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Abstract

Blood flow in the microcirculation is essential for delivery of nutrients
to tissues and organs. To better understand the properties of red blood
cell (RBC) flow in microcirculation, this thesis focuses on the collective
behaviors of RBCs in confined shear flow and in networks. I) We nu-
merically study the link between spatiotemporal organization of RBC
suspension and rheology by using an immersed boundary-lattice Boltz-
mann method. We show that in a confined blood suspension, RBCs
spontaneously organize in a crystal-like structure under the sole effect
of hydrodynamic interaction. II) The partition of RBCs at the level of
bifurcations is addressed in our computer simulations and in vitro exper-
iments. In the case of extreme hemodilution, our results exhibit a new
phenomenon in opposition to the known Zweifach-Fung effect. Finally,
the RBC transit is investigated through simulations of a large number
of RBCs flowing in a network pattern structured as a honeycomb.

Keywords: blood, self-organization, rheology, network, partition



Résumé

La circulation du sang dans la microcirculation est essentielle pour achem-
iner des nutriments aux tissus et aux organes. Pour mieux compren-
dre les propriétés d’écoulement des globules rouges (RBCs) dans la mi-
crocirculation, cette thèse se concentre sur les comportements collec-
tifs des RBCs dans un écoulement de cisaillement confiné et dans des
réseaux. I) Nous étudions numériquement le lien entre l’organisation
spatio-temporelle de la suspension de RBC et la rhéologie en utilisant une
méthode de Boltzmann sur réseau combinée à une méthode de frontière
immergée. Nous montrons que dans une suspension confinée de sang, les
RBCs s’organisent spontanément en une structure cristalline sous le seul
effet de l’interaction hydrodynamique. II) La répartition des RBCs au
niveau d’une bifurcation est abordée par simulation et en expériences in
vitro. Pour des dilutions importantes, nos résultats montrent un nou-
veau phénomène, en opposition à l’effet Zweifach-Fung. Enfin, le transit
de RBC est étudié à travers les simulations d’un grand nombre de RBCs
circulant dans un réseau en nid d’abeille.

Mots clés: sang, auto-organisation, rhéologie, réseau, partition
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8.2 Résumé du chapitre 5 et du chapitre 6 et des perspectives associées . 102

References 104

Summary 120

Sommaire 120

vii



List of Figures

1.1 A schematic of human circulatory system and RBCs flowing in a
vessel. (Picture from http://www.osteopathyny.com/wordpress/

wp-content/uploads/2014/06/Blood-Flow.jpg) . . . . . . . . . . . 2
1.2 A scanning electron microscope image of the main components of

blood. It shows red blood cells, white blood cells and platelets. (Pic-
ture from https://en.wikipedia.org/wiki/Blood_cell) . . . . . . 4

1.3 A schematic of blood cells: red blood cells, white blood cells and
platelets. Red blood cells constitute about 45% of blood volume.
The normal RBC has a biconcave disk shape. (Picture from https:

//en.wikipedia.org/wiki/Blood) . . . . . . . . . . . . . . . . . . . 5
1.4 A schematic of RBC membrane. (Picture from [Kim et al., 2012]) . . 6
1.5 Ex vivo arteriogram of a normal human heart showing the microvas-

cular structure. (Picture from [Fulton, 1963]) . . . . . . . . . . . . . . 7
1.6 F̊ahræus-Lindqvist effect. (Picture from [Pries et al., 1992]) . . . . . . 10

2.1 D2Q9 lattice model. All the velocity vectors are located in a 2D plane.
c1−4 point towards the neighbors along the x and y axes. c5−8 point
towards the neighbors along the diagonals. c0 is zero. The fi(r, t)
streams in time with velocity ci towards the neighbors. . . . . . . . . 17

2.2 A schematic of implementation of periodic boundary in LBM. . . . . 19
2.3 A schematic of bounce-back boundary condition in LBM. The wall

(dash line) divides the domain into fluid nodes (hollow point) and
solid nodes (solid point). For example, the distribution function f ′i
of fluid node at x propagates towards the solid nodes at x + ci. It is
bounced back to the fluid node x when it hits the wall. . . . . . . . . 20

2.4 A schematic Zou and He boundary in LBM. The unknown distribu-
tion functions after streaming are presented by red dot line. . . . . . 21

2.5 The discrete delta function for 3-point scheme and 4-point scheme. . . 24
2.6 A schematic of force spreading and velocity interpolation in the IBM.

The fluid is denoted by the hollow points (Eulerian coordinate). The
membrane is denoted by the solid points (Lagrangian coordinate). . . 26

viii

http://www.osteopathyny.com/wordpress/wp-content/uploads/2014/06/Blood-Flow.jpg
http://www.osteopathyny.com/wordpress/wp-content/uploads/2014/06/Blood-Flow.jpg
https://en.wikipedia.org/wiki/Blood_cell
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Blood


LIST OF FIGURES

2.7 The spring model of RBC. The membrane is presented by several
points. The neighboring points are connected by a spring. The angle
between adjacent springs is also controlled by a spring. . . . . . . . . 27

2.8 A schematic for force calculation in the spring model. . . . . . . . . 29
2.9 The proceeding to find the internal fluid nodes. A: The fluid node X′

is the neighbor of the membrane. The membrane nodes Xi and Xi+1

are the neighbors of the fluid node X′. The cross product of Xi −X′

and Xi+1−X′ is calculated to decide whether the node X′ is internal
or not. B: All the neighbors of the membrane have been identified.
The internal nodes are marked by blue solid points. The external
nodes are marked by red solid points. The internal fluid node 1 is
chosen as a seed. It searches the neighboring nodes along both of x
axis and y axis. Once an unidentified node (node 2) is found, it is
chosen as a new seed. C: The new seed continues to search until all
the unidentified nodes inside the membrane are found. . . . . . . . . 33

2.10 Some cases of the initialization of RBCs in high concentration sit-
uation. φ is RBC concentration (area fraction). A: In the periodic
domain. B: In a wall bounded channel with some obstacles. The
black region means obstacles. C: In a network. . . . . . . . . . . . . . 34

2.11 Vesicle shape for different reduced areas. The red line is obtained
by IB-LBM. The blue line is obtained by simple molecular dynamics
model. ν is reduced area. The coordinate is using LBM unit. . . . . . 36

2.12 The tank-treading motion and tumbling motion. ϕa is the inclination
angle. γ̇ is shear rate. The black point is a mark on the membrane. . 36

2.13 Time evolution of the inclination angle for different viscosity contrast. 37
2.14 The normalized viscosity as a function of viscosity contrast. . . . . . 37
2.15 A schematic of experimental set up. . . . . . . . . . . . . . . . . . . . 38

3.1 The distance between two tank-treading vesicles as a function of time
in several cases of different initial positions. Finally, the two vesicles
can go to an equillibium state with a constant interdistance. The W
is the distance between two shearing wall. The λ is viscosity contrast. 43

3.2 (A) The flow field around a single tank-treading vesicle in confined
linear shear flow (only right half part of the domain is presented
because of the symmetry). The regions for upward flow and downward
flow are highlighted by black and white respectively. (B) The induced
flow (total flow subtracted by the imposed linear shear flow) in region
I, II and III, and the schematics of the motion of a tracer are plotted.
Compared to region I, the vectors are amplified by 400 times in region
II and by 60000 times in region III. (C) The trajectories of the tracers
with the starting at the center in region I, II and III. . . . . . . . . . 44

ix



LIST OF FIGURES

3.3 The structure of the induced flow in different confinements. A clock-
wise vortex (blue streamlines) appears due to the confinement. When
W decreases, the clockwise vortex gets closer to the vesicle. . . . . . . 45

3.4 Velocity in Y direction as a function of the distance to the mass center
of the vesicle. The inset is an amplification of a local region, which is
approximately corresponding to the region II in Figure 3.2. Each line
shows the Vy distribution at one Y coordinate. These lines give an
approximate place where the Vy direction change sign at X = 6.3R
in the case of W = 3.2R. The reduced area of the vesicle is ν = 0.7. . 46

3.5 For different confinements and reduced areas, the Vy along the flow
direction at center is plotted in a local region where the tank-treading
induced flow shows a clockwise vortex. . . . . . . . . . . . . . . . . . 46

3.6 The equilibrium distance between two vesicles increases linearly with
the W . The insets are the final configurations of the vesicles in the
cases of W = 3.2R and W = 8R. . . . . . . . . . . . . . . . . . . . . 47

3.7 Velocity in Y direction at a given position in the flow field created
by a single vesicle of tank-treading and tumbling. The velocity is
measured at the position 4R away from the vesicle center and located
on the center line of the domain. . . . . . . . . . . . . . . . . . . . . . 48

3.8 The chaotic trajectories of two tracers in the flow of a tumbling vesicle. 49
3.9 The relative distance between two tumbling vesicles as a function of

time. The insets are the configurations of the vesicles at the time of
γ̇t = 534, γ̇t = 801 and γ̇t = 1335. γ̇ is the shear rate. . . . . . . . . . 50

3.10 The relative orientation angle between two tumbling vesicles as a
function of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 Left column: Configurations of a vesicle suspension in the confine-
ment of W = 3.1R. Vesicles form one file in low concentration. Two
vesicles couple a doublet in high concentration. Right column: The
structure of the flow field in region I, II and III. φ is the vesicle concen-
tration (area fraction in 2D). The recirculation between two vesicles
decreases when concentration increases as shown in region I and II. . 51

3.12 Left column: Configurations of a vesicle suspension in the confine-
ment of W = 4.7R. For low viscosity contrast λ = 1, vesicles form
one file in low concentration and two sliding files in high concentra-
tion. For high viscosity contrast λ = 10, vesicles form one file in very
low concentration, then they are disordered with increasing concen-
tration. Right column: The structure of the flow field in region I, II
and III. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

x



LIST OF FIGURES

3.13 Left column: Configurations of a vesicle suspension in the confine-
ment of W = 6.3R. For λ = 1, vesicles form one file in low concen-
tration, but they are disordered in high concentration. For λ = 10,
vesicles are disordered under this confinement. Right column: The
structure of the flow field in region I and II . . . . . . . . . . . . . . . 53

3.14 Normalized viscosity of a vesicle suspension for λ = 1 in different
confinements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.15 Effect viscosity of a suspension of vesicles with λ = 1 in different
confinements. α = 3 and φm = 0.67 for the normal human RBC at
low shear rate [Pal, 2003]. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.16 Normalized viscosity of a vesicle suspension as a function of concen-
tration for low and high viscosity contrast. W = 3.1R . . . . . . . . . 55

3.17 Normalized viscosity of a vesicle suspension as a function of concen-
tration for low and high viscosity contrast. W = 4.7R . . . . . . . . . 57

3.18 Normalized viscosity of a vesicle suspension as a function of concen-
tration for low and high viscosity contrast. W = 6.3R . . . . . . . . . 58

3.19 Normalized viscosity [η] as a function of φ and the spatial configura-
tion for φ = 3.3%. φ is the capsule concentration (volume fraction
in 3D). Each capsule is steady (center of mass fixed in time) and the
membrane undergoes tank-treading, with the velocity field visible on
the magnified capsules. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 A: The schematic of simulation model. Z direction is the shear flow
direction, X direction is the shear gradient direction and Y direction
is the transverse direction. B: Both of simulations and experiments
show configurations of particles as strings along the flow direction. . . 63

4.2 The flow field around the particles in the central plane. Recall that
the flow is along Z, while the rigid walls are located at X = ±W/2. . 64

4.3 A schematic of repulsive regime and attractive regime for a flow-
aligned string configuration of particles. Simulations show the motion
of particles in repulsion and attraction. The confinement is W = 2.9R. 64

4.4 The flow field around a single tank-treading particle in the central
plane. The structure of the flow shows a quadrupole-like form. Recall
that the flow is along Z, while the rigid walls are located at X =
±W/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



LIST OF FIGURES

4.5 The qualitative regime of repulsion and attraction for transverse in-
teraction between two particles with confinement of W = 2.9R. Some
examples of the relative trajectories between two particles are plot-
ted by solid line for repulsion and dashed line for attraction. With
the initial positions in gray region the two particles exhibit repulsion,
while they exhibit attraction with the initial positions in white region.
The inset shows a schematic of the interacting particles. . . . . . . . 66

4.6 All possible patterns of the ordering of 3, 4 and 5 interacting particles
with confinement W = 2.9R. . . . . . . . . . . . . . . . . . . . . . . 67

4.7 In concentrated suspension, particles are ordered with strong confine-
ment and disordered with weak confinement. Act is the particle area
fraction in the central plane. . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Effect of confinement on the configuration. A: Equilibrium distance
between two particles increase with W . B: Size of triangle configura-
tion increase with W linearly. C: Configurations of two particles for
different confinements corresponding to A. D: Configurations of three
particles for different confinements corresponding to B. . . . . . . . . 69

4.9 A: Distance in X direction between two selected particles among five
particles when they are sheared in the flow. B: Distance in Y direction
between two selected particles. C-G: Configurations of particles for
each case: C: Simulation, W = 4.9R, Cas = 0.05, Re = 0.5 D:
Experiment, W = 4.9R, Cas = 0.7, Re ∼ 10−5 E: Simulation, W =
4.9R, rigid particle, Re = 0.5 F: Simulation, W = 4.9R, rigid particle,
Re = 0.05 G: Experiment, W = 4.5R, rigid particle, Re ∼ 10−5 . . . . 70

4.10 Viscosity of deformable particle suspension changes with concentra-
tion in shear flow with confinement W = 4.9R. The normalized
viscosity shows a decrease with increasing concentration when string
ordering is formed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Snapshots of the RBCs partition, in both experiments and simula-
tions, when the hematocrit of the feeding flow is around φ0 =10%.
The length ratio between the two child branches is set to 3. A, B:
Low viscosity contrast (experiments with λ=0.85 and simulation with
λ=1). C, D: High viscosity contrast (experiments with λ=10.3 and
simulation with λ=10). . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xii



LIST OF FIGURES

5.2 The relative hematocrit in the low flow rate branch as a function of
the hematocrit in the parent vessel. The length ratio between the
branches L1/L2 is set to 3. A: Simulations with λ=1 and λ=10.
B: Comparison between experiments (λ=0.85 and λ=10.3) and the
empirical law of Pries et al. [Pries et al., 1990] (solid line), for the same
cross-sectional area. The non-monotonous evolution of the relative
hematocrit at low H0 and high λ is related to the inversion of the
Zweifach-Fung effect, on which we comment later on (see Figure 5.7). 79

5.3 Simulations: the relative hematocrit in low flow rate branch φ1/φ0

as a function of the hematocrit in the parent vessel φ0, for several
branches length ratios L1/L2 and viscosity contrasts λ. At low enough
φ0, the asymmetry between the two daughter branches is strongly en-
hanced as the viscosity contrast λ is decreased, while the partitioning
becomes independent on λ for hematocrit above 20%. . . . . . . . . 80

5.4 A: CFL thickness as a function of the hematocrit in the parent vessel,
for λ=1 and λ=10, in simulations. Insets : Snapshots showing the
suspension at the bifurcation. We define the CFL as a layer where
the integrated concentration profile is below 5% [Kumar et al., 2014].
B: Snapshots from experiments, for λ=0.85 and 10.3, and hematocrit
φ0 =10, 20 and 30%. Every snapshot is a superimposition of 10
successive images in order to highlight the CFL in the parent vessel.
C: The stationary volume fraction density functions in the parent
vessel obtained from simulations. . . . . . . . . . . . . . . . . . . . . 81

5.5 The profiles of the hematocrit distribution and the corresponding
snapshots of RBCs distribution in the parent vessel. The feeding
hematocrits are 5% and 40%, for two different values of λ. . . . . . . 82

5.6 The relative hematocrit in one child branch as a function of the bulk
flow ratio. Solid lines correspond to the empirical law proposed in
ref [Pries et al., 1990], for a = W . For simulations, the relative
hematocrit is φ1/φ0. For Pries law, it is given by H1/H0. A: high
hematocrit (φ0 = H0 = 40%). B: low hematocrit (φ0 = H0 = 5%). . . 83

xiii



LIST OF FIGURES

5.7 Experiments: the hematocrit in the low flow rate branch H1 as a
function of the hematocrit in the parent vessel H0. A: Low λ ; B:
High λ. The length ratio between the branches is set to 3. The width
W of the inlet channel is set to 10, 20 and 30 µm. The corresponding
empirical laws of Pries et al.[Pries et al., 1990] are also shown. The
dotted line (the one with highest slope) corresponds to equal partition
(H1 = H0). For W = 20 µm, the data are the continuation of the
data already reported in Figure 5.2. C: Snapshots for each width
W and two concentrations H0 = 0.6% and 4.5%. Every snapshot is
the superimposition of 10 successive images in order to highlight the
structure of the suspension in the parent vessel . . . . . . . . . . . . . 84

6.1 Single RBC flows in the network. The red solid line is for the case of
Ca = 1, λ = 1, the blue dashed line is for the case of Ca = 0.1, λ = 1
and the green dotted line is for the case of Ca = 1, λ = 10. Ca is the
capillary number for membrane bending elasticity. λ is the viscosity
contrast. A: The trajectories of RBC mass center in the network. The
case of Ca = 0.1, λ = 1 shows a deterministic displacement, while the
other two cases show an erratic displacement. B: The trajectories
of RBC mass center at one bifurcation within the network. C: The
evolution of RBC shape and position at one bifurcation within the
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 The trajectories of all the RBCs for different Ca and λ in the case
of low hematocrit (9.3%). The dashed line box identifies the regime
used for the average of ∆Y in Figure 6.4. The ∆Y is the lateral
displacement of RBCs from the initial positions. . . . . . . . . . . . 91

6.3 The trajectories of all the RBCs for different Ca and λ in the case of
high hematocrit (31.1%). . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 The averaged absolute lateral displacement of RBCs in the dash box
shown in Figure 6.2 as a function of the hematocrit for different Ca
and λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 The flux of RBCs as a function of hematocrit for different Ca and
λ. The solid points present the results for RBCs flowing in the tube.
The hollow points present the results for RBCs flowing in the network. 94

6.6 Distribution of RBCs in the network after the flow of RBCs is long
time developed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7 The distribution of hematocrit along the flow direction for different
Ca and λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.8 The evolution of local hematocrit for different Ca and λ. Here the
local hematocrit is calculated by averaging those hematocrit larger
than 90% of the maximum. . . . . . . . . . . . . . . . . . . . . . . . 97

xiv



Chapter 1

Introduction

In this chapter, a brief overview of the human circulatory system is provided in
Section 1.1. Introduction of blood components and some illustrations of microcircu-
latory conditions are presented in Section 1.2 and 1.3, respectively. A brief review
of the physics of blood flow in microvessels is provided in section 1.4. Section 1.5 is
devoted to the presentation of the main contributions of this thesis.

1.1 Blood flow in circulatory system

The main function of the vascular system is to supply nutrients and oxygen to the
tissues and to remove metabolic waste products. Microcirculation plays a central
role in these mechanisms. A schematic of the human circulatory system is shown
in Figure 1.1. One of the early comprehensive descriptions of blood circulation is
due to William Harvey in 1628. A closed vascular system contains arteries, veins
and capillaries, where the oxygenated blood is pumped by the left ventricle into the
aorta, the first level of the arterial system. A progressively ramified vascular pattern
branches off into many major arteries, arterioles and then capillaries, postcapillary
venules, veins etc... Microcirculation consists of arterioles, venules and capillaries,
where the vital substance exchange takes place. After capillaries, the blood is merged
into venules (postcapillary venules) and then into veins. Finally, the major veins
bring the blood into the right atrium, then the right ventricle where blood is pumped
through the pulmonary circulation, releasing carbon dioxide and wastes, before the
re-oxygenated blood is sent back to the left ventricle and the cycle starts again.

Blood flows from arteries to capillaries, experiencing a large spectrum of spatial
scales, ranging from centimeters to micrometers. At the scale of an artery, blood
flow is often theoretically treated as a homogeneous Non-Newtonian fluid, while at
the scale of microcirculation, the individual character of red blood cells (RBCs)
must be taken explicitly into account. Since the exchange of oxygen and nutrients
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1. INTRODUCTION

Figure 1.1: A schematic of human circulatory system and RBCs flowing in a vessel.
(Picture from http://www.osteopathyny.com/wordpress/wp-content/uploads/

2014/06/Blood-Flow.jpg)

takes place in the microvasculature, an abnormal transport of RBCs can have major
health consequences. For example, the occurrence of prolonged occlusion zones by
RBCs may affect blood vessel perfusion, leading to regression of capillaries, and
causing severe diseases, such as induced ischemia [Cokkinos et al., 2006] (tissue
deprivation from oxygen leading ultimately to necrosis). The main cause of ischemia
is still a matter of debate [Cokkinos et al., 2006]. A possible cause may be related
to an endothelial dysfunction. The precise nature of the network (let us say the
network topology), as well as the mechanical properties of RBCs, may also affect
the perfusion phenomenon, and will be examined in some of our simulations.

Let us also cite some documented facts about the link between the occlusion zones
and the nature of RBCs and blood vessels. RBC pathologies, like drepanocytosis (or
sickle cell anemia) and malaria, cause variations of RBC shape and deformability,
thus presenting serious risks of occlusion. In other diseases, blood vessels can be se-
riously affected, constituting another potential cause of occlusion. A typical disease
is diabetes I, which can affect vessel morphology and mechanical properties[Lorthois
and Cassot, 2010]. All of these factors may influence, in a more or less severe way,
the flow properties of RBCs with several implications of hematocrit distribution in
the vascular network.
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1. INTRODUCTION

As will be seen in this work, the behavior of an even single cell under flow is a
complex question, and its understanding will help build the basic blocks regarding
blood circulation. An important issue which has known a fundamental focus of
the physics, mechanics, and applied mathematics community, concerns the basic
understanding of the behavior of individual RBCs under simple flows (such as a
linear shear flow and Poiseuille flow) [Abkarian et al., 2007; Fischer et al., 1978;
Kantsler and Steinberg, 2006; Keller and Skalak, 1982; Kraus et al., 1996; Misbah,
2006; Noguchi and Gompper, 2004, 2007; Skotheim and Secomb, 2007]. A RBC
under a linear shear flow can undergo a tank-treading (the cell orientation is fixed
while the membrane undergoes a tank-tread-like motion), vacillating breathing or
swinging (the cell orientation oscillates around the flow direction, while the shape
shows a breathing behavior), tumbling, and so on. Whether one motion prevails
over the others depends on several parameters, like the flow strength, the mechanical
properties of the cell, etc... It will be seen here that the nature of the dynamics of
a single cell has a strong impact on the collective behavior of the suspension.

1.2 Blood components

Blood is a fluid mainly composed of plasma, RBCs (occupying about half of the
volume), white blood cells (WBCs), and platelets, as shown in Figure 1.2. WBCs,
platelets and plasma proteins occupy less than 1% of the total blood volume. Blood
accounts for 7% of the human body weight with an average density of approximately
1060kg/m3. The average blood volume in an adult human body is about 5 liters.
The plasma occupies about 50% of blood volume. The components of plasma are
92% water, 8% plasma proteins and some nutrients and wastes, such as glucose,
hormones, carbon dioxide, lactic acid and so on. Albumin is the main protein in
plasma, and its function is to control the osmotic pressure of blood.

Figure 1.3 provides a schematic of the main blood cells and their morphologies.
The RBCs (also called erythrocytes) are the most abundant cells in blood. The vol-
ume fraction of RBC (hematocrit) in the whole blood is about 45%. One microliter
of blood contains roughly 5 million RBCs. The typical shape of a healthy RBC
is a biconcave disk (approximately) with diameter of 8µm and thickness of 2.5µm.
The RBC membrane encloses hemoglobin, which binds the oxygen from respiratory
system and releases it to the tissue when needed. A blood sample observed under
a microscope tends to aggregate due to fibrinogen (a plasma protein). The formed
aggregation has a rouleaux-like shape and can be reversibly disaggregated by shear
forces larger than 1dyn/cm2 [Popel and Johnson, 2005]. The mechanism of aggrega-
tion is generally explained by two models. One is based on the assumption that the
macromolecules are absorbed on the RBC surface and can thus make the links be-
tween neighboring RBCs [Chien and Sung, 1987] (bridging mechanism). The other
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Figure 1.2: A scanning electron microscope image of the main components of blood.
It shows red blood cells, white blood cells and platelets. (Picture from https:

//en.wikipedia.org/wiki/Blood_cell)

proposes that the exclusion of the macromolecules from the fluid gap between two
adjacent RBCs leads to an osmotic gradient which presses the RBCs together [Arm-
strong et al., 2004; Neu and Meiselman, 2002]. While it is often admitted that in
the organism rouleaux can be destroyed by shear flow, the situation under microcir-
culation tends to show the opposite: a physiological concentration of fibrinogen can
lead to quite persistent RBCs rouleaux, as shown recently by in vitro experiments
and numerical simulations [Brust et al., 2014].

