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RÉSUMÉ iii

Résumé

Sous l'hypothèse gaussienne, la relation entre indépendance conditionnelle et parcimonie

permet de justi�er la construction d'estimateurs de l'inverse de la matrice de covariance

� également appelée matrice de précision � à partir d'approches régularisées. Cette thèse,

motivée à l'origine par la problématique de classi�cation d'images, vise à développer une

méthode d'estimation de la matrice de précision en grande dimension, lorsque le nombre

n d'observations est petit devant la dimension p du modèle. Notre approche repose essen-

tiellement sur les liens qu'entretiennent la matrice de précision et le modèle de régression

linéaire. Elle consiste à estimer la matrice de précision en deux temps. Les éléments non

diagonaux sont tout d'abord estimés en considérant p problèmes de minimisation du type

racine carrée des moindres carrés pénalisés par la norme `1. Les éléments diagonaux sont

ensuite obtenus à partir du résultat de l'étape précédente, par analyse résiduelle ou maxi-

mum de vraisemblance. Nous comparons ces di�érents estimateurs des termes diagonaux en

fonction de leur risque d'estimation. De plus, nous proposons un nouvel estimateur, conçu

de sorte à tenir compte de la possible contamination des données par des outliers, grâce

à l'ajout d'un terme de régularisation en norme mixte `2/`1. L'analyse non-asymptotique

de la convergence de notre estimateur souligne la pertinence de notre méthode.

Mots-clefs :

matrice de précision, parcimonie, grande dimension, modèles graphiques gaussiens, modèle

de régression linéaire, estimation robuste, minimisation convexe, vitesse de convergence,

analyse non-asymptotique.
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ABSTRACT v

Abstract

Under the Gaussian assumption, the relationship between conditional independence and

sparsity allows to justify the construction of estimators of the inverse of the covariance

matrix � also called precision matrix � from regularized approaches. This thesis, originally

motivated by the problem of image classi�cation, aims at developing a method to estimate

the precision matrix in high dimension, that is when the sample size n is small compared

to the dimension p of the model. Our approach relies basically on the connection of the

precision matrix to the linear regression model. It consists of estimating the precision

matrix in two steps. The o�-diagonal elements are �rst estimated by solving p minimiza-

tion problems of the type `1-penalized square-root of least-squares. The diagonal entries

are then obtained from the result of the previous step, by residual analysis of likelihood

maximization. This various estimators of the diagonal entries are compared in terms of

estimation risk. Moreover, we propose a new estimator, designed to consider the possible

contamination of data by outliers, thanks to the addition of a `2/`1 mixed norm regular-

ization term. The nonasymptotic analysis of the consistency of our estimator points out

the relevance of our method.

Keywords:

precision matrix, sparsity, high dimension, Gaussian graphical models, linear regression

model, robust estimation, convex minimization, convergence rate, nonasymptotic analysis.
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Introduction

RÉSUMÉ. Dans le contexte de la vision par ordinateur, la capacité à identi-

�er le contenu d'une image est un enjeu majeur. Intéressons-nous par exem-

ple au problème de la classi�cation d'images qui requiert une représentation

de l'image adaptée. Or les caractéristiques d'une images ont une dimension

particulièrement élevée (un grand nombre de variables). En comparaison, le

nombre d'observations dont on dispose est souvent relativement petit. Cette

situation a plusieurs conséquences. Au premier lieu desquelles, certaines tech-

niques standard de classi�cation sont applicables en théorie, mais en pratique

ont des coûts de calculs en temps et en espace prohibitifs. Pour être mises en

÷uvre e�cacement, la classi�cation doit alors être précédée d'une étape visant

à réduire la dimension. Cette dernière peut cependant avoir pour conséquence

une perte d'information, qui peut se révéler préjudiciable du point de vue de

l'objectif de classi�cation. Il est donc souhaitable de se passer de cette ré-

duction de la dimension et de développer des techniques de classi�cation qui

soient naturellement adaptées aux données de grande dimension. Considérons

par exemple la méthode de classi�cation qui repose sur l'hypothèse bayésienne

naïve. Elle nécessite d'être en mesure de calculer les densités de probabilité

d'un descripteur, conditionnellement à chaque classe. Nous proposons de faire

l'hypothèse que les p caractéristiques d'une image dans une classe donnée sont

distribuées selon une loi de probabilité dont les paramètres doivent être estimés.

Dans le cadre de la classi�cation bayésienne et sous l'hypothèse gaussienne, il

est ainsi nécessaire d'estimer pour chaque classe l'inverse de la matrice de co-

variance, ou matrice de précision, soit p(p + 1)/2 paramètres. En dimension

élevée, obtenir une estimation �able pour les paramètres du classi�eur n'est

pas possible sans hypothèses supplémentaires.

Notre principal apport est la construction et la justi�cation théorique d'un

estimateur de cette matrice de précision en grande dimension, sous l'hypothèse
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d'indépendance conditionnelle des variables. En particulier, nous nous sommes

penchés sur la manière d'améliorer l'estimation des termes diagonaux de cette

matrice et avons proposé une approche permettant de tenir compte de la

présence potentielle d'observations aberrantes ou extrêmes. Dans ce chapitre

introductif, nous justi�erons l'approche parcimonieuse, en lien avec l'hypothèse

d'indépendance conditionnelle. Nous ferons une revue de l'état de l'art sur

l'estimation de matrices de précision en grande dimension. Notre approche

étant basée sur le modèle de régression linéaire, nous reviendrons sur les

développements récents des techniques de régularisation dans ce domaine. Ceci

nous amènera à présenter les propriétés de régularité utilisées pour démontrer

la convergence des estimateurs obtenus.
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Problem statement and motivation In the �eld of computer vision, the ability to

identify what an image represents remains a major challenge. In the particular problem of

image classi�cation, the objective is to determine to which category a new image belongs.

To this end, we need to make the best use of the information contained in the training

sample that gathers images with known labels. The �rst di�culty is to build an image

representation adapted to the classi�cation goal. There is a considerable amount of research

about building such an e�ective representation, using the local or the global features of

the image. Resting upon the recent developments on this subject, we can use image

descriptors such as the local scale-invariant feature transform (SIFT) descriptor [Lowe,

2004], the global GIST [Oliva and Torralba, 2006] descriptor or variations thereof. The

other di�culty is about the classi�cation procedure itself. It is yet deeply related to
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the chosen image representation. The features of an image have indeed an especially

high dimension, that is a great number of variables. It is not uncommon to have to

consider representations involving hundred of variables, even thousands in the case of

bitmap representation. In comparison, the number of available observations is often quite

small. This situation has many consequences. First of all, many classi�cation procedures

are theoretically workable, but have in practice prohibitive computational costs, requiring

a huge amount of time and space. That is the case, for instance, of standard approaches

such as the k-nearest neighbors method or support vector machine (SVM). To be applied

e�ciently, the classi�cation should be preceded by a step to reduce the dimension. The

most widely used techniques include linear methods such as principal component analysis

(PCA) and nonlinear such as product quantization [Jegou et al., 2011]. This reduction of

the dimension is based on the assumption that the covariates are (highly) correlated and

that their number can be reduced without losing information. However, in practice, the

reduction of the dimension may involve a loss of information. Incidentally, it also results

in lessening the noise, but may be harmful in view of the performance of the classi�cation.

In the context of Bayesian classi�cation and under the Gaussian assumption, we need

to estimate the inverse of the covariance matrix, thus p(p + 1)/2 parameters. In high

dimension, providing an accurate estimation for the parameters of this classi�er is not

possible without additional assumptions. In this background, reducing the dimensionality

of data can be considered, but is not an appropriate solution. Indeed, aside from leading

to information loss, the reduction of the dimension is likely to be on a collision course with

the Gaussian premise. In addition, assuming that the initial covariates are correlated is

debatable in high dimension [Zhang et al., 2014]. Another assumption, more tenable, would

be to suppose that the initial covariates are pairwise independent, conditionally to the

other. The assumption that the variables are highly correlated is of a completely di�erent

nature than that of conditional independence of the variables. Intuitively, the former

assumption boils down to suppose that the information contained in each observation is

redundant, hence the possibility of reducing the dimension of the covariate space without

without losing information. In contrast, the second assumption consists in supposing that

the additional information provided by two di�erent variables is very often non-redundant.

It is thus only necessary to estimate some of the partial correlations of the model, the

others being zero. Recalling that the precision matrix can be associated to the graph of

dependence relationships between variables, the �rst assumption results in reducing the

number of nodes, but also in considering that each pair of nodes may be linked by an

edge. The second assumption signi�es that only a quite small number of edges, related

to the nonzero entries of the precision matrix, have to be identi�ed. These assumptions

are not incompatible, it is however not obvious whether both can be met together. The

hypothesis of parsimony has indeed fewer chances to be ful�lled after dimension reduction.

Recent work focuses on this question [Han et al., 2014]. It concludes that there is no
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theoretical result which guarantees that the sparsity structure of the precision matrix

corresponding to unobserved latent variables (for instance the principal components in the

case of PCA) inherits from the structure of the precision matrix corresponding to initial

variables. Nevertheless, when the structure of the precision matrix (thus of the underlying

graph) is particular (modular for instance [Celik et al., 2014]) and under certain conditions

(among those the Gaussian assumption), the precision matrix of observed variables can be

obtained from that of latent variables.

The method we present is based on naive Bayes assumption. In this case, the probability

density functions associated with the image descriptors, conditionally to each class, are

needed. This approach has already been implemented in high dimension in [Behmo et al.,

2010], through the nonparametric estimation of these densities of probability. We rather

assume that the features of an image in a given class are drawn from a probability dis-

tribution whose parameters have to be estimated. More precisely, we suppose that the

features are Gaussian distributed, thus the rule of classi�cation involves the mean and

the precision matrix of the distribution of all the features of each class. Let us state the

decision rule in this setting. We want to determine what class C, from a �nite set of

available classes, an unlabeled image I belongs to. The image is represented by the de-

scriptors dI = {dI1, . . . ,dInI}. The maximum a posteriori (MAP) rule of classi�cation runs

as follows: the image is associated with the class for which the conditional probability is

the largest, that is

ĈI = argmax
C

p(C|I).

We suppose that the prior probability p(C) is the same regardless of the class (uniform

prior), thus applying the theorem of Bayes entails that p(C|I) ∝ p(I|C) = p(dI1, . . . ,d
I
nI
|C).

Then the classi�er is none other than the maximum likelihood classi�er. Under the naive

Bayes hypothesis that the descriptors of an image are independently and identically dis-

tributed (i.i.d.) given its class, it implies that the decision rule is

ĈI = argmax
C

nI∏
i=1

p(dIi |C) = argmax
C

nI∑
i=1

log p(dIi |C). (0.1)

Assuming that the descriptors are normally distributed conditionally to the class C, we

obtain

ĈI = arg min
C

{( nI∑
i=1

(dIi − µC)>ΩC(dIi − µC)
)
− nI

2
log det(ΩC)

}
. (0.2)

To get a classi�er workable in practice, the densities p(dIi |C) have to be estimated from

training data. It is therefore necessary to be able to estimate the mean µC and the pre-
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cision matrix ΩC for all classes of interest. In the high dimensional setting, the standard

statistical techniques fail to estimate accurately the precision matrix. Our main contribu-

tion is the construction and theoretical analysis of an estimator of the precision matrix in

high dimension under the assumption of conditional independence. In particular, we study

how to improve the estimation of the diagonal entries of this matrix and propose a new

approach taking into account the possible presence of outliers.

Computer vision is far from being the only �eld of application of sparse high dimensional

methods of estimation. Problems that required a consistent estimation of the precision

matrix arise in many other areas. Of these, mention may be made of genomics, economet-

rics, signal processing or meteorology. In genomics, the development of DNA microarrays

demands techniques for interpreting large-scale datasets of gene expression. For instance,

Kishino and Waddell [2000] proposed to model the relationships between genes using the

partial correlations of the expressions of all pairs of genes. This work on gene expression

data has been extended to the high dimensional framework by Schäfer and Strimmer [2005]

or Cai et al. [2013] among others.

In econometrics, solutions to portfolio optimizations problems may involve the estimation

of a precision matrix [Markowitz, 1952; Brandt, 2010]. The portfolio selection problem

aims to identify the best possible combination of p assets whose expectation is denoted by

µ and covariance matrix by Σ. Considering a vector of weights w, the quadratic risk of the

corresponding portfolio is given by w>Σw and its expected return by w>µ. In Markowitz

mean-variance analysis, selecting an e�cient portfolio amounts to solve the optimization

problem

maximize w>µ/
√

w>Σw ; w ∈ Rp.

The solutions take the form w = λΣ−1µ, where λ > 0. For instance, if the quadratic risk

is constrained to stay below a level R, we get λ =
√
R/w>Σ−1w, where w and Σ−1 must

generally be estimated. El Karoui [2010] analyzed this problem in high dimension, but

estimated the precision matrix by the inverse of the covariance matrix and noticed that it

may lead to poor estimations when the considered matrices are not well conditioned.

All the proofs of the results presented in this introductory chapter are postponed in Ap-

pendix A.

0.1 Notation

For an unknown parameter θ we note θ∗ its true value. As usual, Np(µ∗,Σ∗) is the

Gaussian distribution in Rp with mean µ∗ and covariance matrix Σ∗. The corresponding

precision matrix (the inverse of the covariance matrix, also known as concentration matrix)

is denoted by Ω∗. The expectation of a random variable X is denoted by E(X) and its

variance by Var(X). The covariance between two random variables X and Y is expressed
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by the notation Cov(X,Y ). We denote by 1n the vector from Rn with all the entries equal

to 1 and by In the n× n identity matrix. We write 1 for the indicator function, which is

equal to 1 if the considered condition is satis�ed and 0 otherwise. The cardinality of a set

S is denoted by |S|. In what follows, [p] := {1, . . . , p} is the set of positive integers from 1

to p. For j ∈ [p], the complement of the singleton {j} in [p] is denoted by jc. For a vector

v ∈ Rp, Dv stands for the p× p diagonal matrix satisfying (Dv)j = vj for every j ∈ [p].

The transpose of the matrix M is denoted by M>. If this matrix is square, we note det(M)

its determinant and trace(M) its trace. Furthermore, M† stands for its Moore-Penrose

pseudo-inverse. The diagonal matrix obtained by zeroing all the o�-diagonal entries of the

p × p matrix M is denoted either by diag(M) or by diag({mjj}j∈[p]) to emphasize that

the o�-diagonal entries might be unknown or estimated separately. In addition, M � 0

means that M is positive de�nite and M < 0 that the matrix is positive semide�nite. For

a n× p matrix M, the vector of the elements of the kth row (resp. the jth column) whose

indexes are given by the subset J of [p] (resp. K of [n]) is denoted by Mk,J (resp. MK,j).

In particular, the vector made of all the elements of the jth column of the matrix M at the

exception of the element of the kth row is given by Mkc,j . Moreover, the whole kth row

(resp. jth column) of M is denoted by Mk,• (resp. M•,j). As is customary, we de�ne the

`q-norm of a vector v ∈ Rp by ‖v‖q =
{∑p

j=1 |vj |q
}1/q

, for q > 0. We denote maxj∈[p] |v|
by ‖v‖∞. We use the following notation for the (pseudo-)norms of matrices: if q1, q2 > 0,

then

‖M‖q1,q2 =

{
n∑
i=1

‖Mi,•‖q2q1

}1/q2

.

With this notation, ‖M‖2,2 and ‖M‖1,1 are the Frobenius and the element-wise `1-norm of

M, respectively. Among other particular cases, for q1 = 1, taking the limit when tends to

in�nity, ‖M‖1,∞ is the maximum absolute row sum norm de�ned by maxi∈[n] ‖Mi,•‖1. In
the same way, ‖M‖∞,1 = maxj∈[p] ‖M•,j‖1 corresponds to the maximum absolute column

sum norm (also known as `1-matrix norm) and ‖M‖∞,∞ = max(i,j)∈[n]×[p] |Mi,j | to the

max norm. In addition, we de�ne σmax(M) and σmin(M), respectively, as the largest

and the smallest singular values of the matrix M. Its spectral norm is then denoted by

‖M‖2 = σmax(M). The context will serve to dispel any ambiguity with regard to the

Euclidean vector norm. The sample covariance matrix of the data points {Xk,•}k∈[n] is

de�ned by

Sn =
1

n

n∑
k=1

(X>k,• − µ̂)(X>k,• − µ̂)> =
1

n
(X− 1nµ̂

>)>(X− 1nµ̂
>),

where µ̂ is either the sample mean 1
n(1>nX)> (when the mean µ∗ is unknown) or the

theoretical mean µ∗ (when it is considered as known).
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0.2 Sparsity assumption

When we consider n observations drawn from a p-variate distribution, estimating the pre-

cision matrix implies to calculate p(p+1)/2 unknowns. If the number of unknowns exceeds

the sample size, getting a statistically accurate estimation of Ω∗ is impossible. But it is

possible under additional structural assumptions, for instance if we assume that most of

its entries are actually equal to zero. This principle of parsimony was �rst�to the best of

our knowledge� introduced and justi�ed by Dempster [1972] to estimate the covariance

matrix in moderate dimension for multivariate Gaussian distributions. It is based on the

relationship between the entries of the precision matrix and the partial correlations. Re-

call that partial correlations corresponds to the correlations between two variables once

removed the linear dependencies with all other variables. If we consider a Gaussian ran-

dom vector X, any two random variables in X, for instance Xi and Xj , are independent

conditionally to the other variables if and only if their partial correlation ψi,j is zero. This

result is a direct consequence of the following proposition.

Proposition 0.2.1. Let X and Y be two random variables and Z be a random vector such

that (X,Y, Z>)> has a Gaussian distribution with the precision matrix

Ω =

ΩXX ΩXY ΩXZ

ΩY X ΩY Y ΩY Z

ΩZX ΩZY ΩZZ

 .

The following claims are equivalent:

i) X and Y are independent conditionally to Z,

ii) the partial correlation between X and Y is zero,

iii) the entry ΩXY is zero.

In the Gaussian framework, the precision matrix also exactly describes the conditional

dependencies between pairs of variables given the values of all the other variables. The

precision matrix is therefore often used for constructing a graph G ∗ of relationships between

the p variables [Whittaker, 1990; Lauritzen, 1996]. Each node of this undirected graph

corresponds to a variable and two nodes j and j′ are connected by an edge if ω∗jj′ 6=
0. In others words, the precision matrix may be understood as the adjacency matrix of

the undirected graph G ∗. In recent work, Liu et al. [2009] extended the fact that the

support of the precision matrix matches to the edges of the graph G ∗ to non-Gaussian

distributions called nonparanormal [Liu et al., 2009]. For their part, Loh and Wainwright

[2013] established the connection between some particular graphs and the precision matrix

of discrete random variables.
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Figure 0.1: Sparsity patterns and corresponding graphs below.

The estimation of this graph, that is the identi�cation of nonzero entries of the precision

matrix, and the comprehensive estimation of the precision matrix are challenging recent

statistical problems that arise considerable interest. In many applications, for instance

those that have motivated this work, the sample size n tends to be much smaller than

the dimension p of the model. To be able to estimate consistently the precision matrix or

simply to recover its structure, we adopt the usual�since the works of Meinshausen and

Bühlmann [2006] and Yuan and Lin [2007]�sparsity assumption for the graph G ∗. This

assumption may mean that the total number of edges in G ∗ is small as compared to the

number p(p − 1)/2 of all possible pairs of variables. In this work, we rather assume that

that the maximal degree of the nodes is much smaller than p. Hereafter, we say that a

matrix is s-sparse if it has at most s nonzero entries per row/column.

Some problems require the estimation of the covariance matrix rather than the precision

matrix, among the most noticeable, PCA. In high dimension, the sparsity of the covariance

matrix is a common assumption [Bickel and Levina, 2008; El Karoui, 2008; Lam and Fan,

2009; Cai and Zhou, 2012]. Whereas a zero in the precision matrix corresponds to con-

ditional independence, a zero in the covariance matrix signi�es marginal independence in

the Gaussian setting. As the conditional dependencies, the marginal dependencies can be

represented by a graphical model (bidirected in this case) [Cox and Wermuth, 1993]. We

recall that two random variables can be marginally independent, but dependent condition-

ally to a third variable. In other words, a zero in the covariance matrix does not implies

a zero at the same position in the precision matrix. The reverse is also true: conditional

independence does not imply marginal independence. Nevertheless, as noticed in [Cox and

Wermuth, 1996], if the graph G ∗ is only composed of completely connected components

(disjoint cliques), then the sparsity patterns of the precision and of the covariance matrices

coincide.
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0.3 Parsimonious precision matrix estimation

In recent years, the problem of precision matrix estimation under sparsity constraints re-

ceived a lot of attention. We quickly present here the main estimators that have been

proposed. Recall that unless the ratio p/n is very small1, the inverse of the sample covari-

ance matrix Sn is a very poor estimator of the precision matrix Ω∗. The developments

that have occurred recently in sparse precision matrices estimation consider generally `1-

penalized o�-diagonal elements. The research works of Yuan [2010]; Cai et al. [2011]; Sun

and Zhang [2013] and Ren et al. [2015] are among the most signi�cant recent advances in

statistical analysis of this approach. Put simply, the reason for considering `1-regularization

is that it can be understood as a relaxed but convex form of an `0-regularization. A more

complete justi�cation is provided in Section 0.4.1.

In the �eld of graphical models, two distinct but related problems are naturally considered

when proposing an estimator. Both selection consistency and estimation consistency are

indeed relevant questions. On the one side, a satisfactory estimator should recover the edge

structure of the graph, that is the sparsity pattern of the precision matrix. This question

and the more involved sign consistency � considering that not only the zeros but also the

signs of the entries should be correctly identi�ed � received speci�c attention in many

recent papers. They have in particular been studied by Meinshausen and Bühlmann [2006]

whose objective is to identify the connected components of the graph G ∗. For their part,

Zhao and Yu [2006]; Zou [2006]; Lounici [2008] and Meinshausen and Yu [2009] focused

on variable selection using the least absolute shrinkage and selection operator (Lasso) in a

linear regression model, and Lam and Fan [2009] or Ravikumar et al. [2011] analyzed the

graphical Lasso. Selection consistency is obtained under the assumption that two variables

belonging to distinct connected components of the graph G ∗ are not strongly correlated. It

means that when the partial correlation between two variables is zero, then the magnitude

of the (regular) correlation between these variables should be low. This assumption is called

neighborhood stability in [Meinshausen and Bühlmann, 2006], irrepresentability in [Zhao

and Yu, 2006] and termed mutual (in)coherence in [Bunea et al., 2007b] in reference to

[Donoho et al., 2006]. On the other hand, when the estimation consistency is considered,

one looks for an estimator Ω̂ converging to the true precision matrix with the fastest

possible rate. This question is of main interest in our work and is developed in the rest of

this section. Before getting into the speci�cs, we recall that it is easier for an estimator to

achieve estimation consistency as it relies on weaker conditions than selection consistency.

1When p/n is very small, the covariance matrix can be estimated consistently under the spectral norm
[Koltchinskii and Lounici, 2014]. That implies a similar result for the precision matrix. Indeed, when p < n,
considering a data matrix with sub-Gaussian rows and using Vershynin [2012b, Theorem 5.39], ‖Σ̂−Σ∗‖2
has a convergence rate of order σmax(Σ

∗)
√
p/
√
n, with probability close to one. In the same way, ‖Ω̂−Ω∗‖2

has a convergence rate of order ρ(Σ∗)
√
p/
√
n, with probability close to one, ρ(Σ∗) = σmax(Σ

∗)/σmin(Σ
∗)

being the condition number of Σ∗.
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Indeed, the regularity properties (see Section 0.5) can be deduced irrepresentable conditions

[van de Geer and Bühlmann, 2009]. In some settings, these assumptions can be checked

using concentration inequalities [Rudelson and Zhou, 2013; Dobriban and Fan, 2016].

We de�ne here the rate of convergence of an estimator which is an essential concept in

this work. An estimator θ̂n converges over a setM under the risk associated with the loss

function l(·) at the rate rn if there exists a constant C > 0 such that, for any θ∗ belonging

to a setM, for any sample size n

E(l(θ̂n, θ
∗)) ≤ C rn.

In addition, we de�ne the minimax risk over a setM as inf
θ̂n

supθ∗∈ME
(
l(θ̂n, θ

∗)
)
, taking

the in�mum over all possible estimators θ̂n. Then, the minimax convergence rate is the

rate rn for which there exist constants C1, C2 > 0, such that for all n

C1 rn ≤ inf
θ̂n

sup
θ∗∈M

E
(
l(θ̂n, θ

∗)
)
≤ C2 rn.

Any estimator θ̂n that achieves the minimax convergence rate is called minimax. With

these de�nitions, considering δ ∈ (0, 1) and any θ∗ ∈M, a rate rn of an estimator θ̂n, that

satis�es

P
(
l(θ̂n, θ

∗) ≤ C rn
)
≥ 1− δ,

where C > 0, provides (by integration) a nonasymptotic upper bound for the minimax

rate under l(·) loss function.

0.3.1 `1-penalized maximum likelihood estimation

Among the alternatives for estimating a sparse precision matrix, in the �rst place, we

mention methods based on minimization of `1-penalized Gaussian likelihood (graphical

Lasso methods), that have been studied in [Banerjee et al., 2008; d'Aspremont et al., 2008;

Friedman et al., 2008]. Let us recall the rationale behind this estimator. Considering a

n × p random matrix X with i.i.d. Gaussian rows with mean µ∗ and covariance Σ∗, we

set Sn,µ = (X−1nµ
>)>(X−1nµ

>)/n and denote by L(µ,Ω,X) the Gaussian maximum

likelihood function. We estimate the parameters of the distribution using the maximum

likelihood estimator (MLE), that is

{µ̂, Ω̂} = argmax
Ω�0
µ∈Rp

L(µ,Ω,X) = argmax
Ω�0
µ∈Rp

{
log det(Ω)− trace

(
Sn,µΩ

)}
,

taking the maximum over all p× p matrices Ω. We can minimize separately with respect

to µ and Ω. It entails that µ∗ is estimated by the vector of sample means. Re-injecting
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the closed-form expression µ = X>1n/n into the optimization problem leads to

Ω̂ = argmax
Ω∈Rp×p

Ω�0

{
log det(Ω)− trace

(
SnΩ

)}
.

To obtain a sparse estimate, we add a regularization term and de�ne the estimator of the

precision matrix as a solution to the problem

Ω̂ = arg min
Ω∈Rp×p

Ω�0

{
− log det(Ω) + trace

(
SnΩ

)
+ λ‖ωoff‖1

}
, (0.3)

where ωoff is the vector composed of the all the o�-diagonal entries of Ω and λ > 0 is

a tuning parameter. This estimator has also been studied by Yuan and Lin [2007] and

Rothman et al. [2008] in the case when X actually stems from a Gaussian distribution. As

noticed in [Banerjee et al., 2008], the constraint Ω � 0 can be removed as already implied

by the log determinant function. In [Banerjee et al., 2008; Friedman et al., 2008], ‖ωoff‖1,
is replaced by ‖Ω‖1,1. Penalizing the diagonal elements seems surprising, but Ambroise

et al. [2009] highlighted that in practice it leads the graphical Lasso algorithm to pick a

de�nite positive estimator for Ω∗.

In [Lam and Fan, 2009], the graphical Lasso is generalized by considering non-convex

functions to penalize the o�-diagonal elements. The authors also show that the graphical

Lasso actually recovers the sparsity structure of the precision matrix when the true matrix

is sparse enough and when the sample size is large enough. Nevertheless, their assumptions

are too severe to be workable in practice and have been alleviated by Ravikumar et al.

[2011]. For instance, in this last paper, it is shown that the sample size only needs to be

of order s2 log p to recover the support of the precision matrix in the case of sub-Gaussian

distributions. Besides, the same condition on n is su�cient to get a convergence rate of

order
√

(S + p)(log p)/n in Frobenius norm, S being the number of nonzero o�-diagonal

elements in Ω∗. This rate is identical to these established by Rothman et al. [2008] and

Lam and Fan [2009].

As regards the practical resolution of problem (0.3), noting the convexity of this problem

d'Aspremont et al. [2008] have proposed to cast the primal problem in the form of a

semide�nite program that can be solved using Nesterov's �rst order method [Nesterov,

2005]. They solved the dual problem by blockwise coordinate descent and called the

resulting complete algorithm Covsel. In contrast, Yuan and Lin [2007] have chosen to use

an interior point algorithm [Vandenberghe et al., 1998] to solve the same dual problem.

However, their algorithm is applicable only if p is small. Starting from the �ndings of

d'Aspremont et al. [2008], Friedman et al. [2008] have proposed to update recursively

each column of the covariance matrix by solving the Lasso. The estimate of the precision

matrix is obtained as a by-product using blockwise matrix inversion. This faster algorithm
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is termed graphical Lasso. A di�erent algorithm, with the same computational complexity

of order O(p3), but based on the Cholesky decomposition of the precision matrix, has been

proposed by Rothman et al. [2008].

0.3.2 A linear regression model

Another family of procedures pioneered by Meinshausen and Bühlmann [2006] relies on

estimating the entries of Ω∗ by applying a regularized method for solving linear regres-

sion problems. This is the basis upon which our contributions are built. In this section,

we provide basic justi�cation for this approach and present existing work. A theoretical

rationale for sparse regression is given in Section 0.4.

0.3.2.1 From regression coe�cients to precision matrix

Next result rests on two prominent theorems, stated in Appendix A : the theorems on

normal correlations [Marsaglia, 1964] and on block matrix inversion. It provides the back-

ground that supports this familly of procedures.

Proposition 0.3.1. Let (Y >, X>)> be a multivariate normal random vector with expec-

tation µ = (µ>Y ,µ
>
X)> and covariance

Σ = Ω−1 =

(
ΩY Y ΩY X

ΩXY ΩXX

)−1

.

We suppose that the relationship between the vectors Y and X is described by the linear

regression model Y = B>X+ε, where ε follows a zero-mean Gaussian distribution N (0,Φ)

and is independent of X. It holds that

Φ = Ω−1
Y Y , B = −ΩXY Ω−1

Y Y .

The precision matrix is therefore closely related to the problem of regression of one feature

on all the others. Indeed, if we consider the linear regression models de�ned by taking

alternately each column X•,j as the response and the others X•,jc as covariates, we get

X•,j = c∗j1n −X•,jcB
∗
jc,j + φ∗j ε•,j , (0.4)

with B∗ the p × p matrix of regression coe�cients, two vectors c∗,φ∗ ∈ Rp and where

ε•,j is drawn from Nn(0, In) and is independent of X•,jc . According to Theorem A.1.1 on

normal correlations, the regression coe�cients B∗jc,j ∈ Rp−1 and the standard deviation

φ∗j ∈ R of residuals can be expressed in terms of the elements of the precision matrix Ω∗
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as follows:

B∗ij = ω∗ij/ω
∗
jj , φ∗j = (ω∗jj)

−1/2, (0.5)

whereas c∗j = µ∗j + (µ∗jc)
>B∗jc,j = (µ∗)>B∗•,j . With this notation, the precision matrix can

be written as Ω∗ = B∗D−2
φ∗ .

0.3.2.2 `1-penalized linear regression

The method proposed by Yuan [2010] shares common framework with the method devel-

oped by Meinshausen and Bühlmann [2006] which is aimed to identify the nonzero entries

of the precision matrix. Whereas variable selection relies on the Lasso in the approach of

Meinshausen and Bühlmann [2006], the estimation of the precision matrix is based on the

Dantzig selector [Candes and Tao, 2007] in the work of [Yuan, 2010]. His method consists

in solving p linear problems of the form,

minimize ‖β‖1 subject to ‖X>•,jc(X•,j −X•,jcβ)‖∞ ≤ λ ; β ∈ Rp−1, (0.6)

to estimate B∗jc,j , the columns of the matrix B∗, excluding the diagonal entries, all equal to

1. The diagonal elements of Ω∗ are then estimated by the variances of regression residuals,

using relations (0.5). Last, the resulting estimate is symmetrized by taking the closest

symmetric matrix in `1-matrix norm. Fast convergence rates have been established for

this procedure in `1-matrix norm and operator norm. These rates rely on assuming that

Ω∗ is an s-sparse positive de�nite matrix with bounded eigenvalues and that ‖Ω∗‖∞,1 is

bounded. We note that these assumptions are of the same nature as those used to prove

convergence rates for the Clime estimator (detailed below) and refer to a uniformity class

of matrices initially de�ned in [Bickel and Levina, 2008] to estimate the covariance matrix

in high dimension. However, despite the fact that most results in regression [Candes and

Tao, 2007; Bickel et al., 2009] advocate for choosing the tuning parameter proportional

to the noise level, this procedure does not follow this recommendation and considers the

tuning parameter as dependent on the diagonal entries.

Sun and Zhang [2013] suggest to use the scaled Lasso [Sun and Zhang, 2012] (also known

as square-root Lasso [Belloni et al., 2011]) instead of the Lasso to �rst estimate the o�-

diagonal elements of the matrix B∗ of the coe�cients of regression. This method has the

advantage over the precedent of taking into account the fact that conditional variances are

potentially heterogeneous. The square-root Lasso is de�ned as the solution to

minimize ‖X•,j −X•,jcβ‖2 + λ‖β‖1 ; β ∈ Rp−1, (0.7)

where λ > 0. In this setting, β̂ estimates −B∗jc,j . By replacing the sum of squared residuals

by its square root, the problem becomes scale independent and the tuning parameter λ can
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be chosen independently of the diagonal entries of Ω∗. As in [Yuan, 2010], the variances of

regression residuals are used to estimate the diagonal entries of the precision matrix and the

procedure ends with a symmetrization step. Sun and Zhang [2013] studied the theoretical

properties of this estimate and also examined the properties of the OLS estimator obtained

after variable selection by the scaled Lasso. Similar results are detailed in Section 0.6.1.

Following the ideas of Sun and Zhang [2013], Ren et al. [2015] propose an estimator of

the individual entries of the precision matrix and study its asymptotic behavior. They

show in particular that considering independent Gaussian observations, the elements ω̂ij
are asymptotically normal. Their method is analogous to the scaled Lasso with the sole

exception that they consider a multivariate multiple linear regression model, composed of

two response variables corresponding to a particular entry of the precision matrix and of

p− 2 explanatory variables that are related to the other dimensions. Instead of taking an

interest in the slope of this model, they rather look into the noise level that only depends

on ω∗ii, ω
∗
jj and ω∗ij when i, j corresponds to the two response variables. They establish

the minimax risk of estimating the individual entries over a set of sparse enough matrices

and show that their estimator achieves an optimal convergence rate under the sparsity

condition s = O(n/ log p). Chen et al. [2015b] enlarge upon this approach on inference for

low dimensional parameters. In the same spirit, Jankova et al. [2015] establish asymptotic

properties in the sub-Gaussian setting for the graphical Lasso estimator.

As another alternative, the constrained `1-minimization for inverse matrix estimation

(Clime) method [Cai et al., 2011], which is the matrix version of the Dantzig selector

[Candes and Tao, 2007], solves the problem

minimize ‖Ω‖1 subject to ‖SnΩ− Ip‖∞ ≤ λ ; Ω ∈ Rp×p, (0.8)

where λ > 0 is a tuning parameter. For boosting running times, the semi-de�nite posi-

tiveness and symmetry constraints are relaxed in a way the solution can be obtained by

solving p independent linear problems. The �nal estimator Ω̂ is obtained by symmetrizing

the solution Ω̃ of

Ω̃•,j =
{

arg min
ω∈Rp

‖ω‖1 subject to ‖Snω − (Ip)•,j‖∞ ≤ λ
}
. (0.9)

Despite not being explicitly based on linear regression, this method is not very di�erent

in conception from the procedure of Yuan [2010] (see Appendix A). Soon afterward, the

AClime (Adaptive Clime) method [Cai et al., 2012] has been proposed to address the same

problem that have motivated the use of the square-root Lasso in place of the Lasso in

[Sun and Zhang, 2013]. The penalization parameter of the constrained `1-minimization

for inverse matrix estimation (Clime) procedure is indeed not adapted when the diagonal

entries are heterogeneous. The new approach proceeds in two steps. Each of the diagonal
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entries is �rst estimated using an adaptive version of the Dantzig selector. Then, the

estimation of the o�-diagonal elements relies on a modi�ed version of the Clime in which

the previously estimated diagonal entries are injected. In each step, the threshold used in

the Dantzig selector depends on the entry being computed. We highlight that in spite of the

diagonal elements are �rst estimated to take into consideration the possible heterogeneity

of diagonal entries, it is not done in connection with the coe�cients of regression as in

[Yuan, 2010] or [Sun and Zhang, 2013]. Cai et al. [2012] �rst establish minimax lower

bounds for the estimation of the precision matrix using a technique developed in [Cai and

Zhou, 2012]. They then show that the convergence rate of their estimator is optimal in the

sense that it could not be improved by any other estimator of the precision matrix that

belongs to the same uniformity class of matrices that is considered in [Yuan, 2010] and

[Cai et al., 2011].

As for algorithmic aspects, all the approaches based on linear regression a�ord the ad-

vantage of being related to an optimization problem which can be solved considering p

independent smaller problems. These topics are discussed in next Section 0.4. Let us

simply make one comment about the similarities between the graphical Lasso of Fried-

man et al. [2008] and the scaled Lasso of Sun and Zhang [2013] that rely both on `1-

penalization. These methods di�er essentially by two points : the cost function has a

squared loss term in [Friedman et al., 2008] whereas not in [Sun and Zhang, 2013], more-

over this loss term is modi�ed at each iteration in the algorithm of Friedman et al. [2008],

not in [Sun and Zhang, 2013]. More precisely, Sun and Zhang [2013] consider the loss term

‖X•,j −X•,jcβ‖2 whereas Friedman et al. [2008] consider ‖S−1/2
jc,jc Sjc,j − S

1/2
jc,jcβ‖

2

2
, where

S estimates Σ∗ and is updated during the estimation procedure.

0.4 Advances in sparse linear regression

Regularization procedures have initially been designed for variable selection to prevent

over�tting, thus to improve the generalization/prediction performance of the model and

its interpretability. For this purpose, they are an alternative to classic procedures such as

stepwise regression (forward/backward selection) that sequentially removes/adds variables

from/to the model, or widespread criteria such as Mallows's Cp [Mallows, 1973], Akaike in-

formation criterion (AIC) [Akaike, 1974] or Bayesian information criterion (BIC) [Schwarz,

1978]. In this section, we present some prominent methods for regularized linear regres-

sion upon which our work relies. In particular, we provide guarantees for the estimation

consistency of the square-root Lasso.
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0.4.1 Sparse least squares regression

In this section, we consider the linear regression model y = Xβ + ε, where y ∈ Rn is

the response variable, X the n × p design matrix, β ∈ Rp the vector of the coe�cients of

regression and ε ∈ Rn the vector of error terms. We assume that ε ∼ Nn(0, φ2In), but

other distributions of errors can be considered. A usual way to estimate the coe�cients

of a linear regression model is to solve the least squares regression problem. When the

dimension p is smaller than the sample size n, if X is full rank, the OLS estimator is

unique and given by β̂ = (X>X)−1X>y. The OLS estimator is known to be unbiased and

to have the lowest variance among all linear unbiased estimators (BLUE) according to the

Gauss-Markov Theorem. However, when X is not full rank, which is always the case when

n < p, the solution to the least squares regression problem is not unique. In this case, when

the rank is not too low, a common alternative is to use the Moore-Penrose pseudo-inverse.

The OLS estimate is then β̂ = (X>X)†X>y. In high dimension, the rank of X is bounded

by the sample size and the least squares regression problem is very ill-posed. Among all

approaches developed to gain in interpretability and in prediction the reformulation of the

least squares problem by adding a regularization term is very appealing. In particular,

assuming that not all the explanatory variables are needed to �t the linear model leads

to consider that only a subset of the coe�cients of regression are nonzero and have to be

estimated. The most natural penalization that produces a sparse β estimate uses `0-norm.

Indeed, ‖β‖0 corresponds to the number of nonzero elements of β. Foster and George

[1994] show that Mallows's Cp, AIC and BIC are special cases of a selection procedure

that minimizes least squares with `0-norm regularization. These criteria can indeed be

written on the form

β̂ ∈ arg min
β∈Rp

{1

2
‖y −Xβ‖22 + λφ2‖β‖0

}
,

with speci�c values of the parameter λ > 0 and known φ2. Foster and George [1994] also

extended that procedure to consider the case when φ2 is unknown. Nevertheless, penalizing

by the `0-norm of β leads to a non-convex optimization problem. Besides, we recall that

regularizing with `q-norms leads to sparse solutions if q ≤ 1, but only when q ≥ 1 the

objective function is convex. Choosing q = 1 is thus the only con�guration that likely

results in a sparse estimate while solving a convex optimization problem. The Lasso of

Tibshirani [1996] is de�ned as

β̂Lasso ∈ arg min
β∈Rp

{1

2
‖y −Xβ‖22 + λ‖β‖1

}
, (Lasso)

where λ > 0 is a tunning parameter that controls sparsity.

Figure 0.2 illustrates the addition to OLS of `1 or `2 penalization on the vector of coe�-

cients. The latter refers to the ridge regression [Hoerl and Kennard, 1970] � also known as
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Tikhonov regularization method � that corresponds to

β̂Ridge ∈ arg min
β∈Rp

{1

2
‖y −Xβ‖22 + λ‖β‖22

}
. (Ridge)

In this formulation, the penalization parameter λ > 0 encourages the coe�cients of regres-

sion to be shrunk towards zero as in the Lasso. However, while `1 penalization produces

an estimate where some coe�cients are actually zero, the solution to the least squares

problem with `2 penalization is not sparse. Note that Eq. (Ridge) has an explicit solution

β̂Ridge = (X>X + λIp)
−1X>y. This estimator is biased but has the advantage over the

OLS estimator of having a smaller variance. It hence may have a lower mean squared error

(MSE) than the OLS estimator.

●

β̂

●
β̂L

● β̂R

(a)

●
β̂L

●

β̂R

(b)

Figure 0.2: E�ects of `1 and `2 regularizations on OLS. The plots are drawn for p = 2,
where n ≥ p (on the left) and n = 1 < p (on the right). Each ellipse/straight
line corresponds to a value of the residual sum of squares (RSS). The OLS
estimate is denoted by β̂. The Lasso estimate β̂L is at the intersection of
the solid ellipse/straight line and the solid square representing the `1-ball. The
ridge regression estimate β̂R is at the intersection of the dashed ellipse/straight
line and the dashed circle representing the `2-ball.

Note however that while the `0-penalty is completely scale free, the `1-penalty is strongly

scale dependent. Put di�erently, the `0-norm of two candidate estimates of the coe�cients

of regression can be equal, while their `1-norms are signi�cantly di�erent. The ability to

estimate properly the scale of the coe�cients of regression using the Lasso is determined

by the choice of the tuning parameter λ.

As the estimator of the ridge regression, the Lasso is biased. In practice, this shrinkage

bias is often reduced by using the Lasso for variable selection, and then computing the

OLS estimate on selected variables only.

