matter of fact it could present a big deletion, but in order to have 

reliable evidences to prove our hypothesis, complete genome sequencing data are necessary. 

PSEUDOLYSOGENY AND CRISPR-CAS SYSTEM 

The strain PcyII-10 was chosen because it possesses three type I-F CRISPR elements and a set of 

cas genes, potentially capable of participating in resistance to phages (Bikard and Marraffini 2012; 

Cady, Bondy-Denomy et al. 2012). We think that pseudolysogeny might give time and opportunity 

to the bacteria to acquire new spacers. 

THE LIPOPOLYSACCHARIDE AS A PHAGE RECEPTOR 

The P. aeruginosa mutants with divergent LPS synthesis following the acquisition of host 

resistance are presently being investigated in detail in order to identify the precise phage receptor. 

LPSs are purified and analyzed by PAGE. In addition, some PAO1Or phage-tolerant variants are 

being analysed by mass spectrometry. This work, in conjunction with purified-LPS phage-

adsorption assays, will help understand the exact site of adsorption used by the phage during the 

first steps of infection. 

LINK BETWEEN PHAGE AND ANTIBIOTIC RESISTANCE 

Using virulent phages we selected for some resistant variants possessing alterations in the structure 

of the phage receptor and, more in general, of their extracellular surface. For instance, performing 

double infection with phage Ab09 and Ab17, we were able to isolate a dnpA mutant, the variant 

PAO1-19, known from literature to possess reduced tolerance to fluoroquinolone treatment 

(Liebens, Defraine et al. 2014). It would be interesting to perform an antibiotic sensitivity test on all 

the variants we isolated in order to look whether their antibiogram has changed compared to that of 

the wild-type PAO1Or strain. 
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MATERIAL AND METHODS 

I PHAGES 

Two podoviruses, vB_PaeP_PAO1_Ab05 (Ab05) and vB_PaeP_C2-10_Ab09 (Ab09), and two 

myoviruses, vB_PaeM_PAO1_Ab17 (Ab17) and vB_PaeM_PAO1_Ab27 (Ab27), were used in this 

study, alone, or combining a podovirus with a myovirus, or in a cocktail of four phages as described 

in “II.I RATIONALE AND EXPERIMENTAL PROCEDURE”. Ab05 is a ɸ-KMV like phage, 

Ab09 is a LIT1-like phage, Ab17 is a KPP10-like phage and Ab27 is a PB1-like phage. They have 

been isolated in Abidjan (Côte d’Ivoire) and have been described in detail in (Essoh, Latino et al. 

2015). On PAO1Or, phage Ab05 produced clear plaques with a halo, phage Ab09 and phage Ab17 

produced clear plaques of medium size. In contrast, phage Ab27 produced turbid tiny plaques. 

I.I PHAGE AMPLIFICATION 

Phage stock was prepared by mixing a single plaque with 100 µl of fresh overnight PAO1Or culture, 

keeping the mixture for 15 min at room temperature and then pouring it on a freshly prepared LB 

(10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl and 15 g/l agar) plate using 4 ml of soft agar (10 g/l 

tryptone, 5 g/l yeast extract, 10 g/l NaCl and 7 g/l agar). The plate was incubated for 6-8 h at 37°C 

until all the bacteria were completely lysed. Then, the top agar containing the amplified phage 

particles was recovered and resuspended in 5 ml of SMG buffer (NaCl at 5.8 g/l, MgSO4 at 2 g/l, 1 

M Tris-HCl, and gelatin at 0.1 g/l [pH 8.0]). The suspension was then centrifuged at 4000 rpm for 

10 min at 4°C to separate bacterial debris and agar, and the supernatant fraction containing the 

phages was recovered and filtered using a 0.22 µm filter.  
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I.II ELECTRON MICROSCOPY 

The phage stock was treated overnight at 4°C with 10% PEG 8000, and then centrifuged at 10 000 

rpm for 20 min. The pellet of PEG-phages was resuspended in 1 ml of SMG buffer and one volume 

of chloroform was added. The suspension was centrifuged at 10 000 for 10 min at 4°C and the 

supernatant was recovered, filtered using 0.22 µm filter and ultracentrifuged at 30 000 rpm for 2 h 

at 10°C. The phage pellet was resuspended in 50 µl of SMG buffer. Five µl of the sample were 

stained with 2% potassium phosphotungstate (pH 7) and visualized using an EM208S transmission 

electron microscope (FEI, Eindhoven, The Netherlands) operating at 80 kV. 

II RESISTANT-VARIANT COLLECTION PREPARATION 

II.I ISOLATION OF PHAGE-RESISTANT VARIANTS 

P. aeruginosa PAO1, a reference strain originating from a patient (Stover, Pham et al. 2000), was 

inoculated into 5 ml of LB medium and grown (37°C, 180 rpm) to an optical density at 600 nm 

(A600) of 0.2. All the infections were performed at an MOI of 0.1. The majority of infections were 

performed on solid medium. For this a 10 μl inoculum of the bacterial culture (2 x 10
6
 CFU) was 

mixed with either 10 μl containing 10
5
 PFU of a single phage (Ab09, Ab17, Ab27 or Ab05), or of a 

1:1 mixture of Ab09 and Ab17 or of Ab05 and Ab27, or of a 1:1:1:1 mixture of Ab09, Ab17, Ab05 

and Ab27 or 10 μl of SMG phage buffer as a control. The mixture was kept for 15 min at room 

temperature and then poured on a fresh LB agar plate using 4 ml of soft agar pre-warmed at 45°C 

and the plates were incubated at 37°C for 3 days. For phage Ab27 alone or associated with Ab05, 

liquid infection was performed by infecting the bacteria during the log phase (A600 of 0.6) at an 

MOI of 0.001 each 24 h for a total of 3 infections. Thereafter the surviving bacteria were plated 

onto LB agar plates. 
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FIGURE 31. ISOLATION OF PHAGE-TOLERANT VARIANTS. Colonies surviving phage infection after 72 h on 

LB agar plates were replated three times (P1, P2 and P3) before the P3 culture was made and stored at -80°C. 

For each experiment, around 8 colonies were picked and re-isolated three times before being tested 

for resistance to phages. The 32 samples, as described in Table 1, were finally grown in 3 ml of LB 

medium (A600 = 0.8 to 1), and used to prepare frozen stocks (Figure 31). From the same bacterial 

culture, DNA was extracted, and used for whole genome sequencing. 

II.II CALCULATION OF THE FREQUENCY OF RESISTANCE 

Overnight culture of P. aeruginosa PAO1Or was used to inoculate a fresh medium to an A600 of 0.1. 

When the bacterial culture reached the log phase (A600 of ≈1), 10-fold dilutions were performed. 

100 µl of each dilution were then mixed with 10 µl (≈10
6
 PFU) of single phage suspension or 

mixture of two or four phages as described above, kept for 15 min at room temperature and then 

poured on fresh agar plates using 4 ml of soft agar. Plates were inverted and incubated at 37°C for 

24 h. The frequency of resistance was calculated considering that all the colonies growing on the 

plates after 24 h of incubation were resistant to phages used for the infection.  
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II.III PHAGE SUSCEPTIBILITY ASSAY 

Aliquots (500 µl) from the liquid culture of each variant (A600 = 0.8 to 1.2) were mixed with 6 ml of 

0.7% LB agar and poured onto a squared 1.5% LB agar plates. Five dilutions (10
10

, 10
9
, 10

8
, 10

7
, 

10
6 

PFU/ml) of the ancestral forms of each phage were spotted (10 µl) onto the soft agar layer, 

incubated at 37°C overnight, and inspected for plaque formation. The resistance of the variants to 

the phage was expressed as EOP taking PAO1Or as a control. 

III PHENOTYPIC CHARACTERIZATION 

A planktonic culture of the progenitor P. aeruginosa PAO1Or prepared from a single colony of a 

fresh LB agar plate was used in all characterization experiments as a reference. Overnight culture 

(10 µl) of all PAO1Or phage-resistant mutants was spotted on LB medium or Sheep blood (5%). 

Plates were incubated for 24 h at 37°C. 

III.I ADSORPTION ASSAY 

An overnight bacterial culture was diluted to an A600 of 0.1-0.6 and let to equilibrate at 37°C. 

Approximately 10
6 

phages were added to 1 ml of the diluted bacterial culture (1x10
8
 to 6x10

8
 

bacteria) and at fixed time point 50 µl of the mixture were transferred to an Eppendorf tube 

containing 940 µl of LB medium and 10 µl of chloroform. The suspension was vortexed for 5 sec in 

order to allow the chloroform to bind and precipitate the phages adsorbed on the bacterial surface. 

10 µl of the unadsorbed phage fraction was plated using spot assay. The plates were inverted and 

incubated at 37°C overnight and the number of plaques was counted. The phage-adsorption was 

expressed as percentage of the initial amount of phage employed for the infection that did not 

absorb on the bacterial surface at 16 min after infection. 
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III.II TWITCHING MOTILITY ASSAY 

One µl of an overnight bacterial culture was inoculated between the agar and the plastic surface of a 

1.5% LB agar plate. Plates were incubated at 37°C and the diameter of the motility zone around the 

point of inoculation was measured after 24 h of incubation. 

III.III PLANKTONIC GROWTH RATE AND BIOFILM FORMATION 

The bacteria were inoculated into 3 ml of LB medium in a glass tube and incubated for 7 h at 37°C 

(180 rpm). The A600 was monitored with a microplate reader (CHAMELEON) and recorded every 

hour. The population growth rate (A600/Δt maximal rate of change of A600 during log phase) and 

final yield (value of A600 after 24 h) were recorded as growth determinants. 

Ninety-six-wells plaques (Greiner) were inoculated with a diluted overnight bacterial culture (A600 

of ≈ 0.1) and incubated for 48 h at 37°C. A600 was recorded before proceeding with biofilm 

quantification. The wells were washed three times with PBS, 200 µl of 0.1% w/v crystal violet was 

added and the plate was kept for 30 min at RT. The unattached crystal violet was washed three 

times with PBS and then the remaining biomass was quantified by re-suspending the crystal violet 

in 200 µl of absolute ethanol and measuring the A600 that was then divided by the A600 value 

measured for planktonic bacteria in each well to account for the difference in growth rates of the 

variants. 

III.IV VIRUCIDE ASSAY 

Fifty µl of frozen pseudolysogen stock were used to inoculated 50 ml of LB media and the culture 

was grown overnight at 37°C. Virucide was prepared according to the method described in (de 

Siqueira, Dodd et al. 2006). Briefly, bacterial overnight culture was centrifuged at 4000 rpm for 10 

min at 4°C and the pellet was washed once with 5 ml of PBS and finally resuspended in 500 µl of 

PBS. To this, 1.5 ml of virucide was added, the mixture was kept at room temperature for 10 min 

and the virucide activity was then blocked by diluting the suspension to a final volume of 15 ml. 
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Bacteria were pelleted, washed with PBS and then treated with 10 µg/ml DNase I for 30 min at 

37°C. The sample was washed again and then the bacteria were streaked onto a fresh agar plate and 

used for total DNA extraction. 

III.V LIPOPOLYSACCHARIDE ANALYSIS 

LPS was extracted according to the method used by Hitchcock and Brown (Hitchcock and Brown 

1983). Bacteria were grown overnight in LB media at 37°C (180 rpm) and then treated overnight at 

4°C with formaldehyde 2% followed by three washings with PBS. In order to normalize the 

samples for the subsequent gel analysis, a similar amount of lyophilized bacteria was disrupted in 

lysis buffer (Tris 1M, 2% SDS, 4% β-mercaptoethanol and 10% glycerol), prior to proteinase K 

treatment and LPS extraction. The LPS were resolved by electrophoresis on a 15% SDS-

polyacrylamide gel, and the band pattern was visualized using the silver staining method 

(Fomsgaard, Freudenberg et al. 1990). 

IV PSEUDOLYSOGENS ANALYSIS 

IV.I COLONY TRANSFER AND HYBRIDIZATION 

About 100 colony-forming units (cfu) were plated on LB agar and incubated overnight at 37°C. A 

photograph was taken before applying on the colonies a circular Nylon N+ membrane (Nytran). 

After 5 min the membrane was lifted using forceps and treated for 2 min with NaOH 0.4 N twice, 

Tris 1M pH 7.5 twice, 2XSSC twice. The membranes were put on Whatman filter paper, dried and 

kept at 20°C until use. 

Pre-hybridization was performed at 65°C for 4h with 2 ml of hybridization buffer (Church and 

Gilbert 1984) per membrane. The probe was labeled using the Megaprime
TM

 kit (GE Healthcare 

Amersham) and hybridization was performed overnight at 65°C in hybridization buffer. Washes 

were done successively with 2XSSC and 0.1% SDS, 0,5XSSC and 0.1% SDS, 0.2XSSC and 0.1% 

SDS.  
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IV.II STABILITY OF PHAGE PERSISTENCE IN PSEUDOLYSOGENS 

One loop of frozen bacterial stock was streaked onto a fresh LB agar plate and incubated overnight 

at 37°C. Starting from this plate, 52 colonies were picked-up with sterile toothpicks and 

successively inoculated onto two plates, one fresh LB agar plate and one with a lawn of susceptible 

strain, PAO1Or. The lawn plate was prepared by inoculating 4 ml of pre-warmed soft agar with 100 

µl of PAO1Or overnight culture. Both plates were then incubated at 37°C overnight and the phage-

producing colonies, producing a lysis zone on the plate covered by the PAO1Or lawn, were counted 

and expressed in percentage. A positive phage-producing colony was then chosen, picked-up by a 

sterile loop from the LB agar plate, and re-streaked in order to have again 52 colonies with which to 

repeat the same experiment. Each passage was repeated until there were no more phage-producing 

colonies in the pseudolysogen population. 

IV.III DNA EXTRACTION, PCR AND SEQUENCING 

PCR was performed on thermolysates or pure DNA using primers listed in Table 6. Thermolysates 

were produced by diluting 10 µl of overnight culture in 200 µl of water and heating at 95°C for 5 

min. For DNA purification, bacteria were lysed in lysis buffer (Tris 10 mM, EDTA 10 mM, NaCl 

10 mM, SDS 0.5%), treated with proteinase K at 50 µg/ml for 2 hours at 50°C, followed by one 

phenol and one chloroform extraction, and ethanol precipitation. The isolates were verified for 

contamination from other P. aeruginosa strains, commonly used in our laboratory, using PCR with 

primers directed against VNTRs ms216 and ms217 as previously described (Vu-Thien, Corbineau 

et al. 2007). The isolates were also screened for the presence of phage DNA by PCR performed on 

thermolysates using specific phage primers listed in Table 6. 
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Name Sequence (5’  3’) 

Ab17-F1 AAGGTGTACCGGAAACGGAC 

Ab17-R1 TACCTACGGCTTCCTGCTCT 

Ab09-F1 GACGAAGCATCGTTGTACGC 

Ab09-R1 AACAACAATCGCAACTGGGC 

Ab05-F1 TGAGCGCATGGCTCTACGGT 

Ab05-R1 AACCGGAATCGCTGGTCATC 

Ab27-F1 CATGAACGGCCGGTTCAAAGT 

Ab27-R1 AAGAAGCCGTGCTGGTCGAG 

ms216L ACTACTACGTCGAACACGCCA 

ms216R GATCGAAGACAAGAACCTCG 

ms217L ACAGGACGTGCTGATCCATGA 

ms217R GTGCGGCAAGTGCAACAGCAT 

wzy-F1 AGCCTACCCATGCATCCCTA 

wzy-R1 AGGCACGCCAGCCCATGGT 

wzy-R2 AATCGTAGCGAACGATAGCC 

mucA-F1 AAACTGTTCTGGCGATCGGC 

mucA-R1 ATATCGCCACCGTGATGCAG 

wbpL-F1 ACATTCTTCGCCAGAGGGAG 

wbpL-R1 TCCTACCGCCAAGAGGCAAA 

wzz2-F1 GACATTGACAGCCTCCAGGG 

wzz2-R1 CTACCGATGATTTCGTTTCGT 

algC_F1 GCGTAGAGCAGGTCGACATC 

algC_R1 CTTGAAGAACACGTGGCCGC 

dnpA_F1 AGCACCGAGGGTTCGAGGAA 

dnpA_R1 CAAGCGTCATCGACGCAACA 

migA_F1 GATTGCCGTTCTGCCGCTTG 

migA_R1 GCTGGAGCAGTTGCAGAAAG 

pgi_F1 CGAGCACAAGGTCTACGTAC 

pgi_R1 CTCCGCAAGGTGTCGAGAGA 

pilC_F1 ACCATGATGGGCGCTGGCGTT 

pilC_R1 TTCCAAGGCGCCCGATTGCT 

pilJ_F1 TCGCAGCGGATCGCGAAGAA 

pilJ_R1 CTCCGCAAGGTGTCGAGAGA 

pilQ_F1 TAACCGACGTTGGCCTCGAC 

pilQ_R1 ACCCGACCTTGAGCCCGGAT 

pilQ_F2 GTGGCGAAGTCCTTGACGTC 

pilQ_R2 AACCTGACCGCGCTGTCGTC 

pilR_F1 GCCTGATCCACGAGCAGGGG 

pilR_R1 TCGCGGACGTTGCCCGGGAA 

pilY1_F1 CCAACATCAAGCTGCTCTGG 

pilY1_R1 TAGTCGGCTACGCCGTCGCT 

pilY1_F2 TCGCGCGCAACCAGACCAACA 

pilY1_R2 GCTCCACAGCTTGGTCTGCA 

wapH_F1 GGACACCGCCAGCAGGCTCA 

wapH_R1 GTACGCCAGCCTGTTCGCCG 
TABLE 6 OLIGONUCLEOTIDES USED IN THIS STUDY. 

  



129 

 

IV.IV GENE CLONING AND EXPRESSION 

PCR amplicons were cloned into the pUCP24 plasmid, a generous gift of Dr Schweizer (West, 

Schweizer et al. 1994). This is a shuttle vector which replicates in E. coli and in P. aeruginosa, and 

contains a multiple cloning site downstream from lacZα. The PAO1 mucA gene was PCR-amplified 

using oligonucleotides mucA_Clon_F_Bam (5′-TGGGATCCCGAGAAGCCTGACACAGC-3′) 

and mucA_Clon_R_Hind (5′-GAAAGCTTACCGCCATCAGGCTGCCA-3′), which included 

restriction sites for BamHI and HindIII. The amplicons were digested with BamHI/ HindIII, ligated 

into the similarly digested vector and transformed into E. coli, in which replication of pUCP24 is 

optimal (West, Schweizer et al. 1994). A selected recombinant was then used to transform P. 

aeruginosa strains by electroporation using the fast protocol described by Choi and colleagues 

(Choi, Kumar et al. 2006). Transformants were selected using gentamycin 10 μg/ml, and the 

presence of the plasmid was verified by PCR amplification using a mucA forward oligonucleotide 

mucA-int_F (5′-ACGCAGGTAGATCGGCAGAC-3′) and a plasmid reverse oligonucleotide 

pUCP24_MCS_R (5′-GGCCTCCTTCGCTATTACGCC-3′). The colony aspect was observed 

under the stereomicroscope (Motic DM143). The transformants were then tested for their 

susceptibility to the four phages. 

IV.V WHOLE-GENOME SEQUENCING 

Purified bacterial DNA (10 μg) was sent for draft whole-genome Illumina sequencing to the 

IMAGIF platform (CNRS, Gif-sur-Yvette, France). Libraries were made from sheared fragments of 

DNA with a mean size of 900 bp and paired-end reads of 250 bp were produced. Between one and 

five million reads were obtained corresponding to a 40- to 200-fold mean coverage. The mutations 

were identified by comparison with the genome of the PAO1Or sequence using native Geneious R9 

tools default parameters (Biomatters). The Geneious mapper with the ‘Medium-Low 

Sensitivity/Fast’ parameter option was used to map the reads of each variant against the PAO1Or 

genome. The ‘Find Variations/SNPs’ analysis was used with the parameter ‘Minimum Variant 

Frequency’ set to 0.25. When an SNP or an indel was identified, sequencing reads mapping in the 
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mutated gene plus 1 kb on both sides were recovered, reassembled and the contig was aligned with 

the PAO1 Or genome. This allowed the precise localization of short deletions. Mutations were 

confirmed by PCR amplification of the affected gene and Sanger sequencing (Beckman-Cogenics) 

using primers listed in Table 6. 

De novo assembly of phage reads was done with the Geneious R9 native assembler using the 

‘Medium-Low Sensitivity/Fast parameter’. 
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Abstract
Twenty two distinct bacteriophages were isolated from sewage water from five locations in

the city of Abidjan, Côte d'Ivoire over a two-year period, using a collection of Pseudomonas
aeruginosa strains with diverse genotypes. The phages were characterized by their viru-

lence spectrum on a panel of selected P. aeruginosa strains from cystic fibrosis patients and

by whole genome sequencing. Twelve virions representing the observed diversity were

visualised by electron microscopy. The combined observations showed that 17 phages, dis-

tributed into seven genera, were virulent, and that five phages were related to temperate

phages belonging to three genera. Some showed similarity with known phages only at the

protein level. The vast majority of the genetic variations among virulent phages from the

same genus resulted from seemingly non-random horizontal transfer events, inside a popu-

lation of P. aeruginosa phages with limited diversity. This suggests the existence of a single

environmental reservoir or ecotype in which continuous selection is taking place. In con-

trast, mostly point mutations were observed among phages potentially capable of lysogen-

isation. This is the first study of P. aeruginosa phage diversity in an African city and it shows

that a large variety of phage species can be recovered in a limited geographical site at least

when different bacterial strains are used. The relative temporal and spatial stability of the

Abidjan phage population might reflect equilibrium in the microbial community from which

they are released.
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Introduction
Bacteriophages, viruses that infect bacteria, are the most numerous of all viruses in the bio-
sphere and are estimated to be globally more numerous than bacteria (reviewed in [1,2,3]).
This abundance plays important roles in the evolution of bacterial communities and may influ-
ence global biogeochemical cycles [4]. A limited number of studies have investigated phage dis-
tribution in natural environments, in contrast to the vast knowledge on bacterial ecology [5].
Man-made environments such as waste water systems are rich in microbial communities due
to diversified sources of microbes, presence of elevated level of nutrients and the multiple sur-
faces on which biofilms can form [6]. Different studies have revealed that such ecosystems can
be reservoir for human pathogens and associated bacteriophages [7,8].

