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General Introduction

In 1868, J. C. Maxwell’s paper ”On Governors” explained the instability of flyball governor

using differential equations. This marked the beginning of mathematical control and

systems theory, which has undergone numerous developments – from classical to modern

– in the last century. New mathematical techniques made it possible to control, more

accurately, significantly more complex dynamical systems. In the first half of the 20th

century, the focus remained on linear time-invariant (LTI) systems and the extensive

work resulted in a rich set of mathematical tools for their analysis and control (e.g.,

root-locus, Bode plot, Nyquist criterion, PID, pole placement). A detailed history of these

developments has been compiled in [4]. However, it also became evident that these methods

cannot necessarily be applied directly to plants where the system, the controller, or both

are nonlinear. Nonlinear control theory required more rigorous mathematical analysis to

justify its conclusions. Since late 50s, nonlinear control has been the topic of hundreds

of publications, numerous monographs and several comprehensive textbooks, such as [46],

[42] and [91]. The major methods include developments in optimal control in the 1950’s

and 1960’s and stochastic, robust and adaptive control in the 1970’s and 1980’s. Among

other innumerable applications, these nonlinear control methods made possible aviation

and space travel, satellite communication, efficient automotive systems and safe and clean

chemical processes.

In spite of these developments during recent years, our increasing technological de-

mands continue to impose challenging and widely varying control problems. These prob-

lems range from aircraft and underwater vehicles to automobiles and space telescopes,

from chemical processes and the environment to manufacturing, robotics and communi-

cation networks. In addition, systems are becoming more complex, while less information

is available about their dynamics. In order to meet these challenges, we need novel ideas
1



2 GENERAL INTRODUCTION

and interdisciplinary approaches along with further development and refining of existing

methods.

The research conducted in the context of this thesis addresses two distinct, yet equally

important branches of nonlinear control theory: uncertain nonlinear systems and under-

actuated systems. Let us first describe the nature of these two fields.

Nonlinear uncertain systems

Lyapunov’s theory of stability of the motion of systems with a finite number of degrees

of freedom can safely be considered as the foundation of modern nonlinear control theory.

However, in its original form, it is based upon an implicit assumption that the parameters

of the system are fixed and do not change during the motion (within the accuracy of mea-

surements) [62]. On the other hand, nonlinear dynamic physical systems, such as complex

engineering systems, are difficult to characterize and model. In addition, their parame-

ters are hard to estimate and often uncertain. Parametric uncertainty arises from varying

operating conditions and external perturbations that affect the physical characteristics of

systems [87, 89].

In recent years, stabilization of systems with parametric uncertainty has been studied

intensely. In order to achieve true automation, the control should be capable of maintain-

ing the system’s dynamic performance in spite of this uncertainty. In other words, while

developing a system design, provisions need to be made for long life of its practical oper-

ation under the conditions of uncertainty [62]. This needs to be considered during control

design so that the controller counteracts the effect of variations. Specially, finite-time

stabilization of uncertain systems is one of the principle problems studied under nonlinear

control theory.

Underactuated systems

Underactuated systems have fewer control inputs than degrees of freedom and arise in

applications, such as space and undersea robots, mobile robots, flexible robots, walking,

brachiating, and gymnastic robots. The dynamics of these systems may contain feedfor-

ward nonlinearities, non-minimum phase zero dynamics, nonholonomic constraints, and

other properties that place this class of systems at the forefront of research in nonlinear

control [82]. Furthermore, dynamic constraints due to underactuation are often coupled
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with other system constraints, such as mechanical and power limits etc. Many examples of

such systems exist, including among others, underactuated robot manipulators, inverted

pendulums, the Planar Vertical Takeoff and Landing (PVTOL) aircrafts, marine vehicles

and car-type robots.

The class of underactuated systems is rich in both applications and control problems,

and thus too broad to survey. The control of underactuated systems is an open and

interesting problem in controls. Although there are a number of special cases where

underactuated systems have been controlled, there are relatively few general principles [82].

Classical control techniques typically override the dynamics, whereas in underactuated

systems, we need controllers that can take advantage of the dynamics and not cancel

them out. These issues have created a formal class of systems, the underactuated systems,

in which the dynamics of systems are studied carefully in the context of control. Seminal

works, which led to the formalization of these problems, are [10, 66, 92, 9, 52].

Objectives of the Thesis

The two domains of nonlinear control, which form the basis of this thesis, have been de-

scribed briefly. From their nature, it is clear that these problems require specific attention

and consideration. In the first part of this thesis, the focus is on the control and finite

time stabilization of nonlinear uncertain systems. Higher Order Sliding Mode Control, a

popular technique for dealing with uncertain and disturbed system, has been studied and

refined. In the second part of the thesis, the control of underactuated systems is addressed.

A brief overview of the specific problems and our contributions is presented in this section.

Higher order sliding mode control

Sliding mode control (SMC) [89, 83] is a technique that is known for its insensitivity

to parametric uncertainty and external disturbance. This technique is based on applying

discontinuous control on a system which ensures convergence of the output function (sliding

variable) in finite time to a manifold of the state-space, called the sliding manifold [93].

It has been shown in [89, 27, 83], that if the control forces the system states to remain

on the sliding manifold, then their dynamics are defined by the manifold only, no longer

influenced by parametric variations or disturbances in the system itself. An improved

technique, Higher Order Sliding Mode Control (HOSMC), overcomes certain disadvantages

of classical sliding mode control by acting on a higher time derivative of the sliding variable
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[27]. This reduces unwanted oscillations due to unmodeled dynamics and finite switching

frequency, known as chattering.

Today, many robust and adaptive forms of HOSMC exist in literature, each having its

advantages and disadvantages. However, HOSMC theory lacks in generalized methods for

the proof of its stability. This is specially true for arbitrary order SMC, for orders greater

than two. Our contribution in this field is the development of arbitrary order robust

and adaptive SMC algorithms, using a Lyapunov based approach for proof of stability.

Lyapunov design is a powerful tool for control system design that allows to estimate an

upper bound on convergence time [7]. To the best of our knowledge, this is the first work

on a Lyapunov based approach for arbitrary HOSMC. The proposed adaptive controller

also has significant design improvements as compared to other controllers of this type in

the literature.

The class of robust and adaptive HOSM controllers developed in this thesis are based

on a class of controllers for finite time stabilization of pure integrator chains. Using

this development, a universal homogeneous controller is proposed, based on modifications

introduced in Hong’s controller for finite time stabilization of pure integrator chains [39].

Furthermore, the homogeneity property has also been exploited in order to produce some

important properties in the controllers. Homogeneity control is used to obtain a bounded

controller with minimum amplitude of discontinuity after convergence and a controller

with fixed-time convergence property. It is also demonstrated that for a particular choice

of degree of homogeneity, Levant’s homogeneous controller [55] becomes a particular case

of our universal controller.

The details of these contributions are presented in Part I of the thesis, along with

extensive bibliographical references for highlighting their significance in the context of

contemporary research.

Control of underactuated systems

As mentioned earlier, a wide variety of systems can be categorized as underactuated. The

second part of this thesis is on the control problems related with two underactuated robotic

vehicles: path following of car-type vehicles using target-point and precise tracking control

of surface marine vessels.

The first problem arises in camera based autonomous vehicle guidance, navigation and

control applications . The vehicle is guided on a path by a target point ahead of the

vehicle, within the visual range of the camera [13, 72]. In contemporary literature, larger
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effort has been made on tracking problems. The problem of path following differs from

pure stabilization or tracking problems because a path is defined in space only, not in

time [80, 18, 44]. Therefore it has unique challenges associated to it. Specifically, for

car-type vehicles, the development produces a first order nonlinear non-globally Lipschitz

differential equation that can explode in finite time. In this thesis, it is demonstrated

that this problem is overcome through the application of saturated controls with arbitrary

small amplitude [15]. Saturated controls are also feasible from the point of view of practical

implementation as real controllers are physically limited.

The second problem, precise tracking control of surface marine vessels such as ships

and boats, is often required in critical operations such as support around off-shore oil

rigs [69]. Literature shows that stabilization of this system is impossible with continu-

ous or discontinuous time-invariant state feedback. Furthermore, the underactuated ship

cannot be transformed into a driftless chained system [76]; which means that the con-

trol techniques used for the similar problem of nonholonomic mobile robot control cannot

be applied directly to the underactuated ship control. This has led researchers to pay

particular attention to this problem, as seen in [70, 32, 5, 79, 14].

In this thesis, we have addressed a particular case of the general tracking problem, as

discussed in [23], in which the yaw angle of the tracked trajectory does not admit a limit

as time goes to infinity. Our algorithm is again based on saturated controls which ensure

global asymptotic stability while the amplitudes of the control inputs remain bounded.

As the two problems discussed here differ widely in their structure, their solutions

required separate study and analysis. Therefore, they can be considered as separate con-

tributions, each having its own research context established by its contemporary bibliog-

raphy. These contexts and the details of the contributions are presented in Part II of the

thesis.

Structure of the Thesis

As mentioned before, this report has been divided into two parts, one dealing with Higher

order sliding mode control, and the other with control of underactuated systems. The

complete structure of these parts is presented here.
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Part I : Lyapunov-based Higher Order Sliding Mode Control

Chapter 1 introduces the basic concepts of Sliding Mode and Higher Order Sliding Mode

control.

Chapter 2 presents Lyapunov-based robust and adaptive Sliding Mode Controllers of

arbitrary order, for nonlinear SISO systems with bounded uncertainty. The design of the

robust controller requires that the bounds of uncertainty be known. The main contribution

in this chapter is the Lyapunov-based approach, which is a first for arbitrary order SMC,

to the best of our knowledge. In addition, the gain dynamics of the presented adaptive

controller design are fast in both directions, in comparison with contemporary adaptive

controllers [81, 73, 86]. The practical applicability of these controllers is demonstrated on

a fuel cell system. The controllers have been designed for the net power output optimiza-

tion of the fuel cell, which is achieved by minimizing the internal power consumption of

the fuel cell air-feed compressor. Hardware-in-Loop tests have shown that the robust and

adaptive controllers fulfil this control objective well, in spite of parametric uncertainty in

the fuel cell system.

Chapter 3 deals with the control of homogeneity and the additional properties that can be

produced in a controller through switching homogeneity degree. A homogeneous HOSMC

controller is developed through generalization of an existing finite-time controller for pure

integrator chains [39]. Using this controller it is shown that homogeneity control can re-

sult in a controller whose amplitude of discontinuity can be kept to its minimum possible.

Furthermore, the recently developed “Fixed-Time” stability notion can be achieved by

changing the homogeneity degree. These properties are demonstrated through simulation

examples.

Part II : Control of underactuated systems

Chapter 4 introduces the mathematical tools employed in the thesis, for the control of

underactuated systems. These include the stabilization of perturbed integrator chains,

Input-to-State Stability (ISS) of perturbed double integrators and saturated control.

Chapter 5 is related to the problem of path following of car-type vehicles using target-

point. A global asymptotically stable controller is developed by parameterizing the path
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as a “virtual vehicle”, which is tracked by the actual vehicle. In this way, the path follow-

ing problem is converted into a tracking problem. It has been shown that this problem

requires saturated control in order to avoid the divergence of states in finite time. The

convergence analysis of the controller is based on Lyapunov analysis and bootstrap tech-

nique. The performance of this controller is shown through simulation examples.

Chapter 6 is related to global tracking control of underactuated surface marine vessels

using saturated state feedback control. This chapter treats a specific case, i.e. the yaw an-

gle of the tracked trajectory does not admit a limit as time goes to infinity. The controller

converges the system to the tracked trajectory asymptotically, from any initial point. The

advantage of using saturated controls in this case is that the global asymptotic stability

is ensured while the control inputs remain bounded. Based on the (ISS) concept, it has

been proven that the controller will work with state measurements, as well as with state

observers. The performance has been demonstrated through simulations.

In the end, some concluding remarks and perspectives on expansion of the work are pre-

sented in the chapter Conclusion and perspectives.





Part I

Sliding Mode Control Design

9





Chapter 1

Sliding Mode and Higher Order Sliding

Mode Control

1.1 Introduction

Nonlinear dynamic physical systems suffer from parametric uncertainty and are difficult to

characterize. Parametric uncertainty arises from varying operating conditions and exter-

nal perturbations that affect the physical characteristics of systems. The variation limits

or the bounds of this uncertainty might be known or unknown. This needs to be con-

sidered during control design so that the controller counteracts the effect of variations

and guarantees performance under different operating conditions. Sliding Mode Control

(SMC) [89, 83] is a well-known method for control of nonlinear systems, renowned for

its insensitivity to parametric uncertainty and external disturbance. This technique is

based on applying discontinuous control on a system which ensures convergence of the

output function (sliding variable) in finite time to a manifold of the state-space, called

the sliding manifold [93]. In practice, SMC suffers from chattering ; the phenomenon of

finite-frequency, finite-amplitude oscillations in the output which appear because the high-

frequency switching excites unmodeled dynamics of the closed loop system [90]. Higher

Order Sliding Mode Control (HOSMC) is an effective method for chattering attenuation

[27]. In this method the discontinuous control is applied on a higher time derivative of the

sliding variable, such that not only the sliding variable converges to the origin, but also its

higher time derivatives. As the discontinuous control does not act upon the system input

directly, chattering is automatically reduced.
11
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This chapter is an introductory synthesis of the existing notions of SMC and HOSMC.

A general survey of the basic concepts and performance of Sliding Mode is presented.

Then, HOSMC is introduced along with some examples of existing HOSM controllers,

there advantages and disadvantages. In the last part, adaptive first and second order

Sliding Mode Control is introduced and the benefits of adaptive controllers are discussed.

1.2 Sliding Mode Control

The principle of SMC design is to force the state variables of the system to reach a given

manifold (or a surface) of the state-space in finite-time and to stay there. This manifold is

defined by a set of relationships between the state variables of the system, which determine

the desired dynamics of the system. Once the states are on this manifold, provided that

they stay there, the dynamics of the system are completely determined by the surface and

do not depend on the system itself. Thus any perturbation, to which the system may be

subjected, are rejected.

Typically, an SMC controller is designed in two steps

1. a manifold is determined in accordance with the control objective and the desired

static and dynamic properties of the closed loop system,

2. a discontinuous control law is designed for the state trajectories of the system to

reach this surface in finite-time and to stay on it, in spite of external disturbance

and modeling uncertainty.

Consider the nonlinear system, affine in the control, defined in the Brunovsky canonical

form as 



ẋ1 = x2,
...

ẋn = ψ(x, t )+ϕ(x, t )+γ(x, t )u,

y = x1,

(1.1)

where x ∈X ⊂Rn is the state vector with X an open set of Rn , and u ∈U⊂R is the control

input with U an open set of R. The term y is a measured smooth output-feedback function.

The nominal system dynamics are represented by ψ(x, t ), a known function defined on X.

The functions ϕ(x, t ) and γ(x, t ) defined for x ∈X, are sufficiently smooth but uncertain.
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System (1.1) can be written in input-output terms as

y (n) =ψ(ỹ , t )+ϕ(ỹ , t )+γ(ỹ , t )u (1.2)

where ỹ = [
y ẏ · · · y (n−1)]. We assume that, the functions γ(x, t ) and ϕ(x, t ) are bounded

by some positive constants γm , γM and ϕ̄, such that

0 < γm ≤ γ(x, t ) ≤ γM ,
∣∣ϕ(x, t )

∣∣≤ ϕ̄. (1.3)

Then we are dealing with the following differential inclusion [89]

y (n) ∈ψ(ỹ , t )+ [−ϕ̄,ϕ̄
]+ [

γm ,γM
]

u, (1.4)

where ϕ̄ is the limit or bound of parameter uncertainty in the model, due to some possible

simplification, unmodeled dynamics and/or external perturbation. The terms γm and γM

represent the bounds of the uncertainty in the gain with respect to the controller u.

1.2.1 Design of Sliding Manifold

Let s(x, t ) : X×R+ −→ R be a measured smooth output-feedback function, and we assume

that the control objective is to force s to zero. Here the function s(x, t ) is called sliding

variable, and the set

S= {x ∈X | s(x, t ) = 0} (1.5)

represents a sub-manifold of X of dimension n −1, called the sliding surface.

Definition 1.2.1. [89] There exists an ideal sliding regime on S, if there exists a finite-

time Ts such that all solutions of System (1.1) satisfy the condition s(x, t ) = 0 for any time

t ≥ Ts.

In this case, the dynamics of System (1.1) belong to a system of a dimension lower

than the dimension of System (1.1). This autonomous system is called reduced system,

and its dynamics are determined only by the choice of the sliding surface.

For our example (1.1), the control objective is to force the output y to track a reference

signal yr e f , which is a sufficiently smooth function. In other words, the objective is to

ensure the convergence of the tracking error e = y − yr e f to zero. One of the simplest

sliding manifolds for this case is the hypersurface constructed from linear combination of

the tracking error e and its higher time derivatives. We consider the following sliding

variable

s(x, t ) = e(n−1) + ln−2e(n−2) +·· ·+ l1ė + l0e, (1.6)
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with li , i = 0, · · ·n −2 are positive constants such that the polynomial

P (θ) = θn−1 + ln−2θ
n−2 +·· ·+ l1θ+ l0, (1.7)

is Hurwitz. Therefore, after establishment of ideal sliding regime on S, the dynamics of

the reduced system is determine by the stable associate differential equation

e(n−1) + ln−2e(n−2) +·· ·+ l1ė + l0e = 0. (1.8)

As a result, the tracking error e will converge to zero exponentially.

In this section, we determined the dynamics of reduced system presented by the sliding

surface. The next step is to tune a control law u, which forces the state trajectory of

System (1.1) to reach the sliding surface in a finite-time, i.e to force sliding variable s(x, t )

to converge to zero in finite time.

1.2.2 Controller Design

The control law u should be designed in such way that the trajectories of System (1.1)

reach and stay on the sliding surface S in spite of perturbation and uncertainty. It should

be remembered that the sliding variable s(x, t ) of Equation (1.6) is null on S. Consider the

dynamics of s(x, t ) given as follow

ṡ(x, t ) ∈ψ(x, t )+ [−ϕ̄,ϕ̄]+ [γm ,γM ]u +
n−2∑

i=0
li e(i+1) − y (n)

r e f . (1.9)

The controller u should ensure a local attractivity to S in its neighborhood, i.e the trajec-

tory of System (1.1) should be directed to S. A condition of stability of s(x, t ) = 0, called

condition of attractivity, should be satisfied by the controller. The well-known Lyapunov’s

direct method requires a positive C (1) radially-unbounded function V (s), called Lyapunov

Function, satisfying V (0) = 0 and V (∞) = ∞. The function V (s) represents a fictitious

energy and give a global information of the System, and its time derivative V̇ gives an

information of the stability of the system. If V̇ (s) is negative for s 6= 0, then the system is

asymptotically stable.

One of the proposed Lyapunov function is the classical quadratic function

V (s) = 1

2
s2 (1.10)

The function V (s) is clearly positive definite. Its time derivative should be negative to

ensure the convergence of s(x, t ) to zero

V̇ = sṡ ≤ 0. (1.11)
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The previous condition (attractivity condition) ensures only the asymptotic convergence of

s. Otherwise, for purpose of finite-time stability, a stronger condition needs to be imposed.

In Classical Sliding Mode, a non-linear condition, called condition of η-attractivity [89], is

used

V̇ = sṡ < η|s|, η> 0. (1.12)

Condition (1.12) is satisfied, if the controller u takes the form

u =−Usi g n(s), (1.13)

where U is chosen sufficiently large to compensate the perturbation, uncertainty and the

deviation between the system’s dynamics and Sliding variable dynamics. Usually, U is a

sufficiently large constant. In order to satisfy Condition (1.12), U can be tuned as

U ≥ max
x∈X

(
1

γm

(∣∣∣∣∣ψ(x, t )+
n−2∑

i=0
li e(i+1) − y (n)

r e f

∣∣∣∣∣+ ϕ̄+η
))

. (1.14)

To summarize, we can describe the behavior of system in two steps:

1. Reaching phase: It corresponds to the time t ∈ [0,Ts]. During this phase, the state

trajectory converges to the sliding surface S.

2. Sliding phase: It corresponds to the time interval t ∈ [Ts ,∞], in which the state

trajectories are confined to the sliding surface S. During this phase, the behavior of

the system is entirely determined by the choice of the sliding surface.

In ideal Sliding Mode regime, the requested controller u should be able to switch at

an infinite frequency. This is not possible in real life, due to the delay between the

measurement and the generation of the command. This may cause the system to leave

the sliding surface. Then, once the sign of the control is reversed order, the trajectories

return on this surface and on the other side, and so on. This undesirable phenomena

of oscillation around the sliding surface is called Chattering. One of the most effective

methods to reduce chattering is the use of Higher Order Sliding Mode Control, which will

be addressed in next Section.

1.3 Higher Order Sliding Mode Control

Higher Order Sliding Mode Control (HOSMC) is an effective method for chattering atten-

uation [27]. In this method the discontinuous control is applied on a higher time derivative
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of the sliding variable, such that not only the sliding variable converges to the origin, but

also its higher time derivatives. As the discontinuous control does not act upon the sys-

tem input directly, chattering is automatically reduced. In this section, we will look at the

problem formulation of HOSM and recall some well-known Second Order Sliding Mode

Control algorithms.

1.3.1 Problem Formulation

Let us consider an uncertain nonlinear system:




ẋ(t ) = f (x, t )+ g (x, t )u,

y(t ) = s(x, t ),
(1.15)

where x ∈ Rn is the state vector and u ∈ R is the control input. The sliding variable s is

a measured smooth output-feedback function and f (x, t ) and g (x, t ) are uncertain smooth

functions. Let us recall the definition of relative degree of a system:

Definition 1.3.1. [42, 58] The relative degree r of System (1.15), with respect to the

output y(t ), is the minimum order of time derivatives of the output y(t ) in which the control

input u appears explicitly.

It is assumed that the relative degree, r of System (1.15) is globally well defined,

uniform and time invariant [22] and the associated zero dynamics are asymptotically stable.

This means that, for suitable functions ϕ̃(x, t ) and γ̃(x, t ), we obtain

y (r )(t ) = ϕ̃(x(t ), t )+ γ̃(x(t ), t )u(t ). (1.16)

The functions γ̃(x(t ), t ) and ϕ̃(x(t ), t ) are assumed to be bounded by positive constants γm,

γM and ϕ̄, such that

0 < γm ≤ γ̃(x(t ), t ) ≤ γM ,
∣∣ϕ̃(x(t ), t )

∣∣≤ ϕ̄. (1.17)

Defining s(i ) := d i

d t i
y ; the higher order sliding manifold of degree r is defined as

S(r ) =
{

x ∈Rn |s(0) = s(1) = ·· · = s(r−1) = 0
}

. (1.18)

Then Higher Order Sliding Mode is defined as

Definition 1.3.2. There exists an ideal Higher Order Sliding Mode regime of r th order

if there exists a finite time Ts such that all solutions of System (1.16) are in S(r ) for all

t > Ts.
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More precisely, let us introduce z = [z1 z2 ...zr ]T := [s ṡ... s(r−1)]T . Then (1.18) is

equivalent to z = 0. Since the only available information on ϕ̃(x, t ) and γ̃(x, t ) are the

bounds (1.17), it is natural to consider a more general control system instead of System

(1.15), such as

żi = zi+1, i = 1, · · · ,r −1,

żr = ϕ(t )+γ(t )u,
(1.19)

where the new functions ϕ and γ are arbitrary measurable functions that verify the con-

dition

(H1) ϕ(t ) ∈ Iϕ := [−ϕ̄,ϕ̄
]

, γ(t ) ∈ Iγ := [
γm ,γM

]
, (1.20)

where ϕ̄,γm ,γM are positive constants. In consequence, we are in fact dealing with the

differential inclusion

z(r )
1 ∈ Iϕ+uIγ. (1.21)

The objective of designing HOSM controllers for System (1.15), with respect to s, is

equivalent to the stabilization of System (1.21) to the origin, ideally in finite time. Since

these controllers are to be discontinuous feedback laws u =U (z), solutions of (1.21) need

to be understood here in Filippov sense, defined as follows:

Definition 1.3.3. The right hand vector set is enlarged at the discontinuity points of

(1.21) to the convex hull of the set of velocity vectors obtained by approaching z from all

the directions in Rr , while avoiding zero-measure sets [29].