The white blood cells (leukocytes) belong to the immune system. One microliter
of blood contains 4000-11000 WBCs. As shown in Figure 1.3, there are typically five
kinds of WBCs with different characteristics. In general, the WBC has a spherical
shape with a larger size than RBC, approximately 12µm in diameter. When the
WBC is activated by the immune system, it adheres to the endothelial cells, rolls
along the vessel wall, and transmigrates the vessel wall to fight infections in the
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1. INTRODUCTION

Figure 1.3: A schematic of blood cells: red blood cells, white blood cells and
platelets. Red blood cells constitute about 45% of blood volume. The normal
RBC has a biconcave disk shape. (Picture from https://en.wikipedia.org/wiki/

Blood)

underlying tissues.
The platelets (thrombocytes) take part in blood clotting to stop bleeding. One

microliter of blood contains 200,000-500,000 platelets. The inactive platelets have
a biconvex discoid shape with a diameter of about 3µm. Once they are activated,
several irregular shapes are produced on the surface of the platelet. The platelets
can aggregate with each other and adhere to other blood cells and the vessel wall.
Besides their intervention in stopping bleeding, platelets can also have undesirable
effects, such that they can attach to locally damaged endothelium and elicit throm-
boembolism.

Since the main components of blood are plasma and RBCs, from a physical
viewpoint, we consider in this work that blood can be represented as a suspen-
sion of deformable particles for the investigation of the blood flow properties. The
plasma, normally, can be treated as a simple fluid. The RBC is modeled as a flexible
membrane enclosing a viscous liquid. The volume of a RBC is about 90µm3 and
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1. INTRODUCTION

Figure 1.4: A schematic of RBC membrane. (Picture from [Kim et al., 2012])

the surface is about 130µm2. The internal fluid is basically a hemoglobin solution,
which is about 5 times more viscous than the plasma [Skalak et al., 1987; Waugh and
Hochmuth, 1995]. As the capillaries have a comparable size to the RBC size, RBCs
undergo a strong deformation to squeeze through them. The high deformability of
the RBC comes from two factors. (i) The first factor is the biconcave shape, making
a small volume to area ratio (reduced volume of normal RBC is about 0.65; see later
for a precise definition) and allowing a large deformation, despite the fact that the
membrane surface is kept practically constant. (ii) The other factor is the flexibility
of membrane. As shown in Figure 1.5, the RBC membrane consists of a lipid bilayer
linked with a cytoskeleton (a network of proteins, the spectrin) [Li et al., 2005; Peng
et al., 2013]. The lipid bilayer is about 4nm in thickness. When compared with the
length scale of the RBC size (say its typical radius), the membrane thickness can
be ignored, and the membrane can be viewed as a geometrical surface. The mem-
brane resists to bending (bending costs some energy). In addition, the presence of
the cytoskeleton [Liu et al., 1987] confers to the membrane resistance against shear
elasticity. The RBC membrane is usually modeled as a thin membrane with bending
modulus of 2×10−19Nm [Discher et al., 1998; Evans, 1983; Scheffer et al., 2001] and
a shear modulus of about 4µN/m [Farutin and Misbah, 2012; Gompper and Schick,
2008]. The RBC membrane also shows a viscous property, and its membrane vis-
cosity plays an important role [Dao et al., 2003; Evans and Hochmuth, 1976; Prado
et al., 2015]. In addition, the cytoskeleton can undergo a remodeling in response
to shear stress, by separating and reconnecting the lipid layer and cytoskeleton [Li
et al., 2007; Park et al., 2010]. The typical dynamics of RBC in simple shear flow is
that it tumbles at small shear rates (< 1s−1) and tank-treads at larger shear rates
(> 10s−1) [Schmid-Schönbein and Wells, 1969].
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Figure 1.5: Ex vivo arteriogram of a normal human heart showing the microvascular
structure. (Picture from [Fulton, 1963])

1.3 Microcirculation

With the advent of optical microscopy in the seventeenth century, Malpighi discov-
ered the capillaries, while van Leeuvenhoek described the complex microvascular
morphology. Microcirculation is embedded within organs and tissues and consists
of the smallest blood vessels, composed of arterioles, capillaries, and venules. The
arterioles are the arterial part of the microcirculation. They are 10-100 µm in di-
ameter. The capillaries have about 4-8 µm in diameter and form complex networks.
The venules are 10-200 µm wide, through which blood flows into veins. From aorta
to vena, microcirculation bears approximately 80% of the total pressure drop (hemo-
dynamics dissipation) and slows down the blood flow rate. Thus it provides a way
to supply nutrients and oxygen to the living tissue.

The arteriole segments exhibit approximately cylindrical configurations. From
aorta to capillaries, following the self-similarity, the arterioles branch and form tree-
like fractal structures with vessels of decreasing diameter and length. Typically,
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the microvascular structures are three dimensional. The architecture regulates the
blood flow properties. To satisfy the needs of different organs, such as heart, brain,
kidney and so on, the geometries of the vascular network have to comply with these
constraints. Figure 1.5 show the microvascular of the heart. The arteriole vessel wall
contains vascular smooth muscle, which takes care of the regulation of blood flow
in the microcirculation. In a passive way, the increasing pressure dilates the vessel
diameter and the decreasing pressure constricts the vessel diameter. In an active
way, the vascular muscle can be activated by many factors. Of particular importance
is the myogenic mechanism, which acts in the reverse direction as compared to a
passive response, in that the vessel diameter constricts when the pressure drops
down and dilates when the pressure rises [Popel and Johnson, 2005]. In this way,
the blood flow can be maintained nearly constant over a wide enough range of
pressure variation. A shear-dependent mechanism [Busse and Fleming, 2003] is also
important to regulate the blood flow by reducing the resistance of the vessel through
nitric oxide (NO), which is released from endothelium when a rise of shear stress is
sensed. Beside these two factors, neural, hormonal and metabolism are also in charge
of regulation of blood flow. The internal surface of the blood vessel wall is covered
by endothelium, which constitute a periodic wavy surface [Barbee et al., 1994] with
approximately 3µm height fluctuation. This makes the vessel lumen not circular
when the vessel diameter is small. When the vessel diameter is constricted, the
bulging endothelial cells form a star-shaped cross section of the vessel. These shape
adaptations regulated by the endothelium play an essential role in microcirculation.

The capillaries are the smallest vessels of the vascular system. Typically, they
are several hundred micrometers in length, about 5µm in diameter. Abundant
capillaries are interconnected in a complex network, which provides a large surface
area. These characteristics are beneficial for mass exchange. The capillaries do not
have the ability to regulate the flow in an active way, as the arterioles do. This
lack of regulation ability is attributed to the absence of smooth muscles. They are
made of a thin basement membrane covered internally by an endothelial monolayer.
The glycocalyx grows on the endothelial surface and forms a layer on the luminal
side with a shear-rate-dependent thickness of about 1µm. The glycocalyx layer
takes part in the hemodynamic resistance in capillaries [Lanotte et al., 2012, 2014].
Recently, a back flow at the interface of the glycocalyx layer has been reported [Biagi
et al., 2015]. Another prominent property of the capillary wall is the presence of
some porous walls, like in the fenestrated capillaries in glomeruli [Deen et al., 2001]
or sinusoidal capillaries in lymph nodes, leading to a leakage of the blood flow. The
fenestrated capillaries have small pores (60-80 nm in diameter) on the endothelial
cells, while the sinusoidal capillaries are not continuous and have large openings
[Nagy et al., 2008] (30-40 µm) between the endothelial cells.

The venous network has a structure similar to the arteriolar network, but with
shorter, wider and thinner segments. Usually, the venous vessels and arteriolar
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vessels are side by side, which is beneficial for the direct exchange between vessels.

1.4 Blood flow in microcirculation

The typical velocity of blood flow in arterioles ranges from 7mm/s to 12mm/s, cor-
responding to different diameters (from 15µm to 60µm)[Popel and Johnson, 2005].
The corresponding Reynolds number (measuring the ratio of viscous effects over the
inertial effects at the scale of the blood vessel) ranges from 0.03 to 0.2. The Womer-
sley number (which measures the importance of the pulsatile nature of blood flow)
ranges from 0.2 to 0.8. These numbers show that inertial effects and the pulsatile
nature of blood can not necessarily be safely neglected in the case of arterioles, so
these effects must be taken into consideration in the future for a careful study of
the flow in arterioles.

The blood velocity in capillaries is quite small, about 0.2mm/s [Popel and John-
son, 2005]. The Reynolds number and Womersley number are about 0.0003 and
0.07, respectively. Although venules have a comparable size to arterioles, the blood
velocity is much slower due to lower pressure. For example, it is about 0.2mm/s
and 2.4mm/s in the venules with diameters of 18µm and 72µm, respectively [Popel
and Johnson, 2005]. Thus, one characteristic of the blood flow in microcirculation
is that both the Reynolds number and Womersley number are small, especially in
capillaries. Throughout this work, both inertial and pulsatile effects will be ignored.

As stated above, in the microcirculation (vessels with diameters smaller than
100µm), the discrete nature of blood (suspensions of RBCs) must be taken into
account in the flow. In thin tubes, the blood flow shows a blunted velocity profile
instead of a parabolic profile (Poiseuille flow). RBCs have the tendency to migrate
towards the center, leaving behind a cell-free layer zone. Therefore the RBC velocity
(because they migrate towards the center flow line where the velocity is larger) is
on average greater than the average blood velocity. If one injects blood from some
reservoir into a small tube, there will be fewer RBCs in the tube than in the reservoir,
since RBCs move faster than the average blood velocity. Thus the hematocrit in
the tube is smaller than that in the reservoir (also called the discharge hematocrit).
This effect is known as the F̊ahræus effect [Barbee and Cokelet, 1971; Pries et al.,
1992]. Because there is a cell-free layer, the blood flow is more efficient than in
the absence of that layer. Moreover, since the cell-free layer is reported to be an
intrinsic property (its extent does not depend too much on the tube radius), the
relative effect of this layer is more important in smaller tubes than in larger ones.
Therefore, the smaller tube the blood squeezes in, the better it flows, unless the
tube diameter becomes of comparable size to the RBC, in which case blood flow
efficiency is reduced. This is the famous F̊ahræus-Lindqvist effect: the apparent
viscosity of blood in small tube (< 300µm in diameter) decreases with decreasing

9



1. INTRODUCTION

Figure 1.6: F̊ahræus-Lindqvist effect. (Picture from [Pries et al., 1992])

diameter [Pries et al., 1992, 1994] (see Figure 1.6).
Another characteristic of microcirculation is the complex vessel network. The

principal mechanism that dictates blood heterogeneity in the microvascular networks
is the hematocrit partition at the level of bifurcations. RBCs do not behave as
passive tracers. Their deformability and dynamics play a decisive role, especially
in capillaries, where RBC size is comparable to the size of the capillary. A well
known phenomenon in microcirculation is the Zweifach-Fung effect [Dellimore et al.,
1983; Fenton et al., 1985; Guibert et al., 2010; Pries et al., 1989]: If we consider
a bifurcation, the child branch with the lower flow rate is depleted in RBCs as
compared to the parent vessel, while the other, higher flow rate child branch, is
enriched. When the flow rate is sufficiently small, the hematocrit in the child branch
can even drop down to zero, while it reaches high values in the other branch. The
Zweifach-Fung effect results from the existence of a cell-free layer. The feeding flow
is divided by a separating streamline into two parts, one feeding the low flow rate
branch and the other feeding the high flow rate branch. Due to the cell-free layer,
the RBC fraction in the part entering the low flow rate branch is smaller compared
to the original RBC fraction in the total feeding flow. The depletion in the low flow
rate branch is accompanied by enrichment in the high flow rate branch.

By taking into account the F̊ahræus effect, the F̊ahræus-Lindqvist effect and
the Zweifach-Fung effect, Pries et al. proposed a model based on empirical laws
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[Pries et al., 1990], which has been widely used in prediction of blood flow in vessel
networks [Huang et al., 2001; Lorthois et al., 2011; Olgac and Kurtcuoglu, 2015].
We shall see in this work that these laws have to be revisited in some flow conditions
(see later), since our simulations show a reverse Zweifach-Fung effect.

1.5 Contribution of this thesis

In the past decades, thanks to abundant theoretical, experimental and numerical
studies, the dynamics of single RBC in simple flows have been relatively well under-
stood. These results help providing the basic elementary blocks in order to build
a fundamental understanding of blood flow properties, and to extract some basic
information about the potential implication on physiological functions. Despite the
basic progress achieved on single entities, the complex geometries met in reality and
the prevalence of many collective phenomena among RBCs, render the understand-
ing of blood flow in microcirculation still a challenging issue. Thanks to the increase
of the computational powers during the past two decades, and the development of
numerical methods, an interesting field of research regarding a bottom-up approach
to blood flow in complex geometries is beginning to emerge. A direct simulation of
a large number of RBCs has become possible, which provides an effective way to
study the collective behavior of RBCs in complex geometry. In this thesis, a 2D
immersed boundary lattice Boltzmann method (developed by myself) has been used
in order to investigate the cell-cell and cell-wall interactions in shear flows and in
pressure-driven flows in more complex architectures. Due to the 2D nature of the
simulations, the notion of shear elasticity in the plane of the RBC membrane looses
its meaning, and the vesicle model (a pure phospholipid membrane endowed with
a bending elasticity) will be adopted to model a RBC. Thanks to a collaboration
with Jens Harting, some 3D simulations have been performed in this thesis, where
we have tested the effect of membrane shear elasticity. Several collective behaviors
reported here (like rheology in a linear shear flow), will highlight the fact that both
the 2D and 3D simulations capture the same essential results. This lends support to
our choice of massive 2D simulations at the benefit of strong gain in computational
efficiency. It should be kept in mind that we have also performed several simulations
in 3D by including the effect of cytoskeleton in the model.

The main contributions of this thesis are directed towards the study of collective
behaviors of RBCs in confined shear flow and the distribution of RBCs in complex
geometries, where a pressure-driven flow is imposed.

Regarding the collective behavior of RBCs in confined shear flow, the results can
be summarized in two parts:
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1.5.1 The analysis of hydrodynamic interaction in a shear
flow plane (2D) and study of confined rheology

In the first step, we perform numerical simulations in order to study the hydro-
dynamic interaction between two vesicles in a 2D confined shear flow. In a given
flow, we find an equilibrium state of two tank-treading vesicles with constant rela-
tive distance, which is regulated by the confinement. In addition, the equilibrium
distance increases with the gap between walls following a linear relationship. How-
ever, an equilibrium distance between two tumbling vesicles is not observed. Having
understood the basic element regarding two body interaction, in a second step, we
systematically analyze dynamics and rheology of a suspension of vesicles in a con-
fined shear flow. The combination of the confinement effect and the hydrodynamic
interaction, an ordered configuration of tank-treading vesicles is found to be generic,
whereas a disordered configuration of tumbling vesicles prevails. Thanks to the or-
dering, the tank-treading vesicle suspension exhibits a decrease of the normalized
viscosity (defined as the difference between the effective viscosity and that of the
suspending fluid over the concentration (area fraction in 2D) of the suspension) with
increasing concentration. This work is presented in Chapter 3. This work has given
rise so far to two publications, one in Physical Review Letters (Thiebaud et al.,
2014) and one submitted to Physical Review Fluids (Shen et al., 2016).

1.5.2 The consequence of hydrodynamic interaction between
RBCs in 3D

The above ordered structure concerns a 2D suspension, and the question naturally
arises of whether order survives in 3D. Suspensions, like emulsions, blood, etc. under
shear flow are traditionally viewed as a collection of particles with more or less ran-
dom positions due to mutual hydrodynamical interactions. By numerical simulations
and experiments we show that in a confined blood suspension RBCs spontaneously
organize in a crystalline-like structure under the sole effect of hydrodynamic inter-
action. It is further shown that when RBCs are substituted by rigid particles, order
disappears in favor of disorder. Various crystalline orders take place depending on
hematocrit and confinement. The intercellular distance of the crystalline structure
is a linear function of confinement. Order appears as a subtle interplay between the
lift force that pushes RBCs away from walls towards the center and hydrodynamic
interactions. This study introduces a new paradigm in the field of dilute non col-
loidal suspensions where the prevalence of disorder was up until now the rule. This
work has given rise to a paper (combining simulations in 3D and experiments) and
is to be submitted to Proceedings of the National Academy of Sciences of the United
States of America (Shen et al., 2016).
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1.5.3 Distribution of RBCs in complex geometry

Two major questions have been analyzed. The first one is dedicated to a simple
bifurcation, while the second one treats the case of a complex network.

1.5.3.1 Partition at a bifurcation

After the study of suspension in simple geometry, we directed our work towards
complex geometries. A question of major importance in microcirculation concerns
the partition of RBCs at the level of bifurcations in the microcirculatory system. We
address this problem by using T-shaped microfluidic bifurcations as a model. Our
computer simulations and in vitro experiments (that I have conducted myself, as
well) reveal that the hematocrit (φ0) partition depends strongly on RBC deformabil-
ity, as long as φ0 < 20% (which corresponds to the normal range in microcirculation),
and can even lead to complete deprivation of RBCs in a child branch. Furthermore,
we discover a deviation from the Zweifach-Fung effect which states that the child
branch with lower flow rate recruits less RBCs than the higher flow rate child branch.
At small enough φ0, we get the inverse scenario, and the hematocrit in the lower
flow rate child branch is even higher than in the parent vessel. We explain this
result by an intricate up-stream RBC organization and we highlight the extreme
dependence of RBC transport on geometrical and cell mechanical properties. This
work is presented in Chapter 5. This work has given rise to an article which has
been published in Microvascular Research (Shen et al., 2016).

1.5.3.2 Perfusion in complex networks

The next natural extension of this work is the study of networks made of many
branches in order to analyze the perfusion phenomena at larger scales. We address
this problem by simulating the RBCs in a large vessel network with a basic structure
of hexagon loops. Our computer simulations reveal that the lateral displacement
of RBCs (at the scale of network, not in a given branch) depends strongly on their
deformability, as long as hematocrit φ < 20% (a normal range in microcirculation),
while the cell-cell collisions masks the effect of deformability in the higher hema-
tocrit regime. Furthermore, we discover a deviation of RBC flux in networks as
compared to that in straight tubes: in straight channels the flux of rigid RBCs is
lower than that of soft RBCs, whereas the opposite happens in the studied network.
Finally, diffusion of initially crowded RBCs along the flow direction in the network
is analyzed. Rigid RBCs show a faster spreading than soft ones. This work is pre-
sented in Chapter 6. This study has given rise to a publication to be submitted to
Microvascular Research (Shen et al., 2016).
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Chapter 2

Modeling and Materials

This chapter is dedicated to the exposition of the simulation method and the experi-
mental procedure. We first present in Section 2.1 a brief review of various numerical
methods used to solve dynamics of RBCs. We then concentrate in Section 2.2 on
the method used in this thesis, namely the Lattice Boltzmann method (LBM). Sec-
tion 2.3 deals with immersed boundary method which is employed to achieve the
coupling of fluid flow and RBC membrane interaction. The two dimensional model
of RBC used in the present thesis is specified in Section 2.4. The precise numerical
procedure is summarized in Section 2.5. In Section 2.6 and Section 2.7, we describe
some technical points associated with the numerical method. Equilibrium shapes of
vesicles and their dynamics under linear shear flow, tank-treading and tumbling mo-
tion, are examined to validate the code in Section 2.8. Finally, a brief introduction
of the experimental setup is presented in Section 2.9.

2.1 Current numerical methods of RBC flow sim-

ulation

Most theoretical studies of RBC flow are based on numerical approaches. The sim-
ulation of the RBC flow is a fluid-structure problem (the structure often referred
to is the suspended entity, which is the RBC membrane in the present problem).
Many methods have been developed to deal with this problem, however no universal
method is available, and each has its own merits and drawbacks. For example, multi-
particle collision dynamics is performed by Noguchi et al. to study the dynamics
of vesicles [McWhirter et al., 2009; Noguchi and Gompper, 2004, 2005, 2007], dissi-
pative particle dynamics [Pivkin and Karniadakis, 2008] is carried out by Fedosov
et al. to investigate the rheology of the RBC suspension [Fedosov et al., 2011b].
Both of them are meshless methods and easy to implement for complex geometries.
These methods are akin to molecular dynamics. Another advantage of these two

14



2. MODELING AND MATERIALS

methods is that the thermal fluctuations of RBC membrane can be naturally taken
into account. Other methods, such as level set method and phase field method, are
used by Douyex et al. [Doyeux et al., 2011a; Vincent et al., 2012] and Biben et al.
[Biben and Misbah, 2003; Biben et al., 2005] to simulate vesicle dynamics in 2D and
3D. These two methods are purely Eulerian. Various fluid solvers, finite difference
method or finite element method et al. can be applied with level set and phase field,
allowing handling of complex geometries.

Another well adopted method, which enjoys high precision, is the boundary inte-
gral method (BIM), which has already been developed in our group for many years
and has allowed obtaining a series of fundamental understandings of the dynamics
of vesicles in simple flows [Cantat and Misbah, 1999a; Farutin and Misbah, 2011,
2012, 2013, 2014; Ghigliotti et al., 2009, 2010, 2012; Kaoui et al., 2009a,b]. The
boundary integral method was used to simulate the capsule deformation in shear
flow by Pozrikidis in 1995 [Pozrikidis, 1995]. Many other groups have adopted this
method to study vesicles and capsules [Quéguiner and Barthès-Biesel, 1997; Trozzo
et al., 2015; Veerapaneni et al., 2009; Zhao et al., 2010]. The principle is to use
Green function techniques associated with the Stokes equations where a membrane
force (bending and shear elasticity) is localized at the interface. Owing to its high
accuracy the BIM has been so far widely adopted to study dynamics of rigid and
soft particles in simple flows. The BIM is suitable to perform a simulation of few
particles in a free space domain. Because of the integral nature (i.e. nonlocal) the
displacement of a given point on the membrane requires the knowledge of the po-
sitions of all the discretization points. Hence, the complexity of the algorithm is of
the order of n2 where n is the total number of discretization points. Consequently,
the BIM sets severe limitation on computational capacity. The Green function is
known explicitly for unbounded flows and in the presence of a single planar wall
[Pozrikidis, 1992]. Even in the presence of two straight walls, no explicit form of
the Green function is known, but can be expressed in terms of a Fourier integral.
The implementation of a Green function for a straight channel has been recently
carried out in our group [Thiébaud and Misbah, 2013] and has allowed study of
concentrated suspensions [Thiébaud et al., 2014]. When the geometry is complex
(like bifurcations) the BIM method is not straightforward, albeit some preliminary
results are beginning to emerge.

Another popular way to achieve the coupling of the fluid and membrane is the
immersed boundary method (IBM), which has been first proposed by C. Peskin in
order to simulate the motion of heart valves [Peskin, 1977]. The principle of IBM is
a transfer between a Lagrangian frame (the structure, i.e. the RBC in the present
study) and an Eulerian frame (the fluid). Normally, the membrane is described in
a Lagrangian frame by following the advection of each membrane point, while the
fluid is adequately described in a Eulerian frame. The fluid-structure interaction
is accomplished by spreading the force of the membrane to the nearby fluid zones

15



2. MODELING AND MATERIALS

through a smeared delta function (the force on the membrane acts on the fluids in a
band surrounding the membrane; the band follows from the smeared delta function).
This force enters the Navier-Stokes equation (NSE) as a body force term, thus the
fluid-structure coupling is replaced by solving the NSEs with an additional body
force term. The resulting fluid velocities are interpolated back to the Lagrangian
system in order to update the membrane positions. The IBM can be combined
with any NSE solver in the presence of a body force term, such as finite element
techniques, finite differences, etc... A quite popular way for solving the NSEs is
the Lattice Boltzmann method (LBM), which has several virtues: (i) very easy to
handle complex geometries, such as networks, or even porous media, (ii) its ease of
implementation, (iii) its high level of locality regarding parallel computations, and
so on.

The use of IBM for deformable capsule simulations has been performed by Eggle-
ton and Popel [Eggleton and Popel, 1998]. Zhang et al. [Zhang et al., 2007] combined
the IBM and LBM for the simulation of RBCs. The LBM and IBM are efficient and
simple numerical tools but less accurate. LBM lends itself to a relatively easy way
to perform complex solid boundaries due to the so called bounce-back condition (see
Section 2.2). These properties make the combination of IBM and LBM suitable for
our goal, i.e. simulations of a large number of RBCs in complex networks. This the-
sis uses LBM for the NSEs solver and deals with the fluid-structure interaction by
IBM. The description of these two methods are presented in the next two sections.

2.2 Lattice Boltzmann method

LBM was developed from lattice gas cellular automata (LGCA) which was originally
introduced by Frisch et al. [Frisch et al., 1986] and by Wolfram [Wolfram et al.,
1986]. In LBM, a fluid is treated as a cluster of pseudofluid particles living on a
lattice. They collide and spread along discrete directions at each spatial position
of the lattice. From another point, the essence of LBM is a numerical way to solve
the Boltzmann equation which is based on kinetic theory of gases, but which can
allow finding macroscopic properties associated with a continuum medium. In the
limit of a small Knudsen number (measuring the ratio of the molecular mean path
over the length scale of interest) and small Mach number (ratio of fluid speed to
sound speed), the NSEs can be derived from the Boltzmann equation by adopting
the Chapman-Enskog analysis [Chen and Doolen, 1998; Krüger, 2012]. The LBM is
not a direct solver of the NSEs, but constitutes a good approximation to the NSEs.
It is by now widely used in computational fluid dynamics. Actually, the range of
application of the Boltzmann equation goes much beyond the NSEs. Indeed, it can
be also used to approximate other types of equations, such as advection-diffusion
equations [Shan and Doolen, 1996; Wolf-Gladrow, 1995].
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Figure 2.1: D2Q9 lattice model. All the velocity vectors are located in a 2D plane.
c1−4 point towards the neighbors along the x and y axes. c5−8 point towards the
neighbors along the diagonals. c0 is zero. The fi(r, t) streams in time with velocity
ci towards the neighbors.