The theoretical properties of the Lasso procedure for estimation have been analyzed in
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depth in [Bickel et al., 2009]. When the covariance matrix satis�es appropriate regularity

conditions, the Lasso solution converges towards β∗ at the rate s
√

log(p)/n in `1-vector

norm and at the rate
√
s log(p)/n in `2-vector norm. It is worth to recall that the Lasso

and the Dantzig selector (0.6) [Candes and Tao, 2007] are closely linked, not only for linear

or nonparametric regression models [Bickel et al., 2009], but also for density models [Bunea

et al., 2007a; Bertin et al., 2011].

0.4.2 Square-root Lasso

Ignoring that conditional variances Var(Xk,j |Xk,i, i 6= j) = 1/ω∗jj are potentially hetero-

geneous may lead to scale errors in estimation and then results in a complete failure of

the model selection. That is the reason why we choose to use the square-root Lasso that

does not depend on the variance of the errors to estimate the entries of the matrix of the

coe�cients of regression.

0.4.2.1 Formulation

We consider the square-root Lasso estimator, introduced by Belloni et al. [2011], which is

indeed the same estimator as the scaled Lasso developed by Sun and Zhang [2012]. The

two estimators are de�ned as follows:

β̂
√

Lasso ∈ arg min
β∈Rp

{
‖y −Xβ‖2 + λ‖β‖1

}
, (square-root Lasso)

{β̂scL, φ̂scL} ∈ arg min
β∈Rp

φ∈]0,+∞[

{ 1

2φ
√
n
‖y −Xβ‖22 +

√
n

2
φ+ λ‖β‖1

}
. (scaled Lasso)

The square-root Lasso is derived from Lasso by replacing the sum of squared residuals by

its square root in the cost function. The problem thus becomes scale independent and the

tuning parameter λ > 0 can be chosen independently of the noise variance of φ∗2.

Proposition 0.4.1. The vector β̂scL is a solution of the optimization problem (square-root

Lasso) and, conversely, the pair (β̂
√

Lasso, ‖y −Xβ̂
√

Lasso‖2/
√
n) is a solution of (scaled

Lasso).

Using this result, we denote indistinctly hereafter both estimators by β̂. We note that the

slope and the variance of the error are interconnected . The equivalence of the scaled Lasso

and the square-root Lasso is obtained when the variance of the error is estimated by the

residual variance, that is

φ̂ =
1√
n
‖y −Xβ̂‖2.
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0.4.2.2 Risk bounds on estimation error of the coe�cients of regression

As the square-root Lasso has been designed to estimate the coe�cients of regression in

high dimension, assuming that most of these coe�cients are indeed zero, it is important to

check that this estimator actually converges towards β∗. The risk bounds of the estimator

are obtained assuming mainly that the sample size n is large enough and that the matrix

X has some regularity properties. In this paragraph, we mainly take up the results of

Belloni et al. [2011], adapting them to rely on the more general sensibilities assumptions

introduced in [Gautier and Tsybakov, 2011] and [Gautier and Tsybakov, 2013], rather than

on the restricted eigenvalues assumptions essentially developed in [Bickel et al., 2009; van

de Geer, 2007]. It is worth pointing out that the risk bounds we present are of the same

nature as those shown for the Lasso by Bickel et al. [2009] in their seminal paper and

obtained under similar conditions.

As the risk bounds of the error of estimation are connected with the bounds of (β̂ −
β∗)>Σ̂(β̂ − β∗), they are also naturally related to the eigenvalues of Σ̂. The sample

covariance matrix is nonnegative de�nite, but is always singular when p > n. In that case,

its smallest eigenvalue is zero and of multiplicity at least p−n. However, if β̂−β∗ belongs
to a restricted set (a cone of the type of that de�ned in Eq. (0.12)), which is true when the

regularization parameter λ is suitably lower bounded, then the ability to bound the error

of estimation depends on much weaker regularity properties than the nonzero-ness of the

smallest eigenvalue. Checking these properties is nontrivial, but they are ful�lled with high

probability in many settings. The key argument is that under proper conditions � if the

true covariance matrix is well estimated by the sample covariance matrix � the regularity

properties satis�ed by the population covariance matrix are also satis�ed by the sample

covariance matrix. In the (sub-)Gaussian setting, one easily see that such conditions are

satis�ed when n is large enough.

The following propositions provide �nite-sample bounds on the rate of convergence�for

`1 estimation loss and for `2 prediction loss�of the square-root Lasso estimator when the

observations are drawn from a Gaussian distribution.

Proposition 0.4.2. Set s = |supp(β∗)|, 1 ≤ s ≤ p. Let X be a n × p random matrix

with i.i.d. centered Gaussian rows whose covariance matrix has unit diagonal entries and

satis�es the `1-sensitivity property K∗(s, 2, 1) > 0. Let us consider α ∈ (0, 1), δ ∈ (0, 1)

and choose

λ = 9
(

log
6p

δ

)1/2
.

Let d be a positive constant. We assume that the sample size n satis�es

n ≥
(

12 log(3/δ)
)
∨
(

4λ2/K∗(s, 2, 1)
)
∨
(
ds2 log(1/α)

)
.
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Set A = 32/K∗(s, 2, 1) and B = 14
(
K∗(s, 2, 1)

)−1/2
.

Then, the solution β̂ of problem (square-root Lasso) satis�es

‖β̂ − β∗‖q ≤ ‖β̂ − β
∗‖1 ≤ A

λφ∗√
n
, for q ≥ 1, and ‖X(β̂ − β∗)‖2 ≤ Bλφ

∗, (0.10)

with probability at least 1− δ − α.

We state and prove these results only in the case of Gaussian design, but they can be

extended to a more general class of true covariance matrices, as they are related to The-

orem 0.5.2. The bounds presented in Proposition 0.4.2 are not sharp, in the sense that

the constants are not optimized. Please note that the sensitivity condition (see Section 0.5

below) bears on Σ∗, not on the sample covariance matrix. The sparsity level of β∗ does not

appear explicitly in the bounds as we consider the `1-sensitivity property rather than the

restricted eigenvalue condition. However, in view of Proposition 0.5.1, these bounds can be

formulated using the restricted eigenvalue or the compatibility conditions to obtain that β̂

converges in `1-vector norm at most at a rate of order s
√

log(p)/n, hence of the same order

as that of the Lasso [Bickel et al., 2009]. As noticed in [Belloni et al., 2011], as opposed to

the Lasso, this bound is obtained without needing the variance of the error to be known,

but under the additional assumptions n ≥ λ2/
(
(K∗(s, 2, 1) − ι)ρ

)
and n ≥ ds2 log 1/α on

the sample size. We highlight that the bound established in Proposition 0.4.2 for the error

of estimation measured in `2-norm can be improved under a slightly stronger regularity

property. As that of Proposition 0.4.2, the claim of Proposition 0.4.3 can be generalized to

other settings. Indeed, Theorem A.1.5 used to prove this proposition has been extended

to non-Gaussian design (see for instance [Rudelson and Zhou, 2013]).

Proposition 0.4.3. Set s = |supp(β∗)|, 1 ≤ s ≤ p. Let X be a n × p random matrix

with i.i.d. centered Gaussian rows whose covariance matrix has unit diagonal entries and

satis�es the restricted eigenvalue property K̄∗RE(s, 2) > 0. Let us consider α ∈ (0, 1),

δ ∈ (0, 1) and choose

λ = 9
(

log
6p

δ

)1/2
.

Let us consider the universal constants a, b, d > 0. We assume that the sample size n

satis�es

n ≥
(

12 log(3/δ)
)
∨
(
asλ2/K̄∗RE(s, 2)

)
∨
(

1/d log(b/α)
)
.

Set C = 128
(

1 + 2
√
s/n
)
/K̄∗RE(s, 2).

Then, the solution β̂ of problem (square-root Lasso) satis�es

‖β̂ − β∗‖2 ≤ C
√
s
λφ∗√
n
, (0.11)

with probability at least 1− δ − α.
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0.4.3 Group Lasso

We complete this review of procedures that involve regularizing the vector β of coe�cients

of regression, by mentioning the group Lasso, considered in [Yuan and Lin, 2006; Meier

et al., 2008]. Instead of considering a coe�cient-by-coe�cient `1-penalty, this method

consists in applying such a penalization on groups of coe�cients. This amounts to suppose

that the vector β is sparse with a known underlying group structure. Whereas the Lasso

procedure tends to propose an estimate for which the entries related to certain explanatory

variables are zero, the group Lasso estimates β such that either all the coe�cients of a

group are zero, or all of them are nonzero.

We consider the same linear model as above and suppose that the vector of regression

coe�cients is expressed as the concatenation of G groups β = (β>|1, . . . ,β
>
|G)>. The group

Lasso estimator is then de�ned by

β̂grpLasso ∈ arg min
β∈Rp

{1

2
‖y −Xβ‖22 + λ

G∑
g=1

wg‖β|g‖2
}
, (group Lasso)

where wg > 0, g ∈ [G] are the weights associated to the coe�cients of each group. The

replacement of the `1-norm by the mixed `2/`1-norm promotes group sparsity. Without

going into too much detail, note that asymptotic consistency of the group Lasso has been

studied by Bach [2008] while Lounici et al. [2011] proved nonasymptotic oracle inequalities.

Further developments of this approach have been proposed. Among others, we mention

the estimators introduced by Friedman et al. [2010a], Chiquet et al. [2012] and Obozinski

et al. [2011]. The �rst method (called sparse group Lasso, see also [Sprechmann et al.,

2011]) aims to enforce sparsity within groups, by adding an `1-regularization term to the

group Lasso. In the second (termed cooperative Lasso), the `2-norm that is part of the

mixed `2/`1-norm is replaced by the sum of the `2-norm of the positive and negative parts

of β to ensure sign-coherence. Last, Obozinski et al. [2011] developed the multivariate

group Lasso that extends the group Lasso to the multivariate regression model.

The approach we developed to take into account the potential presence of outliers in the

Gaussian graphical model is based on an assumption of structured sparsity of the same

nature, while pursuing a substantially di�erent purpose. Indeed, when estimating the

precision matrix in presence of outliers, the groups on which relates the sparsity assumption

do not form a partition of the set of variables, but are composed of all values taken by

variables for a single observation.

0.4.4 Optimization algorithms for penalized regression

In this section, we review brie�y the algorithms that can be implemented to solve a penal-

ized regression problem, in particular the Lasso and the square-root Lasso. We begin with
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two important remarks. First, all the regularized problems that we consider in this section

(Lasso, ridge, square-root Lasso and group Lasso) have convex objective functions. Each of

these primal problems can therefore be associated with a dual problem, hence allowing to

form a stopping criterion using duality gap [d'Aspremont et al., 2008]. Second, as all these

problems depend on a regularization parameter λ, the computed solution also depends on

the chosen value for this parameter.

Active-set algorithms: taking into consideration that only a subset of the parameters

are nonzero, these algorithms produce a regularization path for all the values of the

tuning parameter, by updating this subset. For instance, the least angle regression

(LARS) has been proposed in [Efron et al., 2004] to solve the Lasso.

Coordinate descent algorithms: these algorithms update successively each coordinate

of the solution [Friedman et al., 2007, 2010b]. We note that this approach has been

e�ciently randomized [Shalev-Shwartz and Tewari, 2011; Nesterov, 2012; Richtárik

and Takávecc, 2014].

First-order methods: among these methods, the subgradient descent algorithm is a very

general-purpose optimization algorithm that can be used, but converges slowly. More

e�cient proximal gradient methods have been proposed, for instance Nesterov's ac-

celerated gradient descent [Nesterov, 2007] or iterative shrinkage-thresholding algo-

rithms like FISTA [Beck and Teboulle, 2009]. In addition, noticing that the Lasso

and the square-root Lasso can be cast as a second-order cone program (SOCP), they

can for instance be solved using the �rst-order operator splitting method developed

by O'Donoghue et al. [2013] that scales well with large problems (implemented in

the Splitting Conic Solver).

Interior-point methods: despite not being the fastest to solve such optimization prob-

lems, these methods are worth to be considered as being implemented in most of the

standard solvers. This approach has been specialized to cope better with regularized

regression problems, for instance by Kim et al. [2007] for the Lasso.

We refer the reader to [Bach et al., 2012] for a more exhaustive review of optimization

algorithms for regularized problems. Last but not least, we cite recent developments on

safe rules to detect the coe�cients that are surely zero and to exclude the corresponding

variables before optimization [El Ghaoui et al., 2012; Fercoq et al., 2015]. This techniques,

well adapted to the coordinate descent algorithm among others, reduce the required com-

putational time.
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0.5 Regularity properties of the design matrices

0.5.1 Review of regularity properties

In the �eld of high dimensional estimation, and in particular in sparse regression, control-

ling the error of the estimate relies on some regularity conditions that have to be satis�ed

by the design matrix X. The challenge is of course to provide analytical bounds based on

the weakest condition, that is, the most likely to be satis�ed.

All the following conditions are de�ned for an observed design matrix X. Later, we will

assume that the regularity property relates to a random matrix, or by a slight abuse of

terminology, to the corresponding Gram matrix X>X/n which is the sample covariance

matrix when the observations are centered.

For a subset J of [p] and c > 0, we introduce the cone

CJ(c) , {δ ∈ Rp : ‖δJc‖1 ≤ c‖δJ‖1}. (0.12)

As in [Gautier and Tsybakov, 2013], for s ∈ [p] and c > 0, for q ∈ N∗, the `q-sensitivity is

de�ned by

K(s, c, q) , min
J⊂[p],
|J |=s

min
δ∈CJ (c),
δ 6=0

1

n

‖X>Xδ‖∞
‖δJ‖q

. (0.13)

The assumption K(s, c, q) > 0 is of the same nature as, but more general than the restricted

eigenvalue property. Recall that the restricted eigenvalue de�ned as

KRE(s, c) , min
J⊂[p],
|J |=s

min
δ∈CJ (c),
δ 6=0

1

n

‖Xδ‖22
‖δJ‖22

, (0.14)

has been introduced by van de Geer [2007]; Bickel et al. [2009] to obtain oracle inequalities

for the Lasso and the Dantzig selector. The restricted eigenvalue condition KRE(s, c) > 0

can be understood as the requirement that 1
nX>X has to be �positive de�nite� on the

restricted set of vectors δ satisfying ‖δJc‖1 ≤ c‖δJ‖1. For the sake of completeness, we

note that similar conditions have also been considered by Zhang and Huang [2008] under

the name of sparse Riesz condition and by Meinshausen and Yu [2009] as sparse eigenvalues

condition. We also recall that the restricted isometry property, �rst introduced in [Candes

and Tao, 2005], has been used in [Candes and Tao, 2007] to prove nonasymptotic oracle

inequalities for the Dantzig selector. In addition, we de�ne

K̄RE(s, c) , min
J⊂[p],
|J |=s

min
δ∈CJ (c),
δ 6=0

1

n

‖Xδ‖22
‖δ‖22

. (0.15)

The related condition K̄RE(s, c) > 0 implies KRE(s, c) > 0. This condition is useful to
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establish a fast convergence rate under Euclidean norm for the Lasso or the square-root

Lasso.

We also de�ne the compatibility constant (used for example in Belloni et al. [2011]) as

KC(s, c) , min
J⊂[p],
|J |=s

min
δ∈CJ (c),
δ 6=0

1

n

|J |‖Xδ‖22
‖δJ‖21

. (0.16)

Since ‖uJ‖21 ≤ |J |‖uJ‖
2
2 for any u ∈ Rp, the condition KC(s, c) > 0 is a relaxed version of

restricted eigenvalue properties.

Note that all these properties are indeed de�ned with regard to the matrix X which is

generally clearly identi�able from the context and thus does not appear in notation. The

following proposition clari�es the link between the four precedent assumptions [Gautier

and Tsybakov, 2013, Lemma 4.1].

Proposition 0.5.1. Let us consider a deterministic matrix X. For any s ∈ [p] and c > 0,

it holds that

K(s, c, 1) ≥ s−1(1 + c)−1KC(s, c) ≥ s−1(1 + c)−1KRE(s, c). (0.17)

0.5.2 Checking the sensitivity property

This section is devoted to the veri�cation of regularity conditions that have to be satis�ed

by the sample covariance matrix to ensure the fast convergence of `l-regularized procedures,

such as Lasso, Dantzig selector or square-root Lasso. Signi�cant e�ort has gone into

understanding under which conditions the restricted eigenvalue property holds for the

sample covariance matrix. We refer to [Rudelson and Zhou, 2013] for results for a general

class of design matrices X having independent sub-Gaussian rows, but not necessarily i.i.d.,

and to [van de Geer and Bühlmann, 2009] and [Raskutti et al., 2010] for earlier results.

We are interested in the conditions under which the fact that the population covariance

matrix Σ∗ has a sensitivity property involves that the sample covariance matrix Σ̂ satis�es

a sensitivity property as well.

We de�ne the `q-sensitivity on the true covariance matrix, for q ∈ N∗ by

K∗(s, c, q) , min
J⊂[p],
|J |=s

min
δ∈CJ (c),
‖δJ‖q=1

‖Σ∗δ‖∞. (0.18)

As its counterpart for the sample covariance matrix, the `q-sensitivity property K∗(s, c, q) > 0

is implied by the restricted eigenvalue property K̄∗RE(s, c) > 0, where

K̄∗RE(s, c) , min
J⊂[p],
|J |=s

min
δ∈CJ (c),
‖δ‖2=1

‖Σ∗1/2δ‖
2

2. (0.19)
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We point up that if the true covariance matrix is positive de�nite, then these regularity

conditions hold.

We simply state here su�cient conditions for the `1-sensitivity property to hold for a

random matrix X having certain characteristics (for instance with i.i.d. sub-Gaussian

rows). To the best of our knowledge, the following theorem, due to Dobriban and Fan

[2016, Theorem 2], gives the most general conditions that ensure that the `q-sensitivity

property holds with high probability for a random matrix X.

Theorem 0.5.2 (Dobriban and Fan [2016]). Let X be a n×p random matrix having zero-

mean rows with a covariance matrix Σ∗ satisfying the `q-sensitivity property K
∗(s, c, q) > 0.

Let K(s, c, q) be the `q-sensitivity of the empirical covariance matrix Σ̂. For any a > 0 and

ι ∈
(
0,K∗(s, c, q)

)
, there exists a constant d (that depends on ι and a but is independent of

n, p and s) such that

i) if X has i.i.d. sub-Gaussian rows and n ≥ ds2 log(2p2), then K(s, c, q) > K∗(s, c, q)−
ι > 0 holds with probability at least 1− (2p2)−a,

ii) if there exists a real number b such that ‖X‖∞,∞ ≤ b and n ≥ ds2 log(2p2), then

K(s, c, q) > K∗(s, c, q)− ι > 0 holds with probability at least 1− (2p2)−a,

iii) if there exists a real number b and a positive integer r such that E(|Xi,j |4r) < b, for

any i ∈ [n], j ∈ [p], and if n1−a/r ≥ ds2p2/r, then K(s, c, q) > K∗(s, c, q)− ι > 0 holds

with probability at least 1− n−a.

Note that the `q-sensitivity property we use is slightly di�erent from the one introduced

in [Gautier and Tsybakov, 2013] in which the Gram matrix X>X/n is normalized to

have unit diagonal entries. Our `q-sensitivity property di�ers also a bit from the one

de�ned in [Dobriban and Fan, 2016], mainly because the sparsity level s does not appear

in our formulation. These di�erences are not decisive in view of the su�cient conditions

established in Proposition 0.4.2. In addition, note that this theorem was initially proven

in the more general setting of instrumental variables regression.

We refer the reader to the paper [Dobriban and Fan, 2016] for a complete proof of this

theorem. In the sub-Gaussian setting, this proof is based on a Bernstein-type inequality

due to Vershynin [2012b, Corollary 5.17] which is used to show that ‖Σ∗ − Σ̂‖∞,∞ is

bounded by O
(
(log(2p2)/n)1/2

)
with high probability. This result is of the same nature

as a known bound for the estimation error of Σ̂ measured using the spectral matrix norm

[Vershynin, 2012a, Proposition 2.1]. In order to highlight the importance of the control of

the error of estimation of the covariance matrix, we give an argument in the case of q = 1.

Lemma 0.5.3. If K∗(s, c, 1) is the `1-sensitivity of Σ∗ and K(s, c, 1) is that of Σ̂, then

K(s, c, 1) ≥ K∗(s, c, 1)− (c+ 1)‖Σ∗ − Σ̂‖∞,∞.
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Last, but not least, Dobriban and Fan [2016] have pointed out that checking that the sensi-

tivity property holds is NP-hard, as is checking the restricted isometry property [Tillmann

and Pfetsch, 2014], despite the former is much less severe.

0.6 Contributions on high dimensional precision matrix esti-

mation

0.6.1 Background

In the Gaussian setting, by the theorem on normal correlations, a precision matrix repre-

sentation arises from a linear regression model. Reciprocally, a hidden regression model

emerges from a given precision matrix.

Let us consider the n × p random matrix X whose rows are independently drawn from a

Gaussian distribution with mean µ∗ and covariance Σ∗. Assuming that this distribution is

nondegenerate, the diagonal entries of the inverse Ω∗ of the covariance matrix are bounded

away from zero. We denote diag({ω∗jj}j∈[p]) by D∗ and by B∗ the matrix
(
ω∗ij/ω

∗
jj

)
i∈[p],j∈[p]

.

It thus holds that Ω∗ = B∗D∗.

As we assume that Xi,• ∼ Np(µ∗,Σ∗), it implies that
(
Xi,• − (µ∗)>

)
Ω∗•,j ∼ N (0, ω∗jj).

Setting φ∗j = (ω∗jj)
−1/2, it follows that

(
Xi,• − (µ∗)>

)
B∗•,j ∼ N

(
0, (φ∗j )

2
)
. Then, as the

observations are independent, it entails that there exists ε•,j ∼ Nn(0, In) such that

(
X− 1n(µ∗)>

)
B∗•,j = φ∗jε•,j .

If we denote (B∗)>µ∗ by c∗, as by de�nition B∗ has unit diagonal elements, we end with

the linear regression model

X•,j = 1nc
∗
j −X•,jcB

∗
jc,j + φ∗jε•,j .

As in [Sun and Zhang, 2013], we estimate the precision matrix by �rst solving the opti-

mization problem

B̂ = arg min
B∈Rp×p
Bjj=1

min
c∈Rp

{
‖(XB− 1nc

>)>‖2,1 + λ‖B‖1,1
}
, (0.20)

for a given tuning parameter λ ≥ 0, and then estimating the variances of the errors by the

residual variances

ω̂jj =
( 1

n
‖(In − n−11n1

>
n )XB̂•,j‖

2

2

)−1
; Ω̂ = B̂ · diag({ω̂jj}j∈[p]). (0.21)

We remark that Problem (0.20) is equivalent to solving p independent problems of square-
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root Lasso. To simplify the formulation of the estimator, we assume that µ∗ = 0 (thus

c∗ = 0). The residuals are thus ε̂•,j = XB̂•,j . The proposed estimator of the precision

matrix is then given by

B̂jc,j = arg min
β∈Rp−1

{
‖X•,j + X•,jcβ‖2 + λ‖β‖1

}
; B̂j,j = 1, (0.22)

ω̂jj = n‖ε̂•,j‖−2
2 ; Ω̂ = B̂ · diag({ω̂jj}j∈[p]).

This estimator is accurate, it is not only asymptotically consistent, but has also an optimal

convergence rate for a certain class of true precision matrices [Cai et al., 2012, Theorem

5]. Next propositions provide �nite sample risk bounds on precision matrix estimation.

We show for instance that the estimator given by (0.22) reaches a rate of convergence

of order s
√

log(p)/n in `1-matrix norm with high probability. In Frobenius norm, the

convergence rate is of order
√
sp log(p)/n, hence comparable with the rate established

in [Rothman et al., 2008] for the graphical Lasso estimator, but obtained under slightly

di�erent assumptions.

Proposition 0.6.1. We assume that the maximal number of nonzero entries in a column

of Ω∗ is s ∈ [p]. Let X be a n × p random matrix with i.i.d. centered Gaussian rows

whose covariance matrix has unit diagonal entries and satis�es the `1-sensitivity property

K∗(s, 2, 1) > 0. Let us consider α ∈ (0, 1), δ ∈ (0, 1) and choose

λ = 6
(

log
8p2

δ

)1/2
.

Let d be a positive constant. We assume that the sample size n satis�es

n ≥
(

16 log(8p/δ)
)
∨
(

4λ2/K∗(s, 2, 1)
)
∨
(
ds2 log(1/α)

)
.

We set A = 128/K∗(s, 2, 1).

Then, the solution Ω̂ of problem (0.22) satis�es the following inequalities

‖Ω̂−Ω∗‖∞,1 ≤
1√
n
λ
(

max
j
ω∗jj
)1/2(

A+
2

3
s
(

max
j
ω∗jj
)1/2)

, (0.23)

‖Ω̂−Ω∗‖1,1 ≤
p√
n
λ
(

max
j
ω∗jj
)(
A
(

min
j
ω∗jj
)−1/2

+
2

3
s
)
, (0.24)

with probability at least 1− δ − α.

In the next proposition, we establish a convergence rate for the estimator of the precision

matrix in Frobenius norm under slightly stronger assumptions.

Proposition 0.6.2. We assume that the maximal number of nonzero entries in a column

of Ω∗ is s ∈ [p]. Let X be a n× p random matrix with i.i.d. centered Gaussian rows whose
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covariance matrix has unit diagonal entries and satis�es the restricted eigenvalue property

K̄∗RE(s, 2) > 0. Let us consider α ∈ (0, 1), δ ∈ (0, 1) and choose

λ = 6
(

log
8p2

δ

)1/2
.

For universal constants a, b, d > 0, we assume that the sample size n satis�es

n ≥
(

16 log(8p/δ)
)
∨
(
asλ2/K̄∗RE(s, 2)

)
∨
(

1/d log(b/α)
)
.

We set C = 512
(

1 + 2
√
s/n
)
/K̄∗RE(s, 2).

Then, the solution Ω̂ of problem (0.22) satis�es the following inequality

‖Ω̂−Ω∗‖2,2 ≤
√
p
√
n
λσmax(Ω∗)

(√
sC
(

min
j
ω∗jj
)−1/2

+
2

3

)
, (0.25)

with probability at least 1− δ − α.

0.6.2 Estimation of diagonal elements

Whether in the method of Yuan [2010] or in that of Sun and Zhang [2013], the estimation

of the precision matrix rests on the presumptive relation Ω̂ = B̂ · diag({ω̂jj}j∈[p]). The

diagonal entries, that is the conditional variances which correspond to the inverses of the

variances of errors in the linear model, and the coe�cients of regression are estimated in

two steps. Finally, the previous relation is used to compute the o�-diagonal elements. In

[Yuan, 2010] as in [Sun and Zhang, 2013], the diagonal entries of the precision matrix

are naturally estimated using the variance of the regression residuals starting from the

estimation of the coe�cients of regression. Thereby, the error of estimation made on B∗

has an impact on the estimates of the diagonal entries. However, the appositeness of

residual variance does not seem to have ever been questioned. In Chapter 1, we compare

several di�erent estimators of the diagonal elements on the basis of their quadratic risks in

the oracle case when B∗ is known. The considered estimators are residual variance (RV),

squared average absolute deviation (AD), relaxed maximum likelihood (RML), symmetry-

enforced maximum likelihood (SML) and penalized maximum likelihood (PML). We show

that the usual natural choice of residual variance is appropriate in practice, but that the

maximum likelihood based estimators are better as long as the error of estimation on B∗

remains small. We propose algorithms for estimation and provide an empirical evaluation

of the performance of the various options.
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0.6.3 Robust estimation

The question of the estimation of the precision matrix in presence of outliers has not

been considered until quite recently. We extend the existing work on sparse precision

matrix estimation to a situation where the Gaussian distribution of interest is not directly

observed, but in which the available data is corrupted by additive outliers. We propose to

take the possible presence of outliers into account by adding a convex penalization in the

cost function. We consider both the moderate dimensional case, where the cost function

is composed of a data �delity term plus the regularization term corresponding to outliers,

and the high dimensional case, where we further add a regularization term to promote

sparsity. We establish optimal �nite sample bounds for the error of estimation�measured

using `1/`1, Frobenius and mixed `2/`1 norms�of the matrix representing outliers when

the dimension is of smaller order than the sample size. In this case, we also provide a

convergence rate in Frobenius norm for the estimator of the precision matrix. In the high

dimensional case, we show that for an appropriate choice of the tunning parameter, when

the sample size is large enough, when a matrix compatibility condition is satis�ed by the

data matrix and when the diagonal entries of the precision matrix are lower bounded,

then both estimators of the matrix of the coe�cients of regression and of the matrix

corresponding to outliers converge at a fast rate. Indeed, if we assume that Ω∗ is s-sparse

and that there are at most t outlying observations, then B̂ converges towards B∗ with a rate

of order (sp+ t)
√

log(np)/(n− t) in `1/`1 norm. This rate is optimal � up to logarithmic

factors � if t is small compared to n. It therefore leads to an optimal convergence rate (of

same order) for the estimator of the precision matrix. Note that in absence of outliers,

Proposition 0.6.1 states a convergence rate of order sp
√

log(p)/n. This rate is of the same

order as the former when t = 0. As mentioned above, our results in high dimension rest

on a particular matrix compatibility condition. It remains to assert that this condition is

met with high probability for a wide class of data matrices X.

0.7 Manuscript organization

This manuscript consists of two chapters whose content coincides with the contributions

that we have described in the previous section. In this way, Chapter 1 concerns the

estimation of the diagonal entries and Chapter 2 the estimation in presence of outliers of the

precision matrix. These results have been pre-published on http://arxiv.org/. The proofs

of the claimed results are included in each chapter. Some theoretical, resp. experimental,

results that complete Chapter 1 are given in Appendix A, resp. Appendix B. As a last

point, an overview of the implementation of the estimators that we have introduced and

analyzed is provided in Appendix C. The code has been made publicly available as an R

package [R Core Team, 2016].

http://arxiv.org/


Chapter 1

Estimation of the diagonal elements

of a sparse precision matrix

The main part of this chapter is taken from the article On estimation of the diagonal

elements of a sparse precision matrix [Balmand and Dalalyan, 2016], which has been

published in the Electronic Journal of Statistics (EJS) on May 2016.

RÉSUMÉ. Dans ce chapitre, nous présentons di�érents estimateurs des élé-

ments diagonaux de l'inverse de la matrice de covariance, également appelée

matrice de précision, d'un échantillon de réalisations de vecteurs aléatoires

indépendants et identiquement distribués. Nous nous intéressons principale-

ment au cas de vecteurs de grande dimension, dont la matrice de précision

est creuse. Il est désormais clair que lorsque que la distribution sous-jacente

est gaussienne, chacune des colonnes de la matrice de précision peut être es-

timée indépendamment des autres, par la résolution d'un problème de régres-

sion linéaire sous contraintes de parcimonie. Cette approche conduit à une

stratégie d'estimation de la matrice de précision e�cace sur le plan calcula-

toire. Dans un premier temps, les vecteurs des coe�cients de régression sont

estimés, ils sont ensuite utilisés pour estimer les termes diagonaux de la ma-

trice de précision et dans un dernier temps, les estimateurs des étapes précé-

dentes sont combinés pour obtenir ceux des éléments non diagonaux. Alors

que l'étape consistant à estimer les vecteurs des coe�cients de régression a été

l'objet de nombreux travaux ces dix dernières années, la manière d'en tirer

des estimateurs statistiquement précis des termes diagonaux a suscité moins
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d'intérêt. Ce chapitre a pour objectif de combler ces lacunes en présentant

quatre estimateurs � qui nous semblent les plus naturels � des éléments diago-

naux de la matrice de précision et de les évaluer dans le détail du point de vue

empirique. Les estimateurs que nous considérons sont la variance résiduelle,

l'estimateur du maximum de vraisemblance (EMV) en relâchant les contraintes

de symétrie sur la matrice de précision, l'EMV en imposant les contraintes de

symétrie, ainsi que l'EMV pénalisé. Nous montrons, à la fois théoriquement

et empiriquement, que l'EMV en imposant les contraintes de symétrie a la

plus faible erreur d'estimation, lorsque les vecteurs des coe�cients de régres-

sion mentionnés plus haut sont estimés sans erreur. Néanmoins, dans des

conditions plus réalistes, lorsque les vecteurs des coe�cients de régression sont

estimés grâce à une méthode de calcul e�cace, favorisant l'émergence d'une so-

lution parcimonieuse, les performances des estimateurs considérés deviennent

relativement proches avec toutefois une légère supériorité de l'estimateur de la

variance résiduelle.
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1.1 Introduction

We consider the problem of precision matrix estimation that has been extensively studied in

recent years partly because of its tight relation with the graphical models. More precisely,

assuming that we observe p features on n individuals, an interesting object to display is

the graph of associations between the features, especially when the number of features is

large. The associations may be of di�erent type: linear correlations, partial correlations,

measures of independence and so on. A measure of association between the features, which

is particularly relevant for Gaussian [Lauritzen, 1996] and, more generally, nonparanormal

distributions [Liu et al., 2009; La�erty et al., 2012] is the partial correlation. This leads

to a Gaussian graphical model in which two nodes are connected by an edge if the partial

correlation between the features corresponding to these two nodes is nonzero, which is

equivalent to the nonzeroness of the corresponding entry of the precision matrix [Lauritzen,

1996, Proposition 5.2]. The graph constructed in such a way relies on the population

precision matrix, which is not available in practice. Therefore, an important statistical

problem is to infer this graph from n i.i.d. observations of the p-dimensional feature-

vector. In view of the aforementioned connection with the precision matrix, the estimated

graph may be deduced from the estimated precision matrix by comparing its entries with

a suitably chosen threshold.

Another important problem for which the precision matrix estimation is relevant1 is the

linear [Fisher, 1936] or quadratic discriminant analysis [Anderson, 2003]. Indeed, the de-

1In the case of linear discriminant analysis for binary classi�cation, a simpler approach consisting in
replacing the sparsity of the precision matrix by the sparsity of the product of the latter with the di�erence
of the class means has been proposed and studied by Cai and Liu [2011].
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cision boundary in the binary or multi-class classi�cation problem�under the assumption

that the conditional distributions of the features given the class are Gaussian�is de�ned

in terms of the precision matrix. In order to infer this decision boundary from data, it

is therefore relevant to start with estimating the precision matrix. The simplest way of

estimating the latter is by inverting the sample covariance matrix or, if the inverse does not

exist, by computing the pseudo-inverse of the sample covariance matrix. However, when

the dimension p is such that the number of unknown parameters p(p+ 1) is comparable to

or larger than the sample-size n, the (pseudo-)inversion of the sample covariance matrix

leads to very poor results. To circumvent this shortcoming, additional assumptions on the

precision matrix should be imposed which should preferably be realistic, interpretable and

lead to statistically and computationally e�cient estimation procedures. The sparsity of

the precision matrix o�ers a convenient setting in which these criteria are met.

To present in a more concrete fashion the content of the present work, let X be a n × p
random matrix representing the values of p variables observed on n individuals. Assume

that the rows of the matrix X are independent and Gaussian with mean µ∗ and covariance

matrix Σ∗. The inverse of Σ∗, called the precision matrix and denoted by Ω∗ = (ω∗ij),

is an object of central interest since�as mentioned earlier�it encodes the conditional

dependencies between pairs of variables given the values of all the other variables. Based

on the precision matrix, the graph G ∗ of relationships between the p variables is constructed

as follows: each node of the graph represents a variable and two nodes i and j are connected

by an edge if and only if ω∗ij 6= 0. Estimating this graph from a sample of size n represented

by the rows of X is a challenging statistical problem that has attracted a lot of attention in

the past decade. In a frequently encountered situation of the dimension p comparable to or

even larger than n, a commonly used assumption is the sparsity of the graph G ∗. Namely,

it is assumed that the maximal degree of the nodes of G ∗ is much smaller than p (see, for

instance, [Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007] for early references).

Most approaches of estimating sparse precision matrices that gained popularity in recent

years rely on weighted `1-penalization of the o�-diagonal elements of the precision matrix;

recent contributions on the statistical aspects of this approach can be found in [Yuan,

2010; Cai et al., 2011; Cai et al., 2012; Sun and Zhang, 2013] and the references therein.

The rationale behind this approach is that the weighted `1-penalty can be viewed as a

convexi�ed version of the `0-penalty, the latter being understood as the number of nonzero

elements. The convexity of the penalty in conjunction with the convexity of the data

�delity term leads to estimators that can be e�ciently computed by convex programming

[Banerjee et al., 2008; Friedman et al., 2008].

To further improve the computational complexity, it is possible to split the problem of

estimating p2 entries of the precision matrix into p independent problems of estimating the

p-dimensional columns of it [Meinshausen and Bühlmann, 2006]. To this end, the matrix

Ω∗ is written as B∗D∗, where D∗ is a diagonal matrix while B∗ is a p × p matrix with
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Figure 1.1: The average `2-error (computed from 50 independent trials) of the four esti-
mators considered in this work as a function of the sample size. The plots
concern Model 2 described in Section 1.4.1 and dimension p = 60. One can
observe, in particular, that when B∗ is estimated without error (left panel),
the estimators SML and PML improve on the residual variance and relaxed
maximum likelihood estimators.

all diagonal entries equal to one. Each columns of the matrix B∗ can be estimated by

regressing one column of the data matrix X on all the remaining columns. In the context

of high dimensionality and sparse precision matrix, this can be performed by sparsity

favoring methods [Bühlmann and van de Geer, 2011] such as the Lasso [Tibshirani, 1996],

the Dantzig selector [Candes and Tao, 2007], the square-root Lasso [Belloni et al., 2011],

etc. A crucial observation at this stage is that the sparsity patterns, that is, the locations

of nonzero entries, of the matrices B∗ and Ω∗ coincide. In particular, the degree of the

j-th node in the graph G ∗ is equal to the number of nonzero entries of the j-th column of

B∗, for every j = 1, . . . , p.

Once the columns of B∗ successfully estimated, one needs to estimate the diagonal matrix

D∗, the diagonal entries of which coincide with those of the precision matrix Ω∗. This step

is necessary for recovering the precision matrix (both diagonal and o�-diagonal entries) but

it is also important for constructing the graph2 of conditional dependencies. Of course,

the latter can be estimated by thresholding the entries of the estimator of B∗ without

resorting to an estimator of D∗, but the choice of the threshold is in this case a di�cult

issue deprived of clear statistical interpretation. In contrast with this, if along with an

estimator of B∗, an estimator of D∗ is available, then one may straightforwardly estimate

the partial correlations and threshold them to infer the graph of conditional dependencies.

In this case, the threshold has a more clear statistical meaning since the partial correlations

are in absolute value bounded by one.

2We put an emphasize on this last point since we did not �nd it in the literature.



36 CHAPTER 1: ESTIMATION OF THE DIAGONAL ELEMENTS

It follows from the above discussion that the problem of estimating the matrix D∗ built from

the diagonal entries of the precision matrix is an important ingredient of the estimation

of the precision matrix and the graph of conditional dependencies between the features.

The purpose of the present work is to propose several natural estimators of D∗ and to

study their statistical properties, essentially from an empirical point of view. Combining

standard arguments, we present four estimators, termed residual variance (RV), relaxed

maximum likelihood (RML), symmetry-enforced maximum likelihood (SML) and penal-

ized maximum likelihood (PML). The �rst one, residual variance, is the most commonly

used estimator when the matrix B∗ is estimated column-wise by a sparse linear regression

approach brie�y mentioned in the foregoing discussion. The other three methods consid-

ered in this chapter are based on the principle of likelihood maximization under various

approaches for handling the prior information. In order to give the reader a foretaste of

the content of next sections, we present in Figure 1.1 the accuracy of the four methods

of estimating the diagonal elements of the precision matrix on a synthetic data-set. More

details are given in Section 1.4.1.

1.2 Preliminaries on precision matrix estimation

This section recalls some preliminary material on sparse precision matrix estimation. In

this chapter, and only in it, unlike in the rest of the manuscript, we consider φ∗j = 1/ω∗jj
(in place of φ∗j

2 = 1/ω∗jj), for any j ∈ [p], to simplify notations.

Throughout the chapter we will present estimators of the diagonal elements of the precision

matrix in the case of a general multidimensional Gaussian distribution, but in all theoretical

developments we will assume that the marginals of X are standard Gaussian distributions,

that is, µ∗ = 0 and Σ∗jj = 1 for every j ∈ [p]. This assumption is reasonable, since we

are concerned with the problems in which the sample size is large enough to consistently

estimate the individual means and the individual variances of the variables. So, one can

always center the variables by the sample mean and divide by the sample standard deviation

to get close to the assumption3 that random variables X1,j , . . . ,Xn,j are i.i.d. N (0, 1) for

every j.

Let us recall that the precision matrix is closely related to the problem of regression of one

feature on all the others. Indeed, there exists a p×p matrix B∗ and two vectors c∗,φ∗ ∈ Rp

such that

X•,j = c∗j1n −X•,jcB
∗
jc,j + φ∗j

1/2 ξj , (1.1)

where ξj is drawn from Nn(0, In) and is independent of X•,jc . According to the theorem

on normal correlations [Marsaglia, 1964], the regression coe�cients B∗jc,j ∈ Rp−1 and the

variance φ∗j ∈ R of residuals can be expressed in terms of the elements of the precision

3Unless expressly stated otherwise, in the whole chapter, 1 ≤ i, j ≤ p and 1 ≤ k ≤ n.
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matrix Ω∗ as follows:

B∗ij = ω∗ij/ω
∗
jj , φ∗j = 1/ω∗jj , (1.2)

whereas c∗j = µ∗j + (µ∗jc)
>B∗jc,j = (µ∗)>B∗•,j . If we assume that µ∗ = 0 then c∗j = 0 for any

j. With these notation, the precision matrix can be written as Ω∗ = B∗D−1
φ∗ .

Several state-of-the-art methods for estimating sparse precision matrices proceed in two

steps [Meinshausen and Bühlmann, 2006; Cai et al., 2011; Liu and Wang, 2012; Sun and

Zhang, 2013]. The �rst step consists in estimating the matrix B∗ and the vector φ∗ by

solving the sparse linear regression problems (1.1) for each j, while in the second step an

estimator of the matrix Ω∗ is inferred from the estimators of B∗ and φ∗ using relations

(1.2). The goal of the present work is to explore both theoretically and empirically di�erent

possible strategies for this second step.

The square-root Lasso is perhaps the method of estimating the matrix B∗ that o�ers

the best trade-o� between the computational and the statistical complexities. It can be

rede�ned as follows: the square-root Lasso estimates the matrix B∗ by solving the convex

optimization problem

B̂ = arg min
B∈Rp×p
Bjj=1

min
c∈Rp

{
‖XB− 1nc

>‖2,1 + λ‖B‖1,1
}
, (1.3)

where the �rst min is over all matrices B having all their diagonal entries equal to 1. The

tuning parameter λ > 0 corresponds to the penalty level. The purpose of the penalization

is indeed to get a precision matrix estimate which �ts the sparsity assumption. As the

penalty of a matrix B is its ‖ · ‖1,1 norm, the resulting precision matrix estimator is

expected to be sparse in the sense that its overall number of nonzero elements should be

small. In addition, one can check that computing a solution to problem (1.3) is equivalent

to computing each column of B̂ separately (and independently) by solving the optimization

problem

B̂•,j = arg min
β∈Rp
βj=1

min
cj∈R

{
‖Xβj − cj1n‖2 + λ‖β‖1

}
, j ∈ [p]. (1.4)

In addition to being e�ciently computable even for large p, this estimator has the follow-

ing appealing property that makes it preferable, for instance, to the column-wise Lasso

[Meinshausen and Bühlmann, 2006] and the Clime [Cai et al., 2011]. The choice of the

parameter λ in (1.3-1.4) is scale free: it can be chosen independently of the noise variance

in linear regression (1.1). This fact has been �rst established by Belloni et al. [2011] and

then further investigated in [Sun and Zhang, 2012; Belloni et al., 2014a]. In the context of

precision matrix estimation, this method has been explored4 by Sun and Zhang [2013].