Another important notion concerning our work is that of Real Sliding Modes, defined

by Levant in [54] as

Definition 1.3.4. [54] A control algorithm is said to establish real sliding mode of order r

with respect to s when for any local set of initial conditions and for any finite time interval

[t1, t2], there exist constants ∆1 · · ·∆r such that for all t > t1, the following inequalities are

satisfied

|s| ≤∆1, |ṡ| ≤∆2, · · · |s(r−1)| ≤∆r . (1.22)

1.3.2 Examples of Second Order Sliding Mode Controllers

After the introduction to Higher Order Sliding Mode, let us examine some popular Sec-

ond Order Sliding Mode algorithms, the supertwisting, the twisting and the sub-optimal.

Second Order Sliding Mode (SOCM) means that the sliding variable s and it’s first time

derivative ṡ should converge to zero in a finite time.
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1.3.2.1 Supertwisting Algorithm [54, 11]

Supertwisting is a continuous SOSM controller for systems of relative degree 1. It requires

the boundedness of the time derivative of perturbation, i.e. for the system ż1 =ϕ(t )+γ(t )u,

the condition
∣∣ϕ̇

∣∣ ≤ φ̄ needs to be satisfied. Let us introduce ϕ = z2, then the control

objective becomes the stabilization of the following differential inclusion.

ż1 ∈ z2 +
[
γm , γM

]
u,

ż2 ∈ [−φ̄, φ̄
]

.
(1.23)

Supertwisting algorithm is expressed as follows:

u = −Kp |z1|1/2si g n(z1)−
ˆ t

0
Ki si g n(z1)d t , (1.24)

where Kp and Ki are positive constants, chosen as in [11],

Kp = kp

p
L, Ki = ki L,

L = φ̄

γm
, ki > 1, kp >

√
−2ki +2

√
k2

i +2ki +2.
(1.25)

It should be noted that the structure of Supertwisting algorithm can be considered as a

nonlinear finite time version of the PI Controller.

1.3.2.2 Twisting Algorithm [54]

The Twisting algorithm is a discontinuous SOSM controller that is generally used for

systems of relative degree 2. The amplitude of this algorithm switch between two values

depending on the quadrant wherein lies the system state.

Considering the following differential inclusion, arising from Equation (1.21),





ż1 = z2,

ż2 ∈ [−ϕ̄,ϕ̄]+ [γm ,γM ]u.
(1.26)

The twisting controller is given as

u =




−Km si g n(z1) if z1z2 < 0,

−KM si g n(z1) if z1z2 ≥ 0,
(1.27)

where Km and KM are some positive constants. Twisting algorithm can be written in

another compact form

u =−l1si g n(z1)− l2si g n(z2), (1.28)
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where l1 and l2 satisfy

γm(l1 + l2)− ϕ̄ > γM (l1 − l2)+ ϕ̄,

γm(l1 − l2) > ϕ̄.
(1.29)

This algorithm can be considered as a nonlinear robust version of the classical PD con-

troller.

1.3.2.3 Sub-optimal Algorithm [54]

The Sub-optimal algorithm is a discontinuous SOSM controller that is generally used for

systems of relative degree 2, therefore its formulation is similar to that of the twisting

algorithm. The sub-optimal controller is given as

u = λ(t )uM si g n

(
z1(t )− z1(tM )

2

)

λ(t ) =




1 if z1(t ) ≥ z1(tM ),

λ∗ if z1(t ) < z1(tM ),

(1.30)

where tM is the last moment at which z2 = 0. In order to ensure finite time convergence,

the gains λ∗ and uM should fulfill the following condition:

λ∗ ∈ (0,1]
⋂(

0,
3γm

γM

)

uM > max

(
ϕ̄

λ∗γm
,

4ϕ̄

3γmλ∗γM

) (1.31)

Like twisting, this algorithm can also be considered as a nonlinear robust version of the

classical PD controller.

1.3.3 Arbitrary Order Sliding Mode Controllers

Besides Second Order Sliding Mode controllers, there exist many HOSM controllers that

can be extended to establish sliding mode of any arbitrary order. For example, Laghrouche

et al. [51] have proposed a two part integral sliding mode based control to deal with the

finite time stabilization problem and uncertainty rejection problem separately. Dinuzzo et

al. have proposed another method in [22], where the problem of HOSM has been treated

as Robust Fuller’s problem. Defoort et al. [21] have developed a robust Multi Input

Multi Output (MIMO) HOSM controller, using a constructive algorithm with geometric

homogeneity based finite time stabilization of an integrators chain. Among these, Levant

has presented a method of designing arbitrary order sliding mode controllers for Single

Input Single Output (SISO) systems in [55], which is presented below :
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Theorem 1.3.5. Provided l1, · · · , lr−1, M > 0 are chosen sufficiently large in the listed

order, the bounded controller u = −M si g n(φr−1) provides finite-time stability for System

(1.21), where φr−1 is defined inductively as

N1 = |z1|r−1/r ,

Ni =
(
|z1|d/r +|z2|d/(r−1) +·· ·+ |zi |d/(r−i+1)

)(r−i )/d
, i = 2, · · · ,r −1.

φ0 = z1,

φi = zi+1 + li Ni si g n(φi−1), i = 2, · · · ,r −1.

(1.32)

with d > r is an arbitrary positive constant.

While this algorithm ensures the finite time convergence, there is a problem in the

choice of parameters l1, l2, lr−1 and M , since there is no necessary or sufficient condition

based on Lyapunov analysis proposed yet.

1.3.3.1 Homogeneity

At this point, it is important to introduce the notion of homogeneity, which provides an

equivalence between local asymptotic convergence and global finite time convergence. This

property facilitates the design of finite time controllers. Let us first recall some important

definitions concerning homogeneity.

Consider the following time invariant system (1.33):

ż = f (z), f (0) = 0, z ∈Rr . (1.33)

Definition 1.3.6. [39] The family of dilations ζ
p
ǫ , ǫ> 0, are the linear maps defined on

Rr given by

ζ
p
ǫ (z1, · · · , zr ) = (ǫp1 z1, · · · ,ǫpr zr ),

where p = (p1, · · · , pr ) with the dilation coefficients pi > 0, for i = 1, · · · ,r .

Definition 1.3.7. [39] The vector field f (z) = (
f1(z), · · · , fr (z)

)T
is homogeneous of degree

κ ∈R with respect to the family of dilation ζ
p
ǫ if, for every z ∈Rr and ǫ> 0,

fi (ǫp1 z1, · · · ,ǫpr zr ) = ǫpi+κ fi (z1, · · · , zr ), i = 1, · · · ,r, ǫ> 0.

System (1.33) is called homogeneous, if the vector field f (z) is homogeneous.

The following lemma establishes the equivalence between local and global stability of

homogeneous systems.



1.4. ADAPTIVE SLIDING MODE CONTROLLERS 21

Lemma 1.3.8. Lemma 3.3 [8]. Suppose f is homogeneous with respect to the family of

dilations δ
p
ǫ and 0 is an attractive equilibrium under f . Then, 0 is a globally asymptotically

stable equilibrium under f .

Lemma 1.3.9. Lemma 3.1 [39]. Suppose that System (1.33) is homogeneous of degree k <
0 with respect to the family of dilations δ

p
ǫ , f (z) is continuous and z = 0 is its asymptotically

stable equilibrium. Then the equilibrium of system (1.33) is globally finite-time stable.

Remark 1.3.10. The homogeneity concept can be extended for the case of differential

inclusion [57]

ż ∈ F (z). (1.34)

The property of finite-time convergence will hold true in this case.

From these lemmas, it is clear that if a closed loop system (with a controller u) is

homogeneous of negative degree, then it is sufficient to prove its local asymptotic stability

to deduce that it is globally finite-time stable. In this regard, let us recall that many

Higher Order Sliding Mode Controllers are homogenous. For example, The closed loop

system with the supertwisting algorithm is homogeneous of degree κ=−1

2
with respect to

the family of dilation (1,
1

2
). The twisting algorithm and sub-optimal are also homogeneous

of negative degree. In his recent works [56, 57], homogeneity approach has been used to

demonstrate finite time stabilization of his initial work in [55]. The concept of homogeneity

has been used extensively in Chapter 3 of the thesis.

1.4 Adaptive Sliding Mode Controllers

In the previous section, it was seen that SMC and HOSMC require the uncertainty in the

system to be bounded. In many cases, these bounds need to be known in order to calculate

the gains of the control algorithms. However, the exact identification of uncertainty bounds

is challenging from the physical point of view, as it requires extensive experimentation in

worst case conditions of the system. The case where the bounds on uncertainty exist,

but are unknown, is an interesting problem in the field of arbitrary HOSMC. A simple

solution would be to use overestimated gains, resulting in high amplitude discontinuous

control. In practice, such controllers are not applicable as they lead to a high amplitude

chattering in physical systems. Therefore, a good control strategy is expected to have two
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essential properties (a) non-requirement of the uncertainty bounds and (b) avoidance of

gain overestimation [73].

A more effective method of dealing with uncertain systems with unknown uncertainty

bounds is to employ dynamically adapting the controller gains, such that the controller’s

output amplitude remains just sufficient for compensating the parametric drifts and exter-

nal disturbance. Such adaptive controllers efficiently avoid oscillations due to unnecessarily

large control inputs, while maintaining the robustness property. Huang et al. [41] were

the first to use dynamic gain adaptation in SMC for the problem of unknown uncertainty

bound. They presented an adaptation law for first order SMC, which depends directly

upon the sliding variable; the control gains increase until sliding mode is achieved, and

afterward the gains become constant. This method worked without a-priori knowledge

of uncertainty bounds, however it does not solve the gain overestimation problem. Since

then, many improved adaptive SMC algorithms have been published. Let us review some

of the adaptive sliding mode control algorithms that have been published in contemporary

literature.

1.4.1 Adaptive First Order Sliding Mode Controller [73]

This controller is applicable on systems of relative degree 1. The idea of the algorithm is

to increase the amplitude of the control when the system is far from the sliding manifold,

and to reduce the amplitude when s ≈ 0.

The proposed control law defined as:

u = K (t )si g n(s), (1.35)

and the gain K is defined by the following dynamics

K̇ =




K̄ |s|si g n(|s|−ǫ) , K > 0 or si g n(|s|−ǫ) > 0

0 , K = 0 and si g n(|s|−ǫ) < 0
(1.36)

where K̄ is an arbitrary positive constant.

The controller u ensures the convergence of s in finite time to the domain |s| < ǫ, therefore it

establishes real sliding mode. However it does not guarantee that the states would remain

inside the neighborhood after convergence; the states actually overshoot in a known region

around the neighborhood |s| ≤µ, where

µ=
√
ǫ2 + ϕ̄2

K̄γm
. (1.37)
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Due to the presence of the term |s| in the dynamics of adaptation, the gain K has a fast

rate of increase, but a very slow rate of decrease.

1.4.2 Adaptive Supertwisting Controller [81]

This adaptive controller is based on the Supertwisting algorithm. Therefore, it’s control

output is continuous, and defined as follows

u = −Kp (t )|z1|1/2si g n(z1)−
ˆ t

0
Ki (t )si g n(z1)d t , (1.38)

where the dynamics of Kp and Ki are defined as

K̇p =





ω1

√
γ1

2
si g n(|s|−ǫ) , Kp > Kpm

η , Kp ≤ Kpm

K̇i = 2aKp

(1.39)

where ω1, γ1, Kpm , η and a are arbitrary positive constants. The controller u ensures the

convergence of s in finite time to the domain |s| < ǫ, thereby establishing real sliding mode.

However, as in [73], this algorithm also does not guarantee that the states would remain

inside the neighborhood after convergence; furthermore the region of is not determined.

However, the dynamics of adaptation are fast in both increasing and decreasing directions.

1.4.3 Adaptive Twisting Controller [47]

This adaptive controller, based on the twisting algorithm, was proposed for systems with

relative degree 2. The proposed controller takes the following form

u =−K (t )
(
si g n(z1)+0.5si g n(z2)

)
(1.40)

where the gain K (t ) is given by

K̇ =





ω1p
2γ1

1
γ1

− 2K z2
1+|z1|z2

2

|K−K ∗|3
si g n (N (z1, z2)−ǫ) , K ≥ Km ,

ξ , K < Km ,

(1.41)

with N (z1, z2) defined by

N (z1, z2) = z2
1

a
+ z2

2

b
, (1.42)
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where a and b are positive constants. The controller aims to ensure the convergence to

the domain which represents an ellipse N (z1, z2) ≤ ǫ.

where ω1, γ1, Km , ǫ, ξ are arbitrary positive constants, and K ∗ is a sufficiently large

positive constant.

This algorithm ensures the finite-time convergence of (z1, z2) to domain N (z1, z2) ≤ ǫ, but

the states remain in a larger domain N (z1, z2) ≤ µ, with µ > ǫ. However, there is no

estimation of a bound of µ.

Remark 1.4.1. One particular point to be noted in the description of the adaptive SMC

algorithms, is that all of these controllers establish real sliding mode. Effectively, as the

gains are decreased, the perturbation in the system may switch instantly, provoking the

sliding variable to leave zero. Therefore, in the case of adaptive controllers convergence of

sliding variable is can only be ensured to neighborhood of the origin.

1.5 Summary

In this chapter, we recalled the basic concepts of SMC, HOSMC, Homogeneity and Adap-

tive SMC, for the control of uncertain nonlinear systems. Different contemporary al-

gorithms for robust SMC and HOSMC were reviewed and it was shown that HOSMC

controllers can be designed using the concept of homogeneity. While there exists vast lit-

erature on these methods, there are certain problems that still remain to be resolved. One

of the major problems of HOSMC for an order greater than 2 is the tuning of controller

gains, which have so far been done through simulations. While generalized methods, such

as Lyapunov functions, exist for tuning the gains of First and Second Order SMC, to the

best of our knowledge, there are no such methods for the analysis and tuning of arbitrary

sliding mode controllers.

Then, we discussed the case where the bounds of uncertainty may be unknown. It was

shown that adaptive controllers solve this problem effectively, by dynamically adjusting

the controller gains to compensate the uncertainty. However, research in adaptive SMC

controllers has remained limited. In contemporary literature, no adaptive controllers were

found for SMC of orders greater than 2.

These two problems, related to robust and adaptive controllers are the focus of this

part of the thesis. In the following chapter, a Lyapunov-based method is presented for

the design of arbitrary order robust and adaptive sliding mode controllers for uncertain
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nonlinear systems. The problem is formulated as the finite-time stabilization of perturbed

integrator chains, and the solution is based on a class of controllers for the finite-time

stabilization of pure integrator chains.

The results of Chapter 2 are then further elaborated in Chapter 3, in which, the de-

gree of homogeneity of the controllers is used to obtain different useful characteristics. A

generalized arbitrary order SMC algorithm is presented and it has been shown that for

a particular choice of homogeneity degree, Levant’s arbitrary order HOSM controller [55]

becomes a particular case our controller. Then, it has been demonstrated that by control-

ling the homogeneity degree, the properties of bounded control output with amplitude of

discontinuity in zero and fixed time convergence can also be acquired.





Chapter 2

Lyapunov based robust and adaptive

HOSM controllers

As discussed in the previous chapter, Higher Order Sliding Mode Control (HOSMC) is

an effective method for control of uncertain nonlinear systems. This method retains the

disturbance and parameter insensitivity property of classical sliding mode, and also reduces

chattering. The last 15 years have seen outstanding developments in the field of HOSMC.

The important works in robust and adaptive HOSMC were presented in the previous

chapter. It was concluded that there is a lack of general methods for design and tuning

of arbitrary order sliding mode controllers. Furthermore, adaptive controllers for sliding

mode of orders greater than 2 are so far unavailable.

This chapter is based on our contributions in arbitrary order robust and adaptive

HOSMC. We present Lyapunov-based robust and adaptive Higher Order Sliding Mode

Controllers for nonlinear SISO systems with bounded uncertainty. This problem has been

formulated as the stabilization of a chain of integrators with bounded uncertainty. There

are two main contributions in this chapter. First, a Lyapunov-based approach for arbi-

trary HOSMC is developed. The controller establishes higher order sliding mode of any

arbitrary order under the condition that the bounds of the uncertainty are known. The

advantage of our method is that robust HOSM controllers are developed from a class of

finite time controllers for pure chain of integrators. To the best of our knowledge, this is

the first work on a Lyapunov based approach for arbitrary HOSMC. As mentioned in the

previous chapter, Lyapunov design is a powerful tool for control system design that allows

to estimate an upper bound on convergence time [7].
27
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The second contribution in this chapter is the extension of the robust controller to an

adaptive controller for the case where the bounds on the uncertainty are unknown. This

controller aims to converge the states to an arbitrarily small neighborhood of the origin.

The adaptation dynamics are based on a saturation function [15, 49, 50], which results

in rapid increase of gains when the sliding variable and its derivatives are outside the

neighborhood, and rapid decrease when they are inside the neighborhood. The advantage

of this adaptive controller design, compared to other algorithms mentioned before, is that

this controller can be extended to any arbitrary order and the adaptation rates are fast

in both directions. Therefore, the amplitude of the discontinuous control decreases faster

as compared to [73]. However, as in all the cases of adaptive controllers discussed in the

previous section, the proposed adaptive controller also establishes real HOSM.

The practical applicability and performance of the robust and adaptive controllers

demonstrated through an illustrative example a fuel cell system control, which is described

in detail later on.

2.1 Design of robust Higher Order Sliding Mode Controller

Let us recall the problem formulation of HOSMC, presented in Chapter 1. It was estab-

lished that the problem of HOSM control of System (1.15) with respect to s is equivalent

to the finite time stabilization of the auxiliary system (1.21) to the origin, and that the

solutions need to be understood here in Filippov sense due to the discontinuous nature of

the control. In this section, a robust controller is developed for this problem, under the

assumption that the uncertainty bounds ϕ̄, γm , γM are known. This controller has been

derived from a class of Lyapunov-based controllers that guarantee finite time stabilization

of pure chain of integrators, and satisfy certain additional geometric conditions.

2.1.1 Preliminaries

The HOSM controller developed in this section is based on a class of controllers for the

finite time stabilization of pure integrator chains. The pure (unperturbed) integrator chain

is represented as follows:

żi = zi+1, i = 1, ...,r −1,

żr = u.
(2.1)

Let us recall the theorem:
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Theorem 2.1.1. [7] Consider System (2.1). Suppose there exist a continuous state-

feedback control law u = u0(z), a positive definite C 1 function V1 defined on a neighborhood

Û ⊂Rr of the origin and real numbers c > 0 and 0 <α< 1, such that the following condition

is true for every trajectory z of System (2.1), V̇1 + cV1
α(z(t )) É 0, if z(t ) ∈ Û , where V̇1 is

the time derivative of V1(z).Then all trajectories of System (2.1) with the feedback u0(z)

which stay in Û converge to zero in finite time. If Û = Rr and V1 is radially unbounded,

then System (2.1) with the feedback u0(z) is globally finite time stable with respect to the

origin.

2.1.2 Lyapunov-based Arbitrary HOSM Controller

Based on Theorem 2.1.1, we now present the main result of this section:

Theorem 2.1.2. Consider System (1.15) subject to Hypothesis H1. Then the following

control law establishes Higher Order Sliding Mode with respect to s:

u = 1

γm

(
u0 + ϕ̄si g n(u0)

)
, (2.2)

where u0(z) is any state-feedback control law that satisfies the hypotheses of Theorem 2.1.1

and obeys the following additional conditions:

∂V1

∂zr
u0 ≤ 0, and u0 = 0 ⇒ ∂V1

∂zr
= 0. (2.3)

Proof of Theorem 2.1.2. As mentioned before, establishment of HOSM with respect to s

for System (1.15) is equivalent to the finite-time stabilization of System (1.21). Let us

consider System (1.21) under the control law u defined in (2.2):





żi = zi+1, i = 1, ...,r −1,

żr = ϕ+γu

= γ

γm
u0(z)+ γϕ̄

γm
si g n(u0(z))+ϕ.

(2.4)

System (2.4) defines a differential inclusion where si g n(x) stands for the closed interval

[−1,1] when x = 0 and x/|x| otherwise. Since the right-hand side is bounded, closed, convex

and upper semi-continuous w.r.t. z, solutions of the differential inclusion are well-defined

for positive times. The conditions in (3.16) mean that the quantity
∂V1

∂zr
si g n(u0) defines

a continuous and non positive function of the time along trajectories of System (2.4). For

u0(z(t )) 6= 0 , this is ensured by the first part of (3.16) and the term also converges to zero
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if u0 tends to zero. On the other hand, if u0(z(t )) = 0, then the second part of Condition

(3.16) results in
∂V1

∂zr
si g n(u0) = 0.

We next compute the time derivative of the Lyapunov function V1 provided by Theorem

2.1.1 along a non trivial trajectory of System (2.4). We obtain:

V̇1 =
r−1∑

i=1

∂V1

∂zi
zi+1 +

∂V1

∂zr

(
ϕ+γu

)

=
r−1∑

i=1

∂V1

∂zi
zi+1 +

∂V1

∂zr

(
γ

γm
u0 +

γ

γm
ϕ̄si g n(u0)+ϕ

)

É
r−1∑

i=1

∂V1

∂zi
zi+1 +

∂V1

∂zr
u0 +

∂V1

∂zr
si g n(u0)

(
ϕ̄−

∣∣ϕ
∣∣)

É
r−1∑

i=1

∂V1

∂zi
zi+1 +

∂V1

∂zr
u0 ≤−cV1

α.

(2.5)

This implies that if a non-trivial trajectory z reaches zero, it must stay there and the zero

function is the unique solution of the differential inclusion (2.4) starting from the origin.

In addition, the Lyapunov function V1 strictly decreases along any non trivial trajectory

of (6) and reaches zero in finite time according to (2.5).

The previous result becomes non empty if controllers satisfying Theorem 2.1.1 and Condi-

tion (3.16) can be identified. It can be verified that the controllers proposed by Hong [39]

and Huang et al. [40] fulfill these conditions. We present Hong’s controller as an example.

Let us denote ⌊a⌉θ := |a|θ si g n(a), ∀a ∈ R,θ > 0. Then Hong’s controller [39] is defined as

follows:

Let k < 0 and l1, · · · , lr positive real numbers. For z = (z1, · · · , zr ), we define for i = 0, ...,r −1:

pi = 1+ (i −1)k,

v0 = 0, vi+1 =−li+1⌊⌊zi+1⌉βi −⌊vi ⌉βi ⌉(αi+1/(βi ),
(2.6)

where αi = pi+1/pi , for i = 1, ...,r , and, for k < 0 sufficiently small,

β0 = p2, (βi +1)pi+1 =β0 +1 > 0, i = 1, ...,r −1.

