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Introduction � résumé 

 Streptococcus pneumoniae,  aussi appelé le pneumocoque, fait partie des bactéries 

commensales du nasopharynx humain. Sous certaines conditions, il est capable de devenir 

pathogène et de causer de multiples maladies comme la pneumonie, la méningite ou des 

otites. Le pneumocoque est particulièrement dangereux pour les personnes âgées, les enfants 

et les immunodéprimés. Chaque année, environ un million de personnes meurent à cause 

d�une infection par le pneumocoque ; la plupart des victimes sont des enfants du tiers monde.  

 Le pneumocoque est une bactérie fascinante par sa capacité à survivre. Il est capable 

de s�adapter à de nombreux milieux  tels que le nasopharynx, le sang, les articulations ou le 

cerveau. Souvent, le pneumocoque influence son environnement à ses besoins en générant du  

peroxyde d�hydrogène et des nombreux peptides et protéines. Ces produits lui permettent de 

combattre ses compétiteurs dans le même milieu ainsi que d�échapper au système immunitaire 

de son hôte. De plus, le pneumocoque dispose d�un système efficace d�intégration de l�ADN 

présent dans son environnement, qui lui permet d�acquérir des gènes lui conférant un 

avantage sélectif.   

 Cette propriété joue une rôle très important dans la résistance du pneumocoque aux 

vaccins et aux antibiotiques. Les deux vaccins existants ciblent la capsule, une structure 

polysaccharidique entourant le pneumocoque. Cette capsule est essentielle pour la virulence et 

le sérotype du pneumocoque est determiné par la composition de la capsule. Grâce à la 

compétence, le pneumocoque peut transformer son ADN et changer la composition de sa 

capsule ce qui lui permet d�échapper à l�immunisation par le vaccin et éliminer les cibles 

potentielles des antibiotiques.  

 La résistance  du pneumocoque aux antibiotiques est un problème majeur dans le 

milieu médical. Le pneumocoque possède de nombreuses ressources additionnelles pour 

contrer les antibiotiques, par exemple: la mutation les protéines cibles des antibiotiques tel 

que les protéines liant la pénicilline (PBPs), les systèmes d'expulsions  de drogues dont 

l'extrusion des multi-drogues et toxines (MATE), les pompes de la superfamille des 

facilitateurs (MFS), la résistance médiée par les pompes (PMR) et de nombreuses protéines de 

la famille des transporteurs des cassettes ABC. 

 Les transporteurs ABC sont une ancienne famille de protéines présente dans tous les 

organismes vivants. Ils peuvent importer ou exporter de nombreux substrats comme des 

sucres, peptides, toxines, drogues, nutriments, métaux, etc. Pour les bactéries, ils jouent un 

rôle crucial dans la communication avec l�environnement et la survie.  Chez Escherichia  coli, 

les transporteurs ABC représentent 5% du génome entier.  
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 Un transporteur ABC typique se trouve dans une membrane lipidique et est composé 

de quatres domaines. Deux domaines transmembranaires (TMD) et deux domaines 

responsables  de la fonction catalytique (Nucleotide-binding domain ou NBD) d�où vient le 

nom ATP-binding cassette. Ce domaine est hautement conservé et est composé par des 

régions Walker A et Walker B, un motif de « signature » LSGGQ, et les boucles H et Q. Le 

NBD hydrolyse l�ATP induisant le changement de conformation des TMDs qui  permet au 

substrat de passer à travers la membrane. Parfois, les transporteurs ABC sont contrôlés par un 

système à deux composants (TCS). 

 Un de ces systèmes d�ABC-TCS dans le pneumocoque (protéines Spd0804 et Spd0805 

pour l�ABC et Spd01445 et Spd1446 pour le TCS), qui est homologue au BceAB-RS chez 

Bacillus subtilis, confère la résistance contre certains antibiotiques appelés les peptides anti-

microbiens (AMP). Ce système a été étudié depuis une quinzaine d�années chez B. subtilis ou 

E. faecalis, mais le fonctionnement exact reste un mystère. Pendant cette thèse, nous avons 

utilisé des nombreux outils pour étudier le système in vivo dans le pneumocoque, mais aussi 

in vitro par des techniques biochimiques. 
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1. General Introduction 

 

1.1. General Overview of Streptococcus pneumoniae 

S. pneumoniae bacterium is a major human pathogen. It is particularly dangerous for 

young children, the elderly and immuno-compromised persons [7]. According to the World 

Health Organization (WHO), S. pneumoniae kills above 1.6 million people per year out of 

which over 800,000 are children under the age of five. Center for Disease Control and 

Prevention (CDC) records over 90 different serotypes of the bacteria based on the 

polysaccharide capsule. The pneumococcus is a versatile organism, able to cope with a harsh 

environment. Consequently, the study of its survival mechanisms and toxin resistance 

mechanisms are of extensive scientific interest. 

 

1.1.1. Discovery of S. pneumoniae 

Pneumococcus was discovered simultaneously in France and America in 1881. In 

Paris, France, Louis Pasteur injected rabbits with saliva from a patient that has died from a 

rabies infection. He observed the rabbit die of an infection different than rabies. He isolated a 

bacterium from the rabbit�s blood and discovered a new bacterial organism less than a 1/1000 

of a millimeter in diameter with a number 8 shape (Figure 1.1). He simply called the 

bacterium pneumococcus [246]. About the same time period, Brigadier General George M. 

Sternberg, a US Army surgeon, studied malaria in Lousiana, USA. In his studies, he injected 

rabbits with various samples from local swamps in order to identify the cause of the disease. 

As a negative control, he chose to use his saliva, which he believed to be sterile. The rabbits 

injected with this �sterile� control died of either pneumonia or septicemia. The General then 

isolated a bacterium from the dead rabbit�s blood, which he called micrococcus pasteuris in 

reference to Pasteur�s discovery a few weeks earlier [246].  
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Figure 1.1. S. pneumoniae observed on a transmission electron micrograph (TEM). Typical number 8 shape 

of two berries joined together as seen by Louis Pasteur (photo courtesy of laboratory colleagues). 

 

From 1920 to 1974 the bacterium was known as Diplococcus pneumonia [131]. The 

bacterium got its name from the illness it predominantly causes, pneumonia and the 

predominant form of two cocci bound together [241]. However, when the bacteria were 

cultured in liquid broths, chains of bacteria were observed and the genus name changed to 

Streptococcus. It is a name derived from a combination of two Greek words: strepto meaning 

twisted and kokkus meaning berry [246]. It was also discovered that many humans are healthy 

carriers of the bacterium and it makes a part of the normal fauna of the nasopharynx. Different 

strains of both infectious and uninfectious bacteria were discovered. It has been also observed 

that it can be transmitted through spitting, coughing or sneezing [21]. 

 

1.1.2. Diseases and distribution of S. pneumoniae 

The transition from asymptomatic commensal bacteria to an invasive pathogen largely 

depends on the balance of the microbial fauna in the nasopharyngeal region. Imbalance may 

be caused by previous infection, such as influenza [171, 252]. Children, who are just 

developing their immune system, are the most exposed group of the population towards 

pneumococcal infection and it represents mortal danger, especially in developing countries 

[33]. Additionally, the faunal imbalance may cause the pneumococcus to travel to other 

organs such as: sinuses, lungs, ears, blood, and brain to cause pneumonia, otitis media, 

meningitis, arthritis, sepsis to name a few (Figure 1.2.) [22, 86, 151]. Interestingly, when a 

child is ill, it is not uncommon to find S. pneumoniae in the ear and simultaneously an H. 

influenza, M. cattarrhalis, or S. aureus infection in the nasopharynx or vice versa. More 

rarely, S. pneumoniae colonizes both the ear and the nasopharynx [227]. Figure 1.2. 
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summarizes various diseases caused by S. pneumoniae and the pathogenic route of the disease 

[22, 86, 151].  

 

 

 

Figure 1.2. Schematic representation of S. pneumoniae pathogenic route. Organs and diseases spread 

through airborne infection are represented in blue. Red organs and arrows represent bloodborne infection 

(adapted from [21]). 

 

1.1.3. General description of the bacterium 

 

 1.1.3.1 Presentation of S. pneumoniae 

S. pneumoniae is a short bacterium measuring only 1 µm in length which belongs to 

the phylum Firmicutes, the class Bacilli, the order Lactobacillales, the family 

Streptococcaceae and the genus Streptococcus. This genus includes six major clusters: 

pyogenic, anginosus, mitis, salivarius, bovis and mutans. The mitis cluster, also known as the 

oral streptococcal cluster, includes S. mitis, S. oralis, S. cristatus, S. infantis, S. peroris, and S. 

pneumoniae. The pneumococcus is an anaerobic, but aero-tolerant Gram positive bacterium. 

It does not form spores neither any flagellum, but it possesses pili. A typical feature of the 

pneumococcus is a polysaccharide capsule surrounding its surface. 

Unlike other streptococci, S. pneumoniae oxidizes hemoglobin and causes alpha-

hemolysis. This means, the pneumococcus is easily distinguishable when grown on blood 

agar by a green/brown halo around colonies. Other characteristic aspects include bile 

solubility, inulin hydrolysis and optochin sensitivity. Even though these simple tests do not 
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ensure 100% accuracy in S. pneumoniae identification, they remain the standard operating 

procedure in clinical identification of a pneumococcal infection [22, 186]. In more difficult 

cases, or in cases where further identification is required, PCR amplification of virulence 

genes autolysin (lytA) and pneumolysin (ply) is performed routinely [21, 22].  

 

1.1.3.2. Cell wall synthesis 

The function of the cell wall is to protect the bacterium from bursting open due to 

internal turgor pressure and also to determine the final shape of the bacteria. This cell wall is 

composed of peptidoglycan (PG), which forms a chain and eventually a mesh into which 

teichoic acid (TA) may be incorporated. The peptidoglycan composition is specific for each 

species of bacteria and together with hydrolases determines the shape and geometry of the 

peptidoglycan chain [164, 237].  

Peptidoglycan synthesis is a difficult, yet vital process involving more than 20 

enzymes in various parts of the cell: cytoplasm, membrane and cell wall. Peptidoglycan 

begins to be synthesized first in the cytoplasm of the bacteria before being attached to a lipid 

carrier in the membrane, forming the lipid II precursor. Lipid II is then flipped to the exterior 

and the peptidoglycan is added into the cell wall [87, 257]. 

Figure 1.3. shows in detail the cell wall formation: the first peptidoglycan precursor, UDP-N-

acetylglucosamine (UDP-GlcNac), must be converted to UDP-N-acetylmuramic acid (UDP-

MurNac) by the addition of a lactyl group to the glucosamine. Then five residues are 

successively added to the UDP-MurNac by several ATP-dependent ligases. Sequentially, the 

MurNac-pentapeptide is added to undecaprenyl phosphate (UP) to form undecaprenyl-

pyrophosphoryl-MurNac-pentapeptide also known as lipid I. MurG protein then adds GlcNac 

to the lipid I forming lipid II (undecaprenyl-pyrophosphoryl-MurNAc-(pentapeptide)-GlcNac) 

[164, 186]. The last steps before flipping the lipid II to the external milieu is the amidation of 

D-Glu in position two of the pentapetide and adding a branch of two residues to the Lysine in 

position three [87, 186]. 

Once lipid II has been synthesized, flippases RodA and FtsW flip it through the membrane to 

the external milieu. On the outside of the cell two classes of penicillin binding proteins (PBP) 

usually take charge of the lipid II. Class A PBPs elongate the peptidoglycan chain by trans-

peptidation and they cross-link the chains by trans-glycosylation and the class B PBPs only 

perform trans-peptidation [87, 257]. Since the cell wall synthesis is essential for cell survival 

and division, it is frequently a target of various drugs and antibiotics [257]. 
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Figure 1.3. S. pneumoniae peptidoglycan synthesis. N-acetylmuramic acid-pentapetide (MurNAc-

pentapetide), a lipid II  precursor, is synthesized in the cell and attached to undecaprenyl phosphate (UP) to form 

lipid I. Lipid I matures through addition of N-acetylglucosamine (GlcNac) and becomes lipid II, which is 

consequently flipped to the external milieu. Names of the enzymes involved in each step are in yellow boxes. 

The peptidoglycan is then added to the chain through penicillin binding proteins (PBP) activity [186]. 

 

 

1.1.3.3. Colonization 

The upper respiratory tract presents a good niche for many bacterial species. During 

the first few months of human life a normal fauna establishes itself in the nasopharynx. The 

colonization by S. pneumoniae occurs through horizontal dissemination, spreading of 

potential pathogens between individuals [22]. The host immunity, as well as the fauna itself, 

plays a regulatory role for bacterial populations in the niche.  

For successful colonization, the pneumococcus needs several adhesion systems as 

shown in Figure 1.4. to attach itself to the host surface, which usually are epithelial cells. 

Adherence proteins facilitate attachment through specific interactions as well as non-specific 

physiochemical interactions by changing the hydrophobic and electrostatic properties of the 

bacterial cell surface [21,104, 226]. There are many adhesion proteins, which play important 

roles in different stages of colonization. Some examples of these adhesion proteins include 
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Pneumococcal adhesion and virulence factor A (PavA) and choline binding proteins (CBP) 

[90, 118]. 

A crucial tool for S. pneumoniae to colonize its niche, is its polysaccharide capsule. 

This capsule, normally 200-400 nm thick, surrounds the peptidoglycan cell wall. It is 

interesting to note that during nasopharyngeal colonization, the capsule narrows down and 

thickens upon invasive infection [211]. The bacterial strains are determined by their capsule 

or, in some extent, the lack of it, since there have been a few rare cases of infections by 

unencapsulated S. pneumoniae strains [47]. The S. pneumoniae capsule is multifunctional as it 

protects the bacterium from phagocytosis, complement cascade, specific antibodies and some 

antibiotics, as well as it prevents aggregation [74, 106, 117, 148, 167]. Moreover, it has also 

been demonstrated in the past that S. pneumoniae has the ability to switch its capsule 

composition and therefore its serotype. This creates some concerns for the use and production 

of vaccines as the bacteria can evade the specific antibodies by switching serotype and re-

colonize the same individual [254]. Capsule switching is made possible thanks to a high level 

of competency, which enables the pneumococcus to take up DNA from the environment and 

to transform its genome. It has been shown as early as in 1928 that avirulent strains became 

virulent if they were incubated for some time with dead virulent strains and then injected into 

a rabbit [91].  Nowadays there are only two commercially available vaccine types based on 

this polysaccharide capsule, which protect only against about a third [2, 160] of the total over 

90 pneumococcal serotypes [253].  

Under the right conditions, the pneumococcus may colonize a number of organisms 

other than humans. Animal experimentation is an essential tool in studying infectious 

diseases. Typical models used to study S. pneumoniae virulence include mice, rats and rabbits 

to test drug effects as well as genetic modifications of the bacterium [34]. Another model, 

which is much more economically and ethically interesting is the Drosophila melanogaster 

model. The drosophilae rather short life span and relatively easy upkeep make it an ideal 

platform for primary infection studies and examine the streptococcal global virulence. It is 

impossible to explore the colonization and invasion processes [185]. 

Some avirulent strains of the S. pneumoniae have been discovered [47, 98]. These 

strains lack the polysaccharide capsule, such as the modified from the D39 strain, R6, which 

is a good model to work with in the laboratory, since it allows researchers to work in a Level 

1 biosafety laboratory. In this study, we work with a virulent D39 strain, which requires Level 

2 biosafety equipment. 
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Figure 1.4. Schematic representation of S. pneumoniae virulence factors and their effect. A number of 

virulence factors are necessary for the viability of the pneumococcus. Several adhesion proteins are required for 

the bacteria to be able to survive the harsh environment of human nasopharynx. Free �pacmen� are shown 
together with their targets. �Pacmen� attached to the epithelial cells are the receptors of pneumococcal adherence 
proteins represented by a triangle attached to the pneumococcal cell wall. NanA flash simulates its action to 

weaken the mucus layer. Cleaved IgA pieces bind to the capsule preventing functional IgA to bind to the 

bacterium [21]. 

 

1.1.3.4. S. pneumoniae interactions with its environment 

 

   1.1.3.4.1. S. pneumoniae changes its environment 

The survival of the S. pneumoniae depends on the interaction with its immediate 

environment and correctly responding to stimuli. To react to these incentives a combination of 

many factors is necessary. These factors are also sometimes main contributors to virulence 

towards the host, but they also play a role in interacting with other inhabitants of the niche. 

Pneumococcus has been found sharing the biofilms covering children�s nasopharynx together 

with Haemophilus influenza, Moraxella catarrhalis, Staphylococcus aureus, Staphylococcus 

epidermidis to name a few [166, 184]. Biofilm formation depends also on the function of a 

cell surface protein neuraminidase (NanA) [21]. By its metabolism, the pneumococcus 

naturally releases hydrogen peroxide, as a way to control competition,  and together with 

NanA to reduce mucus viscosity and to prepare epithelial surface for colonization [21, 205]. 

Unlike other bacteria, the pneumococcus is quite resistant to hydrogen peroxide and its 
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release favors S. pneumoniae proliferation in expense of the others [118]. Over time however, 

it may become toxic to the pneumococcus itself [118].  

Another factor with which S. pneumoniae changes its environment is the LytA protein, 

which is an important component of the pneumococcal virulence [16]. LytA is involved in 

autolysis as well as fratricide and penicillin resistance. In fact, it disintegrates the bacterial 

cell wall, which causes the cells to lyse releasing other proteins, peptides and teichoic acids, 

which add to virulence and favor pneumococcal growth [103, 118, 161]. A prime example is 

the release of pneumolysin which has a number of functions including: opening of tight 

junctions between epithelial cells, including alveolar junctions [197, 205], inhibition of ciliary 

beat in respiratory tract [73], erythrocyte lysis [163], complement pathway activation [25], 

inhibition of antibody production [75].   

Other factors are also essential to counter the host immunity. Factor IgA protease illustrates 

well this function as it cleaves IgA into two fragments [21]. Therefore, the immunoglobin is 

unable to bind and opsonize the pneumococcal cell. Furthermore, one of the subunits of the 

cleaved antibody then enhances the adherence of the bacteria to epithelial cells. As a result, 

IgA proteases serve in both immune system evasion and cell adhesion and colonization [189, 

192, 247]. Figure 1.4. illustrates the actions of different proteins in their interaction the 

nasopharyngeal environment. 

 

     1.1.3.4.2. S. pneumoniae responds to its environment 

Human nasopharyngeal region is a harsh environment presented not only by the mucus 

and the epithelium, but also by other host defenses such as antimicrobial peptides (AMP) 

expression. Competing rivals, like the pneumococcus, also express AMPs and other toxins in 

order to hinder pneumococcal proliferation. Besides, most of the bacteria in the 

nasopharyngeal region belong to the Firmicutes phylum known to produce an enormous 

number of AMPs [225], which are discussed in greater detail in section 1.2. The 

pneumococcus counters these toxins by a combination of factors described in section 1.1.4. 

Many survival and virulence factors display some sort of redundancy, such as 

pneumococcal surface adhesion protein (PsaA), which fulfills many vital functions in 

complexes with othe proteins. Its deletion greatly attenuates the pneumococcal virulence. 

Other than adhesion, PsaA has additional roles including manganese transport and oxidative 

stress resistance [65, 115]. Another example of redundancy is having several proteins 

transporting the same substrate, which is of a great advantage to the bacterium. For instance, 

deletion of either pneumococcal iron acquisition A (PiaA) or pneumococcal iron uptake (Piu) 
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causes a slight attenuation of bacterial growth, but deletion of both transporters is lethal [28, 

115]. A third kind of redundancy is having promiscuous transporters; a single protein may 

bind and sometimes transport several substrates with different affinities and therefore at least 

partially replace the function of another protein. For instance, PsaA can also transport zinc, 

and partially replace the loss of function of the principal zinc importer Adc [65]. All of these 

abovementioned proteins belong to the ATP-binding cassette (ABC) protein superfamily.  

Proteins belonging to this superfamily are heavily involved in interaction with the 

environment and cell survival. ABC transporters are responsible for nutrient uptake, including 

sugars, lipids, minerals and they also export materials such as toxic waste. About 60 ABC 

transporters have been identified in S. pneumoniae regardless of the strain. Roughly 60% of 

them are importers, the rest are either exporters or have another function [65]. As described 

above, ABC transport systems are extremely versatile and are crucial for survival and are 

discussed in greater detail in section 1.3. of the introduction. 

Another important player in the interaction with the environment of the pneumococcus 

are two-component systems (TCS). S. pneumoniae genome codes for thirteen different TCSs 

[182, 229]. A TCS is typically composed of a histidine kinase (HK) and a response regulator 

(RR). The pnemococcal genomal additionally contains a single �orphan� RR [229]. 

Habitually, TCS systems are gene regulators, which sense substrates and mount an adequate 

response to the stimulus. Universally speaking, many TCSs strictly regulate a single target 

protein, but there are also more versatile systems, such as bacteriocin-like peptide, TCS13, 

which regulates sixteen different genes [159, 182, 229, 232]. All pneumococcal TCSs have 

overlapping genes, where HK overlaps the RR, suggesting that they get transcribed as a single 

unit. Of the thirteen TCSs, only seven have been studied in various degree of detail, and five 

of them are known to regulate ABC transporters. TCS systems are discussed in greater detail 

in section 1.4. of the introduction. 