2.2.1 LBGK model

The difficulties in solving the Boltzmann equation come from the complexity of
the collision operator. Much work has been carried out on the simplification of
the collision operator. The Bhatnagar-Gross-Krook (BGK) approximation is the
simplest and most successful model of collision operator. The BGK approximation
is to linearize the collision operator based on the idea that all the fi(r, t) relax
towards a local equilibrium distribution function f eqi (r, t) with a constant relaxation
time τ . fi(r, t) is the distribution function, which is the main quantity in LBM, gives
the probability of particles moving with lattice velocity ci at position r. The lattice
Bhatnagar-Gross-Krook (LBGK) is a discretization for BGK approximation of the
Boltzmann equation. The LBGK can recover the Navier-Stokes equations (NSEs)
trough a classical analysis in statistical physics, known as the Chapman-Enskog
analysis.

A so-called D2Q9 lattice model (2D and 9 lattice velocity vectors) is employed
(see Figure 2.1). The choice of 9 points is necessary to recover isotropy of the
continuum equations. The time evolution of the distribution function fi(r, t) is
governed by lattice Boltzmann equation (LBE):

fi (r + ci∆t, t+ ∆t)− fi (r, t) = ∆t (Ωi + Fi) (2.1)
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Here ∆t is the time step. Ωi is the collision operator, which is simplified by
(BGK) approximation:

Ωi = −1

τ
[fi (r, t)− f eqi (r, t)] (2.2)

where τ is a relaxation time and it is related with the kinematic viscosity of the fluid
υ = 1

2
c2
s∆t (2τ − 1). cs = 1√

3
∆x
∆t

is the local lattice sound speed for D2Q9 model. In

this thesis, we set ∆x = 1, ∆t = 1 and τ = 1 (LBM units).
The equilibrium distribution f eqi is obtained from an approximation of the Maxwell

distribution and can be expressed as

f eqi = ωiρ

[
1 +

1

c2
s

(ci · u) +
1

2c4
s

(ci · u)2 − 1

c2
s

(u · u)

]
(2.3)

Notice that the collision operator is not really linear since the non-linearity is
hidden in f eqi (r, t).

Fi is the bulk force term in LBE, it can be written as [Guo et al., 2002]

Fi =

(
1− 1

2τ

)
ωi

(
ci − u

c2
s

+
ci · u
c4
s

ci

)
· F (2.4)

where F is the bulk force term in NSE.
For the D2Q9 model, the nine lattice velocities ci and weight factors ωi are

ci = (0, 0), ωi = 4/9 for i = 0; ci = (cos [i− 1]π/2, sin [i− 1]π/2) ∆x/∆t, ωi = 1/9
for i = 1, 2, 3, 4; ci = (cos [2i− 9] π/2, sin [2i− 9]π/2) ∆x/∆t, ωi = 1/36 for i =
5, 6, 7, 8.

In the limit of small Mach number and Knudsen number it can be shown that,
through Chapman-Enskog expansion, the LBE can recover the incompressible NSEs
[Chen and Doolen, 1998; Krüger, 2012]

∇ · u = 0 (2.5)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + F (2.6)

The macroscopic quantities can be obtained from fi. The fluid density is given
by

ρ =
∑
i

fi (2.7)

while the fluid velocity is given by [Guo et al., 2002]

u =
1

ρ

∑
i

cifi +
1

2
∆tF (2.8)
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fi(0,t+1) f'i(L,t)

L

Figure 2.2: A schematic of implementation of periodic boundary in LBM.

and finally the fluid pressure is obtained as p = c2
sρ. The LBE does not exactly

describe an incompressible fluid. However, in the case of sufficient small Mach
number and pressure difference, the fluid can be treated as incompressible.

2.2.2 Boundary conditions and initial condition

Since the LBM solves the LBE instead of the NSEs through the evolution of the fi,
all the macroscopic variables for the initial and boundary condition (BC) should be
converted in terms of the distribution function. However, unlike the calculation of
macroscopic quantities which are directly calculated from the distribution functions,
here we want to impose a BC (like the BCs on pressure or velocity) which stems
from a macroscopic variable (e.g. pressure) which involves nine values of fi. There-
fore the question amounts, knowing the condition on the macroscopic quantity, how
to choose the BCs on these nine variables. This is a challenging issue, since, while
transferring information from microdynamics (knowledge of fi) towards a macro-
scopic one (pressure, for example) is straightforward, the reverse is far from being
true. This issue has been the source of many papers [Chen et al., 1996] devoted to
the question of how to implement BCs in the LBM.

We introduce the following BCs in LBM (used in present thesis):
Periodic boundary conditions
The periodic BC is easy to perform in LBM, and states that when the fluid

particles leave one side of the computation domain boundary, they enter the domain
again from the opposite side of the domain boundary. As en example shown in Figure
2.2, calling the domain length L, the periodic BC can be implemented as

fi (0, t+ 1) = f ′i (L, t) (2.9)

The f ′i is called post-collision distribution function. The periodic BC is used for
production of the concentrated suspension in this thesis. It should be careful to
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Fluid
f'i

x

x+ci
Wall

Figure 2.3: A schematic of bounce-back boundary condition in LBM. The wall (dash
line) divides the domain into fluid nodes (hollow point) and solid nodes (solid point).
For example, the distribution function f ′i of fluid node at x propagates towards the
solid nodes at x + ci. It is bounced back to the fluid node x when it hits the wall.

choose L in order to prevent numerical artefacts.
Bounce-back boundary condition
Bounce-back is a common way to deal with the no-slip boundary at the fluid solid

interface. The idea of bounce-back is that the distribution functions are bounced
back in the direction they come from when they hit the wall [Ginzbourg and Adler,
1994]. Figure 2.3 shows a process of bounce-back when the wall is located in the
middle of fluid nodes and solid nodes. Due to the simple implementation, a complex
geometry can be easily handled. A curved boundary is presented by a stepped
shape. Therefore a refined bounce-back combined with interpolation is proposed
to accurately handle the curved boundary [Bouzidi et al., 2001]. Note that many
ways to implement the bounce-back exist, as show in the Figure 2.3. A half-way
bounce-back is used in this thesis,

fi∗ (x, t+ 1) = f ′i (x, t) (2.10)

here i∗ means the direction which is opposite to i. The half-way bounce-back has a
second-order accuracy [He et al., 1997]. It is important to emphasize that the wall
is at the middle of the fluid nodes and the solid nodes. The half-way bounce-back
boundary condition is applied to produce a T-shaped bifurcation in Chapter 5 and
a network in Chapter 6.

Zou and He boundary
Zou et al. [Zou and He, 1997] proposed a velocity and pressure boundary con-

dition based on the assumption of bounce-back of the non-equilibrium distribution.
As shown in Figure 2.4, take the left edge for example, the distribution functions
f1, f5 and f8 are unknown after streaming, for velocity boundary, the velocities at
the edge are known, thus the following relations can be obtained

f1 + f5 + f8 = ρ− (f0 + f2 + f3 + f4 + f6 + f7) (2.11)
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Figure 2.4: A schematic Zou and He boundary in LBM. The unknown distribution
functions after streaming are presented by red dot line.

f1 + f5 + f8 = ρux + (f3 + f6 + f7) (2.12)

f5 − f8 = ρuy + (−f2 + f4 − f6 + f7) (2.13)

There are four unknowns but only three equations, an extra condition from
bounce-back of the non-equilibrium distribution is used [Zou and He, 1997]

f1 − f eq1 = f3 − f eq3 (2.14)

Consistency of Equation 2.11 and Equation 2.12 gives

ρ =
1

1− ux
[f0 + f2 + f4 + 2 (f3 + f6 + f7)] (2.15)

From Equation 2.14, f1 can be obtained

f1 = f3 +
2

3
ρux (2.16)

With f1 known, combining Equation 2.12 and Equation 2.13 we get

f5 = f7 −
1

2
(f2 − f4) +

1

2
ρuy +

1

6
ρux (2.17)

f8 = f6 +
1

2
(f2 − f4)− 1

2
ρuy +

1

6
ρux (2.18)
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The corner nodes need some special treatment. Take the top node at the inlet
for example. After streaming, only f2, f3 and f6 are known. Because of the no-
slip condition the velocity at corner are ux = 0 and uy = 0, the bounce-back of
the non-equilibrium distribution are both considered at x and y direction, which
yields f1 = f3 and f4 = f2. Combined with Equation 2.17 and Equation 2.18, we
get f8 = f6 and f5 = f7. The density ρ is expected to be constant at the inlet.
By taking the value on its neighboring node as ρ, all the variables are known at
this stage. With a similar trick, a pressure boundary condition can be carried out.
Zou and He boundary condition is second order accurate. The velocity boundary
condition will be referred to in order to apply a linear shear flow in Chapter 3 and
Chapter 4.

The choice of the initial condition is very important, especially for unsteady
flow and in some nonlinear problems where sensitivity to initial conditions has been
reported. This is the case for turbulence, multiphase flow and so on. The implemen-
tation of initial conditions in LBM is discussed in details in literature [Mei et al.,
2006; Skordos, 1993]. In this thesis, the initial condition did not show a significant
influence on the results. The main reason is traced back to the absence of un-
steady dynamics. The initial condition is fixed by setting the distribution function
to the equilibrium value, and accordingly to set the velocity to zero and density to
a constant value in all of our simulations.

2.2.3 Selection of parameters in LBM

Here we briefly summarize the selection of parameters based on the examination of
the stability, accuracy and efficiency in LBM with LBGK model. More details can
be found elsewhere [Holdych et al., 2004; Krüger, 2012].

The conditions set in LBM in order to accurately reproduce the results of
NSEs are small Knudsen number and Mach number (Ma) (continuous medium
and incompressible flow, respectively). The error in the LBM is proportional to
O (∆x2) +O (Ma2) [Krüger, 2012]. The relaxation time τ should be larger than 0.5
to keep numerical stability. However, τ should not be too large. A value of τ larger
than 1 deteriorates the quality of accuracy [He et al., 1997]. The LBM is suitable for
flows with intermediate Reynolds numbers, approximately from 0.1 to 100 [Succi,
2001]. The high Reynolds number causes instability while the low Reynolds number
results in a large computational time.

In the LBM simulation, the parameters are chosen in lattice units. Conversion
into physical units will be performed later. For example, for LBGK with D2Q9, the
sound speed is fixed to cs = 1/

√
3. If the fluid is treated as water, the kinematic

viscosity and sound speed are about 10−6m2s−1 and 1500ms−1. Conversion of LBM
units into physical units can be made as follows. Firstly, the Reynolds number
in LBM units can be defined as ul/υ (where u,l and υ are velocity, length and
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kinematic viscosity, respectively). If we use the same notations with a subscript p
(which stands for “physical”) for the physical units, we can also write ul/υ = uplp/υp.
Similarly, Mach number reads u/cs = up/csp. Using the above relations, we can write
lp = (υpcs/υcsp)l. In LBM, υ = 1

2
c2
s∆t (2τ − 1), considering stability, τ is always

chosen around 1, so that υ can be estimated by taking ∆t = 1. υp, csp are known for
water, while cs = 1/

√
3 is stated above for the D2Q9 lattice. From this information

we find lp ≈ 2.3 × 10−9l, which means one lattice length in LBM is approximately
equal to 2.3 nm [Narváez et al., 2010]. This clearly raises a numerical problem.
Indeed, the typical scale of our physical problem (RBC flowing in a channel) is
10−4m, which is about five orders of magnitude larger than the physical length
of one lattice, meaning a computational domain of about 105 × 105 lattice points
is needed in 2D simulation. This exceeds the computer memory capability. To
circumvent this difficulty, we have to make some assumptions. i) The numerical
Mach number is not necessarily corresponding to the reality. For example, a typical
flow velocity in microcirculation is about 1mm/s, while the sound speed is about
1500m/s, leading to a huge ratio between sound speed and flow speed, of the order of
106. We only require the fluid to be incompressible, a small Ma (< 0.3) is sufficient
to maintain the physical essence. The lattice Mach number is usually much larger
than in reality, but still less than 0.1 in our simulations. ii) When RBCs flow in the
microcirculation, the typical Reynolds number is 0.01-0.1 in arterioles and 0.0001
in capillaries, which leads to that the flow is in the viscous regime and inertia effects
are not relevant. For this reason, the lattice Reynolds number for simulation is
chosen as large as it is accepted by the small Reynolds number assumption (< 1
in our simulations) for enhancing the efficiency. Thus the Ma and Re are usually
not calibrated to reality in our cases, but still are chosen acceptable values so that
the inertia and compressibility are not relevant. Giving the lattice length scale
(taken to be unity), we have to decide the size of the RBCs in terms of lattice points
(depending on the required precision), and this will fix the length scale of interest (in
LBM units). The kinematic viscosity in LBM is known, and in order to determine
the Reynolds number, we need a velocity scale, which is fixed by the driving force, or
by the capillary number. So the capillary number will serve as a way of monitoring
the Reynolds number. Once the velocity scale is fixed, we can also determine our
Mach number.

If we take the bending elasticity of membrane, for example, the capillary number
is defined as Ca = µγ̇R3/κ, meaning the ratio between the membrane relaxation
time and shear time associated to the flow (1/γ̇). κ is the bending modulus of
the membrane. In the present thesis, for a RBC flow, a reasonable resolution of
the mesh is usually chosen as lp = 2 × 10−7l for the simulations in shear flow and
lp = 5 × 10−7l for the simulations in network by considering the balance of the
accuracy and efficiency. Then we can get Re = ρCaκ/(µ

2R) by the definition of
Reynolds number as ργ̇R2/µ, where we have µ = 1/6, ρ = 1 and approximately
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Figure 2.5: The discrete delta function for 3-point scheme and 4-point scheme.

R = 12 by using lp = 2× 10−7l. Once the capillary number of the problem is fixed,
the Reyonlds number can be calculated from the relation Re = 3κCa < 1. Ca is
taken to correspond to physical values, and the small Re assumption is satisfied by
choosing adequately κ (Re have the order of 0.1 in our simulations).

2.3 Immersed boundary method

The immersed boundary method is employed to deal with the coupling of fluid and
RBC in LBM[Kaoui et al., 2011; Zhang et al., 2007]. The IBM was firstly proposed
by Peskin and is useful to simulate flexible membranes in fluid flows [Peskin, 2002].
The principle of IBM is a transfer between Lagrangian system and Eulerian system.
Normally the membrane is described in Lagrangian system and the fluid is described
in Eulerian system. The basic idea is to spread the force of membrane points to
nearby fluid points and to interpolate the velocity of membrane points from the
nearby fluid points. Instead of dealing with the interface as a geometrical entity
(with zero thickness), the fluid-structure interaction is achieved by solving the NSEs
in band of width around the interface, in other words, the forces associated with
the membrane are rather bulk force. The mathematical derivation of the IBM
has been provided by Peskin [Peskin, 2002]. Here we just introduce its numerical
implementation in our simulations.

Both the force spreadings and velocity interpolation are achieved by a smeared
delta function. The discrete delta function has to obey a list of restrictions which
have been given by Peskin. The discrete delta function in 2D is written as

D (X) = ϕ (x)ϕ (y) , (2.19)
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where ϕ is a smeared function that is specified below. It is possible to use various
discrete delta functions. The discrete delta function is an important issue in IBM
which is related with the numerical accurate and efficiency. The classical and widely
used scheme is the cosine function, which is written as

ϕ (x) =

{
1
4

(
1 + cos

(
πx
2

))
|x| ≤ 2

0 2 ≤ |x|
(2.20)

Yang et al. [Yang et al., 2009] developed several smoothed discrete delta func-
tions to suppress the non-physical oscillations of the body forces in moving boundary
simulations. A so-called smoothed 3-point scheme is given by

ϕ (x) =
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Also a smoothed 4-point scheme is provided by

ϕ (x) =
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(2.22)
The named n-point is related with the interpolation degree. The smoothed 3-

point and 4-point discrete delta function are plotted in Figure 2.5. Considering
the numerical efficiency and the numerical width of the membrane, the smoothed
3-point is used in our simulations.

The force spreading and velocity interpolation is shown in Figure 2.6. The xf
denotes fluid points (hollow points in Figure 2.6). Consider the star-marked fluid
point for example. The force contributed by the membrane can be collected within
the blue square area in Figure 2.6, so that

F (Xf ) =
∑
m

D (Xf −Xm) F (Xm) (2.23)
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Figure 2.6: A schematic of force spreading and velocity interpolation in the IBM.
The fluid is denoted by the hollow points (Eulerian coordinate). The membrane is
denoted by the solid points (Lagrangian coordinate).

The xm denotes membrane points (solid points in Figure 2.6). Take the star-
marked membrane point for example. The velocity on the membrane point can be
interpolated from lattice to membrane by taking the fluid points within the gray
square area in Figure 2.6

u (Xm) =
∑
f

D (Xm −Xf ) u (Xf ) (2.24)

The evolution of fluid flow and membrane position is performed alternately with
the same time step. Normally the IBM provides a first order spatial accuracy. The
ratio between Eulerian mesh resolution and Lagrangian mesh resolution ∆Xm/∆Xf

is suggested to be smaller than 1/2 by Peskin [Peskin, 2002] in order to avoid fluid
leakage through the membrane. The real value of ∆Xm/∆Xf in our simulations is
selected from 0.5 to 1, normally around 0.65. A too large value may cause leakage,
while a too small value may cause numerical “stick” since if the Lagrangian mesh
is much smaller than the Eulerian mesh, the neighboring points on the membrane
get similar velocities [Krüger, 2012]. The numerical stick also happens when two
membranes get too close or when the membrane gets close to the solid boundary.
The membrane may adhere artificially to each other or on the solid boundary due
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Figure 2.7: The spring model of RBC. The membrane is presented by several points.
The neighboring points are connected by a spring. The angle between adjacent
springs is also controlled by a spring.

to similar velocities of the two interacting interfaces. A useful way is to refine
the resolution of the domain. However, this is done at a certain price: a significant
increase of computational time. A repulsive force is added in our simulations in order
to keep the distance between two interfaces larger than the interpolation range. This
force is given by the the Morse potential [Liu et al., 2004]

Φ (r) = De

[
e2β(r0−r) − 2eβ(r0−r)

]
(2.25)

r0 denotes the repulsion range that is set to 2 lattice lengths in the simulations. The
effect of this potential is cut off beyond the repulsion range where the interaction
changes sign. Note, in passing, that if we were interested in RBC aggregation we
could extend the range of the interaction beyond the repulsion range [Liu et al.,
2004]. We must mention that the numerical stick evoked above can be, in principle,
removed by introducing the repulsion. However, this is not always obvious. One
drawback is that the real effective radius of RBC is made artificially larger, and this
might be a source of errors, especially in the highly concentrated suspensions. How
to circumvent this problem, is still an ongoing matter for debate in the literatures.
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2.4 Model of RBC membrane

Now we will specify the membrane force F (Xm). In this thesis, a spring model
[Tsubota and Wada, 2010; Tsubota et al., 2006] is used for 2D simulations. As
shown in Figure 2.7, the RBC is modeled by N membrane points and each point is
connected to its neighbors with the potential

El =
1

2
kl

N∑
i=1

(
li − l0
l0

)2

(2.26)

where kl is the spring constant, which is set as large as possible in the simulation
in order to keep the membrane perimeter constant. l0 is the equilibrium spring
length. To maintain the area of the internal fluid of RBC constant, the following
potential is used

Es =
1

2
ks

(
s− s0

s0

)2

(2.27)

where ks is the area constant, and its value is also as large as possible in order
to keep the variation of s, the area of internal fluid, small. We define reduced
area ν = 4πs/C2. C is the perimeter of the membrane. ν = 0.7 is chosen to
get a biconcave shape for RBC in most of our simulations. s0 = νN2l20/4π is the
equilibrium area of RBC. The model also contains a bending energy

Eb =
1

2
kb

N∑
i=1

tan2

(
θi − θ0i

2

)
(2.28)

where kb is the bending constant and θi is the supplementary angle between two
adjacent springs. θ0i is the spontaneous angle for the RBC membrane, which is set
to 0 in this thesis (for simplicity)1. To characterize the flow, we define the capillary
number Ca = ηextR

3γ̇/4kbl0. γ̇ is the shear rate of the flow, R =
√
s0/π is the

radius of RBC, ηext is the viscosity of ambient fluid. Normally, Ca is kept at 1 in
most of our simulations. With these potentials, we can calculate the force applied
on membrane points at each time step by

F = −∂(El + Eb + Es)

∂r
(2.29)

The force arising from each part of the energy can be presented by the membrane
coordinates directly. For example, in Figure 2.8, the derivation of force on the point
(xi, yi) is given below.

1Setting this angle to a nonzero value allows, for example, to induce tank-treading of a tumbling
RBC upon an increase of shear rate. Since we are interested in transition phenomena in details,
we have decided to keep the number of parameters to a minimum.
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(xi,yi)

(xi+1,yi+1)
(xi+2,yi+2)

(xi-1,yi-1)(xi-2,yi-2)

θi
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θi-1

li

li-1
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Figure 2.8: A schematic for force calculation in the spring model.

For the stretching energy

Flx

∣∣∣
x=xi,y=yi

= −∂El
∂x

∣∣∣
x=xi,y=yi

= −kl
li − l0
l20li

(xi − xi+1)− kl
li−1 − l0
l20li−1

(xi − xi−1)

(2.30)

Fly

∣∣∣
x=xi,y=yi

= −∂El
∂y

∣∣∣
x=xi,y=yi

= −kl
li − l0
l20li

(yi − yi+1)− kl
li−1 − l0
l20li−1

(yi − yi−1)

(2.31)
For the bending energy
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Fbx

∣∣∣
x=xi,y=yi

= −∂Eb
∂x

∣∣∣
x=xi,y=yi

= − kb

[1 + cos (θi − θ0i)]
2

(
cos θ0i

∂cos θi
∂x

+ sin θ0i
∂sin θi
∂x

)
− kb

[1 + cos (θi+1 − θ0i+1)]2

(
cos θ0i+1

∂cos θi+1

∂x
+ sin θ0i+1

∂sin θi+1

∂x

)
− kb

[1 + cos (θi−1 − θ0i−1)]2

(
cos θ0i−1

∂cos θi−1

∂x
+ sin θ0i−1

∂sin θi−1

∂x

) ∣∣∣
x=xi,y=yi

(2.32)

∂cos θi
∂x

∣∣∣
x=xi,y=yi

=
xi+1 + xi−1 − 2xi

lili−1

− (xi+1 − xi) (xi − xi−1) + (yi+1 − yi) (yi − yi−1)

l3i li−1

(xi − xi+1)

− (xi+1 − xi) (xi − xi−1) + (yi+1 − yi) (yi − yi−1)

lil3i−1

(xi − xi−1) (2.33)

∂cos θi+1

∂x

∣∣∣
x=xi,y=yi

=
xi+1 − xi+2

lili+1

− (xi+2 − xi+1) (xi+1 − xi) + (yi+2 − yi+1) (yi+1 − yi)
l3i li+1

(xi − xi+1) (2.34)

∂cos θi−1

∂x

∣∣∣
x=xi,y=yi

=
xi−1 − xi−2

li−1li−2

− (xi − xi−1) (xi−1 − xi−2) + (yi − yi−1) (yi−1 − yi−2)

l3i−1li−2

(xi − xi−1) (2.35)

∂sin θi
∂x

∣∣∣
x=xi,y=yi

=
yi+1 − yi−1

lili−1

− (xi − xi+1) (yi − yi−1) + (xi − xi−1) (yi+1 − yi)
l3i li−1

(xi − xi+1)

− (xi − xi+1) (yi − yi−1) + (xi − xi−1) (yi+1 − yi)
lil3i−1

(xi − xi−1) (2.36)
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∂sin θi
∂x

∣∣∣
x=xi,y=yi

=
yi+1 − yi+2

lili+1

− (xi+1 − xi+2) (yi+1 − yi) + (xi+1 − xi) (yi+2 − yi+1)

l3i li+1

(xi − xi+1) (2.37)

∂sin θi
∂x

∣∣∣
x=xi,y=yi

=
yi−2 − yi−1

li−1li−2

− (xi−1 − xi) (yi−1 − yi−2) + (xi−1 − xi−2) (yi − yi−1)

l3i−1li−2

(xi − xi−1) (2.38)

Fby

∣∣∣
x=xi,y=yi

= −∂Eb
∂y

∣∣∣
x=xi,y=yi

= − kb

[1 + cos (θi − θ0i)]
2

(
cos θ0i

∂cos θi
∂y

+ sin θ0i
∂sin θi
∂y

)
− kb

[1 + cos (θi+1 − θ0i+1)]2

(
cos θ0i+1

∂cos θi+1

∂y
+ sin θ0i+1

∂sin θi+1

∂y

)
− kb

[1 + cos (θi−1 − θ0i−1)]2

(
cos θ0i−1

∂cos θi−1

∂y
+ sin θ0i−1

∂sin θi−1

∂y

) ∣∣∣
x=xi,y=yi

(2.39)

∂cos θi
∂y

∣∣∣
x=xi,y=yi

=
yi+1 + yi−1 − 2yi

lili−1

− (xi+1 − xi) (xi − xi−1) + (yi+1 − yi) (yi − yi−1)

l3i li−1

(yi − yi+1)

− (xi+1 − xi) (xi − xi−1) + (yi+1 − yi) (yi − yi−1)

lil3i−1

(yi − yi−1) (2.40)

∂cos θi+1

∂y

∣∣∣
x=xi,y=yi

=
yi+1 − yi+2

lili+1

− (xi+2 − xi+1) (xi+1 − xi) + (yi+2 − yi+1) (yi+1 − yi)
l3i li+1

(yi − yi+1) (2.41)

∂cos θi−1

∂y

∣∣∣
x=xi,y=yi

=
yi−1 − yi−2

li−1li−2

− (xi − xi−1) (xi−1 − xi−2) + (yi − yi−1) (yi−1 − yi−2)

l3i−1li−2

(yi − yi−1) (2.42)
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∂sin θi
∂y

∣∣∣
x=xi,y=yi

=
xi−1 − xi+1

lili−1

− (xi − xi+1) (yi − yi−1) + (xi − xi−1) (yi+1 − yi)
l3i li−1

(yi − yi+1)

− (xi − xi+1) (yi − yi−1) + (xi − xi−1) (yi+1 − yi)
lil3i−1

(yi − yi−1) (2.43)

∂sin θi
∂y

∣∣∣
x=xi,y=yi

=
xi+2 − xi+1

lili+1

− (xi+1 − xi+2) (yi+1 − yi) + (xi+1 − xi) (yi+2 − yi+1)

l3i li+1

(yi − yi+1) (2.44)

∂sin θi
∂y

∣∣∣
x=xi,y=yi

=
xi−1 − xi−2

li−1li−2

− (xi−1 − xi) (yi−1 − yi−2) + (xi−1 − xi−2) (yi − yi−1)

l3i−1li−2

(yi − yi−1) (2.45)

For the incompressibility of membrane enclosed area

Fsx

∣∣∣
x=xi,y=yi

= −∂Es
∂x

∣∣∣
x=xi,y=yi

= −1

2
ks
s− s0

s2
0

(yi+1 − yi−1) (2.46)

Fsy

∣∣∣
x=xi,y=yi

= −∂Es
∂x

∣∣∣
x=xi,y=yi

= −1

2
ks
s− s0

s2
0

(−xi+1 + xi−1) (2.47)

2.5 Numerical procedure

LBM is performed in two stages, called collision and streaming. The IBM also
has two steps called force spreading and velocity interpolation. The details of the
procedure for the combination of IBM and LBM is briefly described below.

