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General introduction

Background

Crystal plasticity models are applied to describe the mechanical behaviour and
the microstructure evolution (e.g. disorientation of grains, phase transformation,
pile-ups of dislocation, etc.) of a crystalline material which allows to forecast its
local behaviour. Thanks to the strain-causing based physical mechanisms, these
constitutive equations enable us to deduce the microstructure change under complex
loading conditions [Saai (2008); Saai et al. (2010); Badulescu et al. (2011); Evrard
et al. (2010b)]. It can predict, for example, the local disorientations due to hot
forming [De Jaeger et al. (2012)] or the location of the plastic deformation which
leads to crack initiation in fatigue [Schwartz (2011); Li et al. (2012)].

However, the mechanisms that they describe (e.g. evolution of dislocation
density, strain hardening, pile-ups at grain boundaries, changes in dislocation mi-
crostrutures,etc.) are at a small scale and the associated quantification can be very
complicated. For this reason, the parameters of these models are difficult to iden-
tify and plenty of existing works performed identification using macroscopic data
[Evrard et al. (2010a); Guilhem et al. (2013)]. Since the range of heterogeneities
at the grain scale cannot be taken into account, sometimes even minimization of
a cost function between simulations and experiments let local minima appear, and
the identified parameters may not necessarily have physical meaning.

In this way, methodologies has been sought to access experimental data at the
grain scale to increase the robustness of the parameter identification [Avril et al.
(2008a); Grédiac and Hild (2013)].

Objective

Our research objective is to develop an experimental method and then validate the
experimental protocol to obtain two distinct mechanical measurements simultane-
ously during a tensile test. During the experimental stage, the total (εt) and elastic
(εe) strain fields of a specimen with around 12 grains are measured at the same
time. The test is stopped at increasing levels of strain, and εt and εe measured in
the useful part of the specimen. The εt are determined by the Digital Image Corre-
lation technique (DIC) [Hild and Roux (2008)] while the εe are calculated from the
X-ray diffraction (XRD) measurements [Zhou (1994); Huang (2007); Eberl (2000)]
(Fig.1).
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Figure 1: Principle of simultaneous kinematic full-fields measurements

Research design
For the sample, a material with simple microstructure and mechanical properties
favouring the local strain field measurement is preferred. Recrystallisation proce-
dure is performed to obtain large grains (about 5 mm) so that the measurements
of strain gradient inside the grains can be accessible.

In order to achieve our research goals, an experimental apparatus is designed
to perform Digital Image Correlation (DIC), X-ray Diffraction (XRD) and tensile
tests in situ in an X-ray diffractometer. Full-field measurements of both elastic and
total strains are applied on sample surface and the fineness of the grid measurement
is defined according to the grain size. There are approximately 10 points of XRD
measurement in a grain. The spatial resolution for DICis much finer than for XRD.

Meanwhile, certain experimental difficulties had to be overcome in order to
achieve the measurements. For example, the appearance of mosaicity in crystal
during plasticity may complicate the εe calculation, etc.

Scope of the study
Throughout the experiments, the samples are deformed every 0.1% until εt about
0.4%. Small deformation step is defined to ensure the traceability of DIC speckle
pattern as well as XRD signal on heterogeneous deformed sample surface during
plasticity. The direct measurements on the sample surface conducted at the begin-
ning of the tensile curve can already give us a first sight of the actual location of
heterogeneity of the samples for εt and εe.

Significance of the study
The study provided the experimental results that allows ones to carry out an iden-
tification of material parameters later.
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Organization of the manuscript
This dissertation is divided into five chapters.

The first chapter is a synthesis of the latest research interest in modelling
crystal plasticity and its corresponding difficulties/challenges to overcome. The
microstructure-based mechanical behaviour is recalled. The polycrystalline aggre-
gate modelling method and existing constitutive parameter identification procedure
are synthesised. The methodologies to answer our research questions are chosen ac-
cording to their accuracy and feasibility in actual practice.

The second chapter describes the material selection and the sample preparation
for our research use. Two samples in aluminium alloy are prepared and their initial
microstructures are also presented.

The third chapter discusses the methodologies to conduct X-ray diffraction
(XRD) for εe measurement. The X-ray diffractometer is introduced. Then, the
εe measurement in a single crystal using XRD is given. Followed by, the method-
ologies developed to achieve local εe field measurement as well as the corresponding
uncertainties quantification on a oligo-crystal sample are described.

The forth chapter focuses on in-situ experimental measurement. The method
developed for measuring εt and εe at the grain scale is presented. It introduces
the device specifically developed, presents the measurement concept and describes
testing procedure, analysis method as well as the precautions taken to minimise
experimental errors.

The last chapter is devoted to results obtained through our in situ experiments.
Besides results and analysis, the corresponding uncertainties during each measure-
ment were quantified as well.

A general conclusion summarizes the tasks that we have accomplished and
achieved. It closes the manuscript with suggestions of future work in this domain.





Chapter 1

Literature review

In this chapter, the current research interest in modelling crystal plasticity is firstly
introduced. Then, a recall on the microstructure-based mechanical behaviour is
made. Afterwards, the polycrystalline aggregate modelling method and existing
constitutive parameters identification procedure are synthesised. The choice of
methodologies to answer our research questions are explained followed by a review
of the state of the art concerning experimental measurements of local identifica-
tion approaches and mechanical response. A conclusion is given to summarize this
chapter.

1.1 Research background
Constitutive equations describe the deformation of a material under the action of
mechanical stress. To identify these models, it is necessary to carry out an ex-
perimental campaign composed of tests representative of the variety of in-service
loadings (in terms of amplitudes, loading paths, strain rate, temperature, etc.). Pa-
rameters of the constitutive law can then be identified on this experimental basis. It
has been observed that to have a model valid of a large variety of loadings, the iden-
tification database had to be sufficiently large [Calloch (1997); Portier (1999); Aubin
et al. (2003)]; otherwise, the predictions non-covered by this identification database
are generally very poor. One of the drawbacks of these macroscopic models is the
robustness of the parameter calibration. Moreover, if the chemical composition or
the fabrication process changes, all the experimental procedure has to be repeated
once again — these models suffer a lack of physical meaning. To overcome these
drawbacks, micromechanical models have been proposed, whose variables are based
on physical mechanisms such as dislocation density.

Experimental characterizations have been carried out on single crystals [Fran-
ciosi and Zaoui (1982); Mughrabi (1978)]. Constitutive laws have been proposed to
link the hardening to the applied strain [Sidoroff (1982)] and the evolution of the
dislocation microstructure [Zerilli (2004)]. However, there are still open questions,
for instance:

1. Can a same behaviour law describe both the small strain responses and large
strain responses accurately? How can we express a kinematic hardening in
the framework of dislocation densities?

2. Several ways of expressing the interactions of slip systems have been proposed,
obtained from mechanical experiments [Franciosi and Zaoui (1982)] and from
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dislocation dynamic simulations [Devincre and Condat (1992)]. But the hard-
ening matrices proposed in these two methods are contradictory [Schwartz
et al. (2010); Schwartz (2011)]. Is there any way to figure out which method
is correct?

In order to work on and answer these questions, local responses are needed
and an experimental set-up is proposed to allow these local measurements to be
obtained.

1.2 Microstructure-based mechanical behaviour
During our research, aluminium alloy (5052) was chosen for fabricating samples and
the material selection will be presented in the next chapter. In order to measure
local responses, it is important to understand what microstructure-based informa-
tion we are interested in. At the beginning of this section, the crystal structure of
aluminium (Face-centered cubic FCC) as well as the definition of a grain/crystal are
recalled. Then, the elasticity and plasticity in a single crystal are presented. Later,
we will talk about the phenomenon of heterogeneous elastic and plastic strain in
polycrystalline sample under mechanical loading.

1.2.1 Face-centered cubic crystal structure
Aluminium has a face-centered cubic FCC crystalline lattice (Fig.1.1). Crystal
lattice is the unique and regularly repeated arrangement of atoms in a material
(Fig.1.2). The face-centered cubic (FCC) unit cell is a cube (all sides of the same
length and every face perpendicular to each other) with an atom at each corner of
the unit cell and an atom situated in the middle of each face of the unit cell.

Figure 1.1: Presentation of FCC
unit cell in two different ways.

Figure 1.2: Schema of FCC crystal
structure. (Source: http://www.fhi-
berlin.mpg.de/∼hermann/Balsac/pictures.html)
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A crystal is the zone where the atomic arrangement shares the same orienta-
tion in three dimensions on a lattice. Therefore, for two crystals with different
orientations of atom arrangement, there is an interface with misalignment of atoms
defined as grain boundary. Once we have these basic concepts of microstructure,
we can start to understand the elasticity and plasticity inside a single crystal under
loading.

1.2.2 Elasticity
When a sufficient load is applied to a crystal, each unit cell is distorted and thus
the crystal deforms. This change in shape is called deformation. In the case of
elastic deformation, once the stress is removed, the unit cells return to their original
position and the crystal returns to its original shape and size.

1.2.2.1 Mechanism

In fact, this elastic response arises from interatomic forces F (r) and this temporary
shape change can be explained from fundamental physics. In the metallic bond,
the attraction between the electrons and the atom core is balanced by the repulsion
between atom cores. This interaction separates two atoms by a distance r. Inter-
atomic spacing r0, which is the equilibrium distance between atoms, occurs when
the total energy of the pair of atoms is at a minimum or when external force is
absent. The interatomic potential energy U(r) of this interaction can be expressed
using Lennard-Jones potential:

U(r) ∝ r2 (1.1)
and, so, the interatomic forces F (r) can be derived as:

F (r) ∝ ∂U(r)
∂r

∝ r
(1.2)

Stress and strain can be calculated from F(r) and r respectively and their linear
relationship explains the reversible mechanical property in elasticity. Also, the
steepness of the slope, the Young’s modulus E, implies the stiffness of a material.
A stiff material requires more stress to be deformed at a given strain.

1.2.2.2 Isotropic and anisotropic elasticity

Within a crystal, atoms are arranged differently in {hkl} planes and < hkl > direc-
tions. Thus, the mechanical properties can vary with different loading directions.
This crystal anisotropic elastic behaviour can be described using a 4th-order stiff-
ness tensor Ce with 81 elastic coefficients representing the properties in the different
directions. i.e. the stress σe and the strain tensors εe can be written as:

σe = Ce : εe (1.3)
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or

σeij = Ce
ijkl : εekl (1.4)

As σe, εe and Ce are symmetric, the number of independent elastic coefficients
can be reduced to 21. Thanks to the cubic symmetry of FCC, the elasticity is
orthotropic and needs only 3 independent elastic constants, i.e. Ce

11, Ce
12 and Ce

44.
It can be represented using the Voigt notation in crystal coordinates (Rc) as Eq.1.5:




σe11
σe22
σe33
σe23
σe31
σe12




=




Ce
11 Ce

12 Ce
12 0 0 0

Ce
12 Ce

11 Ce
12 0 0 0

Ce
12 Ce

12 Ce
11 0 0 0

0 0 0 Ce
44 0 0

0 0 0 0 Ce
44 0

0 0 0 0 0 Ce
44







εe11
εe22
εe33
2εe23
2εe31
2εe12




(1.5)

The anisotropy of a given material is characterized by the anisotropy coefficient,
αanisotropy:

αanisotropy = 2× Ce
44

Ce
11 − Ce

12
(1.6)

An isotropic elastic material has αanisotropy = 1. However, in reality, real mate-
rials are never perfectly isotropic. A material can be said rather elastic isotropic or
anisotropic by comparison of its anisotropy coefficient to the isotropic case. Sev-
eral common FCC metals are given as examples in Table 1.1. γ-iron and copper
are highly anisotropic (αanisotropy = 3.3 or 3.4 � 1) while aluminium has small
anisotropy (αanisotropy = 0.8 which is very close to 1).

FCC Metal Ce
11 (GPa) Ce

12 (GPa) Ce
44 (GPa) αanisotropy

Aluminium 107 60.8 28.3 1.2
α-iron (Ferrite) 247.7 144.6 118 2.3

Copper 170 124 75 3.3
γ-iron (Austenite) 197.5 125 122 3.4

Table 1.1: Elastic constants and anisotropy coefficients of several common FCC
metals [Huntington (1958)]

Figure 1.3 indicated that this elastic anisotropy results in an inhomogeneous
stress distribution from grain to grain in a polycrystalline sample under tensile
loading. For aluminium, thanks to its αanisotropy being close to isotropic case, this
inhomogeneity of stress distribution is small and most of the crystals will be sub-
jected to similar stress levels. Therefore, the elasticity of aluminium can be assumed
to be isotropic in our studies.
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Figure 1.3: Schematic diagram of polycrystalline sample made of anisotropic mate-
rial: An inhomogeneous distribution of stress due to anisotropic elastic behaviour
in crystals.

1.2.3 Plasticity
If the force on the crystal structure is increased sufficiently, the crystal is perma-
nently deformed after stress is removed. This non-reversible change of shape is
called plastic deformation and can be explained using several basic mechanisms:
dislocation, slip gliding and strain hardening.

1.2.3.1 Concept of dislocation

The concept of crystal dislocation was firstly introduced and used to explain the
origin of plastic deformation in three independent papers by Orowan (1934), Polanyi
(1934) and Taylor (1934). It has been experimentally proved that imperfections
exist within the ordered atomic arrangement in real crystalline networks. These
irregularities may appear in form of point defects (e.g. vacancies, interstitials or
a precipitates), line defects (e.g. dislocations), or planar defects (e.g. twinnings,
grain boundaries) (Fig.1.4).

Figure 1.4: Schematic diagram of defects in crystalline networks

A dislocation is a line defect in a perfect lattice around which atoms are mis-
aligned. As disclosed in some publications (e.g. Friedel (1964); Jaoul (1965); Hull
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and Bacon (2001)), according to the experimental observation through Transmis-
sion electron microscopy (TEM), plastic deformation starts when the dislocation
movement occurs. In fact, the dislocation moves by the breaking of atomic bonds
and shifting of the atoms through interatomic distances (Fig.1.5). In other words,
plastic deformation of a single crystal takes place only when a sufficiently large
strain is applied to initiate this dislocation motion, which is also called a slip.

Figure 1.5: Schematic diagram of slip

1.2.3.2 Slip system and introduction of Schmid law

Schmid law postulates that a slip system is activated only when its resolved shear
stress τ s applied on the slip system reaches its critical shear stress τ sc .

In order for the dislocations to move along their slip system, a shear stress should
be applied to overcome the resistance to dislocation motion. For a FCC metal, slip
occurs along the close packed planes containing the greatest number of atoms per
area, and in close-packed directions, containing most atoms per length (Fig.1.6).
There are 4 close-packed {111} planes and 3 close-packed directions of the form
〈110〉 within each plane, giving a total of 12 slip-systems (Tab.1.2).

Figure 1.6: Schematic diagram of slip system in a FCC crystal.

Schmid factor (SF) is a tool to describe the critical resolved shear stress τ s
acting in the slip direction of a crystal. Suppose a unidirectional stress is applied to
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Slip planes Slip directions
{h k l} <h k l>
1 1 1 -1 0 1
1 1 1 0 -1 1
1 1 1 -1 1 0
1 -1 1 -1 0 1
1 -1 1 0 1 1
1 -1 1 1 1 0

Slip planes Slip directions
{h k l} <h k l>
-1 1 1 0 -1 1
-1 1 1 1 1 0
-1 1 1 1 0 1
1 1 -1 -1 1 0
1 1 -1 1 0 1
1 1 -1 0 1 1

Table 1.2: 12 slip-systems in a FCC structure: 4 close-packed {111} planes and 3
close-packed directions of the form 〈110〉 within each plane.

a single crystal as shown in Fig.1.7, the slip plane {hkl} and slip direction hkl to
loading axis can be oriented by defining angles λ and Ψ. λ is the angle between the
slip direction and the loading axis, and Ψ is the angle between the normal to the
slip plane and the loading axis. So that the critical resolved shear stress τ sc acting in
the slip direction of a crystal can be described by a Schmid factor (SF = cosΨcosλ
∈ [0., 0.5]) (Fig.1.7) and it can be calculated using formula (1.7). The first activated
slip system of each crystal will be the system with the greatest Schmid factor. The
resolved shear stress in different directions of a crystal may become favourable to
activate the slip system if it is close to 0.5.

Figure 1.7: Schematic diagram of a resolved shear stress τr produced on a slip
system. (Source: http://www.engineeringarchives.com)

τ sc = σcosΨcosλ
= σ × SF (1.7)



8 Chapter 1. Literature review

1.2.3.3 Strain hardening

In addition, the value of τ sc may increase because extra stress is required to overcome
different barriers which restrict the dislocation motions, e.g. Peierls-Nabarro stress
required to move a dislocation within a plane of atoms in the unit cell (Fig.1.5), in-
teraction of dislocations when mobile dislocations encounter non-mobile ones (forest
of dislocations) (Fig.1.8), precipitates, grain boundaries, etc.

Figure 1.8: Schematic diagram of interaction between mobile dislocations and forest
of dislocations.

In FCC structure, forest of dislocations is the pre-barrier restricting the move-
ment of dislocations. One of the predominant mechanisms of the formation of the
dislocation forest, using the expression by Frank and Read, is the production of
dislocations when a sufficiently significant plastic deformation of a crystal takes
place (Fig.1.9). A section of the dislocation is first blocked by any barrier (e.g.
precipitates, non-mobile dislocations, grain boundaries, etc.) pinned at two points
within a crystal lattice. The section is then bent under the influence of the external
force and successively grows until the closed dislocation loop is formed and sepa-
rated. The section is regenerated again at its initial position (two pinned points).
This progressive increase of the number of non-mobile dislocations in crystal can
be presented using the evolution of the dislocation densities ρ̇s. The cumulation of
this effect results in an increase of the value of τ sc and such evolution is perceived
as strain hardening (Fig.1.10).

Figure 1.9: Schematic diagram of a Frank-Read dislocation source.
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Figure 1.10: Numerical simulation of strain hardening during deformation of an
aluminium crystal by taking into account the interaction between dislocations: a.
dislocation density vs. shear strain and b. shear stress vs. shear strain. A and
B represent the curves obtained by considering with and without cross-slip respec-
tively. [Kubin and Devincre (1999)]

1.2.3.4 Heterogeneity of a polycrystalline sample during plastic defor-
mation

When loading is applied to a polycrystalline sample, the grains having a crystal-
lographic orientation favourable to activate slip system along the loading direction
deform earlier than others. These different instants of plastic deformation give
heterogeneous plastic strain in an aggregate under the same loading level.

Moreover, although SF gives an indication of the grains which may be more/less
intensively deformed during loading, it is not sufficient to predict an exact value of
stress locally. In fact, the heterogeneous behaviour of an aggregate or inside a crystal
depends mostly on the neighbouring grain texture (crystallographic orientation). If
we consider a grain with a high SF value but the surrounding grains are less likely
to deform, a heterogeneous stress distribution within the grain can be obtained.
For instance, we can get a gradient of strain with high strain concentration in the
grain center but low strain level at the grain boundary.

Last but not least, this heterogeneity of strain changes throughout the plastic
deformation because of the strain hardening.

1.3 Polycrystalline aggregates Modelling
Now, if we want to answer the question risen in section 1.1, a polycrystalline aggre-
gates model linking the macroscopic response with the microscopic behaviour fits
our research need very well.

1.3.1 Crystal plasticity constitutive equation
Based on the physical mechanisms of materials in previous section, crystal plasticity
constitutive equations were developed. The presented crystal plasticity behaviour
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law model in this section was used in several theses (Schwartz et al. (2010); Mu
(2011); De Jaeger et al. (2012)). This model is based on the hypothesis of small
elastic deformation and large rotations of the crystal lattice formulated by Peirce
et al. (1983), Tabourot (1992) and Teodosiu et al. (1992). It is not the only example
for crystal plasticity constitutive equation but a consensus developed for this type
of behaviour law based on dislocation density.

1.3.1.1 Elastic behaviour

The elastic behaviour of aluminium is assumed to be isotropic thanks to its small
anisotropy (αanisotropy = 0.8 ≈ 1). There are only two parameters, Young’s modulus
E and Poisson’s ratio ν, to describe the elasticity, so Ce

11, Ce
12 and Ce

44 can be directly
written as:





Ce
11 = E(1− ν)

(1 + ν)(1− 2ν)
Ce

12 = Eν

(1 + ν)(1− 2ν)
Ce

44 = E

2(1 + ν)

(1.8)

1.3.1.2 Viscoplastic behavior

Work hardening is due to interactions between dislocations moving within the gen-
eral condition given by Schmid law. There is a plastic flow if the resolved shear
stress τ s applied on the slipping system s is equal to its critical shear stress τ sc :

|τ s| − τ sc = 0 (1.9)

where τ s can be calculated using the macroscopic stress σ applied on the slipping
system with the normal of the slipping plan ns and the collinear unit Burgers vector
~b:

τ s =
(
σ ~ns

)
· ~ms (1.10)

The evolution of the τ sc associated with every s involves the dislocation densities
ρu corresponding to each system s, and the interaction matrices αsu of the FCC
or BCC materials proposed by Franciosi (1984). Expressed together with the co-
efficient of isotropic shear strain µ and the norm of Burgers vector b, τ sc is written
as:

τ sc = τ0 + µ× b
√∑

u

αsuρu (1.11)

and the flow rule becomes:
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



γ̇s = γ̇s0
(
τs

τs
c

)n
, if |τ s| ≥ τ sc

γ̇s = 0, if |τ s| < τ sc

(1.12)

γ̇s0 is the initial slip rate of each s while n is the coefficient of stress sensitivity.
Finally, the evolution of the dislocation densities ρ̇s associated with each s can be
expressed together with the parameters related to the production of dislocations K
and the annihilation distance yc:

ρ̇u = γ̇s

b

(∑
u ρ

u

K
− 2ycρs

)
(1.13)

1.3.2 Establishment of a polycrystalline model linking the
macroscopic response with the microscopic behaviour

The crystal plasticity constitutive equations allow one to predict the changes of
microstructure (e.g. disorientation of grains, phase transformation, pile-ups of dis-
location, etc) of a crystalline material under thermomechanical loading. As a result,
the origin of strain and stress heterogeneities would be likely figured out [Saai (2008);
Saai et al. (2010); Badulescu et al. (2011); Evrard et al. (2010b)]. In other words,
the local mechanical behaviour of that material can be predicted such as the local
disorientations due to forming [De Jaeger et al. (2012)] or the localisation of the
plastic deformation which leads to crack initiation in fatigue (Fig. 1.11) [Schwartz
et al. (2010); Li et al. (2012)].

Figure 1.11: Crack initiation in fatigue due to the localisation of the plastic defor-
mation [Li et al. (2012)].

Meanwhile, the identification of their parameters is generally performed by com-
parison of the mean behaviour (behaviour of the volume element) to the macroscopic
experimental one. However, the distribution of local stresses and strains can be very
different from the experimental ones, and this method does not allow us to control
it. Moreover, the parameters of these models are difficult to identify, because the
mechanisms they describe are at a small scale and are thus complicated to measure
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directly (e.g. evolution of dislocation density, strain hardening, pile-ups at grain
boundaries, changes in dislocation microstrutures,etc.). Identification of the pa-
rameters of these models is usually performed by inverse method from macroscopic
tests curves [Evrard et al. (2010a); Guilhem et al. (2013)]. In order to establish a
polycrystalline model linking both the macroscopic response measurement and the
microscopic behaviour prediction, there are two feasible approaches.

The first approach uses the self-consistent method based on [Eshelby (1957)]
and [Kroner (1958)] works — the mechanical behaviour is described using a mi-
cromechanical model, where grains are considered as inclusions embedded in the
homogeneous equivalent medium [Lebensohn and Canova (1997); Molinari et al.
(1997); Abdul-Latif et al. (1998); Evrard et al. (2008)]. In this approach, texture
and elongation ratio of grains can be taken into account. Yet, neither a specific
shape of the grains nor specific grain boundary misorientation is dealt with. One of
the advantages of this approach is, as stresses and strains are considered homoge-
neous per grain, the calculations are fast. This approach allows one for simulations
over long periods of time (fatigue, creep), to have a detailed description of the tex-
ture of the material (i.e. thousands of crystal orientations can be used to describe
the experimental texture). This moderate-cost calculation also allows one to use
this approach to define a local law of behaviour at each point of Gauss of a finite
element calculation. However, this approach does not allow one to take specific
local configurations into account, such as a specific form of grain, the various grain
sizes or the groups of neighbouring grains with particular orientation/disorientation.
This approach is indicated particularly for considering only the average behaviour
of a material, but not the response of either a particular crystalline aggregate nor
a observed variance on the particular set of configurations.

Another approach consists in modelling representative 3D polycrystalline aggre-
gates, which can be obtained experimentally by FIB-SEM serial-sectioning or by
tomography [Cédat et al. (2012); Ludwig et al. (2009)] or by Voronoi tessellation
(CVT) [Barbe et al. (2001a,b); Brahme et al. (2006); St-Pierre et al. (2008)]. In
order to account for the mean behaviour of the material, it is necessary to meet
a sufficient number of configurations (e.g. grain orientations and positions, grain
neighbourings and shapes). These configurations can be met in a unique aggregate
if it is sufficiently large (the Representative Volume Element, RVE) or in several
smaller aggregates. The mean behaviour of these small aggregates, if not too small,
converges to the behaviour of the RVE [Kanit et al. (2003)]. This method, although
the calculations are more time-consuming, allows to take specific characteristics of
the microstructure (realistic shape of the grains, specific neighbouring misorienta-
tion, percolation of one or several phases, etc.) into consideration.

These two methods allow to simulate the macroscopic stress-strain response and
to perform the parameter identification by comparison with experimental measure-
ments.
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1.4 Local mechanical measurement
However, minimising a cost function (the difference between experimental and cal-
culated data) based on macroscopic measurements may lead to local minima, and
not to a global one. The validity of such an identification is thus generally limited
to the experimental tests used during the identification stage. In order to increase
the robustness of the identification, it is necessary to give a physical meaning to the
parameters. To accomplish this, local experimental data at the grain scale can be
used. The richness of the data provided by the experimental fields measured on the
surface of the specimen should allow one to constrain the values of the parameters
to be identified.

In order to yield an experimental database sufficient for parameter identifica-
tion, the best way is to develop a procedure to access the coupling nature quan-
tities, e.g. stress-strain (σ-ε), strain-energy (ε-Q) or even stress-energy (σ-Q), at
different points of the monocrystal. Thus, the questions about the possibility of
accessing these quantities as completely as possible and the corresponding practical
measurement method should be thought thoroughly. The thesis research highlights
principally in this particular objective and the methods of accessing these quantities
are going to be described in this section.

1.4.1 Total strain field measuring methods
Digital correlation image method (DIC), Moiré fringe method and grid method pro-
vide full-field displacement/strain measurement between several successive states.

1. Digital image correlation

The digital image correlation DIC is a 2D or 3D method for measuring the
displacement field between two images of the same region of the sample suc-
cessively taken by a camera [Sutton et al. (2000)]. For this, a speckle pattern
painting has to be applied on the sample surface excepted for samples with
natural contrast. During the mechanical test, images of the deformed sample
surface are taken regularly. The movement of the grey value pattern in the
deformed image is tracked in small local neighbourhood facets and the dis-
placement field can be calculated (Fig.1.12). Hence, a total strain field could
be derived. DIC enables the total strain field measurement far into the range
of plastic deformation (Fig.1.13) and a large number of applications can be
found in literature in this context [Lucas and Kanade (1981); Sutton et al.
(1983); Chu et al. (1985); Kahn-Jetter and Chu (1990); Allais et al. (1994);
Luo et al. (1994); Helm et al. (1996); Mazza et al. (1996); Mitchell et al.
(1999); Doumalin (2000); Tatschl and Kolednik (2003); Sutton et al. (2006,
2007a); Saai (2008); Bourcier (2012); Guery (2014)].