Evolution of phages, driven by resistance of bacterial hosts, can affect multiple genes, and
this is reflected by the large genomic diversity inside phage species [9,10]. Comparison of
genomes reveals important levels of mosaicism resulting from recombination, as well as acqui-
sition or loss of genetic material and point mutations [11]. It has been speculated that the
recombination functions encoded by many phages are, in addition to their role for phage
replication, responsible for the creation and the maintenance of mosaicism. Their activity
would re-create different modules with a comparable selective fitness [12]. Viruses constitute a
huge reservoir of genetic diversity that is frequently revealed by the discovery of novel genes
especially in newly sequenced phage genomes [13]. Metagenomic data from aquatic and
human environments show that most viral diversity remains uncharacterized [14,15].

Ubiquitous in the environment, P. aeruginosa is one of the major life-threatening opportu-
nistic bacteria responsible for nosocomial infections in immunocompromised people, and for
persistent respiratory infections in cystic fribrosis (CF) patients [16,17]. Its ability to adapt to
different niches and to develop resistance to classical antibiotic-based therapy has inspired a
renewed interest in its bacteriophages. Phage cocktails are used to treat P. aeruginosa infections
in different countries but clinical assays are needed to evaluate their efficiency and safety. The
composition of therapeutic cocktails such as the widely used Pyo-Phage [18] remains empiri-
cal, and there is no clear and published rules on how many phages should be included, and
what would be the criteria for selecting them.

Considering the large genetic diversity of the P. aeruginosa species, it is important for
future therapeutic usage to evaluate the virulence spectrum of lytic phages [19,20]. Numerous
lytic and temperate P. aeruginosa phages have been isolated, mostly from man-made environ-
ments of European and Asian countries, and new ones are continuously being described
[21,22]. Ceyssens et al. analyzing morphologic features and genome organization of a large
collection of phages, estimated that most evolved within 12 genera gathering 21 species [10].
Two additional genera of lytic phages were subsequently described. The PAK-P1-like phages
include JG004, vB_PaeM_C2-10_Ab1 (alias Ab01) and PaP1 [23,24,25,26], whereas KPP10
and PAK-P3 form a second genus [27,28]. More recently six new species belonging to the
Siphoviridae family were reported [7], as well as a giant phage [29]. The large majority of sipho-
viruses of P. aeruginosa has been shown to be temperate phages distributed into three different
genera, implying the possibility to undergo a lytic or a lysogenic interaction with their host
[30]. Such phages often show a very narrow host range. The recently isolated lytic siphovirus
PA1ɸ, a D3112-like phage lacking lysogeny gene modules, displayed a broad bacteria spectrum
[31]. Among podoviruses, the Abidjan phage Ab31, a chimera between a temperate and a
lytic phage, was shown to be temperate [26].To understand the mechanisms that shape
bacteriophages populations and allow the emergence of new species by mutations and genome
exchanges, it is necessary to perform studies resampling the same environment. We previously
described a large panel of clinical P. aeruginosa isolates that showed a wide variety of
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susceptibility to lytic and temperate phages [26]. Here we used a selection of these strains to
isolate and characterize 22 novel P. aeruginosa phages from sewage water in Abidjan (Ivory
Coast) in 2010 and 2011. Comparison of their genomes to those of published phages reveals a
large diversity and points to a continuous evolution in a limited time and space scale.

Materials and Methods

Ethics statement
The present project is in compliance with the Helsinki Declaration (Ethical Principles for Med-
ical Research Involving Human Subjects). Bacterial strains were collected as part of the
patients' usual care, without any additional sampling, as previously reported [32,33,34]. The
ethic committee “Comité Consultatif pour la Protection des Personnes dans la Recherche Bio-
médicale (CCPPRB) Ile-de-France”, who was consulted, specifically approved this study, and
declared that patient informed consent was not needed.

Strains and media
The P. aeruginosa strains used for enrichment and amplification of phages were from CF
patients (Table 1) [32,33,34]. The reference strains PAO1 and PA14 were purchased from the
Institut Pasteur Collection (CIP, Paris, France). C50, a strain from clone C [35] was a gift from
Ute Römling. Twelve P. aeruginosa strains were used for phage isolation, of which six were
resistant to Pyo-Phage (a therapeutic cocktail of phages prepared in Tbilisi, Georgia [18]), and
to additional phages from Russia and USA ([26] and unpublished results). Five bacterial strains
were used for subsequent amplification of the purified phages. Phages p1-14pyo, p8_13pyo, p1-
15pyo and p2-10pyo were previously isolated from Pyo-Phage and were used in the present
study as controls [26]. Luria broth (LB) medium supplemented with 2 mM CaCl2 was used for
bacterial growth and phage titration. Saline magnesium (SM) buffer (50 mM Tris-HCl pH7.5,
100 mMNaCl, 8.1 mMMgSO4, 0.01% gelatin) was used to preserve purified phages at 4°C.

Phage isolation, characterization and genome sequencing
Samples were collected in five public sites: four in the Cocody area (La Baie, latitude 5.333704
longitude: -4.015846, Carrefour de la Vie, lat. 5.348505 long. -4.002178, Carrefour de l’Indénié,
lat. 5.341143 long -4.017788, Cocody hospital, lat. 5.344389 long. -3.994072) and one in the
Treichville area (Treichville hospital, lat. 5.293541, long. -4.003898). No authorisation was
required for sampling in the first three sites. Authorisation was obtained for sampling in the
Cocody and Treichville hospitals. The sites corresponded to open-air or closed sewage systems.
Two of these were from geographically distant hospitals waste water purification stations. The
different steps of phage isolation were described previously [26]. Briefly, filtrated water was
incubated overnight in LB medium with enrichment bacteria, and, after centrifugation, the
supernatant was spotted onto different bacterial strains including the enrichment strain. A
total of 22 and nine phages were isolated in October 2010 and November 2011 respectively.
Phage Ab12 which formed plaques on strain C5-2 in the first isolation step could not be further
maintained in any tested strain. After two rounds of purification using a single plaque, phages
were amplified on solid plate by infecting 200–400 μl of a 2x1010 cfu/ml bacterial suspension
with one 24 hours old lysis plaque. One of the phages, Ab01, was previously described [26],
and detailed analysis of Ab31 has been reported recently [36]. Phages were given names as rec-
ommended by Kropinski et al. [37].
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Host-range spectrum
Phage host range was determined by spotting 10 μl of purified phages with high titer (at least
109 pfu/ml) on stationary P. aeruginosa cells. Presence or absence of a lysis zone was appreci-
ated after overnight incubation at 37°C. Phage sensitivity was then confirmed using plaque
assay. Briefly, 10 μl of undiluted phage suspension were directly streaked on LB agar plate, and
4 ml of molten top agar (0.7%) containing 2x109 bacteria were poured over the phages. Charac-
teristics of isolated plaques were recorded.

Table 1. List of bacteriophages isolated in Abidjan, Côte d’Ivoire.

Phage ID Alias Sitea Date Enrichment strain b

vB_PaeM_C2-10_Ab1 Ab01c CV oct-10 C2-10 (+)

vB_PaeM_C2-10_Ab02 Ab02 Ind nov-11 C7-6 (-)

vB_PaeM_PAO1_Ab03 Ab03 CoH nov-11 PAO1 (+)

vB_PaeM_PAO1_Ab04 Ab04 Ind nov-11 C5-2 (-)

vB_PaeP_PAO1_Ab05 Ab05 CoH nov-11 PAO1 (+)

vB_PaeM_PAO1_Ab06 Ab06 TrH nov-11 PAO1 (+)

vB_PaeM_C2-10_Ab07 Ab07 CV oct-10 C9-11 (+)

vB_PaeM_C2-10_Ab08 Ab08 Ind oct-10 C9-11 (+)

vB_PaeP_C2-10_Ab09 Ab09 Ind oct-10 SCH (+)

vB_PaeM_C2-10_Ab10 Ab10 CV oct-10 SCH (+)

vB_PaeM_PAO1_Ab11 Ab11 CV oct-10 PAO1 (+)

vB_PaeP_C5-2_Ab12d Ab12 Ind nov-11 C5-2 (-)

vB_PaeM_C2-10_Ab13 Ab13 Ba oct-10 C2-10 (+)

vB_PaeM_C2-10_Ab14 Ab14 Ba oct-10 C2-10 (+)

vB_PaeM_C2-10_Ab15 Ab15 CoH oct-10 C9-11 (+)

vB_PaeM_C2-10_Ab16 Ab16 CV oct-10 C9-11 (+)

vB_PaeM_PAO1_Ab17 Ab17 Ind nov-11 PAO1 (+)

vB_PaeS_PAO1_Ab18 Ab18 CV oct-10 PAO1 (+)

vB_PaeS_PAO1_Ab19 Ab19 CV oct-10 C50 (-)

vB_PaeS_PAO1_Ab20 Ab20 Ind oct-10 PAO1 (+)

vB_PaeS_PAO1_Ab21 Ab21 Ind oct-10 PAO1 (+)

vB_PaeP_C2-10_Ab22 Ab22 Ind nov-11 C8-20 (-)

vB_PaeM_C2-10_Ab23 Ab23 CV oct-10 C8-20 (-)

vB_PaeM_C2-10_Ab24 Ab24 Ba oct-10 C8-14 (-)

vB_PaeM_C2-10_Ab25 Ab25 CV oct-10 SCH (+)

vB_PaeS_SCH_Ab26 Ab26 CV oct-10 SCH (+)

vB_PaeM_PAO1_Ab27 Ab27 CoH oct-10 C8-14 (-)

vB_PaeM_PAO1_Ab28 Ab28 Ind oct-10 C8-14 (-)

vB_PaeM_PAO1_Ab29 Ab29 Ind oct-10 C3-16 (-)

vB_PaeS_PAO1_Ab30 Ab30 CV oct-10 C3-16 (-)

vB_PaeP_Tr60_Ab31e Ab31 TrH nov-11 PA14 (+)

a CV, Carrefour de la Vie: Ind, indénié: CoH, Cocody Hospital; TrH, Treichville hospital; Ba, La Baie
b in parentheses is indicated the Pyo-Phage-susceptibility
c published in [26]
d Ab12 was subsequently lost
e published in [36]

doi:10.1371/journal.pone.0130548.t001
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Electron microscopy
Purified and concentrated phages were prepared and visualized by staining 5 μl of phage sus-
pension with 2% potassium phosphotungstate (pH 7.0) as previously described [26].

DNA purification and enzymatic digestion
DNA preparation was performed using a rapid DNA purification assay as previously described
[38]. Briefly, 4 ml of amplified phage suspension were treated with 50 μg/ml RNase A for 30
min at room temperature, then 0.2 ml 2M Tris-HCl pH 7.5, 0.4 ml 0.5M EDTA, 0.2 ml 10%
SDS and 10 μl diethylpyrocarbonate (1.1 g/ml, Sigma-Aldrich) were added. Following incuba-
tion at 65°C for 30 min, 1 ml 5M KOH was added, and the samples were left for 1 h on ice.
Centrifugation was performed at 25,000 g for 20 min at 4°C, and the supernatant was precipi-
tated with two volumes of ethanol. DNA was pelleted by centrifugation and washed twice with
70% ethanol then dissolved in 0.4 ml TE (10 mM Tris-HCl (pH7.5), 1 mM EDTA). Enzymatic
digestion was carried out on 8 μl DNA in a final volume of 12 μl according to the manufactur-
er’s recommendations (Thermo Fisher Scientific, France), and analysed on a 0.8% agarose gel.

Genome sequencing and analysis
Illumina paired-end sequencing was performed by BaseClear (Leiden, The Netherlands) or
IMAGIF (Gif sur Yvette, France). The coverage was on the order of 1000X. The 100 bp reads
were de novo assembled using Velvet [39] and Ray [40] as embedded in BioNumerics version
7.5 (Applied-Maths, Ghent, Belgium). Sub-samples of the initial read files were used, with 5000
to 100,000 reads, and several values of the k-mer length were tested in order to try and obtain a
single contig. Once a single circular contig was obtained, the totality of reads was mapped
against the sequence in order to identify regions with particular coverage, or the existence of
ambiguity at some nucleotides, and to detect reads that did not map to the phage genome. In
several phages, the presence of a high peak of reads which all stopped at the same position indi-
cated the end point of a linear genome, as previously observed [24,26]. The genome starting
point and the position of a putative Direct Terminal Repeat (DTR) were revealed by a particu-
lar distribution of the sequencing reads or by comparison with closely related phages. Multiple
alignments were performed using the Geneious 8.1 software platform (Biomatters Ltd, Auck-
land, New Zealand) running MAFFT [41]. Annotation of open reading frames (ORF) was per-
formed with RAST [42], using a 0.1 blastp E-value cut-off, and ARAGORN was applied to
localize tRNA genes [43]. SNPs identification, Minimum spanning tree, and dN/dS analyses
were performed in BioNumerics version 7.5 using the full bacteriophage sequences. Phage
genome assemblies have been deposited to EBI/EMBL: Ab02 LN610572, Ab03 LN610573,
Ab04 LN610581, Ab05 LN610574, Ab06 LN610582, Ab08 LN610575, Ab10 LN610586, Ab11
LN610583, Ab15 LN610587, Ab17 LN610576, Ab18 LN610577, Ab19 LN610584, Ab20
LN610585, Ab22 LN610578, Ab27 LN610579, Ab28 LN610589, Ab29 LN610588, Ab30
LN610590, 1-15pyo LN610580.

Results and Discussion

Isolation of phages from sewage water
In order to favour the isolation of a variety of phages, we selected, in addition to the reference
strains PAO1 and PA14, six clinical strains (C3-16, C7-6, C5-2, C8-14, C8-20 and C50) that
were previously shown to be resistant to a large collection of phages of different genera (includ-
ing those of the Pyo-Phage batch tested), and three clinical strains (C9-11, C2-10, SCH) with
large susceptibility to these phages [26]. A spot assay was performed with the supernatant, and
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phages present in lysis zones were purified by several rounds of single plaque isolation. When
different plaque morphologies were observed with a single sample, they were recovered and
purified. Thereafter, a limited number of amplification strains were chosen for the good level
of phage growth, PAO1 and C2-10 being most frequently used. The water sample origin, the
date of isolation and the bacterial strains used to isolate and amplify new phages are summa-
rized in Table 1. Interestingly, phage Ab22 produced both clear and turbid plaques on strain
C2-10, in high density zones, and this phenotype was seen even after replating of a clear or a
turbid plaque (S1 Fig). A similar phenotype was previously observed with phage p2-100r, a
LUZ24-like phage isolated in Orsay, France [26], and with other phages of this genus [44].
Phage Ab05 produced clear plaques on PA14 and PA01, and a halo was seen on PA14. Phage
1-15pyo, a ɸKMV-like phage isolated from Pyo-Phage and used here as a control, made similar
plaques with a halo on PAO1 [26].

All phage genomes were digested with different restriction enzymes, showing that the band-
ing pattern were identical or very similar in some phages, whereas others had specific profiles
(data not shown). Combining the results of different enzymatic digestions, phages Ab05, Ab09,
Ab22, Ab26, Ab30 and Ab31 appeared to be unique, while the other phages fell into five
groups, including twelve, five, four, and three members respectively.

Whole genome sequencing
Sequencing of all 30 phages was performed using the Illumina technology, and the reads were
assembled producing a single contig. In some phages, upon alignment of reads against the
assembled sequences, and in agreement with a previous observation for Ab01, high peaks of
reads could be observed at two positions, delimitating a Direct Terminal Repeat (DTR) at the
genome ends (S2 Fig). Assembled genomes were aligned with all available P. aeruginosa phage
genomes, in order to identify the closest one. For all phages except Ab31 and the Ab18 group
(Ab18, Ab19, Ab20, Ab21), 85–95% alignment was possible along the whole sequence of a
known genome. The genome size of the new phages, and the genus they belong to, are indi-
cated on Table 2. Some genome sequences appeared to be almost identical suggesting that the
same phage was isolated several times independently. The 30 recovered phages correspond to
22 distinct phages. Interestingly, the GC content of most phages was largely inferior to that of
the bacterial chromosome (66,6% for PAO1), except for phages of the YuA and DMS3 genera,
and for Ab05. The putative ORFs were identified for each phage and annotation was performed
by comparison with closely related genes. The proteins were categorized into different func-
tional groups: morphogenesis and packaging, DNA replication, modification and recombina-
tion, regulatory functions, nucleotide synthesis. In total 21 among the 22 independent phages
could be assigned to nine known genera, which are described below, and one phage, Ab31, was
a combination between a virulent and temperate phage. The detailed analysis of Ab31 which
showed limited homology at the DNA level with several Lambda-like phages, has been reported
independently [36].

PAK_P1-like viruses. The twelve phages from this virulent phage genus, including the
previously reported phage Ab01 [26], were isolated at four different locations in Abidjan
mostly in 2010 but also once in 2011. They were distributed into five different subgroups
within which the genome sequences differed at only few nucleotides. They presented more
than 90% similarity with the genomes of PAK_P1 from France [45], PAP1 from China [25]
and JG004 from Germany [24]. For all twelve phages of this genus, DTRs of 1153 bp (Ab01,
Ab07) or 1165bp (Ab02, Ab08, Ab10, Ab13, Ab14, Ab15, Ab16, Ab23, Ab24 and Ab25) were
found, similarly to those observed on closely related PAK_P1-like genomes. The DTR size dif-
ference was due to insertion/deletions of a few base pairs. All genomes possessed 14 tRNA
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genes and coded for their own DNA polymerase, and for the control of nucleotide metabolism.
Fig 1 shows the organization of ORFs on phage Ab02, and S1 Table lists the ORFs with a puta-
tive function. One genome of each subgroup was selected for multiple alignments revealing
patches of high heterogeneity, but also several regions (3–9 kb) with only a few single nucleo-
tide polymorphisms (SNPs) (S3 Fig). Patches of sequences showing a high level of divergence
and low dN/dS values were observed in the first 17 kb of the genome, reflecting events of hori-
zontal genetic transfer (HGT) [46]. By contrast some regions were devoid of traces of HGT
and differed by a few SNPs and high dN/dS values. Presence/absence of sequences was noted.
Ab08 possessed a gene encoding a putative endonuclease with an H-N-H motif (Ab08 ORF38,
between ORF 39 and ORF40 of Ab02). The gene is absent from the other phages from Abidjan,
but present in JG004 (PJG4_036) and PAK_P2 (00161c). In Ab02 a 759bp sequence encoding
ORF 104 was inserted into the polymerase gene, separating it into two genes, encoding DNA
polymerase part I (ORF103) and part II (ORF105). The insert was related to an intron
described in the DNA polymerase gene of LUZ24 (PPLUZ24_gp35), and encoding its own
endonuclease. Comparison with other phages of the same genus (JG004, PaP1 and PAK_P1)
showed a higher level of diversity as reflected in a minimum spanning tree representation (Fig
2). The very high sequence similarity level in the African phages in regions of the genome not
affected by HGT is in favour of a recent diversification from a common founder. A remarkable
conservation of protein sequences was observed, such as for the major capsid protein which
was identical in all the phages, as previously described [25]. A region of 827bp, present in

Table 2. Characteristics of the new phages.

Phage ID Genome size (bp) Family Genus Average similarity Other similar phagesa DTR (bp) tRNA GC (%)

Ab01 92777 Ab07 1153 14 49,3

Ab02 93848 1165 14 49,4

Ab08 93503 Myovirus PAK_P1 90% Ab14, Ab16, Ab13 1165 14 49,2

Ab10 93053 Ab25 1165 14 49,3

Ab15 93308 Ab23, Ab24 1165 14 49,3

Ab03 86246 771 3 54,7

Ab04 86668 771 3 54,6

Ab06 84759 Myovirus KPP10 90% 756 3 54,6

Ab11 85783 771 3 54,5

Ab17 83598 771 3 54,6

Ab27 66299 none 0 55,7

Ab29 66326 Myovirus PB1 97% none 0 55,6

Ab28 66181 none 0 54,9

Ab09 72028 Podovirus N4 93% 641 0 54,9

Ab05 43639 Podovirus ɸKMV 98% 431 0 62,3

Ab22 45808 Podovirus LUZ24 91% 184 3 52,4

Ab18 56537 none 0 63,5

Ab19 58139 Siphovirus YUA 70% Ab21 none 0 63,3

Ab20 57745 none 0 63,5

Ab26 43055 Siphovirus PA73 87% none 0 53,4

Ab30 37238 Siphovirus DMS3 95% none 0 64,1

Ab31 45550 Podovirus New none 0 57,1

a according to [30]
b showing only a few SNPs

doi:10.1371/journal.pone.0130548.t002
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JG004 only (position 34,438 to 35,264), encompassed the gene for an endonuclease
(PJG4_070), inserted between the genes homologous to Ab02 ORF62 and ORF63.

A 21 bp polymorphism in the phages of this group corresponded to the length of a short
duplication. It encoded a seven amino acid peptide (VGAPWYS), part of the hypothetical
ORF75 of phage Ab02, containing a putative leucine zipper-like domain. Phages Ab02, Ab15,
Ab24 and Ab25 had one copy whereas the other phages had two copies, and this polymor-
phism was confirmed by PCR amplification (data not shown).