4Although Sun and Zhang [2012, 2013] refer to this method as the scaled Lasso, we prefer to use the
original term square-root Lasso coined by Belloni et al. [2011] in order to avoid any possible confusion with
the earlier method of Städler et al. [2010a,b], for which the term �scaled Lasso� has been already employed.
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1.3 Four estimators of the variance of noise in sparse regres-

sion

As mentioned earlier, the aim of this work is to compare di�erent estimators of the vector

φ∗ based on an initial estimator of the matrix B∗. Clearly, the error of the estimation

of B∗ impacts the error of the estimation of φ∗ and, therefore, the latter is not easy to

assess in full generality. In order to gain some insight on the behavior of various natural

estimators, in theoretical results we will consider the ideal situation where the matrix B∗

is estimated without error.

A brief note on the choice of the estimators that we call natural: the �rst rests on the fact

that φ∗j is the variance of the error in the regression model (1.1), thus is usually estimated

by the residual variance. The other three estimators are obtained by maximizing the

likelihood of X whose rows are assumed to be independent and Gaussian, under strong or

relaxed constraints of symmetry.

1.3.1 Residual variance estimator

In view of the regression equation presented in (1.1), a standard and natural method5�

used, in particular, by the square-root Lasso6 of Sun and Zhang [2013]�to deduce estima-

tors φ̂ and Ω̂ from an estimator B̂ is to set

φ̂j =
1

n
‖(In − n−11n1

>
n )XB̂•,j‖

2

2; Ω̂ = B̂ ·D−1

φ̂
. (1.5)

Note that the matrix (In−n−11n1
>
n ) present in this expression is the orthogonal projector

in Rn onto the orthogonal complement of the linear subspace Span(1n) of all constant

vectors. The multiplication by this matrix annihilates the intercept c∗j in (1.1) and is a

standard way of reducing the a�ne regression to the linear regression. In what follows, we

refer to φ̂ de�ned by (1.5) as the residual variance estimator and denote it by φ̂RV. Using

the sample covariance matrix Sn, the residual variance estimator of φ∗ can be written as

φ̂RV
j = B̂>•,jSnB̂•,j .

Note also that if we consider the linear regression model (1.1) conditionally to X•,jc , then

the residual variance estimator of φ∗j coincides with the maximum likelihood estimator.

Proposition 1.3.1. If B̂•,j estimates B∗•,j without error, then the residual variance esti-

mator of φ∗j has a quadratic risk equal to 2
nφ
∗
j

2, that is

E[(φ̂RV
j − φ∗j )2] =

2φ∗j
2

n
.

5This kind of estimators have recently been the subject of a simulation study by Reid et al. [2016] in
the context of Lasso regression.

6See footnote 4.
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Furthermore, for every t > 0, the following bound on the tails of the maximal error holds

true:

P

(
max
j∈[p]

|φ̂RV
j − φ∗j |
φ∗j

> 2
( t+ log p

n

)1/2
+ 2

t+ log p

n

)
≤ 2 e−t .

Proof. Using equation (1.1) and the assumption B̂•,j = B∗•,j , we get

φ̂RV
j =

1

n
‖XB∗•,j‖

2
2

=
φ∗j
n
‖ξj‖22. (1.6)

Since ξj is a standard Gaussian vector, the random variable ζ = ‖ξj‖22 is drawn from a χ2
n

distribution. This implies that E(ζ) = n and Var(ζ) = 2n. Therefore,

E[(φ̂RV
j − φ∗j )2] = E

[(φ∗jζ
n
− φ∗j

)2]
=
φ∗j

2

n2

(
Var(ζ) +

(
E(ζ)− n

)2)
=

2φ∗j
2

n
.

This completes the proof of the �rst claim. To prove the second claim, we set z = t+ log p

and use the union bound to get

P

(
max
j∈[p]

|φ̂RV
j − φ∗j |
φ∗j

> 2
( z
n

)1/2
+ 2

z

n

)
≤ pmax

j∈[p]
P

( |φ̂RV
j − φ∗j |
φ∗j

> 2
( z
n

)1/2
+ 2

z

n

)
= pP

(
|ζ − n| > 2

√
zn+ 2z

)
.

The second claim follows from the tail bound of the χ2 distribution established, for instance,

in [Laurent and Massart, 2000, Lemma 1].

Note that in this result, the case of known means µ∗j = 0 is considered. The case of

unknown µj can be handled similarly, the estimation bias is then φ∗j/n and the resulting

mean squared error is (2n − 1)φ∗j
2/n2. One may observe that, as expected, the rate of

convergence of the quadratic risk is the usual parametric rate 1/n and that the asymptotic

variance is 2φ∗j
2.

As a complement, we also propose to estimate the variance of the error of the model using

a di�erent measure of dispersion than empirical variance. We consider the squared average

absolute deviation (AD), properly normalized. It has the distinction of being less sensitive

to outliers than variance. We thus set

φ̂AD
j =

π

2n2
‖(In − n−11n1

>
n )XB̂•,j‖

2

1. (1.7)

Next proposition establishes that the AD estimator7 is a little less accurate with respect

to the quadratic risk than the RV estimator.

7In fact, we study four plus one estimators of φ∗. The AD estimator is comparable in nature with the
RV estimator and is presented in view of Chapter 2. We observe that it performs almost as well as the RV
estimator in our experimental settings.



40 CHAPTER 1: ESTIMATION OF THE DIAGONAL ELEMENTS

Proposition 1.3.2. If B̂•,j estimates B∗•,j without error, then the quadratic risk of the

AD estimator of φ∗j satis�es

E[(φ̂AD
j − φ∗j )2] =

φ∗j
2

n

(
5
(π

2
− 1
)

+ an

)
;

3

4n
+

2

n2
≤ an ≤

4

5n
+

3

n2
.

Moreover, there exists an universal constant C > 0, such that for any t > 0 that satis�es

(t+ log p)bπ ≤ n, the following bound on the tails of the maximal error holds true:

P

(
max
j∈[p]

|φ̂AD
j − φ∗j |
φ∗j

> 2
√
C
( t+ log p

n

)1/2
+ C

t+ log p

n

)
≤ 2 e−t .

Proof. By equation (1.1), as we assume that µ∗j = 0 and that B̂•,j = B∗•,j holds, the AD

estimator is given by

φ̂AD
j =

π

2n2
φ∗j‖ξj‖

2
1.

It holds that

‖ξj‖21 =
( n∑
i=1

|(ξj)i|
)2

= ‖ξj‖22 +

n∑
i,k=1
i 6=k

|(ξj)i||(ξj)k|.

As ξj ∼ Nn(0, In), then ‖ξj‖22 follows a χ
2 distribution with n degrees of freedom and each

of the independent entries of |ξj | is drawn from a half-normal distribution, thus having an

expectation equal to
√

2/
√
π. We therefore arrive at

E[φ̂AD
j ] =

π

2n2
φ∗j
(
n+

2

π
(n2 − n)

)
= φ∗j

(
1 +

π − 2

2n

)
.

Note that we only have to multiply φ̂AD
j by 2n/(2n+ π − 2) to make it unbiased.

To obtain the quadratic risk, we need to develop the expression ‖ξj‖41. To make a long

story short, we end with8

‖ξj‖41 =
n∑
i=1

(ξj)
4
i +

n∑
i,k=1
i 6=k

(ξj)
2
i (ξj)

2
k + 6

n∑
i,k,h=1
i 6=k 6=h

(ξj)
2
h|(ξj)i||(ξj)k|+ 4

n∑
i,k=1
i 6=k

|(ξj)i|3|(ξj)k|

+
n∑

i,k,h,l=1
i 6=k 6=h6=l

|(ξj)i||(ξj)k||(ξj)h||(ξj)l|.

Then, using as above that the vector ξj is standard Gaussian, we have E[|(ξj)i|] =
√

2/
√
π,

8i 6= k 6= h 6= l means that the integers i, k, h and l are all di�erent in each term of the summation.
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E[(ξj)
2
i ] = 1, E[|(ξj)i|3] = 2

√
2/
√
π and E[(ξj)

4
i ] = 3. We �nally get that

E[(φ̂AD
j − φ∗j )2] = E[(φ̂AD

j )2 − 2φ̂AD
j φ∗j + φ∗j

2]

=
φ∗j

2

n

(
5
(π

2
− 1
)

+
1

n

(π2

4
− 5π + 14

)
+

1

n2

(π2

2
+ 2π − 9

))
.

Next, for the second assertion of the proposition, let us set z = t+ log p, we get

P = P

( |φ̂AD
j − φ∗j |
φ∗j

> 2
√
bπ
( z
n

)1/2
+ bπ

z

n

)
= P

(∣∣∣ π
2n2
‖ξj‖21 − 1

∣∣∣ > 2
(
bπ
z

n

)1/2
+ bπ

z

n

)
= P

( π

2n2
‖ξj‖21 − 1 > 2

(
bπ
z

n

)1/2
+ bπ

z

n

)
+ P

(
− π

2n2
‖ξj‖21 + 1 > 2

(
bπ
z

n

)1/2
+ bπ

z

n

)
.

As zbπ ≤ n, the second term of the right-hand side of the above equation is bounded by

P
(
‖ξj‖1/n− (2/π)1/2 < (2bz/n)1/2

)
. The �rst term is equal to P

(
‖ξj‖1/n− (2/π)1/2 >

(2bz/n)1/2
)
. Then, using the Hoe�ding bounds (see for instance [Vershynin, 2012b, Propo-

sition 5.10]) for the i.i.d. sub-Gaussian variables |(ξj)i|, all having the same expectation

(2/π)1/2 and sub-Gaussian parameter9 b, it follows that P ≤ 2 e−z. We take C = bπ and

as in the proof of Proposition 1.3.1, we use the union bound to conclude the proof.

1.3.2 Relaxed maximum likelihood estimator

One could expect that the global maximum likelihood estimator of φ∗ would be better

than the maximum of the conditional likelihood, since it is well known that under proper

regularity conditions, the quadratic risk of the maximum likelihood estimator is the small-

est, at least asymptotically. Since the vectors Xk,• ∼ Np(µ∗,Ω∗−1) are independent, the

log-likelihood is given by (up to irrelevant additive terms independent of the unknown

parameters µ∗ and Ω∗)

L(X|µ,Ω) =
n

2
log det(Ω)− 1

2

n∑
k=1

(Xk,• − µ>)Ω(Xk,• − µ>)>. (1.8)

Maximizing the log-likelihood with respect to µ ∈ Rp leads to

max
µ∈Rp

L(X|µ,Ω) =
n

2

(
log det(Ω)− trace

[
SnΩ

])
. (1.9)

Recall now that in view of (1.2), we have Ω∗ = B∗D−1
φ∗ . Therefore, the pro�led log-

likelihood (with respect to µ) of X given the parameters B and φ is

max
µ∈Rp

L(X|µ,B,φ) =
n

2

(
log det(B)−

p∑
j=1

{
log(φj) + (SnB)jjφ

−1
j

})
. (1.10)

9In the sense that E
(
ex(|(ξj)i|−(2/π)1/2) ) ≤ ebx

2/2, for any x ∈ R.



42 CHAPTER 1: ESTIMATION OF THE DIAGONAL ELEMENTS

For a given B, this pro�led log-likelihood is a decomposable function of φ and, therefore,

can be easily maximized with respect to φ. This leads to

arg max
φ∈Rp+

max
µ∈Rp

L(X|µ,B,φ) =
(
(SnB)jj ∨ 0

)
j∈[p]

. (1.11)

Thus, when an estimator B̂ of B∗ is available, one possible approach for estimating φ∗ is

to set

φ̂RML
j = (SnB̂)jj ∨ 0, j ∈ [p]. (1.12)

We call this estimator relaxed maximum likelihood (RML) estimator. It will be clear a

little bit later why it is called relaxed. The analysis of the risk of the RML estimator is

more involved than that of the RV estimator considered in the previous section. This is

due to the truncation at the level 0. For this reason, the next result does not provide the

precise value of the risk, but just an inequality which is su�cient for our purposes.

Proposition 1.3.3. If B̂ estimates B∗•,j without error, then the risk of the RML estimator

of φ∗j satis�es E[(φ̂RML
j − φ∗j )2] ≥ 1

n

(
φ∗j

2 + φ∗jΣ
∗
jj −O(n−1/2)

)
.

Before providing the proof of this result, let us present a brief discussion. Note that in

view of (1.1), Σ∗jj is always not smaller than φ∗j (see Proposition A.2.1 in Appendix A).

Furthermore, Σ∗jj > φ∗j if B∗jc,j has at least one nonzero entry. Therefore, the last propo-

sition, combined with Proposition 1.3.1, establishes that the residual variance estimator

has an asymptotic variance which is smaller (and, in many cases, strictly smaller) than

the asymptotic variance of the maximum likelihood estimator. At a �rst sight, this is very

surprising and seems to be in contradiction with the well established theory [Ibragimov

and Has′minski��, 1981; Le Cam and Yang, 2000] of asymptotic e�ciency of the maximum

likelihood estimator for regular models. Our explanation of this ine�ciency of φ̂RML
j is that

it is not really the maximum likelihood estimator. It maximizes the likelihood, certainly,

but not over the correct set of parameters. Indeed, when we de�ned the RML estimator we

neglected an important property of the vector φ∗: the fact that B∗D−1
φ∗ = D−1

φ∗B
∗> (this

follows from the symmetry of Ω∗). Ignoring this constraint allowed us to get a tractable

optimization problem but caused the loss of the (asymptotic) e�ciency of the estimator.

This also explains why we call φ̂RML relaxed maximum likelihood estimator.

Proof of Proposition 1.3.3. Since µ∗ is assumed to be known and equal to zero, according

to (1.1), we have

(SnB̂)jj =
1

n
X>•,jXB∗•,j =

φ∗j
1/2

n
X>•,jξj =

φ∗j
1/2

n

(
−X•,jcB

∗
jc,j + φ∗j

1/2 ξj
)>
ξj .

Denoting η1 = −ξ>j X•,jcB
∗
jc,j , we get (SnB̂)jj = 1

n(φ∗j
1/2 η1 + φ∗j ‖ξj‖22). Furthermore,

it follows from (1.1) that E[(Xk,jcB
∗
jc,j)

2] = Σ∗jj − φ∗j for each k. Since, in addition, for
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di�erent ks the random variables Xk,jcB
∗
jc,j are independent, centered and Gaussian, we

get that�in view of the independence of ξj and X•,jc�the conditional distribution of η1

given ξj is Gaussian with zero mean and variance ‖ξj‖22(Σ∗jj − φ∗j ). Hence, the random

variable η = η1/(‖ξj‖2(Σ∗jj − φ∗j )1/2) is standard Gaussian, independent of ‖ξj‖22 and

(SnB̂)jj =

√
φ∗j‖ξj‖22(Σ∗jj − φ∗j )

n
η +

φ∗j
n
‖ξj‖22.

This relation readily implies that E[(SnB̂)jj ] = φ∗j and

E[((SnB̂)jj − φ∗j )2] = Var[(SnB̂)jj ] =
Σ∗jjφ

∗
j + φ∗j

2

n
.

Furthermore, for the fourth moment, we have

E[((SnB̂)jj − φ∗j )4] ≤
8φ∗j

2(Σ∗jj − φ∗j )2

n4
E[‖ξj‖42]E[η4] +

8φ∗j
4

n4
E[(‖ξj‖22 − n)4]

≤
72φ∗j

2(Σ∗jj − φ∗j )2

n2
+

8φ∗j
4

n4
(60n+ 12n2).

To analyze the truncated estimator, we set ζ = (SnB̂)jj . Then φ̂RML
j = ζ · 1(ζ > 0) and

hence,

E[(φ̂RML
j − φ∗j )2] = E[(ζ − φ∗j )21(ζ > 0)] + φ∗j

2P(ζ ≤ 0)

= E[(ζ − φ∗j )2]−E[(ζ − φ∗j )21(ζ ≤ 0)] + φ∗j
2P(ζ ≤ 0)

≥ E[(ζ − φ∗j )2]−E[(ζ − φ∗j )4]1/2P(ζ ≤ 0)1/2.

We have already computed the �rst expectation in the right-hand side, as well as upper

bounded the second one. Let us show that the probability of the event ζ ≤ 0 goes to

zero as n increases to ∞. This follows from the Tchebychev inequality, since P(ζ ≤ 0) =

P(φ∗j − ζ ≥ φ∗j ) ≤ Var[ζ]/φ∗j
2 = O(1/n). This completes the proof of the proposition.

1.3.3 MLE taking into account the symmetry constraints

As we have seen in previous sections, the relaxed maximum likelihood estimator is sub-

optimal; in particular, it is less accurate than the residual variance estimator. To check

that this lack of e�ciency is indeed due to the relaxation of the symmetry constraints, we

propose here to analyze the constrained maximum likelihood estimator in the following

idealized set-up. We will consider, as in Propositions 1.3.1 and 1.3.3, that B̂ estimates B∗

without error, and that10 there is a column B∗•,i in B∗ such that all the elements of B∗•,i are

di�erent from zero. Without loss of generality, we suppose that i = 1 and, consequently,

10This assumption will be relaxed later in this subsection.
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for every j ∈ [p], we have B∗j1 6= 0 which is equivalent to ω∗j1 6= 0. Therefore, the symme-

try constraint B∗D−1
φ∗ = Ω∗ = Ω∗> = D−1

φ∗B
∗> implies that Dφ∗B

∗ = B∗>Dφ∗ and, in

particular, that

B∗1jφ
∗
1 = B∗j1φ

∗
j , ∀j ∈ [p].

This relation entails that in the case of known matrix B∗ and unknown vector φ∗, only the

�rst entry of φ∗ needs to be estimated, all the remaining entries can be computed using

the �rst one by the formula φ̂j = (B∗1j/B
∗
j1)φ̂1.

Proposition 1.3.4. Under the assumption that the rows of X are i.i.d. Gaussian vectors

with precision matrix Ω∗ = B∗D−1
φ∗ , the maximum likelihood estimator of φ∗ is de�ned by

φ̂SML
j =

1

p
(B∗1j/B

∗
j1) trace

(
SnB

∗DB∗•,1
D−1

B∗1,•

)
. (1.13)

The quadratic risk of this estimator is given by

E[(φ̂ SML
j − φ∗j )2] =

2

np
φ∗j

2. (1.14)

Furthermore, for every t > 0, the following bound on the tails of the maximal error holds

true:

P

(
max
j∈[p]

|φ̂ SML
j − φ∗j |
φ∗j

> 2
( t+ log p

np

)1/2
+ 2

t+ log p

np

)
≤ 2 e−t .

Proof. To ease notation, we denote by D∗ the diagonal matrix whose jth element is

B∗j,1/B
∗
1,j . Then, applying (1.10) for a given B∗, the pro�led Gaussian log-likelihood

can be written as

max
µ∈Rp

L(X|µ,B∗,φ) =
n

2
log det(B∗)− n

2

p∑
j=1

{
log(φj) + (SnB

∗)jjφ
−1
j

}
.

The goal is to maximize the right-hand side over all the vectors φ ∈ Rp such that B∗D−1
φ

is a valid precision matrix.

Let us �rst check that under the conditions of the proposition, for B∗D−1
φ to be a valid

precision matrix it is necessary and su�cient that φ1 > 0 and φj = (B∗1j/B
∗
j1)φ1 for every

j ∈ [p]. The necessary part follows from that fact that a precision matrix is symmetric and

positive-semide�nite, which entails that (B∗D−1
φ )1j = (B∗D−1

φ )j1 and (B∗D−1
φ )jj = φ−1

j >

0. Therefore, φj = (B∗1j/B
∗
j1)φ1 and φ1 > 0. To check the su�cient part, we remark that

if φ satis�es φj = (B∗1j/B
∗
j1)φ1 with φ1 > 0, then B∗D−1

φ = (φ∗1/φ1)B∗D−1
φ∗ = (φ∗1/φ1)Ω∗.

This implies that B∗D−1
φ is symmetric and positive-semide�nite, hence a valid precision

matrix.



1.3 FOUR ESTIMATORS OF THE VARIANCE OF NOISE 45

The maximum likelihood estimator φ̂SML is thus given by

φ̂SML ∈ arg min
φ∈Rp+

φj=(B∗1j/B
∗
j1)φ1

p∑
j=1

{
log(φj) + (SnB

∗)jjφ
−1
j

}
,

which leads to φ̂SML
1 ∈ argminφ1>0

{
p log(φ1)+φ−1

1

∑
j(SnB

∗)jjB
∗
j1/B

∗
1j

}
. The cost func-

tion of the last minimization problem is convex, since (SnB
∗)jjB

∗
j1/B

∗
1j = (SnB

∗)jjφ
∗
1/φ
∗
j =

φ∗1(SnΩ
∗)jj and hence∑

j

(SnB
∗)jjB

∗
j1/B

∗
1j = φ∗1 trace(SnΩ

∗) = φ∗1 trace(Ω∗1/2SnΩ
∗1/2) ≥ 0.

The aforementioned cost function is continuously di�erentiable and convex, its minimum is

attained at the point where the derivative vanishes, which provides φ̂SML
1 = 1

p

∑
j(SnB

∗)jjB
∗
j1/B

∗
1j .

Combining with the relation φ̂SML
j = (B∗1j/B

∗
j1)φ̂SML

1 , this leads to (1.13).

To check (1.14), we start by noting that

φ̂SML
j =

1

p
φ∗j trace(SnΩ

∗) =
1

np
φ∗j trace(X

>XΣ∗−1).

Using the well-known commutativity property of the trace operator and setting Y =

Σ∗−1/2X>, we get trace(X>XΣ∗−1) = trace(Y>Y). Since X has i.i.d. rows drawn

from a Np(0,Σ∗) distribution, Y has i.i.d. columns drawn from Np(0, Ip) distribution.

Hence, the random variable trace(Y>Y) =
∑

j∈[p],k∈[n] Y
2
jk is distributed according to

χ2
np distribution. This readily implies that φ̂SML

j is an unbiased estimator of φ∗j and,

therefore, its quadratic risk coincides with its variance and is given by (1.14).

The proof of the last claim of the proposition is very similar to that of the second claim of

Proposition 1.3.1.

Assuming that there exists i ∈ [p] such that for any j ∈ [p], ω∗ij 6= 0, put di�erently that the

i-th node of the graph G ∗ is connected by an edge to any other node is quite restrictive.

Among other implications, it entails that the graph G ∗ is connected which might be a

strong assumption. It is therefore useful to adapt what precedes to the case where the

graph G ∗ has more than one connected component. The rest of this subsection is devoted

to the description of this adaptation.

We note C the set of the connected components of the graph G ∗. Each connected com-

ponent c ∈ C is a subset of vertices of G ∗ whose cardinality is denoted by pc. Clearly,

the sum of pc over all c ∈ C equals p. For two vertices i and j, we will write i ∼G ∗ j

for indicating that they belong to the same connected component. Thus, each connected

component is a class of equivalence with respect to the relation ∼G ∗. Let i ∼G ∗ j be two

vertices from c ∈ C and let Cji be a path connecting these two vertices, that is, Cji is a
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sequence of q distinct vertices {v1, . . . , vq} such that v1 = j, vq = i, q ≤ pc and each pair

(vh, vh+1) is connected by an edge in G ∗. Recall that the symmetry of the precision matrix

Ω∗ = B∗D−1
φ∗ implies that B∗vh,vh+1

φ∗vh = B∗vh+1,vh
φ∗vh+1

for every h ∈ [q − 1]. This readily

yields

φ∗j = φ∗i
∏

1≤h<q

(
B∗vh+1,vh

/B∗vh,vh+1

)
.

To ease notation, we introduce the p× p diagonal matrix ∆∗j the diagonal entries of which

are de�ned by

(∆∗j )ii = 1(i ∼G ∗ j)
∏

1≤h<q

(
B∗vh+1,vh

/B∗vh,vh+1

)
, (1.15)

where {v1, . . . , vq} = Cji is any path connecting j to i in G ∗. With this notation, φ∗j =

(∆∗j )iiφ
∗
i . One can reproduce the arguments of the proof of Proposition 1.3.4 to check

that the maximum likelihood estimator of φ∗, if B∗ is known (and therefore so is ∆∗j ), is

de�ned by

φ̂SML
j =

1

pc
trace

(
∆∗jSnB

∗), (1.16)

for j belonging to the connected component c.

Comparing the results of Propositions 1.3.1, 1.3.3 and 1.3.4, we observe that the RV

estimator outperforms the RML estimator, but�at least in the case where there is a

column in B∗ which has only nonzero entries�they are both dominated by the maximum

likelihood estimator that takes advantage of the symmetry constraints. Furthermore, using

the same type of arguments as those of Proposition 1.3.4, one can check that if the vertex

j of the graph G ∗ belongs to a connected component of cardinal pc then the risk of the

MLE in the ideal case of known B∗ is equal to 2
npc

φ∗j
2. This shows that in the ideal case

the MLE systematically outperforms the widely used residual variance estimator, and the

gain in the risk may be huge for vertices belonging to large connected components. On the

other extreme, all the three estimators discussed in the previous section coincide when the

matrix B∗ is diagonal.

In order to apply equation (1.16) for estimating φ∗ when an estimator B̂ of B∗ is available,

we need to construct an estimator Ĝ of the graph G ∗. We propose here an original approach

for deriving Ĝ from B̂. It is based on the observation that B∗ijB
∗
ji = ω∗ij

2/(ω∗iiω
∗
jj)

2, the

square of the partial correlation between the i-th and j-th variables. As mentioned earlier,

this quantity is always between 0 and 1 and provides a convenient rule of selection for the

edges to keep in the graph. More precisely, we connect i to j if the estimated squared partial

correlation B̂ijB̂ji is larger than a prescribed threshold t ∈ (0, 1). In our implementation,

we chose (somewhat arbitrarily) the threshold t = 0.01 ∧ n−1/2.

Note that when B∗ is replaced by an estimator, the right-hand side of (1.16) is not nec-

essarily invariant with respect to the choice of the path connecting i to j. Therefore,

even when B̂ and Ĝ are �xed, if Ĝ contains cycles there are many ways of estimating
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φ∗ based on (1.16) depending on how the paths are chosen. We have tried two possible

approaches: the minimum spanning tree and the shortest path tree based on the following

weight function11 de�ned on the edges:

Wij =

{
exp

(
− B̂ijB̂ji

)
1(B̂ijB̂ji > t), for i 6= j,

0, otherwise.

Combining these ingredients, we get the algorithm summarized in Algorithm 1.1.

Algorithm 1.1: Estimator φ̂SML based on shortest path trees or minimum spanning
trees

Input: matrices X and B̂, threshold t.
Output: vector φ̂SML.
1: compute the matrix of weights W.
2: initialize k to 1.
repeat

3: choose the node with the largest degree as root.
4: compute the shortest path tree (or the minimum spanning tree) Tk from the
chosen root.

5: estimate φ̂SML's elements related to Tk using Eq. (1.16).
6: remove all the nodes of the tree Tk from the initial graph.
7: increment k.

until graph is empty

The rationale behind the foregoing de�nition of the weights and the use of the minimum

spanning tree or shortest path tree algorithm is to favor the paths that are short and contain

edges corresponding to large (in absolute value) partial correlations. The aim is to reduce

the risk of propagating the estimation error of B̂. We have implemented both versions of

the algorithm and have observed that the version using the minimum spanning tree leads

to better results. More details on the implementation and computational complexity are

given in the next section.

1.3.4 Penalized maximum likelihood estimation

We have seen that enforcing symmetry constraints is bene�cial when the matrix B̂ has

a small error, but raises intricate issues related to the graph estimation and, more im-

portantly, path selection in the graph. A workaround to this issue is to replace the hard

constraints by a penalty term that measures the degree of violation of the constraints.

This provides an intermediate solution between the SML and the RML. More precisely, we

11A weight equal to zero corresponds to the absence of edge.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.883 0.399 0.224 1.425 0.649 0.374 1.849 0.853 0.495
(.077) (.036) (.016) (.075) (.030) (.022) (.085) (.029) (.019)

RML 1.356 0.786 0.532 2.114 1.234 0.841 2.705 1.590 1.086
(.079) (.040) (.017) (.082) (.032) (.022) (.090) (.029) (.019)

SML 1.476 0.805 0.548 2.388 1.250 0.852 3.104 1.608 1.096
(.098) (.040) (.018) (.164) (.032) (.021) (.188) (.028) (.020)

PML 1.371 0.792 0.539 2.134 1.236 0.846 2.728 1.593 1.089
(.079) (.041) (.017) (.078) (.032) (.021) (.091) (.030) (.019)

B∗ estimated by square-root Lasso followed by OLS

RV 0.726 0.340 0.241 1.088 0.616 0.354 1.365 0.854 0.443
(.079) (.045) (.016) (.076) (.051) (.020) (.080) (.046) (.018)

RML 0.726 0.340 0.241 1.088 0.616 0.354 1.365 0.854 0.443
(.079) (.045) (.016) (.076) (.051) (.020) (.080) (.046) (.018)

SML 0.807 0.440 0.280 1.193 0.793 0.381 1.557 1.116 0.468
(.082) (.058) (.018) (.088) (.066) (.018) (.170) (.089) (.018)

PML 0.737 0.419 0.302 1.095 0.722 0.405 1.377 0.984 0.494
(.074) (.051) (.018) (.071) (.052) (.019) (.081) (.044) (.019)

B∗ is estimated without error

RV 0.263 0.132 0.081 0.370 0.179 0.115 0.455 0.222 0.143
(.034) (.017) (.012) (.038) (.017) (.008) (.038) (.019) (.012)

RML 0.322 0.165 0.104 0.463 0.227 0.144 0.562 0.280 0.178
(.042) (.018) (.013) (.038) (.022) (.011) (.040) (.020) (.015)

SML 0.043 0.024 0.010 0.042 0.018 0.011 0.042 0.015 0.010
(.030) (.018) (.010) (.030) (.014) (.009) (.037) (.013) (.007)

PML 0.079 0.043 0.023 0.107 0.049 0.030 0.128 0.059 0.039
(.025) (.015) (.007) (.028) (.012) (.007) (.027) (.011) (.007)

Table 1.1: Performance of the estimators of diagonal elements of the precision matrix in
Model 1. The number of replications in each case is R = 50. More details on
the experimental set-up are presented in Section 1.4.1.

propose a penalized maximum likelihood (PML) estimator of φ∗ de�ned by

φ̂PML ∈ arg min
φ∈(0,1]p

{ p∑
j=1

{log(φj) + (SnB̂)j,jφ
−1
j }+ κ

∑
i<j

B̂jiB̂ij>t

(B̂jiφ
−1
i − B̂ijφ

−1
j )2

B̂2
ij + B̂2

ji

}
, (1.17)
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where κ > 0 is a tuning parameter responsible for the trade-o� between the likelihood

and the constraint violation. The choice κ = ∞ corresponds to enforcing the symmetry

constraints: its main shortcoming is that the feasible set might very well be empty. On

the other extreme, when κ = 0, the PML coincides with the RML. The PML estimator

also coincides with the previous ones if B̂ is known to be diagonal.

Note that the parameter t appearing in the penalty term of the PML plays the same role

as the one used in the SML. The de�nition of the feasible set in the above optimization

problem is justi�ed by the fact that we assume all the individual variances of the features

to be equal to one. In other terms, the assumption Var(X1,j) = 1 in (1.1) implies that

φ∗j ≤ 1. Making the change of variable v = (1/φj)j∈[p], the optimization problem of Eq.

(1.17) becomes convex with the feasible set v ∈ [1 +∞)p and the objective function:

f(v) =

p∑
j=1

{
− log(vj) + (SnB̂)j,jvj

}
+ κ

∑
i<j

B̂jiB̂ij>t

(B̂jivi − B̂ijvj)
2

B̂2
ij + B̂2

ji

. (1.18)

Furthermore, if we restrict the feasible set to v ∈ V = [1, n1/2]p, the problem becomes

strongly convex. In addition, on this restricted feasible set the gradient of the objective

function is Lipschitz-continuous.

It is possible to use the standard steepest gradient descent algorithm with a �xed step-

size for e�ciently approximating the solution φ̂PML. Indeed, in the optimization problem

(1.18), if ∇f is Lipschitz-continuous with constant L <∞ and strongly convex with con-

stant l > 0, the gradient descent algorithm with a constant step-size t = 2/(l+L) converges

at a linear rate (see Nesterov [2004] for a detailed proof). Note that the convergence rate

depends on L/l which is an upper bound on the condition number of the Hessian matrix

∇2f(v); this ratio should not be too high for the algorithm to converge fast. Unfortu-

nately, the values of l and L that we manage to obtain in our problem are far too loose.

That is why we resort to a steepest descent algorithm with adaptive step-size and scaled

descent direction −∇f(vh)/‖∇f(vh)‖2. More details on the implementation are provided

in Section 1.4.2.

1.4 Experimental evaluation

In this section, we describe the experimental set-up and report the results of the numerical

experiments performed on synthetic data-sets. We also provide detailed explanation of the

implementation used for the symmetry-enforced and the penalized maximum-likelihood es-

timators. A companion R package called DESP (for Diagonal Elements of Sparse Precision-

Matrices estimation) is created and uploaded on CRAN12.

12http://cran.r-project.org/web/packages/DESP/index.html

http://cran.r-project.org/web/packages/DESP/index.html
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.400 0.125 0.070 0.632 0.174 0.094 0.821 0.215 0.113
(.059) (.020) (.009) (.047) (.023) (.011) (.051) (.020) (.012)

RML 1.048 0.508 0.320 1.644 0.780 0.491 2.120 0.997 0.626
(.061) (.020) (.015) (.048) (.023) (.014) (.053) (.023) (.014)

SML 1.334 0.539 0.340 2.246 0.824 0.520 3.243 1.047 0.653
(.221) (.028) (.018) (.277) (.039) (.023) (.516) (.034) (.020)

PML 1.130 0.530 0.333 1.790 0.813 0.508 2.311 1.036 0.645
(.068) (.020) (.016) (.049) (.026) (.016) (.054) (.024) (.015)

B∗ estimated by square-root Lasso followed by OLS

RV 0.247 0.101 0.065 0.322 0.129 0.081 0.381 0.150 0.095
(.053) (.015) (.009) (.057) (.019) (.007) (.061) (.017) (.009)

RML 0.247 0.101 0.065 0.322 0.129 0.081 0.381 0.150 0.095
(.053) (.015) (.009) (.057) (.019) (.007) (.061) (.017) (.009)

SML 0.329 0.096 0.065 0.622 0.129 0.076 0.882 0.147 0.090
(.107) (.016) (.010) (.299) (.021) (.010) (.501) (.020) (.011)

PML 0.247 0.098 0.064 0.337 0.125 0.077 0.441 0.142 0.089
(.068) (.017) (.011) (.075) (.021) (.009) (.101) (.017) (.011)

B∗ is estimated without error

RV 0.204 0.101 0.065 0.258 0.129 0.081 0.300 0.149 0.095
(.032) (.015) (.008) (.033) (.019) (.007) (.030) (.015) (.009)

RML 0.280 0.136 0.086 0.354 0.177 0.113 0.429 0.214 0.135
(.038) (.017) (.011) (.032) (.019) (.010) (.038) (.021) (.012)

SML 0.033 0.012 0.008 0.024 0.012 0.008 0.027 0.011 0.007
(.022) (.008) (.007) (.017) (.009) (.006) (.019) (.008) (.006)

PML 0.065 0.027 ( 0.019 0.065 0.031 0.021 0.073 0.035 0.023
(.021) (.011) (.006) (.020) (.009) (.006) (.022) (.010) (.006)

Table 1.2: Performance of the estimators of diagonal elements of the precision matrix in
Model 2. The number of replications in each case is R = 50. More details on
the experimental set-up are presented in Section 1.4.1.

1.4.1 Experiments on synthetic datasets

We conducted a comprehensive experimental evaluation of the accuracy of di�erent esti-

mates of diagonal elements of the precision matrix. In order to cover as many situations

as possible, we used in experiments our six di�erent forms of precision matrices along

with various values for n and p. In each con�guration, we considered several methods of
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estimating the matrix B∗.

Let us �rst describe in a precise manner the precision matrices used in our experiments.

It is worthwhile to underline here that all the precision matrices are normalized in such a

way that all the diagonal entries of the corresponding covariance matrix Σ∗ = (Ω∗)−1 are

equal to one. To this end, we �rst de�ne a p× p positive semide�nite matrix A and then

set Ω∗ = (diag(A−1))
1
2 A(diag(A−1))

1
2 . The matrices A used in the six models for which

the experiments are carried out are de�ned as follows.

Model 1: A is a Toeplitz matrix with the entries Aij = 0.6|i−j| for any i, j ∈ [p].

Model 2: We start by de�ning a p× p pentadiagonal matrix with the entries

Āij =


1 , for |i− j| = 0,

−1/3 , for |i− j| = 1,

−1/10 , for |i− j| = 2,

0 , otherwise.

Then, we denote by A the matrix with the entries Aij = (Ā−1)ij1(|i− j| ≤ 2). One

can check that the matrix A de�ned in such a way is positive semide�nite.

Model 3: We set Aij = 0 for all the o�-diagonal entries that are neither on the �rst row

nor on the �rst column of A. The diagonal entries of A are

A11 = p, Aii = 2, for any i ∈ {2, . . . , p},

whereas the o�-diagonal entries located either on the �rst row or on the �rst column

are A1i = Ai1 =
√

2 for i ∈ {2, . . . , p}.

Model 4: We introduce the integer k = d√pe and de�ne a sparse k × k matrix Ā so

that its only nonzero elements are Ā11 = k and, for any i ∈ [2; k], Āii = 2k and

Ā1i = Āi1 =
√

2. Then, we set

A =

(
Ā 0

0 Ip−k

)
.

Model 5: We introduce k = d√pe and de�ne a sparse k × k matrix Ā so that its only

nonzero elements are Ā11 = 50 and, for any i ∈ [2; k], Āii = 5 and Ā1i = Āi1 = 5/2.

Then, similarly to previous model, we set

A =

(
Ā 0

0 Ip−k

)
.

Model 6: We set k = 6, p′ = kdp/ke and de�ne the k × k matrix Ā as in model 5 above.
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Then, we build the p′ × p′ block-diagonal matrix A by

A =

(
Ā 0

. . .
0 Ā

)
︸ ︷︷ ︸
dp/ke−times

.

Note that, in general, the resulting precision matrix in this model is not of size p× p
but of size p′ × p′ with p′ = 6dp/6e. However, since in the experiments reported in

this section p is always a multiple of 6, we have p = p′.

In this experimental evaluation, we compare the performance of the following four estimators�

introduced in previous sections�of the diagonal elements of the precision matrix:

• RV corresponds to the residual variance estimator de�ned in Section 1.3.1.

• RML corresponds to the relaxed maximum likelihood estimator described by equation

(1.12).

• SML corresponds to the symmetry-enforced maximum likelihood estimator described

in Algorithm 1.1.

• PML corresponds to the penalized maximum likelihood estimator described by equa-

tion (1.17).

Note that all these algorithms need an estimator of the matrix B∗ to produce an estimator

of the diagonal entries of the precision matrix. We conducted experiments in three di�erent

scenarios. The �rst scenario is when the matrix B∗ is estimated column-by-column by the

square-root Lasso, using the penalization parameter λ =
√

2 log p. This value for λ is

commonly called the universal choice and has proved to lead to optimal theoretical results

and fairly good empirical results [Dalalyan and Chen, 2012; Sun and Zhang, 2012; Dalalyan

et al., 2013]. The second scenario is when the matrix B∗ is estimated column-by-column by

the ordinary least squares estimator applied to the covariates that correspond to nonzero

entries of the square-root Lasso estimator13 with the aforementioned value of λ. Finally,

the third scenario is an unrealistic one; it corresponds to the case of a known matrix B∗.

This scenario is included in the experimental evaluation in order to check the consistency

between the theoretical and the empirical results as well as in order to better understand

how the error in estimating B∗ impacts the quality of estimation of the diagonal entries of

the precision matrix.

Thus, each con�guration of our empirical study corresponds to choosing

• a model out of 6 models described above
13A discussion on the strengths and weaknesses of this estimator can be found in [Belloni and Cher-

nozhukov, 2013; Lederer, 2014].
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• a dimension p ∈ {30, 60, 90}

• a sample size n ∈ {200, 800, 2000}

• a method of estimating B∗.

In each con�guration, we computed the estimators RV, RML, SML and PML for 50 in-

dependent datasets. Using these R = 50 replications, we estimate the expected risk of

estimating φ∗, E(‖φ∗ − φ̂‖2), by the average 1
R

∑R
r=1 ‖φ∗ − φ̂(r)‖2. In Tables 1-6, we re-

port these averages along with the standard deviations of the errors measured by `2-vector

norm. All the experiments were conducted in R [R Core Team, 2016], using the Mosek

solver (see Andersen and Andersen [2000]) for computing the square-root Lasso estimator

by second-order cone programming. We note that other general-purpose solvers like Gurobi

Gurobi Optimization [2015] or SCS O'Donoghue et al. [2013] produce comparable results.

Besides, in terms of computational e�ciency, we recall that using coordinate descent to

obtain the square-root Lasso estimates is better14.

The results when the dimension is smaller than the sample size are reported in Tables 1.1-

1.6. In Tables 1.7-1.12, we present experimental measures of performance obtained for

a sample size n = 50 for dimensions p = 30, 60, 90 and with κ = 1
3

√
log p for the PML

estimation. For the last two values of p, the dimension is larger than the sample size.

In the ideal case when B∗ is estimated without error (by itself), the empirical results

re�ect perfectly the theoretical results of the previous sections. The comparison of the

performance of the estimators indicates that the maximum likelihood estimators SML

and PML are preferable to the residual variance estimator. The maximum likelihood

estimator considering symmetry constraints outperforms all the other estimators. However,

in practice when B̂ is obtained by the square-root Lasso without any re�nement, φ̂RV

outperforms all the other estimators in the vast majority of con�gurations. Some exceptions

can be observed in models 5 and 6 (see the top part of Tables 1.5 and 1.6, where RV is

slightly worse than the other procedures for small sample sizes (n = 200), or Tables 1.11

and 1.12). It should be, however, acknowledged that the di�erence of the quality between

the estimators in these cases is not large enough to advocate for using RML, SML or PML.