2. Moiré fringe method
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Figure 1.12: Scheme of digital im-
age correlation method (DIC) for total
strain field measurement. The move-
ment of speckle pattern painting in
the small local neighbourhood facets is
tracked [Sutton et al. (2007b)].

Figure 1.13: Total strain field measure-
ment of a bi-crystal (G1 & G2) sam-
ple under a tensile loading of 400N and
500N using DIC method [Saai et al.
(2010)].

This method makes use of Moiré effect to measure surface strain. Moiré effect
is the optical interference of light by superimposing a fringe pattern or grating
which varies in line spacing or rotation (Fig.1.14). The pattern of broad dark
lines, Moiré pattern, can be used as a gauging signal to perform accurate
displacement measurement [Post (1968)]. In practice, an active grating is
attached on the surface of the sample. The grating deforms together with the
test sample and when an undeformed (reference) grating superimposes onto
it, a Moiré pattern depicting the nature and the magnitude of the deformation
field is obtained. Since the Moiré pattern is a full field representation of the
relative displacement between the gratings (Fig.1.15), it is an excellent tool
for observing and quantifying the gradients in local deformation, e.g. Tang
et al. (2012).

3. Grid method

Grid method makes use of grid markings, either applied as a fine regular array
of dots or lines (Fig.1.16), on the sample surface as strain gauge to measure
local displacement before and after deformation. Images of the grid-lines after
deformation are captured at each loading level to reveal the total strain field
[Dally and Riley (1978); Dürr (1991)]. Comparing with fringe method and
DIC method, grid method allows an accurate and direct strain measurement
under large deformation [Goldrein et al. (1995)].
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Figure 1.14: Scheme of Moiré effect. A
Moiré pattern is formed by superimpos-
ing two sets of parallel lines. The pat-
tern of broad dark lines is used as a
gauging signal to measure displacement
(Source: [Gungor (n.d.)], The Open
University of UK).

Figure 1.15: Moiré fringes of an alu-
minum sample under a Moiré interfer-
ometer in loading experiment (in hor-
izontal direction). Displacement fields
are indicated by the Moiré fringes un-
der load of (a) 180 N and (b) 300 N.
Each Moiré pattern represents a equal
distance of 833 nm [Tang et al. (2012)].

Figure 1.16: Example of grid [Schroeter
and McDowell (2003)].

Figure 1.17: A sample is subjected to
compression at different effective strain
Eeff levels. The movement of the grids
show a strong heterogeneity of deforma-
tion [Schroeter and McDowell (2003)].

1.4.2 Elastic strain field measuring methods in a single crys-
tal

Several methods allow local elastic strain assessment in a single crystal, e.g. X-ray
diffraction (XRD) [Eberl (2000)], Kossel microdiffraction [Bouscaud et al. (2014b)],
Laue microdiffraction [Robach et al. (2011); Petit et al. (2012)] or hole-drilling
method [Baldi (2014)]. Since there are three methods making use of diffraction
to determine the elastic strain, the application of Bragg’s law is firstly presented.
Then, the measuring principles of Kossel microdiffraction and Laue microdiffrac-
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tion method are introduced afterward. Followed by, the hole-drilling method is
presented. At the same time, the advantages, disadvantages and limitations of
these methods are mentioned. Later, an explanation of our choice of methods is
made to conclude this subsection.

1. X-ray diffraction

When X-ray is sent to a crystalline material, the signal received by the captors
allows to know the distance between atomic planes. Since the atomic planes
in unstrained solids are spaced at a distance that corresponds to a minimum
energy, when the material is deformed elastically, this distance changes and
energy increases, producing a restoring force. The interaction is often mod-
elled as the Lennard-Jones potential assuming the distance variation between
atom is linear to the applied force (recall §1.2.2.1). Thus, the distance varia-
tion between atoms (or the interreticular plane distance dhkl) can be used as a
gauge to measure the local elastic strain εe applied on the crystal (Fig.1.18).
The Bragg’s law (Eq.1.14) shows the relationship between X-ray wavelength
λ, inter-reticular distance dhkl and diffraction angle θhkl:

dhkl = λ

2sin(θhkl)
(1.14)

where θ is the diffraction angle and λ is the wavelength of the X-ray source.

Figure 1.18: Relationship between X-ray wavelength λ, inter-reticular distance dhkl
(distance between atoms) and diffraction angles θ.

For dhkl measurement by X-ray diffraction, the single crystal is mounted on
a wafer holder in a goniometer and rotated according to its crystallographic
directions, normal to a monochromatic X-ray beam (λ = constant and in
the range of 0.01 to 10 nm). To make the correct θhkl for reflection of the
monochromatic incident beam, the crystal and a 1D punctual detector move
until the diffracted signal is received at its maximum intensity (Fig.1.19).
Differentiating Eq.(1.14) by using the product rule, we get:

εhkl = δdhkl
dhkl

= −cotθhkl · δθhkl (1.15)
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Figure 1.19: Principle of X-ray Diffractometer

Therefore, if dhkl increases (which corresponds to a tension state, εhkl > 0),
2θhkl of the peak decreases with respect to its initial position (Fig.1.21), and
vice versa.

Figure 1.20: Scheme of X-ray diffraction
method.

Figure 1.21: 2θ(−2−22) of Grain3 (X=-
1,Y=-1) in its initial state (blue) and at
εtxx = 7.4× 10−03 (red).

The signal intensity obtained has always a high signal to noise ratio (e.g
≥ 60) which increases the accuracy of dhkl measurement. However, since the
accessibility of θhkl by a standard goniometer is 10◦ ≤ θhkl ≤ 80◦, a limited
number of {hkl} planes can be taken into account when calculating elastic
strain. For instance, the measurable {hkl} planes for a FCC crystal are {111},
{200}, {220}, {311}, {222}, {400}, {331}, {420}, {422} and {511}. It is also
known as a large angle X-ray scattering method.

2. Kossel microdiffraction

For dhkl measurement by Kossel microdiffraction, the single crystal is placed
in a scanning electron microscope (SEM) with emission of monochromatic X-
ray source (λ = constant in the range of 1 to 10 nm) and a 2D charge coupled
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detector (CCD). The X-ray diffracted by a stack of crystallographic planes
with hkl spacing is captured by a planar detector, a conic pattern (Kossel
line) can be recorded (Fig.1.22) [Bouscaud et al. (2014b)].

Figure 1.22: Principle of Kossel microdiffraction [Bouscaud et al. (2014b)]

Since the dimension of the Kossel cone is a function of diffracting angle θhkl
(Fig.1.23), the variation of its diameter can indicate the δdhkl during defor-
mation (See again Eq.1.15).

Figure 1.23: Illusion of the diffracted X-ray signal captured by a 2D detector. The
signal forms a conic pattern (Kossel line) with the diameter indicating the distance
between diffracting planes.

Kossel microdiffraction is also known as a small angle X-ray scattering method
because the diffracting angles of hkl are 1◦ ≤ θhkl ≤ 2◦ using SEM. As soon
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as there are {hkl} planes diffracted, elastic strain tensor can be calculated.
Therefore, a large variety of {hkl} planes can be taken into account and it
enhances the sensibility to elastic strain level. For instance, only 11 Kossel
cones are needed to reach the precision of strain measurement up to 2× 10−4

[Bouscaud et al. (2014a,b)]. Moreover, Kossel microdiffraction allows to ac-
cess the local information of crystal with dimension from 1µm to several mm.
It allows to map the strains/stresses and orientation of crystallites simulta-
neously. On the downside, the signal intensity obtained has a weak signal to
noise ratio [Bauch et al. (1999)]. To obtain a clearer Kossel signal, a superpo-
sition of 5-20 frames (with an acquisition time of 10-30s per frame) is required
for each measurement to obtain sufficient image contrast. In addition, due
to the existing resolution of EBSD camera and the artefact of the captured
image, Kossel line positions can hardly be determined precisely. The strain
tensor calculated using this method is based on three assumptions — the shifts
of Kossel patterns are assumed to be caused only by strain but not by the
presence of mosaicity, there are only small orientation change between initial
and deformed states, and the change of pattern center and pattern-to-detector
distance is negligible [Morawiec (2014)].

3. "Rainbow" method using laue microdiffraction [Robach et al. (2011)]

For dhkl measurement by "Rainbow" method using Laue microdiffraction, a
microbeam of white radiation (polychromatic X-ray with energy spectrum
varying from 5 to 22keV) is sent to sample surface and the diffracted signal
captured by a 2D charge coupled detector (CCD), so that the spot (photon)
energy (E) of the diffracted signal and the Laue pattern can be recorded
simultaneously for strain tensor calculation (Fig.1.24).

Figure 1.24: Experimental geometry of "Rainbow" method using Laue microdiffrac-
tion for elastic strain measurement [Robach et al. (2011)].

During deformation, dhkl changes and the λ and θhkl of the diffracted x-ray
beam varies. The relation between wavelength (λ 6= constant) and energy is
described as follows:
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E = hc

λ
(1.16)

where h is Planck’s constant and c is the speed of light. Differentiating Eq.1.14
and Eq.1.16 by using the product rule, we have

εhkl = −cotθhkl · δθhkl −
δE

E
(1.17)

Since the accuracy of elastic strain depends more on the term of the change
of energy ( δE

E
≈ ×10−4) rather than the term of change of diffracting angles

(−cotθhkl · δθhkl ≈ ×10−5) [Robach et al. (2011)], Eq.1.17 can be simplified as

εhkl = −δE
E

(1.18)

This is an indirect method using the change of energy during deformation to
calculate elastic strain. The entire measuring time of Laue microdiffraction
takes only 5s and a significant signal-to-photon-noise ratio of about 600 at
saturation can be achieved. However, limited by existing experimental set-up
nowadays, the maximum range of white beam the energy spectrum can only
vary from 1 to 22keV and the best achieved accuracy of the elastic strain using
this method ≈ ×10−4 [Petit et al. (2012)].

4. Hole-drilling method

Hole-drilling method is a mechanical strain relaxation (MSR) technique. A
small blind hole (in µm) is made in the surface area of interest and the locked-
in stress is released. Then, the in-plane (longitudinal) and out-of-plane (axial)
elastic strain can be obtained using either strain-gauge [Rendler and Vigness
(1966)] or digital image correlation [Baldi (2014)] (Fig. 1.25-1.26).

Figure 1.25: Experimental setup for
residual stress measurement using hole
drilling and integrated digital image cor-
relation techniques [Baldi (2014)].

Figure 1.26: Illusion of speckle field
around the drilled hole before and after
stress relaxation [Baldi (2014)].
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However, this is a semi-destructive method on the surface for elastic strain
measurement. Also one drilled hole is used for every loading level and it
cannot be reused to provide a continuous local response for other loading
levels. Therefore, this method is not considered in our study. Moreover,
its application in an anisotropic monocrystal is still not guaranteed [Glacet
(2015)]. The strain tensor is calculated using an inverse method based on
finite element simulations of the drilling. A converged result can only be
achieved for isotropic materials but not for anisotropic one.

1.4.3 Energy or heat dissipation measuring method
The dissipated energy Q can also be quantified during the mechanical loading, by
measuring the amount of heat emitted locally with a 2D-infra-red camera and then
using the local results to identify behaviour law [Chrysochoos (1987); Chrysochoos
and Louche (2000); Bodelot (2008); Chrysochoos et al. (2008); Saai (2008)]. How-
ever, difficulties under several experimental conditions have to be first overcome to
succeed the measurement. Measurements have to be carried out in real time dur-
ing experiments, which is, for the moment, not compatible with εe measurements
with crystal diffraction. However, the access to a local heat measurement is still
a challenge [Bodelot (2008)]. There are three types of difficulties for applying this
measuring method:

1. Difficulty related to measuring time
Heat dissipation in metallic material is a quite rapid homogenisation pro-
cess as the variation of temperature during cold deformation is small (within
one degree) (Refer to the two examples in Saai (2008)) and instantaneous.
Also, during the heat measurement, the speckle pattern applied on the sam-
ple surface should be compatible with both DIC and IR measurement [Bodelot
(2008)]. All these make the measurement at grain scale even more difficult.

2. Difficulty related to experimental background and data accessibility
The quantity of intrinsic heat of our sample throughout the deformation is
sought and measured. However, this quantity is even smaller than the heat ra-
diated by its experimental background. As a result, the experimental environ-
ment should be perfectly isolated [Chrysochoos and Louche (2000); Chryso-
choos et al. (2008)]. Moreover, several elements have to be taken into account
when we want to conduct several measurements simultaneously. For example,
if εt-Q fields are measured at the same time, the optical and infra-red cameras
should be positioned differently (with an angle shift) without bothering the
measurement of each another, so that the diffracted beams of each measure-
ment could be separately captured. In this case, the zone(s) of interested are
distorted and the accessed data should be amended before usage.

3. Difficulty related to the infra-red (IR) camera calibration
When measuring temperature by IR thermal imaging, the emissivity of the
sample surface has to be constant to guarantee the quality of the captured heat
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[Saai (2008)]. However, this ideal situation is very difficult to achieve. The
emissivity depends on the surface roughness, material or coating nature of the
analysed sample but these parameters may change during the experimental
test, e.g. surface roughness of aluminium alloy sample change remarkably
along the mechanical loading because of the anisotropic behaviour of grains.

1.4.4 Choice of the local mechanical informations
For the quantities that we may access nowadays, the kinematic quantities can be
achieved by measuring the displacement or total strain field of a material under load-
ing. In the existing literature, we see that measuring the εt field is very widespread.
For the stress quantities, however, it is impossible to measure them directly. As a
result, we "fall-back" to measure εe. From εe, it will be possible to reconstruct σ,
knowing the Hooke’s law. Another possibility is to quantify the energy dissipated
Q during the loading. We observe that the technical skill for measuring Q locally
are still incompatible with those of the εe measurement. For example, the measure-
ment cannot be conducted at several loading levels. It is because the measurement
of the change of heat energy can only be recorded in a continuous loading whereas
εe measurement has to be done at successive loading levels and takes a long time
to each level. Moreover, measuring various quantities on the same specimen under
loading means different device around the specimen to impose the loading and mea-
sure every quantity. It was not possible to position a CCD camera, an IR camera
and a diffraction device around the specimen. Only two of them could be selected.
Therefore, we have chosen to focus on εt and εe full-field measuring method which
allows a direct measurement of the behaviour law.

Meanwhile, these information should be obtained through either surface or vol-
ume measurement. Since 3D representative polycrystalline aggregates modelling
would be used for microstructural calculation to identify the behaviour laws, mas-
tering the strain fields of the grain in form of 3D is indispensable. Until now, a 3D
local micromechanic response mapping using large infrastructure to validate crys-
talline plasticity model is still absent. So, by knowing these local answers on grains
surface and extruded throughout a thickness is the solution we worked for.

1.4.5 Choice of the measuring methods
During our research, the studied total deformation is smaller than 5% ( εtxx = 3.56%
in the experiment of sample 1 and 4.23% of sample2). Digital image correlation is
sufficiently sensitive (up to ±4 × 10−4) to small total strain. Moreover, from a
practical point of view, depositing a speckle is much easier than a grid or fringe
pattern. The required apparatus is relatively simple to be integrated with elastic
strain measurement comparing with the two other options — only a camera installed
perpendicularly in front of the sample surface is needed.

X-ray diffraction method is a direct, non-destructive and effective way to mea-
sure the evolution of dhkl, it avoids the complexity of signal calibration and inac-
curacy generated by distorted image or indirect energy converting method. Also,
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when sample is deformed plastically, XRD still enables the measurement under the
rotation of grain.

The accessibility of measurements by these two techniques are the most appro-
priated options to achieve our experimental needs.

1.5 Identification procedure
Upon the determination of the crystalline plasticity model, the establishment of a
polycrystalline model and collection of experimental data, methods of comparing
the simulated results with experimental measurements are needed. In addition to
the local measurement of variables σ− ε, this research is intended as a contribution
to allow identification of a crystalline constitutive equation.

1.5.1 Type of variables
Observables variables, internal variables and material parameters are essential ele-
ments for constitutive equation identification.

The observable variables are the experimental data. They are usually prescribed
and can be the macroscopic or microscopic response of a material during mechani-
cal test. For example, during a uniaxial/multiaxial loading, the variables of macro-
scopic response are the average stress (σ̄) applied on the material under the control
of average strain (ε̄). At the same time, there are several microscopic responses of
the material which can be measured, such as the rotation of the crystal texture, the
evolution of temperature and the local strain (ε11,ε12,ε22) obtained on the sample
surface as well as the local strain (εij,i=1,2,3,j=1,2,3) supposed could be soon accessed
by tomography in the sample volume.

The material parameters can then be identified using the observable variables
and the chosen constitutive equation. These values allow to reach back certain
internal variables afterwards. In the case of the involvement of strain-hardening, the
internal variables, like the position shift of the yield surface for kinematic hardening
or the size changes of the yield surface for isotropic hardening, can be quantified.
These quantified internal variables will contribute to the experimental database.

1.5.2 Identification strategies
In many situations, some of the input data (e.g. parameters of the behaviour law,
boundary conditions, etc.) of the model cannot be measured directly and they have
to be sought depending on the response of the model. Therefore, an identification
procedure is performed by fitting the simulation results to the experimental data of
kinematic fields, namely inverse method. A cost function F(ζnum, ζexp) is introduced
to define a norm of the difference between numerical ζnum and experimental quan-
tities ζexp. These two quantities can be compared at the scale of the grain [Héripré
(2006)] either point by point using displacement/strain fields or, by the strain field
averaged per grain, or by the strain distribution. The identification makes use of
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all of the experimental data. The resulting cost function Jres is a weighted sum
of all these terms Fk(ζnum, ζexp) which are the discrepancies ωk of the synchronised
measuring points/zones at different moment of all the experiments (Eq.1.19).

Jres =
∑

k

ωkFk(ζnum, ζexp) (1.19)

The publications of Avril et al. (2008a) and Grédiac and Hild (2013) overview
the recently developed strategies for constitutive parameter identification based on
kinematic full-field measurements.

1. Finite element model updating method (FEMU)

The finite element model updating method (FEMU) is based on the mini-
mization of the discrepancy between an actual measurement (either known
and predicted forces, or measured and predicted displacement fields) and a fi-
nite element simulation (Fig. 1.27). The simulations are performed iteratively
until the computed results match the measured ones, then the parameters are
identified. It has been applied for microstructural characterization coupling
with the experimental data obtained via SEM [Hoc et al. (2003); Guery (2014)]
or in front of a camera with a microscopic lens [Kajberg and Lindkvist (2004);
Kajberg and Wikman (2007)], etc.

Figure 1.27: Schematic diagram of FEMU identification. [Grédiac and Hild (2013)]

This method owns a high flexibility and capacity to handle a variety of situa-
tions and data [Genovese et al. (2006)]. Yet, the accuracy of the method can
be seriously affected by incorrect selection of model for the studied material,
experimental errors and the non-linear problems of the numerical simulation
[Meuwissen et al. (1998); Molimard et al. (2005); Hendricks (1991); Oomens
et al. (1993); Van Ratingen (1994); Forestier et al. (2002); Kajberg and Lind-
kvist (2004); Kajberg and Wikman (2007); Giton et al. (2006)].
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2. Constitutive equation gap method (CEGM)

The constitutive equation gap method (CEGM) estimates the errors in the fi-
nite element method [Ladeveze and Leguillon (1983)] during model updating.
Its principle is minimizing the distance between an given admissible stress and
an other stress field computed from experimental displacement field. CEGM
has been used for identification of elastic properties [Constantinescu (1995);
Calloch et al. (2002); Geymonat et al. (2002); Geymonat and Pagano (2003)]
as well as heterogeneous elastoplastic properties and strain energy densities us-
ing kinematic field measurements [Chrysochoos et al. (2008); Latourte (2007);
Latourte et al. (2008)]. Thanks to the strong and clear physical meaning rep-
resented by CEG functionals and their additive character with respect to the
structure, the error associated with the identified parameters can be quantified
locally.

3. Virtual fields method (VFM)

The virtual fields method (VFM) is based on the principle of virtual work
(PVW) applied with correctly selected virtual fields [Grédiac (1989)]. The ex-
perimental strain field and the loading conditions are assumed to be known.
Once the constitutive model is chosen and virtual fields are selected, a set
of scalar equations can be generated by introducing each virtual field into
a PVW equation. The solutions obtained in the least square sense are the
identified constitutive parameters. VFM has already been applied to identify
parameters in the case of elastoplasticity with either numerical [Grédiac and
Pierron (2006)] or experimental data [Pannier et al. (2006); Avril et al. (2007);
Pierron et al. (2010)] and in the case of viscoplasticity [Avril et al. (2008b)].
However, the error on the stress increment may become larger because of the
small associated strains subjected to experimental noise [Pierron et al. (2010)].

In fact, the loading distribution involved in the virtual work identification is
difficult to be quantified experimentally [Grédiac et al. (2002)]. Thus, only
the measured resultant forces are defined in the virtual fields and the virtual
displacement is prescribed as a constant boundary condition along the resul-
tant forces direction. Moreover, the microstructure calculation of aggregates
is 3-Dimensional computation and the strain field within the solid has to be
known. Thus, in practise, the strain fields are quantified from beam- or plate-
like sample surface then they are assumed to be constant or linear through
this thickness.

4. Equilibrium gap method (EGM)

The equilibrium gap method (EGM) is based on the discretization of the
equilibrium equations. The EGM functional is developed similarly to the one
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of VFM except non-zero displacement data on a regular grid resolution is
assumed to be available. Therefore, they share the same limitations in terms
of experimental strain field. This method can be applied in identification of
damage field [Claire et al. (2002, 2004)] because it can only allow to identify
relative variation of parameters.

5. Reciprocity gap method (RGM)

The reciprocity gap method (RGM) is based on the Maxwell-Betti reciprocity
theorem and it is applicable when mechanical field measurements are avail-
able on the whole boundary. The principle of this method is to analyse the
difference in reciprocity between the real experimental field and a fictitious so-
lution field without the unknown entities (e.g. cracks, inclusions, etc.). These
entities are defined as a set of parameters. They are first calculated from
PVW and the RGM functional is defined by applying them in both experi-
mental state and fictitious state. This method is useful in crack identification
[Andrieux et al. (1997); Ben Abda et al. (1999); Bui et al. (2004)]. Although
this method is simple for identification of constitutive properties, there is still
a challenge to conduct a complete kinematic field measurement on the outer
boundary of the studied body.

As we use a polycrystalline aggregates model linking the macroscopic response
with the microscopic behaviour, FEMU and CEGM are the most appropriate ap-
proaches to identify the parameters of crystalline plasticity law using the local
mechanical measurements (which will be presented in next section).

1.5.3 Complexity of the model to be identified
The complexity of the model to be identified is also worth discussing. The iden-
tification using macroscopic response in a linear or a simple non-linear model is
relatively easy and simple, so it has been performed in many works for a long
time. However, for complicated non-linear models, it is still a topic of development
due to its highly non-linear nature and involvement of many constitutive parame-
ters [Andrade-Campos et al. (2007); Evrard et al. (2008, 2010b,a); Schwartz et al.
(2010); Mu (2011)].

For the identification using field measurements in linear models, it has been
applied in anisotropic models [Grédiac and Pierron (2006); Pannier et al. (2006);
Avril et al. (2008b); Pierron et al. (2010)]. In the case of simple non-linear mod-
els (e.g. describing an elasto-plastic behaviour with bilinear approach Latourte
(2007)), only few constitutive parameters have to be identified. Until now, there
are only two attempts using field measurements to identify parameters in non-linear
models [Tran (2013); Guery (2014)]. With these field measurements on the repre-
sentative volume element, some very complicated models with various phenomena
can be identified, e.g. elasto-plasticity, cyclic hardening/softening, aspect of multi-
axial/non-proportionality, anisotropy, etc. Yet, sufficient tests are needed to yield
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the experimental database for characterising these phenomena. Also, the choice of
identification strategy is also a challenge because we have to be thoughtful enough
to decide which parameters should be identified in which order or if we can directly
measure certain parameters [Pierron et al. (2010); Schwartz et al. (2010)].

In addition, one of the perspective of the research is making use of local full-field
measurements of mechanical response to identify these models. Yet, the calculations
is not realised in the present work.

1.6 Conclusion
We have presented in this chapter a literature review on crystal plasticity model
with microstructure-based mechanical predictions. We have seen the interest of
local mechanical responses of a material and the accessibility of these quantities
at present. The total and elastic strain fields have been finally chosen thanks to a
widespread literature and well-developed technique for their measurements. After
comparing the performance and the set-up of several measuring methods, the total
strain fields were determined by digital image correlation. For this, a speckle-
painting was applied on the sample surface which was tracked to derive the total
deformation of the specimen surface under loading. The local elastic strains were
calculated from X-ray diffraction measurements. This research is placed in the
perspective to allow identification of a crystalline constitutive equation based on
the experimental results provided by this study and the necessary conditions were
recalled to fulfill this objective.





Chapter 2

Material and sample preparation

Chapter 2 is divided into three parts: Material and specimen shape selection (Sec-
tion 2.1), sample preparation (Section 2.2) and studied samples and their initial
microstructures (Section 2.3). The first part presents how a comprehensive consid-
eration of the material selection is conducted so as to obtain the desired mechanical
responses and take into account the loading and elongation limits of the micro-
tensile machine. The design of sample shape and its specific dimensions are also
discussed. In the second part, it is shown how the sample is recrystallised. A fur-
ther completed initial microstructure of the studied samples and their determining
methods are described in the last section.

2.1 Materials
An in-situ experiment is designed specifically to obtain both the total and elastic
strain fields simultaneously inside the grains of the sample during a tensile test.
Therefore, obtaining the desired experimental results accurately is the main con-
sideration when choosing a studied material as well as the specimen shape. The
chosen material and its chemical composition are shown afterwards.

2.1.1 Choice of material
The material is chosen following several criteria.

1. The material should have a simple microstructure.

As we have mentioned in chapter 1, only total and elastic strain fields of a
sample are measured. In order to avoid any complicated or particular mechan-
ical responses (e.g. phase transformation due to non-equilibrium conditions
in martensite) during the experiment under mechanical loading, a material
with single-phase microstructure is preferred. So that the deformation mech-
anism is principally caused by the movement of dislocations inside crystals
(rather than other mechanisms, e.g. twinning). Also, a single-phase material
is wanted to avoid the involvement of more than one crystalline plasticity law
in our studies. Otherwise, a set of crystalline plasticity behaviour laws will
be required in a multiple-phase material [Libert (2007); Libert et al. (2011);
Cédat et al. (2012)] and the situation will be more complicated.
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Moreover, crystallographic system during sample deformation is no more or-
thogonal. Hence, materials with cubic lattice is preferable, e.g. FCC and
BCC rather than HCP or Triclinic, because it facilitates the transformation
of lattice planes from an incalculable direct network to a calculable reciprocal
network during follow-up analytical procedure

2. The microstructure of the material should be accessible by XRD - The grain
size is optimised.

X-ray diffraction (XRD) is chosen to measure the elastic strain field of each
grain on the sample surface. As we want to measure the intragranular gra-
dients of elastic strain, the grain size of the sample should be large enough
to enable the X-ray beam to conduct several measurements per grain. Since
the minimum size of the X-ray beam emitted by the X-ray diffractometer in
our laboratory is in 0.02×0.02 mm2, it implies the grain size on our sample
surface should be at least 1 mm2.
In addition, larger grain contain more measuring points and result in a richer
intragranular information. Meanwhile, a sample containing 10-50 grains gives
not only intragranular information but also an intergranular information as
the mechanical answer of a grain is not only affected by its own crystalline
orientation [Schmid and Boas (1951)] but also by the surrounding grains with
different crystal orientations [Martin et al. (2013)]. So, the chosen material
should be capable to produce oligocrystal samples, e.g. Nickel [Eberl (2000)],
Copper [Huang (2007)], Aluminium [Saai (2008); Tran (2013)], etc.

