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Abstract The prediction of solid motion evolving in a fluid presents a real
interest for engineering application such as ice accretion on aerodynamics bod-
ies. In this context, considering de-icing systems, the ice shedding trajectory
is needed to prevent the risk of collision/ingestion of the ice in/with some
sensitive part of the aircraft. This application raises many challenges from a
numerical point of view, especially concerning mesh generation/adaptation as
the solid moves in the computational domain. To handle this issue, in this
work the solids are known implicitly on the mesh via a level set function. An
immersed boundary method, called penalization, is employed to impose the
wall boundary conditions. To improve the resolution of these boundaries, the
equations are solved on adaptive unstructured grids. This allows to have a
refinement close to the solid boundary and thus increases the solid definition,
leading to a more accurate imposition of the wall conditions. To save com-
putational time, and avoid costly remeshing/interpolation steps, the strategy
chosen for unsteady simulations is to use a constant connectivity mesh adap-
tation, also known as r-adaptation

Résumé La prédiction de mouvement de solide évoluant dans un fluide
présente un réel intérêt pour des applications industrielles telle que l’accrétion
de glace sur des surfaces aérodynamiques. Dans ce contexte, en considérant
des systèmes de dégivrage, la prévision des trajectoire de glace est nécessaire
pour éviter des risques de collision/ingestion de glace sur/dans des zones sen-
sibles de l’avion. Ce type d’application soulève de nombreux challenges d’un
point de vue numérique, en particulier concernant la génération/l’adaptation
de maillage au cours du mouvement du solide dans le domaine. Pour gérer
ces difficultés, dans cette étude, les solides sont définis de manière implicite
via une fonction level set. Une méthode de type frontière immergée, appelée
Pénalization, est utilisée pour imposer les conditions de bords. Pour améliorer
la précision de l’interface, les équations sont résolues sur des maillages non
structurés adaptatifs. Cela permet d’obtenir un raffinement proche des bords
du solide et ainsi d’améliorer sa définition, permettant un meilleure imposi-
tions des conditions de bord. Pour économiser du temps de calcul, et éviter de
coûteuses étapes de remaillage/interpolation, la stratégie adoptée pour les sim-
ulations instationnaires est d’utiliser une adaptation de maillage à connectivité
constante, aussi appelée r-adaptation.

Keywords Penalization, Moving Bodies, Fluid Structure Interaction, Resid-
ual Distribution Schemes, Mesh Adaptation

Mots-clés Pénalization, Objets Mobiles, Interaction Fluide Structure, Sché-
mas aux résidus distribués, Adaptation de maillage

Laboratoire d’accueil INRIA Bordeaux Sud Ouest - Equipe CARDAMOM,
200 avenue de la vieille tour, 33405 Talence Cedex

RD schemes and penalization for ice shedding trajectories iii



iv Léo Nouveau



Acknowledgement

Cette thèse a été possible et s’est déroulée dans d’excellentes conditions grâce
à de nombreuses personnes que je tiens à remercier.

L’encadrement étant l’un des facteurs clé pour le bon déroulement d’une
thèse, mes remerciements vont en tout premier lieu aux personnes qui m’ont
encadré, apportés conseils et soutien durant ce projet.

Ce travail a été possible grâce à Héloïse et Cécile, qui après m’avoir pris en
stage, m’ont permis de continuer ces travaux à leur côté, en me proposant cette
thèse. Je les remercie énormément pour leur implication et le temps qu’elles
m’ont accordés. La porte de leur bureau m’a toujours été ouverte et j’ai partic-
ulièrement apprécié leur disponibilité pour m’apporter aides et conseils. Outre
le côté professionnel, je tiens également à les remercier pour leur attention et
leur soucis de ce que cette thèse m’apporterait, me remotivant chaque fois que
nécessaire. Pour toutes ces raisons, je tiens à leur dire un grand merci.

Ensuite, mes remerciements vont s’adresser à Mario, qui a accepté de
s’adjoindre à la direction de ma thèse en cours de route. Son expertise et
ses connaissances (qui m’impressionneront toujours!) ont été d’une aide pré-
cieuse. Il a toujours accepté de trouver le temps nécessaire pour répondre
à mes interrogations, y compris pendant ses week ends ou ses vacances. Je
resterais également impressionner par sa technique d’écriture au tableau qui
prend très rapidement un caractère plus qu’aléatoire! Pour son implication
dans mes travaux, pour son investissement dans mes projets d’après thèse, je
veux l’assurer de toute ma gratitude.

Je tiens également à remercier Rémi Abgrall qui malgré son départ à Zurich
a encadré ma thèse pendant la première année, et a toujours eu des commen-
taires avisés par mail ou au détour d’une conférence.

Cette thèse étant financé par le projet Européen STORM, je tiens à re-
mercier toutes les personnes impliquées et les différents partenaires, sans qui
les travaux de ces trois dernières années n’auraient pu être possible.

Je voudrais également remercier les différents membres du jury pour avoir
accepter d’évaluer mon travail, en particulier les deux rapporteurs, Pr. Scov-

v



azzi et Pr. Villedieu, pour leur lecture minutieuse de ce manuscrit ainsi que
leurs remarques et commentaires.

Au sein d’INRIA, j’ai pu travailler dans une ambiance assez extraordinaire,
et ce grâce à la contribution de nombreuses personnes.

Dans l’équipe CARDAMOM, j’ai particulièrement apprécié la bonne humeur
de Nico et Anne Laure qui m’ont apporté leur aide dans le micmac adminis-
tratif qu’apportait chaque mission et je les en remercie.

La bonne ambiance de notre Open Space (que je qualifierais plus de Little
Italie!) a toujours été au rendez vous, notamment grâce à Andrea et Luca qui
préféraient communiquer en criant (bien qu’ils qualifient ça de parler) plutôt
que de se déplacer, mais également Umbe, Nikos et Seb (qui durant les derniers
mois a du subir mes joies et désespoirs quand nous étions les deux derniers
présents le soir). Mais ça ne se limite pas uniquement à notre (génialissime)
open space. La présence de Andrea, Ghina, François, Algiane, Mickael, Maria,
Stevan, Quentin, Mathieu et les échanges que j’ai pu avoir avec Pietro ont
contribué à une ambiance que j’espère sincèrement retrouvé dans mes futurs
projets. De nombreux stagiaires ont également participé à la bonne humeur de
l’équipe au cours de ces 3 ans, et je remercierais parmi eux tout particulière-
ment Antoine Fondanèche qui m’a aidé pendant son stage de fin d’études et
permis d’économiser un temps qui m’a été précieux.

Je suis également extrêmement heureux des rencontres faites avec des per-
sonnes d’autres équipes avec qui j’ai passé de très bons moments (et pas néces-
sairement des soirées!), Charles, Chris, Jo, Lucille, Camille, Cyril, Adrien (et
tous ceux que j’oublie).

Evidemment, je me dois de remercier François Rué, qui a toujours énormé-
ment apprécié (j’en suis sur!) mes visites lors de problèmes de compilation ou
interrogations sur PlaFrim.

J’ai également eu la chance de pouvoir parler et décompresser (plus ou
moins souvent) avec de nombreux amis qui me sont chères, les Arnaud, KBesseau,
Gabby (le nombre de bières descendus pour révolutionner la recherche!), Mathilde,
Marina, Sonia, Marine, Boub, Thomas (et ceux que j’oublie). Merci à vous!
Un petit paragraphe spécial pour Clément, mon colloc, qui a presque réussi à
me convertir à LOL, mais je serais resté stoïque face à ses tentatives. Même si
pour qu’on se voit en semaine il fallait que je fasse l’effort (j’aurais peut être
du mettre des guillemets) d’aller au Swing Marine, j’ai "vla kiffé" ces 2 années
de collocation! Maintenant, tout ce que je peux espérer c’est que vous vous
occuperez bien de Karmeliet avec Nelson et Alice le temps que je la récupère!

En dernier lieu, j’adresse d’immenses remerciements (qui sont probable-
ment les plus importants) à ma famille, en commançant par mes parents. Sans

vi Léo Nouveau



eux, je n’en serais pas là aujourd’hui, et notamment grâce au soutien de ces
trois dernières années. Autant quand ça se passe bien on n’a pas grand chose
à raconter, autant quand les problèmes s’accumulent, on évacue, et c’est prin-
cipalement ce qu’ils ont entendus. Ils ont toujours porté un regard extérieur
et objectif qui m’a permis de relativiser et destresser un peu. Evidemment je
ne laisserais pas en reste ma soeur, mes grands parents, oncles, tantes, cousins
et cousines qui une fois passée les blagues de savoir si à force de chercher je
trouvais, ont toujours su l’importance et les enjeux de ces travaux, ainsi que la
quantité de travail demandé, spécialement dans des périodes de rush, même si
cela implique d’annuler sa présence au dernier moment pour les anniversaires.
Encore une fois, un grand merci à eux, j’ai la chance de faire partie d’une
famille formidable!

RD schemes and penalization for ice shedding trajectories vii



viii Léo Nouveau



Résumé Substantiel

Dans le contexte de la conception d’avions, un problème concerne leur ha-
bilité à empêcher ou limiter l’accrétion de glace et de proposer des systèmes
de dégivrage ou d’antigivrage. En effet, sous certaines conditions de vol, due
à la présence de gouttelettes d’eau dans l’air et de faible température, des
blocs de glace peuvent se former sur certaines zones d’un avion. Outre une
perte de performance aérodynamique, d’importants blocs peuvent se détacher.
Ce détachement est d’une importance capitale lors de la conception d’avion
étant donné les dommages que ces blocs peuvent causer. Les exemples cri-
tiques sont l’ingestion par un moteur ou la collision avec une zone sensible
de l’avion. La prévision des trajectoires est donc d’une très grande impor-
tance et est l’un des sujets d’étude du projet européen STORM, dont l’objectif
est d’améliorer les connaissances et outils numériques de différents aspects
touchant au phénomène du givrage.

Dans cette thèse, l’intérêt est porté sur le développement d’outils numériques
permettant la prévision des trajectoires des blocs de glace. Deux types de
modèles sont couramment utilisés, caractérisés par leur degré de fidélité. Le
premier type appelé ’low fidelity’ fait l’hypothèse que le bloc de glace n’influe
pas sur l’écoulement de l’air. Le deuxième type, appelé ’high fidelity’ propose
au contraire un couplage complet pour l’interaction fluide structure, et c’est
dans ce cadre que se situe la méthode adoptée. Dans cette approche ’high
fidelity’, trois grandes catégories de méthodes peuvent être référencées. La
première, bien que non appliquée dans la littérature au contexte spécifique
du givrage, propose une discrétisation explicite de l’objet dans le maillage, et
utilise des techniques de déformation de maillage et remaillage/interpolation
pour déplacer l’objet. La deuxième, communément appelée méthode chimère,
propose deux niveaux (au moins) de maillage. Le premier, plus grossier, dis-
crétise tout le domaine. Le second, plus fin, maille une zone restreinte proche
de l’objet, et contient une discrétisation explicite de la frontière. Cette zone
raffinée se déplace avec l’objet. Des interpolations d’un maillage à l’autre sont
ensuite effectuées à chaque pas de temps pour résoudre le problème. Le dernier
type de méthode appelé méthode de frontière immergée propose de mailler tout
le domaine indépendamment de la géométrie du solide considéré, qui est alors
connu implicitement via une fonction level set, et les conditions de bords sont
prises en compte différemment avec un terme source imposé soit au niveau
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discret soit au niveau continu. Les étapes de remaillage/interpolation bien
que limitées dans la première approche soulèvent les problèmes de temps de
calcul et/ou conservation, ce dernier point étant également retrouvé avec les
méthodes chimères à toutes les itérations en temps.

Dans ces travaux, étant donné l’absence de contraintes liées à la génération
de maillage pour des géométries complexes (connues implicitement), la Pénal-
isation, méthode de frontière immergée, a été employée. Pour également se
soustraire aux problèmes de remaillage/interpolation, il a été choisi de réaliser
les simulations sur grilles non structurées adaptatives. Cela permet en effet
d’améliorer la définition de l’objet en raffinant le maillage proche de sa fron-
tière, mais également la précision de la solution en adaptant à un paramètre
physique (vorticité par exemple). Bien qu’initiallement envisagée pour des
simulations instationnaires avec objets mobiles, une adaptation basée sur des
techniques de remaillage/interpolation a voulu être évitée. En effet, comme
rappelé précédemment, une telle approche peut facilement endommager la pré-
cision de la solution, il est difficile de garantir la conservation, et une telle
procédure peut se révéler très coûteuse, spécialement lors de simulations par-
allèles. C’est pourquoi une méthode d’adaptation de maillage à connectivité
constante a été mise en place, et les équations ont été résolues dans un for-
malisme Arbitrary Lagrangian Eulerian (ALE), permettant la construction de
schémas conservatifs et la prise en compte de la mobilité du maillage directe-
ment dans les équations. Les schémas employés se situent dans le cadre des
résidus distribués, et possèdent de nombreuses analogies avec les schémas El-
ements Finis Stabilisés.

En tout premier lieu (chapitre 2), pour montrer l’aspect compétitifs des
méthodes de frontières immergées sur maillage adapté avec des simulations
fittées (résolution des équations de Navier Stokes ’classiques’ sur maillage con-
tenant une discrétisation explicite de l’objet), des études stationnaires ont été
réalisées. Les schémas aux résidus distribués sont étendus à la Pénalisation via
une simple discrétisation de Galerkin du terme source correspondant. Un nom-
bre limité d’adaptation de maillages utilisant des métriques permettant le con-
trôle d’une erreur (approximation de la level set 0 ou erreur d’approximation
d’un paramètre physique) a été utilisée pour augmenter le degré de précision
de la solution. Différents exemples 2D et 3D prouvent la faisabilité d’une telle
approche.

L’étude a ensuite portée sur la résolution d’équations d’advection diffusion
(et appliqué au système Navier Stokes) sur des grilles fixes avec des schémas
aux résidus distribués (chapitre 3). Ces schémas ont ensuite été appliqués
au système d’équations de Navier Stokes Pénalisé (toujours sur grille fixe), le
terme source de Pénalisation étant cette fois traité via un splitting de Strang,
permettant une flexibilité dans le choix du schéma numérique et un ordre
théorique de deux. Deux calculs de force ont également été proposés. L’un,
spécifique au splitting, est basé sur un bilan de moment entre l’étape de réso-
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lution des équations de Navier Stokes et l’étape de Pénalisation. Le deuxième
correspond à l’interpolation depuis le maillage de calcul sur un maillage sur-
facique du solide de la pression et des contraintes de cisaillement pour effectuer
un calcul intégral sur cette surface. L’objectif de cette thèse étant de simuler
les trajectoires d’objets dont la position est régie par le deuxième principe
de Newton, ce calcul des forces est un élément clef. En effet, la trajectoire
est directement liée aux forces aérodynamiques. Des exemples ont permis de
mettre en avant la nécessité du traitement spécifique de la reconstruction des
gradients à l’interface fluide/solide. Cette théorie a été appliquée à l’étude du
détachement des allées de Von Karman derrière un cylindre et des cas tests
de Rayleigh. Les résultats ont permis de valider l’approche employée et les
calculs de force proposées.

Le coeur du sujet, à savoir la simulation d’objets mobiles a ensuite été
étudié, ainsi que la mise en place de la technique d’adaptation de maillage
instationnaire à connectivité constante. La première étape a été d’étendre
les schémas proposés au contexte ALE. Ils ont été validés sur des équations de
conservations d’advection diffusion scalaires et sur le système de Navier Stokes.

Pour l’adapation de maillage, en se basant sur la littérature, deux tech-
niques ont été étudiées, toutes deux basées sur une fonction monitrice. La
première propose d’assimiler le maillage à un matériau régi par le problème
d’élasticité. Une force définie comme le gradient de la fonction monitrice est
appliquée pour définir les zones de raffinement. La deuxième méthode quant
à elle utilise la fonction monitrice pour équidistribuer les points. La validation
du processus complet d’interaction fluide structure a été réalisé en différentes
étapes. La première a été de réaliser des simulations où la vitesse du solide
est connu analytiquement pour se comparer à la littérature et valider le cal-
cul des forces dans le cadre d’objets advectés sur grille adaptative (cylindre
et naca0015 oscillant). La deuxième étape a été de valider le couplage calcul
des forces aérodynamiques/vitesse du solide en comparant les résultats à la
littérature (cylindre tombant dans une cavité). Une fois ces résultats validant
notre méthode, l’application au givrage a été mise en place avec le cas test
du projet STORM correspondant au lâcher en soufflerie d’une forme de glace
dénommée GLC. Notre méthode n’étant pas couplée à un modèle de turbu-
lence, les simulations (2D) ont été réalisées avec un Reynolds inférieur aux
expériences effectuées en soufflerie et aux résultats obtenus par les partenaires
du projet STORM (ONERA et DLR). Cependant, les résultats ont montré
des comportements similaires aux données expérimentales et simulations du
DLR et de l’ONERA, à savoir une trajectoire quasi linéaire et une oscillation
de la forme de glace. Ces résultats, bien que préliminaires, ont démontré le
potentiel de l’approche proposée dans ces travaux, l’utilisation d’une méth-
ode de frontière immergée couplée à une adaptation de maillage à connectivité
constante.
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Chapter 1

Introduction

1.1 Motivation
The interest in CFD has greatly increased these last decades because it may
help the understanding and prediction of some physical phenomena. The range
of application is tremendous with industrial, environmental and medical pur-
poses.

In the specific context of aircraft conception, an issue concerns the ability
of the planes to prevent or limit ice accretion and to propose anti/de icing sys-
tems. Indeed, under some flight conditions, especially when passing through a
cloud (common situation at landing or take off), due to the presence of droplets
in the air and low temperatures, an accretion of ice may appear on some parts
of the plane. It may lead to dangerous situations according to the position and
amount of ice. In addition to a potential loss of aerodynamical performances,
ice blocks can be released (due to the use of a de icing system for instance). Ice
release is of concern to aircraft manufacturers because of potential ice debris
impact on aerodynamic surfaces and/or ingestion by engines. This concern is
under study within the European project STORM1 regrouping different indus-
trial partners and research centers. The aim of this project is to improve the
knowledge and the numerical tools concerning the whole inflight icing process :
from the ice accretion to the ice shedding trajectory prediction along with an
investigation on innovative ice protection systems. STORM ambition is to
provide a significant step forward in ice simulation and protection systems for
aircraft engines. In this PhD thesis, we are interested in the numerical tools
predicting ice block trajectories. There are generally two types of model used
to track shed ice pieces, which are distinguished by their level of fidelity. The
first type of model (“low-fidelity”) makes the assumption that ice pieces do not
significantly affect the flow field, and the second type of model (“high-fidelity”)
intends to take into account ice pieces interacting with the flow.

1European Union Seventh Framework Programme FP7/2007–2013 under grant agree-
ment no. 605180 http://www.fp7-storm.eu/
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1.2 Moving Object Simulation and Ice Shedding
Trajectory, State of the art

1.2.1 Low fidelity models

The main characteristic of those models is the strong assumption that the flow
is not affected by the solid. To compute the considered particle trajectory,
the forces acting on it are extracted from a database according to its posi-
tion, orientation and flow characteristics. The particle itself has no effect on
the surrounding airflow. The advantage of this type of model resides in the
use of classical CFD tools. However, the main drawback is the necessity to
have a priori a database containing aerodynamical forces and moments for
each specific solid shape studied. This requires either experiments in wind
tunnel (fastidious and expensive), either numerical computations, or empirical
models.

Following this idea, Chandrasekharan et. al. [42] used a modified water
droplet trajectory code to track trajectories of an ice disk and two ice debris. In
this study, the trajectories of the ice pieces were assumed to be dependant only
on drag. Nevertheless, for large ice fragments, lift and aerodynamic moments
can have a considerable influence on the trajectory. Three, four and six degree
of freedom (DOF) models have been developed to compute ice shedding tra-
jectories in 2D and 3D flowfields being uniform or non-uniform. Kohlman et.
al. [103] proposed a trajectory simulation method, based on a 4-DOF model,
to compute the trajectories of ice particles, represented by square plates of uni-
form thickness, into a uniform velocity field. Lift and drag were assumed to
be the main aerodynamic forces and the rotation was limited to a single axis.
Lift and drag were obtained from empirical correlations. Santos et. al. [144]
used a similar method, but the trajectories were calculated into a non-uniform
flow field around a wing. The initial position and velocity were varied, and
the probability of an ice collision with the aircraft surface at a location two
chords downstream of the leading edge was obtained. In those previous cited
models it was assumed that only drag force, lift and pitching moment act on
the ice particle. Initiated in 2003, a long-term research program at Wichita
State University (WSU) has been devoted to develop and validate ice shedding
analysis tools based on 4-DOF and 6-DOF model. For 6-DOF model not only
drag, lift and pitching moment act on the ice particle but also the side force,
rolling moment and yawing moment. Figure 1.1 shows a representation of the
force F (resultant of the normal, axial and side forces) and the moment M
(resultant of the rolling Mbx, pitching Mby and yawing Mbz moments) acting
on the ice fragment. More recently, Papadakis et. al. [129] presented a statis-
tical approach to perform trajectory computations for ice fragments that are
shed from the wing and fuselage surfaces of a business jet. They carried out
an experimental study of aerodynamic loads around a potential ice fragment
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Figure 1.1 – Forces and moment on ice particle - Papadakis et. al. [129]

(a) Ice shape (b) Ice shape

Figure 1.2 – Papadakis et. al. results [129]

and derived empirical correlations. A probabilistic approach has been used to
identify areas where ice fragments are most likely to strike the aircraft (Monte
Carlo study to take into account the uncertainties of the initial conditions and
the chaotic nature of the ice particle motion). Figure 1.2a presents one of the
ice shape used in [129] and figure 1.2b the results of the Monte Carlo study.
A similar approach has been proposed by Deschenes et al. [59] where the
database for the aerodynamic loads is provided by numerical simulations.

There is only very little experimental data to validate the trajectory sim-
ulations using low-fidelity models. During the master thesis of Shimoi [148]
at the Wichita State University a series of different geometries where released
into the free-stream of a wind tunnel test section and the comparison between
simulation and experiment is convincing. There is currently no experimental
data available for ice debris particles in the vicinity of an aircraft.

RD schemes and penalization for ice shedding trajectories 3
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1.2.2 High fidelity models

The second type of approach, is based on a time accurate, full fluid struc-
ture interaction between the ice particle and the surrounding flow. In this
state of the art, it is proposed to classify the different possibilities provided
in the literature into three main kinds. The first one, that has not yet been
applied to ice shedding trajectory, proposes an accurate resolution of the in-
teraction by discretizing the solid inside the whole domain and by displacing
it using some moving moving mesh techniques or remeshing. The second one,
commonly called overlapping grids or Chimera method, is a nice alternative
without remeshing. Two meshes are considered, a fine one containing an ex-
plicit discretization of the solid to solve accurately FSI, and a second one,
coarser, discretizing the whole domain. Interpolations are performed from one
to another at each time step. The last one, in which this work is included is
called Immersed Boundary (IB) methods. IB methods are characterized by
the absence of an explicit discretization of the solid into the mesh : the solid
is then known implicitly.

1.2.2.1 Moving Mesh/Remeshing

When dealing with moving bodies, an idea could be to remesh at each time
step according to the new position of the solid. However, this kind of approach
presents some disadvantages as reported in [95]. The first one is the necessity
of a remeshing software at each time step which can considerably increase the
computational time. For (massively) parallel computations, the distribution
of the new mesh to each processor is not an easy task and may emphasize this
problem. The second one is the need of an interpolation procedure at each
time step from the old mesh to the new one, that can severely impact the
accuracy of the solution.

To overcome those difficulties, Johnson and Tezduyar proposed, in case
of small movements, to only displace the nodes in the vicinity of the solids
according to an elasticity law and they have formulated a Deformable Spatial-
Domain/Stabilized-Space-Time (DSD/SST) finite element formulation. How-
ever, when displacements lead to element distortion, a remeshing procedure is
necessary (this is performed only a limited number of times). Two dimensional
results can be found in [95] for the study of flow past one or two oscillating
naca airfoils and three dimensional simulations of multi spheres falling in a
tube are reported in [96]. Based on the same idea, several works have been
proposed in the literature among which the study of an elastic beam in a flow
by Khurram and Masud in [99] or the study of parachute systems by Kalro and
Tezduyar [97]. One can also see the work of Alauzet and co authors [16, 15].
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1.2.2.2 Chimera methods

The idea of this method is based on overlapping grids [111], one grid to per-
form an accurate resolution close to the solid, and another one to solve the
fluid flow on the whole domain (more than two grids can be used according
to the complexity and degree of accuracy required). The usual procedure is
to use interpolations of overlapping boundaries to provide the necessary com-
munication between the different grids. However, this method has several
shortcomings such as the loss of conservation, extra cost due to interpolations
and locally reduced accuracy due to mismatched cell sizes between the com-
putational meshes. However, it does not require any remeshing/moving mesh
procedure.

An overset unstructured grid methodology was applied by Morton et. al.
[119] to solve steady state and DES simulations around an aircraft C-130 H
and a ringslot extraction parachute (illustration figure 1.3). The method based
on unstructured hybrid overlapping grids and solving the Unsteady Reynolds-
Averaged Navier-Stokes (URANS) equations together with the flight mechan-
ics equations has been validated for the simulation of store release trajectories
interacting with a vortex flow of a military transport aircraft [145]. The sim-
ulations have been compared to dedicated wind tunnel experiments showing
a good agreement for the time interval of interest. An alternative numerical
approach to overset grids is proposed by Baruzzi et. al. [25]. At each time
step, the displacement and rotation of the moving domains is computed. The
moving domains containing the ice pieces are displaced and amalgamated into
the fixed background mesh using a hole-cutting and stitching algorithm, see
figure 1.4. The aim is to eliminate interpolations between domains and insur-
ing flux conservation across the entire domain. In the context of the STORM
project, DLR1 and ONERA2 propose this kind of approach as high fidelity
model. Their result will be compared to the experiments performed by DLR
in wind tunnel and provide a basis of comparison for the proposed approach.

1.2.2.3 Immersed Boundary methods

The present work belongs to the third kind of approach to deal with moving
bodies that are the IB methods. This kind of method is characterized by
an implicit definition of the solid. When coming to the discretization of the
domain, instead of having an explicit discretization of the solid such as required
by the two previous proposed approaches, the domain is discretized without
considering the solids. Those solids are known via a level set function (see
figure 1.5).

This approach was introduced by Peskin in 1971 [130] for the study of

1National aeronautics and space research centre of the Federal Republic of Germany
2French aerospace research center
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Figure 1.3 – Overset grid system for of the C-130H and extraction parachute
after cargo release from Morton et. al. [119]

Figure 1.4 – Left : Chimera approach - Middle : Hole cutting - Right : Amal-
gamated domains after hole-cutting and stitching from Baruzzi et. al. [25]

Figure 1.5 – Immersed boundary (blue) in a cartesion uniform mesh
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flow around heart valves. Since then, it has become a very active field of
research, mainly for the easy way of handling complex geometries and moving
bodies. The initial contributions started on cartesian grids, because of the
advantages provided by such grids : simplicity, ease of implementation and
parallelization. Exhaustive reviews are proposed by Mittal and Iaccarino in
2005 [117] and Sotiropoulos and Yang in 2014 [150]. The large range of IB
methods provided by the literature can be regrouped into two classes : direct
forcing methods and continuous forcing methods.

The first category is defined by the presence of the Boundary Condition
(BC) at the discrete level. The equations are discretized and only then, the
BC are introduced. One of the common technique is the cut-cell finite volume
approach, where the cells intersected by the IB are tracked, splitted and then
merged with neighbour ones. Local geometry interface is recovered, and the
schemes are conservative [44, 159, 163, 102]. However, the main drawback is the
complexity involved by three dimensional cases as many geometrical patterns
can be obtained for cut cells. Specific treatment is addressed with 3D results
in [102]. Another technique is the ghost-cell approach. Ghost-cells are cells
inside the solid that have one neighbour in the fluid. Values of the solution
are extrapolated from the fluid mesh into those ghost cells so as to impose
appropriate BC at the interface [113, 73, 158, 77]. One of the advantages for
those two techniques is the relative ease to increase the order of accuracy to
account for the BC.

The second class of IB method is characterised by the imposition of the
BC via a source term directly in the governing equations. In the classical IB
method [130], the IB enforces the BC using a smooth distribution function,
whom definition has been studied to increase the accuracy of the approach
[30, 143]. As mentioned in [117, 150], this formulation is better suited for
elastic boundaries than rigid ones.