It is interesting to observe what happens when an additional step of estimation of B∗

using the ordinary least squares on the sparsity pattern provided by the square-root Lasso is

performed. The impact of this step is not the same in all the models under consideration. In

particular, the quality of estimation is mostly improved for all the four estimators in models

1 and 2. Furthermore, thanks to this variable selection step, the maximum-likelihood-type

estimators perform nearly as well as the residual variance estimator RV. In model 3, the

variable selection step deteriorates the quality of estimation in most con�gurations, whereas

14In addition, the coordinate descent algorithm tends to produce estimated coordinates that are exactly
zero, while the SOCP solutions are in general only approximately zero.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.273 0.138 0.084 0.402 0.194 0.123 0.524 0.243 0.150
(.042) (.016) (.010) (.036) (.014) (.012) (.037) (.017) (.011)

RML 0.509 0.272 0.173 0.722 0.395 0.261 0.880 0.496 0.321
(.062) (.022) (.018) (.061) (.026) (.013) (.069) (.028) (.014)

SML 1.080 0.678 0.375 1.276 0.802 0.641 1.235 0.651 0.454
(.132) (.095) (.045) (.146) (.075) (.050) (.137) (.052) (.029)

PML 0.509 0.272 0.173 0.722 0.395 0.261 0.880 0.496 0.322
(.062) (.021) (.017) (.061) (.026) (.013) (.069) (.028) (.014)

B∗ estimated by square-root Lasso followed by OLS

RV 0.792 0.144 0.084 2.251 1.857 0.943 3.261 3.815 3.689
(.192) (.051) (.010) (.203) (.161) (.221) (.184) (.157) (.120)

RML 0.792 0.144 0.084 2.251 1.857 0.943 3.261 3.815 3.689
(.192) (.051) (.010) (.203) (.161) (.221) (.184) (.157) (.120)

SML 1.211 0.610 0.336 2.515 1.956 1.095 3.415 3.832 3.700
(.131) (.106) (.057) (.189) (.143) (.194) (.175) (.152) (.118)

PML 0.879 0.150 0.084 2.366 1.857 0.943 3.342 3.816 3.689
(.175) (.051) (.011) (.207) (.160) (.221) (.176) (.157) (.120)

B∗ is estimated without error

RV 0.267 0.138 0.084 0.380 0.192 0.122 0.476 0.237 0.148
(.041) (.016) (.010) (.036) (.014) (.011) (.033) (.018) (.011)

RML 0.330 0.163 0.104 0.469 0.229 0.151 0.584 0.289 0.178
(.046) (.016) (.013) (.044) (.023) (.013) (.048) (.020) (.014)

SML 0.042 0.019 0.012 0.044 0.021 0.011 0.048 0.021 0.011
(.035) (.013) (.009) (.033) (.015) (.007) (.041) (.017) (.010)

PML 0.330 0.163 0.104 0.470 0.229 0.151 0.584 0.289 0.178
(.046) (.016) (.013) (.044) (.023) (.012) (.048) (.020) (.014)

Table 1.3: Performance of the estimators of diagonal elements of the precision matrix in
Model 3. The number of replications in each case is R = 50. More details on
the experimental set-up are presented in Section 1.4.1.

in models 4-6 this step has almost no consequence on the estimation accuracy.

The graphics of Figure 1.1 are drawn for Model 2 with p = 60. The left plot corresponds

to the estimation error�measured by `2-vector norm�as a function of the sample size in

the scenario B̂ = B∗, whereas the central plot corresponds to the same error when B∗ is

estimated by the OLS on the sparsity pattern furnished by the square-root Lasso. The
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right plot is just a zoom on the center plot. These plots illustrate the convergence to

zero of the error of estimation for the estimators considered in this chapter. The speed of

convergence in these empirical results, as expected, is nearly n−1/2 for �xed dimension p.

1.4.2 Details on the implementation

Symmetry-enforced maximum likelihood. As we explained earlier, the product

structure of the term ∆∗j in (1.15) may cause the ampli�cation of the estimation error

when passing from B̂ to φ̂. In order to reduce as much as possible this phenomenon, we

suggested to choose the path C by minimizing its length. In addition, the fact that some

entries of B∗ appear in the denominator of ∆∗j , make it unsuitable to include in C edges

corresponding to small values of B̂ij . The combination of these two arguments suggests

to de�ne edge weights as decreasing functions of B̂ij and to look for paths that somehow

minimize the overall weight de�ned as the sum of the weights of the edges contained in C .

The two versions of the SML algorithm that have been implemented and tested in this

work make use of the minimum spanning tree (MST) and the shortest path tree (SPT) in

the step of determining the way of computation the elements of φ̂ belonging to a connected

component C of the graph Ĝ . A MST of C is a tree that spans C and has the smallest

total weight among all the spanning trees of C . The shortest path tree having a given

node r as a root is a spanning tree T of C such that for any node j ∈ C the weight of the

path from j to r in T is the smallest among the weights of all possible paths from j to r

in C .

We have used the Kruskal [Kruskal, 1956] algorithm for �nding the MST and the Jarnik-

Prim-Dijkstra algorithm [Jarník, 1930; Prim, 1957; Dijkstra, 1959] for the SPT. The worst-

case computational complexities of the construction of these trees are the following [Cormen

et al., 2009]. When the graph G has p nodes and q edges, the Kruskal algorithm runs in

O(q log p) time. Its output is a set of MSTs per connected component. The version of the

SML based on the shortest path tree requires O(p + q) operations to �nd the connected

components. In a connected component having pc nodes and qc edges, the node of largest

degree can be obtained in O(qc) operations, while the computational complexity of �nding

the shortest paths from a node to all the others is O(qc log(pc)). Therefore, determining

a shortest path tree per connected component has a complexity of O(p + q log(p)), or

O(sp log(p)) where s is the maximal degree of a node of Ĝ . Thus, the computational

complexities of the two versions of the SML estimator are comparable and, at most, of the

order O(sp log(p)).

In our experiments, we have also tried15 a third version consisting in computing the shortest

path trees from every node of a connected component and then choosing the one with the

minimal overall weight, rather than �rst choosing the root as the node having largest

15We used the package RBGL of R [Carey et al., 2015] for various algorithms related to weighted graphs.
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Figure 1.2: The estimation error of the PML as a function of κ. The plots are obtained for
the synthetic experiment of Model 2 with various values of p and for n = 200
(left), n = 800 (middle) and n = 2000. Please note that the limits of the
y-axis are not the same in the three plots and that the x-axis is presented in
logarithmic scale.

degree. Several other variants have been tested as well, but the simplest version based on

choosing the MST has lead to the best empirical results.

Penalized maximum likelihood. As mentioned earlier, the PML estimator is com-

puted by solving the optimization problem (1.18). We implement a steepest descent al-

gorithm with adaptive step-size and scaled descent direction −∇f(vh)/‖∇f(vh)‖2. At

each iteration, one common adaptation for every coordinate of the descent direction is

performed. If the objective function increases, the current iteration is done again with

a halved step-size. On the opposite, if the objective function decreases, the step-size is

increased by a constant factor for the next iteration.

Mathematically speaking, the update operations for our gradient descent algorithm are

v0 = 1, vh+1 = vh + thuh, h = 0, 1, 2, . . . , (1.19)

where the descent direction is uh = −∇f(vh)/‖∇f(vh)‖2 and th is the step-size. Thanks

to the convexity, the convergence of this algorithm is guaranteed for any starting point v0.

The step-size is updated at each iteration according to the following rule:

th+1 =

{
1.2× th, for f(vh+1) < f(vh),

0.5× th, otherwise.

The multiplicative factors we use for adaptive step-size are those propose by Riedmiller

and Braun [1992] for the Rprop algorithm. We stop iterating when the gradient magnitude

measured in the `2-norm is below a certain level (10−5 in our experiments) or when the

limit of 5000 iterations is attained.

For the choice of the tuning parameter κ, we did a cross-validation by choosing a geometric

grid over the values of κ ranging from 1/p to
√
p. The results, for Models 2 and 4, are



1.5 CONCLUSION 57

0.01 0.10 1.00 10.00

0.
0

0.
6

1.
2

κ

E
st
im

at
io
n
er
ro
r

p=30
p=60
p=90

0.01 0.10 1.00 10.00

0.
0

0.
4

0.
8

κ

E
st
im

at
io
n
er
ro
r

p=30
p=60
p=90

0.01 0.10 1.00 10.00

0.
0

0.
2

0.
4

κ

E
st
im

at
io
n
er
ro
r

p=30
p=60
p=90

Figure 1.3: The estimation error of the PML as a function of κ. The plots are obtained for
the synthetic experiment of Model 4 with various values of p and for n = 200
(left), n = 800 (middle) and n = 2000. Please note that the limits of the
y-axis are not the same in the three plots and that the x-axis is presented in
logarithmic scale.

plotted in Fig. 1.2 and 1.3, respectively. We can clearly see that there is a large interval

of values of κ for which the error is nearly minimal. Based on this observation, we chose

κ = 1
3

√
log p for all the numerical experiments reported in Tables 1.1-1.6.

We also check the performance of the PML estimator with a tuning parameter κ = 0.05.

The related results are reported in Tables B.1-B.6 and Tables B.7-B.12 of Appendix B.

With such a small value for κ in comparison of the precedent one, the symmetry constraints

on the precision matrix are less strong. Therefore, the resulting estimates are closer to those

obtained with the RML estimator. As the true covariance matrix is symmetric, choosing

a small value for κ is indeed a good strategy only when the o�-diagonal entries are well

estimated. In our experiments, with a smaller κ, the estimates accuracies are improved

for the Models 1 and 2, when B∗ is estimated by the square-root Lasso followed by OLS.

For these models, the performance is often better for the PML estimator than for the RV

estimator. In counterpart, the performance of the PML estimator is not as good with a

smaller κ for the same models when B∗ is known.

1.5 Conclusion

This chapter introduces three estimators of the diagonal entries of a sparse precision matrix

when n i.i.d. copies of a Gaussian vector with this precision matrix are observed. The

properties of these estimators are discussed and compared with those of the commonly

used residual variance estimator. At a theoretical level, an interesting �nding is that the

naive maximum likelihood estimator (MLE) that does not take into account the symmetry

constraints has a signi�cantly larger risk than the residual variance estimator and, hence,

is not optimal even asymptotically. The symmetry-enforced MLE and the penalized MLE

circumvent this drawback and are shown in all numerical experiments to outperform the



58 CHAPTER 1: ESTIMATION OF THE DIAGONAL ELEMENTS

residual variance estimator when the matrix B∗ is known. Similar but unreported results

are obtained when the estimators of the diagonal entries use a noisy matrix B̂ = B∗ + Ξ,

provided the noise matrix Ξ has i.i.d. Gaussian entries with zero mean and small variance.

However, in a more realistic situation when B∗ is estimated by the square-root Lasso or by

the ordinary least squares conducted over the submodel selected by the square-root Lasso,

the accuracies of the four estimators of the diagonal entries become comparable with a

slight advantage for the residual variance estimator.

We would like also to mention the introduction of a novel and simple method of estimating

partial correlations and of symmetrizing the precision matrix estimator derived from the

nonsymmetric matrix B̂. It is based on the observation that the square of the partial

correlation between i-th and j-th variables is equal to B∗ijB
∗
ji.

In the future, it would be interesting to look for an estimator of B∗ which is more accu-

rate than the square-root Lasso and could hopefully�in combination with the symmetry-

enforced MLE or the penalized MLE�lead to better precision matrix estimate than the

one obtained by the association of the square-root Lasso and the residual variance esti-

mator. Another appealing avenue for future research is the investigation of the case when

the matrix X is observed with an error. Recent papers [Rosenbaum and Tsybakov, 2013;

Belloni et al., 2014b] may provide valuable guidance for accomplishing this task. Next

chapter addresses this last question.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.372 0.184 0.113 0.526 0.269 0.161 0.655 0.327 0.206
(.066) (.036) (.023) (.066) (.035) (.024) (.076) (.046) (.025)

RML 0.419 0.212 0.134 0.583 0.301 0.183 0.722 0.361 0.228
(.067) (.033) (.020) (.065) (.033) (.023) (.074) (.045) (.024)

SML 0.468 0.228 0.144 0.664 0.334 0.201 0.843 0.405 0.252
(.076) (.033) (.020) (.079) (.032) (.024) (.095) (.042) (.024)

PML 0.450 0.224 0.142 0.622 0.326 0.198 0.763 0.394 0.247
(.070) (.032) (.020) (.069) (.032) (.024) (.073) (.042) (.023)

B∗ estimated by square-root Lasso followed by OLS

RV 0.368 0.182 0.113 0.516 0.267 0.160 0.641 0.324 0.205
(.065) (.036) (.023) (.064) (.035) (.024) (.075) (.046) (.025)

RML 0.368 0.182 0.113 0.516) 0.267 0.160 0.641 0.324 0.205
(.065) (.036) (.023) (.064) (.035) (.024) (.075) (.046) (.025)

SML 0.392 0.191 0.118 0.558 0.286 0.173 0.712 0.351 0.220
(.069) (.037) (.025) (.078) (.033) (.025) (.084) (.043) (.025)

PML 0.383 0.188 0.116 0.539 0.280 0.169 0.680 0.343 0.215
(.067) (.037) (.024) (.067) (.033) (.024) (.077) (.043) (.025)

B∗ is estimated without error

RV 0.366 0.182 0.113 0.515 0.267 0.160 0.640 0.324 0.204
(.066) (.036) (.023) (.065) (.035) (.024) (.074) (.046) (.025)

RML 0.374 0.187 0.116 0.524 0.271 0.163 0.649 0.330 0.208
(.065) (.035) (.023) (.066) (.035) (.024) (.073) (.046) (.025)

SML 0.352 0.173 0.108 0.500 0.259 0.156 0.624 0.316 0.199
(.065) (.039) (.024) (.066) (.036) (.025) (.074) (.046) (.025)

PML 0.353 0.174 0.109 0.500 0.259 0.156 0.625 0.317 0.200
(.065) (.039) (.024) (.066) (.036) (.025) (.074) (.046) (.025)

Table 1.4: Performance of the estimators of diagonal elements of the precision matrix in
Model 4. The number of replications in each case is R = 50. More details on
the experimental set-up are presented in Section 1.4.1.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.384 0.202 0.125 0.543 0.279 0.185 0.701 0.342 0.222
(.077) (.029) (.023) (.060) (.039) (.024) (.064) (.040) (.021)

RML 0.380 0.206 0.128 0.539 0.287 0.190 0.697 0.352 0.230
(.076) (.027) (.023) (.060) (.040) (.025) (.064) (.041) (.021)

SML 0.380 0.205 0.131 0.539 0.290 0.194 0.697 0.353 0.233
(.076) (.029) (.024) (.060) (.042) (.024) (.064) (.041) (.024)

PML 0.380 0.206 0.128 0.539 0.287 0.190 0.697 0.352 0.230
(.076) (.027) (.023) (.060) (.040) (.025) (.064) (.041) (.021)

B∗ estimated by square-root Lasso followed by OLS

RV 0.379 0.209 0.130 0.534 0.295 0.194 0.693 0.367 0.235
(.076) (.029) (.025) (.061) (.040) (.027) (.064) (.044) (.025)

RML 0.379 0.209 0.130 0.534 0.295 0.194 0.693 0.367 0.235
(.076) (.029) (.025) (.061) (.040) (.027) (.064) (.044) (.025)

SML 0.379 0.209 0.134 0.534 0.297 0.199 0.693 0.368 0.241
(.076) (.031) (.026) (.061) (.041) (.027) (.064) (.043) (.027)

PML 0.379 0.209 0.130 0.534 0.295 0.194 0.693 0.367 0.236
(.076) (.029) (.025) (.061) (.040) (.027) (.063) (.043) (.025)

B∗ is estimated without error

RV 0.384 0.201 0.125 0.530 0.275 0.184 0.686 0.339 0.221
(.075) (.030) (.022) (.060) (.038) (.023) (.066) (.040) (.022)

RML 0.383 0.201 0.126 0.531 0.277 0.184 0.687 0.339 0.221
(.076) (.029) (.022) (.061) (.037) (.023) (.066) (.040) (.022)

SML 0.347 0.180 0.112 0.498 0.257 0.170 0.647 0.319 0.206
(.078) (.032) (.024) (.061) (.042) (.025) (.067) (.042) (.023)

PML 0.383 0.201 0.126 0.531 0.277 0.184 0.687 0.339 0.221
(.076) (.029) (.022) (.061) (.037) (.023) (.066) (.040) (.022)

Table 1.5: Performance of the estimators of diagonal elements of the precision matrix in
Model 5. The number of replications in each case is R = 50. More details on
the experimental set-up are presented in Section 1.4.1.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.383 0.207 0.140 0.534 0.310 0.205 0.651 0.374 0.255
(.059) (.031) (.018) (.054) (.031) (.017) (.057) (.034) (.018)

RML 0.378 0.223 0.157 0.531 0.335 0.236 0.648 0.408 0.299
(.058) (.030) (.020) (.052) (.033) (.020) (.055) (.036) (.019)

SML 0.378 0.229 0.169 0.531 0.339 0.249 0.649 0.410 0.312
(.058) (.030) (.022) (.052) (.036) (.021) (.055) (.036) (.019)

PML 0.378 0.223 0.157 0.531 0.335 0.236 0.648 0.408 0.299
(.058) (.030) (.020) (.052) (.033) (.020) (.055) (.036) (.019)

B∗ estimated by square-root Lasso followed by OLS

RV 0.383 0.245 0.170 0.534 0.373 0.262 0.649 0.453 0.341
(.058) (.030) (.019) (.053) (.030) (.024) (.053) (.033) (.025)

RML 0.383 0.245 0.170 0.534 0.373 0.262 0.649 0.453 0.341
(.058) (.030) (.019) (.053) (.030) (.024) (.053) (.033) (.025)

SML 0.383 0.251 0.186 0.534 0.375 0.281 0.649 0.454 0.357
(.058) (.027) (.022) (.053) (.030) (.023) (.053) (.033) (.026)

PML 0.385 0.245 0.170 0.534 0.373 0.262 0.650 0.453 0.341
(.057) (.029) (.019) (.053) (.030) (.024) (.053) (.033) (.025)

B∗ is estimated without error

RV 0.408 0.210 0.141 0.569 0.309 0.205 0.697 0.370 0.251
(.068) (.030) (.018) (.068) (.031) (.018) (.063) (.030) (.018)

RML 0.411 0.212 0.142 0.578 0.313 0.208 0.702 0.372 0.254
(.070) (.030) (.019) (.067) (.033) (.018) (.064) (.031) (.018)

SML 0.182 0.097 0.061 0.277 0.142 0.094 0.311 0.178 0.110
(.057) (.023) (.020) (.064) (.033) (.022) (.073) (.030) (.019)

PML 0.411 0.212 0.142 0.578 0.313 0.208 0.702 0.372 0.254
(.070) (.030) (.019) (.067) (.033) (.018) (.064) (.031) (.018)

Table 1.6: Performance of the estimators of diagonal elements of the precision matrix in
Model 6. The number of replications in each case is R = 50. More details on
the experimental set-up are presented in Section 1.4.1.
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with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 1.701 2.703 3.449 1.424 2.365 3.073 0.542 0.725 0.901

(.149) (.173) (.147) (.190) (.213) (.192) (.079) (.070) (.084)

RML 2.027 3.082 3.840 1.424 2.365 3.073 0.667 0.904 1.109

(.122) (.136) (.129) (.190) (.213) (.192) (.094) (.092) (.080)

SML 2.084 3.098 3.846 1.400 2.342 3.049 0.086 0.096 0.115

(.127) (.128) (.123) (.199) (.221) (.192) (.058) (.052) (.075)

PML 2.028 3.080 3.839 1.391 2.338 3.046 0.172 0.203 0.253

(.120) (.133) (.129) (.202) (.222) (.192) (.047) (.042) (.060)

Table 1.7: Performance of the estimators of diagonal elements of the precision matrix in
Model 1 for n = 50. The number of replications in each case is R = 50. More
details on the experimental set-up are presented in Section 1.4.1.

with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 1.675 2.810 3.772 1.585 2.622 3.419 0.399 0.504 0.588

(.142) (.190) (.203) (.191) (.232) (.221) (.058) (.057) (.049)

RML 2.237 3.591 4.713 1.585 2.622 3.419 0.525 0.684 0.842

(.140) (.153) (.189) (.191) (.232) (.221) (.084) (.070) (.081)

SML 2.534 3.844 4.910 1.937 2.914 3.668 0.074 0.072 0.076

(.160) (.140) (.156) (.212) (.189) (.220) (.054) (.051) (.054)

PML 2.265 3.612 4.728 1.751 2.759 3.527 0.124 0.143 0.151

(.136) (.151) (.183) (.170) (.190) (.213) (.049) (.043) (.038)

Table 1.8: Performance of the estimators of diagonal elements of the precision matrix in
Model 2 for n = 50. The number of replications in each case is R = 50. More
details on the experimental set-up are presented in Section 1.4.1.
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with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 0.596 0.880 1.141 1.044 1.617 2.009 0.534 0.757 0.935

(.077) (.073) (.077) (.164) (.191) (.179) (.064) (.073) (.070)

RML 0.925 1.241 1.494 1.044 1.617 2.009 0.658 0.911 1.137

(.147) (.110) (.129) (.164) (.191) (.179) (.088) (.089) (.102)

SML 1.483 2.105 2.549 1.430 2.023 2.409 0.099 0.104 0.103

(.214) (.327) (.419) (.196) (.203) (.227) (.069) (.075) (.074)

PML 0.926 1.246 1.499 1.165 1.754 2.121 0.659 0.911 1.139

(.147) (.111) (.129) (.174) (.175) (.178) (.089) (.091) (.104)

Table 1.9: Performance of the estimators of diagonal elements of the precision matrix in
Model 3 for n = 50. The number of replications in each case is R = 50. More
details on the experimental set-up are presented in Section 1.4.1.

with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 0.769 1.095 1.416 0.765 1.113 1.456 0.725 1.042 1.349

(.153) (.142) (.131) (.155) (.146) (.141) (.146) (.142) (.130)

RML 0.856 1.172 1.517 0.765 1.113 1.456 0.744 1.062 1.365

(.148) (.141) (.135) (.155) (.146) (.141) (.143) (.146) (.128)

SML 0.931 1.281 1.600 0.809 1.195 1.513 0.693 1.015 1.318

(.145) (.143) (.132) (.165) (.152) (.149) (.152) (.141) (.131)

PML 0.876 1.185 1.530 0.788 1.155 1.489 0.695 1.016 1.319

(.149) (.136) (.136) (.158) (.146) (.145) (.152) (.141) (.130)

Table 1.10: Performance of the estimators of diagonal elements of the precision matrix in
Model 4 for n = 50. The number of replications in each case is R = 50. More
details on the experimental set-up are presented in Section 1.4.1.
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with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 0.790 1.130 1.410 0.786 1.139 1.423 0.771 1.099 1.376

(.130) (.137) (.141) (.137) (.155) (.148) (.134) (.130) (.137)

RML 0.775 1.108 1.389 0.786 1.139 1.423 0.772 1.098 1.378

(.131) (.133) (.139) (.137) (.155) (.148) (.134) (.130) (.139)

SML 0.775 1.109 1.389 0.786 1.139 1.423 0.702 1.036 1.313

(.131) (.133) (.139) (.137) (.154) (.148) (.131) (.131) (.133)

PML 0.775 1.108 1.389 0.787 1.139 1.423 0.772 1.098 1.378

(.131) (.133) (.139) (.138) (.155) (.148) (.134) (.130) (.139)

Table 1.11: Performance of the estimators of diagonal elements of the precision matrix in
Model 5 for n = 50. The number of replications in each case is R = 50. More
details on the experimental set-up are presented in Section 1.4.1.

with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 0.751 1.036 1.238 0.763 1.050 1.257 0.802 1.109 1.341

(.108) (.121) (.122) (.111) (.133) (.131) (.102) (.126) (.123)

RML 0.734 1.012 1.218 0.763 1.050 1.257 0.810 1.119 1.352

(.107) (.120) (.120) (.111) (.133) (.131) (.107) (.121) (.121)

SML 0.734 1.012 1.218 0.763 1.050 1.257 0.372 0.522 0.640

(.107) (.120) (.120) (.111) (.133) (.131) (.132) (.128) (.109)

PML 0.734 1.012 1.218 0.764 1.051 1.257 0.810 1.119 1.352

(.107) (.120) (.120) (.111) (.133) (.131) (.107) (.121) (.121)

Table 1.12: Performance of the estimators of diagonal elements of the precision matrix in
Model 6 for n = 50. The number of replications in each case is R = 50. More
details on the experimental set-up are presented in Section 1.4.1.



Chapter 2

Robust estimation of a sparse

precision matrix

The main part of this chapter is taken from the preprint Convex programming ap-

proach to robust estimation of a multivariate Gaussian model, which has been posted

on the arXiv repository on December 2015. A version of this preprint is available at

http://arxiv.org/abs/1512.04734.

RÉSUMÉ. La distribution gaussienne multivariée est couramment utilisée comme

une première approximation de la distribution de données de grande dimen-

sion. L'estimation des paramètres de cette distribution sous diverses con-

traintes est un sujet abondamment étudié en statistique et cette probléma-

tique sert souvent de modèle de référence pour tester de nouveaux algorithmes

ou de nouveaux cadres théoriques. Dans ce chapitre, nous développons une

approche non-asymptotique du problème d'estimation des paramètres d'une

distribution gaussienne multivariée lorsque les données sont corrompues par

des observations prenant des valeurs extrêmes ou aberrantes (outliers). Nous

proposons un nouvel estimateur � calculable e�cacement en résolvant un prob-

lème d'optimisation convexe � qui estime de manière robuste la moyenne et la

matrice de covariance de la population, même lorsque l'échantillon contient une

proportion signi�cative d'outliers. Lorsque l'ordre de grandeur de la dimension

p des observations est plus petit que celui de la taille n de l'échantillon, on peut

prouver que notre estimateur a une vitesse de convergence optimale à la fois

pour la norme `1 élément par élément, pour la norme de Frobenius et la norme

mixte `2/`1. De plus, cette optimalité est atteinte grâce à une méthode de type

� racine carrée des moindres carrés pénalisés � faisant intervenir un paramètre

d'ajustement universel servant à régler l'importance de la pénalisation. Ces

résultats sont en partie étendus au cas où p est potentiellement plus grand que

n, sous l'hypothèse supplémentaire que l'inverse de la matrice de covariance

est creuse.

http://arxiv.org/abs/1512.04734
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2.1 Introduction

In many applications where statistical methodology is employed, multivariate Gaussian dis-

tribution plays a central role as a �rst approximation to the distribution of high-dimensional

data. It is mainly motivated by the fact that high dimensional data being sparsely dis-

tributed in space, can be reasonably well �tted by an elliptically countered distribution,

of which the Gaussian distribution is the most famous representative. Another reason is

that in high dimensional inference, sophisticated nonparametric methods su�er from the

curse of dimensionality and lead to poor results (both in theory and in practice). For these

reasons, recent years have witnessed an increased interest for simple parametric models in

the statistical literature, with a particular emphasis on the e�ects of high dimensionality

and the necessity to develop nonasymptotic theoretical guarantees. In this context, Gaus-

sian models play a particular role in relation with the graphical modeling and discriminant

analysis, but also because they provide a convenient theoretical framework for showcasing

new ideas and testing new algorithms.
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Determining the parameters of the Gaussian distribution under various constraints is a

widely studied problem in statistics. Recent developments around sparse coding and com-

pressed sensing have opened new lines of research on Gaussian models in which classical

estimators such as the ordinary least squares and the empirical covariance matrix are

strongly sub-optimal. Novel statistical procedures�often based on convex optimization�

have emerged to cope with the aforementioned sub-optimality of traditional techniques. In

addition, establishing nonasymptotic theoretical guarantees that highlight the impact of

the dimensionality and the level of sparsity has appeared as a primary target of theoretical

studies. The present work continues this line of research by developing a nonasymptotic

approach to the problem of estimating the parameters of a multivariate Gaussian distribu-

tion from a sample of independent and identically distributed observations corrupted by

outliers.

We propose an estimator�e�ciently computable by solving a convex program�that ro-

bustly estimates the population mean and the population (inverse) covariance matrix even

when the sample contains a signi�cant proportion of outliers. The estimator is de�ned

as the minimizer of a cost function that combines a data �delity term with a sparsity-

promoting penalization. Following and extending the methodology developed in [Belloni

et al., 2011; Sun and Zhang, 2012], the data �delity term is de�ned as the mixed `2/`1-

norm of the residual matrix. The penalty term is proportional to the mixed `2/`1 norm

of a matrix that models the outliers. Our estimator of the corruption matrix is proved to

be rate optimal simultaneously for the entry-wise `1-norm, the Frobenius norm and the

mixed `2/`1 norm. Furthermore, this optimality is achieved by a penalized square-root of

least squares method with a universal tuning parameter calibrating the magnitude of the

penalty.

The results are partly extended to the case where p is potentially larger than n, but the

inverse covariance matrix is sparse. In such a situation, we recommend to add to the cost

function an additional penalty term that corresponds, to some extent, to a weighted entry-

wise `1 norm of the inverse covariance matrix. The theoretical guarantees established in

this case are not as complete and satisfactory as those of low/moderate dimensional case.

In particular, the obtained risk bounds are valid in the event that the empirical covariance

matrix satis�es a particular type of restricted eigenvalues condition [Bickel et al., 2009].

At this stage, we are not able to theoretically assess the probability of this event. Another

open problem is the practical choice of the tuning parameter. We are currently working

on these issues and hope to address them in a forthcoming paper.

2.1.1 Mathematical framework

We adopt here the following formalization of the multivariate Gaussian model in presence

of outliers. We assume that the outlier-free data Y consists of n row-vectors independently
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drawn from a multivariate Gaussian distribution with mean µ∗ and covariance matrix Σ∗,

hereafter denoted by Np(µ∗,Σ∗). However, the data Y is revealed to the Statistician after

being corrupted by outliers. So, the Statistician has access to a data matrix X ∈ Rn×p

satisfying

X = Y + E∗. (2.1)

The matrix of errors E∗ has a special structure: most rows of E∗�corresponding to

inliers�have only zero entries. We will denote by O the subset of indices from {1, . . . , n}
corresponding to the outliers and by I = {1, . . . , n}\O the subset of inliers. The following

two conditions will be assumed throughout the chapter:

(C1) The n rows of the matrix Y are independent Np(µ∗,Σ∗) random vectors.

(C2) The contamination matrix E∗ is deterministic and, for every i ∈ I ⊂ {1, . . . , n},
the i-th row of E∗ is zero. Furthermore, the rows of E∗(Σ∗)−1/2 are bounded in

Euclidean norm by ME
√
p, for some constant ME.

For an introduction to the problem of robust estimation in statistics, we refer the reader

to [Hampel et al., 1986; Maronna et al., 2006; Huber and Ronchetti, 2009]. An overview

of more recent advances relevant to the present work can be found in [Chen et al., 2015a;

Loh and Tan, 2015].

2.1.2 Robust estimator by convex programming

In the situation under investigation in this work, it is assumed that the sample contains

some outliers. In other terms, the relation Xi,• ∼ Np(µ∗,Σ∗) holds true only for indices i

belonging to some subset I of [n]. The set I is large, but does not necessarily coincide with

the entire set [n]. In such a context, our proposal consist in extending the methodology

developed in [Sun and Zhang, 2013]. Recall that in the case when no outlier is present in the

sample, the square-root Lasso1 [Sun and Zhang, 2013] estimates the matrix Ω∗ = (Σ∗)−1

by �rst solving the optimization problem

B̂ = arg min
B:Bjj=1

min
c∈Rp

{
‖(XB− 1nc

>)>‖2,1 + λ̄‖B‖1,1
}
, (2.2)

for a given tuning parameter λ̄ ≥ 0, where the min is over all p× p matrices B having all

their diagonal entries equal to 1. The second step of the square-root Lasso procedure is to

set

ω̂jj =
( 1

n
‖(In − n−11n1

>
n )XB̂•,j‖

2

2

)−1
; Ω̂ = B̂ · diag({ω̂jj}j∈[p]). (2.3)

1Referred to as �scaled Lasso� in [Sun and Zhang, 2012, 2013], see footnote 4 of Chapter 1.
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In the case of observations corrupted by outliers, we propose to modify the square-root

Lasso procedure as follows. Let us denote by un the vector 1n/
√
n and by X(n) the matrix

X/
√
n. This scaling is convenient since it makes the columns of the data matrix to be of

a nearly constant Euclidean norm, at least in the case without outliers. We replace step

(2.2) by

{B̂, Θ̂} = arg min
B:Bjj=1

Θ∈Rn×p

min
c∈Rp

{∥∥(X(n)B− unc
> −Θ)>

∥∥
2,1

+ λ
(
‖Θ‖2,1 + γ‖B‖1,1

)}
, (2.4)

where λ ≥ 0 is a tuning parameter associated with the regularization term promoting

robustness and where λγ ≥ 0 corresponds to the tuning parameter whose aim is to en-

courage sparsity of the matrix B (or, equivalently, of the corresponding graph). Using the

estimators {B̂, Θ̂}, the entries of the precision matrix Ω∗ are estimated by

ω̂jj =
2n

π
‖(In − unu

>
n )(X(n)B̂•,j − Θ̂•,j)‖

−2

1 ; Ω̂ = B̂ · diag({ω̂jj}j∈[p]). (2.5)

The matrix E∗ and the vector µ∗ can be estimated by

Ê =
√
n Θ̂B̂† and µ̂ =

1

n
(X− Ê)>1n. (2.6)

It is important to stress right away that the robust estimation procedure described by

equations (2.4)-(2.6) can be e�ciently realized in practice even for large dimensions p.

Indeed, the �rst step boils down to solving a convex program, that can be cast into a

second-order cone program, whereas the two last steps involve only simple operations with

matrices and vectors.

To explain the rationale behind this estimator, let us recall the following well-known result

concerning multivariate Gaussian distribution. If we denote B∗ = Ω∗diag(Ω∗)−1, then we

have

(
Y − 1n(µ∗)>

)
B∗•,j = φ∗j ε•,j ,

where ε•,j ∼ Nn(0, In) is a random vector independent of Y•,jc and φ∗j = (ω∗jj)
−1/2.

Combining this relation with (2.1) and using the notations Θ∗ = E∗B∗/
√
n ∈ Rn×p and

c∗ = (B∗)>µ∗, we get

X(n)B∗•,j = c∗jun + Θ∗•,j +
φ∗j√
n
ε•,j , ∀j ∈ [p]. (2.7)

Furthermore, the matrix Θ∗ inherits the row-sparse structure of the matrix E whereas the

matrix B∗ has exactly the same sparsity pattern as the precision matrix Ω∗. This suggests

to recover the triplet (c∗,B∗,Θ∗) by minimizing a penalized loss where the penalty imposed
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on Θ promotes the row-sparsity, while the penalty imposed on B favors sparse matrices

without any particular structure of the sparsity pattern. It is well known in the literature

on group sparsity (see [Lounici et al., 2011] and the references therein) that the mixed

`2/`1-norm penalty ‖ · ‖2,1 is well suited for taking advantage of the row-sparsity while

preserving the convexity of the penalty. A more standard application of the Lasso to our

setting would suggest to use the residual sum of squares
∥∥X(n)B− unc

> −Θ
∥∥2

2,2
as the

data �delity term, instead of the mixed `2/`1-norm written in (2.4). However, similarly

the to the square-root Lasso [Belloni et al., 2011], and as shown in the results of the next

sections, the latter has the advantage of making the tuning parameter λ scale free. It

allows us to de�ne a universal value of λ that does not depend on the noise levels φ∗j in

Eq. (2.7) and, nevertheless, leads to rate optimal risk bounds.

Note that during the past ten years several authors proposed to employ convex penalty

based approaches to robust estimation in various settings, see for instance [Candès and

Randall, 2008; Dalalyan and Chen, 2012; Dalalyan and Keriven, 2012; Nguyen and Tran,

2013]. The problems considered in these papers concern the estimation of a vector pa-

rameter and do not directly carry over the problem under investigation in the present

work.

From the theoretical point of view, analyzing statistical properties of the estimators Θ̂,

B̂ and Ω̂ turns out to be a challenging task. Indeed, despite the obvious similarity of

problem (2.4) to its vector regression counterpart [Belloni et al., 2011; Sun and Zhang,

2012], optimization problem (2.4) contains an important di�erence: the objective function

is not decomposable with respect to neither rows nor columns of the matrix Θ. In fact, the

objective is the sum of two terms, the �rst being decomposable with respect to the columns

of Θ and non-decomposable with respect to the rows, while the second is decomposable

with respect to the rows but non-decomposable with respect to the columns. As shown

in the theorems stated below as well as in their proofs, we succeeded in overcoming this

di�culty by means of nontrivial combinations of elementary arguments. We believe that

some of the tricks used in the proofs may be useful in other problems where the objective

function happens to be non-decomposable.

The rest of this chapter is organized as follows. Having already introduced the proposed

method for robust estimation of a sparse precision matrix, we present our main theoretical

�ndings in Section 2.2. A discussion on the advantages and limitations of the obtained

results as compared to previous work on robust estimation, as well as extensions to high

dimensional setting, are included in Section 2.3. Technical proofs are postponed to Sec-

tion 2.4. Algorithmic aspects related to the implementation of our method are presented

in Section 2.5 and some promising numerical results are reported in Section 2.6.
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2.2 Moderate dimensional case: theoretical results

In order to ease notation and to avoid some technicalities that may blur the main ideas, we

assume that µ∗ = 0 which implies that c = 0, see Eq. (2.7), and we do not need to minimize

with respect to c in (2.10). We introduce the (unnormalized) residuals ξ•,j = φ∗j ε•,j/
√
n,

so that the following relation holds:

X(n)B∗ = Θ∗ + ξ. (2.8)

For a better understanding of the assumptions that are needed to establish a tight upper

bound on the error of estimation of the matrix B∗ of coe�cients and the matrix Θ∗

corresponding to the outliers, we start by analyzing the problem of robust estimation with

p is of smaller order than n, and no sparsity assumption on Ω∗ is made. We call this

setting the moderate dimensional case, since we allow the dimension to go to in�nity with

the sample size, provided that the ratio p/n remains small2. In such a situation there is

no longer need to penalize nonsparse matrices B in the optimization problem. We work

with the estimator

{B̂, Θ̂} = arg min
B∈Rp×p
Bjj=1

min
Θ∈Rn×p

{∥∥(X(n)B−Θ)>
∥∥

2,1
+ λ‖Θ‖2,1

}
. (2.9)

For a given matrix Θ, the minimum with respect to B in the foregoing optimization

problem is a solution to the convex program

B̂(Θ) = arg min
B∈Rp×p
Bjj=1

{ p∑
j=1

∥∥X(n)
•,j −Θ•,j + X

(n)
•,jcBjc,j

∥∥
2

}
, (2.10)

which decomposes into p independent ordinary least squares problems. A solution of the

latter is provided by the formula

X
(n)
•,jcB̂jc,j(Θ) = −Πjc(X

(n)
•,j −Θ•,j) and B̂jj(Θ) = 1, (2.11)

where the notation Πjc is used for the orthogonal projector in Rn onto the subspace

spanned by the columns of X
(n)
•,jc . Let us introduce now the matrices Zj = In −Πjc that

are orthogonal projectors onto the orthogonal complement of the linear subspace of Rn

spanned by the columns of X•,jc (or, equivalently, by X
(n)
•,jc). Using this notation and

2This is di�erent from the �low dimensional case� in which p is assumed �xed when n goes to in�nity,
so that the quantities depending only on p are treated as constants.
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replacing expression (2.11) in problem (2.9), we arrive at

Θ̂ = arg min
Θ∈Rn×p

{ p∑
j=1

∥∥Zj(X(n)
•,j −Θ•,j)

∥∥
2

+ λ‖Θ‖2,1
}
. (2.12)

In what follows, we rely on formulae (2.12) and (2.11) both for computing and analyzing

the estimator provided by Eq. (2.9). Our �rst result concerns the quality of estimating the

outlier matrix Θ∗.

Theorem 2.2.1. Let assumptions (C1) and (C2) be satis�ed. Let δ ∈ (0, 1) such that

n ≥ |O|+ 8p+ 16 log(4/δ) and choose

λ = 6

(
p log(2np/δ)

n

)1/2

. (2.13)

If 40|O|p(13 log(2np/δ) + 2(1 +ME)2) ≤ n− |O|, then with probability at least 1− 3δ,

‖Θ̂−Θ∗‖1,1 ≤ 3C0 max
j

(ω∗jj)
−1/2|O|p

(
log(2np/δ)

n

)1/2

, (2.14)

‖Θ̂−Θ∗‖2,1 ≤ 3C0 max
j

(ω∗jj)
−1/2|O|

(
p log(2np/δ)

n

)1/2

, (2.15)

‖Θ̂−Θ∗‖2,2 ≤ C0 max
j

(ω∗jj)
−1/2

(
|O|p log(2np/δ)

n

)1/2

. (2.16)

Here C0 is an universal constant smaller than 4224.

Several comments are in order. First of all, let us stress that the obtained guarantees are

nonasymptotic: it is not required that the sample size n or another quantity tend to in�nity

for this result to be true. To the best of our knowledge, this is the �rst3 nonasymptotic

result in robust estimation of a multivariate Gaussian model. Second, the value of the

tuning parameter proposed by this result is scale free, that is it does not depend on the

magnitude of the unknown parameters of the model. Third, one can show that the right-

hand side expressions in Eq. (2.14)-(2.16) are minimax optimal up to logarithmic terms.

Thus, the same estimator of Θ∗ is provably optimal for the three aforementioned norms.

This remarkable property is due to the particular form of the penalty used in the estimation

procedure.

Let us switch now to results describing statistical properties of the estimator Ω̂ of the

precision matrix. Unfortunately, mathematical formulae we obtained as risk bounds for

Ω̂ are not as compact and elegant as those of the last theorem. Therefore, to improve

their legibility, we opted for presenting the results in a more asymptotic form. Namely,

3When this work was in preparation, the preprint [Loh and Tan, 2015] has been posted on arXiv that
contains nonasymptotic results for another robust estimator of a multivariate Gaussian model. Detailed
comparison of the results therein with the ours is provided below in the discussion on the previous work.
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we replace the condition 40|O|p(13 log(2np/δ) + 2(1 + ME)2) ≤ n − |O| by the following

one |O|p log n ≤ c0n, for some su�ciently small constant c0 > 0, and we do not provide

explicit constants.

Theorem 2.2.2. Let assumptions (C1) and (C2) be satis�ed and let λ be as in (2.13).

Then there exists universal constants C, c0 > 0 and n0 ∈ N such that for n ≥ n0 and

|O|p log n ≤ c0n, the inequality

‖Ω̂−Ω∗‖2,2 ≤ C
σmax(Ω∗)2

σmin(Ω∗)

{
ME
|O|p log n

n
+

(
p2 log n

n

)1/2}
(2.17)

holds true with probability at least 1− 5/n.

This result tells us that in an asymptotic setting when all the three parameters n, p and

|O| are allowed to tend to in�nity but so that |O|p = o(n/ log n), the rate of convergence

of the estimator Ω̂, measured in the Frobenius norm, is p( |O|n + 1
n1/2 ). This rate contains

two components, p/n1/2 and p|O|/n, that have clear explanation. The rate p/n1/2 comes

from the fact that we are estimating p2 entries of the matrix Ω∗ based on n observations.