Consider the positive definite radially unbounded function V1 :Rr →R+ given by

V1 =
r∑

j=1

z j
ˆ

v j−1

⌊s⌉β j−1 −⌊
v j−1

⌉β j−1 d s.

It has been proved in [39] that for a sufficiently small k, there exist li > 0, i = 1, ...,r , such

that the control law u0 = vr defined above stabilizes System (2.1) in finite time and there
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exists c > 0 and 0 < α < 1 such that u0 and V1 fulfill the conditions of Theorem 2.1.1.

Moreover,

∂V1

∂zr
= ⌊zr ⌉βr−1 −⌊vr−1⌉βr−1 , u0 = vr =−lr

⌊
⌊zr ⌉βr−1 −⌊vr−1⌉βr−1

⌉αr /βr−1
. (2.7)

It can be verified that
∂V1

∂zr
u0 ≤ 0 and u0 = 0 ⇒ ∂V1

∂zr
= 0. The feedback law of [39] can be

simplified by choosing all βi = 1 in (2.6) as explained below:

Proposition 2.1.3. For System (2.1), there exist a sufficiently small k < 0 and real

numbers li > 0, such that the control law u0 = vr defined below stabilizes System (2.1) in

finite time.

For i = 0, ...,r −1,

v0 = 0, vi+1 =−li+1⌊zi+1 − vi ⌉(1+(i+2)k)/(1+(i+1)k). (2.8)

Proof of Proposition 2.1.3. The proof can be developed simply by adapting the proof pre-

sented in [39] to the parameter choice of (2.8). Let λ = (1+ (r +2)k)/(1+ (r +1)k) and fλ

be the closed-loop vector field obtained by using the feedback (2.8) in (2.1). For each

λ > 0, the vector field fλ is continuous and homogeneous of degree k < 0 with respect to

the family of dilations (p1, ..., pr ), where pi = 1+ (i − 1)k, i = 1, ...,r . Let li , i = 1, ...,r be

positive constants such that the polynomial yr + lr (yr−1 + lr−1(yr−2 + ...+ l2(y + l1)))...)) is

Hurwitz. If k = 0 the vector field is linear and therefore λ = 1. Therefore, there exists

a positive-definite, radially unbounded, Lyapunov function V : Rr → R such that L f1V is

continuous and negative definite.

Let A =V −1([0,1]) and S = bdA =V −1({1}), where bdA is the boundary of the set A , i.e.

A = {
z ∈Rr |V (z) ∈ [0,1]

}
and S = {

z ∈Rr |V (z) = 1
}
. Then A and S are compact since V is

proper. Also, 0 ∉ S as V is positive definite. Defining φ : (0,1]×S →R by φ(λ, z) = L fλV (z).

Then V is continuous and satisfies φ(λ, z) < 0 for all z ∈ S , i.e. ϕ({1}×S ) ⊂ (−∞,0). Since S is

compact, by continuity there exists ǫ> 0 such that φ((1−ǫ,1]×S ) ⊂ (−∞,0). It follows that

for λ ∈ (1− ǫ,1], L fλV takes negative values on S . Thus, A is strictly positively invariant

under fλ for every λ ∈ (1−ǫ,1]. Therefore the origin is global asymptotic stable under fλ,

for λ ∈ (1−ǫ,1]. Finally, for λ ∈ (1−ǫ,1) i.e |k| small enough, by homogeneity, the origin is

globally finite time stable.
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2.2 Adaptive Controller

Let us now consider that uncertainty bounds γm, γM and ϕ̄ of System (1.21) are unknown.

As mentioned in Chapter 1, adaptive control is an effective method for this problem. In

the literature, many adaptive algorithms exist for SMC and HOSMC, the most prominent

of which were presented in the previous chapter. It was remarked that no contemporary

work on adaptive HOSMC has been published for orders greater than two (to the best of

our knowledge). In this section, we will extend the robust controller, presented afore, in

order to develop an adaptive arbitrary HOSM controller.

For any a ∈R, let σ(a) be the standard saturation function defined by σ(a) = a

max(1, |a|) .

For ε> 0, a ∈R, we define νε(a) = 1

2
+ 1

2
σ

(
|a|− 3

4ε

1
4ε

)
.

The following controller is proposed:

u = γ̂u0(z)+ ϕ̂si g n(u0(z)), (2.9)

where u0 is a homogeneous controller that satisfies the hypotheses of Theorem 2.1.1 and

fulfills Condition (3.16). The adaptive function γ̂= κ+δ|u0(z)| and ϕ̂(t ) is defined by the

ODE

˙̂ϕ(t ) = kνε(V1(z))− (1−νε(V1(z)))
⌊
ϕ̂

⌉η,

with the initial condition ϕ̂(0) = 0. The new terms are defined as κ, δ> 0, η ∈ (0,1), k > 0 and

V1 is a homogeneous Lyapunov function which also satisfies Theorem 2.1.1 and Condition

(3.16). Then the following theorem provides the main result for the adaptive case.

Theorem 2.2.1. Consider System (1.21) under the feedback control law (2.9). Then,

∀ε, ∃c ′ > 0 and 0 < α′ < 1 such that the following conditions are satisfied for any initial

condition z0 ∈ Û

(i ) liminf
t→∞ V1(z(t )) ≤ ε, limsup

t→∞
V1(z(t )) ≤∆;

(i i ) limsup
t→∞

∣∣ϕ̂
∣∣≤ 2Φ̄+k

(
∆1−α/(c(1−α))

)
,

where Φ̄ := 1

γm

(
ϕ̄+

(
κγm −1

)2

4γmδ

)
, ∆ :=

(
ε1−α′ + c ′(1−α′)γm

2k
Φ̄2

) 1
1−α′

.

Remark 2.2.2. The second Inequality of (i ) of Theorem 2.2.1 is equivalent to Levant’s

concept of real Higher Order Sliding Mode, as defined in the previous chapter. This is

equivalent to practical stability of z1, · · · , zr . Details on real sliding mode and real HOSM

can be found in Section 2 of [54].
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Proof of Theorem 2.2.1. We first demonstrate that when the system states are in the

domain V1 > ε, the controller brings them to the domain V1 ≤ ε in finite time. Then, it

is proved that once z reaches the domain V1 ≤ ε, it stays in the domain V1 ≤ ∆ for all

consecutive time instances and ϕ̂ is upper-bounded after a sufficiently large time.

We first need the following intermediate result.

Lemma 2.2.3. The function ϕ̂ is non-negative and is defined as long as the trajectory

of z is defined.

Proof. It is clear that ϕ̂ is positive in time interval (0,τ), since ˙̂ϕ(0) ≥ 0. Since ϕ̂ is contin-

uous, if there exists τ1 > 0 such that ϕ̂(τ1) < 0, then there exists a time τ0 ≥ 0, τ0 < τ1, such

that ϕ̂(τ0) = 0, and ϕ̂(t ) < 0, ∀t ∈ ]τ0,τ1].

In this case, V1(z(τ0)) = 0 otherwise ˙̂ϕ(τ0) > 0 and ϕ̂ cannot be negative on a right interval at

τ0. In that case, there exists a right interval at τ0 (still denoted ]τ0,τ1]) where V1 <
ε

2
and

then ˙̂ϕ=−⌊
ϕ̂

⌉η > 0. We therefore obtain ϕ̂(τ1) =
τ1
ˆ

τ0

˙̂ϕd t > 0, which is a contradiction.

We argue by contradiction in order to prove that liminf
t→∞ V1(z(t )) ≤ ε. Supposing there

exists t̄ such that V1(t ) > ε for every t ≥ t̄ , then according to the dynamics of ϕ̂, we get

˙̂ϕ= k for t ≥ t̄ . This implies that for t ≥ t̄ , ϕ̂ is increasing and ϕ̂> Φ̄. Since we have

V̇1 = ∂V1

∂z1
z2 + ...+ ∂V1

∂zr

(
γ

[
γ̂u0 + ϕ̂si g n(u0)

]+ϕ)
,

= ∂V1

∂z1
z2 + ...+ ∂V1

∂zr
u0 +

∂V1

∂zr

(−u0+κγu0+γδ⌊u0⌉2+γϕ̂si g n(u0)+ϕ)
,

≤ −cV α
1 −

∣∣∣∣
∂V1

∂zr

∣∣∣∣
(
(κγm−1)|u0|+γmδ|u0|2+γmϕ̂−ϕ̄

)
,

= −cV α
1 −

∣∣∣∣
∂V1

∂zr

∣∣∣∣
[
γmδ

(
|u0|+

κγm −1

2γmδ

)2]
−

∣∣∣∣
∂V1

∂zr

∣∣∣∣

[
−

(
ϕ̄+

(
κγm −1

)2

4γmδ

)
+γmϕ̂

]
,

≤ −cV α
1 −γm

∣∣∣∣
∂V1

∂zr

∣∣∣∣
(
ϕ̂− Φ̄)≤−cV α

1 .

(2.10)

Then V1(z) converges to zero in finite time, which contradicts the hypothesis. The functions

u0 and V1 are homogeneous, which according to [8], means that

∃ c ′, α′ > 0 : |∂V1/∂zr | ≤ c ′V1
α′

, (2.11)

where c ′ = max
{z:V1(z)=1}

∣∣∣∣
∂V1

∂zr

∣∣∣∣, α′ = κ2

κ1
. The terms κ2 and κ1 are the respective degrees of ho-

mogeneity of ∂V1/∂zr and V1.



34 CHAPTER 2. LYAPUNOV BASED ROBUST AND ADAPTIVE HOSM CONTROLLERS

We suppose now that V1 < ε. Considering (2.11), let us estimate the overshoot in the

worst case condition with respect to uncertainty. For V1(z(0)) = ε and ϕ̂(0) = 0, we get

V̇1 ≤ −cV α
1 −γmc ′V α′

1

(
ϕ̂− Φ̄)

, ˙̂ϕ= k. (2.12)

The overshoot ∆ of V1 holds for V̇1 = 0 at t = TM . We get ϕ̂(TM ) = Φ̄− c∆α−α
′

c ′γm
≤ Φ̄, and then

TM ≤ Φ̄/k. An upper bound of ∆ can be estimated as ∆=
(
ε1−α′ + c ′(1−α′)γm

2k
Φ̄2

) 1
1−α′

.

We now estimate an upper bound of limsup
t→∞

ϕ̂. Consider the case V1(z(0)) = ε with V̇1(z(0)) ≥
0, in this case we have ϕ̂(0) < Φ̄. For t = TM , i.e., V̇1 = 0, we get ϕ̂(TM ) ≤ Φ̄+ ϕ̂(0) ≤ 2Φ̄. ϕ̂

will increase until time T f where ˙̂ϕ(T f ) = 0 and V1(z(T f )) ≥ 0. The worst case is calculated

with respect to the boundary of ϕ̂, using V̇1 ≤ −cV α
1 and ˙̂ϕ = k. Here T f corresponds to

V1(z(T f )) = 0, i.e T f −TM = (
∆(1−α))/(c(1−α)), which implies that

ϕ̂(T f ) ≤ ϕ̂(TM )+k(T f −TM ) = 2Φ̄+ k∆(1−α)

c(1−α)
.

Discussion: The adaptive functions γ̂ and ϕ̂ are chosen non-negative and γ̂ is strictly

positive with a term proportional to |u0|. It satisfies the condition
∂γ̂

∂|u0|
> 0, which is

sufficient to ensure that the states will not diverge, irrespectively of ϕ̂. The second adaptive

function ϕ̂ ensures the convergence of the state to a neighborhood of zero. Its dynamics

can be defined explicitly by: ˙̂ϕ= k for V1 ≤
ε

2
, ˙̂ϕ= 2k

ε
(V1−ε/2)− 2

ε
(ε−V1)

⌊
ϕ̂

⌉η
for

ε

2
≤V1 ≤ ε

and ˙̂ϕ=−⌊
ϕ̂

⌉η
for V1 ≤

ε

2
. These dynamics mean that ϕ̂ is increasing for V1 ≥ ε, decreasing

for V1 ≤
ε

2
, and with indefinite sign for

ε

2
≤V1 ≤ ε.

2.3 Experimental results : PEM Fuel Cell System

The practical applicability of the proposed controllers is demonstrated on the air-feed

system of Polymer Electrolyte Membrane Fuel Cell (PEMFC) System, in which, a moto-

compressor is used to feed air (as a source of oxygen) to the PEMFC’s cathode. The

control problem in this application is to optimize the net power output of the PEMFC

by operating the compressor at its optimal point, thereby reducing the internal power

consumption of the fuel cell. This is achieved by maintaining the oxygen excess ratio in

the cathode at a certain optimal value. Some sliding mode based solutions of this problem

have been published in [48] and [63]. In the first, the oxygen excess ratio is assumed to
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have a static relationship with the compressor flow rate; and the compressor is controlled

using a SOSMC. In the latter, the authors have proposed a dual loop cascade SOSMC

controller. In this method, the outer loop generates the compressor speed reference and

the inner loop forces the motor to follow this reference. This approach is more practical

as both control loops are robust, however its implementation requires different loop rates

for controllers. We have approached this problem by designing third order sliding mode

based oxygen excess ratio controllers, using the proposed techniques. The advantage of our

method in this context, is that the third order extension generates smooth control input,

which results in continuous current control of the moto-compressor. Both the robust and

adaptive controllers are designed for this problem, and validated on a Hardware in Loop

test bench, which consists of a commercial twin screw compressor with inverter drive and

a real-time fuel cell emulation system. The robustness property of the controllers has also

been verified by varying the parameters of the fuel cell emulator to their extreme values.

2.3.1 PEMFC air-feed system model

The dynamic model of a PEMFC air-feed system is as follows [63]:

ẋ1 = c1(x4 −x1 −x2 − c2)− c3x1

c4x1 + c5x2 + c6
c17

p
x1 +x2 + c2 − c11 − c7ζ,

ẋ2 = c8(x4 −x1 −x2 − c2)− c3x2

c4x1 + c5x2 + c6
c17

p
x1 +x2 + c2 − c11,

ẋ3 = −c9x3 − c10

[(
x4

c11

)c12

−1

]
+ c13u,

ẋ4 = c14

[
1+ c15

[(
x4

c11

)c12

−1

]]
[Wcp − c16(x4 −x1 −x2 − c2)],

(2.13)

u = Iq , ζ= Ist , Wcp = c21ωcp . (2.14)

The physical quantities that form the state vector x are

x = [x1 x2 x3 x4]T = [pO2 pN2 ωcp psm]T ,

where pO2 and pN2 represent the oxygen partial pressure and the nitrogen partial pressure,

respectively. The compressor speed is denoted by ωcp and the supply manifold pressure

by psm . The control input u is the motor current, whereas the fuel cell stack current

ζ is considered as measurable input disturbance. The compressor air flow is denoted by

Wcp and it is proportional to the compressor speed. The parameters ci are considered as

uncertain constants. These parameters represent the variation/uncertainty of the system’s
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physical parameters, as given in Table 2.1:

c1 = c01 +δc1 , c2 = c02 +δc2,

c3 = c03 +δc3 , c6 = c06 +δc6,

c7 = c07 +δc7 , c8 = c08 +δc8,

c9 = c09 +δc9 , c10 = c010 +δc10,

c13 = c013 +δc13 , c14 = c014 +δc14,

c19 = c019 +δc19 , c17 = c017 +δc17,

(2.15)

where c0i and δci are the nominal value and the uncertainty of ci , respectively. Complete

details and physical significance of these parameters can be found in [63].

Table 2.1: Variations of system parameters

Parameter Variation

Fuel cell temperature (T f c ) +10% in oC
Cathode volume (Vca) +5%
Supply manifold volume (Vsm) −10%
Atmospheric temperature (Tatm) +10% in oC
Cathode inlet orifice constant (kca,i n) +5%
Cathode outlet orifice constant (kca,out ) +5%

2.3.2 Control Objective

The oxygen excess ratio can be written as [63].

λO2 =
c19

c20ζ
(x4 −x1 −x2 − c2) . (2.16)

The net electrical power is optimized by reducing the consumption of the compressor, i.e.

maintaining the oxygen excess ratio λO2 at its optimal value λO2,r e f . Depending upon the

stack current, this optimal value exists between 2 and 2.5 [75]. Conventionally, λO2,r e f has

been taken as a fixed value [48, 75]. A more precise method has been presented in [63],

where λO2,r e f has been modeled as a function of the stack current:

λO2,r e f = 5×10−8ζ3 −2.87×10−5ζ2 +2.23×10−3ζ+2.5. (2.17)

Our objective is to force λO2 to follow λO2,r e f in finite time.
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2.3.3 Test Bench Description

The experiments have been conducted on a Hardware-In-Loop (HIL) test bench (See

Fig. 2.1), the HIL simulator structure can be seen in Fig.2.2. It consists of a twin screw

compressor and a real time fuel cell emulation system. The twin screw compressor is driven

by a permanent magnet synchronous motor (PMSM). The 3-phase currents of PMSM are

calculated from d q coordinates and supplied by an inverter. The control input I q, for the

inverter, is generated by the proposed controllers installed in a real time controller. The

measured compressor air flow Wcp is fed to the real time fuel cell emulation system. The

PEMFC emulator receives the flow rate Wcp , in order to generate the states x1, x2, x4 and

λO2 .

Figure 2.1. Test bench
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Figure 2.2. HIL Simulator

2.3.4 Controller design and Experimental Results

The sliding variable is defined as z1 = s = λO2 −λO2,r e f . In our case, the sliding variable s

depends on x1, x2 and x4. The first and second time derivative of s are

ṡ = z2 = ∂

∂x1
s(x1, x2, x4).ẋ1(x1, x2, x4)+ ∂

∂x2
s(x1, x2, x4).ẋ2(x1, x2, x4)

+ ∂

∂x4
s(x1, x2, x4).ẋ4(x1, x2, x3, x4),

s̈ = z3 = ∂

∂x1
ṡ(x1, x2, x3, x4).ẋ1(x1, x2, x4)+ ∂

∂x2
ṡ(x1, x2, x4).ẋ2(x1, x2, x4)

+ ∂

∂x3
ṡ(x1, x2, x3, x4).ẋ3(x3, x4,u)+ ∂

∂x4
ṡ(x1, x2, x3, x4).ẋ4(x1, x2, x3, x4),

= ϕ+γu.

where ϕ and γ are given in [63] (See Equation (54) of [63], where ϕ and γ are denoted by

φ1 and γ1, respectively ).

The control input u appears for the first time, in the second time derivative of s. In

order to obtain a continuous control u, the discontinuous control is applied on the higher

derivative u̇. We get

s(3) = ż3 = ϕ̇+ γ̇u︸ ︷︷ ︸
Φ

+γv,

where v = u̇, Φ and γ are uncertain bounded functions that satisfy

Φ ∈ [−ϕ̄,ϕ̄], γ ∈ [γm ,γM ] (2.18)
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For the PEMFC under consideration, the bounding values of the parameters were deter-

mined through precise physical analyses, as presented as percentage deviations in Table I.

The following numerical values of the uncertainty limits were obtained:

ϕ̄= 0.03, γm = 5, γM = 15.

From here, the control objective becomes equivalent to forcing s and its first and second

time derivatives to zero in finite time, through

s(3) ∈ [−ϕ̄,ϕ̄]+ [γm ,γM ]v. (2.19)

We first develop a 3r d -order SMC robust controller using Equations (2.2) and (2.6). Ac-

cording to Theorem 2, the controller takes the following structure:

v1 = −l1⌊s⌉α1 ,

v2 = −l2⌊⌊ṡ⌉β1 −⌊v1⌉β1⌉α2/β1 ,

v3 = −l3⌊⌊s̈⌉β2 −⌊v2⌉β2⌉α3/β2 ,

v = u̇ = 1

γm

(
v3 + ϕ̄si g n(v3)

)
.

(2.20)

In this test, the parameters have been tuned to the following values: l1 = 5, l2 = 10, l3 =
40, β0 = 0.8, β1 = 1.25, β2 = 2, α1 = 4/5, α2 = 3/4, α3 = 2/3, γm = 5, ϕ̄= 0.03.

During the tests, the stack current was varied between 150A and 400A, in steps. The

current profile is shown in Fig. 2.3. The performance of the controller in response to the

variation in the λO2 due to these stack current variations, is shown in Fig.2.4. It is clear

that λO2 tracks the desired value λO2,r e f successfully, with a response time between 3 and 7

seconds practically. The control input (Iq) is shown in Fig.2.5, which varies between 0 and

3 A. As the controller establishes third order HOSM, it can be seen that the oscillations

in Iq are negligible.
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Figure 2.3. Stack current (A)
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Figure 2.4. λO2 and λO2,r e f versus time (s)
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Figure 2.5. Quadratic current Iq versus time (s)
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Figure 2.6. λO2 and λO2,r e f versus time (s)
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Figure 2.7. Quadratic current Iq versus time (s)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time (s)

ϕ̂

 

 

Figure 2.8. ϕ̂ versus time (s)
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Figure 2.9. γ̂ versus time (s)

While the uncertainty bounds (γm , ϕ̄) of the system under consideration are known,

they are very hard to estimate in many cases of fuel cell systems. We will now demonstrate

that the proposed adaptive controller can be applied to overcome this problem. The

3r d -order SMC adaptive controller is designed using Equations (2.9) and (2.6), under

the assumption that the system parameters are unknown. According to Theorem 3, the

controller has the following structure:

v = u̇ = γ̂v3 + ϕ̂si g n(v3), (2.21)

where v3 is the same as in Equation (2.20). The controller parameters used in adaptive

case are as follows: l1 = 5, l2 = 10, l3 = 40, β0 = 0.8, β1 = 1.25, β2 = 2, α1 = 4/5, α2 =
3/4, α3 = 2/3, k = 5, η= 0.95, ε= 0.001, κ= 0.25, δ= 0.001.

The results of the adaptive controller are shown in Figures 2.6, 2.7, 2.8 and 2.9. Fig.2.6

shows that λO2 converges and remains inside a small and acceptable neighborhood around

the desired value λO2,r e f . The control input, Iq is shown in Fig.2.7 and the behaviors of

the adaptive parameters ϕ̂ and γ̂ are shown in Figures 2.8 and 2.9 respectively. It can be

seen that ϕ̂ increases at each stack current step, and then decreases rapidly after the con-

vergence of the tracking error. As real sliding mode is achieved, small oscillations can be

seen in γ̂. In general, these results show the effectiveness of both the robust and adaptive

controllers for a wide range of stack current variation, i.e. external perturbation.