KPP10-like viruses. Five phages (Ab03, Ab04, Ab06, Ab11, Ab17) isolated in 2010 and
2011 at four different locations in Abidjan, belonged to the KPP10-like virulent phage genus.
They were all different, and shared 88–96% sequence identity with the genomes of KPP10 from
Japan [27], and PAK_P3 from France [23,45]. At position 23,000, a region with very low read
coverage was observed in all phages except Ab17 and corresponded to an AT-rich region. A
putative DTR of 771bp (Ab03, Ab04, Ab11, Ab17) showing an internal 15 bp deletion in Ab06,
was found, defining the genome ends. The inferred nucleotide one position was different from

Fig 1. Genomic organization of PAK_P1-like phage Ab02.ORFs are shown as arrows. The different colors correspond to the putative function: yellow,
unidentified, red, nucleotide metabolism, orange, terminase, green, morphogenesis and packaging, dark blue, DNA replication, light blue, DTR.

doi:10.1371/journal.pone.0130548.g001
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the reported first nucleotide of phage KPP10. The genomes of the five phages were annotated
(Ab06 is shown on Fig 3) showing that, overall, the ORF organization was very similar to that
of the related phages, with a few differences for some very short hypothetical proteins. In keep-
ing with KPP10, these phages had three tRNA genes (tRNAAsn, tRNATyr and tRNAGln). Upon
alignment of the five genomes using Geneious, several regions of variability were observed
within otherwise largely similar sequences (S4 Fig). In regions most probably encountering fre-
quent HGTs, the percentage of SNPs was 20% as compared to 0.1% on average in the rest of
the genome, and dN/dS ratios were low. Similarly to PAK_P1 phages, the first 22 kb, and the
last 8kb showed the largest traces of HGT. It is interesting to note that some recombination
sites appeared to be inside coding regions leading to the production of putative proteins with
high levels of heterogeneity. This was the case for example for ORF14, encoding an hypotheti-
cal protein corresponding to ORF120 in KPP10, which was very different in the five phages,
and appeared to be a patchwork of short regions from different origins. Similarly to PAK_P1-
like phages, the five KPP10-like phages from Abidjan clustered at a large genetic distance to
phages isolated in other countries (Fig 4). Several regions of short insertion/deletions were
observed between the different phages, sometimes resulting in the fusion of two putative ORFs.
Ab17 lacked a 3271 bp region encompassing seven hypothetical ORFs (ORF89 to ORF96 in
Ab06), perfectly conserved in the other phages. As a result, a putative RNA ligase (ORF91 in
Ab17) was formed by the fusion of the beginning of ORF89 and ORF97 (also a putative RNA
ligase in the other phages) in Ab06. This region corresponded to nucleotides 22,874 to 26,077
in KPP10, and also encompassed seven putative genes of unknown function (ORF34 to

Fig 2. Minimum spanning tree representation of PAK_P1-like phages genomes. The numbers indicated on each branch represent the number of SNPs
making this branch. A total of 12125 SNPs were identified and the tree size is 19714 indicating a high level of homoplasia. Homoplasia might result from
independent HGT events with unknown phages infecting other Pseudomonas species. Colors indicate the phages country of origin.

doi:10.1371/journal.pone.0130548.g002
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ORF40). Another region of 528 bp was absent in Ab03 and Ab06, and corresponded to DNA
with no homology in Genbank/EMBL at the nucleotide level.

PB1-like viruses. Three phages (Ab27, Ab28 and Ab29) presented on average a 97% simi-
larity level with several PB1-like virulent phages such as JG024 from Germany (66,275bp) [47],
KPP12 from Japan (64,144bp) [48], NH-4 from Ireland (66,116 bp) [49], and SN from Russia
(66,390bp) [50]. The presence of a category of reads with a single fixed termination tentatively
marked the position of the phages genome ends, but there was no indication of a DTR. Based
on this information, the first nucleotide could be positioned about 7,500bp upstream that
reported for phage PB1. Alignment of the three phage genomes showed that Ab27 and Ab29

Fig 3. Genomic organization of KPP10-like phage Ab06. The different ORFs are colored according to their putative function: yellow, unknown; red,
nucleotide metabolism; orange, terminase; green, morphogenesis; blue, DNA replication.

doi:10.1371/journal.pone.0130548.g003
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were quite similar, except for the first 4,400bp and the last 11,400bp where traces of recombina-
tion events could be seen (S5 Fig), characterized by a high density of nucleotides variations.
Ab28 was very different from the other two at the nucleotide level, but the ORFs were remark-
ably well conserved in the three phages, and other PB1-like phages. The genome organization
of phage Ab27 is shown on Fig 5. There was no RNA polymerase, but there seemed to be a
complete DNA replication machinery as observed in other PB1-like phages. Between Ab27
ORF60 and ORF61 (position 36,360), reads contained either 9 or 10 G suggesting a possibility
of phase variation at this site. Interestingly a 30 bp sequence (GATGCCCCGGCGAACCGGG
GCGGGGTGGTT) at position 8,087–8,187 of the phage genome was present as a spacer in the
Clustered Regularly Interspaced Region (CRISPR) of several P. aeruginosa genomes. This
structure is part of an adaptive immune system believed to play a role in P. aeruginosa resis-
tance to bacteriophages and plasmids [51], but is usually not associated with resistance to lytic
phages. Several studies have shown that in P. aeruginosa, CRISPRs carry mostly sequences of
temperate phages [26,51]. Our observation suggests that the CRISPR-Cas system may play a
role in regulation of PB1-like phages infection.

Fig 4. Minimum spanning tree representation of KPP10-like phages genome. The numbers indicated on each branch are the number of SNPs
constituting this branch. A total of 9097 SNPs were identified and the tree size was 12233 indicating a significant level of homoplasia. Colors indicate the
phages country of origin.

doi:10.1371/journal.pone.0130548.g004
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N4-like virus. The genome of Ab09 was 72,028 bp long. It showed a mean 93% similarity
with lytic phage LIT1, a N4-like virus isolated in Belgium, (72,544 bp) [52], although some
regions had less than 80% similarity with this phage. By contrast the mean similarity at the
nucleotide level with phage LUZ7, another N4-like virus from Belgium, was only 65%. A 641bp
DTR was found corresponding to the 655bp DTR of LIT1. The genome encoded 83 hypotheti-
cal proteins, among which a giant protein of 3398 amino acids (ORF66), the characteristic
virion-encapsulated RNA polymerases of N4-like viruses (Fig 6) [52] which allows transcrip-
tion of early genes in these phages. Ab09, like other N4–like phages encoded a second type of
RNA polymerase (ORF18 and ORF19), a heterodimeric T7-like RNAP. Similarly to ORF 56 in
phage LUZ7, Ab09 ORF48 aligned with ORF52 and ORF53 of LIT1, both putative tail proteins
separated by 195 nucleotides [52]. No tRNA genes were identified. Similarly to other lytic
phages with large genomes, a group of small hypothetical ORFs was found at one end of the
genome.

ɸKMV-like viruses. Ab05 (43,639bp) showed, on average, 98% sequence similarity with
lytic phages LUZ19 from Belgium (43,548bp) [53], and ɸKMV from Russia (42,519bp) [54]. A
431bp DTR was observed, similar to that of LUZ19 (472 bp DTR). Overall the organization of

Fig 5. Genomic organization of PB1-like phage Ab27. The different ORFs are colored according to their putative function: yellow, unknown; red nucleotide
metabolism; orange, terminase; green, morphogenesis; blue, DNA replication; purple, lysis.

doi:10.1371/journal.pone.0130548.g005
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putative genes was that of ɸKMV-like phages [10,55] (Fig 7). Contrarily to the large-genome
viruses described above, Ab05 and the other ɸKMV-like genomes were more compact and
essentially expressed genes for morphogenesis and replication, in addition to a group of small
hypothetical ORFs. An RNA polymerase was found (ORF31), as typically observed in phages
of this genus. The first genomic region ending after the gene for RNA polymerase, and encom-
passing genes for host conversion and DNA replication (early region), was the region showing
the most diversity [55]. A lysis cassette formed of a pinholin (ORF49), endolysin (ORF50), and
spanins (ORFs 51–52) was similar to the one described in ɸKMV-like phages [56]. Interest-
ingly no putative ORFs were found in the first 1900 nucleotides, a region holding three to five
strong promoters in other ɸKMV-like phages. The canonical nucleotide sequence 5’-CGACX
XXXXCCTACTCCGG-3’, localized at putative sites for single-strand DNA interruptions [57],
was found three times in the Ab05 genome (arrows on Fig 7). Ab05 showed, in addition, the
variant sequence 5’-GGGCXXXXXCCTACTCCGG-3’. At these positions an excess of
sequencing reads could be observed. Compared to other ɸKMV-like phage genomes, four dele-
tions of putative genes, as well as many regions with low level of similarity at the nucleotide
level were observed, reflecting recombination events. The two smaller deletions corresponded
in phage LKD6 to a region containing a putative promoter and to an intergenic sequence [55].
Deletion 3 encompassed the short ORF17.1 of phiKF [58]. Deletion 4 encompassed gp20 in
LUZ19, a short ORF present in all the sequenced ɸKMV-like phages.

Fig 6. Genomic organization of N4-like phage Ab09. The different ORFs are colored according to their putative function: yellow, unknown; grey,
transcription; green, morphogenesis; blue, DNA replication; purple, lysis.

doi:10.1371/journal.pone.0130548.g006
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LUZ24-like virus. The Ab22 genome was 45,808 bp long and showed 86–96% similarity
with lytic phage LUZ24 from Belgium (45,625 bp; AM910650 [59]) and lysogenic phage PaP3
from China (45,503bp NC_004466 [60]). The genome was also close to that of phage 1-14Or01
that we previously isolated in France [26]. Ab22 possessed a 184 bp DTR as observed for 1-
14Or01 (182bp) [26]. Annotation predicted the existence of 71 putative ORFs and three tRNAs
(tRNAPro, tRNATyr and tRNAAsn) (Fig 8). By comparison, LUZ24 showed 74 ORFs and two
tRNAs, and PaP3 71 ORFs and 4 tRNAs. Several regions of insertion or deletion with respect

Fig 7. Genomic organization of ɸKMV-like phage Ab05. The different ORFs are colored according to their putative function: yellow, unknown; orange,
terminase; green, morphogenesis; blue, DNA replication; purple, lysis. Vertical arrows indicate the position of single-strand DNA interruptions.

doi:10.1371/journal.pone.0130548.g007

Fig 8. Genomic organization of LUZ24-like phage Ab22. The different ORFs are colored according to their putative function: yellow, unknown; red,
biosynthesis; green, morphogenesis; blue, DNA replication; purple, lysis. Vertical arrows indicate the position of single-strand DNA interruptions.

doi:10.1371/journal.pone.0130548.g008
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to LUZ24 were observed. The longest (1206 bp) was present in Ab22 (ORF17) and absent in
LUZ24, and all other closely related P. aeruginosa phages. It showed 100% identity with the
transposase fusion protein of phage TL from Russia (YP_009007804), suggesting that this gene
possibly contributes to the insertion of the phage genome in the bacterial DNA. The second
largest region of difference was a 665 bp fragment, absent in Ab22, encoding the gp35 endonu-
clease (self-splicing intron) in LUZ24, separating the polymerase part II and III (ORF34 and
ORF36). These two genes were fused into a single ORF in Ab22 (ORF38). The first 1000 nucle-
otides did not encode any putative protein and probably contained promoters, although the
consensus sequence described by Ceyssens et al. [59] could not be found at this position. At six
positions (arrows on Fig 8), an excess number of reads corresponded to the sequence 5’-GTA
CTATGAC-3’, or to the variant 5’-GTACTGTGAC-3’marking the single-strand DNA inter-
ruptions observed on the viral genome. We and others previously reported the existence of
such sites with phages of LUZ24-family [26,61].

YuA-like viruses. Ab18, Ab19, Ab20 and Ab21, isolated in 2010 and 2011 at two locations
and showing related restriction profiles, appeared to be YuA-like phages. Genome sequencing
showed that there were in fact only three different phages, Ab19 and Ab21 being identical. The
sequencing reads aligned as a circular genome, with no abnormal peaks of reads and conse-
quently the first nucleotide was assigned by comparison with the closest genome, YuA from
Russia (58,663 bp) [62]. The genome of the three phages showed at best 70% similarity with
that of YuA and MP1412 from South Korea (61,167 bp) [63]. At the protein level, additional
similarities could be observed particularly in structural proteins. Moreover, the DNA polymer-
ase (ORF18) and the terminase gene (ORF46) also showed an elevated degree of homology
with those of YuA. Fig 9 shows the organisation of the 76 Ab18 ORFs, all oriented in the same
direction. Overall the organisation was that of YuA with some remarkable differences, particu-
larly at the level of small ORFs of unknown function. ORF6 and ORF7 of Ab18 and Ab19
encoded the small and large subunits of a ribonuclease reductase of class Ia which corre-
sponded to a single gene in YuA. A putative repressor (ORF21) and an integrase (ORF22)
showing 55% identity to that of YuA were present, suggesting that the phage could possibly
lysogenize its host. Other parts of the genome had no homology with any phage in the public

Fig 9. Genomic organization of YuA-like phage Ab18. The different ORFs are colored according to their putative function: yellow, unknown; orange,
terminase; red, DNA repair; green, morphogenesis; blue, DNA replication; purple, lysis, pink, prophage insertion.

doi:10.1371/journal.pone.0130548.g009
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databases, either at nucleotide or protein level. Ab18, Ab19 and Ab20 genomes showed an
average 95% similarity with each other, and displayed several regions of insertion/deletion. The
genomes were aligned showing that overall the SNPs were evenly distributed, except for one
large region of low percentage of similarity encompassing genes for the tail fiber proteins (S6
Fig). This is in contrast with the high level of divergence observed with the closest phage YuA,
and provides a direct estimate of the relative role of mutation by descent versus recombination
in this homogenous group of phages. YuA-like phage genomes were reported to be resistant to
many restriction enzymes including EcoRI, although EcoRI restriction sites exist in their
genome [7,62]. We observed a similar resistance in the four phages from Abidjan suggesting
the existence of DNA modifications.

PA73-like virus. Ab26 genome was 43,055 bp long and encoded 52 putative proteins
(Fig 10). It showed 87% homology with vB_Pae-Kakheti25 from Georgia (42,844 bp; NC
007806) considered a lytic phage [64] and with PA73 from the Lindberg set (42,999 bp;
DQ163913) [65]. The phage ends and the orientation of the genome map were aligned to that
of related phages, and alignment showed a high overall conservation of gene organization
between these phages except for three regions. The 296 bp at the beginning of the genome,
encoding a protein found in a lysis cassette in phage vB_Pae-Kakheti25, were very different in
the three phages. Interestingly, Ab26 possessed well conserved holin, endolysin, Rz and Rz1
spanin genes (ORF01 to ORF04) forming a lysis cassette similar to that described in ɸKMV-
like phages [56]. One region of 1,600 bp encoding proteins found in mature virions (ORF21-
ORF22), showed about 70% similarity with vB_Pae-Kakheti25 but 95% with PA73. Finally,
from position 36,000, after the gene encoding a putative primase/helicase (ORF35), to the end
of the genome a series a short hypothetical ORFs was observed showing a high degree of diver-
gence as compared to the two closest phages. No integrase or other protein that could be
involved in lysogeny were clearly identified. However ORF31, a recA-like recombinase, was
shown to belong to the sak4 family of proteins, almost exclusively associated with temperate
phages [66].

D3112/B3-like virus. Ab30 had a 37,238 bp genome and showed between 91 to 99% simi-
larity with transposable phage DMS3 from the USA (36,415 bp) [67], and phages MP38

Fig 10. Genomic organization of PA73-like phage Ab26. The different ORFs are colored according to their putative function: yellow, unknown; orange,
terminase; red, biosynthesis; green, morphogenesis; blue, DNA replication; purple, lysis.

doi:10.1371/journal.pone.0130548.g010
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(36,885bp; EU272037) and D3112 from Russia (37,611bp) [68]. These phages are related to the
Escherichia coli phage Mu which replicates by transposition [69] and possesses chromosomal
DNA fragments of variable size at the end of its genome. The presence of a characteristic c
repressor gene (ORF01) and of transposases A (ORF06) and B (ORF07) genes in the early
genome region suggested a similar mechanism of lytic-lysogenic switch (Fig 11). Similarly to
other phages of this genus, Ab30 possessed an extensive mosaic structure but the gene organi-
zation was well preserved. Alignment with phage DMS3 revealed regions of high diversity such
as ORF01, and additional genes encoding short hypothetical proteins. Previously, it was shown
that inhibition of biofilm formation as well as swarming motility of DMS3-lysogenic bacteria
was mediated by the CRISPRs-Cas system [67]. Atypical genes able to inactivate bacterial
CRISPR-Cas system were identified within Mu-like phage genomes [70,71]. By comparison
with published sequences of Mu-like phages, the group of hypothetical genes encoding ORF36
to ORF39 may represent an anti-CRISPR region.

Virion structure
EM examination was performed for at least one phage of each genus (Fig 12). As expected
from the genome sequence, phages belonging to the PAK-P1, KPP10 and PB1 genera were
myoviruses (A1 morphotype) with long contractile tails. Five PAK-P1-like phages were ana-
lysed and all showed the same morphology, with a 130 nm tail and a 67–70 nm head. Ab11, a
KPP10-like phage, had a 70 nm head and a 120nm long tail, while virion particles of Ab29, a
PB1-like phage, possessed a 74 nm head and a 140 nm long tail. Among podoviruses with short
tails (C1 morphotype), Ab05 and Ab22, belonging to the ɸKMV-like and LUZ24-like genera
respectively, displayed 60nm icosahedral heads, while Ab09, a N4-like phage, had a 70 nm ico-
sahedral head. Ab18, Ab26 and Ab30 were siphoviruses with a B1 morphotype. Ab18 showed
an elongated 85×60nm head and a 130 nm tail similar to that of phage YuA. Ab26 had a head
of 60 nm and tail of 170 nm, Ab30 a head of 55 nm and tail of 180 nm.

Fig 11. Genomic organization of D3112/B3-like phage Ab30. The different ORFs are colored according to their putative function: yellow, unknown; red,
metabolism; green, morphogenesis; pink, transposition.

doi:10.1371/journal.pone.0130548.g011
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Fig 12. Electronmicroscopy examination of nine phages representative of the different genera observed in the present phage collection. Scale bar
represents 100 nm.

doi:10.1371/journal.pone.0130548.g012
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Host-range spectrum
Phage host range was determined on the collection of P. aeruginosa strains used to isolate the
phages of this study, and on additional strains selected for their resistance to Pyo-Phage [26].
The complete result is shown in S2 Table, and Table 3 shows the virulence spectrum of one
phage for each genus and that of four phages isolated from Pyo-Phage (p1-14pyo, p8-13pyo, p1-
15pyo and p2-10pyo). The members of a genus generally showed similar virulence towards the
selected panel of bacterial strains with some exceptions. Together the present collection of lytic
phages (all the myoviruses and the podoviruses except Ab31) which belong to six genera, could
lyse 16 out of 20 tested strains. Four strains, C5-13, C8-14, C8-15 and C8-20 were resistant to
all phages. Phages of the PAK_P1 genus showed the highest virulence both in term of spectrum
and efficiency of plating. Seven of them showed a high plating efficiency on C7-6, a Pyo-
Phage-resistant strain, in which they produced large clear plaques. On the same strain, Ab01,
Ab15 and Ab23 showed a ten times lower growth, and Ab24 and Ab25 did not grow. No clear
plaques could be observed on C7-6 with any phage belonging to the other genera. Similarly,

Table 3. Host-range of representative Abidjan and Pyo-Phage-derived phages.

Genus PAK-P1 KPP10 PB1 N4 ɸ-KMV LUZ24 YUA PA73 D3112

Phages Bacteria Ab08 Ab06 Ab27 p1-14pyo Ab09 p8-13pyo Ab05 1-15pyo Ab22 p2-10pyo Ab18 Ab26 Ab30

PAO1 - c+ c+ c+ c+ c+ c+ t c+ - t

PA14 t - t c+ - c+ - - t - - c+

Tr60 - - - c+ - t t t c+ - - -

C50 - - - - - - - - - - c - t

SCH c+ - c+ c+ - c+ - c c+ t

C1-1 - t c t c+ c+ t c+ - t - -

C1-2 c t - t c+ t - - t t c - -

C1-14 c+ t c+ c+ c+ c+ t c+ t t t - -

C2-10 c+ - t - c+ - - c c+ c+ - c -

C3-16* - - c+ - t c+ - t t - - - t

C3-20 - - - - - t - - c c+ - - -

C5-2 - - t - c+ - - c+ - - t t t

C5-12 t - c t - - - - c t c - -

C5-13 - - - - - - - - - - - - -

C7-6 c+ - - - - - t t - - t - -

C7-12 - - c - - - - - - - - - -

C7-25° - - c - - - - - - - - - -

C8-5 c+ - t - - t - t t t t t t

C8-7* c - t - - - - - t - - - t

C8-14 - - - - - - - - - - - - -

C8-15 - - - - - - - - - - - - -

C8-20* - - - - - - - - - - - - -

C9-5 c - c+ - - - - c t - c t -

C9-6 c - c - - - t - - - - - -

C9-11 c+ t t c+ c+ c+ - t t - c t t

C9-17 c+ t t t t t - t t t c t t

* slow growing strain

°continuous release of prophage

c: clear plaque; c+: maximum growth; t: turbid plaques

doi:10.1371/journal.pone.0130548.t003
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most phages of the PAK_P1 genus could lyse two other Pyo-Phage-resistant strains, C8-5 and
C8-7. The three PB1-like phages displayed a large host range, infecting Pyo-Phage-resistant
strains C7-12, C7-25, C9-5 and C9-6, but with a lower efficiency as compared to growth on
PAO1, SCH and C3-16. This resembled the broad host-range of related T4-like viruses. As pre-
viously shown [72], KPP10-like phages were very specific toward certain clinical strains, and
displayed strong virulent activity on strain PAO1 on which clear plaques were observed. They
produced turbid plaques in a limited number of other strains. Several members of lytic
PAK_P1, PB1 and KPP10-like phages could be obtained, possibly reflecting, for the first two
genera, their wide host range. However it is more surprising for the KPP10-like phages which
efficient growth is restricted to PAO1 in our collection of strains. This might suggest that P.
aeruginosa is not the preferred host for this genus. Ab22, a LUZ-24-like phage, produced clear
and turbid plaques in strain C2-10 (Fig 1), and uniform turbid small plaques in strain PAO1.
The host-range of ɸKMV-like phage Ab05 was similar to that of phage p1-15pyo, another
ɸKMV-like phage, but with different efficiency, Ab05 being clearly less virulent. In particular
p1-15pyo produced large plaques with a halo characteristic of this genus in strain PAO1 [10],
whereas Ab05 produced plaques with a small halo, only on PA14. The N4-like phage Ab09 had
a rather large virulence spectrum but different from that of PAK_P1-like phages. It formed
clear 1-2mm plaques on PAO1 without a halo, as opposed to other P. aeruginosa N4-like
phages [52].