1. Initialize the distribution functions fi(xf , 0), the positions of RBCs xm(0) and
the solid boundaries.

2. At time step t, the RBC positions xm(t) are known . The forces on membrane
F(t) can be calculated from the knowledge of xm(t), as given above by the RBC
model.

3. Spread the F(t) to the nearby fluid nodes.
4. Do collision in the LBM, get the distribution f ′i(xf , t).
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x'

1
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Figure 2.9: The proceeding to find the internal fluid nodes. A: The fluid node
X′ is the neighbor of the membrane. The membrane nodes Xi and Xi+1 are the
neighbors of the fluid node X′. The cross product of Xi − X′ and Xi+1 − X′ is
calculated to decide whether the node X′ is internal or not. B: All the neighbors
of the membrane have been identified. The internal nodes are marked by blue solid
points. The external nodes are marked by red solid points. The internal fluid node
1 is chosen as a seed. It searches the neighboring nodes along both of x axis and y
axis. Once an unidentified node (node 2) is found, it is chosen as a new seed. C: The
new seed continues to search until all the unidentified nodes inside the membrane
are found.

5. Do streaming in the LBM, get the distribution fi(xf , t+ 1) at time step t+ 1.
6. Implement boundary conditions.
7. Calculate the macro variables, get the fluid velocities uf (t + 1) at time step

t+ 1.
8. Interpolate the RBC velocities um(t+ 1) from fluid velocities and update the

RBC positions xm(t+ 1).
9. Go to step 2 for next time step
We have also performed 3D IB-LBM simulations. The code is provided by J.

Harting Group. The presentation of the methods can be found in T. Krüger’s thesis
[Krüger, 2012].

2.6 Identification of the internal fluid nodes

A dimensionless parameter λ = ηint/ηext, called viscosity contrast, is defined as the
ratio between viscosity of internal fluid and external fluid. For the physiological
condition, the hemoglobin solution is more viscous than the plasma with a viscosity
contrast of about 5. In our simulations, the value of λ is changed by varying the
relaxation time τ in LBM for internal fluid, since we have seen that the viscosity
is fixed by that time. The technical task is not easy in practice, since this requires
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A B Cϕ=71.3% ϕ=77.0% ϕ=52.2%

Figure 2.10: Some cases of the initialization of RBCs in high concentration situation.
φ is RBC concentration (area fraction). A: In the periodic domain. B: In a wall
bounded channel with some obstacles. The black region means obstacles. C: In a
network.

identification of the internal fluid nodes at every time step, which is computationally
expensive with a traditional algorithm when a large number of RBCs are simulated.
We developed a so-called seed algorithm which has high efficiency. The procedure
is described in Figure 2.9. The first step is to identify all the neighbors of the
membrane. Take, for example, a fluid node X′, and the internal fluid is fixed by
the direction of the cross product of the vector from X′ pointing to the neighboring
membrane node Xi and the vector from X′ to Xi+1 which is the anti-clockwise neigh-
bor of Xi. The internal fluid has the paper out cross product while the external fluid
has the paper in cross product. After all the neighbors are identified, the identified
nodes form a closed boundary, where the enclosed nodes are internal fluid nodes
(the hollow points inside of the membrane in Figure 2.9). To find these enclosed
nodes, one identified internal fluid node is chosen as the seed. The seed grows to its
neighbors and marks the unidentified node as the next seed until all the enclosed
nodes are found. With this algorithm, the internal fluid nodes can be quickly found,
then the τ on these nodes are reset for the viscosity contrast. Because a large τ
causes low accuracy and a small τ causes instability, the practical viscosity contrast
is usually less than 10 in our simulations. Higher viscosity contrasts can be carried
out by our simulations, but the result can be trusted at best only qualitatively.

2.7 Initialization of RBC positions

The initial position of RBCs can be created manually or randomly with a natural
biconcave shape for diluted situation. It is also possible to get a large concentration
with a regular arrangement of the initial positions. However it is quite time consum-
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ing to get the random initial position for high concentration, because the biconcave
shapes with random orientations make it difficult to fill the space in an efficient
way. It has seemed necessary to develop a way to position the RBCs randomly for
high concentration flow. We firstly position a large number of RBCs randomly by
representing each cell initially as a small circle (the small circular shape helps get-
ting a dense enough suspension). Once a circle is positioned, the circle occupancy
in the computational domain is marked. When a new circle is created, we check
if it overlaps with an old circle or with the solid boundary. If not, it will be posi-
tioned, otherwise, a new circle will be re-created until meeting the non-overlapping
requirement. This process goes on until the desired number of cells is reached. Since
we are interested in having biconcave shapes, not circular ones, the next step is to
transform the circles into a biconcave shape. This task is achieved thanks to two
energetic terms of the model implemented into the IB-LBM: in the Equations 2.26
and 2.27 the parameters are chosen so that the perimeter and area should corre-
spond to those of a RBC (approximately). Therefore the circle will naturally evolve
towards those value. Finally the Equation 2.28 is responsible for the selection of the
biconcave shape. Since we are interested at this stage in getting the initial configu-
ration, the real hydrodynamical dissipation does not matter. Therefore, in order to
accelerate the convergence towards biconcave shape we use an artificial dissipation
by resetting at every 1000 time steps the distribution function in a way to keep the
fluid quiescent. The RBCs adapt their shape during the circle extension process,
making the filling of space quite adequate and quite efficient. This procedure only
costs less than one hour to position hundreds of RBCs in a complex network for a
concentration of 52.2% as shown in Figure 2.10.

2.8 Benchmarking tests

The first test is to compare the equilibrium shape of a vesicle obtained by IB-LBM
and simple molecular dynamics model. Figure 2.11 shows the equilibrium shape for
different reduced area. The shapes produced by these two methods agree with each
other and the shapes shown in Figure 2.11 are indistinguishable.

The second test is to reproduce the tank-treading and tumbling motion of a
vesicle. The dynamics of single vesicle show the typical motions, tank-treading (TT)
and tumbling (TB), which are influenced by the deformability of the membrane.
Here we explore viscosity contrast while keeping the capillary number to 1 and
reduced area to 0.7. The computational domain is 48R in flow direction and 12R
in shear gradient direction. With a so large domain, the effect of periodic boundary
and bounding walls are so small that it becomes legitimate to compare the results
with previous ones obtained in unbounded linear shear flow. The viscosity contrast λ
plays the role in transition from TT to TB. Below a critical λc, the vesicle membrane

35



2. MODELING AND MATERIALS

-20

0

20

-30 0 30

-20

0

20

-30 0 30

-20

0

20

-30 0 30

-20

0

20

-30 0 30 -20

0

20

-30 0 30

-20

0

20

-30 0 30

ν=0.5 ν=0.6

ν=0.8

ν=0.7

ν=1.0ν=0.9

Figure 2.11: Vesicle shape for different reduced areas. The red line is obtained
by IB-LBM. The blue line is obtained by simple molecular dynamics model. ν is
reduced area. The coordinate is using LBM unit.
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Figure 2.12: The tank-treading motion and tumbling motion. ϕa is the inclination
angle. γ̇ is shear rate. The black point is a mark on the membrane.

moves as the tread of a tank with a fixed shape and orientation. This is shown in
Figure 2.12 for λ = 1. By increasing λ, the inclination angle ϕa decreases as shown
by for λ = 1 and λ = 3 in Figure 2.13. When λ is close to a critical value, λc, ϕa
tends to 0 and undergoes cyclic motion (tumbling) for λ > λc (see Figure 2.12). The
transition value λc is obtained approximately for 5 in our tests. When λ increases,
the tumbling frequency increases as well, as presented in Figure 2.13 for λ = 5,
λ = 7 and λ = 9.

Then next test has consisted in studying rheology. The normalized viscosity
is defined as [η] = (η − ηext)/(ηextφ). η is the effective viscosity of the vesicle
suspension and the ηext is the viscosity of the suspending solution. The rheology of
the suspension shows a macro/micro link, in that the behavior of [η] is intimately
linked with the microscopic dynamics, namely tank-treading and tumbling. Figure
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Figure 2.13: Time evolution of the inclination angle for different viscosity contrast.
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Figure 2.14: The normalized viscosity as a function of viscosity contrast.

2.4 shows the normalized viscosity which exhibits a decrease with increasing λ in
tank-treading regime. This decrease is linked with a decrease in inclination angle
which lowers resistance against overall flow. When λ tends to λc, the inclination
angle gets close to 0, so that the normalized viscosity is minimal at the TT-TB
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Figure 2.15: A schematic of experimental set up.

transition point. In the tumbling regime, the normalized viscosity increases with
increasing λ. The rotation of the inclination results in more resistance against flow.
As shown in Figure 2.13, when λ is close to the λc, the vesicle spends most of time in
the state aligned with the flow and less time in rotation. By increasing λ, the time
spent on the aligned state is reduced, inducing thus an increase of the normalized
viscosity.

All above results are in a good agreement with previous studies [Ghigliotti et al.,
2010; Kaoui et al., 2009b], thus supporting validation for our numerical method.

2.9 Microfluidics set-up

We have performed experiments for the validation of the simulations in Chapter
5 regarding the hematocrit partition at a bifurcation. Microfluidic channels are
produced by standard soft lithography techniques, with molded PDMS bonded to
glass. As shown in Figure 2.15, the RBC suspensions are perfused by a syringe
pump (KDS Legato 180) and imaging are performed by a video camera (Imaging
Source DMK 31AF03) mounted on an inverted microscope with motorized stage
(Olympus IX71) and a blue filter (434 ± 25 nm) corresponding to an absorption
peak of hemoglobin.

Blood samples are provided by the Etablissement Français du Sang (EFS Rhône-
Alpes) from healthy donors. RBCs are isolated by centrifugation after being washed
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twice in phosphate buffer saline (PBS) supplemented by 0.1 % bovine serum albumin
(BSA). To prevent sedimentation of RBCs in channels, the RBCs are re-suspended
in density-matching PBS and BSA solutions in a mixture of water and iodixanol
(Optiprep from Axis-Shield).

More details of the experimental set-up will be presented in Section 5.2 in Chap-
ter 5.
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Chapter 3

Interaction and rheology of blood
suspension in confined shear flow

In this chapter, we perform 2D simulations of a blood suspension in confined shear
flow to study the hydrodynamic interaction between cells and the rheology of sus-
pension. The introduction of this work is given in Section 3.1. The parameters of
computation are given in Section 3.2. The interaction between two tank-reading
vesicles is discussed in Section 3.3. Then the interaction between two tumbling
vesicles is discussed in Section 3.4. In Section 3.5, we talk about the order and
disorder of vesicle suspension. At last, the link between the order and the rheology
of suspension is presented in Section 3.6.

3.1 Introduction

Red blood cells (RBCs) achieve their main functions in the microcirculation, such
as oxygen supply to tissues and organs and removal of metabolism wastes. Through
their individual motions and mutual interactions, RBCs play an important role in
the regulation of the blood flow properties, and are consequently expected to have
an impact on the physiological function of organisms. Therefore, understanding
blood flow in a confined geometry is a basic key element in order to extract some
information that are likely to play a role in a more complex configuration. Besides
the obvious interest in studying RBCs in the microcirculation, there are also fun-
damental questions related to the rheology of complex fluids where the effect of
confinement can drastically alter the flow properties, as we will see in this work.

Blood is traditionally viewed as a collection of deformable particles suspended in
a fluid (plasma). The dynamics of a single deformable particle (vesicle, capsule, etc)
is relatively well understood thanks to a series of theoretical [Keller and Skalak, 1982;
Kraus et al., 1996; Misbah, 2006; Noguchi and Gompper, 2004, 2007; Skotheim and

40



3. INTERACTION AND RHEOLOGY OF BLOOD SUSPENSION IN
CONFINED SHEAR FLOW

Secomb, 2007], experimental [Abkarian et al., 2007; Fischer et al., 1978; Kantsler and
Steinberg, 2006; Mader et al., 2006] and numerical [Bagchi and Kalluri, 2009; Biben
et al., 2011; Pozrikidis, 2003] studies (see also reviews [Barthès-Biesel, 2016; Fedosov
et al., 2014; Seifert, 1997; Vlahovska et al., 2009]). For example, in simple shear
flow, the typical motions of RBC, tank-treading, tumbling and vacillating breathing
(or swinging) have been extensively studied. Understanding of these dynamics has
guided understanding of the rheology of dilute suspension of vesicles [Danker and
Misbah, 2007; Ghigliotti et al., 2010] and capsules [Bagchi and Kalluri, 2010, 2011].

However, in physiological conditions, blood is highly concentrated with an aver-
age hematocrit of 45% in human body (in microcirculation, the hematocrit is lower,
in the range of 10 − 20% [Fung, 2013]). Thus hydrodynamic interaction among
RBCs, as well as the presence of bounding walls, should be taken into account for
a better description of situations which are relevant to blood flow [Breyiannis and
Pozrikidis, 2000; Zhao and Shaqfeh, 2013]. Semi-dilute and concentrated suspen-
sions exhibit a diffusion-like process leading to a mixing of cells [Farutin and Misbah,
2013; Grandchamp et al., 2013; Tan et al., 2012], as well as depletion layers (cell-free
layer) in a pressure-driven flow. As a first fundamental question of the collective
dynamics, the interaction between two bodies in simple flow has been carried out
by several groups [Doddi and Bagchi, 2008; Gires et al., 2014; Lac et al., 2007; Le
and Chiam, 2011]. Fox example, a lateral shift (i.e; orthogonal to the flow direction)
in trajectory of the particles is observed when they meet in the shear flow, which
results in the so-called shear-induced diffusion.

Another characteristic of blood flow in the microcirculation is that the diameter
of blood vessels has a comparable size to the RBC size. This makes RBCs always flow
in a confined environment, which has been shown to impact blood flow properties.
A prominent example is the F̊ahræus-Lindqvist effect [Barbee and Cokelet, 1971;
Pries and Secomb, 2003; Pries et al., 1994] in small vessels, where the apparent
viscosity of blood decreases with decreasing diameter of the tubes. This effect is
attributed to the existence of a cell-free layer near the tube wall. The cell-free layer
is attributed to a lift force due to the bounding walls that tend to push the cells
towards the center of the tube [Abkarian et al., 2002; Cantat and Misbah, 1999a;
Coupier et al., 2008a; Farutin and Misbah, 2013; Seifert, 1999]. Recently, several
studies have revealed that the confinement can have a significant influence on the
dynamics of a single deformable particle [Kaoui et al., 2011, 2012] as well as on
the rheology of the suspension [Kaoui et al., 2014; Lamura and Gompper, 2013;
Thiébaud et al., 2014] in simple shear flow.

Recently, we have provided a brief report on the rheology of a confined suspension
in a linear shear flow [Thiébaud et al., 2014]. In this work, besides an extensive
discussion, we investigate several novel aspects, which we summarize as follows: (i)
the flow field created by a vesicle is analyzed under close scrutiny and this provides
a clear image of the existence of an equilibrium state between two confined and
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tank-treading vesicles. This equilibrium state will be shown to play a key role in the
spatial organization. (ii) We analyze the role of a viscosity contrast and show that
even vesicles with very viscous internal fluids can organize into a regular pattern,
due to a tank-treading regime triggered by confinement, but disorder prevails if
confinement is weak enough for leading a tumbling motion of vesicles. (iii) We
provide a link between spatial organization and the signature of rheology, in that
the normalized viscosity either shows ample oscillation (associated with order), or a
monotonous behaviors (associated with disorder). We find that the effective viscosity
exhibits plateaus with concentration in some regimes accompanied with order.

3.2 Methods and parameters

Here we recall the definition of some important parameters and give the values of
these parameters used in this work. A dimensionless parameter λ = ηint/ηext, called
viscosity contrast, is defined as the ratio between viscosity of the fluid inside the
vesicle and that of the suspending fluid. Two values of λ (1 and 10) are used in this
work for tank-treading and tumbling motion (when confinement is weak, otherwise
tank-treading is triggered by confinement). The value of λ can be varied in the
LMB by adopting two different relaxation time scales inside and outside the vesicles
in the BGK expression. We define the reduce area as ν = 4πs/C2, where C is
the vesicle perimeter. For a circle we have ν = 1, whereas ν < 1 for any other
shape. In this study we have mainly explored the case ν = 0.7 that provides a
biconcave equilibrium shape, albeit other values have also been tested as reported
below. The capillary number Ca = µextR

3γ̇/4kbl0 is kept at 1. The computation
model is a suspension of vesicles sheared between two counter-moving rigid plane
walls, which are located at Y = −W/2 and Y = W/2 (W is the gap between the
two bounding walls). Periodic boundary conditions are applied at the two lateral
boundaries which are orthogonal to the flow direction. The computational domain
along the flow direction (X) is fixed to a length equal to 63.7R, while the gap is
varied in some interval of values, to be specified below.

3.3 Interaction between two tank-treading vesi-

cles

The interaction between two tank-treading vesicles in unbounded shear flow has
been investigated in many previous works [Doddi and Bagchi, 2008; Gires et al.,
2014; Lac et al., 2007; Le and Chiam, 2011]. When two vesicles move towards each
other along the flow directions and pass each other, their mutual hydrodynamic
interaction induces a lateral migration along the direction of shear gradient, that

42



3. INTERACTION AND RHEOLOGY OF BLOOD SUSPENSION IN
CONFINED SHEAR FLOW

2

4

6

8

10

12

0 100 200 300 400 500

Δ
X

/R

γ
. t

W=4.7R, λ=1

Figure 3.1: The distance between two tank-treading vesicles as a function of time
in several cases of different initial positions. Finally, the two vesicles can go to an
equillibium state with a constant interdistance. The W is the distance between two
shearing wall. The λ is viscosity contrast.

pushes them away from each other. This interaction plays an important role in the
shear-induced diffusion of deformable particle suspensions.

The situation is quite different in the presence of walls. When the flow is confined
between two walls, a lateral migration of the vesicle is caused by the lift from one
of the two walls (which tends to push the vesicle away from that wall). Due to
symmetry, both of the walls have opposite effects and one expects the vesicle to stop
at the centerline (of course, if the shape of the vesicle undergoes a parity-symmetry-
breaking, as discovered in [Farutin and Misbah, 2012], this expectation may be
violated since the shape breaks the up-down symmetry). For all situations explored
so far we find that the vesicle always settles in the flow centerline. Additionally, we
find that two vesicles always keep a constant relative distance when they stop at the
center. As shown in Figure 3.1, with several different initial positions, the pair of
vesicles always reach the same terminal interdistance. This means that we have an
interplay between a repulsion due to hydrodynamic diffusion but an attraction due
to the wall lift force. If a balance occurs between these two mechanisms, then an
equilibrium state may take place leading to a stable pair of vesicles in the channel.
This is what we have observed for all simulations with tank-treading vesicles.

In order to dig into the consequences expected from the presence of confinement,
the velocity field created by a single confined vesicle is analyzed first. We focus only
on the induced field (which is nothing but the total flow from which the imposed
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Figure 3.2: (A) The flow field around a single tank-treading vesicle in confined linear
shear flow (only right half part of the domain is presented because of the symmetry).
The regions for upward flow and downward flow are highlighted by black and white
respectively. (B) The induced flow (total flow subtracted by the imposed linear
shear flow) in region I, II and III, and the schematics of the motion of a tracer are
plotted. Compared to region I, the vectors are amplified by 400 times in region II
and by 60000 times in region III. (C) The trajectories of the tracers with the starting
at the center in region I, II and III.

linear shear flow is subtracted). The result is presented in Figure 3.2 in the presence
of a single vesicle performing a tank-treading motion. In Figure 3.2 B, we visualize
the flow field in different adjacent regions on the right side of the vesicle under
consideration. We first notice the presence of vortices in the form of a quadrupole-
like pattern (also see the structure of the flow field in Figure 3.3) surrounding the
vesicle. This recirculation is a direct consequence of confinement. In the region
denoted as I in Figure 3.2 B, and on the right side far from the vesicle, we see that
the flow field points upwards. Fluid particles that are at the extreme right of region
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W=15.9R

W=8R
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Figure 3.3: The structure of the induced flow in different confinements. A clockwise
vortex (blue streamlines) appears due to the confinement. When W decreases, the
clockwise vortex gets closer to the vesicle.

I (most of them below centerline) will ascend with an inclined trajectory to the
right. They will hit the upper wall and bounce backwards, as shown in region II.
We see there, on the right part of region II, that close to centerline, the flow field
is downward, and that we have a clockwise vortex, while in region I the vortex is
anti-clockwise. These flow patterns in regions I and II constitute the key element in
order to understand the possibility for the formation of an equilibrium state made
of two vesicles. Figure 3.2 A represents regions where the vertical fluid velocity is
upward (white regions) and regions where it is downward (dark regions).

To highlight the effect of the above flow pattern, we consider a tracer (the points
in Figure 3.2 B and C) which is initially put on the center line and near the interface
between a dark and a white area. The schematics of the possible trajectories of the
tracer are given in Figure 3.2 B and the real trajectories of the tracers in region I,
II and III are plotted in Figure 3.2 C. Only in region II, where a clockwise vortex
takes place, does the trapping of the tracer occurs. As the example shown in region
II in Figure 3.2 B, firstly the tracer goes down and left following the tank-treading
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of the vesicle. The inset is an amplification of a local region, which is approximately
corresponding to the region II in Figure 3.2. Each line shows the Vy distribution
at one Y coordinate. These lines give an approximate place where the Vy direction
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direction at center is plotted in a local region where the tank-treading induced flow
shows a clockwise vortex.

46



3. INTERACTION AND RHEOLOGY OF BLOOD SUSPENSION IN
CONFINED SHEAR FLOW

ν=0.7
ν=0.8
ν=0.9
Experiment

ν=0.7

ν=0.9

W=3.2R, λ=1

ΔX

ν=0.7

ν=0.9

W=8R, λ=1

6

9

12

15

2 3 4 5 6 7 8

Δ
X

/R

W/R

Figure 3.6: The equilibrium distance between two vesicles increases linearly with the
W . The insets are the final configurations of the vesicles in the cases of W = 3.2R
and W = 8R.

induced flow and the shear flow below the center line (left). When it crosses the
interface of the black and white region, the tank-treading induced flow changes the
direction, the tracer goes up and then crosses the center line, where it follows the
shear flow above the center line (right) and turn back in the X direction. It crosses
the interface of the black and white region again, where the tank-treading induced
flow becomes downward, which makes the trace finally flow back to the starting
position. While in the cases in region I and region III, in an anti-clockwise vortex,
the tracer can’t be trapped, the flow field shows that the tracer flows away following
the shear flow (see the trajectories in Figure 3.2 C). If the tracer is substituted by a
vesicle, one is tempted to expect qualitatively a similar situation, though a vesicle
can not be viewed as a tracer, since it perturbs the flow field around. However, we
may consider the reasoning above as a crude vision of the possible existence of a
bound state between the two vesicles. When the vesicle is trapped by the other one,
different from the tracer doing circulation, the vesicle is always pushed to the center
by the wall induced lift, which decays the circulation and finally makes it stop at a
certain place on the center line. It must be noted that more equilibrium positions
can be found along the center line with farther positions. However, the induced
velocity is so small at these positions that the interaction can be ignored (actually
the decay of velocity field in two dimensions is exponential with X).

