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Résumé. Le mode adjoint de la Différentiation Algorithmique (DA) est particulièrement

intéressant pour le calcul des gradients. Cependant, ce mode utilise les valeurs intermédiaires

de la simulation d’origine dans l’ordre inverse à un coût qui augmente avec la longueur de la

simulation. La DA cherche des stratégies pour réduire ce coût, par exemple en profitant de la

structure du programme donné.

Dans ce travail, nous considérons d’une part le cas des boucles à point-fixe pour lesquels plusieurs

auteurs ont proposé des stratégies adjointes adaptées. Parmi ces stratégies, nous choisissons celle

de B. Christianson. Nous spécifions la méthode choisie et nous décrivons la manière dont nous

l’avons implémentée dans l’outil de DA Tapenade. Les expériences sur une application de taille

moyenne montrent une réduction importante de la consommation de mémoire.

D’autre part, nous étudions le checkpointing dans le cas de programmes parallèles MPI avec des

communications point-à-point. Nous proposons des techniques pour appliquer le checkpointing

à ces programmes. Nous fournissons des éléments de preuve de correction de nos techniques et

nous les expérimentons sur des codes représentatifs. Ce travail a été effectué dans le cadre du

projet européen “AboutFlow”.

Mots-clés: Différentiation Algorithmique, Méthode Adjointe, Algorithmes Point-Fixe, Check-

pointing, Communication par Passage de Messages, MPI

Abstract. The adjoint mode of Algorithmic Differentiation (AD) is particularly attractive for

computing gradients. However, this mode needs to use the intermediate values of the original

simulation in reverse order at a cost that increases with the length of the simulation. AD research

looks for strategies to reduce this cost, for instance by taking advantage of the structure of the

given program.

In this work, we consider on one hand the frequent case of Fixed-Point loops for which several

authors have proposed adapted adjoint strategies. Among these strategies, we select the one

introduced by B. Christianson. We specify further the selected method and we describe the way

we implemented it inside the AD tool Tapenade. Experiments on a medium-size application

shows a major reduction of the memory needed to store trajectories.

On the other hand, we study checkpointing in the case of MPI parallel programs with point-to-

point communications. We propose techniques to apply checkpointing to these programs. We

provide proof of correctness of our techniques and we experiment them on representative CFD

codes. This work was sponsored by the European project “AboutFlow”.

Keywords: Algorithmic Differentiation, Adjoint Methods, Fixed-Point Algorithms, Check-

pointing, Message Passing, MPI
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Résumé étendu:

Le projet “AboutFlow” [15] se concentre sur les méthodes d’optimisation basées sur

le gradient. Le mode adjoint de la Différentiation Algorithmique (DA) [25], [40] est

particulièrement intéressant pour le calcul des gradients. Cependant, ce mode doit

utiliser les valeurs intermédiaires de la simulation d’origine dans l’ordre inverse de leur

calcul. Quelle que soit la stratégie choisie pour réaliser cette inversion, le coût de cette

opération augmente avec la durée de la simulation.

Dans le domaine de la DA, nous recherchons des stratégies afin d’atténuer ce coût,

par exemple en tirant parti de la structure du programme donné. Une telle structure

fréquente est celle des boucles à point fixe. Les boucles à point fixe (PF) sont des

algorithmes qui affinent itérativement une valeur jusqu’à ce qu’elle devienne stationnaire.

Nous appelons ”état” la variable qui contient cette valeur et ”paramètres” les variables

utilisées pour calculer cette valeur. Comme les boucles PF partent d’une estimation

initiale de l’état, a priori fausse, une intuition est qu’au moins les premières itérations

de la boucle ont une influence très faible sur le résultat final. Par conséquent, stocker ces

iterations pour le calcul d’adjoint est relativement inutile et consomme de la mémoire.

De plus, les boucles PF qui commencent à partir d’une estimation initiale très proche

de résultat final convergent en seulement quelques iterations. Comme la boucle adjointe

de la méthode adjointe standard suit exactement le même nombre des iterations que la

boucle originale, celle-ci peut retourner un gradient qui n’est pas suffisamment convergé.

Dans ce travail, nous recherchons un adjoint spécifique pour les boucles PF. Parmi les

stratégies documentées dans la littérature, nous avons sélectionné les approches Piggy-

back [23], Delayed Piggyback [23], Blurred Piggyback [4], Deux phases [10] et Deux-

Phases raffinée [10]. Ces adjoints spéciaux parviennent à éviter l’inversion näıve de la

séquence d’itérations originale, économisant ainsi le coût d’inversion du flux des données.

La différence entre ces approches est principalement le moment de démarrage des calculs

adjoints. Certaines de ces approches commencent à calculer l’adjoint depuis les premières

itérations de la boucle originale, comme dans le cas de l’approche Piggyback, certaines

d’entre elles attendent jusqu’à ce que l’état soit suffisamment convergé, comme dans le

cas de Delayed Piggyback et Blurred Piggyback et d’autres calculent l’adjoint seulement

lorsque l’état est totalement convergé, comme dans le cas des approches Deux-Phases

et Deux-Phases raffinée. Parmi ces stratégies, nous avons sélectionné l’approche Deux-

Phases raffinée pour être implémentée dans notre outil de DA “Tapenade” [31]. Notre

choix est motivé par le fait que cette méthode est générale, c’est-à-dire qu’elle ne fait

pas d’hypothèses sur la forme de la boucle PF, et aussi qu’elle est relativement facile à

implementer vu qu’elle nécessite peu de modifications sur la méthode adjointe standard.
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Dans cette méthode, la boucle adjointe est une nouvelle boucle PF qui utilise les valeurs

intermédiaires de la dernière itération seulement.

z= y . ∂
∂ z f (z , x)

x= y . ∂
∂ x f (z , x)

y=0

z=z+z0

pop(valeurs intermédiaires)
x=z . ∂

∂ x φ(z , x)+x

Balayage arrière

Dowhile (z n ' est pas convergé )

z=φ(z , x)

Dowhile (z n ' est pas convergé )

y=f (z , x)

z=φ(z , x)
push(valeurs intermédiaires)

Balayage avanty=f (z , x)

z=φ(z , x)

Dowhile (z n ' est pas convergé )

(a)

pop(valeurs intermédiaires)

z=z . ∂∂ z φ(z , x)

z0=z

(b)

CALL start_repeat_stack()

CALL reset_repeat_stack()

CALL end_repeat_stack()

z=estimation initiale

z=estimation initiale

Figure 1: (a) Une boucle à point fixe. (b) L’adjoint Deux-Phases raffiné appliqué à
cette boucle.

Un exemple des boucles PF est illustré par la figure 1 (a). La boucle initialise l’état z

avec une certaine estimation initiale, puis itérativement appelle

z = φ(z, x) (1)

jusqu’à ce que z atteigne une valeur stationnaire z∗ qui est le point fixe de la fonction

φ(z, x). Ce point fixe est utilisé par la suite pour calculer un résultat final y = f(z∗, x).

La figure 1 (b) montre l’application de l’approche Deux-Phases raffinée à cette boucle

PF. Cette approche maintient la structure standard des codes adjoints pour tout ce qui

est avant et après la boucle PF. Dans le balayage avant, l’approche Deux-Phases raffinée

copie la boucle PF du programme d’origine et insère après celle-ci un balayage avant du

corps de la boucle PF, dans lequel elle stocke les valeurs intermédiaires de la dernière
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itération. Dans le balayage arrière, cette méthode introduit une nouvelle boucle PF qui

a son propre variable d’état z. La variable z ne correspond pas ici à l’adjoint de l’état

z mais elle est plutôt une variable intermédiaire qui contient les calculs adjoints. La

boucle adjointe résout l’équation PF adjointe

z∗ = z∗.
∂

∂z
φ(z∗, x) + z0 (2)

qui définit z∗ en fonction de z0 retourné par l’adjoint de la fonction f . L’adjoint Deux-

Phases raffiné termine en calculant la valeur de x requise, en utilisant z∗. Nous remar-

quons ici que l’adjoint Deux-Phases raffiné différentie deux fois la fonction φ(z, x): une

fois par rapport à l’état z à l’intérieur de la boucle PF adjointe et une autre fois par

rapport aux paramètres x en dehors de la boucle PF adjointe.

Dans ce travail, nous spécifions plus en détail la méthode Deux-Phases raffinée afin de

prendre en compte les particularités des codes réels. En effet, les travaux théoriques sur

les boucles PF présentent souvent ces boucles schématiquement comme une boucle while

autour d’un seul appel à une fonction φ qui implémente l’itération PF. Cependant, les

codes réels ne suivent presque jamais cette structure. Même en obéissant à une structure

de boucle ”while” classique, les boucles PF peuvent contenir par exemple plusieurs

sorties. Dans de nombreux cas, l’application de Deux-Phases raffinée à ces structures

retourne des codes adjoints erronés. Ceci est dû au fait que les sorties alternatives

peuvent empêcher la dernière itération de la boucle de balayer toute la fonction φ.

Comme l’approche Deux-Phases ne calcule que l’adjoint de la dernière iteration, celle-

ci peut dans ce cas ne calculer que l’adjoint d’une partie de φ et non l’adjoint de la

fonction entière. Pour pouvoir appliquer l’approche Deux-Phases raffinée, nous avons

donc besoin de définir un ensemble de conditions suffisantes. En particulier:

• Chaque variable écrite par le corps de la boucle PF doit faire partie de l’état.

• Les variables d’état doivent atteindre des valeurs stationnaires.

• Le flux de contrôle du corps de la boucle PF doit être stationnaire à la convergence

de la boucle.

Avant d’implementer l’approche Deux-Phases, une question importante se pose: com-

ment peut-on détecter les boucles PF dans un code donné ? Statiquement, il est très

difficile ou même impossible de détecter une boucle PF dans un code donné. Même

lorsque cette dernière a une structure simple avec une seule sortie, un outil de DA

ne peut pas déterminer statiquement si le flux de contrôle de cette boucle converge ni

si chaque variable écrite par la boucle atteindra un point fixe. Par conséquent, nous

comptons sur l’utilisateur final pour fournir cette information, par exemple à l’aide
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d’une directive. En revanche, contrairement à l’emplacement de la boucle PF, l’état et

les paramètres peuvent être détectés automatiquement grâce aux analyses de flux de

données. Étant donné l’ensemble use des variables lues par la boucle PF, l’ensemble

out des variables écrites par la boucle PF et l’ensemble live des variables utilisées par

la suite de La boucle PF, nous pouvons définir:

état = out(boucle PF) ∩ live

paramètres = use(boucle PF)\out(boucle PF)

Dans l’approche Deux-Phases raffinée, les valeurs calculées par le programme d’origine

ne sont stockées que lors de la dernière itération de la boucle PF. Ensuite, elles sont lues

à plusieurs reprises dans la boucle adjointe. Malheureusement, notre mécanisme de pile

standard ne permet pas ce comportement. Pour implémenter la méthode Deux-Phases

raffinée dans notre outil de DA, nous devons définir une extension pour spécifier qu’une

certaine zone dans la pile (une “zone à accès répétitif”) sera lue à plusieurs reprises.

Pour faire ceci, nous avons ajouté trois nouvelles primitives à notre pile, voir la figure 1

(b):

• start repeat stack () appelée au début de la boucle PF adjointe. Elle indique

que la position actuelle de la pile est le sommet d’une zone à accès répétitif.

• reset repeat stack () appelée à la fin du corps de la boucle PF adjointe. Elle

indique que le pointeur de la pile doit revenir au sommet de la zone à accès répétitif

• end repeat stack () appelée à la fin de la boucle PF adjointe. Elle indique

qu’il n’y aura pas d’autre lecture de la zone à accès répétitif.

Nos extensions du mécanisme de pile doivent de plus permettent l’application du com-

promis stockage-recalcul classique nommé “checkpointing”. Ce mécanisme entraine en

particulier une alternance complexe de balayages avant (qui empilent des valeurs) et

de balayages arrière (qui dépilent des valeurs). En particulier, le checkpointing peut

entrainer le démarrage d’un balayage avant au milieu d’une phase d’accès répétitif à la

pile. Dans ce cas, il faut protéger la zone d’accès répétitif en empêchant les nouvelles

valeurs empilées d’écraser cette zone. Notre solution est de forcer l’ajout des nouvelles

valeurs au-dessus de la zone à accès répétitif. Pour faire ceci, nous avons ajouté deux

primitives supplémentaires à notre pile:

• freeze repeat stack () appelée juste avant la partie balayage vers l’avant

(FW sweep) de checkpointing. Elle enregistre la position actuelle du pointeur de
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la pile et indique que tous les pushs de checkpointing doivent sauvegarder leurs

valeurs au-dessus du sommet de la zone à accès répétitif.

• unfreeze repeat stack () appelée après la partie balayage vers l’arrière (BW

sweep) de checkpointing. Elle indique que les pops de checkpointing ont renvoyé

le pointeur de la pile au sommet de la zone à accès répétitif. Cette primitive

retourne le pointeur de la pile à son ancien emplacement avant le checkpointing

de telle sorte que les prochains pops peuvent lire à nouveau les valeurs de la zone

à accès répétitif.

Pour implementer la méthode Deux-Phases raffinée, nous avons spécifié la transforma-

tion de l’adjoint, de telle façon qu’elle peut être appliquée à toute structure de boucles

PF, éventuellement imbriquée. L’idée principale est de définir cette opération comme

étant une transformation récursive sur les graphes de contrôle du programme original.

Pour la validation, nous avons expérimenté l’adjoint Deux-Phases sur un vrai code de

taille moyenne et quantifié ses avantages, qui sont marginaux en termes d’exécution et

significatifs en termes de consommation de mémoire. Nous avons également expérimenté

l’adjoint Deux-Phases raffiné sur une structure imbriquée de boucles PF. La structure

imbriquée a été exécutée une fois avec une estimation initiale pour la boucle interne

qui reste constante à travers les itérations externes, nous l’appelons “estimation initiale

constante”, et une autre fois avec une estimation initiale qui dépend des résultats de

la boucle interne à l’itération externe précédente, nous l’appelons “estimation initiale

intelligente”. La structure imbriquée avec une estimation initiale intelligente pour la

boucle interne effectue moins d’itérations que dans le cas où elle a une estimation initiale

constante.

L’application de l’adjoint standard à la structure imbriquée avec une estimation ini-

tiale intelligente pour la boucle PF interne retourne un adjoint qui lui aussi a une

estimation initiale intelligente pour la boucle adjointe interne. Nous disons que dans ce

cas, l’adjoint standard a hérité l’intelligence de l’estimation initiale de la boucle interne

d’origine. Contrairement à la méthode standard, l’adjoint Deux-Phases raffiné n’a pas

hérité l’intelligence de l’estimation initiale de la boucle interne d’origine. Ceci peut être

expliqué par le fait que l’adjoint Deux-Phases ne calcule pas le vrai adjoint de l’état z

mais plutôt la valeur d’une variable intermédiaire qui lui est semblable.

En s’inspirant de l’estimation initiale intelligente de l’adjoint standard, nous avons défini

une estimation initiale intelligente pour la boucle interne adjointe de la méthode Deux-

Phases raffinée. Cette nouvelle estimation depend des résultats obtenus par la boucle

interne adjointe à l’itération extérieure précédente. La nouvelle estimation initiale réduit

le nombre d’itérations de l’adjoint Deux-Phases de presque moitié.
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La stratégie classique pour réduire le coût d’inversion du flux de données du mode ad-

joint de la DA est un compromis stockage-recalcul nommé “checkpointing”, cette strate-

gie sera expliquée en détails dans le chapitre 1. Le checkpointing entraine la répétition,

dans un ordre complexe, de certaines parties du programme choisies par l’utilisateur fi-

nal. Dans la suite, nous écrirons que ces parties sont “checkpointées”. Le checkpointing

a été largement étudié dans le cas de programmes séquentiels. Cependant, la plupart

des codes industriels sont maintenant parallélisés, le plus souvent à l’aide de la bib-

liothèque MPI [52]. Dans ce cas, la duplication de parties du code risque d’entrainer

des incohérences dans la communication des messages. Dans les travaux précédents

(l’approche “populaire”), le checkpointing a été appliqué de telle sorte que le morceau

de code checkpointé contient toujours les deux extrémités de chaque communication.

En d’autres termes, aucun appel MPI à l’intérieur de la partie de code checkpointée ne

peut communiquer avec un appel MPI qui est à l’extérieur de cette partie. De plus, les

appels de communication non bloquants et leurs waits correspondants doivent être tous

à l’intérieur ou à l’extérieur de la partie checkpointée. Dans les travaux antérieurs, cette

restriction est le plus souvent tacite. Toutefois, si une seule extrémité d’une communica-

tion point à point se trouve dans la partie checkpointée, la méthode ci-dessus produira

un code erroné.

Nous proposons des techniques pour pouvoir appliquer le checkpointing aux codes MPI

adjoints [41], [54] avec des communications point à point, qui ou bien n’imposent pas de

restrictions, ou bien les explicitent afin que les utilisateurs finaux puissent vérifier leur

applicabilité.

Une technique est appelée “ receive-logging ”. Cette technique, illustrée par la figure 2,

s’appuie sur l’enregistrement de chaque message au moment où il est reçu, de telle sorte

que les communications dupliquées n’ont pas besoin d’avoir lieu. Dans la suite nous

omettrons le préfixe MPI des appels de communication.

• Lors de la première exécution de la partie checkpointée, chaque appel de com-

munication est exécuté normalement. Cependant, chaque opération de réception

(en fait son wait dans le cas d’une communication non bloquante) stocke la valeur

qu’elle reçoit dans un emplacement local au processus. Les opérations d’envoi ne

sont pas modifiées.

• Pendant l’exécution dupliquée de la partie checkpointée, chaque opération d’envoi

ne fait rien (elle est “désactivée”). Chaque opération de réception, au lieu d’appeler

recv, lit la valeur précédemment stockée pendant la première exécution.

Bien que cette technique lève complètement les restrictions sur le checkpointing des codes

MPI, l’enregistrement des messages la rend plus coûteuse que l’approche populaire.
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send

recv

aucune opération

isend wait

aucune opération

Processus:

(c)

Processus 1:

Processus 2:

 recv; sauvegarde

send

récupére

Processus 2:

Processus 1:

(b)(a)

Figure 2: Trois exemples dans lesquels nous appliquons du receive-logging. Pour
plus de clarté, nous avons séparé les processus: processus 1 en haut et processus 2
en bas. (a) Un programme adjoint après le checkpointing d’un morceau de code ne
contenant que la partie send d’une communication point à point. (b) Un programme
adjoint après le checkpointing d’un morceau de code ne contenant que la partie recv
d’une communication point à point. (c) Un programme adjoint après le checkpointing
d’un morceau de code contenant seulement la partie wait d’une communication non

bloquante.

Nous pouvons raffiner la technique receive-logging en remplaçant l’enregistrement des

valeurs par la duplication des communications à chaque fois que c’est possible, de telle

façon que la technique raffinée englobe maintenant l’approche populaire. Ce raffinement

est appelé “message-resending”. Le principe est d’identifier une paire send - recv dont

les extrémités appartiennent à la même partie de code checkpointée, et de réexécuter

cette paire de communications de façon identique pendant la partie dupliquée du check-

pointing, effectuant ainsi la communication deux fois. Les communications dont une

extrémité n’appartient pas à la partie de code checkpointée sont toujours traitées par

receive-logging.

Figure 3 (b) montre l’application du checkpointing couplé avec le receive-logging à un

morceau de code. Dans ce morceau de code, nous sélectionnons une paire send-recv

et nous appliquons du message-resending à cette paire. Comme résultat, voir la figure

3 (c), cette paire est ré-exécutée lors de la duplication de la partie checkpointée et la

valeur reçue n’est plus enregistrée lors de la première instance de la partie checkpointée.

Cependant, pour pouvoir appliquer le message-resending, la partie de code checkpointée

doit obéir à une contrainte supplémentaire que nous appellerons “étanche à droite”.

Une partie checkpointée est “étanche à droite” si aucune dépendance de communication

ne va de l’aval de (c’est-à-dire après) la partie checkpointée retournant vers la partie

checkpointée. Par exemple, la partie checkpointée sur la figure 3 (a) est étanche à

droite. Sur cette figure, si on change la partie checkpointée pour qu’elle ne contient

plus la partie recv de processus 2, cette partie ne deviendra plus étanche à droite car

nous allons avoir une dependance allant de processus 2 situé à l’extérieur de la partie

checkpointée vers le send du processus 1 situé à l’intérieur de la partie checkpointée.
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send
Processus 1:

recv

Processus 2:
send

recv

send

recv;sauvegardesend

recv
Processus 1:

Processus 2:

send

recvsend

recv

send

recv

Processus 1:

Processus 2:

(a) (b) (c)

aucune opération

aucune opération
aucune opération

récupére

Figure 3: (a) Un programme parallèle MPI. (b) L’adjoint correspondant à ce pro-
gramme après le checkpointing d’un morceau de code en appliquant du receive-logging.
(c) L’adjoint correspondant après le checkpointing d’un morceau de code en appliquant

du receive-logging couplé avec le message-resending

Une extrémité de la communication est dite “orpheline” par rapport à une partie check-

pointée, si elle appartient à cette partie tandis que son partenaire n’appartient pas, par

exemple un send qui appartient à une partie checkpointé alors que son recv n’appartient

pas.

Dans le cas général:

• Losque la partie checkpointée n’est pas étanche à droite, nous ne pouvons appliquer

que du receive-logging à toutes les extrémités des communications appartenant à

la partie checkpointée.

• Dans le cas inverse, c’est-à-dire lorsque la partie checkpointée est étanche à droite,

nous recommandons l’application du message-resending à toutes les extrémités de

communications non orphelines appartenant à cete partie checkpointée. Pour les

extrémités orphelines, nous ne pouvons appliquer que du receive-logging. L’intérêt

de combiner les deux techniques est de reduire la consommation de mémoire vu

que nous ne sauvegardons maintenant que les recv qui sont orphelins.

Dans ce travail, nous fournissons des éléments de preuve de correction de nos techniques

receive-logging et message-resending, à savoir qu’elles préservent la sémantique du code

adjoint et qu’elles n’introduisent pas des deadlocks. Nous discutons des questions pra-

tiques concernant le choix de morceau de code checkpointé. Nous expérimentons nos

techniques sur des codes représentatifs dans lesquels nous effectuons des différents choix

de morceaux checkpointés. Nous quantifions les dépenses en termes de mémoire et de

nombre de communications pour chaque code adjoint résultant.
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Chapter 1

Introduction (français)

Les dérivées de fonctions sont nécessaires dans de nombreux domaines de l’informatique.

Elles jouent un rôle central dans les problèmes inverses, l’assimilation de données [46],

l’analyse de sensibilité [35], l’optimisation de forme [37] et de nombreux autres domaines.

Par exemple, dans l’optimisation de forme, les dérivées et en particulier les gradients

sont utilisés pour trouver une amélioration possible du design courant.

Pour les modèles complexes, en particulier ceux implémentés sous forme de programmes

informatiques, le développement à la main des codes qui calculent les dérivées de ces

fonctions est à la fois extrêmement long et en plus une source d’erreurs. D’un autre côté,

le calcul de ces dérivées par des différences divisées sur les programmes qui implémentent

ces fonctions renvoie des dérivées inexactes. Les raisons de cette inexactitude sont la

troncature des dérivées d’ordre supérieur et les erreurs numériques dues au choix de la

perturbation. Contrairement à ces deux approches, une méthode connue sous le nom

de “ Différentiation Algorithmique” (DA) [25], [40] produit des codes qui calculent des

dérivées précises et peut être appliquée à des programmes arbitrairement complexes.

Cette méthode repose sur le fait que le programme d’origine P , calculant une fonction

différentiable F : X ∈ IRN → Y ∈ IRM , peut être exprimé comme étant une suite

d’instructions élémentaires {I1; I2; ...Ip; }, chacune calculant une fonction différentiable

élémentaire f1, f2, ...fp, de telle sorte que la fonction F (X) est la composition de ces

fonctions élémentaires,

F (X) = fp(...(f2(f1(X))...) (1.1)

L’application de la règle de différentiation des fonctions composées à F (X) donne une

nouvelle fonction F ′(X) qui calcule la dérivée première (la Jacobienne):

F ′(X) = f ′p(Xp−1) ∗ ... ∗ f ′2(X1) ∗ f ′1(X) (1.2)

1
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où X1 est la sortie de la fonction f1(X), X2 est la sortie de la fonction f2(f1(X)), etc.

En théorie, nous pouvons donc étendre chaque instruction Ik, de telle façon qu’elle

calcule en plus de la fonction élémentaire fk, sa dérivée f ′k. L’ensemble de ces nouvelles

instructions forme un nouveau programme que nous appelons le “programme différentié”,

P ′. Cependant, dans la pratique, la Jacobienne F ′(X) peut être une matrice énorme

dont la hauteur et la largeur sont de l’ordre du nombre de variables dans le programme

d’origine. Le calcul et le stockage de tous les éléments de la Jacobienne peuvent exiger

donc une consommation importante de temps et de mémoire. Pour cette raison, dans

la pratique on ne calcule pas tous les éléments de la Jacobienne mais plutôt une de ces

deux projections:

F ′(X) ∗ Ẋ ou Y ∗ F ′(X)

où Ẋ est un vecteur dans IRN et Y est un vecteur ligne dans IRM . Les modes particuliers

de la DA qui calculent ces projections sont appelés respectivement les modes tangent et

adjoint.

Alors que la formule F ′(X) ∗ Ẋ calcule (une combinaison linéaire) des colonnes de la

Jacobienne, la formule Y ∗ F ′(X) fournit (une combinaison linéaire) des lignes de la

Jacobienne. Le coût du calcul de la Jacobienne complète est donc proportionnel dans

le premier cas au nombre d’entrées du programme, et dans le deuxième cas au nombre

de sorties du programme. Dans ce travail, l’objectif final est de calculer des gradients.

Dans ce cas, le résultat de la fonction à différentier est un scalaire et le mode adjoint

est donc le plus efficace pour calculer le gradient. Nous nous concentrerons donc dans

ce qui suit sur ce mode.

Le mode adjoint de la DA calcule X = Y ∗F ′(X). Rappelant l’équation 1.2, on obtient:

X = Y ∗ f ′p(Xp−1) ∗ ... ∗ f ′2(X1) ∗ f ′1(X) (1.3)

Comme le produit matrice par vecteur est beaucoup moins cher que le produit matrice

par matrice, cette équation est mieux évaluée de gauche à droite. Pour alléger les

notations, on appellera Xp−1 le produit du vecteur Y par la Jacobienne f ′p(Xp−1) ,

c’est-à-dire

Xp−1 = Y ∗ f ′p(Xp−1), Xp−2 le produit du vecteur Xp−1 par la Jacobienne f ′p−1(Xp−2),

c’est-à-dire Xp−2 = Xp−1 ∗ f ′p−1(Xp−2) et ainsi de suite jusqu’à ce que nous définissions

à la fin X0 = X1 ∗ f ′1(X). Par définition X est X0.

Du point de vue des programmes, toutes les valeurs intermédiaires Xk du programme

d’origine sont contenues dans des variables. De même, les valeurs des dérivées Xk

seront placées dans des nouvelles variables du programme différentié. Par conséquent, le

programme différentié, en plus des variables w du programme d’origine, devra déclarer

autant des variables différentiées w, de mêmes formes et de mêmes dimensions que
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w. Ces nouvelles variables sont appelées : “les variables adjointes”. Cependant, nous

notons que dans l’équation 1.3, les valeurs du programme d’origine sont utilisées dans

l’ordre inverse de leur calcul, c’est-à-dire Xp−1 est utilisée en premier, puis Xp−2, puis

Xp−3, etc. On nomme cette question “l’inversion de flux de données”. Deux stratégies

sont couramment utilisées pour pouvoir utiliser les valeurs du programme d’origine dans

l’ordre inverse:

• l’approche Recompute-All [16] recalcule les valeurs du programme d’origine à

chaque fois que ceci est nécessaire, en redémarrant le programme à partir d’un

état initial mémorisé,

• l’approche Store-All [7] [31] stocke les valeurs intermédiaires dans une pile, ou

au moins celles qui seront nécessaires, lors d’une exécution préliminaire du pro-

gramme original connu sous le nom de balayage avant (FW sweep). Ensuite, cette

exécution est suivie par un balayage dit arrière (BW sweep) qui calcule les dérivées

adjointes en utilisant les valeurs originales mémorisées. Les primitives push et pop

nécessaires sont fournies par une bibliothèque séparée.

Les deux approches Recompute-All et Store-All se révèlent impraticables sur des grandes

applications réelles à cause de leurs coûts en termes de temps ou d’espace mémoire re-

spectivement. Des compromis stockage-recalcule sont nécessaires. Une stratégie clas-

sique est appelée “checkpointing”. Dans notre contexte (Store-All), le checkpointing [28]

consiste à sélectionner une partie C d’un programme P et à ne pas stocker les valeurs

intermédiaires de C au cours du balayage avant sur P . Au lieu de cela, on stocke le

minimum de données nécessaires (un “snapshot”) pour pouvoir exécuter C à nouveau.

Il s’agit donc d’une exécution simple de C et non pas un balayage avant sur C. Pendant

le balayage arrière sur P , lorsque l’on atteint à nouveau la partie C, on remet en place

le contenu du snapshot ce qui permet d’exécuter C à nouveau, cette fois sous la forme

d’un balayage avant standard.

L’objectif de cette thèse est d’étudier plus en détail les techniques qui aident à limiter

le coût de l’inversion du flux de données de l’adjoint. Deux de ces techniques liées au

mécanisme de checkpointing ont été sélectionnées.

• Dans le chapitre 3, nous considérons l’adjoint des boucles à point fixe, pour

lesquelles plusieurs auteurs ont proposé des stratégies adjointes adaptées. Parmi

ces stratégies, nous choisissons la méthode “Deux-Phases raffinée” de B. Christian-

son [10]. Cette méthode exige des mécanismes originaux tels que l’accès répétitif

à la pile ou encore la différenciation dupliquée de corps de la boucle par rapport

à des différentes variables indépendantes. Nous décrivons comment cette méthode
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doit être spécifiée afin de prendre en compte les structures particulières présentes

dans les codes réels tels que les boucles avec des sorties multiples. Nous décrivons

comment les différentes variables (état et paramètres) requises par l’adjoint peu-

vent être détectées automatiquement grâce à l’analyse du flux de données d’un

outil de DA. Nous décrivons la façon dont nous avons étendu le mécanisme stan-

dard de la pile et la façon dont nous avons implémenté la méthode Deux-Phases

dans notre outil de DA Tapenade. Pour la validation, nous avons expérimenté la

méthode Deux-Phases sur un code réel de taille moyenne et nous avons quantifié

ses avantages qui sont marginaux en termes d’exécution et significatifs en termes de

consommation de mémoire. Nous avons étudié la question connexe de l’estimation

initiale dans le cas des boucles à point fixe imbriquées.

• Dans le chapitre 4, nous abordons la question du checkpointing appliqué aux

programmes parallèles MPI adjoints [41], [54]. D’une part, nous proposons une

extension du checkpointing dans le cas de programmes parallèles MPI avec des

communications point à point, de telle sorte que la sémantique du programme

adjoint est préservée pour tout choix du fragment de code checkpointé. D’autre

part, nous proposons une technique alternative, plus économique mais qui requiert

un certain nombre de restrictions sur le choix de la partie de code checkpointée.

Nous fournissons des éléments de preuve de correction de nos techniques, à savoir

qu’elles préservent la sémantique du code adjoint et qu’elles n’introduisent pas des

deadlocks. Nous discutons des questions pratiques concernant le choix de la com-

binaison de techniques à appliquer étant donné un morceau de code checkpointé

ainsi que le choix de morceau de code checkpointé lui-même. Nous expérimentons

nos techniques sur des codes représentatifs dans lesquels nous effectuons différents

choix de fragments checkpointés. Nous quantifions les coûts en termes de mémoire

et de nombre de communications pour chaque code adjoint résultant.



Chapter 2

Introduction (english)

2.1 Introduction

Derivatives of functions are required in many areas of computational science. They play

a central role in inverse problems, e.g. data assimilation [46], sensitivity analysis [35],

design optimization [37] and many other domains. For instance, in design optimization,

derivatives and in particular gradients are used to find a possible improvement of a

current design.

For complex models, especially those implemented as computer programs, developing

by hand codes that compute the derivatives of these functions is error-prone and ex-

tremely time-consuming. From the other side, computing these derivatives by divided

differences on the programs that implement these functions returns inaccurate deriva-

tives. The reasons for this inaccuracy being the cancellation in floating-point arithmetic

due a too small perturbation ε and the truncation error due a too large perturbation.

In contrast to these two approaches, the method known as Algorithmic Differentiation

(AD) produces codes that compute accurate derivatives and can be applied to arbitrarily

complex programs. This method relies on the fact that the original program can be ex-

pressed as a sequence of elementary instructions, each of them computing an elementary

differentiable function. Applying the chain rule of calculus to this program produces a

new program that includes instructions that compute the derivatives.

There exist two fundamental modes of AD: tangent and adjoint. When the number of

inputs is much larger then the number of outputs, the adjoint mode is recommended.

This work was supported by an European Project called “AboutFlow” [15]. This project

focuses on methods of optimization that are gradient-based. Since the adjoint mode is

particularly attractive for computing gradients, since the number of outputs is one, this

thesis concentrates on this mode.