In order to validate the robustness of our controllers in dealing with parametric uncer-

tainty, another series of experiments was conducted using the designed controllers (with



2.3. EXPERIMENTAL RESULTS : PEM FUEL CELL SYSTEM 43

the same controller parameters). The parameters of the PEMFC emulator were varied to

their extreme values, as specified in Table I. The results of the robust controller in these

tests are shown in Figures 2.10 and 2.11. It can be seen that this controller performs as well

as in the previous tests with defined system parameter values. The results of the adaptive

controller are shown in Figures 2.12, 2.13, 2.14 and 2.15. We see again, in Fig. 2.12 a

similar behavior of tracking error as compared to the previous tests. However, the static

value of the quadratic current Fig. (2.13) changes in order to accommodate the emulated

parametric drift. The adaptive gains ϕ̂ and γ̂ adapt to counteract the uncertainty, ensur-

ing convergence. These tests demonstrate that both the robust and adaptive controllers

are capable of handling parametric uncertainty, albeit with different mechanisms.
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Figure 2.10. λO2 and λO2,r e f versus time (s)
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Figure 2.11. Quadratic current Iq versus time (s)
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Figure 2.12. λO2 and λO2,r e f versus time (s)
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Figure 2.13. Quadratic current Iq versus time (s)
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Figure 2.14. ϕ̂ versus time (s)
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Figure 2.15. γ̂ versus time (s)

2.4 Summary

In this chapter, we have presented two arbitrary HOSM controllers for uncertain nonlinear

systems with bounded uncertainty, as represented by System (1.15). The control design

is based on a class of controllers for stabilization of pure integrator chains. The first

controller is robust and its design requires the knowledge of the bounds or limits of system

uncertainty. The second controller is adaptive, therefore its design does not require any

quantitative knowledge of the uncertainty bounds. The latter establishes real HOSM

i.e. forces the states to remain within a region around the origin that depends upon the

uncertainty bounds. It can be noted that convergence of states to a defined neighborhood,

such that they remain inside it, is still an open problem in adaptive control theory.

The effectiveness and practical applicability of the proposed controllers were evaluated

through simulations and experiments. These controllers showed good performance in

simulations, as well as in experiments concerning a practical control problem of a PEMFC

air-feed system. However, the fact that these controllers are unbounded may raise concerns

in certain practical applications. In the next chapter, we will see that certain interesting

properties, including bounded control input, can be achieved by manipulating the degree

of homogeneity of the controllers.





Chapter 3

Lyapunov-Based Homogeneous HOSM

Controller

3.1 Introduction and motivation

In the previous chapter, two Lyapunov-based arbitrary HOSM controllers were devel-

oped for the control of uncertain nonlinear systems, and their performance was evalu-

ated through simulations and experiments. The class of controllers is studied in detail in

this chapter, and a universal homogenous controller is developed through modification of

Hong’s algorithm [39]. It is shown that for a particular choice of the degree of homogeneity,

Levant’s universal controller [55] becomes a particular case of our controller. Furthermore,

the influence of controlling the degree of homogeneity of the controllers is also studied,

in order to identify additional properties that may result in better performance of our

controllers. Namely, the homogeneity degree can be manipulated or controlled to bound

the control input, to minimize the amplitude of discontinuous control after convergence

and to obtain a fixed-time control. In order to elucidate this point, let us consider the

following one-dimensional differential equation:

ż =ω(z) =−c ⌊z⌉α , (3.1)

where α ≥ 0, c > 0 and ⌊z⌉α := |z|α si g n(z). The term si g n(z) is a multi-valued function,

equal to z/ |z| if z 6= 0 and [−1,1] if z = 0. The degree of homogeneity of Equation (3.1) is

κ=α−1 and this system is stable for all c > 0 and α≥ 0. Depending upon the value of α,

different characteristics can be obtained in the system:
47
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α= 0: the convergence to zero occurs in finite-time. The controller ω(z) is uniformly

bounded for z ∈R but discontinuous at z = 0;

0 < α < 1: the convergence to zero occurs in finite-time. The controller ω(z) is

unbounded and tends to zero as |z|→ 0;

α > 1: the convergence to zero is asymptotic, however the convergence time to the

sphere B(0,1) = {z ∈ R : ‖z‖ < 1} is uniformly bounded by a constant. The controller

ω(z) is unbounded.

Based on these observations, we can construct controllers forcing z to converge to zero

in finite-time by changing α:

an unbounded controller obtained by changing κ from κ1 > 0 to κ2 < 0 when z reaches

the sphere B(0,1). This ensures the convergence to zero in finite-time, bounded by a

constant.

a uniformly bounded controller whose amplitude tends to zero as z converges to

zero. This controller is obtained by changing the homogeneity degree from κ1 =−1

to −1 < κ2 < 0.

The second point is of particular importance as bounded controllers are more practical in

real life cases than unbounded ones. In the case of a perturbed integrator, (3.1) is replaced

by the following differential inclusion:

ż ∈ u(z)
[
γm ,γM

]+ [−ϕ̄,+ϕ̄]
, (3.2)

where γm ≤ γM and ϕ̄ are arbitrary positive constants. This is similar to System (1.21) for

a single integrator In the previous chapter, it was demonstrated that the controller

u(z) = 1

γm

(
ω(z)+ ϕ̄si g n(ω(z))

)
,

defined for 0 < α < 1, forces z to converge to zero in finite-time, and thereby establishes

HOSM with respect to s for System (1.15). According to the standard comparison principle

[46] the rate of convergence of (3.2) is faster than (3.1). It can be noted that the controller

is valid for 0 ≤α≤ 2.
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3.1.1 Contribution

In this chapter, these observations (related to homogeneous controllers for a single inte-

grator) are extended to the arbitrary sliding mode controllers developed in the previous

chapter. The main focus is to obtain various properties in the controller by changing the

degree of homogeneity. In this regard, a modified form of Hong’s homogeneous controller

[39] is developed, which satisfies the conditions of Theorem 2.1.2 in Chapter 2. A universal

homogeneous HOSMC controller is developed using this modified form, and the effect of

switching its homogeneity degree is studied. This yields three important results:

1. With a particular choice of homogeneity degree, Levant’s well known homogeneous

robust arbitrary HOSM controller [55] is a particular case of our modified controller

2. The amplitude of discontinuous control can be kept to its minimum possible value

after the states have converged, by controlling the homogeneity degree in the neigh-

borhood of zero

3. The recently developed “Fixed-Time” stability notion can be achieved by changing

the homogeneity degree.

3.2 Controller design

Based on the problem formulation introduced in Chapter 1, the homogeneous controller

is developed in two steps. In the first step, the modified form of Hong’s controller [39] for

stabilization of a pure integrator chain is considered. Then, using this modified controller

and the results of Chapter 2, a universal HOSM controller is developed for System (1.15).

3.2.1 Useful definitions, lemmas and theorems

Let us first establish some definitions, which would aid in the statement of our results.

Consider the differential system

ż = f (t , z), z ∈Rr . (3.3)

Definition 3.2.1. [74, 7] The equilibrium point z = 0 of System (3.3) is said to be locally

finite-time stable in a neighborhood Û ⊂Rr if (i) it is asymptotically stable in Û ; (ii) it is

finite-time convergent in Û , i.e. for any initial condition z0, z(t , z0) = 0,∀t ≥ T (z0), where

T (z0) is called the settling-time function. The equilibrium point z = 0 is globally finite-time
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stable if Û =Rr . The equilibrium point is fixed-time stable if (i) it is globally finite-time

stable; (ii) the settling-time function is bounded by a constant Tmax , i.e. ∃Tmax > 0 : ∀z0 ∈
Rr ,T (z0) ≤ Tmax .

Definition 3.2.2. [74] The set S is said to be globally finite-time attractive for (3.3),

if for any initial condition z0, the trajectory z(t , z0) of (3.3), achieves S in finite-time

T (z0). Moreover, the set S is said to be fixed-time attractive for (3.3), if (i) it is globally

finite-time stable; (ii) the settling-time function is bounded by a constant Tmax .

Let us recall the following theorem:

Theorem 3.2.3. [8, 7] Suppose there exists a positive definite C 1 function V defined on

a neighborhood Û ⊂ Rr of the equilibrium point z = 0 and real numbers C > 0 and α ≥ 0,

such that the following condition is true for every trajectory z of System (3.3),

V̇ +CV α(z(t )) É 0, if z(t ) ∈ Û , (3.4)

where V̇ is the time derivative of V (z(t )).

Then all trajectories of System (3.3) which stay in Û converge to zero. If Û = Rr and V

is radially unbounded, then System (3.3) is globally stable with respect to the equilibrium

point z = 0.

Depending on the value α, we have different types of convergence: if 0 ≤α< 1, the equilib-

rium point z = 0 is finite-time stable ([7]), if α= 1, it is exponentially stable and if α> 1

the equilibrium point z = 0 is asymptotically stable equilibrium and, for every ǫ> 0, the set

B(0,ǫ) = {z ∈ Û : V (z) < ε} is fixed-time attractive.

Let us now present some further notions related to the concept of homogeneity, which

was introduced in Chapter 1. Consider the time-invariant differential system

ż = f (z), z ∈Rr . (3.5)

Definition 3.2.4. [39] A function Ω(z) is homogeneous of degree a ∈R+∗ with respect to

the family of dilation ζ
p
ǫ if, for every z ∈Rr and ǫ> 0,

Ω(ǫp1 z1, · · · ,ǫpr zr ) = ǫaΩ(z1, · · · , zr ).

Definition 3.2.5. The homogeneous norm Γi (z) for z ∈Ri is defined by

Γi (z) ≡ Γi (z1, · · · , zi ) =
(

i∑

j=1

∣∣z j
∣∣c/p j

)1/c

,

c ≥ max(p1, · · · , pr ) > 0,
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where Γi (ǫp1 z1, · · · ,ǫpi zi ) = ǫΓi (z1, · · · , zi ), ǫ> 0.

In this case, the unit sphere Si is given by

Si = {z ∈Ri : Γi (z) = 1}.

Lemma 3.2.6 (Lemma 4.2 of [8]). Suppose Ω1 and Ω2 are continuous real-valued func-

tions on Rr , homogeneous with respect to ζ
p
ǫ of degrees d1 > 0 and d2 > 0, respectively, and

Ω1 is positive definite. Then, for every z ∈Rr ,
[

min
{z:Ω1(z)=1}

]
[Ω1(z)]

d2
d1 ≤Ω2(z) ≤

[
max

{z:Ω1(z)=1}

]
[Ω1(z)]

d2
d1 . (3.6)

Proposition 3.2.7 (Proposition 1 of [77]). Let Ω be a positive definite C 1 function,

homogeneous of degree a with respect to ζ
p
ǫ . Then, for all i = 1, · · · ,r ;

∂Ω

∂zi
is homogeneous

of degree (a −pi ).

3.2.2 Stabilization of a pure chain of integrator

Consider the following pure integrator chain:




żi = zi+1, i = 1, ...,r −1,

żr = u.
(3.7)

The following result guarantees the stabilization of (3.7).

Theorem 3.2.8. Let r be the order of the pure integrator chain given in (3.7). For

κ ∈ [−1/r,1/r ], set

pi = 1+ (i −1)κ, i = 1, · · ·r,

and finally let c be a positive constant such that c ≥ max(p1, · · · , pr ). Then there exist

constants li > 0, i = 1, · · · ,r , independent on κ, such that the feedback control law u =
ωκ(z) := vr defined inductively by





v0 = 0,

vi = −li Ni si g n(zi − vi−1),

i = 1, · · · ,r,

(3.8)

stabilizes System (3.7), where Ni , i = 1, · · · ,r are defined by

Ni =
(

i∑

j=1

∣∣z j
∣∣c/p j

) pi +κ
c

. (3.9)

There also exists a homogeneous Lyapunov function Vκ(z) for the closed-loop system (3.7)

under u, that satisfies V̇κ ≤−CV
c+1+κ

c+1
κ , for some positive constant C .
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Proof. For 1 ≤ i ≤ r , we define

wi :=
(

i∑

j=1

∣∣z j
∣∣c/p j

)
si g n (zi − vi−1) ,

Wi :=
ˆ zi

vi−1(z1,...,zi−1)
wi (z1, ..., zi−1, s)d s,

=
(
|z1|

c
p1 +·· ·+ |zi−1|

c
pi−1

)
|zi − vi−1|+

∣∣∣⌊zi ⌉
c

pi
+1 −⌊vi−1⌉

c
pi

+1
∣∣∣

c
pi

+1
.

(3.10)

It can be seen that Wi is positive definite function with respect to vi−1 − zi , homogeneous

with respect to ξ
p
ǫ of degree (c +pi ). We introduce W̄i := W δi

i , where δi =
c +1

c +pi
, so that

all functions W̄i are homogeneous of the same homogeneity degree (c +1).

Lemma 3.2.9. With the notations above and 1 ≤ i ≤ r , there exist positive constants ki ,

such that:

W̄i ≤ ki |wi |
c+1

c . (3.11)

Proof. We can get that

(
i∑

j=1

∣∣z j
∣∣c/p j

)
is a homogeneous function with respect to ξ

p
ǫ of degree

c. Then according to Lemma 3.2.6, and for a given κ, there exists a constant Ki depending

on κ, such that

W̄i ≤ Ki (κ)

(
i∑

j=1

∣∣z j
∣∣c/p j

)
,

where Ki (κ) = max
z∈Si

W̄i . Then, the choice of ki , as ki = max
κ∈[−1/r,1/r ]

Ki (κ), implies (3.11).

We proceed to prove the theorem by induction on r .

Step 1: Consider ż1 = u. For any l1 > 0, taking u =ωκ(z1) =−l1 ⌊z1⌉(p1+κ)/p1 stabilizes the

closed-loop system. The Lyapunov function V1 = W1 = |z1|1+c /(1+ c) is homogeneous of

degree c +1 and

V̇1 = −l1 |z1|c+p2 ≤−η1V
c+1+κ

c+1
1 , (3.12)

for some constant η1 > 0.
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Step i : Assume that the conclusion holds true till i −1. Define the Lyapunov function

Vi by Vi =Vi−1 +W̄i =
i∑

j=1
W̄ j . We get

V̇i =
i−1∑

j=1

∂W̄i

∂z j
zi+1 +wi vi W

−(i−1)κ
c+pi

i + V̇i−1 +
∂Vi−1

∂zi−1
(zi − vi−1) ,

=
i−1∑

j=1

∂W̄i

∂z j
zi+1 − li |wi |

c+pi +κ
c W̄

−κ(i−1)
c+p1

i + V̇i−1 +
∂Vi−1

∂zi−1
(zi − vi−1) ,

≤
i−1∑

j=1

∂W̄i

∂z j
zi+1 − li

W̄
c+pi +κ

c+p1
i

k
c

c+p1
i

W̄
−κ(i−1)

c+p1
i + V̇i−1 +

∂Vi−1

∂zi−1
(zi − vi−1) ,

≤
i−1∑

j=1

∂W̄i

∂z j
zi+1 −

li

k
c

c+p1
i

W̄
c+p2
c+p1

i + V̇i−1 +
∂Vi−1

∂zi−1
(zi − vi−1) .

(3.13)

The fact that W̄i are homogeneous with respect to ζ
p
ǫ of degree (c+1) for each i = 1, · · · ,r ,

implies that Vi are homogeneous of degree (c +1) with respect to ζ
p
ǫ as well. In addition,

according to Proposition 3.2.7, V̇i are homogeneous of degree (c+1−κ) with respect to ζ
p
ǫ .

Then without loss of generality, the study can be restricted to the unit sphere Si .

By taking li such that

li > 2k
c

c+1

i max
z∈Si

{
i−1∑

j=1

∂W̄i

∂z j
zi+1 +

∂Vi−1

∂zi−1
(zi − vi−1)

}
,∀κ ∈ [−1/r,1/r ], (3.14)

and setting ηi := li /2k
c

c+1

i , we get

V̇i ≤−
i∑

j=1
η j W̄

c+1+κ
c+1

j . (3.15)

At the final step, all parameters li are determined, with Vκ(z) =Vr =
r∑

j=1
W̄ j and

V̇κ(z) ≤−
i∑

j=1
η j W̄

c+1+κ
c+1

j ≤−η
i∑

j=1
W̄

c+1+κ
c+1

j ,

where η := minηi for i = 1, · · · ,r .

According to Lemma 3.2.6, for all κ ∈ [−1/r,1/r ], we get

i∑

j=1
W̄

c+1+κ
c+1

j ≥ 2
r−1

r (c+1)

(
i∑

j=1
W̄ j

) c+1+κ
c+1

,

which can be seen as a generalization of Jensen’s inequality.

Finally we get V̇κ ≤−CV (c+1+κ)/(c+1)
κ , with C ≥ η2

r−1
r (c+1) .
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3.2.3 Stabilization of an r -perturbed integrator chain

From the result obtained in Theorem 3.2.8, we now proceed to the stabilization of the

perturbed integrator chain presented in System (1.21). The extension of Theorem 3.2.8

to the case of System (1.21) is based on the following result of [38].

Theorem 3.2.10. [38] Let ω(z) and V (z) be respectively, a state-feedback control law

stabilizing System (3.7) and a Lyapunov function for the closed-loop system, which satisfy

the hypotheses of Theorem 3.2.3 and obey the following additional conditions: for every

z ∈ Û ,

∂V

∂zr
(z)ω(z) ≤ 0, ω(z) = 0 ⇒ ∂V

∂zr
(z) = 0.

Then, for arbitrary constants m,n ≥ 1, the following control law stabilizes System (1.21):

u(z) = m

γm
(ω(z)+nϕ̄si g n(ω(z))). (3.16)

The function V (z) remains a Lyapunov function for the closed-loop system (1.21) with the

feedback u(z), and satisfies Condition (3.4). If Û = Rr and V (z) is radially unbounded,

then the closed-loop system (1.21) with the feedback u(z) is globally stable with respect to

the origin.

Proof. This theorem is a generalization of Theorem 2.1.2, presented in previous Chapter,

and can be proven in the same way.

It can be shown that the controller presented in Theorem 3.2.8 satisfies the conditions

presented in Theorem 3.2.10 . We calculate
∂Vκ

∂zr
ωκ =

∂W̄r

∂zr
vr ≤− lr

k
c

c+p1
r

W̄
c+1+κ

c+1
r ≤ 0, and

ωκ = 0 ⇒−lr |wr |
pr +κ

c si g n(zr − vr−1) = 0 ⇒ ∂Vκ

∂zr
≡ ∂W̄r

∂zr
= 0.

Remark 3.2.11. It should be noted that this controller is not unique, and all homoge-

neous controllers satisfying the conditions of Theorem 3.2.10 are valid (e.g. [39]).

As indicated in Section 2 of [57], in order to stabilize the uncertain System (1.21) by

a state-feedback controller u = u(z), it is necessary that the controller be discontinuous at

z = 0, and satisfy

lim
‖z‖→0

|u(z)| ≥ ϕ̄

γm
=: Mmi n .
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3.3 Discussion of Special Cases

In this section, we consider some specific choices of the homogeneity degree, in order

to obtain further results. First, it is shown that for a particular choice of homogeneity

degree, the homogeneous HOSM controller presented in [55] becomes a special case of our

controller. Then, a bounded controller with minimum amplitude Mmi n of discontinuous

control at z = 0 is designed. Finally, a controller with fixed-time convergence is synthesized.

3.3.1 Robust Homogeneous Arbitrary HOSM Controller

Let us consider the controller presented in [55].

Proposition 3.3.1. Provided l1, · · · , lr−1, M > 0 are chosen sufficiently large in the listed

order, the bounded controller u = −M si g n(φr−1) stabilizes System (1.21) in finite time,

ensuring HOSM w.r.t. s for System (1.15), φr−1 is defined inductively as

N1 = |z1|
r−1

r ,

Ni =
(
|z1|

d
r +|z2|

d
r−1 +·· ·+ |zi |

d
r−i+1

) r−i
d

,

i = 2, · · · ,r −1.

φ0 = z1,

φi = zi+1 + li Ni si g n(φi−1),

i = 2, · · · ,r −1.

(3.17)

with d > r is an arbitrary positive constant.

Proof. Consider the functions Ni in Equation (3.9). Let us fix the parameters κ and c as

follows κ=−1/r and c = d/r . Then, defining φi = zi+1 − vi , we find:

N1 = |z1|
r−1

r ,

Ni =
(
|z1|

d
r +|z2|

d
r−1 +·· ·+ |zi |

d
r−i+1

) r−i
d

,

i = 2, · · · ,r.

φ0 = z1,

φi = zi+1 + li Ni si g n(φi−1),

i = 2, · · · ,r −1.

(3.18)

According to Theorem 3.2.10 and by taking m = n = 1, the state-feedback control law for

the stabilization of System (1.21) can be expressed as: u =−(lr Nr /Km + ϕ̄/Km)si g n(φr−1).

It can be seen that this particular choice of parameter κ gives Nr ≡ 1, then for the positive



56 CHAPTER 3. LYAPUNOV-BASED HOMOGENEOUS HOSM CONTROLLER

constant M defined by

M :=
(

lr

γm
+ ϕ̄

γm

)
,

the controller u = −M si g n(φr−1) stabilizes System (1.21) in finite time, ensuring HOSM

w.r.t. s for System (1.15).

3.3.2 Homogeneous controller with minimum discontinuous control

The amplitude of discontinuous control, in the case of [55], is equal to M =
(

lr

γm
+ ϕ̄

γm

)
.

We shall now see that this amplitude can be reduced to its minimum level Mmi n when the

state z tends to zero, by changing the degree of homogeneity.

Proposition 3.3.2. For k ∈ (−1/r,0) and A > 0 satisfying

max
Vk (z)≤A

|ωk (z)| ≤ lr , (3.19)

we define the function

Uk,A(z) :=




ω−1/r (z) if Vk (z) > A,

ωk (z) if Vk (z) ≤ A.

Then the controller u(z) := 1

γm

(
Uk,A(z)+ ϕ̄si g n(Uk,A(z))

)
stabilizes System (1.21) in finite

time, ensuring HOSM w.r.t. s for System (1.15), and u(z) is bounded with minimum

amplitude of discontinuity Mmi n at z = 0.

Proof. Consider the following sets

S1 = {z ∈Rr : |ωk (z)| ≤ lr },

S2 = {z ∈Rr : Vk (z) ≤ A}.
(3.20)

According to Condition (3.19), we have S2 ⊂ S1. As V̇−1/r (z) < 0,∀z ∉ S2, z will reach S1

and S2 successively in finite-time. Once z ∈ S2, Uk,A(z) is equal to ωk (z), with |ωk (z)| ≤ lr .

Therefore, z will stay in S2 and converges to zero in finite-time, as V̇k (z) < 0,∀z ∉ S1,∀z 6= 0.

Eventhough the feedback is discontinuous, there is no chattering regime since the derivative

of Vk is striclty negative in an open neighborhood of the level line Vk (z) = A, regardless of

the value of the feedback. In consequence, the system trajectory crosses transversally the
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level line Vk (z) = A.

Clearly Uk,A(z) tends to zero as z tends to zero. As a result

lim
‖z‖→0

|u(z)| = ϕ̄

γm
= Mmi n ,

∀z ∈Rr , |u(z)| ≤ Mmi n + lr

γm
.

3.3.3 Fixed-time Homogeneous controller

In certain cases, it is required that the controller converges within a fixed interval of time,

irrespective of its initial condition. This can also be achieved by changing the homogeneity

degree.

Proposition 3.3.3. For k ∈ (−1/r,0) and B > 0, define

E := min
Vk (z)=B

V−k (z) > 0, (3.21)

and the function

Uk,B (z) =




ω−k (z) if Vk (z) > B ,

ωk (z) if Vk (z) ≤ B.