 

1.1.4. Antibiotic resistance 

As mentioned above, the pneumococcus is surrounded by AMPs along with other 

drugs and toxins and therefore requires the presence of resistance mechanisms giving bacteria 

the edge to survive in the hostile environment. Thanks to this selective pressure, S. 

pneumoniae has acquired a number of antibiotic resistances to various drugs which is 

becoming a serious health concern in both developed and developing countries. The paradox 

is that the majority of antibiotic resistant infections are acquired at hospitals [61, 235].  
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Figure 1.5. Evolution of pneumococcal antibiotic resistant infections in children in France between 2001 

and 2012. Y-axis shows the percentage of resistant strains towards given antibiotic. A number of strains display 

resistance towards several antibiotics. A clear negative trend of occurrence of antibiotic resistant pneumococcal 

infection is apparent (figure taken from [240]). 

 

Both the WHO and the CDC warn of the increasing number of antibiotic resistant 

strains. First clinically significant case of penicillin resistant S. pneumoniae infection has been 

reported as early as in 1967 in Guinea [96]. Afterwards, resistant strains have appeared 

around the world through misuse and overuse of antibiotics. Surprisingly, in some parts of the 

world, like Australia, the first case of antibiotic resistant pneumococcus has only been 

discovered in 1996 [42]. In other countries, such as France the trend of antibiotic resistant 

strains has been at a dangerous rise throughout the 1980�s and 1990�s. The French 

government intervened by limiting antibiotic use and introducing a vaccination program, 

which successfully diminished the cases of antibiotic resistant pneumococcal infections 

(Figure 1.5.). In the early 2000s 51% of pneumococcus infection cases in children were 

penicillin resistant, while �only� 19% were resistant in 2012 [240]. 

A common resistance strategy to !-lactam antibiotics (penicillin) is the modification of 

the target. Penicillin resistant pneumococci have mutated PBPs, which reduces the affinity of 

the drug to its target. Resistant strains then require up to 400 times higher antibiotic 

concentration to be killed [31]. In addition to low affinity PBPs, the S. pneumoniae may 

upregulate its expression of phosphate ABC transporter Pst. This ABC transporter is an influx 

pump and even though its exact role in the resistance process is unknown, it has been shown 

to increase !-lactam resistance even further [69]. Besides, the Pst complex is also responsible 

for metal uptake [179]. In mouse models, the deletion of parts of the complex caused 

attenuation of virulence of the bacteria [65, 179].   

Other antibiotic resistance mechanisms in the pneumococcus include three multidrug 

and toxin extrusion (MATE) efflux pumps [230], one major facilitator superfamily (MFS) 
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transporter, the pump-mediated resistance (PmrA) [187], and some ABC transporters [65].  Of 

the three MATE proteins, only one, DinF has been studied in detail. It confers resistance in 

particular to the antibiotics quinolone and moxifloxacin, and partial resistance to 

ciprofloxacin and levofloxacin [230]. S. pneumoniae strains resistant to norfloxacin have been 

shown to display a high activity of the PmrA efflux transporter [187]. It is clear though that 

these efflux transporters do not work alone. More studies have to be conducted to fully 

understand drug resistance in the pneumococcus [9, 183, 187, 230]. 

There are several ABC transporters conferring resistance to drugs, antibiotics and 

AMPs. One of the most well-known MDR ABC transporters in the pneumococcus is the 

PatA/PatB antibiotic transporter a heterodimeric ABC transporter [9]. The deletion of either 

PatA, PatB or both causes severe susceptibility to ethidium bromide, acriflavine, 

ciprofloxacin, and norfloxacin compared to the wild type pneumococcus [9, 24]. It has been 

also suggested that PatA alone may form a homodimer conferring reserpine resistance, but 

this has been ruled out by the purification and biochemical characterization of the whole 

transporter, PatA/PatB or its individual subunits [24]. PatA may also be a promiscuous half-

transporter which works with several partners to transport various substrates [9, 24, 82, 152].  

LL-37 and erythromycin (human AMPs) resistance is conferred by the mefE/mel ABC 

transporter. The MIC for most strains is ~15 µg/ml which is a quite high concentration [150]. 

Mutants lacking the activity of this ABC transporter cannot effectively colonize humans. The 

protein has not been studied in much detail yet [135, 150, 255]. 

Upon colonization of a niche, the pneumococcus begins expressing AMPs of its own. 

An ABC transporter BlpAB exports the accumulating peptides from the cytoplasm to the 

exterior. There is a wide range of bacteriocins that are effective contra-species as well as 

contra-strain. The export is regulated be a TCS similar to comDE described further in the 

introduction in section 1.5. [33, 54, 147].  
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1.2. Antimicrobial peptides (AMP) 

Since the 1920�s AMPs have aroused interest in the scientific community. In literature, 

antimicrobial peptides are often classified as antibiotics and the terms are sometimes used 

interchangeably. Their potential lies in the fact that although they have been discovered some 

time ago, their use has been more sporadic and more isolated than standard antibiotics [5]. 

Generally speaking, because bacteria have not been exposed to AMPs on such enormous scale 

as to antibiotics, they have not been able to develop high resistance to them. Though AMPs 

are found in the natural environment, their concentration is relatively low [23]. Medical 

treatment introduces much higher AMP concentrations towards which the bacteria should not 

be resistant. In addition, bacteria inhabiting humans likely did not encounter AMPs found in 

plants or fungi, which are being considered as attractive alternative therapeutic agents.  

Therefore it is crucial to study their interaction with bacteria to prevent rapid resistance 

towards these compounds. Therefore it is necessary to assess the rentability of using AMPs as 

an antibiotic alternative [5]. 

 

1.2.1. General introduction of AMPs 

AMPs are an inseparable part of the bacterial environment. Humans carry on average 

about two kilograms of bacterial commensal fauna [37], therefore competition between 

bacteria is fierce. They employ AMPs as way to outcompete their rivals. Additionally, the 

host expresses its own AMPs to limit microbiota proliferation. The potency and targets of 

AMPs vary, not all are bactericidal, but �merely� bacteriostatic. Nevertheless, even 

bacteriostatic AMPs give a competitive edge to the bacteria producing them. Other bacterial 

AMPs may be directed against the host, which prevents it to mount adequate immune 

response [23].  

AMPs are relatively small peptides no longer than 50 amino-acids. Their structure can 

be either linear, circular, "-helices or !-sheets. They have been shown to be sometimes 

selective against either Gram positive bacteria, Gram negative bacteria, fungi, or Protista [27, 

190]. Remarkably, AMPs are produced by all known organisms (probably with the exception 

of viruses). Strikingly, the majority of AMPs are cationic. The common opinion is that the 

positive charge of AMPs is necessary to be attracted by the negatively-charged bacterial 

membranes [110, 219]. Another one of the amazing characteristics of these molecules is their 

potency at extremely low concentrations (nM-µM range) [44].  
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AMPs have been used in various applications such as food preservatives (nisin) [40], or in the 

medical field as an alternative to classical antibiotics (vancomycin) [168]. Even so, the full 

potential of these molecules has not been exploited yet [44, 119, 219]. Their potential also lies 

in numerous modes of action ranging from: membrane pore formation, interference with cell 

wall synthesis, septum synthesis, inhibition of enzymatic activity, or tampering with 

DNA/RNA [5, 27]. Many of these AMPs are exported by ABC transporters which work as 

self-protection or protection from AMPs produced by another species. 

 

1.2.2. AMP classes 

AMPs are classified into different groups according to their size, structure, charge, and 

many other aspects.  To date, more than 2000 natural AMPs have been identified [219, 243], 

but there is no standardized classification system. Table 1 presents basic AMP classification 

suited for the purposes of this work. Each AMPs used in this work will be presented in more 

detail further in the chapter.  
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Class Source Example Structure 

Defensins Mammals 

Insects 

 

LL-37, 

CRAMP-I, 

CAP-18 
 

Non-

ribosomal 

Bacteriocins 

 

Bacteria Bacitracin 

Vancomycin 

 

Ribosomal 

Bacteriocins 

Gram+ 

Bacteria 

  

   Class I  Nisin A 

Epidermin 

Mercasicin 

 

 

   Class II  Lactococcin 

Nukacin-

ISK-1 
 

 

Table 1.1. Classification of antimicrobial peptides 

 

Defensins constitute an important class of AMPs. These molecules are expressed by 

eukaryotic cells and represent an imperative part of the innate immunity, which protects the 

organisms from primary infections. Plants and insects lack humoral immunity and as a 

consequence, their innate immunity is very strong mainly due to the immense variety of 

defensins they produce. As a result, they are being closely studied as possible therapeutical 

agents [219, 243]. In mammals, the cells which produce a considerable variety of defensins 

are epithelial cells and leukocytes. These peptides display an immense variety, and are split 

into three different classes with little common motifs shared between them [5, 58, 64, 149, 

256]. A well-studied example of a human defensin is LL-37, which is active not only against 

bacteria, but other disease-causing agents (fungi, viruses) as well.  
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Bacteriocins are AMPs produced by bacteria, primarily by Gram-positive species, but 

some may be active against a few Gram-negative bacteria as well [125]. It has been shown in 

various studies that the phylum Firmicutes and especially the genus Streptococcus produce an 

abundant variety of bacteriocins [60]. Numerous peptides are post-translationally modified; 

their mRNAs are often disproportionally longer than the resulting peptide [110, 111].  

Non-ribosomal AMPs often include non-proteinogenic amino-acids. There are a 

number of other chaperones called peptide synthases that alter the peptide by methylation, 

cyclization, acylation, glycosylation and/or addition of other amino-acids. As a result, these 

AMPs sometimes vary even in the same bacteria producing them [76]. These modifications 

may change the target or binding affinity. Nevertheless, they contain rarely more than 20 

amino-acid residues and are often cyclic [37]. Non-ribosomal AMPs include bacitractin, 

vancomycine and ramoplanin. In the literature, they may to be classed as bacteriocins in some 

publications and as antibiotics in others [37, 76, 128]. For the purposes of the thesis, they 

belong to the bacteriocin group, since they are produced primarily by bacteria and their targets 

are bacteria. 

Class I bacteriocins are lantibiotics (referring to lanthionine-containing antibiotic 

peptides) and they represent a class of bacteriocins which are post-translationally modified by 

the formation of thioether bridges between unusual amino acids such as lanthionine, 

methyllanthionine, D-alanine etc. These bridges provide stability and inhibit the action of 

peptide-digesting enzymes [18]. Their characteristic is hydrophobicity and they are slightly 

elongated compared to other AMPs. As a result, they are pluripotent and can have more than 

one mode of action [44, 110, 111]. Another advantage of lantibiotics is that slight mutation in 

amino-acid composition may widen their active pH range, change membrane binding target, 

improve stability or enhance cell wall binding [110]. In the past, lantibiotics were being 

categorized into different groups, but the grouping proved to be artificial and inefficient. 

Lantibiotics include nisin, duramycin, epidermin, Pep5 and others.  

 

1.2.3. AMP modes of action 

As mentioned above, many of the studied antimicrobial peptides inhibit cell wall 

formation at the lipid II carrier. Lipid II is an essential player in bacterial cell wall formation 

as described previously in the introduction in section 1.1.3.1. In a lipid raft, the lipid II 

translocates peptidoglycan across the cell membrane using a flippase transporter and then 

enables the peptidoglycan polymerization through trans-peptidation and trans-glycosylation 

[164]. On the cell surface, lipid II releases peptidoglycan. Undecaprenyl pyrophosphate 
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(UPP), the peptidoglycan carrier, is dephosphorylated to UP in the outer membrane in order to 

be flipped into the cytoplasmic side of the bacterial membrane. UP is afterwards re-

phosphorylated again and re-charged with peptidoglycan. It then flips again to the outer 

membrane. The lipid II cycle is illustrated schematically in Figure 1.6., including intervening 

AMPs; some prevent the release of peptidoglycan, some inhibit trans-peptidation and trans-

glycosylation, others may inhibit UPP-UP phosphorylation, and some even form pores in the 

cell membrane [13, 125, 190].  

 

 

 

Figure 1.6. Schematic representation of peptidoglycan biosynthesis and its inhibition by AMPs. Important 

steps in cell wall biosynthesis are depicted, and their cellular location is indicated on the left. Amino acids are 

symbolized by small yellow circles. Lipid II consists of the MurNac/GlcNac-pentapeptide building block, 

covalently linked to the lipid carrier molecule UP via a pyrophosphate ester bridge. The steps of cell envelope 

biosynthesis linked to UP are referred to as �lipid II cycle�. Chosen examples of AMPs are placed next to the step 

of the cell wall formation they inhibit [200]. 

 

1.2.4. AMPs used in this study 

Bacitracin is a bacteriocin which binds to UPP and prevents its dephosphorylation and 

translocation from the cytosol to the outer leaflet of the membrane as seen in Figure 1.6. As a 

result, bacitracin inhibits the formation of lipid I [222, 223]. Likewise, bacitracin can also 

bind various metals, depleting available nutrients available to the bacteria [68, 222]. It is a 

potent AMP, which is active at low concentrations (µM) [125]. It is synthesized by B. 



 

28 

  

lichenirormis and a few strains of B. subtilis [6, 108, 114]. As bacitracin is used very widely 

in livestock feed, it is crucial to understand the mode of action of proteins providing bacterial 

resistance towards it. The American Food and Drug Administration (FDA) also approved 

bacitracin use in humans, but its concentration in blood must be closely followed [125]. 

Lately, bacitracin structure has become the scaffold upon which scientists have been trying to 

synthesize new therapeutical agents [68]. 

 

 

Figure 1.7. The structure of bacitracin [68]. 

 

Nisin is a lantibiotic first isolated from S. lactis in 1928 [15, 92]. Nisin is active 

against almost all Gram-positive bacteria even at nanomolar concentrations and against some 

Gram-negative bacteria at higher concentrations [181]. It is widely used as a food 

preservative, as it has a broad range of activity and very low toxicity to humans [3, 119, 157]. 

At high concentrations, nisin binds indiscriminately to bacterial membranes and through 

interaction of its hydrophobic domains incorporates into the membrane. Through this action it 

creates relatively large pores (Figure 1.8.B) and kills the bacterium by �leaking.� At low 

concentrations, nisin operates by binding to the lipid II and its derivatives and by changing its 

conformation it blocks the peptidoglycan at the UPP and hence it inhibits formation of the cell 

wall (Figure1.8.C) [92, 97, 99, 238]. 
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Figure 1.8. Structure and mode of action of nisin. (A) Structure of nisin [181]. (B) at micromolar 

concentrations, the cationic type-A peptides (nisin, epidermin, Pep5 and others) form wedge-like, target-

independent pores. (C) at nanomolar concentrations, nisin and epidermin form target-mediated pores using lipid 

II as a docking molecule (figure taken from [99]). 

 

The bacteriocin vancomycin has been successfully used in the past where standard 

antibiotics began to fail. The main concern for its use being its toxicity to the kidneys, but at 

low concentrations it is tolerated by the human body [168, 214]. However, it became a victim 

of its own success as some strains of resistant bacteria began to appear [128]. Vancomycin 

principally binds to the muramyl pentapeptide component of bacterial peptidoglycan, 
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inhibiting transglycosylation and transpeptidation, thus the formation of the cell wall, as 

shown in Figure 1.6. [128, 168, 245]. 

 

 

Figure 1.9. The structure of Vancomycin [128] 

 

LL-37 is a human defensin of the cathelicidin family [23]. Mucosal surfaces, 

specifically neutrophils and epithelial cells express LL-37 in order to control the microbiota 

present in the gut, nasopharynx, skin etc.. LL-37 is in practice heavy artillery of the host 

innate immune system which can destroy biofilms, kill bacteria, fungi and viruses 

indiscriminately. All in all, LL-37 provides the first line of defense of human immunity as it 

may act on all microbial populations [170, 233, 239]. Consequently, it is absolutely essential 

to a healthy human life and protection from infections [23, 239]. LL-37 binds to the surface of 

cellular membrane, where it forms pores once it reaches the critical concentration, and the 

amphipathic domains penetrate the membrane [100, 113, 139, 217, 239]. 

 

 

Figure 1.10. 3D Structure of LL-37 resolved by NMR [243]. A superposition of five different structures to 

demonstrate the C-terminal disorder. The top of the helix is hydrophilic whereas the inside of the bend is 

hydrophobic. 
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Ramoplanin was discovered in 1984 and isolated from Actinoplanes sp. [172, 190]. It 

has been used in the past as an antibiotic against Enterococci which were resistant to 

vancomycin and other antibiotics [78, 95, 252]. Similarly to nisin, ramoplanin also binds to 

Lipid II in the bacterial membrane and inhibits cell wall formation and is capable of pore 

formation (Figure 1.6.). It is an extremely powerful compound effective at very low 

concentrations in the nM range [37, 78, 165].   

 

 

Figure 1.11. The structure of ramoplanin [95] 
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Duramycin is a lantibiotic, which has been discovered in 1958 and isolated from 

Streptomyces cinnamomeus [39, 191, 258]. It is active against only a few Gram-positive 

bacteria, especially in the genus Bacillus. However, it is also toxic to eukaryotic cells as it 

permeates cellular membrane by binding to phosphatidylethanolamine and 

diphosphatidylglycerol [19, 39, 99].  

 

 

Figure 1.12. Structure of duramycin [53] 
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1.3. ATP-binding cassette (ABC) transporters 

ABC proteins are a vast protein superfamily which is essential for the survival of all 

known cells; eukaryotes, prokaryotes and archae [36]. This superfamily is composed of 

transmembrane proteins involved in translocation of molecules as well as some non-

transporting functions such as DNA/RNA repair. In humans, they were found to be involved 

also in membrane elasticity and lipid. Many genetic diseases and disorders, such as cystic 

fibrosis, can be traced back to an ABC transporter mutation [62, 213, 231]. There are a 

number of different ABC transporter classes depending on their sequence, structure and 

function. ABC transporters use the energy from ATP hydrolysis to transport molecules 

against the concentration gradient. ABC transporters are known to transport a number of 

various molecules, which range from nutrients, antibiotics, antimicrobial peptides, toxins, 

metals, ions, hormones etc. 

 

 

 

 

Figure 1.13. Typical ABC transporter.  A dimer of transmembrane domains (TMD) and a dimer of nucleotide-

binding domains (NBD) form together a complete ABC transporter, in this example an exporter. 

 

 

1.3.1. ABC superfamily 

ABC transporters have been discovered in the 1970s and studied in different 

prokaryotes. In the 1980�s it has been discovered that a similar ATP-hydrolyzing protein was 

involved in a drug-resistant type of cancer [11, 29]. Today, thousands of different ABC 

transporters have been identified and classified into several families and in dozens of clusters. 

By sequence analysis, it has been shown many of these families are not kingdom specific. The 
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presence of these transporters in practically all living organisms suggests that it is a very 

ancient and common engine [49, 50].  

In bacteria, ABC transporters pump a number of different compounds across the 

cellular membrane in either direction. For example, they transport lipids, cations, sugars, 

oligopeptides, amino-acids to mention a few [35, 101]. With such a wide range of substrates 

and a given cell expresses many different ABC transporters in order to sustain its viability. 

The ABC transporters are essential to bacterial life as they are responsible for nutrient uptake, 

such as iron, which is also an important virulence factor; they can correct osmotic pressure by 

either solute influx or efflux; they efflux toxic waste produced by the cell; they are involved 

in drug resistance; they are sometimes essential for pathogenicity; ABC type proteins also 

sometimes have housekeeping functions such as mRNA repair. ABC transporters represent up 

to 5% of the genome of many bacterial species (i.e. E. coli, B. subtilis [144, 254]); 

consequently it is clear that they are crucial for bacterial survival and their interaction with the 

environment [81]. 

ABC transporters are also responsible for resistance towards many drugs in a great 

variety of bacterial organisms. While there are some substrate-specific ABC transporters, 

many of them can transport a relatively wide variety of drugs. This phenotype is called 

multidrug resistance (MDR) and presents a veritable challenge to today�s medicine. Many 

different proteins may produce MDR phenotypes in bacteria, such as MATE, MFS, small 

multidrug resistance (SMR) or resistance nodulation division (RND). ABC transporters are 

responsible for some multidrug resistances as well. The first known drug transporter is the 

human P-glycoprotein in cancer cells, which resisted cancer drugs [70, 237]. Its discovery 

helped to understand drug resistance in prokaryotes as well [10]. There are several ways in 

which the ABC transporters protect the bacteria from antibiotics. A common one is sensing 

and pumping the molecule directly from the membrane or cytoplasm out of the cell. They 

have most likely evolved from transporters effluxing drugs synthesized by the bacteria itself. 

A common substrate to the majority of ABC MDRs is ethidium bromide, which serves as a 

good reference substrate [32, 43, 141, 146, 244].  

Because MDRs may potentially transport essential molecules as well as drugs, the 

systems must be regulated. For example, in humans the MRP2 multidrug transporter is tightly 

regulated on several levels such as transcription, translation and membrane reinsetion. When 

there is an overexpression without a drug present, it may lead to serious health problems such 

as epilepsy [85]. A similar system is in bacteria, where it is often the drug itself which is a 

positive regulator of the expression of the transporter [194, 234]. It has been described already 
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twenty years ago how low concentrations of a drug relieve the repression expression of the 

drug efflux pump in order to counter the toxicity [127, 203]. Some of these regulatory systems 

are TCS, which assure the resistance to drugs as well as down-regulation of efflux pumps 

when not necessary [89, 121]. 