5



Chapter 1. Introduction (english) 6

The adjoint mode, however, needs to use the intermediate values of the original simula-

tion in reverse order. Whatever strategy is chosen to achieve this reversal, the cost for

doing this increases with the length of the simulation. AD research looks for strategies

to mitigate this cost, for instance by taking advantage of the structure of the given

program. In this thesis, we consider the frequent case of Fixed-point loops, for which

several authors have proposed adapted adjoint strategies. We explain why we consider

the strategy initially proposed by B. Christianson as the best suited for our needs. We

describe the way we implemented this strategy in our AD tool Tapenade. Experiments

on a medium-size application shows a major reduction of the memory needed to store

trajectories.

Another way to reduce the cost of data flow reversal is to employ a trade-off between

storage and recomputation of the intermediate values. This trade-off is called check-

pointing. Checkpointing has been largely studied in the case of sequential programs.

However, most industrial-size codes are now parallelized. In the case of parallel pro-

grams implemented by using the MPI library, the presence of communications seriously

restricts application of checkpointing. In most attempts to apply checkpointing to the

adjoint MPI codes, a number of restrictions apply on the form of communications that

occur in the checkpointed pieces of code. In many works, these restrictions are not

explicit, and an application that does not respect these restrictions may lead to an er-

roneous derivative code. In this thesis, we propose techniques to apply checkpointing

to adjoint MPI codes with point-to-point communications, that either do not impose

these restrictions, or explicit them so that the end users can verify their applicability.

These techniques rely on both adapting the snapshot mechanism of checkpointing and

on modifying the behavior of communication calls. We provide proof of correctness of

these strategies, and we demonstrate in particular that they cannot introduce deadlocks.

We experiment these strategies on representative CFD codes.

This introduction chapter presents the basics of AD, or at least those that are useful

to understand the sequel. In section 2.2, we present briefly the principal modes and

techniques of AD. In section 2.3, we show how AD differentiated codes can benefit from

static data-flow analysis. In section 2.4, we present the AD tool “Tapenade” that we

have used for implementation and validation.

2.2 Elements of Algorithmic Differentiation

Algorithmic Differentiation (called also Automatic Differentiation) [25], [40] is a set of

techniques that, given a program P that computes some differentiable function F : X ∈
IRN → Y ∈ IRM , builds a new program P ′ that computes the derivatives of F . The
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main idea can be described in two steps. In a first step, we focus on one particular

run-time trace of the code execution, i.e. we consider control as fixed and the program

becomes one large sequence of simple instructions. Control will be re-introduced in

the differentiated code in the final stage. In a second step, P being now a sequence of

instructions {I1; I2; ...Ip; } each of those computing one differentiable elementary function

{f1, f2, ...fp}, the function F (X) is the composition of these elementary functions, i.e.

F (X) = fp(...(f2(f1(X))...) (2.1)

Applying the chain rule to F (X) gives a new function F ′(X) that computes the first

order full derivatives, i.e. the Jacobian:

F ′(X) = f ′p(Xp−1) ∗ ... ∗ f ′2(X1) ∗ f ′1(X) (2.2)

In which X1 is the output of the function f1(X), X2 is the output of the function

f2(f1(X)), etc.

In theory, we may extend every instruction Ik, so that it computes in addition to the

elementary function fk, its derivative f ′k. The set of these new instructions forms a new

program that we call the “differentiated program”, i.e. P ′. However, in practice, the

Jacobian F ′(X) may be a huge matrix whose height and width are of the order of the

number of variables in the original program. Computing the whole Jacobian may require

too much time and memory. To deal with this difficulty, one may not compute all the

Jacobian elements but rather one of these two projections:

F ′(X) ∗ Ẋ or Y ∗ F ′(X)

where Ẋ is a vector in IRN and Y is a row-vector in IRM . The particular modes of AD

that compute these projections are called respectively the tangent and adjoint modes.

2.2.1 The Tangent Mode of Algorithmic Differentiation

The tangent mode computes Ẏ = F ′(X) ∗ Ẋ. Recalling equation 2.2, we get:

Ẏ = f ′p(Xp−1) ∗ ... ∗ f ′2(X1) ∗ f ′1(X) ∗ Ẋ (2.3)

Since the product matrix by vector is much cheaper than the product matrix by matrix,

this equation is best evaluated from right to left. For short, we will call Ẋ1 the product

of the vector Ẋ by the Jacobian f ′1(X), i.e. Ẋ1 = f ′1(X) ∗ Ẋ, then Ẋ2 the product of

the vector Ẋ1 by the Jacobian f ′2(X1), i.e. Ẋ2 = f ′2(X1) ∗ Ẋ1, and so on until we define

at the end Ẋp = f ′p(Xp−1) ∗ Ẋp−1. By definition, Ẏ is Ẋp.
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In equation 2.3, the primal values are used in the derivative computations in the same

order they are computed by the original program., i.e. X is needed first, then X1, etc.

Therefore, an algorithm that computes Ẏ is relatively easy to implement: just keep the

original variables w that compute the successive Xk and introduce new program vari-

ables ẇ of the same shape as w that compute the successive mathematical variables Ẋk

that we have just defined. These new variables are called “tangent variables”.

The tangent code is thus a copy of the original program, in which we insert new instruc-

tions that compute the tangent derivatives Ẋk. Since an instruction may use a variable

and immediately overwrite it, its differentiated instruction must be inserted before it,

so that the derivatives rightfully use the value of the variable before it is overwritten.

Figure 2.1 illustrates the application of the AD tangent mode on a piece of code. By

w1=x2

w2=2∗w1
3

w3=sin(w2)

y=3∗w3

ẇ1=2∗x∗ẋ

w1=x2

(a) (b)

ẇ3=cos(w2)∗ẇ2

w3=sin(w2)

ẇ2=6∗w1
2∗ẇ1

w2=2∗w1
3

ẏ=3∗ẇ3

y=3∗w3

subroutine F (x , y) subroutine Ḟ (x , ẋ , y , ẏ)

Figure 2.1: (a) Example of code. (b) The tangent mode applied to this code

convention we represent the derivatives variables with a dot above the name of their

primal variable. Note that each derivative variable must be declared with the same type

and size as its primal.

2.2.2 The Adjoint Mode of Algorithmic Differentiation

The adjoint mode of AD, called also “Reverse mode”, computes X = Y ∗ F ′(X) .

Recalling equation 2.2, we get:

X = Y ∗ f ′p(Xp−1) ∗ ... ∗ f ′2(X1) ∗ f ′1(X) (2.4)

Here also, we prefer the product vector by matrix to the product matrix by matrix

because it is cheaper. Therefore, this equation is best evaluated from left to right. For

short, we will call Xp−1 the product of the vector Y by the Jacobian f ′p(Xp−1), i.e.

Xp−1 = Y ∗ f ′p(Xp−1), then Xp−2 the product of the vector Xp−1 by the Jacobian

f ′p−1(Xp−2), i.e. Xp−2 = Xp−1 ∗ f ′p−1(Xp−2) and so on until that we define at the end
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X0 = X1 ∗ f ′1(X). By definition X is X0.

Similarly to the case of the tangent mode, we construct here an algorithm that keeps

the original variables w that compute the successive Xk and introduces new program

variables w of the same shape as w that hold the successive mathematical variables Xk

that we have just defined. These new variables are called “adjoint variables”.

Notice that in equation 2.4, the primal values are needed in the opposite of their com-

putation order, i.e. Xp−1 is needed first, then Xp−2, then Xp−3, etc. Therefore, unlike

the tangent code, where the differentiated instructions are computed together with the

original ones, the adjoint code must consist of two sweeps. The first sweep (the forward

sweep (FW)) runs the original program and computes the intermediate values. The

second sweep (the backward sweep (BW)) computes the adjoint derivatives, using the

intermediate primal values computed in the first sweep. Figure 2.2 illustrates the ap-

w1=x2

w2=2∗w1
3

w3=sin (w2)

y=3∗w3

w3=3∗y
y=0
w2=w3∗cos(w2)

w3=0
w1=6∗w2∗w1

2

w2=0
x=2∗w1∗x
w1=0

(a) (b)

w1=x2

w2=2∗w1
3

w3=sin (w2)

y=3∗w3 Forward Sweep

Backward sweep

subroutine F (x , y) subroutine F (x , x , y , y)

Figure 2.2: (a) Example of code. (b) The adjoint mode applied to this code

plication of the AD adjoint mode on a piece of code. In figure 2.2, we name the new

derivative variables wk, of the same type and size as the original ones wk so that these

intermediate variables hold the adjoint derivatives.

However, the example in figure 2.2 is oversimplified in that no variable is overwritten

(Single Assignment code). This is almost never the case in real codes, where memory

space is limited. Since these values are needed to compute the derivatives, strategies

must be designed to retrieve the values in the reverse order. We will see later how this

problem is solved, but let us keep in mind that there is a penalty attached to the adjoint

mode coming from the need of a data-flow reversal.
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2.2.3 Comparison of the merits of Tangent and Adjoint modes

To compare the merits of Tangent and Adjoint AD, consider the M ∗N Jacobian of a

function f : IRN → IRM , see figure 2.3. Let us compare the run-time cost of computing

this Jacobian by using the tangent mode with the cost by using the adjoint mode. Each

run of the tangent code costs only a small multiple of the run-time of the program P

that computes f . This ratio, we call it Ct, typically ranges between 1 and 3. Since the

tangent code returns only one column at once, computing the whole Jacobian requires

running the tangent code N times. At the end, the total run-time cost of computing

the Jacobian by using the tangent mode is Ct ∗N ∗ runtime(P ). Similarly, each run of

the adjoint code costs only a small multiple of the run-time of P . However, this ratio,

we call it Ca, is slightly greater than Ct because of the data-flow reversal in the case of

the adjoint mode. The ratio Ca typically ranges between 5 and 10. Since, the adjoint

code returns only one row at once, computing the whole Jacobian requires running the

adjoint code M times. At the end, the total run-time cost of computing the Jacobian

by using the adjoint mode is Ca ∗M ∗ runtime(P ). When N is much larger than M ,

the adjoint mode is recommended. Therefore, this mode is particularly attractive for

computing gradients (i.e. M = 1).

( )
N inputs

M outputs

Tangent

Adjoint

Figure 2.3: Computing the Jacobian elements by tangent and adjoint modes

2.2.4 Dealing with the data-flow reversal of the adjoint mode

Applying the adjoint has an extra cost coming from the reversal of the data-flow. We

saw in subsection 2.2.2 that in the forward sweep of the adjoint, each instruction may

overwrite the values computed by previous instructions. Since these values are needed

to compute the adjoint derivatives, strategies must be designed to retrieve these values

in reverse order. Two strategies are commonly used in AD tools:

Recompute-All: recomputes the intermediate values needed by the derivative of each

instruction Ik, by restarting (a slice of) the original program from the stored initial state

X0 until instruction Ik−1. Figure 2.4 (a) illustrates this approach. Left-to-right arrows
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represent the execution of the original instructions Ik and right-to-left arrows represent

the execution of the derivatives instructions Ik. The black dot represents the storage of

the initial state X0 and each of the white dots represents the restoration of this state.

The memory cost is the storage of X0, which is a constant cost. The run-time cost is

quadratic in the number of instructions p. This approach is used for instance by the AD

tool TAF [16].

...
...

...

...

C

timetime

(a) (b)

I 1 I 2 I p−2 I p−1

I p

I 1 I 2 I p−2 I p−1

I p−1

I 2I 1

I p
I p−1

I 1

Figure 2.4: (a) Data-flow reversal with Recompute-All. (b) Checkpointing a piece of
code C with Recompute-All

Store-All: stores each intermediate value Xk that is overwritten during the forward

sweep onto a stack, then retrieves these values before they are needed by the derivative

instructions during the backward sweep. Figure 2.5 (a) illustrates this approach. Left-

to-right arrows represent the execution of the original instructions Ik. These arrows

are drawn thicker to reflect the fact that the original instructions store the overwritten

values. Right-to-left arrows represent the execution of the derivative instructions Ik.

These instructions restore the stored intermediate values and use them to compute

the derivatives. The memory cost is proportional to the number of instructions p. In

contrast, there is no repeated computation of the original instructions, so there is no

extra run-time cost. Admittedly, there is a small run-time penalty associated to the

push/pop stack operations, but it is a fixed cost per original instruction, so it has a

negligible effect on the complexity measurements with respect to p. This approach is

used for instance by the AD tools Adifor [7] and Tapenade [31].

C

timetime

(a) (b)

I 1 I 2
I p−2 I p−1 I 1 I 2

I p−2 I p−1

I p−1 I pI p−2I 2I 1

I p−1 I pI p−2

I 2I 1

Figure 2.5: (a) Data-flow reversal with Store-All approach. (b) Checkpointing a piece
of code C with Store-All

In the sequel, we use Store-All because this is the approach of our application tool

Tapenade. Suppose for instance that we change the example of figure 2.2 (a) so that
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only one variable, w, holds the intermediate computations. We apply the adjoint mode

together with the Store-All approach to this new code. The resulting program is sketched

in figure 2.6 (b). We see that the value of w is saved into the stack each time it is

overwritten by an instruction.

w=x2

w=2∗w3

w=sin(w)
y=3∗w

pop( y)
w=3∗y
y=0
pop(w)

w=w∗cos(w)
pop(w)

w=6∗w∗w2

pop(w)
x=2∗w∗x
w=0

(a) (b)

push(w)

w=x2

push(w)

w=2∗w3

push(w)

w=sin(w)
push( y)
y=3∗w Forward Sweep

Backward sweep

subroutine F (x , y) subroutine F (x , x , y , y)

Figure 2.6: (a) Example of code. (b) The adjoint mode coupled with Store-All applied
to this code

On large real applications both Recompute-All and Store-All approaches turn out to

be impracticable due to their cost in time or memory space respectively. Trade-offs are

needed, and a classical one is called “checkpointing”.

• In the Recompute-All approach, checkpointing means selecting a part of code C

and storing the state just after exit from this part. Recomputing the needed

values can then start from this state instead of the initial state X0. The result of

checkpointing C is shown on figure 2.4 (b). At the cost of storing one extra state,

the run-time cost has been divided almost by two.

• In the Store-All approach, checkpointing means selecting a part of code C and

in not storing its intermediate values, but rather storing the minimum amount

of data needed to run this part again later (“a snapshot”). After taking the
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snapshot, the original program is run with no storage of intermediate values. Then,

before computing the derivatives of C, C is run again this time with storing the

intermediate values. The result of checkpointing C is shown on figure 2.5 (b). The

thin left-to-right arrow represents the first execution of C, in which no storage of

intermediate values is performed. The black dot reflects the storage of the snapshot

and the white dot reflects its retrieval. At the cost of storing the snapshot and of

running C twice, the peak stack size is divided almost by two.

A good choice of checkpointed parts is vital for efficient adjoint differentiation of large

programs. One may allow the AD-tool user to select the checkpointed parts in order to

reduce the overall memory requirement. This approach is provided for instance by the

AD tools TAF [17] and Tapenade [28]. As an alternative, one may exploit the call graph

structure of the program and choose the calls to subroutines as checkpointed parts. This

approach is used for instance by the AD tools OpenAD [42] and Tapenade [31]. There is

in general no systematic method to organize an “optimal” choice of checkpointed parts,

e.g. a choice that, given a fixed maximal memory space for checkpointed parts, would

minimize the number of extra recomputations (for store-all). However, there might be

optimal checkpointing schemes for some particular code structures. This is in particular

the case for time-stepping procedures. If the number of time steps is known, if the

computational costs of the time steps are almost constant, and the maximum number

of checkpointed parts is fixed (e.g. by memory limitations of the machine), then an

optimal checkpointing schedule can be computed in advance to achieve an optimal run

time increase. This optimal scheme is called binomial. It was proved in [22] that this

scheme achieves a logarithmic growth of memory and run-time, with respect to p. This

approach is used for instance by the AD tool ADOL-C [36]. Other checkpointing schemes

may have an optimal configuration which is extremely expensive to find. For instance,

if checkpointed parts may be placed at subroutine calls only, the question of finding the

optimal set of calls that must be checkpointed is an NP-complete problem [38], [39], for

which only approximate solutions can be found in a reasonable time.

2.2.5 Implementation methods of Algorithmic Differentiation

There are two basic approaches for applying Algorithmic Differentiation to a program:

Operator overloading: It consists in overloading the arithmetic operations so that

these operations propagate the derivative information along the differentiated code. The

main idea is to replace the types of the floating-point variables with a new type that holds

the derivative in addition to the primal information. This depends on the language of

the original code. The AD tool boils down to a library that defines both the overloaded
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type and the arithmetic operations that operate on this type. One great strength of this

approach is that it can be easily re-defined to compute higher-order derivatives. Also, the

original program is barely changed as the code that computes the derivatives is defined

inside the libraries. However, since the execution of the overloaded operations follow the

order of the original program, this approach requires specific strategies for the adjoint

mode which reduce the performance of the differentiated program. Examples of AD tools

based on operator overloading are ADOL-C [1], DCO/Fortran and DCO/C++ [40].

Program Transformation: It consists in building a new source program that computes

the derivatives [26]. The AD tool must feature a compiler that after parsing the original

program and building an internal representation of it, generates a new program that

computes the derivatives of the original one. This approach allows the AD tool to

perform static analysis on the original program. These analysis are useful to produce an

efficient code that consumes less in term of time and memory. This makes the program

transformation approach, thus, the best choice for the adjoint mode, specially because

this mode requires reversing the data-flow of the original program. This approach,

however, is hard to implement which may explain why the operator overloading AD

tools appeared earlier than the ones of the program transformation. Examples of source

transformation based AD tools are Tapenade [31], TAF [16] and OpenAD/F [2].

A possible combination of Operator Overloading and Program Transformation has been

studied in [13]. The combinatorial method exploits the advantages of each of these two

approaches: the flexibility and robustness of Operator Overloading and the efficiency

of source transformation. The main idea is to identify the parts of codes that are the

most expensive in terms of number of operations and apply Program Transformation

to them. For the rest of the code, Operator Overloading is applied. The resulting code

shows a significant reduction in terms of time and memory in comparison with the one

on which only Operator Overloading is applied.

2.3 Improving the differentiated code : static Data-flow

analyses

Ideally, AD tools should produce differentiated programs as efficient as the best hand-

coded versions. To this end, a set of techniques have been developed in order to improve

the performance of codes generated by AD tools. One of these techniques is static

data flow analyses [27] run on the original program. These analyses statically gather

information that is useful to produce an efficient differentiated program.

Data-Flow analyses depend on the internal representation of programs [55]. The most

appropriate program representation appears to be a call graph of flow graphs:



Chapter 1. Introduction (english) 15

• The call graph is a directed graph whose nodes are the subroutines or the functions

of the original program and the edges are the calls between these nodes. An arrow

from a node A to a node B reflects that A possibly calls B. Recursions are cycles

in the call graph.

• Each subroutine or function is represented by a flow graph. The flow graph is a

directed graph with one node for each basic block. Arrows between these basic

blocks represent the flow of control. Flow graphs may be cyclic, due to loops and

other cyclic control.

The individual instructions are represented as abstract syntax trees. A symbol table is

associated to each basic block. It saves variable names, function names, type names and

so on.

The classical problem of static code analysis is known as undecidability. This means

that in many situations, the answer to a given data-flow question can be not only “yes”

or “no”, but also “maybe”. For example a data flow question can be: “at this point in

the code, is the value of V greater than 5 ?”, or in the context of AD: “at this point

in the code, does the value of V depend on the independent inputs ? ”. In general, no

data-flow analysis can guarantee to reply only “yes” and “no” to these questions on any

code. The theoretical reason for that is the undecidability of the termination problem

whose consequence is that for any data-flow analysis, one can exhibit a code on which

the analysis cannot decide between “yes” and “no”. In practice, a far more frequent

reason is that the static information available on the inputs is limited and the methods

to propagate this information through the code are approximate.

So, whatever effort we put into the development of our tools, we must be prepared

to uncertainty on the data-flow information. In other words all data-flow analyses,

and all the program transformations that follow must be conservative, i.e. take safe

decisions when the data-flow information is uncertain, so as to produce correct code.

Conservativity obviously depends on the particular analysis and transformation. For

example, when a code simplification is triggered by the fact that V is greater than 5,

then the simplification is forbidden in case of uncertainty so that in this case, “maybe”

is treated as “no”. For other analyses “maybe” may have to be treated as “yes”.

Data-flow analyses must be carefully designed to avoid combinatorial explosion. A clas-

sic solution is to choose a hierarchical model. In this kind of model, two sweeps through

the program are performed: a first sweep that computes local synthesized information for

instance on each subroutine or on each basic block. This sweep is performed bottom-up,

starting from the smallest levels of program representation and propagating the syn-

thesized information up to the larger levels. Consequently, the synthesized information
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must be independent from the rest of the program, i.e. the calling context. Then, a

second sweep uses the synthesized information. This sweep is performed top-down on

the program and it is context dependent.

2.3.1 Data-flow analyses for Algorithmic Differentiation

Naive application of the tangent or of the adjoint mode to a given program produces a

differentiated code that computes the derivatives of all the output variables with respect

to all the input variables. However, in practice we may need only the derivatives of

some selected outputs (called “dependent”) of the original program with respect to

some selected inputs of this program (called “independent”). We call “active” each

variable that belongs to one computational path that relates the independent variables

to the dependent ones.

To improve the run time of the differentiated program, one should at least:

1. eliminate all derivative instructions that compute derivatives of variables that are

not active, and simplify out all occurrences of these variables in derivative ex-

pressions.

2. eliminate all instructions that compute primal values that are not used in the

(remaining) derivative instructions.

Instructions 1 and 2 can be eliminated from the differentiated code by using a set of

analyses run on the original program. These analyses are respectively “Activity” and

“Diff-liveness”. Activity analysis detects all variables that are active and thus need

to be differentiated. Diff-liveness analysis detects all variables, called “diffLive”,

whose values are needed in the computation of derivatives and thus need to be computed

in the differentiated code.

Notice that the Activity analysis is useful even when all the inputs are independents

and all the outputs are dependents. A variable can also be detected as inactive after it

receives a constant value, and likewise when we can prove that its derivative is not used

in the sequel of the differentiated code for the computation of the final derivatives.

Figure 2.7 illustrates the benefits of both Activity and Diff-liveness analyses on an

adjoint code. In figure 2.7 (a), we set the variable x as independent and the variable y as

dependent. The intermediate variables w2 and w3 do not belong to the computational

path that relates x to y, i.e. w2 and w3 do not depend on x and do not influence y.

Consequently, Activity analysis detects these two variable as non-active and thus no

instruction that differentiates these variables has to appear in the differentiated code,
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w1=x2

w2=3∗sin(w2)

w3=2∗w3
2∗w2

y=w1
2

w1=2∗y∗w1

y=0
w3=4∗w3∗w3∗w2

w2=2∗w3∗w3
2

w2=3∗w2∗cos(w2)

x=2∗w1∗x
w1=0

w1=2∗y∗w1

y=0

x=2∗w1∗x
w1=0

w1=x2

y=w1
2

(a) (b) (c) (d)

Forward Sweep

Backward sweep

subroutine F (x , y) subroutine F (x , x , y , y)

w1=x2

w2=3∗sin(w2)

w3=2∗w3
2∗w2

y=w1
2

Forward Sweep

Backward sweep

subroutine F (x , x , y , y)

w1=x2

w2=3∗sin(w2)

w3=2∗w3
2∗w2

y=w1
2

subroutine F (x , x , y , y)

Forward Sweep

Backward sweep

w1=2∗y∗w1

y=0

x=2∗w1∗x
w1=0

Figure 2.7: Effect of Activity and Diff-liveness analyses on an adjoint AD code.
(a) Example of code. (b) Naive adjoint mode applied to this code. (c) The adjoint code
after running the Activity analysis. (d) The adjoint code after running the Activity

and Diff-liveness analyses.

see figure 2.7 (c). We see in figure 2.7 (b), that w2 and w3 are used only to compute the

two adjoint variables w2 and w3. Since every instruction that computes w2 and w3 has

been removed by the Activity analysis, there is no reason to keep the computations of

w2 and w3 in the forward sweep of the adjoint. Consequently, Diff-liveness activity

detects these computations as non-diffLive and remove them from the differentiated

code, see figure 2.7 (d).

We saw in subsection 2.2.2, that the main drawback of the adjoint code is memory

consumption since it requires the storage of all intermediate variables before they are

overwritten during the Forward sweep. To reduce this cost, a possible way is to store

only the needed values to compute the derivatives. For instance the adjoint instructions

corresponding to assignment y = 3 ∗ x are: x = 3 ∗ y + x; y = 0. We observe that the

primal variable x is not used in the adjoint instructions. There is thus no need to save

its value in the case it get overwritten in the forward sweep. This is the purpose of TBR

analysis [30], which analyses the original program to find every variable that is really

used in the computation of derivatives and thus its value needs To Be Recorded in the

case it get overwritten.

For further efficiency, TBR analysis must take advantage of Activity analysis, so as to

store only the values needed to compute the derivatives of variables that are active.

Figure 2.8 shows the interest of TBR analysis. We use the same example as the one of
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figure 2.6. The value of variable w overwritten by the first instruction w = x2 and the

value of variable y overwritten by the last instruction y = 3 ∗ w are not used in the

derivatives computations. Consequently, TBR analysis detects that it is not necessary to

store neither w before the first instruction nor y before the last instruction and thus no

PUSH/POP instructions for these two variables have to appear in the differentiated code,

see figure 2.8 (c).

w=x2

w=2∗w3

w=sin(w)
y=3∗w

pop( y)
w=3∗y
y=0
pop(w)

w=w∗cos(w)
pop(w)

w=6∗w∗w2

pop(w)
x=2∗w∗x
w=0

(a) (b)

push(w)

w=x2

push(w)

w=2∗w3

push(w)

w=sin(w)
push( y)
y=3∗w Forward Sweep

Backward sweep

subroutine F (x , y) subroutine F (x , x , y , y)

w=3∗y
y=0
pop(w)
w=w∗cos(w)

pop(w)

w=6∗w∗w2

x=2∗w∗x
w=0

w=x2

push(w)

w=2∗w3

push(w)
w=sin(w)

y=3∗w Forward Sweep

Backward sweep

subroutine F (x , x , y , y)

(c)

Figure 2.8: (a) Example of code. (b) A naive application of the adjoint mode to this
code. (c) The adjoint mode applied after running TBR analysis

To improve the efficiency of differentiated codes, there are other AD specific analyses

such as the analysis that aims to reduce the memory consumption of snapshots in the

case of checkpointing [14] or the analysis run by AD tools based on Recompute-All, that

applies slicing to shorten the repeated recomputation sequences [18]. The latter analysis,

called ERA, is the counterpart of our TBR analysis for the Recompute-All approach.

Here we concentrate mainly on Activity, Diff-liveness and TBR analyses. We show

how these analyses can be formalized and implemented on programs represented by

Flow graphs by using the so-called “data-flow equations”[55]. Regarding notation, we

write Info−(I) each time a data-flow information Info is defined immediately before an

instruction I and Info+(I) each time Info is defined immediately after the instruction

I.
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2.3.2 Activity analysis

This analysis detects from the original code the set of variables that are active. We

say that a variable v depends in a differentiable way on w when the derivative of w with

respect to v is not trivially null. Activity analysis is a combination of forward and

backward analysis. It propagates:

• forward from the beginning of the program, the set of variables that depend in a

differentiable way on some independent input. These variables are called “varied”.

• backward from the end of the program, the set of variables that influence in a

differentiable way some dependent output. These variables are called “useful”.

The variables are active when they are at the same time varied and useful.

In tangent mode, when a variable is not varied at some location in the original pro-

gram, then its derivative at this location is certainly null. Conversely, when a variable is

not useful, then its derivative does not influence the final result. Symmetrically, in the

adjoint code, when a variable is not useful at some location in the original program,

then its derivative is certainly null at this location. Conversely, when a variable is not

varied, then its derivative does not influence the final result.

In the general case of multi-procedure codes, we must avoid combinatorial explosion of

data-flow analysis in the way we have explained in section 2.3. Therefore, we must iden-

tify the summarized data-flow information that will be precomputed for each subroutine

(by a bottom-up call graph sweep) and later used during the following top-down call

graph sweep, at every occurrence of a subroutine call.

Bottom-up Activity analysis

The bottom-up analysis needed by the Activity analysis is called Diff-dependency

analysis. It determines for each output of a procedure P, the set of inputs on which it

depends in a differentiable way, noted diffDep(P). To this end, this analysis propagates

forward from the beginning of the program a matrix-like piece of information diffDep

that tells, for each variable at the current location, the subset of the input variables on

which it depends in a differentiable way. Given an instruction I, a variable v overwritten

by this instruction depends in a differentiable way on some input if it depends in a

differentiable way on some input of I, w, which depends itself in a differentiable way

on some input. If the variable v is partially overwritten as in the case of arrays it will

still depend on whatever it depended on before I. Calling I0 and I∞, respectively the

entry and exit instructions of the program and Id the identity dependence relation, the
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data-flow equations are:

diffDep+(I0) = Id

diffDep+(I) = diffDep−(I)⊗ diffDep(I)

in which the composition of diffDep objects ⊗ is defined as :

(v, input) ∈ diffDep(A)⊗ diffDep(B)⇐⇒

∃w|(v.w) ∈ diffDep(A)&(w, input) ∈ diffDep(B)

and the result of diffDep(P) is found in diffDep(I∞).

Since the Diff-dependency analysis is performed bottom-up on the call graph, the

diffDep set of each subroutine is computed after that all the subroutines possibly called

inside this subroutine have been computed.

Top-down Activity analysis

After that diffDep(P) set is synthesized for each procedure P, Activity analysis prop-

agates two data-flow sets through the program:

• The varied variables. Given an instruction I, a variable resulting from this in-

struction is considered as varied, either if it depends in a differentiable way on

some variable that is varied before I, or it was varied before I and it is not

totally overwritten by I. Formally, we write:

varied+(I) = varied−(I)⊗ diffDep(I)

• The useful variables. Given an instruction I, a variable is considered as useful

before this instruction, either if it influences in a differentiable way some variable

that is useful after I, or it was useful after I and it is not totally overwritten

by I. Formally, we write:

useful−(I) = diffDep(I)⊗ useful+(I)

In both data-flow equations, the composition ⊗ is defined as:

w ∈ S⊗ diffDep(I)⇐⇒ ∃v ∈ S|(v.w) ∈ diffDep(I)

and likewise in the opposite direction, i.e. diffDep(I)⊗ S.

When I is an assignment, diffDep(I) can be computed easily: the left-hand-side variable

depends in a differentiable way on all the right-hand-side variables except those with
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non differentiable types, e.g. integers. When the left-hand-side variable v is not totally

overwritten by I, then (v, v) is set to belong to diffDep(I). When I is a call to subroutine

P, we use the synthesized information computed for P, i.e. diffDep(P).

The final activity is the intersection of the two data-flow sets:

active−(I) = varied−(I) ∩ useful−(I)

active+(I) = varied+(I) ∩ useful+(I)

2.3.3 Diff-liveness analysis

In the differentiated code, we may find primal instructions that are useful to compute the

primal results but are not needed to compute the derivatives. Therefore, removing these

instructions from the differentiated code will not affect its desired results, which are

the derivatives. Diff-liveness analysis analyses the original program to detect which

primal variables are needed in the computation of derivatives, i.e. diffLive variables.

To avoid combinatorial explosion, we need to perform first a bottom up analysis.

Bottom-up Diff-liveness analysis

The bottom-up analysis needed by the Diff-liveness analysis is called Dependency

analysis. It detects for each procedure P any dependency (including those that are

not differentiable) between the outputs and inputs, i.e. dep(P). The main idea is to

propagate forward from the beginning of the procedure the set of variables that depend

on the inputs. Given an instruction I, a variable v overwritten by this instruction

depends on some input if it depends on some input of I, w, which depends itself on some

input. Calling respectively I0 and I∞ the entry and exit instructions of the program

and Id the identity dependence relation, the data-flow equations are:

dep+(I0) = Id

dep+(I) = dep−(I)⊗ dep(I)

in which the composition operation ⊗ is the same as the one defined in the

Diff-dependency analysis. Only the elementary dependencies through an instruction

are different. For instance, in the case of a simple assignment, the left-hand side of the

assignment depends on all the variables situated at the right-hand side of this assign-

ment. The result of dep(P) is found in dep(I∞).

Top-down Diff-liveness analysis

After that dep(P) set is synthesized for each procedure P , Diff-liveness analysis

propagates backward from the end of the program, the set of variables that are diffLive.
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Given an instruction I, a variable is diffLive before this instruction, either because it

influences a variable which is difflive after this instruction or because it is used in the

derivative instruction I′. Formally, we will write:

diffLive−(I) = use(I′) ∪ (dep(I)⊗ diffLive−(I))

When I is an assignment, dep(I) can be computed easily: the left-hand-side variable

depends on all the right-hand-side variables. When I is a call to subroutine P, we use

the synthesized information dep(P) computed for P.

For simplicity reasons, we will not detail the data-flow equations that describe use(I′).