Another technique in the continuous forcing approach, designed for solid
bodies is the Penalization, subject of this work. The main idea of the method
and relevant references are given in the following lines, the equations will be
given in section 2.1.2. The principle was initially introduced by Brinkman
in 1947 [34] for a swarm of particle. In this work, the swarm of particles is
assimilated to a porous mass and then ruled by the Darcy’s law. Brinkman
modified the incompressible Stokes equations by inserting a term such that
Darcy’s law is recovered for this swarm of particles. This work led to the so
called Brinkman Navier Stokes equations or Penalization where a Darcy drag
term is added into the equations. The solid is thus considered as a porous
media with a very small permeability λ, the added forcing term taking the
form : F = 1

η
χsu, where χs is the mask function of the solid. The theoret-

ical framework has been given by Arquis and Caltagirone in [21] and more
recently Angot et. al. performed an estimate of the error induced by penaliza-
tion along with the efficiency of the method in [18]. Flow around motionless

RD schemes and penalization for ice shedding trajectories 7
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Figure 1.6 – Structured Mesh Refinement, Roma et. al.[141]

bodies have been studied with such a technique on cartesian grids by Liu and
Vasilyev in [110], Boiron et. al. in [32], and using adaptive mesh refinement
(AMR) by Khadra et. al. [98]. Moving bodies simulations have been proposed
by Kolomenskiy and Schneider [104] for falling solids, and in the context of
ice shedding trajectories, this technique has been employed by Beaugendre,
Morency and co author in [26, 118]. Simulations on adapted unstructured
grids have been proposed by Abgrall et. al. in [4].

A general issue considering IB method on cartesian grids is the difficulty to
define properly the IB on the background mesh. Even if high order accuracy
imposition is proposed, the geometry of the interface may not be accurate.
Increasing the number of nodes around the interface allows a better accuracy,
however, such refinement is not straigh forward on cartesian meshes. A uniform
mesh refinement being inefficient, as finer areas far from the solid may not be
necessary, work has been done on local Cartesian grid refinement. However,
those techniques implies non conformal mesh, and thus have to be handled
carefully, as proposed by Roma et. al. in [141] (see figure 1.6) or De Tullio et.
al. in [57].

To overcome this difficulty IB methods have been applied recently on un-
structured meshes. Indeed, this idea has become more and more popular
because of the simplicity to refine area of the computational domain or to
use mesh adaptation techniques. The work of Hachem et. al. proposed an
immersed stress method on adapted meshes [82]. In [68], Farhat et. al. de-
fine a refined area around the considered body at the initial position. Using
translation and rotation, this refinement is moved with the solid, keeping the
same accuracy all along the simulation. Other approaches to deal with moving
bodies involving remeshing have been proposed, such as the work of Zhou et.
al. in [164], where triangles are divided/merged according to the position of
the solid and the solution, or Jannoun’s PhD [94] that proposes a remeshing
technique based on metrics.
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1.3 Description of the proposed approach

The goal of this study is to provide an efficient and accurate way of performing
simulations involving moving bodies, that would provide an innovative back-
ground for high fidelity methods. The previous state of the art intends to
motivate the use of an IB method, and more specifically the penalization on
unstructured grids. As mentioned previously, the combination of immersed
boundary method and unstructured grids gives the possibility to use mesh
adaptation techniques that allows an accurate definition of the interface, with
a limited number of nodes. The question that has not been addressed in the
previous section 1.2 is the mesh adaptation strategy that should be adopted for
such applications. Two main strategies not detailed here can be employed (non
exhaustive state of the art are given in the concerned parts of this manuscript,
sections 2.2 and 4.2). The first one consists in performing a remeshing of the
domain (or part of the domain) and interpolation procedures update the so-
lution from one mesh to another. This strategy has been employed in this
work for solving steady simulations as powerful techniques have been already
proposed in the literature (see section 2.2), and because the remeshing is per-
formed only to increase the accuracy of the solution at the steady state, and
is thus performed a limited number of times. However, when dealing with
moving bodies, the same drawbacks than formulated in the previous section
1.2.2.1 are raised (necessity of remeshing, that is time consuming, and interpo-
lation procedures at each time step, that can easily damage the accuracy of the
solution). Therefore, a new approach based on a constant connectivity mesh
adaptation procedure (r-adaptivity) combined to the Arbitrary Lagrangian
Eulerian (ALE) framework without remeshing and interpolation steps is pro-
posed. In addition, when coming to parallel computations, keeping the number
of degrees of freedom constant allows to keep the same load balancing on the
processors.

In this manuscript, to prove the potential provided by the proposed ap-
proach, laminar academic test cases are simulated before an application to a
two dimensional ice shape. The final simulations propose a full fluid structure
interaction, where the motions of the solids are ruled by the forces exerted
on it. To simulate realistic ice shedding trajectories, the missing tool is a
turbulence model to account for realistic Reynolds number.

1.4 Thesis Contributions and Manuscript orga-
nization

The main contributions of this PhD along with the related publications are
described here. The developments have been performed in the INRIA compu-
tational code RealFluids, that was at the beginning of this thesis solving the
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Steady Navier Stokes equations using high order residual distribution schemes
(a state of the art is provided section 2.3.1). Thus, the main contributions of
this work can be described as follows :

• Residual Distribution Framework and IB : To begin, the residual
distribution framework has been extended to the penalization, in the con-
text of steady problems. Then, the schemes proposed by De Santis in his
PhD [56] have been extended to the resolution of unsteady simulations,
only the second order accuracy case being considered. A splitting ap-
proach has been formulated to remove CFL constraint associated to the
penalization, allowing the possibility to employ explicit schemes. Finally,
ALE schemes have been proposed to solve advection diffusion problems
(second order case), and applied to the resolution of the penalization in
the context of moving solids.

• r-adaptation strategy : A combination of existing r-adaptivity tech-
niques has been performed, leading to an approach where the mesh is
assimilated to an elastic material on which forces are applied according
to the localisation of the embedded boundary and physical phenomena.

The publication and conferences reporting the results obtained during this
work are listed hereafter :

• Journals :

� L. Nouveau, H. Beaugendre, C. Dobrzynski, R. Abgrall, M. Ricchiuto. An
adaptive, residual based, splitting approach for the penalized Navier Stokes
equations. Computer Methods in Applied Mechanics and Engineering, 303
: 208-230. 2016. http://www.sciencedirect.com/science/article/pii/
S0045782516300019

� R. Abgrall, H. Alcin, C. Dobrzynski, H. Beaugendre, L. Nouveau. Resid-
ual Schemes Applied to an Embedded Method Expressed on Unstructured
Adapted Grids. Acta Aerodynamica Sinica, 34(02) p214–223, 2016. http:
//html.rhhz.net/KQDLXXB/2016-02-214.htm

• Proceedings :

� L. Nouveau, R. Abgrall, H. Alcin, H. Beaugendre, and C. Dobrzynski. Residual
Distribution Schemes for Penalized Navier Stokes Equations on Adapted Grids,
ECCM V - ECFD VI. Barcelona, Spain, July 2014.

� R. Abgrall, H. Alcin, H. Beaugendre, C. Dobrzynski, and L. Nouveau. An
adaptive ALE residual based penalization approach for laminar flows with
moving bodies. 8th International Conference on Computational Fluid Dynam-
ics. ICCFD8-2014-0166, Chengdu, China, July 2014
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• Technical Report :

� L. Nouveau, H. Beaugendre, M. Ricchiuto, C. Dobrzynski, R. Abgrall. An
adaptive ALE residual based penalization approach for laminar flows with
moving bodies. RR N 8936. INRIA, 2016. https://hal.inria.fr/hal-01348902

• Conferences :

� L. Nouveau, M. Ricchiuto, H. Beaugendre, C. Dobrzynski, R. Abgrall. An
adaptive, residual based splitting approach for the time dependent penalized
Navier Stokes equations. ECCOMAS VII, 2016, Hersonissos, Creete.

� L. Nouveau, M. Ricchiuto, H. Beaugendre, C. Dobrzynski, R. Abgrall. An
ALE residual distribution approach applied to the penalized Navier Stokes
equations on adapted grids for moving solids. CANUM 2016, Obernai, France.

� L. Nouveau, R. Abgrall, H. Alcin, H. Beaugendre, C. Dobrzynski. Residual
Distribution Schemes for Penalized Navier Stokes Equations on Adapted Grids.
ECCOMAS VI, 2014, Barcelona, Spain.

The Manuscript is organized into three chapters. The first one provides
results concerning steady penalized results on adapted mesh and is divided into
three main topics. To begin, section 2.1 gives a formulation of the penalized
Navier Stokes equations. Then, the mesh adaptation strategy adopted for
steady simulation, that is a metric mesh based adaptation, is presented in
section 2.2. Finally, in the last section 2.3, the resolution of the equations
using a residual based approach on adapted grids is proposed .

The second chapter is devoted to the resolution of unsteady simulations,
but considering motionless bodies. In a first section 3.1, the schemes em-
ployed are extended to unsteady simulations, starting from a scalar conserva-
tion law. Convergence studies are performed for a scalar problem and Navier
Stokes equations. Then, in section 3.2, the splitting approach used to solve
unsteady penalized Navier Stokes equations is presented. Simulations on fixed
grids adapted only at the interface fluid/structure are proposed to validate the
method.

In the last chapter, the approach for simulations involving moving bod-
ies is presented. In section 4.1, Arbitrary Lagrangian Eulerian methodology
is proposed, beginning with a recall on the principle. Then a formulation of
the schemes in this framework, from the scalar advection to the Navier Stokes
equations is proposed. The r-adaptation strategy employed is described in sec-
tion 4.2. Finally, penalized simulation involving moving bodies are presented
in section 4.3 to demonstrate the advantages proposed by the present study.

A final chapter will conclude and present the opportunities opened by this
work.
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Chapter 2

Steady Penalized Navier Stokes
Equations

The focus of this first chapter is the methodology employed to solve the penal-
ized Navier Stokes equations for steady problem. After defining the equations
involved, the metric based mesh adaptation strategy is presented. A (non
exhaustive) state of the art regrouping the main contribution to this field is
proposed and a recall of the theory for our specific application is given. The nu-
merical schemes, that are the residual distribution schemes, used to discretize
the equations are then defined. A state of the art referencing the different
contributions and more specifically the ones concerning the context of advec-
tion diffusion problems is provided. Those schemes are then extended to the
penalization theory and some results proving the ability of the combination pe-
nalization/mesh adaptation to provide competitive results in comparison with
"classical" approach are given.

13



2.1. Problem Statement

2.1 Problem Statement

In this section, the equations ruling the considered problem are presented. The
Navier Stokes (NS) system of equations is described, and the way of introduc-
ing Boundary Conditions (BC) for classical fitted resolutions is recalled, to
introduce the penalized NS equations, subject of this PhD. A presentation of
the dimensionless formulation of the problem is then provided. Finally, scalar
conservation laws are presented, simplified model of the problem, that will be
used to develop numerical tools.

2.1.1 Physical Model, Navier Stokes equations

2.1.1.1 Navier Stokes Equations

The dynamic of a compressible flow taking into account the viscous and ther-
mal diffusion is described by the system of Navier Stokes (NS) equations,
composed with the following set of equations :

∂ρ

∂t
+ ∇ · (ρv) = 0

∂(ρv)

∂t
+ ∇ · (ρv⊗ v + pI) = ∇ · S

∂(ρe)

∂t
+ ∇ · ((ρe+ p)v) = ∇ · (Sv− q)

(2.1)

ρ denotes the density, v the vector of velocities, p the pressure and e the total
energy. I denotes the identity matrix, S is the viscous stress tensor and q is
the heat flux.
For a Newtonian fluid, the stress tensor is given by :

S = λtr(E) + 2µE (2.2)

where µ is the viscosity and λ linked to µ by 3λ + 2µ = 0. E is the tensor of
deformation :

E =
1

2
(∇v + (∇v)T ) (2.3)

The heat flux is ruled by the Fourier law :

q = −κ∇T (2.4)

where T is the temperature and κ the thermal conductivity. In the system
(2.1), the first equations corresponds with the mass conservation equation,
the second with the momentum conservation equations and the third one with
the energy conservation equation.
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2. Steady Penalized Navier Stokes Equations

Those equations need additional relations to close the system, that will be
defined by the choice done to describe the gas. The simplest way is to consider
perfect gas, that is a good approximation of real gas behaviour at low pressure
and high temperature. Some more complex state laws could be use, out of
the scope of this PhD (see for instance [5] where Peng–Robinson–Stryjek–Vera
and Span–Wagner models are employed to perform simulations).
The internal energy ε is linked to the temperature T via the constant gas R
and the specific heat ratio γ = cp/cv, cp and cv being the specific heats at
constant pressure and volume :

ε = cvT =
R

γ − 1
T (2.5)

The pressure p is linked to the density ρ via :

p = ρRT (2.6)

and the sound velocity c is :

c =

√
γP

ρ
(2.7)

The internal energy is linked to the total energy and the velocity by :

e = ε+
||v||2

2
(2.8)

This system of equations (2.1) is commonly expressed over a matrix conserva-
tive form :

∂u
∂t

+ ∇.FEul(u) = ∇.GNS(u,∇u) (2.9)

where u is the vector of conservative variables, FEul is the Euler (advective)
flux and GNS(u,∇u) is the viscous flux, which depends not only on u, but
also on its gradient ∇u. The Euler Jacobian A = ∇uFEul is introduced and
the viscous flux can be written over the form :

GNS(u,∇u) = K(u)∇u (2.10)

leading to the following expression of the NS system of equations :

∂U
∂t

+ A ·∇u−∇ · (K(u)∇u) = 0 (2.11)

A and K are tensors. We denote m the number of equations and d the dimen-
sion (m = 2 + d), and as laminar flows are considered, no additional equations
associated to a turbulent model are introduced. Thus, the sizes of A and K
are respectively m×m× d and m× d×m× d. Detailed expressions of those
tensors are given appendix A.
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Figure 2.1 – Boundary Condition

2.1.1.2 Boundary Conditions

When considering the resolution of NS problems, additional equations are in-
troduced to take into account the presence of obstacle, or to simulate infinite
domain. Inflow and outflow are usually employed to model the physics on the
boundary of the computational domain, and the modelisation of the solid needs
to be characterized according to the willing simulations. For instance, looking
at figure 2.1, three boundary conditions need to be imposed. The surface Γ
delimiting the obstacle must provide informations w.r.t. the characteristic of
the solid. In the present example, adiabatic boundary conditions are required,
characterized by null velocity and normal heat flux, defined by the following
set of equations : {

v |Γ= 0

q · n̂|Γ = 0
(2.12)

where n̂ corresponds to the normalized normal.
As said in the introduction, the penalization is an Immersed Boundary

(IB) method. Such additional equations are not required (at least for the solid
defined by the IB), the boundary conditions (BC) being directly modelled
inside the set of equations, as presented in the next section.

2.1.2 Penalized Navier Stokes equations

2.1.2.1 Modification of the equations

This work deals with the IB method called Penalization. Thus, when coming
to the discretization of the problem, the solids are not explicitly present on
the mesh and the BCs are imposed in a different way. For penalization, the
principle is to consider the BCs by adding a volumetric source term directly
into the equations. It modifies the Navier Stokes into the so-called Penalized
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2. Steady Penalized Navier Stokes Equations

or Brinkman Navier Stokes equations [18, 4] :

∂ρ

∂t
+ ∇ · (ρv) = 0

∂(ρv)

∂t
+ ∇ · (ρv⊗ v + pI) +

1

η

Ns∑
i=1

χSiρ(v− vSi) = ∇ · S

∂(ρe)

∂t
+ ∇ · ((ρe+ p)v) +

1

η

NS∑
i=1

χSiρ [(v− vSi) · v + θSi(ε− εSi)] = ∇ · (Sv− q)

(2.13)
Ns is the number of solids and χSi their characteristic functions. vSi , εSi and
TSi correspond to the velocities, energies and temperatures of the solids. θSi
is set to 0 or 1 so as to impose or not condition on the temperature. η is
the penalty parameter and chosen very small ( 1

η
� 1). The accuracy of the

method depends on the value of η [18]. In the simulations, the parameter is
set to η = 10−10. The matrix form of the system (2.13) writes :

∂u
∂t

+ ∇.FEul(u) + S = ∇.GNS(u,∇u)

S =
1

η

N∑
i=1

ρχSi

 0
v− vSi

(v− vSi) · v + θSi(ε− εSi)

 (2.14)

The question is now the definition of the characteristic function χSi . In
this work, the Signed Distance Function is employed to capture on the mesh
the position of the solid.

2.1.2.2 Signed Distance Function

The signed distance function corresponds to the distance of the considered
point of the mesh to the explicit surface of the object with a sign to precise if
it is an inner or outer point. It can be define as follows :

Definition 2.1. Signed Distance Function
Let Ω1 ⊂ Ω2 delimited by the surface Γ. The signed distance function ψ(x) is
defined as :

ψ(x) =

{
d(x,Γ) if x ∈ Ω2 \ Ω1

−d(x,Γ) if x ∈ Ω1

(2.15)

with d the distance from the point x to the surface Γ (see figure 2.2).

This signed distance function can be computed in several way. Here we
require the SDF to be negative inside the solid and positive outside. Thus, let
define the inside of the solid by a domain Ω :

Ω = {x ∈ Rd|ψ0(x) < 0} and ∂Ω = {x ∈ Rd|ψ0(x) = 0} (2.16)
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Figure 2.2 – Signed Distance Function

with d the number of space dimensions and ψ0 a continuous function. The
SDF is the solution of the unsteady Eikonal equation :

∂ψ

∂t
+ sgn(ψ0)(||∇ψ|| − 1) = 0 ,∀t > 0,x ∈ Rd

ψ(t = 0,x) = ψ0(x),∀x ∈ Rd
(2.17)

This can be solved with several methods. The one chosen here is the one
proposed by Dapogny and Frey in [55] based upon the characteristic method
giving the approximated solution :

ψ ≈


ψ0

(
x− dt ∇ψ0

||∇ψ0||

)
+ dt, for x ∈ cΩ

ψ0

(
x + dt

∇ψ0

||∇ψ0||

)
− dt, for x ∈ Ω

(2.18)

2.1.3 Dimensionless form of the equations

For numerical purposes, the equations are written in a dimensionless form.
The process is the following : for each physical variable Vp we set :

Vp = ṼpVpr (2.19)

where Ṽp is the dimensionless variable and Vpr is the reference variable.
Let Lr, vr, tr be the reference length, velocity and time linked by vr = Lr/tr.
We can define the following dimensionless operators :

∂

∂t̃
=
Lr
vr

∂

∂t
∇̃ = Lr∇ (2.20)

and variables :

ρ̃ =
ρ

ρr
, ũ =

u
vr
, ẽ =

e

er
, T̃ =

T

Tr
, p̃ =

p

pr

µ̃ =
µ

µr
, κ̃ =

κ

κr
, R̃ =

R
Rr

, c̃v =
cv
cvr
, c̃p =

cp
cpr

(2.21)
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2. Steady Penalized Navier Stokes Equations

With those definitions, we can recast the penalized NS equations as :

∂ρ̃

∂t̃
+ ∇̃.(ρ̃ũ) = 0

∂(ρ̃ũ)

∂t̃
+ ∇̃.

(
ρ̃ũ⊗ ũ +

[
pr
ρrv2

r

]
p̃I
)

+ tr
1

η

NS∑
i=1

χSi(ρ̃ũ− ρ̃ũSi) =
1

Rer
∇̃.σ̃

∂(ρ̃ẽ)

∂t̃
+ ∇̃.

(
(ρ̃ẽ+

[
pr
ρrer

]
p̃)ũ
)

+ tr
1

η

NS∑
i=1

χSi [θSi(ρ̃ε̃− ε̃Si) + (ρ̃ũ− ρ̃ũSi).ũ] =

1

Rer
∇̃.

([
v2
r

er

]
σ̃ũ− 1

Prr

[
cprTr
er

]
q̃
)

(2.22)
where

Rer =
ρrvrLr
µr

, P rr =
µrcpr
κr

(2.23)

are the reference Reynolds and Prandtl numbers. To reduce the number of ref-
erences quantities to choose, we require both relations between square brackets
and the reference Prandtl number to satisfy :

pr
ρrv2

r

= 1,
v2
r

er
= 1, P rr = 1 (2.24)

Obviously, the closure equations that are here the Perfect Gas law also need to
be rewritten in dimensionless form. The aim is to limit the number of reference
variables to 4. Here the choice made is to use the following set of reference
quantities :

(ρr, vr, Tr, Lr)

For constant viscosity, we also set : µr = µ, leading to µ̃ = 1. Now, let us
rewrite the different relations coming from the PG law. First, we consider
relation (2.6) :

p = ρRT ⇒ p̃pr = ρρ̃R̃RrT̃ Tr

p̃ =

[
ρrRrTr
pr

]
ρ̃R̃T̃

By imposing that the fraction between bracket is equal to one, we obtain :

Rr =
pr
ρrTr

=
v2
r

Tr
(2.25)

The reference energy er(= v2
r from (2.24)) is used to compute the dimensionless

internal energy ε̃. Thus equation (2.5) writes :

ε = cvT ⇒ ε̃v2
r = c̃vcvr T̃ Tr

⇒ ε̃ =

[
cvrTr
v2
r

]
c̃vT̃
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Requiring the bracketed quantity to be equal to one, we obtain cvr = Rr (using
2.25), which gives the following dimensionless specific heats :

c̃v =
R̃

γ − 1
, c̃p =

γR̃
γ − 1

(2.26)

The speed sound calculated from pressure and density (2.7) can be written as :

c̃vr =

√
γp̃pr
ρ̃ρr

, and so

c̃ =
1

vr

√
pr
ρr

√
γp̃

ρ̃

leading to (using (2.24)) :

c̃ =

√
γp̃

ρ
(2.27)

Finally, the dimensionless thermal conductivity is defined. Recalling that the
reference Prandtl number is set to 1 (2.24) : κr = µcpr and thus :

κ̃ =
κ

κr
=

κ

µcpr
=

κ

µcp
c̃p

κ̃ =
c̃p
Pr

(2.28)

with Pr the Prandtl number Pr = µcp
κ
.

The final set of relations in dimensionless form is :

p̃ = ρ̃R̃T̃ , ε̃ = c̃vT̃ , κ̃ =
c̃p
Pr

c̃ =

√
γp̃

ρ̃
, c̃p = γc̃v =

γR̃
γ − 1

(2.29)

2.1.4 Simplified Model - Scalar Conservation Law

The Navier Stokes system of equations is quite complex to solve. A common
procedure when developing numerical tools is to begin with simplified model
problems. For instance, scalar conservation laws can be employed as a general
framework. During this work, new developments, such as the extension of the
schemes to unsteady problems or in the ALE framework, have been initially
performed for a scalar advection equation of the form :

∂u

∂t
+ ∇ ·F(u) = 0 (2.30)

20 Léo Nouveau



2. Steady Penalized Navier Stokes Equations

where F is the advective flux. Assuming a differentiable solution, the Jacobian
of this flux can be introduced a(u) = ∇uF and the equation can be written :

∂u

∂t
+ a(u) ·∇u = 0 (2.31)

Two cases can be considered here, the first one is the linear advection, and a
is a constant vector. The second possibility is to define a non linear flux and
the advection velocity is in this case dependent on the conservative variable u.
A well known example is the Burger equation, a(u) = (u, u)T .

The advection diffusion can then be defined by :

∂u

∂t
+ ∇ ·F(u) = ∇ · (K∇u) (2.32)

where K is a diffusion matrix. This latest equation (2.32) is considered as
a simplified version of the NS system. Concerning the diffusive part, the
simplest case is to consider an isotropic diffusion, defining the matrix diffusion
K homogeneous to the identity matrix : K = νI, ν being associated to a
viscosity. Thus, a non linear advection diffusion problem writes :

∂u

∂t
+ ∇ ·F(u) = ν∆u (2.33)
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2.2 Mesh Adaptation for Steady Simulation

2.2.1 State of the art

For steady simulations, a metric based adaptation is employed. As explained
in the introduction, the use of IB technique on unstructured grids is mainly
motivated by the possibility to perform mesh refinement or mesh adaptation.
Indeed, the accuracy of the imposition of the BC is directly linked to the de-
gree of precision the solid is implicitly described. Thus, the first aim of the
mesh adaptation is to propose a refined area close to the interface so as to
have a precise definition of the solid via its characteristic function. In addi-
tion, we adapt with respect to (w.r.t.) variations of a chosen physical variable
to improve the resolution of the physics and accurately capture some physical
phenomena (e.g. shocks) with a limited CPU time overhead. This mesh adap-
tation technique aims at controlling an error (of the approximated solution
for instance when dealing with physical adaptation) by modifying the mesh.
The basic principle is to find a good error estimator to be able to prescribe
sizes and directions at the nodes of the mesh. It is very well suited to gen-
erated anisotropic meshes, characterized by their possibility to have stretched
elements if different sizes are imposed in the different directions. Anisotropy is
very efficient because allows to reduce a lot the number of nodes in the refined
area with respect to isotropy. Especially when considering a shock or an inter-
face (as for the present study, a 0 level set refinement), as illustrated figure 2.3.

Figure 2.3 – 0 level set adaptation - Right : isotropic, Left : anisotropic

For physical adaptation, Frey, Alauzet and co authors propose an adap-
tation based on the Hessian of the solution. One can refer to [70] for CFD
computations or [62] for buildings aero heating application. For interface adap-
tation, Frey et. al. proposed a method based on the curvature, see for instance
[65, 55], and [37, 81] for application to multifluid flows problems.
We refer to [17] for a recent review of the current status of mesh adaptation
and its applications.

The same Hessian based error estimate has been employed at the Impe-
rial College of London for geofluid problems [76, 131], Boltzmann transport
equation resolution [22] and unsteady CFD problems [127].
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Another approach has been proposed by Coupez, Hachem and co authors,
that is and edge based interpolation estimate error, where the aim is to avoid
the computation of the Hessian and to define an error estimator using the
gradients and edge length. See [49] for application to interface adaptation,
and [50] for incompressible simulations. Level set specific adaptation has been
proposed with application to IB method where the length are defined a priori
according to the distance of the solid in [82], which has been extended recently
to the generation of boundary layer in [31].

In this work, the Hessian approach is employed for physical adaptation and
the adaptation of the 0 level set is based on the curvature of the surface. In
the results/illustrations that will be presented, the MMG library [63, 54] is
employed. In this chapter, we first recall some notions about metrics and how
to use them for mesh adaptation before defining the ones used for physical and
level set adaptations. Then, the process adopted for the simulations leading
to a convergence mesh solution is presented.

2.2.2 Some metric Notions

We begin with the definition of a metric tensor (or metric) :

Definition 2.2. Metric
A metricM in Rn is a n× n symmetric definite positive (SDP) matrix.

Being SDP, this matrix is diagonalizable : M = RTΛR where R is the
eigenvectors matrix and λ the eigenvalues matrix. The eigenvalues are denoted
(λi)i=1,n. Considering two vectors u and v in Rd, the scalar product associated
to the metric is defined as :

〈u,v〉M := uTMv (2.34)

The norm of the vector u can then be defined :

||u||M :=
√
〈u,u〉 =

√
uTMu

||u|| measures the length of the vector u with respect to the metric M. A
metric M can be represented by an ellipsoid EM = {P, ||OP||M = 1}, O
being the center of this ellipsoid. The directions of the ellipsoid are given by
the eigenvectors and the sizes are linked to the eigenvalues with hi = 1√

λi
(see

figure 2.4). Then, the definition of Euclidean metric space can be provided :

Definition 2.3. Euclidean metric space
An Euclidean metric space (Rd,M) is a vector space supplied with a scalar
product associated to a metricM defined by (2.34).
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Figure 2.4 – Ellipsoid representation of a metric

In such a space, the length between two points M and N lM(MN) is the
distance between those two points :

lM(MN) =
√
〈MN,MN〉M =

√
(MN)TMMN (2.35)

For the definition of Euclidean metric space, the metric is constant over the
space. The more general case where the metric, and so the scalar product,
vary all over the domain lead to the definition of Riemannian metric space :

Definition 2.4. Riemannian metric space
A Riemannian metric space is a manifold Ω ⊂ Rd supplied with a smooth
metricM(.).

The length between two points M and N is this time no more the length
of the vector MN associated to a unique metricM but defined as :

lM(MN) =

∫ 1

0

√
(MN)TM(M + tMN)MNdt (2.36)

2.2.3 Metric Expression For Mesh Adaptation

2.2.3.1 Principle

To generate an anisotropic mesh, we specify at each point of the initial grid
the sizes and directions of the edges. For this purpose, at each node, a metric
is defined containing those informations. The sizes hi are linked to the eigen-
values with λi = 1

h2
i
and the eigenvectors corresponds with the directions (the

ellipsoid is exactly defined by the size and direction wanted for the mesh).
Thus, the idea is to work in a Riemannian metric space whose associated met-
ric field is the one containing mesh informations. What is called a unit mesh in
this specific space is then sought, ie the length of the edges e computed in the
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(a) Initial mesh (b) Metric field (c) Adapted Mesh

Figure 2.5 – Mesh Adaptation and Metrics

space are equal to one : lM(e) = 1. In practice, such meshes are impossible
to generate. Thus, a mesh as close as possible to the unit mesh is generated.
Figure 2.5 sketches the idea for the mesh adaptation : 2.5a corresponds to the
initial mesh and figure 2.5b presents the computed metric field on this mesh.
Figure 2.5c shows the resulted adapted mesh.