Then the controller u(z) := 1

γm
(Uk,B (z)+ ϕ̄si g n(Uk,B (z))) stabilizes System (1.21) in fixed-

time T ≤ Tu +T f , ensuring HOSM w.r.t. s for System (1.15). The values of Tu and T f are

given by

Tu = E
k

c+1

−k
c+1C

, T f =
B

−k
c+1

−k
c+1C

. (3.22)

Proof. Note that there is no chattering regime for the same reason as in the previous

proposition. The conclusion follows by integrating the differential equation V̇ =−CV α on

appropriate time intervals. Consider first the following sets

S1 = {z ∈Rr : V−k (z) ≤ E },

S2 = {z ∈Rr : Vk (z) ≤ B}.
(3.23)

According to Condition (3.21), we get that S1 ⊂ S2. Clearly, z will reach S2 in a fixed-time,

bounded by a constant Tu , calculated as follows:

for α= 1− k

c +1
,

ˆ +∞

E

dV

V α
=−C

ˆ Tu

0
d t , then Tu = E

k
c+1

−k
c+1C

.
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When z reaches S2, i.e. Vk (z) = B , z will converge to zero in a finite-time, bounded by T f ,

calculated as follows:

for α= 1+ k

c +1
,

ˆ 0

B

dV

V α
=−C

ˆ T=Tu+T f

Tu

d t , then T f =
B

−k
c+1

−k
c+1C

.

3.4 Simulation Results

In this section, we illustrate the performance of our proposed controllers using the following

perturbed triple integrator defined by:

ż1 = z2, ż2 = z3, ż3 =ϕ+γu,

with ϕ= sin(t ) and γ= 3+cos(t ). Then, we have

γm = 2, γM = 4, ϕ̄= 1.

The parameters of the controller are chosen as follows:

l1 = 1, l2 = 4, l3 = 7.

We start first by fixing the parameter κ for different values {
1

8
,−1

8
,−1

3
}.

For κ> 0, Figure 3.1 shows a fast convergence of the states to a neighborhood of zero by an

unbounded controller, otherwise the convergence to zero is asymptotic. For −1/3 < κ< 0,

the convergence of the states to zero in finite-time is obtained by an unbounded controller

with a minimum amplitude of the discontinuous control at z = 0, as shown in Figure 3.2.

The finite-time convergence of the states is also shown in Figure 3.3 for κ=−1/3, using a

bounded controller with a large discontinuous control at z = 0.

A bounded controller which ensures a minimum discontinuous control amplitude at zero

is shown in Figure 3.4 by switching κ in neighborhood of zero, from −1/3 to −1/8.

A fixed-time controller is shown in Figure 3.5. Figure 3.6 shows that the convergence time

will not exceed 8.5 sec for any initial condition. Fixed-time stability is assumed to be

established by the time after which, |z1|, |z2|, |z3| are less than 1×10−4.

3.5 Summary

In this chapter, further properties of the Lyapunov-based finite-time convergent controllers,

presented in the previous chapter, were discussed in detail. A generalized bounded con-

troller was developed and the influence of homogeneity degree on the nature of control
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Figure 3.1. test for κ> 0
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was elaborated. It was observed that Levant’s arbitrary HOSM controller [55] is a par-

ticular case of our controller, under a particular choice of the homogeneity degree. It

was also shown that the properties of minimum discontinuity amplitude of the controller

and fixed-time convergence can be obtained by changing the homogeneity degree of the

controller.

This chapter ends the part of this thesis related to HOSM controllers.



Part II

Underactuated Systems Control

65





Chapter 4

Preliminary Concepts and introduction to

problems

In this part of the thesis, control problems related to underactuated systems are discussed.

As mentioned in the introduction, the control of under-actuated physical systems, with

more degrees of freedom than control inputs, is a challenging task in nonlinear control

systems [28, 67]. An additional consideration is that in practice, the available control

inputs are also physically constrained or bounded. In this regard, stabilization using

saturated controls [84] appears to be an interesting approach for control of such systems.

In this chapter, we will first review some existing bounded control methods for systems

that can be modeled as integrator chains. The notion of Input-to-State Stability will also

be introduced. Then, we will introduce the two underactuated systems, the control of

which is studied in this thesis. Let us first recall some popular bounded controllers for the

stabilization of pure integrator chain, as present in the contemporary literature.

4.1 Stabilization of Integrator Chain Using Bounded Con-

trol

Bounded or saturated controls have been the subject of many studies, such as [88, 85, 84]

and [36]. In [85], it was demonstrated that stabilization of integrator chains of order greater

than two is not possible with with saturated linear state feedback. Teel [88] introduced

the method of nested saturated controls for integrator chains of higher orders. Sussmann
67
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et al. [85] extended method to null controllable systems of higher orders. Let us review

these two approaches.

4.1.1 Nested bounded controls approach for integrator chains

A pure integrator chain is represented as




ẋ1 = x2,
...

ẋn = u,

(4.1)

Teel [88] introduced a non-linear control law with nested saturation functions in the fol-

lowing form:

u(x) =−satMn

(
hn(x)+ satMn−1

(
hn−1(x)+·· · satM1 (hx )

))
, (4.2)

where hi is a linear coordinate change and satMi is a linear saturation function. For a

given positive constant M and L with L ≤ M , satM is an increasing function defined by:

psatM (p) > 0 for a real p 6= 0

satM (p) = p when |p| ≤ L

satM (p) ≤ M

The global stability of the integrators chain (4.1) is guaranteed by the application of the

controller u presented in (4.2), with the of linear coordinate change given by:

hn−i =
i∑

j=0

i !

j !(i − j )!
xn− j , (4.3)

where Mi an Li are positives constants which satisfy

Li ≤ Mi ≤
1

2
Li+1. (4.4)

4.1.2 Nested bounded controls approach for null controllable systems

Sussmann et al. generalized the control laws with nested saturation functions for global

stabilization linear null controllable system with control constraints [85]. A null control-

lable system is a stabilizable systems with poles of null or negative real part. The controller

u is the sum of saturated functions :

u =
n∑

i=1
ǫn−i+1σ(yi ) (4.5)
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with 0 < ǫ < 1

4
, and σ is the standart saturation function with σ(y) = sat1(y). The linear

change of coordinate (x1, · · · , xn) −→ (y1, · · · , yn) is given by:





yn = h1(xn),

yn−1 = h2(xn−1, xn),
...

y1 = hn(x1, x2, · · · , xn),

(4.6)

where 



h1(s1) = s1,

h2(s1, s2) = ǫh1(s1)+h1(s2),
...

hn(s1, s2, · · · , sn) = ǫn−1hn−1(s1, s2, · · · , sn−1)+h1(s2, s3, · · · , sn).

(4.7)

Remark 4.1.1. This approach ensures the global asymptotic convergence to zero, however

the rate of convergence becomes slower when the order of the system is increased [64].This

problem related to the small rate of convergence comes essentially from the presence of

small ǫ [37]. Hably [37] overcomes this problem by proposing a choice of the parameter ǭ,

an upper bound of ǫ as :

ǭ> 0 if n = 1

ǭ= 1 if n = 2

ǭ is the unique solution in (0,1) of the equation ǫn+1 −2ǫ2 +ǫ if n > 2

The robustness to the measurement and modeling error is shown in [37] without math-

ematical proof.

4.2 Input-to-State Stability Concept

Input-to-State Stability is a notion often employed for the robustness of closed-loop under-

actuated systems. Before presenting another approach of saturated control, let us revise

this concept.

Consider the system

ẋ = f (t , x,u), (4.8)
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where f : [0,∞)×Rn ×Rm −→ Rn is piecewise continuous in t and locally Lipschitz in x

and u. The control input u(t ) is piecewise continuous, bounded function of t for all t ≥ 0.

Suppose that the unforced system

ẋ = f (t , x,u), (4.9)

has a globally uniformly asymptotically stable equilibrium point at the origin x = 0. We

introduce below the input-to-state stability.

Definition 4.2.1. [46] System (4.8) is said to be input-to-state stable if there exist a

class K L function β and a class K function γ such that for any initial state x(t0) and

any bounded input u(t ), the solution x(t ) exists for all t ≥ t0 and satisfies

‖x(t )‖ ≤β(‖x(t0)‖, t − t0)+γ
(

sup
t0≤τ≤t

‖u(τ)‖
)

. (4.10)

Where the Class K and Class K L function are defined next.

Definition 4.2.2. [46] A continuous function α : [0, a) −→ [0,∞) is said to be belong to

class K if it is strictly increasing and α(0) = 0.

Definition 4.2.3. [46] A continuous function β : [0, a)× [0,∞) −→ [0,∞) is said to be

belong to class K L , if for each fixed s, the mapping β(r, s) belongs to class K , with respect

to r and, for each fixed r , the mapping β(r, s) is decreasing with respect to s and β(r, s) −→ 0

as s −→∞.

Let us elucidate this ISS with the following example, as stated in [46] for a linear

time-invariant system

ẋ = Ax +Bu, (4.11)

where A is a Hurwitz matrix, B is a non null arbitrary matrix , and u is a bounded input.

The solution of (4.11) can be written as

x(t ) = e(t−t0)A x(t0)+
ˆ t

t0

e t−τBu(τ)dτ, (4.12)

and use the bound ‖e(t−t0)A‖ ≤ ke−λ(t−t0), for some positive constant k and λ. We estimate

the solution by

‖x(t )‖ ≤ ke−λ(t−t0)x(t0)+
ˆ t

t0

ke−λ(t−τ)‖B‖‖u(τ)‖dτ,

≤ ke−λ(t−t0)x(t0)+ k‖B‖
λ

sup
t0≤τ≤t

‖u(τ)‖.
(4.13)
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The function ke−λ(t−t0)x(t0) is a classK function as λ is positive, and
k‖B‖
λ

sup
t0≤τ≤t

‖u(τ)‖ is a
classK L function. Inequality (4.13) guarantees that x will be bounded for u bounded, and

x will converge exponentially to a neighborhood of zero defined by ‖x‖ ≤ k‖B‖
λ

limsup
τ−→∞

‖u(τ).

4.3 Stabilization of Double Integrator Subject to Input Sat-

uration [15]

We now recall the work of [15] for the stabilization of perturbed double integrator system

using a bounded control. The robustness of this controller is mathematically proved using

ISS. Let us consider the following system

ẋ1 = x2 + v1,

ẋ2 = σ(−x1 −x2 +u)+ v2,
(4.14)

where σ(a) is the standard saturation function defined for any a ∈R, as follows

σ(a) = a

max(1, |a|) , (4.15)

v = (v1, v2) and u are bounded functions.

Based on the following Lyapunov function for System (4.14) proposed in [15] :

V (x1, x2) = x2
2 +
ˆ x1

0
σ(s)d s +

ˆ x1+x2

0
σ(s)d s, (4.16)

it has been proven that: for every ǫ> 0, there exists a bounded input v (ǫ) with
∥∥v (ǫ)

∥∥∞ ≤ ǫ

and a compactlly supported input u(ǫ) such that the trajectory of System (4.14) starting

at (0,0) and associated to (u(ǫ), v (ǫ)) tends to infinity. However, by following the arguments

of [15] (see in particular the paragraphs 5.3 till 5.5 pages 323−326), it is easy to obtain

the following result: there exists ǫ0 > 0 such that for every bounded input v = (v1,0) with

‖v1‖∞ ≤ ǫ0, the following inequality hold true: for every bounded input u,

limsup
t→∞

(|x1|+ |x2|) ≤C
(‖v1‖∞+‖u‖∞+‖u‖2

∞
)

, (4.17)

where C is a universal positive constant and (x1, x2) is a trajectory of System (4.14) asso-

ciated to u and v1.

Equation (4.17) will imply that for sufficiently small v1, u, i.e. ‖v1‖∞ ≪ 1 and ‖u‖∞ ≪ 1,

we get

limsup
t→∞

(|x1|+ |x2|) ≪ 1, (4.18)
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which implies that after a sufficiently large time, we will obtain (|x1| + |x2| +u) < 1 and

System (4.14) will become

ẋ1 = x2 + v1,

ẋ2 = −x1 −x2 +u,
(4.19)

which is clearly ISS as we saw in the example presented in the previous section.

Remark 4.3.1. In the studied underactuated systems, the functions v1 and u can model

the observation error coming of velocity observer, or some controls which serve to stabilize

other states in the global system

4.4 Two important underactuated systems

In this thesis, we have studied two particular problems related with two different under-

actuated systems: path-following of a car-type robotic vehicle and trajectory tracking of

a surface marine vessel. The development and proofs are established on the stabilization

of perturbed double integrator based on bounded control input, presented in [15] and

recalled in the previous section. In this section these the dynamic models of these two

underactuated systems are introduced and their control problems are formalized.

4.4.1 Car-type robotic vehicle

The first problem, addressed in Chapter 5, is the path following control of a robot car-

type vehicle using target point.This control problem arises from camera-vision applications

[13, 72], where the vehicle is guided by a target point ahead of the vehicle, within the visual

range of the camera [6, 13]. The target point is fixed at a known distance d > 0 from the

center of gravity on the axis of the vehicle. The control objective is to drive the vehicle,

such that the target point follows the desired path (as shown in Figure 4.1).

The state equations for the vehicle dynamics are





ẋ = Vx cosψ,

ẏ = Vx sinψ,

ψ̇ = Vx κ,

κ̇ = Vx ρ0.

(4.20)

These equations represent the vehicle’s motion with a velocity Vx , along the curve

defined by the its geodesic curvature κ. The control variable ρ0 will be defined later. The
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variable ψ represents the angle between the abscissa axis and the velocity vector (ṗ, q̇)T ,

and κ represents the geodesic curvature of the driving path.

4.4.1.1 Control Objective

The control problem of path following differs from pure stabilization or tracking problems

because the path, described by its curvature κ(.), is defined in space only, not in time.

However, it can be converted into trajectory tracking problem in the following manner:

Let us consider a path Γ with geodesic curvature κr whose absolute value is bounded

by κmax > 0, i.e., for all t ≥ 0, we have

|κr (t )| ≤ κmax . (4.21)

The path Γ will be parameterized as a vehicle trajectory with a forward velocity u(t ) such

that Γ(t ) = (pr (t ), qr (t )) is described by the following state equations





ṗr = u cosψr ,

q̇r = u sinψr ,

ψ̇r = u κr ,

κ̇r = u ρr ,

(4.22)

where the variables have the same definitions as in (4.20) and the subscript r is used

to differentiate between the reference variables and the actual vehicle variables. The arc

length s of Γ is given by s(t ) = s0+
ˆ t

0
u(τ)dτ and the scalar curvature κr (t ) is hence equal

to κ∗r (s(t )).

For the target point, the equations for the coordinates p and q are defined as

p = x +d cosψ,

q = y +d sinψ,
(4.23)

and their dynamics are





ṗ = Vx cosψ−d Vx sinψ κ,

q̇ = Vx sinψ+d Vx cosψ κ,
(4.24)

The control objective is therefore to force the coordinates of the target point in the

p, q reference, to track pr , qr .
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Figure 4.1. The reference trajectory, the vehicle and its target point.

4.4.2 Surface marine vessel

The next problem, addressed in Chapter 6, is the precise trajectory tracking of a surface

marine vessel, such as a boat or a ship. The general 6-DOF rigid body model for surface

marine vessels presented in [31] can be reduced by considering surge, sway and yaw motions

only, under the following assumptions [17],

(H1) Heave, roll and pitch motions induced by drift forces of wind, wave and ocean current

are neglected.

(H2) The inertia, added mass and hydrodynamic damping matrices are diagonal.

The aft propeller configuration provides only the surge force τu and the yaw moment τr .

The kinematic and dynamic equations of the vessel can therefore be written as





ẋ = u cos
(
ψ

)− v sin
(
ψ

)
,

ẏ = u sin
(
ψ

)+ v cos
(
ψ

)
,

u̇ = 1

c
vr −au + τ̄1,

v̇ = −cur −bv,

ψ̇ = r,

ṙ = κuv −dr + τ̄2,

(4.25)
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Figure 4.2. Surface marine vessel

where (x, y) and ψ are the coordinates and the yaw angle of the vessel in the earth-fixed

frame, and u, v and r denote the surge, sway and yaw velocities respectively. The control

inputs τ̄1 and τ̄2 are the normalized expressions of the surge force and yaw moment, given

as τ̄1 = 1

m1
τu and τ̄2 = 1

m3
τr . The parameters a, b, c, d and κ are positive constants

that represent the mechanical properties of the system, namely the inertia mi > 0 and

hydrodynamic damping di , where i = 1, 2, 3 corresponds to surge, sway and yaw motions

respectively. The constants are defined as follows a = d1

m1
, b = d2

m2
, c = m1

m2
, d = d3

m3
,

κ= m1 −m2

m3
.

For control design, the system model (4.25) can be simplified by normalizing the phys-

ical parameters through straightforward variable and time-scale changes. For the sake of

clarity, let us rewrite System (4.25) as follows,

(S̄)






 ẋ

ẏ


 = Rψ


 u

v


 ,


 u̇

v̇


 = −D0


 u

v


− r Ac


 u

v


+


 1

0


 τ̄1,

ψ̇ = r, ṙ =κuv −dr + τ̄2,

(4.26)

where the matrices D0, Rψ and Ac are given as

D0 =

 a 0

0 b


 , Rψ =


 cos

(
ψ

) −sin
(
ψ

)

sin
(
ψ

)
cos

(
ψ

)


 ,

Ac =

 0 −1/c

c 0


 .

(4.27)
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Let us consider the following matrix Dρ = di ag (ρ,cρ), where ρ is a positive constant to

be chosen later. Then we obtain A1 = D−1
ρ Ac Dρ. The time scale s := d t is introduced in

System (4.26) as well as the linear changes of variables (u(t )/dρ, v(t )/dcρ) and r (t )/d , still

denoted (u(s), v(s) and r (s) respectively.

After easy computations and by setting β := κ

cρ2 , τ1 := τ̄1

ρd 2 , τ2 := τ̄2

d 2 and D = di ag (a/d ,b/d),

the dynamics of the vessel, denoted by (S), is rewritten as follows,

(S)






 ẋ

ẏ


 = RψDρ


 u

v


 ,


 u̇

v̇


 = −D


 u

v


− r A1


 u

v


+τ1


 1

0


 ,

ψ̇ = r, ṙ =βuv − r +τ2.

(4.28)

4.4.2.1 Control Objective

Concerning this system, our objective is tracking control of the presented underactuated

marine vessel by controlling its position and orientation. The vessel is forced to follow a

reference trajectory which is generated by a “virtual vessel”, as follows,

(Sr e )






 ẋr e

ẏr e


 = Rψr e Dρ


 ur e

vr e


 ,


 u̇r e

v̇r e


 = −D


 ur e

vr e


− rr e A1


 ur e

vr e




+

 1

0


τ1,r e ,

ψ̇r e = rr e , ṙr e =βur e vr e − rr e +τ2,r e ,

(4.29)

where all variables have similar meanings as in System (6.1). Therefore, the control ob-

jective is to converge S to Sr e .

4.5 Summary

In this chapter, the notions of ISS and stabilization of double integrator chains using sat-

urated control were established. Then, two underactuated systems and their control prob-

lems were introduced. In the following chapters, these control problems will be addressed

using the notions introduced here. The first chapter is dedicated to the path-following
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problem of a car type robotic vehicle. The second chapter deals with a tracking problem

associated with surface marine vehicles.





Chapter 5

Path Following of Robotic Vehicles

As introduced in the previous chapter, we will now address the problem of path-following

of car-type robotic vehicles, using target-points.

5.1 State-of-the-Art and contributions

In the field of autonomous vehicle guidance, navigation and control, path-following prob-

lem of car-type vehicles is of particular interest. Many contemporary researchers have

published various techniques and strategies for this problem, such as [80, 18, 44, 79, 26, 60].

Among open-loop motion planning techniques, differential flatness approach has been sig-

nificant in motion planning to drive vehicles on Cartesian paths [30, 78]. In feedback

control techniques, larger effort has been made on tracking problems. A backstepping

approach has been presented in the context of tracking in [45]. This approach has also

been used in [61], to develop a controller that is robust against vehicle skidding effects.

Do et al. have further improved upon Jiang’s backstepping method in [24] and [25], by

adding observers to render the controller output-feedback and extending it to tracking and

stabilization for parking problems of a vehicle and introducing dynamic update laws to

compensate for parametric uncertainty and modeling errors. In [1] Aguiar et al. have used

adaptive switched supervisory control combined with a non linear Lyapunov-based control

to ensure the global convergence of the position tracking error to a small neighborhood of

the origin. Bloch and Drakunov [9] have used sliding mode control for the stabilization

and tracking of a nonholonomic dynamic system. This controller is global and ensures
79
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convergence to the neighborhood of the desired trajectory. Lee et al. [53] have proposed a

saturated feedback controller for tracking of a unicycle-type vehicle, using its forward ve-

locity and angular acceleration as control inputs. They have also extended this controller

for application on car-type vehicles.

The problem of path following differs from pure stabilization or tracking problems

because the path, described by its curvature κ(.), is defined in space only, not in time.

In this chapter, we have addressed the path following control of a robot car-type vehicle

using target point. This control problem arises from camera-vision applications [13, 72],

where the vehicle is guided by a target point ahead of the vehicle, within the visual range

of the camera [6, 13]. The target point is fixed at a known distance d > 0 from the center

of gravity on the axis of the vehicle. The control objective is to drive the vehicle, such

that the target point follows the desired path (as shown in Figure 5.1). This problem has

been addressed in [19] where a local robust path following strategy has been proposed

using target point. Their solution is based on an open loop control based on inversion

of the nominal model, and a closed loop control for stabilization of the resultant system.

The error dynamics have been expressed in the Frénet frame associated to the followed

path. This technique, also discussed in [65], is convenient only when the vehicle is close,

positioned and oriented to the path.

5.1.1 Contribution

In our work, a global asymptotically stable controller is developed by parameterizing the

path as a “virtual vehicle”, which is tracked by the actual vehicle. In this way, the path

following problem is converted into a tracking problem, with two control inputs: the

angular acceleration of the real vehicle and the velocity of the virtual vehicle. The forward

velocity control of the real vehicle is not considered as part of the navigation problem, as

it is controlled by other intelligent control systems in practical applications (for example,

ABS, ESP [68]). It is instead assumed to be a measured state that is strictly positive,

meaning that the vehicle is in continuous forward motion.

It can be noted that if there is no target point, i.e. d = 0, then the tracking error model

obtained in this study is identical to [53], in which tracking has been achieved by using

saturation on one control input while the other is unbounded. In our case, the introduction

of the target point at a distance makes the dynamics of the tracking error model more

complicated. Specifically, the development produces a first order nonlinear non-globally

Lipschitz differential equation (see equation (5.8)) that can blow up in finite time. To
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overcome this difficulty, our solution necessitates the application of saturated controls for

both our control inputs with arbitrary small amplitude. Consequently, if both the control

inputs are applied on the real vehicle, then the path following problem developed here

becomes equivalent to the generalization of [53], as tracking problem with a target-point.

The work presented in this chapter is the continuation of [49], in which a unicycle

type vehicle had been considered. However, the arguments of the Lyapunov analysis

used for the convergence proof are significantly more involved than that of [49], due to

the added state of the car type vehicle (essentially an integrator) and the fact that one

must keep track of the small amplitudes of the saturations. Therefore, a positive definite

function V is designed instead of a global Lyapunov function, whose time derivative along

the closed-loop system is strictly negative outside a neighborhood of the origin. The

design of V relies on an asymptotic analysis of a Ricatti equation, which is not needed

in [49]. The convergence to zero is then demonstrated using a bootstrap procedure [59],

i.e., once the system errors converge to a neighborhood, they continue to diminish to a

smaller neighborhood, and ultimately converge asymptotically to the origin. The results so

obtained can be extended to the case where only the position of the reference trajectory is

directly known. One should finally notice that backstepping technics do not apply directly

here (especially for the subsystem (η,ξ) defined in Eq.(5.19)) since we need to deal with

(arbitrarily small) bounded inputs and we must perform precise robustness analysis in

order to derive quantitative estimates for several limsup.