2.3.4 TBR analysis

This analysis aims to reduce the memory consumption of the adjoint code with store-all

approach. Instead of storing the value of every variable overwritten during the forward

sweep of the adjoint code, we store only those that are needed in the computation

of derivatives. To this end, TBR analysis propagates forward from the beginning of

the program the set of variables that are required in the adjoint code, req and flags

assignments that overwrite these variables, so that their values will be recorded. After

the overwriting statement, the overwritten variable is in general removed from the req

set. Like before, to avoid combinatorial explosion we must identify a bottom-up analysis.

Bottom-up TBR analysis

TBR performs a bottom-up analysis called“ Killed analysis”. This analysis detects for

each procedure P the set of variables that have been totally ovewritten, “killed”, by this

procedure, kill(P). It propagates forward from the beginning of the procedure the set

kill of all the killed variables. Given an instruction I, a variable is killed after I if it is

totally overwritten by I or by one of the instructions preceding I. Formally, we write:

kill+(I) = kill−(I) ∪ kill(I)

Top-down TBR analysis

After kill(P) set is synthesized for each procedure P, TBR analysis propagates forward

from the beginning of the program the set of variables that are required in the compu-

tation of derivatives req. Given an instruction I, a variable v is a part of req after I if

it is used in the derivative instruction I′ or it is was a part of req before I, but it is not
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totally overwritten by I. Formally, we write:

req+(I) = (req−(I) ∪ use(I′)) \ kill(I)

When I is a call to subroutine P, we use the synthesized information computed for P, i.e.

kill(P). For simplicity reasons, we will not detail the data-flow equations that describe

use(I′).

While propagating the set of required variables, each time an individual instruction

overwrites a required variable, we flag the overwritten variable as “To Be Recorded”,

and a PUSH/POP pair will be inserted.

2.3.5 Termination issue

In all these analyses, solutions must be obtained iteratively if the call graph or the flow

graph contains cycles. Therefore, it is necessary to make sure that the Fixed-Point

resolution terminates. Abstract interpretation [12] gives the general framework for this.

The idea of the proof is that at each location in the code, the currently detected value of

the analyzed property is growing during the successive iterations of the iterative process.

Since this property value belongs to a set of possible values which is finite and forms a

lattice, the iterative process must reach a global fixed point in a finite number of steps.

2.4 Algorithmic differentiation tool: Tapenade

Tapenade [31] is an Automatic Differentiation tool developed by our research team.

Given a FORTRAN or C source program, it generates the derivatives of this program,

in tangent or adjoint mode. Tapenade has two principal objectives:

• To serve as a platform to experiment and validate refinements on the adjoint AD

mode.

• To be used on real-size applications, yet providing the benefits of the latest AD

refinements.

To meet these objectives, several design choices have been made, in particular:

• Source transformation: The main focus of our research is on the adjoint mode.

Since source transformation is the best choice for this mode, see subsection 2.2.2,

we decided to use this approach.
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• Store-All in adjoint mode: For the adjoint mode, Tapenade uses the Store-All

approach to recover intermediate values.

• Context-sensitive and Flow-sensitive Data-Flow analysis: Accurate data-

flow analyses must be context-sensitive and Flow-sensitive. Therefore, instead of

syntax trees, the internal representation is a Call graph of flow graphs.

• Source language independence: The internal representation must concentrate

on the semantics of the program and thus be independent of its particular pro-

gramming language. Therefore, the original program has to be expressed in terms

of an intermediate language, called IL for Imperative Language. IL is an abstract

language with no concrete syntax, i.e. no textual form. This language must be

rich enough to represent all imperative programming constructs, such as procedure

definition, variable declaration, procedure calls . . . , including Object Oriented con-

structs for future extension of the tool. Whenever possible, an IL operator must

represent similar constructs of different languages.

Thanks to this design choice, Tapenade is able not only to differentiate codes that

are written in C or Fortran but also codes that mix both languages [45].

• Readability: In the differentiated code, the end-user should be able to recognize

the structure of the original code. Therefore, the internal representation should

keep information that a classic compiler may discard, for instance the order of

instructions in the original code. This information is used during the generation

of the new code.

IL Tree Internal 
representation  

Data-flow info

Internal 
representation 
builder Data flow analyses

Differentiation

Fortran77 
parser

Fortran95 
parser

C parser

IL Tree Internal 
representation  

IL Tree rebuilder

Fortran77 
parser

Fortran95 
parser

C parser

Figure 2.9: General architecture of Tapenade

The architecture of Tapenade resembles that of a classical compiler, building an internal

representation of the original program and performing data-flow analyses on it, see fig-

ure 2.9. A big difference, however, is that Tapenade produces its results in the language
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of the original program instead of machine code. This imposes additional constraints to

keep some degree of resemblance between the original code and the differentiated one.

For instance, Tapenade saves the order of declarations inside the original program so

that it can regenerate these declarations in the same order in the differentiated code.

Another important difference is that the data-flow analyses performed by Tapenade have

to be global and thus no separate compilation has to be made, i.e. all the original code

has to be parsed and then analyzed jointly. Examples of data-flow analyses run by

Tapenade on the original program [3] are: Read-Written analysis, Activity analysis,

TBR analysis and Diff-liveness analysis.

2.5 Organization

The adjoint algorithms obtained through the adjoint mode of AD are probably the most

efficient way to obtain the gradient of a numerical simulation. This however needs to

use the data-flow of the original simulation in reverse order, at a cost that increases with

the length of the simulation. In the context of the AboutFlow project that has funded

this research, our industrial partners have submitted several large application codes for

which this data-flow reversal may have a prohibitive cost. The goal of this thesis is to

further study the techniques that help keep this cost acceptable. In collaboration with

the partners, two such techniques, related to the checkpointing mechanism, have been

selected.

• In chapter 3, we consider the adjoint of Fixed-Point loops, for which several au-

thors have proposed adapted adjoint strategies. Among these strategies, we select

the one introduced by B. Christianson. This method features original mechanisms

such as repeated access to the trajectory stack or duplicated differentiation of

the loop body with respect to different independent variables. We describe how

the method must be further specified to take into account the particularities of

real codes, and how data flow information can be used to automate detection of

relevant sets of variables. We describe the way we proceeded to implement this

strategy in our AD tool. Experiments on a medium-size application demonstrate

a minor, but non negligible improvement of the accuracy of the result, and more

importantly a major reduction of the memory needed to store the trajectories.

• In chapter 4, we address the question of checkpointing applied to adjoint MPI

parallel programs. On one hand we propose an extension of checkpointing in the

case of MPI parallel programs with point-to-point communications, so that the

semantics of an adjoint program is preserved for any choice of the checkpointed
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piece of code. On the other hand, we propose an alternative extension of check-

pointing, more efficient but that requires a number of restrictions on the choice of

the checkpointed piece. We try to provide proof of correctness of these strategies,

and in particular demonstrate that they cannot introduce deadlocks. Trade-offs

between the two extensions should be investigated. We propose an implementation

of these strategies inside the AMPI library. We discuss practical questions about

the choice of strategy to be applied within a checkpointed piece and the choice of

the checkpointed piece itself. At the end, we validate our theoretical results on

representative CFD codes.



Chapter 3

An efficient Adjoint of

Fixed-Point Loops

3.1 Introduction

Exploiting knowledge of the algorithm and of the structure of the given simulation code

can yield a huge performance improvement in the adjoint code. In Tapenade, special

strategies are already available for parallel loops [29], long unsteady iterative loops, etc.

We focus here on the case of Fixed-Point loops which are loops that iteratively refine a

value until it becomes stationary. We call “state” the variable that holds this value and

“parameters” the set of variables used to compute it.

As Fixed-Point algorithms start from some initial guess for the state, one intuition

is that at least the first iterations are almost meaningless. Therefore, storing them

for the adjoint computation is a waste of memory. Furthermore, Fixed-Point loops

that start with an initial guess almost equal to the final result converge only in a few

iterations. As the adjoint loop of the standard AD adjoint code runs for exactly the

same number of iterations, it may return a gradient that is not converged enough. For

these reasons we looked for a specific adjoint strategy for Fixed-Point loops. Among

the strategies documented in literature, we selected the Piggyback, Delayed Piggyback,

Blurred Piggyback, Two-Phases and Refined Two-Phases approaches. These special

adjoints manage to avoid naive inversion of the original sequence of iterations, therefore

saving the cost of data-flow reversal. The difference between these approaches is mainly

when starting the adjoint computations. Some of these approaches start adjoining since

the first iterations of the original loop, as in the case of Piggyback approach, some of

them wait until that the state becomes sufficiently converged, as in the case of Delayed

Piggyback and Blurred Piggyback and some others compute the adjoint only when

27
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the state has fully converged, as in the case of Two-Phases and refined Two-Phases

approaches. Among these strategies, we select the one we find the best suited to be

implemented in our AD tool.

In section 3.2, we examine in more detail these methods, their strengths and their weak-

nesses. We introduce also a method that combines the Black Box and Two-Phases

approaches. We call this method “Refined Black Box”. In section 3.3, we compare

between some of the special FP adjoints and we select the one that will be implemented

in our AD tool. In section 3.4, we specify further the selected method in order to take

into account particular structures that occur in real codes such as loops with multiple

exits. In section 3.5, we focus on the practical implementation of the selected adjoint

strategy. We describe how the various variables needed by the adjoint can be automat-

ically detected by using the data flow analysis of our AD tool. We describe the way

we extended the standard stack mechanism and the way we implemented the special

selected strategy in our tool Tapenade. In section 3.6 we show how checkpointing may

reduce the efficiency of the selected strategy. Finally, in section 3.7 we experiment our

implemented strategy on a real medium size code as well as a representative code that

contains nested structure of Fixed-Point loops.

3.2 Existing methods

Many equations having the form F (z∗, x) = 0 may be solved by using iterative meth-

ods [34] that satisfy some Fixed-Point equation having the form z∗ = φ(z∗, x) with x

is some fixed parameter and z∗ is an attractive Fixed Point of φ, i.e. || ∂∂zφ(z, x)|| < 1

with z is in a neighborhood of z∗. These iterative methods, called Fixed-Point (FP)

loops, initialize the state z with some value called “initial guess” z0, then iteratively call

zk+1 = φ(zk, x) until meeting some stopping criterion that expresses that z has reached

the fixed point of the function φ(z, x), i.e. z is almost equal to z∗. This fixed point is

used after that to compute some final result y = f(z∗, x). An example of FP loops is

sketched in figure 3.1 (a).

The stopping criterion of a FP loop can be written in different ways. It can test for

instance the stationarity of z, i.e. it tests if ||zk+1 − zk|| ≤ ε or it can simply check that

z is the desired solution for F (z, x), i.e. it tests if ||F (z, x)|| ≤ ε.
In general, the choice of the initial guess z0 is made in arbitrary way. However, z0 has

to be in the contraction basin of φ(z, x), i.e. z0 verifies:

||z∗ − φ(z0, x)|| < ||z∗ − z0||.
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y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

pop(intermediate variables∈φ)
zk=zk+1 .

∂
∂ z φ(z k , x)

x=zk+1 .
∂
∂ x φ(z k , x)+x

zk+1=0

Forward Sweep

Backward Sweep

zk+1=φ( zk , x)
k=k+1

Dowhile (not converged )

y=f (z∗ , x)

z∗

Dok=counter−1 ,0

zk+1=φ( zk , x)
push(intermediate variables∈φ)
k=k+1

Dowhile (not converged )

y=f (z∗ , x)
counter=k

z∗

(a) (b)

k=0

k=0

Figure 3.1: (a) An example of code containing a FP loop. (b) The Black Box approach
applied to this code

3.2.1 Black Box approach

The Black Box approach (called also the “Brute Force”) is the standard adjoint mode

applied to the FP loop in a mechanical fashion, i.e. without taking into account its

specific structure. In the Store-All approach, the Black Box adjoint consists in two

successive sweeps (see figure 3.1 (b)): A forward sweep that contains a copy of the

original loop, i.e. a loop that initiates z with some initial guess z0, then, iteratively

calls:

zk+1 = φ(zk, x)

until reaching some fixed point z∗. A backward sweep that contains another loop (called

the “adjoint loop”) that follows exactly the same number of iterations as the original

loop. The adjoint loop iteratively calls the adjoint of zk+1 = φ(zk, x), which can be

written as:

zk = zk+1.
∂

∂z
φ(zk, x)

x = zk+1.
∂

∂x
φ(zk, x) + x
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We may note that the value of x and z depend on the value of z at each iteration.

As every iteration of the FP loop overwrites the intermediate values computed at the

previous iteration, a mechanism has to be used in order to retrieve the values of z in

reverse order. In the Store-All approach, we store each intermediate value z onto a

stack during the forward sweep of the adjoint and then retrieve this value when needed

during the backward sweep, see figure 3.1 (b). The needed push and pop primitives are

provided by a separate library.

Assuming that we need n iterations to converge the original FP loop, the x returned by

the Black Box adjoint is actually equal to:

x = x0 + z0.
∂

∂x
φ(z∗, x) + z0.

∂

∂z
φ(zn−1, x).

∂

∂x
φ(zn−1, x) +

z0.[
∂

∂z
φ(zn−2, x)]2.

∂

∂x
φ(zn−2, x) + ......+ z0.[

∂

∂z
φ(z0, x)]n.

∂

∂x
φ(z0, x)

with x0 and z0 resulting from the adjoint of the function f , i.e. x0 = y. ∂∂xf(z∗, x) and

z0 = y. ∂∂zf(z∗, x).

Strengths and weaknesses:

The main advantage of this approach is its generality since it can be applied to any

structure of FP loops. Also, this approach is relatively easy to apply as it does not

require a big understanding of the mathematical background of a given code.

However, this approach is memory costly, i.e. it saves the intermediate values of z at

every iteration of the FP loop. Moreover, this approach does not take into account the

convergence of the adjoint. The adjoint follows exactly the same number of iterations as

the original loop. It was shown in [20] that whenever the original FP loop converges, its

adjoint with the Black Box approach will converge as well. However, the convergence of

the derivatives will not reach the same tolerance as the one of the original values. In the

case where the original loop needs only a few iterations to converge, for instance when

the initial guess of the original loop is very close to the final solution, the adjoint loop

may return derivatives that are not well converged.

This approach is not efficient (in terms of time and memory) in the case of FP loops

with superlinear convergence, e.g. Newton, since the adjoint of these loops amounts to

solution of a single linear system [43].

3.2.2 Piggyback approach

Unlike the Black Box method, the Piggyback approach developed by Griewank [23, 24]

observes that the adjoint loop needs not follow exactly the same number of iterations as
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the original loop. The adjoint can be a fixed-point loop itself with its own initial guess

as well as its own stopping criterion.

Let us consider the system:

w∗ = F (z∗(x), x) = 0 (3.1)

y = f(z∗(x), x) (3.2)

in which, x represents the parameters of this system and y is the desired solution.

Tangent and Adjoint Sensitivity Equations:

Applying the chain rule to this system gives us the Jacobian dy
dx which can be expressed

as:

dy

dx
=

∂

∂x
f(z∗, x)− ∂

∂z
f(z∗, x).

∂

∂z
F (z∗, x)−1.

∂

∂x
F (z∗, x) (3.3)

It is too expensive to compute the whole Jacobian. Therefore, in practice we compute

rather one of these two projections:

dy

dx
.ẋ or y.

dy

dx

where ẋ is a vector and y is a row-vector. These projections are computed by the

so-called tangent and adjoint modes of AD, see chapter 2.

The tangent mode computes ẏ = dy
dx .ẋ. Recalling equation 3.3 we obtain:

ẏ =
∂

∂x
f(z∗, x).ẋ− ∂

∂z
f(z∗, x).

∂

∂z
F (z∗, x)−1.

∂

∂x
F (z∗, x).ẋ

The tangent code of the Black Box approach evaluates this equation from right to left.

First, this code computes an intermediate value ż∗ so that:

ż∗ = − ∂

∂z
F (z∗, x)−1.

∂

∂x
F (z∗, x).ẋ (3.4)

Then, it uses the value of ż∗ to compute ẏ, i.e.

ẏ =
∂

∂x
f(z∗, x).ẋ+

∂

∂z
f(z∗, x).ż∗
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Equation 3.4 can also be written as:

Ḟ (z∗, x, ż∗, ẋ) = ẇ∗ =
∂

∂z
F (z∗, x).ż∗ +

∂

∂x
F (z∗, x).ẋ = 0 (3.5)

This equation is called the tangent sensitivity equation.

Symmetrically, the adjoint mode computes x = y. dydx . Recalling equation 3.3 we obtain:

x = y.
∂

∂x
f(z∗, x)− y. ∂

∂z
f(z∗, x).

∂

∂z
F (z∗, x)−1.

∂

∂x
F (z∗, x)

The adjoint code of the Black Box approach evaluates this equation from left to right.

First, this code computes an intermediate value w∗ so that:

w∗ = −y. ∂
∂z
f(z∗, x).

∂

∂z
F (z∗, x)−1 (3.6)

Then, it uses the value of w∗ to compute x, i.e.

x = y.
∂

∂x
f(z∗, x) + w∗.

∂

∂x
F (z∗, x) (3.7)

Equation 3.6 can also be written as:

F (z∗, x, w∗, y) = z∗ = w∗.
∂

∂z
F (z∗, x) + y.

∂

∂z
f(z∗, x) = 0 (3.8)

This equation is called the adjoint sensitivity equation.

Piggyback approach:

Griewank observes that the majority of FP loops that solve the equation 3.1 satisfy a

FP equation of the form:

z∗ = z∗ − Pk.F (z∗, x)

where Pk is some preconditioner that approximates the inverse of the Jacobian F ′(zk, x)

and that verifies ||I − Pk.
∂
∂zF (z∗, x)|| ≤ ρ0 < 1. The closer the preconditioner is to

F ′(zk, x)−1, the more the Fixed-Point equation resembles to Newton’s method with

its excellent local convergence properties, i.e. Newton’s method is known to have a

quadratic convergence to the solution z∗. In the following we assume that for all argu-

ments (z, x) in some neighborhood of (z∗, x) we have :

||I − Pk.
∂

∂z
F (z, x)|| ≤ ρ0 < 1
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Griewank observes also that ||F (zk, x)|| is equivalent to the norm of the solution error

||zk − z∗||. Therefore, a good stopping criterion for the FP loop will check at each

iteration if ||F (zk, x)|| is sufficiently close to zero. In practice, the stopping criterion will

test if ||F (zk,x)||
||F (z0,x)|| ≤ ε.

Applying the tangent mode of the Black Box approach to the FP loop leads to a loop

that iteratively calls:

zk+1 = zk − Pk.F(zk, x)

żk+1 = żk − Pk.Ḟ(zk, x,żk, ẋ)− Ṗk.F(zk, x)

until convergence of ||F (zk, x)|| to zero.

Let us define φ̇ as a function that satisfies for all (zk, x) in some neighborhood of (z∗, x),

the equation φ̇(zk, x, żk, ẋ) = żk − Pk.Ḟ (zk, x, żk, ẋ) − Ṗk.F (zk, x). We denote ż∗ the

fixed point of the function φ̇, so that ż∗ = φ̇(zk, x, ż∗, ẋ).

We compute the derivative of φ̇ with respect to ż at the fixed point ż∗ with the arguments

(z, x) in some neighborhood of (z∗, x). We obtain:

d

dż
φ̇(z, x, ż∗, ẋ) = I − Pk.

d

dż
Ḟ (z, x, ż∗, ẋ) = I − Pk.

∂

∂z
F (z, x)

As || ddż φ̇(z, x, ż∗, ẋ)|| = ||I − Pk.
∂
∂zF (z, x)|| ≤ ρ0 < 1, ż∗ is an attractive fixed point

of the function φ̇. Consequently, the equation ż∗ = φ̇(zk, x, ż∗, ẋ) may be solved by an

iterative method that repeatedly calls :

żk+1 = żk − Pk.Ḟ(zk, x,żk, ẋ)− Ṗk.F(zk, x) (3.9)

until that ż reaches the fixed point ż∗.

As the tangent loop already calls 3.9 repeatedly, it suffices to change the stopping cri-

terion of the tangent loop to express the convergence of not only ||F (zk, x)|| but also

||Ḟ (zk, x)||.
For simplicity, we choose to omit from the instruction 3.9 the term Ṗk.F(zk, x) as it

disappears gradually as F (zk, x) converges to zero. Hence, the tangent derivatives are

computed now by a FP loop, we call it tangent loop, that iteratively calls:

zk+1 = zk − Pk.F(zk, x)

żk+1 = żk − Pk.Ḟ(zk, x,żk, ẋ)

until convergence of both ||F (zk, x)|| and ||Ḟ (zk, x, żk, ẋ)|| to zero.
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The objective of the tangent loop is to compute the tangent sensitivity equation 3.5.

Symmetrically, the objective of the adjoint FP loop is to compute the adjoint sensitivity

equation 3.8. Transposing the adjoint equation, we obtain:

F (z∗, x, w∗, y)T = zT∗ =
∂

∂z
F (z∗, x)T .wT

∗ +
∂

∂z
f(z∗, x).yT (3.10)

The transposed Jacobian ∂
∂zF (z∗, x)T has the same size, spectrum, and sparsity charac-

teristics as ∂
∂zF (z∗, x) itself. Hence, solving the adjoint sensitivity equation 3.10 is almost

equivalent to solving the tangent sensitivity equation 3.5. Furthermore, the square ma-

trices I − Pk.
∂
∂zF (z, x) and I − P T

k .
∂
∂zF (z, x)T have the same spectrum, thus, for all

arguments (z, x) in some neighborhood of (z∗, x) we have :

ρ(I − P T
k .

∂

∂z
F (z, x)T ) ≤ ||I − Pk.

∂

∂z
F (z, x)|| ≤ ρ0 < 1

where ρ is the spectrum radius.

wk=F (zk , x)
zk+1=zk−Pk .wk

k=k+1

Dowhile (||wk||>ϵ)

y=f (z∗ , x)

(a) (b)

wk=F (zk , x)
yk=f (zk , x)
zk=wk .

∂
∂ z F ( zk , x)+ yk .

∂
∂ z f (zk , x)

zk+1=zk−Pk .wk

wk+1=wk−zk . Pk

k=k+1

Dowhile (||wk||>ϵ)∨(||zk||)>ϵ

y=f (z∗ , x)
x=w∗ . ∂∂ x F ( z∗ , x)+ y . ∂∂ x f ( z∗ , x)

k=0 k=0

Figure 3.2: (a) An example of code containing a FP loop. (b) The Piggyback approach
applied to this code

Therefore, by analogy with what has been done in the tangent, we may compute the

adjoint derivatives by using a FP loop that iteratively calls:

zk+1 = zk − Pk.F(zk, x)

wTk+1 = wTk − PTk.F(zk, x,wk, y)T

where F(zk, x,wk, y)T = ∂
∂zF(zk, x)T.wTk + ∂

∂zf(zk, x).yT until meeting some stopping crite-

rion that expresses the convergence of both ||F (zk, x)|| and ||F (zk, x, wk, y)T || to zero.

Then, we use the converged value of w, w∗, to compute x by solving equation 3.7.
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It was proven in [24] that the convergence rate of the adjoint FP loop is similar to the

convergence rate of the FP loop itself. However, since Piggyback is computed by using

values of z that are still not converged, the adjoint may require a few more iterations

than the original FP loop.

Figure 3.2 shows an application of the Piggyback approach to a FP loop that satisfies

a FP equation of the form zk+1 = zk − Pk.F (zk, x). One may observe that the sequel

of the FP loop f as well as its adjoint are computed inside the adjoint FP loop. Also,

as the adjoint vectors wk are computed in the same order as the original values, saving

the values of z (and also the values of intermediate variables used to compute z) at each

iteration is not needed any more.

Stopping criterion:

As the adjoint values are computed in the same order as the original ones, the induced

norm used in the test of convergence of the adjoint values is the same as the one used

to test the convergence of the original values.

Griewank observes that ||F (z, x)|| is equivalent to the norm of the solution error ||z−z∗||.
Therefore, a good stopping criterion for the FP loop will check at each iteration the

convergence of ||F (z, x)|| to zero. Similarly, ||F (z, x, w, y)T ||+ ||F (z, x)|| is equivalent to

the norm of the solution error ||wT − wT
∗ ||. Consequently, a good stopping criterion for

the adjoint FP loop will check at each iteration the convergence of both ||F (z, x, w, y)T ||
and ||F (z, x)|| to zero.

Strengths and weaknesses:

The main advantage of Piggyback method is its efficiency in terms of memory consump-

tion, i.e. it does not require the storage of z at each iteration of the FP loop as it is the

case of the Black Box adjoint.

Also, the adjoint of the FP loop is a FP loop that takes into account the convergence

of the adjoint values. In the case where the original values need only a few iterations to

converge, e.g. when they start from a good initial guess, the adjoint loop will perform

extra iterations to converge the adjoint values.

Another advantage is the fact that the derivative of φ with respect to the parameters x

is calculated only once outside the adjoint loop which may reduce the computation time

of the adjoint derivatives.

Since Piggyback computes the gradients in the same order as the original values, the

resulting adjoint can be implemented as a parallel program, see subsection 3.2.4. There-

fore, Piggyback can also be very efficient in terms of time.

As weaknesses of this approach, the stopping criterion of Piggyback combines the test of

convergence of the original values with that of the adjoint values. Consequently, neither



Chapter 2. Efficient Adjoint of Fixed-Point Loops 36

the original values, nor the adjoint ones can take advantage from the fact that they may

have a good initial guess. For instance, if the original values have an initial guess almost

equal to the final solution and therefore they need only a few iterations to converge, the

adjoint loop will perform extra iterations to converge the adjoint values. During these

extra iterations, the adjoint loop will continue to compute the original values which may

be considered as waste of execution time. Symmetrically, even if the adjoint values start

from a good initial guess, the adjoint loop will iterate as the original values are not yet

converged.

Piggyback makes an assumption on the shape of the FP loop, i.e. it requires that the

original loop satisfies the FP equation of the form zk+1 = zk − Pk.F (zk, x).

Also, it changes the two sweeps structure of the Black Box approach which makes the

implementation of this method delicate inside an AD tool.

As the gradients are computed in the same order as the original values, this method

needs to compute the sequel of the FP loop f as well as its adjoint inside the adjoint

FP loop which may have a significant cost when the sequel is complex or when the FP

loops are nested.

Also, one of the weaknesses of Piggyback approach is that it starts adjoining very early,

i.e. it computes the adjoint by using the first computed values of the state z. This

makes sometimes the adjoint diverge during the first iterations of the adjoint loop. We

call this the “adjoint lag effect” of the Piggyback approach. We discuss this further in

subsection 3.3.2.

3.2.3 Delayed Piggyback approach

Delayed Piggyback [25] approach is a refinement of Piggyback seen in subsection 3.2.2.

It consists in applying Piggyback after that the original FP loop has been “sufficiently”

converged to the solution z∗. Actually, it is not very beneficial to compute the adjoint

as long as the values of z are still far from any particular solution. The very early

values of the z may sometimes make the adjoint diverge, see subsection 3.3.2. Thus, it

makes sense to wait for the original values z to gain some stationarity, before actually

computing the derivatives values.

Algorithmically, Delayed Piggyback consists in two sweeps (see figure 3.3) . The first

one copies the original loop with a small modification on the stopping criterion, i.e. it

expresses that the values of z have “sufficiently” converged. Then, the second sweep

applies the Piggyback method.

Stopping criterion:
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wk=F (zk , x)
zk+1=zk−Pk .wk

k=k+1

Dowhile (||wk||>ϵ)

y=f (z∗ , x)

(a) (b)

wk=F (zk , x)
zk+1=zk−Pk .wk

k=k+1

Dowhile (||wk||is not sufficiently converged)

wk=F (zk , x)
yk=f (zk , x)
zk=wk .

∂
∂ z F ( zk , x)+ yk .

∂
∂ z f (zk , x)

zk+1=zk−Pk .wk

wk+1=wk−zk . Pk

k=k+1

Dowhile (||wk||>ϵ)∨(||zk||>ϵ)

y=f (z∗ , x)
x=w∗ . ∂∂ x F (z∗ , x)+ y . ∂∂ x f ( z∗ , x)

k=0

k=0

Figure 3.3: (a) An example of code containing a FP loop. (b) The Delayed Piggyback
approach applied to this code

The stopping criterion of the first loop has to express that the values of z have “suffi-

ciently” converged. To do so, one may use for instance the same stopping criterion as

the original loop with a small modification on the value of ε, i.e. we use a new ε that

is greater than the one of the original loop. Since, the second loop applies Piggyback,

its stopping criterion checks at each iteration if ||F (z, x, w, y)T || and ||F (z, x)|| have

converged to zero.

Strengths and weaknesses:

Delayed Piggyback has the same strengths and weaknesses as non-refined Piggyback.

Since this approach computes the adjoint by using only values of the state that are

sufficiently close to the solution, this will on one hand reduce the computation time of

the adjoint derivatives and on the other hand reduce the adjoint lag effect in the first

iterations (this will be described further in subsection 3.3.2).

3.2.4 Blurred Piggyback approach

Blurred Piggyback, originally proposed by T.Bosse [4], is another refinement of the Pig-

gyback approach seen in subsection 3.2.2. This approach is mostly used in One-shot
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optimization methods, where at each step of the iterative process, we converge the for-

ward and reverse solutions and also adjust the design parameters. We saw in Piggyback

that the adjoint values are computed in the same order as the original values. Since the

adjoint values do not depend on the original values of the same iteration, i.e. they de-

pend only on the original values of the previous iteration, one may implement the adjoint

as a parallel program, i.e. runs two processes : one computes the original values (we

call it “original process”) and the other computes the adjoint values (we call it “adjoint

process”) . At the end of each iteration of the adjoint loop, the original process sends

the computed original values to the adjoint process. In general the adjoint values require

more computation time than the original ones. Therefore, at the end of each iteration,

the original process has to wait for the adjoint process to receive the original value that

have been sent before actually starting the computations of the next iteration.

To reduce further the computation time, Blurred Piggyback proposes to run the two

processes in an asynchronous way (see figure 3.4). Instead of waiting for the adjoint

process, the original process saves the computed values of the current iteration in some

temporary storage and then starts the computations of the next iteration. The tempo-

rary storage holds each time the last computed values, i.e. at the end of each iteration,

the values of the temporary storage are ovewritten by the new computed original ones.

From its side, the adjoint process uses the values of the temporary storage to compute

the derivatives.

wk=F (zk , x)
zk+1=zk−Pk .wk

k=k+1

Dowhile (z not converged )

y=f (z∗ , x)

(a)

Process0:
z=zupdated

w=F (z , x)
zupdated=z−P .w=ϕ(z , x)
store (zupdated+intermediate variables∈ϕ)

Process1:
restore (zupdated+intermediate variables∈ϕ)

z=w . ∂∂ z F (zupdated , x)+ y . ∂∂ z f (zupdated , x)
w=w−z . P

Dowhile (z∧wnot converged)

Process0 :
y=f (z∗ , x)

Process1:
x=w∗ . ∂

∂ x F (z∗ , x)+ y . ∂
∂ x f ( z∗ , x)

(b)

k=0

Figure 3.4: (a) An example of code containing a FP loop. (b) The Blurred Piggyback
approach applied to this code

Stopping criterion
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This approach is a refinement of Piggyback. Therefore, we have the same stopping

criterion as in the case of Piggyback adjoint, i.e. the stopping criterion checks at each

iteration if ||F (z, x, w, y)T || and ||F (z, x)|| have converged to zero.

Strengths and weaknesses:

Blurred Piggyback has the same strengths and weaknesses as the Piggyback approach.

This approach is more efficient in terms of time than Piggyback. Actually, the adjoint

and original process are run in asynchronous way. Furthermore, the adjoint values are

computed always by using the last computed original values which may accelerate the

convergence of the adjoint loop.

However, similarly to Piggyback this approach is hard to implement inside an AD tool.

In fact, this approach requires that the adjoint be implemented as a parallel program.

This can be fine when the original loop is a parallel program itself. However, when the

original loop is a sequential program, implementing the blurred piggyback requires in

addition a parallelization of the original program.

3.2.5 Two-Phases approach

The “Two Phases” method is a special adjoint for the FP loops developed by B. Chris-

tianson in [10, 11]. Unlike the Black Box approach, the adjoint loop does not follow the

same number of iterations as the original one. Actually, the adjoint is FP loop itself

that has its its own initial guess as well as its own stopping criterion. This method is

implemented for instance in the AD tool ADOL-C [50].

Let us consider the FP system

z∗(x) = φ(z∗(x), x) (3.11)

y = f(z∗(x), x) (3.12)

where x represents the parameters and y is the desired solution. Applying the chain rule

of differentiation to the total derivative of the objective y with respect to parameters x

gives:

dy

dx
=

∂

∂z
f(z∗, x).

dz∗
dx

+
∂

∂x
f(z∗, x) (3.13)
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The objective of the adjoint is to compute the projection of the Jacobian dy
dx through

the adjoint vector y, i.e. we want to compute the following x:

x = y.
dy

dx
= y.

∂

∂z
f(z∗, x).

dz∗
dx

+ y
∂

∂x
f(z∗, x) (3.14)

Defining z0 = y. ∂∂zf(z∗, x) and x0 = y. ∂∂xf(z∗, x), equation 3.14 rewrites as:

x = x0 + z0.
dz∗
dx

(3.15)

Applying the chain rule of differentiation to the total derivative of z∗ with respect to

parameters x gives:

dz∗
dx

=
∂

∂z
φ(z∗, x).

dz∗
dx

+
∂

∂x
φ(z∗, x).