3. A Small Young’s modulus facilitates the achievement of the desired measure-
ment.

A higher Young’s modulus implies a smaller elastic strain field εe during the
total deformation εt (Fig.2.1). In other words, a material with a small Young’s
modulus shows a larger εe and this facilitates the XRD measurement for a
given uncertainty. The principle of εe measurement and its uncertainty will
be further presented in Chapter 3.
The maximum loading capacity of our micro-tensile machine is 1kN. The
tensile strength σf of the material and the section of the specimen should be
selected to respect this limit.
According to the grip system of the micro-machine (see 58), the thickness of
the sample should be 0.5-2 mm while the width should be 6-13 mm. The
range of the sample section can be varied from 0.5×6 mm2 to 2×13 mm2

Therefore, the operating stress σf of the material should be between 40-330
MPa. Moreover, a material with an observable yield strength σy and having
at least 2 objective loading stresses σobj_i,i=1,2,... (measuring points) in plastic
zone are preferred (Fig.2.2). Refering to the plot of Young’s Modulus of
various materials in Fig.2.3, Al-alloys, Mg-alloys, Ti-alloys and Lead-alloys are
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Figure 2.1: Comparison of εe obtained
in two materials have different Young’s
modulus: the one with smaller Young’s
modulus shows a larger elastic strain
field εe for an identical total deforma-
tion εt.

Figure 2.2: Schematic diagram of the
objective test: Observable the yield
stress and 2 objective loading stresses in
plastic zones

Figure 2.3: Plot of tensile strength-Young’s Modulus. Al-alloys show a weak
Young’s modulus (<100GPa) but higher yield strength within the operating limit
of the machine ( 40 MPa ≤ σf ≤ 330 MPa).

materials with Young’s modulus below 100 GPa. Furthermore, Al-alloys show
a relatively higher yield strength within the operating limit of the machine
with reference to the Ashby plot of strength of different materials. For Al-alloy
with 3% of Mg (5052), Young’s Modulus is around 70 GPa and the elastic
limit can be up to 280 MPa, so that the observed zone could be large enough
for having several grains in a sample width about 8 mm and thickness of 0.5
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mm.

So we chose Al-alloys as our material. A verification of its behaviour under re-
laxation was made on a representative polycrystalline Al-alloy (5052) (with around
3% of Mg) specimen to confirm the material selection. It is because X-Ray measure-
ments take a very long time (about 2 weeks) and relaxation of materials becomes
inevitable. We observed that the relaxation of the chosen material was slow and
stable enough to not affect the εe measurement. The details of this relaxation test
will be presented in Chapter 4 §4.4.3.

2.1.2 Chemical composition
The chemical composition of Al alloy (5052) is given in Table 2.1.

Si Fe Cu Mn Mg Cr Zn Al
0.45 0.45 0.10 0.10 2.2-2.8 0.15-0.35 0.10 Balance

Table 2.1: Chemical composition (in Wt%) of the aluminium alloy used (5052)

It was laminated to 0.79 mm thick and wasn’t annealed in its initial state.

2.2 Sample Preparation
For the sample preparation, the specimen shape was first designed to fulfill our
experimental needs. It was obtained through laminating and machining. Later, the
process of recrystallisation was conducted to obtain large crystals in the samples as
for facilitating the strain measurements inside the grains.

2.2.1 Design of the specimen shape
The microstructure of the entire sample should be known for a representative 3D
polycrystalline modelling. For this, the applied force and stress on the aggregate
should be known. So, when designing our sample shape, all the mechanical re-
sponses on the active zone of the sample should be traceable and observable by our
experimental apparatus (e.g. Camera and X-ray diffractometer) during mechanical
loading. Next, the local behaviour in a grain is widely affected by the geometry
of the microstructure below the surface [Zeghadi et al. (2007)]. Thus, we need to
know our studied aggregate thoroughly, if possible, in a non-destructive way. The
specimen shape is designed based on 2 conditions:

1. As the maximum length of sample accessible by XRD is 14.5mm (see 59),
in order to have more observable local information during our tensile test, a
relatively homogeneous distribution of stress in this active zone is preferred
and the sample should not break in the grip system. Therefore, a dog bone
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sample is used.

The maximum active zone was identified using numerical simulation. The
boundary condition was set as actual gripping system in the micro-machine:
two ends was clipped and reinforced using two metal rods. Samples were
modelled with various fillet radius as well as various widths of gauge section.
The acceptability the dimensions were verified using the homogeneity of the
stresses in the gauge section as one of the criteria. In Fig. 2.5, the active zone
is the area with relatively homogeneous distribution of stress (in MPa) in the
gauge section. The numerical estimation showed that the largest active zone
of 8 mm x 18 mm can be achieved with the fillet radius of 4 mm or 6 mm.
In this case, a larger radius is preferred to lower strain concentration at the
transaction between fillets and the gauge section. Therefore, a sample shape
with the width of gauge section of 8 mm and fillet radius of 6 mm was chosen
(Fig. 2.4).

Figure 2.4: Drawing of the sample.

Figure 2.5: The maximum active zone was identified using numerical simulation.
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2. All the grain shapes and orientations in the sample should be known. Limit-
ing the number of grains in sample thickness from 1 to 2 ensures the geometry
and the initial microstructure of each grain could be measured.

2.2.2 Sample production
The as-rolled Al-alloy (5052) metal sheet with 0.79 mm thick and without annealing
was received as initial state. Then, it was laminated to a thickness of 0.55 mm.
After, the specimens were machined from this thin metal sheet according to the
designed sample shape. The exterior specimen dimensions were 13×43 mm2 with
a thickness of 0.55 mm. The gauge zone was 8×18 mm2 and the fillet radius was 6
mm (See 60).

In order to facilitate the measurements of strain gradients inside the grains,
samples with very large grains was prepared referencing to the recrystallization
work of Saai (2008) and Tran (2013). The recrystallization procedure [Philibert
et al. (1998)] was stated below as well as their corresponding parameters. These
parameters influence the size of the final grains.

1. Recovery annealing.

Specimens were first submitted to a recovery annealing to restore the mi-
crostructure and remove the residual stresses resulting from rolling and ma-
chining. The time and temperature of the recovery annealing are lower than
those of recrystallization treatment. This additional thermal energy allows
the dislocations to move (Fig.2.6-2.7).

Figure 2.6: Initial grain size of Al-
alloy (5052) sample without Recovery
annealing.

Figure 2.7: Initial grain size of Al-
alloy (5052) sample with Recovery
annealing at 450 ◦C for 1 hour.

If the initial material has undergone a higher strain rate, more energy is
preferred. So, our samples were first subjected to an annealing at 450 ◦C for
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two hours to release internal residual stresses.

2. Imposed strains - critical work hardening.

Followed by the recovery annealing, a small deformation was imposed on these
samples to create dislocation accumulation. These accumulations will be the
nuclei of recrystallisation during the last stage.

3. Recrystallization annealing.

Lastly, an annealing at higher temperature was performed, the nuclei grew
to form new crystals. In fact, these nuclei are small quasi-perfect crystallites.
They grow under the effect of temperature and the presence of favourable
grain orientations around their neighbours.
The temperature and the time of recrystallization annealing were searched so
as to obtain a fully recrystallized active zone. Non-recrystallized areas can
be avoided by increasing the annealing temperature and/or increasing the
annealing time (Fig.2.8). In the case of aluminum, it is limited by the melting
temperature (600 ◦C). As a result, to ensure a complete recrystallization of
the sample, we increased the annealing time.
Also, the imposed deformation affects the grain size. As shown on Fig.2.8,
the crystallographic structure retains its initial status unless the imposed de-
formation exceeds the critical value, called critical work hardening, to start
recrystallization. Beyond this value, new structures appear and the number
of nuclei increases along the augmentation of the deformation level. Each
nucleus grows until it meet up with others.
For our sample, the critical work hardening at 4.7% strain was found and our
recrystallisation annealing was performed at 540 ◦C for two days to obtain
grain sizes of about 5 mm (Fig.2.9).

The final sample contained about 12 grains on each side and 2 grains through
the thickness. The grain boundaries between the two layers are at mid-thickness
(Fig. 2.10).

2.3 Studied samples and their initial microstruc-
ture

There are 2 samples prepared and their initial microstructures will be described in
the following pages. Knowing the initial microstructure of each grain in the sample is
essential for X-ray diffraction. An accurate initial crystalline orientation is needed
for positioning the sample with respect to the X-ray beam during elastic strain
characterisation process. Moreover, the grain geometry and the crystal orientations
of the active zone can be used during a representative 3D polycrystalline modelling.
This information was obtained as follows.
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Figure 2.8: Grain size obtained during recrystallization depends on the level of work
hardening applied on the sample.

Figure 2.9: Sketch of the sample used
with its large grains (in mm).

Figure 2.10: View in sample thickness.
Grain boundaries (in dashed lines) be-
tween the two layers are at mid-thickness.

2.3.1 Grain geometry
Each grain shape and position in the sample was measured using optical microscope
(e.g. sample No.1 is shown in Fig.2.11-2.12). To better distinguish and outline the
grain boundaries, photos of the sample at the same position were captured with
different lighting directions. With an accurate grain cartography, it facilitated the
XRD scanning programming as well as the model setting up in later finite element
simulations.
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Figure 2.11: Front view of sample No.1
with its grains numbered.

Figure 2.12: Back view of sample No.1
with its grains numbered.

2.3.2 Euler angles
The crystal orientations are represented by three Euler angles (ϕ1, Φ, ϕ2) and they
are achieved by composing three elemental rotations about axes z-x’-z"starting from
the sample x-y-z coordinate system. The crystal orientation of each grain on the
two surfaces is firstly characterised by X-ray diffraction.

1. characterisation of crystal orientations using XRD method
First, a complete texture scan was performed on each single crystal on the
sample in its initial state. The peak positions (φ, ψ){hkl} in the pole figure
of {220}grain and {222}grain inter-reticular planes were recorded. After, Euler
angle triplets were generated every 30o and the corresponding (φ, ψ){220} and
(φ, ψ){222} were calculated. The triplet giving the closest pole figure was
selected and a procedure of optimisation was then carried out by minimising
the difference between calculated and measured (φ, ψ) values in order to
determine Euler angles of the grain. Once the crystal orientation is identified,
all the resting (φ, ψ){hkl} can be therefore calculated (e.g. 311 pole figure
shown in Fig.2.13). Euler angles of each grain were obtained by this inverse
method (Fig.2.14).

Figure 2.13: (a) Calculated and (b) measured pole figure of {311} in Grain 3.
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Figure 2.14: Logic diagram for finding Euler angles of a given grain which matches
the results measured by XRD.

The coordinate system of the sample was defined as in Fig. 2.11. When
measuring the Euler angles of the grains on the back side (ϕ1

′, Φ′, ϕ2
′)grain

of the sample, the sample is rotated 180o along y-axis (Fig. 2.12). Therefore,
the actual grain orientations (ϕ1, Φ, ϕ2)grain on this side need to take the
rotation of 180o along y-axis, Ry, into account. There are two options for this
transformation,

ϕ1 = π − ϕ′1; Φ = π + Φ′;ϕ2 = ϕ′2 (2.1)
ϕ1 = −ϕ′1; Φ = π − Φ′;ϕ2 = π + ϕ′2 (2.2)

The crystal orientations of both sides of the sample No.1 are shown in Tab.2.2.

2. Why XRD but not EBSD?
We have conducted the measurement using XRD because XRD enables one to
determine the materials texture with a ’gross’ surface. Unlike EBSD scanning,
XRD does not require a high quality of polishing of the sample surface, so that
the risk of bending the thin sample during polishing can be avoided. Moreover,
the EBSD scanning is limited to a relatively small region 2×3 mm2, whereas
active zones of samples were 8 x 18 mm2. If we aim to obtain a full picture
of the texture in the active zone, this scanning has to be conducted several
times (zone by zone) and then the results are put together into a complete
one. Yet, the angle of incidence of the beam on the periphery of the area of
interest creates artifacts. Also, overlapping around twenty EBSD diagrams
cumulates errors. Therefore, EBSD is not used during texture determination.
Besides, there is one more convenience of giving up EBSD at this stage. If the
sample is put back in the XRD goniometer for an in-situ experiment after the
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a. Front side
Grain φ1 Φ φ2
1 251.44 37.20 212.35
2 199.63 38.60 245.29
3 139.78 33.35 316.35
4 107.72 28.36 8.77
5 296.22 23.71 159.41
6 274.13 17.06 181.94
7 101.47 25.13 334.59
8,11 234.22 46.11 251.8
9 354.72 28.32 121.95
10 127.85 45.79 342.44
12 74.25 46.29 38.14
13 224.41 33.05 265

b. Back side
Grain φ1 Φ φ2
1bi 240.91 227.92 119.18
1bii 141.44 273.92 53.43
1biii 244.67 173.89 37.92
2b 213.67 170.52 67.31
3b 129.53 225.45 63.00
4b 279.13 205.51 89.74
6b 206.62 172.11 60.25
7b 184.33 193.77 7.47
8b 97.10 148.83 -13.43
9b 197.28 175.98 -27.09
10b 76.16 212.28 15.96
11b 127.26 143.58 -67.44
12b 225.98 208.69 72.82
13b 191.52 230.56 34.70
14b 196.86 197.18 17.64
15b 169.84 222.24 17.36
16b 240.12 173.72 33.62
17b 169.84 222.24 17.36
18b 223.05 212.64 77.64

Table 2.2: Crystal orientations of a.front side and b.back side of the sample No.1.

EBSD scanning, it is necessary to tackle the angular shift (±3 deg) on some
measuring points. If the initial peak position is already measured via XRD,
time can be saved as the repositioning procedure of the grain/sample with
respect to the X-ray beam is simplified.

2.3.3 Schmid factor

The Schmid factor SF of each grain in the sample 1 were calculated (Tab.2.3) us-
ing the Eq.1.7 mentionned in chapter 1 §1.2.3.2. In our case, an uniaxial force
was applied on multicrystal samples in x-direction. This applied stress (σ) can be
expressed in crystal coordinate system F (or σcrystal) by multiplying a matrix of ro-
tation in terms of Euler’s angles. This matrix of rotation will be further presented
in next chapter. For sample 1, for instance, the slip system was most likely to be
activated in grain 9 (SF = 0.495) before grain 4 (SF = 0.398).
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a. Front side
Schmid Number of activated

Grain factor slip system
1 0.4799 1
2 0.4665 1
3 0.4893 1
4 0.3982 1
5 0.4969 1
6 0.4904 1
7 0.4893 1
8,11 0.4261 1
9 0.4952 1
10 0.3950 1
12 0.4335 1
13 0.4219 1

b. Back side
Schmid Number of activated

Grain factor slip system
1bi 0.4357 1
1bii 0.3318 1
1biii 0.4990 1
2b 0.4832 1
3b 0.4802 1
4b 0.4956 1
6b 0.4811 1
7b 0.4303 1
8b 0.4520 1
9b 0.4185 1
10b 0.3785 1
11b 0.4563 1
12b 0.4427 1
13b 0.4959 1
14b 0.4404 1
15b 0.4994 1
16b 0.4992 1
17b 0.4994 1
18b 0.4170 1

Table 2.3: Schmid factor of each grain of a. front side and b. back side of sample
No.1.

2.3.4 Initial microstructure for Sample No.2
Similarly, a second sample was prepared and its grain geometry (Fig.2.15-2.16),
crystal orientations (Tab.2.4) and the SF values (Tab.2.5) on both sides of the
sample were quantified.

Figure 2.15: Front view of sample No.2
with its grains numbered.

Figure 2.16: Back view of sample No.2
with its grains numbered.
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a. Front side
Grain φ1 Φ φ2
1 32.65 71.50 84.78
3 12.31 54.52 88.75
4 313.14 15.22 97.85
5 103.46 41.60 25.07
6 70.81 61.93 20.54
7 124.85 106.59 92.30
8 16.10 80.91 -1.08

b. Back side
Grain φ1 Φ φ2
1b 141.14 291.72 102.95
2b 155.62 221.77 47.26
3b 180.01 235.89 91.88
4b 33.30 275.00 69.18
4b 122.75 248.39 85.70
6b 139.20 270.18 59.49
7b 191.60 217.53 201.08
8b 103.54 210.18 86.90
9b 142.79 225.79 9.38
10b 139.52 274.88 83.68
11b 142.94 254.99 43.54
12b 178.68 197.43 41.61
13b 151.53 254.15 29.19
14b 145.99 215.25 2.81
15b 103.63 271.35 99.80
16b 194.52 254.00 32.99
17b 156.77 221.85 47.27
18b 180.63 157.11 127.89

Table 2.4: Crystal orientations of both sides of sample No.2.

a. Front side
Schmid Number of activated

Grain factor slip system
1 0.4922 1
3 0.4640 1
4 0.4673 1
5 0.3266 1
6 0.4879 1
7 0.4648 1
8 0.4874 1

b. Back side
Schmid Number of activated

Grain factor slip system
1b 0.4726 1
2b 0.4683 1
3b 0.4211 1
4b 0.4687 1
5b 0.4615 1
6b 0.3897 1
7b 0.4500 1
8b 0.4677 1
9b 0.3896 1
10b 0.4564 1
11b 0.3583 1
12b 0.4247 1
13b 0.3739 1
14b 0.4513 1
15b 0.4806 1
16b 0.4798 1
17b 0.4732 1
18b 0.4561 1

Table 2.5: Schmid factor of each grain of both sides of sample No.2.



42 Chapter 2. Material and sample preparation

2.4 Conclusion
In summary, an aluminium alloy has been selected to prepare the samples used in
this study. Its simple microstructure and mechanical properties (e.g. easy to obtain
large grains via recrystallisation, small Young’s modulus and slow relaxation) favour
the local strain field measurement. Next, the sample shape with a maximized useful
zone of 8×18 mm2 and thickness of 0.55 mm has been designed. Then, once the
samples were machined, large grains on the sample were obtained via recrystallisa-
tion process. The samples were first submitted to an annealing at 450 ◦C for two
hours, then a critical work hardening at 4.7% strain and, finally, a recrystallisation
annealing was performed at 540 ◦C for two days to obtain grain sizes of about 5
mm. There are about 10-12 grains at each side and 2 grains in the thickness. After,
the grain geometry of the two studied samples were captured by optical microscope
and the crystal orientations were determined using XRD.



Chapter 3

Elastic strain field measurement
using X-ray diffraction

In this chapter, the methodologies to use X-ray diffraction (XRD) for intra-granular
and inter-granular elastic strain εe measurement are discussed. First, the applica-
tion of local εe measurement using XRD is presented. The experimental apparatus,
X-ray diffractometer, is also introduced. Then, the εe measurement in a single crys-
tal using XRD is given. Followed by, the methodologies developed to achieve local
εe field measurement as well as the corresponding uncertainties quantification on a
polycrystalline sample are described. Finally, this chapter is closed with discussion
and conclusion sections.

3.1 Application of XRD in εe field measurement
X-ray diffraction (XRD) in crystals was first experimentally proved by Max von
Laue in 1912 as the diffraction spots were captured once X-rays hit on the or-
derly arranged atoms within the crystal [Friedrich et al. (1912)]. These diffraction
spots were then explained by William Lawrence Bragg using a governing rule link-
ing crystal structure and wave nature, known as Bragg’s Law [Bragg and Bragg
(1913); Bragg (1915)]. Thanks to the direct interaction between X-rays and atoms
in crystalline materials, XRD enables us to access the lattice spacing in crystal and
consequently becomes a useful tool for elastic behaviour characterisation (refer to
chapter 1 §1.2.2.1 for the relationship between elasticity and atomic distance of
metallic materials).

In fact, the application of XRD in εe measurement has long been used in science
and engineering. For example, the locked-in εe, also known as residual stress, in
industrial products may speed up or prevent fatigue or cracking. Thus, XRD be-
comes a widespread tool to analyse materials failure as well as process development.
The publication of Prevéy (1996) reviews that XRD was first applied to quantify
the plane-stress residual stress presented in hardened steels [Koistinen and Mar-
burger (1959); Ogilvie (1952)]. In the following decades, XRD was largely applied
in residual stress (εe) measurement to understand mechanical behaviour of metals
in automotive and bearing [Hilley et al. (1971)], in aerospace and nuclear industries.

The theoretical basis of XRD has been further developed (e.g. methods proposed
by Imura (1954); Macherauch and Muller (1961); Ortner (1986b); Zhou (1994), etc.)
with certain limitations. Nowadays, many studies proved the feasibility of full εe
tensor determination not only in polycrystalline texture but also in single crystal,
such as nickel [Dupke and Reimers (1995); Eberl (2000); Morançais et al. (2015)],
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titanium alloy [Shiro et al. (2008)], steels [Zhou (1994)], copper and zinc [Huang
(2007)], etc. Although the experimental works shown in Zhou (1994)] and Huang
(2007) use only one measurement to represent the local εe situation per grain, they
give us a clue to make use of this technique on a pre-defined grid inside a grain
and across the grains to achieve a full-field measurement of εe. In consequence,
this method was considered and combined with in-situ tests to gain insight into the
local mechanical behaviour of Aluminium alloy in our study.

3.2 Experimental apparatus: Diffractometer
All the X-ray diffraction measurements concerned in this study were performed
on a Panalytical X’Pert Pro MRD 7-axis (x, y, z, ψ ,φ, ω and 2θ) goniometer
(Fig.3.1). For a complete XRD path, starting from the cobalt X-ray tube (λKα(Co)=
0.17903nm) operating at 45kV / 40mA, the beam first passes through an iron-filter
to absorb the Kβ component in the spectrum. A poly-capillary lens with a diameter
of 8 mm is then needed to convert a highly divergent beam of X-rays into a quasi-
parallel beam of low divergence (5◦). The beam size is limited by a knob-adjustable
crossed slit collimator before diffracting the sample positioned on the wafer holder.
The diffracted beam goes through a vertical collimator and horizontal Soller slits
with an opening angle of 0.27◦ (given by Panalytical) and 2.86◦ (which will be
presented in §.3.5.2) respectively and is finally quantified by a Xenon filled gaseous
proportional detector (see 61).

Figure 3.1: Panalytical X’Pert Pro MRD goniometer. The red arrows represent the
full path of X-ray from being emitted up to being detected during the diffraction
process.
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3.3 General principle in εe full-field measurement
When a single crystal is mechanically loaded, the distance between atomic planes
increases or decreases depending on the sign of the loading, some will be pulled
away and others will get closer. If we want to apply the Bragg’s law (see §.1.4.2) to
calculate the change of one inter-reticular plane distance δd(hkl), XRD measurement
should be conducted on the chosen atomic plane at both its initial and deformed
states. The characterisation of lattice parameter a0 using powder method by XRD
gives a first idea of our Al-alloy at its initial state.

In our case, εe measurement is conducted in a FCC crystal structure and the first
Ortner method [Ortner (1986b)] was applied referring to the works of Dupke and
Reimers (1995); Zhou (1994); Eberl (2000); Huang (2007). If we want to determine
its full εe tensor (i.e. εeij where i=1,2,3 and j=1,2,3), the contra-variant components
of metric tensor G∗_n = i = 1, 2, ...6 at its initial and deformed states are required.
Since there are 6 contra-variant components in G∗, at least 6 {hkl} planes are
needed to determine G∗. If more than 6 {hkl} planes are taken into accounted, the
measurement precision will be enhanced. Thus, XRD were conducted on more than
6 {hkl} planes at two different states.

At the same time, a number of precautions should be taken during XRD mea-
surement in single crystal. Although launching XRD on 6 well-chosen {hkl} planes
allows us to compose εe, more {hkl} planes are suggested to reduce the measuring
uncertainties. These {hkl} planes in each grain were selected considering the ac-
cessibility of experimental device. The calculated εe using the combination of these
planes should also achieve its minimum uncertainty [Ortner (1986a)].

In addition, unlike polycrystalline samples which always exhibit some planes
well oriented to incident X-ray beam for XRD, the diffraction of each specific {hkl}
plane in a monocrystal occurs only when the crystal is correctly positioned (x, y,
z) and oriented (φ, ψ, 2θ) with respect to X-ray beam. These (φ, ψ, 2θ){hkl} can
be calculated using its grain texture and the position/dimension of experimental
apparatus.

Meanwhile, the frames of goniometer, sample and crystal are rarely identical,
all their relationships should be clearly defined and linked with a matrix of ro-
tation/transformation. This step facilitates the display of εe results. Also, the
crystallographic structure will no more be cubic during deformation. For this, we
made use of reciprocal space to simplify the εe calculation.

In order to define the final position of a peak, an iteration process was designed
after understanding the relationship between each scanning axis and the shape of
diffraction peak. Yet, in practice, further difficulties might be encountered during
final peak position determination, such as broadening of peak in ψ-direction owning
to beam divergence, existence of peak doublet due to the appearance of mosaicity
because of the crystal orientation dispersion during plastic deformation and the na-
ture of X-ray Kα line resulting in the presence of diffraction peak doublet. Thus, an
experimental methodology was developed to obtain diffraction peak measurement
as well as the determination of its final position. The uncertainty accompanying
the calculated εe was also estimated.
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Upon the completion of εe measurement inside a single crystal, the same proce-
dure can be repeated on each measuring point (Zone of interest ZOI / pre-defined
grid resolution) on the entire sample to yield a full-field εe data. The measurement
procedure is synthesized in Fig.3.2.

3.4 εe measurement using XRD in single crystal
In this section, the theory and practice of εe measurement using XRD inside a
crystal is presented in detail.

We first explain the reason of not considering the sin2ψ method in our case.
Then, a recall of the principle of X-ray Diffraction and the Bragg’s law is given.

Meanwhile, the co-ordinate systems of goniometer, sample and crystal are rarely
identical, all their relationships should be clearly defined and linked with a matrix
of rotation/transformation. This step facilitates the display of εe results. Also, the
crystallographic structure will no more be cubic during deformation. For this, we
made use of reciprocal space to simplify the εe calculation.

3.4.1 The sin2ψ method and its limits
As mentioned in the publication of Ortner (2009), a traditional εe measuring method,
known as sin2ψ method [Macherauch and Muller (1961)], is designed for macro-
scopic elastic isotropic or quasi-isotropic specimens. This assumption is only valu-
able if the crystalline texture of a polycrystalline specimen or the elastic behaviour
of each monocrystal is isotropic. In addition, the beam size of X-rays should be
large enough to cover a sufficient number of small grains at a time, so that the
diffracted area can be considered as an representative elementary volume [Welzel
et al. (2005)]. However, it hardly meets our research objectives. As we want to
obtain a rich experimental data-base with local εe values of a sample during me-
chanical loading, we chose to perform the measurement with a small beam size and
large grain area (see 2.1.1 point.2-3). Thus, sin2ψ method is not applicable in our
case.

3.4.2 Recall of the principle of X-ray Diffraction and the
Bragg’s law

In chapter 1 §1.4.2, a general principle of XRD was presented. When incident X-
rays are emitted and interact with electronic shells of atoms in the studied solid
(al-alloy in our case), electrons absorb and re-radiate X-rays which can be detected.
In a single crystal, crystal lattice (hkl) is used to describe the position of planes of
atoms. At certain (hkl) spaced by distance d(hkl), a sharp peak in the intensity of
diffracted X-ray radiation can be observed under the conditions described as follows
(Fig. 3.3).