Now the question is how to construct the metric corresponding to the adap-
tations required i.e. how define properly the eigenvalues and eigenvectors of
the metrics. The two next sections are dedicated to the definition of the metric
for an adaptation to a physical variable (density, pressure, etc...) and for the
SDF adaptation.

2.2.3.2 Physical Adaptation

For the physical adaptation, the approximation error is considered. It corre-
sponds to the error between the approximated solution uh resulting from the
numerical simulation on the mesh T h and the exact solution of the problem
u : eh = ||u − uh||, || · || being a norm of Rd, d the dimension. The idea is
to equidistribute this error by adding nodes in large variation of the solution
(e.g. shocks) and to remove some where the solution remains uniform. We
just recall here the main step leading to the definition of the metric defining
an upper bound of this error, the full demonstration being proposed in [70].
The starting point is Cea’s lemma that gives as upper bound of the approxi-
mation error the interpolation error :

eh ≤ C||u− Πhu||H1 (2.37)

where Πhu is the linear interpolate of u on the mesh T h and C a constant
independent of the mesh. As explained in [70], Cea’s Lemma is demonstrated
for elliptic problem but assumed also true for the considered one (e.g. hy-
perbolic). Thus, the aim is now to bound this interpolation error for each
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element T of T h. Considering the L∞ norm in (2.37), the following theorem
(a demonstration being provided in [70]), involving the Hessian of the solution
Hu, holds :

Theorem 2.1. Upper bound of the interpolation error on element

||u− Πhu||∞,T ≤ cd max
x∈T

max
e∈T
〈e, |Hu(x)|e〉 (2.38)

where cd is a constant depending only on the dimension.

However, this inequality is not enough because maxx∈T (Hu) is not known
and difficult to compute numerically. Nevertheless, an upper bound of the
right hand side of the inequality (2.38) can be provided using metrics :

max
x∈T

max
e∈T
〈e, |Hu(x)|e〉 ≤ 〈e,M(T )e〉 (2.39)

Such metrics are defined as follows :

M = RΛ̃R−1, Λ̃ =

 λ̃1 0 0

0 λ̃2 0

0 0 λ̃3

 (2.40)

λ̃i = min

(
max

(
cd|λi|
ε

,
1

h2
max

)
,

1

h2
min

)
where R is the matrix of the eigenvectors of the Hessian Hu and λi the eigen-
values. ε is the wanted error. hmax and hmin are respectively the minimum
and maximum size wanted for the mesh. Indeed, without such a truncation, in
area of constant solution, infinite length elements would be computed, or on
the opposite, in areas of large variations of the solution, element sizes of little
use from a computational point of view would be imposed.

2.2.3.3 Adaptation to the Signed Distance

As proposed in [65] (among others), the error to control for this adaptation
is the error between the exact surface Γ and its approximation, defined by
the 0 isovalue of the SDF Γh. This error can be evaluated by considering
the Hausdorff distance between those two surfaces. The Hausdorff distance is
defined as follows :

Definition 2.5. Hausdorff distance
Two submanifolds Ω1 and Ω2 in Rd are considered.
Denoting by d(x,Ω1) = infy∈Ω1 d(x, y) the euclidean distance from x to Ω1 and
defining d̃(Ω1,Ω2) = supx∈Ω1

d(x,Ω2), the Hausdorff distance writes :

dH(Ω1,Ω2) = max(d̃(Ω1,Ω2), d̃(Ω2,Ω1))
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Figure 2.6 – Area of 0 level set metric imposition

As proposed in [65], this error can be bounded using the curvature κ of the
approximated surface with the following theorem (written for 3D problems) :

Theorem 2.2. Upper bound of the Hausdorff distance
Considering Γh the approximation of the exact surface Γ on the mesh T h. By
denoting E the set of elements T in T h intersecting the the 0 level set (i.e.
such that the sign of u changes on the elements), we have :

dH(Γh,Γ) ≤ max
T∈E

l21κ1

1− hκ1 − h2κ2
1

+
l22κ2

1− hκ2 − h2κ2
2

(2.41)

where h is the size of the element T in the normal direction to the surface and
l1, l2 are the sizes in the direction of the principal curvatures. κ1 and κ2 are
the minimum and maximum values of the two local principal curvatures in T .

From this inequality, a metric field at each vertex in the elements of E
can be defined. Denoting the required error approximation by ε, the metric
proposed reads :

M = RT

 1
h2
min

0 0

0 λ 0
0 0 λ

R (2.42)

where R = (∇ψ0 t1 t2), ψ0 being the 0 level set and (t1, t2) a basis of its
tangential plan and

λ = min

(
max

(
|κ|
ε
,

1

h2
max

)
,

1

h2
min

)
, κ = ∆ψ0 (2.43)

Remark 2.1. The metrics (2.42) are a priori defined for the nodes of elements
intersecting the 0 level set. In practice, as shown figure 2.6, this metric is
imposed in an area w around the surface, chosen according to the considered
case, so as to produce a mesh suitable for Navier-Stokes simulations.

2.2.3.4 Metric intersection

The two metric fields defined for the SDF and the physical adaptation need to
be combined so as to generate a mesh adapted to both criteria. To this end,
we use metric reduction which is briefly described here. Denoting byM1 and
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Figure 2.7 – Metric Reduction

M2 two metrics defined at the same node, the metricM1∩2 resulting from the
intersection must be such that both sizes prescribed by the two initial metrics
are respected. From a geometrical point of view, as illustrated figure 2.7, the
ellipsoid E1∩2 associated toM1∩2 is the biggest ellipsoid included in the ones
associated toM1 andM2, E1 and E2.

The process of the reduction, presented in some of the above references (see
[14] for instance) is recalled here. Let define N =M−1

1 M2. N is diagonaliz-
able, and the normalized eigenvectors (e1, e2, e3) provide a basis such thatM1

andM2 are congruent to a diagonal matrix in this basis. Defining :

λi,1 = eTiM1ei, λi,2 = eTiM2ei, i = 1, . . . , 3

P = (e1, e2, e3)

The intersected metric is of the form :

M1∩2 = P−1T

 max(λ1,1, λ1,2) 0 0
0 max(λ2,1, λ2,2) 0
0 0 max(λ3,1, λ3,2)

P−1

2.2.4 Algorithm

To obtain a mesh optimised for a certain problem, the coupling CFD-remeshing
algorithm 1 is employed. The iterations allow to obtain the convergence for the
mesh and for the CFD. In this algorithm 1 , kmax proposes to stop the iterative
procedure if the solution is considered accurate enough, even if the process of
CFD-remeshing coupling is not converged. Figures 2.8 and 2.9 presents the
process for the adaptation to the SDF of a circle. On figure 2.8, the initial
uniform mesh and the final adapted mesh are displayed, and on figure 2.9 the
mesh obtained at the different iterations of the process.

For the penalized simulation that will be presented section 2.3.5, the initial
mesh for CFD computation is adapted to the 0 level set and the iterations are
performed to increase the solution accuracy.
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Algorithm 1 CFD-Remeshing convergence
initial non adapted mesh T 0

h

T kh = T 0
h

initial solution : u0
h = u0, k = 0

while (k < kmax) do
Compute uk+1

h , converged solution of the considered problem on T kh
Calculation of a metric field Mk+1, associated to an error estimator

defined on uk+1
h

Generate a new mesh T k+1
h in agreement withMk+1

if (Convergence : T k+1
h ∼ T kh ) then

Exit
end if
Compute ũk+1

h , interpolation of uk+1
h on T k+1

h

u0
h = ũk+1

h

end while

(a) Initial mesh and level set (10, 709
vertices)

(b) Final mesh and level set
isovalue(3, 454 vertices)

Figure 2.8 – Mesh Adaptation to a circle

RD schemes and penalization for ice shedding trajectories 29



2.2. Mesh Adaptation for Steady Simulation

(a) 1st adaptation - zoom
(5, 123 vertices)

(b) 2nd adaptation - zoom
(3, 296 vertices)

(c) 3rd adaptation - zoom
(3, 425 vertices)

(d) 4th adaptation - zoom
(3, 454 vertices)

Figure 2.9 – Mesh/Solution convergence - four iterations
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2.3 Discretization with Residual Schemes

In this section, the numerical approximation of steady problem is discussed.
First, a general state of the art concerning Residual Distribution schemes is
given. Then, we recall how to construct RD schemes for a scalar advection
diffusion equation. Finally, we get to the main contribution of this study : the
extension of the residual distribution framework to the penalized Navier Stokes
equations. The potential of the proposed approach is evaluated on several test
cases.

2.3.1 State of the art

Three main categories of schemes can be employed for the numerical resolu-
tion on unstructured grids. The Finite Volume (FV) method [108, 24, 23, 149]
evolves cell averaged values of the solution. First order schemes are quite easy
to build, the solution being approximated by a constant on each cell. Higher
order schemes however, require to reconstruct polynomial solutions using con-
stant data from neighbouring cells. Limitation techniques are employed to
prevent oscillations, leading e.g. to ENO/WENO schemes [149]. The main
drawback of such method is the increase of the stencil with the order, lead-
ing to complex implementation especially on distributed memory parallel ma-
chines. Another possible approach is the finite element (FE) method. Classical
Galerkin formulation being unstable for advection problem, several techniques
have been studied to provide stabilization such as the well known SUPG [35],
or Galerkin/Least Square method [90] (see also [92] or [91] for reviews on those
techniques). The construction of high order schemes with those approaches is
easy, as the accuracy of the solution depends on the order of the local polyno-
mial basis functions. This locality allows in addition an efficient parallelization,
as the stencil remains compact while the order of accuracy increase. The price
to pay is an increase in storage, and number of degree of freedom. When
dealing with solutions involving shocks, additional shock capturing terms are
required to keep stable schemes [92]. The last kind of method is the Disconti-
nous Galerkin (DG) method, introduced by Reed and Hill [132] (see also the
works proposed by Cockburn, Shu and co authors [46, 45, 47]). DG method
combines the FV and FE framework. It is based on a Galerkin formulation,
but no continuity is sought between the elements. Thus, numerical fluxes are
employed to handle the discontinuities, as performed in FV schemes. These
schemes also have very compact stencil and are thus very easy to parallelize.
The main drawback of such method are the definition of high order preserving
limiters, to avoid oscillations in shocks, while preserving the high accuracy,
and the large number of DoF, even compared to stabilized continuous FE[93].

In this work we consider another alternative, the Residual Distribution
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(RD) schemes, introduced with the notion of fluctuation splitting by Roe in
1982 [140]. These schemes share many properties with FE, and their advan-
tages, such as compact stencil and an easy increase of the accuracy order.
Since then, many works on the subject have been proposed, especially by Roe,
Deconinck, Abgrall, Ricchiuto and their coauthors. Their contributions are
part of an exhaustive list in Ricchiuto’s HDR [134]. The PhDs of Caranei
(2000) [41], Dobeš (2007) [60], Larat (2009) [106], Villedieu (2009) [160], and
more recently Sermeus (2013) [147] and De Santis (2013) [56] propose also
a good basis, especially concerning the treatment of the viscous flux in ad-
vection diffusion problems. We recall here some of the contributions in this
field of research. The construction of such schemes for advection equations is
proposed by Struijs and co authors [153, 154], Van der Weide and Deconinck
[58], Abgrall [1], Csík et. al. [53], and very high order (> 2) can be found in
[6] or [86, 88]. A formulation of the Lax Wendroff theorem is defined by de
Mer and Abgrall in [7] and a systemic construction of monotone high order
schemes is proposed in [9]. A publication dedicated to the comparison against
FV schemes is proposed by Guzik and Groth [80].

Now, focusing on advection diffusion resolution, high order schemes have
been proposed in [161, 136] where diffusion is treated with a Galerkin dis-
cretization. Caraeni and Fuchs proposed 2nd and 3rd order scheme to solve
the Navier Stokes equations and perform LES simulations [41, 39, 40]. In De
Santis PhD, inspired from the work of Nishikawa [122] (see also recent results
in [115], and [114] for 1D problems solved with 6th order schemes), writing
the problem as a first order system with the gradient considered as a new un-
known, high order schemes can be constructed [10, 56]. This is the method
employed in this work.

2.3.2 Notations for mesh and approximate solution

Let T h denote the mesh discretization of the spatial domain Ω. The generic
triangle (tetrahedron) of T h is denoted by T . We denote by ∂T the element
boundary, and by |T | its area (volume in 3D). By ∂Ti we denote the face of ∂T
opposite to node i, and ni denotes the inward normal scaled by |∂Ti|(see figure
2.10a). The following notation will also be used throughout this manuscript :
the set of triangles containing node i is denoted by {T 3 i}. Thus, we define∑

T3i for a summation on the elements in the neighbourhood of a node and∑
T3(i,j) for a summation on the elements an edge belongs to. The dual cell

associated to a node i (see figure 2.10b) is denoted by Ci, of area |Ci|.
As for finite element method, the approximated solution is defined as

uh(x, t) =
∑NDoF

i=1 ui(t)ϕi(x). With NDof we denote the number of degrees
of freedom of the element, and ϕi the basis function associated to node i, with
ui the value of the solution at the node. In this work, the degrees of freedom
are the nodes of the elements and the basis functions are the P 1 Lagrange
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(a) Inward normals (b) Dual cell

Figure 2.10 – Notations for triangles

functions. Some properties that will be useful for the following are :∫
T

f(x) =
3∑
j=1

fj
d+ 1

, ∇ϕi =
ni
d|T |

(2.44)

where d denotes the number of dimension.

2.3.3 Steady scalar conservation laws

As said in the introduction of this chapter, to acquire general notions on RD
schemes, the construction is performed for a 2D scalar conservation law.

2.3.3.1 Principle and construction

We consider the steady case of equation (2.30) :

∇ ·F(u) = 0 on Ω (2.45)

By integrating equation (2.45) evaluated using the approximated solution on
each T ∈ T h, the element fluctuation is defined as :

φT (uh) =

∫
T

∇ ·F(uh) (2.46)

Remark 2.2. What has been called here total fluctuation can be referred in
the literature as total residual. In this manuscript, the notion of residual will
be used for unsteady problems.

To account for the BC, one can include face fluctuations defined by :

φf (uh) =

∫
f

(
FBC(uh, uBC ,n)−F(uh) · n

)
(2.47)
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where FBC(uh, uBC ,n) is the numerical flux consistent with the BC dependent
of the exact or physical value of the solution available on the boundary uBC ,
the local state uh and the boundary normal n.

Once the fluctuations are defined on each element, the idea is to distribute
them to the degrees of freedom into nodal fluctuation φTi (uh). It can generically
be written using distribution coefficient βTi and :

φTi (uh) = βTi φ
T (uh) (2.48)

An explicit definition of these distribution coefficients is not necessarily pro-
vided, and often only the expression of φTi is used.

This distribution process is the heart of RD schemes and depends on the
spatial discretization. More details will be given in section 2.3.3.4. In the
same way, face fluctuations are split to the degree of freedom of the face,
defining nodal face fluctuation φfi . The next step leading to the final form of a
RD scheme is to gather the information coming from all the elements a node
belongs to. The summation of all the contributions must be null :∑

T3i

φTi (uh) +
∑

(f∈∂Th)3i

φfi (uh) = 0 (2.49)

One possibility to define the nodal face fluctuation is :

φTi (uh) =

∫
T

ϕi(FBC −F · n) (2.50)

that satisfies the conservation :
∑

i∈∂T φ
f
i = φf , as proposed in De Santis’PhD

[56]. For far field boundaries, this is the approach used here. As this will not
be furthered developed, we will omit this term to simplify the equations.

The whole process for the construction is sketched on figure 2.11. To solve
this problem (2.49), the following pseudo unsteady problem is considered :

∂uh
∂t

+
∑
T3i

φTi (uh) = 0

uh(t = 0,x) = u0(x)

(2.51)

Where u0 is the initial solution.
For the temporal discretization, an Euler scheme is employed even if more

sophisticated ones could be used. It leads to the following iterative procedure :

|Ci|
∆tn

(un+1
i − uni ) +

∑
T3i

φTi (u∗h) = 0 (2.52)

Where ∆tn is the pseudo time step. The notation ∗ is employed to let the
possibility of an implicit or explicit scheme. For the steady problems, the
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Figure 2.11 – RD process. Left : fluctuation computation - Middle : fluctuation
distribution - Right : Nodal fluctuation gathering

developments proposed by De Santis during his PhD [56] are used. An Euler
implicit scheme is employed and solved using a Newton algorithm. Denoting
R(uh) =

∑
T3i φ

T
i (uh) and J = ∂R(u)/∂u its Jacobian, the problem (2.52)

writes : (
I

∆tn
+ J(unh)

)
(un+1

h − unh) = −R(unh) (2.53)

Different algorithms have been developed in [56] to which we refer the reader
for more details. An extension to time dependant problem has been performed
section 3.1.5.2 for the development of the Crank-Nicolson scheme. Although
more approximation on the Jacobian are proposed, the principle is identical.

The computation of the element residual is performed by integrating the
flux on the boundary ∂T :

φT (uh) =

∫
∂T

F(uh) · n̂out =
∑
j∈T

∫
∂Tj

F(uh) · n̂outj (2.54)

where n̂out denotes the outward normal.

The quasi linear form of the equation can also be introduced to compute
the element fluctuation :

φT (uh) =

∫
T

∇ ·F(uh) = a ·
∫
T

∇uh =
∑
i∈T

1

d
a · niui (2.55)

with a obtained from the exact evaluation of

a =
1

|T |

∫
T

a (2.56)

and having introdueced inflow parameter ki :

ki =
1

d
a · ni (2.57)
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it is obtained :
φT (uh) =

∑
i∈T

kiui (2.58)

However, such an approach cannot be considered, unless smooth solutions
are studied, owing to the cost necessary to evaluate a such that the result-
ing scheme is conservative [12]. As we will see in the following, the inflow
parameter (2.57) can still be used to define distribution coefficients.

2.3.3.2 Basic Properties

In this section, the properties and theorem are recalled without demonstration.
For more details, we refer the reader to the references reported in the text. The
starting point is the definition of conservation and consistency with a Lax-
Wendroff like theorem. Then, the properties ensuring a maximum principle
and monotonicity of RD schemes are given. Finally, the high order accuracy
is defined and Godunov’s theorem is expressed in the RD framework.

Consistency and convergence

Let begin with the notion of conservation and consistency. Conservation of
the quantity requires classical hypothesis concerning the flux and solution ap-
proximation at the edges of the elements.

Property 2.1. Conservation
By defining the fluctuation (2.46) such that for two neighbours elements T1

and T2 of boundary Γ, the flux evaluated at the approximated solution satisfies :

F(uT1
h ) · nT1

Γ = −F(uT2
h ) · nT2

Γ (2.59)

and with nodal fluctuation satisfying∑
i∈T

φTi (uh) = φT (uh) (2.60)

then the scheme (2.49) is conservative.

Now, considering that the nodal fluctuation can be written over the form
(2.48), then the notion of consistency can be imposed on the distribution co-
efficients :

Property 2.2. Consistency
If there exist coefficients βTi such that we can explicitly write the scheme over
the form (2.48), then : ∑

j∈T

βTj = 1 (2.61)
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Now, considering a conservative RD scheme, the Lax-Wendroff theorem,
ensuring the convergence to a weak solution of the problem is expressed as
follows [7, 9, 106, 56, 8] :

Theorem 2.3. Lax-Wendroff like
Let consider a sequence of approximated solutions (uh)h for given meshes Th,
solution of (2.49). Assuming that there exists u ∈ L2(R2) and a constant C
depending only on the mesh such that :

sup
h

sup
x
|uh(x)| ≤ C, lim

h→0
||u− uh||L2

loc(R2) = 0 (2.62)

Then u is a weak solution of the problem (2.45).

The proof of this theorem is provided in [7, 9].

Local Positivity and Monotonicity Preserving Property

Numerical instabilities across discontinuities have always been an issue in CFD.
Solutions of conservation laws might lack of regularity or even develop discon-
tinuities. Instabilities or blow up may be observed numerically. The aim is
then to design schemes that will verify a discrete maximum principle defined
as follows :

∀i ∈ T h, ∀n, min
j∈T |ij∈T

unj ≤ un+1
i ≤ max

j∈T |ij∈T
unj (2.63)

This property ensures a L∞ stability. In previous works ([106, 71, 56, 147]
among others), some propositions recalled here ensure a non oscillatory char-
acter for RD schemes. First, the nodal fluctuation (2.48) must be rewritten in
the form :

φTi (uh) =
∑
j∈T
j 6=i

cij(ui − uj) (2.64)

The local positivity can then be defined by :

Property 2.3. Local Positivity
A RD scheme is said locally positive if the nodal residuals defined with (2.64)
are such that :

∀T ∈ T h, ∀(i, j)i 6=j ∈ T, cij ≥ 0 (2.65)

This local positivity property has relations with the Total Variation Di-
minishing (TVD) theory settled for high order FV schemes [149]. From there,
the Monotonicity Preservation (MP) property, that ensures the non oscillatory
character of a RD scheme, can be expressed as :
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Property 2.4. Monotonicity Preservation
If a scheme expressed over the formulation (2.64) satisfies the local positivity
property 2.3 and (in the case of an explicit discretization in time) the CFL
constraint :

∆t

|Ci|
∑
T3i

∑
j∈T

cij ≤ 1 (2.66)

the discrete solution satisfies the discrete maximum principle 2.63.

Accuracy and Godunov Theorem

The question of accuracy is now characterized. The definition of accuracy for
RD schemes has been addressed in [106, 56, 134, 8] :

Definition 2.6. Accuracy of RD scheme
Let ψ be a smooth function ψ ∈ Cr+1

0 (Ω) and ψh its rth accurate approximation
on a mesh T h discretization of Ω. Considering u ∈ Hr+1 an exact smooth
function satisfying (2.45), and uh its rth polynomial approximation of degree
r. Defining the following truncation error :

ε(uh, ψ) =
∑
i∈T h

ψi
∑
T3i

φTi (uh) (2.67)

a RD scheme is said (r + 1)th order accurate if :

|ε(uh, ψ)| ≤ O(hr+1) (2.68)

and the following property has been demonstrated (see [9, 1]) :

Property 2.5. High Order Accuracy
A RD scheme defined as (2.49) is (r + 1)th accurate in the sense of defi-
nition 2.6 provided that the resulting approximated solution satisfies for a d
dimensional case :

sup
T∈T h

sup
i∈T
|φTi (uh)| = O(hr+d) (2.69)

The following property called Linearity Preservation (LP) property pro-
poses a simple condition to achieve high order accuracy :

Property 2.6. Linearity Preservation
A RD scheme is said linearity preserving if its distribution coefficients βTi
satisfying the consistency property (2.2) are uniformly bounded :

max
T∈T h

max
i∈T
|βTi | <∞ (2.70)
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It is easily seen that a scheme satisfying the LP property 2.6 satisfies the
required hypothesis for the accuracy property 2.5 and thus lead to a high order
scheme.

Now we are willing to formulate the classical Godunov theorem in the RD
framework. First, let give a definition of a linear scheme :

Definition 2.7. Linear Scheme
A RD scheme whom nodal fluctuation is expressed over the formulation (2.64)
is said linear if the coefficients cij does not depend on the discrete solution of
the problem.

This definition of linear scheme allows to express the classical Godunov
theorem in the RD framework.

Theorem 2.4. Godunov
A RD scheme being at the same time monotone in the sense of property 2.4
and satisfying linearity preserving condition cannot be linear.

Non linear schemes are required to combine high order of accuracy with
the discrete maximum principle.

2.3.3.3 Analogy with Stabilized Finite Elements

One interesting RD scheme property that will be useful in the following is their
analogy with stabilized finite elements [147, 126]. Indeed, by considering a test
function ωi as :

ωi = ϕi + γi (2.71)
corresponding to the basis function plus a perturbation γi (also called bubble
function), the problem (2.45) can be discretized overt the following stabilized
finite element (or Petrov Galerkin (PG)) formulation :∑

T∈T h

∫
T

ωi∇ ·F(uh) = 0 (2.72)

and considering P 1 case, we can easily see that if we set :

γi = βTi −
1

NDoF

(2.73)

then
φTi =

∫
T

ωi∇ ·F(u) = βTi φ
T (2.74)

This analogy will be useful, in particular for the extension to unsteady prob-
lems.

Remark 2.3. The consistency property 2.2 can also be expressed on ωi as :∑
i∈T

ωi = 1 (2.75)
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2.3.3.4 Two examples of RD schemes

For the studies performed in this PhD, two schemes are used and presented
here : the SUPG and Limited Lax Friedrich schemes. One can find other
example in [56, 60, 106, 147, 134].

SUPG scheme

The SUPG scheme is exactly the RD form of the well known stabalized FE
method [35]. It is an equirepartition of the total fluctuation (centered part)
to the degrees of freedom plus the classical streamline diffusion term. Thus, it
gives the following nodal fluctuations :

φTi (unh) =
φT (uh)

NDoF

+

∫
T

(a ·∇ϕi)τ(a ·∇uh) (2.76)

Using relation (2.44) and the definition of the inflow parameter (2.57), it leads
to the following distribution coefficients :

βTi =
1

NDoF

+ kiτ (2.77)

where τ is the stabilization parameter, where in the scalar case may be defined
as :

τ =

(∑
j∈T

k+
j

)−1

, k+
j = max(0, kj) (2.78)

This scheme is linear and thus does not satisfy the Godunov theorem 2.4. It
will be used for problems having smooth solutions.

Limited Lax Friedrich Scheme

This scheme starts from a local Lax Friedrich scheme, reading :

φTi (uh) =
φT (uh)

NDof

+ α(ui − u), α ≥ max
j∈T

(|kj|+ ν) (2.79)

This is a central scheme going along with the local Lax Friedrich stabilization
suitable for discontinuities. However, being linear, it cannot verify the accuracy
conditions 2.5/2.6. The distribution coefficients are defined as :

βTi =
φTi (uh)

φT (uh)
(2.80)

The βTi defined with (2.80) may grow unbounded as there is no reason that
the term ui−u

φT
remains bounded when φT → 0. Thus, as said previously,

a limitation technique denoted as PSI limitation is used, fully discussed in
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[2, 6, 71], that consists into bounding the quantities into limited distribution
coefficients β∗i , computed as follows :

β∗i =
max(βi, 0)∑
j∈T max(βj, 0)

(2.81)

and the limited scheme writes :

φT,∗i (uh) = β∗i φ
T (uh) (2.82)

As deeply discussed in [6, 2, 138], the schemes obtained with this limiting
strategy admit some spurious modes, which become more visible for smooth
problems, hampering the obtaining of high order accuracy in practice. To
correct this, in [6], it is proposed to add, only in smooth regions, a streamline
dissipation term which allows to filter those spurious modes, while preserving
the high order accuracy. This leads to the following expression of the Limited
Lax Friedrich (LLF) scheme :

φTi (uh) = βT,∗i φT (uh) + θ

∫
T

(a ·∇ϕi)τ(a ·∇uh) (2.83)

where θ is a shock detector such that θ ≈ 1 in smooth area and θ � 1 across
discontinuities.