This can be solved for dz∗
dx , giving:

dz∗
dx

= (I − ∂

∂z
φ(z∗, x))−1.

∂

∂x
φ(z∗, x)

The multiplication of the row vector z0 by the Jacobian dz∗
dx gives :

z0.
dz∗
dx

= z0.(I −
∂

∂z
φ(z∗, x))−1.

∂

∂x
φ(z∗, x)

As || ∂∂zφ(z∗, x)|| < 1, we may apply Taylor series, leading to:

z0.
dz∗
dx

= z0.(I +
∂

∂z
φ(z∗, x) + [

∂

∂z
φ(z∗, x)]2 + [

∂

∂z
φ(z∗, x)]3 + ....).

∂

∂x
φ(z∗, x) (3.16)

This equation rewrites as:

z0.
dz∗
dx

= w∗.
∂

∂x
φ(z∗, x), (3.17)

where w∗ is the fixed point of an iterative method that satisfies the FP equation:

w∗ = z0 + w∗.
∂

∂z
φ(z∗, x).

It was shown in [10], that the rate of convergence of w to the solution w∗ is equal to the

asymptotic rate of convergence of z to the solution z∗ .

Recalling equation 3.17, x may be written as :

x = x0 + (z0 + z0.
∂

∂z
φ(z∗, x) + z0.[

∂

∂z
φ(z∗, x)]2 + ...

+ z0[
∂

∂z
φ(z∗, x)]nAdj).

∂

∂x
φ(z∗, x)

(3.18)
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where nAdj is the number of iterations needed to converge w, i.e. w reaches w∗. We

note here that the initial guess of the iterative method w0 is chosen so that it holds the

value of z resulting from adjoining the function f , i.e. w0 = z0.

To compute x, Christianson proposes modifications on the adjoint generated by the

Black Box approach. We saw in subsection 3.2.1, that at the end of the adjoint FP loop

resulting from the Black Box approach, x may be written as:

x = x0 + z0.
∂

∂x
φ(z∗, x) + z0.

∂

∂z
φ(zn−1, x).

∂

∂x
φ(zn−1, x)+

z0.[
∂

∂z
φ(zn−2, x)]2.

∂

∂x
φ(zn−2, x) + ...+ z0.[

∂

∂z
φ(z0, x)]n.

∂

∂x
φ(z0, x)

(3.19)

where n is the number of iterations needed to converge the original FP loop, i.e. the FP

loop converges when z reaches z∗. The row-vectors x0 and z0 result from the adjoint of

the downstream computation f .

If we replace zk by z∗ in equation 3.19, we obtain:

x = x0 + z0.
∂

∂x
φ(z∗, x) + z0.

∂

∂z
φ(z∗, x).

∂

∂x
φ(z∗, x) +

z0.[
∂

∂z
φ(z∗, x)]2.

∂

∂x
φ(z∗, x) + ...+ z0.[

∂

∂z
φ(z∗, x)]n.

∂

∂x
φ(z∗, x)

Rearranging the equation, we obtain:

x = x0 + (z0 + z0.
∂

∂z
φ(z∗, x) + z0.[

∂

∂z
φ(z∗, x)]2 + ...

+ z0.[
∂

∂z
φ(z∗, x)]n).

∂

∂x
φ(z∗, x)

(3.20)

We see that if we change n by nAdj in equation 3.20, this equation becomes equation 3.18.

This means that if we change the adjoint FP loop of the Black Box approach, so that

it computes the gradients using the converged values of z, i.e. z∗ and also it iterates as

many times as needed to converge w, then the adjoint FP loop becomes a FP loop itself.

To this end, we compute first w inside the adjoint FP loop. Then, we change the stopping

criterion of the adjoint, so that, instead of following the same number of iterations as

the original FP loop, it expresses rather the convergence of w to the solution w∗. To

optimize the adjoint code, we omit the computation of z as its value is almost equal to

zero at the final iterations of the adjoint. Consequently, x will be computed by using

the values of w at each iteration of the adjoint loop. At the end, the adjoint FP loop

becomes a loop that initiates w with some initial guess, e.g. z0 and then iteratively calls:

wk+1 = z0 + wk.
∂

∂z
φ(z∗, x)

x = x0 + wk+1.
∂

∂x
φ(z∗, x)
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z∗= y . ∂
∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

x0=x ; z0=z∗; w0=z∗;w1=w0+1 ; k=0

z∗=φ(z∗ , x)
store (intermediate variables∈φ)

restore(intermediate variables∈φ)
wk+1=wk . ∂

∂ z φ(z∗ , x)+ z0

x=wk . ∂
∂ x φ(z∗ , x)+x0

k=k+1

w∗

Forward Sweep

Backward Sweep

zk+1=φ( zk , x)

k=k+1

Do while (||zk+1−zk||>ϵ)

z∗

y=f (z∗ , x)

Do while (||wk−wk+1||adj>||z0||adj .ϵ)

zk+1=φ( zk , x)

k=k+1

Do while (∣∣zk+1−zk∣∣>ϵ)

y=f (z∗ , x)

z∗

(a) (b)

k=0

k=0

Figure 3.5: (a) An example of code containing a FP loop. (b) The Two-Phases
approach applied to this code

until convergence of w, i.e. w reaches w∗.

Figure 3.5 shows an application of the Two-Phases approach to a FP loop. We see that

the values of intermediate variables are saved only once during the last iteration of the

original FP loop. Then, these values are restored many times during the iterations of

the adjoint FP loop.

Stopping criterion and initial guess

We note by ||..||adj the norm of the adjoint vectors. As the adjoint vectors are essentially

row vectors, we may write : ||A||adj = ||AT ||, where A is a row vector and AT is the

transpose of A. Consequently, when we use the 1−norm in the stopping criterion of the

original loop, we have to use the∞−norm in the stopping criterion of the adjoint loop.

Symmetrically, when we use the ∞− norm in in the stopping criterion of the original

loop, we have to use the 1− norm in the stopping criterion of the adjoint loop. In the

case of Euclidean norm, the norm used in the stopping criterion of the adjoint is the

same as the one used in the stopping criterion of the original loop, i.e. ||A||2 = ||AT ||2.

In the light of error analysis, B. Christianson observes that if the desired accuracy is

that ||x∗ − x|| < ξ.||z0|| with ξ < 1, then, the stopping criterion of the FP loop has to
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check at each iteration if ||zk+1 − zk|| ≤ ε and the stopping criterion of the adjoint FP

loop has to check at each iteration if ||wk − wk+1|| ≤ ||z0||.ε with ε and ε are computed

by using the value of ξ and estimations of the value of ρ and few other constants.

B.Christianson observes that z0 is a good initial guess for the adjoint FP loop, i.e. setting

w0 = z0 may reduce the number of iterations needed to converge the adjoint values.

Strengths and weaknesses:

The main advantage of Two-Phases is its efficiency in terms of memory, i.e. it saves

intermediate values of z of the last iteration only. Also, this method is general, i.e. it

does not make assumptions on the structure of the FP loop. Furthermore, the adjoint of

the FP loop is a FP loop that takes into account the convergence of the adjoint values.

This method guarantees that whenever the original FP loop converges to the correct

value, the adjoint FP loop will converge to the correct value too. In the case where the

original values need only a few iterations to converge, e.g. when they start from a good

initial guess, the adjoint loop will still perform enough iterations to converge the adjoint

values. Symmetrically, when the adjoint needs only few iterations to converge e.g. in

the case of Newton method the adjoint needs only one iteration, the adjoint loop will

perform only the needed iterations.

From a practical point of view, this method is relatively easy to implement, i.e. it

requires only a few modifications on the adjoint generated by the Black Box approach.

As weaknesses, this method computes the value of x inside the adjoint loop which

may slow down the computation time of derivatives. Also, this method can not be

implemented as a parallel program.

3.2.6 Refined Two-Phases approach

The refined Two-Phases approach [10], as the name says, is a refinement of the Two-

Phases approach. This method is implemented for instance in the AD tools TAF [17, 19]

and OpenAD [21]. We saw in subsection 3.2.5 that the adjoint resulting from the Two-

Phases approach initiates w with some initial guess and then iteratively calls:

wk+1 = z0 + wk.
∂

∂z
φ(z∗, x)

x = x0 + wk+1.
∂

∂x
φ(z∗, x)

until convergence of w, i.e. w reaches w∗.

One can observe that at each iteration of the adjoint FP loop, x does not use the values

of x computed at previous iterations. Therefore, it is common wisdom to place the

computation of x outside the adjoint loop so that x uses only the converged value of w,
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w∗. Figure 3.6 shows an application of the Refined Two-Phases approach to a FP loop.

We notice here that the function φ(z, x) is differentiated twice: once with respect to the

state z inside the adjoint FP loop and once with respect to parameters x outside the

adjoint FP loop.

z∗=φ(z∗ , x)
store(intermediate variables∈φ)

restore(intermediate variables∈φ)
wk+1=wk . ∂

∂ z φ(z∗ , x)+ z0

k=k+1

restore(intermediate variables∈φ)
x=w∗ . ∂

∂ x φ(z∗ , x)+x

w∗

Forward Sweep

Backward Sweep

zk+1=φ( zk , x)

k=k+1

Do while (∣∣zk+1−zk∣∣>ϵ)

z∗

y=f (z∗ , x)
zk+1=φ( zk , x)

k=k+1

Do while (∣∣zk+1−zk∣∣>ϵ)

y=f (z∗ , x)

z∗

(a) (b)

y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z0=z∗;w0=z∗; w1=w0+1 ; k=0

Do while (||wk−wk+1||adj>||z0||adj .ϵ)

k=0

k=0

Figure 3.6: (a) An example of code containing a FP loop. (b) The Refined Two-
Phases approach applied to this code

Stopping criterion:

We use here the same stopping criterion as in the case of non-refined Two-Phases ap-

proach, i.e. the stopping criterion checks at each iteration if ||wk−wk+1|| ≤ ||z0||.ε with

ε and ε are computed by using the value of ξ and estimations of the value of ρ and few

other constants.

Strengths and weaknesses:

The refined Two-Phases has not only the strengths of the Two-Phases approach but also

the fact that the derivative of φ with respect to parameters x is computed only once

outside the adjoint FP loop. This may reduce, consequently, the execution time of the

adjoint.
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However, to apply the refined Two-Phases method, one has to differentiate φ twice,

once with respect to the state z inside the adjoint FP loop and once with respect to

parameters x outside the adjoint loop. As the majority of AD tools can only perform

the differentiation of φ with respect to all its independent variables at the same time,

i.e. they can only generate a code that computes the derivative of φ with respect to z

and x, one can either:

• use an AD tool to differentiate φ with respect to z and x and then split by hand

the derivative of φ with respect to z from the derivative of φ with respect to x.

• use an AD tool to differentiate φ with respect to z and x and then set x to

zero before ∂
∂zφ(z∗, x); ∂

∂xφ(z∗, x) during all the adjoint FP loop iterations except

the last iteration. This guarantees that x will be computed only during the last

iteration of the adjoint. This method is used for instance by the AD tool TAF [17].

• call the AD tool twice: once by specifying that the independents are z and the

dependents are z, for ∂
∂zφ(z∗, x), and another time by specifying that the indepen-

dents are x and the dependents are z, for ∂
∂xφ(z∗, x).

• improve the AD tool so that it differentiates φ in two different contexts on the

same adjoint code.

3.2.7 Refined Black Box approach

We may imagine a method that combines the simplicity of the Black Box approach,

seen in subsection 3.2.1 and the memory efficiency of the Two-Phases approach, seen

in subsection 3.2.5. We call this method Refined Black Box. Although we didn’t find

references that define such a method in literature, we think that it might be interesting

to look closely at this method and discover its advantages as well its weaknesses.

We saw in subsection 3.2.1 that the Black Box approach consists of two sweeps. The first

one copies the original FP loop with saving the values of the state z (and the values of

intermediate variables used to compute z) at each iteration. The second sweep contains

the adjoint loop that computes the adjoint values by using the values of z (and the values

of intermediate variables used to compute z) already stored. As the first iterations of

the FP loop are meaningless for the adjoint, saving their intermediate values can be

considered as a waste of memory. Along the lines of the Two-Phases approach, we may

refine the Black Box approach by saving intermediate values of the last iteration only.

Then, these values are read repeatedly by the adjoint loop.

The adjoint loop is thus a loop that follows exactly the same number of iterations as
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the original FP loop and that iteratively calls:

zk = zk+1.
∂

∂z
φ(zk, x)

x = zk+1.
∂

∂x
φ(zk, x) + x

Figure 3.7 shows the application of the Refined Black Box approach to a FP loop. The

forward sweep consists of a copy of the original loop followed by one extra iteration in

which the intermediate values are stored. The backward sweep is a loop that follows

the same number of iterations as the original one and that uses the stored intermediate

values to compute the derivatives.

y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z∗=φ(z∗ , x)
store (intermediate variables∈φ)

restore(intermediate variables∈φ)
zk=zk+1 .

∂
∂ z φ(z∗ , x)

x=zk+1 .
∂
∂ x φ(z∗ , x)+x

zk+1=0

Forward Sweep

Backward Sweep

zk+1=φ( zk , x)
k=k+1

Dowhile (not converged )

z∗

y=f (z∗ , x)
counter=k+1

Dok=counter−1 ,0

zk+1=φ( zk , x)
k=k+1

Dowhile (not converged )

y=f (z∗ , x)

z∗

(a) (b)

k=0

k=0

Figure 3.7: (a) An example of code containing a FP loop. (b) The Refined Black Box
approach applied to this code

Mathematically, the resulting x may be written as :

x = x0 + (z0 + z0.
∂

∂z
φ(z∗, x) + z0.[

∂

∂z
φ(z∗, x)]2 + ...+ z0.[

∂

∂z
φ(z∗, x)]n).

∂

∂x
φ(z∗, x)

where n is the number of iterations of the original FP loop.
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Assuming that the adjoint loop needs nAdj iterations to converge to the same tolerance

as the original loop. Refined Black Box approach returns a well converged z only when

nAdj ≤ n. In the opposite case, this method returns a non-converged z. In any case,

since the adjoint is based on the converged values of the state, we expect that the adjoint

resulting from the refined Black Box needs fewer iterations to converge to the correct

solution than in the case of the non-refined Black Box.

Strengths and weaknesses:

The main advantage of this approach is its efficiency in terms of memory, i.e. it saves

the intermediate values of z only once. This approach has also the advantages of the

Black Box approach such as the generality, i.e. it can be applied on any structure of

FP loops, and the simplicity, i.e. it requires a minimal effort from the user. It is also

relatively easy to implement inside an AD tool, i.e. it requires only a small modification

in the stack mechanism.

However, similarly to the Black Box approach, this method does not take into account the

convergence of the adjoint values which is dangerous in the cases where nAdj > n. Also,

this method computes x inside the adjoint loop which may slow down the computation

time of the derivatives.

3.3 Selecting the method to implement

In this subsection, we focus on the refined versions of the Black Box, Piggyback and

Two-Phases approaches. We compare between some of these refined approaches and we

select the one we find the best suited to be implemented in our AD tool.

3.3.1 Comparison between the Refined Black Box and Refined Two-

Phases approaches

We saw in subsection 3.2.7, that the adjoint of the Refined Black box approach imple-

ments the equation:

x = x0 + (z0 + z0.
∂

∂z
φ(z∗, x) + z0.[

∂

∂z
φ(z∗, x)]2 + ...+ z0.[

∂

∂z
φ(z∗, x))]n.

∂

∂x
φ(z∗, x)

where n is the number of iterations of the original FP loop. From the other side, we

saw in subsection 3.2.6 that when the initial guess is z0, the adjoint of the Refined Two

Phases approach implements this equation:

x = x0 + (z0 + z0.
∂

∂z
φ(z∗, x) + z0.[

∂

∂z
φ(z∗, x)]2 + ...+ z0.[

∂

∂z
φ(z∗, x)]nAdj).

∂

∂x
φ(z∗, x)
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where nAdj is the number of iterations needed to converge the adjoint values. One may

observe that the two equations are similar and that the only difference is the number of

iterations of the adjoint loop. This means that along the iterations, the adjoint resulting

from the Refined Black Box approach gives exactly the same value of x as the adjoint

resulting from the Refined Two Phases approach. Furthermore, the adjoint loop of the

Refined Two Phases approach has the same convergence rate as the original FP loop.

This means that in the majority of cases, the adjoint loop of the Refined Two Phases

approach has the same number of iterations as the original loop and therefore the same

number of iterations as the adjoint of the Refined Black Box approach. Consequently,

in the majority of cases we have n = nAdj.

Thus, one may wonder: if the two approaches give exactly the same value of x at each

iteration and also there is a very high probability that the two approaches give also

exactly the same final result x, i.e. n = nAdj in the majority of cases, why do we need

to apply the Refined Two Phases method especially that this approach requires specific

modifications on the adjoint of the non-refined Black Box approach ?

We think that the main advantage of the Refined Two-Phases approach is that it protects

the adjoint from the cases where the adjoint loop needs more iterations than the original

loop, i.e. when nAdj > n. Also in the Refined Two Phases approach, we are able to

define a good initial guess for the adjoint loop which may reduce its number of iterations.

Finally, in the Refined Two-Phases approach, the partial derivative of φ with respect to

the parameters x is computed only once outside the adjoint loop which may accelerate

the computation time of the adjoint.

3.3.2 General weaknesses of the Piggyback class of methods

Piggyback class of methods includes Piggyback, Delayed Piggyback and Blurred Pig-

gyback. These methods have generally two main weaknesses: The first one is that in

the case of iterative methods with a superlinear convergence rate, e.g. Newton, these

methods return an adjoint which is not efficient in terms of time.

We take for instance an iterative method that satisfies a Newton equation of the form:

z∗ = z∗ − (
∂

∂z
F (z∗, x))−1.F (z∗, x)

We compute the derivative of F (z, x) = 0 at the solution z = z∗ with respect to x :

d

dx
F (z, x) =

∂

∂x
F (z, x) +

∂

∂z
F (z, x).

dz

dx
= 0
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Simplifying further the equation we obtain:

dz

dx
= − ∂

∂z
F (z, x)−1.

∂

∂x
F (z, x)

Applying the transpose we get:

(
dz

dx
)T = −(

∂

∂x
F (z, x))T .(

∂

∂z
F (z, x)−1)T .

Therefore, the adjoint of parameters x may be expressed as:

x = x0 + (
dz

dx
)T .z

= x0 − (
∂

∂x
F (z, x))T .(

∂

∂z
F (z, x)−1)T .z

where x0 is x computed before the the FP loop adjoint.

Obviously, an efficient adjoint of Newton method [43] needs to wait until that the state

converges to the solution z∗. Then, it solves the linear system:

(
∂

∂z
F (z, x)−1)T .g = −z

followed by a call to the adjoint of F with respect to x:

x = x+ (
∂

∂x
F (z, x))T .g

Unfortunately Piggyback methods do not behave this way, i.e. these methods compute

the adjoint derivatives together with the original values inside a loop until the conver-

gence of both of them. Therefore, generally Piggyback methods are not recommended

in this case of iterative methods.

The second weakness is that Piggyback methods compute the adjoint by using values of

z that are very far from the solution z∗. These values of z may sometimes not respect

the inequality:

|| ∂
∂z
φ(z, x))|| < 1

and therefore may cause the divergence of the adjoint. We take for instance the equation:

F (z∗, x) = z2
∗ − x = 0.

Given a parameter x, we try to find its square root z∗ by using an iterative method that

satisfies the Newton equation:

z∗ = φ(z∗, x) =
1

2
.(z∗ +

x

z
).
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Consider the case where x = 4 and therefore z∗ = 2. The function φ(z, 4) is contractive

for all z that satisfy the inequality |2− φ(z, 4)| < |2− z|. Thus, for all z > 0.67.

However, | ∂∂zφ(z, 4)| < 1 only for z > 1.15. Consequently, for all z such that

0.67 < z < 1.15, the function φ(z, x) is contractive but its corresponding adjoint
∂
∂zφ(z, x) is diverging.

This issue, known as the “lag effect” of the adjoint, is significant in the case of the

non-refined Piggyback approach and less significant in the case of Delayed and Blurred

Piggyback approaches. This is because these latter wait that the value of z become

sufficiently close to z∗ before starting the adjoint computations.

3.3.3 Comparison between the Delayed Piggyback and Refined Two-

Phases approaches

Both Refined Two-Phases and Delayed Piggyback methods yield an adjoint convergence

rate similar to original Fixed-Point loop. Derivatives convergence may lag behind by a

few iterations, but will eventually converge at the same rate. Both methods achieve to

differentiate only the last or the few last iterations i.e. those who operate on physically

meaningful values. Both manage also to avoid näıve inversion of the original sequence

of iterations, therefore saving the cost of data-flow reversal. Consequently the adjoint,

which is itself a fixed point, must have a distinct, specific stopping criterion.

Because of its setting, Delayed Piggyback method makes some additional assumptions on

the shape of the iteration step and on the structure of the surrounding program whereas

Refined Two-Phases remains general. Another difference is that Refined Two-Phases

starts adjoining the iteration step, actually the last one, only when the original iteration

has converged “fully”, whereas Delayed Piggyback triggers the adjoint iterations earlier,

together with the remaining original ones, when those are converged only “sufficiently”.

This may be hard to determine automatically. Since Delayed Piggyback adjoint com-

putation starts with slightly approximate values, it may require a few more iterations

than Refined Two-Phases. A last difference is that Delayed Piggyback requires adjoin-

ing the sequel of the program i.e. the part f after the Fixed-Point iteration, repeatedly

inside the adjoint iteration step. This is fine in the chosen setting where the sequel is

assumed short, but it has a significant cost in general when the sequel is complex or

when Fixed-Point loops are nested.
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3.3.4 Comparison between the Blurred Piggyback and Refined Two-

Phases approaches

Both Blurred Piggyback and Refined Two-Phases approaches are efficient in terms of

memory, i.e. they require the storage of z and the intermediate variables used to compute

z during only one iteration. Both methods consider that the adjoint of a FP loop is a

FP loop itself, i.e. it has own initial guess as well as its own stopping criterion. T.Bosse

claims that his method Blurred Piggyback requires less computation time than the Two-

Phases approach. However, Blurred Piggyback is hard to be implemented inside an AD

tool. It requires that the adjoint be implemented as a parallel program. This is can

be fine when the original loop is a parallel program itself. However, when the original

loop is a sequential program, implementing the blurred piggyback requires in addition

a parallelization of the original program.

3.3.5 Our choices

We detailed above various methods that propose efficient adjoint for FP loops. These

methods manage to avoid naive inversion of the original sequence of iterations, therefore

saving the cost of data-flow reversal. The main difference between these approaches is

mainly when starting the adjoint computations. Some of them start adjoining since the

first iterations of the original loop, some others wait until that the original values become

sufficiently converged and some others compute the adjoint only when the original values

have fully converged. Among these adjoints, we select the one we find the best suited

to be implemented in our AD tool. We choose the approach that:

• covers more cases, i.e. we prefer not have assumptions in the iteration shape, and

that preserves the general structure of adjoint codes. This is unfortunately not

the case of Piggyback class of methods.

• considers that the adjoint of FP loop is a FP loop itself. This guarantees the

convergence of the derivatives and gives the user the opportunity to set a good

initial guess for the adjoint. Unfortunately, this is not the case of Black Box class

of methods.

• computes the value of x outside the adjoint loop which may reduce, consequently,

the computation time of the adjoint. This is unfortunately not the case of the

Two-Phases approach.

For these reasons, we currently select the Refined Two-Phases approach to be imple-

mented in our AD tool Tapenade.
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y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z0=z∗;w0=z∗;w1=w0+1 ; x0=x ; k=0

dz=||zk+1−zk||
if (dz<ϵ)

w∗

Forward Sweep

Backward Sweep

Dowhile (||wk−wk+1||adj>||z0||adj .ϵ)

z∗=φ(z∗ , x)
store (intermediate variables∈φ)

y=f (z∗ , x)

store (0) store(1)

restore(intermediate variables∈φ)
wk+1=wk .

∂
∂ z φ(z∗ , x)+z0

k=k+1

If (restore)
0

1

dz=||zk+1−zk||
if (dz<ϵ)

Dowhile (dz>ϵ)

y=f (z∗ , x)

z∗

zk+1=φ( zk , x)
k=k+1

restore(intermediate variables∈φ)
x=w∗ .

∂
∂ x φ(z∗ , x)+x0

If (restore)
0

1

dz=||zk+1−zk||
if (dz<ϵ)

Dowhile (dz>ϵ)

z∗

zk+1=φ(zk , x)
k=k+1

(a) (b)

dz=1 ; k=0

dz=1 ; k=0

Figure 3.8: (a) FP Loop with two exits. (b) Applying the Two-phases method to the
loop. Dashed lines show the trajectory followed during run-time

For simplicity, in the sequel we will call this method “Two-Phases” rather than refined

Two-Phases.

3.4 Questions related to the code structure

Theoretical works about the FP loops often present these loops schematically as a while

loop around a single call to a function φ that implements the FP iteration (see figure 3.6

(a)). FP loops in real codes almost never follow this structure. Even when obeying a

classical while loop structure, the candidate FP loop may exhibit multiple loop exits

and its body may contain more than only φ e.g. I/O. In many cases, these structures

prevent application of the theoretical adjoint FP method.
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Consider a first example (see figure 3.8 (a)), where the original loop is a while loop

that contains an alternate exit at the middle of the loop body. More precisely, the

alternate exit is located just before the computation of φ. Figure 3.8 (b) shows the

application of the refined two-phases to this example. The Forward sweep of the adjoint

contains a copy of the original loop followed by an extra iteration that saves the values

of intermediate variables used to compute the state. This extra iteration is basically

the last iteration of the original loop. The backward sweep of the adjoint contains a

new FP loop that computes the adjoint values by using the values already stored during

the extra iteration of the Forward sweep. Because of the exit located in the middle of

the body, the last iteration does not sweep through φ. Actually, this iteration contains

only a test of the convergence of the state. As the adjoint loop adjoins repeatedly the

last iteration and this latter contains only non-active variables, the adjoint computes

nothing and it returns the value of x as it was before the adjoint loop, i.e. x = x0.

Consider now a second example (see figure 3.9 (a)) in which φ is the composition of two

functions φ1 and φ2, so that φ(z, x) = φ2(φ1(z, x), x). The FP loop contains two exits:

one exit at the top of the loop and a second exit at the middle of the loop body so that

it splits φ into two parts. The first part contains the computation of φ1(z, x) and the

second part contains the computation of φ2(h, x), where h is an intermediate variable

that holds the value of φ1(z, x). One may observe, that the last iteration of the loop

sweeps only through φ1. Consequently, the adjoint loop computes only the derivative

of φ1 with respect to z. More precisely it computes wk+1 = h. ∂∂zφ1(z∗, x) + z0. As

the variable h is not used at the sequel of the FP loop, its corresponding adjoint h is

null at the entry of the adjoint loop and thus wk+1 = z0. Similarly, x results from the

differentiation of φ1 with respect to x. As the value of h is null, the adjoint returns the

value of x as it was before the adjoint loop, i.e. x = x0.

One might remove the second exit of the example of figure 3.9 (a) by introducing

Boolean variables and apply again the refined two-phases method. Unfortunately, the

last iteration of the transformed loop (see figure 3.10 ) still sweeps only through φ1.

Therefore, the adjoint loop computes only the derivative of φ1 with respect to z. Here

also, the value of h is null at the entry of the adjoint loop. This makes the value of

x equals to x0 at the exit of the adjoint which is clearly incorrect result. To enforce

the last iteration to sweep through the whole φ, one may transform the loop of figure

3.9 (a) by the peeling method. Applying the refined two-phases approach to this new

transformed loop, yields to an adjoint (see figure 3.11) that repeatedly calls:

wk+1 = wk.
∂

∂z
φ1(z∗, x).

∂

∂h
φ2(h, x)
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y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z0=z∗;w0=z∗; w1=w0+1; x0=x ; k=0

h=φ1( z k , x)
store (intermediate variables∈φ1)

dz=||zk+1−zk||

if (dz<ϵ)

restore(intermediate variables∈φ1)

wk+1=h . ∂
∂ z φ1(z∗ , x)+ z0

k=k+1

w∗

Forward Sweep

Backward Sweep
zk+1=φ2(h , x)

k=k+1

Do while (dz>ϵ)

y=f (z∗ , x)

z∗

Do while (||wk−wk+1||adj>||z0||adj .ϵ)

h=φ1( zk , x)

dz=||zk+1−zk||

if (dz<ϵ)

z k+1=φ2(h , x)

store(intermediate variables∈φ2)

y=f (z∗ , x)

store (0)
store (1)

restore(intermediate variables∈φ2)

h=wk . ∂
∂h φ2(h , x)

If (restore)

0
1

restore(intermediate variables∈φ1)

x=h . ∂
∂ x φ1(z∗ , x)+x

restore(intermediate variables∈φ2)

x=w∗ . ∂
∂ x φ2(h , x)+x0

If (restore)

0
1

zk+1=φ2(h , x)

k=k+1

Do while (dz>ϵ)

z∗

h=φ1( zk , x)

dz=||zk+1−zk||

if (dz<ϵ)

(a) (b)

dz=1 ; k=0

dz=1 ; k=0

Figure 3.9: (a) FP Loop with two exits. (b) Applying the Two-phases method to the
loop. Dashed lines show the trajectory followed during run-time
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h=φ1(z k , x)
store(intermediate variables∈φ1)

dz=||zk+1−zk||
if (dz<ϵ)

Forward Sweep

zk+1=φ2(h , x)
k=k+1

Dowhile (convergence=false)

y=f (z∗ , x)

z∗

h=φ1( zk , x)
dz=||zk+1−zk||
if (dz<ϵ)

z k+1=φ2(h , x)
store(intermediate variables∈φ2)

y=f (z∗ , x)

store (0)
store(1)

convergence=true

zk+1=φ2(h , x)
k=k+1

Dowhile (convergence=false)

z∗

h=φ1( zk , x)
dz=||zk+1−zk||
if (dz<ϵ)

convergence=true

convergence=true

(a) (b)

y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z0=z∗;w0=z∗;w1=w0+1; x0=x ; k=0

restore(intermediate variables∈φ1)

wk+1=h . ∂
∂ z φ1(z∗ , x)+ z0

k=k+1

w∗

Backward Sweep

Dowhile (||wk−wk+1||adj>||z0||adj .ϵ)

restore(intermediate variables∈φ2)

h=wk .
∂
∂h φ2(h , x)

If (restore)

0
1

restore(intermediate variables∈φ1)

x=h . ∂
∂ x φ1(z∗ , x)+x

restore(intermediate variables∈φ2)

x=w∗ .
∂
∂ x φ2(h , x)+x0

If (restore)

0
1

z1=z0+1 ; k=0

z1=z0+1 ; k=0

Figure 3.10: (a) FP Loop with one exit on the top. (b) Applying the Two-Phases
method to the loop Dashed lines show the trajectory followed during run-time.
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h=φ1(z k , x)
store(intermediate variables∈φ1)

Forward Sweep

zk+1=φ2(h , x)

k=k+1

Do while (dz>ϵ)

y=f (z∗ , x)

h=φ1(zk , x)

dz=||zk+1−zk||

z k+1=φ2(h , x)

store (intermediate variables∈φ2)

y=f (z∗ , x)

h=φ1( zk , x)

dz=||zk+1−zk||

store(1) store (0)

y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z0=z∗;w0=z∗; w1=w0+1 ; x0=x ; k=0

restore(intermediate variables∈φ2)

h=wk . ∂
∂h φ2(h , x)

k=k+1

w∗

Backward Sweep

Do while (||wk−1−wk+1||adj>||z0||adj .ϵ)

restore(intermediate variables∈φ1)

wk+1=h . ∂
∂ z φ1(z∗ , x)+ z0

If (restore)

1
0

restore(intermediate variables∈φ2)

x=w∗ . ∂
∂ x φ2(h , x)+x

restore(intermediate variables∈φ1)

x=h . ∂
∂ x φ1(z∗ , x)+x0

If (restore)

1
0

pop(intermediate variables∈φ1)

x=h . ∂
∂ x φ1(z 0 , x)+x

zk+1=φ2(h , x)

k=k+1

Do while (dz>ϵ)

h=φ1(zk , x)

dz=||zk+1−zk||

h=φ1(zk , x)

push(intermediate variables∈φ1)

dz=||zk+1−zk||

(a) (b)

z1=z0+1 ; k=0

z1=z0+1 ; k=0

Figure 3.11: (a) FP Loop with one exit. (b) Applying the Two-phases method to the
loop. Dashed lines show the trajectory followed during run-time.
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until convergence of w, i.e. w reaches w∗. At the end of the adjoint, x may be written

as :

x = x0 + w∗.
∂

∂x
φ2(h, x) + w∗.

∂

∂h
φ2(h, x).

∂

∂x
φ1(z∗, x)

We saw in subsection 3.2.5, that mathematically x is written as :

x = x0 + w∗.
∂

∂x
φ(z∗, x),

where w∗ is the solution of the FP equation: w∗ = z0 + w∗.
∂
∂zφ(z∗, x).

As φ(z∗, x) = φ2(φ1(z∗, x), x), x may be written as :

x = x0 + w∗.
∂

∂x
φ2(h, x) + w∗.

∂

∂h
φ2(h, x).