The siphoviruses of P. aeruginosa are majoritarily temperate phages and we expected them
to display a rather specific host range. The group of phages related to YuA (Ab18, Ab19-Ab21,
Ab20) showed a variety of virulence profiles, but the highest efficiency of plating was seen with
PAO1 on which they produced small clear plaques (0.5–1mm). Interestingly only phages of
this group infected the widespread European strain C50 (reference strain for clone C) that is
also resistant to pyophage. Ab26 grew efficiently only on strain SCH and produced a more lim-
ited growth on several other strains. Phage vB_Pae-Kakheti25, belonging to the same genus
possesses a very large host range toward clinical strains [64]. Ab30 showed a lytic activity only
on PA14.

The ability of phages from the three siphovirus groups to form lysogens was tested by the
presence of viral DNA by PCR in resistant colonies recovered from the centre of turbid pla-
ques, and then passaged at least three times. Lysogens for Ab30 could be obtained in strain
Tr60, as suggested by the stable presence of phage genome, and by mytomycin C induction of
virions. Lysogens for Ab18 could not be obtained in strain PAO1, the most susceptible strain
for this phage, as reported for YUA, and despite the presence of an integrase gene in the phage
genome. In strain C2-18 in which only moderate growth was observed, the Ab18 DNA was
maintained for several generations but disappeared upon further replating, suggesting a pseu-
dolysogenic state. Ab26 genomes could be detected in resistant variants of SCH, the strain
which supports its growth, but no stable lysogens could be obtained.

By mixing one member of each genus in the present collection, we were capable of lysing all
P. aeruginosa isolates except four that appear to be also resistant to ɸKZ-like viruses [26]. Host
range is dependent on interactions between the phage tail fibers and bacterial receptor, but
additional mechanisms are involved in bacterial susceptibility to phages. Phage infection failure
may be due to exclusion of superinfection as the majority of strains isolated from CF patients
possess one or several prophages [26]. Indeed, the presence of prophages in a bacterial chromo-
some immunizes bacteria against infection by phages of the same nature [73]. During lysogeny,
D3-like phages modify the LPS receptors, making bacteria resistant to LPS-dependent phages,
including virulent phages [74]. Another mechanism for specificity of virulent phages could be
related to inhibition of the general phage defense mechanism built up by the CRISPR-Cas
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system. Recent studies showed that the CRISPR-Cas system may be an actor in the bacterial
resistance to virulent phages [75].

Conclusions
P. aeruginosa, a frequent opportunistic pathogen for humans, is abundant in waste water,
together with a large variety of lytic and temperate phages. The phages have a profound influ-
ence on bacterial communities, through regulation of populations by mortality, and through
modification of bacterial fitness and physiology by gene transfer and selection of resistant
mutants [5,76]. We describe here P. aeruginosa phage diversity inside a single environment
over a two-year period in a large African city. By comparison with published phage genomes,
we show that the African phages, although belonging to already known genera, form a distinct
population with important internal similarities. All the collect sites were somewhat connected
which could explain that very similar phages were sampled at distant locations. It is thus likely
that the phages grow inside a bacterial community that colonize the waste water system, pro-
viding here a unique view of their evolution in the environment.

The advance of high throughput sequencing technologies allows investigations of microbial
populations on a large scale. Whole genome sequencing was applied to all isolated phages with
high accuracy, and assembly produced a single contig. We expect that such an approach will
open the way to new studies of phage-bacteria coevolution, either in natural environment or
following therapeutic use of bacteriophages.
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Abstract

A novel temperate bacteriophage of Pseudomonas aeruginosa, phage vB_PaeP_Tr60_Ab31 (alias Ab31) is described. Its
genome is composed of structural genes related to those of lytic P. putida phage AF, and regulatory genes similar to those
of temperate phage PAJU2. The virion structure resembles that of phage AF and other lytic Podoviridae (S. enterica Epsilon
15 and E. coli phiv10) with similar tail spikes. Ab31 was able to infect P. aeruginosa strain PA14 and two genetically related
strains called Tr60 and Tr162, out of 35 diverse strains from cystic fibrosis patients. Analysis of resistant host variants
revealed different phenotypes, including induction of pigment and alginate overproduction. Whole genome sequencing of
resistant variants highlighted the existence of a large deletion of 234 kbp in two strains, encompassing a cluster of genes
required for the production of CupA fimbriae. Stable lysogens formed by Ab31 in strain Tr60, permitted the identification of
the insertion site. During colonization of the lung in cystic fibrosis patients, P. aeruginosa adapts by modifying its genome.
We suggest that bacteriophages such as Ab31 may play an important role in this adaptation by selecting for bacterial
characteristics that favor persistence of bacteria in the lung.
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Introduction

Cystic fibrosis (CF) is one of the most common life-threatening,

autosomal recessive genetic diseases in Caucasian children. This is

due to mutations that occur in a single gene encoding the CF

transmembrane regulator. The life expectancy of CF patients is

above all related to the development of lung disease: the

persistence of abundant mucous secretion in the lungs leads to

chronic coughing at a young age, followed by frequent lung

infections [1]. The microorganisms that colonize the CF patients’

lungs belong to various bacterial genera. For 30% of CF patients,

the predominant bacterial species during early life is Staphylococcus

aureus, whereas in early adolescence, chronical infection with

Pseudomonas aeruginosa is common: up to 80% of adult CF patients

are colonized by this pathogen [2]. Later during colonization of

the lungs, non-motile, anaerobic, mucoid variants of P. aeruginosa

form a biofilm, a structure that confers resistance to several

antimicrobial agents [3]. Usually, the microorganisms account for

less than 10% of the dry weight of the biofilm, while 90% is

composed of bacterially-produced extracellular polymeric sub-

stances (EPS) that form a matrix in which the bacterial cells are

embedded [4].

The most abundant component of the EPS produced by P.

aeruginosa is a polyanionic alginate, a copolymer of mannuronic

and glucuronic acids [5]. Typically, P. aeruginosa mucoid strains

arise in the lungs of CF patients due to mutations in the mucA gene

or when MucA is degraded by regulated intramembrane

proteolysis [6]. Conversion of non-mucoid P. aeruginosa strains to

mucoid variants can also be the consequence of selective pressure

operated by bacteriophages [7,8]. Recent studies have shown that

bacteriophages can drive the emergence of numerous variants with

enhanced virulence potential [9,10].

The majority of Pseudomonas tailed phages belong to the order

Caudovirales with three main families. Strictly lytic phages are

found among the Myoviridae with a long contractile tail, and the

Podoviridae with a short tail, whereas members of the Siphoviridae are

temperate phages, implying the possibility to undergo lytic or

lysogenic interactions with their host [11]. The most striking

feature emerging from phage genome comparative analyses is that

they are extensively mosaic, with different segments having distinct

evolutionary histories. A simple general explanation is that

horizontal genetic exchanges play a dominant role in shaping

these genome architectures [12,13]. Gene modules are exchanged

using host- or phage-encoded recombination machinery. Although

some phages can switch host using different mechanisms, the host

preferences represent a significant barrier to genetic exchange.

Moreover, phages infecting a common host can also exhibit

substantial diversity, creating additional barriers to genetic
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exchange [12,13]. Horizontal gene transfer and the pattern of

vertical, divergent evolution of phage genomes has led to the

definition of different phage genera, and consequently, to a

classification based on criteria related to phage genome organi-

zation and replication strategy [11]. Despite rapid phage evolution

and the short generation time, viral genomes can be stably

maintained over ecologically significant time and distance, and this

allows their classification. Viral species can be identified and they

appear to be globally widespread. Indeed, related members of

specific genera with sequence identity up to 99%, can be isolated

from different habitats across the globe [14,15]. The part of the

phage genome that varies greatly within each genus is confined to

genes encoding the metabolic conversion proteins (early region)

and the tail spikes, indicating a local adaptation necessary to infect

specific hosts in specific environmental conditions.

In the present study we describe a new phage, vB_PaeP_-

Tr60_Ab31, whose genome is the result of recombination between

two phages belonging to two different families. This phage exerts a

selective pressure on P. aeruginosa, which could be deleterious to

chronically infected patients.

Materials and Methods

Ethics Statement
The present project is in compliance with the Helsinki

Declaration (Ethical Principles for Medical Research Involving

Human Subjects). Strains were collected from sputum as part of

the patients’ usual care, without any additional sampling. The

ethic committee ‘‘Comité Consultatif pour la Protection des

Personnes dans la Recherche Biomédicale (CCPPRB) Ile-De-

France’’, who was consulted, specifically approved this study, and

declared that patient informed consent was not needed.

Bacterial Strains
The two reference P. aeruginosa strains UCBPP-PA14 [16] and

PAO1 [17] were purchased from the ‘‘Collection de l’Institut

Pasteur’’ (CIP, Paris, France), and C50 was a gift of U. Römling

(Karolinska Institute, Sweden) [18]. The other strains were

isolated from sputum of French CF patients, and were previously

genotyped using Variable number of tandem repeats (VNTR)

analysis (MLVA) [19,20]. Strains were considered to belong to the

same clonal complex when they shared at least 10 VNTR size

alleles out of 15. Serological typing was performed using 4

polyvalent and 16 monovalent antisera (Bio-Rad), as described

[21]. Briefly, the slide agglutination procedure was performed on

24 h cultures of P. aeruginosa: one loop (0.01 ml) of bacterial culture

(approximately 36106 CFU) was mixed with one drop (0.01 ml) of

each antiserum (firstly the four polyvalent sera, then the four

monovalent sera, corresponding to the positive polyvalent serum).

The slide was gently shaken with a rotary movement, and the

mixture was examined with the naked eye over a dark surface. A

positive reaction was defined as the appearance of agglutination in

a maximum of 2 min.

Phage Amplification and Purification
Phages were amplified on fresh LB agar plates at a ratio of 1

phage for 1000 bacteria. An overnight culture of bacteria grown in

LB medium was concentrated 10 times in saline magnesium (SM)

phage buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 8.1 mM

MgSO4, 0.01% gelatin). Phages were added and, after 15 min of

incubation at room temperature, the mixture was poured onto a

round plate together with 4 ml of soft agar. After complete

bacterial lysis (< 8 h), 5 ml of SM phage buffer supplemented with

a drop of chloroform were added to the recovered soft agar,

containing phage particles. After centrifugation, the supernatant

was filtered through a 0.22-mm pore size membrane, and kept at

4uC.

Small Drop and Double Agar Plate Assay
For the small drop assay, 50 ml of 10X concentrated P. aeruginosa

overnight culture were added to 4 ml molten soft agar (0.7%), and

poured over an LB agar plate. Then, 10 ml of serially diluted test

lysate were spotted onto the bacterial lawn. For the double agar

plaque assay, a mixture of 50 ml of bacterial suspension and 10 ml

of phages at ten-fold serial dilutions was kept for 15 min at room

temperature, and then poured onto a solid agar plate with 4 ml of

soft agar. Plates were inverted and incubated overnight at 37uC.

Liquid Infection
LB medium (10 ml), supplemented with 10 mM CaCl2, was

inoculated at 2.5% with an overnight culture of the indicator

strain, and incubated at 37uC. When an OD600 of 0.6 was

reached, phage suspensions at different multiplicities of infection

(M.O.I.) were added. The OD600 was periodically measured, and

when a significant reduction of the culture density was recorded,

50 ml of chloroform were added in order to facilitate bacterial lysis

and release of phages. The suspension was centrifuged at 2,5006g

for 10 min at 4uC to eliminate bacterial debris, and the

supernatant was filtered through a 0.22 mm filter.

Electron Microscopy Examination
Phage preparations were stained with 2% potassium phospho-

tungstate (pH 7.0), and then visualized using an EM208S

transmission electron microscope (FEI, Eindhoven, The Nether-

lands) operating at 80 kV.

Isolation of Resistant Bacteria
Putative resistant bacteria were isolated by simply picking

bacterial colonies growing inside the lysis zone of a small drop

assay, and streaking them onto new plates. Putative resistant

bacteria were also recovered at the end of the liquid infections, by

directly streaking 1 ml of the phage-bacterial mixture on a solid

agar plate. Up to twenty colonies were picked and challenged with

phages through the small drop assay. Some of them were

susceptible to phage Ab31, and were thereafter called ‘‘non-

resistant’’. Thermolysates of both resistant and non-resistant

strains were prepared by resuspending a colony in 100 ml of

water, heating at 95uC for 10 min, followed by cooling on ice for

5 min. Centrifugation was performed at 2,5006g for 10 min at

4uC to pellet cell debris, and 2 ml of the supernatant were used for

PCR amplification.

Phage DNA Purification
Phage DNA was purified using a rapid method adapted from

[22], as described in [14]. Briefly, phages were amplified on fresh

LB agar plates for 8 h at 37uC, then 5 ml of SM buffer were added

to the plate, followed by overnight incubation at 4uC. The buffer

was transferred to a tube, and bacterial debris were pelleted by

centrifugation at 2,5006g for 10 min at 4uC. A mixture of 0.2 ml

2 M Tris-HCl pH 7.5, 0.4 ml 0.5 M EDTA, 0.2 ml 10% SDS

and 10 ml diethylpyrocarbonate was added to 4 ml of supernatant.

Following incubation at 65uC for 30 min, the tube was cooled on

ice, and 1 ml of 5 M KOH was added. After 1 h incubation on

ice, centrifugation was performed at 25,0006g for 20 min at 4uC.

DNA contained in the supernatant was precipitated with 2 vol of

absolute ethanol, pelleted by centrifugation, washed twice with

70% ethanol, dried and dissolved in 0.4 ml of TE buffer (10 mM

Selective Pressures Imposed on P. aeruginosa by Phages
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Tris-HCl pH 7.5, 1 mM EDTA). Bacterial DNA was purified

using the classical CTAB (cetyl-trimethylammonium bromide)-

phenol extraction method as described [19]. Purified DNA was

resuspended in TE buffer. The quality and concentration of DNA

was measured using a ND-1000 Spectrophotometer (NanoDropH,

Labtech, Palaiseau, France).

Sequencing
Whole genome sequencing was performed by the CNRS

sequencing facility in Gif sur Yvette (IMAGIF) using the Illumina

platform (Illumina Genome Analyzer IIx). Assembly of short

sequence reads was performed using BioNumerics tools (Applied

Maths, Sint-Martens-Latem, Belgium) as described [14]. The

phage genome was annotated automatically using the BaSyS

annotation tools [23]. Bacterial genome contigs were annotated

using BioNumerics annotation tools. Detailed methods are

available on the website http://bacteriophages.igmors.u-psud.fr.

The annotated Ab31 phage sequence has been deposited at

EMBL-EBI under accession number HG798806. Total reads of

bacterial genome sequences have been deposited at EMBL-EBI

under accession number PRJEB5001.

PCR Detection of Phage DNA
Oligonucleotides selected to test for the presence of phage DNA

in resistant bacteria and to analyze the deletions in bacterial

genomes, are listed in Table 1. PCR was performed using purified

DNA and Taq polymerase as recommended by the supplier

(VWR, Strasbourg France). PCR products were analyzed on 2%

agarose gels in 0.5X TBE buffer.

Results

Ab31 Virulence Spectrum
P. aeruginosa phage vB_PaeP_Tr60_Ab31, subsequently called

Ab31, was isolated in Abidjan (Ivory Coast) as part of a study to

determine the phage diversity in waste water of this city [Essoh

et al. submitted]. Ab31 was originally enriched on P. aeruginosa

strain PA14, and subsequently amplified in this strain or in Tr60

(both of serotype O10). A total of 36 P. aeruginosa strains were

tested for their susceptibility to the phage, including strains from

the most frequently encountered clonal complexes in CF patients,

PA14 and C50 [24], and reference strain PAO1 (Table 2). Six

strains were shown to belong to the PA14 clonal complex (Tr60,

Tr162, C7-11, C5-17, C9-12 and C8-12), and seven strains (Tr60,

Tr162, C1-3, C3-1, C3-11, C4-14 and C9-5) were of serotype

O10. The latter strains were selected in case the host O antigen

would serve as a receptor for the phage, as described for Vibrio

cholera phage VP4 [25]. Ab31 was responsible for complete lysis of

Tr60 and Tr162, two non-mucoid strains with the same genotype,

isolated from two CF patients at a one year interval, in the same

hospital [19]. With the other strains no significant signs of lysis

were detected.

Phage Characteristics
The morphology of phage Ab31 was determined by transmis-

sion electron microscopy (Fig. 1). The phage possesses an

icosahedral head with a diameter of approximately 60 nm, and

a short non-contractile tail. Moreover, the subterminal tail spikes

were similar to those of phage AF of P. putida [26].

Infections in solid agar plates and in liquid medium were

performed to analyse the Ab31 multiplication characteristics.

When a phage suspension was analyzed on indicator strains using

the double agar plaque assays, small clear plaques without a halo

were observed. Dot assay revealed a clear zone with only a few

small resistant colonies. Since it was known that many phages

require CaCl2 to adsorb on the bacterial surface, the infection in

liquid medium was performed using LB supplemented or not with

10 mM of CaCl2. Upon infection at an M.O.I. of 0.01, in the

presence of 10 mM CaCl2, production of PFUs was stimulated

100-fold. In these conditions, the adsorption time was 4 min and

the burst size was 30–50 phages per cell.

Infection in liquid LB medium at an M.O.I. of 0.1 never led to a

complete clearing of the bacterial culture (Fig. 2), but we observed

that not all the bacteria that survived after infection were resistant,

when later challenged with Ab31. This resembles the phenomenon

of persistence, in which a subset of an isogenic bacterial population

occurring within a susceptible population, tolerates antibiotics

[27].

Interestingly, we observed that phage infection led to a change

in color of the bacterial culture from yellowish-green to green. It is

likely that the presence of the phage affects the production of the

pyoverdine, a virulence factor of P. aeruginosa [28].

Genome Characteristics
The Ab31 genome encompasses 45,550 bp, and the overall

GC-content is < 57%, which is lower than that of the P. aeruginosa

PA14 genome (66.3% G+C), a characteristic shared by other P.

aeruginosa phages [29]. Comparing the virtual gel obtained by in

silico restriction endonuclease analysis with the experimental

restriction enzyme banding pattern (Fig. 3), it was possible to

establish that Ab31 DNA is apparently circular. Indeed, the

number of fragments expected from in silico digestion of the

circular Ab31 DNA with EcoRI, HindIII, SmaI, SspI, ClaI, SalI and

SphI was 17, 12, 12, 6, 18, 23 and 19 respectively, perfectly

matched, in number and in size, with the bands obtained by

experimental agarose electrophoresis. Ab31 DNA digestion using

NotI and PvuII, from which 3 and 2 fragments, respectively, were

expected using in silico digestion analysis, produced many faint

bands in addition to the expected ones. This phenomenon, which

Table 1. List of primers used for PCR amplification.

Phage Ab31

Ab31-Reg1-F GACTCAGACCACTGAGATGA

Ab31-Reg1-R ACGTGTTGGCAGTTGTAGAA

Ab31-Term-F TACAACGCGGATATCCGTGT

Ab31-Term-R TGCTCCCTCTGATGGACAAA

P. aeruginosa

PaTr60_Del22kb_F TCATCCACTGTACGCCGCCG

PaTr60_Del22kb_R CCGTTCCTGATGCTCGACCAGT

PaTr60_Del11kb_F GACCATGACCTTGTCGCCAT

PaTr60_Del11kb_R AGGAGGAAATGGGTGCGGAA

Porin1_PaerDel234_F GAAATAGAGATTGCGCAGGC

Porin1_PaerDel234_R CACCTTCGACGAGAGACACA

CupA_Paer_F AGGATCGTCGGCGAGTAGTA

CupA_Paer_R CTCTATAGCGGCTACTACAC

Porin2_PaerDel234_F CTCAAGGACATCTACCGACA

Porin2_PaerDel234_R AAGTCGCCGATCTGGATGAA

PaerDel234_Flank_F TCCATCGCCTGCATGGCTTC

PaerDel234_Flank_R CGGCATAACTTCAATCAGGC

doi:10.1371/journal.pone.0093777.t001
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was observed repeatedly, indicates the existence of a non-specific

digestion also called relaxed sequence recognition or star activity

[30].

Overall the Ab31 genome did not align with any known phage

sequence. However, at the nucleotide level it showed some rare

regions of homology with structural genes of phage AF [26] and of

a prophage of P. putida GB-1 strain [CP000926-1] (up to 70%

DNA-DNA similarity), and with genes involved in replication in

phage PAJU2 [31] (from 85 to 97%). At the protein level it was

possible to observe additional similarities with AF (shown in red on

Fig. 4) and PAJU2 (shown in blue in Fig. 4). AF and PAJU2 are

two lambdoid phages whose genomes are respectively 42,689 bp

and 46,872 bp long. Attempts to localize the genome ends by PCR

analysis were not successful, as expected if the genome adopts a

circular configuration. Therefore we were not able to determine

the position of the first nucleotide, and we decided to assign it by

comparison with the related phage AF.

In the Ab31 genome, 69 putative ‘‘open reading frames’’

(ORFs) were identified. Thirty five ORFs were transcribed on the

positive strand (Fig. 4). On the basis of sequence similarity

comparisons in the GenBank database, 25 ORFs could be

assigned to putative functions. The majority of the other ORFs

Table 2. List of the strains used and susceptibility to Ab31.