1. The incident X-rays are diffracted symmetrically and regularly along the nor-
mal of a (hkl) plane.
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Figure 3.2: Schematic diagram of the general principle in εe full-field measurement.

(a) These three elements are always coplanar.
(b) The angle between the diffracted beam and the transmitted beam is

always 2θ. Even though the diffraction angle is known as θ, 2θ is usually



48 Chapter 3. Elastic strain field measurement using X-ray diffraction

Figure 3.3: Diffraction of X-rays by a crystal [Cullity (1978)].

measured in practise.

2. The diffracted X-rays interfere constructively.

(a) The path difference of two in-phase X-rays (red line in Fig. 3.3) between
two parallel (hkl) planes must be an integer multiple of the given wave-
length (λ of the X-ray source). The monochromatic X-rays are assumed
to be perfectly parallel.

(b) There is no path difference of X-rays on the same diffraction plane (e.g.
I0-R0 and I0a-R0a, I1-R1 and I1a-R1a).

(c) For the path difference between X-rays (e.g. I0-R0 and I1-R1 or Im-
Rm), Bragg’s law (Eq.3.1) [Bra13, Bra15] formulates the relationship
between X-ray wavelength λ, inter-reticular distance d(hkl) (distance be-
tween atoms), diffraction angle θ and the order of the corresponding
diffraction m (or order of interference):

2dhklsinθ(hkl) = mλ (3.1)

For the Bragg’s law, since λ of monochromatic X-rays is constant, we can always
imagine that higher-order diffractions (e.g. m = 2, 3,...) from (hkl) planes are the
same as the first order diffraction (m = 1) from parallel (mh mk ml) planes of
spacing d(mh mk ml)/m. From the formal point of view, this convention agrees with
the definition of Miller indices because (mh mk ml) planes are parallel to (h k l)
while d(hkl) is 1/m of d(mh mk ml). For instance, the second-order diffraction from
(100) equals to the first-order diffraction from (200). i.e. the Bragg’s law can be
simplified in the form as written in the chapter 1 Eq.(1.14):
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2dhklsin(θhkl) = λ (1.14)
If the crystal is under deformation, the distance between (hkl) planes changes

(δdhkl) and it can be calculated using the variation of diffraction angle (δθhkl) mea-
sured in experiment, i.e. dhkl can be used as a gauge for local elastic strain measure-
ment. The elastic strain along (hkl) plane εhkl can be obtained by differentiating
Eq. (1.14):

2δdhklsinθhkl + 2dhklcosθhklδθhkl = 0
δdhkl
dhkl

= −cosθhkl
sinθhkl

δθhkl

εhkl = −cotθhkl · δθhkl

(3.2)

Remark that Bragg’s law does not contain further information like intensities
or width of the diffraction peak. Therefore, before making use of this equation
to determine diffraction plane distance and its variation under deformation, an
experimental methodology for diffraction peak measurement and then peak position
determination was developed and it will be presented in section 3.5.

3.4.3 Difference between XRD measurement in an aggre-
gate and a single crystal

As the X-ray beam size (0.1 × 0.1 mm2) used is relatively small compared with
the grain size (several mm2) in our study, XRD measurement conducted on the
oligo-crystalline samples was considered as in a monocrystal.

When talking about the difference between XRD measurement in an aggregate
and a single crystal, this concept can be explained using pole figures. Each pole
figure highlights the position as well as the presence of its corresponding family of
{hkl} planes in the zone of analysis by the X-ray beam within a single crystal or
an aggregate.

A pole figure is a stereographic projection associated with the normal of a family
of planes {hkl} firstly projected on the sphere surface and then intersecting the
equatorial plane of the sphere (Fig. 3.4). The position of the projected pattern in
pole figure can be expressed using (φ, ψ){hkl}.

Fig. 3.3 and Fig. 3.4 explain why diffraction in a single crystal takes place
only in precise directions: the normal of the (hkl) plane has to be oriented with
respect to the X-ray beam at(φ, ψ)(hkl) and then positioned to form a diffracted
angle (θ)(hkl) for satisfying the Bragg’s law. Following this line of reasoning, XRD
measurement in an aggregate is relatively simple. An aggregate can be seen as a
group of single crystals with sufficient small grain size with respect to X-ray beam
size. No matter the sample texture is random or textured, once the sample normal
is positioned at (θ)(hkl), there are always some (hkl) planes having their normals in
favour for diffraction. As it is not the case in single crystal, a method for correctly
locating the diffraction planes is necessary in single crystal. It will be described
in the following sections. Therefore, the method for correctly locating the {hkl}
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Figure 3.4: Schematic diagram of pole figure: stereographic projection of {111}
planes of a cubic structure [Source: http://www.aluminium.matter.org.uk].

planes for XRD to determine the elastic strain tensor calculation is described in the
following sections.

3.4.4 Transformation between the sample and the crystal
frames

We defined three orthogonal basis as reference system for the goniometer Rg, the
sample Rs and the crystal Rc (Fig. 3.5).

Figure 3.5: Scheme of frames Rg ( ~Xg, ~Yg, ~Zg)T given in the goniometer, Rs ( ~Xs, ~Ys,
~Zs)T in a sample and Rc (~u, ~v, ~w)T in a crystal.

The sample is positioned in the goniometer, and the basis vectors of Rs are equal
to the ones of Rg:
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Rg =




−→
Xg−→
Yg−→
Zg


 =




−→
Xs−→
Ys−→
Zs


 = Rs (3.3)

~Xs and ~Ys correspond to the longitudinal and transversal directions of the sample
respectively. ~Zs is perpendicular to the sample surface. Also, the movement of ψ
in the goniometer equals to the rotation of the sample around ~Xs axis while φ
corresponds to the rotation of the sample around ~Zs axis.

In every crystal, a reference system Rc is defined as:

Rc =




−→u
−→v
−→w


 (3.4)

where ~u, ~v and ~w correspond to (100), (010) and (001) directions of the crys-
talline lattice.

In chapter 1, we presented how the Euler angles (ϕ1, Φ, ϕ2) pass from sample
frame Rsto crystal frame Rc by rotating about axes zs-xs’-zs". With the given Euler
angles of a crystal, this relationship can also expressed using a matrix of rotation
Mr:

Mr =



cosϕ1 sinϕ1 0
−sinϕ1 cosϕ1 0

0 0 1







1 0 0
0 cosΦ sinΦ
0 sinΦ cosΦ






cosϕ2 sinϕ2 0
sinϕ2 cosϕ2 0

0 0 1




=



cosϕ1cosϕ2 − sinϕ1sinϕ2cosΦ sinϕ1cosϕ2 + cosϕ1sinϕ2cosΦ sinϕ2sinΦ
−cosϕ1sinϕ2 − sinϕ1cosϕ2cosΦ −sinϕ1sinϕ2 + cosϕ1cosϕ2cosΦ cosϕ2sinΦ

sinϕ1sinΦ −cosϕ1sinΦ cosΦ




(3.5)

Therefore, the transformation from sample to crystal frames can be achieved by

Rc = MrRs (3.6)

In order to simplify the mathematical expression later, the elements of Mr will
be written as Mr_ij.

3.4.5 Positioning of the normal of {hkl} planes for XRD

Before adjusting the diffraction angle for XRD, the normal ~N(hkl) to the analysed
lattice (hkl) in a crystal is first positioned as coplanar (φ, ψ)(hkl) as the path of
X-ray diffraction. ~N(hkl) can be calculated from (ϕ1, Φ, ϕ2) of the crystal.
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Figure 3.6: Scheme of positioning the normal of the analysed (hkl) plane ~N(hkl) for
XRD.

~N(hkl) can be expressed in both its original crystal (Rc) or sample frames (Rs).
For the latter ones, ~N(hkl) can be written using its projection on the surface Xs-Ys
forming an angle α from Xs axis coupled with an angle β between ~N(hkl) and Zs
(Fig. 3.6), i.e.

−→
N (hkl) =

∥∥∥
−→
N (hkl)

∥∥∥
(
sinβcosα sinβsinα cosβ

)
Rs =

∥∥∥
−→
N (hkl)

∥∥∥
(1
h

1
k

1
l

)
Rc

(3.7)

and the frames can be linked using Eq. (3.6) so that

∥∥∥
−→
N (hkl)

∥∥∥
(
sinβcosα sinβsinα cosβ

)
Rs =

∥∥∥
−→
N (hkl)

∥∥∥
(1
h

1
k

1
l

)
M−1

r Rs (3.8)

The elements of the inverse matrix M−1
r will be written as M−1

r_ij where i = 1,
2, 3 and j = 1, 2, 3. Hence, the projection angle α and β can be calculated using





sinβcosα = 1
h
M−1

r_11 + 1
k
M−1

r_21 + 1
l
M−1

r_31

sinβsinα = 1
h
M−1

r_21 + 1
k
M−1

r_22 + 1
l
M−1

r_13

cosβ = 1
h
M−1

r_13 + 1
k
M−1

r_23 + 1
l
M−1

r_33

(3.9)

As a result, :
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α =





tan−1




1
h
M−1

r_12 + 1
k
M−1

r_22 + 1
l
M−1

r_13

1
h
M−1

r_11 + 1
k
M−1

r_21 + 1
l
M−1

r_31


 if denominator > 0

tan−1




1
h
M−1

r_12 + 1
k
M−1

r_22 + 1
l
M−1

r_13

1
h
M−1

r_11 + 1
k
M−1

r_21 + 1
l
M−1

r_31


+ 180 ◦ if denominator < 0

0 if numerator > 0 and denominator = 0

90 ◦ if numerator < 0 and denominator = 0

Rejected if numerator = denominator = 0
(3.10)

β = cos−1
(1
h
M−1

r_13 + 1
k
M−1

r_23 + 1
l
M−1

r_33

)
(3.11)

Remarked that only the angle β ∈ (0, 90 ◦] can be accessed in goniometer as
ψ ∈ [−90 ◦, 90 ◦]. The φ and ψ of ~N(hkl) in goniometer can thus be known:




φ = 90 ◦ + α

ψ = β
(3.12)

or, equivalently,



φ = −90 ◦ + α

ψ = −β (3.13)

3.4.6 Definition of crystal frame in direct and reciprocal
lattice and calculation of lattice parameter ao of Al-
alloy(5052)

3.4.6.1 Crystal frame in direct lattice

The unit cell in crystal lattice can be represented by its lattice parameters: three
principal axes (−→uu, −→vu and −→wu) and the angles between axes (α, β and γ) (Fig. 3.7).

The reference system of the unit cell Ru is such that:

Ru =




−→uu−→vu−→wu


 (3.14)
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Figure 3.7: Lattice parameters of a unit
cell in crystal structure.

Figure 3.8: Schematic diagram of crys-
tal frame with the non-orthogonal ref-
erence system of the unit cell Ru and
the orthogonal reference system of crys-
tal Rc.

A metric tensor Gu is introduced to define the relationship between the vectors
of the reference system of the unit cell

Gu =




−→uu · −→uu −→uu · −→vu −→uu · −→wu−→vu · −→uu −→vu · −→vu −→vu · −→wu−→wu · −→uu −→wu · −→vu −→wu · −→wu




=




u2
u uuvucosγ uuwucosβ

uuvucosγ v2
u vuwucosα

uuwucosβ vuwucosα w2
u




=



gu_11 gu_12 gu_13
gu_21 gu_22 gu_23
gu_31 gu_32 gu_33




(3.15)

However, the non-orthogonal reference system Ru makes the calculation after-
wards complicated. Therefore, an orthonormal crystal reference system Rc with
principal axes perpendicular to each other can be defined (Fig. 3.8) with the co-
variant components written in Eq.(3.4):

Rc =




−→u
−→v
−→w


 (3.4)

so that
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



−→u =
−→uu
|−→uu|−→v = −→w ∧ −→u

−→w =
−→uu ∧ −→vu
|−→uu ∧ −→vu|

=
−→
w∗u∣∣∣
−→
w∗u
∣∣∣

, −→w∗u =
−→uu ∧ −→vu

−→wu · (−→uu ∧ −→vu)

(3.16)

where w∗u is an intermediate vector, constructed from axis of reference system
Ru.

w∗ will be presented in the following subsections. For FCC, u = v = w and they
are named as lattice parameter a0. a0 refers to the initial physical dimension of
unit cells in the crystal lattice. i.e. = ao and the metric tensor of the orthonormal
crystal frame G can be expressed as

G = a0I3×3 (3.17)

3.4.6.2 Crystal frame in reciprocal lattice

However, once the crystal deforms, the crystal frame will no more be orthogonal.
Thus, the reciprocal reference system of unit cell R∗u and crystal R∗c is defined from
direct lattice, using three principal axes in reciprocal lattice (−→u∗u,

−→
v∗u and −→w∗u) and

(−→u∗, −→v∗ and −→w∗) respectively, to facilitate the εe calculation.
The definition of R∗u and R∗c with their contravariant components are:

R∗u =




−→
u∗u−→
v∗u−→
w∗u


 (3.18)

and

R∗c =




−→
u∗−→
v∗−→
w∗


 (3.19)

where




−→
u∗ =

−→
v∗u ∧

−→
w∗u∣∣∣

−→
v∗u ∧

−→
w∗u
∣∣∣

=
−→uu
|−→uu|

= −→u

−→
v∗ = −→w ∧ −→u = −→v

−→
w∗ =

−→
w∗u∣∣∣
−→
w∗u
∣∣∣

= −→w

(3.20)



56 Chapter 3. Elastic strain field measurement using X-ray diffraction

In fact, Rc and R∗c are identical. Similarly, the associated metric tensor G∗u and
G∗ can be written as

G∗u =




−→
u∗u ·
−→
u∗u
−→
u∗u ·
−→
v∗u

−→
u∗u ·
−→
w∗u−→

v∗u ·
−→
u∗u
−→
v∗u ·
−→
v∗u
−→vu∗ ·

−→
w∗u−→

w∗u ·
−→
u∗u
−→
w∗u ·
−→
v∗u
−→
w∗u ·
−→
w∗u




=




u∗u
2 uuvucosγ

∗ u∗uw
∗
ucosβ

∗

u∗uv
∗
ucosγ

∗ v∗u
2 vuwucosα

∗

u∗uw
∗
ucosβ

∗ v∗uw
∗
ucosα

∗ w∗u
2




=



g11
u g12

u g13
u

g21
u g22

u g23
u

g31
u g32

u g33
u




= G−1
u

(3.21)

where −→u∗u,
−→
v∗u and −→w∗u represent the three principal axes of the crystal frame in

reciprocal lattice, α∗, β∗ and γ∗ are the angles between each axis in the same frames.

G∗ = a0I3×3 (3.22)

3.4.6.3 Lattice parameter a0 of Al-alloy(5052)

The lattice parameter a0 of our Al-alloy was characterised by XRD in its initial state
without residual stress using the powder method. Two different sizes of powder were
prepared by filing the material from different directions of the block. It is to ensure
the powder contains a random orientation. During each powder sample preparation,
a new brand file in steel is used. If not, the remaining particles during previous
usage can pollute the prepared powders. The powder samples were scanned by
XRD to obtain a 2θ spectrum summarized in Table 3.3.

Sample {111} {200} {220} {311} {222} {400} {331}
T1 2θ{hkl}(o) 44.89 52.33 77.19 93.94 99.51 123.35 148.02
T2 2θ{hkl}(o) 44.87 52.28 77.16 94 99.54 123.91 148

Block 2θ{hkl}(o) 44.82 52.52 77.08 93.87 99.31 123.17 147.63

Table 3.1: 2θ{hkl}(o) measured on fine powder sample (T1), Coarse powder sample
(T2) and block sample (yellow).

Recalling the Bragg’s law equation (Eq.(1.14)), the relationship between d{hkl}
and lattice parameter ao can be written as:

d{hkl} = ao√
h2 + k2 + l2

(3.23)



3.4. εe measurement using XRD in single crystal 57

Sample ao (nm)
T1 0.406
T2 0.406

Block 0.407

Table 3.2: Lattice parameter ao measured using fine powder sample (T1), Coarse
powder sample (T2) and block sample (yellow).

The lattice parameter of Al-alloy(5052) is 0.406nm.

3.4.7 εe measuring method in monocrystal: First Ortner
Method [Ortner (1986a,b)]

First Ornter method was applied when calculating εe of a deformed crystal. Thus,
the strain tensor in crystal frame was defined. In order to enhance the precision
of εe calculatin, choice of {hkl} planes and criteria associated were also specifically
considered.

3.4.7.1 Determination of the strain tensor in crystal frame

The normal of (hkl) plane which is in diffraction position can be written in the
orthonormal crystal frame in direct −−−→N(hkl) or reciprocal lattice

−−−→
N∗(hkl). i.e.

−−−→
N(hkl) =

(1
h

1
k

1
l

)



−→u
−→v
−→w


 (3.24)

and

−−−→
N∗(hkl) =

(
h k l

)



−→
u∗−→
v∗−→
w∗


 (3.25)

By making a dot product between projecting −−−→N(hkl) along
−−−→
N∗(hkl):

∥∥∥∥
−−−→
N(hkl) ·

−−−→
N∗(hkl)

∥∥∥∥ = 1 (3.26)

which implies that
∥∥∥∥
−−−→
N∗(hkl)

∥∥∥∥ = 1∥∥∥
−−−→
N(hkl)

∥∥∥ (3.27)

The d∗(hkl) can be seen as the norme of −−−→N∗(hkl)
∥∥∥∥
−−−→
N∗(hkl)

∥∥∥∥ = 1
d(hkl)

= d∗(hkl)

(3.28)
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The interreticular distance in reciprocal lattice d∗(hkl) or d∗ can be calculated:

∥∥∥N∗(hkl)
∥∥∥

2
=



(
h k l

)


u∗

v∗

w∗







2

(3.29)

(d∗)2 =
(−→
u∗
−→
v∗
−→
w∗
)


h2 hk hl
hk k2 kl
hl kl l2







−→
u∗−→
v∗−→
w∗


 (3.30)

d−2 = h2−→u∗
2

+ k2−→v∗
2

+ l2
−→
w∗

2
+ 2kl−→v −→w∗ + 2hl−→w−→u∗ + 2hk−→u−→v∗ (3.31)

Eq. (3.31) can be written as

d∗2 =
(
h2 k2 w2 2kl 2hl 2hk

)




−→
u∗

2

−→
v∗

2

−→
w∗

2

−→
v∗
−→
w∗−→

w∗
−→
u∗−→

u∗
−→
v∗




=
(
h2 k2 w2 2kl 2hl 2hk

)




g11

g22

g33

g31

g23

g12




(3.32)

One introduces D∗ = d∗2 and it can be calculated using Bragg’s law:

D∗ = d−2 = 4sin2θ

λ2 (3.33)

Recalling

d∗ = 1
d

;D∗ = d∗2 = d−2 (3.34)

Since there are 6 contravariant components in G∗, at least 6 {hkl} planes are
required to determine G∗. However, in order to enhance the measurement precision,
more than 6 planes are desired. The relationship between the analysed {hkl} plane
distance (vector D∗ in the reciprocal lattice) and reciprocal metric tensor G∗ can be
described with a matrix H, which is constructed using the frames of the diffraction
vectors of these {hkl} planes in the reciprocal lattice:
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On the basis of Eq.3.30



D∗1
D∗2
D∗3
...
...
D∗n




=




h2
1 k2

1 l21 2k1l1 2h1l1 2h1k1
... ... ... ... ... ...
... ... ... ... ... ...
h2
n k2

n l2n 2knln 2hnln 2hnkn







G∗1
G∗2
G∗3
G∗4
G∗5
G∗6




(3.35)

In Eq.3.35, G∗1=g11 , G∗2=g22, G∗3=g33, G∗4=g23, G∗5=g31 and G∗6=g12. This equa-
tion can be rewritten as

D∗n×1 = Hn×6G
∗
6×1 (3.36)

The method of least squares has been proposed and used in the publication of
Ortner (1986b) to determine G∗ as follows,

G∗6×1 =
[(
HT ·H

)−1
HT

]

6×n
·D∗n×1 (3.37)

The elastic strain tensor εe is then determined by:

εeij = εij = gij − gij0
2
√
gii0

√
gjj0

(3.38)

where gij0 et gij are the contra-variant coordinates of the initial and the deformed
metric tensor G*.

The calculated elastic strain tensor can be transformed from crystal coordinates
εec to sample coordinates εes by using the matrix of rotation Mr (ref. Eq. 3.5).

εes = M−1
r εecMr (3.39)

The advantage of using this method is its independence with respect to the 2θ
rotation (i.e. δφ and δψ do not need to be considered).

3.4.7.2 Choice of {hkl} planes and criteria associated

Besides the requirement to determine the six components of G∗, the measurement
of additional {hkl} planes will improve the precision of the calculation. Moreover,
errors and existing limitations of the experimental apparatus should be taken into
consideration. Crystal planes with a larger diffracting plane distance spacing (d-
spacing) will have a smaller diffraction Bragg angle and, in consequence, a higher
intensity can be obtained.

However, {hkl} planes with large values of 2θ improve measurement precision
(Tab. 3.3).

The choice of {hkl} planes results in a compromise between peak intensity and
precision of 2θ variation. Thus, for a sample of Al-alloy with FCC structure, only
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{hkl} {111} {200} {220} {311} {222} {400} {331}
2θ (o) 44.87 52.29 77.11 93.99 99.51 123.42 148.14
δ2θ (o) -0.203 -0.241 -0.391 -0.527 -0.580 -0.912 -1.721

Table 3.3: Theoretical variation of 2θ corresponding to various {hkl} planes of
a crystal submitted to a strain of 4.29× 10−3 (deformation corresponding to the
elastic limit of Aluminium) in the 〈100〉 direction.

{220}, {311} and {222} planes are considered. According to the limits of the go-
niometer, 18 {hkl} planes fulfil the above requirements. Yet, the grips of the micro-
tensile machine restrict the accessible angles for X-ray beam diffracting towards the
sample. Even so, a weak diffraction beam intensity is obtained once the cradle
inclines more than 75◦ along the ψ-axis. In the remaining {hkl} planes, planes
forming a circle in the pole figure are preferred since this combination minimises
the uncertainty [Ortner (1986a)]. As a result, after eliminating all the inaccessible
(φ, ψ)hkl, 13 {hkl} planes are left to be analysed at every XRD measuring point
(Fig. 3.9).

Figure 3.9: Location of the {hkl} planes summarized for XRD measurement in
grain 7. Only accessible {220}, {311} and {222} planes are plotted.

3.5 Development of an experimental methodol-
ogy for diffraction peak measurement

As previously mentioned, a single crystal will produce diffraction signal only when
its diffraction plane {hkl} is inclined at (φ, ψ){hkl} to the incident beam at an angle
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θ which fulfills the Bragg’s law. Yet, once the crystal deforms, disorientation of
crystal texture takes place and the diffraction plane distance d{hkl} changes. As a
result, the new position (φ, ψ, 2θ){hkl} of diffraction peak has to be searched.

Since the diffraction signal is very fine (width < 1◦), as for εe calculation with
accuracy, each peak position should be cautiously measured at both its initial and
deformed states. In addition, diffraction signal with high signal-to-noise ratio has to
be achieved compromising between the beam size, scanning step size and acquisition
time. As such, experimental methodologies are developed and presented in this
section.

First, the shape of the diffraction peak along different scanning axes (φ, ψ
and 2θ) is studied. Then, amendments were made in both experimental device
and measuring configuration so as to enhance the intensity of diffraction signal.
Afterwards, the approach to relocate the peak position and the adjustment on
beam size to tackle the existence of mosaicity are presented. At the end, the peak
simulation used for determining final 2θ position is introduced.

It is remarked that 2θ measurements were always conducted using θ-2θ scanning.

3.5.1 Understanding the relationship between the diffrac-
tion signal and XRD scanning in φ, ψ and 2θ space

As it will be necessary to determine small 2θ{hkl} variations of the order of 0.4◦ − 0.6◦
during the mechanical loading (see Tab. 3.3), the diffraction peak (φ, ψ, 2θ){hkl}
at both its initial and deformed states should be measured with high accuracy.
Before developing an experimental methodology for diffraction peak measurement,
we should have a first idea of how the peak shape varies along different scanning
axes in goniometer. Therefore, the shapes of (φ, ψ)(hkl) peaks scanned consecutively
in 2θ space are recorded. An example is made on the (-220) plane of grain 8 at
X=-7,Y=0 on the sample 1 (Fig.3.10).

It is observed that there is a maximum intensity of the diffraction signal in φ,
ψ and 2θ space where the {hkl} planes are well-oriented with respect to the X-
ray beam. In order to increase the accuracy of d{hkl} measurement, 2θ scanning is
launched only when φ and ψ reach their maximum intensity. However, challenge
might arise to define the final peak position due to the unfocused diffraction signal
in ψ direction. This problem and its solution are sorted out in the next subsection.

3.5.2 Focusing the diffracted signal during (φ, ψ) measure-
ment: prevent beam divergence using Soller’s slits

Initially, the vertical parallel collimator in the goniometer narrows down the diffracted
peak to a pointed φ signal but this peak remains broad in ψ direction (Fig.3.11a).
It makes the determination of the final peak position for 2θ scanning difficult. In
order to concentrate the diffracted signal per (φ, ψ){hkl} measurement (Fig.3.11b),
a Soller slit (Fig.3.12) with vertical blades spaced 0.5mm is added in front of the
punctual detector.
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Figure 3.10: The (φ, ψ)(2̄20) peak shape of grain 8 at X=-7,Y=0 of sample 1 along
the scanning axis of 2θ with every 0.1◦ shift. The maximum intensity takes place
when φ=301.6◦, ψ=64.6◦ and 2θ=78.117◦.

When the diffracted rays pass through the Soller slit/vertical parallel collimator,
some of them may converge from the edges to the center of these components and
then diverge. The maximum angle of the divergence (or the opening angle) β1 is
calculated with the length of Soller slit/vertical parallel collimator LCollimator and
the spacing between the blades dBlades (Fig.3.13).

tan
β1

2 = LCollimator
dBlades

(3.40)

Opening angle β1 is = 2 tan−1(0.5◦/20◦) = 2.86◦.

3.5.3 Relocating peak position: iteration process
The positions of the diffraction peak/shapes change during deformation, we de-
cided to consider only the peak positions with the highest intensity. Therefore, an
iteration process was designed to search the position of a peak at both its initial
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Figure 3.11: A (φ, ψ)(220) peak of grain 2b of sample 1 scanned a) without and b)
with Soller Slit. A more concentrated diffracted signal in both ψ and φ directions
is achieved by adding a Soller slit in front of the punctual detector.

Figure 3.12: Soller Slit with vertical
blades spaced dBlades 0.5mm and length
LCollimator 20mm.

Figure 3.13: Scheme of opening angle β1
in Soller slit/vertical parallel collimator.

and deformed state. Unlike the process proposed by Eberl (2000) searching along
ω, 2θ and ψ, we relocated the peak position along φ, ψ and 2θ scanning succes-
sively around an initial position determined by the initial grain orientation. This
optimisation procedure is repeated until convergence.

The stability of the optimisation process has been tested and validated in a
crystal of an Al-alloy sample. Several sets of parameters (φ, ψ and 2θ) in the vicinity
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of a given peak were considered as initial positions (Fig.3.14). The optimisation
process was carried out from these various initial positions to determine the peak
position along φ, ψ and 2θ. After 3 iterations, all processes converged to nearly the
same 2θ value with a variation of 0.005◦(Fig.3.15, Fig.3.16).

Figure 3.14: Method used for testing the
stability of the optimisation process.

Figure 3.15: Changes in 2θ after several
iterations of measurement starting from
various initial positions. The dispersion
of the final peak position ∆2θ is about
0.005◦.