 

1.3.2. Structure and mechanism 

Despite the fact that ABC transporters are involved in many functions and transport an 

impressive variety of substrates in one direction or another, their overall topology stays highly 

similar [51]. Gram negative bacteria have ABC transporters only in the inner membrane. 

Gram positive bacteria, on the other hand, lack the outer membrane. All of the ABC 

transporters are in direct contact with the cytoplasm and the external milieu without the need 

to pass the ligand through the periplasm [51, 174]. 

 

1.3.2.1. General topology 

Most commonly, ABC transporters are composed of two transmembrane domains 

(TMD) and two nucleotide binding domains (NBD). A single ABC transporter may be 

encoded for by two to five different genes [65]. The NBD domains (sometimes called ATP 

binding domains) are the engine burning ATP that, as a consequence, changes the 

conformation of the TMD and thus drives molecule transportation [51, 72]. The basic 

arrangement of ATP-bound NBDs is a dimer. It has been reported in several cases that NBDs 

can be encoded by two different genes, or that the NBD domain is already fused to the TMD 

in the genome. Therefore, regardless of the genetic organization or function of the ABC 

transporter, the basic tetrameric organization stays conserved (Figure1.14.) [102, 144]. 
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Figure 1.14. Schematic model of the organization of ABC transporters. The organization of the typical four 

domains of ABC transporters varies as follows. A) Four separate peptides e.g. OppBCDF (E. coli). B) NBD 

fused together e.g. ribose transporter RbsA (B. subtilis). C) TMD fused together e.g. FhuCB (E. coli). D) One 

TMD fused to one NBD and a complex of TMD and NBD e.g. YhiGHI (E. coli). E) Dimer of TMD and NBD 

fused together e.g. homodimers Sav1866 (E. coli), BmrA (B. subtilis) and heterodimer PatA/PatB (S. 

pneumoniae). F) All four domains fused together e.g. human ABCB1 [102, 144]. 

 

1.3.2.2. General description of transmembrane domains (TMD) 

The transmembrane domain (TMD) is ordinarily composed of six transmembrane "-

helices. One TMD then binds with another TMD to have a total of twelve transmembrane 

helices. These structures are highly variable depending on the substrate and the functioning 

mechanism of the protein. Consequently, the total number of the membrane spanning helices 

may vary between eight and twenty [51, 143]. Notwithstanding this variation, a weakly 

conserved common motif called the EAA loop (EAAXXXGXXXXXXXXXIXLP) may be 

found. This motif is predominantly present in importers, but may be found in some exporters 

as well [248]. Another conserved feature of TMDs is an FtsX-domain. Normally, four FtsX 

helices make up a transport chamber and regulate cell wall hydrolases [17]. 

ABC importers sometimes have a substrate-binding protein (SBP) associated to the permease 

or co-operating with the extracellular part of TMD. These SBPs are responsible for binding 

the substrate which is eventually transported by the protein. SBPs are in control of the 

importer specificity [14, 248]. The ligand specificity of ABC exporters is usually assured by 

the TMDs themselves. 
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1.3.2.3. General description of nucleotide-binding domains (NBD) 

NBDs on the other hand are composed of several conserved motifs across ABC 

transporter classes regardless of the function (Figure 1.15.). These highly conserved motifs 

are not invariable though. They possess:  

 

 

 

Figure 1.15. General organization of an NBD subdomain. In red Walker A, Walker B and ABC signature 

motifs are involved in binding and hydrolyzing ATP. In yellow Q-loop and H-loop have a single conserved 

residue and are also involved in hydrolyzing ATP as well as changing NBD/TMD conformation [51]. 

 

 

(i) Walker A motif involved in the binding of ATP: Walker A motif (or P-loop) is 

a glycine rich sequence surrounded on one side by a !-strand and an "-helix on 

the other side. The typical motif is GXXXXGKT/S where the lysine is crucial 

for ATP binding and hydrolysis. Upon ATP hydrolysis, the phosphate stays 

bound to the loop. Walker A is always found 100-190 residues upstream of the 

Walker B motif [195]. 

(ii) Walker B involved in hydrolyzing ATP: This motif has the following pattern 

(R)KXXXXGXXXXLhhhhD (h is a hydrophobic amino-acid) as defined by 

Walker in 1982. Today, it is accepted that only the hhhhD part is sufficient for 

Walker B recognition [51]. It is admitted that a conserved glutamate adjacent 

to the Walker B motif (hhhDE) together with the last acidic amino-acid 

polarize the attacking water molecule to hydrolyze ATP [177]. The aspartate of 

the Walker B motif extends to the active site and coordinated Mg
2+

 via a bound 

water molecule [195].  

(iii) ABC signature sequence LSGGQ responsible for phosphate binding and 

locking the ATP to the Walker A motif of the other NBD monomer. As a 

result, it is necessary for dimer formation. The LSGGQ sequence is the 

beginning of a sequence of up to 15 residues long [208]. It is a conserved 

sequence present in all ABC transporters.  
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(iv) Q-loop is normally found between the Walker A motif and the ABC signature. 

It begins by a highly conserved glutamine and followed by several residues. It 

often interacts with the EAA loop of the TMD, generally forming a salt bridge. 

The Q-loop is involved in changing the TMD conformation [56, 248].  

(v) H-loop is typically found downstream of the Walker B motif. It is a sequence 

that surrounds a histidine within the �switch� region involved in changing 

TMD conformation [51, 56]. 

 

Despite the difference in sequences of NBDs, the folding stays highly similar for all 

NBD domains suggesting a similar functioning mechanism [51]. To bind ATP, the NBDs 

form a dimer binding head-to-tail by the P-loop, Walker B, H-loop and the Q-loop of one 

NBD to the ABC signature motif of the other NBD (Figure 1.16.B) and locking the ATP 

molecule between them. Each dimer therefore has two ATP binding sites. Normally, NBDs 

form a dimer only when they are in an ATP-bound form. The mechanism of releasing ADP 

and the phosphate is still unknown. It is thought that upon ATP hydrolysis the NBDs 

dissociate and upon dissociation, ADP and phosphate detach themselves from the NBDs. 

Hydrolysis in a single site is sufficient for NBD dimer dissociation [14, 48, 51, 143, 198].  

Surprisingly, only a few residues of the NBD interact with the base moiety of ATP, which 

might explain the fact that NBD binds other substrates as well, such as GTP. The lysine 

residue of the Walker A motif is essential for ATP binding. It forms hydrogen bonds with 

oxygen atoms of ! and # phosphates. The ATP is therefore locked into position and Mg
2+

 ion 

is anchored to the site by Walker A motif T or S residues. The LSGGQ motif is also required 

to correctly coordinate the #-phosphate. The histidine from the H-loop then forms a hydrogen 

bond with the #-phosphate in order to hydrolyze the ATP molecule [51, 195, 248]. 
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Figure 1.16. Model of Staphylococcus aureus Sav1866 drug exporter NBD structure. A) NBD monomer of 

Sav1866 showing conserved motifs. ATP binds to the Walker A and B and the H-loop. ABC signature motif 

extends itself to another ATP. Q-loop reaches out to the TMD. B) A dimer of NBDs. ATP molecules are 

between the Walker A of blue and ABC signature motif of golden subunit (and vice versa) (figure adapted from 

[145]).  

 

1.3.2.4. Model ABC transporter: Sav1866 

S. aureus drug transporter Sav1866 (homologous to LmrA from L. lactis and BmrA of 

B. subtilis) may serve as an adequate model of overall ABC mechanism [55]. The TMDs are 

between 70 and 80 Å long. The NBD is then found 25 Å away from the membrane in the 

cytoplasm (Figure 1.17.A) [10, 51]. The model proposed is called �the alternating model� and 

should be generally true for both importer and exporters. This complex forms two drug-

binding sites and two ATP-binding sites. The TMDs form a high-affinity binding site towards 

the cytoplasm and a low-affinity site towards the external medium (Figure 1.17.B).  

To export the drug, the TMDs first bind the drug in the cytoplasm where TM1-3 and 6 of one 

TMD bind to TM4 and 5 of the other. Then, the protein changes conformation so that it flips 

and presents the drug to the exterior with the low-affinity site. For the outward facing 

conformation the TM 1 and 2 are bound to TMs 3-6 of the other and forms two �wings� of 

TMDs (Figure 1.17.A) [51, 174, 175]. The cavity presented to the external milieu has 

relatively low hydrophobicity, which could explain the low affinity.  

The TMD conformation change is driven by NBD hydrolyzing ATP. The NBD binds to the 

TMD through the Q-loop and the sequence between the Q-loop and the signature motif which 

is conformationally highly variable and two intracellular helices from the TMD [10, 174, 

198]. Once the phosphate is cleaved off, the glutamine residue from the Q-loop and histidine 

residue, of the H-loop, gather at the site. By hydrolyzing the ATP, the Q-loop changes the 
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NBD conformation and drives conformational change of the TMD [10, 51, 143, 146, 198, 

210]. 

Each NBD subunit interacts with its own TMD as well as the other TMD through the Q-loop 

and the TEVGERV motif (found only in exporters) before the ABC signature [51, 116, 174, 

198]. It is important to note that upon the NBDs dissociation, the ADP and Pi are released in 

order to present the substrate binding site between the TMDs to the cytoplasm again [175].  

 

 

 

Figure 1.17. Structure of complete Sav1866 transporter and its mechanism model. A) ATP-bound Sav1866 

transporter in the outwards facing conformation. One subunit blue (TMD) and green (NBD) is bound to the other 

yellow (TMD) and red (NBD). ADP and Pi are represented in ball and stick format (figure taken from [174]). B) 

Cartoon showing in the first step binding of a ligand to the TMD in the high affinity conformation towards the 

cytoplasm. Second step shows binding of ATP and release of the ligand. Towards step three, ATP is hydrolyzed. 

By releasing ADP and phosphate between steps three and four the ABC transporter returns to its original 

conformation [145]. 
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ABC transporters require ATP to function, however the stoichiometry of ATP used 

per molecule transported is still not known for the majority of transporters. There have been 

several in vitro studies attempting to determine the ratio of ATP per substrate, but there is a 

vast variation between transporters studied [51-53, 70, 198]. It is generally accepted that 

small, simple substrates require less ATP to transport than larger ones, such as peptides [70]. 

For an exporter, to function as a pump, it must efflux a higher amount of substrate than comes 

into the cell. At the same time it is desirable to spend the minimum amount of ATP. A 

combination of different elements may be in place to maximize the effectiveness of the 

reaction: as for Sav1866, high-affinity site facing the cytoplasm and low-affinity site facing 

the exterior; binding ATP and hydrolysis only after the substrate binds to the protein (not true 

for all transporters); and quick ADP release to a �ready� state [20, 24, 52, 70, 178, 198]. 

 

 

1.3.2.5. AMP transporters 

AMPs have been presented previously in the chapter. Most of these compounds are 

targeted against Gram-positive bacteria. In the past, ABC transporters targeting these AMPs 

were considered as proteins functioning only for self-immunity or exporting synthesized 

peptides. Today, they are getting more attention, because it has been discovered they provide 

a wide arsenal of defense for Gram positive bacteria. There are several groups of these 

transporters with different modes of action, different substrate preference and different 

regulation. Many of them are regulated on one level or another by a TCS system, but the 

regulatory mechanism is quite variable as well [60, 200, 218]. In 2012 a review has been 

published proposing a classification system of these ABC transporters based on the predicted 

structures of the TMDs [83]. The author created five groups named after the most studied and 

characterized example of each group described below (Figure 1.18.): 
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Figure 1.18. Five AMP transporter groups. Black rhombus represents an AMP. TMDs and its parts are in red. 

NBDs are represented in violet. Blue objects are regulators. �Pacman� represents a peptidase domain. 
Phosphorylated or unphosphorylated UPPs are shown as bolts. A) SunT type, with a peptidase domain on the N-

terminus of TMD. B) NisT type exporter. Exported AMP is processed extracellularly. C) LanFEG type. The 

TCS serves as the sensor for the transporter. D)  BcrAB has a complex regulation pathway. Main target is 

bacitracin. E) BceAB type transporter senses the AMP with an extracellular loop. It is regulated by a TCS [83]. 

  

· SunT-type is characterized by a peptidase domain on the N-terminus. SunT is 

responsible for transporting in-house produced AMPs and other peptides and likely 

controlled by a kinase system. It processes the AMP by the N-terminal peptidase 

domain before releasing the drug out of the cell [109, 169].  

· NisT-type is an exporter of in-cell synthesized AMPs as well as foreign AMPs. Unlike 

SunT, NisT only translocates the AMPs which mature extracellularly. For some 
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representatives of this group a TCS system is present as a regulator as shown in 

Figure1.18.B [41, 236].  

· LanFEG group has a very narrow range of substrates, either restricted to self-produced 

AMPs or very close relatives. The ABC transporter transports AMPs from the 

membrane into the extracellular media. LanFEG group is closely regulated by a TCS, 

which works as the AMP sensor [63, 193].  

· BcrAB is the less frequent group with fewest representatives. It confers resistance 

mainly to bacitracin. It is the least known ABC transporter with a complex regulation 

pathway including a TCS system [71].  

· The last but not least group is the BceAB type transporters, the focus of this PhD 

project, which are described in this introduction section 1.5. 

Recently, a first crystal structure of a full AMP transporter has been obtained. This McjD 

transporter from E. coli exports MccJ25 AMP during starvation. The structure of this 

transporter with six "-helices is similar to those of Sav1866 and MsbA [36] and would fall 

into the SunT group proposed above (Figure 1.19.). 

 

 

Figure 1.19. Crystal structure of E. coli McjD AMP transporter. The first crystal structure of an AMP 

transporter has been solved belonging to the SunT-type proteins (figure taken from [36]).   
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1.4. Two- component systems (TCS)  

 

1.4.1. General description of TCS systems 

The TCSs are found mainly in bacteria and archea and in a few eukarea. It is a basic 

stimulus and response mechanism. Throughout time it has adapted to respond to many 

different extra and even intra-cellular stimuli. They allow bacteria to regulate many essential 

functions, as nutrients uptake, chemotaxis, cell adhesion, sporulation like in B. subtilis, or 

antibiotic resistance for which P. aeruginosa is notoriously known [89]. However, the TCS 

system is not as universal as the ABC transporters. There are some bacteria with a substantial 

number of TCSs as B. subtilis, but there are other bacteria with none whatsoever as in M. 

genitalium [105, 137, 221]. Some of the major advantages of the TCSs include rapidity and 

specificity. In a few cases, HKs may able to cross-talk, or one HK might stimulate several 

RRs or several HKs are necessary to stimulate a single RR [137]. Some TCSs are seen as 

potential targets by small-molecule therapy where stimulating or shutting down a system 

might hinder bacterial viability [87]. 

 

1.4.2. Composition and mechanism 

As stated above, the TCS is composed of at least two subunits: a membrane bound HK 

and a soluble RR. Even though HKs are a very diverse group, the typical HK is usually not 

longer than 400 amino-acids, has two transmembrane helices, an extracellular sensing loop 

and a conserved H-box, also called the dimerization histidine phosphotransfer domain  (DHp) 

on the kinase domain [154, 221]. Once stimulated, the HK generally forms a homodimer and 

autophophorylates itself at the H-box from available ATP [46, 251]. The phosphate is then 

transferred to the aspartate residue of the RR. Many HKs also possess the ability to 

dephosphorylate the RR in order to quickly stop the response in the absence of stimulus [221]. 

In some cases, the binding of a substrate to the HK may inhibit basal autophosphorylation of 

the HK and therefore limit the signal transduction [221]. 

The RR is frequently substantially smaller than the HK, while its putative state is 

commonly a dimer. RR is composed of two domains, a receiver domain which includes a 

dimerization helix and a conserved Aspartate domain mentioned above and a diverse 

regulator domain, which is usually a DNA effector, but it may have other functions as well 

(Figure 1.20.) [46, 221]. The function and structure has been studied also thanks to several 

crystal structures of different RRs. Often, the RR can dephosphorylate itself to prevent an 
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overwhelming response, but there are a number of other mechanisms of dephosphorylation, 

such as auxiliary dephosphorylation proteins, some H-boxes of HKs, or other domains of the 

HK. Small molecules such as imidazole phosphate, or acetyl phosphate may cause 

autophosphorylation of the RR, but autodephosphorilation usually limits the active state 

duration [46, 57, 105, 158, 216, 221]. 

 

 

 

 

Figure 1.20. Model of a typical TCS and phosphorylation reactions: A typical histidine kinase (HK) senses a 

substrate, with an extracellular loop and through the H-box autophosphorylates itself from ATP. The H-box then 

transfers the phosphoryl group to the aspartate residue on the response regulator dimer (RR). The response 

regulator then performs its function and ultimately dephosphorylates. 

 

 

1.4.3. Intramembrane sensing histidine kinases (HK) 

Not all HKs, however, fit exactly into the typical scheme. There is a group of HKs, 

which have a very short extracellular loop (~5-25 amino-acids), which practically makes it 

impossible for them to be an extracellular sensor. On the cytoplasmic side, they have only the 

H-box, serving to phosphorylate the putative RR. Some of these HKs are called intra-

membrane sensors. Out of the 5000 known HKs in prokaryotes, less than 200 fit into this 

category. Many of these proteins are found in Firmicutes bacteria, of which S. pneumoniae is 

a member. The majority of this type of HKs is linked to an ABC transporter involved in 
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detoxification of the bacteria and are an important element in cell envelop stress response 

[154-156].   
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1.5. ABC transporters and TCS 

Sometimes, an ABC transporter has co-evolved with a two-component system. As we 

have shown above, TCS usually works as a regulator of ABC transporters as well as other 

processes. In the case of ABC transporters, the cognate TCS usually detects the presence of a 

stimulus and drive its transportation by the expression of a given transporter. 

 

1.5.1. ABC and TCS in Pneumococcus 

We have briefly introduced the Blp system above in section 1.1.3.4. Another example of 

ABC-TCS cooperation in pneumococcus is the competency described in section 1.1.3.1. A 

competence stimulating peptide (CSP) is transported out of the cell by the ABC transporter 

comAB. The comD HK then senses the peptide and activates the comE RR. The RR then has 

a number of targets, including upregulation of CSP expression and comAB expression. A total 

of 240 targets of the RR have been identified by microarray technology. Not all of them are 

regulated by the RR in a direct manner, but it activates other regulators that control gene 

expression (Figure 1.21.) [130, 153, 182]. 

 

 

 

Figure 1.21. Competence regulation in S. pneumoniae. CSP is exported by the ABC transporter. The CSP then 

binds to the HK, which triggers a cascade, which upregulates CSP expression as well as the expression of the 

comAB ABC transporter. The RR regulates other genes and activates other regulators (figure adapted from 

[182]). 
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1.5.2. BceAB-RS type system 

BceAB-RS complex belongs to the Peptide-7-Exporter family in the Transport 

Classification Database [207]. Although the BceAB-RS, formerly known as YtsAB-CD, 

system has been studied for more than a decade, progress in understanding of its functioning 

mechanism at the molecular level has been slow and modest. The first time an AMP 

resistance system similar to the BceAB-RS was described in Salmonella typhimurium in 1996 

[93]. Afterwards, in early 2000�s, the AMP resistance systems began to be studied especially 

in B. subtilis. Homologues of the BceAB-RS system have been found, among others, in B. 

subtilis, Staphylococcus aureus, Streptococcus mutans, Lactobacillus casei, Enterococcus 

faecalis and S. pneumonia [83].  
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Figure 1.22. Phylogenetic tree of 164 BceB-like proteins. The phylogenetic tree shows the versatility of the 

BceAB-RS like complex in Firmicutes bacteria. The scale bar indicates the average number of substitutions per 

site. Numbers at nodes show posterior probability. The red box and plain arrow point to the single BceB found in 

S. pneumoniae. Black arrows show the three BceAB-RS like complexes in B. subtilis. (figure adapted from [45]) 

  

Coumes-Florens et al. performed a phylogenetic study in 2011, blasting each of the four Bce 

components individually against the genomes of various bacteria. The results show that the 

system is practically unique to the Firmicutes bacteria with very few exceptions, therefore, it 

is possible that the system has originated in this phylum (Figure 1.22.). As with all ABC 

transporters and TCS there is significant variation between different species and strains. Some 

strains have several of these systems, some have a single one and others have orphan ABCs or 

TCSs of either one of the four components [45, 60]. The BceAB-RS family members can be 

phylogenetically split into six groups with a number of outliers unable to be categorized. This 

grouping does not seem to have any influence on the functioning mechanism though [60, 84, 

200]. 

BceAB represents the ABC transporter part of the system and BceRS the TCS part. 

BceB subunit represents an atypical TMD. It has ten putative transmembrane helices with a 

large extracellular domain of about 200 amino-acids between transmembrane helices VII and 

VIII. This loop his highly variable and may have significant differences even between strains 

of the same bacterial species [83, 120, 201, 225]. Fascinatingly, it has been shown by Staron 

et al. in 2011 [218] that two AMPs of similar structure such as enduramycin and ramoplanin 

are not recognized by the same BceB subunit. BceA, the NBD, does not present any major 

variation in its primary sequence from a typical NBD as found in many other ABC 

transporters. BceS, the HK of the system, falls into the small category of IM-HKs. It has two 

transmembrane helices with a ~12 amino-acid extracellular loop, which presumably cannot 

bind any ligands [13, 45, 59]. The RR, BceR, is again a typical one.  