Strain Description Serotypea Source or reference Ab31 growthb

PA14 Sequenced 10 [16] C+++

PAO1 Sequenced 5 [17] 0

C50 Clone C UN [18] 0

Tr60 PA14-clone 10 [19] C+++

Tr162 PA14-clone 10 [19] C+++

C7-11 PA14-clone 15 [14,20] trace

C5-17 PA14-clone 17 [14,20] 0

C9-12 PA14-clone 17 [14,20] 0

C8-12 PA14-clone 6 [14,20] trace

C1-1 5 [14,20] 0

C1-2 3 [14,20] 0

C1-3 10 [14,20] 0

C1-11 Mucoid 15 [14,20] trace

C1-14 1 [14,20] 0

C2-10 4 [14,20] 0

C2-18 12 [14,20] 0

C3-1 10 [14,20] 0

C3-2 13 [14,20] trace

C3-11 10 [14,20] 0

C3-15 17 [14,20] 0

C3-16 1 [14,20] 0

C3-18 16 [14,20] 0

C3-19 6 [14,20] 0

C4-14 10 [14,20] 0

C5-2 17 [14,20] 0

C5-13 17 [14,20] 0

C7-6 3 [14,20] 0

C8-5 5 [14,20] 0

C8-7 12 [14,20] 0

C8-14 1 [14,20] 0

C8-15 Mucoid 1 [14,20] 0

C8-20 2 [14,20] 0

C9-5 10 [14,20] 0

C9-11 17 [14,20] 0

C9-17 17 [14,20] 0

C10-5 UN [14,20] 0

aUN, unknown.
b5 mL of Ab31 stock suspension (< 108 PFU/ml) were spotted on P. aeruginosa lawns. C+++, complete clearing; trace, a few individual plaques; 0, a turbid spot where the
pipette tip touched the agar.
doi:10.1371/journal.pone.0093777.t002
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exhibited similarity to uncharacterized bacterial or phage proteins.

No tRNA genes were predicted.

Nucleotide position 1 was 60 bp upstream of the ATG codon of

a putative protein containing a Helix Turn Helix domain, and

sharing similarities with the small terminase subunit encoded by

Escherichia coli phage phiv10 [32] and Salmonella enterica phage

epsilon 15 [33]. A putative phage large terminase subunit,

encoded immediately downstream of the predicted first coding

sequence, shared similarities (maximal identity of 77%, E-value

lower than e-200) with a prophage-encoded sequence located

within the S. enterica serovar Wandsworth str. A4-580 genome. The

terminase genes constitute the packaging module typically located

at the beginning of the so-called late region of the phage genome.

A large part of the late region usually encodes the morphogenesis

proteins, whereas genes located in the early region are necessary to

initiate the phage multiplication cycle. Following phage adsorption

to the bacterial surface, early genes are injected first and, in some

phages, they allow complete injection of the phage genome [34].

Phage Ab31 showed high similarity in the late region with the

podovirus AF of P. putida and the prophage of P. putida strain GB-

1: indeed, eight coding sequences reported in Fig. 4 resembled

those of phage AF. These included the putative major capsid

protein (maximal identity of 75%, E-value of 8e-180), internal

virion protein B (maximal identity of 35%, E-value of 4e-6), the

structural lysozyme (maximal identity of 33%, E-value of 8e-32)

and the tail spike protein (maximal identity of 40%, E-value of 4e-

37). Moreover, three hypothetical proteins located in the same

region showed similarities with hypothetical proteins gp4, gp9 and

gp12 of phage AF.

The second major block of genes of the Ab31 genome,

downstream of the putative tail spike coding region, constitutes

the so-called early/middle region. Twenty-three putative and

hypothetical proteins encoded by genes located in this region

shared similarities with the P. aeruginosa siphovirus PAJU2, showing

maximal identity percentages that vary from 39% to 100%. This

region starts with a putative acetyl-transferase sharing 46%

identity with the PAJU2 acetyl-transferase (E-value lower than e-

200), and a putative PAJU2-like integrase (identity 99% with

PAJU2; E-value lower than e-200). Other related proteins

included putative replication proteins O and P, NinB protein,

phage antitermination protein Q and endolysin (Fig. 4).

Bacterial Resistance
Different conditions were used for infecting bacteria, in order to

favor different resistance mechanisms. Most of the resistant and/or

lysogenic bacteria were obtained from typical infection at 37uC in

liquid medium of P. aeruginosa strains PA14, Tr60 and Tr162, at an

M.O.I. of 1, 0.1 or 0.01. Some resistant Tr60 bacteria were also

recovered from an infection in liquid medium performed at 42uC
at an M.O.I. of 1. In this experiment the incubation was prolonged

for 72 h, and the phage suspension was added each 24 h at the

same M.O.I., for a total of three infections. Ab31-resistant variants

of PA14 and Tr162 were also recovered from infections performed

on solid agar plates at 37uC or 30uC, using a small drop plaque

assay, and extending the incubation for 72 h in order to allow the

growth of resistant bacteria inside the lysis zone. With the different

approaches, about 80% (91 out of 114) of recovered bacteria were

confirmed to be resistant to the phage. A majority of the resistant

bacteria obtained from plates formed mucoid colonies, with entire

margins and smooth surfaces, a particular characteristic often

Figure 1. Electron microscopy analysis of phage Ab31. Scale bar
represents 100 nm.
doi:10.1371/journal.pone.0093777.g001

Figure 2. Growth curve of uninfected PA14 (dark grey curve) and of PA14 infected by Ab31 at an M.O.I. of 0.1 (light grey curve).
doi:10.1371/journal.pone.0093777.g002
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observed with P. aeruginosa strains isolated from sputa of CF

patients [Sousa, 2013 #1739]. In contrast, non-resistant bacterial

strains derived from the same experiment showed a non-mucoid

phenotype and shared the same morphological characteristics with

the wild type uninfected bacterial strain. From infected bacteria

incubated on plates at 30uC, some mucoid resistant variants

showing a brown pigmentation were also isolated. Ten resistant

isolates were serotyped to check whether a switch had occurred,

but they were all serotype O10 like the parental strains.

In order to test for the existence of lysogens, the presence of the

phage DNA was searched in the Ab31-resistant bacteria after two

passages on solid agar medium. Two regions of the phage genome

were amplified, designated as Reg1 and Term, and predicted to

produce 550 bp and 600 bp long amplicons respectively. The

results for some of the resistant isolates and for Ab31 phage DNA

used as a control, are shown in Fig. 5. When the DNA of the

resistant bacteria was amplified using the Reg1 (Fig. 5A) or Term

primers (Fig. 5B), a band of the expected size was detected with

every tested isolate except for Tr60-100A. This Ab31-resistant

variant was derived from infection in liquid medium at 37uC at an

M.O.I. of 0.1. All the resistant variants from solid infection were

positive for phage DNA, whereas only 40% of resistant from liquid

infection contained phage DNA. The isolates showing a brown

pigmentation were not lysogenized.

Bacterial Genome Sequence Analysis
In order to study the basis of the resistance and to identify the

possible integration site of the phage genome in the bacterial

chromosome, the original Tr60 strain and four Ab31 resistant

variants were chosen for whole genome sequencing. Tr60-10A

and Tr60-100B were two putative lysogenic bacteria derived from

infection in liquid medium at an M.O.I. of 1 and 0.1, respectively.

Tr60-100A was a non-lysogenic isolate derived from infection in

liquid medium performed at an M.O.I. of 0.1. PA14-P1 was a

putative lysogenic bacteria. Tr60-10A and Tr60-100A showed a

mucoid phenotype. The bacterial draft genomes were assembled

and partially annotated using P. aeruginosa PA14 as a reference

[16,35].

Upon alignment of the sequenced genomes, two deletions were

found in the P. aeruginosa Tr60 genome as compared to that of

PA14. The first deletion encompassed approximately 22 kbp

(coordinates 1919495 to 1941370). It started with 2.5 kbp of DNA

of unknown function and ended inside a gene encoding a pirin-like

protein (ORF PA14_22080 to ORF PA14_22280), and also

contained genes for a resolvase and a recombinase. The second

deletion encompassed approximately 11 kbp, and covered exactly

the sequence of the Pf1 prophage of P. aeruginosa PA14 (Genbank:

AY324828). Both deletions were identified in Tr60, in all Tr60

variants that were sequenced and in the genome of reference strain

PAO1. The existence of the two deletions was confirmed by PCR

in Tr60 and its Ab31-resistant variants using primers localised in

the flanking regions (Table 1; Fig. 6). The deletions were also

observed in Tr162 and in PAO1, as expected. In addition to the

two deleted regions, approximately 215 ‘‘single nucleotide

polymorphisms’’ (SNPs) were found when the genome sequences

of Tr60 and PA14 were compared.

We then looked at the differences between Tr60 and its Ab31-

resistant variants. A deletion of about 234 kbp was found in Tr60-

10A and Tr60-100A, two mucoid variants obtained from different

infections performed with the same Tr60 bacterial culture. Using

P. aeruginosa PA14 as a reference genome, 175 coding sequences

were found to lie within this region (Table 3, genome coordinates

approximately 3190870 and 3424480 in PA14). Some of these

coded for enzymes involved in amino acid uptake or biosynthesis,

for glucose metabolism and for transmembrane proteins. No

homologous genes were found in the other regions of the bacterial

genome except for the porins. A cluster of five genes involved in

the CupA fimbrial organelle assembly was possibly relevant to

phage resistance: the chaperone CupA1, the fimbrial subunit

CupA2, the usher CupA3, CupA4, an atypical adhesin, and the

chaperone CupA5 [36]. Primer pairs were selected within this

region (in two porin-encoding genes and in the cupA4 gene), and in

the flanking sequences, in order to confirm the existence of the

deletion by PCR amplification. When amplification was per-

formed with primers localised inside the region of deletion, an

amplicon was observed for all the samples tested except for Tr60-

10A and Tr60-100A (the result for cupA is shown on Fig. 7A). In

Figure 3. Restriction enzyme analysis of the Ab31 genome. Ab31 phage DNA (2 mg) digested with EcoRI (1), HindIII (2), SmaI (3), SspI (4), NotI
(5), ClaI (6), PvuII (7), SalI (8) and SphI (9) were analyzed by electrophoresis on a 0.8% agarose gel. On the left the lDNA/HindIII and on the right 1 kbp
ladder are reported and they were used as molecular weight markers (Mw).
doi:10.1371/journal.pone.0093777.g003
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contrast, amplification with the Flank234 primers, localised on

both sides of the deleted region, produced a 600 bp amplicon only

for Tr60-10A and Tr60-100A (Fig. 7B). In order to check whether

the deletion was pre-existing in a subpopulation of the Tr60

culture before phage infection, 94 bacterial colonies were picked

and PCR was performed on thermolysates with the Flank 234 and

porin primers. The results showed that none of the isolates were

deleted for the 234 kbp region (data not shown).

Compared to Tr60, Tr60-10A and Tr60-100A showed

approximately the same amount of SNPs (respectively 29 and

26). The mutations occurred in the same coding sequences for

both resistant bacteria. In particular, mutations were found in a

Figure 4. Annotation of the Ab31 genome. The Ab31 hypothetical terminal ends are at the 1 position. The morphogenesis module includes
proteins similar to those encoded by phage AF (red), whereas the replication, recombination and lysis modules consist of genes similar to those of
phage PAJU2 (blue). Genes encoding hypothetical proteins which have homologies with other phages are shown in purple color. Genes encoding
hypothetical proteins of unknown function are shown in green color.
doi:10.1371/journal.pone.0093777.g004

Figure 5. PCR detection of the Ab31 genome in resistant bacteria using Reg1 (A) and Term primers (B). Tr60-E (5) and PA14-P1 (6) are
derived from infection on solid agar plates at 37uC and 30uC, respectively. Tr60-10A (2), Tr60-100B (3) and Tr60-100A (4) are derived from an infection
assay performed at 37uC in liquid medium at an M.O.I. of 0.1. PA14 (7), Tr60 (1) and Ab31 (8) are used as negative and positive controls, respectively.
Samples were run on a 2% agarose gel for 45 min at 135 V. Mw, 100 bp ladder molecular weight markers.
doi:10.1371/journal.pone.0093777.g005
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transcriptional regulator, in the NADH dehydrogenase I subunit

F, the pyoverdine biosynthesis protein PvcA, phenazine biosyn-

thesis protein PhzD, C32 tRNA thiolase and in an MFS

transporter. Specific mutations in a gene for an Usher protein

and in a gene for a lipase chaperone, were detected in Tr60-10A

and Tr60-100A, respectively. The sequence of the Tr60-100B

isolate was compared with that of Tr60, and no SNPs were found.

The PA14-P1 genome showed 129 SNPs as compared to PA14.

They affected genes encoding the hemolysin activator, the

pyochelin synthase, an RNA methyltransferase, an acetyltransfer-

ase, the pyoverdin synthase, and several membrane proteins,

including multidrug efflux pumps, type III secretion system

proteins and an ABC transporter.

Search for the Phage Integration Site
To identify integrated Ab31 genomes, we first searched for

phage reads among the three isolates found to possess phage DNA

by PCR, but they were detected only in Tr60-100B. We then

looked for phage-bacteria hybrid sequences among the total reads

obtained for this isolate. The hybrid reads centered on a 64 bp

region found at position 4552973–4553038 in the P. aeruginosa

PA14 genome (and also in the Tr60 genome), and at position

21471–21534 on the Ab31 genome. These regions correspond in

PA14 to the serine tRNA gene (PA14_51230) localized down-

stream of a glycosyltransferase gene, and, in the Ab31 genome, to

a region that covers part of the phage integrase and part of a non-

coding sequence upstream of this gene (Fig. 8).

Discussion

Phage Ab31 is a temperate phage genomically related to both

the virulent podovirus AF phage of P. putida and the temperate

siphovirus phage PAJU2 of P. aeruginosa. The Ab31 virion structure

resembles that of phage AF, S. enterica phage Epsilon 15 and E. coli

phage phiv10, with similar spikes, previously shown to bind and

cleave the O-antigen component of the host’s cell surface

lipopolysaccharide [37]. Some Pseudomonas phages can diffuse

through alginate present in Pseudomonas biofilms [38] owing to a

depolymerizing enzyme that is part of the phage particles. One of

the most significant examples of such an activity has been reported

for phage AF. A halo surrounds the AF plaques at 30uC, due to an

EPS-degrading activity within the tail spikes [26]. We did not see

such a halo around Ab31 plaques, whatever the strain used or the

temperature. Alignment of the tail spike protein sequences of

phage Ab31 and phage AF showed limited homology only at the

N-terminus (Fig. 9). Conservation of the N-terminal part is

necessary for association of the spikes with the tail structure,

whereas the C-terminal part of the spike protein, involved in

recognition of and binding to the cell receptor, shows the highest

level of variation [39,40,41]. This finding provides evidence that

bacteria and bacteriophages have co-evolved in order to overcome

the barriers that are imposed by one on the other. Recent

observations suggest that bacterial resistance to phages in cystic

fibrosis patients evolves with the duration of colonization [42]. The

infection by Ab31 causes a slight change in the colour of the

bacterial culture from yellowish-green to green, as also observed

with phage PAJU2 [43]. Mutation in genes for pyoverdine

biosynthesis were identified in some resistant isolates, but further

analyses are necessary to determine their significance.

Among the diverse strains tested, Ab31 is specific for PA14 and

for Tr60 and Tr162, two strains genetically close to PA14, and

isolated from French CF patients in the same hospital. Other

strains belonging to the same clonal complex but isolated at other

locations were found to be resistant to Ab31, as were strains with

the same O serotype. Sequencing of Tr60 revealed the presence of

two regions of deletion, one of which corresponds to prophage Pf1,

also designated Pf5 in the PA14 genome [44]. It was previously

shown that Pf4, a Pf1-like prophage in PAO1, mediated the

formation of small-colony variants, and was also a factor

contributing to the bacterial virulence, but this was not confirmed

for Pf5 in PA14 [45,46]. The 22 kbp region corresponding to the

second deletion encodes a resolvase and a recombinase, proteins

that usually participate in DNA transfer.

Differences in the bacterial response to phage infection were

observed in this study depending on the infection method used.

From the infection on solid agar plate, clear lysis zones were

observed, an indication that most cells were killed, whereas in

liquid culture complete lysis was never obtained. This observation

may be related to the formation of pseudolysogens after bacterial

infection. The genomes of two sequenced Ab31-resistant variants

(Tr60-10A and PA14-P1), shown to contain phage DNA when

analysed by PCR, surprisingly did not contain phage reads. A

Figure 6. PCR investigation of the 11 kbp (A) and 22 kbp (B) deletions observed in Tr60. C9-12 (1), C5-17 (2), C7-11 (3), C8-12 (4), PAO1
(5), PA14 (6), Tr162 (7), Tr60 (8), Tr60-10A (9), Tr60-100A (10). Samples were run in a 2% agarose gel for 45 min at 135 V. Mw, 100 bp ladder molecular
weight markers.
doi:10.1371/journal.pone.0093777.g006
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Table 3. List of coding sequences (CDS) and their position in the 234 kbp deleted region.

CDS Position Product

1 87..1418 amino acid permease

2 1482..2921 gamma-aminobutyraldehyde dehydrogenase

3 2967..4220 diaminobutyrate–2-oxoglutarate aminotransferase

4 4267.5229 dehydrogenase

5 - strand (5522..7501) acetate permease

6 - strand (7558..9828) acyl-CoA synthetase

7 - strand (9291..10061) dehydrogenase

8 - strand (10058..11284) acyl-CoA dehydrogenase

9 - strand (11634..12851) FadE36, aminoglycoside phosphotransferase

10 12886..14838 propionate catabolism operon regulator

11 - strand (14904..15443) hypothetical protein

12 - strand (15466..17769) paraquat-inducible protein B

13 - strand (17762..18619) paraquat-inducible protein A

14 - strand (19040..20638) aldehyde dehydrogenase

15 - strand (20752..21747) hypothetical protein

16 - strand (21775..22950) hypothetical protein

17 - strand (22981..24408) MFS transporter

18 - strand (24489..25907) porin

19 - strand (25912..26925) 4-hydroxythreonine-4-phosphate dehydrogenase

20 - strand (26922..27881) hypothetical protein

21 - strand (27874..29298) MFS transporter

22 29301..30479 hypothetical protein

23 30464.32554 hypothetical protein

24 32544..33569 LysR family transcriptional regulator

25 33651..34127 hypothetical protein

26 34342..35232 ABC transporter substrate-binding protein

27 35313..36029 amino acid permease

28 36031..36708 amino acid ABC transporter permease

29 - strand (36724..37608) hypothetical protein

30 - strand (37734..39329) signal transduction protein

31 - strand (39418..40800) dehydrogenase

32 - strand (40640..41758) hypothetical protein

33 - strand (41808..43745) TetR family transcriptional regulator

34 - strand (42545..44821) hydrogen cyanide synthase HcnC

35 - strand (43801..45267) hydrogen cyanide synthase HcnB

36 - strand (45192..45626) hydrogen cyanide synthase HcnA

37 45789..47114 adenylate cyclase

38 - strand (47111..47767) hypothetical protein

39 - strand (48272..49708) carboxylate-amine ligase

40 48802..51048 hypothetical protein

41 50993..51982 hypothetical protein

42 - strand (51966..52247) hypothetical protein

43 52256..52957 hypothetical protein

44 - strand (52961..55336) sensor/response regulator hybrid

45 56396..56686 hypothetical protein

46 - strand (56717..57031) hypothetical protein

47 - strand (56994..57581) hypothetical protein

48 - strand (57371..58447) hypothetical protein

49 - strand (59123..60370) hypothetical protein

50 - strand (59701..60759) hypothetical protein
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Table 3. Cont.

CDS Position Product

51 - strand (60474..61766) hypothetical protein

52 - strand (61900..62265) hypothetical protein

53 62570..64174 glycogen synthase

54 64033..65925 glycosyl hydrolase

55 65918..67972 4-alpha-glucanotransferase

56 67752..70745 maltooligosyl trehalose synthase

57 71060..73210 glycosyl hydrolase

58 76155..77918 cardiolipin synthase 2

59 76625..78910 hypothetical protein

60 - strand (78912..81272) glycogen branching protein

61 - strand (81107..84409) trehalose synthase

62 - strand (84420..86534) hypothetical protein

63 - strand (86558..87439) KU domain-containing protein

64 - strand (87462..87704) hypothetical protein

65 - strand (87718..88263) hypothetical protein

66 - strand (88437..90566) hydroperoxidase II

67 - strand (90647..90814) hypothetical protein

68 91301..91711 hypothetical protein

69 - strand (91718..94156) glycogen phosphorylase

70 - strand (94209..94496) hypothetical protein

71 94740..94928 hypothetical protein

72 - strand (94948..95991) short-chain dehydrogenase

73 - strand (95834..96352) ompetence-damaged protein

74 - strand (96363..96608) metallothionein

75 - strand (96913..99468) ATP-dependent DNA ligase

76 - strand (99453..100118) hypothetical protein

77 99851..100615 hypothetical protein

78 - strand (101068..102432) transporter

79 - strand (102461..103387) hypothetical protein

80 - strand (103126..104031) EAL domain-containing protein

81 - strand (103980..104669) chaperone CupA5

82 - strand (104683..108297) fimbrial subunit CupA4

83 - strand (106041..108659) usher

84 - strand (108643..109476) chaperone CupA2

85 110882..112108 fimbrial subunit CupA1

86 112535..113170 hypothetical protein

87 - strand (113206..114660) aldehyde dehydrogenase

88 - strand (114676..116313) dehydrogenase

89 - strand (116418..117350) LysR family transcriptional regulator

90 - strand (117387..118523) hypothetical protein

91 118649.119554 LysR family transcriptional regulator

92 119600..120130 hypothetical protein

93 120147..121259 hypothetical protein

94 - strand (121794..122870) O6-methylguanine-DNA methyltransferase

95 123062..124045 hypothetical protein

96 - strand (124030..124896) hypothetical protein

97 - strand (124934..125998) LysR family transcriptional regulator

98 126034..127413 major facilitator transporter

99 127438..128667 porin
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Table 3. Cont.