In order to lend further support to the above analysis, we have performed the
following analysis. We first take a single vesicle and compute at what distance the
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Figure 3.7: Velocity in Y direction at a given position in the flow field created by a
single vesicle of tank-treading and tumbling. The velocity is measured at the position
4R away from the vesicle center and located on the center line of the domain.

first occurrence of a dark region (flow inversion), which is disconnected from the dark
part containing the vesicle, takes place. We then introduce two vesicles in the domain
and ask what is the equilibrium distance of the bound state. For a single vesicle,
we plot the Vy distribution along the X axis in the whole computational domain,
as shown in Figure 3.4. We find that the transition position of flow inversion in Y
direction (region II) in Figure 3.4 is located around X = 6.3R. Interestingly enough,
the equilibrium interdistance of two vesicles (see Figure 3.6) is quite close to that
obtained by the analysis of the flow field with a single vesicle. This supports both
qualitatively and quantitatively the explanation of the generation of the equilibrium
state of two tank-treading vesicles. Since the transition of Vy direction is caused by
the wall bounce-back, it is expected that when W increases, the position at which an
ascending fluid particles meet the wall becomes farther, thus the transition position
of Vy inversion also gets farther, which can be found in Figure 3.3. This means
the larger W the higher interdistance between two vesicles in an equilibrium state.
Figure 3.5 presents evolution of Vy along the center line for different confinements
and reduced areas. This figure supports the idea that the transition position of Vy
inversion becomes farther with increasing W . When W takes values 3.2R, 4.8R and
6.4R, Vy changes direction approximately at X = 6.3R, 8, 7R and 11.3R respectively,
pointing to a quasi-linear dependence. However, the reduced area has a very weak
effect on the transition of Vy direction. The location of Vy inversion gets slightly
closer when ν increases. This means that a less deflated vesicle (higher ν) disturbs
the flow in a stronger manner promoting thus attraction.
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Figure 3.8: The chaotic trajectories of two tracers in the flow of a tumbling vesicle.

A systematic study is then undertaken in order to analyze the behavior of a
pair of vesicles in a confined shear flow. We have explored several confinements and
several values of the reduced area. All simulations have confirmed the tendency
discussed above, in that the presence of a clockwise vortex is the source of the
formation of a bound state between the pair of vesicles. The results are summarized
in Figure 3.6. We find a linear relationship between the equilibrium distance of the
two vesicles and the confinements. Let us compare the equilibrium distance of the
pair with the distance at which the Y component of the velocity field created by a
single vesicle (the distance is counted from the center of mass of the vesicle) crosses
zero from positive to negative values. The corresponding results are presented in
Figure 3.5. Interestingly enough, we find the two distances agree reasonably well
for all confinements and reduced area explored so far. These results highlight the
fact that the simple reasoning based on the analysis of the velocity field due to a
single vesicle already captures the essential features. This observation is interesting
as much as it offers a simplified basis for future analytical calculations where only a
single vesicle can be taken into account in order to draw general conclusions on the
behavior of pairs of vesicles (or even a collection of vesicles) in a channel.

3.4 Interaction between two tumbling vesicles

Besides tank-treading vesicles are known to exhibit tumbling provided by the large
enough viscosity contrast λ. A tumbling vesicle creates a temporally oscillating flow
pattern. Figure 3.7 shows Vy at a given position (X = 4R) from the center of mass
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Figure 3.9: The relative distance between two tumbling vesicles as a function of
time. The insets are the configurations of the vesicles at the time of γ̇t = 534,
γ̇t = 801 and γ̇t = 1335. γ̇ is the shear rate.

of a vesicle and evaluated at the flow centerline for a given confinement (W = 8R).
This result (obtained for λ = 10 where the vesicle tumbles) is compared to that of
a tank-treading vesicle (λ = 1). We see a clear difference between the two fields: it
is constant in time for a tank-treading vesicle, while it is oscillating in time for a
tumbling vesicle. A tracer located at some distance from the tumbling vesicles would
oscillate both vertically and horizontally in time, and exhibit a chaotic trajectory as
shown in Figure 3.8. In principle, one expects the second vesicle position to oscillate
irregularly in time as well.

The relative distance and relative orientation angle (taken as the difference be-
tween the two orientation angles) between two vesicles for the tumbling case are
presented in Figure 3.9 and Figure 3.10. The difference in angles shows no corre-
lation and one sees an apparently erratic motion. In Figure 3.9 we also show the
distance along X between the two mass centers of the two vesicles. While the pair
of vesicles remain at some interdistance on average, the instantaneous interdistance
varies with time in an irregular fashion. We can not talk of an equilibrium state
in the same sense as we did for tank-treading vesicles. We thus do not expect a
suspension of tumbling vesicles to exhibit any kind of order. The configurations of
the pair of vesicles at different time are given in the insets of Figure 3.9.
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Figure 3.10: The relative orientation angle between two tumbling vesicles as a func-
tion of time.
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Figure 3.11: Left column: Configurations of a vesicle suspension in the confinement
of W = 3.1R. Vesicles form one file in low concentration. Two vesicles couple a
doublet in high concentration. Right column: The structure of the flow field in region
I, II and III. φ is the vesicle concentration (area fraction in 2D). The recirculation
between two vesicles decreases when concentration increases as shown in region I
and II.
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Figure 3.12: Left column: Configurations of a vesicle suspension in the confinement
of W = 4.7R. For low viscosity contrast λ = 1, vesicles form one file in low
concentration and two sliding files in high concentration. For high viscosity contrast
λ = 10, vesicles form one file in very low concentration, then they are disordered
with increasing concentration. Right column: The structure of the flow field in
region I, II and III.

3.5 Spatiotemporal organization of a vesicle sus-

pension

Based on the understanding of the interaction between two vesicles, it is hoped to
extract some general conclusions on the behavior of a suspension. We would like to
see how confinement influences the configuration of a vesicle suspension. We have
systematically analyzed this question by exploring concentrations from 0 to 40% for
three different confinements: W = 3.1R, 4.7R and 6.3R. Different configurations
of the suspension are displayed in Figure 3.11, Figure 3.12 and Figure 3.13 for low
viscosity contrast (λ = 1) and high viscosity contrast (λ = 10).

A general observation is that for a strong enough confinement, the viscosity con-
trast plays no special role. Indeed, even if λ is large, where a weakly confined vesicle
would exhibit tumbling, the presence of a strong enough confinement prevents tum-
bling. In other words, both for small as well as large λ vesicles undergo tank-treading
as the case of W = 3.1R shown in Figure 3.11. Starting from an initial configuration
of the suspension chosen randomly within the channel, vesicles first experience a lift
force due to the walls. Because of symmetry, the vesicles settle at the centerline
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Figure 3.13: Left column: Configurations of a vesicle suspension in the confinement
of W = 6.3R. For λ = 1, vesicles form one file in low concentration, but they are
disordered in high concentration. For λ = 10, vesicles are disordered under this
confinement. Right column: The structure of the flow field in region I and II

exhibiting an ordered alignment along a single file in the case of a dilute enough
suspension. The configuration tends to a stable state with an equilibrium distance
between two neighbors. At a larger concentration, in the semi-dilute regime, the
intensity of vortex between vesicles becomes smaller (see Figure 3.11 right column)
when an additional vesicle would settle in there. But in high concentration, the
insertion of an additional vesicle makes its position become unstable. It is absorbed
by the nearby vesicle so that they tend to form a doublet. Now each doublet can
be viewed as a single entity, and the doublets form a regular arrangement (see the
configuration of φ = 38% in Figure 3.11). In other words, we have a symmetry
breaking bifurcation from an array of vesicles towards an array of doublets. This
type of ordering may be referred to as a superstructure with spatial period doubling.
For this strong confinement we obtain the same overall behavior for both λ = 1 and
λ = 10.

In the case of a weaker confinement (W = 4.7R, Figure 3.12), and for λ = 1, we
have another type of bifurcation upon increasing concentration φ. For a small φ we
form a single ordered file, while at larger φ the single file splits into two lines which
are approximately symmetric with respect to the flow centerline. The two files slide
with respect to each other in a quite regular way. The situation is more complex for
λ = 10. Indeed at small φ we have a single ordered file. Upon increasing φ we first
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Figure 3.14: Normalized viscosity of a vesicle suspension for λ = 1 in different
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Figure 3.15: Effect viscosity of a suspension of vesicles with λ = 1 in different
confinements. α = 3 and φm = 0.67 for the normal human RBC at low shear rate
[Pal, 2003].

see a destabilization of order due to the fact that interaction among vesicles triggers
tumbling (while for small φ each vesicles undergoes tank-treading). While order is
partially destroyed the single file maintains its identity. Upon increasing φ the file
splits into two files containing several defects.
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Figure 3.16: Normalized viscosity of a vesicle suspension as a function of concentra-
tion for low and high viscosity contrast. W = 3.1R

For a weak enough confinement (W = 6.3R, Figure 3.13), the vesicles with
λ = 1 form single ordered file for small φ. For larger φ a single file is unstable
and is destroyed in a somewhat disordered fashion. In the case of λ = 10 we
have a single file, with some tumbling events accompanied with the relative motion
between vesicles. When φ reaches a critical value, the single file is destroyed in favor
of disorder, in a quite similar way as for the case of λ = 1.

3.6 Rheology of vesicle suspension

Once the spatial organization has been discussed, we are in a position to establish a
link between this organization and rheology. A property that is commonly of interest
for unbounded suspensions is the viscosity as a function of the volume fraction φ. In
the dilute regime, when hydrodynamic interactions between suspended entities can
be neglected, the viscosity of suspension takes the generic form η = ηext(1 + αφ),
where ηext is the viscosity of the suspending fluid and α is the so-called intrinsic
viscosity, that depends on the properties of the suspension. For example, α is equal
to 2.5 for rigid sphere (in an unbounded domain), which is the famous Einstein result.
α was calculated by Taylor for emulsions [Taylor, 1934] and extended to vesicle
suspensions more recently [Misbah, 2006]. When the volume fraction increases,
hydrodynamic interactions among suspended entities have to be taken into account,
leading to an increase of the suspension viscosity. The classical picture is that there
is “jamming” accompanied by a divergence of the viscosity at the maximum volume
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fraction φm corresponding to close packing. A commonly used phenomenological
law for rigid particles is that of Krieger and Dougherty η = ηext(1 − φ/φext)

−αφm

[Krieger and Dougherty, 1959]. The normalized viscosity [η] = (η − ηext)/(ηextφ)
increases monotonically with φ. In a confined vesicle suspension, it will be shown
that the ordering configuration due to the confinement can lead to a very different
behavior of the rheology.

We shall determine below the effective viscosity of the suspension. It is defined
as η =< σxy > /γ̇, where σxy is the wall shear stress. The symbol < ... > designates
here a double average over the bounding wall and over time. The shear stress tensor
σxy in LBM can be expressed in terms of the distribution functions as [Krüger et al.,
2009]

σxy = −
(

1− 1

2τ

)∑
i

cixciy (fi − f eqi ) (3.1)

First we investigate the behavior of [η] and η with φ for λ = 1 (Figure 3.14 and
Figure 3.15). In the dilute regime (φ < 16% for W = 3.1R, φ < 8% for W = 4.7R
and φ < 5% for W = 6.3R), the single file configuration with an equilibrium distance
between two neighbors leads to a plateau of [η]. This means that the effective
viscosity η is linear with φ. In this regime the vesicles interact very weakly with
each other and this weak interaction is not significantly reflected on the rheology.
Note that the dilute regime definition depends on W : the interval of φW over a
dilute regime is higher for small W than for large W . The reason is that when W is
small the hydrodynamic interaction is screened by the presence of the walls (recall
that the velocity field created by a force at a given point decays exponentially with
X/W ). The smaller W , the stronger the decay.

At larger φ, the semi-dilute regime (φ < 22% for W = 3.1R, φ < 15% for
W = 4.7R and φ < 10% for W = 6.3R), [η] decreases in a quasi-linear manner
(Figure 3.14), while η exhibits a plateau around that concentration (Figure 3.15).
This means that the confinement has dramatically altered the rheological behavior.
In this regime, the additional vesicles (an increase of φ) reduce the distance between
two neighbors. Each insertion of a new vesicle destroys a large vortex and creates
a vortex with a smaller amplitude as shown the region I and II in Figure 3.11
and Figure 3.12. This explains the collapse of [η] with φ. When the single file
is saturated, an additional vesicle will not be able to integrate the file and will
wander in the fluid gap surrounding the file. This wandering close to the walls
will create more resistance against the overall flow, and thus [η] shows a sudden
increase within a very narrow interval of φ while the η also increases fast with φ
after the plateau. The saturation of a single file is a precursor for its instability in
favor of either the formation of a doublets (strong confinement, W = 3.1R in Figure
3.11), or the formation of two files (intermediate confinement, W = 4.7R in Figure
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Figure 3.17: Normalized viscosity of a vesicle suspension as a function of concentra-
tion for low and high viscosity contrast. W = 4.7R

3.12). In the first case, we have a formation of doublets and this always leads to
an increase of [η]. The doublet formation is accompanied by a stronger dissipation
within the (thin) fluid gap separating the two vesicles in the doublet. Indeed, within
that gap the two membranes tank-tread in opposite directions, which generates a
quite significant dissipation. The situation in a weaker confinement (W = 4.7R in
Figure 3.12, W = 6.3R in Figure 3.13) is significantly different. When the single
file is saturated, here also there is first a sudden increase of [η] in a narrow interval
φ ∈ [15%, 21%] for W = 4.7R and φ ∈ [10%, 12%] for W = 6.3R, due to wandering
of a single vesicle in the fluid gap. Once φ is increased beyond this interval, instead
of doublet formation (as happens for W = 3.1R), the file splits into two files disposed
symmetrically with respect to the centerline (W = 4.7R). Addition of new vesicles
will be inserted into either of the two files, destroying larger vortices in favor of
smaller ones, precisely as in the single unsaturated file regime. This destruction
of larger amplitude vortices lowers the dissipation and the normalized viscosity of
the two-file regime shows a decrease with φ. There is however, another source of
dissipation which is due to the sliding of the two files against each other, so that
a further increase of φ will lead to an increase of [η]. For a weaker confinement
(W = 6.3R) the ordered nature of the suspension is less pronounced, leading to a
weaker decrease of [η] in the range φ ∈ [12%, 15%], before an increase for higher
values of φ where a disordered structure prevails.

A comparison of normalized viscosity between low and high viscosity contrast
suspension is plotted in Figure 3.16, Figure 3.17 and Figure 3.18. In the strong con-
finement (W = 3.1R), these two situations exhibit tank-treading and form similar
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Figure 3.18: Normalized viscosity of a vesicle suspension as a function of concentra-
tion for low and high viscosity contrast. W = 6.3R

orderings of vesicles. Thus a similar behavior of rheology is obtained.
It is noticed that the normalized viscosity for λ=10 is smaller than for λ=1 in

the one file configuration regime (i.e. [η] in the small φ regime where there is a
plateau). This result might at first glance seem counter-intuitive since the fluid
inside the vesicles is more viscous (it is 10 times more viscous than before). A close
inspection shows that the tank-treading angle for λ = 10 is smaller than that for
λ = 1 so that in the λ = 10 case the vesicles are more aligned with the flow. This
explains the origin of less dissipation and its impact on overall rheology. However,
for W = 6.3R, because the stability of a single file is broken by tumbling, the
normalized viscosity exhibits an increase with φ instead of the plateau of [η] obtained
for stronger confinement (W = 3.1R and W = 4.7R). In semi-dilute regime, the
occurrence of tumbling suppresses the collapse of [η] observed for W = 4.7R and
W = 6.3R after the plateau regime in the case of λ = 1. In the quite concentrated
regime, say beyond about 30%, the prevailing configuration are disordered and [η]
increase with φ regardless of the value of the viscosity contrast. Compared with
λ=1 suspension, λ=10 suspension shows a larger normalized viscosity [η].

To confirm the picture, we conduct a systematic analysis in 3D, on which we
provide here only a brief account. We apply an immersed boundary lattice Boltz-
mann method for capsules. The system size is given by Lx = 40.5R, W = 5R,
and Lz = 5R. Periodic boundaries are used along x and z. The cell mem-
brane energy density (per unit area) is composed of the shear elasticity energy
κs(I

2
1 + 2I1 − I2)/12 + καI

2
2/12, where κs is the shear elastic modulus and κα is the

area dilation modulus. I1 and I2 are the in-plane strain invariants. κα/κs = 200
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Figure 3.19: Normalized viscosity [η] as a function of φ and the spatial configuration
for φ = 3.3%. φ is the capsule concentration (volume fraction in 3D). Each capsule
is steady (center of mass fixed in time) and the membrane undergoes tank-treading,
with the velocity field visible on the magnified capsules.

is chosen large enough to preserve local area conservation. The reduced volume
ν ≡ [V/(4π/3)]/[A/4π]3/2 (V and A are the actual volume and the area of the cell)
is taken to be 0.9. The viscosity contrast is set to 1. We define the capillary number
as Cs = η0γ̇R/κs with R = [V/(4π)/3]1/3. In most simulations, Cs = 0.14 and the
suspended entities exhibit tank-treading motion. The 3D rheology follows the same
trends as in 2D, conferring to the present results a robust character. Figure 3.19
shows [η] as a function of φ and the corresponding spatial organization. Note that
both the absolute value and the amplitude of viscosity decrease are comparable to
those obtained in 2D. Only one file ordering is obtained in 3D, as a more complex
interaction between capsules in the x-z plane results in a different regulation of the
ordering structure. This issue will be discussed in the chapter 4.
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Chapter 4

Blood crystal in confined shear
flow

This chapter is concerned with 3D simulations and experiments in order to inves-
tigate the transverse interaction between RBCs and their collective behaviors in
confined linear shear flow. The introduction and the methods are presented in Sec-
tion 4.1 and Section 4.2 respectively. The generation of the crystal-like order of
capsules is explained in Section 4.3. Then, possible ordered patterns are discussed
in Section 4.4. The effect of confinement and deformability on the ordering is ex-
plored in Section 4.5. Finally, Section 4.6 is devoted to the effect of ordering on
rheology of the suspension.

4.1 Introduction

A major problem in the study of suspensions is to understand the occurrence of
micro-structures and their impact on the overall properties of the suspension, like
rheology. Up until now, dilute non-colloidal suspensions, including particulate sus-
pensions, emulsions, blood and so on, under shear flow, are traditionally represented
by a disorder-like pattern. Experiments and simulations for non-colloidal suspen-
sions in shear flow have indicated chaotic particle dynamics leading to irreversibility
even at a very small Reynolds number[Metzger et al., 2013a; Pine et al., 2005]. Ex-
perimental and numerical investigations show that the trajectories of non-Brownian
particles exhibit irregular and apparently random displacements, or effective dif-
fusion, when a suspension is sheared unidirectionally between concentric cylinders
with the inner cylinder is rotating while the external one is fixed (Taylor-Couette
flow). The origin of this irregular motion lies in the interactions between particles
mediated by the fluid [Eckstein et al., 1977; Metzger et al., 2013a,b]. The question of
whether or not particles can escape disorder and settle into other configurations, like
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order, under the sole effect of hydrodynamics, is little addressed [Beatus et al., 2006;
Janssen et al., 2012; Shani et al., 2014]. In colloidal dilute suspensions, crystalline-
like phases can occur [Ackerson and Pusey, 1988; Cheng et al., 2012; Schall et al.,
2007; Wu et al., 2009] and are stabilized by Coulomb interactions due to surface
electric charge. In non-colloidal system, in the presence of parallel walls or with a
square cross section, self-organization due to hydrodynamic interactions have been
reported [Baron et al., 2008; Beatus et al., 2007; Goto and Tanaka, 2015; Humphry
et al., 2010; Lee et al., 2010]. By conducting systematic simulations of a suspension
of RBC model in confined shear flow, we discover the occurrence of a crystalline-like
phase of RBCs which is only regulated by hydrodynamics. This self-organization
takes place when the RBCs perform tank-treading. In addition to tank-treading we
find that the presence of walls plays an essential role in this self-organization.

A complex behavior is discovered, where RBCs can undergo both repulsion and
attraction in a subtle way and the interplay between a long range attraction and a
small range repulsion is able to stabilize the RBCs into an equilibrium state with
ordered pattern. We shall see that the investigation of two body interaction serves as
a useful basis in order to identify the basic mechanism of self-organization process.

A tank-treading RBC produce a quadrupole-like flow in the center plane, which
provides the attractive and repulsive forces leading to the self-organization of the
RBCs. The nature of this interaction depends both on the deformability of the
particles and on the confinement. We shall see that if rigid particle suspension are
considered under the same conditions, then order disappears in favor of disorder.
T. Fischer, who has spent several months in our Institute to perform a systematic
experimental study on confined RBCs under shear flow has found several interesting
experimental results which comply with our simulations, as we shall describe in this
chapter.

4.2 Methods and parameters

4.2.1 Experimental setup

The experiments were performed in a home-made rheoscope with cone-plate geom-
etry. The observation of suspended cells was along the gradient of the shear flow
using an inverted microscope (Diavert, Leica Microsystems GmbH, Wetzlar, Ger-
many) with interference contrast optics (40/0.75). Microscopic images were taken
with a CCD Kamera (DMK 41BF02.H, The Imaging Source Europe GmbH, Bremen,
Germany). Normal blood samples were obtained from the EFS (Etablissement Fran-
cais du Sang) and kept refrigerated until use. Solid spherical particles were produced
by suspending red cells in an isotonic solution of sodium salicylate (Sigma-Aldrich)
thus converting the biconcave red cells into spheroechinocytes. This shape was then
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conserved by fixation with 0.25% glutaraldehyde (Alfa Aesar, Karlsruhe, Germany).
Red cells and fixed spheres were washed three times with isotonic PBS (Dulbecco,
biowest, Nuaille, France). Red cells or spheres were suspended in an isotonic solution
of dextran (MW 500000 D, figma-Aldrid, saint-Queutiu Fallavier, France) plus PBS.
Its viscosity at room temperature (25◦C) was 50mPas (Anton Paar, Rheoplus, graz,
Austria). Suspensions of red cells or spheres were prepared with volume fractions
between 0.002 and 0.01 and were loaded into the cone-plate chamber.

4.2.2 Simulation method

In simulations, the lattice Boltzmann method (LBM) was used to solve the quasi-
incompressible Navier-Stokes equations for fluid flow [Krüger, 2012]. The deformable
particle is described as a capsule with a closed massless membrane. The membrane
is discretized into 1620 triangle elements. The natural shape of the particle without
external force is a sphere with radius R. The shear elasticity energy is given by Skalak
law κs(I

2
1 + 2I1 − I2)/12 + καI

2
2/12, where κs is the shear elastic modulus and κα is

the area dilation modulus. I1 and I2 are the in-plane strain invariants. κα/κs = 30
is chosen large enough to preserve local area conservation. The immersed boundary
method (IBM) was used to couple of fluid flow and particle deformation [Krüger,
2012]. This allows to distribute the forces on membrane nodes to nearby fluid nodes,
thereby avoiding an explicit representation of the interface while permitting to access
to the dynamics of particle deformation and motion.

4.2.3 Parameters in simulation and experiment

As shown in Figure 4.1 A, the particles are sheared between two rigid plane walls
located at X = −W/2 and X = W/2. The flow is applied along Z direction.
Y direction is called as transverse direction in this work. The system is periodic
along the Y and Z direction. The computational domain for Y direction (LY )
is fixed at 18R. There are two sizes of computational domain along Z direction
(LZ), 25R for diluted suspension and 18R for concentrated suspension. Along X
direction, We explore the confinements by changing the distance between two walls
(W ) from 2.4R to 4.9R. The concentration is calculated by the volume fraction
φ = NRBC(4πR3/3)/(LYLZW ), where NRBC is the total number of particles in the
system. The shear capillary number is defined as a ratio of typical shear stress
magnitude to the characteristic particle elastic stress: Cas = ηextγ̇R/κs, ηext is the
viscosity of suspending fluid. In all the simulations, Casis set to 0.05 (with shear
elastic modulus set to 4µN/m) and the typical radius is chosen as R equal to 4µm.
In experiments, the shear rate varies from 15 to 60s−1, and Cas is approximately
in a range of 0.8-3. The reason for a higher capillary number in experiments is
that the RBCs in experiments are significantly more deflated than in simulations
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Figure 4.1: A: The schematic of simulation model. Z direction is the shear flow
direction, X direction is the shear gradient direction and Y direction is the transverse
direction. B: Both of simulations and experiments show configurations of particles
as strings along the flow direction.

and thus they require a higher shear rate in order to maintain them in the tank-
treading regime. The viscosity contrast as a ratio of viscosity between internal
fluid of particle and external fluid is fixed to 1 in simulations and is about 0.4 in
experiments (hemoglobin solution of healthy RBC being around 20mPa.s at room
temperature 25◦C) [Kelemen et al., 2001]. In both of simulation and experiment,
the dynamic of particles exhibits a tank-treading. We define Reynolds number as
Re = ργ̇R2/ηext, which is set to 0.5 in all simulations and its magnitude of about
10−5 in the experiments.