2.3.3.5 Extension to advection/diffusion problems

As explained in the state of the art, the method employed to deal with ad-
vection diffusion problems is the one proposed by De Santis [56, 10]. With
this approach, a high order discrete approximation of the gradient is obtained,
even for cases which are not advective dominated. Considering the steady
formulation of the advection diffusion equation (2.33) :

∇ ·F(u) = ∇ · (ν∇u) (2.84)

the idea is to consider the gradient as a new unknown of the problem and to
solve the first order system (FOS) :{

∇ ·F(u)−∇ · (νq) = 0

q−∇u = 0
(2.85)

Writing a SUPG type weak form for this system gives :∫
T

ϕi

(
∇ ·F(uh)−∇ · (νqh)

qh −∇uh

)
+

∫
T

A·∇ϕiτ

(
∇ ·F(uh)−∇ · (νqh)

qh −∇uh

)
= 0

(2.86)
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with :

A ·∇ϕi =

 a ·∇ϕi −ν ∂ϕi∂x
−ν ∂ϕi

∂y

−∂ϕi
∂x

0 0

−∂ϕi
∂y

0 0

 (2.87)

and τ is assumed of the form :

τ =

 τa 0 0
0 τd 0
0 0 τd

 (2.88)

where τa and τd are positive coefficients.
Considering a reconstructed gradient at each DoF in the system (2.85)

q = ∇̃uh, the first equations resulting from (2.86) reads :∫
T

ϕi∇ ·
(
F(uh)−∇ · (ν∇̃uh)

)
+

∫
T

(a ·∇ϕi)τd∇ ·
(
F(uh)− ν∇̃uh

)
+

∫
T

ν∇ϕi ·
(
τd

(
∇uh − ∇̃uh

))
= 0

(2.89)

From this formulation, De Santis proposed to modify the schemes presented
previous section by adding a term penalizing the difference between the the dis-
continuous gradient (computed with the basis function) and the reconstructed
one ∇̃uh [56, 10], inspired from the last integral of the equation (2.89). The
element fluctuation is thus computed as :

φT (uh) =

∫
T

(
∇ ·F(uh)−∇ · (ν∇̃uh)

)
(2.90)

the new form of the schemes writes :

φSUPGi = βT,SUPGi φT (uh) +

∫
T

ν∇ϕi ·
(
∇uh − ∇̃uh

)
(2.91)

φLLFi = β∗i φ
T (uh)+θ

∫
T

(a ·∇ϕi −∇ · (ν∇ϕi))τ(a ·∇uh)

+

∫
T

ν∇ϕi ·
(
∇uh − ∇̃uh

) (2.92)

Numerical results can be found in the above references with different gra-
dient recovery strategies. In the scope of this PhD, the adopted one is the
area-weighted method :

∇̃ui =

∑
T3i∇uh|T |∑

T3i |T |
(2.93)

From a computational point of view, the advective part is computed with
(2.54) and the diffusive one by passing through the edges :∫

T

∇ · (ν∇̃uh) =
∑
i∈T

∫
∂Ti

ν∇̃uh · n̂outi (2.94)
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2.3.4 Extension to the penalized Navier Stokes system

2.3.4.1 RD schemes for the Navier Stokes equations

The schemes presented previously have been used for the NS equations in [56].
Using the notations introduced in section 2.1.1, the fluctuation is computed
as :

φT (uh) =

∫
T

(
∇ · FEul(uh)−∇ ·

(
K∇̃uh

))
(2.95)

and is computed by integrating the flux on the boundary as :

φT (uh) =
∑
i∈T

∫
∂Ti

(
FEul(uh)−K∇̃uh

)
· n̂i (2.96)

Similarly to the scalar case, inflow matrices, extension of the inflow parameter
(2.57), are defined by :

Ki =
1

d

d∑
k=1

Ak(uh)nik (2.97)

SUPG Scheme

The SUPG scheme applied to the NS equations reads :

φTi (uh) =
φT (uh)
NDoF

+

∫
T

[
(A ·∇ϕi) τ

(
A ·∇uh −∇

(
K∇̃uh

))]
+∫

T

(K∇ϕi) ·
(
∇uh − ∇̃uh

) (2.98)

where τ is now a stabilization matrix :

τ =
|T |
NDoF

(
A+ + K

)−1 (2.99)

with A+ =
∑

i∈T Rni
ΛLni , Ln and Rn correspond respectively to the matrices

of the left and right eigenvectors of the Euler Jacobian A along the direction
of the normal n, and Λ denotes the corresponding eigenvalues matrix. The
operator (.)+ sets the negative values to 0.
The following distribution matrices βT

i
can be defined :

βT
i

=
1

NDoF

I + Kiτ (2.100)

so as to rewrite the scheme over the form :

φTi (uh) = βT
i
φT (uh) (2.101)
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LLF scheme

Starting again from the local LF scheme :

φTi (uh) =
φT (uh)
NDoF

+
1

NDoF

α(ui − u) (2.102)

a limitation procedure is required. As proposed in [56], the mapping for a
system of equation is done in the characteristic space. Thus, first, the vector
of total fluctuations and nodal fluctuations are rewritten :

ψi
T = Lnφ

T
i , ψT =

∑
i∈T

ψT
i (2.103)

where the mean fluid velocity vector gives the normal direction for the compu-
tation of the eigenvectors. As previously, for each variable var of the problem,
unbounded distribution coefficients are defined :

βT,vari =
ψT,vari

ψT,var
(2.104)

and the PSI limiter (2.81) is applied to compute the limited distribution co-
efficients βT,∗,vari . Considering the distribution matrix βT,∗

i
diagonal with the

corresponding limited coefficient in the diagonal, the nodal vector of fluctua-
tion is, in the characteristic space :

ψT,∗
i = βT,∗

i
ψT (2.105)

and the limited vector of nodal residual in the physical space reads :

φT,∗i = Rnψ
T,∗
i (2.106)

Finally, with the additional streamline diffusion, the LLF scheme is :

φT,LLFi = φT,∗i + θ

∫
T

[
(A ·∇ϕi −∇.(K∇ϕi) τ

(
A ·∇uh −∇

(
K∇̃uh

))]
+

∫
T

(K∇ϕi) ·
(
∇uh − ∇̃uh

)
(2.107)

2.3.4.2 Modification of the schemes for the Penalization

Let recall the considered matrix system :

∇ · FEul(u) = ∇ · (K∇u) + S (2.108)

Recalling that inside the solids, the source term is preponderant with respect
to the other terms, it leads to a degeneration of the NS equations. Inside the
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solid, what is solved is almost S = 0. In this situation, considering the analogy
with PG formulation presented section 2.3.3.3, a simple Galerkin discretization
is sought. Thus, the discretization writes :

∑
T

{∫
T

ωi (A ·∇uh −∇ · (K∇uh)
}

=
∑
T3i

{∫
T

ϕiS
}

(2.109)

That corresponds in the RD framework to an equal distribution of the fluctua-
tion associated to the source term, that will be denoted φT,S. In the meantime,
the fluctuation associated to the NS part φT,NS is distributed using the dis-
tribution matrices associated to the chosen spatial scheme :

∑
T3i

{
βTi φ

T,NS(uh) +
1

NDoF

φT,S(uh)
}

= 0

φT,NS(uh) =

∫
T

(
A ·∇uh −∇ ·

(
K∇̃uh

))
φT,S =

∫
T

S

(2.110)

In addition, a tricky point needs to be considered that is the computation
of the gradient reconstruction close to the interface. Indeed, looking at the dif-
ferent methods proposed in [56], the gradient is computed in each point using
the neighbours. But for points on the boundary between fluid/structure, the
penalized points simulating the body will add unphysical contributions (null
for a motionless solid for instance). Looking at figure 2.12, if the simulation is
performed without penalization (body fitted), the solid boundary is discretized
with nodes N4, N,N7 and only contributions from empty triangles are used for
the reconstruction of the gradient at node N , so that only information in nodes
N1, N2, N3, N4, N7 is used. When using penalization, if no special treatment
is done, additional contributions from the filled triangles will be added. These
contributions are unphysical and result in a defective reconstruction. To over-
come this difficulty, the area-weighted method proposed in [56] is modified as
follows :

∇̃ui =

∑
T |i∈T
T∈fluid

∇uh|T |∑
T |i∈T
T∈fluid

|T |
(2.111)

This modification is only present to be consistent for the variable derivatives
and thus do not impact that much the solution looking at primitive variables.
However, as soon as derivatives intervene, results are affected considerably, as
we will see section 3.2.5.2.

So as to prove the robustness of the proposed extension of the RD frame-
work to the Penalization, several examples are proposed in the next section.
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Figure 2.12 – Boundary point needing special treatment for the gradient re-
construction.

2.3.5 Penalized Navier Stokes Results

In this section, numerical examples are employed to validate the proposed res-
olution of the penalized NS equations. First, two 2D test cases are presented.
The first one is a classic study of the flow around a naca0012 airfoil. The
second one is the study of a supersonic flow around a wedge. It will emphasize
the possibility to handle complex flow with shock. The result will be validated
by comparison with literature data. A 3D test case is also presented (without
validation), to prove the feasibility of the method in 3D. It corresponds to the
extrusion of the 2D wedge into the z direction.

2.3.5.1 2D Naca0012 airfoil

The naca0012 airfoil of characteristic length 1 is placed in a circular domain of
radius r = 20. The simulation is performed for a Reynolds number Re = 5000.
Only the velocities are penalized to 0. The inflow/outflow parameters are given
by the following set of dimensionless variables : ρ = 1, u = 0.5, v = 0 and
p = 1/γ.

As explained section 2.2.4, the initial mesh is adapted to the 0 isovalue
of the level set (see figure 2.13a). To adapt the mesh, the physical variable
chosen is the u velocity. For the adaptation, the parameters to compute the
metrics (2.40) and (2.42) are presented table 2.1. A total of 4 iterations of
the iteration procedure presented section 2.2.4 are performed. The resulted
mesh with isolines of u velocity are plotted figure 2.13d and compared to the
solution on initial mesh figure 2.13c. A zoom on the mesh close to the solid is
proposed figure 2.13b.

As expected, thanks to the adaptation, we considerably increase the ac-
curacy of the solution. Figures 2.13b and 2.13d show that the wake is well
captured (till the boundary of the domain), and that the level set adaptation
in addition of performing a good description of the solid boundary proposes a
suitable mesh for the resolution of the boundary layer.
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Level set adaptation Physical adaptation
ε = 0.001 ε = 0.001
hmin = 0.0005 hmin = 0.001
hmax = 2.0 hmax = 2.0
w = 0.0005

Table 2.1 – Adaptation parameter for Naca0012 airfoil

(a) Initial Mesh (b) Zoom on the final mesh

(c) Initial mesh and u velocity (d) Final mesh and u velocity

Figure 2.13 – Naca0012 test case

A comparison is performed against a body fitted simulation, the mesh being
adapted with the same criteria. Figures 2.14 proposes the comparison between
the mesh and solution in a vicinity of the airfoil. To compare more precisely the
solution at the wall, we perform two cuts, at x = 0.25 and x = 0.5 and we plot
the density, u velocity and temperature figures 2.15a, 2.15b and 2.15c. Those
results show that the imposition of the BC with the penalization compares
well w.r.t. the imposition of the BC on fitted mesh for "classical" simulation.
Thus, the penalization presents a competitive alternative to classical fitted
simulations.
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Figure 2.14 – Naca0012 : Comparison fitted Penalization. Left : Meshes -
Right : u velocity

Level set adaptation Physical adaptation
ε = 0.0005 ε = 0.001
hmin = 0.0005 hmin = 0.0005
hmax = 2.0 hmax = 2.0
w = 0.0005

Table 2.2 – Adaptation parameter for 2D wedge

2.3.5.2 2D supersonic flow past wedge

We consider the supersonic flow around a wedge of heigh h = 0.5, half angle θ =
20 deg (see figure 2.16a). The wedge is placed in a circle of radius 20. We show
the results obtained with the Lax-Friedrich method. The flow is characterized
by a Reynolds number Re = 50000, a Mach number Ma = 2 (chosen such
that the shock is in contact with the wedge), and a non-dimensional pressure
1. The velocities are penalized to u = v = 0 and the temperature to TS = 3.
For the adaptations, the parameters used are regrouped table 2.2. The initial
mesh (30407 vertices) is presented figure 2.17a, and the one obtained after 5
cycles of adaptations (111061 vertices) w.r.t. the u-velocity is presented figure
2.17b. A zoom near the interface is presented for both initial and final mesh
figures 2.17c and 2.17d.

To validate our results, we compare the computed shock angle with its
analytical value. As in [32], the angle is measured using a point located on
the shock near y = 0 and we found β = 53.33 deg for a analytic one of β ≈
53.46 deg. Our results are in good agreement with the theory and the numerical
solutions performed in [32].
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(a) Density

(b) u velocity

(c) Temperature

Figure 2.15 – Plot at x = 0.25 and x = 0.5. Zoom on the right
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(a) 2D wedge (b) 3D extruded wedge and domain

Figure 2.16 – 2D and 3D wedge test cases

(a) Initial mesh (b) Solution on final mesh

(c) Zoom solution on initial mesh (d) Zoom solution on final mesh

Figure 2.17 – 2D wedge test case results
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Level set adaptation Physical adaptation
ε = 0.0005 ε = 0.0005
hmin = 0.005 hmin = 0.005
hmax = 2.0 hmax = 2.0
w = 0.0005

Table 2.3 – Adaptation parameter for 3D wedge

2.3.5.3 3D supersonic flow past extruded wedge

This 3D test case is the extension in 3D of the previous one. The wedge
is extruded according to the z direction of a size 0.364 and the domain is a
sphere of radius 15 (see figure 2.16b). All the data for the computation are the
same than in 2D plus the w velocity (component according to the z direction)
which is 0 on the BC. As previously, the initial mesh (36, 597 vertices and
216, 703 tetrahedra) is only adapted to the 0 level set (see figure 2.18c for a
cut in the (xy) plan described figure 2.18b). The mesh obtained after 5 cycles
of adaptation (766310 vertices and 4, 545, 447 tetrahedra) is presented figure
2.18d. To generate those meshes, the parameters employed are regrouped table
2.3.

On figures 2.18e and 2.18f, u velocity solution on the initial and adapted
mesh are compared at a cut in the (xz) plan (figure 2.18a). As in 2D, we
considerably improve the solution, as well on the shock definition than in the
drag which is really better defined. And this, by limiting the number of inserted
nodes.

2.4 Summary
In this chapter, the resolution of the steady penalized Navier Stokes equations
has been addressed. The different test cases proposed aimed at demonstrate
the competitive alternative that represents the penalization on adaptive grids
with respect to classical fitted resolution of the Navier Stokes equations. To
solve the equations, the residual distribution framework has been extended to
the penalization by the use of a simple Galerkin discretization of the penalty
source term. Metric based mesh adaptation has been employed to adapt the
meshes, leading to an increase of the accuracy to the solid boundary definition
and the physical solution. To exploit the full potential of the penalization, un-
steady cases can now be studied. However, before considering moving objects,
the background for unsteady problems is addressed in the next chapter.
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(a) (xz) Cut plane (b) (xy) Cut plane

(c) Initial mesh ((xy) cut)

(d) Adapted mesh ((xy) cut)

(e) u velocity on initial mesh ((xz) cut) (f) u velocity on adapted mesh ((xz) cut)

Figure 2.18 – 3D wedge test case results
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Chapter 3

Unsteady Penalized Navier Stokes
Equations For Motionless Bodies

The focus of this chapter is the resolution of unsteady problems, but for mo-
tionless bodies, so as to provide numerical tools to deal with unsteady penalized
simulations. The schemes introduced previously have never been employed for
unsteady problems, even without penalization, or for simpler problem as e.g.
the time dependant advection diffusion equation. So, we dedicate a first sec-
tion to the extension and validation of the schemes to these unsteady cases.
Then, we propose a strategy to combine these schemes to penalization. Indeed,
the process differs from steady problems for which an implicit Euler time dis-
cretization is employed to solve the pseudo unsteady iterations. In the time
dependant case, a splitting approach is proposed, leading to efficient schemes
and to results proposed at the end of this chapter.
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3.1 Residual Schemes for Unsteady Problems

3.1.1 State of the art

The residual distribution framework has been extended to time dependant ad-
vection problems by means of two different approaches. Space time schemes
have been proposed in Csík [51] and Mezine’s PhD [116] and later in Ricchi-
uto’s PhD [133] (see also [52, 139]) and Villedieu’s PhD [160]. More recent
work following this approach can be found in [89] where unconditionally pos-
itive schemes are proposed and linearized Euler equations are solved in [105].
The time contribution has also been taken into account via mass matrices,
idea introduced in [112] and [69] at the Von Karman Institute, and to per-
form LES simulations in Caranei’s PhD [41]. This approach has also been
studied by Mezine and Abgrall [13, 116] and De Palma et. al. [128]. More
recently, genuinely explicit schemes have been proposed in [135]. All of those
works mentioned application to the Euler equations when considering system
case. Another application, the Shallow Water system (even if related to Euler
problem), has been considered by Hubbard and co authors [120, 87], and more
recently in [138, 137]. A global overview of those work can be found in the
HDR of Ricchiuto [134], that is the starting point of the present work.

The study of time dependent advection diffusion equations is less doc-
umented. As said before, Caraeni employed RD schemes to perform LES
simulations ([41, 39, 40]). Interesting results are shown by Dobes et. al.,
who extended the work already mentioned section 2.3.1 for steady simulations
([136]) using an hybrid RD-Galerkin scheme considering local Peclet number
[61]. Based on the FOS approach, Mazaheri and Nishikawa obtained very re-
cently schemes up to 6 order accurate validated on 1D problems in [114].

In this work, the theory developed for advection problem is combined to
the theory proposed in De Santis’ PhD [56] recalled section 2.3.3.5. As will be
seen in the next sections, the spatial fluctuation is computed using the recon-
structed gradient plus the penalized term coming from the FOS and second
order schemes are constructed.

3.1.2 Principle

As for steady case, we start by explaining the construction and recalling proper-
ties for a 2D scalar advection equation (2.30). As in section 2.3.3, the Jacobian
of the advective flux is denoted a = ∇uF , and a mesh T h, discretization of Ω is
considered. The time interval is also decomposed as [0, Tf ] = ∪i=0,N−1[ti, ti+1]
with t0 = 0 and tN = Tf . As presented section 2.3.2, the approximated solu-
tion is defined using the P 1 Lagrange basis function uh(t) =

∑
i ui(t)ϕi and

by denoting un = u(tn) we define unh =
∑

i u
n
i ϕi.
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A (r + 1)th order time discretization of this equation (2.30) writes over the
general form :

Γn+1(u) =

p∑
i=0

αi
δun+1−i

∆t
+

q∑
j=0

θj∇ ·Fn+1−j (3.1)

with δun+1 = un+1 − un, Fn+1−j = Fn+1−j(un+1−j), αi and θi coefficients
dependant of the chosen scheme.
The total residual is then defined on each element by :

ΦT (uh) =

∫
T

Γn+1(uh) =

∫
T

(
p∑
i=0

αi
δun+1−i

∆t
+

q∑
j=0

θj∇ ·Fn+1−j

)
(3.2)

This total residual can be linked to the fluctuation φT (uh) (2.46) defined for
steady problem by :

ΦT (uh) =

∫
T

(
p∑
i=0

αi
δun+1−i

∆t

)
+

q∑
j=0

θjφ
T (un+1−j

h )

Similarly, for the boundaries ∂T such that ∂T ⊂ ∂Ω, it is set :

φ∂T =

∫
∂T

q∑
j=0

θj(FBC −Fh)
n+1−j · n (3.3)

with FBC a numerical flux consistent with the chosen BC.
Then, the same principle than for steady case is applied. The aim is to define
nodal residual ΦT

i (uh) satisfying :∑
i∈T

ΦT
i (uh) = ΦT (uh),

∑
i∈∂T

φ∂Ti = φ∂T (3.4)

and the RD scheme writes :∑
T3i

ΦT
i (uh) +

∑
∂T3i

φ∂Ti = 0 (3.5)

3.1.3 Basic Properties

In this section, usual properties proposed in [134] are recalled. It starts by an
assumption concerning the mesh and the time stepping strategy :

Property 3.1.

C0 ≤ sup
K∈T h

h2

|K|
≤ C1, C

′
0 ≤

∆t

h
≤ C ′1 (3.6)

with ∆t = minn(tn+1 − tn).
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The accuracy of a RD scheme for time dependant case is then defined as
follows :

Definition 3.1. Accuracy of RD scheme, time dependent case
Under assumption (3.1), let consider a (r+1)th order time integration scheme,
and (k + 1)th order accurate approximation of the flux and unknowns.
ψ ∈ C1

0(Ω × [0, TN ]) is a smooth test function with ψ|∂Ω = 0 and ψh its
(k + 1)th accurate approximation. Defining the following truncation error :

ε(uh, ψ) :=
N∑
n=0

∑
i∈T h

∆tn+1ψn+1
i

∑
T3i

ΦT
i (uh) =

N∑
n=0

∑
K∈T h

∑
i∈T

∫ tn+1

tn
ψn+1
i ΦT

i (uh)

a RD scheme is said (p+ 1)th order accurate if

|ε(uh, ψ)| ≤ O(hp+1), p = min(k, r) (3.7)

And the following property holds, whom demonstration can be found in [134] :

Property 3.2. Accuracy Condition
A RD scheme defined as (3.5) is (p+ 1)th order accurate in the sense of defi-
nition 3.1 provided that its resulting approximated solution uh satisfies :

sup
T∈T h

sup
i∈T
|ΦT

i (uh)| = O(hp+2) (3.8)

As proposed section 2.3.3.3 for steady case, RD schemes can be seen as a
reformulation of stabilized FE formulation, resumed by the following property :

Property 3.3. High order residual schemes
Under the hypothesis of property 3.2, a sufficient condition for a scheme defined
as (3.5) to be (p+1)th order accurate is, if there exists a function ωi uniformly
bounded w.r.t. h, uh, Γn+1(uh) and the data of the problem such that :

ΦT
i (uh) =

∫
T

ωiΓ
n+1(uh) (3.9)

From now on, when expressing the RD scheme over a stabilized finite ele-
ment formulation, the operators LGh and LSh will be used, denoting respectively
the Galerkin part of the residual and the stabilised one :

LGh (uh) + LSh(uh) = 0

LGh (uh) =
∑
T3i

∫
T

ϕi

(
p∑
i=0

αi
δun+1−i

∆t
+

q∑
j=0

θj∇ ·Fn+1−j

)

LSh(uh) =
∑
T3i

∫
T

γi

(
p∑
i=0

αi
δun+1−i

∆t
+

q∑
j=0

θj∇ ·Fn+1−j

) (3.10)
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3.1.4 Mass Matrix Formulations

Let consider the simplest case of (3.1), a one step time integration scheme,
with p = 0 and α0 = 1. For sake of simplicity in the notations, the spatial
contribution is denoted with φTi (uh). Then, the nodal residual writes :

ΦT
i (uh) =

∫
T

ωi
∆uh
∆t

+ φTi (uh) (3.11)

where ∆uh = un+1
h − unh. This can be rewritten as :

ΦT
i (uh) =

∑
j∈T

∆uj
∆t

∫
T

ωiϕj + φTi (uh) (3.12)

and thus the mass matrix (mij) is introduced :

ΦT
i (uh) =

∑
j∈T

mij
∆uj
∆t

+ φTi (uh), mij =

∫
T

ωiϕj (3.13)

As detailed in [134, 135], different formulations can be sorted out for this mass
matrix. In this work, two different definitions are employed. The first one
is defined by using the distribution coefficient defined for steady case, but to
distribute not only fluctuation (2.46), but the total residual (3.2). It defines
the nodal residual as :

ΦT
i = βTi

(∑
j∈T

∫
T

∆uh
∆t

+ φT (uh)

)
(3.14)

leading to the formulation 1 of the mass matrix :

mF1
ij = βTi

|T |
d+ 1

, ωi = βTi (3.15)

The second formulation used is to consider ωi as defined section 2.3.3.3 for
steady case (2.71,2.73) :

ωi = ϕi + βTi −
1

NDoF

(3.16)

Using this definition (3.16) in (3.13) gives the formulation 2 of the mass matrix :

mF2
ij =

|T |
d+ 1

(
1 + δij
d+ 2

+ βTi −
1

d+ 1
) (3.17)

Remark 3.1. As the βTi are defined satisfying the Linearity Preservation
property 2.6 those two definitions of ωi satisfy the property 3.3.

Now that all the theory is settled, different discretizations are now pre-
sented, and applied to advection diffusion equations, by combining this theory
developed and already validated for advection problems with the fluctuation
defined previously for steady advection diffusion problems.
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3.1.5 Discretization of scalar advection diffusion problem

The focus is now put on the discretization of time dependant advection dif-
fusion equation (2.33): As said in the state of the art, some works have been
provided in the literature [39, 61]. The present approach extends the schemes
based on the gradient reconstruction strategy proposed in [56, 11] recalled
section 2.3.3.5 to unsteady simulations. The schemes are written exactly as
for time dependant advection problems and the total and nodal residuals are
defined as for steady case when switching to advection diffusion problems.
First, the second order explicit Runge Kutta scheme proposed by Ricchiuto
and Abgrall in [135] is briefly recalled and extended to the considered prob-
lems. Indeed, as will be explained, they provide a scheme that can be fully
explicit, without even the inversion of a Galerkin mass matrix. Thus, its im-
plementation is very simple and even if, as every explicit scheme, the time
step is constrained by a CFL condition, it still allows to perform sufficient
quick simulations to first settle the residual distribution framework applied to
penalized Navier Stokes equations. Nevertheless, when coming to perform real
complex simulations on adapted grids, the use of an implicit scheme becomes
necessary. Thus, the θ scheme is also presented, that is used with θ = 0.5,
giving a Crank-Nicolson (CN) scheme, second order accurate in time.

3.1.5.1 Explicit Second Order Runge Kutta Scheme

As explained in the introduction, genuinely explicit schemes have been pro-
posed by Ricchiuto and Abgrall [135, 134] and used for solving advection prob-
lems. Here is briefly recalled the construction of the RK2 scheme, the reader
being referred to the above references for proof of accuracy.

Following [135], the construction starts from the stabalized FE formulation :

LGh (uh) + LSh(uh) =
∑
T3i

{∫
T

ϕi
∆uh
∆t

+

∫
T

γi
∆uh
∆t

+

∫
T

ωi∇ ·F(uh)

}
= 0

(3.18)
What has been proved in the above references is that what is called a time
shifted operator (TSO) ∆uh can be used in the stabilized part :

LSh(uh) =
∑
T3i

∫
T

γi

(
∆uh
∆t

+ ∇ ·F(uh)

)
(3.19)

This TSO being chosen genuinely simplifies a lot the problem without damag-
ing the accuracy of the scheme. It allows to only have to invert the Galerkin
matrix (or, as will be seen, avoid matrix inversion using mass lumping). For
the RK2 scheme, the two following TSO have been proven to conserve the
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second order accuracy : ∆uh
rk1

= 0

∆uh
rk2

=
u∗h − unh

∆t

(3.20)

where u∗h denotes the approximation of the solution after the first step of the
scheme.
Thus, the first step writes :∑

T3i

{∫
T

ϕi
∆uh
∆t

+

∫
T

ωi∇ ·F(uh)

}
= 0 (3.21)

leading to: ∑
T3i

{∑
j∈T

mG
ij

u∗j − unj
∆t

+ φTi (unh)

}
= 0 (3.22)

where mG
ij =

∫
T
ϕiϕj corresponds with the galerkin matrix and φTi (uh) corre-

sponds with the nodal fluctuation (2.74). Even if the Galerkin mass matrix is
easy to invert, so as to use full potential of explicit scheme, and as the focus
of this PhD is second order accuracy, the choice has been done to use mass
lumping, leading to the following first step of the RK2 scheme :

|Ci|
∆t

(u∗i − uni ) +
∑
T3i

φTi (unh) = 0. (3.23)

Identically, the second step is written :∑
T3i

{∫
T

ϕi
un+1
h − unh

∆t
+

∫
T

γi
u∗h − unh

∆t
+

1

2

∫
T

ωi [∇ ·F(unh) + ∇ ·F(u∗h)]

}
= 0

(3.24)
Once again, as only second order accuracy is sought, for sake of simplicity in
the implementation, it is used :

1

2
(F(u∗h) + F(unh)) = F

(
u∗h + unh

2

)
To get a simpler form of (3.24), the Galerkin integral

∫
T
ϕi

u∗h−u
n
h

∆t
is added and

subtracted :∑
T3i

{∫
T

ϕi
un+1
h − unh

∆t
+

∫
T

γi
u∗h − unh

∆t
+

∫
T

ωi∇ ·F
(
unh + u∗h

2

)
±
∫
T

ϕi
u∗h − unh

∆t

}
= 0

leading to :∑
T3i

{∫
T

ϕi
un+1
h − u∗h

∆t
+

∫
T

ωi
u∗h − unh

∆t
+

∫
T

ωi∇ ·F
(
unh + u∗h

2

)}
= 0
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that written in a RD formalism gives :

∑
T3i

{∑
j∈T

mG
ij

un+1
h − u∗h

∆t
+
∑
j∈T

mij
u∗h − unh

∆t
+ φTi

(
u∗h + unh

2

)}
= 0

As for the first step, mass lumping is applied and finally, the RK2 RD scheme
writes, with the formulation 1 of the mass matrix :

|Ci|
∆t

(u∗i − uni ) +
∑
T3i

φTi (unh) = 0

|Ci|
∆t

(un+1
i − u∗i ) +

∑
T3i

[∑
j∈T

mF1
ij

u∗j − unj
∆t

+ φTi

(
u∗h + unh

2

)]
= 0

(3.25)

The extension to advection diffusion problems is quite simple. The scheme
(3.25) is modified by defining the nodal fluctuation as for steady case. The
fluctuation is computed using the reconstructed gradient ∇̃uh and the penalty
term coming from the FOS is added to the nodal fluctuation. Considering as
previously the simplest case for the diffusion part, K = νI :

φTi (uh) = βTi

∫
T

(
∇ ·F(uh)− ν∇ · ∇̃uh

)
+

∫
T

ν∇ϕi ·
(
∇uh − ∇̃uh

)
= βTi φ

T (uh) +

∫
T

ν∇ϕi ·
(
∇uh − ∇̃uh

)
(3.26)

with uh = unh at the first step and uh =
unh+u∗h

2
at the second one.