CDS Position Product

100 128700..129443 LamB/YcsF family protein

101 129529..131091 hypothetical protein

102 131159.131635 hypothetical protein

103 - strand (131654..133426) thiamine pyrophosphate protein

104 133525..133995 hypothetical protein

105 - strand (134394..136025) short chain dehydrogenase

106 - strand (135137..136177) esterase

107 - strand (136077..137552) flavin-binding monooxygenase

108 137699..138733 AraC family transcriptional regulator

109 138861..139727 hypothetical protein

110 - strand (139729..141048) transmembrane sensor protein

111 - strand (141294..142682) MFS transporter

112 - strand (142477..144135) permease

113 - strand (144849..147995) TonB-dependent receptor

114 - strand (147592..148680) hypothetical protein

115 - strand (148424..149845) hypothetical protein

116 - strand (149077..150093) hydrolase

117 - strand (150527..152425) asparagine synthetase, glutamine-hydrolysing

118 - strand (152447..153649) ring-hydroxylating dioxygenase, large terminal

119 - strand (153923..154405) leucine-responsive regulatory protein

120 154451..155173 kynurenine formamidase, KynB

121 155177..156427 kynureninase

122 155773..157989 amino acid permease

123 158230..160149 hypothetical protein

124 160165..162093 hypothetical protein

125 - strand (162130..163506) transcriptional regulator

126 163546..163755 hypothetical protein

127 163932..165599 hypothetical protein

128 - strand (165992..168586) sensory box protein

129 - strand (168758..171127) elongation factor G

130 171142..173784 TonB dependent receptor

131 173892..175688 carbamoyl transferase

132 175732..176895 MFS transporter

133 176840..177565 hydrolase

134 176941..178200 hypothetical protein

135 178277..180169 copper resistance protein A

136 179851..181221 copper resistance protein B

137 - strand (181241..182575) hypothetical protein

138 - strand (182667..183848) pyridoxal-phosphate dependent protein

139 - strand (183994..185604) ABC transporter ATP-binding protein

140 - strand (185606..186622) ABC transporter permease

141 - strand (186624..187697) peptide ABC transporter permease

142 - strand (187699..189507) ABC transporter substrate-binding protein

143 - strand (189511..192537) TonB-dependent receptor

144 - strand (192730..193722) LysR family transcriptional regulator

145 193773..195158 major facilitator transporter

146 - strand (195165..196064) DNA-binding transcriptional regulator CynR

147 - strand (197377..198330) Fe2+-dicitrate sensor, membrane protein

148 - strand (198327..199004) RNA polymerase sigma factor
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possible explanation could be that the phage genome did not

integrate in the bacterial chromosome but was retained in a small

proportion of cells after infection. Indeed, there is evidence that

some of the putative lysogenic bacteria lose the phage genome

after several replatings. In contrast, Tr60-100B is a true lysogenic

variant. The phage integrated within the bacterial genome

through a site-specific recombination process using the shared

64 bp sequence, as shown for PAJU2 [43].

In this study, mucoid variants of P. aeruginosa Tr60 and PA14

were obtained after infection of the host in liquid medium. These

variants were stably resistant to the phage, although they were not

lysogenic. Miller et al. showed that temperate phages with

elongated heads and flexible tails (similar to PAJU2 virions),

induced from CF-associated P. aeruginosa strains, were capable of

converting non-mucoid strains to the mucoid phenotype [8]. We

may hypothesize that the presence of the phage induced a stress

that caused mutations in genes involved in alginate production. An

alternative explanation could be that the phage selected a

subpopulation of mucoid bacteria, with the mucoid layer

inhibiting early stages of infection. MucA is a negative regulator

of alginate production through sequestration of AlgU, the primary

sigma factor responsible for the expression of the alginate

biosynthetic operon from the algD promoter [47]. Alternatively,

conversion to mucoidy can occur when MucA is degraded by

regulated intramembrane proteolysis operated by AlgW [6]. The

activation of AlgW, and the consecutive proteolysis of MucA, is

thought to be in response to extracellular stress, as well as the

accumulation of misfolded envelope proteins. Interestingly,

genome sequencing of two non-pigmented mucoid Ab31-resistant

variants (Tr60-10A and Tr60-100A) revealed that no modifica-

tions of proteins involved in the alginate biosynthesis occurred.

Among the Ab31 resistant variants we also obtained brown-

colored, mucoid variants of PA14. The pigment which likely

corresponds to pyomelanin, accumulated when the plates were

kept at room temperature. It was shown that pyomelanin

production is due to loss of the homogentisate gene, HmgA and

this favors persistence in the lung of CF patients [48].

Notably, two mucoid variants of Tr60 carry a large deletion of

234 kbp corresponding to, among others, genes coding for

proteins necessary to assemble a fimbrial organelle. This gene

cluster which encodes components of the chaperone-usher

pathway and a fimbrial unit, participates in biofilm formation

[36,49]. Conceivably fimbriae could be involved in phage

adsorption but further investigation is required to confirm or

refute this hypothesis. Other deleted genes that might act as phage

receptors, are those for two porins, and one being a member of the

LamB/YcsF family protein. Previous studies have shown that an

outer membrane porin encoded by the ompLC gene in Edwardsiella

Table 3. Cont.

CDS Position Product

149 199037..201157 hypothetical protein

150 203113..204468 hypothetical protein

151 204410..204787 hypothetical protein

152 204854..206836 hypothetical protein

153 - strand (208017..209408) serine/threonine transporter SstT

154 - strand (209734..211104) amino acid permease

155 - strand (211261..212637) glutamine synthetase

156 213047..213901 hypothetical protein

157 213157..214200 hypothetical protein

158 - strand (214325..215800) hypothetical protein

159 - strand (215925..216731) hypothetical protein

160 217181..218839 thiamine pyrophosphate protein

161 - strand (218847..220016) hypothetical protein

162 - strand (219521..220477) hypothetical protein

163 - strand (220564..222048) transcriptional regulator

164 222029..222676 hypothetical protein

165 - strand (222751..223581) hypothetical protein

166 - strand (223074..223547) transcriptional regulator

167 223638..224072 hypothetical protein

168 223754..225226 bile acid/Na+ symporter family transporter

169 225251..227203 ring-cleaving dioxygenase

170 - strand (225281..226636) glutathione reductase

171 - strand (227385..228275) UTP-glucose-1-phosphate uridylyltransferase

172 - strand (228272..229873) nucleotide sugar dehydrogenase

173 - strand (230015..230575) transcriptional regulator

174 230812..232002 periplasmic multidrug efflux lipoprotein

175 232018..233901 multidrug efflux protein

doi:10.1371/journal.pone.0093777.t003
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ictaluri is required for phage sensitivity [50], while LamB is the

receptor for Escherichia coli bacteriophage l. LamB was shown to be

sufficient to confer l phage sensitivity upon transformation of the

lamB gene into bacteria of different species [51,52].

Since the two resistant isolates, in addition to the 234 kbp

deletion, show a few nucleotide differences (< 40 SNPs) with

Tr60, two hypotheses could be formulated to explain the origin of

the deletion. It is possible that a variant subpopulation with the

234 kbp deletion preexisted in the Tr60 stock suspension, and that

the phage infection led to its selection. We could not detect such

variants by PCR analysis on 94 isolated colonies or on total DNA

extracted from a Tr60 culture. Another possible explanation is

that phage infection promoted rearrangement of the host genome.

This hypothesis is supported by the finding that at both ends of the

234 kbp region present in the original Tr60 strain, there are

sequences of 10 bp in length (ctcggcatga and ctcggcgatga) that

differ by a single nucleotide insertion. Notably a similar sequence

(c-cggcatga) was detected in the phage Ab31 genome at the end of

the gene encoding an acetyl-transferase, upstream of the phage

integrase. The 10 bp sequence ‘‘ctcggcgatga’’ constitutes the

junction of the deleted region on the resistant bacterial genome.

Moreover, the sequence upstream the 234 kbp region encodes

several proteins involved in transposition, including a bacterial

transposase. This suggests that the origin of the deletion in Tr60

was most probably a recombination and/or transposition event in

which the phage was also involved. Large genomic deletions have

been observed during early stage adaptation of P. aeruginosa in CF

patients, but none were as large as 234 kbp, which represents

about 3.6% of the genome [24,53]. Rau and colleagues described

a deletion of 148 kbp, encompassing the cupA cluster [53]. It is not

known whether the presence of phages could play a role in the

induction of such deletions. Ab31-resistant strain PA14-P1 showed

no deletion corresponding to those which characterize Tr60-10A

and Tr60-100A. A number of mutations in different genes were

observed, but at this time it is impossible to know which one is

responsible for phage resistance.

Looking at the Ab31 genome sequence it is possible to

distinguish two main modules. The first, showing homologies

with the AF phage genome, covers the so-called late region and

contains sequences encoding the structural proteins of the phage,

such as those for capsid, tail-to-head connector, tail and tail spikes.

The second Ab31 genomic region encodes proteins involved in

recombination and replication of the phage genome, and

constitutes the so-called early/middle region. This contains several

genes that show similarities with those of PAJU2 explaining why,

although phage Ab31 shows a morphology typical of the virulent

AF podovirus, it behaves as a temperate phage capable of

lysogenizing P. aeruginosa strains. Indeed, the Ab31 insertion site in

Figure 7. PCR investigation of the 234 kb deletion on Ab31 resistant bacteria using CupA (A) and Flank234 primers (B). Tr60 (1), Tr60-
10A (2), Tr60-100A (3), Tr60-100B (4), PA14-P1 (5), PA14 (6), Negative control (7). The experimental conditions are those of Fig.5.
doi:10.1371/journal.pone.0093777.g007

Figure 8. Schematic representation of the Ab31 insertion region. A 64 bp sequence is shared by the phage and the P. aeruginosa Tr60
genome. The portion of the shared region that overlaps with the phage integrase encoding gene is underlined.
doi:10.1371/journal.pone.0093777.g008
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Figure 9. Alignment of the spike protein sequence of phages Ab31 and AF.
doi:10.1371/journal.pone.0093777.g009
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P. aeruginosa is the same as in PAJU2. Phages AF and PAJU2 infect

P. putida and P. aeruginosa, respectively. These bacterial species are

closely related, and phage genome exchanges probably occurred

during infection of a lysogenic host by the virulent phage. As a

result of their mosaic structure, some temperate phage genomes

can migrate between unrelated bacteria [54]. Although genetically

distant, phages AF and PAJU2 share a lambdoid genome

organization which could favor genetic replacement (modular

exchanges of gene blocks) [55,56]. Similar events seem to occur

between D3112-like phages morphologically identical to phage

lambda, and the transposable coliphage Mu belonging to the

Myoviridae family [57]. Several types of recombination events are

thought to build phage genomes. There are examples of conserved

sequences at gene boundaries that could serve to target

homologous recombination at these positions, via transposition

or site-specific recombination [13]. However a major contributor

to phage genome building is illegitimate recombination, or

recombination between short conserved sequences (a few bases),

coupled with functional selection of genes [13,58].

Conclusion

Our observations show that phage Ab31 is the result of a rare

recombination event between genomes of two unrelated bacterio-

phages, normally infecting different bacterial species. It is capable

of forming lysogens but its genome can also apparently persists

unintegrated for a long time in the bacterial cells, with

accompanying repression of virulence functions thus allowing the

bacteria to escape lysis. In addition, we show that the phage exerts

strong pressure on the bacteria by selecting for variants with new

phenotypes, possibly improving their adaptation to chronic lung

infection.
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Coevolution between bacteriophages (phages) and their prey is the result of mutualistic

interactions. Here, we show that pseudolysogeny is a frequent outcome of infection by virulent

phages of Pseudomonas aeruginosa and that selection of resistant bacterial mutants is

favoured by continuous production of phages. We investigated the frequency and

characteristics of P. aeruginosa strain PAO1 variants resisting infection by different

combinations of virulent phages belonging to four genera. The frequency of resistant bacteria

was 1025 for single phage infection and 1026 for infections with combinations of two or four

phages. The genome of 27 variants was sequenced and the comparison with the genome of the

parental PAO1 strain allowed the identification of point mutations or small indels. Four additional

variants were characterized by a candidate gene approach. In total, 27 independent mutations

were observed affecting 14 genes and a regulatory region. The mutations affected genes

involved in biosynthesis of type IV pilus, alginate, LPS and O-antigen. Half of the variants

possessed changes in homopolymer tracts responsible for frameshift mutations and these

phase variation mutants were shown to be unstable. Eleven double mutants were detected.

The presence of free phage DNA was observed in association with exclusion of superinfection

in half of the variants and no chromosomal mutation could be found in three of them.

Upon further growth of these pseudolysogens, some variants with new chromosomal mutations

were recovered, presumably due to continuous evolutionary pressure.
Received 30 November 2015
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INTRODUCTION

Pseudomonas aeruginosa is a bacterium frequently found in
the environment and often associated with human infec-
tions in clinical settings. This species displays an important
genome plasticity due in large part to horizontal gene
transfer of genomic islands and mobile elements, but also
to de novo mutations (Spencer et al., 2003). Bacteriophages
(phages) are key actors in diversification of P. aeruginosa by
selecting for resistant mutants and, in turn, adapting to new
bacterial genotypes in a coevolution arms race (Brockhurst
et al., 2005; Dennehy, 2012). A large variety of P. aeruginosa
phages have been isolated, some showing a wide host range.
However, several studies have illustrated that 6–10 % of
genetically different clinical P. aeruginosa strains were not

lysed by currently known phages (Essoh et al., 2013). Spon-
taneous mutations responsible for phage resistance are fre-
quently related to alterations in the phage receptor (Hyman
& Abedon, 2010; Labrie et al., 2010). In P. aeruginosa,
adsorption mutants are principally affected in type IV pili,
often used as receptors by podoviruses (Chibeu et al.,
2009) and siphoviruses, or in LPS, a major virulence
factor (King et al., 2009; Lam et al., 2011) involved in the
binding of myoviruses. We and others showed that large
chromosomal deletions could be selected in bacteria resis-
tant to single or multiple phages. Such deletions encom-
passed genes involved in fimbriae, outer membrane
proteins or LPS components (Latino et al., 2014; Le et al.,
2014; Tanji et al., 2008). Resistance to phages due to modi-
fied type IV pili has consequences for bacterial motility by
affecting twitching – a form of solid surface translocation
(Chiang & Burrows, 2003). Type IV pili allow the adherence
of P. aeruginosa cells to the host epithelium and also play a
role in biofilm formation (Bucior et al., 2012; Klausen et al.,
2003; O’Toole & Kolter, 1998). The mechanism of resist-
ance associated with the loss of pili may drive an increase
in P. aeruginosa diversity and strongly reduce infectivity

The GenBank/EMBL/DDBJ accession number for the DNA sequence
of the PAO1 strain representative PAO1Or is LN871187. All sequence
reads have been deposited in the European Nucleotide Archive (ENA)
project number PRJEB9838.

Three supplementary tables and seven supplementary figures are
available with the online Supplementary Material.
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(Brockhurst et al., 2005; Hahn, 1997). Scanlan et al. (2015)
showed that coevolution of phages and bacteria leads to the
emergence of a complex population of cells with mutations
that sometimes increase bacterial fitness but also constrain
evolution.

It is generally accepted that the outcome of virulent phage
infection is a lytic cycle leading to bacterial death, whereas
temperate phages can either perform a lytic cycle or lyso-
genize their host. Pseudolysogeny is a third state, most fre-
quently described for temperate phages as an intermediate
between the lytic cycle and lysogeny, allowing the bacteria
to survive infection (Ripp & Miller, 1997, 1998). Pseudo-
lysogeny was first described as an unstable interaction
that is not productive and eventually resolves into true
lysogeny or virulent growth (Baess, 1971). Los et al.
(2003) demonstrated that Escherichia coli phage T4 can
form pseudolysogens in starved, slowly growing cells.
They showed that superinfection of the host by another
T-even phage was responsible for lysis inhibition (Bode,
1967) caused by the T4rI gene product. Later, pseudolyso-
geny was defined as a stage in the phage development,
without multiplication of the genome, allowing subsequent
restart and resumption of the virus cycle (Los & Wegrzyn,
2012). In P. aeruginosa, pseudolysogeny was documented
in slowly growing cells with two phages responsible for
generalized transduction: F116 (a temperate phage) and
UT1 (a virulent phage) (Ripp & Miller, 1997, 1998). The
role played by pseudolysogeny in the emergence of bac-
terial mutants has not been demonstrated. Early work by
Demerec & Fano (1945) described mutants of E. coli
obtained on agar medium following infection by seven
different phages (T1–T7). The authors noted that phages
were present for a long time after they reisolated resistant
colonies and finally obtained mutants showing different
patterns of cross-resistance. A high frequency of what
were likely double mutants was observed, but the authors
were not able at that time to identify the genetic changes
that conferred the heritable cross-resistance.

We wished to go further in the analysis of phage-driven
P. aeruginosa evolution and investigated the mechanisms
by which P. aeruginosa survives infection by one or a
mixture of virulent phages belonging to different genera.
We characterized mutations selected by phages and
showed that maintenance of phage DNA in pseudolysogens
over many colony purification steps was a major factor in
allowing selection of additional mutations.

METHODS

Bacterial strains and phages. A single colony of P. aeruginosa
PAO1, a reference strain originating from a patient (Stover et al.,
2000) and propagated in the laboratory for several years, was
cultivated for storage at 280 uC, and for genome extraction and
sequencing. This representative, hereafter called PAO1Or (where Or
stands for Orsay), was used to isolate phage-resistant mutants. Two
podoviruses, vB_PaeP_PAO1_Ab05 (Ab05) and vB_PaeP_C2-
10_Ab09 (Ab09), and two myoviruses, vB_PaeM_PAO1_Ab17
(Ab17) and vB_PaeM_PAO1_Ab27 (Ab27), representing four differ-

ent genera were used in this study, alone, or combining a podovirus
with a myovirus or in a cocktail of all four phages. These phages,
isolated in Abidjan (Côte d’Ivoire), have been described in detail in
Essoh et al. (2015). PAO1 LPS and type IV pilus transposon mutants
were obtained from the P. aeruginosa Mutant Library (http://www.gs.
washington.edu/labs/manoil/libraryindex.htm).

Isolation of phage-resistant bacteria. Bacteria were inoculated at
OD600 0.01 into glass vials containing 5 ml Luria broth (LB) medium,
and grown with aeration (37 uC with shaking at 180 r.p.m.) to OD600

0.2. Infections were performed at m.o.i. 0.1. Infections on solid
medium used a 10 ml inoculum of the bacterial culture (2|106 c.f.u.)
mixed with 10 ml suspension containing either a single phage genus,
a cocktail of two phages or a cocktail of all four phages (105 p.f.u. for
each phage). An aliquot of 10 ml SMG (saline magnesium gelatin)
phage buffer (5.8 g NaCl l21, 2 g MgSO4 l

21, 1 M Tris/HCl and 0.1 g
gelatin l21, pH 8.0) was used in negative controls. The mixture was
kept for 15 min at room temperature, before being poured on a fresh
LB agar plate [1.5 % (w/v) agar] with 4 ml soft agar [0.7 % (w/v)
agar] and incubated at 37 uC for 3 days. As no stable resistant variants
were obtained with the solid assay for phage Ab27, alone or associated
with Ab05, liquid infection was also performed when using Ab27.
Bacteria were infected during the exponential phase (OD600 0.6) at
m.o.i. 0.001 each 24 h for a total of three infections. Thereafter the
surviving bacteria were plated onto LB agar plates.

Calculation of the frequency of resistance. An overnight culture
of P. aeruginosa PAO1Or was used to inoculate fresh medium to
OD600 0.1. Bacterial cultures in the late-exponential phase (OD600

*1, equivalent to 109 bacteria ml21, determined by titrating the
bacteria) were 10-fold serially diluted. Aliquots of 100 ml of each
dilution were mixed with 10 ml (*106 p.f.u.) of a single phage
suspension or a mixture of two or four phages as described above. The
samples were kept for 15 min at room temperature and then poured
on fresh LB agar plates using 4 ml soft agar. Plates were inverted and
incubated at 37 uC for 24 h. The frequency of resistance was calculated
considering that all the colonies growing on the plates after 24 h of
incubation were resistant to phages used for the infection. The divisor
was the number of plated bacteria.

Phage susceptibility assay. Aliquots (500 ml) from the liquid cul-
ture of variants (OD600 0.8–1.2) were mixed with 6 ml 0.7 % (w/v) LB
agar and poured onto a square LB 1.5 % (w/v) agar plate. Five
dilutions (1010, 109, 108, 107 and 106 p.f.u. ml21) from a progenitor
stock of each phage were spotted (10 ml) onto the soft agar layer,
incubated at 37 uC overnight and inspected for plaque formation. The
resistance of the mutants against the phage was expressed as the
efficiency of plating using PAO1Or as a control.

Virucide assay. The protocol described by de Siqueira et al. (2006)
was used to prepare a virucide solution from Chinese black tea leaves.
The phage-containing bacteria were treated for 10 min with 3 vol.
virucide, followed by centrifugation, washing with PBS and incu-
bation at 37 uC for 30 min with 50 mg DNase I ml21. Total bacterial
DNA was then purified.

Adsorption assay. An overnight bacterial culture was diluted to
OD600 0.1–0.6 and left to equilibrate at 37 uC. Approximately 106

phages were added to 1 ml diluted bacterial culture (1–6|108 bac-
teria). At a fixed time point, 50 ml mixture was transferred to a 1.5 ml
conical centrifuge tube containing 940 ml LB medium and 10 ml
chloroform. The suspension was vortexed for 5 s and centrifuged in
order to pellet the phages adsorbed on the bacterial surface. Then,
10 ml unadsorbed phage suspension was titrated. Phage adsorption
was expressed as the percentage of the initial amount of phage
employed for the infection that did not adsorb to the bacterial surface
after 16 min (time necessary for adsorption of the four phages).
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Phenotypic assays. A planktonic culture of strain P. aeruginosa
PAO1Or prepared from a single colony off a fresh LB agar plate was
used as a reference in all experiments. To test for haemolytic activity,
10 ml overnight culture of phage-resistant mutants (OD600 2) was
spotted onto sheep blood [5 % (w/v)] agar and plates were incubated
for 24 h at 37 uC. For twitching motility assessment, 1 ml overnight
bacterial culture (OD600 2) was inoculated between the agar and the
plastic surface of LB 1.5 % (w/v) agar plates. The diameter of the
motility zone around the inoculation site was measured after 24 h
incubation at 37 uC. LPS was purified using the method of Hitchcock
& Brown (1983). In order to normalize the samples for the sub-
sequent gel analysis, a similar amount of lyophilized bacteria was
disrupted in lysis buffer (1 M Tris, 2 % SDS, 4 % b-mercaptoethanol
and 10 % glycerol) prior to LPS extraction. The LPSs were resolved by
electrophoresis on a 15 % SDS-polyacrylamide gel and the band
pattern was visualized using the silver staining method (Fomsgaard
et al., 1990).