4.3 Birth of a flow-aligned string ordering

When deformable particles, like capsules, vesicles, RBCs etc. are suspended in the
fluid sheared between two rigid planes, the particles firstly follow the shear flow
with a tank-treading motion of the membrane. The intercellular interaction makes
a shift in the trajectory of the particles by pushing away each other when they are
getting close, which causes the so-called shear induced diffusion in the suspension.
In the meantime, the lift from the walls forces the particles going to the center plane
between the two walls and stop in the center due to the symmetry. If the suspension
is diluted enough to allow all the particles to stay in the center, then once they settle
in the center, the particles organize themselves thanks to hydrodynamics interac-
tions. The crystalline-like orderings of the particles are observed in both numerical
simulations and experiments. The typical and most probable configurations of the
particles, flow-aligned strings, are shown in Figure 4.1 B.

In order to get further insight towards understanding how the interactions or-
ganize the particles, we implement the numerical simulations by using the system
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Figure 4.2: The flow field around the particles in the central plane. Recall that the
flow is along Z, while the rigid walls are located at X = ±W/2.
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Figure 4.3: A schematic of repulsive regime and attractive regime for a flow-aligned
string configuration of particles. Simulations show the motion of particles in repul-
sion and attraction. The confinement is W = 2.9R.

shown in Figure 4.1 A. We firstly study the flow field in the central plane when a
string of four particles is formed in a confinement of W = 2.9R. Figure 4.2 gives
the in-plane velocity vectors, which exhibit the flow coming from the particles and
returning back to the gap between the particles. With this kind of induced flow, the
string is expected to provide repulsive and attractive force to the nearby particles.
Figure 4.3 schematically gives the repulsion regime where an inserted particle will
be pushed away from the string, and an attraction regime where an inserted particle
will be pulled into the gap. We have numerically tested the repulsion and attraction
by inserting an additional particle either on top of a pre-existing particle or in a gap
between two particles along the string. As shown in Figure 4.3, in the first case we
have a repulsion, while in the second case we have an attraction.

We will now show that analyzing a two body interaction problem provides a cer-
tain basis towards understanding of the self-organization process of multi-particles.
Consider first a single particle in the tank-treading regime. This particle induces a
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Z
Y

Figure 4.4: The flow field around a single tank-treading particle in the central plane.
The structure of the flow shows a quadrupole-like form. Recall that the flow is along
Z, while the rigid walls are located at X = ±W/2.

quadrupole-like flow field in the central plane as shown in Figure 4.4. The two body
interaction amounts to interactions between two quadrupoles. Two situations can
occur depending on the relative position between two particles. Consider case A in
Figure 4.5. There the particles are separated along transverse direction and flow to
the computational boundary. We have a repulsion. In case B, the particles get close
along transverse direction and form a string along the flow direction with a constant
equilibrium interdistance. In this case we have an attraction. By exploring differ-
ent initial relative positions of the particles in simulations, we qualify the regime of
repulsion and attraction as given in Figure 4.5. This Figure also shows examples
of the evolution of the relative trajectories between particles in the repulsion and
attraction regimes. It is noticed that the regime of attraction is much larger than
the regime of repulsion, which means that the attraction plays a main role in the
transverse interaction. Thus we have a larger probability to observe particles form
flow-aligned strings.

4.4 Patterns of crystal-like ordering

Since the repulsion and attraction depends on the relative positions of each par-
ticle, additional particles can added to the two particle system with some special
positions, and by tuning their position we can balance the repulsive and attractive
forces. By this way we can obtain several possible stable configurations for three,
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Figure 4.5: The qualitative regime of repulsion and attraction for transverse inter-
action between two particles with confinement of W = 2.9R. Some examples of the
relative trajectories between two particles are plotted by solid line for repulsion and
dashed line for attraction. With the initial positions in gray region the two particles
exhibit repulsion, while they exhibit attraction with the initial positions in white
region. The inset shows a schematic of the interacting particles.

four and five particles, as shown in Figure 4.6. These orderings are all symmetrical
about the flow direction. It is expected that various orderings can be found for a
larger number of particles. The stability of these configurations are examined by
making a small perturbation to the equilibrium position. The simulations show that
the particles go back to the equilibrium position. However, to get an ordering differ-
ent from the strings pattern (which seems to have the largest basin of attraction),
the initial relative positions should be close enough to the equilibrium configuration.
For example, in the case of NRBC = 3 and W = 2.9, we performed 60 simulations
with random initial positions, 75% of the final states show a string ordering, while
in the other cases the particles are pushed to computational boundary and no or-
dering is found. The triangular ordering was not observed in those 60 simulations,
except if the initial positions are adequately chosen close enough to the equilibrium
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NRBC=3 NRBC =5

NRBC =4

Figure 4.6: All possible patterns of the ordering of 3, 4 and 5 interacting particles
with confinement W = 2.9R.

configuration.
Consider now a higher concentration regime. Figure 4.7 shows typical results.

Additional particles make them extrude each other and tend to force others depart
from the center plane. With strong confinements, the particles can still be kept in the
center plane with an adaptive ordering to balance the interactions between particles.
In Figure 4.7, we show some orderings for high concentration in strong confinements
(W = 2.9R and W = 3.9R). Most of the results give a configuration with several
moving strings ( W = 3.9R,Act = 16%). Act is the particle area fraction in the
central plane, which is calculated by the total area of the particle cross section in the
simulation domain divided by the area of that. Other types (than parallel chains
along flow) of static orderings are also found, as for W = 2.9R,Act = 23% and
W = 3.9R,Act = 23%. When the confinement decreases, the wall effect weakens, so
that particles can escape from the center towards the periphery, and a disordering
configuration prevails. In the case with W = 3.9R,Act = 12% in simulation and
W = 4.6R,Act = 6% in experiment, a local disordering is found in one of the strings.
When the string has packed maximum particles, an insertion of additional particle
forces other particle to leave the center plane, destroying thereby the ordered string.
In the case of W = 4.9R,Act = 22% in simulation and W = 6.1R,Act = 18%
in experiment, the weak confinement and high concentration cause the particles to
never stop in the center plane, thus no ordering is observed in these situations.
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Figure 4.7: In concentrated suspension, particles are ordered with strong confine-
ment and disordered with weak confinement. Act is the particle area fraction in the
central plane.

4.5 Effect of confinement and deformability

To measure the effect of confinement on the ordering, we determine the interdistance
between two and three particles by changing the distance between the two walls.
Figure 4.8 A and C show the equilibrium distance between two particles, which shows
a linear increase with W and the corresponding configurations both in simulations
and experiments. The generation of the equilibrium state comes from the fact that
in the shear plane, the tank-treading induced flow bounces back at the wall and
produces an equilibrium position along the flow direction, as discussed in detail
in Chapter 3. When W increases, the bounce-back flow appears at larger distances
away from the particle. Since the only length scale is W , we expect the interdistance
to scale with W . This is what we find indeed, both by numerical simulation and
experimentally (Figure 4.8 A and C). Figure 4.8 B and D shows the case of triangular
ordering, where the interdistance along the flow direction (∆Z) also exhibits a linear
relationship with W . The triangular ordering is formed thanks to an interplay
between repulsion in some position and attraction in other positions, as discussed
earlier. When W increases, the increase of ∆Z makes the attractive force on the two
symmetrical particles decrease, which make them repel each other in the transverse
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between two particles increase with W . B: Size of triangle configuration increase
with W linearly. C: Configurations of two particles for different confinements cor-
responding to A. D: Configurations of three particles for different confinements cor-
responding to B.

direction towards new positions with larger ∆Y .
The effect of deformability on the ordering has been analyzed and the results

are reported in Figure 4.9. Five particles are considered in the simulation with
W = 4.9R, and for each case studied we considered the same initial positions. For
deformable particles, due to the lift from the walls, cells are pushed towards the
center and form a string as shown in Figure 4.9 C, and discussed earlier. For rigid
particles, in small Reynolds number flow (Re = 0.05), as shown in Figure 4.9 A and
B, the distance between two given particles always evolves in the course of time, the
particles do not settle in the center plane (due to the absence of lift force), so that
disorder prevails (Figure 4.9 F).

We have performed experiments by hardening RBCs (see the experiment setup
in Section 4.2). Because Re is very small in the experiment, the lift force on these
rigid RBCs is practically absent. We never observed orderings for these rigid RBCs
(Figure 4.9 G). These results agree with our simulations, and support the idea that
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Figure 4.9: A: Distance in X direction between two selected particles among five
particles when they are sheared in the flow. B: Distance in Y direction between two
selected particles. C-G: Configurations of particles for each case: C: Simulation,
W = 4.9R, Cas = 0.05, Re = 0.5 D: Experiment, W = 4.9R, Cas = 0.7, Re ∼ 10−5

E: Simulation, W = 4.9R, rigid particle, Re = 0.5 F: Simulation, W = 4.9R, rigid
particle, Re = 0.05 G: Experiment, W = 4.5R, rigid particle, Re ∼ 10−5

the wall lift force (and thus confinement) plays an essential role in the ordering
process.

For completeness, and in order to highlight the role of the lift force, we have
increased in simulations the inertial effect, and have taken Re = 0.5. There is
now a lift force of inertial origin that pushes the rigid particles towards the center,
where the particle settle in with small vertical oscillations (dashed line in Figure
4.9 A). However, despite the location of the particle in the center we do not see
order. The reason is as follows. The transverse interaction between rigid particles
is much weaker than in the case of deformable particles, and order is quite fragile.
The dashed line in Figure 4.9 B shows that the distance between two rigid particles,
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Figure 4.10: Viscosity of deformable particle suspension changes with concentration
in shear flow with confinementW = 4.9R. The normalized viscosity shows a decrease
with increasing concentration when string ordering is formed.

can attain, in some cases, a steady value, leading to some kind of ordering (Figure
4.9 E), albeit not a straight string, in contrast to deformable particles.

4.6 Effect of ordering on rheology

Finally, we briefly discuss the influence of ordering on the rheology of deformable
particle suspensions. We have already seen that the string ordering leads a decrease
of intrinsic viscosity (or more precisely the normalized viscosity) with increasing
suspension concentration in the 2D case. In the 3D case, different orderings are
possible, as discussed above. All these orderings have a direct effect on rheology of
the suspension. As discussed before, the highest probability of the ordering pattern
consist in straight strings. To simplify the question, a small enough computational
domain is used here, with LY = 9R, LZ = 18R and W = 4.9R. In this case,
we find a reduced number of configuration: a single string in the dilute regime,
two parallel strings for intermediate concentration increase, and disorder for higher
concentration. The results are presented in Figure 4.10. We see that the normalized
viscosity shows intervals with decreasing trends when φ is such that order prevails.
When disorder prevails, the normalized viscosity increases with φ.
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Chapter 5

Inversion of hematocrit partition
at microfluidic bifurcations

In this chapter, we perform 2D simulations and microfluidic experiments to inves-
tigate the partition of red blood cells at T-shaped bifurcations. The introduction
and methods of this work are given in Section 5.1 and Section5.2 respectively. In
Section 5.3, we talk about the influence of viscosity contrast on the partition. In
Section 5.4, we report on an inversion of Zweifach-Fung effect in diluted case and
explain it by the structure of RBCs files in the feeding vessel.

5.1 Introduction

Blood flows through a complex network of the circulatory system – from large ar-
teries to very tiny capillaries – in order to ensure oxygen delivery and to remove
metabolic waste. This task is mainly carried out by red blood cells (RBCs) that
are remarkably deformable, in healthy conditions, and therefore able to squeeze into
tiny capillaries. A change in rheological and flow properties of blood is often associ-
ated with hematological diseases or disorders [Fedosov et al., 2011a] (e.g. sickle-cell
anemia, malaria, polycythemia vera). Understanding blood flow and its dependence
on the mechanical properties of its constituents may improve and lead to new ap-
plications in biomedical technology, for example in blood substitutes development
and transfusion techniques.

A major open problem in blood circulation is to understand the perfusion in the
vasculature networks, especially in the microvasculature where RBCs accomplish
their vital functions. For example, an improper hematocrit distribution is observed
in heart microcirculation with consequences such as occlusion zones (within many
patients with apparently healthy coronary arteries). These abnormal traffic zones
cause a lack of oxygen supply to tissues that leads to cardiac ischemic disease [Cokki-
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nos et al., 2006]. The precise origin of this dysfunction is still a matter of debate.
The principal mechanism that dictates blood heterogeneity in the microvascular net-
works is the hematocrit partition at the level of bifurcations. RBCs do not behave
as passive tracers. Their shape flexibility and dynamics have a decisive role because
their size is comparable to that of blood capillaries. A well known phenomenon in
microcirculation is the Zweifach-Fung effect [Dellimore et al., 1983; Fenton et al.,
1985; Guibert et al., 2010; Pries et al., 1989]: If we consider a bifurcation (as in
Figure 5.1), the child branch with the lower flow rate is depleted in RBCs as com-
pared to the parent vessel, while the other, higher flow rate child branch is enriched.
That is, if in the parent vessel the total volumetric flow rate is Q0 and the RBC
volumetric flux is N0, and in the child branch with the lower flow rate this flow
rate is Q1 and the RBC flux N1, then N1/N0 < Q1/Q0. When the flow rate is
sufficiently small, the hematocrit in the child branch can even drop down to zero,
while it reaches high values in the other branch. Obviously, this phenomenon has
physiological consequences as it alters the transport of oxygen and other essential
metabolites, and may even trigger pathological disorders (e.g. occlusions in high
hematocrit regions where the viscosity is higher and cell adhesion is favored).

Previous studies have investigated the impact of the confinement [Barber et al.,
2008; Chien et al., 1985; Doyeux et al., 2011b; Fenton et al., 1985], the bifurca-
tion geometry [Audet and Olbricht, 1987; Hyakutake and Nagai, 2015; Roberts and
Olbricht, 2003, 2006; Woolfenden and Blyth, 2011], the hematocrit [Ditchfield and
Olbricht, 1996; Fenton et al., 1985; Roberts and Olbricht, 2003; Yin et al., 2013], and
the RBCs deformability [Barber et al., 2008; Li et al., 2012; Xiong and Zhang, 2012;
Yin et al., 2013] and aggregation [Sherwood et al., 2012; Yin et al., 2013]. Most of
these parameters influence RBCs distribution in the feeding flow, which is believed
to dictates the partition at the bifurcation [Doyeux et al., 2011b; Fenton et al., 1985;
Li et al., 2012; Yin et al., 2013]. The Zweifach-Fung effect results from the existence
of a cell free layer (CFL) close to the walls, which is only occupied by plasma. The
feeding flow is divided by a separating streamline into two parts, one feeding the
low flow rate branch and the other feeding the high flow rate branch. Due to the
CFL, the RBC fraction entering the low flow rate branch is smaller compared to
the original RBC fraction in the total feeding flow. The depletion in the low flow
rate branch is accompanied by enrichment in the high flow rate branch. In addition
to the CFL as the main cause of the Zweifach-Fung effect, it has been argued that
there is a relatively small counteracting effect where cells entering the bifurcation
tend to be displaced towards the low flow rate branch compared to fluid streamlines
(a fact that slightly reduces the Zweifach-Fung effect) [Barber et al., 2008; Doyeux
et al., 2011b; Li et al., 2012; Ollila et al., 2013], but this question is still debated
[Hyakutake and Nagai, 2015; Xiong and Zhang, 2012].

The existence of a CFL is a consequence of the lateral migration of RBCs to-
wards the vessel center. This migration is a result of the wall-induced lift force due to
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hydrodynamic interactions [Callens et al., 2008; Cantat and Misbah, 1999b; Grand-
champ et al., 2013], that depends on the nature of RBC dynamics (like tank-treading
or tumbling [Abkarian et al., 2007; Dupire et al., 2012]). The final distribution of
RBCs in a confined straight vessel is not only due to the lift force, but it is also
influenced by other factors: (i) The curved velocity profile of the Poiseuille flow
[Coupier et al., 2008b; Farutin and Misbah, 2014; Katanov et al., 2015; Shi et al.,
2012], and (ii) The cell-cell hydrodynamic interactions [Grandchamp et al., 2013;
Hariprasad and Secomb, 2014; Katanov et al., 2015; Krüger et al., 2014; McWhirter
et al., 2009].

In the present work, we study the hematocrit partition at bifurcations using
two-dimensional lattice Boltzmann simulations, whose outcomes are validated and
supported by microfluidic experiments. We show that RBCs deformability strongly
impacts partition as long as the hematocrit is below 20% (within the normal range
in microcirculation). RBC deformability is governed by several parameters such
as membrane stiffness (shear, dilatation and bending elastic moduli), swelling de-
gree, membrane viscosity and the viscosity contrast between the hemoglobin and
the suspending fluid. Here we choose to tune the deformability through the latter
parameter, the viscosity contrast, that controls the RBC dynamics (tank-treading,
tumbling or swinging) then all the migration mechanisms at the origin of the CFL.
On the other hand, and more importantly, this study reveals that hematocrit parti-
tion can be completely reversed, that is the low flow rate child branch can be enriched
in RBCs compared to the parent vessel. This newly reported effect is an outcome
of a subtle RBCs structuration in the microcirculatory system. This highlights the
importance of the notion of RBCs spatiotemporal organization as the main non-
negligible ingredient to further understand blood perfusion in the microvasculature.
Figure

5.2 Methods and parameters

5.2.1 Design of the microfluidic bifurcations

In both simulations and experiments, we use T-shaped bifurcations such as shown in
Figure 5.1: A parent channel divides into two child branches with the same width,
but with different lengths L1 and L2 (L1 > L2). The ratio of the flow rates in
branches 1 and 2 is then given by Q1/Q2 = (η2L2)/(η1L1), where η1 and η2 are
the apparent viscosities of the suspension in branches 1 and 2, respectively. For
dilute suspensions, where the viscosity is close to that of the suspending fluid, we
simply have Q1/Q2 = L2/L1. In simulations, we set the width of the channels to
W = 20µm and we vary L1/L2 from 1.43 to 3. In experiments, we have L1/L2 = 3,
W = 20µm and the height of the channel h is 8 µm. The length of the parent
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vessel was chosen as long as possible to allow for the development of a stationary
distribution of RBCs across the channel in the feeding flow (5 mm in experiments
and 1.5 mm in simulations). Microfluidic channels were produced by standard soft
lithography techniques, with molded PDMS bonded to glass. The RBC suspensions
were perfused by a syringe pump (KDS Legato 180) and imaging were performed by
a video camera (Imaging Source DMK 31AF03) mounted on an inverted microscope
with motorized stage (Olympus IX71) and a blue filter (434±25 nm) corresponding
to an absorption peak of hemoglobin.

5.2.2 Blood preparation

Blood samples were provided by the Etablissement Français du Sang (EFS Rhône-
Alpes) from healthy donors. RBCs were isolated by centrifugation after being
washed twice in phosphate buffer saline (PBS) supplemented by 0.1 % bovine serum
albumin (BSA). To prevent sedimentation of RBCs in channels, the RBCs were re-
suspended in density matching PBS and BSA solutions in a mixture of water and
iodixanol (Optiprep from Axis-Shield). This iso-dense solution was used either alone
(1.94 mPa.s at 20 ◦C) or after adding 5% dextran of molecular weight 2× 106 (vis-
cosity 23.4 mPa.s at 20 ◦C). The viscosity of the internal hemoglobin solution of
healthy RBCs is around 20 mPa.s at 20 ◦C [Kelemen et al., 2001]. This provides
two values of the viscosity contrast λ, namely 10.3 and 0.85. The first value cor-
responds to blood at 20 ◦C, while the physiological value at body temperature is
around 5-6 [Cokelet and Meiselman, 1968]. Note that we chose to vary the viscosity
contrast λ as one way to tune deformability, and therefore the dynamics of lift and
hydrodynamic interactions of cells. Stiffening cells using diamide or glutaraldehyde
was another possibility. However, from the experimental viewpoint, working with
hardened cells at high volume fractions in such a confined environment is quite diffi-
cult due to jamming. It would have been nearly impossible to inject a suspension of
very stiff cells at hematocrits larger than 10%. Also, the dynamics of glutaraldehyde
hardened cells is pure tumbling, which corresponds to very high values of the vis-
cosity ratio λ. We do not expect the dynamics (and therefore phase separation) to
change much at values of λ greater than 10 and we found more interesting to increase
deformability by decreasing λ rather than trying to investigate less deformable cells
(with the experimental difficulties mentioned above).

5.2.3 Hematocrit measurements

Local hematocrit measurements were made by comparing suspension flow images to
a reference image without RBC, under identical illumination, and using the Beer-
Lambert law of absorption. The absorption coefficient was determined by a cali-
bration with images at low hematocrit, where a direct measurement can be made
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by counting individual cells. Hematocrit in branch i will be denoted Hi. In ex-
periments, h is small enough (8µm) so that the flow is quasi two-dimensional. To
allow a qualitative comparison with 2D numerical simulations, an area hematocrit
φi was also derived by multiplying the number of cells per unit area by the average
cross-sectional area of RBCs (S =19.8 µm2). Hi and φi are therefore linked by the
relationship Hi = φiv/(Sh), where v = 90 µm3 is the average volume of one cell.

5.2.4 Simulation method

In simulations, we use lattice Boltzmann method (LBM) to compute the fluid flow
(see Section 2.2). Each RBC is modeled by 60 nodes interconnected by a poten-
tial that allows bending, as well as a stretching modulus that penalizes distance
variations between two adjacent nodes. This achieves the RBC membrane incom-
pressibility (see Section 2.4). In other words, we set the spring constant to values
as large as possible in order to keep the ratio between the membrane perimeter and
area constant. We define the reduced area as 4πA/C2 (with C is the perimeter and
A the enclosed area), which we set to 0.7 to produce a RBCs with a biconcave shape.
We use the immersed boundary method (IBM) (see Section 2.3) to couple the fluid
flow and RBC deformation. For comparison with experiments, we set the viscosity
contrast to λ = 1 and λ = 10.

5.3 The role of interactions and viscosity contrast

in partition

As a guideline, we shall refer to the empirical law of Pries et al. taken from refs
[Pries et al., 1989, 1990] that gives the hematocrit partition at a bifurcation:

logit
(H1Q1

H0Q0

)
= αlogit

(Q1/Q0 − β
1− 2β

)
, (5.1)

where α = 1 + 6.98(1 − H0F )/a, β = 0.4/a (with a the tube diameter in microns)
and logit(x) = ln[x/(1− x)]. H0 is the volumetric hematocrit in the parent feeding
branch, while H1 is the hematocrit in a child branch. H0F is the feeding hematocrit
in a reservoir that would be located right before the narrow feeding vessel. Due to
the F̊ahræus effect, H0F is larger than H0 and a relationship between both quantities
is also given in Pries et al. [1990]:

H0/H0F = H0F + (1−H0F )(1 + 1.7e−0.415a − 0.6e−0.011a). (5.2)

Figure Note that the partition law (Equation 5.1) has been validated through in-
vivo experiments with rats (thus at body temperature), with narrow capillaries (of
diameters a lower than 30 microns), but with feeding hematocrit higher than 20%.
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Figure 5.1: Snapshots of the RBCs partition, in both experiments and simulations,
when the hematocrit of the feeding flow is around φ0 =10%. The length ratio
between the two child branches is set to 3. A, B: Low viscosity contrast (experiments
with λ=0.85 and simulation with λ=1). C, D: High viscosity contrast (experiments
with λ=10.3 and simulation with λ=10).

As we shall compare predictions for 3D hematocrit in a cylindrical tube with
either 2D simulations or experiments in a rectangular channel, we should avoid any
direct quantitative comparisons, but rather use Pries et al. predictions as a guideline
to identify where new behavior is exhibited. For comparison with simulations, we
set a = W , where W is the channel width, and we shall consider only the hematocrit
ratios. For the experiments in rectangular channels, we set a to adjust the cross-
sectional areas: πa2/4 = Wh.

We analyze in details how RBC deformability affects the hematocrit partition at
the bifurcations. Figure 5.1 illustrates the Zweifach-Fung effect, observed in both
experiments and simulations, at a feeding area hematocrit of 10%. In both cases, less
RBCs enter the low flow rate branch (the long branch) simply due to the flow rates
differences between the two child branches. However, the asymmetry is significantly
pronounced at low viscosity contrast λ (when the suspending fluid is more viscous
than the hemoglobin). To quantify the partition asymmetry, we measure the relative
hematocrit φ1/φ0 (or, equivalently, H1/H0), in the low flow rate branch, while we
vary the hematocrit in the parent branch (Figure 5.2). Either in the simulations
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(Figure 5.2A) or in the experiments (Figure 5.2B), we see less RBCs in the low
flow rate branch than in the parent one (φ1/φ0 < 1), when the inlet hematocrits
(φ0 or H0) lies between 5% and 45%, which is precisely a manifestation of the
Zweifach-Fung effect. When the viscosity contrast is low, we observe a significantly
strong reduction of hematocrit in the low flow rate branch, both in experiments and
simulations, at moderate inlet hematocrit. This interesting observation suggests
that the RBCs mechanical properties can strongly impact the hematocrit partition
in-vivo since the normal hematocrit is usually less than 20% (typically between 10
and 20 % [Fung, 2013]) in microcirculation.