∂

∂x
φ1(z∗, x),

where w∗ is the solution of the FP equation w∗ = z0 + w∗.
∂
∂hφ2(h, x). ∂∂zφ1(z∗, x).

We may observe thus that the x obtained by applying the refined two-phases method to

the transformed loop matches x obtained mathematically.

In order to apply the refined two-phases approach, we need thus to define a set of

sufficient conditions on the candidate FP loop. Obviously, the first condition is that

the state variables reach a fixed point i.e. their values are stationary during the last

iteration, up to a certain tolerance ε.

Moreover, the last iteration must contain the complete computation of φ. This forbids

loops with alternate exits, since the last iteration does not sweep through the complete

body. Classically, one might transform the loop body to remove alternate exits, by

introducing Boolean variables and tests that would affect only the last iteration. We

must forbid these transformed loops as well. To this end, we add the condition that

even the control flow of the loop body must become stationary at convergence of the

FP loop. This is a strong assumption that cannot be checked statically, but could be

checked dynamically.

Conversely, the candidate FP loop could contain more than just φ. We must forbid that

it computes other differentiable variables that do not become stationary. To enforce

this, we require that every variable overwritten by the FP loop body is stationary. One

tolerable exception is about the computation of the FP residual, which is not strictly

speaking a part of φ. Similarly, we may tolerate loop bodies that contain I/O or other

non-differentiable operations.

It may happen that the (unique) loop exit is not located at the loop header itself but

somewhere else in the body. These loops can be transformed by peeling, so that the

exit is placed at the loop head, and the conditions above are satisfied. This peeling is

outside the scope of this work and we will simply require that the loop exit is at loop

header.

These are sufficient applicability conditions to apply not only the refined two-phases
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approach, but also the two-phases approach, the refined black box approach and all the

approaches based on adjoining only the last iteration.

3.5 Implementation

In this section, we describe the way we implemented the Two-Phases approach in our AD

tool Tapenade. We believe that an efficient implementation of this special FP adjoint

inside the tool has to:

• detect the maximum of features during the compilation phase of the AD tool. This

means, for instance, taking advantage from the static analyses performed by the

tool.

• use these features to generate an efficient adjoint that has to be as similar as

possible to the theoretical one described in subsection 3.2.6.

• apply the special adjoint to nested structure of FP loops.

In subsection 3.5.1, we see how the stack mechanism has been extended in order to allow

a repeated access to the last iteration of the FP loop. In subsection 3.5.2, we describe

how static analyses are used to detect the various variables needed by the adjoint, i.e. the

variables that form the state and those that form the parameters. In subsection 3.5.3,

we detail some of the choices we made in order to implement the Two-Phases adjoint.

In subsection 3.5.4, we see how we specified our transformation on the Control Flow

Graphs. In subsection 3.5.5, we describe how we use the Activity analysis, seen in

Chapter 2, to differentiate the body of the FP loop once with respect to the state and

once with respect to the parameters.

3.5.1 Extension of the stack mechanism

We mentioned in section 3.2.6 that the intermediate values are stored only during the

last forward iteration. Then they are repeatedly used in each of the backward iterations.

Our standard stack mechanism does not support this behavior. We need to define an

extension to specify that some zone in the stack (a “repeated access zone”) will be read

repeatedly. Our choice is to add three new primitives to our stack, supposed to be called

at the middle of a sequence of stack pop’s (see figure 3.12).

• start repeat stack() states that the current stack position is the top of a re-

peated access zone.
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CALL end_repeat_stack()

CALL reset_repeat_stack()

y=1
z∗= y .

∂
∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z0=z∗;w0=z∗;w1=w0+1; k=0

z∗=φ(z∗ , x)
push(intermediate variables∈φ)

pop(z∗+intermediate variables∈φ)

wk+1=wk .
∂
∂ z φ(z∗ , x)+ z0

k=k+1

pop (intermediate variables∈φ)

x=w∗ .
∂
∂ x φ(z∗ , x)+x

w∗

Forward Sweep

Backward Sweep

zk+1=φ( zk , x)
k=k+1

Dowhile (∣∣zk+1−zk∣∣>ϵ)

z∗

y=f (z∗ , x)

Dowhile (||wk−wk+1||adj>||z0||adj .ϵ)

CALL start_repeat_stack()

….......

Save repeated access top

Return to repeated access top

: stack  top : repeated access top

: pushs direction

: pops direction

set of pops

set of pops

set of pops

set of pushs

k=0

Figure 3.12: The new stack primitives allows a repeated access to the values stored
during the last iteration of the FP loop

• reset repeat stack() states that the stack pointer must return to the top of the

repeated access zone.

• end repeat stack() states that there will be no other read of the repeated access

zone.

In the adjoint generated code, these procedures must be called :

• start repeat stack() at the start of the adjoint FP loop.

• reset repeat stack() at the end of the body of the adjoint FP.

• end repeat stack() at the end of the adjoint FP loop.
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CALL end_repeat_stack()

CALL reset_repeat_stack()

y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z0=z∗;w0=z∗;w1=w0+1 ; k=0

z∗=φ(z∗ , x)
push(intermediate variables∈φ)

..
pop()
..
push()

pop()
..
pop()
..

pop (intermediate variables∈φ)

x=w∗ . ∂
∂ x φ(z∗ , x)+x

w∗

Forward Sweep

Backward Sweep

zk+1=φ( zk , x)
k=k+1

Dowhile (∣∣zk+1−zk∣∣>ϵ)

z∗

y=f (z∗ , x)

Dowhile (||wk−wk+1||adj>||z0||adj .ϵ)

CALL start_repeat_stack()

Return to repeated access top

new pushs because of the 
checkpointing

….......

: stack  top : repeated access top

Save repeated access top

: pushs direction

: pops direction

set of pushs

set of pops

set of pushs

set of pops

set of pops

k=0

Figure 3.13: Checkpointing occurring inside the adjoint iterations overwrites the
contents of the repeated access zone
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However this set of primitives doesn’t handle the case of checkpointing occurring inside

the adjoint iterations (see figure 3.13). Checkpointing implies that the stack may grow

again (with push’s) and the danger is to overwrite the contents of the repeated access

zone. Our solution to keep this zone safe is to store the new values at the real top of

the stack, i.e. above the repeated access zone. This requires two additional primitives.

• freeze repeat stack() saves the current stack pointer (we call it “the frozen

top”) and says that all coming push’s must go above the top of the current repeated

access zone.

• unfreeze repeat stack() states that previous pop’s have returned the stack

pointer to the top of the current repeated access zone, and therefore resets the

stack pointer to its saved location so that next pop’s will read in the repeated

access zone.

This is illustrated by figure 3.14. Notice that unfreeze repeat stack() is in principle

unnecessary, since every pop could check if the stack pointer is at the top of a repeated

access zone and react accordingly. However this would slow down each call to pop, which

are frequent. On the other hand, unfreeze repeat stack may be called only once, at

a location that can be statically determined by the AD tool. Therefore, in the adjoint

generated code, we will call :

• freeze repeat stack() before each checkpointed adjoint subroutine call or code

fragment during the adjoint backward iteration.

• unfreeze repeat stack() after the corresponding adjoint subroutine call or code

fragment.

Once leaving the adjoint loop, these two primitives should not be called any more since

there is no need to protect the repeated access zone.

Similarly to the Two-Phases approach, the two approaches Two-Phases (seen in subsec-

tion 3.2.5) and Refined Black Box (seen in subsection 3.2.7) require a repeated access

to the stored intermediate values of the last iteration. To apply these two approaches,

one may use the new primitives of the stack but in re-arranging them in different way.

In both approaches, we must call:

• start repeat stack() at the start of the adjoint FP loop.

• reset repeat stack() at the start of the body of the adjoint FP. This call has

not to be done during the first iteration, as at the beginning of this iteration we

are already at the top of the repeated access zone.
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CALL end_repeat_stack()

CALL reset_repeat_stack()

y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z0=z∗;w0=z∗;w1=w0+1 ; k=0

z∗=φ(z∗ , x)
push(intermediate variables∈φ)

..
pop()
..

..
push()
pop()
..

pop()

pop (intermediate variables∈φ)

x=w∗ . ∂
∂x φ(z∗ , x)+x

w∗

Forward Sweep

Backward Sweep

zk+1=φ( zk , x)
k=k+1

Dowhile (∣∣zk+1−zk∣∣>ϵ)

z∗

y=f (z∗ , x)

Dowhile (||wk−wk+1||adj>||z0||adj .ϵ)

CALL start_repeat_stack()

new  pushs  because of the 
checkpointing

….......

CALL freeze_repeat_stack()

CALL unfreeze_repeat_stack()

Set of pushs

Save repeated access top

Return to repeated access top

Save frozen top and go to repeated access top

Return to frozen top

: stack  top : repeated access top : frozen  top

: pushs direction

: pops direction

set of pushs

set of pops

set of pops

set of pops

k=0

Figure 3.14: Because of the additional stack primitives, checkpointing occurring inside
the adjoint iterations does not overwrite the contents of the repeated access zone
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• end repeat stack() at the end of the adjoint FP loop.

The two primitives freeze repeat stack() and unfreeze repeat stack() must be

called as usual, i.e. around each checkpointed adjoint subroutine call or checkpointed

code fragment inside the adjoint loop.

One may wonder how these primitives are really implemented inside the stack. In

reality, the push /pop primitives as they are implemented in our AD tool have a special

mechanism. These primitives do not deal directly with the stack but have rather access

to a set of buffers that in their side deal with the stack. More precisely, the push’s

primitives save their values in the buffers and the pop’s primitives retrieve their values

from these buffers. We have one buffer for each type, i.e. one buffer for the reals, one

for the integers,..etc. These buffers are actually arrays with fixed length. When a buffer

becomes full, we push all its value into the stack. Symmetrically, when a buffer becomes

empty, we fulfill it from the stack.

Implementing the new primitives that handle the repeated access to the stack means

taking care of this special mechanism. We implemented the primitives so that:

• start repeat stack(): pushes the values of the non empty buffers into the stack

and saves the pointer at the top of the stack (repeated access top). It also saves

the number of values pushed from each buffer. We need to make sure that all the

values have been saved in the stack. Then we reset every thing as before the call

to start repeat stack(), i.e. we fulfill the buffers as before and we reset the

pointer to its old location.

• reset repeat stack(): flushes the buffers, states the pointer at the saved loca-

tion, i.e. at the repeated access top and then fulfill the buffers with the same

number of values as it was done in the start repeat stack(), i.e. we already

know the number of values pushed in the start repeat stack().

• end repeat stack(): states that we are no more dealing with a repeated access

zone.

To implement the two primitives freeze repeat stack() and

unfreeze repeat stack(), we adopted different strategy from the one used to

implement the two primitives

start repeat stack() and reset repeat stack(). In fact, pushing the values of non

empty buffers into the stack may overwrite the values of the repeated access zone.

From the other side, we observed that, if we have a non empty buffer at the moment

when the freeze repeat stack() is executed, this is either because this buffer was
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fulfilled by the start repeat stack() called at the entry of the repeated access zone

or by one of the pop’s primitives situated between the start repeat stack() and the

freeze repeat stack(). Based on this observation, our idea is, thus:

• Save the position of the pointer at the top of the stack before each call

to a pop primitive situated between the start repeat stack() and the

freeze repeat stack(). We call this ”frozen top”. We save one frozen top by

type, i.e. one frozen top for the reals, one for integers,..etc.

• At the moment of freeze repeated access(), we save the number of values inside

each non empty buffer.

• At the moment of unfreeze repeated access(): for each buffer, we set the

pointer to the frozen top of the same type and then we fulfill this buffer with

the saved number of values.

3.5.2 Fixed-Point directive and automatic detection of Fixed-Point el-

ements

It is very hard or even impossible to detect every instance of FP loop inside a given

code. Even when the original loop is a simple loop with one exit at the top, an AD

tool cannot determine statically if the control flow of this loop will converge or if every

overwritten variable inside this loop will reach a fixed point. Therefore, we rely on the

end-user to provide this information, for instance through a directive. As we required

in subsection 3.4 that the candidate FP loop has the syntactic structure of a loop, one

directive, placed on the loop header, is enough to designate it. Thanks to AD-specific

data-flow analyses, described further insubsection 3.5.5, the AD tool can distinguish

between the code that contains the computation of the state and the code that contains

other non-differentiable operations. An example of non-differentiable operations is the

residual computation since it computes the number of iterations of the loop which is

essentially discrete and therefore non-differentiable.

To apply Two-Phases method, we need to distinguish between the state z and parameters

x for three main reasons:

• We need to differentiate φ(z∗, x) with respect to z inside the adjoint loop and with

respect to x outside the adjoint loop.

• At the end of each adjoint iteration, we add to w the value of z computed before

the adjoint FP loop.
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• The stopping criterion checks at each iteration the convergence of the adjoint of

the state only.

To detect the state and parameters we rely on the results of IN-OUT analysis run by

the AD tool on the original program. The state is the set of variables that are modified

inside the FP loop and the parameters are the variables that are only read inside the

loop. Given the use set of the variables read by the FP loop and the out set of the

variables written by the FP loop, we can define:

state = out(FP loop)

parameters = use(FP loop)\out(FP loop)

One may observe that the variables that are modified inside the FP loop and not used by

the sequel f , we call them znu, have an adjoint null at the entry of the adjoint FP loop.

Therefore, each computation that adds to w the value of znu may be eliminated from

the adjoint FP loop. To do so, one may refine the set of state variables by specifying

that the state variables are only the variables that are modified inside the FP loop and

used at the sequel f . Formally we write:

state = out(FP loop) ∩ live

where live is the set of the variables that are used in the sequel of the FP loop. As we are

only looking for differentiable influences of the parameters on the state, we may further

restrict the above sets to the variables of differentiable type i.e. REAL or COMPLEX.

3.5.3 Specification of the Implementation

In this subsection, we detail some of the choices we made in order to implement the

Two-Phases adjoint in our AD tool.

3.5.3.1 The stopping criterion of the adjoint loop

In Two-Phases method, see subsection 3.2.6, the stopping criterion of the original FP

loop checks at each iteration if ||zk+1 − zk|| ≤ ε with zk+1 is the value of the state

at the current iteration and zk is the value of the state at the previous iteration. On

the other hand, the stopping criterion of the adjoint loop checks at each iteration if

||wk − wk+1||adj ≤ ||z0||adj .ε with wk+1 is the value of w at the current iteration, wk is

the value of w at the previous iteration, ||..||adj is the norm of the adjoint vectors and ε

is computed by using estimations of some constants.
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In practice, even if the AD tool manages to detect the location of the residual com-

putation, it is quite impossible that it understands the mathematical equation behind

it and then generates the appropriate ||..||adj and ε. It is also quit difficult to detect

the variable that holds the value of the state at the previous iteration, i.e. detect the

intermediate variable that represents zk. Therefore, for every FP loop we will:

• Create an intermediate variable that holds the value of w at the previous iteration.

We will call it for instance winter.

• Set the stopping criterion of the adjoint, so that it tests at each iteration if

||w − winter|| < ε with ||..|| is the euclidean norm and ε is a constant that holds

the value 10−6. The user can always change the value of ε by adding the required

value as an additional parameter to the FP directive.

3.5.3.2 Renaming the intermediate variables

The Two-Phases adjoint, sketched in figure 3.6 (b), makes use of an intermediate adjoint

set of variables w which are temporary utility variables that do not correspond exactly

to the adjoint of original variables. However, this w has the same size and shape as the

state z.

For implementation reasons, actual differentiation of the loop body is performed by a

recursive call to the standard differentiation mechanism, which systematically names the

adjoint variables after their original variables, so that w will actually be named z. The

adjoint loop body must therefore have the form: zk+1 = zk.
∂
∂zφ(z∗, x). To accommodate

this form, we transformed the BWD sweep of the FP adjoint, introducing in zorig a copy

of the z, yielding the equivalent formulation shown in figure 3.15.

3.5.4 Specifying the transformation on Control Flow Graphs

As far as a theoretical description is concerned, it is perfectly acceptable to represent

a FP loop with a simple body consisting of a call to φ. However, for real codes this

assumption is too strong. We need to specify the adjoint transformation, so it can

be applied to any structure of FP loops, possibly nested, that respect the conditions

of subsection 3.4. Since these structures of interest inside a Control Flow Graph are

obviously nested, the natural structure to capture them is a tree. Therefore, our strategy

is to superimpose a tree of nested Flow Graph Levels (FGLs) on the Control Flow

Graph of any subroutine.
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y=1
z∗= y . ∂

∂ z f (z∗ , x)

x= y . ∂
∂ x f (z∗ , x)

z0=z∗; zorig=z∗;delta=1.0; k=0

zinter=zk
pop (intermediate variables∈φ)
zk+1=zk .

∂
∂ z φ(z∗ , x)+ zorig

k=k+1
delta=||zk+1−zinter||

pop(intermediate variables∈φ)

x=z∗ .
∂
∂ x φ(z∗ , x)+x

z∗

Backward Sweep

Dowhile (delta>ϵ)

zk+1=φ(zk , x)
k=k+1

Dowhile (∣∣zk+1−zk∣∣>ϵ)

y=f (z∗ , x)

z∗
z∗=φ(z∗ , x)
push(intermediate variables∈φ)

Forward Sweepzk+1=φ(zk , x)
k=k+1

Dowhile (∣∣zk+1−zk∣∣>ϵ)

z∗

y=f (z∗ , x)

CALL start_repeat_stack()

CALL reset_repeat_stack()

CALL end_repeat_stack()

k=0

k=0

(a) (b)

Figure 3.15: (a) Example of code that contains a FP loop. (b) Two-Phases applied
to this code after renaming the intermediate variables.

A FGL is either a single Basic Block or a graph of deeper FGLs. This way, the adjoint

of a FGL is defined as a new FGL that connects the adjoints of the child FGLs and

a few Basic Blocks required by the transformation. Adjoining a Flow Graph is thus a

recursive transformation on the FGLs. Every enclosing FGL needs to know about its

children FGLs, their entry point, which is a single flow arrow, and their exit points,

which may be many, i.e. many arrows. We introduce a level in the tree of nested

FGLs, containing a particular piece of code, to express that this piece has a specific,

probably more efficient adjoint. For instance, we introduce such a level for parallel loops,

time-stepping loops, plain loops, and now for FP loops.

Specifically for a FP loop, the original FGL (see figure 3.16 (left)) is composed of a loop

header Basic Block and a single child FGL for the loop body. We arbitrarily place two

cycling arrows after the loop body to represent the general case where one FGL may have
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BWD FP Loop Body
with respect to z

DO WHILE(delta>ϵ)

CALL start_repeat_stack()

if (pop())
CALL end_repeat_stack()
if (pop())

0 1

CALL reset_repeat_stack()

FP Loop Body FP Loop Body

FP Loop Header

FWD FP Loop 
Body

push (0) push (1)

FP Loop Header

0 1

BWD FP Loop Body
with respect to x

0 1

z=z+ zorig

delta=||z−zinter||

zinter=z

delta=1.0
zorig=z

Figure 3.16: left: flow graph level of a Fixed-Point loop, middle: flow graph level of
the FWD sweep of this Fixed-Point loop, right: flow graph level of the BWD sweep of

this Fixed-Point loop

several exit points. The FWD sweep of the FP loop adjoint (see figure 3.16 (middle))

basically copies the original loop structure, but inserts after this loop the FWD sweep of

the adjoint of the loop body, thus storing intermediate values only for the last iteration.

The BWD sweep (see figure 3.16 (right)) introduces several new Basic Blocks to hold:

• the calls that enable a repeated access to the stack.

• the computation of the variation of z into a variable delta which is used in the

exit condition of the while loop.

• the initial storage of z into zorig and its use at the end of each iteration.

The FWD and BWD sweeps of the FP loop body, resulting recursively from the adjoint

differentiation of the loop body FGL are new FGL’s represented in figure 3.16 by oval

dashed boxes. They are connected to the new Basic Blocks as shown. The characteristic

of the adjoint of a FP loop, visible in figure 3.15, is that the FP body must be differenti-

ated twice, once with respect to z and once with respect to x. This accounts for the two

FGL (oval dashed boxes) in figure 3.16, that stand for the two different adjoint BWD

sweeps of the loop body.

3.5.5 Differentiation of the loop body in two different contexts

We see that the code produced following the Two-Phases method has a fixed, ad-hoc

skeleton that contains in two places some pieces of code that can be produced by standard
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adjoint AD. These two pieces appear respectively in the algorithm sketched in figure 3.15

as:

z = z.
∂

∂z
φ(z, x)

and

x = x + z.
∂

∂x
φ(z, x)

Therefore, these two pieces can and must be generated automatically with an AD tool

such as Tapenade. One might just decide to recuperate those from the naive adjoint

code produced by the AD tool. Actually the naive adjoint code effectively contains a

part, the adjoint of z = φ(z, x), that computes x = x + z. ∂∂xφ(z, x); z = z. ∂∂zφ(z, x).

But these computations are blended and almost impossible to separate. Consequently

the final specialized Two-Phases adjoint, although already well optimized in terms of

memory, would duplicate code and repeatedly run useless parts of the derivative compu-

tation. The solution to this problem is to perform differentiation of φ(z, x) twice. One

differentiation will be specialized to produce code for:

x = x+ z
∂

∂x
φ(z, x)

only, and the other differentiation, separate from the first, will produce code for:

z = z
∂

∂z
φ(z, x).

This can be arranged for, but with special care on the usual questions: what is the

function to differentiate, for which of its inputs and for which of its outputs?

At this point we need to start a discussion on the notion of ”independent” and ”de-

pendent” parameters. Source-transformation AD classically features an analysis phase,

followed by a code generation phase that actually builds the differentiated code. In par-

ticular the so-called ”Activity analysis” , see subsection 2.3.2, has a strong influence

on the future differentiated code. Activity analysis detects, for each occurrence of a

variable in the code, whether this variable is active or not. An active variable is such

that its derivative is at the same time (a) not trivially (i.e. structurally) zero and (b)

needed for later computations. Conversely when a variable is not active, the differenti-

ated code can be simplified, sometimes vastly. It is therefore essential for the efficiency

of the adjoint code that the detected active occurrences of variables form a set as small

as possible. Overapproximation on the set of active variables is unavoidable in general,

but we must strive to keep it minimal.

In turn, let us consider the ingredients to Activity analysis. Activity analysis on a

piece of code F takes as input:
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• The independents, which is the subset of the inputs of F with respect to which a

derivative will be required. In other words the derivative code of F will be used

in a context that will use some derivatives with respect to the independents. The

independents are the ingredient of the first half of Activity analysis, known as

the ”varied” analysis. The varied analysis propagates, forwards through the

source of F, the variables whose current value may depend in a differentiable way

on the independents.

• The dependents, which is the subset of the outputs of F of which a derivative will

be required. In other words the derivative code of F will be used in a context that

will use some derivatives of the dependents. The dependents are the ingredient of

the second half of Activity analysis, known as the ”useful” analysis. The useful

analysis propagates, backwards through the source of F, the variable whose current

value may have a differentiable influence on the dependents.

In the sequel, we will use the following equivalences between notions, that directly result

from the definitions. The following three statements are equivalent:

• A given occurrence of variable v is varied.

• At the corresponding location in the tangent code, v̇ is not trivially zero.

• At the corresponding location in the adjoint code, v is needed by the following

adjoint computations.

Similarly, the following three are equivalent:

• A given occurrence of variable v is useful.

• At the corresponding location in the tangent code, v̇ is needed by the following

tangent computations.

• At the corresponding location in the adjoint code, v is not trivially zero.

A variable occurrence will be considered active if it is at the same time varied and

useful. It is therefore essential to provide AD with the right sets of independents and

dependents to let it produce correct and efficient derivative code.

Going back to the production of efficient code for ∂
∂xφ(z, x) on the one hand, and for

∂
∂zφ(z, x) on the other hand, the question is to find the right sets of (in)dependents for

these two separate invocations of AD on φ(z, x). Let us consider first that z is the set of
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variables that are overwritten inside the FP loop and x is the set of variables that are

only read inside this loop. Obviously running AD on φ(z, x) with the standard Activity

information obtained by analysis of the full code, will result on the code that we already

have and that computes ∂
∂xφ(z, x) and ∂

∂zφ(z, x) jointly. So we would gain nothing. Still,

choosing the (in)dependent sets for either ∂
∂xφ(z, x) or ∂

∂zφ(z, x) is delicate and error-

prone, so let us deduce these sets safely from an analysis of the new adjoint Fixed-Point

algorithm, sketched again in figure 3.17.

We have identified intermediate points in the algorithm, named P1 to P8. Some points

z= y . ∂
∂ z f (z , x)

x= y . ∂
∂ x f (z , x)

y=0

z=z+ z0

restore(intermediate v)
x=z . ∂

∂ x φ(z , x)+x

Backward Sweep

Dowhile (z not converged )

z=φ(z , x)

Dowhile (z not converged )

y=f (z , x)

z=φ(z , x)
store(intermediate v)

Forward Sweepy=f (z , x)

z=φ(z , x)

Dowhile (z not converged )

(a)

restore(intermediate v)

z=z . ∂
∂ z φ(z , x)

P1

P7

P8

P8

z0=z
P7

P6

P5

P4

P3

P2

P1

(b)

Figure 3.17: (a) A Fixed-Point loop. (b) Two-Phases method applied to this loop. In

Two-Phases we need to specify which are the dependents and independents for ∂
∂zφ(z, x)

and ∂
∂xφ(z, x).

(P1, P7, P8) have a corresponding location in the original, non-differentiated Fixed-

Point loop. The other points have no correspondent because they are specific to the

skeleton of the special adjoint algorithm.

Consider the ”useful” analysis first. It is a backward analysis so what we have to

begin with is UP7 the ”useful” variables at point P7, which are known from Activity
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analysis of standard differentiation (”useful” phase). From now on, we view UP7 as the

variables whose adjoint is not trivially zero. Let us now proceed through figure 3.17.

As we are proceeding through the backward sweep of the adjoint code, we are actually

going forwards through figure 3.17:

• UP6 is the same as UP7, as z0 is an artificial copy of z not involved in Activity

analysis.

• UP5 is the union of UP6 and UP3 (which we don’t know yet).

• UP4 will be found by running the ”useful” analysis through z = φ(z, x): view

UP5 equivalently as the useful output variables of z = φ(z, x), and the analysis

propagation through this instruction returns us with the useful input variables

of z = φ(z, x), i.e. UP4.

• UP3 is the union of UP4 and UP6, as the resulting z becomes non-trivial-zero either

because it was already so or because the corresponding z0 is so.

• UP2 is the same as UP3 because the loop iterates at least once.

• UP1 will be found by running the ”useful” analysis through z = φ(z, x) with UP2

as the useful outputs of this instruction.

Consider now the ”varied” analysis. It is a forward analysis so what we have to begin

with is VP1 the ”varied” variables at point P1, which are known from Activity analysis

of standard differentiation (”varied” phase). From now on, we view VP1 as the variables

whose adjoint is needed by following adjoint computations. Let us now proceed through

figure 3.17. As we are proceeding through the backward sweep of the adjoint code, we

are actually going backwards through figure 3.17:

• VP2 will be found by running the ”varied” analysis through z = φ(z, x): view

VP1 equivalently as the varied input variables of z = φ(z, x), and the analysis

propagation through this instruction returns us with the varied output variables

of z = φ(z, x), i.e. VP2.

• VP3 is the union of VP2 and VP5 (which we don’t know yet).

• VP4 is the same as VP3, as the instruction in between is just an increment that

doesn’t change the subset of z needed in the sequel of the adjoint code.

• VP5 will be obtained by running the ”varied” analysis through z = φ(z, x) with

VP4 as the varied inputs of this instruction. VP5 will be found as the resulting

varied outputs of z = φ(z, x).
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• VP6 is the same as VP5 because the loop iterates at least once.

• VP7 is the same as VP6.

From the above, we find easily the independent and dependent sets for the separate

differentiation of φ(z, x) that will produce ∂
∂xφ(z, x). Things are slightly more intricate

for ∂
∂zφ(z, x), as there is a loop involved: there are possibly several propagations through

φ(z, x), for both ”varied” and ”useful” analysis, with inputs that may differ from an

iteration to the other because of UP3 and VP5 respectively. In other words, we need a

fixed point in these data-flow analyses. Fortunately, this is exactly what happens already

for data-flow analysis of loop. It is easy to see that the propagations detailed above are

exactly those that occur in the ”varied” and ”useful” analysis not of φ(z, x) alone,

but rather of the original Fixed-Point loop itself do while(...) z = φ(z, x) enddo.

To summarize, we propose the following sequence of data-flow analysis to obtain an

optimized Activity information, resulting in an optimized adjoint code for ∂
∂xφ(z, x)

and ∂
∂zφ(z, x):

1. Build Cx, a temporary copy of code z = φ(z, x) to hold Activity information for
∂
∂xφ(z, x).

2. Build Cz, another temporary copy of code do while(...) z = φ(z, x) enddo to hold

Activity information for ∂
∂zφ(z, x).

3. Retrieve VP1 from the standard ”varied” analysis at point P1.

4. Retrieve UP7 from the standard ”useful” analysis at point P7.

5. Run ”varied” analysis on Cx, feeding in VP1 as its varied inputs, obtaining VP2

as its varied outputs.

6. Run ”varied” analysis on Cz, feeding in VP2 as its varied inputs.

7. Run ”useful” analysis on Cz, feeding in UP7 as its useful outputs, obtaining UP2

as its useful inputs.

8. Run ”useful” analysis on Cx, feeding in UP2 as its useful outputs.

Differentiation of Cx with its resulting Activity information will produce optimized

code for x = x + z ∂
∂xφ(z, x). Differentiation of the loop body of Cz with its resulting

Activity information will produce optimized code for z = z ∂
∂zφ(z, x).

Along the lines of the Activity analysis, one may run two specific TBR analyses, see

subsection 2.3.4, one for ∂
∂zφ(z, x) and another for ∂

∂xφ(z, x) in order to reduce the
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number of values stored in memory. These two analyses can take advantage from the

results of the Activity analysis described above. However, in Two-Phases method, the

last iteration saves in memory all the intermediate values that are needed at the same

time in ∂
∂zφ(z, x) and in ∂

∂xφ(z, x). Consequently, the variables to be recorded during

the last iteration have to be the union of the results of the two specific TBR analyses.

Therefore, we think that there is no big benefit we may get from running these special

TBR analyses.

Similarly, one may run two specific Diff-liveness analyses, see subsection 2.3.3, one

for ∂
∂zφ(z, x) and another for ∂

∂xφ(z, x). These two specific analyses aim to reduce the

number of primal instructions that appear in the last iteration of the FP loop. These

two specific analyses can also take advantage from the results of the Activity analysis

described above. However, in Two-Phases approach the primal instructions of the last

iteration compute the intermediate values that are needed at the same time in ∂
∂zφ(z, x)

and in ∂
∂xφ(z, x). Consequently, what will be used during the generation of the last

iteration is actually the union of the results of the two specific Diff-liveness analyses.

Therefore, we think here also that there is no big benefit we may get from running these

special Diff-liveness analyses.

In our implementation of the Two-Phases method, the forward sweep of the adjoint

copies the original loop and inserts after it the forward sweep of the adjoint of the loop

body, see figure 3.16. Since the forward sweep of the loop body is actually a copy of

the loop body in which the intermediate values are saved, this part of code does not

contain only the computation of φ, but also the computations of the stopping criterion

of the FP loop. As there is no need to keep these computations outside the loop, we may

run a specific Diff-liveness analysis on the FP loop. In this analysis, we specify that

each variable used inside the header of the loop is not diffLive. Consequently, during

the following iterations of the iterative process, all the instructions that compute these

variables become non− diffLive as well and therefore do not appear in the forward

sweep of the FP loop body.

3.6 Checkpointing inside the Two-Phases adjoint

In this subsection, we show how the checkpointing mechanism applied on a piece of code

C inside the FP loop may reduce the efficiency of the Two-Phases adjoint. Instead of

saving the intermediate values of this piece of code only once during the FW sweep of the

adjoint and retrieving these values many times during the BWD sweep, the checkpointed

code will save and retrieve these values as many times as needed to converge the adjoint

loop. At the end, the checkpointed code reduces the peak memory consumption of
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saving the intermediate values of C only once which is negligible in comparison with the

execution time cost.

...

Forward Sweep

Backward Sweep

Doi=1,counter

D⃗

Dowhile (state not converged)

...

U⃗

C⃗

U

D

C

⃗

⃗

...

Forward Sweep

Backward Sweep

Doi=1,counter

D⃗

Dowhile (state not converged)

...

U⃗

C

U

D

C

⃗

⃗

⃗

C⃗

(a) (b)

⃗

Figure 3.18: (a) The Black Box approach applied on a FP loop. (b) The black Box
approach applied on a FP loop in which we checkpoint a piece of code “C”. We call “U”
the piece of code before “C” and “D” the piece of code after “C”. The black dot reflects

the storage of the snapshot and the white dot reflects its retrieval.