Biofilm formation. Microtitre plates (96-well; Greiner) containing
LB were inoculated with an overnight bacterial culture (OD595 *0.1)
and incubated at 37 uC for 48 h. Before proceeding with biofilm
quantification, the OD595 was recorded. The wells were washed three
times with PBS, 200 ml 0.1 % (w/v) crystal violet was added and the
plate was kept for 30 min at room temperature. The unattached
crystal violet was washed three times with PBS and then the remaining
biomass was quantified by resuspending it into 200 ml absolute
ethanol. The OD595 was then divided by the OD595 value measured for
planktonic bacteria in each well to account for the difference in
growth rates of the mutants.

Colony lift and hybridization. A circular Nylon N+ membrane
(Nytran) was applied on the agar plate on which 52 colonies had been
plated. After 5 min, the membrane was lifted using forceps and
treated successively for 2 min with 0.4 N NaOH twice, 1 M Tris,
pH 7.5 twice and 2| saline sodium citrate (SSC) twice. The mem-
brane was then dried on Whatman filter paper and kept at 20 uC
until use.

Pre-hybridization was performed at 65 uC for 4 h with 2 ml hybrid-
ization buffer (Church & Gilbert, 1984) per membrane. The probe
was labelled using a Megaprime kit (GE Healthcare Amersham) and
hybridization was performed overnight at 65 uC in hybridization
buffer. Washes were done successively with 2| SSC and 0.1 % (w/v)
SDS, 0.5| SSC and 0.1 % (w/v) SDS, and 0.2| SSC and 0.1 % (w/v)
SDS.

DNA extraction, PCR and sequencing. PCR was performed on
thermolysates or purified DNA using oligonucleotides listed in
Table S1 (available in the online Supplementary Material). Thermo-
lysates were produced by diluting 10 ml overnight culture in 200 ml
water and heating at 95 uC for 5 min. For DNA purification, bacteria
were lysed in lysis buffer [10 mM Tris, pH 7.8, 10 mM EDTA, 10 mM
NaCl and 0.5 % (w/v) SDS], treated with 50 mg proteinase K ml21 for
2 h at 50 uC, followed by one phenol and one chloroform extraction,
and ethanol precipitation. The isolates were verified for contami-
nation from other P. aeruginosa strains, commonly used in our lab-
oratory, using PCR with oligonucleotides directed against variable
number tandem repeats ms216 and ms217 as described previously
(Vu-Thien et al., 2007). The isolates were also screened for the
presence of phage DNA by PCR performed on thermolysates using
the specific phage oligonucleotides listed in Table S1.

Gene cloning and expression. PCR amplicons were cloned into the
pUCP24 plasmid, a generous gift of Dr Schweizer (West et al., 1994).
This is a shuttle vector which replicates in E. coli and in P. aeruginosa,
and contains a multiple cloning site downstream from lacZa.
The PAO1 mucA gene was PCR-amplified using oligonucleotides

mucA_Clon_F_Bam (59-TGGGATCCCGAGAAGCCTGACACAGC-39)
and mucA_Clon_R_Hind (59-GAAAGCTTACCGCCATCAGGCT-
GCCA-39), which included restriction sites for BamHI and HindIII.
The amplicons were digested with BamHI/HindIII, ligated into the
similarly digested vector and transformed into E. coli, in which
replication of pUCP24 is optimal (West et al., 1994). A selected
recombinant was then used to transform P. aeruginosa strains by
electroporation using the fast protocol described by Choi et al. (2006).
Transformants were selected using 10 mg gentamicin ml21, and the
presence of the plasmidwas verified by PCR amplification using amucA
forward oligonucleotide mucA-int_F (59-ACGCAGGTAGATCGGC-
AGAC-39) and a plasmid reverse oligonucleotide pUCP24_MCS_R
(59-GGCCTCCTTCGCTATTACGCC-39). The colony aspect was
observed under the stereomicroscope. The transformants were then
tested for their susceptibility to the four phages.

Whole-genome sequencing. Purified bacterial DNA (10 mg) was
sent for draft whole-genome Illumina sequencing to the IMAGIF
platform (CNRS, Gif-sur-Yvette, France). Libraries were made from
sheared fragments of DNA with a mean size of 900 bp and paired-end
reads of 250 bp were produced. Between 1 and 5 million reads were
obtained corresponding to a 40- to 200-fold mean coverage. The
mutations were identified by comparison with the genome of the
PAO1Or sequence using native Geneious R9 tools default parameters
(Biomatters). The Geneious mapper with the ‘Medium-Low Sensi-
tivity/Fast’ parameter option was used to map the reads of each
variant against the PAO1Or genome. The ‘Find Variations/SNPs’
analysis was used with the parameter ‘Minimum Variant Frequency’
set to 0.25. When an SNP or an indel was identified, sequencing reads
mapping in the mutated gene plus 1 kb on both sides were recovered,
reassembled and the contig was aligned with the PAO1Or genome.
This allowed the precise localization of short deletions. Mutations
were confirmed by PCR amplification of the affected gene and Sanger
sequencing (Beckman-Cogenics).

De novo assembly of phage reads was done with the Geneious R9
native assembler using the ‘Medium-Low Sensitivity/Fast parameter’.

RESULTS

Phage-tolerant bacteria show a variety of
phenotypes and phage susceptibility patterns

Our goal was to evaluate the frequency and diversity of
PAO1Or mutants emerging from infection with phages
belonging to different genera, used alone or in cocktails.
We hypothesized that each phage may select for specific
mutations. Four different virulent phages displaying
various host ranges (Essoh et al., 2015) were used, alone
or in combinations of two or four. On PAO1Or, Ab05
(wKMV-like phage), Ab09 (N4-like phage) and Ab17
(KPP10-like phage) produced clear plaques, whereas
Ab27 (PB1-like phage) produced tiny, turbid plaques.
First, we investigated the nature of the primary receptor
of the four phages by testing the susceptibility of two
PAO1 transposon mutants, affected in type IV pili ( pilA
mutant) or LPS O-antigen (algC mutant) synthesis genes.
Ab05 was not capable of growing on a type IV pilus
mutant, as previously reported for most wKMV-like
phages (Ceyssens et al., 2011), whereas growth of Ab09,
Ab17 and Ab27 was restricted on the LPS-defective
mutant. We then designed an experimental procedure to
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allow for phage amplification and isolation of independent
resistant mutants. For this purpose, PAO1Or was infected at
m.o.i. 0.1 (one phage for 10 bacteria) by single phage or
cocktails, before plating the bacteria in soft agar on LB
solid medium. The cocktails consisted of a 1 : 1 mixture
of Ab09 and Ab17 or Ab05 and Ab27, and a 1 : 1 : 1 : 1
mixture of Ab09, Ab17, Ab05 and Ab27. Complete lysis
was obtained in 8 h, with the exception of dispersed insen-
sitive bacteria which, after 72 h, produced colonies with
different morphologies (Fig. 1a). We calculated the fre-
quency of surviving cells to be 3.2|1025 for single
phage infection, 4|1026 for double infection and
3.8|1026 for multiple infection. Colonies of variable
shape, size and appearance were picked from seven inde-
pendent experiments and were purified by three reisolation
steps, in order to ensure that a pure population was
obtained. A single colony was recovered after the third rei-
solation step (P3) and used to inoculate an overnight cul-
ture which was then stored at 280 uC in glycerol. This
stock was later used for genomic DNA purification and
to perform further tests (Fig. 1a). The majority of
PAO1Or variants recovered after Ab05, Ab09 and Ab17
single or multiple infections were ‘tolerant’ to at least one
phage. Tolerance was defined as the capacity to survive
the phage infection, whether this was due to a lack of

receptor or to any other mechanism. In contrast, none of
the surviving bacteria recovered from infection with Ab27
alone turned out to be stably tolerant to Ab27. A similar
observation was made by Hosseinidoust et al. (2013a)
who failed to isolate bacteria resistant to phage E79,
another PB1-like phage.

In total, 32 PAO1Or variants were retained and tentatively
distributed into five groups according to their phage
susceptibility pattern, evaluated by the efficiency of plating
(Tables 1 and S2). The 13 Group 1 variants displayed
normal susceptibility only to phage Ab05. The six Group 2
variants showed intermediate susceptibility patterns to
the different phages. The five Group 3 variants were resist-
ant only to phage Ab05. The four Group 4 variants dis-
played full resistance to phages Ab05 and Ab27, and
reduced susceptibility to phages Ab09 and Ab17, character-
ized by the production of small plaques instead of large,
clear plaques. Four variants resisting all four phages consti-
tuted Group 5. In Group 2, a mucoid phenotype was stably
observed for PAO1-02, PAO1-06 and PAO1-13, whereas
PAO1-17 continuously produced two types of colonies
on solid LB media, some with a smooth appearance as
seen for the control PAO1Or strain and others surrounded
by an irregular transparent edge (Fig. 1b). This phenotype

(a)

(b) PAO1Or

Stock –80 °C

PAO1-06 PAO1-17

DNA sequencing

Phenotypic assays

P3

Three replatings

Fig. 1. Isolation of phage-tolerant variants. (a) Colonies surviving phage infection after 72 h on LB agar were replated three times
before the P3 culture was prepared and stored at280 8C. (b) Colony morphotype of PAO1Or, PAO1-06 and PAO1-17.
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may be related to an observed decrease in swarming
capacity (data not shown). In addition, mucoid colonies
appeared after several days of growth. When replated, the
PAO1-17 colonies surrounded by a transparent edge
again produced both types of colonies, whereas the
others stably maintained their phenotype. Growth on
sheep blood agar plates showed the existence of new
phenotypic characteristics for some variants as compared
with the parental PAO1Or strain (Fig. S1). Variants
PAO1-02, PAO1-13 and PAO1-17 lacked the haemolytic
ability displayed by the WT PAO1Or but, interestingly,

the colonies of PAO1-13 presented zones of reversion to
the WT phenotype.

Unexpectedly, PCR amplification showed that phage DNA
could still be detected at the P3 reisolation step in 15 of the
32 variants (Table 1). We checked whether the phage DNA
was inside the bacteria or adsorbed on the surface by treat-
ing two of the variants with a virucide (tea decoction) and
DNase I digestion, followed by several washings of the bac-
teria pellet. Phage DNA was still present in large amounts
in the bacteria, as shown by semiquantitative PCR
(Fig. S2 shows PAO1-20 and PAO1-32), suggesting that
the phage genome was maintained in an episomal state:
lysogeny was not likely as these phages are believed to be
strictly lytic, based on their genome characteristics and
because the amount of phage DNA appears to be in large
excess over that of the bacterial DNA (see ‘Persistence of
phage DNA in pseudolysogens’). The results obtained
suggested that some bacterial cells might contain in the
order of 100 phage genomes.

An adsorption assay was performed with the 16 variants
devoid of phage DNA showing that resistance was linked
to absence of phage binding to the bacterial surface
(Fig. 2). In order to identify the mutations conferring
resistance, and to investigate in more detail the variants
containing phage DNA, whole-genome sequencing was
performed on DNA extracted from 23 variants selected
into the different groups, at the P3 purification step.

A wide range of chromosomal mutations is
selected by phages

To identify de novo mutations, it was necessary to sequence
the genome of the parental PAO1Or strain, prepared from
the culture used to derive phage-tolerant variants. The
PAO1Or sequencing reads were mapped against the
sequence of the reference PAO1 (GenBank accession
number NC_002516), allowing the assembly of the full
genome and identification of differences (Fig. S3 and
Table S3). These differences included a large inversion
between rRNA sequences (position 727255–4788575), the
presence of a copy of filamentous Pf1 prophage in
PAO1Or at position 5242103–5254164 and 63 SNPs or
short indels events. As expected, some of these differences,
including the inversion and the Pf1 prophage plus a
number of the SNPs and indels, were previously reported
by Klockgether et al. (2010). Others were specific to the
PAO1Or subline.

The sequencing reads from each of the 23 whole-genome
sequenced phage-tolerant variants were mapped against
the PAO1Or genome, showing a uniform distribution
with a mean coverage of 40- to 200-fold and only a few
places with low coverage and relatively poor quality
sequence, common to all variants. In variants PAO1-30,
PAO1-32 and PAO1-34, no chromosomal mutation
could be detected. In 14 variants, a single chromosomal
mutation was identified. Six variants were double mutants.

Table 1. Clustering of phage-tolerant variants according to
their resistance pattern against the four phages used in the
present study

Group Infection

PAO1

variant

Phage resistance*

Phage

DNADAb05 Ab09 Ab17 Ab27

1 Ab09, Ab17 01 S R R R –

Ab09, Ab17 04 S R R R –

Ab09, Ab17 05 S R R R –

Ab09 07 S R R R –

Ab17 09 S R R R –

Ab17 12 S R R R –

Ab17 14 s s R R –

Ab09 15 s R R R –

Ab17 18 s I R R –

Ab09, Ab17 19 S I R R Ab09

Cocktaild 21 s I R R –

Ab05, Ab27 32 S R R R Ab27

Ab05, Ab27 34 s I R R Ab27

2 Ab09, Ab17 02§ s s S R –

Ab09, Ab17 03 S I S I –

Ab09, Ab17 06§ S I S S –

Ab17 10 s s s I –

Ab09 13§ s s S s –

Ab09 17 s R s R Ab09

3 Cocktaild 25 R S S s Ab05

Ab05 26 R S S S Ab05

Ab05 27 R S S S Ab05

Ab05 28 R S S S –

Ab05 29 R S S S Ab05

4 Cocktaild 24 R s s R Ab27

Ab05 30 R S I I Ab05

Ab05, Ab27 36 R s s R Ab27

Ab05, Ab27 37 R s s R Ab05

5 Cocktaild 20 R R R R Ab17

Cocktaild 22 R R R R Ab17

Ab05, Ab27 33 R R R R Ab27

Ab05, Ab27 35 R R R R –

*S, Completely susceptible; R, completely resistant; I, reduced

efficiency of plating; s, normal efficiency of plating but small and

turbid plaques.

DDetection by PCR.

dInfection performed with all four phages.

§Mucoid variant.
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Coverage at these genetic alterations was always at least 40-
fold and up to 250-fold. PAO1-02, with a mucoid pheno-
type, was analysed by PCR using a candidate gene approach
and this allowed us to find a frameshift mutation in the
mucA gene. Table 2 displays the position and nature of
the mutations, as well as the percentage of sequencing
reads containing a particular mutation. In several variants,
reads corresponding to both the WT and mutated sequence
could be found, indicating that the cell population was
mixed. This indicated that an unstable mutation had
reverted back. Three different kinds of genetic alterations
were found: phase variation, deletions of i10 bp and
nucleotide substitutions. Fourteen genes were affected.
The wzy mutations A(7)RA(8) at position 1 976 849 as
well as A(7)RA(6) at the same position, and G(6)RG(5)
at position 1 977 338, were found in six, one and two
other mutants, respectively. Seven different frameshift
mutations due to a single nucleotide insertion or deletion
in homopolymer tracts resulted, in six cases, in early ter-
mination of protein synthesis. In the last case, PAO1-06,
deletion of a T in a stretch of four Ts in the mucA gene sup-
pressed normal termination of translation resulting in the
production of a longer MucA protein fused with the begin-
ning of MucB. Deletions were found in three type IV pili
structural genes: pilY1, pilQ and pilJ. pilY1 was missing
10 bp in PAO1-37 and 109 bp in PAO1-33, pilQ was miss-
ing 19 bp in PAO1-26 and 555 bp in PAO1-20, whereas pilJ
was missing 11 bp in PAO1-35. A 213 bp deletion was
detected in the PAO1-22 algC gene. The deletions either
caused a frameshift and the creation of a premature stop
codon or deleted an internal domain. Eight variants
showed a single nucleotide substitution. All mutations
were confirmed by PCR amplification and Sanger
sequencing.

The different mutations potentially affected the biosyn-
thesis of membrane structures that participate in binding
of phages to their receptor. Mutations in the gene cluster
regulating the production of alginate were selected by

Ab09, and could reduce the efficiency of infection of all
the phages. The wzy, wzz2 and wbpL genes are members
of the heteropolymeric O-specific antigen biosynthesis
cluster in PAO1 (Lam et al., 2011). Gene migA encodes a
rhamnosyltransferase involved in LPS core capping (Poon
et al., 2008), whereas wapH and dnpA are known to be
involved in the synthesis of LPS (Hansen et al., 2007; Lie-
bens et al., 2014), and pgi encodes a glycosyltransferase
(Rocchetta et al., 1999). Mutations in algC affect the bio-
synthesis of alginate, LPS and rhamnolipids, biosurfactants
necessary for bacterial swarming motility and biofilm for-
mation (Olvera et al., 1999). Overall, the phage suscepti-
bility pattern of each mutant correlated well with the
nature of the mutated genes. Infection with Ab09, Ab17
and Ab27 mainly selected mutations in genes regulating
LPS and O-antigen biosynthesis, whilst Ab05 selected
mutations in genes involved in type IV pilus synthesis.
The number and variety of observed mutations were very
high, confirming that the procedure used to isolate the var-
iants allowed for selection of independent events.

Observed mutations are responsible for
modifying the phage receptor

To confirm that the observed mutations were responsible
for affecting the phage receptor, we investigated the pheno-
type of the three classes of mutants affected in type IV
pilus, LPS and alginate biosynthesis. The motility of the
variants was evaluated by performing a twitching assay
on semisolid agar. Compared with the PAO1Or control,
the diameter of the twitching zone was significantly
reduced in all variants, but the strongest effect was
observed with those bearing a mutation in pil genes
and/or resisting Ab05 infection (Fig. 3). PAO1-32 and
PAO1-34 were also affected in twitching although no pil
mutations could be observed, but this was likely related
to a continuous cell death due to phage production.
Indeed upon culture in LB broth the cells lysed totally
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Fig. 2. Phage absorption on 16 PAO1 variants devoid of phage DNA. Phage absorption is presented as the percentage of
unabsorbed phage at 16 min after infection. Data represent mean¡SD of three independent assays.
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after reaching OD600 0.8. Inhibition of twitching was
accompanied by a decrease in biofilm formation, except
for PAO1-20 and PAO1-06 (Fig. 4). This may be due to
the existence of a mixed population of bacteria in these
variants. The LPS extracted from PAO1-04 (wzy and
migA double mutant) and PAO1-07 (wzy mutant) were
analysed by PAGE. Fig. 5 displays the banding profiles
compared with that of PAO1Or, showing absence of the
A and B bands, as well as modifications in the proportion
of core and core +1 bands. PAO1-04 possessed only the
core +1 oligosaccharide form. In contrast, variant
PAO1-07 possessed both bands in equal amounts, whereas
PAO1Or had a small proportion of core +1. Absence of
core oligosaccharide in PAO1-04 was likely a consequence
of the mutation in migA. Finally, to confirm that the
observed mucA mutations were responsible for the mucoid
phenotype, we tested whether the mutants could be

complemented by the WT gene. A full mucA amplicon was
cloned into an expression vector, which was then introduced
into PAO1-02, PAO1-06 and PAO1-13. In the three cases, the
transformants no longer showed a mucoid appearance,
whereas the vector alone did not reverse the mucoid pheno-
type. In addition, the mucA transformants recovered normal
susceptibility to all phages.

Persistence of phage DNA in pseudolysogens

In 11 variants, phage DNA represented 2–85 % of sequen-
cing reads. The very high proportion of phage DNA in
some samples could only be explained by the presence of
free phages, inside bacteria, and/or attached to cells.
To confirm that phage DNA was present inside bacteria,
we performed further genome sequencing of PAO1-17
and PAO1-20 at the P3 purification step, after treatment
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Fig. 3. Twitching motility of original (P3) phage-tolerant variants. Bacterial motility is presented as the diameter (mm) of the
growth zone at the bottom of the agar plate. Data represent mean¡SD of three independent assays.
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of the bacterial pellet with DNase I and the virucide, fol-
lowed by three washing steps. The results showed that
1.6 % of reads still corresponded to Ab09 in PAO1-17
and 52 % to Ab17 in PAO1-20, similar to what was
observed in the first sequencing analysis (Table 2).
A search for hybrid reads between phage and bacteria gen-
omes did not produce any significant result, indicating that
the phage DNA was not inserted into the bacterial chromo-
some, and therefore we refer to these bacteria as pseudoly-
sogens. Interestingly, the three variants in which no
chromosomal mutation could be found, i.e. PAO1-30,
PAO1-32 and PAO1-34, possessed large amounts of
phage DNA: PAO1-30, immune to Ab05, Ab17 and
Ab27, contained high levels of Ab05 DNA; PAO1-32 and
PAO1-34, immune to Ab09, Ab17 and Ab27, contained
Ab27 DNA. Intermediate resistance profiles observed in
some variants were correlated with the existence of a
mixed population of WT and mutated bacteria, and with
the presence of phage DNA.

In the sequenced samples in which a high proportion of
sequence reads derived from phage DNA were present, it
was possible to assemble the full phage genome sequence.
This led to the identification of several single nucleotide
differences in tail fibre genes, as compared with the
parental genotype. In three pseudolysogens obtained

independently, an Ab05 tail fibre gene displayed two
SNPs. By PCR and sequencing, we could also observe
these SNPs in a fraction of the phages used to select for
resistant bacteria (Fig. S4). Similarly, a single SNP was
observed in an Ab17 tail fibre gene from variants PAO1-
20 and PAO1-22, and in the ribosome-binding site of an
Ab27 tail gene from variants PAO1-24, PAO1-32 and
PAO1-34. This might reflect the selection of phage variants
by strain PAO1Or, possibly affecting the capacity of the bac-
teria to resist phages. However, we could not see any differ-
ences in binding to the host or plating efficiency with these
phage genotypes, as compared with the parental genotype.