5.2 Problem Formulation

Let us recall from Chapter 4, that the vehicle dynamics are represented by





ẋ = Vx cosψ,

ẏ = Vx sinψ,

ψ̇ = Vx κ,

κ̇ = Vx ρ0.

(5.1)

and the path Γ with geodesic curvature κr (|κr (t )| ≤ κmax) is parameterized as




ṗr = u cosψr ,

q̇r = u sinψr ,

ψ̇r = u κr ,

κ̇r = u ρr ,

(5.2)
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It can be noticed that Vx is not necessarily constant, but simply a continuous function

of time, which verifies the following hypothesis: there exist two positive constants 0 <
Vmi n ≤Vmax , such that for all t ≥ 0

Vmi n ≤Vx (t ) ≤Vmax . (5.3)

The strict positivity of the lower bound is necessary to derive our subsequent results.

For the target point, the equations for the coordinates p and q are defined as

p = x +d cosψ,

q = y +d sinψ.
(5.4)

We will also suppose throughout that

(H1) dκmax < 1.

Remark 5.2.1. The above assumption may be considered as a technical one or a design

constraint for positioning the target point. However, it is reasonable to upper bound the

curvature of the reference path in terms of the distance d . Indeed, tracking a circle of

radius d ′ < d with a point fixed at a distance d in front of a vehicle is impossible. To see

that, one can see that intuitively of rely on equation (5.44) given below. At the light of the

previous example, Hypothesis (H1) is almost optimal.

The dynamics of the target point in a form similar to (5.1) can be obtained by deriving

the precedent equations:





ṗ = Vx cosψ−d Vx sinψ κ,

q̇ = Vx sinψ+d Vx cosψ κ,
(5.5)

The curve defined by the target point is traveled at the following speed

vd =
√

ṗ2 + q̇2 =Vx

√
1+ (κd)2. (5.6)

Our objective now is to define the dynamics of the target point as those of a car. For

that purpose, we consider θ as the angle between the abscissa axis and the velocity vector

(ṗ, q̇)T . One easily gets that

θ =ψ+arctan(κd), (5.7)

then ṗ = vd cos(θ), q̇ = vd sin(θ), and the scalar curvature ω is defined by ω= θ̇

vd
.
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Figure 5.1. The reference trajectory, the vehicle and its target point.

We define the dynamics of ω by the new control variable ρ := ω̇/vd . Deriving equa-

tion (5.7), we obtain

d κ̇=Vx (1+ (κd)2)((1+ (κd)2)1/2ω−κ). (5.8)

Hence the dynamics of the target point (p, q) becomes




ṗ = vd cosθ,

q̇ = vd sinθ,

θ̇ = vd ω,

ω̇ = vd ρ.

(5.9)

The error between the target point and the reference curve is defined as

ep = p −pr ,

eq = q −qr ,

ξ = θ−ψr ,

η = ω−κr .

(5.10)

and the error dynamics is given by




ėp = vd cosθ−u cosψr ,

ėq = vd sinθ−u sinψr ,

ξ̇ = vd ω−κr u,

η̇ = vd ρ−ρr u.

(5.11)
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5.3 Control design and Lyapunov Function

In this section, we will present a control law u(ep ,eq ,ξ,η, t ) and ρ(ep ,eq ,ξ,η, t ), such that

the system (5.11) is globally asymptotically stable (GAS for short) w.r.t. origin. Note

that, from the equations (5.6) and (5.8), one recovers the control ρ0 once vd and ρ are

determined. However, there is an issue of possible blow-up in finite time for κ (and thus

for ρ0). Indeed, assuming that one is able to stabilize (5.11) to zero, then the control ρ0 is

obtained by derivating κ, which is in turn obtained by solving (5.8), seen as an o.d.e. with

unknown κ since ω tends to κr asymptotically. Equation (5.8) is of the type κ̇ = f (κ, t )

with the right-hand side f not globally Lipschitz w.r.t. κ, hence it is not immediate to

insure global existence of κ for all t ≥ 0. We will show later on, that an appropriate choice

of u and ρ under Hypothesis (H1) solves this problem (see Lemma 5.4.1 below).

The standard saturation function σ(x) defined for x ∈R by

σ(x) = x

max(1, |x|) . (5.12)

Let us first of all perform a variable change on the control, as follows

u = vd (1+u1),

ρ = ρr (1+u1)+u2,
(5.13)

where u1, u2 are the new control variables.

Remark 5.3.1. In order to define ω, ρ and to perform the change of inputs variables,

vd must be greater than zero and thus Vx must also be strictly positive. It is therefore not

obvious to proceed as above, if Vx only satisfies (PEC).

With the boundedness of κ and Vx , equation (5.6) implies that νd is bounded. If one

insists on having ρ bounded, then we must assume also that ρr is bounded, as

∣∣ρr
∣∣≤ ρr,max , (5.14)

where ρr,max is a known positive constant.

The system (5.11) is therefore rewritten as





ėp = vd (cosθ−cosψr − u1 cosψr ),

ėq = vd (sinθ− sinψr − u1 sinψr ),

ξ̇ = vd (η−κr u1),

η̇ = vd u2.

(5.15)
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The bounded controls u1 and u2 can be expressed in the following form:

u1 = C1σ(·),

u2 = Dσ(·),
(5.16)

with sufficiently small gains C1 and D. Since κ is bounded, vd also remains uniformly

bounded throughout t ≥ 0. We can hence change the time scale by considering d s = vd d t .

To keep the notations simple, we would continue to use t for time, and the point for the

derivation with respect to s, like
d f

d s
= ḟ . This has no effect on the control laws since our

design is based on static feedback (w.r.t. the error). The error dynamics hence becomes





ėp = cosθ−cosψr −u1 cosψr ,

ėq = sinθ− sinψr −u1 sinψr ,

ξ̇ = η−κr u1,

η̇ = u2.

(5.17)

Let us perform the following change of variable corresponding to a time-varying rota-

tion in the frame of the reference trajectory

y1 = ep cosψr +eq sinψr ,

y2 = −ep sinψr +eq cosψr .
(5.18)

The system becomes





ẏ1 = −u1 + (cosξ−1)+ (1+u1)κr y2,

ẏ2 = sinξ− (1+u1)κr y1,

ξ̇ = η−κr u1,

η̇ = u2,

(5.19)

where u1, u2 will be chosen such that (5.19) becomes GAS.

The control variables u1 and u2 are defined as follows

u1 = C1σ(y1),

u2 = −Dσ(
k1

D
ξ+ k2

D
η+ C2

D
σ(y2)),

(5.20)

where k1,k2,C1,C2,D are positive real numbers and σ(.) is the standard saturation func-

tion defined in (5.12). Typically, we want to stabilize the system with arbitrarily small

saturation levels C1 and D. In conclusion, the final system, noted (Σ) becomes
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(Σ)





ẏ1 = −C1σ(y1)+ (cosξ−1)+µy2,

ẏ2 = sinξ−µy1,

ξ̇ = η−κr C1σ(y1),

η̇ = −Dσ(
k1

D
ξ+ k2

D
η+ C2

D
σ(y2)),

(5.21)

where

µ :=κr (1+C1σ(y1)) and |µ| ≤ κmax (1+C1). (5.22)

In the following section, it is shown that Global Asymptotic Stability of the system (5.21)

can be achieved by proper selection of C1, C2, k1, k2.

More precisely, we prove the following theorem, which is the main result of this chapter.

Theorem 5.3.2. Consider a path Γ with geodesic curvature κ∗r verifying (4.21) for some

κmax > 0. It is then possible to track asymptotically γ with a point fixed at a distance d > 0

in front of a vehicle, where dκmax < 1, by choosing the control laws u1,u2 according to

(5.20) with constants k1,k2,C1,C2,D, which satisfy the following conditions. Set a := 3

16
.

k1 = ak2
2, C2 =

1

2βk2
, C1 =

aC2

4k2
, (5.23)

where β is a positive constant larger than 8, D is an arbitrary positive constant, fixed

a-priori, and k2 is large enough that
1

k2D
≪ 1.

Proof. The proof of GAS stability of System (5.21) has been carried out as an argument

based on Lyapunov analysis.

The first remark consists in focusing on the last two equations in (Σ) and we will first

treat the case where there is no saturation on η̇.

In that case, the last two equations in the previous section define a double integrator

system, which shall now be denoted as (Sk):

(Sk )




ξ̇= η+ v1,

η̇=−k1ξ−k2η+ v2,
(5.24)

with,

v1 =−κr C1σ
(
y1

)
,

v2 =−C2σ(y2).
(5.25)
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The system (Sk ) can be presented in the matrix form

Ż = AZ +BU , (5.26)

where,

Z =

 ξ

η


 , A =


 0 1

−k1 −k2


 , B =


 1 0

0 1


 , U =


 ν1

ν2


 . (5.27)

Since A is Hurwitz, there exists a quadratic form Vk = Z T Pk Z , where Pk is a positive

definite square matrix, obtained by solving the following Riccati equation

Pk A+ AT Pk +
P 2

k

Υ2
L

=−I , (5.28)

where, ΥL is the L2-gain related to the system (Sk ). The derivative V̇k is given by the

following equation

V̇k =−‖Z‖2 − ‖Pk Z‖2

Υ2
L

+2Z T PkU , (5.29)

and verifies

V̇k ≤−‖Z‖2 +Υ2
L‖U‖2. (5.30)

The Lyapunov function proposed for the global system (5.21) is

V = MVk +k1
y2

1 + y2
2

2
+ηy2 +k2 y2ξ, (5.31)

where M , k1, k2 are positive constants to be chosen later in particular to ensure that

V is positive definite function, see Proposition 5.3.6 below. Moreover, a straightforward

computation yields the following:

Proposition 5.3.3. The derivative of the Lyapunov function can be upper bounded as

follows,

V̇ ≤ −M(ξ2 +η2)−k1C1 y1σ
(
y1

)−C2 y2σ
(
y2

)+MΥL
2
((
κr C1σ

(
y1

))2 + (C2σ
(
y2

)
)2

)

+k1 y2(sinξ−ξ)+k1 y1(cosξ−1)−µηy1 +ηsinξ−k2 y2κr C1σ
(
y1

)−k2ξµy1 +k2ξsinξ.
(5.32)

The rest of the argument is divided in two main steps. In the first step, the existence

of appropriate constants M ,k1,k2,C1,C2 is proven, such that V has a positive definite
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quadratic form in all the variables. This means that there exists a bounded region Yk2 (for

k2 typically large), in the (y1, y2)−plane:

Yk2 = {(y1, y2)| |y1| ≤
C

k2
2

, |y2| ≤
C

k3/2
2

}, (5.33)

such that outside this region, the derivative of V along trajectories of (5.21) fulfills the

following inequality

V̇ ≤−M

2
(ξ2 +η2)−k1

C1

2
y1σ

(
y1

)− C2

2
y2σ

(
y2

)
. (5.34)

In the second step, a bootstrap-type argument is applied to show the convergence of

trajectories of (5.21) to zero, as t tends to infinity.

These two steps have been achieved in the following manner: the L2-gain of (Sk ),

denoted by ΥL is calculated, then Pk is estimated for k2 tending to infinity. Then ISS

(input-to-state) type bounds are calculated for ξ and η and the derivative of the Lyapunov

function is estimated outside Yk2 , and the argument is concluded. The detailed calculations

have been presented in the following subsections.

5.3.1 L2-gain ΥL

Let us study the system (Sk), defined in the equation (5.24). We recall that, (Sk) can be

presented in the following matrix form


 ξ̇

η̇




︸ ︷︷ ︸
Ż

=

 0 1

−k1 −k2




︸ ︷︷ ︸
A


 ξ

η




︸ ︷︷ ︸
Z

+

 1 0

0 1




︸ ︷︷ ︸
B


 v1

v2


 .

︸ ︷︷ ︸
U

(5.35)

Lemma 5.3.4. We will tune k2 ≥ 20 with k1 =
3

16
k2

2, then 1 <ΥL < 1.2.

The proof of Lemma 5.3.4 is given in Appendix.

5.3.2 Estimation of Pk for large k2

In this section, we take k1 = ak2
2 with a = 3

16
and k2 tending to infinity. We will prove the

following two results whose proofs are given in Appendix.
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Lemma 5.3.5. As k2 tends to infinity, the positive define matrix Pk defined in (5.28)

admits the following asymptotic expansion

Pk =

p1k2 p2

p2
p3

k2


 , (5.36)

with pi = Fi (1+O(
1

k2
2

)), 1 ≤ i ≤ 3, where the Fi are positive constants (only depending on a)

so that F1F3 −F 2
2 > 0.

Proposition 5.3.6. For k2 large enough and M =βk2, the function V defined in (5.31)

is a positive quadratic form in (ξ,η, y1, y2).

5.3.3 ISS bounds for ξ and η

For a real-valued continuous and bounded function f defined on R+, we set

| f |∗(t ) := sup
s≥t

| f (s)|,

and

‖ f ‖∗ := limsup
s→∞

| f (s)|.

Lemma 5.3.7. Consider the system (5.35). By tuning k1 =
3

16
k2

2 , the ISS bounds of ξ

and η satisfy the following inequalities for t ≥ 0,





|ξ|∗(t ) ≤ 4

k2

(
κmaxC1 +

4

3k2
C2

)
+‖e At Z0‖,

|η|∗(t ) ≤ κmaxC1 +
16

3k2
C2 +‖e At Z0‖,

(5.37)

where Z0 is the initial condition.

As a consequence, we have, for t ≥ 0 large enough,





|ξ|∗(t ) ≤ 8

k2

(
κmaxC1 +

4

3k2
C2

)
,

|η|∗(t ) ≤ 2κmaxC1 +
32

3k2
C2.

(5.38)

The proof of the above lemma is given in Appendix.

From the argument of Lemma 5.3.7, other ISS bounds for ξ and η can simply be derived

by considering the system (Sk ) defined in (5.24) with the controls ν1 and ν2 given in (5.25).
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Lemma 5.3.8. Let (Sk ) be the system defined in (5.24) with the controls ν1 and ν2 given

in (5.25). Assume that

‖y1‖∗ <κmax , ‖y2‖∗ < 1.

Then the bounds (5.38) can be improved as follows: there exists T > 0 such that, for every

t > T ,





|ξ|∗(t ) ≤ 8

k2

(
C1|y1|∗(t )+ 4

3k2
C2|y2|∗(t )

)
,

|η|∗(t ) ≤ 2C1|y1|∗(t )+ 32

3k2
C2|y2|∗(t ).

(5.39)

Proof. The argument is straightforward by replacing C1 and C2, which were used to bound

ν1 and ν2 in (36) by κmaxC1|y1|∗(t ) and C2|y2|∗(t ).

For the rest of the chapter, we choose C1,C2 << 1 so that the limsup of both ξ and η

are very small. In the subsequent computations, we can assume with no loss of generality

that |cosξ−1| ≤ ξ2

2
, |sinξ| ≤ |ξ| and |sinξ−ξ| ≤ |ξ|3

3
.

Proposition 5.3.9. The following inequality holds true

V̇ ≤ −M(ξ2 +η2)−k1C1 y1σ
(
y1

)−C2 y2σ
(
y2

)+MΥL
2
((
κr C1σ

(
y1

))2 + (C2σ
(
y2

)
)2

)

+k1|y2||ξ|3
3

+ k1|y1|ξ2

2
+µηy1 +|ηξ|−k2 y2κr C1σ

(
y1

)−k2ξµy1 +k2ξ
2.

(5.40)

5.3.4 Estimation of V̇ for y ∉ Yk2

In this subsection, we choose the several parameters so that V̇ verifies (5.34) outside the

region Yk2 , for k2 large enough. The results are summarized in the next lemma.

Lemma 5.3.10. For the choice of parameters defined in Theorem 5.3.2, there exists k2

large enough and T > 0, such that, for every t > T , Eq. (5.34) is verified.

The proof of Lemma 5.3.10 is given in Appendix.

In the rest of the chapter, the symbol C has been used to represent arbitrary constants,

depending only on β.

Remark 5.3.11. Notice that inside Yk2, the term k2|y1ξ| cannot be controlled since we

only have for that purpose the term βk2ξ
2 +C y2

1.
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5.3.5 Final step

Note that outside Yk2 , for t large enough, V̇ ≤− C

k4
2

. To see that, we proceed as before since

either |y1| ≥
C

k2
2

or |y2| ≥
C

k3/2
2

. As a consequence, every trajectory of (5.21) must reach

Yk2 in finite time. Therefore, along every trajectory of (5.21), the value of V is eventually

smaller than Vmax , the maximal value of V over the set

‖ξ‖ ≤ C

k3
2

, ‖η‖ ≤ C

k2
2

, |y1| ≤
C

k2
2

, |y2| ≤
C

k3/2
2

.

By using (41) and Lemma5.3.7, we get

Vmax ≤ C

k2
.

We deduce by using again (41) that, along every trajectory of (5.21) and for t large enough

y2
1 + y2

2 ≤ C

k3
2

.

We can then use the improved ISS bounds for ξ and η obtained in Lemma 5.3.8. In

particular, one gets that, for t large enough,

|ξ|∗(t ) ≤ C

k3+3/2
2

, |η|∗(t ) ≤ C

k2+3/2
2

,

In turn, this new bound for ξ allows one to shrink the bounded region Yk2 outside which

V̇ verifies (5.34). Indeed, one has to satisfy either (39) or (40), which leads to either

|y1| ≥
C

k2+3/2
2

or |y2| ≥
C

k3
2

.

Continuing the procedure described before, we construct inductively four sequences of

positives numbers y1,n , y2,n , ξn and ηn , n ≥ 0, of upper bounds of ‖y1‖∗, ‖y2‖∗,‖ξ‖∗ and

‖η‖∗ respectively, such that the following inequalities are verified

ξn ≤C
y1,n + y2,n

k3
2

, ηn ≤C
y1,n + y2,n

k2
2

,

which are obtained from (5.39), and

y1,n+1 ≤Cξn , y2
2,n+1 ≤C k2

2ξn y1,n ,

which are, according to (39) and (40), the equations needed to define, at the (n +1)-th

step, the bounded region outside which V̇ verifies (5.34). It is simple to prove that, for all

non negative integer n, we have

y1,n+1 + y2,n+1 ≤
C√
k2

(y1,n + y2,n).

This immediately yields the convergence to zero of trajectories of (5.21).
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Remark 5.3.12. The bootstrap procedure we have used above is clearly an instance of a

small gain theorem.

5.4 Stabilization of the original system

We have stabilized System (5.21) in case there is no saturation on η̇. We will now show

that for every initial condition, the term inside the outer saturation in η̇ becomes bounded

by 1 for t sufficiently large (i.e. there exists T > 0 such that, for t > T , the thesis holds

true). Thus the last two equations of (5.21) are given by (5.24). To show that, we need

an ISS-type of result on the system

(Sk )





ξ̇= η+C1d1,

η̇=−Dσ(
k1

D
ξ+ k2

D
η+ C2

D
d2),

(5.41)

where d1 and d2 are amplitude-bounded perturbations which amplitudes are bounded by

constants eventually depending on κmax . We first perform the linear change of variable

defined by

X (t ) = k1

D
ξ(

k2t

k1
), Y (t ) = k2

D
η(

k2t

k1
).

A direct computation shows that the dynamics of (X ,Y ) is given by





Ẋ = Y + k2C1

D
d1,

Ẏ =− 1

a
σ(X +Y + C2

D
d2).

(5.42)

Since both
k2C1

D
and

C2

D
are of the magnitude of

1

k2D
, these constants can be chosen

arbitrarily small. Then, as a consequence of results presented in section 4.3 pages 71-72,

one gets that there exists C (a) > 0 a positive constant only depending on a so that

limsup
t→∞

(|X (t )|+ |Y (t ))| ≤ C (a)

k2D
(‖d1‖∞+‖d2‖∞). (5.43)

Therefore, |X (t )+Y (t )+ C2

D
d2(t )| becomes strictly less than one for t large enough if

1

k2D
is small enough.

The following lemma provides bounding conditions on u1 and u2 that would guarantee

that the differential equation given in (5.8) is defined for all times t ≥ 0.
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Lemma 5.4.1. For k2D large enough, the differential equation in κ given by (5.8) is

defined for all times t ≥ 0.

Proof of Lemma 5.4.1 After multiplying (5.8) by κ, one can rewrite as follows,

dκκ̇

(1+ (dκ)2)3/2
= |κ|Vx

[
si g n(κ)dη+ (1− d |κ|√

1+ (κd)2
)+ (dκr si g n(κ)−1)

]
. (5.44)

The right-hand side of the above inequality is majored by

|κ|Vx (d |η|+dκmax −1+ 1

1+ (dκ)2 ).

If we can ensure that

d‖η‖∞ < 1−dκmax , (5.45)

then this will easily imply that κ does not blow up in finite time. Indeed, assuming that

(5.45) holds, then there exists K > 0 (only depending on d‖η‖∞ and dκmax) such that the

right-hand side of (5.44) becomes negative for |κ| ≥ K . This readily yields that |κ| becomes

strictly less than K in finite time and therefore does not blow up in finite time.

We now show that (5.45) holds true with an appropriate choice of the constants k1,k2.

Without loss of generality we can assume that ξ(0) = η(0) = 0. In that case, one can replace

the limsup’s in the left-hand side of (5.43) by ‖X ‖∞+‖Y ‖∞. Since
1

k2D
can be chosen

arbitrarily small, (5.45) follows.

Remark 5.4.2. The proposed method appears to require global localization of the mobile

robot and the desired trajectory at every sampling instant with respect to the world frame,

which is usually very difficult to obtain in real applications. However, this does not restrict

or limit the application of the presented controller in real life. For example, the position

coordinates in (x, y) frame of reference can be obtained by a camera and the angle ψ (the

direction of vehicle) by a gyroscope. The position of the target point can then be translated

into (p,q) frame of reference given in Equation (5.4). From here, a finite time differentiator

can be used to get ṗ, q̇, and later on the angle θ. A simple exponential (even homogeneous

finite time) observer can be used to get η as in [35].

Remark 5.4.3. Since the proof of the convergence is using a Lyapunov function which is

strict outside Yk2, the results of Theorem 5.3.2 can easily be extended in case where we have

only direct access to (pr (·), qr (·)). Note that the gradient of the Lyapunov function is linear

in its argument and thus, if the states are obtained through observers of differentiators, this

will require Ci , i = 1,2 in (5.34) to be changed with Ci+ fi (t ), where fi (·) is the observation or
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estimation error. There exist fixed time convergent differentiators such as [2], which ensure

that the derivative converges in fixed finite time. On the other hand, if the estimation

or convergence is asymptotic, it has been shown in [15, 35] that if f1, f2 tend to zero

exponentially, then the controller will also converge and the proof will not change.