This term is unavoidable if no additional assumption (such as the sparsity) is made; it

is the minimax rate of convergence in the outlier-free set-up. The second term, p|O|/n,
originates from the fact that the outlier matrix has p|O| nonzero entries which need to be

somehow estimated for making it possible to estimate the model parameters. So, this term

of the risk re�ects the deterioration caused by the presence of outliers.

2.3 Discussion and extensions to high dimension

Our bounds versus those of always zero estimator Given that the matrix Θ∗ is

de�ned as E∗ divided by
√
n, one may wonder what is the advantage of our results as

compared to the risk bound of the trivial estimator Θ̂0 all the entries of which are 0.

Clearly, the square of the error of this estimator measured in Frobenius norm is of the

order M2
E|O|p/n. One may erroneously think that this bound is of the same order as the

one we obtained above for the convex programming based estimator. In contrast with this,

the risk bound of our estimator�although requires M2
E|O|p/n to be bounded by some

small constant�does not depend on ME. For instance, if ME = 1
12( n
|O|p)1/2, the trivial

estimator will have a constant risk whereas the estimator Θ̂ will be consistent and rate

optimal provided that |O|p log(n+ p) = o(n).

Another important advantage of our estimator�inherent to its de�nition and re�ected

in the obtained risk bounds�is that its squared error is proportional to the quantity

maxj∈p(φ
∗
j )

2, where (φ∗j )
2 represents the conditional variance of the j-th variable given all

the others. In situations where the variables contain strong correlations, these conditional

variances are signi�cantly smaller than the marginal variances of the variables.
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What happens if some outliers have very large norms ? The risk bound estab-

lished for our estimator requires the constant ME, measuring the order of magnitude of

the Euclidean norm of the outliers, to be not too large. This is not an artifact of our math-

ematical arguments, but an inherent limitation of our method. We did some experiments

on simulated data that con�rmed that when ME is large, our estimator behaves poorly.

However, we believe that this is not a serious limitation, since one can always pre-process

the data by removing the observations that have atypically large Euclidean norm.

Lower bounds It is possible to establish lower bounds that show that the rates of

convergence of the risk bounds that appear in Theorem 2.2.1 are optimal up to logarithmic

factors. Indeed, one can show that there exists a constant c > 0 such that

inf
Θ̄n

sup
(Ω∗,Θ∗)

E
[
‖Θ̄n −Θ∗‖q,q′

]
≥ c
(
p2/q|O|2/q′

n

)1/2

, (q, q′) ∈ {(1, 1); (1, 2); (2, 2)},

(2.18)

where the inf is over all possible estimators Θ̄n while the sup is over all matrices Ω∗,Θ∗

such that E∗ =
√
nΘ∗diag(Ω∗)(Ω∗)−1 satis�es condition (C2). This lower bound can be

proved by lower bounding the sup over all possible precision matrices by the corresponding

expression for the identity precision matrix Ω∗ = Ip. In this case, E∗ =
√
nΘ∗ and we

observe X(n) = Θ∗ + n−1/2ε, where ε is a n × p matrix with i.i.d. standard Gaussian

entries. If we further lower bound the sup over all |O|-(row)sparse matrices Θ∗ by the sup

over matrices whose rows |O|+ 1, . . . , n vanish, we get a simple Gaussian mean estimation

problem for the entries θ∗ij with i = 1, . . . , |O| and j = 1, . . . , p, under the condition

maxi,j |θ∗ij | ≤ n−1/2ME. It is well known that in this problem the individual entries θ∗ij can

not be estimated at a rate faster than n−1/2. This yields the result for q = q′ = 1. The

corresponding upper bounds for (q, q′) = (2, 1) and (q, q′) = (2, 2) readily follow from that

of (q, q′) = (1, 1) by a simple application of the Cauchy-Schwarz inequality. Furthermore,

very recently, the cases (q, q′) = (2, 1) and (q, q′) = (2, 2) have been thoroughly studied by

Klopp and Tsybakov [2015]. In particular, lower bounds including logarithmic terms have

been established that prove that our estimator is minimax rate optimal when p/|O| is of
the order nr for some r ∈ (0, 1).

ε-contamination model and minimax sub-optimality The estimator proposed in

this work can be applied in the context of ε-contamination model often used in statistics

for quantifying the performance of robust estimators. It corresponds to assuming that

each of n rows of the data matrix X is given by Xi = (1− εi)Yi + εiEi, where εi ∈ {0, 1}
is a Bernoulli random variable with P(εi = 1) = ε, Yi ∼ N (µ∗,Σ∗) is as before and

Ei is randomly drawn from a distribution Q. The random variables εi, Yi and Ei are

independent and, perhaps the main di�erence with the model we considered above is that
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all Ei's are drawn from the same distribution Q. One may wonder whether our procedure

is minimax optimal in this ε-contamination model.

As proved in Theorems 3.1 and 3.2 of [Chen et al., 2015a], the minimax rate for estimating

the covariance matrix Σ∗ in the squared operator norm is p
n + ε2. In our notations, the

role of ε is played by |O|/n. Therefore, the aforementioned result from [Chen et al., 2015a]

suggests that one can estimate the precision matrix in the squared Frobenius norm with

the rate p( pn + ε2) = p( pn + |O|2
n2 ), where the factor p comes from the fact that the square of

the Frobenius norm is upper bounded by p-times the operator norm. Recall that the rate

provided by the upper bound of Theorem 2.2.2 is p( pn + |O|2p
n2 ).

Therefore, the rate obtained by a direct application of Theorem 2.2.2 is sub-optimal in the

minimax sense for the ε-contamination model (when both the dimension and the number

of outliers tend to in�nity with the sample size so that |O|2/n tends to in�nity). However,

under Huber contamination model, if we take mild assumptions on the distribution Q in

addition to condition (C2), the bounds stated in Lemma 2.4.9 can provably be tightened.

Then, optimal rates for the estimation of Ω∗ can be obtained, up to logarithmic factors.

It is still an open question whether the rate p( pn + |O|2p
n2 ) is minimax optimal over the

set M(τ , τ ,ME) of matrices (Σ∗,E∗) such that τ ≤ σmin(Σ∗) ≤ σmax(Σ∗) ≤ τ and E∗

satis�es condition (C2). Theorem 2.2.2 establishes that p( pn + |O|2p
n2 ) is an upper bound

for the minimax rate, but the question of getting matching lower bound remains open.

Extensions to the case of large p In the case of large p, most ingredients of the proof

used in moderate dimensional case remain valid after a suitable adaptation. Perhaps the

most important di�erence is in the de�nition of the dimension-reduction cone. In order to

present it, let J = {Jj : j ∈ [p]} be a collection of p subsets of [p]�supports of each row of

the precision matrix�for which we use the notation |J | =
∑p

j=1 |Jj |. By a slight abuse of

notation, we will write J c for the collection {Jcj : j ∈ [p]} and, for every p× p matrix A,

we de�ne AJ as the matrix obtained from A by zeroing all the elements Ai,j such that

i 6∈ Jj . Let O be the subset of [n] corresponding to the outliers. ξO is obtained by zeroing

all the rows ξi,• such that i ∈ O. We de�ne the dimension reduction cone

CJ ,O(c, γ) ,
{

∆ ∈ R(p+n)×p : γ‖∆B
J c‖1,1 + ‖∆Θ

Oc,•‖2,1 ≤ c
(
γ‖∆B

J ‖1,1 + ‖∆Θ
O,•‖2,1

)}
,

for c > 1 and γ > 0, where ∆B = ∆1:p,• and ∆Θ = ∆(p+1):(p+n),•. For a constant κ > 0,

let us introduce the matrix M = [X(n);−In] and the event

Eκ =

{
‖M∆‖2F ≥ κ

(‖∆B
J ‖

2

1,1

|J |

)∨(‖∆Θ
O,•‖

2

2,1

|O|

)
for all ∆ ∈ CJ ,O(2, 1)

}
. (2.19)

This event corresponds to the situations where the matrix M satis�es the (matrix) compat-

ibility condition. To simplify the statement of the result, we assume that all the diagonal
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entries of the covariance matrix Σ∗ are equal to one. Note that this assumption can be

approached by dividing the columns of X by the corresponding robust estimators of their

standard deviation.

Theorem 2.3.1. Let J and O be such that B∗J c = 0 and Θ∗Oc,• = 0. Choose γ = 1 and

δ ∈ (0, 1) such that n ≥ |O|+ 16 log(2p/δ) and choose

λ = 6

(
log(2np/δ)

n− |O|

)1/2

. (2.20)

If 4λ(|J |1/2 + |O|1/2) < κ1/2 holds, then there exists an event E0 of probability at least

1− 2δ such that in Eκ ∩ E0, we have

‖B̂−B∗‖1,1 + ‖Θ̂−Θ∗ − ξO‖2,1 ≤
C1

κ
max
j∈[p]

(ω∗jj)
−1/2

(
|J |+ |O|

)( log(2np/δ)

n− |O|

)1/2

(2.21)

with C1 ≤ 900.

The proof of this theorem follows the same scheme as the one of Theorem 2.2.1, it is given

in Section 2.4.4. We will not comment this result too much because we �nd it incomplete at

this stage. Indeed, the main conclusion of the theorem is formulated as a risk bound that

holds in an event close to Eκ. Unfortunately, we are not able now to provide a theoretical

evaluation of P(Eκ). We believe however that this probability is close to one, since the

matrix M is composed of two matrices X(n) and −In that have weakly correlated columns

and each of these matrices satisfy the restricted eigenvalues condition. We hope that we

will be able to make this rigorous in near future. Note also that this result tells us that

one gets the optimal rate (up to logarithmic factors) of estimating B∗ in `1-norm if the

number of outliers is at most of the same order as the sparsity of the precision matrix.

Other related works In recent years, several methodological contributions have been

made to the problem of robust estimation in multivariate Gaussian models under various

kinds of contamination models. For instance, Wang and Lin [2014] have proposed a group-

Lasso type strategy in the context of errors-in-variables with a pre-speci�ed group structure

on the set of covariates whereas Hirose and Fujisawa [2015] have introduced the method

γ-Lasso, a robust sparse estimation procedure of the inverse covariance matrix based on

the γ-divergence. Under cell-wise contamination model, Öllerer and Croux [2015] and Tarr

et al. [2016] proposed to estimate the precision matrix by using either the graphical Lasso

[d'Aspremont et al., 2008; Friedman et al., 2008] or the Clime estimator [Cai et al., 2011]

in conjunction with a robust estimator of the covariance matrix. While [Tarr et al., 2016]

have mainly focused on the methodological aspects, [Öllerer and Croux, 2015] carried out

a breakdown analysis. Risk bounds on the statistical error of this procedure have been
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established by Loh and Tan [2015]. They have shown that the element-wise squared error

when estimating the precision matrix Ω∗ is of the order ‖Ω∗‖21,∞
( p
n + |O|2

n2

)
. This result is

particularly appealing for very sparse precision matrices having small `1,∞ norm. However,

in moderate dimensional situations where the precision matrix is not necessarily sparse,

the term ‖Ω∗‖21,∞ is generally proportional to pσmax(Ω∗)2 and the resulting upper bound is

very likely to be sub-optimal. If we apply this result for assessing the quality of estimation

in the squared Frobenius norm, we get an upper bound of the order p2
( p
n + |O|2

n2

)
, whereas

our result provides an upper bound of the order p
( p
n + |O|2p

n2

)
. Furthermore, the results in

[Loh and Tan, 2015] require the tuning parameter λ to be larger than an expression that

involves the proportion of the outliers and the `1,∞ norm of the matrix Ω∗. This quantities

are rarely available in practice and their estimation is often a hard problem. Finally, in the

context of robust estimation of large matrices, let us also mention the recent work [Klopp

et al., 2014], proposing a robust method of matrix completion and establishing sharp risk

bounds on its statistical error.

2.4 Technical results and proofs

This section contains the proofs of all the mathematical claims of the chapter. The section

is split into four parts. The �rst part contains the proof of Theorem 2.2.1, up to some

technical lemmas characterizing the order of magnitude of the stochastic terms. The proof

of Theorem 2.2.2 is presented in the second part, while the third part contains the afore-

mentioned lemmas on the tail behavior of random quantities appearing in the proofs. The

fourth and last part contains the proof of Theorem 2.3.1.

To ease notation, we de�ne the projection matrix Z = In −X
(
X>X

)†
X>.

2.4.1 Risk bounds for outlier estimation

In this subsection, we provide a proof of Theorem 2.2.1, which contains perhaps the most

original mathematical arguments of this work. Prior to diving into low-level technical

arguments, let us provide a high-level overview of the proof. We can split it into four steps

as follows:

Step 1: We check that if

λ ≥ 3 max
i∈[n]

(∑
j∈[p]

(Zji,•ε•,j)
2

‖Zjε•,j‖
2

2

)1/2

(2.22)
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then the vector ∆̂Θ = Θ̂−Θ∗ belongs to the dimension-reduction cone

‖∆̂Θ
Oc,•‖2,1 ≤ 2‖∆̂Θ

O,•‖2,1. (2.23)

Step 2: Using the Karush-Kuhn-Tucker conditions, we establish the bound

‖Z∆̂Θ‖
2

2,2 ≤
14λ

3
‖ξ>‖2,∞‖∆̂

Θ‖2,1 +
(
λ‖∆̂Θ‖2,1

)2
(2.24)

for λ satisfying (2.22).

Step 3: Combining the two previous steps and using notation α := ‖In − Z‖∞,∞, we
obtain

‖∆̂Θ‖2,2 ≤ 140λ‖ξ>‖2,∞|O|
1/2 and ‖∆̂Θ‖2,1 ≤ 520λ‖ξ>‖2,∞|O|, (2.25)

provided that |O|(λ2 + α) < 1/10.

Step 4: We conclude by establishing deterministic bounds on the random variables that

appear in expressions (2.22) and (2.25), as well as on α.

The proofs of Steps 1 and 4 are, up to some additional technicalities, similar to those for

the square-root Lasso. Steps 2 and 3 contain more original ingredients. The detailed proofs

of all these steps are given below.

For every c > 0 and O ⊂ [n], we de�ne the cone

CO(c) ,
{

∆ ∈ Rn×p : ‖∆Θ
Oc,•‖2,1 ≤ c‖∆

Θ
O,•‖2,1

}
.

Lemma 2.4.1. If, for some constant c > 1, the penalty level λ satis�es the condition

λ ≥ c+ 1

c− 1
max
i∈[n]

(∑
j∈[p]

(Zji,•ε•,j)
2

‖Zjε•,j‖
2

2

)1/2

, (2.26)

then the matrix ∆̂Θ belongs to the cone CO(c).

Proof. The de�nition of Θ̂ by optimization problem (2.12) immediately leads to

λ
(
‖Θ̂‖2,1 − ‖Θ

∗‖2,1
)
≤
∑
j∈[p]

(
‖Zj(X(n)

•,j −Θ∗•,j)
∥∥

2
− ‖Zj(X(n)

•,j − Θ̂•,j)
∥∥

2

)
. (2.27)

We use the inequality ‖a‖2−‖b‖2 ≤ (a−b)>a/‖a‖2 which ensues from the Cauchy-Schwarz

inequality and is true for any pair of vectors (a, b), here with a = Zj(X
(n)
•,j − Θ∗•,j) and
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b = Zj(X
(n)
•,j − Θ̂•,j). Clearly, we have a− b = Zj∆̂Θ

•,j and a = Zjξ•,j . Hence, we obtain

∥∥Zj(X(n)
•,j −Θ∗•,j)

∥∥
2
−
∥∥Zj(X(n)

•,j − Θ̂•,j)
∥∥

2
≤ (Zj∆̂Θ

•,j)
> Zjξ•,j∥∥Zjξ•,j∥∥2

=
n∑
i=1

∆̂Θ
i,j

Zji,•ξ•,j∥∥Zjξ•,j∥∥2

.

Then summing on j ∈ [p] and applying the Cauchy-Schwarz inequality, we get

∑
j∈[p]

‖Zj(X(n)
•,j −Θ∗•,j)

∥∥
2
− ‖Zj(X(n)

•,j − Θ̂•,j)
∥∥

2
≤

n∑
i=1

‖∆̂Θ
i,•‖2

( p∑
j=1

(Zji,•ξ•,j)
2∥∥Zjξ•,j∥∥2

2

) 1
2

.

This inequality, in conjunction with Eq. (2.27) and the obvious inequality ‖Θ̂‖2,1−‖Θ∗‖2,1 ≥
‖∆̂Θ

Oc,•‖2,1 − ‖∆̂
Θ
O,•‖2,1 leads to

λ
(
‖∆̂Θ

Oc,•‖2,1 − ‖∆̂
Θ
O,•‖2,1

)
≤ ‖∆̂Θ‖2,1 max

i∈[n]

( p∑
j=1

(Zji,•ξ•,j)
2∥∥Zjξ•,j∥∥2

2

) 1
2

≤ λc− 1

c+ 1

(
‖∆̂Θ

O,•‖2,1 + ‖∆̂Θ
Oc,•‖2,1

)
,

where the last line follows from condition (2.26). In conclusion, we get ‖∆̂Θ
Oc,•‖2,1 ≤

c‖∆̂Θ
O,•‖2,1, which coincides with the claim of the lemma.

The second step will be split into several lemmas, whereas the �nal conclusion is presented

below in Lemma 2.4.6.

Lemma 2.4.2. Let us introduce the vectors ξ̂•,j = Zj(X
(n)
•,j − Θ̂•,j), j ∈ [p]. There exists

a n× p matrix V such that

‖Vi,•‖2 ≤ 1, V>i,•Θ̂i,• = ‖Θ̂i,•‖2, ∀ i ∈ [n], (2.28)

and, for every j ∈ [p], the following relation holds

‖Zj∆̂Θ
•,j‖

2

2
= ξ>•,jZ

j∆̂Θ
•,j − λ‖ξ̂•,j‖2V

>
•,j∆̂

Θ
•,j . (2.29)

Proof. Let us �rst consider the case ξ̂•,j 6= 0. It is helpful to introduce the functions

g1(Θ) =
∑p

j=1

∥∥Zj(X(n)
•,j −Θ•,j)

∥∥
2
and g2(Θ) =

∑n
i=1 ‖Θi,•‖2. The Karush-Kuhn-Tucker

conditions imply that there exist two matrices U and V in Rn×p satisfying U ∈ ∂Θg1(Θ̂),

V ∈ ∂Θg2(Θ̂) and U+λV = 0. For every j ∈ [p], let uj and vj be the jth column of U and

V, respectively, so that uj +λvj = 0 for every j ∈ [p]. With the assumption that ‖ξ̂•,j‖2 >
0, uj is a di�erential and uj = (Zj

>
ZjΘ̂•,j−Zj

>
X

(n)
•,j )/‖ξ̂•,j‖2. Thus Zj

>
Zj = Zj leads to

uj = Zj(Θ̂•,j −X
(n)
•,j )/‖ξ̂•,j‖2. Hence, we deduce that ZjΘ̂•,j − ZjX

(n)
•,j + λvj‖ξ̂•,j‖2 = 0.

Furthermore, as X
(n)
•,j = −X

(n)
•,jcB

∗
jc,j+Θ∗•,j+ξ•,j and Zj is the projector onto the subspace
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orthogonal to X
(n)
•,jc , it follows that

ZjX
(n)
•,j = ZjΘ∗•,j + Zjξ•,j . (2.30)

This yields Zj∆̂Θ
•,j − Zjξ•,j + λ‖ξ̂•,j‖2vj = 0 where ∆̂Θ = Θ̂ −Θ∗. Finally, taking the

scalar product of both sides with ∆̂Θ
•,j , we get

(∆̂Θ
•,j)
>Zj∆̂Θ

•,j − ξ>•,jZj∆̂Θ
•,j + λ‖ξ̂•,j‖2v

>
j ∆̂Θ

•,j = 0.

Since vj = V•,j , this completes the proof of (2.29). To check relation (2.28), it su�ces to

remark that Vi,• belongs to the sub-di�erential of the Euclidean norm ‖Θi,•‖2 evaluated

at Θ̂.

Let us now consider the case ξ̂•,j = 0. This can be equivalently written as Zj(X
(n)
•,j−Θ̂•,j) =

0. In view of Eq. (2.30), we get Zj∆̂Θ
•,j = Zjξ•,j . Taking the scalar product of both sides

with ∆̂Θ
•,j and using the fact that Zj is idempotent, we get relation (2.29).

Lemma 2.4.3. Let R,A,B be arbitrary real numbers satisfying the inequality R2 ≤ A +

BR. Then, the inequality R2 ≤ 2A+B2 holds true.

Proof. The inequality R2 ≤ A + BR is equivalent to (2R − B)2 ≤ 4A + B2. This entails

that |2R−B| ≤
√

4A+B2 and, therefore, 2R ≤ B+
√

4A+B2. We get the desired result

by taking the square of both sides and using the inequality (a+ b)2 ≤ 2a2 + 2b2.

Lemma 2.4.4. Equation (2.29) implies that

‖Zj∆̂Θ
•,j‖

2

2
≤ 2ξ>•,jZ

j∆̂Θ
•,j − 2λ‖Zjξ•,j‖2V

>
•,j∆̂

Θ
•,j + (λV>•,j∆̂

Θ
•,j)

2.

Proof. According to Eq. (2.30), we have Zj(X
(n)
•,j −Θ∗•,j) = Zjξ•,j . Therefore, from the

de�nition of the estimated residuals ξ̂•,j we infer that Zjξ•,j− ξ̂•,j = Zj∆̂Θ
•,j , which implies

the inequality

∣∣‖Zjξ•,j‖2 − ‖ξ̂•,j‖2∣∣ ≤ ‖Zjξ•,j − ξ̂•,j‖2 = ‖Zj∆̂Θ
•,j‖2.

Combining this bound with equation (2.29) of Lemma 2.4.2, we obtain

‖Zj∆̂Θ
•,j‖

2

2
= ξ>•,jZ

j∆̂Θ
•,j − λ‖Zjξ•,j‖2V

>
•,j∆̂

Θ
•,j + λ

(
‖Zjξ•,j‖2 − ‖ξ̂•,j‖2)V>•,j∆̂

Θ
•,j

≤ ξ>•,jZj∆̂Θ
•,j − λ‖Zjξ•,j‖2V

>
•,j∆̂

Θ
•,j + λ|V>•,j∆̂Θ

•,j | · ‖Zj∆̂Θ
•,j‖2.

We conclude using Lemma 2.4.3 with R = ‖Zj∆̂Θ
•,j‖2.
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Lemma 2.4.5. Assuming that λ ≥ c+1
c−1 max

i∈[n]

(∑
j∈[p]

(Zji,•ε•,j)
2

‖Zjε•,j‖
2

2

)1/2

, it holds

p∑
j=1

ξ>•,jZ
j∆̂Θ
•,j ≤ λ

c− 1

c+ 1
‖∆̂Θ‖2,1 max

j∈[p]
‖ξ•,j‖2.

Proof. We have

p∑
j=1

ξ>•,jZ
j∆̂Θ
•,j =

n∑
i=1

p∑
j=1

(Zjξ•,j)i∆̂
Θ
i,j ≤ max

j∈[p]
‖Zjξ•,j‖2

n∑
i=1

p∑
j=1

|(Zjξ•,j)i|
‖Zjξ•,j‖2

|∆̂Θ
i,j |.

Thus by the Cauchy-Schwarz inequality and the assumption of the lemma,

p∑
j=1

ξ>•,jZ
j∆̂Θ
•,j ≤ max

j∈[p]
‖Zjξ•,j‖2

n∑
i=1

‖∆̂Θ
i,•‖2

(∑
j∈[p]

(Zji,•ξ•,j)
2

‖Zjξ•,j‖
2

2

)1/2

≤ λc− 1

c+ 1
‖∆̂Θ‖2,1 max

j∈[p]
‖Zjξ•,j‖2.

Moreover, as the operator norm associated with the Euclidean norm is the spectral norm,

it holds that ‖Zjξ•,j‖2 ≤ ‖Z
j‖2‖ξ•,j‖2. Then, as Zj is a projection matrix, ‖Zj‖2 = 1 and

‖Zjξ•,j‖2 ≤ ‖ξ•,j‖2. The claimed result follows.

Lemma 2.4.6. If conditions (2.26) and (2.29) hold, then

p∑
j=1

‖Zj∆̂Θ
•,j‖

2

2
≤ 2λ‖ξ>‖2,∞‖∆̂

Θ‖2,1
(c− 1

c+ 1
+ 2
)

+
(
λ‖∆̂Θ‖2,1

)2
. (2.31)

Proof. We �rst note that ‖Vi,•‖2 ≤ 1 yields

p∑
j=1

|V>•,j∆̂Θ
•,j | ≤ ‖∆̂Θ‖2,1 and

p∑
j=1

(λV>•,j∆̂
Θ
•,j)

2 ≤ (λ‖∆̂Θ‖2,1)2.

Thus, using relation (2.29) and Lemma 2.4.4, we arrive at

p∑
j=1

‖Zj∆̂Θ
•,j‖

2

2
≤ 2

p∑
j=1

ξ>•,jZ
j∆̂Θ
•,j + 2λ

p∑
j=1

‖Zjξ•,j‖2|V
>
•,j∆̂

Θ
•,j |+

p∑
j=1

(λV>•,j∆̂
Θ
•,j)

2

≤ 2

p∑
j=1

ξ>•,jZ
j∆̂Θ
•,j + 2λmax

j∈[p]
‖Zjξ•,j‖2

p∑
j=1

|V>•,j∆̂Θ
•,j |+ (λ‖∆̂Θ‖2,1)2

≤ 2

p∑
j=1

ξ>•,jZ
j∆̂Θ
•,j + 2λmax

j∈[p]
‖ξ•,j‖2‖∆̂

Θ‖2,1 + (λ‖∆̂Θ‖2,1)2.

The combination of the latter with Lemma 2.4.5 implies inequality (2.31).
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Note that Z and Zj are two orthogonal projection matrices on nested subspaces of dimen-

sions n − p and n − p + 1, respectively. Hence, for any j ∈ [p], ‖Z∆̂Θ
•,j‖2 ≤ ‖Z

j∆̂Θ
•,j‖2.

Using this inequality to lower bound the left-hand side of Eq. (2.31) and choosing c = 2,

we get inequality (2.24) of Step 2. We are now in a position to carry out Step 3.

Proposition 2.4.7. If the penalty level λ satis�es the condition (2.22) and |O|(λ2 +α) <

1/10, then

‖∆̂Θ‖2,2 ≤ 140λ‖ξ>‖2,∞|O|
1/2 and p−1/2‖∆̂Θ‖1,1 ≤ ‖∆̂

Θ‖2,1 ≤ 520λ‖ξ>‖2,∞|O|,
(2.32)

where α := ‖In − Z‖∞,∞.

Proof. In the few lines that follow, we write X instead of X(n) and ∆̂ instead of ∆̂Θ.

Simple algebra yields

‖(In − Z)∆̂‖
2

2,2 = trace
(
(In − Z)∆̂((In − Z)∆̂)>

)
.

Using the facts that trace(AB) = trace(BA) (whenever the matrix products are well

de�ned), trace(AB) ≤ ‖A‖∞,∞‖B‖1,1 and ‖AA>‖q,q ≤ ‖A‖22,q, for any q ∈ [1,∞], (the

last one is a simple consequence of the Cauchy-Schwarz inequality) we get

‖(In − Z)∆̂‖
2

2,2 = trace
(
(In − Z)∆̂∆̂>

)
≤ ‖In − Z‖∞,∞ · ‖∆̂∆̂>‖1,1 ≤ ‖In − Z‖∞,∞ · ‖∆̂‖

2

2,1.

Adding the last inequality to Eq. (2.24) of Step 2 and using the Pythagorean theorem, we

get

‖∆̂‖
2

2,2 ≤
14λ

3
‖ξ>‖2,∞‖∆̂‖2,1 + (λ2 + α)‖∆̂‖

2

2,1. (2.33)

Since according to Step 1 we have ∆̂Θ ∈ CO(c), we infer that

‖∆̂‖
2

2,2 ≤ 14λ‖ξ>‖2,∞‖∆̂O,•‖2,1 + 9(λ2 + α)‖∆̂O,•‖
2

2,1.

Finally, using the Cauchy-Schwarz inequality, we have ‖∆̂O,•‖
2

2,1 ≤ |O| · ‖∆̂O,•‖
2

2,2, which

leads to

‖∆̂‖
2

2,2 ≤ 14λ‖ξ>‖2,∞|O|
1/2‖∆̂O,•‖2,2 + 9|O|(λ2 + α)‖∆̂O,•‖

2

2,2.

Since the last norm in the right-hand side is bounded from above by ‖∆̂‖2,2, we get

‖∆̂‖
2

2,2 ≤ 14λ‖ξ>‖2,∞|O|
1/2‖∆̂‖2,2 + 9|O|(λ2 + α)‖∆̂‖

2

2,2.
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This implies that either ‖∆̂‖2,2 = 0 or

‖∆̂‖2,2 ≤
14λ‖ξ>‖2,∞|O|1/2

1− 9|O|(λ2 + α)
, (2.34)

provided that the denominator of the last expression is positive. Note that under the same

condition, one can bound the norm ‖∆̂‖2,1 as follows:

‖∆̂‖2,1 ≤ 3‖∆̂O,•‖2,1 ≤ 3|O|1/2‖∆̂O,•‖2,2 ≤ 3|O|1/2‖∆̂‖2,2 ≤
52λ‖ξ>‖2,∞|O|

1− 9|O|(λ2 + α)
. (2.35)

This completes the proof.

The details of Step 4 are postponed to Subsection 2.4.3. Let us just stress here that if for a

δ ∈ (0, 1) we de�ne the event E as the one in which the following inequalities are satis�ed:

max
i∈[n],j∈[p]

|Zji,•ε•,j | ≤
√

2 log(2np/δ)

min
j∈[p]
‖Zjε•,j‖

2

2 ≥ n− p+ 1− 2
√

(n− p+ 1) log(2p/δ) ≥ n/2

σmin(X(Ω∗)1/2) ≥
√

(n− |O|)/4

‖In − Z‖∞,∞ ≤
8(1 +ME)2p+ 16 log(2n/δ)

n− |O|
‖ε>‖2,∞ ≤

√
n+

√
2 log(p/δ) ≤

√
n (1 + 2−3/2).

According to Eq. (2.42), Lemma 2.4.12 and Lemma 2.4.13 below, as well as the union

bound, we have P(E) ≥ 1 − 3δ. Furthermore, combining the above upper bound on

α = ‖In − Z‖∞,∞ with the condition of the theorem, we get that |O|(λ2 +α) ≤ 1/10 in E .
Thus, Proposition 2.4.7 implies the claim of Theorem 2.2.1.

2.4.2 Bounds on estimation error of the precision matrix

Let us denote by D̂ and D∗ the p × p diagonal matrices with D̂jj = ω̂jj and D∗jj = ω∗jj ,

respectively. We know that Ω̂ = B̂D̂ and Ω∗ = B∗D∗. Hence, an upper bound on the

error of estimation of Ω∗ can be readily inferred from bounds on the estimation error of

B∗ and D∗. Indeed,

‖Ω̂−Ω∗‖2,2 ≤ ‖(B̂−B∗)D̂‖2,2 + ‖B∗(D̂−D∗)‖2,2
≤ ‖B̂−B∗‖2,2 max

j
ω̂jj + σmax(Ω∗)‖D̂(D∗)−1 − Ip‖2,2. (2.36)

To formulate the corresponding result, let us de�ne the condition number ρ∗ ≥ 1 by

(ρ∗)2 = σmax(Ω∗)/σmin(Ω∗). Throughout this proof, we use C as a generic notation for a
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universal constant, whose value may change at each appearance.

Lemma 2.4.8. It holds that

‖B̂−B∗‖2,2 ≤ σmin(X(n))−1
(
α1/2‖∆̂Θ‖2,1 + p1/2 max

j
‖(In − Zj)ξ•,j‖2

)
. (2.37)

In addition, if (|O|p) = o(n/ log n), there exists an absolute constant C > 0 such that for

su�ciently large values of n the inequality

‖B̂−B∗‖2,2 ≤ Cρ
∗
{
ME
|O|p log n

n
+

(
p2 log n

n

)1/2}
(2.38)

holds with probability larger than 1− (5/n).

Proof. To ease notation, throughout this proof we write Ω and ωjj instead of Ω∗ and ω∗jj ,

respectively. One can check that X(n)(B̂•,j−B∗•,j) = X
(n)
•,jc(B̂jc,j−B∗jc,j) = (In−Zj)(∆̂Θ

•,j−
ξ•,j) for every j ∈ [p]. Therefore, by the triangle inequality, we get ‖X(n)(B̂−B∗)‖2,2 ≤
‖(In − Z)∆̂Θ‖2,2 + p1/2 maxj ‖(In − Zj)ξ•,j‖2. We have already used in the previous sec-

tion the inequality ‖(In − Z)∆̂Θ‖2,2 ≤ α1/2‖∆̂Θ‖2,1. This yields

‖B̂−B∗‖2,2 ≤ σmin(X(n))−1
(
α1/2‖∆̂Θ‖2,1 + p1/2 max

j
‖(In − Zj)ξ•,j‖2

)
.

Combining inequality σmin(X(n)) ≥ σmin(X(n)Ω1/2)σmin(Ω−1/2) = σmin(X(n)Ω1/2)σmax(Ω)−1/2

with the last claim of Lemma 2.4.12 (with δ = 1/n), for n su�ciently large, we get that the

inequality σmin(X(n)) ≥ Cσmax(Ω)−1/2 holds with probability at least 1− 1/n. Similarly,

using Theorem 2.2.1 with δ = 1/n we check that for n large enough, with probability at

least 1 − 3/n, we have ‖∆̂Θ‖2,1 ≤ 3C0(maxj ω
−1/2
jj )|O|(p logn

n )1/2. In order to evaluate

the term ‖(In − Zj)ξ•,j‖2, we note that its square is drawn from the scaled khi-square

distribution (nωjj)
−1χ2

p−1. Therefore, applying the same argument as in Lemma 2.4.13,

we check that with probability at least 1− 1/n,

max
j∈[p]
‖(In − Zj)ξ•,j‖2 ≤ max

j
(nωjj)

−1/2(
√
p− 1 +

√
2 log(pn)) ≤ 3 max

j
ω
−1/2
jj

(p log n

n

)1/2
.

In addition, it is clear that maxj ω
−1/2
jj = (minj ωjj)

−1/2 ≤ σmin(Ω)−1/2. Putting all these

bounds together, we obtain the claimed result.

Lemma 2.4.9. If |O|p = o(n/ log n) then there exists a universal constant C such that for

n large enough, the inequalities

max
j

ω̂jj
ω∗jj
≤ C, ‖D̂(D∗)−1 − Ip‖2,2 ≤ C

{
ρ∗ME

|O|p log n

n
+
(p log n

n

)1/2}
(2.39)

hold with probability larger than 1− 4/n.
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Proof. To ease notation, we write ωjj instead of ω∗jj and Cω for maxj ω
1/2
jj . Let us consider

the �rst term in the right-hand side of the above inequality. Recall that the diagonal entries

ωjj are estimated by

ω̂jj =
2n

π‖Zj(X(n)
•,j − Θ̂•,j)‖21

=
2n

π‖ξ̂•,j‖21
.

This implies that

∣∣∣(ωjj
ω̂jj

) 1
2 − 1

∣∣∣ =
∣∣∣(πωjj

2n

) 1
2 ‖ξ̂•,j‖1 − 1

∣∣∣
≤
(πωjj

2n

) 1
2
∣∣‖ξ̂•,j‖1 − ‖ξ•,j‖1∣∣+

∣∣∣(πωjj
2n

) 1
2 ‖ξ•,j‖1 − 1

∣∣∣
≤
(πωjj

2n

) 1
2 (‖ξ̂•,j − Zjξ•,j‖1 + ‖(In − Zj)ξ•,j‖1

)
+
∣∣∣(πωjj

2n

) 1
2 ‖ξ•,j‖1 − 1

∣∣∣.
(2.40)

The �rst term above can be bounded using Theorem 2.2.1 since ‖ξ̂•,j−Zjξ•,j‖1 = ‖Zj∆̂Θ
•,j‖1

and

‖ξ̂•,j − Zjξ•,j‖1 ≤ ‖∆̂Θ
•,j‖1 + ‖(In − Zj)∆̂Θ

•,j‖1
≤ ‖∆̂Θ

•,j‖1 +
√
n ‖(In − Zj)∆̂Θ

•,j‖2
≤ ‖∆̂Θ

•,j‖1 +
√
n ‖(In − Z)∆̂Θ

•,j‖2. (2.41)

Note that the result of Theorem 2.2.1 applies to this matrix as well. For the second term

of the right-hand side of (2.40), we can use the Cauchy-Schwarz inequality in conjunction

with the fact that nωjj ‖(In−Zj)ξ•,j‖22 is a khi-square random variable with p− 1 degrees

of freedom degrees of freedom and apply Lemma 1 of Laurent and Massart [2000]. The

third term of the right-hand side of (2.40) can be bounded using the Hoe�ding bounds (see

for instance [Vershynin, 2012b, Proposition 5.10]). Let us denote by b > 0 the constant

such that for any x ∈ R, the sub-Gaussian random variable |εi,j |�whose expectation is√
2/π�satis�es E

(
ex(|εi,j |−

√
2/π)

)
≤ ex

2b/2. Thus, for any t > 0, each of the following

bounds

1

n
‖ε•,j‖1 −

( 2

π

)1/2
≤
(2tb

n

)1/2
; − 1

n
‖ε•,j‖1 +

( 2

π

)1/2
≤
(2tb

n

)1/2

holds with probability at least 1− e−t. Then, with probability at least 1− 2 e−t, it holds

that ∣∣∣(πωjj
2n

) 1
2 ‖ξ•,j‖1 − 1

∣∣∣ ≤ ( tπb
n

)1/2
.
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By the Minkowski inequality, this readily yields that for n large enough, the inequality

‖(D∗)1/2D̂−1/2 − Ip‖22,2 =

{∑
j∈[p]

∣∣∣(ωjj
ω̂jj

)1/2
− 1
∣∣∣2}

≤ C
(C2

ω

n

p∑
j=1

‖∆̂Θ
•,j‖

2

1
+ C2

ω‖(In − Z)∆̂Θ‖
2

2,2 +
p log n

n

)
.

holds with probability at least 1 − 2/n. One can show that
∑p

j=1 ‖∆̂Θ
•,j‖

2

1
≤ ‖∆̂Θ‖

2

2,1

and ‖(In − Z)∆̂Θ‖
2

2,2 ≤ α‖∆̂Θ‖
2

2,1 (see the proof of Prop. 2.4.7). Combining with Theo-

rem 2.2.1 and Eq. (2.43), this yields

‖(D∗)1/2D̂−1/2 − Ip‖22,2 ≤ C
(

(ρ∗)2M2
E

|O|2p2 log n

n2
+
p log n

n

)
.

On the other hand, on the same event, we have

∥∥ξ̂•,j∥∥1
≥
∥∥Zjξ•,j∥∥1

− ‖Zj∆̂Θ
•,j‖1 ≥

∥∥ξ•,j∥∥1
−
∥∥(In − Zj)ξ•,j

∥∥
1
−
√
n‖∆̂Θ‖2,2

≥
√
n
( C

ω
1/2
jj

− ‖∆̂Θ‖2,2
)
.

Therefore, for n large enough, as we assume that |O|p = o(n/ log n), with probability at

least 1− 4/n we have
∥∥ξ̂•,j∥∥2

≥ Cn1/2

2ω
1/2
jj

for all j ∈ [p] and hence maxj ω̂jj/ωjj ≤ C.

For the second claim of the lemma, we use the inequalities

‖D̂(D∗)−1 − Ip‖2,2 ≤ 2 max
j

ω̂jj ∨ ωjj
ωjj

∥∥(D∗)1/2D̂−1/2 − Ip
∥∥

2,2

≤ C
(

max
j
ω

1/2
jj ‖∆̂

Θ‖2,2 + (p log n/n)1/2
)

≤ C
{
ρ∗ME

|O|p log n

n
+
(p log n

n

)1/2}
.

This completes the proof of the lemma.

The claim of Theorem 2.2.2 readily follows from Lemmas 2.4.8 and 2.4.9, in conjunction

with (2.36).

2.4.3 Probabilistic bounds

This section is devoted to the establishing nonasymptotic bounds on the stochastic terms

encountered during the evaluation of the estimation error.
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Lemma 2.4.10. For any δ ∈ (0, 1), the inequality

max
i∈[n]

max
j∈[p]

(Zji,•ε•,j)
2

‖Zjε•,j‖
2

2

≤ 2 log(2np/δ)

n− p+ 1− 2((n− p+ 1) log(2p/δ))1/2

holds with probability at least 1− δ. Furthermore, if n ≥ 8p+ 16 log(4/δ) then

max
i∈[n]

max
j∈[p]

(Zji,•ε•,j)
2

‖Zjε•,j‖
2

2

≤ 4 log(2np/δ)

n

holds with probability at least 1− δ.

Proof. Let us introduce the following random variables

Nij := Zji,•ε•,j and Dj := ‖Zjε•,j‖
2

2.

The random vector ε•,j being Gaussian and independent of X•,jc , we infer that condition-

ally to Zj , the random variable Nij is drawn from a zero mean Gaussian distribution. Fur-

thermore, its conditional variance given Zj equals Zji,•(Z
j
i,•)
> = Zji,i and, therefore is less

than or equal to 1. (Here, we have used the fact that Zj is symmetric, idempotent and that

all the entries of a projection matrix are in absolute value smaller than or equal to 1.) This

implies that for any δ > 0, it holds that P
(

maxi∈[n],j∈[p] |Nij | >
√

2 log(2np/δ)
)
≤ δ/2.

We know that Zj is an orthogonal projection matrix onto a subspace of dimension rank(Zj).

We recall that the square of the Euclidean norm of the orthogonal projection in a subspace

of dimension k of a standard Gaussian random vector is a χ2 random variable with k degrees

of freedom. It entails that, conditionally to Zj , Dj has a χ2 distribution with rank(Zj)

degrees of freedom. Therefore, noticing that rank(Zj) ≥ n−rank(X•,jc) = n−p+1 almost

surely and using a prominent result on tail bounds for the χ2 distribution (see Lemma 1

of Laurent and Massart [2000]), we get, for every δ ∈ (0, 1)

P
(

min
j∈[p]

Dj ≤ n− p+ 1− 2
√

(n− p+ 1) log(2p/δ)
)
≤ δ/2.

Thus, on an event of probability at least 1− δ, we have

max
i∈[n]
j∈[p]

|Nij | ≤
√

2 log(2np/δ) and min
j∈[p]

Dj ≥ n− p+ 1− 2
√

(n− p+ 1) log(2p/δ).

(2.42)

This readily entails the �rst claim of the lemma. The second claim follows from the �rst
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one. Indeed, n ≥ 8p+ 16 log(4/δ) implies that 3p+ 8 log(4/δ) ≤ 0.5n− p and, hence,

16(n− p+ 1) log(2p/δ) ≤
(
0.5(n− p+ 1) + 8 log(2p/δ)

)2
≤
(
0.5n− p+ 1 + 0.5p+ 8 log(p/2) + 8 log(4/δ)

)2
≤
(
0.5n− p+ 1 + 3p+ 8 log(4/δ)

)2
≤
(
n− 2p+ 1

)2
.