Figure 3.16: The intensity of a 2θ(220) peak (a) before and (b) after optimization

3.5.4 Handling of Mosaicity : Refinement of beam size,
choice of scanning step size and acquisition time

Once the tensile test has started, the sample deforms elastically and plastically. The
elastic deformation induces peak translation (Fig.1.21 in Chapter 1). After plastic
deformation, orientation of a single crystal may change from one place to another
one, which is called mosaicity. The mosaicity development as well as dislocation
accumulation during plastic deformation cause XRD peak broadening and intensity
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decrease (Fig.3.17). The grain disorientation and peak broadening are the evidence
of heterogeneous deformation in materials [Crostack et al. (1989)]. The objective
of the experimental procedure developed here is to measure peak translation with-
out the interference due to plastic deformation. In some conditions, the plastic
deformation may be so large that several distinct peaks may appear (Fig.3.17).

Figure 3.17: Evolution of a peak of (−222)Grain7 of sample 1 from its inital state
(left), to εtxx = 7.4× 10−3 (middle) and εtxx = 0.0356 (right). Intensity drops as
strain level increases due to the crystal orientation dispersion during plastic defor-
mation.

Figure 3.18: Condition for a X-ray beam is diffracted on the crystal lattice with
disorientation - appearance of mosaicity

A minority of the incident beam has an inevitable divergenc of 5◦ (Fig.3.18). If
disorientation exists inside a grain, a diffracted signal with more than one peak can
be captured. It makes the analysis of the complete signal more complicated since the
determination of the final peak position has to consider all the integrated signals.
Moreover, error may appear during peak optimisation program in goniometer when
two peaks with similar intensities appear. In order to minimize the measuring
influence brought by mosaicity [Marty et al. (1997)] and to ensure a contentious
XRD execution, the beam size has been refined to 0.1× 0.1 mm2 (Fig.3.19).

At the same time, the parameters of XRD scanning were searched to better
display the peak shape. For 2θ measurement, the scanning step size of 0.05◦ and the



66 Chapter 3. Elastic strain field measurement using X-ray diffraction

Figure 3.19: An iteration process conducted at a point with mosaicity using a beam
size of 0.1× 0.1 mm2.

acquisition time of 1 s were used (Fig.3.20) such that the diffraction signal contains
less influence given by the background noise. The intensity is also sufficient for the
peak measurement and optimisation, e.g. the signal to noise ratio always remains
higher than 60.

Figure 3.20: A 2θ scanning of a peak of (220)Grain2b of sample 1 with different
scanning step sizes and acquisition times.

3.5.5 Determination of the final peak position: Peak simu-
lation

The final 2θ peak position determination is presented. The X-ray Kα line is by far
the strongest emitted X-ray spectral line. It contains 2 lines: Kα1 and Kα2 with
wavelengths relatively close (λKα1(Co)= 0.178897nm and λKα2(Co)= 0.179285nm).
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These components are not easily resolved. During 2θ measurement, both Kα1 and
Kα2 interact with {hkl} crystalline planes (Fig. 3.21) and, therefore, a diffraction
peak doublet is obtained.

Figure 3.21: (a) Scheme of X-ray diffraction. (b) 2θ measured by XRD (solid line)
contains peak doublets. Simulation of the peak (dashed line).

Owing to the complicated form of the peak, the 2θ position is difficult to be
determined immediately. The peak position is sought through an inverse method
by modelling the diffracted peak as the sum of two Gaussian functions G (Eq.3.41).

Gaussian function G for each spectral line is defined as

G(Ap, hp, 2θp) = 2Ap
hp

√
ln2
π
e

−4ln2
h2

p
(2θp−2θ)2

(3.41)

with the properties:

1. hp is the full width at half maximum (FWHM)

2. Amplitude Ap of Kα1 is always twice as large as that of Kα2

Ap_Kα1 = 2Ap_Kα2 (3.42)

3. 2θp is the simulated final peak position. The Gaussian function G is defined
in the range [2θp− 2θ, 2θp + 2θ]. As dhkl is the same for Kα1 and Kα2, Bragg’s
law (Eq.1.14) can be applied to describe the relationship of the peak position
between Kα1 (θKα1) and Kα2 (θKα2).

λKα1

sin(θp_Kα1) = λKα2

sin(θp_Kα2) (3.43)

Several peak forms were tested, Gaussian functions were the most appropriate to
predict experimental diffraction peaks. After minimising the difference between ex-
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perimental and simulated data, the optimised 2θp_Kα1 was used to calculate elastic
strain tensor.

3.5.6 Assumption of XRD in single crystal at deformed
state

As the strain levels remain small (εt < 5%) during the experiment presented, the
displacement of the peaks was small enough to consider the position associated with
the previous loading step as a starting point for searching for the peak position after
deformation.

3.6 Uncertainty estimation of the elastic strain
tensor σεe

The calculated εe using XRD signal includes also the errors coming from our ex-
perimental device or the numerical approach proposed to determine the final peak
position. Thus, the associated uncertainties σεe should be quantified to ensure the
obtained local elastic strain data is reliable.

It is first necessary to evaluate the uncertainty of peak position measurement
σθ, and then, by knowing this value, σεe can be calculated. It is assumed that
the error of the peak position σθ has two main sources: one is related to the peak
repositioning by the diffractometer∆2θ, and another is linked to the discretization
of the intensity curve in δ2θ. So, a priori, both of these sources of error have to be
quantified. Moreover, although the method chosen to estimate σεe is discretization-
related (Eq.3.53), if the repositioning error shows a more significant value, it should
be taken into account instead.

3.6.1 Uncertainty of peak position σθ

To evaluate σθ, two approaches were used.The first approach consisted in deter-
mining the position of a given peak from various initial positions, and comparing
the final peak positions obtained. As mentioned in §.3.5.3, the error obtained is
∆2θ = ±0.0025◦.

∆θ ≤ 0.00125◦ (3.44)

However, this approach took into account only one part of the measurement
chain. It was also necessary to evaluate the accuracy of the method used to deter-
mine the peak position from the distribution of intensities around a peak. Inspired
by the method for calculating displacement and total strain field uncertainties [Hild
and Roux (2008)], an evaluation of the precision of peak position measurement with
small shifts in θ was conducted as follows:

1. For existing XRD data measured with a scanning step size of 0.05◦ (blue line
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with markers ×), a shift of δθ (≤ 0.05◦) was imposed, i.e. 2θ′ = 2θ + δθ
(black markers +) (Fig. 3.22).

2. The discrete experimental points were projected on the shifted line by linear
interpolation (green points with markers ∗).

3. The peak simulation process presented in §.3.5.5 was carried out to deter-
mine the peak positions for both the initial measurement 2θXRD and shifted-
projected measurement 2θshifted .

4. The change between the imposed δθ and the calculated δθ (δθ = 2θXRD and
2θshifted) was calculated.

Figure 3.22: Method to evaluate the ability of detecting small peak displacements
along θ.

A measuring point in Grain7 of sample 1 at position X=-5 Y=-3 was taken as
an example in results of Tab. 3.4. Errors in δθ−202, δθ−131 and δθ−222 were observed
for small peak displacements along θ (Tab. 3.4). The fractional changes between
imposed and obtained δθ were calculated. This error was insignificant starting from
δθimposed = 0.025◦ — half of the scanning step size — until 0.0001◦ as the criterion
of 5% of error was firstly reached using δθ−222. As a result, the smallest measurable
shift is 0.0001◦ before reaching the arbitrary criterion.

The error in the measurement of θ is thus

δθ ≤ 0.0001◦ (3.45)

Since the error from peak repositioning ∆θ (≤ 0.00125◦) is much larger than the
one caused by the limitation of our peak simulation equation δθ (≤ 0.0001◦), ∆θ
is considered as the major contribution to the uncertainty of elastic strain tensor
σεe . Assuming that ∆θ follows normal distribution law and 99.7% of the values are
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δθ imposed(◦) δθ−202(◦) Error(%) δθ−131(◦) Error(%) δθ−222(◦) Error(%)
0.05 0.05 0 0.05 0 0.05 0
0.025 0.025 0 0.0249 0.4 0.0251 0.4
0.0125 0.0124 0.8 0.0124 0.8 0.0124 0.8
0.00625 0.0062 0.8 0.0062 0.8 0.0061 2.4

... ... ... ... ... ... ...
7.8× 10−4 7.7× 10−4 2.1 7.7× 10−4 1.9 7.6× 10−4 3.2
3.9× 10−4 3.8× 10−4 2.1 3.8× 10−4 1.9 3.8× 10−4 3.6
1.9× 10−4 1.9× 10−4 2.1 1.9× 10−4 1.7 1.9× 10−4 4.2
9.8× 10−5 9.6× 10−5 2.1 9.6× 10−5 1.3 9.3× 10−5 5.3

Table 3.4: Errors in δθ−202, δθ−131 and δθ−222 were observed for small peak displace-
ment along θ in Grain7 of sample 1 at position X=-5 Y=-3. The changes between
the imposed and obtained δθ were calculated as percentages. The lowest limit for
the measurable shifting error was found to be 10−4◦ corresponding to 5%-change.

Figure 3.23: Error between δθimposed and δθhkl in Grain7 at a measuring point.

Figure 3.24: Since ∆2θ in peak repositionning = 0.005◦, ∆θ = ±0.00125. Assume
the uncertainty of θ is in normal distribution (σθ = 4.167e−4◦.
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within 3 standard deviations of the mean (Fig.3.24), therefore its standard deviation
σθ is one-third of ∆θ

σθ = 0.00042◦ (3.46)

3.6.2 Uncertainty of the elastic strain tensor σεe

Given the uncertainty of the diffracting angles evaluated in Eq.3.46, the uncertainty
for elastic strain tensor σεe can be quantified.

3.6.2.1 Range of uncertainty for elastic strain tensor σεe

Eq.(3.37) can be rewritten as

G∗6×1 = B6×nD
∗
n×1 (3.47)

where B = (HT ·H)−1HT is known as the pseudoinverse of H.




G∗1
G∗2
...
G∗6




=




B11 B12 B13 · · · B1n
B21 B22 B23 · · · B2n
... ... ... . . . ...
B61 B62 B63 · · · B6n







D∗1
D∗2
...
D∗n




(3.48)

G∗m is a linear function of D∗n :

G∗m = Bm1D
∗
1 +Bm2D

∗
2 + · · ·+BmnD

∗
n , m =1,2,...,6 (3.49)

G∗m =
n∑

i=1
BmiD

∗
i (3.50)

By expressing D∗i as a function of θ using Eq.3.33, one obtains:

G∗m = 4
λ2

n∑

i=1
Bmisin

2θi (3.51)



72 Chapter 3. Elastic strain field measurement using X-ray diffraction

where θi is a diffraction angle measured during the experiment. Let θi=1,...,n
and θi=n+1,...,2n be n diffraction angles measured (actual value) in the deformed
and initial states respectively, so that θ1 corresponds to the evolution of θn+1, θ2
corresponds to the evolution of θn+2, etc. Now, εe in Eq.3.38 can be also expressed
in terms of θi by
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εem=1,...,6 =




∑n
i=1B1i(sin2θi − sin2θn+i)

2∑n
i=1B1isin2θn+i∑n

i=1B2i(sin2θi − sin2θn+i)
2∑n

i=1B2isin2θn+i∑n
i=1B3i(sin2θi − sin2θn+i)

2∑n
i=1B3isin2θn+i∑n

i=1B4i(sin2θi − sin2θn+i)√
2∑n

i=1B2isin2θn+i
√

2∑n
i=1B3isin2θn+i∑n

i=1B5i(sin2θi − sin2θn+i)√
2∑n

i=1B1isin2θn+i
√

2∑n
i=1B3isin2θn+i∑n

i=1B6i(sin2θi − sin2θn+i)√
2∑n

i=1B1isin2θn+i
√

2∑n
i=1B2isin2θn+i




(3.52)

where εe1=εe11 , εe2=εe22, εe3=εe33, εe4=εe23, εe5=εe31 and εe6=εe12. When εe is repre-
sented by its first-order Taylor series expansion around the true values µ1, µ2, ..., µ2n,
it becomes:

εem=1,...,6 ≈ εem(µ1, µ2, ..., µ2n) +
2n∑

i=1

[
∂εm
∂θi

(µ1, µ2, ...µ2n)
]

[θi − µi] (3.53)

Eq.(3.53) is of the form εem ≈ am0 +∑2n
i=1 ami (θi − µi) with

am0 = εem(µ1, µ2, ..., µ2n) (3.54)

and
ami = ∂

∂θi
Bmε

e
m(µ1, µ2, ..., µ2n) (3.55)

The mean εem and the standard derivation σ2
εe

m
can be calculated as follows:

µεe
m

= E [εem]

= E

[
am0 +

2n∑

i=1
ami (θi − µi)

]

= E [am0] +
2n∑

i=1
(E [amiθi]− E [amiµi])

= am0 +
2n∑

i=1
(amiE [θi]− amiE [µi])

= am0 +
2n∑

i=1
(amiµi − amiµi)

= am0

(3.56)
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σ2
εe

m
= E

[
(εem − εem)2

]

= E

[
(

2n∑

i=1
ami (θi − µi))2

]

= E




2n∑

i=1
ami (θi − µi)

2n∑

j=1
aj (θj − µj)




= E




2n∑

i=1
a2
mi (θi − µi)2 +

∑∑

i 6=j
amiamj (θi − µi) (θj − µj)




=
2n∑

i=1
a2
miE

[
(θi − µi)2

]
+
∑∑

i 6=j
amiamjE [(θi − µi) (θj − µj)]

=
2n∑

i=1
a2
miσ

2
θ_mi +

∑∑

i 6=j
amiamjσij

(3.57)

Though θi (s) are dependent, the source of measuring error are independent
(σ2

θ_mi = σ2
θ), the covariance σij then disappears and the resulting approximated

variance is

σ2
εe

m
=

n∑

i=1
( ∂
∂θi

εem)2σ2
θ (3.58)

For example, elastic strain tensor εe calculated with 13 diffraction planes in
Grain7 of sample 1 at the same measuring point (position: X=-5 Y=-3) (Tab.3.5)
is in sample co-ordinate system:

εe =




1.1 3 3
3 −2 2
3 2 1


× 10−4 (3.59)

The uncertainty σεe associated is:

σεe ≤




8.7 6.8 5.8
6.8 10.7 7.2
5.8 7.2 6.4


× 10−6 (3.60)

3.6.2.2 Influence of the number of measuring planes on εe uncertainty

However, not every measuring point presents 13 diffraction planes since mosaicity
increases during plastic deformation, as shown in Fig.3.17. In some regions of the
specimens, the number of diffraction planes of a given point decreases during the test
as plasticity and mosaicity increases. For example, the εe calculated with minimum
6 diffraction planes for Grain7 of sample 1 at the same measuring point (position:
X=-5 Y=-3) in sample co-ordinate system is
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h k l 2θ(◦) (εtxx=0) 2θ(◦) (εtxx=0.0074)
-2 0 2 77.1509 77.1755
-2 2 0 77.1746 77.1092
0 -2 2 77.1920 77.0938
0 2 2 77.1572 77.1310
2 0 2 77.1571 77.1439
-3 1 1 93.9495 93.9713
-1 -1 3 93.9894 93.9742
-1 3 1 94.0022 93.8989
1 -1 3 93.9911 93.9372
1 1 3 93.9695 93.9613
1 3 1 93.9867 93.9305
-2 2 2 99.5814 99.5601
2 2 2 99.5827 99.5495

Table 3.5: 2θ of 13 {hkl} planes in Grain7 (X=-5,Y=-3) measured by XRD at its
initial state and εtxx = 0.0074.

εe =




1.7 −7 −3
−7 0 3
−03 3 1


× 10−4 (3.61)

and its σεe range is

σεe ≤




3.9 5.7 6.1
5.7 5.1 4.2
6.1 4.0 1.8


× 10−5 (3.62)

The uncertainty of εe calculated with 6 {hkl} planes is much larger than those
with 13 {hkl} planes. Therefore, the number of {hkl} planes used gives an influence
towards εe accuracy. The more planes used for εe calculation, the more accurate
the answer.

As the number of measuring planes depends on the point considered, the σεe

range of each XRD measuring point was calculated according to the number of
diffractable {hkl} planes left over. It can be foreseen that the εe uncertainties σεe

are always smaller than 10−5. Considering a Gaussian distribution, it implies a
total error range in εe smaller than ±3× 10−5.

A confirmation of σεe calculated with 13 and 6 {hkl} is made using a Monte
Carlo Method (See Annex.5.3). Therefore, the analytical method presented in this
section enables us to quantify the σεe during εe measurement.
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3.7 Discussion

3.7.1 Penetration of X-ray beam during εe measurement -
Why is it considered as a surface measurement in this
experiment?

X-rays are partly transmitted and partly absorbed (or reflected) when they en-
counter any substance. X-ray absorption by material can be expressed in relation
with the intensity of incident X-ray beam (I0), intensity of transmitted beam after
passing through a thickness x (Ix) perpendicularly, a linear absorption coefficient
(µ/ρ=73.4cm2/g for CoKα X-ray and Aluminium as absorber) and material density
(ρ) (2.7g/cm3 for Aluminium) [Cullity (1978)].

Ix = I0e
−(µ/ρ)(ρx) (3.63)

If half of the intensity is transmitted, the thickness of the material should be

Ix
I0

= e−209.358x (3.64)

x = 33µm (3.65)

During XRD, X-ray beam is positioned with an inclination of θ to the sample
surface, i.e. 77.134◦ for {220}. With less than half of the intensity is transmitted
(or with at least half of the I0 is diffracted), the depth of analysing zone of the tilted
sample should be less than 33 µm × sin(77.134◦/2) = 20.6 µm. Since the sample
is 0.55 mm thick, XRD only enables to obtain a surface information of a sample
under mechanical test in our experiment.

3.7.2 Influence of the change of sample thickness towards
the diffraction area during deformation.

The z-position of sample was regulated by determining where the sample cuts the
X-ray beam in half when 2θ = 0. It is to ensure the sample was correctly positioned
with respect to X-ray beam and the maximum intensity of diffraction signal was
obtained. Otherwise, the diffracted signal at wrong position with non maximized
intensity is meaningless.

As for understanding the impact of the change of sample thickness towards the
diffraction area during deformation, the studied sample is assumed to be deformed
up to εtxx = 4% (εtxx = 3.56% in the experiment of sample 1). The Poisson ratio is
0.3.
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Then, the elastic strain in sample thickness εezz will be

εezz = −0.3× (εexx)
= −0.3× (εtxx − εpxx)
= −0.3× (0.04− εpxx)
= −0.012 + 0.3× εpxx

(3.66)

i.e. the change of the thickness of the sample δdsamplethickness :

δdsample = εezz × dsample
= (−0.012 + 0.3× εpxx)× dsample
= (−0.0066 + 0.165× εpxx)mm

(3.67)

Figure 3.25: Scheme of the shift of XRD zone during deformation.

Since εpxx is always smaller than εtxx, δdsamplethickness is between the value of -
0.0066 mm and 0 mm. Thanks to the grip system at two ends of the sample, the
deformation in thickness is symmetric. So, the maximum shift of the XRD zone for
2θ220 (Fig.3.25):

Maximum shift of the XRD zone =
δdsample

2
tan(2θmin

2 )

= 0.0033
tan(77.134◦

2 )
= 4.2µm

(3.68)

and the minimum shift of the XRD zone for 2θ222

Minximum shift of the XRD zone =
δdsample

2
tan(2θmax

2 )

= 0.0033
tan(99.5◦

2 )
= 2.8µm

(3.69)
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As the beam size used during experiment is 0.1 × 0.1mm2, the shift of the XRD
zone during deformation is therefore negligible (<6%).

3.8 Conclusion
In this chapter, the X-ray diffractometer used in experiment and its optical path
during diffraction were presented. The experimental procedure designed for εe mea-
surement using XRD was introduced in details.

A grid resolution of 1 cm x 1 cm for XRD was defined on the sample surface and
each crystal contains about 10 points of measurement. A gradient of elastic strain
can be thus given. It enriches the insight of local response of the sample during the
deformation, rather than using only one measurement per crystal to represent local
information. The technique of launching XRD in a single crystal was presented
as well because diffraction signal can only be obtained under two conditions: the
normal of the analysed {hkl} planes is oriented correctly (φ, ψ and 2θ)hklgrain with
respect to X-ray source and Bragg’s law is satisfied. The position (φ, ψ) can be
calculated using the grain orientation (ϕ1, Φ, ϕ2)grain.

For εe calculation, the First Ortner Method was applied. This method makes
use of the relationship between evolution of diffraction planes δdhkl and the lattice
coordinates of at least 6 analysed {hkl} planes to determine the local elastic strain.
In order to improve the precision of εe calculation, the combinations of the chosen
{hkl} planes should give a minimum uncertainty and allow the accessibility of XRD
under existing experimental circumstances. As a result, 13 {hkl} planes per point
of measurement were selected for XRD.

An experimental methodology for diffraction peak measurement was developed
to enhance εe measurement using XRD. After understanding the impact brought
to the shape of the diffraction peak by different scanning axes of φ, ψ and 2θ and
the collimator, a Soller slit was first added to make the diffraction signal focused
(to avoid the ambiguous situation in ψ direction with a broad maximum region).
Then, an iteration process is designed to optimise φ, ψ and 2θ successively around
the peak’s initial position determined by the initial texture. During plastic loading,
the evolution of mosaicity in crystal is inevitable and thus the beam size is narrowed
down to 0.1 × 0.1mm2 to cope with this situation. Finally, in order to accurately
determine the final position of 2θ peak for εe calculation, the measured 2θ were
simulated to by decomposing twoKα1 andKα2 peaks after understanding the nature
of X-ray source.

At the end of this chapter, an analytical algorithm was used to quantify the
uncertainties of εe (±3× 10−5) measured by XRD. This method was also validated
by a Monte Carlo method for its feasibility.



Chapter 4

Development of an in situ method
for measuring elastic and total

strain fields.

This chapter presents the development of in situ εt and εe measurements. The ap-
plication of digital image correlation for total strain measurement is first explained.
Then, the development of the experimental setup combining X-ray diffraction and
digital image correlation technique is shown. Finally, the experimental protocol and
other concerns regarding the in-situ measurements are presented.

4.1 Total strain field measurement using digital
image correlation (DIC)

4.1.1 Application of DIC
Digital image correlation (DIC) is widely used in many areas of science and engi-
neering. It was firstly developed and applied for displacement field measurement in
2D [Lucas and Kanade (1981); Sutton et al. (1983); Chu et al. (1985)] since early
1980 and then in 3D [Kahn-Jetter and Chu (1990); Luo et al. (1994); Helm et al.
(1996)] to study the behaviour of materials at the macroscopic scale. Thanks to its
principles which are relatively independent of physical size of pixel of images, DIC
has been also proved as a sufficiently robust technique to access the strain field with
good precision at mesoscopic scale, e.g. image acquired through the optical micro-
scope [Mazza et al. (1996); Mitchell et al. (1999)]. Strain field measurement using
DIC can also take place at microscopic scale, e.g image acquired under SEM [Allais
et al. (1994); Doumalin (2000); Tatschl and Kolednik (2003); Sutton et al. (2006,
2007a); Bourcier (2012); Guery (2014)] or through other photo-imaging technique
(Camera) [Saai (2008); Tang et al. (2012)].

4.1.2 General principle
The 2D digital image correlation allows one to measure the displacement field on a
sample surface from two images taken successively at two distinct moments during
loading. These images are then compared to detect displacements of a matched spa-
tial coordinate (or pixel) xp from one image to another. Since it is almost impossible
to find the matched point using a single pixel, the correlation algorithm is based on
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and total strain fields.

the tracking of the grey value pattern of a reference f(xp) and a deformed F (xp)
state in small local neighbourhood facets (called subset) between these images.

F (xp) = f(xp + U(xp)) (4.1)
where U(xp) is the unknown displacement field inside the subset. The reference
images are assumed to be differentiable, a Taylor expansion to the first order is
developed:

F (xp) = f(xp) + U(xp) · ∇f(xp) (4.2)
In order to estimate U(xp) mathematically, an optimisation is made. Hild and

Roux (2008) chose to work on the quadratic difference between right and left hand
sides of Eq.4.1. This quadratic difference is then integrated over the studied domain
J and then minimized. i.e.

Min
∫

J
[U(xp) · ∇f(xp) + f(xp)− F (xp)]2dx (4.3)

From the displacement field, the total strain field εt in the subset can be sought:

εt = 1
2
(
∇U +∇UT

)
(4.4)

The Software Correli_Q4 [Hild and Roux (2008)] developed by the laboratory
of LMT-Cachan was used to determine the total strain field εt.

4.1.3 Speckle paint
Since the deformed subset position is found by matching the area with the same grey
level distribution before deformation (Fig. 4.1), a pattern feature on the analysed
surface is required to allow the matching process. In our case, an artificial speckle
painting was applied on the sample surface (Fig. 4.2).

Figure 4.1: Subset before and after deformation.

The speckle was made of black and white spray painting. In order to fully
cover the large grains, around 10 layers of black and white paintings are applied
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Figure 4.2: Speckle paint is applied on the sample for subset matching during
displacement calculation.

alternatively on the sample surface and a thickness of about 0.01 mm is achieved.
The thickness of the painting layer on representative samples was measured by a
digital Dial indicator. Moreover, it was verified that the speckle spread out on
the sample surface does not disturb the diffraction measurement (Fig. 4.3). All
diffraction peaks of Al are still remarkable and no diffraction peak is added by the
painting.

Figure 4.3: XRD measurements of aluminium and glass specimens covered by
speckle painting.
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and total strain fields.

4.1.4 Texture analysis of speckle painting and selection of
DIC spatial resolution

4.1.4.1 Concept of DIC characterization

When using DIC to measure total strain fields, errors may come from the colour
contrast on speckle pattern due to background lighting, optics of the camera/CCD
(charge coupled detector), evolution of the texture of the grey levels during solici-
tation, size of subsets (or zone of interest ZOI), shape of subsets deformed during
loading, etc. Therefore, several approaches were used to understand the source
of errors and analyse these errors individually. First, the texture of the speckle
painting applied on our sample was qualified. Then, the influence of DIC spatial
resolution with various element sizes on εt calculation was studied. For the uncer-
tainties related to the applied algorithm, they were quantified imposing a known
displacement field (e.g. a constant field [Hild and Roux (2008)]) in a representative
image. The image can be an image of the specimen (in our case) or artificial images
made to push the software to its limits (see article on the comparison of different
DIC softwares [Bornert et al. (2008)]). Finally, the choice of the size of subset was
made after considering the effect of these uncertainties brought towards to the εt
results as well as the spatial resolution applied during εt calculation.

4.1.4.2 Quality of speckle painting

During DIC analysis, the size of the compared subsets is defined regarding to the
texture quality of the applied speckle paint. Sample 1 covered by speckle painting
and a zone of 10.5 mm×5.1 mm was selected for speckle verification by Correli_Q4.
The resolution captured by the camera is 10.2 µm/pixel (Fig. 4.4). The high
resolution of the image enables one to distinguish the black/white edges easily and
avoids averaging blurred black-white area to a grey one.

Figure 4.4: The speckle pattern is made of two colours: black and white. The edges
of the painting is clear thanks to the high resolution of camera.

Images with speckle painting contain a large distribution of grey levels in the
histogram (Fig. 4.5). The distribution of grey levels covers 69.3% of a 256-level
grey scale ranging from 0 to 255 and it improves the accuracy of displacement field
measurements.
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Figure 4.5: Grey level histogram of the speckle painting on representative samples.