3.1.5.2 Implicit θ scheme

A Newton Algorithm

Still considering the unsteady advection diffusion equation (2.33), let consider
the θ scheme written in the RD formalism (3.13) :

∑
T3i

{∑
j∈T

mij

un+1
j − unj

∆t
+ θφTi (un+1

h ) + (1− θ)φTi (unh)

}
= 0, ∀i ∈ T h (3.27)

As for steady simulation, the non linear character of the problem and the need
of the evaluation at time tn+1 of the fluctuation φTi (un+1

h ) requires the use of
Newton algorithm. As for the RK2 scheme, considering second order accuracy
(at best, θ = 1

2
, Crank-Nicolson (CN RD) scheme), it is used :

φTi (un+θ
h ) = θφTi (un+1

h ) + (1− θ)φTi (unh), un+θ
h = θun+1

h + (1− θ)unh (3.28)
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Let rewrite (3.27) as :
Ri(u

n+1
h ) = 0, ∀i ∈ T h

Ri(uh) =
∑
T3i

{∑
j∈T

mij

uj − unj
∆t

+ φTi (un+θ
h )

}
(3.29)

The iterative convergence of {
Ri(u

k+1
h ) = 0

u0
h = unh

(3.30)

is sought. The following Taylor expansion is employed :

Ri(u
k+1
h ) ≈ Ri(u

k
h) +

∑
j∈T h

∂Ri

∂ukj
(uk+1

j − ukj )

And the problem writes :{
J(Uk)

(
Uk+1 −Uk

)
= −R(Uk)

U0 = Un
h

(3.31)

where U = (u0, . . . , uNv)
T , R(U) = (R0(uh), . . . , RNv(uh))

T and with J(Uk)
the Jacobian to invert.

Jij =


∑
T3i

∂Ri

∂uki
, if i = j

∑
T3(i,j)

∂Ri

∂ukj
, if i 6= j

(3.32)

Jacobian approximation

Now, the question raised is the evaluation of this Jacobian. Indeed, some
terms are neglected so as to simplify the expression and the computation of
the matrix to invert, especially for the diffusive part.

Ri is rewritten as :

Ri(uh) =
∑
T3i


∑
j∈T

mij

uj − unj
∆t︸ ︷︷ ︸

Ri1

+φTi (un+θ
h )︸ ︷︷ ︸

Ri2

 (3.33)
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Starting by considering Ri2 , the nodal fluctuation is splitted into the advective
contribution φadvi and the diffusive one φdiffi , φTi = φadvi + φdiffi with :

φadvi = βTi φ
T,adv(uh) = βTi

∑
j∈T

kjuj (3.34)

φdiffi = −βTi
∫
T

∇ · (ν∇uh) +

∫
T

ν∇ϕi ·
(
∇uh − ∇̃uh

)
(3.35)

Remark 3.2. The advective part is defined in the Jacobian using the inflow
parameters, coming from the quasi linear form of the equation (2.55), as the
aim is to find an approximation. For the right and side, however, the compu-
tation is still performed via the integration of the flux on the boundary (2.54)
so as to keep a conservative form.

First, looking at the advective nodal residual (3.34), the first approximation
consists in neglecting the Jacobians of the distribution coefficients βTi and
inflow parameters ki. Thus, the Jacobian of the advective part simply writes :

∂φT,advi

∂uj
= βTi kj (3.36)

The second approximation concerns the diffusive part of the fluctuation. Only
the advection Jacobian could be used to solve the whole problem. However, so
as to ensure a better convergence, it is chosen here to take the diffusion into ac-
count in the matrix. Nevertheless, regarding (3.35), the diffusion contribution
of the fluctuation being computed using reconstructed gradients, its Jacobian
is complex to evaluate. An idea could be to consider a P1 approximation of
the gradient, but it would lead to a null contribution. Thus, the choice has
been done to only and simply consider the classical Galerkin matrix associated
to diffusion :

∑
j∈T ujν

∫
T
∇ϕi ·∇ϕj leading to the final approximation of the

Jacobian of Ri2 :
∂Ri2

∂uj
= βTi kj + ν

∫
T

∇ϕi ·∇ϕj = βTi kj + ν
ni · nj
d2|T |

(3.37)

Now, regarding Ri1 , as the mass matrix is non linear only by its dependence on
the distribution coefficients (whatever is the chosen formulation, see definitions
(3.15,3.17)), its Jacobian is also neglected. Thus, the Jacobian of Ri1 writes :

∂Ri1

∂uj
=
mij

∆t
(3.38)

Combining those two approximations 3.38 and 3.37, the final form of the matrix
to invert writes, the formulation 2 of the mass matrix being employed :

Jij =



∑
T3i

(
mF2
ii

∆t
+ βTi ki + ν

||ni||
d2|T |

)
, if i = j

∑
T3i,j

(
mF2
ij

∆t
+ βTi kj + ν

ni · nj
d2|T |

)
, if i 6= j

(3.39)
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3.1.5.3 Convergence Study

We perform a convergence study for the advection diffusion equation. An
exact solution can be found for constant diffusion (see the study proposed
in [61]), but only for constant advection speed. We have instead chosen to
use a manufactured solution to solve (2.33). The principle of manufactured
solutions, as explained in [142] is to define a priori the exact solution uex and
to inject it into the considered equations. It will give a source term Sm. For
equation (2.33) :

∂uex
∂t

+ a(uex) ·∇uex − ν∆uex = Sm

For the proposed computations (this study and as will be seen next section for
the NS study), the source term is computed using the Maxima software. Then
the original equation minus this source term is solved :

∂u

∂t
+ a(u) ·∇u− ν∆u− Sm = 0 (3.40)

The manufactured solution is set such that derivative and second derivative
are smooth :

uex(x, y, t) =

{
cos3(2πr(x, y, t)), if r(x, y, t) ≤ r0

0, elsewhere
(3.41)

with
r(x, y, t) =

√
(x− αt)2 + y2 (3.42)

that corresponds with the "forced" advection of the cube cosinus at speed
α. This solution allows to perform computations not too costly, even on fine
mesh and Dirichlet BC are used. The domain of computation is [−0.5, 0.7]×
[−0.5, 0.5]. α and Tf are such that αTf = 0.2.
Two kinds of grids are employed. The first one is composed of a triangular
grids whom triangles have been cut (see figure 3.1a) and is called "structured"
through misuse of language. The second kind is totally unstructured and
the grid are generated using the gmsh software (see figure 3.1b). So as to
perform the convergence study, different mesh are considered such that the
characteristic size h =

√
LxLy
Nv

is divided by two from one mesh to another.
Table 3.1 presents the number of nodes for the different meshes used and their
associated length. The CFL is kept constant for all the simulations. For the
RK2 scheme, it is set CFL = 1 and for the CN scheme, CFL = 15. To invert
the matrix, the MUMPS library is employed. The curves corresponding to the
convergence are plotted figure 3.2a,3.2b (structured, unstructured grids) for
the N1 and N2 norms, defined as :

N1 =
Nv∑
i=1

|uex,i − ui|
Nv

, N2 =
Nv∑
i=1

√
(uex,i − ui)2

Nv

RD schemes and penalization for ice shedding trajectories 63



3.1. Residual Schemes for Unsteady Problems

(a) Structured mesh (b) Unstructured mesh

Figure 3.1 – Two kinds of grids for convergence study

Nv 1600 6400 25600 102400 409600
h 0.05 0.025 0.0125 0.00625 0.003125

Table 3.1 – Convergence Study : Number of nodes and characteristic length

with uex,i and ui the exact and computed values of the solution at node i.
The convergence is well recovered for both of the schemes. In addition, it is
noticed that the Crank Nicolson scheme compares well with the RK2 scheme in
terms of accuracy whereas the CFL condition is 15th time higher. Concerning
the CPU time, the computations performed with the CN scheme are about
twice faster than those performed with the RK scheme. This shows the time
gain provided by implicit schemes, without degrading the precision of the so-
lution. However, note that even if the CFL is set to 15 for the CN scheme, the
computations are only twice faster (at best, the number of Newton iterations
being dependent on the mesh size). This is in part due to the matrix inversion
which is not optimal. In particular, the MUMPS library uses a direct method
while in a Newton algorithm, a low tolerance in the matrix inversion is often
enough. A better implementation with other matrix inversion algorithm would
lead to better results, as will be seen for NS studies. Apart from this matrix
inversion, better choices of Jacobian approximation may lead to better results.

3.1.6 Extension to Navier Stokes Equations

In this section, the proposed schemes are extended to the NS system of equa-
tions. The main points tackled here concern the temporal part of the problem,
meaning expression of the mass matrix and the approximation of the Jacobian
in the case of NS equations. The remaining part being identical to what has
been discussed in section 2.3.4.1.

3.1.6.1 Formulation of the mass matrix

We start by giving the formulations of the mass matrix for a system case.
The extension is quite immediate. The mass matrix is now a tensor of size
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(a) Structure Grids (b) Unstructured Grids

Figure 3.2 – Convergence Study - Unsteady Scalar Advection Diffusion

Nvar × Nvar × NDoF × NDoF . Thus, we denote by Mij the matrix of size
Nvar ×Nvar. The Formulation 1 writes :

MF1
ij =

|T |
d+ 1

βT
i

(3.43)

and the formulation 2 is defined by :

MF2
ij =

|T |
d+ 1

(
1 + δij
d+ 2

I + βT
i
− 1

d+ 1
I
)

(3.44)

Finally, the formulation (3.13) writes for a system of equation :

ΦT
i (uh) =

∑
j∈T

Mij

∆uj
∆t

+ φTi (uh) (3.45)

It gives the following formulations for the schemes :
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3.1.6.2 Second Order Explicit Runge Kutta Scheme

The formulation is just the extension of (3.25,3.26) to system using the mass
matrix (3.43) :

u∗i = uni +
∑
T3i

[
βT
i
φT (unh) +

∫
T

K∇ϕi ·
(
∇unh − ∇̃unh

)]

un+1
i = u∗i +

∑
T3i

[∑
j∈T

MF1
ij

u∗j − unj
∆t

+ βT
i
φT (un+ 1

2
h )+

∫
T

K∇ϕi ·

(
∇un+ 1

2
h −

˜
∇un+ 1

2
h

)] (3.46)

with
φT (uh) =

∫
T

(
∇ · FNS(uh)−∇ ·

(
K∇̃unh

))
(3.47)

3.1.6.3 Implicit θ Scheme

Some additional informations are given here for the extension to the NS equa-
tions of the θ scheme. The problem (3.31) writes :{

J(Uk+1 −Uk) = −R(Uk)

U0 = Un
(3.48)

with

Ri(uh) =
∑
T3i

{∑
j∈T

MF2
ij

uj − unj
∆t

+ φTi (un+θ
h )

}
(3.49)

where this times, U = (u1, . . . ,uNv)T and R = (R1(uh), . . .RNv(uh))T are of
size NvNvar and the matrix J is of size NvarNv × NvarNv. The expression of
the approximated Jacobian Jij of size Nvar ×Nvar is :

Jij =



∑
T3i

(
MF2

ii

∆t
+ βT

i
Ki +

ni · (Kni)
d2|T |

)
, if i = j

∑
T3(i,j)

(
MF2

ij

∆t
+ βT

i
Kj +

ni · (Knj)
d2|T |

)
, if i 6= j

(3.50)

However, for some complex simulations, this approximation was not sufficient
and led to either too many Newton iterations, or to no convergence at all. In
those situations, the Newton Algorithm has been slightly modified by using
a dual time stepping (same principle than for steady simulation). It modifies
problem (3.29) as follows :

∂Uh

∂τ
+ R(Uh) = 0
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that is discretized with a simple implicit Euler scheme :

|Ci|
Uk+1
i −Uk

i

∆τ
+ Ri(Uk+1) = 0, ∀i ∈ T h (3.51)

where ∆τ is the dual time stepping. It modifies the original Jacobian by only
reinforcing the diagonal and the new matrix J̃ to invert writes :

J̃ij =


∑
T3i

(
|Ci|
∆τ k

I +
Mii

∆t
+ βT

i
Ki +

ni · (Kni)
d2|T |

)
, if i = j

∑
T3(i,j)

(
Mij

∆t
+ βT

i
Kj +

ni · (Knj)
d2|T |

)
, if i 6= j

(3.52)

∆τ k denotes the fact that the dual time step is chosen according to the con-
vergence of the method. The more it converges, the higher is this dual time
step.

3.1.6.4 Convergence study

As for the scalar equation in section 3.1.5.3, a manufactured solution is em-
ployed. The solution is chosen as follows for the pressure, velocity and density :

ρ =

{
ρ0 + ρ0 cos3(2πr(x, y, t)), if r ≤ r0

ρ0, elswhere

u = u0

v =

{
v0 + v0 cos3(2πr(x, y, t)), if r ≤ r0

v0, elswhere

p =

{
p0 + p0 cos3(2πr(x, y, t)), if r ≤ r0

p0, elswhere

(3.53)

with
r =

√
(x− αt)2 + y2 (3.54)

It is the exact same problem than the scalar one, but for a system case. It
corresponds to the ’forced’ advection with speed α of a cube cosinus on the
density, v velocity and pressure. The computation is performed on a domain
[−0.5, 0.7] × [−0.5, 0.5] with αTf = 0.2. For the variables (3.53,3.54), the
following parameter are set :

α = u0 = 6, v0 = 1, ρ0 = 1.4, p0 = 100

Same grids than in section 3.1.5.3 are employed for the convergence study (see
figures 3.1a, 3.1b and table 3.1). For sake of clarity, only the N1 norm of the
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(a) Structured grids (b) Unstructured grids

Figure 3.3 – Navier Stokes - Unsteady Convergence study, N1 norm

error of the density and u velocity are displayed figures 3.3a and 3.3b, but the
results for v velocity and pressure are similar. A CFL = 1 has been employed
for the RK2 scheme and CFL = 15 for the CN scheme. As expected, the
second order accuracy is recovered for both schemes, which confirms the scalar
study. Now, the focus is the time computation. During De Santis PhD [56], a
Gmres algorithm with LU preconditioning has been implemented for the steady
case. This provided matrix inversion has been used. Although the gain in time
of computation is higher that for the scalar case (CN computation 3 times
faster than RK2 one on the finest mesh), it is not optimal. However, we have
preferred the simplicity provided by the proposed one, while choosing higher
CFL for application test cases can still allow to decrease the computational
time of 60/70%.
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3.2 Extension to Penalization

3.2.1 A splitting approach

The approach employed for unsteady simulations is not the same than the one
used for steady ones. It is based on a splitting, that will be detailed in the
next section. This is motivated by the following points :

• A well known problem associated to penalization is that employed with
an explicit scheme the time step should be of the same order than the
penalty parameter. As this penalty parameter has to be chosen very
small to ensure an accurate imposition of the BCs (η ∼ 10−10), it leads
to inconceivable simulations. However, when considering a splitting, the
resolution of the NS part of the equation being "independent" of the
penalization one, this constraint does not hold anymore and thus, explicit
schemes can be employed.

• The present study falls within the continuity of previous works resolv-
ing penalization on cartesian grids for tracking solid motion into a fluid
[26, 118]. In those references, an aerodynamical forces computation is
proposed, based on a change of momentum computation specific for split-
ting approach (detailed section 3.2.4).

• This proposed approach does not involve any change in the Navier Stokes
computation. Then, it is easily coupled to any already functional NS
computational code.

3.2.2 The Strang Splitting

A splitting method consists into solving a PDE by solving it by part, leading
to simpler PDEs. For instance, considering :

∂tu+ a(∂ixiu, x, t) + b(∂ixiu, x, t) = 0 (3.55)

with a and b arbitrary operations on the derivatives of u according to x. The
two following equations are solved :

∂tu+ a(∂ixiu, x, t) = 0 (3.56)
∂tu+ b(∂ixiu, x, t) = 0 (3.57)

If M∆t and N∆t denotes respectively operators associated to the resolution of
(3.56) and (3.57), a basic splitting consists in solving equation (3.55) by :{

u1 = M∆tu
n

un+1 = N∆tu
1 (3.58)
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Figure 3.4 – Strang Splitting

The question of the accuracy is raised. Indeed, since the beginning, globally
second order scheme have been proposed, and even if the penalization is only
first order accurate, we compensate this loss by mesh adaptation. Thus, what
would be required for the splitting to not spoil this accuracy?
Assuming M∆t and N∆t to be second order approximations (in time), their
combination must be carefully chosen in order to preserve this accuracy. Strang
has demonstrated [152] that the operator M∆t

2
(t + ∆t

2
)N∆t(t)M∆t

2
(t) provides

the required accuracy. This process is sketched figure 3.4, and the notations
that will be used are : 

un+ 1
2 = M∆t

2
un

un+ 1
2 = N∆tu

n+ 1
2

un+1 = M∆t
2
un+ 1

2

(3.59)

3.2.3 Application to penalization

3.2.3.1 Development of the scheme

We now consider the following penalized equation :

∂tu+∇ ·F(u)−∇ · (ν∇u) +
1

η
(u− uS)︸ ︷︷ ︸
S(u)

= 0 (3.60)

We are willing to apply splitting in order to solve separately :
∂tu+∇ ·F(u)−∇ · (ν∇u) = 0

∂tu+
1

η
(u− uS) = 0

So as to ensure spatial consistency, the splitting is applied on the spatially
discretized formulation of the equation. We first apply a RD scheme to this
equation (3.60) : ∑

T3i

{∫
T

ωi (∂tuh + S(uh)) + φTi (uh)

}
= 0 (3.61)
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For a linear approximation of the source term S, we have :∑
T3i

{∑
j∈T

mij(∂tuj + S(uj)) + βiφ
T (uh)

}
= 0 (3.62)

We can now introduce the operators used in the splitting approach proposed:∑
T3i

∑
j∈T

mij(∂tuj + S(uj)) = 0 (3.63)

∑
T3i

{∑
j∈T

mij∂tuj + βiφ
T (uh)

}
= 0 (3.64)

Under the assumption that matrix (mij) is invertible, the first equation
(3.63) admits a trivial pointwise solution

∂tui + S(ui) = 0 (3.65)

This approach is applied to the penalized NS system of equations. The
penalization part becomes the system :

∂tρi = 0

∂t(ρiui) +
1

η
(ρiui − ρuSi) = 0

∂t(ρiei) +
1

η
(ρεint,i − ρεintS,i) +

1

η
(ρiui − ρuSi).ui = 0

(3.66)

System (3.66) can be simplified considerably by combining the ODEs in-
volved. From the first equation, we get that ρi remains constant thus :

∂tui +
1

η
(ui − uSi) = 0 (3.67)

Considering now the energy equation, it is easily obtained, using the definition
of the total energy ei = εint,i + 1

2
u · u, and the previous equations :

∂tεint,i +
1

η
(εint,i − εintS,i) + ui ·

∂tui +
1

η
(ui − uSi)︸ ︷︷ ︸
0

 = 0 (3.68)

Finally, we propose to use the following simplified version of (3.66)
∂tρi = 0

∂tui +
1

η
(ui − uSi) = 0

∂tεint,i +
1

η
(εint,i − εintS,i) = 0

(3.69)
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All the penalized variables are now uncoupled, and satisfy an ODE of the type:

∂tf +
1

η
(f − fS) = 0 (3.70)

Equation (3.64) will now provide the RDS discretization of the standard NS
equations (2.1).

In the following, we denote by S(P,∆t) the operator associated to the pe-
nalization system (3.69), and by S(NS,∆t) the operator resulting from the RD
discretization of the NS equations (2.1). To get a global second order accu-
racy, a second order RDS in space and time and a second order operator S(P,∆t)

have to be chosen. For the NS part, the schemes proposed previously section
3.1.6 can be employed (explicit schemes being no longer restrained by the CFL
constraint). The next two following paragraphs present the approach used to
solve (3.70).

3.2.3.2 Constant penalty variable

We have to solve over an interval [0,∆t] ∂tf +
1

η
(f − fS) = 0

f(0) = fIC

(3.71)

where fIC is the initial condition. The exact solution of (3.71) with fS constant
is :

f(t) = fICe
− t
η + (1− e

t
η )fS (3.72)

thus the operator for (3.65) which is exact is :

S(P,∆t
2

) = fICe
−∆t

2η + (1− e
∆t
2η )fS (3.73)

and the Strang splitting applied to NS - (3.69) writes :
U
n+ 1

2 = Une−
∆t
2η + (1− e−

∆t
2η )US

Un+ 1
2 = S(NS,∆t)U

n+ 1
2

Un+1 = Un+ 1
2 e−

∆t
2η + (1− e

∆t
2η )US

(3.74)

with the first and last step only applied to u and εint.
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3.2.3.3 Time dependant penalty variable

To handle the case in which fS is an arbitrary function of time, we propose to
compute a particular solution to (3.71) introducing the asymptotic expansion
w.r.t. the small paramter η :

f = f0 + ηf1 + η2f2 + . . .

Replacing this expression in the original ODE, and equating equal powers of
η we readily find the asymptotic particular solution :

f = fS +
∑
i

(−η)i∂itifS (3.75)

But at this point, the context of penalization intervenes. As η is set very small
(10−10), every term ηi, i ≥ 2 is neglected. So, to an accuracy of order η2, we
consider the particular solution:

fpar(t) ' fS(t)− η∂tfS (3.76)

And thus the truncated exact solution on the interval [0,∆t] becomes :

f(t) = (fIC − fS(0) + η∂tfS) e−
t
η + fS(t)− η∂tfS (3.77)

It is easily seen that for constant variables of penalization the derivative parts
are cancelled, and (3.72) is found back. If ∂tfS is known analytically, its
expression can be explicitly used. Otherwise, some discrete approximation of
this quantity can also be employed. In our cases, the operators for the first
and last operation of the Strang splitting can be computed by using (3.77)
with fIC = fn and fIC = fn+ 1

2 :

f
n+ 1

2 = fne−
∆t
2η + (η∂tf

n
s − fnS ) e−

∆t
2η + f

n+ 1
2

s − η∂tf
n+ 1

2
s (3.78)

fn+1 = fn+ 1
2 e−

∆t
2η +

(
η∂tf

n+ 1
2

s − fn+ 1
2

S

)
e−

∆t
2η + fn+1

s − η∂tfn+1
s (3.79)

3.2.4 Fluid Structure Interaction : Evaluation of the Aero-
dynamic Forces

Two different approaches are studied to compute the aerodynamical forces
exerted on the solid. The first one, proposed by Morency et al in [26, 118]
is specifically designed for splitting method. The second one is the classical
way of computed forces by integrating the shear stress and the pressure on the
surface.
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3.2.4.1 Change of Momentum Computation

As said previously, this computation is specific for splitting techniques. Indeed,
the idea is to evaluate the change of momentum in a close surface/volume in
2D/3D containing the body. However, when using splitting, during the Navier
Stokes part, the solid is "not seen" and thus the volume on which the integra-
tion is performed is the solid itself. This integral computation being performed
between the NS step of the splitting and the penalization one. From an im-
plementation point of view, this technique is quiet simple to settle. Indeed,
the integration is performed over the elements on the solid, that are already
marked for the penalization step. The change of momentum is performed as :

∆m =

∫
S

ρ(u− us) =
∑
T∈S

∫
T

ρ(u− us) (3.80)

and the forces is computed as :

F =
∆m
∆t

(3.81)

Identically, the pitching moment is computed as :

T =
1

∆t

∫
S

r× ρ(u− us) (3.82)

with r the lever arm. In the following, the forces computed using this method
will be denoted FCM .

3.2.4.2 Surface Integral Computation

The second way considered to compute the forces is by integrating the pres-
sure and shear stress contribution on the surface. However, as the surface
is not known explicitly, the first step is to interpolate the solution from the
computational domain on a discretization of the surface and to then perform
the integration. Thus, the necessary quantity (pressure and gradients) are
recovered on the discretized surface using a simple P1 interpolation and the
integration is performed over the elements ∂T of the surfacic mesh :

F =

∫
S

(−pI + S)nnormdS =
∑
∂T

∫
∂T

(−pI + S)nnormdS (3.83)

where nnorm is the normalized normal of the solid. Identically :

T =

∫
S

r× (−pI + S)nnormdS (3.84)

Remark 3.3. The interpolation step is not costly. So as to locate on which
element of the computational mesh a node of the surface discretization belongs,
at each time step, the starting element is the containing element at the previous
time step which is very close to the researched one.

From now on, the forces computed using this technique will be denoted FIC .
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3.2.5 Results

To validate the approach proposed, several test cases are considered. The first
ones are the Rayleigh test cases corresponding to the study of the flow put into
motion by a wall, with constant or oscillating speed. This study proposes the
comparison of the obtained solution with an analytical one. The second case
corresponds to the study of the evolution of a flow past a 2D cylinder. This
problem is very well documented in the literature and allows to validate both
the method and the aerodynamical forces computations.

Remark 3.4. This test case is not strictly speaking a motionless body as the
velocity is not null. However, we employ "motionless" to characterize bodies
defined by a fixed level set on the mesh.

3.2.5.1 Rayleigh test cases

The Rayleigh Problem consists in the development of the flow of a motionless
fluid which is dragged by a wall moving at speed (cf. figure 3.5a)

u(t) = U cos(ωt)

with ω the frequency. For a constant speed (ω = 0), the analytical solution
for this problem is, for an incompressible flow [146] :

u(y, t) = Uerf

(
y

2
√
νt

)
where U is the wall speed, ν is the kinematic viscosity and t the time.

For an incompressible fluid, an analytical solution can be found also in the
case of an oscillating wall, and it is given by [146] :

u(y, t) = Ue−ky cos(ky − ωt), k =

√
ω

2ν

The computations are performed from t = 0 to Tf = 0.2 for the constant
speed case, and from t = 0 to Tf = 0.46875 for an oscillating wall. In the
latter case we have taken ωTf = 5π

2
so as to have more than one period for the

simulation time. The dynamic viscosity is set to µ = νρ = 0.1.
The computational domain is in both cases [0, 1]× [0, 1] for non penalized

simulations, and [0, 1] × [−0.2, 1] for the penalized ones. The penalty term
is imposed on the band [0, 1] × [−0.2, 0] (see figure 3.5b). The left and right
boundaries are periodic, and the free stream condition on the top is given by :
(ρ, u, v, p) = (1.4, 0, 0, 100).
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(a) Rayleigh test
case (b) Computational domain for non penalized equations (left)

and penalized one (right)

Figure 3.5 – Rayleigh test case presentation

(a) Adapted mesh
1, 115 vertices
2, 112 triangles

(b) Fine mesh for penal-
ization
16, 053vertices
31, 664 triangles

(c) Fine mesh for classical
resolution
13, 449 vertices
26, 496 triangles

Figure 3.6 – Rayleigh tests - Different meshes

We will compare the solutions obtained on a mesh adapted w.r.t. the level
set, and on two uniform fine meshes. One for a penalized simulation and the
other for a fitted one. As for steady simulations, the mesh is adapted to the
0 level set value and is generated using as adaptation parameters ε = 2.10−3,
hmin = 2, 5.10−3 and hmax = 7, 5.10−2. The three meshes are presented figures
3.6a,3.6b and 3.6c.

The velocity profiles at x = 0.5, along with a zoom close to the wall, are
plotted figure 3.7 using penalization on the adapted and fine meshes compared
to the solution of the classical NS equations on a fine mesh and the analytical
solution. It appears that the penalized solution is as good as the classical
solution. Both solutions are in good agreement with the analytical one. The
solution on the adapted mesh compares well to the solutions obtained on fine
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Figure 3.7 – Speed profile on different grids. Left : Constant speed - Right :
Oscillating speed. Top : General - Bottom : Zoom close to the wall

meshes, which proves once again that mesh adaptation is a powerfull tool :
same accuracy for more than ten times less vertices. In addition, looking at
the isolines of the velocity plotted figure 3.8, we can see that mesh adaptation
allows to improve the accuracy of the solution at the fluid/solid interface, and
thus to better impose the wanted BCs. The solution close to the interface
plotted figure 3.7 shows that even if the penalization does not perfectly match
with the fitted simulation and analytical solution, the results are still improved
thanks to the adaptation.

3.2.5.2 Flow Past Cylinder

In this section, we consider the development of a von Karman vortex street be-
hind a circular cylinder. We will compare the forces obtained with and without
penalization, and the literature. The lift and drag coefficients (respectively CL
and CD) are derived from the aerodynamical forces Fx, Fy by :

CL =
Fy

1/2ρ∞u2
∞L

CD =
Fx

1/2ρ∞u2
∞L

(3.85)

where L is the characteristic lenght of the solid, ρ∞ and u∞ the inflow den-
sity and velocity. The cylinder (radius 0.5) centered in (0, 0) is located in a
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Figure 3.8 – Speed isoline. Left : Adapted mesh with penalization - Middle :
Fine mesh with penalization (poor definition of the solid) - Right : Fine mesh
without penalization

rectangular domain [−6, 10]× [−12, 12] meshed with different mesh sizes (fig-
ure 3.9a). This choice has been done so as to avoid boundary effect, to have
acceptable boundary treatment and to not dissipate the Von Karman alleys.
The Reynolds is set to Re = 200. Inflow is defined by Ma = 0.2, ρ = 1 and a
pressure of 1/γ.