The mechanism of the BceAB-RS complex is quite simple (Figure 1.23.). Because it 

has been described principally in B. subtilis, it is used as a universal model. The BceB binds 

bacitracin with the large extracellular loop and sends a message to the BceS, which 

autophosphorylates. The H-box then phosphorylates the aspartate of the BceR, which in turn 

binds to the promoter to express the BceAB [173]. BceA hydrolyzes ATP in order to transport 

the AMP [59, 60, 71, 83]. 
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Figure 1.23. Schematic representation of the BceAB-RS system in the B. subtilis. The transmembrane 

domain (TMD) has ten predicted transmembrane helices, which is unusual for an ABC transporter. Helices 7 and 

8 are very variable and especially the large extracellular loop of about 200 amino acids in length. This is the 

sensing loop which binds antimicrobial peptides (AMP), for example bacitracin. Once the AMP is bound to the 

loop, the BceAB transporter communicates with the histidine kinase (HK) of the BceRS TCS through an 

unknown mechanism. The HK then phosphorylates the aspartate of the response regulator (RR) through the H-

box. The RR then upregulates the expression of the entire ABC transporter.  

 

1.5.2.1. BceAB-RS type system in B. subtilis 

The BceAB-RS like system has been studied most extensively in B. subtilis as it was 

chosen as a model for the complex. The genome of the bacterium contains different 

homologues with the same topology, namely PsdRS-AB (formerly YvcRS-PQ) and 

YxdLMJK, which are involved in nisin, vancomycin, LL-37 and other AMP transport [218]. 

BceAB-RS belongs to the phylogenetic group four whose main substrate is bacitracin, while 

the other two to group three, which may be triggered by LL-37, enduracidin, vancomycin etc.  

TCS and ABC genes are organized in the same operon, where the two TCS genes precede the 

two ABC genes in all three cases (Figure 1.25.). It has been clearly demonstrated that the 

BceAB-RS absolutely needs the complete BceAB type ABC transporter and BceRS type TCS 

in order to confer bacitracin resistance [13, 173]. The complex therefore needs all of the 

components to maintain its function [13, 199]. Even the integrity of the components is 
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important. For example, mutants lacking the large extracellular loop of the BceB were unable 

to trigger the system and lacked the resistance towards bacitracin as shown in 2007 by 

Bernard et al. [13]. Mutations in the BceA ATP binding motifs also increased bacitracin 

sensitivity. BceA ATP hydrolysis is consequently necessary for signaling [13, 83]. When the 

HK, BceS was deleted, no communication occurred with the BceR, which is essential for 

transcription of the BceAB. The molecular details of the signaling between the BceB and the 

BceS remains a mystery [120, 156, 225]. 

The exact stoichiometry of the BceAB and of the BceAB-RS complexes is still 

debated. Normally, one would expect the BceB to be a dimer as most TMDs of ABC 

transporters, however it has already ten predicted transmembrane helices and helices II-IV 

and VIII-X contain enough FtsX domains necessary to form a chamber for transportation 

[83]. A recent study by Dintner et al. [59], which is also the only one published on this 

subject, shows that while BceB is a monomer, BceA forms a dimer while in complex with the 

BceB. Moreover, their in vitro experiments suggest that BceAB and BceS form a complex. 

They coupled BceS to beads and washed them with purified BceAB. BceS and BceAB then 

co-purified during elution. The troubling aspect of this study is that the BceAB transporter did 

not show any ATPase activity. 

Another unanswered question remains whether the ABC transporter is an importer or 

an exporter. While its predicted topology and bioinformatics analysis suggest that it is an 

exporter, no experimental data has been produced to support the claim [83], other studies 

suggest it is an importer [201]. Another recent study [125] suggests that it is not bacitracin 

itself, which is the substrate of the transporter, but UPP. Supposedly, the BceAB flips the 

bacitracin-bound UPP into the cytosol, which is the mechanism that triggers the BceRS 

response. The claim has to be confirmed in vitro as well as with other AMPs. Specifically 

BceAB in B. subtilis also transports mersacidin, plectasin and actagardine which also inhibit 

cell wall synthesis, but have a different mode of action than bacitracin. The homologues of 

BceAB-RS, PsdRS-AB and YxdLM-JK are triggered by AMPs with yet another mode of 

action, therefore UPP flipping cannot be a universal answer to the mechanism of the BceAB-

RS like complexes. 

 

1.5.2.2. BceAB-RS type system in E. faecalis 

Similar systems were found in E. faecalis. In this case, there are however two different 

BceAB type ABC transporters working together with one BceRS type TCS. Unlike B. subtilis 

or other bacteria, the two BceAB transporters EF2050-49 and EF2752-51 do not have a 
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BceRS in the same operon, or in their close neighborhood [84]. The homologous BceRS-like 

TCS (EF0926-27) is in another operon with overlapping ORFs, quite distant from the two 

ABC operons (Figure 1.25.). The EF2050-49 transporter belongs to the group five, but the 

other could not be classified. The EF2752-51 has homologues in E. faecalis and several 

Lactobacilli [60, 83, 84]. 

Both of the ABC transporters are BceAB like transporters where, the BceB type TMD 

part has ten transmembrane helices with a large extracellular loop between the transmembrane 

helices VII and VIII. The loop senses bacitracin and EF2752-51 sends a message to the 

BceRS, which in turn overexpresses the two ABC transporters, but EF2050-49 at a higher rate 

than the other (Figure 1.24.). Both of the transporters are necessary for full bacitracin 

resistance. When E. faecalis EF2050-49 gene replaced the BceAB gene in B. subtilis genome, 

the E. faecalis protein replaced the function of B. subtilis protein. On the other hand EF2752-

51 was not able to trigger transcription from the BceAB promoter [60, 84]. Nisin, gallidermin, 

vancomycin, teicoplanin, and penicillin G did not trigger a response, while mersacidin did 

[71, 83, 84]. 
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Figure 1.24. Schematic representation of the BceAB-RS like system in the E. faecalis. The transmembrane 

domain (TMD) have ten predicted transmembrane helices, which is unusual for an ABC transporter. Helices 7 

and 8 are very variable and especially the large extracellular loop of about 200 amino acids in length. This 

appears to be the sensing loop which binds antimicrobial peptides (AMP), for example bacitracin. Once the 

AMP is bound to the loop, only one of the BceAB type ABC transporters (EF2752-51 on the left) sends a 

message to the histidine kinase (HK) of the BceRS type TCS through an unknown mechanism. It is suspected 

that helix 5 is responsible for this action. The HK then phosphorylates the aspartate of the response regulator 

(RR) through the H-box. The RR then upregulates the expression of both ABC transporters, but the EF2050-49 

(ABC II) at a higher level than the sensor.  

 

1.5.2.3. BceAB-RS type system in other organisms 

Other organisms in which the BceAB-RS-like system was looked at in some detail 

include: S. aureus, L. casei, S. thermophiles, S. mutans and L. monocytogenes [83]. S. aureus 

and L. casei both have three BceAB-like transporters and two BceRS-like TCSs. While in S. 

aureus one of the TCSs works together with two ABCs [43, 121] and the other seems like a 

regular BceAB-RS complex, in L. casei there is one orphan Bce-AB-like ABC transporter 

which does not seem to be liked to a TCS and is likely to transport nisin on its own [180, 199, 

228]. S. thermophiles, S. mutans and L. monocytogenes all have a single BceAB-RS like 

system. S. mutans has even the same operon organization as B. subtilis. The mechanism or 

description of the systems is consistent with those examples described above [43, 121, 180, 

199, 228]. 
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1.5.2.4. BceAB-RS type system in S. pneumoniae 

To confirm the assumption form Figure 1.22., that there is only one BceAB-RS like 

complex in S. pneumoniae, we compared its genome to the genomes of B. subtilis and E. 

faecalis using the BLAST software. When any one of the four components of the multiple 

BceAB-RS systems form B. subtilis or E. faecalis was used as a query, a unique TMD/NBD 

couple and HK/RR couple were identified in the pneumococcus. The system is classified in 

group two according to the phylogenetic tree [45, 60]. The ORF organization is more similar 

to the one in E. faecalis than the one in B. subtilis. The BceAB type ABC transporter is in the 

same operon and the NBD (BceA) and the TMD (BceB) are separated by a single thymine, 

while the BceRS type TCS is in another operon with overlapping ORFs quite distant of the 

ABC transporter genes (Figure 1.25.).  

 

 

Figure 1.25. Schematic representation of the resistance operons, identified or putative, in B. Subtilis, E. 

faecalis and S. pneumoniae D39. Bent arrows represent gene promoters. Red represents the TMD, green 

represents NBD, blue represents HK and violet arrows represent RR. In B. subtilis there are three similar ABC 

transporters and TCS systems which provide resistance towards antimicrobial peptides. In E. faecalis there is one 

single TCS system which works together with two BceAB type transporters. When we run a BLAST with each 

of these genes against the S. pneumoniae D39 genome a single ABC transporter and TCS are identified.  

 

 

A study conducted by Becker et al. in 2009 demonstrated that in the non-pathogenic S. 

pneumoniae R6 strain, the mutation in BceB led to a higher sensitivity of the bacteria towards 
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bacitracin, however a truncated TMD reduced the susceptibility to vancoresmycin. 

Majchrzykiewicz et al. in 2010 showed the induction of expression of the BceAB in D39 

strain of the S. pneumoniae by bacitracin and nisin, but not by vancomycin [12, 150]. A 

higher expression level of BceAB has also been observed in T4 and Tupedo strains in 

presence of vancomycin [94]. No study so far has shown a link between the BceAB and the 

BceRS in S. pneumoniae, it is supposed that they cooperate as seen in their homologues from 

other species. 

 

1.6. Challenge of working with membrane proteins 

Membrane proteins pose several difficulties regarding their handling. The first 

challenge is their expression. It is necessary that the expressing bacteria use similar amino-

acid codons for optimal expression. Improper codons slow expression down. Additionally, 

over-expression of membrane proteins might be toxic to bacteria and might lyse the cells 

prematurely.  

Another challenge is purifying and handling the protein after expression. Without a 

hydrophobic agent, such as a detergent or other apmhiphile, in the buffer solution, the protein 

tends to aggregate due to hydrophobic helices which congregate together. The common 

solution is solubilizing the membrane protein and separating it from the membrane using 

detergents forming protein-detergent complexes replacing protein-protein and protein-lipid 

complexes. The downside of detergent solubilization is that the protein is sometimes 

inactivated [188].  

Protein extraction from membranes requires relatively high concentrations of 

detergents, which then may provoke protein instability. Nevertheless, it is necessary to keep 

the proteins soluble in aqueous solutions in order to perform in vitro studies of the membrane 

protein. Often the problem is resolved by lowering the detergent concentrations to limit the 

protein destabilization. Another solution may be transferring the protein to a less aggressive 

detergent or reconstitution of the protein in liposomes or amphipols. Alternatively, the 

membrane protein may be transferred to a nanodisc, which mimicks a cell membrane better 

than a detergent (Figure 1.26.). 
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Figure 1.26. Molecular dynamic structure of nanodisc. A) Perpendicular and B) planar view of a nanodisc 

model. The membrane scaffold protein (MSP) forms two rings around high-density lipid bilayer [188]. 

 

Nanodiscs were first used by Sligar et al. [8, 202] and consist of 130-160 lipids 

organized in a bi-layer and surrounded by stabilizing proteins called membrane-scaffold 

proteins (MSP) (Figure 1.26.). To use nanodiscs, it is crucial to optimize the lipid-protein 

ratio. The diameter of the nandisk varies depending on the MSP. The advantage of nanodiscs 

lies in their versatility. The membrane protein embedded in them then may be studied in 

electron microscopy [77], solid-state NMR [124], small-angle X-ray scattering [133] etc. 

Another advantage is to study the function of the membrane proteins. Since the nanodisc 

simulates a cellular membrane, the protein is more likely closer to its native state than in 

detergent (detergents form micells around the protein), which may make activity 

measurements more reliable than measurements in detergents [188, 202]. 
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2. Scope of the thesis 

At the beginning of my PhD project the exact functioning mechanism of the BceAB-

RS transporter complex was relatively poorly understood. Many studies concentrated on the 

functioning of the complex in B. subtilis and E. faecalis, which are considered as models. We 

were interested in the functioning mechanism in S. pneumoniae, as it might ultimately shed 

light on its resistance towards other antibiotics than AMPs.  

The questions included: What AMPs does the complex transport? How does the 

BceAB type ABC transporter communicates with the BceRS type TCS? What role does the 

complex play in host-pathogen interaction? What is the stoichiometry of the complex BceAB 

transporter? What is the stoichiometry of the whole complex? How does the BceAB sense the 

AMPs?  

To tackle these questions it was necessary to use many different approaches both in 

vivo and in vitro. In vivo part requires us working on the pathogenic S. pneumoniae D39 and 

creating mutants in order to assess the importance of the complex for the viability of the 

bacteria in various conditions growing the bacteria in liquid broths containing different 

AMPs. In vitro part of the work requires expression and purification of the four components 

of the complex. Since two of the components of the complex are membrane proteins, the 

TMD (BceB) of the BceAB transporter and the HK (BceS) of the BceRS, much time was 

spent on optimization of expression, solubilization and purification of the proteins. Due to 

time constraints I concentrated my efforts primarily on the BceAB complex, because this type 

of ABC transporter has not been described in detail yet. We studied its activity as well as 

complex stoichiometry. 
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Sommaire � Résultats et discussion 

 D�abord nous avons étudié le fonctionnement du système ABC-TCS type BceAB-RS 

in vivo, directement dans la souche D39 du pneumocoque. Nous avons délété  les gènes du 

transporteur ABC type BceAB, et du TCS type BceRS et la double délétion ABC-TCS. Dans 

les conditions normales, il n�y avait pas de différences entre les mutants et la souche sauvage 

(WT). Nous n�avons pas observé de différence importante entre les souches pendant les 

expériences d�infections des mouches. Nous avons réalisé des courbes de croissance en 

présence des différents AMPs dans les souches de délétion. Nous n�avons pas observé une 

différence de croissance entre les souches en absence des AMP et en présence des AMP LL-

37, ramoplanine et duramycine. Cependant nous avons découvert une différence importante 

entre les mutants et le WT en présence de bacitracine, nisine et vancomycine. De plus, il 

s�agit de la première étude démontrant un lien entre le BceRS et BceAB dans le pneumocoque 

par des expériences de qPCR. A partir d�une exposition de 15 minutes de la bacitracine  sur le 

pneumocoque à, l�expression du BceAB est augmenté de 200 fois dans la souche sauvage 

(WT). Cependant cette augmentation n�est plus observée lorsque le BceRS est absent (souche 

$BceRS). 

 En parallèle, nous avons étudié les composants du système BceAB-RS in vitro. Nous 

avons d�abord exprimé et purifié le régulateur de réponse cytoplasmique (BceR) et nous 

avons essayé de le cristalliser sans succès. Nous avons aussi exprimé et purifié la kinase 

d�histidine (BceS). Malheureusement, les quantités étant trop faibles, nous n�avons pu 

continuer des études approfondies de cette protéine.  

 Malgré des problèmes au cours du clonage, des expressions et purifications du 

transporteur ABC type BceAB, nous avons réussi à le purifier en quantités suffisantes pour les 

futures expériences pour sur ce système. Les expériences d�activité  d�hydrolyse de l�ATP par 

le BceAB et les mutants nous ont démontré que nous avons purifié une protéine fonctionnelle. 

De plus, nous avons aussi réussi à l�intégrer dans un nanodisc. Dans ce système, le 

transporteur présente une forte augmentation d�activité en comparaison de l�activité en 

détergent. 
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1. Studies of BceAB-RS type ABC-TCS system in S. pneumoniae   

 

1.1. Preparation of S. pneumoniae strains 

To knock out the BceAB ABC transporter (Spd0804 and Spd0805 in D39, 

corresponding to Sp0912 and Sp0913 in TIGR4) out of the S. pneumoniae D39 genome 

($BceAB strain), we produced three separate PCR fragments: F1 and F3 were identical to the 

pneumococcal genes flanking the BceAB gene upstream and downstream respectively and F2 

fragment contained a chloramphenicol resistance insert (CAT) (Figure 2.1. A).  

The theoretical size of the F1 (869), F2 (1121) and F3 (849) fragments appeared at the 

correct size on the agarose gel. The F2 fragment contains two ~ 20 base overhangs which are 

identical to either the F1 or the F3 ends. To create the final F4 fragment (Figure 2.1. B) the 

individual F1, F2 and F3 fragments were purified, then hybridized together by PCR as 

described in the materials and methods. After F4 purification, we transformed the bacterial 

genome of the S. pneumoniae D39 by the cassette and selected transformed clones by growing 

the bacteria overnight on Columbia Blood Agar plates containing chloramphenicol. A PCR 

test directly on the clones using the forward primer of F1 and reverse primer of F3 resulted in 

10 positive clones containing the CAT insert (Figure 2.1. C). With another set of outlying 

primers we amplified again the inserted fragment of clones 1, 2 and 3 and sent the samples for 

DNA sequencing (Beckman Coulter Genomics). The sequences corresponding to the F1 and 

F3 fragments were identical to the genomic DNA and the sequence corresponding to the CAT 

insert was identical to the cassette in the plasmid. 

For the deletion of the BceRS TCS system (Spd1445 and Spd1446 in D39 

corresponding to Sp1662 and Sp1663 in TIGR4), the same method was used, but a kanamycin 

resistance cassette was used instead creating the $BceRS strain. For the double knock-out, 

first the BceAB was knocked out and then the BceRS ($Double). 
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Figure 2.1. Preparation of S. pneumoniae D39 !ABC mutant. A) Genomic representation of the NBD and 

TMD. Three fragments were prepared using PCR: F1 (869 bp) and F3 (847 bp) are identical to the 

pneumococcal genome flanking the BceAB type ABC transporter upstream and downstream respectively. F2 

fragment (1121 bp) is a chloramphenicol insert with ~ 20 nucleotide ends identical to the ends of eithe F1 or F3, 

represented by a purple band. B) By PCR hybridization we created F4 fragment (2791 bp). C) After 

pneumococcal transformation, where the original genome was potentially replaced by the F4 insert, we grew the 

bacteria on a Columbia blood agar plate containing chloramphenicol. Then we tested the size of the insert from 

the clones using the forward primer of F1 and the reverse primer of F3. M- marker, 1-10 clones, CTRL- control 

sample of D39 WT. 

 

Next, we verified the phenotype and viability of the created $BceAB, $BceRS, and 

$Double strains. We first observed them under 400x magnification of a bright field light 

microscope (Figure 2.2. A-D). The shape of the wild type is a normal ovococcus and the 

predominant arrangement is a diplococcus. All three mutant strains appeared of the same size 

and shape as the wild type. They were also predominantly found in a diplococcus or short 

chains like the wild-type, but unlike the wild-type, the $BceRS had almost no short chains 

and only single cells or diplococci. This difference may have been caused by uneven pressure 

applied on the glass during sample preparation suggested by the unidirectional orientation of 

the bacteria. Nevertheless, no obvious deviation has been observed between the mutants and 

the wild-type bacteria. 

We next verified the presence of the capsule on the different strains. It has been 

observed before that during transformation, the pneumococcus may lose the capsule and 

therefore virulence, sometimes virulence may be lost even during storage in the freezer [140].  

We therefore performed experiments to verify the presence or absence of the capsule (Figure 

2.2. E). We repeated the experiment three times at different times and the capsule sizes were: 
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WT 9.5 mm ± 1.3, $BceAB 7 mm ± 1.0, $BceRS 8 mm ± 1.5, and $Double 7.3 mm ± 1.3. 

The control strain D39 CpsD lacking the capsule displayed sediment between 2.5 mm ± 0.5. 

Compared to the wild type, we observed that the mutants have kept their capsule through the 

genomic transformation. It is not uncommon for the clones to lose the capsule as seen in the 

past in the laboratory. It is therefore necessary to perform this experiment when manipulating 

the genome of virulent pneumococcus.  

The next experiment to verify the viability of the strains was to record a growth curve. 

As seen in Figure 2.2. F, we perceived that all four strains grew in a highly similar manner. At 

about 2.5 hours the lag phase moved to the exponential phase and after reaching the stationary 

phase in 5 hours, the OD lowered as the bacteria began to lyse. The mutants did not exhibit a 

viability or phenotypical difference from the wild type S. pneumoniae D39 when grown in in 

vitro conditions. This suggests that the mutants did not lose their viability compared to the 

wild type and we may continue our experimental work. 
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Figure 2.2. Control experiments of S. pneumoniae D39 WT and mutants. A)-D) 400x light microscope 

pictures of the A) Wild-type, B) $BceAB mutant, C) $BceRS mutant and D) $BceAB/BceRS mutant 

($Double). The basic shape of the bacterium is a ovococcus in all four cases and the preferred arrangement is 

either a short chain or diplococcus. E) A capillary experiment to investigate the capsule size as the wild type one. 