5.5 Simulations

The performance of the presented controller can be seen in the simulation results obtained

using the following parameters:

d = 2 m, Vx = 5 m.s−1.

dκmax has been chosen much smaller than 1 in order to emphasize upon significant

initial conditions (in particular, ξ(0) close to π) so that the resultant illustrations highlight

our claim. The initial conditions imposed upon the error are

ep (0) = eq (0) = 10 m, ξ(0) = 9π/10,

The parameters of the controller was taken as follow:

C1 = 0.1172, C2 = 0.5, k1 = 7500, k2 = 200, D = 50.

Figure 5.2 shows the reference trajectory, the target point and vehicle in a 2D co-

ordinate plane. It can be seen that the system converges to the reference trajectory

asymptotically. Once the vehicle converges, the target point and the vehicle follow the

trajectory very closely. The convergence can also be seen in the error graph shown in

figure 5.3, where the initial conditions are also visible.

Figures 5.4 and 5.5 show the control signals u and ρ respectively. It is clear from these

figures that the controller does not attain extremely large values, and is bounded. This is

an essential property in real systems, which does not result in impossible control signals

when the initial error is very large.
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Figure 5.2. Reference trajectory, of the vehicle and its target point

Figure 5.3. Errors ep , eq , ξ and η
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Figure 5.4. Control u

Figure 5.5. Control ρ
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5.6 Summary

In this chapter, we have addressed the problem of path following using a target point

rigidly attached to a car type vehicle, by controlling only the orientation of the vehicle by

its angular acceleration. The main idea was to determine a control law using saturation

which ensures global stabilization in two steps. The proposed Lyapunov function forces

the errors to enter a neighborhood of the origin in finite time. The Lyapunov analysis also

shows that by a bootstrap procedure, this neighborhood contracts asymptotically to zero.

Simulation results illustrate the GAS performance of the controller.





Chapter 6

Tracking of a Underactuated Marine

Vessel

The next problem related to underactuated systems, as introduced in Chapter 4, is the

precise tracking of surface marine vessels. In this chapter, we consider the problem of

tracking control of a 3-DOF vessel model (surge, sway and yaw [31]), working under two

independent actuators capable of generating surge force and yaw moment only.

6.1 State-of-the-art and contribution

Precise tracking control of surface marine vessels (ships and boats) is often required in

critical operations such as support around off-shore oil rigs [69]. It has been shown in

[12, 20, 94] that under Brockett’s necessary condition [12], stabilization of this system

is impossible with continuous or discontinuous time-invariant state feedback. This can

be seen in [34] where the authors developed a continuous time-invariant controller that

achieved global exponential position tracking but the vessel orientation could not be con-

trolled. In addition, it is shown in [76] that the underactuated ship can not be trans-

formed into a driftless chained system; which means that the control techniques used for

the similar problem of nonholonomic mobile robot control cannot be applied directly to

the underactuated ship control. Accordingly, control of underactuated vessels in this con-

figuration has been studied rigorously by contemporary researchers, examples of which are

[70, 32, 5, 79, 14].
99
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In [76], the author showed that under discontinuous time-varying feedback, the under-

actuated vessel is strongly accessible and small-time locally controllable at any equilib-

rium. A discontinuous time-invariant controller was proposed which showed exponential

convergence of the vessel towards a desired equilibrium point, under certain hypotheses

imposed on the initial conditions. In [69], a continuous periodic time-varying feedback

controller was presented that locally exponentially stabilizes the system on the desired

equilibrium point by using a global coordinate transformation to render the vessel’s model

homogenous. In [70], a combined integrator backstepping and averaging approach was

used for tracking control, together with the continuous time-varying feedback controller

for position and orientation control. This combined approach, later on used in [71], pro-

vides practical global exponential stability as the vessel converges to a neighborhood of

the desired location or trajectory, the size of which can be chosen arbitrarily small. Jiang

[43] used Lyapunov’s direct method for global tracking under the assumption that the

reference yaw velocity requires persistent excitation condition; therefore implying that a

straight line trajectory could not be tracked. This drawback was overcome in [23] and

[3]. Do et al. [23] proposed a Lyapunov based method and backstepping technique for

stabilization and tracking of underactuated vessel. In this work, conditions were imposed

on the trajectory to transform the tracking problem into dynamic positioning, circular

path tracking, straight line tracking and parking.

6.1.1 Contribution

In this chapter, we address the global tracking control of underactuated vehicles, using

saturated state feedback control. Our work addresses the particular case, that has not

been treated in [23], i.e. the yaw angle of the tracked trajectory does not admit a limit

at time goes to infinity. This research is therefore in the same direction as in [17], where

the author achieved practical stability. Our algorithm provides asymptotic convergence to

the tracked trajectory from any initial point. The advantage of using saturated controls is

that the global asymptotic stability is ensured while the control inputs remain bounded, as

real life actuators are all limited in output, see for instance [36]. The proposed controller

has been proven to work with state measurements, as well as with observers in the case

where all states may not be measured (cf. also [36]).



6.2. PROBLEM FORMULATION 101

6.2 Problem Formulation

As derived in Chapter 4, the dynamics of the vessel, denoted by (S), are as follows,

(S)






 ẋ

ẏ


 = RψDρ


 u

v


 ,


 u̇

v̇


 = −D


 u

v


− r A1


 u

v


+τ1


 1

0


 ,

ψ̇ = r,

ṙ = βuv − r +τ2.

(6.1)

The goal of this work is tracking control of the presented underactuated marine vessel

by controlling its position and orientation. The vessel is forced to follow a reference

trajectory which is generated by a “virtual vessel”, as follows,

(Sr e )






 ẋr e

ẏr e


 = Rψr e Dρ


 ur e

vr e


 ,


 u̇r e

v̇r e


 = −D


 ur e

vr e


− rr e A1


 ur e

vr e


+


 1

0


τ1,r e ,

ψ̇r e = rr e ,

ṙr e = βur e vr e − rr e +τ2,r e ,

(6.2)

where all variables have similar meanings as in System (6.1). Tracking control is achieved

by using saturated control inputs and under the assumption that the velocities are bounded

[15, 49]. This assumption holds true physically as resistive drag forces increase as the

velocity increases and therefore the latter cannot increase indefinitely if the control is

bounded. These assumptions are also valid for the reference system and are formalized in

the following manner:

Assumption 6.2.1. There exist constraints on the control inputs such that

|τ̄1| ≤ τ̄1,max, |τ̄2| ≤ τ̄2,max, (6.3)

where τ̄1,max and τ̄2,max are known positive constants. The forces τ1,r e and τ2,r e verify the

same bounds as above and the reference angle ψr e does not converge to a finite limit as t

tends towards infinity.

The variable and time-scale change defined in the previous section requires the following

new bounds to be defined for the new control inputs τ1 and τ2, denoted by τ1,max and τ2,max
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respectively: τ1,max = τ̄1,max

ρd 2 and τ2,max = τ̄2,max

d 2 . We consider the following condition

upon the saturation limits of the control inputs, to be used later on in the control design.

We use here m1 to denote min(a1/2,b1).

C1: β
τ2

1,max

a1m1
< τ2,max . (6.4)

Note that this condition is always satisfied by an appropriate choice of the parameter ρ.

Our control objective is that (S) follows (Sr e ). With respect to the frame of reference of

the reference trajectory (Sr e ), the error system is defined as

ex = cos(ψr e )(x −xr e )+ sin(ψr e )(y − yr e ),

ey = −sin(ψr e )(x −xr e )+cos(ψr e )(y − yr e ),

eu = u −ur e , ev = v − vr e ,

eψ = ψ−ψr e , er = r − rr e .

(6.5)

Defining new controllers w1 and w̃2, as follows, w1 := τ1 −τ1,r e and w̃2 := τ2 −τ2,r e , the

dynamics of system (6.5) becomes

(Se )






 ėx

ėy


 = −rr e A1


 ex

ey


+Dρ


 eu

ev


+ si n(eψ)A1Dρ


 ur e

vr e




+(
cos

(
eψ

)−1
)

Dρ


 ur e

vr e


+ (

Reψ − I d2
)

 eu

ev


 ,


 ėu

ėv


 = −D


 eu

ev


− rr e A1


 eu

ev


−er A1


 ur e

vr e


+


 1

0


w1

+er


 −ev

eu


 ,

ėψ = er ,

ėr = β (uv −ur e vr e )−er + w̃2.

The control objective is to force the error system (Se ) to 0, using w1 and w̃2.

6.3 Controller design

We first develop the following intermediate result, concerning the bounds of u, v , r .

Lemma 6.3.1. The variables u, v, r are bounded and satisfy

limsup
t→∞

‖(u, v)‖ ≤ τ1,max

2
p

a1m1
,

limsup
t→∞

|r | ≤ τ2,max +β
τ2

1,max

2a1m1
.

(6.6)
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Proof. Let us consider

uu̇ + v v̇ = u (−a1u + r v +τ1)+ v (−b1v − r u)

≤ −a1

2
u2 −b1v2 + τ2

1

2a1
≤−m1(u2 + v2)+ τ2

1

2a1
,

then deriving the first inequality in (6.6). Similarly, consider the following equation,

r ṙ = −r 2 − r
(
τ2 +βuv

) = −r (r +τ2 +βuv), from which we derive the second inequality in

(6.6).

Remark 6.3.2. As the reference trajectory system is similar to the vessel model, it can

be shown that the limits defined in Lemma 6.3.1 are valid for ur e , vr e , rr e as well.

We define a new control variable w2 :=β
(
uv −ur e vr e f

)+ w̃2. As the upper bounds of u, v ,

ur e and vr e f are known according to Lemma 6.3.1 and Remark 6.3.2, we obtain

limsup
t→∞

β
∣∣uv −ur e vr e f

∣∣≤β
τ2

1,max

a1m1
. (6.7)

If |w2| ≤ U2, for a positive constant U2, one must have U2 +β
τ2

1,max

a1m1
≤ τ2,max , which is

guaranteed by Condition C1. With these preliminaries established, we will now proceed

to fulfill the control objective by using the bounded controls w1 and w2. Let σ(.) be the

standard saturation function, i.e., σ(t ) = t

max(1, |t |) . The main result of this work is given

next.

Theorem 6.3.3. If Assumption 6.2.1 and Condition C1 are fulfilled, then for an ap-

propriate choice of constants U1, ρ1, ξ, M , U2, k1, k2, µ, the following controller ensures

global asymptotic stability of the tracking error system (Se ):

w1 = −U1σ

(
ξeu

U1

)
−ρ1σ

(
M(ex +

1

µ
eu)

)
,

w2 = −U2σ

(
k1

U2
eψ+ k2 −1

U2
er

)
.

(6.8)

Proof of Theorem 6.3.3.

We first consider the errors eψ and er and take k1,k2 > 0 large in the control in-

put w2 defined previously. The dynamics of eψ and er in (Se ) ėψ = er and ėr = −er −
U2σ

(
k1

U2
eψ+ k2 −1

U2
er

)
.

Lemma 6.3.4. If U2 > 0 and k1 > k2 − 1 > 0, then after a sufficiently large time, the

saturated control operates in its linear region and the errors eψ and er converge to zero

exponentially.
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Proof. Let us consider the Lyapunov function V ,

V = α

2
e2

r +S

(
k1

U2
eψ+ k2 −1

U2
er

)
, (6.9)

where S(ξ) :=
ˆ ξ

0
σ(s)d s, and α= k1 −k2 +1

U 2
2

> 0. Set z := k1

U2
eψ+ k2 −1

U2
er . Then, one has

V̇ =αer ėr +σ(z)ż =−αe2
r − (k2 −1)σ2(z). (6.10)

Then V̇ < 0 for (eψ,er ) 6= (0,0); and after a finite time we obtain

∣∣∣∣
k1

U2
eψ+ k2 −1

U2
er

∣∣∣∣≤ 1. The

dynamics of eψ and er becomes linear, i.e., ėψ = er and ėr = −k1eψ−k2er . As k1,k2 > 0,

(eψ,er ) converges exponentially to zero.

Lemma 6.3.4 shows that the errors eψ and er converge to zero under the control w2.

We will now consider the errors eu and ev . We choose the constants µ and ξ such that

a1 +ξ=µρ and b1 =µcρ, implying that ξ= b1/c −a1 and µ> 0.

Lemma 6.3.5. Consider the dynamics of eu and ev given in Equation (6.6). If U1 and ρ

are chosen as a1 >U1+ρ and U1 >

∣∣∣a1 − b1
c

∣∣∣

min
(
a1, b1

c

)ρ, then the control w1 :=−U1σ

(
ξeu

U1

)
−ρσ1(.),

with σ1(.) to be chosen later, ensures that eu and ev satisfy the following inequalities:

limsup
t→∞

‖(eu ,ev )‖ É ρp
m2ã

,

with ã = inf
t>0


a1 +ξ

σ
(
ξeu
U1

)

ξeu
U1


> 0, m2 := min(ã/2,b1).

(6.11)

Proof. Notice that ã > 0 since it is trivially the case if ξ ≥ 0, and otherwise, ã ≥ a1 +ξ =
b1

c
. Then, one has eu ėu + ev ėv =−a1e2

u −b1e2
v + er (eu vr e − ev ur e )+ eu w1. By applying the

control w1, we get eu ėu + ev ėv ≤ −a1e2
u − b1e2

v −U1euσ

(
ξeu

U1

)
− ρeuσ1(.)+C0 |er |

√
e2

u +e2
v ,

where C0 := ūmax + v̄max . According to Lemma 6.3.4, er tends to zero, i.e., for large t , one

has eu ėu + ev v̇ ≤ − [a1 +ξs(t )]e2
u −b1e2

v −ρeuσ1(.). Then (6.11) results from the following

inequality

eu ėu +ev v̇ ≤−m2(e2
u +e2

v )+ ρ2σ2
1(·)

ã
. (6.12)

Lemma 6.3.5 proves the convergence of eu and ev to a neighborhood of zero. Since

ã ≥ min

(
a1,

b1

c

)
, one gets that limsup

t→∞

∣∣∣∣
ξeu

U1

∣∣∣∣< 1, and the controller exits saturation in finite
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time and enter its linear region of operation. We get σ

(
ξeu

U1

)
= ξeu

U1
, and the dynamics of

eu and ev become

ėu = −µρeu + rr e ev −ρσ1(.)+er vr e −er ev ,

ėv = −µcρev − rr e eu −er ur e +er eu .

Define W = (W1,W2)T := (ex ,ey )T + (eu ,ev )T /µ. Then one has the following result.

Lemma 6.3.6. Let W defined previously and the controller w1 given in (6.8) with σ1(.) =
σ(MW1), where M is an arbitrary positive constant. Then W tends to a finite limit W̄ =
(0,W̄2)T .

Proof. The dynamics of W can be expressed as

Ẇ = −rr e A1W + rr e

µ
A1


 eu

ev


+ sin

(
eψ

)
A1Dρ


 ur e

vr e




+O


e2

ψ,
∣∣eψ

∣∣

 eu

ev




− rr e

A1

µ


 eu

ev




−ρ
µ
σ(MW1)


 1

0


+O (|er | (1+‖(eu ,ev )‖)) .

In order to find the limsup of ‖W ‖, we calculate

W T Ẇ = sin
(
eψ

)
W T A1Dρ


 ur e

vr e


− ρ

µ
W1σ(MW1)

+W T


O


e2

ψ,
∣∣eψ

∣∣

 eu

ev


+O (|er |)




 ,

= O
(‖W ‖ .

∥∥eψ,er
∥∥)− ρ

µ
W1σ(MW1),

which implies that |W T Ẇ | + ρ

µ
W1σ1(MW1) É ‖W ‖O

(‖eψ,er ‖
)
. One deduces first that the

time derivative of ‖W ‖ is integrable over R+ and thus W admits a limit as t tends to

infinity. Therefore, the right-hand side of the previous inequality is integrable over R+
implying the same conclusion for W1σ(MW1). As both W1 and Ẇ1 are bounded, then

according to Barbalat’s Lemma, W1 → 0 as t →∞. Consequently W2 tends towards a finite

value W̄2 as t tends to infinity.

Lemma 6.3.6 permits us to further improve the result of Lemma 6.3.5, as follows.
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Lemma 6.3.7. If Lemmas 6.3.5 and 6.3.6 hold true, then eu and ev converge to zero

asymptotically.

Proof. From Lemma 6.3.5 and setting G(eu ,ev ) := (e2
u +e2

v )/2, Equation (6.12) is rewritten

as Ġ +2m2G ≤ ρ2σ2
1(MW1)

ã
. One concludes using Barbalat’s Lemma.

So far, we have established that the errors eψ, er , eu and ev converge to zero. From

Lemmas 6.3.6 and 6.3.7, we deduce that if W1 → 0 and eu → 0, then ex will converge

asymptotically to zero as well. We next address the convergence of the remaining error

variable, ey .

Lemma 6.3.8. If Assumption 6.2.1 is satisfied, then W̄2 = 0 and ey converges asymptot-

ically to zero.

Proof. From Equation (6.13) in Lemma 6.3.6, the dynamics of W can be expressed as

follows, Ẇ =−rr e A1W +O
(∣∣eψ

∣∣ , |er | ,W1σ (MW1)
)
. We define the new variable W̃ as follows,

W̃ := Rψr e W , and the dynamics of W̃ is given by

˙̃W = ψ̇r e A1Rψr e W − rr e Rψr e A1W +Rψr e O
(∣∣eψ

∣∣ , |er | ,W1σ (MW1)
)

= O
(∣∣eψ

∣∣ , |er | ,W1σ (MW1)
)

.

Since eψ and er converge exponentially to zero and W1σ(MW1) is integrable over R+,

then
∥∥̇̃W

∥∥ is also integrable over R+, which means that W̃ converges to a finite limit W l .

Then, one gets that −W2 sin
(
ψr e

)
and W2 cos

(
ψr e

)
tend to W l

1 and W l
2 respectively, as

t tends to infinity. If W̄2 6= 0, then one easily shows that ψr e converges to a finite limit

by considering whether (Wr e )2 = 0 or not. That contradicts Assumption 2 and W must

converge asymptotically to as well as ey .

It should be noted that the controller presented in Theorem 1 has been designed

under the assumption that all state variables are known. In the next section, the study

is extended to the case where only the position and orientation states of the vessel are

available and the velocities need to be observed.

6.4 Tracking without velocity measurement

In practical cases, only position and orientation feedbacks are available for navigation.

Therefore the only available states of the vessel are x, y, ψ along with the the complete
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coordinate state set of the virtual vessel to be followed. For such output feedback systems,

the variables u, v,r need to be observed. In this section, we will show that the controller

presented in Theorem 6.3.3 is applicable in this case and the use of observation instead

of measurement does not affect the stability. We suppose that the velocities are obtained

through an observer such as that presented by Fossen and Strand in [33], or a robust

differentiator such as that presented in [16]. In both cases, observation errors converge

exponentially to zero. It can be noted that, when we use a differentiator, the estimated

values (û, v̂ , r̂ ) of (u, v,r ), can be determined according to the following equation (û, v̂)T =
D−1
ρ R−ψ( ˆ̇x, ˆ̇y)T and r̂ = ˆ̇ψ, where ( ˆ̇x, ˆ̇y, ˆ̇ψ) are the estimated values of (ẋ, ẏ ,ψ̇) respectively.

Let us follow the same steps used in the demonstration of stability of system (Se )

with velocity measurement. The observation error related to the velocity are define as

below: fu = u− û, fv = v − v̂ and fr = r − r̂ . As the references are common, the observation

errors can be described in terms of trajectory pursuit errors as fu = eu−êu, fv = ev −êv , and

fr = er −êr , where, êu = û−ur e , êv = v̂−vr e and êr = r̂ −rr e . We note that the variable x, y,ψ

are measured and the related observation errors are null. The problem is transformed to

demonstrate the stability of the error system (Se ) under control laws w1 and w̃2, which

are now based on the observed values.

As in the previous case, we define w2 :=β (ûv̂ −ur e vr e )+w̃2. Then the result of this section

can be stated as the following theorem.

Theorem 6.4.1. If Assumption 6.2.1 and Condition C1 are fulfilled, then for an ap-

propriate choice of constants U1, ρ, ξ, M , U2, k1, k2, µ, the following controller ensures

global asymptotic stability of the tracking error system (Se ):

w1 = −U1σ

(
ξêu

U1

)
−ρσ

(
M(ex +

1

µ
êu)

)
,

w2 = −U2σ

(
k1

U2
eψ+ k2 −1

U2
êr

)
,

(6.13)

if in addition the observer errors fu, fv and fr converge asymptotically to zero and are

integrable over R+ (i.e., the integrals of their norms over R+ are finite).

Remark 6.4.2. The choice of constants U1, ρ, ξ, M , U2, k1, k2, µ remain the same as

in the case of Theorem 6.3.3, therefore their expressions and conditions will not be repeated

in this section.

Proof. The proof of Theorem 6.4.1 is largely based upon the proof of Theorem 6.3.3, and
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is developed similarly. We first consider the dynamics of error variables eψ and er :

ėψ = er , ėr =−er −U2σ

(
k1

U2
eψ+ k2 −1

U2
er + f1(t )

)
+ f2(t ), (6.14)

where f1(t ) =−k2 −1

U2
fr and f2(t ) =β(uv − ûv̂).

Lemma 6.4.3. If f1(t ) and f2(t ) converge to zero asymptotically, then for some large

positive constants k1 and k2, System (6.14) is globally asymptotically stable.

Proof. Consider the Lyapunov function V defined in (6.9). If z := k1

U2
eψ+

k2 −1

U2
er , one gets

V̇ = αer ėr +σ
(

k1

U2
eψ+ k2 −1

U2
er

)[
k1

U2
ėψ+ k2 −1

U2
ėr

]
,

= αer
(−er −U2σ(z + f1)+ f2

)

+σ(z)

[
k1

U2
er +

k2 −1

U2

(−er −U2σ(z + f1)+ f2
)]

.

(6.15)

Using the inequality, |ab| ≤ a2 +b2

2
, and taking αU2 =

k1 −k2 +1

U2
> 0, we get

V̇ ≤ −α
2

e2
r − (k2 −1)σ (z)σ

(
z + f1

)

+αU2er
(
σ (z)−σ

(
z + f1

))+ α

2
f 2

2 + k2 −1

U2

∣∣ f2
∣∣ .

Using the inequalities
∣∣σ (z)−σ

(
z + f1

)∣∣≤
∣∣ f1

∣∣ and σ (z)σ
(
z + f1

)≥σ2 (z)−
∣∣ f1

∣∣, one has

V̇ ≤ −α
2

e2
r − (k2 −1)σ2 (z)+ (k2 −1)

∣∣ f1
∣∣

+αU2 |er |
∣∣ f1

∣∣+ α

2
f 2

2 + k2 −1

U2

∣∣ f2
∣∣ .

After a sufficiently large time interval T , it is assured that |U2 f1| <
1

6
∀t > T , and

V̇ ≤ −α
3

e2
r − (k2 −1)σ2 (z)+O

(
f 2

1 ,
∣∣ f2

∣∣ , f 2
2

)
. (6.16)

From here, we obtain that limsup
t→∞

|er | = limsup
t→∞

|σ(z)| = 0.

Following the same steps as used in the previous section, we now demonstrate the

convergence of the error variables (eu,ev ,ex ,ey) of System (Se ).

Lemma 6.4.4. Consider the dynamics of eu and ev presented in Equation (6.6). Then,

the control

w1 =−U1σ

(
ξêu

U1

)
−ρ1σ1(.) (6.17)

ensures that eu and ev are bounded and again verify the estimate (6.11).
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Proof. The argument exactly follows the line of the argument of Lemma 6.3.5 with the

controller w1 written as w1 := −U1σ

(
ξeu

U1
+ f

)
−ρ1σ1(.), where f := − ξ

U1
fu converges to

zero asymptotically and is integrable over R+, and by using the inequality xσ(x + f ) ≥
xσ(x)−|xσ( f )|.