Two different meshes are generated for this test case. The first one contains
an explicit discretization of the solid. It allows to perform the computation of
the aerodynamical forces FIC without interpolation. In addition, there is no
loss of accuracy because of the geometry approximation, and the two forces
computation can then be compared for an exact geometry. The second mesh
is an adapted one, on which the force is only computed with the change of
momentum. Figures 3.9b and 3.9c present the meshes close to the 0 level set
function. The adaptated mesh was obtained from the fitted one with the fol-
lowing parameters : ε = 0.001, hmin = 0.0025. The fitted grid contains 67815
vertices, 135456 elements and the adapted one 85945 vertices and 171715 ele-
ments.

Plots of the lift and drag coefficients for the different meshes with the
different methods are presented figure 3.10. The first noticeable result is that
the computation of the lift coefficient is almost identical whatever is the mesh
and the way of computing the forces (the maximum deviation is of 1.6%).

The mean value of the drag coefficient and the Strouhal number are com-
pared with literature results. Bergmann et al. in [29] performed a study for
the control and the optimization of the drag coefficients. They compared their
results with literature. Thus, we use their work as a base for comparison. We
add our values to the table presented in [29], see table 3.2. For all the compu-
tations, the Strouhal number is of 0.1965 which is really close to the literature
results.
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(a) Von Karman domain
with sizes

(b) Zoom on fitted mesh (c) Zoom on adapted mesh

Figure 3.9 – Flow past cylinder

Now, we first look at the result with the "classical" force computation on fitted
mesh (integration over the edges of the pressure and shear stress). The mean
value is in good agreement with the other given mean values. This, added to
the good Strouhal number and lift coefficient allow us to confirm the validation
of our penalized method solved with RD scheme and splitting.
Then, we focus on the results given by the change of momentum computa-
tion. For both meshes, the mean values are a little under the others. This
is an expected result because this way of computing is not as precise as the
direct integration on the solid boundaries. However, looking more in detail
(see figure 3.11), we can see some little fluctuations in the maximum value of
the sine curves that have not been explained. Nevertheless, we compute the
forces so as to perform simulations with bodies moved by the fluids, and as
these fluctuations induces (on the adapted mesh) an error of about 0.4%, we
consider it irrelevant according to our aim. Thus, we can validate our force
computation as well as the proposed method. In addition, we notice that the
difference on the drag coefficient between adapted and fitted mesh is of 0.9%
which proves that mesh adaptation allow to recover the same results than the
ones computed on fitted mesh.

To highlight the importance of performing correctly the gradient recon-
struction, we propose three computations : the resolution of the classical
NS equations on a fitted mesh; two simulations with penalization with and
without the gradient correction (2.111), on a mesh obtained from the fitted
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Author St CD
Braza et al. [33] 0.2000 1.4000
Henderson [84] 0.1971 1.3412
He et al. [83] 0.1978 1.3560
Bergmann et al. [29] 0.1999 1.3900
Fitted Mesh, "classical computation" 0.1965 1.3979
Fitted Mesh, "change of mass computation" 0.1965 1.3404
Adapted Mesh 0.1965 1.3280

Table 3.2 – Strouhal Number and mean drag coefficient value for Re = 200

Figure 3.10 – Lift and Drag Coefficient for Re = 200. Black : Fitted Mesh
"classical computation" - Blue : Fitted Mesh "change of mass computation" -
Red : Adapted Mesh
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Figure 3.11 – Drag coefficient for Re = 200. Black : Fitted Mesh "classical
computation" - Blue : Fitted Mesh "change of mass computation" - Red :
Adapted Mesh

one by meshing the inside of the cylinder. The fitted mesh contains 34210
vertices and 68140 elements, while the mesh including the cylinder contains
39018 nodes and 77454 triangles. We compute the drag coefficients by inte-
grating the pressure and shear stress. The results are plotted on figure 3.12.
We also plot the τxy component of the stress tensor along the segment [AB],
A(−0.5, 0.25)B(0.5,−0.25) on figure 3.13. The curves clearly show that with-
out modifications, the shear stresses computed by the RD method are wrong in
vicinity of solid walls. The modification proposed allows to recover the correct
value of these quantities.

3.3 Summary
In this chapter, the time dependent penalized Navier Stokes equations have
been solved using a splitting approach. Such a strategy provides some flexi-
bility in the choice of the scheme employed for the Navier Stokes resolution,
explicit ones being no longer constrained by the penalty parameter. The ap-
proach has thus been validated using a RK2 RD scheme, that has been consid-
ered in a first time for its efficient implementation. A CN RD scheme has also
been developed, allowing to increase the CFL and reduce the time of compu-
tation. Both of the schemes are an extension to unsteady problems of the high
order schemes proposed by De Santis [56], with a restriction to second order
accuracy. The approach has been validated on test cases, along with forces
computations, that are required to be accurate to perform FSI simulations.
Now that a generic method is validated to solve unsteady penalized problems,
numerical tools are required to handle moving objects cases, that is the focus
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of the next section.

Figure 3.12 – Computation of drag coefficients for different simulations : Clas-
sical simulation (black), penalized simulation with new gradient reconstruction
(blue) and without (red)
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Figure 3.13 – Flow past cylinder computations - Left : vorticity (top : penal-
ized simulation, bottom : classical simulation) and cutting segment [AB] for
plotting stress - Right : Plot of the τxy component of the stress tensor, fitted
computation (black), penalization with new gradient reconstruction (dashed
red) and without (dotted blue).
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Chapter 4

Penalization and Moving Bodies -
An ALE Approach

Some works have been provided to extend the metric based mesh adaptation
strategy presented chapter 2 to unsteady problems [94, 81, 28]. The process
differs in Jannoun’s PhD [94] from the one adopted by Alauzet and co authors
[81, 28], but the basic idea is the same : the generation of an optimal mesh for
a given time interval (this time interval being optimal in [94]). In [94], simu-
lations of windmills and rotating helicopter propeller have been performed by
employing an IB method. However, even if the results are quite convincing,
the remeshing/interpolation steps required when switching from one time in-
terval to the next one motivated us to look at other alternatives. That is why
we orientated the research on the combination of r-adaptivity techniques and
Arbitrary Lagrangian Eulerian simulations.

In a first section, a recalling of the integral formulation of conservation laws
in the ALE framework is proposed, and the schemes previously presented are
expressed into this specific context. A non exhaustive state of the art about
some r-adaptivity techniques is then provided, and the approach used here is
described. A final section discusses the process used to solve the penaliza-
tion on adaptive mesh, with academic test cases validating the methodology
proposed, and an application to the trajectory of an ice shape.
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4.1 Residual Distribution Scheme For Solving
Arbitrary Lagrangian Eulerian Problems

4.1.1 State of the art

In the Lagrangian framework, the nodes of the computational domain are as-
sociated to the material particles and follow their motion across time. Thus
the mesh is deformed according to the motion of the flow. The main weak-
ness of this approach is then that in presence of large distortion or vorticity,
mesh tangling can be obtained and a remeshing phase is required. However, its
power resides in its ability to easily track surfaces, interfaces or discontinuities.
On the opposite, the Eulerian approach considers a fixed computational mesh,
and the motion is performed with respect to the grid. Thus this approach can
deal with large distortion, but reduces the possibility to track precisely inter-
faces. The ALE approach aims at combining the two previous ones, to get
the advantages of both. The mesh is mobile, but independent of the particles
motion, which allows to perform refinement without distortions.
It consists in a reformulation of the conservation laws (see for instance [64, 20,
60, 72]) that takes into account the mesh velocity.

This kind of approach dates back from the end of the 60s, especially with
the work of Hirt et. al. [85]. The notion of Discrete Geometric Conserva-
tion Law (DGCL), ensuring that the geometric parameters are computed such
that a uniform solution is kept constant, whatever is the mesh deformation,
has then been introduced (see for instance [107, 79, 67]). Especially, in [107],
Lesoine and Farhat proposed an imposition of the DGCL at a middle configu-
ration between the mesh at time tn and time tn+1. Another approach with an
imposition of the DGCL at time tn+1 can also be considered (see for instance
[78]). One can see the chapter proposed by Donea et. al. [64] in Encyclopedia
of Computational Mechanics and the references therein for a more exhaustive
presentation and different applications, in fluid mechanics but also non linear
solid mechanics.

In more direct relation with the present work, RD schemes has been pro-
posed for ALE Euler simulation in Dobes PhD [78], where the moving mesh
contribution in the equations is treated as a source term, and more recently
Arpaia et. al. proposed a second order ALE explicit Runge Kutta scheme
where the DGCL proposed in [107] is employed [20]. In [68], Farhat and
Lakshminarayan employ ALE formalism to perform simulation using embed-
ded boundary methods. Indeed, it allows to keep a refined area by trans-
lating/rotating it close to the implicit definition of the solid, but for small
displacements.
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4.1.2 Conservation Laws In ALE Formulation

This section presents the fundamental aspects of the Arbitrary Lagrangian
Eulerian approach for CFD.

4.1.2.1 Generalities and notations

Referential, Lagrangian and Spatial domain

To express the ALE equations, three configurations are considered : the La-
grangian or material one, denoted by ΩX, the spatial configuration, on which
we are willing to express the conservation law, denoted by Ωx, that will move
with respect to a referential configuration, denoted by Ωχ. The motion leading
to the spatial configuration is totally independent from the material one.

The coordinates are expressed as X = (X, Y ) in the material domain,
x = (x, y) in the spatial one and χ = (χ, ξ) in the referential configuration.
We denote by Φ the transformation from the referential domain to the spatial
one, by ϕ the one from the material domain to the spatial one, and by Ψ
the mapping from the referential configuration to the material one (see figure
4.1). Obviously, whatever is the considered transformation, as two points in a
domain can not coincide to the same mapping in the image domain, Φ, ϕ and
Ψ are diffeomorphisms. Thus, letting :

Φ : Ωχ × R+ → Ωx × R+

(χ, t)→ Φ(χ, t) = (x, t)

if consider the Jacobian JΦ = ∂x/∂χ, and JΦ = det(JΦ), we have JΦ 6= 0.
The domain velocity σ can be defined as :

σ =
∂x

∂t

∣∣∣∣
χ

(4.1)

Identically, considering the mapping from the material to the spatial configu-
ration :

ϕ : ΩX × R+ → Ωx × R+

(X, t)→ ϕ(X, t) = (x, t)

the Jacobian is denoted Fϕ = ∂x/∂X and as previously we have : det(Jϕ) =
Jϕ 6= 0. The material velocity a is defined by :

a =
∂x

∂t

∣∣∣∣
X

(4.2)

Considering the link between the referential and material domains, as ex-
pressed in [64], it is convenient to consider the inverse Ψ−1 of Ψ (which is
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well defined as we consider a diffeomorphism) instead of Ψ itself :

Ψ−1 : ΩX → Ωχ

(X, t)→ Ψ−1(X, t) = (χ, t)

and the particle velocity in the referential domain w is expressed as :

w =
∂χ

∂t

∣∣∣∣
X

(4.3)

it corresponds with the variation of the referential coordinates χ linked to the
particle located at X and keeping it fixed. It is easily seen that ϕ = Φ ◦Ψ−1,
and the relation between the domain velocity (4.1), the material velocity (4.2)
and the particle velocity (4.3) is obtained by :

a =
∂x

∂t

∣∣∣∣
X

=
∂x

∂t

∣∣∣∣
χ

+
∂χ

∂t

∣∣∣∣
X
.
∂x

∂χ

a = σ + w.
∂x

∂χ

This last relation allows to define v, the relative velocity between the material
domain and the spatial one. This velocity is called convective velocity :

v = a− σ = w.
∂x

∂χ
(4.4)

From now on, derivatives of quantities will be considered. To ease the read-
ing, the following notations will be used to distinguish the material derivative
and the spatial derivative :

material derivative :
∂.

∂t

∣∣∣∣
X

=
d.

dt

spatial derivative :
∂.

∂t

∣∣∣∣
x

=
∂.

∂t

4.1.2.2 ALE Integral form of a conservation law

This section aims at express in an integral form a conservation law in the ALE
framework as done in e.g. [72, 20]. The starting point is to express in the
spatial referential the integral conservation of a quantity u on an arbitrary
volume C(t) :

d

dt

∫
C(t)

u(x, t)dV = 0 (4.5)
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Figure 4.1 – ALE formalism : Referential, Lagrangian and Eulerian configura-
tions

In order to propose an integral formulation, relations linking the different
derivatives of a quantity u are given :

du

dt
=
∂u

∂t
+ a.∇u (4.6)

∂u

∂t

∣∣∣∣
χ

=
∂u

∂t
+ σ.∇u (4.7)

In addition of those two relations, a property that will be called Geometric
Conservation Law (GCL) needs to be expressed. It imposes via equalities
considering the Jacobian determinants Jϕ and JΦ some constraints concerning
the spatial deformation and guaranteeing the conservation of volume.

Property 4.1. Geometric Conservation Law

∂JΦ

∂t

∣∣∣∣
χ

= JΦ∇.σ

dJϕ
dt

= Jϕ∇.a

(4.8)

Proof :
The proof is proposed for the first relation, an analogue reasoning leading to
the second one. We start from

JΦ =
∂x

∂χ

∂y

∂ξ
− ∂x

∂ξ

∂y

∂χ
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and then

∂JΦ

∂t

∣∣∣∣
χ

=
∂

∂t

∣∣∣∣
χ

(
∂x

∂χ

∂y

∂ξ
− ∂x

∂ξ

∂y

∂χ

)
=
∂x

∂χ

∂

∂t

∣∣∣∣
χ

∂y

∂ξ
+
∂y

∂ξ

∂

∂t

∣∣∣∣
χ

∂x

∂χ
− ∂x

∂ξ

∂

∂t

∣∣∣∣
χ

∂y

∂χ
− ∂y

∂χ

∂

∂t

∣∣∣∣
χ

∂x

∂ξ

=
∂x

∂χ

∂σy
∂ξ

+
∂y

∂ξ

∂σx
∂χ
− ∂x

∂ξ

∂σy
∂χ
− ∂y

∂χ

∂σx
∂ξ

=
∂x

∂χ

∂y

∂ξ
∂yσy +

∂y

∂ξ

∂x

∂χ
∂xσx −

∂x

∂ξ

∂y

∂χ
∂yσy −

∂y

∂χ

∂x

∂ξ
∂xσx

=

(
∂x

∂χ

∂y

∂ξ
− ∂x

∂ξ

∂y

∂χ

)
(∂xσx + ∂yσy)

=JΦ∇.σ �

Now that the GCL is established, two integral relations can be expressed.
First, considering the volume C(t) as the image of CX by the mapping ϕ, it
can be written :

d

dt

∫
C(t)

udV =

∫
CX

d(Jφu)

dt
dV

=

∫
CX

(
Jφ
du

dt
+ u

dJφ
dt

)
dV

=

∫
CX

Jφ

(
∂u

∂t
+ a.∇u+ u∇.a

)
dV using GCL 4.1 and (4.6)

=

∫
C(t)

(
∂u

∂t
+ a.∇u+ u∇.a

)
dV

=

∫
C(t)

(
∂u

∂t
+ ∇.(au)

)
dV

which is in fact an alternative form of the Reynolds transport theorem. Ex-
pressing au in a more generic form as the flux F of the conserved quantity u,
we can write :

d

dt

∫
C(t)

udV =

∫
C(t)

(
∂u

∂t
+ ∇.F

)
dV = 0 (4.9)

Remark 4.1. It can be noticed here that if C(t) remains constant in time, we
find back the Eulerian formulation of the conservation law : ∂tu+ ∇.F = 0.
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Secondly, we are considering the volume C(t) as the mapping in the spatial
domain of a volume Cχ in the referential one via the transformation ϕ, and
the following variation is considered :

∂

∂t

∣∣∣∣
χ

∫
C(t)

udV =

∫
Cχ

∂(Jϕu)

∂t

∣∣∣∣
χ

dV

=

∫
Cχ

(
Jϕ

∂u

∂t

∣∣∣∣
χ

+ u
∂Jϕ
∂t

∣∣∣∣
χ

)
dV

=

∫
Cχ

Jϕ

(
∂u

∂t
+ σ∇u+ u∇.σ

)
dV using GCL 4.1 and (4.7)

=

∫
C(t)

(
∂u

∂t
+ ∇.(σu)

)
dV

From which it is written :∫
C(t)

∂u

∂t
=

∂

∂t

∣∣∣∣
χ

∫
C(t)

udV −
∫
C(t)

∇.(σu)dV (4.10)

Using this relation (4.10) into the equality (4.9) leads to the integral ALE
formulation of the conservation law :

∂

∂t

∣∣∣∣
χ

∫
C(t)

udv +

∫
C(t)

∇. (F − σu) dV = 0 (4.11)

4.1.2.3 Discrete Geometric Conservation Law

Now, the concept of Discrete Geometric Conservation Law (DGCL) needs to
be introduced. It is commonly seen as the fact that the computations of the
geometric parameters must allow to keep constant a uniform solution, whatever
is the mesh motion [107, 79, 67]. It is in fact a requirement on the scheme to
be consistent with the volume conservation expressed at the continuous level
by the GCL. In this work, following the work of [20, 60] for ALE RD schemes,
based on the idea introduced in [107] for FV scheme, the choice is to impose the
DGCL using the configuration at time tn+ 1

2 . Thus, considering discretization
(3.1) for a one step scheme (as a simple explicit Euler discretization) applied
to an ALE integral formulation of an advection diffusion conservation law, we
obtain : ∫

Tn+1

un+1
h

∆t
−
∫
Tn

unh
∆t

+

∫
Tn+ 1

2

∇ · (Fn − Gn − σun) = 0 (4.12)

As the DGCL imposes the scheme to keep a constant solution uniform, con-
sidering u constant in (4.12), the following DGCL is sorted out :∫

Tn+ 1
2

∇ · σ =
|T n+1| − |T n|

∆t
(4.13)
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and any one step time discretization lead to the same formulation. Considering
second order accuracy, it leads to (σ is piecewise linear, ∇ · σ is constant by
element) :

∇ · σ =
|T n+1| − |T n|
|T n+ 1

2 |∆t
(4.14)

that leads to an explicit value of σ at each node i of the mesh :

σi =
xn+1
i − xni

∆t
(4.15)

Remark 4.2. This nodal definition of the values of σ can only be obtained
from the choice of the T n+ 1

2 configuration. For other choices, nodal definition
may not be found, and one has to go through the definition of ∇ · σ or of σ
on the edges.

4.1.3 RD Schemes for scalar conservation law in ALE
Form

This section is devoted to the reformulation of the schemes introduced in the
previous section (3.1) in an ALE framework. First, the general formulation of a
RD scheme for a one step time discretization is proposed for a scalar advection
equation. The extension to advection diffusion problem is immediate. The
specific schemes employed (RK2 RD and CN RD schemes) are then formulated.
Finally, a convergence study is performed so as to verify the proposed approach.

4.1.4 General Formulation

To obtain ALE formulation of RD schemes, we consider the PG analogy (3.10).
The Galerkin part LGh , and the stabilized one LSh are considered separately. The
Galerkin operator is defined by discretizing the conservation law (4.11) as :

LGh =
∑
T

{∫
Tn+1

ϕi
un+1
h

∆t
−
∫
Tn
ϕi
unh
∆t

+

∫
Tn+ 1

2

ϕi∇ · (F − σuh)
}

(4.16)

The stabalization operator can be defined in the same form. However, as
proposed in [20], a non conservative formulation of the equation for the "ALE
Flux" is used, defining the operator as :

LSh =
∑
T

{∫
Tn+ 1

2

γi
∆uh
∆t

+

∫
Tn+ 1

2

γi (∇ ·F − σ ·∇uh)

}
(4.17)

This form (4.17) still provide a conservative scheme as
∑

i3T γi = 0 and satisfies
the DGCL condition. Combining (4.16) and (4.17), the general formulation
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for a one step ALE-RD scheme writes :

∑
T3i

{∫
Tn+1

ϕi
un+1
h

∆t
−
∫
Tn

ϕi
unh
∆t
−
∫
Tn+1

2

ϕi(uh∇ · σ) +

∫
Tn+1

2

γi
∆uh
∆t

+
˜
φT

n+1
2

i (uh)

}
= 0

(4.18)

where φ̃Ti (uh) stands for the ALE nodal fluctuation and is expressed as :

φ̃Ti (uh) =

∫
T

ωi (∇ ·F − σ ·∇uh) (4.19)

that is rewritten in the RD formalism :

φ̃Ti (uh) = βTi

∫
T

(∇ ·F − σ ·∇uh) (4.20)

When accounting for the viscous flux, the ALE nodal residual is modified using
the reconstructed gradient and the penalization issued from the FOS that is
consistent with the DGCL. Thus, for an advection diffusion conservation law
the ALE nodal fluctuation (4.20) writes :

φ̃Ti (uh) = βTi

∫
T

[
∇ ·F − σ ·∇uh −∇ ·

(
K∇̃uh

)]
+

∫
T

K∇ϕi·
(
∇uh − ∇̃uh

)
(4.21)

and the ALE fluctuation φ̃T then writes :

φ̃T (uh) =

∫
T

[
∇ ·F − σ ·∇uh −∇ ·

(
K∇̃uh

)]
(4.22)

From this ALE fluctuation (4.22), we propose the definition of the inflow pa-
rameter (2.57) in the ALE framework, denoted kσi :

kσi =
1

d
(a− σ) · ni (4.23)

Remark 4.3. The distribution coefficient βTi used to distribute the ALE fluc-
tuation have to be defined with respect to the ALE formulation. For instance,
the SUPG distribution coefficient is computed with the ALE inflow parame-
ters :

βTi =
1

NDoF

+ kσi τ

The two next sections illustrate how the RK2 and CN schemes are extended
to the ALE framework. A geometrical relation holding for second order ac-
curacy, allowing to simplify the expressions need to be recalled first. Indeed,
coordinates x and normals n are linear and thus, the configuration at time
tn+ 1

2 can be defined exactly by :

xn+ 1
2 =

xn+1 + xn

2
, nn+ 1

2 =
nn+1 + nn

2

RD schemes and penalization for ice shedding trajectories 93



4.1. Residual Distribution Scheme For Solving Arbitrary Lagrangian Eulerian
Problems

However, the same relation does not hold for the areas. Nevertheless, for
second order accuracy, as proposed in Dobeš’ PhD [60], we consider :

|T n+ 1
2 | ≈ |T

n+1|+ |T n|
2

(4.24)

4.1.4.1 Explicit RK2 Scheme

The RK2 scheme (3.25) presented section 3.1.5.1 has been formulated for ALE
problem by Arpaia et. al. in [20]. We briefly recall here the construction,
considering directly the advection diffusion equation case.

Considering the operator associated to the stabilization (4.17), the same
Time Shifted Operator (TSO) than introduced section 3.1.5.1 are employed :

LSh =
∑
T

{∫
Tn+ 1

2

γi
∆̃uh
∆t

+

∫
Tn+ 1

2

γi [∇ · (F − G)− σ ·∇uh]

}
(4.25)

Thus, the first step writes :

∑
T3i

{∫
Tn+1

ϕi
u∗h
∆t
−
∫
Tn
ϕi
unh
∆t
−
∫
Tn+ 1

2

ϕi (u
n
h∇ · σ) +

˜
φT

n+ 1
2

i (unh)

}
= 0

(4.26)
Applying mass lumping on the two first terms and using (4.13), it gives :

|Cn+1
i |
∆t

u∗i −
|Cn

i |
∆t

uni +
∑
T3i

{
−|T

n+1| − |T n|
∆t|T n+ 1

2 |

∫
Tn+ 1

2

ϕiu
n
h +

˜
φT

n+ 1
2

i (unh)

}
= 0

And mass lumping can be applied again considering the following :∑
T3i

|T n+1| − |T n|
∆t|T n+ 1

2 |

∫
Tn+ 1

2

ϕiu
n
h ≈
|Cn+1

i | − |Cn
i |

∆t
uni (4.27)

This finally leads to the first step of the ALE RK2 RD scheme :

|Cn+1
i |
∆t

(u∗i − uni ) +
∑
T3i

˜
φT

n+ 1
2

i (unh) = 0 (4.28)

For the second step, using the TSO (3.20) in the stabilized part (4.25) leads
to : ∑

T3i

{∫
Tn+1

ϕi
un+1
h

∆t
−
∫
Tn
ϕi
unh
∆t
−
∫
Tn+ 1

2

ϕi

(
u
n+ 1

2
h ∇ · σ

)
+

∫
Tn+ 1

2

γi
u∗h − unh

∆t
+

˜
φT

n+ 1
2

i (u
n+ 1

2
h )

}
= 0
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As in section 3.1.5.1, the Galerkin integral
∫
Tn+ 1

2
ϕi

u∗h−u
n
h

∆t
is added/subtracted :

∑
T3i

{∫
Tn+1

ϕi
un+1
h

∆t
−
∫
Tn
ϕi
unh
∆t
−
∫
Tn+ 1

2

ϕi

(
u
n+ 1

2
h ∇ · σ

)
−
∫
Tn+ 1

2

ϕi
u∗h − unh

∆t
+

∫
Tn+ 1

2

ωi
u∗h − unh

∆t
+

˜
φT

n+ 1
2

i (u
n+ 1

2
h )

}
= 0

(4.29)

Now, using (4.24), mass lumping on the Galerkin integrals, and (4.27), the
final expression of the second step of the ALE RK2 RD scheme writes :

|Cn+1
i |
∆t

(un+1
i − u∗i ) +

∑
T3i

(∑
j∈T

mij

u∗j − unj
∆t

+
˜
φT

n+ 1
2

i (u
n+ 1

2
h )

)
= 0 (4.30)

4.1.4.2 Implicit θ Scheme

The θ scheme combined with the LDA RD scheme has been studied in [60] for
advection problems. Here, the scheme is proposed in a general RD formalism
and studied for advection diffusion. The Galerkin operator (4.16) writes :

LGh =
∑
T

{∫
Tn+1

ϕi
un+1
h

∆t
−
∫
Tn
ϕi
unh
∆t

+

∫
Tn+ 1

2

ϕi∇ ·
(
F − G − σun+θ

h

)}
(4.31)

For the stabilized one (4.17), the whole equation is considered on the fixed
middle geometry T n+ 1

2 :

LSh =
∑
T

{∫
Tn+ 1

2

γi
un+1
h − unh

∆t
+

∫
Tn+ 1

2

γi∇ ·
[
(F − G)− σ ·∇un+θ

h

]}
(4.32)

As for the second step of the RK scheme, we add/subtract the Galerkin integral∫
Tn+ 1

2
ϕi

un+1
h −unh

∆t
:

∑
T3i

{∫
Tn+1

ϕi
un+1
h

∆t
−
∫
Tn
ϕi
unh
∆t
−
∫
Tn+ 1

2

ϕi
(
un+θ
h ∇ · σ

)
−
∫
Tn+ 1

2

ϕi
un+1
h − unh

∆t
+∫

Tn+ 1
2

ωi

(
un+1
h − unh

∆t
+ ∇ · (Fn+θ − Gn+θ)− σ ·∇un+θ

h

)}
= 0

(4.33)

It appears, using mass lumping, (4.27) and (4.24), that the sum of the Galerkin
integrals is in fact null for θ = 1

2
, which gives the Crank-Nicolson scheme.
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Figure 4.2 – Mesh Deformation for convergence study

Considering the summation (multiplied by ∆t) :

∑
T3i

{∫
Tn+1

ϕiu
n+1
h −

∫
Tn
ϕiu

n
h −
|Tn+1| − |Tn|
|Tn+ 1

2 |

∫
Tn+ 1

2

ϕi
un+1
h + unh

2
−
∫
Tn+ 1

2

ϕi(u
n+1
h − unh)

}

= |Cn+1
i |un+1

i − |Cni |uni − (|Cn+1
i | − |Cni |)

un+1
i + uni

2
−
|Cn+1
i |+ |Cni |

2
(un+1
i − uni )

= 0

Thus, the ALE CN scheme writes in the same form than for non ALE
conservation law, except that the integrals are evaluated on the middle config-
uration T n+ 1

2 , and the ALE inflow parameter kσi (4.23) is employed :

∑
T3i

{∑
j∈T

mij

un+1
j − unj

∆t
+

˜
φT

n+ 1
2

i (u
n+ 1

2
h )

}
= 0 (4.34)

Thus, for the resolution, the exact same Newton algorithm than proposed
section 3.1.5.2 is employed, with the same approximation in the Jacobian.