The WT and the mutants apparently kept a capsule of a similar size as the wild type one. A pneumococcus D39 

CspD mutant lacking the capsule has been included for comparison. F) Growth curve of the S. pneumoniae D39 

WT and mutants over 15 hours in THY media. 
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1.2. Pneumococcal BceAB-RS type ABC-TCS system does not play a role in host-

pathogen interaction (These experiments we performed in collaboration with Marie-Odile 

Fauvarque, CEA Grenoble) 

 The next experiment we performed was to test in vivo the role of the BceAB-RS type 

ABC-TCS complex in the host-pathogen interaction using drosophilae as a model. In the past, 

several studies have shown the possibility to infect drosophilae with S. pneumonia, where 

bacterial virulence may be measured by drosophilae mortality. Additionally, the insect mounts 

an impressive AMP response [1, 185], which is relevant to our subject of study. Another 

advantage of this model is the availability of mutants lacking a good immune response and 

AMPs, such as $TAK1 mutants [126]. We therefore chose to use the drosophilae as a model 

to the relative ease of handling and low cost compared to other animal models. Theoretically, 

we would expect the mutant strains to be less virulent than the wild-type as it may lack 

resistance towards insect AMPs. 

The presented data is a representative example of four different experiments. The flies 

were infected by the pneumococcus and its mutants by pricking with a needle dipped in 50 µl 

of 1.3 x 10
10

 cfu/ml ± 0.15 of bacteria (Figure 2.3.). Several flies of the control, non-infected 

(NI) group did not survive the injection, but more than 80% of them survived three days post 

infection. Flies infected by the wild type began dying after 20 hours post infection. Within 68 

hours post infection, only 8% of the flies survived the pneumococcal infection. Flies infected 

by the mutants also began dying after 20 hours post infection similarly to the wild type. At 

about 30 hours flies infected by strains followed a similar death rate. At 68 hour post infection 

all infected flies had about 10% survival rate, showing no major difference between the wild 

type and the mutants, despite the slightly higher death rate of $BceAB infected flies in this 

experiment. This data corresponds to previous works, where drosophilae infected with lethal 

doses of S. pneumoniae SP1 strain died within two to three days post infection [185]. 

In other experiments, $BceRS, $Double, or the wild-type showed different mortality 

even though the same conditions were followed; therefore it is precarious to interpret the 

results to a well-founded conclusion. Nevertheless, the impression is that neither the BceRS, 

nor the BceAB play a role in host pathogen interaction for the drosophilae model. Therefore, 

we may hypothesize that the system probably does not transport AMPs which are produced 

by this insect. 

 It would be interesting to use another model, such as the mouse, which is more closely 

related to humans than drosophilae, the AMPs produced by mice are also more closely 

related. Also it would be possible to test the difference in virulence between the wild-type and 
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the mutant strains in different types of infection, such as nasal infection, blood borne infection 

etc. 

 

 

 

Figure 2.3. Survival of drosophilae after infection by S. pneumoniae D39 and mutants. 50 flies per 

condition were infected by pricking in the abdomen under the wing with a needle dipped in PBS containing 1.3 x 

10
10

 cfu/ml ± 0.15 bacteria. After infection, the flies were kept with ample nourishment at 25°C for 18 hours 
before being placed at 30°C. Control flies (NI) were only pricked with a sterile needle. Time points when dead 

drosophilae were counted are marked with a tick or a line break. 
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1.3. Both the BceAB and the BceRS of pneumococcal BceAB-RS type system are 

necessary in resistance towards some AMPs 

Next, we tested the growth of the bacteria in presence of AMPs, which were known to 

induce at least one of the three BceAB-RS type ABC-TCS complexes in B. subtilis [218]. In 

the absence of AMPs, the growth curves superposed on each other and no difference was 

observed between the wild-type and the mutants (Figure 2.4. A) as shown before. We then 

performed a series of experiments with various concentrations of different AMPs, where we 

expected to observe a difference between the wild-type and mutant strains in some cases. We 

selected six commercially available AMPs which were used in a study by Staron et al. in 2011 

[218] of the three BceAB-RS type ABC-TCS systems in B. subtilis.  

We present a typical concentration for each AMP tested, which is a compromise 

between a concentration without an impact on bacterial growth and a higher concentration 

killing all four strains. From the growth curve, it is possible to calculate the rate at which the 

bacteria divide (Figure 2.4.). When grown in normal THY liquid broth, the WT and mutants 

grew at a normal rate of about 1.5 generations per hour, giving a forty minute doubling time.  

In presence of the peptide bacitracin at 2 µg/ml the wild type as well as the other three 

strains did not display any growth (data not shown). At the concentration of 1 µg/ml the 

growth curve and rate of the wild type strain was comparable to the growth curve and rate 

without any AMP, yet somewhat delayed. The difference in growth without AMP and in 

presence of bacitracin was not statistically significant (Figure 2.4. B and H). Compared to the 

wild type, all three deletions showed a severe growth inhibition in the same manner. The 

growth phase was severely delayed and the growth did not reach the standard OD. 

Additionally, the growth rate is three times lower than in the case of the wild type or in the 

absence of AMPs. It has been shown in the past that the BceAB transporter from the 

pneumococcus (R6 and D39 strains) was involved in the resistance towards bacitracin, where 

the susceptibility towards bacitracin of the $BceAB mutant (MIC 1 µg/ml, correlating with 

our result) was almost four times higher than the wild type (MIC ~ 4 µg/ml) [12, 150], 

however the involvement of the BceRS system has not been revealed for this bacterium. The 

fact that no difference is seen between the growth of the two separate deletions, $BceAB and 

$BceRS, and the double deletion $Double, suggests that both the ABC transporter and the 

supposedly regulating TCS are necessary to confer resistance towards bacitracin as seen in B. 

subtlilis [59, 173, 201] and E. faecalis [71]. Bernard et al. in 2007 [13] showed in B. subtilis 

that the lack of function of either component of the BceAB type ABC transporter or the 

BceRS type TCS increases the susceptibility towards bacitracin. 
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 When the bacteria were challenged with various concentrations of LL-37, the wild 

type did not show any susceptibility up to the concentration of 50 µg/ml, which was quite 

surprising as the MIC has been determined previously at 14 µg/ml for the D39 strain [150]. 

Additionally, no difference was seen between the wild type and the deletion strains in 

presence of LL-37, which is a confirmation of a result seen Majchrzykiewicz et al. in 2010 

[150]. Interestingly, the same study shows a slight increase in expression of the BceB upon 

LL-37 challenge, but not of the BceA. It might be plausible that the pneumococcal TMD 

could bind LL-37 as one of the homologous BceAB-RS type ABC-TCS systems in B. subtilis, 

YxdJK-LM, whose only known substrate is LL-37 [218]. In the pneumococcus, another TCS 

system, TCS03 (Sp0386 and 0387) was slightly overexpressed when the bacteria was 

challenged by the AMP [150]. We may speculate that the BceAB-RS type ABC-TCS in the 

pneumococcus only transports some bacterial AMPs produced by its competitors such as S. 

epidermidis or S. salivarius and not eukaryotic AMPs, since we have not observed a 

difference between the mortality of the wild-type or the mutant strains in drosophilae 

infections. Yet, more data are necessary to really support this claim. 

 The presence of duramycin demonstrated a comparable response as LL-37. The wild-

type pneumococcus did not show any susceptibility up to the concentration 100 µg/ml. 

Similarly, the mutant strains behaved as the wild-type did in presence of duramycin (Figure 

2.4. G). In the past, the drug has been shown to be ineffective against B. subtilis and no 

involvement of the BceAB-RS type ABC-TCS system has been shown [218].  
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Figure 2.4. Growth curves and rates of S. pneumoniae D39 WT and mutants in liquid broth in presence or 

absence of AMPs. Bacteria were grown to OD600nm of about 0.3. They were then centrifuged and resuspended in 

1ml of THY and the OD600nm was re-measured. For the OD600nm= 0.3, 36 µl of the bacteria were placed in 15ml 

of THY. Solution with bacteria (200 µl) was then placed into a well containing 100 µl of THY with or without 
AMPs. The OD600nm of the wells in the plate were then measured every 20 minutes for 15 hours using FluoStar 

(BMG Labtech). The presence and the concentration of a given AMP are indicated above the corresponding 

growth curves. The growth curves were done in triplicates and performed at three separate times. H) Growth 

rates were calculated using the log scale of the growth curve where the transition from lag phase to exponential 

growth forms a straight line. The slope (m) of a line is used in the following equation: doubling time = 

1/(ln(2)/m).  
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 The presence of 6 µg/ml of nisin does not seem to affect growth rate of the wild-type 

S. pneumoniae D39 (Figure 2.4. D and H). The growth curve also appears equal to the one 

when grown without AMPs without any delays. On the other hand, the presence of nisin 

delayed the growth of all three mutant strains compared to the wild type. It has been 

previously shown that the BceAB transporter in the pneumococcus was involved in nisin 

resistance [150], but the involvement of the BceRS has been unnoticed to this day as in the 

case of bacitracin. Staron et al. in 2011 [218] demonstrated in B. subtilis, that a BceAB type 

homologue PsdAB is responsible for nisin resistance, and entirely dependent of the BceR type 

RR homologue, PsdR using mutation analysis. The involvement of a TCS system in 

resistance towards nisin in a BceAB-RS type ABC-TCS homologue was further confirmed in 

another bacterium, S. aureus in 2013 by Kawada-Matsuo [121]. Contrary to these results, the 

two BceAB type ABC transporters and the BceRS type TCS in E. faecalis are not involved in 

nisin resitance [84].  

Remarkably, the growth rate for all four strains is roughly similar to the growth rate 

without AMPs (Figure 2.4. H). The delayed but normal growth rate by the mutants may be 

explained by a longer period of adaptation of the bacteria to nisin presence by other proteins 

responsible for nisin resistance. It has been previously demonstrated that mutations in dltA, 

which is normally responsible for D-alanylation of teitoic acids, also increase sensitivity 

towards nisin [129]. Also another TCS system, specifically TCS03 as in the case of LL-37, 

has been shown to be involved in nisin resistance in the TIGR4 strain and is overexpressed in 

its presence [123]. We may yet conclude that both the BcetAB-RS type ABC and TCS are 

necessary for a timely onset of nisin resistance in the pneumococcus. 

The AMP ramoplanin presented a formidable challenge to the growth of the wild type 

pneumococcus. It killed the bacteria at a concentration as low as 0.3 ng/ml, which makes it 

the most powerful of the tested AMPs. The mutant strains showed equal susceptibility to the 

drug as the wild type (Figure 2.4. E). None of the known homologues in the B. subtilis 

showed involvement in resistance towards ramoplanin either [218], but the bacteria grew even 

at the concentration of 5 µg/ml. It is interesting to note that the AMPs ramoplanin and nisin 

have the same mode of action by binding to lipid II and membrane pore formation, yet it is 

only in the presence of nisin that the wild-type and the mutants displayed a difference in 

growth. The determining factor might be the shape of the AMPs, because ramoplanin is 

circular and nisin is more linear containing several loops. Nevertheless, even structurally 

close molecules may not be recognized by the same BceB type TMD [83, 218]. 
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Introduction of vancomycin to the media presented a challenge to the growth of all 

four strains (Figure 2.4. F). While the wild type managed to slowly grow to OD600nm of 

approximately 0.5, none of the three mutants reached that value. Plus, all strains displayed 

slow growth in presence of 375 ng/ml of vancomycin. Compared to the wild-type, the mutants 

did not reach such a high OD and the growth curve did not show the typical lag, exponential 

and stationary phases.  

In addition, their growth rate was also significantly lower regardless of the mutation. It 

has been shown in the past that other TCS systems were overexpressed in resistant 

pneumococcal strains upon vancomycin challenge, specifically TCS03 and TCS11 (Sp2000 

and Sp2001) [94]. Nonetheless, Kietzman et al. [123] claims that vancomycin does not induce 

TCS03 expression. Haas et al. [94] also observed an overexpression of the BceAB type ABC 

transporter in the TIGR 4 strain upon vancomycin stress, but did not describe its involvement 

in the resistance towards the AMP. 

 All three mutant strains react in the same manner to challenges by many AMPs, 

indifferently of the differences or similarities in the structures and composition of the AMPs. 

Interestingly, in B. subtilis, the resistance towards nisin and bacitracin is executed by two 

homologous BceAB transporters and vancomycin isn�t transported by any of the three 

homologues present in its genome [218]. It has been demonstrated previously that structurally 

unrelated AMPs are recognized by the large BceB extracellular domain, while related AMPs 

did not bind to the BceB subunit at all [83]. Consequently, despite the fact that bacitracin, 

nisin and vancomycin have different structures and modes of action, as described in the 

introduction of this manuscript, it is not uncommon that they would bind the same 

pneumococcal BceB subunit. Nevertheless, both bacitracin and nisin have different structures; 

both use UPP as a primary docking site for antimicrobial activity. Vancomycin, apparently, 

has nohing in common structurally with the other two AMPs and its antimicrobial action is 

inhibiting cell wall trans-glycosylation and trans-peptidation, which is quite puzzling given 

the action site of the AMP [200] and the position of the BceAB in the membrane.  

We may therefore conclude that for resistance towards bacitracin, nisin and 

vancomycin, the whole BceAB-RS type ABC-TCS system is necessary. The presence of one 

of the components of the system, being the ABC or the TCS is not sufficient to provide even 

partial resistance towards the AMPs. Therefore, this supports the assumption of the 

cooperation of the BceAB type ABC transporter and BceRS type TCS to afford a significant 

level of resistance to some AMP.  
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1.4. BceRS directly regulates BceAB expression upon AMP introduction (Experiments 

performed by C. Durmort and L. Bellard) 

 To study further the relationship in vivo between the ABC and TCS of the BceAB-RS 

system we decided to use qPCR and observe the induction of ABC expression upon stress by 

bacitracin. It has been shown previously in B. subtilis that BceAB overexpression is induced 

by this AMP [201]. In the following experiment wild-type bacteria and $BceRS mutant were 

grown in presence of bacitracin for 30 min and the mRNA levels were measured at 5, 15 and 

30 min as above.  

For the wild-type strain we observed a 47-fold (± 27-fold) and 40-fold (± 22-fold) 

increase of mRNA expression of the BceB and BceA respectively already at 5 min after 

bacitracin challenge (1 µg/ml). At 15 min the BceB was being expressed 166-fold (± 97-fold) 

higher than at T0 and BceA 116-fold (± 24-fold). At 30 min the BceB expression was 210-

fold (± 31-fold) higher and BceA 159-fold (± 30-fold). All of the other genes which were 

studied, the BceS and BceR of the TCS and PatA, a part of an MDR transporter involved in 

acriflavine, ciprofloxacin, and norfloxacin resistance [24] as a control, did not display a 

modification of expression level upon bacitracin stress (Figure 2.5. A).  

Interestingly, Majchrzykiewicz et al. in 2010  [150], observed only a 12-fold and 8-

fold increase in expression of the BceB and BceA, respectively, in 15 min and 10-fold and 9-

fold increase of expression in 30 min in presence of 0.7 µg/ml of bacitracin. This difference 

might be explained by a different experimental approach, as they used !-galactosidase assay. 

In B. subtilis, similar values as ours of induction of the BceA and BceB were observed by 

Rietkotter et al. in 2008 [201] when the bacteria was challenged for 30 mins between 3 µg/ml 

to 300 µg/ml of bacitracin: the expression was increased 100-fold to 160-fold, respectively. 

Additionally, the BceAB-RS system was shown to be particularly sensitive to bacitracin 

presence, where induction of BceAB expression was observed already at 0.03 µg/ml. 

While we observed tremendous expression of the mRNA of the ABC components in 

the wild type in presence of bacitracin, the expression of the BceAB type ABC transporter 

remained unchanged for the $BceRS mutant. This result is congruent with previous results in 

B. subtilis [13], E. faecalis [84] and S. aureus [121] where the presence of the BceRS type 

TCS is obligatory for BceAB transporter expression and thereby resistance towards 

bacitracin. 

To our knowledge, this is the first report to demonstrate that the BceRS type TCS 

regulates the BceAB type ABC transporter expression upon bacitracin stress in S. 
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pneumoniae. Further experiments are needed to observe if the same overexpressing 

phenomenon occurs in the presence of nisin and vancomycin.  

  

 

Figure 2.5. qPCR experiments of S. pneumoniae WT and !TCS in absence or presence of bacitracin. 
mRNA measured in this experiment are PatA as a control, which is not affected by the presence of bacitracin. 

Genes of interest were BceB (TMD) and BceA (NBD) of the BceAB type ABC transporter and the BceS (HK) 

and BceR (RR) of the BceRS type TCS. The bacteria were grown to the OD600nm=0.3 before introduction of the 

AMP (T0). A) Fold expression of the components of the ABC-TCS system against T0. B) Fold expression of 

BceAB-RS type ABC-TCS system components at 5, 15 and 30 minutes in presence of bacitracin vs. the same 

time point without bacitracin for the WT and $BceRS mutant.  
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2. Functional studies of the pneumococcal BceAB-RS type complex 

 

2.1. Purification of the individual subunits comprising the BceRS type TCS 

 We first expressed the BceR (RR) of the BceRS type TCS, as it is a soluble protein. 

We performed the expression in BL21(DE3) cells transformed by the pET-Duet-1-RR 

plasmid. As seen in Figure 2.6.A, there was a leak of BceR expression even before IPTG 

induction, however the expression was increased by IPTG. On the Western blots we observed 

a band at ~ 25 kDa, which corresponds to the BceR theoretical size of 26 kDa. After cell lysis, 

we tested the expression solubility of the protein by centrifugation (Figure 2.6. B). The 

majority of the expressed BceR was in inclusion bodies, but a substantial amount was left in 

the supernatant, leaving enough material to work with further. We then performed a Ni-NTA 

affinity chromatography purification immediately followed by a size exclusion 

chromatography. The first peak at ~ 373 ml is most likely aggregates, or maybe DNA-bound 

protein. The second small peak at about 381 ml is probably a dimer of BceR as the size is ~ 

65 kDa. The large peak at about 395 ml likely corresponds to a BceR monomer with a size of 

~ 30 kDa.  (Figure 2.6. C and D). We were able to purify 42 mg of BceR from four liters of 

bacterial culture after pooling all fractions between 15 and 41. After concentration, an 

overloaded Commassie blue stain did not reveal contaminants (data not shown).  
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Figure 2.6. Overexpression and purification of the BceR. A) Western Blot of BceR overexpressed in  

BL21(DE3) before and after induction by IPTG. The bacteria were transformed by the plasmid pET-Duet1-RR 

and were induced (lane +) or not (lane -) by addition of 1 mM IPTG and further grown at 37°C for 6 h. B) 

Western Blot of the soluble and insoluble fraction of BceR. The cells expressing the BceR were lysed by 

sonication and the lysate was then ultracentrifuged at 100 000 g for 1h. Sup: supernatant, Pel: pellet C) After Ni-

NTA  column purification, the eluate of 4 ml containing the BceR analyzed by absorbance at 280 nm, was 

directly injected into 125 ml Superdex 75 size exclusion chromatography column. The graph represents the 

chromatogram obtained with the absorbance at 280 nm plotted versus the elution volume. The two red lines 

show the collected eluates (1 ml) beginning with fractions #1 to #41. D) Gel of the samples collected from gel 

filtration fractions: M: molecular weight markers (kDa), sup: supernatant (injected sample), pel: pellet, FT: flow 

through from Ni-NTA column purification, then every three fractions under the three larger peaks were selected 

to do the Coomassie Blue stained SDS-PAGE gel.  

 

 We next decided to pursue the study of BceR using high throughput crystallization 

screening platform available at the EPN science campus in Grenoble. We concentrated the 

protein to 12 mg/ml by serial 5 minute centrifugation at 20 000 g in a 10 000 MW CO PES 

column (Millipore) and froze aliquots at -80°C. Aliquots were then thawed, centrifugated and 

supernatant placed in fresh tubes before being sent for crystalography screening at 4°C. In 

none of the conditions the protein produced a crystal. We continued to pursue the 

crystallography experiments by making an additional 120 conditions at 4°C and 20°C, with 

the same negative result. Due to time constraints we decided to follow other parts of the 

project, but the next step would have been trying different protein concentrations and different 

precipitants. 

 

 



 

77 

  

 

Figure 2.7. Crystallogenesis experiments of the BceR. The purified protein was sent to the crystallography 

platform (Highthroughput crystalogenesis platform at ESRF) and different screening plates were used (in total, 

600 conitions were tested). Examples of hanging drops are shown here where 1µl of purified protein at 8 mg/ml 
was mixed with 1 µl of screening solution and left for 8 weeks at 4°C. None of the conditions tested produced 

any crystal. A) and B) crystals of salt and precipitated protein are visible in the drops. C) Protein precipitates 

(brownish colour). D) This solution remains clear. 

 

 

Next, we pursued the expression and purification of the BceS (HK). We expressed the 

38 kDa protein containing an N-terminal streptavidin tag in BL21(DE3) transformed by a 

pRSF-Duet1+HK plasmid. Upon overnight expression after IPTG induction only a small 

amount of protein has been expressed, since no bands have been observed in a SDS-PAGE 

gels stained by Coomassie blue stain or a silver stain (Figure 2.8. A). After cell lysis in the 

microfluidizer at 18 kpsi, we then separated the membrane from the rest of the cell lysate by 

ultracentrifugation (130 000 g). We next tested the protein solubilization by several 

detergents. We used 1% w/v detergent concentration for overnight solubilization (Figure 2.8. 