However, when the hematocrit is high enough, the viscosity contrast plays a mi-
nor role. This is clear in simulations (for φ0 larger than 25%, Figure 5.2). Similarly,
in the experiments, above H0 = 20%, data for both λ converge to the Pries et al.
prediction. The insensitivity to the viscosity contrast beyond a critical hematocrit
(φ0 ' 25%) is a robust phenomenon that is independent of the length ratio between
the branches (i.e. roughly the bulk flow rate ratio), as illustrated on Figure 5.3).

It is appealing to suggest that the dependency of the hematocrit partition upon
the feeding hematocrit is the result of the up-stream organisation of RBCs in the
parent vessel due to hydrodynamic interactions. At low hematocrit flows, the cell-
cell interaction is weak and the organisation of RBCs, within the vessel, depends
mainly on the dynamics of each RBCs, thus on λ. The RBCs aggregate at the
center of the vessel due to the wall-induced lift force, that increases with decreasing
λ and increasing RBCs deformability [Grandchamp et al., 2013]. This means that
suspensions of RBCs with high viscosity contrasts have wider distributions (smaller
CFL) in the channel as compared to suspensions having lower viscosity contrast.
As a consequence, the asymmetry in the partition is expected to increase when the
viscosity contrast decreases, as shown in Figure 5.3. To support this argument, the
CFL thickness in the parent vessel and the configuration of RBCs before the bifur-
cation are reported in Figure 5.4 A, B. We can clearly see that RBCs distribution
at high viscosity contrast (λ=10 in simulations and λ=10.3 in experiments) is wider
than that at low viscosity contrast (λ=1 in simulations and λ=0.85 in experiments)
when the feeding hematocrit is low (φ0 <20%, see also Figure 5.4 C-I, II).

However, when the hematocrit increases, the contribution of the hydrodynamic
interactions among RBCs becomes stronger and stronger. This causes a broaden-
ing of the distribution that acts against the lift force. Consequently, the partition
between the two branches becomes more symmetric (that is φ1/φ0 becomes close to
1). Interestingly, those broad distributions are quasi independent of the viscosity
contrast (see Figure 5.4 A and C-III, IV). Consequently, φ1/φ0 does not depend on
λ either (see Figure 5.3).

Thus the distribution is independent of the strength of the interactions between
cells and between cells and walls, but it is mainly caused by geometrical constraints.
In other words, interaction between cells and the lift forces both depend on λ, and
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Figure 5.2: The relative hematocrit in the low flow rate branch as a function of the
hematocrit in the parent vessel. The length ratio between the branches L1/L2 is
set to 3. A: Simulations with λ=1 and λ=10. B: Comparison between experiments
(λ=0.85 and λ=10.3) and the empirical law of Pries et al. [Pries et al., 1990]
(solid line), for the same cross-sectional area. The non-monotonous evolution of the
relative hematocrit at low H0 and high λ is related to the inversion of the Zweifach-
Fung effect, on which we comment later on (see Figure 5.7).

this result indicates that they depend more or less on λ in the same way. The λ
contributions cancel out once a critical feeding hematocrit is reached. Noteworthy,
beyond this critical hematocrit the separating ratio φ1/φ0 quasi plateaus which
enforces the idea that in this regime, the feeding flow can be considered as a three-
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Figure 5.3: Simulations: the relative hematocrit in low flow rate branch φ1/φ0 as a
function of the hematocrit in the parent vessel φ0, for several branches length ratios
L1/L2 and viscosity contrasts λ. At low enough φ0, the asymmetry between the
two daughter branches is strongly enhanced as the viscosity contrast λ is decreased,
while the partitioning becomes independent on λ for hematocrit above 20%.

layer fluid (fluid-cell-fluid). The width of each layer will depend neither on the
strength of interaction (which is related to deformability) nor on the volume fraction.

5.4 Inversion of the Zweifach-Fung effect

Now we focus on the low hematocrit case, for which the partition depends strongly
on the detail of the interactions and on the volume fraction. Moreover a peculiar
effect arises due to the prevalence of the discrete nature of blood at that scale. For
all hematocrits, the distribution of RBCs is not homogeneous, but rather exhibits
two lateral peaks (Figure 5.4). This become more pronounced at low hematocrit
(φ0 . 5%), where a two-file distribution of RBCs is observed, as shown in Figure 5.5.
For λ=10, there is almost no cell flowing in the central part of the vessel, even though
the wall-lift force tends to center them. The structure adopted by the suspension
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Figure 5.4: A: CFL thickness as a function of the hematocrit in the parent vessel,
for λ=1 and λ=10, in simulations. Insets : Snapshots showing the suspension at
the bifurcation. We define the CFL as a layer where the integrated concentration
profile is below 5% [Kumar et al., 2014]. B: Snapshots from experiments, for λ=0.85
and 10.3, and hematocrit φ0 =10, 20 and 30%. Every snapshot is a superimposition
of 10 successive images in order to highlight the CFL in the parent vessel. C:
The stationary volume fraction density functions in the parent vessel obtained from
simulations.
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Figure 5.5: The profiles of the hematocrit distribution and the corresponding snap-
shots of RBCs distribution in the parent vessel. The feeding hematocrits are 5%
and 40%, for two different values of λ.

can be viewed as a juxtaposition of layers with high and low hematocrits. For
example, as shown in Figure 5.5 (top panel with λ = 10) the central part is depleted
in RBCs, but it is escorted by two enriched layers, which themselves are surrounded
by two depleted layers at the periphery (close to the channel walls). This 5-layer
configuration (fluid-cell-fluid-cell-fluid) has an extremely interesting impact on the
partition. This can be highlighted by measuring φ1/φ0 as a function of the bulk flow
rate ratio Q1/Q0 between a child branch and the parent vessel, for fixed φ0 (Figure
5.6).

If we focus first on the results for high φ0 (φ0 ' 40%), we find again the insensi-
tivity to λ. As Q1/Q0 is increased from 0 to 0.5, the low flow rate branch 1 recruits
first the CFL and then the cells. This implies that φ1 starts at 0 and increases until
reaching φ0 when the situation is symmetric (Q1 = Q2 = Q0/2). Our results agree
with a previous 2D simulation obtained for φ0 ' 32% [Yin et al., 2013] as well as
with the empirical law of Pries and coworkers [Pries et al., 1990].

An unexpected phenomenon is observed at low enough hematocrit, for φ0 = 5%
and at high viscosity contrast λ = 10, in contrast to the high hematocrit regime (see
Figure 5.6 B, λ = 10). At low Q1/Q0, the peripheral CFL in the parent vessel is
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Figure 5.6: The relative hematocrit in one child branch as a function of the bulk
flow ratio. Solid lines correspond to the empirical law proposed in ref [Pries et al.,
1990], for a = W . For simulations, the relative hematocrit is φ1/φ0. For Pries law,
it is given by H1/H0. A: high hematocrit (φ0 = H0 = 40%). B: low hematocrit
(φ0 = H0 = 5%).

recruited by the branch 1 so φ1 starts at 0 and increases when Q1 increases. Around
Q1/Q0 = 0.3, φ1 becomes larger than φ0. This means the hematocrit is increased in
the low flow rate branch, which is the reverse behavior of the Zweifach-Fung effect.
The five-layer structure mentioned above is the key ingredient for understanding
this unexpected behavior: In the intermediate range 0.3 < Q1/Q0 < 0.5, the low
flow rate branch recruits the lateral CFL layer plus the adjacent RBC-rich layer
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Figure 5.7: Experiments: the hematocrit in the low flow rate branch H1 as a function
of the hematocrit in the parent vessel H0. A: Low λ ; B: High λ. The length
ratio between the branches is set to 3. The width W of the inlet channel is set
to 10, 20 and 30 µm. The corresponding empirical laws of Pries et al.[Pries et al.,
1990] are also shown. The dotted line (the one with highest slope) corresponds
to equal partition (H1 = H0). For W = 20 µm, the data are the continuation of
the data already reported in Figure 5.2. C: Snapshots for each width W and two
concentrations H0 = 0.6% and 4.5%. Every snapshot is the superimposition of 10
successive images in order to highlight the structure of the suspension in the parent
vessel

among the five layers. By contrast, the high flow rate branch recruits the CFL
layer close to the opposite wall plus its adjacent RBC-rich layer (exactly as the
low flow rate branch) as well as the central (and depleted) layer. Thus, while both
branches recruit approximately the same amount of cells per unit time, those are
more dilute in the high flow rate branch, which receives more fluid, while in the
classical Zweifach-Fung effect, the high flow rate branch is the one that receives
more cells. For λ = 1 (see Figure 5.6 B with λ = 1), the two-peak structure is not
as marked as in the case of λ = 10, so the reverse Zweifach-Fung effect is not as
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strong. The subtle role played by the suspension structuring at low hematocrit is
also supported by our experiments, where the interplay between the diffusion and
the wall-lift force is controlled by varying the width W of the inlet channel (see
Figure 5.7). When W is low (W = 10 µm), the hematocrit in the low flow rate
branch is much lower than expected from Pries et al. predictions (which were not
validated on this confinement range). This is caused by the CFL effect that becomes
very strong. As in the simulations, for Q1/Q0 = 0.25, this effect is more pronounced
at low λ, that corresponds to a more important wall lift force. The 5-layer structure
is clearly observed also in the experiments for H0 < 5%, W = 20 or 30 µm and at
low λ (Figure 5.7 C), but not at high λ, while it was more strongly marked at high
λ in the simulations. This indicates that this peculiar structure is very dependent
on the mechanical properties of the cells and also on the degree of confinement.
Nevertheless, a robust feature is valid in both simulations and experiments: When
the two-file structure of RBCs takes place, a clear inversion of the blood partition
at the bifurcation is observed. In the experiments, this corresponds to Figure 5.7 A,
where some points lie above the equal partition line when H0 < 2%.

There are also situations in which one of the two branches can be even completely
devoid of RBCs (Figure 5.7 C). A corresponding prolonged lack of RBCs perfusion
to real blood vessels causes dysfunction and possibly ischemia disease. Because
RBC mechanical properties are affected by aging and pathologies, these can induce
abnormal partitions of the hematocrit in the vascular network.
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Chapter 6

Deformability-influenced delivery
of red blood cells in microvascular
networks

In this chapter, we present our preliminary simulations regarding the properties of
RBC flow in networks. Section 6.1 provides a general introduction about motivation
and Section 6.2 will define the system under consideration. In Section 6.3, we report
on deformability-induced lateral displacement of RBCs in the network. In Section
6.4, we present a somewhat unexpected result in that the flux of rigid RBCs is
higher than that of soft RBCs, in contrast to the flow in a straight channel. Finally,
diffusion of RBC clouds in the network and its far-reaching consequences are the
subject of Section 6.5.

6.1 Introduction

In vivo, blood flows through a complex network of the microcirculatory system in
order to ensure oxygen delivery and remove metabolic waste. Understanding blood
flow in microvascular networks and its dependence on the mechanical properties of
its constituents are essential to understand some physiological implication in micro-
circulation. A prominent example is ischemia disease which is often associated with
congested blood flow. Indeed, within many patients with even a healthy coronary
artery, an improper hematocrit distribution is observed in the heart microcircula-
tion, such as occlusion zones. These abnormal traffic zones cause a lack of oxygen
supply to tissues, leading to cardiac ischemia disease, the origin of which is largely
not yet elucidated. For example, does the topology of the vascular network have a
direct influence on the hematocrit partition, and thus on perfusion properties? Be-
sides helping understand the influence of blood flow on physiology and pathology in
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microcirculation, this study may open some applications in biomedical technology
and chemical engineering, such as the design of appropriate networks for cell sorting
and the conception of tailored microparticles for a targeted drug delivery.

Several factors govern the behavior of RBCs during flow, as we have seen through-
out this thesis. For example, we have seen that the deformability of RBCs can have
major consequences on lateral migration and thus on hematocrit partition. This
migration is a result of the wall induced lift force due to hydrodynamic interactions
[Callens et al., 2008; Cantat and Misbah, 1999b; Grandchamp et al., 2013], that
depends on the nature of RBC dynamics (like tank-treading or tumbling) [Abkarian
et al., 2007; Dupire et al., 2012]. Other factors enter into play in this phenomenon:
(i) The curved velocity profile of the Poiseuille flow [Coupier et al., 2008b; Farutin
and Misbah, 2014; Katanov et al., 2015; Shi et al., 2012], and (ii) The cell-cell hy-
drodynamic interactions [Grandchamp et al., 2013; Hariprasad and Secomb, 2014;
Katanov et al., 2015; Krüger et al., 2014; McWhirter et al., 2009]. The migration
makes RBCs aggregate in the center of the vessel forming a cell depletion layer be-
tween the wall and RBC rich region, resulting in a mean velocity of RBCs larger
than the mean velocity of the plasma. This leads to the famous F̊ahræus effect
[Barbee and Cokelet, 1971; Pries et al., 1992], the hematocrit in the tube is smaller
than the hematocrit in the reservoir. As the consequence of the F̊ahræus effect and
the cell depletion layer, the apparent viscosity of blood decreases with decreasing
vessel diameter, which is known as the F̊ahræus-Lindqvist effect [Pries et al., 1990,
1992], as we have seen earlier.

We have seen in the previous chapter that the depletion layer plays a major role in
the partition of RBCs at bifurcations, which is described by the Zweifach-Fung effect
[Dellimore et al., 1983; Fenton et al., 1985; Guibert et al., 2010; Pries et al., 1989]:
the feeding flow is divided by a separating streamline into two parts, one feeding the
low flow rate branch and the other feeding the high flow rate branch. Due to the cell
free layer, the RBC fraction entering the low flow rate branch is smaller compared
to the original RBC fraction in the total feeding flow, while the other branch, that
having higher flow rate is enriched. When the flow rate is sufficiently small in the
child branch, the hematocrit in this branch can even drop down to zero, while it
reaches high values in the other branch.

Obviously, these above effects have physiological consequences as they alter the
rheology of blood and distribution of RBCs and consequently alter the transport of
oxygen and other essential metabolites, and may even trigger pathological disorders.
Combining the above effects, Pries et al. proposed an empirical model [Pries et al.,
1990], which can be used to predict the hematocrit distribution in a network by
giving information of the vascular structure and by choosing appropriate boundary
conditions. This model is based on the assumption that the flow in the vessel is well
developed. However, in real situations, the vascular network consists of many short
vessel segments with length of about hundreds micrometers [Popel and Johnson,
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2005], which are not long enough to sufficiently allow development of the blood
flow, especially in the dilute case. The corpuscular nature of the RBC distribution
together with the fact that the flow is not always fully developed in short enough
vessels make the problem quite challenging and large deviations can be manifested as
compared to the classically adopted picture. We have presented in the last chapter
an example where the partition of hematocrit can be inverse to that predicted by
continuum models of suspension [Shen et al., 2016]. This points to the fact that
simulations taking explicitly the corpuscular nature of blood, is the only present
alternative for a firm understanding of blood flow properties.

To better understand the blood flow properties in the microcirculation, direct
numerical simulations of RBC suspensions in a 2D network are carried out here. As
a first step we consider the network to be ordered, a choice dictated by reducing
complexity in order to clarify the sole effect of the branching. A structured network
with hexagonal loops is used to make a symmetrical flow at each bifurcation. We
examine the effect of the multistage bifurcation. The motion of single RBC in
the network is firstly investigated. We shall see that the configurations (such as
lateral migration in the channel) of RBC in the downstream position depend on
the previous states of RBC in the upstream position (the phenomenon is history-
dependent). This results in a quite rich behavior when the RBC meets a bifurcation.
For example, a chaotic partition of RBC may take place at bifurcations, and this
clearly has an impact on the overall displacement of RBCs in the network. We find
that the deformability of RBCs impacts the displacement for low concentrations, up
to about 20%, beyond which the crowding effects and cell-cell interactions make no
big distinctions among different RBC deformabilities. Since the hematocrit in the
microvasculature lies in the range of 5 − 20%, the observed phenomena which we
will report below are clearly of important relevance in microcirculation.

Besides the above effects, we discover that RBCs exhibit larger flux in the net-
work when they are more rigid and this is in a marked contrast with the scenario in
straight tubes. Finally, and probably this is the source of the latter phenomenon,
we will see that cells enjoy a faster longitudinal diffusion when they have a smaller
deformability.

6.2 Methods and parameters

As before, we use LBM as the NSEs solver (see Section 2.2). We recall that the
RBC is modeled as a 2D vesicle by using a spring network with bending elasticity
(see Section 2.5). The coupling of membrane and fluid is implemented by the IBM
(see Section 2.4).

The geometry of the network has a honeycomb structure (in Figure 6.6). The
half-way bounce-back boundary condition (see Section 2.2) is used for the non-slip
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condition at the fluid-solid interface. We fix the channel width W at 4R (10µm),
recall that R is the radius of RBC. Each vessel segment has a length of 40R (100µm).

Periodic boundary is applied in both X and Y directions. The size of the com-
putational domain is chosen much larger than the size of RBC, so that the influence
from periodic boundary conditions can safely be ignored. The length of domain in
the Y direction is taken to be 146.6R, containing two hexagonal loops. Two differ-
ent domain lengths in the X direction are used in this work. One is equal to 127R,
used for studying lateral displacement of the RBCs in suspension. The other one
equals 507.8R, which is large enough to provide a sufficient space for observing the
longitudinal diffusion of RBCs.

A constant body force is applied to drive the fluid, which is equivalent to a
pressure-driven flow. By adopting different values of the bending modulus kb and
viscosity contrast λ = ηint/ηext, we can vary the deformabilities of RBC which
affects the behaviors of RBC at bifurcation. The bending elasticity is involved in
the capillary number, defined as Ca = ηextR

3γ̇/(4kbl0), here γ̇ is the mean shear rate
calculated by γ̇ = Um/W , Um is the maximum velocity of the flow in the absence of
RBCs. ηext and ηint are the viscosity of external solution and internal fluid enclosed
by the RBC membrane.

The initial positions of RBCs are randomly distributed with different concen-
trations in the whole network when we are interested in the lateral displacements.
When we focus on the longitudinal diffusion, the RBCs are concentrated in one
fourth of the network to produce a high initial local hematocrit of 28%.

6.3 Lateral displacement of RBCs

6.3.1 Behavior of a single RBC

We will here pay attention to the behavior of a single RBC in the network. Prior
to this study we first consider the behavior of a solid spherical particle, which will
serve as a reference study. Once the particle enters a given branch at a bifurcation,
for example the lower one, it will stay close to the upper wall when it converges
into the feeding vessel in the next stage. Since it does not experience any lift force
(recall that a rigid spherical particle can not lift-off due to the reversibility of the
Stokes equations upon time reversal), once it reaches the next bifurcation it enters
the upper branch, afterwards it stays close to the lower wall, enters the lower branch,
and so on. In a summary, the particle shows a zigzag-like trajectory without global
lateral displacement in the network.

Let us now consider a RBC in the network. On the one hand, the shape of RBC
evolves in the course of its flow in a branch. Because of its shape evolution the
RBC will experience a lift force which tends to push it towards the center. However,
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Figure 6.1: Single RBC flows in the network. The red solid line is for the case of
Ca = 1, λ = 1, the blue dashed line is for the case of Ca = 0.1, λ = 1 and the
green dotted line is for the case of Ca = 1, λ = 10. Ca is the capillary number
for membrane bending elasticity. λ is the viscosity contrast. A: The trajectories
of RBC mass center in the network. The case of Ca = 0.1, λ = 1 shows a deter-
ministic displacement, while the other two cases show an erratic displacement. B:
The trajectories of RBC mass center at one bifurcation within the network. C: The
evolution of RBC shape and position at one bifurcation within the network.

if the branch is not long enough the RBC might not have sufficient time to reach
the center. In addition, at the bifurcation, because of the deformation of RBCs
the choice between the upper and lower branch might be complex since its shape
might be quite different from one bifurcation to the next. We thus expect quite rich
behaviors. Taking the rigid particle case as a reference, we might be tempted to
think that a RBC having a large bending rigidity (and thus not too deformable),
may follow the same trend as the rigid particle. Actually, this reasoning fails to
predict the real behavior in this case. For example, we find that the behavior of
a RBC having a stronger bending rigidity deviates significantly from the behavior
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Figure 6.2: The trajectories of all the RBCs for different Ca and λ in the case of low
hematocrit (9.3%). The dashed line box identifies the regime used for the average
of ∆Y in Figure 6.4. The ∆Y is the lateral displacement of RBCs from the initial
positions.

of a rigid particle, while a softer RBC has a closer behavior as the rigid particle.
This counter-intuitive behavior highlights the complexity of the problem. Figure 6.1
presents the trajectories of RBC mass centers for high (blue dashed line, Ca = 0.1)
and low (red line, Ca = 1) membrane rigidity. The understanding of this behavior is
subtle. While the particle has a high enough rigidity, its orientation tank-treading
angle remains quite constant (Figure 6.1 C bottom, middle) and when it approaches
the bifurcation, the orientation is towards the lower branch. Thus the head of RBC
is firstly pulled by the lower branch. The trajectory given in the Figure 6.1 B shows
that the mass center of the rigid RBC has crossed the centerline into the downward
stream regime before it meets the corner. When it impacts the bifurcation solid
boundary it rotates in a quite rigid manner (due to its high rigidity) and enters
the lower branch, making the RBC stay close to the upper wall in the next feeding
vessel, where the RBC finds itself in the same configuration as in the previous feeding
vessel, and so on. Overall, the cell will drift indefinitely sideways (either in the lower
part or the upper part of the network, depending on initial condition. In Figure 6.1,
we have a downward drift. We can refer to this case as a long memory behavior.
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Figure 6.3: The trajectories of all the RBCs for different Ca and λ in the case of
high hematocrit (31.1%).

Let us now consider the case of a softer RBC (say Ca = 1), red line in Figure
6.1). The cell experiences a lift force, and due to its softness, it assumes a parachute-
like shape (in contrast to the previous case with a more rigid cell), but not fully
symmetric, before it reaches the bifurcation. Since the RBC is soft it deforms so
much during the flow in the vessel so that it will have often quite different shapes
from one bifurcation to the next. Due to these rather quite uncontrolled shapes at
successive bifurcations (actually at any new branching everything happens as if the
initial condition is different, so that at the next bifurcation the shape is likely to
be different from the previous one.), one thus expects that the RBC will undergo a
zig-zag motion in the network. Due to the shape variability at bifurcations, we can
call this case as a short memory behavior.

Finally, another parameter plays an essential role as well: the viscosity contrast
λ which acts on the ability of the cell to deform. We investigated the case with
Ca = 1, but with λ = 10; in other words, rigidity is now monitored by a more
viscous internal fluid. In this case, there is a weaker lift force due to the relatively
smaller orientation angle. The cell has not enough time to reach the center (in
contrast to the case of Ca = 1 and λ = 1), and in addition, its orientation angle
points less towards the lower branch. This results in a zig-zag motion of the cell in
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Figure 6.4: The averaged absolute lateral displacement of RBCs in the dash box
shown in Figure 6.2 as a function of the hematocrit for different Ca and λ.

this case.

6.3.2 Behavior of a suspension

The study of a single cell may give some hints towards the behavior of a suspension,
especially in the dilute enough regime. We have seen above that the membrane
rigidity induces different behaviors for a single cell: a rigid cell drifts sideways, while
a softer cell undergoes a zig-zag motion. A quite viscous internal fluid show the same
trend as the soft RBC (zig-zag motion). We have thus simulated a suspension in a
regime where the concentration is not too high, but still consistent with the values
encountered in microcirculation. Figure 6.2 shows the result in the network for
a concentration of 9.3%. We find interesting results in that the RBCs with high
membrane rigidity have the largest lateral displacement while the RBCs with high
viscosity contrast have the smallest lateral displacement. While for a single cell
with high enough rigidity we had found a sideways drift, the presence of occasional
interaction with other cells, initial configuration at the bifurcation might vary, so
that the cells can drift both upward and downward in a suspension. However, still
the ample lateral displacement can clearly be distinguished between the cells with
strong rigidity and those with low rigidity (as well as the cells enclosing a more
viscous fluid).

When the concentration becomes high enough, the frequent mutual interactions
among cells cause a strong mixing in the orientations and deformation of cells, so
that we expect the distinction between the different cell properties (rigidity, viscosity
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Figure 6.5: The flux of RBCs as a function of hematocrit for different Ca and λ.
The solid points present the results for RBCs flowing in the tube. The hollow points
present the results for RBCs flowing in the network.

contrast) to weaken as concentration increases. Interestingly enough, we find the
distinction is still quite visible as long as the concentration is not too close to 20%,
which is the normal situation in microcirculation. When the concentration becomes
larger, a quite minor distinction can be detected, as shown in Figure 6.3 where the
trajectories of RBCs are plotted for a hematocrit of 31.1%.