4.1.4.3 Convergence Study

The convergence study is performed on the same test case than section 3.1.5.3,
with an imposed motion of the mesh. The domain is [−0.5, 0.7] × [−0.5, 0.5]
and the motion is ruled by (see figure 4.2) :

x = X + 0.05 sin

(
4π
X + 0.5

1.2

)
sin(2π(Y + 0.5)) sin(4π(t+ ∆t))

y = Y + 0.1 sin

(
4π
X + 0.5

1.2

)
sin(2π(Y + 0.5)) sin(8π(t+ ∆t))

(4.35)

The convergence study is performed on the same grids than for the non
ALE study (see figure 3.1a and 3.1b for the two kinds of mesh and table 3.1
for the different sizes employed). The CFL employed are CFL = 0.8 for the
RK2 scheme (the mesh being deformed, even if the time step computation
takes into account the nodes displacement, it ensures to stay in the stability
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(a) Structure Grids (b) Unstructure Grids

Figure 4.3 – Convergence study - ALE Scalar advection diffusion

zone), and CFL = 30 for the CN scheme. The convergence curves are plotted
figures 4.3a and 4.3b. Once again, the expected second order accuracy is well
recovered for both ALE RK2 RD and ALE CN RD schemes. In addition, as
previously, the time saving by using an implicit scheme is emphasized here.
Looking at the curves, the accuracy compares well, but the computational time
is this time approximatively 10 time higher for the RK2 scheme. Nevertheless,
the same comment than for non ALE simulations can be done, a CFL almost
40 times higher leads to a computational time "only" 10 times higher.

4.1.5 Extension To Navier Stokes equations

4.1.5.1 Formulation of the schemes

This section is dedicated to give some details on the extension of the previous
schemes to system case. The general formulation (4.18) of a one step scheme
writes now :

∑
T3i

{∫
Tn+1

ϕi
un+1
h

∆t
−
∫
Tn
ϕi
unh
∆t
−
∫
Tn+ 1

2

ϕi(uh∇ · σ) +
˜
φT

n+ 1
2

i (uh)

}
= 0

φ̃Ti (uh) = βT
i
φ̃T (uh) +

∫
T

K∇ϕi ·
(
∇uh − ∇̃uh

)
(4.36)

with the ALE fluctuation :

φ̃T (uh) =

∫
T

[
∇ · FEul(uh)− σ ·∇uh −∇ ·

(
K∇̃uh

)]
(4.37)
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The ALE inflow matrices are defined, as for the scalar case by :

Kσ
i =

1

d

d∑
k=1

(Ak(uh)− σkI)nik (4.38)

The considered schemes can then be written for an application to the NS
system of equations.

ALE RK2 RD Scheme
|Cn+1

i |
∆t

(u∗i − uni ) +
∑
T3i

˜
φT

n+ 1
2

i (unh) = 0

|Cn+1
i |
∆t

(un+1
i − u∗i ) +

∑
T3i

(∑
j∈T

MF1
ij

u∗j − unj
∆t

+
˜
φT

n+ 1
2

i (un+ 1
2

h )

)
= 0

(4.39)

ALE θ RD Scheme

The system to solve is : {
J(Uk+1 −Uk) = −R(Uk)

U0 = Un
(4.40)

with

Ri(uh) =
∑
T3i

{∑
j∈T

MF2
ij

uj − unj
∆t

+
˜
φT

n+ 1
2

i (un+θ
h )

}
(4.41)

and the approximated Jacobian matrix for the Newton iterations writes :

J̃ij =



∑
T3i

(
|Ci|
∆τ k

I +
MF2

ii

∆t
+ βT

i
Kσ
i +

ni · (Kni)
d2|T |

)
, if i = j

∑
T3(i,j)

(
MF2

ij

∆t
+ βT

i
Kσ
j +

ni · (Knj)
d2|T |

)
, if i 6= j

(4.42)

4.1.5.2 Convergence Study

The same convergence study than in section 3.1.6.4 is performed, using the
mesh deformation proposed section 4.1.4.3, ruled by equations (4.35). For
sake of clarity, as in section 3.1.6.4, only the N1 norm of the density and u
velocity are plotted in figure 4.4a for structured grids and 4.4b for unstructured
ones. The CFL imposed are 1 for the RK2 scheme and 30 for the CN scheme.
The curves show that the expected second order accuracy is well recovered,
confirming the scalar study. Regarding time computations, the resolutions
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(a) Structured Grids (b) Unstructured Grids

Figure 4.4 – Navier Stokes - ALE Convergence study

using the Cranck Nicolson time discretization are approximatively 12 time
faster (for the last two meshes, for coarser ones, the convergence of the Newton
procedure requires more iterations). As previously, for a CFL 30 times higher,
the computations are only 12 times faster, which is not optimal. However,
as already mentioned for non ALE studies, higher CFL are employed for the
application test cases leading to a significant gain in term of computational
time w.r.t. explicit simulations.

RD schemes and penalization for ice shedding trajectories 99



4.2. r-Adaptation for moving bodies

4.2 r-Adaptation for moving bodies

4.2.1 State of the art

The first methodology that can be referred to is the one that is mainly used
in the mesh moving techniques that have been proposed in the introduction
1.2.2.1 that is an elasticity based model. In such approaches, the mesh is
associated to a material and the classical elasticity equations are solved. We
recall here the works mentioned in the introduction of the manuscript, from
Tezduyar and co authors [95, 96, 151, 97] and Alauzet and co authors [16, 15].
Another approach that will be denoted "Laplacian based" considers a simpler
problem that writes :

∇χ · (ω∇χx) = 0 (4.43)

where x denotes the position of the nodes and ω is called a monitor function.
In the context of moving bodies, this approach has been used in the already
mentioned work of Khurram and Masud [99] instead of the elasticity model. In
2009, Budd et. al. proposed a complete article [36] regrouping all the theoret-
ical background. Tang and co authors performed simulations for solving Euler
problems with shocks using this technique on quadrangles [156] and triangular
meshes [43]. In these references, a conservative interpolation is employed to
update the solution from one mesh to another. The same approach has been
employed by Ni et. al., but with an ALE resolution, avoiding interpolation
procedure [121] (in this last reference, the new position of the nodes is not
determined by equation (4.43) but is still dependant on a monitor function).
In these works, the monitor function depends on the solution and it takes the
form :

ω =
√

1 + αf + βg (4.44)

where α and β are non negative parameter and f and g some variables, a com-
mon choice being the gradient, and recently the Hessian to avoid too stretched
elements [19]. A work quite interesting for our purposes is proposed by Wang
et. al. [162] for dendritic growth, that requires adaptation to an interface.
They modify the monitor function by taking into account a new variable solu-
tion of a diffusion equation applied to the heaviside function defining the solid.
When solving problem (4.43), a finite element method is employed and as the
monitor function needs to be evaluated on the resulting mesh, Newton iter-
ations are performed, but not until convergence, just a limited number of times.

Two approaches have been employed and compared in this work. The
first one is to combine the elasticity based approach with the Laplacian based
approach. A force dependant on a monitor function is applied on the mesh
considered as an elastic material. The second one is to solve directly the
Laplacian based model (4.43) with appropriate monitor function. Both of the
method are solved using a finite element discretization, and a limited number
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of Newton Gauss Seidel (for Elasticity) and Newton Jacobi (for Laplacian)
iterations are used to update nodes positions. We first present the methods and
the monitor function definitions and then give the advantages and drawbacks
for both of them.

4.2.2 An Elasticity Based Model

4.2.2.1 Problem Statement

The principle of this mesh adaptation approach is to consider the mesh as a
material that will be deformed according to the classical Elasticity law :

∇χ · σ(ε(u)) = F (4.45)

where u = (ux, uy)
T is the vector of displacement (ux = (x−χ), uy = (y− ξ)),

σ and ε are respectively the constraint and deformation tensors defined as :

ε(u) =
1

2

(
∇χu + (∇χu)T

)
=

(
∂ux
∂χ

∂uy
∂ξ

∂ux
∂χ

∂uy
∂ξ

)
(4.46)

σ(ε(u)) =

(
(λ+ 2µ)∂ux

∂χ
+ λ∂uy

∂ξ
2µ∂uy

∂χ

2µ∂ux
∂ξ

(λ+ 2µ)∂uy
∂ξ

+ λ∂ux
∂χ

)
(4.47)

with λ and µ the Lamé coefficients.
F is the force applied on the mesh, that determines where the refinement
occurs. Thus, the aim is to properly define F so as to perform the refinement
close to the solid boundaries and, if wanted, to the physics of the problem. As
explained previously, it has been chosen to use a monitor function ω, based on
the idea proposed in [156, 43, 19] to define F as :

F = ∇χω(x) (4.48)

The definition of the monitor function is discussed section 4.2.2.3.

4.2.2.2 Finite Element Resolution

Problem (4.45) is rewritten properly with the corresponding BC :{
∇χ · σ(ε(u)) = F, on Ωχ

u = 0, on ∂Ωχ
(4.49)

The BC are chosen such that the boundary of the computational domain is
kept fix all over the computation (Dirichlet BC). The weak formulation of this
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problem (4.49) writes, considering a test function w = (wx, wy) ∈ [H1
0 ]2, find

u ∈ [H1
0 ]2 such that :∫

Ωχ

ε(w) : σ(u) =

∫
Ωχ

F ·w, ∀w ∈ [H0
1 ]2 (4.50)

where A : B =
∑

i

∑
j AijBji is the double dot product.

Before discretizing this equation, let rewrite it over a more pratical way :∫
Ωχ

([M1∇χux +M2∇χuy] ·∇χwx + [M3∇χux +M4∇χuy] ·∇χwy) =

∫
Ωχ

F ·w

M1 =

(
λ+ 2µ 0

0 µ

)
,M2 =

(
0 λ
µ 0

)
,M3 =

(
0 µ
λ 0

)
,M2 =

(
µ 0
0 λ+ 2µ

)
(4.51)

The discretization of this problem (4.51) is done using a P1 continuous Galerkin
FE method. A triangulation T h of the domain is considered on which the ap-
proximated displacement are defined using the Lagrange basis function ux/y =∑

i∈T h ux/yiϕi. Considering the two functions w = (ϕi, 0) and w = (0, ϕi), the
scheme writes :

∀i,



∑
T3i

∑
j∈T

uxj

∫
T

[M1∇ϕj ] ·ϕi +
∑
j∈T

uyj

∫
T

[M2∇ϕj ] ·ϕi

 =
∑
T3i

∑
j∈T

Fxj

∫
T
ϕjϕi

∑
T3i

∑
j∈T

uxj

∫
T

[M3∇ϕj ] ·ϕi +
∑
j∈T

uyj

∫
T

[M4∇ϕj ] ·ϕi

 =
∑
T3i

∑
j∈T

Fyj

∫
T
ϕjϕi

This system (4.2.2.2) can be written over the following matrix form :

KU = MF

K =

(
K1 K2

K3 K4

)
,U =

(
Ux

Uy

)
,M =

(
MGal 0

0 MGal

)
,F =

(
Fx
Fy

)
(4.52)

where Ux = (ux1 , . . . , uxNv )T and Uy = (uy1 , . . . , uyNv )T are the displacement
vectors of the x and y component of the nodes. MGal is the Galerkin mass
matrix of size Nv × Nv that writes for second order Lagrange basis function
(two dimensional case) :

MGal
ij =

∑
T3i

∑
j∈T

ϕiϕj =


∑
T3i

|T |
6
, if i = j

∑
T3i

|T |
12
, if i 6= j

(4.53)
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The Kα,α=1,2,3,4 are defined by (two dimensional case) :

Kαij =
∑
T3i

∑
j∈T

1

4|T |
[Mαnj] · ni (4.54)

The matrices MGal and Kα are defined on the reference mesh : they only
need to be evaluated at the beginning of the computation. In the RHS, the
forces are evaluated on the current mesh. Indeed, coming back on its definition
(4.48) :

Fx =
∂ω(x)

∂χ
, Fy =

∂ω(x)

∂ξ

where x denotes the nodal coordinates of the adapted mesh. Thus, a limited
number of Newton Gauss-Seidel process is performed at each time step, with
as initial condition the position of the mesh at previous time step. During
this procedure, at each Newton iteration, a transitional mesh is defined, on
which the relevant values are interpolated from the initial mesh, to compute
the new monitor function (the signed distance function and physical variable
of adaptation).

Remark 4.4. The number of iterations is dependant on the time step. The
idea proposed in [156, 43, 19] is to start from the mesh at time tn that is
assumed close to the converged solution of the mesh adaptation problem at
time tn+1. Thus, the number of iterations necessary to achieve the same degree
of convergence increases with the time step.

4.2.2.3 Monitor function definition

As we are willing to refine the mesh close to the interface and according to a
physical parameter, the monitor function has to be defined according to both
of those criteria. Thus, two monitor functions are defined, one for the level set
ψ denoted ωψ and one for the chosen physical variable v denoted ωv. For the
monitor function associated to the level set adaptation, it has been chosen to
use :

ωψ =
√
αψe−βψψ

2 (4.55)

The basic idea is to impose a force close the boundary of the solid and the
elastic property of the "material" perform a kind of gradation avoiding to
have to large element as soon as this force is no more applied. Figure 4.5 is
an example of adaptation for a circle (r = 0.5) embedded in a squared mesh
of sizes [−2, 2]2 of 3927 vertices with αLS = 100, βψ = 40. In some cases, this
monitor function can in addition take into account the curvature of the level
set (denoted by κ) in the vicinity of the interface :

ωψ =
√
αψe−βpsiψ

2 + ακ|κ| (4.56)
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(a) Initial mesh and 0 level set (b) Monitor Function

(c) Final mesh (d) Zoom on final mesh

Figure 4.5 – Elasticity level set adaptation

For the physical adaptation, the monitor function, as proposed in [156, 43]
is based on the gradient of the solution v. However, as we deal with rela-
tively smooth solutions, the gradient is "truncated" to better take into account
smoother features. Thus, the "truncated" gradient ∇v is defined as :

∇̃v = min(βv∇v, sup∇v) (4.57)

and the monitor function ωv is defined by :

ωv =

√
αv||∇̃v|| (4.58)

Once both of those monitor functions are defined, they have to be genuinely
combined to perform a proper adaptation (one being not preponderant with
respect to the other). Thus, ωv is modified so as to ensure to have ωψ and
ωv of the same order of magnitude. Indeed, as sup e−αψψ

2
= 1, by using the

normalized norm of the gradient ||∇v||n in (4.58), the monitor functions are
only pondered by αψ and αv :

ωv =

√
αv||∇̃v||n (4.59)

In addition, so as to ensure to have the wanted adaptation close to the interface
(which is mandatory to improve the interface definition), around an area ε of
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the 0 level set, only the monitor function associated to the surface is considered.
Thus, the monitor function, combination of (4.59,4.55) can be defined by :

ω =

{
ωψ, if ψ < ε

max(ωψ, ωv), if ψ ≥ ε
(4.60)

To illustrate this definition, a profile of u velocity on a referential mesh (10, 647
vertices) is proposed figure figure 4.6a (coming from the oscillating cylinder
case fully described in the next section 4.3.2.1). The monitor function com-
puted with αψ = αv = 40, βψ = 100 and βv = 2.5 are given figure 4.6e and
4.6f. To emphasize the importance of using a "truncated" gradient, the same
adaptation is performed with βv = 1. The resulting monitor function and cor-
responding mesh are plotted figure 4.6c and 4.6d. We can see that the mesh
adapted using the truncated gradient proposes a better refinement w.r.t. the
solution, without degrading the interface adaptation. Thus, the resolution of
the flow should be improved in the simulations by performing the truncation
of the gradient in an adequate manner.

4.2.3 A Laplacian Based Model

4.2.3.1 Problem Statement

As explained in the introduction of this section, the problem (4.43,4.44) can be
solved. In this expression (4.43), ω is originally a matrix, but as in the works
already mentioned [156, 43, 19], the dimensions are uncoupled by choosing the
identity matrix multiplied by the monitor function. The mesh PDE problem
now reads :

∇χ · (ω∇χx) = 0 (4.61)
which is applied independently on all of the directions. The coupling arises
from the definition of the smoothness sensor ω. This method can be basically
seen as an equidistribution of the nodes according to the monitor function.
Indeed, (4.61) can be rewritten as :

ω∇χx = Ct (4.62)

Thus, for high values of ω, the nodes are concentrated, and on the opposite,
for low values, the nodes are moved aside. The monitor function does not play
exactly the same role than for the Elasticity based model. Here, it equidis-
tributes the nodes whereas for the previous model, it was defining the forces
deforming the mesh. Problem (4.61) can be rewritten in terms of displacement
as :

∇χ · (ω∇χu) = −∇χ · (ω∇χx0) (4.63)
with x = x0 + u, and x0 the initial position, which is not necessary the ref-
erential position χ. For instance, in the simulations, x0 is the position of the
nodes at the previous time steps.
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(a) u velocity (b) Referential Mesh

(c) Monitor function, βv = 1 (d) Adapted mesh, βv = 1

(e) Monitor function, βv = 2.5 (f) Adapted mesh, βv = 2.5

Figure 4.6 – Combination of physical and level set adaptation
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4.2.3.2 Finite Element Resolution

We rewrite the problem expressed on the displacement with proper BC :{
∇χ · (ω∇χu) = −∇χ · (ω∇χx0) on Ωχ

u = 0, on ∂Ωχ
(4.64)

As for the elasticity based model 4.2.2, homogeneous Dirichlet BC are
imposed to keep the nodes of the boundaries of the computational domain fix.
Using these hypotheses, the classical variational form of the problem in H0

1

reads : ∫
Ωχ

ω∇χu ·∇χw = −
∫

Ωχ

ω∇χx0 ·∇χw (4.65)

The discretization is still performed using a P1 continuous Galerkin FE
method. A mesh T h of the domain is considered and the approximated dis-
placement and initial positions writes uh =

∑
j∈T h ujϕj and x0h =

∑
j∈T h x0jϕj.

Considering the function w = ϕi, the scheme writes :

∀i,
∑
T3i

∑
j∈T

uj

∫
T

ω∇ϕi ·∇ϕj = −
∑
T3i

∑
j∈T

x0j

∫
T

ω∇ϕi ·∇ϕj︸ ︷︷ ︸
bi

(4.66)

that can be written over a matrix form :

KU = B (4.67)

with U is the vector of displacement of size Nv, B = (b1, . . . , bNv)
T and K is

of size Nv ×Nv defines by :

Kij =
∑
T3i

∑
j∈T

∫
T

ω∇ϕi ·∇ϕj (4.68)

As we consider P1 approximations, denoting by ωT =
∑

j∈T
ωj
3
the mean value

of ω on the element, and using (2.44), we have :

Kij =
∑
T3i

∑
j∈T

ω
ni · nj
4|T |

(4.69)

As proposed in [156, 43, 19] and for the elasticity model, ω depends on the
current position of the node x, requiring the use of a newton procedure, to
evaluate its new values at each iterations. As explained for the Elasticity
based model, at each iteration of the Newton procedure, the relevant values
are interpolated from the initial mesh to the temporary one to evaluate the
new monitor function.
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Figure 4.7 – Laplacian Adaptation - Null monitor function. Left : Initial mesh
and monitor function (blue : 3.10−4, red : 6.32) - Right : Resulting Mesh

4.2.3.3 Monitor Function Definition

Classical definition

As explained previously, the monitor function has here a different role w.r.t.
what has been done for the Elasticity based approach. Thus, it has to be
defined differently. Indeed, as recalled in the state of the art 4.2.1, the monitor
function is often defined as :

ω =
√

1 + αf + βg (4.70)

with f and g the gradient and hessian of the physical variable chosen for the
adaptation. Looking at equation (4.62), we see that if ω → 0, ∇x→∞. Thus
the monitor function must be chosen non null in all nodes of the mesh. The
definition of section 4.2.2.3 cannot be used. For instance, considering only
an adaptation to the 0 level set of the solid, applying the monitor function
(4.55) concentrates all the points of the mesh in the vicinity of the interface,
as illustrated figure 4.7, with αψ = 40 and βψ = 400 for the circle of radius 0.5
in a squared mesh of sizes [−2, 2]2 of 3927 vertices.

Thus, the monitor function must be defined over a form (4.70), or a similar
one such as :

ω =
√

1 + αψe−βψψ
2 (4.71)

and to adapt to a physical variable, we define as previously the truncated gra-
dient (4.57) and compute the monitor function as introduced in the literature :

ωv =

√
1 + αv||∇̃v||n (4.72)

For instance, the same circle adaptation is performed with (4.71), with
the same parameters : αψ = 40 and βψ = 400 and the resulted mesh is well
adapted to the 0 level set (see figure 4.8).

108 Léo Nouveau



4. Penalization and Moving Bodies - An ALE Approach

Figure 4.8 – Circle Adaptation, Laplacian Based ’classical’ approach.
Left : General View - Right : Zoom

Constant by part definition

Another way of defining the monitor function has also been studied for this
method, inspired from the work of Farhat and Lakshminarayan [68]. In the
last reference, the authors suggest to define an area around the body that
is translated and rotated according to the movement of the boundary. The
application considered in the reference is however only a limited displacement
of bodies (e.g. flapping wings). Based on this idea, we propose to define a
monitor function that will allow to keep all along the simulation a refined area
around the interface, so as to provide an accurate resolution of the physics. In
this refined area, an adaptation to the interface is added so as to define in a
best possible way the boundary. In comparison with the approach of Farhat
and Lakshminarayan, this adaptation allows to perform larger displacements,
such as the study of ice shedding trajectories. The idea is very simple and is
based on a monitor function defined constant by part according to the signed
distance function :

ωψ =


C1, if |ψ| < w1

C2, if w1 ≤ |ψ| < w2

C3, elsewhere
(4.73)

with C1 > C2 > C3 constants. For instance, considering the same illustra-
tion than previously, the circle is adapted with 4 layers : w1 = 0.05, w2 = 1,
w3 = 1.75 and C1 = 225, C2 = 90, C3 = 70, C4 = 20 and the resulted mesh
is displayed figure 4.9. Such a procedure allows to use more nodes far from
the interface to propose a refined area in a larger vicinity of the 0 level set
according to the chosen adaptation parameters.

As for the elasticity based approach, the SDF and physical adaptation can
be coupled to define a monitor function over the form (4.60). The truncated
gradient needs however to be normalized according to the maximum value of
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Figure 4.9 – Circle Adaptation, Laplacian Based constant by part approach.
Left : General View - Right : Zoom

the ωψ definition :

||∇̃v||n =
||∇̃v||

sup ||∇̃v||
supωψ (4.74)

where in the case of the constant by part definition, supωψ = C1.

Now, we study the advantages and drawbacks of the different proposed
approaches. The adaptation to a complex geometry is proposed in the next
section to explain what are the choices made in the applications that are
proposed in the section of results 4.3.2.

4.2.4 Comparison of the approaches

Two methods have been presented in the two previous sections. The question
is to try to evaluate which one present the best properties. This is a tricky
point, and the choice will finally be dependant of the test case studied.

The first noticeable difference is the matrix computation. Indeed, in the
Elasticity based model 4.2.2, the matrix is defined on the referential mesh. It
means that it only need to be evaluated at the beginning of the computation,
and is employed during the whole simulation. The only element that gives the
non linearity of the problem, meaning the dependency on the monitor function,
is the right hand side. On the contrary, for the Laplacian based adaptation
4.2.3, the matrix itself is dependant on the monitor function. Thus, it requires
to be evaluated at each Newton iterations of each time step. The use of the
elasticity model is thus strongly wanted for sake of computational time. In
addition, the Elasticity model coupling the displacement in the different space
dimensions, a natural anisotropy is performed, that is more difficult to obtain
with the simpler model that is the Laplacian based approach.

However, for complex geometries, more precisely non convex ones, this
Elasticity method suffers from the difficulty to handle singularities, that the
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Figure 4.10 – Flower surface for adaptation

Laplacian based approach overcomes in a very natural way. For instance, let
consider the ’flower’ displayed figure 4.10 embedded in a square of sizes [−4, 4]2

(36237 vertices). Figures 4.12a, 4.12b and 4.12c proposes the adaptation with
Elasticity approach, αψ = 30, βψ = 200 and ακ = 2.5 (figure 4.12a), the
Laplacian based approach with "classical" definition of the monitor function,
αψ = 40, βψ = 350 (figure 4.12b) and the Laplacian based approach with the
monitor function defined constant by part, C1 = 315, C2 = 150, C3 = 75,
C4 = 10 and w1 = 0.05, w2 = 0.75, w3 = 1.75 (figure 4.12c). Those adap-
tations illustrate the previous points : the elasticity proposes a nice natural
anisotropy, but the Laplacian approach handle a lot better discontinuities. In
addition, we compare the mesh close to the boundary for the two monitor
function definitions in the Laplacian approach figure 4.11. The idea of the
monitor function constant by part allows to have a mesh that is more suitable
to perform computations as from the same mesh we propose a better refine-
ment close the interface.

That is why, when ’simple’ geometries are involved, the elasticity based
approach is employed, because it handles nicely the interface adaptation, and
reduces the computational cost as the matrix is only evaluated at the beginning
of the simulations. For more complex ones (such as ice shedding simulations),
the Laplacian model is employed with a definition of the monitor function
constant by part because of the better handling of the singularities, and a
suitable mesh to solve physics in a vicinity of the boundary, even without
adaptation to a physical variable.
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Figure 4.11 – Flower Adaptation, Comparison of monitor function definition.
Top : ’Classical’ - Bottom : ’Constant by part’
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(a) Flower Adaptation - Elasticity Ap-
proach

(b) Flower Adaptation - Laplacian Ap-
proach, ’classical’ definition

(c) Flower Adaptation - Laplacian Ap-
proach, constant by part definition

Figure 4.12 – Flower Adaptation Comparison
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4.3 Penalized Navier Stokes Equations with Mov-
ing Bodies

To perform simulations of moving bodies with penalized Navier Stokes equa-
tions, the previous proposed r-adaptivity are coupled to the ALE resolution
of the equations. After an explanation of the sequence to couple the different
tools presented, several 2D test cases are proposed in order to validate the
proposed approach. The two first ones are characterized by a solid velocity
imposed by an analytical function. The last one is a simulation in which full
FSI is simulated. The solid velocity is ruled by external forces that are the
gravity and the aerodynamical forces. Finally, this method is applied to the
simulation of a GLC305 rice ice shape, focus of the STORM project.

4.3.1 Moving object simulation - process

All the tools necessary to handle moving bodies on adaptive unstructured grids
using an IB method are now settled and can be gathered so as to perform
the wanted simulations. We propose here the different steps to perform such
studies. Indeed, as we consider moving bodies, different stages have to be
arranged at each time of the resolution (level set advection, mesh adaptation,
and splitting steps). We first explain the strategy adopted to perform the
displacement of the body before giving the algorithm for the process iterated
at each time step.

Solid Motion

The solid is known implicitly via the 0 level set of the signed distance function.
Thus, when considering moving bodies, the signed distance function ψ has to
be advected according to the solid velocity :

∂ψ

∂t
+ us ·∇ψ = 0 (4.75)

A well known problem when advecting a level set function is the non con-
servation, characterized by a gain or loss of mass that involves the need of
redistanciation (see among others [37, 157, 155]) with high order discretization
schemes such as 4th order Runge Kutta [37]. However, in our simulations, a
surfacic mesh of our solid can be provided (so as to compute the intial signed
distance function).
In a first time, as only 2D simulations are performed, from a computational
point of view, it is simpler and more efficient to advect directly this mesh
and to recompute the signed distance function than solving (4.75), performing
redistanciation when necessary.
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FSI simulation - Process

To describe the algorithm employed, the following notations are defined : the
solid at time tn is defined by its level set function ψn on the adapted mesh T nh
(coordinates denoted by xn). The level set function is associated to the surfacic
mesh of the solid whom coordinates are denoted xns . The forces exerted on the
solid are denoted Fn, the solid velocity is denoted uns and its angular velocity
θn. The different steps are the following :

• Step 1 : Solid Velocity update. If the solid is moved by an analytical
function f(x, t), as proposed in the two first test cases (section 4.3.2.1
and 4.3.2.2), then un+1

x = f(x, tn+1). If the motion is ruled by aerody-
namical forces Fn and external forces Fext, as proposed in the third test
case (section 4.3.2.3), then, as proposed in [27], we solve

ma
∂us
∂t

= Fn + Fext

mi
∂θ

∂t
= T

(4.76)

where ma is the solid mass and mi its moment of inertia. A simple
explicit Euler scheme is used (more sophisticated discretization could be
employed) :

un+1
s = uns + ∆t

Fn + Fext

ma

θn+1 = θn + ∆t
T
mi

(4.77)

• Step 2 : Object Displacement. Using this velocity un+1
s , employing once

again an Euler discretization, the nodes of the surfacic mesh are updated
by :

xn+1
s = xns + ∆tun+1

s (4.78)

From this new surfacic mesh is computed the level set function ψn+1.

• Step 3 : Mesh Adaptation. The mesh is adapted to the new level set
defining the solid ψn+1 and the physical solution unh. The mesh velocity
necessary for the ALE resolution is computed : σ = xn+1−xn

∆t
.

• Step 4 : Fluid Resolution. The ALE resolution of the penalized Navier
Stokes equations is performed. The solution un+1

h at time tn+1 is ob-
tained. Before the last step of the splitting, the computation of the
aerodynamical forces with the change of momentum approach (section
3.2.4.1) is performed : Fn+1

CM .
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• Step 5 : Integral Force Computation : The solution un+1
h is interpolated

on the surfacic mesh defined by xn+1
s and the aerodynamical forces FIC

are evaluated by integrating shear stress and pressure contribution (sec-
tion 3.2.4.2). This force evaluation is the one employed in (4.76) when
dealing with motion ruled by external forces.