B). Despite the fact that lauryl maltose neopentyl glycol (MNG3) displayed a relatively low, 

but consistent solubilization efficiency we chose to continue working with this detergent as in 

later experiments we used MNG3 for solubilization of the BceAB transporter, and it also 

showed higher ATPase activity in this detergent. We then proceeded to continue the 
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purification process on a Strep-Tactine
®

 column (IBA). We observed that much of the protein 

did not attach to the affinity column and therefore in addition to losses of the protein during 

solubilization, much material was lost during purification as well. We were able to visualize 

the protein only using "-streptavidin Western blotting using highly sensitive 

chemiluminescent substrates as during Coomassie blue straining or even silver staining no 

band was observed. Because of these difficulties and the delicacy of the Streptavidin resin, we 

tried to generate two new plasmids with a histidine tag on the BceS either on the N-terminus, 

or the C-terminus. Despite our efforts, we did not succeed in these new cloning strategies. 

 

 

Figure 2.8. "-Streptavidin Western Blots of BceS overexpression, solubilization and purification. A) Total 

bacterial extract containing the overexpressed streptavidin tagged BceS. Bacteria BL21(DE3) were transformed 

by the plasmid pRSF-Duet1-HK and were induced (lane +) or not (lane -) by addition of 1 mM IPTG and further 

grown at 20°C over-night. B) Solubilization test of total membrane extract containing the BceS protein using 

different detergents. Sup: supernatant; Pel: pellet. C) Purification of BceS on a  Strep-Tactin
TM

 column after ON 

solubilization with 1% w/v MNG3 and purification in 0.1% of the same detergent. A- molecular weight markers 

(kDa); B-J � eluted fractions (7.5 µl sample loaded on gel form 1 ml eluate); K- flow through; L- wash; M- 

supernatant of solubilized membrane (5 µg); N- membrane before solubilization (5 µg).  

 

 

2.2. Characterization of the purified BceAB type ABC transporter 

 We tested the expression of the BceAB type ABC transporter in several systems such 

as BL21(DE3), C41(DE3) and C43(DE3) [162], Rosetta2 (Roche) cells and the best yield of 

expression was obtained in the BL21(DE3). We then expressed the BceAB type ABC 

transporter overnight at 20°C. On the SDS-PAGE gels in Figure 2.9. A and B, a clear 

induction of expression upon IPTG introduction may be observed. The cells were then broken 

using the CellDestruptor at 18 kpsi and the membranes were separated from the rest of the 



 

79 

  

lysate using ultracentrifugation at 130 000 g for two hours. Even though the theoretical size of 

the tagged transmembrane subunit BceB is 75 kDa, it regularly migrated to about 60 kDa in 

SDS-PAGE gels. The BceA theoretical size is 28 kDa and its corresponding band displayed a 

slightly larger size of roughly 30 kDa. As a control of our protein expression, we chose to 

perform N-terminal sequencing of each subunit. For that purpose, we used FOS12 detergent 

for membrane solubilization. The detergent was very efficient, but presumably will denature 

the protein [249]. Nonetheless, in order to confirm the identity of both proteins by N-terminus 

sequencing, it was adequate. After Ni-NTA affinity column purification we performed N-

terminus sequence analysis of the first eight amino-acids of each subunit (analysis done by 

Jean-Pierre Andrieu at the IBS) and the analysis confirmed the identity of our protein (BceB: 

MFRLTNKL, BceA: GHHHHHHH). 

To separate the protein from the rest of the membrane it was necessary to screen for 

the best detergent to solubilize it. We used the ROBIOMOL platform, present at the IBS to 

screen for 11 detergents (Figure 2.9. C and D). The detergents giving the best yield of 

solubilization of the BceAB transporter were MNG3 and UDM. Since qualitatively MNG3 

seemed more efficient and the BceS protein was also solubilized by the same detergent, we 

chose to pursue the study with MNG3. Additionally, in a previous study done in the group 

[249], it has been shown that the solubilization and subsequent purification of BmrA with 

MNG3 displayed a relatively low presence of contaminants along with high stability 

compared to other detergents. It has been shown also to increase the stability of other 

membrane proteins and may help to generate larger and better diffracting crystals [30]. 
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Figure 2.9. Overexpression and solubilization test of the BceAB type ABC transporter. A) and B ) Western 

blot and Silver stained SDS-PAGE gels, respectively, of the BceAB transporter overexpressed in BL21(DE3). 

The bacteria were transformed by the plasmid pRSF-Duet1-ABC and were induced (lane +) or not (lane -) by 

addition of 1 mM IPTG and further grown at 20°C ON. Membrane (Mb) were extracted from lysed cells using 

ultracentrifugation. C) Coomassie blue stained SDS-PAGE gel of ROBIOMOL solubilization test of total 

membrane extract containing the overexpressed BceAB transporter by different detergents. M- molecular weight 

markers (kDa), Mb- membrane, 1-12 see D). Numbers in the far left column correspond to the numbers in C). 

Detergent abbreviation names are in the left column. Right column shows the concentration of the respective 

detergent used for solubilization of membrane aliquots at 1 mg/ml of total protein for 2 h at 4°C. Far right 
column shows concentration of detergent used for washing and elution on Ni-NTA affinity column.  

 

 

 To purify the BceAB type ABC transporter, we first solubilized the membrane 

typically at 4 mg/ml using 1.5% (w/v) MNG3 overnight at 4°C. We diluted the sample to 

0.5% (w/v) MNG3 then centrifuged it at 110,000 G for 1h, and we incubated the supernatant 

with Ni-NTA resin for 4 h under agitation. After extensive washes in a buffer containing 50 

mM imidazole we eluted the protein with 300 mM imidazole (Figure 2.10. B and C lanes C to 

J). It is important to note that in the Western blot, the signal of the BceA is higher than the 

signal of BceB, even though on the gel with Coomassie blue staining, the reverse is observed. 

It is therefore possible that the histidine tag on the BceB becomes somehow masked or may 

be less reactive with the antibody.  

After the affinity column purification we performed size exclusion chromatography 

experiments. After several attempts to concentrate the transporter where we observed 
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consistently important precipitation of the protein, we chose to inject the eluate from the Ni-

NTA purification with the highest concentration of protein into the column. The large peak on 

the chromatogram at 11 ml (Figure 2.10. A) corresponded to an apparent molecular mass of ~ 

310 kDa, and is a complex of BceAB-detergent as we saw both subunits in the SDS-PAGE 

gels (Figure 2.10. A and B, lanes K and L). The small peak corresponds to an apparent molar 

mass of ~ 80 kDa, and may be a dimer of BceAs (Figure 2.10. B and C, lane M). Despite the 

fact that the peak which eluted at 11 ml in the size exclusion chromatography step is 

somewhat symmetrical, with a slight shoulder around 9 ml (Figure 2.10.), due to its large 

width (3 ml), dissociation of the complex is very likely. This was confirmed by protein 

analysis on line (PAOL) experiments where gel filtration is combined with light scattering 

(data not shown). The same pattern was observed for samples from other protein preparations 

at two different detergent concentrations, 0.01% and 0.005% (w/v) MNG3, regardless of 

protein sample concentration (between 1.5 and 3 mg/ml after nickel purification, and before 

gel filtration). These results indicate the reproducibility of the purification protocol; however 

at protein concentrations below 1.5 mg/ml, a higher level of dissociation and aggregation is 

apparent as more peaks appeared between 10 and 16 ml of elution.  
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Figure 2.10. Purification of the BceAB ABC transporter. A) Graph representing a chromatogram obtained 

with the absorbance at 280 nm agains elution volume of the purified BceAB transporter. The protein was 

purified on Ni-NTA as seen in B) and C). The column used for gel filtration was Superdex S200 10/300 GL. The 

black line represents cut-off value of column dead volume.  B and C) Coomassie blue stained SDS-PAGE gel 

and Western Blot of the ABC transporter purification on a Ni-NTA affinity and size exclusion chromatography 

columns. A- molecular weight markers (kDa), B- solubilized membrane, C- flow through, D- wash, E-J- Ni-

NTA affinity eluates, K-L- size exclusion chromatography fractions 21 and 22, M- size exclusion 

chromatography fraction 33.   

 

 

In order to determine the composition of BceAB type ABC transporter purified in 

0.005% MNG3, sedimentation-velocity analyses using analytical ultracentrifugation (AUC) 

were performed. The detergent concentration was chosen because it is only five times higher 

than the critical micelle concentration (cmc) of the detergent and at higher concentrations we 

experienced interference in the readings by the micelles. The experiments were done at 

various BceAB transporter concentrations and analyzed in terms of a distribution of 

sedimentation coefficients c(s), allowing a qualitative evaluation of protein homogeneity and 

self-association capacity. From the experimental s-values, we derived corrected s20w values, 

corresponding to pure water density and viscosity at 20 °C. BceAB transporter purified at 0.2 

mg/ml in 0.005% MNG3 by size exclusion chromatography was used without dilution, and 

diluted at 0.1 mg/ml and 0.04 mg/ml in the elution buffer. The experimental sedimentation 

velocity profiles obtained for the three protein concentrations could be nicely fitted according 
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to the c(s) analysis, as shown in Figure 2.11 A and B. In addition to a contribution at 2.6 S 

(s20w= 4.1 S), which represents almost certainly MNG3 micelles, different complexes are 

detected, with approximately the same proportions for the three protein concentrations (Figure 

2.11. C). The largest peak accounting for about 60% of the signal, has a mean sedimentation 

coefficient value of s=6.55 S (s20w= 10.3 S). 

 

 

 

Figure 2.11. Sedimentation velocity of BceAB type ABC transporter in presence of 0.005% MNG3. A) 

Superimposed experimental sedimentation profiles obtained with interference optics in 3mm optical patch-length 

center-piece, and the fitted curves from the c(s) analysis using Sedfit, of BceAB type ABC transporter at 0.2 

mg/ml in 100 mM Tris pH 8, 150 mM NaCl, 0.005% MNG3. Reference buffer is without detergent. The last 

profile corresponds to 6 h sedimentation at 42 000 g and 4°C. The statistical noise has been subtracted. B) 

Superimposed differences between the experimental and fitted curves from sedimentation profiles above. C) c(s) 

analysis of BceAB, at 0.04, 0.1 and 0.2 mg/ml (green, blue, and purple lines respectively). D) Analysis of the s-

value of the main complex (s=6.55 S) in terms of bound MNG3, considering different association states, for a 

globular protein complex with f/fmin=1.25 and an irregular shape with f/fmin =1.4, respectively. In red are 

indicated more plausible hypothesis.  
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The value of s is related to the protein-detergent complex composition, thus the 

BceB:BceA stoichiometry and the amount of bound MNG3, and shape. The Svedberg 

equation was used in the form [66]:  

 s= (MWprot (1 -r v prot) + MWMNG3(1 -r v MNG3))/(6 p NA h f/fmin Rmin) 

 

The amount of bound detergent is reported as BMNG3 in g/g protein or molecular weight, 

MWMNG3. The shape is expressed by the frictional ratio f/fmin. The parameters required for the 

calculation are the molar mass of BceB and BceA polypeptide chains, 75 and 28 kDa 

respectively; the partial specific volumes v of the different components, 0.76, 0.743, and 

0.796 mg/ml for BceB, BceA and MNG3 respectively, and the solvent density and viscosity, 

r=1.007 g/ml and h=1.567 cp respectively. NA is Avogadro�s number; MWprot and v prot are 

calculated from BceB:BceA stoichiometry; Rmin is the minimum radius  and is calculated from 

MWprot, MWMNG3, v prot and v MNG3 [66]. 

In Figure 2.11 D, we hypothesized different BceB:BceA stoichiometry and two 

frictional ratios to derive the amount of bound MNG3 from the measured s=6.55 S (s20w= 10.3 

S) value. We considered one or two BceB subunits associated to one to four BceA subunits. 

The amount of bound detergent was between 0 and 2.7 g/g, or 0 and 275 kDa, and the total 

mass of the protein-detergent complexes was between 260 and 380 kDa. Nonetheless, all of 

the latter values were consistent with the apparent molecular mass of the complex from gel 

filtration data (2.10. A) of approximately 310 kDa. 

Previous studies of ABC transporters, specifically BmrA [196], BmrC/D and 

PatA/PatB [24, 80, 196] solubilized in DDM using AUC described them with s20w& 8.3 S 

corresponding to a dimer with a frictional coefficient  f/fmin of 1.4. PatA monomer in DDM 

sedimented at s20w= 5.6 S with f/fmin= 1.3.  f/fmin is commonly between 1.2 and 1.3 for globular 

species and a rather high f/fmin of 1.4 indicates an irregularly shaped protein. The amount of 

bound detergent was about one gram of DDM per gram of dimeric protein. BmrA solubilized 

in MNG3 sediments at s20w= 8.2 S corresponding to BMNG3= 0.45-0.7 g/g for f/fmin= 1.25-1.4  

(Christine Ebel, IBS, unpublished data).   

When applying these findings to the studied BceAB type ABC transporter, we made 

several observations. First, the amount of bound detergent expressed in g/g should be 

considered with caution since the BceA subunit might or might not bind detergent. Second, 

the previously characterized ABC transporters have six transmembrane helices for a 

monomer, twelve for a dimer, while the studied BceAB type ABC transporter has ten 
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predicted transmembrane helices for the monomer, which should affect the amount of bound 

detergent. A value BMNG3 of 0.7 � 1.2 gram per gram of transmembrane protein should 

correspond to MWMNG3 of 50 � 90 kDa for a complex comprising one BceB and 100 � 180 

kDa for a BceB dimer. Third, since the BceAB transporter has a large extracellular loop, 

which could cause some shape irregularities, therefore it is more likely to consider a frictional 

ratio of 1.4.  

The hypothesized complexes with BceB:BceA 1:1 and 1:2 stoichiometry led to an 

amount of bound detergent of more than 170 kDa, which is unrealistic as described above. 

The two scenarios highlighted in red: with BceB:BceA 2:1 and 2:2, were acceptable since the 

amount of bound detergent is between 130 and 180 kDa with  f/fmin of 1.4. The last scenario 

with BceB:BceA 2:4 was rejected since no detergent would be bound. 

The non-rejected 2:1 stoichiometry by AUC seems very unlikely to us. Indeed ABC 

transporters need two NBDs and it does not appear probable to have a single NBD bound to a 

dimer of TMDs and a second, identical NBD free in a solution. In conclusion, the AUC 

results suggested that the BceAB type ABC transporter exists in the BceB:BceA ratio of 2:2. 

Interestingly, the ratio of the homologous BceAB transporter from B. subtilis was established 

as BceB:BceA 1:2 [59], which does not correspond to our findings in the pneumococcus. 

Unfortunately, the stoichiometries of homologous complexes in other organisms are unknown 

to make effective comparaisons. 

To further confirm our conclusions, native mass spectrometry should be performed 

directly on the membrane containing the overexpressed protein. 

 

2.3 Specific ATPase activity studies of BceAB complex in detergent 

 Activity testing of a protein is a legitimate quality control test, which ensures that the 

protein of interest has been folded correctly. It is also an excellent way to test the most 

promising detergent in order to avoid as much denaturation of the protein as possible. In this 

activity assay, we took advantage of the end of glycolysis reaction, which allows ATP 

regeneration through NADH oxidation followed real-time by a decrease of absorbance of 340 

nm as described by Jault et al. in 1991 [112]. 

We first pre-heated the assay buffer with 4 mM ATP at 37 °C for five minutes and then mixed 

with a certain amount of protein. We then measured the activity for ten minutes at 37 °C 

(Figure 2.12. A). As a negative control, we mixed the protein in the assay without ATP to 

ensure NADH is not oxidized by any contaminant. Another control for ensuring the assay 

quality was in absence of the protein. We injected ADP into the assay at 2.5 minutes and we 
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observed a steep decrease in absorbance as ADP was converted back to ATP. A further 

control was the addition of 5 mM Ortho-vanadate, a known ABC transporter inhibitor. We 

observed that vanadate practically stopped the protein activity, suggesting that it is not a 

contaminant, but the protein itself which drives the activity as it has been observed previously 

in BmrA or PatA/PatB [24, 220]. We next added different amounts of the BceAB type ABC 

transporter into the assay and measured the activity, which resulted in 23.6 nmol of 

ATP/min/mg of protein ± 3.2, nevertheless the ATPase activity varied greatly between 

different preparations and often reached the activity of ~ 100 nmol/min/mg.  Various purified 

ABC transporters have displayed a high variety of activity ranging from ~ 120 nmol/mim/mg 

by MalFGK2 from E. coli [4], ~ 350 nmol/min/mg by PatA/PatB from S. pneumoniae [24] to 

1.5 µg/min/ml by BmrA from B. subtilis [176]. Therefore the activity of the purified BceAB 

type protein is found within the previously published range of activity. 
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Figure 2.12. ATPase activity experiments of the BceAB type ABC transporter in detergent. The activity 

assay was performed in 50mM Tris pH8 and 100mM NaCl buffer supplemented with 32 *g/ml lactate 

dehydrogenase (Roche), 60 *g/ml pyruvate kinase (Roche), 4 mM phosphoenolpyruvate, and 0.4 mM NADH 

and 4mM ATP unless indicated otherwise. The assay was incubated for 5 min at 37°C and after the addition of 
the protein, the reading was performed every 20 seconds for 10 minutes at 37°C. A) Raw curves of ATPase 

activity assay readings. Black line represents negative control of 100 µg of the ABC transporter in the assay 
without ATP. Blue line represents another control is the system without the protein where we added ADP at 2.5 

minutes and we see a drop in absorbance as the system recharges the ADP to ATP and uses NADH. Pink, 

yellow, red, and green lines show activity of 25, 50, 100, and 200 µg/ml of protein respectively. Yellow shows 

activity of 100 µg of the BceAB type ABC transporter in presence of 5mM Vanadate. B) Calculation of specific 

activity in nmol/min/mg of protein using the slope of activity between 2 and 6 minutes of the experimental run. 

This is a representative result of different protein preparations. C) Average ATPase activity of WT BceAB type 

transporter and alanine or arginine mutants. By point mutation, alanine or arginine replaced the lysine in the 

Walker A region involved in ATP binding. D) Test of purification in different detergents following overnight 

solubilization in MNG3.  

 

 

We also tested the activity of the protein in different detergents. After overnight 

solubilization in 1% MNG3 we followed the normal purification protocol up to the column 

wash, where we washed the Ni-NTA column and purified the BceAB type ABC transporter in 

the normal buffer containing either 0.01% MNG3, 0.05% n-Dodecyl !-D-maltoside (DDM), 

0.15% n-undecyl-!-D-maltopyranoside (UDM), and 2.65% octyl glucoside (OG). Purification 

in OG caused the protein to precipitate within five minutes after elution. The concentration of 

the protein purifications in MNG3, DDM, and UDM were 1.6 mg/ml, 1.6 mg/ml, and 2.0 

mg/ml respectively. The activity test was then performed at several protein concentrations 

(25, 50 and 100 µg/ml) and in the respective detergent in the assay medium. Since the MNG3 

generally showed the highest protein activity we decided to continue using this detergent. 
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This was a rather expected result, since compared to DDM or UDM, MNG3 harbors a central 

quaternary carbon , which restrains conformational flexibility causing the MNG3 detergent to 

be �milder� to the membrane protein [30]. Similarly, as stated above, BmrA was more active 

and more stable when solubilized in MNG3 than in other detergents such as DDM [249]. 

We next created mutants of the BceAB type ABC transporter where we replaced the 

lysine in the BceA (NBD) Walker A region by alanine (K48A) or arginine (K48R). These 

mutations, as a result, should prevent the correct positioning and hydrolysis of ATP in the 

ATP binding pocket and thus inhibit protein activity as seen in various ABC transporters: 

BmrA [178], PatA/PatB [24], and BmrCD [80]. The point mutations did not have an impact 

on the protein expression or on the purification. As seen in Figure 2.12. C, the activity of the 

WT was on average four times higher than that of the mutants. We therefore confirmed the 

hypothesis from the vanadate experiment that the majority of the activity observed is due to 

the purified BceAB type ABC transporter and not to a contaminant in the purification. 

We also tested the protein activity in presence of various amounts of bacitracin, but no 

difference in activity has been observed (Figure 2.13.). This result may appear unexpected in 

comparison to LmrCD, a MDR ABC transporter in L. lactis , whose activity increased two 

times in presence of its substrate rhodamine [209]. Human P-glycoprotein, another MDR 

ABC transporter, was shown to have its ATPase activity stimulated several-fold by some of 

its substrates [213]. On the other hand, a homologous protein, BmrA of B. subtilis, was 

stimulated by only 25% with the addition of a substrate, Hoechst 33342, to the assay [220]. 

Similarly, another homologue from L. lactis, LmrA [107], comparable results to ours have 

been observed, where the addition of several transported substrates to the assay containing the 

purified protein did not increase the ATPase activity of the BceAB type ABC transporter.  

In context of the result seen in the qPCR experiments, the BceAB type ABC 

transporter is likely expressed at low levels and continually hydrolyzes ATP. Even though 

ATPase activity does not show the efficiency of transport activity [51] we may yet conclude, 

that upon challenge of the pneumococcus by bacitracin, and presumably other peptides, the 

BceAB type ABC transporter is then overexpressed high levels to confer resistance of the 

bacteria towards the AMP.  
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Figure 2.13. ATPase activity of BceAB type ABC transporter in the presence of bacitracin. The assay was 

in 50mM Tris pH8 and 100mM NaCl buffer supplemented with 32 *g/ml lactate dehydrogenase (Roche), 60 

*g/ml pyruvate kinase (Roche), 4 mM PEP, and 0.4 mM NADH and 4mM ATP and 50µg of purified BceAB 

type ABC transporter on a Ni-NTA column. The graph is a representative result of three different ATPase 

activity experiments of different protein preparations. 