4.1.4.3 Influence of DIC spatial resolution (different element sizes) on
εt calculation

An example of εt calculated by various element sizes (called also zone of interest
ZOI or subset) is given in Fig. 4.6. The map of εtxx calculated with an element size
of 16 pixels (Fig. 4.6a) is much noisier than those of 32 or 64 pixels. In fact, if the
subset is too small to contain sufficient information for displacement interpretations,
small local errors are induced and the cumulation of all these small errors results
in a high uncertainty of calculated εt. Besides, we clearly see that with a coarser
spatial resolution (Fig. 4.6c), there are some information not measured locally but
"averaged" instead (refer to the regions pointed with white arrows in Fig. 4.6b and
Fig. 4.6c).

In order to qualify every error, the uncertainties of εt calculated by Correli_Q4
were quantified using the images of the tested samples at their initial and deformed
states.

1. Uncertainties of εt in the initial state - cumulative errors throughout the image
acquisition process
An assumption of constant grey level (with respect to time) of the speckle
painting is made during DIC calculation. However, in reality, the grey level
of the painting changes due to the lighting system and the loading (roughness
changes notably). In order to quantify DIC uncertainties caused by colour
contrast while all other parameters being constant, 38 photos of the sample
surface covered with speckled painting were taken in the same conditions of
loading and lighting (initial state). Digital correlation was performed between
any images taken in pairs (Fig. 4.7) using the element size 32 pixels (=362.4
µm). The total error of the strain field calculated using Correli_Q4 has a
mean value of −5.1× 10−6 with a standard deviation of 2.3× 10−4.

2. Uncertainties of εt after deformation - choice of the spatial resolution
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and total strain fields.

Figure 4.6: Map of εtxx calculated using grid resolution of 16 pixels (=181.2 µm)(a),
32 pixels (=362.4 µm)(b) and 64 pixels (=724.8 µm)(c).

Figure 4.7: Error maps btween 2 photos taken in the initial state under the same
experimental conditions.

For the uncertainties related to the choice of algorithm parameters, analysis
was made with 2 identical images of our specimen a constant displacement
was imposed to one of them. This cconstant displacement was lower than
one pixel, in order to evaluate if the image is sufficient enough for measuring
relatively small displacements (sub-pixel). Then εt fields were calculated using
Correli_Q4 with different element size ranging from 4 to 128 pixels. Two
values are deduced from this calculations:

(a) The displacement error, which is the difference between the applied
displacement and the mean displacement calculated.

(b) The displacement uncertainty, or the standard deviation of the error
field.

As it can be seen in Fig. 4.8 and Fig. 4.9, displacement error and displacement
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uncertainty decrease rapidly with larger ZOI sizes. For the element size 362.4
µm (=32 pixels), the average error is 3.1 nm (= 2.75 × 10−4 pixels) with a
standard deviation of 17.8 nm (= 1.57× 10−3 pixels).

Figure 4.8: Displacement error with re-
spect to the element size.

Figure 4.9: Standard deviation of dis-
placement error with respect to the ele-
ment size.

In our case, the element size 32 pixels is selected because it gives the best trade-
off between the accuracy of εt results and the spatial resolution.

4.2 Implementation
In the objective of conducting in situ εt and εe measurements, the micro tensile
machine and a single-lens reflex camera had to be installed inside the XRD appa-
ratus. To integrate all the elements inside the diffractometer, the micro-machine
was positioned on the cradle of the goniometer. The reflex camera faces the spec-
imen vertically. A cable guide has been designed around the micro-machine for
tidying up its power cable and preventing it crossing the beam during diffraction
measurements (Fig. 4.10).

4.2.1 Micro-tensile test
4.2.1.1 Characteristics of the machine

The micro-machine used was designed by Deben for tensile testing in SEM. Two
grips fix two ends of the sample and they move at the same rate during loading. This
system maintains the sample centre position fixed and facilitates the positioning
of the XRD zone on the sample after each deformation. The maximum tensile
loading is 1kN. For this reason, the sample dimension and its material are carefully
optimized (§.2.2). The maximum and minimum loading speed are 2 mm/min and
0.2 mm/min respectively. The control software supports synchronous data recording
at sampling rate from 0.2s−1 to 5s−1. During the experiment, the sample was pulled
at the minimum loading speed of 0.2 mm/min to ensure that more than 10 images
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in the elastic part can be acquired. The data sampling rate is 0.1s during DIC
measurement and 5s during XRD measurement.

4.2.1.2 Micro-machine fastening in the goniometer : machine mounting
support and wire winding system

As for fixing the micro-machine on the cradle inside the diffractometer, two addi-
tional mounting plates were designed (See 65 and 66) and machined. Moreover,
a cable guide around the micro-machine was designed and mounted on the cradle
wafer to prevent it from crossing the beam during diffraction measurements (See
67). After considering the weight added on the wafer holder and the complexity
of machining, it was fabricated using 3D printing in polymer. Moreover, a set of
pulleys (Fig. 4.11) were integrated in the goniometer to ensure the power cable is
fixed tight throughout the movement around φ,ψ and 2θ axis.

Figure 4.10: Scheme of installation of the micro-machine inside the goniometer.
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Figure 4.11: Wire winding system for the machine power cable.

4.2.2 Camera
In order to correctly calculate the total strain εt field using DIC, the pictures should
be taken perpendicularly and in front of the sample surface. Moreover, the analysed
images should neither be resized/transformed nor contain any distortion. The zone
selected for analysis should be clearly focused. Therefore, a single-lens reflex camera
was used.

4.2.2.1 Camera model and its performance parameters

In our experiments, a Canon EOS70D camera coupled with a lens Sigma 150 mm
F2.8 EX DG OS HSM APO Macro was used. With an image taken by an objective
with a magnification of 1:1.2 and a minimum distance of 180 mm from a sample
surface, a maximized activated zone of 8 × 19.5mm2 with no distortion can be
captured. Compromising on the speckle pattern applied on the sample surface for
DIC (§.4.1.4) and lighting system (§.4.2.2.3), the best average performance of the
texture (e.g. grey level, resolution, uncertainties, etc.) is obtained with an exposure
of f/8 at 1/30 s. Images can be automatically captured every five seconds.

4.2.2.2 Camera stand

A fixation (Fig. 4.12) was designed for mounting the camera inside the goniometer
without disturbing XRD measurement. Therefore, the installation of every part of
the camera stand should be positioned outside the path of X-ray beam (refer to
Appendix 5.3) and all the necessary movement of x, y, ψ ,φ and 2θ axis during
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XRD. Also, this mounting system has to enable the lens of camera being positioned
vertically and perpendicularly in front of the sample surface and avoid any distortion
of the image during DIC measurement.

4.2.2.3 Lighting system

A lighting system is fixed concentrically with the camera lens (Fig. 4.13) in order to
give a homogeneous brightness on the sample surface. The lighting system is made
of a circle of LED. Photos taking under an even and constant lighting condition
improves the quality of the strain field measured by DIC, as the average grey level
of the speckle pattern among the images remains unchanged.

Figure 4.12: The camera stand inside
the goniometer.

Figure 4.13: Ring of LED lighting
around the objective.

4.2.3 Experimental set-up
Combining all the individual devices described above, an experimental set-up was
developed (Fig. 4.14-4.15), which allows us to carry out a mechanical test, and
measure elastic εt and total εt strain fields at similar loading levels in the diffrac-
tometer.



4.2. Implementation 89

Figure 4.14: Sample inside the micro-machine, on the cradle of the diffractometer.

Figure 4.15: Experimental set-up.



90
Chapter 4. Development of an in situ method for measuring elastic

and total strain fields.

4.3 Experimental protocol
In this section, a general principle of in situ full-field measurements is presented.
Concerning the actual execution of each apparatus during in situ experiment, an
experimental protocol was designed with procedure in detail, specific parameters of
machine operation and the corresponding hypothesis.

4.3.1 Principle of in situ full-field measurements
Our research objective is to measure simultaneously both the elastic εe and total εt
strain fields at each loading level imposed on our Al-alloy samples (refer to chapter
2) during tensile loading. The elastic strain field is measured by X-ray diffraction
(XRD) (refer to chapter 3) while the total one is observed by digital image cor-
relation (DIC). In Fig. 4.16, the methodology of both measured is given. The
strain-stress curve was obtained using the εt observed by DIC and the truth stress
calculated using a given initial cross-section of sample and the force detected by the
loading cell.

4.3.2 Experimental procedure
Once an oligo-crystalline sample is prepared and the installation of all the ex-
perimental devices is ready, the in situ experiment can be executed. A detailed
procedure was planned concerning the actual execution of each apparatus during
in situ full-field measurements (Fig. 4.16).

1. Initial state: XRD scanning (Fig. 4.16 position O).

XRD scanning is first performed on the sample surface in its initial state. The
signals obtained at this stage are used as reference for εe calculation. The
experimental set-up provides an active zone of 15 × 8 mm2 on our sample
surface for XRD measurement. The resolution of the grid measurement for
XRD is 1×1 mm2. In fact, this fineness of the grid measurement is defined
regarding to our grain size (about 5 mm) so that the gradient of elastic strain
inside each crystal can be measured.
At each XRD measurement point, 13 {hkl} planes should be measured in the
shortest time. 13 {hkl} planes are chosen in consideration of data accessibly
and ≥ 6 planes are wanted to maximize the accuracy of elastic strain cal-
culation. As there are 60 measuring points for sample 1 (Fig. 5.1) and 105
measuring points for sample 2 (5.38), an effective way of XRD measurement
is required.
For measuring each {hkl} plane in a monocrystal, its position with respect
to the X-ray beam has to be correctly oriented (φ,ψ){hkl} for diffraction take
place. These values are calculated based on the corresponding crystal texture.
A peak optimisation of (φ,ψ){hkl} is carried out. Then, a 3-iterations process
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Figure 4.16: Methodology of XRD and DIC measurements on our sample during
an in situ tensile loading.

of peak optimisation is conducted along (φ, ψ and 2θ){hkl}. The maximum
intensity of diffraction peak (φ, ψ and 2θ){hkl} implies that the {hkl} plane is
correctly oriented with respect to the X-ray beam, so the final peak position
of 2θ{hkl} can be obtained.

The total measuring time to obtain an εe field is 3 days 22 hours for sample
1 and 6 days 21 hours for sample 2.

2. Taking photo regularly throughout the 1st loading (Fig. 4.16 position O-A).

Upon the termination of XRD measurement at initial state (O), the cradle
moves to a orientation where the sample is perpendicular to and right in
front of the camera lens. This position is used throughout all the photo-
taking process so that the reference coordinates of every photo of the sample
surface are the same for DIC calculations. The experimental set-up provides
an observation area of 17 × 8 mm2 for DIC measurement. The resolution of
photo is 10.2µm/pixel while the resolution of the grid measurement (subsets
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or ZOI) for DIC is 362.4×362.4 µm2 (32 pixels×32 pixels). A first photo of
sample surface is taken at initial state (O) as reference image.
The sample is then pulled at a loading speed of 0.2 mm/min until the first
strain level is reached (≈1%) (in Fig. 4.16 position A). A slow loading speed
is applied to ensure a sufficient number of photos (≥ 10) taken in the elas-
tic part. Photos are taken regularly (5 s/photo) throughout the mechanical
loading (O-A) using a focal length of f/8 with exposure time of 1/30s. The
variation of the sample thickness is assumed to be too small to affect image
focusing by camera during tensile loading. The force imposed by the machine
is recorded at the same time with a sampling rate of 0.1 s. Therefore, the
total strain of the sample on each photo and its corresponding applied load
are known.

3. Micro-machine stops pulling once the 1st strain level is reached (A).

When the sample is pulled to the first strain level (≈1%) (A), the distance be-
tween the grips is maintained constant. The evolution of force is recorded with
a sampling rate of 5 s and the relaxation of sample can therefore be quantified.

4. XRD scanning during relaxation (A-A’).

As XRDmeasurement takes several hours, a relaxation occurs. In other words,
the XRD measurement on the deformed sample surface is performed during
relaxation (A-A’). Relaxation has been quantified using a polycrystalline Al-
alloy sample (5052) (See 4.4.2). Taking into account this phenomenon during
the in situ experiment, XRD measurement is launched only after the major
decrease in stress (after about 40 mins - 1 hour of waiting).
The sample is then reoriented to its position for XRD measurement. Assum-
ing there is only small deformation in our experiment, the new position of
diffraction peak of each {hkl} plane should not be too far away from its pre-
vious one and it should be easily relocated from its initial position. Therefore,
the final peak position obtained at previous strain level can be used as the
initial position for searching the current position of the peak at the present
stage for XRD measurement.
The variation of the distance between the grips during relaxation is also as-
sumed too small (≤1 µm) to have an influence on XRD measurement.

5. Repeat steps 2-4 for each loading (A’-B’) or unloading (B’-O’) situation

For research interests, full-field measurements on a deformed sample surface
at more than 2 strain levels give a richer local information.
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Between, the same experimental protocol of XRD and DIC measurements can
be applied during unloading situation. Although the strain field obtain during
unloading by DIC is still total strain field, these results can be used to give
a first idea of how heterogeneity varies during elasticity and plasticity of our
material under the hypothesis of plastic strain being constant.

4.4 Discussion
During in situ measurements of elastic and total strain fields, all necessary precau-
tions or usage limits shall be taken to minimise the uncertainty.

4.4.1 Size of X-ray beam spot on the specimen
Considering the beam size used during the experiment (0.1×0.1 mm2), the limit of
the movement of the wafer holder(φ ∈ [0, 360◦] and ψ ∈ [0, 75◦]) and 2θ ∈ [77◦, 100◦],
the maximum area spotted by X-ray beam during the diffraction is

0.1
sinθmin

× 0.1
cosψmax

= 0.16× 0.38mm2 (4.5)

and the minimum area is
0.1

sinθmax
× 0.1
cosψmin

= 0.13× 0.1mm2 (4.6)

Figure 4.17: Scheme of X-ray beam spot on the specimen.

4.4.2 Movement of the grip system during a tensile test
The micro-machine is designed to pull the sample at two ends at the same rate so
that the sample center remains unchanged. Yet, the movement of the grips is not
perfectly symmetrical all the time. The grip movement with and without sample
has been, therefore, verified using the DIC with a resolution of 10.2 µm/pixel. It
was observed that during the opening of grips, the left grip and right grip move
alternatively apart to each other for every 0.1 mm. For the first 0.5 mm extension,
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the sample center is shifted to the right of about 28µm. Later, for an extension from
0.5 mm to 1 mm, the sample center keeps an offset of 15µm on the right from its
initial position. For an extension >1 mm, the sample center has an offset of 5µm on
the right. All rigid body movements caused by the grip system have to be excluded
during εt calculation. The movement of material points can thus be tracked during
the solicitation. However, it is negligible for programming diffractometer control
file.

4.4.3 Relaxation
As X-Ray measurements take a very long time (3 days 22 hours for sample 1 and
6 days 21 hours for sample 2), a relaxation is inavoidable. A relaxation test was
conducted on a representative polycrystalline Al-alloy sample (5052) (with around
3% of Mg) specimen (Fig. 4.18). Once the sample was pulled beyond the yield
strength, the distance between the grips was maintained constant (31.05 mm) for 5
days. We observed that the force dropped 13.5% during the first 40 minutes then
decreased another 6.87% slowly for the rest of time (Table 4.1). Taking into account
this phenomenon during the in situ measurements, when the sample was pulled to a
specific loading level, we needed to wait for 1 hour until the relaxation being stable
before launching XRD measurement.

Figure 4.18: A relaxation test on a representative polycrystalline Al-alloy specimen.
Once the sample was pulled beyond the yield strength, the distance between the
grips was maintained constant (31.05 mm) for 5 days (a). The strain level was
about 3.4% and the load 583.85N (b). The force dropped 13.5% during the first 40
minutes (c) then decreased another 6.87% slowly for the rest of time (d).
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Duration 5 mins 40 mins 1 hr 1 day 5 days
% of force relaxation 10.66% 13.5% 13.81% 18.10% 20.37%

Table 4.1: % of force decrease with respect to relaxation time on a representative
polycrystalline Al-alloy specimen under constant strain.

4.5 Conclusion
In conclusion, the analysing spatial resolution of 32 pixels (362.4 µm) for DIC is
used regarding the quality of speckle pattern applied on sample surface. An exper-
imental set-up Was developed in order to integrate the micro-tensile machine and
camera inside a diffractometer for in situ measurements. Additional equipments,
like wire winding, pulley system and lighting system, were attached to the set-up
so as to facilitate the XRD measurement and to achieve better image quality. After
considering the device’s performance and the area of sample surface accessible by
the apparatus, ZOI of 17× 8 mm2 and 15× 8 mm2 were defined for DIC and XRD
measurement respectively. Combining the XRD measurement in previous chapter
with DIC measurement, an experimental protocol was defined for in situ full-field
measurements. XRD measurement is first conducted at sample’s initial state. Then,
images on the sample surface are taken regularly throughout the mechanical loading.
Once the sample is pulled up to a assigned level, XRD is conducted on sample’s
surface again during relaxation. The maximum (0.16×0.38 mm2) and minimum
area (0.13×0.1 mm2) spotted by XRD were also founded according to the limited
movement of goniometer during the XRD measurement. The phenomenon of re-
laxation of our material was quantified and taken into account during the in situ
measurements.





Chapter 5

Experimental Results

In this chapter, the experimental results of tests carried out on samples 1 and 2 are
presented and discussed.

Two samples with around twenty-five crystals were subjected to a simple ten-
sile loading. εt and εe fields were measured on the upper surface of oligo-crystal
specimens at each successive loading level. The method to perform DIC, XRD
and tensile tests in-situ in the X-ray diffractometer was introduced in the previous
chapter. Stress σe fields were then calculated from εe using the equation (Eq.(1.5))
presented in chapter 1.

Later, εt, εe and σe fields are displayed and the corresponding uncertainties
during each measurement are also quantified. In order to better understand the
experimental results, the evolution and distribution of local stress-strain at each
successive loading/unloading level are plotted and discussed.

5.1 Experimental results of sample 1
In this section, the sample used and the zone of interest for DIC and XRD will
be presented. The global stress-strain curve measured during the tensile test will
be presented, as well as εt, εe and σe and their uncertainties fields acquired on
the surface of the specimen. In the last section, εe field was determined through
different methods, in order to have another way to validate it.

5.1.1 Zone of XRD and DIC measurement
The experimental setup provided an observation area of 17 × 8.1 mm2 for DIC
measurement and we defined an area of 14× 3 mm2 for XRDmeasurement (Fig.5.1).

Figure 5.1: ZOI of XRD and DIC measurement of sample 1.
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Since the XRD measurement is more time-consuming than DIC measurement,
εe measurement were conducted on only one half of the entire active zone of the
sample 1 in order to have a rapid validation of the methodology. Moreover, in order
to facilitate the data analysis later, grain geometry (Fig.5.2-5.3) on both sides of
the sample is recalled.

Figure 5.2: Front view of sample 1 with
its grains numbered.

Figure 5.3: Back view of sample 1 with
its grains numbered.

5.1.2 Tensile test
During the in-situ experiment, sample 1 was subjected to a symmetric tensile load-
ing in the x-direction. The micro tensile machine was stopped twice for XRD
measurements at increasing levels of strain, once was just after the yield stress at
81.1 MPa, 1© εtxx = 0.0074 and the second was at 118.6 MPa, 2© εtxx = 0.0356.
Photos were taken throughout the entire tensile test and the total strain fields were
calculated using Correli_Q4. The mean tensile stress measured during the test
was plotted in Fig.5.4 versus the mean strain averaged over the useful part of the
specimen.

Figure 5.4: Stress-strain curve. The micro tensile machine was stopped once at 1©
εtxx = 0.0074 and then at 2© εtxx = 0.0356.
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5.1.3 Total strain field measurement εt

5.1.3.1 Map of εt

The area in sample 1 with validated data of total strain εt field is 15.99 × 6.53 mm2.
The in-plane components εtxx and εtyy at two loading levels are plotted in Fig.5.5 -
5.8.

Figure 5.5: Map of εtxx at level 1©
(εtxx = 7.4× 10−3).

Figure 5.6: Map of εtyy at level 1©
(εtyy= −4.8× 10−3).

Figure 5.7: Map of εtxx at level 2©
(εtxx = 0.0356).

Figure 5.8: Map of εtyy at level 2©
(εtyy = -0.0221).

It is important to recall that the element size of 32 pixels was used (refer to
§4.1.4.3) so that the spatial resolution of εt calculated is 32 pixels × 10.2 µm/pixel
= 362.4 µm

As shown in Fig.5.5 and Fig.5.7, strain localised to a large extent grain by grain
and the strain gradients are smooth. A more intense strain gradient can be seen
at the grain boundary between grains 7 and 10 (indicated by the white arrow in
Fig.5.5). This heterogeneity increases with the imposed loading. The magnitude
of the axial strain is much higher on the left hand side of the sample than on
the right hand side. This difference can be explained by the initial crystallographic
orientation of grains on both the front and the back sides of the sample, since grains
with favourable orientation to the loading direction and thus the highest Schmid
Factor (SF) deform first. For example, grains 2, 3 and 7 on the left have a SF of
about 0.5 (Table 5.1) while grains 4, 12 and 13 on the right have a SF of about 0.4.
Although the SF of grains 5 and 9 on the right hand side are high, the grains right
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behind (Fig.5.9) ,e.g. grain 1bi, 1bii and 14b, have low SFs, which explains why the
strain is globally much lower on this side.

Figure 5.9: Map of εtxx at level 2© with grain boundaries of sample back side super-
imposed (εtxx = 0.0356)

a. Front side
Schmid Number of activated

Grain factor slip system
1 0.4799 1
2 0.4665 1
3 0.4893 1
4 0.3982 1
5 0.4969 1
7 0.4893 1
9 0.4952 1
10 0.3950 1
12 0.4335 1

b. Back side
Schmid Number of activated

Grain factor slip system
1bi 0.4357 1
1bii 0.3318 1
2b 0.4832 1
4b 0.4956 1
8b 0.4520 1
9b 0.4185 1
10b 0.3785 1
11b 0.4563 1
12b 0.4427 1
13b 0.4959 1
14b 0.4404 1
15b 0.4994 1
16b 0.4992 1
17b 0.4994 1
18b 0.4170 1

Table 5.1: Schmid factor of each grain of a. front side and b. back side of sample
No.1.

5.1.3.2 Uncertainty of the total strain tensor σεt

In §4.1.4, uncertainties of εt were discussed and analysed in two aspects, errors
cumulated throughout the image acquisition process (or namely colour contrast
due to the lighting system) and algorithmic errors due to choice of the spatial
resolution. The former one outweighed the second and represented the main error
source of the total strain field σεt . Therefore, the algorithm error of εt that comes
with the DIC software Correli_Q4 was not taken into account. In the experiment,
σεt was considered only due to the image acquisition. Two pictures were taken
under identical experimental conditions but at different times. The εt calculated
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between these two pictures was considered as σεt . For sample 1, σεt has a mean
value of −5.1 × 10−6 with a standard deviation of 2.3 × 10−4 (Fig. 5.10) at each
measuring point.

Figure 5.10: Error of total strain field σεt .

5.1.4 Elastic strain field measurement εe

5.1.4.1 Map of εe

Fields of components εexx and εeyy obtained at levels 1© and 2© are shown in Fig.5.11-
5.14. The mean values εe of elastic strain were listed in Tab.5.2. Similar to the εt
results, zones with higher/lower elastic deformation were observed on the sample
surface. Due to local grain disorientation during plastic deformation (mentioned in
§3.5.4), the intensity of some {hkl} peaks for some measuring points was too low
to allow their measurement and thus elastic strain tensor calculation. This explains
the absence of some strain field measurements in Fig.5.13-5.14.

Mean value of εe (× 10−3)
Loading level εexx εeyy εezz εeyz εezx εexy

1© 1.2 -0.2 -0.3 -0.1 -0.1 -0.1
2© 1.8 -0.3 -0.4 -0.1 -0.1 -0.1

Table 5.2: Mean value of εe of sample 1 at each successive loading level

5.1.4.2 Uncertainty estimation of the elastic strain tensor σεe

The uncertainty of the elastic strain tensor σεe at each strain level was estimated.
The maps of σεe are shown in Fig.5.15-5.18. The mean values of σεe and its standard
deviation value (Std) are listed in Tab.5.3-5.4. It can be seen that the εe uncer-
tainties σεe are always smaller than 10−5. Considering a Gaussian distribution, it
implies a total error range in εe smaller than ±3× 10−5.
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Figure 5.11: Map of εexx at level 1©
(εexx = 1.2 × 10−3).

Figure 5.12: Map of εeyy at level 1©
(εeyy= -0.2 × 10−3).

Figure 5.13: Map of εexx at level 2©
(εexx = 1.8× 10−3).

Figure 5.14: Map of εeyy at level 2©
(εeyy= -0.3 × 10−3).

Figure 5.15: Map of σεe
xx

uncertainties
at level 1©

Figure 5.16: Map of σεe
yy

uncertainties
at level 1©

Figure 5.17: Map of σεe
xx

uncertainties
at level 2©

Figure 5.18: Map of σεe
yy

uncertainties
at level 2©
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Mean value of σεe (× 10−6)
Loading level σεe

xx
σεe

yy
σεe

zz
σεe

yz
σεe

zx
σεe

xy

1© 8.7 9.2 8.2 6.4 8.7 6.7
2© 13 9 10 7 11 8

Table 5.3: Mean value of σεe of sample 1 at each successive loading level

Standard deviation of σεe (× 10−6)
Loading level Std(σεe

xx
) Std(σεe

yy
) Std(σεe

zz
) Std(σεe

yz
) Std(σεe

zx
) Std(σεe

xy
)

1© 1.8 3.2 3.2 1.8 2.3 2.3
2© 9.8 5 6.2 1.8 4.8 4.6

Table 5.4: Standard deviation of σεe of sample 1 at each successive loading level

5.1.5 Stress field calculation σe

5.1.5.1 Map of σe

Recall the Eq.(1.5) presented in chapter 1, stress σe can be calculated using a 4th-
order stiffness tensor Ce of aluminium and the strain tensors εe.




σexx
σeyy
σezz
σeyz
σezx
σexy




=




Ce
11 Ce

12 Ce
12 0 0 0

Ce
12 Ce

11 Ce
12 0 0 0

Ce
12 Ce

12 Ce
11 0 0 0

0 0 0 Ce
44 0 0

0 0 0 0 Ce
44 0

0 0 0 0 0 Ce
44







εexx
εeyy
εezz
εeyz
εezx
εexy




(1.5)

Ce
ijkl (in GPa) of aluminium in Eq.(1.5) could be calculated using Young’s modu-

lus E = 70 GPa and Poisson’s ratio ν = 0.33 [source: ASM Aerospace Specification
Metals, Inc.]. Ce

11, Ce
12 and Ce

44 can be directly written as:





Ce
11 = E(1− ν)

(1 + ν)(1− 2ν) = 103.7 GPa

Ce
12 = Eν

(1 + ν)(1− 2ν) = 51.1 GPa

Ce
44 = E

2(1 + ν) = 26.3 GPa

(5.1)

σe at each strain level are calculated in Tab.5.5 and the maps of σe are shown in
Fig.5.19-5.22.

For our experimental situation, the out-of-plane components σezz in stress tensor
should be zero. Yet, it is noted that non-negligible values were obtained here. In
fact, the calculation of σezz depends on the value of ν applied in Eq.5.1. In our
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Figure 5.19: Map of σexx at level 1©
(σexx = 103.6 MPa).

Figure 5.20: Map of σeyy at level 1©
(σeyy= 28.9 MPa).

Figure 5.21: Map of σexx at level 2©
(σexx = 153.4 MPa).

Figure 5.22: Map of σeyy at level 2©
(σeyy= 41.8 MPa).