This process is now validated on several test cases. The oscillating cylinder
and naca are performed to assess the validity of the approach and the forces
computations for moving solid cases. The falling cylinder validates the full
process, when the solid velocity is directly dependent on the aerodynamical
forces. Finally, we propose to apply this technique to the study of a 2D ice
shape, concerns of the STORM project, without validation as the Reynolds
number employed for the simulation is lower than the real one by lack of
turbulence model.

Figure 4.13 – Referential mesh for the oscillating cylinder test case and corre-
sponding sizes

4.3.2 Results

4.3.2.1 In-line oscillating cylinder in a flow at rest

For this test case, a cylinder (D = 0.2) is oscillating in a fluid at rest. The
motion is ruled by :

x(t) = −Asin(2πft) (4.79)

where A is the amplitude of the oscillation and f its frequency. The dimension-
less number characterising this case are the Reynolds number Re = UmaxD

ν
=

100 and the Keulegan-Carpenter number KC = 2πf
D

. The computational do-
main is [−10, 10]× [−8, 8] and the referential mesh (13424 vertices and 26782
triangles) is given figure 4.13 along with the sizes used to generate this mesh.
For the adaptation, the elasticity model is considered and the parameters used
for the monitor function (4.60) are αψ = αv = 40, βψ = 100 and βv = 2.5, and
the physical variable used is the u velocity.
For this test case, the ALE RK2 RD scheme is employed with a CFL = 1.
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The number of Gauss Seidel iteration for the adaptation process is set to 10.
Plot of the velocity and the corresponding adapted mesh are presented figure
4.14. We can see that the adaptation process allows to have an optimisation of
the mesh close to the 0 level set leading to an accurate definition of the solid,
and that the mesh adapts well to the physics of the problem.
In order to validate these results, cuts are done at different times and at dif-
ferent positions and compared to the literature. The comparison is done with
experimental data (Dütsch et al. [66]), the Lescape computational code (pe-
nalization on structure grids, see Beaugendre and Morency [27]), and the IBM
proposed by Liao et al. [109]. The plots figure 4.15 show that the present
simulation is in good agreement with the literature, but with 13424 vertices
compared to the 50000 used in [109] and 1200000 used in the Lescape code
(the mesh being uniform in the whole domain). It demonstrates the benefit
provided by the combination unstructured mesh adaptation/IB as we severely
diminish the number of nodes required to perform accurate simulations. In
addition, to illustrate the gain of accuracy thanks to the adaptation process,
we plot the 0 level set on the adapted mesh and initial one figure 4.16. With
the same approach, the simulation would not have been possible on the original
mesh without adaptation due to the lack of accuracy in the solid definition.

4.3.2.2 Oscillating Naca Airfoil

Flapping wing motions are extensively studied for engineering applications in
low Reynolds numbers flow where classical fixed wing geometry performance
decreases, [75]. According to previous works, around ten parameters influence
the power extraction in flapping wing motions, such as oscillation frequencies
and amplitudes (translational and rotational), phase difference between plunge
and pitch motion, viscosity, free stream velocity, flapping pattern and airfoil
geometry.

In this section, an oscillating airfoil experiencing simultaneous pitching θ(t)
and heaving h(t) motions is modelled. The infinitely long wing is based on a
NACA 0015 airfoil. The pitching axis is located along the airfoil chord at
the position (xp, yp) = (1/3, 0). The airfoil motion, described by Kinsey and
Dumas [101], is defined by the heaving h(t) and the pitching angle θ(t) as
follows {

h(t) = H0 sin (ωt+ Φ)
θ(t) = θ0 sin (ωt)

(4.80)

where H0 is the heaving amplitude and θ0 is the pitching amplitude. The
angular frequency is defined by ω = 2πf and the phase difference Φ is set to
90o. The heaving velocity is then given by

Vy(t) = H0ω cos(ωt+ Φ) . (4.81)
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Figure 4.14 – u veloctity and corresponding adapted mesh at different time
(zoom close to the adapted area).
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4. Penalization and Moving Bodies - An ALE Approach

(a) Cuts performed at different times

(b) cuts at 180. From top left to bottom right : x = 0D, v velocity - x = 6D, u velocity - x = 6D v
velocity, x = −6D v velocity

(c) cuts at 330. From top left to bottom right : x = 0D, u velocity - x = 6D, v velocity - x = 1.2D u
velocity, x = 1.2D v velocity

Figure 4.15 – 2D Inline Cylinder test case - Comparison with literature
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4.3. Penalized Navier Stokes Equations with Moving Bodies

Figure 4.16 – Comparison of solid definition on adapted and initial mesh (same
connectivity)

Based on the imposed motion and on the upstream flow conditions, the airfoil
experiences an effective angle of attack α(t) and an effective upstream velocity
Veff (t) defined by{

α(t) = arctan(−Vy(t)/U∞)− θ(t)
Veff (t) =

√(
U2
∞ + V 2

y (t)
)
,

(4.82)

where the freestream velocity far upstream of the oscillating airfoil is U∞ = 68.1
(Ma = 0.2).

A regime corresponding to the parameters Re =
U∞c

ν
= 1100, H0/c = 1,

f = 0.14, xp/c = 1/3 and θ0 = 76.33o has been computed. The computational
domain is of size [−3, 5.5]× [−6, 6] with a finer area of size [−1, 4]× [−2.2, 2.2].
It leads to a mesh composed with 30115 vertices and 60186 elements, presented
with the sizes for the generation on figure 4.17.
For this test case, elasticy based mesh adaptation is performed, and the mon-
itor function is defined by the following coefficients : αψ = αv = 40, ακ = 10,
βψ = 200 and βv = 2., the physical adaptation being done according to the
vorticity. The number of iterations in the Gauss Seidel resolution of the mesh
adaptation process is set to 20. Figure 4.19 proposes the vorticity and the
corresponding adapted mesh at different times. As for the oscillating cylinder,
it is observed that the proposed approach allows to have a refinement close to
the solid interface, that imposes accurately the BCs, and that the physics is
also precisely resolved in the wanted area thanks to the mesh adaptation.

To validate this test case, aerodynamical coefficients are compared to the
forces predictions presented by Kinsey et al. [101], by Campobasso et al. [38]
and the ones obtained using the Lescape code. The plots can be found on
figure 4.18. It can be seen that the results are in good agreement with the
literature.
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4. Penalization and Moving Bodies - An ALE Approach

Figure 4.17 – Oscillating Naca test case - Referential mesh

Those results allow to validate, the proposed approach, especially concern-
ing the forces computation. The remaining step is thus to perform simulations
where the velocity is this time a resultant of the external forces on the solid to
validate the whole process. This is the focus of the next test case.

4.3.2.3 2D Falling Cylinder

This test case simulates the fall of a 2D cylinder (radius r = 0.125) on a flat
plate in a square cavity of size [0, 2] × [0, 6]. The barycentre of the cylinder
is initially located in (1, 4). The forces influencing its velocity are the aero-
dynamical forces F and the gravity G = (0,−980). The viscosity is set to
ν = 0.01. The solid and fluid density are respectively ρs = 1.5 and ρf = 1.
Following [27], equation (4.76) takes the form :

∂us
∂t

=
F
ma

+
ρs − ρf
ρs

G (4.83)

To impose wall boundary condition on each wall of the cavity, we propose
to extend the domain on each side of a size 0.5 and to penalize those added
areas (see figure 4.20). The referential mesh is displayed figure 4.20 along with
the sizes imposed to generate it. It is composed of 23555 vertices and 46908
elements. The elasticity based adaptation is performed only considering the
level set with αψ = 35 and βψ = 350, a zoom close to the interface on the
initial mesh being presented figure 4.21. The ALE CN RD scheme is employed
with a CFL equal to 50 and the number of iterations in the Newton Gauss
Seidel resolution for mesh adaptation is 15. Figure 4.22 shows the vorticity at
time t = 0.3125.
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4.3. Penalized Navier Stokes Equations with Moving Bodies

Figure 4.18 – Oscillating Naca0015 airfoil - Aerodynamical coefficients. Top :
Lift Coefficient - Bottom : Drag Coefficient
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4. Penalization and Moving Bodies - An ALE Approach

Figure 4.19 – Oscillating naca0015 - Rotational of the velocity and correspond-
ing adapted mesh at different times.
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4.3. Penalized Navier Stokes Equations with Moving Bodies

Figure 4.20 – Falling Cylinder - Referential mesh and imposed sizes

This test case has been studied in the literature with penalization on carte-
sian grids. We compare the evolution of the velocity across time with the
results of Glowinski et. al. [74], Coquerelle and Cottet [48] and Beaugendre
and Morency (Lescape code) [27]. The grids used in the previous references
are the same : uniform cartesian grid containing nearly 780000 vertices. For
this study, we want to emphasize the accuracy provided by the mesh adapta-
tion. Thus, in addition, the simulation is performed on the referential mesh
without performing the adaptation. The curves are plotted figure 4.23. First,
we can see that the results provided within this study compares well to the
literature and that the approach is consequently validated. Secondly, looking
at the steady state of the velocity reached by the cylinder when the frictions
compensate the gravity, we can see that for the non adapted simulations, oscil-
lations appear. They are probably due to the lack of definition in the interface,
that leads to two main problems : the mass of the solid is not constant along
the simulations, and the definition of the interface being not accurate enough,
the interpolation procedure from the background mesh to the surfacic mesh is
impacted and induces oscillations in the forces computations.

This test case validates the whole FSI process proposed in this work. Now,
we are willing to apply it to the context of ice shedding trajectories. Thus, the
next and final proposed simulation corresponds with the study of an ice shape
put into motion by a flow field.
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Figure 4.21 – Falling Cylinder - Adapted initial mesh

Figure 4.22 – FallingCylinder - Vorticity, t = 0.3215
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4.3. Penalized Navier Stokes Equations with Moving Bodies

Figure 4.23 – Falling Cylinder - evolution of the solid velocity w.r.t. time

4.3.2.4 GLC305-rime ice shape

In the context of the STORM project, numerical tools should be confronted to
experimental data performed at the DLR [100]. The GLC305-rime ice shape
of chord c = 0.1062m is employed to perform the study (see figure 4.24 for
the 2D cut employed here). Experimentally, the Reynolds number is set to
Re = 306400 with an inflow velocity of u = 40m/s. The ice shape sizing
corresponds to real ice thickness accreted on aircraft surface. Experimentally,
and in the numerical simulations performed by DLR [100] and ONERA using
Chimera method, the ice shape describes a motion characterized by a damped
oscillation around a mean pitch angle of −45 deg, and quasi linear trajectory.

However, with such a Reynolds number, a turbulence model is required to
perform numerical study. Thus, the settings of the simulation proposed here
does not corresponds to the experimental ones as we perform the simulation
with a lower Reynolds number : Re = 30640. In addition, we do not study
on the same time interval and computational domain that are smaller for
the present simulation. All the other parameters are kept identical to the
experimental database. The density of the ice and the flow are respectively
ρs = 920kg/m3 and ρf = 1.2kg/m3, and the shape is submitted to a gravity
of G = (0,−9.81)Tm/s2. The inertia momentum is Mi = 4, 987.10−4kgm2.

This case presents a real challenge for the mesh adaptation process because
of the sharp angles and the thin thickness of the ice shape. The initial position
of the rotation center is located at (0, 0) in a computational domain of sizes
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4. Penalization and Moving Bodies - An ALE Approach

Figure 4.24 – GLC305 rime ice shape

Figure 4.25 – GLC305 simulation - domain and referential mesh

[−0.75, 1.5]× [−1, 0.75]. Figure 4.25 proposes the domain and initial position
of the ice shape, with the refined area in which the solid is expected during the
simulation. The imposed sizes and resulting (referential) mesh are also plotted
on the same figure.

For this study, the Laplacian based adaptation is employed with the cou-
pling of the SDF and vorticity adaptation. The monitor function associated
to the 0 level set is defined constant by part (4.73) with the following param-
eters : w1 = 0.003, w2 = 0.06, w3 = 0.15 and C1 = 1120, C2 = 275, C3 = 160,
C4 = 100 and the adaptation to the vorticity is performed using βv = 3.5. For
the definition of the global monitor function (4.60), we set ε = 0.005. The
initial mesh (only adapted to the level set) is displayed figure 4.26 with a com-
parison against the referential mesh and 0 isovalue of the level set. Looking at
this figure 4.26, the ability of the mesh adaptation to lighten the number of
nodes is emphasized. On the referential mesh, in addition of a poor descrip-
tion of the 0 level set, only a few nodes define the inside of the solid. On the
contrary, the adapted mesh proposes an accurate description of the solid and
enough points inside the solid to impose accurately the penalization.

The first step is to solve on this initial adapted mesh the equations till the
establishment of a flow before allowing the motion. Figure 4.27 corresponds
to this state, that is the initial condition for the fall of the ice shape. Once the
ice is free, the aerodynimical forces and the gravity rule the movement with
equation (4.83). The ALE CN RD scheme is employed with a CFL of 50 and
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4.3. Penalized Navier Stokes Equations with Moving Bodies

Figure 4.26 – GLC305 Adaptation. Top Left : 0 level set on referential mesh
- Top Right : 0 level set on adapted mesh - Bottom : Adapted mesh

40 Newton Jacobi iterations are performed for the mesh adaptation.
Figure 4.28 displays the position of the ice shape according to the time.

Even if the settings differ from the experiment, we also recover an oscillating
behaviour of the ice, along with a nearly linear trajectory. Figures 4.29 pro-
pose the vorticity at different time steps and a zoom close to the interface to
prove the ability of the proposed mesh adaptation technique to keep the same
accuracy all along the simulation.

Even if this simulation cannot be validated with comparison to other com-
putational codes or experimental data, it shows the ability provided by the
proposed combination IB/mesh adaptation to handle large displacement and
can be applied to ice shedding simulations. We obtain an expected behaviour
from the ice shape concerning the linear trajectory and oscillations around a
mean pitch angle that have been observed experimentally and that was sought,
even for lower Reynolds.
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Figure 4.27 – Vorticity at the beginning of the GLC305 rime ice motion

Figure 4.28 – GLC305 surface isoline at different times
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4.4. Summary

4.4 Summary
This final chapter demonstrated the relative ease provided by the penalization
to perform the simulations of moving solids into a fluid. The unsteady schemes
proposed chapter 3 have been extended to the ALE framework and coupled to
an r-adaptivity mesh adaptation. Such a procedure involves the resolution of
an elasticity problem at each time step, that is solved using a limited number
of Newton iterations. It allows to provide an adaptation to the solid boundary
all along the simulation, so as to avoid loss of accuracy in the imposition of
the BC via the penalization, and to perform sufficiently accurate evaluations
of the aerodynamical forces. Test cases where the solid motion is ruled by
an analytical function have been used to validate the process and the forces
computations. A last validation test case involving a solid motion ruled by
external forces has validated the full FSI process proposed, that is a combina-
tion of the different tools developed during this work. Finally, this technique
has been applied to a GLC305 rime ice shape, one of the study of the STROM
project. Even if this is only a preliminary results, it comforts the idea of using
IBM/mesh adaptation for such problems as the behaviour is the one expected.
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Figure 4.29 – Zoom on the mesh at times t = 0, t = 0.027, t = 0.055 and
t = 0.083
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Conclusion

In this work, the simulations using an immersed boundary method called pe-
nalization on adapted unstructured grids with a residual distribution frame-
work have been addressed. First, to demonstrate the benefit of the combi-
nation IB/unstructured grids, steady simulations on adapted mesh increasing
the definition of the solid and the physical solution have been proposed. The
discretization of the equations has been done using the residual distribution
framework. Thus, the considered schemes have been extended to the penal-
ized Navier Stokes equations by a simple Galerkin discretization of the penalty
term. Different simulations have been proposed to prove that such schemes are
well suited for those simulations and that the proposed methodology presents
a competitive alternative to classical body fitted simulations [123, 3].

The study has then been extended to unsteady simulations, still consider-
ing fixed grids, for motionless solids. To perform such simulations, the schemes
have been extended to unsteady advection diffusion problems and the penaliza-
tion has been handled by the use of a splitting technique [124]. This approach
provides some freedom in the choice of the time discretization scheme. Two
time discretizations have been developed to solve the unsteady Navier Stokes
equations : a second order explicit Runge Kutta scheme and an implicit Crank
Nicolson scheme. To avoid a loss of accuracy with the splitting approach, the
Strang splitting has been used, leading to simple ordinary differential equa-
tions for the treatment of the penalty part, and thus a nodal imposition of the
boundary conditions.

As the aim is to handle objects in motion, the necessity of an unsteady
adaptation technique is required. To avoid remeshing/interpolation proce-
dures, an r-adaptivity mesh strategy combined to an ALE resolution of the
equations has been proposed. Based on a monitor function defining areas
of refinement according to the position of the solid, and if wanted a chosen
physical variable at each time step, the mesh is adapted without changing its
connectivity. The preliminary results obtained prove the competitive aspect
of such an approach for considering moving objects [125]. This approach pro-
vides a good implicit definition of the IB, even if the background mesh is not
very fine, as the adaptation allows to refine close to the geometry all along the
simulation. In addition, there is no need to remesh the computational domain
and to use interpolation procedures. Once the approach has been validated
on several test cases, it has been applied to the simulation of an ice shape
trajectory. Even if no proper validation can be provided for this last test case,
the results are the ones expected, further study being required for a complete
validation.

This work has provided an innovative and promising approach for the sim-
ulation of fluid structure interaction problems, that should lead to an efficient
hight fidelity model for ice shedding trajectories prediction regarding the pre-
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5. Conclusion

liminary results obtained in this context. The focus needs to be put on some
specific aspects (listed in the next section) to perform complete ice shedding
studies.

Perspective and On going work

• 3D Motion simulation / r-adaptation parallelization : The first
aspect that should be mentioned is the necessity of the parallelization
of the r-adaptation process to be able to perform 3D simulations in the
context of moving bodies. Indeed, even if the adopted strategy allows
to perform mesh adaptation with a limited computational time, the pro-
cedure in 3 dimensions still requires a lot of time. By lack of time, the
current implementation is sequential, which remains suitable for 2D sim-
ulations (the fluid resolution being parallel), but is a real inconvenient in
3D. The parallelization of the proposed approach is not a difficult task
due to the constant node connectivity which provides a constant load
balancing.

• Turbulence Model : Concerning the ice shedding problems, a missing
tool that is unavoidable because of the high Reynolds number involved is
a turbulence modelling. From a theoretical point of view, a model such
as the Spalart-Allmaras one should be well adapted to the penalization
problem because BC are easier for this turbulence model. Nevertheless,
some points will need a specific focus, especially the generation of a mesh
sufficiently adapted to the problem (some wall law being a possibility to
lighten a little such constraint).

• Forces computations and FSI simulations : The forces computa-
tion employed during this work has provided good results and allowed
to performed full FSI simulations. However, to get better results, espe-
cially concerning turbulent simulations, improvement should be investi-
gated. Some ideas could be to perform better gradient reconstruction or
improve the interpolation procedure from the background mesh to the
surfacic one. In addition, it could be interesting to look at different res-
olution of the equations ruling the motion, as only Euler discretization
are employed to evaluate the solid velocity from the forces.

• r-adaptation improvement : As demonstrated in this manuscript,
the r-adaptation strategy allows to improve the definition of the IB on
the background mesh. However, as mentioned in the previous point,
a turbulence model being required, a task will be to provide meshes
adapted for those simulations. Investigation could be done concerning
the definition of the monitor function, or an improvement of the problem
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to solve. Combination between Laplacian and elasticity based approach
could be a path to investigate.

In addition, such an adaptation cannot be as accurate as h-adaptation
techniques that provide almost optimal meshes for the considered prob-
lem. However, it is not obvious that such an accuracy is mandatory for
the involved application, as many other factors intervene, that could spoil
this accuracy. It would be interesting to compare the two approaches,
especially to compare accuracy w.r.t. computational time.

The last point to mention about r-adaptation concerns the number of
nodes necessary for the simulations. Indeed, if the point emphasized is
the non necessity to perform remeshing and interpolations, to perform
the r-adaptation w.r.t. the solid position, the original background mesh
must provide a finer area according to the displacement of the object.
It can be easily imagined that in the context of ice shedding trajecto-
ries, owing to the random character of the movement and the very high
sensibility to initial conditions, all the possible trajectories embrace a
significant domain. The refined area should be in coherence with this
domain and might lead to an initial quite heavy mesh. An investigation
should be done to couple r-adaptation and h-adaptation to provide the
refined area only where necessary, as performed for the moving mesh
techniques with explicit discretization of the solid presented in the intro-
duction of this manuscript 1.2.2.1. However, in comparison with those
techniques, the number of remeshing steps should be a lot reduced, as
the mesh would be suited for larger time step.
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Appendix A

Advection and Diffusion Tensors
for Navier-Stokes Equations

A.1 Euler Jacobian

First let recall the expression of the Euler flux FEul for a 3 dimensional prob-
lem :

FEul =

 ρv
ρv⊗ v− pI
(ρe+ p)v

 (A.1)

The three components are :

FEulx =


ρvx

ρv2
x + p
ρvxvy
ρvxvz

(ρe+ p)vx

 ,FEuly =


ρvy
ρvxvy
ρv2

y + p
ρvyvz

(ρe+ p)vy

 ,FEulz =


ρvz
ρvxvz
ρvyvz
ρv2

z + p
(ρe+ p)vz


(A.2)

The computation of the Ax = ∂FEulx /∂u is presented, the obtaining of the two
other ones being completely analogue.
First, let rewrite the vector as dependant of the conservative variable ρ, mx =
ρvx, my = ρvy, mz = ρvz, me = ρe. Using the relations p = ρ(γ − 1)ε coming
from the PG law and e = ε+ ||u||2

2
, it can be obtained :

FEulx =


mx

m2
x

ρ
− γ−1

2

m2
x+m2

y+m2
z

ρ
+ (γ − 1)me

mxmy
ρ

mxmz
ρ

γmemx
ρ
− γ−1

2
mx
ρ2 (m2

x +m2
y +m2

z)

 (A.3)
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A.2. Navier Stokes Tensor

After some calculation, it is obtained :

Ax =


0 1 0 0 0

(γ − 1) ||v||2
2 − v2x (3− γ)vx −(γ − 1)vy −(γ − 1)vz γ − 1

−vxvy vy vx 0 0
−vxvz vz 0 vx 0

vx

[
(γ − 1) ||v||2

2 − α
]
−(γ − 1)v2x + α −(γ − 1)vxvy −(γ − 1)vxvz γvx


where α = c2

γ−1
+ ||v||2

2
. Some details are given for the derivation of the energy

component of FEulx with respect to ρ:

∂FEul
x,5

∂ρ
= −γvxe+ (γ − 1)vx||v||2

= vx

[
(γ − 1)

||v||2

2
+ (γ − 1)

(
||v||2

2
− e
)
− e
]

= vx

[
(γ − 1)

||v||2

2
−
(
p

ρ
+ ε+

||v||2

2

)]
= vx

[
(γ − 1)

||v||2

2
− α

]
using PG law : c =

√
γp

ρ
and ε =

c2

γ(γ − 1)

Identically, it is get :

Ay =


0 0 1 0 0

−vxvy vy vx 0 0

(γ − 1) ||v||2
2 − v2y −(γ − 1)vx (3− γ)vy −(γ − 1)vz γ − 1

−vyvz 0 vz vy 0

vy

[
(γ − 1) ||v||2

2 − α
]
−(γ − 1)vxvy −(γ − 1)v2y + α −(γ − 1)vyvz γvy



Ay =


0 0 0 1 0

−vxvz vz 0 vx 0
−vyvz 0 vz vy 0

(γ − 1) ||v||2
2 − v2z −(γ − 1)vx −(γ − 1)vy (3− γ)vz γ − 1

vz

[
(γ − 1) ||v||2

2 − α
]
−(γ − 1)vxvz −(γ − 1)vyvz −(γ − 1)v2z + α γvz



A.2 Navier Stokes Tensor
Let interest on the x component of the flux function TNSx expressed as depen-
dant of the conservative variables ρ, mx, my, me and its associated component
of K.

FNS
x =


0
σxx
σxy
σxz

mx
ρ
σxx + my

ρ
σxy + mz

ρ
σxz − qx
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Using PG law, it is set T = γ−1
R

(
e− ||v||

2

2

)
which allows to rewrite qx = −κ∂T

∂x
as :

qx = −κγ − 1

R
1

ρ

[(
∂me

∂x
− me

ρ

∂ρ

∂x

)
−

(
mx

ρ

∂mx

∂x
− m2

x

ρ2
∂ρ

∂x
+
my

ρ

∂my

∂x
−
m2

y

ρ2
∂ρ

∂x
+
mz

ρ

∂mz

∂x
− m2

z

ρ2
∂ρ

∂x

)]

Now, denoting x1 = x, x2 = y, x3 = z, v1 = vx, v2 = vy, v3 = vz, the
components of the stress tensor can be written :

σij = µ

(
∂vi
∂xj

+
∂vj
∂xi
− δij

2

3

3∑
k=1

∂vk
∂xk

)

=
µ

ρ

[
∂mi

∂xj
− mi

ρ

∂ρ

∂xj
+
∂mj

∂xi
− mj

ρ

∂ρ

∂xi
− δij

2

3

3∑
k=1

(
∂mk

∂xk
− mk

ρ

∂ρ

∂xk

)]

with δij the Kronecker delta.
It leads to :

FNS
x1 =0

FNS
x2 =

µ

ρ

[
4

3

(
∂mx

∂x
− mx

ρ

∂ρ

∂x

)
− 2

3

(
∂my

∂y
− my

ρ

∂ρ

∂y

)
− 2

3

(
∂mz

∂z
− mz

ρ

∂ρ

∂z

)]
FNS
x3 =

µ

ρ

(
∂mx

∂y
− mx

ρ

∂ρ

∂y
+
∂my

∂x
− my

ρ

∂ρ

∂x

)
FNS
x4 =

µ

ρ

(
∂mx

∂z
− mx

ρ

∂ρ

∂z
+
∂mz

∂x
− mz

ρ

∂ρ

∂x

)
FNS
x5 =

mx

ρ
FNS
x2 +

my

ρ
FNS
x3 +

mz

ρ
FNS
x4 +

κ
γ − 1

R
1

ρ

[(
∂me

∂x
− me

ρ

∂ρ

∂x

)
−

(
mx

ρ

∂mx

∂x
− m2

x

ρ2
∂ρ

∂x
+
my

ρ

∂my

∂x
−
m2

y

ρ2
∂ρ

∂x
+
mz

ρ

∂mz

∂x
− m2

z

ρ2
∂ρ

∂x

)]

From those expression, the matrices K11, K12 and K13 can be identified :

K11 =
µ

ρ


0 0 0 0 0
−4

3
vx

4
3

0 0 0
−vy 0 1 0 0
−vz 0 0 1 0

−v3
x

3
− ||v||2 − α(e− ||v||2) (4

3
− α)vx (1− α)vy (1− α)vz α


with α = κ(γ−1)

µR .

K13 =
µ

ρ


0 0 0 0 0
−2

3
vy 0 −2

3
0 0

−2
3
vx 1 0 0 0

0 0 0 0 0
−1

3
vxvy vy −2

3
vx 0 0

 , K12 =
µ

ρ


0 0 0 0 0

2
3
vz 0 0 −2

3
0

0 0 0 0 0
−vx 1 0 0 0
−1

3
vxvz vz 0 −2

3
vx 0
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A.2. Navier Stokes Tensor

Performing the same analysis with FNS
y and FNS

z lead to the other matrix
components of K :

K22 =
µ

ρ


0 0 0 0 0
−vx 1 0 0 0
−4

3
vy 0 4

3
0 0

−vz 0 0 1 0

−v2
y

3
− ||v||2 − α(e− ||v||2) (1− α)vx (4

3
− α)vy (1− α)vz α



K21 =
µ

ρ


0 0 0 0 0
−vy 0 1 0 0
2
3
vx −2

3
0 0 0

0 0 0 0 0
−1

3
vxvy −2

3
vy vx 0 0

 , K23 =
µ

ρ


0 0 0 0 0
0 0 0 0 0

2
3
vz 0 0 −2

3
0

−vy 0 1 0 0
−1

3
vyvz 0 vz −2

3
vy 0



K33 =
µ

ρ


0 0 0 0 0
−vx 1 0 0 0
−vy 0 1 0 0
−4

3
vz 0 0 4

3
0

−v2
z

3
− ||v||2 − α(e− ||v||2) (1− α)vx (1− α)vy (4

3
− α)vz α



K31 =
µ

ρ


0 0 0 0 0
−vz 0 0 1 0

0 0 0 0 0
2
3
vx −2

3
0 0 0

−1
3
vxvz −2

3
vz 0 vx 0

 , K23 =
µ

ρ


0 0 0 0 0
0 0 0 0 0
−vz 0 0 1 0
−2

3
vy 0 −2

3
0 0

−1
3
vyvz 0 −2

3
vz vy 0
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