This yields n− p+ 1− 2((n− p+ 1) log(2p/δ))1/2 ≥ n/2.

The element-wise `∞-norm of the orthogonal projection matrix In −Z also appears in the

upper bounds of the estimation error. Lemma 2.4.12 below provides a sharp tail bound for

this norm. Before showing this result, let us provide a useful technical lemma that relies

essentially on a lower bound for the smallest singular value of a Gaussian matrix.

Lemma 2.4.11. If X is an n × p random matrix satisfying conditions (C1) and (C2)

with Σ∗ = Ip, then for every δ ∈ (0, 1), with probability at least 1− δ, it holds that

σmin(X) ≥
√
n− |O| − √p−

√
2 log(2/δ).

Proof. To begin, we note that the matrix X>X can be split into two parts, by summing the

terms derived from inliers (I ⊂ [n]) on one hand and those derived from outliers (O ⊂ [n])

on the other hand,

X>X =
∑
i∈[n]

X>i,•Xi,• =
∑
i∈I

X>i,•Xi,• +
∑
i∈O

X>i,•Xi,• = X>I,•XI,• + X>O,•XO,•.

As the matrix X>O,•XO,• is always nonnegative de�nite and X>X = X>O,•XO,•+X>I,•XI,•,

we infer that σmin(X>X) ≥ σmin(X>I,•XI,•). We can therefore deduce that

σmin(X) = σmin(X>X)1/2 ≥ σmin(X>I,•XI,•)
1/2 = σmin(XI,•).

Given that XI,• is a matrix whose rows are independent Gaussian vectors with zero-mean

and identity covariance, as shown in [Vershynin, 2012b, Corollary 5.35], for every t ≥ 0, it

holds that

σmin(XI,•) ≥
√
|I| − √p− t.

with probability at least 1 − 2 e−t
2/2. Taking t =

√
2 log(2/δ), the claim of the lemma

follows.

Lemma 2.4.12. If X = Y + E∗ is an n × p random matrix with Y and E∗ satisfying
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assumptions (C1) and (C2) with µ∗ = 0, then for any δ ∈ (0, 1), the inequality

‖In − Z‖∞,∞ ≤
(

(1 +ME)
√
p+

√
2 log(2n/δ)√

n− |O| − √p−
√

2 log(4/δ)

)2

,

holds with probability at least 1− δ. Furthermore, if n ≥ |O|+ 8p+ 16 log(4/δ), then with

probability at least 1− δ,

‖In − Z‖∞,∞ ≤
8(1 +ME)2p+ 16 log(2n/δ)

n− |O|
. (2.43)

and σmin(X(Ω∗)1/2) ≥
√

(n− |O|)/4.

Proof. We denote by {ei}i∈[n] ⊂ Rn the vectors of the canonical basis. All the components

of the vector ei ∈ Rn are equal to zero with the exception of the i-th entry which is equal to
one. With this notation, and using the fact that all the o�-diagonal entries of a symmetric

positive semi-de�nite matrix are dominated by the largest diagonal entry, we have

‖In − Z‖∞,∞ = max
i∈[n]

e>i (In − Z)ei.

We also denote X(Σ∗)−1/2 by X̃ and, similarly, Y(Σ∗)−1/2 by Ỹ. It follows that for any

i ∈ [n]

e>i (In − Z)ei = e>i X̃
(
X̃>X̃

)†
X̃>ei ≤ ‖X̃i,•‖

2

2σmax

(
(X̃>X̃)†

)
.

where the last inequality is a direct consequence of the fact that the spectral norm is the

matrix norm induced by the Euclidean norm. We may now bound each term of the right

side of the previous inequality. First, by assumption, it holds that

‖X̃i,•‖2 = ‖Ỹi,• + E∗i,•(Σ
∗)−1/2‖

2
≤ ‖Ỹi,•‖2 + ‖E∗i,•(Σ∗)−1/2‖

2
≤ ‖Ỹi,•‖2 +ME

√
p.

As Ỹi,• ∼ Np(0, Ip), the random variable ‖Ỹi,•‖
2

2 has a χ2 distribution with p degrees

of freedom. Applying [Laurent and Massart, 2000, Lemma 1] and combining it with the

union bound, for any δ ∈ (0, 1), we get that

max
i∈[n]
‖Ỹi,•‖2 ≤

√
p+

√
2 log(2n/δ),

with probability at least 1 − δ/2. We complete the proof by bounding σmax((X̃>X̃)†) =

σmin(X̃)−2. By Lemma 2.4.11, for every δ ∈ (0, 1), it holds that

σmax((X̃>X̃)†) ≤ (
√
|I| − √p−

√
2 log(4/δ))−2
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with probability at least 1 − δ/2. By bringing together what was written above, with

probability at least 1− δ, we have

max
i∈[n]

e>i (In − Z)ei ≤
(

(1 +ME)
√
p+

√
2 log(2n/δ)√

|I| − √p−
√

2 log(4/δ)

)2

.

This yields the �rst claim of the lemma. To derive the second claim from the �rst one,

it su�ces to upper bound the numerator using the inequality (a + b)2 ≤ 2a2 + 2b2 and

to lower bound the denominator by using that
√
p +

√
2 log(4/δ) ≤

√
2p+ 4 log(4/δ) ≤

1
2

√
n− |O|.

Lemma 2.4.13. For any δ ∈ (0, 1), the following inequality

‖ε>‖2,∞ ≤
√
n+

√
2 log(p/δ), (2.44)

holds with probability at least 1− δ.

Proof. We recall that ‖ε>‖2,∞ = maxj∈[p] ‖ε•,j‖2. As we have already mentioned just

after equation (2.7), the vector ε•,j is drawn from the Gaussian Nn(0, In) distribution.

Therefore, ‖ε•,j‖22 is a χ
2 random variable with n degrees of freedom. Thus, using [Laurent

and Massart, 2000, Lemma 1] in combination with the union bound, it holds that

‖ε>‖22,∞ ≤ n+ 2
√
n log(p/δ) + 2 log(p/δ) ≤ (

√
n+

√
2 log(p/δ))2,

with probability at least 1− δ.

2.4.4 Proofs in high dimension

In this section, we provide the proof of the risk bound in the high dimensional case,

when the estimator is obtained by solving the optimization problem in (2.4). We de�ne

O = O × [p] and, by a slight abuse of notation, Oc = Oc × [p]. We denote by ξO, resp.

ξOc , the matrix obtained by zeroing all the rows ξi,• such that i ∈ O, resp. i ∈ Oc. We

set Θ̄∗ = Θ∗ + ξO and ξ̄ = ξOc . We further de�ne ∆̂B = B̂ − B∗, ∆̂Θ = Θ̂ − Θ̄∗,

∆̂ =

[
∆̂B

∆̂Θ

]
∈ R(p+n)×p and ξ̂ = X(n)B̂− Θ̂. Since M = [X(n);−In], the estimator (B̂, Θ̂)

is de�ned as the minimizer of the cost function

F (B,Θ) =

∥∥∥∥(M

[
B

Θ

])>∥∥∥∥
2,1

+ λ
(
‖Θ‖2,1 + γ‖B‖1,1

)
.

Recall that J and O are such that B∗J c = 0 and Θ∗Oc,• = 0. This sets are interpreted as

the supports of B∗ and Θ∗. The set J corresponds to the sparsity pattern and O to the

outliers. Throughout this section, we adopt the convention that 0/0 = 0.
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Proposition 2.4.14. If, for some constant c > 1, the penalty levels λ and γ satisfy the

conditions

λγ ≥ c+ 1

c− 1
max
j∈[p]

‖X(n)
I,jc
>εI,j‖∞

‖εI,j‖2
and λ ≥ c+ 1

c− 1
max
i∈[n]

(∑
j∈[p]

ε2ij

‖εI,j‖22

)1/2

, (2.45)

then the matrix ∆̂ belongs to the cone CJ ,O(c, γ).

Proof. Let us de�ne ξ̂ as the n × p matrix of estimated residuals: ξ̂ = X(n)B̂ − Θ̂. By

de�nition of B̂ and Θ̂, we obtain the inequality

‖(X(n)B̂− Θ̂)>‖2,1 + λ
(
γ‖B̂‖1,1 + ‖Θ̂‖2,1

)
≤ ‖(X(n)B∗ − Θ̄∗)>‖2,1 + λ

(
γ‖B∗‖1,1 + ‖Θ̄∗‖2,1

)
,

that can be equivalently written as

‖ξ̂>‖2,1 + λγ‖B̂‖1,1 + λ‖Θ̂‖2,1 ≤ ‖ξ̄
>‖2,1 + λγ‖B∗‖1,1 + λ‖Θ̄∗‖2,1,

or as

λγ(‖B̂‖1,1 − ‖B
∗‖1,1) + λ(‖Θ̂‖2,1 − ‖Θ̄

∗‖2,1) ≤
∑
j∈[p]

(‖ξ̄•,j‖2 − ‖ξ̂•,j‖2). (2.46)

In view of the inequality ‖a‖2−‖b‖2 ≤ (a−b)>a/‖a‖2, which holds for every pair of vectors
(a, b) and is a simple consequence of the Cauchy-Schwarz inequality, we have

‖ξ̄•,j‖2 − ‖ξ̂•,j‖2 ≤ (ξI,j − ξ̂I,j)>
ξI,j
‖ξI,j‖2

= (ξI,j − ξ̂I,j)>
εI,j
‖εI,j‖2

= (−X
(n)
I,•∆̂

B
•,j + ∆̂Θ

I,j)
> εI,j
‖εI,j‖2

.

Summing these inequalities over all j ∈ [p] and applying the duality inequalities we infer

that∑
j∈[p]

(‖ξ•,j‖2 − ‖ξ̂•,j‖2) ≤ −
∑
j∈[p]

(X
(n)
I,•∆̂

B
•,j)
> εI,j
‖εI,j‖2

+
∑
i∈I

∑
j∈[p]

∆̂Θ
i,j

εi,j
‖εI,j‖2

≤
∑
j∈[p]

‖∆̂B
•,j‖1

‖X(n)
I,jc
>εI,j‖∞

‖εI,j‖2
+
∑
i∈[n]

‖∆̂Θ
i,•‖2

(∑
j∈[p]

ε2ij
‖εI,j‖22

)1/2

.
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When condition (2.45) is satis�ed, the last inequality yields

∑
j∈[p]

(‖ξ̄•,j‖2 − ‖ξ̂•,j‖2) ≤
(
c− 1

c+ 1

)(
λγ
∑
j∈[p]

‖∆̂B
•,j‖1 + λ

∑
i∈[n]

‖∆̂Θ
i,•‖2

)

= λ

(
c− 1

c+ 1

)(
γ‖∆̂B‖1,1 + ‖∆̂Θ‖2,1

)
.

This inequality, in conjunction with Eq. (2.46), implies that

γ(‖B̂‖1,1 − ‖B
∗‖1,1) + (‖Θ̂‖2,1 − ‖Θ̄

∗‖2,1) ≤
(
c− 1

c+ 1

)(
γ‖∆̂B‖1,1 + ‖∆̂Θ‖2,1

)
. (2.47)

On the other hand, using the triangle inequality and the fact that B∗J c = Θ∗Oc,• = 0, we

get

‖B̂‖1,1 − ‖B
∗‖1,1 = ‖B̂J c‖1,1 + ‖B̂J ‖1,1 − ‖B

∗
J ‖1,1

≥ ‖∆̂B
J c‖1,1 − ‖∆̂

B
J ‖1,1,

‖Θ̂‖2,1 − ‖Θ̄
∗‖2,1 = ‖Θ̂Oc,•‖2,1 + ‖Θ̂O,•‖2,1 − ‖Θ̄

∗
O,•‖2,1

≥ ‖∆̂Θ
Oc,•‖2,1 − ‖∆̂

Θ
O,•‖2,1.

The combination of these bounds with Eq. (2.47) leads to

‖∆̂B
J c‖1,1 + γ−1‖∆̂Θ

Oc,•‖2,1 ≤ c
(
‖∆̂B
J ‖1,1 + γ−1‖∆̂Θ

O,•‖2,1
)
,

which completes the proof of the proposition.

The following lemmas prepare the proof of Theorem 2.3.1. Lemma 2.4.15 presents an

inequality obtained by writing the KKT conditions for the cost function F .

Lemma 2.4.15. There exists a n× p matrix V is such that

‖Vi,•‖2 ≤ 1, V>i,•Θ̂i,• = ‖Θ̂i,•‖2, ∀ i ∈ [n] (2.48)

and, for every j ∈ [p] such that ξ̂•,j 6= 0, the following inequality holds

‖M∆̂•,j‖
2

2 ≤ −ξ̄
>
•,jM∆̂•,j − λ‖ξ̂•,j‖2V

>
•,j∆̂

Θ
•,j + λγ‖ξ̂•,j‖2

(
‖B∗jc,j‖1 − ‖B̂jc,j‖1

)
. (2.49)

Proof. Recall that the estimator (B̂, Θ̂) minimizes the cost function

F (B,Θ) =

p∑
j=1

‖X(n)
•,j + X

(n)
•,jcBjc,j −Θ•,j‖2 + λγ

p∑
j=1

‖B•,j‖1 + λ

n∑
i=1

‖Θi,•‖2. (2.50)

According to the KKT conditions, this convex function is minimized at (B̂, Θ̂) if and only
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if the zero vector belongs to the sub-di�erential of F at (B̂, Θ̂), denoted by ∂F (B̂, Θ̂). This

entails, in particular, that for every j ∈ [p], 0p−1+n ∈ ∂(Bjc,j ,Θ•,j)F (B̂, Θ̂). In other terms,

there exist vectors uj ∈ ∂(Bjc,j ,Θ•,j)‖X
(n)
•,j + X

(n)
•,jcB̂jc,j − Θ̂•,j‖2, wj ∈ ∂(Bjc,j ,Θ•,j)‖B̂•,j‖1

and vj ∈ ∂(Bjc,j ,Θ•,j)

∑n
i=1 ‖Θ̂i,•‖2 such that uj + λγwj + λvj = 0. Since we assume

that ‖ξ̂•,j‖2 > 0, the �rst partial sub-di�erential out of three appearing in the previous

sentence is actually a di�erential and thus uj = [X
(n)
•,jc ;−In]>(X(n)B̂•,j − Θ̂•,j)/‖ξ̂•,j‖2.

After a multiplication by ‖ξ̂•,j‖2, we get

[X
(n)
•,jc ;−In]>(X(n)B̂•,j − Θ̂•,j) = −λγ‖ξ̂•,j‖2wj − λ‖ξ̂•,j‖2vj .

This equation (combined with relation (2.8)) can be equivalently written as

[X
(n)
•,jc ;−In]>M∆̂•,j = −[X

(n)
•,jc ;−In]>ξ̄•,j − λγ‖ξ̂•,j‖2wj − λ‖ξ̂•,j‖2vj .

We take the scalar product of the both sides of this relation with the vector ∆̂jc,j and,

using the fact that ∆̂j,j = 0, we obtain

‖M∆̂•,j‖22 = −∆̂>•,jM
>ξ̄•,j − λγ‖ξ̂•,j‖2∆̂

>
•,jwj − λ‖ξ̂•,j‖2∆̂

>
•,jvj .

The desired inequality follows by setting V = [(v1)p:(p−1+n), . . . , (vp)p:(p−1+n)] and by

using the following simple properties of the sub-di�erentials of the `1 and `2-norms:

(wj)l = 0, ∀l ≥ p,

|(wj)l| ≤ 1, ∀l ∈ [p− 1],

(wj)
>
1:(p−1)B̂jc,j = ‖B̂jc,j‖1,

(vj)l = 0, ∀l ∈ [p− 1],

(vj)p−1+i =
Θ̂i,j

‖Θ̂i,•‖2
,

i ∈ [n],

‖Θ̂i,•‖2 > 0,

|(vj)p−1+i| ≤
|θj |
‖θ‖2

,


i ∈ [n],

‖Θ̂i,•‖2 = 0,

∀θ ∈ Rp, ‖θ‖2 > 0.

Indeed, the �rst three relations imply that −∆̂>•,jwj ≤ ‖B∗•,j‖1 − ‖B̂•,j‖1 while the three

last relations yield ∆̂>•,jvj = V>•,j∆̂
Θ
•,j along with ‖Vi,•‖2 ≤ 1 and Vi,•Θ̂

>
i,• = ‖Θ̂i,•‖2.

Lemma 2.4.16. If inequality (2.49) is true, then

‖M∆̂•,j‖
2

2 ≤ −2ξ̄>•,jM∆̂•,j − 2λ‖ξ̄•,j‖2V
>
•,j∆̂

Θ
•,j + 2λγ‖ξ̄•,j‖2

(
‖B∗jc,j‖1 − ‖B̂jc,j‖1

)
+ λ2(γ‖∆̂B

•,j‖1 + |V>•,j∆̂Θ
•,j |)2. (2.51)
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Proof. This is a direct consequence of Lemma 2.4.3 (with R = ‖M∆̂•,j‖2) and the fact

that |‖ξ̂•,j‖2 − ‖ξ̄•,j‖|2 ≤ ‖M∆̂•,j‖2.

Lemma 2.4.17. If inequality (2.51) is true and if the penalty levels λ and γ satisfy con-

ditions (2.45) for some constant c > 1, then

‖M∆̂‖
2

F ≤ 4λc‖ξ>I,•‖2,∞
(
γ‖∆̂B

J ‖1,1 + ‖∆̂Θ
O,•‖2,1

)
+ λ2(1 + c)2

(
γ‖∆̂B

J ‖1,1 + ‖∆̂Θ
O,•‖2,1

)2
.

(2.52)

Proof. We begin by noting that for a n × p matrix V that satis�es ‖Vi,•‖2 ≤ 1 for any i

belonging to [n], the Cauchy-Schwarz inequality yields that

p∑
j=1

|V>•,j∆̂Θ
•,j | ≤

n∑
i=1

p∑
j=1

|Vi,j∆̂
Θ
i,j | ≤

n∑
i=1

‖Vi,•‖2‖∆̂
Θ
i,•‖2 ≤ ‖∆̂

Θ‖2,1. (2.53)

We also deduce

p∑
j=1

(
γ‖∆̂B

•,j‖1 + |V>•,j∆̂Θ
•,j |
)2 ≤ ( p∑

j=1

γ‖∆̂B
•,j‖1 + |V>•,j∆̂Θ

•,j |
)2

≤
(
γ‖∆̂B‖1,1 + ‖∆̂Θ‖2,1

)2
. (2.54)

Besides, it holds

−
p∑
j=1

ξ̄>•,jM∆̂•,j =

p∑
j=1

(
∆̂Θ
•,j −X(n)∆̂B

•,j
)>
ξ̄•,j

=

p∑
j=1

‖ξ̄•,j‖2
(∑
i∈I

∆̂Θ
i,j

εi,j
‖ε•,j‖2

− ∆̂B
•,j
>X

(n)
I,•
> εI,j
‖εI,j‖2

)

≤ (max
j∈[p]
‖ξI,j‖2)

(∑
i∈I

p∑
j=1

|∆̂Θ
i,jεi,j |
‖εI,j‖2

+

p∑
j=1

|∆̂B
•,j
>X

(n)
I,•
>εI,j |

‖εI,j‖2

)
,

thus, by the duality inequality |∆̂B
•,j
>X

(n)
I,•
>εI,j | ≤ ‖∆̂B

•,j‖1‖X
(n)
I,•
>εI,j‖∞ and the Cauchy-

Schwarz inequality, and as the penalty levels satisfy conditions (2.45), we �nd

−
p∑
j=1

ξ̄>•,jM∆̂•,j ≤ ‖ξ>I,•‖2,∞
(∑
i∈I
‖∆̂Θ

i,•‖2
( p∑
j=1

ε2
i,j

‖εI,j‖22

) 1
2

+

p∑
j=1

‖∆̂B
•,j‖1

‖X(n)
I,•
>εI,j‖∞
‖εI,j‖2

)
≤ λc− 1

c+ 1

(
γ‖∆̂B‖1,1 + ‖∆̂Θ‖2,1

)
‖ξ>I,•‖2,∞. (2.55)
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From inequality (2.51), we get

‖M∆̂•,j‖
2

2 ≤ −2ξ̄>•,jM∆̂•,j − 2λ‖ξ̄•,j‖2
(
V>•,j∆̂

Θ
•,j + γ

(
‖B̂jc,j‖1 − ‖B

∗
jc,j‖1

))
+ λ2

(
γ‖∆̂B

•,j‖1 + |V>•,j∆̂Θ
•,j |
)2
,

for every j ∈ [p]. Then, summing over all j and using the triangle inequality, we have

‖M∆̂‖
2

F ≤ −2

p∑
j=1

ξ̄>•,jM∆̂•,j + 2λ‖ξI,j‖2
(
|V>•,j∆̂Θ

•,j |+ γ‖∆̂B
•,j‖1

)
+ λ2

(
γ‖∆̂B

•,j‖1 + |V>•,j∆̂Θ
•,j |
)2
.

Combining the latter with equations (2.53), (2.54) and (2.55), we arrive at

‖M∆̂‖
2

F ≤ λ
4c

c+ 1

(
γ‖∆̂B‖1,1 + ‖∆̂Θ‖2,1

)
‖ξ>I,•‖2,∞ + λ2

(
γ‖∆̂B‖1,1 + ‖∆̂Θ‖2,1

)2
,

we �nally apply Proposition 2.4.14 that gives inequality (2.52).

Finally, next proposition states the risk bound in the high dimensional settings. Eq. (2.58)

indeed corresponds to the claimed inequality (2.21) of Theorem 2.3.1.

Proposition 2.4.18. Choose γ = 1 and δ ∈ (0, 1) such that n ≥ |O| + 16 log(2p/δ) and

choose

λ = 6

(
log(2np/δ)

n− |O|

)1/2

. (2.56)

Then

i) with probability at least 1− δ, the penalty levels λ and γ satisfy conditions (2.45) for

some constant c = 2.

ii) If 4λ(|J |1/2 + |O|1/2) < κ1/2 holds, then there exists an event E0 of probability at

least 1− 2δ such that in4 Eκ ∩ E0, we have

‖M∆̂‖2,2 ≤
C2√
κ

max
j∈[p]

(ω∗jj)
−1/2

(
|J |1/2 + |O|1/2

)( log(2np/δ)

n− |O|

)1/2

, (2.57)

‖∆̂B‖1,1 + ‖∆̂Θ‖2,1 ≤
12C2

κ
max
j∈[p]

(ω∗jj)
−1/2

(
|J |+ |O|

)( log(2np/δ)

n− |O|

)1/2

(2.58)

with C2 ≤ 75.

Proof. Claim i) of the proposition is obtained by standard arguments relying on tail bounds

for Gaussian and χ2 distributions and the union bound. These arguments are similar to

those presented in Section 2.4.3 and, therefore, are skipped.
4Recall that Eκ is the event de�ned by (2.19)
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Analogously, using Lemma 2.4.13, we �nd that with probability at least 1 − δ, we have

‖ξI,•‖2,∞ ≤ (1 + 2−3/2) maxj(ω
∗
jj)
−1/2. We denote by E0 the intersection of this event with

the one of claim i). By the union bound, we have P(E0) ≥ 1− 2δ. In the rest of this proof,

we place ourselves in the event E0 ∩ Eκ. By the compatibility assumption (event Eκ), we
have

‖∆̂B
J ‖1,1 ≤

|J |1/2

κ1/2
‖M∆̂‖2,2 and ‖∆̂Θ

O,•‖2,1 ≤
|O|1/2

κ1/2
‖M∆̂‖2,2. (2.59)

Since in the event E0 the conditions of Lemma 2.4.17 are met, inequality (2.52) readily

implies inequality (2.57). On the other hand, we know from Proposition 2.4.14 that ∆̂

belongs to the dimension reduction cone CJ ,O(2, 1). Therefore,

‖∆̂B‖1,1 + ‖∆̂Θ‖2,1 ≤ 3(‖∆̂B
J ‖1,1 + ‖∆̂Θ

O,•‖2,1) ≤ 3(|J | ∨ |O|)1/2

κ1/2
‖M∆̂‖2,2.

Using the upper bound on ‖M∆̂‖2,2 provided by (2.57), we immediately obtain bound

(2.58).

2.5 Algorithmic aspects

In this section, we propose an algorithm that e�ciently computes the estimator (2.4) of

the precision matrix in the presence of outliers. First, we develop a method that addresses

this issue in the moderate dimensional case.

2.5.1 Algorithm in the moderate dimensional case

We start here by reformulating optimization problem (2.9). For this purpose, we remark

that for any j ∈ [p],

min
tj∈R

1

2

(
tj +

‖(X(n)B−Θ)•,j‖
2

2

tj

)
= ‖(X(n)B−Θ)•,j‖2, (2.60)

where the minimum is obtained for tj = ‖(X(n)B−Θ)•,j‖2. We then rewrite the opti-

mization problem using this trick. To this end, we denote the p× p diagonal matrix whose

jth entry is equal to t
−1/2
j by D

−1/2
t and introduce the function

g(B,Θ, t) :=
1

2

n∑
i=1

∥∥(X(n)B−Θ)i,•D
−1/2
t

∥∥2

2
+ λ‖Θi,•‖2.
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Problem (2.9) is therefore equivalent to

{B̂, Θ̂, t̂} = arg min
B∈Rp×p
Bjj=1

min
Θ∈Rn×p

min
t∈Rp
tj 6=0

{
g(B,Θ, t) +

p∑
j=1

1

2
tj

}
. (2.61)

This convex problem can be solved by minimizing separately with respect to the parameters

B,Θ and t. We already have computed B̂ given Θ (see Eq. (2.11)) and for t̂ given Θ and

B. We further look for an explicit expression Θ̂ given B and t. For the sake of clarity,

we consider in the following that the function g depends only on Θ and simply note g(Θ).

This function is decomposable and in the sense that g(Θ) =
∑

i∈[n] gi(Θi,•) with

gi(θ) :=
1

2

∥∥(X
(n)
i,• B− θ)D

−1/2
t

∥∥2

2
+ λ‖θ‖2.

In addition, let ui ∈ ∂θgi(Θ̂i,•) be the ith row of U. The Karush-Kuhn-Tucker conditions

for problem (2.61), given B and t, entail that the vector ui satis�es ui = 0. It follows that

either ‖Θ̂i,•‖2 = 0 or

−X
(n)
i,• BD−1

t + Θ̂i,•D
−1
t + λ

Θ̂i,•

‖Θ̂i,•‖2
= 0. (2.62)

The �rst alternative corresponds to Θ̂i,• = 0. In this case we must have 0 ∈ ∂θgi(0), that

is 0 ∈ {−X
(n)
i,• BD−1

t + λθ|θ ∈ Rp, ‖θ‖2 ≤ 1}. It implies that there exists θ such that

−X
(n)
i,• BD−1

t + λθ = 0, hence that ‖X(n)
i,• BD−1

t ‖2 ≤ λ. Otherwise, when ‖X(n)
i,• BD−1

t ‖2 >
λ, we deduce from Eq. (2.62) that

Θ̂i,• = ‖Θ̂i,•‖2X
(n)
i,• BD−1

vi (2.63)

holds for any i ∈ [n], where vi = ‖Θ̂i,•‖21p + λt. In this case, we have an explicit solution

for the parameter Θ of the optimization problem up to a multiplicative constant. To

determine this constant, let us introduce a function f de�ned for any x ∈ R by

f(x) = ‖X(n)
i,• BD−1

x1p+λt‖
2

2
.

Taking the Euclidean norm of both sides of Eq. (2.63) we obtain f(‖Θ̂i,•‖2) = 1. We

note that the function f is decreasing on (0,+∞). In particular, limx→+∞ f(x) = 0 and

‖X(n)
i,• BD−1

t ‖2 > λ entails that f(0) > 1. Moreover, putting f in an expanded form,

f(x) =

p∑
j=1

(
X

(n)
i,• B•,j

x+ λtj

)2

,
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we get a tractable expression for its derivative f ′,

f ′(x) = −2‖X(n)
i,• BD

−3/2
x1p+λt‖

2

2
.

Starting from x = 0, we can apply the method of Newton to obtain a numerical solution

to the equation f(x) = 1. At each iteration h of the method of Newton, the current value

xh of x is updated in the following way

xh+1 = xh +
‖X(n)

i,• BD−1
xh1p+λt

‖
2

2
− 1

2‖X(n)
i,• BD

−3/2

xh1p+λt
‖

2

2

,

until |f(xh)−1| < ε, where ε is a threshold depending on the desired accuracy, for example

ε = 10−6. In conclusion, we propose to solve the optimization problem (2.9) by updating

successively the three parameters B, t and Θ. We also introduce a new parameter x that

represents the Euclidean norm of the rows of Θ. Each component xi is estimated as

explained above. Note that to compute x, we only need B and t, not Θ. We denote the

estimated values of the parameters at step k by Bk, Θk, tk, xk and vk. At each iteration,

we perform the following update operations

Bk
jc,j = −

(
X

(n)
•,jc
>

X
(n)
•,jc
)†

X
(n)
•,jc
>

(X
(n)
•,j −Θk−1

•,j ) and Bk
j,j = 1, for any j,

tkj = ‖(X(n)Bk −Θk−1)•,j‖2, for any j,

update xki , for any i, by the method of Newton,

vki = xki 1p + λtk, for any i,

Θk
i,• = xkiX

(n)
i,• BkD−1

vki
, for any i.

Thus, our optimization problem can be solved in a computationally e�cient way by re-

peating the operations stated above. The summarized resolution procedure is described in

Algorithm 2.1.

As the objective function is convex, our greedy procedure causes the successive estimates to

move nearer to the minimum at each iteration, after a certain step. The stopping criterion

is de�ned using the ratio of the variation of the cost function. The objective function is

considered to be stabilized when the di�erence between the value of the objective function

at the precedent step and at the current one, divided by its value at the current step, is

below a given threshold. To be precise, denoting the objective function by F (B,Θ) =

g(B,Θ, t) +
∑p

j=1 tj/2, and the threshold by T , the stopping criterion at the step k is

given by ∣∣∣∣F (Bk−1,Θk−1)− F (Bk,Θk)

F (Bk,Θk)

∣∣∣∣ < T.
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Algorithm 2.1: Estimation of (B,Θ) by solving optimization problem (2.9)
Input: matrix X of observations.

penalty level λ.
Output: B̂ the estimate of the matrix of regression coe�cients.

Θ̂ the estimate of the matrix of outliers.
1: initialize Θ to the null matrix.
repeat

2: for the current value of Θ, compute B•,j for each j ∈ [p].
3: for the current values of Θ and B, update tj for each j ∈ [p].
4: for the current value of Θ, compute xi for each i ∈ [n].
5: for the current values of B and t, compute a new estimate for each row of Θ.

until the change in the value of the objective function falls below a certain threshold

We further note that no outlier is detected when the penalty level λ is larger than

max
i∈[n]

(∑
j∈[p]

(Zji,•X
(n)
•,j )2

‖ZjX(n)
•,j ‖

2

2

)1/2

. (2.64)

Indeed, to have Θ̂ = 0, the null vector must belong to the sub-di�erential of the objective

function evaluated at zero. We already show that for any i ∈ [n] it entails that λ ≥
‖X(n)

i,• BD−1
t ‖2. Using that tj = ‖(X(n)B−Θ)•,j‖2, we arrive at

λ ≥ max
i∈[n]

(∑
j∈[p]

(Zji,•X
(n)
•,j + ΠjcΘ•,j)

2

‖ZjX(n)
•,j + ZjΘ•,j‖

2

2

)1/2

.

Thus, in Θ = 0, we end with condition (2.64).

2.5.2 Algorithm in the high dimensional case

When p� n, we consider optimization problem (2.4). This problem can be solved in the

same way as in moderate dimensional case using alternating minimization techniques. The

only di�erence is that the successive estimations of the columns of the matrix B∗ are no

longer obtained by least squares optimization, but by the resolution of a square-root Lasso

problem. Indeed, for a given Θ and assuming that c = 0, the problem (2.4) reduces to

B̂ = arg min
B∈Rp×p
Bjj=1

{∥∥(X(n)B−Θ)>
∥∥

2,1
+ λγ‖B‖1,1

}
. (2.65)
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The latter is then equivalent solving p independent square-root Lasso problems. Indeed

for each j ∈ [p], we have

B̂jc,j = arg min
b∈Rp−1

{∥∥X(n)
•,jcb + X

(n)
•,j −Θ•,j

∥∥
2

+ λγ‖b‖1
}
. (2.66)

Each of these square-root Lasso problems can be solved by a standard convex optimizer

such that SCS [O'Donoghue et al., 2013], Gurobi [Gurobi Optimization, 2015] or Mosek

[Andersen and Andersen, 2000], or, as already noticed in Chapter 1, using the coordinate

descent algorithm. Ultimately, it is su�cient to adapt the �rst step of the exterior loop of

Algorithm 2.1 according to what precedes. The objective function should also be modi�ed

accordingly: F (B,Θ) = g(B,Θ, t) +
∑p

j=1 tj/2 + λγ‖B‖1,1.

2.6 Empirical evaluation

In this section, we report the results of some numerical experiments performed on synthetic

data. The main goal of this part is to demonstrate the potential of the method based on

Eq. (2.4) and (2.5). To this end, we have considered several scenarios and in each of them

compared our method with several other competitors. In order to provide a fair comparison

independent of the delicate question of choosing the tuning parameter, the results of all

the methods are reported for the oracle values of the tuning parameters chosen from a

grid by minimizing the distance to the true precision matrix. We have used the coordinate

descent algorithm for solving the convex optimization problem of Eq. (2.4).

2.6.1 Structure of the precision matrix

Let us �rst describe the precision matrices used in our experiments. It is worthwhile

to underline here that all the precision matrices are normalized in such a way that all

the diagonal entries of the corresponding covariance matrix Σ∗ = (Ω∗)−1 are equal to

one. To this end, we �rst de�ne a p × p positive semide�nite matrix A and then set

Ω∗ = (diag(A−1))
1
2 A(diag(A−1))

1
2 . The matrices A used in the �ve models for which the

experiments are carried out are de�ned as follows.

Model 0: A is the identity matrix.

Model 1: A is a Toeplitz matrix with the entries Aij = 0.6|i−j| for any i, j ∈ [p].
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Model 2: We start by de�ning a p× p pentadiagonal matrix with the entries

Āij =


1 , for |i− j| = 0,

−1/3 , for |i− j| = 1,

−1/10 , for |i− j| = 2,

0 , otherwise.

Then, we denote by A the matrix with the entries Aij = (Ā−1)ij1(|i− j| ≤ 2). One

can check that the matrix A de�ned in such a way is positive semide�nite.

Model 3: We set Aij = 0 for all the o�-diagonal entries that are neither on the �rst row

nor on the �rst column of A. The diagonal entries of A are

A11 = p, Aii = 2, for any i ∈ {2, . . . , p},

whereas the o�-diagonal entries located either on the �rst row or on the �rst column

are A1i = Ai1 =
√

2 for i ∈ {2, . . . , p}.

Model 4: The diagonal entries of A are all equal to 1. Besides, we set Aij = 0.5 for any

i 6= j.

2.6.2 Contamination scheme and measure of quality

The positions of outliers were chosen by a simple random sampling without replacement.

The proportion of outliers, ε = |O|/n, used in our experiments varies between 0% and 30%.

The entries of the rows of X corresponding to outliers were drawn randomly from a standard

Gaussian distribution and independently of one another. The rows of X corresponding to

inliers are drawn from a zero mean Gaussian distribution with the precision matrix speci�ed

by one of the foregoing models. Note that the magnitude of the individual entries of outliers

are similar to those of the inliers, which makes the outliers particularly hard to detect.

We measure the distance between the true precision matrix of a multivariate normal dis-

tribution and its estimator using the distance induced by the Frobenius norm. Recall that

our method does not guarantee the positive de�niteness of the estimate of the precision

matrix. When the estimate is not positive de�nite, one can always get a valid precision

matrix from Ω̂. A number of methods have been proposed in the literature for adjusting

a matrix such that it is positive de�nite. In practice, replacing Ω̂ by the positive de�nite

matrix obtained by the approach of Higham [2002], seems to be a good choice as it does

not signi�cantly a�ect the norm-induced distance between the true precision matrix and

its estimate.

We also measure the ability to recover the structure of the precision matrix. To this end, we

compute the false positive � the proportion of zero entries of the precision matrix that are
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Figure 2.1: The average error (measured in Frobenius norm) of estimating Ω∗ in Model 0
for p = 30, when ε is between 0% and 30%. Each point is the average of 50
replications.

estimated to be nonzero � and false negative rates � the proportion of nonzero o�-diagonal

entries of the precision matrix that are estimated to be zero � up to a given threshold.

In other terms, if we refer to the underlying graph of relationships between variables, the

false positive, resp. false negative, rate corresponds to the proportion of wrongly placed

edges, resp. wrongly removed. Denoting by Ψ = (diag(Ω))−1/2Ω(diag(Ω))−1/2 the matrix

of partial correlations associated to the precision matrix Ω and by t > 0 the chosen

threshold, we de�ne

FP
Ψ̂

(t) = |{j 6= j′ : ψ∗jj′ = 0, |ψ̂jj′ | > t}|/|{(jj′) : ψ∗jj′ = 0}|,

FN
Ψ̂

(t) = |{j 6= j′ : ψ∗jj′ 6= 0, |ψ̂jj′ | < t}|/|{j 6= j′ : ψ∗jj′ 6= 0}|.

model 0 1 2 3 4

Error type FP FN FP FN FP FN FP FN FP FN

SMCD 0.973 0.989 0.013 0.987 0.000 0.990 0.003 0.016

MLE 0.990 0.994 0.007 0.992 0.000 0.989 0.003 0.000

CGLASSO 0.126 0.922 0.070 0.897 0.000 0.908 0.072 0.023

Our 0.150 0.699 0.215 0.379 0.000 0.420 0.145 0.005

γ-LASSO 0.000 0.952 0.029 0.941 0.000 0.954 0.002 0.002

Table 2.1: Sparsity pattern recovery : false positive and false negative rates (the smaller,
the better) of the estimators of the precision matrix for p = 30, n = 200, when ε
is equal to 10%, and with a threshold equal to 10−3. The number of replications
in each case is R = 50.
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Figure 2.2: The average error (measured in Frobenius norm) of estimating Ω∗ in Model 1
for p = 30, when ε is between 0% and 30%. Each point is the average of 50
replications.
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Figure 2.3: The average error (measured in Frobenius norm) of estimating Ω∗ in Model 2
for p = 30, when ε is between 0% and 30%. Each point is the average of 50
replications.

2.6.3 Precision matrix estimators

We have compared our method to four other estimators of the precision matrix. The

�rst and the most naive estimator, referred to as the MLE, consists in computing the

(pseudo-)inverse of the empirical covariance matrix.

The second estimator is the inverse of a robust covariance estimate computed by the min-

imum covariance determinant (MCD) method introduced in [Rousseeuw, 1984]. We have

used a shrinkage coe�cient coming from the improvement of the Ledoit-Wolf shrinkage

[Ledoit and Wolf, 2004], developed by Chen et al. [2010] for multivariate Gaussian distri-

butions. We therefore re�ned the MCD estimator using the covariance Oracle Shrinkage

Approximating (OAS) estimator. In the following, we refer to it as SMCD. We also did

experiments estimating the covariance matrix by the minimum volume ellipsoid (MVE) es-

timator [Rousseeuw, 1985] and by the scaled Kendall's tau estimator [Chen et al., 2015a].

The results obtained for the latter estimators are not reported as they showed no improve-

ment over the SMCD.
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Figure 2.4: The average error (measured in Frobenius norm) of estimating Ω∗ in Model 3
for p = 30, when ε is between 0% and 30%. Each point is the average of 50
replications.

The third estimator of the precision matrix is obtained by solving an optimization problem

whose cost function depends on a robust estimate of the covariance matrix. Two versions of

this approach are particularly interesting: the maximum log-likelihood with `1-penalization

known as graphical Lasso [Banerjee et al., 2008; d'Aspremont et al., 2008; Friedman et al.,

2008] and the constrained `1-minimization for inverse matrix estimation (Clime) of Cai

et al. [2011]. Robust versions of these estimators have been proposed by Öllerer and Croux

[2015] and Tarr et al. [2016] and further investigated by Loh and Tan [2015]. In this ap-

proach, robust estimates of the covariance matrix are plugged-in the graphical Lasso or

Clime estimators. In our experiments, the quality of these two versions were compara-

ble. Therefore, we report only the results for the version based on the graphical Lasso.

In [Öllerer and Croux, 2015], the authors proposed an enhancement that simpli�es the

estimator and reduces the computational cost, by estimating aside the variances and the

correlations. Following their work, we choose to estimate the correlations by the robust

Gaussian rank correlation [Boudt et al., 2012] and adopt their implementation choices.

In particular, as a robust measure of scale, we used the Qn estimator of Rousseeuw and

Croux [1993] that is an alternative to the median absolute deviation (MAD). To sum up,

we implemented the correlation based precision matrix estimator obtained by plugging-

in the covariance matrix estimate based on pairwise correlations in the graphical Lasso5

(hereinafter referred to as CGLASSO).

The fourth estimator used in our experiments is the γ-LASSO proposed by Hirose and

Fujisawa [2015]. The crux of the method is the replacement of the penalized negative log-

likelihood function by the penalized negative γ-likelihood function [Fujisawa and Eguchi,

2008; Cichocki and Amari, 2010]. We used the R package rsggm developed by Hirose and

Fujisawa [2015].

Finally we considered two version of our approach, referred to as Our1 and Our2. The

5We used the implementation of the graphical Lasso of the R package huge.
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Figure 2.5: The average error (measured in Frobenius norm) of estimating Ω∗ in Model 4
for p = 30, when ε is between 0% and 30%. Each point is the average of 50
replications.

�rst version merely provided by (2.4) and (2.5), while the second version consists in re-

estimating the precision matrix after removing the observations classi�ed as outliers6. In

the latter, we did not look after outliers, but still estimated a sparse precision matrix.

2.6.4 Results

The results of our experiments are depicted in Figures 2.1-2.1. In all the experiments, the

the dimension p is equal to 30 and the contamination rate, denoted by ε, is between 0%

and 30%. The results show that our procedure is competitive with the state-of-the-art

robust estimators of the precision matrix, even when the proportion of outliers is high.

One may observe that the step of re-estimation of the precision matrix after the removal of

the observations classi�ed as outliers reduces the error of estimation in all the considered

situations. We would also like to mention that the γ-Lasso, which has a highly competitive

statistical accuracy is de�ned as the minimizer of a non-convex cost function. Furthermore,

there is no theoretical guarantee ensuring the convergence of the algorithm or controlling

its statistical error.

In addition, we compare the methods in terms of computational time. As shown in Ta-

ble 2.2, the execution time of our method is the lowest. The results obtained for other

models are comparable, thus not reported in the manuscript.

Figures 2.6-2.10 present the performance of the estimators when the sample size n is small

in comparison with the dimension p. The MLE results are not reported as far worse than

the others. The SMCD is essentially interesting in low-dimension, partly due to its huge

relative computational cost when p grows, but also because it becomes less robust when p

increases (and is not de�ned for p ≥ n).