Mean value of σe (MPa)
Loading level σexx σeyy σezz σeyz σezx σexy

1© 103.6 28.9 20.1 -2.7 -3.4 -3
2© 153.4 41.8 35.2 -6.8 -6.2 -3

Table 5.5: Mean value of σe of sample 1 at each successive loading level

case, the literature value of ν = 0.33 was used. If ν is calculated using the obtained
εeyy/εexx or εeyy/εexx at loading level 1© and 2©, a mean value of ν = 0.25 with a
standard deviation of 0.19 was obtained. Although the σe of every XRD measured
point can be recalculated using ν = 0.25 in Eq.5.1 and then given negligible values
in σezz (Tab.5.6), meanwhile, the calculated σexx values could not be consistent with
the ones measured by load cell. This explains why the literature value of ν = 0.33
was kept in Eq.5.1.

Mean value of σe (MPa)
Loading level σexx σeyy σezz σeyz σezx σexy

1© 90.7 11.2 1.9 -2.9 -3.6 -3.2
2© 133.7 14.9 8 -7.3 -6.6 -3.2

Table 5.6: Mean value of σe calculated using ν = 0.25 at each successive loading
level
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At this moment, the question of out-of-plane components in our case still needs
more investigation and the reason of this findings will be explored in the future.

5.1.5.2 Uncertainty estimation of the stress tensor σσe

The uncertainty of the stress field σσe at each strain level was calculated and the
maps of σσe are shown in Fig.5.23-5.25. The mean value and the standard deviation
(Std) of σσe are listed in Tab.5.7 and Tab.5.8. It can be seen that the σσe are always
smaller than 4 MPa.

Figure 5.23: Map of εexx at level 1©
(σσe

xx
= 1.8 MPa).

Figure 5.24: Map of εeyy at level 1©
(σσe

yy
= 1.8 MPa).

Figure 5.25: Map of εexx at level 2©
(σσe

xx
= 1.8 MPa).

Figure 5.26: Map of εeyy at level 2©
(σσe

yy
= 2.3 MPa).

Mean value of σσe (MPa)
Loading level σσe

xx
σσe

yy
σσe

zz
σσe

yz
σσe

zx
σσe

xy

1© 1.8 1.8 1.8 0.3 0.5 0.4
2© 2.3 2.1 2.2 0.4 0.6 0.4

Table 5.7: Mean value of σσe of sample 1 at each successive loading level

Standard deviation of σσe (MPa)
Loading level Std(σσe

xx
) Std(σσe

yy
) Std(σσe

zz
) Std(σσe

yz
) Std(σσe

zx
) Std(σσe

xy
)

1© 0.3 0.4 0.4 0.1 0.1 0.1
2© 1.3 0.8 1.1 0.1 0.3 0.2

Table 5.8: Standard deviation of σσe of sample 1 at each successive loading level
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5.1.6 Discussion

5.1.6.1 Evolution and scattering of local stress-strain at each loading
level

In order to better understand the experimental results, the evolution and the dis-
tribution of local stress σe with the associated total strain εt at each point of XRD
measurement (marked as ‘4’ and ‘�’ for the first and second loading levels respec-
tively) are plotted in Fig.5.27. The mean tensile stress σe measured during the test
versus the εt averaged over the useful part of the specimen is plotted (marked as
‘x’) in the same figure as reference. The σe-εt values among the 45 XRD measured
points at each loading level were also averaged (i.e. σe-εt) and plotted in Fig.5.27.
’4’ and ’�’ with thicker-edge correspond to the σe-εt value of the first and second
loading level respectively.

Figure 5.27: Distribution of the local σe-εt at each point of measurement of XRD
on the sample 1 at loading level of εtxx = 0.0074 and 0.0356.
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The two grids used to measure σe-εt are different. For ths reason, it is not
possible to associate directly a σe to a εt at the same localisation. We associate
each σe value to the average of εt on the four closest DIC measured points. There
are 45 measured points with σe-εt values in sample 1.

In Fig.5.27, both σexx calculated at level 1© and 2© were higher than the average
stress captured by the load cell (Fig.5.27). In fact, σexx was calculated over the half
of the specimen. The averaged stress value in this part could thus be twice as high
as in the area not measured by XRD. It is also observed that the scattering of σe
and εt increased during the loading. To better discuss the scattering of the local
stress-strain at each loading level, the local σe-εt values of 10 measured points are
plotted in Fig.5.28. The position of the selected points in sample 1 are indicated in
Fig.5.29.

Figure 5.28: Distribution of the local σe-εt of a set of measuring point in grain 3
(the 6-12th points on the first upper row) and of points 17, 26 and 43 at loading
level of εtxx = 0.0074 and 0.0356.

Points 26 and 43 remain at very low σe value during the loading. On contrary,
point 17 has a relatively high σe value among the other points throughout the
tensile loading. Yet, for point 26, strain hardening begins between the first and the
second loading levels. The corresponding εt values of these three points were lower
than the others (below εtxx) at the beginning. At the second loading level, point
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Figure 5.29: The XRD measuring points selected and traced in Fig.5.28. (Maps of
εexx at level 1© εexx = 1.2 × 10−3)

17 was highly deformed (above εtxx) while it is not the case in point 26 and 43. At
the same time, for the 8 selected points in grain 3 (including point 26 in grain 3),
the scattering of both σe and εt values is large and increases during the loadings.
It emphasises the research interest in full-field measurement of a material at grain
scale as one measurement per crystal cannot represent the overall local mechanical
response of a material [Zhou (1994); Huang (2007); Tran (2013)].

5.1.6.2 Analysis of the mechanical response of sample 1 under elastic
and plastic loading and confirmation of the validity of the εe

field measured by XRD

The zones with high/low level of strain in εt (Fig.5.5 - 5.8) and εe (Fig.5.11-5.14)
fields are not comparable. For example, at loading level 2©, compared to other parts
of the sample, grain 10 showed a very low εt value (the region indicated with an
arrow in Fig.5.30) and a very high εe value (Fig.5.31).

Figure 5.30: Recall the map of εtxx at
level 2© (εtxx = 0.0356).

Figure 5.31: Recall the map of εexx at
level 2© (εexx = 1.8× 10−3).

In order to analyse the mechanical response of sample 1 under elastic and plastic
loading, a third tensile test with loading 3© (εtxx = 0.0378) and unloading 3’© (εtxx =
0.0378) was conducted on the same sample after the unloading which followed level
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2© (Fig. 5.32). It is assumed that the first part of the loading (between images 1
and 18) and the unloading part (between images 26 and 38) are purely elastic. The
elastic strain deformation of these loading/unloading were characterised by DIC.
Fig.5.34 shows the map of εt field calculated using images 1 and 18 while Fig.5.35
shows εt field calculated using image 38 and 26. During calculation, the size of
subset was enlarged to 64 pixels (spatial resolution = 64 pixels × 10.2 µm/pixels =
652.8 µm) due to the sensibility of background noise. Besides, it is reminded that
the calculation of εt value in 3© and 2© were not using the same point of reference.
In fact, for the image 1 used in 3©, there was plastic deformation from the initial
state to level 2©.

Figure 5.32: Stress-strain curve showing the third tensile test added.

For the strain field calculated between images 1 and 24 in 3© (Fig.5.33), the
zones showing higher/lower εt value is similar to the one obtained in 2© except in
grains 9 and 10 (Fig. 5.30). The distribution of εt is still largely grouped by grain
and the strain gradients inside are small. Grains 1, 2, 7 on the left of the zone of
interest are still more deformed than grains 4, 5, 10, 12 on the right of the sample.
A more intense strain gradient is observed at the grain boundary between grains 7
and 10 and the εt in grain 10 is still lower than that observed in the majority of
the zone of interest. And here we can see that the right hand side of sample 1 does
not undergo plastic deformation any more (grains 4,6,9 12 and a small part of grain
3). Grain 10 slightly plastified at 2© but plastically deformed at 3©. The left side
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Figure 5.33: εtxx calculated using image
1 and 24 during tensile loading at 3©.
Loading part: elastic and plastic defor-
mation.

Figure 5.34: εexx calculated using image
1 and 18 during tensile loading at level
3© (εexx = 0.0018). Loading part: elastic
deformation.

Figure 5.35: εexx calculated using image
38 and 26 during unloading at level 3’©
(εexx = 0.0014). Loading part: elastic
deformation.

Figure 5.36: Difference between εexx at
level 2© (Fig.5.31) and εexx calculated
during the elastic part of loading at level
3© (Fig.5.34).

of the specimen, which had already been largely deformed at level 2©, is the zone
that also has the most significant increment of strain to get to 3©. Once the top
left corner of the specimen was the most deformed zone at 2©, and now the bottom
left corner shows the most significant strain increment. Since the surface was not
filmed during unloading after 2©, it is not possible to add directly the increment of
strain obtained at 3© to that measured at 2©.

It can be observed that the total strain field measured during the elastic part of
the loading/unloading (Fig.5.34-5.35) (images 1-18 and 38-26) is strongly different
from the one measured during the elasto-plastic loading (Fig.5.33) (images 1-24).
However, the strain field shown in Fig.5.34-5.35, i.e. measured during the elastic
part of loading 3© and unloading 3’©, are very similar, in terms of distribution and



5.1. Experimental results of sample 1 111

magnitude of strain value ([1 × 10−3, 2.8 × 10−3]), to the εe field obtained by
XRD at loading level 2© (Fig.5.31), e.g. grains 7 and 10 on the left of the zone
of interest are more deformed than grains 5, 9, 12 on the right of the sample.
In order to confirm the validity of the elastic strain field measured by XRD, the
difference between εexx at level 2© (Fig.5.31) and εexx calculated during the linear
part of loading at level 3© (Fig.5.34) was made and plotted in Fig.5.36. The zone
where these two strain fields are compared is quite limited, however, it is observed
that a homogeneous distribution of the difference (-1.3 × 10−5) can be observed to
a large extent. This comparison allows to confirm the validity of the elastic strain
field measured by XRD.

For further discussion, the difference (4εexx) of the strain fields calculated in
linear parts of loading / unloading is plotted in Fig.5.37. 4εexx = 4.46 × 10−4

with a standard deviation of 1.26 × 10−4 was obtained. The distribution of the
difference is not homogeneous. It is because the existence of plastification of the
sample during loading / unloading is still unknown. However, referring to Fig.5.37,
it can be seen that the region in the middle of the sample (Grains 3 and 10) sightly
deform plastically. Thus, it is a hypothesis to be confirmed.

Figure 5.37: Difference of εexx calculated during the loading (Fig.5.34) and unloading
(Fig.5.35).

The validation of the procedure in actual experimental conditions was made. A
more complete in situ experiment could be conducted on a second specimen, with
a larger measurement area, and regular discharges to access maximum information.
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5.2 Experimental results of sample 2
Once the experimental protocol was validated using sample 1, a similar tensile test
and εt-εe measurements were conducted in situ in the X-ray diffractometer on a
second specimen, sample 2. On this sample, a tensile test was applied with 4
successive loadings and unloadings. Similar to previous section, sample 2 and the
zone of interest for DIC and XRD will be presented. The global stress-strain curve
measured during the tensile test will be shown, as well as εt, εe and σe and their
uncertainties fields acquired on the surface of the specimen. Lastly, the evolution
and distribution of local σe-εt will be discussed.

5.2.1 Zone of XRD and DIC measurement
For sample 2, a more complete zone of XRD were defined. The observation area of
DIC and XRD is 17.1 × 7.76 mm2 and 14 × 6 mm2 respectively (Fig.5.38).

Figure 5.38: ZOI of sample 2.

The grain geometry of sample 2 is recalled in Fig.5.39-5.40) on both sides of the
sample to facilitate the data analysis.

Figure 5.39: Front view of sample No.2
with its grains numbered.

Figure 5.40: Back view of sample No.2
with its grains numbered.
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5.2.2 Tensile tests
Similar to sample 1, sample 2 was also subjected to a symmetric loading in the x-
direction. Four sets of loading n© and unloading n’© were conducted at about every
1% of total strain. Photos were taken throughout the entire tensile test and εt was
calculated using Correli_Q4. The mean strain εt was averaged over the useful part
of the specimen. The mean tensile stress measured from the load cell during the
test was plotted in Fig.5.41 versus the mean strain.

Figure 5.41: Stress-strain curve. The micro tensile machine was stopped once at 1©
εtxx = 0.0081, 1’© εtxx = 0.0072, 2© εtxx = 0.0188, 2’© εtxx = 0.0181, 3© εtxx = 0.0297,
3’© εtxx = 0.0288, 4© εtxx = 0.0423 and 4’© εtxx = 0.0412.

5.2.3 Total strain field measurement εt

5.2.3.1 Map of εt

The validated area of total strain εt field of sample 1 is 15.99 × 6.85 mm2. The
in-plane components εtxx and εtyy of loading 1©, 2©, 3© and 4© are plotted at the
same scale in Fig.5.42.

Recalled that the element size of 32 pixels was used and the spatial resolution
of εt calculated is 362.4 µm.

As shown in Fig.5.42, εtyy localised to a large extent grain by grain and the
strain gradients are smooth. For εtxx, the strain localised in grains 5 and 6. Intense
strain gradients can be seen in grains 1, 3, 4 and 7 (indicated with black arrows
in Fig.5.42) and the gradient increases with the imposed loading. The magnitude
of the axial strain is much higher in the middle and on the right top corner of the
sample than on the two ends. Although the grains have high SF values on both
sides in the middle of the sample (e.g. grain 1 has a SF value of 0.49 and grains 1b
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Figure 5.42: Map of εtxx at level 1© (εtxx = 0.0081, εtyy = -0.0012), 2© (εtxx = 0.0188,
εtyy = -0.0031), 3© (εtxx = 0.0297, εtyy = -0.0047) and 4© (εtxx = 0.0423, εtyy = -0.0068).

and 4b have SF value of 0.47 and 0.45 respectively), it is not sufficient to explain
the localisation of strain. For example, the left hand side of the sample do not have
strain localised but there are grains with SF values >0.46 (e.g. grains 4, 7, 2b, 16b
and 4b). On the right hand back side of the sample, however, strain localised at
the grain with weaker SF values (e.g. grain 14b). For these areas which cannot
explained using SF values, it may be due to incompatibilities between grains of
deformation. Even if they have close SF values, these grains probably did not have
the same directions of slip planes, so if one deforms plastically along this plan, it
leads to high stresses in the others. In order to further confirm this hypothesis, a
finite element calculation and/or analysis of well-oriented slip system are proposed.
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Figure 5.43: Map of εtxx at level 4© with grain boundaries of sample back side
superimposed (εtxx = 0.0423)

a. Front side
Schmid Number of activated

Grain factor slip system
1 0.4922 1
3 0.4640 1
4 0.4673 1
5 0.3266 1
6 0.4879 1
7 0.4648 1

b. Back side
Schmid Number of activated

Grain factor slip system
1b 0.4726 1
2b 0.4683 1
3b 0.4211 1
4b 0.4687 1
5b 0.4615 1
6b 0.3897 1
7b 0.4500 1
8b 0.4677 1
9b 0.3896 1
10b 0.4564 1
11b 0.3583 1
12b 0.4247 1
13b 0.3739 1
14b 0.4513 1
16b 0.4798 1

Table 5.9: Schmid factor of each grain of both sides of sample 2.

5.2.3.2 Uncertainty of the total strain tensor σεt

The error of the total strain field σεt is shown in Fig.5.44), it had a mean value of
−4.9× 10−6 with a standard deviation of 2.2× 10−4at each measuring point.

Figure 5.44: Error of total strain field σεt .
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5.2.4 Elastic strain field measurement εe

5.2.4.1 Map of εe

Fields of components εexx and εeyy obtained at levels 1©, 2©, 3© and 4© are shown in
Fig.5.45. In order to analyse the evolution from one loading level to another, the εe
fields are displayed with the same scale. The mean values εe of elastic strain were
listed in Tab.5.10.

Figure 5.45: Maps of εe displayed with the same scale at loading level 1© (εexx = 0.8
× 10−3, εeyy = -2 × 10−5), 2© (εexx = 1.1 × 10−3, εeyy = -3.5 × 10−5), 3© (εexx = 1.2
× 10−3, εeyy = -4.8 × 10−5) and 4© (εexx= 1.4 × 10−3, εeyy= -5 × 10−5).

Mean value of εe (× 10−3)
Loading level εexx εeyy εezz εeyz εezx εexy

1© 0.8 -0. 0.3 -0.1 0 -0.1
2© 1.1 -0. -0.4 -0.1 0 -0.1
3© 1.3 -0. -0.4 -0.1 0 -0.1
4© 1.4 -0.1 -0.5 0 0 0

Table 5.10: Mean value of εe of sample 2 at each successive loading level

In Fig.5.45, similarly to εt results, zones with higher/lower elastic deformation
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were observed on the sample surface. εexx is not homogeneous inside the grain.
For example, higher strain values were found on the right of the sample and the
intensity increases with the imposed loadings. In grain 3, intense strain gradients
are seen and the localised strain in this area belongs to grain 10b and a small part
of grains 1b and 9b (Fig.5.46). On the left hand side, lower strain values are found
especially in grains 1, 4 and 7 and smooth strain gradients exist in the middle
of these grains. If looking to the sample back side, the zone with lower strain
values were localised in grains 2b, 3b, 4b and 6b. This heterogeneity increases
with the imposed loading. Also, the evolution of strain hardening can be clearly
observed inside crystals throughout the increase of loading, e.g. when the specimen
macroscopically entered plastic deformation, the arrows (1) and (2) show the zones
inside the same crystal with very low εexx values than other zones at 1©. However,
once the sample was pulled up to 2©, strain hardening occurred at these two points
and higher εexx values were found at 2©, 3© and 4©.

Figure 5.46: Map of εexx at level 1© and 4© with grain boundaries of sample back
side superimposed.

5.2.4.2 Uncertainty estimation of the elastic strain tensor σεe

The maps of σεe at strain level 1© and 4© are shown in Fig.5.47.The mean values of
σεe and its standard deviation value (Std) are listed in Tab.5.11-5.12.

εe uncertainties σεe are always smaller than 10−5. The magnitudes of σεe are
observed almost grouped by grain as the value of σεe is related to the selected
diffraction planes (Chapter 3 §.3.6.2) while the chosen diffraction planes were dif-
ferent from one grain to another. Moreover, the point where uncertainty is locally
high are mostly close to a grain boundary. Similar to sample 1, a total error range
in σεe smaller than ±3 × 10 −5 is implied considering a Gaussian distribution.

Comparing with σεe quantified in sample 1, the values are similar at 1© but lower
σεe value were obtained at 3©. Actually, during XRD measurement for sample 2,
the final peak position (φ, ψ and 2θ) converged at the previous loading was used
as the initial positions of XRD scanning at the next loading. This modification
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Figure 5.47: Map of σεe at level 1© and 4©.

Mean value of σεe (× 10−6)
Loading level σεe

xx
σεe

yy
σεe

zz
σεe

yz
σεe

zx
σεe

xy

1© 7.6 7.5 9.9 5.9 7.8 7.2
2© 7.7 7.4 10 5.9 7.8 7.2
3© 8.4 8.2 10.7 6.5 8.4 8
4© 8 8 11 6 8 8

Table 5.11: Mean value of σεe of sample 2 at each successive loading level.

Standard deviation of σεe (× 10−6)
Loading level Std(σεe

xx
) Std(σεe

yy
) Std(σεe

zz
) Std(σεe

yz
) Std(σεe

zx
) Std(σεe

xy
)

1© 2.2 1.3 3.8 1.2 2.5 1.8
2© 2.2 1.4 3.8 1.3 2.5 1.9
3© 3 2.9 4.5 2.4 4 2.6
4© 3 3 4.5 2.5 4 2.7

Table 5.12: Standard deviation of σεe of sample 2 at each successive loading level.

allows ones to better relocate the new position of diffraction planes during plastic
deformation so the number of diffraction planes is less reduced. As a result, σεe at
3© in sample 2 is lower than that of sample 1.

5.2.5 Stress field σe calculation
The maps of stress σe at each strain level are shown in Fig.5.48. Averaged values
of σe at each strain level are calculated in Tab.5.13. The stress field is almost
homogeneous at loading level 1©, end of the elastic state. Since elasticity is isotropic
in aluminium, there is no difference of stress distribution from a crystal to another.

Similarly, in sample 2, the out-of-plane components of stress tensor should be
zero to verify the condition on free boundaries in the experimental situation. How-
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Figure 5.48: Maps of σe displayed with the same scale at loading level 1© (σexx =
69.5 MPa, σeyy = 24.2 MPa), 2© (σexx = 94.9 MPa,σeyy = 38 MPa), 3© (σexx = 108.3
MPa, σeyy = 39 MPa) and 4© (σexx = 114.4 MPa, σeyy = 39.9 MPa).

Mean value of σe (MPa)
Loading level σexx σeyy σezz σeyz σezx σexy

1© 69.5 24.2 7.9 -3.5 1.0 -4.2
2© 94.9 38 17.2 -3.3 0.3 -4.8
3© 108.3 39 20 -2.8 -0.7 -3.8
4© 114.4 39.9 17.6 -2.6 0.1 -2.3

Table 5.13: Mean value of σe of sample 2 at each successive loading level

ever, the non-negligible values were obtained. For sample 2, if ν is calculated using
the obtained εeyy/εexx and εezz/εexx at loading level 1© and 2©, a mean value of ν = 0.29
with a standard deviation of 0.23 was obtained. Using nu = 0.29 in Eq.5.1 gives
negligible values in out-of-plane components of stress tensor, but the calculated σexx
(in Tab.5.14) are still lower than the mean stress measured from the load cell dur-
ing the test. Therefore, the literature value of ν = 0.33 was kept in Eq.5.1. More
investigation and discussion will be needed to answer the question of out-of-plane
components in the future.
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Mean value of σe (MPa)
Loading level σexx σeyy σezz σeyz σezx σexy

1© 64.2 17.4 0.7 -3.6 1 -4.3
2© 86.8 28.1 6.6 -3.4 0.3 -4.9
3© 99.4 27.8 8.2 -2.9 -0.7 -3.9
4© 105.2 28.4 5.4 -2.7 -0.1 -2.4

Table 5.14: Mean value of σe calculated using ν = 0.29 at each successive loading
level

5.2.5.1 Uncertainty estimation of the stress tensor σσe

The maps of uncertainty of the stress field σσe at strain level 1© and 4© are shown
in Fig.5.49. The mean value and the standard deviation (Std) of σσe are listed in
Tab.5.15 and Tab.5.16. σσe are always smaller than 3.5 MPa.

Figure 5.49: Map of σσe at levels 1© and 4©.

Mean value of σσe (MPa)
Loading level σσe

xx
σσe

xx
σσe

xx
σσe

xx
σσe

xx
σσe

xx

1© and 2© 1.7 1.7 1.8 0.3 0.4 0.4
3© and 4© 1.8 1.8 2 0.3 0.4 0.4

Table 5.15: Mean value of σσe of sample 2 at each successive loading level

Standard deviation of σσe (MPa)
Loading level Std(σσe

xx
) Std(σσe

xx
) Std(σσe

xx
) Std(σσe

xx
) Std(σσe

xx
) Std(σσe

xx
)

1© and 2© 1.7 1.7 1.8 0.3 0.4 0.4
3© and 4© 0.5 0.5 0.6 0.1 0.2 0.1

Table 5.16: Standard deviation of σσe of sample 2 at each successive loading level
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5.2.6 Discussion
5.2.6.1 Evolution and distribution of local σe-εt

Since a rich local mechanical response (4 loadings and 3 unloadings) were obtained
for the second sample, which is much more than the previous one (2 loadings), in
this part, the evolutions and the distributions of local stress σe with the associated
total strain εt at each point of XRD measurement are plotted in two separated
images — Fig.5.50 contains local σe-εt at loading level 1© (εtxx = 0.0081) (marked
as ‘4’) and 3© (εtxx =0.0297) (marked as ‘�’) while Fig.5.51 contains the local
results at loading level 2© (εtxx = 0.0297) (marked as ‘+’) and 4© (εtxx = 0.0288)
(marked as ‘©’). Filled symbols of ‘4’, ‘�’, ‘?’ and ‘©’ correspond to the mean
value σe-εt of loading level 1©, 2©, 3© and 4© respectively. The εt averaged over the
useful part of the specimen against the mean tensile stress σe measured during the
test is plotted (in straight line) in the same figure as reference.

Figure 5.50: Distribution of the local σe-εt at each point of measurement of XRD
on the sample 2 at loading level 1© (εtxx = 0.0081) and 3© (εtxx = 0.0297).

In Fig.5.50-5.51, the averaged stress value in loading direction σexx at each loading
level are close to the mean stress captured by the load cell. Thanks to a nearly full
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Figure 5.51: Distribution of the stress-strain at each point of measurement of XRD
on the sample 2 at loading level 2© (σtxx = 0.0188) and 4© (σtxx =0.0423). The
position of points 1, 3, 79 and 94 were indicated on the map of σexx at level 4© σexx
= 114.4 MPa.

sample surface (with 105 points of XRD measurement) characterized by XRD this
time, the averaged stress value in this part can represent the global behaviour of
sample 2. The scattering of local σe-εt increases throughout the loadings. To better
discuss the evolution of the local stress-strain at each loading level, the local σe-εt
values of 4 measured points are plotted in Fig.5.51. The position of the selected
points are indicated in the same figure.

Points 1 and 3 remain at very low σe value from initial state to 3©. At 4©, σe
of point 3 stays at low value while strain hardening begins for point 1 and its σe
climbs to a value close to the mean σe of sample 2. Point 79 shows a very high σe
value at 3© and 4©. Before 3©, its σe value is around the mean value at each loading
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level. Point 94 has a relatively high σe value among the other points throughout
the tensile loading.

The corresponding εt values of these four points were lower than the others
throughout the tensile loading. Considering also the points with high εt values, five
points of XRD measurement were picked from grain 1 and 3 (Fig. 5.52) and the
corresponding local σe-εt curves were plotted (Fig.5.53 and Fig.5.54). The local
σe-εt curves of the selected points also enable us to understand if the evolution of
local σe-εt of each point of XRD measurement shares the same style as the average
σe-εt performance does.

Figure 5.52: The position of 5 selected points of XRD measurement were indicated
on the map of σexx at 4© (σexx = 114.4 MPa) with grain boundaries of sample front
and back side superimposed.

In Fig.5.53, the work hardening rate at point 79 is the highest among the points
38, 58 and 79. At 1©, when the specimen macroscopically entered plastic deforma-
tion, the stress is very low at point 79 but high at point 38 and 58. However, once
the sample was pulled up to the second loading level ( 2© average εtxx = 0.0188), a
strain hardening occurred at point 79. Since then, point 79 showed a more signifi-
cant strain hardening rate than point 38 — higher σe value was required for almost
the same associated εt value. For the point 58 in grain 3 and the point 38 in grain
1, the shapes of σe-εt curves are similar to the average σe-εt behaviour. Meanwhile,
point 38 is more likely to deform with lower applied stress comparing with point 58.
In fact, SF value of the grains containing these two positions can be used as a clue
of this observation. The point 58 belongs to grain 3 with SF = 0.464 at the front of
the sample, grain 9b and grain 10b with SF = 0.3896 and 0.4564 respectively at the
back of the sample while the point 38 belongs to grain 1 with SF = 0.4922 at the
front of the sample, grain 1b with SF = 0.4726 at the back of the sample. As an
overall performance, the SF values at the point 38 are all close to 0.5 which is more
favourable to activate the slip system. Thus, a high εt value with low associated σe
throughout the tensile loading for this point can be explained.

Being different from the σe-εt curves of previous discussed points or the averaged
σe-εt curve, in Fig.5.54, points 82 and 104 in grain 1 are likely to deform with lower
applied stress and a local ultimate tensile strength was observed at 3©. Actually,
the SF values of the grains around points 82 and 104 are very close to 0.5 (within
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Figure 5.53: Evolution of local σe-εt of point 38 and 79 in grain 1 and 58 in grain
3 on the sample 2 during 4 loadings and 3 unloadings.