We saw in chapter 2, that in general checkpointing reduces the peak memory consump-

tion of saving the intermediate values of a piece of code, at the cost of re-executing this

piece of code another time during the BWD sweep of the adjoint. This cost includes

also the storage of the snapshot. When this piece of code is actually contained in a loop

as shown in figure 3.18 (b), the total cost is multiplied by the number of iterations of

this loop. However, the number of times we save and retrieve the intermediate values

of this piece of code remains unchanged. This means that, if the intermediate values of

the piece of code C are saved and retrieved n times in the non-checkpointed code, see

figure 3.18 (a), these values will be saved and retrieved n times as well in the check-

pointed code, see figure 3.18 (b). We recall here, that the intermediate values are saved

during the FWD sweep of C,
−→
C , and retrieved during the BWD sweep of C,

←−
C . The

cost in terms of time of checkpointing a piece of code C in a loop, ckpTimeCost, may be

formalized as:

ckpTimeCost = n ∗ timeCost(C) + n ∗ timeCost(•) + n ∗ timeCost(◦)

where, n is the number of iterations of the original loop and • and ◦ reflect saving and

retrieving the snapshot.
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At this time cost, checkpointing reduces the peak memory consumption of:

n ∗ (memoryCost(C)− memoryCost(•))

...

Forward Sweep

Backward Sweep

Dowhile (adjoint not converged )

D

Dowhile (state not converged)

...

U

C

U

D

C

⃗

⃗

⃗

D⃗

C⃗

U⃗

...

Forward Sweep

Backward Sweep

Dowhile (adjoint not converged )

D

Dowhile (state not converged)

...

U

C

U

D

C

⃗

⃗

⃗

D⃗

C

U⃗

C⃗

(a)

C

⃗C⃗

U

D

C⃗

⃗C⃗
C

⃗C⃗

(b)

⃗

U

D

C
⃗

⃗

⃗

Figure 3.19: (a) The Two-Phases adjoint applied on a FP loop. (b) The Two-Phases
adjoint applied on a FP loop in which we checkpoint a piece of code “C”. We call “U”
the piece of code before “C” and “D” the piece of code after “C”. The black dot reflects

the storage of the snapshot and the white dot reflects its retrieval.

Now, let us assume that our piece of code C is included inside a FP loop that respects

the applicability conditions of the refined two-phases method (see subsection 3.4).

Figure 3.19 (a) shows the application of the Two-Phases adjoint to this loop.

Figure 3.19 (b) shows the application of the Two-Phases adjoint to this loop together

with checkpointing the piece of code C. We observe that because of checkpointing,

the piece of code C is not only re-executed many times during the BWD sweep of the

adjoint, but also its intermediate values are saved and retrieved as many times as needed

to converge the adjoint loop. The main difference between checkpointing in the case of

the Black Box adjoint and checkpointing in the case of the Two-Phases one is that, in

the Black Box adjoint, we already save the intermediate values of C n times and that
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checkpointing will not add additional storage of these intermediate values. In the case

of the Two-Phases adjoint, however, the non-checkpoined code saves the intermediate

values of C only once during the FWD sweep of the adjoint, see figure 3.19 (a), and,

thus, because of checkpointing we will add m storage of these intermediate values, with

m is the number of iterations of the adjoint loop.

In the case of the Two-Phases adjoint, the time cost of checkpointing the piece of code

C, ckpTimeCost, may be formalized as:

ckpTimeCost = timeCost(C) + m ∗ timeCost(
−→
C ) + timeCost(•) + (m + 1) ∗ timeCost(◦)

At this time cost, checkpointing in the case of the Two-Phases adjoint reduces the peak

memory consumption of:

(memoryCost(C)− memoryCost(•)),

which is actually quite small benefit in comparison with the total cost in terms of exe-

cution time.

The Two-Phases adjoint does such a good job at reducing the memory cost (but less

importantly the execution time) that application of classical checkpointing inside the

FP loop body actually looses a part of this benefit, to a point where it may become

counter productive. Therefore, we advise to use caution and carefully evaluate the cost

benefit when applying checkpointing inside a FP loop.

3.7 Experiments and performances

To validate our implementation, we selected two different codes: The first is a medium

size code that contains a FP loop. This code has been developed at Queen Mary Uni-

versity Of London (QMUL). The second is a home-made code that contains a nested

structure of FP loops. The main objective behind the two experiments is to quantify

the benefits of the Two-Phases adjoint in terms of memory consumption and accuracy

of the final derivatives. We apply the Black Box adjoint, seen in section 3.2.1, as well as

the Two-Phases adjoint on both codes. On the second code, we try different initial guess

for the inner loop. Some of these initial guess are constant over the outer iterations and

some others depend on the results of previous iterations. In subsection 3.7.2.1, we see the

implications of these initial guess on the results of the Black Box adjoint as well as the

Two-Phases adjoint. In subsection 3.7.2.2, we define the initial guess of the backward

inner loop of the Two-Phases adjoint as the result of this loop at the previous outer
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iteration. We will see how this new initial guess will reduce significantly the number

iterations of the backward adjoint loop.

3.7.1 Experiment on real-medium size code

The real medium-size code named GPDE is a Fortran90 program. It is a an unstruc-

tured pressure-based steady-state Navier-Stokes solver with finite volume spatial dis-

cretization. It is based on the SIMPLE (Semi-Implicit Method for Pressure Linked

Equations)[47] algorithm for incompressible viscous flow computation. The FP loop of

the program computes the pressure and velocity (the state variables) of an incompress-

ible flow by using the SIMPLE algorithm. In every iteration, the algorithm computes

the velocity by solving the momentum equation. Then it uses the obtained value to

compute the pressure via solving the continuity equation.

The FP loop of the program does not originally respect the structure of subsection 3.4.

It is a while loop that contains an alternate exit at the middle of the body, so that the

last iteration does not sweep through the whole function φ(z, x). Therefore, to apply the

Two-Phases adjoint to the code, we transformed the loop by removing the alternate exit.

The transformation was performed by using the peeling method as we did in subsection

3.4.

For comparison, we differentiated the transformed loop with the Black Box adjoint dif-

ferentiation as well as with the Two-Phases adjoint. To trigger the Two-Phases adjoint,

we placed the FP directive, described in subsection 3.5.2, just before the transformed FP

loop. Since we don’t have a deep knowledge about the mathematical equations behind

the code, we relied on the AD tool to detect the variables that form the state and those

that form the parameters. The value of ε is set to 10−6. We observed a minor benefit

on run-time and its link to accuracy. By construction, the Black Box adjoint runs for 66

iterations, which is the iteration count of the original FP loop. On the other hand, the

Two-Phases adjoint runs exactly as many times as needed to converge z. Figure 3.20

shows the error of the adjoint compared with a reference value (obtained by forcing

the FP loop to run 151 times) as a function of the number of adjoint iterations for the

Two-Phases adjoint.

For the Black Box FP adjoint, which runs exactly 66 iterations by construction, we

have only one point on figure 3.20. For the Two-Phases adjoint, we have a curve as the

error decreases as iterations go. It takes only 46 iterations to reach the same accuracy

(7.8 ∗ 10−5) as the Black Box FP adjoint. Moreover, as we left the Two-Phases adjoint

converge further, we actually reach a slightly better accuracy. We explain this by the

fact that the adjoint is computed using only the fully converged values.
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Figure 3.20: Error measurements of both Black Box and Two-Phases adjoint methods

Notice however that the principal benefit of the Two-Phases method is not about ac-

curacy nor run time but about reduction of the memory consumption, since the inter-

mediate values are stored only during the last forward iteration. The peak stack space

used by the Two-Phases adjoint is 60 times smaller than the space used by the Black

Box adjoint (10.1 Mbytes vs. 605.5 Mbytes).

3.7.2 Experiment on nested FP loops

We chose an algorithm that solves for u in an equation similar to a heat equation, with

the form :

−∆u+ u3 = F (3.21)

where F is given. The solving algorithm uses two nested Fixed-Point resolutions.

• On the outside is a (pseudo)-time integration, considering that u evolves with time

towards the stationary solution u(∞), following the equation:

u(t+ 1)− u(t)

∆t
−∆u(t+ 1) + u3(t) = F (3.22)
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y=1
u= y . ∂∂u f (u)
y=0

uold=u
b=g(u , F )
v=const

Dowhile (||u−uold||
2>ϵ)

vold=v
v=Jacobi(v ,M ,b)

Dowhile (||v−vold||
2>ϵ)

u=v

y=f (u)

uold=u
b=g(u , F ); inCount=0
v=const

Dowhile (||u−uold||
2>ϵ)

vold=v
v=Jacobi(v ,M ,b)
push(intermediate variables∈Jacobi)
inCount=inCount+1

Dowhile (||v−vold||
2>ϵ)

u=v
push(intermediate variables∈g)
count=count+1

y=f (u)

pop(intermediate variables∈g)
v=u+v
u=0

Doi=1,count

pop (v k+1+intermediate variables∈Jacobi)
v=v . ∂

∂ v Jacobi(v ,M ,b)
b=v . ∂

∂b Jacobi(v ,M ,b)+b

Do j=1, inCount

v=0
u=b . ∂

∂u g(u , F )+u

F=b . ∂
∂F g(u , F)+F

b=0

Forward Sweep

Backward Sweep

(a) (b)

count=0

Figure 3.21: (a) An algorithm that contains a nested structure of FP loops. The
initial guess of the inner loop is constant during the iterations of the outer loop. (b)

The Black Box approach applied to this algorithm

• On the inside is the resolution of the implicit equation for v(t+ 1) (where v is an

intermediate variable) as a function of v(t) and F . This resolution uses a Jacobi

iteration method, which results in another Fixed-Point algorithm.

This algorithm is sketched in figure 3.21 (a). In figure 3.21 (a), the function g computes

for each u and F the value u
∆t − u

3 + F , the matrix M is defined as M = 1
∆t −∆ and

the function Jacobi solves for v in the equation M ∗ v = b. The initial guess of the inner

loop (represented by dashed rectangle) is set constant over the outer iterations, i.e. we

placed the instruction v = const at the entry of the inner loop.

We differentiated the algorithm with the Black Box adjoint as well as with the Two-

Phases adjoint. To trigger, the Two-Phases adjoint, we placed the FP directive before

both loops. Figure 3.21 and 3.22 show the application of respectively the Black Box

adjoint and the Two-Phases adjoint on the nested FP loops. For clarity sake, we apply
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uold=u
b=g(u , F )

store (intermediate variables∈g)
v=const

u=v

y=1
u= y . ∂∂u f (u)
uorig=u ;wx=u

restore(intermediate variables∈g)
wxold=wx
v=wx+v
wx=0
vorig=v ;w=v

Dowhile (||wxold−wx||
2>||wxold||

2 .ϵ)

restore(intermediate variables∈Jacobi)
wold=w
w=w . ∂

∂ v Jacobi(v ,M ,b)
w=w+vorig

Dowhile (||wold−w||2>||wold||
2 .ϵ)

v=0
wx=b . ∂

∂u g(u , F)+wx
b=0
wx=wx+uorig

vold=v
v=Jacobi(v ,M ,b)
store (intermediate variables∈Jacobi)

Forward Sweep

Backward Sweep

restore(intermediate variables∈Jacobi)
b=w . ∂

∂b Jacobi(v ,M ,b)+b

(a) (b)

uold=u
b=g(u , F )
v=const

Dowhile (||u−uold||
2>ϵ)

vold=v
v=Jacobi(v ,M ,b)

Dowhile (||v−vold||
2>ϵ)

u=v

y=f (u)

uold=u
b=g(u , F )
v=const

Dowhile (||u−uold||
2>ϵ)

vold=v
v=Jacobi(v ,M ,b)

Dowhile (||v−vold||
2>ϵ)

u=v

vold=v
v=Jacobi(v ,M ,b)

Dowhile (||v−vold||
2>ϵ)

restore(intermediate variables∈g)
restore(intermediate variables∈Jacobi)
b=w . ∂

∂b Jacobi(v ,M ,b)+b

F=b . ∂
∂u g(u , F)+F

Figure 3.22: (a) An algorithm that contains a nested structure of FP loops. The
initial guess of the inner loop is constant during the iterations of the outer loop. (b)

The Two-Phases approach applied to this algorithm
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in figure 3.22 the Two-Phases adjoint as it is described in the theory, i.e. as it is described

in subsection 3.2.6, and not as it is implemented in our AD tool. We recall that in our

implementation of the Two-Phases adjoint we do not use the intermediate adjoint set

of variables w. This has been explained in subsection 3.5.3.2. To apply the Two-Phases

adjoint, we introduced, thus, in figure 3.21 (b), two intermediate variables: w which

represents the state of the inner adjoint loop and wx which represents the state of the

outer adjoint loop. For our needs, we chose the stopping criterion of the inner adjoint

loop so that it tests at each iteration if ||wold−w||2 ≤ ||wold||2.ε with ||..|| is the euclidean

norm and and wold is w computed at previous iteration. Similarly, the stopping criterion

of the outer adjoint loop tests at each iteration if ||wxold−wx||2 ≤ ||wxold||2.ε with wxold

is wx computed at previous iteration.

We compared performance of the code that uses the Two-Phases adjoint with the one

that uses the Black Box adjoint. Performance comparison is made difficult by the fact

that the two algorithms do not produce the same result: only the Two-Phases adjoint

has a stopping criterion that ensures actual stationarity of the adjoint. We observe that

the Two-Phases adjoint iterates slightly fewer times than the Black Box one:

• number of iterations in the outside adjoint FP loop is 289 instead of 337.

• number of iterations in the inside adjoint FP loops is uniformally 34 instead of an

average of 44.

However the result is less accurate than with the Black Box adjoint, although inside

the prescribed accuracy of 10−15. In other words the Black Box adjoint, being forced

to iterate more than necessary for the prescribed accuracy, actually produces a more

accurate value. Accuracy is estimated by comparison to a result obtained with a much

smaller stationarity criterion (10−40). We then took an alternate viewpoint, forcing the

Two-Phases adjoint to iterate as much as the Black Box adjoint and examining the

accuracy of the result. The result of the Black Box adjoint deviates from the reference

result by 2.1∗10−5%. The result of Two-Phases adjoint adjoint deviates by 1.1∗10−5%.

These results are similar to those obtained in section 3.7.1. Again, this may be explained

by the fact that the Two-Phases adjoint is computed using only the fully converged

values. In this experiment, the major improvement is about the reduction of memory

consumption. The peak stack space used by the Black Box adjoint is about 86 Kbytes,

whereas the Two-Phases adjoint adjoint uses only a peak stack size of 268 bytes.
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y=1
u= y . ∂∂u f (u)
y=0

uold=u
b=g(u , F )

Dowhile (||u−uold||
2>ϵ)

vold=v
v=Jacobi(v ,M ,b)

Dowhile (||v−vold||
2>ϵ)

u=v

y=f (u)

uold=u
b=g(u , F ); inCount=0

Dowhile (||u−uold||
2>ϵ)

vold=v
v=Jacobi(v ,M ,b)
push(intermediate variables∈Jacobi)
inCount=inCount+1

Dowhile (||v−vold||
2>ϵ)

u=v
push(intermediate variables∈g)
count=count+1

y=f (u)

pop(intermediate variables∈g)
v=u+v
u=0

Doi=1,count

pop (v k+1+intermediate variables∈Jacobi)
v=v . ∂

∂ v Jacobi(v ,M ,b)
b=v . ∂

∂b Jacobi(v ,M ,b)+b

Do j=1, inCount

u=b . ∂∂u g(u , F )+u
F=b . ∂

∂F g(u , F)+F
b=0

Forward Sweep

Backward Sweep

(a) (b)

count=0

Figure 3.23: (a) An algorithm that contains a nested structure of FP loops with
a smart initial guess for the inner loop. (b) The Black Box adjoint applied to this

algorithm

3.7.2.1 Smart initial guess for the inner loop

We will now look at the choice of the initial guess. We modified the initial guess of

the inner loop so that it holds the value of the state computed by the same loop at the

previous outer iteration. To do so, we omit the instruction v = const situated at the

beginning of the inner loop, see figures 3.21 (a) and 3.23 (a), since in our example the

variable v is never modified outside the inner loop.

As result, the original program iterates fewer than in the case where the initial guess is

constant over the outer iterations. Actually the total number of inner iterations, which

is the sum of the number of inner iterations over the outer iterations, is 8788 instead

of 14491. We call this initial guess “smart initial guess” since it reduces the number of

inner iterations without reducing the accuracy of the final results.



Chapter 2. Efficient Adjoint of Fixed-Point Loops 84

uold=u
b=g(u , F )

store(intermediate variables∈g)

u=v

y=1
u= y . ∂∂u f (u)
uorig=u ;wx=u

restore(intermediate variables∈g)
wxold=wx
v=wx+v
wx=0
vorig=v ;w=v

Dowhile (||wxold−wx||
2>||wxold||

2 .ϵ)

restore(intermediate variables∈Jacobi)
wold=w
w=w . ∂

∂ v Jacobi(v ,M ,b)
w=w+vorig

Dowhile (||wold−w||2>||wold||
2 .ϵ)

wx=b . ∂
∂u g(u , F)+wx

b=0
wx=wx+uorig

vold=v
v=Jacobi(v ,M ,b)
store (intermediate variables∈Jacobi)

Forward Sweep

Backward Sweep

restore(intermediate variables∈Jacobi)
b=w . ∂

∂b Jacobi(v ,M ,b)+b

(a) (b)

uold=u
b=g(u , F )

Dowhile (||u−uold||
2>ϵ)

vold=v
v=Jacobi(v ,M ,b)

Dowhile (||v−vold||
2>ϵ)

u=v

y=f (u)

uold=u
b=g(u , F )

Dowhile (||u−uold||
2>ϵ)

vold=v
v=Jacobi(v ,M ,b)

Dowhile (||v−vold||
2>ϵ)

u=v

vold=v
v=Jacobi(v ,M ,b)

Dowhile (||v−vold||
2>ϵ)

restore(intermediate variables∈g)
restore(intermediate variables∈Jacobi)
b=w . ∂

∂b Jacobi(v ,M ,b)+b

F=b . ∂
∂u g(u , F)+F

Figure 3.24: (a) An algorithm that contains a nested structure of FP loops with
a smart initial guess for the inner loop. (b) The Two-Phases adjoint applied to this

algorithm
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By construction, the Black Box adjoint performs also 8788 inner iterations. Contrary to

expectations, see subsection 3.2.1, this reduction of number of iterations did not reduce

the accuracy of the final gradient. Actually, the Black Box adjoint with the smart

initial guess for the original inner loop performs slightly better, i.e. it deviates from the

reference result by 2.0∗10−5 % whereas the Black Box adjoint with the non-smart initial

guess deviates by 2.1 ∗ 10−5 %. This may be explained by the fact that when the initial

guess of the inner loop is smart, i.e. it depends on the value of the state, v, computed

by the same loop at the previous outer iteration, the initial guess of the inner adjoint

loop becomes smart as well, i.e. it depends on the adjoint of the state, v, computed by

the same loop at the previous outer iteration.

Actually, We see in figures 3.21 and 3.23 that by construction, the initial guess of the

inner adjoint loop (represented by dashed rectangle) is the sum of the values of u and v

which are the adjoints of respectively u and v computed at the previous iteration.

In figure 3.21 (a), we place the instruction v = const above the inner loop, to express

that the initial guess of this loop is constant over the outer iterations. Since the adjoint

of the instruction v = const is by definition the instruction v = 0, see figure 3.21 (b),

the initial guess of the inner adjoint loop which is the sum of u and v depends in this

case only on u. This means that in the Black Box adjoint, when the initial guess of the

original inner loop is independent from the state computed by this loop at the previous

iteration, the initial guess of the inner adjoint loop becomes independent as well from

the adjoint of the state computed by the adjoint loop at the previous iteration.

We notice that we are talking about the direct dependency here. Actually, in our case u

depends on b which depends on its side on v computed inside the inner adjoint loop. This

means that the initial guess of the adjoint inner loop depends indirectly on v. However,

this type of dependency is not the subject of our discussion here.

In figure 3.23 (a), there is no instruction that express the stationarity of the initial guess

over the outer iterations, i.e. the instruction v = const does not appear. Consequently,

see figure 3.23 (b), the value of the adjoint of the state is not null any more at the exit

of the adjoint inner loop, i.e. there is no instruction v = 0 after the adjoint inner loop.

Thus, in this case, the initial guess of the inner adjoint loop which is the sum of the

values of u and v depends on the value of v computed inside the adjoint inner loop at the

iterations before. This means that in the Black Box adjoint, when the initial guess of the

original inner loop depends on the state computed by this loop at the previous iteration,

the initial guess of the inner adjoint loop becomes dependent as well on the adjoint of

the state computed by the adjoint loop at the previous iteration. This explains why in

this experiment the reduction of the number of iterations did not reduce the accuracy

of the final gradient. We say here that in the Black Box adjoint, the initial guess of the

adjoint loop inherits the smartness of the initial guess of the original one.
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Unlike the Black Box adjoint, the Two-Phases adjoint performs exactly the same number

of iterations as in the case where the inner loop of the original program has no smart

initial guess, i.e. the total number of inner iterations is 10132 . The accuracy of the final

gradient remains unchanged as well, i.e. it deviates from the reference by 1.2 ∗ 10−4 %.

This result, however, may be explained by the fact that, in this case, the initial guess of

the inner adjoint loop did not inherit the smartness of the initial guess of the original

inner loop as it is the case of the Black Box adjoint. The main reason behind it, is that

inside the adjoint loop, the Two-Phases approach does not compute the adjoint of the

state, i.e. it does not compute the real v, but rather an intermediate variable that is

similar to it, i.e. it computes w.

Actually, as recommended in subsection 3.2.6, we set the initial guess of the inner adjoint

loop of the Two-Phases adjoint so that it holds the value of v resulting from the upstream

computations, see figures 3.22 (b) and 3.24 (b). In our case, the value of v is the sum of

the values of v and wx computed at the previous outer iteration. We see in figure 3.24 (b),

that v is never modified inside the adjoint inner loop, i.e. inside the adjoint inner loop

we compute rather the set of intermediate variables w. This means that at each outer

iteration, the initial guess of the inner adjoint loop (represented by dashed rectangle)

depends mainly on wx computed at the previous iteration. Consequently, the initial

guess of the adjoint inner loop does not depend on w computed inside the adjoint inner

loop. This behavior is clearly different from the one of the Black Box approach where

the initial guess of the inner adjoint loop depends on the value of v computed by this

loop at the previous outer iteration. This may explain why in the case of the Two-

Phases adjoint, setting a smart initial guess for the original inner loop did not improve

the accuracy of the final gradient as it is the case of the Black Box adjoint.

We may notice here, that when the initial guess of the original inner loop is constant

over the outer iterations, see figure 3.22, the initial guess of the inner adjoint loop of

the Two-Phases adjoint does not depend as well on the value of w computed inside the

adjoint inner loop.

At the end, we may see that when the inner loop of our original program has a a smart

initial guess that takes advantage from the computations just before, applying the Black

Box adjoint is more efficient in terms of number of iterations as well as in terms of

accuracy than applying the Two-Phases adjoint, i.e. number of inner iterations 8788 vs

10132 and deviation from the reference 2 ∗ 10−5 % vs 1.2 ∗ 10−4 %.

3.7.2.2 Smart initial guess for the Two-Phases adjoint

We saw in subsection 3.7.2.1, that when the initial guess of the original inner loop

uses the value of the state from the previous outer iteration, the initial guess of the
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y=1
u= y . ∂∂u f (u)

uorig=u ;wx=u

restore(intermediate variables∈g)
wxold=wx
v=wx+v
wx=0
vorig=v ; w=v+wConverged

Dowhile (||wxold−wx||2>||wxold||
2 .ϵ)

restore(intermediate variables∈Jacobi)
wold=w
w=w . ∂

∂ v Jacobi(v ,M ,b)

wConverged=w
w=w+vorig

Dowhile (||wold−w||2>||wold||
2 .ϵ)

wx=b . ∂∂u g(u , F)+wx
b=0
wx=wx+uorig

restore(intermediate variables∈Jacobi)
b=w . ∂

∂b Jacobi(v ,M ,b)+b

restore(intermediate variables∈g)
restore(intermediate variables∈Jacobi)
b=w . ∂

∂b Jacobi(v ,M ,b)+b

F=b . ∂
∂u g(u , F)+F

Figure 3.25: The backward sweep of the Two-Phases adjoint with a smart initial
guess for the inner adjoint loop. The Two-Phases adjoint is applied on a nested structure

of FP loops in which the inner loop has a smart initial guess.

adjoint inner loop of the Black Box approach uses, consequently, the value of the adjoint

of the state from the previous outer iteration. The initial guess is considered here as

smart because it takes advantages from the previous computations. Along these lines,

we define a smart initial guess for the inner adjoint loop of the Two-Phases adjoint.

This new initial guess does not use only the value of v resulting from the upstream

computations, as it is the case in the figures 3.22 (b) and 3.24 (b), but also the value of

the intermediate variable w computed inside the inner adjoint loop. More precisely, the

new initial guess is the sum of the values of v and wConverged, which is a new variable

that holds the converged value of w, see figure 3.25.

As results, the new initial guess has decreased the total number of inner iterations by

almost half, i.e. 5219 instead of 10132 and slightly improved the accuracy of the final

gradient, i.e. the deviation from the reference is 1.0 ∗ 10−4 % instead of 1.2 ∗ 10−4 %.

These results are obtained by applying the Two-Phases adjoint on the original program

whatever the initial guess of its inner loop is, i.e. we have the same results whether we

apply the Two-Phases adjoint on the original program with a smart initial guess for the

inner loop or we apply this Two-Phases adjoint on the original program with a constant

initial guess for the inner loop.
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Black Box adjoint Two-Phases adjoint Two-Phases adjoint
with smart initial guess
for the inner adjoint loop

Original Iterations: 14491 Iterations: 10132 Iterations: 5219
program Deviation: 2.1 ∗ 10−5 % Deviation: 1.2 ∗ 10−4 % Deviation: 10−4 %

If iterations = 14491 then If iterations = 14491 then
deviation = 1.1 ∗ 10−5 % deviation = 10−5 %

Original Iterations: 8788 Iterations: 10132 Iterations: 5219
program Deviation: 2 ∗ 10−5 % Deviation: 1.2 ∗ 10−4 % Deviation: 10−4 %
with smart
initial guess If iterations = 8788 then If iterations = 8788 then
for the inner deviation = 3.4 ∗ 10−3 % deviation = 9.8 ∗ 10−6 %
loop

Table 3.1: Results of applying Black Box and Two-Phases approach on a nested
structure of FP loops

Table 3.1 summarizes the results of the Black Box adjoint, the Two-Phases adjoint

without smart initial guess for the inner adjoint loop and the Two-Phases adjoint with

the smart initial guess in the different cases. In this table, we see that the Two-Phases

adjoint with the smart initial guess is the most efficient in terms of accuracy. For

instance, when the original program has a smart initial guess for the inner loop and for

the same number of iterations 8788, the Two-Phases adjoint deviates from the reference

of 3.4∗10−3 %, the Black Box adjoint deviates of 2∗10−5 % and the Two-Phases adjoint

with the smart initial guess for the inner adjoint loop deviates of 9.8 ∗ 10−6 %.

3.8 Conclusion and further work

We are seeking to improve performance of adjoint codes produced by the adjoint mode

of Automatic Differentiation in the frequent case of Fixed-Point loops, for which several

authors have proposed adapted adjoint strategies. We explained why we consider the

strategy initially proposed by Christianson as the best suited for our needs. In this

chapter we described the way we implemented this strategy our the AD tool Tapenade.

We experimented this strategy on a some a real medium size code and quantified its

benefits, which are marginal in terms of run-time, and significant in terms of memory

consumption. We studied the related question of the initial guess in the case of nested

iterations.

There are a number of questions that might be studied further to achieve better results

and wider applicability:
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Theoretical numerical analysis papers discuss the question of the best stopping criterion

for the adjoint fixed point loop. However these criteria seem far too theoretical for an

automated implementation. In this implementation, the stopping criterion of the adjoint

loop is reasonable, but so far arbitrary. It might be interesting if we could in the future

derive it mechanically from the original loop’s stopping criterion, perhaps using software

analysis rather than numerical analysis.

In many applications, the FP loop is enclosed in another loop and the code takes ad-

vantage of this to use the result of the previous FP loop as a smart initial guess for the

next FP loop. We believe that the adjoint FP loop can use a similar mechanism, even

if the variable w is not clearly related to some variable of the original code. We made

such experiments by reusing the previous w, see subsection 3.7.2.2. The number of inner

adjoint iterations has been decreased by almost half. It might be interesting to study

the choice of the adjoint loop initial guess in the general case of nested structures of FP

loops.

We have stated a number of restrictions on the structure of candidate FP loops. These

are sufficient conditions, but we believe that some restrictions on the shape of FP loops

can be lifted at the cost of some loop transformation. The request that the flow of

control becomes stationary at the end of the FP loop is essential, and we have no means

of checking it statically in general on the source. However, it might be interesting to

check it at run-time.

In section 3.5.5 we studied the two repeated separate data-flow analyses that optimize

the code generation, for each of the two phases of the Fixed-Point adjoint. The existing

manual implementations of this same algorithm that we know, e.g. the compressible

discrete adjoint solver of Queen Mary University Of London Mgopt [9], do not go to this

level of refinement. In general, they just apply AD twice on the loop body, with a simpler

specification of the dependent and independent. We believe that these implementations

could be improved by reusing the analysis that we provided.

This adjoint FP loop strategy is for us a first illustration of the interest of differenti-

ating a given piece of code (i.e. φ) twice, with respect to different sets of independent

variables. This is a change from our tool’s original choice, which is to maintain only one

differentiated version of each piece of code and therefore to generalize activity contexts

to the union of all possible run time activity contexts. Following in this direction, a

recent development in our tool allows the user to request many specialized differenti-

ated versions of any given subroutine. This development is another benefit from the

AboutFlow European project which funded this thesis, as it was implemented mostly

by AboutFlow student (Jan Hückelheim) from Queen Mary University Of London. An

article describing the results is in preparation.



Chapter 4

Checkpointing Adjoint

MPI-Parallel Programs

4.1 Introduction

Many large-scale computational science applications are parallel programs based on

Message-Passing, implemented for instance by using the MPI message passing li-

brary [52]. These programs (called “MPI programs”) consist of one or more processes

that communicate through message exchanges.

In most attempts to apply checkpointing to adjoint MPI codes (the “popular” approach),

a number of restrictions apply on the form of communications that occur in the check-

pointed piece of code. In many works, these restrictions are not explicit, and an appli-

cation that does not respect these restrictions may produce erroneous results.

In this chapter, we focus on MPI parallel programs with point-to point communications.

We propose techniques to apply checkpointing to these programs, that either do not

impose these restrictions, or explicit them so that the end users can verify their applica-

bility. These techniques rely on both adapting the snapshot mechanism of checkpointing

and on modifying the behavior of communication calls. We prove that these techniques

preserve the semantics of adjoint code. We experiment these techniques on representa-

tive codes and we discuss their efficiency in terms of time and memory consumption.

4.1.1 Adjoint MPI parallel programs

There have been several works on AD of MPI parallel programs in general [33], [8], [32]

and on the adjoint mode in particular [41], [54]. One point to point communication

90
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send(a)/recv(b), in which the variable a holds the sent value and the variable b holds

the received value, may be considered equivalent to the assignment statement b = a. We

saw in chapter 2 that the adjoint statements corresponding to b = a are a = a+b; b = 0.

Following similar analogy, one may consider the statement a = a + b equivalent to a

point to point communication send(b)/recv(temp), in which temp is an intermediate

variable that holds the received value, followed by an increment of a by the value of

temp, i.e. a+ = temp. Consequently, we may express:

• the adjoint of the receiving call recv(b) as a send of the corresponding adjoint

value followed by a reset of the value of b , i.e. recv(b) = send(b) ; b = 0.

• the adjoint of the sending call send(a) as a receive of the corresponding adjoint

value followed by an increment of a by temp, i.e., send(a) = recv(tmp) ; a+ =

temp

We may consider the blocking call send(a) equivalent to the non blocking call

isend(a, r) followed by its wait(r). This means that the adjoint statements corre-

sponding to isend(a, r); wait(r) are recv(tmp); a+ = temp. Since the blocking call

recv(tmp) may be considered as well equivalent to the non blocking call irecv(temp, r)

followed by its wait (r), the adjoint corresponding to the statements isend(a, r);

wait(r) become irecv(temp, r); wait(r); a+ = temp.

Similarly, one may consider the blocking call recv(b) equivalent to the non blocking

call irecv(b, r) followed by its wait(r). Following the same steps as in the case of

the non blocking send, we may find that the adjoint corresponding to the statements

irecv(b, r); wait(r) are isend(b, r); wait(r); b = 0. Since the adjoint mode is per-

formed in the reverse order of the original program, we may express, thus:

• the adjoint of the non blocking receiving call irecv(b, r) as: wait(r);b = 0

• the adjoint of the non blocking sending call isend(a, r) as: wait(r); a+ = temp

• the adjoint of a waiting call wait(r) that is paired with an isend(a, r) as:

irecv(temp, r)

• the adjoint of a waiting call wait(r) that is paired with an irecv(b, r) as:

isend(b, r).

A framework that formally proves these rules as well as the rules for adjoining other

MPI routines can be found in [41]. In practice, a library called Adjoinable MPI (AMPI)

library [54], [48] has been developed in order to make the automatic generation of the

adjoint possible in the case of MPI parallel programs. An interface for this library has
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already been developed in the operator overloading AD tool dco [49], [53] and under

development in our AD tool Tapenade [44]. Further details about this library can be

found in subsection 4.5.1.1.