6The R package DESP has been extended to cope with outlying observations.
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p n SMCD MLE CGLASSO Our γ-LASSO

10

100 0.212 0.356 0.517 0.002 0.014

150 0.307 0.356 0.434 0.002 0.015

200 0.398 0.356 0.433 0.002 0.016

30

100 0.766 0.357 0.445 0.007 0.028

150 1.295 0.360 0.449 0.009 0.046

200 1.711 0.360 0.468 0.017 0.060

60

100 2.131 0.465 0.458 0.021 0.058

150 3.080 0.395 0.477 0.065 0.172

200 5.593 0.382 0.511 0.065 0.277

Table 2.2: Average computation times of the di�erent methods for Model 2, when ε is
equal to 10%. The number of replications in each case is R = 50. The times
are measured in seconds and the experiments are done using a 64-bit computer
with an Intel i7 quad-core processor and 8GB memory.
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Figure 2.6: The average error (measured in Frobenius norm) of estimating Ω∗ in Model 0
for n = 50, when ε is between 0% and 30%. Each point is the average of 50
replications. Note that the scale of the y-axis is not the same in both plots.
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Figure 2.7: The average error (measured in Frobenius norm) of estimating Ω∗ in Model 1
for n = 50, when ε is between 0% and 30%. Each point is the average of 50
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Figure 2.8: The average error (measured in Frobenius norm) of estimating Ω∗ in Model 2
for n = 50, when ε is between 0% and 30%. Each point is the average of 50
replications. Note that the scale of the y-axis is not the same in both plots.
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Figure 2.9: The average error (measured in Frobenius norm) of estimating Ω∗ in Model 3
for n = 50, when ε is between 0% and 30%. Each point is the average of 50
replications. Note that the scale of the y-axis is not the same in both plots.
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Figure 2.10: The average error (measured in Frobenius norm) of estimating Ω∗ in Model
4 for n = 50, when ε is between 0% and 30%. Each point is the average of 50
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2.7 Perspectives

Calibrating the tuning parameters λ and γ of problem (2.4) is not an easy question. In

our experiments, we choose the values of these parameters from a grid. These are indeed

oracle values, not accessible in real situations. In Theorems 2.2.1, 2.2.2 and 2.3.1, we

provide theoretical values for λ that are suitable to prove estimation consistency. As for the

penalization parameter that promotes sparsity, theoretical concerns advocate for choosing

γ =
√

2 log p / λ. This choice is guided by the connection between our method and the

square-root Lasso. Indeed, when the observations are not corrupted by outliers, Θ = 0 and

problem (2.4) simpli�es to problem (2.2), with λ̄ =
√

2 log p. This value is known as the

universal choice for the square-root Lasso, it gives optimal theoretical results [Dalalyan and

Chen, 2012; Sun and Zhang, 2012; Dalalyan et al., 2013]. As we noticed in Section 2.1.2,

the square-root Lasso is designed to tackle the problem of heterogeneous variances of the

noise terms in the regression model. However, this method is not fully adaptive, and

common techniques like cross-validation, bootstrap or criteria like AIC or BIC can still be

useful to select the best tuning parameters. From a computational point of view, adjusting

and implementing the screening techniques developed in [Fercoq et al., 2015; Ndiaye et al.,

2015] should allow to consider more candidate values for the tuning parameters without

impeding too much on execution time. Note that Lederer and Müller [2014] proposed an

original approach for variable selection in the linear regression framework, that has the

advantage of being tuning-free. However, since their estimator is formulated as a non-

convex optimization problem, their algorithm carries no assurance that it converges. To

the best of our knowledge, a completely data-driven procedure for regularized regression

still not exists. Again referring to the tuning parameters, in our method, the penalty

level is the same for all the p underlying square-root Lasso problems (2.66). There is no

reason in general to expect similarities in the sparsity pattern across rows/columns of Ω∗.

In particular, the number of nonzero entries is usually not the same over rows/columns.

Therefore, replacing γ‖B‖1,1 by
∑

j∈[p] γj‖B•,j‖1 may be interesting, but we end with the

issue of selecting a vector of tuning parameters instead of a scalar.



Conclusion

RÉSUMÉ. Pour conclure, l'estimateur robuste de la matrice de précision que

nous avons construit en partant du modèle de régression linéaire o�re des

garanties théoriques satisfaisantes. D'une part, on a étudié plusieurs esti-

mateurs des éléments diagonaux dont on peut évaluer le risque d'estimation.

D'autre part, l'analyse de l'estimateur robuste nous a permis d'obtenir des

vitesses de convergence optimales au sens minimax pour l'estimateur de la

matrice des erreurs et celui de la matrice des coe�cients de régression. Cepen-

dant, certaines questions n'ont pas encore de réponse. Il reste par exemple à

déterminer si l'estimateur de la matrice de précision est optimal et à prouver

des bornes probabilistes pour cet estimateur robuste.
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The estimation of large precision matrices is a rather recent topic of interest. It is in-

deed connected with the growth of data collection that has generated new needs. As we

pinpointed in the Introduction, a wide range of problems have a solution that can be formu-

lated simply as soon as an accurate estimator of the precision matrix is available. However,

the framework of analysis, parsimony in our case, the tools and techniques involved, like

regularization, partly preexisted this recent concern.

The close ties between the question of estimating the precision matrix and the linear

regression model led us to analyze apart the estimators of diagonal entries and those of o�-

diagonal ones. This estimation in two steps is not merely an artifact of the chosen approach.

These two components of the precision matrix cover in fact di�erent meanings. Thus,

whereas the o�-diagonal elements correspond to a certain type of relationships between

the variables, the diagonal entries are for their part more directly associated to the scale

of the matrix, that is the magnitude of its individual entries.

The estimators studied in Chapter 1 refer to a simpler model than the one considered

in Chapter 2. Nevertheless, the obtained results concerning the diagonal elements still

hold for this last model. As we noticed in Chapter 2, the robust estimator provided by

the optimization problem (2.4) allows to estimate consistently�on a particular event�the

matrix of the coe�cients of regression. Indeed, it converges towards B∗ with an optimal

convergence rate in element-wise `1-norm, provided that the number of outliers is not too

large compared to the number of nonzero elements of the precision matrix. We can thus

plug this estimator B̂ into the estimators proposed in Chapter 1. Only the estimator

based on average absolute deviation has been examined from a theoretical point of view in

Chapter 2. Despite this, it should be noted that it does not mean that getting comparable

results while considering the residual variance estimator or the MLE is impossible.

Constructing new estimators and observing that they perform well in some experimental

settings is interesting, but not enough. Analyzing theoretically an estimator allows to

understand under what conditions it is accurate and e�cient, and what are its inherent

limitations. This comprehension is necessary to use appropriately this estimator and to

be able to improve it afterwards. Therefore, even if some of our assumptions could appear

somewhat restrictive, we are convinced that our results constitute an important step to-

wards estimating large precision matrices. Besides, all our hypotheses have not the same

strength. For instance, although focus is restricted to Gaussian distributions, most of the

results we proved also hold true in the sub-Gaussian setting. We recall that our analysis

of the estimators relies on recent developments in probability theory and that some results

are decisive. The results established in [Laurent and Massart, 2000] or [Vershynin, 2012b],

for instance, bring major arguments in many proofs. As another example, we have already

mentioned that assuming that the outliers have bounded norms might not be too severe

as excluding rough outliers is not sticky. On the other hand, the results of Chapter 1 rest

on the basic assumption that B∗ is known without error. Providing the quadratic risk of
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the considered estimators as a function of the error of estimation made on B∗ would be

undoubtedly more valuable but is also much more complicated.

As for the future developments, we recall that some important issues remain unsettled.

First, whether or not the convergence rate established in Theorem 2.2.2 is minimax opti-

mal over a suitably conditioned class of matrices and when outliers have bounded norms

still is an open question. Second, the risk bound stated in Theorem 2.3.1 depends on an

event whose probability is expected, but yet unproven, to be close to one. In addition, ex-

tending our framework to consider noisy data might be interesting. As such, the approach

of Belloni et al. [2014b]; Rosenbaum and Tsybakov [2013] is an attractive lead to follow,

by adding a random error term to the observed data matrix.

We have already cited recent works dealing as well with robust precision matrix estima-

tion. The approach based on the graphical Lasso coupled with a robust estimator of the

covariance matrix has received the more attention at the moment [Loh and Tan, 2015;

Öllerer and Croux, 2015; Tarr et al., 2016]. The other method that relies on γ-divergence

seems to be promising, at least empirically. However, the theoretical analysis of these ap-

proaches should be further explored. This would help to understand the extent to which

the resulting estimators di�er and what are their respective advantages.

Finally, we expect to achieve satisfactory results when using this estimator in a naive Bayes

classi�er for image classi�cation purpose. In this context, we indeed have the conviction

that this approach could be a relevant alternative to kernel classi�ers like the standard

SVM.
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Appendix A

Supplementary proofs

RÉSUMÉ. A�n que ce manuscrit soit complet, cette annexe regroupe les preuves

de résultats énoncés dans le chapitre introductif et dans le chapitre 1. En

particulier, nous exposons la manière dont peuvent être obtenues des bornes

supérieures de la vitesse de convergence de l'estimateur square-root Lasso en

norme `1 et en norme euclidienne. Nous justi�ons également les bornes non

asymptotiques du risque d'estimation de la matrice de précision lorsque cette

dernière est estimée en résolvant p problèmes indépendants de type square-root

Lasso.
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A.1 Proofs of Introduction

A.1.1 Conditional independence and precision matrix structure under

Gaussian assumption

We �rst state two well-known results from linear algebra.

Theorem A.1.1 (normal correlations [Marsaglia, 1964]). Let Y and X be two random

vectors such that (Y >, X>)> is distributed according to Np(µ,Σ) with

µ = E

(
Y

X

)
=

(
µY

µX

)
, Σ = Cov

((
Y

X

)
,

(
Y

X

))
=

(
ΣY Y ΣY X

ΣXY ΣXX

)
.

Then the conditional expectation and covariance of Y given X are

E(Y |X) = µY + ΣY XΣ†XX(X − µX),

Cov(Y, Y |X) = ΣY Y −ΣY XΣ†XXΣXY .

Proof. For the proof, see for example [Liptser and Shiryaev, 2013].

Theorem A.1.2 (block matrix inversion). Let M be a p×p matrix written by blocks, such

that M =

(
M11 M12

M21 M22

)
then

M† =

(
(M11 −M12M

†
22M21)† −(M11 −M12M

†
22M21)†M12M

†
22

−(M22 −M21M
†
11M12)†M21M

†
11 (M22 −M21M

†
11M12)†

)
.

Proof. This result is based on the resolution of a system of equations obtained from M

and its inverse written as block matrices.

The partial correlations of a Gaussian random vector are zero if and only if the two related

components are independent conditionally to all other components.

Proof of Proposition 0.2.1 We consider the covariance matrix written by blocks,

Σ =

ΣXX ΣXY ΣXZ

ΣY X ΣY Y ΣY Z

ΣZX ΣZY ΣZZ

 .

The successive application of Theorem A.1.1 on normal correlations and then of Theorem
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A.1.2 on block matrix inversion implies that

Cov

((
X

Y

)
,

(
X

Y

)∣∣∣Z) =

(
ΣXX ΣXY

ΣY X ΣY Y

)
−

(
ΣXZ

ΣY Z

)
Σ−1
ZZ

(
ΣXZ ΣY Z

)
=

(
ΩXX ΩXY

ΩY X ΩY Y

)
.

Furthermore, under the normal hypothesis, X and Y are independent conditionally to Z is

equivalent to Cov(X,Y |Z) = 0. Thus the conditional independence condition is equivalent

to the fact that Cov
((

X
Y

)
,
(
X
Y

)∣∣Z) is diagonal. The latter means that ΩXY = 0. As the

corresponding partial correlation is ΨXY = −ΩXY

(
ΩXXΩY Y

)−1/2
, that concludes the

proof.

Under the Gaussian assumption the coe�cients of regression and the variance of the error

of a linear regression model can be formulated using the precision matrix of both dependent

and explanatory variables.

Proof of Proposition 0.3.1 We begin with a �rst formulation of the conditional covari-

ance of Y , Cov(Y, Y |X) = B>Cov(X,X|X)B + 2B>Cov(X, ε|X) + Cov(ε, ε|X). As

E(X|X) = X, we get Cov(X,X|X) = 0. We also have Cov(X, ε|X) = 0 and Cov(ε, ε|X) =

Cov(ε, ε) = Φ using that X independent of ε. Besides, the combination of the results of

the theorem on normal correlations and the theorem on blockwise matrix inversion leads

to Cov(Y, Y |X) = Ω−1
Y Y . That implies Φ = Ω−1

Y Y .

To obtain the expression of the matrixB, we note that ΣY X = Cov(Y,X) = B>Cov(X,X)+

Cov(ε,X) = B>ΣXX . We deduce that B> = ΣY XΣ−1
XX . Moreover, applying again the

theorem on blockwise matrix inversion yields to

ΩY X = −(ΣY Y −ΣY XΣ−1
XXΣXY )−1ΣY XΣ−1

XX = −ΩY Y ΣY XΣ−1
XX = −ΩY YB

>,

that completes the proof.

A.1.2 Risk bounds of the square-root Lasso

The square-root Lasso and the scaled Lasso procedures are equivalent.

Proof of Proposition 0.4.1 To convince oneself of the equivalence of these estimators, one

just has to maximize the scaled Lasso over φ. Thus, φ̂scL satis�es − 1

2φ̂scL
2√

n
‖y −Xβ‖22 +

√
n

2 = 0, then φ̂scL2
= 1

n‖y −Xβ‖22. It remains to replace φ by its estimator in the scaled

Lasso optimization problem to end the proof.
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Before getting into the proofs of our main results, let us state an intermediate restricted

eigenvalue condition. Considering H ∈ [p] and introducing the set

HH,J , {δ ∈ Rp : ‖δHc\J‖∞ ≤ min
j∈H
|δj |},

for m ≥ s ≥ 1 and s+m ≤ p, we de�ne

KRE(s, c,m) , min
J,H⊂[p],
J∩H=∅,
|J |=s,|H|=m

min
δ∈CJ (c)∩HH,J ,

δ 6=0

1

n

‖Xδ‖22
‖δJ∪H‖22

. (A.1)

Note that in the expression above, the condition δ ∈HH,J can be dropped from the second

min as this minimum is anyway reached when this condition is satis�ed. This variant of

the restricted eigenvalue has been set up in [Bickel et al., 2009] and studied in [van de

Geer and Bühlmann, 2009]. The related condition KRE(s, c,m) > 0 is obviously stronger

than KRE(s, c) > 0, but weaker than K̄RE(s, c) > 0. This condition is one of the main

ingredients of the proof of the second claim of Proposition A.1.8.

In all this section, we simply denote by β̂ the square-root Lasso estimator of the coe�cients

of regression β∗. For the convenience of the reader, a complete set of proofs can be found

below. The Propositions 0.4.2 and 0.4.3 correspond to the Propositions A.1.3 and A.1.4 in

the special case where ρ = 1/2 and ι = K∗(s, 2, 1)/2.

Proposition A.1.3. Set s = |supp(β∗)|, 1 ≤ s ≤ p. Let X be a n × p random matrix

with i.i.d. centered Gaussian rows whose covariance matrix has unit diagonal entries and

satis�es the `1-sensitivity property K∗(s, 2, 1) > 0. Let us consider α ∈ (0, 1), δ ∈ (0, 1)

and choose

λ = 9
(

log
6p

δ

)1/2
.

Let ι > 0 and ρ < 1 be some (arbitrary) constants. We assume that the sample size n

satis�es

n ≥
(

12 log(3/δ)
)
∨
(
λ2/
(
(K∗(s, 2, 1)− ι)ρ

))
∨
(
ds2 log(1/α)

)
,

where d is a constant depending on ι.

Set A = 8
(

(K∗(s, 2, 1)− ι)
(
1− ρ

))−1
and B = 8

(√
3
√

(K∗(s, 2, 1)− ι)
(
1− ρ

))−1
.

Then, the solution β̂ of problem (square-root Lasso) satis�es

‖β̂ − β∗‖q ≤ ‖β̂ − β
∗‖1 ≤ A

λφ∗√
n
, for q ≥ 1, and ‖X(β̂ − β∗)‖2 ≤ Bλφ

∗, (A.2)

with probability at least 1− δ − α.

Proposition A.1.4. Set s = |supp(β∗)|, 1 ≤ s ≤ p. Let X be a n × p random matrix

with i.i.d. centered Gaussian rows whose covariance matrix has unit diagonal entries and

satis�es the restricted eigenvalue property K̄∗RE(s, 2) > 0. Let us consider α ∈ (0, 1),
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δ ∈ (0, 1) and choose

λ = 9
(

log
6p

δ

)1/2
.

Let us consider the universal constants a, b, d > 0 and an (arbitrary) constant ρ < 1. We

assume that the sample size n satis�es

n ≥
(

12 log(3/δ)
)
∨
(

24sλ2/
(
K̄∗RE(s, 2)ρ

))
∨
(

1/d log(b/α)
)
∨
(
as log(p)/K̄∗RE(s, 2)

)
.

Set C = 64
(

1 + 2
√
s/n
)(
K̄∗RE(s, 2)

(
1− ρ

))−1
.

Then, the solution β̂ of problem (square-root Lasso) satis�es

‖β̂ − β∗‖2 ≤ C
√
s
λφ∗√
n
, (A.3)

with probability at least 1− δ − α.

The proof of Proposition A.1.3 easily follows from the application of Corollary A.1.7 using

Lemma A.1.13, along with Theorem 0.5.2. On the other hand, Proposition A.1.4 relies on

Theorem A.1.5 below instead of Theorem 0.5.2.

Theorem A.1.5 (Raskutti et al. [2010]). Let X be a n × p random matrix having zero-

mean Gaussian rows whose covariance matrix Σ∗ has unit diagonal entries and satis�es

the restricted eigenvalue property K̄∗RE(s, c) > 0. Let a, b, d > 0 be universal constants. If

n > a(1+c)2s log(p)/K̄∗RE(s, c), then the sample covariance matrix Σ̂ satis�es the restricted

eigenvalue property K̄RE(s, c) = K̄∗RE(s, c)/8 > 0 with probability at least 1− b e−dn.

When the sample covariance matrix satis�es the `1-sensitivity property, the error of esti-

mation measured in `1-norm is of the order of
√

log(p)/n with high probability.

Theorem A.1.6. We assume that the diagonal entries of X>X/n are equal to 1 and that

|supp(β∗)| = s, where 1 ≤ s ≤ p. We denote β̂ − β∗ by δ̂. Let δ ∈ (0, 1), c > 1 and choose

λ =
c+ 1

c− 1

(
2
√
n log(4p/δ)

√
n− 2

√
log 4/δ

)1/2

.

If the `1-sensitivity property K(s, c, 1) > 0 is satis�ed and λ ≤
√
nK(s, c, 1)ρ with ρ < 1,

then, denoting A = 2c
(
K(s, c, 1)

(
1− ρ

))−1
and B = 2c

(√
c+ 1

√
K(s, c, 1)

(
1− ρ

))−1
,

‖δ̂‖q ≤ ‖δ̂‖1 ≤ Aλφ∗
√
n+

√
2 log 2/δ

n
, for q ≥ 1, (A.4)

and

‖Xδ̂‖2 ≤ Bλφ∗
√
n+

√
2 log 2/δ√
n

(A.5)
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hold with probability at least 1− δ.
Moreover, if the stronger restricted eigenvalue condition KRE(s, c,m) > 0 is satis�ed, for m

such that m ≥ s ≥ 1 and s+m ≤ p, setting C = 2c
(

1 + c
√
s/n
)(
KRE(s, c,m)

(
1− ρ

))−1
,

then

‖δ̂‖2 ≤ Cλφ
∗√s
√
n+

√
2 log 2/δ

n
(A.6)

holds with the same probability as above.

For readability purposes, we state the above theorem in the particular case of c = 2 and

with an additional assumption on the sample size. Besides, we replace the assumption

KRE(s, 2,m) > 0 by K̄RE(s, 2) > 0 in the second claim.

Corollary A.1.7. We assume that the diagonal entries of X>X/n are equal to 1 and that

|supp(β∗)| = s, where 1 ≤ s ≤ p. We denote β̂ − β∗ by δ̂. Let δ ∈ (0, 1), n ≥ 16 log 2/δ

and choose

λ = 6
(

log
2p

δ

)1/2
.

If the `1-sensitivity property K(s, 2, 1) > 0 is satis�ed and λ ≤
√
nK(s, 2, 1)ρ with ρ < 1,

then, denoting A = 8
(
K(s, 2, 1)

(
1− ρ

))−1
and B = 8

(√
3
√
K(s, 2, 1)

(
1− ρ

))−1
,

‖δ̂‖q ≤ ‖δ̂‖1 ≤ A
λφ∗√
n
, for q ≥ 1, and ‖Xδ̂‖2 ≤ Bλφ∗ (A.7)

hold with probability at least 1− δ.
Moreover, if the stronger restricted eigenvalue condition K̄RE(s, 2) > 0 is satis�ed, setting

C = 8
(

1 + 2
√
s/n
)(
K̄RE(s, 2)

(
1− ρ

))−1
, then

‖δ̂‖2 ≤ C
√
s
λφ∗√
n

(A.8)

holds with the same probability as above.

Proof. As Theorem A.1.6, this result is based on Proposition A.1.8. Using the result of

the Lemma A.1.11, with c = 2 and λ = 6
(

log(2p/δ)
)1/2

, when n is large enough, it holds

that
‖X>ε‖∞
‖ε‖2

≤ c− 1

c+ 1
λ,

with probability at least 1 − δ/2. Moreover, if n ≥ 16 log 2/δ ≥ 2 log 2/δ, then Lemma

A.1.12 implies that
‖ε‖2√
n
≤ 2√

n

holds with probability at least 1− δ/2.

General scheme of the proof of Theorem A.1.6 :
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Step 1: We provide bounds for ‖β̂ − β∗‖1 and ‖β̂ − β∗‖2 that rely on ‖ε‖2, under the
assumptions that the regularization parameter λ is lower bounded according to

Eq. (A.17) and that the sample covariance matrix satis�es the `1-sensitivity prop-

erty.

Step 2: We prove that λ satis�es condition (A.17) and that ‖ε‖2 is of order O(
√
n) with

high probability.

We state the following proposition that gives an analytical bound for the error of estimation

of the square-root Lasso procedure, assuming that the `1-sensitivity property is satis�ed

by the design matrix X.

Proposition A.1.8. Let us assume that β∗ is s-sparse, 1 ≤ s ≤ p, K(s, c, 1) > 0 and

λ ≤
√
nK(s, c, 1)ρ with ρ < 1. We denote β̂ − β∗ by δ̂. If the penalty level λ satis�es

condition (A.17) for some constant c > 1, on the event {ε 6= 0}, then

‖δ̂‖q ≤ ‖δ̂‖1 ≤ A
λφ∗‖ε‖2

n
, for q ≥ 1, and ‖Xδ̂‖2 ≤ B

λφ∗‖ε‖2√
n

, (A.9)

where A = 2c
(
K(s, c, 1)

(
1− ρ

))−1
and B = 2c

(√
c+ 1

√
K(s, c, 1)

(
1− ρ

))−1
.

Moreover, if the stronger restricted eigenvalue condition KRE(s, c,m) > 0 is satis�ed, for

m such that m ≥ s ≥ 1 and s+m ≤ p, then

‖δ̂‖2 ≤ C
√
s
λφ∗‖ε‖2

n
, (A.10)

where C = 2c
(

1 + c
√
s/n
)(
KRE(s, c,m)

(
1− ρ

))−1
.

Proof. By de�nition of `1-sensitivity (0.13), considering J = supp(β∗), we have

‖δ̂J‖1 ≤
1

n

‖X>Xδ̂‖∞
K(s, c, 1)

. (A.11)

The combination of the latter with Lemma A.1.9 entails that

‖X>Xδ̂‖∞ ≤ λ
2c

c+ 1
φ∗‖ε‖2

(
1− λ2

nK(s, c, 1)

)−1

. (A.12)

Then, inequalities (A.11) and (A.12) and ‖δ̂‖1 ≤ (1+c)‖δ̂J‖1 (by Lemma A.1.10) imply im-

mediately the �rst inequality of (A.9). Next, since it holds that ‖Xδ‖22 ≤ ‖δ‖1‖X>Xδ‖∞
and as δ̂ ∈ CJ(c) by Lemma A.1.10, we obtain

‖Xδ̂‖
2

2 ≤ (1 + c)‖δ̂J‖1‖X>Xδ̂‖∞,
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combining the latter with (A.11) gives

‖Xδ̂‖2 ≤
(1 + c

n

)1/2 ‖X>Xδ̂‖∞(
K(s, c, 1)

)1/2 .
Finally, using inequality (A.12), we arrive at

‖Xδ̂‖2 ≤
λφ∗‖ε‖2√

n

2c/
√
c+ 1(

K(s, c, 1)
)1/2(

1− λ2/(nK(s, c, 1))
) , (A.13)

hence the second part of (A.9).

To prove the second claim of the proposition, we follow the sketch of the last part of the

proof of Theorem 7.1 of [Bickel et al., 2009]. As in this paper, we denote the kth largest

element in absolute value of a vector v by |v|(k). Let H be the subset of [p]\J of size m

that corresponds to the indexes of the m largest elements�outside J�of δ̂ in absolute

value. It holds that

‖δ̂(H∪J)c‖
2

2
= ‖δ̂Jc\H‖

2

2
=

|Jc|∑
k=m+1

|δ̂Jc |2(k) ≤ ‖δ̂Jc‖
2

1

|Jc|∑
k=m+1

1

k2
≤ 1

m
‖δ̂Jc‖

2

1.

Then, we apply Lemma A.1.10 which yields

‖δ̂(H∪J)c‖
2

2
≤ c2 1

m
‖δ̂J‖

2

1 ≤ c
2 s

m
‖δ̂J‖

2

2 ≤ c
2 s

m
‖δ̂J∪H‖

2

2.

Using that ‖δ̂‖
2

2 = ‖δ̂J∪H‖
2

2 + ‖δ̂(H∪J)c‖
2

2
, we get that

‖δ̂‖2 ≤
(

1 + c
√
s/m

)
‖δ̂J∪H‖2 ≤

(
1 + c

√
s/m

) 1√
n

‖Xδ̂‖2√
KRE(s, c,m)

,

where the last inequality comes from the restricted eigenvalue condition. To conclude,

Eq. (A.13) combined with the inequality K(s, c, 1) ≥ s−1(1 + c)−1KRE(s, c,m) leads to

‖δ̂‖2 ≤
λφ∗‖ε‖2

n

√
s
(

1 + c
√
s/m

) 2c

KRE(s, c,m)(1− ρ)
.

Lemma A.1.9. If the penalty level λ satis�es condition (A.17) for some constant c > 1,

then

‖X>Xδ̂‖∞ ≤ λ
2c

c+ 1
φ∗‖ε‖2 + λ2‖δ̂J‖1,

where J = supp(β∗) and δ̂ = β̂ − β∗.

Proof. The Karush-Kuhn-Tucker conditions imply that the estimate β̂ of the square-root
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Lasso satis�es
‖y −Xβ̂‖−1

2

(
X>Xβ̂ −X>y

)
+ λsgn(β̂) = 0 , if ‖y −Xβ̂‖2 6= 0 and β̂j 6= 0 for all j,

β̂ = 0 , if ‖y −Xβ̂‖2 = 0,

‖y −Xβ̂‖−1
2

(
X>•,jXβ̂ −X>•,jy

)
∈ [−λ, λ] , if β̂j = 0.

To sum up, it holds that

‖y −Xβ̂‖−1
2

(
X>Xβ̂ −X>y

)
= −λL, (A.14)

where the subgradient L of β 7→ ‖β‖1 satis�es Lj ∈

{
sgn(β̂j) if β̂j 6= 0

[−1, 1] if β̂j = 0
, for all j ∈ [p].

In view of Eq. (A.14), we get

‖X>(y −Xβ̂)‖∞ ≤ λ‖y −Xβ̂‖2.

As, by the triangle inequality, we have

‖X>Xδ̂‖∞ = ‖X>(Xβ̂ − y + y −Xβ∗)‖∞ ≤ ‖X>(y −Xβ̂)‖∞ + φ∗‖X>ε‖∞,

it follows that, under condition (A.17),

‖X>Xδ̂‖∞ ≤ λ‖y −Xβ̂‖2 + λ
c− 1

c+ 1
φ∗‖ε‖2. (A.15)

Besides, as Eq. (A.21) implies that

‖y −Xβ̂‖2 ≤ ‖y −Xβ∗‖2 + λ‖δ̂J‖1 = φ∗‖ε‖2 + λ‖δ̂J‖1, (A.16)

we end with the claimed result.

When the tuning parameter λ is large enough, the error of estimation β̂ − β∗ belongs to
the cone de�ned by Eq. (0.12).

Lemma A.1.10. Considering J = supp(β∗), if, for some constant c > 1, the penalty level

λ satis�es the condition

λ ≥ c+ 1

c− 1

‖X>ε‖∞
‖ε‖2

, (A.17)

then δ̂ = β̂ − β∗ ∈ CJ(c), on the event {ε 6= 0}.

Remark. A similar property is valid for the standard Lasso and the Dantzig selector,

respectively with constants c = 3 and c = 1 (see Bickel et al. [2009]).

Proof. This proof is due to Belloni et al. [2011].
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We �rst state the basic inequality

‖β∗J‖1 − ‖β̂J‖1 ≤ ‖δ̂J‖1, (A.18)

that comes from triangle inequality. Furthermore by de�nition of β̂, it holds that

‖y −Xβ̂‖2 + λ‖β̂‖1 ≤ ‖y −Xβ∗‖2 + λ‖β∗‖1. (A.19)

Also, as β 7→ ‖y −Xβ‖2 is a convex di�erentiable function on the event {ε 6= 0}, we get
that

‖y −Xβ̂‖2 − ‖y −Xβ∗‖2 ≥ ∇(‖y −Xβ‖2)|>β∗ δ̂.

The gradient of ‖y −Xβ‖2 in β∗ satis�es

∇(‖y −Xβ‖2)|β∗ = ‖y −Xβ∗‖−1
2 X>(Xβ∗ − y) = −‖ε‖−1

2 X>ε.

Thus, with the condition (A.17), the previous inequality leads to

‖y−Xβ̂‖2−‖y−Xβ∗‖2 ≥ −‖ε‖−1
2 X>εδ̂ ≥ 1− c

1 + c
λ‖δ̂‖1 =

1− c
1 + c

λ(‖δ̂J‖1+‖δ̂Jc‖1). (A.20)

Besides, equations (A.18) and (A.19) imply

‖y −Xβ̂‖2 − ‖y −Xβ∗‖2 ≤ λ(‖δ̂J‖1 − ‖δ̂Jc‖1). (A.21)

The combination of Eq. (A.20) and Eq. (A.21) entails ‖δ̂Jc‖1 ≤ c‖δ̂J‖1, that concludes the
proof.

Remark. As Belloni et al. [2011], we use the gradient of ‖y−Xβ‖2 in β∗ to set a lower

bound for the penalty level. In other words, we consider the smallest λ that gives the

following upper bound for the noise term

‖X>ε‖∞ ≤
c− 1

c+ 1
‖ε‖2λ.

The same assumption is made in [Sun and Zhang, 2012] and [Sun and Zhang, 2013] to

prove theoretical bounds for the scaled Lasso.

Probabilistic bounds The regularization parameter λ satis�es condition (A.17) with

high probability.

Lemma A.1.11. We assume that the diagonal entries of X>X/n are equal to 1. For
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δ ∈ (0, 1), if ε ∼ N (0, In), the inequality

‖X>ε‖∞
‖ε‖2

≤
(

2
√
n log(2p/δ)

√
n− 2

√
log 2/δ

)1/2

holds with probability at least 1− δ. Furthermore, if n ≥ 16 log 2/δ, then

‖X>ε‖∞
‖ε‖2

≤ 2
(

log
2p

δ

)1/2

holds with the same probability as above.

Proof. As the errors εi, i ∈ [n], follow i.i.d. standard normal distributions and are inde-

pendent of X, then conditionally to X, the random variable X>•,jε has a zero mean normal

distribution with variance
(
X>X

)
j,j

= n. It means that, conditionally to X, n−1/2X>•,jε is

a standard normal random variable. We recall that a standard normal distribution func-

tion is lower bounded by 1− e−t
2/2 /2 in t ≥ 1. Therefore, combining this tail bound with

the union bound entails that

max
j∈[p]

∣∣n−1/2X>•,jε
∣∣ ≤√2 log(2p/δ)

holds with probability at least 1 − δ/2. It means that ‖X>ε‖∞ ≤
√

2n log(2p/δ) holds

with this probability. Moreover, as ‖ε‖22 ∼ X 2(n), applying [Laurent and Massart, 2000,

Lemma 1], we get that

‖ε‖2 ≥
(
n− 2

√
n log 2/δ

)1/2
holds with probability at least 1−δ/2. This leads to the �rst claim of the lemma. To obtain

the second claim, we remark that n ≥ 16 log 2/δ implies that
√
n/
(√
n− 2

√
log 2/δ

)
≤ 2,

and we substitute this inequality into the �rst bound of the lemma.

The `2-norm of the error has an upper bound of order
√
n with high probability.

Lemma A.1.12. For any δ ∈ (0, 1), the following inequality

‖ε‖2 ≤
√
n+

√
2 log 1/δ (A.22)

holds with probability at least 1− δ.

Proof. This lemma is an immediate consequence of the application of [Laurent and Massart,

2000, Lemma 1]. Indeed, as ε ∼ N (0, 1), ‖ε‖22 has a X 2 distribution with n degrees of

freedom. The aforementioned lemma implies that

‖ε‖22 ≤ n+ 2
√
n log 1/δ + 2 log 1/δ ≤

(√
n+

√
2 log 1/δ

)2
(A.23)
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holds with probability at least 1− δ.

We provide a tail bound on the diagonal entries of the covariance matrix of a Gaussian

i.i.d. sample. The result of the following lemma is used to modify the bounds obtained

in Lemma A.1.11 when the assumption that the diagonal entries of X>X/n are equal to

1 is replaced by the assumption that X is a Gaussian random matrix whose covariance

matrix Σ∗ has unit diagonal elements. For instance, under this new assumption, for any

δ ∈ (0, 1), if n ≥ 12 log 3/δ, then

‖X>ε‖∞
‖ε‖2

≤ 2
√

2
(

log
3p

δ

)1/2

holds with probability at least 1− δ.

Lemma A.1.13. For δ ∈ (0, 1), if the n× p matrix X has independent centered Gaussian

rows with covariance matrix Σ∗ having unit diagonal, then for any j ∈ [p],

(
X>X

)
j,j
≤ n+ 2

√
n log 1/δ + 2 log 1/δ

holds with probability at least 1− δ.

Proof. If Xi,• ∼ N (0,Σ∗), then
(
Σ∗j,j

)−1/2
Xi,j follows a standard normal distribution.

This yields that
(
Σ∗j,j

)−1/2(
X>X

)
j,j

is a X 2 random variable with n degrees of freedom.

Therefore, as we assume that Σ∗j,j = 1, applying [Laurent and Massart, 2000, Lemma 1]

leads to (
X>X

)
j,j
≤ n+ 2

√
nt+ 2t,

with probability at least 1 − e−t, for any t ≥ 0. Taking t = log 1/δ yields the claimed

bound.

A.1.3 Risk bounds on precision matrix estimation

Propositions 0.6.1 and 0.6.2 simply correspond to the Propositions A.1.14 and A.1.15 in

the special case where ρ = 1/2 and ι = K∗(s, 2, 1)/2.

Proposition A.1.14. We assume that the maximal number of nonzero entries in a column

of Ω∗ is s ∈ [p]. Let X be a n × p random matrix with i.i.d. centered Gaussian rows

whose covariance matrix has unit diagonal entries and satis�es the `1-sensitivity property

K∗(s, 2, 1) > 0. Let us consider α ∈ (0, 1), δ ∈ (0, 1) and choose

λ = 6
(

log
8p2

δ

)1/2
.
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For any ι > 0 and ρ < 1, we assume that the sample size n satis�es

n ≥
(

16 log(8p/δ)
)
∨
(
λ2/
(
(K∗(s, 2, 1)− ι)ρ

))
∨
(
ds2 log(1/α)

)
,

where d is a constant depending on ι. We set A = 32
(

(K∗(s, 2, 1)− ι)
(
1− ρ

))−1
.

Then, the solution Ω̂ of problem (0.22) satis�es the following inequalities

‖Ω̂−Ω∗‖∞,1 ≤
1√
n
λ
(

max
j
ω∗jj
)1/2(

A+
2

3
s
(

max
j
ω∗jj
)1/2)

, (A.24)

‖Ω̂−Ω∗‖1,1 ≤
p√
n
λ
(

max
j
ω∗jj
)(
A
(

min
j
ω∗jj
)−1/2

+
2

3
s
)
, (A.25)

with probability at least 1− δ − α.

Proposition A.1.15. We assume that the maximal number of nonzero entries in a column

of Ω∗ is s ∈ [p]. Let X be a n× p random matrix with i.i.d. centered Gaussian rows whose

covariance matrix has unit diagonal entries and satis�es the restricted eigenvalue property

K̄∗RE(s, 2) > 0. Let us consider α ∈ (0, 1), δ ∈ (0, 1) and choose

λ = 6
(

log
8p2

δ

)1/2
.

For universal constants a, b, d > 0 and any ρ < 1, we assume that the sample size n satis�es

n ≥
(

16 log(8p/δ)
)
∨
(

24sλ2/
(
K̄∗RE(s, 2)ρ

))
∨
(

1/d log(b/α)
)
∨
(
as log(p)/K̄∗RE(s, 2)

)
.

We set C = 256
(

1 + 2
√
s/n
)(
K̄∗RE(s, 2)

(
1− ρ

))−1
.

Then, the solution Ω̂ of problem (0.22) satis�es the following inequality

‖Ω̂−Ω∗‖2,2 ≤
√
p
√
n
λσmax(Ω∗)

(√
sC
(

min
j
ω∗jj
)−1/2

+
2

3

)
, (A.26)

with probability at least 1− δ − α.

Proposition A.1.14 claims that, in `∞/`1-norm, under suitable conditions, the error of

estimation of the precision matrix has a convergence rate of order s
√

log(p)/n with high

probability. This result is deduced from the combination of Theorem A.1.16 below and of

Theorem 0.5.2, whereas Proposition A.1.15 ensues from the second claim of Theorem A.1.16

and Theorem A.1.5.

Theorem A.1.16. We assume that the diagonal entries of X>X/n are equal to 1 and

that the maximal number of nonzero entries in a column of Ω∗ is s ∈ [p]. Let us consider
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δ ∈ (0, 1), n ≥ 16 log 8p/δ and choose

λ = 6
(

log
8p2

δ

)1/2
.

If the `1-sensitivity property K(s, 2, 1) > 0 is satis�ed and λ ≤
√
nK(s, 2, 1)ρ with ρ < 1,

then, denoting A = 32
(
K(s, 2, 1)

(
1− ρ

))−1
, each of the following inequalities holds

‖Ω̂−Ω∗‖∞,1 ≤
1√
n
λ
(

max
j
ω∗jj
)1/2(

A+
2

3
s
(

max
j
ω∗jj
)1/2)

, (A.27)

‖Ω̂−Ω∗‖1,1 ≤
p√
n
λ
(

max
j
ω∗jj
)(
A
(

min
j
ω∗jj
)−1/2

+
2

3
s
)
, (A.28)

with probability at least 1− δ.
Moreover, if the stronger restricted eigenvalue condition K̄RE(s, 2) > 0 is satis�ed, setting

C = 32
(

1 + 2
√
s/n
)(
K̄RE(s, 2)

(
1− ρ

))−1
, then

‖Ω̂−Ω∗‖2,2 ≤
√
p
√
n
λσmax(Ω∗)

(√
sC
(

min
j
ω∗jj
)−1/2

+
2

3

)
(A.29)

holds with the same probability as above.

The proof of Theorem A.1.16 is essentially based on Corollary A.1.7 and on the following

lemma.

Lemma A.1.17. For any δ ∈ (0, 1),

max
j∈[p]

ω̂jj
ω∗jj
≤
(

1− 2

√
log p/δ

n

)−1

(A.30)

holds with probability at least 1− δ.
Moreover, under appropriate conditions (such that the conclusion of Corollary A.1.7 holds),

for any c > 1, if n ≥ (2c/(c− 1))2 log 2p/δ, then each of the following inequalities

max
j∈[p]

∣∣∣ ω̂jj
ω∗jj
− 1
∣∣∣ ≤ 2c

√
log 2p/δ

n
, (A.31)

‖D̂(D∗)−1 − Ip‖2,2 ≤ 2c

√
p log 2p/δ

n
; ‖D̂(D∗)−1 − Ip‖1,1 ≤ 2cp

√
log 2p/δ

n
, (A.32)

holds with the same probability as above.

Proof. We recall that ω̂jj/ω∗jj = n/
(
ω∗jj‖ε̂•,j‖

2
2

)
. To prove relation (A.30), we thus only

have to get a lower bound for

‖ε̂•,j‖22 = ‖X•,jc(B̂jc,j −B∗jc,j)‖
2

2
+ ‖ε•,j‖22/ω

∗
jj ≥ ‖ε•,j‖

2
2/ω

∗
jj .
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As ‖ε•,j‖22 ∼ X
2(n), applying [Laurent and Massart, 2000, Lemma 1] involves that, for any

δ ∈ (0, 1), ‖ε•,j‖22 ≥ n− 2
√
n log 1/δ holds with probability at least 1− δ. It entails that,

with this probability,
ω̂jj
ω∗jj
≤
(

1− 2

√
log 1/δ

n

)−1

. (A.33)

The claimed bound follows from the union bound.

Next, to obtain the second bound of the lemma, we recall that Corollary A.1.7, under the

following conditions : { the diagonal entries of X>X/n are equal to 1, n ≥ 16 log 8/δ,

λ = 6
√

log 2p/δ, λ ≤
√
nK(s, 2, 1)ρ for ρ < 1, B = 8

(√
3
√
K(s, 2, 1)(1 − ρ)

)−1
and each

column of the precision matrix Ω∗ has at most s nonzero elements }, entails that

‖X•,jc(B̂jc,j −B∗jc,j)‖
2

2
≤ B2λ2/ω∗jj

holds with probability at least 1− δ/4.
Furthermore, applying [Laurent and Massart, 2000, Lemma 1] leads to ‖ε•,j‖22 ≤ n +

2
√
n log 4/δ+2 log 4/δ, with probability at least 1−δ/4. Set b = B2λ2/n+2

√
log 4/δ/

√
n+

2 log(4/δ)/n, we thus arrive at

‖ε̂•,j‖22 ≤ n(1 + b)/ω∗jj ,

with probability at least 1−δ/2. Along with Eq. (A.33), it implies that each of the following

inequalities

ω̂jj
ω∗jj
− 1 ≤

2

√
log 2/δ
n

1− 2

√
log 2/δ
n

and 1− ω̂jj
ω∗jj
≤ b

1 + b
≤

2

√
log 2/δ
n

1− 2

√
log 2/δ
n

(A.34)

holds with probability at least 1 − δ/2. Finally, combining the previous inequalities and

the union bound, it holds that

max
j∈[p]

∣∣∣ ω̂jj
ω∗jj
− 1
∣∣∣ ≤ 2

√
log 2p/δ

n

(
1− 2

√
log 2p/δ

n

)−1

holds with probability at least 1−δ. As for any c ≥ 1, for all x ∈ [0, (c−1)/c], x/(1−x) ≤ cx
holds, we �nd that

max
j∈[p]

∣∣∣ ω̂jj
ω∗jj
− 1
∣∣∣ ≤ 2c

√
log 2p/δ

n

holds with probability at least 1− δ, when n ≥ 4c2/(c− 1)2 log 2p/δ, for any c > 1.
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From inequalities (A.34), we also get that

‖D̂(D∗)−1 − Ip‖
2

2,2 =
∑
j∈[p]

∣∣∣ ω̂jj
ω∗jj
− 1
∣∣∣2 ≤ 4p

log 2p/δ

n

(
1− 2

√
log 2p/δ

n

)−2

,

with probability at least 1−δ. Then, as above, for any c ≥ 1, when n ≥ 4c2/(c−1)2 log 2p/δ,

it holds that

‖D̂(D∗)−1 − Ip‖2,2 ≤ 2c

√
p log 2p/δ

n
,

with probability at least 1− δ. We prove the last inequality in the same way.