Similarly, the proof of convergence of W1 to zero and W2 to a finite limit, presented

in Lemma 6.3.8, holds true and one concludes by showing that the limit of W2 is zero as

well.

6.5 Simulations

The performance of the presented controller is illustrated by simulation. We apply the

controller on an example of a monohull vessel, as considered in [23]. The length of this

vessel is 32 m, and a mass of 118×103 kg. The parameters of the damping matrices as

given as follow:

d1 = 215×102K g s−1, d2 = 97×103K g s−1,

d3 = 802×104K g m2s−1, m1 = 120×103K g ,

m2 = 172.9×103K g , m3 = 636×105K g m2.

(6.18)

Based on these physical parameters, we find the parameters of System (5.21) as

a = 0.179, b = 0.561, c = 0.694, β= 0.126,κ= 8.32×10−4. (6.19)

Then, the parameters of the controller and the normalized system (S) are given by

a1 = 1.421, b1 = 4.449, d = 0.126,

k1 = 10, k2 = 10, U2 = 0.1,

U1 = a1

2
, ρ = a1

4
, M = 0.1.

The reference trajectory is generated by considering the surge force and the yaw moment

as constants τ1,r e = 10 and τ2,r e = 0.05 with the initial values

(
xr e (0), yr e (0),ψr e (0),ur e (0), vr e (0),rr e (0)

)

= (
0 m,0 m,0 r ad , 0ms−1,0 ms−1,0 r ad s−1)).

The initial conditions of the vessel are as follows:

(
x(0), yr e (0),ψ(0),u(0), v(0),r (0)

)

=
(
50 m,−150 m,

π

4
r ad , 50ms−1,0 ms−1,0 r ad s−1

)
.
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The reference trajectory and the vessel are shown in a 2D coordinate plane in Figure

6.1.The vessel converges to the reference trajectory asymptotically and similarly for the

position errors graph in Figure 6.2. The orientation error and its derivative also converge

to zero, as seen in Figure 6.4. The convergence of eu and ev is shown in Figure 6.3.

Figures 6.5 and 6.6 show the control signals τ1 and τ2 respectively and the controllers are

clearly bounded. This is an essential property in real systems, where the control signals

are constrained.

Figure 6.1. Reference trajectory and the vessel

6.6 Summary

In this chapter, we have addressed the problem of tracking of an underactuated surface

vessel with only surge force an yaw moment. The proposed controller ensures global

asymptotic tracking of the vessel, following a reference trajectory modeled by a virtual

vessel. It is also shown that the stability of the system is not affected if the state mea-

surements are replaced by observers. The using of saturated inputs is essential as in real

life the actuators have limited output. Simulation results illustrate the performance of the

controller.
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Figure 6.2. Errors ex and ey

Figure 6.3. Errors eu and ev
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Figure 6.4. Errors eψ and er

Figure 6.5. Control τ1
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Figure 6.6. Control τ2





Conclusion and Perspectives

Overview

In this thesis, two nonlinear control problems were studied and contributions were pre-

sented for their solution. The first problem consisted of control of nonlinear uncertain

systems. The second problem was related to control of underactuated systems. Accord-

ingly, the report was divided in two pars

In the first part, higher order sliding mode controllers were studied as a means of

controlling nonlinear systems with parametric uncertainty. After a detailed state-of-the-

art study, the advantages and shortcomings of existing controllers were identified. Then,

Lyapunov-based robust and adaptive arbitrary HOSM controllers were proposed for these

systems. These controllers were designed using a class of controllers for finite-time stabi-

lization of pure integrator chains. The main contributions in this regard are the existence

of a Lyapunov function for control design for both the robust and adaptive controllers

and the development of the first adaptive arbitrary HOSM controller. The performance of

these controllers was demonstrated using a Hardware-in-Loop fuel cell emulation system.

The control problem addressed in this example was the control of the air-feed system of

the fuel cell in order to optimize the net power output. The results showed that both

the robust and adaptive controllers achieved the control objective successfully, and their

output performance was comparable to existing controllers in the contemporary literature.

Then, it was shown that the homogeneity degree of controllers can be manipulated in

order to achieve different characteristics in them. A general form of the controllers was

formulated, based on Hong’s homogeneous finite-time controller [39] for the stabilization of

pure integrator chains. It was observed that for a particular choice of homogeneity degree,

Levant’s arbitrary HOSM controller [55] became a particular case of this general controller.
115
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Then, by switching the homogeneity degree, a bounded controller was developed with

minimum amplitude of discontinuity after convergence. The switching of homogeneity

degree also permitted to design a fixed-time controller.

In the next part, the focus was on the control problems of underactuated systems.

The first problem was the path-following of a car type vehicle, using target-point, rigidly

attached to the vehicle. This was achieved by first transforming the problem of path-

following into that of trajectory tracking, by defining the path curvature as a dynamic

virtual vehicle. Saturated control laws were then developed, which ensured global stabi-

lization. The proposed Lyapunov function forced the errors to enter a neighborhood of the

origin in finite time. The Lyapunov analysis also showed that by a bootstrap procedure,

this neighborhood contracts asymptotically to zero. Simulation results illustrate the GAS

performance of the controller.

The next problem concerned tracking of an underactuated surface marine vessel with

only surge force and yaw moment. Again, the controller design was based on saturated

inputs and definition of the trajectory using a virtual vessel model. The proposed controller

ensured global asymptotic tracking and it was shown that the stability of the system

was not affected if the state measurements are replaced by observers. Simulation results

illustrate the performance of the controller.

Conclusion

This thesis required an in-depth comprehension of nonlinear systems and the problems

associated with specific types of these systems. The scope required simultaneous study of

many different domains in nonlinear control. The results of the developments presented

in the thesis were satisfactory and the significance of the contributions was established in

accordance with the contemporary research work.

Future Research

There are many remained directions in which the research can be explored and improved.

These include:

Generalization of the adaptation techniques for the higher order multi-input-multi-

output systems.
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Development of Lyapunov Based Adaptive HOSM controllers, ensuring real sliding

mode, in which the output converges to a predetermined neighborhood.

Development of HOSM controllers that do not require many differentiators, such as

supertwisting for second order sliding mode.

Development of adaptive observers in the same direction as adaptive controllers.

Application of bounded control to more complex underactuated systems, such as

3DOF Helicopters and submarine robots.

Inclusion of external constraints and disturbance in the study of underactuated sys-

tems, such as wind and waves in the case of ships and wind and road characteristics

in the case of cars.
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Appendices

A Proof of technical lemmas

A.A Proof of Lemma 5.3.4

The transfer function related to System (5.35) is defined by

G (s) = (sI2 − A)−1, (20)

and the L2-gain is defined by

ΥL = supω∈R σ̄(G( jω)). (21)

where σ̄ is the largest singular value of G( jω). Since

S(ω) :=G( jω)G∗( jω) =ω2I2 + jω
(

A− AT )+ AT A.

We define ΥL
2 as the inverse of the smallest eigenvalue of S(ω):

S =

 k2

1 +ω2 k1k2 + jω (1+k1)

k1k2 − jω (1+k1) 1+k2
2 +ω2


 . (22)

The minimum eigenvalue is equal to

λmi n(ω) =
1+k2

1 +k2
2 +2ω2 −

√(
1+k2

1 +k2
2 +2ω2

)2 −4
(
ω2k2

2 +
(
ω2 −k1

)2
)

2
.

(23)

The minimum of λmi n with respect to ω is equal to

λmi n = 1+k2
1 +k2

2

2
−

√
(1−k2

1)
2 +k2

2(k2
2 +2+2k2

1)

4
. (24)
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We deduce that

Υ2
L = 1

2
+ 1+k2

2

2k2
1

+ 1

2

√√√√1+ (
2k2

k1
)2 +

(2(1+k2
2)

k2
1

)2
> 1. (25)

If we tune k1 =
3

16
k2

2 and k2 ≥ 20, then 0.93 <λmi n < 1, and 1 <ΥL < 1.2.

A.B Proof of Lemma 5.3.5

By using the Taylor expansion of equation (25), we have the following asymptotic expan-

sion of Υ2
L,

Υ2
L = 1+ 3

2a2k2
2

+ 1

2a2k4
2

+O(
1

k6
2

), (26)

Then, the Riccati equation proposed in (5.28) takes the following form

( Pk

ΥL
+ΥL A)T ( Pk

ΥL
+ΥL A) = S, where S =−I +Υ2

L AT A. (27)

As det(S) > 0, S is clearly positive definite:

S =

 −1+Υ2

L a2k4
2 Υ2

L ak3
2

Υ2
L ak3

2 −1+Υ2
L

(
1+k2

2

)


 ,

and we get:

det(S) =Υ2
Lk2

2(a2k2
2(Υ2

L −1)−1)− (Υ2
L −1),

and we deduce from (25) the following Taylor expansion for det(S),

det(S) = 1

2
Υ2

Lk2
2

(
1+ 1

k2
2

+O

(
1

k4
2

)
)
.

Then, the Riccati equation (27), takes the form:

X T X = S,

where X = Pk

ΥL
+ΥL A, and the solution is:

X = Pk

ΥL
+ΥL A = Rφ

p
S, (28)

where Rφ is a rotation of angle φ and
p

S is the unique symmetric positive definite matrix

whose square is equal to S. We first estimate
p

S and then φ.

We clearly have

S = bbT +γe2eT
2 ,
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where b =

α
β


, e2 =


0

1


 and

α=
√

(ΥL ak2
2)2 −1, β=

Υ2
L ak3

2

α
, γ= det(S)

α2 .

The asymptotic expansions of the above quantities are


α
β


=ΥLk2




ak2
(
1− 1

2Υ2
L a2k4

2

+O(
1

k8
2

)
)

1+ 1

2Υ2
L a2k4

2

+O(
1

k8
2

)


 , γ= 1

2a2k2
2

(1+ 1

k2
2

+O(
1

k4
2

)).

We also need the asymptotic expansions of the eigenvalues of S. Since

S =

 α2 αβ

αβ β2 +γ


 ,

then,

λ1,2 =
α2 +β2 +γ±

√(
α2 +β2 +γ)2 −4α2γ

2

We immediately deduce the following asymptotic expansions for the eigenvalues of S,

λ1 =α2 +β2 +O(
1

k4
2

), λ2 = γ(1+O(
1

k2
2

)). (29)

We use b̄ to denote the unit vector b/‖b‖ and define the angle φb so that Rφb e1 = b̄,

where e1 =

1

0


.

We have

‖b‖ =ΥL ak2
2

(
1+ 1

2a2k2
2

+O(
1

k4
2

)
)
, b̄ =




1− 1

2a2k2
2

+O(
1

k4
2

)

1

ak2

(
1+ 1

2a2k2
2

+O(
1

k4
2

)
)


 ,

and

Rφb = l2I d2 + l1 A0,

where A0 =

0 −1

1 0


 and

l1 =
1

ak2

(
1− 3

2a2k2
2

+O(
1

k4
2

)
)
, l2 = (1− 1

2a2k2
2

+O(
1

k4
2

)).
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We then get that R−φb e2 = l2e2 − l1e1. We can therefore write

R−φb SRφb = ‖b‖2e1eT
1 +γR−φb e2eT

2 Rφb ,

and deduce that

R−φb SRφb = (‖b‖2 +γl 2
1 )e1eT

1 +γl 2
2 e2eT

2 −γl1l2(e1eT
2 +e2eT

1 ). (30)

Finally, we seek a formula of the type

R−φb

p
SRφb = s1e1eT

1 + s2e2eT
2 − s3(e1eT

2 +e2eT
1 ), (31)

where the sI ’s are positive. A simple identification leads to the equations

s2
1 + s2

3 = ‖b‖2 +γl 2
1 , s2

2 + s2
3 = γl 2

2 , s3 =
γl1l2

Tr (
p

S)
.

We deduce at once from the asymptotic expansions of the eigenvalues of S obtained in

(29) that

s1 = ‖b‖(1+O(
1

k8
2

)), s2 =
p
γ(1+O(

1

k2
2

)), s3 =O(
1

k5
2

). (32)

From the expression ΥL(A− AT ) = Rφ

p
S −

p
SR−φ, we obtain

ΥL
(
1+ak2

2

)

 0 1

−1 0


=−Tr

(p
S
)

sin
(
φ

)

 0 1

−1 0


 ,

and we deduce that ΥL(1+ak2
2) =−Tr (

p
S)sin(φ), i.e.,

sin(φ) =−(
1− C 2

0

2k2
2

+O(
1

k3
2

)
)
,

where C0 =
p

1−2a

a
. It implies that

Rφ = C0

k2

(
1+O(

1

k2
)
)
I d2 −

(
1− C 2

0

2k2
2

+O(
1

k3
2

)
)

A0.

We now collect the result of the equation (28) and (32) to get,

Pk

ΥL
=−ΥL A+RφRφb

[
s1e1eT

1 + s2e2eT
2 +O(

1

k5
2

))
]

R−φb .

After a straightforward computation of the expansion of ΥL, Rφ, Rφb , s1 and s2 in the

previous equation, we arrive at (5.36).
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A.C Proof of Proposition 5.3.6

The proof is developed using Young inequality, |ηξ| ≤ ǫη2

2
+ ξ2

2ǫ
, where ǫ is an arbitrary

positive constant.

First of all, according to Lemma 5.3.5, for large k2, the quadratic form Vk (ξ,η) satisfies

the following inequality

Vk (ξ,η) ≥ F1k2ξ
2 +2F2ξη+F3

η2

k2
− C

k2
(ξ2 + η2

k2
2

),

for some positive universal constant C > 0. Then, by setting X :=
√

k2F1η and Y := η√
k2F3

,

we obtain

Vk (ξ,η) ≥ (1− C

k2
2

)X 2 +2
F2p
F1F3

X Y + (1− C

k2
2

)Y 2.

Since
F 2

2

F1F3
< 1, the above inequality ensures, for k2 large enough, the existence of l > 0

only dependent of a such that

Vk (ξ,η) ≥ l

(
k2ξ

2 + η2

k2

)
.

The previous inequality with M =βk2 and k1 = ak2
2 computed in (5.29) implies

V (y1, y2,ξ,η) ≥ lβk2
2ξ

2 + lβη2 + ak2
2

2

(
y2

1 + y2
2

)−
∣∣ηy2

∣∣−
∣∣k2 y2ξ

∣∣ .

By using Young’s inequality, we get

∣∣ηy2
∣∣ ≤ lβ

η2

2
+ 1

lβ

y2
2

2
,

∣∣k2 y2ξ
∣∣ ≤ lβ

k2
2ξ

2

2
+ 1

lβ

y2
2

2
.

Which implies,

V ≥
(

ak2
2

2
+ 1

lβ

)
y2

2 +
lβk2

2

2
ξ2 + lβ

2
η2 + ak2

2

2
y2

1 .

then for large enough k2, V is a positive quadratic form in (ξ,η, y1, y2).

A.D Proof of Lemma 5.3.7

The solution of the equation (5.26) is

Z (t ) =
ˆ t

0
e A(t−s)U (s)d s +e At Z0 , (33)
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where Z0 is the initial value of Z for t = 0. We start by diagonalization of the matrix A,

whose eigenvalues are equal to

λ+ =−k2

2
+ 1

2

√
k2

2 −4k1,

λ− =−k2

2
− 1

2

√
k2

2 −4k1,
(34)

with corresponding eigenvectors V+ =

 1

λ+


 and V− =


 1

λ−


. From here, we obtain

A = PDP−1, where

D =

 λ+ 0

0 λ−


 ; P =

(
V+ V−

)
=


 1

λ+

1

λ−


 ; (35)

We get

e A(t−s)U (s) = 1

λ−−λ+


 (λ−v1 − v2)eλ+(t−s) + (λ+v1 + v2)eλ−(t−s)

λ+ (λ−v1 − v2)eλ+(t−s) +λ− (λ+v1 + v2)eλ−(t−s)


 (36)

The control variables ν1 and ν2 are bounded respectively by κmaxC1 and C2 and we obtain

that the components of the vector

ˆ t

0
e A(t−s)U (s)d s are bounded componentwise by




1∣∣∣ λ+
∣∣∣

(
κmaxC1 +

C2

|λ−|

)

κmaxC1 +
C2

|λ+|
+ C2

|λ−| .


 . (37)

By taking k1 =
3

16
k2

2 , we get λ+ =−k2

4
and λ− =−3k2

4
. We can bound the components

of the vector defined in (5.9) by




4

k2

(
κmaxC1 +

4

3k2
C2

)

κmaxC1 +
16

3k2
C2


 . (38)

Equation (5.37) can be deduced directly from Equations (33) and (38). Moreover, since A

is Hurwitz, we arrive to (5.38).

A.E Proof of Lemma 5.3.10

The terms |ηξ| and k2ξ
2 are clearly dominated by

M

4
(ξ2 +η2).
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In (5.40), one has M
(
ΥLκr C1σ(y1)

)2 ≤C M
(
C1σ(y1)

)2
, which is dominated by

k1C1

4
y1σ(y1)

if CβC1 ≤
ak2

4
. The latter clearly holds true for k2 large enough.

We have M
(
ΥLC2σ(y2)

)2 ≤C M
(
C2σ(y2)

)2
, which is dominated by C2 y2σ(y2)/4 if AMC 2

2 ≤
C2/4. The latter is true according to the choice of C2 in (5.23).

We now turn to the control of the term k2C1|y2κrσ(y1)| by k1C1

4
y1σ(y1)+ C2

4
y2σ(y2).

If |y2| ≥ 1, the second term is in control if
C2

4
≥ C k2C1 which holds true. Assume now

that |y2| ≤ 1. In the case where |y1| ≥ 1, the first term is in control if
k1C1

4
≥C k2C1 which

obviously holds true. It remains the case where |y1| ≤ 1. It is immediate to check that the

quadratic form
k1C1

4
y2

1 +
C2

4
y2

2 −C k2C1 y1 y2 is definite positive.

We next consider the term k1|y2||ξ|3. To control it, we first bound |ξ|2 by
C

k6
2

for t large

enough. In case |y2| ≥ 1, then the term is immediately dominated by
C2

4
|y2|. Otherwise,

one has, for k2 large enough,

k1|y2||ξ|3 ≤C
|y2|
k2

|ξ|
k4

2

≤C (
y2

2

k2
2

+ ξ2

k4
2

),

the last two terms being controlled by
C2

4
|y2|2 +

M

4
ξ2.

Using again the estimate |ξ| by C

k3
2

for t large enough, the control of k1|y1||ξ|2 reduces

to that of k2|y1ξ|. It therefore remain to control the latter. This is where we need the

hypothesis that y ∉ Yk2 . Assume first that one wants to get the inequality

k2|y1ξ| ≤
k1C1

4
y1σ(y1). (39)

This holds true if |y1| ≥
C

k2
2

. On the other hand, if one wants to get the inequality

k2|y1ξ| ≤
C2

4
y2σ(y2), (40)

it holds if |y2| ≥
C

k3/2
2

. In any case, outside Yk2 , one of the two inequalities (39) or (40)

must hold true and Lemma5.3.10 is established.

Finally, with the choice of M =βk2 together with (5.36), it is immediate to verfy that

V is positive definite. Moreover, we get

a1k2ξ
2 + a2

k2
η2 +a3k2

2(y2
1 + y2

2) ≤V ≤ d1k2ξ
2 + d2

k2
η2 +d3k2

2(y2
1 + y2

2), (41)

for some positive constants ai , di , 1 ≤ i ≤ 3.







Résumé :

Les systèmes non-linéaires sont si diverses que des outils communs de contrôle sont difficiles à développer. La théorie du
contrôle non-linéaire nécessite une analyse mathématique rigoureuse pour motiver ses conclusions. Cette thèse aborde
deux branches distinctes et bien importantes de la théorie du contrôle non-linéaire: le contrôle des systèmes non-linéaires
incertains et le contrôle des systèmes sous-actionnés.

Dans la première partie, une classe de contrôleurs par mode glissant d’ordre supérieur (MGOS) robuste, basée sur
la synthèse de Lyapunov, est développée pour le contrôle des systèmes non-linéaires incertains. Cette classe de
contrôleurs est basée sur une classe de régulateurs qui stabilisent une pure chaı̂ne d’intégrateurs en temps fini, et
nécessite la connaissance a priori des bornes sur les incertitudes du système. Puis, afin d’éliminer la dépendance liée à la
connaissance de ces bornes, un contrôleur par MGOS adaptatif est développé. Dans un deuxième temps, un contrôleur
par MGOS homogène universel est développé où il est montré que le degré d’homogénéité peut être manipulé pour
obtenir des avantages supplémentaires, tels que la bornitude de la commande, la garantie d’une amplitude minimale de
la discontinuité de la commande et la convergence en temps fixe. Les performances des contrôleurs proposés ont été
démontrées par des simulations et à travers des résultats expérimentaux sur un système pile à combustible.

Dans la deuxième partie de la thèse, deux problèmes de commande de systèmes sous-actionnés sont étudiés. Le premier
problème concerne le suivi de chemin global d’un robot mobile avec un point de visée. Le deuxième problème concerne
la poursuite de trajectoire globale d’un bateau. Ces deux problèmes sont de nature distincte, cependant, ils sont soumis
à des contraintes physiques similaires liées à la bornitude de la commande. Ainsi, les contrôleurs proposés sont basés
sur l’utilisation de commandes saturées. Des simulations ont été effectuées pour démontrer les performances de ces
contrôleurs.

Mots clés : Fonction de Lyapunov, mode glissant d’ordre supérieur, commande robuste, commande adaptative, système
sous-actionné, saturation, suivi de chemin, poursuite de trajectoire, point de visée.

Abstract:

Nonlinear systems are so diverse that generalized tools for control are difficult to develop. Nonlinear control theory requires
rigorous mathematical analysis to justify its conclusions. This thesis addresses two distinct, yet important branches of
nonlinear control theory: control of uncertain nonlinear systems and control of under-actuated systems.

In the first part, a class of Lyapunov-based robust arbitrary higher order sliding mode (HOSM) controllers is developed
for the control of uncertain nonlinear systems. This class of controllers is based on a class of controllers for finite-time
stabilization of pure integrator chain, and requires the limits of the system uncertainty to be known a-priori. Then, in order
to eliminate the dependence on the knowledge of these limits, an adaptive arbitrary HOSM controller is developed. Using
this new class, a universal homogeneous arbitrary HOSM controller is developed and it is shown that the homogeneity
degree can be manipulated to obtain additional advantages in the proposed controllers, such as bounded control, minimum
amplitude of discontinuous control and fixed time convergence. The performance of the controllers has been demonstrated
through simulations and experiments on a fuel cell system.

In the next part, the control of two under-actuated systems is studied. The first control problem is the global path following
of car-type robotic vehicle, using target-point. The second problem is the precise tracking of surface marine vessels.
Both these problems are distinct in nature; however, they are subjected to similar physical constraints. The solutions
proposed for these control problems use saturated controls, taking into account the physical bounds on the control inputs.
Simulations have been performed to demonstrate the performance of these controllers.

Keywords: Lyapunov method, higher order sliding mode control, robust control, adaptive control, under-actuated system,
saturation, path following, trajectory tracking, target point.