4.1.2 Communications graph of adjoint MPI programs

isend
Process1:

send wait recv

Process 2:
recv sendrecv

isend

Process 1:

send wait recv

Process 2:
recv sendrecv

isend
=wait

send 
=recv

wait
=irecv

  
recv 
=send

recv
=send

send
= recv

recv
=send

P⃗P

P

⃗

(a) (b)

Process 1:

Process 2:

Figure 4.1: (a) Communications graph of an MPI parallel program with two pro-
cesses. Thin arrows represent the edges of the communications graph and thick arrows
represent the propagation of the original values by the processes. (b) Communications
graph of the corresponding adjoint MPI parallel program. The two thick arrows in the
top represent the forward sweep, propagating the values in the same order as the orig-
inal program, and the two thick arrows in the bottom represent the backward sweep,
propagating the gradients in the reverse order of the computation of the original values.

One commonly used model to study message-passing is the communications graph [[52],

pp. 399–403], which is a directed graph (see figure 4.1 (a)) in which the nodes are the

MPI communication calls and the arrows are the dependencies between these calls. Calls

may be dependent because they have to be executed in sequence by a same process, or

because they are matching send and recv calls in different processes.

• The arrow from each send to the matching recv (or to the wait of the matching

isend) reflects that the recv (or the wait) cannot complete until the send is done.

Similarly, the arrow from each recv to the matching send (or to the wait of the

matching irecv) reflects that the send will block until the recv is done.

• The arrows between two successive MPI calls within the same process reflect the

dependency due to the program execution order, i.e. instructions are executed

sequentially. In the sequel, we will not show these arrows.
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A central issue for correct MPI programs is to be deadlock free. Deadlocks are cycles in

the communications graph.

Given a program P , we denote by
−→
P the forward sweep and

←−
P the backward sweep

of its adjoint P . Since the adjoint of a sending call is a receive of its corresponding

adjoint and vice versa, the adjoint code performs a communication of the adjoint value

(called “adjoint communication”) in the opposite direction of the communication of the

primal value, which is what should be done according to the AD model. This creates

in the backward sweep
←−
P a new graph of communications (see figure 4.1 (b)), that has

the same shape as the communications graph of the original program, except for the

inversion of the direction of arrows. This implies that if the communications graph of

the original program is acyclic, then the communications graph of
←−
P is also acyclic.

Since the forward sweep
−→
P is essentially a copy of the original program P with the same

communications structure, the communications graphs of
−→
P and

←−
P are acyclic if the

communications graph of P is acyclic. Since we observe in addition that there is no

communication from
−→
P to

←−
P , we conclude that if P is deadlock free, then P =

−→
P ;
←−
P is

also deadlock free.

4.1.3 Checkpointing

DC

⃗

D⃗C

DC⃗

C

U

U⃗

U

⃗ ⃗

⃗⃗

⃗

C⃗ D⃗U⃗
depth= 0

depth= 1

depth= 2

(a) (b) (c)

Figure 4.2: (a) A sequential adjoint program without checkpointing. (b) The same
adjoint program with checkpointing applied to the part of code C. The thin arrow
reflects that the first execution of the checkpointed part of code C does not store the
intermediate values in the stack. (c) Application of the checkpointing mechanism on
two nested checkpointed parts. The checkpointed parts are represented by dashed

rectangles.

Storing all intermediate values in the forward sweep of the adjoint consumes a lot of

memory space. In the case of serial programs, the most popular solution is the “check-

pointing” mechanism. This mechanism was briefly introduced in Chapter 2. In this

chapter, we detail further this mechanism with the objective of introducing some of the

notations that will be used in the sequel.

Checkpointing is best described as a transformation applied with respect to a piece of

the original code (a “checkpointed part”). For instance figure 4.2 (a) and (b) illustrate

checkpointing applied to the piece C of a code, consequently written as U ;C;D.
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On the adjoint code of U ;C;D (see figure 4.2 (a)), checkpointing C means in the forward

sweep not storing the intermediate values during the execution of C. As a consequence,

the backward sweep can execute
←−
D but lacks the intermediate values necessary to ex-

ecute
←−
C . To cope with that, the code after checkpointing (see figure 4.2 (b)) runs the

checkpointed piece again, this time storing the intermediate values. The backward sweep

can then resume, with
←−
C then

←−
U . In order to execute C twice (actually C and later

−→
C ), one must store (a sufficient part of) the memory state before C and restore it before
←−
C . This storage is called a snapshot, which we represent on figures as a • for taking a

snapshot and as a ◦ for restoring it. Taking a snapshot “•” and restoring it “◦” have

the effect of resetting a part of the machine state after “◦” to what it was immediately

before “•”. We will formalize and use this property in the demonstrations that follow.

To summarize, for original code U ;C;D, whose adjoint is
−→
U ;
−→
C ;
−→
D ;
←−
D ;
←−
C ;
←−
U , check-

pointing C transforms the adjoint into
−→
U ; •;C;

−→
D ;
←−
D ; ◦;

−→
C ;
←−
C ;
←−
U .

The benefit of checkpointing is to reduce the peak size of the stack in which intermediate

values are stored: without checkpointing, this peak size is attained at the end of the

forward sweep, where the stack contains kU ⊕ kC ⊕ kD, where kX is the values stored by

code X and ⊕ is a non commutative operator that reflects adding values to the stack. In

contrast, the checkpointed adjoint reaches two maxima kU ⊕•⊕kD after
−→
D and kU ⊕kC

after
−→
C . The cost of checkpointing is twofold: the snapshot must be stored, generally

on the same stack. Obviously, one will apply checkpointing only when the size of the

snapshot is much smaller than kC . The other part of the cost is that C is executed

twice, thus increasing run time.

4.1.4 Checkpointing on MPI adjoints

Checkpointing MPI parallel programs is restricted due to MPI communications. In

previous works, the “popular” checkpointing approach has been applied in such a way

that a checkpointed piece of code always contains both ends of each communication it

performs. In other words, no MPI call inside the checkpointed part may communicate

with an MPI call which is outside. Furthermore, non-blocking communication calls

and their corresponding waits must be both inside or both outside of the checkpointed

part. This restriction is often not explicitly mentioned. However, if only one end of

a point to point communication is in the checkpointed part, then the above method

will produce erroneous code. Consider the example of figure 4.3 (a), in which only the

send is contained in the checkpointed part. The checkpointing mechanism duplicates the

checkpointed part and thus duplicates the send. As the matching recv is not duplicated,

the second send is blocked. The same problem arises if only the recv is contained in

the checkpointed part (see figure 4.3 (b)). The duplicated recv is blocked. Figure 4.3
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send

recv

send?

isend wait

wait

wait

wait

isend

?

Process:

(c)

Process 1:

Process 2:

send

recv

recv

send

recv?

Process 2:

Process 1:

recv

send

(b)(a)

Figure 4.3: Three examples of careless application of checkpointing to MPI programs,
leading to wrong code. For clarity, we separated processes: process 1 on top and
process 2 at the bottom. In (a), an adjoint program after checkpointing a piece of
code containing only the send part of point-to-point communication. In (b), an adjoint
program after checkpointing a piece of code containing only the recv part of point-to-
point communication. In (c), an adjoint program after checkpointing a piece of code

containing a wait without its corresponding non blocking routine isend.

(c) shows the case of a non-blocking communication followed by its wait, and only the

wait is contained in the checkpointed part. This code fails because the repeated wait

does not correspond to any pending communication.

We propose techniques that adapt checkpointing to MPI programs, focusing on point-

to-point communications. These techniques either do not impose restrictions on the

form of communications that occur in the checkpointed part of code, or explicit them so

that the end user can verify their applicability. One technique is based on logging the

values received, so that the duplicated communications need not take place. Although

this technique completely lifts restrictions on checkpointing MPI codes, message log-

ging makes it costly. However, we can refine this technique to replace message logging

with communications duplication whenever it is possible, so that the refined technique

now encompasses the popular approach. In section 4.2, we give a proof framework for

correction of checkpointed MPI adjoint, that will give some sufficient conditions on the

MPI adapted checkpointing technique so that the checkpointed adjoint is correct. In

section 4.3, we introduce our MPI adapted checkpointing technique based on message

logging. We prove that this technique respects the assumptions of section 4.2 and thus

that it preserves the semantics of the adjoint code. In section 4.4, we show how this

technique may be refined by re-sending messages, in order to reduce the number of values

stored in memory. We prove that the refinement we propose respects the assumptions

of section 4.2 and thus that it preserves the semantics of the adjoint code as well. In

section 4.5, we propose an implementation of our refined technique inside the AMPI

library. In section 4.6 and 4.7, we discuss practical questions about the choice of the

combination of techniques to be applied within a checkpointed part and the choice of the

checkpointed part itself. In section 4.8, we experiment our refined technique on repre-

sentative codes in which we perform various choices of checkpointed parts. We quantify
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the expenses in terms of memory and number of communications for each resulting

checkpointed adjoint.

4.2 Elements Of Proof

We propose adaptations of the checkpointing method to MPI adjoint codes, so that

it provably preserves the semantics [51] of the resulting adjoint code for any choice of

the checkpointed part. To this end, we will first give a proof framework of correction of

checkpointed MPI adjoints, that relies on some sufficient conditions on the MPI adapted

checkpointing method so that the checkpointed adjoint is correct.

On large codes, checkpointed codes are nested (see figure 4.2 (c)), with a nesting level

often as deep as the depth of the call tree. Still, nested checkpointed parts are obtained

by repeated application of the simple pattern described in figure 4.2 (b). Specifically,

checkpointing applies to any sequence of forward, then backward code (e.g.
−→
C ;
←−
C on

figure 4.2 (b)) independently of the surrounding code. Therefore, it suffices to prove

correctness of one elementary application of checkpointing to obtain correctness for every

pattern of nested checkpointed parts.

To compare the semantics of the adjoint codes without and with checkpointing, we define

the effect E of a program P as a function that, given an initial machine state σ, produces

a new machine state σnew = E(P, σ). The function E describes the semantics of P . It

describes the dependency of the program execution upon all of its inputs and specifies all

the program execution results. The function E is naturally defined on the composition

of programs by :

E((P1;P2), σ) = E(P2, E(P1, σ)).

When P is in fact a parallel program, it consists of several processes pi run in parallel.

Each pi may execute point-to-point communication calls. We will define the effect E
of one process p. To this end, we need to specify more precisely the contents of the

execution state σ for a given process, to represent the messages being sent and received

by p. We will call “R” the (partly ordered) collection of messages that will be received

(i.e. are expected) during the execution of p. Therefore R is a part of the state σ which

is input to the execution of p, and it will be consumed by p. It may well be the case

that R is in fact not available at the beginning of p. In real execution, messages will

accumulate as they are being sent by other processes. However, we consider R as a

part of the input state σ as it represents the communications that are expected by p.

Symmetrically, we will call “S” the collection of messages that will be sent during the

execution of p. Therefore, S is a part of the state σnew which is output by execution of
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p and it is produced by p.

We must adapt the definition of E for the composition of programs accordingly. We

explicit the components of σ as follows. The state σ contains:

• W , the values of variables

• R, the collection of messages expected, or “to be received” by p

• S, the collection of messages emitted by p

With this shape of σ, the form of the semantic function E and the rule of the composition

of programs become more complex. Definition of E on one process p imposes the prefix

Rp of R (the messages to be received) that is required by p and that will be consumed

by p. Therefore, the function E applies pattern matching on its R argument to isolate

this “expected” part. Whatever remains in R is propagated to the output R. Similarly,

SP denotes the suffix set of messages emitted by p, to be added to S. Formally, we will

write this as:

E(p, 〈W,RP ⊕R,S〉) = 〈W ′, R, S ⊕ SP 〉
To explicit the rule of code sequence, suppose that p runs pieces of code C and D in

sequence, with C expecting incoming received messages RC and D expecting incoming

received messages RD. Assuming that the effect of C on the state is:

E(C, 〈W,RC ⊕R,S〉) = 〈W ′, R, S ⊕ SC〉
and the effect of D on the state is:

E(D, 〈W ′, RD ⊕R,S〉) = 〈W ′′, R, S ⊕ SD〉,
then C;D expects received messages RC ⊕RD (for the appropriate concatenation oper-

ator ⊕) and its effect on the state is:

E(C;D, 〈W,RC ⊕RD ⊕R,S〉) = 〈W ′′, R, S ⊕ SC ⊕ SD〉.

Adjoint programs operate on two kinds of variables. On one hand, the variables of the

original primal code are copied in the adjoint code. In the state σ, we will note their

values “V ”. On the other hand, the adjoint code introduces new adjoint variables to

hold the derivatives. In the state σ, we will denote their values “V ”.

Moreover, adjoint computations with the store-all approach use a stack to hold the

intermediate values that are computed and pushed during the forward sweep
−→
P and

that are popped and used during the backward sweep
←−
P . We will denote the stack as

“k”. In the sequel, we will use a fundamental property of the stack mechanism of AD

adjoints, which is that when a piece of code has the shape
−→
P ;
←−
P , then the stack is the

same before and after this piece of code. To be complete, the state should also describe

the sent and received messages corresponding to adjoint values (see section 4.1.2). As

these parts of the state play a very minor role in the proofs, we will omit them. Therefore,
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we will finally split states σ of a given process as: σ = 〈V, V , k,R, S〉.
For our needs, we formalize some classical semantic properties of adjoint programs.

These properties can be proved in general, but this is beyond the scope of this paper.

We will consider these properties as axioms.

• Any “copied” piece of code X (for instance C) that occurs in the adjoint code

operates only on the primal values V and on the R and S communication sets, but

not on V nor on the stack. Formally, we will write:

E(X, 〈V, V , k,RX⊕R,S〉) = 〈Vnew, V , k,R, S⊕SX〉, with the output Vnew and SX

depending only on V and on RX .

• Any “forward sweep” piece of code
−→
X (for instance

−→
U ,
−→
C or

−→
D) works in the same

manner as the original or copied piece X, except that it also pushes on the stack

new values noted δkX , which only depend on V and RX . Formally, we will write:

E(
−→
X, 〈V, V , k,RX ⊕R,S〉) = 〈Vnew, V , k ⊕ δkX , R, S ⊕ SX〉

• Any “backward sweep” piece of code
←−
X (for instance

←−
U ,
←−
C or

←−
D), on one hand

operates on the adjoint variables V and, on the other hand, uses exactly the top

part of the stack δkX that was pushed by
−→
X . In the simplest AD model, δkX is

used to restore the values V that were held by the primal variables immediately

before the corresponding forward sweep
−→
X . There exists a popular improvement

in the AD model in which this restoration is only partial, restoring only a subset

of V to their values before
−→
X . This improvement called TBR, see subsection

2.3.4, guarantees that the non-restored variables have no influence on the following

adjoint computations and therefore need not be stored. The advantage of TBR

is to reduce the size of the stack. Without loss of generality, we will assume in

the sequel that the full restoration is used, i.e. no TBR is used. With the TBR

mechanism, the semantics of the checkpointed adjoint are preserved at least for

the output V so that this proof is still valid. Formally, we will write:

E(
←−
X, 〈V, V , k⊕δkX , R, S〉) = 〈Vnew, V new, k, R, S〉, where Vnew is equal to the value

V before running
−→
X (which is achieved by using δkX and V ) and V new depends

only on V , V and δkX .

• A “take snapshot” operation “•” for a checkpointed piece C does not modify V

nor V , expects no received messages, and produces no sent messages. It adds into

the stack enough values SnpC to permit a later re-execution of the checkpointed

part. Formally, we will write :

E(•, 〈V, V , k,R, S〉) = 〈V, V , k⊕SnpC , R, S〉, where SnpC is a subset of the values

in V , thus depending on only V .
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• A “restore snapshot” operation “◦” of a checkpointed piece C does not modify

V , expects no received messages and produces no sent messages. It pops from

the stack the same set of values SnpC that the “take snapshot” operation pushed

“onto” the stack. This modifies V so that it holds the same values as before the

“take snapshot” operation.

We introduce here the additional assumption that restoring the snapshot may (at

least conceptually) add some messages to the output value of R. In particular:

Assumption 1. The duplicated recvs in the checkpointed part will produce

the same values as their original calls.

Formally, we will write:

E(◦, 〈V, V , k ⊕ SnpC , R, S〉) = 〈Vnew, V , k,RC ⊕ R,S〉 where Vnew is the same as

V from the state input to the take snapshot.

Our goal is to demonstrate that the checkpointing mechanism preserves the semantics

i.e.:

Theorem 4.1. For any individual process p, for any checkpointed part C of p, (so

that p = {U ;C:D}), for any state σ and for any checkpointing method that respects the

Assumption 1:

E({
−→
U ;
−→
C ;
−→
D ;
←−
D ;
←−
C ;
←−
U }, σ) = E({

−→
U , •, C,

−→
D,
←−
D, ◦,

−→
C ,
←−
C ,
←−
U }, σ)

Proof. We observe that the non-checkpointed adjoint and the checkpointed adjoint share

a common prefix
−→
U and also share a common suffix

←−
C ;
←−
U . Therefore, as far as semantics

equivalence is concerned, it suffices to compare
−→
C ;
−→
D ;
←−
D with •, C,

−→
D,
←−
D, ◦,

−→
C .

Therefore, we want to show that for any initial state σ0 :

E({
−→
C ;
−→
D ;
←−
D}, σ0) = E({•, C,

−→
D,
←−
D, ◦,

−→
C }, σ0)

Since the semantic function E performs pattern matching on the R0 part of its σ0

argument, and the non-checkpointed adjoint has the shape {
−→
C ;
−→
D ;
←−
D}, R0 matches

the pattern RC ⊕RD ⊕R. Therefore, what we need to show writes as:

E({
−→
C ;
−→
D ;
←−
D}, 〈V0, V 0, k0, RC ⊕RD ⊕R,S0〉) =

E({•, C,
−→
D,
←−
D, ◦,

−→
C }, 〈V0, V 0, k0, RC ⊕RD ⊕R,S0〉)

We will call σ2, σ3 and σ6 the intermediate states produced by the non-checkpointed

adjoint (see figure 4.4 (a)). Similarly, we call σ′1, σ′2, σ′3, σ′4, σ′5, σ′6 the intermediate

states of the checkpointed adjoint (see figure 4.4 (b)). In other words: σ2 = E(
−→
C , σ0);
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Figure 4.4: (a) An adjoint program run on one process. (b) The same adjoint after
applying checkpointing to C. The figures show the locations (times) in the execution

for the successive states σi and σ′i.

σ3 = E(
−→
D,σ2); σ6 = E(

←−
D,σ3) and similarly σ′1 = E(•, σ0); σ′2 = E(C, σ′1); σ′3 = E(

−→
D,σ′2);

σ′4 = E(
←−
D,σ′3); σ′5 = E(◦, σ′4);

σ′6 = E(
−→
C , σ′5).

Our goal is to show that σ′6 = σ6. Considering first the non-checkpointed adjoint, we

propagate the state σ by using the axioms already introduced:

σ2 + E(
−→
C , σ0) = E(

−→
C , 〈V0, V0, k0, RC ⊕RD ⊕R,S0〉)

= 〈V2, V0, k0 ⊕ δkC , RD ⊕R,S0 ⊕ SC〉

with V2, SC and δkC depending only on V0 and RC . The operator + signifies renaming,

i.e. the left hand side of this operator is by definition equal to the right hand side.

σ3 + E(
−→
D,σ2) = E(

−→
D, 〈V2, V0, k0 ⊕ δkC , RD ⊕R,S0 ⊕ SC〉)

= 〈V3, V0, k0 ⊕ δkC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉

with V3, SD and δkD depending only on V2 and RD

σ6 + E(
←−
D,σ3) = E(

←−
D, 〈V3, V0, k0 ⊕ δkC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉)

= 〈V2, V6, k0 ⊕ δkC , R, S0 ⊕ SC ⊕ SD〉

with V2 and V 6 depending only on V3, V0 and δkD

Considering now the checkpointed adjoint, we propagate the state σ′, starting from

σ′0 = σ0 by using the axioms already introduced:

σ′1 + E(•, σ0) = E(•, 〈V0, V0, k0, RC ⊕RD ⊕R,S0〉)
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The snapshot-taking operation • stores a subset of the original values V0 in the stack

“SnpC”.

σ′1 = 〈V0, V0, k0 ⊕ SnpC , RC ⊕RD ⊕R,S0〉

σ′2 + E(C, σ′1) = E(C, 〈V0, V0, k0 ⊕ SnpC , RC ⊕RD ⊕R,S0〉)

The forward sweep of the checkpointed part
−→
C is essentially a copy of the checkpointed

part C. As the only difference between the two states σ′1 and σ0 is the stack k and both

C and
−→
C don’t need the stack during run time (

−→
C stores values in the stack, but doesn’t

use it), the effect of C on the state σ′1 produces exactly the same output values V2 and

the same collection of sent values SC as the effect of
−→
C on the state σ0 .

σ′2 = 〈V2, V0, k0 ⊕ SnpC , RD ⊕R,S0 ⊕ SC〉

The next step is to run
−→
D :

σ′3 + E(
−→
D,σ′2) = E(

−→
D, 〈V2, V0, k0 ⊕ SnpC , RD ⊕R,S0 ⊕ SC〉

The output state of
−→
D uses only the input state’s original values V and received values

R. As V and R are the same in both σ′2 and σ2, the effect of
−→
D on the state σ′2

produces the same variables values V3, the same collection of messages sent through

MPI communications SD and the same set of values stored in the stack δkD as the effect

of of
−→
D on the state σ2.

σ′3 = 〈V3, V0, k0 ⊕ SnpC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉

Then, the backward sweep starts with the backward sweep of D.

σ′4 + E(
←−
D,σ′3) = E(

←−
D, 〈V3, V0, k0 ⊕ SnpC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉

The output state of
←−
D uses only its input state’s original values V , the values of the

adjoint variables V and the values stored in the top of the stack δkD. As V , V and δkD

are the same in both σ′3 and σ3, the effect of
←−
D on the state σ′3 produces exactly the

same variables values V2 and the same values of adjoint variables V 6 as the effect of
←−
D
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on the state σ3.

σ′4 = 〈V2, V6, k0 ⊕ SnpC , R, S0 ⊕ SC ⊕ SD〉

σ′5 + E(◦, σ′4) = E(◦, 〈V2, V6, k0 ⊕ SnpC , R, S0 ⊕ SC ⊕ SD〉

The snapshot-reading operation ◦ overwrites V2 by restoring the original values V0.

According to Assumption 1, the snapshot-reading ◦ conceptually also restores the

collection of values that have been received during the first execution of the checkpointed

part RC .

σ′5 = 〈V0, V6, k0, RC ⊕R,S0 ⊕ SC ⊕ SD〉

σ′6 + E(
−→
C , σ′5) = E(

−→
C , 〈V0, V6, k0, RC ⊕R,S0 ⊕ SC ⊕ SD〉

The output state after
−→
C uses only on the input state’s values V and the received values

R. As V and R are the same in both σ′5 and σ0, the effect of
−→
C on the state σ′5 produces

the same original values V2 and the same set of values stored in the stack δkC as the

effect of
−→
C on the state σ0.

σ′6 = 〈V2, V6, k0 ⊕ δkC , R, S0 ⊕ SC ⊕ SD〉

Finally we have σ′6 = σ6.

We have shown the preservation of the semantics at the level of one particular process

pi. The semantics preservation at the level of the complete parallel program P requires

to show in addition that the collection of messages sent by all individual processes pi

matches the collection of messages expected by all the pi. At the level of the complete

parallel code, the messages expected by one process will originate from other processes

and therefore will be in the messages emitted by other processes.

This matching of emitted and received messages depends on the particular parallel com-

munication library used (e.g. MPI) and is driven by specifying communications, tags,

etc. Observing the non-checkpointed adjoint first, we have identified the expected re-

ceives and produced sends SU ⊕ SC ⊕ SD of each process. Since the non-checkpointed

adjoint is assumed correct, the collection of SU ⊕ SC ⊕ SD for all processes pi matches

the collection of RU ⊕RC ⊕RD for all process pi.

The study of the checkpointed adjoint for process pi has shown that it can run with the
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same expected receives RU ⊕ RC ⊕ RD and produces at the end the same sent values

SU ⊕ SC ⊕ SD. This shows that the collected sends of the checkpointed version of P

matches its collected expected receives.

However, matching sends with expected receives is a necessary but not sufficient con-

recv

Process 2:

send

sendrecv

comm A

Process 1:

comm B

Figure 4.5: Example illustrating the risk of deadlock if send and receive sets are only
tested for equality.

dition for correctness. Consider the example of figure 4.5, in which we have two com-

munications between two processes (“comm A” and “comm B”):

• The set of messages that process 1 expects to receive R= {comm B}. The set of

messages that it will send is S= {comm A}.

• The set of messages that process 2 expects to receive R= {comm A}. The set of

messages that it will send is S= {comm B}.

The above required property that the collection of sends {comm A, comm B} matches

the collection of receives {comm A, comm B} is verified. However, this code will fall

into a deadlock.

Semantic equivalence between two parallel programs requires not only that collected

sends match collected receives but also that there is no deadlock. Assuming that we can

prove it:

Assumption 2. the resulting adjoint code after checkpointing is deadlock free,

then, the semantics of the checkpointed adjoint is the same as that of its non-

checkpointed version.

To sum up, a checkpointing adjoint method adapted to MPI programs is correct if it

respects these two assumptions:

Assumption 1. The duplicated recvs in the checkpointed part will receive the same

values as their original calls.

Assumption 2. The resulting adjoint code after checkpointing is deadlock free.
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For instance, the “popular” checkpointing approach that we find in most previous works

is correct because the checkpointed part which is duplicated is self-contained regarding

communications. Therefore, it is clear that the receive operations in that duplicated

part receive the same value as their original instances. In addition, the duplicated part,

being a complete copy of a part of the original code that does not communicate with

the rest, is clearly deadlock free.

We believe, however, that this constraint of a self-contained checkpointed part can be

alleviated. We will propose a checkpointing approach that respects our two assumptions

for any checkpointed piece of code. We will then study a frequent special case where

the cost of our proposed checkpointing approach can be reduced.

4.3 A General MPI-Adjoint Checkpointing Method

We introduce here a general technique that adapts checkpointing to the case of MPI

parallel programs and that can be applied to any checkpointed piece of code. This

adapted technique, sketched in figure 4.6, is called “receive-logging” technique. It relies

on logging every message at the time when it is received.

• During the first execution of the checkpointed part, every communication call is

executed normally. However, every receive call (in fact its wait in the case of non-

blocking communication) stores the value it receives into some location local to

the process. Calls to send are not modified.

• During the duplicated execution of the checkpointed part, every send operation

does nothing (it is “deactivated”). Every receive operation, instead of calling any

communication primitive, reads the previously received value from where it has

been stored during the first execution.

• The type of storage used to store the received values is First-In-First-Out. This is

different from the stack used by the adjoint to store the trajectory.

In the case of nested checkpointed parts, this strategy can either reuse the storage

prepared for enclosing checkpointed parts, or free it at the level of the enclosing check-

pointed part and re-allocate it at the time of the enclosed checkpoint. This can be

managed using the knowledge of the nesting depth of the current checkpointed part.

Notice that this management of storage and retrieval of received values, triggered at

the time of the recv’s or the wait’s, together with nesting depth management, can be

implemented by a specialized wrapper around MPI calls, for instance inside the AMPI

library. We discuss this further in subsection 4.5.1.
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send

recv

no_op

isend wait

wait

no_op

isend

Process:

(c)

Process 1:

Process 2:

send

recv

recv; log

send

retrieve

Process 2:

Process 1:

recv

send

(b)(a)

Figure 4.6: Three examples in which we apply checkpointing coupled with receive-
logging. For clarity, we separated processes: process 1 on top and process 2 at the
bottom. In (a), an adjoint program after checkpointing a piece of code containing only
the send part of point-to-point communication. In (b), an adjoint program after check-
pointing a piece of code containing only the recv part of point-to-point communication.
In (c), an adjoint program after checkpointing a piece of code containing a wait without

its corresponding non blocking routine isend.

To show that this strategy is correct, we will check that it verifies the two assumptions

of section 4.2.

4.3.1 Correctness

By construction, this strategy respects Assumption 1 because the duplicated receives

read what the initial receives have received and stored.

To verify Assumption 2 about the absence of deadlocks, it suffices to consider one

elementary application of checkpointing, shown in the top part of figure 4.7. Commu-

nications in the checkpointed adjoint occur only in
−→
U , C,

−→
D (about primal values) on

one hand, and in
←−
D ,
←−
C ,
←−
U (about derivatives) on the other hand. The bottom part of

the figure 4.7 shows the communications graph of the checkpointed adjoint, identifying

the sub-graphs of each piece of code. Dotted arrows express execution order, and solid

arrows express communication dependency. Communications may be arbitrary between

G−→
U

, GC and G−→
D

but the union of these 3 graphs is the same as for the forward sweep

of the non-checkpointed adjoint, so it is acyclic by hypothesis.

Similarly, communications may be arbitrary between G←−
D

, G←−
C

and G←−
U

but (as G−→
C

is

by definition empty) these graphs are the same as for the non-checkpointed backward

sweep. Since we assume that the non-checkpointed adjoint is deadlock free, it follows

that the checkpointed adjoint is also deadlock free.
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Figure 4.7: Communications graph of a checkpointed adjoint with pure receive-logging

method

4.3.2 Analogy with “Message logging” in the context of resilience

Checkpointing in the context of AD-Adjoint (Adjoint-checkpointing) has common points

with checkpointing in the context of resilience [6] (Resilience-checkpointing). For in-

stance, in both mechanisms processes take snapshots of the values they are computing

to be able to restart from these snapshots when it is needed. However, checkpointing

in the case of resilience is performed to recover the system after failure, whereas in the

case of AD-adjoint, checkpointing is mostly to reduce the peak memory consumption.

There are two types of checkpointing in the context of resilience: the non-coordinated

checkpointing, in which every process takes its own checkpoint independently from the

other processes and the coordinated checkpointing in which every process has to co-

ordinate with other process before taking its own checkpoint. In the non-coordinated

checkpointing coupled with “Message logging”[5], every process saves in a remote stor-

age checkpoints, i.e. complete images of the process memory. It saves also the messages

that have been received and every send or recv event that have been performed. In

case of failure, only the failed process restarts from its last checkpoint. It runs exactly

in the same way as before the failure, except that it does not perform any send call
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already done. The restarted process does not perform either any recv call already done,

but retrieves instead the value that has been received and stored by the recv before

the failure. Saving the received values during the first execution and retrieving these

values during the re-execution of the process remind us the principle of receive-logging

described in section 4.3.

4.3.3 Discussion

The receive-logging strategy applies for any choice of the checkpointed piece(s). However,

it may have a large overhead in memory. At the end of the general forward sweep of

the complete program, for every checkpointed part (of level zero) encountered, we have

stored all received values, and none of these values has been used and released yet. This

is clearly impractical for large codes.

On the other hand, for checkpointed parts deeply nested, the receive-logging has an

acceptable cost as stored values are used quickly and their storage space may be released

and used by checkpointed parts to come. We need to come up with a strategy that

combines the generality of receive-logging with the memory efficiency of an approach

based on re-sending.

4.4 Refinement of the general method: Message Re-

sending

We may refine the receive-logging by re-executing communications when possible. The

principle is to identify send-recv pairs whose ends belong to the same checkpointed part,

and to re-execute these communication pairs identically during the duplicated part, thus

performing the actual communication twice. Meanwhile, communications with one end

not belonging to the checkpointed part are still treated by receive-logging.

Figure 4.8 (b) shows the application of checkpointing coupled with receive-logging tech-

nique to some piece of code. In this piece of code, we select a send-recv pair and we

apply the message-resending to it. As result, see figure 4.8 (c), this pair is re-executed

during the duplication of the checkpointed part and the received value is no more logged

during the first instance of this checkpointed part.

However, to apply the message-resending, the checkpointed part must obey an extra

constraint which we will call “right-tight”. A checkpointed part is “right-tight” if no

communication dependency goes from downstream the checkpointed part back to the

checkpointed part, i.e. there is no communication dependency arrow going from D to

C in the communications graph of the checkpointed adjoint. For instance, there must
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send
Process 1:

recv

Process 2:
send

recv

send

recv;logsend
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recvsend
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no_op recv
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recvsendrecv
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Process 2:

(a) (b) (c)

depth=1 depth=1

Figure 4.8: In (a), an MPI parallel program running in two processes. In (b), the
adjoint corresponding to this program after checkpointing a piece of code by applying
the receive-logging. In (c), the adjoint corresponding after checkpointing a piece of code

by applying the receive-logging coupled the with message-resending.

be no wait in the checkpointed part that corresponds with a communication call in an

other process which is downstream (i.e. after) the checkpointed part.

send
Process 1:

recv
Process 2:

send

recv

send
Process 1:

recv
Process 2:

send

recv

recv

send

recv

send

recv

no_op

send

(a) (b)

depth=1

Process 1:

Process 2:

Figure 4.9: In (a), an MPI parallel program run on two processes. In (b), the adjoint
corresponding after checkpointing a piece of code that is not right-tight by applying

the receive-logging coupled with message-resending.