 

 

2.4. Insertion of functional BceB type TMD into Nanodiscs (In collaboration with Yann 

Huon de Kermadec, IBS) 

In order to better simulate the behavior of the BceAB type ABC transporter in its 

native state, we reconstituted the BceAB transporter in nanodiscs. After the protein transfer 

into the lipid bilayer, we removed the detergent by treating the solution with biobeads. 

Unfortunately we did not succeed to purify the BceB containing nanodiscs form empty ones 

on a Ni-NTA affinity column probably because the histidine tag could have been buried in the 

nanodiscs or otherwise masked. We then purified the sample by size exclusion 

chromatography (Figure 2.14. A). The fractions of the main peak (~ 310 kDa) lanes 19-22 

displayed significant BceB presence in the nanodiscs (Figure 2.14. B and C). Considerable 

amount of MSP may be observed as well suggesting there were many empty nanodiscs 

present in the sample. However, no band for BceA was observed neither in the Coomassie 

blue nor in the Western blot, suggesting that only BceB has been inserted into the nanodiscs 

and the BceA has dissociated during the process. To estimate the amount of BceB in the 

sample, we made a Coomassie blue stained gel with known amounts of protein in detergent. 

When plotted on a graph we could calculate the estimated BceB concentration to 0.22 mg/ml 

± 0.06.  

We then proceeded to test the ATPase activity of the protein in nanodiscs. We 

repeated the experiment with three different protein preparations. For lone BceA we used the 

BceA obtained during gel filtration as seen in lane M in Figure 2.10. B and C. To test the 
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complex in nanodiscs, we mixed the BceB in nanodisc together with the BceA obtained as 

described above in 1:1 w/w ratio. The protein complex purified from the same size exclusion 

chromatography was used as the BceAB type ABC transporter in detergent. While individual 

components display some ATPase activity, similar to those seen to the complex in detergent, 

the mixture of BceB and BceA shows a great increase in ATPase activity. In comparison, the 

activity of the BceAB transporter in nanodiscs is almost 5 times higher than in detergent. Also 

interestingly, the activity of individual subunits is similar to the one in detergent suggesting a 

high level of dissociation of the BceAB complex in detergent solution. Yet, due to the 

increased activity in nanodiscs, the dissociation of the complex seems reversible. 

Correspondingly to our results, Galian et al. in 2011 [80] observed that the heterodimeric 

ABC transporter BmrCD showed a quite high level of dissociation during solubilization and 

purification in detergent. When a single subunit of the BmrCD transporter was tagged, the 

predominant species purified was a monomer of either BmrC or BmrD. Nevertheless, the 

dissociation was reversible when the detergent concentration was lowered or the proteins 

were reconstituted in proteoliposomes. They also observed an eight time increase of ATPase 

activity during reconstitution in proteoliposomes better mimicking the membrane than 

detergents. 

Moreover, when the lipid A ABC transporter from E. coli, MsbA, was reconstituted in 

proteoliposomes, the initial experiments showed a significant decrease in ATPase activity 

compared to activity in DDM [67]. Nevertheless, when MsbA was reconstituted in nanodiscs, 

the protein activity increased five to ten times to ~ 200 nmol/min/mg compared to the activity 

in DDM [122]. 

We also tested the activity of the protein in presence of bacitracin, but no difference in 

activity has been observed as when the protein was in detergent (data not shown). We may 

then assume that the substrate binds to the loop as there is no detergent present to inhibit 

substrate binding. Therefore, as mentioned before, the resistance mechanism is most likely 

driven by high expression of the BceAB type ABC transporter rather than increasing the 

transporter activity. Again, it has been observed before with BmrCD [80] and BmrA [220] 

[176], that while the ABC transporter transport different substrates in vesicles, only a few of 

these substrates stimulated the ATPase activity upon reconstitution of BmrA in 

proteoliposomes. This is due to the fact that different drugs may interact differently with the 

same ABC transporter by binding to different sites or by limiting the transition state of the 

protein [51, 80, 244].  
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Figure 2.14. Insertion of BceB into nandisk and measurement of its ATPase activity. A) Size exclusion 

chromatogram of BceB insertion into nanodisc. The BceAB transporter was previously purified on Ni-NTA 

column. B) and C) SDS-PAGE gels (Coomassie blue stain and WB respectively) of the chosen fractions from 

the chromatogram. 7.5 µl of total 0.5 ml fraction were loaded onto the gel. D) Coomassie blue gel used for 

calculation of BceB concentration in the nanodiscs. E) ATPase activity of BceB in nanodisc alone, the BceA 

alone, the mixture of BceB in nanodisc and BceA in a one to one ratio (w/w), and BceAB transporter activity 

after size exclusion chromatography.  
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In the beginning of this PhD project, the BceAB-RS type ABC-TCS complex were 

poorly described. Only theoretical data has been known in regards to the stoichiometry of the 

complex and the functioning mechanism.  

 As stated above, this is the first study to describe the complex on the molecular and 

cellular level in the S. pneumoniae. Our in vivo experiments provide important insights into 

the functioning of the complex. As it has been observed in B. subtilis [218], both the ABC and 

TCS components are necessary in order for the complex to function properly. A loss of 

function mutation in one component may have serious consequences for the pneumococcus in 

terms of loss of resistance to AMPs. Since many of the bacteria occupying the same niche as 

the pneumococcus produce a variety of AMPs it might have fatal consequences for the 

bacterium. Additionally, we may hypothesize that the BceAB-RS type system in the 

pneumococcus only transports bacterial AMPs based on the growth curve and infection 

experiments. 

It is also the first study to show that the BceRS drives the overexpression of the 

BceAB in S. pneumoniae. It is, in fact, by the overexpression of the BceAB that the bacteria 

are able to resist certain antimicrobials, as the presence of bacitracin did not increase the 

protein activity during in vitro experiments and in vivo experiments revealed a great increase 

of expression of the transporter. It would be interesting to delete the large extracellular loop of 

the BceAB transporter and observe if the signaling is lost upon AMP stress, as it has been 

shown in B. subtilis [13]. 

 Last year, Dintner et al. [59] purified the BceAB type ABC transporter from B. subtilis 

and by size exclusion chromatography, they determined the stoichiometry to be one BceB 

subunit to two BceA subunits, but without protein activity, the data is open to doubt. We 

purified a functional protein and combining AUC data with size exclusion chromatography 

we determined the stoichiometry to be two BceBs to two BceAs.  
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Figure 2.15. New BceAB-RS type ABC-TCS system hypothetical model. A dimer of BceB senses the AMP 

presence and communicates to the BceS to overexpress the BceAB transporter through the soluble BceR. A 

dimer of BceRs hydrolyze ATP and transport the substrate. 

 

 

We are now able to purify each subunit of the complex and study and especially a 

functional BceAB type ABC transporter. Due to the nature of its function, which is resistance, 

it is important to continue studying its functional mechanism and structure. For further 

mechanism studies, an option would be using NMR of inside-out vesicles containing the 

protein and observing the transport of substrates into the vesicle. This kind of experiment 

would provide the possibility to observe if the BceAB transporter is an importer or exporter as 

it has been shown in studies of other transporters by Krumpochova et al. in 2012 [132]. Even 

though based on informatics analysis the protein is an exporter, energetically speaking, it 

would cost less ATP to import the AMP for internal digestion.  

Structural studies could give other important insights in respect of the function. To begin 

with, it could be an option to have a rough 3D structure of the protein using the cryo-EM 

technique of the BceB in nanodisc. This technique has been successfully used in studying 

membrane proteins by Frauenfeld et al. 2011 and Gogol et al. 2013 [77, 88].  

Additional structural insights of the 3D structure might be provided by small angle X-

ray scattering (SAXS) or small angle neutron scattering (SANS). It has been demonstrated in 

the past [26, 133, 206], that it is possible to use these techniques for membrane proteins in 
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either detergents or nanodiscs to have a rough 3D structure and therefore form more precise 

hypotheses of the functioning mechanism. Furthermore, the analysis of these structures gives 

important clues to facilitate eventual crystallography experiments, which would solve the 

structure at the atomic level. The fact that we observe a higher activity in nanodisc than in 

detergent also suggests that the protein might be in a more natural conformation. The transfer 

of a membrane protein from nanodisc to lipidic-cubic phase has been successfully done by 

Gordeliy�s team at the IBS when crystallizing bacterial rhodopsin (publication submitted). 

This might be a good approach for the BceAB type ABC transporter as well for 

crystallography experiments. 

 Another remarkable subject to study is the interaction of the BceAB transporter with 

the BceS. Theoretically, according to Dintner et al. in 2014 [59] the proteins interact by the 

transmembrane domains. Since we encountered the problems with the streptavidin tag, such 

as low binding of the streptavidin tagged protein to the column probably given by delicacy of 

the Strep-Tactin
®
 column (IBA) in presence of MNG3, maybe it could be a good solution to 

tag the protein with histidine on either end, as we attempted, but with a possibility to cut the 

tag. Afterwards it could be possible to attempt a pull down experiment on a nickel affinity 

column and observe if the BceS elutes with the BceAB.  

Alternatively, as shown by Winkler and his team in 2013 [134, 212], it should be 

feasible to tag the BceB or the BceS with a FLAG tag directly in the pneumococcus. After 

growing several liters of culture with tagged bacteria and wild-type bacteria and lysing the 

cells, the samples might be passed through a column containing "-FLAG beads. Using silver 

staining it then may be possible to identify additional bands on the gel after passing the 

sample through the column. 

Yet another alternative for observing BceAB-BceS co-localization would be using 

microscopy techniques such as PALM or STORM [79, 215, 224]. Again, it would involve 

tagging the proteins directly in the S. pneumoniae, but with a fluorescent tag such as GFP or 

YFP. Following single molecules then may allow us to follow individual proteins and their 

co-localization. 
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Part 3: Materials and Methods 
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1. Experiments on the S. pneumoniae D39  

 

1.1. Bacteria and growth conditions 

The S. pneumoniae used in these studies was the virulent type 2 D39 strain. 

Pneumococci were routinely grown at 37°C with 5% CO2 in air in Todd-Hewitt  broth (Difco) 

with 0.5% w/v yeast extract when necessary (THY) or on Columbia agar (Difco) plates 

containing 5% v/v of horse blood. When appropriate, antibiotics were added to media with the 

following concentrations: chloramphenicol (Cm): 4.5�10 µg/ml and/or kanamycine (Kan): 50 

µg/ml. 

 

1.2. DNA extraction 

The National Centre for Biotechnology Information website 

(http://blast.ncbi.nlm.nih.gov/Blast) was used for DNA and protein BLAST searches. 

Genomic DNA was isolated from a 5 ml culture of S. pneumoniae D39 grown to 

optical density (OD) 0.3. The culture was spun down at 20 000 g for 10 minutes and the pellet 

resuspended in 500 *L PBS containing lysozyme (10 *g/ml) and mutanolysine (0.5 *g/ml) 

and incubated at 37°C for one hour. Then the genomic DNA was extracted using the High 

Pure PCR Template Isolation kit (Roche) according to the manufacturer�s instructions. The 

quality and quantity of the DNA extraction was performed using NanoVue
TM

 

Spectrophotometer (GE Healthcare)  

 

1.3. Construction of deletion mutant strains 

For in-frame deletion of the ABC genes (Spd0804 and Spd0805), a construct was 

created in which 848 bp of flanking DNA 5+ to the Spd0804 ATG (primer F1 Table 1.1.) and 

798 bp of flanking DNA 3+ to the Spd0805 open-reading frame (ORF) (primer F6) were 

amplified by PCR from S. pneumoniae D39 genomic DNA and fused to the chloramphenicol 

resistance marker (CAT, amplified from pR326 [38], with primers F3 and F4) by overlap 

extension PCR [142] as shown in the results section. The fragments were amplified using 2.5 

µl of primers (100 µM), 1 µl of 10 mM dNTP (Thermo Scientific), 10 µl of 5x High Fidelity 

buffer (Thermo Scientific) and 0.5 µl of Phusion polymerase protein (Thermo Scientific) in a 

50 µl final volume. The PCR program was as follows: 98 °C for 30 seconds, then a 35 time 

repeat of 98 °C for 10 seconds, 48 °C for 30 seconds, and 72 °C for 90 seconds, after the last 

cycle at 72 °C for 8 minutes and samples were kept at 4 °C. The DNA samples were analyzed 

between each step by electrophoresis in 1 % agarose gel and TAE buffer (Tris pH8, acetic 
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acid and EDTA). The fragments were purified using the QIAquick Gel Extraction Kit 

(Qiagen) and eluted in 25 µl of water and concentration measured using NanoDrop. Equal 

weight of the three fragments were mixed and submitted to the same PCR program to be 

fused together. Primers used for the overlap extension PCRs were F1 and F6. We purified the 

fragments from the agarose gel using the same kit as previously.  

S. pneumoniae genome was afterwards transformed by homologous recombination and 

allelic replacement using competence stimulating peptide (CSP-1) and standard protocols [98, 

136] where 15 ml of D39 was grown to OD600nm 0.03 and the culture was separated into 9 and 

3 ml and spun down for 10 minutes at 20 000 g. The culture was then resuspended in 1 ml 

THY pH8 containing 0.2% (v/v) BSA and 1mM of CaCl2. Then 5 µg/ml of CSP1 was added 

for 7 minutes incubation at 37 °C. After addition of of 20 µl of purified PCR product growth 

was carried out for 5 hours. Finally, 100 µl of bacteria were spread on Columbia blood agar 

plates with chloramphenicol in serial dilutions from pure bacteria to 10
-6

. Only the 10
-6 

dilution was spread for the control culture, which underwent the same treatment as 

transformed bacteria without any DNA being added.  

For deletion of the TCS genes (Spd1445 and Spd1446), a construct was created as 

described above: 850 bp of flanking DNA 5+ to the Spd1445 ATG (primer H1) and 757 bp of 

flanking DNA 3+ to the Spd1446 ORF (primer H6) were amplified by PCR from S. 

pneumoniae D39 genomic DNA and fused with the kanamicine resistance marker (KANA, 

amplified from pLIM100, courtesy of Laure Bellard, with primers H3 and H4). The final 

product was 2610 base pairs long. PCR, purification and transformation protocols were 

identical to the ones described above. 

The mutations were tested by PCR on positive clones amplifying the insert by outside 

test primers T1 and T2 for ABC deletion and T3 and T4 for TCS deletion. The expected sizes 

for the strains were WT 4804 bp $ABC 3155 bp and WT 4628 bp $TCS 3900 bp 

respectively. The constructs were then additionally verified by DNA sequencing by Beckman 

Coulter Genomics, Cogenics Online. 
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Fragment name Primer position Primer sequence 

F1 - F -848 GCTGTAATTTAGTCGGCAATG 

F2 - R -24 
TCAAACAAATTTTCATCAAGCTTGA

ATCTCCTTTCTTAATATCCC 

F3 CAT - F -14 
GGGATATTAAGAAAGGAGATTCAAG

CTTGATGAAAATTTGTTTGA 

F4 CAT - R +1963 
CATTTGGACAATCTTACGATAACTCT

AGAACTAGTGGATCCCCCGG 

F5 - F +1963 
CCGGGGGATCCACTAGTTCTAGAGT

TATCGTAAGATTGTCCAAATG 

F6 - R +2768 GCTTGGACTACAAGTCACC 

T1 - ABC - F -217 CACGTAAACGCAAAGAAGC 

T2 - ABC - R +5006 CACAAGATTCTTTCCATCAC 

 
 

 
H1 -  F -397 GGAATTTCCAGCATCATACC 

H2 - R -56 
CATTAAAAATCAAACGGATCCCATG

CTAGATGGTCTGAAAC 

H3 KANA - F -56 
GTTTCAGACCATCTAGCATGGGATC

CGTTTGATTTTTAATG 

H4 KANA - R +931 
CACTGTCGTTCCTTTTCCGCGTCTAG

AAAGACTGAG 

H5 - F +931 
CTCAGTCTTTCTAGACGCGGAAAAG

GAACGACAGTG 

H6 - R +1732 CTTCAACTTGACTGACTACC 

T3 - TCS - F -26 CTGTTCGTGAATTCGAATCTG 

T4 - TCS - R +4656 CGAAGTAGAGCTGAAGTTC 

 Table 2.1. Primers used for creating S. pneumoniae D39 deletion mutants. Position of the primer is given 

upstream (-) or downstream (+) from the first ATG of the NBD and HK. 

 

 

1.4. Growth of S. pneumoniae wild-type and mutant strains and determination of drug 

sensitivity 

Growth of S. pneumoniae strains was determined using a protocol previously 

described [24]. THY broth was inoculated with 1/100 S. pneumonie cultures grown to a 

logarithmic phase. Cultures (300 *l) were grown in 96 well plates (Falcon flat-bottom 

MICTOTEST
TM

) sealed with a transparent film (Duck-tape). Plates were incubated at 37 °C 

in a FluoStar Optima (BMG Labtech). Growth was monitored by recording the turbidity at 

OD600nm every 20 min for 15 hour and after a 7 second orbital shaking (270 rpm). Drug 
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sensitivity was assessed by adding various concentrations of different drugs in the culture 

wells as mentioned elsewhere in the results section of this work. Generation time in each 

condition was calculated from linear phase of the semi log plots corresponding to the log-to-

log transition part of the curve using Excel. Generation per hour was calculated with the 

formula 1/(ln(2)/m) where m is the slope of the linear phase.  

 

1.5. Capsule size measurement 

 Capsule size of the S. pneumoniae was verified using the following protocol. S. 

Pneumoniae WT and mutant strains were routinely grown in 13 ml of THY to the OD600nm= 

0.5. The cultures were then centrifuged at 20 000 g for ten minutes. The pellet was 

resuspended with 100 µl PBS, transferred into Eppendorph tubes and centrifuged. All of the 

supernatant was carefully removed and the pellet weighed. The volume of final resuspention 

volume was then calculated accordingly: (OD600nm x 266 µl) - weight = x µl PBS resuspention 

buffer. 35 µl of the resuspended bacteria were loaded on LightCycler
®

 Capillaries (Roche) 

and the capillaries were centrifuged at 6 000 g for 7 minutes. 

 

1.6. Experimental design for Drosophilae infection experiments 

S. Pneumoniae WT and mutant strains were concentrated from a 200 ml culture in the 

mid-higher part of the linear phase (OD600mn= 0.3�0.6). Bacteria were spun for 10 minutes at 

20 000 g and then resuspended in 500 µl of THY. The OD600nm was measured of a 10 times 

dilution. For OD600nm between 0 and 1, there is a direct relation of the number of bacterial 

cells present in the suspension where OD600nm = 0.1 = 1x10
8
 colony forming units (CFU) per 

ml. According to the measured OD600nm, the sample was diluted to 2x10
10

 CFU/ml including 

20% glycerol. The bacterial aliquots were stored at -80 °C. CFU was calculated from a serial 

dilution of bacteria in sterile PBS. The concentrations plated overnight on Columbia blood 

agar were 10
-7, 

10
-8

 and 10
-9

 dilutions. 

Flies were raised on standard culture medium at 25 °C. Briefly, for infection, fifty 3�5 

days old males were jabbed in the thorax with a thin needle that had been previously dipped 

into 50 µl of the concentrated culture of S. pneumoniae described above. Then the flies were 

placed into vials by ten and placed for 18 hours at 25 °C. Next, the flies were placed into a 30 

°C incubator and then counted at intervals to measure survival. 
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1.7. qPCR 

 S. pneumoniae WT and mutant strains were routinely grown to OD600nm=0.3. Then 1 

µg/ml of bacitracin was introduced to the growth media for 30 minutes. Samples were taken 

at time points shown in the results section. Next, the cultures were mixed with RNA protect 

(Qiagen) at 1:1 ratio and incubated at room temperature for 5 minutes and centrifuged for 10 

minutes at 5 000 g at 4 °C. The supernatant was decanted and the pellet was then stored at -80 

°C. The bacteria was resuspended in 100 µl of sterile Tris-EDTA (TE), containing 15 mg/ml 

lysozyme (Sigma) then 20 µl of Proteinase K (20 mg/ml) (Roche) were added. The sample 

was vortexed 5 times for 10 seconds at two-minute intervals. Then 350 µl of lysis buffer were 

added to the sample with 3.5 µl of !-mercaptoethanol and 25 mg of glass beads (BioRad). The 

cells were lysed by continual vortexing for 5 minutes. The mRNA was extracted using the 

Nucleospin RNA kit (Macherey-Nagel). After elution, RNA samples were incubated with 5 µl 

of DNAse for 20 minutes at room temperature, then heated for 70 °C for 5 minutes. RNA 

concentration was measured using Nanovue (GE Healthcare). For cDNA synthesis 1 µg of 

RNA was generally used with the SuperScript
®

III kit (Invitrogen) containing a reverse 

transcriptase, a set of primers, dNTPs, MgCl2 random hexamers and RNaseOUT
TM

 which 

digests left-over RNA after the cDNA generation according to manufacturer�s instructions. 