We can now prove Theorem A.1.16.

Proof of Theorem A.1.16 As Ω∗ = B∗D∗ and Ω̂ = B̂D̂, the triangle inequality entails that

‖Ω̂−Ω∗‖∞,1 ≤ ‖(B̂−B∗)D̂‖∞,1 + ‖B∗(D̂−D∗)‖∞,1.

We bound separately the two terms of the right side. First, we note that

‖(B̂−B∗)D̂‖∞,1 = max
j∈[p]
‖(B̂jc,j −B∗jc,j)ω̂jj‖1

≤
(

max
j∈[p]
‖(B̂jc,j −B∗jc,j)ω

∗
jj‖1

)(
max
j∈[p]

ω̂jj/ω
∗
jj

)
,

since

‖(B̂jc,j −B∗jc,j)ω̂jj‖1 ≤ ‖(B̂jc,j −B∗jc,j)ω
∗
jj‖1

(
max
j∈[p]

ω̂jj/ω
∗
jj

)
.

Set M = maxj∈[p]

√
ω∗jj . In the conditions of Corollary A.1.7, applying this corollary

together with the union bound , taking λ = 6
√

log(8p2/δ), for any δ ∈ (0, 1), with n ≥

16 log 8p/δ and A = 8
(
K(s, 2, 1)

(
1− ρ

))−1
,

max
j∈[p]
‖(B̂jc,j −B∗jc,j)ω

∗
jj‖1 ≤ A

λM√
n

holds with probability at least 1− δ/4.
Using Lemma A.1.17, Eq. (A.30), as

(
1−2

√
log(4p/δ)/n

)−1 ≤
(
1−λ/(3

√
n)
)−1

, we deduce

that

‖(B̂−B∗)D̂‖∞,1 ≤ A
λM√
n

(
1− λ/(3

√
n)
)−1

holds with probability at least 1− δ/2.
Concerning the second term, we start with

‖B∗(D̂−D∗)‖∞,1 = ‖Ω∗
(
D̂(D∗)−1 − Ip

)
‖∞,1 ≤ ‖Ω

∗‖∞,1
(

max
j∈[p]
|ω̂jj/ω∗jj − 1|

)
.
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Then, noticing that ‖Ω∗‖∞,1 ≤ s
(

maxj∈[p] ω
∗
jj

)
= sM2 and applying Lemma A.1.17,

Eq. (A.31), for any c > 1, when n ≥ (2c/(c− 1))2 log 4p/δ, it holds that

‖B∗(D̂−D∗)‖∞,1 ≤ 2csM2

√
log 4p/δ

n
,

with probability at least 1− δ/2. Taking c = 2 in the previous inequality and bringing it

all together, when n ≥ 16 log 8p/δ, we end with

‖Ω̂−Ω∗‖∞,1 ≤
λM√
n

(
A

1− λ/(3
√
n)

+
2

3
sM

)
,

with probability at least 1− δ.

The bounds in Frobenius and `1/`1 norms are calculated likewise. We begin with applying

the triangle inequality that leads to

‖Ω̂−Ω∗‖2,2 ≤ ‖B̂−B∗‖2,2
(

max
j∈[p]

ω̂jj
ω∗jj

)(
max
j∈[p]

ω∗jj

)
+ σmax(Ω∗)‖D̂(D∗)−1 − Ip‖2,2.

Under the conditions of Corollary A.1.7, choosing λ = 6
√

log(8p2/δ), for any δ ∈ (0, 1),

with n ≥ 16 log 8p/δ and C = 8
(

1 + 2
√
s/n
)(
K̄RE(s, 2)

(
1− ρ

))−1
, it holds that

‖B̂−B∗‖
2

2,2 =

p∑
j=1

‖(B̂−B∗)•,j‖
2

2 ≤
psλ2C2

n

(
min
j
ω∗jj
)−1

,

with probability at least 1− δ/4. Besides, for any c > 1, when n ≥ (2c/(c− 1))2 log 4p/δ,

equations (A.30) and (A.32) of Lemma A.1.17 entail that

max
j∈[p]

ω̂jj
ω∗jj
≤
(
1− λ/(3

√
n)
)−1

and ‖D̂(D∗)−1 − Ip‖2,2 ≤ 2c

√
p log 4p/δ

n

hold respectively with probability at least 1−δ/4 and probability at least 1−δ/2. We take

c = 2 and recall that maxj ω
∗
jj ≤ σmax(Ω∗). When n ≥ 16 log 8p/δ, we therefore conclude

that

‖Ω̂−Ω∗‖2,2 ≤
√
p
√
n
λσmax(Ω∗)

(√sC(minj ω
∗
jj

)−1/2

1− λ/(3
√
n)

+
2

3

)
holds with probability at least 1 − δ. To obtain the remaining bound in element-wise

`1-matrix norm, we simply need to note that

‖B∗(D̂−D∗)‖1,1 =

p∑
j=1

‖Ω∗j,•(D̂(D∗)−1 − Ip)‖1 ≤ s
(

max
j
ω∗jj
)
‖D̂(D∗)−1 − Ip‖1,1.

Then, under the same conditions that have been used to get the bound in `∞/`1-norm,
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similar reasoning leads to

‖Ω̂−Ω∗‖1,1 ≤
p√
n
λ
(

max
j
ω∗jj
)(A(minj ω

∗
jj

)−1/2

1− λ/(3
√
n)

+
2

3
s
)
,

with the same probability as above. We �nally simplify the bounds noting that n ≥
16 log 8p/δ implies that

(
1− λ/(3

√
n)
)−1 ≤

√
2/(
√

2− 1) ≤ 4.

A.1.4 Regularity properties

The `q-sensitivity is a weaker condition than the compatibility condition, which is itself

weaker than the restricted eigenvalue condition.

Proof of Proposition 0.5.1 Let J be a subset of [p] such that |J | = s and δ ∈ CJ(c). Using

the inequality ‖Xδ‖22 ≤ ‖δ‖1‖X>Xδ‖∞ and as in CJ(c), δ satis�es ‖δ‖1 ≤ (1 + c)‖δJ‖1,
we get that

1

n

‖Xδ‖22
‖δJ‖21

≤ 1

n

‖δ‖1‖X>Xδ‖∞
‖δJ‖21

≤ 1

n
(1 + c)

|X>Xδ‖∞
‖δJ‖1

.

Moreover, by the Cauchy-Schwarz inequality it holds ‖δJ‖1 ≤ |J |
1
2 ‖δJ‖2, we thus arrive

at
1

n

‖Xδ‖22
‖δJ‖22

≤ 1

n
|J |‖Xδ‖

2
2

‖δJ‖21
≤ 1

n
|J |(1 + c)

|X>Xδ‖∞
‖δJ‖1

. (A.35)

It remains to take the minimum over CJ(c) and over all possible sets J on each block to

obtain the claimed result.

Controlling the error of estimation of the covariance matrix ‖Σ∗ − Σ̂‖∞,∞ is crucial to

infer the `1-sensitivity property on the sample covariance matrix from the `1-sensitivity

property on the true covariance matrix.

Proof of Lemma 0.5.3 The proof follows essentially the same sketch as van de Geer and

Bühlmann [2009, Lemma 10.1].

Let us consider δ ∈ CJ(c), where J ⊂ [p] and |J | = s. Using the triangle inequality, we

observe that

|‖Σ∗δ‖∞ − ‖Σ̂δ‖∞| = ‖(Σ
∗ − Σ̂)δ‖∞ ≤ ‖Σ

∗ − Σ̂‖∞,∞‖δ‖1.

Then, as ‖δJc‖1 ≤ c‖δJ‖1 and K∗(s, c, 1) ≤ ‖Σ∗δ‖∞/‖δJ‖1, we have |‖Σ∗δ‖∞−‖Σ̂δ‖∞| ≤
(c+ 1)‖Σ∗ − Σ̂‖∞,∞‖Σ∗δ‖∞/K∗(s, c, 1). Thus, we get

‖Σ̂δ‖∞
‖Σ∗δ‖∞

≥ 1−
(c+ 1)‖Σ∗ − Σ̂‖∞,∞

K∗(s, c, 1)
,
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it follows that
‖Σ̂δ‖∞
‖δJ‖1

≥
‖Σ∗δ‖∞
‖δJ‖1

(
1−

(c+ 1)‖Σ∗ − Σ̂‖∞,∞
K∗(s, c, 1)

)
,

and it remains to take the minimum of both sides to end the proof.

A.1.5 Additional notes

Relation between the Clime method and the procedure of Yuan [2010] Consid-

ering that Ω = BD, with Bj,j = 1 for any j, the optimization problems (0.9) are equivalent

to estimating Ω∗•,j by Ω̃•,j = B̂•,jφ̂
−2
j , where

{−B̂•,j , φ̂j} = arg min
β∈Rp
βj=−1

min
φ∈(0,∞)

‖β‖1φ
2 subject to ‖Snβ + φ2(Ip)•,j‖∞ ≤ λφ

2.

We further note that the Dantzig-type constraints of these problems are equivalent to(
‖(Sn)jc,jcβjc − (Sn)jc,j‖∞ ∨ |(Sn)•,jβ + φ2|

)
≤ λφ2.

Under these conditions, replacing the joint minimization according to β and φ by a two

step procedure that consists in computing −B̂•,j �rst, as follows

−B̂•,j = arg min
β∈Rp
βj=−1

‖β‖1 subject to ‖(Sn)jc,jcβjc − (Sn)jc,j‖∞ ≤ λ̄,

then setting φ̂2
j =

(
SnB̂

)
j,j
∨0 (the relaxed maximum likelihood estimator, see Chapter 1)

leads to a new estimator of the precision matrix. This last procedure di�ers from the one

developed in [Yuan, 2010] only through the fact that the diagonal elements of the precision

matrix are there estimated by the variances of regression residuals, that is φ̂2
j = B̂>•,jSnB̂•,j .

A.2 Proofs of Chapter 1

We state a simple inequality between the diagonal entries of a positive de�nite matrix and

the corresponding diagonal entries of its inverse.

Proposition A.2.1. For any p × p positive de�nite matrix Σ, whose inverse is denoted

by Ω, it holds that

Ωii ≥ (Σii)
−1, for any i ∈ [p].

In Chapter 1, we suppose that the covariance matrix Σ∗ has unit diagonal entries. There-

fore, it implies that Ω∗ii ≥ 1, for any i.

We recall the following useful lemma, needed to prove Proposition A.2.1.
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Lemma A.2.2. For any symmetric positive de�nite matrix M =

(
A B>

B C

)
, it holds that

det(M) = det(A) det(C−BA−1B>) ≤ det(A) det(C).

Proof. This result is obtained by writing M as a product of block triangular matrices:

M =

(
A 0

B I

)(
I A−1B>

0 C−BA−1B>

)
.

Then, we recall that for any eigenvalue λv of BA−1B> associated to an eigenvector v, it

holds that v>BA−1B>v = λvv
>v. Furthermore, as M is symmetric positive de�nite, we

�nd that

v>BA−1B>v = v>
[
(A−1B>)> ; 0

]
M

(
A−1B>

0

)
v > 0.

We thus deduce that λv > 0 and it follows that BA−1B> is symmetric positive de�nite.

We may conclude using that for any symmetric positive de�nite matrices N, M, N−1M

is also positive de�nite, thus there exists a matrix P of eigenvectors such that N−1M =

PDP−1, where D is the diagonal matrix of eigenvalues. Then, det(N + M) = det(N(I +

PDP−1)) = det(N) det(P(I + D)P−1) = det(N) det(I + D) ≥ det(N). It remains to take

N = C−BA−1B> and M = BA−1B> to end the proof.

Proof of Proposition A.2.1 For any i ∈ [p], we start with

Ωii = (Σ−1)ii = det(Σ)−1(−1)i+i det(Σ−i,−i) = det(Σ)−1 det(Σ−i,−i),

by writing the cofactor. Besides, we remark that

det(Σ) = det

(
Σii Σi,−i

Σ−i,i Σ−i,−i

)
≤ Σii det(Σ−i,−i).

The claimed inequality Ωii ≥ (Σii)
−1 follows.



Appendix B

Additional experimental results

RÉSUMÉ. Les résultats expérimentaux présentés dans cette annexe appor-

tent un éclairage complémentaire sur le comportement des estimateurs étudiés

dans le Chapitre 1, en particulier en ce qui concerne le choix du paramètre

d'ajustement κ et la performance en dimension élevée des estimateurs des élé-

ments diagonaux.
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B.1 Experimental results for Chapter 1

B.1.1 For κ = 0.05 in PML

p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.895 0.402 0.223 1.422 0.657 0.374 1.814 0.852 0.495
(.065) (.037) (.019) (.087) (.035) (.021) (.076) (.034) (.023)

RML 1.374 0.789 0.532 2.113 1.243 0.840 2.668 1.590 1.087
(.068) (.036) (.020) (.094) (.036) (.022) (.080) (.034) (.023)

SML 1.500 0.807 0.546 2.397 1.260 0.851 3.056 1.608 1.096
(.090) (.036) (.019) (.189) (.034) (.021) (.233) (.034) (.023)

PML 1.375 0.789 0.533 2.113 1.243 0.840 2.668 1.590 1.087
(.068) (.036) (.019) (.095) (.035) (.022) (.079) (.034) (.023)

B∗ estimated by square-root Lasso followed by OLS

RV 0.741 0.347 0.242 1.087 0.617 0.354 1.331 0.855 0.443
(.066) (.048) (.018) (.084) (.057) (.020) (.069) (.055) (.021)

RML 0.741 0.347 0.242 1.087 0.617 0.354 1.331 0.855 0.443
(.066) (.048) (.018) (.084) (.057) (.020) (.069) (.055) (.021)

SML 0.827 0.457 0.277 1.209 0.809 0.381 1.485 1.100 0.465
(.074) (.063) (.017) (.108) (.085) (.019) (.114) (.077) (.020)

PML 0.734 0.348 0.246 1.076 0.614 0.357 1.318 0.850 0.444
(.067) (.049) (.017) (.085) (.059) (.020) (.069) (.056) (.020)

B∗ is estimated without error

RV 0.263 0.132 0.082 0.373 0.182 0.117 0.451 0.220 0.142
(.035) (.015) (.010) (.033) (.018) (.012) (.041) (.022) (.011)

RML 0.322 0.160 0.102 0.468 0.226 0.146 0.553 0.281 0.175
(.041) (.019) (.011) (.041) (.021) (.013) (.049) (.024) (.013)

SML 0.034 0.018 0.010 0.048 0.017 0.013 0.052 0.017 0.011
(.024) (.014) (.008) (.032) (.014) (.010) (.032) (.014) (.009)

PML 0.190 0.093 0.059 0.269 0.128 0.084 0.314 0.156 0.099
(.026) (.013) (.008) (.029) (.012) (.009) (.028) (.012) (.007)

Table B.1: Performance of the estimators of diagonal elements of the precision matrix in
Model 1, with κ = 0.05 for the PML estimation. The number of replications in
each case is R = 50. More details on the experimental set-up are presented in
Section 1.4.1.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.381 0.122 0.068 0.613 0.170 0.092 0.814 0.217 0.111
(.048) (.018) (.012) (.053) (.019) (.012) (.052) (.019) (.012)

RML 1.030 0.498 0.317 1.632 0.777 0.487 2.110 0.997 0.625
(.052) (.026) (.017) (.059) (.020) (.014) (.059) (.024) (.013)

SML 1.266 0.527 0.337 2.358 0.819 0.513 3.386 1.047 0.656
(.157) (.033) (.019) (.360) (.031) (.018) (.609) (.032) (.022)

PML 1.040 0.499 0.318 1.652 0.781 0.487 2.135 1.000 0.625
(.051) (.027) (.017) (.058) (.021) (.015) (.059) (.024) (.014)

B∗ estimated by square-root Lasso followed by OLS

RV 0.241 0.107 0.063 0.309 0.125 0.081 0.378 0.153 0.094
(.046) (.012) (.010) (.049) (.013) (.011) (.059) (.013) (.010)

RML 0.241 0.107 0.063 0.309 0.125 0.081 0.378 0.153 0.094
(.046) (.012) (.010) (.049) (.013) (.011) (.059) (.013) (.010)

SML 0.343 0.105 0.065 0.551 0.128 0.080 0.907 0.148 0.089
(.156) (.020) (.015) (.241) (.023) (.013) (.608) (.016) (.011)

PML 0.225 0.100 0.059 0.282 0.115 0.075 0.350 0.140 0.085
(.047) (.013) (.011) (.048) (.014) (.011) (.057) (.014) (.010)

B∗ is estimated without error

RV 0.202 0.106 0.063 0.255 0.124 0.081 0.304 0.152 0.094
(.030) (.013) (.010) (.028) (.014) (.011) (.028) (.013) (.010)

RML 0.265 0.139 0.083 0.351 0.179 0.114 0.432 0.214 0.132
(.040) (.017) (.010) (.036) (.016) (.013) (.031) (.014) (.010)

SML 0.035 0.017 0.010 0.030 0.012 0.008 0.033 0.014 0.008
(.020) (.011) (.007) (.020) (.009) (.007) (.023) (.009) (.005)

PML 0.138 0.072 0.043 0.156 0.080 0.052 0.189 0.095 0.057
(.034) (.013) (.010) (.023) (.012) (.010) (.026) (.010) (.007)

Table B.2: Performance of the estimators of diagonal elements of the precision matrix in
Model 2, with κ = 0.05 for the PML estimation. The number of replications in
each case is R = 50. More details on the experimental set-up are presented in
Section 1.4.1.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.278 0.135 0.082 0.410 0.190 0.123 0.516 0.238 0.152
(.034) (.020) (.011) (.033) (.015) (.012) (.040) (.016) (.011)

RML 0.498 0.272 0.169 0.728 0.393 0.258 0.887 0.499 0.326
(.057) (.024) (.017) (.053) (.029) (.013) (.053) (.029) (.012)

SML 1.100 0.659 0.380 1.289 0.808 0.647 1.222 0.677 0.461
(.125) (.108) (.045) (.159) (.054) (.054) (.149) (.057) (.028)

PML 0.499 0.272 0.169 0.729 0.393 0.258 0.887 0.499 0.327
(.057) (.025) (.017) (.053) (.029) (.013) (.053) (.029) (.012)

B∗ estimated by square-root Lasso followed by OLS

RV 0.815 0.169 0.082 2.272 1.824 0.928 3.280 3.823 3.685
(.198) (.113) (.011) (.181) (.161) (.177) (.228) (.137) (.120)

RML 0.815 0.169 0.082 2.272 1.824 0.928 3.280 3.823 3.685
(.198) (.113) (.011) (.181) (.161) (.177) (.228) (.137) (.120)

SML 1.277 0.592 0.343 2.518 1.933 1.086 3.440 3.840 3.696
(.148) (.134) (.052) (.165) (.147) (.149) (.235) (.134) (.117)

PML 0.838 0.171 0.082 2.291 1.824 0.928 3.295 3.823 3.685
(.191) (.113) (.011) (.179) (.161) (.177) (.229) (.137) (.120)

B∗ is estimated without error

RV 0.268 0.134 0.082 0.388 0.186 0.122 0.467 0.233 0.151
(.033) (.020) (.011) (.033) (.014) (.012) (.034) (.017) (.011)

RML 0.320 0.166 0.100 0.477 0.229 0.149 0.581 0.286 0.187
(.043) (.023) (.013) (.040) (.019) (.014) (.045) (.023) (.014)

SML 0.043 0.017 0.014 0.043 0.023 0.010 0.038 0.019 0.010
(.031) (.013) (.010) (.031) (.017) (.008) (.030) (.016) (.008)

PML 0.320 0.166 0.101 0.478 0.229 0.149 0.582 0.286 0.187
(.043) (.023) (.013) (.040) (.019) (.014) (.045) (.023) (.014)

Table B.3: Performance of the estimators of diagonal elements of the precision matrix in
Model 3, with κ = 0.05 for the PML estimation. The number of replications in
each case is R = 50. More details on the experimental set-up are presented in
Section 1.4.1.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.372 0.185 0.120 0.548 0.267 0.164 0.666 0.322 0.202
(.077) (.034) (.023) (.084) (.034) (.017) (.070) (.037) (.028)

RML 0.424 0.217 0.139 0.605 0.299 0.186 0.726 0.361 0.226
(.072) (.032) (.019) (.081) (.034) (.018) (.067) (.034) (.026)

SML 0.469 0.236 0.149 0.700 0.327 0.203 0.848 0.410 0.254
(.086) (.033) (.019) (.098) (.034) (.019) (.104) (.043) (.027)

PML 0.431 0.222 0.142 0.615 0.307 0.192 0.736 0.373 0.234
(.073) (.032) (.019) (.081) (.034) (.019) (.066) (.034) (.026)

B∗ estimated by square-root Lasso followed by OLS

RV 0.363 0.183 0.120 0.537 0.264 0.163 0.660 0.319 0.201
(.077) (.034) (.023) (.084) (.034) (.017) (.076) (.037) (.028)

RML 0.363 0.183 0.120 0.537 0.264 0.163 0.660 0.319 0.201
(.077) (.034) (.023) (.084) (.034) (.017) (.076) (.037) (.028)

SML 0.387 0.193 0.126 0.586 0.280 0.173 0.728 0.350 0.221
(.080) (.034) (.023) (.104) (.033) (.018) (.096) (.042) (.029)

PML 0.364 0.183 0.120 0.539 0.265 0.164 0.663 0.321 0.202
(.078) (.034) (.023) (.085) (.034) (.017) (.076) (.037) (.028)

B∗ is estimated without error

RV 0.362 0.183 0.120 0.536 0.264 0.163 0.652 0.319 0.201
(.077) (.034) (.023) (.084) (.034) (.017) (.070) (.037) (.028)

RML 0.375 0.186 0.123 0.545 0.268 0.166 0.660 0.325 0.204
(.077) (.034) (.023) (.085) (.033) (.018) (.068) (.036) (.027)

SML 0.346 0.176 0.114 0.520 0.256 0.159 0.636 0.310 0.195
(.080) (.035) (.023) (.082) (.034) (.018) (.072) (.038) (.029)

PML 0.360 0.181 0.119 0.532 0.262 0.162 0.648 0.318 0.200
(.079) (.034) (.023) (.083) (.034) (.018) (.070) (.037) (.028)

Table B.4: Performance of the estimators of diagonal elements of the precision matrix in
Model 4, with κ = 0.05 for the PML estimation. The number of replications in
each case is R = 50. More details on the experimental set-up are presented in
Section 1.4.1.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.394 0.190 0.127 0.555 0.285 0.178 0.678 0.350 0.213
(.079) (.040) (.020) (.070) (.034) (.021) (.080) (.041) (.021)

RML 0.390 0.193 0.129 0.552 0.291 0.184 0.675 0.361 0.223
(.078) (.039) (.021) (.068) (.035) (.022) (.079) (.040) (.020)

SML 0.390 0.195 0.135 0.552 0.294 0.187 0.675 0.363 0.228
(.078) (.042) (.025) (.068) (.038) (.023) (.079) (.039) (.022)

PML 0.390 0.193 0.129 0.552 0.291 0.184 0.675 0.361 0.223
(.078) (.039) (.021) (.068) (.035) (.022) (.079) (.040) (.020)

B∗ estimated by square-root Lasso followed by OLS

RV 0.390 0.198 0.132 0.548 0.300 0.187 0.673 0.373 0.229
(.078) (.040) (.023) (.069) (.037) (.025) (.077) (.038) (.023)

RML 0.390 0.198 0.132 0.548 0.300 0.187 0.673 0.373 0.229
(.078) (.040) (.023) (.069) (.037) (.025) (.077) (.038) (.023)

SML 0.389 0.200 0.140 0.548 0.302 0.192 0.673 0.376 0.238
(.078) (.040) (.024) (.069) (.038) (.025) (.077) (.038) (.023)

PML 0.390 0.198 0.132 0.548 0.300 0.187 0.673 0.373 0.229
(.078) (.040) (.023) (.069) (.037) (.025) (.077) (.038) (.023)

B∗ is estimated without error

RV 0.393 0.190 0.127 0.542 0.283 0.176 0.661 0.344 0.211
(.075) (.041) (.020) (.070) (.034) (.021) (.079) (.041) (.022)

RML 0.394 0.190 0.127 0.542 0.284 0.177 0.663 0.344 0.212
(.076) (.041) (.020) (.071) (.034) (.021) (.078) (.041) (.022)

SML 0.360 0.172 0.112 0.511 0.264 0.165 0.626 0.325 0.197
(.077) (.040) (.021) (.066) (.038) (.022) (.082) (.041) (.022)

PML 0.394 0.190 0.127 0.542 0.284 0.177 0.663 0.344 0.212
(.076) (.041) (.020) (.071) (.034) (.021) (.078) (.041) (.022)

Table B.5: Performance of the estimators of diagonal elements of the precision matrix in
Model 5, with κ = 0.05 for the PML estimation. The number of replications in
each case is R = 50. More details on the experimental set-up are presented in
Section 1.4.1.
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p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.369 0.205 0.144 0.524 0.305 0.203 0.650 0.377 0.247
(.062) (.028) (.016) (.055) (.025) (.015) (.053) (.032) (.018)

RML 0.363 0.225 0.159 0.521 0.335 0.232 0.647 0.413 0.288
(.058) (.029) (.017) (.051) (.024) (.018) (.051) (.030) (.017)

SML 0.364 0.226 0.174 0.522 0.341 0.244 0.648 0.418 0.304
(.057) (.033) (.020) (.051) (.026) (.022) (.051) (.030) (.023)

PML 0.363 0.225 0.159 0.521 0.335 0.232 0.647 0.413 0.288
(.058) (.029) (.017) (.051) (.024) (.018) (.051) (.030) (.017)

B∗ estimated by square-root Lasso followed by OLS

RV 0.366 0.251 0.166 0.524 0.367 0.257 0.648 0.458 0.326
(.058) (.030) (.021) (.052) (.027) (.025) (.048) (.031) (.024)

RML 0.366 0.251 0.166 0.524 0.367 0.257 0.648 0.458 0.326
(.058) (.030) (.021) (.052) (.027) (.025) (.048) (.031) (.024)

SML 0.366 0.252 0.186 0.524 0.370 0.273 0.648 0.460 0.345
(.058) (.031) (.022) (.052) (.025) (.023) (.048) (.031) (.026)

PML 0.366 0.250 0.166 0.524 0.367 0.257 0.648 0.458 0.326
(.058) (.030) (.021) (.052) (.027) (.025) (.048) (.031) (.024)

B∗ is estimated without error

RV 0.394 0.204 0.146 0.558 0.301 0.203 0.692 0.371 0.247
(.071) (.029) (.017) (.064) (.029) (.016) (.073) (.031) (.020)

RML 0.398 0.207 0.147 0.564 0.306 0.206 0.702 0.377 0.250
(.069) (.028) (.017) (.061) (.030) (.015) (.074) (.031) (.020)

SML 0.183 0.097 0.067 0.234 0.142 0.091 0.318 0.179 0.112
(.063) (.021) (.023) (.061) (.030) (.017) (.055) (.030) (.023)

PML 0.398 0.207 0.147 0.564 0.306 0.206 0.702 0.377 0.250
(.069) (.028) (.017) (.061) (.030) (.015) (.074) (.031) (.020)

Table B.6: Performance of the estimators of diagonal elements of the precision matrix in
Model 6, with κ = 0.05 for the PML estimation. The number of replications in
each case is R = 50. More details on the experimental set-up are presented in
Section 1.4.1.
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B.1.2 In high-dimension

In Tables 1.7-1.12, we present experimental measures of performance obtained for a sample

size n = 50 for dimensions p = 30, 60, 90 and with κ = 0.05 for the PML estimation. For

the last two values of p, the dimension is larger than the sample size.

with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 1.692 2.670 3.486 1.395 2.344 3.096 0.515 0.723 0.872

(.144) (.145) (.154) (.174) (.190) (.241) (.079) (.073) (.073)

RML 2.031 3.038 3.869 1.395 2.344 3.096 0.654 0.911 1.102

(.120) (.126) (.112) (.174) (.190) (.241) (.087) (.080) (.075)

SML 2.063 3.053 3.877 1.387 2.324 3.077 0.082 0.114 0.099

(.116) (.123) (.110) (.181) (.195) (.247) (.060) (.074) (.070)

PML 2.032 3.038 3.869 1.377 2.329 3.084 0.387 0.525 0.627

(.119) (.125) (.112) (.177) (.194) (.246) (.057) (.047) (.044)

Table B.7: Performance of the estimators of diagonal elements of the precision matrix in
Model 1 for n = 50, with κ = 0.05 for the PML estimation. The number of
replications in each case is R = 50. More details on the experimental set-up
are presented in Section 1.4.1.

with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 1.668 2.837 3.830 1.594 2.610 3.536 0.397 0.517 0.585

(.149) (.161) (.172) (.219) (.218) (.212) (.059) (.064) (.055)

RML 2.241 3.644 4.725 1.594 2.610 3.536 0.525 0.708 0.836

(.164) (.156) (.162) (.219) (.218) (.212) (.080) (.072) (.057)

SML 2.590 3.901 4.895 2.038 2.948 3.748 0.073 0.060 0.071

(.163) (.167) (.138) (.308) (.199) (.188) (.056) (.045) (.048)

PML 2.245 3.648 4.728 1.600 2.617 3.540 0.277 0.323 0.366

(.164) (.155) (.161) (.221) (.215) (.211) (.060) (.051) (.046)

Table B.8: Performance of the estimators of diagonal elements of the precision matrix in
Model 2 for n = 50, with κ = 0.05 for the PML estimation. The number of
replications in each case is R = 50. More details on the experimental set-up
are presented in Section 1.4.1.
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with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 0.587 0.879 1.159 1.044 1.634 1.980 0.523 0.751 0.946

(.073) (.077) (.093) (.194) (.169) (.159) (.064) (.068) (.080)

RML 0.907 1.240 1.499 1.044 1.634 1.980 0.630 0.921 1.168

(.115) (.137) (.117) (.194) (.169) (.159) (.089) (.088) (.092)

SML 1.452 2.018 2.569 1.452 2.002 2.426 0.081 0.112 0.106

(.169) (.263) (.333) (.190) (.174) (.267) (.057) (.074) (.083)

PML 0.907 1.241 1.500 1.071 1.655 2.000 0.630 0.921 1.168

(.115) (.137) (.117) (.189) (.168) (.157) (.091) (.088) (.093)

Table B.9: Performance of the estimators of diagonal elements of the precision matrix in
Model 3 for n = 50, with κ = 0.05 for the PML estimation. The number of
replications in each case is R = 50. More details on the experimental set-up
are presented in Section 1.4.1.

with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 0.761 1.120 1.385 0.756 1.129 1.438 0.723 1.064 1.320

(.138) (.130) (.149) (.149) (.148) (.165) (.136) (.127) (.138)

RML 0.851 1.198 1.480 0.756 1.129 1.438 0.743 1.082 1.339

(.134) (.135) (.148) (.149) (.148) (.165) (.136) (.128) (.136)

SML 0.944 1.286 1.577 0.814 1.179 1.512 0.694 1.032 1.292

(.134) (.122) (.140) (.137) (.152) (.156) (.139) (.132) (.143)

PML 0.854 1.200 1.480 0.759 1.130 1.441 0.719 1.055 1.315

(.133) (.135) (.147) (.148) (.150) (.164) (.136) (.130) (.139)

Table B.10: Performance of the estimators of diagonal elements of the precision matrix in
Model 4 for n = 50, with κ = 0.05 for the PML estimation. The number of
replications in each case is R = 50. More details on the experimental set-up
are presented in Section 1.4.1.
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with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 0.802 1.132 1.371 0.813 1.135 1.374 0.785 1.104 1.349

(.146) (.146) (.134) (.147) (.151) (.144) (.135) (.143) (.135)

RML 0.788 1.113 1.355 0.813 1.135 1.374 0.786 1.105 1.350

(.141) (.144) (.133) (.147) (.151) (.144) (.137) (.143) (.135)

SML 0.788 1.113 1.355 0.813 1.135 1.374 0.726 1.043 1.290

(.141) (.144) (.133) (.147) (.151) (.144) (.133) (.149) (.126)

PML 0.788 1.113 1.355 0.813 1.135 1.374 0.786 1.105 1.350

(.141) (.144) (.133) (.147) (.151) (.144) (.137) (.143) (.135)

Table B.11: Performance of the estimators of diagonal elements of the precision matrix in
Model 5 for n = 50, with κ = 0.05 for the PML estimation. The number of
replications in each case is R = 50. More details on the experimental set-up
are presented in Section 1.4.1.

with B̂
√

Lasso with B̂
√

Lasso+OLS with B∗

p 30 60 90 30 60 90 30 60 90

RV 0.709 1.008 1.223 0.725 1.027 1.242 0.748 1.075 1.322

(.110) (.117) (.118) (.117) (.133) (.124) (.107) (.118) (.120)

RML 0.691 0.986 1.203 0.725 1.027 1.242 0.759 1.087 1.335

(.111) (.115) (.115) (.117) (.133) (.124) (.111) (.116) (.117)

SML 0.692 0.987 1.203 0.725 1.027 1.242 0.322 0.492 0.630

(.111) (.115) (.115) (.117) (.133) (.124) (.120) (.104) (.133)

PML 0.691 0.986 1.203 0.725 1.027 1.242 0.759 1.087 1.335

(.111) (.115) (.115) (.117) (.133) (.124) (.111) (.116) (.117)

Table B.12: Performance of the estimators of diagonal elements of the precision matrix in
Model 6 for n = 50, with κ = 0.05 for the PML estimation. The number of
replications in each case is R = 50. More details on the experimental set-up
are presented in Section 1.4.1.



Appendix C

Overview of the DESP package

RÉSUMÉ. Nous présentons ici très succinctement le paquet R DESP. Ce paquet

a pour objet l'estimation des paramètres d'une distribution normale multivar-

iée, y compris lorsque la dimension des données est élevée ou en présence

d'observations extrêmes ou aberrantes. Une attention particulière est prêtée à

l'estimation des éléments diagonaux de la matrice de précision.
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C.1 Introduction

C.1.1 Purpose of this package

DESP is an R package1, designed to estimate e�ciently the parameters Ω and µ of a

Gaussian distribution as developed in this manuscript. Its main characteristics are the

ability to deal with data contaminated by outliers, with high-dimensional data and the

availability of several estimators of the diagonal elements of the precision matrix.

In this chapter, we zoom in on the function desp() which is an interface to most of the

features of the package.

C.1.2 Estimators

Let us �rst introduce the proposed estimator that indeed corresponds to the estimator

developed in Chapters 1 and 2 with a slight rede�nition of the tuning parameter that

promotes sparsity. We consider a possible additive contamination of the data by outliers.

We assume that the matrix X ∈ Rn×p of observed data satis�es

X = Y + E∗, (C.1)

where E∗ is the matrix of errors and Y the outlier-free data matrix. The rows latter are

supposed to be independent Gaussian, such that Yi,• ∼ Np(µ∗,Σ∗). We also assume that

most of the rows of the matrix E∗ correspond to inliers, hence are only �lled with zeros.

The p × p matrix B∗ corresponds to Ω∗ · diag({1/ω∗jj}j∈[p]). We introduce the matrix

Θ∗ = E∗B∗/
√
n that has the same sparsity pattern as E∗. We denote by X(n) the matrix

X/
√
n, the estimators of the parameters of the Gaussian distribution as de�ned as follows:

{B̂, Θ̂} = arg min
B:Bjj=1

Θ∈Rn×p

min
c∈Rp

{∥∥(X(n)B− unc
> −Θ)>

∥∥
2,1

+ λ‖Θ‖2,1 + γ‖B‖1,1
}
, (C.2)

where λ ≥ 0 and γ ≥ 0 are tuning parameters respectively promoting robustness and

sparsity of the matrix B. The precision matrix Ω∗ can be estimated by

ω̂jj =
2n

π
‖(In − unu

>
n )(X(n)B̂•,j − Θ̂•,j)‖

−2

1 ; Ω̂ = B̂ · diag({ω̂jj}j∈[p]). (C.3)

We highlight that the estimator of the diagonal entries of the precision matrix stated

above�based on average absolute deviation around the mean�is only one of the alter-

natives proposed in the DESP package. The other possibilities rest on residual variance

or likelihood maximization (relaxed, symmetry-enforced or penalized). The expectation

1Licensed under GPL (version 3) and available on CRAN at
http://cran.r-project.org/web/packages/DESP/index.html

http://cran.r-project.org/web/packages/DESP/index.html
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vector µ∗ can be estimated by

µ̂ =
1

n
(X− Ê)>1n, where Ê =

√
n Θ̂B̂†. (C.4)

The solutions of the problem (C.2) are obtained iteratively, by optimizing separately with

respect to B and Θ. The details of the algorithm are provided in 2.5.

C.2 Implementation

The convex optimization problem (C.2) is decomposed in p independent sub-problems.

When both tuning parameters λ and γ are zero, the solution of problem (C.2) is obtained

using ordinary least squares to estimate each column of B. When γ 6= 0, each of these

p problems corresponding to the square-root Lasso can be either cast as a SOCP, or

solved using the coordinate descent algorithm. In the �rst case, we propose to use the

splitting conic solver (SCS, [O'Donoghue et al., 2013]) that solves e�ciently convex cone

problems. We note however that a more e�cient solution in terms of computational time

is obtained using the coordinate descend algorithm (stochastic or not). The p square-

root Lasso problems can be solved in parallel when the OpenMP application programming

interface (API)2 is supported. Most of the linear algebra operations are performed calling

BLAS and LAPACK routines3. For the details of available options of the function desp(),

we refer the user to the package reference manual.

Plans for future enhancements include notably the possibility to settle a warm start solution

that should lead to signi�cant gain of execution time when using cross-validation techniques

to choose the values of the tuning parameters. In addition, we intend to introduce safe

rules to restrict the set of possibly nonzero coe�cients before optimizing by the square-root

Lasso.

C.3 Installation

As available on CRAN4, this package can be simply installed by entering the following

instruction:

install.packages("DESP")

We recommend to use a compiler that supports OpenMP to allow multithreading.

2OpenMP Architecture Review Board, see http://openmp.org.
3These API are for instance implemented by OpenBLAS, available at http://www.openblas.net/.
4The Comprehensive R Archive Network, https://cran.r-project.org/.

http://openmp.org
http://www.openblas.net/
https://cran.r-project.org/
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C.4 Example

We estimate the parameters of the distribution of Fisher's iris data [Anderson, 1935] for

each of three iris species, assuming that these data are normally distributed.

We �rst load the package and the data set:

library(DESP)

data(iris3)

We will use the function desp.cv() that relies on the function desp() to estimate Ω̂ and

µ̂, choosing the tuning parameters λ and γ by v-fold cross-validation Geisser [1975]. To

de�ne this function, we have introduced the following partition of the sample S =
⋃v
i=1 Si.

The values of these parameters are selected over a grid such that the risk (the expectation

of the loss) is the lowest. In connexion with the regression model, we might consider a

quadratic loss function and select:

{λvc, γvc} = arg min
λ,γ

1

v

v∑
i=1

1

|Si|

|Si|∑
k=1

‖Xk,•B̂(i,λ,γ) − µ̂>(i,λ,γ)B̂(i,λ,γ)‖
2

2

where µ̂(i,λ,γ) and B̂(i,λ,γ) are the estimates obtained on the training set S\Si. As the

chosen loss function is not robust, we use instead

{λvc, γvc} = arg min
λ,γ

1

v

v∑
i=1

1

|Si|

|Si|∑
k=1

‖Xk,•B̂(i,λ,γ) − µ̂>(i,λ,γ)B̂(i,λ,γ)‖2

that is inspired by the `1 cross-validation procedure [Wang and Scott, 1994].

We choose the estimator based on average absolute deviation around the mean (C.3) to

estimate the diagonal entries. Besides, we choose a number of folds equal to 5.

settings <- list(diagElem='AD')

v <- 5

Then, we call this function on the �rst 25 observations of each species of iris:

set.seed(1)

categories <- colnames(iris3[1,,])

params <- vector(mode="list", length=length(categories))

for(c in 1:length(categories)){

obs <- 1:25

lr <- (9/10)^(0:9)

gr <- (1/sqrt(2))^(0:4) * sqrt(2*log(ncol(iris3[,,c])))

params[[c]] <- desp.cv(iris3[obs,,c], v=v, lambda.range=lr,

gamma.range=gr, settings=settings)

}
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Clime, 14

concentration inequality, see also tail bound,

11

concentration matrix, see precision matrix

conditional independence, 8

conditional variances, 29, 73

heterogeneity, 14, 19

connected component, 8, 10, 45

convergence rate, 11, 12, 16, 19, 20, 28, 72,

76

covariance matrix, 9, 10

population, 6

sample, 7

Dantzig selector, 14

elliptical distribution, 66

estimation consistency, 10

Frobenius norm, 7

graphical Lasso, 10

graphical model, 8, 33, 66

group Lasso, 22

high dimension, 4, 17

irrepresentable conditions, 11

Lasso, 14, 17

matrix of regression coe�cients, 13, 36, 68

minimax (estimator, rate, risk), 11, 72, 74

mixed `2/`1-norm, 22, 67

Moore-Penrose pseudo-inverse, 7

normal correlations, 13, 114

optimization

algorithm, 22, 96

problem, 12, 17, 19, 27, 37, 49, 68, 71

linear, 14, 15

SOCP, 23, 69

ordinary least squares, 17

outliers, 39, 67

partial correlations, 8

precision matrix, 6

R package

DESP, 49, 105, 144

huge, 104

RBGL, 55

rsggm, 104

regularity properties, 11, 19, 20, 24

compatibility, 25, 75

restricted eigenvalue, 24

restricted isometry, 24

sensitivity, 24

ridge regression, 17

robust estimation, 68

scaled Lasso, see also square-root Lasso, 14,

37

selection consistency, 10

sparsity

assumption, 8, 34

pattern, 9, 53

group, 22, 70, 76

row-, 69

spectral norm, 7

square-root Lasso, 14, 19, 28

tail bound, 39, 87, 124

Tikhonov regularization, see ridge regression
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