Figure 4.9 shows an example illustrating the danger of applying message re-sending to a

checkpointed part which is not right-tight. In Figure 4.9 (a), the checkpointed part is not

right-tight as there is a dependency going from the recv of process 2 located outside the

checkpointed part to the second send of process 1 located inside the checkpointed part. If

we apply checkpointing to this piece of code by applying message-resending to the send-

recv pair whose ends belong to this checkpointed part and applying receive-logging to

the remaining send, we obtain figure 4.9 (b) which shows a cycle in the communications

graph of the resulting adjoint: between the recv of process 2 and the send of process 1

takes place the duplicated run of the checkpointed part. In this duplicated run, we find
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a duplicated send-recv pair that causes a synchronization. Execution thus reaches a

deadlock, with process 2 blocked on the recv, and process 1 blocked on the duplicated

recv. The recv of process 2 and the duplicated recv of process 1 are represented by

dashed circles in figure 4.9 (b).

One end of communication is called orphan with respect to a checkpointed part, if it

belongs to this checkpointed part while its partner is not, e.g. send that belongs to the

checkpointed part while its recv is not. In the case where one end of communication

is paired with more than one end, e.g. recv with wild-card MPI ANY SOURCE value

for source, this end is considered as orphan if one of its partners does not belong to the

same checkpointed part as it.

In the general case:

• When the checkpointed part is not right-tight, we can only apply receive-logging

to all the ends of communications inside the checkpointed part.

• In the opposite case, i.e. when the checkpointed part is right-tight, we recommend

the application of message-resending to all the non-orphan ends of communications

that belong to this checkpointed part. For the orphan ones we can only apply

receive-logging. The interest of combining the two techniques is that the memory

consumption becomes limited to the (possibly few) logged receives. The cost of

extra communications is tolerable compared to the gain in memory.

4.4.1 Correctness

The subset of the duplicated receives that are treated by receive-logging still receive the

same value by construction. Concerning the duplicated send-recv pair, the duplicated

checkpointed part computes the same values as its original execution (see step from σ′5

to σ′6 in section 4.2 ). Therefore the duplicated send and the duplicated recv transfer

the same value.

The proof about the absence of deadlocks is illustrated in figure 4.10. In contrast with the

pure receive-logging case, G−→
C

is not empty any more because of re-sent communications.

G−→
C

is a sub-graph of GC and is therefore acyclic. Since the checkpointed part is right-

tight, the dependency from GC to G−→
D

and from G←−
D

to G←−
C

are unidirectional. There is

no communication dependency between G−→
C

and G←−
D

and G←−
C

because G−→
C

communicates

only primal values and G←−
D

an G←−
C

communicate only derivative values.

Assuming that the communications graph of the non-checkpointed adjoint is acyclic, it

follows that:
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Figure 4.10: Communications graph of an adjoint resulting from checkpointing a part
of code that is right-tight. Checkpointing is performed by applying message-resending
to all the non-orphan ends of communications and receive-logging to all the orphan

ones.

• Each of G−→
U

, G−→
C

, G−→
D

, G←−
D

, G←−
C

and G←−
U

is acyclic.

• Communications may be arbitrary between G−→
U

and GC but since these pieces of

code occur in the same order in the non-checkpointed adjoint, and it is acyclic,

there is no cycle involved in (G−→
U

; GC). The same argument applies to (G←−
C

; G←−
U

).

Therefore, the complete graph on the bottom of figure 4.10 is acyclic.

4.5 Combining the receive-logging and message-resending

techniques on a nested structure of checkpointed parts

In the general case, we may have a nested structure of checkpointed parts, in which some

of the checkpointed parts respect the message-resending conditions of subsection 4.4, i.e.

these parts are right-tight, and the others do not respect these conditions. Also, even

when all the checkpointed parts respect the message-resending conditions, one end of
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communication may be orphan with respect to some checkpointed parts and non-orphan

with respect to the other ones. This means that, for memory reasons, one end of

communication may be activated during some depths of the checkpointed adjoint, i.e.

we apply the message-resending to this end, and not activated during the other depths,

i.e. we apply receive-logging to this end. In the case of send operations, combining the

receive-logging and message-resending techniques is easy to implement, however, in the

case of receive operations, this requires a specific behavior. More precisely:

• Every receive operation that is activated at depth d calls recv. If this operation

is de-activated at depth d+ 1, it has to log the received value.

• Every receive operation that is de-activated at depth d reads the previously received

value from where it has been stored. If this receive is activated at depth d+ 1, it

has to free the logged value.

send
Process 1:

recv

Process 2:
send

recv send
Process 1:

recv

Process 2:
send

recv

send

recv; log

no_op

retrieve

recv

send

send
recv

(a) (b)

depth=1

depth=2

Figure 4.11: In (a), an MPI parallel program run on two processes. In (b), the
adjoint corresponding after checkpointing two nested checkpointed parts, both of them
right-tight. The receive-logging is applied to the orphan ends of communications and

the message-resending is applied to the non-orphan ones

Figure 4.11 (a) shows an example, in which we selected two nested checkpointed parts.

In figure 4.11 (a), we see that the recv of process 2 is non-orphan with respect to the
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outer checkpointed part and orphan with respect to the inner one, i.e. its corresponding

send belongs only to the outer checkpointed part. Since the outer checkpointed part

is right-tight, we chose to apply message re-sending to the recv of process 2 together

with its send. As result of checkpointing, see figure 4.11 (b), the recv of process 2 is

activated when the depth of checkpointing is equal to 1. Since this recv will be de-

activated during the depth just after, i.e. during depth=2, its received value has been

logged during the current depth and retrieved during the depth just after.

4.5.1 Implementation Proposal

We propose an implementation of the combination method inside the AMPI library.

This proposal allows for each end of communication to be activated during some depths

of the checkpointed adjoint, i.e. we apply the message-resending to it, and de-activated

during some others, i.e. we apply the receive-logging to it.

4.5.1.1 General view

The AMPI library is a library that wraps the calls to MPI subroutines in order to make

the automatic generation of the adjoint possible in the case of MPI parallel programs.

This library provides two types of wrappers:

• The “forward wrappers”, called during the forward sweep of the adjoint code.

Besides calling the MPI subroutines of the original MPI program, these wrappers

store in memory the needed information to determine for every MPI subroutine,

its corresponding adjoint, we call this “adjoint needed information”. For instance,

the forward wrapper that corresponds to a wait, FWD AMPI wait calls wait and

stores in memory the type of non blocking routine with whom the wait is paired.

• The “backward wrappers” called during the backward sweep of the adjoint code.

These wrappers retrieve the information stored in the forward wrappers and use

it to determine the adjoint. For instance, the backward wrapper that corresponds

to a wait, BWD AMPI wait calls irecv when the original wait is paired with an

isend, i.e. we saw in subsection 4.1.1 that the adjoint for a wait depends on the

non blocking routine with whom this wait is paired.

A possible implementation of the refined receive-logging techniques inside the AMPI

library will either add new wrappers to this library, or change the existing forward

wrappers so that they handle the combination method described at the beginning of

section 4.5. We assume that the future implementation will rather change the existing
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forward wrappers. In this case, these wrappers will be called more than once during

the checkpointed adjoint, i.e. these wrappers will be called every time the checkpointed

part is duplicated. An important question to be asked thus, when the adjoint needed

information has to be saved? Is it better to save this information during the first ex-

ecution of the checkpointed part or is it better to save this information each time the

message-resending is applied, or is it better to save this information the last time the

message-resending is applied?

Since this information is used only to determine the adjoint, we think that the third

option is the best in terms of memory consumption. We notice, however, that if no

message-resending is applied to the forward wrapper, then, we have to save this infor-

mation during the first execution of the checkpointed part. Also, if the stack is the mech-

anism we use to save and retrieve the adjoint needed information, then, this information

has to be retrieved and re-saved each time we do not apply the message-resending.

4.5.1.2 Interface proposal

It is quite difficult to detect statically if a checkpointed part is right-tight or if an MPI

routine is orphan or not with respect to a given checkpointed part. This could be

checked dynamically but it would require performing additional communications, i.e.

each send has to tell its corresponding recv in which checkpointed part it belongs and

vice versa. We believe that a possible implementation of receive-logging coupled with

message-resending will require the help of the user to specify when applying the message-

resending, for instance through an additional parameter to the AMPI send and AMPI recv

subroutines. We call this parameter “resending”. To deal with the case of nested

structure of checkpointed parts, the resending parameter may for instance, specify for

each depth of the nested structure, whether or not message-resending will be applied

e.g. an array of booleans, in which the value 1 at index i reflects that message-resending

will be applied at depth=i and the value 0 at index j reflects that message-resending

will not be applied at depth=j, i.e. we will apply rather receive-logging.

From the other side, we may detect dynamically the depth of each end of communication

belonging to a nested structure of checkpointed parts. The main idea is to:

• define a new global variable, that we call “Depth”, and initiate it to zero at the

beginning of the adjoint program.

• increment the variable Depth, before each forward sweep of a checkpointed part.

• decrement the variable Depth, after each backward sweep of a checkpointed part.
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Forward Sweep

Backward Sweep

(a) (b)

...
Call toto()
...

Depth=0
...
call toto()
...

...
Depth= Depth+1
call toto_b()
Depth=Depth1
...

Figure 4.12: (a) a program that contains a call to a subroutine “toto”. (b) the
adjoint program after checkpointing the call to “toto”. In the checkpointed adjoint,

instructions have been placed to detect the depth of “toto” at run-time

At run time, the depth of an end of communication is the value of Depth. The in-

structions that allow initiating, incrementing and decrementing Depth may be easily

placed by an AD tool inside the adjoint program. For instance, our AD tool Tapenade

checkpoints every call to a subroutine. This means that if we have a call to a subrou-

tine “toto” in the original code, we will have a call to “toto” in the forward sweep

of the adjoint code and a call to “toto b” in the the backward sweep of this code, in

which “toto b” contains the forward sweep and the backward sweep of the subroutine

“toto”, see figure 4.12. To detect the depth of each end of communication that belongs

to “toto” at run time, it suffices to increment Depth before the call to “toto b” and

decrement Depth after the call to “toto b”, see figure 4.12.

Let us assume that Depth will be set as an AMPI global variable. i.e. AMPI Depth.

Figure 4.13 shows the various modifications we suggest for the wrappers AMPI FWD send

and AMPI FWD recv. We see in figure 4.13 that we added resending as an additional

parameter to our AMPI wrappers. For each end of communication, we check if the

message-resending is applied at the current depth through a call to a function called

“isApplied”. This function takes AMPI depth and resending as inputs and returns

true if the message-resending is applied at AMPI Depth and false in the opposite case. We

check also if the message-resending will ever be applied in the following depths through

a call to a function called “willEverBeApplied”. This function takes AMPI Depth and

resending as inputs and returns true if the message-resending will ever be applied after

AMPI Depth and false in the opposite case. The algorithm sketched in figure 4.13 may

be explained as:

• When message-resending is applied at a depth d, sends and their corresponding

recvs are called. If message-resending is not applied at d + 1, then we log in

addition the received value. If message-resending will never be applied after d,
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AMPI_FWD_recv(V,resending)
{
If (AMPI_Depth==0)||(isApplied(resending,AMPI_Depth)== true) then
   call MPI_recv(V)
   If (isApplied(resending, AMPI_Depth+1)==false) then
     log(V)
   endif
   If (willEverBeApplied(resending, AMPI_Depth)==false) then
     store the needed information for the adjoint
   Endif
Else
   retrieve(V)
   If (isApplied(resending, AMPI_Depth+1)==true) then
     free(V)
   endif
 restore the needed information for the adjoint
 store the needed information for the adjoint

}

AMPI_FWD_send(V,resending)
{
If (Depth==0)||(isApplied(resending,AMPI_Depth)== true) then
  call MPI_send(V)
  If (willEverBeApplied(resending, AMPI_Depth)==false) then
     store the needed information for the adjoint
  Endif
Else
   restore the needed information for the adjoint
 store the needed information for the adjoint

}

Figure 4.13: the modifications we suggest for some AMPI wrappers

then we have to save the adjoint needed information in both send and receive

operations.

• When message-resending is not applied at a depth d, we retrieve the logged value in

the receive side. If message-resending is applied at d+1, than, it is better in terms

of memory to free the logged value. As we already mentioned, if the stack is the

mechanism we use to save and retrieve the adjoint needed information, then this

information has to be retrieved and re-saved in both send and receive operations.

We note that in our implementation proposal, if the user decides to apply the message-

resending to one static MPI call, then this decision will be applied to all the run-time

MPI calls that match this static call.

4.5.2 Further refinement: logging only the overwritten receives

We propose a further refinement to our receive-logging technique. This refinement con-

sists in not logging every received value that is not used inside the checkpointed part,

or, it is used but it is never modified since it has been received until the next use by the
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duplicated instance of the checkpointed part, e.g. see figure 4.14. Formally, given Recv

the set of variables that hold the received values inside the checkpointed part, Use the set

of variables that are read inside the checkpointed part and Out the set of variables that

are modified inside the checkpointed part (only the variables that are modified by more

than one receive operation are included in the Out set of variables ) and in the sequel of

the checkpointed part, we will log in memory the values of variables OverwrittenRecvs

with:

OverwrittenRecvs = Recv ∩ Use ∩ Out

recv;log

send

retrieve

Process 2:

Process 1:

recv

send

recv

send

Process 2:

Process 1:

recv

send

The received 
value has 
never changed

no_op

(a) (b)

Figure 4.14: (a) An adjoint code after checkpointing a piece of code containing only
the receive part of point-to-point communication. Checkpointing is applied together
with the receive-logging technique, i.e. the receive call logs its received value during the
first execution of the checkpointed part and retrieves it during the re-execution of the
checkpointed part. In this example, the received value is never modified since it has
been received until the next use by the duplicated instance of the checkpointed part, i.e.
in the part of code surrounded by rectangles. (b) The same adjoint after refinement.

In this code the received value is not saved anymore.

The values of OverwrittenRecv are called “overwritten recvs”. Clearly, this is a

small refinement as in the real codes, the number of overwritten recvs is much more

important than the number of non-overwritten ones.

4.6 Choice of the combination

We saw in the previous subsections various methods to reduce the memory cost of the

receive-logging technique. Some of them duplicate the call to MPI communications,

which may add extra cost in terms of time execution and some of them propose not

logging all the received values, but only those that are used and will be probably over-

written by the rest of the program. One important question to be asked, then, is for a

given checkpointed piece, what is the best combination to be applied, i.e. what is the
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combination that allows a reduction of the peak memory consumption without consum-

ing too much in terms of time execution?

In the case where the checkpointed part is not right-tight, see subsection 4.4, we can

only apply receive-logging to all the ends of communications inside this checkpointed

part.

In the opposite case, i.e. the checkpointed part is right-tight:

• for all orphan ends of communications, we can only apply receive-logging.

• for the non-orphan ends of communications, we have the choice between applying

the receive-logging and the message-resending techniques. When the non-orphan

ends are overwritten recvs, then, it is more efficient in terms of memory to

apply message-resending to these overwritten recvs together with their sends.

Actually, applying receive-logging to these recvs will require extra storage. From

the other hand, when the non-orphan ends are basically non-overwritten recvs,

then, applying receive-logging to these recvs and theirs sends has the same cost in

terms of memory as applying message-resending to these pairs sends-recvs. Thus,

in this case we prefer applying receive-logging to these recvs and their sends as it

requires less number of communications than in the case where message-resending

is applied.

4.7 Choice of the checkpointed part

So far, we have discussed the strategies for communication calls, given the placement

of checkpointed portions. We note that this placement is also some thing that can

be chosen differently by the user, with the objective of improving the efficiency of the

adjoint code. This section discusses this issue.

In real codes, the user may want to checkpoint some processes P independently from

the others, either because checkpointing the other processes is not worth the effort,

i.e. checkpointing the other processes does not reduce significantly the peak memory

consumption, or checkpointing them will instead increase the peak memory consumption.

In this case, is it more efficient in terms of memory to :

1. checkpoint only P, in which case we will have many orphan ends of communica-

tions which means applying receive-logging to the majority of MPI calls inside the

checkpointed part,
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2. or, checkpoint the set of processes P together with the other processes with whom

P communicate, in which case we will apply message-resending to all the MPI calls

inside the checkpointed part ?

3. or, do not checkpoint neither P nor the other processes with whom P communicate.

As the message-resending technique is in general memory efficient, one may prefer the

option 2. However, in real codes, the option 2 may sometimes not be the best choice.

Actually, choosing the best option depends on many factors such as: the fact that the

checkpointed piece is right-tight or not, the cost of overwritten recvs, the cost of

snapshot of other processes, etc..

We will study the memory consumption of various possible choices of checkpointing.

We limit ourselves to the choice consisting to decide, for each process i, if the part of

code studied P for this process will be checkpointed or not. It is therefore a Boolean

function C of process number i. The memory consumption of a choice C results for

the non-checkpointed processes in the trajectory storage Traji performed during the

execution of P by process i and for the checkpointed processes in the snapshot Snpi

performed at the beginning of the execution of P by process i. In addition, for each

receive end of communication that is overwritten, we will have to count the memory

cost of a possible receive-logging applied to this end. In the following formulas, we will

number each point-to-point communication by j from 1 to m. The cost of receive-logging

will be the size of the received message sizej. In the case where the checkpointed part

is right-tight, we prefer applying message-resending when it is allowed, i.e when the

sending process sj and the receiving process rj are both checkpointed. In other cases,

the message-resending can never be applied. Therefore, the memory consumption of a

choice C is given by the following formulas:

When the checkpointed part C is right-tight:

memo(C) =

n∑
i=1

(C(i)?Snpi : Traji) +

m∑
j=1

(C(rj)&!C(sj)?sizej : 0)

When the checkpointed part C is not right-tight:

memo(C) =

n∑
i=1

(C(i)?Snpi : Traji) +

m∑
j=1

(C(rj)?sizej : 0)

To sum up, the choice of the best checkpointed part in terms of memory boils down here

to a comparison between the values of memo(C) at each choice of checkpointed part C.
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4.8 Experiments

To validate our theoretical works, we selected two representative CFD codes in which we

performed various choices of checkpointed parts. Both codes resolve the wave equation

by using an iterative loop that at each iterations resolves:

U(x, t+dt) = 2U(x, t)−U(x, t−dt)+[c∗dt/dx]2 ∗ [U(x−dx, t)−2U(x, t)+U(x+dx, t)]

In which U models the displacement of the wave and c is a fixed constant. To apply

checkpointing, we used the checkpointing directives of Tapenade, i.e. we placed $AD

CHECKPOINT-START and $AD CHECKPOINT-END around each checkpointed part.

By default, the checkpointed adjoint applies the message-resending technique, i.e. by

default the resulting adjoint duplicates the calls to MPI communications. To apply the

receive-logging, we de-activated by hand the duplication of MPI calls. In addition, for

each recv call, we added the needed primitives that handle the storage of the received

value during the first call of this recv and the recovery of this value when it is a

duplicated instance of the recv.

4.8.1 First experiment

P0:

P1:
send

recv

B

A

P2:

P3:

send

send

recv recv

send

recv recvrecv

send

send

recv

send

send

recv recv send

send recvrecv send

send recv

cost(SnpP0) > cost (intermediateVP0)

cost(SnpP1) < cost(intermediateVP1)

cost(SnpP2) < cost(intermediateVP2)

cost(SnpP3) < cost(intermediateVP3)

Figure 4.15: Representative code in which we selected two checkpointed parts

The first test is run on 4 processes. Figure 4.15 shows the various communications

performed by these processes at each iteration of the global loop. We see in this figure,

that at the end of each iteration, the process 0 collects the computed values from the

other processes. In this code, we selected two alternative checkpointed parts: “A”,

in which we checkpoint the processes 1,2 and 3 and “B”, in which we checkpoint all

the processes. We see in figure 4.15, that checkpointing the process 0 increases the

peak memory consumption of this process, i.e. the memory cost of snapshot of process

0, cost(SnpP0), is greater than the memory cost of logging its intermediate values,

cost(intermediateVP0). We applied the receive logging to all MPI calls of the part of

code “A” and the message-resending to all the MPI calls of the part “B”.
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The results of checkpointing “A” and “B” are shown in table 4.1. We see that the

code resulting from checkpointing “A” is more efficient than the code resulting from

checkpointing “B” not only in terms of number of communications, i.e. number of com-

munications 48000 vs. 72000, but also in terms of memory consumption, i.e. total

memory cost 36.2 Mbytes vs. 37.5 Mbytes. The efficiency in terms of number of com-

munications was expected since receive-logging does not add extra communications to

the adjoint code as it is the case of the message-resending. The efficiency in terms of

memory can be explained by the fact that the checkpointed part “A” does not contain

any overwritten recvs, i.e. it contains only sends, and thus does not require any

extra storage. These results match the analysis of subsection 4.7.

without CKP CKP “B” CKP “A”

Memory cost of P0 (MB) 8 9.3 8

Memory cost of P1,2,3 (MB) 12.6 9.4 9.4

Total Memory cost (MB) 45.8 37.5 36.2

Number of communications 48000 72000 48000

Table 4.1: Results of the first experiment.

4.8.2 Second experiment

P0:

P1:
send

recv

B

send

recvrecv

send

send

recv

A

recv: non overwritten recv

Recv: overwritten recv

cost(SnpP0)< cost(intermediateVP0)

cost(SnpP1) = cost(intermediateVP1)

Figure 4.16: Representative code in which we selected two checkpointed parts

The second test is run on two processes. The communications performed by these two

processes are shown in figure 4.16. In this test we study two alternative checkpointed

parts as well. The first part “A” is run on only one process, i.e. process 0 and the second

part “B” is run on the two processes.

The results of checkpointing “A” and “B” are shown in the table 4.2. Unlike the first ex-

periment, checkpointing “B” here is more efficient in terms of memory, i.e. total memory

cost 24.78 Mbytes vs. 24.82 Mbytes. This can be explained by two facts: the first one is

that “A” contains overwritten recvs and the second one is that checkpointing process

P1 does not decrease the memory consumption. These results also match the analysis

of subsection 4.7. We notice here, that checkpointing “A” is always more efficient in
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terms of number of communications than checkpointing “B”. Clearly, the choice of the

best checkpointed part depends here on the needs of the user.

without CKP CKP “B” CKP “A”

Memory cost of P0 (MB) 15.58 12.36 12.39

Memory cost of P1 (MB) 12.45 12.42 12.43

Total Memory cost (MB) 28.03 24.78 24.82

Number of communications 16000 24000 16000

Table 4.2: Results of the second experiment

4.9 Discussion And Further Work

We considered the question of checkpointing in the case of MPI-parallel codes. Check-

pointing is a memory/run-time trade-off which is essential for adjoint of large codes, in

particular parallel codes. However, for MPI codes this question has always been ad-

dressed by ad-hoc hand manipulations of the differentiated code, and with no formal

assurance of correctness. We investigated the assumptions implicitly made during past

experiments, to clarify and generalize them. On one hand we proposed an extension

of checkpointing in the case of MPI parallel programs with point-to-point communica-

tions, so that the semantics of an adjoint program is preserved for any choice of the

checkpointed part. On the other hand, we proposed an alternative extension of check-

pointing, more efficient but that requires a number of restrictions on the choice of the

checkpointed part. We provided proof of correctness of these strategies, and in par-

ticular demonstrate that they cannot introduce deadlocks. We investigated a trade-off

between the two extensions. We proposed an implementation of these strategies inside

the AMPI library. We discussed practical questions about the choice of strategy to be

applied within a checkpointed part and the choice of the checkpointed part itself. At

the end, we validated our theoretical results on representative CFD codes.

There are a number of questions that should be studied further.

In this work, we have been driven to extend the notion of checkpoint to parallel codes

with multiple processes. In other words, checkpointed parts that are generally thought of

as subsequences of some execution trace, must acquire an extra dimension that represents

processes. The extension we have come up with has been helpful for our work, but we

are still not sure it is the most appropriate representation. Should we think of separate

checkpointed parts inside each process, or should we rather build composite checkpoints

that cover multiple processes? To answer this question, it is necessary to clarify the

link between static and dynamic checkpoints. We like to think of checkpointed parts
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as dynamic, as we represent them as duplicate executions of a part of some run-time

process of execution. On the other hand, checkpointed parts are defined on the source

code, from one location in the source to another. This contradiction should be clarified

to facilitate the study of checkpointing in an MPI setting.

Process 1:
send

send

Process 2:
recv;log

recv;log

depth=1

Process 3:

(a) (b)

send

no_op

restore

restore

send

recv

recv

Process 1:
send

send

Process 2:
recv;log

recv

depth=1

Process 3:

send

send

restore

recv

send

recv

recv

Figure 4.17: (a) The receive-logging applied to a parallel adjoint program. (b) Appli-
cation of the message re-sending to a send-recv pair with respect to a non-right-tight

checkpointed part of code

We imposed a number of restrictions on the checkpointed part in order to apply the

refinement. These are sufficient conditions, but it seems they are not completely neces-

sary. Figure 4.17 shows a checkpointed part of code which is not right-tight. Still, the

application of the message re-sending to a send-recv pair (whose ends are surrounded

by circles) in this checkpointed part, does not introduce deadlocks in the resulting check-

pointed adjoint.

The implementation proposal we suggest in section 4.5.1 allows an application of receive-

logging coupled with message-resending that may be considered as “semi-automatic”.

Actually, this proposal requires the help of user to specify for each end of communication,

the set of depths in which it will be activated, i.e. in which depths message-resending will

be applied to this end. An interesting further research is how to automatically detect

this information for instance by detecting if a checkpointed part is right-tight and also

if an end of communication is orphan or not with respect to a given checkpointed part.

In the Recompute-All approach, the presence of MPI communications restricts also the

choice of parts of code to be recomputed, i.e. these parts have to contain both ends of

every point-to-point communication. Receive-logging coupled with message-resending

might be a good approach to be applied in this case.
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In this work, we studied chekpointing in the case of MPI parallel programs with point-to-

point communications. Studying this question in the case of collective communications

might be interesting further work.

Finally, we experimented the “receive-logging” and “message-resending” techniques on

representative home-made codes. It might be useful to experiment these techniques on

real size codes.



Chapter 5

Conclusion (français)

Ce travail sur le mode adjoint de la Différentiation Algorithmique (DA) a mis l’accent sur

deux problèmes d’une importance particulière, notamment pour les applications indus-

trielles, dans lesquelles la taille des codes est grande et le temps d’exécution et l’efficacité

mémoire sont cruciaux. Le projet européen AboutFlow qui a soutenu cette recherche a

fourni la motivation pour ces deux problèmes, ainsi que les codes d’application. Ces deux

problèmes sont d’une part sélectionner et implémenter un algorithme adjoint adapté

pour les algorithmes point fixe et d’autre part étudier les limitations imposées par

l’architecture parallèle MPI sur le mécanisme de checkpointing.

Bien que ces deux questions sont a priori distinctes, elles partagent leur contexte: la

Différentiation Algorithmique adjointe et le problème de l’inversion du flux de données,

générer un code adjoint qui soit efficace à la fois en termes de temps et en termes

de mémoire via checkpointing et la nécessité de détecter et de profiter des structures

particulières présentes dans le code différentié.

Une question qui se pose de façon similaire est l’étude des restrictions d’applicabilité.

Une spécification précise de ces restrictions reste à trouver. Des parties importantes

de ces restrictions pourraient être levées par des travaux ultérieurs. Par exemple, la

stratégie Deux-Phases raffinée pour les boucles à point fixe peut probablement être

étendue à des boucles avec plusieurs entrées ou sorties (voir la section 3.4). De même,

il y a des situations où une partie d’une exécution MPI n’est pas “étanche à droite” et

nous pouvons quand même lui appliquer le “message-resending” (voir la section 4.4).

Indépendamment de la question particulière abordée, ces restrictions d’applicabilité

exigent des outils d’aide. L’un est la possibilité de transformer le code original afin

qu’il répond aux restrictions (par exemple peler la boucle Point Fixe ). Faut-il que

l’utilisateur final soit seul responsable de ces transformations? Nous pensons qu’un outil
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de DA par transformation de source est approprié pour effectuer une telle transfor-

mation. Néanmoins, pour chaque transformation intrusive telle que le déroulement de

boucle, ceci doit être contrôlé par l’utilisateur final par des directives.

La principale question sur les restrictions d’applicabilité est comment vérifier si un code

donné les satisfait. Chaque fois que c’est possible, une vérification statique sur le source

du code est préférable. Nous avons vu cependant que la détection statique peut être très

imprécise, conduisant l’outil à rejeter des codes parfaitement acceptables. Par exemple,

la détection statique que la partie checkpointée d’un code MPI est étanche à droite

échouera sur la plupart des codes de grande taille. La réponse classique est à nouveau

les directives de l’utilisateur final. Nous croyons qu’il serait profitable de développer un

contrôle dynamique a posteriori des restrictions d’applicabilité. Par exemple, dans les

boucles à point fixe, nous avons besoin d’une vérification dynamique de la stationnarité

du flux de contrôle. Pour la question du checkpointing des codes MPI, la détection des

paires MPI send/ MPI recv qui se correspondent ne peut être effectuée en général que

dynamiquement. Nous pensons que ceci est une direction de recherche intéressante.

Ce travail a été mené dans le contexte des outils de DA par transformation de source,

créant un code adjoint qui de base sur l’approche Store-All pour pouvoir inverser le

flux de données. À notre connaissance, seul l’outil de DA TAF [16] utilise une stratégie

basée sur l’approche Recompute-All. Nous sommes conscients que TAF implémente des

stratégies adaptées à des questions proches de celles que nous avons étudiées. Outre

le fait que les stratégies de TAF sont insuffisamment documentées (TAF étant un outil

propriétaire), il nous semble que nos techniques sont légèrement plus développées et

pourraient inspirer quelques améliorations à TAF.

Étendre plus loin ce travail à la DA basée sur la surcharge des opérateurs [40], nous pen-

sons que la complexité du checkpointing dans ce contexte rend irréaliste l’application de

nos propositions sur les codes MPI. En revanche, l’adjoint des boucles à point fixe Deux-

Phases raffinée semble prometteuse, surtout que la DA avec surcharge des opérateurs est

connue par sa grande consommation mémoire et que le principal atout de la méthode

Deux-Phases raffinée est précisément sa faible consommation en mémoire.



Chapter 6

Conclusion (english)

This work on adjoint Algorithmic Differentiation has focused on two problems of par-

ticular importance, especially for industrial applications, in which code sizes are huge

and run-time and memory efficiency are crucial. The AboutFlow European project that

boosted this research provided the motivation for these two problems, as well as the

application codes. These two issues are to select and implement an adapted adjoint

algorithm for Fixed-Point iterations on the one hand, and on the other hand to study

limitations imposed by MPI parallel architecture on the adjoint trade-off mechanism

known as checkpointing.

Although the link between theses two questions is not obvious at first sight, they share

their context of adjoint AD and the problem of data-flow reversal, the quest for time and

memory efficiency through checkpointing, and the need to detect and to take advantage

of the particular code organization.

An issue that come up in a similar manner for both questions is the applicability restric-

tions. An accurate specification of these restrictions is still to be found. Still, significant

parts of these restrictions might be lifted by further work. For instance the Two-Phases

strategy for Fixed-Point loops can certainly be extended to loops with multiple entries

or exits (see section 3.4). Similarly, there are situations where a checkpointed part of

an MPI execution is not “right-tight” and we can still apply message-resending to it

(see section 4.4). Independently of the particular question addressed, these applicabil-

ity restrictions call for helping tools. One is the possibility to transform the original

code so that it meets the restrictions (think of loop peeling). Should the end-user alone

be in charge of these transformations? We believe a source-transformation AD tool

is an appropriate framework to perform such transformation. Still, for every intrusive

transformation such as loop unrolling, this must be controlled by the end-user through

directives.
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The main issue about applicability restriction is how to check for them. Whenever

possible, a static checking, on the code source, is preferable. We saw however that

static detection may be highly inaccurate, leading the tool to reject perfectly acceptable

codes. For instance, detecting statically that an MPI code’s checkpointed part is right-

right will fail on most large codes. The classic answer is again end-user directives. We

believe it would be profitable to develop dynamic checking of applicability restrictions.

For instance, in FP loops we need a dynamic verification for stationnarity of the flow of

control. In MPI checkpointing, only dynamic verification can find matching send/receive

pairs. We believe this is a useful research direction.

This strategy was conducted in the context of Source-Transformation AD tools, building

adjoint code with store-all data-flow reversal. To our knowledge, only TAF [16] uses a

recompute-all reversal strategy. We are aware that TAF implements adapted strategies

for questions close to the ones we studied. Still, we observed that these strategies in

TAF are slightly less developed than ours, at least for the available documentation, and

so could be improved. Extending further to overloading-based AD, we believe that the

complexity of checkpointing in this context makes it unrealistic to apply our proposals

about MPI codes. However, Fixed-Point Two-Phases adjoint seems a promising ap-

proach, particularly since overloading AD is known to use a lot of memory and the main

strength of the Two-Phases method is its low memory consumption.
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Bibliography 131

U. Naumann, editors, Automatic Differentiation of Algorithms: From Simulation to

Optimization, Computer and Information Science, chapter 9, pages 91–98. Springer,

New York, NY, 2002.

[36] A. Kowarz and A. Walther. Optimal checkpointing for time-stepping procedures in

ADOL-C. In V. N. Alexandrov, G. D. Albada, P. M. A. Sloot, and J. Dongarra,

editors, Computational Science – ICCS 2006, volume 3994 of Lecture Notes in

Computer Science, pages 541–549, Heidelberg, 2006. Springer.
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