Samples were then stored at -20 °C. qPCR measurements were done from 2.5 µl of cDNA 

mixed with 1 µl (1 µM final) of forward and reverse primers (Figure 3.2.) each and 5 µl iQTM
 

SYBR
®

 Green Supermix (BioRad) and 10 µl of Qsp (BioRad) using the CFX Connect
TM

 

Optical Module (BioRad) program as follows: 95 °C for 3 minutes, then a repeat 40 times of 

95 °C for 10 seconds, 55 °C for 30 seconds, and a fluorescence reading.  

 

Primer Name Primer Sequence 

NBD - F CAGGGCAACCAAGTAGAAGC  

NBD - R CGGTGTCAGTTCCATTCAAG 

TMD - F TGCCAGTGAAGCAGAACAAC 

TMD - R CCGATAAAGAAGACACCACCA 

HK - F GGAGAGAGGGAAGCCAAGTC 

HK - R GCAATGGGGGTCTTTATCTG 

RR - F GTTTGGGCGTGATGAGAGTT 

RR - R CGAGCCACATTGACAGAGAG 

PatA - F GCAACCCACATTCACGACTA 

PatA - R CCTGCTACAACCACCTCCAT 

Table 1.2. Primers used for qPCR experiments on S. pneumoniae D39. 
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2. Production and Characterization of the ABC transporter and the TCS 

 

2.1. Cloning 

 Plasmids were prepared by insertion of DNA fragments obtained from S. pneumoniae 

D39 genome (primers in Table 1.3.) into the pRSF-Duet1 or pET-Duet1 vectors (Figure 3.1.).  

The pRSF-Duet1+ABC plasmid has been prepared in the following manner: a NBD-TMD 

fragment was amplified from S. pneumoniae D39 genome using ABC-F (short) and ABC-R 

(short) primers. The fragment was amplified using 5 µl of primers (100 µM), 4 µl of 10 mM 

dNTP (Thermo Scientific), 20 µl of 10x pfu PCR buffer (Promega) and 4 µl of pfu 

polymerase protein (Promega) to a total volume of 200 µl. The PCR program was as follows: 

94 °C for 1 minute, then a 25 time repeat of 94 °C for 45 seconds, 53 °C for 1 minute, and 

72°C for 2 minutes, after the last cycle at 72 °C for 10 minutes and samples were afterwards 

kept at 4 °C. The fragments were subsequently purified in PCR purification kit (Qiagen) and 

eluted in 30 µl of water. A second PCR was performed using the ABC-F and ABC-R primers 

that enabled the insertion of a histidine tag on the N-terminus of the NBD and the C-terminus 

of the TMD respectively, using the first PCR fragment as a template. Identical PCR program 

and PCR purification protocol were used. The pRSF-Duet1 plasmid and the second his-NBD-

TMD-his fragment were both sequentially digested by first NcoI restriction enzyme (New-

England Biolabs) and by EcoRI restriction enzyme (New-England Biolabs) according to the 

manufacturer�s instructions. After that, the fragment and the plasmid were ligated using Rapid 

DNA ligation kit (Roche) according to manufacturer�s instructions. The ligation reaction was 

used to transform XL10Gold competent bacteria (Invitrogen). Positive clones were selected 

by restriction digest and verified by sequencing (Beckman Genomics). Mutations in the 

Walker A region of the NBD, alanine (K48A) or arginine (K48R) were performed using the 

Strategene mutagenesis kit and the sets of primers in Table 1.3.  

The pRSF-Duet1+HK plasmid has been prepared in the following manner: an HK 

fragment was amplified from S. pneumoniae D39 genome using HK-F and HK-R primers 

introducing a streptavidin tag on the N-terminus of the HK protein. The fragment was 

amplified using the same PCR protocol as above except 60 °C was used for annealing 

temperature. The pRSF-Duet1 plasmid and the HK fragment were sequentially digested by 

first NdeI restriction enzyme (New-England labs) and by XhoI restriction enzyme (New-

England labs) according to the manufacturer�s instructions. The fragment and the plasmid 
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were afterwards ligated as described above as well as bacterial transformation, selection and 

genetic verification.  

The pET-Duet1+RR plasmid has been prepared in the following manner: an RR 

fragment was amplified from S. pneumoniae D39 genome using RR-F and RR-R primers with 

a histidine inserted on the C-terminus of the RR protein. The fragment was amplified using 

the same PCR protocol as above except 50 °C was used for annealing temperature. The pET-

Duet1 plasmid and the RR fragment were both sequentially digested by first NdeI restriction 

enzyme (New-England labs) and by XhoI restriction enzyme (New-England labs) according 

to the manufacturer�s instructions. The fragment and the plasmid were then ligated as 

described above as well as bacterial transformation, selection and genetic verification.  

 

 

 

Figure 3.1. Maps of ABC, HK and expression plasmids. pRSF-Duet1 contain a kanamycin resistance cassette, 

while the pET-Duet1 contain an ampicillin resistance cassette. A) Plasmid pRSF-Duet1+ABC used to express 

the ABC transporter under the T7 promoter. B) Plasmid pRSF-Duet1+HK used to express the HK under the T7 

promoter. C) Plasmid pET-Duet1+RR used to express the RR under the T7 promoter. 
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Primer name Sequence 

RR - F ATATATCATATGTCAAGCATGCTTCAATCCG 

RR - R ATATATCTCGAGATGATGATGATGATGATGATGATGTTTTTTCACAA

GATTTTATTAATAG 

 

 ABC � F 

(short) GGACACTTTTAGATGTAAAACAC 

ABC � R 

(short) CTACATTTGGACAATCTTACG 

ABC - F GATATACCATGGGGCATCATCATCATCATCATCATCATACACTTTTA

GATGTAAAACAC 

ABC - R GAGCTCGAATTCCTAATGATGATGATGATGATGATGATGATGCATT

TGGACAATCTTACG 

 

 HK - F GATATACATATGGCTAGCTGGAGCCACCCGCAGTTCGAAAAAATGC

TTGATTGGAAACAATTTTTTCTAGC 

HK - R ACCAGACTCGAGAATGAGTTCCTGATTCAAGTGAACTC 

Point mutation 

 Arg - F CATGGGTGAGTCTGGTTCTGGTCGTTCAACTCTTCTCAATATTCTAG 

Arg - R  CTAGAATATTGAGAAGAGTTGAACGACCAGAACCAGACTCACCCATG 

Ala - F  CATGGGTGAGTCTGGTTCTGGTGCGTCAACTCTTCTCAATATTCTAG 

Ala - R  CTAGAATATTGAGAAGAGTTGACGCACCAGAACCAGACTCACCCATG 

Table 1.3. Primers used to clone genes into the plasmids and for point mutation. In italics are shown the 

restriction sites, tags are marked in bold and annealing sequences are underlined, point mutations are double 

underlined. 

 

2.2. Bacteria and growth conditions 

TOP10, XL10Gold (Invitrogen) E. coli strains were used for cloning and plasmid 

amplification according to the manufacturer�s instructions. Transformations were performed 

as recommended by the manufacturer and transformants were selected on LB agar plates 

containing the appropriate antibiotic. 

E. coli BL21(DE3) [162] was employed for over-expression. Bacteria were routinely grown 

in the Luria Bertani (LB) medium (AthenaES) at 37 °C. The transformed bacteria were grown 

in LB medium with either 50 *g/ml kanamycin or 100 *g/ml ampicillin at 37 °C overnight. 10 

ml of the pre-culture were inserted into 1L of LB medium with antibiotic and grown shaking 

at 180 rpm at 37 °C for 1.5 hours.  The temperature was then lowered to 30°C until the 

bacteria grew to mid-log phase (OD600mn ~ 0.5) when they were induced by addition of IPTG 

(1 mM final concentration) and left to grow overnight at 20 °C under shaking. Bacteria were 

collected by low-speed centrifugation (5 000 g during 20 min), washed with PBS (7.5 ml per 
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liter of culture) and spun again. The cells were then resuspended in a buffer containing 50 

mM Tris pH8, 300 mM NaCl and protease inhibitors from a Complete
®

 EDTA Free tablet (1 

tablet per 100 ml solution) (Roche). 

 

2.3. Protein Expression and Purification 

Proteins were purified as described below. All of the steps were either performed at 4 

°C or on ice.  

 

2.3.1. RR Sample Preparation 

Four liters of bacteria over-expressing the RR protein were spun down at 20 000 g for 

30 minutes and resuspended in 40 ml of buffer containing 20mMTris pH8, and 300mM NaCl 

and a Complete-EDTA free tablet (Roche). The cells were afterwards lysed using sonication. 

The sonication cycle was 2 seconds on and 10 seconds off for 25 minutes at 90% intensity 

with tip with 1 cm diameter in the Digital Sonifier (Branson)  The sample was then 

centrifuged for 1 hour at 100 000g. RR from the supernatant was then purified using a 

previously equilibrated nickel affinity column (HisTrap HP 1mL (GE Health). The whole 

protein sample was loaded on the column at 1 ml/min. The column was then washed with 25 

ml of buffer containing 20 mM Tris pH8, 300 mM NaCl and 50 mM imidazole. The elution 

was done equally with 25 ml of buffer containing 300 mM imidazole. 

Following the nickel elution, the eluate of 4 ml containing the protein was directly 

injected into a 125 ml SuperDex 75 size exclusion chromatography column in of a total 

volume of 125 ml. The nickel affinity column and the gel filtration were performed at the 

Membrane Protein Purification Platform (MP3) at the IBS operated by Michel Thepaut. The 

fractions containing the RR were concentrated using a 10 kDa MW CO PES tube (Milipore). 

Glycerol was added to the solution to a final concentration 10% (v/v) and the protein was then 

aliquoted, flash frozen in liquid N2 and stored at -80 °C. 

 

2.3.2. Membrane Extraction 

Cell cultures were resuspended in 20 ml per liter of buffer containing 100 mMTris 

pH8, 300 mM NaCl, 20 mM MgCl2 a Complete-EDTA free tablet of protease inhibitors 

(Roche) and DNase (Qiagen) (0.1 mg/ml). Cells were lysed using a CellDestructor 

(Microfluidics) at 18kpsi. The samples were centrifuged at 25 000 g for 30 minutes and the 

supernatant was then ultracentrifuged for an additional two hours at 130 000 g, then the 

membranes in the pellet were resuspended in a buffer containing 50 mM Tris pH8, 300 mM 
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NaCl, and 250 mM sucrose (2 ml buffer per 1l of culture). The membranes were then 

aliquoted, flash frozen in liquid N2 and stored at -80 °C. Total membrane protein 

concentration was determined using the Bicinchoninic Acid Kit for Protein Determination 

(Sigma) following the manufacturer�s instructions. The assay relies on the Cu
2+

 protein 

complex under alkaline conditions, followed by reduction of the Cu
2+

 to Cu
1+

 proportionally 

to the protein present and may be measured at OD562. On average, the membrane preparation 

contained between 4 to 6 mg/ml of total protein. 

 

2.3.3. ABC transporter Sample Preparation 

For the ABC transporter, the screening of detergents was performed by the Robiomol 

Platform at the IBS. For purification, Lauryl-Maltose-Neopentyl-Glycol (MNG3) was chosen 

as the most suitable. Then 10 ml of total membranes  extracts with ABC (40 - 60 mg) was 

solubilized overnight at 4 °C in presence of 1.5% (w/v) MNG3 and spun down at 110 000 g 

for 1 hour. The supernatant was then diluted to 0.25-0.5% MNG3 in order to avoid 

interference of the histidine tag binding to 1 ml Ni-NTA resin (Qiagen). The protein solution 

and nickel were gently agitated at 4 °C for 3 to 4 hours. The resin was afterwards washed with 

250 ml 100mM Tris pH8, 150 mM NaCl and 50 mM Imidazole and a range of detergent to 

test. The proteins were eluted using 100 mM Tris pH8, 150 mM NaCl and 300 mM Imidazole 

and identical concentration of detergent as in the washing buffer. The best results were 

observed with 0.005% to 0.01% of MNG3. 300 µl of the eluate with the highest protein 

concentration was injected into the pre-equilibrated size exclusion chromatography SuperDex 

S200 10/300 GL column of a total volume of 25ml with buffer containing 100 mM Tris pH8, 

150 NaCl and the same of detergent as in the injected sample. Further experiments were 

conducted within 72 hours after purification as the protein in detergent precipitated after 

storage at - 80 °C. 

 

2.3.4. HK Sample Preparation 

The detergent screen for HK was performed manually. The 4 mg of total membrane 

preparation were solubilized overnight at 4 °C with various detergents at 1% (w/v). The 

samples were then ultracentrifuged at 110 000 g for 45 minutes and the supernatant and the 

pellet were analyzed using a Western blot. For purification, MNG3 was selected as the most 

suitable detergent. The purification was performed using the Strep-Tactine
®

 Purification 

protocol as directed by the manufacturer (IBA).  
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2.3.5. SDS-PAGE 

For analysis, 20 *l of protein samples were supplemented with 20 *L of 2 x Laemmli blue 

(final concentration: 62.5 mM Tris pH 6.8, 0.4% SDS, 650 mM !-mercaptoethanol, 10% 

glycerol, 0.1% bromophenol blue). They were then routinely loaded on 12.5% sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Of note in that the samples 

were not boiled before electrophoresis. The electrophoresis buffer used contained 25 mM 

Tris, 0.1% SDS and 200 mM glycine). The proteins were revealed routinely by Coomassie 

blue staining. After the run, the gels were either incubated for 120 minutes in a solution of 

50% ethanol, 8% acetic acid and 0.25% Coomassie R250 and destained in a solution 

containing 5% ethanol and 7.5% of acetic acid for 60 to 90 minutes or the gels were stained 

for 60 in InstantBlue
TM

 (Expedeon). If required, the density of the bands revealed by 

Coomassie blue staining was analyzed with the ImageJ freeware.  

The proteins were also revealed using silver staining when indicated. After the run, the gels 

were activated in 50 mL acetic acid, 200 ml EtOH, 250 ml H2O twice 20 minutes, washed in 

pure water twice for 10 minutes, incubated in revelatory containing sodium thiosulfate 0.2 

g/ml for a minute. The gels were washed again for two minutes in pure water. Staining was 

done in a solution containing AgNO3 2mg/ml, 100µl 37% formaldehyde for thirty minutes. 

The gels were rinsed by pure water and the bands developed by 100ml solution containing 30 

mg/ml K2CO3 , 25 µl formaldehyde, 12.5µl 10% Sodium thiophosphate until the bands were 

seen. The revelation reaction was stopped by placing the gels in a solution containing 25 

mg/ml of  glycine. 

 

2.3.6. Western Blot 

To confirm the identity of a given protein, one way is to use antibodies that 

specifically bind epitopes presented by the protein. The western blot is a method that allows 

the identification of SDS-PAGE separated proteins based on this principle. In this work, the 

western blots were performed using the following protocol. After SDS-PAGE, the proteins 

were electrotransfered (100 V, 30 min) to a nitrocellulose membrane (BioRad) in 25 mM Tris, 

200 mM glycine. The membrane was saturated for one hour in phosphate buffer saline (PBS), 

0.3% Tween-20, 5% milk.  

For histidine tagged proteins, anti-His antibodies coupled with horse-radish peroxidase  

(HRP) were added at an appropriate dilution and incubated for 3 hours, prior to washing 3 

times for 10 min in PBS, 0.3% Tween-20. After 3 washing steps performed as above, the 

detected proteins were revealed by chemo luminescence West Pico ECL kit (Pierce) and 
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exposition to a photographic film (Kodak) or in ChemiDoc (BioRad). All steps were 

performed at room temperature. 

For streptavidine tagged HK, anti-streptavidine mouse primary antibodies were added at an 

appropriate dilution and incubated over night at 4 °C, prior to washing as above. The 

membrane was then incubated for 1 to 2 hours with secondary anti-mouse antibodies coupled 

to HRP diluted 5 000 times in PBS, 0.3% Tween-20, 5% milk. After 3 additional washing 

steps performed as above, the detected proteins were revealed using SuperSignal
TM

 West 

Femto ECL kit, (Pierce) and exposition to a photographic film (Kodak) or in ChemiDoc 

(BioRad).  

 

2.4. AUC experiment  

Sedimentation velocity experiments were done on an analytical ultracentrifuge XLI 

(Beckman Coulter, Palo Alto, USA) with a rotor speed of 42 000 rpm (Anti-60 rotor), at 4 °C,  

and double-sector cells of optical path length 12 and 3 mm with Sapphire windows. 

Acquisitions were made using absorbance at 280 and 230 nm and interference optics. The 

reference is the buffer used to the sample, without detergent [138]. The analysis was done 

with: the SEDFIT software, version 14.7g, Gussi 1.0.9g and REDATE 0.2.1. The experiment 

was conducted by Aline Le Roy of the IRPAS team, IBS. 

 

2.5. ATPase activity tests 

ATPase activities were measured using an enzymatic assay that allows ATP regeneration 

coupled to NADH oxidation, and which is followed in real-time at 37 °C at 340 nm with a 

UVmc2 Safas spectrophotometer or ClarioStar (BMG Labtech) [112] (Figure 3.2.). ATPase 

activities were measured at 37 °C in 1 ml of the activity buffer with final concentrations of 50 

mM Tris-HCl pH 8, 100 mM NaCl, 2 mM MgCl2, 10% glycerol, 1.5 nM !-mercaptoethanol 

supplemented with 32 *g/ml lactate dehydrogenase (LDH) (Roche), 60 *g/ml pyruvate kinase 

(PK) (Roche), 4 mM phosphoenolpyruvate (PEP), and 0.4 mM NADH and, unless stated 

otherwise, 4 mM ATP. Ortho-vanadate (Sigma) was prepared at 200 mM as suggested by the 

manufacturer (Sigma), and heated at 95°C for 5 min before use. 
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Figure 3.2. ATPase assay reaction. After the protein uses ATP, the pyruvate kinase (PK) recharges ADP to 

ATP using a phosphate from phosphoenolpyruvate (PEP). The resulting pyruvate is further hydrogenated from 

NADH by lactate dehydrogenase (LDH) to lactate. NADH absorbs at 340nm and NAD
+
 at 280nm, therefore we 

may follow the disappearance of signal. For 1 mol of NADH oxidization, 1 mol of ATP has been used. 

  

To calculate the specific activity the following equation (Lambert�s law) is followed:  

-OD = e.l.-c 

Where eNADH340nm = 6220 (l/mol/cm), l = volume of the assay (1 ml in our case) and $c = 

rate of NADH disappearance (mol/min). Therefore the rate may be calculated: 

Rate (nmol/min/mg)  =  -DO (min
-1) x 1000 µl . 10

3 

                           6220 x Protein (in µg) 

 

2.7. Insertion of BceAB type ABC transporter into nanodisc 

 The following protocol for ABC transporter reconstitution in nanodisc was adapted 

from [202]. Briefly, E. coli polar lipid extract (Avanti Polar Lipids) were well dried overnight 

in vacuum to remove excess chloroform in which they were dissolved. Then we reconstituted 

them in a buffer containing 20 mM Tris pH 7.4, 100 mM NaCl and 0.086% DDM. Then we 

mixed together to a final volume of 5 ml the samples in the following ratio 1.5 mg protein, 10 

mg lipids and 10 mg MSP (MSPE3D1, courtesy of Yann Huon de Kermadec). The mixture 

was agitaded for one hour at room temperature. Then, to remove the detergent, 650 mg/ml 

biobeads (BioRad) were added and the mixture was shaken for an additional two hours and 

the biobeads were afterwards removed by filtering the sample. The samples were then placed 

at 4°C and we for purification, performed size exclusion chromatography in the S200 10/300 

column of total volume of 25 ml (GE HealthCare). The filtration fractions were then analyzed 

by SDS-PAGE gels. 
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Abstract 

 Streptococcus pneumoniae, the pneumococcus, is a major human pathogen causing 

over a million deaths each year. Many pneumococcal strains display resistance towards 

antibiotics causing world-wide health concern. Some of these antibiotics are antimicrobial 

peptides (AMP), which are produced as a primary defense by hosts as well as pathogens. The 

pneumococcus harbors a system comprised of an ATP-binding cassette (ABC) transporter and 

a two-component system (TCS) composed of a histidine kinase (HK) and a response regulator 

(RR), which targets these molecules. It has been shown recently that the removal of this ABC 

transporter increases the sensitivity of the bacteria towards bacitracin. In this project, we tried 

to understand the functioning mechanism of the ABC transporter and the co-operation with 

the TCS using both in vivo and in vitro techniques. 

 

 

 

Résumé 

 Streptococcus pneumoniae, le pneumocoque, est un pathogène majeur causant plus 

d'un million de morts par an dans le monde. De plus en plus de souches de pneumocoques 

sont résistants aux antibiotiques, en faisant un problème majeur de santé publique dans le 

monde. Une partie des ces antibiotiques sont les peptides anti-microbiens (AMP), qui sont 

produit aussi bien par l'hôte que des bactéries pathogènes en tant que premier système de 

défense. On trouve dans le pneumocoque un transporteur ABC (ATP-Binding Cassette) lié à 

un système de deux composants (TCS) � la kinase d�histidine (HK) et le régulateur de réponse 

(RR), qui cible les AMP. Récemment, il a été démontré, que l�absence du transporteur ABC 

augmente la sensibilité à la bacitracine. Dans ce projet, nous avons essayé à comprendre le 

mécanisme fonctionnel entre le transporteur ABC et TCS en utilisant des outils in vivo et in 

vitro. 

 