Figure 6.4 shows the averaged absolute lateral displacement of RBCs (as defined
in Figure 6.2) as a function of the hematocrit. We see that there is a critical value
of about 20%, above which the membrane rigidity does not play a role in the lateral
displacement of the RBCs. We note that the lateral displacement is independent on
the hematocrit either for low viscosity contrast or for high viscosity contrast when
the RBCs have low membrane rigidity, while the higher viscosity contrast provides
a smaller lateral displacement. Also note that for low enough hematocrit the lateral
displacement can be more than 3 times larger for RBCs with high rigidity and small
viscosity contrast (Ca = 0.1, λ = 1) than for soft cells with a more viscous fluid
(Ca = 1, λ = 10). These findings are not devoid of experimental testability.

6.4 Flux of RBCs

Another important point of the RBC transport is the RBC flux which represents
the capacity of RBC to deliver oxygen per unit time in vessel cross section. It is
defined as the volume of RBCs passing a vessel cross section per unit time (QRBC)

94



6. DEFORMABILITY INFLUENCED DELIVERY OF RED BLOOD
CELLS IN MICROVASCULAR NETWORK

Ca=1, λ=1

Ca=0.1, λ=1

Ca=1, λ=10

Figure 6.6: Distribution of RBCs in the network after the flow of RBCs is long time
developed.

and normalized by the flow rate in the absence of cells (Q0). A priori, we may expect
that a higher hematocrit would lead to a higher flux of oxygen. However, as we know,
the viscosity of the RBC suspension increases with the increasing hematocrit, which
causes the bulk flow rate to decrease with hematocrit. As a consequence, when
the hematocrit increases, the RBC flux firstly increases and then should reach a
peak at some hematocrit, before it decreases, as shown in Figure 6.5. Furthermore,
we expect the flux to be lower for more rigid cells, and this is confirmed by our
simulations.

We have examined this question in a network and compared with the case of
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Figure 6.7: The distribution of hematocrit along the flow direction for different Ca
and λ.

a straight channel. Surprisingly, we find a counter-intuitive trend in the network
regarding the effect of rigidity. In tube, the RBCs with high membrane rigidity
have a smaller flux as compared to softer cell (which is the expected result), while
the opposite happens in the network (Figure 6.5). Cells with a higher membrane
rigidity give rise to a higher viscosity of RBC suspension in tube, that leads to a
smaller RBC flux. In network, the situation is quite different, and the membrane
rigidity plays less role in the viscosity of suspension since the development of the
flow of RBCs is always renewed by the successive bifurcation, which also explains
that the RBC flux in network is smaller than the RBC flux in tube because the
well developed RBCs in tube receive a higher mean velocity. The membrane rigidity
plays a more significant role in the partition as we discussed before. From Figure
6.1 C, we can see that the RBC with high membrane rigidity spends less time at
the corner as compared to a softer one, thus enhancing the transit of more rigid cell.
This seems to be a plausible explanation for the enhancement of the flux for more
rigid cells in network. The viscosity contrast has a minor effect on the RBC flux.

6.5 Longitudinal diffusion of RBCs

As the heterogeneity of RBC distribution often happens in the microcirculation,
it is interesting to analyze this question, by considering the behavior of a RBC
cloud when it flows in the network. The RBC suspension is taken initially highly
concentrated in a quarter of the network with a hematocrit of 28%. During the
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Figure 6.8: The evolution of local hematocrit for different Ca and λ. Here the
local hematocrit is calculated by averaging those hematocrit larger than 90% of the
maximum.

RBCs flowing, the relative distance between RBCs increases. The RBC suspension
shows a diffusion-like behavior with a hematocrit dependent diffusion rate. Finally,
the diffusion ceases when the local hematocrit reaches a certain value, depending on
the RBC deformability. In Figure 6.6, the final configurations of RBCs distribution
are presented. The RBCs with high membrane rigidity (Ca = 0.1) form the widest
distribution while the softer RBCs with low viscosity contrast (Ca = 1, λ = 1) are
the most concentrated. In Figure 6.7 we plot the hematocrit distribution along
the flow direction after long time evolution. The evolution of a local hematocrit
in the network is given by Figure 6.8. The results show that the high membrane
rigidity (Ca = 0.1) sample causes the strongest diffusion (the smallest final local
hematocrit and the largest diffusion rate). Comparing the two cases with different
viscosity contrasts, we find that the higher viscosity (Ca = 1, λ = 10) corresponds
to stronger diffusion. Also note that the diffusion rate exhibits a nonlinear behavior
with hematocrit, and decreases with decreasing hematocrit.
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Chapter 7

Conclusions and perspectives

In this chapter we briefly recall the main results and then present a list of questions
which should constitute an interesting task for future investigations. The main topic
of this thesis has focused on the collective behaviors of RBC suspensions. The main
findings and some perspectives are discussed below:

7.1 Summary of Chapter 3 and Chapter 4 and

related perspectives

In Chapter 3 and Chapter 4, the hydrodynamic interactions between deformable
particles (a model of RBCs) are studied both in 2D and 3D by numerical simulations.
The results reveal the mechanism of the self-organization of RBCs under confined
linear shear flow in both 2D and 3D. A link between the spatiotemporal organization
of the RBC suspension and rheology has been analyzed. The results show that the
rheology of the RBC suspension is dramatically affected by the order of RBCs in
the presence of confinement. Our findings are of fundamental understanding of
many body system and rheology of complex fluids, focusing on the link between
microdynamics of RBCs and macrorheology of blood at the global scale. These
studies can also open future practical applications, such as diagnosis; for example,
order depends on mechanical properties of cells, and so does rheology. Since in
microfluidics a small amount of blood (microliters) is required, it is essential to
conceive of appropriate architectures to measure order and rheology in miniaturized
automated systems.

There are still many perspectives to be carried out in the future:

• A more systematic exploration of the parameters will be important for a deeper
understanding of complex fluid behaviors under confinement. For example,
how does the shear thinning and shear thickening behavior occur in relation
with the organization of suspended entities?
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• Regarding the reality of blood in vessel, the flow condition usually presents
a pressure-driven channel flow, where the dynamics of the RBC are different
from that in linear shear flow. An extended study in confined Poiseuille flow
is needed for a more comprehensive understanding of blood rheology.

• Here we have examined the case of purely hydrodynamical interactions. Other
factors, like plasma proteins, contribute to RBCs aggregation under physiolog-
ical conditions. An extension of this work to the case including the aggregation
between cells will constitute an interesting task for having a more complete
description of blood flow.

• When the suspension is not homogeneous (as found in this work), the notion
of an overall effective viscosity is ill-defined, since it is assumed that the shear
rate is constant in the gap. Thus we have to resort to an analysis of local
rheology, which is a question of primary importance for any complex fluid
(confined or not) which exhibits an inhomogeneous structure of the suspended
entities (like shear bands, organization of files as found in this work, etc...). It
is hoped to investigate this matter in the future.

7.2 Summary of Chapter 5 and Chapter 6 and

related perspectives

In Chapter 5 and Chapter 6, the partition of RBCs at the level of bifurcations is
addressed by means of computer simulations and in vitro experiments. The RBC
transit is investigated through simulations of a large number of RBCs flowing in
a network pattern structured as a honeycomb. Our findings suggest that the de-
formabilities of RBC must be taken into consideration and carefully analyzed in
order to have a firm understanding of the blood perfusion and the RBC transit in
microcirculation. The results of our present work provide a valuable background
needed to pinpoint the various RBCs properties that govern the blood perfusion,
and thus oxygen delivery in the microcirculation in general. The results also have
significance in the practical applications, such as cell sorting and chemical analysis.

Some perspectives of this work are outlined here:

• Since our numerical and experimental results on hematocrit partition in hemod-
ilution contrast with the common belief, this points to the fact that existing
models have to be revisited in order to capture this effect. However, it is not
clear that continuum models will still adequately give the apparently preva-
lent nature of the discrete property of blood. Prior to that, 3D simulations
should first be implemented in the future in order to seek for a more direct
quantitative comparison with experiments.
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• A systematic study on the influence of the network structure on the RBC
distribution will be considered in the future. Firstly, it will be important to
link the network topology to the perfusion nature. Secondly, medical images
can be extracted in order to model the real vessel network, for a systematic
simulations on real networks, and for potential practical applications.

• It will be an interesting task to implement oxygen diffusion in the present
model, in order to simulate oxygen transport tissues with complex vessel net-
works. This should provide better background for a better understanding of
the physiology and pathology of microcirculation.
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Chapter 8

Des conclusions et des
perspectives

Dans ce chapitre, nous rappelons brièvement les principaux résultats et puis présentons
une série de questions qui devrait constituer une tâche intéressante pour des études
futures. Le sujet principal de cette thèse est concentré sur les comportements col-
lectifs des suspensions de RBC. Les principaux résultats et certaines perspectives
sont discutés ci-dessous:

8.1 Résumé du chapitre 3 et du chapitre 4 and et

des perspectives associées

Au chapitre 3 et Chapter 4, les interactions hydrodynamiques entre les particules
déformables (un modèle de RBCs) sont étudiées en 2D et 3D par des simulations
numériques. Les résultats rapportenet sur le mécanisme de l’auto-organisation des
RBCs sous écoulement de cisaillement linéaire confiné en 2D et 3D. Le lien en-
tre l’organisation spatio-temporelle de la suspension de RBC et la rhéologie a été
analysée. Les résultats montrent que la rhéologie de la suspension de RBC est af-
fectée dramatiquement par l’ordre des RBCs en présence d’écoulement. Nos résultats
fournissent une compréhension fondamentale qui s’insère dans la problématique de
la rhéologie des fluides complexes, en se concentrant ici essentiellement sur le lien
entre la microdynamique des RBCs et la macrorhéologie du sang à l’échelle globale.
Ces études peuvent également ouvrir des applications pratiques à venir, tels que le
diagnostic; par exemple, l’ordre dépend des propriétés mécaniques des cellules, et
cet ordre affecte la rhéologie. Comme en microfluidique une faible quantité de sang
(microlitres) est nécessaire, il est essentiel de concevoir des architectures adaptées
pour me surer l’ordre et la rhéologie dans les systèmes automatisés miniaturisés.

Il reste encore de nombreuses questions ouvertes, qui constituent un sujet riche
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de perspectives, comme décrit ci-après.

• Une exploration plus systématique des paramètres sera très utile pour mieux
comprendre les comportements des fluides complexes sous confinement. Par
exemple, il serait intéressant d’étudier la rhéofluidité et le rhéoépaississement
et leurs relations avec l’organisation des entités suspendues.

• In vivo l’écoulement est imposé par une différence de pression, où les dy-
namiques des RBC sont différentes de celles obtenues dans un écoulement de
cisaillement linéaire. Une Étude complémentaire en écoulement Poiseuille con-
finé est nécessaire pour une meilleure compréhension de la rhéologie du sang.

• Ici nous avons examiné le cas d’interactions hydrodynamiques. D’autres fac-
teurs, comme les protéines du plasma, contribuent à l’agrégation des RBC
dans les conditions physiologiques. Une extension de ce travail prenant en
compte l’agrégation entre les cellules constituera une tâche intéressante pour
disposer d’une description plus complète de l’écoulement sanguin.

• Lorsque la suspension n’est pas homogène (comme démontré dans ce travail),
la notion d’une viscosité effective globale est mal définie. En effet, une hy-
pothèse sous-jacente à cette définition est que le taux de cisaillement est con-
stant dans le gap. Si tel n’est pas le cas, il devient donc nécessaire de recourir
à une analyse de la rhéologie locale, qui constitute une question d’une impor-
tance primordiale pour tout fluide complexe (confiné ou non) qui présente une
structure inhomogène (comme les bandes de cisaillement, organisation en files,
comme rapporté dans ce travail , etc...).

8.2 Résumé du chapitre 5 et du chapitre 6 et des

perspectives associées

Au chapitre 5 et chapitre 6, la répartition des RBCs au niveau d’une bifurcation
est abordée dans nos simulations sur ordinateur et par des expériences in vitro. Le
transit de RBC est étudié par simulations d’un grand nombre de RBCs circulant
dans un réseau structuré comme un nid d’abeilles. Nos résultats suggèrent que la
déformabilité de RBC doit être prise en considération et analysée avec soin afin
d’avoir une bonne compréhension de la perfusion du sang et du transit de RBC
en microcirculation. Les résultats de nos travaux actuels fournissent un fondement
utile, nécessaire pour identifier les diverses propriétés des RBCs qui régissent la
perfusion sanguine, et par là même mieux comprendre les problèmes d’acheminement
de l’oxygène en microcirculation en général. Les résultats revêtent également une
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certaine importance vis-à-vis d’applications pratiques, telles que le tri cellulaire et
l’analyse chimique.

Il reste cependant beaucoup à faire, comme commenté succinctement ci-après.

• Étant donné que nos résultats numériques et expérimentaux sur la partition
d’hématocrite dans le hémodilution contrastent avec la conviction commune,
ceci suggère une révision des modèles actuels continus en vue de capturer cet
effet. Cependant, il n’est pas clair s’il existe des modèles continues adéquats
pour des situations où la nature discrète du sang est bien prononcée. Avant
d’entreprendre ce travail, il sera d’abord utile de se pencher sur une simu-
lation 3D afin d’obtenir une comparaison plus quantitative directe avec les
expériences.

• Une étude systématique concernant l’influence de la structure de réseau sur
la distribution de RBC sera à prendre en considération. En premier lieu, il
sera important de relier la topologie du réseau à la qualité de la perfusion.
Deuxièmement, il sera d’une grande importance de pouvoir disposer d’images
médicales numérisées et utilisés afin de modéliser les réseaux vasculaires réels,
en vue d’accompagner des études médicales.
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A. Kumar, R. G. Henŕıquez Rivera, and M. D. Graham. Flow-induced segregation
in confined multicomponent suspensions: effects of particle size and rigidity. J.
Fluid Mech., 738:423–462, 1 2014. xiii, 81

E. Lac, A. Morel, D. Barthes-Biesel, et al. Hydrodynamic interaction between two
identical capsules in simple shear flow. J. Fluid Mech., 573(1):149–169, 2007. 41,
42

A. Lamura and G. Gompper. Dynamics and rheology of vesicle suspensions in wall-
bounded shear flow. EPL (Europhys. Lett.), 102(2):28004, 2013. 41

L. Lanotte, S. Guido, C. Misbah, P. Peyla, and L. Bureau. Flow reduction in
microchannels coated with a polymer brush. Langmuir, 28(38):13758–13764, 2012.
8

L. Lanotte, G. Tomaiuolo, C. Misbah, L. Bureau, and S. Guido. Red blood cell
dynamics in polymer brush-coated microcapillaries: A model of endothelial gly-
cocalyx in vitro. Biomicrofluidics, 8(1):014104, 2014. 8

D.-V. Le and K.-H. Chiam. Hydrodynamic interaction between two nonspherical
capsules in shear flow. Phys. Rev. E, 84(5):056322, 2011. 41, 42

W. Lee, H. Amini, H. A. Stone, and D. Di Carlo. Dynamic self-assembly and
control of microfluidic particle crystals. Proc. Natl. Acad. Sci., 107(52):22413–
22418, 2010. 61

111



REFERENCES

J. Li, M. Dao, C. T. Lim, and S. Suresh. Spectrin-level modeling of the cytoskeleton
and optical tweezers stretching of the erythrocyte. Biophys. J., 88(5):3707–3719,
2005. 6

J. Li, G. Lykotrafitis, M. Dao, and S. Suresh. Cytoskeletal dynamics of human
erythrocyte. Proc. Natl. Acad. Sci., 104(12):4937–4942, 2007. 6

X. Li, A. S. Popel, and G. E. Karniadakis. Blood-plasma separation in y-shaped bi-
furcating microfluidic channels: a dissipative particle dynamics simulation study.
Phys. Biol., 9:026010, 2012. 73

S.-C. Liu, L. H. Derick, and J. Palek. Visualization of the hexagonal lattice in the
erythrocyte membrane skeleton. J. Cell Biol., 104(3):527–536, 1987. 6

Y. Liu, L. Zhang, X. Wang, and W. Liu. Coupling of navier–stokes equations with
protein molecular dynamics and its application to hemodynamics. Int. J. Numer.
Meth. Fl., 46(12):1237–1252, 2004. 27

S. Lorthois and F. Cassot. Fractal analysis of vascular networks: insights from
morphogenesis. J. Theor. Biol., 262(4):614–633, 2010. 2

S. Lorthois, F. Cassot, and F. Lauwers. Simulation study of brain blood flow regula-
tion by intra-cortical arterioles in an anatomically accurate large human vascular
network. part ii: flow variations induced by global or localized modifications of
arteriolar diameters. Neuroimage, 54(4):2840–2853, 2011. 11

M.-A. Mader, V. Vitkova, M. Abkarian, A. Viallat, and T. Podgorski. Dynamics of
viscous vesicles in shear flow. Eur. Phys. J. E, 19(4):389–397, 2006. 41

J. L. McWhirter, H. Noguchi, and G. Gompper. Flow-induced clustering and align-
ment of vesicles and red blood cells in microcapillaries. Proc. Natl. Acad. Sci.,
106(15):6039–6043, 2009. 14, 74, 87

R. Mei, L. Luo, P. Lallemand, and D. d’Humières. Consistent initial conditions for
lattice boltzmann simulations. Comput. Fluids, 35(8):855–862, 2006. 22

B. Metzger, P. Pham, and J. E. Butler. Irreversibility and chaos: Role of lubrication
interactions in sheared suspensions. Phys. Rev. E, 87(5):052304, 2013a. 60

B. Metzger, O. Rahli, and X. Yin. Heat transfer across sheared suspensions: role of
the shear-induced diffusion. J. Fluid Mech., 724:527–552, 2013b. 60

C. Misbah. Vacillating breathing and tumbling of vesicles under shear flow. Phys.
Rev. Lett., 96(2):028104, 2006. 3, 40, 55

112



REFERENCES

J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak. Vascular
permeability, vascular hyperpermeability and angiogenesis. Angiogenesis, 11(2):
109–119, 2008. 8
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Summary

Dynamics and rheology of a 2D confined suspension of vesicles (a model
for RBCs) is studied numerically by using an immersed boundary-lattice
Boltzmann method (IB-LBM). We pay special attention to the link be-
tween the spatiotemporal organization of the suspension and rheology.
We first analyze situations in which vesicles perform tank-treading. The
pair of vesicles settles into an equilibrium state with constant relative
distance, which is regulated by the confinement. The equilibrium dis-
tance increases with the gap between walls following a linear relationship.
However, no stable equilibrium distance between two tumbling vesicles
is observed. The presence or the lack thereof of an equilibrium distance
between two vesicles dictates the spatiotemporal organization of the sus-
pension (order or disorder). Ordering of the suspension is accompanied
with quite ample oscillation of normalized viscosity as a function of con-
centration, while the effective viscosity exhibits plateau. The amplitude
of oscillations of normalized viscosity is suppressed when disordered pat-
tern prevails.

Besides the interactions in the shear plane discussed in 2D framework,
the interactions in the vertical direction to the shear plane are also ana-
lyzed by 3D simulations of capsules (a model for RBCs) and experiments.
We show that in a confined blood suspension, RBCs spontaneously orga-
nize in a crystalline-like structure under the sole effect of hydrodynamic
interaction. It is further shown that when RBCs are substituted by
rigid particles, order disappears in favor of disorder. Various crystalline
orders take place depending on concentration and confinement. The
intercellular distance of the crystalline structure is a linear function of
confinement. Order appears as a subtle interplay between the lift force
that pushes RBCs away from walls towards the center and hydrodynamic
interactions in the vertical of shear flow plane. This study introduces a
new paradigm in the field of dilute non-colloidal suspensions where the
prevalence of disorder was up-to date the rule.

The partition of RBCs at the level of bifurcations is addressed in our
computer simulations and in vitro experiments, which reveal that the
hematocrit partition strongly depends on the viscosity contrast between
the viscosities of the RBC hemoglobin and the suspending fluid, as long



as hematocrit is less than 20% (which is the normal range in microcir-
culation). In the extreme hemodilution, our results exhibit a new phe-
nomenon: the low flow rate branch may receive higher hematocrit than
the high flow rate branch, in opposition to the well-known Zweifach-Fung
effect. This phenomenon is observed under moderate confinement and is
the result of a peculiar structuring of the cell suspension. Our findings
suggest that the various RBCs properties must be taken into consider-
ation and carefully analyzed in order to have a firm understanding of
RBC distribution in microcirculation and thus oxygen delivery in the
microcirculation in general.

Finally, we carry out numerical simulations of a large number of RBCs
flowing in a network that is structured in a honeycomb pattern. Our re-
sults reveal that as long as the hematocrit is less than 20% the RBCs with
higher membrane rigidity show a larger lateral displacement in the net-
work. Furthermore, we discover a deviation of RBC flux in network from
that in straight tube where the more rigid RBCs get the smaller flux. Op-
positely, the larger RBC flux is observed for the more rigid RBCs in the
network. Finally, we report on the manifestation of a faster longitudinal
diffusion of crowded RBCs with smaller deformability in the network.
Our results provide interesting information on the RBC delivery in the
network, which should be significant not only in the understanding of the
blood perfusion and the RBC transit in the microcirculation but also in
practical applications such as cell sorting and chemical analysis.



Sommaire

La dynamique et la rhéologie d’une suspension 2D confinée de vésicules
(un modèle de RBCs (globules rouges) ) sont étudiées numériquement en
utilisant une méthode de Boltzmann sur réseau frontière immergée (IB-
LBM). Nous portons une attention particulière au lien entre l’organisation
spatio-temporelle de la suspension et la rhéologie. Nous analysons d’abord
les situations dans lesquelles les vésicules effectuent le mouvement de che-
nille de char. Des paires de vésicules se placent dans un état d’équilibre
avec une distance relative constante et régulée par le confinement. La
distance d’équilibre augmente avec l’intervalle entre les parois suivant
une relation linéaire. Cependant, aucune distance d’équilibre stable
entre deux vésicules en mouvement de tumbling n’est observée. La
présence ou l’absence d’une distance d’équilibre entre deux vésicules dicte
l’organisation spatio-temporelle de la suspension (ordre ou désordre).
L’organisation de la suspension s’accompagne d’assez amples oscillations
de la viscosité normalisée variant en fonction de la concentration, tan-
dis que la viscosité effective ne varie pas. Les amplitudes d’oscillation
de la viscosité normalisée sont supprimées lorsque le motif désordonné
prévaut.

En plus des interactions dans le plan de cisaillement décrites en 2D, les
interactions dans la direction verticale par rapport au plan de cisaille-
ment sont également analysées par des simulations en 3D de capsules
(un modèle de RBCs) et des expériences. Nous montrons que dans
une suspension confinée de sang, les RBCs s’organisent spontanément
en une structure cristalline sous le seul effet de l’interaction hydrody-
namique. Il est en outre démontré que lorsque les RBCs sont remplacés
par des particules rigides, l’ordre disparait pour laisser place au désordre.
Différents ordres cristallins peuvent apparâıtre selon la concentration et
le confinement. La distance intercellulaire de la structure cristalline est
une fonction linéaire du confinement. L’ordre apparâıt comme une in-
teraction subtile entre la force de portance qui pousse les RBCs des
murs vers le centre et l’interaction hydrodynamique dans la verticale du
plan d’écoulement de cisaillement. Cette étude introduit un nouveau
paradigme dans le domaine des suspensions non-collöıdales diluées où la
prévalence des désordres était mise à jour la règle.



La répartition des RBCs au niveau d’une bifurcation est abordée dans
nos simulations sur ordinateur ainsi que dans des expériences in vitro.
Ces études révèlent que la répartition des globules rouges dépend forte-
ment du contraste de viscosité entre la viscosité de l’hémoglobine du
RBC et le fluide suspendant, tant que l’hématocrite est inférieure à 20%
(ce qui est la gamme normale de la microcirculation). Pour des dilutions
importantes, nos résultats montrent un nouveau phénomène : la branche
de faible débit peut recevoir une concentration plus élevé que la branche
de haut débit, en opposition à l’effet Zweifach-Fung. Ce phénomène
est observé sous confinement modéré et est le résultat d’une structura-
tion particulière de la suspension cellulaire. Nos résultats suggèrent
que les différentes propriétés des RBCs doivent être prises en compte
et soigneusement analysées afin d’avoir une bonne compréhension de la
distribution de RBCs dans la microcirculation et donc de la livraison de
l’oxygène dans la microcirculation en général.

Enfin, nous réalisons des simulations numériques d’une grande quantité
de RBCs, circulant dans un réseau qui est structuré selon un motif en
nid d’abeilles. Nos résultats montrent que tant que l’hématocrite est
inférieure à 20%, les RBCs dont la membrane est plus rigide présentent
un déplacement latéral plus important dans le réseau. En plus, nous
découvrons une différence par rapport à la circulation de RBCs dans un
tube droit où le débit pour des globules rigides est plus petit. Au con-
traire, un débit plus important est observé pour les RBCs plus rigides
dans le réseau. Enfin, nous présentons la manifestation d’une diffu-
sion longitudinale plus rapide d’une suspension dense de RBCs de faible
déformabilité dans le réseau. Nos résultats fournissent des informations
intéressantes sur la livraison de RBCs dans le réseau, ce qui pourrait
être important non seulement sur la compréhension de la perfusion du
sang et le transit de RBC dans la microcirculation, mais aussi sur des
applications pratiques, comme le tri cellulaire. et l’analyse chimique.
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