Stability of the pseudolysogen state

Viable phages were released by pseudolysogens, sometimes
at high titres, during overnight culture in LB medium. This
suggested that a portion of the bacterial population could
achieve a productive viral cycle. To evaluate the dynamics
inside pseudolysogen colonies, we measured the percentage
of bacteria containing phage DNA and producing viable
phages, and evaluated for how long phage DNA was main-
tained. For this purpose, 1 ml of some bacterial strains from
the frozen P3 stock was spread on LB agar (P30). In total,
52 colonies were picked and deposited successively on an
LB agar plate, then on an LB agar plate covered with a
lawn of soft agar containing PAO1Or (see PAO1-30 replat-
ings as an example in Fig. 6). After incubation at 37 uC for
24 h, a lysis zone could be seen around some colonies on
the lawn of PAO1Or. One such phage-producing colony
from the LB agar plate was streaked onto a new LB plate
and the procedure was repeated. The fraction of pseudo-
lysogenic cells contained in a single colony varied from
4 up to 100 %. In PAO1-30, the pseudolysogenic state
was observed up to 10 replatings (Table 3). Hybridization
with phage DNA probes in a colony lift experiment con-
firmed that bacteria not releasing phages were devoid of
phage DNA, thus excluding the presence of colonies able
to maintain phage DNA without releasing functional
phage particles (data not shown).

The presence of phage DNA and phage particles in import-
ant amounts up to 10 colony replatings, and of bacteria
devoid of phages, is in agreement with a model of simul-
taneous and independent lysis of some infected cells,
random production of cured progeny from pseudolysogens
and further amplification of phages by infection of these
phage-free bacteria. Interestingly, PAO1-30, which kept
phage-producing cells for the longest time, showed peaks
of phage abundance, reflecting a classical equilibrium
between phage production and bacteria predation
(Table 3).

Continuous evolution of bacteria from
pseudolysogens

A mixture of bacterial WT and mutant reads was clearly
observed in PAO1-17, PAO1-22, PAO1-24, PAO1-26,

B band A band

PAO1 PAO1-04 PAO1-07

***

**

*

Core

Core +1

Fig. 5. SDS-PAGE of LPS samples. Positions of the core,
A band and B band of the O-antigen were identified according to
the work of Islam et al. (2013). *Very long B chains, **long B
chains and ***short B chains.
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PAO1-33 and PAO1-37, after three purification steps,
always accompanied by phage DNA (Table 2). This,
added to the high frequency of double mutants, suggested
that immunity provided by the phage in a pseudolysogenic
state allowed survival and subsequent emergence of
mutations. To investigate this hypothesis, we tested
whether new mutations would appear in response to the
pressure imposed by phages. We went back to the
280 uC stocks of seven variants (P3), isolated new colonies,

replated them and tested for the presence of phage DNA by
PCR, until a colony devoid of phage DNA was obtained
(Table 4). Susceptibility to the four phages was evaluated
in these cured colonies, and the mutations previously
identified by whole-genome sequencing were searched by
PCR and Sanger sequencing. Different situations existed
when phage DNA was no longer present. The Group 3
PAO1-26 variant pilQ microdeletion was found in about
two-thirds of the colonies reisolated after 280 uC storage
and it was associated with resistance to Ab05. Similarly,
upon reisolation of PAO1-37, *50 % of colonies were
stable double wzy/pilY1 mutants, devoid of Ab05 and dis-
playing resistance to Ab05 and Ab27. In other variants,
the phage susceptibility profile changed when additional
colony reisolation steps were performed and new
mutations could be found upon sequencing candidate
genes (Table 4). In the mucoid variant PAO1-17_1
devoid of phage Ab09, a new mucA frameshift mutation
(a deletion of a single C in a stretch of five Cs present in
the WT strain) was identified in about half of the
sequenced PCR products, resulting in superimposition of
two sequencing profiles (Fig. S5a). PAO1-20_1 and PAO1-
22_1 acquired additional mutations in wzy, providing resist-
ance to LPS-dependent phages. PAO1-24_1, devoid of Ab27
DNA, was shown to resist all four phages, whereas the
PAO1-24 progenitor was susceptible to both Ab09 and
Ab17 (Table 1). The original pilR mutation in PAO1-24
(Table 2) was confirmed through PCR and DNA sequencing.
Surprisingly, sequencing of a wzy PCR amplicon showed that
the original insertion of an additional A in a stretch of seven A
residues in theWTwzy gene was replaced by a deletion of one
A, resulting in a frameshift and early stop. Similar to themucA
mutation in PAO1-17_1, the sequencing profile showed the
superimposition of a WT and mutated profile (Fig. S5b).
PAO1-25_1 and PAO1-36_1, devoid of Ab05, were
sequenced, and mutations were found in pilR, and in wzy
and pilC, respectively. All the new mutations were confirmed
by Sanger sequencing of the PCR amplification products.

Colony reisolation was also performed for the three pseudo-
lysogens for which no chromosomal mutation could be
observed, i.e. PAO1-30 (Ab05 infection), PAO1-32 and
PAO1-34 (Ab05 and Ab27 co-infection) (Table 1).
PAO1-30_1 devoid of Ab05 still resisted Ab05. Three
genes involved in type IV pilus assembly were analysed
by PCR in a candidate gene approach and a new pilQ
mutation was identified showing a substitution of a T by
a G causing a threonine to proline mutation (Table 4).
In contrast, PAO1-32_1 and PAO1-34_1, devoid of Ab27
DNA, recovered full susceptibility to all phages, and
Ab27-resistant mutants were not obtained. This confirmed
that Ab27 conferred the observed superinfection exclusion
in the P3 variant and that it was not selecting mutants on
both solid and liquid media.

In summary, it appeared that pseudolysogenic colonies
continuously evolved due to the production of new func-
tional phage particles that selected for new phage-resistant
variants. Eventually, all variants possessed mutations in one

P30 LB agar LB agar+PAO1

96%

35%

23%

19%

62%

P31

P32

P33

P34

Fig. 6. Evaluation of pseudolysogeny persistence in PAO1-30.
In total, 52 colonies recovered from the P3 stock (left column)
were simultaneously plated (small horizontal arrows) using a steri-
lized pipette tip on LB agar (centre column) and on PAO1Or

embedded in soft agar overlay (right column). The clear zone
around the bacterial colonies in the right column is due to phage
lysis of the indicator bacteria. The percentage of colonies produ-
cing phages (pseudolysogens) is indicated. Red circles indicate
the colony that was chosen and replated at each reisolation step
(in this case from P30 to P34) because of its ability to release
phage particles and lyse PAO1Or.
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of the pilus type IV assembly genes, and, as expected, the
ability of phages to adsorb on their surface (Fig. S6) and
the twitching motility of these variants were defective
when compared with the control PAO1Or (Fig. S7).

DISCUSSION

Pseudolysogeny is a major factor in the selection
of mutants

In our experimental model, pseudolysogeny appears to be a
frequent outcome of infection by the four virulent phages,
providing immunity to the bacteria and allowing emer-
gence of mutations in genes involved in receptor synthesis.

In the present investigation, we might even underestimate
the frequency of pseudolysogeny as we started the analyses
after three replatings for purification purposes. The fre-
quency of single mutants was of the order of 1025 plated
bacteria but, surprisingly, we observed that double mutants
could be recovered at a frequency of 1026, which is far
higher than expected if these were present at the onset of
infection. We show that pseudolysogenic colonies consti-
tute a reservoir for phages that exert a permanent pressure
on bacteria, leading to selection of secondary mutations.
Many controlled studies have demonstrated the role of
starvation and slow growth in the establishment of pseudo-
lysogeny. In contrast, pseudolysogeny in rich medium is
not understood (Los & Wegrzyn, 2012; Ripp & Miller,

Table 3. Percentage of phage-producing colonies during replatings of some PAO1Or variants containing phage DNA

Replating

PAO1Or variant P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P310

20 6 0 – – – – – – – – –

22 44 0 – – – – – – – – –

24 100 0 – – – – – – – – –

26 54 0 – – – – – – – – –

36 100 0 – – – – – – – – –

37 46 0 – – – – – – – – –

25 4 8 0 – – – – – – – –

34 83 6 33 0 – – – – – – –

17 98 56 92 0 – – – – – – –

32 38 31 44 69 38 0 – – – – –

30 96 35 23 19 62 25 100 100 88 2 0

Table 4. Phage tolerance pattern and mutations in secondary isolated variants

PAO1Or variant

Resistance

pattern* Sequencing method

Position on

PAO1Or Mutation Mutation event Locus tag

Protein

alteration

17_1 IRRR PCR candidate

gene approach

4683508 C(5)RC(4)D Frameshift mucA 146/194 aad

1977343 CRA Transversion wzy 220/438 aa

20_1 RRRR Illumina 1976837 CRT Transition wzy SerRPhe

5688664 555 bp Deletion pilQ 529/714 aa

22_1 RRRR Illumina 1976848 A(7)RA(8) Frameshift wzy 74/438 aa

5095649 C(2)RC(1) Frameshift pilR 334/445 aa

24_1 RRRR PCR candidate

gene approach

1976848 A(7)RA(6) Frameshift wzy 54/438 aa

5095900 GRC Transversion pilR ArgRPro

25_1 RSSS Illumina 5096064 ARC Transversion pilR ThrRPro

30_1 RSSS PCR candidate

gene approach

5688968 TRG Transversion pilQ ThrRPro

36_1 RRRR Illumina 1976848 A(7)RA(6) Frameshift wzy 54/438 aa

5071804 GRA Transition pilC ArgRHis

*Resistance pattern is reported in order against phages Ab05, Ab09, Ab17 and Ab27. S, Completely susceptible; R, completely resistant; I, reduced

efficiency of plating.

DNumber of repeated nucleotides indicated in parentheses.

dLength of the mutated protein/WT.
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1998). Being in the inner part of a colony might mimic
starvation and slow growth conditions, whereas cells in
direct contact with the agar medium would be in a rich
medium context.

We observe that pseudolysogeny is established in a situ-
ation where the large majority of bacteria have been lysed
and high amounts of phages are present, thus resembling
the lysis inhibition control observed in T4. We propose a
model in which a pseudolysogenic cell, which may contain
.100 phage genome copies according to the phage burst
size, forms, after several rounds of division, a colony con-
taining bacteria cured of the phage and bacteria in which
the phage lytic cycle is resumed, producing new phages
(Fig. 7). The cured bacteria become prey for further ampli-
fication and production of new pseudolysogens in which
phage growth is stalled. This interaction between phages
and bacteria is reminiscent of the carrier state life cycle
observed in different systems (Siringan et al., 2014). How-
ever, in the present study the phage/host equilibrium is not
stable. The appearance of pseudolysogenic cells could occur
when the amount of phages and resistant mutants is higher

than the total amount of WT susceptible bacteria, allowing
phages to be protected against extinction. The relative effi-
ciency of reactivation of the phage cycle and production of
cured bacteria determines the duration of the pseudolyso-
geny stage. It will be interesting to perform in situ analyses
to check whether the colony is a homogeneous population
of cells or if there are sectors in which phage activation is
favoured and to follow fluctuations of free phage concen-
trations within a single colony.

A lack of immunity to superinfection mediated by immu-
nity genes in temperate phages is supposed to differentiate
true lysogeny from pseudolysogeny (Wommack & Colwell,
2000). The present pseudolysogens demonstrate inhibition
of superinfection by the same phage and, more interest-
ingly, by phages of different genera, which bind to different
receptors. Immunity genes have been found in E. coli T4
(imm) (Lu & Henning, 1989) and P1 (sim) (Maillou &
Dreiseikelmann, 1990) phages. The genes appear to
impair successful injection of phage DNA into the cell.
This mechanism could account for inhibition of phage
infection by phages using different receptors, but there is
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Fig. 7. Model of pseudolysogeny evolution. Continuous production of cured bacteria and release of phages from reactivated
lytic cycle in pseudolysogenic cells lead to the emergence of mutations. Single mutants (left) or double mutants (right)
selected by phage (phage A) result from the activation of a lytic cycle in a WT pseudolysogen or in a pseudolysogen already
containing a mutation, previously selected by another phage using a different receptor for infection (phage B), respectively.
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no evidence of such genes in our phages at the current
time. Further experiments are needed to understand at
which stage phage multiplication is inhibited.

Red Queen dynamics/arms race coevolution

Studies performed in chemostats have addressed the coevo-
lution dynamics of phage and bacteria in controlled growth
conditions (Betts et al., 2014; Buckling & Rainey, 2002).
Two possible outcomes were described in some assays
where prey and predators are left to evolve for a long
time. In the arms race, the fittest genotype survives and
this limits the diversity, whereas in the Red Queen
dynamics, frequency-dependent selection leads to constant
production of new mutants, thus maintaining diversity
(Dennehy, 2012). In our assay, which takes place in a
micro community, after several rounds of coevolution,
the population of free phages fluctuates, to the extent
that they may seem to almost disappear within the
colony. A large diversity of resistant mutants is selected
and eventually the colony will be phage-free. Reversion to
the WT phenotype is observed for alginate and LPS
mutants so that new preys will emerge. We observed,
with three phages, the presence of new phage genotypes
in pseudolysogens, all three showing one or two SNPs in
a tail fibre gene. The mutations were present in a subpopu-
lation of phages used to derive the resistant mutants, and
may have been selected during coevolution of phages and
bacteria. No particular behaviour of these phages as com-
pared with the parental phages could be demonstrated,
such as plaque morphology and growth characteristics.
However it is possible that these phages are capable of
inducing a pseudolysogenic stage at a higher frequency as
compared with the ancestral phage. Our results confirm
that success in infection is not sufficient for phage survival,
as phages are dependent upon the survival of their host
population (Chaturongakul & Ounjai, 2014) and therefore
phage/host relationships can be seen not as merely parasitic
but as mutualistic (Williams, 2013).

Cross-resistance and reversibility of mutants

We showed that mutations selected by phages were often
frameshift mutations known as phase variation (Hen-
derson et al., 1999). Frameshift mutations due to variation
in poly(A), poly(G) or poly(T) stretches have been
described in several bacterial genes as an adaptation mech-
anism to different environmental conditions and are
reversible when the selective pressure is no longer applied
(Segura et al., 2004). Natural mutations of mucA observed
in strains isolated from cystic fibrosis patients were phase
variation mutations (Spencer et al., 2003), or other frame-
shift mutations (Pulcrano et al., 2012), also resulting in
truncated proteins as seen in PAO1-02.

Interestingly, many of the mutations identified in this study
occur in the wzy/wzx-dependent pathway responsible for
the synthesis of LPS O-antigen (Islam & Lam, 2014) and

they are either single nucleotide indels or mutations. LPS
is composed of a lipid A membrane anchor, a core oligo-
saccharide linker and a distal polysaccharide termed
O-antigen, in the form of A and B bands (Taylor et al.,
2013). Both WT and mutant forms of wzy and mucA
genes were simultaneously found in the presently described
mutants, suggesting that the mutation can reverse at a high
rate. Constant variations in LPS and alginate biosynthesis
pathways may help P. aeruginosa face aggression or
environmental changes. This might be one explanation
for the ‘colonial dissociation’ frequently observed with
P. aeruginosa, characterized by colonial differences of a
single strain (Zierdt & Schmidt, 1964).

The different assays show that, depending on the phage

used, the selected mutants, obtained at a high frequency,

display a large variety of phenotypic changes related to

membrane permeability and cell motility. Hosseinidoust

et al. (2013a) described such phenotypes induced by two

phages which use type IV pili and LPS as receptors, but

they could not identify the mutations. Phenotypic changes

can alter bacterial virulence (Lyczak et al., 2000). Indeed,

we show that phage Ab09 often selects for mutants with

a mucoid phenotype, probably related to an increased

capability to produce alginates. In the context of cystic

fibrosis infection, mucoidy favours the formation of pro-

tected colonies with increased resistance to opsonization,

phagocytosis and destruction by antibiotics (Pritt et al.,

2007). It has been shown that alterations of a single band

or both bands of the O-antigen of P. aeruginosa PAO1

can give rise to mutants with increased cytotoxicity

mediated by the type III secretion system (Augustin

et al., 2007). In addition, changes in O-polysaccharide

expression in PAO1 affect the size and protein content of

outer membrane vesicles, and the formation of a robust

biofilm (Murphy et al., 2014).

A total of 25 components are involved in the type IV pilus
biogenesis (Kim et al., 2006). In the present small-scale
investigation we observed ten mutations affecting five
genes. Half of the mutations are irreversible deletions,
which contrast with the high frequency of reversible
phase variation mutations in LPS. This suggests that the fit-
ness cost of such mutants would rapidly lead to their elim-
ination and that phages using type IV pili as receptors
should be favoured for phage therapy. Several studies
have investigated the effect of type IV pilus mutations
and phage resistance. Interestingly, phage F6, a dsRNA
cystovirus of Pseudomonas syringae pathovar phaseolicola,
selects for several types of mutants that differ in the
number of type IV pili expressed per cell, but none of
the mutated genes is known to be directly involved in
type IV pilus expression (Sistrom et al., 2015).

Phage therapy is considered as a promising approach to
fight against antibiotic resistant strains (Abedon et al.,
2011). Either ready-made cocktails or ‘sur-measure’
phages will be used to treat patients, similar to what is
still done in several countries of Eastern Europe. It is
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important to investigate the risks linked to the use of
phages, particularly in the selection of bacterial mutants
that could show deleterious characteristics (Hosseinidoust
et al., 2013b) or drive the expression of undesirable bac-
terial virulence factors (Olszak et al., 2015). In a mouse
model of E. coli gut infection, it was proposed that virulent
phages remained inside bacteria in a pseudolysogenic state,
therefore becoming resistant to degradation and allowing
persistence of bacteria (Maura & Debarbieux, 2012;
Maura et al., 2012). It would be interesting to know
whether new variants emerge in such experiments. Alterna-
tively, some phages driving evolution toward loss of viru-
lence could be favoured if they exist (León & Bastı́as,
2015). Another concern is the potential role of phages in
horizontal transfer, which could be favoured by the long-
term maintenance of phage genomes inside the bacteria
during pseudolysogeny. Additional experiments are needed
to further investigate the fate of the phages and bacteria in
a pseudolysogen interaction.
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RESUME EN FRANÇAIS 

Les bactériophages sont des virus qui injectent leur génome dans une bactérie après fixation à des 

récepteurs sur la surface de celle-ci, puis effectuent un cycle de multiplication de leur ADN, la 

synthèse des protéines de structure, l’encapsidation du génome viral et la lyse de la bactérie. Les 

phages virulents réalisent uniquement des cycles lytiques alors que les phages tempérés peuvent 

également intégrer leur génome dans celui de la bactérie, donnant ainsi naissance à une bactérie dite 

lysogène. Les phages peuvent parfois être maintenus dans la bactérie sans effectuer un cycle lytique 

ni s’intégrer, dans un état encore peu compris, connu sous le nom de pseudolysogénie. 

Pseudomonas aeruginosa est une espèce bactérienne présente dans l’environnement et associée à de 

nombreux hôtes, végétaux et animaux. Elle est responsable de graves infections nosocomiales et on 

observe de plus en plus souvent des souches multirésistantes aux antibiotiques, ayant une grande 

capacité à former des biofilms, et en conséquence très difficiles à éradiquer. Il faut donc absolument 

trouver des approches thérapeutiques nouvelles telle que la phagothérapie. De nombreuses données 

cliniques obtenues dans les pays de l’est de l’Europe et en Russie attestent de l’efficacité et de 

l’innocuité de la phagothérapie, mais il reste des incertitudes en particulier concernant la nature et la 

fréquence des résistances naturelles. Notre projet vise à évaluer le potentiel thérapeutique des 

phages et à mieux comprendre la dynamique de leur interaction avec leur hôte.  

Nous avons étudié les mécanismes de résistance mis en place par la souche de P. aeruginosa, 

PAO1, à quatre bactériophages virulents appartenant à des genres différents: deux podovirus, Ab05 

(ФKMV-like) et Ab09 (LIT1-like), et deux myovirus, Ab27 (PB1-like) et Ab17 (KPP10-like), tous 

isolés par notre laboratoire. Des infections simples ou multiples de PAO1 ont été réalisées, et une 

collection de variants résistants aux phages a été isolée et étudiée. La fréquence des bactéries 

résistantes était de 10
-5

 pour l'infection par un phage seul et 10
-6

 pour les infections par des 

combinaisons de deux ou quatre phages. Le phénotype et la mobilité des variants résistants étaient 

fréquemment affectés. 
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Le génome de 27 variants a été entièrement séquencé par la technologie Illumina, et la comparaison 

avec le génome de la souche PAO1 a permis l'identification de mutations ponctuelles ou de petites 

indels. Quatre variants supplémentaires ont été caractérisés par une approche «gène candidat». Des 

mutations affectant 14 gènes différents et 1 région régulatrice ont été observées. Les gènes mutés 

codent pour des protéines impliquées dans la biosynthèse des pili de type IV (T4P) et des 

lipopolysacharides (LPS), très fréquemment utilisés comme récepteurs par les phages. Des 

mutations de la synthèse des alginates ont été également observées. La moitié des variants possède 

des mutations de variation de phase qui se sont révélées être instables. Par contre, les gènes 

impliqués dans la biosynthèse du T4P montrent des délétions stables. 

Nous avons aussi observé que la pseudolysogénie est une conséquence fréquente de l'infection par 

ces phages virulents et que la sélection de mutants (très souvent des mutants doubles) est favorisée 

par la production continue de phages par les pseudolysogènes. La présence d'ADN de phage libre a 

été observée en liaison avec l'exclusion de surinfection.  

Pour conclure, si les phages sélectionnent des bactéries résistantes possédant des altérations dans les 

gènes impliqués dans la biogenèse ou la régulation des déterminants de la virulence, celle-ci sera 

probablement modifiée, d'une manière bénéfique ou préjudiciable, ce qui reste à étudier. 

L'utilisation du cocktail par rapport à l’infection simple, ne réduit pas de manière significative la 

fréquence de la résistance aux phages et en outre, nous montrons que la pseudolysogénie est un 

acteur majeur de la sélection de mutations. 
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