Figure 5.54: Evolution of local σe-εt of point 82 and 104 in grain 1 on the sample
2 during 4 loadings and 3 unloadings.

the range of 0.4687-0.4922), their slip system were likely to be activated during
tensile loading and further plastified at 4©.

5.2.6.2 Mechanical response of sample 2 during unloading

εexx fields calculated from XRD data at 2©, 3© and 4© and εtxx fields measured using
DIC during the elastic part of the unloadings 2’©, 3’© and 4’© are shown with the
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same scale in Fig.5.55. For further discussion, a map of εexx at 4© and a map of
εtxx at 4’© with grain boundaries of sample back side superimposed were plotted
in Fig.5.56. During εtxx calculation, the size of subset was enlarged to 64 pixels
(spatial resolution = 64 pixels × 10.2 µm/pixels = 652.8 µm) due to the sensibility
of background noise.

Figure 5.55: Map of εexx at 2©, 3© and 4© and map of εtxx measured during the
elastic part of the unloadings 2’©, 3’© and 4’©.

Figure 5.56: Map of εexx at 4© and map of εtxx at 4’© with grain boundaries of sample
back side superimposed.

It is observed that these two strain fields present large similarities, in terms of
distribution and magnitude of the axial strain ([2 × 10−4, 2 × 10−3]).

The distribution of local σe-εt at 3© (marked as ‘x’) (εtxx = 0.0297) and 3’©
(marked as ‘©’) (εtxx = 0.0288) are plotted in Fig.5.57. Filled symbols of ‘?’ and
‘©’ correspond to the mean value σe-εt of loading level 3© and 3’© respectively.
Dashed lines were put in the same figure to indicate the local behaviour of the same
measured points.
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Figure 5.57: Distribution of the local σe-εt at 3© (σtxx = 0.0297) and 3’© (σtxx =
0.0288).

The scattering of the local σe-εt at 3© and 3’© remains almost unchanged. The
averaged stress value in loading direction σexx at 3© and 3’© are close to the mean
stress captured by the load cell. At 3’©, a significant variability of local stresses is
observed, reflecting the fact that macro stress is almost zero. We can see that all
the points do not have an unloading to the same extent. Variability exists among
∆σexx reached during the unloading 3©→ 3’©. The variation ∆σexx is imposed by the
local mechanical condition around the point observed.

Regarding the slope of the unloading curves (dashed lines), it is obvious that the
Young’s modulus of aluminium cannot be found as the relative uncertainty in σe and
εt measurement is too high in the tests. However, if we exclude the measured points
for which the slopes are clearly unrealistic, the average value of the unloading slope
is 103 GPa. This result is quite reasonable by taking the measurement uncertainties
into account.
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5.3 Conclusion
We have presented and discussed in this chapter the experimental results of tests
carried out on samples 1 and 2.

Both the oligo-crystalline samples were subjected to simple tensile loadings up
to εt about 0.4%. There were two loading levels for sample 1 (εtxx = 7.4 × 10−3 and
0.0356) and four loading levels (εtxx = 0.0081, 0.0188, 0.0297 and 0.0423) and three
unloading levels (εtxx = 0.0181, 0.0288 and 0.0412.) for sample 2.

At each successive loading level, εt-εe fields on sample surface were measured
in situ in the X-ray diffractometer. For sample 1, the area with validated data of
εt and εe field is 15.99 × 6.53 mm2 and 14 × 3 mm2 respectively. For sample 2,
the area with validated data of εt and εe field is 15.99 × 6.85 mm2 and 14 × 3
mm2 respectively. σe fields were calculated from εe using the theoretical value of
aluminium mechanical properties, i.e. Young’s modulus E = 70 GPa and Poisson’s
ratio ν = 0.33.

Maps of εt, εe and σe fields were displayed with the initial grain geometry su-
perimposed. Localisation of strain or stress were observed and this heterogeneity
increases with the imposed loading. Moreover, the work hardening inside crystals
was observed. The corresponding uncertainties during each measurement were also
quantified. The general uncertainty in εt and in εe were ±4× 10−4 and ±3× 10−5

respectively. The uncertainties in σe were smaller than 3MPa.
In order to better understand the experimental results, for both sample 1 and 2,

the evolution and the distribution of local stress σe with the associated total strain
εt at each point of XRD measurement were plotted and discussed. For sample 1, the
average stress σexx calculated using εe value at loadings were greater than the average
stress captured by the loading cell. It is because εe measurement were conducted
on only one half of the entire active zone of the sample 1 in order to have a rapid
validation of the methodology. σexx in this part could thus be twice as high as in
the area not measured by XRD. For sample 2, σexx were close to the average stress
captured by the loading cell as nearly full of the sample was characterised by XRD.
For both the samples, the scattering of local stress σe-εt was large and it increases
during the loadings. The observation emphasises the research interest in full-field
measurement of a material at grain scale as one measurement per crystal cannot
represent the overall local mechanical response of a material. In addition, εe was
also compared with εt measured during the elastic part of the loading/unloading
and the validity of the elastic strain field measured by XRD was confirmed.





General Conclusion and
Perspective

In this chapter, a general conclusion is given and several perspectives are suggested
afterwards to close this manuscript.

General Conclusion
This thesis aims at measuring stress-strain (σ − ε) relationship at the grain scale
in a polycrystalline sample. Therefore, an experimental method was developed
and its corresponding protocol was also validated to obtain two distinct mechanical
measurements simultaneously during a tensile test.

From literature review, a solid background about our research concerns was
depicted. The mechanical quantities, total εt and elastic strain εe fields of a mate-
rial under loading, were ultimately short-listed as local information thanks to their
simplicity as well as accessibility during measurement. Digital image correlation
(DIC) and X-ray diffraction (XRD) were selected respectively for εt and εe mea-
surements. It is because DIC method is sufficiently sensitive (up to ±4× 10−4) to
small total strain. Also, the auxiliary speckle is easy and practical to deposit on
studied samples. The required apparatus is also simple — only a camera installed
perpendicularly in front of the sample surface is needed to be integrated with εe

measurement. Meanwhile, XRD is a direct, non-destructive and effective method
to measure the evolution of inter-reticular plane distance dhkl as local elastic strain
of a crystal under loading. Also, XRD still enables the measurement under the
rotation of grain when sample is deformed plastically.

During material selection and sample preparation, samples in aluminium al-
loy (5052) with a maximized useful zone of 8×18 mm2 and thickness of 0.55 mm
have been used. We chose aluminium as the studied material because of its sim-
ple microstructure and mechanical properties (e.g. easy to obtain large grains via
recrystallisation, small Young’s modulus and slow relaxation) favouring the local
strain field measurement. In order to achieve strain measurement at the grain scale,
the samples were submitted to a specific recrystallisation procedure to obtain grain
sizes of about 5mm. For each sample, there are about 10-12 grains at each side
and 2 grains in the thickness. The grain geometry of the two studied samples were
captured by optical microscope and the crystal orientations were determined using
XRD.

For XRD measurement, the X-ray diffractometer used in experiment and its op-
tical path during diffraction were presented. The experimental procedure designed
for εe measurement using XRD was introduced in details. A grid resolution of 1
cm x 1 cm for XRD was defined on the sample surface. Each crystal was ensured
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to contain about 10 points of measurement so that a gradient of elastic strain can
be measured. The arrangement of the grid resolution also enriches the insight of
local response of the sample during the deformation, rather than using only one
measurement per crystal to represent local information. The technique of launch-
ing XRD in a single crystal was presented as well because diffraction signal can
only be obtained under two conditions: the normal of the analysed {hkl} planes is
oriented correctly (φ, ψ and 2θ)hkl_grain with respect to X-ray source and Bragg’s
law is satisfied. The position (φ, ψ) can be calculated using the grain orientation
(ϕ1, Φ, ϕ2)grain.

For εe calculation, the First Ortner Method was applied. This method makes
use of the relationship between evolution of diffraction planes δdhkl and the lattice
coordinates of at least 6 analysed {hkl} planes to determine the local elastic strain.
In order to improve the precision of εe calculation, the combinations of the chosen
{hkl} planes should give a minimum uncertainty and allow the accessibility of XRD
under existing experimental circumstances. As a result, 13 {hkl} planes per point
of measurement were selected for XRD.

An experimental methodology for diffraction peak measurement was developed
to enhance εe measurement using XRD. After understanding the impact brought to
the shape of the diffraction peak by different scanning axes of φ, ψ and 2θ and the
collimator, a Soller slit was first added to make the diffraction signal focused (to
avoid the ambiguous situation in ψ direction with a broad maximum region). Then,
an iteration process was designed to optimise φ, ψ and 2θ successively around the
peak’s initial position determined by the initial texture. During plastic loading, the
evolution of mosaicity in crystal is inevitable and thus the beam size was narrowed
down to 0.1 × 0.1mm2 to cope with this situation. Finally, in order to accurately
determine the final position of 2θ peak for εe calculation, the measured 2θ were
simulated by decomposing twoKα1 andKα2 peaks after understanding the nature of
X-ray source. An analytical algorithm was introduced to quantify the uncertainties
of εe (±3× 10−5) measured by XRD. This method was validated by a Monte Carlo
method for its feasibility.

For DIC measurement, the analysing spatial resolution of 32 pixels (362.4 µm)
was set regarding to the quality of speckle pattern applied on sample surface.

An experimental apparatus was developed in order to integrate the micro-tensile
machine and camera inside a diffractometer for in situ measurements. Additional
equipments, like wire winding, pulley system and lighting system, were attached to
the set-up so as to facilitate the XRD measurement and to achieve better image
quality. After considering the device’s performance and the area of sample surface
accessible by the apparatus, ZOI of 17× 8 mm2 and 15× 8 mm2 were defined for
DIC and XRD measurement respectively. Combining the XRD measurement in
previous chapter with DIC measurement, an experimental protocol was defined for
in situ full-field measurements. XRD measurement was first conducted at sample’s
initial state. Then, images on the sample surface were taken regularly through-
out the mechanical loading. Once the sample was pulled up to an assigned level,
XRD was conducted on sample’s surface again during relaxation. The maximum
(0.16×0.38 mm2) and minimum area (0.13×0.1 mm2) spotted by XRD were also
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determined according to the limited movement of goniometer during the XRD mea-
surement. The phenomenon of relaxation of the material tested was quantified and
taken into account during the in situ measurements.

Two samples with around twenty-five grains were subjected to simple tensile
loadings up to εt about 0.4%. They were deformed every 0.1% and, then, total
εt and elastic strain εe fields were measured by digital image correlation technique
and X-ray diffraction respectively at successive loadings. σe fields were calculated
from εe using Young’s modulus E = 70 GPa and Poisson’s ratio ν = 0.33. Maps
of εt, εe and σe fields were displayed with the initial grain geometry superimposed.
Localisation of strain or stress were observed and this heterogeneity increases with
the imposed loading. Moreover, visualisation of the work hardening inside crystals
was made. The corresponding uncertainties during each measurement were also
quantified. The general uncertainty in εt and in εe were ±4× 10−4 and ±3× 10−5

respectively. The uncertainties in σe were smaller than 3MPa. In order to better
understand the experimental results, the evolution and the distribution of local
stress σe with the associated total strain εt at each point of XRD measurement
were plotted and discussed. For both the samples, the scattering of local stress
σe-εt was large and it increased during the loadings. The findings underlines the
importance in full-field measurement of a material at grain scale since one local
measurement per crystal cannot represent the overall local mechanical response of
a material. Besides, εe was also compared with εt measured during the elastic part
of the loading/unloading and the validity of the elastic strain field measured by
XRD was confirmed.

The validated experimental methodologies and results provide a basis for future
development of a crystal plasticity model that better accounts for microstructural
effects.

Perspective
Several perspectives can be considered towards our developed experimental method.

The first aspect is about the improvement of the measuring method and its
acquisition speed. During the experiments, a majority of the measuring time was
dedicated to X-ray measurement due to the fact that the corresponding signal de-
tection only relied on the 1-D punctual detector in our goniometer. Once elastic
strain deformation takes place, the diffraction plane distance changes and thus time
has to be spent plane by plane for searching the new position of the diffraction peak.
Therefore, improvement in experimental apparatus or X-ray method can be sought
so as to shorten the measuring time of elastic strain field. For example, the fea-
sibility of using a 2-D detector together with the punctual one should be studied.
In this way, after each deformation, the new diffraction peak position of 13 {hkl}
planes per point of XRD measurement can be first approximately located by the
2-D detector at the same time. Then, the precise position of each diffraction peak
can be precisely sought by the punctual detector.

And now, once the goal of collecting local mechanical response was achieved, the
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second step of the work, as presented in chapter 1, should be to consider the way of
effectively applying the super rich database for crystal plasticity models identifica-
tion. The results can help validating the hypothesis used during the construction of
the constitutive equations. Since the local information collecting methods during
the tensile loading was validated, improvements of test machine and specimen can
be searched to cater for other behaviour observations, e.g. for fatigue investigation,
the evolutions of the local magnitudes (total strain, plastic strain, elastic strain and
stress) should be quantified during the cycling loadings.

Last but not least, application of this method can be further developed for under-
standing specific mechanical behaviour of other materials or to solve the coupled
multi-physics problems. For instance, for shape memory alloy (SMA) [Hirsinger
et al. (2004); Fall et al. (2016)], the accessibility of local σ−ε during stress-induced
martensitic phase transformation enables us to conclude a more accurate mechanical
condition for local phase transformation. Other examples are magnetic materials
[Daniel et al. (2015)] or piezoelectric materials [Airoldi et al. (1991)], if we want
to accessing local σ − ε during electrical resistance measurements (as a function
of temperature) for better understanding the coupled magneto-elastic behaviour or
having local σ−ε together with strain-induced magnetic field for a further insight in
the coupled electrical-mechanical behaviour, the challenge of related apparatus in-
stallation in the goniometer without disturbing both XRD and magnetic/electrical
current measurements has to be overcome in the first place.
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Figure 58: Drawing of the micro-tensile machine operating in X-ray diffractometer.
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Figure 59: Maximum active zone of sample surface during XRD measurement.





Drawing of the sample
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Figure 60: Drawing of the sample.



Full path of X-ray diffraction
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No. Components Reference  Image Description 

 
X-ray 

Diffractometer 
PW3040/60 

X'Pert 
Pro MRD 

 

 

1 
Source tube 

 
PW3376/00 

Ceramic 
tube Co 

LFF 
(LFF- Long 

and fine 
focus) 

 

 1.8kW for X’Pert system 

 Supporting 2 types of focus: 
a. linear focus  
b. punctual focus 

 Change of focus by simple 
rotation 

 Auto-recognition of focus and 
anodes 

 2 windows 

 Maximum tension (kV) = 40 

 Maximum current (mA) = 45  

 Normal powder diffraction work on 
specimens with large amounts of 
Fe. Optimum resolution and high 
intensity. 

2 

Beam 
attenuators 

 

Cu 0,1mm 

 

 For mirror with Cu radiation. 
Enables large dynamic range.  

Cu 0,2mm 

Beta filter kits PW3151/00 
Beta filter in 

Iron 

 

 Beta filter for Co radiation. 

3 Lens PW3146/60 
Poly-

capillary 
lens 8 mm 

 

 Part of PW3146/00 or 
PW3146/60.  

 Incident beam.  

 Poly-capillary lens with diameter 
of 8 mm.  

 For stress, texture and parallel 
beam phase analysis.  

 For Cu, Co, Fe and Cr radiation. 

4 Crossed slit PW3084/62 

Crossed slit 

Collimator 

(knob 

adjustable) 

 

 Support horizontal and vertical 
adjustment 

 Incident beam. Acts like a 
divergence slit combined with a 
mask. Continuously adjustable 
between 0 mm and 10 mm.  

 Precision up to 0.02mm 
 

5 Wafer holder PW3061/22 
4inch wafer 

holder 

 

 Stage accessory for the MRD 
Cradle. 

6 & 
7 

Collimator PW3098/27 

Parallel 
plate 

collimator 
(0,27°)  

 Diffracted beam.  

 With Soller slit holder.  

 For low resolution phase analysis 
on thin film samples and samples 
with rough surfaces and 
reflectivity analysis. 

8 Detector PW3011/20 

Xe 
proportional 

detector 
(Miniprop. 

Large 
Window) 

 

 Proportional detector  
(Xe gas, window: 20x24 mm).  

 For all applications except with 
Mo, W and Ag radiation. 

Figure 61: A list of the components of X-ray diffractometer. Throughout the entire
XRD process (from XR being emitted up to being detected during the diffraction
process), each component which is passed by the beam is characterized and recorded
in order.



Uncertainty estimation of the
elastic strain tensor σεe -

Monte Carlo Method

The σεe calculated by the analytical method was also compared using Monte Carlo
Method. A number (N) of random errors is drawn within the range of ∆θ(±0.0025◦)
in normal distribution for each diffraction angles used in εe calculation. εe_N are
calculated using Eq.(3.52).

h k l 2θ(◦) (εtxx=0) 2θ(◦) (εtxx=0.0074)
-2 0 2 77.1755+∆θN14 77.1509+∆θN1
-2 2 0 77.1092+∆θN15 77.1746+∆θN2
0 -2 2 77.0938+∆θN16 77.1920+∆θN3
0 2 2 77.1310+∆θN17 77.1572+∆θN4
2 0 2 77.1439+∆θN18 77.1571+∆θN5
-3 1 1 93.9713+∆θN19 93.9495+∆θN6
-1 -1 3 93.9742+∆θN20 93.9894+∆θN7
-1 3 1 93.8989+∆θN21 94.0022+∆θN8
1 -1 3 93.9372+∆θN22 93.9911+∆θN9
1 1 3 93.9613+∆θN23 93.9695+∆θN10
1 3 1 93.9305+∆θN24 93.9867+∆θN11
-2 2 2 99.5601+∆θN25 99.5814+∆θN12
2 2 2 99.5495+∆θN26 99.5827+∆θN13

Table 17: ∆θNn=1,...,26 are generated for 13 measured planes. Then, they are imposed
for each measured diffraction angles for calculating εe_N .

Recall Eq.(3.52):

εem=1,...,6 =




∑n

i=1 B1i(sin2θi−sin2θn+i)
2
∑n

i=1 B1isin2θn+i∑n

i=1 B2i(sin2θi−sin2θn+i)
2
∑n

i=1 B2isin2θn+i∑n

i=1 B3i(sin2θi−sin2θn+i)
2
∑n

i=1 B3isin2θn+i∑n

i=1 B4i(sin2θi−sin2θn+i)√
2
∑n

i=1 B2isin2θn+i

√
2
∑n

i=1 B3isin2θn+i∑n

i=1 B5i(sin2θi−sin2θn+i)√
2
∑n

i=1 B1isin2θn+i

√
2
∑n

i=1 B3isin2θn+i∑n

i=1 B6i(sin2θi−sin2θn+i)√
2
∑n

i=1 B1isin2θn+i

√
2
∑n

i=1 B2isin2θn+i




(3.52)

Regarding to the stability of the calculating system (Fig.62), N=100000.
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Monte Carlo Method

Figure 62: Stability of the calculating system = σ(εe_N − εe)/N .

The calculation is first made for both 13 and 6 measured planes. The uncertainty
σεe calculated for 13 and 6 measured planes using the analytical method (Eq.3.60
and 3.62 respectively) are accurate to 10−6 to those calculated by Monte Carlo
method. Therefore, the analytical method presented can be used to quantify the
σεe during εe measurement.
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Figure 63: Σεe calculated for 13 measured planes by Monte Carlo Method.
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Appendix . Uncertainty estimation of the elastic strain tensor σεe -

Monte Carlo Method

Figure 64: Σεe calculated for 6 measured planes by Monte Carlo Method.



Drawing of the supplementary
elements for experimental setup

assembly
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Appendix . Drawing of the supplementary elements for experimental

setup assembly

Figure 65: Mounting system of the micromachine on the wafer holder in goniometer
- upper support.
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Figure 66: Mounting system of the micromachine on the wafer holder in goniometer
- lower support.
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Appendix . Drawing of the supplementary elements for experimental

setup assembly
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Figure 67: Wire winding to tide up the connecting cable (3D printing in polymer).



Experimental Potocol -
complementary information

.1 Position of the sample center in goniometer
In order to correctly perform XRD measurement on the specified analysing points
on the sample surface, the position of the sample center with respect to the X-
ray beam in the goniometer is taken as reference (Fig.68). The reference position
(Tab.19) is used for programming diffractometer control file.

Figure 68: Position of the sample inside the micro-machine with respect to the
X-ray beam in the goniometer.

Xgoniometer Ygoniometer Zgoniometer
1.85mm -0.5mm 0.35mm

Table 18: The position of sample center in goniometer.

.2 Position of the sample on the goniometer dur-
ing DIC

During εt measurement, the specimen surface has to be first positioned perpendic-
ularly to and in front of the digital camera in the goniometer (Tab.19).
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Xgoniometer Ygoniometer Ψ Φ 2θ Offset
-0.5mm -35mm 11.16◦ 45◦ 70◦ 43◦

Table 19: The position and the orientation of the sample in the goniometer during
DIC.

.3 Restriction of the movement of goniometer dur-
ing in-situ measurement

The description of the X-ray diffraction apparatus and XRD measurement are given
in §.3.2. During XRD, the diffraction path should not be blocked by any component
of the experimental setup. Meanwhile, the movement of every axis of the goniometer
is also restricted to prevent collisions between machine components and the camera
in the working area.

Axis Xgoniometer Ygoniometer Zgoniometer Ψ Φ 2θ
Min -8mm -5mm 0.35mm 0◦ 0◦ 70◦
Max 8mm -5mm 0.35mm 75◦ 360◦ 110◦

Table 20: Restriction of the movement of goniometer during in-situ measurement.

.4 In-situ measuring procedure of XRD and DIC
Once the oligo-crystalline samples are ready and their initial microstructure are
known, the in-situ measurement under loading can be executed.

1. According the zone of analysis/interest (ZOI) of the samples for DIC and
XRD measurement, the grains to be diffracted are listed and the position of
13 diffraction planes (φ,ψ){hkl}_grain are calculated.

2. The value of the loading cell is initialized before fixing the sample inside the
micro-machine. After the fixation, the extension value is initialized. The
extension is set to zero and the synchronous data recording (file streaming) is
started at sampling rate of 5s.

3. Take the first photo as reference is taken.

• format: .CR2 and .tiff

• Explosure time: 1/30s

• focal length/entrance pupil diameter: f/8)

• resolution: 10.2µm/pixel
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• distance to the sample surface: 180mm

4. Regarding to the location of ZOI on the grain, the goniometer control file is
programmed in format of .xml. The XRD measurement is first conducted at
sample’s initial state. For each XRD measurement:

(a) Starting with the initial φ(hkl), ψ(hkl) and 2θ(hkl)

(b) Optimisation of orientation - peak position of (φ,ψ)(hkl)

• Range of scanning : Texture scanning (φ± 7.5,ψ ± 7.5)
• Step size = 1◦)
• Acquisition time = 0.2s)
• Total scanning time = 3min2s)

(c) Optimisation of φ(hkl)

• Range of scanning : φ± 5◦)
• Step size = 0.1◦)
• Acquisition time = 0.2s)
• Total scanning time = 22s)

(d) Optimisation of ψ(hkl)

• Range of scanning : ψ ± 5◦)
• Step size = 0.1◦)
• Acquisition time = 0.2s)
• Total scanning time = 22s)

(e) Optimisation of 2θ(hkl)

• Range of scanning : 2θ ± 5◦)
• Step size = 0.05◦)
• Acquisition time = 1s)
• Total scanning time = 40s)

(f) Repeating steps (b)-(e) 3 times.

5. Stop the file streaming and orient the sample prependicularly in front of the
camera.

6. The sample is then pulled/compressed until a specified extension at a loading
speed of 0.2 mm/min and data are recorded at the sampling rate of 0.1 s.
Photos are taken for every 5 s automatically.
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7. Stop the file streaming. Keep the grip system unchanged and restart the file
streaming at the sampling rate of 5 s.

8. Reorient the sample back to the position for XRD measurement. The go-
niometer control file is reprogrammed regarding to optimised φ(hkl), ψ(hkl) and
2θ(hkl) position. The XRD measurement is using the scanning parameter listed
in step (4) relaunched after 40mins of relaxation of the material.

9. Repeat the step (4)-(8) until the end of the experiment.



Résumé substantiel en français

Au cours des dernières deux décennies, la modélisation micromécanique a été large-
ment développée afin de relier directement la microstructure réelle d’un matériau à
ses propriétés macroscopiques (mécanique, thermique, électrique, etc.). Les lois de
plasticité cristalline visent à prédire les comportements locaux et macroscopiques
et/ou les changements de la microstructure lors d’un chargement thermomécanique
[Saai et al. (2010); Schwartz et al. (2010); De Jaeger et al. (2012); Li et al. (2012)].
Cependant, étant donné l’échelle des mécanismes que ces modèles décrivent, les
mesures sont difficiles à réaliser et l’identification des paramètres devient déli-
cate. Il est également nécessaire d’utiliser des données expérimentales à l’échelle du
grain. L’objectif de l’étude présentée ici est de développer une procédure robuste
pour obtenir au moins deux réponses mécaniques locales distinctes d’un matériau
à l’échelle du grain.

Étant donné l’adaptabilité des méthodes expérimentales et l’axe de recherche de
l’étude, les champs de déformation élastique εe et totale εt ont été choisis comme
variables à mesurer. Ces deux champs ont été mesurés en même temps à chaque
niveau de chargement successif lors d’essais de traction avec décharges. Le champ
total εt a été déterminé par Corrélation d’Images Numériques (CIN) proposé dans
le travail d’Hild et Roux (2008) (Correli_Q4) et le champ élastique εe a été cal-
culé à partir de la mesure de Diffraction des Rayons X (DRX) suivant la méthode
mentionnée dans Ortner (1986a,b); Zhou (1994) (Première méthode d’Ortner).

Un alliage d’aluminium (5052) a été sélectionné pour la préparation des échan-
tillons utilisés dans cette étude. Afin d’effectuer ces mesures à l’échelle du cristal,
deux échantillons de forme et de dimensions spécifiques ont été préparés. Chaque
échantillon est composé de 12 grains de chaque côté et deux grains dans l’épaisseur
pour faciliter les mesures de déformations à l’intérieur des grains.

Une méthode de mesure du pic de diffraction a été développée et validée afin
d’obtenir une mesure locale du champ εe dans les échantillons oligo-cristallins. Une
technique spécifique de DRX a été utilisée pour quantifier précisément les change-
ments élastiques dans les monocristaux. L’analyse des données expérimentales a
été réalisée avec la première méthode d’Ortner. La combinaison et le nombre de
plans {hkl} pour chaque point de mesure DRX ont été déterminés afin d’améliorer
la précision du calcul de εe. Les incertitudes sur εe ont été précisément quantifiées.
Pour la mesure de CIN, une couche de peinture (mouchetis) est nécessaire sur la
surface de l’échantillon. La résolution spatiale de CIN a été définie par rapport à
la qualité du mouchetis appliqué.

Ce manuscrit présente ensuite le dispositif développé pour expérimental développé
pour pour effectuer simultanément la CIN, la DRX et l’essai de traction in-situ dans
un diffractomètre à rayons X. La résolution spatiale de chaque mesure sur la sur-
face de l’échantillon a été définie pour atteindre ses meilleures performances. Le
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protocole expérimental in-situ a également été développé et validé.
Les champs εt et εe des deux échantillons ont été obtenus lors d’essais de traction

in situ. En plus des résultats et des analyses, les incertitudes ont également été
quantifiées.
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